mirror of https://github.com/vladmandic/human
5532 lines
1.3 MiB
5532 lines
1.3 MiB
|
|
/*
|
|
Human library
|
|
homepage: <https://github.com/vladmandic/human>
|
|
author: <https://github.com/vladmandic>'
|
|
*/
|
|
var Human=(()=>{var Ky=Object.defineProperty;var pI=e=>Ky(e,"__esModule",{value:!0});var bm=e=>{if(typeof require!="undefined")return require(e);throw new Error('Dynamic require of "'+e+'" is not supported')};var vm=(e,t)=>{pI(e);for(var n in t)Ky(e,n,{get:t[n],enumerable:!0})};var Zy=(e,t,n)=>{if(!t.has(e))throw TypeError("Cannot "+n)};var hn=(e,t,n)=>(Zy(e,t,"read from private field"),n?n.call(e):t.get(e)),ts=(e,t,n)=>{if(t.has(e))throw TypeError("Cannot add the same private member more than once");t instanceof WeakSet?t.add(e):t.set(e,n)},Ss=(e,t,n,s)=>(Zy(e,t,"write to private field"),s?s.call(e,n):t.set(e,n),n);var Hie={};vm(Hie,{Human:()=>I8,default:()=>I8});function ft(e,t){let n=e.endsWith("/")?"":"/",r=t.startsWith(".")||t.startsWith("/")||t.startsWith("http:")||t.startsWith("https:")||t.startsWith("file:")?`${t}`:`${e}${n}${t}`;if(!r.toLocaleLowerCase().includes(".json"))throw new Error(`Human: ModelPath Error: ${r} Expecting JSON file`);return r}function ue(...e){let t=new Date,n=`${t.getHours().toString().padStart(2,"0")}:${t.getMinutes().toString().padStart(2,"0")}:${t.getSeconds().toString().padStart(2,"0")}.${t.getMilliseconds().toString().padStart(3,"0")}`;e&&console.log(n,"Human:",...e)}var Ke=()=>typeof performance!="undefined"?performance.now():parseInt((Number(process.hrtime.bigint())/1e3/1e3).toString());function pn(...e){let t=n=>n&&typeof n=="object";return e.reduce((n,s)=>(Object.keys(s||{}).forEach(r=>{let a=n[r],o=s[r];Array.isArray(a)&&Array.isArray(o)?n[r]=a.concat(...o):t(a)&&t(o)?n[r]=pn(a,o):n[r]=o}),n),{})}var Yy={backend:"webgl",modelBasePath:"../models/",wasmPath:"../node_modules/@tensorflow/tfjs-backend-wasm/dist/",debug:!0,async:!0,warmup:"full",cacheSensitivity:.75,skipFrame:!1,filter:{enabled:!0,width:0,height:0,flip:!1,return:!0,brightness:0,contrast:0,sharpness:0,blur:0,saturation:0,hue:0,negative:!1,sepia:!1,vintage:!1,kodachrome:!1,technicolor:!1,polaroid:!1,pixelate:0},gesture:{enabled:!0},face:{enabled:!0,detector:{modelPath:"blazeface.json",rotation:!0,maxDetected:15,skipFrames:15,minConfidence:.2,iouThreshold:.1,return:!1},mesh:{enabled:!0,modelPath:"facemesh.json"},iris:{enabled:!0,modelPath:"iris.json"},description:{enabled:!0,modelPath:"faceres.json",skipFrames:11,minConfidence:.1},emotion:{enabled:!0,minConfidence:.1,skipFrames:17,modelPath:"emotion.json"}},body:{enabled:!0,modelPath:"movenet-lightning.json",maxDetected:1,minConfidence:.2,skipFrames:1},hand:{enabled:!0,rotation:!0,skipFrames:18,minConfidence:.1,iouThreshold:.1,maxDetected:2,landmarks:!0,detector:{modelPath:"handdetect.json"},skeleton:{modelPath:"handskeleton.json"}},object:{enabled:!1,modelPath:"mb3-centernet.json",minConfidence:.2,iouThreshold:.4,maxDetected:10,skipFrames:19},segmentation:{enabled:!1,modelPath:"selfie.json"}};function Jy(){let e="",t="";if(typeof navigator!="undefined"){let n=navigator.userAgent.match(/\(([^()]+)\)/g);if(n&&n[0]){let s=n[0].match(/\(([^()]+)\)/g);e=s&&s[0]?s[0].replace(/\(|\)/g,""):"",t=navigator.userAgent.replace(n[0],""),e[1]&&(t=t.replace(n[1],"")),t=t.replace(/ /g," ")}}else typeof process!="undefined"&&(e=`${process.platform} ${process.arch}`,t=`NodeJS ${process.version}`);return{platform:e,agent:t}}var Yc={};vm(Yc,{Abs:()=>di,Acos:()=>hi,Acosh:()=>pi,AdadeltaOptimizer:()=>ap,AdagradOptimizer:()=>op,AdamOptimizer:()=>ip,AdamaxOptimizer:()=>lp,Add:()=>Dr,AddN:()=>ga,All:()=>fi,Any:()=>mi,ArgMax:()=>ya,ArgMin:()=>Cu,Asin:()=>Ai,Asinh:()=>gi,Atan:()=>yi,Atan2:()=>bi,Atanh:()=>xi,AvgPool:()=>xa,AvgPool3D:()=>Tu,AvgPool3DGrad:()=>Ld,AvgPoolGrad:()=>zd,BackendWasm:()=>bk,BatchMatMul:()=>ba,BatchToSpaceND:()=>vi,Bincount:()=>Bd,BroadcastTo:()=>A5,Callback:()=>bv,CallbackList:()=>h3,Cast:()=>va,Ceil:()=>wa,ClipByValue:()=>Or,Complex:()=>Wd,ComplexAbs:()=>Nu,Concat:()=>wi,Conv2D:()=>ka,Conv2DBackpropFilter:()=>Vd,Conv2DBackpropInput:()=>Ia,Conv3D:()=>Eu,Conv3DBackpropFilterV2:()=>Ud,Conv3DBackpropInputV2:()=>Hd,Cos:()=>Sa,Cosh:()=>Ca,CropAndResize:()=>ki,Cumsum:()=>Ta,CustomCallback:()=>f3,DataStorage:()=>Fd,DenseBincount:()=>Gd,DepthToSpace:()=>Ii,DepthwiseConv2dNative:()=>Na,DepthwiseConv2dNativeBackpropFilter:()=>jd,DepthwiseConv2dNativeBackpropInput:()=>qd,Diag:()=>Xd,Dilation2D:()=>Ru,Dilation2DBackpropFilter:()=>Zd,Dilation2DBackpropInput:()=>Kd,ENV:()=>ns,EarlyStopping:()=>wv,Einsum:()=>Yd,Elu:()=>Si,EluGrad:()=>Jd,Environment:()=>f5,Equal:()=>Ti,Erf:()=>Ci,Exp:()=>Ra,ExpandDims:()=>Ni,Expm1:()=>Ei,FFT:()=>Qd,Fill:()=>_u,FlipLeftRight:()=>Ri,Floor:()=>_a,FloorDiv:()=>$a,FromPixels:()=>bh,FusedBatchNorm:()=>Fa,FusedConv2D:()=>fo,FusedDepthwiseConv2D:()=>mo,GPGPUContext:()=>uf,GatherNd:()=>$i,GatherV2:()=>_i,GraphModel:()=>e7,Greater:()=>Fi,GreaterEqual:()=>Da,History:()=>p3,IFFT:()=>eh,Identity:()=>Oa,Imag:()=>th,InputSpec:()=>Pt,IsFinite:()=>Di,IsInf:()=>Oi,IsNan:()=>Pi,KernelBackend:()=>ku,LRN:()=>Du,LRNGrad:()=>sh,LayerVariable:()=>i3,LayersModel:()=>wr,LeakyRelu:()=>Pa,Less:()=>Mi,LessEqual:()=>zi,LinSpace:()=>nh,Log:()=>Ma,Log1p:()=>Li,LogSoftmax:()=>g5,LogicalAnd:()=>Bi,LogicalNot:()=>$u,LogicalOr:()=>Fu,MathBackendCPU:()=>Kp,MathBackendWebGL:()=>Jl,Max:()=>za,MaxPool:()=>Ba,MaxPool3D:()=>Ou,MaxPool3DGrad:()=>ah,MaxPoolGrad:()=>rh,MaxPoolWithArgmax:()=>oh,Maximum:()=>La,Mean:()=>Wa,Min:()=>Va,Minimum:()=>Ua,MirrorPad:()=>Ha,Mod:()=>Wi,MomentumOptimizer:()=>up,Multinomial:()=>ih,Multiply:()=>Ga,Neg:()=>Vi,NonMaxSuppressionV3:()=>Hi,NonMaxSuppressionV4:()=>Gi,NonMaxSuppressionV5:()=>ji,NotEqual:()=>Ui,OP_SCOPE_SUFFIX:()=>$5,OneHot:()=>ja,OnesLike:()=>qi,Optimizer:()=>xr,Pack:()=>Xi,PadV2:()=>qa,Pool:()=>gS,Pow:()=>Xa,Prelu:()=>Ka,Prod:()=>Ki,RMSPropOptimizer:()=>cp,RNN:()=>sr,Range:()=>Pu,Rank:()=>$m,Real:()=>lh,RealDiv:()=>Ea,Reciprocal:()=>Zi,Reduction:()=>yn,Relu:()=>Za,Relu6:()=>Ja,Reshape:()=>Yi,ResizeBilinear:()=>Ya,ResizeBilinearGrad:()=>ch,ResizeNearestNeighbor:()=>Mu,ResizeNearestNeighborGrad:()=>uh,Reverse:()=>Qa,RotateWithOffset:()=>hl,Round:()=>eo,Rsqrt:()=>to,SGDOptimizer:()=>cc,ScatterNd:()=>Ji,Select:()=>Qi,Selu:()=>el,Sequential:()=>Ml,Sigmoid:()=>so,Sign:()=>sl,Sin:()=>no,Sinh:()=>nl,Slice:()=>tl,Softmax:()=>oo,Softplus:()=>rl,SpaceToBatchND:()=>al,SparseFillEmptyRows:()=>dh,SparseReshape:()=>hh,SparseSegmentMean:()=>ph,SparseSegmentSum:()=>fh,SparseToDense:()=>mh,SplitV:()=>ol,Sqrt:()=>ro,Square:()=>zu,SquaredDifference:()=>io,Step:()=>Mr,StridedSlice:()=>il,StringNGrams:()=>Ah,StringSplit:()=>gh,StringToHashBucketFast:()=>yh,Sub:()=>lo,Sum:()=>ao,SymbolicTensor:()=>Ps,Tan:()=>uo,Tanh:()=>co,Tensor:()=>Ue,TensorBuffer:()=>Bt,Tile:()=>Pr,TopK:()=>ll,Transform:()=>ul,Transpose:()=>ho,Unique:()=>xh,Unpack:()=>cl,UnsortedSegmentSum:()=>Lu,Variable:()=>qu,ZerosLike:()=>dl,_FusedMatMul:()=>po,abs:()=>Wt,acos:()=>Ax,acosh:()=>gx,add:()=>ae,addN:()=>$h,all:()=>iA,any:()=>Fh,argMax:()=>Xs,argMin:()=>yx,asin:()=>xx,asinh:()=>bx,atan:()=>vx,atan2:()=>wx,atanh:()=>kx,avgPool:()=>Oh,avgPool3d:()=>cA,backend:()=>mx,backend_util:()=>$,basicLSTMCell:()=>nT,batchNorm:()=>kl,batchNorm2d:()=>Tx,batchNorm3d:()=>Nx,batchNorm4d:()=>Ex,batchToSpaceND:()=>Ph,bincount:()=>dA,booleanMaskAsync:()=>fR,broadcastTo:()=>ec,browser:()=>rs,buffer:()=>Be,callbacks:()=>Rz,cast:()=>ce,ceil:()=>Rx,clipByValue:()=>Wn,clone:()=>Ns,complex:()=>Lr,concat:()=>ht,concat1d:()=>_x,concat2d:()=>Il,concat3d:()=>$x,concat4d:()=>Fx,constraints:()=>Bb,conv1d:()=>hA,conv2d:()=>Hr,conv2dTranspose:()=>fA,conv3d:()=>mA,conv3dTranspose:()=>Ox,copyRegisteredKernels:()=>bS,cos:()=>Mh,cosh:()=>AA,cosineWindow:()=>WA,cumsum:()=>gA,customGrad:()=>Zs,data:()=>t7,denseBincount:()=>Px,deprecationWarn:()=>rA,depthToSpace:()=>Mx,depthwiseConv2d:()=>tc,deregisterOp:()=>$z,device_util:()=>Ku,diag:()=>_T,dilation2d:()=>zx,disableDeprecationWarnings:()=>mC,dispose:()=>K,disposeVariables:()=>AC,div:()=>de,divNoNan:()=>Lx,dot:()=>LT,dropout:()=>mb,einsum:()=>Bx,elu:()=>nc,enableDebugMode:()=>fC,enableProdMode:()=>pC,enclosingPowerOfTwo:()=>Ab,engine:()=>Ar,env:()=>ee,equal:()=>as,erf:()=>Wx,exp:()=>os,expandDims:()=>Ft,expm1:()=>Vx,eye:()=>yA,fft:()=>Yh,fill:()=>Sl,findBackend:()=>aA,findBackendFactory:()=>kC,floor:()=>sc,floorDiv:()=>oA,forceHalfFloat:()=>N6,fused:()=>qr,gather:()=>Cl,gatherND:()=>fb,gather_util:()=>Ym,getBackend:()=>vC,getGradient:()=>Nm,getKernel:()=>vh,getKernelsForBackend:()=>fl,gpgpu_util:()=>Jw,grad:()=>cN,grads:()=>dN,greater:()=>Vn,greaterEqual:()=>Io,ifft:()=>ic,imag:()=>zh,image:()=>_e,inTopKAsync:()=>SR,initializers:()=>qb,input:()=>M3,io:()=>Tn,irfft:()=>OA,isFinite:()=>eN,isInf:()=>nN,isNaN:()=>Ux,keep:()=>Kt,kernel_impls:()=>Js,layers:()=>r3,leakyRelu:()=>Lh,less:()=>xA,lessEqual:()=>So,linalg:()=>Cb,linspace:()=>Hx,loadGraphModel:()=>pt,loadLayersModel:()=>BP,localResponseNormalization:()=>Gx,log:()=>is,log1p:()=>Bh,logSigmoid:()=>gN,logSoftmax:()=>bA,logSumExp:()=>Zx,logicalAnd:()=>Rs,logicalNot:()=>Vh,logicalOr:()=>kA,logicalXor:()=>EN,losses:()=>i$,matMul:()=>We,math:()=>Z5,max:()=>ls,maxPool:()=>Uh,maxPool3d:()=>IA,maxPoolWithArgmax:()=>Yx,maximum:()=>gr,mean:()=>Et,memory:()=>_h,meshgrid:()=>ON,metrics:()=>gv,min:()=>Hh,minimum:()=>rc,mirrorPad:()=>Jx,mod:()=>Qx,model:()=>zP,models:()=>yv,moments:()=>Gh,movingAverage:()=>gR,mul:()=>z,multiRNNCell:()=>UN,multinomial:()=>eb,neg:()=>St,nextFrame:()=>dp,norm:()=>LA,notEqual:()=>Nl,oneHot:()=>Ju,ones:()=>Un,onesLike:()=>us,op:()=>V,outerProduct:()=>XN,pad:()=>Gr,pad1d:()=>YN,pad2d:()=>QN,pad3d:()=>tE,pad4d:()=>sE,pool:()=>lE,pow:()=>jr,prelu:()=>qh,print:()=>H5,prod:()=>SA,profile:()=>gC,rand:()=>pE,randomGamma:()=>gE,randomNormal:()=>tb,randomUniform:()=>El,range:()=>Rl,ready:()=>bC,real:()=>ac,reciprocal:()=>nb,registerBackend:()=>bl,registerCallbackConstructor:()=>WP,registerGradient:()=>y5,registerKernel:()=>Ao,registerOp:()=>_z,regularizers:()=>xv,relu:()=>Ys,relu6:()=>NA,removeBackend:()=>wC,reshape:()=>U,reverse:()=>cs,reverse1d:()=>CE,reverse2d:()=>NE,reverse3d:()=>RE,reverse4d:()=>$E,rfft:()=>Jh,round:()=>EA,rsqrt:()=>RA,scalar:()=>Ie,scatterND:()=>pb,scatter_util:()=>Jm,selu:()=>_A,separableConv2d:()=>sb,sequential:()=>LP,serialization:()=>oe,setBackend:()=>xC,setPlatform:()=>IC,setWasmPath:()=>aie,setWasmPaths:()=>oie,setWebGLContext:()=>tf,setdiff1dAsync:()=>rb,shared:()=>Y2,sigmoid:()=>Bn,sign:()=>ab,signal:()=>o$,sin:()=>$A,sinh:()=>FA,slice:()=>Re,slice1d:()=>Xh,slice2d:()=>DA,slice3d:()=>Kh,slice4d:()=>oc,slice_util:()=>An,softmax:()=>Zh,softplus:()=>Tl,spaceToBatchND:()=>jh,sparse:()=>uc,sparseToDense:()=>BA,spectral:()=>a$,split:()=>nn,sqrt:()=>ln,square:()=>lt,squaredDifference:()=>PA,squeeze:()=>ot,stack:()=>Nn,step:()=>lc,stridedSlice:()=>ob,string:()=>rp,sub:()=>Ae,sum:()=>ve,sumOutType:()=>Ch,tan:()=>ib,tanh:()=>wl,tensor:()=>on,tensor1d:()=>Ot,tensor2d:()=>_s,tensor3d:()=>Eh,tensor4d:()=>rR,tensor5d:()=>aR,tensor6d:()=>oR,tensor_util:()=>Cs,test_util:()=>hx,tidy:()=>H,tile:()=>Es,time:()=>yC,topk:()=>lb,train:()=>No,transpose:()=>je,truncatedNormal:()=>Qh,unique:()=>MA,unregisterGradient:()=>xS,unregisterKernel:()=>yS,unsortedSegmentSum:()=>ub,unstack:()=>ds,upcastType:()=>bs,util:()=>I,valueAndGrad:()=>hN,valueAndGrads:()=>pN,variable:()=>cb,variableGrads:()=>jx,version:()=>uie,version_converter:()=>OL,version_core:()=>hC,version_cpu:()=>AW,version_layers:()=>wg,version_wasm:()=>iie,version_webgl:()=>BX,webgl:()=>WX,webgl_util:()=>Sw,where:()=>gn,whereAsync:()=>zA,zeros:()=>Dt,zerosLike:()=>qe});var fI=Object.create,$d=Object.defineProperty,mI=Object.getOwnPropertyDescriptor,AI=Object.getOwnPropertyNames,gI=Object.getPrototypeOf,yI=Object.prototype.hasOwnProperty,Qy=e=>$d(e,"__esModule",{value:!0}),li=e=>{if(typeof bm!="undefined")return bm(e);throw new Error('Dynamic require of "'+e+'" is not supported')},xt=(e,t)=>function(){return t||(0,e[Object.keys(e)[0]])((t={exports:{}}).exports,t),t.exports},Pe=(e,t)=>{Qy(e);for(var n in t)$d(e,n,{get:t[n],enumerable:!0})},xI=(e,t,n)=>{if(t&&typeof t=="object"||typeof t=="function")for(let s of AI(t))!yI.call(e,s)&&s!=="default"&&$d(e,s,{get:()=>t[s],enumerable:!(n=mI(t,s))||n.enumerable});return e},fa=e=>xI(Qy($d(e!=null?fI(gI(e)):{},"default",e&&e.__esModule&&"default"in e?{get:()=>e.default,enumerable:!0}:{value:e,enumerable:!0})),e),bI=xt({"node_modules/.pnpm/long@4.0.0/node_modules/long/src/long.js"(e,t){t.exports=s;var n=null;try{n=new WebAssembly.Instance(new WebAssembly.Module(new Uint8Array([0,97,115,109,1,0,0,0,1,13,2,96,0,1,127,96,4,127,127,127,127,1,127,3,7,6,0,1,1,1,1,1,6,6,1,127,1,65,0,11,7,50,6,3,109,117,108,0,1,5,100,105,118,95,115,0,2,5,100,105,118,95,117,0,3,5,114,101,109,95,115,0,4,5,114,101,109,95,117,0,5,8,103,101,116,95,104,105,103,104,0,0,10,191,1,6,4,0,35,0,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,126,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,127,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,128,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,129,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,130,34,4,66,32,135,167,36,0,32,4,167,11])),{}).exports}catch(_){}function s(_,N,O){this.low=_|0,this.high=N|0,this.unsigned=!!O}s.prototype.__isLong__,Object.defineProperty(s.prototype,"__isLong__",{value:!0});function r(_){return(_&&_.__isLong__)===!0}s.isLong=r;var a={},o={};function i(_,N){var O,W,j;return N?(_>>>=0,(j=0<=_&&_<256)&&(W=o[_],W)?W:(O=u(_,(_|0)<0?-1:0,!0),j&&(o[_]=O),O)):(_|=0,(j=-128<=_&&_<128)&&(W=a[_],W)?W:(O=u(_,_<0?-1:0,!1),j&&(a[_]=O),O))}s.fromInt=i;function l(_,N){if(isNaN(_))return N?b:x;if(N){if(_<0)return b;if(_>=A)return E}else{if(_<=-g)return M;if(_+1>=g)return C}return _<0?l(-_,N).neg():u(_%m|0,_/m|0,N)}s.fromNumber=l;function u(_,N,O){return new s(_,N,O)}s.fromBits=u;var c=Math.pow;function d(_,N,O){if(_.length===0)throw Error("empty string");if(_==="NaN"||_==="Infinity"||_==="+Infinity"||_==="-Infinity")return x;if(typeof N=="number"?(O=N,N=!1):N=!!N,O=O||10,O<2||36<O)throw RangeError("radix");var W;if((W=_.indexOf("-"))>0)throw Error("interior hyphen");if(W===0)return d(_.substring(1),N,O).neg();for(var j=l(c(O,8)),q=x,X=0;X<_.length;X+=8){var Q=Math.min(8,_.length-X),ne=parseInt(_.substring(X,X+Q),O);if(Q<8){var te=l(c(O,Q));q=q.mul(te).add(l(ne))}else q=q.mul(j),q=q.add(l(ne))}return q.unsigned=N,q}s.fromString=d;function h(_,N){return typeof _=="number"?l(_,N):typeof _=="string"?d(_,N):u(_.low,_.high,typeof N=="boolean"?N:_.unsigned)}s.fromValue=h;var p=1<<16,f=1<<24,m=p*p,A=m*m,g=A/2,y=i(f),x=i(0);s.ZERO=x;var b=i(0,!0);s.UZERO=b;var v=i(1);s.ONE=v;var k=i(1,!0);s.UONE=k;var w=i(-1);s.NEG_ONE=w;var C=u(4294967295|0,2147483647|0,!1);s.MAX_VALUE=C;var E=u(4294967295|0,4294967295|0,!0);s.MAX_UNSIGNED_VALUE=E;var M=u(0,2147483648|0,!1);s.MIN_VALUE=M;var R=s.prototype;R.toInt=function(){return this.unsigned?this.low>>>0:this.low},R.toNumber=function(){return this.unsigned?(this.high>>>0)*m+(this.low>>>0):this.high*m+(this.low>>>0)},R.toString=function(N){if(N=N||10,N<2||36<N)throw RangeError("radix");if(this.isZero())return"0";if(this.isNegative())if(this.eq(M)){var O=l(N),W=this.div(O),j=W.mul(O).sub(this);return W.toString(N)+j.toInt().toString(N)}else return"-"+this.neg().toString(N);for(var q=l(c(N,6),this.unsigned),X=this,Q="";;){var ne=X.div(q),te=X.sub(ne.mul(q)).toInt()>>>0,se=te.toString(N);if(X=ne,X.isZero())return se+Q;for(;se.length<6;)se="0"+se;Q=""+se+Q}},R.getHighBits=function(){return this.high},R.getHighBitsUnsigned=function(){return this.high>>>0},R.getLowBits=function(){return this.low},R.getLowBitsUnsigned=function(){return this.low>>>0},R.getNumBitsAbs=function(){if(this.isNegative())return this.eq(M)?64:this.neg().getNumBitsAbs();for(var N=this.high!=0?this.high:this.low,O=31;O>0&&(N&1<<O)==0;O--);return this.high!=0?O+33:O+1},R.isZero=function(){return this.high===0&&this.low===0},R.eqz=R.isZero,R.isNegative=function(){return!this.unsigned&&this.high<0},R.isPositive=function(){return this.unsigned||this.high>=0},R.isOdd=function(){return(this.low&1)==1},R.isEven=function(){return(this.low&1)==0},R.equals=function(N){return r(N)||(N=h(N)),this.unsigned!==N.unsigned&&this.high>>>31==1&&N.high>>>31==1?!1:this.high===N.high&&this.low===N.low},R.eq=R.equals,R.notEquals=function(N){return!this.eq(N)},R.neq=R.notEquals,R.ne=R.notEquals,R.lessThan=function(N){return this.comp(N)<0},R.lt=R.lessThan,R.lessThanOrEqual=function(N){return this.comp(N)<=0},R.lte=R.lessThanOrEqual,R.le=R.lessThanOrEqual,R.greaterThan=function(N){return this.comp(N)>0},R.gt=R.greaterThan,R.greaterThanOrEqual=function(N){return this.comp(N)>=0},R.gte=R.greaterThanOrEqual,R.ge=R.greaterThanOrEqual,R.compare=function(N){if(r(N)||(N=h(N)),this.eq(N))return 0;var O=this.isNegative(),W=N.isNegative();return O&&!W?-1:!O&&W?1:this.unsigned?N.high>>>0>this.high>>>0||N.high===this.high&&N.low>>>0>this.low>>>0?-1:1:this.sub(N).isNegative()?-1:1},R.comp=R.compare,R.negate=function(){return!this.unsigned&&this.eq(M)?M:this.not().add(v)},R.neg=R.negate,R.add=function(N){r(N)||(N=h(N));var O=this.high>>>16,W=this.high&65535,j=this.low>>>16,q=this.low&65535,X=N.high>>>16,Q=N.high&65535,ne=N.low>>>16,te=N.low&65535,se=0,J=0,ie=0,le=0;return le+=q+te,ie+=le>>>16,le&=65535,ie+=j+ne,J+=ie>>>16,ie&=65535,J+=W+Q,se+=J>>>16,J&=65535,se+=O+X,se&=65535,u(ie<<16|le,se<<16|J,this.unsigned)},R.subtract=function(N){return r(N)||(N=h(N)),this.add(N.neg())},R.sub=R.subtract,R.multiply=function(N){if(this.isZero())return x;if(r(N)||(N=h(N)),n){var O=n.mul(this.low,this.high,N.low,N.high);return u(O,n.get_high(),this.unsigned)}if(N.isZero())return x;if(this.eq(M))return N.isOdd()?M:x;if(N.eq(M))return this.isOdd()?M:x;if(this.isNegative())return N.isNegative()?this.neg().mul(N.neg()):this.neg().mul(N).neg();if(N.isNegative())return this.mul(N.neg()).neg();if(this.lt(y)&&N.lt(y))return l(this.toNumber()*N.toNumber(),this.unsigned);var W=this.high>>>16,j=this.high&65535,q=this.low>>>16,X=this.low&65535,Q=N.high>>>16,ne=N.high&65535,te=N.low>>>16,se=N.low&65535,J=0,ie=0,le=0,he=0;return he+=X*se,le+=he>>>16,he&=65535,le+=q*se,ie+=le>>>16,le&=65535,le+=X*te,ie+=le>>>16,le&=65535,ie+=j*se,J+=ie>>>16,ie&=65535,ie+=q*te,J+=ie>>>16,ie&=65535,ie+=X*ne,J+=ie>>>16,ie&=65535,J+=W*se+j*te+q*ne+X*Q,J&=65535,u(le<<16|he,J<<16|ie,this.unsigned)},R.mul=R.multiply,R.divide=function(N){if(r(N)||(N=h(N)),N.isZero())throw Error("division by zero");if(n){if(!this.unsigned&&this.high===-2147483648&&N.low===-1&&N.high===-1)return this;var O=(this.unsigned?n.div_u:n.div_s)(this.low,this.high,N.low,N.high);return u(O,n.get_high(),this.unsigned)}if(this.isZero())return this.unsigned?b:x;var W,j,q;if(this.unsigned){if(N.unsigned||(N=N.toUnsigned()),N.gt(this))return b;if(N.gt(this.shru(1)))return k;q=b}else{if(this.eq(M)){if(N.eq(v)||N.eq(w))return M;if(N.eq(M))return v;var X=this.shr(1);return W=X.div(N).shl(1),W.eq(x)?N.isNegative()?v:w:(j=this.sub(N.mul(W)),q=W.add(j.div(N)),q)}else if(N.eq(M))return this.unsigned?b:x;if(this.isNegative())return N.isNegative()?this.neg().div(N.neg()):this.neg().div(N).neg();if(N.isNegative())return this.div(N.neg()).neg();q=x}for(j=this;j.gte(N);){W=Math.max(1,Math.floor(j.toNumber()/N.toNumber()));for(var Q=Math.ceil(Math.log(W)/Math.LN2),ne=Q<=48?1:c(2,Q-48),te=l(W),se=te.mul(N);se.isNegative()||se.gt(j);)W-=ne,te=l(W,this.unsigned),se=te.mul(N);te.isZero()&&(te=v),q=q.add(te),j=j.sub(se)}return q},R.div=R.divide,R.modulo=function(N){if(r(N)||(N=h(N)),n){var O=(this.unsigned?n.rem_u:n.rem_s)(this.low,this.high,N.low,N.high);return u(O,n.get_high(),this.unsigned)}return this.sub(this.div(N).mul(N))},R.mod=R.modulo,R.rem=R.modulo,R.not=function(){return u(~this.low,~this.high,this.unsigned)},R.and=function(N){return r(N)||(N=h(N)),u(this.low&N.low,this.high&N.high,this.unsigned)},R.or=function(N){return r(N)||(N=h(N)),u(this.low|N.low,this.high|N.high,this.unsigned)},R.xor=function(N){return r(N)||(N=h(N)),u(this.low^N.low,this.high^N.high,this.unsigned)},R.shiftLeft=function(N){return r(N)&&(N=N.toInt()),(N&=63)===0?this:N<32?u(this.low<<N,this.high<<N|this.low>>>32-N,this.unsigned):u(0,this.low<<N-32,this.unsigned)},R.shl=R.shiftLeft,R.shiftRight=function(N){return r(N)&&(N=N.toInt()),(N&=63)===0?this:N<32?u(this.low>>>N|this.high<<32-N,this.high>>N,this.unsigned):u(this.high>>N-32,this.high>=0?0:-1,this.unsigned)},R.shr=R.shiftRight,R.shiftRightUnsigned=function(N){if(r(N)&&(N=N.toInt()),N&=63,N===0)return this;var O=this.high;if(N<32){var W=this.low;return u(W>>>N|O<<32-N,O>>>N,this.unsigned)}else return N===32?u(O,0,this.unsigned):u(O>>>N-32,0,this.unsigned)},R.shru=R.shiftRightUnsigned,R.shr_u=R.shiftRightUnsigned,R.toSigned=function(){return this.unsigned?u(this.low,this.high,!1):this},R.toUnsigned=function(){return this.unsigned?this:u(this.low,this.high,!0)},R.toBytes=function(N){return N?this.toBytesLE():this.toBytesBE()},R.toBytesLE=function(){var N=this.high,O=this.low;return[O&255,O>>>8&255,O>>>16&255,O>>>24,N&255,N>>>8&255,N>>>16&255,N>>>24]},R.toBytesBE=function(){var N=this.high,O=this.low;return[N>>>24,N>>>16&255,N>>>8&255,N&255,O>>>24,O>>>16&255,O>>>8&255,O&255]},s.fromBytes=function(N,O,W){return W?s.fromBytesLE(N,O):s.fromBytesBE(N,O)},s.fromBytesLE=function(N,O){return new s(N[0]|N[1]<<8|N[2]<<16|N[3]<<24,N[4]|N[5]<<8|N[6]<<16|N[7]<<24,O)},s.fromBytesBE=function(N,O){return new s(N[4]<<24|N[5]<<16|N[6]<<8|N[7],N[0]<<24|N[1]<<16|N[2]<<8|N[3],O)}}}),vI=xt({"(disabled):node_modules/.pnpm/node-fetch@2.6.1/node_modules/node-fetch/browser.js"(){}}),wI=xt({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/alea.js"(e,t){(function(n,s,r){function a(u){var c=this,d=l();c.next=function(){var h=2091639*c.s0+c.c*23283064365386963e-26;return c.s0=c.s1,c.s1=c.s2,c.s2=h-(c.c=h|0)},c.c=1,c.s0=d(" "),c.s1=d(" "),c.s2=d(" "),c.s0-=d(u),c.s0<0&&(c.s0+=1),c.s1-=d(u),c.s1<0&&(c.s1+=1),c.s2-=d(u),c.s2<0&&(c.s2+=1),d=null}function o(u,c){return c.c=u.c,c.s0=u.s0,c.s1=u.s1,c.s2=u.s2,c}function i(u,c){var d=new a(u),h=c&&c.state,p=d.next;return p.int32=function(){return d.next()*4294967296|0},p.double=function(){return p()+(p()*2097152|0)*11102230246251565e-32},p.quick=p,h&&(typeof h=="object"&&o(h,d),p.state=function(){return o(d,{})}),p}function l(){var u=4022871197,c=function(d){d=d.toString();for(var h=0;h<d.length;h++){u+=d.charCodeAt(h);var p=.02519603282416938*u;u=p>>>0,p-=u,p*=u,u=p>>>0,p-=u,u+=p*4294967296}return(u>>>0)*23283064365386963e-26};return c}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.alea=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),kI=xt({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/xor128.js"(e,t){(function(n,s,r){function a(l){var u=this,c="";u.x=0,u.y=0,u.z=0,u.w=0,u.next=function(){var h=u.x^u.x<<11;return u.x=u.y,u.y=u.z,u.z=u.w,u.w^=u.w>>>19^h^h>>>8},l===(l|0)?u.x=l:c+=l;for(var d=0;d<c.length+64;d++)u.x^=c.charCodeAt(d)|0,u.next()}function o(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u}function i(l,u){var c=new a(l),d=u&&u.state,h=function(){return(c.next()>>>0)/4294967296};return h.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},h.int32=c.next,h.quick=h,d&&(typeof d=="object"&&o(d,c),h.state=function(){return o(c,{})}),h}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xor128=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),II=xt({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/xorwow.js"(e,t){(function(n,s,r){function a(l){var u=this,c="";u.next=function(){var h=u.x^u.x>>>2;return u.x=u.y,u.y=u.z,u.z=u.w,u.w=u.v,(u.d=u.d+362437|0)+(u.v=u.v^u.v<<4^(h^h<<1))|0},u.x=0,u.y=0,u.z=0,u.w=0,u.v=0,l===(l|0)?u.x=l:c+=l;for(var d=0;d<c.length+64;d++)u.x^=c.charCodeAt(d)|0,d==c.length&&(u.d=u.x<<10^u.x>>>4),u.next()}function o(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u.v=l.v,u.d=l.d,u}function i(l,u){var c=new a(l),d=u&&u.state,h=function(){return(c.next()>>>0)/4294967296};return h.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},h.int32=c.next,h.quick=h,d&&(typeof d=="object"&&o(d,c),h.state=function(){return o(c,{})}),h}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xorwow=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),SI=xt({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/xorshift7.js"(e,t){(function(n,s,r){function a(l){var u=this;u.next=function(){var d=u.x,h=u.i,p,f,m;return p=d[h],p^=p>>>7,f=p^p<<24,p=d[h+1&7],f^=p^p>>>10,p=d[h+3&7],f^=p^p>>>3,p=d[h+4&7],f^=p^p<<7,p=d[h+7&7],p=p^p<<13,f^=p^p<<9,d[h]=f,u.i=h+1&7,f};function c(d,h){var p,f,m=[];if(h===(h|0))f=m[0]=h;else for(h=""+h,p=0;p<h.length;++p)m[p&7]=m[p&7]<<15^h.charCodeAt(p)+m[p+1&7]<<13;for(;m.length<8;)m.push(0);for(p=0;p<8&&m[p]===0;++p);for(p==8?f=m[7]=-1:f=m[p],d.x=m,d.i=0,p=256;p>0;--p)d.next()}c(u,l)}function o(l,u){return u.x=l.x.slice(),u.i=l.i,u}function i(l,u){l==null&&(l=+new Date);var c=new a(l),d=u&&u.state,h=function(){return(c.next()>>>0)/4294967296};return h.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},h.int32=c.next,h.quick=h,d&&(d.x&&o(d,c),h.state=function(){return o(c,{})}),h}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xorshift7=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),CI=xt({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/xor4096.js"(e,t){(function(n,s,r){function a(l){var u=this;u.next=function(){var d=u.w,h=u.X,p=u.i,f,m;return u.w=d=d+1640531527|0,m=h[p+34&127],f=h[p=p+1&127],m^=m<<13,f^=f<<17,m^=m>>>15,f^=f>>>12,m=h[p]=m^f,u.i=p,m+(d^d>>>16)|0};function c(d,h){var p,f,m,A,g,y=[],x=128;for(h===(h|0)?(f=h,h=null):(h=h+"\0",f=0,x=Math.max(x,h.length)),m=0,A=-32;A<x;++A)h&&(f^=h.charCodeAt((A+32)%h.length)),A===0&&(g=f),f^=f<<10,f^=f>>>15,f^=f<<4,f^=f>>>13,A>=0&&(g=g+1640531527|0,p=y[A&127]^=f+g,m=p==0?m+1:0);for(m>=128&&(y[(h&&h.length||0)&127]=-1),m=127,A=4*128;A>0;--A)f=y[m+34&127],p=y[m=m+1&127],f^=f<<13,p^=p<<17,f^=f>>>15,p^=p>>>12,y[m]=f^p;d.w=g,d.X=y,d.i=m}c(u,l)}function o(l,u){return u.i=l.i,u.w=l.w,u.X=l.X.slice(),u}function i(l,u){l==null&&(l=+new Date);var c=new a(l),d=u&&u.state,h=function(){return(c.next()>>>0)/4294967296};return h.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},h.int32=c.next,h.quick=h,d&&(d.X&&o(d,c),h.state=function(){return o(c,{})}),h}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xor4096=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),TI=xt({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/tychei.js"(e,t){(function(n,s,r){function a(l){var u=this,c="";u.next=function(){var h=u.b,p=u.c,f=u.d,m=u.a;return h=h<<25^h>>>7^p,p=p-f|0,f=f<<24^f>>>8^m,m=m-h|0,u.b=h=h<<20^h>>>12^p,u.c=p=p-f|0,u.d=f<<16^p>>>16^m,u.a=m-h|0},u.a=0,u.b=0,u.c=2654435769|0,u.d=1367130551,l===Math.floor(l)?(u.a=l/4294967296|0,u.b=l|0):c+=l;for(var d=0;d<c.length+20;d++)u.b^=c.charCodeAt(d)|0,u.next()}function o(l,u){return u.a=l.a,u.b=l.b,u.c=l.c,u.d=l.d,u}function i(l,u){var c=new a(l),d=u&&u.state,h=function(){return(c.next()>>>0)/4294967296};return h.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},h.int32=c.next,h.quick=h,d&&(typeof d=="object"&&o(d,c),h.state=function(){return o(c,{})}),h}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.tychei=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),e5=xt({"(disabled):crypto"(){}}),NI=xt({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/seedrandom.js"(e,t){(function(n,s){var r=this,a=256,o=6,i=52,l="random",u=s.pow(a,o),c=s.pow(2,i),d=c*2,h=a-1,p;function f(v,k,w){var C=[];k=k==!0?{entropy:!0}:k||{};var E=y(g(k.entropy?[v,b(n)]:v==null?x():v,3),C),M=new m(C),R=function(){for(var _=M.g(o),N=u,O=0;_<c;)_=(_+O)*a,N*=a,O=M.g(1);for(;_>=d;)_/=2,N/=2,O>>>=1;return(_+O)/N};return R.int32=function(){return M.g(4)|0},R.quick=function(){return M.g(4)/4294967296},R.double=R,y(b(M.S),n),(k.pass||w||function(_,N,O,W){return W&&(W.S&&A(W,M),_.state=function(){return A(M,{})}),O?(s[l]=_,N):_})(R,E,"global"in k?k.global:this==s,k.state)}s["seed"+l]=f;function m(v){var k,w=v.length,C=this,E=0,M=C.i=C.j=0,R=C.S=[];for(w||(v=[w++]);E<a;)R[E]=E++;for(E=0;E<a;E++)R[E]=R[M=h&M+v[E%w]+(k=R[E])],R[M]=k;(C.g=function(_){for(var N,O=0,W=C.i,j=C.j,q=C.S;_--;)N=q[W=h&W+1],O=O*a+q[h&(q[W]=q[j=h&j+N])+(q[j]=N)];return C.i=W,C.j=j,O})(a)}function A(v,k){return k.i=v.i,k.j=v.j,k.S=v.S.slice(),k}function g(v,k){var w=[],C=typeof v,E;if(k&&C=="object")for(E in v)try{w.push(g(v[E],k-1))}catch(M){}return w.length?w:C=="string"?v:v+"\0"}function y(v,k){for(var w=v+"",C,E=0;E<w.length;)k[h&E]=h&(C^=k[h&E]*19)+w.charCodeAt(E++);return b(k)}function x(){try{var v;return p&&(v=p.randomBytes)?v=v(a):(v=new Uint8Array(a),(r.crypto||r.msCrypto).getRandomValues(v)),b(v)}catch(C){var k=r.navigator,w=k&&k.plugins;return[+new Date,r,w,r.screen,b(n)]}}function b(v){return String.fromCharCode.apply(0,v)}if(y(s.random(),n),typeof t=="object"&&t.exports){t.exports=f;try{p=e5()}catch(v){}}else typeof define=="function"&&define.amd&&define(function(){return f})})([],Math)}}),t5=xt({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/index.js"(e,t){var n=wI(),s=kI(),r=II(),a=SI(),o=CI(),i=TI(),l=NI();l.alea=n,l.xor128=s,l.xorwow=r,l.xorshift7=a,l.xor4096=o,l.tychei=i,t.exports=l}}),EI=xt({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/alea.js"(e,t){(function(n,s,r){function a(u){var c=this,d=l();c.next=function(){var h=2091639*c.s0+c.c*23283064365386963e-26;return c.s0=c.s1,c.s1=c.s2,c.s2=h-(c.c=h|0)},c.c=1,c.s0=d(" "),c.s1=d(" "),c.s2=d(" "),c.s0-=d(u),c.s0<0&&(c.s0+=1),c.s1-=d(u),c.s1<0&&(c.s1+=1),c.s2-=d(u),c.s2<0&&(c.s2+=1),d=null}function o(u,c){return c.c=u.c,c.s0=u.s0,c.s1=u.s1,c.s2=u.s2,c}function i(u,c){var d=new a(u),h=c&&c.state,p=d.next;return p.int32=function(){return d.next()*4294967296|0},p.double=function(){return p()+(p()*2097152|0)*11102230246251565e-32},p.quick=p,h&&(typeof h=="object"&&o(h,d),p.state=function(){return o(d,{})}),p}function l(){var u=4022871197,c=function(d){d=String(d);for(var h=0;h<d.length;h++){u+=d.charCodeAt(h);var p=.02519603282416938*u;u=p>>>0,p-=u,p*=u,u=p>>>0,p-=u,u+=p*4294967296}return(u>>>0)*23283064365386963e-26};return c}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.alea=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),RI=xt({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xor128.js"(e,t){(function(n,s,r){function a(l){var u=this,c="";u.x=0,u.y=0,u.z=0,u.w=0,u.next=function(){var h=u.x^u.x<<11;return u.x=u.y,u.y=u.z,u.z=u.w,u.w^=u.w>>>19^h^h>>>8},l===(l|0)?u.x=l:c+=l;for(var d=0;d<c.length+64;d++)u.x^=c.charCodeAt(d)|0,u.next()}function o(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u}function i(l,u){var c=new a(l),d=u&&u.state,h=function(){return(c.next()>>>0)/4294967296};return h.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},h.int32=c.next,h.quick=h,d&&(typeof d=="object"&&o(d,c),h.state=function(){return o(c,{})}),h}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xor128=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),_I=xt({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xorwow.js"(e,t){(function(n,s,r){function a(l){var u=this,c="";u.next=function(){var h=u.x^u.x>>>2;return u.x=u.y,u.y=u.z,u.z=u.w,u.w=u.v,(u.d=u.d+362437|0)+(u.v=u.v^u.v<<4^(h^h<<1))|0},u.x=0,u.y=0,u.z=0,u.w=0,u.v=0,l===(l|0)?u.x=l:c+=l;for(var d=0;d<c.length+64;d++)u.x^=c.charCodeAt(d)|0,d==c.length&&(u.d=u.x<<10^u.x>>>4),u.next()}function o(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u.v=l.v,u.d=l.d,u}function i(l,u){var c=new a(l),d=u&&u.state,h=function(){return(c.next()>>>0)/4294967296};return h.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},h.int32=c.next,h.quick=h,d&&(typeof d=="object"&&o(d,c),h.state=function(){return o(c,{})}),h}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xorwow=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),$I=xt({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xorshift7.js"(e,t){(function(n,s,r){function a(l){var u=this;u.next=function(){var d=u.x,h=u.i,p,f,m;return p=d[h],p^=p>>>7,f=p^p<<24,p=d[h+1&7],f^=p^p>>>10,p=d[h+3&7],f^=p^p>>>3,p=d[h+4&7],f^=p^p<<7,p=d[h+7&7],p=p^p<<13,f^=p^p<<9,d[h]=f,u.i=h+1&7,f};function c(d,h){var p,f,m=[];if(h===(h|0))f=m[0]=h;else for(h=""+h,p=0;p<h.length;++p)m[p&7]=m[p&7]<<15^h.charCodeAt(p)+m[p+1&7]<<13;for(;m.length<8;)m.push(0);for(p=0;p<8&&m[p]===0;++p);for(p==8?f=m[7]=-1:f=m[p],d.x=m,d.i=0,p=256;p>0;--p)d.next()}c(u,l)}function o(l,u){return u.x=l.x.slice(),u.i=l.i,u}function i(l,u){l==null&&(l=+new Date);var c=new a(l),d=u&&u.state,h=function(){return(c.next()>>>0)/4294967296};return h.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},h.int32=c.next,h.quick=h,d&&(d.x&&o(d,c),h.state=function(){return o(c,{})}),h}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xorshift7=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),FI=xt({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xor4096.js"(e,t){(function(n,s,r){function a(l){var u=this;u.next=function(){var d=u.w,h=u.X,p=u.i,f,m;return u.w=d=d+1640531527|0,m=h[p+34&127],f=h[p=p+1&127],m^=m<<13,f^=f<<17,m^=m>>>15,f^=f>>>12,m=h[p]=m^f,u.i=p,m+(d^d>>>16)|0};function c(d,h){var p,f,m,A,g,y=[],x=128;for(h===(h|0)?(f=h,h=null):(h=h+"\0",f=0,x=Math.max(x,h.length)),m=0,A=-32;A<x;++A)h&&(f^=h.charCodeAt((A+32)%h.length)),A===0&&(g=f),f^=f<<10,f^=f>>>15,f^=f<<4,f^=f>>>13,A>=0&&(g=g+1640531527|0,p=y[A&127]^=f+g,m=p==0?m+1:0);for(m>=128&&(y[(h&&h.length||0)&127]=-1),m=127,A=4*128;A>0;--A)f=y[m+34&127],p=y[m=m+1&127],f^=f<<13,p^=p<<17,f^=f>>>15,p^=p>>>12,y[m]=f^p;d.w=g,d.X=y,d.i=m}c(u,l)}function o(l,u){return u.i=l.i,u.w=l.w,u.X=l.X.slice(),u}function i(l,u){l==null&&(l=+new Date);var c=new a(l),d=u&&u.state,h=function(){return(c.next()>>>0)/4294967296};return h.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},h.int32=c.next,h.quick=h,d&&(d.X&&o(d,c),h.state=function(){return o(c,{})}),h}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xor4096=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),DI=xt({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/tychei.js"(e,t){(function(n,s,r){function a(l){var u=this,c="";u.next=function(){var h=u.b,p=u.c,f=u.d,m=u.a;return h=h<<25^h>>>7^p,p=p-f|0,f=f<<24^f>>>8^m,m=m-h|0,u.b=h=h<<20^h>>>12^p,u.c=p=p-f|0,u.d=f<<16^p>>>16^m,u.a=m-h|0},u.a=0,u.b=0,u.c=2654435769|0,u.d=1367130551,l===Math.floor(l)?(u.a=l/4294967296|0,u.b=l|0):c+=l;for(var d=0;d<c.length+20;d++)u.b^=c.charCodeAt(d)|0,u.next()}function o(l,u){return u.a=l.a,u.b=l.b,u.c=l.c,u.d=l.d,u}function i(l,u){var c=new a(l),d=u&&u.state,h=function(){return(c.next()>>>0)/4294967296};return h.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},h.int32=c.next,h.quick=h,d&&(typeof d=="object"&&o(d,c),h.state=function(){return o(c,{})}),h}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.tychei=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),OI=xt({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/seedrandom.js"(e,t){(function(n,s,r){var a=256,o=6,i=52,l="random",u=r.pow(a,o),c=r.pow(2,i),d=c*2,h=a-1,p;function f(v,k,w){var C=[];k=k==!0?{entropy:!0}:k||{};var E=y(g(k.entropy?[v,b(s)]:v==null?x():v,3),C),M=new m(C),R=function(){for(var _=M.g(o),N=u,O=0;_<c;)_=(_+O)*a,N*=a,O=M.g(1);for(;_>=d;)_/=2,N/=2,O>>>=1;return(_+O)/N};return R.int32=function(){return M.g(4)|0},R.quick=function(){return M.g(4)/4294967296},R.double=R,y(b(M.S),s),(k.pass||w||function(_,N,O,W){return W&&(W.S&&A(W,M),_.state=function(){return A(M,{})}),O?(r[l]=_,N):_})(R,E,"global"in k?k.global:this==r,k.state)}function m(v){var k,w=v.length,C=this,E=0,M=C.i=C.j=0,R=C.S=[];for(w||(v=[w++]);E<a;)R[E]=E++;for(E=0;E<a;E++)R[E]=R[M=h&M+v[E%w]+(k=R[E])],R[M]=k;(C.g=function(_){for(var N,O=0,W=C.i,j=C.j,q=C.S;_--;)N=q[W=h&W+1],O=O*a+q[h&(q[W]=q[j=h&j+N])+(q[j]=N)];return C.i=W,C.j=j,O})(a)}function A(v,k){return k.i=v.i,k.j=v.j,k.S=v.S.slice(),k}function g(v,k){var w=[],C=typeof v,E;if(k&&C=="object")for(E in v)try{w.push(g(v[E],k-1))}catch(M){}return w.length?w:C=="string"?v:v+"\0"}function y(v,k){for(var w=v+"",C,E=0;E<w.length;)k[h&E]=h&(C^=k[h&E]*19)+w.charCodeAt(E++);return b(k)}function x(){try{var v;return p&&(v=p.randomBytes)?v=v(a):(v=new Uint8Array(a),(n.crypto||n.msCrypto).getRandomValues(v)),b(v)}catch(C){var k=n.navigator,w=k&&k.plugins;return[+new Date,n,w,n.screen,b(s)]}}function b(v){return String.fromCharCode.apply(0,v)}if(y(r.random(),s),typeof t=="object"&&t.exports){t.exports=f;try{p=e5()}catch(v){}}else typeof define=="function"&&define.amd?define(function(){return f}):r["seed"+l]=f})(typeof self!="undefined"?self:e,[],Math)}}),n5=xt({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/index.js"(e,t){var n=EI(),s=RI(),r=_I(),a=$I(),o=FI(),i=DI(),l=OI();l.alea=n,l.xor128=s,l.xorwow=r,l.xorshift7=a,l.xor4096=o,l.tychei=i,t.exports=l}}),PI=xt({"(disabled):node_modules/.pnpm/string_decoder@1.1.1/node_modules/string_decoder/lib/string_decoder.js"(){}}),wu=xt({"(disabled):path"(){}}),MI=xt({"(disabled):worker_threads"(){}}),zI=xt({"(disabled):perf_hooks"(){}}),LI=xt({"node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-wasm/wasm-out/tfjs-backend-wasm-threaded-simd.js"(e,t){var n=function(){var s=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(s=s||__filename),function(r){r=r||{};function a(){return J.buffer!=Ve&&en(J.buffer),In}function o(){return J.buffer!=Ve&&en(J.buffer),kt}function i(){return J.buffer!=Ve&&en(J.buffer),gs}function l(){return J.buffer!=Ve&&en(J.buffer),cn}function u(){return J.buffer!=Ve&&en(J.buffer),Jn}var c=typeof r!="undefined"?r:{},d,h;c.ready=new Promise(function(T,F){d=T,h=F});var p={},f;for(f in c)c.hasOwnProperty(f)&&(p[f]=c[f]);var m=[],A="./this.program",g=function(T,F){throw F},y=!1,x=!1,b=!1,v=!1;y=typeof window=="object",x=typeof importScripts=="function",b=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",v=!y&&!b&&!x;var k=c.ENVIRONMENT_IS_PTHREAD||!1;k&&(Ve=c.buffer);var w="";function C(T){return c.locateFile?c.locateFile(T,w):w+T}var E,M,R,_,N,O;if(b){x?w=wu().dirname(w)+"/":w=__dirname+"/",E=function(F,B){return N||(N=li("fs")),O||(O=wu()),F=O.normalize(F),N.readFileSync(F,B?null:"utf8")},R=function(F){var B=E(F,!0);return B.buffer||(B=new Uint8Array(B)),ge(B.buffer),B},process.argv.length>1&&(A=process.argv[1].replace(/\\/g,"/")),m=process.argv.slice(2),process.on("uncaughtException",function(T){if(!(T instanceof vu))throw T}),process.on("unhandledRejection",dr),g=function(T){process.exit(T)},c.inspect=function(){return"[Emscripten Module object]"};var W;try{W=MI()}catch(T){throw console.error('The "worker_threads" module is not supported in this node.js build - perhaps a newer version is needed?'),T}global.Worker=W.Worker}else v?(typeof read!="undefined"&&(E=function(F){return read(F)}),R=function(F){var B;return typeof readbuffer=="function"?new Uint8Array(readbuffer(F)):(B=read(F,"binary"),ge(typeof B=="object"),B)},typeof scriptArgs!="undefined"?m=scriptArgs:typeof arguments!="undefined"&&(m=arguments),typeof quit=="function"&&(g=function(T){quit(T)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(y||x)&&(x?w=self.location.href:typeof document!="undefined"&&document.currentScript&&(w=document.currentScript.src),typeof s!="undefined"&&s&&(w=s),w.indexOf("blob:")!==0?w=w.substr(0,w.lastIndexOf("/")+1):w="",b?(E=function(F,B){return N||(N=li("fs")),O||(O=wu()),F=O.normalize(F),N.readFileSync(F,B?null:"utf8")},R=function(F){var B=E(F,!0);return B.buffer||(B=new Uint8Array(B)),ge(B.buffer),B}):(E=function(T){var F=new XMLHttpRequest;return F.open("GET",T,!1),F.send(null),F.responseText},x&&(R=function(T){var F=new XMLHttpRequest;return F.open("GET",T,!1),F.responseType="arraybuffer",F.send(null),new Uint8Array(F.response)}),M=function(T,F,B){var Z=new XMLHttpRequest;Z.open("GET",T,!0),Z.responseType="arraybuffer",Z.onload=function(){if(Z.status==200||Z.status==0&&Z.response){F(Z.response);return}B()},Z.onerror=B,Z.send(null)}),_=function(T){document.title=T});b&&typeof performance=="undefined"&&(global.performance=zI().performance);var j=c.print||console.log.bind(console),q=c.printErr||console.warn.bind(console);for(f in p)p.hasOwnProperty(f)&&(c[f]=p[f]);p=null,c.arguments&&(m=c.arguments),c.thisProgram&&(A=c.thisProgram),c.quit&&(g=c.quit);var X=Atomics.load,Q=Atomics.store,ne=Atomics.compareExchange,te;c.wasmBinary&&(te=c.wasmBinary);var se=c.noExitRuntime||!0;typeof WebAssembly!="object"&&dr("no native wasm support detected");var J,ie,le=!1,he;function ge(T,F){T||dr("Assertion failed: "+F)}function Ce(T){var F=c["_"+T];return ge(F,"Cannot call unknown function "+T+", make sure it is exported"),F}function Te(T,F,B,Z,me){var pe={string:function(dn){var ii=0;if(dn!=null&&dn!==0){var Xy=(dn.length<<2)+1;ii=ri(Xy),et(dn,ii,Xy)}return ii},array:function(dn){var ii=ri(dn.length);return Je(dn,ii),ii}};function fe(dn){return F==="string"?De(dn):F==="boolean"?Boolean(dn):dn}var we=Ce(T),nt=[],jt=0;if(Z)for(var Lt=0;Lt<Z.length;Lt++){var _r=pe[B[Lt]];_r?(jt===0&&(jt=bu()),nt[Lt]=_r(Z[Lt])):nt[Lt]=Z[Lt]}var oi=we.apply(null,nt);return oi=fe(oi),jt!==0&&si(jt),oi}function $e(T,F,B,Z){B=B||[];var me=B.every(function(fe){return fe==="number"}),pe=F!=="string";return pe&&me&&!Z?Ce(T):function(){return Te(T,F,B,arguments,Z)}}function Me(T,F,B){for(var Z=F+B,me="";!(F>=Z);){var pe=T[F++];if(!pe)return me;if(!(pe&128)){me+=String.fromCharCode(pe);continue}var fe=T[F++]&63;if((pe&224)==192){me+=String.fromCharCode((pe&31)<<6|fe);continue}var we=T[F++]&63;if((pe&240)==224?pe=(pe&15)<<12|fe<<6|we:pe=(pe&7)<<18|fe<<12|we<<6|T[F++]&63,pe<65536)me+=String.fromCharCode(pe);else{var nt=pe-65536;me+=String.fromCharCode(55296|nt>>10,56320|nt&1023)}}return me}function De(T,F){return T?Me(o(),T,F):""}function it(T,F,B,Z){if(!(Z>0))return 0;for(var me=B,pe=B+Z-1,fe=0;fe<T.length;++fe){var we=T.charCodeAt(fe);if(we>=55296&&we<=57343){var nt=T.charCodeAt(++fe);we=65536+((we&1023)<<10)|nt&1023}if(we<=127){if(B>=pe)break;F[B++]=we}else if(we<=2047){if(B+1>=pe)break;F[B++]=192|we>>6,F[B++]=128|we&63}else if(we<=65535){if(B+2>=pe)break;F[B++]=224|we>>12,F[B++]=128|we>>6&63,F[B++]=128|we&63}else{if(B+3>=pe)break;F[B++]=240|we>>18,F[B++]=128|we>>12&63,F[B++]=128|we>>6&63,F[B++]=128|we&63}}return F[B]=0,B-me}function et(T,F,B){return it(T,o(),F,B)}function tt(T){for(var F=0,B=0;B<T.length;++B){var Z=T.charCodeAt(B);Z>=55296&&Z<=57343&&(Z=65536+((Z&1023)<<10)|T.charCodeAt(++B)&1023),Z<=127?++F:Z<=2047?F+=2:Z<=65535?F+=3:F+=4}return F}function Je(T,F){a().set(T,F)}function at(T,F){return T%F>0&&(T+=F-T%F),T}var Ve,In,kt,Mn,Qt,gs,cn,Yn,Jn;function en(T){Ve=T,c.HEAP8=In=new Int8Array(T),c.HEAP16=Mn=new Int16Array(T),c.HEAP32=gs=new Int32Array(T),c.HEAPU8=kt=new Uint8Array(T),c.HEAPU16=Qt=new Uint16Array(T),c.HEAPU32=cn=new Uint32Array(T),c.HEAPF32=Yn=new Float32Array(T),c.HEAPF64=Jn=new Float64Array(T)}var Qn=c.INITIAL_MEMORY||16777216;if(k)J=c.wasmMemory,Ve=c.buffer;else if(c.wasmMemory)J=c.wasmMemory;else if(J=new WebAssembly.Memory({initial:Qn/65536,maximum:2147483648/65536,shared:!0}),!(J.buffer instanceof SharedArrayBuffer))throw q("requested a shared WebAssembly.Memory but the returned buffer is not a SharedArrayBuffer, indicating that while the browser has SharedArrayBuffer it does not have WebAssembly threads support - you may need to set a flag"),b&&console.log("(on node you may need: --experimental-wasm-threads --experimental-wasm-bulk-memory and also use a recent version)"),Error("bad memory");J&&(Ve=J.buffer),Qn=Ve.byteLength,en(Ve);var es,zn=[],Hs=[],ur=[],Cr=[],Yo=[],Gs=!1,cd=!1;k||Hs.push({func:function(){Sd()}});function Kf(){if(!k){if(c.preRun)for(typeof c.preRun=="function"&&(c.preRun=[c.preRun]);c.preRun.length;)hd(c.preRun.shift());Qo(zn)}}function du(){Gs=!0,!k&&Qo(Hs)}function Zf(){k||Qo(ur)}function dd(){k||(cd=!0)}function Sn(){if(!k){if(c.postRun)for(typeof c.postRun=="function"&&(c.postRun=[c.postRun]);c.postRun.length;)Yf(c.postRun.shift());Qo(Yo)}}function hd(T){zn.unshift(T)}function Yf(T){Yo.unshift(T)}var cr=0,Tr=null,da=null;function Jf(T){ge(!k,"addRunDependency cannot be used in a pthread worker"),cr++,c.monitorRunDependencies&&c.monitorRunDependencies(cr)}function Qf(T){if(cr--,c.monitorRunDependencies&&c.monitorRunDependencies(cr),cr==0&&(Tr!==null&&(clearInterval(Tr),Tr=null),da)){var F=da;da=null,F()}}c.preloadedImages={},c.preloadedAudios={};function dr(T){c.onAbort&&c.onAbort(T),k&&console.error("Pthread aborting at "+new Error().stack),T+="",q(T),le=!0,he=1,T="abort("+T+"). Build with -s ASSERTIONS=1 for more info.";var F=new WebAssembly.RuntimeError(T);throw h(F),F}function pd(T,F){return String.prototype.startsWith?T.startsWith(F):T.indexOf(F)===0}var Jo="data:application/octet-stream;base64,";function fd(T){return pd(T,Jo)}var e0="file://";function md(T){return pd(T,e0)}var Cn="tfjs-backend-wasm-threaded-simd.wasm";fd(Cn)||(Cn=C(Cn));function Ad(T){try{if(T==Cn&&te)return new Uint8Array(te);if(R)return R(T);throw"both async and sync fetching of the wasm failed"}catch(F){dr(F)}}function t0(){if(!te&&(y||x)){if(typeof fetch=="function"&&!md(Cn))return fetch(Cn,{credentials:"same-origin"}).then(function(T){if(!T.ok)throw"failed to load wasm binary file at '"+Cn+"'";return T.arrayBuffer()}).catch(function(){return Ad(Cn)});if(M)return new Promise(function(T,F){M(Cn,function(B){T(new Uint8Array(B))},F)})}return Promise.resolve().then(function(){return Ad(Cn)})}function n0(){var T={a:j0};function F(fe,we){var nt=fe.exports;if(c.asm=nt,es=c.asm.F,ie=we,!k){var jt=Se.unusedWorkers.length;Se.unusedWorkers.forEach(function(Lt){Se.loadWasmModuleToWorker(Lt,function(){--jt||Qf("wasm-instantiate")})})}}k||Jf("wasm-instantiate");function B(fe){F(fe.instance,fe.module)}function Z(fe){return t0().then(function(we){return WebAssembly.instantiate(we,T)}).then(fe,function(we){q("failed to asynchronously prepare wasm: "+we),dr(we)})}function me(){return!te&&typeof WebAssembly.instantiateStreaming=="function"&&!fd(Cn)&&!md(Cn)&&typeof fetch=="function"?fetch(Cn,{credentials:"same-origin"}).then(function(fe){var we=WebAssembly.instantiateStreaming(fe,T);return we.then(B,function(nt){return q("wasm streaming compile failed: "+nt),q("falling back to ArrayBuffer instantiation"),Z(B)})}):Z(B)}if(c.instantiateWasm)try{var pe=c.instantiateWasm(T,F);return pe}catch(fe){return q("Module.instantiateWasm callback failed with error: "+fe),!1}return me().catch(h),{}}var s0={9832:function(){throw"Canceled!"},9850:function(T,F){setTimeout(function(){Vy(T,F)},0)}};function gd(){Se.initRuntime()}function Qo(T){for(;T.length>0;){var F=T.shift();if(typeof F=="function"){F(c);continue}var B=F.func;typeof B=="number"?F.arg===void 0?es.get(B)():es.get(B)(F.arg):B(F.arg===void 0?null:F.arg)}}function hu(T,F){if(T<=0||T>a().length||T&!0||F<0)return-28;if(F==0)return 0;F>=2147483647&&(F=1/0);var B=Atomics.load(i(),ai>>2),Z=0;if(B==T){var me=Atomics.compareExchange(i(),ai>>2,B,0);if(me==B&&(--F,Z=1,F<=0))return 1}var pe=Atomics.notify(i(),T>>2,F);if(pe>=0)return pe+Z;throw"Atomics.notify returned an unexpected value "+pe}c._emscripten_futex_wake=hu;function r0(T){if(k)throw"Internal Error! killThread() can only ever be called from main application thread!";if(!T)throw"Internal Error! Null pthread_ptr in killThread!";i()[T+12>>2]=0;var F=Se.pthreads[T];F.worker.terminate(),Se.freeThreadData(F),Se.runningWorkers.splice(Se.runningWorkers.indexOf(F.worker),1),F.worker.pthread=void 0}function a0(T){if(k)throw"Internal Error! cancelThread() can only ever be called from main application thread!";if(!T)throw"Internal Error! Null pthread_ptr in cancelThread!";var F=Se.pthreads[T];F.worker.postMessage({cmd:"cancel"})}function o0(T){if(k)throw"Internal Error! cleanupThread() can only ever be called from main application thread!";if(!T)throw"Internal Error! Null pthread_ptr in cleanupThread!";var F=Se.pthreads[T];if(F){i()[T+12>>2]=0;var B=F.worker;Se.returnWorkerToPool(B)}}var Se={unusedWorkers:[],runningWorkers:[],initMainThreadBlock:function(){for(var T=Math.min(4,Math.max(1,(navigator.hardwareConcurrency||1)/2)),F=0;F<T;++F)Se.allocateUnusedWorker()},initRuntime:function(){for(var T=pa(228),F=0;F<228/4;++F)l()[T/4+F]=0;i()[T+12>>2]=T;var B=T+152;i()[B>>2]=B;for(var Z=pa(512),F=0;F<128;++F)l()[Z/4+F]=0;Atomics.store(l(),T+100>>2,Z),Atomics.store(l(),T+40>>2,T),ym(T,!x,1),Wy(T)},initWorker:function(){},pthreads:{},threadExitHandlers:[],setThreadStatus:function(){},runExitHandlers:function(){for(;Se.threadExitHandlers.length>0;)Se.threadExitHandlers.pop()();k&&ni()&&By()},runExitHandlersAndDeinitThread:function(T,F){Atomics.store(l(),T+56>>2,1),Atomics.store(l(),T+60>>2,0),Se.runExitHandlers(),Atomics.store(l(),T+4>>2,F),Atomics.store(l(),T+0>>2,1),hu(T+0,2147483647),ym(0,0,0)},threadExit:function(T){var F=ni();F&&(Se.runExitHandlersAndDeinitThread(F,T),k&&postMessage({cmd:"exit"}))},threadCancel:function(){Se.runExitHandlersAndDeinitThread(ni(),-1),postMessage({cmd:"cancelDone"})},terminateAllThreads:function(){for(var T in Se.pthreads){var F=Se.pthreads[T];F&&F.worker&&Se.returnWorkerToPool(F.worker)}Se.pthreads={};for(var B=0;B<Se.unusedWorkers.length;++B){var Z=Se.unusedWorkers[B];Z.terminate()}Se.unusedWorkers=[];for(var B=0;B<Se.runningWorkers.length;++B){var Z=Se.runningWorkers[B],F=Z.pthread;Se.freeThreadData(F),Z.terminate()}Se.runningWorkers=[]},freeThreadData:function(T){if(!!T){if(T.threadInfoStruct){var F=i()[T.threadInfoStruct+100>>2];i()[T.threadInfoStruct+100>>2]=0,xu(F),xu(T.threadInfoStruct)}T.threadInfoStruct=0,T.allocatedOwnStack&&T.stackBase&&xu(T.stackBase),T.stackBase=0,T.worker&&(T.worker.pthread=null)}},returnWorkerToPool:function(T){Se.runWithoutMainThreadQueuedCalls(function(){delete Se.pthreads[T.pthread.threadInfoStruct],Se.unusedWorkers.push(T),Se.runningWorkers.splice(Se.runningWorkers.indexOf(T),1),Se.freeThreadData(T.pthread),T.pthread=void 0})},runWithoutMainThreadQueuedCalls:function(T){i()[qy>>2]=0;try{T()}finally{i()[qy>>2]=1}},receiveObjectTransfer:function(T){},loadWasmModuleToWorker:function(T,F){T.onmessage=function(B){var Z=B.data,me=Z.cmd;if(T.pthread&&(Se.currentProxiedOperationCallerThread=T.pthread.threadInfoStruct),Z.targetThread&&Z.targetThread!=ni()){var pe=Se.pthreads[Z.targetThread];pe?pe.worker.postMessage(B.data,Z.transferList):console.error('Internal error! Worker sent a message "'+me+'" to target pthread '+Z.targetThread+", but that thread no longer exists!"),Se.currentProxiedOperationCallerThread=void 0;return}if(me==="processQueuedMainThreadWork")Am();else if(me==="spawnThread")kd(B.data);else if(me==="cleanupThread")o0(Z.thread);else if(me==="killThread")r0(Z.thread);else if(me==="cancelThread")a0(Z.thread);else if(me==="loaded")T.loaded=!0,F&&F(T),T.runPthread&&(T.runPthread(),delete T.runPthread);else if(me==="print")j("Thread "+Z.threadId+": "+Z.text);else if(me==="printErr")q("Thread "+Z.threadId+": "+Z.text);else if(me==="alert")alert("Thread "+Z.threadId+": "+Z.text);else if(me==="exit"){var fe=T.pthread&&Atomics.load(l(),T.pthread.threadInfoStruct+64>>2);fe&&Se.returnWorkerToPool(T)}else if(me==="exitProcess")try{hI(Z.returnCode)}catch(we){if(we instanceof vu)return;throw we}else me==="cancelDone"?Se.returnWorkerToPool(T):me==="objectTransfer"?Se.receiveObjectTransfer(B.data):B.data.target==="setimmediate"?T.postMessage(B.data):q("worker sent an unknown command "+me);Se.currentProxiedOperationCallerThread=void 0},T.onerror=function(B){q("pthread sent an error! "+B.filename+":"+B.lineno+": "+B.message)},b&&(T.on("message",function(B){T.onmessage({data:B})}),T.on("error",function(B){T.onerror(B)}),T.on("exit",function(B){})),T.postMessage({cmd:"load",urlOrBlob:c.mainScriptUrlOrBlob||s,wasmMemory:J,wasmModule:ie})},allocateUnusedWorker:function(){var T=C("tfjs-backend-wasm-threaded-simd.worker.js");Se.unusedWorkers.push(new Worker(T))},getNewWorker:function(){return Se.unusedWorkers.length==0&&(Se.allocateUnusedWorker(),Se.loadWasmModuleToWorker(Se.unusedWorkers[0])),Se.unusedWorkers.length>0?Se.unusedWorkers.pop():null},busySpinWait:function(T){for(var F=performance.now()+T;performance.now()<F;);}};function i0(T,F){Gy(T,F),si(T)}c.establishStackSpace=i0;function l0(){return se}c.getNoExitRuntime=l0;function u0(T,F){return es.get(T)(F)}c.invokeEntryPoint=u0;function c0(T,F,B,Z){dr("Assertion failed: "+De(T)+", at: "+[F?De(F):"unknown filename",B,Z?De(Z):"unknown function"])}function d0(T,F){var B=_main(T,F)}var ha;b?ha=function(){var T=process.hrtime();return T[0]*1e3+T[1]/1e6}:k?ha=function(){return performance.now()-c.__performance_now_clock_drift}:typeof dateNow!="undefined"?ha=dateNow:ha=function(){return performance.now()};function h0(T){return i()[zy()>>2]=T,T}function p0(T,F){if(k)return Nr(1,1,T,F)}function f0(T,F){if(T==F)postMessage({cmd:"processQueuedMainThreadWork"});else if(k)postMessage({targetThread:T,cmd:"processThreadQueue"});else{var B=Se.pthreads[T],Z=B&&B.worker;if(!Z)return;Z.postMessage({cmd:"processThreadQueue"})}return 1}function m0(){dr()}function A0(T,F,B){var Z=v0(F,B);return s0[T].apply(null,Z)}function g0(T,F){}function y0(T,F,B){if(T<=0||T>a().length||T&!0)return-28;if(y){if(Atomics.load(i(),T>>2)!=F)return-6;for(var me=performance.now(),pe=me+B,fe=Atomics.exchange(i(),ai>>2,T);;){if(me=performance.now(),me>pe)return fe=Atomics.exchange(i(),ai>>2,0),-73;if(fe=Atomics.exchange(i(),ai>>2,0),fe==0)break;if(Am(),Atomics.load(i(),T>>2)!=F)return-6;fe=Atomics.exchange(i(),ai>>2,T)}return 0}else{var Z=Atomics.wait(i(),T>>2,F,B);if(Z==="timed-out")return-73;if(Z==="not-equal")return-6;if(Z==="ok")return 0;throw"Atomics.wait returned an unexpected value "+Z}}function x0(T,F,B){o().copyWithin(T,F,F+B)}function b0(){return b?li("os").cpus().length:navigator.hardwareConcurrency}function Nr(T,F){for(var B=arguments.length-2,Z=bu(),me=B,pe=ri(me*8),fe=pe>>3,we=0;we<B;we++){var nt=arguments[2+we];u()[fe+we]=nt}var jt=Hy(T,me,pe,F);return si(Z),jt}var pu=[],fu=[];function v0(T,F){fu.length=0;var B;for(F>>=2;B=o()[T++];){var Z=B<105;Z&&F&1&&F++,fu.push(Z?u()[F++>>1]:i()[F]),++F}return fu}function w0(T,F,B){pu.length=F;for(var Z=B>>3,me=0;me<F;me++)pu[me]=u()[Z+me];var pe=T<0,fe=pe?s0[-T-1]:G0[T];return fe.apply(null,pu)}function k0(){return o().length}function I0(T){try{return J.grow(T-Ve.byteLength+65535>>>16),en(J.buffer),1}catch(F){}}function S0(T){var F=k0();if(T<=F)return!1;var B=2147483648;if(T>B)return!1;for(var Z=1;Z<=4;Z*=2){var me=F*(1+.2/Z);me=Math.min(me,T+100663296);var pe=Math.min(B,at(Math.max(T,me),65536)),fe=I0(pe);if(fe)return!0}return!1}var Le={inEventHandler:0,removeAllEventListeners:function(){for(var T=Le.eventHandlers.length-1;T>=0;--T)Le._removeHandler(T);Le.eventHandlers=[],Le.deferredCalls=[]},registerRemoveEventListeners:function(){Le.removeEventListenersRegistered||(Cr.push(Le.removeAllEventListeners),Le.removeEventListenersRegistered=!0)},deferredCalls:[],deferCall:function(T,F,B){function Z(fe,we){if(fe.length!=we.length)return!1;for(var nt in fe)if(fe[nt]!=we[nt])return!1;return!0}for(var me in Le.deferredCalls){var pe=Le.deferredCalls[me];if(pe.targetFunction==T&&Z(pe.argsList,B))return}Le.deferredCalls.push({targetFunction:T,precedence:F,argsList:B}),Le.deferredCalls.sort(function(fe,we){return fe.precedence<we.precedence})},removeDeferredCalls:function(T){for(var F=0;F<Le.deferredCalls.length;++F)Le.deferredCalls[F].targetFunction==T&&(Le.deferredCalls.splice(F,1),--F)},canPerformEventHandlerRequests:function(){return Le.inEventHandler&&Le.currentEventHandler.allowsDeferredCalls},runDeferredCalls:function(){if(!!Le.canPerformEventHandlerRequests())for(var T=0;T<Le.deferredCalls.length;++T){var F=Le.deferredCalls[T];Le.deferredCalls.splice(T,1),--T,F.targetFunction.apply(null,F.argsList)}},eventHandlers:[],removeAllHandlersOnTarget:function(T,F){for(var B=0;B<Le.eventHandlers.length;++B)Le.eventHandlers[B].target==T&&(!F||F==Le.eventHandlers[B].eventTypeString)&&Le._removeHandler(B--)},_removeHandler:function(T){var F=Le.eventHandlers[T];F.target.removeEventListener(F.eventTypeString,F.eventListenerFunc,F.useCapture),Le.eventHandlers.splice(T,1)},registerOrRemoveHandler:function(T){var F=function(me){++Le.inEventHandler,Le.currentEventHandler=T,Le.runDeferredCalls(),T.handlerFunc(me),Le.runDeferredCalls(),--Le.inEventHandler};if(T.callbackfunc)T.eventListenerFunc=F,T.target.addEventListener(T.eventTypeString,F,T.useCapture),Le.eventHandlers.push(T),Le.registerRemoveEventListeners();else for(var B=0;B<Le.eventHandlers.length;++B)Le.eventHandlers[B].target==T.target&&Le.eventHandlers[B].eventTypeString==T.eventTypeString&&Le._removeHandler(B--)},queueEventHandlerOnThread_iiii:function(T,F,B,Z,me){var pe=bu(),fe=ri(12);i()[fe>>2]=B,i()[fe+4>>2]=Z,i()[fe+8>>2]=me,gm(0,T,637534208,F,Z,fe),si(pe)},getTargetThreadForEventCallback:function(T){switch(T){case 1:return 0;case 2:return Se.currentProxiedOperationCallerThread;default:return T}},getNodeNameForTarget:function(T){return T?T==window?"#window":T==screen?"#screen":T&&T.nodeName?T.nodeName:"":""},fullscreenEnabled:function(){return document.fullscreenEnabled||document.webkitFullscreenEnabled}};function C0(T){var F=tt(T)+1,B=pa(F);return et(T,B,F),B}function T0(T,F,B,Z){var me=bu(),pe=ri(12),fe=0;F&&(fe=C0(F)),i()[pe>>2]=fe,i()[pe+4>>2]=B,i()[pe+8>>2]=Z,gm(0,T,657457152,0,fe,pe),si(me)}function N0(T,F,B,Z){F=F?De(F):"",T0(T,F,B,Z)}function E0(T){return T>2?De(T):T}var R0=[0,typeof document!="undefined"?document:0,typeof window!="undefined"?window:0];function _0(T){T=E0(T);var F=R0[T]||(typeof document!="undefined"?document.querySelector(T):void 0);return F}function mu(T){return _0(T)}function yd(T,F,B){var Z=mu(T);if(!Z)return-4;if(Z.canvasSharedPtr&&(i()[Z.canvasSharedPtr>>2]=F,i()[Z.canvasSharedPtr+4>>2]=B),Z.offscreenCanvas||!Z.controlTransferredOffscreen){Z.offscreenCanvas&&(Z=Z.offscreenCanvas);var me=!1;if(Z.GLctxObject&&Z.GLctxObject.GLctx){var pe=Z.GLctxObject.GLctx.getParameter(2978);me=pe[0]===0&&pe[1]===0&&pe[2]===Z.width&&pe[3]===Z.height}Z.width=F,Z.height=B,me&&Z.GLctxObject.GLctx.viewport(0,0,F,B)}else if(Z.canvasSharedPtr){var fe=i()[Z.canvasSharedPtr+8>>2];return N0(fe,T,F,B),1}else return-4;return 0}function xd(T,F,B){return k?Nr(2,1,T,F,B):yd(T,F,B)}function $0(T,F,B){var Z=mu(T);return Z?yd(T,F,B):xd(T,F,B)}function F0(T){}function D0(T,F){}function O0(T){var F=T.getExtension("ANGLE_instanced_arrays");if(F)return T.vertexAttribDivisor=function(B,Z){F.vertexAttribDivisorANGLE(B,Z)},T.drawArraysInstanced=function(B,Z,me,pe){F.drawArraysInstancedANGLE(B,Z,me,pe)},T.drawElementsInstanced=function(B,Z,me,pe,fe){F.drawElementsInstancedANGLE(B,Z,me,pe,fe)},1}function P0(T){var F=T.getExtension("OES_vertex_array_object");if(F)return T.createVertexArray=function(){return F.createVertexArrayOES()},T.deleteVertexArray=function(B){F.deleteVertexArrayOES(B)},T.bindVertexArray=function(B){F.bindVertexArrayOES(B)},T.isVertexArray=function(B){return F.isVertexArrayOES(B)},1}function M0(T){var F=T.getExtension("WEBGL_draw_buffers");if(F)return T.drawBuffers=function(B,Z){F.drawBuffersWEBGL(B,Z)},1}function z0(T){return!!(T.multiDrawWebgl=T.getExtension("WEBGL_multi_draw"))}var Qe={counter:1,buffers:[],programs:[],framebuffers:[],renderbuffers:[],textures:[],uniforms:[],shaders:[],vaos:[],contexts:{},offscreenCanvases:{},timerQueriesEXT:[],programInfos:{},stringCache:{},unpackAlignment:4,recordError:function(F){Qe.lastError||(Qe.lastError=F)},getNewId:function(T){for(var F=Qe.counter++,B=T.length;B<F;B++)T[B]=null;return F},getSource:function(T,F,B,Z){for(var me="",pe=0;pe<F;++pe){var fe=Z?i()[Z+pe*4>>2]:-1;me+=De(i()[B+pe*4>>2],fe<0?void 0:fe)}return me},createContext:function(T,F){var B=T.getContext("webgl",F);if(!B)return 0;var Z=Qe.registerContext(B,F);return Z},registerContext:function(T,F){var B=pa(8);i()[B+4>>2]=ni();var Z={handle:B,attributes:F,version:F.majorVersion,GLctx:T};return T.canvas&&(T.canvas.GLctxObject=Z),Qe.contexts[B]=Z,(typeof F.enableExtensionsByDefault=="undefined"||F.enableExtensionsByDefault)&&Qe.initExtensions(Z),B},makeContextCurrent:function(T){return Qe.currentContext=Qe.contexts[T],c.ctx=Er=Qe.currentContext&&Qe.currentContext.GLctx,!(T&&!Er)},getContext:function(T){return Qe.contexts[T]},deleteContext:function(T){Qe.currentContext===Qe.contexts[T]&&(Qe.currentContext=null),typeof Le=="object"&&Le.removeAllHandlersOnTarget(Qe.contexts[T].GLctx.canvas),Qe.contexts[T]&&Qe.contexts[T].GLctx.canvas&&(Qe.contexts[T].GLctx.canvas.GLctxObject=void 0),xu(Qe.contexts[T].handle),Qe.contexts[T]=null},initExtensions:function(T){if(T||(T=Qe.currentContext),!T.initExtensionsDone){T.initExtensionsDone=!0;var F=T.GLctx;O0(F),P0(F),M0(F),F.disjointTimerQueryExt=F.getExtension("EXT_disjoint_timer_query"),z0(F);var B=F.getSupportedExtensions()||[];B.forEach(function(Z){Z.indexOf("lose_context")<0&&Z.indexOf("debug")<0&&F.getExtension(Z)})}},populateUniformTable:function(T){for(var F=Qe.programs[T],B=Qe.programInfos[T]={uniforms:{},maxUniformLength:0,maxAttributeLength:-1,maxUniformBlockNameLength:-1},Z=B.uniforms,me=Er.getProgramParameter(F,35718),pe=0;pe<me;++pe){var fe=Er.getActiveUniform(F,pe),we=fe.name;B.maxUniformLength=Math.max(B.maxUniformLength,we.length+1),we.slice(-1)=="]"&&(we=we.slice(0,we.lastIndexOf("[")));var nt=Er.getUniformLocation(F,we);if(nt){var jt=Qe.getNewId(Qe.uniforms);Z[we]=[fe.size,jt],Qe.uniforms[jt]=nt;for(var Lt=1;Lt<fe.size;++Lt){var _r=we+"["+Lt+"]";nt=Er.getUniformLocation(F,_r),jt=Qe.getNewId(Qe.uniforms),Qe.uniforms[jt]=nt}}}}},L0=["default","low-power","high-performance"];function B0(T,F){var B=F>>2,Z=i()[B+(24>>2)],me={alpha:!!i()[B+(0>>2)],depth:!!i()[B+(4>>2)],stencil:!!i()[B+(8>>2)],antialias:!!i()[B+(12>>2)],premultipliedAlpha:!!i()[B+(16>>2)],preserveDrawingBuffer:!!i()[B+(20>>2)],powerPreference:L0[Z],failIfMajorPerformanceCaveat:!!i()[B+(28>>2)],majorVersion:i()[B+(32>>2)],minorVersion:i()[B+(36>>2)],enableExtensionsByDefault:i()[B+(40>>2)],explicitSwapControl:i()[B+(44>>2)],proxyContextToMainThread:i()[B+(48>>2)],renderViaOffscreenBackBuffer:i()[B+(52>>2)]},pe=mu(T);if(!pe||me.explicitSwapControl)return 0;var fe=Qe.createContext(pe,me);return fe}function W0(T,F){return B0(T,F)}var ei={mappings:{},buffers:[null,[],[]],printChar:function(T,F){var B=ei.buffers[T];F===0||F===10?((T===1?j:q)(Me(B,0)),B.length=0):B.push(F)},varargs:void 0,get:function(){ei.varargs+=4;var T=i()[ei.varargs-4>>2];return T},getStr:function(T){var F=De(T);return F},get64:function(T,F){return T}};function bd(T){return k?Nr(3,1,T):0}function vd(T,F,B,Z,me){if(k)return Nr(4,1,T,F,B,Z,me)}function wd(T,F,B,Z){if(k)return Nr(5,1,T,F,B,Z);for(var me=0,pe=0;pe<B;pe++){for(var fe=i()[F+pe*8>>2],we=i()[F+(pe*8+4)>>2],nt=0;nt<we;nt++)ei.printChar(T,o()[fe+nt]);me+=we}return i()[Z>>2]=me,0}function V0(T){var F=Se.threadExitHandlers.pop();T&&F()}function U0(T,F){Se.threadExitHandlers.push(function(){es.get(T)(F)})}function kd(T){if(k)throw"Internal Error! spawnThread() can only ever be called from main application thread!";var F=Se.getNewWorker();if(F.pthread!==void 0)throw"Internal error!";if(!T.pthread_ptr)throw"Internal error, no pthread ptr!";Se.runningWorkers.push(F);for(var B=pa(128*4),Z=0;Z<128;++Z)i()[B+Z*4>>2]=0;var me=T.stackBase+T.stackSize,pe=Se.pthreads[T.pthread_ptr]={worker:F,stackBase:T.stackBase,stackSize:T.stackSize,allocatedOwnStack:T.allocatedOwnStack,threadInfoStruct:T.pthread_ptr},fe=pe.threadInfoStruct>>2;Atomics.store(l(),fe+(64>>2),T.detached),Atomics.store(l(),fe+(100>>2),B),Atomics.store(l(),fe+(40>>2),pe.threadInfoStruct),Atomics.store(l(),fe+(80>>2),T.stackSize),Atomics.store(l(),fe+(76>>2),me),Atomics.store(l(),fe+(104>>2),T.stackSize),Atomics.store(l(),fe+(104+8>>2),me),Atomics.store(l(),fe+(104+12>>2),T.detached);var we=Ly(),nt=we+40;Atomics.store(l(),fe+(172>>2),nt),F.pthread=pe;var jt={cmd:"run",start_routine:T.startRoutine,arg:T.arg,threadInfoStruct:T.pthread_ptr,stackBase:T.stackBase,stackSize:T.stackSize};F.runPthread=function(){jt.time=performance.now(),F.postMessage(jt,T.transferList)},F.loaded&&(F.runPthread(),delete F.runPthread)}function H0(T,F,B,Z){if(typeof SharedArrayBuffer=="undefined")return q("Current environment does not support SharedArrayBuffer, pthreads are not available!"),6;if(!T)return q("pthread_create called with a null thread pointer!"),28;var me=[],pe=0;if(k&&(me.length===0||pe))return Uy(687865856,T,F,B,Z);if(pe)return pe;var fe=0,we=0,nt=0;F&&F!=-1?(fe=i()[F>>2],fe+=81920,we=i()[F+8>>2],nt=i()[F+12>>2]!==0):fe=2097152;var jt=we==0;jt?we=jy(16,fe):(we-=fe,ge(we>0));for(var Lt=pa(228),_r=0;_r<228>>2;++_r)l()[(Lt>>2)+_r]=0;i()[T>>2]=Lt,i()[Lt+12>>2]=Lt;var oi=Lt+152;i()[oi>>2]=oi;var dn={stackBase:we,stackSize:fe,allocatedOwnStack:jt,detached:nt,startRoutine:B,pthread_ptr:Lt,arg:Z,transferList:me};return k?(dn.cmd="spawnThread",postMessage(dn,me)):kd(dn),0}function Id(T){if(k)return Nr(6,1,T);switch(T){case 30:return 16384;case 85:var F=2147483648;return F/16384;case 132:case 133:case 12:case 137:case 138:case 15:case 235:case 16:case 17:case 18:case 19:case 20:case 149:case 13:case 10:case 236:case 153:case 9:case 21:case 22:case 159:case 154:case 14:case 77:case 78:case 139:case 82:case 68:case 67:case 164:case 11:case 29:case 47:case 48:case 95:case 52:case 51:case 46:return 200809;case 27:case 246:case 127:case 128:case 23:case 24:case 160:case 161:case 181:case 182:case 242:case 183:case 184:case 243:case 244:case 245:case 165:case 178:case 179:case 49:case 50:case 168:case 169:case 175:case 170:case 171:case 172:case 97:case 76:case 32:case 173:case 35:case 80:case 81:case 79:return-1;case 176:case 177:case 7:case 155:case 8:case 157:case 125:case 126:case 92:case 93:case 129:case 130:case 131:case 94:case 91:return 1;case 74:case 60:case 69:case 70:case 4:return 1024;case 31:case 42:case 72:return 32;case 87:case 26:case 33:return 2147483647;case 34:case 1:return 47839;case 38:case 36:return 99;case 43:case 37:return 2048;case 0:return 2097152;case 3:return 65536;case 28:return 32768;case 44:return 32767;case 75:return 16384;case 39:return 1e3;case 89:return 700;case 71:return 256;case 40:return 255;case 2:return 100;case 180:return 64;case 25:return 20;case 5:return 16;case 6:return 6;case 73:return 4;case 84:return typeof navigator=="object"&&navigator.hardwareConcurrency||1}return h0(28),-1}k||Se.initMainThreadBlock();var Er,G0=[null,p0,xd,bd,vd,wd,Id],j0={e:c0,r:d0,x:f0,b:m0,y:A0,j:g0,c:y0,d:hu,f:ha,p:x0,z:b0,u:w0,q:S0,v:$0,i:F0,t:D0,w:W0,m:bd,n:vd,g:wd,o:gd,a:J||c.wasmMemory,k:V0,l:U0,h:H0,s:Id},My=n0(),Sd=c.___wasm_call_ctors=function(){return(Sd=c.___wasm_call_ctors=c.asm.A).apply(null,arguments)},q0=c._init=function(){return(q0=c._init=c.asm.B).apply(null,arguments)},X0=c._register_tensor=function(){return(X0=c._register_tensor=c.asm.C).apply(null,arguments)},K0=c._dispose_data=function(){return(K0=c._dispose_data=c.asm.D).apply(null,arguments)},Z0=c._dispose=function(){return(Z0=c._dispose=c.asm.E).apply(null,arguments)},Y0=c._Abs=function(){return(Y0=c._Abs=c.asm.G).apply(null,arguments)},J0=c._Add=function(){return(J0=c._Add=c.asm.H).apply(null,arguments)},Q0=c._AddN=function(){return(Q0=c._AddN=c.asm.I).apply(null,arguments)},em=c._All=function(){return(em=c._All=c.asm.J).apply(null,arguments)},tm=c._Any=function(){return(tm=c._Any=c.asm.K).apply(null,arguments)},nm=c._ArgMax=function(){return(nm=c._ArgMax=c.asm.L).apply(null,arguments)},sm=c._AvgPool=function(){return(sm=c._AvgPool=c.asm.M).apply(null,arguments)},rm=c._BatchMatMul=function(){return(rm=c._BatchMatMul=c.asm.N).apply(null,arguments)},am=c._Ceil=function(){return(am=c._Ceil=c.asm.O).apply(null,arguments)},om=c._ClipByValue=function(){return(om=c._ClipByValue=c.asm.P).apply(null,arguments)},im=c._Conv2D=function(){return(im=c._Conv2D=c.asm.Q).apply(null,arguments)},lm=c._Conv2DBackpropInput=function(){return(lm=c._Conv2DBackpropInput=c.asm.R).apply(null,arguments)},um=c._Cos=function(){return(um=c._Cos=c.asm.S).apply(null,arguments)},cm=c._Cosh=function(){return(cm=c._Cosh=c.asm.T).apply(null,arguments)},dm=c._CropAndResize=function(){return(dm=c._CropAndResize=c.asm.U).apply(null,arguments)},hm=c._Cumsum=function(){return(hm=c._Cumsum=c.asm.V).apply(null,arguments)},pm=c._DepthToSpace=function(){return(pm=c._DepthToSpace=c.asm.W).apply(null,arguments)},fm=c._DepthwiseConv2dNative=function(){return(fm=c._DepthwiseConv2dNative=c.asm.X).apply(null,arguments)},Cd=c._Equal=function(){return(Cd=c._Equal=c.asm.Y).apply(null,arguments)},Td=c._Exp=function(){return(Td=c._Exp=c.asm.Z).apply(null,arguments)},Nd=c._FlipLeftRight=function(){return(Nd=c._FlipLeftRight=c.asm._).apply(null,arguments)},Au=c._Floor=function(){return(Au=c._Floor=c.asm.$).apply(null,arguments)},ti=c._FloorDiv=function(){return(ti=c._FloorDiv=c.asm.aa).apply(null,arguments)},mm=c._FusedBatchNorm=function(){return(mm=c._FusedBatchNorm=c.asm.ba).apply(null,arguments)},gu=c._FusedConv2D=function(){return(gu=c._FusedConv2D=c.asm.ca).apply(null,arguments)},Y=c._FusedDepthwiseConv2D=function(){return(Y=c._FusedDepthwiseConv2D=c.asm.da).apply(null,arguments)},re=c._Gather=function(){return(re=c._Gather=c.asm.ea).apply(null,arguments)},xe=c._GatherNd=function(){return(xe=c._GatherNd=c.asm.fa).apply(null,arguments)},Ye=c._Greater=function(){return(Ye=c._Greater=c.asm.ga).apply(null,arguments)},Tt=c._GreaterEqual=function(){return(Tt=c._GreaterEqual=c.asm.ha).apply(null,arguments)},yt=c._LeakyRelu=function(){return(yt=c._LeakyRelu=c.asm.ia).apply(null,arguments)},He=c._Less=function(){return(He=c._Less=c.asm.ja).apply(null,arguments)},Ge=c._LessEqual=function(){return(Ge=c._LessEqual=c.asm.ka).apply(null,arguments)},tn=c._Log=function(){return(tn=c._Log=c.asm.la).apply(null,arguments)},hr=c._LogicalAnd=function(){return(hr=c._LogicalAnd=c.asm.ma).apply(null,arguments)},pr=c._Max=function(){return(pr=c._Max=c.asm.na).apply(null,arguments)},Ed=c._MaxPool=function(){return(Ed=c._MaxPool=c.asm.oa).apply(null,arguments)},yu=c._Maximum=function(){return(yu=c._Maximum=c.asm.pa).apply(null,arguments)},Ln=c._Mean=function(){return(Ln=c._Mean=c.asm.qa).apply(null,arguments)},Rr=c._Min=function(){return(Rr=c._Min=c.asm.ra).apply(null,arguments)},Rd=c._Minimum=function(){return(Rd=c._Minimum=c.asm.sa).apply(null,arguments)},S8=c._MirrorPad=function(){return(S8=c._MirrorPad=c.asm.ta).apply(null,arguments)},C8=c._Multiply=function(){return(C8=c._Multiply=c.asm.ua).apply(null,arguments)},T8=c._Neg=function(){return(T8=c._Neg=c.asm.va).apply(null,arguments)},N8=c._NonMaxSuppressionV3=function(){return(N8=c._NonMaxSuppressionV3=c.asm.wa).apply(null,arguments)},E8=c._NonMaxSuppressionV4=function(){return(E8=c._NonMaxSuppressionV4=c.asm.xa).apply(null,arguments)},R8=c._NonMaxSuppressionV5=function(){return(R8=c._NonMaxSuppressionV5=c.asm.ya).apply(null,arguments)},_8=c._NotEqual=function(){return(_8=c._NotEqual=c.asm.za).apply(null,arguments)},$8=c._OneHot=function(){return($8=c._OneHot=c.asm.Aa).apply(null,arguments)},F8=c._PadV2=function(){return(F8=c._PadV2=c.asm.Ba).apply(null,arguments)},D8=c._Pow=function(){return(D8=c._Pow=c.asm.Ca).apply(null,arguments)},O8=c._Prelu=function(){return(O8=c._Prelu=c.asm.Da).apply(null,arguments)},P8=c._Prod=function(){return(P8=c._Prod=c.asm.Ea).apply(null,arguments)},M8=c._RealDiv=function(){return(M8=c._RealDiv=c.asm.Fa).apply(null,arguments)},z8=c._Relu=function(){return(z8=c._Relu=c.asm.Ga).apply(null,arguments)},L8=c._Relu6=function(){return(L8=c._Relu6=c.asm.Ha).apply(null,arguments)},B8=c._ResizeBilinear=function(){return(B8=c._ResizeBilinear=c.asm.Ia).apply(null,arguments)},W8=c._Reverse=function(){return(W8=c._Reverse=c.asm.Ja).apply(null,arguments)},V8=c._RotateWithOffset=function(){return(V8=c._RotateWithOffset=c.asm.Ka).apply(null,arguments)},U8=c._Round=function(){return(U8=c._Round=c.asm.La).apply(null,arguments)},H8=c._Rsqrt=function(){return(H8=c._Rsqrt=c.asm.Ma).apply(null,arguments)},G8=c._ScatterNd=function(){return(G8=c._ScatterNd=c.asm.Na).apply(null,arguments)},j8=c._SelectV2=function(){return(j8=c._SelectV2=c.asm.Oa).apply(null,arguments)},q8=c._Sigmoid=function(){return(q8=c._Sigmoid=c.asm.Pa).apply(null,arguments)},X8=c._Sin=function(){return(X8=c._Sin=c.asm.Qa).apply(null,arguments)},K8=c._Softmax=function(){return(K8=c._Softmax=c.asm.Ra).apply(null,arguments)},Z8=c._Sqrt=function(){return(Z8=c._Sqrt=c.asm.Sa).apply(null,arguments)},Y8=c._Square=function(){return(Y8=c._Square=c.asm.Ta).apply(null,arguments)},J8=c._SquaredDifference=function(){return(J8=c._SquaredDifference=c.asm.Ua).apply(null,arguments)},Q8=c._Step=function(){return(Q8=c._Step=c.asm.Va).apply(null,arguments)},eI=c._StridedSlice=function(){return(eI=c._StridedSlice=c.asm.Wa).apply(null,arguments)},tI=c._Sub=function(){return(tI=c._Sub=c.asm.Xa).apply(null,arguments)},nI=c._Sum=function(){return(nI=c._Sum=c.asm.Ya).apply(null,arguments)},sI=c._Tan=function(){return(sI=c._Tan=c.asm.Za).apply(null,arguments)},rI=c._Tanh=function(){return(rI=c._Tanh=c.asm._a).apply(null,arguments)},aI=c._Tile=function(){return(aI=c._Tile=c.asm.$a).apply(null,arguments)},oI=c._TopK=function(){return(oI=c._TopK=c.asm.ab).apply(null,arguments)},iI=c._Transform=function(){return(iI=c._Transform=c.asm.bb).apply(null,arguments)},lI=c._Transpose=function(){return(lI=c._Transpose=c.asm.cb).apply(null,arguments)},uI=c.__FusedMatMul=function(){return(uI=c.__FusedMatMul=c.asm.db).apply(null,arguments)},pa=c._malloc=function(){return(pa=c._malloc=c.asm.eb).apply(null,arguments)},xu=c._free=function(){return(xu=c._free=c.asm.fb).apply(null,arguments)},zy=c.___errno_location=function(){return(zy=c.___errno_location=c.asm.gb).apply(null,arguments)},Ly=c._emscripten_get_global_libc=function(){return(Ly=c._emscripten_get_global_libc=c.asm.hb).apply(null,arguments)},ni=c._pthread_self=function(){return(ni=c._pthread_self=c.asm.ib).apply(null,arguments)},By=c.___pthread_tsd_run_dtors=function(){return(By=c.___pthread_tsd_run_dtors=c.asm.jb).apply(null,arguments)},Am=c._emscripten_main_thread_process_queued_calls=function(){return(Am=c._emscripten_main_thread_process_queued_calls=c.asm.kb).apply(null,arguments)},cI=c._emscripten_current_thread_process_queued_calls=function(){return(cI=c._emscripten_current_thread_process_queued_calls=c.asm.lb).apply(null,arguments)},Wy=c._emscripten_register_main_browser_thread_id=function(){return(Wy=c._emscripten_register_main_browser_thread_id=c.asm.mb).apply(null,arguments)},Vy=c.__emscripten_do_dispatch_to_thread=function(){return(Vy=c.__emscripten_do_dispatch_to_thread=c.asm.nb).apply(null,arguments)},Uy=c._emscripten_sync_run_in_main_thread_4=function(){return(Uy=c._emscripten_sync_run_in_main_thread_4=c.asm.ob).apply(null,arguments)},Hy=c._emscripten_run_in_main_runtime_thread_js=function(){return(Hy=c._emscripten_run_in_main_runtime_thread_js=c.asm.pb).apply(null,arguments)},gm=c.__emscripten_call_on_thread=function(){return(gm=c.__emscripten_call_on_thread=c.asm.qb).apply(null,arguments)},dI=c._emscripten_tls_init=function(){return(dI=c._emscripten_tls_init=c.asm.rb).apply(null,arguments)},ym=c.__emscripten_thread_init=function(){return(ym=c.__emscripten_thread_init=c.asm.sb).apply(null,arguments)},bu=c.stackSave=function(){return(bu=c.stackSave=c.asm.tb).apply(null,arguments)},si=c.stackRestore=function(){return(si=c.stackRestore=c.asm.ub).apply(null,arguments)},ri=c.stackAlloc=function(){return(ri=c.stackAlloc=c.asm.vb).apply(null,arguments)},Gy=c._emscripten_stack_set_limits=function(){return(Gy=c._emscripten_stack_set_limits=c.asm.wb).apply(null,arguments)},jy=c._memalign=function(){return(jy=c._memalign=c.asm.xb).apply(null,arguments)},qy=c.__emscripten_allow_main_runtime_queued_calls=9824,ai=c.__emscripten_main_thread_futex=11448;c.cwrap=$e,c.PThread=Se,c.PThread=Se,c.wasmMemory=J,c.ExitStatus=vu;var _d;function vu(T){this.name="ExitStatus",this.message="Program terminated with exit("+T+")",this.status=T}da=function T(){_d||xm(),_d||(da=T)};function xm(T){if(T=T||m,cr>0)return;if(k){d(c),du(),postMessage({cmd:"loaded"});return}if(Kf(),cr>0)return;function F(){_d||(_d=!0,c.calledRun=!0,!le&&(du(),Zf(),d(c),c.onRuntimeInitialized&&c.onRuntimeInitialized(),Sn()))}c.setStatus?(c.setStatus("Running..."),setTimeout(function(){setTimeout(function(){c.setStatus("")},1),F()},1)):F()}c.run=xm;function hI(T,F){if(!(F&&se&&T===0)){if(!F&&k)throw postMessage({cmd:"exitProcess",returnCode:T}),new vu(T);se||(Se.terminateAllThreads(),he=T,dd(),c.onExit&&c.onExit(T),le=!0),g(T,new vu(T))}}if(c.preInit)for(typeof c.preInit=="function"&&(c.preInit=[c.preInit]);c.preInit.length>0;)c.preInit.pop()();return k&&(se=!1,Se.initWorker()),xm(),r.ready}}();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModuleThreadedSimd=n)}}),BI=xt({"node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-wasm/wasm-out/tfjs-backend-wasm.js"(e,t){var n=function(){var s=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(s=s||__filename),function(r){r=r||{};var a=typeof r!="undefined"?r:{},o,i;a.ready=new Promise(function(Y,re){o=Y,i=re});var l={},u;for(u in a)a.hasOwnProperty(u)&&(l[u]=a[u]);var c=[],d="./this.program",h=function(Y,re){throw re},p=!1,f=!1,m=!1,A=!1;p=typeof window=="object",f=typeof importScripts=="function",m=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",A=!p&&!m&&!f;var g="";function y(Y){return a.locateFile?a.locateFile(Y,g):g+Y}var x,b,v,k,w,C;m?(f?g=wu().dirname(g)+"/":g=__dirname+"/",x=function(re,xe){return w||(w=li("fs")),C||(C=wu()),re=C.normalize(re),w.readFileSync(re,xe?null:"utf8")},v=function(re){var xe=x(re,!0);return xe.buffer||(xe=new Uint8Array(xe)),j(xe.buffer),xe},process.argv.length>1&&(d=process.argv[1].replace(/\\/g,"/")),c=process.argv.slice(2),process.on("uncaughtException",function(Y){if(!(Y instanceof mm))throw Y}),process.on("unhandledRejection",Gs),h=function(Y){process.exit(Y)},a.inspect=function(){return"[Emscripten Module object]"}):A?(typeof read!="undefined"&&(x=function(re){return read(re)}),v=function(re){var xe;return typeof readbuffer=="function"?new Uint8Array(readbuffer(re)):(xe=read(re,"binary"),j(typeof xe=="object"),xe)},typeof scriptArgs!="undefined"?c=scriptArgs:typeof arguments!="undefined"&&(c=arguments),typeof quit=="function"&&(h=function(Y){quit(Y)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(p||f)&&(f?g=self.location.href:typeof document!="undefined"&&document.currentScript&&(g=document.currentScript.src),s&&(g=s),g.indexOf("blob:")!==0?g=g.substr(0,g.lastIndexOf("/")+1):g="",x=function(Y){var re=new XMLHttpRequest;return re.open("GET",Y,!1),re.send(null),re.responseText},f&&(v=function(Y){var re=new XMLHttpRequest;return re.open("GET",Y,!1),re.responseType="arraybuffer",re.send(null),new Uint8Array(re.response)}),b=function(Y,re,xe){var Ye=new XMLHttpRequest;Ye.open("GET",Y,!0),Ye.responseType="arraybuffer",Ye.onload=function(){if(Ye.status==200||Ye.status==0&&Ye.response){re(Ye.response);return}xe()},Ye.onerror=xe,Ye.send(null)},k=function(Y){document.title=Y});var E=a.print||console.log.bind(console),M=a.printErr||console.warn.bind(console);for(u in l)l.hasOwnProperty(u)&&(a[u]=l[u]);l=null,a.arguments&&(c=a.arguments),a.thisProgram&&(d=a.thisProgram),a.quit&&(h=a.quit);var R;a.wasmBinary&&(R=a.wasmBinary);var _=a.noExitRuntime||!0;typeof WebAssembly!="object"&&Gs("no native wasm support detected");var N,O=!1,W;function j(Y,re){Y||Gs("Assertion failed: "+re)}function q(Y){var re=a["_"+Y];return j(re,"Cannot call unknown function "+Y+", make sure it is exported"),re}function X(Y,re,xe,Ye,Tt){var yt={string:function(Ln){var Rr=0;if(Ln!=null&&Ln!==0){var Rd=(Ln.length<<2)+1;Rr=Au(Rd),ie(Ln,Rr,Rd)}return Rr},array:function(Ln){var Rr=Au(Ln.length);return le(Ln,Rr),Rr}};function He(Ln){return re==="string"?se(Ln):re==="boolean"?Boolean(Ln):Ln}var Ge=q(Y),tn=[],hr=0;if(Ye)for(var pr=0;pr<Ye.length;pr++){var Ed=yt[xe[pr]];Ed?(hr===0&&(hr=Td()),tn[pr]=Ed(Ye[pr])):tn[pr]=Ye[pr]}var yu=Ge.apply(null,tn);return yu=He(yu),hr!==0&&Nd(hr),yu}function Q(Y,re,xe,Ye){xe=xe||[];var Tt=xe.every(function(He){return He==="number"}),yt=re!=="string";return yt&&Tt&&!Ye?q(Y):function(){return X(Y,re,xe,arguments,Ye)}}var ne=typeof TextDecoder!="undefined"?new TextDecoder("utf8"):void 0;function te(Y,re,xe){for(var Ye=re+xe,Tt=re;Y[Tt]&&!(Tt>=Ye);)++Tt;if(Tt-re>16&&Y.subarray&&ne)return ne.decode(Y.subarray(re,Tt));for(var yt="";re<Tt;){var He=Y[re++];if(!(He&128)){yt+=String.fromCharCode(He);continue}var Ge=Y[re++]&63;if((He&224)==192){yt+=String.fromCharCode((He&31)<<6|Ge);continue}var tn=Y[re++]&63;if((He&240)==224?He=(He&15)<<12|Ge<<6|tn:He=(He&7)<<18|Ge<<12|tn<<6|Y[re++]&63,He<65536)yt+=String.fromCharCode(He);else{var hr=He-65536;yt+=String.fromCharCode(55296|hr>>10,56320|hr&1023)}}return yt}function se(Y,re){return Y?te(Te,Y,re):""}function J(Y,re,xe,Ye){if(!(Ye>0))return 0;for(var Tt=xe,yt=xe+Ye-1,He=0;He<Y.length;++He){var Ge=Y.charCodeAt(He);if(Ge>=55296&&Ge<=57343){var tn=Y.charCodeAt(++He);Ge=65536+((Ge&1023)<<10)|tn&1023}if(Ge<=127){if(xe>=yt)break;re[xe++]=Ge}else if(Ge<=2047){if(xe+1>=yt)break;re[xe++]=192|Ge>>6,re[xe++]=128|Ge&63}else if(Ge<=65535){if(xe+2>=yt)break;re[xe++]=224|Ge>>12,re[xe++]=128|Ge>>6&63,re[xe++]=128|Ge&63}else{if(xe+3>=yt)break;re[xe++]=240|Ge>>18,re[xe++]=128|Ge>>12&63,re[xe++]=128|Ge>>6&63,re[xe++]=128|Ge&63}}return re[xe]=0,xe-Tt}function ie(Y,re,xe){return J(Y,Te,re,xe)}function le(Y,re){Ce.set(Y,re)}function he(Y,re){return Y%re>0&&(Y+=re-Y%re),Y}var ge,Ce,Te,$e,Me,De,it,et,tt;function Je(Y){ge=Y,a.HEAP8=Ce=new Int8Array(Y),a.HEAP16=$e=new Int16Array(Y),a.HEAP32=De=new Int32Array(Y),a.HEAPU8=Te=new Uint8Array(Y),a.HEAPU16=Me=new Uint16Array(Y),a.HEAPU32=it=new Uint32Array(Y),a.HEAPF32=et=new Float32Array(Y),a.HEAPF64=tt=new Float64Array(Y)}var at=a.INITIAL_MEMORY||16777216,Ve,In=[],kt=[],Mn=[],Qt=[],gs=!1;kt.push({func:function(){gd()}});function cn(){if(a.preRun)for(typeof a.preRun=="function"&&(a.preRun=[a.preRun]);a.preRun.length;)Qn(a.preRun.shift());Tr(In)}function Yn(){gs=!0,Tr(kt)}function Jn(){Tr(Mn)}function en(){if(a.postRun)for(typeof a.postRun=="function"&&(a.postRun=[a.postRun]);a.postRun.length;)es(a.postRun.shift());Tr(Qt)}function Qn(Y){In.unshift(Y)}function es(Y){Qt.unshift(Y)}var zn=0,Hs=null,ur=null;function Cr(Y){zn++,a.monitorRunDependencies&&a.monitorRunDependencies(zn)}function Yo(Y){if(zn--,a.monitorRunDependencies&&a.monitorRunDependencies(zn),zn==0&&(Hs!==null&&(clearInterval(Hs),Hs=null),ur)){var re=ur;ur=null,re()}}a.preloadedImages={},a.preloadedAudios={};function Gs(Y){a.onAbort&&a.onAbort(Y),Y+="",M(Y),O=!0,W=1,Y="abort("+Y+"). Build with -s ASSERTIONS=1 for more info.";var re=new WebAssembly.RuntimeError(Y);throw i(re),re}function cd(Y,re){return String.prototype.startsWith?Y.startsWith(re):Y.indexOf(re)===0}var Kf="data:application/octet-stream;base64,";function du(Y){return cd(Y,Kf)}var Zf="file://";function dd(Y){return cd(Y,Zf)}var Sn="tfjs-backend-wasm.wasm";du(Sn)||(Sn=y(Sn));function hd(Y){try{if(Y==Sn&&R)return new Uint8Array(R);if(v)return v(Y);throw"both async and sync fetching of the wasm failed"}catch(re){Gs(re)}}function Yf(){if(!R&&(p||f)){if(typeof fetch=="function"&&!dd(Sn))return fetch(Sn,{credentials:"same-origin"}).then(function(Y){if(!Y.ok)throw"failed to load wasm binary file at '"+Sn+"'";return Y.arrayBuffer()}).catch(function(){return hd(Sn)});if(b)return new Promise(function(Y,re){b(Sn,function(xe){Y(new Uint8Array(xe))},re)})}return Promise.resolve().then(function(){return hd(Sn)})}function cr(){var Y={a:n0};function re(He,Ge){var tn=He.exports;a.asm=tn,N=a.asm.i,Je(N.buffer),Ve=a.asm.o,Yo("wasm-instantiate")}Cr("wasm-instantiate");function xe(He){re(He.instance)}function Ye(He){return Yf().then(function(Ge){return WebAssembly.instantiate(Ge,Y)}).then(He,function(Ge){M("failed to asynchronously prepare wasm: "+Ge),Gs(Ge)})}function Tt(){return!R&&typeof WebAssembly.instantiateStreaming=="function"&&!du(Sn)&&!dd(Sn)&&typeof fetch=="function"?fetch(Sn,{credentials:"same-origin"}).then(function(He){var Ge=WebAssembly.instantiateStreaming(He,Y);return Ge.then(xe,function(tn){return M("wasm streaming compile failed: "+tn),M("falling back to ArrayBuffer instantiation"),Ye(xe)})}):Ye(xe)}if(a.instantiateWasm)try{var yt=a.instantiateWasm(Y,re);return yt}catch(He){return M("Module.instantiateWasm callback failed with error: "+He),!1}return Tt().catch(i),{}}function Tr(Y){for(;Y.length>0;){var re=Y.shift();if(typeof re=="function"){re(a);continue}var xe=re.func;typeof xe=="number"?re.arg===void 0?Ve.get(xe)():Ve.get(xe)(re.arg):xe(re.arg===void 0?null:re.arg)}}function da(){Gs()}function Jf(Y,re,xe){Te.copyWithin(Y,re,re+xe)}function Qf(){return Te.length}function dr(Y){try{return N.grow(Y-ge.byteLength+65535>>>16),Je(N.buffer),1}catch(re){}}function pd(Y){var re=Qf(),xe=2147483648;if(Y>xe)return!1;for(var Ye=1;Ye<=4;Ye*=2){var Tt=re*(1+.2/Ye);Tt=Math.min(Tt,Y+100663296);var yt=Math.min(xe,he(Math.max(Y,Tt),65536)),He=dr(yt);if(He)return!0}return!1}var Jo={mappings:{},buffers:[null,[],[]],printChar:function(Y,re){var xe=Jo.buffers[Y];re===0||re===10?((Y===1?E:M)(te(xe,0)),xe.length=0):xe.push(re)},varargs:void 0,get:function(){Jo.varargs+=4;var Y=De[Jo.varargs-4>>2];return Y},getStr:function(Y){var re=se(Y);return re},get64:function(Y,re){return Y}};function fd(Y){return 0}function e0(Y,re,xe,Ye,Tt){}function md(Y,re,xe,Ye){for(var Tt=0,yt=0;yt<xe;yt++){for(var He=De[re+yt*8>>2],Ge=De[re+(yt*8+4)>>2],tn=0;tn<Ge;tn++)Jo.printChar(Y,Te[He+tn]);Tt+=Ge}return De[Ye>>2]=Tt,0}function Cn(){return 6}function Ad(Y){return De[Cd()>>2]=Y,Y}function t0(Y){switch(Y){case 30:return 16384;case 85:var re=2147483648;return re/16384;case 132:case 133:case 12:case 137:case 138:case 15:case 235:case 16:case 17:case 18:case 19:case 20:case 149:case 13:case 10:case 236:case 153:case 9:case 21:case 22:case 159:case 154:case 14:case 77:case 78:case 139:case 82:case 68:case 67:case 164:case 11:case 29:case 47:case 48:case 95:case 52:case 51:case 46:return 200809;case 27:case 246:case 127:case 128:case 23:case 24:case 160:case 161:case 181:case 182:case 242:case 183:case 184:case 243:case 244:case 245:case 165:case 178:case 179:case 49:case 50:case 168:case 169:case 175:case 170:case 171:case 172:case 97:case 76:case 32:case 173:case 35:case 80:case 81:case 79:return-1;case 176:case 177:case 7:case 155:case 8:case 157:case 125:case 126:case 92:case 93:case 129:case 130:case 131:case 94:case 91:return 1;case 74:case 60:case 69:case 70:case 4:return 1024;case 31:case 42:case 72:return 32;case 87:case 26:case 33:return 2147483647;case 34:case 1:return 47839;case 38:case 36:return 99;case 43:case 37:return 2048;case 0:return 2097152;case 3:return 65536;case 28:return 32768;case 44:return 32767;case 75:return 16384;case 39:return 1e3;case 89:return 700;case 71:return 256;case 40:return 255;case 2:return 100;case 180:return 64;case 25:return 20;case 5:return 16;case 6:return 6;case 73:return 4;case 84:return typeof navigator=="object"&&navigator.hardwareConcurrency||1}return Ad(28),-1}var n0={a:da,d:Jf,e:pd,f:fd,c:e0,b:md,g:Cn,h:t0},s0=cr(),gd=a.___wasm_call_ctors=function(){return(gd=a.___wasm_call_ctors=a.asm.j).apply(null,arguments)},Qo=a._init=function(){return(Qo=a._init=a.asm.k).apply(null,arguments)},hu=a._register_tensor=function(){return(hu=a._register_tensor=a.asm.l).apply(null,arguments)},r0=a._dispose_data=function(){return(r0=a._dispose_data=a.asm.m).apply(null,arguments)},a0=a._dispose=function(){return(a0=a._dispose=a.asm.n).apply(null,arguments)},o0=a._Abs=function(){return(o0=a._Abs=a.asm.p).apply(null,arguments)},Se=a._Add=function(){return(Se=a._Add=a.asm.q).apply(null,arguments)},i0=a._AddN=function(){return(i0=a._AddN=a.asm.r).apply(null,arguments)},l0=a._All=function(){return(l0=a._All=a.asm.s).apply(null,arguments)},u0=a._Any=function(){return(u0=a._Any=a.asm.t).apply(null,arguments)},c0=a._ArgMax=function(){return(c0=a._ArgMax=a.asm.u).apply(null,arguments)},d0=a._AvgPool=function(){return(d0=a._AvgPool=a.asm.v).apply(null,arguments)},ha=a._BatchMatMul=function(){return(ha=a._BatchMatMul=a.asm.w).apply(null,arguments)},h0=a._Ceil=function(){return(h0=a._Ceil=a.asm.x).apply(null,arguments)},p0=a._ClipByValue=function(){return(p0=a._ClipByValue=a.asm.y).apply(null,arguments)},f0=a._Conv2D=function(){return(f0=a._Conv2D=a.asm.z).apply(null,arguments)},m0=a._Conv2DBackpropInput=function(){return(m0=a._Conv2DBackpropInput=a.asm.A).apply(null,arguments)},A0=a._Cos=function(){return(A0=a._Cos=a.asm.B).apply(null,arguments)},g0=a._Cosh=function(){return(g0=a._Cosh=a.asm.C).apply(null,arguments)},y0=a._CropAndResize=function(){return(y0=a._CropAndResize=a.asm.D).apply(null,arguments)},x0=a._Cumsum=function(){return(x0=a._Cumsum=a.asm.E).apply(null,arguments)},b0=a._DepthToSpace=function(){return(b0=a._DepthToSpace=a.asm.F).apply(null,arguments)},Nr=a._DepthwiseConv2dNative=function(){return(Nr=a._DepthwiseConv2dNative=a.asm.G).apply(null,arguments)},pu=a._Equal=function(){return(pu=a._Equal=a.asm.H).apply(null,arguments)},fu=a._Exp=function(){return(fu=a._Exp=a.asm.I).apply(null,arguments)},v0=a._FlipLeftRight=function(){return(v0=a._FlipLeftRight=a.asm.J).apply(null,arguments)},w0=a._Floor=function(){return(w0=a._Floor=a.asm.K).apply(null,arguments)},k0=a._FloorDiv=function(){return(k0=a._FloorDiv=a.asm.L).apply(null,arguments)},I0=a._FusedBatchNorm=function(){return(I0=a._FusedBatchNorm=a.asm.M).apply(null,arguments)},S0=a._FusedConv2D=function(){return(S0=a._FusedConv2D=a.asm.N).apply(null,arguments)},Le=a._FusedDepthwiseConv2D=function(){return(Le=a._FusedDepthwiseConv2D=a.asm.O).apply(null,arguments)},C0=a._Gather=function(){return(C0=a._Gather=a.asm.P).apply(null,arguments)},T0=a._GatherNd=function(){return(T0=a._GatherNd=a.asm.Q).apply(null,arguments)},N0=a._Greater=function(){return(N0=a._Greater=a.asm.R).apply(null,arguments)},E0=a._GreaterEqual=function(){return(E0=a._GreaterEqual=a.asm.S).apply(null,arguments)},R0=a._LeakyRelu=function(){return(R0=a._LeakyRelu=a.asm.T).apply(null,arguments)},_0=a._Less=function(){return(_0=a._Less=a.asm.U).apply(null,arguments)},mu=a._LessEqual=function(){return(mu=a._LessEqual=a.asm.V).apply(null,arguments)},yd=a._Log=function(){return(yd=a._Log=a.asm.W).apply(null,arguments)},xd=a._LogicalAnd=function(){return(xd=a._LogicalAnd=a.asm.X).apply(null,arguments)},$0=a._Max=function(){return($0=a._Max=a.asm.Y).apply(null,arguments)},F0=a._MaxPool=function(){return(F0=a._MaxPool=a.asm.Z).apply(null,arguments)},D0=a._Maximum=function(){return(D0=a._Maximum=a.asm._).apply(null,arguments)},O0=a._Mean=function(){return(O0=a._Mean=a.asm.$).apply(null,arguments)},P0=a._Min=function(){return(P0=a._Min=a.asm.aa).apply(null,arguments)},M0=a._Minimum=function(){return(M0=a._Minimum=a.asm.ba).apply(null,arguments)},z0=a._MirrorPad=function(){return(z0=a._MirrorPad=a.asm.ca).apply(null,arguments)},Qe=a._Multiply=function(){return(Qe=a._Multiply=a.asm.da).apply(null,arguments)},L0=a._Neg=function(){return(L0=a._Neg=a.asm.ea).apply(null,arguments)},B0=a._NonMaxSuppressionV3=function(){return(B0=a._NonMaxSuppressionV3=a.asm.fa).apply(null,arguments)},W0=a._NonMaxSuppressionV4=function(){return(W0=a._NonMaxSuppressionV4=a.asm.ga).apply(null,arguments)},ei=a._NonMaxSuppressionV5=function(){return(ei=a._NonMaxSuppressionV5=a.asm.ha).apply(null,arguments)},bd=a._NotEqual=function(){return(bd=a._NotEqual=a.asm.ia).apply(null,arguments)},vd=a._OneHot=function(){return(vd=a._OneHot=a.asm.ja).apply(null,arguments)},wd=a._PadV2=function(){return(wd=a._PadV2=a.asm.ka).apply(null,arguments)},V0=a._Pow=function(){return(V0=a._Pow=a.asm.la).apply(null,arguments)},U0=a._Prelu=function(){return(U0=a._Prelu=a.asm.ma).apply(null,arguments)},kd=a._Prod=function(){return(kd=a._Prod=a.asm.na).apply(null,arguments)},H0=a._RealDiv=function(){return(H0=a._RealDiv=a.asm.oa).apply(null,arguments)},Id=a._Relu=function(){return(Id=a._Relu=a.asm.pa).apply(null,arguments)},Er=a._Relu6=function(){return(Er=a._Relu6=a.asm.qa).apply(null,arguments)},G0=a._ResizeBilinear=function(){return(G0=a._ResizeBilinear=a.asm.ra).apply(null,arguments)},j0=a._Reverse=function(){return(j0=a._Reverse=a.asm.sa).apply(null,arguments)},My=a._RotateWithOffset=function(){return(My=a._RotateWithOffset=a.asm.ta).apply(null,arguments)},Sd=a._Round=function(){return(Sd=a._Round=a.asm.ua).apply(null,arguments)},q0=a._Rsqrt=function(){return(q0=a._Rsqrt=a.asm.va).apply(null,arguments)},X0=a._ScatterNd=function(){return(X0=a._ScatterNd=a.asm.wa).apply(null,arguments)},K0=a._SelectV2=function(){return(K0=a._SelectV2=a.asm.xa).apply(null,arguments)},Z0=a._Sigmoid=function(){return(Z0=a._Sigmoid=a.asm.ya).apply(null,arguments)},Y0=a._Sin=function(){return(Y0=a._Sin=a.asm.za).apply(null,arguments)},J0=a._Softmax=function(){return(J0=a._Softmax=a.asm.Aa).apply(null,arguments)},Q0=a._Sqrt=function(){return(Q0=a._Sqrt=a.asm.Ba).apply(null,arguments)},em=a._Square=function(){return(em=a._Square=a.asm.Ca).apply(null,arguments)},tm=a._SquaredDifference=function(){return(tm=a._SquaredDifference=a.asm.Da).apply(null,arguments)},nm=a._Step=function(){return(nm=a._Step=a.asm.Ea).apply(null,arguments)},sm=a._StridedSlice=function(){return(sm=a._StridedSlice=a.asm.Fa).apply(null,arguments)},rm=a._Sub=function(){return(rm=a._Sub=a.asm.Ga).apply(null,arguments)},am=a._Sum=function(){return(am=a._Sum=a.asm.Ha).apply(null,arguments)},om=a._Tan=function(){return(om=a._Tan=a.asm.Ia).apply(null,arguments)},im=a._Tanh=function(){return(im=a._Tanh=a.asm.Ja).apply(null,arguments)},lm=a._Tile=function(){return(lm=a._Tile=a.asm.Ka).apply(null,arguments)},um=a._TopK=function(){return(um=a._TopK=a.asm.La).apply(null,arguments)},cm=a._Transform=function(){return(cm=a._Transform=a.asm.Ma).apply(null,arguments)},dm=a._Transpose=function(){return(dm=a._Transpose=a.asm.Na).apply(null,arguments)},hm=a.__FusedMatMul=function(){return(hm=a.__FusedMatMul=a.asm.Oa).apply(null,arguments)},pm=a._malloc=function(){return(pm=a._malloc=a.asm.Pa).apply(null,arguments)},fm=a._free=function(){return(fm=a._free=a.asm.Qa).apply(null,arguments)},Cd=a.___errno_location=function(){return(Cd=a.___errno_location=a.asm.Ra).apply(null,arguments)},Td=a.stackSave=function(){return(Td=a.stackSave=a.asm.Sa).apply(null,arguments)},Nd=a.stackRestore=function(){return(Nd=a.stackRestore=a.asm.Ta).apply(null,arguments)},Au=a.stackAlloc=function(){return(Au=a.stackAlloc=a.asm.Ua).apply(null,arguments)};a.cwrap=Q;var ti;function mm(Y){this.name="ExitStatus",this.message="Program terminated with exit("+Y+")",this.status=Y}ur=function Y(){ti||gu(),ti||(ur=Y)};function gu(Y){if(Y=Y||c,zn>0||(cn(),zn>0))return;function re(){ti||(ti=!0,a.calledRun=!0,!O&&(Yn(),Jn(),o(a),a.onRuntimeInitialized&&a.onRuntimeInitialized(),en()))}a.setStatus?(a.setStatus("Running..."),setTimeout(function(){setTimeout(function(){a.setStatus("")},1),re()},1)):re()}if(a.run=gu,a.preInit)for(typeof a.preInit=="function"&&(a.preInit=[a.preInit]);a.preInit.length>0;)a.preInit.pop()();return gu(),r.ready}}();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModule=n)}}),WI="3.8.0",VI="3.8.0",UI="3.8.0",HI="3.8.0",GI="3.8.0",jI="3.8.0",qI="3.8.0",XI="3.8.0",KI=1e-7,ZI=1e-4,Fd=class{constructor(e,t){this.backend=e,this.dataMover=t,this.data=new WeakMap,this.dataIdsCount=0}get(e){return this.data.has(e)||this.dataMover.moveData(this.backend,e),this.data.get(e)}set(e,t){this.dataIdsCount++,this.data.set(e,t)}has(e){return this.data.has(e)}delete(e){return this.dataIdsCount--,this.data.delete(e)}numDataIds(){return this.dataIdsCount}},ku=class{refCount(e){return ys("refCount")}incRef(e){return ys("incRef")}timerAvailable(){return!0}time(e){return ys("time")}read(e){return ys("read")}readSync(e){return ys("readSync")}numDataIds(){return ys("numDataIds")}disposeData(e,t){return ys("disposeData")}write(e,t,n){return ys("write")}move(e,t,n,s,r){return ys("move")}memory(){return ys("memory")}floatPrecision(){return ys("floatPrecision")}epsilon(){return this.floatPrecision()===32?KI:ZI}dispose(){return ys("dispose")}};function ys(e){throw new Error(`'${e}' not yet implemented or not found in the registry. This kernel may not be supported by the tfjs backend you have chosen`)}function s5(e){let t=e.length,n=0;for(;t>0;)n=Math.random()*t|0,t--,Dd(e,t,n)}function YI(e,t){if(e.length!==t.length)throw new Error(`Array sizes must match to be shuffled together First array length was ${e.length}Second array length was ${t.length}`);let n=e.length,s=0;for(;n>0;)s=Math.random()*n|0,n--,Dd(e,n,s),Dd(t,n,s)}function Iu(e,t,n){return Math.max(e,Math.min(t,n))}function JI(e){return e%2==0?e:e+1}function Dd(e,t,n){let s=e[t];e[t]=e[n],e[n]=s}function QI(e){let t=0;for(let n=0;n<e.length;n++)t+=e[n];return t}function eS(e,t){let n=Math.random();return t*n+(1-n)*e}function tS(e,t){let n=0;for(let s=0;s<e.length;s++){let r=Number(e[s])-Number(t[s]);n+=r*r}return n}function P(e,t){if(!e)throw new Error(typeof t=="string"?t:t())}function fn(e,t,n=""){P(fr(e,t),()=>n+` Shapes ${e} and ${t} must match`)}function ma(e){P(e!=null,()=>"The input to the tensor constructor must be a non-null value.")}function Aa(e,t=[],n=!1){if(t==null&&(t=[]),Array.isArray(e)||an(e)&&!n)for(let s=0;s<e.length;++s)Aa(e[s],t,n);else t.push(e);return t}function _t(e){if(e.length===0)return 1;let t=e[0];for(let n=1;n<e.length;n++)t*=e[n];return t}function nS(e){return e.length===0}function fr(e,t){if(e===t)return!0;if(e==null||t==null||e.length!==t.length)return!1;for(let n=0;n<e.length;n++)if(e[n]!==t[n])return!1;return!0}function qt(e){return e%1==0}function sS(e){if(Math.tanh!=null)return Math.tanh(e);if(e===1/0)return 1;if(e===-1/0)return-1;{let t=Math.exp(2*e);return(t-1)/(t+1)}}function rS(e){let t=Math.ceil(Math.sqrt(e));return[t,Math.ceil(e/t)]}function aS(e){let t=new Uint32Array(e);for(let n=0;n<e;++n)t[n]=n;return s5(t),t}function Su(e,t){return t<=e.length?e:e+" ".repeat(t-e.length)}function oS(e,t=s=>0,n){return new Promise((s,r)=>{let a=0,o=()=>{if(e()){s();return}a++;let i=t(a);if(n!=null&&a>=n){r();return}setTimeout(o,i)};o()})}function iS(e,t){let n=1,s=-1;for(let a=0;a<e.length;++a)if(e[a]>=0)n*=e[a];else if(e[a]===-1){if(s!==-1)throw Error(`Shapes can only have 1 implicit size. Found -1 at dim ${s} and dim ${a}`);s=a}else if(e[a]<0)throw Error(`Shapes can not be < 0. Found ${e[a]} at dim ${a}`);if(s===-1){if(t>0&&t!==n)throw Error(`Size(${t}) must match the product of shape ${e}`);return e}if(n===0)throw Error(`Cannot infer the missing size in [${e}] when there are 0 elements`);if(t%n!=0)throw Error(`The implicit shape can't be a fractional number. Got ${t} / ${n}`);let r=e.slice();return r[s]=t/n,r}function xs(e,t){let n=t.length;return e=e==null?t.map((s,r)=>r):[].concat(e),P(e.every(s=>s>=-n&&s<n),()=>`All values in axis param must be in range [-${n}, ${n}) but got axis ${e}`),P(e.every(s=>qt(s)),()=>`All values in axis param must be integers but got axis ${e}`),e.map(s=>s<0?n+s:s)}function r5(e,t){let n=[],s=[],r=t!=null&&Array.isArray(t)&&t.length===0,a=t==null||r?null:xs(t,e).sort(),o=0;for(let i=0;i<e.length;++i){if(a!=null){if(a[o]===i&&e[i]!==1)throw new Error(`Can't squeeze axis ${i} since its dim '${e[i]}' is not 1`);(a[o]==null||a[o]>i)&&e[i]===1&&(n.push(e[i]),s.push(i)),a[o]<=i&&o++}e[i]!==1&&(n.push(e[i]),s.push(i))}return{newShape:n,keptDims:s}}function a5(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else throw new Error(`Unknown data type ${e}`);return n}function o5(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else if(e==="string")n=new Array(t);else throw new Error(`Unknown data type ${e}`);return n}function i5(e,t){for(let n=0;n<e.length;n++){let s=e[n];if(isNaN(s)||!isFinite(s))throw Error(`A tensor of type ${t} being uploaded contains ${s}.`)}}function l5(e){return e==="bool"||e==="complex64"||e==="float32"||e==="int32"||e==="string"}function lS(e,t){return!(t==="complex64"||t==="float32"&&e!=="complex64"||t==="int32"&&e!=="float32"&&e!=="complex64"||t==="bool"&&e==="bool")}function an(e){return e instanceof Float32Array||e instanceof Int32Array||e instanceof Uint8Array}function wm(e){if(e==="float32"||e==="int32")return 4;if(e==="complex64")return 8;if(e==="bool")return 1;throw new Error(`Unknown dtype ${e}`)}function u5(e){if(e==null)return 0;let t=0;return e.forEach(n=>t+=n.length),t}function $r(e){return typeof e=="string"||e instanceof String}function c5(e){return typeof e=="boolean"}function d5(e){return typeof e=="number"}function Od(e){return Array.isArray(e)?Od(e[0]):e instanceof Float32Array?"float32":e instanceof Int32Array||e instanceof Uint8Array?"int32":d5(e)?"float32":$r(e)?"string":c5(e)?"bool":"float32"}function Fr(e){return!!(e&&e.constructor&&e.call&&e.apply)}function Pd(e,t){for(let n=t;n<e;++n)if(e%n==0)return n;return e}function ui(e){let t=e.length;if(t<2)return[];let n=new Array(t-1);n[t-2]=e[t-1];for(let s=t-3;s>=0;--s)n[s]=n[s+1]*e[s+1];return n}function h5(e,t,n,s=!1){let r=new Array;if(t.length===1){let a=t[0]*(s?2:1);for(let o=0;o<a;o++)r[o]=n[e+o]}else{let a=t[0],o=t.slice(1),i=o.reduce((l,u)=>l*u)*(s?2:1);for(let l=0;l<a;l++)r[l]=h5(e+l*i,o,n,s)}return r}function ci(e,t,n=!1){if(e.length===0)return t[0];let s=e.reduce((r,a)=>r*a)*(n?2:1);if(s===0)return[];if(s!==t.length)throw new Error(`[${e}] does not match the input size ${t.length}${n?" for a complex tensor":""}.`);return h5(0,e,t,n)}function km(e,t){let n=Md(e,t);for(let s=0;s<n.length;s++)n[s]=1;return n}function Md(e,t){if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool")return new Uint8Array(e);throw new Error(`Unknown data type ${t}`)}function uS(e,t){let n=e.reduce((s,r)=>s*r,1);if(t==null||t==="float32")return ci(e,new Float32Array(n));if(t==="int32")return ci(e,new Int32Array(n));if(t==="bool")return ci(e,new Uint8Array(n));throw new Error(`Unknown data type ${t}`)}function Im(e){e.forEach(t=>{P(Number.isInteger(t)&&t>=0,()=>`Tensor must have a shape comprised of positive integers but got shape [${e}].`)})}function cS(e,t,n){if(t===0)return 0;if(t===1)return e[0];let s=e[e.length-1];for(let r=0;r<e.length-1;++r)s+=n[r]*e[r];return s}function dS(e,t,n){if(t===0)return[];if(t===1)return[e];let s=new Array(t);for(let r=0;r<s.length-1;++r)s[r]=Math.floor(e/n[r]),e-=s[r]*n[r];return s[s.length-1]=e,s}function Sm(e){return e&&e.then&&typeof e.then=="function"}var p5="tfjsflags",f5=class{constructor(e){this.global=e,this.flags={},this.flagRegistry={},this.urlFlags={},this.getQueryParams=hS,this.populateURLFlags()}setPlatform(e,t){this.platform!=null&&console.warn(`Platform ${this.platformName} has already been set. Overwriting the platform with ${t}.`),this.platformName=e,this.platform=t}registerFlag(e,t,n){if(this.flagRegistry[e]={evaluationFn:t,setHook:n},this.urlFlags[e]!=null){let s=this.urlFlags[e];console.warn(`Setting feature override from URL ${e}: ${s}.`),this.set(e,s)}}async getAsync(e){return e in this.flags?this.flags[e]:(this.flags[e]=await this.evaluateFlag(e),this.flags[e])}get(e){if(e in this.flags)return this.flags[e];let t=this.evaluateFlag(e);if(Sm(t))throw new Error(`Flag ${e} cannot be synchronously evaluated. Please use getAsync() instead.`);return this.flags[e]=t,this.flags[e]}getNumber(e){return this.get(e)}getBool(e){return this.get(e)}getFlags(){return this.flags}get features(){return this.flags}set(e,t){if(this.flagRegistry[e]==null)throw new Error(`Cannot set flag ${e} as it has not been registered.`);this.flags[e]=t,this.flagRegistry[e].setHook!=null&&this.flagRegistry[e].setHook(t)}evaluateFlag(e){if(this.flagRegistry[e]==null)throw new Error(`Cannot evaluate flag '${e}': no evaluation function found.`);return this.flagRegistry[e].evaluationFn()}setFlags(e){this.flags=Object.assign({},e)}reset(){this.flags={},this.urlFlags={},this.populateURLFlags()}populateURLFlags(){if(typeof this.global=="undefined"||typeof this.global.location=="undefined"||typeof this.global.location.search=="undefined")return;let e=this.getQueryParams(this.global.location.search);p5 in e&&e[p5].split(",").forEach(n=>{let[s,r]=n.split(":");this.urlFlags[s]=fS(s,r)})}};function hS(e){let t={};return e.replace(/[?&]([^=?&]+)(?:=([^&]*))?/g,(n,...s)=>(pS(t,s[0],s[1]),s.join("="))),t}function pS(e,t,n){e[decodeURIComponent(t)]=decodeURIComponent(n||"")}function fS(e,t){if(t=t.toLowerCase(),t==="true"||t==="false")return t==="true";if(`${+t}`===t)return+t;throw new Error(`Could not parse value flag value ${t} for flag ${e}.`)}function ee(){return ns}var ns=null;function mS(e){ns=e}var Cm;function m5(){if(Cm==null){let e;if(typeof window!="undefined")e=window;else if(typeof global!="undefined")e=global;else if(typeof process!="undefined")e=process;else if(typeof self!="undefined")e=self;else throw new Error("Could not find a global object");Cm=e}return Cm}function AS(){let e=m5();return e._tfGlobals==null&&(e._tfGlobals=new Map),e._tfGlobals}function Tm(e,t){let n=AS();if(n.has(e))return n.get(e);{let s=t();return n.set(e,s),n.get(e)}}var di="Abs",hi="Acos",pi="Acosh",Dr="Add",ga="AddN",fi="All",mi="Any",ya="ArgMax",Cu="ArgMin",Ai="Asin",gi="Asinh",yi="Atan",xi="Atanh",bi="Atan2",xa="AvgPool",zd="AvgPoolGrad",Tu="AvgPool3D",Ld="AvgPool3DGrad",ba="BatchMatMul",vi="BatchToSpaceND",Bd="Bincount",A5="BroadcastTo",va="Cast",wa="Ceil",Or="ClipByValue",Wd="Complex",Nu="ComplexAbs",wi="Concat",ka="Conv2D",Vd="Conv2DBackpropFilter",Ia="Conv2DBackpropInput",Eu="Conv3D",Ud="Conv3DBackpropFilterV2",Hd="Conv3DBackpropInputV2",Sa="Cos",Ca="Cosh",Ta="Cumsum",ki="CropAndResize",Gd="DenseBincount",Ii="DepthToSpace",Na="DepthwiseConv2dNative",jd="DepthwiseConv2dNativeBackpropFilter",qd="DepthwiseConv2dNativeBackpropInput",Xd="Diag",Ru="Dilation2D",Kd="Dilation2DBackpropInput",Zd="Dilation2DBackpropFilter",Ea="RealDiv",Yd="Einsum",Si="Elu",Jd="EluGrad",Ci="Erf",Ti="Equal",Ra="Exp",Ni="ExpandDims",Ei="Expm1",Qd="FFT",_u="Fill",Ri="FlipLeftRight",_a="Floor",$a="FloorDiv",Fa="FusedBatchNorm",_i="GatherV2",$i="GatherNd",Fi="Greater",Da="GreaterEqual",Oa="Identity",eh="IFFT",th="Imag",Di="IsFinite",Oi="IsInf",Pi="IsNan",Pa="LeakyRelu",Mi="Less",zi="LessEqual",nh="LinSpace",Ma="Log",Li="Log1p",Bi="LogicalAnd",$u="LogicalNot",Fu="LogicalOr",g5="LogSoftmax",Du="LRN",sh="LRNGrad",za="Max",La="Maximum",Ba="MaxPool",rh="MaxPoolGrad",Ou="MaxPool3D",ah="MaxPool3DGrad",oh="MaxPoolWithArgmax",Wa="Mean",Va="Min",Ua="Minimum",Ha="MirrorPad",Wi="Mod",ih="Multinomial",Ga="Multiply",Vi="Neg",Ui="NotEqual",Hi="NonMaxSuppressionV3",Gi="NonMaxSuppressionV4",ji="NonMaxSuppressionV5",qi="OnesLike",ja="OneHot",Xi="Pack",qa="PadV2",gS="Pool",Xa="Pow",Ka="Prelu",Ki="Prod",Pu="Range",lh="Real",Zi="Reciprocal",Za="Relu",Yi="Reshape",Mu="ResizeNearestNeighbor",uh="ResizeNearestNeighborGrad",Ya="ResizeBilinear",ch="ResizeBilinearGrad",Ja="Relu6",Qa="Reverse",eo="Round",to="Rsqrt",Ji="ScatterNd",Qi="Select",el="Selu",tl="Slice",no="Sin",nl="Sinh",sl="Sign",so="Sigmoid",rl="Softplus",ro="Sqrt",ao="Sum",al="SpaceToBatchND",ol="SplitV",oo="Softmax",dh="SparseFillEmptyRows",hh="SparseReshape",ph="SparseSegmentMean",fh="SparseSegmentSum",mh="SparseToDense",io="SquaredDifference",zu="Square",il="StridedSlice",Ah="StringNGrams",gh="StringSplit",yh="StringToHashBucketFast",lo="Sub",uo="Tan",co="Tanh",Pr="Tile",ll="TopK",ul="Transform",ho="Transpose",xh="Unique",cl="Unpack",Lu="UnsortedSegmentSum",dl="ZerosLike",Mr="Step",bh="FromPixels",hl="RotateWithOffset",po="_FusedMatMul",fo="FusedConv2D",mo="FusedDepthwiseConv2D",pl=Tm("kernelRegistry",()=>new Map),Bu=Tm("gradRegistry",()=>new Map);function vh(e,t){let n=Em(e,t);return pl.get(n)}function Nm(e){return Bu.get(e)}function fl(e){let t=pl.entries(),n=[];for(;;){let{done:s,value:r}=t.next();if(s)break;let[a,o]=r,[i]=a.split("_");i===e&&n.push(o)}return n}function Ao(e){let{kernelName:t,backendName:n}=e,s=Em(t,n);pl.has(s)&&console.warn(`The kernel '${t}' for backend '${n}' is already registered`),pl.set(s,e)}function y5(e){let{kernelName:t}=e;Bu.has(t)&&ee().getBool("DEBUG")&&console.warn(`Overriding the gradient for '${t}'`),Bu.set(t,e)}function yS(e,t){let n=Em(e,t);if(!pl.has(n))throw new Error(`The kernel '${e}' for backend '${t}' is not registered`);pl.delete(n)}function xS(e){if(!Bu.has(e))throw new Error(`The gradient '${e}' for backend is not registered`);Bu.delete(e)}function bS(e,t){fl(e).forEach(s=>{let r=Object.assign({},s,{backendName:t});Ao(r)})}function Em(e,t){return`${t}_${e}`}var I={};Pe(I,{arraysEqual:()=>fr,assert:()=>P,assertNonNegativeIntegerDimensions:()=>Im,assertNonNull:()=>ma,assertShapesMatch:()=>fn,bytesFromStringArray:()=>u5,bytesPerElement:()=>wm,checkConversionForErrors:()=>i5,clamp:()=>Iu,computeStrides:()=>ui,createScalarValue:()=>CS,createShuffledIndices:()=>aS,decodeString:()=>Ih,distSquared:()=>tS,encodeString:()=>Uu,fetch:()=>NS,fingerPrint64:()=>SS,flatten:()=>Aa,getArrayFromDType:()=>o5,getTypedArrayFromDType:()=>a5,hasEncodingLoss:()=>lS,hexToLong:()=>Wu,indexToLoc:()=>dS,inferDtype:()=>Od,inferFromImplicitShape:()=>iS,isBoolean:()=>c5,isFunction:()=>Fr,isInt:()=>qt,isNumber:()=>d5,isPromise:()=>Sm,isScalarShape:()=>nS,isString:()=>$r,isTypedArray:()=>an,isValidDtype:()=>l5,locToIndex:()=>cS,makeOnesTypedArray:()=>km,makeZerosNestedTypedArray:()=>uS,makeZerosTypedArray:()=>Md,nearestDivisor:()=>Pd,nearestLargerEven:()=>JI,now:()=>Vu,parseAxisParam:()=>xs,randUniform:()=>eS,repeatedTry:()=>oS,rightPad:()=>Su,shuffle:()=>s5,shuffleCombo:()=>YI,sizeFromShape:()=>_t,sizeToSquarishShape:()=>rS,squeezeShape:()=>r5,sum:()=>QI,swap:()=>Dd,tanh:()=>sS,toNestedArray:()=>ci,toTypedArray:()=>kh});var x5=fa(bI()),go=x5.default||x5;function Wu(e){return go.fromString(e,!0,16)}var b5=Wu("c3a5c85c97cb3127"),yo=Wu("b492b66fbe98f273"),mn=Wu("9ae16a3b2f90404f");function Rm(e){return e.xor(e.shru(47))}function v5(e,t,n){let s=e.slice(t,t+n);return go.fromBytes(Array.from(s),!0,!0)}function dt(e,t){return v5(e,t,8)}function w5(e,t){return v5(e,t,4)}function Xt(e,t){return t===0?e:e.shru(t).or(e.shl(64-t))}function zr(e,t,n=Wu("9ddfea08eb382d69")){let s=e.xor(t).mul(n);s=s.xor(s.shru(47));let r=t.xor(s).mul(n);return r=r.xor(r.shru(47)),r=r.mul(n),r}function vS(e,t,n,s,r,a){r=r.add(e),a=Xt(a.add(r).add(s),21);let o=r;return r=r.add(t),r=r.add(n),a=a.add(Xt(r,44)),[r.add(s),a.add(o)]}function wh(e,t,n,s){return vS(dt(e,t),dt(e,t+8),dt(e,t+16),dt(e,t+24),n,s)}function wS(e,t=e.length){if(t>=8){let n=mn.add(t*2),s=dt(e,0).add(mn),r=dt(e,t-8),a=Xt(r,37).mul(n).add(s),o=Xt(s,25).add(r).mul(n);return zr(a,o,n)}if(t>=4){let n=mn.add(t*2),s=w5(e,0);return zr(s.shl(3).add(t),w5(e,t-4),n)}if(t>0){let n=e[0],s=e[t>>1],r=e[t-1],a=n+(s<<8),o=t+(r<<2);return Rm(mn.mul(a).xor(b5.mul(o))).mul(mn)}return mn}function kS(e,t=e.length){let n=mn.add(t*2),s=dt(e,0).mul(yo),r=dt(e,8),a=dt(e,t-8).mul(n),o=dt(e,t-16).mul(mn);return zr(Xt(s.add(r),43).add(Xt(a,30)).add(o),s.add(Xt(r.add(mn),18)).add(a),n)}function IS(e,t=e.length){let n=mn.add(t*2),s=dt(e,0).mul(mn),r=dt(e,8),a=dt(e,t-8).mul(n),o=dt(e,t-16).mul(mn),i=Xt(s.add(r),43).add(Xt(a,30)).add(o),l=zr(i,s.add(Xt(r.add(mn),18)).add(a),n),u=dt(e,16).mul(n),c=dt(e,24),d=i.add(dt(e,t-32)).mul(n),h=l.add(dt(e,t-24)).mul(n);return zr(Xt(u.add(c),43).add(Xt(d,30)).add(h),u.add(Xt(c.add(s),18)).add(d),n)}function SS(e,t=e.length){let n=go.fromNumber(81,!0);if(t<=32)return t<=16?wS(e,t):kS(e,t);if(t<=64)return IS(e,t);let s=n,r=n.mul(yo).add(113),a=Rm(r.mul(mn).add(113)).mul(mn),o=[go.UZERO,go.UZERO],i=[go.UZERO,go.UZERO];s=s.mul(mn).add(dt(e,0));let l=0,u=(t-1>>6)*64,c=u+(t-1&63)-63;do s=Xt(s.add(r).add(o[0]).add(dt(e,l+8)),37).mul(yo),r=Xt(r.add(o[1]).add(dt(e,l+48)),42).mul(yo),s=s.xor(i[1]),r=r.add(o[0]).add(dt(e,l+40)),a=Xt(a.add(i[0]),33).mul(yo),o=wh(e,l,o[1].mul(yo),s.add(i[0])),i=wh(e,l+32,a.add(i[1]),r.add(dt(e,l+16))),[a,s]=[s,a],l+=64;while(l!==u);let d=yo.add(a.and(255).shl(1));return l=c,i[0]=i[0].add(t-1&63),o[0]=o[0].add(i[0]),i[0]=i[0].add(o[0]),s=Xt(s.add(r).add(o[0]).add(dt(e,l+8)),37).mul(d),r=Xt(r.add(o[1]).add(dt(e,l+48)),42).mul(d),s=s.xor(i[1].mul(9)),r=r.add(o[0].mul(9).add(dt(e,l+40))),a=Xt(a.add(i[0]),33).mul(d),o=wh(e,l,o[1].mul(d),s.add(i[0])),i=wh(e,l+32,a.add(i[1]),r.add(dt(e,l+16))),[a,s]=[s,a],zr(zr(o[0],i[0],d).add(Rm(r).mul(b5)).add(a),zr(o[1],i[1],d).add(s),d)}function CS(e,t){return t==="string"?Uu(e):kh([e],t)}function TS(e,t){return e instanceof Float32Array&&t==="float32"||e instanceof Int32Array&&t==="int32"||e instanceof Uint8Array&&t==="bool"}function kh(e,t){if(t==="string")throw new Error("Cannot convert a string[] to a TypedArray");if(Array.isArray(e)&&(e=Aa(e)),ee().getBool("DEBUG")&&i5(e,t),TS(e,t))return e;if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool"){let n=new Uint8Array(e.length);for(let s=0;s<n.length;++s)Math.round(e[s])!==0&&(n[s]=1);return n}else throw new Error(`Unknown data type ${t}`)}function Vu(){return ee().platform.now()}function NS(e,t){return ee().platform.fetch(e,t)}function Uu(e,t="utf-8"){return t=t||"utf-8",ee().platform.encode(e,t)}function Ih(e,t="utf-8"){return t=t||"utf-8",ee().platform.decode(e,t)}var ES=class{constructor(e,t){this.backendTimer=e,this.logger=t,t==null&&(this.logger=new _S)}profileKernel(e,t,n){let s,r=()=>{s=n()},a,o=Vu();if(this.backendTimer.timerAvailable())a=this.backendTimer.time(r);else{r();for(let l of s)l.dataSync();a=Promise.resolve({kernelMs:Vu()-o})}if(ee().getBool("CHECK_COMPUTATION_FOR_ERRORS"))for(let l=0;l<s.length;l++){let u=s[l];u.data().then(c=>{RS(c,u.dtype,e)})}return{kernelName:e,outputs:s,inputs:t,timeMs:a.then(l=>l.kernelMs),extraInfo:a.then(l=>l.getExtraProfileInfo!=null?l.getExtraProfileInfo():"")}}logKernelProfile(e){let{kernelName:t,outputs:n,timeMs:s,inputs:r,extraInfo:a}=e;n.forEach(o=>{Promise.all([o.data(),s,a]).then(i=>{this.logger.logKernelProfile(t,o,i[0],i[1],r,i[2])})})}};function RS(e,t,n){if(t!=="float32")return!1;for(let s=0;s<e.length;s++){let r=e[s];if(isNaN(r)||!isFinite(r))return console.warn(`Found ${r} in the result of '${n}'`),!0}return!1}var _S=class{logKernelProfile(e,t,n,s,r,a){let o=typeof s=="number"?Su(`${s}ms`,9):s.error,i=Su(e,25),l=t.rank,u=t.size,c=Su(t.shape.toString(),14),d="";for(let h in r){let p=r[h];if(p!=null){let f=p.shape||t.shape,m=f.length;d+=`${h}: ${m}D ${m>0?f:""} `}}console.log(`%c${i} %c${o} %c${l}D ${c} %c${u} %c${d} %c${a}`,"font-weight:bold","color:red","color:blue","color: orange","color: green","color: steelblue")}};function $S(e,t,n){let s={},r={};for(let l=0;l<t.length;l++)s[t[l].id]=!0;for(let l=0;l<e.length;l++){let u=e[l],c=u.inputs;for(let d in c){let h=c[d],p=!1;for(let f=0;f<t.length;f++)if(s[h.id]){u.outputs.forEach(m=>s[m.id]=!0),p=!0,r[u.id]=!0;break}if(p)break}}let a={};a[n.id]=!0;let o={};for(let l=e.length-1;l>=0;l--){let u=e[l],c=u.inputs;for(let d=0;d<u.outputs.length;d++)if(a[u.outputs[d].id]){for(let h in c)a[c[h].id]=!0,o[u.id]=!0;break}}let i=[];for(let l=0;l<e.length;l++){let u=e[l];if(r[u.id]&&o[u.id]){let c={};for(let h in u.inputs){let p=u.inputs[h];s[p.id]&&(c[h]=p)}let d=Object.assign({},u);d.inputs=c,d.outputs=u.outputs,i.push(d)}}return i}function FS(e,t,n,s){for(let r=t.length-1;r>=0;r--){let a=t[r],o=[];if(a.outputs.forEach(l=>{let u=e[l.id];u!=null?o.push(u):o.push(null)}),a.gradient==null)throw new Error(`Cannot compute gradient: gradient function not found for ${a.kernelName}.`);let i=a.gradient(o);for(let l in a.inputs){if(!(l in i))throw new Error(`Cannot backprop through input ${l}. Available gradients found: ${Object.keys(i)}.`);let u=n(()=>i[l]());if(u.dtype!=="float32")throw new Error(`Error in gradient for op ${a.kernelName}. The gradient of input ${l} must have 'float32' dtype, but has '${u.dtype}'`);let c=a.inputs[l];if(!fr(u.shape,c.shape))throw new Error(`Error in gradient for op ${a.kernelName}. The gradient of input '${l}' has shape '${u.shape}', which does not match the shape of the input '${c.shape}'`);if(e[c.id]==null)e[c.id]=u;else{let d=e[c.id];e[c.id]=s(d,u),d.dispose()}}}}var k5=20,Hu=3,_m=7;function DS(e,t,n,s){let r=ui(t),a=OS(e,t,n,r),o=t.length,i=Sh(e,t,n,r,a),l=["Tensor"];return s&&(l.push(` dtype: ${n}`),l.push(` rank: ${o}`),l.push(` shape: [${t}]`),l.push(" values:")),l.push(i.map(u=>" "+u).join(`
|
|
`)),l.join(`
|
|
`)}function OS(e,t,n,s){let r=_t(t),a=s[s.length-1],o=new Array(a).fill(0),i=t.length,l=n==="complex64"?ju(e):e;if(i>1)for(let u=0;u<r/a;u++){let c=u*a;for(let d=0;d<a;d++)o[d]=Math.max(o[d],Gu(l[c+d],0,n).length)}return o}function Gu(e,t,n){let s;return Array.isArray(e)?s=`${parseFloat(e[0].toFixed(_m))} + ${parseFloat(e[1].toFixed(_m))}j`:$r(e)?s=`'${e}'`:n==="bool"?s=I5(e):s=parseFloat(e.toFixed(_m)).toString(),Su(s,t)}function I5(e){return e===0?"false":"true"}function Sh(e,t,n,s,r,a=!0){let o=n==="complex64"?2:1,i=t[0],l=t.length;if(l===0){if(n==="complex64"){let m=ju(e);return[Gu(m[0],0,n)]}return n==="bool"?[I5(e[0])]:[e[0].toString()]}if(l===1){if(i>k5){let A=Hu*o,g=Array.from(e.slice(0,A)),y=Array.from(e.slice((i-Hu)*o,i*o));return n==="complex64"&&(g=ju(g),y=ju(y)),["["+g.map((x,b)=>Gu(x,r[b],n)).join(", ")+", ..., "+y.map((x,b)=>Gu(x,r[i-Hu+b],n)).join(", ")+"]"]}let m=n==="complex64"?ju(e):Array.from(e);return["["+m.map((A,g)=>Gu(A,r[g],n)).join(", ")+"]"]}let u=t.slice(1),c=s.slice(1),d=s[0]*o,h=[];if(i>k5){for(let m=0;m<Hu;m++){let A=m*d,g=A+d;h.push(...Sh(e.slice(A,g),u,n,c,r,!1))}h.push("...");for(let m=i-Hu;m<i;m++){let A=m*d,g=A+d;h.push(...Sh(e.slice(A,g),u,n,c,r,m===i-1))}}else for(let m=0;m<i;m++){let A=m*d,g=A+d;h.push(...Sh(e.slice(A,g),u,n,c,r,m===i-1))}let p=l===2?",":"";h[0]="["+h[0]+p;for(let m=1;m<h.length-1;m++)h[m]=" "+h[m]+p;let f=`,
|
|
`;for(let m=2;m<l;m++)f+=`
|
|
`;return h[h.length-1]=" "+h[h.length-1]+"]"+(a?"":f),h}function ju(e){let t=[];for(let n=0;n<e.length;n+=2)t.push([e[n],e[n+1]]);return t}var Bt=class{constructor(e,t,n){if(this.dtype=t,this.shape=e.slice(),this.size=_t(e),n!=null){let s=n.length;P(s===this.size,()=>`Length of values '${s}' does not match the size inferred by the shape '${this.size}'.`)}if(t==="complex64")throw new Error("complex64 dtype TensorBuffers are not supported. Please create a TensorBuffer for the real and imaginary parts separately and call tf.complex(real, imag).");this.values=n||o5(t,this.size),this.strides=ui(e)}set(e,...t){t.length===0&&(t=[0]),P(t.length===this.rank,()=>`The number of provided coordinates (${t.length}) must match the rank (${this.rank})`);let n=this.locToIndex(t);this.values[n]=e}get(...e){e.length===0&&(e=[0]);let t=0;for(let s of e){if(s<0||s>=this.shape[t]){let r=`Requested out of range element at ${e}. Buffer shape=${this.shape}`;throw new Error(r)}t++}let n=e[e.length-1];for(let s=0;s<e.length-1;++s)n+=this.strides[s]*e[s];return this.values[n]}locToIndex(e){if(this.rank===0)return 0;if(this.rank===1)return e[0];let t=e[e.length-1];for(let n=0;n<e.length-1;++n)t+=this.strides[n]*e[n];return t}indexToLoc(e){if(this.rank===0)return[];if(this.rank===1)return[e];let t=new Array(this.shape.length);for(let n=0;n<t.length-1;++n)t[n]=Math.floor(e/this.strides[n]),e-=t[n]*this.strides[n];return t[t.length-1]=e,t}get rank(){return this.shape.length}toTensor(){return js().makeTensor(this.values,this.shape,this.dtype)}},js=null,ml=null,PS=null;function MS(e){js=e}function zS(e){ml=e}function LS(e){PS=e}var Ue=class{constructor(e,t,n,s){this.kept=!1,this.isDisposedInternal=!1,this.shape=e.slice(),this.dtype=t||"float32",this.size=_t(e),this.strides=ui(e),this.dataId=n,this.id=s,this.rankType=this.rank<5?this.rank.toString():"higher"}get rank(){return this.shape.length}async buffer(){let e=await this.data();return ml.buffer(this.shape,this.dtype,e)}bufferSync(){return ml.buffer(this.shape,this.dtype,this.dataSync())}async array(){let e=await this.data();return ci(this.shape,e,this.dtype==="complex64")}arraySync(){return ci(this.shape,this.dataSync(),this.dtype==="complex64")}async data(){this.throwIfDisposed();let e=js().read(this.dataId);if(this.dtype==="string"){let t=await e;try{return t.map(n=>Ih(n))}catch(n){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}}return e}dataSync(){this.throwIfDisposed();let e=js().readSync(this.dataId);if(this.dtype==="string")try{return e.map(t=>Ih(t))}catch(t){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}return e}async bytes(){this.throwIfDisposed();let e=await js().read(this.dataId);return this.dtype==="string"?e:new Uint8Array(e.buffer)}dispose(){this.isDisposed||(js().disposeTensor(this),this.isDisposedInternal=!0)}get isDisposed(){return this.isDisposedInternal}throwIfDisposed(){if(this.isDisposed)throw new Error("Tensor is disposed.")}print(e=!1){return ml.print(this,e)}clone(){return this.throwIfDisposed(),ml.clone(this)}toString(e=!1){let t=this.dataSync();return DS(t,this.shape,this.dtype,e)}cast(e){return this.throwIfDisposed(),ml.cast(this,e)}variable(e=!0,t,n){return this.throwIfDisposed(),js().makeVariable(this,e,t,n)}};Object.defineProperty(Ue,Symbol.hasInstance,{value:e=>!!e&&e.data!=null&&e.dataSync!=null&&e.throwIfDisposed!=null});function BS(){return Tm("Tensor",()=>Ue)}BS();var qu=class extends Ue{constructor(e,t,n,s){super(e.shape,e.dtype,e.dataId,s);this.trainable=t,this.name=n}assign(e){if(e.dtype!==this.dtype)throw new Error(`dtype of the new value (${e.dtype}) and previous value (${this.dtype}) must match`);if(!fr(e.shape,this.shape))throw new Error(`shape of the new value (${e.shape}) and previous value (${this.shape}) must match`);js().disposeTensor(this),this.dataId=e.dataId,js().incRef(this,null)}dispose(){js().disposeVariable(this),this.isDisposedInternal=!0}};Object.defineProperty(qu,Symbol.hasInstance,{value:e=>e instanceof Ue&&e.assign!=null&&e.assign instanceof Function});var Cs={};Pe(Cs,{assertTypesMatch:()=>S5,getTensorsInContainer:()=>Mm,isTensorInList:()=>VS,makeTypesMatch:()=>It});var $m;(function(e){e.R0="R0",e.R1="R1",e.R2="R2",e.R3="R3",e.R4="R4",e.R5="R5",e.R6="R6"})($m||($m={}));var Fm;(function(e){e.float32="float32",e.int32="int32",e.bool="int32",e.complex64="complex64"})(Fm||(Fm={}));var Dm;(function(e){e.float32="float32",e.int32="int32",e.bool="bool",e.complex64="complex64"})(Dm||(Dm={}));var Om;(function(e){e.float32="float32",e.int32="float32",e.bool="float32",e.complex64="complex64"})(Om||(Om={}));var Pm;(function(e){e.float32="complex64",e.int32="complex64",e.bool="complex64",e.complex64="complex64"})(Pm||(Pm={}));var WS={float32:Om,int32:Fm,bool:Dm,complex64:Pm};function bs(e,t){if(e==="string"||t==="string"){if(e==="string"&&t==="string")return"string";throw new Error(`Can not upcast ${e} with ${t}`)}return WS[e][t]}function Ch(e){return bs(e,"int32")}function It(e,t){if(e.dtype===t.dtype)return[e,t];let n=bs(e.dtype,t.dtype);return[e.cast(n),t.cast(n)]}function S5(e,t){P(e.dtype===t.dtype,()=>`The dtypes of the first(${e.dtype}) and second(${t.dtype}) input must match`)}function VS(e,t){return t.some(n=>n.id===e.id)}function Mm(e){let t=[],n=new Set;return C5(e,t,n),t}function C5(e,t,n){if(e==null)return;if(e instanceof Ue){t.push(e);return}if(!US(e))return;let s=e;for(let r in s){let a=s[r];n.has(a)||(n.add(a),C5(a,t,n))}}function US(e){return Array.isArray(e)||typeof e=="object"}function zm(e){return e.kernelName!=null}var T5=class{constructor(){this.registeredVariables={},this.nextTapeNodeId=0,this.numBytes=0,this.numTensors=0,this.numStringTensors=0,this.numDataBuffers=0,this.gradientDepth=0,this.kernelDepth=0,this.scopeStack=[],this.numDataMovesStack=[],this.nextScopeId=0,this.tensorInfo=new WeakMap,this.profiling=!1,this.activeProfile={newBytes:0,newTensors:0,peakBytes:0,kernels:[],result:null,get kernelNames(){return Array.from(new Set(this.kernels.map(e=>e.name)))}}}dispose(){for(let e in this.registeredVariables)this.registeredVariables[e].dispose()}},Xu=class{constructor(e){this.ENV=e,this.registry={},this.registryFactory={},this.pendingBackendInitId=0,this.state=new T5}async ready(){if(this.pendingBackendInit!=null)return this.pendingBackendInit.then(()=>{});if(this.backendInstance!=null)return;let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t];if(await this.initializeBackend(n).success){await this.setBackend(n);return}}throw new Error("Could not initialize any backends, all backend initializations failed.")}get backend(){if(this.pendingBackendInit!=null)throw new Error(`Backend '${this.backendName}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);if(this.backendInstance==null){let{name:e,asyncInit:t}=this.initializeBackendsAndReturnBest();if(t)throw new Error(`The highest priority backend '${e}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);this.setBackend(e)}return this.backendInstance}backendNames(){return Object.keys(this.registryFactory)}findBackend(e){if(!(e in this.registry))if(e in this.registryFactory){let{asyncInit:t}=this.initializeBackend(e);if(t)return null}else return null;return this.registry[e]}findBackendFactory(e){return e in this.registryFactory?this.registryFactory[e].factory:null}registerBackend(e,t,n=1){return e in this.registryFactory?(console.warn(`${e} backend was already registered. Reusing existing backend factory.`),!1):(this.registryFactory[e]={factory:t,priority:n},!0)}async setBackend(e){if(this.registryFactory[e]==null)throw new Error(`Backend name '${e}' not found in registry`);if(this.backendName=e,this.registry[e]==null){this.backendInstance=null;let{success:t,asyncInit:n}=this.initializeBackend(e);if(!(n?await t:t))return!1}return this.backendInstance=this.registry[e],this.setupRegisteredKernels(),this.profiler=new ES(this.backendInstance),!0}setupRegisteredKernels(){fl(this.backendName).forEach(t=>{t.setupFunc!=null&&t.setupFunc(this.backendInstance)})}disposeRegisteredKernels(e){fl(e).forEach(n=>{n.disposeFunc!=null&&n.disposeFunc(this.registry[e])})}initializeBackend(e){let t=this.registryFactory[e];if(t==null)throw new Error(`Cannot initialize backend ${e}, no registration found.`);try{let n=t.factory();if(n&&!(n instanceof ku)&&typeof n.then=="function"){let s=++this.pendingBackendInitId,r=n.then(a=>s<this.pendingBackendInitId?!1:(this.registry[e]=a,this.pendingBackendInit=null,!0)).catch(a=>(s<this.pendingBackendInitId||(this.pendingBackendInit=null,console.warn(`Initialization of backend ${e} failed`),console.warn(a.stack||a.message)),!1));return this.pendingBackendInit=r,{success:r,asyncInit:!0}}else return this.registry[e]=n,{success:!0,asyncInit:!1}}catch(n){return console.warn(`Initialization of backend ${e} failed`),console.warn(n.stack||n.message),{success:!1,asyncInit:!1}}}removeBackend(e){if(!(e in this.registryFactory))throw new Error(`${e} backend not found in registry`);this.backendName===e&&this.pendingBackendInit!=null&&this.pendingBackendInitId++,e in this.registry&&(this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e]),delete this.registryFactory[e],this.backendName===e&&(this.pendingBackendInit=null,this.backendName=null,this.backendInstance=null)}getSortedBackends(){if(Object.keys(this.registryFactory).length===0)throw new Error("No backend found in registry.");return Object.keys(this.registryFactory).sort((e,t)=>this.registryFactory[t].priority-this.registryFactory[e].priority)}initializeBackendsAndReturnBest(){let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t],{success:s,asyncInit:r}=this.initializeBackend(n);if(r||s)return{name:n,asyncInit:r}}throw new Error("Could not initialize any backends, all backend initializations failed.")}moveData(e,t){let n=this.state.tensorInfo.get(t),s=n.backend,r=this.readSync(t),a=s.refCount(t);s.disposeData(t,!0),n.backend=e,e.move(t,r,n.shape,n.dtype,a),this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack[this.state.numDataMovesStack.length-1]++}tidy(e,t){let n=null;if(t==null){if(typeof e!="function")throw new Error("Please provide a function to tidy()");t=e}else{if(typeof e!="string"&&!(e instanceof String))throw new Error("When calling with two arguments, the first argument to tidy() must be a string");if(typeof t!="function")throw new Error("When calling with two arguments, the 2nd argument to tidy() must be a function");n=e}let s;return this.scopedRun(()=>this.startScope(n),()=>this.endScope(s),()=>(s=t(),s instanceof Promise&&console.error("Cannot return a Promise inside of tidy."),s))}scopedRun(e,t,n){e();try{let s=n();return t(),s}catch(s){throw t(),s}}nextTensorId(){return Xu.nextTensorId++}nextVariableId(){return Xu.nextVariableId++}clone(e){let t=L.runKernel(Oa,{x:e}),n={x:e},s=a=>({x:()=>{let o="float32",i={x:a},l={dtype:o};return L.runKernel(va,i,l)}}),r=[];return this.addTapeNode(this.state.activeScope.name,n,[t],s,r,{}),t}runKernel(e,t,n){if(this.backendName==null&&this.backend,!(vh(e,this.backendName)!=null))throw new Error(`Kernel '${e}' not registered for backend '${this.backendName}'`);return this.runKernelFunc({kernelName:e,inputs:t,attrs:n})}shouldCheckForMemLeaks(){return this.ENV.getBool("IS_TEST")}checkKernelForMemLeak(e,t,n){let s=this.backend.numDataIds(),r=0;n.forEach(i=>{r+=i.dtype==="complex64"?3:1});let a=this.state.numDataMovesStack[this.state.numDataMovesStack.length-1],o=s-t-r-a;if(o>0)throw new Error(`Backend '${this.backendName}' has an internal memory leak (${o} data ids) after running '${e}'`)}runKernelFunc(e){let t,n=[],s=this.isTapeOn(),r=this.state.numBytes,a=this.state.numTensors;this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack.push(0);let o;this.backendName==null&&this.backend;let i,l=zm(e)?e.kernelName:this.state.activeScope!=null?this.state.activeScope.name:"";if(zm(e)){let{kernelName:p,inputs:f,attrs:m}=e;this.backendName==null&&this.backend;let A=vh(p,this.backendName);P(A!=null,()=>`Cannot find registered kernel '${p}' for backend '${this.backendName}'`),o=()=>{let g=this.backend.numDataIds();i=A.kernelFunc({inputs:f,attrs:m,backend:this.backend});let y=Array.isArray(i)?i:[i];this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(p,g,y);let x=y.map(b=>{if(b.rank!=null)return b;let{dataId:v,shape:k,dtype:w}=b;return this.makeTensorFromDataId(v,k,w)});if(s){let b=this.getTensorsForGradient(p,f,x);n=this.saveTensorsForBackwardMode(b)}return x}}else{let{forwardFunc:p}=e,f=m=>{!s||(n=m.map(A=>this.keep(this.clone(A))))};o=()=>{let m=this.backend.numDataIds();i=this.tidy(()=>p(this.backend,f));let A=Array.isArray(i)?i:[i];return this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(l,m,A),A}}let{inputs:u,attrs:c}=e,d=zm(e)?null:e.backwardsFunc,h;return this.scopedRun(()=>this.state.kernelDepth++,()=>this.state.kernelDepth--,()=>{!this.ENV.getBool("DEBUG")&&!this.state.profiling?t=o():(h=this.profiler.profileKernel(l,u,()=>o()),this.ENV.getBool("DEBUG")&&this.profiler.logKernelProfile(h),t=h.outputs)}),s&&this.addTapeNode(l,u,t,d,n,c),this.state.profiling&&this.state.activeProfile.kernels.push({name:l,bytesAdded:this.state.numBytes-r,totalBytesSnapshot:this.state.numBytes,tensorsAdded:this.state.numTensors-a,totalTensorsSnapshot:this.state.numTensors,inputShapes:Object.keys(u).map(p=>u[p]!=null?u[p].shape:null),outputShapes:t.map(p=>p.shape),kernelTimeMs:h.timeMs,extraInfo:h.extraInfo}),Array.isArray(i)?t:t[0]}saveTensorsForBackwardMode(e){return e.map(n=>this.keep(this.clone(n)))}getTensorsForGradient(e,t,n){let s=Nm(e);if(s!=null){let r=s.inputsToSave||[],a=s.outputsToSave||[],o;s.saveAllInputs?(P(Array.isArray(t),()=>"saveAllInputs is true, expected inputs to be an array."),o=Object.keys(t).map(l=>t[l])):o=r.map(l=>t[l]);let i=n.filter((l,u)=>a[u]);return o.concat(i)}return[]}makeTensor(e,t,n,s){if(e==null)throw new Error("Values passed to engine.makeTensor() are null");n=n||"float32",s=s||this.backend;let r=e;n==="string"&&$r(e[0])&&(r=e.map(i=>Uu(i)));let a=s.write(r,t,n),o=new Ue(t,n,a,this.nextTensorId());if(this.trackTensor(o,s),n==="string"){let i=this.state.tensorInfo.get(a),l=u5(r);this.state.numBytes+=l-i.bytes,i.bytes=l}return o}makeTensorFromDataId(e,t,n,s){n=n||"float32";let r=new Ue(t,n,e,this.nextTensorId());return this.trackTensor(r,s),r}makeVariable(e,t=!0,n,s){n=n||this.nextVariableId().toString(),s!=null&&s!==e.dtype&&(e=e.cast(s));let r=new qu(e,t,n,this.nextTensorId());if(this.state.registeredVariables[r.name]!=null)throw new Error(`Variable with name ${r.name} was already registered`);return this.state.registeredVariables[r.name]=r,this.incRef(r,this.backend),r}trackTensor(e,t){this.state.numTensors++,e.dtype==="string"&&this.state.numStringTensors++;let n=0;e.dtype!=="complex64"&&e.dtype!=="string"&&(n=e.size*wm(e.dtype)),this.state.numBytes+=n,this.state.tensorInfo.has(e.dataId)||(this.state.numDataBuffers++,this.state.tensorInfo.set(e.dataId,{backend:t||this.backend,dtype:e.dtype,shape:e.shape,bytes:n})),e instanceof qu||this.track(e)}incRef(e,t){this.trackTensor(e,t),this.backend.incRef(e.dataId)}removeDataId(e,t){this.state.tensorInfo.has(e)&&this.state.tensorInfo.get(e).backend===t&&(this.state.tensorInfo.delete(e),this.state.numDataBuffers--)}disposeTensor(e){if(!this.state.tensorInfo.has(e.dataId))return;let t=this.state.tensorInfo.get(e.dataId);if(this.state.numTensors--,e.dtype==="string"&&(this.state.numStringTensors--,this.state.numBytes-=t.bytes),e.dtype!=="complex64"&&e.dtype!=="string"){let n=e.size*wm(e.dtype);this.state.numBytes-=n}t.backend.disposeData(e.dataId)&&this.removeDataId(e.dataId,t.backend)}disposeVariables(){for(let e in this.state.registeredVariables){let t=this.state.registeredVariables[e];this.disposeVariable(t)}}disposeVariable(e){this.disposeTensor(e),this.state.registeredVariables[e.name]!=null&&delete this.state.registeredVariables[e.name]}memory(){let e=this.backend.memory();return e.numTensors=this.state.numTensors,e.numDataBuffers=this.state.numDataBuffers,e.numBytes=this.state.numBytes,this.state.numStringTensors>0&&(e.unreliable=!0,e.reasons==null&&(e.reasons=[]),e.reasons.push("Memory usage by string tensors is approximate (2 bytes per character)")),e}async profile(e){this.state.profiling=!0;let t=this.state.numBytes,n=this.state.numTensors;this.state.activeProfile.kernels=[],this.state.activeProfile.result=await e(),this.state.profiling=!1,this.state.activeProfile.peakBytes=Math.max(...this.state.activeProfile.kernels.map(s=>s.totalBytesSnapshot)),this.state.activeProfile.newBytes=this.state.numBytes-t,this.state.activeProfile.newTensors=this.state.numTensors-n;for(let s of this.state.activeProfile.kernels)s.kernelTimeMs=await s.kernelTimeMs,s.extraInfo=await s.extraInfo;return this.state.activeProfile}isTapeOn(){return this.state.gradientDepth>0&&this.state.kernelDepth===0}addTapeNode(e,t,n,s,r,a){let o={id:this.state.nextTapeNodeId++,kernelName:e,inputs:t,outputs:n,saved:r},i=Nm(e);i!=null&&(s=i.gradFunc),s!=null&&(o.gradient=l=>(l=l.map((u,c)=>{if(u==null){let d=n[c],h=Md(d.size,d.dtype);return this.makeTensor(h,d.shape,d.dtype)}return u}),s(l.length>1?l:l[0],r,a))),this.state.activeTape.push(o)}keep(e){return e.kept=!0,e}startTape(){this.state.gradientDepth===0&&(this.state.activeTape=[]),this.state.gradientDepth++}endTape(){this.state.gradientDepth--}startScope(e){let t={track:[],name:"unnamed scope",id:this.state.nextScopeId++};e&&(t.name=e),this.state.scopeStack.push(t),this.state.activeScope=t}endScope(e){let t=Mm(e),n=new Set(t.map(r=>r.id));for(let r=0;r<this.state.activeScope.track.length;r++){let a=this.state.activeScope.track[r];!a.kept&&!n.has(a.id)&&a.dispose()}let s=this.state.scopeStack.pop();this.state.activeScope=this.state.scopeStack.length===0?null:this.state.scopeStack[this.state.scopeStack.length-1],t.forEach(r=>{!r.kept&&r.scopeId===s.id&&this.track(r)})}gradients(e,t,n,s=!1){if(P(t.length>0,()=>"gradients() received an empty list of xs."),n!=null&&n.dtype!=="float32")throw new Error(`dy must have 'float32' dtype, but has '${n.dtype}'`);let r=this.scopedRun(()=>this.startTape(),()=>this.endTape(),()=>this.tidy("forward",e));P(r instanceof Ue,()=>"The result y returned by f() must be a tensor.");let a=$S(this.state.activeTape,t,r);if(!s&&a.length===0&&t.length>0)throw new Error("Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.");return this.tidy("backward",()=>{let o={};o[r.id]=n==null?HS(r.shape):n,FS(o,a,l=>this.tidy(l),GS);let i=t.map(l=>o[l.id]);return this.state.gradientDepth===0&&(this.state.activeTape.forEach(l=>{for(let u of l.saved)u.dispose()}),this.state.activeTape=null),{value:r,grads:i}})}customGrad(e){return P(Fr(e),()=>"The f passed in customGrad(f) must be a function."),(...t)=>{P(t.every(o=>o instanceof Ue),()=>"The args passed in customGrad(f)(x1, x2,...) must all be tensors");let n,s={};t.forEach((o,i)=>{s[i]=o});let r=(o,i)=>(n=e(...t,i),P(n.value instanceof Ue,()=>"The function f passed in customGrad(f) must return an object where `obj.value` is a tensor"),P(Fr(n.gradFunc),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function."),n.value),a=(o,i)=>{let l=n.gradFunc(o,i),u=Array.isArray(l)?l:[l];P(u.length===t.length,()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns the same number of tensors as inputs passed to f(...)."),P(u.every(d=>d instanceof Ue),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns a list of only tensors.");let c={};return u.forEach((d,h)=>{c[h]=()=>d}),c};return this.runKernelFunc({forwardFunc:r,backwardsFunc:a,inputs:s})}}readSync(e){return this.state.tensorInfo.get(e).backend.readSync(e)}read(e){return this.state.tensorInfo.get(e).backend.read(e)}async time(e){let t=Vu(),n=await this.backend.time(e);return n.wallMs=Vu()-t,n}track(e){return this.state.activeScope!=null&&(e.scopeId=this.state.activeScope.id,this.state.activeScope.track.push(e)),e}get registeredVariables(){return this.state.registeredVariables}reset(){this.pendingBackendInitId++,this.state.dispose(),this.ENV.reset(),this.state=new T5;for(let e in this.registry)this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e];this.backendName=null,this.backendInstance=null,this.pendingBackendInit=null}};Xu.nextTensorId=0;Xu.nextVariableId=0;function HS(e){let t=km(_t(e),"float32");return L.makeTensor(t,e,"float32")}function N5(){let e=m5();if(e._tfengine==null){let t=new f5(e);e._tfengine=new Xu(t)}return mS(e._tfengine.ENV),MS(()=>e._tfengine),e._tfengine}var L=N5();function GS(e,t){let n={a:e,b:t};return L.runKernel(Dr,n)}var Ku={};Pe(Ku,{isBrowser:()=>E5,isMobile:()=>qS});function jS(){return typeof navigator!="undefined"&&navigator!=null}function qS(e){if(e||jS()){if(e||(e=navigator),e.product==="ReactNative")return!0;let t=e.userAgent||e.vendor||window.opera;return/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i.test(t)||/1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(t.substr(0,4))}return!1}function E5(){return typeof window!="undefined"&&window.document!=null||typeof WorkerGlobalScope!="undefined"}var Ts=ee();Ts.registerFlag("DEBUG",()=>!1,e=>{e&&console.warn("Debugging mode is ON. The output of every math call will be downloaded to CPU and checked for NaNs. This significantly impacts performance.")});Ts.registerFlag("IS_BROWSER",()=>E5());Ts.registerFlag("IS_NODE",()=>typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined");Ts.registerFlag("IS_CHROME",()=>typeof navigator!="undefined"&&navigator!=null&&navigator.userAgent!=null&&/Chrome/.test(navigator.userAgent)&&/Google Inc/.test(navigator.vendor));Ts.registerFlag("PROD",()=>!1);Ts.registerFlag("TENSORLIKE_CHECK_SHAPE_CONSISTENCY",()=>Ts.getBool("DEBUG"));Ts.registerFlag("DEPRECATION_WARNINGS_ENABLED",()=>!0);Ts.registerFlag("IS_TEST",()=>!1);Ts.registerFlag("CHECK_COMPUTATION_FOR_ERRORS",()=>!0);Ts.registerFlag("WRAP_TO_IMAGEBITMAP",()=>!1);function qs(e,t){let n=e;if(an(e))return t==="string"?[]:[e.length];if(!Array.isArray(e))return[];let s=[];for(;Array.isArray(n)||an(n)&&t!=="string";)s.push(n.length),n=n[0];return Array.isArray(e)&&ee().getBool("TENSORLIKE_CHECK_SHAPE_CONSISTENCY")&&R5(e,s,[]),s}function R5(e,t,n){if(n=n||[],!Array.isArray(e)&&!an(e)){P(t.length===0,()=>`Element arr[${n.join("][")}] is a primitive, but should be an array/TypedArray of ${t[0]} elements`);return}P(t.length>0,()=>`Element arr[${n.join("][")}] should be a primitive, but is an array of ${e.length} elements`),P(e.length===t[0],()=>`Element arr[${n.join("][")}] should have ${t[0]} elements, but has ${e.length} elements`);let s=t.slice(1);for(let r=0;r<e.length;++r)R5(e[r],s,n.concat(r))}function _5(e,t,n,s){if(e!=="string_or_numeric"){if(e==null)throw new Error("Expected dtype cannot be null.");if(e!=="numeric"&&e!==t||e==="numeric"&&t==="string")throw new Error(`Argument '${n}' passed to '${s}' must be ${e} tensor, but got ${t} tensor`)}}function D(e,t,n,s="numeric"){if(e instanceof Ue)return _5(s,e.dtype,t,n),e;let r=Od(e);if(r!=="string"&&["bool","int32","float32"].indexOf(s)>=0&&(r=s),_5(s,r,t,n),e==null||!an(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string"){let l=e==null?"null":e.constructor.name;throw new Error(`Argument '${t}' passed to '${n}' must be a Tensor or TensorLike, but got '${l}'`)}let a=qs(e,r);!an(e)&&!Array.isArray(e)&&(e=[e]);let i=r!=="string"?kh(e,r):Aa(e,[],!0);return L.makeTensor(i,a,r)}function Zu(e,t,n,s="numeric"){if(!Array.isArray(e))throw new Error(`Argument ${t} passed to ${n} must be a \`Tensor[]\` or \`TensorLike[]\``);return e.map((a,o)=>D(a,`${t}[${o}]`,n,s))}var $5="__op";function V(e){let t=Object.keys(e);if(t.length!==1)throw new Error(`Please provide an object with a single key (operation name) mapping to a function. Got an object with ${t.length} keys.`);let n=t[0],s=e[n];n.endsWith("_")&&(n=n.substring(0,n.length-1)),n=n+$5;let r=(...a)=>{L.startScope(n);try{let o=s(...a);return Sm(o)&&console.error("Cannot return a Promise inside of tidy."),L.endScope(o),o}catch(o){throw L.endScope(null),o}};return Object.defineProperty(r,"name",{value:n,configurable:!0}),r}function XS(e,t){let n=D(e,"real","complex"),s=D(t,"imag","complex");fn(n.shape,s.shape,`real and imag shapes, ${n.shape} and ${s.shape}, must match in call to tf.complex().`);let r={real:n,imag:s};return L.runKernel(Wd,r)}var Lr=V({complex_:XS});function Br(e,t,n,s){if(s==null&&(s=Od(e)),s==="complex64")throw new Error("Cannot construct a complex64 tensor directly. Please use tf.complex(real, imag).");if(!an(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string")throw new Error("values passed to tensor(values) must be a number/boolean/string or an array of numbers/booleans/strings, or a TypedArray");if(t!=null){Im(t);let r=_t(t),a=_t(n);P(r===a,()=>`Based on the provided shape, [${t}], the tensor should have ${r} values but has ${a}`);for(let o=0;o<n.length;++o){let i=n[o],l=o===n.length-1?i!==_t(t.slice(o)):!0;P(n[o]===t[o]||!l,()=>`Error creating a new Tensor. Inferred shape (${n}) does not match the provided shape (${t}). `)}}return!an(e)&&!Array.isArray(e)&&(e=[e]),t=t||n,e=s!=="string"?kh(e,s):Aa(e,[],!0),L.makeTensor(e,t,s)}function on(e,t,n){let s=qs(e,n);return Br(e,t,s,n)}var Lm={float32:4,float16:2,int32:4,uint16:2,uint8:1,bool:1,complex64:8},Th=4;async function KS(e,t){let n=[],s=[],r=Array.isArray(e)?e.map(o=>o.name):Object.keys(e);for(let o=0;o<r.length;++o){let i=r[o],l=Array.isArray(e)?e[o].tensor:e[i];if(l.dtype!=="float32"&&l.dtype!=="int32"&&l.dtype!=="bool"&&l.dtype!=="string"&&l.dtype!=="complex64")throw new Error(`Unsupported dtype in weight '${i}': ${l.dtype}`);let u={name:i,shape:l.shape,dtype:l.dtype};if(l.dtype==="string"){let c=new Promise(async d=>{let h=await l.bytes(),p=h.reduce((A,g)=>A+g.length,0)+Th*h.length,f=new Uint8Array(p),m=0;for(let A=0;A<h.length;A++){let g=h[A],y=new Uint8Array(new Uint32Array([g.length]).buffer);f.set(y,m),m+=Th,f.set(g,m),m+=g.length}d(f)});s.push(c)}else s.push(l.data());t!=null&&(u.group=t),n.push(u)}let a=await Promise.all(s);return{data:ZS(a),specs:n}}function F5(e,t){let n={},s,r=0;for(let a of t){let o=a.name,i=a.dtype,l=a.shape,u=_t(l),c;if("quantization"in a){let d=a.quantization;if(d.dtype==="uint8"||d.dtype==="uint16"){if(!("min"in d&&"scale"in d))throw new Error(`Weight ${a.name} with quantization ${d.dtype} doesn't have corresponding metadata min and scale.`)}else if(d.dtype==="float16"){if(i!=="float32")throw new Error(`Weight ${a.name} is quantized with ${d.dtype} which only supports weights of type float32 not ${i}.`)}else throw new Error(`Weight ${a.name} has unknown quantization dtype ${d.dtype}. Supported quantization dtypes are: 'uint8', 'uint16', and 'float16'.`);let h=Lm[d.dtype],p=e.slice(r,r+u*h),f=d.dtype==="uint8"?new Uint8Array(p):new Uint16Array(p);if(i==="float32")if(d.dtype==="uint8"||d.dtype==="uint16"){c=new Float32Array(f.length);for(let m=0;m<f.length;m++){let A=f[m];c[m]=A*d.scale+d.min}}else if(d.dtype==="float16")s===void 0&&(s=n9()),c=s(f);else throw new Error(`Unsupported quantization type ${d.dtype} for weight type float32.`);else if(i==="int32"){if(d.dtype!=="uint8"&&d.dtype!=="uint16")throw new Error(`Unsupported quantization type ${d.dtype} for weight type int32.`);c=new Int32Array(f.length);for(let m=0;m<f.length;m++){let A=f[m];c[m]=Math.round(A*d.scale+d.min)}}else throw new Error(`Unsupported dtype in weight '${o}': ${i}`);r+=u*h}else if(i==="string"){let d=_t(a.shape);c=[];for(let h=0;h<d;h++){let p=new Uint32Array(e.slice(r,r+Th))[0];r+=Th;let f=new Uint8Array(e.slice(r,r+p));c.push(f),r+=p}}else{let d=Lm[i],h=e.slice(r,r+u*d);if(i==="float32")c=new Float32Array(h);else if(i==="int32")c=new Int32Array(h);else if(i==="bool")c=new Uint8Array(h);else if(i==="complex64"){c=new Float32Array(h);let p=new Float32Array(c.length/2),f=new Float32Array(c.length/2);for(let g=0;g<p.length;g++)p[g]=c[g*2],f[g]=c[g*2+1];let m=on(p,l,"float32"),A=on(f,l,"float32");n[o]=Lr(m,A),m.dispose(),A.dispose()}else throw new Error(`Unsupported dtype in weight '${o}': ${i}`);r+=u*d}i!=="complex64"&&(n[o]=on(c,l,i))}return n}function ZS(e){if(e===null)throw new Error(`Invalid input value: ${JSON.stringify(e)}`);let t=0,n=[];e.forEach(a=>{if(t+=a.byteLength,n.push(a.byteLength===a.buffer.byteLength?a:new a.constructor(a)),!(a instanceof Float32Array||a instanceof Int32Array||a instanceof Uint8Array))throw new Error(`Unsupported TypedArray subtype: ${a.constructor.name}`)});let s=new Uint8Array(t),r=0;return n.forEach(a=>{s.set(new Uint8Array(a.buffer),r),r+=a.byteLength}),s.buffer}var Bm=typeof Buffer!="undefined"&&(typeof Blob=="undefined"||typeof atob=="undefined"||typeof btoa=="undefined");function D5(e){return Bm?Buffer.byteLength(e):new Blob([e]).size}function YS(e){if(Bm)return Buffer.from(e).toString("base64");let t=new Uint8Array(e),n="";for(let s=0,r=t.length;s<r;s++)n+=String.fromCharCode(t[s]);return btoa(n)}function JS(e){if(Bm){let s=Buffer.from(e,"base64");return s.buffer.slice(s.byteOffset,s.byteOffset+s.byteLength)}let t=atob(e),n=new Uint8Array(t.length);for(let s=0;s<t.length;++s)n.set([t.charCodeAt(s)],s);return n.buffer}function Wm(e){if(e.length===1)return e[0];let t=0;e.forEach(r=>{t+=r.byteLength});let n=new Uint8Array(t),s=0;return e.forEach(r=>{n.set(new Uint8Array(r),s),s+=r.byteLength}),n.buffer}function O5(e){let t="/";for(e=e.trim();e.endsWith(t);)e=e.slice(0,e.length-1);let n=e.split(t);return n[n.length-1]}function P5(e,t){let n={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:t};return e.signature!=null&&(n.signature=e.signature),e.userDefinedMetadata!=null&&(n.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(n.modelInitializer=e.modelInitializer),e.trainingConfig!=null&&(n.trainingConfig=e.trainingConfig),n}async function Vm(e,t){let n={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy};if(e.trainingConfig!=null&&(n.trainingConfig=e.trainingConfig),e.weightsManifest!=null){let[s,r]=await t(e.weightsManifest);n.weightSpecs=s,n.weightData=r}return e.signature!=null&&(n.signature=e.signature),e.userDefinedMetadata!=null&&(n.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(n.modelInitializer=e.modelInitializer),n}function Yu(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("Expected JSON model topology, received ArrayBuffer.");return{dateSaved:new Date,modelTopologyType:"JSON",modelTopologyBytes:e.modelTopology==null?0:D5(JSON.stringify(e.modelTopology)),weightSpecsBytes:e.weightSpecs==null?0:D5(JSON.stringify(e.weightSpecs)),weightDataBytes:e.weightData==null?0:e.weightData.byteLength}}function QS(){let e=n=>{let s=n<<13,r=0;for(;(s&8388608)==0;)r-=8388608,s<<=1;return s&=~8388608,r+=947912704,s|r},t=new Uint32Array(2048);t[0]=0;for(let n=1;n<1024;n++)t[n]=e(n);for(let n=1024;n<2048;n++)t[n]=939524096+(n-1024<<13);return t}function e9(){let e=new Uint32Array(64);e[0]=0,e[31]=1199570944,e[32]=2147483648,e[63]=3347054592;for(let t=1;t<31;t++)e[t]=t<<23;for(let t=33;t<63;t++)e[t]=2147483648+(t-32<<23);return e}function t9(){let e=new Uint32Array(64);for(let t=0;t<64;t++)e[t]=1024;return e[0]=e[32]=0,e}function n9(){let e=QS(),t=e9(),n=t9();return s=>{let r=new ArrayBuffer(4*s.length),a=new Uint32Array(r);for(let o=0;o<s.length;o++){let i=s[o],l=e[n[i>>10]+(i&1023)]+t[i>>10];a[o]=l}return new Float32Array(r)}}var Nt=class{constructor(){this.saveRouters=[],this.loadRouters=[]}static getInstance(){return Nt.instance==null&&(Nt.instance=new Nt),Nt.instance}static registerSaveRouter(e){Nt.getInstance().saveRouters.push(e)}static registerLoadRouter(e){Nt.getInstance().loadRouters.push(e)}static getSaveHandlers(e){return Nt.getHandlers(e,"save")}static getLoadHandlers(e,t){return Nt.getHandlers(e,"load",t)}static getHandlers(e,t,n){let s=[];return(t==="load"?Nt.getInstance().loadRouters:Nt.getInstance().saveRouters).forEach(a=>{let o=a(e,n);o!==null&&s.push(o)}),s}},s9=e=>Nt.registerSaveRouter(e),r9=e=>Nt.registerLoadRouter(e),a9=e=>Nt.getSaveHandlers(e),o9=(e,t)=>Nt.getLoadHandlers(e,t),Um="tensorflowjs",Hm=1,xo="models_store",Wr="model_info_store";function M5(){if(!ee().getBool("IS_BROWSER"))throw new Error("Failed to obtain IndexedDB factory because the current environmentis not a web browser.");let e=typeof window=="undefined"?self:window,t=e.indexedDB||e.mozIndexedDB||e.webkitIndexedDB||e.msIndexedDB||e.shimIndexedDB;if(t==null)throw new Error("The current browser does not appear to support IndexedDB.");return t}function Gm(e){let t=e.result;t.createObjectStore(xo,{keyPath:"modelPath"}),t.createObjectStore(Wr,{keyPath:"modelPath"})}var bo=class{constructor(e){if(this.indexedDB=M5(),e==null||!e)throw new Error("For IndexedDB, modelPath must not be null, undefined or empty.");this.modelPath=e}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");return this.databaseAction(this.modelPath,e)}async load(){return this.databaseAction(this.modelPath)}databaseAction(e,t){return new Promise((n,s)=>{let r=this.indexedDB.open(Um,Hm);r.onupgradeneeded=()=>Gm(r),r.onsuccess=()=>{let a=r.result;if(t==null){let o=a.transaction(xo,"readonly"),l=o.objectStore(xo).get(this.modelPath);l.onsuccess=()=>{if(l.result==null)return a.close(),s(new Error(`Cannot find model with path '${this.modelPath}' in IndexedDB.`));n(l.result.modelArtifacts)},l.onerror=u=>(a.close(),s(l.error)),o.oncomplete=()=>a.close()}else{let o=Yu(t),i=a.transaction(Wr,"readwrite"),l=i.objectStore(Wr),u=l.put({modelPath:this.modelPath,modelArtifactsInfo:o}),c;u.onsuccess=()=>{c=a.transaction(xo,"readwrite");let h=c.objectStore(xo).put({modelPath:this.modelPath,modelArtifacts:t,modelArtifactsInfo:o});h.onsuccess=()=>n({modelArtifactsInfo:o}),h.onerror=p=>{l=i.objectStore(Wr);let f=l.delete(this.modelPath);f.onsuccess=()=>(a.close(),s(h.error)),f.onerror=m=>(a.close(),s(h.error))}},u.onerror=d=>(a.close(),s(u.error)),i.oncomplete=()=>{c==null?a.close():c.oncomplete=()=>a.close()}}},r.onerror=a=>s(r.error)})}};bo.URL_SCHEME="indexeddb://";var z5=e=>ee().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(bo.URL_SCHEME)?i9(e.slice(bo.URL_SCHEME.length)):null;Nt.registerSaveRouter(z5);Nt.registerLoadRouter(z5);function i9(e){return new bo(e)}function l9(e){return e.startsWith(bo.URL_SCHEME)?e.slice(bo.URL_SCHEME.length):e}var u9=class{constructor(){this.indexedDB=M5()}async listModels(){return new Promise((e,t)=>{let n=this.indexedDB.open(Um,Hm);n.onupgradeneeded=()=>Gm(n),n.onsuccess=()=>{let s=n.result,r=s.transaction(Wr,"readonly"),o=r.objectStore(Wr).getAll();o.onsuccess=()=>{let i={};for(let l of o.result)i[l.modelPath]=l.modelArtifactsInfo;e(i)},o.onerror=i=>(s.close(),t(o.error)),r.oncomplete=()=>s.close()},n.onerror=s=>t(n.error)})}async removeModel(e){return e=l9(e),new Promise((t,n)=>{let s=this.indexedDB.open(Um,Hm);s.onupgradeneeded=()=>Gm(s),s.onsuccess=()=>{let r=s.result,a=r.transaction(Wr,"readwrite"),o=a.objectStore(Wr),i=o.get(e),l;i.onsuccess=()=>{if(i.result==null)return r.close(),n(new Error(`Cannot find model with path '${e}' in IndexedDB.`));{let u=o.delete(e),c=()=>{l=r.transaction(xo,"readwrite");let h=l.objectStore(xo).delete(e);h.onsuccess=()=>t(i.result.modelArtifactsInfo),h.onerror=p=>n(i.error)};u.onsuccess=c,u.onerror=d=>(c(),r.close(),n(i.error))}},i.onerror=u=>(r.close(),n(i.error)),a.oncomplete=()=>{l==null?r.close():l.oncomplete=()=>r.close()}},s.onerror=r=>n(s.error)})}},mr="/",Al="tensorflowjs_models",L5="info",c9="model_topology",d9="weight_specs",h9="weight_data",p9="model_metadata";function B5(e){return{info:[Al,e,L5].join(mr),topology:[Al,e,c9].join(mr),weightSpecs:[Al,e,d9].join(mr),weightData:[Al,e,h9].join(mr),modelMetadata:[Al,e,p9].join(mr)}}function W5(e){for(let t of Object.values(e))window.localStorage.removeItem(t)}function f9(e){let t=e.split(mr);if(t.length<3)throw new Error(`Invalid key format: ${e}`);return t.slice(1,t.length-1).join(mr)}function m9(e){return e.startsWith(vo.URL_SCHEME)?e.slice(vo.URL_SCHEME.length):e}var vo=class{constructor(e){if(!ee().getBool("IS_BROWSER")||typeof window=="undefined"||typeof window.localStorage=="undefined")throw new Error("The current environment does not support local storage.");if(this.LS=window.localStorage,e==null||!e)throw new Error("For local storage, modelPath must not be null, undefined or empty.");this.modelPath=e,this.keys=B5(this.modelPath)}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");{let t=JSON.stringify(e.modelTopology),n=JSON.stringify(e.weightSpecs),s=Yu(e);try{this.LS.setItem(this.keys.info,JSON.stringify(s)),this.LS.setItem(this.keys.topology,t),this.LS.setItem(this.keys.weightSpecs,n),this.LS.setItem(this.keys.weightData,YS(e.weightData));let r={format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,signature:e.signature!=null?e.signature:void 0,userDefinedMetadata:e.userDefinedMetadata!=null?e.userDefinedMetadata:void 0,modelInitializer:e.modelInitializer!=null?e.modelInitializer:void 0,trainingConfig:e.trainingConfig!=null?e.trainingConfig:void 0};return this.LS.setItem(this.keys.modelMetadata,JSON.stringify(r)),{modelArtifactsInfo:s}}catch(r){throw W5(this.keys),new Error(`Failed to save model '${this.modelPath}' to local storage: size quota being exceeded is a possible cause of this failure: modelTopologyBytes=${s.modelTopologyBytes}, weightSpecsBytes=${s.weightSpecsBytes}, weightDataBytes=${s.weightDataBytes}.`)}}}async load(){let e=JSON.parse(this.LS.getItem(this.keys.info));if(e==null)throw new Error(`In local storage, there is no model with name '${this.modelPath}'`);if(e.modelTopologyType!=="JSON")throw new Error("BrowserLocalStorage does not support loading non-JSON model topology yet.");let t={},n=JSON.parse(this.LS.getItem(this.keys.topology));if(n==null)throw new Error(`In local storage, the topology of model '${this.modelPath}' is missing.`);t.modelTopology=n;let s=JSON.parse(this.LS.getItem(this.keys.weightSpecs));if(s==null)throw new Error(`In local storage, the weight specs of model '${this.modelPath}' are missing.`);t.weightSpecs=s;let r=this.LS.getItem(this.keys.modelMetadata);if(r!=null){let o=JSON.parse(r);t.format=o.format,t.generatedBy=o.generatedBy,t.convertedBy=o.convertedBy,o.signature!=null&&(t.signature=o.signature),o.userDefinedMetadata!=null&&(t.userDefinedMetadata=o.userDefinedMetadata),o.modelInitializer!=null&&(t.modelInitializer=o.modelInitializer),o.trainingConfig!=null&&(t.trainingConfig=o.trainingConfig)}let a=this.LS.getItem(this.keys.weightData);if(a==null)throw new Error(`In local storage, the binary weight values of model '${this.modelPath}' are missing.`);return t.weightData=JS(a),t}};vo.URL_SCHEME="localstorage://";var V5=e=>ee().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(vo.URL_SCHEME)?A9(e.slice(vo.URL_SCHEME.length)):null;Nt.registerSaveRouter(V5);Nt.registerLoadRouter(V5);function A9(e){return new vo(e)}var g9=class{constructor(){P(ee().getBool("IS_BROWSER"),()=>"Current environment is not a web browser"),P(typeof window=="undefined"||typeof window.localStorage!="undefined",()=>"Current browser does not appear to support localStorage"),this.LS=window.localStorage}async listModels(){let e={},t=Al+mr,n=mr+L5;for(let s=0;s<this.LS.length;++s){let r=this.LS.key(s);if(r.startsWith(t)&&r.endsWith(n)){let a=f9(r);e[a]=JSON.parse(this.LS.getItem(r))}}return e}async removeModel(e){e=m9(e);let t=B5(e);if(this.LS.getItem(t.info)==null)throw new Error(`Cannot find model at path '${e}'`);let n=JSON.parse(this.LS.getItem(t.info));return W5(t),n}},gl="://",ss=class{constructor(){this.managers={}}static getInstance(){return ss.instance==null&&(ss.instance=new ss),ss.instance}static registerManager(e,t){P(e!=null,()=>"scheme must not be undefined or null."),e.endsWith(gl)&&(e=e.slice(0,e.indexOf(gl))),P(e.length>0,()=>"scheme must not be an empty string.");let n=ss.getInstance();P(n.managers[e]==null,()=>`A model store manager is already registered for scheme '${e}'.`),n.managers[e]=t}static getManager(e){let t=this.getInstance().managers[e];if(t==null)throw new Error(`Cannot find model manager for scheme '${e}'`);return t}static getSchemes(){return Object.keys(this.getInstance().managers)}};function Nh(e){if(e.indexOf(gl)===-1)throw new Error(`The url string provided does not contain a scheme. Supported schemes are: ${ss.getSchemes().join(",")}`);return{scheme:e.split(gl)[0],path:e.split(gl)[1]}}async function U5(e,t,n=!1){P(e!==t,()=>`Old path and new path are the same: '${e}'`);let s=Nt.getLoadHandlers(e);P(s.length>0,()=>`Copying failed because no load handler is found for source URL ${e}.`),P(s.length<2,()=>`Copying failed because more than one (${s.length}) load handlers for source URL ${e}.`);let r=s[0],a=Nt.getSaveHandlers(t);P(a.length>0,()=>`Copying failed because no save handler is found for destination URL ${t}.`),P(a.length<2,()=>`Copying failed because more than one (${s.length}) save handlers for destination URL ${t}.`);let o=a[0],i=Nh(e).scheme,l=Nh(e).path,u=i===Nh(e).scheme,c=await r.load();n&&u&&await ss.getManager(i).removeModel(l);let d=await o.save(c);return n&&!u&&await ss.getManager(i).removeModel(l),d.modelArtifactsInfo}async function y9(){let e=ss.getSchemes(),t={};for(let n of e){let s=await ss.getManager(n).listModels();for(let r in s){let a=n+gl+r;t[a]=s[r]}}return t}async function x9(e){let t=Nh(e);return ss.getManager(t.scheme).removeModel(t.path)}async function b9(e,t){return U5(e,t,!1)}async function v9(e,t){return U5(e,t,!0)}var w9=class{fetch(e,t){return fetch(e,t)}now(){return performance.now()}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Browser's encoder only supports utf-8, but got ${t}`);return this.textEncoder==null&&(this.textEncoder=new TextEncoder),this.textEncoder.encode(e)}decode(e,t){return new TextDecoder(t).decode(e)}};if(ee().get("IS_BROWSER")){ee().setPlatform("browser",new w9);try{ss.registerManager(vo.URL_SCHEME,new g9)}catch(e){}try{ss.registerManager(bo.URL_SCHEME,new u9)}catch(e){}}var k9={importFetch:()=>vI()},jm,I9=class{constructor(){this.util=li("util"),this.textEncoder=new this.util.TextEncoder}fetch(e,t){return ee().global.fetch!=null?ee().global.fetch(e,t):(jm==null&&(jm=k9.importFetch()),jm(e,t))}now(){let e=process.hrtime();return e[0]*1e3+e[1]/1e6}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Node built-in encoder only supports utf-8, but got ${t}`);return this.textEncoder.encode(e)}decode(e,t){return e.length===0?"":new this.util.TextDecoder(t).decode(e)}};ee().get("IS_NODE")&&ee().setPlatform("node",new I9);function Be(e,t="float32",n){return t=t||"float32",Im(e),new Bt(e,t,n)}function S9(e,t){let n=D(e,"x","cast");if(!l5(t))throw new Error(`Failed to cast to unknown dtype ${t}`);if(t==="string"&&n.dtype!=="string"||t!=="string"&&n.dtype==="string")throw new Error("Only strings can be casted to strings");let s={x:n},r={dtype:t};return L.runKernel(va,s,r)}var ce=V({cast_:S9});function C9(e){let n={x:D(e,"x","clone","string_or_numeric")};return L.runKernel(Oa,n)}var Ns=V({clone_:C9});function H5(e,t=!1){console.log(e.toString(t))}N5();var T9={buffer:Be,cast:ce,clone:Ns,print:H5};zS(T9);var Tn={};Pe(Tn,{browserFiles:()=>D9,browserHTTPRequest:()=>L9,concatenateArrayBuffers:()=>Wm,copyModel:()=>b9,decodeWeights:()=>F5,encodeWeights:()=>KS,fromMemory:()=>W9,getLoadHandlers:()=>o9,getModelArtifactsForJSON:()=>Vm,getModelArtifactsInfoForJSON:()=>Yu,getSaveHandlers:()=>a9,http:()=>Km,isHTTPScheme:()=>Xm,listModels:()=>y9,loadWeights:()=>O9,moveModel:()=>v9,registerLoadRouter:()=>r9,registerSaveRouter:()=>s9,removeModel:()=>x9,weightsLoaderFactory:()=>X5,withSaveHandler:()=>V9});var N9="model",E9=".json",R9=".weights.bin";function G5(e){return new Promise(t=>setTimeout(t)).then(e)}var yl=class{constructor(e){if(!ee().getBool("IS_BROWSER"))throw new Error("browserDownloads() cannot proceed because the current environment is not a browser.");e.startsWith(yl.URL_SCHEME)&&(e=e.slice(yl.URL_SCHEME.length)),(e==null||e.length===0)&&(e=N9),this.modelJsonFileName=e+E9,this.weightDataFileName=e+R9}async save(e){if(typeof document=="undefined")throw new Error("Browser downloads are not supported in this environment since `document` is not present");let t=window.URL.createObjectURL(new Blob([e.weightData],{type:"application/octet-stream"}));if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserDownloads.save() does not support saving model topology in binary formats yet.");{let n=[{paths:["./"+this.weightDataFileName],weights:e.weightSpecs}],s=P5(e,n),r=window.URL.createObjectURL(new Blob([JSON.stringify(s)],{type:"application/json"})),a=this.modelJsonAnchor==null?document.createElement("a"):this.modelJsonAnchor;if(a.download=this.modelJsonFileName,a.href=r,await G5(()=>a.dispatchEvent(new MouseEvent("click"))),e.weightData!=null){let o=this.weightDataAnchor==null?document.createElement("a"):this.weightDataAnchor;o.download=this.weightDataFileName,o.href=t,await G5(()=>o.dispatchEvent(new MouseEvent("click")))}return{modelArtifactsInfo:Yu(e)}}}};yl.URL_SCHEME="downloads://";var _9=class{constructor(e){if(e==null||e.length<1)throw new Error(`When calling browserFiles, at least 1 file is required, but received ${e}`);this.jsonFile=e[0],this.weightsFiles=e.slice(1)}async load(){return new Promise((e,t)=>{let n=new FileReader;n.onload=s=>{let r=JSON.parse(s.target.result),a=r.modelTopology;if(a==null){t(new Error(`modelTopology field is missing from file ${this.jsonFile.name}`));return}if(r.weightsManifest==null){t(new Error(`weightManifest field is missing from file ${this.jsonFile.name}`));return}if(this.weightsFiles.length===0){e({modelTopology:a});return}let i=Vm(r,l=>this.loadWeights(l));e(i)},n.onerror=s=>t(`Failed to read model topology and weights manifest JSON from file '${this.jsonFile.name}'. BrowserFiles supports loading Keras-style tf.Model artifacts only.`),n.readAsText(this.jsonFile)})}loadWeights(e){let t=[],n=[];for(let a of e)t.push(...a.weights),n.push(...a.paths);let s=this.checkManifestAndWeightFiles(e),r=n.map(a=>this.loadWeightsFile(a,s[a]));return Promise.all(r).then(a=>[t,Wm(a)])}loadWeightsFile(e,t){return new Promise((n,s)=>{let r=new FileReader;r.onload=a=>{let o=a.target.result;n(o)},r.onerror=a=>s(`Failed to weights data from file of path '${e}'.`),r.readAsArrayBuffer(t)})}checkManifestAndWeightFiles(e){let t=[],n=this.weightsFiles.map(r=>O5(r.name)),s={};for(let r of e)r.paths.forEach(a=>{let o=O5(a);if(t.indexOf(o)!==-1)throw new Error(`Duplicate file basename found in weights manifest: '${o}'`);if(t.push(o),n.indexOf(o)===-1)throw new Error(`Weight file with basename '${o}' is not provided.`);s[a]=this.weightsFiles[n.indexOf(o)]});if(t.length!==this.weightsFiles.length)throw new Error(`Mismatch in the number of files in weights manifest (${t.length}) and the number of weight files provided (${this.weightsFiles.length}).`);return s}},$9=e=>ee().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(yl.URL_SCHEME)?F9(e.slice(yl.URL_SCHEME.length)):null;Nt.registerSaveRouter($9);function F9(e="model"){return new yl(e)}function D9(e){return new _9(e)}function j5(e,t,n,s){o(e),n=n==null?0:n,s=s==null?1:s,i(n,s);let r=0,a=l=>(l.then(u=>{let c=n+ ++r/e.length*(s-n);return t(c),u}),l);function o(l){P(l!=null&&Array.isArray(l)&&l.length>0,()=>"promises must be a none empty array")}function i(l,u){P(l>=0&&l<=1,()=>`Progress fraction must be in range [0, 1], but got startFraction ${l}`),P(u>=0&&u<=1,()=>`Progress fraction must be in range [0, 1], but got endFraction ${u}`),P(u>=l,()=>`startFraction must be no more than endFraction, but got startFraction ${l} and endFraction ${u}`)}return Promise.all(e.map(a))}async function q5(e,t){t==null&&(t={});let n=t.fetchFunc==null?ee().platform.fetch:t.fetchFunc,s=e.map(d=>n(d,t.requestInit,{isBinary:!0})),r=0,a=.5,i=(t.onProgress==null?await Promise.all(s):await j5(s,t.onProgress,r,a)).map(d=>d.arrayBuffer()),l=.5,u=1;return t.onProgress==null?await Promise.all(i):await j5(i,t.onProgress,l,u)}async function O9(e,t="",n,s){return X5(o=>q5(o,{requestInit:s}))(e,t,n)}function X5(e){return async(t,n="",s)=>{let r=t.map(()=>!1),a={},o=s!=null?s.map(()=>!1):[],i=[];if(t.forEach((p,f)=>{let m=0;p.weights.forEach(A=>{let g="quantization"in A?A.quantization.dtype:A.dtype,y=Lm[g]*_t(A.shape),x=()=>{r[f]=!0,a[f]==null&&(a[f]=[]),a[f].push({manifestEntry:A,groupOffset:m,sizeBytes:y})};s!=null?s.forEach((b,v)=>{b===A.name&&(x(),o[v]=!0)}):x(),i.push(A.name),m+=y})}),!o.every(p=>p)){let p=s.filter((f,m)=>!o[m]);throw new Error(`Could not find weights in manifest with names: ${p.join(", ")}.
|
|
Manifest JSON has weights with names: ${i.join(", ")}.`)}let l=r.reduce((p,f,m)=>(f&&p.push(m),p),[]),u=[];l.forEach(p=>{t[p].paths.forEach(f=>{let m=n+(n.endsWith("/")?"":"/")+f;u.push(m)})});let c=await e(u),d={},h=0;return l.forEach(p=>{let f=t[p].paths.length,m=0;for(let b=0;b<f;b++)m+=c[h+b].byteLength;let A=new ArrayBuffer(m),g=new Uint8Array(A),y=0;for(let b=0;b<f;b++){let v=new Uint8Array(c[h+b]);g.set(v,y),y+=v.byteLength}a[p].forEach(b=>{let v=A.slice(b.groupOffset,b.groupOffset+b.sizeBytes),k=F5(v,[b.manifestEntry]);for(let w in k)d[w]=k[w]}),h+=f}),d}}var P9="application/octet-stream",M9="application/json",qm=class{constructor(e,t){if(this.DEFAULT_METHOD="POST",t==null&&(t={}),this.weightPathPrefix=t.weightPathPrefix,this.onProgress=t.onProgress,this.weightUrlConverter=t.weightUrlConverter,t.fetchFunc!=null?(P(typeof t.fetchFunc=="function",()=>"Must pass a function that matches the signature of `fetch` (see https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)"),this.fetch=t.fetchFunc):this.fetch=ee().platform.fetch,P(e!=null&&e.length>0,()=>"URL path for http must not be null, undefined or empty."),Array.isArray(e)&&P(e.length===2,()=>`URL paths for http must have a length of 2, (actual length is ${e.length}).`),this.path=e,t.requestInit!=null&&t.requestInit.body!=null)throw new Error("requestInit is expected to have no pre-existing body, but has one.");this.requestInit=t.requestInit||{}}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserHTTPRequest.save() does not support saving model topology in binary formats yet.");let t=Object.assign({method:this.DEFAULT_METHOD},this.requestInit);t.body=new FormData;let n=[{paths:["./model.weights.bin"],weights:e.weightSpecs}],s=P5(e,n);t.body.append("model.json",new Blob([JSON.stringify(s)],{type:M9}),"model.json"),e.weightData!=null&&t.body.append("model.weights.bin",new Blob([e.weightData],{type:P9}),"model.weights.bin");let r=await this.fetch(this.path,t);if(r.ok)return{modelArtifactsInfo:Yu(e),responses:[r]};throw new Error(`BrowserHTTPRequest.save() failed due to HTTP response status ${r.status}.`)}async load(){let e=await this.fetch(this.path,this.requestInit);if(!e.ok)throw new Error(`Request to ${this.path} failed with status code ${e.status}. Please verify this URL points to the model JSON of the model to load.`);let t;try{t=await e.json()}catch(r){let a=`Failed to parse model JSON of response from ${this.path}.`;throw this.path.endsWith(".pb")?a+=" Your path contains a .pb file extension. Support for .pb models have been removed in TensorFlow.js 1.0 in favor of .json models. You can re-convert your Python TensorFlow model using the TensorFlow.js 1.0 conversion scripts or you can convert your.pb models with the 'pb2json'NPM script in the tensorflow/tfjs-converter repository.":a+=" Please make sure the server is serving valid JSON for this request.",new Error(a)}let n=t.modelTopology,s=t.weightsManifest;if(n==null&&s==null)throw new Error(`The JSON from HTTP path ${this.path} contains neither model topology or manifest for weights.`);return Vm(t,r=>this.loadWeights(r))}async loadWeights(e){let t=Array.isArray(this.path)?this.path[1]:this.path,[n,s]=z9(t),r=this.weightPathPrefix||n,a=[];for(let u of e)a.push(...u.weights);let o=[],i=[];for(let u of e)for(let c of u.paths)this.weightUrlConverter!=null?i.push(this.weightUrlConverter(c)):o.push(r+c+s);this.weightUrlConverter&&o.push(...await Promise.all(i));let l=await q5(o,{requestInit:this.requestInit,fetchFunc:this.fetch,onProgress:this.onProgress});return[a,Wm(l)]}};qm.URL_SCHEME_REGEX=/^https?:\/\//;function z9(e){let t=e.lastIndexOf("/"),n=e.lastIndexOf("?"),s=e.substring(0,t),r=n>t?e.substring(n):"";return[s+"/",r]}function Xm(e){return e.match(qm.URL_SCHEME_REGEX)!=null}var K5=(e,t)=>{if(typeof fetch=="undefined"&&(t==null||t.fetchFunc==null))return null;{let n=!0;if(Array.isArray(e)?n=e.every(s=>Xm(s)):n=Xm(e),n)return Km(e,t)}return null};Nt.registerSaveRouter(K5);Nt.registerLoadRouter(K5);function Km(e,t){return new qm(e,t)}function L9(e,t){return Km(e,t)}var Zm=class{constructor(e){this.modelArtifacts=e}async load(){return this.modelArtifacts}},B9=class{constructor(e){this.saveHandler=e}async save(e){return this.saveHandler(e)}};function W9(e,t,n,s){return arguments.length===1?e.modelTopology!=null||e.weightSpecs!=null?new Zm(e):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new Zm({modelTopology:e})):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new Zm({modelTopology:e,weightSpecs:t,weightData:n,trainingConfig:s}))}function V9(e){return new B9(e)}var Z5={};Pe(Z5,{confusionMatrix:()=>q9});function U9(e,t,n=!1,s=!1){let r=D(e,"a","matMul"),a=D(t,"b","matMul");[r,a]=It(r,a);let o={a:r,b:a},i={transposeA:n,transposeB:s};return L.runKernel(ba,o,i)}var We=V({matMul_:U9});function H9(e,t,n=1,s=0){if(t<2)throw new Error(`Error in oneHot: depth must be >=2, but it is ${t}`);let a={indices:D(e,"indices","oneHot","int32")},o={depth:t,onValue:n,offValue:s};return L.runKernel(ja,a,o)}var Ju=V({oneHot_:H9});function G9(e,t){let n=D(e,"x","transpose");if(t==null&&(t=n.shape.map((a,o)=>o).reverse()),P(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of perm ${t}.`),t.forEach(a=>{P(a>=0&&a<n.rank,()=>`All entries in 'perm' must be between 0 and ${n.rank-1} but got ${t}`)}),n.rank<=1)return n.clone();let s={x:n},r={perm:t};return L.runKernel(ho,s,r)}var je=V({transpose_:G9});function j9(e,t,n){let s=D(e,"labels","confusionMatrix"),r=D(t,"predictions","confusionMatrix");P(n==null||n>0&&Number.isInteger(n),()=>`If provided, numClasses must be a positive integer, but got ${n}`),P(s.rank===1,()=>`Expected the rank of labels to be 1, but got ${s.rank}`),P(r.rank===1,()=>`Expected the rank of predictions to be 1, but got ${r.rank}`),P(s.shape[0]===r.shape[0],()=>`Mismatch in the number of examples: ${s.shape[0]} vs. ${r.shape[0]}. Labels and predictions should have the same number of elements.`),P(n>0&&Number.isInteger(n),()=>`numClasses is required to be a positive integer, but got ${n}`);let a=Ju(ce(s,"int32"),n),o=Ju(ce(r,"int32"),n),i=je(a),l=We(i,o);return ce(l,"int32")}var q9=V({confusionMatrix_:j9}),rs={};Pe(rs,{fromPixels:()=>eC,fromPixelsAsync:()=>J9,toPixels:()=>Q9});function Eh(e,t,n){if(ma(e),t!=null&&t.length!==3)throw new Error("tensor3d() requires shape to have three numbers");let s=qs(e,n);if(s.length!==3&&s.length!==1)throw new Error("tensor3d() requires values to be number[][][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor3d() requires shape to be provided when `values` are a flat array");return Br(e,t,s,n)}var xl;function Y5(e,t=3){if(t>4)throw new Error("Cannot construct Tensor with more than 4 channels from pixels.");if(e==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let n=!1,s=!1,r=!1,a=!1,o=!1,i=!1;if(e.data instanceof Uint8Array)n=!0;else if(typeof ImageData!="undefined"&&e instanceof ImageData)s=!0;else if(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)r=!0;else if(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)a=!0;else if(e.getContext!=null)o=!0;else if(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)i=!0;else throw new Error(`pixels passed to tf.browser.fromPixels() must be either an HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData in browser, or OffscreenCanvas, ImageData in webworker or {data: Uint32Array, width: number, height: number}, but was ${e.constructor.name}`);if(r){let f=2;if(r&&e.readyState<f)throw new Error("The video element has not loaded data yet. Please wait for `loadeddata` event on the <video> element.")}if(vh(bh,L.backendName)!=null){let f={pixels:e},m={numChannels:t};return L.runKernel(bh,f,m)}let[u,c]=r?[e.videoWidth,e.videoHeight]:[e.width,e.height],d;o?d=e.getContext("2d").getImageData(0,0,u,c).data:s||n?d=e.data:(a||r||i)&&(xl==null&&(xl=document.createElement("canvas").getContext("2d")),xl.canvas.width=u,xl.canvas.height=c,xl.drawImage(e,0,0,u,c),d=xl.getImageData(0,0,u,c).data);let h;if(t===4)h=new Int32Array(d);else{let f=u*c;h=new Int32Array(f*t);for(let m=0;m<f;m++)for(let A=0;A<t;++A)h[m*t+A]=d[m*4+A]}return Eh(h,[c,u,t],"int32")}function X9(e){return e!=null&&e.data instanceof Uint8Array}function K9(){return typeof window!="undefined"&&typeof ImageBitmap!="undefined"&&window.hasOwnProperty("createImageBitmap")}function Z9(e){return e!=null&&e.width!==0&&e.height!==0}function Y9(e){return K9()&&!(e instanceof ImageBitmap)&&Z9(e)&&!X9(e)}async function J9(e,t=3){let n=null;if(ee().getBool("WRAP_TO_IMAGEBITMAP")&&Y9(e)){let s;try{s=await createImageBitmap(e,{premultiplyAlpha:"none"})}catch(r){s=null}s!=null&&s.width===e.width&&s.height===e.height?n=s:n=e}else n=e;return Y5(n,t)}async function Q9(e,t){let n=D(e,"img","toPixels");if(!(e instanceof Ue)){let u=n;n=ce(u,"int32"),u.dispose()}if(n.rank!==2&&n.rank!==3)throw new Error(`toPixels only supports rank 2 or 3 tensors, got rank ${n.rank}.`);let[s,r]=n.shape.slice(0,2),a=n.rank===2?1:n.shape[2];if(a>4||a===2)throw new Error(`toPixels only supports depth of size 1, 3 or 4 but got ${a}`);if(n.dtype!=="float32"&&n.dtype!=="int32")throw new Error(`Unsupported type for toPixels: ${n.dtype}. Please use float32 or int32 tensors.`);let o=await n.data(),i=n.dtype==="float32"?255:1,l=new Uint8ClampedArray(r*s*4);for(let u=0;u<s*r;++u){let c=[0,0,0,255];for(let h=0;h<a;h++){let p=o[u*a+h];if(n.dtype==="float32"){if(p<0||p>1)throw new Error(`Tensor values for a float32 Tensor must be in the range [0 - 1] but encountered ${p}.`)}else if(n.dtype==="int32"&&(p<0||p>255))throw new Error(`Tensor values for a int32 Tensor must be in the range [0 - 255] but encountered ${p}.`);a===1?(c[0]=p*i,c[1]=p*i,c[2]=p*i):c[h]=p*i}let d=u*4;l[d+0]=Math.round(c[0]),l[d+1]=Math.round(c[1]),l[d+2]=Math.round(c[2]),l[d+3]=Math.round(c[3])}if(t!=null){t.width=r,t.height=s;let u=t.getContext("2d"),c=new ImageData(l,r,s);u.putImageData(c,0,0)}return n!==e&&n.dispose(),l}var eC=V({fromPixels_:Y5}),Ym={};Pe(Ym,{prepareAndValidate:()=>J5});function J5(e,t){let n=e.shape.length,s=t.shape.length;if(n<1)throw new Error(`tf.gatherND() expects the input to be rank 1 or higher, but the rank was ${n}.`);if(s<1)throw new Error(`tf.gatherND() expects the indices to be rank 1 or higher, but the rank was ${s}.`);if(t.dtype!=="int32")throw new Error(`tf.gatherND() expects the indices to be int32 type, but the dtype was ${t.dtype}.`);if(t.shape[s-1]>n)throw new Error(`index innermost dimension length must be <= tensor rank; saw: ${t.shape[s-1]} vs. ${n}`);if(_t(e.shape)===0)throw new Error(`Requested more than 0 entries, but input is empty. Input shape: ${e.shape}.`);let r=t.shape,a=r[r.length-1],o=1;for(let d=0;d<r.length-1;++d)o*=r[d];let i=e.shape,l=r.slice();l.pop();let u=1;for(let d=a;d<n;++d)u*=i[d],l.push(i[d]);let c=[...ui(e.shape).map(d=>d/u),1].slice(0,a);return[l,o,u,c]}var Jm={};Pe(Jm,{calculateShapes:()=>Q5,validateInput:()=>eA,validateUpdateShape:()=>Qm});function Qm(e,t,n){let s=t.rank>1?t.shape[t.rank-1]:1,r=t.rank>1?t.rank-1:1,a=`Must have updates.shape = indices.shape[:batchDim] + shape[sliceDim:], got updates.shape: ${n.shape}, indices.shape: ${t.shape}, shape: ${e}, sliceDim: ${s}, and batchDim: ${r}.`;if(n.rank<r)throw new Error(a+` update.rank < ${r}. `);if(e.length<s+(n.rank-r))throw new Error(a+` Output shape length < ${s+(n.rank-r)}`);if(n.rank!==r+e.length-s)throw new Error(a+` update.rank != ${r+e.length-s}`);for(let o=0;o<r;++o)if(n.shape[o]!==t.shape[o])throw new Error(a+` updates.shape[${o}] (${n.shape[o]}) != indices.shape[${o}] (${t.shape[o]}).`);for(let o=0;o<n.rank-r;++o)if(n.shape[o+r]!==e[o+s])throw new Error(a+` updates.shape[${o+r}] (${n.shape[o+r]}) != shape[${o+r}] (${e[o+r]})`)}function eA(e,t,n){if(t.rank<1)throw new Error(`tf.scatterND() expects the indices to be rank 1 or higher, but the rank was ${t.rank}.`);if(e.rank<1)throw new Error(`tf.scatterND() expects the updates to be rank 1 or higher, but the rank was ${e.rank}.`);if(t.dtype!=="int32")throw new Error(`The dtype of 'indices' should be int32, but got dtype: ${t.dtype}`);if(n.length<1)throw new Error(`Output rank must be greater or equal to 1, but got shape: ${n}`);if(n.length===0){if(t.size===0)throw new Error(`Indices specified for empty output. indices shape: ${t.shape}`);if(e.size===0)throw new Error(`Updates specified for empty output. updates shape: ${e.shape}`)}Qm(n,t,e)}function Q5(e,t,n){let s=t.shape.length,r=s>1?t.shape[s-1]:1,a=n.length,o=1;for(let d=r;d<a;++d)o*=n[d];let i=r<1?1:r,l=_t(t.shape)/i,u=[...ui(n.slice(0,r)),1],c=_t(n);return{sliceRank:r,numUpdates:l,sliceSize:o,strides:u,outputSize:c}}var An={};Pe(An,{assertParamsValid:()=>tC,computeFlatOffset:()=>sC,computeOutShape:()=>ex,getNormalizedAxes:()=>rx,isSliceContinous:()=>nC,maskToAxes:()=>Rh,parseSliceParams:()=>cx,sliceInfo:()=>rC,startForAxis:()=>lx,startIndicesWithElidedDims:()=>ax,stopForAxis:()=>ux,stopIndicesWithElidedDims:()=>ox,stridesForAxis:()=>ix,stridesWithElidedDims:()=>tx});function tC(e,t,n){let s=e.shape.length;P(s===t.length,()=>`Error in slice${s}D: Length of begin ${t} must match the rank of the array (${s}).`),P(s===n.length,()=>`Error in slice${s}D: Length of size ${n} must match the rank of the array (${s}).`);for(let r=0;r<s;++r)P(t[r]+n[r]<=e.shape[r],()=>`Error in slice${s}D: begin[${r}] + size[${r}] (${t[r]+n[r]}) would overflow input.shape[${r}] (${e.shape[r]})`)}function Rh(e){let t=[],n=0;for(;e>0;)e&1&&t.push(n),e/=2,n++;return t}function ex(e,t,n){let s=[];for(let r=0;r<e.length;r++)s[r]=Math.ceil((t[r]-e[r])/n[r]);return s}function tx(e,t,n,s){let r=[...e];for(let a=r.length;a<s.length;a++)r.push(1);for(let a=0;a<n;a++)a===0?r[t]=1:(r.splice(t,0,1),r.pop());return r}function nx(e,t,n){return n<=e?n:n-(t-1)}function sx(e,t){let n=[];for(let s=0;s<e;s++)n.push(t+s);return n}function rx(e,t,n,s,r,a,o,i,l){let u=e.length,c=new Array(u),d=new Array(u),h=new Array(u);if(t.length&&n>0){let p=t[0],f=n+1;c=ax(o,p,f,s,e),d=ox(i,p,f,r,e),h=tx(a,p,f,e)}else for(let p=0;p<u;p++)c[p]=lx(o,s,a,e,p,l),d[p]=ux(i,r,a,e,p,l),h[p]=ix(a,p,l);return{begin:c,end:d,strides:h}}function ax(e,t,n,s,r){let a=[...r],o=sx(n,t);for(let i=0;i<a.length;i++)if(o.indexOf(i)>-1)a[i]=0;else{let l=nx(t,n,i),u=s[l];e&1<<l&&(u=0),a[i]=u}return a}function ox(e,t,n,s,r){let a=[...r],o=sx(n,t);for(let i=0;i<a.length;i++)if(o.indexOf(i)>-1)a[i]=Number.MAX_SAFE_INTEGER;else{let l=nx(t,n,i),u=s[l];e&1<<l&&(u=Number.MAX_SAFE_INTEGER),a[i]=u}for(let i=0;i<a.length;i++){let l=r[i];a[i]<0&&(a[i]+=l),a[i]=Iu(0,a[i],r[i])}return a}function ix(e,t,n){let s=e[t];return(n&1<<t||s==null)&&(s=1),s}function lx(e,t,n,s,r,a){let o=t[r],i=n[r]||1;(e&1<<r||a&1<<r||o==null)&&(i>0?o=Number.MIN_SAFE_INTEGER:o=Number.MAX_SAFE_INTEGER);let l=s[r];return o<0&&(o+=l),o=Iu(0,o,l-1),o}function ux(e,t,n,s,r,a){let o=t[r],i=n[r]||1;(e&1<<r||a&1<<r||o==null)&&(i>0?o=Number.MAX_SAFE_INTEGER:o=Number.MIN_SAFE_INTEGER);let l=s[r];return o<0&&(o+=l),i>0?o=Iu(0,o,l):o=Iu(-1,o,l-1),o}function nC(e,t,n){let s=n.length;for(let r=0;r<n.length;r++)if(n[r]>1){s=r;break}for(let r=s+1;r<n.length;r++)if(t[r]>0||n[r]!==e[r])return!1;return!0}function sC(e,t){let n=e.length>0?e[e.length-1]:1;for(let s=0;s<e.length-1;s++)n+=e[s]*t[s];return n}function cx(e,t,n){let s,r=e.shape.length;typeof t=="number"?s=[t,...new Array(r-1).fill(0)]:t.length<r?s=t.concat(new Array(r-t.length).fill(0)):s=t.slice(),s.forEach(o=>{P(o!==-1,()=>"slice() does not support negative begin indexing.")});let a;return n==null?a=new Array(r).fill(-1):typeof n=="number"?a=[n,...new Array(r-1).fill(-1)]:n.length<r?a=n.concat(new Array(r-n.length).fill(-1)):a=n,a=a.map((o,i)=>o>=0?o:(P(o===-1,()=>`Negative size values should be exactly -1 but got ${o} for the slice() size at index ${i}.`),e.shape[i]-s[i])),[s,a]}function rC(e,t,n,s,r,a,o,i,l){let u=t.slice(),c=n.slice(),d=s;s==null&&(d=new Array(u.length));let h=Rh(o);if(h.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(o!==0&&i!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(o!==0&&l!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let p=e.length-u.length,f=Rh(i),m=e.slice();f.forEach(w=>{u[w]=0,c[w]=1,m.splice(w,0,1)});let{begin:A,end:g,strides:y}=rx(m,h,p,u,c,d,r,a,o);u=A,c=g,d=y;let x=Rh(l);x.forEach(w=>{c[w]=u[w]+1,d[w]=1});let b=ex(u,c,d),v=b.filter((w,C)=>x.indexOf(C)===-1);return{nonStrided:d.every(w=>w===1),$begin:u,$end:c,$strides:d,size:b,newShape:m,outShape:v}}var oe={};Pe(oe,{Serializable:()=>dx,SerializationMap:()=>wo,registerClass:()=>Vr});var dx=class{getClassName(){return this.constructor.className}static fromConfig(e,t){return new e(t)}},wo=class{constructor(){this.classNameMap={}}static getMap(){return wo.instance==null&&(wo.instance=new wo),wo.instance}static register(e){wo.getMap().classNameMap[e.className]=[e,e.fromConfig]}};function Vr(e){P(e.className!=null,()=>"Class being registered does not have the static className property defined."),P(typeof e.className=="string",()=>"className is required to be a string, but got type "+typeof e.className),P(e.className.length>0,()=>"Class being registered has an empty-string as its className, which is disallowed."),wo.register(e)}var hx={};Pe(hx,{TEST_EPSILON_FLOAT16:()=>px,encodeStrings:()=>fx,expectArrayBuffersEqual:()=>dC,expectArraysClose:()=>oC,expectArraysEqual:()=>lC,expectNumbersClose:()=>uC,expectPromiseToFail:()=>iC,expectValuesInRange:()=>cC,testEpsilon:()=>tA});var aC=.001,px=.1;function oC(e,t,n){return n==null&&(n=tA()),nA(e,t,(s,r)=>sA(s,r,n))}function tA(){return L.backend.floatPrecision()===32?aC:px}function nA(e,t,n){let s=!0;if((an(e)||an(t))&&(s=!1),an(e)&&an(t)&&(s=!0),s){let o=e.constructor.name,i=t.constructor.name;if(o!==i)throw new Error(`Arrays are of different type. Actual: ${o}. Expected: ${i}`)}if(Array.isArray(e)&&Array.isArray(t)){let o=qs(e),i=qs(t);if(!fr(o,i))throw new Error(`Arrays have different shapes. Actual: [${o}]. Expected: [${i}]`)}let r=an(e)?e:Aa(e),a=an(t)?t:Aa(t);if(r.length!==a.length)throw new Error(`Arrays have different lengths actual: ${r.length} vs expected: ${a.length}.
|
|
Actual: ${r}.
|
|
Expected: ${a}.`);for(let o=0;o<a.length;++o){let i=r[o],l=a[o];if(!n(i,l))throw new Error(`Arrays differ: actual[${o}] = ${i}, expected[${o}] = ${l}.
|
|
Actual: ${r}.
|
|
Expected: ${a}.`)}}function iC(e,t){e().then(()=>t.fail(),()=>t())}function lC(e,t){let n=typeof t=="string"||typeof t=="number"||typeof t=="boolean"?[t]:t;return $r(e)||$r(e[0])||$r(t)||$r(t[0])?nA(e,n,(s,r)=>s==r):nA(e,t,(s,r)=>sA(s,r,0))}function uC(e,t,n){if(n==null&&(n=tA()),!sA(e,t,n))throw new Error(`Numbers differ: actual === ${e}, expected === ${t}`)}function sA(e,t,n){return!isFinite(e)&&!isFinite(t)?!0:!(isNaN(e)||isNaN(t)||Math.abs(e-t)>n)}function cC(e,t,n){for(let s=0;s<e.length;s++)if(e[s]<t||e[s]>n)throw new Error(`Value out of range:${e[s]} low: ${t}, high: ${n}`)}function dC(e,t){expect(new Float32Array(e)).toEqual(new Float32Array(t))}function fx(e){for(let t=0;t<e.length;t++){let n=e[t];Array.isArray(n)?fx(n):e[t]=Uu(n)}return e}var hC="3.8.0";function pC(){ee().set("PROD",!0)}function fC(){ee().set("DEBUG",!0)}function mC(){ee().set("DEPRECATION_WARNINGS_ENABLED",!1),console.warn("TensorFlow.js deprecation warnings have been disabled.")}function rA(e){ee().getBool("DEPRECATION_WARNINGS_ENABLED")&&console.warn(e+" You can disable deprecation warnings with tf.disableDeprecationWarnings().")}LS(rA);function AC(){L.disposeVariables()}function Ar(){return L}function _h(){return L.memory()}function gC(e){return L.profile(e)}function H(e,t){return L.tidy(e,t)}function K(e){Mm(e).forEach(n=>n.dispose())}function Kt(e){return L.keep(e)}function yC(e){return L.time(e)}function xC(e){return L.setBackend(e)}function bC(){return L.ready()}function vC(){return L.backendName}function wC(e){L.removeBackend(e)}function aA(e){return L.findBackend(e)}function kC(e){return L.findBackendFactory(e)}function bl(e,t,n=1){return L.registerBackend(e,t,n)}function mx(){return L.backend}function IC(e,t){ee().setPlatform(e,t)}function SC(e,t){let n=D(e,"a","add"),s=D(t,"b","add");[n,s]=It(n,s);let r={a:n,b:s};return L.runKernel(Dr,r)}var ae=V({add_:SC});function CC(e,t){let n=D(e,"a","floorDiv"),s=D(t,"b","floorDiv");[n,s]=It(n,s);let r={a:n,b:s};return L.runKernel($a,r)}var oA=V({floorDiv_:CC});function TC(e,t){let n=D(e,"a","div"),s=D(t,"b","div");if([n,s]=It(n,s),n.dtype==="int32"&&s.dtype==="int32")return oA(n,s);let r={a:n,b:s},a={};return L.runKernel(Ea,r,a)}var de=V({div_:TC});function NC(e,t){let n=D(e,"a","mul"),s=D(t,"b","mul");[n,s]=It(n,s);let r={a:n,b:s};return L.runKernel(Ga,r)}var z=V({mul_:NC});function EC(e){let t=D(e,"x","abs");if(t.dtype==="complex64"){let n={x:t};return L.runKernel(Nu,n)}else{let n={x:t};return L.runKernel(di,n)}}var Wt=V({abs_:EC});function RC(e){let n={x:D(e,"x","acos")};return L.runKernel(hi,n)}var Ax=V({acos_:RC});function _C(e){let n={x:D(e,"x","acosh")};return L.runKernel(pi,n)}var gx=V({acosh_:_C});function $C(e){P(Array.isArray(e),()=>"The argument passed to tf.addN() must be a list of tensors"),P(e.length>=1,()=>`Must pass at least one tensor to tf.addN(), but got ${e.length}`);let t=e.map((r,a)=>D(r,`tensors${a}`,"addN")),n=t[0];t.forEach(r=>{if(r.dtype!==n.dtype)throw new Error("All tensors passed to tf.addN() must have the same dtype")}),t.forEach(r=>{if(!fr(r.shape,n.shape))throw new Error("All tensors passed to tf.addN() must have the same shape")});let s=t;return L.runKernel(ga,s)}var $h=V({addN_:$C});function FC(e,t=null,n=!1){let r={x:D(e,"x","all","bool")},a={axis:t,keepDims:n};return L.runKernel(fi,r,a)}var iA=V({all_:FC});function DC(e,t=null,n=!1){let r={x:D(e,"x","any","bool")},a={axis:t,keepDims:n};return L.runKernel(mi,r,a)}var Fh=V({any_:DC});function OC(e,t=0){let s={x:D(e,"x","argMax")},r={axis:t};return L.runKernel(ya,s,r)}var Xs=V({argMax_:OC});function PC(e,t=0){let s={x:D(e,"x","argMin")},r={axis:t};return L.runKernel(Cu,s,r)}var yx=V({argMin_:PC});function MC(e){let n={x:D(e,"x","asin")};return L.runKernel(Ai,n)}var xx=V({asin_:MC});function zC(e){let n={x:D(e,"x","asinh")};return L.runKernel(gi,n)}var bx=V({asinh_:zC});function LC(e){let n={x:D(e,"x","atan")};return L.runKernel(yi,n)}var vx=V({atan_:LC});function BC(e,t){let n=D(e,"a","atan2"),s=D(t,"b","atan2");[n,s]=It(n,s);let r={a:n,b:s};return L.runKernel(bi,r)}var wx=V({atan2_:BC});function WC(e){let n={x:D(e,"x","atanh")};return L.runKernel(xi,n)}var kx=V({atanh_:WC});function VC(e,t,n,s,r="NHWC",a){let o=e[3],i=[...t,o],l=Cx(r);return Qu(e,i,n,a,s,null,null,l)}function Ix(e,t,n,s,r,a,o="channelsLast"){let[i,l]=Dh(t),u;if(o==="channelsLast")u=[i,l,e[3],e[3]];else if(o==="channelsFirst")u=[i,l,e[1],e[1]];else throw new Error(`Unknown dataFormat ${o}`);return Qu(e,u,n,s,r,a,!1,o)}function UC(e,t,n,s,r,a,o="NDHWC"){let[i,l,u]=uA(t),c,d;if(o==="NDHWC")d="channelsLast",c=[i,l,u,e[4],e[4]];else if(o==="NCDHW")d="channelsFirst",c=[i,l,u,e[1],e[1]];else throw new Error(`Unknown dataFormat ${o}`);return Sx(e,c,n,s,r,!1,d,a)}function Qu(e,t,n,s,r,a,o=!1,i="channelsLast"){let[l,u,c,d]=[-1,-1,-1,-1];if(i==="channelsLast")[l,u,c,d]=e;else if(i==="channelsFirst")[l,d,u,c]=e;else throw new Error(`Unknown dataFormat ${i}`);let[h,p,,f]=t,[m,A]=Dh(n),[g,y]=Dh(s),x=vl(h,g),b=vl(p,y),{padInfo:v,outHeight:k,outWidth:w}=jC(r,u,c,m,A,x,b,a,i),C=o?f*d:f,E;return i==="channelsFirst"?E=[l,C,k,w]:i==="channelsLast"&&(E=[l,k,w,C]),{batchSize:l,dataFormat:i,inHeight:u,inWidth:c,inChannels:d,outHeight:k,outWidth:w,outChannels:C,padInfo:v,strideHeight:m,strideWidth:A,filterHeight:h,filterWidth:p,effectiveFilterHeight:x,effectiveFilterWidth:b,dilationHeight:g,dilationWidth:y,inShape:e,outShape:E,filterShape:t}}function Sx(e,t,n,s,r,a=!1,o="channelsLast",i){let[l,u,c,d,h]=[-1,-1,-1,-1,-1];if(o==="channelsLast")[l,u,c,d,h]=e;else if(o==="channelsFirst")[l,h,u,c,d]=e;else throw new Error(`Unknown dataFormat ${o}`);let[p,f,m,,A]=t,[g,y,x]=uA(n),[b,v,k]=uA(s),w=vl(p,b),C=vl(f,v),E=vl(m,k),{padInfo:M,outDepth:R,outHeight:_,outWidth:N}=qC(r,u,c,d,g,y,x,w,C,E,i),O=a?A*h:A,W;return o==="channelsFirst"?W=[l,O,R,_,N]:o==="channelsLast"&&(W=[l,R,_,N,O]),{batchSize:l,dataFormat:o,inDepth:u,inHeight:c,inWidth:d,inChannels:h,outDepth:R,outHeight:_,outWidth:N,outChannels:O,padInfo:M,strideDepth:g,strideHeight:y,strideWidth:x,filterDepth:p,filterHeight:f,filterWidth:m,effectiveFilterDepth:w,effectiveFilterHeight:C,effectiveFilterWidth:E,dilationDepth:b,dilationHeight:v,dilationWidth:k,inShape:e,outShape:W,filterShape:t}}function HC(e,t,n,s,r){s==null&&(s=lA(e,t,n));let a=e[0],o=e[1],i=ko((a-t+2*s)/n+1,r),l=ko((o-t+2*s)/n+1,r);return[i,l]}function GC(e,t,n,s,r,a){r==null&&(r=lA(e,t,s));let o=e[0],i=e[1],l=e[2],u=ko((o-t+2*r)/s+1,a),c=ko((i-t+2*r)/s+1,a),d=ko((l-t+2*r)/s+1,a);return[u,c,d,n]}function lA(e,t,n,s=1){let r=vl(t,s);return Math.floor((e[0]*(n-1)-n+r)/2)}function Dh(e){return typeof e=="number"?[e,e,e]:e.length===2?[e[0],e[1],1]:e}function uA(e){return typeof e=="number"?[e,e,e]:e}function vl(e,t){return t<=1?e:e+(e-1)*(t-1)}function jC(e,t,n,s,r,a,o,i,l){let u,c,d;if(typeof e=="number"){u={top:e,bottom:e,left:e,right:e,type:e===0?"VALID":"NUMBER"};let p=HC([t,n],a,s,e,i);c=p[0],d=p[1]}else if(e==="same"){c=Math.ceil(t/s),d=Math.ceil(n/r);let h=Math.max(0,(c-1)*s+a-t),p=Math.max(0,(d-1)*r+o-n),f=Math.floor(h/2),m=h-f,A=Math.floor(p/2),g=p-A;u={top:f,bottom:m,left:A,right:g,type:"SAME"}}else if(e==="valid")u={top:0,bottom:0,left:0,right:0,type:"VALID"},c=Math.ceil((t-a+1)/s),d=Math.ceil((n-o+1)/r);else if(typeof e=="object"){let h=l==="channelsLast"?e[1][0]:e[2][0],p=l==="channelsLast"?e[1][1]:e[2][1],f=l==="channelsLast"?e[2][0]:e[3][0],m=l==="channelsLast"?e[2][1]:e[3][1];u={top:h,bottom:p,left:f,right:m,type:h===0&&p===0&&f===0&&m===0?"VALID":"EXPLICIT"},c=ko((t-a+h+p)/s+1,i),d=ko((n-o+f+m)/r+1,i)}else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:u,outHeight:c,outWidth:d}}function qC(e,t,n,s,r,a,o,i,l,u,c){let d,h,p,f;if(typeof e=="number"){d={top:e,bottom:e,left:e,right:e,front:e,back:e,type:e===0?"VALID":"NUMBER"};let A=GC([t,n,s,1],i,1,r,e,c);h=A[0],p=A[1],f=A[2]}else if(e==="same"){h=Math.ceil(t/r),p=Math.ceil(n/a),f=Math.ceil(s/o);let m=(h-1)*r+i-t,A=(p-1)*a+l-n,g=(f-1)*o+u-s,y=Math.floor(m/2),x=m-y,b=Math.floor(A/2),v=A-b,k=Math.floor(g/2),w=g-k;d={top:b,bottom:v,left:k,right:w,front:y,back:x,type:"SAME"}}else if(e==="valid")d={top:0,bottom:0,left:0,right:0,front:0,back:0,type:"VALID"},h=Math.ceil((t-i+1)/r),p=Math.ceil((n-l+1)/a),f=Math.ceil((s-u+1)/o);else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:d,outDepth:h,outHeight:p,outWidth:f}}function ko(e,t){if(!t)return Math.trunc(e);switch(t){case"round":return Math.round(e);case"ceil":return Math.ceil(e);case"floor":return Math.floor(e);default:throw new Error(`Unknown roundingMode ${t}`)}}function Ur(e){let[t,n,s]=Dh(e);return t===1&&n===1&&s===1}function Ks(e,t){return Ur(e)||Ur(t)}function Cx(e){if(e==="NHWC")return"channelsLast";if(e==="NCHW")return"channelsFirst";throw new Error(`Unknown dataFormat ${e}`)}function XC(e,t){let s={x:D(e,"x","reshape","string_or_numeric")},r={shape:t};return L.runKernel(Yi,s,r)}var U=V({reshape_:XC});function KC(e,t,n,s,r){let a=D(e,"x","avgPool","float32"),o=1;P(Ks(n,o),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${o}'`);let i=a,l=!1;a.rank===3&&(l=!0,i=U(a,[1,a.shape[0],a.shape[1],a.shape[2]])),P(i.rank===4,()=>`Error in avgPool: x must be rank 4 but got rank ${i.rank}.`),r!=null&&P(qt(s),()=>`Error in avgPool: pad must be an integer when using, dimRoundingMode ${r} but got pad ${s}.`);let u={x:i},c={filterSize:t,strides:n,pad:s,dimRoundingMode:r},d=L.runKernel(xa,u,c);return d=ce(d,a.dtype),l?U(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var Oh=V({avgPool_:KC});function ZC(e,t,n,s,r,a="NDHWC"){let o=D(e,"x","avgPool3d","float32"),i=o,l=!1;o.rank===4&&(l=!0,i=U(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),P(i.rank===5,()=>`Error in avgPool3d: x must be rank 5 but got rank ${i.rank}.`),P(a==="NDHWC",()=>`Error in avgPool3d: Only NDHWC is currently supported, but got dataFormat of ${a}`),r!=null&&P(qt(s),()=>`Error in avgPool3d: pad must be an integer when using, dimRoundingMode ${r} but got pad ${s}.`);let u={x:i},c={filterSize:t,strides:n,pad:s,dimRoundingMode:r,dataFormat:a},d=L.runKernel(Tu,u,c);return d=ce(d,i.dtype),l?U(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var cA=V({avgPool3d_:ZC});function YC(e,t=0){P(e.length>=1,()=>"Pass at least one tensor to concat");let n=Zu(e,"tensors","concat","string_or_numeric");if(n[0].dtype==="complex64"&&n.forEach(a=>{if(a.dtype!=="complex64")throw new Error(`Cannot concatenate complex64 tensors with a tensor
|
|
with dtype ${a.dtype}. `)}),n.length===1)return Ns(n[0]);let s=n,r={axis:t};return L.runKernel(wi,s,r)}var ht=V({concat_:YC});function JC(e){let n={x:D(e,"x","sigmoid")};return L.runKernel(so,n)}var Bn=V({sigmoid_:JC});function QC(e,t,n){let s=D(e,"x","slice","string_or_numeric");if(s.rank===0)throw new Error("Slicing scalar is not possible");let r={x:s},a={begin:t,size:n};return L.runKernel(tl,r,a)}var Re=V({slice_:QC});function eT(e){let n={x:D(e,"x","tanh")};return L.runKernel(co,n)}var wl=V({tanh_:eT});function tT(e,t,n,s,r,a){let o=D(e,"forgetBias","basicLSTMCell"),i=D(t,"lstmKernel","basicLSTMCell"),l=D(n,"lstmBias","basicLSTMCell"),u=D(s,"data","basicLSTMCell"),c=D(r,"c","basicLSTMCell"),d=D(a,"h","basicLSTMCell"),h=ht([u,d],1),p=We(h,i),f=ae(p,l),m=f.shape[0],A=f.shape[1]/4,g=[m,A],y=Re(f,[0,0],g),x=Re(f,[0,A],g),b=Re(f,[0,A*2],g),v=Re(f,[0,A*3],g),k=ae(z(Bn(y),wl(x)),z(c,Bn(ae(o,b)))),w=z(wl(k),Bn(v));return[k,w]}var nT=V({basicLSTMCell_:tT});function sT(e,t,n){let s=D(e,"x","batchToSpaceND"),r=t.reduce((i,l)=>i*l);P(s.rank>=1+t.length,()=>`input rank is ${s.rank} but should be > than blockShape.length ${t.length}`),P(n.length===t.length,()=>`crops.length is ${n.length} but should be equal to blockShape.length ${t.length}`),P(s.shape[0]%r==0,()=>`input tensor batch is ${s.shape[0]} but is not divisible by the product of the elements of blockShape ${t.join(" * ")} === ${r}`);let a={x:s},o={blockShape:t,crops:n};return L.runKernel(vi,a,o)}var Ph=V({batchToSpaceND_:sT});function rT(e){let t;return e.rank===0||e.rank===1?t=U(e,[1,1,1,e.size]):e.rank===2?t=U(e,[1,1,e.shape[0],e.shape[1]]):e.rank===3?t=U(e,[1,e.shape[0],e.shape[1],e.shape[2]]):t=e,t}function aT(e,t,n,s,r,a){a==null&&(a=.001);let o=D(e,"x","batchNorm"),i=D(t,"mean","batchNorm"),l=D(n,"variance","batchNorm"),u;r!=null&&(u=D(r,"scale","batchNorm"));let c;s!=null&&(c=D(s,"offset","batchNorm")),P(i.rank===l.rank,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),P(c==null||i.rank===c.rank,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),P(u==null||i.rank===u.rank,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let h={x:rT(o),scale:u,offset:c,mean:i,variance:l},p={varianceEpsilon:a},f=L.runKernel(Fa,h,p);return U(f,o.shape)}var kl=V({batchNorm_:aT});function oT(e,t,n,s,r,a){let o=D(e,"x","batchNorm"),i=D(t,"mean","batchNorm"),l=D(n,"variance","batchNorm"),u;r!=null&&(u=D(r,"scale","batchNorm"));let c;return s!=null&&(c=D(s,"offset","batchNorm")),P(o.rank===2,()=>`Error in batchNorm2D: x must be rank 2 but got rank ${o.rank}.`),P(i.rank===2||i.rank===1,()=>`Error in batchNorm2D: mean must be rank 2 or rank 1 but got rank ${i.rank}.`),P(l.rank===2||l.rank===1,()=>`Error in batchNorm2D: variance must be rank 2 or rank 1 but got rank ${l.rank}.`),u!=null&&P(u.rank===2||u.rank===1,()=>`Error in batchNorm2D: scale must be rank 2 or rank 1 but got rank ${u.rank}.`),c!=null&&P(c.rank===2||c.rank===1,()=>`Error in batchNorm2D: offset must be rank 2 or rank 1 but got rank ${c.rank}.`),kl(o,i,l,c,u,a)}var Tx=V({batchNorm2d_:oT});function iT(e,t,n,s,r,a){let o=D(e,"x","batchNorm"),i=D(t,"mean","batchNorm"),l=D(n,"variance","batchNorm"),u;r!=null&&(u=D(r,"scale","batchNorm"));let c;return s!=null&&(c=D(s,"offset","batchNorm")),P(o.rank===3,()=>`Error in batchNorm3D: x must be rank 3 but got rank ${o.rank}.`),P(i.rank===3||i.rank===1,()=>`Error in batchNorm3D: mean must be rank 3 or rank 1 but got rank ${i.rank}.`),P(l.rank===3||l.rank===1,()=>`Error in batchNorm3D: variance must be rank 3 or rank 1 but got rank ${l.rank}.`),u!=null&&P(u.rank===3||u.rank===1,()=>`Error in batchNorm3D: scale must be rank 3 or rank 1 but got rank ${u.rank}.`),c!=null&&P(c.rank===3||c.rank===1,()=>`Error in batchNorm3D: offset must be rank 3 or rank 1 but got rank ${c.rank}.`),kl(o,i,l,c,u,a)}var Nx=V({batchNorm3d_:iT});function lT(e,t,n,s,r,a){let o=D(e,"x","batchNorm"),i=D(t,"mean","batchNorm"),l=D(n,"variance","batchNorm"),u;r!=null&&(u=D(r,"scale","batchNorm"));let c;return s!=null&&(c=D(s,"offset","batchNorm")),P(o.rank===4,()=>`Error in batchNorm4D: x must be rank 4 but got rank ${o.rank}.`),P(i.rank===4||i.rank===1,()=>`Error in batchNorm4D: mean must be rank 4 or rank 1 but got rank ${i.rank}.`),P(l.rank===4||l.rank===1,()=>`Error in batchNorm4D: variance must be rank 4 or rank 1 but got rank ${l.rank}.`),u!=null&&P(u.rank===4||u.rank===1,()=>`Error in batchNorm4D: scale must be rank 4 or rank 1 but got rank ${u.rank}.`),c!=null&&P(c.rank===4||c.rank===1,()=>`Error in batchNorm4D: offset must be rank 4 or rank 1 but got rank ${c.rank}.`),kl(o,i,l,c,u,a)}var Ex=V({batchNorm4d_:lT});function uT(e,t,n){let s=D(e,"x","bincount"),r=D(t,"weights","bincount");P(s.dtype==="int32",()=>`Error in bincount: input dtype must be int32, but got ${s.dtype}`),P(n>=0,()=>`size must be non-negative, but got ${n}.`),P(r.size===s.size||r.size===0,()=>`Error in bincount: weights must have the same size as input or0-length, but got input shape: ${s.shape}, weights shape: ${r.shape}.`);let a={x:s,weights:r},o={size:n};return L.runKernel(Bd,a,o)}var dA=V({bincount_:uT});function cT(e,t){let n=D(e,"broadcastTo","x"),s=n.shape;if(t.some(u=>!(u>0)||u%1!=0))throw new Error(`broadcastTo(): Invalid broadcast shape [${t}].`);if(t.length<n.rank)throw new Error(`broadcastTo(): shape.length=${t.length} < input.rank=${n.rank}.`);if(t.length>n.rank){let u=n.shape.slice();for(;u.length<t.length;)u.unshift(1);n=U(n,u)}let r=n.shape,a=Array.from(t);for(let u=t.length-1;u>=0;u--)if(r[u]===t[u])a[u]=1;else if(n.shape[u]!==1)throw new Error(`broadcastTo(): [${s}] cannot be broadcast to [${t}].`);if(a.map((u,c)=>u>1?c:-1).filter(u=>u>=0).length===0)return Ns(n);let i={x:n},l={reps:a};return L.runKernel(Pr,i,l)}var ec=V({broadcastTo_:cT});function dT(e){let n={x:D(e,"x","ceil")};return L.runKernel(wa,n)}var Rx=V({ceil_:dT});function hT(e,t,n){let s=D(e,"x","clipByValue");P(t<=n,()=>`Error in clip: min (${t}) must be less than or equal to max (${n}).`);let r={x:s},a={clipValueMin:t,clipValueMax:n};return L.runKernel(Or,r,a)}var Wn=V({clipByValue_:hT});function pT(e){return ht(e,0)}var _x=V({concat1d_:pT});function fT(e,t){return ht(e,t)}var Il=V({concat2d_:fT});function mT(e,t){return ht(e,t)}var $x=V({concat3d_:mT});function AT(e,t){return ht(e,t)}var Fx=V({concat4d_:AT});function gT(e,t,n,s,r="NHWC",a=[1,1],o){let i=D(e,"x","conv2d"),l=D(t,"filter","conv2d"),u=i,c=!1;i.rank===3&&(c=!0,u=U(i,[1,i.shape[0],i.shape[1],i.shape[2]])),P(u.rank===4,()=>`Error in conv2d: input must be rank 4, but got rank ${u.rank}.`),P(l.rank===4,()=>`Error in conv2d: filter must be rank 4, but got rank ${l.rank}.`),o!=null&&P(qt(s),()=>`Error in conv2d: pad must be an integer when using, dimRoundingMode ${o} but got pad ${s}.`);let d=r==="NHWC"?u.shape[3]:u.shape[1];P(d===l.shape[2],()=>`Error in conv2d: depth of input (${d}) must match input depth for filter ${l.shape[2]}.`),P(Ks(n,a),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`);let h={x:u,filter:l},p={strides:n,pad:s,dataFormat:r,dilations:a,dimRoundingMode:o},f=L.runKernel(ka,h,p);return c?U(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var Hr=V({conv2d_:gT});function yT(e,t,n,s,r="NWC",a=1,o){let i=D(e,"x","conv1d"),l=D(t,"filter","conv1d"),u=i,c=!1;i.rank===2&&(c=!0,u=U(i,[1,i.shape[0],i.shape[1]])),P(u.rank===3,()=>`Error in conv1d: input must be rank 3, but got rank ${u.rank}.`),P(l.rank===3,()=>`Error in conv1d: filter must be rank 3, but got rank ${l.rank}.`),o!=null&&P(qt(s),()=>`Error in conv1d: pad must be an integer when using, dimRoundingMode ${o} but got pad ${s}.`),P(u.shape[2]===l.shape[1],()=>`Error in conv1d: depth of input (${u.shape[2]}) must match input depth for filter ${l.shape[1]}.`),P(Ks(n,a),()=>`Error in conv1D: Either stride or dilation must be 1. Got stride ${n} and dilation '${a}'`),P(r==="NWC",()=>`Error in conv1d: got dataFormat of ${r} but only NWC is currently supported.`);let d=U(l,[1,l.shape[0],l.shape[1],l.shape[2]]),h=U(u,[u.shape[0],1,u.shape[1],u.shape[2]]),A=Hr(h,d,[1,n],s,"NHWC",[1,a],o);return c?U(A,[A.shape[2],A.shape[3]]):U(A,[A.shape[0],A.shape[2],A.shape[3]])}var hA=V({conv1d_:yT});function xT(e,t,n,s,r,a="NHWC",o){P(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let i=e,l=t,u=!1;t.rank===3&&(u=!0,l=U(t,[1,t.shape[0],t.shape[1],t.shape[2]]),i=[1,e[0],e[1],e[2]]),P(i.length===4,()=>`Error in conv2dDerInput: inShape must be length 4, but got length ${i.length}.`),P(l.rank===4,()=>`Error in conv2dDerInput: dy must be rank 4, but got rank ${l.rank}`),P(n.rank===4,()=>`Error in conv2dDerInput: filter must be rank 4, but got rank ${n.rank}`);let c=a==="NHWC"?i[3]:i[1],d=a==="NHWC"?l.shape[3]:l.shape[1];P(c===n.shape[2],()=>`Error in conv2dDerInput: depth of input (${c}) must match input depth for filter ${n.shape[2]}.`),P(d===n.shape[3],()=>`Error in conv2dDerInput: depth of output (${d}) must match output depth for filter ${n.shape[3]}.`),o!=null&&P(qt(r),()=>`Error in conv2dDerInput: pad must be an integer when using, dimRoundingMode ${o} but got pad ${r}.`);let h={dy:l,filter:n},p={strides:s,pad:r,dataFormat:a,dimRoundingMode:o,inputShape:i},f=L.runKernel(Ia,h,p);return u?U(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var pA=V({conv2DBackpropInput_:xT});function bT(e,t,n,s,r,a){let o=D(e,"x","conv2dTranspose"),i=D(t,"filter","conv2dTranspose");return pA(n,o,i,s,r,"NHWC",a)}var fA=V({conv2dTranspose_:bT});function vT(e,t,n,s,r="NDHWC",a=[1,1,1]){let o=D(e,"x","conv3d"),i=D(t,"filter","conv3d"),l=o,u=!1;o.rank===4&&(u=!0,l=U(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),P(l.rank===5,()=>`Error in conv3d: input must be rank 5, but got rank ${l.rank}.`),P(i.rank===5,()=>`Error in conv3d: filter must be rank 5, but got rank ${i.rank}.`),P(l.shape[4]===i.shape[3],()=>`Error in conv3d: depth of input (${l.shape[4]}) must match input depth for filter ${i.shape[3]}.`),P(Ks(n,a),()=>`Error in conv3D: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`),P(r==="NDHWC",()=>`Error in conv3d: got dataFormat of ${r} but only NDHWC is currently supported.`);let c={x:l,filter:i},d={strides:n,pad:s,dataFormat:r,dilations:a},h=L.runKernel(Eu,c,d);return u?U(h,[h.shape[1],h.shape[2],h.shape[3],h.shape[4]]):h}var mA=V({conv3d_:vT});function wT(e,t,n,s,r){P(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let a=e,o=t,i=!1;t.rank===4&&(i=!0,o=U(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]]),a=[1,e[0],e[1],e[2],e[3]]);let l=a[4],u=o.shape[4];P(a.length===5,()=>`Error in conv3dDerInput: inShape must be length 5, but got length ${a.length}.`),P(o.rank===5,()=>`Error in conv3dDerInput: dy must be rank 5, but got rank ${o.rank}`),P(n.rank===5,()=>`Error in conv3dDerInput: filter must be rank 5, but got rank ${n.rank}`),P(l===n.shape[3],()=>`Error in conv3dDerInput: depth of input (${l}) must match input depth for filter ${n.shape[3]}.`),P(u===n.shape[4],()=>`Error in conv3dDerInput: depth of output (${u}) must match output depth for filter ${n.shape[4]}.`);let c={dy:o,filter:n},d={pad:r,strides:s,inputShape:a},h=L.runKernel(Hd,c,d);return i?U(h,[h.shape[1],h.shape[2],h.shape[3],h.shape[4]]):h}var Dx=V({conv3DBackpropInput_:wT});function kT(e,t,n,s,r){let a=D(e,"x","conv3dTranspose"),o=D(t,"filter","conv3dTranspose");return Dx(n,a,o,s,r)}var Ox=V({conv3dTranspose_:kT});function IT(e){let n={x:D(e,"x","cos")};return L.runKernel(Sa,n)}var Mh=V({cos_:IT});function ST(e){let n={x:D(e,"x","cosh")};return L.runKernel(Ca,n)}var AA=V({cosh_:ST});function CT(e,t=0,n=!1,s=!1){let a={x:D(e,"x","cumsum")},o={axis:t,exclusive:n,reverse:s};return L.runKernel(Ta,a,o)}var gA=V({cumsum_:CT});function TT(e,t,n,s=!1){let r=D(e,"x","denseBincount"),a=D(t,"weights","denseBincount");P(r.dtype==="int32",()=>`Error in denseBincount: input dtype must be int32, but got ${r.dtype}`),P(r.rank<=2,()=>`Error in denseBincount: input must be at most rank 2, but got rank ${r.rank}.`),P(n>=0,()=>`size must be non-negative, but got ${n}.`),P(a.size===r.size||a.size===0,()=>`Error in denseBincount: weights must have the same shape as x or 0-length, but got x shape: ${r.shape}, weights shape: ${a.shape}.`);let o={x:r,weights:a},i={size:n,binaryOutput:s};return L.runKernel(Gd,o,i)}var Px=V({denseBincount_:TT});function NT(e,t,n="NHWC"){let s=D(e,"x","depthToSpace"),r=n==="NHWC"?s.shape[1]:s.shape[2],a=n==="NHWC"?s.shape[2]:s.shape[3],o=n==="NHWC"?s.shape[3]:s.shape[1];P(r*t>=0,()=>`Negative dimension size caused by overflow when multiplying
|
|
${r} and ${t} for depthToSpace with input shape
|
|
${s.shape}`),P(a*t>=0,()=>`Negative dimension size caused by overflow when multiplying
|
|
${a} and ${t} for depthToSpace with input shape
|
|
${s.shape}`),P(o%(t*t)==0,()=>`Dimension size must be evenly divisible by ${t*t} but is ${o} for depthToSpace with input shape ${s.shape}`);let i={x:s},l={blockSize:t,dataFormat:n};return L.runKernel(Ii,i,l)}var Mx=V({depthToSpace_:NT});function ET(e,t,n,s,r="NHWC",a=[1,1],o){let i=D(e,"x","depthwiseConv2d"),l=D(t,"filter","depthwiseConv2d"),u=i,c=!1;i.rank===3&&(c=!0,u=U(i,[1,i.shape[0],i.shape[1],i.shape[2]])),P(u.rank===4,()=>`Error in depthwiseConv2d: input must be rank 4, but got rank ${u.rank}.`),P(l.rank===4,()=>`Error in depthwiseConv2d: filter must be rank 4, but got rank ${l.rank}.`),P(u.shape[3]===l.shape[2],()=>`Error in depthwiseConv2d: number of input channels (${u.shape[3]}) must match the inChannels dimension in filter ${l.shape[2]}.`),o!=null&&P(qt(s),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${o} but got pad ${s}.`);let d={x:u,filter:l},h={strides:n,pad:s,dataFormat:r,dilations:a,dimRoundingMode:o},p=L.runKernel(Na,d,h);return c?U(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var tc=V({depthwiseConv2d_:ET});function RT(e){let n={x:D(e,"x","diag")};return L.runKernel(Xd,n)}var _T=V({diag_:RT});function $T(e,t,n,s,r=[1,1],a="NHWC"){let o=D(e,"x","dilation2d"),i=D(t,"filter","dilation2d");P(o.rank===3||o.rank===4,()=>`Error in dilation2d: input must be rank 3 or 4, but got rank ${o.rank}.`),P(i.rank===3,()=>`Error in dilation2d: filter must be rank 3, but got rank ${i.rank}.`),P(a==="NHWC",()=>`Error in dilation2d: Only NHWC is currently supported, but got dataFormat of ${a}`);let l=o,u=!1;o.rank===3&&(l=U(o,[1,o.shape[0],o.shape[1],o.shape[2]]),u=!0);let c={x:l,filter:i},d={strides:n,pad:s,dilations:r},h=L.runKernel(Ru,c,d);return u?U(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var zx=V({dilation2d_:$T});function FT(e,t){let n=e.length,s=[];for(let r=0;r<n;r++){let a=n-1-r,o=e[a]||1;(t[t.length-1-r]||1)>1&&o===1&&s.unshift(a)}return s}function Vt(e,t){let n=[];for(let s=0;s<t.length;s++){let r=e[e.length-s-1],a=t.length-s-1,o=t[a];(r==null||r===1&&o>1)&&n.unshift(a)}return n}function mt(e,t){let n=[],s=Math.max(e.length,t.length);for(let r=0;r<s;r++){let a=e[e.length-r-1];a==null&&(a=1);let o=t[t.length-r-1];if(o==null&&(o=1),a===1)n.unshift(o);else if(o===1)n.unshift(a);else if(a!==o){let i=`Operands could not be broadcast together with shapes ${e} and ${t}.`;throw Error(i)}else n.unshift(a)}return n}function DT(e,t){let n=D(e,"a","equal","string_or_numeric"),s=D(t,"b","equal","string_or_numeric");[n,s]=It(n,s),mt(n.shape,s.shape);let r={a:n,b:s};return L.runKernel(Ti,r)}var as=V({equal_:DT});function OT(e,t,n){let s=D(t,"a","where"),r=D(n,"b","where"),a=D(e,"condition","where","bool"),o=mt(mt(a.shape,s.shape),r.shape),i=ec(a,o),l=ec(s,o),u=ec(r,o),c={condition:i,t:l,e:u};return L.runKernel(Qi,c)}var gn=V({where_:OT});function PT(e){let n={x:D(e,"x","zerosLike")};return L.runKernel(dl,n)}var qe=V({zerosLike_:PT});function MT(e,t){let n=D(e,"a","div"),s=D(t,"b","div");[n,s]=It(n,s);let r=de(n,s),a=qe(r),o=as(s,a);return gn(o,a,r)}var Lx=V({divNoNan_:MT});function zT(e,t){let n=D(e,"t1","dot"),s=D(t,"t2","dot");P((n.rank===1||n.rank===2)&&(s.rank===1||s.rank===2),()=>`Error in dot: inputs must all be rank 1 or 2, but got ranks ${n.rank} and ${s.rank}.`);let r=n.rank===1?n.size:n.shape[1],a=s.rank===1?s.size:s.shape[0];if(P(r===a,()=>`Error in dot: inner dimensions of inputs must match, but got ${r} and ${a}.`),n.rank===1&&s.rank===1){let o=U(n,[1,-1]),i=U(s,[-1,1]),l=We(o,i);return U(l,[])}else if(n.rank===1&&s.rank===2){let o=U(n,[1,-1]),i=U(s,[s.shape[0],s.shape[1]]),l=We(o,i);return U(l,[l.size])}else if(n.rank===2&&s.rank===1){let o=U(s,[-1,1]),i=We(n,o);return U(i,[i.size])}else{let o=U(s,[s.shape[0],s.shape[1]]);return We(n,o)}}var LT=V({dot_:zT});function BT(e,...t){let n=t.map((r,a)=>D(r,`tensors${a}`,"einsum")),s={equation:e};return L.runKernel(Yd,n,s)}var Bx=V({einsum_:BT});function WT(e){let n={x:D(e,"x","elu")};return L.runKernel(Si,n)}var nc=V({elu_:WT});function VT(e){let t=D(e,"x","erf");P(t.dtype==="int32"||t.dtype==="float32",()=>"Input dtype must be `int32` or `float32`."),t.dtype==="int32"&&(t=ce(t,"float32"));let n={x:t};return L.runKernel(Ci,n)}var Wx=V({erf_:VT});function UT(e){let n={x:D(e,"x","exp")};return L.runKernel(Ra,n)}var os=V({exp_:UT});function HT(e,t=0){let n=D(e,"x","expandDims","string_or_numeric");P(t<=n.rank,()=>"Axis must be <= rank of the tensor");let s={input:n},r={dim:t};return L.runKernel(Ni,s,r)}var Ft=V({expandDims_:HT});function GT(e){let n={x:D(e,"x","expm1")};return L.runKernel(Ei,n)}var Vx=V({expm1_:GT});function jT(e,t){let n=D(e,"x","tile","string_or_numeric");P(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of reps ${t}.`);let s={x:n},r={reps:t};return L.runKernel(Pr,s,r)}var Es=V({tile_:jT});function qT(e,t,n,s="float32"){t==null&&(t=e);let r=Be([e,t],s),a=e<=t?e:t;for(let i=0;i<a;++i)r.set(1,i,i);let o=U(r.toTensor(),[e,t]);if(n==null)return o;if(n.length===1)return Es(Ft(o,0),[n[0],1,1]);if(n.length===2)return Es(Ft(Ft(o,0),0),[n[0],n[1],1,1]);if(n.length===3)return Es(Ft(Ft(Ft(o,0),0),0),[n[0],n[1],n[2],1,1]);throw new Error(`eye() currently supports only 1D and 2D batchShapes, but received ${n.length}D.`)}var yA=V({eye_:qT});function Sl(e,t,n){let s={shape:e,value:t,dtype:n};return L.runKernel(_u,{},s)}function XT(e){let n={x:D(e,"x","floor")};return L.runKernel(_a,n)}var sc=V({floor_:XT});function KT(e,t,n=0,s=0){let r=D(e,"x","gather"),a=D(t,"indices","gather","int32"),o={x:r,indices:a},i={axis:n,batchDims:s};return L.runKernel(_i,o,i)}var Cl=V({gather_:KT});function ZT(e,t){let n=D(e,"a","greater","string_or_numeric"),s=D(t,"b","greater","string_or_numeric");[n,s]=It(n,s),mt(n.shape,s.shape);let r={a:n,b:s};return L.runKernel(Fi,r)}var Vn=V({greater_:ZT});function YT(e,t){let n=D(e,"a","greaterEqual","string_or_numeric"),s=D(t,"b","greaterEqual","string_or_numeric");[n,s]=It(n,s),mt(n.shape,s.shape);let r={a:n,b:s};return L.runKernel(Da,r)}var Io=V({greaterEqual_:YT});function JT(e){let n={input:D(e,"input","imag")};return L.runKernel(th,n)}var zh=V({imag_:JT});function QT(e){let n={x:D(e,"x","isFinite")};return L.runKernel(Di,n)}var eN=V({isFinite_:QT});function tN(e){let n={x:D(e,"x","isInf")};return L.runKernel(Oi,n)}var nN=V({isInf_:tN});function sN(e){let n={x:D(e,"x","isNaN")};return L.runKernel(Pi,n)}var Ux=V({isNaN_:sN});function rN(e,t=.2){let s={x:D(e,"x","leakyRelu")},r={alpha:t};return L.runKernel(Pa,s,r)}var Lh=V({leakyRelu_:rN});function aN(e,t){let n=D(e,"a","less","string_or_numeric"),s=D(t,"b","less","string_or_numeric");[n,s]=It(n,s),mt(n.shape,s.shape);let r={a:n,b:s};return L.runKernel(Mi,r)}var xA=V({less_:aN});function oN(e,t){let n=D(e,"a","lessEqual","string_or_numeric"),s=D(t,"b","lessEqual","string_or_numeric");[n,s]=It(n,s),mt(n.shape,s.shape);let r={a:n,b:s};return L.runKernel(zi,r)}var So=V({lessEqual_:oN});function Hx(e,t,n){if(n<=0)throw new Error("The number of values should be positive.");let s={start:e,stop:t,num:n};return L.runKernel(nh,{},s)}function iN(e,t=5,n=1,s=1,r=.5){let a=D(e,"x","localResponseNormalization");P(a.rank===4||a.rank===3,()=>`Error in localResponseNormalization: x must be rank 3 or 4 but got
|
|
rank ${a.rank}.`),P(qt(t),()=>`Error in localResponseNormalization: depthRadius must be an integer but got depthRadius ${t}.`);let o=a,i=!1;a.rank===3&&(i=!0,o=U(a,[1,a.shape[0],a.shape[1],a.shape[2]]));let l={x:o},u={depthRadius:t,bias:n,alpha:s,beta:r},c=L.runKernel(Du,l,u);return i?U(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var Gx=V({localResponseNormalization_:iN});function lN(e){let n={x:D(e,"x","log")};return L.runKernel(Ma,n)}var is=V({log_:lN});function uN(e){let n={x:D(e,"x","log1p")};return L.runKernel(Li,n)}var Bh=V({log1p_:uN});function cN(e){return P(Fr(e),()=>"The f passed in grad(f) must be a function"),(t,n)=>{let s=D(t,"x","tf.grad","string_or_numeric"),r=n!=null?D(n,"dy","tf.grad"):null;return L.tidy(()=>{let{value:a,grads:o}=L.gradients(()=>e(s),[s],r);return r!=null&&fn(a.shape,r.shape,"The shape of dy passed in grad(f)(x, dy) must match the shape returned by f(x)"),Wh(o),o[0]})}}function dN(e){return P(Fr(e),()=>"The f passed in grads(f) must be a function"),(t,n)=>{P(Array.isArray(t),()=>"The args passed in grads(f)(args) must be an array of `Tensor`s or `TensorLike`s");let s=Zu(t,"args","tf.grads","string_or_numeric"),r=n!=null?D(n,"dy","tf.grads"):null;return L.tidy(()=>{let{value:a,grads:o}=L.gradients(()=>e(...s),s,r);return r!=null&&fn(a.shape,r.shape,"The shape of dy passed in grads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),Wh(o),o})}}function hN(e){return P(Fr(e),()=>"The f passed in valueAndGrad(f) must be a function"),(t,n)=>{P(t instanceof Ue,()=>"The x passed in valueAndGrad(f)(x) must be a tensor"),P(n==null||n instanceof Ue,()=>"The dy passed in valueAndGrad(f)(x, dy) must be a tensor");let{grads:s,value:r}=L.gradients(()=>e(t),[t],n);return Wh(s),{grad:s[0],value:r}}}function pN(e){return P(Fr(e),()=>"The f passed in valueAndGrads(f) must be a function"),(t,n)=>{P(Array.isArray(t)&&t.every(r=>r instanceof Ue),()=>"The args passed in valueAndGrads(f)(args) must be array of tensors"),P(n==null||n instanceof Ue,()=>"The dy passed in valueAndGrads(f)(args, dy) must be a tensor");let s=L.gradients(()=>e(...t),t,n);return n!=null&&fn(s.value.shape,n.shape,"The shape of dy passed in valueAndGrads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),Wh(s.grads),s}}function jx(e,t){P(Fr(e),()=>"The f passed in variableGrads(f) must be a function"),P(t==null||Array.isArray(t)&&t.every(u=>u instanceof qu),()=>"The varList passed in variableGrads(f, varList) must be an array of variables");let n=t!=null;if(!n){t=[];for(let u in L.registeredVariables)t.push(L.registeredVariables[u])}let s=n?t.filter(u=>!u.trainable):null,r=t.length;t=t.filter(u=>u.trainable),P(t.length>0,()=>`variableGrads() expects at least one of the input variables to be trainable, but none of the ${r} variables is trainable.`);let a=!0,{value:o,grads:i}=L.gradients(e,t,null,a);P(i.some(u=>u!=null),()=>"Cannot find a connection between any variable and the result of the loss function y=f(x). Please make sure the operations that use variables are inside the function f passed to minimize()."),P(o.rank===0,()=>`The f passed in variableGrads(f) must return a scalar, but it returned a rank-${o.rank} tensor`);let l={};return t.forEach((u,c)=>{i[c]!=null&&(l[u.name]=i[c])}),s!=null&&s.forEach(u=>l[u.name]=null),{value:o,grads:l}}function Zs(e){return L.customGrad(e)}function Wh(e){if(e.filter(n=>n==null).length>0)throw new Error(`Cannot compute gradient of y=f(x) with respect to x. Make sure that
|
|
the f you passed encloses all operations that lead from x to y.`)}function fN(e){let n={x:D(e,"x","neg")};return L.runKernel(Vi,n)}var St=V({neg_:fN});function mN(e){let n={x:D(e,"x","softplus")};return L.runKernel(rl,n)}var Tl=V({softplus_:mN});function AN(e){let t=D(e,"x","logSigmoid");return Zs(s=>({value:St(Tl(St(s))),gradFunc:o=>z(o,Bn(St(s)))}))(t)}var gN=V({logSigmoid_:AN});function yN(e,t=null,n=!1){let r={x:D(e,"x","max")},a={reductionIndices:t,keepDims:n};return L.runKernel(za,r,a)}var ls=V({max_:yN});function xN(e,t){let n=D(e,"a","sub"),s=D(t,"b","sub");[n,s]=It(n,s);let r={a:n,b:s};return L.runKernel(lo,r)}var Ae=V({sub_:xN});function bN(e,t=null,n=!1){let s=D(e,"x","sum");s.dtype==="bool"&&(s=ce(s,"int32"));let r={x:s},a={axis:t,keepDims:n};return L.runKernel(ao,r,a)}var ve=V({sum_:bN});function vN(e,t=-1){let n=D(e,"logits","logSoftmax");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Log Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and axis was ${t}`);return Zs((r,a)=>{let o=!0,i=ls(r,t,!0),l=Ae(r,i),u=Ae(ce(l,"float32"),is(ve(os(l),t,o)));return a([u]),{value:u,gradFunc:(d,h)=>{let[p]=h,f=!0,m=os(p);return Ae(d,z(ve(d,t,f),m))}}})(n)}var bA=V({logSoftmax_:vN});function vA(e,t){for(let n=0;n<e.length;++n)if(e[e.length-n-1]!==t-1-n)return!1;return!0}function qx(e,t,n){let s=e.length+t.length,r=[],a=0,o=0;for(let i=0;i<s;i++)n.indexOf(i)===-1?r.push(e[a++]):r.push(t[o++]);return r}function Xx(e,t){let n=[],s=e.length;for(let a=0;a<s;a++)t.indexOf(a)===-1&&n.push(e[a]);let r=t.map(a=>e[a]);return[n,r]}function Co(e,t){let n=t.map(s=>1);return qx(e,n,t)}function wN(e,t,n){P(vA(t,n),()=>`${e} supports only inner-most axes for now. Got axes ${t} and rank-${n} input.`)}function Kx(e,t){if(vA(e,t))return null;let n=[];for(let s=0;s<t;++s)e.indexOf(s)===-1&&n.push(s);return e.forEach(s=>n.push(s)),n}function wA(e){return e.map((t,n)=>[n,t]).sort((t,n)=>t[1]-n[1]).map(t=>t[0])}function kN(e,t){let n=[];for(let s=t-e;s<t;++s)n.push(s);return n}function IN(e,t=null,n=!1){let s=D(e,"x","logSumExp"),r=xs(t,s.shape),a=ls(s,r,!0),o=Ae(s,a),i=os(o),l=ve(i,r),u=is(l),c=ae(U(a,u.shape),u);if(n){let d=Co(c.shape,r);return U(c,d)}return c}var Zx=V({logSumExp_:IN});function SN(e,t){let n=D(e,"a","logicalAnd","bool"),s=D(t,"b","logicalAnd","bool");mt(n.shape,s.shape);let r={a:n,b:s};return L.runKernel(Bi,r)}var Rs=V({logicalAnd_:SN});function CN(e){let n={x:D(e,"x","logicalNot","bool")};return L.runKernel($u,n)}var Vh=V({logicalNot_:CN});function TN(e,t){let n=D(e,"a","logicalOr","bool"),s=D(t,"b","logicalOr","bool");mt(n.shape,s.shape);let r={a:n,b:s};return L.runKernel(Fu,r)}var kA=V({logicalOr_:TN});function NN(e,t){let n=D(e,"a","logicalXor","bool"),s=D(t,"b","logicalXor","bool");return mt(n.shape,s.shape),Rs(kA(e,t),Vh(Rs(e,t)))}var EN=V({logicalXor_:NN});function RN(e,t,n,s,r){let a=D(e,"x","maxPool"),o=1,i=a,l=!1;a.rank===3&&(l=!0,i=U(a,[1,a.shape[0],a.shape[1],a.shape[2]])),P(i.rank===4,()=>`Error in maxPool: input must be rank 4 but got rank ${i.rank}.`),P(Ks(n,o),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${o}'`),r!=null&&P(qt(s),()=>`Error in maxPool: pad must be an integer when using, dimRoundingMode ${r} but got pad ${s}.`);let u={x:i},c={filterSize:t,strides:n,pad:s,dimRoundingMode:r},d=L.runKernel(Ba,u,c);return l?U(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var Uh=V({maxPool_:RN});function _N(e,t=[1,1,1],n,s,r,a="NDHWC"){let o=D(e,"x","maxPool3d"),i=o,l=!1;o.rank===4&&(l=!0,i=U(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),P(i.rank===5,()=>`Error in maxPool3d: x must be rank 5 but got rank ${i.rank}.`),P(a==="NDHWC",()=>`Error in maxPool3d: Only NDHWC is currently supported, but got dataFormat of ${a}`),r!=null&&P(qt(s),()=>`Error in maxPool3d: pad must be an integer when using, dimRoundingMode ${r} but got pad ${s}.`);let u={x:i},c={filterSize:t,strides:n,pad:s,dimRoundingMode:r,dataFormat:a},d=L.runKernel(Ou,u,c);return l?U(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var IA=V({maxPool3d_:_N});function $N(e,t,n,s,r=!1){let o={x:D(e,"x","maxPoolWithArgmax")},i={filterSize:t,strides:n,pad:s,includeBatchInIndex:r},l=L.runKernel(oh,o,i);return{result:l[0],indexes:l[1]}}var Yx=V({maxPoolWithArgmax_:$N});function FN(e,t){let n=D(e,"a","maximum"),s=D(t,"b","maximum");[n,s]=It(n,s),n.dtype==="bool"&&(n=ce(n,"int32"),s=ce(s,"int32")),mt(n.shape,s.shape);let r={a:n,b:s};return L.runKernel(La,r)}var gr=V({maximum_:FN});function DN(e,t=null,n=!1){let r={x:D(e,"x","mean")},a={axis:t,keepDims:n};return L.runKernel(Wa,r,a)}var Et=V({mean_:DN});function Dt(e,t="float32"){if(t==="complex64"){let s=Dt(e,"float32"),r=Dt(e,"float32");return Lr(s,r)}let n=Md(_t(e),t);return L.makeTensor(n,e,t)}function Un(e,t="float32"){if(t==="complex64"){let s=Un(e,"float32"),r=Dt(e,"float32");return Lr(s,r)}let n=km(_t(e),t);return L.makeTensor(n,e,t)}function ON(e,t,{indexing:n="xy"}={}){if(n!=="xy"&&n!=="ij")throw new TypeError(`${n} is not a valid third argument to meshgrid`);if(e===void 0)return[];let s=D(e,"x","meshgrid",e instanceof Ue?e.dtype:"float32");if(t===void 0)return[s];let r=D(t,"y","meshgrid",t instanceof Ue?t.dtype:"float32"),a=_t(s.shape),o=_t(r.shape);return n==="xy"?(s=U(s,[1,-1]),r=U(r,[-1,1]),[We(Un([o,1],s.dtype),s),We(r,Un([1,a],r.dtype))]):(s=U(s,[-1,1]),r=U(r,[1,-1]),[We(s,Un([1,o],s.dtype)),We(Un([a,1],r.dtype),r)])}function PN(e,t=null,n=!1){let r={x:D(e,"x","min")},a={axis:t,keepDims:n};return L.runKernel(Va,r,a)}var Hh=V({min_:PN});function MN(e,t){let n=D(e,"a","minimum"),s=D(t,"b","minimum");[n,s]=It(n,s),n.dtype==="bool"&&(n=ce(n,"int32"),s=ce(s,"int32")),mt(n.shape,s.shape);let r={a:n,b:s};return L.runKernel(Ua,r)}var rc=V({minimum_:MN});function zN(e,t,n){P(n==="reflect"||n==="symmetric",()=>`Invalid mode. Mode must be either reflect or symmetric. Got ${n}.`);let s=D(e,"x","mirrorPad");if(s.rank===0)throw new Error("mirrorPad(scalar) is not defined. Pass non-scalar to mirrorPad");P(t.length===s.rank,()=>`Padding doesn't match input. Must be ${s.rank}. Got ${t.length}.`);let r=n==="reflect"?1:0;for(let i=0;i<s.rank;i++)P(t[i].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),P(t[i][0]>=0&&t[i][0]<=s.shape[i]-r&&t[i][1]>=0&&t[i][1]<=s.shape[i]-r,()=>`Padding in dimension ${i} cannot be greater than or equal to ${s.shape[i]-r} or less than 0 for input of shape ${s.shape}`);let a={paddings:t,mode:n},o={x:s};return L.runKernel(Ha,o,a)}var Jx=V({mirrorPad_:zN});function LN(e,t){let n=D(e,"a","mod"),s=D(t,"b","mod");[n,s]=It(n,s);let r={a:n,b:s};return L.runKernel(Wi,r)}var Qx=V({mod_:LN});function BN(e){let t=D(e,"x","square"),n={};return L.runKernel("Square",{x:t},n)}var lt=V({square_:BN});function WN(e,t=null,n=!1){e=D(e,"x","moments");let s=xs(t,e.shape),r=Et(e,s,n),a=r.shape;n||(a=Co(r.shape,s));let o=lt(Ae(ce(e,"float32"),U(r,a))),i=Et(o,s,n);return{mean:r,variance:i}}var Gh=V({moments_:WN});function VN(e,t,n,s){let r=D(t,"data","multiRNNCell"),a=Zu(n,"c","multiRNNCell"),o=Zu(s,"h","multiRNNCell"),i=r,l=[];for(let d=0;d<e.length;d++){let h=e[d](i,a[d],o[d]);l.push(h[0]),l.push(h[1]),i=h[1]}let u=[],c=[];for(let d=0;d<l.length;d+=2)u.push(l[d]),c.push(l[d+1]);return[u,c]}var UN=V({multiRNNCell_:VN});function HN(e,t,n,s=!1){let r=D(e,"logits","multinomial"),a=r.size,o=r.rank;if(a<2)throw new Error(`Error in multinomial: you need at least 2 outcomes, but got ${a}.`);if(o>2)throw new Error(`Rank of probabilities must be 1 or 2, but is ${o}`);n=n||Math.random();let l={logits:o===1?U(r,[1,-1]):r},u={numSamples:t,seed:n,normalized:s},c=L.runKernel(ih,l,u);return o===1?U(c,[c.size]):c}var eb=V({multinomial_:HN});function GN(e,t){let n=D(e,"a","notEqual","string_or_numeric"),s=D(t,"b","notEqual","string_or_numeric");[n,s]=It(n,s),mt(n.shape,s.shape);let r={a:n,b:s};return L.runKernel(Ui,r)}var Nl=V({notEqual_:GN});function jN(e){let n={x:D(e,"x","onesLike")};return L.runKernel(qi,n)}var us=V({onesLike_:jN});function qN(e,t){let n=D(e,"v1","outerProduct"),s=D(t,"v2","outerProduct");P(n.rank===1&&s.rank===1,()=>`Error in outerProduct: inputs must be rank 1, but got ranks ${n.rank} and ${s.rank}.`);let r=U(n,[-1,1]),a=U(s,[1,-1]);return We(r,a)}var XN=V({outerProduct_:qN});function KN(e,t,n=0){let s=D(e,"x","pad");if(s.rank===0)throw new Error("pad(scalar) is not defined. Pass non-scalar to pad");let r={paddings:t,constantValue:n},a={x:s};return L.runKernel(qa,a,r)}var Gr=V({pad_:KN});function ZN(e,t,n=0){return P(t.length===2,()=>"Invalid number of paddings. Must be length of 2."),Gr(e,[t],n)}var YN=V({pad1d_:ZN});function JN(e,t,n=0){return P(t.length===2&&t[0].length===2&&t[1].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Gr(e,t,n)}var QN=V({pad2d_:JN});function eE(e,t,n=0){return P(t.length===3&&t[0].length===2&&t[1].length===2&&t[2].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Gr(e,t,n)}var tE=V({pad3d_:eE});function nE(e,t,n=0){return P(t.length===4&&t[0].length===2&&t[1].length===2&&t[2].length===2&&t[3].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Gr(e,t,n)}var sE=V({pad4d_:nE});function rE(e,t,n){let s=D(e,"x","spaceToBatchND");P(s.rank>=1+t.length,()=>`input rank ${s.rank} should be > than [blockShape] ${t.length}`),P(n.length===t.length,()=>`paddings.shape[0] ${n.length} must be equal to [blockShape] ${t.length}`),P(s.shape.reduce((o,i,l)=>l>0&&l<=t.length?o&&(i+n[l-1][0]+n[l-1][1])%t[l-1]==0:o,!0),()=>`input spatial dimensions ${s.shape.slice(1)} with paddings ${n.toString()} must be divisible by blockShapes ${t.toString()}`);let r={x:s},a={blockShape:t,paddings:n};return L.runKernel(al,r,a)}var jh=V({spaceToBatchND_:rE});function aE(e,t,n,s,r,a){r==null&&(r=[1,1]),a==null&&(a=1),s===0&&(s="valid");let o=D(e,"x","maxPool"),i=o,l=!1;o.rank===3&&(l=!0,i=U(o,[1,o.shape[0],o.shape[1],o.shape[2]])),P(Ks(a,r),()=>`Error in pool: Either strides or dilations must be 1. Got strides ${a} and dilations '${r}'`);let u=Ix(i.shape,t,a,r,s),c=[u.dilationHeight,u.dilationWidth],d;s==="same"?d=iE([u.filterHeight,u.filterWidth],c):d=[[0,0],[0,0]];let h=c[0]===1&&c[1]===1,[p,f]=oE([u.inHeight,u.inWidth],c,d),m=h?s:"valid",A=h?i:jh(i,c,p),y=(n==="avg"?()=>Oh(A,t,a,m):()=>Uh(A,t,a,m))(),x=h?y:Ph(y,c,f);return l?U(x,[x.shape[1],x.shape[2],x.shape[3]]):x}function oE(e,t,n){let s=n.map(c=>c[0]),r=n.map(c=>c[1]),a=e.concat(s,r),o=t.map((c,d)=>(c-a[d]%c)%c),i=r.map((c,d)=>c+o[d]),l=t.map((c,d)=>[s[d],i[d]]),u=t.map((c,d)=>[0,o[d]]);return[l,u]}function iE(e,t){let s=e.map((o,i)=>o+(o-1)*(t[i]-1)).map(o=>o-1),r=s.map(o=>Math.floor(o/2)),a=s.map((o,i)=>o-r[i]);return s.map((o,i)=>[r[i],a[i]])}var lE=V({pool_:aE});function uE(e,t){let n=D(e,"base","pow"),s=D(t,"exp","pow");[n,s]=It(n,s);let r={a:n,b:s};return L.runKernel(Xa,r)}var jr=V({pow_:uE});function cE(e,t){let n=D(e,"x","prelu"),s=D(t,"alpha","prelu"),r={x:n,alpha:s};return L.runKernel(Ka,r)}var qh=V({prelu_:cE});function dE(e,t=null,n=!1){let s=D(e,"x","prod");s.dtype==="bool"&&(s=ce(s,"int32"));let r={x:s},a={axis:t,keepDims:n};return L.runKernel(Ki,r,a)}var SA=V({prod_:dE});function hE(e,t,n){let s=_t(e),r=null;if(n==null||n==="float32")r=new Float32Array(s);else if(n==="int32")r=new Int32Array(s);else if(n==="bool")r=new Uint8Array(s);else throw new Error(`Unknown data type ${n}`);for(let a=0;a<s;a++)r[a]=t();return L.makeTensor(r,e,n)}var pE=V({rand_:hE}),CA=fa(t5()),TA=class{constructor(e,t,n,s,r){this.mean=e,this.stdDev=t,this.dtype=n,this.nextVal=NaN,this.truncated=s,this.truncated&&(this.upper=this.mean+this.stdDev*2,this.lower=this.mean-this.stdDev*2);let a=r||Math.random();this.random=CA.alea(a.toString())}nextValue(){if(!isNaN(this.nextVal)){let s=this.nextVal;return this.nextVal=NaN,s}let e,t,n=!1;for(;!n;){let s,r,a;do s=2*this.random()-1,r=2*this.random()-1,a=s*s+r*r;while(a>=1||a===0);let o=Math.sqrt(-2*Math.log(a)/a);e=this.mean+this.stdDev*s*o,t=this.mean+this.stdDev*r*o,(!this.truncated||this.isValidTruncated(e))&&(n=!0)}return(!this.truncated||this.isValidTruncated(t))&&(this.nextVal=this.convertValue(t)),this.convertValue(e)}convertValue(e){return this.dtype==null||this.dtype==="float32"?e:Math.round(e)}isValidTruncated(e){return e<=this.upper&&e>=this.lower}},fE=class{constructor(e,t,n,s){this.alpha=e,this.beta=1/t,this.dtype=n;let r=s||Math.random();this.randu=CA.alea(r.toString()),this.randn=new TA(0,1,n,!1,this.randu()),e<1?this.d=e+2/3:this.d=e-1/3,this.c=1/Math.sqrt(9*this.d)}nextValue(){let e,t,n,s,r,a;for(;;){do s=this.randn.nextValue(),a=1+this.c*s;while(a<=0);if(a*=a*a,e=s*s,t=1-.331*e*e,n=.5*e+this.d*(1-a+Math.log(a)),r=this.randu(),r<t||Math.log(r)<n)break}return a=1/this.beta*this.d*a,this.alpha<1&&(a*=Math.pow(this.randu(),1/this.alpha)),this.convertValue(a)}convertValue(e){return this.dtype==="float32"?e:Math.round(e)}},mE=class{constructor(e=0,t=1,n,s){if(this.canReturnFloat=()=>this.dtype==null||this.dtype==="float32",this.min=e,this.range=t-e,this.dtype=n,s==null&&(s=Math.random()),typeof s=="number"&&(s=s.toString()),!this.canReturnFloat()&&this.range<=1)throw new Error(`The difference between ${e} - ${t} <= 1 and dtype is not float`);this.random=CA.alea(s)}convertValue(e){return this.canReturnFloat()?e:Math.round(e)}nextValue(){return this.convertValue(this.min+this.range*this.random())}};function AE(e,t,n=1,s="float32",r){if(n==null&&(n=1),s==null&&(s="float32"),s!=="float32"&&s!=="int32")throw new Error(`Unsupported data type ${s}`);let a=new fE(t,n,s,r),o=Be(e,s);for(let i=0;i<o.values.length;i++)o.values[i]=a.nextValue();return o.toTensor()}var gE=V({randomGamma_:AE});function yE(e,t=0,n=1,s,r){if(s!=null&&s==="bool")throw new Error(`Unsupported data type ${s}`);let a=new TA(t,n,s,!1,r),o=Be(e,s);for(let i=0;i<o.values.length;i++)o.values[i]=a.nextValue();return o.toTensor()}var tb=V({randomNormal_:yE});function xE(e,t=0,n=1,s="float32",r){let a=Be(e,s),o=new mE(t,n,null,r);for(let i=0;i<a.values.length;i++)a.values[i]=o.nextValue();return a.toTensor()}var El=V({randomUniform_:xE});function Rl(e,t,n=1,s="float32"){if(n===0)throw new Error("Cannot have a step of zero");let r={start:e,stop:t,step:n,dtype:s};return L.runKernel(Pu,{},r)}function bE(e){let n={input:D(e,"input","real")};return L.runKernel(lh,n)}var ac=V({real_:bE});function vE(e){let n={x:D(e,"x","reciprocal")};return L.runKernel(Zi,n)}var nb=V({reciprocal_:vE});function wE(e){let n={x:D(e,"x","relu")};return L.runKernel(Za,n)}var Ys=V({relu_:wE});function kE(e){let n={x:D(e,"x","relu6")};return L.runKernel(Ja,n)}var NA=V({relu6_:kE});function IE(e,t){let s={x:D(e,"x","reverse")},r={dims:t};return L.runKernel(Qa,s,r)}var cs=V({reverse_:IE});function SE(e){let t=D(e,"x","reverse");return P(t.rank===1,()=>`Error in reverse1D: x must be rank 1 but got rank ${t.rank}.`),cs(t,0)}var CE=V({reverse1d_:SE});function TE(e,t){let n=D(e,"x","reverse");return P(n.rank===2,()=>`Error in reverse2D: x must be rank 2 but got rank ${n.rank}.`),cs(n,t)}var NE=V({reverse2d_:TE});function EE(e,t){let n=D(e,"x","reverse");return P(n.rank===3,()=>`Error in reverse3D: x must be rank 3 but got rank ${n.rank}.`),cs(n,t)}var RE=V({reverse3d_:EE});function _E(e,t){let n=D(e,"x","reverse");return P(n.rank===4,()=>`Error in reverse4D: x must be rank 4 but got rank ${n.rank}.`),cs(n,t)}var $E=V({reverse4d_:_E});function FE(e){let n={x:D(e,"x","round")};return L.runKernel(eo,n)}var EA=V({round_:FE});function DE(e){let n={x:D(e,"x","rsqrt")};return L.runKernel(to,n)}var RA=V({rsqrt_:DE});function Ie(e,t){if((an(e)&&t!=="string"||Array.isArray(e))&&t!=="complex64")throw new Error("Error creating a new Scalar: value must be a primitive (number|boolean|string)");if(t==="string"&&an(e)&&!(e instanceof Uint8Array))throw new Error("When making a scalar from encoded string, the value must be `Uint8Array`.");return Br(e,[],[],t)}function OE(e){let n={x:D(e,"x","selu")};return L.runKernel(el,n)}var _A=V({selu_:OE});function PE(e,t,n,s,r,a=[1,1],o="NHWC"){let i=D(e,"x","separableConv2d"),l=D(t,"depthwiseFilter","separableConv2d"),u=D(n,"pointwiseFilter","separableConv2d"),c=i,d=!1;if(i.rank===3&&(d=!0,c=U(i,[1,i.shape[0],i.shape[1],i.shape[2]])),o==="NCHW")throw new Error("separableConv2d currently does not support dataFormat NCHW; only NHWC is supported");P(c.rank===4,()=>`Error in separableConv2d: input must be rank 4, but got rank ${c.rank}.`),P(l.rank===4,()=>`Error in separableConv2d: depthwise filter must be rank 4, but got rank ${l.rank}.`),P(u.rank===4,()=>`Error in separableConv2d: pointwise filter must be rank 4, but got rank ${l.rank}.`),P(u.shape[0]===1,()=>`Error in separableConv2d: the first dimension of pointwise filter must be 1, but got ${u.shape[0]}.`),P(u.shape[1]===1,()=>`Error in separableConv2d: the second dimension of pointwise filter must be 1, but got ${u.shape[1]}.`);let h=l.shape[2],p=l.shape[3];P(u.shape[2]===h*p,()=>`Error in separableConv2d: the third dimension of pointwise filter must be ${h*p}, but got ${u.shape[2]}.`);let f=tc(c,l,s,r,o,a),A=Hr(f,u,1,"valid",o);return d?U(A,[A.shape[1],A.shape[2],A.shape[3]]):A}var sb=V({separableConv2d_:PE});async function ME(e,t){let n=D(e,"x","setdiff1d"),s=D(t,"y","setdiff1d");P(n.dtype===s.dtype,()=>`x and y should have the same dtype, but got x (${n.dtype}) and y (${s.dtype}).`),P(n.rank===1,()=>`x should be 1D tensor, but got x (${n.shape}).`),P(s.rank===1,()=>`y should be 1D tensor, but got y (${s.shape}).`);let r=await n.data(),a=await s.data(),o=new Set(a),i=0;for(let c=0;c<r.length;c++)o.has(r[c])||i++;let l=new Bt([i],n.dtype),u=new Bt([i],"int32");for(let c=0,d=0;c<r.length;c++)o.has(r[c])||(l.values[d]=r[c],u.values[d]=c,d++);return[l.toTensor(),u.toTensor()]}var rb=ME;function zE(e){let n={x:D(e,"x","sign")};return L.runKernel(sl,n)}var ab=V({sign_:zE});function LE(e){let n={x:D(e,"x","sin")};return L.runKernel(no,n)}var $A=V({sin_:LE});function BE(e){let n={x:D(e,"x","sinh")};return L.runKernel(nl,n)}var FA=V({sinh_:BE});function WE(e,t,n){let s=D(e,"x","slice1d");return P(s.rank===1,()=>`slice1d expects a rank-1 tensor, but got a rank-${s.rank} tensor`),Re(s,[t],[n])}var Xh=V({slice1d_:WE});function VE(e,t,n){let s=D(e,"x","slice2d");return P(s.rank===2,()=>`slice2d expects a rank-2 tensor, but got a rank-${s.rank} tensor`),Re(s,t,n)}var DA=V({slice2d_:VE});function UE(e,t,n){let s=D(e,"x","slice3d");return P(s.rank===3,()=>`slice3d expects a rank-3 tensor, but got a rank-${s.rank} tensor`),Re(s,t,n)}var Kh=V({slice3d_:UE});function HE(e,t,n){let s=D(e,"x","slice4d");return P(s.rank===4,()=>`slice4d expects a rank-4 tensor, but got a rank-${s.rank} tensor`),Re(s,t,n)}var oc=V({slice4d_:HE});function GE(e,t=-1){let n=D(e,"logits","softmax","float32");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and dim was ${t}`);let s={logits:n},r={dim:t};return L.runKernel(oo,s,r)}var Zh=V({softmax_:GE});function jE(e){P(e.dtype==="complex64",()=>`The dtype for tf.spectral.fft() must be complex64 but got ${e.dtype}.`);let t={input:e};return L.runKernel(Qd,t)}var Yh=V({fft_:jE});function qE(e){P(e.dtype==="complex64",()=>`The dtype for tf.spectral.ifft() must be complex64 but got ${e.dtype}.`);let t={input:e};return L.runKernel(eh,t)}var ic=V({ifft_:qE});function XE(e){let t=e.shape[e.shape.length-1],n=e.size/t,s;if(t<=2){let r=U(e,[n,t]);s=ic(r)}else{let r=[n,2*(t-1)],a=U(ac(e),[n,t]),o=U(zh(e),[n,t]),i=cs(Re(a,[0,1],[n,t-2]),1),l=z(cs(Re(o,[0,1],[n,t-2]),1),Ie(-1)),u=ht([a,i],1),c=ht([o,l],1),d=U(Lr(u,c),[r[0],r[1]]);s=ic(d)}if(s=ac(s),e.rank===3&&e.shape[0]!==0){let r=s,a=e.shape[0];s=U(s,[a,s.shape[0]/a,s.shape[1]]),r.dispose()}return s}var OA=V({irfft_:XE});function KE(e,t,n=0){let r={x:D(e,"x","split")},a={numOrSizeSplits:t,axis:n};return L.runKernel(ol,r,a)}var nn=V({split_:KE});function ZE(e,t){P(e.dtype==="float32",()=>`The dtype for rfft() must be real value but got ${e.dtype}`);let n=e.shape[e.shape.length-1],s=e.size/n,r;if(t!=null&&t<n){let f=e.shape.map(A=>0),m=e.shape.map(A=>A);m[e.shape.length-1]=t,r=Re(e,f,m),n=t}else if(t!=null&&t>n){let f=e.shape.map(m=>m);f[e.shape.length-1]=t-n,r=ht([e,Dt(f)],e.shape.length-1),n=t}else r=e;let a=qe(r),o=U(Lr(r,a),[s,n]),i=Yh(o),l=Math.floor(n/2)+1,u=ac(i),c=zh(i),d=nn(u,[l,n-l],u.shape.length-1),h=nn(c,[l,n-l],c.shape.length-1),p=r.shape.slice();return p[r.shape.length-1]=l,U(Lr(d[0],h[0]),p)}var Jh=V({rfft_:ZE});function YE(e){let n={x:D(e,"x","sqrt")};return L.runKernel(ro,n)}var ln=V({sqrt_:YE});function JE(e,t){let n=D(e,"a","squaredDifference"),s=D(t,"b","squaredDifference");[n,s]=It(n,s),mt(n.shape,s.shape);let r={a:n,b:s},a={};return L.runKernel(io,r,a)}var PA=V({squaredDifference_:JE});function QE(e,t){let n=D(e,"x","squeeze");return U(n,r5(n.shape,t).newShape)}var ot=V({squeeze_:QE});function eR(e,t=0){let n=Zu(e,"tensors","stack","string_or_numeric");P(n.length>=1,()=>"Pass at least one tensor to tf.stack"),n.length>0&&P(t<=n[0].rank,()=>"Axis must be <= rank of the tensor");let s=n,r={axis:t};return L.runKernel(Xi,s,r)}var Nn=V({stack_:eR});function tR(e,t=0){let s={x:D(e,"x","step")},r={alpha:t};return L.runKernel(Mr,s,r)}var lc=V({step_:tR});function nR(e,t,n,s,r=0,a=0,o=0,i=0,l=0){let c={x:D(e,"x","stridedSlice","string_or_numeric")},d={begin:t,end:n,strides:s,beginMask:r,endMask:a,ellipsisMask:o,newAxisMask:i,shrinkAxisMask:l};return L.runKernel(il,c,d)}var ob=V({stridedSlice_:nR});function sR(e){let n={x:D(e,"x","tan")};return L.runKernel(uo,n)}var ib=V({tan_:sR});function Ot(e,t){ma(e);let n=qs(e,t);if(n.length!==1)throw new Error("tensor1d() requires values to be a flat/TypedArray");return Br(e,null,n,t)}function _s(e,t,n){if(ma(e),t!=null&&t.length!==2)throw new Error("tensor2d() requires shape to have two numbers");let s=qs(e,n);if(s.length!==2&&s.length!==1)throw new Error("tensor2d() requires values to be number[][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor2d() requires shape to be provided when `values` are a flat/TypedArray");return Br(e,t,s,n)}function rR(e,t,n){if(ma(e),t!=null&&t.length!==4)throw new Error("tensor4d() requires shape to have four numbers");let s=qs(e,n);if(s.length!==4&&s.length!==1)throw new Error("tensor4d() requires values to be number[][][][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor4d() requires shape to be provided when `values` are a flat array");return Br(e,t,s,n)}function aR(e,t,n){if(ma(e),t!=null&&t.length!==5)throw new Error("tensor5d() requires shape to have five numbers");let s=qs(e,n);if(s.length!==5&&s.length!==1)throw new Error("tensor5d() requires values to be number[][][][][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor5d() requires shape to be provided when `values` are a flat array");return Br(e,t,s,n)}function oR(e,t,n){if(ma(e),t!=null&&t.length!==6)throw new Error("tensor6d() requires shape to have six numbers");let s=qs(e,n);if(s.length!==6&&s.length!==1)throw new Error("tensor6d() requires values to be number[][][][][][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor6d() requires shape to be provided when `values` are a flat array");return t=t||s,Br(e,t,s,n)}function iR(e,t=1,n=!0){let s=D(e,"x","topk");if(s.rank===0)throw new Error("topk() expects the input to be of rank 1 or higher");let r=s.shape[s.shape.length-1];if(t<0)throw new Error(`'k' passed to topk() must be >= 0 but got ${t}`);if(t>r)throw new Error(`'k' passed to topk() must be <= the last dimension (${r}) but got ${t}`);let a={x:s},o={k:t,sorted:n},[i,l]=L.runKernel(ll,a,o);return{values:i,indices:l}}var lb=V({topk_:iR});function lR(e,t=0,n=1,s,r){if(s!=null&&s==="bool")throw new Error("Unsupported data type $ { dtype }");let a=new TA(t,n,s,!0,r),o=Be(e,s);for(let i=0;i<o.values.length;i++)o.values[i]=a.nextValue();return o.toTensor()}var Qh=V({truncatedNormal_:lR});function uR(e,t=0){let n=D(e,"x","unique","string_or_numeric");P(n.rank>0,()=>"The input tensor must be at least 1D");let s={x:n},r={axis:t},[a,o]=L.runKernel(xh,s,r);return{values:a,indices:o}}var MA=V({unique_:uR});function cR(e,t,n){let s=D(e,"x","unsortedSegmentSum"),r=D(t,"segmentIds","unsortedSegmentSum","int32");P(qt(n),()=>"numSegments must be of dtype int");let a={x:s,segmentIds:r},o={numSegments:n};return L.runKernel(Lu,a,o)}var ub=V({unsortedSegmentSum_:cR});function dR(e,t=0){let n=D(e,"x","unstack","string_or_numeric");P(t>=-n.shape.length&&t<n.shape.length,()=>`Axis = ${t} is not in [-${n.shape.length}, ${n.shape.length})`);let s={value:n},r={axis:t};return L.runKernel(cl,s,r)}var ds=V({unstack_:dR});function cb(e,t=!0,n,s){return L.makeVariable(e,t,n,s)}function db(e,t){let n=[];for(let a=0;a<t.length;a++)t[a]&&n.push(a);let s=Be(e,"int32"),r=Be([n.length,e.length],"int32");for(let a=0;a<n.length;a++){let o=s.indexToLoc(n[a]),i=a*e.length;r.values.set(o,i)}return r.toTensor()}async function hR(e){let t=D(e,"condition","whereAsync","bool"),n=await t.data(),s=db(t.shape,n);return e!==t&&t.dispose(),s}var zA=hR;async function pR(e,t,n){let s=D(e,"tensor","boolMask"),r=D(t,"mask","boolMask","bool"),a=n==null?0:n,o=r.rank,i=s.shape;P(o>0,()=>"mask cannot be scalar"),fn(i.slice(a,a+o),r.shape,"mask's shape must match the first K dimensions of tensor's shape,");let l=1;for(let m=a;m<a+o;m++)l*=i[m];let u=i.slice(0,a).concat([l],i.slice(a+o)),c=U(s,u),d=U(r,[-1]),h=await zA(d),p=ot(h,[1]),f=Cl(c,p,a);return e!==s&&s.dispose(),t!==r&&r.dispose(),p.dispose(),c.dispose(),d.dispose(),h.dispose(),f}var fR=pR;function mR(e,t="euclidean",n=null,s=!1){e=D(e,"x","norm");let r=hb(e,t,n),a=r.shape;if(s){let o=xs(n,e.shape);a=Co(r.shape,o)}return U(r,a)}function hb(e,t,n=null){if(e.rank===0)return Wt(e);if(e.rank!==1&&n===null)return hb(U(e,[-1]),t,n);if(e.rank===1||typeof n=="number"||Array.isArray(n)&&n.length===1){if(t===1)return ve(Wt(e),n);if(t===1/0)return ls(Wt(e),n);if(t===-1/0)return Hh(Wt(e),n);if(t==="euclidean"||t===2)return ln(ve(jr(Wt(e),Ie(2,"int32")),n));throw new Error(`Error in norm: invalid ord value: ${t}`)}if(Array.isArray(n)&&n.length===2){if(t===1)return ls(ve(Wt(e),n[0]),n[1]-1);if(t===1/0)return ls(ve(Wt(e),n[1]),n[0]);if(t===-1/0)return Hh(ve(Wt(e),n[1]),n[0]);if(t==="fro"||t==="euclidean")return ln(ve(lt(e),n));throw new Error(`Error in norm: invalid ord value: ${t}`)}throw new Error(`Error in norm: invalid axis: ${n}`)}var LA=V({norm_:mR});function AR(e,t,n,s,r=!0){let a=D(e,"v","movingAverage"),o=D(t,"x","movingAverage"),i=D(n,"decay","movingAverage");S5(a,o),P(fr(a.shape,o.shape),()=>"Shape mismatch in v and x");let l=Ie(1),u=Ae(l,i),c=z(Ae(o,a),u);if(r){P(s!=null,()=>"When using zeroDebias: true, step is required.");let d=D(s,"step","movingAverage");c=de(c,Ae(l,jr(i,d)))}return ae(a,c)}var gR=V({movingAverage_:AR});function yR(e,t,n){let s=D(e,"indices","scatterND","int32"),r=D(t,"updates","scatterND");eA(r,s,n);let a={indices:s,updates:r},o={shape:n};return L.runKernel(Ji,a,o)}var pb=V({scatterND_:yR});function xR(e,t,n,s){if(e.dtype!=="int32")throw new Error(`tf.sparseToDense() expects the indices to be int32 type, but the dtype was ${e.dtype}.`);if(e.rank>2)throw new Error(`sparseIndices should be a scalar, vector, or matrix, but got shape ${e.shape}.`);let r=e.rank>0?e.shape[0]:1,a=e.rank>1?e.shape[1]:1;if(n.length!==a)throw new Error(`outputShape has incorrect number of elements:, ${n.length}, should be: ${a}.`);let o=t.size;if(!(t.rank===0||t.rank===1&&o===r))throw new Error(`sparseValues has incorrect shape ${t.shape}, should be [] or [${r}]`);if(t.dtype!==s.dtype)throw new Error("sparseValues.dtype must match defaultValues.dtype")}function bR(e,t,n,s=0){let r=D(e,"sparseIndices","sparseToDense","int32"),a=D(t,"sparseValues","sparseToDense"),o=D(s,"defaultValue","sparseToDense",a.dtype);xR(r,a,n,o);let i={sparseIndices:r,sparseValues:a,defaultValue:o},l={outputShape:n};return L.runKernel(mh,i,l)}var BA=V({sparseToDense_:bR});function vR(e,t){let n=D(t,"indices","gatherND","int32"),r={params:D(e,"x","gatherND","string_or_numeric"),indices:n};return L.runKernel($i,r)}var fb=V({gatherND_:vR});function wR(e,t){if(t==null)return e.shape.slice();if(fr(e.shape,t))return t;if(e.shape.length===t.length){let n=[];for(let s=0;s<e.shape.length;s++)t[s]==null&&e.shape[s]!=null?n.push(e.shape[s]):n.push(t[s]);return n}return t}function kR(e,t,n,s){let r=D(e,"x","dropout");if(P(r.dtype==="float32",()=>`x has to be a floating point tensor since it's going to be scaled, but got a ${r.dtype} tensor instead.`),P(t>=0&&t<1,()=>`rate must be a float in the range [0, 1), but got ${t}.`),t===0)return e instanceof Ue?r.clone():r;let a=wR(r,n),o=1-t,i=de(sc(ae(El(a,0,1,"float32",s),o)),o);return z(r,i)}var mb=V({dropout_:kR});function Ab(e){return Math.floor(Math.pow(2,Math.ceil(Math.log(e)/Math.log(2))))}function WA(e,t,n){let s=1-e%2,r=new Float32Array(e);for(let a=0;a<e;++a){let o=2*Math.PI*a/(e+s-1);r[a]=t-n*Math.cos(o)}return Ot(r,"float32")}async function IR(e,t,n=1){let s=D(e,"predictions","inTopK"),r=D(t,"targets","inTopK");P(s.rank>1,()=>`inTopK() expects the predictions to be of rank 2 or higher, but got ${s.rank}`),P(s.rank-1===r.rank,()=>`predictions rank should be 1 larger than targets rank, but got predictions rank ${s.rank} and targets rank ${r.rank}`),fn(s.shape.slice(0,s.shape.length-1),r.shape,"predictions's shape should be align with the targets' shape, except the last dimension.");let a=s.shape[s.shape.length-1];P(n>0&&n<=a,()=>`'k' passed to inTopK() must be > 0 && <= the predictions last dimension (${a}), but got ${n}`);let o=await s.data(),i=await r.data(),[l,u]=[o.length/a,a],c=a5("bool",l);for(let d=0;d<l;d++){let h=d*u,p=o.subarray(h,h+u),f=[];for(let m=0;m<p.length;m++)f.push({value:p[m],index:m});f.sort((m,A)=>A.value-m.value),c[d]=0;for(let m=0;m<n;m++)if(f[m].index===i[d]){c[d]=1;break}}return e!==s&&s.dispose(),t!==r&&r.dispose(),on(c,r.shape,"bool")}var SR=IR,qr={};Pe(qr,{conv2d:()=>NR,depthwiseConv2d:()=>$R,matMul:()=>DR});function CR(e,t,n,s,r,a="NHWC",o){let i=e;e.rank===3&&(i=U(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=U(t,[1,t.shape[0],t.shape[1],t.shape[2]])),P(i.rank===4,()=>`Error in conv2dDerFilter: input must be rank 4, but got shape ${i.shape}.`),P(l.rank===4,()=>`Error in conv2dDerFilter: dy must be rank 4, but got shape ${l.shape}.`),P(n.length===4,()=>`Error in conv2dDerFilter: filterShape must be length 4, but got ${n}.`);let u=a==="NHWC"?i.shape[3]:i.shape[1],c=a==="NHWC"?l.shape[3]:l.shape[1];P(u===n[2],()=>`Error in conv2dDerFilter: depth of input ${u}) must match input depth in filter (${n[2]}.`),P(c===n[3],()=>`Error in conv2dDerFilter: depth of dy (${c}) must match output depth for filter (${n[3]}).`),o!=null&&P(qt(r),()=>`Error in conv2dDerFilter: pad must be an integer when using, dimRoundingMode ${o} but got pad ${r}.`);let d={x:i,dy:l},h={strides:s,pad:r,dataFormat:a,dimRoundingMode:o,filterShape:n};return L.runKernel(Vd,d,h)}var VA=V({conv2DBackpropFilter_:CR});function ep(e,t,n){if(n==null||n==="linear")return e;if(n==="relu")return z(e,lc(t));throw new Error(`Cannot compute gradient for fused activation ${n}.`)}function tp(e,t){let n=t,s=Vt(e.shape,t.shape);return s.length>0&&(n=ve(n,s)),U(n,e.shape)}function np(e,t,n,s){if(t==="linear")return e;if(t==="relu")return Ys(e);if(t==="elu")return nc(e);if(t==="relu6")return NA(e);if(t==="prelu")return qh(e,n);if(t==="leakyrelu")return Lh(e,s);if(t==="sigmoid")return Bn(e);throw new Error(`Unknown fused activation ${t}.`)}var sp=(e,t)=>!(e>0)||t==="linear";function TR({x:e,filter:t,strides:n,pad:s,dataFormat:r="NHWC",dilations:a=[1,1],dimRoundingMode:o,bias:i,activation:l="linear",preluActivationWeights:u,leakyreluAlpha:c}){if(l=l||"linear",sp(L.state.gradientDepth,l)===!1){let v=Hr(e,t,n,s,r,a,o);return i!=null&&(v=ae(v,i)),np(v,l,u,c)}let d=D(e,"x","conv2d"),h=D(t,"filter","conv2d"),p=d,f=!1;d.rank===3&&(f=!0,p=U(d,[1,d.shape[0],d.shape[1],d.shape[2]])),P(p.rank===4,()=>`Error in fused conv2d: input must be rank 4, but got rank ${p.rank}.`),P(h.rank===4,()=>`Error in fused conv2d: filter must be rank 4, but got rank ${h.rank}.`),o!=null&&P(qt(s),()=>`Error in fused conv2d: pad must be an integer when using, dimRoundingMode ${o} but got pad ${s}.`),P(p.shape[3]===h.shape[2],()=>`Error in conv2d: depth of input (${p.shape[3]}) must match input depth for filter ${h.shape[2]}.`),P(Ks(n,a),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`),P(r==="NHWC",()=>`Error in conv2d: got dataFormat of ${r} but only NHWC is currently supported.`);let m=Qu(p.shape,h.shape,n,a,s,o),A;i!=null&&(A=D(i,"bias","fused conv2d"),[A]=It(A,d),mt(m.outShape,A.shape));let g;u!=null&&(g=D(u,"prelu weights","fused conv2d"));let y=(v,k)=>{let[w,C,E,M]=k,R=ep(v,E,l);P(Ur(a),()=>`Error in gradient of fused conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${a}'`);let _=pA(C.shape,R,w,n,s),N=VA(C,R,w.shape,n,s),O=[_,N];if(M!=null){let W=tp(M,R);O.push(W)}return O},x={x:p,filter:h,bias:A,preluActivationWeights:g},b={strides:n,pad:s,dataFormat:r,dilations:a,dimRoundingMode:o,activation:l,leakyreluAlpha:c};return i==null?Zs((k,w,C)=>{let E=L.runKernel(fo,x,b);return C([w,k,E]),f&&(E=U(E,[E.shape[1],E.shape[2],E.shape[3]])),{value:E,gradFunc:y}})(p,h):Zs((k,w,C,E)=>{let M=L.runKernel(fo,x,b);return E([w,k,M,C]),f&&(M=U(M,[M.shape[1],M.shape[2],M.shape[3]])),{value:M,gradFunc:y}})(p,h,A)}var NR=V({fusedConv2d_:TR});function ER(e,t,n,s,r,a=[1,1],o){let i=e;e.rank===3&&(i=U(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=U(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let u={x:i,dy:l},c={strides:s,pad:r,dimRoundingMode:o,dilations:a,filterShape:n};return L.runKernel(jd,u,c)}var gb=V({depthwiseConv2dNativeBackpropFilter_:ER});function RR(e,t,n,s,r,a=[1,1],o){let i=t,l=!1;t.rank===3&&(l=!0,i=U(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let u={dy:i,filter:n},c={strides:s,pad:r,dimRoundingMode:o,dilations:a,inputShape:e},d=L.runKernel(qd,u,c);return l?U(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var yb=V({depthwiseConv2dNativeBackpropInput_:RR});function _R({x:e,filter:t,strides:n,pad:s,dataFormat:r="NHWC",dilations:a=[1,1],dimRoundingMode:o,bias:i,activation:l="linear",preluActivationWeights:u,leakyreluAlpha:c}){if(sp(L.state.gradientDepth,l)===!1){let v=tc(e,t,n,s,r,a,o);return i!=null&&(v=ae(v,i)),np(v,l,u,c)}let d=D(e,"x","depthwiseConv2d"),h=D(t,"filter","depthwiseConv2d"),p=d,f=!1;d.rank===3&&(f=!0,p=U(d,[1,d.shape[0],d.shape[1],d.shape[2]])),P(p.rank===4,()=>`Error in fused depthwiseConv2d: input must be rank 4, but got rank ${p.rank}.`),P(h.rank===4,()=>`Error in fused depthwiseConv2d: filter must be rank 4, but got rank ${h.rank}.`),P(p.shape[3]===h.shape[2],()=>`Error in fused depthwiseConv2d: number of input channels (${p.shape[3]}) must match the inChannels dimension in filter ${h.shape[2]}.`),a==null&&(a=[1,1]),P(Ks(n,a),()=>`Error in fused depthwiseConv2d: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`),o!=null&&P(qt(s),()=>`Error in fused depthwiseConv2d: pad must be an integer when using dimRoundingMode ${o} but got pad ${s}.`);let m=Qu(p.shape,h.shape,n,a,s,o,!0),A;i!=null&&(A=D(i,"bias","fused conv2d"),[A]=It(A,d),mt(m.outShape,A.shape));let g;u!=null&&(g=D(u,"prelu weights","fused depthwiseConv2d"));let y=(v,k)=>{P(Ur(a),()=>`Error in gradient of fused depthwiseConv2d: dilation rates greater than 1 are not yet supported. Got dilations '${a}'`);let[w,C,E,M]=k,R=ep(v,E,l),_=yb(C.shape,R,w,n,s,a,o),N=gb(C,R,w.shape,n,s,a,o);if(M!=null){let O=tp(A,R);return[_,N,O]}return[_,N]},x={x:p,filter:h,bias:A,preluActivationWeights:g},b={strides:n,pad:s,dataFormat:r,dilations:a,dimRoundingMode:o,activation:l,leakyreluAlpha:c};return i==null?Zs((k,w,C)=>{let E=L.runKernel(mo,x,b);return C([w,k,E]),f&&(E=U(E,[E.shape[1],E.shape[2],E.shape[3]])),{value:E,gradFunc:y}})(p,h):Zs((k,w,C,E)=>{let M=L.runKernel(mo,x,b);return E([w,k,M,C]),f&&(M=U(M,[M.shape[1],M.shape[2],M.shape[3]])),{value:M,gradFunc:y}})(p,h,A)}var $R=V({fusedDepthwiseConv2d_:_R});function FR({a:e,b:t,transposeA:n=!1,transposeB:s=!1,bias:r,activation:a="linear",preluActivationWeights:o,leakyreluAlpha:i}){if(sp(L.state.gradientDepth,a)===!1){let M=We(e,t,n,s);return r!=null&&(M=ae(M,r)),np(M,a,o,i)}let l=D(e,"a","fused matMul"),u=D(t,"b","fused matMul");[l,u]=It(l,u);let c=n?l.shape[l.rank-2]:l.shape[l.rank-1],d=s?u.shape[u.rank-1]:u.shape[u.rank-2],h=n?l.shape[l.rank-1]:l.shape[l.rank-2],p=s?u.shape[u.rank-2]:u.shape[u.rank-1],f=l.shape.slice(0,-2),m=u.shape.slice(0,-2),A=_t(f),g=_t(m);P(l.rank>=2&&u.rank>=2&&l.rank===u.rank,()=>`Error in fused matMul: inputs must have the same rank of at least 2, got ranks ${l.rank} and ${u.rank}.`),P(fr(f,m),()=>`Error in fused matMul: outer dimensions (${f}) and (${m}) of Tensors with shapes ${l.shape} and ${u.shape} must match.`),P(c===d,()=>`Error in fused matMul: inner shapes (${c}) and (${d}) of Tensors with shapes ${l.shape} and ${u.shape} and transposeA=${n} and transposeB=${s} must match.`);let y=l.shape.slice(0,-2).concat([h,p]),x=n?U(l,[A,c,h]):U(l,[A,h,c]),b=s?U(u,[g,p,d]):U(u,[g,d,p]),v;r!=null&&(v=D(r,"bias","fused matMul"),[v]=It(v,l),mt(y,v.shape));let k;o!=null&&(k=D(o,"prelu weights","fused matMul"));let w=(M,R)=>{let[_,N,O,W]=R,j=ep(U(M,O.shape),O,a),q,X;if(!n&&!s?(q=We(j,N,!1,!0),X=We(_,j,!0,!1)):!n&&s?(q=We(j,N,!1,!1),X=We(j,_,!0,!1)):n&&!s?(q=We(N,j,!1,!0),X=We(_,j,!1,!1)):(q=We(N,j,!0,!0),X=We(j,_,!0,!0)),r!=null){let Q=tp(W,j);return[q,X,Q]}else return[q,X]},C={a:x,b,bias:v,preluActivationWeights:k},E={transposeA:n,transposeB:s,activation:a,leakyreluAlpha:i};return r==null?Zs((R,_,N)=>{let O=L.runKernel(po,C,E);return N([R,_,O]),{value:U(O,y),gradFunc:w}})(x,b):Zs((R,_,N,O)=>{let W=L.runKernel(po,C,E);return O([R,_,W,N]),{value:U(W,y),gradFunc:w}})(x,b,v)}var DR=V({fusedMatMul_:FR});function OR(e){return WA(e,.54,.46)}var PR=V({hammingWindow_:OR});function MR(e){return WA(e,.5,.5)}var xb=V({hannWindow_:MR});function zR(e,t,n,s=!1,r=0){let a=0,o=[];for(;a+t<=e.size;)o.push(Re(e,a,t)),a+=n;if(s)for(;a<e.size;){let i=a+t-e.size,l=ht([Re(e,a,t-i),Sl([i],r)]);o.push(l),a+=n}return o.length===0?_s([],[0,t]):U(ht(o),[o.length,t])}var bb=V({frame_:zR});function LR(e,t,n,s,r=xb){s==null&&(s=Ab(t));let a=bb(e,t,n),o=z(a,r(t));return Jh(o,s)}var BR=V({stft_:LR});function WR(e,t,n,s,r="bilinear",a=0){let o=D(e,"image","cropAndResize"),i=D(t,"boxes","cropAndResize","float32"),l=D(n,"boxInd","cropAndResize","int32"),u=i.shape[0];P(o.rank===4,()=>`Error in cropAndResize: image must be rank 4,but got rank ${o.rank}.`),P(i.rank===2&&i.shape[1]===4,()=>`Error in cropAndResize: boxes must be have size [${u},4] but had shape ${i.shape}.`),P(l.rank===1&&l.shape[0]===u,()=>`Error in cropAndResize: boxInd must be have size [${u}] but had shape ${i.shape}.`),P(s.length===2,()=>`Error in cropAndResize: cropSize must be of length 2, but got length ${s.length}.`),P(s[0]>=1&&s[1]>=1,()=>`cropSize must be atleast [1,1], but was ${s}`),P(r==="bilinear"||r==="nearest",()=>`method must be bilinear or nearest, but was ${r}`);let c={image:o,boxes:i,boxInd:l},d={method:r,extrapolationValue:a,cropSize:s};return L.runKernel(ki,c,d)}var VR=V({cropAndResize_:WR});function UR(e){let t=D(e,"image","flipLeftRight","float32");P(t.rank===4,()=>`Error in flipLeftRight: image must be rank 4,but got rank ${t.rank}.`);let n={image:t};return L.runKernel(Ri,n,{})}var HR=V({flipLeftRight_:UR});function GR(e,t,n=0,s=.5){let r=D(e,"image","rotateWithOffset","float32");P(r.rank===4,()=>`Error in rotateWithOffset: image must be rank 4,but got rank ${r.rank}.`);let a={image:r},o={radians:t,fillValue:n,center:s};return L.runKernel(hl,a,o)}var jR=V({rotateWithOffset_:GR});function _l(e,t,n,s,r,a){s==null&&(s=.5),r==null&&(r=Number.NEGATIVE_INFINITY),a==null&&(a=0);let o=e.shape[0];return n=Math.min(n,o),P(0<=s&&s<=1,()=>`iouThreshold must be in [0, 1], but was '${s}'`),P(e.rank===2,()=>`boxes must be a 2D tensor, but was of rank '${e.rank}'`),P(e.shape[1]===4,()=>`boxes must have 4 columns, but 2nd dimension was ${e.shape[1]}`),P(t.rank===1,()=>"scores must be a 1D tensor"),P(t.shape[0]===o,()=>`scores has incompatible shape with boxes. Expected ${o}, but was ${t.shape[0]}`),P(0<=a&&a<=1,()=>`softNmsSigma must be in [0, 1], but was '${a}'`),{maxOutputSize:n,iouThreshold:s,scoreThreshold:r,softNmsSigma:a}}function qR(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY){let a=D(e,"boxes","nonMaxSuppression"),o=D(t,"scores","nonMaxSuppression"),i=_l(a,o,n,s,r);n=i.maxOutputSize,s=i.iouThreshold,r=i.scoreThreshold;let l={maxOutputSize:n,iouThreshold:s,scoreThreshold:r};return L.runKernel(Hi,{boxes:a,scores:o},l)}var XR=V({nonMaxSuppression_:qR});function KR(e,t,n){let s=ZR(e,t,n),r=s<0?-(s+1):s;e.splice(r,0,t)}function ZR(e,t,n){return JR(e,t,n||YR)}function YR(e,t){return e>t?1:e<t?-1:0}function JR(e,t,n){let s=0,r=e.length,a=0,o=!1;for(;s<r;){a=s+(r-s>>>1);let i=n(t,e[a]);i>0?s=a+1:(r=a,o=!i)}return o?s:-s-1}function vb(e,t,n,s,r){return UA(e,t,n,s,r,0)}function wb(e,t,n,s,r,a){return UA(e,t,n,s,r,0,!1,a,!0)}function kb(e,t,n,s,r,a){return UA(e,t,n,s,r,a,!0)}function UA(e,t,n,s,r,a,o=!1,i=!1,l=!1){let u=[];for(let A=0;A<t.length;A++)t[A]>r&&u.push({score:t[A],boxIndex:A,suppressBeginIndex:0});u.sort(Ib);let c=a>0?-.5/a:0,d=[],h=[];for(;d.length<n&&u.length>0;){let A=u.pop(),{score:g,boxIndex:y,suppressBeginIndex:x}=A;if(g<r)break;let b=!1;for(let v=d.length-1;v>=x;--v){let k=QR(e,y,d[v]);if(k>=s){b=!0;break}if(A.score=A.score*e_(s,c,k),A.score<=r)break}A.suppressBeginIndex=d.length,b||(A.score===g?(d.push(y),h.push(A.score)):A.score>r&&KR(u,A,Ib))}let p=d.length,f=n-p;i&&f>0&&(d.push(...new Array(f).fill(0)),h.push(...new Array(f).fill(0)));let m={selectedIndices:d};return o&&(m.selectedScores=h),l&&(m.validOutputs=p),m}function QR(e,t,n){let s=e.subarray(t*4,t*4+4),r=e.subarray(n*4,n*4+4),a=Math.min(s[0],s[2]),o=Math.min(s[1],s[3]),i=Math.max(s[0],s[2]),l=Math.max(s[1],s[3]),u=Math.min(r[0],r[2]),c=Math.min(r[1],r[3]),d=Math.max(r[0],r[2]),h=Math.max(r[1],r[3]),p=(i-a)*(l-o),f=(d-u)*(h-c);if(p<=0||f<=0)return 0;let m=Math.max(a,u),A=Math.max(o,c),g=Math.min(i,d),y=Math.min(l,h),x=Math.max(g-m,0)*Math.max(y-A,0);return x/(p+f-x)}function e_(e,t,n){let s=Math.exp(t*n*n);return n<=e?s:0}function Ib(e,t){return e.score-t.score||e.score===t.score&&t.boxIndex-e.boxIndex}async function t_(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY){let a=D(e,"boxes","nonMaxSuppressionAsync"),o=D(t,"scores","nonMaxSuppressionAsync"),i=_l(a,o,n,s,r);n=i.maxOutputSize,s=i.iouThreshold,r=i.scoreThreshold;let l=await Promise.all([a.data(),o.data()]),u=l[0],c=l[1],{selectedIndices:d}=vb(u,c,n,s,r);return a!==e&&a.dispose(),o!==t&&o.dispose(),Ot(d,"int32")}var n_=t_;function s_(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY,a=0){let o=D(e,"boxes","nonMaxSuppression"),i=D(t,"scores","nonMaxSuppression"),l=_l(o,i,n,s,r,a);n=l.maxOutputSize,s=l.iouThreshold,r=l.scoreThreshold,a=l.softNmsSigma;let u={boxes:o,scores:i},c={maxOutputSize:n,iouThreshold:s,scoreThreshold:r,softNmsSigma:a},d=L.runKernel(ji,u,c);return{selectedIndices:d[0],selectedScores:d[1]}}var r_=V({nonMaxSuppressionWithScore_:s_});async function a_(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY,a=0){let o=D(e,"boxes","nonMaxSuppressionAsync"),i=D(t,"scores","nonMaxSuppressionAsync"),l=_l(o,i,n,s,r,a);n=l.maxOutputSize,s=l.iouThreshold,r=l.scoreThreshold,a=l.softNmsSigma;let u=await Promise.all([o.data(),i.data()]),c=u[0],d=u[1],{selectedIndices:h,selectedScores:p}=kb(c,d,n,s,r,a);return o!==e&&o.dispose(),i!==t&&i.dispose(),{selectedIndices:Ot(h,"int32"),selectedScores:Ot(p)}}var o_=a_;function i_(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY,a=!1){let o=D(e,"boxes","nonMaxSuppression"),i=D(t,"scores","nonMaxSuppression"),l=_l(o,i,n,s,r,null),u=l.maxOutputSize,c=l.iouThreshold,d=l.scoreThreshold,h={boxes:o,scores:i},p={maxOutputSize:u,iouThreshold:c,scoreThreshold:d,padToMaxOutputSize:a},f=L.runKernel(Gi,h,p);return{selectedIndices:f[0],validOutputs:f[1]}}var l_=V({nonMaxSuppressionPadded_:i_});async function u_(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY,a=!1){let o=D(e,"boxes","nonMaxSuppressionAsync"),i=D(t,"scores","nonMaxSuppressionAsync"),l=_l(o,i,n,s,r,null),u=l.maxOutputSize,c=l.iouThreshold,d=l.scoreThreshold,[h,p]=await Promise.all([o.data(),i.data()]),{selectedIndices:f,validOutputs:m}=wb(h,p,u,c,d,a);return o!==e&&o.dispose(),i!==t&&i.dispose(),{selectedIndices:Ot(f,"int32"),validOutputs:Ie(m,"int32")}}var c_=u_;function d_(e,t,n=!1,s=!1){let r=D(e,"images","resizeBilinear");P(r.rank===3||r.rank===4,()=>`Error in resizeBilinear: x must be rank 3 or 4, but got rank ${r.rank}.`),P(t.length===2,()=>`Error in resizeBilinear: new shape must 2D, but got shape ${t}.`),P(s===!1||n===!1,()=>"Error in resizeBilinear: If halfPixelCenters is true, alignCorners must be false.");let a=r,o=!1;r.rank===3&&(o=!0,a=U(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let[]=t,i={images:a},l={alignCorners:n,halfPixelCenters:s,size:t},u=L.runKernel(Ya,i,l);return o?U(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var h_=V({resizeBilinear_:d_});function p_(e,t,n=!1,s=!1){let r=D(e,"images","resizeNearestNeighbor");P(r.rank===3||r.rank===4,()=>`Error in resizeNearestNeighbor: x must be rank 3 or 4, but got rank ${r.rank}.`),P(t.length===2,()=>`Error in resizeNearestNeighbor: new shape must 2D, but got shape ${t}.`),P(r.dtype==="float32"||r.dtype==="int32",()=>"`images` must have `int32` or `float32` as dtype"),P(s===!1||n===!1,()=>"Error in resizeNearestNeighbor: If halfPixelCenters is true, alignCorners must be false.");let a=r,o=!1;r.rank===3&&(o=!0,a=U(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let[]=t,i={images:a},l={alignCorners:n,halfPixelCenters:s,size:t},u=L.runKernel(Mu,i,l);return o?U(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var f_=V({resizeNearestNeighbor_:p_});function m_(e,t="binary",n=!1,s=.5){let r=D(e,"image","threshold"),a=.2989,o=.587,i=.114,l=r.shape[0]*r.shape[1],u=z(Ot([s]),255),c,d,h,p;if(P(r.rank===3,()=>`Error in threshold: image must be rank 3,but got rank ${r.rank}.`),P(r.shape[2]===3||r.shape[2]===1,()=>`Error in threshold: image color channel must be equal to 3 or 1but got ${r.shape[2]}.`),P(r.dtype==="int32"||r.dtype==="float32",()=>`Error in dtype: image dtype must be int32 or float32,but got dtype ${r.dtype}.`),P(t==="otsu"||t==="binary",()=>`Method must be binary or otsu, but was ${t}`),r.shape[2]===3){[c,d,h]=nn(r,[1,1,1],-1);let A=z(c,a),g=z(d,o),y=z(h,i);p=ae(ae(A,g),y)}else p=e;if(t==="otsu"){let A=dA(ce(EA(p),"int32"),on([]),256);u=A_(A,l)}let f=n?So(p,u):Vn(p,u);return ce(z(f,255),"int32")}function A_(e,t){let n=Ot([-1]),s=Ot([0]),r=Ot([0]),a,o,i,l,u,c;for(let d=0;d<e.size-1;d++){a=Re(e,0,d+1),o=Re(e,d+1),u=de(ve(a),t),c=de(ve(o),t);let h=ve(z(a,Rl(0,a.size)));i=de(h,ve(a));let p=Sl(o.shape,a.size),f=ae(Rl(0,o.size),p),m=z(o,f);l=de(ve(m),ve(o));let A=Ae(i,l),g=Ae(i,l),y=z(u,c);r=z(z(y,A),g);let x=Vn(r,s);s=gn(x,r,s),n=gn(x,Ot([d]),n)}return n}var g_=V({threshold_:m_});function y_(e,t,n="nearest",s="constant",r=0,a){let o=D(e,"image","transform","float32"),i=D(t,"transforms","transform","float32");P(o.rank===4,()=>`Error in transform: image must be rank 4,but got rank ${o.rank}.`),P(i.rank===2&&(i.shape[0]===o.shape[0]||i.shape[0]===1)&&i.shape[1]===8,()=>"Error in transform: Input transform should be batch x 8 or 1 x 8"),P(a==null||a.length===2,()=>`Error in transform: outputShape must be [height, width] or null, but got ${a}.`);let l={image:o,transforms:i},u={interpolation:n,fillMode:s,fillValue:r,outputShape:a};return L.runKernel(ul,l,u)}var x_=V({transform_:y_});function b_(e,t,n){P(t%1==0,()=>`bandPart(): numLower must be an integer, got ${t}.`),P(n%1==0,()=>`bandPart(): numUpper must be an integer, got ${n}.`);let s=D(e,"a","bandPart");P(s.rank>=2,()=>`bandPart(): Rank must be at least 2, got ${s.rank}.`);let r=s.shape,[a,o]=s.shape.slice(-2);if(!(t<=a))throw new Error(`bandPart(): numLower (${t}) must not be greater than the number of rows (${a}).`);if(!(n<=o))throw new Error(`bandPart(): numUpper (${n}) must not be greater than the number of columns (${o}).`);t<0&&(t=a),n<0&&(n=o);let i=U(Rl(0,a,1,"int32"),[-1,1]),l=Rl(0,o,1,"int32"),u=Ae(i,l),c=Rs(So(u,Ie(+t,"int32")),Io(u,Ie(-n,"int32"))),d=Dt([a,o],s.dtype);return U(Nn(ds(U(s,[-1,a,o])).map(h=>gn(c,h,d))),r)}var v_=V({bandPart_:b_});function w_(e){let t;if(Array.isArray(e)){t=!1,P(e!=null&&e.length>0,()=>"Gram-Schmidt process: input must not be null, undefined, or empty");let r=e[0].shape[0];for(let a=1;a<e.length;++a)P(e[a].shape[0]===r,()=>`Gram-Schmidt: Non-unique lengths found in the input vectors: (${e[a].shape[0]} vs. ${r})`)}else t=!0,e=nn(e,e.shape[0],0).map(r=>ot(r,[0]));P(e.length<=e[0].shape[0],()=>`Gram-Schmidt: Number of vectors (${e.length}) exceeds number of dimensions (${e[0].shape[0]}).`);let n=[],s=e;for(let r=0;r<e.length;++r)n.push(L.tidy(()=>{let a=s[r];if(r>0)for(let o=0;o<r;++o){let i=z(ve(z(n[o],a)),n[o]);a=Ae(a,i)}return de(a,LA(a,"euclidean"))}));return t?Nn(n,0):n}var k_=V({gramSchmidt_:w_});function I_(e,t=!1){if(P(e.rank>=2,()=>`qr() requires input tensor to have a rank >= 2, but got rank ${e.rank}`),e.rank===2)return Sb(e,t);{let n=e.shape.slice(0,e.shape.length-2).reduce((l,u)=>l*u),s=ds(U(e,[n,e.shape[e.shape.length-2],e.shape[e.shape.length-1]]),0),r=[],a=[];s.forEach(l=>{let[u,c]=Sb(l,t);r.push(u),a.push(c)});let o=U(Nn(r,0),e.shape),i=U(Nn(a,0),e.shape);return[o,i]}}function Sb(e,t=!1){return L.tidy(()=>{P(e.shape.length===2,()=>`qr2d() requires a 2D Tensor, but got a ${e.shape.length}D Tensor.`);let n=e.shape[0],s=e.shape[1],r=yA(n),a=Ns(e),o=_s([[1]],[1,1]),i=Ns(o),l=n>=s?s:n;for(let u=0;u<l;++u){let c=a,d=i,h=r;[i,a,r]=L.tidy(()=>{let p=Re(a,[u,u],[n-u,1]),f=LA(p),m=Re(a,[u,u],[1,1]),A=gn(Vn(m,0),_s([[-1]]),_s([[1]])),g=Ae(m,z(A,f)),y=de(p,g);y.shape[0]===1?i=Ns(o):i=ht([o,Re(y,[1,0],[y.shape[0]-1,y.shape[1]])],0);let x=St(de(We(A,g),f)),b=Re(a,[u,0],[n-u,s]),v=z(x,i),k=je(i);if(u===0)a=Ae(b,We(v,We(k,b)));else{let E=Ae(b,We(v,We(k,b)));a=ht([Re(a,[0,0],[u,s]),E],0)}let w=je(v),C=Re(r,[0,u],[n,r.shape[1]-u]);if(u===0)r=Ae(C,We(We(C,i),w));else{let E=Ae(C,We(We(C,i),w));r=ht([Re(r,[0,0],[n,u]),E],1)}return[i,a,r]}),K([c,d,h])}return!t&&n>s&&(r=Re(r,[0,0],[n,s]),a=Re(a,[0,0],[s,s])),[r,a]})}var S_=V({qr_:I_}),yn;(function(e){e[e.NONE=0]="NONE",e[e.MEAN=1]="MEAN",e[e.SUM=2]="SUM",e[e.SUM_BY_NONZERO_WEIGHTS=3]="SUM_BY_NONZERO_WEIGHTS"})(yn||(yn={}));function C_(e,t,n=yn.SUM_BY_NONZERO_WEIGHTS){let s=D(e,"losses","computeWeightedLoss"),r=null;t!=null&&(r=D(t,"weights","computeWeightedLoss"));let a=r==null?s:z(s,r);if(n===yn.NONE)return a;if(n===yn.SUM)return ve(a);if(n===yn.MEAN){if(r==null)return Et(a);{let o=s.size/r.size,i=de(ve(a),ve(r));return o>1?de(i,Ie(o)):i}}if(n===yn.SUM_BY_NONZERO_WEIGHTS){if(r==null)return de(ve(a),Ie(s.size));{let o=z(r,Un(s.shape)),i=ce(ve(Nl(o,Ie(0))),"float32");return de(ve(a),i)}}throw Error(`Unknown reduction: ${n}`)}var yr=V({computeWeightedLoss_:C_});function T_(e,t,n,s=yn.SUM_BY_NONZERO_WEIGHTS){let r=D(e,"labels","absoluteDifference"),a=D(t,"predictions","absoluteDifference"),o=null;n!=null&&(o=D(n,"weights","absoluteDifference")),fn(r.shape,a.shape,"Error in absoluteDifference: ");let i=Wt(Ae(r,a));return yr(i,o,s)}var N_=V({absoluteDifference_:T_});function E_(e,t,n,s,r=yn.SUM_BY_NONZERO_WEIGHTS){let a=D(e,"labels","cosineDistance"),o=D(t,"predictions","cosineDistance"),i=null;s!=null&&(i=D(s,"weights","cosineDistance")),fn(a.shape,o.shape,"Error in cosineDistance: ");let l=Ie(1),u=Ae(l,ve(z(a,o),n,!0));return yr(u,i,r)}var R_=V({cosineDistance_:E_});function __(e,t,n,s=yn.SUM_BY_NONZERO_WEIGHTS){let r=D(e,"labels","hingeLoss"),a=D(t,"predictions","hingeLoss"),o=null;n!=null&&(o=D(n,"weights","hingeLoss")),fn(r.shape,a.shape,"Error in hingeLoss: ");let i=Ie(1);r=Ae(z(Ie(2),r),i);let l=Ys(Ae(i,z(r,a)));return yr(l,o,s)}var $_=V({hingeLoss_:__});function F_(e,t,n,s=1,r=yn.SUM_BY_NONZERO_WEIGHTS){let a=D(e,"labels","huberLoss"),o=D(t,"predictions","huberLoss"),i=null;n!=null&&(i=D(n,"weights","huberLoss")),fn(a.shape,o.shape,"Error in huberLoss: ");let l=Ie(s),u=Wt(Ae(o,a)),c=rc(u,l),d=Ae(u,c),h=ae(z(Ie(.5),lt(c)),z(l,d));return yr(h,i,r)}var D_=V({huberLoss_:F_});function O_(e,t,n,s=1e-7,r=yn.SUM_BY_NONZERO_WEIGHTS){let a=D(e,"labels","logLoss"),o=D(t,"predictions","logLoss"),i=null;n!=null&&(i=D(n,"weights","logLoss")),fn(a.shape,o.shape,"Error in logLoss: ");let l=Ie(1),u=Ie(s),c=St(z(a,is(ae(o,u)))),d=z(Ae(l,a),is(ae(Ae(l,o),u))),h=Ae(c,d);return yr(h,i,r)}var P_=V({logLoss_:O_});function M_(e,t,n,s=yn.SUM_BY_NONZERO_WEIGHTS){let r=D(e,"labels","meanSquaredError"),a=D(t,"predictions","meanSquaredError"),o=null;n!=null&&(o=D(n,"weights","meanSquaredError")),fn(r.shape,a.shape,"Error in meanSquaredError: ");let i=PA(r,a);return yr(i,o,s)}var z_=V({meanSquaredError_:M_});function L_(e,t){let n=D(e,"labels","sigmoidCrossEntropyWithLogits"),s=D(t,"logits","sigmoidCrossEntropyWithLogits");fn(n.shape,s.shape,"Error in sigmoidCrossEntropyWithLogits: ");let r=Ys(s),a=z(s,n),o=Bh(os(St(Wt(s))));return ae(Ae(r,a),o)}function B_(e,t,n,s=0,r=yn.SUM_BY_NONZERO_WEIGHTS){let a=D(e,"multiClassLabels","sigmoidCrossEntropy"),o=D(t,"logits","sigmoidCrossEntropy"),i=null;if(n!=null&&(i=D(n,"weights","sigmoidCrossEntropy")),fn(a.shape,o.shape,"Error in sigmoidCrossEntropy: "),s>0){let u=Ie(s),c=Ie(1),d=Ie(.5);a=ae(z(a,Ae(c,u)),z(d,u))}let l=L_(a,o);return yr(l,i,r)}var W_=V({sigmoidCrossEntropy_:B_});function V_(e,t,n=-1){if(n===-1&&(n=t.rank-1),n!==t.rank-1)throw Error(`Softmax cross entropy along a non-last dimension is not yet supported. Labels / logits was rank ${t.rank} and dim was ${n}`);return Zs((r,a,o)=>{let l=Zx(a,[n],!0),u=Ae(ce(a,"float32"),l);o([r,u]);let c=St(z(u,r));return{value:ve(c,[n]),gradFunc:(p,f)=>{let[m,A]=f,g=Co(p.shape,[n]);return[z(U(p,g),Ae(ce(m,"float32"),os(A))),z(U(p,g),Ae(os(A),ce(m,"float32")))]}}})(e,t)}function U_(e,t,n,s=0,r=yn.SUM_BY_NONZERO_WEIGHTS){let a=D(e,"onehotLabels","softmaxCrossEntropy"),o=D(t,"logits","softmaxCrossEntropy"),i=null;if(n!=null&&(i=D(n,"weights","softmaxCrossEntropy")),fn(a.shape,o.shape,"Error in softmaxCrossEntropy: "),s>0){let u=Ie(s),c=Ie(1),d=Ie(a.shape[1]);a=ae(z(a,Ae(c,u)),de(u,d))}let l=V_(a,o);return yr(l,i,r)}var H_=V({softmaxCrossEntropy_:U_});function G_(e,t,n,s){let r=D(e,"indices","sparseFillEmptyRows"),a=D(t,"values","sparseFillEmptyRows"),o=D(n,"denseShape","sparseFillEmptyRows"),i=D(s,"defaultValue","sparseFillEmptyRows",a.dtype);if(r.rank!==2)throw new Error(`Indices should be Tensor2D but received shape
|
|
${r.shape}`);if(a.rank!==1)throw new Error(`Values should be Tensor1D but received shape ${a.shape}`);if(o.rank!==1)throw new Error(`Dense shape should be Tensor1D but received shape ${o.shape}`);if(i.rank!==0)throw new Error(`Default value should be a scalar but received shape ${i.shape}`);let l={indices:r,values:a,denseShape:o,defaultValue:i},u=L.runKernel(dh,l);return{outputIndices:u[0],outputValues:u[1],emptyRowIndicator:u[2],reverseIndexMap:u[3]}}var j_=V({sparseFillEmptyRows_:G_});function q_(e,t,n){let s=D(e,"inputIndices","sparseReshape"),r=D(t,"inputShape","sparseReshape"),a=D(n,"newShape","sparseReshape");if(s.rank!==2)throw new Error(`Input indices should be Tensor2D but received shape
|
|
${s.shape}`);if(r.rank!==1)throw new Error(`Input shape should be Tensor1D but received shape ${r.shape}`);if(a.rank!==1)throw new Error(`New shape should be Tensor1D but received shape ${a.shape}`);let o={inputIndices:s,inputShape:r,newShape:a},i=L.runKernel(hh,o);return{outputIndices:i[0],outputShape:i[1]}}var X_=V({sparseReshape_:q_});function K_(e,t,n){let s=D(e,"data","sparseSegmentMean"),r=D(t,"indices","sparseSegmentMean"),a=D(n,"segmentIds","sparseSegmentMean");if(s.rank<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.rank!==1)throw new Error(`Indices should be Tensor1D but received shape
|
|
${r.shape}`);if(a.rank!==1)throw new Error(`Segment ids should be Tensor1D but received shape
|
|
${a.shape}`);let o={data:s,indices:r,segmentIds:a};return L.runKernel(ph,o)}var Z_=V({sparseSegmentMean_:K_});function Y_(e,t,n){let s=D(e,"data","sparseSegmentSum"),r=D(t,"indices","sparseSegmentSum"),a=D(n,"segmentIds","sparseSegmentSum");if(s.rank<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.rank!==1)throw new Error(`Indices should be Tensor1D but received shape
|
|
${r.shape}`);if(a.rank!==1)throw new Error(`Segment ids should be Tensor1D but received shape
|
|
${a.shape}`);let o={data:s,indices:r,segmentIds:a};return L.runKernel(fh,o)}var J_=V({sparseSegmentSum_:Y_});function Q_(e,t,n,s,r,a,o,i){let l=D(e,"data","stringNGrams","string");if(l.dtype!=="string")throw new Error("Data must be of datatype string");if(l.shape.length!==1)throw new Error(`Data must be a vector, saw: ${l.shape}`);let u=D(t,"dataSplits","stringNGrams");if(u.dtype!=="int32")throw new Error("Data splits must be of datatype int32");let c={separator:n,nGramWidths:s,leftPad:r,rightPad:a,padWidth:o,preserveShortSequences:i},d={data:l,dataSplits:u},h=L.runKernel(Ah,d,c);return{nGrams:h[0],nGramsSplits:h[1]}}var e$=V({stringNGrams_:Q_});function t$(e,t,n=!0){let s=D(e,"input","stringSplit","string"),r=D(t,"delimiter","stringSplit","string");if(s.rank!==1)throw new Error(`Input should be Tensor1D but received shape ${s.shape}`);if(r.rank!==0)throw new Error(`Delimiter should be a scalar but received shape ${r.shape}`);let a={skipEmpty:n},o={input:s,delimiter:r},i=L.runKernel(gh,o,a);return{indices:i[0],values:i[1],shape:i[2]}}var n$=V({stringSplit_:t$});function s$(e,t){let n=D(e,"input","stringToHashBucketFast","string"),s={numBuckets:t};if(t<=0)throw new Error("Number of buckets must be at least 1");let r={input:n};return L.runKernel(yh,r,s)}var r$=V({stringToHashBucketFast_:s$}),a$={fft:Yh,ifft:ic,rfft:Jh,irfft:OA},o$={hammingWindow:PR,hannWindow:xb,frame:bb,stft:BR},_e={flipLeftRight:HR,resizeNearestNeighbor:f_,resizeBilinear:h_,rotateWithOffset:jR,cropAndResize:VR,nonMaxSuppression:XR,nonMaxSuppressionAsync:n_,nonMaxSuppressionWithScore:r_,nonMaxSuppressionWithScoreAsync:o_,nonMaxSuppressionPadded:l_,nonMaxSuppressionPaddedAsync:c_,threshold:g_,transform:x_},Cb={bandPart:v_,gramSchmidt:k_,qr:S_},i$={absoluteDifference:N_,computeWeightedLoss:yr,cosineDistance:R_,hingeLoss:$_,huberLoss:D_,logLoss:P_,meanSquaredError:z_,sigmoidCrossEntropy:W_,softmaxCrossEntropy:H_},uc={sparseFillEmptyRows:j_,sparseReshape:X_,sparseSegmentMean:Z_,sparseSegmentSum:J_},rp={stringNGrams:e$,stringSplit:n$,stringToHashBucketFast:r$},xr=class extends dx{minimize(e,t=!1,n){let{value:s,grads:r}=this.computeGradients(e,n);if(n!=null){let a=n.map(o=>({name:o.name,tensor:r[o.name]}));this.applyGradients(a)}else this.applyGradients(r);return K(r),t?s:(s.dispose(),null)}get iterations(){return this.iterations_==null&&(this.iterations_=0),this.iterations_}incrementIterations(){this.iterations_=this.iterations+1}computeGradients(e,t){return jx(e,t)}dispose(){this.iterations_!=null&&K(this.iterations_)}async saveIterations(){return this.iterations_==null&&(this.iterations_=0),{name:"iter",tensor:Ie(this.iterations_,"int32")}}async getWeights(){throw new Error("getWeights() is not implemented for this optimizer yet.")}async setWeights(e){throw new Error(`setWeights() is not implemented for this optimizer class ${this.getClassName()}`)}async extractIterations(e){return this.iterations_=(await e[0].tensor.data())[0],e.slice(1)}};Object.defineProperty(xr,Symbol.hasInstance,{value:e=>e.minimize!=null&&e.computeGradients!=null&&e.applyGradients!=null});var ap=class extends xr{constructor(e,t,n=null){super();this.learningRate=e,this.rho=t,this.epsilon=n,this.accumulatedGrads=[],this.accumulatedUpdates=[],n==null&&(this.epsilon=L.backend.epsilon())}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=L.registeredVariables[n],a=!1;this.accumulatedGrads[s]==null&&(this.accumulatedGrads[s]={originalName:`${n}/accum_grad`,variable:H(()=>qe(r).variable(a))}),this.accumulatedUpdates[s]==null&&(this.accumulatedUpdates[s]={originalName:`${n}/accum_var`,variable:H(()=>qe(r).variable(a))});let o=Array.isArray(e)?e[s].tensor:e[n];if(o==null)return;let i=this.accumulatedGrads[s].variable,l=this.accumulatedUpdates[s].variable;H(()=>{let u=ae(z(i,this.rho),z(lt(o),1-this.rho)),c=z(de(ln(ae(l,this.epsilon)),ln(ae(i,this.epsilon))),o),d=ae(z(l,this.rho),z(lt(c),1-this.rho));i.assign(u),l.assign(d);let h=ae(z(c,-this.learningRate),r);r.assign(h)})}),this.incrementIterations()}dispose(){this.accumulatedUpdates!=null&&(K(this.accumulatedGrads.map(e=>e.variable)),K(this.accumulatedUpdates.map(e=>e.variable)))}async getWeights(){let e=[...this.accumulatedGrads,...this.accumulatedUpdates];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=e.length/2,n=!1;this.accumulatedGrads=e.slice(0,t).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})),this.accumulatedUpdates=e.slice(t,t*2).map(s=>({originalName:s.name,variable:s.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,rho:this.rho,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.rho,t.epsilon)}};ap.className="Adadelta";Vr(ap);var op=class extends xr{constructor(e,t=.1){super();this.learningRate=e,this.initialAccumulatorValue=t,this.accumulatedGrads=[]}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=L.registeredVariables[n];if(this.accumulatedGrads[s]==null){let i=!1;this.accumulatedGrads[s]={originalName:`${n}/accumulator`,variable:H(()=>Sl(r.shape,this.initialAccumulatorValue).variable(i))}}let a=Array.isArray(e)?e[s].tensor:e[n];if(a==null)return;let o=this.accumulatedGrads[s].variable;H(()=>{let i=ae(o,lt(a));o.assign(i);let l=ae(z(de(a,ln(ae(i,L.backend.epsilon()))),-this.learningRate),r);r.assign(l)})}),this.incrementIterations()}dispose(){this.accumulatedGrads!=null&&K(this.accumulatedGrads.map(e=>e.variable))}async getWeights(){return[await this.saveIterations()].concat(this.accumulatedGrads.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulatedGrads=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,initialAccumulatorValue:this.initialAccumulatorValue}}static fromConfig(e,t){return new e(t.learningRate,t.initialAccumulatorValue)}};op.className="Adagrad";Vr(op);var ip=class extends xr{constructor(e,t,n,s=null){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=s,this.accumulatedFirstMoment=[],this.accumulatedSecondMoment=[],H(()=>{this.accBeta1=Ie(t).variable(),this.accBeta2=Ie(n).variable()}),s==null&&(this.epsilon=L.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);H(()=>{let n=Ae(1,this.accBeta1),s=Ae(1,this.accBeta2);t.forEach((r,a)=>{let o=L.registeredVariables[r],i=!1;this.accumulatedFirstMoment[a]==null&&(this.accumulatedFirstMoment[a]={originalName:`${r}/m`,variable:H(()=>qe(o).variable(i))}),this.accumulatedSecondMoment[a]==null&&(this.accumulatedSecondMoment[a]={originalName:`${r}/v`,variable:H(()=>qe(o).variable(i))});let l=Array.isArray(e)?e[a].tensor:e[r];if(l==null)return;let u=this.accumulatedFirstMoment[a].variable,c=this.accumulatedSecondMoment[a].variable,d=ae(z(u,this.beta1),z(l,1-this.beta1)),h=ae(z(c,this.beta2),z(lt(l),1-this.beta2)),p=de(d,n),f=de(h,s);u.assign(d),c.assign(h);let m=ae(z(de(p,ae(ln(f),this.epsilon)),-this.learningRate),o);o.assign(m)}),this.accBeta1.assign(z(this.accBeta1,this.beta1)),this.accBeta2.assign(z(this.accBeta2,this.beta2))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.accBeta2.dispose(),this.accumulatedFirstMoment!=null&&K(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedSecondMoment!=null&&K(this.accumulatedSecondMoment.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedFirstMoment,...this.accumulatedSecondMoment];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e),H(()=>{this.accBeta1.assign(jr(this.beta1,this.iterations_+1)),this.accBeta2.assign(jr(this.beta2,this.iterations_+1))});let t=e.length/2,n=!1;this.accumulatedFirstMoment=e.slice(0,t).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})),this.accumulatedSecondMoment=e.slice(t,t*2).map(s=>({originalName:s.name,variable:s.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon)}};ip.className="Adam";Vr(ip);var lp=class extends xr{constructor(e,t,n,s=null,r=0){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=s,this.decay=r,this.accumulatedFirstMoment=[],this.accumulatedWeightedInfNorm=[],H(()=>{this.iteration=Ie(0).variable(),this.accBeta1=Ie(t).variable()}),s==null&&(this.epsilon=L.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);H(()=>{let n=Ae(1,this.accBeta1),s=de(-this.learningRate,ae(z(this.iteration,this.decay),1));t.forEach((r,a)=>{let o=L.registeredVariables[r],i=!1;this.accumulatedFirstMoment[a]==null&&(this.accumulatedFirstMoment[a]={originalName:`${r}/m`,variable:qe(o).variable(i)}),this.accumulatedWeightedInfNorm[a]==null&&(this.accumulatedWeightedInfNorm[a]={originalName:`${r}/v`,variable:qe(o).variable(i)});let l=Array.isArray(e)?e[a].tensor:e[r];if(l==null)return;let u=this.accumulatedFirstMoment[a].variable,c=this.accumulatedWeightedInfNorm[a].variable,d=ae(z(u,this.beta1),z(l,1-this.beta1)),h=z(c,this.beta2),p=Wt(l),f=gr(h,p);u.assign(d),c.assign(f);let m=ae(z(de(s,n),de(d,ae(f,this.epsilon))),o);o.assign(m)}),this.iteration.assign(ae(this.iteration,1)),this.accBeta1.assign(z(this.accBeta1,this.beta1))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.iteration.dispose(),this.accumulatedFirstMoment!=null&&K(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedWeightedInfNorm!=null&&K(this.accumulatedWeightedInfNorm.map(e=>e.variable))}async getWeights(){throw new Error("getWeights() is not implemented for Adamax yet.")}async setWeights(e){throw new Error("setWeights() is not implemented for Adamax yet.")}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon,decay:this.decay}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon,t.decay)}};lp.className="Adamax";Vr(lp);var cc=class extends xr{constructor(e){super();this.learningRate=e,this.setLearningRate(e)}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=Array.isArray(e)?e[s].tensor:e[n];if(r==null)return;let a=L.registeredVariables[n];H(()=>{let o=ae(z(this.c,r),a);a.assign(o)})}),this.incrementIterations()}setLearningRate(e){this.learningRate=e,this.c!=null&&this.c.dispose(),this.c=Kt(Ie(-e))}dispose(){this.c.dispose()}async getWeights(){return[await this.saveIterations()]}async setWeights(e){if(e=await this.extractIterations(e),e.length!==0)throw new Error("SGD optimizer does not have settable weights.")}getConfig(){return{learningRate:this.learningRate}}static fromConfig(e,t){return new e(t.learningRate)}};cc.className="SGD";Vr(cc);var up=class extends cc{constructor(e,t,n=!1){super(e);this.learningRate=e,this.momentum=t,this.useNesterov=n,this.accumulations=[],this.m=Ie(this.momentum)}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=L.registeredVariables[n];if(this.accumulations[s]==null){let i=!1;this.accumulations[s]={originalName:`${n}/momentum`,variable:H(()=>qe(r).variable(i))}}let a=this.accumulations[s].variable,o=Array.isArray(e)?e[s].tensor:e[n];o!=null&&H(()=>{let i,l=ae(z(this.m,a),o);this.useNesterov?i=ae(z(this.c,ae(o,z(l,this.m))),r):i=ae(z(this.c,l),r),a.assign(l),r.assign(i)})}),this.incrementIterations()}dispose(){this.m.dispose(),this.accumulations!=null&&K(this.accumulations.map(e=>e.variable))}setMomentum(e){this.momentum=e}async getWeights(){return[await this.saveIterations()].concat(this.accumulations.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulations=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,momentum:this.momentum,useNesterov:this.useNesterov}}static fromConfig(e,t){return new e(t.learningRate,t.momentum,t.useNesterov)}};up.className="Momentum";Vr(up);var cp=class extends xr{constructor(e,t=.9,n=0,s=null,r=!1){super();if(this.learningRate=e,this.decay=t,this.momentum=n,this.epsilon=s,this.accumulatedMeanSquares=[],this.accumulatedMoments=[],this.accumulatedMeanGrads=[],this.centered=r,s==null&&(this.epsilon=L.backend.epsilon()),e==null)throw new Error("learningRate for RMSPropOptimizer must be defined.")}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=L.registeredVariables[n],a=!1;this.accumulatedMeanSquares[s]==null&&(this.accumulatedMeanSquares[s]={originalName:`${n}/rms`,variable:H(()=>qe(r).variable(a))}),this.accumulatedMoments[s]==null&&(this.accumulatedMoments[s]={originalName:`${n}/momentum`,variable:H(()=>qe(r).variable(a))}),this.accumulatedMeanGrads[s]==null&&this.centered&&(this.accumulatedMeanGrads[s]={originalName:`${n}/mg`,variable:H(()=>qe(r).variable(a))});let o=Array.isArray(e)?e[s].tensor:e[n];if(o==null)return;let i=this.accumulatedMeanSquares[s].variable,l=this.accumulatedMoments[s].variable;H(()=>{let u=ae(z(i,this.decay),z(lt(o),1-this.decay));if(this.centered){let c=this.accumulatedMeanGrads[s].variable,d=ae(z(c,this.decay),z(o,1-this.decay)),h=de(z(o,this.learningRate),ln(Ae(u,ae(lt(d),this.epsilon)))),p=ae(z(l,this.momentum),h);i.assign(u),c.assign(d),l.assign(p);let f=Ae(r,p);r.assign(f)}else{let c=ae(z(i,this.decay),z(lt(o),1-this.decay)),d=ae(z(l,this.momentum),de(z(o,this.learningRate),ln(ae(c,this.epsilon))));i.assign(c),l.assign(d);let h=Ae(r,d);r.assign(h)}})}),this.incrementIterations()}dispose(){this.accumulatedMeanSquares!=null&&K(this.accumulatedMeanSquares.map(e=>e.variable)),this.accumulatedMeanGrads!=null&&this.centered&&K(this.accumulatedMeanGrads.map(e=>e.variable)),this.accumulatedMoments!=null&&K(this.accumulatedMoments.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedMeanSquares,...this.accumulatedMoments];return this.centered&&e.push(...this.accumulatedMeanGrads),[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=this.centered?e.length/3:e.length/2,n=!1;this.accumulatedMeanSquares=e.slice(0,t).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})),this.accumulatedMoments=e.slice(t,t*2).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})),this.centered&&(this.accumulatedMeanGrads=e.slice(t*2,t*3).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})))}getConfig(){return{learningRate:this.learningRate,decay:this.decay,momentum:this.momentum,epsilon:this.epsilon,centered:this.centered}}static fromConfig(e,t){return new e(t.learningRate,t.decay,t.momentum,t.epsilon,t.centered)}};cp.className="RMSProp";Vr(cp);var To=class{static sgd(e){return new cc(e)}static momentum(e,t,n=!1){return new up(e,t,n)}static rmsprop(e,t=.9,n=0,s=null,r=!1){return new cp(e,t,n,s,r)}static adam(e=.001,t=.9,n=.999,s=null){return new ip(e,t,n,s)}static adadelta(e=.001,t=.95,n=null){return new ap(e,t,n)}static adamax(e=.002,t=.9,n=.999,s=null,r=0){return new lp(e,t,n,s,r)}static adagrad(e,t=.1){return new op(e,t)}},No={sgd:To.sgd,momentum:To.momentum,adadelta:To.adadelta,adagrad:To.adagrad,rmsprop:To.rmsprop,adamax:To.adamax,adam:To.adam},l$=(()=>typeof requestAnimationFrame!="undefined"?requestAnimationFrame:typeof setImmediate!="undefined"?setImmediate:e=>e())();function dp(){return new Promise(e=>l$(()=>e()))}var $={};Pe($,{ERF_A1:()=>x$,ERF_A2:()=>b$,ERF_A3:()=>v$,ERF_A4:()=>w$,ERF_A5:()=>k$,ERF_P:()=>y$,PARALLELIZE_THRESHOLD:()=>HA,SELU_SCALE:()=>Nb,SELU_SCALEALPHA:()=>Tb,applyActivation:()=>np,assertAndGetBroadcastShape:()=>mt,assertAxesAreInnerMostDims:()=>wN,assertParamsConsistent:()=>u$,assignToTypedArray:()=>_$,axesAreInnerMostDims:()=>vA,calculateShapes:()=>Q5,checkEinsumDimSizes:()=>M$,combineLocations:()=>qx,complexWithEvenIndex:()=>N$,complexWithOddIndex:()=>E$,computeConv2DInfo:()=>Qu,computeConv3DInfo:()=>Sx,computeDefaultPad:()=>lA,computeDilation2DInfo:()=>VC,computeOptimalWindowSize:()=>d$,computeOutAndReduceShapes:()=>Xx,computeOutShape:()=>c$,computePool2DInfo:()=>Ix,computePool3DInfo:()=>UC,convertConv2DDataFormat:()=>Cx,decodeEinsumEquation:()=>O$,eitherStridesOrDilationsAreOne:()=>Ks,expandShapeToKeepDim:()=>Co,exponent:()=>F$,exponents:()=>$$,fromStringArrayToUint8:()=>j$,fromUint8ToStringArray:()=>G$,getAxesPermutation:()=>Kx,getBroadcastDims:()=>FT,getComplexWithIndex:()=>R$,getEinsumComputePath:()=>z$,getEinsumPermutation:()=>P$,getFusedBiasGradient:()=>tp,getFusedDyActivation:()=>ep,getImageCenter:()=>h$,getInnerMostAxes:()=>kN,getPermuted:()=>f$,getReductionAxes:()=>Vt,getReshaped:()=>p$,getReshapedPermuted:()=>m$,getSliceBeginCoords:()=>A$,getSliceSize:()=>g$,getUndoAxesPermutation:()=>wA,isIdentityPermutation:()=>L$,log:()=>S$,mergeRealAndImagArrays:()=>C$,prepareAndValidate:()=>J5,prepareSplitSize:()=>W$,segment_util:()=>_b,shouldFuse:()=>sp,slice_util:()=>An,splitRealAndImagArrays:()=>T$,tupleValuesAreOne:()=>Ur,upcastType:()=>bs,validateInput:()=>eA,validateUpdateShape:()=>Qm,warn:()=>I$});function u$(e,t){let n=e[0].length;e.forEach((r,a)=>{P(r.length===n,()=>`Error in concat${n}D: rank of tensors[${a}] must be the same as the rank of the rest (${n})`)}),P(t>=0&&t<n,()=>`Error in concat${n}D: axis must be between 0 and ${n-1}.`);let s=e[0];e.forEach((r,a)=>{for(let o=0;o<n;o++)P(o===t||r[o]===s[o],()=>`Error in concat${n}D: Shape of tensors[${a}] (${r}) does not match the shape of the rest (${s}) along the non-concatenated axis ${a}.`)})}function c$(e,t){let n=e[0].slice();for(let s=1;s<e.length;s++)n[t]+=e[s][t];return n}var HA=30;function d$(e){return e<=HA?e:Pd(e,Math.floor(Math.sqrt(e)))}function h$(e,t,n){let s=n*(typeof e=="number"?e:e[0]),r=t*(typeof e=="number"?e:e[1]);return[s,r]}function p$(e,t,n,s=!0){let r=[];if(s)r=r.concat(t.slice(0)),r.push(e[0]/n),r=r.concat(e.slice(1));else{r=r.concat(e[0]);let a=t.length;for(let o=0;o<a;++o)r=r.concat([e[o+1]/t[o],t[o]]);r=r.concat(e.slice(a+1))}return r}function f$(e,t,n=!0){let s=[];if(n){s.push(t);for(let r=t+1;r<e;++r)r<=2*t?(s.push(r),s.push(r-(t+1))):s.push(r)}else{let r=[],a=[];for(let o=1;o<e;++o)o>=t*2+1||o%2==1?a.push(o):r.push(o);s.push(...r),s.push(0),s.push(...a)}return s}function m$(e,t,n,s=!0){let r=[];s?r.push(e[0]/n):r.push(e[0]*n);for(let a=1;a<e.length;++a)a<=t.length?s?r.push(t[a-1]*e[a]):r.push(e[a]/t[a-1]):r.push(e[a]);return r}function A$(e,t){let n=[0];for(let s=0;s<t;++s)n.push(e[s][0]);return n}function g$(e,t,n){let s=e.slice(0,1);for(let r=0;r<n;++r)s.push(e[r+1]-t[r][0]-t[r][1]);return s}var Tb=1.7580993408473768,Nb=1.0507009873554805,y$=.3275911,x$=.254829592,b$=-.284496736,v$=1.421413741,w$=-1.453152027,k$=1.061405429;function I$(...e){ee().getBool("IS_TEST")||console.warn(...e)}function S$(...e){ee().getBool("IS_TEST")||console.log(...e)}function C$(e,t){if(e.length!==t.length)throw new Error(`Cannot merge real and imag arrays of different lengths. real:${e.length}, imag: ${t.length}.`);let n=new Float32Array(e.length*2);for(let s=0;s<n.length;s+=2)n[s]=e[s/2],n[s+1]=t[s/2];return n}function T$(e){let t=new Float32Array(e.length/2),n=new Float32Array(e.length/2);for(let s=0;s<e.length;s+=2)t[s/2]=e[s],n[s/2]=e[s+1];return{real:t,imag:n}}function N$(e){let t=Math.ceil(e.length/4),n=new Float32Array(t),s=new Float32Array(t);for(let r=0;r<e.length;r+=4)n[Math.floor(r/4)]=e[r],s[Math.floor(r/4)]=e[r+1];return{real:n,imag:s}}function E$(e){let t=Math.floor(e.length/4),n=new Float32Array(t),s=new Float32Array(t);for(let r=2;r<e.length;r+=4)n[Math.floor(r/4)]=e[r],s[Math.floor(r/4)]=e[r+1];return{real:n,imag:s}}function R$(e,t){let n=e[t*2],s=e[t*2+1];return{real:n,imag:s}}function _$(e,t,n,s){e[s*2]=t,e[s*2+1]=n}function $$(e,t){let n=new Float32Array(e/2),s=new Float32Array(e/2);for(let r=0;r<Math.ceil(e/2);r++){let a=(t?2:-2)*Math.PI*(r/e);n[r]=Math.cos(a),s[r]=Math.sin(a)}return{real:n,imag:s}}function F$(e,t,n){let s=(n?2:-2)*Math.PI*(e/t),r=Math.cos(s),a=Math.sin(s);return{real:r,imag:a}}var GA="->",D$=/->/g,Eb=",",Rb="...";function O$(e,t){e=e.replace(/\s/g,"");let n=(e.length-e.replace(D$,"").length)/GA.length;if(n<1)throw new Error("Equations without an arrow are not supported.");if(n>1)throw new Error(`Equation must contain exactly one arrow ("${GA}").`);let[s,r]=e.split(GA);P(s.indexOf(Rb)===-1,()=>`The ellipsis notation ("${Rb}") is not supported yet.`);let a=s.split(Eb),o=a.length;if(t!==o)throw new Error(`Expected ${o} input tensors, received ${t}`);if(o>2)throw new Error("Support for more than 2 input tensors is not implemented yet.");let i=[];for(let h=0;h<r.length;++h){let p=r[h];if(!a.some(f=>f.indexOf(p)!==-1))throw new Error(`Output subscripts contain the label ${p} not present in the input subscripts.`);i.indexOf(p)===-1&&i.push(p)}for(let h=0;h<s.length;++h){let p=s[h];i.indexOf(p)===-1&&p!==Eb&&i.push(p)}let l=new Array(a.length);for(let h=0;h<o;++h){if(new Set(a[h].split("")).size!==a[h].length)throw new Error(`Found duplicate axes in input component ${a[h]}. Support for duplicate axes in input is not implemented yet.`);l[h]=[];for(let p=0;p<a[h].length;++p)l[h].push(i.indexOf(a[h][p]))}let u=i.length,c=r.length,d=[];for(let h=c;h<u;++h)d.push(h);return{allDims:i,summedDims:d,idDims:l}}function P$(e,t){let n=new Array(e);n.fill(-1);for(let r=0;r<t.length;++r)n[t[r]]=r;let s=[];for(let r=0;r<e;++r)n[r]===-1&&s.push(r);return n=n.filter(r=>r!==-1),{permutationIndices:n,expandDims:s}}function M$(e,t,n){let s=new Array(e);for(let r=0;r<n.length;++r){let a=n[r].shape;for(let o=0;o<t[r].length;++o)s[t[r][o]]===void 0?s[t[r][o]]=a[o]:P(s[t[r][o]]===a[o],()=>`Expected dimension ${s[t[r][o]]} at axis ${o} of input shaped ${JSON.stringify(a)}, but got dimension ${a[o]}`)}}function z$(e,t){let n=e,s=[],r=0;e.length===0&&n.push(-1),r=e.length+1;for(let o=0;o<r;++o)s.push([]);let a=[];for(let o=0;o<n.length;++o){let i=n[o],l=B$(t,i);for(let u of l)a.indexOf(u)===-1&&(s[o].push(u),a.push(u))}return{path:n,steps:s}}function L$(e){return e.every((t,n)=>t===n)}function B$(e,t){let n=[];for(let s=0;s<e.length;++s)(e[s].length===0||e[s].indexOf(t)!==-1||t===-1)&&n.push(s);return n}function W$(e,t,n=0){let s=[];if(typeof t=="number")P(e.shape[n]%t==0,()=>"Number of splits must evenly divide the axis."),s=new Array(t).fill(e.shape[n]/t);else{let r=t.reduce((o,i)=>(i===-1&&(o+=1),o),0);P(r<=1,()=>"There should be only one negative value in split array.");let a=t.indexOf(-1);if(a!==-1){let o=t.reduce((i,l)=>l>0?i+l:i);t[a]=e.shape[n]-o}P(e.shape[n]===t.reduce((o,i)=>o+i),()=>"The sum of sizes must match the size of the axis dimension."),s=t}return s}var _b={};Pe(_b,{collectGatherOpShapeInfo:()=>H$,computeOutShape:()=>U$,segOpComputeOptimalWindowSize:()=>V$});function V$(e,t){let n=!1,s;for(e<=HA?(s=e,n=!0):s=Pd(e,Math.floor(Math.sqrt(e)));!n;)s>t||s===e?n=!0:s=Pd(e,s+1);return s}function U$(e,t,n){let s=[],r=e.length;for(let a=0;a<r;a++)a!==t?s.push(e[a]):s.push(n);return s}function H$(e,t,n,s){let r=t.shape.length,a=e.shape.length;if(s!==0&&(s<-r||s>r))throw new Error(`Expect batchDims in the range of [-${r}, ${r}], but got ${s}`);if(s<0&&(s+=r),s>a)throw new Error(`batchDims (${s}) must be less than rank(x) (
|
|
${a}).`);if(n<s)throw new Error(`batchDims (${s}) must be less than or equal to axis (${n}).`);for(let d=0;d<s;++d)if(e.shape[d]!==t.shape[d])throw new Error(`x.shape[${d}]: ${e.shape[d]} should be equal to indices.shape[${d}]: ${t.shape[d]}.`);let o=e.shape[n],i=[],l=1,u=1,c=1;for(let d=0;d<s;++d)i.push(e.shape[d]),l*=e.shape[d];for(let d=s;d<n;d++)i.push(e.shape[d]),u*=e.shape[d];for(let d=s;d<r;d++)i.push(t.shape[d]);for(let d=n+1;d<a;d++)i.push(e.shape[d]),c*=e.shape[d];return{batchSize:l,sliceSize:c,outerSize:u,dimSize:o,outputShape:i}}function G$(e){try{return e.map(t=>Ih(t))}catch(t){throw new Error(`Failed to decode encoded string bytes into utf-8, error: ${t}`)}}function j$(e){return e.map(t=>Uu(t))}var Js={};Pe(Js,{nonMaxSuppressionV3Impl:()=>vb,nonMaxSuppressionV4Impl:()=>wb,nonMaxSuppressionV5Impl:()=>kb,whereImpl:()=>db});var $b={kernelName:di,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,lc(ce(n,"float32"),-1))}}},q$={kernelName:hi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let s=lt(ce(n,"float32")),r=ln(Ae(Ie(1),s));return St(de(e,r))}}}},X$={kernelName:pi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let s=ln(Ae(lt(ce(n,"float32")),1));return de(e,s)}}}},K$={kernelName:Dr,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=mt(n.shape,s.shape);return{a:()=>{let i=e,l=Vt(n.shape,r);return l.length>0&&(i=ve(i,l)),U(i,n.shape)},b:()=>{let i=e,l=Vt(s.shape,r);return l.length>0&&(i=ve(i,l)),U(i,s.shape)}}}},Z$={kernelName:ga,saveAllInputs:!0,gradFunc:(e,t)=>{let n={};return t.forEach((s,r)=>{n[r]=()=>e.clone()}),n}},Y$={kernelName:ya,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>qe(n)}}},J$={kernelName:Cu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>qe(n)}}},Q$={kernelName:Ai,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>de(e,ln(Ae(Ie(1),lt(ce(n,"float32")))))}}},eF={kernelName:gi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let s=ln(ae(Ie(1),lt(ce(n,"float32"))));return de(e,s)}}}},tF={kernelName:bi,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=mt(n.shape,s.shape);return{a:()=>{let i=ae(lt(n),lt(s)),l=z(e,de(s,i)),u=Vt(n.shape,r);return u.length>0&&(l=ve(l,u)),U(l,n.shape)},b:()=>{let i=ae(lt(n),lt(s)),l=St(z(e,de(n,i))),u=Vt(s.shape,r);return u.length>0&&(l=ve(l,u)),U(l,s.shape)}}}},nF={kernelName:yi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>de(e,ae(lt(ce(n,"float32")),1))}}},sF={kernelName:xi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>de(e,Ae(Ie(1),lt(ce(n,"float32"))))}}};function rF(e,t,n,s,r,a){let o=D(e,"dy","avgPool3dGrad"),i=D(t,"input","avgPool3dGrad"),l=o,u=i,c=!1;i.rank===4&&(c=!0,l=U(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]]),u=U(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),P(l.rank===5,()=>`Error in avgPool3dGrad: dy must be rank 5 but got rank ${l.rank}.`),P(u.rank===5,()=>`Error in avgPool3dGrad: input must be rank 5 but got rank ${u.rank}.`),a!=null&&P(qt(r),()=>`Error in avgPool3dGrad: pad must be an integer when using, dimRoundingMode ${a} but got pad ${r}.`);let d={dy:l,input:u},h={filterSize:n,strides:s,pad:r,dimRoundingMode:a},p=L.runKernel(Ld,d,h);return c?U(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var aF=V({avgPool3dGrad_:rF}),oF={kernelName:Tu,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{filterSize:r,strides:a,pad:o,dimRoundingMode:i}=n;return{x:()=>aF(e,s,r,a,o,i)}}};function iF(e,t,n,s,r){let a=D(e,"dy","avgPoolGrad"),o=D(t,"input","avgPoolGrad");P(o.rank===a.rank,()=>`Rank of input (${o.rank}) does not match rank of dy (${a.rank})`);let i=o,l=a,u=!1;o.rank===3&&(u=!0,i=U(o,[1,o.shape[0],o.shape[1],o.shape[2]]),l=U(a,[1,a.shape[0],a.shape[1],a.shape[2]])),P(l.rank===4,()=>`Error in avgPoolGrad: dy must be rank 4 but got rank ${l.rank}.`),P(i.rank===4,()=>`Error in avgPoolGrad: input must be rank 4 but got rank ${i.rank}.`);let c={dy:l,input:i},d={filterSize:n,strides:s,pad:r},h=L.runKernel(zd,c,d);return u?U(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var lF=V({avgPoolGrad_:iF}),uF={kernelName:xa,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{filterSize:r,strides:a,pad:o}=n;return{x:()=>lF(e,s,r,a,o)}}},cF={kernelName:ba,inputsToSave:["a","b"],gradFunc:(e,t,n)=>{let[s,r]=t,{transposeA:a,transposeB:o}=n;return!a&&!o?{a:()=>We(e,r,!1,!0),b:()=>We(s,e,!0,!1)}:!a&&o?{a:()=>We(e,r,!1,!1),b:()=>We(e,s,!0,!1)}:a&&!o?{a:()=>We(r,e,!1,!0),b:()=>We(s,e,!1,!1)}:{a:()=>We(r,e,!0,!0),b:()=>We(e,s,!0,!0)}}},dF={kernelName:vi,gradFunc:(e,t,n)=>{let{blockShape:s,crops:r}=n;return{x:()=>jh(e,s,r)}}},hF={kernelName:A5,gradFunc:(e,t,n)=>{let s=n,r=s.inputShape,a=s.shape,o=Array.from(a);for(let l=r.length-1;l>=0;l--)if(r[l]===a[l])o[l]=1;else if(r[l]!==1)throw new Error(`broadcastTo(): [${r}] cannot be broadcast to [${a}].`);let i=[];for(let l=0;l<o.length;l++)o[l]>1&&i.push(l);return{x:()=>ve(e,i,!0)}}},pF={kernelName:va,gradFunc:e=>({x:()=>e.clone()})},fF={kernelName:wa,gradFunc:e=>({x:()=>qe(e)})},mF={kernelName:Or,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{clipValueMin:r,clipValueMax:a}=n;return{x:()=>gn(Rs(Io(s,r),So(s,a)),e,qe(e))}}},AF={kernelName:Nu,inputsToSave:["x"],gradFunc:$b.gradFunc},gF={kernelName:wi,saveAllInputs:!0,gradFunc:(e,t,n)=>{let s=t.map(l=>l.shape),{axis:r}=n,a=xs(r,t[0].shape)[0],o=s.map(l=>l[a]);return nn(e,o,a).map(l=>()=>l)}},yF={kernelName:ka,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[s,r]=t,{dilations:a,strides:o,pad:i,dataFormat:l}=n;return P(Ur(a),()=>`Error in gradient of conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${a}'`),{x:()=>pA(s.shape,e,r,o,i,l),filter:()=>VA(s,e,r.shape,o,i,l)}}},xF={kernelName:Ia,inputsToSave:["dy","filter"],gradFunc:(e,t,n)=>{let[s,r]=t,{strides:a,pad:o,dataFormat:i,dimRoundingMode:l}=n;return{dy:()=>Hr(e,r,a,o,i,1,l),filter:()=>VA(e,s,r.shape,a,o,i,l)}}};function bF(e,t,n,s,r){let a=e;e.rank===4&&(a=U(e,[1,e.shape[0],e.shape[1],e.shape[2],e.shape[3]]));let o=t;o.rank===4&&(o=U(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]])),P(a.rank===5,()=>`Error in conv3dDerFilter: input must be rank 5, but got shape ${a.shape}.`),P(o.rank===5,()=>`Error in conv3dDerFilter: dy must be rank 5, but got shape ${o.shape}.`),P(n.length===5,()=>`Error in conv3dDerFilter: filterShape must be length 5, but got ${n}.`),P(a.shape[4]===n[3],()=>`Error in conv3dDerFilter: depth of input ${a.shape[4]}) must match input depth in filter (${n[3]}.`),P(o.shape[4]===n[4],()=>`Error in conv3dDerFilter: depth of dy (${o.shape[4]}) must match output depth for filter (${n[4]}).`);let i={x:a,dy:o},l={strides:s,pad:r,filterShape:n};return L.runKernel(Ud,i,l)}var vF=V({conv3DBackpropFilter_:bF}),wF={kernelName:Eu,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:s,strides:r,pad:a}=n;P(Ur(s),()=>`Error in gradient of conv3D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`);let[o,i]=t;return{x:()=>Dx(o.shape,e,i,r,a),filter:()=>vF(o,e,i.shape,r,a)}}},kF={kernelName:Sa,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(St($A(ce(n,"float32"))),e)}}},IF={kernelName:Ca,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(FA(ce(n,"float32")),e)}}},SF={kernelName:Ta,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{axis:r,exclusive:a,reverse:o}=n;return{x:()=>{let i=Kx([r],s.rank),l=gA(e,r,a,!o);return i!=null&&(l=je(l,i)),l}}}},CF={kernelName:Na,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:s,strides:r,pad:a,dimRoundingMode:o}=n,i=s==null?[1,1]:s;P(Ur(i),()=>`Error in gradient of depthwiseConv2dNative: dilation rates greater than 1 are not yet supported. Got dilations '${i}'`);let[l,u]=t;return P(l.rank===4,()=>`Error in gradient of depthwiseConv2dNative: input must be rank 4, but got rank ${l.rank}.`),P(u.rank===4,()=>`Error in gradient of depthwiseConv2dNative: filter must be rank 4, but got rank ${u.rank}.`),P(l.shape[3]===u.shape[2],()=>`Error in gradient of depthwiseConv2d: number of input channels (${l.shape[3]}) must match the inChannels dimension in filter ${u.shape[2]}.`),P(Ks(r,i),()=>`Error in gradient of depthwiseConv2d: Either strides or dilations must be 1. Got strides ${r} and dilations '${i}'.`),o!=null&&P(qt(a),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${o} but got pad ${a}.`),{x:()=>yb(l.shape,e,u,r,a,s,o),filter:()=>gb(l,e,u.shape,r,a,s,o)}}},TF={kernelName:Ru,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[s,r]=t,a={x:s,filter:r,dy:e},o={x:s,filter:r,dy:e};return{x:()=>L.runKernel(Kd,a,n),filter:()=>L.runKernel(Zd,o,n)}}},NF={kernelName:Si,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t,s={dy:e,y:n};return{x:()=>L.runKernel(Jd,s)}}},EF={kernelName:Ci,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,s=z(os(St(lt(n))),2/Math.sqrt(Math.PI));return{x:()=>z(e,s)}}},RF={kernelName:Ra,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,n)}}},_F={kernelName:Ni,inputsToSave:["input"],gradFunc:(e,t)=>{let[n]=t;return{input:()=>U(e,n.shape)}}},$F={kernelName:Ei,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,os(n))}}},FF={kernelName:_a,gradFunc:e=>({x:()=>qe(e)})},DF={kernelName:$a,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=mt(n.shape,s.shape);return{a:()=>{let i=de(e,ce(s,"float32")),l=Vt(n.shape,r);return l.length>0?U(ve(i,l),n.shape):i},b:()=>{let i=z(e,ce(n,"float32")),l=Vt(s.shape,r);l.length>0&&(i=U(ve(i,l),s.shape));let u=lt(s);return St(de(i,ce(u,"float32")))}}}},OF={kernelName:Fa,inputsToSave:["x","mean","variance","scale"],gradFunc:(e,t,n)=>{let{varianceEpsilon:s}=n,[r,a,o,i]=t,l=i==null?Ie(1):i,u=Vt(a.shape,r.shape),c=[];if(a.rank===1){for(let b=0;b<r.shape.length-1;++b)c.push(r.shape[b]);c.push(1)}let d=Ae(r,a),h=z(e,l),p=RA(ae(o,Ie(s))),f=z(z(z(p,p),p),Ie(-.5));return{x:()=>a.rank===1?U(z(z(e,Es(U(p,[1,1,1,a.shape[0]]),c)),l),r.shape):U(z(z(e,p),l),r.shape),mean:()=>{let b=z(z(p,Ie(-1)),h);return a.rank===1&&(b=ve(b,u)),U(b,a.shape)},variance:()=>{let b=z(z(f,d),h);return a.rank===1&&(b=ve(b,u)),U(b,a.shape)},scale:()=>{let b=z(d,p),v=z(e,b);return a.rank===1&&(v=ve(v,u)),U(v,a.shape)},offset:()=>{let b=e;return a.rank===1&&(b=ve(b,u)),U(b,a.shape)}}}},PF={kernelName:_i,inputsToSave:["x","indices"],gradFunc:(e,t,n)=>{let[s,r]=t,{axis:a}=n,o=xs(a,s.shape)[0];return{x:()=>{let l=s.shape,u=r.size,c=l.slice(0,o),d=c.length,h=l.slice(a,l.length).slice(1),p=h.length,f=Fb(0,d),m=Fb(d+1,d+1+p),A=Db([c,[u],h]),g=U(e,A),y=U(r,[u]),x=Db([[d],f,m]),b=je(g,x),v=ub(b,y,s.shape[o]),k=wA(x);return v=je(v,k),v},indices:()=>r}}};function Fb(e,t){let n=[];for(let s=e;s<t;++s)n.push(s);return n}function Db(e){let t=[];for(let n=0;n<e.length;++n)for(let s=0;s<e[n].length;++s)t.push(e[n][s]);return t}var MF={kernelName:Da,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t;return{a:()=>qe(n),b:()=>qe(s)}}},zF={kernelName:Oa,gradFunc:e=>({x:()=>ce(e,"float32")})},LF={kernelName:Di,gradFunc:e=>({x:()=>qe(e)})},BF={kernelName:Oi,gradFunc:e=>({x:()=>qe(e)})},WF={kernelName:Pi,gradFunc:e=>({x:()=>qe(e)})},VF={kernelName:Pa,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{alpha:r}=n,a=Vn(s,0);return{x:()=>gn(a,e,z(e,r))}}},UF={kernelName:Li,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>de(e,ae(n,1))}}},HF={kernelName:Ma,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>de(e,ce(n,"float32"))}}},GF={kernelName:g5,inputsToSave:[],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s]=t,{axis:r}=n;return{logits:()=>{let a=!0,o=os(s);return Ae(e,z(ve(e,r,a),o))}}}};function jF(e,t,n,s=5,r=1,a=1,o=.5){let i={x:e,y:t,dy:n},l={depthRadius:s,bias:r,alpha:a,beta:o};return L.runKernel(sh,i,l)}var qF=V({localResponseNormalizationBackprop_:jF}),XF={kernelName:Du,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s,r]=t,{depthRadius:a,bias:o,alpha:i,beta:l}=n;return{x:()=>qF(s,r,e,a,o,i,l)}}};function Ob(e,t,n,s){return t.rank<n.rank&&(t=U(t,Co(t.shape,s))),e.rank<n.rank&&(e=U(e,Co(e.shape,s))),{x:()=>z(e,ce(as(n,t),e.dtype))}}var Pb={kernelName:za,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let s=n,{reductionIndices:r}=s,a=t[0],o=t[1],i=xs(r,a.shape),l=Ob(e,o,a,i);return{x:()=>l.x()}}},KF={kernelName:La,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t;return{a:()=>z(e,ce(Io(n,s),"float32")),b:()=>z(e,ce(xA(n,s),"float32"))}}};function ZF(e,t,n,s,r,a,o){let i=D(e,"dy","maxPool3dGrad"),l=D(t,"input","maxPool3dGrad"),u=D(n,"output","maxPool3dGrad"),c=i,d=l,h=u,p=!1;l.rank===4&&(p=!0,c=U(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]]),d=U(l,[1,l.shape[0],l.shape[1],l.shape[2],l.shape[3]]),h=U(u,[1,u.shape[0],u.shape[1],u.shape[2],u.shape[3]])),P(c.rank===5,()=>`Error in maxPool3dGrad: dy must be rank 5 but got rank ${c.rank}.`),P(d.rank===5,()=>`Error in maxPool3dGrad: input must be rank 5 but got rank ${d.rank}.`),P(h.rank===5,()=>`Error in maxPool3dGrad: output must be rank 5 but got rank ${h.rank}.`),o!=null&&P(qt(a),()=>`Error in maxPool3dGrad: pad must be an integer when using, dimRoundingMode ${o} but got pad ${a}.`);let f={dy:c,input:d,output:h},m={filterSize:s,strides:r,pad:a,dimRoundingMode:o},A=L.runKernel(ah,f,m);return p?U(A,[A.shape[1],A.shape[2],A.shape[3],A.shape[4]]):A}var YF=V({maxPool3dGrad_:ZF}),JF={kernelName:Ou,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s,r]=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=n;return{x:()=>YF(e,s,r,a,o,i,l)}}};function QF(e,t,n,s,r,a,o){let i=D(e,"dy","maxPoolGrad"),l=D(t,"input","maxPoolGrad"),u=D(n,"output","maxPoolGrad");P(l.rank===i.rank,()=>`Rank of input (${l.rank}) does not match rank of dy (${i.rank})`),P(i.rank===4,()=>`Error in maxPoolGrad: dy must be rank 4 but got rank ${i.rank}.`),P(l.rank===4,()=>`Error in maxPoolGrad: input must be rank 4 but got rank ${l.rank}.`),o!=null&&P(qt(a),()=>`Error in maxPoolGrad: pad must be an integer when using, dimRoundingMode ${o} but got pad ${a}.`);let c={dy:i,input:l,output:u},d={filterSize:s,strides:r,pad:a,dimRoundingMode:o};return L.runKernel(rh,c,d)}var eD=V({maxPoolGrad_:QF}),tD={kernelName:Ba,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s,r]=t,{filterSize:a,strides:o,pad:i}=n;return{x:()=>eD(e,s,r,a,o,i)}}},nD={kernelName:Wa,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{axis:r}=n,a=xs(r,s.shape),i=Xx(s.shape,a)[1],l=_t(i);return{x:()=>{let c=s.shape.slice();a.forEach(p=>{c[p]=1});let d=U(e,c);return de(z(d,Un(s.shape,"float32")),l)}}}},sD={kernelName:Va,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let s=n,{axis:r}=s,[a,o]=t,i=xs(r,a.shape),l=Ob(e,o,a,i);return{x:()=>l.x()}}},rD={kernelName:Ua,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t;return{a:()=>z(e,ce(So(n,s),"float32")),b:()=>z(e,ce(Vn(n,s),"float32"))}}},aD={kernelName:Ha,inputsToSave:["x"],gradFunc:(e,t,n)=>{let s=t[0],{paddings:r}=n,a=r.map(o=>o[0]);return{x:()=>Re(e,a,s.shape)}}},oD={kernelName:Wi,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=mt(n.shape,s.shape);return{a:()=>{let i=Vt(n.shape,r);return i.length>0?U(ve(e,i),n.shape):e},b:()=>{let i=z(e,St(sc(de(n,s)))),l=Vt(s.shape,r);return l.length>0?U(ve(i,l),s.shape):i}}}},iD={kernelName:Ga,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=mt(n.shape,s.shape);return{a:()=>{let i=z(e,ce(s,"float32")),l=Vt(n.shape,r);return l.length>0?U(ve(i,l),n.shape):i},b:()=>{let i=z(e,ce(n,"float32")),l=Vt(s.shape,r);return l.length>0?U(ve(i,l),s.shape):i}}}},lD={kernelName:Vi,gradFunc:e=>({x:()=>St(e)})},uD={kernelName:ja,inputsToSave:["indices"],gradFunc:(e,t)=>{let n=t[0];return{indices:()=>Dt(n.shape,"float32")}}},cD={kernelName:qi,gradFunc:e=>({x:()=>qe(e)})},dD={kernelName:Xi,saveAllInputs:!0,gradFunc:(e,t,n)=>{let{axis:s}=n;return ds(e,s).map(a=>()=>a)}},Mb={kernelName:qa,inputsToSave:["x"],gradFunc:(e,t,n)=>{let s=t[0],{paddings:r}=n,a=r.map(o=>o[0]);return{x:()=>Re(e,a,s.shape)}}},hD={kernelName:Xa,inputsToSave:["a","b"],outputsToSave:[!0],gradFunc:(e,t)=>{let[n,s,r]=t,a=n,o=s,i=mt(a.shape,o.shape);return{a:()=>{let c=ce(o,"float32"),d=z(e,z(c,jr(a,Ae(c,Ie(1))))),h=Vt(a.shape,i);return h.length>0&&(d=ve(d,h)),U(d,a.shape)},b:()=>{let c=Vn(a,0),d=gn(c,is(a),qe(a)),h=z(e,z(r,d)),p=Vt(o.shape,i);return p.length>0&&(h=ve(h,p)),U(h,o.shape)}}}},pD={kernelName:Ka,inputsToSave:["x","alpha"],gradFunc:(e,t)=>{let[n,s]=t,r=Vn(n,0);return{x:()=>gn(r,e,z(e,s)),alpha:()=>{let a=gn(r,qe(e),z(e,n)),o=Vt(s.shape,e.shape);return o.length>0&&(a=ve(a,o)),U(a,s.shape)}}}},fD={kernelName:Ea,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=mt(n.shape,s.shape);return{a:()=>{let i=de(e,ce(s,"float32")),l=Vt(n.shape,r);return l.length>0?U(ve(i,l),n.shape):i},b:()=>{let i=z(e,ce(n,"float32")),l=Vt(s.shape,r);l.length>0&&(i=U(ve(i,l),s.shape));let u=lt(s);return St(de(i,ce(u,"float32")))}}}},mD={kernelName:Zi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>de(e,St(lt(n)))}}},AD={kernelName:Ja,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,s=z(So(n,6),lc(n));return{x:()=>z(e,ce(s,"float32"))}}},gD={kernelName:Za,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,ce(lc(n),"float32"))}}},yD={kernelName:Yi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>U(e,n.shape)}}},xD={kernelName:Ya,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[s]=t,r={dy:e,images:s};return{images:()=>L.runKernel(ch,r,n)}}},bD={kernelName:Mu,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[s]=t,r={dy:e,images:s};return{images:()=>L.runKernel(uh,r,n)}}},vD={kernelName:Qa,gradFunc:(e,t,n)=>{let{dims:s}=n,r=xs(s,e.shape);return{x:()=>cs(e,r)}}},wD={kernelName:eo,gradFunc:e=>({x:()=>qe(e)})},kD={kernelName:to,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>St(de(e,z(jr(n,1.5),2)))}}},ID={kernelName:Qi,inputsToSave:["condition"],gradFunc:(e,t)=>{let[n]=t;return{condition:()=>ce(qe(n),"float32"),t:()=>z(e,ce(n,e.dtype)),e:()=>z(e,ce(Vh(n),e.dtype))}}},SD={kernelName:el,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let s=Vn(n,Ie(0)),r=Ie(Tb),a=Ie(Nb),o=z(e,a),i=z(z(e,r),os(ce(n,"float32")));return gn(s,o,i)}}}},CD={kernelName:so,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,z(n,Ae(Ie(1),n)))}}},TD={kernelName:sl,gradFunc:e=>({x:()=>qe(e)})},ND={kernelName:no,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(Mh(ce(n,"float32")),e)}}},ED={kernelName:nl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(AA(ce(n,"float32")),e)}}},RD={kernelName:tl,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{begin:r,size:a}=n,o=s.shape,[i,l]=cx(s,r,a),u=[];for(let c=0;c<e.rank;c++)u.push([i[c],o[c]-i[c]-l[c]]);return{x:()=>Gr(e,u)}}},_D={kernelName:oo,outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s]=t,{dim:r}=n,a=!0,o=z(e,s);return{logits:()=>Ae(o,z(ve(o,[r],a),s))}}},$D={kernelName:rl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,Bn(n))}}},zb={kernelName:al,gradFunc:(e,t,n)=>{let{blockShape:s,paddings:r}=n;return{x:()=>Ph(e,s,r)}}},Lb={kernelName:ol,gradFunc:(e,t,n)=>{let{axis:s}=n;return{x:()=>ht(e,s)}}},FD={kernelName:ro,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>de(e,z(ln(ce(n,"float32")),2))}}},DD={kernelName:zu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,z(ce(n,"float32"),2))}}},OD={kernelName:io,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=Ie(2);return{a:()=>z(e,z(r,Ae(n,s))),b:()=>z(e,z(r,Ae(s,n)))}}},PD={kernelName:Mr,gradFunc:e=>({x:()=>qe(e)})},MD={kernelName:lo,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=mt(n.shape,s.shape);return{a:()=>{let i=e,l=Vt(n.shape,r);return l.length>0&&(i=ve(i,l)),U(i,n.shape)},b:()=>{let i=e,l=Vt(s.shape,r);return l.length>0&&(i=ve(i,l)),U(St(i),s.shape)}}}},zD={kernelName:ao,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,r=s.shape.slice(),{axis:a}=n;xs(a,s.shape).forEach(u=>{r[u]=1});let i=U(e,r),l=z(i,Un(s.shape,"float32"));return{x:()=>l}}},LD={kernelName:uo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>de(e,lt(Mh(n)))}}},BD={kernelName:co,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(Ae(Ie(1),lt(n)),e)}}},WD={kernelName:Pr,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{reps:r}=n;return{x:()=>{let o=qe(s);if(s.rank===1)for(let i=0;i<r[0];++i)o=ae(o,Re(e,[i*s.shape[0]],[s.shape[0]]));else if(s.rank===2)for(let i=0;i<r[0];++i)for(let l=0;l<r[1];++l)o=ae(o,Re(e,[i*s.shape[0],l*s.shape[1]],[s.shape[0],s.shape[1]]));else if(s.rank===3)for(let i=0;i<r[0];++i)for(let l=0;l<r[1];++l)for(let u=0;u<r[2];++u)o=ae(o,Re(e,[i*s.shape[0],l*s.shape[1],u*s.shape[2]],[s.shape[0],s.shape[1],s.shape[2]]));else if(s.rank===4)for(let i=0;i<r[0];++i)for(let l=0;l<r[1];++l)for(let u=0;u<r[2];++u)for(let c=0;c<r[3];++c)o=ae(o,Re(e,[i*s.shape[0],l*s.shape[1],u*s.shape[2],c*s.shape[3]],[s.shape[0],s.shape[1],s.shape[2],s.shape[3]]));else throw new Error(`Gradient for tile operation is not implemented for rank-${s.rank} tensors yet.`);return o}}}},VD={kernelName:ho,gradFunc:(e,t,n)=>{let s=n,{perm:r}=s,a=wA(r);return{x:()=>je(e,a)}}},UD={kernelName:cl,gradFunc:(e,t,n)=>{let s=n,{axis:r}=s;return{value:()=>Nn(e,r)}}},HD={kernelName:Lu,inputsToSave:["segmentIds"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>GD(e,n)}}};function GD(e,t){let n=gr(t,qe(t)),s=Cl(e,n),r=Io(t,Ie(0,"int32")),a=s.rank-r.rank;for(let i=0;i<a;++i)r=Ft(r,i+1);r=Rs(r,Un(s.shape,"bool"));let o=qe(s);return gn(r,s,o)}var jD={kernelName:dl,gradFunc:e=>({x:()=>qe(e)})},qD=[$b,q$,X$,K$,Z$,Y$,J$,Q$,eF,tF,nF,sF,oF,uF,cF,dF,hF,pF,fF,mF,AF,gF,xF,yF,wF,kF,IF,SF,CF,TF,fD,NF,EF,RF,_F,$F,DF,FF,OF,PF,MF,zF,LF,BF,WF,VF,UF,HF,GF,XF,Pb,Pb,KF,JF,tD,nD,sD,rD,aD,oD,iD,lD,uD,cD,dD,Mb,Mb,hD,pD,mD,AD,gD,yD,xD,bD,vD,wD,kD,ID,SD,CD,TD,ND,ED,RD,_D,$D,zb,zb,Lb,Lb,FD,OD,DD,PD,MD,zD,LD,BD,WD,VD,UD,HD,jD];for(let e of qD)y5(e);var Bb={};Pe(Bb,{maxNorm:()=>YD,minMaxNorm:()=>eO,nonNeg:()=>QD,unitNorm:()=>JD});var jA;function Ut(){return jA==null&&(jA=mx().epsilon()),jA}function $s(){return"channelsLast"}var br=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,br.prototype)}},Fs=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Fs.prototype)}},G=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,G.prototype)}},Oe=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Oe.prototype)}},Wb=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Wb.prototype)}};function Eo(e,t){if(Array.isArray(e)){let n=[];for(let s=0;s<t;s++)n=n.concat(e);return n}else{let n=new Array(t);return n.fill(e),n}}function Qs(e,t){if(!e)throw new Wb(t)}function Vb(e,t){let n=0;for(let s of e)s===t&&n++;return n}function En(e){return e.length===1?e[0]:e}function At(e){return Array.isArray(e)?e:[e]}function vr(e){let n=e.replace(/(.)([A-Z][a-z0-9]+)/g,"$1_$2").replace(/([a-z])([A-Z])/g,"$1_$2").toLowerCase();return n[0]!=="_"?n:"private"+n}function Ro(e){return e.length<=1||e.indexOf("_")===-1?e:e.replace(/[_]+(\w|$)/g,(t,n)=>n.toUpperCase())}var vs={};function qA(e){if(e==null)return null;let t={};return t.className=e.getClassName(),t.config=e.getConfig(),t}function XA(e){if(!(e==null||typeof e!="object"))if(Array.isArray(e))e.forEach(t=>XA(t));else{let t=Object.keys(e);for(let n of t){let s=e[n];s!=null&&typeof s=="object"&&(!Array.isArray(s)&&s.type==="ndarray"&&typeof s.value=="number"?e[n]=s.value:XA(s))}}}function dc(e,t={},n={},s="object",r=!1){if(typeof e=="string"){let a=e,o;if(a in n)o=n[a];else if(a in vs)o=vs[a];else if(o=t[a],o==null)throw new G(`Unknown ${s}: ${e}. This may be due to one of the following reasons:
|
|
1. The ${s} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
|
|
2. The custom ${s} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);return o}else{let a=e;if(a.className==null||a.config==null)throw new G(`${s}: Improper config format: ${JSON.stringify(a)}.
|
|
'className' and 'config' must set.`);let o=a.className,i,l;if(o in n?[i,l]=n[o]:o in vs?[i,l]=vs.className:o in t&&([i,l]=t[o]),i==null)throw new G(`Unknown ${s}: ${o}. This may be due to one of the following reasons:
|
|
1. The ${s} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
|
|
2. The custom ${s} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);if(l!=null){let u={};for(let p of Object.keys(vs))u[p]=vs[p];for(let p of Object.keys(n))u[p]=n[p];let c=a.config;c.customObjects=u;let d=Object.assign({},vs);for(let p of Object.keys(n))vs[p]=n[p];XA(a.config);let h=l(i,a.config,n,r);return vs=Object.assign({},d),h}else{let u=Object.assign({},vs);for(let d of Object.keys(n))vs[d]=n[d];let c=new i(a.config);return vs=Object.assign({},u),c}}}function XD(e,t){return e<t?-1:e>t?1:0}function hp(e,t){return-1*XD(e,t)}function Xr(e){if(e==null)return e;let t=[];for(let n of e)t.indexOf(n)===-1&&t.push(n);return t}function KD(e){if(e==null)throw new G(`Invalid value in obj: ${JSON.stringify(e)}`);for(let t in e)if(e.hasOwnProperty(t))return!1;return!0}function _o(e,t,n){if(n!=null&&e.indexOf(n)<0)throw new G(`${n} is not a valid ${t}. Valid values are ${e} or null/undefined.`)}function KA(e,t,n=0,s=1/0){return Qs(n>=0),Qs(s>=n),Array.isArray(e)&&e.length>=n&&e.length<=s&&e.every(r=>typeof r===t)}function Zt(e,t){Array.isArray(e)?(I.assert(e.length>0,()=>`${t} is unexpectedly an empty array.`),e.forEach((n,s)=>Zt(n,`element ${s+1} of ${t}`))):I.assert(Number.isInteger(e)&&e>0,()=>`Expected ${t} to be a positive integer, but got ${Ub(e)}.`)}function Ub(e){return e===null?"null":Array.isArray(e)?"["+e.map(t=>Ub(t)).join(",")+"]":typeof e=="string"?`"${e}"`:`${e}`}function ZD(e,t){let n=I.now(),s;return(...a)=>{let o=I.now();return o-n<t||(n=o,s=e(...a)),s}}function Hb(e){return e==="relu"?"relu":e==="linear"?"linear":e==="elu"?"elu":null}function ZA(e,t){return H(()=>ln(ve(z(e,e),t,!0)))}var hc=class extends oe.Serializable{getConfig(){return{}}},YA=class extends hc{constructor(e){super();this.defaultMaxValue=2,this.defaultAxis=0,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return H(()=>{let t=ZA(e,this.axis),n=Wn(t,0,this.maxValue);return z(e,de(n,ae(Ut(),t)))})}getConfig(){return{maxValue:this.maxValue,axis:this.axis}}};YA.className="MaxNorm";oe.registerClass(YA);var JA=class extends hc{constructor(e){super();this.defaultAxis=0,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return H(()=>de(e,ae(Ut(),ZA(e,this.axis))))}getConfig(){return{axis:this.axis}}};JA.className="UnitNorm";oe.registerClass(JA);var QA=class extends hc{apply(e){return Ys(e)}};QA.className="NonNeg";oe.registerClass(QA);var eg=class extends hc{constructor(e){super();this.defaultMinValue=0,this.defaultMaxValue=1,this.defaultRate=1,this.defaultAxis=0,this.minValue=e.minValue!=null?e.minValue:this.defaultMinValue,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.rate=e.rate!=null?e.rate:this.defaultRate,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return H(()=>{let t=ZA(e,this.axis),n=ae(z(this.rate,Wn(t,this.minValue,this.maxValue)),z(1-this.rate,t));return z(e,de(n,ae(Ut(),t)))})}getConfig(){return{minValue:this.minValue,maxValue:this.maxValue,rate:this.rate,axis:this.axis}}};eg.className="MinMaxNorm";oe.registerClass(eg);var Gb={maxNorm:"MaxNorm",minMaxNorm:"MinMaxNorm",nonNeg:"NonNeg",unitNorm:"UnitNorm"};function Ht(e){return qA(e)}function jb(e,t={}){return dc(e,oe.SerializationMap.getMap().classNameMap,t,"constraint")}function Gt(e){if(e==null)return null;if(typeof e=="string"){let n={className:e in Gb?Gb[e]:e,config:{}};return jb(n)}else return e instanceof hc?e:jb(e)}function YD(e){return new YA(e)}function JD(e){return new JA(e)}function QD(){return new QA}function eO(e){return new eg(e)}var qb={};Pe(qb,{constant:()=>kO,glorotNormal:()=>RO,glorotUniform:()=>EO,heNormal:()=>_O,heUniform:()=>$O,identity:()=>TO,leCunNormal:()=>FO,leCunUniform:()=>DO,ones:()=>wO,orthogonal:()=>OO,randomNormal:()=>SO,randomUniform:()=>IO,truncatedNormal:()=>CO,varianceScaling:()=>NO,zeros:()=>vO});var tO=["channelsFirst","channelsLast"],nO=["nearest","bilinear"],sO=["valid","same","causal"],rO=["max","avg"],aO=["sum","mul","concat","ave"],$l=new Map;function $t(e){_o(tO,"DataFormat",e)}function oO(e){_o(nO,"InterpolationFormat",e)}function hs(e){_o(sO,"PaddingMode",e)}function Xb(e){_o(rO,"PoolMode",e)}var pc=[],Kb="/";function $o(e,t){pc.push(e);try{let n=t();return pc.pop(),n}catch(n){throw pc.pop(),n}}function iO(){return pc.length===0?"":pc.join(Kb)+Kb}function Zb(e){if(!Jb(e))throw new Error("Not a valid tensor name: '"+e+"'");return iO()+e}function Yb(e){if(!Jb(e))throw new Error("Not a valid tensor name: '"+e+"'");$l.has(e)||$l.set(e,0);let t=$l.get(e);if($l.set(e,$l.get(e)+1),t>0){let n=`${e}_${t}`;return $l.set(n,1),n}else return e}var lO=new RegExp(/^[A-Za-z0-9][-A-Za-z0-9\._\/]*$/);function Jb(e){return!!e.match(lO)}function uO(e){return e===parseInt(e.toString(),10)}function Kr(e,t,n){t==null&&(t=0),n==null&&(n=e.length);let s=1;for(let r=t;r<n;++r)s*=e[r];return s}function Fl(e){if(e.length===0)return Number.NaN;let t=Number.POSITIVE_INFINITY;for(let n=0;n<e.length;n++){let s=e[n];s<t&&(t=s)}return t}function Zr(e){if(e.length===0)return Number.NaN;let t=Number.NEGATIVE_INFINITY;for(let n=0;n<e.length;n++){let s=e[n];s>t&&(t=s)}return t}function Ds(e,t){if(t<e)throw new G(`end (${t}) < begin (${e}) is forbidden.`);let n=[];for(let s=e;s<t;++s)n.push(s);return n}function pp(e,t){return ce(e,t)}function fc(e,t=-1){let n=e.shape.slice();return t<0&&(t=n.length+t+1),n.splice(t,0,1),U(e,n)}function cO(e,t){return H(()=>{if(e.shape.length!==2)throw new G(`repeat() expects a rank-2 tensor, but received a rank-${e.shape.length} tensor.`);let n=fc(e,1);return sg(n,[1,t,1])})}function dO(e){let t=[Kr(e.shape)];return U(e,t)}function hO(e){if(e.rank<=1)throw new G(`batchFlatten requires a minimum rank of 2. Got rank: ${e.rank}.`);let t=[e.shape[0],Kr(e.shape,1)];return U(e,t)}function Fo(e,t,n){return H(()=>{switch(e.rank){case 1:return Xh(e,t,n);case 2:return DA(e,[t,0],[n,e.shape[1]]);case 3:return Kh(e,[t,0,0],[n,e.shape[1],e.shape[2]]);case 4:return oc(e,[t,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3]]);case 5:return Re(e,[t,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4]]);case 6:return Re(e,[t,0,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4],e.shape[5]]);default:throw new G(`sliceAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}})}function tg(e,t,n){return H(()=>{switch(e.rank){case 1:return Xh(e,t,n);case 2:return DA(e,[0,t],[e.shape[0],n]);case 3:return Kh(e,[0,0,t],[e.shape[0],e.shape[1],n]);case 4:return oc(e,[0,0,0,t],[e.shape[0],e.shape[1],e.shape[2],n]);default:throw new G(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function fp(e,t,n,s){return H(()=>{switch(e.rank){case 1:return Xh(e,t,n);case 2:switch(s){case 1:return Fo(e,t,n);case 2:return tg(e,t,n);default:throw new G(`The axis is not within the rank of the tensor ${s}`)}case 3:switch(s){case 1:return Fo(e,t,n);case 2:return Kh(e,[0,t,0],[e.shape[0],n,e.shape[2]]);case 3:return tg(e,t,n);default:throw new G(`The axis is not within the rank of the tensor ${s}`)}case 4:switch(s){case 1:return Fo(e,t,n);case 2:return oc(e,[0,t,0,0],[e.shape[0],n,e.shape[2],e.shape[3]]);case 3:return oc(e,[0,0,t,0],[e.shape[0],e.shape[1],n,e.shape[3]]);case 4:return tg(e,t,n);default:throw new G(`The axis is not within the rank of the tensor ${s}`)}default:throw new G(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function ng(e,t=-1){let n;return t<0&&(n=e[0].rank,n!==0?t=n:t=0),t===e[0].rank&&(t=-1),ht(e,t)}function Qb(e,t){switch(e.rank){case 1:return _x([e,t]);case 2:return Il([e,t],0);case 3:return $x([e,t],0);case 4:return Fx([e,t],0);default:throw new G(`concatAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}}function sg(e,t){if(Array.isArray(t)||(t=[t]),e.rank!==t.length)throw new G(`The length of input n (${t.length}) does not match the number of dimensions in input x (${e.rank})`);return Es(e,t)}function mp(e,t=0,n=1,s,r){return tb(e,t,n,s,r)}function er(e,t,n,s){if(e.rank<2||t.rank<2)throw new Oe(`dot requires both inputs to be rank >= 2 but got x shape = ${e.shape} and y shape = ${t.shape}`);if(t.rank>=3){let r=e.shape.slice(-1)[0],a=t.shape.slice(-2)[0];if(r!==a)throw new Oe(`If rank y >= 3, then the second last dim of y must equal the last dim of x but got x shape = ${e.shape} and y shape = ${t.shape}`)}if(e.rank===2&&t.rank===2){let r=!1,a=!1;return qr.matMul({a:e,b:t,transposeA:r,transposeB:a,bias:s?rg(e.rank,s,$s()):null,activation:n})}else{let r=e.shape.slice(),a=r.pop();e=U(e,[-1,a]);let o=t.shape.slice(),i=o.pop(),l=o.pop(),u=[...o,i],c=Array.from({length:t.rank},(f,m)=>m===0?t.rank-2:m<=t.rank-2?m-1:m);t=U(je(t,c),[l,-1]);let d=[...r,...u],h=!1,p=!1;return U(qr.matMul({a:e,b:t,transposeA:h,transposeB:p,bias:s?rg(e.rank,s,$s()):null,activation:n}),d)}}function e3(e,t,n){return H(()=>(Array.isArray(t)?t=Ot(t,"int32"):t=ce(t,"int32"),Cl(e,t,n)))}function mc(e){return z(e,e)}function rg(e,t,n){let s=t.shape;if(t.rank!==1&&t.rank!==e)throw new G(`Unexpected bias dimensions: ${t.rank}; expected it to be 1 or ${e}`);if(e===5){if(n==="channelsFirst")return s.length===1?U(t,[1,s[0],1,1,1]):U(t,[1,s[3],s[0],s[1],s[2]]);if(n==="channelsLast")return s.length===1?U(t,[1,1,1,1,s[0]]):U(t,[1].concat(s))}else if(e===4){if(n==="channelsFirst")return s.length===1?U(t,[1,s[0],1,1]):U(t,[1,s[2],s[0],s[1]]);if(n==="channelsLast")return s.length===1?U(t,[1,1,1,s[0]]):U(t,[1].concat(s))}else if(e===3){if(n==="channelsFirst")return s.length===1?U(t,[1,s[0],1]):U(t,[1,s[1],s[0]]);if(n==="channelsLast")return s.length===1?U(t,[1,1,s[0]]):U(t,[1].concat(s))}else if(e<3)return t;throw new G(`Unsupported input rank by biasAdd: ${t.rank}`)}function Os(e,t,n){return H(()=>(n==null&&(n=$s()),$t(n),ae(e,rg(e.rank,t,n))))}function pO(e,t=1){if(t!==1)throw new Oe(`Support for alpha values other than 1 (${t}) is not implemented yet.`);return nc(e)}function fO(e){return H(()=>de(e,ae(Wt(e),1)))}function t3(e,t,n,s){return H(()=>mb(e,t,n,s))}function mO(e){return H(()=>{let t=ae(.5,z(.2,e));return Wn(t,0,1)})}function Ac(e,t,n=!1){return n?e():t()}var AO=["fanIn","fanOut","fanAvg"],gO=["normal","uniform","truncatedNormal"];function yO(e){_o(AO,"FanMode",e)}function xO(e){_o(gO,"Distribution",e)}var ws=class extends oe.Serializable{fromConfigUsesCustomObjects(){return!1}getConfig(){return{}}},ag=class extends ws{apply(e,t){return Dt(e,t)}};ag.className="Zeros";oe.registerClass(ag);var Ap=class extends ws{apply(e,t){return Un(e,t)}};Ap.className="Ones";oe.registerClass(Ap);var og=class extends ws{constructor(e){super();if(typeof e!="object")throw new G(`Expected argument of type ConstantConfig but got ${e}`);if(e.value===void 0)throw new G(`config must have value set but got ${e}`);this.value=e.value}apply(e,t){return H(()=>z(Ie(this.value),Un(e,t)))}getConfig(){return{value:this.value}}};og.className="Constant";oe.registerClass(og);var ig=class extends ws{constructor(e){super();this.DEFAULT_MINVAL=-.05,this.DEFAULT_MAXVAL=.05,this.minval=e.minval||this.DEFAULT_MINVAL,this.maxval=e.maxval||this.DEFAULT_MAXVAL,this.seed=e.seed}apply(e,t){return El(e,this.minval,this.maxval,t)}getConfig(){return{minval:this.minval,maxval:this.maxval,seed:this.seed}}};ig.className="RandomUniform";oe.registerClass(ig);var lg=class extends ws{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Oe(`randomNormal does not support dType ${t}.`);return mp(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};lg.className="RandomNormal";oe.registerClass(lg);var ug=class extends ws{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Oe(`truncatedNormal does not support dType ${t}.`);return Qh(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};ug.className="TruncatedNormal";oe.registerClass(ug);var cg=class extends ws{constructor(e){super();this.gain=e.gain!=null?e.gain:1}apply(e,t){return H(()=>{if(e.length!==2||e[0]!==e[1])throw new G("Identity matrix initializer can only be used for 2D square matrices.");return z(this.gain,yA(e[0]))})}getConfig(){return{gain:this.gain}}};cg.className="Identity";oe.registerClass(cg);function bO(e,t="channelsLast"){let n,s;if($t(t),e.length===2)n=e[0],s=e[1];else if([3,4,5].indexOf(e.length)!==-1){if(t==="channelsFirst"){let r=Kr(e,2);n=e[1]*r,s=e[0]*r}else if(t==="channelsLast"){let r=Kr(e,0,e.length-2);n=e[e.length-2]*r,s=e[e.length-1]*r}}else{let r=Kr(e);n=Math.sqrt(r),s=Math.sqrt(r)}return[n,s]}var Rn=class extends ws{constructor(e){super();if(e.scale<0)throw new G(`scale must be a positive float. Got: ${e.scale}`);this.scale=e.scale==null?1:e.scale,this.mode=e.mode==null?"fanIn":e.mode,yO(this.mode),this.distribution=e.distribution==null?"normal":e.distribution,xO(this.distribution),this.seed=e.seed}apply(e,t){let n=bO(e),s=n[0],r=n[1],a=this.scale;if(this.mode==="fanIn"?a/=Math.max(1,s):this.mode==="fanOut"?a/=Math.max(1,r):a/=Math.max(1,(s+r)/2),this.distribution==="normal"){let o=Math.sqrt(a);if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Oe(`${this.getClassName()} does not support dType ${t}.`);return Qh(e,0,o,t,this.seed)}else{let o=Math.sqrt(3*a);return El(e,-o,o,t)}}getConfig(){return{scale:this.scale,mode:this.mode,distribution:this.distribution,seed:this.seed}}};Rn.className="VarianceScaling";oe.registerClass(Rn);var gp=class extends Rn{constructor(e){super({scale:1,mode:"fanAvg",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Rn.className}};gp.className="GlorotUniform";oe.registerClass(gp);var yp=class extends Rn{constructor(e){super({scale:1,mode:"fanAvg",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Rn.className}};yp.className="GlorotNormal";oe.registerClass(yp);var xp=class extends Rn{constructor(e){super({scale:2,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Rn.className}};xp.className="HeNormal";oe.registerClass(xp);var bp=class extends Rn{constructor(e){super({scale:2,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Rn.className}};bp.className="HeUniform";oe.registerClass(bp);var vp=class extends Rn{constructor(e){super({scale:1,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Rn.className}};vp.className="LeCunNormal";oe.registerClass(vp);var wp=class extends Rn{constructor(e){super({scale:1,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Rn.className}};wp.className="LeCunNormal";oe.registerClass(wp);var dg=class extends ws{constructor(e){super();if(this.DEFAULT_GAIN=1,this.gain=e.gain==null?this.DEFAULT_GAIN:e.gain,this.seed=e.seed,this.seed!=null)throw new Oe("Random seed is not implemented for Orthogonal Initializer yet.")}apply(e,t){return H(()=>{if(e.length<2)throw new Oe("Shape must be at least 2D.");e[0]*e[1]>2e3&&console.warn(`Orthogonal initializer is being called on a matrix with more than 2000 (${e[0]*e[1]}) elements: Slowness may result.`);let n=e[0]>e[1]?[e[1],e[0]]:e,s=mp(n,0,1,"float32"),r=Cb.gramSchmidt(s);return e[0]>e[1]&&(r=je(r)),z(this.gain,r)})}getConfig(){return{gain:this.gain,seed:this.seed}}};dg.className="Orthogonal";oe.registerClass(dg);var n3={constant:"Constant",glorotNormal:"GlorotNormal",glorotUniform:"GlorotUniform",heNormal:"HeNormal",heUniform:"HeUniform",identity:"Identity",leCunNormal:"LeCunNormal",leCunUniform:"LeCunUniform",ones:"Ones",orthogonal:"Orthogonal",randomNormal:"RandomNormal",randomUniform:"RandomUniform",truncatedNormal:"TruncatedNormal",varianceScaling:"VarianceScaling",zeros:"Zeros"};function s3(e,t={}){return dc(e,oe.SerializationMap.getMap().classNameMap,t,"initializer")}function Ct(e){return qA(e)}function bt(e){if(typeof e=="string"){let t=e in n3?n3[e]:e;if(t==="GlorotNormal")return new yp;if(t==="GlorotUniform")return new gp;if(t==="HeNormal")return new xp;if(t==="HeUniform")return new bp;if(t==="LeCunNormal")return new vp;if(t==="LeCunUniform")return new wp;{let n={};return n.className=t,n.config={},s3(n)}}else return e instanceof ws?e:s3(e)}function vO(){return new ag}function wO(){return new Ap}function kO(e){return new og(e)}function IO(e){return new ig(e)}function SO(e){return new lg(e)}function CO(e){return new ug(e)}function TO(e){return new cg(e)}function NO(e){return new Rn(e)}function EO(e){return new gp(e)}function RO(e){return new yp(e)}function _O(e){return new xp(e)}function $O(e){return new bp(e)}function FO(e){return new vp(e)}function DO(e){return new wp(e)}function OO(e){return new dg(e)}var r3={};Pe(r3,{Layer:()=>Xe,RNN:()=>sr,RNNCell:()=>Sc,activation:()=>gM,add:()=>CM,alphaDropout:()=>uz,average:()=>TM,averagePooling1d:()=>E2,averagePooling2d:()=>R2,averagePooling3d:()=>_2,avgPool1d:()=>PM,avgPool2d:()=>zM,avgPool3d:()=>BM,avgPooling1d:()=>MM,avgPooling2d:()=>LM,avgPooling3d:()=>WM,batchNormalization:()=>FM,bidirectional:()=>tz,concatenate:()=>NM,conv1d:()=>lM,conv2d:()=>uM,conv2dTranspose:()=>cM,conv3d:()=>dM,conv3dTranspose:()=>hM,convLstm2d:()=>YM,convLstm2dCell:()=>JM,cropping2D:()=>fM,dense:()=>yM,depthwiseConv2d:()=>AM,dot:()=>$M,dropout:()=>xM,elu:()=>nM,embedding:()=>SM,flatten:()=>vM,gaussianDropout:()=>lz,gaussianNoise:()=>iz,globalAveragePooling1d:()=>VM,globalAveragePooling2d:()=>UM,globalMaxPool1d:()=>sz,globalMaxPool2d:()=>rz,globalMaxPooling1d:()=>pv,globalMaxPooling2d:()=>fv,gru:()=>GM,gruCell:()=>jM,input:()=>M3,inputLayer:()=>tM,layerNormalization:()=>DM,leakyReLU:()=>rM,lstm:()=>qM,lstmCell:()=>XM,masking:()=>cz,maxPool1d:()=>az,maxPool2d:()=>oz,maxPooling1d:()=>mv,maxPooling2d:()=>Av,maxPooling3d:()=>HM,maximum:()=>EM,minimum:()=>RM,multiply:()=>_M,permute:()=>IM,prelu:()=>aM,reLU:()=>sM,repeatVector:()=>wM,reshape:()=>kM,rnn:()=>QM,separableConv2d:()=>pM,simpleRNN:()=>KM,simpleRNNCell:()=>ZM,softmax:()=>oM,spatialDropout1d:()=>bM,stackedRNNCells:()=>ez,thresholdedReLU:()=>iM,timeDistributed:()=>nz,upSampling2d:()=>mM,zeroPadding2d:()=>OM});var PO=0;function a3(){return PO++}var kp={};function Ip(e=""){return e in kp||(kp[e]=0),kp[e]+=1,e+kp[e].toString()}function hg(e){return Array.isArray(e)&&Array.isArray(e[0])}function Sp(e){return e.length===0?[]:Array.isArray(e[0])?e:[e]}function ze(e){let t;if(Array.isArray(e)){if(e.length!==1)throw new G(`Expected Tensor length to be 1; got ${e.length}`);t=e[0]}else t=e;return t}function st(e){if(Array.isArray(e)&&Array.isArray(e[0])){if(e.length===1)return e=e,e[0];throw new G(`Expected exactly 1 Shape; got ${e.length}`)}else return e}function Cp(e){let t=0;for(let n of e)n.shape.length===0?t+=1:t+=n.shape.reduce((s,r)=>s*r);return t}var o3="Variable",i3=class{constructor(e,t="float32",n=o3,s=!0,r=null){this.dtype=t==null?"float32":t,this.shape=e.shape,this.id=a3(),n=n==null?o3:n,this.originalName=Zb(n),this.name=Yb(this.originalName),this.trainable_=s,this.constraint=r,this.val=cb(e,this.trainable_,this.name,this.dtype)}read(){return this.assertNotDisposed(),this.val}write(e){return this.assertNotDisposed(),MO(this.val,e),this.val.id!==e.id&&(this.val.assign(e),this.constraint!=null&&this.val.assign(this.constraint.apply(this.val))),this}dispose(){this.assertNotDisposed(),this.val.dispose()}assertNotDisposed(){if(this.val.isDisposed)throw new Error(`LayersVariable ${this.name} is already disposed.`)}get trainable(){return this.trainable_}set trainable(e){this.trainable_=e,this.val.trainable=e}};function MO(e,t){if(e.shape.toString()!==t.shape.toString())throw new Error("Shape mismatch: "+JSON.stringify(e.shape)+" vs. "+JSON.stringify(t.shape))}function pg(e){return e.map(t=>t.read())}function fg(e){e.forEach(t=>{t[0].write(t[1])})}var Pt=class{constructor(e){this.dtype=e.dtype,this.shape=e.shape,e.shape!=null?this.ndim=e.shape.length:this.ndim=e.ndim,this.maxNDim=e.maxNDim,this.minNDim=e.minNDim,this.axes=e.axes||{}}},Ps=class{constructor(e,t,n,s,r,a,o){this.dtype=e,this.shape=t,this.sourceLayer=n,this.inputs=s,this.callArgs=r,this.outputTensorIndex=o,this.id=a3(),a!=null&&(this.originalName=Zb(a),this.name=Yb(this.originalName)),this.rank=t.length}},zO=0,Tp=class{constructor(e,t){this.callArgs=t,this.id=zO++,this.outboundLayer=e.outboundLayer,this.inboundLayers=e.inboundLayers,this.nodeIndices=e.nodeIndices,this.tensorIndices=e.tensorIndices,this.inputTensors=e.inputTensors,this.outputTensors=e.outputTensors,this.inputMasks=e.inputMasks,this.outputMasks=e.outputMasks,this.inputShapes=e.inputShapes,this.outputShapes=e.outputShapes;for(let n of e.inboundLayers)n!=null&&n.outboundNodes.push(this);e.outboundLayer.inboundNodes.push(this)}getConfig(){let e=[];for(let t of this.inboundLayers)t!=null?e.push(t.name):e.push(null);return{outboundLayer:this.outboundLayer?this.outboundLayer.name:null,inboundLayers:e,nodeIndices:this.nodeIndices,tensorIndices:this.tensorIndices}}},LO=0,Xe=class extends oe.Serializable{constructor(e={}){super();this._callHook=null,this._addedWeightNames=[],this._stateful=!1,this.id=LO++,this.activityRegularizer=null,this.inputSpec=null,this.supportsMasking=!1,this._trainableWeights=[],this._nonTrainableWeights=[],this._losses=[],this._updates=[],this._built=!1,this.inboundNodes=[],this.outboundNodes=[];let t=e.name;if(!t){let n=this.getClassName();t=vr(n)+"_"+Ip(n)}if(this.name=t,this.trainable_=e.trainable==null?!0:e.trainable,e.inputShape!=null||e.batchInputShape!=null){let n;if(e.batchInputShape!=null)n=e.batchInputShape;else if(e.inputShape!=null){let r=null;e.batchSize!=null&&(r=e.batchSize),n=[r].concat(e.inputShape)}this.batchInputShape=n;let s=e.dtype;s==null&&(s=e.inputDType),s==null&&(s="float32"),this.dtype=s}e.weights!=null?this.initialWeights=e.weights:this.initialWeights=null,this._refCount=null,this.fastWeightInitDuringBuild=!1}static nodeKey(e,t){return e.name+"_ib-"+t.toString()}getNodeAtIndex(e,t){if(this.inboundNodes.length===0)throw new Fs(`The layer has never been called and thus has no defined ${t}.`);if(this.inboundNodes.length<=e)throw new G(`Asked to get ${t} at node ${e}, but the layer has only ${this.inboundNodes.length} inbound nodes.`);return this.inboundNodes[e]}getInputAt(e){return En(this.getNodeAtIndex(e,"input").inputTensors)}getOutputAt(e){return En(this.getNodeAtIndex(e,"output").outputTensors)}get input(){if(this.inboundNodes.length>1)throw new br(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer input" is ill-defined. Use \`getInputAt(nodeIndex)\` instead.`);if(this.inboundNodes.length===0)throw new br(`Layer ${this.name} is not connected, no input to return.`);return En(this.getNodeAtIndex(0,"input").inputTensors)}get output(){if(this.inboundNodes.length===0)throw new br(`Layer ${this.name} has no inbound nodes.`);if(this.inboundNodes.length>1)throw new br(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer output" is ill-defined. Use \`getOutputAt(nodeIndex)\` instead.`);return En(this.getNodeAtIndex(0,"output").outputTensors)}get losses(){return this._losses}calculateLosses(){return this.losses.map(e=>e())}get updates(){return this._updates}get built(){return this._built}set built(e){this._built=e}get trainable(){return this.trainable_}set trainable(e){this._trainableWeights.forEach(t=>t.trainable=e),this.trainable_=e}get trainableWeights(){return this.trainable_?this._trainableWeights.filter(e=>e.trainable):[]}set trainableWeights(e){this._trainableWeights=e}get nonTrainableWeights(){return this.trainable?this._trainableWeights.filter(e=>!e.trainable).concat(this._nonTrainableWeights):this._trainableWeights.concat(this._nonTrainableWeights)}set nonTrainableWeights(e){this._nonTrainableWeights=e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}get stateful(){return this._stateful}resetStates(){if(!this.stateful)throw new Error("Cannot call the resetStates() method of a non-stateful Layer object.")}assertInputCompatibility(e){if(e=At(e),this.inputSpec==null||this.inputSpec.length===0)return;let t=At(this.inputSpec);if(e.length!==t.length)throw new G(`Layer ${this.name} expects ${t.length} inputs, but it received ${e.length} input tensors. Input received: ${e}`);for(let n=0;n<e.length;n++){let s=e[n],r=t[n];if(r==null)continue;let a=s.rank;if(r.ndim!=null&&a!==r.ndim)throw new G(`Input ${n} is incompatible with layer ${this.name}: expected ndim=${r.ndim}, found ndim=${a}`);if(r.maxNDim!=null&&a>r.maxNDim)throw new G(`Input ${n} is incompatible with layer ${this.name}: expected max_ndim=${r.maxNDim}, found ndim=${a}`);if(r.minNDim!=null&&a<r.minNDim)throw new G(`Input ${n} is incompatible with layer ${this.name}: expected min_ndim=${r.minNDim}, found ndim=${a}.`);if(r.dtype!=null&&s.dtype!==r.dtype)throw new G(`Input ${n} is incompatible with layer ${this.name} : expected dtype=${r.dtype}, found dtype=${s.dtype}.`);if(r.axes){let o=s.shape;for(let i in r.axes){let l=Number(i),u=r.axes[i],c=l>=0?o[l]:o[o.length+l];if(u!=null&&[u,null].indexOf(c)===-1)throw new G(`Input ${n} is incompatible with layer ${this.name}: expected axis ${l} of input shape to have value ${u} but got shape ${o}.`)}}if(r.shape!=null)for(let o=0;o<r.shape.length;++o){let i=r.shape[o],l=s.shape[o];if(i!=null&&l!=null&&i!==l)throw new G(`Input ${n} is incompatible with layer ${this.name}: expected shape=${r.shape}, found shape=${s.shape}.`)}}}call(e,t){return e}invokeCallHook(e,t){this._callHook!=null&&this._callHook(e,t)}setCallHook(e){this._callHook=e}clearCallHook(){this._callHook=null}apply(e,t){t=t||{},this.assertNotDisposed();let n=At(e),s=!0;for(let a of n)if(!(a instanceof Ps)){s=!1;break}let r=!0;for(let a of n)if(a instanceof Ps){r=!1;break}if(s===r)throw new G("Arguments to apply() must be all SymbolicTensors or all Tensors");return $o(this.name,()=>{if(!this.built){this.assertInputCompatibility(e);let a=[];for(let o of At(e))a.push(o.shape);this.build(En(a)),this.built=!0,this.initialWeights&&this.setWeights(this.initialWeights),this._refCount===null&&r&&(this._refCount=1)}if(this.assertInputCompatibility(e),r){let a=this.call(e,t),o=At(a),i=[];for(let l of o)n.indexOf(l)!==-1&&(l=l.clone()),i.push(l);if(a=En(i),this.activityRegularizer!=null)throw new Oe("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return a}else{let a=BO(e),o=this.computeOutputShape(a),i,l=WO(e);if(this.warnOnIncompatibleInputShape(Array.isArray(e)?a[0]:a),o!=null&&o.length>0&&Array.isArray(o[0])?i=o.map((u,c)=>new Ps(l,u,this,At(e),t,this.name,c)):i=new Ps(l,o,this,At(e),t,this.name),this.addInboundNode(e,i,null,null,a,o,t),this._refCount++,this.activityRegularizer!=null)throw new Oe("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return i}})}warnOnIncompatibleInputShape(e){if(this.batchInputShape!=null)if(e.length!==this.batchInputShape.length)console.warn(`The rank of the input tensor provided (shape: ${JSON.stringify(e)}) does not match that of the batchInputShape (${JSON.stringify(this.batchInputShape)}) of the layer ${this.name}`);else{let t=!1;this.batchInputShape.forEach((n,s)=>{n!=null&&e[s]!=null&&e[s]!==n&&(t=!0)}),t&&console.warn(`The shape of the input tensor (${JSON.stringify(e)}) does not match the expectation of layer ${this.name}: ${JSON.stringify(this.batchInputShape)}`)}}get outputShape(){if(this.inboundNodes==null||this.inboundNodes.length===0)throw new br(`The layer ${this.name} has never been called and thus has no defined output shape.`);let e=[];for(let t of this.inboundNodes){let n=JSON.stringify(t.outputShapes);e.indexOf(n)===-1&&e.push(n)}if(e.length===1){let t=this.inboundNodes[0].outputShapes;return Array.isArray(t)&&Array.isArray(t[0])&&t.length===1?t[0]:t}else throw new br(`The layer ${this.name} has multiple inbound nodes with different output shapes. Hence the notion of "output shape" is ill-defined for the layer.`)}countParams(){if(!this.built)throw new Fs(`You tried to call countParams() on ${this.name}, but the layer is not built yet. Build it first by calling build(batchInputShape).`);return Cp(this.weights)}build(e){this.built=!0}getWeights(e=!1){return pg(e?this.trainableWeights:this.weights)}setWeights(e){H(()=>{let t=this.weights;if(t.length!==e.length)throw new G(`You called setWeights(weights) on layer "${this.name}" with a weight list of length ${e.length}, but the layer was expecting ${t.length} weights. Provided weights: ${e}...`);if(t.length===0)return;let n=[],s=pg(t);for(let r=0;r<s.length;++r){let a=s[r],o=t[r],i=e[r];if(!I.arraysEqual(a.shape,i.shape))throw new G(`Layer weight shape ${a.shape} not compatible with provided weight shape ${i.shape}`);n.push([o,i])}fg(n)})}addWeight(e,t,n,s,r,a,o){if(this._addedWeightNames.indexOf(e)!==-1)throw new G(`Duplicate weight name ${e} for layer ${this.name}`);this._addedWeightNames.push(e),n==null&&(n="float32"),this.fastWeightInitDuringBuild&&(s=bt("zeros"));let i=s.apply(t,n),l=new i3(i,n,e,a,o);return i.dispose(),r!=null&&this.addLoss(()=>r.apply(l.read())),a==null&&(a=!0),a?this._trainableWeights.push(l):this._nonTrainableWeights.push(l),l}setFastWeightInitDuringBuild(e){this.fastWeightInitDuringBuild=e}addLoss(e){e==null||Array.isArray(e)&&e.length===0||(e=At(e),this._losses!==void 0&&this._losses!==null&&this.losses.push(...e))}computeOutputShape(e){return e}computeMask(e,t){if(!this.supportsMasking){if(t!=null)if(Array.isArray(t))t.forEach(n=>{if(n!=null)throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`)});else throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`);return null}return t}addInboundNode(e,t,n,s,r,a,o=null){let i=At(e);t=At(t),n=At(n),s=At(s),r=Sp(r),a=Sp(a);let l=[],u=[],c=[];for(let d of i)l.push(d.sourceLayer),u.push(d.nodeIndex),c.push(d.tensorIndex);new Tp({outboundLayer:this,inboundLayers:l,nodeIndices:u,tensorIndices:c,inputTensors:i,outputTensors:t,inputMasks:n,outputMasks:s,inputShapes:r,outputShapes:a},o);for(let d=0;d<t.length;d++)t[d].sourceLayer=this,t[d].nodeIndex=this.inboundNodes.length-1,t[d].tensorIndex=d}getConfig(){let e={name:this.name,trainable:this.trainable};return this.batchInputShape!=null&&(e.batchInputShape=this.batchInputShape),this.dtype!=null&&(e.dtype=this.dtype),e}disposeWeights(){return this.weights.forEach(e=>e.dispose()),this.weights.length}assertNotDisposed(){if(this._refCount===0)throw new Error(`Layer '${this.name}' is already disposed.`)}dispose(){if(!this.built)throw new Error(`Cannot dispose Layer ${this.name} because it has not been built yet.`);if(this._refCount===null)throw new Error(`Cannot dispose Layer ${this.name} because it has not been used yet.`);this.assertNotDisposed();let e=0;return--this._refCount==0&&(e=this.disposeWeights()),{refCountAfterDispose:this._refCount,numDisposedVariables:e}}};function BO(e){e=At(e);let t=[];for(let n of e)t.push(n.shape);return En(t)}function WO(e){return"float32"}function l3(e,t,n){if((t==null||n!=null&&n>0)&&(t=e.sourceLayer,n=e.nodeIndex),t.inboundNodes.length===0)return[e];{let s=t.inboundNodes[n];if(s.inboundLayers.length===0)return s.inputTensors;{let r=[];for(let a=0;a<s.inboundLayers.length;a++){let o=s.inputTensors[a],i=s.inboundLayers[a],l=s.nodeIndices[a],u=l3(o,i,l);for(let c of u)r.indexOf(c)===-1&&r.push(c)}return r}}}var Dl=class extends Xe{constructor(e){super({dtype:e.dtype,name:e.name!=null?e.name:Ip("input").toString()});if(e.batchSize==null&&(e.batchSize=null),e.sparse==null&&(e.sparse=!1),this.trainable=!1,this.built=!0,this.sparse=e.sparse,e.inputShape!=null&&e.batchInputShape!=null)throw new G("Only provide the inputShape OR batchInputShape argument to inputLayer, not both at the same time.");let t=e.batchInputShape;if(t==null){if(e.inputShape==null)throw new G("An InputLayer should be passed either a `batchInputShape` or an `inputShape`.");t=[e.batchSize].concat(e.inputShape)}else if(e.batchSize!=null)throw new G("Cannot specify batchSize if batchInputShape is specified when creating an InputLayer.");let n=e.dtype||"float32";this.batchInputShape=t,this.dtype=n,this.inputSpec=[{shape:t}];let s=new Ps(this.dtype,this.batchInputShape,this,[],{},this.name);s.nodeIndex=0,s.tensorIndex=0,new Tp({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:[s],outputTensors:[s],inputMasks:[null],outputMasks:[null],inputShapes:[t],outputShapes:[t]})}apply(e,t){throw new G(`Cannot pass any input to an InputLayer's apply() method. InputLayer name: ${this.name}`)}dispose(){return{refCountAfterDispose:this._refCount,numDisposedVariables:0}}getConfig(){return{batchInputShape:this.batchInputShape,dtype:this.dtype,sparse:this.sparse,name:this.name}}};Dl.className="InputLayer";oe.registerClass(Dl);function u3(e){if(e.batchShape==null&&e.shape==null)throw new Error("Please provide to Input either a `shape` or a `batchShape` argument. Note that `shape` does not include the batch dimension.");if(e.batchShape!=null&&e.shape!=null)throw new G("Please provide either a `shape` or `batchShape` argument to Input, but not both.");let t=e.batchShape;e.shape!=null&&t==null&&(t=[null].concat(e.shape));let n=e.dtype;return n==null&&(n="float32"),new Dl({batchInputShape:t,name:e.name,dtype:n,sparse:e.sparse}).inboundNodes[0].outputTensors[0]}async function Yr(e){if(e==null)return;let t=[],n=[],s=[];for(let r in e){let a=e[r];if(typeof a!="number"){let o=a;t.push(o.data()),n.push(r),s.push(o)}}if(t.length>0){let r=await Promise.all(t);for(let a=0;a<r.length;++a)e[n[a]]=r[a][0];K(s)}}function c3(e){if(e!=null)for(let t in e){let n=e[t];typeof n!="number"&&n.dispose()}}var d3;(function(e){e[e.SILENT=0]="SILENT",e[e.VERBOSE=1]="VERBOSE"})(d3||(d3={}));var VO=125,Ol=class{constructor(){this.validationData=null}setParams(e){this.params=e}async onEpochBegin(e,t){}async onEpochEnd(e,t){}async onBatchBegin(e,t){}async onBatchEnd(e,t){}async onTrainBegin(e){}async onTrainEnd(e){}setModel(e){}},h3=class{constructor(e,t=10){e==null&&(e=[]),this.callbacks=e,this.queueLength=t}append(e){this.callbacks.push(e)}setParams(e){for(let t of this.callbacks)t.setParams(e)}setModel(e){for(let t of this.callbacks)t.setModel(e)}async onEpochBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochBegin(e,t)}async onEpochEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochEnd(e,t)}async onBatchBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchBegin(e,t)}async onBatchEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchEnd(e,t)}async onTrainBegin(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainBegin(e)}async onTrainEnd(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainEnd(e)}},UO=class extends Ol{constructor(){super()}async onEpochBegin(e){this.seen=0,this.totals={}}async onBatchEnd(e,t){t==null&&(t={});let n=t.size==null?0:t.size;this.seen+=n;for(let s in t){let r=t[s];if(typeof r=="number")this.totals.hasOwnProperty(s)||(this.totals[s]=0),this.totals[s]=this.totals[s]+r*n;else{let a;s in this.totals?a=this.totals[s]:this.totals[s]=0;let o=H(()=>ae(this.totals[s],z(r,n)));this.totals[s]=o,a!=null&&a.dispose()}}}async onEpochEnd(e,t){if(t!=null)for(let n of this.params.metrics)this.totals[n]!=null&&(typeof this.totals[n]=="number"?t[n]=this.totals[n]/this.seen:H(()=>{let s=z(de(1,this.seen),this.totals[n]);t[n]=s,this.totals[n].dispose(),Kt(t[n])}))}},p3=class extends Ol{async onTrainBegin(e){this.epoch=[],this.history={}}async onEpochEnd(e,t){t==null&&(t={}),this.epoch.push(e);for(let n in t)this.history[n]==null&&(this.history[n]=[]),this.history[n].push(t[n])}async syncData(){let e=[],t=[],n=[];for(let r in this.history){let a=this.history[r];for(let o=0;o<a.length;++o)if(typeof a[o]!="number"){let i=a[o];e.push(i.data()),t.push(r),n.push(o)}}let s=await Promise.all(e);for(let r=0;r<s.length;++r)this.history[t[r]][n[r]].dispose(),this.history[t[r]][n[r]]=s[r][0]}},f3=class extends Ol{constructor(e,t){super();if(this.currentEpoch=0,this.yieldEvery=t||"auto",this.yieldEvery==="auto"&&(this.yieldEvery=VO),this.yieldEvery==="never"&&e.onYield!=null)throw new Error("yieldEvery is `never` but you provided an `onYield` callback. Either change `yieldEvery` or remove the callback");I.isNumber(this.yieldEvery)&&(this.maybeWait=ZD(this.maybeWait.bind(this),this.yieldEvery)),this.trainBegin=e.onTrainBegin,this.trainEnd=e.onTrainEnd,this.epochBegin=e.onEpochBegin,this.epochEnd=e.onEpochEnd,this.batchBegin=e.onBatchBegin,this.batchEnd=e.onBatchEnd,this.yield=e.onYield}async maybeWait(e,t,n){let s=[];this.yield!=null&&(await Yr(n),s.push(this.yield(e,t,n))),s.push(dp()),await Promise.all(s)}async onEpochBegin(e,t){this.currentEpoch=e,this.epochBegin!=null&&(await Yr(t),await this.epochBegin(e,t))}async onEpochEnd(e,t){let n=[];this.epochEnd!=null&&(await Yr(t),n.push(this.epochEnd(e,t))),this.yieldEvery==="epoch"&&n.push(dp()),await Promise.all(n)}async onBatchBegin(e,t){this.batchBegin!=null&&(await Yr(t),await this.batchBegin(e,t))}async onBatchEnd(e,t){let n=[];this.batchEnd!=null&&(await Yr(t),n.push(this.batchEnd(e,t))),this.yieldEvery==="batch"?n.push(dp()):I.isNumber(this.yieldEvery)&&n.push(this.maybeWait(this.currentEpoch,e,t)),await Promise.all(n)}async onTrainBegin(e){this.trainBegin!=null&&(await Yr(e),await this.trainBegin(e))}async onTrainEnd(e){this.trainEnd!=null&&(await Yr(e),await this.trainEnd(e))}};function m3(e,t){return e==null&&(e={}),e instanceof Ol?[e]:Array.isArray(e)&&e[0]instanceof Ol?e:At(e).map(s=>new f3(s,t))}var ks=class{constructor(){}static registerCallbackConstructor(e,t){I.assert(e>=0&&Number.isInteger(e),()=>`Verbosity level is expected to be an integer >= 0, but got ${e}`),ks.checkForDuplicate(t),ks.constructors[e]==null&&(ks.constructors[e]=[]),ks.constructors[e].push(t)}static checkForDuplicate(e){for(let t in ks.constructors)ks.constructors[+t].forEach(s=>{if(s===e)throw new G("Duplicate callback constructor.")})}static clear(){ks.constructors={}}static createCallbacks(e){let t=[];for(let n in ks.constructors){let s=+n;e>=s&&t.push(...ks.constructors[s])}return t.map(n=>new n)}};ks.constructors={};function A3(e,t,n,s,r,a,o,i,l){let u=new p3,c=[new UO,...ks.createCallbacks(t)];e!=null&&c.push(...e),c.push(u);let d=new h3(c);return d.setParams({epochs:n,initialEpoch:s,samples:r,steps:a,batchSize:o,verbose:t,doValidation:i,metrics:l}),{callbackList:d,history:u}}function Ms(e,t={},n=!1){return dc(e,oe.SerializationMap.getMap().classNameMap,t,"layer",n)}function Np(e,t){return H(()=>{e.dtype!=="float32"&&(e=ce(e,"float32"));let n=ve(mc(e),t,!0),s=Sl(n.shape,Ut()),r=ln(gr(n,s));return de(e,r)})}function Do(e,t){return H(()=>Et(mc(Ae(t,e)),-1))}function Ep(e,t){return H(()=>Et(Wt(Ae(t,e)),-1))}function Pl(e,t){return H(()=>{let n=Ae(e,t),s=Wn(Wt(e),Ut(),Number.MAX_VALUE),r=Wt(de(n,s));return z(100,Et(r,-1))})}function HO(e,t){return H(()=>{let n=Wn(t,Ut(),Number.MAX_VALUE),s=is(ae(1,n)),r=Wn(e,Ut(),Number.MAX_VALUE),a=is(ae(1,r));return Et(mc(Ae(s,a)),-1)})}function GO(e,t){return H(()=>{let n=gr(0,Ae(1,z(e,t)));return Et(mc(n),-1)})}function jO(e,t){return H(()=>{let n=gr(0,Ae(1,z(e,t)));return Et(n,-1)})}function qO(e,t){return H(()=>{let n=ve(z(e,t),-1),s=ls(z(Ae(1,e),t),-1);return gr(0,ae(1,Ae(s,n)))})}function XO(e,t){return H(()=>{let n=Math.log(2),s=Ae(t,e),r=Ae(ae(s,Tl(z(-2,s))),n);return Et(r,-1)})}function gc(e,t,n=!1){return H(()=>{if(n)t=Zh(t);else{let s=ve(t,t.shape.length-1,!0);t=de(t,s)}return t=Wn(t,Ut(),1-Ut()),St(ve(z(ce(e,"float32"),is(t)),t.shape.length-1))})}function Rp(e,t,n=!1){return H(()=>{let s=ce(sc(dO(e)),"int32");t=Wn(t,Ut(),1-Ut());let r=t.shape,a=U(Ju(s,r[r.length-1]),r);return gc(a,t,n)})}function KO(e,t){if(!I.arraysEqual(e.shape,t.shape))throw new G(`logits and labels must have the same shape, but got shapes ${JSON.stringify(e.shape)} and ${JSON.stringify(t.shape)}`);return H(()=>{let n=Ys(t),s=St(Wt(t));return ae(Ae(n,z(t,e)),Bh(os(s)))})}function _p(e,t){return H(()=>{let n;return n=Wn(t,Ut(),1-Ut()),n=is(de(n,Ae(1,n))),Et(KO(e,n),-1)})}function ZO(e,t){return H(()=>{let n=Wn(e,Ut(),1),s=Wn(t,Ut(),1);return ve(z(e,is(de(n,s))),-1)})}function YO(e,t){return H(()=>{let n=is(ae(Ut(),t));return Et(Ae(t,z(e,n)),-1)})}function mg(e,t){return H(()=>{let n=Np(e,-1),s=Np(t,-1),r=z(n,s);return St(ve(r,-1))})}var $p={meanSquaredError:Do,meanAbsoluteError:Ep,meanAbsolutePercentageError:Pl,meanSquaredLogarithmicError:HO,squaredHinge:GO,hinge:jO,categoricalHinge:qO,logcosh:XO,categoricalCrossentropy:gc,sparseCategoricalCrossentropy:Rp,binaryCrossentropy:_p,kullbackLeiblerDivergence:ZO,poisson:YO,cosineProximity:mg};function Ag(e){if(typeof e=="string"){if(e in $p)return $p[e];let t=`Unknown loss ${e}`;throw e.toLowerCase().includes("softmaxcrossentropy")&&(t=`Unknown loss ${e}. Use "categoricalCrossentropy" as the string name for tf.losses.softmaxCrossEntropy`),new G(t)}else return e}function gg(e,t){return H(()=>{let n=z(.5,us(t)),s=pp(Vn(t,n),e.dtype);return Et(as(e,s),-1)})}function yg(e,t){return H(()=>pp(as(Xs(e,-1),Xs(t,-1)),"float32"))}function g3(e,t){return H(()=>ce(ve(Rs(as(e,1),as(t,1))),"float32"))}function JO(e,t){return H(()=>ce(ve(Rs(as(e,1),as(t,0))),"float32"))}function QO(e,t){return H(()=>ce(ve(Rs(as(e,0),as(t,1))),"float32"))}function y3(e,t){return H(()=>{let n=g3(e,t),s=QO(e,t),r=ae(n,s);return ce(gn(Vn(r,0),de(n,r),0),"float32")})}function eP(e,t){return H(()=>{let n=g3(e,t),s=JO(e,t),r=ae(n,s);return ce(gn(Vn(r,0),de(n,r),0),"float32")})}function x3(e,t){return _p(e,t)}function b3(e,t){return e.rank===t.rank&&(e=ot(e,[e.rank-1])),t=Xs(t,-1),t.dtype!==e.dtype&&(t=ce(t,e.dtype)),ce(as(e,t),"float32")}var tP=Do,nP=Do,sP=Ep,rP=Ep,aP=Pl,oP=Pl,xg=gc,iP=mg,v3=Rp,Fp={binaryAccuracy:gg,categoricalAccuracy:yg,precision:y3,categoricalCrossentropy:xg,sparseCategoricalCrossentropy:v3,mse:tP,MSE:nP,mae:sP,MAE:rP,mape:aP,MAPE:oP,cosine:iP};function lP(e){if(typeof e=="string"&&e in Fp)return Fp[e];if(typeof e!="string"&&e!=null)return e;throw new G(`Unknown metric ${e}`)}function Dp(e){if(Qs(e!==null,`Unknown LossOrMetricFn ${e}`),typeof e=="string")return e;{let t;for(let n of Object.keys($p))if($p[n]===e){t=n;break}if(t!==void 0)return t;for(let n of Object.keys(Fp))if(Fp[n]===e){t=n;break}return t!==void 0?t:e.name}}function uP(e){let t={Adagrad:()=>No.adagrad(.01),Adadelta:()=>No.adadelta(1,.95,Ut()),Adam:()=>No.adam(.001,.9,.999,Ut()),Adamax:()=>No.adamax(.002,.9,.999,Ut(),0),RMSProp:()=>No.rmsprop(.001,.9,0,Ut()),SGD:()=>No.sgd(.01)};if(t.adagrad=t.Adagrad,t.adadelta=t.Adadelta,t.adam=t.Adam,t.adamax=t.Adamax,t.rmsprop=t.RMSProp,t.sgd=t.SGD,e in t)return t[e]();throw new G(`Unknown Optimizer ${e}`)}var w3=1*1024*1024;function k3(e,t,n=!1){if(e==null||typeof e!="object"||Object.getPrototypeOf(e)!==Object.prototype||!bg(e))throw new Error("User-defined metadata is expected to be a JSON object, but is not.");if(n){let s=JSON.stringify(e);s.length>w3&&console.warn(`User-defined metadata of model "${t}" is too large in size (length=${s.length} when serialized). It is not recommended to store such large objects in user-defined metadata. Please make sure its serialized length is <= ${w3}.`)}}function bg(e){if(e===null)return!0;if(typeof e=="object")if(Object.getPrototypeOf(e)===Object.prototype){let t=Object.keys(e);for(let n of t)if(typeof n!="string"||!bg(e[n]))return!1;return!0}else if(Array.isArray(e)){for(let t of e)if(!bg(t))return!1;return!0}else return!1;else{let t=typeof e;return t==="string"||t==="number"||t==="boolean"}}function cP(e,t,n,s=console.log){let r=hP(e),a=["Layer (type)","Output shape","Param #"];r?(t=t||65,n=n||[.45,.85,1]):(t=t||98,n=n||[.33,.55,.67,1]),n[n.length-1]<=1&&(n=n.map(c=>Math.floor(t*c)));let o;if(!r){a.push("Receives inputs"),o=[];for(let c in e.nodesByDepth)o.push(...e.nodesByDepth[c])}s("_".repeat(t)),Op(a,n,s),s("=".repeat(t));let i=e.layers;for(let c=0;c<i.length;++c)r?pP(i[c],n,s):fP(i[c],n,o,s),s((c===i.length-1?"=":"_").repeat(t));e.checkTrainableWeightsConsistency();let l=dP(e),u=Cp(e.nonTrainableWeights);s(`Total params: ${l+u}`),s(`Trainable params: ${l}`),s(`Non-trainable params: ${u}`),s("_".repeat(t))}function dP(e){let t;return e.collectedTrainableWeights!=null?t=Cp(e.collectedTrainableWeights):t=Cp(e.trainableWeights),t}function hP(e){let t=!0,n=[],s=[];for(let r in e.nodesByDepth)n.push(e.nodesByDepth[r]);for(let r of n){if(r.length>1||r.length===1&&r[0].inboundLayers.length>1){t=!1;break}s.push(...r)}if(t)for(let r of e.layers){let a=!1;for(let o of r.inboundNodes)if(s.indexOf(o)!==-1)if(a){t=!1;break}else a=!0;if(!t)break}return t}function Op(e,t,n=console.log){let s="";for(let r=0;r<e.length;++r)r>0&&(s=s.slice(0,s.length-1)+" "),s+=e[r],s=s.slice(0,t[r]),s+=" ".repeat(t[r]-s.length);n(s)}function pP(e,t,n){let s;try{s=JSON.stringify(e.outputShape)}catch(i){s="multiple"}let r=e.name,a=e.getClassName(),o=[`${r} (${a})`,s,e.countParams().toString()];Op(o,t,n)}function fP(e,t,n,s){let r;try{r=JSON.stringify(e.outputShape)}catch(c){r="multiple"}let a=[];for(let c of e.inboundNodes)if(!(n!=null&&n.length>0&&n.indexOf(c)===-1))for(let d=0;d<c.inboundLayers.length;++d){let h=c.inboundLayers[d].name,p=c.nodeIndices[d],f=c.tensorIndices[d];a.push(`${h}[${p}][${f}]`)}let o=e.name,i=e.getClassName(),l=a.length===0?"":a[0],u=[`${o} (${i})`,r,e.countParams().toString(),l];Op(u,t,s);for(let c=1;c<a.length;++c)Op(["","","",a[c]],t,s)}function I3(e,t,n){return(e==="inboundNodes"||e==="outputLayers"||e==="inputLayers")&&t===0&&typeof n=="string"}function yc(e,t){if(e===null)return null;if(typeof e=="string")return Ro(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let n=[],s=e.length;for(let r=0;r<s;++r){let a=e[r];I3(t,r,a)?n.push(a):n.push(yc(a,t))}return n}else{let n={};for(let s of Object.keys(e)){let r=e[s];if(s==="name"&&typeof r=="string")n[s]=r;else{let a=Ro(s);n[a]=yc(r,a)}}return n}}function vg(e,t){if(e==null)return null;if(typeof e=="string")return vr(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let n=[],s=e.length;for(let r=0;r<s;++r){let a=e[r];I3(t,r,a)?n.push(a):n.push(vg(a,t))}return n}else{let n={};for(let s of Object.keys(e)){let r=e[s],a=vr(s);(s==="name"||s==="className")&&typeof r=="string"?n[a]=r:n[a]=vg(r,s)}return n}}var wg="3.8.0";function mP(e,t){if(e.dtype==null||e.dtype===t.dtype)return t;try{return ce(t,e.dtype)}catch(n){throw new G(`The dtype of the feed (${t.dtype}) can not be cast to the dtype of the key '${e.name}' (${e.dtype}).`)}}var Oo=class{constructor(e){if(this.id2Value={},this.id2Mask={},this.name2Id={},e instanceof Oo)for(let t in e.id2Value)this.id2Value[t]=e.id2Value[t],t in e.id2Mask&&(this.id2Mask[t]=e.id2Mask[t]);else{if(e==null)return;for(let t of e)this.add(t.key,t.value)}}add(e,t,n){if(this.id2Value[e.id]==null)this.id2Value[e.id]=mP(e,t),this.name2Id[e.name]=e.id,n!=null&&(this.id2Mask[e.id]=n);else throw new G(`Duplicate key: name=${e.name}, id=${e.id}`);return this}addFeed(e){this.add(e.key,e.value)}hasKey(e){return this.id2Value[e.id]!=null}names(){return Object.keys(this.name2Id)}getValue(e){if(e instanceof Ps){if(this.id2Value[e.id]==null)throw new G(`Nonexistent key: ${e.name}`);return this.id2Value[e.id]}else{let t=this.name2Id[e];if(t==null)throw new G(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Value[t]}}getMask(e){if(e instanceof Ps){if(this.id2Value[e.id]==null)throw new G(`Nonexistent key: ${e.name}`);return this.id2Mask[e.id]}else{let t=this.name2Id[e];if(t==null)throw new G(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Mask[t]}}disposeMasks(){this.id2Mask!=null&&K(this.id2Mask)}},kg={},S3={};function xc(e,t,n,s){let r=n==null?!1:n.training,a=Array.isArray(e),o=a?e:[e],i=o.map(f=>f.name),l=[],u=t.names();for(let f of i)u.indexOf(f)!==-1?l.push(t.getValue(f)):l.push(null);s!=null&&(s.maxNumTensors=-1/0,s.minNumTensors=1/0);let c=i.join(",")+"|"+t.names().join(","),d,h;if(kg[c]==null){let f=AP(o,t);d=f.sorted,h=f.recipientCounts,kg[c]=d,S3[c]=h}d=kg[c],h={},r||Object.assign(h,S3[c]);let p=new Oo(t);for(let f=0;f<d.length;++f){if(s!=null){let E=_h().numTensors;E>s.maxNumTensors&&(s.maxNumTensors=E),E<s.minNumTensors&&(s.minNumTensors=E)}let m=d[f],A=m.sourceLayer;if(A instanceof Dl)continue;let g=[],y=[],x=[],b=!1;for(let E of m.inputs){let M=p.getValue(E),R=p.getMask(E);g.push(M),y.push(R),R!=null&&(b=!0),r||(h[E.name]--,h[E.name]===0&&!t.hasKey(E)&&i.indexOf(E.name)===-1&&!M.isDisposed&&E.sourceLayer.stateful!==!0&&x.push(M))}b&&(n=n||{},n.mask=y[0]);let v=At(A.apply(g,n)),k=null;A.supportsMasking&&(k=A.computeMask(g,y));let w=yP(m),C=Array.isArray(w)?w:[w];for(let E=0;E<C.length;++E){p.hasKey(C[E])||p.add(C[E],v[E],Array.isArray(k)?k[0]:k);let M=i.indexOf(C[E].name);M!==-1&&(l[M]=v[E])}r||K(x)}return p.disposeMasks(),a?l:l[0]}function AP(e,t){I.assert(e!=null&&e.length>0,()=>"Expected at least one fetch, got none");let n=[],s={};if(e.length===1){let r=C3(e[0],t);n=r.sorted,s=r.recipientMap}else{let r=new Set;for(let a of e){let{sorted:o,recipientMap:i}=C3(a,t);for(let l of o)r.has(l.name)||(n.push(l),r.add(l.name));for(let l in i)s[l]==null&&(s[l]=new Set),i[l].forEach(u=>s[l].add(u))}}return{sorted:n,recipientCounts:gP(s)}}function gP(e){let t={};for(let n in e)t[n]=e[n].size;return t}function C3(e,t){let n=new Set,s=[],r={};for(let i of t.names())n.add(i);let a=[],o=[];for(a.push(e);a.length>0;){let i=a[a.length-1];if(n.has(i.name)){a.pop();continue}let l=o[o.length-1]===a.length-1;if(i.inputs.length===0||l)a.pop(),s.push(i),n.add(i.name),l&&o.pop();else{o.push(a.length-1);for(let u of i.inputs)r[u.name]==null&&(r[u.name]=new Set),r[u.name].add(i.name),!n.has(u.name)&&a.push(u)}}return{sorted:s,recipientMap:r}}function yP(e){let t;if(e.sourceLayer.inboundNodes.length===1)t=e.sourceLayer.output;else{let n=null;for(let s=0;s<e.sourceLayer.inboundNodes.length;++s)for(let r of e.sourceLayer.inboundNodes[s].outputTensors)if(r.id===e.id){n=s;break}t=e.sourceLayer.getOutputAt(n)}return t}var tr=class extends Xe{constructor(e){super({});if(this.containerNodes=new Set,this.name=e.name,this.name==null){let g=this.getClassName().toLowerCase();this.name=Ip(g)}if(this.supportsMasking=!1,this.trainable_=!0,Array.isArray(e.inputs)?this.inputs=e.inputs.slice():this.inputs=[e.inputs],Array.isArray(e.outputs)?this.outputs=e.outputs.slice():this.outputs=[e.outputs],Xr(this.inputs).length!==this.inputs.length)throw new G(`The list of inputs passed to the model is redundant. All inputs should only appear once. Found: ${this.inputs.map(g=>g.name)}`);Xr(this.outputs).length!==this.outputs.length&&console.warn(`The list of outputs passed to the model is redundant. All outputs should only appear once. Found: ${this.outputs.map(g=>g.name)}`),this.inputLayers=[],this.inputLayersNodeIndices=[],this.inputLayersTensorIndices=[],this.outputLayers=[],this.outputLayersNodeIndices=[],this.outputLayersTensorIndices=[],this.layers=[],this.internalContainerRefs=[];for(let g of this.outputs){let y=g.sourceLayer,x=g.nodeIndex,b=g.tensorIndex;this.outputLayers.push(y),this.outputLayersNodeIndices.push(x),this.outputLayersTensorIndices.push(b)}for(let g of this.inputs){let y=g.sourceLayer,x=g.nodeIndex,b=g.tensorIndex;Qs(x===0,"input layer has >1 nodes"),Qs(b===0,"input layer has >1 tensors"),this.inputLayers.push(y),this.inputLayersNodeIndices.push(x),this.inputLayersTensorIndices.push(b)}this.inputNames=[],this.outputNames=[],this.feedInputShapes=[],this.feedInputNames=[],this.feedOutputNames=[];for(let g=0;g<this.inputLayers.length;g++){let y=this.inputLayers[g];if(!(y instanceof Dl))throw new TypeError(`Input layers to a LayersModel must be InputLayer objects. Received inputs: ${e.inputs}. Input ${g} (0-based) originates from layer type ${y.getClassName()}.`);this.inputNames.push(y.name),this.feedInputShapes.push(y.batchInputShape),this.feedInputNames.push(y.name)}for(let g of this.outputLayers)this.outputNames.push(g.name);this.internalInputShapes=this.inputs.map(g=>g.shape),this.internalOutputShapes=this.outputs.map(g=>g.shape);let t={},n={},s={},r={},a={},o=[],i=(g,y,x,b,v,k)=>{(b==null||v==null||k==null)&&(b=g.sourceLayer,v=g.nodeIndex,k=g.tensorIndex);let w=b.inboundNodes[v];if(x.indexOf(w)!==-1)throw new Fs(`The tensor ${g.name} at layer "${b.name}" is part of a cycle.`);if(y.indexOf(w)!==-1)return;this.containerNodes.add(tr.nodeKey(b,v)),b.id in a||(a[b.id]=Object.keys(a).length),x.indexOf(w)===-1&&x.push(w);let C=w.inboundLayers.length;for(let E=0;E<C;E++){let M=w.inputTensors[E],R=w.inboundLayers[E],_=w.nodeIndices[E],N=w.tensorIndices[E];i(M,y,x,R,_,N)}for(y.push(w);x.indexOf(w)>=0;)x.splice(x.indexOf(w),1);o.push(w)},l=[],u=[];for(let g of this.outputs)i(g,l,u);let c=o.slice().reverse();for(let g of c){n[g.id]=g,g.id in t||(t[g.id]=0);let y=t[g.id],x=s[g.outboundLayer.id]==null?0:s[g.outboundLayer.id];y=Math.max(y,x),s[g.outboundLayer.id]=y,r[g.outboundLayer.id]=g.outboundLayer,t[g.id]=y;for(let b=0;b<g.inboundLayers.length;b++){let v=g.inboundLayers[b],k=g.nodeIndices[b],w=v.inboundNodes[k],C=t[w.id]==null?0:t[w.id];t[w.id]=Math.max(y+1,C),n[w.id]=w}}let d={};for(let g in t){let y=t[g];y in d||(d[y]=[]),d[y].push(n[g])}let h={};for(let g in s){let y=s[g];y in h||(h[y]=[]),h[y].push(r[g])}let p=Object.keys(h).map(g=>parseInt(g,10)).sort(hp);this.layers=[];for(let g of p){let y=h[g];y.sort((x,b)=>{let v=a[x.id],k=a[b.id];return v<k?-1:v>k?1:0});for(let x of y)x instanceof tr&&this.internalContainerRefs.push(x),this.layers.push(x)}this.layersByDepth=h,p=Object.keys(d).map(g=>parseInt(g,10)).sort(hp);let f=this.inputs.slice(),m=[];for(let g of p)for(let y of d[g]){let x=y.outboundLayer;if(x!=null){for(let b of y.inputTensors)if(f.indexOf(b)===-1)throw new Fs(`Graph disconnected: cannot obtain value for tensor ${b} at layer "${x.name}". The following previous layers were accessed without issue: ${m}`);for(let b of y.outputTensors)f.push(b);m.push(x.name)}}this.nodesByDepth=d;let A=this.layers.map(g=>g.name);for(let g of A){let y=A.filter(x=>x===g).length;if(y!==1)throw new Fs(`The name "${g}" is used ${y} times in the model. All layer names should be unique. Layer names: `+JSON.stringify(A))}this.outboundNodes=[],this.inboundNodes=[],new Tp({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:this.inputs.map(g=>null),outputMasks:this.outputs.map(g=>null),inputShapes:this.inputs.map(g=>g.shape),outputShapes:this.outputs.map(g=>g.shape)}),this.built=!0,this._refCount=1}assertNotDisposed(){if(this._refCount===0)throw new Error(`Container '${this.name}' is already disposed.`)}dispose(){this.assertNotDisposed();let e={refCountAfterDispose:null,numDisposedVariables:0};if(--this._refCount==0){for(let t of this.layers)e.numDisposedVariables+=t.dispose().numDisposedVariables;for(let t of this.internalContainerRefs)e.numDisposedVariables+=t.dispose().numDisposedVariables}return e.refCountAfterDispose=this._refCount,e}get trainable(){return this.trainable_}set trainable(e){this.layers.forEach(t=>{t._trainableWeights.forEach(n=>n.trainable=e)}),this.trainable_=e}get trainableWeights(){if(this._trainableWeights.length>0)throw new G("Container instance unexpectedly contains _trainableWeights.The trainable weights of a Container are a union of the trainable weights of its consituent Layers. Its own _trainableWeights must remain an empty Array.");if(!this.trainable)return[];let e=[];for(let t of this.layers)e=e.concat(t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.layers)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.layers)t.push(...n.trainableWeights);return t.concat(e)}return e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}loadWeights(e,t=!0){let n={},s=0;for(let a of this.layers)for(let o of a.weights){if(n[o.originalName]!=null)throw new G(`Duplicate weight name: ${o.originalName}`);n[o.originalName]=o,s++}let r=[];for(let a in e){let o=a;if(n[a]==null){let i=a.split("/");o=i.slice(0,-2).concat([i[i.length-1]]).join("/")}if(n[o]!=null)r.push([n[o],e[a]]);else if(t)throw new G(`Provided weight data has no target variable: ${a}`);delete n[o]}if(t){let a=[];for(let o in n)a.push(o);if(a.length>0)throw new G(`${a.length} of ${s} weights are not set: ${a}`)}fg(r)}updatedConfig(){let e=this.getConfig(),t={};return t.className=this.getClassName(),t.config=e,t.kerasVersion=`tfjs-layers ${wg}`,t.backend="TensorFlow.js",t}toJSON(e,t=!0){let n=vg(this.updatedConfig());return t?JSON.stringify(n):n}call(e,t){return H(()=>{e=At(e);let n=new Oo;for(let s=0;s<this.inputs.length;++s)n.add(this.inputs[s],e[s]);return xc(this.outputs,n,t)})}computeMask(e,t){return H(()=>{e=At(e);let n;return t==null?n=Eo(null,e.length):n=At(t),this.runInternalGraph(e,n)[1]})}computeOutputShape(e){let t=Sp(e);if(t.length!==this.inputLayers.length)throw new G(`Invalid inputShape argument ${e}: model has ${this.inputLayers.length} tensor inputs.`);let n={};for(let o=0;o<t.length;o++){let i=this.inputLayers[o],l=t[o],u=i.name+"_0_0";n[u]=l}let s=Object.keys(this.nodesByDepth).map(o=>parseInt(o,10)).sort(hp);if(s.length>1)for(let o of s){let i=this.nodesByDepth[o];for(let l of i){let u=l.outboundLayer;if(this.inputLayers.map(f=>f.id).indexOf(u.id)!==-1)continue;let c=[];for(let f=0;f<l.inboundLayers.length;f++){let m=l.inboundLayers[f],A=l.nodeIndices[f],g=l.tensorIndices[f],y=`${m.name}_${A}_${g}`,x=n[y];c.push(x)}let d=u.computeOutputShape(En(c)),h=Sp(d),p=u.inboundNodes.indexOf(l);for(let f=0;f<h.length;f++){let m=`${u.name}_${p}_${f}`;n[m]=h[f]}}}let r=[],a=[];for(let o=0;o<this.outputLayers.length;o++){let i=this.outputLayers[o],l=this.outputLayersNodeIndices[o],u=this.outputLayersTensorIndices[o],c=`${i.name}_${l}_${u}`;a.push(c)}for(let o=0;o<a.length;o++){let i=a[o];Qs(i in n),r.push(n[i])}return En(r)}runInternalGraph(e,t){t==null&&(t=Eo(null,e.length));let n={};for(let i=0;i<this.inputs.length;++i){let l=this.inputs[i],u=e[i],c=t[i];n[l.id]=[u,c]}let s=Object.keys(this.nodesByDepth).map(i=>parseInt(i,10)).sort(hp);for(let i of s){let l=this.nodesByDepth[i];for(let u of l){let c=u.outboundLayer,d=u.inputTensors,h=u.outputTensors,p=new Array;for(let f of d)f.id in n&&p.push(n[f.id]);if(p.length===d.length){let f={},m,A,g,y;if(u.callArgs!=null&&(f=u.callArgs),p.length===1){let[x,b]=p[0];f.mask==null&&(f.mask=b),g=At(c.call(x,f)),y=At(c.computeMask(x,b)),m=[x],A=[b]}else m=p.map(x=>x[0]),A=p.map(x=>x[1]),f.mask==null&&(f.mask=A),g=At(c.call(m,f)),y=At(c.computeMask(m,A));if(c.activityRegularizer)throw new Oe("LayersModel invocation with concrete Tensor value(s) in the presence of activity regularizer(s) is not supported yet.");for(let x=0;x<h.length;++x){let b=h[x],v=g[x],k=y[x];n[b.id]=[v,k]}}}}let r=[],a=[],o=[];for(let i of this.outputs){Qs(i.id in n,`Could not compute output ${i.name} : ${i.id}`);let[l,u]=n[i.id];o.push(l.shape),r.push(l),a.push(u)}return[r,a,o]}buildNodeConversionMap(e){let t={},n;for(let s of this.layers){n=s instanceof tr?1:0;for(let r=0;r<s.inboundNodes.length;r++){let a=tr.nodeKey(s,r);this.containerNodes.has(a)&&(t[a]=n,n+=1)}}return t}getLayer(e,t){if(t!=null){if(this.layers.length<=t)throw new G(`Was asked to retrieve layer at index ${t}, but model only has ${this.layers.length} layer(s).`);return this.layers[t]}else if(e==null)throw new G("Provide either a layer name or layer index");for(let n of this.layers)if(n.name===e)return n;throw new G(`No such layer: ${e}`)}calculateLosses(){return H(()=>{let e=[];for(let t of this.layers)for(let n=0;n<t.inboundNodes.length;++n){let s=tr.nodeKey(t,n);this.containerNodes.has(s)&&e.push(...t.calculateLosses())}return e})}getConfig(){let e={name:this.name},t=this.buildNodeConversionMap(this.layers),n=[];for(let a of this.layers){let o=a.getClassName(),i=a.getConfig(),l=[];for(let c=0;c<a.inboundNodes.length;c++){let d=a.inboundNodes[c],h=tr.nodeKey(a,c),p={};if(this.containerNodes.has(h)){if(d.callArgs)try{JSON.stringify(d.callArgs),p=d.callArgs}catch(f){console.warn(`Layer ${a.name} was passed non-serializable keyword arguments: ${d.callArgs}. They will not be included in the serialized model (and thus will be missing at deserialization time).`),p={}}if(d.inboundLayers.length>0){let f=[];for(let m=0;m<d.inboundLayers.length;m++){let A=d.inboundLayers[m],g=d.nodeIndices[m],y=d.tensorIndices[m],x=tr.nodeKey(A,g),b=t[x];b==null&&(b=0),f.push([A.name,b,y,p])}l.push(f)}}}let u={};u.name=a.name,u.className=o,u.config=i,u.inboundNodes=l,n.push(u)}e.layers=n;let s=[];for(let a=0;a<this.inputLayers.length;a++){let o=this.inputLayers[a],i=this.inputLayersNodeIndices[a],l=tr.nodeKey(o,i);if(!this.containerNodes.has(l))continue;let u=t[l];u==null&&(u=0);let c=this.inputLayersTensorIndices[a];s.push([o.name,u,c])}e.inputLayers=s;let r=[];for(let a=0;a<this.outputLayers.length;a++){let o=this.outputLayers[a],i=this.outputLayersNodeIndices[a],l=tr.nodeKey(o,i);if(!this.containerNodes.has(l))continue;let u=t[l];u==null&&(u=0);let c=this.outputLayersTensorIndices[a];r.push([o.name,u,c])}return e.outputLayers=r,e}static fromConfig(e,t,n={},s=!1){let r={},a={};function o(m,A){m.name in a?a[m.name].push(A):a[m.name]=[A]}function i(m,A){let g=[],y;for(let x of A){let b=x[0],v=x[1],k=x[2];if(y=x[3]==null?{}:x[3],!(b in r)){o(m,A);return}let w=r[b];if(w.inboundNodes.length<=v){o(m,A);return}let C=w.inboundNodes[v];g.push(C.outputTensors[k])}g.length>0&&m.apply(En(g),y)}function l(m){let A=m.name,g=Ms(m,t.customObjects!=null?t.customObjects:{});g.setFastWeightInitDuringBuild(s),r[A]=g,m.inboundNodes.forEach(x=>{if(!(x instanceof Array))throw new G(`Corrupted configuration, expected array for nodeData: ${x}`);o(g,x)})}let u=t.name,c=t.layers;for(let m of c)l(m);for(;!KD(a);)for(let m of c){let A=r[m.name];if(A.name in a){let g=a[A.name];delete a[A.name];for(let y of g)i(A,y)}}let d=[],h=[],p=t.inputLayers;for(let m of p){let A=m[0],g=m[1],y=m[2];Qs(A in r);let b=r[A].inboundNodes[g].outputTensors;d.push(b[y])}let f=t.outputLayers;for(let m of f){let A=m[0],g=m[1],y=m[2];Qs(A in r);let b=r[A].inboundNodes[g].outputTensors;h.push(b[y])}return new e({inputs:d,outputs:h,name:u})}get stateful(){if(this._stateful)throw new G("Container instance unexpectedly has _stateful = true. The statefulness of a Container is determined by the Layers it contains. Its _stateful property must remain the default false.");for(let e of this.layers)if(e.stateful)return!0;return!1}resetStates(){H(()=>{this.layers.forEach(e=>{e.stateful&&e.resetStates()})})}};function xP(e,t,n){let s=t.length;if(e==null||Array.isArray(e)&&e.length===0)return t.map(r=>null);if(s===1)return Array.isArray(e)&&e.length===1?e:typeof e=="object"&&t[0]in e?[e[t[0]]]:[e];if(Array.isArray(e)){if(e.length!==s)throw new Error(`Provided ${n} is an array of ${e.length} element(s), but the model has ${s} outputs. Make sure a set of weights is provided for each model output.`);return e}else if(typeof e=="object"&&Object.keys(e).length>0&&typeof e[Object.keys(e)[0]]=="object"){let r=[];return t.forEach(a=>{a in e?r.push(e[a]):r.push(null)}),r}else throw new Error(`The model has multiple (${s}) outputs, so ${n} must be either an array with ${s} elements or an object with ${t} keys. Provided ${n} not understood: ${JSON.stringify(e)}`)}function T3(e,t){return xP(e,t,"classWeight")}async function N3(e,t,n,s){if(t!=null||s!=null)throw new Error("Support sampleWeight is not implemented yet");if(n!=null){let r=H(()=>{if(e.shape.length===1)return Ns(e);if(e.shape.length===2){if(e.shape[1]>1)return Xs(e,1);if(e.shape[1]===1)return U(e,[e.shape[0]]);throw new Error(`Encountered unexpected last-dimension size (${e.shape[1]}) during handling of class weights. The size is expected to be >= 1.`)}else throw new Error(`Unexpected rank of target (y) tensor (${e.rank}) during handling of class weights. The rank is expected to be 1 or 2.`)}),a=Array.from(await r.data());K(r);let o=[];return a.forEach(i=>{if(n[i]==null)throw new Error(`classWeight must contain all classes in the training data. The class ${i} exists in the data but not in classWeight`);o.push(n[i])}),Ot(o,"float32")}else return null}function bP(e,t){return z(e,t)}var vP=32;function E3(e,t){let n,s,r=t;n=r.xs,s=r.ys,I.assert(n!=null&&s!=null,()=>`A Dataset iterator for fitDataset() is expected to generate objects of the form \`{xs: xVal, ys: yVal}\`, where the two values may be \`tf.Tensor\`, an array of Tensors, or a map of string to Tensor. The provided Dataset instead generates ${t}`);let a=R3("input",e.inputNames,n),o=R3("output",e.outputNames,s),i=a[0].shape[0];I.assert(a.length===e.inputs.length,()=>`LayersModel has ${e.inputs.length} inputs, but the dataset provides ${a.length} inputs. (Expected input keys: ${JSON.stringify(e.inputNames)})`),I.assert(o.length===e.outputs.length,()=>`LayersModel has ${e.outputs.length} outputs, but the dataset provides ${o.length} outputs. (Expected output keys: ${JSON.stringify(e.outputNames)})`);for(let l=0;l<a.length;l++)I.assert(a[l].shape[0]===i,()=>`Batch size mismatch: input ${e.inputNames[l]} has ${a[l].shape[0]}; expected ${i} based on input ${e.inputNames[0]}.`);for(let l=0;l<o.length;l++)I.assert(o[l].shape[0]===i,()=>`Batch size mismatch: output ${e.outputNames[l]} has ${o[l].shape[0]}; expected ${i} based on input ${e.inputNames[0]}.`);return{xs:a,ys:o}}function R3(e,t,n){if(n instanceof Ue)return[n];if(Array.isArray(n))return I.assert(n.length===t.length,()=>`Received an array of ${n.length} Tensors, but expected ${t.length} to match the ${e} keys ${t}.`),n;{let s=[];for(let r of t){if(n[r]==null)throw new G(`The feature data generated by the dataset lacks the required ${e} key '${r}'.`);s.push(n[r])}return s}}function wP(e){if(e.length===3)throw new Oe("Validation with sample weights is not implemented yet.");return{xs:e[0],ys:e[1]}}async function kP(e,t,n){let s=n.batchesPerEpoch!=null;if(I.assert(e.optimizer!=null,()=>"You must compile a model before training/testing. Use LayersModel.compile(modelCompileConfig)."),I.assert(n!=null,()=>"For fitDataset(), the 2nd argument (config) is required, but it is not provided in this call."),I.assert(n.epochs!=null&&n.epochs>0&&Number.isInteger(n.epochs),()=>`For fitDataset(), config.epochs is expected to be a positive integer, but got ${n.epochs}`),I.assert(!s||n.batchesPerEpoch>0&&Number.isInteger(n.batchesPerEpoch),()=>`For fitDataset(), config.batchesPerEpoch is expected to be a positive integer if specified, but got ${n.batchesPerEpoch}`),I.assert(n.validationSplit==null,()=>"`validationSplit` is not supported by `fitDataset()`. Use validationData instead."),e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;try{let r=n.validationData!=null,a,o;if(r)if(_3(n.validationData))I.assert(n.validationBatches==null||n.validationBatches>0&&Number.isInteger(n.validationBatches),()=>`For fitDataset() with dataset-based validation, config.validationBatches is expected not to be provided, or to be a positive integer, but got ${n.validationBatches}`);else{let A=wP(n.validationData);a=A.xs,o=A.ys}let i=e.makeTrainFunction(),l=e.getDedupedMetricsNames(),u;r?u=l.slice().concat(l.map(A=>"val_"+A)):u=l.slice();let c=m3(n.callbacks,n.yieldEvery),d=n.verbose==null?1:n.verbose,{callbackList:h,history:p}=A3(c,d,n.epochs,null,null,IP(t,n),null,r,u);h.setModel(e),e.history=p,await h.onTrainBegin(),e.stopTraining_=!1;let f=n.initialEpoch==null?0:n.initialEpoch,m=await t.iterator();for(;f<n.epochs;){let A={};await h.onEpochBegin(f);let g=0,y=0;for(s||(m=await t.iterator());s?g<n.batchesPerEpoch:!0;){let x=await m.next();if(s&&x.done){console.warn(`You provided \`batchesPerEpoch\` as ${n.batchesPerEpoch}, but your dataset iterator ran out of data after ${g} batches; interrupting training. Make sure that your dataset can generate at least \`batchesPerEpoch * epochs\` batches (in this case, ${n.batchesPerEpoch*n.epochs} batches). You may need to use the repeat() function when building your dataset.`);break}if(x.value!=null){let{xs:b,ys:v}=E3(e,x.value),k={};k.batch=y,k.size=b[0].shape[0],await h.onBatchBegin(y,k);let w=[];if(n.classWeight!=null){let M=T3(n.classWeight,e.outputNames);for(let R=0;R<M.length;++R)w.push(await N3(v[R],null,M[R]))}let C=b.concat(v).concat(w),E=i(C);K(C);for(let M=0;M<l.length;++M){let R=l[M],_=E[M];k[R]=_,Kt(_)}await h.onBatchEnd(y,k),c3(k),y++,g++}if(s?g>=n.batchesPerEpoch:x.done){if(r){let b;_3(n.validationData)?b=At(await e.evaluateDataset(n.validationData,{batches:n.validationBatches})):b=At(e.evaluate(a,o,{batchSize:n.validationBatchSize==null?vP:n.validationBatchSize,verbose:0}));for(let v=0;v<e.metricsNames.length;++v)A[`val_${e.metricsNames[v]}`]=b[v]}break}if(e.stopTraining_)break}if(await h.onEpochEnd(f,A),f++,e.stopTraining_)break}return await h.onTrainEnd(),await e.history.syncData(),e.history}finally{e.isTraining=!1}}function IP(e,t){let n=null;return t.batchesPerEpoch!=null?n=t.batchesPerEpoch:Number.isFinite(e.size)&&(n=e.size),n}function _3(e){return typeof e.iterator=="function"}function SP(e){return typeof e.next=="function"}async function CP(e,t,n){n=n||{};let s=n.batches!=null,r=e.testFunction,a=[];if(n.verbose>0)throw new Oe("Verbose mode is not implemented yet.");I.assert(!s||n.batches>0&&Number.isInteger(n.batches),()=>`Test loop expects \`batches\` to be a positive integer, but received ${JSON.stringify(n.batches)}`);let o=SP(t)?t:await t.iterator(),i=0,l=0;for(;s?l<n.batches:!0;){let u=await o.next();if(a=H(()=>{if(u.value){let{xs:c,ys:d}=E3(e,u.value),h=c.concat(d),p=H(()=>r(h));if(K(h),l===0)for(let m=0;m<p.length;++m)a.push(Ie(0));let f=h[0].shape[0];for(let m=0;m<p.length;++m){let A=p[m],g=a[m];a[m]=H(()=>ae(a[m],z(f,A))),l>0&&K(g)}K(p),i+=f,++l}return a}),u.done){s&&console.warn(`Your dataset iterator ran out of data during evaluateDataset(). Interrupting evalution. Make sure that your dataset can generate at least \`batches\` batches (in this case, ${n.batches} batches). You may need to use the repeat() function when building your dataset.`);break}}for(let u=0;u<a.length;++u){let c=a[u];a[u]=de(a[u],i),K(c)}return En(a)}function Ig(e){I.assert(e>0&&Number.isInteger(e),()=>`batchSize is required to be a positive integer, but got ${e}`)}function bc(e,t,n){return e==null?[null]:Array.isArray(e)?e.map(s=>Fo(s,t,n-t)):Fo(e,t,n-t)}function Sg(e,t){return H(()=>e==null?null:Array.isArray(e)?e.map(n=>Sg(n,t)):e3(e,t.dtype==="int32"?t:ce(t,"int32")))}function Cg(e,t){let n=[],s=0,r=null;for(;s<e;)r=s+t,r>=e&&(r=e),n.push([s,r]),s=r;return n}async function TP(e,t,n,s,r,a,o,i,l,u,c,d,h,p,f){r==null&&(r=32),a==null&&(a=1),c==null&&(c=!0),h==null&&(h=0);let m=!1;if(l!=null&&u!=null&&(m=!0),f!=null&&(m=!0,p==null))throw new G("Can only use `validationSteps` when doing step-wise training, i.e., `stepsPerEpoch` must be set.");let A=e.checkNumSamples(n,r,p,"steps_per_epoch"),g;A!=null&&(g=Ds(0,A)),o==null&&(o=1);let{callbackList:y,history:x}=A3(i,o,a,h,A,p,r,m,d);y.setModel(e),e.history=x,await y.onTrainBegin(),e.stopTraining_=!1;for(let b=h;b<a;++b){await y.onEpochBegin(b);let v={};if(p!=null)throw new Oe("stepsPerEpoch mode is not implemented yet.");{if(c==="batch")throw new Oe("batch shuffling is not implemneted yet");c&&I.shuffle(g);let k=Ot(g),w=Cg(A,r);for(let C=0;C<w.length;++C){let E={};if(await y.onBatchBegin(C,E),H(()=>{let M=w[C][0],R=w[C][1],_=Fo(k,M,R-M);E.batch=C,E.size=R-M;let N=Sg(n,_),O=t(N);for(let W=0;W<s.length;++W){let j=s[W],q=O[W];E[j]=q,Kt(q)}if(C===w.length-1&&m){let W=e.testLoop(l,u,r);for(let j=0;j<s.length;++j){let q=s[j],X=W[j];Kt(X),v["val_"+q]=X}}}),await y.onBatchEnd(C,E),c3(E),e.stopTraining_)break}k.dispose()}if(await y.onEpochEnd(b,v),e.stopTraining_)break}return await y.onTrainEnd(),await e.history.syncData(),e.history}async function NP(e,t,n,s={}){if(e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;let r,a,o,i,l,u,c;try{let d=s.batchSize==null?32:s.batchSize;Ig(d);let h=!1,p=await e.standardizeUserData(t,n,s.sampleWeight,s.classWeight,h,d);r=p[0],a=p[1],c=p[2];let f=!1,m;if(s.validationData!=null&&s.validationData.length>0){if(f=!0,s.validationData.length===2)o=s.validationData[0],i=s.validationData[1];else throw s.validationData.length===3?new Oe("validationData including sample weights is not supported yet."):new G(`When passing validation data, it must contain 2 (valX, valY) or 3 (valX, valY, valSampleWeight) items; ${s.validationData} is invalid.`);let w=!0,C=await e.standardizeUserData(o,i,null,null,w,d);l=C[0],u=C[1],m=l.concat(u)}else if(s.validationSplit!=null&&s.validationSplit>0&&s.validationSplit<1){f=!0;let w=Math.floor(r[0].shape[0]*(1-s.validationSplit)),C=r[0].shape[0];l=bc(r,w,C),r=bc(r,0,w),u=bc(a,w,C),a=bc(a,0,w),m=l.concat(u)}else s.validationSteps!=null&&(f=!0);let A=r.concat(a).concat(c);e.checkTrainableWeightsConsistency();let g=e.makeTrainFunction(),y=e.getDedupedMetricsNames(),x,b;f?(e.makeTestFunction(),x=e.testFunction,b=y.slice().concat(y.map(w=>"val_"+w))):(x=null,m=[],b=y.slice());let v=m3(s.callbacks,s.yieldEvery);return await TP(e,g,A,y,d,s.epochs,s.verbose,v,x,m,s.shuffle,b,s.initialEpoch,null,null)}finally{e.isTraining=!1,Po(r,t),Po(a,n),Po(l,o),Po(u,i),c!=null&&K(c)}}function $3(e){let t=[];e instanceof Ue&&(e=[e]);for(let n=0;n<e.length;++n){let s=e[n];if(s.rank===1)t.push(fc(s,1));else{if(s.rank===0)throw new Error("Expected tensor to be at least 1D, but received a 0D tensor (scalar).");t.push(s)}}return t}function Po(e,t){if(e==null)return;let n=[];if(t instanceof Ue)n.push(t.id);else if(Array.isArray(t))t.forEach(r=>n.push(r.id));else if(t!=null)for(let r in t){let a=t[r];n.push(a.id)}let s=[];if(e instanceof Ue)n.indexOf(e.id)===-1&&s.push(e);else if(Array.isArray(e))e.forEach(r=>{n.indexOf(r.id)===-1&&s.push(r)});else if(e!=null)for(let r in e){let a=e[r];n.indexOf(a.id)===-1&&s.push(a)}s.forEach(r=>{r.isDisposed||r.dispose()})}function EP(e){return e instanceof Ue}function Tg(e){return Array.isArray(e)}function F3(e){return!EP(e)&&!Tg(e)}function D3(e,t,n,s=!0,r=""){if(t==null||t.length===0){if(e!=null){let o=!1;if(Tg(e)&&e.length>0)o=!0;else if(F3(e)){for(let i in e)if(e.hasOwnProperty(i)){o=!0;break}}else o=!0;if(o)throw new G(`Error when checking model ${r} expected no data, but got ${e}`)}return[]}if(e==null)return t.map(o=>null);let a;if(F3(e)){e=e,a=[];for(let o of t){if(e[o]==null)throw new G(`No data provided for "${o}". Need data for each key in: ${t}`);a.push(e[o])}}else if(Tg(e)){if(e=e,e.length!==t.length)throw new G(`Error when checking model ${r}: the Array of Tensors that you are passing to your model is not the size the model expected. Expected to see ${t.length} Tensor(s), but instead got the following list of Tensor(s): ${e}`);a=e}else{if(e=e,t.length>1)throw new G(`The model ${r} expects ${t.length} Tensor(s), but only received one Tensor. Found: Tensor with shape ${e.shape}`);a=[e]}if(a=$3(a),n!=null)for(let o=0;o<t.length;++o){if(n[o]==null)continue;let i=a[o];if(i.shape.length!==n[o].length)throw new G(`Error when checking ${r}: expected ${t[o]} to have ${n[o].length} dimension(s). but got array with shape ${i.shape}`);for(let l=0;l<n[o].length;++l){if(l===0&&!s)continue;let u=i.shape[l],c=n[o][l];if(c!=null&&c>=0&&u!==c)throw new G(`Error when checking ${r}: expected ${t[o]} to have shape [${n[o]}], but got array with shape [${i.shape}].`)}}return a}function RP(e,t,n){let s=Xr(e.map(a=>a.shape[0]));s.sort();let r=Xr(t.map(a=>a.shape[0]));if(r.sort(),s.length>1)throw new G(`All input Tensors (x) should have the same number of samples. Got array shapes: ${JSON.stringify(e.map(a=>a.shape))}`);if(r.length>1)throw new G(`All target Tensors (y) should have the same number of samples. Got array shapes: ${JSON.stringify(t.map(a=>a.shape))}`);if(s.length>0&&r.length>0&&!I.arraysEqual(s,r))throw new G(`Input Tensors should have the same number of samples as target Tensors. Found ${s[0]} input sample(s) and ${r[0]} target sample(s).`)}function _P(e,t,n){let s=[Do,_p,gc];for(let r=0;r<e.length;++r){let a=e[r],o=t[r],i=n[r];if(o!=null){if(o===gc&&a.shape[a.shape.length-1]===1)throw new G(`You are passing a target array of shape ${a.shape} while using a loss 'categorical_crossentropy'. 'categorical_crossentropy'expects targets to be binary matrices (1s and 0s) of shape [samples, classes].`);if(s.indexOf(o)!==-1){let l=a.shape.slice(1),u=i.slice(1);for(let c=0;c<l.length;++c){let d=l[c],h=u[c];if(h!=null&&d!==h)throw new G(`A target Tensor with shape ${a.shape} was passed for an output of shape ${i}, while using a loss function that expects targets to have the same shape as the output.`)}}}}}function O3(e,t,n,s=!0,r=""){let a;if(Array.isArray(e)){if(e.length!==t.length)throw new G(`Error when checking model ${r}: the Array of Tensors that you are passing to your model is not the size the the model expected. Expected to see ${t.length} Tensor(s), but instead got ${e.length} Tensors(s).`);a=e}else{if(t.length>1)throw new G(`The model expects ${t.length} ${r} Tensors, but only received one Tensor. Found: array with shape ${JSON.stringify(e.shape)}.`);a=[e]}if(n!=null)for(let o=0;o<t.length;++o){if(n[o]==null)continue;let i=a[o];if(i.shape.length!==n[o].length)throw new G(`Error when checking ${r}: expected ${t[o]} to have ${n[o].length} dimension(s), but got array with shape ${JSON.stringify(i.shape)}`);for(let l=0;l<n[o].length;++l){if(l===0&&!s)continue;let u=i.shape[l],c=n[o][l];if(c!=null&&c!==u)throw new G(`Error when checking ${r}: expected ${t[o]} to have shape ${JSON.stringify(n[o])} but got array with shape ${JSON.stringify(i.shape)}.`)}}}function $P(e,t){if(e==null||Array.isArray(e)&&e.length===0)return t.map(s=>[]);let n;if(typeof e=="string"||typeof e=="function")n=[e];else if(Array.isArray(e)||typeof e=="object")n=e;else throw new TypeError(`Type of metrics argument not understood. Expected an string,function, Array, or Object, found: ${e}`);if(Array.isArray(n))return t.map(s=>n);{let s=[];for(let r of t){let a=n.hasOwnProperty(r)?n[r]:[];Array.isArray(a)||(a=[a]),s.push(a)}return s}}var FP="layers-model",wr=class extends tr{constructor(e){super(e);this.isTraining=!1}summary(e,t,n=console.log){if(!this.built)throw new G("This model has never been called, thus its weights have not been created yet. So no summary can be displayed. Build the model first (e.g., by calling it on some test data).");cP(this,e,t,n)}compile(e){if(e.loss==null&&(e.loss=[]),this.loss=e.loss,typeof e.optimizer=="string")this.optimizer_=uP(e.optimizer),this.isOptimizerOwned=!0;else{if(!(e.optimizer instanceof xr))throw new G("User-defined optimizer must be an instance of tf.Optimizer.");this.optimizer_=e.optimizer,this.isOptimizerOwned=!1}let t=[];if(!Array.isArray(e.loss)&&typeof e.loss!="string"&&typeof e.loss!="function"){e.loss=e.loss;for(let a in e.loss)if(this.outputNames.indexOf(a)===-1)throw new G(`Unknown entry in loss dictionary: "${a}". Only expected the following keys: ${this.outputNames}`);for(let a of this.outputNames)e.loss[a]==null&&console.warn(`Output "${a}" is missing from loss dictionary. We assume this was done on purpose, and we will not be expecting data to be passed to ${a} during training`),t.push(Ag(e.loss[a]))}else if(Array.isArray(e.loss)){if(e.loss.length!==this.outputs.length)throw new G(`When passing an Array as loss, it should have one entry per model output. The model has ${this.outputs.length} output(s), but you passed loss=${e.loss}.`);t=e.loss.map(o=>Ag(o))}else{let a=Ag(e.loss);this.outputs.forEach(o=>{t.push(a)})}this.lossFunctions=t,this.feedOutputNames=[],this.feedOutputShapes=[],this.feedLossFns=[];for(let a=0;a<this.outputs.length;++a){let o=this.internalOutputShapes[a],i=this.outputNames[a];this.feedOutputNames.push(i),this.feedOutputShapes.push(o),this.feedLossFns.push(this.lossFunctions[a])}let n=[];this.metrics=e.metrics,this.metricsNames=["loss"],this.metricsTensors=[],$o("loss",()=>{for(let a=0;a<this.outputs.length;++a){if(n.indexOf(a)!==-1)continue;let o=this.lossFunctions[a];this.outputs.length>1&&(this.metricsTensors.push([o,a]),this.metricsNames.push(this.outputNames[a]+"_loss"))}});let s=$P(e.metrics,this.outputNames),r=(a,o,i)=>{this.outputNames.length>1&&(o=this.outputNames[a]+"_"+o),this.metricsNames.push(o),this.metricsTensors.push([i,a])};$o("metric",()=>{for(let a=0;a<this.outputs.length;++a){if(n.indexOf(a)!==-1)continue;let o=s[a];(l=>{let u="",c,d,h;for(let p of l){if(typeof p=="string"&&["accuracy","acc","crossentropy","ce"].indexOf(p)!==-1){let m=this.internalOutputShapes[a];m[m.length-1]===1||this.lossFunctions[a]===_p?["accuracy","acc"].indexOf(p)!==-1?d=gg:["crossentropy","ce"].indexOf(p)!==-1&&(d=x3):this.lossFunctions[a]===Rp?["accuracy","acc"].indexOf(p)!==-1?d=b3:["crossentropy","ce"].indexOf(p)!==-1&&(d=v3):["accuracy","acc"].indexOf(p)!==-1?d=yg:["crossentropy","ce"].indexOf(p)!==-1&&(d=xg);let A;["accuracy","acc"].indexOf(p)!==-1?A="acc":["crossentropy","ce"].indexOf(p)!==-1&&(A="ce"),h=d,c=u+A}else h=lP(p),c=u+Dp(p);let f;$o(c,()=>{f=h}),r(a,c,f)}})(o)}}),this.collectedTrainableWeights=this.trainableWeights}checkTrainableWeightsConsistency(){this.collectedTrainableWeights!=null&&this.trainableWeights.length!==this.collectedTrainableWeights.length&&console.warn("Discrepancy between trainableweights and collected trainable weights. Did you set `model.trainable` without calling `model.compile()` afterwards?")}evaluate(e,t,n={}){let s=n.batchSize==null?32:n.batchSize;Ig(s);let r=!0,a=this.standardizeUserDataXY(e,t,r,s);try{let o=a[0].concat(a[1]);this.makeTestFunction();let i=this.testFunction,l=this.testLoop(i,o,s,n.verbose,n.steps);return En(l)}finally{Po(a[0],e),Po(a[1],t)}}async evaluateDataset(e,t){return this.makeTestFunction(),CP(this,e,t)}checkNumSamples(e,t,n,s="steps"){let r;if(n!=null){if(r=null,t!=null)throw new G(`If ${s} is set, batchSize must be null or undefined.Got batchSize = ${t}`)}else if(e!=null)Array.isArray(e)?r=e[0].shape[0]:r=e.shape[0];else throw new G(`Either the input data should have a defined shape, or ${s} shoud be specified.`);return r}execute(e,t){if(Array.isArray(t)&&t.length===0)throw new G("`outputs` is an empty Array, which is not allowed.");let n=Array.isArray(t),s=n?t:[t],r=this.retrieveSymbolicTensors(s),a=new Oo;if(e instanceof Ue&&(e=[e]),Array.isArray(e)){if(e.length!==this.inputs.length)throw new G(`The number of inputs provided (${e.length}) does not match the number of inputs of this model (${this.inputs.length}).`);for(let i=0;i<this.inputs.length;++i)a.add(this.inputs[i],e[i])}else for(let i of this.inputs){let l=e[i.name];if(l==null)throw new G(`No value is provided for the model's input ${i.name}`);a.add(i,l)}let o=xc(r,a);return n?o:o[0]}retrieveSymbolicTensors(e){let t=Eo(null,e.length),n=e.length;for(let s of this.layers){let r=Array.isArray(s.output)?s.output:[s.output],a=r.map(o=>o.name);for(let o=0;o<e.length;++o){let i=a.indexOf(e[o]);if(i!==-1&&(t[o]=r[i],n--),n===0)break}if(n===0)break}if(n>0){let s=[];throw t.forEach((r,a)=>{r==null&&s.push(e[a])}),new G(`Cannot find SymbolicTensors for output name(s): ${JSON.stringify(s)}`)}return t}predictLoop(e,t=32,n=!1){return H(()=>{let s=this.checkNumSamples(e);if(n)throw new Oe("Verbose predictLoop() is not implemented yet.");let r=Cg(s,t),a=this.outputs.map(o=>[]);for(let o=0;o<r.length;++o)H(()=>{let l=r[o][0],u=r[o][1],c=bc(e,l,u),d=[];if(Array.isArray(c))for(let p=0;p<c.length;++p)d.push({key:this.inputs[p],value:c[p]});else d.push({key:this.inputs[0],value:c});let h=new Oo(d);return xc(this.outputs,h)}).forEach((l,u)=>a[u].push(l));return En(a.map(o=>ht(o,0)))})}predict(e,t={}){let n=$3(e);O3(n,this.inputNames,this.feedInputShapes,!1);try{let s=t.batchSize==null?32:t.batchSize;return Ig(s),this.predictLoop(n,s)}finally{Po(n,e)}}predictOnBatch(e){O3(e,this.inputNames,this.feedInputShapes,!0);let t=(Array.isArray(e)?e[0]:e).shape[0];return this.predictLoop(e,t)}standardizeUserDataXY(e,t,n=!0,s){if(this.optimizer_==null)throw new Fs("You must compile a model before training/testing. Use LayersModel.compile(modelCompileArgs).");let r=[];for(let a=0;a<this.feedOutputShapes.length;++a){let o=this.feedOutputShapes[a];this.feedLossFns[a]===Rp?r.push(o.slice(0,o.length-1).concat([1])):r.push(o)}if(e=D3(e,this.feedInputNames,this.feedInputShapes,!1,"input"),t=D3(t,this.feedOutputNames,r,!1,"target"),RP(e,t,null),_P(t,this.feedLossFns,this.feedOutputShapes),this.stateful&&s!=null&&s>0&&e[0].shape[0]%s!=0)throw new G(`In a stateful network, you should only pass inputs with a number of samples that is divisible by the batch size ${s}. Found: ${e[0].shape[0]} sample(s).`);return[e,t]}async standardizeUserData(e,t,n,s,r=!0,a){let[o,i]=this.standardizeUserDataXY(e,t,r,a);if(n!=null)throw new Error("sample weight is not supported yet.");let l=null;if(s!=null){let u=T3(s,this.outputNames);l=[];for(let c=0;c<u.length;++c)l.push(await N3(i[c],null,u[c]))}return[o,i,l]}testLoop(e,t,n,s=0,r){return H(()=>{let a=this.checkNumSamples(t,n,r,"steps"),o=[];if(s>0)throw new Oe("Verbose mode is not implemented yet.");if(r!=null)throw new Oe("steps mode in testLoop() is not implemented yet");{let i=Cg(a,n),l=Ot(Ds(0,a));for(let u=0;u<i.length;++u){let c=i[u][0],d=i[u][1],h=Fo(l,c,d-c),p=Sg(t,h),f=e(p);if(u===0)for(let m=0;m<f.length;++m)o.push(Ie(0));for(let m=0;m<f.length;++m){let A=f[m];o[m]=ae(o[m],z(d-c,A))}}for(let u=0;u<o.length;++u)o[u]=de(o[u],a)}return o})}getDedupedMetricsNames(){let e=this.metricsNames,t=[];for(let n=0;n<e.length;++n){let s=e[n],r=s;Vb(e,s)>1&&(r+=`_${Vb(e.slice(0,n),s)}`),t.push(r)}return t}makeTrainFunction(){return e=>{let t=[],n=e.slice(0,this.inputs.length),s=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),r=e.slice(this.inputs.length+this.outputs.length,this.inputs.length+this.outputs.length*2),a=[],o=()=>{let c=[];for(let f=0;f<this.inputs.length;++f)c.push({key:this.inputs[f],value:n[f]});let d=new Oo(c),h=xc(this.outputs,d,{training:!0}),p;for(let f=0;f<this.lossFunctions.length;++f){let A=this.lossFunctions[f](s[f],h[f]);r[f]!=null&&(A=bP(A,r[f]));let g=Et(A);t.push(g),f===0?p=A:p=ae(p,A)}for(let f=0;f<this.metricsTensors.length;++f){let m;if(this.outputs.length>1&&f<this.outputs.length)m=t[f];else{let A=this.metricsTensors[f][0],g=this.metricsTensors[f][1];m=Et(A(s[g],h[g]))}Kt(m),a.push(m)}return p=Et(p),this.calculateLosses().forEach(f=>{p=ae(p,f)}),p},i=this.collectedTrainableWeights.map(c=>c.read()),l=!0;return[this.optimizer_.minimize(o,l,i)].concat(a)}}makeTestFunction(){this.testFunction=e=>H(()=>{let t=[],n,s=e.slice(0,this.inputs.length),r=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),a=[];for(let l=0;l<this.inputs.length;++l)a.push({key:this.inputs[l],value:s[l]});let o=new Oo(a),i=xc(this.outputs,o);for(let l=0;l<this.lossFunctions.length;++l){let u=this.lossFunctions[l],c=Et(u(r[l],i[l]));l===0?n=c:n=ae(n,c),t.push(n)}for(let l=0;l<this.metricsTensors.length;++l){let u=this.metricsTensors[l][0],c=this.metricsTensors[l][1],d=Et(u(r[c],i[c]));t.push(d)}return t})}async fit(e,t,n={}){return NP(this,e,t,n)}async fitDataset(e,t){return kP(this,e,t)}async trainOnBatch(e,t){let n=await this.standardizeUserData(e,t),s=n[0],r=n[1],o=this.makeTrainFunction()(s.concat(r)),i=[];for(let l of o){let u=await l.data();i.push(u[0])}return K(o),En(i)}getNamedWeights(e){let t=[],n=e!=null&&e.trainableOnly,s=n?this.trainableWeights:this.weights,r=this.getWeights(n);for(let a=0;a<s.length;++a)n&&!s[a].trainable||t.push({name:s[a].originalName,tensor:r[a]});return t}set stopTraining(e){this.stopTraining_=e}get stopTraining(){return this.stopTraining_}get optimizer(){return this.optimizer_}set optimizer(e){this.optimizer_!==e&&(this.optimizer_=e,this.isOptimizerOwned=!1)}dispose(){let e=super.dispose();if(e.refCountAfterDispose===0&&this.optimizer!=null&&this.isOptimizerOwned){let t=_h().numTensors;this.optimizer_.dispose(),e.numDisposedVariables+=t-_h().numTensors}return e}getLossIdentifiers(){let e;if(typeof this.loss=="string")e=vr(this.loss);else if(Array.isArray(this.loss)){for(let t of this.loss)if(typeof t!="string")throw new Error("Serialization of non-string loss is not supported.");e=this.loss.map(t=>vr(t))}else{let t=Object.keys(this.loss);e={};let n=this.loss;for(let s of t)if(typeof n[s]=="string")e[s]=vr(n[s]);else throw new Error("Serialization of non-string loss is not supported.")}return e}getMetricIdentifiers(){if(typeof this.metrics=="string"||typeof this.metrics=="function")return[vr(Dp(this.metrics))];if(Array.isArray(this.metrics))return this.metrics.map(e=>vr(Dp(e)));{let e={};for(let t in this.metrics)e[t]=vr(Dp(this.metrics[t]));return e}}getTrainingConfig(){return{loss:this.getLossIdentifiers(),metrics:this.getMetricIdentifiers(),optimizer_config:{class_name:this.optimizer.getClassName(),config:this.optimizer.getConfig()}}}loadTrainingConfig(e){if(e.weighted_metrics!=null)throw new Error("Loading weight_metrics is not supported yet.");if(e.loss_weights!=null)throw new Error("Loading loss_weights is not supported yet.");if(e.sample_weight_mode!=null)throw new Error("Loading sample_weight_mode is not supported yet.");let t=yc(e.optimizer_config),n=Ms(t),s;if(typeof e.loss=="string")s=Ro(e.loss);else if(Array.isArray(e.loss))s=e.loss.map(a=>Ro(a));else if(e.loss!=null){s={};for(let a in e.loss)s[a]=Ro(e.loss[a])}let r;if(Array.isArray(e.metrics))r=e.metrics.map(a=>Ro(a));else if(e.metrics!=null){r={};for(let a in e.metrics)r[a]=Ro(e.metrics[a])}this.compile({loss:s,metrics:r,optimizer:n})}async save(e,t){if(typeof e=="string"){let l=Tn.getSaveHandlers(e);if(l.length===0)throw new G(`Cannot find any save handlers for URL '${e}'`);if(l.length>1)throw new G(`Found more than one (${l.length}) save handlers for URL '${e}'`);e=l[0]}if(e.save==null)throw new G("LayersModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");let n=await Tn.encodeWeights(this.getNamedWeights(t)),s=!1,r=null,o={modelTopology:this.toJSON(r,s),format:FP,generatedBy:`TensorFlow.js tfjs-layers v${wg}`,convertedBy:null};if((t==null?!1:t.includeOptimizer)&&this.optimizer!=null){o.trainingConfig=this.getTrainingConfig();let l="optimizer",{data:u,specs:c}=await Tn.encodeWeights(await this.optimizer.getWeights(),l);n.specs.push(...c),n.data=Tn.concatenateArrayBuffers([n.data,u])}if(this.userDefinedMetadata!=null){let l=!0;k3(this.userDefinedMetadata,this.name,l),o.userDefinedMetadata=this.userDefinedMetadata}return o.weightData=n.data,o.weightSpecs=n.specs,e.save(o)}setUserDefinedMetadata(e){k3(e,this.name),this.userDefinedMetadata=e}getUserDefinedMetadata(){return this.userDefinedMetadata}};wr.className="Model";oe.registerClass(wr);var P3=class extends wr{};P3.className="Functional";oe.registerClass(P3);async function DP(e,t){"modelTopology"in e||(e={modelTopology:e}),e=e;let n=e.modelTopology;n.model_config!=null&&(n=n.model_config);let s=yc(n),r=Ms(s,t);if(e.weightsManifest!=null){let a=await Tn.loadWeights(e.weightsManifest,e.pathPrefix,r.weights.map(i=>i.originalName)),o={};for(let i of r.weights)o[i.originalName]=a[i.originalName];r.loadWeights(o),K(a)}return r}async function OP(e,t){if(t==null&&(t={}),typeof e=="string"){let n=Tn.getLoadHandlers(e,t);if(n.length===0)n.push(Tn.browserHTTPRequest(e,t));else if(n.length>1)throw new G(`Found more than one (${n.length}) load handlers for URL '${e}'`);e=n[0]}return PP(e,void 0,t)}async function PP(e,t,n){if(n==null&&(n={}),e.load==null)throw new G("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let s=await e.load(),r=s.modelTopology;r.model_config!=null&&(r=r.model_config);let a=n.strict==null?!0:n.strict,o=s.weightData!=null&&s.weightSpecs!=null&&a,i=Ms(yc(r),t,o),l=s.trainingConfig;if(l!=null&&i.loadTrainingConfig(l),s.userDefinedMetadata!=null&&i.setUserDefinedMetadata(s.userDefinedMetadata),s.weightData!=null){if(s.weightSpecs==null)throw new G("LayersModel artifacts contains weight data, but not weight specs. Therefore loading of weights cannot proceed.");let{modelWeights:u,optimizerWeights:c}=MP(s.weightData,s.weightSpecs);i.loadWeights(u,a),i.optimizer!=null&&c.length>0&&await i.optimizer.setWeights(c),K(u),K(c.map(d=>d.tensor))}return i}function MP(e,t){let n=Tn.decodeWeights(e,t),s={},r=[];return t.forEach(a=>{a.group==="optimizer"?r.push({name:a.name,tensor:n[a.name]}):s[a.name]=n[a.name]}),{modelWeights:s,optimizerWeights:r}}var Ml=class extends wr{constructor(e){super({inputs:[],outputs:[]});if(e=e||{},this.trainable=!0,this.built=!1,this.name=e.name!=null?e.name:Ip("sequential_"),e.layers!=null)for(let t of e.layers)this.add(t)}checkShape(e){if(e.inboundNodes[0].outputTensors[0].shape.some(n=>n<0))throw new G(`Negative dimension size caused by adding layer ${e.name} with input shape [${e.inboundNodes[0].inputTensors[0].shape}]`)}add(e){let t=e instanceof Ml||e instanceof wr,n;if(t){if(n=e,n.outputs.length!==1)throw new G("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");if(n.inputs.length!==1)throw new G("All layers in a Sequential model should have a single input tensor. For multi-input layers, use the functional API.")}if(this.outputs.length===0){if(e.inboundNodes.length===0){if(e.batchInputShape==null)throw new G("The first layer in a Sequential model must get an `inputShape` or `batchInputShape` argument.");let s=u3({batchShape:e.batchInputShape,dtype:e.dtype,name:e.name+"_input"});e.apply(s)}if(t)this.outputs=n.outputs,this.inputs=n.inputs;else{if(e.inboundNodes.length!==1)throw new G(`A layer added to a Sequential model must not already be connected somewhere else. LayersModel received layer ${e.name} which has ${e.inboundNodes.length} pre-existing inbound connections.`);if(e.inboundNodes[0].outputTensors.length!==1)throw new G("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[e.inboundNodes[0].outputTensors[0]],this.inputs=l3(this.outputs[0])}this.inboundNodes=[],new Tp({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:Eo(null,this.inputs.length),outputMasks:[null],inputShapes:this.inputs.map(s=>s.shape),outputShapes:this.outputs[0].shape})}else{let s=e.apply(this.outputs[0]);if(Array.isArray(s))throw new TypeError("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[s],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}this.layers.push(e),this.built=!1}pop(){if(this.layers.length===0)throw new TypeError("There are no layers in the model.");if(this.layers.pop(),this.layers.length===0)this.outputs=[],this.inboundNodes=[],this.outboundNodes=[];else{let e=this.layers.length-1;this.layers[e].outboundNodes=[],this.outputs=[this.layers[e].output],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}}call(e,t){return this.model==null&&this.build(),this.model.call(e,t)}build(e){if(st(e),this.inputs.length===0||this.outputs.length===0)throw new TypeError("Sequential model cannot be built: model is empty. Add some layers first.");this.model=new wr({inputs:this.inputs,outputs:this.outputs[0],name:this.name+"_model"}),this.model.trainable=this.trainable,this.supportsMasking=this.model.supportsMasking,this.inputLayers=this.model.inputLayers,this.inputLayersNodeIndices=this.model.inputLayersNodeIndices,this.inputLayersTensorIndices=this.model.inputLayersTensorIndices,this.outputLayers=this.model.outputLayers,this.outputLayersNodeIndices=this.model.outputLayersNodeIndices,this.outputLayersTensorIndices=this.model.outputLayersTensorIndices,this.nodesByDepth=this.model.nodesByDepth,this.containerNodes=this.model.containerNodes,this.outputNames=this.model.outputNames,this.inputNames=this.model.inputNames,this.built=!0}countParams(){return this.built||this.build(),super.countParams()}summary(e,t,n=console.log){this.built||this.build(),super.summary(e,t,n)}setWeights(e){this.model==null&&this.build(),this.model.setWeights(e)}evaluate(e,t,n={}){if(!this.built)throw new Fs("The model needs to be compiled before being used.");return this.model.evaluate(e,t,n)}async evaluateDataset(e,t){if(!this.built)throw new Fs("The model needs to be compiled before being used.");return this.model.evaluateDataset(e,t)}predict(e,t={}){return this.model==null&&this.build(),this.model.predict(e,t)}predictOnBatch(e){return this.model==null&&this.build(),this.model.predictOnBatch(e)}compile(e){this.build(),this.model.compile(e),this.optimizer_=this.model.optimizer,this.isOptimizerOwned=this.model.isOptimizerOwned,this.loss=this.model.loss,this.metrics=this.model.metrics,this.metricsTensors=this.model.metricsTensors,this.metricsNames=this.model.metricsNames}get optimizer(){return this.model==null?void 0:this.model.optimizer}set optimizer(e){this.model.optimizer=e}async fit(e,t,n={}){if(!this.built)throw new Fs("The model needs to be compiled before being used.");return this.model.fit(e,t,n)}async fitDataset(e,t){if(!this.built)throw new Fs("The model needs to be compiled before being used.");return this.model.fitDataset(e,t)}async trainOnBatch(e,t){return this.model.trainOnBatch(e,t)}static fromConfig(e,t,n={},s=!1){let r,a={};if(t instanceof Array){if(t[0].className==null||t[0].className==="Merge")throw new G("Legacy serialization format not supported yet.");r=t}else I.assert(t.layers!=null,()=>"When the config data for a Sequential model is not an Array, it must be an Object that contains the 'layers' field."),r=t.layers,delete t.layers,a=t;let o=new e(a);if(!(o instanceof Ml))throw new Oe(`Sequential.fromConfig called on non-Sequential input: ${o}`);for(let i of r){let u=Ms(i,void 0,s);s&&u.setFastWeightInitDuringBuild(!0),o.add(u)}return o}set stopTraining(e){if(this.model==null)throw new G("Cannot set the stopTraining property of a sequential model before it is compiled.");this.model.stopTraining=e}get stopTraining(){if(this.model==null)throw new G("Cannot get the stopTraining property of a sequential model before it is compiled.");return this.model.stopTraining}getConfig(){let e=[];for(let t of this.layers){let n={};n.className=t.getClassName(),n.config=t.getConfig(),e.push(n)}return{name:this.name,layers:e}}};Ml.className="Sequential";oe.registerClass(Ml);function zP(e){return new wr(e)}function LP(e){return new Ml(e)}function BP(e,t){return t==null&&(t={}),OP(e,t)}function M3(e){return u3(e)}function WP(e,t){ks.registerCallbackConstructor(e,t)}var _n=class extends oe.Serializable{getConfig(){return{}}},z3=class extends _n{apply(e,t=1){return pO(e,t)}};z3.className="elu";oe.registerClass(z3);var L3=class extends _n{apply(e){return _A(e)}};L3.className="selu";oe.registerClass(L3);var B3=class extends _n{apply(e){return Ys(e)}};B3.className="relu";oe.registerClass(B3);var W3=class extends _n{apply(e){return H(()=>rc(6,Ys(e)))}};W3.className="relu6";oe.registerClass(W3);var V3=class extends _n{apply(e){return e}};V3.className="linear";oe.registerClass(V3);var U3=class extends _n{apply(e){return Bn(e)}};U3.className="sigmoid";oe.registerClass(U3);var H3=class extends _n{apply(e){return mO(e)}};H3.className="hardSigmoid";oe.registerClass(H3);var G3=class extends _n{apply(e){return Tl(e)}};G3.className="softplus";oe.registerClass(G3);var j3=class extends _n{apply(e){return fO(e)}};j3.className="softsign";oe.registerClass(j3);var q3=class extends _n{apply(e){return wl(e)}};q3.className="tanh";oe.registerClass(q3);var Ng=class extends _n{apply(e,t=-1){return Zh(e,t)}};Ng.className="softmax";oe.registerClass(Ng);var X3=class extends _n{apply(e,t=-1){return bA(e,t)}};X3.className="logSoftmax";oe.registerClass(X3);var K3=class extends _n{apply(e,t=1){return H(()=>z(Bn(z(e,t)),e))}};K3.className="swish";oe.registerClass(K3);var Z3=class extends _n{apply(e){return H(()=>z(e,wl(Tl(e))))}};Z3.className="mish";oe.registerClass(Z3);function Jr(e){return e.getClassName()}function Eg(e,t={}){return dc(e,oe.SerializationMap.getMap().classNameMap,t,"activation")}function Qr(e){if(e==null){let t={};return t.className="linear",t.config={},Eg(t)}if(typeof e=="string"){let t={};return t.className=e,t.config={},Eg(t)}else return e instanceof _n?e:Eg(e)}function Rg(e){if(e!=null&&typeof e!="object")throw new Error(`Argument to L1L2 regularizer's constructor is expected to be an object, but received: ${e}`)}var Y3=class extends oe.Serializable{},vc=class extends Y3{constructor(e){super();Rg(e),this.l1=e==null||e.l1==null?.01:e.l1,this.l2=e==null||e.l2==null?.01:e.l2,this.hasL1=this.l1!==0,this.hasL2=this.l2!==0}apply(e){return H(()=>{let t=Dt([1]);return this.hasL1&&(t=ae(t,ve(z(this.l1,Wt(e))))),this.hasL2&&(t=ae(t,ve(z(this.l2,mc(e))))),U(t,[])})}getConfig(){return{l1:this.l1,l2:this.l2}}static fromConfig(e,t){return new e({l1:t.l1,l2:t.l2})}};vc.className="L1L2";oe.registerClass(vc);function VP(e){return Rg(e),new vc({l1:e!=null?e.l1:null,l2:0})}function UP(e){return Rg(e),new vc({l2:e!=null?e.l2:null,l1:0})}var J3={l1l2:"L1L2"};function ut(e){return qA(e)}function Q3(e,t={}){return dc(e,oe.SerializationMap.getMap().classNameMap,t,"regularizer")}function vt(e){if(e==null)return null;if(typeof e=="string"){let n={className:e in J3?J3[e]:e,config:{}};return Q3(n)}else return e instanceof Y3?e:Q3(e)}var _g=class extends Xe{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null&&(this.maxValue=e.maxValue)}call(e,t){e=ze(e);let n=Ys(e);return this.maxValue!=null&&(n=Wn(n,0,this.maxValue)),n}computeOutputShape(e){return e}getConfig(){let e={maxValue:this.maxValue},t=super.getConfig();return Object.assign(e,t),e}};_g.className="ReLU";oe.registerClass(_g);var $g=class extends Xe{constructor(e){super(e==null?{}:e);this.DEFAULT_ALPHA=.3,e==null&&(e={}),this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=ze(e);return Lh(n,this.alpha)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};$g.className="LeakyReLU";oe.registerClass($g);var Fg=class extends Xe{constructor(e){super(e==null?{}:e);if(this.DEFAULT_ALPHA_INITIALIZER="zeros",e==null&&(e={}),this.supportsMasking=!0,this.alphaInitializer=bt(e.alphaInitializer||this.DEFAULT_ALPHA_INITIALIZER),this.alphaRegularizer=vt(e.alphaRegularizer),this.alphaConstraint=Gt(e.alphaConstraint),e.sharedAxes==null)this.sharedAxes=null;else if(Array.isArray(e.sharedAxes))this.sharedAxes=e.sharedAxes;else if(typeof e.sharedAxes=="number")this.sharedAxes=[e.sharedAxes];else throw new G(`Expected sharedAxes to be a number or an array of numbers, but got ${e.sharedAxes}`)}build(e){e=st(e);let t=e.slice(1);if(this.sharedAxes!=null)for(let s of this.sharedAxes)t[s-1]=1;this.alpha=this.addWeight("alpha",t,"float32",this.alphaInitializer,this.alphaRegularizer,!0,this.alphaConstraint);let n={};if(this.sharedAxes!=null)for(let s=1;s<e.length;++s)n[s]=e[s];this.inputSpec=[new Pt({ndim:e.length,axes:n})],this.built=!0}call(e,t){return e=ze(e),qh(e,this.alpha.read())}getConfig(){let e={alphaInitializer:Ct(this.alphaInitializer),alphaRegularizer:ut(this.alphaRegularizer),alphaConstraint:Ht(this.alphaConstraint),sharedAxes:this.sharedAxes},t=super.getConfig();return Object.assign(e,t),e}};Fg.className="PReLU";oe.registerClass(Fg);var Dg=class extends Xe{constructor(e){super(e==null?{}:e);if(this.DEFAULT_ALPHA=1,e==null&&(e={}),e.alpha!=null&&e.alpha!==this.DEFAULT_ALPHA)throw new Oe(`Non-default alpha value (${e.alpha}) is not supported by the ELU layer yet.`);this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=ze(e);return nc(n)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};Dg.className="ELU";oe.registerClass(Dg);var Og=class extends Xe{constructor(e){super(e==null?{}:e);this.DEFAULT_THETA=1,e==null&&(e={}),this.theta=e.theta==null?this.DEFAULT_THETA:e.theta}call(e,t){let n=ze(e);return z(n,ce(Vn(n,this.theta),"float32"))}computeOutputShape(e){return e}getConfig(){let e={theta:this.theta},t=super.getConfig();return Object.assign(e,t),e}};Og.className="ThresholdedReLU";oe.registerClass(Og);var Pg=class extends Xe{constructor(e){super(e==null?{}:e);this.DEFAULT_AXIS=1,e==null&&(e={}),this.softmax=new Ng().apply,this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis}call(e,t){let n=ze(e);return this.softmax(n,this.axis)}computeOutputShape(e){return e}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};Pg.className="Softmax";oe.registerClass(Pg);function zl(e,t,n){if(typeof e=="number")return Eo(e,t);if(e.length!==t)throw new G(`The ${n} argument must be an integer or tuple of ${t} integers. Received: ${e.length} elements.`);for(let s=0;s<t;++s){let r=e[s];if(!uO(r))throw new G(`The ${n} argument must be an integer or tuple of ${t} integers. Received: ${JSON.stringify(e)} including a non-integer number ${r}`)}return e}function zs(e,t,n,s,r=1){if(e==null)return e;let a=t+(t-1)*(r-1),o;return n==="same"?o=e:o=e-a+1,Math.floor((o+s-1)/s)}function nr(e,t,n,s){if(e==null)return null;if(s==="valid")e=e*t+Zr([n-t,0]);else if(s==="same")e=e*t;else throw new G(`Unsupport padding mode: ${s}.`);return e}function Mg(e,t){return H(()=>($t(t),t==="channelsFirst"?je(e,[0,2,3,1]):e))}function ev(e,t){return H(()=>($t(t),t==="channelsFirst"?je(e,[0,2,3,4,1]):e))}function HP(e,t,n,s=1,r="valid",a,o=1){return H(()=>{if(a==null&&(a=$s()),$t(a),e.shape.length!==3)throw new G(`The input of a conv1dWithBias operation should be 3, but is ${e.shape.length} instead.`);if(t.shape.length!==3)throw new G(`The kernel for a conv1dWithBias operation should be 3, but is ${t.shape.length} instead`);if(n!=null&&n.shape.length!==1)throw new G(`The bias for a conv1dWithBias operation should be 1, but is ${t.shape.length} instead`);if(a==="channelsFirst"&&(e=je(e,[0,2,1])),r==="causal")throw new Oe("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");let i=hA(e,t,s,r==="same"?"same":"valid","NWC",o);return n!=null&&(i=Os(i,n)),i})}function tv(e,t,n,s=[1,1],r="valid",a,o,i=null){return H(()=>{if(a==null&&(a=$s()),$t(a),e.rank!==3&&e.rank!==4)throw new G(`conv2dWithBiasActivation expects input to be of rank 3 or 4, but received ${e.rank}.`);if(t.rank!==3&&t.rank!==4)throw new G(`conv2dWithBiasActivation expects kernel to be of rank 3 or 4, but received ${e.rank}.`);let l=Mg(e,a);if(r==="causal")throw new Oe("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");return l=qr.conv2d({x:l,filter:t,strides:s,pad:r==="same"?"same":"valid",dilations:o,dataFormat:"NHWC",bias:n,activation:i}),a==="channelsFirst"&&(l=je(l,[0,3,1,2])),l})}function GP(e,t,n,s=[1,1,1],r="valid",a,o){return H(()=>{if(a==null&&(a=$s()),$t(a),e.rank!==4&&e.rank!==5)throw new G(`conv3dWithBias expects input to be of rank 4 or 5, but received ${e.rank}.`);if(t.rank!==4&&t.rank!==5)throw new G(`conv3dWithBias expects kernel to be of rank 4 or 5, but received ${e.rank}.`);let i=ev(e,a);if(r==="causal")throw new Oe("The support for CAUSAL padding mode in conv3dWithBias is not implemented yet.");return i=mA(i,t,s,r==="same"?"same":"valid","NDHWC",o),n!=null&&(i=Os(i,n)),a==="channelsFirst"&&(i=je(i,[0,4,1,2,3])),i})}var zg=class extends Xe{constructor(e,t){super(t);if(this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",zg.verifyArgs(t),this.rank=e,Zt(this.rank,"rank"),this.rank!==1&&this.rank!==2&&this.rank!==3)throw new Oe(`Convolution layer for rank other than 1, 2, or 3 (${this.rank}) is not implemented yet.`);if(this.kernelSize=zl(t.kernelSize,e,"kernelSize"),this.strides=zl(t.strides==null?1:t.strides,e,"strides"),this.padding=t.padding==null?"valid":t.padding,hs(this.padding),this.dataFormat=t.dataFormat==null?"channelsLast":t.dataFormat,$t(this.dataFormat),this.activation=Qr(t.activation),this.useBias=t.useBias==null?!0:t.useBias,this.biasInitializer=bt(t.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.biasConstraint=Gt(t.biasConstraint),this.biasRegularizer=vt(t.biasRegularizer),this.activityRegularizer=vt(t.activityRegularizer),this.dilationRate=zl(t.dilationRate==null?1:t.dilationRate,e,"dilationRate"),this.rank===1&&Array.isArray(this.dilationRate)&&this.dilationRate.length!==1)throw new G(`dilationRate must be a number or an array of a single number for 1D convolution, but received ${JSON.stringify(this.dilationRate)}`);if(this.rank===2){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==2)throw new G(`dilationRate must be a number or array of two numbers for 2D convolution, but received ${JSON.stringify(this.dilationRate)}`)}else if(this.rank===3){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==3)throw new G(`dilationRate must be a number or array of three numbers for 3D convolution, but received ${JSON.stringify(this.dilationRate)}`)}}static verifyArgs(e){if(Qs("kernelSize"in e,"required key 'kernelSize' not in config"),typeof e.kernelSize!="number"&&!KA(e.kernelSize,"number",1,3))throw new G(`BaseConv expects config.kernelSize to be number or number[] with length 1, 2, or 3, but received ${JSON.stringify(e.kernelSize)}.`)}getConfig(){let e={kernelSize:this.kernelSize,strides:this.strides,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,activation:Jr(this.activation),useBias:this.useBias,biasInitializer:Ct(this.biasInitializer),biasRegularizer:ut(this.biasRegularizer),activityRegularizer:ut(this.activityRegularizer),biasConstraint:Ht(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}},wc=class extends zg{constructor(e,t){super(e,t);this.kernel=null,wc.verifyArgs(t),this.filters=t.filters,Zt(this.filters,"filters"),this.kernelInitializer=bt(t.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.kernelConstraint=Gt(t.kernelConstraint),this.kernelRegularizer=vt(t.kernelRegularizer)}build(e){e=st(e);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new G(`The channel dimension of the input should be defined. Found ${e[t]}`);let n=e[t],s=this.kernelSize.concat([n,this.filters]);this.kernel=this.addWeight("kernel",s,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[{ndim:this.rank+2,axes:{[t]:n}}],this.built=!0}call(e,t){return H(()=>{e=ze(e);let n,s=this.bias==null?null:this.bias.read(),r=Hb(this.activation.getClassName());if(r!=null&&this.rank===2)n=tv(e,this.kernel.read(),s,this.strides,this.padding,this.dataFormat,this.dilationRate,r);else{if(this.rank===1)n=HP(e,this.kernel.read(),s,this.strides[0],this.padding,this.dataFormat,this.dilationRate[0]);else if(this.rank===2)n=tv(e,this.kernel.read(),s,this.strides,this.padding,this.dataFormat,this.dilationRate);else if(this.rank===3)n=GP(e,this.kernel.read(),s,this.strides,this.padding,this.dataFormat,this.dilationRate);else throw new Oe("convolutions greater than 3D are not implemented yet.");this.activation!=null&&(n=this.activation.apply(n))}return n})}computeOutputShape(e){e=st(e);let t=[],n=this.dataFormat==="channelsLast"?e.slice(1,e.length-1):e.slice(2);for(let r=0;r<n.length;++r){let a=zs(n[r],this.kernelSize[r],this.padding,this.strides[r],typeof this.dilationRate=="number"?this.dilationRate:this.dilationRate[r]);t.push(a)}let s=[e[0]];return this.dataFormat==="channelsLast"?(s=s.concat(t),s.push(this.filters)):(s.push(this.filters),s=s.concat(t)),s}getConfig(){let e={filters:this.filters,kernelInitializer:Ct(this.kernelInitializer),kernelRegularizer:ut(this.kernelRegularizer),kernelConstraint:Ht(this.kernelConstraint)},t=super.getConfig();return Object.assign(e,t),e}static verifyArgs(e){if(!("filters"in e)||typeof e.filters!="number"||e.filters<1)throw new G(`Convolution layer expected config.filters to be a 'number' > 0 but got ${JSON.stringify(e.filters)}`)}},kc=class extends wc{constructor(e){super(2,e);kc.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!KA(e.kernelSize,"number",1,2))throw new G(`Conv2D expects config.kernelSize to be number or number[] with length 1 or 2, but received ${JSON.stringify(e.kernelSize)}.`)}};kc.className="Conv2D";oe.registerClass(kc);var Ic=class extends wc{constructor(e){super(3,e);Ic.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!(Array.isArray(e.kernelSize)&&(e.kernelSize.length===1||e.kernelSize.length===3)))throw new G(`Conv3D expects config.kernelSize to be number or [number, number, number], but received ${JSON.stringify(e.kernelSize)}.`)}};Ic.className="Conv3D";oe.registerClass(Ic);var Lg=class extends kc{constructor(e){super(e);if(this.inputSpec=[new Pt({ndim:4})],this.padding!=="same"&&this.padding!=="valid")throw new G(`Conv2DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=st(e),e.length!==4)throw new G("Input should have rank 4; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new G("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],s=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",s,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new Pt({ndim:4,axes:{[t]:n}})],this.built=!0}call(e,t){return H(()=>{let n=ze(e);if(n.shape.length!==4)throw new G(`Conv2DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let s=n.shape,r=s[0],a,o;this.dataFormat==="channelsFirst"?(a=2,o=3):(a=1,o=2);let i=s[a],l=s[o],u=this.kernelSize[0],c=this.kernelSize[1],d=this.strides[0],h=this.strides[1],p=nr(i,d,u,this.padding),f=nr(l,h,c,this.padding),m=[r,p,f,this.filters];this.dataFormat!=="channelsLast"&&(n=je(n,[0,2,3,1]));let A=fA(n,this.kernel.read(),m,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(A=je(A,[0,3,1,2])),this.bias!=null&&(A=Os(A,this.bias.read(),this.dataFormat)),this.activation!=null&&(A=this.activation.apply(A)),A})}computeOutputShape(e){e=st(e);let t=e.slice(),n,s,r;this.dataFormat==="channelsFirst"?(n=1,s=2,r=3):(n=3,s=1,r=2);let a=this.kernelSize[0],o=this.kernelSize[1],i=this.strides[0],l=this.strides[1];return t[n]=this.filters,t[s]=nr(t[s],i,a,this.padding),t[r]=nr(t[r],l,o,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};Lg.className="Conv2DTranspose";oe.registerClass(Lg);var Bg=class extends Ic{constructor(e){super(e);if(this.inputSpec=[new Pt({ndim:5})],this.padding!=="same"&&this.padding!=="valid")throw new G(`Conv3DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=st(e),e.length!==5)throw new G("Input should have rank 5; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new G("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],s=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",s,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new Pt({ndim:5,axes:{[t]:n}})],this.built=!0}call(e,t){return H(()=>{let n=ze(e);if(n.shape.length!==5)throw new G(`Conv3DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let s=n.shape,r=s[0],a,o,i;this.dataFormat==="channelsFirst"?(i=2,a=3,o=4):(i=1,a=2,o=3);let l=s[i],u=s[a],c=s[o],d=this.kernelSize[0],h=this.kernelSize[1],p=this.kernelSize[2],f=this.strides[0],m=this.strides[1],A=this.strides[2],g=nr(l,f,d,this.padding),y=nr(u,m,h,this.padding),x=nr(c,A,p,this.padding),b=[r,g,y,x,this.filters];this.dataFormat!=="channelsLast"&&(n=je(n,[0,2,3,4,1]));let v=Ox(n,this.kernel.read(),b,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(v=je(v,[0,4,1,2,3])),this.bias!==null&&(v=Os(v,this.bias.read(),this.dataFormat)),this.activation!==null&&(v=this.activation.apply(v)),v})}computeOutputShape(e){e=st(e);let t=e.slice(),n,s,r,a;this.dataFormat==="channelsFirst"?(n=1,s=2,r=3,a=4):(n=4,s=1,r=2,a=3);let o=this.kernelSize[0],i=this.kernelSize[1],l=this.kernelSize[2],u=this.strides[0],c=this.strides[1],d=this.strides[2];return t[n]=this.filters,t[s]=nr(t[s],u,o,this.padding),t[r]=nr(t[r],c,i,this.padding),t[a]=nr(t[a],d,l,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};Bg.className="Conv3DTranspose";oe.registerClass(Bg);var nv=class extends wc{constructor(e,t){super(e,t);if(this.DEFAULT_DEPTHWISE_INITIALIZER="glorotUniform",this.DEFAULT_POINTWISE_INITIALIZER="glorotUniform",this.depthwiseKernel=null,this.pointwiseKernel=null,t.filters==null)throw new G("The `filters` configuration field is required by SeparableConv, but is unspecified.");if(t.kernelInitializer!=null||t.kernelRegularizer!=null||t.kernelConstraint!=null)throw new G("Fields kernelInitializer, kernelRegularizer and kernelConstraint are invalid for SeparableConv2D. Use depthwiseInitializer, depthwiseRegularizer, depthwiseConstraint, pointwiseInitializer, pointwiseRegularizer and pointwiseConstraint instead.");if(t.padding!=null&&t.padding!=="same"&&t.padding!=="valid")throw new G(`SeparableConv${this.rank}D supports only padding modes: 'same' and 'valid', but received ${JSON.stringify(t.padding)}`);this.depthMultiplier=t.depthMultiplier==null?1:t.depthMultiplier,this.depthwiseInitializer=bt(t.depthwiseInitializer||this.DEFAULT_DEPTHWISE_INITIALIZER),this.depthwiseRegularizer=vt(t.depthwiseRegularizer),this.depthwiseConstraint=Gt(t.depthwiseConstraint),this.pointwiseInitializer=bt(t.depthwiseInitializer||this.DEFAULT_POINTWISE_INITIALIZER),this.pointwiseRegularizer=vt(t.pointwiseRegularizer),this.pointwiseConstraint=Gt(t.pointwiseConstraint)}build(e){if(e=st(e),e.length<this.rank+2)throw new G(`Inputs to SeparableConv${this.rank}D should have rank ${this.rank+2}, but received input shape: ${JSON.stringify(e)}`);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null||e[t]<0)throw new G(`The channel dimension of the inputs should be defined, but found ${JSON.stringify(e[t])}`);let n=e[t],s=this.kernelSize.concat([n,this.depthMultiplier]),r=[];for(let o=0;o<this.rank;++o)r.push(1);r.push(n*this.depthMultiplier,this.filters);let a=!0;this.depthwiseKernel=this.addWeight("depthwise_kernel",s,"float32",this.depthwiseInitializer,this.depthwiseRegularizer,a,this.depthwiseConstraint),this.pointwiseKernel=this.addWeight("pointwise_kernel",r,"float32",this.pointwiseInitializer,this.pointwiseRegularizer,a,this.pointwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,a,this.biasConstraint):this.bias=null,this.inputSpec=[new Pt({ndim:this.rank+2,axes:{[t]:n}})],this.built=!0}call(e,t){return H(()=>{e=ze(e);let n;if(this.rank===1)throw new Oe("1D separable convolution is not implemented yet.");return this.rank===2&&(this.dataFormat==="channelsFirst"&&(e=je(e,[0,2,3,1])),n=sb(e,this.depthwiseKernel.read(),this.pointwiseKernel.read(),this.strides,this.padding,this.dilationRate,"NHWC")),this.useBias&&(n=Os(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),this.dataFormat==="channelsFirst"&&(n=je(n,[0,3,1,2])),n})}getConfig(){let e=super.getConfig();return delete e.rank,delete e.kernelInitializer,delete e.kernelRegularizer,delete e.kernelConstraint,e.depthwiseInitializer=Ct(this.depthwiseInitializer),e.pointwiseInitializer=Ct(this.pointwiseInitializer),e.depthwiseRegularizer=ut(this.depthwiseRegularizer),e.pointwiseRegularizer=ut(this.pointwiseRegularizer),e.depthwiseConstraint=Ht(this.depthwiseConstraint),e.pointwiseConstraint=Ht(this.pointwiseConstraint),e}};nv.className="SeparableConv";var Wg=class extends nv{constructor(e){super(2,e)}};Wg.className="SeparableConv2D";oe.registerClass(Wg);var Pp=class extends wc{constructor(e){super(1,e);Pp.verifyArgs(e),this.inputSpec=[{ndim:3}]}getConfig(){let e=super.getConfig();return delete e.rank,delete e.dataFormat,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!KA(e.kernelSize,"number",1,1))throw new G(`Conv1D expects config.kernelSize to be number or number[] with length 1, but received ${JSON.stringify(e.kernelSize)}.`)}};Pp.className="Conv1D";oe.registerClass(Pp);var Vg=class extends Xe{constructor(e){super(e);typeof e.cropping=="number"?this.cropping=[[e.cropping,e.cropping],[e.cropping,e.cropping]]:typeof e.cropping[0]=="number"?this.cropping=[[e.cropping[0],e.cropping[0]],[e.cropping[1],e.cropping[1]]]:this.cropping=e.cropping,this.dataFormat=e.dataFormat===void 0?"channelsLast":e.dataFormat,this.inputSpec=[{ndim:4}]}computeOutputShape(e){return this.dataFormat==="channelsFirst"?[e[0],e[1],e[2]-this.cropping[0][0]-this.cropping[0][1],e[3]-this.cropping[1][0]-this.cropping[1][1]]:[e[0],e[1]-this.cropping[0][0]-this.cropping[0][1],e[2]-this.cropping[1][0]-this.cropping[1][1],e[3]]}call(e,t){return H(()=>{if(e=ze(e),this.dataFormat==="channelsLast"){let n=fp(e,this.cropping[0][0],e.shape[1]-this.cropping[0][0]-this.cropping[0][1],2);return fp(n,this.cropping[1][0],e.shape[2]-this.cropping[1][1]-this.cropping[1][0],3)}else{let n=fp(e,this.cropping[0][0],e.shape[2]-this.cropping[0][0]-this.cropping[0][1],3);return fp(n,this.cropping[1][0],e.shape[3]-this.cropping[1][1]-this.cropping[1][0],4)}})}getConfig(){let e={cropping:this.cropping,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};Vg.className="Cropping2D";oe.registerClass(Vg);var Ug=class extends Xe{constructor(e){super(e);this.DEFAULT_SIZE=[2,2],this.inputSpec=[{ndim:4}],this.size=e.size==null?this.DEFAULT_SIZE:e.size,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,$t(this.dataFormat),this.interpolation=e.interpolation==null?"nearest":e.interpolation,oO(this.interpolation)}computeOutputShape(e){if(this.dataFormat==="channelsFirst"){let t=e[2]==null?null:this.size[0]*e[2],n=e[3]==null?null:this.size[1]*e[3];return[e[0],e[1],t,n]}else{let t=e[1]==null?null:this.size[0]*e[1],n=e[2]==null?null:this.size[1]*e[2];return[e[0],t,n,e[3]]}}call(e,t){return H(()=>{let n=ze(e),s=n.shape;if(this.dataFormat==="channelsFirst"){n=je(n,[0,2,3,1]);let r=this.size[0]*s[2],a=this.size[1]*s[3],o=this.interpolation==="nearest"?_e.resizeNearestNeighbor(n,[r,a]):_e.resizeBilinear(n,[r,a]);return je(o,[0,3,1,2])}else{let r=this.size[0]*s[1],a=this.size[1]*s[2];return this.interpolation==="nearest"?_e.resizeNearestNeighbor(n,[r,a]):_e.resizeBilinear(n,[r,a])}})}getConfig(){let e={size:this.size,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};Ug.className="UpSampling2D";oe.registerClass(Ug);function jP(e,t,n=[1,1],s="valid",r,a){return H(()=>{r==null&&(r=$s()),$t(r);let o=Mg(e,r);if(e.rank!==4)throw new G(`Input for depthwiseConv2d is required to be 4-D, but is instead ${e.rank}-D`);if(t.rank!==4)throw new G(`depthwiseKernel is required to be 4-D, but is instead ${t.rank}-D`);return o=tc(o,t,n,s==="same"?"same":"valid","NHWC",a),r==="channelsFirst"&&(o=je(o,[0,3,1,2])),o})}var Hg=class extends zg{constructor(e){super(2,e);this.depthwiseKernel=null,this.depthMultiplier=e.depthMultiplier==null?1:e.depthMultiplier,this.depthwiseInitializer=bt(e.depthwiseInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.depthwiseConstraint=Gt(e.depthwiseConstraint),this.depthwiseRegularizer=vt(e.depthwiseRegularizer)}build(e){if(e=st(e),e.length<4)throw new G(`Inputs to DepthwiseConv2D should have rank 4. Received input shape: ${JSON.stringify(e)}.`);let t=this.dataFormat==="channelsFirst"?1:3;if(e[t]==null||e[t]<0)throw new G(`The channel dimension of the inputs to DepthwiseConv2D should be defined, but is not (${e[t]}).`);let n=e[t],s=[this.kernelSize[0],this.kernelSize[1],n,this.depthMultiplier];this.depthwiseKernel=this.addWeight("depthwise_kernel",s,null,this.depthwiseInitializer,this.depthwiseRegularizer,!0,this.depthwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[n*this.depthMultiplier],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return H(()=>{e=ze(e);let n=jP(e,this.depthwiseKernel.read(),this.strides,this.padding,this.dataFormat,null);return this.useBias&&(n=Os(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),n})}computeOutputShape(e){e=st(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],s=this.dataFormat==="channelsFirst"?e[1]*this.depthMultiplier:e[3]*this.depthMultiplier,r=zs(t,this.kernelSize[0],this.padding,this.strides[0]),a=zs(n,this.kernelSize[1],this.padding,this.strides[1]);return this.dataFormat==="channelsFirst"?[e[0],s,r,a]:[e[0],r,a,s]}getConfig(){let e=super.getConfig();return e.depthMultiplier=this.depthMultiplier,e.depthwiseInitializer=Ct(this.depthwiseInitializer),e.depthwiseRegularizer=ut(this.depthwiseRegularizer),e.depthwiseConstraint=Ht(this.depthwiseRegularizer),e}};Hg.className="DepthwiseConv2D";oe.registerClass(Hg);function sv(e,t,n,s){if(Array.isArray(e)){if(t!=null||n!=null)throw new G("When inputs is an array, neither initialState or constants should be provided");s!=null&&(n=e.slice(e.length-s,e.length),e=e.slice(0,e.length-s)),e.length>1&&(t=e.slice(1,e.length)),e=e[0]}function r(a){return a==null||Array.isArray(a)?a:[a]}return t=r(t),n=r(n),{inputs:e,initialState:t,constants:n}}function rv(e,t,n,s=!1,r,a,o=!1,i=!1){return H(()=>{let l=t.shape.length;if(l<3)throw new G(`Input should be at least 3D, but is ${l}D.`);let u=[1,0].concat(Ds(2,l));if(t=je(t,u),a!=null)throw new Oe("The rnn() functoin of the deeplearn.js backend does not support constants yet.");o&&console.warn("Backend rnn(): the unroll = true option is not applicable to the imperative deeplearn.js backend."),r!=null&&(r=ce(ce(r,"bool"),"float32"),r.rank===l-1&&(r=Ft(r,-1)),r=je(r,u)),s&&(t=cs(t,0),r!=null&&(r=cs(r,0)));let c=[],d,h=n,p=t.shape[0],f=ds(t),m;r!=null&&(m=ds(r));for(let g=0;g<p;++g){let y=f[g],x=H(()=>e(y,h));if(r==null)d=x[0],h=x[1];else{let b=H(()=>{let v=m[g],k=Ae(us(v),v),w=ae(z(x[0],v),z(h[0],k)),C=h.map((E,M)=>ae(z(x[1][M],v),z(E,k)));return{output:w,newStates:C}});d=b.output,h=b.newStates}i&&c.push(d)}let A;return i&&(A=Nn(c,1)),[d,A,h]})}var sr=class extends Xe{constructor(e){super(e);let t;if(e.cell==null)throw new G("cell property is missing for the constructor of RNN.");if(Array.isArray(e.cell)?t=new Lp({cells:e.cell}):t=e.cell,t.stateSize==null)throw new G("The RNN cell should have an attribute `stateSize` (tuple of integers, one integer per RNN state).");this.cell=t,this.returnSequences=e.returnSequences==null?!1:e.returnSequences,this.returnState=e.returnState==null?!1:e.returnState,this.goBackwards=e.goBackwards==null?!1:e.goBackwards,this._stateful=e.stateful==null?!1:e.stateful,this.unroll=e.unroll==null?!1:e.unroll,this.supportsMasking=!0,this.inputSpec=[new Pt({ndim:3})],this.stateSpec=null,this.states_=null,this.numConstants=null,this.keptStates=[]}getStates(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;return Ds(0,e).map(t=>null)}else return this.states_}setStates(e){this.states_=e}computeOutputShape(e){hg(e)&&(e=e[0]),e=e;let t=this.cell.stateSize;Array.isArray(t)||(t=[t]);let n=t[0],s;if(this.returnSequences?s=[e[0],e[1],n]:s=[e[0],n],this.returnState){let r=[];for(let a of t)r.push([e[0],a]);return[s].concat(r)}else return s}computeMask(e,t){return H(()=>{Array.isArray(t)&&(t=t[0]);let n=this.returnSequences?t:null;if(this.returnState){let s=this.states.map(r=>null);return[n].concat(s)}else return n})}get states(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1,t=[];for(let n=0;n<e;++n)t.push(null);return t}else return this.states_}set states(e){this.states_=e}build(e){let t=null;if(this.numConstants!=null)throw new Oe("Constants support is not implemented in RNN yet.");hg(e)&&(e=e[0]),e=e;let n=this.stateful?e[0]:null,s=e.slice(2);this.inputSpec[0]=new Pt({shape:[n,null,...s]});let r=[e[0]].concat(e.slice(2));if(t!=null)throw new Oe("Constants support is not implemented in RNN yet.");this.cell.build(r);let a;if(Array.isArray(this.cell.stateSize)?a=this.cell.stateSize:a=[this.cell.stateSize],this.stateSpec!=null){if(!I.arraysEqual(this.stateSpec.map(o=>o.shape[o.shape.length-1]),a))throw new G(`An initialState was passed that is not compatible with cell.stateSize. Received stateSpec=${this.stateSpec}; However cell.stateSize is ${this.cell.stateSize}`)}else this.stateSpec=a.map(o=>new Pt({shape:[null,o]}));this.stateful&&this.resetStates()}resetStates(e,t=!1){H(()=>{if(!this.stateful)throw new br("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape[0];if(n==null)throw new G("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.states_==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(s=>Dt([n,s])):this.states_=[Dt([n,this.cell.stateSize])];else if(e==null)K(this.states_),this.keptStates!=null&&(K(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(s=>Dt([n,s])):this.states_[0]=Dt([n,this.cell.stateSize]);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new G(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t===!0?this.keptStates.push(this.states_.slice()):K(this.states_);for(let s=0;s<this.states_.length;++s){let r=e[s],a=Array.isArray(this.cell.stateSize)?this.cell.stateSize[s]:this.cell.stateSize,o=[n,a];if(!I.arraysEqual(r.shape,o))throw new G(`State ${s} is incompatible with layer ${this.name}: expected shape=${o}, received shape=${r.shape}`);this.states_[s]=r}}this.states_=this.states_.map(s=>Kt(s.clone()))})}apply(e,t){let n=t==null?null:t.initialState,s=t==null?null:t.constants;t==null&&(t={});let r=sv(e,n,s,this.numConstants);e=r.inputs,n=r.initialState,s=r.constants;let a=[],o=[];if(n!=null){t.initialState=n,a=a.concat(n),this.stateSpec=[];for(let l of n)this.stateSpec.push(new Pt({shape:l.shape}));o=o.concat(this.stateSpec)}if(s!=null&&(t.constants=s,a=a.concat(s),this.numConstants=s.length),a[0]instanceof Ps){let l=[e].concat(a),u=this.inputSpec.concat(o),c=this.inputSpec;this.inputSpec=u;let d=super.apply(l,t);return this.inputSpec=c,d}else return super.apply(e,t)}call(e,t){return H(()=>{let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;e=ze(e),r==null&&(this.stateful?r=this.states_:r=this.getInitialState(e));let a=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;if(r.length!==a)throw new G(`RNN Layer has ${a} state(s) but was passed ${r.length} initial state(s).`);this.unroll&&console.warn("Ignoring unroll = true for RNN layer, due to imperative backend.");let o={training:s},l=rv((p,f)=>{let m=this.cell.call([p].concat(f),o);return[m[0],m.slice(1)]},e,r,this.goBackwards,n,null,this.unroll,this.returnSequences),u=l[0],c=l[1],d=l[2];this.stateful&&this.resetStates(d,s);let h=this.returnSequences?c:u;return this.returnState?[h].concat(d):h})}getInitialState(e){return H(()=>{let t=Dt(e.shape);return t=ve(t,[1,2]),t=fc(t),Array.isArray(this.cell.stateSize)?this.cell.stateSize.map(n=>n>1?sg(t,[1,n]):t):this.cell.stateSize>1?[sg(t,[1,this.cell.stateSize])]:[t]})}get trainableWeights(){return this.trainable?this.cell.trainableWeights:[]}get nonTrainableWeights(){return this.trainable?this.cell.nonTrainableWeights:this.cell.weights}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.cell!=null&&this.cell.setFastWeightInitDuringBuild(e)}getConfig(){let e=super.getConfig(),t={returnSequences:this.returnSequences,returnState:this.returnState,goBackwards:this.goBackwards,stateful:this.stateful,unroll:this.unroll};this.numConstants!=null&&(t.numConstants=this.numConstants);let n=this.cell.getConfig();return this.getClassName()===sr.className&&(t.cell={className:this.cell.getClassName(),config:n}),Object.assign({},n,e,t)}static fromConfig(e,t,n={}){let s=t.cell,r=Ms(s,n);return new e(Object.assign(t,{cell:r}))}};sr.className="RNN";oe.registerClass(sr);var Sc=class extends Xe{},Mp=class extends Sc{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,Zt(this.units,"units"),this.activation=Qr(e.activation==null?this.DEFAULT_ACTIVATION:e.activation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=bt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=bt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=bt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=vt(e.kernelRegularizer),this.recurrentRegularizer=vt(e.recurrentRegularizer),this.biasRegularizer=vt(e.biasRegularizer),this.kernelConstraint=Gt(e.kernelConstraint),this.recurrentConstraint=Gt(e.recurrentConstraint),this.biasConstraint=Gt(e.biasConstraint),this.dropout=Fl([1,Zr([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Fl([1,Zr([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=st(e),this.kernel=this.addWeight("kernel",[e[e.length-1],this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return H(()=>{if(e=e,e.length!==2)throw new G(`SimpleRNNCell expects 2 input Tensors, got ${e.length}.`);let n=e[1];e=e[0];let s=t.training==null?!1:t.training;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=ea({ones:()=>us(e),rate:this.dropout,training:s})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=ea({ones:()=>us(n),rate:this.recurrentDropout,training:s}));let r,a=this.dropoutMask,o=this.recurrentDropoutMask;a!=null?r=er(z(e,a),this.kernel.read()):r=er(e,this.kernel.read()),this.bias!=null&&(r=Os(r,this.bias.read())),o!=null&&(n=z(n,o));let i=ae(r,er(n,this.recurrentKernel.read()));return this.activation!=null&&(i=this.activation.apply(i)),[i,i]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:Jr(this.activation),useBias:this.useBias,kernelInitializer:Ct(this.kernelInitializer),recurrentInitializer:Ct(this.recurrentInitializer),biasInitializer:Ct(this.biasInitializer),kernelRegularizer:ut(this.kernelRegularizer),recurrentRegularizer:ut(this.recurrentRegularizer),biasRegularizer:ut(this.biasRegularizer),activityRegularizer:ut(this.activityRegularizer),kernelConstraint:Ht(this.kernelConstraint),recurrentConstraint:Ht(this.recurrentConstraint),biasConstraint:Ht(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout};return Object.assign({},e,t)}};Mp.className="SimpleRNNCell";oe.registerClass(Mp);var Gg=class extends sr{constructor(e){e.cell=new Mp(e);super(e)}call(e,t){return H(()=>{this.cell.dropoutMask!=null&&(K(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(K(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:s,initialState:r})})}static fromConfig(e,t){return new e(t)}};Gg.className="SimpleRNN";oe.registerClass(Gg);var zp=class extends Sc{constructor(e){super(e);if(this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.resetAfter)throw new G("GRUCell does not support reset_after parameter set to true.");this.units=e.units,Zt(this.units,"units"),this.activation=Qr(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=Qr(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=bt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=bt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=bt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=vt(e.kernelRegularizer),this.recurrentRegularizer=vt(e.recurrentRegularizer),this.biasRegularizer=vt(e.biasRegularizer),this.kernelConstraint=Gt(e.kernelConstraint),this.recurrentConstraint=Gt(e.recurrentConstraint),this.biasConstraint=Gt(e.biasConstraint),this.dropout=Fl([1,Zr([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Fl([1,Zr([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.implementation=e.implementation,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=st(e);let t=e[e.length-1];this.kernel=this.addWeight("kernel",[t,this.units*3],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*3],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units*3],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return H(()=>{if(e=e,e.length!==2)throw new G(`GRUCell expects 2 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training==null?!1:t.training,s=e[1];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=ea({ones:()=>us(e),rate:this.dropout,training:n,count:3})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=ea({ones:()=>us(s),rate:this.recurrentDropout,training:n,count:3}));let r=this.dropoutMask,a=this.recurrentDropoutMask,o,i,l;0<this.dropout&&this.dropout<1&&(e=z(e,r[0]));let u=er(e,this.kernel.read());this.useBias&&(u=Os(u,this.bias.read())),0<this.recurrentDropout&&this.recurrentDropout<1&&(s=z(s,a[0]));let c=this.recurrentKernel.read(),[d,h]=nn(c,[2*this.units,this.units],c.rank-1),p=er(s,d),[f,m,A]=nn(u,3,u.rank-1),[g,y]=nn(p,2,p.rank-1);o=this.recurrentActivation.apply(ae(f,g)),i=this.recurrentActivation.apply(ae(m,y));let x=er(z(i,s),h);l=this.activation.apply(ae(A,x));let b=ae(z(o,s),z(ae(1,St(o)),l));return[b,b]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:Jr(this.activation),recurrentActivation:Jr(this.recurrentActivation),useBias:this.useBias,kernelInitializer:Ct(this.kernelInitializer),recurrentInitializer:Ct(this.recurrentInitializer),biasInitializer:Ct(this.biasInitializer),kernelRegularizer:ut(this.kernelRegularizer),recurrentRegularizer:ut(this.recurrentRegularizer),biasRegularizer:ut(this.biasRegularizer),activityRegularizer:ut(this.activityRegularizer),kernelConstraint:Ht(this.kernelConstraint),recurrentConstraint:Ht(this.recurrentConstraint),biasConstraint:Ht(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation,resetAfter:!1};return Object.assign({},e,t)}};zp.className="GRUCell";oe.registerClass(zp);var jg=class extends sr{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new zp(e);super(e)}call(e,t){return H(()=>{this.cell.dropoutMask!=null&&(K(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(K(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:s,initialState:r})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};jg.className="GRU";oe.registerClass(jg);var Cc=class extends Sc{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,Zt(this.units,"units"),this.activation=Qr(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=Qr(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=bt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=bt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=bt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.unitForgetBias=e.unitForgetBias,this.kernelRegularizer=vt(e.kernelRegularizer),this.recurrentRegularizer=vt(e.recurrentRegularizer),this.biasRegularizer=vt(e.biasRegularizer),this.kernelConstraint=Gt(e.kernelConstraint),this.recurrentConstraint=Gt(e.recurrentConstraint),this.biasConstraint=Gt(e.biasConstraint),this.dropout=Fl([1,Zr([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Fl([1,Zr([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.implementation=e.implementation,this.stateSize=[this.units,this.units],this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){var t;e=st(e);let n=e[e.length-1];this.kernel=this.addWeight("kernel",[n,this.units*4],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*4],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint);let s;if(this.useBias){if(this.unitForgetBias){let r=this.biasInitializer,a=this.units;s=new(t=class extends ws{apply(i,l){let u=r.apply([a]),c=new Ap().apply([a]),d=r.apply([a*2]);return Qb(Qb(u,c),d)}},t.className="CustomInit",t)}else s=this.biasInitializer;this.bias=this.addWeight("bias",[this.units*4],null,s,this.biasRegularizer,!0,this.biasConstraint)}else this.bias=null;this.built=!0}call(e,t){return H(()=>{let n=t.training==null?!1:t.training;if(e=e,e.length!==3)throw new G(`LSTMCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let s=e[1],r=e[2];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=ea({ones:()=>us(e),rate:this.dropout,training:n,count:4})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=ea({ones:()=>us(s),rate:this.recurrentDropout,training:n,count:4}));let a=this.dropoutMask,o=this.recurrentDropoutMask,i,l,u,c;0<this.dropout&&this.dropout<1&&(e=z(e,a[0]));let d=er(e,this.kernel.read());0<this.recurrentDropout&&this.recurrentDropout<1&&(s=z(s,o[0])),d=ae(d,er(s,this.recurrentKernel.read())),this.useBias&&(d=Os(d,this.bias.read()));let[h,p,f,m]=nn(d,4,d.rank-1);i=this.recurrentActivation.apply(h),l=this.recurrentActivation.apply(p),u=ae(z(l,r),z(i,this.activation.apply(f))),c=this.recurrentActivation.apply(m);let A=z(c,this.activation.apply(u));return[A,A,u]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:Jr(this.activation),recurrentActivation:Jr(this.recurrentActivation),useBias:this.useBias,kernelInitializer:Ct(this.kernelInitializer),recurrentInitializer:Ct(this.recurrentInitializer),biasInitializer:Ct(this.biasInitializer),unitForgetBias:this.unitForgetBias,kernelRegularizer:ut(this.kernelRegularizer),recurrentRegularizer:ut(this.recurrentRegularizer),biasRegularizer:ut(this.biasRegularizer),activityRegularizer:ut(this.activityRegularizer),kernelConstraint:Ht(this.kernelConstraint),recurrentConstraint:Ht(this.recurrentConstraint),biasConstraint:Ht(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation};return Object.assign({},e,t)}};Cc.className="LSTMCell";oe.registerClass(Cc);var qg=class extends sr{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new Cc(e);super(e)}call(e,t){return H(()=>{this.cell.dropoutMask!=null&&(K(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(K(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:s,initialState:r})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};qg.className="LSTM";oe.registerClass(qg);var Lp=class extends Sc{constructor(e){super(e);this.cells=e.cells}get stateSize(){let e=[];for(let t of this.cells.slice().reverse())Array.isArray(t.stateSize)?e.push(...t.stateSize):e.push(t.stateSize);return e}call(e,t){return H(()=>{e=e;let n=e.slice(1),s=[];for(let o of this.cells.slice().reverse())Array.isArray(o.stateSize)?s.push(n.splice(0,o.stateSize.length)):s.push(n.splice(0,1));s.reverse();let r=[],a;for(let o=0;o<this.cells.length;++o){let i=this.cells[o];n=s[o],o===0?a=[e[0]].concat(n):a=[a[0]].concat(n),a=i.call(a,t),r.push(a.slice(1))}n=[];for(let o of r.slice().reverse())n.push(...o);return[a[0]].concat(n)})}build(e){hg(e)&&(e=e[0]),e=e;let t;this.cells.forEach((n,s)=>{$o(`RNNCell_${s}`,()=>{n.build(e),Array.isArray(n.stateSize)?t=n.stateSize[0]:t=n.stateSize,e=[e[0],t]})}),this.built=!0}getConfig(){let e=super.getConfig(),t=r=>({className:r.getClassName(),config:r.getConfig()}),s={cells:this.cells.map(t)};return Object.assign({},e,s)}static fromConfig(e,t,n={}){let s=[];for(let r of t.cells)s.push(Ms(r,n));return new e({cells:s})}get trainableWeights(){if(!this.trainable)return[];let e=[];for(let t of this.cells)e.push(...t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.cells)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.cells)t.push(...n.trainableWeights);return t.concat(e)}return e}getWeights(){let e=[];for(let t of this.cells)e.push(...t.weights);return pg(e)}setWeights(e){let t=[];for(let n of this.cells){let s=n.weights.length,r=e.splice(s);for(let a=0;a<n.weights.length;++a)t.push([n.weights[a],r[a]])}fg(t)}};Lp.className="StackedRNNCells";oe.registerClass(Lp);function ea(e){let{ones:t,rate:n,training:s=!1,count:r=1}=e,a=()=>t3(t(),n),o=()=>Ac(a,t,s);return!r||r<=1?Kt(o().clone()):Array(r).fill(void 0).map(o).map(l=>Kt(l.clone()))}var qP=function(e,t){var n={};for(var s in e)Object.prototype.hasOwnProperty.call(e,s)&&t.indexOf(s)<0&&(n[s]=e[s]);if(e!=null&&typeof Object.getOwnPropertySymbols=="function")for(var r=0,s=Object.getOwnPropertySymbols(e);r<s.length;r++)t.indexOf(s[r])<0&&Object.prototype.propertyIsEnumerable.call(e,s[r])&&(n[s[r]]=e[s[r]]);return n},av=class extends sr{constructor(e){if(e.unroll)throw new Oe("Unrolling is not possible with convolutional RNNs.");if(Array.isArray(e.cell))throw new Oe("It is not possible at the moment to stack convolutional cells.");super(e);this.inputSpec=[new Pt({ndim:5})]}call(e,t){return H(()=>{if(this.cell.dropoutMask!=null&&(K(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(K(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null),t&&t.constants)throw new G("ConvRNN2D cell does not support constants");let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:s,initialState:r})})}computeOutputShape(e){let t=this.computeSingleOutputShape(e);return this.returnSequences||(t=[t[0],...t.slice(2)]),this.returnState&&(t=[t,...Array(2).fill([e[0],...t.slice(-3)])]),t}getInitialState(e){return H(()=>{let{stateSize:t}=this.cell,n=e.shape,s=this.computeSingleOutputShape(n),r=[s[0],...s.slice(2)],a=Dt(r);return Array.isArray(t)?Array(t.length).fill(a):[a]})}resetStates(e,t=!1){H(()=>{if(!this.stateful)throw new br("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape,s=this.computeSingleOutputShape(n),r=[s[0],...s.slice(2)];if(n[0]==null)throw new G("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.getStates()==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>Dt(r)):this.states_=[Dt(r)];else if(e==null)K(this.states_),this.keptStates!=null&&(K(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>Dt(r)):this.states_[0]=Dt(r);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new G(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t?this.keptStates.push(this.states_.slice()):K(this.states_);for(let o=0;o<this.states_.length;++o){let i=e[o],l=r;if(!I.arraysEqual(i.shape,l))throw new G(`State ${o} is incompatible with layer ${this.name}: expected shape=${l}, received shape=${i.shape}`);this.states_[o]=i}}this.states_=this.states_.map(o=>Kt(o.clone()))})}computeSingleOutputShape(e){let{dataFormat:t,filters:n,kernelSize:s,padding:r,strides:a,dilationRate:o}=this.cell,i=t==="channelsFirst",l=e[i?3:2],u=e[i?4:3],c=zs(l,s[0],r,a[0],o[0]),d=zs(u,s[1],r,a[1],o[1]);return[...e.slice(0,2),...i?[n,c,d]:[c,d,n]]}};av.className="ConvRNN2D";var Bp=class extends Cc{constructor(e){let{filters:t,kernelSize:n,strides:s,padding:r,dataFormat:a,dilationRate:o}=e;super(Object.assign({},e,{units:t}));this.filters=t,Zt(this.filters,"filters"),this.kernelSize=zl(n,2,"kernelSize"),this.kernelSize.forEach(i=>Zt(i,"kernelSize")),this.strides=zl(s||1,2,"strides"),this.strides.forEach(i=>Zt(i,"strides")),this.padding=r||"valid",hs(this.padding),this.dataFormat=a||"channelsLast",$t(this.dataFormat),this.dilationRate=zl(o||1,2,"dilationRate"),this.dilationRate.forEach(i=>Zt(i,"dilationRate"))}build(e){var t;e=st(e);let n=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[n]==null)throw new G(`The channel dimension of the input should be defined. Found ${e[n]}`);let s=e[n],r=4,a=this.kernelSize.concat([s,this.filters*r]);this.kernel=this.addWeight("kernel",a,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint);let o=this.kernelSize.concat([this.filters,this.filters*r]);if(this.recurrentKernel=this.addWeight("recurrent_kernel",o,null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias){let i;if(this.unitForgetBias){let l=this.biasInitializer,u=this.filters;i=new(t=class extends ws{apply(d,h){let p=l.apply([u]),f=Un([u]),m=l.apply([u*2]);return ng([p,f,m])}},t.className="CustomInit",t)}else i=this.biasInitializer;this.bias=this.addWeight("bias",[this.filters*r],null,i,this.biasRegularizer,!0,this.biasConstraint)}this.built=!0}call(e,t){return H(()=>{if(e.length!==3)throw new G(`ConvLSTM2DCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training||!1,s=e[0],r=e[1],a=e[2],o=4;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=ea({ones:()=>us(s),rate:this.dropout,training:n,count:o}));let i=this.dropoutMask,l=(Q,ne,te)=>!ne||!ne[te]?Q:z(ne[te],Q),u=l(s,i,0),c=l(s,i,1),d=l(s,i,2),h=l(s,i,3);0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=ea({ones:()=>us(r),rate:this.recurrentDropout,training:n,count:o}));let p=this.recurrentDropoutMask,f=l(r,p,0),m=l(r,p,1),A=l(r,p,2),g=l(r,p,3),y=3,[x,b,v,k]=nn(this.kernel.read(),o,y),[w,C,E,M]=this.useBias?nn(this.bias.read(),o):[null,null,null,null];u=this.inputConv(u,x,w,this.padding),c=this.inputConv(c,b,C,this.padding),d=this.inputConv(d,v,E,this.padding),h=this.inputConv(h,k,M,this.padding);let[R,_,N,O]=nn(this.recurrentKernel.read(),o,y);f=this.recurrentConv(f,R),m=this.recurrentConv(m,_),A=this.recurrentConv(A,N),g=this.recurrentConv(g,O);let W=this.recurrentActivation.apply(ae(u,f)),j=this.recurrentActivation.apply(ae(c,m)),q=ae(z(j,a),z(W,this.activation.apply(ae(d,A)))),X=z(this.recurrentActivation.apply(ae(h,g)),this.activation.apply(q));return[X,X,q]})}getConfig(){let e=super.getConfig(),{units:t}=e,n=qP(e,["units"]),s={filters:this.filters,kernelSize:this.kernelSize,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,strides:this.strides};return Object.assign({},n,s)}inputConv(e,t,n,s){let r=Hr(e,t,this.strides,s||"valid",this.dataFormat==="channelsFirst"?"NCHW":"NHWC",this.dilationRate);return n?Os(r,n,this.dataFormat):r}recurrentConv(e,t){return Hr(e,t,1,"same",this.dataFormat==="channelsFirst"?"NCHW":"NHWC")}};Bp.className="ConvLSTM2DCell";oe.registerClass(Bp);var Xg=class extends av{constructor(e){let t=new Bp(e);super(Object.assign({},e,{cell:t}))}static fromConfig(e,t){return new e(t)}};Xg.className="ConvLSTM2D";oe.registerClass(Xg);var Wp=class extends Xe{constructor(e){super(e);this.rate=Math.max(Math.min(e.rate,1),0),this.noiseShape=e.noiseShape,this.seed=e.seed,this.supportsMasking=!0}getNoiseShape(e){if(this.noiseShape==null)return this.noiseShape;let t=e.shape,n=[];for(let s=0;s<this.noiseShape.length;++s)n.push(this.noiseShape[s]==null?t[s]:this.noiseShape[s]);return n}call(e,t){return H(()=>{this.invokeCallHook(e,t);let n=ze(e);if(0<this.rate&&this.rate<1){let s=t.training==null?!1:t.training,r=this.getNoiseShape(n);return Ac(()=>t3(n,this.rate,r,this.seed),()=>n,s)}return e})}getConfig(){let e={rate:this.rate,noiseShape:this.noiseShape,seed:this.seed},t=super.getConfig();return Object.assign(e,t),e}dispose(){return super.dispose()}};Wp.className="Dropout";oe.registerClass(Wp);var Kg=class extends Wp{constructor(e){super(e);this.inputSpec=[{ndim:3}]}getNoiseShape(e){let t=e.shape;return[t[0],1,t[2]]}};Kg.className="SpatialDropout1D";oe.registerClass(Kg);var Zg=class extends Xe{constructor(e){super(e);if(this.activation=null,this.useBias=!0,this.kernel=null,this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.batchInputShape==null&&e.inputShape==null&&e.inputDim!=null){let t=null;e.batchSize!=null&&(t=e.batchSize),this.batchInputShape=[t,e.inputDim]}this.units=e.units,Zt(this.units,"units"),this.activation=Qr(e.activation),e.useBias!=null&&(this.useBias=e.useBias),this.kernelInitializer=bt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.biasInitializer=bt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelConstraint=Gt(e.kernelConstraint),this.biasConstraint=Gt(e.biasConstraint),this.kernelRegularizer=vt(e.kernelRegularizer),this.biasRegularizer=vt(e.biasRegularizer),this.activityRegularizer=vt(e.activityRegularizer),this.supportsMasking=!0,this.inputSpec=[{minNDim:2}]}build(e){e=st(e);let t=e[e.length-1];this.kernel==null&&(this.kernel=this.addWeight("kernel",[t,this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint))),this.inputSpec=[{minNDim:2,axes:{[-1]:t}}],this.built=!0}computeOutputShape(e){e=st(e);let t=e.slice();return t[t.length-1]=this.units,t}call(e,t){return H(()=>{this.invokeCallHook(e,t);let n=ze(e),s=Hb(this.activation.getClassName()),r;return s!=null?r=er(n,this.kernel.read(),s,this.bias?this.bias.read():null):(r=er(n,this.kernel.read()),this.bias!=null&&(r=Os(r,this.bias.read())),this.activation!=null&&(r=this.activation.apply(r))),r})}getConfig(){let e={units:this.units,activation:Jr(this.activation),useBias:this.useBias,kernelInitializer:Ct(this.kernelInitializer),biasInitializer:Ct(this.biasInitializer),kernelRegularizer:ut(this.kernelRegularizer),biasRegularizer:ut(this.biasRegularizer),activityRegularizer:ut(this.activityRegularizer),kernelConstraint:Ht(this.kernelConstraint),biasConstraint:Ht(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}};Zg.className="Dense";oe.registerClass(Zg);var Yg=class extends Xe{constructor(e){e=e||{};super(e);this.inputSpec=[{minNDim:3}],this.dataFormat=e.dataFormat}computeOutputShape(e){e=st(e);for(let t of e.slice(1))if(t==null)throw new G(`The shape of the input to "Flatten" is not fully defined (got ${e.slice(1)}). Make sure to pass a complete "input_shape" or "batch_input_shape" argument to the first layer in your model.`);return[e[0],Kr(e,1)]}call(e,t){return H(()=>{this.invokeCallHook(e,t);let n=ze(e);if(this.dataFormat==="channelsFirst"&&n.rank>1){let s=[0];for(let r=2;r<n.rank;++r)s.push(r);s.push(1),n=je(n,s)}return hO(n)})}getConfig(){let e={};this.dataFormat!=null&&(e.dataFormat=this.dataFormat);let t=super.getConfig();return Object.assign(e,t),e}};Yg.className="Flatten";oe.registerClass(Yg);var Jg=class extends Xe{constructor(e){super(e);this.supportsMasking=!0,this.activation=Qr(e.activation)}call(e,t){return H(()=>{this.invokeCallHook(e,t);let n=ze(e);return this.activation.apply(n)})}getConfig(){let e={activation:Jr(this.activation)},t=super.getConfig();return Object.assign(e,t),e}};Jg.className="Activation";oe.registerClass(Jg);var Qg=class extends Xe{constructor(e){super(e);this.n=e.n,this.inputSpec=[{ndim:2}]}computeOutputShape(e){return[e[0],this.n,e[1]]}call(e,t){return H(()=>(e=ze(e),cO(e,this.n)))}getConfig(){let e={n:this.n},t=super.getConfig();return Object.assign(e,t),e}};Qg.className="RepeatVector";oe.registerClass(Qg);var e2=class extends Xe{constructor(e){super(e);this.targetShape=e.targetShape;for(let t=0;t<this.targetShape.length;++t)this.isUnknown(this.targetShape[t])&&(this.targetShape[t]=null)}isUnknown(e){return e<0||e==null}fixUnknownDimension(e,t){let n="Total size of new array must be unchanged.",s=t.slice(),r=1,a=null;for(let i=0;i<s.length;++i){let l=s[i];if(this.isUnknown(l))if(a===null)a=i;else throw new G("Can only specifiy one unknown dimension.");else r*=l}let o=Kr(e);if(a!==null){if(r===0||o%r!=0)throw new G(n);s[a]=o/r}else if(o!==r)throw new G(n);return s}computeOutputShape(e){let t=!1;for(let n=0;n<e.length;++n)if(this.isUnknown(e[n])){t=!0;break}return t?e.slice(0,1).concat(this.targetShape):e.slice(0,1).concat(this.fixUnknownDimension(e.slice(1),this.targetShape))}call(e,t){return H(()=>{this.invokeCallHook(e,t);let n=ze(e),s=n.shape,r=s.slice(0,1).concat(this.fixUnknownDimension(s.slice(1),this.targetShape));return U(n,r)})}getConfig(){let e={targetShape:this.targetShape},t=super.getConfig();return Object.assign(e,t),e}};e2.className="Reshape";oe.registerClass(e2);var t2=class extends Xe{constructor(e){super(e);if(e.dims==null)throw new Error("Required configuration field `dims` is missing during Permute constructor call.");if(!Array.isArray(e.dims))throw new Error(`Permute constructor requires \`dims\` to be an Array, but received ${e.dims} instead.`);let t=Ds(1,e.dims.length+1);if(!I.arraysEqual(e.dims.slice().sort(),t))throw new Error("Invalid permutation `dims`: "+JSON.stringify(e.dims)+" `dims` must contain consecutive integers starting from 1.");this.dims=e.dims,this.dimsIncludingBatch=[0].concat(this.dims),this.inputSpec=[new Pt({ndim:this.dims.length+1})]}computeOutputShape(e){e=st(e);let t=e.slice();return this.dims.forEach((n,s)=>{t[s+1]=e[n]}),t}call(e,t){return je(ze(e),this.dimsIncludingBatch)}getConfig(){let e={dims:this.dims},t=super.getConfig();return Object.assign(e,t),e}};t2.className="Permute";oe.registerClass(t2);var n2=class extends Xe{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null?this.maskValue=e.maskValue==null?0:e.maskValue:this.maskValue=0}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={maskValue:this.maskValue};return Object.assign(t,e),t}computeMask(e,t){let n=ze(e),s=-1;return Fh(Nl(n,this.maskValue),s)}call(e,t){return H(()=>{this.invokeCallHook(e,t);let n=ze(e),s=-1,r=!0,a=Fh(Nl(n,this.maskValue),s,r);return z(n,ce(a,n.dtype))})}};n2.className="Masking";oe.registerClass(n2);var s2=class extends Xe{constructor(e){super(e);if(this.embeddings=null,this.DEFAULT_EMBEDDINGS_INITIALIZER="randomUniform",e.batchInputShape==null&&e.inputShape==null){let t=null;e.batchSize!=null&&(t=e.batchSize),e.inputLength==null?this.batchInputShape=[t,null]:this.batchInputShape=[t].concat(At(e.inputLength))}this.inputDim=e.inputDim,Zt(this.inputDim,"inputDim"),this.outputDim=e.outputDim,Zt(this.outputDim,"outputDim"),this.embeddingsInitializer=bt(e.embeddingsInitializer||this.DEFAULT_EMBEDDINGS_INITIALIZER),this.embeddingsRegularizer=vt(e.embeddingsRegularizer),this.activityRegularizer=vt(e.activityRegularizer),this.embeddingsConstraint=Gt(e.embeddingsConstraint),this.maskZero=e.maskZero,this.supportsMasking=e.maskZero,this.inputLength=e.inputLength}build(e){this.embeddings=this.addWeight("embeddings",[this.inputDim,this.outputDim],this.dtype,this.embeddingsInitializer,this.embeddingsRegularizer,!0,this.embeddingsConstraint),this.built=!0}warnOnIncompatibleInputShape(e){}computeMask(e,t){return H(()=>this.maskZero?(e=ze(e),Nl(e,qe(e))):null)}computeOutputShape(e){if(e=st(e),this.inputLength==null)return[...e,this.outputDim];let t=At(this.inputLength);if(t.length!==e.length-1)throw new G(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);{let n=0;for(let s=0;s<t.length;++s){let r=t[s],a=e[s+1];if(r!=null&&a!=null&&r!==a)throw new G(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);r==null&&(t[n]=a),n++}}return[e[0],...t,this.outputDim]}call(e,t){return H(()=>{this.invokeCallHook(e,t);let n=ze(e);n.dtype!=="int32"&&(n=pp(n,"int32"));let s=e3(this.embeddings.read(),U(n,[n.size]));return U(s,st(this.computeOutputShape(n.shape)))})}getConfig(){let e={inputDim:this.inputDim,outputDim:this.outputDim,embeddingsInitializer:Ct(this.embeddingsInitializer),embeddingsRegularizer:ut(this.embeddingsRegularizer),activityRegularizer:ut(this.activityRegularizer),embeddingsConstraint:Ht(this.embeddingsConstraint),maskZero:this.maskZero,inputLength:this.inputLength},t=super.getConfig();return Object.assign(e,t),e}};s2.className="Embedding";oe.registerClass(s2);var Mo=class extends Xe{constructor(e){super(e||{});this.supportsMasking=!0}mergeFunction(e){throw new Oe}computeElementwiseOpOutputShape(e,t){if(e==null||t==null)return null;if(e.length<t.length)return this.computeElementwiseOpOutputShape(t,e);if(t.length===0)return e;let n=e.slice(0,e.length-t.length);for(let s=0;s<t.length;++s){let r=e[e.length-t.length+s],a=t[s];if(r==null||a==null||r<0||a<0)n.push(null);else if(r===1)n.push(a);else if(a===1)n.push(r);else{if(r!==a)throw new G("Operands could not be broadcast together with shapes "+JSON.stringify(e)+" "+JSON.stringify(t));n.push(r)}}return n}build(e){if(Array.isArray(e)&&!Array.isArray(e[0])&&(e=[st(e)]),e=e,e.length<2)throw new G(`A merge layer should be called on an Array of at least 2 inputs. Got ${e.length} input(s).`);let t=[];for(let r of e)r!=null&&r[0]!==null&&t.push(r[0]);if(t=Xr(t),t.length>1)throw new G(`Can not merge tensors with different batch sizes. Got tensors with shapes: ${JSON.stringify(e)}.`);let n=e[0]==null?null:e[0].slice(1);for(let r=1;r<e.length;++r){let a=e[r]==null?null:e[r].slice(1);n=this.computeElementwiseOpOutputShape(n,a)}let s=e.map(r=>r.length);e.indexOf(null)===-1&&Xr(s).length===1?this.reshapeRequired=!1:this.reshapeRequired=!0}call(e,t){return H(()=>{if(e=e,this.reshapeRequired){let n=[],s=e.map(r=>r.rank);if(s.indexOf(null)===-1){let r=Zr(s);for(let a of e){let o=a.rank;for(let i=0;i<r-o;++i)a=fc(a,1);n.push(a)}return this.mergeFunction(n)}else{let r=!1;for(let i of e){let l=i.rank;if(l==null){let u=i.shape,c=u[0],d=u.slice(1).concat([c]),h=U(i,[c].concat(Kr(u.slice(1))));h=je(h,[1,0]),h=U(h,d),n.push(h),r=!0}else if(l>1){let u=Ds(1,l).concat([0]);n.push(je(i,u)),r=!0}else n.push(i)}let a=this.mergeFunction(n),o=a.rank;if(r){if(o==null){let i=a.shape,l=i.length,u=i[l-1],c=[u].concat(i.slice(0,i.length-1));a=U(je(U(a,[-1,u]),[1,0]),c)}else if(o>1){let i=[o-1].concat(Ds(0,o-1));a=je(a,i)}}return a}}else return this.mergeFunction(e)})}computeOutputShape(e){e=e;let t;e[0]==null?t=null:t=e[0].slice(1);for(let s=1;s<e.length;++s){let r=e[s]==null?null:e[s].slice(1);t=this.computeElementwiseOpOutputShape(t,r)}let n=[];for(let s of e)s!=null&&s[0]!==null&&n.push(s[0]);return n=Xr(n),n.length===1?t=n.concat(t):t=[null].concat(t),t}computeMask(e,t){return H(()=>{if(t==null)return null;if(!Array.isArray(t))throw new G("`mask` should be an Array");if(!Array.isArray(e))throw new G("`inputs` should be an Array");if(t.length!==e.length)throw new G(`The Array 'inputs' and 'mask' are expected to have the same length, but have different lengths (${e.length} vs ${t.length})`);if(t.every(s=>s==null))return null;t=t.map(s=>s==null?s:Ft(s,0));let n=t[0];for(let s=1;s<t.length-1;++s)n=Rs(n,t[s]);return n})}},r2=class extends Mo{constructor(e){super(e)}mergeFunction(e){return H(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=ae(t,e[n]);return t})}};r2.className="Add";oe.registerClass(r2);var a2=class extends Mo{constructor(e){super(e)}mergeFunction(e){return H(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=z(t,e[n]);return t})}};a2.className="Multiply";oe.registerClass(a2);var o2=class extends Mo{constructor(e){super(e)}mergeFunction(e){return H(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=ae(t,e[n]);return z(1/e.length,t)})}};o2.className="Average";oe.registerClass(o2);var i2=class extends Mo{constructor(e){super(e)}mergeFunction(e){return H(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=gr(t,e[n]);return t})}};i2.className="Maximum";oe.registerClass(i2);var l2=class extends Mo{constructor(e){super(e)}mergeFunction(e){return H(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=rc(t,e[n]);return t})}};l2.className="Minimum";oe.registerClass(l2);var u2=class extends Mo{constructor(e){super(e);this.DEFAULT_AXIS=-1,e==null&&(e={}),this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){if(!(Array.isArray(e)&&Array.isArray(e[0]))||e.length===1)throw new G("A `Concatenate` layer should be called on a list of at least 2 inputs");e=e;let t=!0;for(let s of e)if(s!=null){t=!1;break}if(t)return;let n=[];for(let s=0;s<e.length;++s){let r=e[s].slice();r.splice(this.axis,1);let a=!1;for(let o of n)if(I.arraysEqual(o,r)){a=!0;break}a||n.push(r)}if(n.length>1)throw new G("A `Concatenate` layer requires inputs with matching shapes except for the concat axis. Got input shapes: "+JSON.stringify(e))}mergeFunction(e){return H(()=>ng(e,this.axis))}computeOutputShape(e){if(!(Array.isArray(e)&&Array.isArray(e[0])))throw new G("A `Concatenate` layer should be called on a list of inputs.");let t=e,n=t[0].slice(),s=this.axis<0?n.length+this.axis:this.axis;for(let r of t.slice(1)){if(n[s]==null||r[s]==null){n[s]=null;break}n[s]+=r[s]}return n}computeMask(e,t){if(t==null)return null;if(!Array.isArray(t))throw new G("`mask` should be an array for Concatenate");if(!Array.isArray(e))throw new G("`inputs` should be an array for Concatenate");if(t.length!==e.length)throw new G(`Mismatch in the length of mask (${t.length}) and the legnth of inputs (${e.length})`);return H(()=>{let n=!0;if(t.forEach(a=>{if(a!=null){n=!1;return}}),n)return null;let s=[];for(let a=0;a<e.length;++a)t[a]==null?s.push(ce(us(e[a]),"bool")):t[a].rank<e[a].rank?s.push(Ft(t[a],-1)):s.push(t[a]);let r=ht(s,this.axis);return iA(r,-1,!1)})}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};u2.className="Concatenate";oe.registerClass(u2);function Tc(e,t){for(;e<0;)e+=t;return e}function XP(e,t,n){if(e.shape.length>3||t.shape.length>3)throw new Oe("batchDot is not implemented for tensors of 4D or higher rank yet");if(I.assert(e.shape.length>=2,()=>`batchDot requires the rank of x to be >= 2, but got ${e.shape.length}`),I.assert(e.shape.length>=2,()=>`batchDot requires the rank of y to be >= 2, but got ${t.shape.length}`),typeof n=="number"&&(n=[n,n]),e.dtype==="complex64"||t.dtype==="complex64")throw new Oe("batchDot is not implemented for complex64-type Tensors yet.");let s=e.shape.length,r=t.shape.length;n==null&&(n=[s-1,r-2]);let a=n;return H(()=>{let o;if(s>r){o=s-r;let l=[];for(let u=0;u<o;++u)l.push(1);t=U(t,t.shape.concat(l))}else if(r>s){o=r-s;let l=[];for(let u=0;u<o;++u)l.push(1);e=U(e,e.shape.concat(l))}else o=0;let i;if(e.shape.length===2&&t.shape.length===2)a[0]===a[1]?i=ve(z(e,t),a[0]):i=ve(z(je(e,[1,0]),t),a[1]);else{let l=a[0]!==e.shape.length-1,u=a[1]===t.shape.length-1;i=We(e,t,l,u)}if(o>0){let l;s>r?l=s+r-3:l=s-1;let u=[];for(let c=l;c<l+o;++c)u.push(c);i=ot(i,u)}return i.shape.length===1&&(i=Ft(i,1)),i})}var c2=class extends Mo{constructor(e){super(e);this.axes=e.axes,this.normalize=e.normalize==null?!1:e.normalize,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){I.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0],n=e[1];if(t.length>3||n.length>3)throw new Oe("Dot layer does not support tensors of 4D or higher rank yet.");let s=this.interpretAxes(t,n);if(t[s[0]]!==n[s[1]])throw new G(`Dimension incompatibility: ${t[s[0]]} !== ${n[s[1]]}`)}mergeFunction(e){if(e.length!==2)throw new G(`A \`Dot\` layer must be called on exactly 2 inputs, but received ${e.length} input(s).`);let t=e[0],n=e[1],s;return Array.isArray(this.axes)?s=this.axes.map((r,a)=>Tc(r,e[a].shape.length)):s=[Tc(this.axes,t.shape.length),Tc(this.axes,n.shape.length)],this.normalize&&(t=Np(t,s[0]),n=Np(n,s[1])),XP(t,n,s)}interpretAxes(e,t){let n;return Array.isArray(this.axes)?n=this.axes:n=[Tc(this.axes,e.length),Tc(this.axes,t.length)],n}computeOutputShape(e){I.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0].slice(),n=e[1].slice();if(t.length>3||n.length>3)throw new Oe("Dot layer does not support tensors of 4D or higher rank yet.");let s=this.interpretAxes(t,n);t.splice(s[0],1),n.splice(s[1],1),n.splice(0,1);let r=t.concat(n);return r.length===1&&r.push(1),r}computeMask(e,t){return null}getConfig(){let e={axes:this.axes,normalize:this.normalize},t=super.getConfig();return Object.assign(e,t),e}};c2.className="Dot";oe.registerClass(c2);var d2=class extends Xe{constructor(e){super(e);this.supportsMasking=!0,this.stddev=e.stddev}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={stddev:this.stddev};return Object.assign(t,e),t}call(e,t){return H(()=>{this.invokeCallHook(e,t);let n=ze(e);return Ac(()=>ae(mp(n.shape,0,this.stddev),n),()=>n,t.training||!1)})}};d2.className="GaussianNoise";oe.registerClass(d2);var h2=class extends Xe{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return H(()=>{this.invokeCallHook(e,t);let n=ze(e);return this.rate>0&&this.rate<1?Ac(()=>{let r=Math.sqrt(this.rate/(1-this.rate));return z(n,mp(n.shape,1,r))},()=>n,t.training||!1):n})}};h2.className="GaussianDropout";oe.registerClass(h2);var p2=class extends Xe{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate,this.noiseShape=e.noiseShape}_getNoiseShape(e){return this.noiseShape||ze(e).shape}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return H(()=>{if(this.rate<1&&this.rate>0){let n=this._getNoiseShape(e);return Ac(()=>{let r=ze(e),a=1.6732632423543772,o=1.0507009873554805,i=-a*o,l=Io(El(n),this.rate);l=pp(l,"float32");let u=((1-this.rate)*(1+this.rate*i**2))**-.5,c=-u*i*this.rate,d=ae(z(r,l),z(ae(l,-1),i));return ae(z(d,u),c)},()=>ze(e),t.training||!1)}return e})}};p2.className="AlphaDropout";oe.registerClass(p2);function Nc(e,t,n,s,r,a=.001){let o;if(e.rank===2)o=Tx(e,t,n,s,r,a);else if(e.rank===3)o=Nx(e,t,n,s,r,a);else if(e.rank===4)o=Ex(e,t,n,s,r,a);else throw new Oe(`batchNormalization is not implemented for array of rank ${e.rank} yet`);return o}function KP(e,t,n,s,r=.001){return H(()=>{let a=Gh(e,s),o=a.mean,i=a.variance;return[Nc(e,o,i,n,t,r),o,i]})}function ZP(e,t,n,s,r=.001){return H(()=>{let a=Gh(e,s),o=a.mean,i=a.variance,l=[];for(let f of Ds(0,e.rank))s.indexOf(f)!==-1?l.push(1):l.push(e.shape[f]);let u=U(o,l),c=U(i,l),d=t==null?null:U(t,l),h=n==null?null:U(n,l);return[Nc(e,u,c,h,d,r),o,i]})}function YP(e,t,n,s,r=.001){return I.arraysEqual(s.slice().sort(),Ds(0,e.rank-1))?KP(e,t,n,s,r):ZP(e,t,n,s,r)}var f2=class extends Xe{constructor(e){e==null&&(e={});super(e);this.supportsMasking=!0,this.axis=e.axis==null?-1:e.axis,this.momentum=e.momentum==null?.99:e.momentum,this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=bt(e.betaInitializer||"zeros"),this.gammaInitializer=bt(e.gammaInitializer||"ones"),this.movingMeanInitializer=bt(e.movingMeanInitializer||"zeros"),this.movingVarianceInitializer=bt(e.movingVarianceInitializer||"ones"),this.betaConstraint=Gt(e.betaConstraint),this.gammaConstraint=Gt(e.gammaConstraint),this.betaRegularizer=vt(e.betaRegularizer),this.gammaRegularizer=vt(e.gammaRegularizer)}build(e){e=st(e);let t=this.axis>=0?this.axis:this.axis+e.length,n=e[t];if(n==null)throw new G(`Axis ${t} of input tensor should have a defined dimension but the layer received an input with shape ${JSON.stringify(e)}.`);this.inputSpec=[new Pt({ndim:e.length,axes:{[t]:n}})];let s=[n];this.scale&&(this.gamma=this.addWeight("gamma",s,null,this.gammaInitializer,this.gammaRegularizer,!0,this.gammaConstraint)),this.center&&(this.beta=this.addWeight("beta",s,null,this.betaInitializer,this.betaRegularizer,!0,this.betaConstraint)),this.movingMean=this.addWeight("moving_mean",s,null,this.movingMeanInitializer,null,!1),this.movingVariance=this.addWeight("moving_variance",s,null,this.movingVarianceInitializer,null,!1),this.built=!0}call(e,t){return H(()=>{let n=t.training==null?!1:t.training,s=ze(e),r=s.shape,a=r.length,o=Ds(0,a),i=this.axis>=0?this.axis:this.axis+a;o.splice(i,1);let l=Eo(1,a);l[i]=r[i];let u=o.slice();u.sort();let c=!I.arraysEqual(u,Ds(0,a).slice(0,a-1)),d=()=>{if(c){let g=U(this.movingMean.read(),l),y=U(this.movingVariance.read(),l),x=this.center?U(this.beta.read(),l):null,b=this.scale?U(this.gamma.read(),l):null;return Nc(s,g,y,x,b,this.epsilon)}else return Nc(s,this.movingMean.read(),this.movingVariance.read(),this.beta==null?null:this.beta.read(),this.gamma==null?null:this.gamma.read(),this.epsilon)};if(!n)return d();let[h,p,f]=YP(s,this.gamma.read(),this.beta.read(),o,this.epsilon),m=(g,y,x)=>{H(()=>{let b=1-x,v=g.read(),k=z(Ae(v,y),b);g.write(Ae(v,k))})};return(()=>{m(this.movingMean,p,this.momentum),m(this.movingVariance,f,this.momentum)})(),h})}getConfig(){let e={axis:this.axis,momentum:this.momentum,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:Ct(this.betaInitializer),gammaInitializer:Ct(this.gammaInitializer),movingMeanInitializer:Ct(this.movingMeanInitializer),movingVarianceInitializer:Ct(this.movingVarianceInitializer),betaRegularizer:ut(this.betaRegularizer),gammaRegularizer:ut(this.gammaRegularizer),betaConstraint:Ht(this.betaConstraint),gammaConstraint:Ht(this.gammaConstraint)},t=super.getConfig();return Object.assign(e,t),e}};f2.className="BatchNormalization";oe.registerClass(f2);var m2=class extends Xe{constructor(e){e==null&&(e={});super(e);if(this.axis=e.axis==null?-1:e.axis,typeof this.axis=="number"){if(!Number.isInteger(this.axis))throw new Error(`Expected axis to be an integer, but received ${this.axis}`)}else if(Array.isArray(this.axis)){for(let t of this.axis)if(!Number.isInteger(t))throw new Error(`Expected axis to be an array of integers, but received ${JSON.stringify(this.axis)}`)}else throw new Error(`Expected axis to be an integer or an array of integers, but received ${JSON.stringify(this.axis)}`);this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=bt(e.betaInitializer||"zeros"),this.gammaInitializer=bt(e.gammaInitializer||"ones"),this.betaRegularizer=vt(e.betaRegularizer),this.gammaRegularizer=vt(e.gammaRegularizer),this.supportsMasking=!0}build(e){e=st(e);let t=e.length;typeof this.axis=="number"&&(this.axis=[this.axis]);for(let r=0;r<this.axis.length;++r)this.axis[r]<0&&(this.axis[r]+=t);for(let r of this.axis)if(r<0||r>=t)throw new Error(`Invalid axis: ${r}`);if(this.axis.length!==Xr(this.axis).length)throw new Error(`Found duplicate axes in: ${this.axis}`);let n=this.axis.map(r=>e[r]),s=!0;this.scale?this.gamma=this.addWeight("gamma",n,"float32",this.gammaInitializer,this.gammaRegularizer,s):this.gamma=null,this.center?this.beta=this.addWeight("beta",n,"float32",this.betaInitializer,this.betaRegularizer,s):this.beta=null,this.built=!0}call(e,t){let n=ze(e),s=n.shape,r=s.length;return H(()=>{let a=!0,{mean:o,variance:i}=Gh(n,this.axis,a),l=Eo(1,r);for(let f of this.axis)l[f]=s[f];let u=f=>f!=null&&f.shape.length!==r&&this.axis!==[r-1]?U(f,l):f,c=u(this.gamma.read()),d=u(this.beta.read()),h=[],p=[];for(let f=0;f<r;++f)this.axis.indexOf(f)!==-1?(h.push(s[f]),p.push(1)):(h.push(1),p.push(s[f]));return o=Es(o,h),i=Es(i,h),c=Es(c,p),d=Es(d,p),Nc(n,o,i,d,c,this.epsilon)})}getConfig(){let e={axis:this.axis,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:Ct(this.betaInitializer),gammaInitializer:Ct(this.gammaInitializer),betaRegularizer:ut(this.betaRegularizer),gammaRegularizer:ut(this.gammaRegularizer)},t=super.getConfig();return Object.assign(e,t),e}};m2.className="LayerNormalization";oe.registerClass(m2);function JP(e,t,n){return H(()=>{if(e.rank!==4)throw new G(`temporalPadding expects input tensor to be 4-D, but received a ${e.rank}-D tensor.`);if(t==null&&(t=[[1,1],[1,1]]),t.length!==2||t[0].length!==2||t[1].length!==2)throw new G("spatial2dPadding expects `padding` to be an Array of two Arrays, each of which is an Array of two integers.");if(n==null&&(n=$s()),n!=="channelsLast"&&n!=="channelsFirst")throw new G(`Unknown data format: ${n}. Supported data formats are 'channelsLast' and 'channelsFirst.`);let s;return n==="channelsFirst"?s=[[0,0],[0,0],t[0],t[1]]:s=[[0,0],t[0],t[1],[0,0]],Gr(e,s)})}var A2=class extends Xe{constructor(e){e==null&&(e={});super(e);if(this.dataFormat=e.dataFormat==null?$s():e.dataFormat,e.padding==null)this.padding=[[1,1],[1,1]];else if(typeof e.padding=="number")this.padding=[[e.padding,e.padding],[e.padding,e.padding]];else{if(e.padding=e.padding,e.padding.length!==2)throw new G(`ZeroPadding2D expects padding to be a length-2 array, but received a length-${e.padding.length} array.`);let t,n;if(typeof e.padding[0]=="number")t=[e.padding[0],e.padding[0]],n=[e.padding[1],e.padding[1]];else{if(e.padding=e.padding,e.padding[0].length!==2)throw new G(`ZeroPadding2D expects height padding to be a length-2 array, but received a length-${e.padding[0].length} array.`);if(t=e.padding[0],e.padding[1].length!==2)throw new G(`ZeroPadding2D expects width padding to be a length-2 array, but received a length-${e.padding[1].length} array.`);n=e.padding[1]}this.padding=[t,n]}this.inputSpec=[new Pt({ndim:4})]}computeOutputShape(e){e=st(e);let t,n;return this.dataFormat==="channelsFirst"?(e[2]!=null&&e[2]>=0?t=e[2]+this.padding[0][0]+this.padding[0][1]:t=null,e[3]!=null&&e[3]>=0?n=e[3]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],e[1],t,n]):(e[1]!=null&&e[1]>=0?t=e[1]+this.padding[0][0]+this.padding[0][1]:t=null,e[2]!=null&&e[2]>=0?n=e[2]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],t,n,e[3]])}call(e,t){return H(()=>JP(ze(e),this.padding,this.dataFormat))}getConfig(){let e={padding:this.padding,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};A2.className="ZeroPadding2D";oe.registerClass(A2);function Vp(e,t,n,s,r,a){return H(()=>{$t(r),Xb(a),hs(s),n==null&&(n=[1,1]),s==null&&(s="valid"),r==null&&(r=$s()),a==null&&(a="max"),e=Mg(e,r);let o,i=s==="same"?"same":"valid";return a==="max"?o=Uh(e,t,n,i):o=Oh(e,t,n,i),r==="channelsFirst"&&(o=je(o,[0,3,1,2])),o})}function ov(e,t,n,s,r,a){return H(()=>{$t(r),Xb(a),hs(s),n==null&&(n=[1,1,1]),s==null&&(s="valid"),r==null&&(r=$s()),a==null&&(a="max"),e=ev(e,r);let o,i=s==="same"?"same":"valid";return a==="max"?o=IA(e,t,n,i):o=cA(e,t,n,i),r==="channelsFirst"&&(o=je(o,[0,4,1,2,3])),o})}var iv=class extends Xe{constructor(e){e.poolSize==null&&(e.poolSize=2);super(e);if(typeof e.poolSize=="number")this.poolSize=[e.poolSize];else if(Array.isArray(e.poolSize)&&e.poolSize.length===1&&typeof e.poolSize[0]=="number")this.poolSize=e.poolSize;else throw new G(`poolSize for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.poolSize)}`);if(Zt(this.poolSize,"poolSize"),e.strides==null)this.strides=this.poolSize;else if(typeof e.strides=="number")this.strides=[e.strides];else if(Array.isArray(e.strides)&&e.strides.length===1&&typeof e.strides[0]=="number")this.strides=e.strides;else throw new G(`strides for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.strides)}`);Zt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,hs(this.padding),this.inputSpec=[new Pt({ndim:3})]}computeOutputShape(e){e=st(e);let t=zs(e[1],this.poolSize[0],this.padding,this.strides[0]);return[e[0],t,e[2]]}call(e,t){return H(()=>{this.invokeCallHook(e,t),e=fc(ze(e),2);let n=this.poolingFunction(ze(e),[this.poolSize[0],1],[this.strides[0],1],this.padding,"channelsLast");return ot(n,[2])})}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides},t=super.getConfig();return Object.assign(e,t),e}},g2=class extends iv{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return $t(r),hs(s),Vp(e,t,n,s,r,"max")}};g2.className="MaxPooling1D";oe.registerClass(g2);var y2=class extends iv{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return $t(r),hs(s),Vp(e,t,n,s,r,"avg")}};y2.className="AveragePooling1D";oe.registerClass(y2);var lv=class extends Xe{constructor(e){e.poolSize==null&&(e.poolSize=[2,2]);super(e);if(this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==2)throw new G(`If the strides property of a 2D pooling layer is an Array, it is expected to have a length of 2, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides];Zt(this.poolSize,"poolSize"),Zt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,$t(this.dataFormat),hs(this.padding),this.inputSpec=[new Pt({ndim:4})]}computeOutputShape(e){e=st(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2];return t=zs(t,this.poolSize[0],this.padding,this.strides[0]),n=zs(n,this.poolSize[1],this.padding,this.strides[1]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n]:[e[0],t,n,e[3]]}call(e,t){return H(()=>(this.invokeCallHook(e,t),this.poolingFunction(ze(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},x2=class extends lv{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return $t(r),hs(s),Vp(e,t,n,s,r,"max")}};x2.className="MaxPooling2D";oe.registerClass(x2);var b2=class extends lv{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return $t(r),hs(s),Vp(e,t,n,s,r,"avg")}};b2.className="AveragePooling2D";oe.registerClass(b2);var uv=class extends Xe{constructor(e){e.poolSize==null&&(e.poolSize=[2,2,2]);super(e);if(this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==3)throw new G(`If the strides property of a 3D pooling layer is an Array, it is expected to have a length of 3, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides,e.strides];Zt(this.poolSize,"poolSize"),Zt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,$t(this.dataFormat),hs(this.padding),this.inputSpec=[new Pt({ndim:5})]}computeOutputShape(e){e=st(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],s=this.dataFormat==="channelsFirst"?e[4]:e[3];return t=zs(t,this.poolSize[0],this.padding,this.strides[0]),n=zs(n,this.poolSize[1],this.padding,this.strides[1]),s=zs(s,this.poolSize[2],this.padding,this.strides[2]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n,s]:[e[0],t,n,s,e[4]]}call(e,t){return H(()=>(this.invokeCallHook(e,t),this.poolingFunction(ze(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},v2=class extends uv{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return $t(r),hs(s),ov(e,t,n,s,r,"max")}};v2.className="MaxPooling3D";oe.registerClass(v2);var w2=class extends uv{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return $t(r),hs(s),ov(e,t,n,s,r,"avg")}};w2.className="AveragePooling3D";oe.registerClass(w2);var cv=class extends Xe{constructor(e){super(e);this.inputSpec=[new Pt({ndim:3})]}computeOutputShape(e){return[e[0],e[2]]}call(e,t){throw new Oe}},k2=class extends cv{constructor(e){super(e||{})}call(e,t){return H(()=>{let n=ze(e);return Et(n,1)})}};k2.className="GlobalAveragePooling1D";oe.registerClass(k2);var I2=class extends cv{constructor(e){super(e||{})}call(e,t){return H(()=>{let n=ze(e);return ls(n,1)})}};I2.className="GlobalMaxPooling1D";oe.registerClass(I2);var dv=class extends Xe{constructor(e){super(e);this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,$t(this.dataFormat),this.inputSpec=[new Pt({ndim:4})]}computeOutputShape(e){return e=e,this.dataFormat==="channelsLast"?[e[0],e[3]]:[e[0],e[1]]}call(e,t){throw new Oe}getConfig(){let e={dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},S2=class extends dv{call(e,t){return H(()=>{let n=ze(e);return this.dataFormat==="channelsLast"?Et(n,[1,2]):Et(n,[2,3])})}};S2.className="GlobalAveragePooling2D";oe.registerClass(S2);var C2=class extends dv{call(e,t){return H(()=>{let n=ze(e);return this.dataFormat==="channelsLast"?ls(n,[1,2]):ls(n,[2,3])})}};C2.className="GlobalMaxPooling2D";oe.registerClass(C2);var hv=class extends Xe{constructor(e){super(e);this.layer=e.layer}build(e){this.built=!0}get trainable(){return this.layer!=null?this.layer.trainable:!1}set trainable(e){this.layer!=null&&(this.layer.trainable=e)}get trainableWeights(){return this.layer.trainableWeights}get nonTrainableWeights(){return this.layer.nonTrainableWeights}get updates(){return this.layer._updates}get losses(){return this.layer.losses}getWeights(){return this.layer.getWeights()}setWeights(e){this.layer.setWeights(e)}getConfig(){let e={layer:{className:this.layer.getClassName(),config:this.layer.getConfig()}},t=super.getConfig();return Object.assign(e,t),e}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.layer!=null&&this.layer.setFastWeightInitDuringBuild(e)}static fromConfig(e,t,n={}){let s=t.layer,r=Ms(s,n);delete t.layer;let a={layer:r};return Object.assign(a,t),new e(a)}},T2=class extends hv{constructor(e){super(e);this.supportsMasking=!0}build(e){if(e=st(e),e.length<3)throw new G(`TimeDistributed layer expects an input shape >= 3D, but received input shape ${JSON.stringify(e)}`);this.inputSpec=[{shape:e}];let t=[e[0]].concat(e.slice(2));this.layer.built||(this.layer.build(t),this.layer.built=!0),super.build(e)}computeOutputShape(e){e=st(e);let t=[e[0]].concat(e.slice(2)),n=this.layer.computeOutputShape(t),s=e[1];return[n[0],s].concat(n.slice(1))}call(e,t){return H(()=>(e=ze(e),rv((a,o)=>[ze(this.layer.call(a,t)),[]],e,[],!1,null,null,!1,!0)[1]))}};T2.className="TimeDistributed";oe.registerClass(T2);function QP(e){_o(aO,"BidirectionalMergeMode",e)}var eM="concat",N2=class extends hv{constructor(e){super(e);let t=e.layer.getConfig(),n={};n.className=e.layer.getClassName(),n.config=t,this.forwardLayer=Ms(n),t.goBackwards=t.goBackwards!==!0;let s={};if(s.className=e.layer.getClassName(),s.config=t,this.backwardLayer=Ms(s),this.forwardLayer.name="forward_"+this.forwardLayer.name,this.backwardLayer.name="backward_"+this.backwardLayer.name,this.mergeMode=e.mergeMode===void 0?eM:e.mergeMode,QP(this.mergeMode),e.weights)throw new Oe("weights support is not implemented for Bidirectional layer yet.");this._stateful=e.layer.stateful,this.returnSequences=e.layer.returnSequences,this.returnState=e.layer.returnState,this.supportsMasking=!0,this._trainable=!0,this.inputSpec=e.layer.inputSpec,this.numConstants=null}get trainable(){return this._trainable}set trainable(e){this._trainable=e,this.forwardLayer!=null&&(this.forwardLayer.trainable=e),this.backwardLayer!=null&&(this.backwardLayer.trainable=e)}getWeights(){return this.forwardLayer.getWeights().concat(this.backwardLayer.getWeights())}setWeights(e){let t=e.length,n=Math.floor(t/2);this.forwardLayer.setWeights(e.slice(0,n)),this.backwardLayer.setWeights(e.slice(n))}computeOutputShape(e){let t=this.forwardLayer.computeOutputShape(e);Array.isArray(t)&&Array.isArray(t[0])||(t=[t]),t=t;let n,s,r;return this.returnState&&(r=t.slice(1)),n=t[0],n=n,this.mergeMode==="concat"?(n[n.length-1]*=2,s=[n]):this.mergeMode==null?s=[n,n.slice()]:s=[n],this.returnState?this.mergeMode==null?s.concat(r).concat(r.slice()):[n].concat(r).concat(r.slice()):En(s)}apply(e,t){let n=t==null?null:t.initialState,s=t==null?null:t.constants;t==null&&(t={});let r=sv(e,n,s,this.numConstants);if(e=r.inputs,n=r.initialState,s=r.constants,Array.isArray(e)&&(n=e.slice(1),e=e[0]),(n==null||n.length===0)&&s==null)return super.apply(e,t);let a=[],o=[];if(n!=null){let l=n.length;if(l%2>0)throw new G("When passing `initialState` to a Bidrectional RNN, the state should be an Array containing the states of the underlying RNNs.");t.initialState=n,a.push(...n);let u=n.map(c=>new Pt({shape:c.shape}));this.forwardLayer.stateSpec=u.slice(0,l/2),this.backwardLayer.stateSpec=u.slice(l/2),o.push(...u)}if(s!=null)throw new Oe("Support for constants in Bidirectional layers is not implemented yet.");let i=a[0]instanceof Ps;for(let l of a)if(l instanceof Ps!==i)throw new G("The initial state of a Bidirectional layer cannot be specified as a mix of symbolic and non-symbolic tensors");if(i){let l=[e].concat(a),u=this.inputSpec.concat(o),c=this.inputSpec;this.inputSpec=u;let d=super.apply(l,t);return this.inputSpec=c,d}else return super.apply(e,t)}call(e,t){return H(()=>{let n=t.initialState,s,r;if(n==null)s=this.forwardLayer.call(e,t),r=this.backwardLayer.call(e,t);else{let i=n.slice(0,n.length/2),l=n.slice(n.length/2);s=this.forwardLayer.call(e,Object.assign(t,{initialState:i})),r=this.backwardLayer.call(e,Object.assign(t,{initialState:l}))}let a;this.returnState&&(Array.isArray(s)&&(a=s.slice(1).concat(r.slice(1))),s=s[0],r=r[0]),this.returnSequences&&(r=cs(r,1));let o;return this.mergeMode==="concat"?o=ng([s,r]):this.mergeMode==="sum"?o=ae(s,r):this.mergeMode==="ave"?o=z(.5,ae(s,r)):this.mergeMode==="mul"?o=z(s,r):this.mergeMode==null&&(o=[s,r]),this.returnState?this.mergeMode==null?o.concat(a):[o].concat(a):o})}resetStates(e){this.forwardLayer.resetStates(),this.backwardLayer.resetStates()}build(e){$o(this.forwardLayer.name,()=>{this.forwardLayer.build(e)}),$o(this.backwardLayer.name,()=>{this.backwardLayer.build(e)}),this.built=!0}computeMask(e,t){Array.isArray(t)&&(t=t[0]);let n;if(this.returnSequences?this.mergeMode==null?n=[t,t]:n=t:this.mergeMode==null?n=[null,null]:n=null,this.returnState){let r=this.forwardLayer.states.map(a=>null);return Array.isArray(n)?n.concat(r).concat(r):[n].concat(r).concat(r)}else return n}get trainableWeights(){return this.forwardLayer.trainableWeights.concat(this.backwardLayer.trainableWeights)}get nonTrainableWeights(){return this.forwardLayer.nonTrainableWeights.concat(this.backwardLayer.nonTrainableWeights)}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.forwardLayer!=null&&this.forwardLayer.setFastWeightInitDuringBuild(e),this.backwardLayer!=null&&this.backwardLayer.setFastWeightInitDuringBuild(e)}getConfig(){let e={mergeMode:this.mergeMode},t=super.getConfig();return Object.assign(e,t),e}static fromConfig(e,t){let n=Ms(t.layer);if(delete t.layer,t.numConstants!=null)throw new Oe("Deserialization of a Bidirectional layer with numConstants present is not supported yet.");let s=t;return s.layer=n,new e(s)}};N2.className="Bidirectional";oe.registerClass(N2);function tM(e){return new Dl(e)}function nM(e){return new Dg(e)}function sM(e){return new _g(e)}function rM(e){return new $g(e)}function aM(e){return new Fg(e)}function oM(e){return new Pg(e)}function iM(e){return new Og(e)}function lM(e){return new Pp(e)}function uM(e){return new kc(e)}function cM(e){return new Lg(e)}function dM(e){return new Ic(e)}function hM(e){return new Bg(e)}function pM(e){return new Wg(e)}function fM(e){return new Vg(e)}function mM(e){return new Ug(e)}function AM(e){return new Hg(e)}function gM(e){return new Jg(e)}function yM(e){return new Zg(e)}function xM(e){return new Wp(e)}function bM(e){return new Kg(e)}function vM(e){return new Yg(e)}function wM(e){return new Qg(e)}function kM(e){return new e2(e)}function IM(e){return new t2(e)}function SM(e){return new s2(e)}function CM(e){return new r2(e)}function TM(e){return new o2(e)}function NM(e){return new u2(e)}function EM(e){return new i2(e)}function RM(e){return new l2(e)}function _M(e){return new a2(e)}function $M(e){return new c2(e)}function FM(e){return new f2(e)}function DM(e){return new m2(e)}function OM(e){return new A2(e)}function E2(e){return new y2(e)}function PM(e){return E2(e)}function MM(e){return E2(e)}function R2(e){return new b2(e)}function zM(e){return R2(e)}function LM(e){return R2(e)}function _2(e){return new w2(e)}function BM(e){return _2(e)}function WM(e){return _2(e)}function VM(e){return new k2(e)}function UM(e){return new S2(e)}function pv(e){return new I2(e)}function fv(e){return new C2(e)}function mv(e){return new g2(e)}function Av(e){return new x2(e)}function HM(e){return new v2(e)}function GM(e){return new jg(e)}function jM(e){return new zp(e)}function qM(e){return new qg(e)}function XM(e){return new Cc(e)}function KM(e){return new Gg(e)}function ZM(e){return new Mp(e)}function YM(e){return new Xg(e)}function JM(e){return new Bp(e)}function QM(e){return new sr(e)}function ez(e){return new Lp(e)}function tz(e){return new N2(e)}function nz(e){return new T2(e)}var sz=pv,rz=fv,az=mv,oz=Av;function iz(e){return new d2(e)}function lz(e){return new h2(e)}function uz(e){return new p2(e)}function cz(e){return new n2(e)}var gv={};Pe(gv,{MAPE:()=>vz,MSE:()=>Iz,binaryAccuracy:()=>dz,binaryCrossentropy:()=>hz,categoricalAccuracy:()=>fz,categoricalCrossentropy:()=>mz,cosineProximity:()=>yz,mape:()=>wz,meanAbsoluteError:()=>xz,meanAbsolutePercentageError:()=>bz,meanSquaredError:()=>kz,mse:()=>Sz,precision:()=>Az,recall:()=>gz,sparseCategoricalAccuracy:()=>pz});function dz(e,t){return gg(e,t)}function hz(e,t){return x3(e,t)}function pz(e,t){return b3(e,t)}function fz(e,t){return yg(e,t)}function mz(e,t){return xg(e,t)}function Az(e,t){return y3(e,t)}function gz(e,t){return eP(e,t)}function yz(e,t){return mg(e,t)}function xz(e,t){return Ep(e,t)}function bz(e,t){return Pl(e,t)}function vz(e,t){return Pl(e,t)}function wz(e,t){return Pl(e,t)}function kz(e,t){return Do(e,t)}function Iz(e,t){return Do(e,t)}function Sz(e,t){return Do(e,t)}var yv={};Pe(yv,{modelFromJSON:()=>DP});var xv={};Pe(xv,{l1:()=>Tz,l1l2:()=>Cz,l2:()=>Nz});function Cz(e){return new vc(e)}function Tz(e){return VP(e)}function Nz(e){return UP(e)}var bv=class extends Ol{constructor(){super(...arguments);this.model=null}setModel(e){if(!(e instanceof wr))throw new Error("model must be a LayersModel, not some other Container");this.model=e}};function Up(e,t){return e<t}function vv(e,t){return e>t}var wv=class extends bv{constructor(e){super();if(e==null&&(e={}),e.restoreBestWeights)throw new Oe("restoreBestWeights = True is not implemented in EarlyStopping yet.");this.monitor=e.monitor||"val_loss",this.minDelta=Math.abs(e.minDelta||0),this.patience=e.patience||0,this.verbose=e.verbose||0,this.mode=e.mode||"auto",this.baseline=e.baseline,["auto","min","max"].indexOf(this.mode)===-1&&(console.warn(`EarlyStopping mode '${this.mode}' is invalid. Falling back to mode 'auto'.`),this.mode="auto"),this.mode==="min"?this.monitorFunc=Up:this.mode==="max"?this.monitorFunc=vv:this.monitor.indexOf("acc")!==-1?this.monitorFunc=vv:this.monitorFunc=Up,this.monitorFunc===Up&&(this.minDelta*=-1)}async onTrainBegin(e){this.wait=0,this.stoppedEpoch=0,this.baseline!=null?this.best=this.baseline:this.best=this.monitorFunc===Up?1/0:-1/0}async onEpochEnd(e,t){await Yr(t);let n=this.getMonitorValue(t);n!=null&&(this.monitorFunc(n-this.minDelta,this.best)?(this.best=n,this.wait=0):(this.wait++,this.wait>=this.patience&&(this.stoppedEpoch=e,this.model.stopTraining=!0)))}async onTrainEnd(e){this.stoppedEpoch>0&&this.verbose&&console.log(`Epoch ${this.stoppedEpoch}: early stopping.`)}getMonitorValue(e){e==null&&(e={});let t=e[this.monitor];return t==null&&console.warn(`Metric for EarlyStopping ${this.monitor} is not available. Available metrics are: ${Object.keys(e)}`),t}};function Ez(e){return new wv(e)}var Rz={earlyStopping:Ez},Ls;(function(e){e[e.DT_INVALID=0]="DT_INVALID",e[e.DT_FLOAT=1]="DT_FLOAT",e[e.DT_DOUBLE=2]="DT_DOUBLE",e[e.DT_INT32=3]="DT_INT32",e[e.DT_UINT8=4]="DT_UINT8",e[e.DT_INT16=5]="DT_INT16",e[e.DT_INT8=6]="DT_INT8",e[e.DT_STRING=7]="DT_STRING",e[e.DT_COMPLEX64=8]="DT_COMPLEX64",e[e.DT_INT64=9]="DT_INT64",e[e.DT_BOOL=10]="DT_BOOL",e[e.DT_QINT8=11]="DT_QINT8",e[e.DT_QUINT8=12]="DT_QUINT8",e[e.DT_QINT32=13]="DT_QINT32",e[e.DT_BFLOAT16=14]="DT_BFLOAT16",e[e.DT_FLOAT_REF=101]="DT_FLOAT_REF",e[e.DT_DOUBLE_REF=102]="DT_DOUBLE_REF",e[e.DT_INT32_REF=103]="DT_INT32_REF",e[e.DT_UINT8_REF=104]="DT_UINT8_REF",e[e.DT_INT16_REF=105]="DT_INT16_REF",e[e.DT_INT8_REF=106]="DT_INT8_REF",e[e.DT_STRING_REF=107]="DT_STRING_REF",e[e.DT_COMPLEX64_REF=108]="DT_COMPLEX64_REF",e[e.DT_INT64_REF=109]="DT_INT64_REF",e[e.DT_BOOL_REF=110]="DT_BOOL_REF",e[e.DT_QINT8_REF=111]="DT_QINT8_REF",e[e.DT_QUINT8_REF=112]="DT_QUINT8_REF",e[e.DT_QINT32_REF=113]="DT_QINT32_REF",e[e.DT_BFLOAT16_REF=114]="DT_BFLOAT16_REF"})(Ls||(Ls={}));var kv;(function(e){let t;(function(n){n[n.LEGACY=0]="LEGACY",n[n.V1=1]="V1",n[n.V2=2]="V2"})(t=e.CheckpointFormatVersion||(e.CheckpointFormatVersion={}))})(kv||(kv={}));var $2={};function _z(e,t){let n={tfOpName:e,category:"custom",inputs:[],attrs:[],customExecutor:t};$2[e]=n}function Iv(e){return $2[e]}function $z(e){delete $2[e]}function S(e,t,n,s,r){let a=t.inputParams[e];if(a&&a.inputIndexStart!==void 0){let i=a.inputIndexStart,l=a.inputIndexEnd===0?void 0:a.inputIndexEnd===void 0?i+1:a.inputIndexEnd;if(a.type==="tensor")return xn(t.inputNames[a.inputIndexStart],n,s,r);if(a.type==="tensors")return t.inputNames.slice(i,l).map(h=>xn(h,n,s,r));let u=xn(t.inputNames.slice(i)[0],n,s,r),c=u.dataSync();return a.type==="number"?c[0]:I.toNestedArray(u.shape,c)}let o=t.attrParams[e];return o&&o.value}function xn(e,t,n,s){let[r,a]=Hn(e);if(s!=null){let i=s.getHashTableHandleByName(r);if(i!=null)return i}let o=n.currentContextIds.find(i=>!!t[Hp(r,i)]);return o!==void 0?t[Hp(r,o)][a]:void 0}function Fz(e,t,n){return t[Hp(e,n.currentContextId)]}function kr(e,t){let[n,s,r]=Hn(e);return[Hp(n,t&&t.currentContextId),s,r]}function Hp(e,t){return t?`${e}-${t}`:e}function Hn(e){let t=e.split(":");if(t.length===1)return[e,0,void 0];let n=t[0],s=t.length===3?t[1]:void 0,r=Number(t[t.length-1]);return[n,r,s]}function Gp(e,t,n){let s=S("pad",e,t,n);if(s==="explicit"){s=S("explicitPaddings",e,t,n);let r=[[0,0],[0,0],[0,0],[0,0]];for(let a=0;a<4;a++)r[a][0]=s[a*2],r[a][1]=s[a*2+1];return r}return s}function Ir(e){return e.kept?e:Ns(e)}var Sv={};Pe(Sv,{json:()=>Dz});var Dz=[{tfOpName:"Add",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddV2",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddN",category:"arithmetic",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"BiasAdd",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"Sub",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"RealDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Div",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"DivNoNan",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mul",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Maximum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Minimum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Pow",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SquaredDifference",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorMod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],Cv={};Pe(Cv,{json:()=>Oz});var Oz=[{tfOpName:"Abs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan2",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ceil",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ClipByValue",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"clipValueMin",type:"number"},{start:2,name:"clipValueMax",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Complex",category:"basic_math",inputs:[{start:0,name:"real",type:"tensor"},{start:1,name:"imag",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ComplexAbs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Elu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Exp",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Floor",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Imag",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Neg",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Real",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Prelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"alpha",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu6",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Selu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sigmoid",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Rsqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Square",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sign",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Round",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Expm1",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log1p",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Reciprocal",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Softplus",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Erf",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Prod",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axes",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LeakyRelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"alpha",name:"alpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"IsNan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],Tv={};Pe(Tv,{json:()=>Pz});var Pz=[{tfOpName:"EmptyTensorList",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"maxNumElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"LoopCond",category:"control",inputs:[{start:0,name:"pred",type:"tensor"}]},{tfOpName:"Switch",category:"control",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"pred",type:"tensor"}]},{tfOpName:"Merge",category:"control",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"Enter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"frame_name",name:"frameName",type:"string"},{tfName:"is_constant",name:"isConstant",type:"bool"}]},{tfOpName:"Exit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NextIteration",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayV3",category:"control",inputs:[{start:0,name:"size",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"dynamic_size",name:"dynamicSize",type:"bool"},{tfName:"clear_after_read",name:"clearAfterRead",type:"bool"},{tfName:"identical_element_shapes",name:"identicalElementShapes",type:"bool"},{tfName:"tensor_array_name",name:"name",type:"string"}]},{tfOpName:"TensorArrayWriteV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayReadV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayGatherV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"}]},{tfOpName:"TensorArrayScatterV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArrayConcatV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape_except0",name:"elementShapeExcept0",type:"shape",notSupported:!0}]},{tfOpName:"TensorArraySplitV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"tensor",type:"tensor"},{start:2,name:"lengths",type:"number[]"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArraySizeV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}]},{tfOpName:"TensorArrayCloseV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"}]},{tfOpName:"StatelessIf",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"If",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"StatelessWhile",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"While",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"TensorListScatter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListScatterV2",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"},{start:3,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGather",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListSetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListReserve",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListFromTensor",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListStack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"},{tfName:"num_elements",name:"numElements",type:"dtype"}]},{tfOpName:"TensorListSplit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"},{start:2,name:"lengths",type:"number[]"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcat",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPopBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPushBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]}],Nv={};Pe(Nv,{json:()=>Mz});var Mz=[{tfOpName:"AvgPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[],notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPoolWithArgmax",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"include_batch_in_index",name:"includeBatchInIndex",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AvgPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Conv1D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"stride",name:"stride",type:"number"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NWC"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"dilation",name:"dilation",type:"number",defaultValue:1}]},{tfOpName:"Conv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"useCudnnOnGpu",name:"useCudnnOnGpu",type:"bool"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"_FusedConv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"use_cudnn_on_gpu",name:"useCudnnOnGpu",type:"bool",defaultValue:!0},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"leakyrelu_alpha",name:"leakyreluAlpha",type:"number"}]},{tfOpName:"Conv2DBackpropInput",category:"convolution",inputs:[{start:2,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:0,name:"outputShape",type:"number[]"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]",notSupported:!0}]},{tfOpName:"DepthwiseConv2d",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"DepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"FusedDepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]}]},{tfOpName:"Conv3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"Dilation2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"rates",name:"dilations",type:"number[]"},{tfName:"padding",name:"pad",type:"string"}]}],Ev={};Pe(Ev,{json:()=>zz});var zz=[{tfOpName:"Fill",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"},{start:1,name:"value",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"LinSpace",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"num",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"OneHot",category:"creation",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"depth",type:"number"},{start:2,name:"onValue",type:"number",defaultValue:1},{start:3,name:"offValue",type:"number",defaultValue:0}],attrs:[{tfName:"axis",name:"axis",type:"number",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ones",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"OnesLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"RandomUniform",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"minval",name:"minval",type:"number",defaultValue:0},{tfName:"maxval",name:"maxval",type:"number",defaultValue:1},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Range",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"step",type:"number",defaultValue:0}],attrs:[{tfName:"Tidx",name:"dtype",type:"dtype"}]},{tfOpName:"TruncatedNormal",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"means",name:"mean",type:"number",defaultValue:0},{tfName:"stddev",name:"stdDev",type:"number",defaultValue:1},{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Zeros",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"ZerosLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"Multinomial",category:"creation",inputs:[{start:0,name:"logits",type:"tensor"},{start:1,name:"numSamples",type:"number"}],attrs:[{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number"},{tfName:"T",name:"dtype",type:"dtype"},{tfName:"output_dtype",name:"output_dtype",type:"dtype"}]}],Rv={};Pe(Rv,{json:()=>Lz});var Lz=[{tfOpName:"NonMaxSuppressionV2",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV3",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV4",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"T_threshold",name:"threshold",type:"dtype",notSupported:!0},{tfName:"pad_to_max_output_size",name:"padToMaxOutputSize",type:"bool"}]},{tfOpName:"NonMaxSuppressionV5",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"},{start:5,name:"softNmsSigma",type:"number"}]},{tfOpName:"Where",category:"dynamic",inputs:[{start:0,name:"condition",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ListDiff",category:"dynamic",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],_v={};Pe(_v,{json:()=>Bz});var Bz=[{tfOpName:"TopKV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"k",type:"number"}],attrs:[{tfName:"sorted",name:"sorted",type:"bool"}]},{tfOpName:"Unique",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"UniqueV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]}],$v={};Pe($v,{json:()=>Wz});var Wz=[{tfOpName:"PlaceholderWithDefault",category:"graph",inputs:[{start:0,name:"default",type:"tensor"}],attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Placeholder",category:"graph",attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Const",category:"graph"},{tfOpName:"Identity",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IdentityN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Snapshot",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Rank",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Size",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Shape",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"ShapeN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Print",category:"graph",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"data",type:"tensors"}],attrs:[{tfName:"message",name:"message",type:"string"},{tfName:"first_n",name:"firstN",type:"number",notSupported:!0},{tfName:"summarize",name:"summarize",type:"number",defaultValue:3}]},{tfOpName:"NoOp",category:"graph",inputs:[]},{tfOpName:"StopGradient",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"FakeQuantWithMinMaxVars",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"min",name:"min",type:"number"},{tfName:"max",name:"max",type:"number"}]}],Fv={};Pe(Fv,{json:()=>Vz});var Vz=[{tfOpName:"HashTable",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"HashTableV2",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"LookupTableImport",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableImportV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFind",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFindV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableSize",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]},{tfOpName:"LookupTableSizeV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]}],Dv={};Pe(Dv,{json:()=>Uz});var Uz=[{tfOpName:"ResizeBilinear",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ResizeNearestNeighbor",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"CropAndResize",category:"image",inputs:[{start:0,name:"image",type:"tensor"},{start:1,name:"boxes",type:"tensor"},{start:2,name:"boxInd",type:"tensor"},{start:3,name:"cropSize",type:"number[]"}],attrs:[{tfName:"method",name:"method",type:"string"},{tfName:"extrapolation_value",name:"extrapolationValue",type:"number"}]}],Ov={};Pe(Ov,{json:()=>Hz});var Hz=[{tfOpName:"Equal",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NotEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Greater",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"GreaterEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Less",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LessEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalAnd",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalNot",category:"logical",inputs:[{start:0,name:"a",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalOr",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Select",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SelectV2",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],Pv={};Pe(Pv,{json:()=>Gz});var Gz=[{tfOpName:"_FusedMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMulV2",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Transpose",category:"matrices",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"perm",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Einsum",category:"matrices",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"equation",name:"equation",type:"string"},{tfName:"N",name:"n",type:"number",defaultValue:2},{tfName:"T",name:"dtype",type:"dtype"}]}],Mv={};Pe(Mv,{json:()=>jz});var jz=[{tfOpName:"FusedBatchNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV2",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV3",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"LRN",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"depth_radius",name:"radius",type:"number",defaultValue:5},{tfName:"bias",name:"bias",type:"number",defaultValue:1},{tfName:"alpha",name:"alpha",type:"number",defaultValue:1},{tfName:"beta",name:"beta",type:"number",defaultValue:.5}]},{tfOpName:"Softmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"LogSoftmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"SparseToDense",category:"normalization",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!0,notSupported:!0}]}],zv={};Pe(zv,{json:()=>qz});var qz=[{tfOpName:"Bincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}]},{tfOpName:"DenseBincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}],attrs:[{tfName:"binary_output",name:"binaryOutput",type:"bool"}]},{tfOpName:"Max",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Mean",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Min",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Sum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"All",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Any",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"ArgMax",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"ArgMin",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"Prod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Cumsum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]}],Lv={};Pe(Lv,{json:()=>Xz});var Xz=[{tfOpName:"ConcatV2",category:"slice_join",inputs:[{start:0,end:-1,name:"tensors",type:"tensors"},{start:-1,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"Concat",category:"slice_join",inputs:[{start:1,end:0,name:"tensors",type:"tensors"},{start:0,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"GatherV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"axis",type:"number",defaultValue:0}],attrs:[{tfName:"batch_dims",name:"batchDims",type:"number",defaultValue:0}]},{tfOpName:"Gather",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",notSupported:!0}]},{tfOpName:"Reverse",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"dims",type:"bool[]"}]},{tfOpName:"ReverseV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}]},{tfOpName:"Slice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"size",type:"number[]"}]},{tfOpName:"StridedSlice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"end",type:"number[]"},{start:3,name:"strides",type:"number[]"}],attrs:[{tfName:"begin_mask",name:"beginMask",type:"number",defaultValue:0},{tfName:"end_mask",name:"endMask",type:"number",defaultValue:0},{tfName:"new_axis_mask",name:"newAxisMask",type:"number",defaultValue:0},{tfName:"ellipsis_mask",name:"ellipsisMask",type:"number",defaultValue:0},{tfName:"shrink_axis_mask",name:"shrinkAxisMask",type:"number",defaultValue:0}]},{tfOpName:"Pack",category:"slice_join",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0}]},{tfOpName:"Unpack",category:"slice_join",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0},{tfName:"num",name:"num",type:"number",defaultValue:0,notSupported:!0}]},{tfOpName:"Tile",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"reps",type:"number[]"}]},{tfOpName:"Split",category:"slice_join",inputs:[{start:0,name:"axis",type:"number",defaultValue:0},{start:1,name:"x",type:"tensor"}],attrs:[{tfName:"num_split",name:"numOrSizeSplits",type:"number",defaultValue:1}]},{tfOpName:"SplitV",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"numOrSizeSplits",type:"number[]"},{start:2,name:"axis",type:"number",defaultValue:0}]},{tfOpName:"ScatterNd",category:"slice_join",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"shape",type:"number[]"}]},{tfOpName:"GatherNd",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}]},{tfOpName:"SparseToDense",category:"slice_join",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!1,notSupported:!0}]}],Bv={};Pe(Bv,{json:()=>Kz});var Kz=[{tfOpName:"SparseFillEmptyRows",category:"sparse",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"denseShape",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}]},{tfOpName:"SparseReshape",category:"sparse",inputs:[{start:0,name:"inputIndices",type:"tensor"},{start:1,name:"inputShape",type:"tensor"},{start:2,name:"newShape",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SparseSegmentMean",category:"sparse",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"segmentIds",type:"tensor"}]},{tfOpName:"SparseSegmentSum",category:"sparse",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"segmentIds",type:"tensor"}]}],Wv={};Pe(Wv,{json:()=>Zz});var Zz=[{tfOpName:"FFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"RFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]},{tfOpName:"IRFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]}],Vv={};Pe(Vv,{json:()=>Yz});var Yz=[{tfOpName:"StringNGrams",category:"string",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"dataSplits",type:"tensor"}],attrs:[{tfName:"separator",name:"separator",type:"string"},{tfName:"ngram_widths",name:"nGramWidths",type:"number[]"},{tfName:"left_pad",name:"leftPad",type:"string"},{tfName:"right_pad",name:"rightPad",type:"string"},{tfName:"pad_width",name:"padWidth",type:"number"},{tfName:"preserve_short_sequences",name:"preserveShortSequences",type:"bool"}],outputs:["ngrams","ngrams_splits"]},{tfOpName:"StringSplit",category:"string",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"delimiter",type:"tensor"}],attrs:[{tfName:"skip_empty",name:"skipEmpty",type:"bool"}],outputs:["indices","values","shape"]},{tfOpName:"StringToHashBucketFast",category:"string",inputs:[{start:0,name:"input",type:"tensor"}],attrs:[{tfName:"num_buckets",name:"numBuckets",type:"number"}]}],Uv={};Pe(Uv,{json:()=>Jz});var Jz=[{tfOpName:"Cast",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"SrcT",name:"sdtype",type:"dtype",notSupported:!0},{tfName:"DstT",name:"dtype",type:"dtype"}]},{tfOpName:"ExpandDims",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"MirrorPad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"mode",name:"mode",type:"string"}]},{tfOpName:"Pad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"constant_value",name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"PadV2",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"},{start:2,name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"Reshape",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}]},{tfOpName:"Squeeze",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"axis",tfDeprecatedName:"squeeze_dims",name:"axis",type:"number[]"}]},{tfOpName:"SpaceToBatchND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"paddings",type:"number[]"}]},{tfOpName:"BatchToSpaceND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"crops",type:"number[]"}]},{tfOpName:"DepthToSpace",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"block_size",name:"blockSize",type:"number"},{tfName:"data_format",name:"dataFormat",type:"string"}]},{tfOpName:"BroadcastTo",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}],attrs:[]}],Hv=class{static get Instance(){return this._instance||(this._instance=new this)}constructor(){let e=[Sv,Cv,Tv,Nv,Ev,Rv,_v,$v,Fv,Dv,Ov,Pv,Mv,zv,Lv,Bv,Wv,Vv,Uv],t=[].concat(...e.map(n=>n.json));this.opMappers=t.reduce((n,s)=>(n[s.tfOpName]=s,n),{})}transformGraph(e,t={}){let n=e.node,s=[],r=[],a=[],o=n.reduce((f,m)=>(f[m.name]=this.mapNode(m),m.op.startsWith("Placeholder")?s.push(f[m.name]):m.op==="Const"?r.push(f[m.name]):(m.input==null||m.input.length===0)&&a.push(f[m.name]),f),{}),i=[],l=[],u={},c={};t!=null&&(u=this.mapSignatureEntries(t.inputs),c=this.mapSignatureEntries(t.outputs));let d=Object.keys(o);d.forEach(f=>{let m=o[f];m.inputNames.forEach((A,g)=>{let[y,,x]=kr(A),b=o[y];if(b.outputs!=null){let v=b.outputs.indexOf(x);if(v!==-1){let k=`${y}:${v}`;m.inputNames[g]=k}}m.inputs.push(b),b.children.push(m)})}),Object.keys(c).length===0?d.forEach(f=>{let m=o[f];m.children.length===0&&l.push(m)}):Object.keys(c).forEach(f=>{let[m]=kr(f),A=o[m];A!=null&&(A.signatureKey=c[f],l.push(A))}),Object.keys(u).length>0?Object.keys(u).forEach(f=>{let[m]=kr(f),A=o[m];A&&(A.signatureKey=u[f],i.push(A))}):i=s;let h={};e.library!=null&&e.library.function!=null&&(h=e.library.function.reduce((f,m)=>(f[m.signature.name]=this.mapFunction(m),f),{}));let p={nodes:o,inputs:i,outputs:l,weights:r,placeholders:s,signature:t,functions:h};return a.length>0&&(p.initNodes=a),p}mapSignatureEntries(e){return Object.keys(e||{}).reduce((t,n)=>(t[e[n].name]=n,t),{})}mapNode(e){let t=Iv(e.op)||this.opMappers[e.op]||{};e.attr==null&&(e.attr={});let n={name:e.name,op:e.op,category:t.category,inputNames:(e.input||[]).map(s=>s.startsWith("^")?s.substr(1):s),inputs:[],children:[],inputParams:{},attrParams:{},rawAttrs:e.attr,outputs:t.outputs};return t.inputs!=null&&(n.inputParams=t.inputs.reduce((s,r)=>(s[r.name]={type:r.type,inputIndexStart:r.start,inputIndexEnd:r.end},s),{})),t.attrs!=null&&(n.attrParams=t.attrs.reduce((s,r)=>{let a=r.type,o;switch(r.type){case"string":o=F2(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=F2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"string[]":o=W2(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=W2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"number":o=O2(e.attr,r.tfName,r.defaultValue||0),o===void 0&&!!r.tfDeprecatedName&&(o=O2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"number[]":o=B2(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=B2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"bool":o=D2(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=D2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"bool[]":o=U2(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=U2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"shape":o=L2(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=L2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"shape[]":o=V2(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=V2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"dtype":o=M2(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=M2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"dtype[]":o=z2(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=z2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"func":o=jv(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=jv(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"tensor":case"tensors":break;default:throw new Error(`Unsupported param type: ${r.type} for op: ${e.op}`)}return s[r.name]={value:o,type:a},s},{})),n}mapFunction(e){let t=e.nodeDef,n=[],s=[],r={};t!=null&&(r=t.reduce((c,d)=>(c[d.name]=this.mapNode(d),d.op==="Const"&&s.push(c[d.name]),c),{}));let a=[],o=[];e.signature.inputArg.forEach(c=>{let[d]=kr(c.name),h={name:d,op:"Placeholder",inputs:[],inputNames:[],category:"graph",inputParams:{},attrParams:{dtype:{value:P2(c.type),type:"dtype"}},children:[]};h.signatureKey=c.name,a.push(h),r[d]=h}),Object.keys(r).forEach(c=>{let d=r[c];d.inputNames.forEach((h,p)=>{let[f,,m]=kr(h),A=r[f];if(A.outputs!=null){let g=A.outputs.indexOf(m);if(g!==-1){let y=`${f}:${g}`;d.inputNames[p]=y}}d.inputs.push(A),A.children.push(d)})});let l=e.ret;e.signature.outputArg.forEach(c=>{let[d,h]=kr(l[c.name]),p=r[d];p!=null&&(p.defaultOutput=h,o.push(p))});let u=this.mapArgsToSignature(e);return{nodes:r,inputs:a,outputs:o,weights:s,placeholders:n,signature:u}}mapArgsToSignature(e){return{methodName:e.signature.name,inputs:e.signature.inputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n),t),{}),outputs:e.signature.outputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n,e.ret),t),{})}}mapArgToTensorInfo(e,t){let n=e.name;return t!=null&&(n=t[n]),{name:n,dtype:e.type}}};function Qz(e){let t=ee().global;if(typeof t.atob!="undefined")return t.atob(e);if(typeof Buffer!="undefined")return new Buffer(e,"base64").toString();throw new Error("Unable to decode base64 in this environment. Missing built-in atob() or Buffer()")}function Gv(e,t){let n=Array.isArray(e)?String.fromCharCode.apply(null,e):Qz(e);return t?n:n.toLowerCase()}function F2(e,t,n,s=!1){let r=e[t];return r!=null?Gv(r.s,s):n}function D2(e,t,n){let s=e[t];return s?s.b:n}function O2(e,t,n){let s=e[t]||{},r=s.i!=null?s.i:s.f!=null?s.f:n;return typeof r=="number"?r:parseInt(r,10)}function P2(e){switch(typeof e=="string"&&(e=Ls[e]),e){case Ls.DT_FLOAT:return"float32";case Ls.DT_INT32:case Ls.DT_INT64:case Ls.DT_INT8:case Ls.DT_UINT8:return"int32";case Ls.DT_BOOL:return"bool";case Ls.DT_DOUBLE:return"float32";case Ls.DT_STRING:return"string";default:return null}}function jv(e,t,n){let s=e[t];return s&&s.func?s.func.name:n}function M2(e,t,n){let s=e[t];return s&&s.type?P2(s.type):n}function z2(e,t,n){let s=e[t];return s&&s.list&&s.list.type?s.list.type.map(r=>P2(r)):n}function qv(e){if(!e.unknownRank)return e.dim!=null?e.dim.map(t=>typeof t.size=="number"?t.size:parseInt(t.size,10)):[]}function L2(e,t,n){let s=e[t];return s&&s.shape?qv(s.shape):n}function B2(e,t,n){let s=e[t];return s?((s.list.f&&s.list.f.length?s.list.f:s.list.i)||[]).map(r=>typeof r=="number"?r:parseInt(r,10)):n}function W2(e,t,n,s=!1){let r=e[t];return r&&r.list&&r.list.s?r.list.s.map(a=>Gv(a,s)):n}function V2(e,t,n){let s=e[t];return s&&s.list&&s.list.shape?s.list.shape.map(r=>qv(r)):n}function U2(e,t,n){let s=e[t];return s&&s.list&&s.list.b?s.list.b:n}var eL=class{constructor(e,t,n){this.node=e,this.tensorMap=t,this.context=n,this.inputs=[],this.attrs={},this.inputs=e.inputNames.map(s=>this.getInput(s)),e.rawAttrs!=null&&(this.attrs=Object.keys(e.rawAttrs).reduce((s,r)=>(s[r]=this.getAttr(r),s),{}))}getInput(e){return xn(e,this.tensorMap,this.context)}getAttr(e,t){let n=this.node.rawAttrs[e];if(n.tensor!=null)return xn(e,this.tensorMap,this.context);if(n.i!=null||n.f!=null)return O2(this.node.rawAttrs,e,t);if(n.s!=null)return F2(this.node.rawAttrs,e,t);if(n.b!=null)return D2(this.node.rawAttrs,e,t);if(n.shape!=null)return L2(this.node.rawAttrs,e,t);if(n.type!=null)return M2(this.node.rawAttrs,e,t);if(n.list!=null){if(n.list.i!=null||n.list.f!=null)return B2(this.node.rawAttrs,e,t);if(n.list.s!=null)return W2(this.node.rawAttrs,e,t);if(n.list.shape!=null)return V2(this.node.rawAttrs,e,t);if(n.list.b!=null)return U2(this.node.rawAttrs,e,t);if(n.list.type!=null)return z2(this.node.rawAttrs,e,t)}return t}},tL=(e,t,n)=>{switch(e.op){case"BiasAdd":case"AddV2":case"Add":return[ae(S("a",e,t,n),S("b",e,t,n))];case"AddN":return[$h(S("tensors",e,t,n))];case"FloorMod":case"Mod":return[Qx(S("a",e,t,n),S("b",e,t,n))];case"Mul":return[z(S("a",e,t,n),S("b",e,t,n))];case"RealDiv":case"Div":return[de(S("a",e,t,n),S("b",e,t,n))];case"DivNoNan":return[Lx(S("a",e,t,n),S("b",e,t,n))];case"FloorDiv":return[oA(S("a",e,t,n),S("b",e,t,n))];case"Sub":return[Ae(S("a",e,t,n),S("b",e,t,n))];case"Minimum":return[rc(S("a",e,t,n),S("b",e,t,n))];case"Maximum":return[gr(S("a",e,t,n),S("b",e,t,n))];case"Pow":return[jr(S("a",e,t,n),S("b",e,t,n))];case"SquaredDifference":return[PA(S("a",e,t,n),S("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},nL=(e,t,n)=>{switch(e.op){case"Abs":case"ComplexAbs":return[Wt(S("x",e,t,n))];case"Acos":return[Ax(S("x",e,t,n))];case"Acosh":return[gx(S("x",e,t,n))];case"Asin":return[xx(S("x",e,t,n))];case"Asinh":return[bx(S("x",e,t,n))];case"Atan":return[vx(S("x",e,t,n))];case"Atan2":return[wx(S("x",e,t,n),S("y",e,t,n))];case"Atanh":return[kx(S("x",e,t,n))];case"Ceil":return[Rx(S("x",e,t,n))];case"Complex":return[Lr(S("real",e,t,n),S("imag",e,t,n))];case"Cos":return[Mh(S("x",e,t,n))];case"Cosh":return[AA(S("x",e,t,n))];case"Elu":return[nc(S("x",e,t,n))];case"Erf":return[Wx(S("x",e,t,n))];case"Exp":return[os(S("x",e,t,n))];case"Expm1":return[Vx(S("x",e,t,n))];case"Floor":return[sc(S("x",e,t,n))];case"Log":return[is(S("x",e,t,n))];case"Log1p":return[Bh(S("x",e,t,n))];case"Imag":return[zh(S("x",e,t,n))];case"Neg":return[St(S("x",e,t,n))];case"Reciprocal":return[nb(S("x",e,t,n))];case"Real":return[ac(S("x",e,t,n))];case"Relu":return[Ys(S("x",e,t,n))];case"Round":return[EA(S("x",e,t,n))];case"Selu":return[_A(S("x",e,t,n))];case"Sigmoid":return[Bn(S("x",e,t,n))];case"Sin":return[$A(S("x",e,t,n))];case"Sign":return[ab(S("x",e,t,n))];case"Sinh":return[FA(S("x",e,t,n))];case"Softplus":return[Tl(S("x",e,t,n))];case"Sqrt":return[ln(S("x",e,t,n))];case"Square":return[lt(S("x",e,t,n))];case"Tanh":return[wl(S("x",e,t,n))];case"Tan":return[ib(S("x",e,t,n))];case"ClipByValue":return[Wn(S("x",e,t,n),S("clipValueMin",e,t,n),S("clipValueMax",e,t,n))];case"Relu6":return[NA(S("x",e,t,n))];case"Rsqrt":return[RA(xn(e.inputNames[0],t,n))];case"Prod":return[SA(S("x",e,t,n),S("axes",e,t,n))];case"LeakyRelu":return[Lh(S("x",e,t,n),S("alpha",e,t,n))];case"Prelu":return[qh(S("x",e,t,n),S("alpha",e,t,n))];case"IsNan":return[Ux(xn(e.inputNames[0],t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function Is(e,t,n=""){if(!(typeof e=="number"||typeof t=="number")){I.assert(e.length===t.length,()=>n+` Shapes ${e} and ${t} must match`);for(let s=0;s<e.length;s++){let r=e[s],a=t[s];I.assert(r<0||a<0||r===a,()=>n+` Shapes ${e} and ${t} must match`)}}}function Xv(e){return!(typeof e=="number"||e.some(t=>t<0))}function Ec(e,t,n){let s=H2(e,n),r=!Xv(s);if(r&&t.length===0)throw new Error(`Tried to calculate elements of an empty list with non-fully-defined elementShape: ${s}`);if(r&&t.forEach(a=>{s=H2(a.shape,s)}),!Xv(s))throw new Error(`Non-fully-defined elementShape: ${s}`);return s}function H2(e,t){if(typeof e=="number")return t;if(typeof t=="number")return e;if(e.length!==t.length)throw new Error(`Incompatible ranks during merge: ${e} vs. ${t}`);let n=[];for(let s=0;s<e.length;++s){let r=e[s],a=t[s];if(r>=0&&a>=0&&r!==a)throw new Error(`Incompatible shape during merge: ${e} vs. ${t}`);n[s]=r>=0?r:a}return n}var sL=class{constructor(e,t,n,s,r,a,o){this.name=e,this.dtype=t,this.maxSize=n,this.elementShape=s,this.identicalElementShapes=r,this.dynamicSize=a,this.clearAfterRead=o,this.tensors=[],this.closed_=!1,this.idTensor=Ie(0),Kt(this.idTensor)}get id(){return this.idTensor.id}get closed(){return this.closed_}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.tensor.id))&&t.tensor.dispose()}),this.tensors=[],this.closed_=!0,this.idTensor.dispose()}size(){return this.tensors.length}read(e){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||e>=this.size())throw new Error(`Tried to read from index ${e}, but array size is: ${this.size()}`);let t=this.tensors[e];if(t.cleared)throw new Error(`TensorArray ${this.name}: Could not read index ${e} twice because it was cleared after a previous read (perhaps try setting clear_after_read = false?).`);return this.clearAfterRead&&(t.cleared=!0),t.read=!0,t.tensor}readMany(e){return e.map(t=>this.read(t))}write(e,t){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||!this.dynamicSize&&e>=this.maxSize)throw new Error(`Tried to write to index ${e}, but array is not resizeable and size is: ${this.maxSize}`);let n=this.tensors[e]||{};if(t.dtype!==this.dtype)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e},
|
|
because the value dtype is ${t.dtype}, but TensorArray dtype is ${this.dtype}.`);if(this.size()===0&&(this.elementShape==null||this.elementShape.length===0)&&(this.elementShape=t.shape),Is(this.elementShape,t.shape,`TensorArray ${this.name}: Could not write to TensorArray index ${e}.`),n.read)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been read.`);if(n.written)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been written.`);n.tensor=t,Kt(t),n.written=!0,this.tensors[e]=n}writeMany(e,t){if(e.length!==t.length)throw new Error(`TensorArray ${this.name}: could not write multiple tensors,because the index size: ${e.length} is not the same as tensors size: ${t.length}.`);e.forEach((n,s)=>this.write(n,t[s]))}gather(e,t){if(!!t&&t!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but gather requested dtype ${t}`);if(e)e=e.slice(0,this.size());else{e=[];for(let s=0;s<this.size();s++)e.push(s)}if(e.length===0)return on([],[0].concat(this.elementShape));let n=this.readMany(e);return Is(this.elementShape,n[0].shape,"TensorArray shape mismatch: "),Nn(n,0)}concat(e){if(!!e&&e!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but concat requested dtype ${e}`);if(this.size()===0)return on([],[0].concat(this.elementShape));let t=[];for(let s=0;s<this.size();s++)t.push(s);let n=this.readMany(t);return Is(this.elementShape,n[0].shape,`TensorArray shape mismatch: tensor array shape (${this.elementShape}) vs first tensor shape (${n[0].shape})`),ht(n,0)}scatter(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);if(e.length!==t.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${e.length} vs. ${t.shape[0]}`);let n=Math.max(...e);if(!this.dynamicSize&&n>=this.maxSize)throw new Error(`Max index must be < array size (${n} vs. ${this.maxSize})`);this.writeMany(e,ds(t,0))}split(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);let n=0,s=e.map(i=>(n+=i,n));if(n!==t.shape[0])throw new Error(`Expected sum of lengths to be equal to
|
|
tensor.shape[0], but sum of lengths is
|
|
${n}, and tensor's shape is: ${t.shape}`);if(!this.dynamicSize&&e.length!==this.maxSize)throw new Error(`TensorArray's size is not equal to the size of lengths (${this.maxSize} vs. ${e.length}), and the TensorArray is not marked as dynamically resizeable`);let r=n===0?0:t.size/n,a=[];H(()=>{t=U(t,[1,n,r]);for(let i=0;i<e.length;++i){let l=i===0?0:s[i-1],u=[0,l,0],c=[1,e[i],r];a[i]=U(Re(t,u,c),this.elementShape)}return a});let o=[];for(let i=0;i<e.length;i++)o[i]=i;this.writeMany(o,a)}},Rc=class{constructor(e,t,n,s=-1){this.tensors=e,this.elementShape=t,this.elementDtype=n,e!=null&&e.forEach(r=>{if(n!==r.dtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${r.dtype}`);Is(t,r.shape,"TensorList shape mismatch: "),Kt(r)}),this.idTensor=Ie(0),this.maxNumElements=s,Kt(this.idTensor)}get id(){return this.idTensor.id}copy(){return new Rc([...this.tensors],this.elementShape,this.elementDtype)}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.id))&&t.dispose()}),this.tensors.length=0,this.idTensor.dispose()}size(){return this.tensors.length}stack(e,t,n=-1){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(n!==-1&&this.tensors.length!==n)throw new Error(`Operation expected a list with ${n} elements but got a list with ${this.tensors.length} elements.`);Is(e,this.elementShape,"TensorList shape mismatch: ");let s=Ec(this.elementShape,this.tensors,e);return H(()=>{let r=this.tensors.map(a=>U(a,s));return Nn(r,0)})}popBack(e,t){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(this.size()===0)throw new Error("Trying to pop from an empty list.");let n=Ec(this.elementShape,this.tensors,e),s=this.tensors.pop();return Is(s.shape,e,"TensorList shape mismatch: "),U(s,n)}pushBack(e){if(e.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${this.elementDtype}`);if(Is(e.shape,this.elementShape,"TensorList shape mismatch: "),this.maxNumElements===this.size())throw new Error("Trying to push element into a full list.");Kt(e),this.tensors.push(e)}resize(e){if(e<0)throw new Error(`TensorListResize expects size to be non-negative. Got: ${e}`);if(this.maxNumElements!==-1&&e>this.maxNumElements)throw new Error(`TensorListResize input size ${e} is greater maxNumElement ${this.maxNumElements}.`);this.tensors.length=e}getItem(e,t,n){if(n!==this.elementDtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${this.elementDtype}`);if(e<0||e>this.tensors.length)throw new Error(`Trying to access element ${e} in a list with ${this.tensors.length} elements.`);if(this.tensors[e]==null)throw new Error(`element at index ${e} is null.`);Is(this.tensors[e].shape,t,"TensorList shape mismatch: ");let s=Ec(this.elementShape,this.tensors,t);return U(this.tensors[e],s)}setItem(e,t){if(t.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t.dtype}, but list elements ${this.elementDtype}`);if(e<0||this.maxNumElements!==-1&&e>=this.maxNumElements)throw new Error(`Trying to set element ${e} in a list with max ${this.maxNumElements} elements.`);Is(this.elementShape,t.shape,"TensorList shape mismatch: "),Kt(t),this.tensors[e]=t}gather(e,t,n){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);Is(this.elementShape,n,"TensorList shape mismatch: "),e=e.slice(0,this.size());let s=Ec(this.elementShape,this.tensors,n);return e.length===0?on([],[0].concat(s)):H(()=>{let r=e.map(a=>U(this.tensors[a],s));return Nn(r,0)})}concat(e,t){if(!!e&&e!==this.elementDtype)throw new Error(`TensorList dtype is ${this.elementDtype} but concat requested dtype ${e}`);Is(this.elementShape,t,"TensorList shape mismatch: ");let n=Ec(this.elementShape,this.tensors,t);return this.size()===0?on([],[0].concat(n)):H(()=>{let s=this.tensors.map(r=>U(r,n));return ht(s,0)})}};function rL(e,t,n){let s=e.dtype;if(e.shape.length<1)throw new Error(`Tensor must be at least a vector, but saw shape: ${e.shape}`);if(e.dtype!==n)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${n}`);let r=e.shape.slice(1);Is(r,t,"TensorList shape mismatch: ");let a=ds(e);return new Rc(a,t,s)}function aL(e,t,n){return new Rc([],e,t,n)}function oL(e,t,n,s){if(t.length!==e.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${t.length} vs. ${e.shape[0]}`);let r=Math.max(...t);if(s!=null&&s!==-1&&r>=s)throw new Error(`Max index must be < array size (${r} vs. ${s})`);let a=new Rc([],n,e.dtype,s),o=ds(e,0);return t.forEach((i,l)=>{a.setItem(i,o[l])}),a}function iL(e,t,n){let s=0,r=t.map(c=>(s+=c,s));if(s!==e.shape[0])throw new Error(`Expected sum of lengths to be equal to
|
|
tensor.shape[0], but sum of lengths is
|
|
${s}, and tensor's shape is: ${e.shape}`);let a=e.shape.slice(1),o=H2(a,n),i=s===0?0:e.size/s,l=H(()=>{let c=[];e=U(e,[1,s,i]);for(let d=0;d<t.length;++d){let h=d===0?0:r[d-1],p=[0,h,0],f=[1,t[d],i];c[d]=U(Re(e,p,f),o)}return e.dispose(),c}),u=new Rc([],n,e.dtype,t.length);for(let c=0;c<l.length;c++)u.setItem(c,l[c]);return u}var lL=async(e,t,n)=>{switch(e.op){case"If":case"StatelessIf":{let s=S("thenBranch",e,t,n),r=S("elseBranch",e,t,n),a=S("cond",e,t,n),o=S("args",e,t,n);return(await a.data())[0]?n.functionMap[s].executeFunctionAsync(o,n.tensorArrayMap,n.tensorListMap):n.functionMap[r].executeFunctionAsync(o,n.tensorArrayMap,n.tensorListMap)}case"While":case"StatelessWhile":{let s=S("body",e,t,n),r=S("cond",e,t,n),a=S("args",e,t,n),o=await n.functionMap[r].executeFunctionAsync(a,n.tensorArrayMap,n.tensorListMap),i=a.map(c=>c.id),l=await o[0].data();o.forEach(c=>{!c.kept&&i.indexOf(c.id)===-1&&c.dispose()});let u=a;for(;l[0];){let c=u;u=await n.functionMap[s].executeFunctionAsync(u,n.tensorArrayMap,n.tensorListMap);let d=u.map(p=>p.id);c.forEach(p=>{!p.kept&&i.indexOf(p.id)===-1&&d.indexOf(p.id)===-1&&p.dispose()});let h=await n.functionMap[r].executeFunctionAsync(u,n.tensorArrayMap,n.tensorListMap);l=await h[0].data(),h.forEach(p=>{!p.kept&&i.indexOf(p.id)===-1&&d.indexOf(p.id)===-1&&p.dispose()})}return u}case"LoopCond":{let s=S("pred",e,t,n);return[Ir(s)]}case"Switch":{let s=S("pred",e,t,n),r=S("data",e,t,n);return r.kept||(r=Ir(r)),(await s.data())[0]?[void 0,r]:[r,void 0]}case"Merge":{let s=e.inputNames.find(r=>xn(r,t,n)!==void 0);if(s){let r=xn(s,t,n);return[Ir(r)]}return}case"Enter":{let s=S("frameName",e,t,n),r=S("tensor",e,t,n);return n.enterFrame(s),[Ir(r)]}case"Exit":{let s=S("tensor",e,t,n);return n.exitFrame(),[Ir(s)]}case"NextIteration":{let s=S("tensor",e,t,n);return n.nextIteration(),[Ir(s)]}case"TensorArrayV3":{let s=S("size",e,t,n),r=S("dtype",e,t,n),a=S("elementShape",e,t,n),o=S("dynamicSize",e,t,n),i=S("clearAfterRead",e,t,n),l=S("identicalElementShapes",e,t,n),u=S("name",e,t,n),c=new sL(u,r,s,a,l,o,i);return n.addTensorArray(c),[c.idTensor,Ie(1)]}case"TensorArrayWriteV3":{let s=S("tensorArrayId",e,t,n),r=S("index",e,t,n),a=S("tensor",e,t,n),o=n.getTensorArray(s.id);return o.write(r,a),[o.idTensor]}case"TensorArrayReadV3":{let s=S("tensorArrayId",e,t,n),r=S("index",e,t,n);return[n.getTensorArray(s.id).read(r)]}case"TensorArrayGatherV3":{let s=S("tensorArrayId",e,t,n),r=S("indices",e,t,n),a=S("dtype",e,t,n);return[n.getTensorArray(s.id).gather(r,a)]}case"TensorArrayScatterV3":{let s=S("tensorArrayId",e,t,n),r=S("indices",e,t,n),a=S("tensor",e,t,n),o=n.getTensorArray(s.id);return o.scatter(r,a),[o.idTensor]}case"TensorArrayConcatV3":{let s=S("tensorArrayId",e,t,n),r=n.getTensorArray(s.id),a=S("dtype",e,t,n);return[r.concat(a)]}case"TensorArraySplitV3":{let s=S("tensorArrayId",e,t,n),r=S("tensor",e,t,n),a=S("lengths",e,t,n),o=n.getTensorArray(s.id);return o.split(a,r),[o.idTensor]}case"TensorArraySizeV3":{let s=S("tensorArrayId",e,t,n),r=n.getTensorArray(s.id);return[Ie(r.size(),"int32")]}case"TensorArrayCloseV3":{let s=S("tensorArrayId",e,t,n),r=n.getTensorArray(s.id);return r.clearAndClose(),[r.idTensor]}case"TensorListSetItem":{let s=S("tensorListId",e,t,n),r=S("index",e,t,n),a=S("tensor",e,t,n),o=n.getTensorList(s.id);return o.setItem(r,a),[o.idTensor]}case"TensorListGetItem":{let s=S("tensorListId",e,t,n),r=S("index",e,t,n),a=S("elementShape",e,t,n),o=S("elementDType",e,t,n);return[n.getTensorList(s.id).getItem(r,a,o)]}case"TensorListScatterV2":case"TensorListScatter":{let s=S("indices",e,t,n),r=S("tensor",e,t,n),a=S("elementShape",e,t,n),o=S("numElements",e,t,n),i=oL(r,s,a,o);return n.addTensorList(i),[i.idTensor]}case"TensorListReserve":case"EmptyTensorList":{let s=S("elementShape",e,t,n),r=S("elementDType",e,t,n),a;e.op==="TensorListReserve"?a="numElements":a="maxNumElements";let o=S(a,e,t,n),i=aL(s,r,o);return n.addTensorList(i),[i.idTensor]}case"TensorListGather":{let s=S("tensorListId",e,t,n),r=S("indices",e,t,n),a=S("elementShape",e,t,n),o=S("elementDType",e,t,n);return[n.getTensorList(s.id).gather(r,o,a)]}case"TensorListStack":{let s=S("tensorListId",e,t,n),r=S("elementShape",e,t,n),a=S("elementDType",e,t,n),o=S("numElements",e,t,n);return[n.getTensorList(s.id).stack(r,a,o)]}case"TensorListFromTensor":{let s=S("tensor",e,t,n),r=S("elementShape",e,t,n),a=S("elementDType",e,t,n),o=rL(s,r,a);return n.addTensorList(o),[o.idTensor]}case"TensorListConcat":{let s=S("tensorListId",e,t,n),r=n.getTensorList(s.id),a=S("dtype",e,t,n),o=S("elementShape",e,t,n);return[r.concat(a,o)]}case"TensorListPushBack":{let s=S("tensorListId",e,t,n),r=S("tensor",e,t,n),a=n.getTensorList(s.id);return a.pushBack(r),[a.idTensor]}case"TensorListPopBack":{let s=S("tensorListId",e,t,n),r=S("elementShape",e,t,n),a=S("elementDType",e,t,n);return[n.getTensorList(s.id).popBack(r,a)]}case"TensorListSplit":{let s=S("tensor",e,t,n),r=S("elementShape",e,t,n),a=S("lengths",e,t,n),o=iL(s,a,r);return n.addTensorList(o),[o.idTensor]}default:throw TypeError(`Node type ${e.op} is not implemented`)}};function Kv(e,t,n){let[s,r]=S("fusedOps",e,t,n),a=s==="biasadd",o=!a,i=r==="prelu",l=s==="fusedbatchnorm",u=S("numArgs",e,t,n);if(a){if(i&&u!==2)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!i&&a&&u!==1)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd must have one extra argument: bias.")}if(l)throw new Error("FusedConv2d and DepthwiseConv2d with FusedBatchNorm is not supported");let c=S("strides",e,t,n),d=Gp(e,t,n),h=S("dataFormat",e,t,n).toUpperCase(),p=S("dilations",e,t,n),[f,m]=S("args",e,t,n);o&&(m=f,f=void 0);let A=S("leakyreluAlpha",e,t,n);return{stride:c,pad:d,dataFormat:h,dilations:p,biasArg:f,preluArg:m,activationFunc:r,leakyreluAlpha:A}}var uL=(e,t,n)=>{switch(e.op){case"Conv1D":{let s=S("stride",e,t,n),r=S("pad",e,t,n),a=S("dataFormat",e,t,n).toUpperCase(),o=S("dilation",e,t,n);return[hA(S("x",e,t,n),S("filter",e,t,n),s,r,a,o)]}case"Conv2D":{let s=S("strides",e,t,n),r=Gp(e,t,n),a=S("dataFormat",e,t,n).toUpperCase(),o=S("dilations",e,t,n);return[Hr(S("x",e,t,n),S("filter",e,t,n),[s[1],s[2]],r,a,[o[1],o[2]])]}case"_FusedConv2D":{let{stride:s,pad:r,dataFormat:a,dilations:o,biasArg:i,preluArg:l,activationFunc:u,leakyreluAlpha:c}=Kv(e,t,n);return[qr.conv2d({x:S("x",e,t,n),filter:S("filter",e,t,n),strides:[s[1],s[2]],pad:r,dataFormat:a,dilations:[o[1],o[2]],bias:i,activation:u,preluActivationWeights:l,leakyreluAlpha:c})]}case"FusedDepthwiseConv2dNative":{let{stride:s,pad:r,dataFormat:a,dilations:o,biasArg:i,preluArg:l,activationFunc:u,leakyreluAlpha:c}=Kv(e,t,n);return[qr.depthwiseConv2d({x:S("x",e,t,n),filter:S("filter",e,t,n),strides:[s[1],s[2]],pad:r,dataFormat:a,dilations:[o[1],o[2]],bias:i,activation:u,preluActivationWeights:l,leakyreluAlpha:c})]}case"Conv2DBackpropInput":case"Conv2dTranspose":{let s=S("outputShape",e,t,n),r=S("strides",e,t,n),a=Gp(e,t,n);return[fA(S("x",e,t,n),S("filter",e,t,n),s,[r[1],r[2]],a)]}case"DepthwiseConv2dNative":case"DepthwiseConv2d":{let s=S("strides",e,t,n),r=Gp(e,t,n),a=S("dilations",e,t,n),o=S("dataFormat",e,t,n).toUpperCase();return[tc(S("input",e,t,n),S("filter",e,t,n),[s[1],s[2]],r,o,[a[1],a[2]])]}case"Conv3D":{let s=S("strides",e,t,n),r=S("pad",e,t,n),a=S("dataFormat",e,t,n).toUpperCase(),o=S("dilations",e,t,n);return[mA(S("x",e,t,n),S("filter",e,t,n),[s[1],s[2],s[3]],r,a,[o[1],o[2],o[3]])]}case"AvgPool":{let s=S("strides",e,t,n),r=S("pad",e,t,n),a=S("kernelSize",e,t,n);return[Oh(S("x",e,t,n),[a[1],a[2]],[s[1],s[2]],r)]}case"MaxPool":{let s=S("strides",e,t,n),r=S("pad",e,t,n),a=S("kernelSize",e,t,n);return[Uh(S("x",e,t,n),[a[1],a[2]],[s[1],s[2]],r)]}case"MaxPoolWithArgmax":{let s=S("strides",e,t,n),r=S("pad",e,t,n),a=S("kernelSize",e,t,n),o=S("includeBatchInIndex",e,t,n),{result:i,indexes:l}=Yx(S("x",e,t,n),[a[1],a[2]],[s[1],s[2]],r,o);return[i,l]}case"AvgPool3D":{let s=S("strides",e,t,n),r=S("pad",e,t,n),a=S("kernelSize",e,t,n);return[cA(S("x",e,t,n),[a[1],a[2],a[3]],[s[1],s[2],s[3]],r)]}case"MaxPool3D":{let s=S("strides",e,t,n),r=S("pad",e,t,n),a=S("kernelSize",e,t,n);return[IA(S("x",e,t,n),[a[1],a[2],a[3]],[s[1],s[2],s[3]],r)]}case"Dilation2D":{let s=S("strides",e,t,n),r=S("pad",e,t,n),a=S("dilations",e,t,n),o=s[1],i=s[2],l=a[1],u=a[2];return[zx(S("x",e,t,n),S("filter",e,t,n),[o,i],r,[l,u],"NHWC")]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},cL=(e,t,n)=>{switch(e.op){case"Fill":{let s=S("shape",e,t,n),r=S("dtype",e,t,n),a=S("value",e,t,n);return[Sl(s,a,r)]}case"LinSpace":{let s=S("start",e,t,n),r=S("stop",e,t,n),a=S("num",e,t,n);return[Hx(s,r,a)]}case"Multinomial":{let s=S("logits",e,t,n),r=S("numSamples",e,t,n),a=S("seed",e,t,n);return[eb(s,r,a)]}case"OneHot":{let s=S("indices",e,t,n),r=S("depth",e,t,n),a=S("onValue",e,t,n),o=S("offValue",e,t,n);return[Ju(s,r,a,o)]}case"Ones":return[Un(S("shape",e,t,n),S("dtype",e,t,n))];case"OnesLike":return[us(S("x",e,t,n))];case"RandomUniform":return[El(S("shape",e,t,n),S("minval",e,t,n),S("maxval",e,t,n),S("dtype",e,t,n))];case"Range":{let s=S("start",e,t,n),r=S("stop",e,t,n),a=S("step",e,t,n);return[Rl(s,r,a,S("dtype",e,t,n))]}case"TruncatedNormal":{let s=S("shape",e,t,n),r=S("mean",e,t,n),a=S("stdDev",e,t,n),o=S("seed",e,t,n);return[Qh(s,r,a,S("dtype",e,t,n),o)]}case"Zeros":return[Dt(S("shape",e,t,n),S("dtype",e,t,n))];case"ZerosLike":return[qe(S("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function G2(e,t,n){let s=S("boxes",e,t,n),r=S("scores",e,t,n),a=S("maxOutputSize",e,t,n),o=S("iouThreshold",e,t,n),i=S("scoreThreshold",e,t,n),l=S("softNmsSigma",e,t,n);return{boxes:s,scores:r,maxOutputSize:a,iouThreshold:o,scoreThreshold:i,softNmsSigma:l}}var dL=async(e,t,n)=>{switch(e.op){case"NonMaxSuppressionV5":{let{boxes:s,scores:r,maxOutputSize:a,iouThreshold:o,scoreThreshold:i,softNmsSigma:l}=G2(e,t,n),u=await _e.nonMaxSuppressionWithScoreAsync(s,r,a,o,i,l);return[u.selectedIndices,u.selectedScores]}case"NonMaxSuppressionV4":{let{boxes:s,scores:r,maxOutputSize:a,iouThreshold:o,scoreThreshold:i}=G2(e,t,n),l=S("padToMaxOutputSize",e,t,n),u=await _e.nonMaxSuppressionPaddedAsync(s,r,a,o,i,l);return[u.selectedIndices,u.validOutputs]}case"NonMaxSuppressionV3":case"NonMaxSuppressionV2":{let{boxes:s,scores:r,maxOutputSize:a,iouThreshold:o,scoreThreshold:i}=G2(e,t,n);return[await _e.nonMaxSuppressionAsync(s,r,a,o,i)]}case"Where":{let s=ce(S("condition",e,t,n),"bool"),r=[await zA(s)];return s.dispose(),r}case"ListDiff":return rb(S("x",e,t,n),S("y",e,t,n));default:throw TypeError(`Node type ${e.op} is not implemented`)}},hL=(e,t,n)=>{switch(e.op){case"TopKV2":{let s=S("x",e,t,n),r=S("k",e,t,n),a=S("sorted",e,t,n),o=lb(s,r,a);return[o.values,o.indices]}case"Unique":{let s=S("x",e,t,n),r=MA(s);return[r.values,r.indices]}case"UniqueV2":{let s=S("x",e,t,n),r=S("axis",e,t,n),a=MA(s,r);return[a.values,a.indices]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},pL=(e,t,n)=>{switch(e.op){case"Const":return t[e.name];case"PlaceholderWithDefault":let s=S("default",e,t,n);return[xn(e.name,t,n)||s];case"Placeholder":return[xn(e.name,t,n)];case"Identity":case"StopGradient":case"FakeQuantWithMinMaxVars":{let u=S("x",e,t,n);return[Ir(u)]}case"IdentityN":return S("x",e,t,n).map(u=>Ir(u));case"Snapshot":let r=S("x",e,t,n);return[Ir(r)];case"Shape":return[Ot(S("x",e,t,n).shape,"int32")];case"ShapeN":return S("x",e,t,n).map(u=>Ot(u.shape));case"Size":return[Ie(S("x",e,t,n).size,"int32")];case"Rank":return[Ie(S("x",e,t,n).rank,"int32")];case"NoOp":return[Ie(1)];case"Print":let a=S("x",e,t,n),o=S("data",e,t,n),i=S("message",e,t,n),l=S("summarize",e,t,n);console.warn("The graph has a tf.print() operation,usually used for debugging, which slows down performance."),console.log(i);for(let u=0;u<o.length;u++)console.log(Array.prototype.slice.call(o[u].dataSync()).slice(0,l));return[a];default:throw TypeError(`Node type ${e.op} is not implemented`)}},fL=class{constructor(e,t){this.keyDType=e,this.valueDType=t,this.handle=Ie(0),this.tensorMap=new Map,Kt(this.handle)}get id(){return this.handle.id}clearAndClose(){this.tensorMap.forEach(e=>e.dispose()),this.tensorMap.clear(),this.handle.dispose()}size(){return this.tensorMap.size}tensorSize(){return Ie(this.size(),"int32")}async import(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return this.tensorMap.forEach(s=>s.dispose()),this.tensorMap.clear(),H(()=>{let s=ds(t),r=n.length,a=s.length;I.assert(r===a,()=>`The number of elements doesn't match, keys has ${r} elements, the values has ${a} elements.`);for(let o=0;o<r;o++){let i=n[o],l=s[o];Kt(l),this.tensorMap.set(i,l)}return this.handle})}async find(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return H(()=>{let s=[];for(let r=0;r<n.length;r++){let a=n[r],o=this.findWithDefault(a,t);s.push(o)}return Nn(s)})}findWithDefault(e,t){let n=this.tensorMap.get(e);return n!=null?n:t}checkKeyAndValueTensor(e,t){if(e.dtype!==this.keyDType)throw new Error(`Expect key dtype ${this.keyDType}, but got ${e.dtype}`);if(t.dtype!==this.valueDType)throw new Error(`Expect value dtype ${this.valueDType}, but got ${t.dtype}`)}},mL=async(e,t,n,s)=>{switch(e.op){case"HashTable":case"HashTableV2":{let r=S("keyDType",e,t,n),a=S("valueDType",e,t,n),o=new fL(r,a);return s.addHashTable(e.name,o),[o.handle]}case"LookupTableImport":case"LookupTableImportV2":{let r=S("tableHandle",e,t,n,s),a=S("keys",e,t,n),o=S("values",e,t,n);return[await s.getHashTableById(r.id).import(a,o)]}case"LookupTableFind":case"LookupTableFindV2":{let r=S("tableHandle",e,t,n,s),a=S("keys",e,t,n),o=S("defaultValue",e,t,n);return[await s.getHashTableById(r.id).find(a,o)]}case"LookupTableSize":case"LookupTableSizeV2":{let r=S("tableHandle",e,t,n,s);return[s.getHashTableById(r.id).tensorSize()]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},AL=(e,t,n)=>{switch(e.op){case"ResizeBilinear":{let s=S("images",e,t,n),r=S("size",e,t,n),a=S("alignCorners",e,t,n),o=S("halfPixelCenters",e,t,n);return[_e.resizeBilinear(s,[r[0],r[1]],a,o)]}case"ResizeNearestNeighbor":{let s=S("images",e,t,n),r=S("size",e,t,n),a=S("alignCorners",e,t,n),o=S("halfPixelCenters",e,t,n);return[_e.resizeNearestNeighbor(s,[r[0],r[1]],a,o)]}case"CropAndResize":{let s=S("image",e,t,n),r=S("boxes",e,t,n),a=S("boxInd",e,t,n),o=S("cropSize",e,t,n),i=S("method",e,t,n),l=S("extrapolationValue",e,t,n);return[_e.cropAndResize(s,r,a,o,i,l)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},gL=(e,t,n)=>{switch(e.op){case"Equal":return[as(S("a",e,t,n),S("b",e,t,n))];case"NotEqual":return[Nl(S("a",e,t,n),S("b",e,t,n))];case"Greater":return[Vn(S("a",e,t,n),S("b",e,t,n))];case"GreaterEqual":return[Io(S("a",e,t,n),S("b",e,t,n))];case"Less":return[xA(S("a",e,t,n),S("b",e,t,n))];case"LessEqual":return[So(S("a",e,t,n),S("b",e,t,n))];case"LogicalAnd":return[Rs(S("a",e,t,n),S("b",e,t,n))];case"LogicalNot":return[Vh(S("a",e,t,n))];case"LogicalOr":return[kA(S("a",e,t,n),S("b",e,t,n))];case"Select":case"SelectV2":return[gn(S("condition",e,t,n),S("a",e,t,n),S("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},yL=(e,t,n)=>{switch(e.op){case"BatchMatMul":case"BatchMatMulV2":case"MatMul":return[We(S("a",e,t,n),S("b",e,t,n),S("transposeA",e,t,n),S("transposeB",e,t,n))];case"Einsum":return[Bx(S("equation",e,t,n),...S("tensors",e,t,n))];case"Transpose":return[je(S("x",e,t,n),S("perm",e,t,n))];case"_FusedMatMul":let[s,r]=S("fusedOps",e,t,n),a=s==="biasadd",o=r==="prelu",i=S("numArgs",e,t,n),l=S("leakyreluAlpha",e,t,n);if(a){if(o&&i!==2)throw new Error("Fused MatMul with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!o&&i!==1)throw new Error("Fused MatMul with BiasAdd must have one extra argument: bias.")}let[u,c]=S("args",e,t,n);return[qr.matMul({a:S("a",e,t,n),b:S("b",e,t,n),transposeA:S("transposeA",e,t,n),transposeB:S("transposeB",e,t,n),bias:u,activation:r,preluActivationWeights:c,leakyreluAlpha:l})];default:throw TypeError(`Node type ${e.op} is not implemented`)}},xL=(e,t,n)=>{switch(e.op){case"FusedBatchNorm":case"FusedBatchNormV2":return[kl(S("x",e,t,n),S("mean",e,t,n),S("variance",e,t,n),S("offset",e,t,n),S("scale",e,t,n),S("epsilon",e,t,n))];case"FusedBatchNormV3":return[kl(S("x",e,t,n),S("mean",e,t,n),S("variance",e,t,n),S("offset",e,t,n),S("scale",e,t,n),S("epsilon",e,t,n))];case"LRN":return[Gx(S("x",e,t,n),S("radius",e,t,n),S("bias",e,t,n),S("alpha",e,t,n),S("beta",e,t,n))];case"Softmax":return[Zh(S("x",e,t,n))];case"LogSoftmax":return[bA(S("x",e,t,n))];case"SparseToDense":return[BA(S("sparseIndices",e,t,n),S("outputShape",e,t,n),S("sparseValues",e,t,n),S("defaultValue",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},bL=(e,t,n)=>{switch(e.op){case"Max":{let o=S("axis",e,t,n),i=S("keepDims",e,t,n);return[ls(S("x",e,t,n),o,i)]}case"Mean":{let o=S("axis",e,t,n),i=S("keepDims",e,t,n);return[Et(S("x",e,t,n),o,i)]}case"Min":{let o=S("axis",e,t,n),i=S("keepDims",e,t,n);return[Hh(S("x",e,t,n),o,i)]}case"Sum":{let o=S("axis",e,t,n),i=S("keepDims",e,t,n);return[ve(S("x",e,t,n),o,i)]}case"All":{let o=S("axis",e,t,n),i=S("keepDims",e,t,n);return[iA(S("x",e,t,n),o,i)]}case"Any":{let o=S("axis",e,t,n),i=S("keepDims",e,t,n);return[Fh(S("x",e,t,n),o,i)]}case"ArgMax":{let o=S("axis",e,t,n);return[Xs(S("x",e,t,n),o)]}case"ArgMin":{let o=S("axis",e,t,n);return[yx(S("x",e,t,n),o)]}case"Prod":{let o=S("axis",e,t,n),i=S("keepDims",e,t,n);return[SA(S("x",e,t,n),o,i)]}case"Cumsum":{let o=S("axis",e,t,n),i=S("exclusive",e,t,n),l=S("reverse",e,t,n);return[gA(S("x",e,t,n),o,i,l)]}case"Bincount":let s=S("x",e,t,n),r=S("weights",e,t,n),a=S("size",e,t,n);return[dA(s,r,a)];case"DenseBincount":{let o=S("x",e,t,n),i=S("weights",e,t,n),l=S("size",e,t,n),u=S("binaryOutput",e,t,n);return[Px(o,i,l,u)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},vL=(e,t,n)=>{switch(e.op){case"ConcatV2":case"Concat":{let s=S("n",e,t,n),r=S("axis",e,t,n),a=S("tensors",e,t,n);return a=a.slice(0,s),[ht(a,r)]}case"Gather":{let s=S("x",e,t,n),r=S("indices",e,t,n);return[Cl(s,ce(r,"int32"),0)]}case"GatherV2":{let s=S("axis",e,t,n),r=S("batchDims",e,t,n),a=S("x",e,t,n),o=S("indices",e,t,n);return[Cl(a,ce(o,"int32"),s,r)]}case"Reverse":{let s=S("dims",e,t,n),r=[];for(let o=0;o<s.length;o++)s[o]&&r.push(o);let a=S("x",e,t,n);return[cs(a,r)]}case"ReverseV2":{let s=S("axis",e,t,n),r=S("x",e,t,n);return[cs(r,s)]}case"Slice":{let s=S("begin",e,t,n),r=S("size",e,t,n);return[Re(S("x",e,t,n),s,r)]}case"StridedSlice":{let s=S("begin",e,t,n),r=S("end",e,t,n),a=S("strides",e,t,n),o=S("beginMask",e,t,n),i=S("endMask",e,t,n),l=S("ellipsisMask",e,t,n),u=S("newAxisMask",e,t,n),c=S("shrinkAxisMask",e,t,n),d=S("x",e,t,n);return[ob(d,s,r,a,o,i,l,u,c)]}case"Pack":return H(()=>{let s=S("axis",e,t,n),r=S("tensors",e,t,n),a=r[0].shape,o=ot(r[0]).shape,i=r.map(l=>{let u=I.arraysEqual(l.shape,a);if(!u&&!I.arraysEqual(ot(l).shape,o))throw new Error("the input tensors shape does not match");return u?l:U(l,a)});return[Nn(i,s)]});case"Unpack":{let s=S("axis",e,t,n),r=S("tensor",e,t,n);return ds(r,s)}case"Tile":{let s=S("reps",e,t,n);return[Es(S("x",e,t,n),s)]}case"Split":case"SplitV":{let s=S("axis",e,t,n),r=S("numOrSizeSplits",e,t,n),a=S("x",e,t,n);return nn(a,r,s)}case"ScatterNd":{let s=S("indices",e,t,n),r=S("values",e,t,n),a=S("shape",e,t,n);return[pb(s,r,a)]}case"GatherNd":{let s=S("x",e,t,n),r=S("indices",e,t,n);return[fb(s,r)]}case"SparseToDense":{let s=S("sparseIndices",e,t,n),r=S("outputShape",e,t,n),a=S("sparseValues",e,t,n),o=S("defaultValue",e,t,n);return[BA(s,a,r,a.dtype===o.dtype?o:ce(o,a.dtype))]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},wL=(e,t,n)=>{switch(e.op){case"SparseFillEmptyRows":{let{outputIndices:s,outputValues:r,emptyRowIndicator:a,reverseIndexMap:o}=uc.sparseFillEmptyRows(S("indices",e,t,n),S("values",e,t,n),S("denseShape",e,t,n),S("defaultValue",e,t,n));return[s,r,a,o]}case"SparseReshape":{let{outputIndices:s,outputShape:r}=uc.sparseReshape(S("inputIndices",e,t,n),S("inputShape",e,t,n),S("newShape",e,t,n));return[s,r]}case"SparseSegmentMean":return[uc.sparseSegmentMean(S("data",e,t,n),S("indices",e,t,n),S("segmentIds",e,t,n))];case"SparseSegmentSum":return[uc.sparseSegmentSum(S("data",e,t,n),S("indices",e,t,n),S("segmentIds",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},kL=(e,t,n)=>{switch(e.op){case"FFT":return[Yh(S("x",e,t,n))];case"IFFT":return[ic(S("x",e,t,n))];case"RFFT":return[Jh(S("x",e,t,n))];case"IRFFT":return[OA(S("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},IL=(e,t,n)=>{switch(e.op){case"StringNGrams":{let{nGrams:s,nGramsSplits:r}=rp.stringNGrams(S("data",e,t,n),S("dataSplits",e,t,n),S("separator",e,t,n),S("nGramWidths",e,t,n),S("leftPad",e,t,n),S("rightPad",e,t,n),S("padWidth",e,t,n),S("preserveShortSequences",e,t,n));return[s,r]}case"StringSplit":{let{indices:s,values:r,shape:a}=rp.stringSplit(S("input",e,t,n),S("delimiter",e,t,n),S("skipEmpty",e,t,n));return[s,r,a]}case"StringToHashBucketFast":return[rp.stringToHashBucketFast(S("input",e,t,n),S("numBuckets",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},SL=(e,t,n)=>{switch(e.op){case"Cast":return[ce(S("x",e,t,n),S("dtype",e,t,n))];case"ExpandDims":{let s=S("axis",e,t,n);return[Ft(S("x",e,t,n),s)]}case"Squeeze":{let s=S("axis",e,t,n);return[ot(S("x",e,t,n),s)]}case"Reshape":return[U(S("x",e,t,n),S("shape",e,t,n))];case"MirrorPad":return[Jx(S("x",e,t,n),S("padding",e,t,n),S("mode",e,t,n))];case"PadV2":case"Pad":return[Gr(S("x",e,t,n),S("padding",e,t,n),S("constantValue",e,t,n))];case"SpaceToBatchND":{let s=S("blockShape",e,t,n),r=S("paddings",e,t,n);return[jh(S("x",e,t,n),s,r)]}case"BatchToSpaceND":{let s=S("blockShape",e,t,n),r=S("crops",e,t,n);return[Ph(S("x",e,t,n),s,r)]}case"DepthToSpace":{let s=S("blockSize",e,t,n),r=S("dataFormat",e,t,n).toUpperCase();return[Mx(S("x",e,t,n),s,r)]}case"BroadcastTo":return[ec(S("x",e,t,n),S("shape",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function Zv(e,t,n,s){let r=((a,o,i)=>{switch(a.category){case"arithmetic":return H(()=>tL(a,o,i));case"basic_math":return H(()=>nL(a,o,i));case"control":return lL(a,o,i);case"convolution":return H(()=>uL(a,o,i));case"creation":return H(()=>cL(a,o,i));case"dynamic":return dL(a,o,i);case"evaluation":return H(()=>hL(a,o,i));case"image":return H(()=>AL(a,o,i));case"graph":return H(()=>pL(a,o,i));case"logical":return H(()=>gL(a,o,i));case"matrices":return H(()=>yL(a,o,i));case"normalization":return H(()=>xL(a,o,i));case"reduction":return H(()=>bL(a,o,i));case"slice_join":return H(()=>vL(a,o,i));case"sparse":return H(()=>wL(a,o,i));case"spectral":return H(()=>kL(a,o,i));case"string":return H(()=>IL(a,o,i));case"transformation":return H(()=>SL(a,o,i));case"hash_table":return mL(a,o,i,s);case"custom":let l=Iv(a.op);if(l&&l.customExecutor)return l.customExecutor(new eL(a,o,i));throw TypeError(`Custom op ${a.op} is not registered.`);default:throw TypeError(`Unknown op '${a.op}'. File an issue at https://github.com/tensorflow/tfjs/issues so we can add it, or register a custom execution with tf.registerOp()`)}})(e,t,n);return I.isPromise(r)?r.then(a=>[].concat(a)):[].concat(r)}var Yv=class{constructor(e={},t={},n={},s={}){this.weightMap=e,this.tensorArrayMap=t,this.tensorListMap=n,this.functionMap=s,this.rootContext={id:0,frameName:"",iterationId:0},this.contexts=[this.rootContext],this.lastId=0,this.generateCurrentContextIds()}newFrame(e,t){return{id:e,frameName:t,iterationId:0}}set currentContext(e){this.contexts!==e&&(this.contexts=e,this.generateCurrentContextIds())}get currentContext(){return this.contexts}get currentContextId(){return this._currentContextIds[0]}get currentContextIds(){return this._currentContextIds}generateCurrentContextIds(){let e=[];for(let t=0;t<this.contexts.length-1;t++){let n=this.contexts.slice(0,this.contexts.length-t);e.push(this.contextIdforContexts(n))}e.push(""),this._currentContextIds=e}contextIdforContexts(e){return e?e.map(t=>t.id===0&&t.iterationId===0?"":`${t.frameName}-${t.iterationId}`).join("/"):""}enterFrame(e){this.contexts&&(this.lastId++,this.contexts=this.contexts.slice(),this.contexts.push(this.newFrame(this.lastId,e)),this._currentContextIds.unshift(this.contextIdforContexts(this.contexts)))}exitFrame(){if(this.contexts&&this.contexts.length>1)this.contexts=this.contexts.slice(),this.contexts.splice(-1),this.currentContextIds.shift();else throw new Error("Cannot exit frame, the context is empty")}nextIteration(){if(this.contexts&&this.contexts.length>0){this.contexts=this.contexts.slice(),this.lastId++;let e=Object.assign({},this.contexts[this.contexts.length-1]);e.iterationId+=1,e.id=this.lastId,this.contexts.splice(-1,1,e),this._currentContextIds.splice(0,1,this.contextIdforContexts(this.contexts))}else throw new Error("Cannot increase frame iteration, the context is empty")}getWeight(e){return this.weightMap[e]}addTensorArray(e){this.tensorArrayMap[e.id]=e}getTensorArray(e){return this.tensorArrayMap[e]}addTensorList(e){this.tensorListMap[e.id]=e}getTensorList(e){return this.tensorListMap[e]}dispose(e){for(let t in this.tensorArrayMap)this.tensorArrayMap[t].clearAndClose(e);for(let t in this.tensorListMap)this.tensorListMap[t].clearAndClose(e)}};function Jv(e,t,n,s){let r=new Set,a=[],o=null,i=null,l=new Set,u=Object.keys(e).map(h=>Hn(h)[0]),c=[];s!=null&&(c=s.map(h=>Hn(h.name)[0]));let d=[...t];for(;d.length>0;){let h=d.pop();if((Qv(h)||RL(h)||_L(h))&&o==null&&(o=h,i=o.children.map(p=>p.name).filter(p=>r.has(p))),r.add(h.name),n[h.name]==null&&u.indexOf(h.name)===-1&&c.indexOf(h.name)===-1){if(h.inputs.length===0){a.push(h.name);continue}h.inputs.forEach(p=>{l.has(p.name)||(l.add(p.name),d.push(p))})}}return{inputs:e,outputs:t,usedNodes:r,missingInputs:a,dynamicNode:o,syncInputs:i}}function CL(e,t,n){let{usedNodes:s,inputs:r}=n,a=[],o=Object.keys(r).map(c=>Hn(c)[0]).map(c=>e.nodes[c]),i=e.initNodes;o.forEach(c=>{s.has(c.name)&&a.push(c)}),e.weights.forEach(c=>{s.has(c.name)&&a.push(c)}),i!=null&&i.forEach(c=>{s.has(c.name)&&a.push(c)});let l=new Set,u=[];for(;a.length>0;){let c=a.pop();l.add(c.name),t[c.name]||u.push(c),c.children.forEach(d=>{!l.has(d.name)&&s.has(d.name)&&d.inputs.every(h=>l.has(h.name))&&a.push(d)})}return u}var TL=["Switch","Merge","Enter","Exit","NextIteration","StatelessIf","StatelessWhile","if","While"],NL=["NonMaxSuppressionV2","NonMaxSuppressionV3","NonMaxSuppressionV5","Where"],EL=["HashTable","HashTableV2","LookupTableImport","LookupTableImportV2","LookupTableFind","LookupTableFindV2","LookupTableSize","LookupTableSizeV2"];function Qv(e){return TL.indexOf(e.op)>=0}function RL(e){return NL.indexOf(e.op)>=0}function _L(e){return EL.indexOf(e.op)>=0}var j2=class{constructor(e,t){this.graph=e,this.parent=t,this.compiledMap=new Map,this._weightMap={},this.SEPERATOR=",",this._functions={},this._functionExecutorMap={},this._outputs=e.outputs,this._inputs=e.inputs,this._initNodes=e.initNodes,this._signature=e.signature,this._functions=e.functions,e.functions!=null&&Object.keys(e.functions).forEach(n=>{this._functionExecutorMap[n]=new j2(e.functions[n],this)})}get weightIds(){return this.parent?this.parent.weightIds:this._weightIds}get functionExecutorMap(){return this.parent?this.parent.functionExecutorMap:this._functionExecutorMap}get weightMap(){return this.parent?this.parent.weightMap:this._weightMap}set weightMap(e){let t=Object.keys(e).map(n=>e[n].map(s=>s.id));this._weightIds=[].concat(...t),this._weightMap=e}set resourceManager(e){this._resourceManager=e}get inputs(){return this._inputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get outputs(){return this._outputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get inputNodes(){return this._inputs.map(e=>e.signatureKey||e.name)}get outputNodes(){return this._outputs.map(e=>{let t=e.signatureKey||e.name;return e.defaultOutput?`${t}:${e.defaultOutput}`:t})}get functions(){return Object.keys(this._functions).reduce((e,t)=>(e[t]=this._functions[t].signature,e),{})}getCompilationKey(e,t){let n=e.map(r=>r.name).sort(),s=t.map(r=>r.name).sort();return n.join(this.SEPERATOR)+"--"+s.join(this.SEPERATOR)}compile(e,t){let n=Jv(e,t,this.weightMap,this._initNodes),{missingInputs:s,dynamicNode:r,syncInputs:a}=n;if(r!=null)throw new Error(`This execution contains the node '${r.name}', which has the dynamic op '${r.op}'. Please use model.executeAsync() instead. Alternatively, to avoid the dynamic ops, specify the inputs [${a}]`);if(s.length>0){let o=t.map(l=>l.name),i=Object.keys(e);throw new Error(`Cannot compute the outputs [${o}] from the provided inputs [${i}]. Missing the following inputs: [${s}]`)}return CL(this.graph,this.weightMap,n)}execute(e,t){e=this.mapInputs(e);let n=Object.keys(e).sort();this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t);let s=n.map(c=>this.graph.nodes[Hn(c)[0]]),r=t.map(c=>Hn(c)[0]),a=r.map(c=>this.graph.nodes[c]);a.length===0&&(a=this._outputs);let o=this.getCompilationKey(s,a),i=this.compiledMap.get(o);i==null&&(i=this.compile(e,a),this.compiledMap.set(o,i));let l={},u={};return H(()=>{let c=new Yv(this.weightMap,l,u,this.functionExecutorMap),d=Object.assign({},this.weightMap);Object.keys(e).forEach(f=>{let[m,A]=Hn(f),g=[];g[A]=e[f],d[m]=g});let h=this.getFrozenTensorIds(d),p={};for(let f=0;f<i.length;f++){let m=i[f];if(!d[m.name]){let A=Zv(m,d,c,this._resourceManager);if(I.isPromise(A))throw new Error(`The execution of the op '${m.op}' returned a promise. Please use model.executeAsync() instead.`);d[m.name]=A,this.checkTensorForDisposal(m.name,m,d,c,h,r,p)}}return this.parent==null&&c.dispose(h),t.map(f=>xn(f,d,c))})}getFrozenTensorIds(e){let t=[].concat.apply([],Object.keys(e).map(n=>e[n]).map(n=>n.map(s=>s.id)));return new Set(t)}checkTensorForDisposal(e,t,n,s,r,a,o){t.category==="control"||a.indexOf(e)!==-1||(n[e].forEach(i=>{i!=null&&(o[i.id]=(o[i.id]||0)+t.children.length)}),t.inputs.forEach(i=>{if(i.category!=="control"){let l=Fz(i.name,n,s);l!=null&&l.forEach(u=>{if(u&&!u.kept&&!r.has(u.id)){let c=o[u.id];c===1?(u.dispose(),delete o[u.id]):c!=null&&o[u.id]--}})}}))}async executeAsync(e,t){return this._executeAsync(e,t)}async _executeAsync(e,t,n=!1,s={},r={}){n||(e=this.mapInputs(e),this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t));let a=new Yv(this.weightMap,s,r,this.functionExecutorMap),o=await this.executeWithControlFlow(e,a,t,n),i=t.map(d=>xn(d,o,a)),l=i.map(d=>d.id),u=Object.keys(e).map(d=>e[d].id),c=new Set([...l,...u,...this.weightIds]);return Object.keys(o).forEach(d=>{o[d].forEach(p=>{p&&!p.kept&&!p.isDisposed&&!c.has(p.id)&&p.dispose()})}),this.parent==null&&a.dispose(c),i}async executeFunctionAsync(e,t,n){let s=e.reduce((r,a,o)=>(r[this.inputs[o].name]=a,r),{});return this._executeAsync(s,this.outputNodes,!0,t,n)}async executeWithControlFlow(e,t,n,s){let r=Object.keys(e),a=r.map(y=>this.graph.nodes[Hn(y)[0]]),o=n.map(y=>Hn(y)[0]),i=o.map(y=>this.graph.nodes[y]);i.length===0&&(i=this._outputs);let{usedNodes:l,missingInputs:u,dynamicNode:c,syncInputs:d}=Jv(e,i,this.weightMap,this._initNodes),h=[...a,...this.graph.weights,...this._initNodes||[]].map(y=>({node:y,contexts:t.currentContext})),p=Object.assign({},this.weightMap);Object.keys(e).forEach(y=>{let[x,b]=Hn(y),v=[];v[b]=e[y],p[x]=v});let f={},m=this.getFrozenTensorIds(p),A={};for(;h.length>0;){let y=this.processStack(a,h,t,p,A,m,o,f,l);await Promise.all(y)}c==null&&!s&&console.warn("This model execution did not contain any nodes with control flow or dynamic output shapes. You can use model.execute() instead.");let g=i.filter(y=>!Qv(y)&&!xn(y.name,p,t)).map(y=>y.name);if(g.length>0){let y="";throw c!=null&&(y=`Alternatively, to avoid the dynamic ops, use model.execute() and specify the inputs [${d}]`),new Error(`Cannot compute the outputs [${g}] from the provided inputs [${r}]. Consider providing the following inputs: [${u}]. ${y}`)}return p}processStack(e,t,n,s,r,a,o,i,l){let u=[];for(;t.length>0;){let c=t.pop();n.currentContext=c.contexts;let d="";if(c.node.op==="Enter"&&S("isConstant",c.node,s,n)&&([d]=kr(c.node.name,n)),s[c.node.name]==null){let h=Zv(c.node,s,n,this._resourceManager);d||([d]=kr(c.node.name,n));let p=n.currentContext;I.isPromise(h)?u.push(h.then(f=>(s[d]=f,n.currentContext=p,this.checkTensorForDisposal(d,c.node,s,n,a,o,i),this.processChildNodes(c.node,t,n,s,r,l),f))):(s[d]=h,this.checkTensorForDisposal(d,c.node,s,n,a,o,i),this.processChildNodes(c.node,t,n,s,r,l))}else this.processChildNodes(c.node,t,n,s,r,l)}return u}processChildNodes(e,t,n,s,r,a){e.children.forEach(o=>{let[i]=kr(o.name,n);r[i]||!a.has(o.name)||(o.op==="Merge"?o.inputNames.some(l=>!!xn(l,s,n))&&(r[i]=!0,t.push({contexts:n.currentContext,node:o})):o.inputNames.every(l=>!!xn(l,s,n))&&(r[i]=!0,t.push({contexts:n.currentContext,node:o})))})}dispose(){Object.keys(this.weightMap).forEach(e=>this.weightMap[e].forEach(t=>t.dispose()))}checkInputShapeAndType(e){Object.keys(e).forEach(t=>{let n=e[t],[s]=Hn(t),r=this.graph.nodes[s];if(r.attrParams.shape&&r.attrParams.shape.value){let a=r.attrParams.shape.value,o=a.length===n.shape.length&&n.shape.every((i,l)=>a[l]===-1||a[l]===i);I.assert(o,()=>`The shape of dict['${r.name}'] provided in model.execute(dict) must be [${a}], but was [${n.shape}]`)}r.attrParams.dtype&&r.attrParams.dtype.value&&I.assert(n.dtype===r.attrParams.dtype.value,()=>`The dtype of dict['${r.name}'] provided in model.execute(dict) must be ${r.attrParams.dtype.value}, but was ${n.dtype}`)})}mapInputs(e){let t={};for(let n in e)if(this._signature!=null&&this._signature.inputs!=null&&this._signature.inputs[n]!=null){let s=this._signature.inputs[n];t[s.name]=e[n]}else t[n]=e[n];return t}checkInputs(e){let t=Object.keys(e).filter(n=>{let[s]=Hn(n);return this.graph.nodes[s]==null});if(t.length>0)throw new Error(`The dict provided in model.execute(dict) has keys: [${t}] that are not part of graph`)}mapOutputs(e){return e.map(t=>this._signature!=null&&this._signature.outputs!=null&&this._signature.outputs[t]!=null?this._signature.outputs[t].name:t,{})}checkOutputs(e){e.forEach(t=>{let[n]=Hn(t);if(!this.graph.nodes[n])throw new Error(`The output '${t}' is not found in the graph`)})}},$L=class{constructor(e={},t={}){this.hashTableNameToHandle=e,this.hashTableMap=t}addHashTable(e,t){this.hashTableNameToHandle[e]=t.handle,this.hashTableMap[t.id]=t}getHashTableHandleByName(e){return this.hashTableNameToHandle[e]}getHashTableById(e){return this.hashTableMap[e]}dispose(){for(let e in this.hashTableMap)this.hashTableMap[e].clearAndClose(),delete this.hashTableMap[e];for(let e in this.hashTableNameToHandle)this.hashTableNameToHandle[e].dispose(),delete this.hashTableNameToHandle[e]}},FL="?tfjs-format=file",DL="model.json",e7=class{constructor(e,t={}){this.modelUrl=e,this.loadOptions=t,this.version="n/a",t==null&&(this.loadOptions={}),this.resourceManager=new $L}get modelVersion(){return this.version}get inputNodes(){return this.executor.inputNodes}get outputNodes(){return this.executor.outputNodes}get inputs(){return this.executor.inputs}get outputs(){return this.executor.outputs}get weights(){return this.executor.weightMap}get metadata(){return this.artifacts.userDefinedMetadata}get modelSignature(){return this.signature}findIOHandler(){let e=this.modelUrl;if(e.load!=null)this.handler=e;else if(this.loadOptions.requestInit!=null)this.handler=Tn.browserHTTPRequest(e,this.loadOptions);else{let t=Tn.getLoadHandlers(e,this.loadOptions);if(t.length===0)t.push(Tn.browserHTTPRequest(e,this.loadOptions));else if(t.length>1)throw new Error(`Found more than one (${t.length}) load handlers for URL '${[e]}'`);this.handler=t[0]}}async load(){if(this.findIOHandler(),this.handler.load==null)throw new Error("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let e=await this.handler.load();return this.loadSync(e)}loadSync(e){this.artifacts=e;let t=this.artifacts.modelTopology,n;this.artifacts.userDefinedMetadata!=null&&this.artifacts.userDefinedMetadata.signature!=null?n=this.artifacts.userDefinedMetadata.signature:n=this.artifacts.signature,this.signature=n,this.version=`${t.versions.producer}.${t.versions.minConsumer}`;let s=Tn.decodeWeights(this.artifacts.weightData,this.artifacts.weightSpecs);if(this.executor=new j2(Hv.Instance.transformGraph(t,this.signature)),this.executor.weightMap=this.convertTensorMapToTensorsMap(s),this.executor.resourceManager=this.resourceManager,e.modelInitializer!=null&&e.modelInitializer.node!=null){let r=Hv.Instance.transformGraph(e.modelInitializer);this.initializer=new j2(r),this.initializer.weightMap=this.executor.weightMap,this.initializer.resourceManager=this.resourceManager,this.initializer.executeAsync({},[])}return!0}async save(e,t){if(typeof e=="string"){let n=Tn.getSaveHandlers(e);if(n.length===0)throw new Error(`Cannot find any save handlers for URL '${e}'`);if(n.length>1)throw new Error(`Found more than one (${n.length}) save handlers for URL '${e}'`);e=n[0]}if(e.save==null)throw new Error("GraphModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");return e.save(this.artifacts)}predict(e,t){return this.execute(e,this.outputNodes)}normalizeInputs(e){if(!(e instanceof Ue)&&!Array.isArray(e))return e;if(e=Array.isArray(e)?e:[e],e.length!==this.inputNodes.length)throw new Error(`Input tensor count mismatch,the graph model has ${this.inputNodes.length} placeholders, while there are ${e.length} input tensors.`);return this.inputNodes.reduce((t,n,s)=>(t[n]=e[s],t),{})}normalizeOutputs(e){return e=e||this.outputNodes,Array.isArray(e)?e:[e]}execute(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=this.executor.execute(e,t);return n.length>1?n:n[0]}async executeAsync(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=await this.executor.executeAsync(e,t);return n.length>1?n:n[0]}convertTensorMapToTensorsMap(e){return Object.keys(e).reduce((t,n)=>(t[n]=[e[n]],t),{})}dispose(){this.executor.dispose(),this.initializer&&this.initializer.dispose(),this.resourceManager.dispose()}};async function pt(e,t={}){if(e==null)throw new Error("modelUrl in loadGraphModel() cannot be null. Please provide a url or an IOHandler that loads the model");t==null&&(t={}),t.fromTFHub&&e.load==null&&(e.endsWith("/")||(e=e+"/"),e=`${e}${DL}${FL}`);let n=new e7(e,t);return await n.load(),n}var OL="3.8.0",t7={};Pe(t7,{CSVDataset:()=>p7,Dataset:()=>Bl,FileDataSource:()=>b7,TextLineDataset:()=>c7,URLDataSource:()=>v7,array:()=>rB,csv:()=>mB,func:()=>AB,generator:()=>gB,microphone:()=>xB,version_data:()=>bB,webcam:()=>yB,zip:()=>aB});var PL=fa(n5()),ML=fa(n5());function zL(e,t){return jp(e,t)}function jp(e,t,n=new Map,s=new Set){if(e==null)return null;if(s.has(e))throw new Error("Circular references are not supported.");if(n.has(e))return n.get(e);let r=t(e);if(r.recurse&&r.value!==null)throw new Error("A deep map function may not return both a value and recurse=true.");if(r.recurse)if(Ll(e)){let a=Array.isArray(e)?[]:{};s.add(e);for(let o in e){let i=e[o],l=jp(i,t,n,s);a[o]=l}return s.delete(e),a}else throw new Error(`Can't recurse into non-iterable type: ${e}`);else return n.set(e,r.value),r.value}function LL(e,t=s7){return n7(e,t)}function n7(e,t,n=new Set){let s=e[0];if(n.has(s))throw new Error("Circular references are not supported.");let r=t(e);if(r.recurse&&r.value!==null)throw new Error("A deep zip function may not return both a value and recurse=true.");if(r.recurse)if(Ll(s)){let a=Array.isArray(s)?[]:{};n.add(s);for(let o in s){let i=e.map(u=>u[o]),l=n7(i,t,n);a[o]=l}return n.delete(s),a}else throw new Error(`Can't recurse into non-iterable type: ${s}`);else return r.value}function s7(e){return e===null?null:Ll(e[0])?{value:null,recurse:!0}:{value:e,recurse:!1}}async function r7(e,t){let n=new Map;jp(e,t,n);for(let r of Array.from(n.keys())){let a=n.get(r);if(I.isPromise(a)){let o=await a;n.set(r,o)}}return jp(e,t,n)}function Ll(e){return e!=null&&!ArrayBuffer.isView(e)&&(Array.isArray(e)||typeof e=="object"&&!(e instanceof Ue))}function BL(e){return e==null||WL(e)||Array.isArray(e)||typeof e=="object"&&e instanceof Ue||I.isTypedArray(e)}function WL(e){return e===null||typeof e!="object"&&typeof e!="function"}function VL(e){return zL(e,UL)}function UL(e){return e instanceof Ue?{value:e.clone(),recurse:!1}:Ll(e)?{value:null,recurse:!0}:{value:e,recurse:!1}}var a7=class{constructor(e){if(this.capacity=e,this.begin=0,this.end=0,e==null)throw new RangeError("Can't create a ring buffer of unknown capacity.");if(e<1)throw new RangeError("Can't create ring buffer of capacity < 1.");this.data=new Array(e),this.doubledCapacity=2*e}wrap(e){for(;e<0;)e+=this.doubledCapacity;return e%this.doubledCapacity}get(e){if(e<0)throw new RangeError("Can't get item at a negative index.");return this.data[e%this.capacity]}set(e,t){if(e<0)throw new RangeError("Can't set item at a negative index.");this.data[e%this.capacity]=t}length(){let e=this.end-this.begin;return e<0&&(e=this.doubledCapacity+e),e}isFull(){return this.length()===this.capacity}isEmpty(){return this.length()===0}push(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.set(this.end,e),this.end=this.wrap(this.end+1)}pushAll(e){for(let t of e)this.push(t)}pop(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");this.end=this.wrap(this.end-1);let e=this.get(this.end);return this.set(this.end,void 0),e}unshift(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.begin=this.wrap(this.begin-1),this.set(this.begin,e)}shift(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let e=this.get(this.begin);return this.set(this.begin,void 0),this.begin=this.wrap(this.begin+1),e}shuffleExcise(e){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let t=this.wrap(this.begin+e),n=this.get(t);return this.set(t,this.pop()),n}},q2=class extends a7{constructor(){super(q2.INITIAL_CAPACITY)}isFull(){return!1}push(e){super.isFull()&&this.expand(),super.push(e)}unshift(e){super.isFull()&&this.expand(),super.unshift(e)}expand(){let e=this.capacity*2,t=new Array(e),n=this.length();for(let s=0;s<n;s++)t[s]=this.get(this.wrap(this.begin+s));this.data=t,this.capacity=e,this.doubledCapacity=2*this.capacity,this.begin=0,this.end=n}};q2.INITIAL_CAPACITY=32;function o7(e){return new jL(e)}function X2(e){return new qL(e)}function HL(e,t){return new l7(e,t)}function GL(e,t=ta.FAIL){return new nB(e,t)}var Yt=class{async toArray(){let e=[],t=await this.next();for(;!t.done;)e.push(t.value),t=await this.next();return e}async toArrayForTest(){let e=this.prefetch(100),t=[],n=await e.next();for(;!n.done;)t.push(n.value),n=await e.next();return t}async resolveFully(){let e=await this.next();for(;!e.done;)e=await this.next()}async resolveWhile(e){let t=await this.next(),n=e(t.value);for(;!t.done&&n;)t=await this.next(),n=e(t.value)}handleErrors(e){return new eB(this,e)}filter(e){return new JL(this,e)}map(e){return new QL(this,e)}mapAsync(e){return new i7(this,e)}serialMapAsync(e){return new i7(this,e).serial()}flatmap(e){return new tB(this,e)}async forEachAsync(e){return this.map(e).resolveFully()}async serialForEach(e){return this.serialMapAsync(e).resolveWhile(t=>t===!0)}rowMajorBatch(e,t=!0){return new YL(this,e,t)}columnMajorBatch(e,t=!0,n=s7){return this.rowMajorBatch(e,t).map(r=>LL(r,n))}concatenate(e,t){return new l7(o7([this,e]),t)}take(e){return e<0||e==null?this:new ZL(this,e)}skip(e){return e<0||e==null?this:new KL(this,e)}prefetch(e){return new u7(this,e)}shuffle(e,t){return new sB(this,e,t)}serial(){return new XL(this)}},jL=class extends Yt{constructor(e){super();this.items=e,this.trav=0}summary(){return`Array of ${this.items.length} items`}async next(){if(this.trav>=this.items.length)return{value:null,done:!0};let e=this.items[this.trav];return this.trav++,{value:VL(e),done:!1}}},qL=class extends Yt{constructor(e){super();this.nextFn=e}summary(){return"Function call"}async next(){try{return this.nextFn()}catch(e){throw e.message=`Error thrown while iterating through a dataset: ${e.message}`,e}}},XL=class extends Yt{constructor(e){super();this.upstream=e,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Serial`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){return this.upstream.next()}},KL=class extends Yt{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Skip`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.count++<this.maxCount;){let e=await this.upstream.next();if(e.done)return e;K(e.value)}return this.upstream.next()}},ZL=class extends Yt{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0}summary(){return`${this.upstream.summary()} -> Take`}async next(){return this.count++>=this.maxCount?{value:null,done:!0}:this.upstream.next()}},YL=class extends Yt{constructor(e,t,n=!0){super();this.upstream=e,this.batchSize=t,this.enableSmallLastBatch=n,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> RowMajorBatch`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){let e=[];for(;e.length<this.batchSize;){let t=await this.upstream.next();if(t.done)return this.enableSmallLastBatch&&e.length>0?{value:e,done:!1}:{value:null,done:!0};e.push(t.value)}return{value:e,done:!1}}},JL=class extends Yt{constructor(e,t){super();this.upstream=e,this.predicate=t,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Filter`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;){let e=await this.upstream.next();if(e.done||this.predicate(e.value))return e;K(e.value)}}},QL=class extends Yt{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Map`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=Cs.getTensorsInContainer(e.value),n=this.transform(e.value),s=Cs.getTensorsInContainer(n);for(let r of t)Cs.isTensorInList(r,s)||r.dispose();return{value:n,done:!1}}},eB=class extends Yt{constructor(e,t){super();this.upstream=e,this.handler=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> handleErrors`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;)try{return await this.upstream.next()}catch(e){if(!this.handler(e))return{value:null,done:!0}}}},i7=class extends Yt{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> AsyncMap`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=Cs.getTensorsInContainer(e.value),n=await this.transform(e.value),s=Cs.getTensorsInContainer(n);for(let r of t)Cs.isTensorInList(r,s)||r.dispose();return{value:n,done:!1}}},K2=class extends Yt{constructor(){super();this.outputQueue=new q2,this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.outputQueue.length()===0;)if(!await this.pump())return{value:null,done:!0};return{value:this.outputQueue.shift(),done:!1}}},tB=class extends K2{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Flatmap`}async pump(){let e=await this.upstream.next();if(e.done)return!1;let t=Cs.getTensorsInContainer(e.value),n=this.transform(e.value),s=Cs.getTensorsInContainer(n);this.outputQueue.pushAll(n);for(let r of t)Cs.isTensorInList(r,s)||r.dispose();return!0}},l7=class extends Yt{constructor(e,t){super();this.baseErrorHandler=t,this.lastRead=null,this.iterator=null,this.moreIterators=e}summary(){return"TODO: fill in upstream of chained summaries -> Chained"}async next(){return this.lastRead=this.readFromChain(this.lastRead),this.lastRead}async readFromChain(e){if(await e,this.iterator==null){let n=await this.moreIterators.next();if(n.done)return{value:null,done:!0};this.iterator=n.value,this.baseErrorHandler!=null&&(this.iterator=this.iterator.handleErrors(this.baseErrorHandler))}let t=await this.iterator.next();return t.done?(this.iterator=null,this.readFromChain(e)):t}},ta;(function(e){e[e.FAIL=0]="FAIL",e[e.SHORTEST=1]="SHORTEST",e[e.LONGEST=2]="LONGEST"})(ta||(ta={}));var nB=class extends Yt{constructor(e,t=ta.FAIL){super();this.iterators=e,this.mismatchMode=t,this.count=0,this.currentPromise=null}summary(){return"{TODO: fill in upstream of zip summaries} -> Zip"}async nextState(e){await e;let t=0,n=0;function s(a){return a instanceof Yt?{value:a.next().then(i=>(t++,i.done&&n++,i.value)),recurse:!1}:{value:null,recurse:!0}}let r=await r7(this.iterators,s);if(t===n)return{value:null,done:!0};if(n>0)switch(this.mismatchMode){case ta.FAIL:throw new Error(`Zipped streams should have the same length. Mismatched at element ${this.count}.`);case ta.SHORTEST:return{value:null,done:!0};case ta.LONGEST:default:}return this.count++,{value:r,done:!1}}async next(){return this.currentPromise=this.nextState(this.currentPromise),this.currentPromise}},u7=class extends Yt{constructor(e,t){super();this.upstream=e,this.bufferSize=t,this.buffer=new a7(t)}summary(){return`${this.upstream.summary()} -> Prefetch`}refill(){for(;!this.buffer.isFull();){let e=this.upstream.next();this.buffer.push(e)}}next(){return this.refill(),this.buffer.shift()}},sB=class extends u7{constructor(e,t,n){super(e,t);this.upstream=e,this.windowSize=t,this.upstreamExhausted=!1,this.random=ML.alea(n||I.now().toString()),this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}randomInt(e){return Math.floor(this.random()*e)}chooseIndex(){return this.randomInt(this.buffer.length())}async serialNext(){for(this.upstreamExhausted||this.refill();!this.buffer.isEmpty();){let e=this.chooseIndex(),t=await this.buffer.shuffleExcise(e);if(t.done)this.upstreamExhausted=!0;else return this.refill(),t}return{value:null,done:!0}}},Bl=class{constructor(){this.size=null}batch(e,t=!0){let n=this;I.assert(e>0,()=>`batchSize needs to be positive, but it is
|
|
${e}`);let s;return this.size===1/0||this.size==null?s=this.size:t?s=Math.ceil(this.size/e):s=Math.floor(this.size/e),Gn(async()=>(await n.iterator()).columnMajorBatch(e,t,oB),s)}concatenate(e){let t=this,n;return this.size===1/0||e.size===1/0?n=1/0:this.size!=null&&e.size!=null?n=this.size+e.size:n=null,Gn(async()=>(await t.iterator()).concatenate(await e.iterator()),n)}filter(e){let t=this,n;return this.size===1/0?n=1/0:n=null,Gn(async()=>(await t.iterator()).filter(s=>H(()=>e(s))),n)}async forEachAsync(e){return(await this.iterator()).forEachAsync(e)}map(e){let t=this;return Gn(async()=>(await t.iterator()).map(n=>H(()=>e(n))),this.size)}mapAsync(e){let t=this;return Gn(async()=>(await t.iterator()).mapAsync(e),this.size)}prefetch(e){if(e==null)throw new RangeError("`Dataset.prefetch()` requires bufferSize to be specified.");let t=this;return Gn(async()=>(await t.iterator()).prefetch(e),this.size)}repeat(e){let t=this,n;return this.size!=null&&e>0?n=this.size*e:e===0?n=0:this.size!=null&&(e===void 0||e<0)?n=1/0:n=null,Gn(async()=>{let s=X2(async()=>({value:await t.iterator(),done:!1}));return HL(s.take(e))},n)}skip(e){let t=this,n;return this.size!=null&&e>=0&&this.size>=e?n=this.size-e:this.size!=null&&(this.size<e||e===void 0||e<0)?n=0:n=null,Gn(async()=>(await t.iterator()).skip(e),n)}shuffle(e,t,n=!0){if(e==null||e<0)throw this.size==null?new RangeError("`Dataset.shuffle()` requires bufferSize to be specified."):new RangeError(`\`Dataset.shuffle()\` requires bufferSize to be specified. If your data fits in main memory (for regular JS objects), and/or GPU memory (for \`tf.Tensor\`s), consider setting bufferSize to the dataset size (${this.size} elements)`);let s=this,r=PL.alea(t||I.now().toString());return Gn(async()=>{let a=r.int32();return n&&(a+=r.int32()),(await s.iterator()).shuffle(e,a.toString())},this.size)}take(e){let t=this,n;return this.size!=null&&this.size>e?n=e:this.size!=null&&this.size<=e?n=this.size:n=null,Gn(async()=>(await t.iterator()).take(e),n)}async toArray(){if(this.size===1/0)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArray()}async toArrayForTest(){if(this.size===1/0)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArrayForTest()}};Bl.MAX_BUFFER_SIZE=1e4;function Gn(e,t=null){return new class extends Bl{constructor(){super(...arguments);this.size=t}async iterator(){return e()}}}function rB(e){return Gn(async()=>o7(e),e.length)}function aB(e){if(!Ll(e))throw new Error("The argument to zip() must be an object or array.");let t;if(Array.isArray(e))for(let n=0;n<e.length;n++)t=t==null?e[n].size:Math.min(t,e[n].size);else if(e instanceof Object)for(let n in e)t=t==null?e[n].size:Math.min(t,e[n].size);return Gn(async()=>{let n=await r7(e,s=>{if(s instanceof Bl)return{value:s.iterator(),recurse:!1};if(Ll(s))return{value:null,recurse:!0};throw new Error("Leaves of the structure passed to zip() must be Datasets, not primitives.")});return GL(n,ta.SHORTEST)},t)}function oB(e){if(e===null)return null;let t=e[0];return BL(t)?{value:iB(e),recurse:!1}:{value:null,recurse:!0}}function iB(e){if(e.length===0)throw new Error("Can't make a batch of zero elements.");return e[0]instanceof Ue?Nn(e):on(e)}var c7=class extends Bl{constructor(e){super();this.input=e}async iterator(){return(await this.input.iterator()).decodeUTF8().split(`
|
|
`).map(s=>(s.endsWith("\r")&&(s=s.slice(0,-1)),s))}},qp='"',_c=Symbol("out"),d7=Symbol("field"),Xp=Symbol("quote"),Z2=Symbol("quoteafterquote"),h7=Symbol("quoteinquote"),p7=class extends Bl{constructor(e,t){super();this.input=e,this.hasHeader=!0,this.fullColumnNames=null,this.columnNamesValidated=!1,this.columnConfigs=null,this.configuredColumnsOnly=!1,this.delimiter=",",this.delimWhitespace=!1,this.base=new c7(e),t||(t={}),this.hasHeader=t.hasHeader!==!1,this.fullColumnNames=t.columnNames,this.columnConfigs=t.columnConfigs,this.configuredColumnsOnly=t.configuredColumnsOnly,t.delimWhitespace?(I.assert(t.delimiter==null,()=>"Delimiter should not be provided when delimWhitespace is true."),this.delimWhitespace=!0,this.delimiter=" "):this.delimiter=t.delimiter?t.delimiter:","}async columnNames(){return this.columnNamesValidated||await this.setColumnNames(),this.configuredColumnsOnly?Object.keys(this.columnConfigs):this.fullColumnNames}async setColumnNames(){let e=await this.maybeReadHeaderLine();if(!this.fullColumnNames&&!e)throw new Error("Column names must be provided if there is no header line.");this.fullColumnNames&&e&&I.assert(e.length===this.fullColumnNames.length,()=>"The length of provided columnNames ("+this.fullColumnNames.length.toString()+") does not match the length of the header line read from file ("+e.length.toString()+")."),this.fullColumnNames||(this.fullColumnNames=e);let t=this.fullColumnNames.reduce((s,r)=>(s[r]=s[r]+1||1,s),{}),n=Object.keys(t).filter(s=>t[s]>1);if(I.assert(n.length===0,()=>"Duplicate column names found: "+n.toString()),this.columnConfigs){for(let s of Object.keys(this.columnConfigs))if(this.fullColumnNames.indexOf(s)===-1)throw new Error('The key "'+s+'" provided in columnConfigs does not match any of the column names ('+this.fullColumnNames.toString()+").")}this.columnNamesValidated=!0}async maybeReadHeaderLine(){if(this.hasHeader){let t=await(await this.base.iterator()).next();if(t.done)throw new Error("No data was found for CSV parsing.");let n=t.value;return this.parseRow(n,!1)}else return null}async iterator(){this.columnNamesValidated||await this.setColumnNames();let e=await this.base.iterator();return this.hasHeader&&(e=e.skip(1)),e.map(t=>this.makeDataElement(t))}makeDataElement(e){let t=this.parseRow(e),n={},s={};for(let r=0;r<this.fullColumnNames.length;r++){let a=this.fullColumnNames[r],o=this.columnConfigs?this.columnConfigs[a]:null;if(!(this.configuredColumnsOnly&&!o)){let i=t[r],l=null;if(i==="")if(o&&o.default!==void 0)l=o.default;else{if(o&&(o.required||o.isLabel))throw new Error(`Required column ${a} is empty in this line: ${e}`);l=void 0}else{let u=Number(i);if(isNaN(u))o&&o.dtype==="bool"?l=this.getBoolean(i):l=i;else if(!o||!o.dtype)l=u;else switch(o.dtype){case"float32":l=u;break;case"int32":l=Math.floor(u);break;case"bool":l=this.getBoolean(i);break;default:l=u}}o&&o.isLabel?s[a]=l:n[a]=l}}return Object.keys(s).length===0?n:{xs:n,ys:s}}getBoolean(e){return e==="1"||e.toLowerCase()==="true"?1:0}parseRow(e,t=!0){let n=[],s=0,r=e.length,a=_c;for(let o=0;o<r;o++)switch(a){case _c:switch(e.charAt(o)){case qp:s=o+1,a=Xp;break;case this.delimiter:if(s=o+1,this.delimiter===" "&&this.delimWhitespace)break;n.push(""),a=_c;break;default:a=d7,s=o;break}break;case d7:switch(e.charAt(o)){case this.delimiter:n.push(e.substring(s,o)),a=_c,s=o+1;break;default:}break;case Xp:switch(e.charAt(o)){case qp:a=Z2;break;default:}break;case Z2:switch(e.charAt(o)){case this.delimiter:n.push(e.substring(s,o-1)),a=_c,s=o+1;break;case qp:a=Xp;break;default:a=h7;break}break;case h7:switch(e.charAt(o)){case qp:a=Xp;break;default:}break;default:}if(a===Z2?n.push(e.substring(s,r-1)):n.push(e.substring(s)),t&&n.length!==this.fullColumnNames.length)throw new Error(`Invalid row in csv file. Should have ${this.fullColumnNames.length} elements in a row, but got ${n}`);return n}},f7=class extends Yt{constructor(e){super();this.microphoneConfig=e,this.isClosed=!1,this.fftSize=e.fftSize||1024;let t=Math.log2(this.fftSize);if(this.fftSize<0||t<4||t>14||!Number.isInteger(t))throw new Error(`Invalid fftSize: it must be a power of 2 between 2 to 4 and 2 to 14, but got ${this.fftSize}`);if(this.numFrames=e.numFramesPerSpectrogram||43,this.sampleRateHz=e.sampleRateHz,this.columnTruncateLength=e.columnTruncateLength||this.fftSize,this.audioTrackConstraints=e.audioTrackConstraints,this.smoothingTimeConstant=e.smoothingTimeConstant||0,this.includeSpectrogram=e.includeSpectrogram!==!1,this.includeWaveform=e.includeWaveform===!0,!this.includeSpectrogram&&!this.includeWaveform)throw new Error("Both includeSpectrogram and includeWaveform are false. At least one type of data should be returned.")}summary(){return"microphone"}static async create(e={}){if(ee().get("IS_NODE"))throw new Error("microphone API is only supported in browser environment.");let t=new f7(e);return await t.start(),t}async start(){try{this.stream=await navigator.mediaDevices.getUserMedia({audio:this.audioTrackConstraints==null?!0:this.audioTrackConstraints,video:!1})}catch(n){throw new Error(`Error thrown while initializing video stream: ${n.message}`)}if(!this.stream)throw new Error("Could not obtain audio from microphone.");let e=window.AudioContext||window.webkitAudioContext;if(this.audioContext=new e,!this.sampleRateHz)this.sampleRateHz=this.audioContext.sampleRate;else if(this.audioContext.sampleRate!==this.sampleRateHz)throw new Error(`Mismatch in sampling rate: Expected: ${this.sampleRateHz}; Actual: ${this.audioContext.sampleRate}`);let t=this.audioContext.createMediaStreamSource(this.stream);this.analyser=this.audioContext.createAnalyser(),this.analyser.fftSize=this.fftSize*2,this.analyser.smoothingTimeConstant=this.smoothingTimeConstant,t.connect(this.analyser),this.freqData=new Float32Array(this.fftSize),this.timeData=new Float32Array(this.fftSize)}async next(){if(this.isClosed)return{value:null,done:!0};let e,t,n=await this.getAudioData();if(this.includeSpectrogram){let s=this.flattenQueue(n.freqDataQueue);e=this.getTensorFromAudioDataArray(s,[this.numFrames,this.columnTruncateLength,1])}if(this.includeWaveform){let s=this.flattenQueue(n.timeDataQueue);t=this.getTensorFromAudioDataArray(s,[this.numFrames*this.fftSize,1])}return{value:{spectrogram:e,waveform:t},done:!1}}async capture(){return(await this.next()).value}async getAudioData(){let e=[],t=[],n=0;return new Promise(s=>{let r=setInterval(()=>{this.includeSpectrogram&&(this.analyser.getFloatFrequencyData(this.freqData),this.freqData[0]===-1/0&&s({freqDataQueue:e,timeDataQueue:t}),e.push(this.freqData.slice(0,this.columnTruncateLength))),this.includeWaveform&&(this.analyser.getFloatTimeDomainData(this.timeData),t.push(this.timeData.slice())),++n===this.numFrames&&(clearInterval(r),s({freqDataQueue:e,timeDataQueue:t}))},this.fftSize/this.sampleRateHz*1e3)})}stop(){this.isClosed||(this.isClosed=!0,this.analyser.disconnect(),this.audioContext.close(),this.stream!=null&&this.stream.getTracks().length>0&&this.stream.getTracks()[0].stop())}toArray(){throw new Error("Can not convert infinite audio stream to array.")}getSampleRate(){return this.sampleRateHz}flattenQueue(e){let t=e[0].length,n=new Float32Array(e.length*t);return e.forEach((s,r)=>n.set(s,r*t)),n}getTensorFromAudioDataArray(e,t){let n=new Float32Array(I.sizeFromShape(t));return n.set(e,n.length-e.length),on(n,t)}},m7=class extends Yt{constructor(e,t){super();if(this.webcamVideoElement=e,this.webcamConfig=t,this.isClosed=!0,this.resize=!1,this.needToResize())if(this.resize=!0,this.cropSize=[this.webcamConfig.resizeHeight,this.webcamConfig.resizeWidth],this.cropBoxInd=Ot([0],"int32"),this.webcamConfig.centerCrop){let n=this.webcamConfig.resizeWidth*1/this.webcamVideoElement.width,s=this.webcamConfig.resizeHeight*1/this.webcamVideoElement.height,r=(1-n)/2,a=(1-s)/2,o=r+n,i=s+a;this.cropBox=_s([a,r,i,o],[1,4])}else this.cropBox=_s([0,0,1,1],[1,4])}summary(){return"webcam"}static async create(e,t={}){if(ee().get("IS_NODE"))throw new Error("tf.data.webcam is only supported in browser environment.");if(!e){if(e=document.createElement("video"),!t.resizeWidth||!t.resizeHeight)throw new Error("Please provide webcam video element, or resizeWidth and resizeHeight to create a hidden video element.");e.width=t.resizeWidth,e.height=t.resizeHeight}let n=new m7(e,t);return await n.start(),n}async start(){this.webcamConfig.facingMode&&I.assert(this.webcamConfig.facingMode==="user"||this.webcamConfig.facingMode==="environment",()=>`Invalid webcam facing mode: ${this.webcamConfig.facingMode}. Please provide 'user' or 'environment'`);try{this.stream=await navigator.mediaDevices.getUserMedia({video:{deviceId:this.webcamConfig.deviceId,facingMode:this.webcamConfig.facingMode?this.webcamConfig.facingMode:"user",width:this.webcamVideoElement.width,height:this.webcamVideoElement.height}})}catch(e){throw e.message=`Error thrown while initializing video stream: ${e.message}`,e}if(!this.stream)throw new Error("Could not obtain video from webcam.");try{this.webcamVideoElement.srcObject=this.stream}catch(e){console.log(e),this.webcamVideoElement.src=window.URL.createObjectURL(this.stream)}return this.webcamVideoElement.play(),this.isClosed=!1,new Promise(e=>{this.webcamVideoElement.onloadedmetadata=()=>{e()}})}async next(){if(this.isClosed)return{value:null,done:!0};let e;try{e=rs.fromPixels(this.webcamVideoElement)}catch(t){throw new Error(`Error thrown converting video to pixels: ${JSON.stringify(t)}`)}if(this.resize)try{return{value:this.cropAndResizeFrame(e),done:!1}}catch(t){throw new Error(`Error thrown cropping the video: ${t.message}`)}finally{e.dispose()}else return{value:e,done:!1}}needToResize(){return!!(this.webcamConfig.resizeWidth&&this.webcamConfig.resizeHeight&&(this.webcamVideoElement.width!==this.webcamConfig.resizeWidth||this.webcamVideoElement.height!==this.webcamConfig.resizeHeight))}cropAndResizeFrame(e){return H(()=>{let t=Ft(ce(e,"float32"),0),n;n=_e.cropAndResize(t,this.cropBox,this.cropBoxInd,this.cropSize,"bilinear");let s=n.shape;return U(n,s.slice(1))})}async capture(){return(await this.next()).value}stop(){this.stream.getTracks().forEach(t=>t.stop());try{this.webcamVideoElement.srcObject=null}catch(t){console.log(t),this.webcamVideoElement.src=null}this.isClosed=!0}toArray(){throw new Error("Can not convert infinite video stream to array.")}},A7=class{},g7=class extends Yt{split(e){return new lB(this,e)}},lB=class extends g7{constructor(e,t){super();this.upstream=e,this.impl=new uB(e,t)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},uB=class extends K2{constructor(e,t){super();this.upstream=e,this.separator=t,this.carryover=""}summary(){return`${this.upstream.summary()} -> Split('${this.separator}')`}async pump(){let e=await this.upstream.next();if(e.done)return this.carryover===""?!1:(this.outputQueue.push(this.carryover),this.carryover="",!0);let t=e.value.split(this.separator);t[0]=this.carryover+t[0];for(let n of t.slice(0,-1))this.outputQueue.push(n);return this.carryover=t[t.length-1],!0}},cB=class extends Yt{decodeUTF8(){return new dB(this)}},dB=class extends g7{constructor(e){super();this.upstream=e,this.impl=new hB(e)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},hB=class extends K2{constructor(e){super();if(this.upstream=e,ee().get("IS_BROWSER"))this.decoder=new TextDecoder("utf-8");else{let{StringDecoder:t}=PI();this.decoder=new t("utf8")}}summary(){return`${this.upstream.summary()} -> Utf8`}async pump(){let e=await this.upstream.next(),t;if(e.done)return!1;t=e.value;let n;return ee().get("IS_BROWSER")?n=this.decoder.decode(t,{stream:!0}):n=this.decoder.write(Buffer.from(t.buffer)),this.outputQueue.push(n),!0}},y7=class extends cB{constructor(e,t={}){super();this.file=e,this.options=t,I.assert(e instanceof Uint8Array||(ee().get("IS_BROWSER")?e instanceof File||e instanceof Blob:!1),()=>"FileChunkIterator only supports File, Blob and Uint8Array right now."),this.offset=t.offset||0,this.chunkSize=t.chunkSize||1024*1024}summary(){return`FileChunks ${this.file}`}async next(){return this.offset>=(this.file instanceof Uint8Array?this.file.byteLength:this.file.size)?{value:null,done:!0}:{value:await new Promise((t,n)=>{let s=this.offset+this.chunkSize;if(this.file instanceof Uint8Array)t(new Uint8Array(this.file.slice(this.offset,s)));else{let r=new FileReader;r.onload=o=>{let i=r.result;if(i instanceof ArrayBuffer&&(i=new Uint8Array(i)),!(i instanceof Uint8Array))return n(new TypeError("FileReader returned unknown type."));t(i)},r.onabort=o=>n(new Error("Aborted")),r.onerror=o=>n(new Error(o.type));let a=this.file.slice(this.offset,s);r.readAsArrayBuffer(a)}this.offset=s}),done:!1}}};async function pB(e,t={}){let n,s;typeof e=="string"?n=e:(n=e.url,s=fB(e));let r=await I.fetch(n,s);if(r.ok){let a=new Uint8Array(await r.arrayBuffer());return new y7(a,t)}else throw new Error(r.statusText)}var fB=e=>({method:e.method,headers:e.headers,body:e.body,mode:e.mode,credentials:e.credentials,cache:e.cache,redirect:e.redirect,referrer:e.referrer,integrity:e.integrity});function x7(e){return typeof e=="string"&&e.substr(0,7)==="file://"}var b7=class extends A7{constructor(e,t={}){super();this.input=e,this.options=t}async iterator(){if(x7(this.input)&&ee().get("IS_NODE")){let e=li("fs");this.input=e.readFileSync(this.input.substr(7))}return new y7(this.input,this.options)}},v7=class extends A7{constructor(e,t={}){super();this.url=e,this.fileOptions=t}async iterator(){return x7(this.url)?new b7(this.url,this.fileOptions).iterator():pB(this.url,this.fileOptions)}};function mB(e,t={}){return new p7(new v7(e),t)}function AB(e){let t=X2(e);return Gn(async()=>t)}function gB(e){return Gn(async()=>{let t=await e();return X2(()=>t.next())})}async function yB(e,t){return m7.create(e,t)}async function xB(e){return f7.create(e)}var bB="3.8.0";function ke(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&I.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the CPU backend.`)})}var vB=Js.whereImpl,Kp=class extends ku{constructor(){super();this.blockSize=48,this.firstUse=!0,this.data=new Fd(this,Ar())}nextDataId(){return Kp.nextDataId++}write(e,t,n){this.firstUse&&(this.firstUse=!1,ee().get("IS_NODE")&&$.warn(`
|
|
============================
|
|
Hi there \u{1F44B}. Looks like you are running TensorFlow.js in Node.js. To speed things up dramatically, install our node backend, which binds to TensorFlow C++, by running npm i @tensorflow/tfjs-node, or npm i @tensorflow/tfjs-node-gpu if you have CUDA. Then call require('@tensorflow/tfjs-node'); (-gpu suffix for CUDA) at the start of your program. Visit https://github.com/tensorflow/tfjs-node for more details.
|
|
============================`));let s={id:this.nextDataId()};return this.data.set(s,{values:e,dtype:n,refCount:1}),s}makeTensorInfo(e,t,n){let s;if(t==="string"&&n!=null&&n.length>0&&I.isString(n[0])){let r=n.map(a=>I.encodeString(a));s=this.write(r,e,t)}else s=this.write(n,e,t);return{dataId:s,shape:e,dtype:t}}refCount(e){return this.data.has(e)?this.data.get(e).refCount:0}incRef(e){let t=this.data.get(e);t.refCount++}decRef(e){if(this.data.has(e)){let t=this.data.get(e);t.refCount--}}move(e,t,n,s,r){this.data.set(e,{values:t,dtype:s,refCount:r})}numDataIds(){return this.data.numDataIds()}async read(e){return this.readSync(e)}readSync(e){let{dtype:t,complexTensorInfos:n}=this.data.get(e);if(t==="complex64"){let s=this.readSync(n.real.dataId),r=this.readSync(n.imag.dataId);return $.mergeRealAndImagArrays(s,r)}return this.data.get(e).values}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(s=>I.decodeString(s))}catch(s){throw new Error("Failed to decode encoded string bytes into utf-8")}return Be(e.shape,e.dtype,n)}makeOutput(e,t,n){let s=this.write(e,t,n);return Ar().makeTensorFromDataId(s,t,n,this)}disposeData(e,t=!1){if(this.data.has(e)){if(this.data.get(e).refCount--,!t&&this.data.get(e).refCount>0)return!1;let{complexTensorInfos:n}=this.data.get(e);n!=null&&(this.disposeData(n.real.dataId,!0),this.disposeData(n.imag.dataId,!0)),this.data.delete(e)}return!0}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}async time(e){let t=I.now();return e(),{kernelMs:I.now()-t}}memory(){return{unreliable:!0,reasons:["The reported memory is an upper bound. Due to automatic garbage collection, the true allocated memory may be less."]}}where(e){ke([e],"where");let t=this.readSync(e.dataId);return vB(e.shape,t)}dispose(){}floatPrecision(){return 32}epsilon(){return super.epsilon()}};Kp.nextDataId=0;var Y2={};Pe(Y2,{addImpl:()=>k7,bincountImpl:()=>Q2,bincountReduceImpl:()=>I7,ceilImpl:()=>S7,concatImpl:()=>e1,equalImpl:()=>C7,expImpl:()=>N7,expm1Impl:()=>R7,floorImpl:()=>_7,gatherNdImpl:()=>$7,gatherV2Impl:()=>F7,greaterEqualImpl:()=>O7,greaterImpl:()=>D7,lessEqualImpl:()=>M7,lessImpl:()=>P7,linSpaceImpl:()=>z7,logImpl:()=>L7,maxImpl:()=>B7,maximumImpl:()=>W7,minimumImpl:()=>V7,multiplyImpl:()=>t1,negImpl:()=>U7,notEqualImpl:()=>H7,prodImpl:()=>G7,rangeImpl:()=>s1,rsqrtImpl:()=>j7,simpleAbsImpl:()=>w7,sliceImpl:()=>Jp,sparseFillEmptyRowsImpl:()=>q7,sparseReshapeImpl:()=>X7,sparseSegmentReductionImpl:()=>r1,squaredDifferenceImpl:()=>K7,stridedSliceImpl:()=>Z7,stringNGramsImpl:()=>Y7,stringSplitImpl:()=>J7,stringToHashBucketFastImpl:()=>Q7,subImpl:()=>ew,tileImpl:()=>tw,topKImpl:()=>sw,transposeImpl:()=>n1,uniqueImpl:()=>rw});function w7(e){let t=new Float32Array(e.length);for(let n=0;n<e.length;++n)t[n]=Math.abs(e[n]);return t}var wB=e=>{let{x:t}=e.inputs,n=e.backend;ke(t,"abs");let s=new Float32Array(I.sizeFromShape(t.shape)),r=n.data.get(t.dataId).values;return s=w7(r),n.makeOutput(s,t.shape,"float32")},kB={kernelName:di,backendName:"cpu",kernelFunc:wB};function Mt(e){return(t,n,s,r,a)=>{let o=$.assertAndGetBroadcastShape(t,n),i=o.length,l=I.computeStrides(o),u=I.sizeFromShape(o),c=I.getTypedArrayFromDType(a,u),d=t.length,h=n.length,p=I.computeStrides(t),f=I.computeStrides(n),m=$.getBroadcastDims(t,o),A=$.getBroadcastDims(n,o);if(m.length+A.length===0)for(let g=0;g<c.length;++g)c[g]=e(s[g%s.length],r[g%r.length]);else for(let g=0;g<c.length;++g){let y=I.indexToLoc(g,i,l),x=y.slice(-d);m.forEach(w=>x[w]=0);let b=I.locToIndex(x,d,p),v=y.slice(-h);A.forEach(w=>v[w]=0);let k=I.locToIndex(v,h,f);c[g]=e(s[b],r[k])}return[c,o]}}function jn(e){let{inputs:t,backend:n}=e,{real:s,imag:r}=t,a=n.data.get(s.dataId).values,o=n.data.get(r.dataId).values,i=n.makeTensorInfo(s.shape,"complex64"),l=n.data.get(i.dataId);return l.complexTensorInfos={real:n.makeTensorInfo(s.shape,"float32",a),imag:n.makeTensorInfo(r.shape,"float32",o)},i}var IB={kernelName:Wd,backendName:"cpu",kernelFunc:jn};function Zp(e,t,n="float32"){if(n==="complex64"){let r=Zp(e,t,"float32"),a=Zp(e,t,"float32");return jn({inputs:{real:r,imag:a},backend:e})}let s=I.makeZerosTypedArray(I.sizeFromShape(t),n);return e.makeTensorInfo(t,n,s)}function rr(e){let{inputs:t,backend:n}=e,{x:s}=t;return n.incRef(s.dataId),{dataId:s.dataId,shape:s.shape,dtype:s.dtype}}var SB={kernelName:Oa,backendName:"cpu",kernelFunc:rr};function zo(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.data.get(s.dataId).complexTensorInfos.real,a=n.data.get(r.dataId).values;return n.makeTensorInfo(r.shape,r.dtype,a)}var CB={kernelName:lh,backendName:"cpu",kernelFunc:zo};function na(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dtype:a}=s;if(a==="complex64"){if(r.dtype==="complex64")return rr({inputs:{x:r},backend:n});let o=Zp(n,r.shape,r.dtype),i=na({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),l=jn({inputs:{real:i,imag:o},backend:n});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),l}if(r.dtype==="complex64"){let o=zo({inputs:{input:r},backend:n}),i=na({inputs:{x:o},backend:n,attrs:{dtype:a}});return n.disposeIntermediateTensorInfo(o),i}if(!I.hasEncodingLoss(r.dtype,a)){let o=rr({inputs:{x:r},backend:n});return{dataId:o.dataId,shape:o.shape,dtype:a}}if(a==="int32"){let o=n.data.get(r.dataId).values,i=Int32Array.from(o);return n.makeTensorInfo(r.shape,"int32",i)}if(a==="bool"){let o=n.data.get(r.dataId).values,i=I.toTypedArray([0],r.dtype),[l,u]=Mt((c,d)=>c!==d?1:0)(r.shape,[],o,i,"bool");return n.makeTensorInfo(u,"bool",l)}throw new Error(`Error in Cast: failed to cast ${r.dtype} to ${a}`)}var TB={kernelName:va,backendName:"cpu",kernelFunc:na};function Jt(e,t,n,s){return n==null?({inputs:r,backend:a})=>{let{a:o,b:i}=r,l=a;ke([o,i],e);let u=l.data.get(o.dataId).values,c=l.data.get(i.dataId).values,d=o.dtype==="string"?$.fromUint8ToStringArray(u):u,h=o.dtype==="string"?$.fromUint8ToStringArray(c):c,p=s||o.dtype,[f,m]=t(o.shape,i.shape,d,h,p);return l.makeTensorInfo(m,p,f)}:({inputs:r,backend:a})=>{let{a:o,b:i}=r,l=a;if(o.dtype==="complex64"||i.dtype==="complex64"){let u=na({inputs:{x:o},backend:l,attrs:{dtype:"complex64"}}),c=l.data.get(u.dataId),d=c.complexTensorInfos.real,h=c.complexTensorInfos.imag,p=l.data.get(d.dataId).values,f=l.data.get(h.dataId).values,m=na({inputs:{x:i},backend:l,attrs:{dtype:"complex64"}}),A=l.data.get(m.dataId),g=A.complexTensorInfos.real,y=A.complexTensorInfos.imag,x=l.data.get(g.dataId).values,b=l.data.get(y.dataId).values,[v,k,w]=n(o.shape,i.shape,p,f,x,b),C=l.makeTensorInfo(w,"float32",v),E=l.makeTensorInfo(w,"float32",k),M=jn({inputs:{real:C,imag:E},backend:l});return l.disposeIntermediateTensorInfo(u),l.disposeIntermediateTensorInfo(m),l.disposeIntermediateTensorInfo(C),l.disposeIntermediateTensorInfo(E),M}else{let u=l.data.get(o.dataId).values,c=l.data.get(i.dataId).values,d=s||o.dtype,[h,p]=t(o.shape,i.shape,u,c,d);return l.makeTensorInfo(p,d,h)}}}function J2(e){return(t,n,s,r,a,o)=>{let i=$.assertAndGetBroadcastShape(t,n),l=I.sizeFromShape(i),u=i.length,c=I.computeStrides(i),d=I.getTypedArrayFromDType("float32",l),h=I.getTypedArrayFromDType("float32",l),p=$.getBroadcastDims(t,i),f=$.getBroadcastDims(n,i),m=$.mergeRealAndImagArrays(s,r),A=$.mergeRealAndImagArrays(a,o),g=t.length,y=I.computeStrides(t),x=n.length,b=I.computeStrides(n);if(p.length+f.length===0)for(let v=0;v<d.length;v++){let k=v%m.length,w=v%A.length,C=e(m[k*2],m[k*2+1],A[w*2],A[w*2+1]);d[v]=C.real,h[v]=C.imag}else for(let v=0;v<d.length;v++){let k=I.indexToLoc(v,u,c),w=k.slice(-g);p.forEach(_=>w[_]=0);let C=I.locToIndex(w,g,y),E=k.slice(-x);f.forEach(_=>E[_]=0);let M=I.locToIndex(E,x,b),R=e(m[C*2],m[C*2+1],A[M*2],A[M*2+1]);d[v]=R.real,h[v]=R.imag}return[d,h,i]}}var k7=Mt((e,t)=>e+t),NB=J2((e,t,n,s)=>({real:e+n,imag:t+s})),$c=Jt(Dr,k7,NB),EB={kernelName:Dr,backendName:"cpu",kernelFunc:$c};function Q2(e,t,n,s,r){let a=I.sizeFromShape(s),o=I.makeZerosTypedArray(r,n);for(let i=0;i<e.length;i++){let l=e[i];if(l<0)throw new Error("Input x must be non-negative!");l>=r||(a>0?o[l]+=t[i]:o[l]+=1)}return o}function I7(e,t,n,s=!1){let r=e.shape[0],a=e.shape[1],o=Be([r,n],t.dtype);for(let i=0;i<r;i++)for(let l=0;l<a;l++){let u=e.get(i,l);if(u<0)throw new Error("Input x must be non-negative!");u>=n||(s?o.set(1,i,u):t.size>0?o.set(o.get(i,u)+t.get(i,l),i,u):o.set(o.get(i,u)+1,i,u))}return o}function Wl(e){return(t,n,s)=>{let r=I.getTypedArrayFromDType(n,t.length);for(let a=0;a<t.length;++a)r[a]=e(t[a],s);return r}}function rt(e,t,n){return({inputs:s,attrs:r,backend:a})=>{let{x:o}=s;if(ke(o,e),o.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let i=a,l=i.data.get(o.dataId).values,u=I.sizeFromShape(o.shape),c=n||o.dtype,d=I.getArrayFromDType(c,u);for(let h=0;h<u;++h)d[h]=t(l[h],r);return i.makeTensorInfo(o.shape,c,d)}}function Vl(e,t,n){return({inputs:s,attrs:r,backend:a})=>{let{x:o}=s;if(ke(o,e),o.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let i=a,l=i.data.get(o.dataId).values,u=n||o.dtype,c=t(l,u,r);return i.makeTensorInfo(o.shape,u,c)}}var S7=Wl(e=>Math.ceil(e)),RB=Vl(wa,S7),_B={kernelName:wa,backendName:"cpu",kernelFunc:RB};function e1(e,t,n,s){let r=I.getArrayFromDType(n,I.sizeFromShape(t));if(s&&n!=="string"){let a=0;e.forEach(o=>{let i=I.sizeFromShape(o.shape);r.set(o.vals,a),a+=i})}else{let a=0;e.forEach(o=>{let i=n==="string"?$.fromUint8ToStringArray(o.vals):o.vals,l=0;for(let u=0;u<o.shape[0];++u){let c=u*t[1]+a;for(let d=0;d<o.shape[1];++d)r[c+d]=i[l++]}a+=o.shape[1]})}return r}var C7=Mt((e,t)=>e===t?1:0),T7=Jt(Ti,C7,null,"bool"),$B={kernelName:Ti,backendName:"cpu",kernelFunc:T7},N7=Wl(e=>Math.exp(e)),E7=Vl(Ra,N7),FB={kernelName:Ra,backendName:"cpu",kernelFunc:E7},R7=Wl(e=>Math.expm1(e)),DB=Vl(Ei,R7),OB={kernelName:Ei,backendName:"cpu",kernelFunc:DB},_7=Wl(e=>Math.floor(e)),PB=Vl(_a,_7),MB={kernelName:_a,backendName:"cpu",kernelFunc:PB};function $7(e,t,n,s,r,a,o,i,l){let u=Be([s,a],n);for(let c=0;c<s;c++){let d=[],h=0;for(let p=0;p<r;p++){let f=e[c*r+p];h+=f*o[p],d.push(f)}if(h<0||h>=l/a)throw new Error(`Invalid indices: ${d} does not index into ${i}`);for(let p=0;p<a;p++)u.values[c*a+p]=t.get(...t.indexToLoc(h*a+p))}return u}function F7(e,t,n){let s=Be(n,e.dtype);for(let r=0;r<s.size;++r){let o=s.indexToLoc(r).slice(),i=o[0],l=o[2],u=t.locToIndex([i,l]);o[2]=t.values[u];let c=e.locToIndex(o);s.values[r]=e.values[c]}return s}var D7=Mt((e,t)=>e>t?1:0),zB=Jt(Fi,D7,null,"bool"),LB={kernelName:Fi,backendName:"cpu",kernelFunc:zB},O7=Mt((e,t)=>e>=t?1:0),BB=Jt(Da,O7,null,"bool"),WB={kernelName:Da,backendName:"cpu",kernelFunc:BB},P7=Mt((e,t)=>e<t?1:0),VB=Jt(Mi,P7,null,"bool"),UB={kernelName:Mi,backendName:"cpu",kernelFunc:VB},M7=Mt((e,t)=>e<=t?1:0),HB=Jt(zi,M7,null,"bool"),GB={kernelName:zi,backendName:"cpu",kernelFunc:HB};function z7(e,t,n){let s=(t-e)/(n-1),r=I.makeZerosTypedArray(n,"float32");r[0]=e;for(let a=1;a<r.length;a++)r[a]=r[a-1]+s;return r}var L7=Wl(e=>Math.log(e)),jB=Vl(Ma,L7),qB={kernelName:Ma,backendName:"cpu",kernelFunc:jB};function B7(e,t,n,s){let r=I.getTypedArrayFromDType(s,I.sizeFromShape(n));for(let a=0;a<r.length;++a){let o=a*t,i=e[o];for(let l=0;l<t;++l){let u=e[o+l];(Number.isNaN(u)||u>i)&&(i=u)}r[a]=i}return r}var W7=Mt((e,t)=>Math.max(e,t)),XB=Jt(La,W7),KB={kernelName:La,backendName:"cpu",kernelFunc:XB},V7=Mt((e,t)=>Math.min(e,t)),ZB=Jt(Ua,V7),YB={kernelName:Ua,backendName:"cpu",kernelFunc:ZB},t1=Mt((e,t)=>e*t),JB=J2((e,t,n,s)=>({real:e*n-t*s,imag:e*s+t*n})),Yp=Jt(Ga,t1,JB),QB={kernelName:Ga,backendName:"cpu",kernelFunc:Yp};function U7(e,t,n){let s=I.createScalarValue(-1,n);return t1([],t,s,e,n)}function eW(e){let{inputs:t,backend:n}=e,{x:s}=t;ke(s,"neg");let r=n.data.get(s.dataId).values,[a,o]=U7(r,s.shape,s.dtype);return n.makeTensorInfo(o,s.dtype,a)}var tW={kernelName:Vi,backendName:"cpu",kernelFunc:eW},H7=Mt((e,t)=>e!==t?1:0),nW=Jt(Ui,H7,null,"bool"),sW={kernelName:Ui,backendName:"cpu",kernelFunc:nW};function n1(e,t,n,s,r){let a=t.length,o=I.sizeFromShape(t),i=I.computeStrides(t),l=I.computeStrides(r),u=I.getTypedArrayFromDType(n,I.sizeFromShape(r));for(let c=0;c<o;++c){let d=I.indexToLoc(c,a,i),h=new Array(d.length);for(let f=0;f<h.length;f++)h[f]=d[s[f]];let p=I.locToIndex(h,a,l);u[p]=e[c]}return u}function ps(e){let{inputs:t,attrs:n,backend:s}=e,{x:r}=t,{perm:a}=n;ke(r,"transpose");let o=r.shape.length,i=new Array(o);for(let d=0;d<i.length;d++)i[d]=r.shape[a[d]];let l=s.data.get(r.dataId).values,u=n1(l,r.shape,r.dtype,a,i);return{dataId:s.write(u,i,r.dtype),shape:i,dtype:r.dtype}}var rW={kernelName:ho,backendName:"cpu",kernelFunc:ps};function G7(e,t,n,s){let[r,a]=$.computeOutAndReduceShapes(e,s),o=bs(t,"int32"),i=I.makeZerosTypedArray(I.sizeFromShape(r),o),l=I.sizeFromShape(a);for(let u=0;u<i.length;++u){let c=u*l,d=1;for(let h=0;h<l;++h)d*=n[c+h];i[u]=d}return{outVals:i,outShape:r,outDtype:o}}function aW(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;ke(r,"prod");let i=r.shape.length,l=I.parseAxisParam(a,r.shape),u=$.getAxesPermutation(l,i),c=l,d=r,h=[];u!=null&&(d=ps({inputs:{x:r},backend:n,attrs:{perm:u}}),h.push(d),c=$.getInnerMostAxes(c.length,i));let p=n.data.get(d.dataId).values,{outVals:f,outShape:m,outDtype:A}=G7(d.shape,d.dtype,p,c),g=m;return o&&(g=$.expandShapeToKeepDim(m,l)),h.forEach(y=>n.disposeIntermediateTensorInfo(y)),n.makeTensorInfo(g,A,f)}var oW={kernelName:Ki,backendName:"cpu",kernelFunc:aW};function s1(e,t,n,s){let r=e===t,a=e<t&&n<0,o=t<e&&n>1;if(r||a||o)return I.makeZerosTypedArray(0,s);let i=Math.abs(Math.ceil((t-e)/n)),l=I.makeZerosTypedArray(i,s);t<e&&n===1&&(n=-1),l[0]=e;for(let u=1;u<l.length;u++)l[u]=l[u-1]+n;return l}var j7=Wl(e=>1/Math.sqrt(e)),iW=Vl(to,j7),lW={kernelName:to,backendName:"cpu",kernelFunc:iW};function Jp(e,t,n,s,r){let a=An.isSliceContinous(s,t,n),o=I.sizeFromShape(n),i=I.computeStrides(s);if(a){let d=An.computeFlatOffset(t,i);return r==="string"?e.slice(d,d+o):e.subarray(d,d+o)}let l=r==="string"?$.fromUint8ToStringArray(e):e,u=Be(s,r,l),c=Be(n,r);for(let d=0;d<c.size;++d){let h=c.indexToLoc(d),p=h.map((f,m)=>f+t[m]);c.set(u.get(...p),...h)}return r==="string"?$.fromStringArrayToUint8(c.values):c.values}function Lo(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,size:o}=s;ke(r,"slice");let[i,l]=An.parseSliceParams(r,a,o);An.assertParamsValid(r,i,l);let u=n.data.get(r.dataId).values,c=Jp(u,i,l,r.shape,r.dtype);return n.makeTensorInfo(l,r.dtype,c)}var uW={kernelName:tl,backendName:"cpu",kernelFunc:Lo};function q7(e,t,n,s,r,a,o){let i=t[0],l=a[0],u=new Array(l),c=new Array(i),d=t[1];if(l===0){if(i!==0)throw new Error(`Received SparseTensor with denseShape[0] = 0 but
|
|
indices.shape[0] = ${i}`);let A=I.getArrayFromDType(n,0),g=I.getArrayFromDType(r,0);return[A,[0,d],g,u,c]}let h=!0,p=0,f=new Array(l).fill(0);for(let A=0;A<i;++A){let g=e[A*d];if(g<0)throw new Error(`indices(${A}, 0) is invalid: ${g} < 0`);if(g>=l)throw new Error(`indices(${A}, 0) is invalid: ${g} >= ${l}`);++f[g],h=h&&g>=p,p=g}let m=!0;for(let A=0;A<l;++A){let g=f[A]===0;u[A]=g,m=m&&!g,f[A]=Math.max(f[A],1),A>0&&(f[A]+=f[A-1])}if(m&&h){let A=e,g=s;for(let y=0;y<i;++y)c[y]=y;return[A,[i,d],g,u,c]}else{let A=f[l-1],g=I.getArrayFromDType(n,A*d),y=I.getArrayFromDType(r,A),x=new Array(l).fill(0);for(let b=0;b<i;++b){let v=e[b*d],k=x[v],w=(v===0?0:f[v-1])+k;x[v]++;for(let C=0;C<d;++C)g[w*d+C]=e[b*d+C];y[w]=s[b],c[b]=w}for(let b=0;b<l;++b)if(x[b]===0){let k=b===0?0:f[b-1];g[k*d+0]=b;for(let w=1;w<d;++w)g[k*d+w]=0;y[k]=o}return[g,[A,d],y,u,c]}}function X7(e,t,n,s,r){let a=I.sizeFromShape(s),o=t[0],i=r.length,l=[],u=1,c=-1;for(let A=0;A<i;++A){let g=r[A];if(g===-1){if(c!==-1)throw new Error(`only one output dimension may be -1, not both ${c} and ${A}`);c=A,l.push(1)}else{if(g<0)throw new Error(`size ${A} must be non-negative, not ${g}`);u*=g,l.push(g)}}if(c!==-1){if(u<=0)throw new Error("reshape cannot infer the missing input size for an empty tensor unless all specified input sizes are non-zero");let A=Math.trunc(a/u);if(u*A!==a)throw new Error(`Input to reshape is a SparseTensor with ${a}
|
|
dense values, but the requested shape requires a multiple of ${u}. inputShape=${s} outputShape= ${l}`);l[c]=A}let d=I.sizeFromShape(l);if(d!==a)throw new Error(`Input to reshape is a tensor with ${a} dense values, but the requested shape has ${d}. inputShape=${s} outputShape=${l}`);let h=s.length,p=[];if(h>0){p[h-1]=1;for(let A=h-2;A>=0;--A)p[A]=p[A+1]*s[A+1]}let f=[];if(i>0){f[i-1]=1;for(let A=i-2;A>=0;--A)f[A]=f[A+1]*l[A+1]}let m=I.getArrayFromDType(n,o*i);for(let A=0;A<o;++A){let g=0;for(let y=0;y<h;++y)g+=e[A*h+y]*p[y];for(let y=0;y<i;++y)m[A*i+y]=Math.trunc(g/f[y]),g%=f[y]}return[m,[o,i],l]}function r1(e,t,n,s,r,a=!1,o=0){let i=s.length;if(i!==r.length)throw new Error("segmentIds and indices should have same size.");let l=[t[0],e.length/t[0]],u=l[1],d=i>0?r[i-1]+1:0;if(d<0)throw new Error("segment ids must be >= 0");let h=t.slice();h[0]=d;let p=h.reduce((x,b)=>x*b,1),f=I.getArrayFromDType(n,p);if(i===0)return d>0&&f.fill(o),[f,h];if(d<=0)throw new Error("segment ids must be >= 0");let m=0,A=1,g=0,y=r[m];for(;;){let x=0;if(A<i){if(x=r[A],y===x){++A;continue}if(y>=x)throw new Error("segment ids are not increasing")}if(y<0||y>=d)throw new Error(`Segment id ${y} out of range [0, ${d}), possibly because segmentIds input is not sorted.`);y>g&&f.fill(o,g*u,y*u);for(let b=m;b<A;++b){let v=s[b];if(v<0||v>=l[0])throw new Error(`Bad: indices[${b}] == ${s[b]} out of range [0, ${l[0]})`);for(let k=0;k<u;k++)f[y*u+k]+=e[v*u+k]}if(a)for(let b=0;b<u;b++)f[y*u+b]/=A-m;if(m=A,++A,g=y+1,y=x,A>i)break}return g<d&&f.fill(o,g*u,d*u),[f,h]}var K7=Mt((e,t)=>{let n=e-t;return n*n}),cW=Jt(io,K7),dW={kernelName:io,backendName:"cpu",kernelFunc:cW};function Z7(e,t,n,s){let r=Be(e,t.dtype);for(let a=0;a<r.size;a++){let o=r.indexToLoc(a),i=new Array(o.length);for(let l=0;l<i.length;l++)i[l]=o[l]*n[l]+s[l];r.set(t.get(...i),...o)}return r}var hW=class{constructor(e,t,n,s,r,a){this.separator=I.encodeString(e),this.nGramWidths=t,this.leftPad=I.encodeString(n),this.rightPad=I.encodeString(s),this.padWidth=r,this.preserveShort=a}getPadWidth(e){return Math.min(this.padWidth<0?e-1:this.padWidth,e-1)}getNumNGrams(e,t){let n=this.getPadWidth(t);return Math.max(0,e+2*n-t+1)}createNGrams(e,t,n,s,r,a){for(let o=0;o<r;++o){let i=this.getPadWidth(a),l=Math.max(0,i-o),u=Math.max(0,i-(r-(o+1))),c=a-(l+u),d=t+(l>0?0:o-i),h=0;h+=l*this.leftPad.length;for(let g=0;g<c;++g)h+=e[d+g].length;h+=u*this.rightPad.length,h+=(l+u+c-1)*this.separator.length,n[s+o]=new Uint8Array(h);let f=n[s+o],m=0,A=g=>g.forEach(y=>f[m++]=y);for(let g=0;g<l;++g)A(this.leftPad),A(this.separator);for(let g=0;g<c-1;++g)A(e[d+g]),A(this.separator);if(c>0){A(e[d+c-1]);for(let g=0;g<u;++g)A(this.separator),A(this.rightPad)}else{for(let g=0;g<u-1;++g)A(this.rightPad),A(this.separator);A(this.rightPad)}}}compute(e,t){let n=e.length,s=t.length;if(s>0){let i=t[0];if(i!==0)throw new Error(`First split value must be 0, got ${i}`);for(let l=1;l<s;++l){let u=t[l]>=i;if(u=u&&t[l]<=n,!u)throw new Error(`Invalid split value ${t[l]}, must be in [${i}, ${n}]`);i=t[l]}if(i!==n)throw new Error(`Last split value must be data size. Expected ${n}, got ${i}`)}let r=s-1,a=I.getArrayFromDType("int32",s);if(n===0||s===0){let i=new Array(n);for(let l=0;l<=r;++l)a[l]=0;return[i,a]}a[0]=0;for(let i=1;i<=r;++i){let l=t[i]-t[i-1],u=0;this.nGramWidths.forEach(c=>{u+=this.getNumNGrams(l,c)}),this.preserveShort&&l>0&&u===0&&(u=1),a[i]=a[i-1]+u}let o=new Array(a[r]);for(let i=0;i<r;++i){let l=t[i],u=a[i];if(this.nGramWidths.forEach(c=>{let d=t[i+1]-t[i],h=this.getNumNGrams(d,c);this.createNGrams(e,l,o,u,h,c),u+=h}),this.preserveShort&&u===a[i]){let c=t[i+1]-t[i];if(c===0)continue;let d=c+2*this.padWidth,h=1;this.createNGrams(e,l,o,u,h,d)}}return[o,a]}};function Y7(e,t,n,s,r,a,o,i){return new hW(n,s,r,a,o,i).compute(e,t)}function pW(e,t,n){if(!e.length)return[];if(t.length===0){let a=new Array(e.length);for(let o=0;o<e.length;++o)a[o]=e.subarray(o,o+1);return a}if(t.length===1){let a=t[0],o=[],i=e.indexOf(a);for(;i!==-1;){let l=e.subarray(0,i);(!n||l.length!==0)&&o.push(l),e=e.subarray(i+1),i=e.indexOf(a)}return(!n||e.length!==0)&&o.push(e),o}let s=[],r=0;for(let a=0;a<e.length+1;a++)if(a===e.length||t.indexOf(e[a])!==-1){let o=e.subarray(r,a);(!n||o.length!==0)&&s.push(o),r=a+1}return s}function J7(e,t,n){let s=e.length,r=[],a=0,o=0,i=new Array(s);for(let h=0;h<s;++h){let p=pW(e[h],t,n),f=p.length;i[h]=f,a+=f,o=Math.max(o,f),r.push(...p)}let l=I.getArrayFromDType("int32",a*2),u=new Array(a),c=[s,o],d=0;for(let h=0;h<s;++h)for(let p=0;p<i[h];++p)l[d*2]=h,l[d*2+1]=p,u[d]=r[d],++d;return[l,u,c]}function Q7(e,t){let n=I.getArrayFromDType("int32",e.length);for(let s=0;s<e.length;++s)n[s]=I.fingerPrint64(e[s]).modulo(t).getLowBitsUnsigned();return n}var ew=Mt((e,t)=>e-t),fW=J2((e,t,n,s)=>({real:e-n,imag:t-s})),a1=Jt(lo,ew,fW),mW={kernelName:lo,backendName:"cpu",kernelFunc:a1};function tw(e,t){let n=new Array(e.rank);for(let r=0;r<n.length;r++)n[r]=e.shape[r]*t[r];let s=Be(n,e.dtype);for(let r=0;r<s.values.length;++r){let a=s.indexToLoc(r),o=new Array(e.rank);for(let l=0;l<o.length;l++)o[l]=a[l]%e.shape[l];let i=e.locToIndex(o);s.values[r]=e.values[i]}return s}var Fc=(e,t)=>{let n=t.value-e.value;return n===0?e.index-t.index:n};function nw(e,t,n=0,s=e.length-1){for(;s>n;){if(s-n>600){let i=s-n+1,l=t-n+1,u=Math.log(i),c=.5*Math.exp(2*u/3),d=.5*Math.sqrt(u*c*(i-c)/i)*Math.sign(l-i/2),h=Math.max(n,Math.floor(t-l*c/i+d)),p=Math.min(s,Math.floor(t+(i-l)*c/i+d));nw(e,t,h,p)}let r=e[t],a=n,o=s;for(I.swap(e,n,t),Fc(e[s],r)>0&&I.swap(e,n,s);a<o;){for(I.swap(e,a,o),a++,o--;Fc(e[a],r)<0;)a=a+1;for(;Fc(e[o],r)>0;)o=o-1}Fc(e[n],r)===0?I.swap(e,n,o):(o=o+1,I.swap(e,o,s)),o<=t&&(n=o+1),t<=o&&(s=o-1)}}function sw(e,t,n,s,r){let a=t[t.length-1],[o,i]=[e.length/a,a],l=I.getTypedArrayFromDType(n,o*s),u=I.getTypedArrayFromDType("int32",o*s);for(let d=0;d<o;d++){let h=d*i,p=e.subarray(h,h+i),f=new Array(p.length);p.forEach((y,x)=>f[x]={value:y,index:x}),s<f.length&&(nw(f,s),f=f.slice(0,s)),r&&f.sort(Fc);let m=d*s,A=l.subarray(m,m+s),g=u.subarray(m,m+s);for(let y=0;y<s;y++)A[y]=f[y].value,g[y]=f[y].index}let c=t.slice();return c[c.length-1]=s,[Be(c,n,l),Be(c,"int32",u)]}function rw(e,t,n,s){let r=I.parseAxisParam(t,n)[0],a=[1,n[0],1];for(let f=0;f<r;f++)a[0]*=n[f];a[1]=n[r];for(let f=r+1;f<n.length;f++)a[2]*=n[f];let o={},i=new Int32Array(n[r]),l=new Bt(a,s,e),u=[],c=a[0]===1&&a[2]===1;for(let f=0;f<n[r];f++){let m;if(c)m=e[f].toString();else{let A=[];for(let g=0;g<a[0];g++)for(let y=0;y<a[2];y++)A.push(l.get(g,f,y));m=A.join(",")}if(o[m]!==void 0)i[f]=o[m];else{let A=Object.keys(o).length;o[m]=A,i[f]=A,u.push(f)}}let d=a.slice();d[1]=Object.keys(o).length;let h=new Bt(d,s);u.forEach((f,m)=>{for(let A=0;A<a[0];A++)for(let g=0;g<a[2];g++)h.set(l.get(A,f,g),A,m,g)});let p=n.slice();return p[r]=d[1],{outputValues:h.values,outputShape:p,indices:i}}var AW="3.8.0";bl("cpu",()=>new Kp,1);var aw=rt(Si,e=>e>=0?e:Math.exp(e)-1),gW={kernelName:Si,backendName:"cpu",kernelFunc:aw};function ow(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{alpha:a}=s;ke([r],"leakyRelu");let o=I.sizeFromShape(r.shape),i=n.data.get(r.dataId).values,l=I.getTypedArrayFromDType("float32",o);for(let u=0;u<i.length;u++)l[u]=i[u]<0?a*i[u]:i[u];return n.makeTensorInfo(r.shape,"float32",l)}var yW={kernelName:Pa,backendName:"cpu",kernelFunc:ow},xW=Mt((e,t)=>e<0?t*e:e);function iw(e){let{inputs:t,backend:n}=e,{x:s,alpha:r}=t;ke([s,r],"prelu");let a=n.data.get(s.dataId).values,o=n.data.get(r.dataId).values,[i,l]=xW(s.shape,r.shape,a,o,s.dtype);return n.makeTensorInfo(l,s.dtype,i)}var bW={kernelName:Ka,backendName:"cpu",kernelFunc:iw},lw=rt(Za,e=>Math.max(0,e)),vW={kernelName:Za,backendName:"cpu",kernelFunc:lw},uw=rt(Ja,e=>Math.min(Math.max(0,e),6)),wW={kernelName:Ja,backendName:"cpu",kernelFunc:uw},cw=rt(so,e=>1/(1+Math.exp(-e))),kW={kernelName:so,backendName:"cpu",kernelFunc:cw};function o1(e,t,n,s,r){if(n==="linear")return rr({inputs:{x:t},backend:e});if(n==="relu")return lw({inputs:{x:t},backend:e});if(n==="elu")return aw({inputs:{x:t},backend:e});if(n==="relu6")return uw({inputs:{x:t},backend:e});if(n==="prelu")return iw({inputs:{x:t,alpha:s},backend:e});if(n==="leakyrelu")return ow({inputs:{x:t},backend:e,attrs:{alpha:r}});if(n==="sigmoid")return cw({inputs:{x:t},backend:e});throw new Error(`Activation ${n} has not been implemented for the CPU backend.`)}function gt(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{shape:a}=s,o=I.sizeFromShape(r.shape),i=I.inferFromImplicitShape(a,o),l=I.sizeFromShape(i);I.assert(o===l,()=>`The new shape (${i}) has ${l} elements and the old shape (${r.shape}) has ${o} elements. The new shape and old shape must have the same number of elements.`),n.incRef(r.dataId);let u=n.data.get(r.dataId);if(u.complexTensorInfos!=null){let c=u.complexTensorInfos.real,d=u.complexTensorInfos.imag;c.shape=i,d.shape=i}return{dataId:r.dataId,shape:i,dtype:r.dtype}}var IW={kernelName:Yi,backendName:"cpu",kernelFunc:gt};function dw(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a}=t,{transposeA:o,transposeB:i}=s;ke([r,a],"matMul");let l=r.shape.length,u=a.shape.length,c=o?r.shape[l-2]:r.shape[l-1],d=i?a.shape[u-1]:a.shape[u-2],h=o?r.shape[l-1]:r.shape[l-2],p=i?a.shape[u-2]:a.shape[u-1],f=r.shape.slice(0,-2),m=a.shape.slice(0,-2),A=I.sizeFromShape(f),g=I.sizeFromShape(m),y=A===g||A===1||g===1;I.assert(l>=2&&u>=2&&y,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${f}) and (${m}).`);let b=(A>g?r.shape.slice(0,-2):a.shape.slice(0,-2)).concat([h,p]);I.assert(c===d,()=>`Error in matMul: inner shapes (${c}) and (${d}) of Tensors with shapes ${r.shape} and ${a.shape} and transposeA=${o} and transposeB=${i} must match.`);let v=o?[A,c,h]:[A,h,c],k=i?[g,p,d]:[g,d,p],w=gt({inputs:{x:r},backend:n,attrs:{shape:v}}),C=gt({inputs:{x:a},backend:n,attrs:{shape:k}}),E=o?w.shape[1]:w.shape[2],M=o?w.shape[2]:w.shape[1],R=i?C.shape[1]:C.shape[2],_=Math.max(A,g),N=n.data.get(w.dataId).values,O=n.data.get(C.dataId).values,W=I.computeStrides(w.shape),j=I.computeStrides(C.shape),[q,X,Q]=o?[W[0],1,W[1]]:[W[0],W[1],1],[ne,te,se]=i?[1,j[1],j[0]]:[j[1],1,j[0]],J=M*R,ie=Be([_,M,R],w.dtype),le=ie.values,he=n.blockSize;for(let ge=0;ge<_;ge++)for(let Ce=0;Ce<M;Ce+=he)for(let Te=0;Te<R;Te+=he)for(let $e=0;$e<E;$e+=he){let Me=Math.min(Ce+he,M),De=Math.min(Te+he,R),it=Math.min($e+he,E);for(let et=Ce;et<Me;et++)for(let tt=Te;tt<De;tt++){let Je=0;for(let at=$e;at<it;at++){let Ve=Math.min(ge,A-1)*q,In=Math.min(ge,g-1)*se,kt=N[Ve+et*X+at*Q],Mn=O[at*ne+tt*te+In];Je+=kt*Mn}le[ge*J+(et*R+tt)]+=Je}}return n.disposeIntermediateTensorInfo(w),n.disposeIntermediateTensorInfo(C),n.makeTensorInfo(b,ie.dtype,ie.values)}var SW={kernelName:ba,backendName:"cpu",kernelFunc:dw};function CW(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a,bias:o,preluActivationWeights:i}=t,{transposeA:l,transposeB:u,activation:c,leakyreluAlpha:d}=s,h,p,f,m=[];h=dw({inputs:{a:r,b:a},attrs:{transposeA:l,transposeB:u},backend:n}),o&&(p=$c({inputs:{a:h,b:o},backend:n}),m.push(h),h=p),c&&(f=o1(n,h,c,i,d),m.push(h),h=f);for(let g of m)n.disposeIntermediateTensorInfo(g);return h}var TW={kernelName:po,backendName:"cpu",kernelFunc:CW},NW=rt(hi,e=>Math.acos(e)),EW={kernelName:hi,backendName:"cpu",kernelFunc:NW},RW=rt(pi,e=>Math.acosh(e)),_W={kernelName:pi,backendName:"cpu",kernelFunc:RW};function $W(e){let{inputs:t,backend:n}=e,s=t;ke(t,"addN");let r=s.map(i=>n.data.get(i.dataId).values),a=Be(s[0].shape,s[0].dtype),o=a.values;for(let i=0;i<s.length;i++){let l=r[i];for(let u=0;u<o.length;u++)o[u]+=l[u]}return n.makeTensorInfo(a.shape,a.dtype,a.values)}var FW={kernelName:ga,backendName:"cpu",kernelFunc:$W};function DW(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;ke(r,"all");let i=I.parseAxisParam(a,r.shape),l=i,u=$.getAxesPermutation(l,r.shape.length),c=r;u!=null&&(c=ps({inputs:{x:r},backend:n,attrs:{perm:u}}),l=$.getInnerMostAxes(l.length,r.shape.length)),$.assertAxesAreInnerMostDims("all",l,c.shape.length);let[d,h]=$.computeOutAndReduceShapes(c.shape,l),p=I.sizeFromShape(h),f=I.makeZerosTypedArray(I.sizeFromShape(d),c.dtype),m=n.data.get(c.dataId).values;for(let g=0;g<f.length;++g){let y=g*p,x=m[y];for(let b=0;b<p;++b){let v=m[y+b];x=x&&v}f[g]=x}u!=null&&n.disposeIntermediateTensorInfo(c);let A=n.makeTensorInfo(d,c.dtype,f);if(o){let g=$.expandShapeToKeepDim(d,i),y=gt({inputs:{x:A},backend:n,attrs:{shape:g}});return n.disposeIntermediateTensorInfo(A),y}return A}var OW={kernelName:fi,backendName:"cpu",kernelFunc:DW};function PW(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;ke(r,"any");let i=I.parseAxisParam(a,r.shape),l=i,u=$.getAxesPermutation(l,r.shape.length),c=r;u!=null&&(c=ps({inputs:{x:r},backend:n,attrs:{perm:u}}),l=$.getInnerMostAxes(l.length,r.shape.length)),$.assertAxesAreInnerMostDims("any",l,c.shape.length);let[d,h]=$.computeOutAndReduceShapes(c.shape,l),p=I.sizeFromShape(h),f=I.makeZerosTypedArray(I.sizeFromShape(d),c.dtype),m=n.data.get(c.dataId).values;for(let g=0;g<f.length;++g){let y=g*p,x=m[y];for(let b=0;b<p;++b){let v=m[y+b];x=x||v}f[g]=x}u!=null&&n.disposeIntermediateTensorInfo(c);let A=n.makeTensorInfo(d,c.dtype,f);if(o){let g=$.expandShapeToKeepDim(d,i),y=gt({inputs:{x:A},backend:n,attrs:{shape:g}});return n.disposeIntermediateTensorInfo(A),y}return A}var MW={kernelName:mi,backendName:"cpu",kernelFunc:PW};function zW(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s;ke(r,"argMax");let o=I.parseAxisParam(a,r.shape),i=$.getAxesPermutation(o,r.shape.length),l=r,u=[];i!=null&&(l=ps({inputs:{x:r},backend:n,attrs:{perm:i}}),u.push(l),o=$.getInnerMostAxes(o.length,l.shape.length)),o=[o[0]],$.assertAxesAreInnerMostDims("argMax",o,l.shape.length);let[c,d]=$.computeOutAndReduceShapes(l.shape,o),h=I.sizeFromShape(c),p=I.makeZerosTypedArray(h,"int32"),f=I.sizeFromShape(d),m=n.data.get(l.dataId).values;for(let A=0;A<p.length;++A){let g=A*f,y=m[g],x=0;for(let b=0;b<f;++b){let v=m[g+b];v>y&&(y=v,x=b)}p[A]=x}return u.forEach(A=>n.disposeIntermediateTensorInfo(A)),n.makeTensorInfo(c,"int32",p)}var LW={kernelName:ya,backendName:"cpu",kernelFunc:zW};function BW(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s;ke(r,"argMin");let o=I.parseAxisParam(a,r.shape),i=$.getAxesPermutation(o,r.shape.length),l=r,u=[];i!=null&&(l=ps({inputs:{x:r},backend:n,attrs:{perm:i}}),u.push(l),o=$.getInnerMostAxes(o.length,l.shape.length)),o=[o[0]],$.assertAxesAreInnerMostDims("argMin",o,l.shape.length);let[c,d]=$.computeOutAndReduceShapes(l.shape,o),h=I.sizeFromShape(c),p=I.makeZerosTypedArray(h,"int32"),f=I.sizeFromShape(d),m=n.data.get(l.dataId).values;for(let A=0;A<p.length;++A){let g=A*f,y=m[g],x=0;for(let b=0;b<f;++b){let v=m[g+b];v<y&&(y=v,x=b)}p[A]=x}return u.forEach(A=>n.disposeIntermediateTensorInfo(A)),n.makeTensorInfo(c,"int32",p)}var WW={kernelName:Cu,backendName:"cpu",kernelFunc:BW},VW=rt(Ai,e=>Math.asin(e)),UW={kernelName:Ai,backendName:"cpu",kernelFunc:VW},HW=rt(gi,e=>Math.asinh(e)),GW={kernelName:gi,backendName:"cpu",kernelFunc:HW},jW=rt(yi,e=>Math.atan(e)),qW={kernelName:yi,backendName:"cpu",kernelFunc:jW},XW=Mt((e,t)=>Math.atan2(e,t)),KW=Jt(bi,XW),ZW={kernelName:bi,backendName:"cpu",kernelFunc:KW},YW=rt(xi,e=>Math.atanh(e)),JW={kernelName:xi,backendName:"cpu",kernelFunc:YW};function i1(e,t,n,s,r,a){let o=r.strideHeight,i=r.strideWidth,l=r.dilationHeight,u=r.dilationWidth,c=r.effectiveFilterHeight,d=r.effectiveFilterWidth,h=r.padInfo.top,p=r.padInfo.left,f=a==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,m=Be(r.outShape,n),A=m.values,g=r.outShape[1]*r.outShape[2]*r.outShape[3],y=r.outShape[2]*r.outShape[3],x=r.outShape[3];for(let b=0;b<r.batchSize;++b){let v=b*g,k=b*s[0];for(let w=0;w<r.inChannels;++w)for(let C=0;C<r.outHeight;++C){let E=C*o-h,M=Math.max(0,E),R=Math.min(r.inHeight,c+E),_=v+C*y;for(let N=0;N<r.outWidth;++N){let O=N*i-p,W=Math.max(0,O),j=Math.min(r.inWidth,d+O),q=f,X=0,Q=0;for(let te=M;te<R;te+=l){let se=k+te*s[1];for(let J=W;J<j;J+=u){let ie=se+J*s[2],le=e[ie+w];a==="max"&&le>q?q=le:a==="avg"&&(X+=le,Q++)}if(isNaN(q))break}let ne=_+N*x+w;A[ne]=a==="avg"?X/Q:q}}}return m}function hw(e,t,n,s,r=!1,a=!1){let o=Be(s.outShape,"int32"),i=s.strideHeight,l=s.strideWidth,u=s.dilationHeight,c=s.dilationWidth,d=s.effectiveFilterHeight,h=s.effectiveFilterWidth,p=s.padInfo.top,f=s.padInfo.left,m=Be(t,n,e);for(let A=0;A<s.batchSize;++A)for(let g=0;g<s.inChannels;++g)for(let y=0;y<s.outHeight;++y){let x=y*i-p,b=x;for(;b<0;)b+=u;let v=Math.min(s.inHeight,d+x);for(let k=0;k<s.outWidth;++k){let w=k*l-f,C=w;for(;C<0;)C+=c;let E=Math.min(s.inWidth,h+w),M=Number.NEGATIVE_INFINITY,R=-1;for(let _=b;_<v;_+=u){let N=_-x;for(let O=C;O<E;O+=c){let W=O-w,j=m.get(A,_,O,g);j>M&&(M=j,r?R=a?((A*s.inHeight+_)*s.inWidth+O)*s.inChannels+g:(_*s.inWidth+O)*s.inChannels+g:R=N*h+W)}}o.set(R,A,y,k,g)}}return o}function pw(e,t,n,s,r,a){let o=r.strideDepth,i=r.strideHeight,l=r.strideWidth,u=r.dilationDepth,c=r.dilationHeight,d=r.dilationWidth,h=r.effectiveFilterDepth,p=r.effectiveFilterHeight,f=r.effectiveFilterWidth,m=r.padInfo.front,A=r.padInfo.top,g=r.padInfo.left,y=a==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,x=Be(r.outShape,n),b=x.values,v=r.outShape[1]*r.outShape[2]*r.outShape[3]*r.outShape[4],k=r.outShape[2]*r.outShape[3]*r.outShape[4],w=r.outShape[3]*r.outShape[4],C=r.outShape[4];for(let E=0;E<r.batchSize;++E){let M=E*v,R=E*s[0];for(let _=0;_<r.inChannels;++_)for(let N=0;N<r.outDepth;++N){let O=N*o-m,W=O;for(;W<0;)W+=u;let j=Math.min(r.inDepth,h+O),q=M+N*k;for(let X=0;X<r.outHeight;++X){let Q=X*i-A,ne=Q;for(;ne<0;)ne+=c;let te=Math.min(r.inHeight,p+Q),se=q+X*w;for(let J=0;J<r.outWidth;++J){let ie=J*l-g,le=ie;for(;le<0;)le+=d;let he=Math.min(r.inWidth,f+ie),ge=se+J*C,Ce=y,Te=0,$e=0;for(let De=W;De<j;De+=u){let it=R+De*s[1];for(let et=ne;et<te;et+=c){let tt=it+et*s[2];for(let Je=le;Je<he;Je+=d){let at=tt+Je*s[3],Ve=e[at+_];if(a==="max"&&Ve>Ce?Ce=Ve:a==="avg"&&(Te+=Ve,$e++),isNaN(Ce))break}if(isNaN(Ce))break}if(isNaN(Ce))break}let Me=ge+_;b[Me]=a==="avg"?Te/$e:Ce}}}}return x}function QW(e,t){let n=Be(t.outShape,"int32"),s=t.strideDepth,r=t.strideHeight,a=t.strideWidth,o=t.dilationDepth,i=t.dilationHeight,l=t.dilationWidth,u=t.effectiveFilterDepth,c=t.effectiveFilterHeight,d=t.effectiveFilterWidth,h=t.padInfo.front,p=t.padInfo.top,f=t.padInfo.left;for(let m=0;m<t.batchSize;++m)for(let A=0;A<t.inChannels;++A)for(let g=0;g<t.outDepth;++g){let y=g*s-h,x=y;for(;x<0;)x+=o;let b=Math.min(t.inDepth,u+y);for(let v=0;v<t.outHeight;++v){let k=v*r-p,w=k;for(;w<0;)w+=i;let C=Math.min(t.inHeight,c+k);for(let E=0;E<t.outWidth;++E){let M=E*a-f,R=M;for(;R<0;)R+=l;let _=Math.min(t.inWidth,d+M),N=Number.NEGATIVE_INFINITY,O=-1;for(let W=x;W<b;W+=o){let j=W-y;for(let q=w;q<C;q+=i){let X=q-k;for(let Q=R;Q<_;Q+=l){let ne=Q-M,te=e.get(m,W,q,Q,A);te>=N&&(N=te,O=j*c*d+X*c+ne)}}}n.set(O,m,g,v,E,A)}}}return n}function eV(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t;ke(r,"avgPool");let{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=s,u=1;I.assert($.eitherStridesOrDilationsAreOne(o,u),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${o} and dilations '${u}'`);let c=$.computePool2DInfo(r.shape,a,o,u,i,l),d;if(c.filterWidth===1&&c.filterHeight===1&&I.arraysEqual(c.inShape,c.outShape))d=rr({inputs:{x:r},backend:n});else{let h=n.data.get(r.dataId).values,p=I.computeStrides(r.shape),f=i1(h,r.shape,r.dtype,p,c,"avg");d=n.makeTensorInfo(c.outShape,r.dtype,f.values)}return d}var tV={kernelName:xa,backendName:"cpu",kernelFunc:eV};function nV(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l,dataFormat:u}=s;ke(r,"avgPool3d");let c=$.computePool3DInfo(r.shape,a,o,1,i,l,u),d=n.data.get(r.dataId).values,h=pw(d,r.shape,r.dtype,I.computeStrides(r.shape),c,"avg");return n.makeTensorInfo(h.shape,"float32",h.values)}var sV={kernelName:Tu,backendName:"cpu",kernelFunc:nV};function rV(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,{filterSize:o,strides:i,pad:l,dimRoundingMode:u}=s;ke([r,a],"avgPool3DGrad");let c=$.computePool3DInfo(a.shape,o,i,1,l,u),d=c.strideDepth,h=c.strideHeight,p=c.strideWidth,f=c.filterDepth,m=c.filterHeight,A=c.filterWidth,g=c.dilationDepth,y=c.dilationHeight,x=c.dilationWidth,b=c.effectiveFilterDepth,v=c.effectiveFilterHeight,k=c.effectiveFilterWidth,w=b-1-c.padInfo.front,C=k-1-c.padInfo.left,E=v-1-c.padInfo.top,M=Be(a.shape,"float32"),R=1/(f*m*A),_=n.bufferSync(r);for(let N=0;N<c.batchSize;++N)for(let O=0;O<c.inChannels;++O)for(let W=0;W<c.inDepth;++W)for(let j=0;j<c.inHeight;++j)for(let q=0;q<c.inWidth;++q){let X=W-w,Q=j-E,ne=q-C,te=0;for(let se=0;se<b;se+=g){let J=(X+se)/d;if(!(J<0||J>=c.outDepth||Math.floor(J)!==J))for(let ie=0;ie<v;ie+=y){let le=(Q+ie)/h;if(!(le<0||le>=c.outHeight||Math.floor(le)!==le))for(let he=0;he<k;he+=x){let ge=(ne+he)/p;if(ge<0||ge>=c.outWidth||Math.floor(ge)!==ge)continue;te+=_.get(N,J,le,ge,O)}}}M.set(te*R,N,W,j,q,O)}return n.makeTensorInfo(M.shape,M.dtype,M.values)}var aV={kernelName:Ld,backendName:"cpu",kernelFunc:rV};function oV(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,o=a;ke([r,a],"avgPoolGrad");let{filterSize:i,strides:l,pad:u}=s,c=$.computePool2DInfo(o.shape,i,l,1,u),d=c.strideHeight,h=c.strideWidth,p=c.filterHeight,f=c.filterWidth,m=c.dilationHeight,A=c.dilationWidth,g=c.effectiveFilterHeight,y=c.effectiveFilterWidth,x=y-1-c.padInfo.left,b=g-1-c.padInfo.top,v=Be(o.shape,"float32"),k=1/(p*f),w=n.data.get(r.dataId).values,C=Be(r.shape,"float32",w);for(let E=0;E<c.batchSize;++E)for(let M=0;M<c.inChannels;++M)for(let R=0;R<c.inHeight;++R)for(let _=0;_<c.inWidth;++_){let N=R-b,O=_-x,W=0;for(let j=0;j<g;j+=m){let q=(N+j)/d;if(!(q<0||q>=c.outHeight||Math.floor(q)!==q))for(let X=0;X<y;X+=A){let Q=(O+X)/h;if(Q<0||Q>=c.outWidth||Math.floor(Q)!==Q)continue;W+=C.get(E,q,Q,M)}}v.set(W*k,E,R,_,M)}return n.makeTensorInfo(v.shape,v.dtype,v.values)}var iV={kernelName:zd,backendName:"cpu",kernelFunc:oV};function lV(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,scale:a,offset:o,mean:i,variance:l}=t;I.assert(i.shape.length===l.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),I.assert(o==null||i.shape.length===o.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),I.assert(a==null||i.shape.length===a.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks."),ke([r,i,l,a,o],"batchNorm");let{varianceEpsilon:u}=s;u==null&&(u=.001);let c=n.data.get(r.dataId).values,d=n.data.get(i.dataId).values,h=n.data.get(l.dataId).values,p=a?n.data.get(a.dataId).values:new Float32Array([1]),f=o?n.data.get(o.dataId).values:new Float32Array([0]),m=new Float32Array(c.length),A=f.length,g=p.length,y=h.length,x=d.length,b=0,v=0,k=0,w=0;for(let C=0;C<c.length;++C)m[C]=f[b++]+(c[C]-d[v++])*p[k++]/Math.sqrt(h[w++]+u),b>=A&&(b=0),v>=x&&(v=0),k>=g&&(k=0),w>=y&&(w=0);return n.makeTensorInfo(r.shape,r.dtype,m)}var uV={kernelName:Fa,backendName:"cpu",kernelFunc:lV};function cV(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,crops:o}=s;ke([r],"batchToSpaceND");let i=a.reduce((g,y)=>g*y),l=$.getReshaped(r.shape,a,i),u=$.getPermuted(l.length,a.length),c=$.getReshapedPermuted(r.shape,a,i),d=$.getSliceBeginCoords(o,a.length),h=$.getSliceSize(c,o,a.length),p=gt({inputs:{x:r},backend:n,attrs:{shape:l}}),f=ps({inputs:{x:p},backend:n,attrs:{perm:u}}),m=gt({inputs:{x:f},backend:n,attrs:{shape:c}}),A=Lo({inputs:{x:m},backend:n,attrs:{begin:d,size:h}});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(m),A}var dV={kernelName:vi,backendName:"cpu",kernelFunc:cV};function hV(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,weights:a}=t,{size:o}=s,i=n.data.get(r.dataId).values,l=n.data.get(a.dataId).values,u=Q2(i,l,a.dtype,a.shape,o);return n.makeTensorInfo([o],a.dtype,u)}var pV={kernelName:Bd,backendName:"cpu",kernelFunc:hV},fV=rt(Or,(e,t)=>{let n=t;return e>n.clipValueMax?n.clipValueMax:e<n.clipValueMin?n.clipValueMin:e}),mV={kernelName:Or,backendName:"cpu",kernelFunc:fV},AV=e=>{let{x:t}=e.inputs,n=e.backend,s=new Float32Array(I.sizeFromShape(t.shape)),r=n.data.get(t.dataId),a=r.complexTensorInfos.real,o=r.complexTensorInfos.imag,i=n.data.get(a.dataId).values,l=n.data.get(o.dataId).values;for(let u=0;u<i.length;u++){let c=i[u],d=l[u];s[u]=Math.hypot(c,d)}return n.makeOutput(s,t.shape,"float32")},gV={kernelName:Nu,backendName:"cpu",kernelFunc:AV};function Ul(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.data.get(s.dataId).complexTensorInfos.imag,a=n.data.get(r.dataId).values;return n.makeTensorInfo(r.shape,r.dtype,a)}var yV={kernelName:th,backendName:"cpu",kernelFunc:Ul};function Hl(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s,a=I.parseAxisParam(r,t[0].shape)[0],o=$.computeOutShape(t.map(m=>m.shape),a);if(I.sizeFromShape(o)===0)return n.makeTensorInfo(o,t[0].dtype,[]);let i=t.filter(m=>I.sizeFromShape(m.shape)>0);if(i.length===1)return rr({inputs:{x:i[0]},backend:n});let l=i.map(m=>m.shape);if($.assertParamsConsistent(l,a),i[0].dtype==="complex64"){let m=i.map(b=>zo({inputs:{input:b},backend:n})),A=i.map(b=>Ul({inputs:{input:b},backend:n})),g=Hl({inputs:m,backend:n,attrs:{axis:a}}),y=Hl({inputs:A,backend:n,attrs:{axis:a}}),x=jn({inputs:{real:g,imag:y},backend:n});return m.forEach(b=>n.disposeIntermediateTensorInfo(b)),A.forEach(b=>n.disposeIntermediateTensorInfo(b)),n.disposeIntermediateTensorInfo(g),n.disposeIntermediateTensorInfo(y),x}let u=i.map(m=>{let A=I.sizeFromShape(m.shape.slice(a));return gt({inputs:{x:m},backend:n,attrs:{shape:[-1,A]}})}),c=u.map(m=>({vals:n.data.get(m.dataId).values,shape:m.shape}));o=$.computeOutShape(u.map(m=>m.shape),1);let d=u[0].shape[0]===1,h=e1(c,o,t[0].dtype,d),p=$.computeOutShape(i.map(m=>m.shape),a),f=n.makeTensorInfo(p,t[0].dtype,h);return u.forEach(m=>n.disposeIntermediateTensorInfo(m)),f}var xV={kernelName:wi,backendName:"cpu",kernelFunc:Hl};function fw(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dataFormat:l,dilations:u,dimRoundingMode:c}=s;ke([r,a],"conv2d");let d=$.convertConv2DDataFormat(l),h=$.computeConv2DInfo(r.shape,a.shape,o,u,i,c,!1,d),p=h.filterHeight,f=h.filterWidth,m=h.dilationHeight,A=h.dilationWidth,g=h.padInfo.left,y=h.padInfo.top,x=h.dataFormat==="channelsLast",b=new Bt(h.outShape,r.dtype),v=I.computeStrides(r.shape),k=I.computeStrides(a.shape),w=v[0],C=x?v[1]:v[2],E=x?v[2]:1,M=x?1:v[1],R=b.strides[0],_=x?b.strides[1]:b.strides[2],N=x?b.strides[2]:1,O=x?1:b.strides[1],W=n.data.get(r.dataId).values,j=n.data.get(a.dataId).values,q=b.values;for(let X=0;X<h.batchSize;++X){let Q=X*w,ne=X*R;for(let te=0;te<h.outHeight;++te){let se=ne+te*_,J=te*h.strideHeight-y;for(let ie=0;ie<p;++ie){let le=J+ie*m;if(le<0||le>=h.inHeight)continue;let he=ie*k[0],ge=Q+le*C;for(let Ce=0;Ce<h.outWidth;++Ce){let Te=se+Ce*N,$e=Ce*h.strideWidth-g;for(let Me=0;Me<f;++Me){let De=$e+Me*A;if(De<0||De>=h.inWidth)continue;let it=he+Me*k[1],et=ge+De*E,tt=it;for(let Je=0;Je<h.inChannels;++Je){let at=W[et+Je*M];for(let Ve=0;Ve<h.outChannels;++Ve)q[Te+Ve*O]+=at*j[tt+Ve];tt+=h.outChannels}}}}}}return n.makeTensorInfo(b.shape,b.dtype,q)}var bV={kernelName:ka,backendName:"cpu",kernelFunc:fw};function vV(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,pad:i,dataFormat:l,dimRoundingMode:u,filterShape:c}=s;ke([r,a],"conv2dBackpropFilter");let d=$.convertConv2DDataFormat(l),h=$.computeConv2DInfo(r.shape,c,o,1,i,u,!1,d),{strideHeight:p,strideWidth:f,filterHeight:m,filterWidth:A}=h,g=h.dataFormat==="channelsLast",y=new Bt(h.filterShape,"float32"),x=h.padInfo.left,b=h.padInfo.top,v=n.data.get(r.dataId).values,k=n.data.get(a.dataId).values,w=new Bt(r.shape,r.dtype,v),C=new Bt(a.shape,a.dtype,k);for(let E=0;E<m;++E){let M=Math.max(0,Math.ceil((b-E)/p)),R=Math.min(h.outHeight,(h.inHeight+b-E)/p);for(let _=0;_<A;++_){let N=Math.max(0,Math.ceil((x-_)/f)),O=Math.min(h.outWidth,(h.inWidth+x-_)/f);for(let W=0;W<h.inChannels;++W)for(let j=0;j<h.outChannels;++j){let q=0;for(let X=0;X<h.batchSize;++X)for(let Q=M;Q<R;++Q){let ne=E+Q*p-b;for(let te=N;te<O;++te){let se=_+te*f-x;g?q+=w.get(X,ne,se,W)*C.get(X,Q,te,j):q+=w.get(X,W,ne,se)*C.get(X,j,Q,te)}}y.set(q,E,_,W,j)}}}return n.makeTensorInfo(y.shape,y.dtype,y.values)}var wV={kernelName:Vd,backendName:"cpu",kernelFunc:vV};function kV(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{inputShape:o,strides:i,pad:l,dataFormat:u,dimRoundingMode:c}=s;ke([r,a],"conv2dBackpropInput");let d=I.computeStrides(a.shape),h=I.computeStrides(r.shape),p=$.convertConv2DDataFormat(u),f=$.computeConv2DInfo(o,a.shape,i,1,l,c,!1,p),m=new Bt(f.inShape,"float32"),A=m.values,g=n.data.get(r.dataId).values,y=n.data.get(a.dataId).values,[x,b,v]=d,{batchSize:k,filterHeight:w,filterWidth:C,inChannels:E,inHeight:M,inWidth:R,outChannels:_,outHeight:N,outWidth:O,strideHeight:W,strideWidth:j}=f;p=f.dataFormat;let q=w-1-f.padInfo.top,X=C-1-f.padInfo.left,Q=p==="channelsLast",ne=m.strides[0],te=Q?m.strides[1]:m.strides[2],se=Q?m.strides[2]:1,J=Q?1:m.strides[1],ie=h[0],le=Q?h[1]:h[2],he=Q?h[2]:1,ge=Q?1:h[1];for(let Ce=0;Ce<k;++Ce)for(let Te=0;Te<E;++Te)for(let $e=0;$e<M;++$e){let Me=$e-q,De=Math.max(0,Math.ceil(Me/W)),it=Math.min(N,(w+Me)/W);for(let et=0;et<R;++et){let tt=et-X,Je=Math.max(0,Math.ceil(tt/j)),at=Math.min(O,(C+tt)/j),Ve=0;for(let kt=De;kt<it;++kt){let Mn=kt*W-Me;for(let Qt=Je;Qt<at;++Qt){let gs=Qt*j-tt,cn=ie*Ce+le*kt+he*Qt,Yn=x*(w-1-Mn)+b*(C-1-gs)+v*Te;for(let Jn=0;Jn<_;++Jn){let en=g[cn+ge*Jn],Qn=y[Yn+Jn];Ve+=en*Qn}}}let In=ne*Ce+te*$e+se*et+J*Te;A[In]=Ve}}return n.makeTensorInfo(m.shape,m.dtype,m.values)}var IV={kernelName:Ia,backendName:"cpu",kernelFunc:kV};function SV(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dilations:l}=s;ke([r,a],"conv3d");let u=$.computeConv3DInfo(r.shape,a.shape,o,l,i),{filterDepth:c,filterHeight:d,filterWidth:h,dilationDepth:p,dilationHeight:f,dilationWidth:m,padInfo:A}=u,g=A.front,y=A.left,x=A.top,b=new Bt(u.outShape,r.dtype),v=n.data.get(r.dataId).values,k=n.data.get(a.dataId).values,w=b.values,C=I.computeStrides(r.shape),E=I.computeStrides(a.shape);for(let M=0;M<u.batchSize;++M){let R=M*C[0],_=M*b.strides[0];for(let N=0;N<u.outDepth;++N){let O=_+N*b.strides[1],W=N*u.strideDepth-g;for(let j=0;j<c;++j){let q=W+j*p;if(q<0||q>=u.inDepth)continue;let X=j*E[0],Q=R+q*C[1];for(let ne=0;ne<u.outHeight;++ne){let te=O+ne*b.strides[2],se=ne*u.strideHeight-x;for(let J=0;J<d;++J){let ie=se+J*f;if(ie<0||ie>=u.inHeight)continue;let le=X+J*E[1],he=Q+ie*C[2];for(let ge=0;ge<u.outWidth;++ge){let Ce=te+ge*u.outChannels,Te=ge*u.strideWidth-y;for(let $e=0;$e<h;++$e){let Me=Te+$e*m;if(Me<0||Me>=u.inWidth)continue;let De=le+$e*E[2],it=he+Me*u.inChannels,et=De;for(let tt=0;tt<u.inChannels;++tt){let Je=v[it+tt];for(let at=0;at<u.outChannels;++at)w[Ce+at]+=Je*k[et+at];et+=u.outChannels}}}}}}}}return n.makeTensorInfo(b.shape,b.dtype,b.values)}var CV={kernelName:Eu,backendName:"cpu",kernelFunc:SV};function TV(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,pad:i,filterShape:l}=s;ke([r,a],"conv3dBackpropFilterV2");let u=I.computeStrides(r.shape),c=I.computeStrides(a.shape),d=$.computeConv3DInfo(r.shape,l,o,1,i),h=d.strideDepth,p=d.strideHeight,f=d.strideWidth,m=d.filterDepth,A=d.filterHeight,g=d.filterWidth,y=new Bt(d.filterShape,"float32"),x=y.values,[b,v,k,w]=y.strides,C=n.data.get(a.dataId).values,[E,M,R,_]=c,N=n.data.get(r.dataId).values,[O,W,j,q]=u,X=d.padInfo.front,Q=d.padInfo.left,ne=d.padInfo.top;for(let te=0;te<m;++te){let se=Math.max(0,Math.ceil((X-te)/h)),J=Math.min(d.outDepth,(d.inDepth+X-te)/h),ie=te*b;for(let le=0;le<A;++le){let he=Math.max(0,Math.ceil((ne-le)/p)),ge=Math.min(d.outHeight,(d.inHeight+ne-le)/p),Ce=le*v+ie;for(let Te=0;Te<g;++Te){let $e=Math.max(0,Math.ceil((Q-Te)/f)),Me=Math.min(d.outWidth,(d.inWidth+Q-Te)/f),De=Te*k+Ce;for(let it=0;it<d.inChannels;++it){let et=it*w+De;for(let tt=0;tt<d.outChannels;++tt){let Je=0;for(let at=0;at<d.batchSize;++at){let Ve=at*O,In=at*E;for(let kt=se;kt<J;++kt){let Qt=(te+kt*h-X)*W+Ve,gs=kt*M+In;for(let cn=he;cn<ge;++cn){let Jn=(le+cn*p-ne)*j+Qt,en=cn*R+gs;for(let Qn=$e;Qn<Me;++Qn){let zn=(Te+Qn*f-Q)*q+Jn,Hs=Qn*_+en;Je+=N[zn+it]*C[Hs+tt]}}}}x[et+tt]=Je}}}}}return n.makeTensorInfo(y.shape,y.dtype,y.values)}var NV={kernelName:Ud,backendName:"cpu",kernelFunc:TV};function EV(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{pad:o,strides:i,inputShape:l}=s;ke([r],"conv3dBackpropInputV2");let u=I.computeStrides(r.shape),c=I.computeStrides(a.shape),d=$.computeConv3DInfo(l,a.shape,i,1,o),h=new Bt(d.inShape,"float32"),p=h.values,[f,m,A,g]=h.strides,y=n.data.get(r.dataId).values,[x,b,v,k]=u,w=n.data.get(a.dataId).values,[C,E,M,R]=c,{batchSize:_,filterDepth:N,filterHeight:O,filterWidth:W,inChannels:j,inDepth:q,inHeight:X,inWidth:Q,outChannels:ne,outDepth:te,outHeight:se,outWidth:J,strideDepth:ie,strideHeight:le,strideWidth:he}=d,ge=N-1-d.padInfo.front,Ce=O-1-d.padInfo.top,Te=W-1-d.padInfo.left;for(let $e=0;$e<_;++$e)for(let Me=0;Me<j;++Me)for(let De=0;De<q;++De){let it=De-ge,et=Math.max(0,Math.ceil(it/ie)),tt=Math.min(te,(N+it)/ie);for(let Je=0;Je<X;++Je){let at=Je-Ce,Ve=Math.max(0,Math.ceil(at/le)),In=Math.min(se,(O+at)/le);for(let kt=0;kt<Q;++kt){let Mn=kt-Te,Qt=Math.max(0,Math.ceil(Mn/he)),gs=Math.min(J,(W+Mn)/he),cn=0;for(let Yn=et;Yn<tt;++Yn){let Jn=Yn*ie-it;for(let en=Ve;en<In;++en){let Qn=en*le-at;for(let es=Qt;es<gs;++es){let zn=es*he-Mn,Hs=x*$e+b*Yn+v*en+k*es,ur=C*(N-1-Jn)+E*(O-1-Qn)+M*(W-1-zn)+R*Me;for(let Cr=0;Cr<ne;++Cr){let Yo=y[Hs+Cr],Gs=w[ur+Cr];cn+=Yo*Gs}}}}p[f*$e+m*De+A*Je+g*kt+Me]=cn}}}return n.makeTensorInfo(h.shape,h.dtype,h.values)}var RV={kernelName:Hd,backendName:"cpu",kernelFunc:EV},_V=rt(Sa,e=>Math.cos(e)),$V={kernelName:Sa,backendName:"cpu",kernelFunc:_V},FV=rt(Ca,e=>Math.cosh(e)),DV={kernelName:Ca,backendName:"cpu",kernelFunc:FV};function OV(e){let{inputs:t,backend:n,attrs:s}=e,{image:r,boxes:a,boxInd:o}=t,{cropSize:i,method:l,extrapolationValue:u}=s,[c,d,h,p]=r.shape,f=a.shape[0],[m,A]=i,g=Be([f,m,A,p],"float32"),y=n.data.get(a.dataId).values,x=n.data.get(o.dataId).values,b=n.data.get(r.dataId).values,v=I.computeStrides(r.shape),k=I.computeStrides(g.shape);for(let w=0;w<f;w++){let C=w*4,E=y[C],M=y[C+1],R=y[C+2],_=y[C+3],N=x[w];if(N>=c)continue;let O=m>1?(R-E)*(d-1)/(m-1):0,W=A>1?(_-M)*(h-1)/(A-1):0;for(let j=0;j<m;j++){let q=m>1?E*(d-1)+j*O:.5*(E+R)*(d-1);if(q<0||q>d-1){for(let X=0;X<A;X++)for(let Q=0;Q<p;Q++){let ne=Q+X*k[2]+j*k[1]+w*k[0];g.values[ne]=u}continue}if(l==="bilinear"){let X=Math.floor(q),Q=Math.ceil(q),ne=q-X;for(let te=0;te<A;te++){let se=A>1?M*(h-1)+te*W:.5*(M+_)*(h-1);if(se<0||se>h-1){for(let he=0;he<p;he++){let ge=he+te*k[2]+j*k[1]+w*k[0];g.values[ge]=u}continue}let J=Math.floor(se),ie=Math.ceil(se),le=se-J;for(let he=0;he<p;he++){let ge=he+J*v[2]+X*v[1]+N*v[0],Ce=b[ge];ge=he+ie*v[2]+X*v[1]+N*v[0];let Te=b[ge];ge=he+J*v[2]+Q*v[1]+N*v[0];let $e=b[ge];ge=he+ie*v[2]+Q*v[1]+N*v[0];let Me=b[ge],De=Ce+(Te-Ce)*le,it=$e+(Me-$e)*le;ge=he+te*k[2]+j*k[1]+w*k[0],g.values[ge]=De+(it-De)*ne}}}else for(let X=0;X<A;++X){let Q=A>1?M*(h-1)+X*W:.5*(M+_)*(h-1);if(Q<0||Q>h-1){for(let se=0;se<p;se++){let J=se+X*k[2]+j*k[1]+w*k[0];g.values[J]=u}continue}let ne=Math.round(Q),te=Math.round(q);for(let se=0;se<p;se++){let J=se+ne*v[2]+te*v[1]+N*v[0],ie=se+X*k[2]+j*k[1]+w*k[0];g.values[ie]=b[J]}}}}return n.makeTensorInfo(g.shape,g.dtype,g.values)}var PV={kernelName:ki,backendName:"cpu",kernelFunc:OV};function MV(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,exclusive:o,reverse:i}=s;ke(r,"cumsum");let l=$.getAxesPermutation([a],r.shape.length),u=r;l!=null&&(u=ps({inputs:{x:r},backend:n,attrs:{perm:l}}));let c=$.getInnerMostAxes(1,r.shape.length)[0];if(c!==u.shape.length-1)throw new Error(`backend.cumsum in CPU expects an inner-most axis=${u.shape.length-1} but got axis=${c}`);let d=bs(u.dtype,"int32"),h=I.makeZerosTypedArray(I.sizeFromShape(u.shape),d),p=n.data.get(u.dataId).values,f=u.shape[u.shape.length-1],m=i?(g,y)=>g+f-y-1:(g,y)=>g+y;for(let g=0;g<p.length;g+=f)for(let y=0;y<f;y++){let x=m(g,y);if(y===0)h[x]=o?0:p[x];else{let b=m(g,y-1);h[x]=o?p[b]+h[b]:p[x]+h[b]}}let A=n.makeTensorInfo(u.shape,d,h);if(l!=null){let g=$.getUndoAxesPermutation(l),y=ps({inputs:{x:A},backend:n,attrs:{perm:g}});return n.disposeIntermediateTensorInfo(A),n.disposeIntermediateTensorInfo(u),y}return A}var zV={kernelName:Ta,backendName:"cpu",kernelFunc:MV};function LV(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,weights:a}=t,{size:o,binaryOutput:i}=s;if(r.shape.length===1){let l=n.data.get(r.dataId).values,u=n.data.get(a.dataId).values,c=Q2(l,u,a.dtype,a.shape,o);return n.makeTensorInfo([o],a.dtype,c)}else if(r.shape.length===2){let l=n.bufferSync(r),u=n.bufferSync(a),c=I7(l,u,o,i);return n.makeTensorInfo(c.shape,a.dtype,c.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${r.shape.length}.`)}var BV={kernelName:Gd,backendName:"cpu",kernelFunc:LV};function WV(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockSize:a,dataFormat:o}=s;I.assert(o==="NHWC",()=>`Only NHWC dataFormat supported on CPU for depthToSpace. Got ${o}`),I.assert(a>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${a}`);let i=r.shape[0],l=r.shape[1],u=r.shape[2],c=r.shape[3],d=l*a,h=u*a,p=c/(a*a),f=n.data.get(r.dataId).values,m=new Float32Array(i*d*h*p),A=0;for(let g=0;g<i;++g)for(let y=0;y<d;++y){let x=Math.floor(y/a),b=y%a;for(let v=0;v<h;++v){let k=Math.floor(v/a),w=v%a,C=(b*a+w)*p;for(let E=0;E<p;++E){let R=E+C+c*(k+u*(x+l*g));m[A++]=f[R]}}}return n.makeTensorInfo([i,d,h,p],r.dtype,m)}var VV={kernelName:Ii,backendName:"cpu",kernelFunc:WV};function mw(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dilations:l,dimRoundingMode:u}=s;ke([r,a],"depthwiseConv2DNative");let c=I.computeStrides(r.shape),d=I.computeStrides(a.shape),h=l;h==null&&(h=[1,1]),I.assert($.eitherStridesOrDilationsAreOne(o,h),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${o} and dilations '${h}'`);let p=$.computeConv2DInfo(r.shape,a.shape,o,h,i,u,!0),{filterHeight:f,filterWidth:m,dilationHeight:A,dilationWidth:g,padInfo:y}=p,x=y.left,b=y.top,v=p.outChannels/p.inChannels,k=new Bt(p.outShape,r.dtype),w=n.data.get(r.dataId).values,C=n.data.get(a.dataId).values,E=k.values;for(let M=0;M<p.batchSize;++M){let R=M*c[0],_=M*k.strides[0];for(let N=0;N<p.outHeight;++N){let O=_+N*k.strides[1],W=N*p.strideHeight-b;for(let j=0;j<f;++j){let q=W+j*A;if(q<0||q>=p.inHeight)continue;let X=j*d[0],Q=R+q*c[1];for(let ne=0;ne<p.outWidth;++ne){let te=O+ne*k.strides[2],se=ne*p.strideWidth-x;for(let J=0;J<m;++J){let ie=se+J*g;if(ie<0||ie>=p.inWidth)continue;let le=X+J*d[1],he=Q+ie*p.inChannels,ge=te,Ce=le;for(let Te=0;Te<p.inChannels;++Te){let $e=w[he+Te];for(let Me=0;Me<v;++Me)E[ge+Me]+=$e*C[Ce+Me];ge+=v,Ce+=v}}}}}}return n.makeTensorInfo(k.shape,k.dtype,k.values)}var UV={kernelName:Na,backendName:"cpu",kernelFunc:mw};function HV(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,dilations:i,pad:l,dimRoundingMode:u,filterShape:c}=s;ke([r,a],"depthwiseConv2dNativeBackpropFilter");let d=$.computeConv2DInfo(r.shape,c,o,i,l,u,!0),{strideHeight:h,strideWidth:p,filterHeight:f,filterWidth:m}=d,A=new Bt(d.filterShape,"float32"),g=d.padInfo.left,y=d.padInfo.top,x=d.outChannels/d.inChannels,b=n.data.get(r.dataId).values,v=new Bt(r.shape,r.dtype,b),k=n.data.get(a.dataId).values,w=new Bt(a.shape,a.dtype,k);for(let C=0;C<f;++C){let E=Math.max(0,Math.ceil((y-C)/h)),M=Math.min(d.outHeight,(d.inHeight+y-C)/h);for(let R=0;R<m;++R){let _=Math.max(0,Math.ceil((g-R)/p)),N=Math.min(d.outWidth,(d.inWidth+g-R)/p);for(let O=0;O<d.outChannels;++O){let W=Math.trunc(O/x),j=O%x,q=0;for(let X=0;X<d.batchSize;++X)for(let Q=E;Q<M;++Q){let ne=C+Q*h-y;for(let te=_;te<N;++te){let se=R+te*p-g;q+=v.get(X,ne,se,W)*w.get(X,Q,te,O)}}A.set(q,C,R,W,j)}}}return n.makeTensorInfo(A.shape,A.dtype,A.values)}var GV={kernelName:jd,backendName:"cpu",kernelFunc:HV};function jV(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{strides:o,dilations:i,pad:l,dimRoundingMode:u,inputShape:c}=s;ke([r,a],"depthwiseConv2DNativeBackpropInput");let d=I.computeStrides(r.shape),h=I.computeStrides(a.shape),p=$.computeConv2DInfo(c,a.shape,o,i,l,u,!0),f=new Bt(p.inShape,"float32"),m=f.values,[A,g,y]=f.strides,x=n.data.get(r.dataId).values,[b,v,k]=d,w=n.data.get(a.dataId).values,[C,E,M]=h,{batchSize:R,filterHeight:_,filterWidth:N,inChannels:O,inHeight:W,inWidth:j,outChannels:q,outHeight:X,outWidth:Q,strideHeight:ne,strideWidth:te}=p,se=_-1-p.padInfo.top,J=N-1-p.padInfo.left,ie=q/O;for(let le=0;le<R;++le)for(let he=0;he<O;++he)for(let ge=0;ge<W;++ge){let Ce=ge-se,Te=Math.max(0,Math.ceil(Ce/ne)),$e=Math.min(X,(_+Ce)/ne);for(let Me=0;Me<j;++Me){let De=Me-J,it=Math.max(0,Math.ceil(De/te)),et=Math.min(Q,(N+De)/te),tt=0;for(let Je=Te;Je<$e;++Je){let at=Je*ne-Ce;for(let Ve=it;Ve<et;++Ve){let In=Ve*te-De,kt=b*le+v*Je+k*Ve,Mn=C*(_-1-at)+E*(N-1-In)+M*he;for(let Qt=0;Qt<ie;++Qt){let gs=he*ie+Qt,cn=x[kt+gs],Yn=w[Mn+Qt];tt+=cn*Yn}}}m[A*le+g*ge+y*Me+he]=tt}}return n.makeTensorInfo(f.shape,f.dtype,f.values)}var qV={kernelName:qd,backendName:"cpu",kernelFunc:jV};function XV(e){let{inputs:t,backend:n}=e,{x:s}=t,r=I.sizeFromShape(s.shape),a=n.data.get(s.dataId).values,o=Be([r,r],s.dtype),i=o.values;for(let u=0;u<a.length;u++)i[u*r+u]=a[u];let l=[...s.shape,...s.shape];return n.makeTensorInfo(l,o.dtype,o.values)}var KV={kernelName:Xd,backendName:"cpu",kernelFunc:XV},ZV={kernelName:Ru,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:s,filter:r}=e,{strides:a,pad:o,dilations:i}=n,l=t,u=l.data.get(s.dataId).values,c=s.shape.length,d=l.data.get(r.dataId).values,h=r.shape.length,{batchSize:p,inHeight:f,inWidth:m,inChannels:A,outHeight:g,outWidth:y,padInfo:x,strideHeight:b,strideWidth:v,filterHeight:k,filterWidth:w,dilationHeight:C,dilationWidth:E,outShape:M}=$.computeDilation2DInfo(s.shape,r.shape,a,o,"NHWC",i),R=I.sizeFromShape(M),_=M.length,N=I.getArrayFromDType(s.dtype,R);for(let W=0;W<p;++W)for(let j=0;j<g;++j){let q=j*b-x.top;for(let X=0;X<y;++X){let Q=X*v-x.left;for(let ne=0;ne<A;++ne){let te=Number.MIN_SAFE_INTEGER;for(let J=0;J<k;++J){let ie=q+J*C;if(ie>=0&&ie<f)for(let le=0;le<w;++le){let he=Q+le*E;if(he>=0&&he<m){let ge=I.locToIndex([W,ie,he,ne],c,I.computeStrides(s.shape)),Ce=I.locToIndex([J,le,ne],h,I.computeStrides(r.shape)),Te=u[ge]+d[Ce];Te>te&&(te=Te)}}}let se=I.locToIndex([W,j,X,ne],_,I.computeStrides(M));N[se]=te}}}return{dataId:l.write(I.toTypedArray(N,s.dtype),M,s.dtype),shape:M,dtype:s.dtype}}},YV={kernelName:Zd,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:s,filter:r,dy:a}=e,{strides:o,pad:i,dilations:l}=n,u=t,c=I.toNestedArray(s.shape,u.data.get(s.dataId).values),d=I.toNestedArray(r.shape,u.data.get(r.dataId).values),{batchSize:h,inHeight:p,inWidth:f,inChannels:m,outHeight:A,outWidth:g,padInfo:y,strideHeight:x,strideWidth:b,filterHeight:v,filterWidth:k,dilationHeight:w,dilationWidth:C,outShape:E}=$.computeDilation2DInfo(s.shape,r.shape,o,i,"NHWC",l);I.assert(a.rank===E.length,()=>`Error in ${Zd}, dy must have the same rank as output ${E.length}, but got ${a.rank}`);let M=I.toNestedArray(E,u.data.get(a.dataId).values),R=I.makeZerosNestedTypedArray(r.shape,r.dtype);for(let N=0;N<h;++N)for(let O=0;O<A;++O){let W=O*x-y.top;for(let j=0;j<g;++j){let q=j*b-y.left;for(let X=0;X<m;++X){let Q=Number.MIN_SAFE_INTEGER,ne=0,te=0;for(let se=0;se<v;++se){let J=W+se*w;if(J>=0&&J<p)for(let ie=0;ie<k;++ie){let le=q+ie*C;if(le>=0&&le<f){let he=c[N][J][le][X]+d[se][ie][X];he>Q&&(Q=he,ne=se,te=ie)}}}R[ne][te][X]+=M[N][O][j][X]}}}return{dataId:u.write(I.toTypedArray(R,s.dtype),r.shape,r.dtype),shape:r.shape,dtype:r.dtype}}},JV={kernelName:Kd,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:s,filter:r,dy:a}=e,{strides:o,pad:i,dilations:l}=n,u=t,c=I.toNestedArray(s.shape,u.data.get(s.dataId).values),d=I.toNestedArray(r.shape,u.data.get(r.dataId).values),{batchSize:h,inHeight:p,inWidth:f,inChannels:m,outHeight:A,outWidth:g,padInfo:y,strideHeight:x,strideWidth:b,filterHeight:v,filterWidth:k,dilationHeight:w,dilationWidth:C,outShape:E}=$.computeDilation2DInfo(s.shape,r.shape,o,i,"NHWC",l);I.assert(a.rank===E.length,()=>`Error in ${Kd}, dy must have the same rank as output ${E.length}, but got ${a.rank}`);let M=I.toNestedArray(E,u.data.get(a.dataId).values),R=I.makeZerosNestedTypedArray(s.shape,s.dtype);for(let N=0;N<h;++N)for(let O=0;O<A;++O){let W=O*x-y.top;for(let j=0;j<g;++j){let q=j*b-y.left;for(let X=0;X<m;++X){let Q=Number.MIN_SAFE_INTEGER,ne=W<0?0:W,te=q<0?0:q;for(let se=0;se<v;++se){let J=W+se*w;if(J>=0&&J<p)for(let ie=0;ie<k;++ie){let le=q+ie*C;if(le>=0&&le<f){let he=c[N][J][le][X]+d[se][ie][X];he>Q&&(Q=he,ne=J,te=le)}}}R[N][ne][te][X]+=M[N][O][j][X]}}}return{dataId:u.write(I.toTypedArray(R,s.dtype),s.shape,s.dtype),shape:s.shape,dtype:s.dtype}}};function Dc(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;ke(r,"sum");let i;r.dtype==="bool"?i=na({inputs:{x:r},backend:n,attrs:{dtype:"int32"}}):i=rr({inputs:{x:r},backend:n});let l=i.shape.length,u=I.parseAxisParam(a,i.shape),c=$.getAxesPermutation(u,l),d=u,h=i;c!=null&&(h=ps({inputs:{x:i},backend:n,attrs:{perm:c}}),d=$.getInnerMostAxes(d.length,l)),$.assertAxesAreInnerMostDims("sum",d,h.shape.length);let[p,f]=$.computeOutAndReduceShapes(h.shape,d),m=$.upcastType(h.dtype,"int32"),A=Zp(n,p,m),g=I.sizeFromShape(f),y=n.data.get(A.dataId).values,x=n.data.get(h.dataId).values;for(let b=0;b<y.length;++b){let v=b*g,k=0;for(let w=0;w<g;++w)k+=x[v+w];y[b]=k}if(o){let b=$.expandShapeToKeepDim(A.shape,u),v=A;A=gt({inputs:{x:A},backend:n,attrs:{shape:b}}),n.disposeIntermediateTensorInfo(v)}return n.disposeIntermediateTensorInfo(i),c!=null&&n.disposeIntermediateTensorInfo(h),A}var QV={kernelName:ao,backendName:"cpu",kernelFunc:Dc};function eU(e){let{inputs:t,backend:n,attrs:s}=e,{equation:r}=s,a=t,{allDims:o,summedDims:i,idDims:l}=$.decodeEinsumEquation(r,a.length);$.checkEinsumDimSizes(o.length,l,a);let{path:u,steps:c}=$.getEinsumComputePath(i,l),d=c.length,h=null,p=o.length,f=[];for(let m=0;m<d;++m){for(let A of c[m]){let{permutationIndices:g,expandDims:y}=$.getEinsumPermutation(p,l[A]),x;$.isIdentityPermutation(g)?x=a[A]:(x=ps({inputs:{x:a[A]},backend:n,attrs:{perm:g}}),f.push(x));let b=x.shape.slice();for(let v=0;v<y.length;++v)b.splice(y[v],0,1);I.arraysEqual(x.shape,b)||(x=gt({inputs:{x},backend:n,attrs:{shape:b}}),f.push(x)),h===null?h=x:(h=Yp({inputs:{a:x,b:h},backend:n}),f.push(h))}m<d-1&&(u[m]>=0&&(h=Dc({inputs:{x:h},backend:n,attrs:{axis:u[m]-(o.length-p),keepDims:!1}}),f.push(h)),p--)}for(let m of f)m!==h&&n.disposeIntermediateTensorInfo(m);return h}var tU={kernelName:Yd,backendName:"cpu",kernelFunc:eU};function nU(e){let{inputs:t,backend:n}=e,{dy:s,y:r}=t;ke([s,r],"eluGrad");let a=new Float32Array(I.sizeFromShape(r.shape)),o=n.data.get(r.dataId).values,i=n.data.get(s.dataId).values;for(let l=0;l<o.length;++l){let u=o[l];u>=1?a[l]=i[l]:a[l]=i[l]*(u+1)}return n.makeTensorInfo(r.shape,"float32",a)}var sU={kernelName:Jd,backendName:"cpu",kernelFunc:nU},rU=$.ERF_P,aU=$.ERF_A1,oU=$.ERF_A2,iU=$.ERF_A3,lU=$.ERF_A4,uU=$.ERF_A5,cU=rt(Ci,e=>{let t=Math.sign(e),n=Math.abs(e),s=1/(1+rU*n);return t*(1-((((uU*s+lU)*s+iU)*s+oU)*s+aU)*s*Math.exp(-n*n))}),dU={kernelName:Ci,backendName:"cpu",kernelFunc:cU};function Qp(e){let{inputs:t,backend:n,attrs:s}=e,{input:r}=t,{dim:a}=s,o=r.shape.length,i=r.shape.slice(),l=a;return a<0&&(I.assert(-(o+1)<=a,()=>`Axis must be in the interval [${-(o+1)}, ${o}]`),l=o+a+1),i.splice(l,0,1),gt({inputs:{x:r},backend:n,attrs:{shape:i}})}var hU={kernelName:Ni,backendName:"cpu",kernelFunc:Qp},pU=Mt((e,t)=>e/t),l1=Jt(Ea,pU),u1={kernelName:Ea,backendName:"cpu",kernelFunc:l1};function Aw(e,t,n){let s=e.shape,r=s[0],a=s[1],o=n.data.get(e.dataId),i=o.complexTensorInfos.real,l=o.complexTensorInfos.imag,u=[r,a],c=I.sizeFromShape(u),d=I.getTypedArrayFromDType("float32",c),h=I.getTypedArrayFromDType("float32",c);for(let A=0;A<r;A++){let g=Lo({inputs:{x:i},backend:n,attrs:{begin:[A,0],size:[1,a]}}),y=Lo({inputs:{x:l},backend:n,attrs:{begin:[A,0],size:[1,a]}}),x=jn({inputs:{real:g,imag:y},backend:n}),{real:b,imag:v}=fU(x,t,n),k=$.mergeRealAndImagArrays(b,v);for(let w=0;w<a;w++){let C=$.getComplexWithIndex(k,w);d[A*a+w]=C.real,h[A*a+w]=C.imag}n.disposeIntermediateTensorInfo(g),n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(x)}let p=n.makeTensorInfo(u,"float32",d),f=n.makeTensorInfo(u,"float32",h),m=jn({inputs:{real:p,imag:f},backend:n});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(f),m}function fU(e,t,n){let s=I.sizeFromShape(e.shape),r=n.data.get(e.dataId),a=n.data.get(r.complexTensorInfos.real.dataId).values,o=n.data.get(r.complexTensorInfos.imag.dataId).values;if(mU(s)){let i=c1(a,o,s,t,n),l=[e.shape[0],e.shape[1]];if(t){let u=n.makeTensorInfo(l,"float32",i.real),c=n.makeTensorInfo(l,"float32",i.imag),d=n.makeTensorInfo([],"float32",I.createScalarValue(s,"float32")),h=rr({inputs:{x:d},backend:n}),p=u1.kernelFunc({inputs:{a:u,b:d},backend:n}),f=u1.kernelFunc({inputs:{a:c,b:h},backend:n}),m=n.data.get(p.dataId).values,A=n.data.get(f.dataId).values;return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(f),{real:m,imag:A}}return i}else{let i=$.mergeRealAndImagArrays(a,o),l=AU(i,s,t);return $.splitRealAndImagArrays(l)}}function mU(e){return(e&e-1)==0}function c1(e,t,n,s,r){if(n===1)return{real:e,imag:t};let a=$.mergeRealAndImagArrays(e,t),o=n/2,i=$.complexWithEvenIndex(a),l=i.real,u=i.imag,c=[l.length],d=r.makeTensorInfo(c,"float32",l),h=r.makeTensorInfo(c,"float32",u),p=jn({inputs:{real:d,imag:h},backend:r}),f=$.complexWithOddIndex(a),m=f.real,A=f.imag,g=[m.length],y=r.makeTensorInfo(g,"float32",m),x=r.makeTensorInfo(g,"float32",A),b=jn({inputs:{real:y,imag:x},backend:r}),v=c1(l,u,o,s,r),k=v.real,w=v.imag,C=[k.length],E=r.makeTensorInfo(C,"float32",k),M=r.makeTensorInfo(C,"float32",w),R=jn({inputs:{real:E,imag:M},backend:r}),_=c1(m,A,o,s,r),N=_.real,O=_.imag,W=[N.length],j=r.makeTensorInfo(W,"float32",N),q=r.makeTensorInfo(W,"float32",O),X=jn({inputs:{real:j,imag:q},backend:r}),Q=$.exponents(n,s),ne=[Q.real.length],te=r.makeTensorInfo(ne,"float32",Q.real),se=r.makeTensorInfo(ne,"float32",Q.imag),J=jn({inputs:{real:te,imag:se},backend:r}),ie=Yp({inputs:{a:J,b:X},backend:r}),le=$c({inputs:{a:R,b:ie},backend:r}),he=a1({inputs:{a:R,b:ie},backend:r}),ge=zo({inputs:{input:le},backend:r}),Ce=zo({inputs:{input:he},backend:r}),Te=Ul({inputs:{input:le},backend:r}),$e=Ul({inputs:{input:he},backend:r}),Me=Hl({inputs:[ge,Ce],backend:r,attrs:{axis:0}}),De=Hl({inputs:[Te,$e],backend:r,attrs:{axis:0}}),it=r.data.get(Me.dataId).values,et=r.data.get(De.dataId).values;return r.disposeIntermediateTensorInfo(d),r.disposeIntermediateTensorInfo(h),r.disposeIntermediateTensorInfo(p),r.disposeIntermediateTensorInfo(y),r.disposeIntermediateTensorInfo(x),r.disposeIntermediateTensorInfo(b),r.disposeIntermediateTensorInfo(E),r.disposeIntermediateTensorInfo(M),r.disposeIntermediateTensorInfo(R),r.disposeIntermediateTensorInfo(j),r.disposeIntermediateTensorInfo(q),r.disposeIntermediateTensorInfo(X),r.disposeIntermediateTensorInfo(te),r.disposeIntermediateTensorInfo(se),r.disposeIntermediateTensorInfo(J),r.disposeIntermediateTensorInfo(ie),r.disposeIntermediateTensorInfo(le),r.disposeIntermediateTensorInfo(he),r.disposeIntermediateTensorInfo(ge),r.disposeIntermediateTensorInfo(Te),r.disposeIntermediateTensorInfo(Ce),r.disposeIntermediateTensorInfo($e),r.disposeIntermediateTensorInfo(Me),r.disposeIntermediateTensorInfo(De),{real:it,imag:et}}function AU(e,t,n){let s=new Float32Array(t*2);for(let r=0;r<t;r++){let a=0,o=0;for(let i=0;i<t;i++){let l=$.exponent(r*i,t,n),u=$.getComplexWithIndex(e,i);a+=u.real*l.real-u.imag*l.imag,o+=u.real*l.imag+u.imag*l.real}n&&(a/=t,o/=t),$.assignToTypedArray(s,a,o,r)}return s}function gU(e){let{inputs:t,backend:n}=e,{input:s}=t,r=I.sizeFromShape(s.shape),a=s.shape[s.shape.length-1],o=r/a,i=gt({inputs:{x:s},backend:n,attrs:{shape:[o,a]}}),l=Aw(i,!1,n),u=gt({inputs:{x:l},backend:n,attrs:{shape:s.shape}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(l),u}var yU={kernelName:Qd,backendName:"cpu",kernelFunc:gU};function d1(e){let{backend:t,attrs:n}=e,{shape:s,value:r,dtype:a}=n,o=a||I.inferDtype(r),i=I.getArrayFromDType(o,I.sizeFromShape(s));return bU(i,r,o),t.makeTensorInfo(s,o,i)}var xU={kernelName:_u,backendName:"cpu",kernelFunc:d1};function bU(e,t,n){e.fill(t)}var vU={kernelName:Ri,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:s}=e,r=n,a=I.getTypedArrayFromDType(s.dtype,I.sizeFromShape(s.shape)),[o,i,l,u]=s.shape,c=r.data.get(s.dataId).values;for(let h=0;h<o;h++){let p=h*l*i*u;for(let f=0;f<i;f++){let m=f*(l*u);for(let A=0;A<l;A++){let g=A*u;for(let y=0;y<u;y++){let x=Math.round(l-A-1),b=p+m+g+y,v=c[b];if(x>=0&&x<l){let k=x*u,w=p+m+k+y;v=c[w]}a[b]=v}}}}return{dataId:r.write(a,s.shape,s.dtype),shape:s.shape,dtype:s.dtype}}},wU=Mt((e,t)=>Math.floor(e/t)),kU=Jt($a,wU,null,"int32"),IU={kernelName:$a,backendName:"cpu",kernelFunc:kU};function SU(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:u,dataFormat:c,dilations:d,dimRoundingMode:h,activation:p,leakyreluAlpha:f}=s,m=fw({inputs:{x:r,filter:a},backend:n,attrs:{strides:l,pad:u,dataFormat:c,dilations:d,dimRoundingMode:h}});if(o){let A=m;m=$c({inputs:{a:m,b:o},backend:n}),n.disposeIntermediateTensorInfo(A)}if(p){let A=m;m=o1(n,m,p,i,f),n.disposeIntermediateTensorInfo(A)}return m}var CU={kernelName:fo,backendName:"cpu",kernelFunc:SU};function TU(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:u,dataFormat:c,dilations:d,dimRoundingMode:h,activation:p,leakyreluAlpha:f}=s,m=mw({inputs:{x:r,filter:a},backend:n,attrs:{strides:l,pad:u,dataFormat:c,dilations:d,dimRoundingMode:h}});if(o){let A=m;m=$c({inputs:{a:m,b:o},backend:n}),n.disposeIntermediateTensorInfo(A)}if(p){let A=m;m=o1(n,m,p,i,f),n.disposeIntermediateTensorInfo(A)}return m}var NU={kernelName:mo,backendName:"cpu",kernelFunc:TU};function EU(e){let{inputs:t,backend:n}=e,{params:s,indices:r}=t,a=I.sizeFromShape(s.shape),o=r.shape,i=o[o.length-1],[l,u,c,d]=$.prepareAndValidate(s,r);if(u===0)return n.makeTensorInfo(l,s.dtype,[]);let h=n.data.get(r.dataId).values,p=n.bufferSync(s),f=$7(h,p,s.dtype,u,i,c,d,s.shape,a);return n.makeTensorInfo(l,s.dtype,f.values)}var RU={kernelName:$i,backendName:"cpu",kernelFunc:EU};function _U(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,indices:a}=t,{axis:o,batchDims:i}=s;ke([r,a],"gatherV2");let l=i;i==null&&(l=0);let u=I.sizeFromShape(a.shape),c=I.parseAxisParam(o,r.shape)[0],d=$.segment_util.collectGatherOpShapeInfo(r,a,c,l),h=gt({inputs:{x:r},backend:n,attrs:{shape:[d.batchSize,d.outerSize,d.dimSize,d.sliceSize]}}),p=gt({inputs:{x:a},backend:n,attrs:{shape:[d.batchSize,u/d.batchSize]}}),f=[d.batchSize,d.outerSize,u/d.batchSize,d.sliceSize],m=n.bufferSync(p),A=n.bufferSync(h),g=F7(A,m,f);return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(p),n.makeTensorInfo(d.outputShape,g.dtype,g.values)}var $U={kernelName:_i,backendName:"cpu",kernelFunc:_U};function FU(e){let{inputs:t,backend:n}=e,{input:s}=t,r=I.sizeFromShape(s.shape),a=s.shape[s.shape.length-1],o=r/a,i=gt({inputs:{x:s},backend:n,attrs:{shape:[o,a]}}),l=Aw(i,!0,n),u=gt({inputs:{x:l},backend:n,attrs:{shape:s.shape}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(l),u}var DU={kernelName:eh,backendName:"cpu",kernelFunc:FU},OU=rt(Di,e=>Number.isFinite(e)?1:0,"bool"),PU={kernelName:Di,backendName:"cpu",kernelFunc:OU},MU=rt(Oi,e=>Math.abs(e)===1/0?1:0,"bool"),zU={kernelName:Oi,backendName:"cpu",kernelFunc:MU},LU=rt(Pi,e=>Number.isNaN(e)?1:0,"bool"),BU={kernelName:Pi,backendName:"cpu",kernelFunc:LU};function WU(e){let{backend:t,attrs:n}=e,{start:s,stop:r,num:a}=n,o=z7(s,r,a);return t.makeTensorInfo([o.length],"float32",o)}var VU={kernelName:nh,backendName:"cpu",kernelFunc:WU},UU=rt(Li,e=>Math.log1p(e)),HU={kernelName:Li,backendName:"cpu",kernelFunc:UU},GU=Mt((e,t)=>e&&t),jU=Jt(Bi,GU,null,"bool"),qU={kernelName:Bi,backendName:"cpu",kernelFunc:jU},XU=rt($u,e=>e?0:1,"bool"),KU={kernelName:$u,backendName:"cpu",kernelFunc:XU},ZU=Mt((e,t)=>e||t),YU=Jt(Fu,ZU,null,"bool"),JU={kernelName:Fu,backendName:"cpu",kernelFunc:YU};function QU(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{depthRadius:a,bias:o,alpha:i,beta:l}=s;ke(r,"LRN");let u=r.shape[3],c=u-1,d=n.data.get(r.dataId).values,h=I.sizeFromShape(r.shape),p=new Float32Array(h);function f(m){let A=m%u,g=m-A+Math.max(0,A-a),y=m-A+Math.min(A+a,c),x=0;for(;g<=y;g++){let b=d[g];x+=b*b}return x}for(let m=0;m<h;m++){let A=f(m),g=d[m]*Math.pow(o+i*A,-l);p[m]=g}return n.makeTensorInfo(r.shape,r.dtype,p)}var eH={kernelName:Du,backendName:"cpu",kernelFunc:QU};function tH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,y:a,dy:o}=t,{depthRadius:i,bias:l,alpha:u,beta:c}=s;ke(o,"LRNGrad");let d=I.sizeFromShape(o.shape),h=o.shape[3],p=n.data.get(o.dataId).values,f=n.data.get(r.dataId).values,m=n.data.get(a.dataId).values,A=new Float32Array(d),g=d;for(let y=0;y<g;y++){let x=y%h,b=y-x+Math.max(0,x-i),v=y-x+Math.min(h,x+i+1),k=0;for(let w=b;w<v;w++)k+=Math.pow(f[w],2);k=u*k+l;for(let w=b;w<v;w++){let C=-2*u*c*f[w]*m[y]/k;y===w&&(C+=Math.pow(k,-c)),C*=p[y],A[w]+=C}}return n.makeTensorInfo(o.shape,r.dtype,A)}var nH={kernelName:sh,backendName:"cpu",kernelFunc:tH};function gw(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reductionIndices:a,keepDims:o}=s,i=n,l=r.shape,u=l.length,c=I.parseAxisParam(a,l),d=c,h=$.getAxesPermutation(d,u),p=i.data.get(r.dataId).values;if(h!=null){let b=new Array(u);for(let v=0;v<b.length;v++)b[v]=l[h[v]];p=n1(p,l,r.dtype,h,b),d=$.getInnerMostAxes(d.length,u),l=b}ke(r,"max"),$.assertAxesAreInnerMostDims("max",d,u);let[f,m]=$.computeOutAndReduceShapes(l,d),A=I.sizeFromShape(m),g=B7(p,A,f,r.dtype),y=i.write(g,f,r.dtype),x=f;return o&&(x=$.expandShapeToKeepDim(f,c)),{dataId:y,shape:x,dtype:r.dtype}}var sH={kernelName:za,backendName:"cpu",kernelFunc:gw};function rH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t;ke(r,"maxPool");let{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=s,u=1;I.assert($.eitherStridesOrDilationsAreOne(o,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${o} and dilations '${u}'`);let c=$.computePool2DInfo(r.shape,a,o,u,i,l),d;if(c.filterWidth===1&&c.filterHeight===1&&I.arraysEqual(c.inShape,c.outShape))d=rr({inputs:{x:r},backend:n});else{let h=n.data.get(r.dataId).values,p=I.computeStrides(r.shape),f=i1(h,r.shape,r.dtype,p,c,"max");d=n.makeTensorInfo(c.outShape,r.dtype,f.values)}return d}var aH={kernelName:Ba,backendName:"cpu",kernelFunc:rH};function oH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l,dataFormat:u}=s;ke(r,"maxPool3d");let c=$.computePool3DInfo(r.shape,a,o,1,i,l,u),d=n.data.get(r.dataId).values,h=pw(d,r.shape,r.dtype,I.computeStrides(r.shape),c,"max");return n.makeTensorInfo(h.shape,"float32",h.values)}var iH={kernelName:Ou,backendName:"cpu",kernelFunc:oH};function lH(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,{filterSize:o,strides:i,pad:l,dimRoundingMode:u}=s;ke([r,a],"maxPool3DGrad");let c=$.computePool3DInfo(a.shape,o,i,1,l,u),d=n.bufferSync(a),h=QW(d,c),p=c.strideDepth,f=c.strideHeight,m=c.strideWidth,A=c.dilationDepth,g=c.dilationHeight,y=c.dilationWidth,x=c.effectiveFilterDepth,b=c.effectiveFilterHeight,v=c.effectiveFilterWidth,k=x-1-c.padInfo.front,w=v-1-c.padInfo.left,C=b-1-c.padInfo.top,E=Be(a.shape,"float32"),M=n.bufferSync(r);for(let R=0;R<c.batchSize;++R)for(let _=0;_<c.inChannels;++_)for(let N=0;N<c.inDepth;++N)for(let O=0;O<c.inHeight;++O)for(let W=0;W<c.inWidth;++W){let j=N-k,q=O-C,X=W-w,Q=0;for(let ne=0;ne<x;ne+=A){let te=(j+ne)/p;if(!(te<0||te>=c.outDepth||Math.floor(te)!==te))for(let se=0;se<b;se+=g){let J=(q+se)/f;if(!(J<0||J>=c.outHeight||Math.floor(J)!==J))for(let ie=0;ie<v;ie+=y){let le=(X+ie)/m;if(le<0||le>=c.outWidth||Math.floor(le)!==le)continue;let he=x*b*v-1-h.get(R,te,J,le,_),ge=ne*b*v+se*v+ie,Ce=he===ge?1:0;if(Ce===0)continue;Q+=M.get(R,te,J,le,_)*Ce}}}E.set(Q,R,N,O,W,_)}return n.makeTensorInfo(E.shape,E.dtype,E.values)}var uH={kernelName:ah,backendName:"cpu",kernelFunc:lH};function cH(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a,output:o}=t,i=a;ke([a,o],"maxPoolGrad");let{filterSize:l,strides:u,pad:c,dimRoundingMode:d}=s,h=$.computePool2DInfo(i.shape,l,u,1,c,d),p=n.data.get(i.dataId).values,f=Be(h.outShape,i.dtype,hw(p,i.shape,i.dtype,h).values),m=h.strideHeight,A=h.strideWidth,g=h.dilationHeight,y=h.dilationWidth,x=h.effectiveFilterHeight,b=h.effectiveFilterWidth,v=b-1-h.padInfo.left,k=x-1-h.padInfo.top,w=Be(i.shape,"float32"),C=n.data.get(r.dataId).values,E=Be(r.shape,"float32",C);for(let M=0;M<h.batchSize;++M)for(let R=0;R<h.inChannels;++R)for(let _=0;_<h.inHeight;++_)for(let N=0;N<h.inWidth;++N){let O=_-k,W=N-v,j=0;for(let q=0;q<x;q+=g){let X=(O+q)/m;if(!(X<0||X>=h.outHeight||Math.floor(X)!==X))for(let Q=0;Q<b;Q+=y){let ne=(W+Q)/A;if(ne<0||ne>=h.outWidth||Math.floor(ne)!==ne)continue;let te=x*b-1-f.get(M,X,ne,R),se=q*b+Q,J=te===se?1:0;if(J===0)continue;j+=E.get(M,X,ne,R)*J}}w.set(j,M,_,N,R)}return n.makeTensorInfo(w.shape,w.dtype,w.values)}var dH={kernelName:rh,backendName:"cpu",kernelFunc:cH};function hH(e,t,n,s,r){let a=I.computeStrides(t),o=i1(e,t,n,a,r,"max"),i=hw(e,t,n,r,!0,s);return[o.values,i.values]}var pH={kernelName:oh,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:s}=e,{filterSize:r,strides:a,pad:o,includeBatchInIndex:i}=t,l=n;ke(s,"MaxPoolWithArgmax");let u=l.data.get(s.dataId).values,c=$.computePool2DInfo(s.shape,r,a,[1,1],o),[d,h]=hH(u,s.shape,s.dtype,i,c),p=l.write(d,c.outShape,s.dtype),f=l.write(h,c.outShape,s.dtype);return[{dataId:p,shape:c.outShape,dtype:s.dtype},{dataId:f,shape:c.outShape,dtype:"int32"}]}};function fH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s,i=I.parseAxisParam(a,r.shape),u=$.computeOutAndReduceShapes(r.shape,i)[1],c=I.sizeFromShape(u),d=[],h=n.makeTensorInfo([],"float32",new Float32Array([c]));d.push(h);let p=na({inputs:{x:r},backend:n,attrs:{dtype:"float32"}});d.push(p);let f=l1({inputs:{a:p,b:h},backend:n});d.push(f);let m=Dc({inputs:{x:f},backend:n,attrs:{axis:a,keepDims:o}});return d.forEach(A=>n.disposeIntermediateTensorInfo(A)),m}var mH={kernelName:Wa,backendName:"cpu",kernelFunc:fH};function AH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;ke(r,"min");let i=I.parseAxisParam(a,r.shape),l=i,u=$.getAxesPermutation(l,r.shape.length),c=r;u!=null&&(c=ps({inputs:{x:r},backend:n,attrs:{perm:u}}),l=$.getInnerMostAxes(l.length,r.shape.length)),$.assertAxesAreInnerMostDims("min",l,c.shape.length);let[d,h]=$.computeOutAndReduceShapes(c.shape,l),p=I.sizeFromShape(h),f=I.makeZerosTypedArray(I.sizeFromShape(d),c.dtype),m=n.data.get(c.dataId).values;for(let g=0;g<f.length;++g){let y=g*p,x=m[y];for(let b=0;b<p;++b){let v=m[y+b];(Number.isNaN(v)||v<x)&&(x=v)}f[g]=x}u!=null&&n.disposeIntermediateTensorInfo(c);let A=n.makeTensorInfo(d,c.dtype,f);if(o){let g=$.expandShapeToKeepDim(d,i),y=gt({inputs:{x:A},backend:n,attrs:{shape:g}});return n.disposeIntermediateTensorInfo(A),y}return A}var gH={kernelName:Va,backendName:"cpu",kernelFunc:AH};function yH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{paddings:a,mode:o}=s;ke(r,"mirrorPad");let i=a.map((x,b)=>x[0]+r.shape[b]+x[1]),l=a.map(x=>x[0]),u=a.map((x,b)=>x[0]+r.shape[b]),c=o==="reflect"?0:1,d=n.data.get(r.dataId).values,h=r.shape.length,p=I.computeStrides(r.shape),f=I.sizeFromShape(i),m=i.length,A=I.computeStrides(i),g=I.getTypedArrayFromDType(r.dtype,f);for(let x=0;x<f;x++){let b=I.indexToLoc(x,m,A);for(let k=0;k<m;k++)b[k]<l[k]?b[k]=l[k]*2-b[k]-c:b[k]>=u[k]&&(b[k]=(u[k]-1)*2-b[k]+c);b=b.map((k,w)=>k-l[w]);let v=I.locToIndex(b,h,p);g[x]=d[v]}return{dataId:n.write(g,i,r.dtype),shape:i,dtype:r.dtype}}var xH={kernelName:Ha,backendName:"cpu",kernelFunc:yH},bH=Mt((e,t)=>{let n=e%t;return e<0&&t<0||e>=0&&t>=0?n:(n+t)%t}),vH=Jt(Wi,bH),wH={kernelName:Wi,backendName:"cpu",kernelFunc:vH},kH=fa(t5());function yw(e){let{inputs:t,backend:n,attrs:s}=e,{logits:r}=t,{dim:a}=s,o=r.shape.length,i=a;if(i===-1&&(i=o-1),i!==o-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${o} and dim was ${i}`);let l=I.parseAxisParam([i],r.shape),u=gw({inputs:{x:r},backend:n,attrs:{reductionIndices:l,keepDims:!1}}),c=$.expandShapeToKeepDim(u.shape,l),d=gt({inputs:{x:u},backend:n,attrs:{shape:c}}),h=a1({inputs:{a:r,b:d},backend:n}),p=E7({inputs:{x:h},backend:n}),f=Dc({inputs:{x:p},backend:n,attrs:{axis:l,keepDims:!1}}),m=gt({inputs:{x:f},backend:n,attrs:{shape:c}}),A=l1({inputs:{a:p,b:m},backend:n});return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(m),A}var IH={kernelName:oo,backendName:"cpu",kernelFunc:yw};function SH(e){let{inputs:t,backend:n,attrs:s}=e,{logits:r}=t,{numSamples:a,seed:o,normalized:i}=s;ke(r,"multinomial");let l=i?r:yw({inputs:{logits:r},backend:n,attrs:{dim:-1}}),u=l.shape[0],c=l.shape[1],d=n.data.get(l.dataId).values,h=[u,a],p=I.makeZerosTypedArray(I.sizeFromShape(h),"int32");for(let f=0;f<u;++f){let m=f*c,A=new Float32Array(c-1);A[0]=d[m];for(let x=1;x<A.length;++x)A[x]=A[x-1]+d[m+x];let g=kH.alea(o.toString()),y=f*a;for(let x=0;x<a;++x){let b=g();p[y+x]=A.length;for(let v=0;v<A.length;v++)if(b<A[v]){p[y+x]=v;break}}}return i||n.disposeIntermediateTensorInfo(l),n.makeTensorInfo(h,"int32",p)}var CH={kernelName:ih,backendName:"cpu",kernelFunc:SH},TH=Js.nonMaxSuppressionV3Impl;function NH(e){let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l}=s;ke(r,"NonMaxSuppression");let u=n.data.get(r.dataId).values,c=n.data.get(a.dataId).values,{selectedIndices:d}=TH(u,c,o,i,l);return n.makeTensorInfo([d.length],"int32",new Int32Array(d))}var EH={kernelName:Hi,backendName:"cpu",kernelFunc:NH},RH=Js.nonMaxSuppressionV4Impl;function _H(e){let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l,padToMaxOutputSize:u}=s;ke(r,"NonMaxSuppressionPadded");let c=n.data.get(r.dataId).values,d=n.data.get(a.dataId).values,{selectedIndices:h,validOutputs:p}=RH(c,d,o,i,l,u);return[n.makeTensorInfo([h.length],"int32",new Int32Array(h)),n.makeTensorInfo([],"int32",new Int32Array([p]))]}var $H={kernelName:Gi,backendName:"cpu",kernelFunc:_H},FH=Js.nonMaxSuppressionV5Impl;function DH(e){let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l,softNmsSigma:u}=s;ke(r,"NonMaxSuppressionWithScore");let c=n.data.get(r.dataId).values,d=n.data.get(a.dataId).values,h=o,p=i,f=l,m=u,{selectedIndices:A,selectedScores:g}=FH(c,d,h,p,f,m);return[n.makeTensorInfo([A.length],"int32",new Int32Array(A)),n.makeTensorInfo([g.length],"float32",new Float32Array(g))]}var OH={kernelName:ji,backendName:"cpu",kernelFunc:DH};function PH(e){let{inputs:t,backend:n,attrs:s}=e,{indices:r}=t,{depth:a,onValue:o,offValue:i}=s;ke(r,"oneHot");let l=I.sizeFromShape(r.shape),u=new Float32Array(l*a);u.fill(i);let c=n.data.get(r.dataId).values;for(let d=0;d<l;++d)c[d]>=0&&c[d]<a&&(u[d*a+c[d]]=o);return n.makeTensorInfo([...r.shape,a],"int32",u)}var MH={kernelName:ja,backendName:"cpu",kernelFunc:PH};function ef(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="string")throw new Error("zerosLike is not supported for string tensors");if(s.dtype==="complex64"){let r=zo({inputs:{input:s},backend:n}),a=ef({inputs:{x:r},backend:n}),o=Ul({inputs:{input:s},backend:n}),i=ef({inputs:{x:o},backend:n}),l=jn({inputs:{real:a,imag:i},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),l}else return d1({backend:n,attrs:{shape:s.shape,value:0,dtype:s.dtype}})}var zH={kernelName:dl,backendName:"cpu",kernelFunc:ef};function xw(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="string")throw new Error("onesLike is not supported for string tensors");if(s.dtype==="complex64"){let r=zo({inputs:{input:s},backend:n}),a=xw({inputs:{x:r},backend:n}),o=Ul({inputs:{input:s},backend:n}),i=ef({inputs:{x:o},backend:n}),l=jn({inputs:{real:a,imag:i},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),l}else return d1({backend:n,attrs:{shape:s.shape,value:1,dtype:s.dtype}})}var LH={kernelName:qi,backendName:"cpu",kernelFunc:xw};function bw(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s;if(t.length===1)return Qp({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let a=t[0].shape,o=t[0].dtype;t.forEach(c=>{I.assertShapesMatch(a,c.shape,"All tensors passed to stack must have matching shapes"),I.assert(o===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],l=t.map(c=>{let d=Qp({inputs:{input:c},backend:n,attrs:{dim:r}});return i.push(d),d}),u=Hl({inputs:l,backend:n,attrs:{axis:r}});return i.forEach(c=>n.disposeIntermediateTensorInfo(c)),u}var BH={kernelName:Xi,backendName:"cpu",kernelFunc:bw};function WH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{paddings:a,constantValue:o}=s;ke(r,"pad");let i=a.map((y,x)=>y[0]+r.shape[x]+y[1]),l=a.map(y=>y[0]),u=n.data.get(r.dataId).values,c=I.sizeFromShape(r.shape),d=r.shape.length,h=I.computeStrides(r.shape),p=I.sizeFromShape(i),f=i.length,m=I.computeStrides(i),A=I.getTypedArrayFromDType(r.dtype,p);o!==0&&A.fill(o);for(let y=0;y<c;y++){let b=I.indexToLoc(y,d,h).map((k,w)=>k+l[w]),v=I.locToIndex(b,f,m);A[v]=u[y]}return{dataId:n.write(A,i,r.dtype),shape:i,dtype:r.dtype}}var vw={kernelName:qa,backendName:"cpu",kernelFunc:WH},VH=Mt((e,t)=>Math.pow(e,t)),UH=Jt(Xa,VH),HH={kernelName:Xa,backendName:"cpu",kernelFunc:UH};function GH(e){let{backend:t,attrs:n}=e,{start:s,stop:r,dtype:a,step:o}=n,i=s1(s,r,o,a);return t.makeTensorInfo([i.length],a,i)}var jH={kernelName:Pu,backendName:"cpu",kernelFunc:GH},qH=rt(Zi,e=>1/e),XH={kernelName:Zi,backendName:"cpu",kernelFunc:qH};function KH(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,halfPixelCenters:o,size:i}=s;ke(r,"resizeBilinear");let l=I.computeStrides(r.shape),[u,c]=i,[d,h,p,f]=r.shape,m=n.data.get(r.dataId).values,A=new Float32Array(I.sizeFromShape([d,u,c,f])),g=[a&&u>1?h-1:h,a&&c>1?p-1:p],y=[a&&u>1?u-1:u,a&&c>1?c-1:c],x=0,b=g[0]/y[0],v=g[1]/y[1];for(let k=0;k<d;k++)for(let w=0;w<u;w++){let C;o?C=b*(w+.5)-.5:C=b*w;let E=Math.max(0,Math.floor(C)),M=C-E,R=Math.min(h-1,Math.ceil(C)),_=k*l[0]+E*l[1],N=k*l[0]+R*l[1];for(let O=0;O<c;O++){let W;o?W=v*(O+.5)-.5:W=v*O;let j=Math.max(0,Math.floor(W)),q=W-j,X=Math.min(p-1,Math.ceil(W)),Q=_+j*l[2],ne=N+j*l[2],te=_+X*l[2],se=N+X*l[2];for(let J=0;J<f;J++){let ie=m[Q+J],le=m[ne+J],he=m[te+J],ge=m[se+J],Ce=ie+(he-ie)*q,Te=le+(ge-le)*q,$e=Ce+(Te-Ce)*M;A[x++]=$e}}}return n.makeTensorInfo([d,u,c,f],"float32",A)}var ZH={kernelName:Ya,backendName:"cpu",kernelFunc:KH};function YH(e){let{inputs:t,backend:n,attrs:s}=e,{images:r,dy:a}=t,{alignCorners:o}=s;ke([a,r],"resizeBilinearGrad");let i=I.computeStrides(r.shape),[l,u,c,d]=r.shape,[,h,p]=a.shape,f=new Float32Array(l*u*c*d),m=[o&&h>1?u-1:u,o&&p>1?c-1:c],A=[o&&h>1?h-1:h,o&&p>1?p-1:p],g=m[0]/A[0],y=m[1]/A[1],x=n.data.get(a.dataId).values,b=0;for(let v=0;v<l;v++){let k=v*i[0];for(let w=0;w<h;w++){let C=w*g,E=Math.floor(C),M=Math.min(Math.ceil(C),u-1),R=k+E*i[1],_=k+M*i[1],N=C-E,O=1-N;for(let W=0;W<p;W++){let j=W*y,q=Math.floor(j),X=Math.min(Math.ceil(j),c-1),Q=j-q,ne=1-Q,te=R+q*i[2],se=R+X*i[2],J=_+q*i[2],ie=_+X*i[2],le=O*ne,he=O*Q,ge=N*ne,Ce=N*Q;for(let Te=0;Te<d;Te++){let $e=x[b++];f[te+Te]+=$e*le,f[se+Te]+=$e*he,f[J+Te]+=$e*ge,f[ie+Te]+=$e*Ce}}}}return n.makeTensorInfo([l,c,u,d],"float32",f)}var JH={kernelName:ch,backendName:"cpu",kernelFunc:YH};function QH(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,halfPixelCenters:o,size:i}=s;ke(r,"resizeNearestNeighbor");let l=I.computeStrides(r.shape),[u,c]=i,[d,h,p,f]=r.shape,m=n.data.get(r.dataId).values,A=new Float32Array(d*u*c*f),g=[a&&u>1?h-1:h,a&&c>1?p-1:p],y=[a&&u>1?u-1:u,a&&c>1?c-1:c],x=g[0]/y[0],b=g[1]/y[1],v=0;for(let k=0;k<d;k++){let w=k*l[0];for(let C=0;C<u;C++){let E=o?x*(C+.5):x*C,M=Math.min(h-1,a?Math.round(E):Math.floor(E));o&&(M=Math.max(0,M));let R=w+M*l[1];for(let _=0;_<c;_++){let N=o?b*(_+.5):b*_,O=Math.min(p-1,a?Math.round(N):Math.floor(N));o&&(O=Math.max(0,O));let W=R+O*l[2];for(let j=0;j<f;j++){let q=m[W+j];A[v++]=q}}}}return n.makeTensorInfo([d,u,c,f],r.dtype,A)}var eG={kernelName:Mu,backendName:"cpu",kernelFunc:QH};function tG(e){let{inputs:t,backend:n,attrs:s}=e,{images:r,dy:a}=t,{alignCorners:o}=s;ke([a,r],"resizeNearestNeighborGrad");let i=I.computeStrides(r.shape),l=I.computeStrides(a.shape),[u,c,d,h]=r.shape,[,p,f]=a.shape,m=new Float32Array(u*c*d*h),A=n.data.get(a.dataId).values,g=[o&&p>1?c-1:c,o&&f>1?d-1:d],y=[o&&p>1?p-1:p,o&&f>1?f-1:f],x=g[0]/y[0],b=g[1]/y[1],v=1/x,k=1/b,w=Math.ceil(v)*2+2,C=Math.ceil(k)*2+2;for(let E=0;E<u;E++){let M=E*i[0];for(let R=0;R<c;R++){let _=M+R*i[1],N=Math.floor(R*v),O=Math.floor(N-w/2);for(let W=0;W<d;W++){let j=_+W*i[2],q=Math.floor(W*k),X=Math.floor(q-C/2);for(let Q=0;Q<h;Q++){let ne=0;for(let te=0;te<w;te++){let se=te+O;if(se<0||se>=p)continue;let J=M+se*l[1],ie=se*x,le=Math.min(c-1,o?Math.round(ie):Math.floor(ie));if(R===le)for(let he=0;he<C;he++){let ge=he+X;if(ge<0||ge>=f)continue;let Ce=J+ge*l[2],Te=ge*b,$e=Math.min(d-1,o?Math.round(Te):Math.floor(Te));W===$e&&(ne+=A[Ce+Q])}}m[j+Q]=ne}}}}return n.makeTensorInfo(r.shape,r.dtype,m)}var nG={kernelName:uh,backendName:"cpu",kernelFunc:tG};function sG(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dims:a}=s;ke(r,"reverse");let o=r.shape.length,i=I.parseAxisParam(a,r.shape);if(o===0)return rr({inputs:{x:r},backend:n});let l=new Bt(r.shape,r.dtype),u=n.bufferSync(r);for(let c=0;c<l.size;c++){let d=l.indexToLoc(c),h=d.slice();i.forEach(p=>h[p]=r.shape[p]-1-h[p]),l.set(u.get(...h),...d)}return n.makeTensorInfo(l.shape,l.dtype,l.values)}var rG={kernelName:Qa,backendName:"cpu",kernelFunc:sG},aG={kernelName:hl,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:s}=e,{radians:r,fillValue:a,center:o}=t,i=n,l=I.getTypedArrayFromDType(s.dtype,I.sizeFromShape(s.shape)),[u,c,d,h]=s.shape,[p,f]=$.getImageCenter(o,c,d),m=255,A=Math.sin(r),g=Math.cos(r),y=i.data.get(s.dataId).values;for(let b=0;b<u;b++){let v=b*d*c*h;for(let k=0;k<c;k++){let w=k*(d*h);for(let C=0;C<d;C++){let E=C*h;for(let M=0;M<h;M++){let R=[u,k,C,M],_=R[2],N=R[1],O=(_-p)*g-(N-f)*A,W=(_-p)*A+(N-f)*g;O=Math.round(O+p),W=Math.round(W+f);let j=a;if(typeof a!="number"&&(M===3?j=m:j=a[M]),O>=0&&O<d&&W>=0&&W<c){let X=W*(d*h),Q=O*h,ne=v+X+Q+M;j=y[ne]}let q=v+w+E+M;l[q]=j}}}}return{dataId:i.write(l,s.shape,s.dtype),shape:s.shape,dtype:s.dtype}}},oG=rt(eo,e=>{let t=Math.floor(e);return e-t<.5?Math.floor(e):e-t>.5?Math.ceil(e):t%2==0?t:t+1}),iG={kernelName:eo,backendName:"cpu",kernelFunc:oG};function ww(e,t,n,s,r,a,o,i,l,u){let c=[s/r,r],d=e.values,h=t.values;if(s===0)return Be(n,t.dtype);let p=Be(c,t.dtype);p.values.fill(l);for(let f=0;f<a;f++){let m=[],A=0;for(let g=0;g<o;g++){let y=d[f*o+g];m.push(y),A+=y*i[g]}if(A<0||A>=s/r)throw new Error(`Invalid indices: ${m} does not index into ${n}`);for(let g=0;g<r;g++)u?p.values[A*r+g]+=h[f*r+g]:p.values[A*r+g]=t.rank===0?h[0]:h[f*r+g]}return p}function lG(e){let{inputs:t,backend:n,attrs:s}=e,{indices:r,updates:a}=t,{shape:o}=s,{sliceRank:i,numUpdates:l,sliceSize:u,strides:c,outputSize:d}=$.calculateShapes(a,r,o),h=!0,p=n.bufferSync(r),f=n.bufferSync(a),m=ww(p,f,o,d,u,l,i,c,0,h);return n.makeTensorInfo(o,m.dtype,m.values)}var uG={kernelName:Ji,backendName:"cpu",kernelFunc:lG};function cG(e){let{inputs:t,backend:n}=e,{condition:s,t:r,e:a}=t;ke([s,r,a],"select");let o=s.shape.length,i=n.data.get(s.dataId).values,l=n.data.get(r.dataId).values,u=n.data.get(a.dataId).values,c=bs(r.dtype,a.dtype),d=I.makeZerosTypedArray(I.sizeFromShape(r.shape),c),h=0,p=o===0||o>1||r.shape.length===1?1:I.sizeFromShape(r.shape.slice(1));for(let f=0;f<i.length;f++)for(let m=0;m<p;m++)i[f]===1?d[h++]=l[f]:d[h++]=u[f];return n.makeTensorInfo(r.shape,c,d)}var dG={kernelName:Qi,backendName:"cpu",kernelFunc:cG},hG=$.SELU_SCALEALPHA,pG=$.SELU_SCALE,fG=rt(el,e=>e>=0?pG*e:hG*(Math.exp(e)-1)),mG={kernelName:el,backendName:"cpu",kernelFunc:fG},AG=rt(sl,e=>e<0?-1:e>0?1:0),gG={kernelName:sl,backendName:"cpu",kernelFunc:AG},yG=rt(no,e=>Math.sin(e)),xG={kernelName:no,backendName:"cpu",kernelFunc:yG},bG=rt(nl,e=>Math.sinh(e)),vG={kernelName:nl,backendName:"cpu",kernelFunc:bG},wG=11920928955078125e-23,kw=Math.log(wG)+2,kG=rt(rl,e=>{let t=e>-kw,n=e<kw,s=Math.exp(e),r;return n?r=s:t?r=e:r=Math.log(1+s),r}),IG={kernelName:rl,backendName:"cpu",kernelFunc:kG};function SG(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,paddings:o}=s;ke([r],"spaceToBatchND");let i=I.sizeFromShape(a),l=[[0,0]];l.push(...o);for(let k=1+a.length;k<r.shape.length;++k)l.push([0,0]);let u=vw.kernelFunc({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),c=$.getReshaped(u.shape,a,i,!1),d=$.getPermuted(c.length,a.length,!1),h=$.getReshapedPermuted(u.shape,a,i,!1),m=gt({inputs:{x:u},backend:n,attrs:{shape:c}}),y=ps({inputs:{x:m},backend:n,attrs:{perm:d}}),v=gt({inputs:{x:y},backend:n,attrs:{shape:h}});return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(y),v}var CG={kernelName:al,backendName:"cpu",kernelFunc:SG};function TG(e){let{inputs:t,backend:n}=e,{indices:s,values:r,denseShape:a,defaultValue:o}=t;if(a.shape.length!==1)throw new Error(`Dense shape must be a vector, saw:
|
|
${a.shape}`);if(s.shape.length!==2)throw new Error(`Indices must be a matrix, saw:
|
|
${s.shape}`);if(r.shape.length!==1)throw new Error(`Values must be a vector, saw:
|
|
${r.shape}`);if(o.shape.length!==0)throw new Error(`Default value must be a scalar, saw:
|
|
${o.shape}`);let i=n.data.get(s.dataId).values,l=n.data.get(r.dataId).values,u=n.data.get(a.dataId).values,c=n.data.get(o.dataId).values[0],[d,h,p,f,m]=q7(i,s.shape,s.dtype,l,r.dtype,u,c);return[n.makeTensorInfo(h,s.dtype,d),n.makeTensorInfo([h[0]],r.dtype,p),n.makeTensorInfo([f.length],"bool",new Uint8Array(f.map(A=>Number(A)))),n.makeTensorInfo([m.length],s.dtype,new Int32Array(m))]}var NG={kernelName:dh,backendName:"cpu",kernelFunc:TG};function EG(e){let{inputs:t,backend:n}=e,{inputIndices:s,inputShape:r,newShape:a}=t;if(s.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape
|
|
${s.shape}`);if(r.shape.length!==1)throw new Error(`Input shape should be a vector but received shape
|
|
${r.shape}`);if(a.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${a.shape}`);let o=Array.from(n.data.get(r.dataId).values),i=n.data.get(s.dataId).values,l=Array.from(n.data.get(a.dataId).values),[u,c,d]=X7(i,s.shape,s.dtype,o,l);return[n.makeTensorInfo(c,s.dtype,u),n.makeTensorInfo([d.length],a.dtype,new Int32Array(d))]}var RG={kernelName:hh,backendName:"cpu",kernelFunc:EG};function _G(e){let{inputs:t,backend:n}=e,{data:s,indices:r,segmentIds:a}=t;if(s.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
|
|
${r.shape}`);if(a.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
|
|
${a.shape}`);let o=n.data.get(s.dataId).values,i=n.data.get(r.dataId).values,l=n.data.get(a.dataId).values,[u,c]=r1(o,s.shape,s.dtype,i,l,!0);return n.makeTensorInfo(c,s.dtype,u)}var $G={kernelName:ph,backendName:"cpu",kernelFunc:_G};function FG(e){let{inputs:t,backend:n}=e,{data:s,indices:r,segmentIds:a}=t;if(s.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
|
|
${r.shape}`);if(a.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
|
|
${a.shape}`);let o=n.data.get(s.dataId).values,i=n.data.get(r.dataId).values,l=n.data.get(a.dataId).values,[u,c]=r1(o,s.shape,s.dtype,i,l);return n.makeTensorInfo(c,s.dtype,u)}var DG={kernelName:fh,backendName:"cpu",kernelFunc:FG};function OG(e){let{inputs:t,backend:n,attrs:s}=e,{sparseIndices:r,sparseValues:a,defaultValue:o}=t,{outputShape:i}=s,{sliceRank:l,numUpdates:u,sliceSize:c,strides:d,outputSize:h}=$.calculateShapes(a,r,i),p=!1,f=n.bufferSync(r),m=n.bufferSync(a),A=n.data.get(o.dataId).values[0],g=ww(f,m,i,h,c,u,l,d,A,p);return n.makeTensorInfo(i,g.dtype,g.values)}var PG={kernelName:mh,backendName:"cpu",kernelFunc:OG};function MG(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{numOrSizeSplits:a,axis:o}=s,i=I.parseAxisParam(o,r.shape)[0],l=$.prepareSplitSize(r,a,i),u=new Array(r.shape.length).fill(0),c=r.shape.slice();return l.map(d=>{let h=[...c];h[i]=d;let p=Lo({inputs:{x:r},backend:n,attrs:{begin:u,size:h}});return u[i]+=d,p})}var zG={kernelName:ol,backendName:"cpu",kernelFunc:MG},LG=rt(ro,e=>Math.sqrt(e)),BG={kernelName:ro,backendName:"cpu",kernelFunc:LG},WG={kernelName:zu,backendName:"cpu",kernelFunc:({inputs:e,backend:t})=>{let{x:n}=e,s=t;ke(n,"square");let r=s.data.get(n.dataId).values,a=new Float32Array(r.length);for(let i=0;i<r.length;++i){let l=r[i];a[i]=l*l}return{dataId:s.write(a,n.shape,n.dtype),shape:n.shape,dtype:n.dtype}}},VG=rt(Mr,(e,t)=>{let n=t;return isNaN(e)?NaN:e>0?1:n.alpha}),UG={kernelName:Mr,backendName:"cpu",kernelFunc:VG};function HG(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,end:o,strides:i,beginMask:l,endMask:u,ellipsisMask:c,newAxisMask:d,shrinkAxisMask:h}=s;ke(r,"stridedSlice");let{nonStrided:p,$begin:f,$strides:m,size:A,newShape:g,outShape:y}=An.sliceInfo(r.shape,a,o,i,l,u,c,d,h),x=gt({inputs:{x:r},backend:n,attrs:{shape:g}}),b;if(p){let k=Lo({inputs:{x},backend:n,attrs:{begin:f,size:A}});b=gt({inputs:{x:k},backend:n,attrs:{shape:y}}),n.disposeIntermediateTensorInfo(k)}else if(y.some(k=>k===0))b=n.makeTensorInfo(y,r.dtype,[]);else{let k=n.bufferSync(x),w=Z7(y,k,m,f);b=n.makeTensorInfo(w.shape,w.dtype,w.values)}let v=gt({inputs:{x:b},backend:n,attrs:{shape:y}});return n.disposeIntermediateTensorInfo(x),n.disposeIntermediateTensorInfo(b),v}var GG={kernelName:il,backendName:"cpu",kernelFunc:HG};function jG(e){let{inputs:t,backend:n,attrs:s}=e,{separator:r,nGramWidths:a,leftPad:o,rightPad:i,padWidth:l,preserveShortSequences:u}=s,{data:c,dataSplits:d}=t,h=n.data.get(c.dataId).values,p=n.data.get(d.dataId).values,[f,m]=Y7(h,p,r,a,o,i,l,u);return[n.makeTensorInfo([f.length],"string",f),n.makeTensorInfo(d.shape,"int32",m)]}var qG={kernelName:Ah,backendName:"cpu",kernelFunc:jG};function XG(e){let{inputs:t,backend:n,attrs:s}=e,{skipEmpty:r}=s,{input:a,delimiter:o}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(a.shape.length!==1)throw new Error(`Input must be a vector, got shape: ${a.shape}`);if(o.shape.length!==0)throw new Error(`Delimiter must be a scalar, got shape: ${o.shape}`);let i=n.data.get(a.dataId).values,l=n.data.get(o.dataId).values[0],[u,c,d]=J7(i,l,r),h=c.length;return[n.makeTensorInfo([h,2],"int32",u),n.makeTensorInfo([h],"string",c),n.makeTensorInfo([2],"int32",new Int32Array(d))]}var KG={kernelName:gh,backendName:"cpu",kernelFunc:XG};function ZG(e){let{inputs:t,backend:n,attrs:s}=e,{numBuckets:r}=s,{input:a}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(r<=0)throw new Error("Number of buckets must be at least 1");let o=n.data.get(a.dataId).values,i=Q7(o,r);return n.makeTensorInfo(a.shape,"int32",i)}var YG={kernelName:yh,backendName:"cpu",kernelFunc:ZG},JG=rt(uo,e=>Math.tan(e)),QG={kernelName:uo,backendName:"cpu",kernelFunc:JG},ej=rt(co,e=>Math.tanh(e)),tj={kernelName:co,backendName:"cpu",kernelFunc:ej};function nj(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reps:a}=s;ke(r,"tile");let o=tw(n.bufferSync(r),a);return n.makeTensorInfo(o.shape,o.dtype,o.values)}var sj={kernelName:Pr,backendName:"cpu",kernelFunc:nj};function rj(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{k:a,sorted:o}=s;ke(r,"topk");let i=n.data.get(r.dataId).values,[l,u]=sw(i,r.shape,r.dtype,a,o);return[n.makeTensorInfo(l.shape,l.dtype,l.values),n.makeTensorInfo(u.shape,u.dtype,u.values)]}var aj={kernelName:ll,backendName:"cpu",kernelFunc:rj};function oj(e){let{inputs:t,attrs:n,backend:s}=e,{image:r,transforms:a}=t,{interpolation:o,fillMode:i,fillValue:l,outputShape:u}=n,[c,d,h,p]=r.shape,[f,m]=u!=null?u:[d,h],A=[c,f,m,p],g=I.computeStrides(r.shape),y=g[0],x=g[1],b=g[2],v=I.getTypedArrayFromDType(r.dtype,I.sizeFromShape(A));v.fill(l);let k=s.data.get(r.dataId).values,w=s.data.get(a.dataId).values;for(let E=0;E<c;++E){let M=a.shape[0]===1?w:w.subarray(E*8,E*8+8);for(let R=0;R<f;++R)for(let _=0;_<m;++_)for(let N=0;N<p;++N){let O,W=M[6]*_+M[7]*R+1;if(W===0)continue;let j=(M[0]*_+M[1]*R+M[2])/W,q=(M[3]*_+M[4]*R+M[5])/W,X=Iw(j,h,i),Q=Iw(q,d,i);switch(o){case"nearest":O=hj(k,d,h,y,x,b,E,Q,X,N,l);break;case"bilinear":O=pj(k,d,h,y,x,b,E,Q,X,N,l);break;default:throw new Error(`Error in Transform: Expect 'nearest' or 'bilinear', but got ${o}`)}let ne=E*y+R*x+_*b+N;v[ne]=O}return s.makeTensorInfo(A,r.dtype,v)}return{dataId:s.write(v,A,r.dtype),shape:r.shape,dtype:r.dtype}}var ij={kernelName:ul,backendName:"cpu",kernelFunc:oj};function Iw(e,t,n){switch(n){case"reflect":return lj(e,t);case"wrap":return uj(e,t);case"nearest":return dj(e,t);case"constant":default:return cj(e,t)}}function lj(e,t){let n=e;if(n<0)if(t<=1)n=0;else{let s=2*t;n<s&&(n=s*Math.trunc(-n/s)+n),n=n<-t?n+s:-n-1}else if(n>t-1)if(t<=1)n=0;else{let s=2*t;n-=s*Math.trunc(n/s),n>=t&&(n=s-n-1)}return I.clamp(0,n,t-1)}function uj(e,t){let n=e;if(n<0)if(t<=1)n=0;else{let s=t-1;n+=t*(Math.trunc(-n/s)+1)}else if(n>t-1)if(t<=1)n=0;else{let s=t-1;n-=t*Math.trunc(n/s)}return I.clamp(0,n,t-1)}function cj(e,t){return e}function dj(e,t){return I.clamp(0,e,t-1)}function Oc(e,t,n,s,r,a,o,i,l,u,c){let d=o*s+i*r+l*a+u;return 0<=i&&i<t&&0<=l&&l<n?e[d]:c}function hj(e,t,n,s,r,a,o,i,l,u,c){let d=Math.round(i),h=Math.round(l);return Oc(e,t,n,s,r,a,o,d,h,u,c)}function pj(e,t,n,s,r,a,o,i,l,u,c){let d=Math.floor(i),h=Math.floor(l),p=d+1,f=h+1,m=(f-l)*Oc(e,t,n,s,r,a,o,d,h,u,c)+(l-h)*Oc(e,t,n,s,r,a,o,d,f,u,c),A=(f-l)*Oc(e,t,n,s,r,a,o,p,h,u,c)+(l-h)*Oc(e,t,n,s,r,a,o,p,f,u,c);return(p-i)*m+(i-d)*A}function fj(e){let{inputs:t,attrs:n,backend:s}=e,{axis:r}=n,{x:a}=t;ke(a,"unique");let o=s.data.get(a.dataId).values,{outputValues:i,outputShape:l,indices:u}=rw(o,r,a.shape,a.dtype);return[s.makeTensorInfo(l,a.dtype,i),s.makeTensorInfo([u.length],"int32",u)]}var mj={kernelName:xh,backendName:"cpu",kernelFunc:fj};function Aj(e){let{inputs:t,backend:n,attrs:s}=e,{value:r}=t,{axis:a}=s;a<0&&(a+=r.shape.length);let o=r.shape.length,i=r.shape[a],l=new Array(o-1),u=0;for(let p=0;p<o;p++)p!==a&&(l[u++]=r.shape[p]);let c=new Array(o).fill(0),d=r.shape.slice();d[a]=1;let h=new Array(i);for(let p=0;p<h.length;p++){c[a]=p;let f=Lo({inputs:{x:r},backend:n,attrs:{begin:c,size:d}});h[p]=gt({inputs:{x:f},backend:n,attrs:{shape:l}}),n.disposeIntermediateTensorInfo(f)}return h}var gj={kernelName:cl,backendName:"cpu",kernelFunc:Aj};function yj(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,segmentIds:a}=t,{numSegments:o}=s;ke(r,"unsortedSegmentSum");let i=r.shape.length,l=a.shape.length,u=[],c=[],d=i-l,h=a;for(let f=0;f<d;++f){let m=Qp({inputs:{input:h},backend:n,attrs:{dim:f+1}});h=m,c.push(m)}for(let f=0;f<o;++f){let m=I.createScalarValue(f,"int32"),A=n.makeTensorInfo([],"int32",m),g=T7({inputs:{a:A,b:h},backend:n}),y=na({inputs:{x:g},backend:n,attrs:{dtype:"float32"}}),x=Yp({inputs:{a:y,b:r},backend:n}),b=Dc({inputs:{x},backend:n,attrs:{axis:0,keepDims:!1}});u.push(b),c.push(A),c.push(g),c.push(y),c.push(x),c.push(b)}let p=bw({inputs:u,backend:n,attrs:{axis:0}});return c.forEach(f=>n.disposeIntermediateTensorInfo(f)),p}var xj={kernelName:Lu,backendName:"cpu",kernelFunc:yj},bj=[TW,kB,EW,_W,EB,FW,OW,MW,LW,WW,UW,GW,qW,ZW,JW,tV,sV,aV,iV,SW,uV,dV,pV,TB,_B,mV,IB,gV,xV,wV,IV,bV,NV,RV,CV,$V,DV,PV,zV,BV,VV,UV,GV,qV,KV,ZV,JV,YV,u1,tU,gW,sU,$B,dU,FB,hU,OB,yU,xU,vU,MB,IU,CU,NU,RU,$U,LB,WB,SB,DU,yV,PU,zU,BU,yW,UB,GB,VU,qB,HU,qU,KU,JU,eH,nH,KB,aH,iH,uH,dH,pH,sH,mH,gH,YB,xH,wH,CH,QB,tW,EH,$H,OH,sW,MH,LH,BH,vw,HH,bW,oW,jH,CB,XH,vW,wW,IW,ZH,JH,eG,nG,rG,aG,iG,lW,uG,dG,mG,kW,gG,xG,vG,uW,IH,IG,CG,NG,RG,$G,DG,PG,zG,BG,WG,dW,UG,GG,qG,KG,YG,mW,QV,QG,tj,sj,aj,rW,ij,mj,gj,xj,zH];for(let e of bj)Ao(e);var Sw={};Pe(Sw,{assertNotComplex:()=>jl,bindCanvasToFramebuffer:()=>$j,bindColorTextureToFramebuffer:()=>sf,bindTextureToProgramUniformSampler:()=>Bw,bindTextureUnit:()=>Mw,bindVertexBufferToProgramAttribute:()=>f1,callAndCheck:()=>be,canBeRepresented:()=>Cw,createFragmentShader:()=>Ew,createFramebuffer:()=>Pw,createProgram:()=>Rw,createStaticIndexBuffer:()=>Fw,createStaticVertexBuffer:()=>$w,createTexture:()=>Dw,createVertexShader:()=>Nw,getBatchDim:()=>Wo,getExtensionOrThrow:()=>Lc,getFramebufferErrorMessage:()=>Ww,getMaxTexturesInShader:()=>Gw,getNumChannels:()=>Rj,getProgramUniformLocation:()=>Lw,getProgramUniformLocationOrThrow:()=>zw,getRowsCols:()=>Vo,getShapeAs3D:()=>rf,getTextureShapeFromLogicalShape:()=>Uw,getWebGLDisjointQueryTimerVersion:()=>jw,getWebGLErrorMessage:()=>Tw,getWebGLMaxTextureSize:()=>Hw,hasExtension:()=>ms,isCapableOfRenderingToFloatTexture:()=>qw,isDownloadFloatTextureEnabled:()=>Xw,isReshapeFree:()=>Wc,isWebGLFenceEnabled:()=>Kw,isWebGLVersionEnabled:()=>A1,linkProgram:()=>_w,resetMaxTextureSize:()=>Fj,resetMaxTexturesInShader:()=>Dj,unbindColorTextureFromFramebuffer:()=>m1,unbindTextureUnit:()=>_j,validateFramebuffer:()=>Bc,validateProgram:()=>nf,validateTextureSize:()=>Ow});var Bo={},h1={alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!0};function tf(e,t){Bo[e]=t}function ar(e){if(!(e in Bo)){let n=wj(e);if(n!==null)Bo[e]=n;else return console.log("Could not get context for WebGL version",e),null}let t=Bo[e];return t.isContextLost()?(delete Bo[e],ar(e)):(t.disable(t.DEPTH_TEST),t.disable(t.STENCIL_TEST),t.disable(t.BLEND),t.disable(t.DITHER),t.disable(t.POLYGON_OFFSET_FILL),t.disable(t.SAMPLE_COVERAGE),t.enable(t.SCISSOR_TEST),t.enable(t.CULL_FACE),t.cullFace(t.BACK),Bo[e])}function vj(e){if(typeof OffscreenCanvas!="undefined"&&e===2)return new OffscreenCanvas(300,150);if(typeof document!="undefined")return document.createElement("canvas");throw new Error("Cannot create a canvas in this context")}function wj(e){if(e!==1&&e!==2)throw new Error("Cannot get WebGL rendering context, WebGL is disabled.");let t=vj(e);return t.addEventListener("webglcontextlost",n=>{n.preventDefault(),delete Bo[e]},!1),e===1?t.getContext("webgl",h1)||t.getContext("experimental-webgl",h1):t.getContext("webgl2",h1)}var Pc;(function(e){e[e.DENSE=0]="DENSE",e[e.SHARED_BATCH=1]="SHARED_BATCH"})(Pc||(Pc={}));var fs;(function(e){e[e.RENDER=0]="RENDER",e[e.UPLOAD=1]="UPLOAD",e[e.PIXELS=2]="PIXELS",e[e.DOWNLOAD=3]="DOWNLOAD"})(fs||(fs={}));var sn;(function(e){e[e.UNPACKED_FLOAT16=0]="UNPACKED_FLOAT16",e[e.UNPACKED_FLOAT32=1]="UNPACKED_FLOAT32",e[e.PACKED_4X1_UNSIGNED_BYTE=2]="PACKED_4X1_UNSIGNED_BYTE",e[e.PACKED_2X2_FLOAT32=3]="PACKED_2X2_FLOAT32",e[e.PACKED_2X2_FLOAT16=4]="PACKED_2X2_FLOAT16"})(sn||(sn={}));function Mc(e,t){return[t,e]}function kj(e,t){return e*t}function zc(e){let t=I.sizeFromShape(e),n=Math.ceil(t/4);return I.sizeToSquarishShape(n)}function Gl(e,t){return[Math.max(1,Math.ceil(t/2)),Math.max(1,Math.ceil(e/2))]}function Ij(e,t){let[n,s]=Gl(e,t);return n*s*4}function p1(e,t){let n=e,s,r,a,o,i,l,u,c,d,h;return ee().getNumber("WEBGL_VERSION")===2?(s=n.R32F,r=n.R16F,a=n.RGBA16F,o=n.RGBA32F,i=n.RED,u=4,c=1,d=n.HALF_FLOAT,h=n.FLOAT):(s=e.RGBA,r=e.RGBA,a=e.RGBA,o=n.RGBA,i=e.RGBA,u=4,c=4,d=t!=null?t.HALF_FLOAT_OES:null,h=e.FLOAT),l=e.RGBA,{internalFormatFloat:s,internalFormatHalfFloat:r,internalFormatPackedHalfFloat:a,internalFormatPackedFloat:o,textureFormatFloat:i,downloadTextureFormat:l,downloadUnpackNumChannels:u,defaultNumChannels:c,textureTypeHalfFloat:d,textureTypeFloat:h}}function be(e,t){let n=t();return ee().getBool("DEBUG")&&Sj(e),n}function Sj(e){let t=e.getError();if(t!==e.NO_ERROR)throw new Error("WebGL Error: "+Tw(e,t))}var Cj=596e-10,Tj=65504;function Cw(e){return!!(ee().getBool("WEBGL_RENDER_FLOAT32_ENABLED")||e===0||Cj<Math.abs(e)&&Math.abs(e)<Tj)}function Tw(e,t){switch(t){case e.NO_ERROR:return"NO_ERROR";case e.INVALID_ENUM:return"INVALID_ENUM";case e.INVALID_VALUE:return"INVALID_VALUE";case e.INVALID_OPERATION:return"INVALID_OPERATION";case e.INVALID_FRAMEBUFFER_OPERATION:return"INVALID_FRAMEBUFFER_OPERATION";case e.OUT_OF_MEMORY:return"OUT_OF_MEMORY";case e.CONTEXT_LOST_WEBGL:return"CONTEXT_LOST_WEBGL";default:return`Unknown error code ${t}`}}function Lc(e,t){return Sr(e,()=>e.getExtension(t),'Extension "'+t+'" not supported on this browser.')}function Nw(e,t){let n=Sr(e,()=>e.createShader(e.VERTEX_SHADER),"Unable to create vertex WebGLShader.");if(be(e,()=>e.shaderSource(n,t)),be(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw console.log(e.getShaderInfoLog(n)),new Error("Failed to compile vertex shader.");return n}function Ew(e,t){let n=Sr(e,()=>e.createShader(e.FRAGMENT_SHADER),"Unable to create fragment WebGLShader.");if(be(e,()=>e.shaderSource(n,t)),be(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw Ej(t,e.getShaderInfoLog(n)),new Error("Failed to compile fragment shader.");return n}var Nj=/ERROR: [0-9]+:([0-9]+):/g;function Ej(e,t){let n=Nj.exec(t);if(n==null){console.log(`Couldn't parse line number in error: ${t}`),console.log(e);return}let s=+n[1],r=e.split(`
|
|
`),a=r.length.toString().length+2,o=r.map((d,h)=>I.rightPad((h+1).toString(),a)+d),i=0;for(let d=0;d<o.length;d++)i=Math.max(o[d].length,i);let l=o.slice(0,s-1),u=o.slice(s-1,s),c=o.slice(s);console.log(l.join(`
|
|
`)),console.log(t.split(`
|
|
`)[0]),console.log(`%c ${I.rightPad(u[0],i)}`,"border:1px solid red; background-color:#e3d2d2; color:#a61717"),console.log(c.join(`
|
|
`))}function Rw(e){return Sr(e,()=>e.createProgram(),"Unable to create WebGLProgram.")}function _w(e,t){if(be(e,()=>e.linkProgram(t)),e.getProgramParameter(t,e.LINK_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Failed to link vertex and fragment shaders.")}function nf(e,t){if(be(e,()=>e.validateProgram(t)),e.getProgramParameter(t,e.VALIDATE_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Shader program validation failed.")}function $w(e,t){let n=Sr(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return be(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),be(e,()=>e.bufferData(e.ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function Fw(e,t){let n=Sr(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return be(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,n)),be(e,()=>e.bufferData(e.ELEMENT_ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function Rj(){return ee().getNumber("WEBGL_VERSION")===2?1:4}function Dw(e){return Sr(e,()=>e.createTexture(),"Unable to create WebGLTexture.")}function Ow(e,t){let n=ee().getNumber("WEBGL_MAX_TEXTURE_SIZE");if(e<=0||t<=0){let s=`[${e}x${t}]`;throw new Error("Requested texture size "+s+" is invalid.")}if(e>n||t>n){let s=`[${e}x${t}]`,r=`[${n}x${n}]`;throw new Error("Requested texture size "+s+" greater than WebGL maximum on this browser / GPU "+r+".")}}function Pw(e){return Sr(e,()=>e.createFramebuffer(),"Unable to create WebGLFramebuffer.")}function f1(e,t,n,s,r,a,o){let i=e.getAttribLocation(t,n);return i===-1?!1:(be(e,()=>e.bindBuffer(e.ARRAY_BUFFER,s)),be(e,()=>e.vertexAttribPointer(i,r,e.FLOAT,!1,a,o)),be(e,()=>e.enableVertexAttribArray(i)),!0)}function Mw(e,t,n){Vw(e,n),be(e,()=>e.activeTexture(e.TEXTURE0+n)),be(e,()=>e.bindTexture(e.TEXTURE_2D,t))}function _j(e,t){Vw(e,t),be(e,()=>e.activeTexture(e.TEXTURE0+t)),be(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function zw(e,t,n){return Sr(e,()=>e.getUniformLocation(t,n),'uniform "'+n+'" not present in program.')}function Lw(e,t,n){return e.getUniformLocation(t,n)}function Bw(e,t,n,s){be(e,()=>Mw(e,t,s)),be(e,()=>e.uniform1i(n,s))}function $j(e){be(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),be(e,()=>e.viewport(0,0,e.canvas.width,e.canvas.height)),be(e,()=>e.scissor(0,0,e.canvas.width,e.canvas.height))}function sf(e,t,n){be(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,n)),be(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,t,0))}function m1(e,t){be(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,t)),be(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,null,0))}function Bc(e){let t=e.checkFramebufferStatus(e.FRAMEBUFFER);if(t!==e.FRAMEBUFFER_COMPLETE)throw new Error("Error binding framebuffer: "+Ww(e,t))}function Ww(e,t){switch(t){case e.FRAMEBUFFER_INCOMPLETE_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_DIMENSIONS:return"FRAMEBUFFER_INCOMPLETE_DIMENSIONS";case e.FRAMEBUFFER_UNSUPPORTED:return"FRAMEBUFFER_UNSUPPORTED";default:return`unknown error ${t}`}}function Sr(e,t,n){let s=be(e,()=>t());if(s==null)throw new Error(n);return s}function Vw(e,t){let n=e.MAX_COMBINED_TEXTURE_IMAGE_UNITS-1,s=t+e.TEXTURE0;if(s<e.TEXTURE0||s>n){let r=`[gl.TEXTURE0, gl.TEXTURE${n}]`;throw new Error(`textureUnit must be in ${r}.`)}}function Wo(e,t=2){return I.sizeFromShape(e.slice(0,e.length-t))}function Vo(e){if(e.length===0)throw Error("Cannot get rows and columns of an empty shape array.");return[e.length>1?e[e.length-2]:1,e[e.length-1]]}function rf(e){let t=[1,1,1];return e.length===0||e.length===1&&e[0]===1||(t=[Wo(e),...Vo(e)]),t}function Uw(e,t=!1){let n=ee().getNumber("WEBGL_MAX_TEXTURE_SIZE");t&&(n=n*2,e=e.map((r,a)=>a>=e.length-2?I.nearestLargerEven(e[a]):e[a]),e.length===1&&(e=[2,e[0]])),e.length!==2&&(e=I.squeezeShape(e).newShape);let s=I.sizeFromShape(e);if(e.length<=1&&s<=n)return[1,s];if(e.length===2&&e[0]<=n&&e[1]<=n)return e;if(e.length===3&&e[0]*e[1]<=n&&e[2]<=n)return[e[0]*e[1],e[2]];if(e.length===3&&e[0]<=n&&e[1]*e[2]<=n)return[e[0],e[1]*e[2]];if(e.length===4&&e[0]*e[1]*e[2]<=n&&e[3]<=n)return[e[0]*e[1]*e[2],e[3]];if(e.length===4&&e[0]<=n&&e[1]*e[2]*e[3]<=n)return[e[0],e[1]*e[2]*e[3]];if(t){let r=Wo(e),a=2,o=2;return e.length&&([a,o]=Vo(e)),s=r*(a/2)*(o/2),I.sizeToSquarishShape(s).map(i=>i*2)}return I.sizeToSquarishShape(s)}function af(e){return e%2==0}function Wc(e,t){if(e=e.slice(-2),t=t.slice(-2),I.arraysEqual(e,t)||!e.length||!t.length||e[0]===0||e[1]===0||t[0]===0||t[1]===0)return!0;if(e.length!==t.length){let n=e.slice(-1)[0],s=t.slice(-1)[0];if(n===s||af(n)&&af(s)&&(e[0]===1||t[0]===1))return!0}return e[1]===t[1]&&af(e[0])&&af(t[0])}var of,lf;function Hw(e){if(of==null){let t=ar(e);of=t.getParameter(t.MAX_TEXTURE_SIZE)}return of}function Fj(){of=null}function Dj(){lf=null}function Gw(e){if(lf==null){let t=ar(e);lf=t.getParameter(t.MAX_TEXTURE_IMAGE_UNITS)}return Math.min(16,lf)}function jw(e){if(e===0)return 0;let t,n=ar(e);return ms(n,"EXT_disjoint_timer_query_webgl2")&&e===2?t=2:ms(n,"EXT_disjoint_timer_query")?t=1:t=0,t}function ms(e,t){return e.getExtension(t)!=null}function A1(e){try{if(ar(e)!=null)return!0}catch(t){return console.log("Error when getting WebGL context: ",t),!1}return!1}function qw(e){if(e===0)return!1;let t=ar(e);if(e===1){if(!ms(t,"OES_texture_float"))return!1}else if(!ms(t,"EXT_color_buffer_float"))return!1;return g1(t)}function Xw(e){if(e===0)return!1;let t=ar(e);if(e===1){if(!ms(t,"OES_texture_float")||!ms(t,"WEBGL_color_buffer_float"))return!1}else{if(ms(t,"EXT_color_buffer_float"))return g1(t);let s="EXT_color_buffer_half_float";if(ms(t,s)){let r=t.getExtension(s);return Oj(t,r)}return!1}return g1(t)}function g1(e){let t=p1(e),n=e.createTexture();e.bindTexture(e.TEXTURE_2D,n);let s=1,r=1;e.texImage2D(e.TEXTURE_2D,0,t.internalFormatFloat,s,r,0,t.textureFormatFloat,t.textureTypeFloat,null);let a=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,a),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,n,0);let o=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(n),e.deleteFramebuffer(a),o}function Oj(e,t){let n=p1(e,t),s=e.createTexture();e.bindTexture(e.TEXTURE_2D,s);let r=1,a=1;e.texImage2D(e.TEXTURE_2D,0,n.internalFormatHalfFloat,r,a,0,n.textureFormatFloat,n.textureTypeHalfFloat,null);let o=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,o),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,s,0);let i=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(s),e.deleteFramebuffer(o),i}function Kw(e){return e!==2?!1:ar(e).fenceSync!=null}function jl(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&I.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the WebGL backend.`)})}var Ne=ee();Ne.registerFlag("HAS_WEBGL",()=>Ne.getNumber("WEBGL_VERSION")>0);Ne.registerFlag("WEBGL_VERSION",()=>A1(2)?2:A1(1)?1:0);Ne.registerFlag("WEBGL_CHECK_NUMERICAL_PROBLEMS",()=>!1);Ne.registerFlag("WEBGL_BUFFER_SUPPORTED",()=>Ne.get("WEBGL_VERSION")===2);Ne.registerFlag("WEBGL_CPU_FORWARD",()=>!0);Ne.registerFlag("WEBGL_FORCE_F16_TEXTURES",()=>!1);Ne.registerFlag("WEBGL_PACK",()=>Ne.getBool("HAS_WEBGL"));Ne.registerFlag("WEBGL_PACK_NORMALIZATION",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_PACK_CLIP",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_PACK_DEPTHWISECONV",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_PACK_BINARY_OPERATIONS",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_PACK_UNARY_OPERATIONS",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_PACK_ARRAY_OPERATIONS",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_PACK_IMAGE_OPERATIONS",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_PACK_REDUCE",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_LAZILY_UNPACK",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_CONV_IM2COL",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_MAX_TEXTURE_SIZE",()=>Hw(Ne.getNumber("WEBGL_VERSION")));Ne.registerFlag("WEBGL_MAX_TEXTURES_IN_SHADER",()=>Gw(Ne.getNumber("WEBGL_VERSION")));Ne.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION",()=>{let e=Ne.getNumber("WEBGL_VERSION");return e===0?0:jw(e)});Ne.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE",()=>Ne.getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0&&!Ku.isMobile());Ne.registerFlag("WEBGL_RENDER_FLOAT32_CAPABLE",()=>qw(Ne.getNumber("WEBGL_VERSION")));Ne.registerFlag("WEBGL_RENDER_FLOAT32_ENABLED",()=>Ne.getBool("WEBGL_FORCE_F16_TEXTURES")?!1:Ne.getBool("WEBGL_RENDER_FLOAT32_CAPABLE"));Ne.registerFlag("WEBGL_DOWNLOAD_FLOAT_ENABLED",()=>Xw(Ne.getNumber("WEBGL_VERSION")));Ne.registerFlag("WEBGL_FENCE_API_ENABLED",()=>Kw(Ne.getNumber("WEBGL_VERSION")));Ne.registerFlag("WEBGL_SIZE_UPLOAD_UNIFORM",()=>Ne.getBool("WEBGL_RENDER_FLOAT32_ENABLED")?4:0);Ne.registerFlag("WEBGL_DELETE_TEXTURE_THRESHOLD",()=>-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_DELETE_TEXTURE_THRESHOLD must be -1 (indicating never delete) or at least 0, but got ${e}.`)});Ne.registerFlag("WEBGL_FLUSH_THRESHOLD",()=>Ku.isMobile()&&Ne.getBool("IS_CHROME")?1:-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_FLUSH_THRESHOLD must be -1 (indicating never manual flush) or at least 0, but got ${e}.`)});Ne.registerFlag("CPU_HANDOFF_SIZE_THRESHOLD",()=>128);Ne.registerFlag("WEBGL_USE_SHAPES_UNIFORMS",()=>!1);Ne.registerFlag("TOPK_LAST_DIM_CPU_HANDOFF_SIZE_THRESHOLD",()=>1e5);Ne.registerFlag("TOPK_K_CPU_HANDOFF_THRESHOLD",()=>128);function bn(){let e,t,n,s,r,a,o,i,l,u;return ee().getNumber("WEBGL_VERSION")===2?(e="#version 300 es",t="in",n="out",s="in",r="texture",a="outputColor",o="out vec4 outputColor;",i=`
|
|
bool isnan_custom(float val) {
|
|
return (val > 0.0 || val < 0.0) ? false : val != 0.0;
|
|
}
|
|
|
|
bvec4 isnan_custom(vec4 val) {
|
|
return bvec4(isnan_custom(val.x),
|
|
isnan_custom(val.y), isnan_custom(val.z), isnan_custom(val.w));
|
|
}
|
|
|
|
#define isnan(value) isnan_custom(value)
|
|
`,l="",u=`
|
|
#define round(value) newRound(value)
|
|
int newRound(float value) {
|
|
return int(floor(value + 0.5));
|
|
}
|
|
|
|
ivec4 newRound(vec4 value) {
|
|
return ivec4(floor(value + vec4(0.5)));
|
|
}
|
|
`):(e="",t="attribute",n="varying",s="varying",r="texture2D",a="gl_FragColor",o="",i=`
|
|
#define isnan(value) isnan_custom(value)
|
|
bool isnan_custom(float val) {
|
|
return (val > 0. || val < 1. || val == 0.) ? false : true;
|
|
}
|
|
bvec4 isnan_custom(vec4 val) {
|
|
return bvec4(isnan(val.x), isnan(val.y), isnan(val.z), isnan(val.w));
|
|
}
|
|
`,l=`
|
|
uniform float INFINITY;
|
|
|
|
bool isinf(float val) {
|
|
return abs(val) == INFINITY;
|
|
}
|
|
bvec4 isinf(vec4 val) {
|
|
return equal(abs(val), vec4(INFINITY));
|
|
}
|
|
`,u=`
|
|
int round(float value) {
|
|
return int(floor(value + 0.5));
|
|
}
|
|
|
|
ivec4 round(vec4 value) {
|
|
return ivec4(floor(value + vec4(0.5)));
|
|
}
|
|
`),{version:e,attribute:t,varyingVs:n,varyingFs:s,texture2D:r,output:a,defineOutput:o,defineSpecialNaN:i,defineSpecialInf:l,defineRound:u}}function Uo(e,t,n="index"){let s=I.computeStrides(t);return s.map((r,a)=>{let o=`int ${e[a]} = ${n} / ${r}`,i=a===s.length-1?`int ${e[a+1]} = ${n} - ${e[a]} * ${r}`:`index -= ${e[a]} * ${r}`;return`${o}; ${i};`}).join("")}function Zw(e,t,n="index"){let s=I.computeStrides(t);return s.map((r,a)=>{let o=`int ${e[a]} = ${n} / outShapeStrides[${a}]`,i=a===s.length-1?`int ${e[a+1]} = ${n} - ${e[a]} * outShapeStrides[${a}]`:`index -= ${e[a]} * outShapeStrides[${a}]`;return`${o}; ${i};`}).join("")}function y1(e){let t=I.computeStrides(e).map(n=>n.toString());return`
|
|
int getFlatIndex(ivec3 coords) {
|
|
return coords.x * ${t[0]} + coords.y * ${t[1]} + coords.z;
|
|
}
|
|
`}var Yw=`
|
|
const float FLOAT_MAX = 1.70141184e38;
|
|
const float FLOAT_MIN = 1.17549435e-38;
|
|
|
|
lowp vec4 encode_float(highp float v) {
|
|
if (isnan(v)) {
|
|
return vec4(255, 255, 255, 255);
|
|
}
|
|
|
|
highp float av = abs(v);
|
|
|
|
if(av < FLOAT_MIN) {
|
|
return vec4(0.0, 0.0, 0.0, 0.0);
|
|
} else if(v > FLOAT_MAX) {
|
|
return vec4(0.0, 0.0, 128.0, 127.0) / 255.0;
|
|
} else if(v < -FLOAT_MAX) {
|
|
return vec4(0.0, 0.0, 128.0, 255.0) / 255.0;
|
|
}
|
|
|
|
highp vec4 c = vec4(0,0,0,0);
|
|
|
|
highp float e = floor(log2(av));
|
|
highp float m = exp2(fract(log2(av))) - 1.0;
|
|
|
|
c[2] = floor(128.0 * m);
|
|
m -= c[2] / 128.0;
|
|
c[1] = floor(32768.0 * m);
|
|
m -= c[1] / 32768.0;
|
|
c[0] = floor(8388608.0 * m);
|
|
|
|
highp float ebias = e + 127.0;
|
|
c[3] = floor(ebias / 2.0);
|
|
ebias -= c[3] * 2.0;
|
|
c[2] += floor(ebias) * 128.0;
|
|
|
|
c[3] += 128.0 * step(0.0, -v);
|
|
|
|
return c / 255.0;
|
|
}
|
|
`,Pj=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outPackingScheme=Pc.DENSE;let t=zc(e),n=bn();this.outputShape=e,this.userCode=`
|
|
ivec3 outCoordsFromFlatIndex(int index) {
|
|
${Uo(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = 4 * (resTexRC.x * ${t[1]} + resTexRC.y);
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for (int i=0; i<4; i++) {
|
|
int flatIndex = index + i;
|
|
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
|
|
result[i] = getA(rc.x, rc.y, rc.z);
|
|
}
|
|
|
|
${n.output} = result;
|
|
}
|
|
`}},Mj=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outPackingScheme=Pc.DENSE;let t=zc(e),n=bn();this.outputShape=e,this.userCode=`
|
|
ivec3 outCoordsFromFlatIndex(int index) {
|
|
${Uo(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = 4 * (resTexRC.x * ${t[1]} + resTexRC.y);
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for (int i=0; i<4; i++) {
|
|
int flatIndex = index + i;
|
|
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
|
|
result[i] = getChannel(getA(rc.x, rc.y, rc.z), vec2(rc.y, rc.z));
|
|
}
|
|
|
|
${n.output} = result;
|
|
}
|
|
`}},zj=class{constructor(e){this.variableNames=["A"],this.outTexUsage=fs.DOWNLOAD;let t=bn();this.outputShape=e,this.userCode=`
|
|
${Yw}
|
|
|
|
void main() {
|
|
float x = getAAtOutCoords();
|
|
${t.output} = encode_float(x);
|
|
}
|
|
`}},Lj=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outTexUsage=fs.DOWNLOAD;let t=bn();this.outputShape=e,this.userCode=`
|
|
${Yw}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
float x = getChannel(getAAtOutCoords(), vec2(coords.y, coords.z));
|
|
${t.output} = encode_float(x);
|
|
}
|
|
`}},Bj=class{constructor(e,t,n=!1){this.variableNames=["A"];let s=bn(),[r,a]=t;this.outputShape=e;let o="result";n&&(o="floor(result * 255. + 0.5)"),this.userCode=`
|
|
${y1(e)}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
|
|
int flatIndex = getFlatIndex(coords);
|
|
int offset = imod(flatIndex, 4);
|
|
|
|
flatIndex = idiv(flatIndex, 4, 1.);
|
|
|
|
int r = flatIndex / ${a};
|
|
int c = imod(flatIndex, ${a});
|
|
vec2 uv = (vec2(c, r) + halfCR) / vec2(${a}.0, ${r}.0);
|
|
vec4 values = ${s.texture2D}(A, uv);
|
|
|
|
float result;
|
|
|
|
if(offset == 0) {
|
|
result = values[0];
|
|
} else if(offset == 1) {
|
|
result = values[1];
|
|
} else if(offset == 2) {
|
|
result = values[2];
|
|
} else {
|
|
result = values[3];
|
|
}
|
|
|
|
${s.output} = vec4(${o}, 0., 0., 0.);
|
|
}
|
|
`}},Wj=class{constructor(e,t,n=!1){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let s=bn(),[r,a]=t;this.outputShape=e;let o="",i="result";n&&(i="floor(result * 255. + 0.5)");for(let l=0;l<=1;l++)for(let u=0;u<=1;u++){let c=l*2+u;o+=`
|
|
localCoords = coords;
|
|
if(localCoords[2] + ${u} < ${e[2]}) {
|
|
localCoords[2] += ${u};
|
|
if(localCoords[1] + ${l} < ${e[1]}) {
|
|
localCoords[1] += ${l};
|
|
|
|
flatIndex = getFlatIndex(localCoords);
|
|
offset = imod(flatIndex, 4);
|
|
|
|
flatIndex = idiv(flatIndex, 4, 1.);
|
|
|
|
r = flatIndex / ${a};
|
|
c = imod(flatIndex, ${a});
|
|
uv = (vec2(c, r) + halfCR) / vec2(${a}.0, ${r}.0);
|
|
values = ${s.texture2D}(A, uv);
|
|
|
|
if(offset == 0) {
|
|
result[${c}] = values[0];
|
|
} else if(offset == 1) {
|
|
result[${c}] = values[1];
|
|
} else if(offset == 2) {
|
|
result[${c}] = values[2];
|
|
} else {
|
|
result[${c}] = values[3];
|
|
}
|
|
}
|
|
}
|
|
`}this.userCode=`
|
|
${y1(e)}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
|
|
vec4 result = vec4(0.);
|
|
int flatIndex, r, c, offset;
|
|
ivec3 localCoords;
|
|
vec2 uv;
|
|
vec4 values;
|
|
|
|
${o}
|
|
|
|
${s.output} = ${i};
|
|
}
|
|
`}},Jw={};Pe(Jw,{bindVertexProgramAttributeStreams:()=>i6,createBufferFromOutputTexture:()=>c6,createFloat16MatrixTexture:()=>s6,createFloat16PackedMatrixTexture:()=>o6,createFloat32MatrixTexture:()=>n6,createIndexBuffer:()=>t6,createPackedMatrixTexture:()=>a6,createUnsignedBytesMatrixTexture:()=>r6,createVertexBuffer:()=>e6,createVertexShader:()=>Qw,downloadByteEncodedFloatMatrixFromOutputTexture:()=>h6,downloadFloat32MatrixFromBuffer:()=>d6,downloadMatrixFromPackedOutputTexture:()=>f6,downloadPackedMatrixFromBuffer:()=>p6,getInternalFormatForFloat16MatrixTexture:()=>b1,getInternalFormatForFloat16PackedMatrixTexture:()=>k1,getInternalFormatForFloat32MatrixTexture:()=>x1,getInternalFormatForPackedMatrixTexture:()=>w1,getInternalFormatForUnsignedBytesMatrixTexture:()=>v1,uploadDenseMatrixToTexture:()=>l6,uploadPixelDataToTexture:()=>u6});function Qw(e){let t=bn(),n=`${t.version}
|
|
precision highp float;
|
|
${t.attribute} vec3 clipSpacePos;
|
|
${t.attribute} vec2 uv;
|
|
${t.varyingVs} vec2 resultUV;
|
|
|
|
void main() {
|
|
gl_Position = vec4(clipSpacePos, 1);
|
|
resultUV = uv;
|
|
}`;return Nw(e,n)}function e6(e){let t=new Float32Array([-1,1,0,0,1,-1,-1,0,0,0,1,1,0,1,1,1,-1,0,1,0]);return $w(e,t)}function t6(e){let t=new Uint16Array([0,1,2,2,1,3]);return Fw(e,t)}function Vc(e,t,n,s,r,a){Ow(t,n);let o=Dw(e),i=e.TEXTURE_2D;return be(e,()=>e.bindTexture(i,o)),be(e,()=>e.texParameteri(i,e.TEXTURE_WRAP_S,e.CLAMP_TO_EDGE)),be(e,()=>e.texParameteri(i,e.TEXTURE_WRAP_T,e.CLAMP_TO_EDGE)),be(e,()=>e.texParameteri(i,e.TEXTURE_MIN_FILTER,e.NEAREST)),be(e,()=>e.texParameteri(i,e.TEXTURE_MAG_FILTER,e.NEAREST)),be(e,()=>e.texImage2D(i,0,s,t,n,0,r,a,null)),be(e,()=>e.bindTexture(e.TEXTURE_2D,null)),o}function x1(e){return e.internalFormatFloat}function n6(e,t,n,s){let[r,a]=Mc(t,n);return Vc(e,r,a,x1(s),s.textureFormatFloat,e.FLOAT)}function b1(e){return e.internalFormatHalfFloat}function s6(e,t,n,s){let[r,a]=Mc(t,n);return Vc(e,r,a,b1(s),s.textureFormatFloat,s.textureTypeHalfFloat)}function v1(e){return e.downloadTextureFormat}function r6(e,t,n,s){let[r,a]=Mc(t,n);return Vc(e,r,a,v1(s),e.RGBA,e.UNSIGNED_BYTE)}function w1(e){return e.internalFormatPackedFloat}function a6(e,t,n,s){let[r,a]=Gl(t,n);return Vc(e,r,a,w1(s),e.RGBA,e.FLOAT)}function k1(e){return e.internalFormatPackedHalfFloat}function o6(e,t,n,s){let[r,a]=Gl(t,n);return Vc(e,r,a,k1(s),e.RGBA,s.textureTypeHalfFloat)}function i6(e,t,n){let s=0,r=3*4,a=3*4+2*4;return be(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),f1(e,t,"clipSpacePos",n,3,a,s)&&f1(e,t,"uv",n,2,a,r)}function l6(e,t,n,s,r,a){be(e,()=>e.bindTexture(e.TEXTURE_2D,t));let o,i,l;r instanceof Uint8Array?(o=new Uint8Array(n*s*4),i=e.UNSIGNED_BYTE,l=e.RGBA):(o=new Float32Array(n*s*4),i=e.FLOAT,l=a.internalFormatPackedFloat),o.set(r),be(e,()=>e.texImage2D(e.TEXTURE_2D,0,l,n,s,0,e.RGBA,i,o)),be(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function u6(e,t,n){be(e,()=>e.bindTexture(e.TEXTURE_2D,t)),n.data instanceof Uint8Array?be(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,n.width,n.height,0,e.RGBA,e.UNSIGNED_BYTE,n.data)):be(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,e.RGBA,e.UNSIGNED_BYTE,n)),be(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function c6(e,t,n,s){let r=e.createBuffer();be(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,r));let i=4*4*t*n;return be(e,()=>e.bufferData(e.PIXEL_PACK_BUFFER,i,e.STREAM_READ)),be(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,0)),be(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,null)),r}function d6(e,t,n){let s=e,r=new Float32Array(n);return s.bindBuffer(s.PIXEL_PACK_BUFFER,t),s.getBufferSubData(s.PIXEL_PACK_BUFFER,0,r),s.bindBuffer(s.PIXEL_PACK_BUFFER,null),r}function h6(e,t,n,s){let[r,a]=Mc(t,n),o=4,i=new Uint8Array(kj(t*n,o));return be(e,()=>e.readPixels(0,0,r,a,s.downloadTextureFormat,e.UNSIGNED_BYTE,i)),new Float32Array(i.buffer)}function p6(e,t,n,s,r,a,o,i){let l=e,u=new Float32Array(Ij(a,o));return l.bindBuffer(l.PIXEL_PACK_BUFFER,t),l.getBufferSubData(l.PIXEL_PACK_BUFFER,0,u),l.bindBuffer(l.PIXEL_PACK_BUFFER,null),u}function f6(e,t,n){let s=new Float32Array(t*n*4);return be(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,s)),s}var uf=class{constructor(e){this.outputTexture=null,this.program=null,this.disposed=!1,this.vertexAttrsAreBound=!1,this.itemsToPoll=[];let t=ee().getNumber("WEBGL_VERSION");e!=null?(this.gl=e,tf(t,e)):this.gl=ar(t);let n="WEBGL_color_buffer_float",s="EXT_color_buffer_half_float";if(ee().getNumber("WEBGL_VERSION")===1){let r="OES_texture_float",a="OES_texture_half_float";if(this.textureFloatExtension=Lc(this.gl,r),ms(this.gl,a))this.textureHalfFloatExtension=Lc(this.gl,a);else if(ee().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support half float textures, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.");if(this.colorBufferFloatExtension=this.gl.getExtension(n),ms(this.gl,s))this.colorBufferHalfFloatExtension=Lc(this.gl,s);else if(ee().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support color renderable half floats, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.")}else if(n="EXT_color_buffer_float",ms(this.gl,n))this.colorBufferFloatExtension=this.gl.getExtension(n);else if(ms(this.gl,s))this.colorBufferHalfFloatExtension=this.gl.getExtension(s);else throw new Error("GL context does not support color renderable floats");this.vertexBuffer=e6(this.gl),this.indexBuffer=t6(this.gl),this.framebuffer=Pw(this.gl),this.textureConfig=p1(this.gl,this.textureHalfFloatExtension)}get debug(){return ee().getBool("DEBUG")}dispose(){if(this.disposed)return;this.program!=null&&console.warn("Disposing a GPGPUContext that still has a bound WebGLProgram. This is probably a resource leak, delete the program with GPGPUContext.deleteProgram before disposing."),this.outputTexture!=null&&console.warn("Disposing a GPGPUContext that still has a bound output matrix texture. This is probably a resource leak, delete the output matrix texture with GPGPUContext.deleteMatrixTexture before disposing.");let e=this.gl;be(e,()=>e.finish()),be(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),be(e,()=>e.deleteFramebuffer(this.framebuffer)),be(e,()=>e.bindBuffer(e.ARRAY_BUFFER,null)),be(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,null)),be(e,()=>e.deleteBuffer(this.indexBuffer)),this.disposed=!0}createFloat32MatrixTexture(e,t){return this.throwIfDisposed(),n6(this.gl,e,t,this.textureConfig)}createFloat16MatrixTexture(e,t){return this.throwIfDisposed(),s6(this.gl,e,t,this.textureConfig)}createUnsignedBytesMatrixTexture(e,t){return this.throwIfDisposed(),r6(this.gl,e,t,this.textureConfig)}uploadPixelDataToTexture(e,t){this.throwIfDisposed(),u6(this.gl,e,t)}uploadDenseMatrixToTexture(e,t,n,s){this.throwIfDisposed(),l6(this.gl,e,t,n,s,this.textureConfig)}createFloat16PackedMatrixTexture(e,t){return this.throwIfDisposed(),o6(this.gl,e,t,this.textureConfig)}createPackedMatrixTexture(e,t){return this.throwIfDisposed(),a6(this.gl,e,t,this.textureConfig)}deleteMatrixTexture(e){this.throwIfDisposed(),this.outputTexture===e&&(m1(this.gl,this.framebuffer),this.outputTexture=null),be(this.gl,()=>this.gl.deleteTexture(e))}downloadByteEncodedFloatMatrixFromOutputTexture(e,t,n){return this.downloadMatrixDriver(e,()=>h6(this.gl,t,n,this.textureConfig))}downloadPackedMatrixFromBuffer(e,t,n,s,r,a){return p6(this.gl,e,t,n,s,r,a,this.textureConfig)}downloadFloat32MatrixFromBuffer(e,t){return d6(this.gl,e,t)}createBufferFromTexture(e,t,n){this.bindTextureToFrameBuffer(e);let s=c6(this.gl,t,n,this.textureConfig);return this.unbindTextureToFrameBuffer(),s}createAndWaitForFence(){let e=this.createFence(this.gl);return this.pollFence(e)}createFence(e){let t,n;if(ee().getBool("WEBGL_FENCE_API_ENABLED")){let s=e,r=s.fenceSync(s.SYNC_GPU_COMMANDS_COMPLETE,0);e.flush(),n=()=>{let a=s.clientWaitSync(r,0,0);return a===s.ALREADY_SIGNALED||a===s.CONDITION_SATISFIED},t=r}else ee().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0?(t=this.beginQuery(),this.endQuery(),n=()=>this.isQueryAvailable(t,ee().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))):n=()=>!0;return{query:t,isFencePassed:n}}downloadMatrixFromPackedTexture(e,t,n){return this.downloadMatrixDriver(e,()=>f6(this.gl,t,n))}createProgram(e){this.throwIfDisposed();let t=this.gl,n=Ew(t,e);this.vertexShader==null&&(this.vertexShader=Qw(t));let s=Rw(t);return be(t,()=>t.attachShader(s,this.vertexShader)),be(t,()=>t.attachShader(s,n)),_w(t,s),this.debug&&nf(t,s),this.vertexAttrsAreBound||(this.setProgram(s),this.vertexAttrsAreBound=i6(t,this.program,this.vertexBuffer)),s}deleteProgram(e){this.throwIfDisposed(),e===this.program&&(this.program=null),e!=null&&be(this.gl,()=>this.gl.deleteProgram(e))}setProgram(e){this.throwIfDisposed(),this.program=e,this.program!=null&&this.debug&&nf(this.gl,this.program),be(this.gl,()=>this.gl.useProgram(e))}getUniformLocation(e,t,n=!0){return this.throwIfDisposed(),n?zw(this.gl,e,t):Lw(this.gl,e,t)}getAttributeLocation(e,t){return this.throwIfDisposed(),be(this.gl,()=>this.gl.getAttribLocation(e,t))}getUniformLocationNoThrow(e,t){return this.throwIfDisposed(),this.gl.getUniformLocation(e,t)}setInputMatrixTexture(e,t,n){this.throwIfDisposed(),this.throwIfNoProgram(),Bw(this.gl,e,t,n)}setOutputMatrixTexture(e,t,n){this.setOutputMatrixTextureDriver(e,n,t)}setOutputPackedMatrixTexture(e,t,n){this.throwIfDisposed();let[s,r]=Gl(t,n);this.setOutputMatrixTextureDriver(e,s,r)}setOutputMatrixWriteRegion(e,t,n,s){this.setOutputMatrixWriteRegionDriver(n,e,s,t)}setOutputPackedMatrixWriteRegion(e,t,n,s){throw new Error("setOutputPackedMatrixWriteRegion not implemented.")}debugValidate(){this.program!=null&&nf(this.gl,this.program),Bc(this.gl)}executeProgram(){this.throwIfDisposed(),this.throwIfNoProgram();let e=this.gl;this.debug&&this.debugValidate(),be(e,()=>e.drawElements(e.TRIANGLES,6,e.UNSIGNED_SHORT,0))}blockUntilAllProgramsCompleted(){this.throwIfDisposed(),be(this.gl,()=>this.gl.finish())}getQueryTimerExtension(){return this.disjointQueryTimerExtension==null&&(this.disjointQueryTimerExtension=Lc(this.gl,ee().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2?"EXT_disjoint_timer_query_webgl2":"EXT_disjoint_timer_query")),this.disjointQueryTimerExtension}getQueryTimerExtensionWebGL2(){return this.getQueryTimerExtension()}getQueryTimerExtensionWebGL1(){return this.getQueryTimerExtension()}beginQuery(){if(ee().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let n=this.gl,s=this.getQueryTimerExtensionWebGL2(),r=n.createQuery();return n.beginQuery(s.TIME_ELAPSED_EXT,r),r}let e=this.getQueryTimerExtensionWebGL1(),t=e.createQueryEXT();return e.beginQueryEXT(e.TIME_ELAPSED_EXT,t),t}endQuery(){if(ee().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let t=this.gl,n=this.getQueryTimerExtensionWebGL2();t.endQuery(n.TIME_ELAPSED_EXT);return}let e=this.getQueryTimerExtensionWebGL1();e.endQueryEXT(e.TIME_ELAPSED_EXT)}async waitForQueryAndGetTime(e){return await I.repeatedTry(()=>this.disposed||this.isQueryAvailable(e,ee().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))),this.getQueryTime(e,ee().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))}getQueryTime(e,t){if(t===0)return null;if(t===2){let n=this.gl;return n.getQueryParameter(e,n.QUERY_RESULT)/1e6}else{let n=this.getQueryTimerExtensionWebGL1();return n.getQueryObjectEXT(e,n.QUERY_RESULT_EXT)/1e6}}isQueryAvailable(e,t){if(t===0)return!0;if(t===2){let n=this.gl,s=this.getQueryTimerExtensionWebGL2(),r=n.getQueryParameter(e,n.QUERY_RESULT_AVAILABLE);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(s.GPU_DISJOINT_EXT)),r&&!this.disjoint}else{let n=this.getQueryTimerExtensionWebGL1(),s=n.getQueryObjectEXT(e,n.QUERY_RESULT_AVAILABLE_EXT);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(n.GPU_DISJOINT_EXT)),s&&!this.disjoint}}pollFence(e){return new Promise(t=>{this.addItemToPoll(()=>e.isFencePassed(),()=>t())})}pollItems(){let e=Vj(this.itemsToPoll.map(t=>t.isDoneFn));for(let t=0;t<=e;++t){let{resolveFn:n}=this.itemsToPoll[t];n()}this.itemsToPoll=this.itemsToPoll.slice(e+1)}addItemToPoll(e,t){this.itemsToPoll.push({isDoneFn:e,resolveFn:t}),!(this.itemsToPoll.length>1)&&I.repeatedTry(()=>(this.pollItems(),this.itemsToPoll.length===0))}bindTextureToFrameBuffer(e){this.throwIfDisposed(),sf(this.gl,e,this.framebuffer),this.debug&&Bc(this.gl)}unbindTextureToFrameBuffer(){this.outputTexture!=null?(sf(this.gl,this.outputTexture,this.framebuffer),this.debug&&Bc(this.gl)):m1(this.gl,this.framebuffer)}downloadMatrixDriver(e,t){this.bindTextureToFrameBuffer(e);let n=t();return this.unbindTextureToFrameBuffer(),n}setOutputMatrixTextureDriver(e,t,n){this.throwIfDisposed();let s=this.gl;sf(s,e,this.framebuffer),this.debug&&Bc(s),this.outputTexture=e,be(s,()=>s.viewport(0,0,t,n)),be(s,()=>s.scissor(0,0,t,n))}setOutputMatrixWriteRegionDriver(e,t,n,s){this.throwIfDisposed(),be(this.gl,()=>this.gl.scissor(e,t,n,s))}throwIfDisposed(){if(this.disposed)throw new Error("Attempted to use disposed GPGPUContext.")}throwIfNoProgram(){if(this.program==null)throw new Error("No GPU program is currently set.")}};function Vj(e){let t=0;for(;t<e.length&&e[t]();++t);return t-1}var{getBroadcastDims:m6}=$;function Uj(e,t,n){let s=[];if(e.forEach(p=>{let f=I.sizeFromShape(p.shapeInfo.logicalShape);if(p.shapeInfo.isUniform?s.push(`uniform float ${p.name}${f>1?`[${f}]`:""};`):(s.push(`uniform sampler2D ${p.name};`),s.push(`uniform int offset${p.name};`)),n.enableShapeUniforms){let{uniformShape:m}=I1(n.packedInputs,p.shapeInfo.logicalShape,p.shapeInfo.texShape);switch(m.length){case 1:s.push(`uniform int ${p.name}Shape;`);break;case 2:s.push(`uniform ivec2 ${p.name}Shape;`);break;case 3:s.push(`uniform ivec3 ${p.name}Shape;`);break;case 4:s.push(`uniform ivec4 ${p.name}Shape;`);break;default:break}s.push(`uniform ivec2 ${p.name}TexShape;`)}}),n.enableShapeUniforms){switch(t.logicalShape.length){case 1:s.push("uniform int outShape;");break;case 2:s.push("uniform ivec2 outShape;"),s.push("uniform int outShapeStrides;");break;case 3:s.push("uniform ivec3 outShape;"),s.push("uniform ivec2 outShapeStrides;");break;case 4:s.push("uniform ivec4 outShape;"),s.push("uniform ivec3 outShapeStrides;");break;default:break}s.push("uniform ivec2 outTexShape;")}n.customUniforms&&n.customUniforms.forEach(p=>{s.push(`uniform ${p.type} ${p.name}${p.arrayIndex?`[${p.arrayIndex}]`:""};`)});let r=s.join(`
|
|
`),a=e.map(p=>Hj(p,t,n.packedInputs,n.enableShapeUniforms)).join(`
|
|
`),o=t.texShape,i=bn(),l=qj(i),u,c,d=Zj(i);return t.isPacked?(u=Gj(t.logicalShape,o,n.enableShapeUniforms),c=Kj(i)):(u=jj(t.logicalShape,o,n.enableShapeUniforms),c=Xj(i)),n.packedInputs&&(d+=eq),[d,l,c,r,u,a,n.userCode].join(`
|
|
`)}function ql(e,t=!1){let n=e.shapeInfo.logicalShape;switch(n.length){case 0:return hq(e,t);case 1:return fq(e,t);case 2:return Aq(e,t);case 3:return yq(e,t);case 4:return bq(e,t);case 5:return vq(e);case 6:return wq(e);default:throw new Error(`${n.length}-D input sampling is not yet supported`)}}function A6(e,t){switch(e.shapeInfo.logicalShape.length){case 0:return dq(e);case 1:return pq(e,t);case 2:return mq(e,t);case 3:return gq(e,t);default:return xq(e,t)}}function Hj(e,t,n=!1,s){let r="";n?r+=A6(e,s):r+=ql(e,s);let a=e.shapeInfo.logicalShape,o=t.logicalShape;return a.length<=o.length&&(n?r+=kq(e,t):r+=Iq(e,t)),r}function Gj(e,t,n){switch(e.length){case 0:return g6();case 1:return tq(e,t,n);case 2:return uq(e,t,n);case 3:return sq(e,t,n);default:return aq(e,t,n)}}function jj(e,t,n){switch(e.length){case 0:return g6();case 1:return nq(e,t,n);case 2:return cq(e,t,n);case 3:return rq(e,t,n);case 4:return oq(e,t,n);case 5:return iq(e,t);case 6:return lq(e,t);default:throw new Error(`${e.length}-D output sampling is not yet supported`)}}function qj(e){return`
|
|
float sampleTexture(sampler2D textureSampler, vec2 uv) {
|
|
return ${e.texture2D}(textureSampler, uv).r;
|
|
}
|
|
`}function Xj(e){return`
|
|
void setOutput(float val) {
|
|
${e.output} = vec4(val, 0, 0, 0);
|
|
}
|
|
`}function Kj(e){return`
|
|
void setOutput(vec4 val) {
|
|
${e.output} = val;
|
|
}
|
|
`}function Zj(e){return`${e.version}
|
|
precision highp float;
|
|
precision highp int;
|
|
precision highp sampler2D;
|
|
${e.varyingFs} vec2 resultUV;
|
|
${e.defineOutput}
|
|
const vec2 halfCR = vec2(0.5, 0.5);
|
|
|
|
struct ivec5
|
|
{
|
|
int x;
|
|
int y;
|
|
int z;
|
|
int w;
|
|
int u;
|
|
};
|
|
|
|
struct ivec6
|
|
{
|
|
int x;
|
|
int y;
|
|
int z;
|
|
int w;
|
|
int u;
|
|
int v;
|
|
};
|
|
|
|
uniform float NAN;
|
|
${e.defineSpecialNaN}
|
|
${e.defineSpecialInf}
|
|
${e.defineRound}
|
|
|
|
int imod(int x, int y) {
|
|
return x - y * (x / y);
|
|
}
|
|
|
|
int idiv(int a, int b, float sign) {
|
|
int res = a / b;
|
|
int mod = imod(a, b);
|
|
if (sign < 0. && mod != 0) {
|
|
res -= 1;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
//Based on the work of Dave Hoskins
|
|
//https://www.shadertoy.com/view/4djSRW
|
|
#define HASHSCALE1 443.8975
|
|
float random(float seed){
|
|
vec2 p = resultUV * seed;
|
|
vec3 p3 = fract(vec3(p.xyx) * HASHSCALE1);
|
|
p3 += dot(p3, p3.yzx + 19.19);
|
|
return fract((p3.x + p3.y) * p3.z);
|
|
}
|
|
|
|
${Yj}
|
|
${Jj}
|
|
${Qj}
|
|
`}var Yj=`
|
|
vec2 uvFromFlat(int texNumR, int texNumC, int index) {
|
|
int texR = index / texNumC;
|
|
int texC = index - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
vec2 packedUVfrom1D(int texNumR, int texNumC, int index) {
|
|
int texelIndex = index / 2;
|
|
int texR = texelIndex / texNumC;
|
|
int texC = texelIndex - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,Jj=`
|
|
vec2 packedUVfrom2D(int texelsInLogicalRow, int texNumR,
|
|
int texNumC, int row, int col) {
|
|
int texelIndex = (row / 2) * texelsInLogicalRow + (col / 2);
|
|
int texR = texelIndex / texNumC;
|
|
int texC = texelIndex - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,Qj=`
|
|
vec2 packedUVfrom3D(int texNumR, int texNumC,
|
|
int texelsInBatch, int texelsInLogicalRow, int b,
|
|
int row, int col) {
|
|
int index = b * texelsInBatch + (row / 2) * texelsInLogicalRow + (col / 2);
|
|
int texR = index / texNumC;
|
|
int texC = index - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,eq=`
|
|
float getChannel(vec4 frag, vec2 innerDims) {
|
|
vec2 modCoord = mod(innerDims, 2.);
|
|
return modCoord.x == 0. ?
|
|
(modCoord.y == 0. ? frag.r : frag.g) :
|
|
(modCoord.y == 0. ? frag.b : frag.a);
|
|
}
|
|
float getChannel(vec4 frag, int dim) {
|
|
float modCoord = mod(float(dim), 2.);
|
|
return modCoord == 0. ? frag.r : frag.g;
|
|
}
|
|
`;function g6(){return`
|
|
int getOutputCoords() {
|
|
return 0;
|
|
}
|
|
`}function tq(e,t,n){let s=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];return s[0]===1?n?`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.x * ceil(float(outTexShape[1]) / 2.0));
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.x * ${s[1]}.0);
|
|
}
|
|
`:s[1]===1?n?`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.y * ceil(float(outTexShape[0]) / 2.0));
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.y * ${s[0]}.0);
|
|
}
|
|
`:n?`
|
|
int getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(packedTexShape[0], packedTexShape[1]));
|
|
return 2 * (resTexRC.x * packedTexShape[1] + resTexRC.y);
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${s[0]}, ${s[1]}));
|
|
return 2 * (resTexRC.x * ${s[1]} + resTexRC.y);
|
|
}
|
|
`}function nq(e,t,n){return t[0]===1?n?`
|
|
int getOutputCoords() {
|
|
return int(resultUV.x * float(outTexShape[1]));
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
return int(resultUV.x * ${t[1]}.0);
|
|
}
|
|
`:t[1]===1?n?`
|
|
int getOutputCoords() {
|
|
return int(resultUV.y * float(outTexShape[0]));
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
return int(resultUV.y * ${t[0]}.0);
|
|
}
|
|
`:n?`
|
|
int getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
return resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
return resTexRC.x * ${t[1]} + resTexRC.y;
|
|
}
|
|
`}function sq(e,t,n){if(n)return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
int texelsInLogicalRow = int(ceil(float(outShape[2]) / 2.0));
|
|
int texelsInBatch = texelsInLogicalRow * int(ceil(float(outShape[1]) / 2.0));
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(packedTexShape[0], packedTexShape[1]));
|
|
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
|
|
|
|
int b = index / texelsInBatch;
|
|
index -= b * texelsInBatch;
|
|
|
|
int r = 2 * (index / texelsInLogicalRow);
|
|
int c = imod(index, texelsInLogicalRow) * 2;
|
|
|
|
return ivec3(b, r, c);
|
|
}
|
|
`;let s=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],r=Math.ceil(e[2]/2),a=r*Math.ceil(e[1]/2);return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${s[0]}, ${s[1]}));
|
|
int index = resTexRC.x * ${s[1]} + resTexRC.y;
|
|
|
|
int b = index / ${a};
|
|
index -= b * ${a};
|
|
|
|
int r = 2 * (index / ${r});
|
|
int c = imod(index, ${r}) * 2;
|
|
|
|
return ivec3(b, r, c);
|
|
}
|
|
`}function rq(e,t,n){if(n)return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
${Zw(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
`;let s=Uo(["r","c","d"],e);return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
${s}
|
|
return ivec3(r, c, d);
|
|
}
|
|
`}function aq(e,t,n){if(n)return`
|
|
ivec4 getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(packedTexShape[0], packedTexShape[1]));
|
|
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
|
|
|
|
int texelsInLogicalRow = int(ceil(float(outShape[3]) / 2.0));
|
|
int texelsInBatch = texelsInLogicalRow * int(ceil(float(outShape[2]) / 2.0));
|
|
int texelsInBatchN = texelsInBatch * outShape[1];
|
|
|
|
int b2 = index / texelsInBatchN;
|
|
index -= b2 * texelsInBatchN;
|
|
|
|
int b = index / texelsInBatch;
|
|
index -= b * texelsInBatch;
|
|
|
|
int r = 2 * (index / texelsInLogicalRow);
|
|
int c = imod(index, texelsInLogicalRow) * 2;
|
|
|
|
return ivec4(b2, b, r, c);
|
|
}
|
|
`;let s=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],r=Math.ceil(e[e.length-1]/2),a=r*Math.ceil(e[e.length-2]/2),o=a,i="",l="b, r, c";for(let u=2;u<e.length-1;u++)o*=e[e.length-u-1],i=`
|
|
int b${u} = index / ${o};
|
|
index -= b${u} * ${o};
|
|
`+i,l=`b${u}, `+l;return`
|
|
ivec${e.length} getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${s[0]}, ${s[1]}));
|
|
int index = resTexRC.x * ${s[1]} + resTexRC.y;
|
|
|
|
${i}
|
|
|
|
int b = index / ${a};
|
|
index -= b * ${a};
|
|
|
|
int r = 2 * (index / ${r});
|
|
int c = imod(index, ${r}) * 2;
|
|
|
|
return ivec${e.length}(${l});
|
|
}
|
|
`}function oq(e,t,n){if(n)return`
|
|
ivec4 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
${Zw(["r","c","d","d2"],e)}
|
|
return ivec4(r, c, d, d2);
|
|
}
|
|
`;let s=Uo(["r","c","d","d2"],e);return`
|
|
ivec4 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
${s}
|
|
return ivec4(r, c, d, d2);
|
|
}
|
|
`}function iq(e,t){let n=Uo(["r","c","d","d2","d3"],e);return`
|
|
ivec5 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx * vec2(${t[0]},
|
|
${t[1]}));
|
|
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
|
|
${n}
|
|
|
|
ivec5 outShape = ivec5(r, c, d, d2, d3);
|
|
return outShape;
|
|
}
|
|
`}function lq(e,t){let n=Uo(["r","c","d","d2","d3","d4"],e);return`
|
|
ivec6 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
|
|
${n}
|
|
|
|
ivec6 result = ivec6(r, c, d, d2, d3, d4);
|
|
return result;
|
|
}
|
|
`}function uq(e,t,n){let s=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];if(I.arraysEqual(e,t))return n?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
return 2 * ivec2(resultUV.yx * vec2(packedTexShape[0], packedTexShape[1]));
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
return 2 * ivec2(resultUV.yx * vec2(${s[0]}, ${s[1]}));
|
|
}
|
|
`;let r=Math.ceil(e[1]/2);return n?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
int texelsInLogicalRow = int(ceil(float(outShape[1]) / 2.0));
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(packedTexShape[0], packedTexShape[1]));
|
|
|
|
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
|
|
int r = 2 * (index / texelsInLogicalRow);
|
|
int c = imod(index, texelsInLogicalRow) * 2;
|
|
|
|
return ivec2(r, c);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${s[0]}, ${s[1]}));
|
|
|
|
int index = resTexRC.x * ${s[1]} + resTexRC.y;
|
|
int r = 2 * (index / ${r});
|
|
int c = imod(index, ${r}) * 2;
|
|
|
|
return ivec2(r, c);
|
|
}
|
|
`}function cq(e,t,n){return I.arraysEqual(e,t)?n?`
|
|
ivec2 getOutputCoords() {
|
|
return ivec2(resultUV.yx * vec2(outTexShape[0], outTexShape[1]));
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
return ivec2(resultUV.yx * vec2(${t[0]}, ${t[1]}));
|
|
}
|
|
`:e[1]===1?n?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
return ivec2(index, 0);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
return ivec2(index, 0);
|
|
}
|
|
`:e[0]===1?n?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
return ivec2(0, index);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
return ivec2(0, index);
|
|
}
|
|
`:n?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
int r = index / outShape[1];
|
|
int c = index - r * outShape[1];
|
|
return ivec2(r, c);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
int r = index / ${e[1]};
|
|
int c = index - r * ${e[1]};
|
|
return ivec2(r, c);
|
|
}
|
|
`}function Ho(e){return`offset${e}`}function dq(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1),s=bn();return`
|
|
vec4 ${n}() {
|
|
return ${s.texture2D}(${t}, halfCR);
|
|
}
|
|
`}function hq(e,t){let n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1);if(e.shapeInfo.isUniform)return`float ${s}() {return ${n};}`;let[r,a]=e.shapeInfo.texShape;if(r===1&&a===1)return`
|
|
float ${s}() {
|
|
return sampleTexture(${n}, halfCR);
|
|
}
|
|
`;let o=Ho(n);if(t)return`
|
|
float ${s}() {
|
|
vec2 uv = uvFromFlat(${n}TexShape[0], ${n}TexShape[1], ${o});
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let[i,l]=e.shapeInfo.texShape;return`
|
|
float ${s}() {
|
|
vec2 uv = uvFromFlat(${i}, ${l}, ${o});
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function pq(e,t){let n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1),r=e.shapeInfo.texShape,a=bn();if(t)return`
|
|
vec4 ${s}(int index) {
|
|
ivec2 packedTexShape = ivec2(ceil(float(${n}TexShape[0]) / 2.0), ceil(float(${n}TexShape[1]) / 2.0));
|
|
vec2 uv = packedUVfrom1D(
|
|
packedTexShape[0], packedTexShape[1], index);
|
|
return ${a.texture2D}(${n}, uv);
|
|
}
|
|
`;let o=[Math.ceil(r[0]/2),Math.ceil(r[1]/2)];return`
|
|
vec4 ${s}(int index) {
|
|
vec2 uv = packedUVfrom1D(
|
|
${o[0]}, ${o[1]}, index);
|
|
return ${a.texture2D}(${n}, uv);
|
|
}
|
|
`}function fq(e,t){let n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1);if(e.shapeInfo.isUniform)return`
|
|
float ${s}(int index) {
|
|
${Xl(e)}
|
|
}
|
|
`;let r=e.shapeInfo.texShape,a=r[0],o=r[1];if(o===1&&a===1)return`
|
|
float ${s}(int index) {
|
|
return sampleTexture(${n}, halfCR);
|
|
}
|
|
`;let i=Ho(n);return o===1?t?`
|
|
float ${s}(int index) {
|
|
vec2 uv = vec2(0.5, (float(index + ${i}) + 0.5) / float(${n}TexShape[0]));
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${s}(int index) {
|
|
vec2 uv = vec2(0.5, (float(index + ${i}) + 0.5) / ${a}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:a===1?t?`
|
|
float ${s}(int index) {
|
|
vec2 uv = vec2((float(index + ${i}) + 0.5) / float(${n}TexShape[1]), 0.5);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${s}(int index) {
|
|
vec2 uv = vec2((float(index + ${i}) + 0.5) / ${o}.0, 0.5);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:t?`
|
|
float ${s}(int index) {
|
|
vec2 uv = uvFromFlat(${n}TexShape[0], ${n}TexShape[1], index + ${i});
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${s}(int index) {
|
|
vec2 uv = uvFromFlat(${a}, ${o}, index + ${i});
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function mq(e,t){let n=e.shapeInfo.logicalShape,s=e.name,r="get"+s.charAt(0).toUpperCase()+s.slice(1),a=e.shapeInfo.texShape,o=a[0],i=a[1],l=bn();if(a!=null&&I.arraysEqual(n,a))return t?`
|
|
vec4 ${r}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${s}TexShape[1], ${s}TexShape[0]);
|
|
|
|
return ${l.texture2D}(${s}, uv);
|
|
}
|
|
`:`
|
|
vec4 ${r}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${i}.0, ${o}.0);
|
|
|
|
return ${l.texture2D}(${s}, uv);
|
|
}
|
|
`;if(t)return`
|
|
vec4 ${r}(int row, int col) {
|
|
ivec2 packedTexShape = ivec2(ceil(float(${s}TexShape[0]) / 2.0), ceil(float(${s}TexShape[1]) / 2.0));
|
|
int valuesPerRow = int(ceil(float(${s}Shape[1]) / 2.0));
|
|
vec2 uv = packedUVfrom2D(valuesPerRow, packedTexShape[0], packedTexShape[1], row, col);
|
|
return ${l.texture2D}(${s}, uv);
|
|
}
|
|
`;let u=[Math.ceil(a[0]/2),Math.ceil(a[1]/2)],c=Math.ceil(n[1]/2);return`
|
|
vec4 ${r}(int row, int col) {
|
|
vec2 uv = packedUVfrom2D(${c}, ${u[0]}, ${u[1]}, row, col);
|
|
return ${l.texture2D}(${s}, uv);
|
|
}
|
|
`}function Aq(e,t){let n=e.shapeInfo.logicalShape,s=e.name,r="get"+s.charAt(0).toUpperCase()+s.slice(1),a=e.shapeInfo.texShape;if(a!=null&&I.arraysEqual(n,a)){if(t)return`
|
|
float ${r}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${s}TexShape[1], ${s}TexShape[0]);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`;let h=a[0],p=a[1];return`
|
|
float ${r}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${p}.0, ${h}.0);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`}let{newShape:o,keptDims:i}=I.squeezeShape(n),l=o;if(l.length<n.length){let h=Kl(e,l),p=["row","col"];return`
|
|
${ql(h,t)}
|
|
float ${r}(int row, int col) {
|
|
return ${r}(${Zl(p,i)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${r}(int row, int col) {
|
|
int index = round(dot(vec2(row, col), vec2(${n[1]}, 1)));
|
|
${Xl(e)}
|
|
}
|
|
`;let u=a[0],c=a[1],d=Ho(s);return c===1?t?`
|
|
float ${r}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${d}), vec3(${s}Shape[1], 1, 1));
|
|
vec2 uv = vec2(0.5, (index + 0.5) / float(${s}TexShape[0]));
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${d}), vec3(${n[1]}, 1, 1));
|
|
vec2 uv = vec2(0.5, (index + 0.5) / ${u}.0);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:u===1?t?`
|
|
float ${r}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${d}), vec3(${s}Shape[1], 1, 1));
|
|
vec2 uv = vec2((index + 0.5) / float(${s}TexShape[1]), 0.5);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${d}), vec3(${n[1]}, 1, 1));
|
|
vec2 uv = vec2((index + 0.5) / ${c}.0, 0.5);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:t?`
|
|
float ${r}(int row, int col) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${s}Shape[1] + col + ${d};
|
|
vec2 uv = uvFromFlat(${s}TexShape[0], ${s}TexShape[1], index);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${n[1]} + col + ${d};
|
|
vec2 uv = uvFromFlat(${u}, ${c}, index);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`}function gq(e,t){let n=e.shapeInfo.logicalShape,s=e.name,r="get"+s.charAt(0).toUpperCase()+s.slice(1),a=e.shapeInfo.texShape,o=[Math.ceil(a[0]/2),Math.ceil(a[1]/2)];if(n[0]===1){let h=n.slice(1),p=[1,2],f=Kl(e,h),m=["b","row","col"];return`
|
|
${A6(f,t)}
|
|
vec4 ${r}(int b, int row, int col) {
|
|
return ${r}(${Zl(m,p)});
|
|
}
|
|
`}let i=bn();if(t)return`
|
|
vec4 ${r}(int b, int row, int col) {
|
|
ivec2 packedTexShape = ivec2(ceil(float(${s}TexShape[0]) / 2.0), ceil(float(${s}TexShape[1]) / 2.0));
|
|
int valuesPerRow = int(ceil(float(${s}Shape[2]) / 2.0));
|
|
int texelsInBatch = valuesPerRow * int(ceil(float(${s}Shape[1]) / 2.0));
|
|
vec2 uv = packedUVfrom3D(
|
|
packedTexShape[0], packedTexShape[1], texelsInBatch, valuesPerRow, b, row, col);
|
|
return ${i.texture2D}(${s}, uv);
|
|
}
|
|
`;let l=o[0],u=o[1],c=Math.ceil(n[2]/2),d=c*Math.ceil(n[1]/2);return`
|
|
vec4 ${r}(int b, int row, int col) {
|
|
vec2 uv = packedUVfrom3D(
|
|
${l}, ${u}, ${d}, ${c}, b, row, col);
|
|
return ${i.texture2D}(${s}, uv);
|
|
}
|
|
`}function yq(e,t){let n=e.shapeInfo.logicalShape,s=e.name,r="get"+s.charAt(0).toUpperCase()+s.slice(1),a=n[1]*n[2],o=n[2],{newShape:i,keptDims:l}=I.squeezeShape(n),u=i;if(u.length<n.length){let m=Kl(e,u),A=["row","col","depth"];return`
|
|
${ql(m,t)}
|
|
float ${r}(int row, int col, int depth) {
|
|
return ${r}(${Zl(A,l)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${r}(int row, int col, int depth) {
|
|
int index = round(dot(vec3(row, col, depth),
|
|
vec3(${a}, ${o}, 1)));
|
|
${Xl(e)}
|
|
}
|
|
`;let c=e.shapeInfo.texShape,d=c[0],h=c[1],p=e.shapeInfo.flatOffset;if(h===a&&p==null)return t?`
|
|
float ${r}(int row, int col, int depth) {
|
|
int stride1 = ${s}Shape[2];
|
|
float texR = float(row);
|
|
float texC = dot(vec2(col, depth), vec2(stride1, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${s}TexShape[1], ${s}TexShape[0]);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth) {
|
|
float texR = float(row);
|
|
float texC = dot(vec2(col, depth), vec2(${o}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${h}.0, ${d}.0);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`;if(h===o&&p==null)return t?`
|
|
float ${r}(int row, int col, int depth) {
|
|
float texR = dot(vec2(row, col), vec2(${s}Shape[1], 1));
|
|
float texC = float(depth);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${s}TexShape[1], ${s}TexShape[0]);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth) {
|
|
float texR = dot(vec2(row, col), vec2(${n[1]}, 1));
|
|
float texC = float(depth);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${h}.0, ${d}.0);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`;let f=Ho(s);return t?`
|
|
float ${r}(int row, int col, int depth) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int stride0 = ${s}Shape[1] * ${s}Shape[2];
|
|
int stride1 = ${s}Shape[2];
|
|
int index = row * ${a} + col * ${o} + depth + ${f};
|
|
vec2 uv = uvFromFlat(${s}TexShape[0], ${s}TexShape[1], index);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${a} + col * ${o} + depth + ${f};
|
|
vec2 uv = uvFromFlat(${d}, ${h}, index);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`}function xq(e,t){let n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1),r=bn();if(t)return`
|
|
vec4 ${s}(int b2, int b, int row, int col) {
|
|
int valuesPerRow = int(ceil(float(${n}Shape[3]) / 2.0));
|
|
int texelsInBatch = valuesPerRow * int(ceil(float(${n}Shape[2]) / 2.0));
|
|
int index = b * texelsInBatch + (row / 2) * valuesPerRow + (col / 2);
|
|
texelsInBatch *= ${n}Shape[1];
|
|
index = b2 * texelsInBatch + index;
|
|
ivec2 packedTexShape = ivec2(ceil(float(${n}TexShape[0]) / 2.0), ceil(float(${n}TexShape[1]) / 2.0));
|
|
int texR = index / packedTexShape[1];
|
|
int texC = index - texR * packedTexShape[1];
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(packedTexShape[1], packedTexShape[0]); return ${r.texture2D}(${n}, uv);
|
|
}
|
|
`;let a=e.shapeInfo.logicalShape,o=a.length,i=e.shapeInfo.texShape,l=[Math.ceil(i[0]/2),Math.ceil(i[1]/2)],u=l[0],c=l[1],d=Math.ceil(a[o-1]/2),h=d*Math.ceil(a[o-2]/2),p="int b, int row, int col",f=`b * ${h} + (row / 2) * ${d} + (col / 2)`;for(let m=2;m<o-1;m++)p=`int b${m}, `+p,h*=a[o-m-1],f=`b${m} * ${h} + `+f;return`
|
|
vec4 ${s}(${p}) {
|
|
int index = ${f};
|
|
int texR = index / ${c};
|
|
int texC = index - texR * ${c};
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${c}, ${u});
|
|
return ${r.texture2D}(${n}, uv);
|
|
}
|
|
`}function bq(e,t){let n=e.shapeInfo.logicalShape,s=e.name,r="get"+s.charAt(0).toUpperCase()+s.slice(1),a=n[3],o=n[2]*a,i=n[1]*o,{newShape:l,keptDims:u}=I.squeezeShape(n);if(l.length<n.length){let y=Kl(e,l),x=["row","col","depth","depth2"];return`
|
|
${ql(y,t)}
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
return ${r}(${Zl(x,u)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
int index = round(dot(vec4(row, col, depth, depth2),
|
|
vec4(${i}, ${o}, ${a}, 1)));
|
|
${Xl(e)}
|
|
}
|
|
`;let c=e.shapeInfo.flatOffset,d=e.shapeInfo.texShape,h=d[0],p=d[1],f=`int stride2 = ${s}Shape[3];`,m=`int stride1 = ${s}Shape[2] * stride2;`,A=`int stride0 = ${s}Shape[1] * stride1;`;if(p===i&&c==null)return t?`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
${f}
|
|
${m}
|
|
float texR = float(row);
|
|
float texC =
|
|
dot(vec3(col, depth, depth2),
|
|
vec3(stride1, stride2, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${s}TexShape[1], ${s}TexShape[0]);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
float texR = float(row);
|
|
float texC =
|
|
dot(vec3(col, depth, depth2),
|
|
vec3(${o}, ${a}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${p}.0, ${h}.0);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`;if(p===a&&c==null)return t?`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
float texR = dot(vec3(row, col, depth),
|
|
vec3(${s}Shape[1] * ${s}Shape[2], ${s}Shape[2], 1));
|
|
float texC = float(depth2);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${s}TexShape[1], ${s}TexShape[0]);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
float texR = dot(vec3(row, col, depth),
|
|
vec3(${n[1]*n[2]}, ${n[2]}, 1));
|
|
float texC = float(depth2);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${p}.0, ${h}.0);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`;let g=Ho(s);return t?`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
${f}
|
|
${m}
|
|
${A}
|
|
int index = row * stride0 + col * stride1 +
|
|
depth * stride2 + depth2;
|
|
vec2 uv = uvFromFlat(${s}TexShape[0], ${s}TexShape[1], index + ${g});
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${i} + col * ${o} +
|
|
depth * ${a} + depth2;
|
|
vec2 uv = uvFromFlat(${h}, ${p}, index + ${g});
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`}function vq(e){let t=e.shapeInfo.logicalShape,n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1),r=t[4],a=t[3]*r,o=t[2]*a,i=t[1]*o,{newShape:l,keptDims:u}=I.squeezeShape(t);if(l.length<t.length){let m=Kl(e,l),A=["row","col","depth","depth2","depth3"];return`
|
|
${ql(m)}
|
|
float ${s}(int row, int col, int depth, int depth2, int depth3) {
|
|
return ${s}(${Zl(A,u)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${s}(int row, int col, int depth, int depth2, int depth3) {
|
|
float index = dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${i}, ${o}, ${a}, ${r})) +
|
|
depth3;
|
|
${Xl(e)}
|
|
}
|
|
`;let c=e.shapeInfo.flatOffset,d=e.shapeInfo.texShape,h=d[0],p=d[1];if(p===i&&c==null)return`
|
|
float ${s}(int row, int col, int depth, int depth2, int depth3) {
|
|
int texR = row;
|
|
float texC = dot(vec4(col, depth, depth2, depth3),
|
|
vec4(${o}, ${a}, ${r}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${p}.0, ${h}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;if(p===r&&c==null)return`
|
|
float ${s}(int row, int col, int depth, int depth2, int depth3) {
|
|
float texR = dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${t[1]*t[2]*t[3]},
|
|
${t[2]*t[3]}, ${t[3]}, 1));
|
|
int texC = depth3;
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${p}.0, ${h}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let f=Ho(n);return`
|
|
float ${s}(int row, int col, int depth, int depth2, int depth3) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${i} + col * ${o} + depth * ${a} +
|
|
depth2 * ${r} + depth3 + ${f};
|
|
vec2 uv = uvFromFlat(${h}, ${p}, index);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function wq(e){let t=e.shapeInfo.logicalShape,n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1),{newShape:r,keptDims:a}=I.squeezeShape(t);if(r.length<t.length){let A=Kl(e,r),g=["row","col","depth","depth2","depth3","depth4"];return`
|
|
${ql(A)}
|
|
float ${s}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
return ${s}(${Zl(g,a)});
|
|
}
|
|
`}let o=t[5],i=t[4]*o,l=t[3]*i,u=t[2]*l,c=t[1]*u;if(e.shapeInfo.isUniform)return`
|
|
float ${s}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
int index = round(dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${c}, ${u}, ${l}, ${i})) +
|
|
dot(
|
|
vec2(depth3, depth4),
|
|
vec2(${o}, 1)));
|
|
${Xl(e)}
|
|
}
|
|
`;let d=e.shapeInfo.flatOffset,h=e.shapeInfo.texShape,p=h[0],f=h[1];if(f===c&&d==null)return`
|
|
float ${s}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
int texR = row;
|
|
float texC = dot(vec4(col, depth, depth2, depth3),
|
|
vec4(${u}, ${l}, ${i}, ${o})) +
|
|
float(depth4);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${f}.0, ${p}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;if(f===o&&d==null)return`
|
|
float ${s}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
float texR = dot(vec4(row, col, depth, depth2),
|
|
vec4(${t[1]*t[2]*t[3]*t[4]},
|
|
${t[2]*t[3]*t[4]},
|
|
${t[3]*t[4]},
|
|
${t[4]})) + float(depth3);
|
|
int texC = depth4;
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${f}.0, ${p}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let m=Ho(n);return`
|
|
float ${s}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${c} + col * ${u} + depth * ${l} +
|
|
depth2 * ${i} + depth3 * ${o} + depth4 + ${m};
|
|
vec2 uv = uvFromFlat(${p}, ${f}, index);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function Xl(e){let t=e.name,n=I.sizeFromShape(e.shapeInfo.logicalShape);return n<2?`return ${t};`:`
|
|
for (int i = 0; i < ${n}; i++) {
|
|
if (i == index) {
|
|
return ${t}[i];
|
|
}
|
|
}
|
|
`}function kq(e,t){let n=e.name,s=n.charAt(0).toUpperCase()+n.slice(1),r="get"+s+"AtOutCoords",a=e.shapeInfo.logicalShape.length,o=t.logicalShape.length,i=m6(e.shapeInfo.logicalShape,t.logicalShape),l=ct(o),u=o-a,c,d=["x","y","z","w","u","v"];a===0?c="":o<2&&i.length>=1?c="coords = 0;":c=i.map(y=>`coords.${d[y+u]} = 0;`).join(`
|
|
`);let h="";o<2&&a>0?h="coords":h=e.shapeInfo.logicalShape.map((y,x)=>`coords.${d[x+u]}`).join(", ");let p="return outputValue;",m=I.sizeFromShape(e.shapeInfo.logicalShape)===1,g=I.sizeFromShape(t.logicalShape)===1;if(a===1&&!m&&!g)p=`
|
|
return vec4(outputValue.xy, outputValue.xy);
|
|
`;else if(m&&!g)o===1?p=`
|
|
return vec4(outputValue.x, outputValue.x, 0., 0.);
|
|
`:p=`
|
|
return vec4(outputValue.x);
|
|
`;else if(i.length){let y=a-2,x=a-1;i.indexOf(y)>-1&&i.indexOf(x)>-1?p="return vec4(outputValue.x);":i.indexOf(y)>-1?p="return vec4(outputValue.x, outputValue.y, outputValue.x, outputValue.y);":i.indexOf(x)>-1&&(p="return vec4(outputValue.xx, outputValue.zz);")}return`
|
|
vec4 ${r}() {
|
|
${l} coords = getOutputCoords();
|
|
${c}
|
|
vec4 outputValue = get${s}(${h});
|
|
${p}
|
|
}
|
|
`}function Iq(e,t){let n=e.name,s=n.charAt(0).toUpperCase()+n.slice(1),r="get"+s+"AtOutCoords",a=t.texShape,o=e.shapeInfo.texShape,i=e.shapeInfo.logicalShape.length,l=t.logicalShape.length;if(!e.shapeInfo.isUniform&&i===l&&e.shapeInfo.flatOffset==null&&I.arraysEqual(o,a))return`
|
|
float ${r}() {
|
|
return sampleTexture(${n}, resultUV);
|
|
}
|
|
`;let u=ct(l),c=m6(e.shapeInfo.logicalShape,t.logicalShape),d=l-i,h,p=["x","y","z","w","u","v"];i===0?h="":l<2&&c.length>=1?h="coords = 0;":h=c.map(m=>`coords.${p[m+d]} = 0;`).join(`
|
|
`);let f="";return l<2&&i>0?f="coords":f=e.shapeInfo.logicalShape.map((m,A)=>`coords.${p[A+d]}`).join(", "),`
|
|
float ${r}() {
|
|
${u} coords = getOutputCoords();
|
|
${h}
|
|
return get${s}(${f});
|
|
}
|
|
`}function ct(e){if(e<=1)return"int";if(e===2)return"ivec2";if(e===3)return"ivec3";if(e===4)return"ivec4";if(e===5)return"ivec5";if(e===6)return"ivec6";throw Error(`GPU for rank ${e} is not yet supported`)}function I1(e,t,n){let{newShape:s}=I.squeezeShape(t),r=t.length,a=e&&r===3&&t[0]===1,o=a?t.slice(1):s,i=!e&&r>1&&!I.arraysEqual(t,n)&&s.length<r||a;return{useSqueezeShape:i,uniformShape:i?o:t}}function Kl(e,t){let n=JSON.parse(JSON.stringify(e));return n.shapeInfo.logicalShape=t,n}function Zl(e,t){return t.map(n=>e[n]).join(", ")}function Sq(e,t,n,s){let r=n.map((x,b)=>{let v={logicalShape:x.shape,texShape:x.isUniform?null:x.texData.texShape,isUniform:x.isUniform,isPacked:x.isUniform?!1:x.texData.isPacked,flatOffset:null};return x.texData!=null&&x.texData.slice!=null&&x.texData.slice.flatOffset>0&&(v.flatOffset=x.texData.slice.flatOffset),{name:t.variableNames[b],shapeInfo:v}}),a=r.map(x=>x.shapeInfo),o={logicalShape:s.shape,texShape:s.texData.texShape,isUniform:!1,isPacked:s.texData.isPacked,flatOffset:null},i=Uj(r,o,t),l=e.createProgram(i),u=null,c=e.getUniformLocation(l,"NAN",!1);ee().getNumber("WEBGL_VERSION")===1&&(u=e.getUniformLocation(l,"INFINITY",!1));let d=!1,h={},p={},f={};for(let x=0;x<t.variableNames.length;x++){let b=t.variableNames[x];h[b]=e.getUniformLocation(l,b,d),h[`offset${b}`]=e.getUniformLocation(l,`offset${b}`,d),t.enableShapeUniforms&&(p[`${b}Shape`]=e.getUniformLocation(l,`${b}Shape`,d),f[`${b}TexShape`]=e.getUniformLocation(l,`${b}TexShape`,d))}let m,A,g;t.enableShapeUniforms&&(m=e.getUniformLocation(l,"outShape",d),g=e.getUniformLocation(l,"outShapeStrides",d),A=e.getUniformLocation(l,"outTexShape",d));let y=[];return t.customUniforms&&t.customUniforms.forEach((x,b)=>{y[b]=e.getUniformLocation(l,x.name,d)}),{program:t,source:i,webGLProgram:l,uniformLocations:h,customUniformLocations:y,inShapeInfos:a,outShapeInfo:o,infLoc:u,nanLoc:c,inShapesLocations:p,inTexShapesLocations:f,outShapeLocation:m,outShapeStridesLocation:g,outTexShapeLocation:A}}function y6(e,t){if(e.length!==t.length)throw Error(`Binary was compiled with ${e.length} inputs, but was executed with ${t.length} inputs`);e.forEach((n,s)=>{let r=n.logicalShape,a=t[s],o=a.shape;if(!I.arraysEqual(r,o))throw Error(`Binary was compiled with different shapes than the current args. Shapes ${r} and ${o} must match`);if(n.isUniform&&a.isUniform)return;let i=n.texShape,l=a.isUniform?null:a.texData.texShape;if(!I.arraysEqual(i,l))throw Error(`Binary was compiled with different texture shapes than the current args. Shape ${i} and ${l} must match`)})}function Cq(e,t,n,s,r){t.program.enableShapeUniforms||(y6(t.inShapeInfos,n),y6([t.outShapeInfo],[s]));let a=s.texData.texture,o=s.texData.texShape;s.texData.isPacked?e.setOutputPackedMatrixTexture(a,o[0],o[1]):e.setOutputMatrixTexture(a,o[0],o[1]),e.setProgram(t.webGLProgram),ee().getNumber("WEBGL_VERSION")===1&&t.infLoc!==null&&e.gl.uniform1f(t.infLoc,1/0),t.nanLoc!==null&&e.gl.uniform1f(t.nanLoc,NaN),n.forEach((l,u)=>{let c=t.program.variableNames[u],d=t.uniformLocations[c],h=t.uniformLocations[`offset${c}`],p=t.inShapesLocations[`${c}Shape`],f=t.inTexShapesLocations[`${c}TexShape`];if(p){let{uniformShape:m}=I1(t.program.packedInputs,l.shape,l.texData.texShape);switch(m.length){case 1:e.gl.uniform1iv(p,new Int32Array(m));break;case 2:e.gl.uniform2iv(p,new Int32Array(m));break;case 3:e.gl.uniform3iv(p,new Int32Array(m));break;case 4:e.gl.uniform4iv(p,new Int32Array(m));break;default:break}}if(f&&e.gl.uniform2i(f,l.texData.texShape[0],l.texData.texShape[1]),d!=null){if(l.isUniform){if(I.sizeFromShape(l.shape)<2)e.gl.uniform1f(d,l.uniformValues[0]);else{let m=l.uniformValues;m instanceof Float32Array||(m=new Float32Array(m)),e.gl.uniform1fv(d,m)}return}l.texData.slice!=null&&h!=null&&e.gl.uniform1i(h,l.texData.slice.flatOffset),e.setInputMatrixTexture(l.texData.texture,d,u)}});let i=t.outShapeLocation;if(i)switch(s.shape.length){case 1:e.gl.uniform1iv(i,new Int32Array(s.shape));break;case 2:e.gl.uniform2iv(i,new Int32Array(s.shape));break;case 3:e.gl.uniform3iv(i,new Int32Array(s.shape));break;case 4:e.gl.uniform4iv(i,new Int32Array(s.shape));break;default:break}if(t.outShapeStridesLocation){let l=I.computeStrides(s.shape);switch(s.shape.length){case 2:e.gl.uniform1iv(t.outShapeStridesLocation,new Int32Array(l));break;case 3:e.gl.uniform2iv(t.outShapeStridesLocation,new Int32Array(l));break;case 4:e.gl.uniform3iv(t.outShapeStridesLocation,new Int32Array(l));break;default:break}}t.outTexShapeLocation&&e.gl.uniform2i(t.outTexShapeLocation,s.texData.texShape[0],s.texData.texShape[1]),t.program.customUniforms&&r&&t.program.customUniforms.forEach((l,u)=>{let c=t.customUniformLocations[u],d=r[u];if(l.type==="float")e.gl.uniform1fv(c,d);else if(l.type==="vec2")e.gl.uniform2fv(c,d);else if(l.type==="vec3")e.gl.uniform3fv(c,d);else if(l.type==="vec4")e.gl.uniform4fv(c,d);else if(l.type==="int")e.gl.uniform1iv(c,d);else if(l.type==="ivec2")e.gl.uniform2iv(c,d);else if(l.type==="ivec3")e.gl.uniform3iv(c,d);else if(l.type==="ivec4")e.gl.uniform4iv(c,d);else throw Error(`uniform type ${l.type} is not supported yet.`)}),e.executeProgram()}function Tq(e,t,n){let s="";t.concat(n).forEach(o=>{let i=o.texData!=null&&o.texData.slice!=null&&o.texData.slice.flatOffset>0;if(e.enableShapeUniforms&&!o.isUniform){let l=o.texData.texShape,{useSqueezeShape:u,uniformShape:c}=I1(e.packedInputs,o.shape,l),d="",h="",p="";if(c.length===1&&e.packedInputs){let b=[Math.ceil(l[0]/2),Math.ceil(l[1]/2)];d=`${b[0]>1}_${b[1]>1}`}else if(c.length===2&&!e.packedInputs)h=`${c[0]>1}_${c[1]>1}`;else if(c.length>2&&!e.packedInputs){let b=I.computeStrides(c);p=`${b[0]===l[1]}_${b[b.length-1]===l[1]}`}let f=o.shape.length,m=f===2&&I.arraysEqual(o.shape,l),A=I.sizeFromShape(o.shape)===1,g=$.getBroadcastDims(o.shape,n.shape),y=!e.packedInputs&&f===n.shape.length&&I.arraysEqual(l,n.texData.texShape),x=e.packedInputs||f>2?"":`${l[0]>1}_${l[1]>1}`;s+=`${f}_${y}_${u}_${c.length}_${A}_${g}_${m}_${d}_${h}_${p}_${x}_${i}`}else{let l=o.isUniform?"uniform":o.texData.texShape;s+=`${o.shape}_${l}_${i}`}});let r=e.userCode,a=e.constructor.name;return a+="_"+s+"_"+r+`${ee().getNumber("WEBGL_VERSION")}`,a}function cf(e){return ee().getBool("WEBGL_USE_SHAPES_UNIFORMS")&&e<=4}var{addImpl:Nq,bincountImpl:x6,bincountReduceImpl:Eq,ceilImpl:Rq,concatImpl:_q,equalImpl:$q,expImpl:Fq,expm1Impl:Dq,floorImpl:Oq,gatherNdImpl:Pq,gatherV2Impl:Mq,greaterImpl:zq,greaterEqualImpl:Lq,lessImpl:Bq,lessEqualImpl:Wq,linSpaceImpl:Vq,logImpl:Uq,maxImpl:Hq,maximumImpl:Gq,minimumImpl:jq,multiplyImpl:qq,negImpl:Xq,notEqualImpl:Kq,prodImpl:Zq,rangeImpl:Yq,rsqrtImpl:Jq,simpleAbsImpl:b6,sliceImpl:Qq,sparseFillEmptyRowsImpl:eX,sparseReshapeImpl:tX,sparseSegmentReductionImpl:v6,stridedSliceImpl:nX,stringNGramsImpl:sX,stringSplitImpl:rX,stringToHashBucketFastImpl:aX,subImpl:oX,tileImpl:iX,topKImpl:lX,transposeImpl:S1,uniqueImpl:uX}=Y2;function w6(e,t){return["x","y","z","w","u","v"].slice(0,t).map(n=>`${e}.${n}`)}function vn(e,t){return t===1?[e]:w6(e,t)}function cX(e,t){if(e===1)return"rc";let n="";for(let s=0;s<e;s++)n+=t[s],s<e-1&&(n+=",");return n}var dX=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outputShape=e;let t=e.length;if(t===0)this.userCode=`
|
|
void main() {
|
|
setOutput(vec4(getA(), 0., 0., 0.));
|
|
}
|
|
`;else{let n=vn("rc",t),s=ct(t),r=pX(t,e,n),a=fX(t,e[e.length-1],e[e.length-2],n),o=mX(e,n);this.userCode=`
|
|
void main() {
|
|
${s} rc = getOutputCoords();
|
|
|
|
if(${r}) {
|
|
setOutput(vec4(0));
|
|
} else {
|
|
${a}
|
|
|
|
setOutput(vec4(${o}));
|
|
}
|
|
}
|
|
`}}};function hX(e,t){let n=[];for(let s=0;s<=1;s++)for(let r=0;r<=1;r++){let a=`${s===0?"r":"rp1"}, ${r===0?"c":"cp1"}`;for(let o=2;o<e;o++)a=`${t[t.length-1-o]},`+a;n.push(a)}return n}function pX(e,t,n){if(e===1)return`rc > ${t[0]}`;let s="";for(let r=e-2;r<e;r++)s+=`${n[r]} >= ${t[r]}`,r<e-1&&(s+="||");return s}function fX(e,t,n,s){if(e===1)return"";let r=s.slice(-2);return`
|
|
int r = ${r[0]};
|
|
int c = ${r[1]};
|
|
int rp1 = r + 1;
|
|
int cp1 = c + 1;
|
|
|
|
bool cEdge = cp1 >= ${t};
|
|
bool rEdge = rp1 >= ${n};
|
|
`}function mX(e,t){let n=e.length,s=hX(n,t);return n===1?`getA(rc),
|
|
rc + 1 >= ${e[0]} ? 0. : getA(rc + 1),
|
|
0, 0`:`getA(${s[0]}),
|
|
cEdge ? 0. : getA(${s[1]}),
|
|
rEdge ? 0. : getA(${s[2]}),
|
|
rEdge || cEdge ? 0. : getA(${s[3]})`}var k6=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e;let n="";for(let s=0;s<4;s++){let r="thisRC = rc;";s%2==1&&(r+="thisRC.z += 1;"),s>1&&(r+="thisRC.y += 1;"),n+=`
|
|
${r}
|
|
${s>0?"if(thisRC.y < rows && thisRC.z < cols){":""}
|
|
int flatIndex = getFlatIndex(thisRC);
|
|
|
|
ivec3 inputRC = inputCoordsFromReshapedOutCoords(flatIndex);
|
|
vec2 inputRCInnerDims = vec2(float(inputRC.y),float(inputRC.z));
|
|
|
|
result[${s}] =
|
|
getChannel(getA(inputRC.x, inputRC.y, inputRC.z), inputRCInnerDims);
|
|
${s>0?"}":""}
|
|
`}this.userCode=`
|
|
${AX(t)}
|
|
${y1(e)}
|
|
|
|
void main() {
|
|
ivec3 rc = getOutputCoords();
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
ivec3 thisRC;
|
|
int rows = ${e[1]};
|
|
int cols = ${e[2]};
|
|
|
|
${n}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}};function AX(e){return`
|
|
ivec3 inputCoordsFromReshapedOutCoords(int index) {
|
|
${Uo(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
`}var gX=class{constructor(e){this.gpgpu=e,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0,this.freeTextures={},this.logEnabled=!1,this.usedTextures={}}acquireTexture(e,t,n){let s=S6(t,n),r=C6(e,s,n);r in this.freeTextures||(this.freeTextures[r]=[]),r in this.usedTextures||(this.usedTextures[r]=[]);let a=I6(e,s,this.gpgpu.gl,this.gpgpu.textureConfig,n);if(this.freeTextures[r].length>0){this.numFreeTextures--,this.numUsedTextures++,this._numBytesFree-=a,this.log();let i=this.freeTextures[r].shift();return this.usedTextures[r].push(i),i}let o;return s===sn.PACKED_2X2_FLOAT32?o=this.gpgpu.createPackedMatrixTexture(e[0],e[1]):s===sn.PACKED_2X2_FLOAT16?o=this.gpgpu.createFloat16PackedMatrixTexture(e[0],e[1]):s===sn.UNPACKED_FLOAT32?o=this.gpgpu.createFloat32MatrixTexture(e[0],e[1]):s===sn.UNPACKED_FLOAT16?o=this.gpgpu.createFloat16MatrixTexture(e[0],e[1]):s===sn.PACKED_4X1_UNSIGNED_BYTE&&(o=this.gpgpu.createUnsignedBytesMatrixTexture(e[0],e[1])),this.usedTextures[r].push(o),this.numUsedTextures++,this._numBytesAllocated+=a,this.log(),o}releaseTexture(e,t,n,s){if(this.freeTextures==null)return;let r=S6(n,s),a=C6(t,r,s);a in this.freeTextures||(this.freeTextures[a]=[]);let o=I6(t,r,this.gpgpu.gl,this.gpgpu.textureConfig,s),i=ee().get("WEBGL_DELETE_TEXTURE_THRESHOLD");i!==-1&&this._numBytesAllocated>i?(this.gpgpu.deleteMatrixTexture(e),this._numBytesAllocated-=o):(this.freeTextures[a].push(e),this.numFreeTextures++,this._numBytesFree+=o),this.numUsedTextures--;let l=this.usedTextures[a],u=l.indexOf(e);if(u<0)throw new Error("Cannot release a texture that was never provided by this texture manager");l.splice(u,1),this.log()}log(){if(!this.logEnabled)return;let e=this.numFreeTextures+this.numUsedTextures;console.log("Free/Used",`${this.numFreeTextures} / ${this.numUsedTextures}`,`(${e})`);let t=this._numBytesFree/this._numBytesAllocated;console.log(`Bytes allocated: ${this._numBytesAllocated}`),console.log(`Bytes unused: ${this._numBytesFree} (${Math.round(100*t)}%)`)}get numBytesAllocated(){return this._numBytesAllocated}get numBytesFree(){return this._numBytesFree}getNumUsedTextures(){return this.numUsedTextures}getNumFreeTextures(){return this.numFreeTextures}dispose(){if(this.freeTextures!=null){for(let e in this.freeTextures)this.freeTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});for(let e in this.usedTextures)this.usedTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});this.freeTextures=null,this.usedTextures=null,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0}}};function yX(e,t){let n=e;if(t===n.R32F)return 4;if(t===n.R16F)return 2;if(t===n.RGBA32F)return 16;if(t===e.RGBA)return 16;if(t===n.RGBA16F)return 8;throw new Error(`Unknown internal format ${t}`)}function I6(e,t,n,s,r){let a=xX(t,s),o;if(r){let[l,u]=Gl(e[0],e[1]);o=l*u}else{let[l,u]=Mc(e[0],e[1]);o=l*u}let i=yX(n,a);return o*i}function xX(e,t){switch(e){case sn.PACKED_2X2_FLOAT32:return w1(t);case sn.PACKED_2X2_FLOAT16:return k1(t);case sn.UNPACKED_FLOAT32:return x1(t);case sn.UNPACKED_FLOAT16:return b1(t);case sn.PACKED_4X1_UNSIGNED_BYTE:return v1(t);default:throw new Error(`Unknown physical texture type ${e}`)}}function bX(e){return ee().getBool("WEBGL_RENDER_FLOAT32_ENABLED")?e?sn.PACKED_2X2_FLOAT32:sn.UNPACKED_FLOAT32:e?sn.PACKED_2X2_FLOAT16:sn.UNPACKED_FLOAT16}function S6(e,t){if(e===fs.UPLOAD)return sn.PACKED_2X2_FLOAT32;if(e===fs.RENDER||e==null)return bX(t);if(e===fs.DOWNLOAD||e===fs.PIXELS)return sn.PACKED_4X1_UNSIGNED_BYTE;throw new Error(`Unknown logical texture type ${e}`)}function C6(e,t,n){return`${e[0]}_${e[1]}_${t}_${n}`}var sa=class{constructor(e,t){this.variableNames=["A"],this.outputShape=e,this.enableShapeUniforms=cf(this.outputShape.length),this.userCode=`
|
|
float unaryOperation(float x) {
|
|
${t}
|
|
}
|
|
|
|
void main() {
|
|
float x = getAAtOutCoords();
|
|
float y = unaryOperation(x);
|
|
|
|
setOutput(y);
|
|
}
|
|
`}},Bs="if (isnan(x)) return x;",vX="return x;",T6="return abs(x);",wX="return (x >= 0.0) ? x : (exp(x) - 1.0);",kX=Bs+`
|
|
return (x < 0.0) ? 0.0 : x;
|
|
`,IX=Bs+`
|
|
return (x < 0.0) ? 0.0 : min(6.0, x);
|
|
`,df="return x;",SX="return 1.0 / (1.0 + exp(-1.0 * x));",CX="return x;",TX=`
|
|
vec4 result;
|
|
|
|
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
|
|
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
|
|
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
|
|
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
|
|
|
|
return result;
|
|
`,NX=`
|
|
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,EX=`
|
|
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,RX="return 1.0 / (1.0 + exp(-1.0 * x));",Yl=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.enableShapeUniforms=cf(this.outputShape.length),this.userCode=`
|
|
vec4 unaryOperation(vec4 x) {
|
|
${t}
|
|
}
|
|
|
|
void main() {
|
|
vec4 x = getAAtOutCoords();
|
|
vec4 y = unaryOperation(x);
|
|
|
|
setOutput(y);
|
|
}
|
|
`}},_X=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outputShape=e;let t=e.length,n=vn("rc",t),s=ct(t),r=cX(t,n),a=n.slice(-2),o=t<=1?"rc":`vec2(${a.join(",")})`;this.userCode=`
|
|
void main() {
|
|
${s} rc = getOutputCoords();
|
|
vec4 packedInput = getA(${r});
|
|
|
|
setOutput(getChannel(packedInput, ${o}));
|
|
}
|
|
`}},$X=Js.whereImpl,FX=1e-7,DX=1e-4,hf={};function OX(e){return e in hf||(hf[e]={}),hf[e]}var PX=ee().getNumber("CPU_HANDOFF_SIZE_THRESHOLD"),MX=600;function zX(){return ee().global.screen==null?1024:ee().global.screen.height*ee().global.screen.width*window.devicePixelRatio*MX/1024/1024}var Jl=class extends ku{constructor(e){super();if(this.pendingRead=new WeakMap,this.pendingDisposal=new WeakSet,this.dataRefCount=new WeakMap,this.numBytesInGPU=0,this.uploadWaitMs=0,this.downloadWaitMs=0,this.lastGlFlushTime=0,this.warnedAboutMemory=!1,this.pendingDeletes=0,this.disposed=!1,!ee().getBool("HAS_WEBGL"))throw new Error("WebGL is not supported on this device");if(e==null){let t=ar(ee().getNumber("WEBGL_VERSION"));this.binaryCache=OX(ee().getNumber("WEBGL_VERSION")),this.gpgpu=new uf(t),this.canvas=t.canvas,this.gpgpuCreatedLocally=!0}else this.gpgpu=e,this.binaryCache={},this.gpgpuCreatedLocally=!1,this.canvas=e.gl.canvas;this.textureManager=new gX(this.gpgpu),this.numMBBeforeWarning=zX(),this.texData=new Fd(this,Ar())}nextDataId(){return Jl.nextDataId++}numDataIds(){return this.texData.numDataIds()-this.pendingDeletes}write(e,t,n){if((ee().getBool("WEBGL_CHECK_NUMERICAL_PROBLEMS")||ee().getBool("DEBUG"))&&this.checkNumericalProblems(e),n==="complex64"&&e!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let s={id:this.nextDataId()};return this.texData.set(s,{shape:t,dtype:n,values:e,usage:fs.UPLOAD,refCount:1}),s}refCount(e){return this.texData.has(e)?this.texData.get(e).refCount:0}incRef(e){let t=this.texData.get(e);t.refCount++}decRef(e){if(this.texData.has(e)){let t=this.texData.get(e);t.refCount--}}move(e,t,n,s,r){if(ee().getBool("DEBUG")&&this.checkNumericalProblems(t),s==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");this.texData.set(e,{shape:n,dtype:s,values:t,usage:fs.UPLOAD,refCount:r})}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}readSync(e){let t=this.texData.get(e),{values:n,dtype:s,complexTensorInfos:r,slice:a,shape:o,isPacked:i}=t;if(a!=null){let d;i?d=new Yl(o,df):d=new sa(o,df);let h=this.runWebGLProgram(d,[{dataId:e,shape:o,dtype:s}],s),p=this.readSync(h.dataId);return this.disposeIntermediateTensorInfo(h),p}if(n!=null)return this.convertAndCacheOnCPU(e);if(s==="string")return n;let l=this.activeTimers!=null,u;l&&(u=I.now());let c;if(s==="complex64"){let d=this.readSync(r.real.dataId),h=this.readSync(r.imag.dataId);c=$.mergeRealAndImagArrays(d,h)}else c=this.getValuesFromTexture(e);return l&&(this.downloadWaitMs+=I.now()-u),this.convertAndCacheOnCPU(e,c)}async read(e){if(this.pendingRead.has(e)){let p=this.pendingRead.get(e);return new Promise(f=>p.push(f))}let t=this.texData.get(e),{values:n,shape:s,slice:r,dtype:a,complexTensorInfos:o,isPacked:i}=t;if(r!=null){let p;i?p=new Yl(s,df):p=new sa(s,df);let f=this.runWebGLProgram(p,[{dataId:e,shape:s,dtype:a}],a),m=this.read(f.dataId);return this.disposeIntermediateTensorInfo(f),m}if(n!=null)return this.convertAndCacheOnCPU(e);if(!ee().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")&&ee().getNumber("WEBGL_VERSION")===2)throw new Error("tensor.data() with WEBGL_DOWNLOAD_FLOAT_ENABLED=false and WEBGL_VERSION=2 not yet supported.");let l=null,u;if(a!=="complex64"&&ee().get("WEBGL_BUFFER_SUPPORTED")){u=this.decode(e);let p=this.texData.get(u.dataId);l=this.gpgpu.createBufferFromTexture(p.texture,...zc(s))}this.pendingRead.set(e,[]),a!=="complex64"&&await this.gpgpu.createAndWaitForFence();let c;if(a==="complex64"){let p=await Promise.all([this.read(o.real.dataId),this.read(o.imag.dataId)]),f=p[0],m=p[1];c=$.mergeRealAndImagArrays(f,m)}else if(l==null)c=this.getValuesFromTexture(e);else{let p=I.sizeFromShape(s);c=this.gpgpu.downloadFloat32MatrixFromBuffer(l,p)}if(u!=null&&this.disposeIntermediateTensorInfo(u),l!=null){let p=this.gpgpu.gl;be(p,()=>p.deleteBuffer(l))}let d=this.convertAndCacheOnCPU(e,c),h=this.pendingRead.get(e);return this.pendingRead.delete(e),h.forEach(p=>p(d)),this.pendingDisposal.has(e)&&(this.pendingDisposal.delete(e),this.disposeData(e)&&Ar().removeDataId(e,this),this.pendingDeletes--),d}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(s=>I.decodeString(s))}catch(s){throw new Error("Failed to decode encoded string bytes into utf-8")}return Be(e.shape,e.dtype,n)}checkNumericalProblems(e){if(e!=null)for(let t=0;t<e.length;t++){let n=e[t];if(!Cw(n))throw ee().getBool("WEBGL_RENDER_FLOAT32_CAPABLE")?Error(`The value ${n} cannot be represented with your current settings. Consider enabling float32 rendering: 'tf.env().set('WEBGL_RENDER_FLOAT32_ENABLED', true);'`):Error(`The value ${n} cannot be represented on this device.`)}}getValuesFromTexture(e){let{shape:t,dtype:n,isPacked:s}=this.texData.get(e),r=I.sizeFromShape(t);if(ee().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")){let d=this.decode(e),h=this.texData.get(d.dataId),p=this.gpgpu.downloadMatrixFromPackedTexture(h.texture,...zc(t)).subarray(0,r);return this.disposeIntermediateTensorInfo(d),p}let a=ee().getBool("WEBGL_PACK")&&s===!0,o=a?rf(t):t,i=a?new Lj(o):new zj(o),l=this.runWebGLProgram(i,[{shape:o,dtype:n,dataId:e}],"float32"),u=this.texData.get(l.dataId),c=this.gpgpu.downloadByteEncodedFloatMatrixFromOutputTexture(u.texture,u.texShape[0],u.texShape[1]).subarray(0,r);return this.disposeIntermediateTensorInfo(l),c}timerAvailable(){return ee().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0}async time(e){let t=this.activeTimers,n=[],s=!1;this.programTimersStack==null?(this.programTimersStack=n,s=!0):this.activeTimers.push(n),this.activeTimers=n,e();let r=I.flatten(this.activeTimers.map(i=>i.query)).filter(i=>i!=null),a=I.flatten(this.activeTimers.map(i=>i.name)).filter(i=>i!=null);this.activeTimers=t,s&&(this.programTimersStack=null);let o={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null};if(ee().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0){let i=await Promise.all(r);o.kernelMs=I.sum(i),o.getExtraProfileInfo=()=>i.map((l,u)=>({name:a[u],ms:l})).map(l=>`${l.name}: ${l.ms}`).join(", ")}else o.kernelMs={error:"WebGL query timers are not supported in this environment."};return this.uploadWaitMs=0,this.downloadWaitMs=0,o}memory(){return{unreliable:!1,numBytesInGPU:this.numBytesInGPU,numBytesInGPUAllocated:this.textureManager.numBytesAllocated,numBytesInGPUFree:this.textureManager.numBytesFree}}startTimer(){return ee().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?this.gpgpu.beginQuery():{startMs:I.now(),endMs:null}}endTimer(e){return ee().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?(this.gpgpu.endQuery(),e):(e.endMs=I.now(),e)}async getQueryTime(e){if(ee().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0)return this.gpgpu.waitForQueryAndGetTime(e);let t=e;return t.endMs-t.startMs}disposeData(e,t=!1){if(this.pendingDisposal.has(e))return!1;if(!this.texData.has(e))return!0;if(t?this.texData.get(e).refCount=0:this.texData.get(e).refCount--,!t&&this.texData.get(e).refCount>0)return!1;if(this.pendingRead.has(e))return this.pendingDisposal.add(e),this.pendingDeletes++,!1;this.releaseGPUData(e);let{complexTensorInfos:n}=this.texData.get(e);return n!=null&&(this.disposeData(n.real.dataId,t),this.disposeData(n.imag.dataId,t)),this.texData.delete(e),!0}releaseGPUData(e){let{texture:t,dtype:n,texShape:s,usage:r,isPacked:a,slice:o}=this.texData.get(e),i=o&&o.origDataId||e,l=this.dataRefCount.get(i);l>1?this.dataRefCount.set(i,l-1):(this.dataRefCount.delete(i),t!=null&&(this.numBytesInGPU-=this.computeBytes(s,n),this.textureManager.releaseTexture(t,s,r,a)));let u=this.texData.get(e);u.texture=null,u.texShape=null,u.isPacked=!1,u.slice=null}getTexture(e){return this.uploadToGPU(e),this.texData.get(e).texture}getDataInfo(e){return this.texData.get(e)}shouldExecuteOnCPU(e,t=PX){return ee().getBool("WEBGL_CPU_FORWARD")&&e.every(n=>this.texData.get(n.dataId).texture==null&&I.sizeFromShape(n.shape)<t)}getGPGPUContext(){return this.gpgpu}where(e){$.warn("tf.where() in webgl locks the UI thread. Call tf.whereAsync() instead");let t=e.dataSync();return $X(e.shape,t)}packedUnaryOp(e,t,n){let s=new Yl(e.shape,t),r=this.compileAndRun(s,[e],n);return Ar().makeTensorFromDataId(r.dataId,r.shape,r.dtype)}abs(e){if(this.shouldExecuteOnCPU([e])&&e.dtype!=="complex64"){let s=b6(this.texData.get(e.dataId).values);return this.makeOutput(e.shape,e.dtype,s)}if(ee().getBool("WEBGL_PACK_UNARY_OPERATIONS"))return this.packedUnaryOp(e,T6,e.dtype);let t=new sa(e.shape,T6),n=this.compileAndRun(t,[e]);return Ar().makeTensorFromDataId(n.dataId,n.shape,n.dtype)}makeTensorInfo(e,t,n){let s;if(t==="string"&&n!=null&&n.length>0&&I.isString(n[0])){let r=n.map(a=>I.encodeString(a));s=this.write(r,e,t)}else s=this.write(n,e,t);return this.texData.get(s).usage=null,{dataId:s,shape:e,dtype:t}}makeOutput(e,t,n){let{dataId:s}=this.makeTensorInfo(e,t,n);return Ar().makeTensorFromDataId(s,e,t,this)}unpackTensor(e){let t=new _X(e.shape);return this.runWebGLProgram(t,[e],e.dtype)}packTensor(e){let t=new dX(e.shape),n=!0;return this.runWebGLProgram(t,[e],e.dtype,null,n)}packedReshape(e,t){let n=[Wo(e.shape),...Vo(e.shape)],s={dtype:e.dtype,shape:n,dataId:e.dataId},r=[Wo(t),...Vo(t)],a=new k6(r,n),o=!0,i=this.runWebGLProgram(a,[s],e.dtype,null,o);return{dataId:i.dataId,shape:t,dtype:i.dtype}}decode(e){let t=this.texData.get(e),{isPacked:n,shape:s,dtype:r}=t,a=rf(s),o;n?o=new Mj(a):o=new Pj(a);let i=!0,l=this.runWebGLProgram(o,[{shape:a,dtype:r,dataId:e}],r,null,i);return{dtype:r,shape:s,dataId:l.dataId}}runWebGLProgram(e,t,n,s,r=!1){let a=this.makeTensorInfo(e.outputShape,n),o=this.texData.get(a.dataId);if(e.packedOutput&&(o.isPacked=!0),e.outPackingScheme===Pc.DENSE){let m=zc(e.outputShape);o.texShape=m.map(A=>A*2)}if(e.outTexUsage!=null&&(o.usage=e.outTexUsage),I.sizeFromShape(a.shape)===0)return o.values=I.getTypedArrayFromDType(a.dtype,0),a;let i=[],l=t.map(m=>{if(m.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");let A=this.texData.get(m.dataId);if(A.texture==null){if(!e.packedInputs&&I.sizeFromShape(m.shape)<=ee().getNumber("WEBGL_SIZE_UPLOAD_UNIFORM"))return{shape:m.shape,texData:null,isUniform:!0,uniformValues:A.values};e.packedInputs&&(A.isPacked=!0,A.shape=m.shape)}else if(!!A.isPacked!=!!e.packedInputs)m=A.isPacked?this.unpackTensor(m):this.packTensor(m),i.push(m),A=this.texData.get(m.dataId);else if(A.isPacked&&!Wc(A.shape,m.shape)){let g=m,y=m.shape;m.shape=A.shape,m=this.packedReshape(m,y),i.push(m),A=this.texData.get(m.dataId),g.shape=y}return this.uploadToGPU(m.dataId),{shape:m.shape,texData:A,isUniform:!1}});this.uploadToGPU(a.dataId);let u={shape:a.shape,texData:o,isUniform:!1},c=Tq(e,l,u),d=this.getAndSaveBinary(c,()=>Sq(this.gpgpu,e,l,u)),h=this.activeTimers!=null,p;h&&(p=this.startTimer()),Cq(this.gpgpu,d,l,u,s),i.forEach(m=>this.disposeIntermediateTensorInfo(m)),h&&(p=this.endTimer(p),this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(p)}));let f=ee().get("WEBGL_FLUSH_THRESHOLD");if(f>0){let m=I.now();m-this.lastGlFlushTime>f&&(this.gpgpu.gl.flush(),this.lastGlFlushTime=m)}if(!ee().getBool("WEBGL_LAZILY_UNPACK")&&o.isPacked&&r===!1){let m=this.unpackTensor(a);return this.disposeIntermediateTensorInfo(a),m}return a}compileAndRun(e,t,n,s,r=!1){return n=n||t[0].dtype,this.runWebGLProgram(e,t,n,s,r)}getAndSaveBinary(e,t){return e in this.binaryCache||(this.binaryCache[e]=t()),this.binaryCache[e]}getTextureManager(){return this.textureManager}dispose(){this.disposed||(ee().getBool("IS_TEST")||Object.keys(this.binaryCache).forEach(t=>{this.gpgpu.deleteProgram(this.binaryCache[t].webGLProgram),delete this.binaryCache[t]}),this.textureManager.dispose(),this.canvas!=null&&typeof HTMLCanvasElement!="undefined"&&this.canvas instanceof HTMLCanvasElement?this.canvas.remove():this.canvas=null,this.gpgpuCreatedLocally&&(this.gpgpu.program=null,this.gpgpu.dispose()),this.disposed=!0)}floatPrecision(){return this.floatPrecisionValue==null&&(this.floatPrecisionValue=H(()=>{if(!ee().get("WEBGL_RENDER_FLOAT32_ENABLED")){let e=ee().getBool("DEBUG");ee().set("DEBUG",!1);let t=this.abs(Ie(1e-8)).dataSync()[0];if(ee().set("DEBUG",e),t>0)return 32}return 16})),this.floatPrecisionValue}epsilon(){return this.floatPrecision()===32?FX:DX}uploadToGPU(e){let t=this.texData.get(e),{shape:n,dtype:s,values:r,texture:a,usage:o,isPacked:i}=t;if(a!=null)return;let l=this.activeTimers!=null,u;l&&(u=I.now());let c=t.texShape;if(c==null&&(c=Uw(n,i),t.texShape=c),r!=null){let d=rf(n),h,p=c[1],f=c[0],m=r instanceof Uint8Array;i?([p,f]=Gl(c[0],c[1]),h=new Wj(d,[f,p],m)):h=new Bj(d,[f,p],m);let A=this.makeTensorInfo([f,p],s);m?this.texData.get(A.dataId).usage=fs.PIXELS:this.texData.get(A.dataId).usage=fs.UPLOAD,this.gpgpu.uploadDenseMatrixToTexture(this.getTexture(A.dataId),p,f,r);let g=!0,y=this.runWebGLProgram(h,[A],s,null,g),x=this.texData.get(y.dataId);t.texture=x.texture,t.texShape=x.texShape,t.isPacked=x.isPacked,t.usage=x.usage,this.disposeIntermediateTensorInfo(A),this.texData.delete(y.dataId),t.values=null,l&&(this.uploadWaitMs+=I.now()-u)}else{let d=this.acquireTexture(c,o,s,i);t.texture=d}}convertAndCacheOnCPU(e,t){let n=this.texData.get(e),{dtype:s}=n;return this.releaseGPUData(e),t!=null&&(n.values=LX(t,s)),n.values}acquireTexture(e,t,n,s){if(this.numBytesInGPU+=this.computeBytes(e,n),!this.warnedAboutMemory&&this.numBytesInGPU>this.numMBBeforeWarning*1024*1024){let r=(this.numBytesInGPU/1024/1024).toFixed(2);this.warnedAboutMemory=!0,console.warn(`High memory usage in GPU: ${r} MB, most likely due to a memory leak`)}return this.textureManager.acquireTexture(e,t,s)}computeBytes(e,t){return e[0]*e[1]*I.bytesPerElement(t)}};Jl.nextDataId=0;function LX(e,t){if(t==="float32"||t==="complex64")return e;if(t==="int32"||t==="bool"){let n=t==="int32"?new Int32Array(e.length):new Uint8Array(e.length);for(let s=0;s<n.length;++s)n[s]=Math.round(e[s]);return n}else throw new Error(`Unknown dtype ${t}`)}var BX="3.8.0";function N6(){ee().set("WEBGL_FORCE_F16_TEXTURES",!0)}Ku.isBrowser()&&bl("webgl",()=>new Jl,2);var WX={forceHalfFloat:N6},E6=`
|
|
if (isnan(a)) return a;
|
|
if (isnan(b)) return b;
|
|
`,Ql=class{constructor(e,t,n){this.variableNames=["A","B"],this.outputShape=$.assertAndGetBroadcastShape(t,n),this.enableShapeUniforms=cf(this.outputShape.length),this.userCode=`
|
|
float binaryOperation(float a, float b) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
float a = getAAtOutCoords();
|
|
float b = getBAtOutCoords();
|
|
setOutput(binaryOperation(a, b));
|
|
}
|
|
`}},pf=`
|
|
result.r = isNaN.r > 0. ? NAN : result.r;
|
|
result.g = isNaN.g > 0. ? NAN : result.g;
|
|
result.b = isNaN.b > 0. ? NAN : result.b;
|
|
result.a = isNaN.a > 0. ? NAN : result.a;
|
|
`,Uc=class{constructor(e,t,n,s=!1){this.variableNames=["A","B"],this.supportsBroadcasting=!0,this.packedInputs=!0,this.packedOutput=!0,this.outputShape=$.assertAndGetBroadcastShape(t,n);let r=this.outputShape.length;this.enableShapeUniforms=cf(r);let a="";if(s)if(r===0||I.sizeFromShape(this.outputShape)===1)a=`
|
|
result.y = 0.;
|
|
result.z = 0.;
|
|
result.w = 0.;
|
|
`;else if(a=`
|
|
${ct(r)} coords = getOutputCoords();
|
|
`,r===1)this.enableShapeUniforms?a+=`
|
|
result.y = (coords + 1) >= outShape ? 0. : result.y;
|
|
result.z = 0.;
|
|
result.w = 0.;
|
|
`:a+=`
|
|
result.y = (coords + 1) >= ${this.outputShape[0]} ? 0. : result.y;
|
|
result.z = 0.;
|
|
result.w = 0.;
|
|
`;else{let i=vn("coords",r);this.enableShapeUniforms?a+=`
|
|
bool nextRowOutOfBounds =
|
|
(${i[r-2]} + 1) >= outShape[${r} - 2];
|
|
bool nextColOutOfBounds =
|
|
(${i[r-1]} + 1) >= outShape[${r} - 1];
|
|
result.y = nextColOutOfBounds ? 0. : result.y;
|
|
result.z = nextRowOutOfBounds ? 0. : result.z;
|
|
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
|
|
`:a+=`
|
|
bool nextRowOutOfBounds =
|
|
(${i[r-2]} + 1) >= ${this.outputShape[r-2]};
|
|
bool nextColOutOfBounds =
|
|
(${i[r-1]} + 1) >= ${this.outputShape[r-1]};
|
|
result.y = nextColOutOfBounds ? 0. : result.y;
|
|
result.z = nextRowOutOfBounds ? 0. : result.z;
|
|
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
|
|
`}this.userCode=`
|
|
vec4 binaryOperation(vec4 a, vec4 b) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
vec4 a = getAAtOutCoords();
|
|
vec4 b = getBAtOutCoords();
|
|
|
|
vec4 result = binaryOperation(a, b);
|
|
${a}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}};function qn(e){let{inputs:t,backend:n}=e,{x:s}=t;return n.incRef(s.dataId),{dataId:s.dataId,shape:s.shape,dtype:s.dtype}}var VX={kernelName:Oa,backendName:"webgl",kernelFunc:qn};function ra(e){let{inputs:t,backend:n}=e,{real:s,imag:r}=t,a=n.makeTensorInfo(s.shape,"complex64"),o=n.texData.get(a.dataId),i=qn({inputs:{x:s},backend:n}),l=qn({inputs:{x:r},backend:n});return o.complexTensorInfos={real:i,imag:l},a}var UX={kernelName:Wd,backendName:"webgl",kernelFunc:ra},R6="return (a < 0.) ? b * a : a;",_6=`
|
|
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
|
|
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
|
|
`;function HX(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{alpha:a}=s,o=n.makeTensorInfo([],"float32",I.createScalarValue(a,"float32")),i=ee().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Uc(_6,r.shape,o.shape):new Ql(R6,r.shape,o.shape),l=n.runWebGLProgram(i,[r,o],r.dtype);return n.disposeIntermediateTensorInfo(o),l}var GX={kernelName:Pa,backendName:"webgl",kernelFunc:HX},$6="return (a < 0.) ? b * a : a;",F6=`
|
|
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
|
|
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
|
|
`;function jX(e){let{inputs:t,backend:n}=e,{x:s,alpha:r}=t,a=ee().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Uc(F6,s.shape,r.shape):new Ql($6,s.shape,r.shape);return n.runWebGLProgram(a,[s,r],s.dtype)}var qX={kernelName:Ka,backendName:"webgl",kernelFunc:jX},D6="if (isnan(x)) return x;",XX=`
|
|
if (isnan(a)) return a;
|
|
if (isnan(b)) return b;
|
|
`,KX=`
|
|
result.r = isNaN.r > 0. ? NAN : result.r;
|
|
result.g = isNaN.g > 0. ? NAN : result.g;
|
|
result.b = isNaN.b > 0. ? NAN : result.b;
|
|
result.a = isNaN.a > 0. ? NAN : result.a;
|
|
`;function Ze({opSnippet:e,packedOpSnippet:t,cpuKernelImpl:n,dtype:s}){return({inputs:r,backend:a})=>{let{x:o}=r,i=a,l=s||o.dtype;if(i.shouldExecuteOnCPU([o])&&n!=null){let d=i.texData.get(o.dataId),h=n(d.values,l);return i.makeTensorInfo(o.shape,l,h)}let u=ee().getBool("WEBGL_PACK_UNARY_OPERATIONS")&&t!=null,c;return u?c=new Yl(o.shape,t):c=new sa(o.shape,e),i.runWebGLProgram(c,[o],l)}}function rn({opSnippet:e,packedOpSnippet:t,checkOutOfBounds:n=!1,supportsComplex:s=!1,cpuKernelImpl:r,dtype:a}){return({inputs:o,backend:i})=>{let{a:l,b:u}=o,c=i;if(s&&l.dtype==="complex64"){let f=c.texData.get(l.dataId),m=c.texData.get(u.dataId),[A,g]=[[f.complexTensorInfos.real,m.complexTensorInfos.real],[f.complexTensorInfos.imag,m.complexTensorInfos.imag]].map(x=>{let[b,v]=x,k={dataId:b.dataId,dtype:b.dtype,shape:l.shape},w={dataId:v.dataId,dtype:v.dtype,shape:u.shape},C=new Ql(e,l.shape,u.shape);return c.runWebGLProgram(C,[k,w],bs(b.dtype,v.dtype))}),y=ra({inputs:{real:A,imag:g},backend:c});return c.disposeIntermediateTensorInfo(A),c.disposeIntermediateTensorInfo(g),y}let d=a||bs(l.dtype,u.dtype);if((l.dtype==="string"||u.dtype==="string"||c.shouldExecuteOnCPU([l,u]))&&r!=null){let f=c.texData.get(l.dataId).values,m=c.texData.get(u.dataId).values,A=l.dtype==="string"?$.fromUint8ToStringArray(f):f,g=l.dtype==="string"?$.fromUint8ToStringArray(m):m,[y,x]=r(l.shape,u.shape,A,g,d),b=c.makeTensorInfo(x,d),v=c.texData.get(b.dataId);return v.values=y,b}let h=ee().getBool("WEBGL_PACK_BINARY_OPERATIONS")&&t!=null,p;return h?p=new Uc(t,l.shape,u.shape,n):p=new Ql(e,l.shape,u.shape),c.runWebGLProgram(p,[l,u],d)}}function ff(e,t=!1){if(e==="linear")return t?CX:vX;if(e==="relu")return t?NX:kX;if(e==="elu")return t?TX:wX;if(e==="relu6")return t?EX:IX;if(e==="prelu")return t?F6:$6;if(e==="leakyrelu")return t?_6:R6;if(e==="sigmoid")return t?RX:SX;throw new Error(`Activation ${e} has not been implemented for the WebGL backend.`)}var O6=class{constructor(e,t,n,s=!1,r=!1,a=!1,o=null,i=!1,l=!1){this.variableNames=["matrixA","matrixB"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=n;let u=s?e[1]:e[2],c=Math.ceil(u/2),d=s?"i * 2, rc.y":"rc.y, i * 2",h=r?"rc.z, i * 2":"i * 2, rc.z",p=s?["a.xxyy","a.zzww"]:["a.xxzz","a.yyww"],f=r?["b.xzxz","b.ywyw"]:["b.xyxy","b.zwzw"],m="",A="";o&&(i?m=`vec4 activation(vec4 a) {
|
|
vec4 b = getPreluActivationWeightsAtOutCoords();
|
|
${o}
|
|
}`:l?m=`vec4 activation(vec4 a) {
|
|
vec4 b = getLeakyreluAlphaAtOutCoords();
|
|
${o}
|
|
}`:m=`vec4 activation(vec4 x) {
|
|
${o}
|
|
}`,A="result = activation(result);");let g=a?"result += getBiasAtOutCoords();":"";a&&this.variableNames.push("bias"),i&&this.variableNames.push("preluActivationWeights"),l&&this.variableNames.push("leakyreluAlpha");let y="rc.x",x="rc.x";e[0]<t[0]?y=`int(min(float(rc.x), ${e[0]-1}.))`:t[0]<e[0]&&(x=`int(min(float(rc.x), ${t[0]-1}.))`),this.userCode=`
|
|
${m}
|
|
|
|
const float sharedDimension = ${c}.0;
|
|
|
|
vec4 dot2x2ARowBCol(ivec3 rc) {
|
|
vec4 result = vec4(0);
|
|
for (int i = 0; i < ${c}; i++) {
|
|
int batchA = ${y};
|
|
int batchB = ${x};
|
|
vec4 a = getMatrixA(batchA, ${d});
|
|
vec4 b = getMatrixB(batchB, ${h});
|
|
|
|
// These swizzled products need to be separately added.
|
|
// See: https://github.com/tensorflow/tfjs/issues/1735
|
|
result += (${p[0]} * ${f[0]});
|
|
result += (${p[1]} * ${f[1]});
|
|
}
|
|
return result;
|
|
}
|
|
|
|
void main() {
|
|
ivec3 rc = getOutputCoords();
|
|
vec4 result = dot2x2ARowBCol(rc);
|
|
|
|
${g}
|
|
|
|
${A}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}},P6={REAL:"return areal * breal - aimag * bimag;",IMAG:"return areal * bimag + aimag * breal;"},M6=class{constructor(e,t,n){this.variableNames=["AReal","AImag","BReal","BImag"],this.outputShape=$.assertAndGetBroadcastShape(t,n),this.userCode=`
|
|
float binaryOpComplex(
|
|
float areal, float aimag, float breal, float bimag) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
float areal = getARealAtOutCoords();
|
|
float aimag = getAImagAtOutCoords();
|
|
float breal = getBRealAtOutCoords();
|
|
float bimag = getBImagAtOutCoords();
|
|
setOutput(binaryOpComplex(areal, aimag, breal, bimag));
|
|
}
|
|
`}},z6="return a * b;";function C1(e){let{inputs:t,backend:n}=e,{a:s,b:r}=t,a=$.upcastType(s.dtype,r.dtype);if(s.dtype==="complex64"){let i=n.texData.get(s.dataId),l=n.texData.get(r.dataId),u=new M6(P6.REAL,s.shape,r.shape),c=new M6(P6.IMAG,s.shape,r.shape),d=[{dataId:i.complexTensorInfos.real.dataId,dtype:i.complexTensorInfos.real.dtype,shape:s.shape},{dataId:i.complexTensorInfos.imag.dataId,dtype:i.complexTensorInfos.imag.dtype,shape:s.shape},{dataId:l.complexTensorInfos.real.dataId,dtype:l.complexTensorInfos.real.dtype,shape:r.shape},{dataId:l.complexTensorInfos.imag.dataId,dtype:l.complexTensorInfos.imag.dtype,shape:r.shape}],h=n.runWebGLProgram(u,d,"float32"),p=n.runWebGLProgram(c,d,"float32"),f=ra({inputs:{real:h,imag:p},backend:n});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(p),f}if(n.shouldExecuteOnCPU([s,r])){let i=n.texData.get(s.dataId),l=n.texData.get(r.dataId),[u,c]=qq(s.shape,r.shape,i.values,l.values,a),d=n.makeTensorInfo(c,a),h=n.texData.get(d.dataId);return h.values=u,d}let o;return ee().getBool("WEBGL_PACK_BINARY_OPERATIONS")?o=new Uc(z6,s.shape,r.shape):o=new Ql(z6,s.shape,r.shape),n.runWebGLProgram(o,[s,r],a)}var ZX={kernelName:Ga,backendName:"webgl",kernelFunc:C1};function YX(e,t,n){let s=[Wo(e.shape),...Vo(e.shape)],r={dtype:e.dtype,shape:s,dataId:e.dataId},a=[Wo(t),...Vo(t)],o=new k6(a,s),i=!0,l=n.runWebGLProgram(o,[r],e.dtype,null,i);return{dataId:l.dataId,shape:t,dtype:l.dtype}}function ye(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{shape:a}=s,o=n,i=I.sizeFromShape(r.shape),l=I.inferFromImplicitShape(a,i),u=I.sizeFromShape(l);I.assert(i===u,()=>`The new shape (${l}) has ${u} elements and the old shape (${r.shape}) has ${i} elements. The new shape and old shape must have the same number of elements.`);let c=o.texData.get(r.dataId);return c.isPacked&&!Wc(r.shape,l)&&!(c.texture!==null&&Wc(c.shape,l))?YX(r,l,o):(o.incRef(r.dataId),{dataId:r.dataId,shape:l,dtype:r.dtype})}var JX={kernelName:Yi,backendName:"webgl",kernelFunc:ye},L6=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:s,inSize:r,outSize:a}=e;this.outputShape=[s,a];let o=Math.floor(n/4)*4,i=n%4,l="sumValue += dot(values, ones);";if(t!=null){let c=1/t;l=`sumValue += dot(values * ${I.isInt(c)?c.toPrecision(2):c}, ones);`}let u="";r%n>0&&(u=`
|
|
if (inIdx < 0 || inIdx >= ${r}) {
|
|
return 0.0;
|
|
}
|
|
`),this.userCode=`
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${u}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${n};
|
|
|
|
float sumValue = 0.0;
|
|
|
|
for (int i = 0; i < ${o}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
${l}
|
|
}
|
|
|
|
int inIdx = inOffset + ${o};
|
|
if (${i===1}) {
|
|
vec4 values = vec4(getValue(batch, inIdx), 0.0, 0.0, 0.0);
|
|
|
|
${l}
|
|
} else if (${i===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1), 0.0, 0.0);
|
|
|
|
${l}
|
|
} else if (${i===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2), 0.0);
|
|
|
|
${l}
|
|
}
|
|
setOutput(sumValue);
|
|
}
|
|
`}},QX=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:s,inSize:r,outSize:a}=e;this.outputShape=[s,a];let o="0.0",i="";t==="prod"?o="1.0":t==="min"?(o="1.0 / 1e-20",i="min"):t==="max"&&(o="-1.0 / 1e-20",i="max");let l=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="sum"?l="sumValue":t==="prod"?l="prodValue":t==="all"?l="allValue":t==="any"&&(l="anyValue");let u=Math.floor(n/4)*4,c=n%4,d=`
|
|
if (${t==="sum"}) {
|
|
sumValue += dot(values, ones);
|
|
} else if (${t==="prod"}) {
|
|
vec2 tmp = vec2(values[0], values[1]) * vec2(values[2], values[3]);
|
|
prodValue *= tmp[0] * tmp[1];
|
|
} else {
|
|
minMaxValue = ${i}(values, minMaxValue);
|
|
if (${t==="min"} || ${t==="max"}) {
|
|
minMaxValue = ${i}(values, minMaxValue);
|
|
bvec4 isNaN = isnan(values);
|
|
if (isNaN.r || isNaN.g || isNaN.b || isNaN.a) {
|
|
minMaxValue = vec4(NAN);
|
|
}
|
|
}
|
|
}
|
|
`,h="vec4";t==="all"?(o="1.0",d=`
|
|
bool reducedAllValue = all(values);
|
|
float floatedReducedAllValue = float(reducedAllValue);
|
|
allValue = float(allValue >= 1.0 && floatedReducedAllValue >= 1.0);
|
|
`,h="bvec4"):t==="any"&&(o="0.0",d=`
|
|
bool reducedAnyValue = any(values);
|
|
float floatedReducedAnyValue = float(reducedAnyValue);
|
|
anyValue = float(anyValue >= 1.0 || floatedReducedAnyValue >= 1.0);
|
|
`,h="bvec4");let p="";r%n>0&&(p=`
|
|
if (inIdx < 0 || inIdx >= ${r}) {
|
|
return initializationValue;
|
|
}
|
|
`),this.userCode=`
|
|
const float initializationValue = ${o};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${p}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${n};
|
|
|
|
vec4 minMaxValue = vec4(${o});
|
|
float prodValue = 1.0;
|
|
float sumValue = 0.0;
|
|
float allValue = 1.0;
|
|
float anyValue = 0.0;
|
|
|
|
for (int i = 0; i < ${u}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
${h} values = ${h}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
${d}
|
|
}
|
|
|
|
int inIdx = inOffset + ${u};
|
|
if (${c===1}) {
|
|
${h} values = ${h}(
|
|
getValue(batch, inIdx),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${d}
|
|
} else if (${c===2}) {
|
|
${h} values = ${h}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${d}
|
|
} else if (${c===3}) {
|
|
${h} values = ${h}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
initializationValue
|
|
);
|
|
|
|
${d}
|
|
}
|
|
setOutput(${l});
|
|
}
|
|
`}};function eK(e){let t=[];for(;t.length===0||t[t.length-1].outSize!==1;){let n=t.length?t[t.length-1].outSize:e[1],s=$.computeOptimalWindowSize(n);t.push({inSize:n,windowSize:s,outSize:Math.ceil(n/s)})}return t}function Go(e,t,n,s){let r=eK(e.shape),a=e;for(let o=0;o<r.length;o++){let{inSize:i,windowSize:l,outSize:u}=r[o],c,d;n==="mean"?c=o===0?new L6({windowSize:l,inSize:i,batchSize:e.shape[0],outSize:u},i):new L6({windowSize:l,inSize:i,batchSize:e.shape[0],outSize:u}):c=new QX({windowSize:l,inSize:i,batchSize:e.shape[0],outSize:u},n),d=a,a=s.runWebGLProgram(c,[a],t),d.dataId!==e.dataId&&s.disposeIntermediateTensorInfo(d)}return a}var tK=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let a=0;a<n.length;a++)n[a]=e[t[a]];this.outputShape=n,this.rank=n.length;let s=ct(this.rank),r=nK(t);this.userCode=`
|
|
void main() {
|
|
${s} resRC = getOutputCoords();
|
|
setOutput(getA(${r}));
|
|
}
|
|
`}};function nK(e){let t=e.length;if(t>6)throw Error(`Transpose for rank ${t} is not yet supported`);let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u","resRC.v"],s=new Array(t);for(let r=0;r<e.length;r++)s[e[r]]=n[r];return s.join()}var sK=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0;let n=new Array(e.length);for(let u=0;u<n.length;u++)n[u]=e[t[u]];if(this.outputShape=n,this.rank=n.length,this.rank>6)throw Error(`Packed transpose for rank ${this.rank} is not yet supported.`);let s=ct(this.rank),r=w6("rc",this.rank),a=new Array(this.rank);for(let u=0;u<t.length;u++)a[t[u]]=r[u];let o=`vec2(${a.slice(-2).join()})`,i=`++${r[this.rank-1]} < ${n[this.rank-1]}`,l=`getChannel(getA(${a.join()}), ${o})`;this.userCode=`
|
|
void main() {
|
|
${s} rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result[0] = ${l};
|
|
if(${i}) {
|
|
result[1] = ${l};
|
|
}
|
|
--${r[this.rank-1]};
|
|
if(++${r[this.rank-2]} < ${n[this.rank-2]}) {
|
|
result[2] = ${l};
|
|
if(${i}) {
|
|
result[3] = ${l};
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}};function mf(e,t,n){let s=ee().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new sK(e.shape,t):new tK(e.shape,t);return n.runWebGLProgram(s,[e],e.dtype)}function rK(e,t,n,s){let r=t,a=e.shape.length,o=I.parseAxisParam(r,e.shape),i=o,l=$.getAxesPermutation(i,a),u=l!=null,c=e;u&&(c=mf(e,l,s),i=$.getInnerMostAxes(i.length,a)),$.assertAxesAreInnerMostDims("sum",i,a);let[d,h]=$.computeOutAndReduceShapes(c.shape,i),p=d;n&&(p=$.expandShapeToKeepDim(d,o));let f=I.sizeFromShape(h),A=I.sizeFromShape(e.shape)/f,g=ye({inputs:{x:c},attrs:{shape:[A,f]},backend:s}),y=Ch(e.dtype),x=Go(g,y,"sum",s),b=ye({inputs:{x},attrs:{shape:p},backend:s});return s.disposeIntermediateTensorInfo(g),s.disposeIntermediateTensorInfo(x),u&&s.disposeIntermediateTensorInfo(c),b}function Af(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;return rK(r,a,o,n)}var aK={kernelName:ao,backendName:"webgl",kernelFunc:Af};function wn(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{perm:a}=s,o=n,i=r.shape.length,l=new Array(i);for(let c=0;c<l.length;c++)l[c]=r.shape[a[c]];let u;if(o.shouldExecuteOnCPU([r])){let d=o.texData.get(r.dataId).values,h=S1(d,r.shape,r.dtype,a,l);u=o.makeTensorInfo(l,r.dtype);let p=o.texData.get(u.dataId);p.values=h}else u=mf(r,a,o);return u}var oK={kernelName:ho,backendName:"webgl",kernelFunc:wn},B6=1e3;function gf({a:e,b:t,transposeA:n,transposeB:s,backend:r,bias:a=null,preluActivationWeights:o=null,leakyreluAlpha:i=0,activation:l=null}){let u=e.shape.length,c=t.shape.length,d=n?e.shape[u-2]:e.shape[u-1],h=s?t.shape[c-1]:t.shape[c-2],p=n?e.shape[u-1]:e.shape[u-2],f=s?t.shape[c-2]:t.shape[c-1],m=e.shape.slice(0,-2),A=t.shape.slice(0,-2),g=I.sizeFromShape(m),y=I.sizeFromShape(A),x=g===y||g===1||y===1;I.assert(u>=2&&c>=2&&x,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${m}) and (${A}).`);let v=(g>y?e.shape.slice(0,-2):t.shape.slice(0,-2)).concat([p,f]);I.assert(d===h,()=>`Error in matMul: inner shapes (${d}) and (${h}) of Tensors with shapes ${e.shape} and ${t.shape} and transposeA=${n} and transposeB=${s} must match.`);let k=n?[g,d,p]:[g,p,d],w=s?[y,f,h]:[y,h,f],C=ye({inputs:{x:e},backend:r,attrs:{shape:k}}),E=ye({inputs:{x:t},backend:r,attrs:{shape:w}}),M=[C,E],R=Math.max(g,y),_=n?C.shape[1]:C.shape[2],N=a!=null,O=o!=null,W=l==="leakyrelu",j=l!=null?ff(l,!0):null,q=N||O||W||j!=null,X;if((p===1||f===1)&&_>B6&&q===!1){let ne=C,te=E;n&&(ne=wn({inputs:{x:C},backend:r,attrs:{perm:[0,2,1]}}),M.push(ne)),s&&(te=wn({inputs:{x:E},backend:r,attrs:{perm:[0,2,1]}}),M.push(te));let se=f!==1,J=f===1,ie=ne;se&&(ie=ye({inputs:{x:ne},backend:r,attrs:{shape:[R,_,1]}}),M.push(ie));let le=f===1?2:1,he=te;J&&(he=ye({inputs:{x:te},backend:r,attrs:{shape:[R,1,_]}}),M.push(he));let ge=C1({inputs:{a:ie,b:he},backend:r});X=Af({inputs:{x:ge},backend:r,attrs:{axis:le,keepDims:!0}}),M.push(ge)}else{let ne=bs(e.dtype,t.dtype),te=new O6(k,w,[R,p,f],n,s,N,j,O,W),se=[C,E];if(a!=null&&se.push(a),O&&se.push(o),W){let J=r.makeTensorInfo([],"float32",I.createScalarValue(i,"float32"));se.push(J),M.push(J)}X=r.runWebGLProgram(te,se,ne)}let Q=ye({inputs:{x:X},backend:r,attrs:{shape:v}});M.push(X);for(let ne of M)r.disposeIntermediateTensorInfo(ne);return Q}function iK(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a,bias:o,preluActivationWeights:i}=t,{transposeA:l,transposeB:u,activation:c,leakyreluAlpha:d}=s;return gf({a:r,b:a,transposeA:l,transposeB:u,backend:n,bias:o,preluActivationWeights:i,leakyreluAlpha:d,activation:c})}var lK={kernelName:po,backendName:"webgl",kernelFunc:iK},W6="return abs(x);";function uK(e){let{inputs:t,backend:n}=e,{x:s}=t;if(n.shouldExecuteOnCPU([s])&&s.dtype!=="complex64"){let a=n.texData.get(s.dataId),o=b6(a.values);return n.makeTensorInfo(s.shape,s.dtype,o)}let r;return ee().getBool("WEBGL_PACK_UNARY_OPERATIONS")?r=new Yl(s.shape,W6):r=new sa(s.shape,W6),n.runWebGLProgram(r,[s],s.dtype)}var cK={kernelName:di,backendName:"webgl",kernelFunc:uK},dK=Bs+`
|
|
if (abs(x) > 1.) {
|
|
return NAN;
|
|
}
|
|
return acos(x);
|
|
`,hK=Ze({opSnippet:dK}),pK={kernelName:hi,backendName:"webgl",kernelFunc:hK},fK=Bs+`
|
|
if (x < 1.0) return NAN;
|
|
return log(x + sqrt(x * x - 1.0));`,mK=Ze({opSnippet:fK}),AK={kernelName:pi,backendName:"webgl",kernelFunc:mK},V6="return a + b;",gK=rn({opSnippet:V6,packedOpSnippet:V6,supportsComplex:!0,cpuKernelImpl:Nq}),yK={kernelName:Dr,backendName:"webgl",kernelFunc:gK},xK=class{constructor(e,t){this.outputShape=[],this.outputShape=e,this.variableNames=t.map((r,a)=>`T${a}`);let n=[];this.variableNames.forEach(r=>{n.push(`float v${r} = get${r}AtOutCoords();`)});let s=this.variableNames.map(r=>`v${r}`).join(" + ");this.userCode=`
|
|
void main() {
|
|
${n.join(`
|
|
`)}
|
|
|
|
float result = ${s};
|
|
setOutput(result);
|
|
}
|
|
`}},bK=class{constructor(e,t){this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.variableNames=t.map((r,a)=>`T${a}`);let n=[];this.variableNames.forEach(r=>{n.push(`vec4 v${r} = get${r}AtOutCoords();`)});let s=this.variableNames.map(r=>`v${r}`).join(" + ");this.userCode=`
|
|
void main() {
|
|
${n.join(`
|
|
`)}
|
|
|
|
vec4 result = ${s};
|
|
setOutput(result);
|
|
}
|
|
`}};function yf(e){let{inputs:t,backend:n}=e,s=t;if(s.length===1)return qn({inputs:{x:s[0]},backend:n});if(s.length>ee().get("WEBGL_MAX_TEXTURES_IN_SHADER")){let l=Math.floor(s.length/2),u=yf({inputs:s.slice(0,l),backend:n}),c=yf({inputs:s.slice(l),backend:n});return yf({inputs:[u,c],backend:n})}let r=s.map(l=>l.dtype).reduce((l,u)=>bs(l,u)),a=s.map(l=>l.shape),i=ee().getBool("WEBGL_PACK")?new bK(s[0].shape,a):new xK(s[0].shape,a);return n.runWebGLProgram(i,s,r)}var vK={kernelName:ga,backendName:"webgl",kernelFunc:yf};function wK(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s,i=r.shape.length,l=I.parseAxisParam(a,r.shape),u=l,c=$.getAxesPermutation(u,i),d=r;c!=null&&(d=wn({inputs:{x:r},backend:n,attrs:{perm:c}}),u=$.getInnerMostAxes(u.length,i)),$.assertAxesAreInnerMostDims("all",u,i);let[h,p]=$.computeOutAndReduceShapes(d.shape,u),f=I.sizeFromShape(p),m=ye({inputs:{x:d},backend:n,attrs:{shape:[-1,f]}}),A=Go(m,m.dtype,"all",n),g;if(o){let y=$.expandShapeToKeepDim(h,l);g=ye({inputs:{x:A},backend:n,attrs:{shape:y}})}else g=ye({inputs:{x:A},backend:n,attrs:{shape:h}});return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(A),c!=null&&n.disposeIntermediateTensorInfo(d),g}var kK={kernelName:fi,backendName:"webgl",kernelFunc:wK};function IK(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s,i=r.shape.length,l=I.parseAxisParam(a,r.shape),u=l,c=$.getAxesPermutation(u,i),d=r;c!=null&&(d=wn({inputs:{x:r},backend:n,attrs:{perm:c}}),u=$.getInnerMostAxes(u.length,i)),$.assertAxesAreInnerMostDims("any",u,i);let[h,p]=$.computeOutAndReduceShapes(d.shape,u),f=I.sizeFromShape(p),m=ye({inputs:{x:d},backend:n,attrs:{shape:[-1,f]}}),A=Go(m,m.dtype,"any",n),g;if(o){let y=$.expandShapeToKeepDim(h,l);g=ye({inputs:{x:A},backend:n,attrs:{shape:y}})}else g=ye({inputs:{x:A},backend:n,attrs:{shape:h}});return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(A),c!=null&&n.disposeIntermediateTensorInfo(d),g}var SK={kernelName:mi,backendName:"webgl",kernelFunc:IK},CK=class{constructor(e,t,n){this.variableNames=["A"];let{windowSize:s,batchSize:r,outSize:a}=e;n||this.variableNames.push("bestIndicesA"),this.outputShape=[r,a];let o=t==="max"?">":"<",i=n?"inOffset + i;":"round(getBestIndicesA(batch, inOffset + i));";this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${s};
|
|
|
|
int bestIndex = inOffset;
|
|
float bestValue = getA(batch, bestIndex);
|
|
|
|
for (int i = 0; i < ${s}; i++) {
|
|
int inIdx = ${i};
|
|
float candidate = getA(batch, inIdx);
|
|
if (candidate ${o} bestValue) {
|
|
bestValue = candidate;
|
|
bestIndex = inIdx;
|
|
}
|
|
}
|
|
setOutput(float(bestIndex));
|
|
}
|
|
`}},TK=class{constructor(e,t,n,s){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,I.assert(e.length>2,()=>`Packed arg${n.charAt(0).toUpperCase()+n.slice(1)} supports only inputs with rank above 2.`);let r=e[e.length-1],a=Math.ceil(r/t);this.outputShape=e.slice(0,-1),a>1&&this.outputShape.push(a),s||this.variableNames.push("bestIndicesA");let o=this.outputShape,i=o.length,l=ct(i),u=vn("coords",i),c,d;if(a===1){d=i+1;let w=ct(d);c=`
|
|
${w} sourceLocR = ${w}(${u.join()}, 0);
|
|
++${u[i-1]};
|
|
${w} sourceLocG = ${w}(${u.join()}, 0);
|
|
++${u[i-2]};
|
|
${w} sourceLocA = ${w}(${u.join()}, 0);
|
|
--${u[i-1]};
|
|
${w} sourceLocB = ${w}(${u.join()}, 0);
|
|
--${u[i-2]};`}else d=i,c=`
|
|
${l} sourceLocR = coords;
|
|
++${u[i-1]};
|
|
${l} sourceLocG = coords;
|
|
++${u[i-2]};
|
|
${l} sourceLocA = coords;
|
|
--${u[i-1]};
|
|
${l} sourceLocB = coords;
|
|
--${u[i-2]};`;let h=["x","y","z","w","u","v"].slice(0,d),p="."+h[d-1],f=h.map(w=>"int "+w),m=vn("sourceLocR",d-1).concat("inIdx.r"),A=vn("sourceLocG",d-1).concat("inIdx.g"),g=vn("sourceLocB",d-1).concat("inIdx.b"),y=vn("sourceLocA",d-1).concat("inIdx.a"),x=n==="max"?"greaterThan":"lessThan",b=s?"":`
|
|
inIdx = round(vec4(getBestIndicesAChannel(${m.join()}),
|
|
getBestIndicesAChannel(${A.join()}),
|
|
getBestIndicesAChannel(${g.join()}),
|
|
getBestIndicesAChannel(${y.join()})));`,v=`vec4(
|
|
getAChannel(${m.join()}),
|
|
hasNextCol ? getAChannel(${A.join()}) : 0.,
|
|
hasNextRow ? getAChannel(${g.join()}) : 0.,
|
|
hasNextRow && hasNextCol ? getAChannel(${y.join()}) : 0.)`,k=s?"":`
|
|
float getBestIndicesAChannel(${f.join()}) {
|
|
return getChannel(getBestIndicesA(${h.join()}),
|
|
vec2(${h.slice(-2).join()}));
|
|
}`;this.userCode=`
|
|
float getAChannel(${f.join()}) {
|
|
return getChannel(getA(${h.join()}),
|
|
vec2(${h.slice(-2).join()}));
|
|
}
|
|
${k}
|
|
void main() {
|
|
${l} coords = getOutputCoords();
|
|
bool hasNextCol = ${u[i-1]} < ${o[i-1]-1};
|
|
bool hasNextRow = ${u[i-2]} < ${o[i-2]-1};
|
|
${c}
|
|
ivec4 srcIdx = ivec4(sourceLocR${p}, sourceLocG${p},
|
|
sourceLocB${p}, sourceLocA${p}) * ${t};
|
|
ivec4 inIdx = srcIdx;
|
|
vec4 bestIndex = vec4(inIdx);
|
|
vec4 bestValue = ${v};
|
|
|
|
for (int i = 0; i < ${t}; i++) {
|
|
inIdx = srcIdx;
|
|
${b}
|
|
vec4 candidate = ${v};
|
|
bvec4 nan = isnan(candidate);
|
|
bvec4 replace = bvec4(
|
|
vec4(${x}(candidate, bestValue)) * (vec4(1.0) - vec4(nan)));
|
|
|
|
bestValue = vec4(replace.x ? candidate.x : bestValue.x,
|
|
replace.y ? candidate.y : bestValue.y,
|
|
replace.z ? candidate.z : bestValue.z,
|
|
replace.w ? candidate.w : bestValue.w);
|
|
bestIndex = mix(bestIndex, vec4(inIdx), vec4(replace));
|
|
srcIdx++;
|
|
}
|
|
setOutput(bestIndex);
|
|
}
|
|
`}};function U6(e,t,n,s=null){let r=t.shape[0],a=t.shape[1];s!=null&&(r=s.shape[0],a=s.shape[1]);let o=$.computeOptimalWindowSize(a),i={windowSize:o,inSize:a,batchSize:r,outSize:Math.ceil(a/o)},l=new CK(i,n,s==null),u=[t];s!=null&&u.push(s);let c=e.runWebGLProgram(l,u,"int32");if(c.shape[1]===1)return c;let d=U6(e,t,n,c);return e.disposeIntermediateTensorInfo(c),d}function H6(e,t,n,s=null){let r=s!=null?s.shape:t.shape,a=r[r.length-1],o=$.computeOptimalWindowSize(a),i=new TK(r,o,n,s==null),l=s==null?[t]:[t,s],u=e.runWebGLProgram(i,l,"int32");if(u.shape.length===t.shape.length){let c=H6(e,t,n,u);return e.disposeIntermediateTensorInfo(u),c}return u}function G6(e,t,n,s){let r=[n];if($.assertAxesAreInnerMostDims("arg"+s.charAt(0).toUpperCase()+s.slice(1),r,t.shape.length),!ee().getBool("WEBGL_PACK_REDUCE")||t.shape.length<=2){let a=[],[o,i]=$.computeOutAndReduceShapes(t.shape,r),l=I.sizeFromShape(i),u=ye({inputs:{x:t},backend:e,attrs:{shape:[-1,l]}});a.push(u);let c=U6(e,u,s);a.push(c);let d=ye({inputs:{x:c},backend:e,attrs:{shape:o}});return a.forEach(h=>e.disposeIntermediateTensorInfo(h)),d}return H6(e,t,s)}function NK(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s,o=I.parseAxisParam(a,r.shape),i=$.getAxesPermutation(o,r.shape.length),l=r,u=[];i!=null&&(l=wn({inputs:{x:r},backend:n,attrs:{perm:i}}),u.push(l),o=$.getInnerMostAxes(o.length,l.shape.length)),$.assertAxesAreInnerMostDims("argMax",[o[0]],l.shape.length);let c=G6(n,l,o[0],"max");return u.forEach(d=>n.disposeIntermediateTensorInfo(d)),c}var EK={kernelName:ya,backendName:"webgl",kernelFunc:NK};function RK(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s,o=I.parseAxisParam(a,r.shape),i=$.getAxesPermutation(o,r.shape.length),l=r,u=[];i!=null&&(l=wn({inputs:{x:r},backend:n,attrs:{perm:i}}),u.push(l),o=$.getInnerMostAxes(o.length,l.shape.length)),$.assertAxesAreInnerMostDims("argMin",[o[0]],l.shape.length);let c=G6(n,l,o[0],"min");return u.forEach(d=>n.disposeIntermediateTensorInfo(d)),c}var _K={kernelName:Cu,backendName:"webgl",kernelFunc:RK},$K=Bs+`
|
|
if (abs(x) > 1.) {
|
|
return NAN;
|
|
}
|
|
return asin(x);
|
|
`,FK=Ze({opSnippet:$K}),DK={kernelName:Ai,backendName:"webgl",kernelFunc:FK},OK=Bs+"return log(x + sqrt(x * x + 1.0));",PK=Ze({opSnippet:OK}),MK={kernelName:gi,backendName:"webgl",kernelFunc:PK},zK=Bs+`
|
|
return atan(x);
|
|
`,LK=Ze({opSnippet:zK}),BK={kernelName:yi,backendName:"webgl",kernelFunc:LK},WK=XX+`
|
|
return atan(a, b);
|
|
`,VK=`
|
|
vec4 result = atan(a, b);
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+KX+`
|
|
return result;
|
|
`,UK=rn({opSnippet:WK,packedOpSnippet:VK}),HK={kernelName:bi,backendName:"webgl",kernelFunc:UK},GK=Bs+`
|
|
if ((x < -1.0) || (x > 1.0)) return NAN;
|
|
return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,jK=Ze({opSnippet:GK}),qK={kernelName:xi,backendName:"webgl",kernelFunc:jK},Hc=class{constructor(e,t,n,s=!1,r=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let a=e.filterWidth,o=e.strideHeight,i=e.strideWidth,l=e.dilationHeight,u=e.dilationWidth,c=e.effectiveFilterHeight,d=e.effectiveFilterWidth,h=e.padInfo.top,p=e.padInfo.left;this.outputShape=e.outShape;let f=t==="avg",m=`((batch * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + d`,A=`(xR * ${e.inWidth} + xC) * ${e.inChannels} + d`,g="0.0";if(f||(g="-1.0 / 1e-20"),n){let w=">=";this.userCode=`
|
|
const ivec2 strides = ivec2(${o}, ${i});
|
|
const ivec2 pads = ivec2(${h}, ${p});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// max/min x(?, ?, d) to get y(yR, yC, d).
|
|
// ? = to be determined
|
|
float minMaxValue = 0.0;
|
|
float minMaxValueFound = 0.0;
|
|
int minMaxPosition = 0;
|
|
float avgValue = 0.0;
|
|
|
|
for (int wR = 0; wR < ${c};
|
|
wR += ${l}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${d};
|
|
wC += ${u}) {
|
|
int xC = xCCorner + wC;
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float value = getX(batch, xR, xC, d);
|
|
|
|
// If a min / max value has already been found, use it. If not,
|
|
// use the current value.
|
|
float currMinMaxValue = mix(
|
|
value, minMaxValue, minMaxValueFound);
|
|
if (value ${w} currMinMaxValue) {
|
|
minMaxValue = value;
|
|
minMaxValueFound = 1.0;
|
|
minMaxPosition = ${s?r?m:A:`wR * ${d} + wC`};
|
|
}
|
|
}
|
|
}
|
|
setOutput(float(minMaxPosition));
|
|
}
|
|
`;return}let y="max",x=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(x="avgValue / count");let b=Math.floor(a/4)*4,v=a%4,k=`
|
|
if (${f}) {
|
|
avgValue += dot(values, ones);
|
|
} else {
|
|
minMaxValue = ${y}(values, minMaxValue);
|
|
}
|
|
`;this.userCode=`
|
|
const ivec2 strides = ivec2(${o}, ${i});
|
|
const ivec2 pads = ivec2(${h}, ${p});
|
|
const float initializationValue = ${g};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float count = 0.0;
|
|
|
|
float getValue(int batch, int xR, int xC, int d) {
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
return initializationValue;
|
|
}
|
|
count += 1.0;
|
|
return getX(batch, xR, xC, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// max/min x(?, ?, d) to get y(yR, yC, d).
|
|
// ? = to be determined
|
|
vec4 minMaxValue = vec4(${g});
|
|
float avgValue = 0.0;
|
|
count = 0.0;
|
|
|
|
for (int wR = 0; wR < ${c};
|
|
wR += ${l}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${b}; wC += 4) {
|
|
int xC = xCCorner + wC * ${u};
|
|
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${u}, d),
|
|
getValue(batch, xR, xC + 2 * ${u}, d),
|
|
getValue(batch, xR, xC + 3 * ${u}, d)
|
|
);
|
|
|
|
${k}
|
|
}
|
|
|
|
int xC = xCCorner + ${b};
|
|
if (${v===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${k}
|
|
} else if (${v===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${u}, d),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${k}
|
|
} else if (${v===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${u}, d),
|
|
getValue(batch, xR, xC + 2 * ${u}, d),
|
|
initializationValue
|
|
);
|
|
|
|
${k}
|
|
}
|
|
}
|
|
setOutput(${x});
|
|
}
|
|
`}},T1=class{constructor(e,t,n,s=!1,r=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let a=e.filterWidth,o=e.strideDepth,i=e.strideHeight,l=e.strideWidth,u=e.dilationDepth,c=e.dilationHeight,d=e.dilationWidth,h=e.effectiveFilterDepth,p=e.effectiveFilterHeight,f=e.effectiveFilterWidth,m=e.padInfo.front,A=e.padInfo.top,g=e.padInfo.left;this.outputShape=e.outShape;let y=t==="avg",x="0.0";if(y||(x="-1.0 / 1e-20"),n){let E=">=";this.userCode=`
|
|
const ivec3 strides =
|
|
ivec3(${o}, ${i}, ${l});
|
|
const ivec3 pads = ivec3(${m}, ${A}, ${g});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xDCorner = xCorner.x;
|
|
int xRCorner = xCorner.y;
|
|
int xCCorner = xCorner.z;
|
|
|
|
// max/min x(?, ?, ?, ch) to get y(yD, yR, yC, ch).
|
|
// ? = to be determined
|
|
float minMaxValue = 0.0;
|
|
float minMaxValueFound = 0.0;
|
|
int minMaxPosition = 0;
|
|
|
|
for (int wD = 0; wD < ${h};
|
|
wD += ${u}) {
|
|
int xD = xDCorner + wD;
|
|
|
|
if (xD < 0 || xD >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${p};
|
|
wR += ${c}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${f};
|
|
wC += ${d}) {
|
|
int xC = xCCorner + wC;
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float value = getX(batch, xD, xR, xC, ch);
|
|
|
|
// If a min / max value has already been found, use it. If not,
|
|
// use the current value.
|
|
float currMinMaxValue = mix(
|
|
value, minMaxValue, minMaxValueFound);
|
|
if (value ${E} currMinMaxValue) {
|
|
minMaxValue = value;
|
|
minMaxValueFound = 1.0;
|
|
minMaxPosition = ${s?r?`(((batch * ${e.inDepth} + xD) * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`((xD * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`wD * ${p} * ${f} +
|
|
wR * ${f} + wC`};
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(float(minMaxPosition));
|
|
}
|
|
`;return}let b="max",v=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(v="avgValue / count");let k=Math.floor(a/4)*4,w=a%4,C=`
|
|
if (${y}) {
|
|
avgValue += dot(values, ones);
|
|
} else {
|
|
minMaxValue = ${b}(values, minMaxValue);
|
|
}
|
|
`;this.userCode=`
|
|
const ivec3 strides =
|
|
ivec3(${o}, ${i}, ${l});
|
|
const ivec3 pads = ivec3(${m}, ${A}, ${g});
|
|
const float initializationValue = ${x};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float count = 0.0;
|
|
|
|
float getValue(int batch, int xD, int xR, int xC, int ch) {
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
return initializationValue;
|
|
}
|
|
count += 1.0;
|
|
return getX(batch, xD, xR, xC, ch);
|
|
}
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xDCorner = xCorner.x;
|
|
int xRCorner = xCorner.y;
|
|
int xCCorner = xCorner.z;
|
|
|
|
// max/min x(?, ?, ?, d) to get y(yD, yR, yC, ch).
|
|
// ? = to be determined
|
|
vec4 minMaxValue = vec4(${x});
|
|
float avgValue = 0.0;
|
|
count = 0.0;
|
|
|
|
for (int wD = 0; wD < ${h};
|
|
wD += ${u}) {
|
|
int xD = xDCorner + wD;
|
|
|
|
if (xD < 0 || xD >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${p};
|
|
wR += ${c}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${k}; wC += 4) {
|
|
int xC = xCCorner + wC * ${d};
|
|
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${d}, ch),
|
|
getValue(batch, xD, xR, xC + 2 * ${d}, ch),
|
|
getValue(batch, xD, xR, xC + 3 * ${d}, ch)
|
|
);
|
|
|
|
${C}
|
|
}
|
|
|
|
int xC = xCCorner + ${k};
|
|
if (${w===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${C}
|
|
} else if (${w===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${d}, ch),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${C}
|
|
} else if (${w===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${d}, ch),
|
|
getValue(batch, xD, xR, xC + 2 * ${d}, ch),
|
|
initializationValue
|
|
);
|
|
|
|
${C}
|
|
}
|
|
}
|
|
setOutput(${v});
|
|
}
|
|
}
|
|
`}};function XK(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t;jl(r,"avgPool");let{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=s,u=1;I.assert($.eitherStridesOrDilationsAreOne(o,u),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${o} and dilations '${u}'`);let c=$.computePool2DInfo(r.shape,a,o,u,i,l);if(c.filterWidth===1&&c.filterHeight===1&&I.arraysEqual(c.inShape,c.outShape))return qn({inputs:{x:r},backend:n});let d=new Hc(c,"avg",!1);return n.runWebGLProgram(d,[r],"float32")}var KK={kernelName:xa,backendName:"webgl",kernelFunc:XK};function ZK(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l,dataFormat:u}=s,c=[1,1,1],d=$.computePool3DInfo(r.shape,a,o,c,i,l,u),h=new T1(d,"avg",!1);return n.runWebGLProgram(h,[r],"float32")}var YK={kernelName:Tu,backendName:"webgl",kernelFunc:ZK},JK=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,s=e.strideHeight,r=e.strideWidth,a=e.dilationHeight,o=e.dilationWidth,i=e.effectiveFilterHeight,l=e.effectiveFilterWidth,u=i-1-e.padInfo.top,c=l-1-e.padInfo.left,d=1/(t*n);this.userCode=`
|
|
const ivec2 pads = ivec2(${u}, ${c});
|
|
const float avgMultiplier = float(${d});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 dyRCCorner = coords.yz - pads;
|
|
int dyRCorner = dyRCCorner.x;
|
|
int dyCCorner = dyRCCorner.y;
|
|
|
|
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${i};
|
|
wR += ${a}) {
|
|
float dyR = float(dyRCorner + wR) / ${s}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${l};
|
|
wC+= ${o}) {
|
|
float dyC = float(dyCCorner + wC) / ${r}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(b, idyR, idyC, d);
|
|
|
|
dotProd += dyValue * avgMultiplier;
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},QK=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,s=e.filterWidth,r=e.strideDepth,a=e.strideHeight,o=e.strideWidth,i=e.dilationDepth,l=e.dilationHeight,u=e.dilationWidth,c=e.effectiveFilterDepth,d=e.effectiveFilterHeight,h=e.effectiveFilterWidth,p=c-1-e.padInfo.front,f=d-1-e.padInfo.top,m=h-1-e.padInfo.left,A=1/(t*n*s);this.userCode=`
|
|
const ivec3 pads = ivec3(${p}, ${f}, ${m});
|
|
const float avgMultiplier = float(${A});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyDCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
// Convolve dy(?, ?, ?, d) with pos mask(:, :, :, ch) to get
|
|
// dx(xD, xR, xC, ch).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int wD = 0; wD < ${c};
|
|
wD += ${i}) {
|
|
float dyD = float(dyDCorner + wD) / ${r}.0;
|
|
|
|
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyD = int(dyD);
|
|
|
|
for (int wR = 0; wR < ${d};
|
|
wR += ${l}) {
|
|
float dyR = float(dyRCorner + wR) / ${a}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${h};
|
|
wC += ${u}) {
|
|
float dyC = float(dyCCorner + wC) / ${o}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
|
|
|
|
dotProd += dyValue * avgMultiplier;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function eZ(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,o=a,{filterSize:i,strides:l,pad:u,dimRoundingMode:c}=s,d=[1,1,1],h=$.computePool3DInfo(o.shape,i,l,d,u,c),p=new QK(h);return n.runWebGLProgram(p,[r],o.dtype)}var tZ={kernelName:Ld,backendName:"webgl",kernelFunc:eZ};function nZ(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,o=a;jl([r,a],"avgPoolGrad");let{filterSize:i,strides:l,pad:u}=s,c=$.computePool2DInfo(o.shape,i,l,1,u),d=new JK(c);return n.runWebGLProgram(d,[r],o.dtype)}var sZ={kernelName:zd,backendName:"webgl",kernelFunc:nZ};function rZ(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a}=t,{transposeA:o,transposeB:i}=s;return gf({a:r,b:a,transposeA:o,transposeB:i,backend:n})}var aZ={kernelName:ba,backendName:"webgl",kernelFunc:rZ},oZ=class{constructor(e,t,n,s,r,a){this.outputShape=[],this.variableNames=["x","mean","variance"],$.assertAndGetBroadcastShape(e,t),$.assertAndGetBroadcastShape(e,n);let o="0.0";s!=null&&($.assertAndGetBroadcastShape(e,s),this.variableNames.push("offset"),o="getOffsetAtOutCoords()");let i="1.0";r!=null&&($.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale"),i="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
float x = getXAtOutCoords();
|
|
float mean = getMeanAtOutCoords();
|
|
float variance = getVarianceAtOutCoords();
|
|
float offset = ${o};
|
|
float scale = ${i};
|
|
float inv = scale * inversesqrt(variance + float(${a}));
|
|
setOutput(dot(vec3(x, -mean, offset), vec3(inv, inv, 1)));
|
|
}
|
|
`}},iZ=class{constructor(e,t,n,s,r,a){this.packedInputs=!0,this.packedOutput=!0,this.variableNames=["x","mean","variance"],$.assertAndGetBroadcastShape(e,t),$.assertAndGetBroadcastShape(e,n);let o="vec4(0.0)";s!=null&&($.assertAndGetBroadcastShape(e,s),this.variableNames.push("offset"),o="getOffsetAtOutCoords()");let i="vec4(1.0)";r!=null&&($.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale"),i="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
vec4 offset = ${o};
|
|
vec4 scale = ${i};
|
|
|
|
vec4 x = getXAtOutCoords();
|
|
vec4 mean = getMeanAtOutCoords();
|
|
vec4 variance = getVarianceAtOutCoords();
|
|
|
|
vec4 inv = scale * inversesqrt(variance + vec4(${a}));
|
|
|
|
setOutput((x - mean) * inv + offset);
|
|
}
|
|
`}},lZ=({inputs:e,backend:t,attrs:n})=>{let{x:s,mean:r,variance:a,offset:o,scale:i}=e;I.assert(r.shape.length===a.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),I.assert(o==null||r.shape.length===o.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),I.assert(i==null||r.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let{varianceEpsilon:l}=n;l==null&&(l=.001);let u=[s,r,a],c=null;o!=null&&(c=o.shape,u.push(o));let d=null;i!=null&&(d=i.shape,u.push(i));let h=ee().getBool("WEBGL_PACK_NORMALIZATION")?new iZ(s.shape,r.shape,a.shape,c,d,l):new oZ(s.shape,r.shape,a.shape,c,d,l);return t.runWebGLProgram(h,u,u[0].dtype)},uZ={kernelName:Fa,backendName:"webgl",kernelFunc:lZ},cZ=class{constructor(e){this.variableNames=["source"],this.outputShape=e,this.rank=e.length;let t=ct(this.rank);this.customUniforms=[{name:"start",arrayIndex:this.rank,type:"int"}];let n=dZ(this.rank),s,r=e.map((a,o)=>`sourceLoc.${N1[o]} = start[${o}] + coords.${N1[o]};`);s=`
|
|
${t} sourceLoc;
|
|
${t} coords = getOutputCoords();
|
|
${r.join(`
|
|
`)}
|
|
`,this.userCode=`
|
|
void main() {
|
|
${s}
|
|
setOutput(getSource(${n}));
|
|
}
|
|
`}},N1=["x","y","z","w","u","v"];function dZ(e){if(e===1)return"sourceLoc";if(e<=6)return N1.slice(0,e).map(t=>"sourceLoc."+t).join(",");throw Error(`Slicing for rank ${e} is not yet supported`)}var hZ=class{constructor(e){this.variableNames=["source"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.rank=e.length,this.customUniforms=[{name:"start",arrayIndex:this.rank,type:"int"}];let t=ct(this.rank),n=vn("coords",this.rank),s=vn("sourceLoc",this.rank),r=this.rank===1?"sourceLoc":`vec2(${s.slice(-2).join()})`,a=`getChannel(getSource(${s.join()}), ${r})`,o=`
|
|
result.x = ${a};
|
|
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
|
|
++${s[this.rank-1]};
|
|
result.y = ${a};
|
|
--${s[this.rank-1]};
|
|
}
|
|
`,i=this.rank===1?"":`
|
|
--${n[this.rank-1]};
|
|
if (++${n[this.rank-2]} < ${e[this.rank-2]}) {
|
|
++${s[this.rank-2]};
|
|
result.z = ${a};
|
|
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
|
|
++${s[this.rank-1]};
|
|
result.w = ${a};
|
|
}
|
|
}
|
|
`,l=this.rank<=4?`sourceLoc = coords +
|
|
${t}(${e.map((u,c)=>`start[${c}]`).join()});`:e.map((u,c)=>`${s[c]} = ${n[c]} + start[${c}];`).join(`
|
|
`);this.userCode=`
|
|
void main() {
|
|
${t} coords = getOutputCoords();
|
|
${t} sourceLoc;
|
|
${l}
|
|
vec4 result = vec4(0.);
|
|
${o}
|
|
${i}
|
|
setOutput(result);
|
|
}
|
|
`}};function pZ(e,t,n,s){let r=s.texData.get(e.dataId),a=s.makeTensorInfo(n,e.dtype),o=s.texData.get(a.dataId);Object.assign(o,r),o.refCount=1,o.shape=n,o.dtype=e.dtype;let i=An.computeFlatOffset(t,I.computeStrides(e.shape));r.slice&&(i+=r.slice.flatOffset),o.slice={flatOffset:i,origDataId:r.slice&&r.slice.origDataId||e.dataId};let l=s.dataRefCount.get(o.slice.origDataId)||1;return s.dataRefCount.set(o.slice.origDataId,l+1),a}function eu(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,size:o}=s,[i,l]=An.parseSliceParams(r,a,o);if(An.assertParamsValid(r,i,l),I.sizeFromShape(l)===0)return n.makeTensorInfo(l,r.dtype,[]);if(n.shouldExecuteOnCPU([r])||r.dtype==="string"){let d=n.texData.get(r.dataId),h=Qq(d.values,i,l,r.shape,r.dtype);return n.makeTensorInfo(l,r.dtype,h)}let{isPacked:u}=n.texData.get(r.dataId),c=An.isSliceContinous(r.shape,i,l);if(u||!c){let d=ee().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new hZ(l):new cZ(l),h=[i];return n.runWebGLProgram(d,[r],r.dtype,h)}return n.uploadToGPU(r.dataId),pZ(r,i,l,n)}var fZ={kernelName:tl,backendName:"webgl",kernelFunc:eu},mZ=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,crops:o}=s;I.assert(r.shape.length<=4,()=>"batchToSpaceND for rank > 4 with a WebGL backend not implemented yet");let i=a.reduce((y,x)=>y*x),l=$.getReshaped(r.shape,a,i),u=$.getPermuted(l.length,a.length),c=$.getReshapedPermuted(r.shape,a,i),d=$.getSliceBeginCoords(o,a.length),h=$.getSliceSize(c,o,a.length),p=[],f=ye({inputs:{x:r},backend:n,attrs:{shape:l}}),m=wn({inputs:{x:f},backend:n,attrs:{perm:u}}),A=ye({inputs:{x:m},backend:n,attrs:{shape:c}}),g=eu({inputs:{x:A},backend:n,attrs:{begin:d,size:h}});return p.push(f),p.push(m),p.push(A),p.forEach(y=>n.disposeIntermediateTensorInfo(y)),g},AZ={kernelName:vi,backendName:"webgl",kernelFunc:mZ};function gZ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,weights:a}=t,{size:o}=s,i=n.readSync(r.dataId),l=n.readSync(a.dataId),u=x6(i,l,a.dtype,a.shape,o);return n.makeTensorInfo([o],a.dtype,u)}var yZ={kernelName:Bd,backendName:"webgl",kernelFunc:gZ},xZ="return float(a != b);",j6=rn({opSnippet:xZ,cpuKernelImpl:Kq,dtype:"bool"}),bZ={kernelName:Ui,backendName:"webgl",kernelFunc:j6};function Gc(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.texData.get(s.dataId);return qn({inputs:{x:r.complexTensorInfos.real},backend:n})}var vZ={kernelName:lh,backendName:"webgl",kernelFunc:Gc},wZ="return float(int(x));";function kZ(e,t){let n=new sa(e.shape,wZ),s=t.runWebGLProgram(n,[e],"int32");return{dataId:s.dataId,shape:s.shape,dtype:s.dtype}}function E1(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dtype:a}=s;if(a==="complex64"){if(r.dtype==="complex64")return qn({inputs:{x:r},backend:n});let o=Dt(r.shape),i=E1({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),l=ra({inputs:{real:i,imag:o},backend:n});return o.dispose(),n.disposeIntermediateTensorInfo(i),l}if(r.dtype==="complex64"){let o=Gc({inputs:{input:r},backend:n}),i=E1({inputs:{x:o},backend:n,attrs:{dtype:a}});return n.disposeIntermediateTensorInfo(o),i}if(!I.hasEncodingLoss(r.dtype,a)){let o=qn({inputs:{x:r},backend:n});return{dataId:o.dataId,shape:o.shape,dtype:a}}if(a==="int32")return kZ(r,n);if(a==="bool"){let o=n.makeTensorInfo([],"bool",I.getTypedArrayFromDType("bool",1)),l=j6({inputs:{a:r,b:o},backend:n});return n.disposeIntermediateTensorInfo(o),l}throw new Error(`Error in Cast: failed to cast ${r.dtype} to ${a}`)}var IZ={kernelName:va,backendName:"webgl",kernelFunc:E1},q6="return ceil(x);",SZ=Ze({opSnippet:q6,packedOpSnippet:q6,cpuKernelImpl:Rq}),CZ={kernelName:wa,backendName:"webgl",kernelFunc:SZ},TZ=class{constructor(e){this.variableNames=["A"],this.customUniforms=[{name:"minVal",type:"float"},{name:"maxVal",type:"float"}],this.outputShape=e,this.userCode=`
|
|
|
|
void main() {
|
|
float value = getAAtOutCoords();
|
|
if (isnan(value)) {
|
|
setOutput(value);
|
|
return;
|
|
}
|
|
|
|
setOutput(clamp(value, minVal, maxVal));
|
|
}
|
|
`}},NZ=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"minVal",type:"float"},{name:"maxVal",type:"float"}],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
vec4 value = getAAtOutCoords();
|
|
|
|
if (any(isnan(value))) {
|
|
setOutput(value);
|
|
return;
|
|
}
|
|
|
|
setOutput(clamp(value, vec4(minVal), vec4(maxVal)));
|
|
}
|
|
`}};function EZ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{clipValueMin:a,clipValueMax:o}=s,i;ee().getBool("WEBGL_PACK_CLIP")?i=new NZ(r.shape):i=new TZ(r.shape);let l=[[a],[o]];return n.runWebGLProgram(i,[r],r.dtype,l)}var RZ={kernelName:Or,backendName:"webgl",kernelFunc:EZ},_Z=class{constructor(e){this.variableNames=["real","imag"],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
float re = abs(getRealAtOutCoords());
|
|
float im = abs(getImagAtOutCoords());
|
|
float mx = max(re, im);
|
|
|
|
// sadly the length function in glsl is not underflow-safe
|
|
// (at least not on Intel GPUs). So the safe solution is
|
|
// to ensure underflow-safety in all cases.
|
|
setOutput(
|
|
mx == 0.0 ? 0.0 : mx * length(vec2(1, min(re, im)/mx))
|
|
);
|
|
}
|
|
`}};function X6(e,t){return{dataId:t.dataId,dtype:t.dtype,shape:e.shape}}function $Z(e){let{inputs:t,backend:n}=e,{x:s}=t,r=n.texData.get(s.dataId),a=new _Z(s.shape),o=[X6(s,r.complexTensorInfos.real),X6(s,r.complexTensorInfos.imag)];return n.runWebGLProgram(a,o,o[0].dtype)}var FZ={kernelName:Nu,backendName:"webgl",kernelFunc:$Z},DZ=class{constructor(e){this.outputShape=[],this.outputShape=$.computeOutShape(e,1),this.variableNames=e.map((a,o)=>`T${o}`);let t=new Array(e.length-1);t[0]=e[0][1];for(let a=1;a<t.length;a++)t[a]=t[a-1]+e[a][1];let n=[`if (yC < ${t[0]}) setOutput(getT0(yR, yC));`];for(let a=1;a<t.length;a++){let o=t[a-1];n.push(`else if (yC < ${t[a]}) setOutput(getT${a}(yR, yC-${o}));`)}let s=t.length,r=t[t.length-1];n.push(`else setOutput(getT${s}(yR, yC-${r}));`),this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int yR = coords.x;
|
|
int yC = coords.y;
|
|
|
|
${n.join(`
|
|
`)}
|
|
}
|
|
`}},OZ=class{constructor(e,t){this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[],this.outputShape=$.computeOutShape(e,t);let n=this.outputShape,s=n.length,r=ct(s),a=vn("coords",s),o=["x","y","z","w","u","v"].slice(0,s);this.variableNames=e.map((f,m)=>`T${m}`);let i=new Array(e.length-1);i[0]=e[0][t];for(let f=1;f<i.length;f++)i[f]=i[f-1]+e[f][t];let l=o[t],u=o.slice(-2),c=o.join(),d=`if (${l} < ${i[0]}) {
|
|
return getChannel(
|
|
getT0(${c}), vec2(${u.join()}));
|
|
}`;for(let f=1;f<i.length;f++){let m=i[f-1];d+=`
|
|
if (${l} < ${i[f]} && ${l} >= ${i[f-1]}) {
|
|
return getChannel(
|
|
getT${f}(${xf(o,l,m)}),
|
|
vec2(${xf(u,l,m)}));
|
|
}`}let h=i.length,p=i[i.length-1];d+=`
|
|
return getChannel(
|
|
getT${h}(${xf(o,l,p)}),
|
|
vec2(${xf(u,l,p)}));`,this.userCode=`
|
|
float getValue(${o.map(f=>"int "+f)}) {
|
|
${d}
|
|
}
|
|
|
|
void main() {
|
|
${r} coords = getOutputCoords();
|
|
vec4 result = vec4(getValue(${a}), 0., 0., 0.);
|
|
|
|
${a[s-1]} = ${a[s-1]} + 1;
|
|
if (${a[s-1]} < ${n[s-1]}) {
|
|
result.g = getValue(${a});
|
|
}
|
|
|
|
${a[s-2]} = ${a[s-2]} + 1;
|
|
if (${a[s-2]} < ${n[s-2]}) {
|
|
result.a = getValue(${a});
|
|
}
|
|
|
|
${a[s-1]} = ${a[s-1]} - 1;
|
|
if (${a[s-2]} < ${n[s-2]} &&
|
|
${a[s-1]} < ${n[s-1]}) {
|
|
result.b = getValue(${a});
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}};function xf(e,t,n){let s=e.indexOf(t);return e.map((a,o)=>o===s?`${a} - ${n}`:a).join()}function bf(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.texData.get(s.dataId);return qn({inputs:{x:r.complexTensorInfos.imag},backend:n})}var PZ={kernelName:th,backendName:"webgl",kernelFunc:bf};function tu(e,t,n){let s=e[0].dtype;if(s==="complex64"){let c=e.map(m=>Gc({inputs:{input:m},backend:n})),d=e.map(m=>bf({inputs:{input:m},backend:n})),h=tu(c,t,n),p=tu(d,t,n),f=ra({inputs:{real:h,imag:p},backend:n});return c.forEach(m=>n.disposeIntermediateTensorInfo(m)),d.forEach(m=>n.disposeIntermediateTensorInfo(m)),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(p),f}let r=n.shouldExecuteOnCPU(e);if(s==="string"&&(r=!0),r){let c=e.map(g=>{let y=I.sizeFromShape(g.shape.slice(t));return ye({inputs:{x:g},backend:n,attrs:{shape:[-1,y]}})}),d=c.map(g=>({vals:n.readSync(g.dataId),shape:g.shape})),h=$.computeOutShape(c.map(g=>g.shape),1),p=c[0].shape[0]===1,f=_q(d,h,s,p),m=$.computeOutShape(e.map(g=>g.shape),t),A=n.makeTensorInfo(m,s,f);return c.forEach(g=>n.disposeIntermediateTensorInfo(g)),A}if(e.length>ee().getNumber("WEBGL_MAX_TEXTURES_IN_SHADER")){let c=Math.floor(e.length/2),d=tu(e.slice(0,c),t,n),h=tu(e.slice(c),t,n),p=tu([d,h],t,n);return n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(h),p}if(ee().getBool("WEBGL_PACK_ARRAY_OPERATIONS")&&e[0].shape.length>1){let c=new OZ(e.map(d=>d.shape),t);return n.runWebGLProgram(c,e,s)}let{tensors2D:a,outShape:o}=MZ(e,t,n),i=new DZ(a.map(c=>c.shape)),l=n.runWebGLProgram(i,a,s);a.forEach(c=>n.disposeIntermediateTensorInfo(c));let u=ye({inputs:{x:l},attrs:{shape:o},backend:n});return n.disposeIntermediateTensorInfo(l),u}function MZ(e,t,n){let s=$.computeOutShape(e.map(a=>a.shape),t);return{tensors2D:e.map(a=>ye({inputs:{x:a},attrs:{shape:[-1,I.sizeFromShape(a.shape.slice(t))]},backend:n})),outShape:s}}function K6(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s,a=I.parseAxisParam(r,t[0].shape)[0],o=$.computeOutShape(t.map(u=>u.shape),a);if(I.sizeFromShape(o)===0)return n.makeTensorInfo(o,t[0].dtype,[]);let i=t.filter(u=>I.sizeFromShape(u.shape)>0);if(i.length===1)return qn({inputs:{x:i[0]},backend:n});let l=i.map(u=>u.shape);return $.assertParamsConsistent(l,a),tu(i,a,n)}var zZ={kernelName:wi,backendName:"webgl",kernelFunc:K6},Z6=class{constructor(e,t=!1,n=null,s=!1,r=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let a=e.padInfo.top,o=e.padInfo.left,i=e.strideHeight,l=e.strideWidth,u=e.dilationHeight,c=e.dilationWidth,d=e.filterHeight,h=e.filterWidth,p=Math.floor(e.inChannels/4)*4,f=e.inChannels%4,m=e.dataFormat==="channelsLast",A=m?1:2,g=m?2:3,y=m?3:1,x="",b="";n&&(s?x=`float activation(float a) {
|
|
float b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:r?x=`float activation(float a) {
|
|
float b = getLeakyreluAlphaAtOutCoords();
|
|
${n}
|
|
}`:x=`
|
|
float activation(float x) {
|
|
${n}
|
|
}
|
|
`,b="result = activation(result);");let v=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${x}
|
|
|
|
const ivec2 strides = ivec2(${i}, ${l});
|
|
const ivec2 pads = ivec2(${a}, ${o});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d2 = coords[${y}];
|
|
|
|
ivec2 xRCCorner =
|
|
ivec2(coords[${A}], coords[${g}]) * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// Convolve x(?, ?, d1) with w(:, :, d1, d2) to get y(yR, yC, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${d}; wR++) {
|
|
int xR = xRCorner + wR * ${u};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${h}; wC++) {
|
|
int xC = xCCorner + wC * ${c};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int d1 = 0; d1 < ${p}; d1 += 4) {
|
|
vec4 wValues = vec4(
|
|
getW(wR, wC, d1, d2),
|
|
getW(wR, wC, d1 + 1, d2),
|
|
getW(wR, wC, d1 + 2, d2),
|
|
getW(wR, wC, d1 + 3, d2)
|
|
);
|
|
|
|
if (${m}) {
|
|
vec4 xValues = vec4(
|
|
getX(batch, xR, xC, d1),
|
|
getX(batch, xR, xC, d1 + 1),
|
|
getX(batch, xR, xC, d1 + 2),
|
|
getX(batch, xR, xC, d1 + 3)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec4 xValues = vec4(
|
|
getX(batch, d1, xR, xC),
|
|
getX(batch, d1 + 1, xR, xC),
|
|
getX(batch, d1 + 2, xR, xC),
|
|
getX(batch, d1 + 3, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
}
|
|
|
|
if (${f===1}) {
|
|
|
|
if (${m}) {
|
|
dotProd +=
|
|
getX(batch, xR, xC, ${p}) *
|
|
getW(wR, wC, ${p}, d2);
|
|
} else {
|
|
dotProd +=
|
|
getX(batch, ${p}, xR, xC) *
|
|
getW(wR, wC, ${p}, d2);
|
|
}
|
|
|
|
} else if (${f===2}) {
|
|
vec2 wValues = vec2(
|
|
getW(wR, wC, ${p}, d2),
|
|
getW(wR, wC, ${p} + 1, d2)
|
|
);
|
|
|
|
if (${m}) {
|
|
vec2 xValues = vec2(
|
|
getX(batch, xR, xC, ${p}),
|
|
getX(batch, xR, xC, ${p} + 1)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec2 xValues = vec2(
|
|
getX(batch, ${p}, xR, xC),
|
|
getX(batch, ${p} + 1, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
} else if (${f===3}) {
|
|
vec3 wValues = vec3(
|
|
getW(wR, wC, ${p}, d2),
|
|
getW(wR, wC, ${p} + 1, d2),
|
|
getW(wR, wC, ${p} + 2, d2)
|
|
);
|
|
|
|
if (${m}) {
|
|
vec3 xValues = vec3(
|
|
getX(batch, xR, xC, ${p}),
|
|
getX(batch, xR, xC, ${p} + 1),
|
|
getX(batch, xR, xC, ${p} + 2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec3 xValues = vec3(
|
|
getX(batch, ${p}, xR, xC),
|
|
getX(batch, ${p} + 1, xR, xC),
|
|
getX(batch, ${p} + 2, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
|
|
float result = dotProd;
|
|
${v}
|
|
${b}
|
|
setOutput(result);
|
|
}
|
|
`}},LZ=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let t=e.padInfo.front,n=e.padInfo.top,s=e.padInfo.left,r=e.strideDepth,a=e.strideHeight,o=e.strideWidth,i=e.dilationDepth,l=e.dilationHeight,u=e.dilationWidth,c=e.filterDepth,d=e.filterHeight,h=e.filterWidth,p=Math.floor(e.inChannels/4)*4,f=e.inChannels%4;this.userCode=`
|
|
const ivec3 strides = ivec3(${r}, ${a}, ${o});
|
|
const ivec3 pads = ivec3(${t}, ${n}, ${s});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d2 = coords.u;
|
|
|
|
ivec3 xFRCCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xFCorner = xFRCCorner.x;
|
|
int xRCorner = xFRCCorner.y;
|
|
int xCCorner = xFRCCorner.z;
|
|
|
|
// Convolve x(?, ?, ?, d1) with w(:, :, :, d1, d2) to get
|
|
// y(yF, yR, yC, d2). ? = to be determined. : = across all
|
|
// values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wF = 0; wF < ${c}; wF++) {
|
|
int xF = xFCorner + wF * ${i};
|
|
|
|
if (xF < 0 || xF >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${d}; wR++) {
|
|
int xR = xRCorner + wR * ${l};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${h}; wC++) {
|
|
int xC = xCCorner + wC * ${u};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int d1 = 0; d1 < ${p}; d1 += 4) {
|
|
vec4 xValues = vec4(
|
|
getX(batch, xF, xR, xC, d1),
|
|
getX(batch, xF, xR, xC, d1 + 1),
|
|
getX(batch, xF, xR, xC, d1 + 2),
|
|
getX(batch, xF, xR, xC, d1 + 3)
|
|
);
|
|
vec4 wValues = vec4(
|
|
getW(wF, wR, wC, d1, d2),
|
|
getW(wF, wR, wC, d1 + 1, d2),
|
|
getW(wF, wR, wC, d1 + 2, d2),
|
|
getW(wF, wR, wC, d1 + 3, d2)
|
|
);
|
|
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
if (${f===1}) {
|
|
dotProd +=
|
|
getX(batch, xF, xR, xC, ${p}) *
|
|
getW(wF, wR, wC, ${p}, d2);
|
|
} else if (${f===2}) {
|
|
vec2 xValues = vec2(
|
|
getX(batch, xF, xR, xC, ${p}),
|
|
getX(batch, xF, xR, xC, ${p} + 1)
|
|
);
|
|
vec2 wValues = vec2(
|
|
getW(wF, wR, wC, ${p}, d2),
|
|
getW(wF, wR, wC, ${p} + 1, d2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else if (${f===3}) {
|
|
vec3 xValues = vec3(
|
|
getX(batch, xF, xR, xC, ${p}),
|
|
getX(batch, xF, xR, xC, ${p} + 1),
|
|
getX(batch, xF, xR, xC, ${p} + 2)
|
|
);
|
|
vec3 wValues = vec3(
|
|
getW(wF, wR, wC, ${p}, d2),
|
|
getW(wF, wR, wC, ${p} + 1, d2),
|
|
getW(wF, wR, wC, ${p} + 2, d2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},BZ=class{constructor(e,t,n){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e;let{filterWidth:s,inChannels:r,strideWidth:a,strideHeight:o,padInfo:i,outWidth:l,dilationWidth:u,dilationHeight:c,dataFormat:d}=n,{left:h,top:p}=i,f=r*s,m=bn(),A=d==="channelsLast",g=A?0:1,y=A?1:2,x="";for(let b=0;b<=1;b++)for(let v=0;v<=1;v++)x+=`
|
|
blockIndex = rc.y + ${v};
|
|
pos = rc.x + ${b};
|
|
|
|
if(blockIndex < ${e[1]} && pos < ${e[0]}) {
|
|
offsetY = int(blockIndex / (${l})) * ${o} - ${p};
|
|
d0 = offsetY + ${c} * (pos / ${f});
|
|
|
|
if(d0 < ${t[g]} && d0 >= 0) {
|
|
|
|
offsetX = int(mod(float(blockIndex), ${l}.) * ${a}. - ${h}.);
|
|
d1 = offsetX + ${u} * (int(mod(float(pos), ${f}.) / ${r}.));
|
|
|
|
if(d1 < ${t[y]} && d1 >= 0) {
|
|
|
|
ch = int(mod(float(pos), ${r}.));
|
|
|
|
if (${A}) {
|
|
innerDims = vec2(d1, ch);
|
|
result[${b*2+v}] = getChannel(
|
|
getA(d0, int(innerDims.x),
|
|
int(innerDims.y)), innerDims);
|
|
} else {
|
|
innerDims = vec2(d0, d1);
|
|
result[${b*2+v}] = getChannel(
|
|
getA(ch, int(innerDims.x),
|
|
int(innerDims.y)), innerDims);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
`;this.userCode=`
|
|
void main() {
|
|
ivec2 rc = getOutputCoords();
|
|
|
|
vec4 result = vec4(0);
|
|
|
|
int blockIndex, pos, offsetY, d0, offsetX, d1, ch;
|
|
vec2 innerDims;
|
|
|
|
${x}
|
|
|
|
${m.output} = result;
|
|
}
|
|
`}};function Y6({x:e,filter:t,convInfo:n,backend:s,bias:r=null,preluActivationWeights:a=null,leakyreluAlpha:o=0,activation:i=null}){let l=e.shape,u=s.texData.get(e.dataId),c=n.inChannels,d=l[0]*l[1]*l[2],h=n.outChannels,p=n.dataFormat==="channelsLast",f=!1,m=!1,A,g=[],y=(d===1||h===1)&&c>B6,x=l[2]%2!=0&&!!u.isPacked;if(y||!ee().getBool("WEBGL_LAZILY_UNPACK")||!ee().getBool("WEBGL_PACK_BINARY_OPERATIONS")||!x){let b=p?l[0]*l[1]*l[2]:l[0]*l[2]*l[3],v=ye({inputs:{x:e},backend:s,attrs:{shape:[1,b,n.inChannels]}}),k=ye({inputs:{x:t},backend:s,attrs:{shape:[1,n.inChannels,n.outChannels]}}),w=gf({a:v,b:k,transposeA:f,transposeB:m,backend:s,bias:r,activation:i,preluActivationWeights:a,leakyreluAlpha:o});A=ye({inputs:{x:w},backend:s,attrs:{shape:n.outShape}}),g.push(v),g.push(k),g.push(w)}else{let b=p?l[0]*l[1]*(l[2]+1):l[0]*l[2]*(l[3]+1),v={dataId:e.dataId,shape:[1,b,n.inChannels],dtype:e.dtype},k=u.shape;u.shape=u.shape.slice(),u.shape[u.shape.length-2]++,I.assert(Wc(u.shape,v.shape),()=>`packed reshape ${u.shape} to ${v.shape} isn't free`);let w=ye({inputs:{x:t},backend:s,attrs:{shape:[1,n.inChannels,n.outChannels]}});g.push(w);let C=gf({a:v,b:w,backend:s,transposeA:f,transposeB:m,bias:r,activation:i,preluActivationWeights:a,leakyreluAlpha:o}),E=s.texData.get(C.dataId);I.assert(E.isPacked,()=>"batchMatMul result is expected to be packed"),u.shape=k,E.shape=n.outShape,A=qn({inputs:{x:C},backend:s}),A.shape=n.outShape,g.push(C)}for(let b of g)s.disposeIntermediateTensorInfo(b);return A}function J6({x:e,filter:t,convInfo:n,backend:s,bias:r=null,preluActivationWeights:a=null,leakyreluAlpha:o=0,activation:i=null}){let{filterWidth:l,filterHeight:u,inChannels:c,outWidth:d,outHeight:h,dataFormat:p}=n,f=p==="channelsLast",m=l*u*c,A=h*d,g=[m,A],y=!0,x=!1,b=[],v=ye({inputs:{x:e},backend:s,attrs:{shape:e.shape.slice(1)}}),k=ye({inputs:{x:t},backend:s,attrs:{shape:[1,m,I.sizeFromShape(t.shape)/m]}});b.push(v),b.push(k);let w=new BZ(g,v.shape,n),C=s.runWebGLProgram(w,[v],"float32"),E=ye({inputs:{x:C},backend:s,attrs:{shape:[1,g[0],g[1]]}});b.push(C),b.push(E);let M=r!=null,R=a!=null,_=i==="leakyrelu",N=i?ff(i,!0):null,O=new O6(E.shape,k.shape,[1,A,n.outChannels],y,x,M,N,R,_),W=[E,k];if(r&&W.push(r),R&&W.push(a),_){let Q=s.makeTensorInfo([],"float32",I.createScalarValue(o,"float32"));W.push(Q),b.push(Q)}let j=s.runWebGLProgram(O,W,"float32"),q=f?[1,h,d,n.outChannels]:[1,n.outChannels,h,d],X=ye({inputs:{x:j},backend:s,attrs:{shape:q}});b.push(j);for(let Q of b)s.disposeIntermediateTensorInfo(Q);return X}function WZ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dataFormat:l,dilations:u,dimRoundingMode:c}=s,d=$.convertConv2DDataFormat(l),h=$.computeConv2DInfo(r.shape,a.shape,o,u,i,c,!1,d),p;if(h.filterHeight===1&&h.filterWidth===1&&h.dilationHeight===1&&h.dilationWidth===1&&h.strideHeight===1&&h.strideWidth===1&&(h.padInfo.type==="SAME"||h.padInfo.type==="VALID"))p=Y6({x:r,filter:a,convInfo:h,backend:n});else if(ee().getBool("WEBGL_CONV_IM2COL")&&r.shape[0]===1)p=J6({x:r,filter:a,convInfo:h,backend:n});else{let m=new Z6(h);p=n.runWebGLProgram(m,[r,a],"float32")}let f=ye({inputs:{x:p},backend:n,attrs:{shape:h.outShape}});return n.disposeIntermediateTensorInfo(p),f}var VZ={kernelName:ka,backendName:"webgl",kernelFunc:WZ},UZ=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,s=e.padInfo.top,r=e.padInfo.left,a=e.dataFormat==="channelsLast";this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int wR = coords.x;
|
|
int wC = coords.y;
|
|
int d1 = coords.z;
|
|
int d2 = coords.w;
|
|
|
|
// Convolve x(?, ?, d1) with dy(:, :, d2) to get dw(wR, wC, d1, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${t} - ${s};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${n} - ${r};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
if (${a}) {
|
|
float dyValue = getDy(b, yR, yC, d2);
|
|
float xValue = getX(b, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
} else {
|
|
float dyValue = getDy(b, d2, yR, yC);
|
|
float xValue = getX(b, d1, xR, xC);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},HZ=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,s=e.strideHeight,r=e.strideWidth,a=e.dataFormat==="channelsLast",o=t-1-e.padInfo.top,i=n-1-e.padInfo.left,l=a?1:2,u=a?2:3,c=a?3:1;this.userCode=`
|
|
const ivec2 pads = ivec2(${o}, ${i});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d1 = coords[${c}];
|
|
|
|
ivec2 dyCorner = ivec2(coords[${l}], coords[${u}]) - pads;
|
|
int dyRCorner = dyCorner.x;
|
|
int dyCCorner = dyCorner.y;
|
|
|
|
// Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${t}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${s}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${t} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${n}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${r}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${n} - 1 - wC;
|
|
|
|
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
|
|
|
|
if (${a}) {
|
|
float xValue = getDy(batch, idyR, idyC, d2);
|
|
float wValue = getW(wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
} else {
|
|
float xValue = getDy(batch, d2, idyR, idyC);
|
|
float wValue = getW(wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},GZ=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideDepth,n=e.strideHeight,s=e.strideWidth,r=e.padInfo.front,a=e.padInfo.top,o=e.padInfo.left;this.userCode=`
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int wF = coords.x;
|
|
int wR = coords.y;
|
|
int wC = coords.z;
|
|
int d1 = coords.w;
|
|
int d2 = coords.u;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yF = 0; yF < ${e.outDepth}; yF++) {
|
|
int xF = wF + yF * ${t} - ${r};
|
|
|
|
if (xF < 0 || xF >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${n} - ${a};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${s} - ${o};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float dyValue = getDy(b, yF, yR, yC, d2);
|
|
float xValue = getX(b, xF, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},jZ=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,s=e.filterWidth,r=e.strideDepth,a=e.strideHeight,o=e.strideWidth,i=t-1-e.padInfo.front,l=n-1-e.padInfo.top,u=s-1-e.padInfo.left;this.userCode=`
|
|
const ivec3 pads = ivec3(${i}, ${l}, ${u});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d1 = coords.u;
|
|
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyFCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
float dotProd = 0.0;
|
|
for (int wF = 0; wF < ${t}; wF++) {
|
|
float dyF = float(dyFCorner + wF) / ${r}.0;
|
|
|
|
if (dyF < 0.0 || dyF >= ${e.outDepth}.0 || fract(dyF) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyF = int(dyF);
|
|
|
|
int wFPerm = ${t} - 1 - wF;
|
|
|
|
for (int wR = 0; wR < ${n}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${a}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${n} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${s}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${o}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${s} - 1 - wC;
|
|
|
|
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
|
|
float xValue = getDy(batch, idyF, idyR, idyC, d2);
|
|
float wValue = getW(wFPerm, wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function qZ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,pad:i,dataFormat:l,dimRoundingMode:u,filterShape:c}=s,d=$.convertConv2DDataFormat(l),h=$.computeConv2DInfo(r.shape,c,o,1,i,u,!1,d),p=new UZ(h);return n.runWebGLProgram(p,[r,a],"float32")}var XZ={kernelName:Vd,backendName:"webgl",kernelFunc:qZ};function KZ(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{inputShape:o,strides:i,pad:l,dataFormat:u,dimRoundingMode:c}=s,d=$.convertConv2DDataFormat(u),h=$.computeConv2DInfo(o,a.shape,i,1,l,c,!1,d),p=new HZ(h);return n.runWebGLProgram(p,[r,a],"float32")}var ZZ={kernelName:Ia,backendName:"webgl",kernelFunc:KZ};function YZ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dilations:l}=s,u=$.computeConv3DInfo(r.shape,a.shape,o,l,i),c=new LZ(u);return n.runWebGLProgram(c,[r,a],"float32")}var JZ={kernelName:Eu,backendName:"webgl",kernelFunc:YZ};function QZ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,pad:i,filterShape:l}=s,u=$.computeConv3DInfo(r.shape,l,o,1,i),c=new GZ(u);return n.runWebGLProgram(c,[r,a],"float32")}var eY={kernelName:Ud,backendName:"webgl",kernelFunc:QZ};function tY(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{pad:o,strides:i,inputShape:l}=s,u=$.computeConv3DInfo(l,a.shape,i,1,o),c=new jZ(u);return n.runWebGLProgram(c,[r,a],"float32")}var nY={kernelName:Hd,backendName:"webgl",kernelFunc:tY},sY=D6+`
|
|
return cos(x);
|
|
`,rY=Ze({opSnippet:sY}),aY={kernelName:Sa,backendName:"webgl",kernelFunc:rY},oY=`
|
|
float e2x = exp(-x);
|
|
return (e2x + 1.0 / e2x) / 2.0;
|
|
`,iY=Ze({opSnippet:oY}),lY={kernelName:Ca,backendName:"webgl",kernelFunc:iY},uY=class{constructor(e,t,n,s,r){this.variableNames=["Image","Boxes","BoxInd"],this.outputShape=[];let[a,o,i,l]=e,[u]=t,[c,d]=n;this.outputShape=[u,c,d,l];let h=s==="bilinear"?1:0,[p,f]=[`${o-1}.0`,`${i-1}.0`],[m,A,g]=c>1?[`${(o-1)/(c-1)}`,"(y2-y1) * height_ratio",`y1*${p} + float(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${p}`],[y,x,b]=d>1?[`${(i-1)/(d-1)}`,"(x2-x1) * width_ratio",`x1*${f} + float(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${f}`];this.userCode=`
|
|
const float height_ratio = float(${m});
|
|
const float width_ratio = float(${y});
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int y = coords[1];
|
|
int x = coords[2];
|
|
int d = coords[3];
|
|
|
|
// get box vals
|
|
float y1 = getBoxes(b,0);
|
|
float x1 = getBoxes(b,1);
|
|
float y2 = getBoxes(b,2);
|
|
float x2 = getBoxes(b,3);
|
|
|
|
// get image in batch index
|
|
int bInd = round(getBoxInd(b));
|
|
if(bInd < 0 || bInd >= ${a}) {
|
|
return;
|
|
}
|
|
|
|
float height_scale = ${A};
|
|
float width_scale = ${x};
|
|
|
|
float in_y = ${g};
|
|
if( in_y < 0.0 || in_y > ${p} ) {
|
|
setOutput(float(${r}));
|
|
return;
|
|
}
|
|
float in_x = ${b};
|
|
if( in_x < 0.0 || in_x > ${f} ) {
|
|
setOutput(float(${r}));
|
|
return;
|
|
}
|
|
|
|
vec2 sourceFracIndexCR = vec2(in_x,in_y);
|
|
if(${h} == 1) {
|
|
// Compute the four integer indices.
|
|
ivec2 sourceFloorCR = ivec2(sourceFracIndexCR);
|
|
ivec2 sourceCeilCR = ivec2(ceil(sourceFracIndexCR));
|
|
|
|
float topLeft = getImage(b, sourceFloorCR.y, sourceFloorCR.x, d);
|
|
float bottomLeft = getImage(b, sourceCeilCR.y, sourceFloorCR.x, d);
|
|
float topRight = getImage(b, sourceFloorCR.y, sourceCeilCR.x, d);
|
|
float bottomRight = getImage(b, sourceCeilCR.y, sourceCeilCR.x, d);
|
|
|
|
vec2 fracCR = sourceFracIndexCR - vec2(sourceFloorCR);
|
|
|
|
float top = topLeft + (topRight - topLeft) * fracCR.x;
|
|
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracCR.x;
|
|
float newValue = top + (bottom - top) * fracCR.y;
|
|
setOutput(newValue);
|
|
} else {
|
|
// Compute the coordinators of nearest neighbor point.
|
|
ivec2 sourceNearestCR = ivec2(floor(
|
|
sourceFracIndexCR + vec2(0.5,0.5)));
|
|
float newValue = getImage(b, sourceNearestCR.y, sourceNearestCR.x, d);
|
|
setOutput(newValue);
|
|
}
|
|
}
|
|
`}},cY=e=>{let{inputs:t,backend:n,attrs:s}=e,{image:r,boxes:a,boxInd:o}=t,{cropSize:i,method:l,extrapolationValue:u}=s,c=new uY(r.shape,a.shape,i,l,u);return n.runWebGLProgram(c,[r,a,o],"float32")},dY={kernelName:ki,backendName:"webgl",kernelFunc:cY},Q6=class{constructor(e,t,n){this.variableNames=["x"],this.customUniforms=[{name:"index",type:"float"}],this.outputShape=e;let s=e.length,r=t?"0.0":`getX(${e4(s,"coords")})`,a=e[e.length-1],o="",i="";t?(o=n?`end != ${a-1}`:"end != 0",i=n?"end + 1":"end - 1"):(o=n?`end + pow2 < ${a}`:"end >= pow2",i=n?"end + pow2":"end - pow2"),this.userCode=`
|
|
void main() {
|
|
${ct(s)} coords = getOutputCoords();
|
|
int end = ${t4(s,"coords")};
|
|
float val = ${r};
|
|
int pow2 = int(pow(2.0, index));
|
|
if (${o}) {
|
|
int idx = ${i};
|
|
${t4(s,"coords")} = idx;
|
|
val += getX(${e4(s,"coords")});
|
|
}
|
|
setOutput(val);
|
|
}
|
|
`}};function e4(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.x, ${t}.y`;if(e===3)return`${t}.x, ${t}.y, ${t}.z`;if(e===4)return`${t}.x, ${t}.y, ${t}.z, ${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function t4(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.y`;if(e===3)return`${t}.z`;if(e===4)return`${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function hY(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,exclusive:o,reverse:i}=s,l=r.shape.length,u=$.getAxesPermutation([a],l),c=r;u!=null&&(c=wn({inputs:{x:r},backend:n,attrs:{perm:u}}));let d=$.getInnerMostAxes(1,l)[0];if(d!==l-1)throw new Error(`WebGL cumsum shader expects an inner-most axis=${r.shape.length-1} but got axis=${a}`);let h=c.shape[d],p=qn({inputs:{x:c},backend:n});for(let f=0;f<=Math.ceil(Math.log2(h))-1;f++){let m=new Q6(c.shape,!1,i),A=[[f]],g=p;p=n.runWebGLProgram(m,[p],p.dtype,A),n.disposeIntermediateTensorInfo(g)}if(o){let f=new Q6(c.shape,o,i),m=p;p=n.runWebGLProgram(f,[p],p.dtype),n.disposeIntermediateTensorInfo(m)}if(u!=null){let f=$.getUndoAxesPermutation(u),m=wn({inputs:{x:p},backend:n,attrs:{perm:f}});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(c),m}return p}var pY={kernelName:Ta,backendName:"webgl",kernelFunc:hY};function fY(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,weights:a}=t,{size:o,binaryOutput:i}=s;if(r.shape.length===1){let l=n.readSync(r.dataId),u=n.readSync(a.dataId),c=x6(l,u,a.dtype,a.shape,o);return n.makeTensorInfo([o],a.dtype,c)}else if(r.shape.length===2){let l=n.bufferSync(r),u=n.bufferSync(a),c=Eq(l,u,o,i);return n.makeTensorInfo(c.shape,a.dtype,c.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${r.shape.length}.`)}var mY={kernelName:Gd,backendName:"webgl",kernelFunc:fY},AY=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=[],this.outputShape=e,this.blockSize=t,this.dataFormat=n,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int h = ${this.getHeightCoordString()};
|
|
int w = ${this.getWidthCoordString()};
|
|
int d = ${this.getDepthCoordString()};
|
|
|
|
int in_h = h / ${t};
|
|
int offset_h = imod(h, ${t});
|
|
int in_w = w / ${t};
|
|
int offset_w = imod(w, ${t});
|
|
int offset_d = (offset_h * ${t} + offset_w) *
|
|
${this.getOutputDepthSize()};
|
|
int in_d = d + offset_d;
|
|
|
|
float result = ${this.getInputSamplingString()};
|
|
setOutput(result);
|
|
}
|
|
`}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?this.outputShape[3]:this.outputShape[1]}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}};function gY(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockSize:a,dataFormat:o}=s;I.assert(a>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${a}`);let i=r.shape[0],l=o==="NHWC"?r.shape[1]:r.shape[2],u=o==="NHWC"?r.shape[2]:r.shape[3],c=o==="NHWC"?r.shape[3]:r.shape[1],d=l*a,h=u*a,p=c/(a*a),f=o==="NHWC"?[i,d,h,p]:[i,p,d,h],m=new AY(f,a,o);return n.runWebGLProgram(m,[r],r.dtype)}var yY={kernelName:Ii,backendName:"webgl",kernelFunc:gY},n4=class{constructor(e,t=!1,n=null,s=!1,r=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let a=e.inHeight,o=e.inWidth,i=e.padInfo.top,l=e.padInfo.left,u=e.strideHeight,c=e.strideWidth,d=e.dilationHeight,h=e.dilationWidth,p=e.filterHeight,f=e.filterWidth,m=e.outChannels/e.inChannels,A="",g="";n&&(s?A=`float activation(float a) {
|
|
float b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:r?A=`float activation(float a) {
|
|
float b = getLeakyreluAlphaAtOutCoords();
|
|
${n}
|
|
}`:A=`
|
|
float activation(float x) {
|
|
${n}
|
|
}
|
|
`,g="result = activation(result);");let y=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${A}
|
|
|
|
const ivec2 strides = ivec2(${u}, ${c});
|
|
const ivec2 pads = ivec2(${i}, ${l});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int d2 = coords.w;
|
|
int d1 = d2 / ${m};
|
|
int q = d2 - d1 * ${m};
|
|
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// Convolve x(?, ?, d1) with w(:, :, d1, q) to get y(yR, yC, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
// TO DO(dsmilkov): Flatten the two for loops and vec4 the operations.
|
|
for (int wR = 0; wR < ${p}; wR++) {
|
|
int xR = xRCorner + wR * ${d};
|
|
|
|
if (xR < 0 || xR >= ${a}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${f}; wC++) {
|
|
int xC = xCCorner + wC * ${h};
|
|
|
|
if (xC < 0 || xC >= ${o}) {
|
|
continue;
|
|
}
|
|
|
|
float xVal = getX(batch, xR, xC, d1);
|
|
float wVal = getW(wR, wC, d1, q);
|
|
dotProd += xVal * wVal;
|
|
}
|
|
}
|
|
|
|
float result = dotProd;
|
|
${y}
|
|
${g}
|
|
setOutput(result);
|
|
}
|
|
`}},s4=class{constructor(e,t=!1,n=null,s=!1,r=!1){this.variableNames=["x","W"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e.outShape;let a=e.outChannels/e.inChannels,o=e.inHeight,i=e.inWidth,l=e.padInfo.top,u=e.padInfo.left,c=e.strideHeight,d=e.strideWidth,h=e.dilationHeight,p=e.dilationWidth,f=e.filterHeight,m=e.filterWidth,A=m,g=`
|
|
int xR; int xC; int xCOffset;
|
|
vec4 wTexel; vec4 previous; vec4 final;`;for(let v=0;v<m;v++)g+=`
|
|
vec4 xTexelC${v*2};
|
|
int xTexelC${v*2}Ready;
|
|
vec4 xTexelC${v*2+1};
|
|
int xTexelC${v*2+1}Ready;
|
|
vec4 xC${v};`;for(let v=0;v<f;v++){for(let k=0;k<m;k++)g+=`
|
|
xTexelC${k*2} = vec4(0.0);
|
|
xTexelC${k*2}Ready = 0;
|
|
xTexelC${k*2+1} = vec4(0.0);
|
|
xTexelC${k*2+1}Ready = 0;
|
|
xC${k} = vec4(0.0);`;g+=`
|
|
xR = xRCorner + ${v*h};
|
|
if (xR >=0 && xR < ${o}) {
|
|
`;for(let k=0;k<(A+1)/2;k++){let w=k*2,C=w*p;if(g+=`
|
|
xC = xCCorner + ${C};
|
|
`,d===1){if(w<m&&(u%2==1?(g+=`
|
|
xCOffset = xC + 1;
|
|
if (xCOffset >= 0 && xCOffset < ${i} && xTexelC${w}Ready == 0) {
|
|
xTexelC${w} = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= ${i}) {
|
|
xTexelC${w}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${w}Ready = 1;
|
|
}
|
|
`,p===1&&C>0?g+=`
|
|
xC${w} = vec4(xTexelC${w-2}.zw, xTexelC${w}.xy);
|
|
`:g+=`
|
|
xCOffset = xC + 1 - 2;
|
|
|
|
if (xCOffset >= 0 && xCOffset < ${i}) {
|
|
previous = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= ${i}) {
|
|
previous.zw = vec2(0.0);
|
|
}
|
|
|
|
xC${w} = vec4(previous.zw, xTexelC${w}.xy);
|
|
} else {
|
|
xC${w} = vec4(0.0, 0.0, xTexelC${w}.xy);
|
|
}
|
|
`):g+=`
|
|
if (xC >= 0 && xC < ${i} && xTexelC${w}Ready == 0) {
|
|
xTexelC${w} = getX(batch, xR, xC, d1);
|
|
if (xC + 1 >= ${i}) {
|
|
xTexelC${w}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${w}Ready = 1;
|
|
}
|
|
|
|
xC${w} = xTexelC${w};
|
|
`,C+1<m)){let E=u%2==0?I.nearestLargerEven(p):p;p%2==0&&u%2==1||p%2!=0&&u%2!=1?(g+=`
|
|
xCOffset = xC + ${u%2} + ${E};
|
|
|
|
if (xCOffset >= 0 && xCOffset < ${i} && xTexelC${w+1}Ready == 0) {
|
|
xTexelC${w+1} = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= ${i}) {
|
|
xTexelC${w+1}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${w+1}Ready = 1;
|
|
}
|
|
`,p>1&&(g+=`
|
|
xCOffset -= 2;
|
|
if (xCOffset >= 0 && xCOffset < ${i} && xTexelC${w}Ready == 0) {
|
|
xTexelC${w} = getX(batch, xR, xCOffset, d1);
|
|
xTexelC${w}Ready = 1;
|
|
}
|
|
`),g+=`
|
|
xC${w+1} = vec4(xTexelC${w}.zw, xTexelC${w+1}.xy);
|
|
`):E===1?g+=`
|
|
xC${w+1} = xTexelC${w};
|
|
`:g+=`
|
|
xCOffset = xC + ${E};
|
|
|
|
if (xCOffset >= 0 && xCOffset < ${i} && xTexelC${w+1}Ready == 0) {
|
|
xTexelC${w+1} = getX(batch, xR, xCOffset, d1);
|
|
if (xCOffset + 1 >= ${i}) {
|
|
xTexelC${w+1}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${w+1}Ready = 1;
|
|
}
|
|
|
|
xC${w+1} = xTexelC${w+1};
|
|
`}}else C<m&&(u%2==1?(g+=`
|
|
xCOffset = xC + 1 - ${d};
|
|
if(xCOffset >= 0 && xCOffset < ${i} && xTexelC${w}Ready == 0) {
|
|
xTexelC${w} = getX(batch, xR, xCOffset, d1);
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= ${i}) {
|
|
xTexelC${w}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${w}Ready = 1;
|
|
}
|
|
|
|
if(xC + 1 >= 0 && xC + 1 < ${i} && xTexelC${w+1}Ready == 0) {
|
|
xTexelC${w+1} = getX(batch, xR, xC + 1, d1);
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xC + 2 >= ${i}) {
|
|
xTexelC${w+1}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${w+1}Ready = 1;
|
|
}
|
|
|
|
xC${w} = vec4(xTexelC${w}.zw, xTexelC${w+1}.zw);
|
|
`,C+1<m&&(g+=`
|
|
final = vec4(0.0);
|
|
xCOffset = xC + 1 + ${d};
|
|
if(xCOffset >= 0 && xCOffset < ${i}) {
|
|
final = getX(batch, xR, xCOffset, d1);
|
|
}
|
|
xC${w+1} = vec4(xTexelC${w+1}.xy, final.xy);
|
|
`)):(g+=`
|
|
if(xC >= 0 && xC < ${i} && xTexelC${w}Ready == 0) {
|
|
xTexelC${w} = getX(batch, xR, xC, d1);
|
|
if (xC + 1 >= ${i}) {
|
|
xTexelC${w}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${w}Ready = 1;
|
|
}
|
|
|
|
xCOffset = xC + ${d};
|
|
if(xCOffset >= 0 && xCOffset < ${i} && xTexelC${w+1}Ready == 0) {
|
|
xTexelC${w+1} = getX(batch, xR, xCOffset, d1);
|
|
if (xCOffset + 1 >= ${i}) {
|
|
xTexelC${w+1}.zw = vec2(0.);
|
|
}
|
|
xTexelC${w+1}Ready = 1;
|
|
}
|
|
|
|
xC${w} = vec4(
|
|
xTexelC${w}.xy, xTexelC${w+1}.xy);
|
|
`,C+1<m&&(g+=`
|
|
xC${w+1} = vec4(xTexelC${w}.zw, xTexelC${w+1}.zw);
|
|
`)));w<m&&(g+=`
|
|
wTexel = getW(${v}, ${C}, d1, q);
|
|
dotProd += xC${w} * vec4(wTexel.xz, wTexel.xz);
|
|
`,C+1<m&&(g+=`
|
|
wTexel = getW(${v}, ${C+1}, d1, q);
|
|
dotProd += xC${w+1} * vec4(wTexel.xz, wTexel.xz);
|
|
`))}g+=`
|
|
}
|
|
`}let y="",x="";n&&(s?y=`vec4 activation(vec4 a) {
|
|
vec4 b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:r?y=`vec4 activation(vec4 a) {
|
|
vec4 b = getLeakyreluAlphaAtOutCoords();
|
|
${n}
|
|
}`:y=`vec4 activation(vec4 x) {
|
|
${n}
|
|
}`,x="result = activation(result);");let b=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${y}
|
|
|
|
const ivec2 strides = ivec2(${c}, ${d});
|
|
const ivec2 pads = ivec2(${l}, ${u});
|
|
|
|
void main() {
|
|
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int d2 = coords.w;
|
|
int d1 = d2 / ${a};
|
|
int q = d2 - d1 * ${a};
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
//intialize dotProd with a small epsilon seems to reduce GPU accuracy loss.
|
|
vec4 dotProd = vec4(0.000000000000001);
|
|
|
|
${g}
|
|
|
|
vec4 result = dotProd - vec4(0.000000000000001);
|
|
${b}
|
|
${x}
|
|
setOutput(result);
|
|
}
|
|
`}};function xY(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dilations:l,dimRoundingMode:u}=s,c=l;c==null&&(c=[1,1]),I.assert($.eitherStridesOrDilationsAreOne(o,c),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${o} and dilations '${c}'`);let d=$.computeConv2DInfo(r.shape,a.shape,o,c,i,u,!0),h;return ee().getBool("WEBGL_PACK_DEPTHWISECONV")&&d.strideWidth<=2&&d.outChannels/d.inChannels==1?h=new s4(d):h=new n4(d),n.runWebGLProgram(h,[r,a],"float32")}var bY={kernelName:Na,backendName:"webgl",kernelFunc:xY},vY=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,s=e.padInfo.top,r=e.padInfo.left,a=e.outChannels/e.inChannels;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int wR = coords.x;
|
|
int wC = coords.y;
|
|
int d1 = coords.z;
|
|
int dm = coords.w;
|
|
int d2 = d1 * ${a} + dm;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
// TO DO: Vec4 over the batch size
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${t} - ${s};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${n} - ${r};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float dyValue = getDy(b, yR, yC, d2);
|
|
float xValue = getX(b, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},wY=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,s=e.strideHeight,r=e.strideWidth,a=t-1-e.padInfo.top,o=n-1-e.padInfo.left,i=e.outChannels/e.inChannels;this.userCode=`
|
|
const ivec2 pads = ivec2(${a}, ${o});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d1 = coords[3];
|
|
ivec2 dyCorner = coords.yz - pads;
|
|
int dyRCorner = dyCorner.x;
|
|
int dyCCorner = dyCorner.y;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
for (int wR = 0; wR < ${t}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${s}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${t} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${n}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${r}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${n} - 1 - wC;
|
|
|
|
// TO DO: Vec4 over the channelMul
|
|
for (int dm = 0; dm < ${i}; dm++) {
|
|
int d2 = d1 * ${i} + dm;
|
|
float xValue = getDy(batch, idyR, idyC, d2);
|
|
float wValue = getW(wRPerm, wCPerm, d1, dm);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function kY(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,dilations:i,pad:l,dimRoundingMode:u,filterShape:c}=s,d=$.computeConv2DInfo(r.shape,c,o,i,l,u,!0),h=new vY(d);return n.runWebGLProgram(h,[r,a],"float32")}var IY={kernelName:jd,backendName:"webgl",kernelFunc:kY};function SY(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{strides:o,dilations:i,pad:l,dimRoundingMode:u,inputShape:c}=s,d=$.computeConv2DInfo(c,a.shape,o,i,l,u,!0),h=new wY(d);return n.runWebGLProgram(h,[r,a],"float32")}var CY={kernelName:qd,backendName:"webgl",kernelFunc:SY},TY=class{constructor(e){this.variableNames=["X"],this.outputShape=[e,e],this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
float val = coords[0] == coords[1] ? getX(coords[0]) : 0.0;
|
|
setOutput(val);
|
|
}
|
|
`}};function NY(e){let{inputs:t,backend:n}=e,{x:s}=t,r=[...s.shape,...s.shape],a=I.sizeFromShape(s.shape),o=ye({inputs:{x:s},backend:n,attrs:{shape:[a]}}),i=new TY(a),l=n.runWebGLProgram(i,[o],o.dtype),u=ye({inputs:{x:l},backend:n,attrs:{shape:r}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(l),u}var EY={kernelName:Xd,backendName:"webgl",kernelFunc:NY},RY=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let{inHeight:t,inWidth:n,padInfo:s,strideHeight:r,strideWidth:a,filterHeight:o,filterWidth:i,dilationHeight:l,dilationWidth:u}=e,{top:c,left:d}=s;this.userCode=`
|
|
const ivec2 strides = ivec2(${r}, ${a});
|
|
const ivec2 pads = ivec2(${c}, ${d});
|
|
const float neg_infinity = -3.4e38;
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d1 = coords.w;
|
|
ivec2 outTopLeftCorner =
|
|
coords.yz * strides - pads;
|
|
int hBeg = outTopLeftCorner.x;
|
|
int wBeg = outTopLeftCorner.y;
|
|
|
|
float curVal = neg_infinity;
|
|
for (int h = 0; h < ${o}; h++) {
|
|
int hIn = hBeg + h * ${l};
|
|
|
|
if (hIn >= 0 && hIn < ${t}) {
|
|
for (int w = 0; w < ${i}; w++) {
|
|
int wIn = wBeg + w * ${u};
|
|
|
|
if (wIn >= 0 && wIn < ${n}) {
|
|
float xVal = getX(batch, hIn, wIn, d1);
|
|
float wVal = getW(h, w, d1);
|
|
|
|
float val = xVal + wVal;
|
|
if (val > curVal) {
|
|
curVal = val;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
float result = curVal;
|
|
setOutput(result);
|
|
}
|
|
`}};function _Y(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dilations:l}=s,u=$.computeDilation2DInfo(r.shape,a.shape,o,i,"NHWC",l),c,d=new RY(u);c=n.runWebGLProgram(d,[r,a],"float32");let h=ye({inputs:{x:c},backend:n,attrs:{shape:u.outShape}});return n.disposeIntermediateTensorInfo(c),h}var $Y={kernelName:Ru,backendName:"webgl",kernelFunc:_Y};function FY(e){let{inputs:t,backend:n,attrs:s}=e,{equation:r}=s,a=t,{allDims:o,summedDims:i,idDims:l}=$.decodeEinsumEquation(r,a.length);$.checkEinsumDimSizes(o.length,l,a);let{path:u,steps:c}=$.getEinsumComputePath(i,l),d=c.length,h=null,p=o.length,f=[];for(let m=0;m<d;++m){for(let A of c[m]){let{permutationIndices:g,expandDims:y}=$.getEinsumPermutation(p,l[A]),x;$.isIdentityPermutation(g)?x=a[A]:(x=wn({inputs:{x:a[A]},backend:n,attrs:{perm:g}}),f.push(x));let b=x.shape.slice();for(let v=0;v<y.length;++v)b.splice(y[v],0,1);I.arraysEqual(x.shape,b)||(x=ye({inputs:{x},backend:n,attrs:{shape:b}}),f.push(x)),h===null?h=x:(h=C1({inputs:{a:x,b:h},backend:n}),f.push(h))}m<d-1&&(u[m]>=0&&(h=Af({inputs:{x:h},backend:n,attrs:{axis:u[m]-(o.length-p),keepDims:!1}}),f.push(h)),p--)}for(let m of f)m!==h&&n.disposeIntermediateTensorInfo(m);return h}var DY={kernelName:Yd,backendName:"webgl",kernelFunc:FY},OY="return (x >= 0.0) ? x : (exp(x) - 1.0);",PY=`
|
|
vec4 result;
|
|
|
|
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
|
|
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
|
|
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
|
|
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
|
|
|
|
return result;
|
|
`,MY=Ze({opSnippet:OY,packedOpSnippet:PY}),zY={kernelName:Si,backendName:"webgl",kernelFunc:MY},LY="return (b >= 1.0) ? a : a * (b + 1.0);",BY=`
|
|
vec4 bGTEZero = vec4(greaterThanEqual(b, vec4(0.)));
|
|
return (bGTEZero * a) + ((vec4(1.0) - bGTEZero) * (a * (b + vec4(1.0))));
|
|
`,WY=e=>{let{inputs:t,backend:n}=e,{dy:s,y:r}=t,a=ee().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Uc(BY,s.shape,r.shape):new Ql(LY,s.shape,r.shape);return n.runWebGLProgram(a,[s,r],s.dtype)},VY={kernelName:Jd,backendName:"webgl",kernelFunc:WY},UY=`
|
|
return vec4(equal(a, b));
|
|
`,HY="return float(a == b);",GY=rn({opSnippet:HY,packedOpSnippet:UY,dtype:"bool",cpuKernelImpl:$q}),jY={kernelName:Ti,backendName:"webgl",kernelFunc:GY},qY=`
|
|
// Error function is calculated approximately with elementary function.
|
|
// See "Handbook of Mathematical Functions with Formulas,
|
|
// Graphs, and Mathematical Tables", Abramowitz and Stegun.
|
|
float p = ${$.ERF_P};
|
|
float a1 = ${$.ERF_A1};
|
|
float a2 = ${$.ERF_A2};
|
|
float a3 = ${$.ERF_A3};
|
|
float a4 = ${$.ERF_A4};
|
|
float a5 = ${$.ERF_A5};
|
|
|
|
float sign = sign(x);
|
|
x = abs(x);
|
|
float t = 1.0 / (1.0 + p * x);
|
|
return sign * (1.0 - (((((a5*t + a4)*t) + a3)*t + a2)*t + a1)*t*exp(-x*x));
|
|
`,XY=Ze({opSnippet:qY}),KY={kernelName:Ci,backendName:"webgl",kernelFunc:XY},r4="return exp(x);",a4=Ze({opSnippet:r4,packedOpSnippet:r4,cpuKernelImpl:Fq}),ZY={kernelName:Ra,backendName:"webgl",kernelFunc:a4};function R1(e){let{inputs:t,attrs:n,backend:s}=e,{dim:r}=n,{input:a}=t,o=a.shape.length,i=a.shape.slice(),l=r;return r<0&&(I.assert(-(o+1)<=r,()=>`Axis must be in the interval [${-(o+1)}, ${o}]`),l=o+r+1),i.splice(l,0,1),ye({inputs:{x:a},backend:s,attrs:{shape:i}})}var YY={kernelName:Ni,backendName:"webgl",kernelFunc:R1},o4="return exp(x) - 1.0;",JY=Ze({opSnippet:o4,packedOpSnippet:o4,cpuKernelImpl:Dq}),QY={kernelName:Ei,backendName:"webgl",kernelFunc:JY},i4=class{constructor(e,t,n){this.variableNames=["real","imag"];let s=t[1];this.outputShape=t;let r=n?`2.0 * ${Math.PI}`:`-2.0 * ${Math.PI}`,a=n?`${s}.0`:"1.0",o;if(e==="real")o="return real * expR - imag * expI;";else if(e==="imag")o="return real * expI + imag * expR;";else throw new Error(`FFT component must be either "real" or "imag", got ${e}.`);this.userCode=`
|
|
const float exponentMultiplier = ${r};
|
|
|
|
float unaryOpComplex(float real, float expR, float imag, float expI) {
|
|
${o}
|
|
}
|
|
|
|
float mulMatDFT(int batch, int index) {
|
|
float indexRatio = float(index) / float(${s});
|
|
float exponentMultiplierTimesIndexRatio =
|
|
exponentMultiplier * indexRatio;
|
|
|
|
float result = 0.0;
|
|
|
|
for (int i = 0; i < ${s}; i++) {
|
|
// x = (-2|2 * PI / N) * index * i;
|
|
float x = exponentMultiplierTimesIndexRatio * float(i);
|
|
float expR = cos(x);
|
|
float expI = sin(x);
|
|
float real = getReal(batch, i);
|
|
float imag = getImag(batch, i);
|
|
|
|
result +=
|
|
unaryOpComplex(real, expR, imag, expI) / ${a};
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
setOutput(mulMatDFT(coords[0], coords[1]));
|
|
}
|
|
`}};function l4(e,t,n){let s=n.texData.get(e.dataId),r=I.sizeFromShape(e.shape),a=e.shape[e.shape.length-1],o=r/a,i=ye({inputs:{x:e},backend:n,attrs:{shape:[o,a]}}),l=i.shape,u=new i4("real",l,t),c=new i4("imag",l,t),d=[{dataId:s.complexTensorInfos.real.dataId,dtype:s.complexTensorInfos.real.dtype,shape:l},{dataId:s.complexTensorInfos.imag.dataId,dtype:s.complexTensorInfos.imag.dtype,shape:l}],h=n.runWebGLProgram(u,d,"float32"),p=n.runWebGLProgram(c,d,"float32"),f=ra({inputs:{real:h,imag:p},backend:n});n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(p);let m=ye({inputs:{x:f},backend:n,attrs:{shape:e.shape}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(f),m}function eJ(e){let{inputs:t,backend:n}=e,{input:s}=t;return l4(s,!1,n)}var tJ={kernelName:Qd,backendName:"webgl",kernelFunc:eJ},nJ=class{constructor(e,t){this.outputShape=[],this.customUniforms=[{name:"value",type:"float"}],this.variableNames=["x"],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
// Input can be obtained from uniform value.
|
|
setOutput(value);
|
|
}
|
|
`}};function vf(e){let{backend:t,attrs:n}=e,{shape:s,value:r}=n,{dtype:a}=n;if(a=a||I.inferDtype(r),a==="string"){let o=I.getArrayFromDType(a,I.sizeFromShape(s));return o.fill(r),t.makeTensorInfo(s,a,o)}else{let o=new nJ(s,r),i=[[r]];return t.runWebGLProgram(o,[],a,i)}}var sJ={kernelName:_u,backendName:"webgl",kernelFunc:vf},rJ=class{constructor(e){this.variableNames=["Image"],this.outputShape=[];let t=e[2];this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int x = coords[2];
|
|
|
|
int coordX = ${t} - x - 1;
|
|
float outputValue;
|
|
if(coordX >= 0 && coordX < ${t}) {
|
|
outputValue = getImage(coords[0], coords[1], coordX, coords[3]);
|
|
} else {
|
|
outputValue = getImage(coords[0], coords[1], coords[2], coords[3]);
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}},aJ={kernelName:Ri,backendName:"webgl",kernelFunc:({inputs:e,backend:t})=>{let{image:n}=e,s=t,r=new rJ(n.shape);return s.runWebGLProgram(r,[n],n.dtype)}},u4="return floor(x);",oJ=Ze({opSnippet:u4,packedOpSnippet:u4,cpuKernelImpl:Oq}),iJ={kernelName:_a,backendName:"webgl",kernelFunc:oJ},lJ=`
|
|
float s = sign(a) * sign(b);
|
|
int ia = round(a);
|
|
int ib = round(b);
|
|
if (ib != 0) {
|
|
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
|
|
return float(idiv(ia, ib, s));
|
|
} else {
|
|
return NAN;
|
|
}
|
|
`,uJ=`
|
|
ivec4 ia = round(a);
|
|
ivec4 ib = round(b);
|
|
bvec4 cond = notEqual(ib, ivec4(0));
|
|
ivec4 result = ivec4(0);
|
|
vec4 s = sign(a) * sign(b);
|
|
|
|
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
|
|
if (cond[0]) {
|
|
result[0] = idiv(ia[0], ib[0], s[0]);
|
|
}
|
|
if (cond[1]) {
|
|
result[1] = idiv(ia[1], ib[1], s[1]);
|
|
}
|
|
if (cond[2]) {
|
|
result[2] = idiv(ia[2], ib[2], s[2]);
|
|
}
|
|
if (cond[3]) {
|
|
result[3] = idiv(ia[3], ib[3], s[3]);
|
|
}
|
|
return vec4(result);
|
|
`,cJ=rn({opSnippet:lJ,packedOpSnippet:uJ,dtype:"int32"}),dJ={kernelName:$a,backendName:"webgl",kernelFunc:cJ},hJ=class{constructor(e){this.variableNames=["A"];let t=bn(),[n,s]=e;this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
int texR = coords[0];
|
|
int texC = coords[1];
|
|
int depth = coords[2];
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${s}.0, ${n}.0);
|
|
|
|
vec4 values = ${t.texture2D}(A, uv);
|
|
float value;
|
|
if (depth == 0) {
|
|
value = values.r;
|
|
} else if (depth == 1) {
|
|
value = values.g;
|
|
} else if (depth == 2) {
|
|
value = values.b;
|
|
} else if (depth == 3) {
|
|
value = values.a;
|
|
}
|
|
|
|
setOutput(floor(value * 255.0 + 0.5));
|
|
}
|
|
`}},pJ=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let t=bn(),[n,s]=e;this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
int texR = coords[0];
|
|
int texC = coords[1];
|
|
int depth = coords[2];
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for(int row=0; row<=1; row++) {
|
|
for(int col=0; col<=1; col++) {
|
|
texC = coords[1] + row;
|
|
depth = coords[2] + col;
|
|
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${s}.0, ${n}.0);
|
|
vec4 values = ${t.texture2D}(A, uv);
|
|
float value;
|
|
if (depth == 0) {
|
|
value = values.r;
|
|
} else if (depth == 1) {
|
|
value = values.g;
|
|
} else if (depth == 2) {
|
|
value = values.b;
|
|
} else if (depth == 3) {
|
|
value = values.a;
|
|
}
|
|
|
|
result[row * 2 + col] = floor(value * 255.0 + 0.5);
|
|
}
|
|
}
|
|
|
|
${t.output} = result;
|
|
}
|
|
`}},fJ={kernelName:bh,backendName:"webgl",kernelFunc:mJ},nu;function mJ(e){let{inputs:t,backend:n,attrs:s}=e,{pixels:r}=t,{numChannels:a}=s,o=typeof HTMLVideoElement!="undefined"&&r instanceof HTMLVideoElement,i=typeof HTMLImageElement!="undefined"&&r instanceof HTMLImageElement,[l,u]=o?[r.videoWidth,r.videoHeight]:[r.width,r.height],c=[u,l],d=[u,l,a];(i||o)&&(nu==null&&(nu=document.createElement("canvas").getContext("2d")),nu.canvas.width=l,nu.canvas.height=u,nu.drawImage(r,0,0,l,u),r=nu.canvas);let h=n.makeTensorInfo(c,"int32");n.texData.get(h.dataId).usage=fs.PIXELS,n.gpgpu.uploadPixelDataToTexture(n.getTexture(h.dataId),r);let p=ee().getBool("WEBGL_PACK")?new pJ(d):new hJ(d),f=n.runWebGLProgram(p,[h],"int32");return n.disposeData(h.dataId),f}function AJ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:u,dataFormat:c,dilations:d,dimRoundingMode:h,activation:p,leakyreluAlpha:f}=s,m=$.convertConv2DDataFormat(c),A=$.computeConv2DInfo(r.shape,a.shape,l,d,u,h,!1,m),g,y=[];if(A.filterHeight===1&&A.filterWidth===1&&A.dilationHeight===1&&A.dilationWidth===1&&A.strideHeight===1&&A.strideWidth===1&&(A.padInfo.type==="SAME"||A.padInfo.type==="VALID"))g=Y6({x:r,filter:a,convInfo:A,backend:n,bias:o,activation:p,preluActivationWeights:i,leakyreluAlpha:f});else if(ee().getBool("WEBGL_CONV_IM2COL")&&r.shape[0]===1)g=J6({x:r,filter:a,convInfo:A,backend:n,bias:o,activation:p,preluActivationWeights:i,leakyreluAlpha:f});else{let b=o!=null,v=i!=null,k=p==="leakyrelu",w=p?ff(p,!1):null,C=new Z6(A,b,w,v,k),E=[r,a];if(o&&E.push(o),i&&E.push(i),k){let M=n.makeTensorInfo([],"float32",I.createScalarValue(f,"float32"));E.push(M),y.push(M)}g=n.runWebGLProgram(C,E,"float32")}let x=ye({inputs:{x:g},backend:n,attrs:{shape:A.outShape}});return y.push(g),y.forEach(b=>n.disposeIntermediateTensorInfo(b)),x}var gJ={kernelName:fo,backendName:"webgl",kernelFunc:AJ};function yJ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:u,dilations:c,dimRoundingMode:d,activation:h,leakyreluAlpha:p}=s,f=[],m=c;m==null&&(m=[1,1]),I.assert($.eitherStridesOrDilationsAreOne(l,m),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${l} and dilations '${m}'`);let A=$.computeConv2DInfo(r.shape,a.shape,l,m,u,d,!0),g=ee().getBool("WEBGL_PACK_DEPTHWISECONV")&&A.strideWidth<=2&&A.outChannels/A.inChannels==1,y=h?ff(h,g):null,x=[r,a],b=o!=null,v=i!=null,k=h==="leakyrelu";if(b&&x.push(o),v&&x.push(i),k){let E=n.makeTensorInfo([],"float32",I.createScalarValue(p,"float32"));x.push(E),f.push(E)}let w;g?w=new s4(A,b,y,v,k):w=new n4(A,b,y,v,k);let C=n.runWebGLProgram(w,x,"float32");return f.forEach(E=>n.disposeIntermediateTensorInfo(E)),C}var xJ={kernelName:mo,backendName:"webgl",kernelFunc:yJ},bJ=class{constructor(e,t,n){this.sliceDim=e,this.strides=t,this.variableNames=["x","indices"],this.outputShape=n;let s=ct(t.length),r=ct(n.length),a=this.sliceDim>1?"strides[j]":"strides";this.userCode=`
|
|
${s} strides = ${s}(${this.strides});
|
|
void main() {
|
|
${r} coords = getOutputCoords();
|
|
int flattenIndex = 0;
|
|
for (int j = 0; j < ${this.sliceDim}; j++) {
|
|
int index = round(getIndices(coords[0], j));
|
|
flattenIndex += index * ${a};
|
|
}
|
|
setOutput(getX(flattenIndex, coords[1]));
|
|
}
|
|
`}};function vJ(e){let{inputs:t,backend:n}=e,{params:s,indices:r}=t,a=r.shape,o=a[a.length-1],i=I.sizeFromShape(s.shape),[l,u,c,d]=$.prepareAndValidate(s,r),h=ye({inputs:{x:r},backend:n,attrs:{shape:[u,o]}}),p=ye({inputs:{x:s},backend:n,attrs:{shape:[I.sizeFromShape(s.shape)/c,c]}});if(n.shouldExecuteOnCPU([s,r])||s.dtype==="string"){let g=n.readSync(r.dataId),y=n.bufferSync(s),x=Pq(g,y,s.dtype,u,o,c,d,s.shape,i);return n.makeTensorInfo(l,s.dtype,x.values)}let f=new bJ(o,d,[u,c]),m=n.runWebGLProgram(f,[p,h],p.dtype),A=ye({inputs:{x:m},backend:n,attrs:{shape:l}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(m),A}var wJ={kernelName:$i,backendName:"webgl",kernelFunc:vJ},kJ=class{constructor(e,t){this.variableNames=["A","indices"],this.outputShape=t,this.rank=t.length;let n=ct(this.rank),s=IJ(e,2);this.userCode=`
|
|
void main() {
|
|
${n} resRC = getOutputCoords();
|
|
setOutput(getA(${s}));
|
|
}
|
|
`}};function IJ(e,t){let n=["resRC.x","resRC.y","resRC.z","resRC.w"],s=[];for(let r=0;r<e.length;r++)r===2?s.push("int(getIndices(resRC.x, resRC.z))"):s.push(`${n[r]}`);return s.join()}function c4(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,indices:a}=t,{axis:o,batchDims:i}=s,l=I.parseAxisParam(o,r.shape)[0],u=$.segment_util.collectGatherOpShapeInfo(r,a,l,i),c=I.sizeFromShape(a.shape),d=[],h=ye({inputs:{x:r},backend:n,attrs:{shape:[u.batchSize,u.outerSize,u.dimSize,u.sliceSize]}}),p=ye({inputs:{x:a},backend:n,attrs:{shape:[u.batchSize,c/u.batchSize]}});d.push(h),d.push(p);let f=[u.batchSize,u.outerSize,c/u.batchSize,u.sliceSize];if(n.shouldExecuteOnCPU([r,a])||r.dtype==="string"){let y=n.bufferSync(p),x=n.bufferSync(h),b=Mq(x,y,f);return d.forEach(v=>n.disposeIntermediateTensorInfo(v)),n.makeTensorInfo(u.outputShape,b.dtype,b.values)}let m=new kJ(h.shape,f),A=n.runWebGLProgram(m,[h,p],h.dtype);d.push(A);let g=ye({inputs:{x:A},backend:n,attrs:{shape:u.outputShape}});return d.forEach(y=>n.disposeIntermediateTensorInfo(y)),g}var SJ={kernelName:_i,backendName:"webgl",kernelFunc:c4},CJ="return float(a > b);",TJ=`
|
|
return vec4(greaterThan(a, b));
|
|
`,NJ=rn({opSnippet:CJ,packedOpSnippet:TJ,cpuKernelImpl:zq,dtype:"bool"}),EJ={kernelName:Fi,backendName:"webgl",kernelFunc:NJ},RJ="return float(a >= b);",_J=`
|
|
return vec4(greaterThanEqual(a, b));
|
|
`,$J=rn({opSnippet:RJ,packedOpSnippet:_J,dtype:"bool",cpuKernelImpl:Lq}),FJ={kernelName:Da,backendName:"webgl",kernelFunc:$J};function DJ(e){let{inputs:t,backend:n}=e,{input:s}=t;return l4(s,!0,n)}var OJ={kernelName:eh,backendName:"webgl",kernelFunc:DJ},PJ="return float(!isnan(x) && !isinf(x));",MJ=Ze({opSnippet:PJ,dtype:"bool"}),zJ={kernelName:Di,backendName:"webgl",kernelFunc:MJ},LJ="return float(isinf(x));",BJ=Ze({opSnippet:LJ,dtype:"bool"}),WJ={kernelName:Oi,backendName:"webgl",kernelFunc:BJ},VJ="return float(isnan(x));",UJ=Ze({opSnippet:VJ,dtype:"bool"}),HJ={kernelName:Pi,backendName:"webgl",kernelFunc:UJ},GJ="return float(a < b);",jJ=`
|
|
return vec4(lessThan(a, b));
|
|
`,qJ=rn({opSnippet:GJ,packedOpSnippet:jJ,cpuKernelImpl:Bq,dtype:"bool"}),XJ={kernelName:Mi,backendName:"webgl",kernelFunc:qJ},KJ="return float(a <= b);",ZJ=`
|
|
return vec4(lessThanEqual(a, b));
|
|
`,YJ=rn({opSnippet:KJ,packedOpSnippet:ZJ,cpuKernelImpl:Wq,dtype:"bool"}),JJ={kernelName:zi,backendName:"webgl",kernelFunc:YJ};function QJ(e){let{backend:t,attrs:n}=e,{start:s,stop:r,num:a}=n,o=Vq(s,r,a);return t.makeTensorInfo([o.length],"float32",o)}var eQ={kernelName:nh,backendName:"webgl",kernelFunc:QJ},tQ=`if (x < 0.0) return NAN;
|
|
return log(x);`,nQ=`
|
|
vec4 result = log(x);
|
|
vec4 isNaN = vec4(lessThan(x, vec4(0.0)));
|
|
result.r = isNaN.r == 1.0 ? NAN : result.r;
|
|
result.g = isNaN.g == 1.0 ? NAN : result.g;
|
|
result.b = isNaN.b == 1.0 ? NAN : result.b;
|
|
result.a = isNaN.a == 1.0 ? NAN : result.a;
|
|
|
|
return result;
|
|
`,sQ=Ze({opSnippet:tQ,packedOpSnippet:nQ,cpuKernelImpl:Uq}),rQ={kernelName:Ma,backendName:"webgl",kernelFunc:sQ},aQ="return log(1.0 + x);",oQ=Ze({opSnippet:aQ}),iQ={kernelName:Li,backendName:"webgl",kernelFunc:oQ},lQ="return float(a >= 1.0 && b >= 1.0);",uQ=`
|
|
return vec4(
|
|
vec4(greaterThanEqual(a, vec4(1.0))) *
|
|
vec4(greaterThanEqual(b, vec4(1.0))));
|
|
`,cQ=rn({opSnippet:lQ,packedOpSnippet:uQ,dtype:"bool"}),dQ={kernelName:Bi,backendName:"webgl",kernelFunc:cQ},hQ="return float(!(x >= 1.0));",pQ=Ze({opSnippet:hQ}),fQ={kernelName:$u,backendName:"webgl",kernelFunc:pQ},mQ="return float(a >= 1.0 || b >= 1.0);",AQ=`
|
|
return min(
|
|
vec4(greaterThanEqual(a, vec4(1.0))) +
|
|
vec4(greaterThanEqual(b, vec4(1.0))),
|
|
vec4(1.0));
|
|
`,gQ=rn({opSnippet:mQ,packedOpSnippet:AQ,dtype:"bool"}),yQ={kernelName:Fu,backendName:"webgl",kernelFunc:gQ},xQ=class{constructor(e,t,n,s,r){this.variableNames=["x"],this.outputShape=[];let a=t,o=e[3]-1;this.outputShape=e;let i,l=`float(${n}) + float(${s}) * sum`;r===.5?i=`inversesqrt(${l})`:r===1?i=`1.0/(${l})`:i=`exp(log(${l}) * float(-${r}));`,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
int d = coords[3];
|
|
float x = getX(b, r, c, d);
|
|
float sum = 0.0;
|
|
for (int j = -${a}; j <= ${a}; j++) {
|
|
int idx = d + j;
|
|
if (idx >= 0 && idx <= ${o}) {
|
|
float z = getX(b, r, c, idx);
|
|
sum += z * z;
|
|
}
|
|
}
|
|
float val = x * ${i};
|
|
setOutput(val);
|
|
}
|
|
`}},bQ=class{constructor(e,t,n,s,r){this.variableNames=["x"],this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0;let a=t,o=e[3]-1;this.outputShape=e;let i,l=`float(${n}) + float(${s}) * sum`;r===.5?i=`inversesqrt(${l})`:r===1?i=`1.0/(${l})`:i=`exp(log(${l}) * float(-${r}));`,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords.x;
|
|
int r = coords.y;
|
|
int c = coords.z;
|
|
int d = coords.w;
|
|
|
|
bool hasNextCol = d < ${this.outputShape[3]};
|
|
bool hasNextRow = c < ${this.outputShape[2]};
|
|
|
|
vec4 sum = vec4(0.);
|
|
vec4 xFragAtOutputCoords = getX(b, r, c, d);
|
|
|
|
vec4 xAtOutputCoords = vec4(
|
|
getChannel(xFragAtOutputCoords, vec2(c, d)),
|
|
hasNextCol ?
|
|
getChannel(xFragAtOutputCoords, vec2(c, d + 1)) : 0.0,
|
|
hasNextRow ?
|
|
getChannel(xFragAtOutputCoords , vec2(c + 1, d)) : 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getChannel(xFragAtOutputCoords, vec2(c + 1, d + 1)) : 0.0
|
|
);
|
|
|
|
int firstChannel = d - ${a};
|
|
vec2 cache = vec2(0.);
|
|
if(firstChannel >= 0){
|
|
vec4 firstChannelFrag = getX(b, r, c, firstChannel);
|
|
cache.x = getChannel(firstChannelFrag, vec2(c, firstChannel));
|
|
if(hasNextRow){
|
|
cache.y = getChannel(firstChannelFrag, vec2(c + 1, firstChannel));
|
|
}
|
|
}
|
|
|
|
ivec2 depth = ivec2(d, d + 1);
|
|
for (int j = - ${a}; j <= ${a}; j++) {
|
|
ivec2 idx = depth + j;
|
|
bvec2 aboveLowerBound = greaterThanEqual(idx, ivec2(0));
|
|
bvec2 belowUpperBound = lessThanEqual(idx, ivec2(${o}));
|
|
|
|
bool depthInRange = aboveLowerBound.x && belowUpperBound.x;
|
|
bool depthPlusOneInRange = aboveLowerBound.y && belowUpperBound.y;
|
|
|
|
if(depthInRange || depthPlusOneInRange){
|
|
vec4 z = vec4(0.);
|
|
vec4 xFragAtCurrentDepth;
|
|
z.xz = cache.xy;
|
|
if(depthPlusOneInRange && hasNextCol){
|
|
xFragAtCurrentDepth = idx.y != d ?
|
|
getX(b, r, c, idx.y) : xFragAtOutputCoords;
|
|
z.y = getChannel(xFragAtCurrentDepth, vec2(c, idx.y));
|
|
if(hasNextRow){
|
|
z.w = getChannel(xFragAtCurrentDepth, vec2(c + 1, idx.y));
|
|
}
|
|
}
|
|
cache.xy = z.yw;
|
|
sum += z * z;
|
|
}
|
|
}
|
|
vec4 result = xAtOutputCoords * ${i};
|
|
setOutput(result);
|
|
}
|
|
`}},vQ=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{depthRadius:a,bias:o,alpha:i,beta:l}=s,u=ee().getBool("WEBGL_PACK_NORMALIZATION")?new bQ(r.shape,a,o,i,l):new xQ(r.shape,a,o,i,l);return n.runWebGLProgram(u,[r],r.dtype)},wQ={kernelName:Du,backendName:"webgl",kernelFunc:vQ},kQ=class{constructor(e,t,n,s,r){this.variableNames=["inputImage","outputImage","dy"],this.outputShape=[],this.outputShape=e,this.depth=e[3],this.depthRadius=t,this.bias=n,this.alpha=s,this.beta=r,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float result = 0.0;
|
|
for (int d = 0; d < ${this.depth}; ++d) {
|
|
int depthBegin = int(max(0.0, float(d - ${t})));
|
|
int depthEnd = int(min(float(${this.depth}),
|
|
float(d + ${t} + 1)));
|
|
|
|
const int MIN_DEPTH_BEGIN = 0;
|
|
const int MAX_DEPTH_END = ${this.depth};
|
|
|
|
float norm = 0.0;
|
|
for (int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k) {
|
|
if (k < depthBegin){
|
|
continue;
|
|
}
|
|
else if (k >= depthBegin && k < depthEnd) {
|
|
norm += getInputImage(b, r, c, k) * getInputImage(b, r, c, k);
|
|
}
|
|
else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
norm = float(${s}) * norm + float(${n});
|
|
|
|
for(int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k){
|
|
if (k < depthBegin){
|
|
continue;
|
|
}
|
|
else if (k >= depthBegin && k < depthEnd){
|
|
float dyi = -2.0 * float(${s})
|
|
* float(${r})
|
|
* getInputImage(b ,r ,c, k) * getOutputImage(b, r, c, d)
|
|
/ norm;
|
|
if (k == d) {
|
|
dyi += pow(norm, -1.0 * ${r});
|
|
}
|
|
if (k == coords[3]) {
|
|
dyi *= getDy(b, r, c, d);
|
|
result += dyi;
|
|
}
|
|
}
|
|
else {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}},IQ=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r,y:a,dy:o}=t,{depthRadius:i,bias:l,alpha:u,beta:c}=s,d=new kQ(r.shape,i,l,u,c);return n.runWebGLProgram(d,[r,a,o],r.dtype)},SQ={kernelName:sh,backendName:"webgl",kernelFunc:IQ};function CQ(e,t,n,s){let r=I.sizeFromShape(t),o=I.sizeFromShape(e.shape)/r,i=ye({inputs:{x:e},attrs:{shape:[o,r]},backend:s}),l=Go(i,e.dtype,"max",s),u=ye({inputs:{x:l},attrs:{shape:n},backend:s});return s.disposeIntermediateTensorInfo(i),s.disposeIntermediateTensorInfo(l),u}function d4(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reductionIndices:a,keepDims:o}=s,i=r.shape.length,l=I.parseAxisParam(a,r.shape),u=l,c=$.getAxesPermutation(u,i),d=c!=null,h=n.shouldExecuteOnCPU([r]),p=r;if(d){if(h){let x=n.texData.get(p.dataId).values,b=new Array(i);for(let w=0;w<b.length;w++)b[w]=r.shape[c[w]];let v=S1(x,r.shape,r.dtype,c,b);p=n.makeTensorInfo(b,r.dtype);let k=n.texData.get(p.dataId);k.values=v}else p=mf(r,c,n);u=$.getInnerMostAxes(u.length,i)}$.assertAxesAreInnerMostDims("max",u,i);let[f,m]=$.computeOutAndReduceShapes(p.shape,u),A=f;o&&(A=$.expandShapeToKeepDim(f,l));let g;if(h){let x=n.texData.get(p.dataId).values,b=Hq(x,I.sizeFromShape(m),A,r.dtype);g=n.makeTensorInfo(A,r.dtype);let v=n.texData.get(g.dataId);v.values=b}else g=CQ(p,m,A,n);return d&&n.disposeIntermediateTensorInfo(p),g}var TQ={kernelName:za,backendName:"webgl",kernelFunc:d4},NQ=E6+`
|
|
return max(a, b);
|
|
`,EQ=`
|
|
vec4 result = vec4(max(a, b));
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+pf+`
|
|
return result;
|
|
`,RQ=rn({opSnippet:NQ,packedOpSnippet:EQ,cpuKernelImpl:Gq}),_Q={kernelName:La,backendName:"webgl",kernelFunc:RQ};function $Q(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t;jl(r,"maxPool");let{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=s,u=1;I.assert($.eitherStridesOrDilationsAreOne(o,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${o} and dilations '${u}'`);let c=$.computePool2DInfo(r.shape,a,o,u,i,l);if(c.filterWidth===1&&c.filterHeight===1&&I.arraysEqual(c.inShape,c.outShape))return qn({inputs:{x:r},backend:n});let d=new Hc(c,"max",!1);return n.runWebGLProgram(d,[r],r.dtype)}var FQ={kernelName:Ba,backendName:"webgl",kernelFunc:$Q};function DQ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:o,pad:i,dataFormat:l,dimRoundingMode:u}=s,c=[1,1,1],d=$.computePool3DInfo(r.shape,a,o,c,i,u,l),h=new T1(d,"max",!1);return n.runWebGLProgram(h,[r],r.dtype)}var OQ={kernelName:Ou,backendName:"webgl",kernelFunc:DQ},PQ=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideHeight,n=e.strideWidth,s=e.dilationHeight,r=e.effectiveFilterHeight,a=e.effectiveFilterWidth,o=r-1-e.padInfo.top,i=a-1-e.padInfo.left,l=r*a-1;this.userCode=`
|
|
const ivec2 pads = ivec2(${o}, ${i});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 dyRCCorner = coords.yz - pads;
|
|
int dyRCorner = dyRCCorner.x;
|
|
int dyCCorner = dyRCCorner.y;
|
|
|
|
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${r};
|
|
wR += ${s}) {
|
|
float dyR = float(dyRCorner + wR) / ${t}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${a}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${n}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(b, idyR, idyC, d);
|
|
int maxPosValue = ${l} - int(getMaxPos(b, idyR, idyC, d));
|
|
|
|
// Get the current value, check it against the value from the
|
|
// position matrix.
|
|
int curPosValue = wR * ${a} + wC;
|
|
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
|
|
|
|
dotProd += dyValue * mask;
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},MQ=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideDepth,n=e.strideHeight,s=e.strideWidth,r=e.dilationDepth,a=e.dilationHeight,o=e.dilationWidth,i=e.effectiveFilterDepth,l=e.effectiveFilterHeight,u=e.effectiveFilterWidth,c=i-1-e.padInfo.front,d=l-1-e.padInfo.top,h=u-1-e.padInfo.left,p=i*l*u-1;this.userCode=`
|
|
const ivec3 pads = ivec3(${c}, ${d}, ${h});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyDCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
// Convolve dy(?, ?, ?, ch) with pos mask(:, :, :, d) to get
|
|
// dx(xD, xR, xC, ch).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int wD = 0; wD < ${i};
|
|
wD += ${r}) {
|
|
float dyD = float(dyDCorner + wD) / ${t}.0;
|
|
|
|
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyD = int(dyD);
|
|
|
|
for (int wR = 0; wR < ${l};
|
|
wR += ${a}) {
|
|
float dyR = float(dyRCorner + wR) / ${n}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${u};
|
|
wC += ${o}) {
|
|
float dyC = float(dyCCorner + wC) / ${s}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
|
|
int maxPosValue = ${p} -
|
|
int(getMaxPos(batch, idyD, idyR, idyC, ch));
|
|
|
|
// Get the current value, check it against the value from the
|
|
// position matrix.
|
|
int curPosValue =
|
|
wD * ${l} * ${u} +
|
|
wR * ${u} + wC;
|
|
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
|
|
|
|
dotProd += dyValue * mask;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function zQ(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,o=a,{filterSize:i,strides:l,pad:u,dimRoundingMode:c}=s,d=[1,1,1],h=$.computePool3DInfo(o.shape,i,l,d,u,c),p=new T1(h,"max",!0),f=n.runWebGLProgram(p,[o],o.dtype),m=new MQ(h),A=n.runWebGLProgram(m,[r,f],o.dtype);return n.disposeIntermediateTensorInfo(f),A}var LQ={kernelName:ah,backendName:"webgl",kernelFunc:zQ};function BQ(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a,output:o}=t,i=a;jl([a,o],"maxPoolGrad");let{filterSize:l,strides:u,pad:c,dimRoundingMode:d}=s,h=$.computePool2DInfo(i.shape,l,u,1,c,d),p=!0,f=new Hc(h,"max",p),m=n.runWebGLProgram(f,[i],i.dtype),A=new PQ(h),g=n.runWebGLProgram(A,[r,m],i.dtype);return n.disposeIntermediateTensorInfo(m),g}var WQ={kernelName:rh,backendName:"webgl",kernelFunc:BQ};function VQ(e,t,n,s){let r=new Hc(n,"max",!1),a=s.runWebGLProgram(r,[e],"float32");r=new Hc(n,"max",!0,!0,t);let o=s.runWebGLProgram(r,[e],"float32");return[a,o]}var UQ={kernelName:oh,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:s}=e,{filterSize:r,strides:a,pad:o,includeBatchInIndex:i}=t,l=n;I.assert(s.shape.length===4,()=>`Error in maxPool: input must be rank 4 but got rank ${s.shape.length}.`);let u=[1,1];I.assert($.eitherStridesOrDilationsAreOne(a,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${a} and dilations '${u}'`);let c=$.computePool2DInfo(s.shape,r,a,u,o),[d,h]=VQ(s,i,c,l);return[d,h]}};function HQ(e,t,n,s){let r=I.sizeFromShape(t),o=I.sizeFromShape(e.shape)/r,i=ye({inputs:{x:e},attrs:{shape:[o,r]},backend:s}),l=Go(i,"float32","mean",s),u=ye({inputs:{x:l},attrs:{shape:n},backend:s});return s.disposeIntermediateTensorInfo(i),s.disposeIntermediateTensorInfo(l),u}var GQ={kernelName:Wa,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:s}=e,{keepDims:r,axis:a}=t,o=n,i=s.shape.length,l=I.parseAxisParam(a,s.shape),u=l,c=$.getAxesPermutation(u,i),d=c!=null,h=o.shouldExecuteOnCPU([s]),p=[],f=s;if(d){if(h){let b=o.texData.get(f.dataId).values,v=new Array(i);for(let C=0;C<v.length;C++)v[C]=s.shape[c[C]];let k=S1(b,s.shape,s.dtype,c,v);f=o.makeTensorInfo(v,s.dtype);let w=o.texData.get(f.dataId);w.values=k}else f=mf(s,c,o);p.push(f),u=$.getInnerMostAxes(u.length,i)}$.assertAxesAreInnerMostDims("sum",u,i);let[m,A]=$.computeOutAndReduceShapes(f.shape,u),g=m;r&&(g=$.expandShapeToKeepDim(m,l));let y=HQ(f,A,g,o);for(let x of p)o.disposeIntermediateTensorInfo(x);return y}};function jQ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s,i=r.shape.length,l=I.parseAxisParam(a,r.shape),u=l,c=$.getAxesPermutation(u,i),d=r;c!=null&&(d=wn({inputs:{x:r},backend:n,attrs:{perm:c}}),u=$.getInnerMostAxes(u.length,r.shape.length)),$.assertAxesAreInnerMostDims("min",u,i);let[h,p]=$.computeOutAndReduceShapes(d.shape,u),f=I.sizeFromShape(p),m=ye({inputs:{x:d},backend:n,attrs:{shape:[-1,f]}}),A=Go(m,m.dtype,"min",n),g;if(o){let y=$.expandShapeToKeepDim(h,l);g=ye({inputs:{x:A},backend:n,attrs:{shape:y}})}else g=ye({inputs:{x:A},backend:n,attrs:{shape:h}});return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(A),c!=null&&n.disposeIntermediateTensorInfo(d),g}var qQ={kernelName:Va,backendName:"webgl",kernelFunc:jQ},XQ=E6+`
|
|
return min(a, b);
|
|
`,KQ=`
|
|
vec4 result = vec4(min(a, b));
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+pf+`
|
|
return result;
|
|
`,ZQ=rn({opSnippet:XQ,packedOpSnippet:KQ,cpuKernelImpl:jq}),YQ={kernelName:Ua,backendName:"webgl",kernelFunc:ZQ},JQ=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=t.map((u,c)=>u[0]+e[c]+u[1]);let s=e.length,r=ct(s),a=t.map(u=>u[0]).join(","),o=t.map((u,c)=>u[0]+e[c]).join(","),i=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,s),l=n==="reflect"?0:1;if(s===1){this.userCode=`
|
|
int start = ${a};
|
|
int end = ${o};
|
|
|
|
void main() {
|
|
int outC = getOutputCoords();
|
|
if (outC < start) {
|
|
outC = start * 2 - outC - ${l};
|
|
} else if(outC >= end) {
|
|
outC = (end - 1) * 2 - outC + ${l};
|
|
}
|
|
setOutput(getX(outC - start));
|
|
}
|
|
`;return}this.userCode=`
|
|
${r} start = ${r}(${a});
|
|
${r} end = ${r}(${o});
|
|
|
|
void main() {
|
|
${r} outC = getOutputCoords();
|
|
for (int i = 0; i < ${s}; i++) {
|
|
if (outC[i] < start[i]) {
|
|
outC[i] = start[i] * 2 - outC[i] - ${l};
|
|
} else if(outC[i] >= end[i]) {
|
|
outC[i] = (end[i] - 1) * 2 - outC[i] + ${l};
|
|
}
|
|
}
|
|
${r} coords = outC - start;
|
|
setOutput(getX(${i}));
|
|
}
|
|
`}},QQ=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((p,f)=>p[0]+e[f]+p[1]);let s=e.length,r=ct(s),a=t.map(p=>p[0]).join(","),o=t.map((p,f)=>p[0]+e[f]).join(","),i=vn("rc",s),l=vn("source",s),u=`${i[s-1]} < ${this.outputShape[s-1]}`,c=s===1?"source":`vec2(${l.slice(-2).join()})`,d=n==="reflect"?0:1,h="";if(s===1){let p=`
|
|
${r} source = rc;
|
|
if (source < start) {
|
|
source = start * 2 - source - ${d};
|
|
} else if (source >= end) {
|
|
source = (end - 1) * 2 - source + ${d};
|
|
}
|
|
source -= start;
|
|
`;h=`
|
|
${r} rc = outputLoc;
|
|
${p}
|
|
result[0] = getChannel(getX(${l.join()}), ${c});
|
|
${i[s-1]} += 1;
|
|
if(${u}) {
|
|
${p}
|
|
result[1] = getChannel(getX(${l.join()}), ${c});
|
|
}
|
|
`}else{let p=`
|
|
${r} source = rc;
|
|
${r} lt = ${r}(lessThan(source, start));
|
|
${r} gte = ${r}(greaterThanEqual(source, end));
|
|
${r} orig = 1 - (lt + gte);
|
|
source = orig * source +
|
|
lt * (start * 2 - source - ${d}) +
|
|
gte * ((end - 1) * 2 - source + ${d});
|
|
source -= start;
|
|
`;h=`
|
|
${r} rc = outputLoc;
|
|
${p}
|
|
result[0] = getChannel(getX(${l.join()}), ${c});
|
|
${i[s-1]} += 1;
|
|
if(${u}) {
|
|
${p}
|
|
result[1] = getChannel(getX(${l.join()}), ${c});
|
|
}
|
|
rc = outputLoc;
|
|
${i[s-2]} += 1;
|
|
if(${i[s-2]} < ${this.outputShape[s-2]}) {
|
|
${p}
|
|
result[2] = getChannel(getX(${l.join()}), ${c});
|
|
${i[s-1]} += 1;
|
|
if(${u}) {
|
|
${p}
|
|
result[3] = getChannel(getX(${l.join()}), ${c});
|
|
}
|
|
}
|
|
`}this.userCode=`
|
|
const ${r} start = ${r}(${a});
|
|
const ${r} end = ${r}(${o});
|
|
|
|
void main() {
|
|
${r} outputLoc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
${h}
|
|
setOutput(result);
|
|
}
|
|
`}},eee=({inputs:e,backend:t,attrs:n})=>{let{x:s}=e,{paddings:r,mode:a}=n,o=ee().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new QQ(s.shape,r,a):new JQ(s.shape,r,a);return t.runWebGLProgram(o,[s],s.dtype)},tee={kernelName:Ha,backendName:"webgl",kernelFunc:eee},nee=`if (b == 0.0) return NAN;
|
|
return mod(a, b);`,see=`
|
|
vec4 result = mod(a, b);
|
|
vec4 isNaN = vec4(equal(b, vec4(0.0)));
|
|
`+pf+`
|
|
return result;
|
|
`,ree=rn({opSnippet:nee,packedOpSnippet:see}),aee={kernelName:Wi,backendName:"webgl",kernelFunc:ree},oee=class{constructor(e,t,n){this.variableNames=["probs"],this.customUniforms=[{name:"seed",type:"float"}],this.outputShape=[e,n],this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
|
|
float r = random(seed);
|
|
float cdf = 0.0;
|
|
|
|
for (int i = 0; i < ${t-1}; i++) {
|
|
cdf += getProbs(batch, i);
|
|
|
|
if (r < cdf) {
|
|
setOutput(float(i));
|
|
return;
|
|
}
|
|
}
|
|
|
|
// If no other event happened, last event happened.
|
|
setOutput(float(${t-1}));
|
|
}
|
|
`}},iee=`
|
|
if (a == b) {
|
|
return 1.0;
|
|
};
|
|
return a / b;`,lee=`
|
|
// vec4 one = vec4(equal(a, b));
|
|
// return one + (vec4(1.0) - one) * a / b;
|
|
vec4 result = a / b;
|
|
if(a.x == b.x) {
|
|
result.x = 1.;
|
|
}
|
|
if(a.y == b.y) {
|
|
result.y = 1.;
|
|
}
|
|
if(a.z == b.z) {
|
|
result.z = 1.;
|
|
}
|
|
if(a.w == b.w) {
|
|
result.w = 1.;
|
|
}
|
|
|
|
return result;
|
|
`,h4=rn({opSnippet:iee,packedOpSnippet:lee,checkOutOfBounds:!0}),uee={kernelName:Ea,backendName:"webgl",kernelFunc:h4},p4="return a - b;",f4=rn({opSnippet:p4,packedOpSnippet:p4,supportsComplex:!0,cpuKernelImpl:oX}),cee={kernelName:lo,backendName:"webgl",kernelFunc:f4};function m4(e){let{inputs:t,backend:n,attrs:s}=e,{logits:r}=t,{dim:a}=s,o=I.parseAxisParam([a],r.shape),i=d4({inputs:{x:r},backend:n,attrs:{reductionIndices:o,keepDims:!1}}),l=$.expandShapeToKeepDim(i.shape,o),u=ye({inputs:{x:i},backend:n,attrs:{shape:l}}),c=f4({inputs:{a:r,b:u},backend:n}),d=a4({inputs:{x:c},backend:n}),h=Af({inputs:{x:d},backend:n,attrs:{axis:o,keepDims:!1}}),p=ye({inputs:{x:h},backend:n,attrs:{shape:l}}),f=h4({inputs:{a:d,b:p},backend:n});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(p),f}var dee={kernelName:oo,backendName:"webgl",kernelFunc:m4};function hee(e){let{inputs:t,backend:n,attrs:s}=e,{logits:r}=t,{numSamples:a,seed:o,normalized:i}=s,l=i?r:m4({inputs:{logits:r},backend:n,attrs:{dim:r.shape.length-1}}),u=l.shape[0],c=l.shape[1],d=new oee(u,c,a),h=[[o]],p=n.runWebGLProgram(d,[l],"int32",h);return i||n.disposeIntermediateTensorInfo(l),p}var pee={kernelName:ih,backendName:"webgl",kernelFunc:hee},A4="return -x;";function fee(e){let{inputs:t,backend:n}=e,{x:s}=t;if(n.shouldExecuteOnCPU([s])){let a=n.texData.get(s.dataId),[o,i]=Xq(a.values,s.shape,s.dtype);return n.makeTensorInfo(i,s.dtype,o)}let r;return ee().getBool("WEBGL_PACK_UNARY_OPERATIONS")?r=new Yl(s.shape,A4):r=new sa(s.shape,A4),n.runWebGLProgram(r,[s],s.dtype)}var mee={kernelName:Vi,backendName:"webgl",kernelFunc:fee},Aee=Js.nonMaxSuppressionV3Impl;function gee(e){$.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l}=s,u=n.readSync(r.dataId),c=n.readSync(a.dataId),{selectedIndices:d}=Aee(u,c,o,i,l);return n.makeTensorInfo([d.length],"int32",new Int32Array(d))}var yee={kernelName:Hi,backendName:"webgl",kernelFunc:gee},xee=Js.nonMaxSuppressionV4Impl;function bee(e){$.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l,padToMaxOutputSize:u}=s,c=n.readSync(r.dataId),d=n.readSync(a.dataId),{selectedIndices:h,validOutputs:p}=xee(c,d,o,i,l,u);return[n.makeTensorInfo([h.length],"int32",new Int32Array(h)),n.makeTensorInfo([],"int32",new Int32Array([p]))]}var vee={kernelName:Gi,backendName:"webgl",kernelFunc:bee},wee=Js.nonMaxSuppressionV5Impl;function kee(e){$.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l,softNmsSigma:u}=s,c=n.readSync(r.dataId),d=n.readSync(a.dataId),h=o,p=i,f=l,m=u,{selectedIndices:A,selectedScores:g}=wee(c,d,h,p,f,m);return[n.makeTensorInfo([A.length],"int32",new Int32Array(A)),n.makeTensorInfo([g.length],"float32",new Float32Array(g))]}var Iee={kernelName:ji,backendName:"webgl",kernelFunc:kee},See=class{constructor(e,t,n,s){this.variableNames=["indices"],this.outputShape=[e,t],this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int index = round(getIndices(coords.x));
|
|
setOutput(mix(float(${s}), float(${n}),
|
|
float(index == coords.y)));
|
|
}
|
|
`}},Cee=e=>{let{inputs:t,backend:n,attrs:s}=e,{indices:r}=t,{depth:a,onValue:o,offValue:i}=s,l=I.sizeFromShape(r.shape),u=new See(l,a,o,i),c=ye({inputs:{x:r},backend:n,attrs:{shape:[l]}}),d=n.runWebGLProgram(u,[c],r.dtype);n.disposeIntermediateTensorInfo(c);let h=[...r.shape,a],p=ye({inputs:{x:d},backend:n,attrs:{shape:h}});return n.disposeIntermediateTensorInfo(d),p},Tee={kernelName:ja,backendName:"webgl",kernelFunc:Cee};function wf(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="complex64"){let r=Gc({inputs:{input:s},backend:n}),a=wf({inputs:{x:r},backend:n}),o=bf({inputs:{input:s},backend:n}),i=wf({inputs:{x:o},backend:n}),l=ra({inputs:{real:a,imag:i},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),l}else return vf({attrs:{shape:s.shape,dtype:s.dtype,value:s.dtype==="string"?"":0},backend:n})}var Nee={kernelName:dl,backendName:"webgl",kernelFunc:wf};function g4(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="string")throw new Error("onesLike is not supported under string dtype");if(s.dtype==="complex64"){let r=Gc({inputs:{input:s},backend:n}),a=g4({inputs:{x:r},backend:n}),o=bf({inputs:{input:s},backend:n}),i=wf({inputs:{x:o},backend:n}),l=ra({inputs:{real:a,imag:i},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),l}else return vf({attrs:{shape:s.shape,dtype:s.dtype,value:1},backend:n})}var Eee={kernelName:qi,backendName:"webgl",kernelFunc:g4};function Ree(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s;if(t.length===1)return R1({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let a=t[0].shape,o=t[0].dtype;t.forEach(c=>{I.assertShapesMatch(a,c.shape,"All tensors passed to stack must have matching shapes"),I.assert(o===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],l=t.map(c=>{let d=R1({inputs:{input:c},backend:n,attrs:{dim:r}});return i.push(d),d}),u=K6({inputs:l,backend:n,attrs:{axis:r}});return i.forEach(c=>n.disposeIntermediateTensorInfo(c)),u}var _ee={kernelName:Xi,backendName:"webgl",kernelFunc:Ree},$ee=class{constructor(e,t,n){this.variableNames=["x"],this.customUniforms=[{name:"value",type:"float"}],this.outputShape=t.map((l,u)=>l[0]+e[u]+l[1]);let s=e.length,r=ct(s),a=t.map(l=>l[0]).join(","),o=t.map((l,u)=>l[0]+e[u]).join(","),i=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,s);if(s===1){this.userCode=`
|
|
int start = ${a};
|
|
int end = ${o};
|
|
|
|
void main() {
|
|
int outC = getOutputCoords();
|
|
if (outC < start || outC >= end) {
|
|
setOutput(value);
|
|
} else {
|
|
setOutput(getX(outC - start));
|
|
}
|
|
}
|
|
`;return}this.userCode=`
|
|
${r} start = ${r}(${a});
|
|
${r} end = ${r}(${o});
|
|
|
|
void main() {
|
|
${r} outC = getOutputCoords();
|
|
if (any(lessThan(outC, start)) || any(greaterThanEqual(outC, end))) {
|
|
setOutput(value);
|
|
} else {
|
|
${r} coords = outC - start;
|
|
setOutput(getX(${i}));
|
|
}
|
|
}
|
|
`}},Fee=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"value",type:"float"}],this.outputShape=t.map((f,m)=>f[0]+e[m]+f[1]);let s=e.length,r=ct(s),a=t.map(f=>f[0]).join(","),o=t.map((f,m)=>f[0]+e[m]).join(","),i=vn("rc",s),l=vn("source",s),u=`${i[s-1]} < ${this.outputShape[s-1]}`,c=s===1?"source":`vec2(${l.slice(-2).join()})`,d=[`${r} rc = outputLoc;`,`${i[s-1]} += 1;
|
|
if(${u}) {
|
|
`,s===1?"":`}
|
|
rc = outputLoc;
|
|
${i[s-2]} += 1;
|
|
if(${i[s-2]} < ${this.outputShape[s-2]}) {`,s===1?"":` ${i[s-1]} += 1;
|
|
if(${u}) {`],h=s===1?"rc < start || rc >= end":"any(lessThan(rc, start)) || any(greaterThanEqual(rc, end))",p="";for(let f=0,m=s===1?2:4;f<m;f++)p+=`
|
|
${d[f]}
|
|
if (${h}) {
|
|
result[${f}] = float(value);
|
|
} else {
|
|
${r} source = rc - start;
|
|
result[${f}] = getChannel(getX(${l.join()}), ${c});
|
|
}
|
|
`;p+=s===1?"} ":"}}",this.userCode=`
|
|
const ${r} start = ${r}(${a});
|
|
const ${r} end = ${r}(${o});
|
|
|
|
void main() {
|
|
${r} outputLoc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
${p}
|
|
setOutput(result);
|
|
}
|
|
`}},y4=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{paddings:a,constantValue:o}=s,i=ee().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new Fee(r.shape,a,o):new $ee(r.shape,a,o),l=[[o]];return n.runWebGLProgram(i,[r],r.dtype,l)},Dee={kernelName:qa,backendName:"webgl",kernelFunc:y4},Oee=`
|
|
if(a < 0.0 && floor(b) < b){
|
|
return NAN;
|
|
}
|
|
if (b == 0.0) {
|
|
return 1.0;
|
|
}
|
|
return (round(mod(b, 2.0)) != 1) ?
|
|
pow(abs(a), b) : sign(a) * pow(abs(a), b);
|
|
`,Pee=`
|
|
// isModRound1 has 1 for components with round(mod(b, 2.0)) == 1, 0 otherwise.
|
|
vec4 isModRound1 = vec4(equal(round(mod(b, 2.0)), ivec4(1)));
|
|
vec4 multiplier = sign(a) * isModRound1 + (vec4(1.0) - isModRound1);
|
|
vec4 result = multiplier * pow(abs(a), b);
|
|
|
|
// Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS
|
|
bvec4 isExpZero = equal(b, vec4(0.0));
|
|
result.r = isExpZero.r ? 1.0 : result.r;
|
|
result.g = isExpZero.g ? 1.0 : result.g;
|
|
result.b = isExpZero.b ? 1.0 : result.b;
|
|
result.a = isExpZero.a ? 1.0 : result.a;
|
|
|
|
vec4 isNaN = vec4(lessThan(a, vec4(0.0))) * vec4(lessThan(floor(b), b));
|
|
`+pf+`
|
|
return result;
|
|
`,Mee=rn({opSnippet:Oee,packedOpSnippet:Pee}),zee={kernelName:Xa,backendName:"webgl",kernelFunc:Mee};function Lee(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s,i=r.shape.length,l=[],u=I.parseAxisParam(a,r.shape),c=u,d=$.getAxesPermutation(c,i),h=r;d!=null&&(h=wn({inputs:{x:r},backend:n,attrs:{perm:d}}),c=$.getInnerMostAxes(c.length,i),l.push(h)),$.assertAxesAreInnerMostDims("prod",c,i);let p;if(n.shouldExecuteOnCPU([h])){let f=n.texData.get(h.dataId).values,{outVals:m,outShape:A,outDtype:g}=Zq(h.shape,h.dtype,f,c);p=n.makeTensorInfo(A,g,m)}else{let[f,m]=$.computeOutAndReduceShapes(h.shape,c),A=I.sizeFromShape(m),g=ye({inputs:{x:h},backend:n,attrs:{shape:[-1,A]}}),y=Ch(r.dtype),x=Go(g,y,"prod",n);p=ye({inputs:{x},backend:n,attrs:{shape:f}}),l.push(g),l.push(x)}if(o){l.push(p);let f=$.expandShapeToKeepDim(p.shape,u);p=ye({inputs:{x:p},backend:n,attrs:{shape:f}})}return l.forEach(f=>n.disposeIntermediateTensorInfo(f)),p}var Bee={kernelName:Ki,backendName:"webgl",kernelFunc:Lee},x4=e=>{let{backend:t,attrs:n}=e,{start:s,stop:r,step:a,dtype:o}=n,i=Yq(s,r,a,o);return t.makeTensorInfo([i.length],o,i)},Wee={kernelName:Pu,backendName:"webgl",kernelFunc:x4},Vee="return 1.0 / x;",Uee=Ze({opSnippet:Vee}),Hee={kernelName:Zi,backendName:"webgl",kernelFunc:Uee},Gee=Bs+`
|
|
return (x < 0.0) ? 0.0 : x;
|
|
`,jee=`
|
|
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,qee=Ze({opSnippet:Gee,packedOpSnippet:jee}),Xee={kernelName:Za,backendName:"webgl",kernelFunc:qee},Kee=Bs+`
|
|
return (x < 0.0) ? 0.0 : min(6.0, x);
|
|
`,Zee=`
|
|
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,Yee=Ze({opSnippet:Kee,packedOpSnippet:Zee}),Jee={kernelName:Ja,backendName:"webgl",kernelFunc:Yee},Qee=class{constructor(e,t,n,s,r){this.variableNames=["A"],this.outputShape=[];let[a,o,i,l]=e;this.outputShape=[a,t,n,l];let u=[s&&t>1?o-1:o,s&&n>1?i-1:i],c=[s&&t>1?t-1:t,s&&n>1?n-1:n],d;r?d="(vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC - vec2(0.5)":d="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec2 effectiveInputOverOutputRatioRC = vec2(
|
|
${u[0]/c[0]},
|
|
${u[1]/c[1]});
|
|
const vec2 inputShapeRC = vec2(${o}.0, ${i}.0);
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
ivec2 yRC = coords.yz;
|
|
|
|
// Fractional source index.
|
|
vec2 sourceFracIndexRC = ${d};
|
|
|
|
// Compute the four integer indices.
|
|
ivec2 sourceFloorRC = ivec2(max(sourceFracIndexRC, vec2(0.0)));
|
|
ivec2 sourceCeilRC = ivec2(
|
|
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
|
|
|
|
float topLeft = getA(b, sourceFloorRC.x, sourceFloorRC.y, d);
|
|
float bottomLeft = getA(b, sourceCeilRC.x, sourceFloorRC.y, d);
|
|
float topRight = getA(b, sourceFloorRC.x, sourceCeilRC.y, d);
|
|
float bottomRight = getA(b, sourceCeilRC.x, sourceCeilRC.y, d);
|
|
|
|
vec2 fracRC = sourceFracIndexRC - vec2(sourceFloorRC);
|
|
|
|
float top = topLeft + (topRight - topLeft) * fracRC.y;
|
|
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracRC.y;
|
|
float newValue = top + (bottom - top) * fracRC.x;
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}},ete=class{constructor(e,t,n,s,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[a,o,i,l]=e;this.outputShape=[a,t,n,l];let u=[s&&t>1?o-1:o,s&&n>1?i-1:i],c=[s&&t>1?t-1:t,s&&n>1?n-1:n],d;r?d="(vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC - vec3(0.5)":d="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec3 effectiveInputOverOutputRatioRC = vec3(
|
|
${u[0]/c[0]},
|
|
${u[1]/c[1]},
|
|
${u[1]/c[1]});
|
|
const vec3 inputShapeRC = vec3(${o}.0, ${i}.0,
|
|
${i}.0);
|
|
|
|
float getAValue(int b, int r, int c, int d) {
|
|
return getChannel(getA(b, r, c, d), vec2(c, d));
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
// Calculate values for next column in yRC.z.
|
|
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
|
|
|
|
// Fractional source index.
|
|
vec3 sourceFracIndexRC = ${d};
|
|
|
|
// Compute the four integer indices.
|
|
ivec3 sourceFloorRC = ivec3(max(sourceFracIndexRC, vec3(0.0)));
|
|
ivec3 sourceCeilRC = ivec3(
|
|
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
|
|
|
|
// Should we calculate next column and row elements in 2x2 packed cell.
|
|
bool hasNextCol = d < ${l-1};
|
|
bool hasNextRow = coords.z < ${n-1};
|
|
|
|
// In parallel, construct four corners for all four components in
|
|
// packed 2x2 cell.
|
|
vec4 topLeft = vec4(
|
|
getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d + 1) : 0.0);
|
|
|
|
vec4 bottomLeft = vec4(
|
|
getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d + 1) : 0.0);
|
|
|
|
vec4 topRight = vec4(
|
|
getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d + 1) : 0.0);
|
|
|
|
vec4 bottomRight = vec4(
|
|
getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d + 1) : 0.0);
|
|
|
|
vec3 fracRC = sourceFracIndexRC - vec3(sourceFloorRC);
|
|
|
|
vec4 top = mix(topLeft, topRight, fracRC.yyzz);
|
|
vec4 bottom = mix(bottomLeft, bottomRight, fracRC.yyzz);
|
|
vec4 newValue = mix(top, bottom, fracRC.x);
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}};function tte(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,halfPixelCenters:o,size:i}=s,[l,u]=i,c=ee().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new ete(r.shape,l,u,a,o):new Qee(r.shape,l,u,a,o);return n.runWebGLProgram(c,[r],"float32")}var nte={kernelName:Ya,backendName:"webgl",kernelFunc:tte},ste=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,s,r]=t,[,a,o]=e,i=[n&&a>1?s-1:s,n&&o>1?r-1:r],l=[n&&a>1?a-1:a,n&&o>1?o-1:o],u=i[0]/l[0],c=i[1]/l[1],d=1/u,h=1/c,p=Math.ceil(d)*2+2,f=Math.ceil(h)*2+2;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float accumulator = 0.0;
|
|
|
|
const float heightScale = float(${u});
|
|
const float widthScale = float(${c});
|
|
|
|
const float invHeightScale = float(${d});
|
|
const float invWidthScale = float(${h});
|
|
|
|
const int winHeight = int(${p});
|
|
const int winWidth = int(${f});
|
|
|
|
// Compute bounds for where in dy we will look
|
|
float startRLerp = floor(float(r) * invHeightScale);
|
|
int startDyR = int(startRLerp - float(winHeight / 2));
|
|
|
|
float startCLerp = floor(float(c) * invWidthScale);
|
|
int startDyC = int(startCLerp - float(winWidth / 2));
|
|
|
|
// Loop over dy
|
|
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
|
|
int dyR = dyROffset + startDyR;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyR < 0 || dyR >= ${a}) {
|
|
continue;
|
|
}
|
|
|
|
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
|
|
int dyC = dyCOffset + startDyC;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyC < 0 || dyC >= ${o}) {
|
|
continue;
|
|
}
|
|
|
|
float dxR = float(dyR) * heightScale;
|
|
int topDxRIndex = int(floor(dxR));
|
|
int bottomDxRIndex = int(min(ceil(dxR), ${s-1}.0));
|
|
float dxRLerp = dxR - float(topDxRIndex);
|
|
float inverseDxRLerp = 1.0 - dxRLerp;
|
|
|
|
float dxC = float(dyC) * widthScale;
|
|
int leftDxCIndex = int(floor(dxC));
|
|
int rightDxCIndex = int(min(ceil(dxC), ${r-1}.0));
|
|
float dxCLerp = dxC - float(leftDxCIndex);
|
|
float inverseDxCLerp = 1.0 - dxCLerp;
|
|
|
|
if (r == topDxRIndex && c == leftDxCIndex) {
|
|
// topLeft
|
|
accumulator +=
|
|
getDy(b, dyR, dyC, d) * inverseDxRLerp * inverseDxCLerp;
|
|
}
|
|
|
|
if (r == topDxRIndex && c == rightDxCIndex) {
|
|
// topRight
|
|
accumulator += getDy(b, dyR, dyC, d) * inverseDxRLerp * dxCLerp;
|
|
}
|
|
|
|
if (r == bottomDxRIndex && c == leftDxCIndex) {
|
|
// bottomLeft
|
|
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * inverseDxCLerp;
|
|
}
|
|
|
|
if (r == bottomDxRIndex && c == rightDxCIndex) {
|
|
// bottomRight
|
|
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * dxCLerp;
|
|
}
|
|
}
|
|
}
|
|
// End loop over dy
|
|
|
|
setOutput(accumulator);
|
|
}
|
|
`}};function rte(e){let{inputs:t,backend:n,attrs:s}=e,{images:r,dy:a}=t,{alignCorners:o}=s,i=new ste(a.shape,r.shape,o);return n.runWebGLProgram(i,[a],a.dtype)}var ate={kernelName:ch,backendName:"webgl",kernelFunc:rte},ote=class{constructor(e,t,n,s,r){this.variableNames=["A"],this.outputShape=[];let[a,o,i,l]=e;this.outputShape=[a,t,n,l];let u=[s&&t>1?o-1:o,s&&n>1?i-1:i],c=[s&&t>1?t-1:t,s&&n>1?n-1:n],d=s?"0.5":"0.0",h;r?h="max((vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC, vec2(0.0))":h="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec2 effectiveInputOverOutputRatioRC = vec2(
|
|
${u[0]/c[0]},
|
|
${u[1]/c[1]});
|
|
const vec2 inputShapeRC = vec2(${o}.0, ${i}.0);
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
ivec2 yRC = coords.yz;
|
|
|
|
// Fractional source index.
|
|
vec2 sourceFracIndexRC = ${h};
|
|
|
|
// Compute the coordinators of nearest neighbor point.
|
|
ivec2 sourceNearestRC = ivec2(
|
|
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${d})));
|
|
float newValue = getA(b, sourceNearestRC.x, sourceNearestRC.y, d);
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}},ite=class{constructor(e,t,n,s,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[a,o,i,l]=e;this.outputShape=[a,t,n,l];let u=[s&&t>1?o-1:o,s&&n>1?i-1:i],c=[s&&t>1?t-1:t,s&&n>1?n-1:n],d=s?"0.5":"0.0",h;r?h="max((vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC, vec3(0.0))":h="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec3 effectiveInputOverOutputRatioRC = vec3(
|
|
${u[0]/c[0]},
|
|
${u[1]/c[1]},
|
|
${u[1]/c[1]});
|
|
const vec3 inputShapeRC = vec3(${o}.0, ${i}.0,
|
|
${i}.0);
|
|
|
|
float getAValue(int b, int r, int c, int d) {
|
|
return getChannel(getA(b, r, c, d), vec2(c, d));
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
// Calculate values for next column in yRC.z.
|
|
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
|
|
|
|
// Fractional source index.
|
|
vec3 sourceFracIndexRC = ${h};
|
|
|
|
// Compute the coordinators of nearest neighbor point.
|
|
ivec3 sourceNearestRC = ivec3(
|
|
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${d})));
|
|
|
|
// Should we calculate next column and row elements in 2x2 packed cell.
|
|
bool hasNextCol = d < ${l-1};
|
|
bool hasNextRow = coords.z < ${n-1};
|
|
|
|
vec4 newValue = vec4(
|
|
getAValue(b, sourceNearestRC.x, sourceNearestRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceNearestRC.x, sourceNearestRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceNearestRC.x, sourceNearestRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceNearestRC.x, sourceNearestRC.z, d + 1) : 0.0);
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}};function lte(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,halfPixelCenters:o,size:i}=s,[l,u]=i,c=ee().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new ite(r.shape,l,u,a,o):new ote(r.shape,l,u,a,o);return n.runWebGLProgram(c,[r],r.dtype)}var ute={kernelName:Mu,backendName:"webgl",kernelFunc:lte},cte=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,s,r]=t,[,a,o]=e,i=[n&&a>1?s-1:s,n&&o>1?r-1:r],l=[n&&a>1?a-1:a,n&&o>1?o-1:o],u=i[0]/l[0],c=i[1]/l[1],d=1/u,h=1/c,p=Math.ceil(d)*2+2,f=Math.ceil(h)*2+2;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float accumulator = 0.0;
|
|
|
|
const float heightScale = float(${u});
|
|
const float widthScale = float(${c});
|
|
|
|
const float invHeightScale = float(${d});
|
|
const float invWidthScale = float(${h});
|
|
|
|
const int winHeight = int(${p});
|
|
const int winWidth = int(${f});
|
|
|
|
// Compute bounds for where in dy we will look
|
|
float startRLerp = floor(float(r) * invHeightScale);
|
|
int startDyR = int(floor(startRLerp - float(winHeight / 2)));
|
|
|
|
float startCLerp = floor(float(c) * invWidthScale);
|
|
int startDyC = int(floor(startCLerp - float(winWidth / 2)));
|
|
|
|
// Loop over dy
|
|
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
|
|
int dyR = dyROffset + startDyR;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyR < 0 || dyR >= ${a}) {
|
|
continue;
|
|
}
|
|
|
|
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
|
|
int dyC = dyCOffset + startDyC;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyC < 0 || dyC >= ${o}) {
|
|
continue;
|
|
}
|
|
|
|
float sourceFracRow =
|
|
float(${i[0]}) *
|
|
(float(dyR) / float(${l[0]}));
|
|
|
|
float sourceFracCol =
|
|
float(${i[1]}) *
|
|
(float(dyC) / float(${l[1]}));
|
|
|
|
int sourceNearestRow = int(min(
|
|
float(int(${s}) - 1),
|
|
${n} ? float(round(sourceFracRow)) :
|
|
float(floor(sourceFracRow))));
|
|
|
|
int sourceNearestCol = int(min(
|
|
float(int(${r}) - 1),
|
|
${n} ? float(round(sourceFracCol)) :
|
|
float(floor(sourceFracCol))));
|
|
|
|
if (r == sourceNearestRow && c == sourceNearestCol) {
|
|
accumulator += getDy(b, dyR, dyC, d);
|
|
}
|
|
}
|
|
}
|
|
// End loop over dy
|
|
|
|
setOutput(accumulator);
|
|
}
|
|
`}};function dte(e){let{inputs:t,backend:n,attrs:s}=e,{images:r,dy:a}=t,{alignCorners:o}=s,i=new cte(a.shape,r.shape,o);return n.runWebGLProgram(i,[a],a.dtype)}var hte={kernelName:uh,backendName:"webgl",kernelFunc:dte},pte=class{constructor(e,t){this.variableNames=["x"];let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);if(this.outputShape=e,n===1){this.userCode=`
|
|
void main() {
|
|
int coord = getOutputCoords();
|
|
setOutput(getX(${e[0]} - coord - 1));
|
|
}
|
|
`;return}let s=o=>t.indexOf(o)!==-1&&e[o]!==1?`${e[o]} - coords[${o}] - 1`:`coords[${o}]`,r=e.map((o,i)=>s(i)).join(","),a=ct(n);this.userCode=`
|
|
void main() {
|
|
${a} coords = getOutputCoords();
|
|
setOutput(getX(${r}));
|
|
}
|
|
`}},fte=class{constructor(e,t){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0;let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);this.outputShape=e;let s=vn("rc",n),r=`${s[n-1]} + 1 < ${this.outputShape[n-1]}`,a=`${s[n-2]} + 1 < ${this.outputShape[n-2]}`,o=ct(n);n===1?this.userCode=`
|
|
void main(){
|
|
int rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result.r = getChannel(getX(${e[0]} - rc - 1),
|
|
${e[0]} - rc - 1);
|
|
if(${r}){
|
|
result.g = getChannel(getX(${e[0]} - (rc + 1) - 1),
|
|
${e[0]} - (rc + 1) - 1);
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`:this.userCode=`
|
|
void main() {
|
|
${o} rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result.r = ${i(s.slice())};
|
|
if(${r}){
|
|
result.g = ${l(s.slice())};
|
|
}
|
|
if(${a}) {
|
|
result.b = ${u(s.slice())};
|
|
if(${r}) {
|
|
result.a = ${c(s.slice())};
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`;function i(p){return d(p)}function l(p){return p[n-1]="("+p[n-1]+" + 1)",d(p)}function u(p){return p[n-2]="("+p[n-2]+" + 1)",d(p)}function c(p){return p[n-1]="("+p[n-1]+" + 1)",p[n-2]="("+p[n-2]+" + 1)",d(p)}function d(p){let f=e.map((g,y)=>h(y,p)),m=f.join(","),A=f.slice(-2).join(",");return`getChannel(getX(${m}), vec2(${A}))`}function h(p,f){return t.indexOf(p)!==-1&&e[p]!==1?`${e[p]} - ${f[p]} - 1`:`${f[p]}`}}};function mte(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dims:a}=s,o=r.shape.length,i=I.parseAxisParam(a,r.shape);if(o===0)return qn({inputs:{x:r},backend:n});let l=ee().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new fte(r.shape,i):new pte(r.shape,i);return n.runWebGLProgram(l,[r],r.dtype)}var Ate={kernelName:Qa,backendName:"webgl",kernelFunc:mte},gte=class{constructor(e,t){this.variableNames=["Image"],this.outputShape=[],this.customUniforms=[{name:"params",type:"vec4"}];let n=e[1],s=e[2];this.outputShape=e;let r="";typeof t=="number"?r=`float outputValue = ${t.toFixed(2)};`:r=`
|
|
vec3 fill = vec3(${t.join(",")});
|
|
float outputValue = fill[coords[3]];`,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int x = coords[2];
|
|
int y = coords[1];
|
|
float coordXFloat = (float(x) - params[0]) * params[3] -
|
|
(float(y) - params[1]) * params[2];
|
|
float coordYFloat = (float(x) - params[0]) * params[2] +
|
|
(float(y) - params[1]) * params[3];
|
|
int coordX = int(round(coordXFloat + params[0]));
|
|
int coordY = int(round(coordYFloat + params[1]));
|
|
${r}
|
|
if(coordX >= 0 && coordX < ${s} && coordY >= 0 && coordY < ${n}) {
|
|
outputValue = getImage(coords[0], coordY, coordX, coords[3]);
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}},yte={kernelName:hl,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:s}=e,{radians:r,fillValue:a,center:o}=t,i=n,l=new gte(s.shape,a),[u,c]=$.getImageCenter(o,s.shape[1],s.shape[2]),d=[[u,c,Math.sin(r),Math.cos(r)]];return i.runWebGLProgram(l,[s],s.dtype,d)}},xte=`
|
|
// OpenGL ES does not support round function.
|
|
// The algorithm is based on banker's rounding.
|
|
float base = floor(x);
|
|
if ((x - base) < 0.5) {
|
|
return floor(x);
|
|
} else if ((x - base) > 0.5) {
|
|
return ceil(x);
|
|
} else {
|
|
if (mod(base, 2.0) == 0.0) {
|
|
return base;
|
|
} else {
|
|
return base + 1.0;
|
|
}
|
|
}
|
|
`,bte=Ze({opSnippet:xte}),vte={kernelName:eo,backendName:"webgl",kernelFunc:bte},wte="return inversesqrt(x);",kte=Ze({opSnippet:wte,cpuKernelImpl:Jq}),Ite={kernelName:to,backendName:"webgl",kernelFunc:kte},b4=class{constructor(e,t,n,s,r,a,o=!0){this.variableNames=["updates","indices","defaultValue"],this.outputShape=a;let i=ct(r.length),l=ct(a.length),u="";n===1?u="i":n===2&&(u="i, j");let c=`getIndices(${u})`,d="";s===1?d="i":s===2&&(d="i, coords[1]");let h=`getUpdates(${d})`,p=t>1?"strides[j]":"strides";this.userCode=`
|
|
${i} strides = ${i}(${r});
|
|
|
|
void main() {
|
|
${l} coords = getOutputCoords();
|
|
float sum = 0.0;
|
|
bool found = false;
|
|
for (int i = 0; i < ${e}; i++) {
|
|
int flattenedIndex = 0;
|
|
for (int j = 0; j < ${t}; j++) {
|
|
int index = round(${c});
|
|
flattenedIndex += index * ${p};
|
|
}
|
|
if (flattenedIndex == coords[0]) {
|
|
sum += ${h};
|
|
found = true;
|
|
}
|
|
}
|
|
setOutput(mix(getDefaultValue(), sum, float(found)));
|
|
}
|
|
`}};function Ste(e){let{inputs:t,backend:n,attrs:s}=e,{indices:r,updates:a}=t,{shape:o}=s,{sliceRank:i,numUpdates:l,sliceSize:u,strides:c,outputSize:d}=$.calculateShapes(a,r,o),h=[d/u,u];if(d===0)return n.makeTensorInfo(o,r.dtype);let p=ye({inputs:{x:r},backend:n,attrs:{shape:[l,i]}}),f=ye({inputs:{x:a},backend:n,attrs:{shape:[l,u]}}),m=n.makeTensorInfo([],"float32",new Float32Array([0])),A=new b4(l,i,p.shape.length,f.shape.length,c,h),g=n.runWebGLProgram(A,[f,p,m],f.dtype),y=ye({inputs:{x:g},backend:n,attrs:{shape:o}});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(g),n.disposeIntermediateTensorInfo(m),y}var Cte={kernelName:Ji,backendName:"webgl",kernelFunc:Ste},Tte=class{constructor(e,t,n){this.variableNames=["c","a","b"],this.outputShape=t;let s,r;if(n>4)throw Error(`Where for rank ${n} is not yet supported`);if(n===1)r="resRC",s="resRC";else{let o=["resRC.x","resRC.y","resRC.z","resRC.w"],i=[],l=[];for(let u=0;u<t.length;u++)l.push(`${o[u]}`),u<e&&i.push(`${o[u]}`);s=i.join(),r=l.join()}let a=ct(n);this.userCode=`
|
|
void main() {
|
|
${a} resRC = getOutputCoords();
|
|
float cVal = getC(${s});
|
|
if (cVal >= 1.0) {
|
|
setOutput(getA(${r}));
|
|
} else {
|
|
setOutput(getB(${r}));
|
|
}
|
|
}
|
|
`}};function Nte(e){let{inputs:t,backend:n}=e,{condition:s,t:r,e:a}=t,o=new Tte(s.shape.length,r.shape,r.shape.length);return n.runWebGLProgram(o,[s,r,a],bs(r.dtype,a.dtype))}var Ete={kernelName:Qi,backendName:"webgl",kernelFunc:Nte},Rte=`
|
|
// Stable and Attracting Fixed Point (0, 1) for Normalized Weights.
|
|
// see: https://arxiv.org/abs/1706.02515
|
|
float scaleAlpha = ${$.SELU_SCALEALPHA};
|
|
float scale = ${$.SELU_SCALE};
|
|
return (x >= 0.0) ? scale * x : scaleAlpha * (exp(x) - 1.0);
|
|
`,_te=Ze({opSnippet:Rte}),$te={kernelName:el,backendName:"webgl",kernelFunc:_te},Fte="return 1.0 / (1.0 + exp(-1.0 * x));",Dte=Ze({opSnippet:Fte}),Ote={kernelName:so,backendName:"webgl",kernelFunc:Dte},Pte=`
|
|
if (isnan(x)) { return 0.0; }
|
|
return sign(x);
|
|
`,Mte=Ze({opSnippet:Pte}),zte={kernelName:sl,backendName:"webgl",kernelFunc:Mte},Lte=D6+`
|
|
return sin(x);
|
|
`,Bte=Ze({opSnippet:Lte}),Wte={kernelName:no,backendName:"webgl",kernelFunc:Bte},Vte=`
|
|
float e2x = exp(x);
|
|
return (e2x - 1.0 / e2x) / 2.0;
|
|
`,Ute=Ze({opSnippet:Vte}),Hte={kernelName:nl,backendName:"webgl",kernelFunc:Ute},Gte=`
|
|
float epsilon = 1.1920928955078125e-7;
|
|
float threshold = log(epsilon) + 2.0;
|
|
|
|
bool too_large = x > -threshold;
|
|
bool too_small = x < threshold;
|
|
|
|
float result;
|
|
float exp_x = exp(x);
|
|
|
|
if (too_large){
|
|
result = x;
|
|
}
|
|
else if (too_small){
|
|
result = exp_x;
|
|
}
|
|
else{
|
|
result = log(exp_x + 1.0);
|
|
}
|
|
return result;
|
|
`,jte=Ze({opSnippet:Gte}),qte={kernelName:rl,backendName:"webgl",kernelFunc:jte},Xte=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,paddings:o}=s;I.assert(r.shape.length<=4,()=>"spaceToBatchND for rank > 4 with a WebGL backend not implemented yet");let i=a.reduce((g,y)=>g*y),l=[[0,0]];l.push(...o);for(let g=1+a.length;g<r.shape.length;++g)l.push([0,0]);let u=[],c=y4({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),d=$.getReshaped(c.shape,a,i,!1),h=$.getPermuted(d.length,a.length,!1),p=$.getReshapedPermuted(c.shape,a,i,!1),f=ye({inputs:{x:c},backend:n,attrs:{shape:d}}),m=wn({inputs:{x:f},backend:n,attrs:{perm:h}}),A=ye({inputs:{x:m},backend:n,attrs:{shape:p}});return u.push(c),u.push(f),u.push(m),u.forEach(g=>n.disposeIntermediateTensorInfo(g)),A},Kte={kernelName:al,backendName:"webgl",kernelFunc:Xte};function Zte(e){let{inputs:t,backend:n}=e,{indices:s,values:r,denseShape:a,defaultValue:o}=t;if(a.shape.length!==1)throw new Error(`Dense shape must be a vector, saw:
|
|
${a.shape}`);if(s.shape.length!==2)throw new Error(`Indices must be a matrix, saw:
|
|
${s.shape}`);if(r.shape.length!==1)throw new Error(`Values must be a vector, saw:
|
|
${r.shape}`);if(o.shape.length!==0)throw new Error(`Default value must be a scalar, saw:
|
|
${o.shape}`);let i=n.readSync(s.dataId),l=n.readSync(r.dataId),u=n.readSync(a.dataId),c=n.readSync(o.dataId)[0],[d,h,p,f,m]=eX(i,s.shape,s.dtype,l,r.dtype,u,c);return[n.makeTensorInfo(h,s.dtype,d),n.makeTensorInfo([h[0]],r.dtype,p),n.makeTensorInfo([f.length],"bool",new Uint8Array(f.map(A=>Number(A)))),n.makeTensorInfo([m.length],s.dtype,new Int32Array(m))]}var Yte={kernelName:dh,backendName:"webgl",kernelFunc:Zte};function Jte(e){let{inputs:t,backend:n}=e,{inputIndices:s,inputShape:r,newShape:a}=t;if(s.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape ${s.shape}`);if(r.shape.length!==1)throw new Error(`Input shape should be a vector but received shape ${r.shape}`);if(a.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${a.shape}`);let o=Array.from(n.readSync(r.dataId)),i=n.readSync(s.dataId),l=Array.from(n.readSync(a.dataId)),[u,c,d]=tX(i,s.shape,s.dtype,o,l);return[n.makeTensorInfo(c,s.dtype,u),n.makeTensorInfo([d.length],a.dtype,new Int32Array(d))]}var Qte={kernelName:hh,backendName:"webgl",kernelFunc:Jte};function ene(e){let{inputs:t,backend:n}=e,{data:s,indices:r,segmentIds:a}=t;if(s.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
|
|
${r.shape}`);if(a.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
|
|
${a.shape}`);let o=n.readSync(s.dataId),i=n.readSync(r.dataId),l=n.readSync(a.dataId),[u,c]=v6(o,s.shape,s.dtype,i,l,!0);return n.makeTensorInfo(c,s.dtype,u)}var tne={kernelName:ph,backendName:"webgl",kernelFunc:ene};function nne(e){let{inputs:t,backend:n}=e,{data:s,indices:r,segmentIds:a}=t;if(s.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
|
|
${r.shape}`);if(a.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
|
|
${a.shape}`);let o=n.readSync(s.dataId),i=n.readSync(r.dataId),l=n.readSync(a.dataId),[u,c]=v6(o,s.shape,s.dtype,i,l);return n.makeTensorInfo(c,s.dtype,u)}var sne={kernelName:fh,backendName:"webgl",kernelFunc:nne};function rne(e){let{inputs:t,backend:n,attrs:s}=e,{sparseIndices:r,sparseValues:a,defaultValue:o}=t,{outputShape:i}=s,{sliceRank:l,numUpdates:u,strides:c,outputSize:d}=$.calculateShapes(a,r,i),h=!1,p=new b4(u,l,r.shape.length,a.shape.length,c,[d,1],h),f=n.runWebGLProgram(p,[a,r,o],a.dtype),m=ye({inputs:{x:f},backend:n,attrs:{shape:i}});return n.disposeIntermediateTensorInfo(f),m}var ane={kernelName:mh,backendName:"webgl",kernelFunc:rne};function one(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{numOrSizeSplits:a,axis:o}=s,i=I.parseAxisParam(o,r.shape)[0],l=$.prepareSplitSize(r,a,i),u=r.shape.length,c=new Array(u).fill(0),d=r.shape.slice();return l.map(h=>{let p=[...d];p[i]=h;let f=eu({inputs:{x:r},backend:n,attrs:{begin:c,size:p}});return c[i]+=h,f})}var ine={kernelName:ol,backendName:"webgl",kernelFunc:one},lne="return sqrt(x);",une=Ze({opSnippet:lne}),cne={kernelName:ro,backendName:"webgl",kernelFunc:une},dne="return x * x;",hne=Ze({opSnippet:dne}),pne={kernelName:zu,backendName:"webgl",kernelFunc:hne},v4="return (a - b) * (a - b);",fne=rn({opSnippet:v4,packedOpSnippet:v4}),mne={kernelName:io,backendName:"webgl",kernelFunc:fne};function Ane({inputs:e,attrs:t,backend:n}){let{x:s}=e,r=Bs+`
|
|
return x > 0.0 ? 1.0 : float(${t.alpha});
|
|
`,a=new sa(s.shape,r);return n.runWebGLProgram(a,[s],s.dtype)}var gne={kernelName:Mr,backendName:"webgl",kernelFunc:Ane},yne=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=n;let s=n.length,r=ct(n.length),a=ct(n.length),o="";if(s===1)o="coords * strides + begin";else{let i=0;o=n.map((l,u)=>(i++,n.length===1?`coords * strides[${u}] + begin[${u}]`:`coords[${i-1}] * strides[${u}] + begin[${u}]`)).join(",")}this.userCode=`
|
|
${r} begin = ${r}(${e});
|
|
${r} strides = ${r}(${t});
|
|
|
|
void main() {
|
|
${a} coords = getOutputCoords();
|
|
setOutput(getX(${o}));
|
|
}
|
|
`}};function xne(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,end:o,strides:i,beginMask:l,endMask:u,ellipsisMask:c,newAxisMask:d,shrinkAxisMask:h}=s,{nonStrided:p,$begin:f,$strides:m,size:A,newShape:g,outShape:y}=An.sliceInfo(r.shape,a,o,i,l,u,c,d,h),x=ye({inputs:{x:r},backend:n,attrs:{shape:g}}),b;if(p){let k=eu({inputs:{x},backend:n,attrs:{begin:f,size:A}});b=ye({inputs:{x:k},backend:n,attrs:{shape:y}}),n.disposeIntermediateTensorInfo(k)}else if(y.some(k=>k===0))b=n.makeTensorInfo(y,r.dtype,[]);else if(n.shouldExecuteOnCPU([x])){let C=n.texData.get(x.dataId).values,E=Be(x.shape,x.dtype,C),M=nX(y,E,m,f);b=n.makeTensorInfo(y,x.dtype,M.values)}else{let w=new yne(f,m,y);b=n.runWebGLProgram(w,[x],x.dtype)}let v=ye({inputs:{x:b},backend:n,attrs:{shape:y}});return n.disposeIntermediateTensorInfo(x),n.disposeIntermediateTensorInfo(b),v}var bne={kernelName:il,backendName:"webgl",kernelFunc:xne};function vne(e){let{inputs:t,backend:n,attrs:s}=e,{separator:r,nGramWidths:a,leftPad:o,rightPad:i,padWidth:l,preserveShortSequences:u}=s,{data:c,dataSplits:d}=t,h=n.readSync(c.dataId),p=n.readSync(d.dataId),[f,m]=sX(h,p,r,a,o,i,l,u);return[n.makeTensorInfo([f.length],"string",f),n.makeTensorInfo(d.shape,"int32",m)]}var wne={kernelName:Ah,backendName:"webgl",kernelFunc:vne};function kne(e){let{inputs:t,backend:n,attrs:s}=e,{skipEmpty:r}=s,{input:a,delimiter:o}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(a.shape.length!==1)throw new Error(`Input must be a vector, got shape: ${a.shape}`);if(o.shape.length!==0)throw new Error(`Delimiter must be a scalar, got shape: ${o.shape}`);let i=n.readSync(a.dataId),l=n.readSync(o.dataId)[0],[u,c,d]=rX(i,l,r),h=c.length;return[n.makeTensorInfo([h,2],"int32",u),n.makeTensorInfo([h],"string",c),n.makeTensorInfo([2],"int32",new Int32Array(d))]}var Ine={kernelName:gh,backendName:"webgl",kernelFunc:kne};function Sne(e){let{inputs:t,backend:n,attrs:s}=e,{numBuckets:r}=s,{input:a}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(r<=0)throw new Error("Number of buckets must be at least 1");let o=n.readSync(a.dataId),i=aX(o,r);return n.makeTensorInfo(a.shape,"int32",i)}var Cne={kernelName:yh,backendName:"webgl",kernelFunc:Sne},Tne="return tan(x);",Nne=Ze({opSnippet:Tne}),Ene={kernelName:uo,backendName:"webgl",kernelFunc:Nne},Rne=`
|
|
float e2x = exp(-2.0 * abs(x));
|
|
return sign(x) * (1.0 - e2x) / (1.0 + e2x);
|
|
`,_ne=Ze({opSnippet:Rne}),$ne={kernelName:co,backendName:"webgl",kernelFunc:_ne},Fne=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let a=0;a<n.length;a++)n[a]=e[a]*t[a];this.outputShape=n,this.rank=n.length;let s=ct(this.rank),r=Dne(e);this.userCode=`
|
|
void main() {
|
|
${s} resRC = getOutputCoords();
|
|
setOutput(getA(${r}));
|
|
}
|
|
`}};function Dne(e){let t=e.length;if(t>5)throw Error(`Tile for rank ${t} is not yet supported`);if(t===1)return`imod(resRC, ${e[0]})`;let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u"],s=[];for(let r=0;r<e.length;r++)s.push(`imod(${n[r]}, ${e[r]})`);return s.join()}function w4(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reps:a}=s;if(r.dtype==="string"||r.shape.length>5){let l=n.readSync(r.dataId),u=r.dtype==="string"?l.map(h=>I.decodeString(h)):l,c=Be(r.shape,r.dtype,u),d=iX(c,a);return n.makeTensorInfo(d.shape,d.dtype,d.values)}let o=new Fne(r.shape,a);return n.runWebGLProgram(o,[r],r.dtype)}var One={kernelName:Pr,backendName:"webgl",kernelFunc:w4},Pne=class{constructor(e){this.variableNames=["x","indices"],this.customUniforms=[{name:"n",type:"int"},{name:"firstPass",type:"int"},{name:"negativeInf",type:"float"},{name:"dir",type:"int"},{name:"inc",type:"int"}],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int elemIdx = coords[1];
|
|
|
|
// We compare elements pair-wise within a group of size 2 * inc.
|
|
// The comparing rule for each group alternates between ascending
|
|
// and descending. Within each group, we compare each pair at
|
|
// positions i and i+inc. To decide whether an element at position i
|
|
// is x0 or x1, we mod it by 2 * inc, if the result is smaller than
|
|
// inc, it is in the first half of the group, we denote it as x0,
|
|
// otherwise we denote it as x1.
|
|
// For example, as shown in the Bitonic top K paper referenced above,
|
|
// Figure5(a) shows that element[1] is in the
|
|
// second half of the group when group size is 2, but it is in the
|
|
// first half of the group when group size is 4.
|
|
|
|
bool isFirstInPair = imod(elemIdx, 2 * inc) < inc;
|
|
int i = isFirstInPair ? elemIdx : elemIdx - inc;
|
|
|
|
int i0 = firstPass == 1 ? i : int(getIndices(batch, i));
|
|
int i1 = firstPass == 1 ? i + inc : int(getIndices(batch, i + inc));
|
|
float x0 = i0 < n ? getX(batch, i0) : negativeInf;
|
|
float x1 = i1 < n ? getX(batch, i1) : negativeInf;
|
|
|
|
// Denotes which direction indices are in (ascending or descending).
|
|
bool reverse = imod(elemIdx, 2 * dir) >= dir;
|
|
bool isGreater = x0 > x1 || (x0 == x1 && i1 > i0);
|
|
if (reverse == isGreater) { // Elements in opposite order of direction
|
|
int iTemp = i0;
|
|
i0 = i1;
|
|
i1 = iTemp;
|
|
}
|
|
if (isFirstInPair) {
|
|
setOutput(float(i0));
|
|
} else {
|
|
setOutput(float(i1));
|
|
}
|
|
}
|
|
`}},Mne=class{constructor(e){this.variableNames=["x","indices"],this.customUniforms=[{name:"n",type:"int"},{name:"firstPass",type:"int"},{name:"k",type:"int"}],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
// Takes max of indices (0, k), (1, k + 1), (2, k + 2) ...
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int elemIdx = coords[1];
|
|
|
|
// The output size is half of the previous size.
|
|
// If the previous sequence is | | | | _ _ _ _ | | | | _ _ _ _ (k=4),
|
|
// we only need to output the indices at positions |, the indices at
|
|
// positions _ can be thrown away, see Figure5(b) After Phase 2
|
|
// (Merge phase) in the Bitonic Top K paper referenced above.
|
|
// For example, the paper shows we only need to output the orange bars.
|
|
// The output sequence should look like this | | | | | | | |.
|
|
// Because the sequence is halved, to map the output index back
|
|
// to the previous sequence to find the corresponding value,
|
|
// we need to double the index. When we double the index,
|
|
// we basically interpolate a position, so 2i looks like
|
|
// | _ | _ | _ | _ | _ | _ | _. We move the | to the first k position
|
|
// of each 2k positions by - elemIdx % k. E.g. for output at
|
|
// index 4,5,6,7, we want to get the corresponding element at
|
|
// original index 8,9,10,11, for output at index 8,9,10,11,
|
|
// we want to get the corresponding element at original index
|
|
// 16,17,18,19, so on and so forth.
|
|
|
|
int i = elemIdx < k ? elemIdx : (elemIdx * 2 - imod(elemIdx, k));
|
|
int i0 = firstPass == 1 ? i : int(getIndices(batch, i));
|
|
int i1 = firstPass == 1 ? i + k : int(getIndices(batch, i + k));
|
|
|
|
float x0 = getX(batch, i0);
|
|
float x1 = i1 < n ? getX(batch, i1) : x0;
|
|
|
|
setOutput(x0 >= x1 ? float(i0) : float(i1));
|
|
}
|
|
`}};function jo(e,t){t!==null&&e.disposeIntermediateTensorInfo(t)}function k4(e){let t=1;for(;t<e;)t*=2;return t}function zne(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{k:a,sorted:o}=s,i=ee().getNumber("TOPK_LAST_DIM_CPU_HANDOFF_SIZE_THRESHOLD"),l=ee().getNumber("TOPK_K_CPU_HANDOFF_THRESHOLD"),u=r.shape,c=u[u.length-1];if(n.shouldExecuteOnCPU([r])||c<i||a>l){let M=n.readSync(r.dataId),[R,_]=lX(M,u,r.dtype,a,o);return[n.makeTensorInfo(R.shape,R.dtype,R.values),n.makeTensorInfo(_.shape,_.dtype,_.values)]}if(a===0)return u[u.length-1]=0,[n.makeTensorInfo(u,r.dtype,[]),n.makeTensorInfo(u,"int32",[])];if(c===1)return[r,vf({attrs:{shape:u,dtype:"int32",value:0},backend:n})];let d=n.texData.get(r.dataId),h=d!==null&&d.isPacked,p=h?n.unpackTensor(r):r,m=I.sizeFromShape(u)/c,A=ye({inputs:{x:p},attrs:{shape:[m,c]},backend:n});h&&jo(n,p);let g=k4(a),y=k4(c),x=null,b=()=>x===null?[A,A]:[A,x],v=(M,R,_)=>{let N=b(),O=new Pne(_),j=[[c],[x===null?1:0],[Number.NEGATIVE_INFINITY],[M],[R]],q=x;x=n.runWebGLProgram(O,N,"int32",j),jo(n,q)};for(let M=1;M<g;M*=2){let R=M*2;for(let _=M;_>=1;_/=2)v(R,_,[m,y])}for(let M=y;M>g;M/=2){let R=b(),_=new Mne([m,M/2]),O=[[c],[x===null?1:0],[g]],W=x;x=n.runWebGLProgram(_,R,"int32",O),jo(n,W);let j=g/2,q=j*2;for(let X=j;X>=1;X/=2)v(q,X,x.shape)}let k=x;x=eu({inputs:{x},backend:n,attrs:{begin:0,size:[m,a]}}),jo(n,k);let w=c4({inputs:{x:A,indices:x},backend:n,attrs:{axis:1,batchDims:1}});jo(n,A);let C=u.slice(0,-1);C.push(a),k=x,x=ye({inputs:{x},attrs:{shape:C},backend:n}),jo(n,k);let E=w;return w=ye({inputs:{x:w},attrs:{shape:C},backend:n}),jo(n,E),[w,x]}var Lne={kernelName:ll,backendName:"webgl",kernelFunc:zne},Bne=class{constructor(e,t,n,s,r,a){this.variableNames=["Image","Transforms"],this.outputShape=a;let o=n==="nearest"?1:2,i;switch(s){case"constant":i=1;break;case"reflect":i=2;break;case"wrap":i=3;break;case"nearest":i=4;break;default:i=1;break}this.userCode=`
|
|
float mapCoord(float outCoord, float len) {
|
|
float inCoord = outCoord;
|
|
if(${i} == 2) {
|
|
if (inCoord < 0.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz2 = 2.0 * len;
|
|
if (inCoord < sz2) {
|
|
inCoord = sz2 * float(int(float(-inCoord / sz2))) +
|
|
inCoord;
|
|
}
|
|
inCoord = inCoord < -len ? inCoord + sz2 : -inCoord - 1.0;
|
|
}
|
|
} else if (inCoord > len - 1.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz2 = 2.0 * len;
|
|
inCoord -= sz2 * float(int(float(inCoord / sz2)));
|
|
if (inCoord >= len) {
|
|
inCoord = sz2 - inCoord - 1.0;
|
|
}
|
|
}
|
|
}
|
|
return clamp(inCoord, 0.0, len - 1.0);
|
|
} else if (${i} == 3) {
|
|
if (inCoord < 0.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz = len - 1.0;
|
|
inCoord += len * (float(int(float(-inCoord / sz))) + 1.0);
|
|
}
|
|
} else if (inCoord > len - 1.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz = len - 1.0;
|
|
inCoord -= len * float(int(float(inCoord / sz)));
|
|
}
|
|
}
|
|
return clamp(inCoord, 0.0, len - 1.0);
|
|
} else if (${i} == 4) {
|
|
return clamp(outCoord, 0.0, len - 1.0);
|
|
} else {
|
|
return outCoord;
|
|
}
|
|
}
|
|
|
|
float readWithFillValue(int batch, int coordY, int coordX,
|
|
int channel) {
|
|
float outputValue;
|
|
if (0 <= coordY && coordY < ${e} && 0 <= coordX && coordX < ${t}) {
|
|
outputValue = getImage(batch, coordY, coordX, channel);
|
|
} else {
|
|
outputValue = float(${r});
|
|
}
|
|
return outputValue;
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
float outputValue;
|
|
int batch = coords[0];
|
|
int x = coords[2];
|
|
int y = coords[1];
|
|
int channel = coords[3];
|
|
float xf = float(x);
|
|
float yf = float(y);
|
|
float a1 = getTransforms(batch, 0);
|
|
float a2 = getTransforms(batch, 1);
|
|
float a3 = getTransforms(batch, 2);
|
|
float b1 = getTransforms(batch, 3);
|
|
float b2 = getTransforms(batch, 4);
|
|
float b3 = getTransforms(batch, 5);
|
|
float c1 = getTransforms(batch, 6);
|
|
float c2 = getTransforms(batch, 7);
|
|
float projection = c1 * xf + c2 * yf + 1.0;
|
|
if (projection == 0.0) {
|
|
outputValue = float(${r});
|
|
} else {
|
|
float inX = (a1 * xf + a2 * yf + a3) / projection;
|
|
float inY = (b1 * xf + b2 * yf + b3) / projection;
|
|
float mapX = mapCoord(inX, float(${t}));
|
|
float mapY = mapCoord(inY, float(${e}));
|
|
|
|
if (${o} == 1) {
|
|
int coordY = int(round(mapY));
|
|
int coordX = int(round(mapX));
|
|
outputValue = readWithFillValue(batch, coordY, coordX,
|
|
channel);
|
|
} else {
|
|
float yFloor = floor(mapY);
|
|
float xFloor = floor(mapX);
|
|
float yCeil = yFloor + 1.0;
|
|
float xCeil = xFloor + 1.0;
|
|
float valueYFloor = (xCeil - mapX) *
|
|
readWithFillValue(batch, int(yFloor), int(xFloor), channel) +
|
|
(mapX - xFloor) *
|
|
readWithFillValue(batch, int(yFloor), int(xCeil), channel);
|
|
float valueYCeil = (xCeil - mapX) *
|
|
readWithFillValue(batch, int(yCeil), int(xFloor), channel) +
|
|
(mapX - xFloor) *
|
|
readWithFillValue(batch, int(yCeil), int(xCeil), channel);
|
|
outputValue = (yCeil - mapY) * valueYFloor +
|
|
(mapY - yFloor) * valueYCeil;
|
|
}
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}};function Wne(e){let{inputs:t,backend:n,attrs:s}=e,{image:r,transforms:a}=t,{interpolation:o,fillMode:i,fillValue:l,outputShape:u}=s,[c,d,h,p]=r.shape,[f,m]=u!=null?u:[d,h],A=[c,f,m,p],g=new Bne(d,h,o,i,l,A);return n.runWebGLProgram(g,[r,a],"float32")}var Vne={kernelName:ul,backendName:"webgl",kernelFunc:Wne};function Une(e){let{inputs:t,attrs:n,backend:s}=e,{axis:r}=n,{x:a}=t;jl(a,"unique"),console.warn("WARNING: ","UI might be locked temporarily as data is being downloaded");let o=s.readSync(a.dataId),{outputValues:i,outputShape:l,indices:u}=uX(o,r,a.shape,a.dtype);return[s.makeTensorInfo(l,a.dtype,i),s.makeTensorInfo([u.length],"int32",u)]}var Hne={kernelName:xh,backendName:"webgl",kernelFunc:Une};function Gne(e){let{inputs:t,backend:n,attrs:s}=e,{value:r}=t,{axis:a}=s;a<0&&(a+=r.shape.length);let o=r,i=o.shape.length,l=r.shape[a],u=new Array(i-1),c=0;for(let m=0;m<i;m++)m!==a&&(u[c++]=o.shape[m]);let d=[],h=new Array(i).fill(0),p=o.shape.slice();p[a]=1;let f=new Array(l);for(let m=0;m<f.length;m++){h[a]=m;let A=eu({inputs:{x:o},backend:n,attrs:{begin:h,size:p}}),g=ye({inputs:{x:A},backend:n,attrs:{shape:u}});f[m]=g,d.push(A)}return d.forEach(m=>n.disposeIntermediateTensorInfo(m)),f}var jne={kernelName:cl,backendName:"webgl",kernelFunc:Gne},qne=class{constructor(e,t){this.variableNames=["x","segmentIds"];let n=e.windowSize,s=e.batchSize,r=e.inSize,a=e.numSegments,o=a*Math.ceil(r/n);this.outputShape=[s,o];let i="0.0",l="sumValue",u=Math.floor(n/4)*4,c=n%4,d=`
|
|
sumValue += dot(values, segFilter);
|
|
`,h="";r%n>0&&(h=`
|
|
if (inIdx < 0 || inIdx >= ${r}) {
|
|
return initializationValue;
|
|
}
|
|
`);let p="";r%n>0&&(p=`
|
|
if (inIdx < 0 || inIdx >= ${r}) {
|
|
return -1.0;
|
|
}
|
|
`),this.userCode=`
|
|
const float initializationValue = ${i};
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${h}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
float getSegmentIdAtIndex(int inIdx) {
|
|
${p}
|
|
return getSegmentIds(inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = int(floor(float(outIdx) / float(
|
|
${a})) * float(${n}));
|
|
int currentSeg = int(mod(float(outIdx), float(${a})));
|
|
|
|
float sumValue = 0.0;
|
|
|
|
for (int i = 0; i < ${u}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 3)) == currentSeg ? 1 : 0
|
|
);
|
|
|
|
${d}
|
|
}
|
|
|
|
int inIdx = inOffset + ${u};
|
|
if (${c===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
int inIdxSeg = int(getSegmentIdAtIndex(inIdx));
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
0,
|
|
0,
|
|
0
|
|
);
|
|
|
|
${d}
|
|
} else if (${c===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
0,
|
|
0
|
|
);
|
|
|
|
${d}
|
|
} else if (${c===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
initializationValue
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
|
|
0
|
|
);
|
|
|
|
${d}
|
|
}
|
|
setOutput(${l});
|
|
}
|
|
`}};function Xne(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,segmentIds:a}=t,{numSegments:o}=s,i=r.shape.length,l=[],u=0,c=$.getAxesPermutation([u],i),d=r;c!=null&&(d=wn({inputs:{x:r},backend:n,attrs:{perm:c}}),l.push(d),u=$.getInnerMostAxes(1,i)[0]);let h=$.segment_util.computeOutShape(d.shape,u,o),p=I.sizeFromShape([d.shape[u]]),f=ye({inputs:{x:d},backend:n,attrs:{shape:[-1,p]}});l.push(f);let m=Ch(r.dtype),A=(b,v,k,w,C)=>{let E=b.shape[0],M=b.shape[1],R=$.segment_util.segOpComputeOptimalWindowSize(M,C),_={windowSize:R,inSize:M,batchSize:E,numSegments:C},N=new qne(_,v),O=n.compileAndRun(N,[b,k],w);if(l.push(O),O.shape[1]===C)return O;let W=x4({backend:n,attrs:{start:0,stop:C,step:1,dtype:"float32"}}),j=w4({inputs:{x:W},backend:n,attrs:{reps:[M/R]}});return l.push(W),l.push(j),A(O,v,j,w,C)},g=A(f,"unsortedSegmentSum",a,m,o),y=ye({inputs:{x:g},backend:n,attrs:{shape:h}}),x=y;if(c!=null){l.push(y);let b=$.getUndoAxesPermutation(c);x=wn({inputs:{x},backend:n,attrs:{perm:b}})}return l.forEach(b=>n.disposeIntermediateTensorInfo(b)),x}var Kne={kernelName:Lu,backendName:"webgl",kernelFunc:Xne},Zne=[wQ,SQ,lK,cK,pK,AK,yK,vK,kK,SK,EK,_K,DK,MK,HK,BK,qK,YK,KK,tZ,sZ,aZ,uZ,AZ,yZ,IZ,CZ,RZ,FZ,UX,zZ,XZ,ZZ,VZ,eY,nY,JZ,aY,lY,dY,pY,mY,yY,IY,CY,bY,EY,$Y,DY,zY,VY,jY,KY,ZY,YY,QY,tJ,sJ,aJ,iJ,dJ,fJ,gJ,xJ,wJ,SJ,EJ,FJ,VX,OJ,PZ,zJ,WJ,HJ,GX,XJ,JJ,eQ,iQ,rQ,dQ,fQ,yQ,TQ,OQ,FQ,LQ,WQ,UQ,_Q,GQ,qQ,YQ,tee,aee,pee,ZX,mee,yee,vee,Iee,bZ,Tee,Eee,_ee,Dee,zee,qX,Bee,Wee,vZ,uee,Hee,Jee,Xee,JX,nte,ate,ute,hte,Ate,yte,vte,Ite,Cte,Ete,$te,Ote,zte,Wte,Hte,fZ,dee,qte,Kte,Yte,Qte,tne,sne,ane,ine,cne,pne,mne,gne,bne,wne,Ine,Cne,cee,aK,Ene,$ne,One,Lne,Vne,oK,Hne,jne,Kne,Nee];for(let e of Zne)Ao(e);var $n;(function(e){e[e.float32=0]="float32",e[e.int32=1]="int32",e[e.bool=2]="bool",e[e.string=3]="string",e[e.complex64=4]="complex64"})($n||($n={}));var jc;(function(e){e[e.linear=0]="linear",e[e.relu=1]="relu",e[e.relu6=2]="relu6",e[e.prelu=3]="prelu",e[e.leakyrelu=4]="leakyrelu",e[e.sigmoid=5]="sigmoid"})(jc||(jc={}));var I4;function Yne(e){I4=e.wasm.cwrap(po,null,["number","array","number","number","array","number","number","number","number","number","number","number","number"])}function Jne(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a,bias:o,preluActivationWeights:i}=t;if(r.dtype!=="float32"||a.dtype!=="float32")throw new Error("_FusedMatMul for non non-float32 tensors not yet supported.");let{transposeA:l,transposeB:u,activation:c,leakyreluAlpha:d}=s,h=n.dataIdMap.get(r.dataId).id,p=n.dataIdMap.get(a.dataId).id,f=0;if(o!=null){let C=n.dataIdMap.get(o.dataId);if(C.shape.length!==1)throw new Error(`_FusedMatMul only supports rank-1 bias but got rank ${C.shape.length}.`);f=C.id}let m=i==null?0:n.dataIdMap.get(i.dataId).id,A=jc[c];if(A==null)throw new Error(`${c} activation not yet supported for FusedConv2D in the wasm backend.`);let g=l?r.shape[2]:r.shape[1],y=u?a.shape[1]:a.shape[2],x=r.shape[0],b=n.makeOutput([x,g,y],r.dtype),v=n.dataIdMap.get(b.dataId).id,k=new Uint8Array(new Int32Array(r.shape).buffer),w=new Uint8Array(new Int32Array(a.shape).buffer);return I4(h,k,r.shape.length,p,w,a.shape.length,l,u,A,f,m,d||0,v),b}var Qne={kernelName:po,backendName:"wasm",setupFunc:Yne,kernelFunc:Jne};function un(e){let t;function n(r){t=r.wasm.cwrap(e,null,["number","number"])}function s(r){let{backend:a,inputs:{x:o}}=r,i=a.dataIdMap.get(o.dataId).id,l=a.makeOutput(o.shape,o.dtype),u=a.dataIdMap.get(l.dataId).id;return I.sizeFromShape(l.shape)===0||t(i,u),l}return{kernelName:e,backendName:"wasm",setupFunc:n,kernelFunc:s}}var ese=un(di);function kn(e,t,n){let s;function r(o){s=o.wasm.cwrap(e,null,["number","array","number","number","array","number","number","number"])}function a(o){let{backend:i,inputs:l}=o,{a:u,b:c}=l,d=i.dataIdMap.get(u.dataId).id,h=i.dataIdMap.get(c.dataId).id,p=n!=null?n:u.dtype,f=$.assertAndGetBroadcastShape(u.shape,c.shape),m=i.makeOutput(f,p);if(I.sizeFromShape(f)===0)return m;let A=new Uint8Array(new Int32Array(u.shape).buffer),g=new Uint8Array(new Int32Array(c.shape).buffer),y=i.dataIdMap.get(m.dataId).id,x=()=>s(d,A,u.shape.length,h,g,c.shape.length,$n[u.dtype],y);if(t&&u.dtype==="float32")return x(),m;let b=$.getBroadcastDims(u.shape,f),v=$.getBroadcastDims(c.shape,f),k=b.every((C,E)=>C===E),w=v.every((C,E)=>C===E);if(k&&w)return x(),m;throw new Error(`Broadcasting along outer dims is not yet supported for ${u.dtype} ${e}.`)}return{kernelName:e,backendName:"wasm",setupFunc:r,kernelFunc:a}}var tse=!0,nse=kn(Dr,tse),S4;function sse(e){S4=e.wasm.cwrap(ga,null,["array","number","number","number"])}function rse(e){let{inputs:t,backend:n}=e,s=n.makeOutput(t[0].shape,t[0].dtype);if(I.sizeFromShape(s.shape)===0)return s;let r=t.map(i=>n.dataIdMap.get(i.dataId).id),a=new Uint8Array(new Int32Array(r).buffer),o=n.dataIdMap.get(s.dataId).id;return S4(a,r.length,$n[s.dtype],o),s}var ase={kernelName:ga,backendName:"wasm",setupFunc:sse,kernelFunc:rse};function kf(e){let{inputs:{x:t},backend:n}=e,s=n.makeOutput(t.shape,t.dtype),r=n.typedArrayFromHeap(t);return n.typedArrayFromHeap(s).set(r),s}var ose={kernelName:Oa,backendName:"wasm",kernelFunc:kf},C4;function ise(e){C4=e.wasm.cwrap(ho,null,["number","array","number","number","number","array","number"])}function su(e){let{inputs:t,backend:n,attrs:s}=e,[r,a]=use(t.x.shape,s.perm),o=!0;for(let f=0;f<a.length;f++)a[f]!==f&&(o=!1);let i=lse(t.x.shape,s.perm),l={dataId:t.x.dataId,shape:r,dtype:t.x.dtype};if(o){let f=kf({inputs:t,backend:n});return f.shape=i,f}let u=n.makeOutput(i,l.dtype),c=n.dataIdMap.get(l.dataId).id,d=n.dataIdMap.get(u.dataId).id,h=new Uint8Array(new Int32Array(a).buffer),p=new Uint8Array(new Int32Array(l.shape).buffer);return C4(c,p,l.shape.length,$n[l.dtype],d,h,a.length),u}function lse(e,t){let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[t[s]];return n}function use(e,t){let n=[],s=[];for(let r=0;r<e.length;++r)e[r]!==1&&n.push(e[r]),e[t[r]]!==1&&s.push(t[r]);for(let r=0;r<s.length;++r){let a=-1;for(let o=0;o<s.length;++o)s[o]>=r&&(a===-1||s[a]>s[o])&&(a=o);s[a]=r}return[n,s]}var cse={kernelName:ho,backendName:"wasm",kernelFunc:su,setupFunc:ise};function aa(e,t,n){let s=e.shape,r=e.shape.length,a=I.parseAxisParam(t,s),o=a,i=$.getAxesPermutation(o,r),l=null,u=!1;if(i!=null){let c=new Array(r);for(let p=0;p<c.length;p++)c[p]=s[i[p]];o=$.getInnerMostAxes(o.length,r),l=su({inputs:{x:e},attrs:{perm:i},backend:n});let d=n.dataIdMap.get(e.dataId).id;n.dataIdMap.get(l.dataId).id!==d&&(u=!0)}return{transposed:l,originalAxes:a,axes:o,inputWasTransposed:u}}var T4;function dse(e){T4=e.wasm.cwrap(fi,null,["number, number, number"])}function hse(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,l=t.dataIdMap.get(o.dataId).id,u=o,{transposed:c,axes:d,originalAxes:h,inputWasTransposed:p}=aa(o,r,t);if(p){let x=t.dataIdMap.get(c.dataId).id;u=c,l=x}let f=u.shape.length;$.assertAxesAreInnerMostDims("all",d,f);let[m,A]=$.computeOutAndReduceShapes(u.shape,d),g=I.sizeFromShape(A),y=t.makeOutput(m,o.dtype);if(I.sizeFromShape(u.shape)!==0){let x=t.dataIdMap.get(y.dataId).id;T4(l,g,x)}if(p&&t.disposeData(c.dataId),a){let x=$.expandShapeToKeepDim(y.shape,h);y.shape=x}return y}var pse={kernelName:fi,backendName:"wasm",setupFunc:dse,kernelFunc:hse},N4;function fse(e){N4=e.wasm.cwrap(mi,null,["number, number, number"])}function mse(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,l=t.dataIdMap.get(o.dataId).id,u=o,{transposed:c,axes:d,originalAxes:h,inputWasTransposed:p}=aa(o,r,t);if(p){let x=t.dataIdMap.get(c.dataId).id;u=c,l=x}let f=u.shape.length;$.assertAxesAreInnerMostDims("any",d,f);let[m,A]=$.computeOutAndReduceShapes(u.shape,d),g=I.sizeFromShape(A),y=t.makeOutput(m,o.dtype);if(I.sizeFromShape(u.shape)!==0){let x=t.dataIdMap.get(y.dataId).id;N4(l,g,x)}if(p&&t.disposeData(c.dataId),a){let x=$.expandShapeToKeepDim(y.shape,h);y.shape=x}return y}var Ase={kernelName:mi,backendName:"wasm",setupFunc:fse,kernelFunc:mse},E4;function gse(e){E4=e.wasm.cwrap(ya,null,["number","number","number","number","number"])}function yse(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r}=s,{x:a}=n,o=t.dataIdMap.get(a.dataId).id,i=o,l=a,{transposed:u,axes:c,inputWasTransposed:d}=aa(a,r,t);if(d){let g=t.dataIdMap.get(u.dataId).id;g!==o&&(l=u,i=g)}let h=l.shape.slice(0,-1),p=t.makeOutput(h,"int32"),f=t.dataIdMap.get(p.dataId).id,m=I.sizeFromShape(p.shape),A=l.shape[c[0]];return E4(i,$n[l.dtype],m,A,f),d&&t.disposeData(u.dataId),p}var xse={kernelName:ya,backendName:"wasm",kernelFunc:yse,setupFunc:gse},R4;function bse(e){R4=e.wasm.cwrap(xa,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function vse(e){let{inputs:t,attrs:n,backend:s}=e,r=t.x,a=s.dataIdMap.get(r.dataId).id,{filterSize:o,strides:i,pad:l,dimRoundingMode:u}=n,c=$.computePool2DInfo(r.shape,o,i,1,l,u),d=c.filterHeight,h=c.filterWidth,p=c.padInfo.top,f=c.padInfo.right,m=c.padInfo.bottom,A=c.padInfo.left,g=c.strideHeight,y=c.strideWidth,x=c.inChannels;if(c.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${c.dataFormat}'. Please use 'channelsLast'.`);if(c.dilationWidth!==1||c.dilationHeight!==1)throw new Error(`was backend only supports average pooling with dilation = [1, 1], got [${c.dilationHeight}, ${c.dilationWidth}].`);let b=s.makeOutput(c.outShape,"float32"),v=s.dataIdMap.get(b.dataId).id;return R4(a,r.shape[0],r.shape[1],r.shape[2],d,h,p,f,m,A,g,y,x,v),b}var wse={kernelName:xa,backendName:"wasm",setupFunc:bse,kernelFunc:vse};function Fn(e){let{inputs:t,attrs:n}=e,{x:s}=t,{shape:r}=n,a=I.sizeFromShape(s.shape),o=I.inferFromImplicitShape(r,a);return I.assert(a===I.sizeFromShape(o),()=>`new shape: ${o}, old shape: ${s.shape}. New shape and old shape must have the same number of elements.`),e.backend.incRef(s.dataId),{dataId:s.dataId,shape:o,dtype:s.dtype}}var kse={kernelName:Yi,backendName:"wasm",kernelFunc:Fn},_4;function Ise(e){_4=e.wasm.cwrap(ba,null,["number","array","number","number","array","number","number","number","number"])}function Sse(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a}=t,{transposeA:o,transposeB:i}=s;if(r.dtype!=="float32"||a.dtype!=="float32")throw new Error("BatchMatMul for non non-float32 tensors not yet supported.");let l=r.shape.length,u=a.shape.length,c=o?r.shape[l-2]:r.shape[l-1],d=i?a.shape[u-1]:a.shape[u-2],h=o?r.shape[l-1]:r.shape[l-2],p=i?a.shape[u-2]:a.shape[u-1],f=r.shape.slice(0,-2),m=a.shape.slice(0,-2),A=I.sizeFromShape(f),g=I.sizeFromShape(m),y=A===g||A===1||g===1;I.assert(l>=2&&u>=2&&y,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${f}) and (${m}).`);let b=(A>g?r.shape.slice(0,-2):a.shape.slice(0,-2)).concat([h,p]);I.assert(c===d,()=>`Error in matMul: inner shapes (${c}) and (${d}) of Tensors with shapes ${r.shape} and ${a.shape} and transposeA=${o} and transposeB=${i} must match.`);let v=o?[A,c,h]:[A,h,c],k=i?[g,p,d]:[g,d,p],w=Fn({inputs:{x:r},backend:n,attrs:{shape:v}}),C=Fn({inputs:{x:a},backend:n,attrs:{shape:k}}),E=n.dataIdMap.get(w.dataId).id,M=n.dataIdMap.get(C.dataId).id,R=o?w.shape[2]:w.shape[1],_=i?C.shape[1]:C.shape[2],N=Math.max(A,g),O=n.makeOutput([N,R,_],w.dtype),W=n.dataIdMap.get(O.dataId).id,j=new Uint8Array(new Int32Array(w.shape).buffer),q=new Uint8Array(new Int32Array(C.shape).buffer);return _4(E,j,w.shape.length,M,q,C.shape.length,o,i,W),n.disposeData(w.dataId),n.disposeData(C.dataId),O.shape=b,O}var Cse={kernelName:ba,backendName:"wasm",setupFunc:Ise,kernelFunc:Sse};function qc(e){let{inputs:{x:t},attrs:{begin:n,size:s},backend:r}=e,[a,o]=An.parseSliceParams(t,n,s),i=An.isSliceContinous(t.shape,a,o),l=r.readSync(t.dataId),u=r.makeOutput(o,t.dtype),c=I.computeStrides(t.shape),d=r.dataIdMap.get(u.dataId);if(i){let f=An.computeFlatOffset(a,c);return t.dtype==="string"?d.stringBytes=l.slice(f,f+I.sizeFromShape(o)):r.typedArrayFromHeap(u).set(l.subarray(f,f+I.sizeFromShape(o))),u}if(t.dtype==="string"){let f=Jp(l,a,o,t.shape,t.dtype);return d.stringBytes=f,u}let h=r.typedArrayFromHeap(u),p=t.shape.length;if(p===2)Tse(l,c[0],h,a,o);else if(p===3)Nse(l,c[0],c[1],h,a,o);else if(p===4)Ese(l,c[0],c[1],c[2],h,a,o);else{let f=Jp(l,a,o,t.shape,t.dtype);h.set(f)}return u}function Tse(e,t,n,s,r){let a=0,o=s[0],i=s[1],l=o+r[0];for(let u=o;u<l;u++){let c=u*t+i;n.set(e.subarray(c,c+r[1]),a),a+=r[1]}}function Nse(e,t,n,s,r,a){let o=0,i=r[0],l=r[1],u=r[2],c=i+a[0],d=l+a[1];for(let h=i;h<c;h++)for(let p=l;p<d;p++){let f=h*t+p*n+u;s.set(e.subarray(f,f+a[2]),o),o+=a[2]}}function Ese(e,t,n,s,r,a,o){let i=0,l=a[0],u=a[1],c=a[2],d=l+o[0],h=u+o[1],p=c+o[2],f=a[3];for(let m=l;m<d;m++)for(let A=u;A<h;A++)for(let g=c;g<p;g++){let y=m*t+A*n+g*s+f;r.set(e.subarray(y,y+o[3]),i),i+=o[3]}}var Rse={kernelName:tl,backendName:"wasm",kernelFunc:qc};function _se(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,crops:o}=s,i=a.reduce((g,y)=>g*y),l=$.getReshaped(r.shape,a,i),u=$.getPermuted(l.length,a.length),c=$.getReshapedPermuted(r.shape,a,i),d=$.getSliceBeginCoords(o,a.length),h=$.getSliceSize(c,o,a.length),p=Fn({inputs:{x:r},backend:n,attrs:{shape:l}}),f=su({inputs:{x:p},backend:n,attrs:{perm:u}}),m=Fn({inputs:{x:f},backend:n,attrs:{shape:c}}),A=qc({inputs:{x:m},backend:n,attrs:{begin:d,size:h}});return n.disposeData(p.dataId),n.disposeData(f.dataId),n.disposeData(p.dataId),A}var $se={kernelName:vi,backendName:"wasm",kernelFunc:_se};function If(e){let{inputs:{x:t},attrs:{dtype:n},backend:s}=e,r=s.makeOutput(t.shape,n),a=s.typedArrayFromHeap(t);return s.typedArrayFromHeap(r).set(a),r}var Fse={kernelName:va,backendName:"wasm",kernelFunc:If},Dse=un(wa),$4;function Ose(e){$4=e.wasm.cwrap(Or,null,["number","number","number","number"])}function Pse(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{clipValueMin:a,clipValueMax:o}=s,i=n.dataIdMap.get(r.dataId).id,l=n.makeOutput(r.shape,r.dtype),u=n.dataIdMap.get(l.dataId).id;return $4(i,a,o,u),l}var Mse={kernelName:Or,backendName:"wasm",setupFunc:Ose,kernelFunc:Pse};function F4(e){let{inputs:t,backend:n}=e,s=I.parseAxisParam(e.attrs.axis,t[0].shape)[0],r=$.computeOutShape(t.map(p=>p.shape),s),a=t.filter(p=>I.sizeFromShape(p.shape)>0);if(a.length===1)return kf({inputs:{x:a[0]},backend:n});let o=n.makeOutput(r,t[0].dtype);if(I.sizeFromShape(r)===0)return o;let i=a.map(p=>p.shape);if($.assertParamsConsistent(i,s),a[0].dtype==="string"){let p=a.map(x=>{let b=I.sizeFromShape(x.shape.slice(s));return Fn({inputs:{x},backend:n,attrs:{shape:[-1,b]}})}),f=p.map(x=>({vals:n.readSync(x.dataId),shape:x.shape}));r=$.computeOutShape(p.map(x=>x.shape),1);let m=p[0].shape[0]===1,A=e1(f,r,t[0].dtype,m),g=$.computeOutShape(a.map(x=>x.shape),s);o.shape=g;let y=n.dataIdMap.get(o.dataId);return y.stringBytes=$.fromStringArrayToUint8(A),p.forEach(x=>n.disposeData(x.dataId)),o}let l=I.sizeFromShape(a[0].shape.slice(0,s)),u=0,c=a.map(p=>{let f=I.sizeFromShape(p.shape.slice(s));return u+=f,f}),d=a.map(p=>n.typedArrayFromHeap(p)),h=n.typedArrayFromHeap(o);for(let p=0;p<l;p++){let f=p*u;for(let m=0;m<d.length;m++){let A=c[m],g=p*A,y=d[m].subarray(g,g+A);h.set(y,f),f+=A}}return o}var zse={kernelName:wi,backendName:"wasm",kernelFunc:F4},D4;function Lse(e){D4=e.wasm.cwrap(ka,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Bse(e){let{inputs:t,attrs:n,backend:s}=e,{x:r,filter:a}=t,o=s.dataIdMap.get(r.dataId).id,i=s.dataIdMap.get(a.dataId).id,{strides:l,dilations:u,pad:c,dimRoundingMode:d,dataFormat:h}=n,p=$.convertConv2DDataFormat(h),f=$.computeConv2DInfo(r.shape,a.shape,l,u,c,d,!1,p),m=f.filterHeight,A=f.filterWidth,g=f.padInfo.top,y=f.padInfo.right,x=f.padInfo.bottom,b=f.padInfo.left,v=f.dilationHeight,k=f.dilationWidth,w=f.strideHeight,C=f.strideWidth,E=f.inChannels,M=f.outChannels,R=f.padInfo.type==="SAME"?1:0;if(f.dataFormat!=="channelsLast")throw new Error(`wasm backend Conv2D does not support dataFormat:'${f.dataFormat}'. Please use 'channelsLast'.`);let _=s.makeOutput(f.outShape,"float32"),N=s.dataIdMap.get(_.dataId).id;return D4(o,r.shape[0],r.shape[1],r.shape[2],i,m,A,g,y,x,b,R,v,k,w,C,E,M,N),_}var Wse={kernelName:ka,backendName:"wasm",setupFunc:Lse,kernelFunc:Bse},O4;function Vse(e){O4=e.wasm.cwrap(Ia,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Use(e){let{backend:t,inputs:n,attrs:s}=e,{dy:r,filter:a}=n,{strides:o,pad:i,dataFormat:l,dimRoundingMode:u,inputShape:c}=s,d=1,h=$.convertConv2DDataFormat(l),p=$.computeConv2DInfo(c,a.shape,o,d,i,u,!1,h),{batchSize:f,filterHeight:m,filterWidth:A,inChannels:g,inHeight:y,inWidth:x,outChannels:b,outHeight:v,outWidth:k,strideHeight:w,strideWidth:C}=p,E=m-1-p.padInfo.top,M=A-1-p.padInfo.left,R=p.dataFormat==="channelsLast",_=I.computeStrides(p.inShape),N=I.computeStrides(r.shape),[O,W,j]=I.computeStrides(a.shape),q=_[0],X=R?_[1]:_[2],Q=R?_[2]:1,ne=R?1:_[1],te=N[0],se=R?N[1]:N[2],J=R?N[2]:1,ie=R?1:N[1],le=t.makeOutput(p.inShape,"float32"),he=t.dataIdMap.get(le.dataId).id,ge=t.dataIdMap.get(r.dataId).id,Ce=t.dataIdMap.get(a.dataId).id;return O4(ge,Ce,f,m,A,y,x,g,v,k,b,w,C,E,M,O,W,j,q,X,Q,ne,te,se,J,ie,he),le}var Hse={kernelName:Ia,backendName:"wasm",setupFunc:Vse,kernelFunc:Use},Gse=un(Sa),jse=un(Ca),_1;(function(e){e[e.bilinear=0]="bilinear",e[e.nearest=1]="nearest"})(_1||(_1={}));var P4;function qse(e){P4=e.wasm.cwrap(ki,null,["number","number","number","number","array","number","number","number","number","number"])}function Xse(e){let{backend:t,inputs:n,attrs:s}=e,{method:r,extrapolationValue:a,cropSize:o}=s,{image:i,boxes:l,boxInd:u}=n,c=l.shape[0],[d,h]=o,p=[c,d,h,i.shape[3]],f=t.dataIdMap.get(i.dataId),m;i.dtype!=="float32"&&(m=If({backend:t,inputs:{x:i},attrs:{dtype:"float32"}}),f=t.dataIdMap.get(m.dataId));let A=f.id,g=t.dataIdMap.get(l.dataId).id,y=t.dataIdMap.get(u.dataId).id,x=t.makeOutput(p,"float32"),b=t.dataIdMap.get(x.dataId).id,v=new Uint8Array(new Int32Array(i.shape).buffer);return P4(A,g,y,c,v,d,h,_1[r],a,b),m!=null&&t.disposeData(m.dataId),x}var Kse={kernelName:ki,backendName:"wasm",setupFunc:qse,kernelFunc:Xse},M4;function Zse(e){M4=e.wasm.cwrap(Ta,null,["number","number","number","number","number","number"])}function Yse(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,exclusive:o,reverse:i}=s,l=r.shape.length;I.assert(r.dtype==="float32"||r.dtype==="int32",()=>`cumsum does not support ${r.dtype} tensors in the WASM backend`);let u=$.getAxesPermutation([a],l),c=r;u!==null&&(c=su({inputs:{x:r},attrs:{perm:u},backend:n}));let d=$.getInnerMostAxes(1,l)[0];$.assertAxesAreInnerMostDims("cumsum",[d],l);let h=n.makeOutput(c.shape,c.dtype),p=c.shape[d],f=n.dataIdMap.get(c.dataId).id,m=n.dataIdMap.get(h.dataId).id;M4(f,o?1:0,i?1:0,p,m,$n[r.dtype]);let A=h;if(u!==null){let g=$.getUndoAxesPermutation(u);A=su({inputs:{x:h},attrs:{perm:g},backend:n}),n.disposeData(c.dataId),n.disposeData(h.dataId)}return A}var Jse={kernelName:Ta,backendName:"wasm",setupFunc:Zse,kernelFunc:Yse},z4;function Qse(e){z4=e.wasm.cwrap(Ii,null,["number","number","number","array","number","array","array","number","number"])}function ere(e){let{backend:t,inputs:n,attrs:s}=e,{x:r}=n,{blockSize:a,dataFormat:o}=s;I.assert(a>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${a}`);let i=r.shape[0],l=o==="NHWC"?r.shape[1]:r.shape[2],u=o==="NHWC"?r.shape[2]:r.shape[3],c=o==="NHWC"?r.shape[3]:r.shape[1],d=l*a,h=u*a,p=c/(a*a),f=o==="NHWC"?[i,d,h,p]:[i,p,d,h],m=t.makeOutput(f,"float32"),g=t.dataIdMap.get(r.dataId).id,y=new Uint8Array(new Int32Array(I.computeStrides(r.shape)).buffer),x=new Uint8Array(new Int32Array(f).buffer),b=new Uint8Array(new Int32Array(I.computeStrides(f)).buffer),v=t.dataIdMap.get(m.dataId).id;return z4(g,a,o==="NHWC"?1:0,y,r.shape.length-1,x,b,f.length,v),m}var tre={kernelName:Ii,backendName:"wasm",setupFunc:Qse,kernelFunc:ere},L4;function nre(e){L4=e.wasm.cwrap(Na,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function sre(e){let{inputs:t,attrs:n,backend:s}=e,{x:r,filter:a}=t,o=s.dataIdMap.get(r.dataId).id,i=s.dataIdMap.get(a.dataId).id,{strides:l,dilations:u,pad:c,dimRoundingMode:d}=n,h=u==null?[1,1]:u,p=$.computeConv2DInfo(r.shape,a.shape,l,h,c,d,!0),f=p.filterHeight,m=p.filterWidth,A=p.padInfo.top,g=p.padInfo.right,y=p.padInfo.bottom,x=p.padInfo.left,b=p.dilationHeight,v=p.dilationWidth,k=p.strideHeight,w=p.strideWidth,C=p.inChannels,E=p.outChannels,M=p.padInfo.type==="SAME"?1:0;if(p.dataFormat!=="channelsLast")throw new Error(`wasm backend DepthwiseConv2dNative does not support dataFormat:'${p.dataFormat}'. Please use 'channelsLast'.`);let R=s.makeOutput(p.outShape,"float32"),_=s.dataIdMap.get(R.dataId).id;return L4(o,r.shape[0],r.shape[1],r.shape[2],i,f,m,A,g,y,x,M,b,v,k,w,C,E,_),R}var rre={kernelName:Na,backendName:"wasm",setupFunc:nre,kernelFunc:sre},are=!1,ore=kn(Ti,are,"bool"),ire=un(Ra);function $1(e){let{inputs:t,attrs:n,backend:s}=e,{input:r}=t,{dim:a}=n,o=r.shape.length,i=r.shape.slice(),l=a;return a<0&&(I.assert(-(o+1)<=a,()=>`Axis must be in the interval [${-(o+1)}, ${o}]`),l=o+a+1),i.splice(l,0,1),Fn({inputs:{x:r},backend:s,attrs:{shape:i}})}var lre={kernelName:Ni,backendName:"wasm",kernelFunc:$1};function ure(e){let{attrs:{shape:t,value:n,dtype:s},backend:r}=e,a=r.makeOutput(t,s);return r.typedArrayFromHeap(a).fill(n),a}var cre={kernelName:_u,backendName:"wasm",kernelFunc:ure},B4;function dre(e){B4=e.wasm.cwrap(Ri,null,["number","number","number","number","number","number"])}function hre(e){let{inputs:t,backend:n}=e,{image:s}=t,r=n.makeOutput(s.shape,s.dtype),a=n.dataIdMap.get(s.dataId).id,o=n.dataIdMap.get(r.dataId).id,[i,l,u,c]=s.shape;return B4(a,i,l,u,c,o),r}var pre={kernelName:Ri,backendName:"wasm",kernelFunc:hre,setupFunc:dre},fre=un(_a),mre=!1,Are=kn($a,mre),W4;function gre(e){W4=e.wasm.cwrap(Fa,null,["number","number","number","number","number","number","number"])}function yre(e){let{backend:t,inputs:n,attrs:s}=e,{varianceEpsilon:r}=s,{x:a,mean:o,variance:i,offset:l,scale:u}=n,c=t.dataIdMap.get(a.dataId).id,d=t.dataIdMap.get(o.dataId).id,h=t.dataIdMap.get(i.dataId).id,p=l!=null?t.dataIdMap.get(l.dataId).id:0,f=u!=null?t.dataIdMap.get(u.dataId).id:0,m=t.makeOutput(a.shape,a.dtype);if(I.sizeFromShape(a.shape)===0)return m;let A=t.dataIdMap.get(m.dataId).id;return W4(c,d,h,p,f,r,A),m}var xre={kernelName:Fa,backendName:"wasm",setupFunc:gre,kernelFunc:yre},V4;function bre(e){V4=e.wasm.cwrap(fo,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function vre(e){let{inputs:t,attrs:n,backend:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:u,dilations:c,dataFormat:d,dimRoundingMode:h,activation:p,leakyreluAlpha:f}=n,m=$.computeConv2DInfo(r.shape,a.shape,l,c,u,h),A=jc[p];if(A==null)throw new Error(`${p} activation not yet supported for FusedConv2D in the wasm backend.`);let g=s.dataIdMap.get(r.dataId).id,y=s.dataIdMap.get(a.dataId).id,x=m.outChannels,b=0;if(o!=null){let J=s.dataIdMap.get(o.dataId);if(J.shape.length!==1)throw new Error(`FusedConv2D only supports rank-1 bias but got rank ${J.shape.length}.`);if(J.shape[0]!==x)throw new Error(`FusedConv2D bias shape (${J.shape}) does not match the number of output channels (${x})`);b=J.id}let v=m.filterHeight,k=m.filterWidth,w=m.padInfo.top,C=m.padInfo.right,E=m.padInfo.bottom,M=m.padInfo.left,R=m.dilationHeight,_=m.dilationWidth,N=m.strideHeight,O=m.strideWidth,W=m.inChannels,j=m.padInfo.type==="SAME"?1:0,q=m.batchSize,X=m.inHeight,Q=m.inWidth;if(d!=="NHWC")throw new Error(`wasm backend FusedConv2D does not support dataFormat:'${d}'. Please use 'NHWC'.`);let ne=s.makeOutput(m.outShape,"float32"),te=s.dataIdMap.get(ne.dataId).id,se=i==null?0:s.dataIdMap.get(i.dataId).id;return V4(g,q,X,Q,y,v,k,b,w,C,E,M,j,R,_,N,O,W,x,A,se,f||0,te),ne}var wre={kernelName:fo,backendName:"wasm",setupFunc:bre,kernelFunc:vre},U4;function kre(e){U4=e.wasm.cwrap(mo,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Ire(e){let{inputs:t,attrs:n,backend:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:u,dilations:c,dataFormat:d,dimRoundingMode:h,activation:p,leakyreluAlpha:f}=n,m=$.computeConv2DInfo(r.shape,a.shape,l,c,u,h,!0),A=jc[p];if(A==null)throw new Error(`${p} activation not yet supported for FusedDepthwiseConv2D in the wasm backend.`);let g=s.dataIdMap.get(r.dataId).id,y=s.dataIdMap.get(a.dataId).id,x=m.outChannels,b=0;if(o!=null){let J=s.dataIdMap.get(o.dataId);if(J.shape.length!==1)throw new Error(`FusedDepthwiseConv2D only supports rank-1 bias but got rank ${J.shape.length}.`);if(J.shape[0]!==x)throw new Error(`FusedDepthwiseConv2D bias shape (${J.shape}) does not match the number of output channels (${x})`);b=J.id}let v=m.filterHeight,k=m.filterWidth,w=m.padInfo.top,C=m.padInfo.right,E=m.padInfo.bottom,M=m.padInfo.left,R=m.dilationHeight,_=m.dilationWidth,N=m.strideHeight,O=m.strideWidth,W=m.inChannels,j=m.padInfo.type==="SAME"?1:0,q=m.batchSize,X=m.inHeight,Q=m.inWidth;if(d!=="NHWC")throw new Error(`wasm backend FusedDepthwiseConv2D does not support dataFormat:'${d}'. Please use 'NHWC'.`);let ne=s.makeOutput(m.outShape,"float32"),te=s.dataIdMap.get(ne.dataId).id,se=i==null?0:s.dataIdMap.get(i.dataId).id;return U4(g,q,X,Q,y,v,k,b,w,C,E,M,j,R,_,N,O,W,x,A,se,f||0,te),ne}var Sre={kernelName:mo,backendName:"wasm",setupFunc:kre,kernelFunc:Ire},H4;function Cre(e){H4=e.wasm.cwrap($i,null,["number","number","number","number","number","number","array","number"])}function Tre(e){let{backend:t,inputs:n}=e,{params:s,indices:r}=n,[a,o,i,l]=Ym.prepareAndValidate(s,r),u=t.makeOutput(a,s.dtype);if(o===0)return u;let c=r.shape,d=c[c.length-1],p=t.dataIdMap.get(s.dataId).id,m=t.dataIdMap.get(r.dataId).id,A=new Uint8Array(new Int32Array(l).buffer),g=t.dataIdMap.get(u.dataId).id;return H4(p,$n[s.dtype],m,o,d,i,A,g),u}var Nre={kernelName:$i,backendName:"wasm",setupFunc:Cre,kernelFunc:Tre},G4;function Ere(e){G4=e.wasm.cwrap("Gather",null,["number","number","array","number","number","number","array","number"])}function Rre(e){let{backend:t,inputs:n,attrs:s}=e,{x:r,indices:a}=n,{axis:o,batchDims:i}=s,l=I.parseAxisParam(o,r.shape)[0],u=$.segment_util.collectGatherOpShapeInfo(r,a,l,i),c=Fn({inputs:{x:r},attrs:{shape:[u.batchSize,u.outerSize,u.dimSize,u.sliceSize]},backend:t}),d=I.sizeFromShape(a.shape),h=Fn({inputs:{x:a},attrs:{shape:[u.batchSize,d/u.batchSize]},backend:t}),p=[u.batchSize,u.outerSize,d/u.batchSize,u.sliceSize],f=t.makeOutput(p,r.dtype);if(I.sizeFromShape(r.shape)===0)return f;let m=c.shape.length-1,g=t.dataIdMap.get(c.dataId).id,x=t.dataIdMap.get(h.dataId).id,b=t.dataIdMap.get(f.dataId).id,v=new Uint8Array(new Int32Array(I.computeStrides(c.shape)).buffer),k=new Uint8Array(new Int32Array(I.computeStrides(p)).buffer);return G4(g,$n[r.dtype],v,m,x,u.batchSize,k,b),t.disposeData(c.dataId),t.disposeData(h.dataId),f.shape=u.outputShape,f}var _re={kernelName:_i,backendName:"wasm",setupFunc:Ere,kernelFunc:Rre},$re=!1,Fre=kn(Fi,$re,"bool"),Dre=!1,Ore=kn(Da,Dre,"bool"),j4;function Pre(e){j4=e.wasm.cwrap(Pa,null,["number","number","number"])}function Mre(e){let{inputs:{x:t},attrs:{alpha:n},backend:s}=e,r=s.dataIdMap.get(t.dataId).id,a=s.makeOutput(t.shape,t.dtype);if(I.sizeFromShape(t.shape)!==0){let o=s.dataIdMap.get(a.dataId).id;j4(r,n,o)}return a}var zre={kernelName:Pa,backendName:"wasm",setupFunc:Pre,kernelFunc:Mre},Lre=!1,Bre=kn(Mi,Lre,"bool"),Wre=!1,Vre=kn(zi,Wre,"bool"),Ure=un(Ma),Hre=!1,Gre=kn(Bi,Hre,"bool"),q4;function jre(e){q4=e.wasm.cwrap(za,null,["number, number, number"])}function qre(e){let{backend:t,inputs:n,attrs:s}=e,{reductionIndices:r,keepDims:a}=s,{x:o}=n,l=t.dataIdMap.get(o.dataId).id,u=o,{transposed:c,axes:d,originalAxes:h,inputWasTransposed:p}=aa(o,r,t);if(p){let x=t.dataIdMap.get(c.dataId).id;u=c,l=x}let f=u.shape.length;$.assertAxesAreInnerMostDims("max",d,f);let[m,A]=$.computeOutAndReduceShapes(u.shape,d),g=I.sizeFromShape(A),y=t.makeOutput(m,o.dtype);if(I.sizeFromShape(u.shape)!==0){let x=t.dataIdMap.get(y.dataId).id;q4(l,g,x)}if(p&&t.disposeData(c.dataId),a){let x=$.expandShapeToKeepDim(y.shape,h);y.shape=x}return y}var Xre={kernelName:za,backendName:"wasm",setupFunc:jre,kernelFunc:qre},Kre=!1,Zre=kn(La,Kre),X4;function Yre(e){X4=e.wasm.cwrap(Ba,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Jre(e){let{inputs:t,attrs:n,backend:s}=e,r=t.x,a=s.dataIdMap.get(r.dataId).id,{filterSize:o,strides:i,pad:l,dimRoundingMode:u}=n,c=$.computePool2DInfo(r.shape,o,i,1,l,u),d=c.filterHeight,h=c.filterWidth,p=c.padInfo.top,f=c.padInfo.right,m=c.padInfo.bottom,A=c.padInfo.left,g=c.dilationHeight,y=c.dilationWidth,x=c.strideHeight,b=c.strideWidth,v=c.inChannels,k=c.outChannels;if(c.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${c.dataFormat}'. Please use 'channelsLast'.`);let w=s.makeOutput(c.outShape,"float32"),C=s.dataIdMap.get(w.dataId).id;return X4(a,r.shape[0],r.shape[1],r.shape[2],d,h,p,f,m,A,g,y,x,b,v,k,C),w}var Qre={kernelName:Ba,backendName:"wasm",setupFunc:Yre,kernelFunc:Jre},K4;function eae(e){K4=e.wasm.cwrap(Wa,null,["number, number, number"])}function tae(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,i=t.dataIdMap.get(o.dataId).id,l=i,u=o,{transposed:c,axes:d,originalAxes:h,inputWasTransposed:p}=aa(o,r,t),f=d;if(p){let b=t.dataIdMap.get(c.dataId).id;b!==i&&(u=c,l=b,f=$.getInnerMostAxes(f.length,u.shape.length))}$.assertAxesAreInnerMostDims("mean",f,u.shape.length);let[m,A]=$.computeOutAndReduceShapes(u.shape,f),g=I.sizeFromShape(A),y=u;u.dtype!=="float32"&&(y=If({backend:t,inputs:{x:u},attrs:{dtype:"float32"}}),l=t.dataIdMap.get(y.dataId).id);let x=t.makeOutput(m,"float32");if(I.sizeFromShape(u.shape)!==0){let b=t.dataIdMap.get(x.dataId).id;K4(l,g,b)}if(p&&t.disposeData(c.dataId),a){let b=$.expandShapeToKeepDim(x.shape,h);x.shape=b}return u.dtype!=="float32"&&t.disposeData(y.dataId),x}var nae={kernelName:Wa,backendName:"wasm",setupFunc:eae,kernelFunc:tae},Z4;function sae(e){Z4=e.wasm.cwrap(Va,null,["number, number, number"])}function rae(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,i=t.dataIdMap.get(o.dataId).id,l=i,u=o,{transposed:c,axes:d,originalAxes:h,inputWasTransposed:p}=aa(o,r,t);if(p){let x=t.dataIdMap.get(c.dataId).id;x!==i&&(u=c,l=x)}let f=u.shape.length;$.assertAxesAreInnerMostDims("min",d,f);let[m,A]=$.computeOutAndReduceShapes(u.shape,d),g=I.sizeFromShape(A),y=t.makeOutput(m,u.dtype);if(I.sizeFromShape(u.shape)!==0){let x=t.dataIdMap.get(y.dataId).id;Z4(l,g,x)}if(p&&t.disposeData(c.dataId),a){let x=$.expandShapeToKeepDim(y.shape,h);y.shape=x}return y}var aae={kernelName:Va,backendName:"wasm",setupFunc:sae,kernelFunc:rae},oae=!1,iae=kn(Ua,oae),F1;(function(e){e[e.reflect=0]="reflect",e[e.symmetric=1]="symmetric"})(F1||(F1={}));var Y4;function lae(e){Y4=e.wasm.cwrap(Ha,null,["number","array","number","number","array","array","number","number"])}function uae(e){let{inputs:{x:t},backend:n,attrs:{paddings:s,mode:r}}=e,a=s.map((f,m)=>f[0]+t.shape[m]+f[1]),o=n.dataIdMap.get(t.dataId).id,i=n.makeOutput(a,t.dtype),l=n.dataIdMap.get(i.dataId).id,u=new Uint8Array(new Int32Array(t.shape).buffer),c=s.map(f=>f[0]),d=s.map(f=>f[1]),h=new Uint8Array(new Int32Array(c).buffer),p=new Uint8Array(new Int32Array(d).buffer);return Y4(o,u,t.shape.length,$n[t.dtype],h,p,F1[r],l),i}var cae={kernelName:Ha,backendName:"wasm",kernelFunc:uae,setupFunc:lae},dae=!0,hae=kn(Ga,dae),pae=un(Vi);function D1(e,t){let n=new Int32Array(e.wasm.HEAPU8.buffer,t,4),s=n[0],r=n[1],a=n[2],o=n[3];return e.wasm._free(t),{pSelectedIndices:s,selectedSize:r,pSelectedScores:a,pValidOutputs:o}}var J4;function fae(e){J4=e.wasm.cwrap(Hi,"number",["number","number","number","number","number"])}function mae(e){let{backend:t,inputs:n,attrs:s}=e,{iouThreshold:r,maxOutputSize:a,scoreThreshold:o}=s,{boxes:i,scores:l}=n,u=t.dataIdMap.get(i.dataId).id,c=t.dataIdMap.get(l.dataId).id,d=J4(u,c,a,r,o),{pSelectedIndices:h,selectedSize:p,pSelectedScores:f,pValidOutputs:m}=D1(t,d);return t.wasm._free(f),t.wasm._free(m),t.makeOutput([p],"int32",h)}var Aae={kernelName:Hi,backendName:"wasm",setupFunc:fae,kernelFunc:mae},Q4;function gae(e){Q4=e.wasm.cwrap(Gi,"number",["number","number","number","number","number","bool"])}function yae(e){let{backend:t,inputs:n,attrs:s}=e,{iouThreshold:r,maxOutputSize:a,scoreThreshold:o,padToMaxOutputSize:i}=s,{boxes:l,scores:u}=n,c=t.dataIdMap.get(l.dataId).id,d=t.dataIdMap.get(u.dataId).id,h=Q4(c,d,a,r,o,i),{pSelectedIndices:p,selectedSize:f,pSelectedScores:m,pValidOutputs:A}=D1(t,h);t.wasm._free(m);let g=t.makeOutput([f],"int32",p),y=t.makeOutput([],"int32",A);return[g,y]}var xae={kernelName:Gi,backendName:"wasm",setupFunc:gae,kernelFunc:yae},ek;function bae(e){ek=e.wasm.cwrap(ji,"number",["number","number","number","number","number","number"])}function vae(e){let{backend:t,inputs:n,attrs:s}=e,{iouThreshold:r,maxOutputSize:a,scoreThreshold:o,softNmsSigma:i}=s,{boxes:l,scores:u}=n,c=t.dataIdMap.get(l.dataId).id,d=t.dataIdMap.get(u.dataId).id,h=ek(c,d,a,r,o,i),{pSelectedIndices:p,selectedSize:f,pSelectedScores:m,pValidOutputs:A}=D1(t,h);t.wasm._free(A);let g=t.makeOutput([f],"int32",p),y=t.makeOutput([f],"float32",m);return[g,y]}var wae={kernelName:ji,backendName:"wasm",setupFunc:bae,kernelFunc:vae},kae=!1,Iae=kn(Ui,kae,"bool"),tk;function Sae(e){tk=e.wasm.cwrap(ja,null,["number","number","number","number","number"])}function Cae(e){let{inputs:t,backend:n,attrs:s}=e,{indices:r}=t,{depth:a,onValue:o,offValue:i}=s,l=n.makeOutput([...r.shape,a],"int32"),u=n.dataIdMap.get(l.dataId).id,d=n.dataIdMap.get(r.dataId).id;return tk(d,a,o,i,u),l}var Tae={kernelName:ja,backendName:"wasm",setupFunc:Sae,kernelFunc:Cae};function Nae(e){let{inputs:{x:t},backend:n}=e,s=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(s).fill(1),s}var Eae={kernelName:qi,backendName:"wasm",kernelFunc:Nae};function Rae(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s;if(t.length===1)return $1({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let a=t[0].shape,o=t[0].dtype;t.forEach(c=>{I.assertShapesMatch(a,c.shape,"All tensors passed to stack must have matching shapes"),I.assert(o===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],l=t.map(c=>{let d=$1({inputs:{input:c},backend:n,attrs:{dim:r}});return i.push(d),d}),u=F4({inputs:l,backend:n,attrs:{axis:r}});return i.forEach(c=>n.disposeData(c.dataId)),u}var _ae={kernelName:Xi,backendName:"wasm",kernelFunc:Rae},nk;function $ae(e){nk=e.wasm.cwrap(qa,null,["number","array","number","number","array","array","number","number"])}function Fae(e){let{inputs:{x:t},backend:n,attrs:{paddings:s,constantValue:r}}=e,a=s.map((f,m)=>f[0]+t.shape[m]+f[1]),o=n.dataIdMap.get(t.dataId).id,i=n.makeOutput(a,t.dtype),l=n.dataIdMap.get(i.dataId).id,u=new Uint8Array(new Int32Array(t.shape).buffer),c=s.map(f=>f[0]),d=s.map(f=>f[1]),h=new Uint8Array(new Int32Array(c).buffer),p=new Uint8Array(new Int32Array(d).buffer);return nk(o,u,t.shape.length,$n[t.dtype],h,p,r,l),i}var sk={kernelName:qa,backendName:"wasm",kernelFunc:Fae,setupFunc:$ae},Dae=!1,Oae=kn(Xa,Dae),rk;function Pae(e){rk=e.wasm.cwrap(Ka,null,["number","number","number"])}function Mae(e){let{inputs:t,backend:n}=e,{x:s,alpha:r}=t,a=n.dataIdMap.get(s.dataId).id,o=n.dataIdMap.get(r.dataId).id,i=n.makeOutput(s.shape,"float32"),l=n.dataIdMap.get(i.dataId).id;return rk(a,o,l),i}var zae={kernelName:Ka,backendName:"wasm",setupFunc:Pae,kernelFunc:Mae},ak;function Lae(e){ak=e.wasm.cwrap(Ki,null,["number","number","number","number"])}function Bae(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,i=t.dataIdMap.get(o.dataId).id,l=i,u=o,{transposed:c,axes:d,originalAxes:h,inputWasTransposed:p}=aa(o,r,t),f=d;if(p){let x=t.dataIdMap.get(c.dataId).id;x!==i&&(u=c,l=x,f=$.getInnerMostAxes(f.length,u.shape.length))}$.assertAxesAreInnerMostDims("prod",f,u.shape.length);let[m,A]=$.computeOutAndReduceShapes(u.shape,f),g=I.sizeFromShape(A),y=t.makeOutput(m,u.dtype);if(I.sizeFromShape(u.shape)!==0){let x=t.dataIdMap.get(y.dataId).id;ak(l,g,$n[y.dtype],x)}if(p&&t.disposeData(c.dataId),a){let x=$.expandShapeToKeepDim(y.shape,h);y.shape=x}return y}var Wae={kernelName:Ki,backendName:"wasm",setupFunc:Lae,kernelFunc:Bae},Vae=e=>{let{backend:t,attrs:n}=e,{start:s,stop:r,step:a,dtype:o}=n,i=s1(s,r,a,o),l=t.makeOutput([i.length],o);return t.typedArrayFromHeap(l).set(i),l},Uae={kernelName:Pu,backendName:"wasm",kernelFunc:Vae},Hae=!0,Gae=kn(Ea,Hae),jae=un(Za),qae=un(Ja),ok;function Xae(e){ok=e.wasm.cwrap(Ya,null,["number","number","number","number","number","number","number","number","number","number"])}function Kae(e){let{backend:t,inputs:n,attrs:s}=e,{images:r}=n,{alignCorners:a,halfPixelCenters:o,size:i}=s,[l,u]=i,[c,d,h,p]=r.shape,f=[c,l,u,p],m=t.dataIdMap.get(r.dataId),A;m.dtype!=="float32"&&(A=If({backend:t,inputs:{x:r},attrs:{dtype:"float32"}}),m=t.dataIdMap.get(A.dataId));let g=m.id,y=t.makeOutput(f,"float32");if(I.sizeFromShape(r.shape)===0)return y;let x=t.dataIdMap.get(y.dataId).id;return ok(g,c,d,h,p,l,u,a?1:0,o?1:0,x),A!=null&&t.disposeData(A.dataId),y}var Zae={kernelName:Ya,backendName:"wasm",setupFunc:Xae,kernelFunc:Kae},ik;function Yae(e){ik=e.wasm.cwrap(Qa,null,["number","array","number","array","number","number"])}function Jae(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dims:a}=s,o=I.parseAxisParam(a,r.shape);if(r.shape.length===0)return kf({inputs:{x:r},backend:n});let i=n.makeOutput(r.shape,r.dtype),l=n.dataIdMap.get(r.dataId).id,u=n.dataIdMap.get(i.dataId).id,c=new Uint8Array(new Int32Array(o).buffer),d=new Uint8Array(new Int32Array(r.shape).buffer);ik(l,c,o.length,d,r.shape.length,u);let h=Fn({inputs:{x:i},attrs:{shape:r.shape},backend:n});return n.disposeData(i.dataId),h}var Qae={kernelName:Qa,backendName:"wasm",kernelFunc:Jae,setupFunc:Yae},lk;function eoe(e){lk=e.wasm.cwrap(hl,null,["number","number","number","number","number","number","number","number","array","number","number"])}function toe(e){let{inputs:t,backend:n,attrs:s}=e,{image:r}=t,{radians:a,fillValue:o,center:i}=s,l=n.makeOutput(r.shape,r.dtype),u=n.dataIdMap.get(r.dataId).id,c=n.dataIdMap.get(l.dataId).id,[d,h,p,f]=r.shape,[m,A]=$.getImageCenter(i,h,p),g=o===0,y=255,x=typeof o=="number"?[o,o,o,g?0:y]:[...o,y],b=new Uint8Array(new Int32Array(x).buffer);return lk(u,d,h,p,f,a,m,A,b,x.length,c),l}var noe={kernelName:hl,backendName:"wasm",kernelFunc:toe,setupFunc:eoe},soe=un(eo),roe=un(to),uk;function aoe(e){uk=e.wasm.cwrap(Ji,null,["number","number","number","number","number","number","array","number","number"])}function ooe(e){let{backend:t,inputs:n,attrs:s}=e,{indices:r,updates:a}=n,{shape:o}=s,i=t.makeOutput(o,a.dtype);if(I.sizeFromShape(o)===0)return i;let{sliceRank:l,numUpdates:u,sliceSize:c,strides:d,outputSize:h}=Jm.calculateShapes(a,r,o),f=t.dataIdMap.get(r.dataId).id,A=t.dataIdMap.get(a.dataId).id,g=new Uint8Array(new Int32Array(d).buffer),y=t.dataIdMap.get(i.dataId).id;return uk(f,A,$n[a.dtype],l,u,c,g,h,y),i}var ioe={kernelName:Ji,backendName:"wasm",setupFunc:aoe,kernelFunc:ooe},ck;function loe(e){ck=e.wasm.cwrap("SelectV2",null,["number","number","number","number","number"])}function uoe(e){let{inputs:t,backend:n}=e,{condition:s,t:r,e:a}=t,o=n.dataIdMap.get(s.dataId).id,i=n.dataIdMap.get(r.dataId).id,l=n.dataIdMap.get(a.dataId).id,u=n.makeOutput(r.shape,r.dtype),c=n.dataIdMap.get(u.dataId).id,d=s.shape.length,h=r.shape.length,p=d===0||d>1||h===1?1:I.sizeFromShape(r.shape.slice(1));return ck(o,i,l,p,c),u}var coe={kernelName:Qi,backendName:"wasm",kernelFunc:uoe,setupFunc:loe},dk;function doe(e){dk=e.wasm.cwrap(so,null,["number","number"])}function hoe(e){let{backend:t,inputs:{x:n}}=e,s=t.dataIdMap.get(n.dataId).id,r=t.makeOutput(n.shape,n.dtype),a=t.dataIdMap.get(r.dataId).id;return I.sizeFromShape(r.shape)===0||dk(s,a),r}var poe={kernelName:"Sigmoid",backendName:"wasm",setupFunc:doe,kernelFunc:hoe},foe=un(no),hk;function moe(e){hk=e.wasm.cwrap(oo,null,["number","number","number","number"])}function Aoe(e){let{backend:t,inputs:{logits:n},attrs:{dim:s}}=e,r=t.dataIdMap.get(n.dataId).id,a=t.makeOutput(n.shape,n.dtype),o=t.dataIdMap.get(a.dataId).id,i=n.shape[s],l=I.sizeFromShape(n.shape)/i;return I.sizeFromShape(a.shape)===0||hk(r,o,i,l),a}var goe={kernelName:oo,backendName:"wasm",setupFunc:moe,kernelFunc:Aoe};function yoe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,paddings:o}=s,i=I.sizeFromShape(a),l=[[0,0]];l.push(...o);for(let k=1+a.length;k<r.shape.length;++k)l.push([0,0]);let u=sk.kernelFunc({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),c=$.getReshaped(u.shape,a,i,!1),d=$.getPermuted(c.length,a.length,!1),h=$.getReshapedPermuted(u.shape,a,i,!1),m=Fn({inputs:{x:u},backend:n,attrs:{shape:c}}),y=su({inputs:{x:m},backend:n,attrs:{perm:d}}),v=Fn({inputs:{x:y},backend:n,attrs:{shape:h}});return n.disposeData(u.dataId),n.disposeData(m.dataId),n.disposeData(y.dataId),v}var xoe={kernelName:al,backendName:"wasm",kernelFunc:yoe};function boe(e){let{inputs:t,attrs:n,backend:s}=e,{x:r}=t,{numOrSizeSplits:a,axis:o}=n,i=I.parseAxisParam(o,r.shape)[0],l=$.prepareSplitSize(r,a,i),u=new Array(r.shape.length).fill(0),c=r.shape.slice();return l.map(d=>{let h=[...c];h[i]=d;let p=qc({inputs:{x:r},attrs:{begin:u,size:h},backend:s});return u[i]+=d,p})}var voe={kernelName:ol,backendName:"wasm",kernelFunc:boe},woe=un(ro),koe=un(zu),Ioe=!0,Soe=kn(io,Ioe),pk;function Coe(e){pk=e.wasm.cwrap(Mr,null,["number","number","number"])}function Toe(e){let{backend:t,inputs:n,attrs:s}=e,{alpha:r}=s,{x:a}=n,o=t.dataIdMap.get(a.dataId).id,i=t.makeOutput(a.shape,a.dtype),l=t.dataIdMap.get(i.dataId).id;return pk(o,r,l),i}var Noe={kernelName:Mr,backendName:"wasm",setupFunc:Coe,kernelFunc:Toe},fk;function Eoe(e){fk=e.wasm.cwrap(il,null,["number","array","number","array","array","array","array","array","number","number"])}function Roe(e){let{backend:t,inputs:n,attrs:s}=e,{x:r}=n,{begin:a,end:o,strides:i}=s;i==null&&(i=new Array(a.length));let{beginMask:l,endMask:u,ellipsisMask:c,newAxisMask:d,shrinkAxisMask:h}=s,p=$.slice_util.maskToAxes(c);if(p.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(c!==0&&d!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(c!==0&&h!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let f=r.shape.length-a.length,m=$.slice_util.maskToAxes(d),A=r.shape.slice();m.forEach(R=>{a[R]=0,o[R]=1,A.splice(R,0,1)});let g=Fn({inputs:{x:r},attrs:{shape:A},backend:t}),{begin:y,end:x,strides:b}=$.slice_util.getNormalizedAxes(g.shape,p,f,a,o,i,l,u,c);a=y,o=x,i=b;let v=$.slice_util.maskToAxes(h);v.forEach(R=>{o[R]=a[R]+1,i[R]=1});let k=$.slice_util.computeOutShape(a,o,i),w=k.filter((R,_)=>v.indexOf(_)===-1);if(i.every(R=>R===1)){let R=qc({inputs:{x:g},attrs:{begin:a,size:k},backend:t});t.disposeData(g.dataId);let _=Fn({inputs:{x:R},attrs:{shape:w},backend:t});return t.disposeData(R.dataId),_}let E=t.makeOutput(w,"float32");if(!w.some(R=>R===0)){let R=t.dataIdMap.get(g.dataId).id,_=new Uint8Array(new Int32Array(I.computeStrides(g.shape)).buffer),N=new Uint8Array(new Int32Array(a).buffer),O=new Uint8Array(new Int32Array(o).buffer),W=new Uint8Array(new Int32Array(i).buffer),j=new Uint8Array(new Int32Array(w).buffer),q=new Uint8Array(new Int32Array(I.computeStrides(w)).buffer),X=t.dataIdMap.get(E.dataId).id;fk(R,_,g.shape.length,N,O,W,j,q,w.length,X)}t.disposeData(g.dataId);let M=Fn({inputs:{x:E},attrs:{shape:w},backend:t});return t.disposeData(E.dataId),M}var _oe={kernelName:il,backendName:"wasm",setupFunc:Eoe,kernelFunc:Roe},$oe=!0,Foe=kn(lo,$oe),mk;function Doe(e){mk=e.wasm.cwrap(ao,null,["number, number, number"])}function Ooe(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,i=t.dataIdMap.get(o.dataId).id,l=i,u=o,{transposed:c,axes:d,originalAxes:h,inputWasTransposed:p}=aa(o,r,t),f=d;if(p){let x=t.dataIdMap.get(c.dataId).id;x!==i&&(u=c,l=x,f=$.getInnerMostAxes(f.length,u.shape.length))}$.assertAxesAreInnerMostDims("sum",f,u.shape.length);let[m,A]=$.computeOutAndReduceShapes(u.shape,f),g=I.sizeFromShape(A),y=t.makeOutput(m,u.dtype);if(I.sizeFromShape(u.shape)!==0){let x=t.dataIdMap.get(y.dataId).id;mk(l,g,x)}if(p&&t.disposeData(c.dataId),a){let x=$.expandShapeToKeepDim(y.shape,h);y.shape=x}return y}var Poe={kernelName:ao,backendName:"wasm",setupFunc:Doe,kernelFunc:Ooe},Moe=un(uo),zoe=un(co),Ak;function Loe(e){Ak=e.wasm.cwrap(Pr,null,["number","array","number","array","number","number"])}function Boe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,a=n.dataIdMap.get(r.dataId).id,{reps:o}=s,i=new Array(r.shape.length);for(let h=0;h<i.length;h++)i[h]=r.shape[h]*o[h];let l=new Uint8Array(new Int32Array(r.shape).buffer),u=new Uint8Array(new Int32Array(i).buffer),c=n.makeOutput(i,r.dtype),d=n.dataIdMap.get(c.dataId).id;return Ak(a,l,r.shape.length,u,i.length,$n[c.dtype],d),c}var Woe={kernelName:Pr,backendName:"wasm",setupFunc:Loe,kernelFunc:Boe},gk;function Voe(e){gk=e.wasm.cwrap(ll,null,["number","array","number","number","number","bool","number","number"])}var Uoe=({inputs:e,backend:t,attrs:n})=>{let{x:s}=e,{k:r,sorted:a}=n,o=t.dataIdMap.get(s.dataId).id,i=new Uint8Array(new Int32Array(s.shape).buffer),l=s.shape.slice();l[l.length-1]=r;let u=t.makeOutput(l,s.dtype),c=t.dataIdMap.get(u.dataId).id,d=t.makeOutput(l,"int32"),h=t.dataIdMap.get(d.dataId).id;return gk(o,i,s.shape.length,$n[s.dtype],r,a,c,h),[u,d]},Hoe={kernelName:ll,backendName:"wasm",setupFunc:Voe,kernelFunc:Uoe},yk;function Goe(e){yk=e.wasm.cwrap(ul,null,["number","number","bool","number","number","number","number","number","number","array","number","number","number","number","number"])}function joe(e){let{backend:t,inputs:n,attrs:s}=e,{image:r,transforms:a}=n,{interpolation:o,fillMode:i,fillValue:l,outputShape:u}=s,[c,d,h,p]=r.shape,[f,m]=u!=null?u:[d,h],A=[c,f,m,p],g=new Uint8Array(new Int32Array(I.computeStrides(r.shape)).buffer),y=t.makeOutput(A,r.dtype),x=t.dataIdMap.get(y.dataId).id,v=t.dataIdMap.get(r.dataId).id,w=t.dataIdMap.get(a.dataId).id,C=o==="nearest"?1:2,E;switch(i){case"constant":E=1;break;case"reflect":E=2;break;case"wrap":E=3;break;case"nearest":E=4;break;default:E=1;break}return yk(v,w,a.shape[0]>1,c,f,m,p,h,d,g,r.shape.length-1,C,E,l,x),y}var qoe={kernelName:ul,backendName:"wasm",setupFunc:Goe,kernelFunc:joe};function Xoe(e){let{inputs:t,backend:n,attrs:s}=e,{value:r}=t,{axis:a}=s;a<0&&(a+=r.shape.length);let o=r.shape[a],i=r.shape.length,l=new Array(i-1),u=0;for(let p=0;p<i;p++)p!==a&&(l[u++]=r.shape[p]);let c=new Array(o),d=new Array(i).fill(0),h=r.shape.slice();h[a]=1;for(let p=0;p<c.length;p++)d[a]=p,c[p]=qc({inputs:{x:r},attrs:{begin:d,size:h},backend:n});return c.map(({dataId:p,dtype:f})=>({dataId:p,dtype:f,shape:l}))}var Koe={kernelName:cl,backendName:"wasm",kernelFunc:Xoe};function Zoe(e){let{inputs:{x:t},backend:n}=e,s=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(s).fill(0),s}var Yoe={kernelName:dl,backendName:"wasm",kernelFunc:Zoe},Joe=[ese,nse,ase,pse,Ase,xse,wse,Cse,$se,Fse,Dse,Mse,zse,Wse,Hse,Gse,jse,Kse,Jse,tre,rre,ore,ire,lre,cre,pre,fre,Are,Qne,xre,wre,Sre,Nre,_re,Fre,Ore,ose,zre,Bre,Vre,Ure,Gre,Xre,Zre,Qre,nae,aae,iae,cae,hae,pae,Aae,xae,wae,Iae,Tae,Eae,_ae,sk,Oae,zae,Wae,Uae,Gae,jae,qae,kse,Zae,Qae,noe,roe,soe,ioe,coe,poe,foe,Rse,goe,xoe,voe,woe,koe,Soe,Noe,_oe,Foe,Poe,Moe,zoe,Woe,Hoe,qoe,cse,Koe,Yoe];for(let e of Joe)Ao(e);var O1=ee();O1.registerFlag("WASM_HAS_SIMD_SUPPORT",async()=>WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,10,9,1,7,0,65,0,253,15,26,11])));O1.registerFlag("WASM_HAS_MULTITHREAD_SUPPORT",async()=>{if(O1.get("IS_NODE"))return!1;try{return new MessageChannel().port1.postMessage(new SharedArrayBuffer(1)),WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,5,4,1,3,1,1,10,11,1,9,0,65,0,254,16,2,0,26,11]))}catch(e){return!1}});var xk=fa(LI()),Qoe='var Module={};function threadPrintErr(){var text=Array.prototype.slice.call(arguments).join(" ");console.error(text)}function threadAlert(){var text=Array.prototype.slice.call(arguments).join(" ");postMessage({cmd:"alert",text:text,threadId:Module["_pthread_self"]()})}var err=threadPrintErr;this.alert=threadAlert;Module["instantiateWasm"]=function(info,receiveInstance){var instance=new WebAssembly.Instance(Module["wasmModule"],info);Module["wasmModule"]=null;receiveInstance(instance);return instance.exports};function moduleLoaded(){}this.onmessage=function(e){try{if(e.data.cmd==="load"){Module["wasmModule"]=e.data.wasmModule;Module["wasmMemory"]=e.data.wasmMemory;Module["buffer"]=Module["wasmMemory"].buffer;Module["ENVIRONMENT_IS_PTHREAD"]=true;if(typeof e.data.urlOrBlob==="string"){importScripts(e.data.urlOrBlob)}else{var objectUrl=URL.createObjectURL(e.data.urlOrBlob);importScripts(objectUrl);URL.revokeObjectURL(objectUrl)}WasmBackendModuleThreadedSimd(Module).then(function(instance){Module=instance;moduleLoaded()})}else if(e.data.cmd==="objectTransfer"){Module["PThread"].receiveObjectTransfer(e.data)}else if(e.data.cmd==="run"){Module["__performance_now_clock_drift"]=performance.now()-e.data.time;Module["__emscripten_thread_init"](e.data.threadInfoStruct,0,0);var max=e.data.stackBase;var top=e.data.stackBase+e.data.stackSize;Module["establishStackSpace"](top,max);Module["_emscripten_tls_init"]();Module["PThread"].receiveObjectTransfer(e.data);Module["PThread"].setThreadStatus(Module["_pthread_self"](),1);try{var result=Module["invokeEntryPoint"](e.data.start_routine,e.data.arg);if(!Module["getNoExitRuntime"]())Module["PThread"].threadExit(result)}catch(ex){if(ex==="Canceled!"){Module["PThread"].threadCancel()}else if(ex!="unwind"){if(ex instanceof Module["ExitStatus"]){if(Module["getNoExitRuntime"]()){}else{Module["PThread"].threadExit(ex.status)}}else{Module["PThread"].threadExit(-2);throw ex}}}}else if(e.data.cmd==="cancel"){if(Module["_pthread_self"]()){Module["PThread"].threadCancel()}}else if(e.data.target==="setimmediate"){}else if(e.data.cmd==="processThreadQueue"){if(Module["_pthread_self"]()){Module["_emscripten_current_thread_process_queued_calls"]()}}else{err("worker.js received unknown command "+e.data.cmd);err(e.data)}}catch(ex){err("worker.js onmessage() captured an uncaught exception: "+ex);if(ex&&ex.stack)err(ex.stack);throw ex}};if(typeof process==="object"&&typeof process.versions==="object"&&typeof process.versions.node==="string"){self={location:{href:__filename}};var onmessage=this.onmessage;var nodeWorkerThreads=require("worker_threads");global.Worker=nodeWorkerThreads.Worker;var parentPort=nodeWorkerThreads.parentPort;parentPort.on("message",function(data){onmessage({data:data})});var nodeFS=require("fs");var nodeRead=function(filename){return nodeFS.readFileSync(filename,"utf8")};function globalEval(x){global.require=require;global.Module=Module;eval.call(null,x)}importScripts=function(f){globalEval(nodeRead(f))};postMessage=function(msg){parentPort.postMessage(msg)};if(typeof performance==="undefined"){performance={now:function(){return Date.now()}}}}',eie=fa(BI()),bk=class extends ku{constructor(e){super();this.wasm=e,this.dataIdNextNumber=1,this.wasm.tfjs.init(),this.dataIdMap=new Fd(this,Ar())}write(e,t,n){let s={id:this.dataIdNextNumber++};return this.move(s,e,t,n,1),s}numDataIds(){return this.dataIdMap.numDataIds()}async time(e){let t=I.now();return e(),{kernelMs:I.now()-t}}move(e,t,n,s,r){let a=this.dataIdNextNumber++;if(s==="string"){let u=t;this.dataIdMap.set(e,{id:a,stringBytes:u,shape:n,dtype:s,memoryOffset:null,refCount:r});return}let o=I.sizeFromShape(n),i=o*I.bytesPerElement(s),l=this.wasm._malloc(i);this.dataIdMap.set(e,{id:a,memoryOffset:l,shape:n,dtype:s,refCount:r}),this.wasm.tfjs.registerTensor(a,o,l),t!=null&&this.wasm.HEAPU8.set(new Uint8Array(t.buffer,t.byteOffset,i),l)}async read(e){return this.readSync(e)}readSync(e){let{memoryOffset:t,dtype:n,shape:s,stringBytes:r}=this.dataIdMap.get(e);if(n==="string")return r;let a=this.wasm.HEAPU8.slice(t,t+I.sizeFromShape(s)*I.bytesPerElement(n));return sie(a.buffer,n)}disposeData(e,t=!1){if(this.dataIdMap.has(e)){let n=this.dataIdMap.get(e);if(n.refCount--,!t&&n.refCount>0)return!1;this.wasm._free(n.memoryOffset),this.wasm.tfjs.disposeData(n.id),this.dataIdMap.delete(e)}return!0}refCount(e){return this.dataIdMap.has(e)?this.dataIdMap.get(e).refCount:0}incRef(e){let t=this.dataIdMap.get(e);t!=null&&t.refCount++}floatPrecision(){return 32}getMemoryOffset(e){return this.dataIdMap.get(e).memoryOffset}dispose(){this.wasm.tfjs.dispose(),"PThread"in this.wasm&&this.wasm.PThread.terminateAllThreads(),this.wasm=null}memory(){return{unreliable:!1}}makeOutput(e,t,n){let s;if(n==null)s=this.write(null,e,t);else{let r=this.dataIdNextNumber++;s={id:r},this.dataIdMap.set(s,{id:r,memoryOffset:n,shape:e,dtype:t,refCount:1});let a=I.sizeFromShape(e);this.wasm.tfjs.registerTensor(r,a,n)}return{dataId:s,shape:e,dtype:t}}typedArrayFromHeap({shape:e,dtype:t,dataId:n}){let s=this.wasm.HEAPU8.buffer,{memoryOffset:r}=this.dataIdMap.get(n),a=I.sizeFromShape(e);switch(t){case"float32":return new Float32Array(s,r,a);case"int32":return new Int32Array(s,r,a);case"bool":return new Uint8Array(s,r,a);default:throw new Error(`Unknown dtype ${t}`)}}};function tie(e){return(t,n)=>(I.fetch(e,{credentials:"same-origin"}).then(s=>{s.ok||t.env.a(`failed to load wasm binary file at '${e}'`),s.arrayBuffer().then(r=>{WebAssembly.instantiate(r,t).then(a=>{n(a.instance,a.module)})})}),{})}function vk(e,t,n){if(Sf!=null)return Sf;let s="tfjs-backend-wasm.wasm";return e&&t?s="tfjs-backend-wasm-threaded-simd.wasm":e&&(s="tfjs-backend-wasm-simd.wasm"),Kc!=null&&Kc[s]!=null?Kc[s]:n+s}async function nie(){let[e,t]=await Promise.all([ee().getAsync("WASM_HAS_SIMD_SUPPORT"),ee().getAsync("WASM_HAS_MULTITHREAD_SUPPORT")]);return new Promise((n,s)=>{let r={};r.locateFile=(i,l)=>{if(i.endsWith(".worker.js")){let u=Qoe,c=new Blob([u],{type:"application/javascript"});return URL.createObjectURL(c)}return i.endsWith(".wasm")?vk(e,t,Xc!=null?Xc:l):l+i},P1&&(r.instantiateWasm=tie(vk(e,t,Xc!=null?Xc:"")));let a=!1;r.onAbort=()=>{if(a||Zc)return;Zc=!0,s({message:"Make sure the server can serve the `.wasm` file relative to the bundled js file. For more details see https://github.com/tensorflow/tfjs/blob/master/tfjs-backend-wasm/README.md#using-bundlers"})};let o;t&&e&&Sf==null?(r.mainScriptUrlOrBlob=new Blob(["var WasmBackendModuleThreadedSimd = "+xk.default.toString()],{type:"text/javascript"}),o=(0,xk.default)(r)):o=(0,eie.default)(r),o.then(i=>{a=!0,Zc=!1;let l=null;i.tfjs={init:i.cwrap("init",null,[]),registerTensor:i.cwrap("register_tensor",null,["number","number","number"]),disposeData:i.cwrap("dispose_data",l,["number"]),dispose:i.cwrap("dispose",l,[])},n({wasm:i})})})}function sie(e,t){switch(t){case"float32":return new Float32Array(e);case"int32":return new Int32Array(e);case"bool":return new Uint8Array(e);default:throw new Error(`Unknown dtype ${t}`)}}var rie=["tfjs-backend-wasm.wasm","tfjs-backend-wasm-simd.wasm","tfjs-backend-wasm-threaded-simd.wasm"],Sf=null,Xc=null,Kc={},Zc=!1,P1=!1;function aie(e,t=!1){if(rA("setWasmPath has been deprecated in favor of setWasmPaths and will be removed in a future release."),Zc)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPath()` before you call `tf.setBackend()` or `tf.ready()`");Sf=e,P1=t}function oie(e,t=!1){if(Zc)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPaths()` before you call `tf.setBackend()` or `tf.ready()`");if(typeof e=="string")Xc=e;else{Kc=e;let n=rie.filter(s=>Kc[s]==null);if(n.length>0)throw new Error(`There were no entries found for the following binaries: ${n.join(",")}. Please either call setWasmPaths with a map providing a path for each binary, or with a string indicating the directory where all the binaries can be found.`)}P1=t}var iie="3.8.0",lie=2;bl("wasm",async()=>{let{wasm:e}=await nie();return new bk(e)},lie);var uie={tfjs:WI,"tfjs-core":VI,"tfjs-data":UI,"tfjs-layers":HI,"tfjs-converter":GI,"tfjs-backend-cpu":jI,"tfjs-backend-webgl":qI,"tfjs-backend-wasm":XI};var Dn={name:"humangl",priority:99,canvas:null,gl:null,width:1024,height:1024,extensions:[],webGLattr:{alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!1,desynchronized:!0}};function cie(){let e=Dn.gl;!e||(Dn.extensions=e.getSupportedExtensions())}function wk(){if(!aA(Dn.name)){try{Dn.canvas=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(Dn.width,Dn.height):document.createElement("canvas")}catch(e){ue("error: cannot create canvas:",e);return}try{Dn.gl=Dn.canvas.getContext("webgl2",Dn.webGLattr)}catch(e){ue("error: cannot get WebGL2 context:",e);return}try{tf(2,Dn.gl)}catch(e){ue("error: cannot set WebGL2 context:",e);return}try{let e=new uf(Dn.gl);bl(Dn.name,()=>new Jl(e),Dn.priority)}catch(e){ue("error: cannot register WebGL backend:",e);return}try{fl("webgl").forEach(t=>{let n={...t,backendName:Dn.name};Ao(n)})}catch(e){ue("error: cannot update WebGL backend registration:",e);return}try{ns.set("WEBGL_VERSION",2)}catch(e){ue("error: cannot set WebGL backend flags:",e);return}cie(),ue("backend registered:",Dn.name)}}function kk(e,t){let n=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],s=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]];return{startPoint:n,endPoint:s}}function Jc(e){return[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])]}function Qc(e){return[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2]}function ed(e,t,n){let s=t.shape[1],r=t.shape[2],a=[[e.startPoint[1]/s,e.startPoint[0]/r,e.endPoint[1]/s,e.endPoint[0]/r]];return _e.cropAndResize(t,a,[0],n)}function Cf(e,t=1.5){let n=Qc(e),s=Jc(e),r=[t*s[0]/2,t*s[1]/2],a=[n[0]-r[0],n[1]-r[1]],o=[n[0]+r[0],n[1]+r[1]];return{startPoint:a,endPoint:o,landmarks:e.landmarks}}function Tf(e){let t=Qc(e),n=Jc(e),r=Math.max(...n)/2,a=[Math.round(t[0]-r),Math.round(t[1]-r)],o=[Math.round(t[0]+r),Math.round(t[1]+r)];return{startPoint:a,endPoint:o,landmarks:e.landmarks}}function M1(e){let t=e.map(a=>a[0]),n=e.map(a=>a[1]),s=[Math.min(...t),Math.min(...n)],r=[Math.max(...t),Math.max(...n)];return{startPoint:s,endPoint:r,landmarks:e}}var Ik=e=>({startPoint:Re(e,[0,0],[-1,2]),endPoint:Re(e,[0,2],[-1,2])});var Nf=[[1,0,0],[0,1,0],[0,0,1]];function die(e){return e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI))}function Sk(e,t){let n=Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]);return die(n)}function Ck(e,t){return[[1,0,e],[0,1,t],[0,0,1]]}function oa(e,t){let n=0;for(let s=0;s<e.length;s++)n+=e[s]*t[s];return n}function hie(e,t){let n=[];for(let s=0;s<e.length;s++)n.push(e[s][t]);return n}function Tk(e,t){let n=[],s=e.length;for(let r=0;r<s;r++){n.push([]);for(let a=0;a<s;a++)n[r].push(oa(e[r],hie(t,a)))}return n}function z1(e,t){let n=Math.cos(e),s=Math.sin(e),r=[[n,-s,0],[s,n,0],[0,0,1]],a=Ck(t[0],t[1]),o=Tk(a,r),i=Ck(-t[0],-t[1]);return Tk(o,i)}function Nk(e){let t=[[e[0][0],e[1][0]],[e[0][1],e[1][1]]],n=[e[0][2],e[1][2]],s=[-oa(t[0],n),-oa(t[1],n)];return[t[0].concat(s[0]),t[1].concat(s[1]),[0,0,1]]}function Ek(e,t){return[oa(e,t[0]),oa(e,t[1])]}function Rk(e){let t={strides:[e/16,e/8],anchors:[2,6]},n=[];for(let s=0;s<t.strides.length;s++){let r=t.strides[s],a=Math.floor((e+r-1)/r),o=Math.floor((e+r-1)/r),i=t.anchors[s];for(let l=0;l<a;l++){let u=r*(l+.5);for(let c=0;c<o;c++){let d=r*(c+.5);for(let h=0;h<i;h++)n.push([d,u])}}}return n}var _k=6;function pie(e,t,n){let s=Re(e,[0,1],[-1,2]),r=ae(s,t),a=Re(e,[0,3],[-1,2]),o=de(a,n),i=de(r,n),l=de(o,2),u=Ae(i,l),c=ae(i,l),d=z(u,n),h=z(c,n);return Il([d,h],1)}var $k=class{constructor(t,n){this.model=t,this.anchorsData=Rk(t.inputs[0].shape[1]),this.anchors=_s(this.anchorsData),this.inputSize=t.inputs[0].shape[2],this.config=n}async getBoundingBoxes(t,n){if(!t||t.isDisposedInternal||t.shape.length!==4||t.shape[1]<1||t.shape[2]<1)return null;let[s,r,a]=H(()=>{let c=_e.resizeBilinear(t,[this.inputSize,this.inputSize]),d=Ae(de(c,127.5),.5),h=this.model.execute(d),p;if(Array.isArray(h)){let g=h.sort((v,k)=>v.size-k.size),y=ht([g[0],g[2]],2),x=ht([g[1],g[3]],2),b=ht([x,y],1);p=ot(b,0)}else p=ot(h);let f=pie(p,this.anchors,[this.inputSize,this.inputSize]),m=Re(p,[0,0],[-1,1]),A=ot(Bn(m));return[p,f,A]});this.config=pn(this.config,n);let o=await _e.nonMaxSuppressionAsync(r,a,this.config.face.detector.maxDetected,this.config.face.detector.iouThreshold,this.config.face.detector.minConfidence),i=await o.array();K(o);let l=[],u=await a.data();for(let c=0;c<i.length;c++){let d=u[i[c]];if(d>this.config.face.detector.minConfidence){let h=Re(r,[i[c],0],[1,-1]),p=Ik(h);K(h);let f=this.anchorsData[i[c]],m=H(()=>U(ot(Re(s,[i[c],_k-1],[1,-1])),[_k,-1]));l.push({box:p,landmarks:m,anchor:f,confidence:d})}}return K(s),K(r),K(a),{boxes:l,scaleFactor:[t.shape[2]/this.inputSize,t.shape[1]/this.inputSize]}}};async function Fk(e){let t=await pt(ft(e.modelBasePath,e.face.detector.modelPath),{fromTFHub:e.face.detector.modelPath.includes("tfhub.dev")}),n=new $k(t,e);return!t||!t.modelUrl?ue("load model failed:",e.face.detector.modelPath):e.debug&&ue("load model:",t.modelUrl),n}var or={silhouette:[10,338,297,332,284,251,389,356,454,323,361,288,397,365,379,378,400,377,152,148,176,149,150,136,172,58,132,93,234,127,162,21,54,103,67,109],lipsUpperOuter:[61,185,40,39,37,0,267,269,270,409,291],lipsLowerOuter:[146,91,181,84,17,314,405,321,375,291],lipsUpperInner:[78,191,80,81,82,13,312,311,310,415,308],lipsLowerInner:[78,95,88,178,87,14,317,402,318,324,308],rightEyeUpper0:[246,161,160,159,158,157,173],rightEyeLower0:[33,7,163,144,145,153,154,155,133],rightEyeUpper1:[247,30,29,27,28,56,190],rightEyeLower1:[130,25,110,24,23,22,26,112,243],rightEyeUpper2:[113,225,224,223,222,221,189],rightEyeLower2:[226,31,228,229,230,231,232,233,244],rightEyeLower3:[143,111,117,118,119,120,121,128,245],rightEyebrowUpper:[156,70,63,105,66,107,55,193],rightEyebrowLower:[35,124,46,53,52,65],rightEyeIris:[473,474,475,476,477],leftEyeUpper0:[466,388,387,386,385,384,398],leftEyeLower0:[263,249,390,373,374,380,381,382,362],leftEyeUpper1:[467,260,259,257,258,286,414],leftEyeLower1:[359,255,339,254,253,252,256,341,463],leftEyeUpper2:[342,445,444,443,442,441,413],leftEyeLower2:[446,261,448,449,450,451,452,453,464],leftEyeLower3:[372,340,346,347,348,349,350,357,465],leftEyebrowUpper:[383,300,293,334,296,336,285,417],leftEyebrowLower:[265,353,276,283,282,295],leftEyeIris:[468,469,470,471,472],midwayBetweenEyes:[168],noseTip:[1],noseBottom:[2],noseRightCorner:[98],noseLeftCorner:[327],rightCheek:[205],leftCheek:[425]},L1=[{key:"EyeUpper0",indices:[9,10,11,12,13,14,15]},{key:"EyeUpper1",indices:[25,26,27,28,29,30,31]},{key:"EyeUpper2",indices:[41,42,43,44,45,46,47]},{key:"EyeLower0",indices:[0,1,2,3,4,5,6,7,8]},{key:"EyeLower1",indices:[16,17,18,19,20,21,22,23,24]},{key:"EyeLower2",indices:[32,33,34,35,36,37,38,39,40]},{key:"EyeLower3",indices:[54,55,56,57,58,59,60,61,62]}],td=[[.499976992607117,.652534008026123],[.500025987625122,.547487020492554],[.499974012374878,.602371990680695],[.482113003730774,.471979022026062],[.500150978565216,.527155995368958],[.499909996986389,.498252987861633],[.499523013830185,.40106201171875],[.289712011814117,.380764007568359],[.499954998493195,.312398016452789],[.499987006187439,.269918978214264],[.500023007392883,.107050001621246],[.500023007392883,.666234016418457],[.5000159740448,.679224014282227],[.500023007392883,.692348003387451],[.499976992607117,.695277988910675],[.499976992607117,.70593398809433],[.499976992607117,.719385027885437],[.499976992607117,.737019002437592],[.499967992305756,.781370997428894],[.499816000461578,.562981009483337],[.473773002624512,.573909997940063],[.104906998574734,.254140973091125],[.365929991006851,.409575998783112],[.338757991790771,.41302502155304],[.311120003461838,.409460008144379],[.274657994508743,.389131009578705],[.393361985683441,.403706014156342],[.345234006643295,.344011008739471],[.370094001293182,.346076011657715],[.319321990013123,.347265005111694],[.297903001308441,.353591024875641],[.24779200553894,.410809993743896],[.396889001131058,.842755019664764],[.280097991228104,.375599980354309],[.106310002505779,.399955987930298],[.2099249958992,.391353011131287],[.355807989835739,.534406006336212],[.471751004457474,.65040397644043],[.474155008792877,.680191993713379],[.439785003662109,.657229006290436],[.414617002010345,.66654098033905],[.450374007225037,.680860996246338],[.428770989179611,.682690978050232],[.374971002340317,.727805018424988],[.486716985702515,.547628998756409],[.485300987958908,.527395009994507],[.257764995098114,.314490020275116],[.401223003864288,.455172002315521],[.429818987846375,.548614978790283],[.421351999044418,.533740997314453],[.276895999908447,.532056987285614],[.483370006084442,.499586999416351],[.33721199631691,.282882988452911],[.296391993761063,.293242990970612],[.169294998049736,.193813979625702],[.447580009698868,.302609980106354],[.392390012741089,.353887975215912],[.354490011930466,.696784019470215],[.067304998636246,.730105042457581],[.442739009857178,.572826027870178],[.457098007202148,.584792017936707],[.381974011659622,.694710969924927],[.392388999462128,.694203019142151],[.277076005935669,.271932005882263],[.422551989555359,.563233017921448],[.385919004678726,.281364023685455],[.383103013038635,.255840003490448],[.331431001424789,.119714021682739],[.229923993349075,.232002973556519],[.364500999450684,.189113974571228],[.229622006416321,.299540996551514],[.173287004232407,.278747975826263],[.472878992557526,.666198015213013],[.446828007698059,.668527007102966],[.422762006521225,.673889994621277],[.445307999849319,.580065965652466],[.388103008270264,.693961024284363],[.403039008378983,.706539988517761],[.403629004955292,.693953037261963],[.460041999816895,.557139039039612],[.431158006191254,.692366003990173],[.452181994915009,.692366003990173],[.475387006998062,.692366003990173],[.465828001499176,.779190003871918],[.472328990697861,.736225962638855],[.473087012767792,.717857003211975],[.473122000694275,.704625964164734],[.473033010959625,.695277988910675],[.427942007780075,.695277988910675],[.426479011774063,.703539967536926],[.423162013292313,.711845993995667],[.4183090031147,.720062971115112],[.390094995498657,.639572978019714],[.013953999616206,.560034036636353],[.499913990497589,.58014702796936],[.413199990987778,.69539999961853],[.409626007080078,.701822996139526],[.468080013990402,.601534962654114],[.422728985548019,.585985004901886],[.463079988956451,.593783974647522],[.37211999297142,.47341400384903],[.334562003612518,.496073007583618],[.411671012639999,.546965003013611],[.242175996303558,.14767599105835],[.290776997804642,.201445996761322],[.327338010072708,.256527006626129],[.399509996175766,.748921036720276],[.441727995872498,.261676013469696],[.429764986038208,.187834024429321],[.412198007106781,.108901023864746],[.288955003023148,.398952007293701],[.218936994671822,.435410976409912],[.41278201341629,.398970007896423],[.257135003805161,.355440020561218],[.427684992551804,.437960982322693],[.448339998722076,.536936044692993],[.178560003638268,.45755398273468],[.247308000922203,.457193970680237],[.286267012357712,.467674970626831],[.332827985286713,.460712015628815],[.368755996227264,.447206974029541],[.398963987827301,.432654976844788],[.476410001516342,.405806005001068],[.189241006970406,.523923993110657],[.228962004184723,.348950982093811],[.490725994110107,.562400996685028],[.404670000076294,.485132992267609],[.019469000399113,.401564002037048],[.426243007183075,.420431017875671],[.396993011236191,.548797011375427],[.266469985246658,.376977026462555],[.439121007919312,.51895797252655],[.032313998788595,.644356966018677],[.419054001569748,.387154996395111],[.462783008813858,.505746960639954],[.238978996872902,.779744982719421],[.198220998048782,.831938028335571],[.107550002634525,.540755033493042],[.183610007166862,.740257024765015],[.134409993886948,.333683013916016],[.385764002799988,.883153975009918],[.490967005491257,.579378008842468],[.382384985685349,.508572995662689],[.174399003386497,.397670984268188],[.318785011768341,.39623498916626],[.343364000320435,.400596976280212],[.396100014448166,.710216999053955],[.187885001301765,.588537991046906],[.430987000465393,.944064974784851],[.318993002176285,.898285031318665],[.266247987747192,.869701027870178],[.500023007392883,.190576016902924],[.499976992607117,.954452991485596],[.366169989109039,.398822009563446],[.393207013607025,.39553701877594],[.410373002290726,.391080021858215],[.194993004202843,.342101991176605],[.388664990663528,.362284004688263],[.365961998701096,.355970978736877],[.343364000320435,.355356991291046],[.318785011768341,.35834002494812],[.301414996385574,.363156020641327],[.058132998645306,.319076001644135],[.301414996385574,.387449026107788],[.499987989664078,.618434011936188],[.415838003158569,.624195992946625],[.445681989192963,.566076993942261],[.465844005346298,.620640993118286],[.49992299079895,.351523995399475],[.288718998432159,.819945991039276],[.335278987884521,.852819979190826],[.440512001514435,.902418971061707],[.128294005990028,.791940987110138],[.408771991729736,.373893976211548],[.455606997013092,.451801002025604],[.499877005815506,.908990025520325],[.375436991453171,.924192011356354],[.11421000212431,.615022003650665],[.448662012815475,.695277988910675],[.4480200111866,.704632043838501],[.447111994028091,.715808033943176],[.444831997156143,.730794012546539],[.430011987686157,.766808986663818],[.406787008047104,.685672998428345],[.400738000869751,.681069016456604],[.392399996519089,.677703022956848],[.367855995893478,.663918972015381],[.247923001646996,.601333022117615],[.452769994735718,.420849978923798],[.43639200925827,.359887003898621],[.416164010763168,.368713974952698],[.413385987281799,.692366003990173],[.228018000721931,.683571994304657],[.468268007040024,.352671027183533],[.411361992359161,.804327011108398],[.499989002943039,.469825029373169],[.479153990745544,.442654013633728],[.499974012374878,.439637005329132],[.432112008333206,.493588984012604],[.499886006116867,.866917014122009],[.49991300702095,.821729004383087],[.456548988819122,.819200992584229],[.344549000263214,.745438992977142],[.37890899181366,.574010014533997],[.374292999505997,.780184984207153],[.319687992334366,.570737957954407],[.357154995203018,.604269981384277],[.295284003019333,.621580958366394],[.447750002145767,.862477004528046],[.410986006259918,.508723020553589],[.31395098567009,.775308012962341],[.354128003120422,.812552988529205],[.324548006057739,.703992962837219],[.189096003770828,.646299958229065],[.279776990413666,.71465802192688],[.1338230073452,.682700991630554],[.336768001317978,.644733011722565],[.429883986711502,.466521978378296],[.455527991056442,.548622965812683],[.437114000320435,.558896005153656],[.467287987470627,.529924988746643],[.414712011814117,.335219979286194],[.37704598903656,.322777986526489],[.344107985496521,.320150971412659],[.312875986099243,.32233202457428],[.283526003360748,.333190023899078],[.241245999932289,.382785975933075],[.102986000478268,.468762993812561],[.267612010240555,.424560010433197],[.297879010438919,.433175981044769],[.333433985710144,.433878004550934],[.366427004337311,.426115989685059],[.396012008190155,.416696012020111],[.420121014118195,.41022801399231],[.007561000064015,.480777025222778],[.432949006557465,.569517970085144],[.458638995885849,.479089021682739],[.473466008901596,.545744001865387],[.476087987422943,.563830018043518],[.468472003936768,.555056989192963],[.433990985155106,.582361996173859],[.483518004417419,.562983989715576],[.482482999563217,.57784903049469],[.42645001411438,.389798998832703],[.438998997211456,.39649498462677],[.450067013502121,.400434017181396],[.289712011814117,.368252992630005],[.276670008897781,.363372981548309],[.517862021923065,.471948027610779],[.710287988185883,.380764007568359],[.526226997375488,.573909997940063],[.895093023777008,.254140973091125],[.634069979190826,.409575998783112],[.661242008209229,.41302502155304],[.688880026340485,.409460008144379],[.725341975688934,.389131009578705],[.606630027294159,.40370500087738],[.654766023159027,.344011008739471],[.629905998706818,.346076011657715],[.680678009986877,.347265005111694],[.702096998691559,.353591024875641],[.75221198797226,.410804986953735],[.602918028831482,.842862963676453],[.719901978969574,.375599980354309],[.893692970275879,.399959981441498],[.790081977844238,.391354024410248],[.643998026847839,.534487962722778],[.528249025344849,.65040397644043],[.525849997997284,.680191040039062],[.560214996337891,.657229006290436],[.585384011268616,.66654098033905],[.549625992774963,.680860996246338],[.57122802734375,.682691991329193],[.624852001667023,.72809898853302],[.513050019741058,.547281980514526],[.51509702205658,.527251958847046],[.742246985435486,.314507007598877],[.598631024360657,.454979002475739],[.570338010787964,.548575043678284],[.578631997108459,.533622980117798],[.723087012767792,.532054007053375],[.516445994377136,.499638974666595],[.662801027297974,.282917976379395],[.70362401008606,.293271005153656],[.830704987049103,.193813979625702],[.552385985851288,.302568018436432],[.607609987258911,.353887975215912],[.645429015159607,.696707010269165],[.932694971561432,.730105042457581],[.557260990142822,.572826027870178],[.542901992797852,.584792017936707],[.6180260181427,.694710969924927],[.607590973377228,.694203019142151],[.722943007946014,.271963000297546],[.577413976192474,.563166975975037],[.614082992076874,.281386971473694],[.616907000541687,.255886018276215],[.668509006500244,.119913995265961],[.770092010498047,.232020974159241],[.635536015033722,.189248979091644],[.77039098739624,.299556016921997],[.826722025871277,.278755009174347],[.527121007442474,.666198015213013],[.553171992301941,.668527007102966],[.577238023281097,.673889994621277],[.554691970348358,.580065965652466],[.611896991729736,.693961024284363],[.59696102142334,.706539988517761],[.596370995044708,.693953037261963],[.539958000183105,.557139039039612],[.568841993808746,.692366003990173],[.547818005084991,.692366003990173],[.52461302280426,.692366003990173],[.534089982509613,.779141008853912],[.527670979499817,.736225962638855],[.526912987232208,.717857003211975],[.526877999305725,.704625964164734],[.526966989040375,.695277988910675],[.572058022022247,.695277988910675],[.573521018028259,.703539967536926],[.57683801651001,.711845993995667],[.581691026687622,.720062971115112],[.609944999217987,.639909982681274],[.986046016216278,.560034036636353],[.5867999792099,.69539999961853],[.590372025966644,.701822996139526],[.531915009021759,.601536989212036],[.577268004417419,.585934996604919],[.536915004253387,.593786001205444],[.627542972564697,.473352015018463],[.665585994720459,.495950996875763],[.588353991508484,.546862006187439],[.757824003696442,.14767599105835],[.709249973297119,.201507985591888],[.672684013843536,.256581008434296],[.600408971309662,.74900496006012],[.55826598405838,.261672019958496],[.570303976535797,.187870979309082],[.588165998458862,.109044015407562],[.711045026779175,.398952007293701],[.781069993972778,.435405015945435],[.587247014045715,.398931980133057],[.742869973182678,.355445981025696],[.572156012058258,.437651991844177],[.55186802148819,.536570012569427],[.821442008018494,.457556009292603],[.752701997756958,.457181990146637],[.71375697851181,.467626988887787],[.66711300611496,.460672974586487],[.631101012229919,.447153985500336],[.6008620262146,.432473003864288],[.523481011390686,.405627012252808],[.810747981071472,.523926019668579],[.771045982837677,.348959028720856],[.509127020835876,.562718033790588],[.595292985439301,.485023975372314],[.980530977249146,.401564002037048],[.573499977588654,.420000016689301],[.602994978427887,.548687994480133],[.733529984951019,.376977026462555],[.560611009597778,.519016981124878],[.967685997486115,.644356966018677],[.580985009670258,.387160003185272],[.537728011608124,.505385041236877],[.760966002941132,.779752969741821],[.801778972148895,.831938028335571],[.892440974712372,.54076099395752],[.816350996494293,.740260004997253],[.865594983100891,.333687007427216],[.614073991775513,.883246004581451],[.508952975273132,.579437971115112],[.617941975593567,.508316040039062],[.825608015060425,.397674977779388],[.681214988231659,.39623498916626],[.656635999679565,.400596976280212],[.603900015354156,.710216999053955],[.81208598613739,.588539004325867],[.56801301240921,.944564998149872],[.681007981300354,.898285031318665],[.733752012252808,.869701027870178],[.633830010890961,.398822009563446],[.606792986392975,.39553701877594],[.589659988880157,.391062021255493],[.805015981197357,.342108011245728],[.611334979534149,.362284004688263],[.634037971496582,.355970978736877],[.656635999679565,.355356991291046],[.681214988231659,.35834002494812],[.698584973812103,.363156020641327],[.941866993904114,.319076001644135],[.698584973812103,.387449026107788],[.584177017211914,.624107003211975],[.554318010807037,.566076993942261],[.534153997898102,.62064003944397],[.711217999458313,.819975018501282],[.664629995822906,.852871000766754],[.559099972248077,.902631998062134],[.871706008911133,.791940987110138],[.591234028339386,.373893976211548],[.544341027736664,.451583981513977],[.624562978744507,.924192011356354],[.88577002286911,.615028977394104],[.551338016986847,.695277988910675],[.551980018615723,.704632043838501],[.552887976169586,.715808033943176],[.555167973041534,.730794012546539],[.569944024085999,.767035007476807],[.593203008174896,.685675978660583],[.599261999130249,.681069016456604],[.607599973678589,.677703022956848],[.631937980651855,.663500010967255],[.752032995223999,.601315021514893],[.547226011753082,.420395016670227],[.563543975353241,.359827995300293],[.583841025829315,.368713974952698],[.586614012718201,.692366003990173],[.771915018558502,.683578014373779],[.531597018241882,.352482974529266],[.588370978832245,.804440975189209],[.52079701423645,.442565023899078],[.567984998226166,.493479013442993],[.543282985687256,.819254994392395],[.655317008495331,.745514988899231],[.621008992195129,.574018001556396],[.625559985637665,.78031200170517],[.680198013782501,.570719003677368],[.64276397228241,.604337990283966],[.704662978649139,.621529996395111],[.552012026309967,.862591981887817],[.589071989059448,.508637011051178],[.685944974422455,.775357007980347],[.645735025405884,.812640011310577],[.675342977046967,.703978002071381],[.810858011245728,.646304965019226],[.72012197971344,.714666962623596],[.866151988506317,.682704985141754],[.663187026977539,.644596993923187],[.570082008838654,.466325998306274],[.544561982154846,.548375964164734],[.562758982181549,.558784961700439],[.531987011432648,.530140042304993],[.585271000862122,.335177004337311],[.622952997684479,.32277899980545],[.655896008014679,.320163011550903],[.687132000923157,.322345972061157],[.716481983661652,.333200991153717],[.758756995201111,.382786989212036],[.897013008594513,.468769013881683],[.732392013072968,.424547016620636],[.70211398601532,.433162987232208],[.66652500629425,.433866024017334],[.633504986763,.426087975502014],[.603875994682312,.416586995124817],[.579657971858978,.409945011138916],[.992439985275269,.480777025222778],[.567192018032074,.569419980049133],[.54136598110199,.478899002075195],[.526564002037048,.546118021011353],[.523913025856018,.563830018043518],[.531529009342194,.555056989192963],[.566035985946655,.582329034805298],[.51631098985672,.563053965568542],[.5174720287323,.577877044677734],[.573594987392426,.389806985855103],[.560697972774506,.395331978797913],[.549755990505219,.399751007556915],[.710287988185883,.368252992630005],[.723330020904541,.363372981548309]],qo=[127,34,139,11,0,37,232,231,120,72,37,39,128,121,47,232,121,128,104,69,67,175,171,148,157,154,155,118,50,101,73,39,40,9,151,108,48,115,131,194,204,211,74,40,185,80,42,183,40,92,186,230,229,118,202,212,214,83,18,17,76,61,146,160,29,30,56,157,173,106,204,194,135,214,192,203,165,98,21,71,68,51,45,4,144,24,23,77,146,91,205,50,187,201,200,18,91,106,182,90,91,181,85,84,17,206,203,36,148,171,140,92,40,39,193,189,244,159,158,28,247,246,161,236,3,196,54,68,104,193,168,8,117,228,31,189,193,55,98,97,99,126,47,100,166,79,218,155,154,26,209,49,131,135,136,150,47,126,217,223,52,53,45,51,134,211,170,140,67,69,108,43,106,91,230,119,120,226,130,247,63,53,52,238,20,242,46,70,156,78,62,96,46,53,63,143,34,227,173,155,133,123,117,111,44,125,19,236,134,51,216,206,205,154,153,22,39,37,167,200,201,208,36,142,100,57,212,202,20,60,99,28,158,157,35,226,113,160,159,27,204,202,210,113,225,46,43,202,204,62,76,77,137,123,116,41,38,72,203,129,142,64,98,240,49,102,64,41,73,74,212,216,207,42,74,184,169,170,211,170,149,176,105,66,69,122,6,168,123,147,187,96,77,90,65,55,107,89,90,180,101,100,120,63,105,104,93,137,227,15,86,85,129,102,49,14,87,86,55,8,9,100,47,121,145,23,22,88,89,179,6,122,196,88,95,96,138,172,136,215,58,172,115,48,219,42,80,81,195,3,51,43,146,61,171,175,199,81,82,38,53,46,225,144,163,110,246,33,7,52,65,66,229,228,117,34,127,234,107,108,69,109,108,151,48,64,235,62,78,191,129,209,126,111,35,143,163,161,246,117,123,50,222,65,52,19,125,141,221,55,65,3,195,197,25,7,33,220,237,44,70,71,139,122,193,245,247,130,33,71,21,162,153,158,159,170,169,150,188,174,196,216,186,92,144,160,161,2,97,167,141,125,241,164,167,37,72,38,12,145,159,160,38,82,13,63,68,71,226,35,111,158,153,154,101,50,205,206,92,165,209,198,217,165,167,97,220,115,218,133,112,243,239,238,241,214,135,169,190,173,133,171,208,32,125,44,237,86,87,178,85,86,179,84,85,180,83,84,181,201,83,182,137,93,132,76,62,183,61,76,184,57,61,185,212,57,186,214,207,187,34,143,156,79,239,237,123,137,177,44,1,4,201,194,32,64,102,129,213,215,138,59,166,219,242,99,97,2,94,141,75,59,235,24,110,228,25,130,226,23,24,229,22,23,230,26,22,231,112,26,232,189,190,243,221,56,190,28,56,221,27,28,222,29,27,223,30,29,224,247,30,225,238,79,20,166,59,75,60,75,240,147,177,215,20,79,166,187,147,213,112,233,244,233,128,245,128,114,188,114,217,174,131,115,220,217,198,236,198,131,134,177,132,58,143,35,124,110,163,7,228,110,25,356,389,368,11,302,267,452,350,349,302,303,269,357,343,277,452,453,357,333,332,297,175,152,377,384,398,382,347,348,330,303,304,270,9,336,337,278,279,360,418,262,431,304,408,409,310,415,407,270,409,410,450,348,347,422,430,434,313,314,17,306,307,375,387,388,260,286,414,398,335,406,418,364,367,416,423,358,327,251,284,298,281,5,4,373,374,253,307,320,321,425,427,411,421,313,18,321,405,406,320,404,405,315,16,17,426,425,266,377,400,369,322,391,269,417,465,464,386,257,258,466,260,388,456,399,419,284,332,333,417,285,8,346,340,261,413,441,285,327,460,328,355,371,329,392,439,438,382,341,256,429,420,360,364,394,379,277,343,437,443,444,283,275,440,363,431,262,369,297,338,337,273,375,321,450,451,349,446,342,467,293,334,282,458,461,462,276,353,383,308,324,325,276,300,293,372,345,447,382,398,362,352,345,340,274,1,19,456,248,281,436,427,425,381,256,252,269,391,393,200,199,428,266,330,329,287,273,422,250,462,328,258,286,384,265,353,342,387,259,257,424,431,430,342,353,276,273,335,424,292,325,307,366,447,345,271,303,302,423,266,371,294,455,460,279,278,294,271,272,304,432,434,427,272,407,408,394,430,431,395,369,400,334,333,299,351,417,168,352,280,411,325,319,320,295,296,336,319,403,404,330,348,349,293,298,333,323,454,447,15,16,315,358,429,279,14,15,316,285,336,9,329,349,350,374,380,252,318,402,403,6,197,419,318,319,325,367,364,365,435,367,397,344,438,439,272,271,311,195,5,281,273,287,291,396,428,199,311,271,268,283,444,445,373,254,339,263,466,249,282,334,296,449,347,346,264,447,454,336,296,299,338,10,151,278,439,455,292,407,415,358,371,355,340,345,372,390,249,466,346,347,280,442,443,282,19,94,370,441,442,295,248,419,197,263,255,359,440,275,274,300,383,368,351,412,465,263,467,466,301,368,389,380,374,386,395,378,379,412,351,419,436,426,322,373,390,388,2,164,393,370,462,461,164,0,267,302,11,12,374,373,387,268,12,13,293,300,301,446,261,340,385,384,381,330,266,425,426,423,391,429,355,437,391,327,326,440,457,438,341,382,362,459,457,461,434,430,394,414,463,362,396,369,262,354,461,457,316,403,402,315,404,403,314,405,404,313,406,405,421,418,406,366,401,361,306,408,407,291,409,408,287,410,409,432,436,410,434,416,411,264,368,383,309,438,457,352,376,401,274,275,4,421,428,262,294,327,358,433,416,367,289,455,439,462,370,326,2,326,370,305,460,455,254,449,448,255,261,446,253,450,449,252,451,450,256,452,451,341,453,452,413,464,463,441,413,414,258,442,441,257,443,442,259,444,443,260,445,444,467,342,445,459,458,250,289,392,290,290,328,460,376,433,435,250,290,392,411,416,433,341,463,464,453,464,465,357,465,412,343,412,399,360,363,440,437,399,456,420,456,363,401,435,288,372,383,353,339,255,249,448,261,255,133,243,190,133,155,112,33,246,247,33,130,25,398,384,286,362,398,414,362,463,341,263,359,467,263,249,255,466,467,260,75,60,166,238,239,79,162,127,139,72,11,37,121,232,120,73,72,39,114,128,47,233,232,128,103,104,67,152,175,148,173,157,155,119,118,101,74,73,40,107,9,108,49,48,131,32,194,211,184,74,185,191,80,183,185,40,186,119,230,118,210,202,214,84,83,17,77,76,146,161,160,30,190,56,173,182,106,194,138,135,192,129,203,98,54,21,68,5,51,4,145,144,23,90,77,91,207,205,187,83,201,18,181,91,182,180,90,181,16,85,17,205,206,36,176,148,140,165,92,39,245,193,244,27,159,28,30,247,161,174,236,196,103,54,104,55,193,8,111,117,31,221,189,55,240,98,99,142,126,100,219,166,218,112,155,26,198,209,131,169,135,150,114,47,217,224,223,53,220,45,134,32,211,140,109,67,108,146,43,91,231,230,120,113,226,247,105,63,52,241,238,242,124,46,156,95,78,96,70,46,63,116,143,227,116,123,111,1,44,19,3,236,51,207,216,205,26,154,22,165,39,167,199,200,208,101,36,100,43,57,202,242,20,99,56,28,157,124,35,113,29,160,27,211,204,210,124,113,46,106,43,204,96,62,77,227,137,116,73,41,72,36,203,142,235,64,240,48,49,64,42,41,74,214,212,207,183,42,184,210,169,211,140,170,176,104,105,69,193,122,168,50,123,187,89,96,90,66,65,107,179,89,180,119,101,120,68,63,104,234,93,227,16,15,85,209,129,49,15,14,86,107,55,9,120,100,121,153,145,22,178,88,179,197,6,196,89,88,96,135,138,136,138,215,172,218,115,219,41,42,81,5,195,51,57,43,61,208,171,199,41,81,38,224,53,225,24,144,110,105,52,66,118,229,117,227,34,234,66,107,69,10,109,151,219,48,235,183,62,191,142,129,126,116,111,143,7,163,246,118,117,50,223,222,52,94,19,141,222,221,65,196,3,197,45,220,44,156,70,139,188,122,245,139,71,162,145,153,159,149,170,150,122,188,196,206,216,92,163,144,161,164,2,167,242,141,241,0,164,37,11,72,12,144,145,160,12,38,13,70,63,71,31,226,111,157,158,154,36,101,205,203,206,165,126,209,217,98,165,97,237,220,218,237,239,241,210,214,169,140,171,32,241,125,237,179,86,178,180,85,179,181,84,180,182,83,181,194,201,182,177,137,132,184,76,183,185,61,184,186,57,185,216,212,186,192,214,187,139,34,156,218,79,237,147,123,177,45,44,4,208,201,32,98,64,129,192,213,138,235,59,219,141,242,97,97,2,141,240,75,235,229,24,228,31,25,226,230,23,229,231,22,230,232,26,231,233,112,232,244,189,243,189,221,190,222,28,221,223,27,222,224,29,223,225,30,224,113,247,225,99,60,240,213,147,215,60,20,166,192,187,213,243,112,244,244,233,245,245,128,188,188,114,174,134,131,220,174,217,236,236,198,134,215,177,58,156,143,124,25,110,7,31,228,25,264,356,368,0,11,267,451,452,349,267,302,269,350,357,277,350,452,357,299,333,297,396,175,377,381,384,382,280,347,330,269,303,270,151,9,337,344,278,360,424,418,431,270,304,409,272,310,407,322,270,410,449,450,347,432,422,434,18,313,17,291,306,375,259,387,260,424,335,418,434,364,416,391,423,327,301,251,298,275,281,4,254,373,253,375,307,321,280,425,411,200,421,18,335,321,406,321,320,405,314,315,17,423,426,266,396,377,369,270,322,269,413,417,464,385,386,258,248,456,419,298,284,333,168,417,8,448,346,261,417,413,285,326,327,328,277,355,329,309,392,438,381,382,256,279,429,360,365,364,379,355,277,437,282,443,283,281,275,363,395,431,369,299,297,337,335,273,321,348,450,349,359,446,467,283,293,282,250,458,462,300,276,383,292,308,325,283,276,293,264,372,447,346,352,340,354,274,19,363,456,281,426,436,425,380,381,252,267,269,393,421,200,428,371,266,329,432,287,422,290,250,328,385,258,384,446,265,342,386,387,257,422,424,430,445,342,276,422,273,424,306,292,307,352,366,345,268,271,302,358,423,371,327,294,460,331,279,294,303,271,304,436,432,427,304,272,408,395,394,431,378,395,400,296,334,299,6,351,168,376,352,411,307,325,320,285,295,336,320,319,404,329,330,349,334,293,333,366,323,447,316,15,315,331,358,279,317,14,316,8,285,9,277,329,350,253,374,252,319,318,403,351,6,419,324,318,325,397,367,365,288,435,397,278,344,439,310,272,311,248,195,281,375,273,291,175,396,199,312,311,268,276,283,445,390,373,339,295,282,296,448,449,346,356,264,454,337,336,299,337,338,151,294,278,455,308,292,415,429,358,355,265,340,372,388,390,466,352,346,280,295,442,282,354,19,370,285,441,295,195,248,197,457,440,274,301,300,368,417,351,465,251,301,389,385,380,386,394,395,379,399,412,419,410,436,322,387,373,388,326,2,393,354,370,461,393,164,267,268,302,12,386,374,387,312,268,13,298,293,301,265,446,340,380,385,381,280,330,425,322,426,391,420,429,437,393,391,326,344,440,438,458,459,461,364,434,394,428,396,262,274,354,457,317,316,402,316,315,403,315,314,404,314,313,405,313,421,406,323,366,361,292,306,407,306,291,408,291,287,409,287,432,410,427,434,411,372,264,383,459,309,457,366,352,401,1,274,4,418,421,262,331,294,358,435,433,367,392,289,439,328,462,326,94,2,370,289,305,455,339,254,448,359,255,446,254,253,449,253,252,450,252,256,451,256,341,452,414,413,463,286,441,414,286,258,441,258,257,442,257,259,443,259,260,444,260,467,445,309,459,250,305,289,290,305,290,460,401,376,435,309,250,392,376,411,433,453,341,464,357,453,465,343,357,412,437,343,399,344,360,440,420,437,456,360,420,363,361,401,288,265,372,353,390,339,249,339,448,255];var fie=[127,234,132,58,172,150,149,148,152,377,378,379,397,288,361,454,356,70,63,105,66,107,336,296,334,293,300,168,6,195,4,98,97,2,326,327,33,160,158,133,153,144,362,385,387,263,373,380,57,40,37,0,267,270,287,321,314,17,84,91,78,81,13,311,308,402,14,178],mie=[33,133,362,263,1,62,308,159,145,386,374,6,102,331,2,13,14,70,105,107,336,334,300,54,10,284,50,280,234,454,58,288,152],Aie=[33,133,362,263,1,78,308],lle=fie.map(e=>td[e]),ule=mie.map(e=>td[e]),cle=Aie.map(e=>td[e]);var B1=or.leftEyeLower0,W1=or.rightEyeLower0,ru={leftBounds:[B1[0],B1[B1.length-1]],rightBounds:[W1[0],W1[W1.length-1]]},Dk={count:468,mouth:13,symmetryLine:[13,or.midwayBetweenEyes[0]]},gie={leftEye:0,rightEye:1,nose:2,mouth:3,leftEar:4,rightEar:5,symmetryLine:[3,2]},au={upperCenter:3,lowerCenter:4,index:71,numCoordinates:76};function Ef(e,t,n,s){for(let r=0;r<L1.length;r++){let{key:a,indices:o}=L1[r],i=or[`${n}${a}`];if(!s||s.includes(a))for(let l=0;l<o.length;l++){let u=o[l];e[i[l]]=[t[u][0],t[u][1],(t[u][2]+e[i[l]][2])/2]}}}var V1=class{constructor(t,n,s){var r,a;this.storedBoxes=[],this.boundingBoxDetector=t,this.meshDetector=n,this.irisModel=s,this.boxSize=((r=t==null?void 0:t.model)==null?void 0:r.inputs[0].shape[2])||0,this.meshSize=(n==null?void 0:n.inputs[0].shape[2])||((a=t==null?void 0:t.model)==null?void 0:a.inputs[0].shape[2]),this.irisSize=(s==null?void 0:s.inputs[0].shape[1])||0,this.irisEnlarge=2.3,this.skipped=0,this.detectedFaces=0}transformRawCoords(t,n,s,r){let a=Jc({startPoint:n.startPoint,endPoint:n.endPoint}),o=t.map(d=>[a[0]/this.meshSize*(d[0]-this.meshSize/2),a[1]/this.meshSize*(d[1]-this.meshSize/2),d[2]]),i=s!==0?z1(s,[0,0]):Nf,l=s!==0?o.map(d=>[...Ek(d,i),d[2]]):o,u=s!==0?Nk(r):Nf,c=[...Qc({startPoint:n.startPoint,endPoint:n.endPoint}),1];return l.map(d=>[Math.round(d[0]+oa(c,u[0])),Math.round(d[1]+oa(c,u[1])),Math.round(d[2])])}getLeftToRightEyeDepthDifference(t){let n=t[ru.leftBounds[0]][2],s=t[ru.rightBounds[0]][2];return n-s}getEyeBox(t,n,s,r,a=!1){let o=Tf(Cf(M1([t[s],t[r]]),this.irisEnlarge)),i=Jc(o),l=_e.cropAndResize(n,[[o.startPoint[1]/this.meshSize,o.startPoint[0]/this.meshSize,o.endPoint[1]/this.meshSize,o.endPoint[0]/this.meshSize]],[0],[this.irisSize,this.irisSize]);if(a&&ns.flags.IS_BROWSER){let u=_e.flipLeftRight(l);K(l),l=u}return{box:o,boxSize:i,crop:l}}getEyeCoords(t,n,s,r=!1){let a=[];for(let o=0;o<au.numCoordinates;o++){let i=t[o*3],l=t[o*3+1],u=t[o*3+2];a.push([(r?1-i/this.irisSize:i/this.irisSize)*s[0]+n.startPoint[0],l/this.irisSize*s[1]+n.startPoint[1],u])}return{rawCoords:a,iris:a.slice(au.index)}}getAdjustedIrisCoords(t,n,s){let r=t[or[`${s}EyeUpper0`][au.upperCenter]][2],a=t[or[`${s}EyeLower0`][au.lowerCenter]][2],o=(r+a)/2;return n.map((i,l)=>{let u=o;return l===2?u=r:l===4&&(u=a),[i[0],i[1],u]})}correctFaceRotation(t,n,s){let[r,a]=n.landmarks.length>=Dk.count?Dk.symmetryLine:gie.symmetryLine,o=Sk(n.landmarks[r],n.landmarks[a]),i=Qc({startPoint:n.startPoint,endPoint:n.endPoint}),l=[i[0]/s.shape[2],i[1]/s.shape[1]],u=_e.rotateWithOffset(s,o,0,l),c=z1(-o,i),d=t.face.mesh.enabled?ed({startPoint:n.startPoint,endPoint:n.endPoint},u,[this.meshSize,this.meshSize]):ed({startPoint:n.startPoint,endPoint:n.endPoint},u,[this.boxSize,this.boxSize]),h=de(d,255);return K(d),K(u),[o,c,h]}async augmentIris(t,n){let{box:s,boxSize:r,crop:a}=this.getEyeBox(t,n,ru.leftBounds[0],ru.leftBounds[1],!0),{box:o,boxSize:i,crop:l}=this.getEyeBox(t,n,ru.rightBounds[0],ru.rightBounds[1]),u=ht([a,l]);K(a),K(l);let c=this.irisModel.predict(u);K(u);let d=await c.data();K(c);let h=d.slice(0,au.numCoordinates*3),{rawCoords:p,iris:f}=this.getEyeCoords(h,s,r,!0),m=d.slice(au.numCoordinates*3),{rawCoords:A,iris:g}=this.getEyeCoords(m,o,i),y=this.getLeftToRightEyeDepthDifference(t);Math.abs(y)<30?(Ef(t,p,"left",null),Ef(t,A,"right",null)):y<1?Ef(t,p,"left",["EyeUpper0","EyeLower0"]):Ef(t,A,"right",["EyeUpper0","EyeLower0"]);let x=this.getAdjustedIrisCoords(t,f,"left"),b=this.getAdjustedIrisCoords(t,g,"right");return t.concat(x).concat(b)}async predict(t,n){let s=!1,r;if((this.skipped===0||this.skipped>n.face.detector.skipFrames||!n.face.mesh.enabled||!n.skipFrame)&&(r=await this.boundingBoxDetector.getBoundingBoxes(t,n),this.skipped=0),n.skipFrame&&this.skipped++,!n.skipFrame||r&&r.boxes&&(!n.face.mesh.enabled||r.boxes.length!==this.detectedFaces&&this.detectedFaces!==n.face.detector.maxDetected)){this.storedBoxes=[],this.detectedFaces=0;for(let i of r.boxes){let l=await i.box.startPoint.data(),u=await i.box.endPoint.data(),c=await i.landmarks.array();this.storedBoxes.push({startPoint:l,endPoint:u,landmarks:c,confidence:i.confidence})}this.storedBoxes.length>0&&(s=!0)}if(s){if(!r||!r.boxes||r.boxes.length===0)return this.storedBoxes=[],this.detectedFaces=0,null;for(let i=0;i<this.storedBoxes.length;i++){let l=kk({startPoint:this.storedBoxes[i].startPoint,endPoint:this.storedBoxes[i].endPoint},r.scaleFactor),u=Cf(l),c=Tf(u),d=this.storedBoxes[i].landmarks,h=this.storedBoxes[i].confidence;this.storedBoxes[i]={...c,confidence:h,landmarks:d}}}r&&r.boxes&&r.boxes.forEach(i=>{K(i.box.startPoint),K(i.box.endPoint),K(i.landmarks)});let a=[],o=[];for(let i of this.storedBoxes){let l,u=0,c;if(n.face.detector.rotation&&n.face.mesh.enabled&&ns.flags.IS_BROWSER)[u,c,l]=this.correctFaceRotation(n,i,t);else{c=Nf;let d=t.clone(),h=n.face.mesh.enabled?ed({startPoint:i.startPoint,endPoint:i.endPoint},d,[this.meshSize,this.meshSize]):ed({startPoint:i.startPoint,endPoint:i.endPoint},d,[this.boxSize,this.boxSize]);l=de(h,255),K(h),K(d)}if(!n.face.mesh.enabled)a.push({mesh:[],box:i,faceConfidence:null,boxConfidence:i.confidence,confidence:i.confidence,image:l});else{let[d,h,p]=this.meshDetector.execute(l);K(d);let f=(await h.data())[0];K(h);let m=U(p,[-1,3]),A=await m.array();if(K(p),K(m),f<n.face.detector.minConfidence)i.confidence=f,K(l);else{n.face.iris.enabled&&(A=await this.augmentIris(A,l));let g=this.transformRawCoords(A,i,u,c);i={...Cf(M1(g),1.5),confidence:i.confidence},n.face.detector.rotation&&n.face.mesh.enabled&&n.face.description.enabled&&ns.flags.IS_BROWSER&&([u,c,l]=this.correctFaceRotation(n,i,t)),a.push({mesh:g,box:i,faceConfidence:f,boxConfidence:i.confidence,confidence:f,image:l}),i={...Tf(i),confidence:i.confidence,faceConfidence:f}}}o.push(i)}return n.face.mesh.enabled&&(this.storedBoxes=o.filter(i=>i.confidence>n.face.detector.minConfidence)),this.detectedFaces=a.length,a}};var Rt=[null,null,null],U1;async function Ok(e,t){let n=await U1.predict(e,t),s=[],r=0;for(let a of n||[]){if(!a||a.isDisposedInternal)continue;let o=a.mesh.map(c=>[c[0]/(e.shape[2]||0),c[1]/(e.shape[1]||0),c[2]/U1.meshSize]),i={};if(a.mesh&&a.mesh.length>0)for(let c of Object.keys(or))i[c]=or[c].map(d=>a.mesh[d]);let l=a.box?[Math.trunc(Math.max(0,a.box.startPoint[0])),Math.trunc(Math.max(0,a.box.startPoint[1])),Math.trunc(Math.min(e.shape[2]||0,a.box.endPoint[0])-Math.max(0,a.box.startPoint[0])),Math.trunc(Math.min(e.shape[1]||0,a.box.endPoint[1])-Math.max(0,a.box.startPoint[1]))]:[0,0,0,0],u=a.box?[a.box.startPoint[0]/(e.shape[2]||0),a.box.startPoint[1]/(e.shape[1]||0),(a.box.endPoint[0]-a.box.startPoint[0])/(e.shape[2]||0),(a.box.endPoint[1]-a.box.startPoint[1])/(e.shape[1]||0)]:[0,0,0,0];s.push({id:r++,score:Math.round(100*a.faceConfidence||100*a.boxConfidence||0)/100,boxScore:Math.round(100*a.boxConfidence)/100,faceScore:Math.round(100*a.faceConfidence)/100,box:l,boxRaw:u,mesh:a.mesh,meshRaw:o,annotations:i,tensor:a.image}),a.coords&&K(a.coords)}return s}async function H1(e){return!Rt[0]&&e.face.enabled||!Rt[1]&&e.face.mesh.enabled||!Rt[2]&&e.face.iris.enabled?(Rt=await Promise.all([!Rt[0]&&e.face.enabled?Fk(e):null,!Rt[1]&&e.face.mesh.enabled?pt(ft(e.modelBasePath,e.face.mesh.modelPath),{fromTFHub:e.face.mesh.modelPath.includes("tfhub.dev")}):null,!Rt[2]&&e.face.iris.enabled?pt(ft(e.modelBasePath,e.face.iris.modelPath),{fromTFHub:e.face.iris.modelPath.includes("tfhub.dev")}):null]),e.face.mesh.enabled&&(!Rt[1]||!Rt[1].modelUrl?ue("load model failed:",e.face.mesh.modelPath):e.debug&&ue("load model:",Rt[1].modelUrl)),e.face.iris.enabled&&(!Rt[2]||!Rt[2].modelUrl?ue("load model failed:",e.face.iris.modelPath):e.debug&&ue("load model:",Rt[2].modelUrl))):e.debug&&(Rt[0]&&ue("cached model:",Rt[0].model.modelUrl),Rt[1]&&ue("cached model:",Rt[1].modelUrl),Rt[2]&&ue("cached model:",Rt[2].modelUrl)),U1=new V1(Rt[0],Rt[1],Rt[2]),Rt}var Pk=qo,Mk=td;var Ws,Rf=[],zk=0,G1=Number.MAX_SAFE_INTEGER;async function j1(e){let t=ft(e.modelBasePath,e.face.description.modelPath);return Ws?e.debug&&ue("cached model:",t):(Ws=await pt(t),Ws?e.debug&&ue("load model:",t):ue("load model failed:",e.face.description.modelPath)),Ws}function q1(e,t,n=2){if(!e||!t||(e==null?void 0:e.length)===0||(t==null?void 0:t.length)===0||(e==null?void 0:e.length)!==(t==null?void 0:t.length))return 0;let s=5*e.map((a,o)=>Math.abs(e[o]-t[o])**n).reduce((a,o)=>a+o,0)**(1/n);return Math.max(0,100-s)/100}function Lk(e,t,n=0){let s={similarity:0,name:"",source:"",embedding:[]};if(!e||!t||!Array.isArray(e)||!Array.isArray(t))return s;for(let r of t)if(r.embedding&&r.name){let a=q1(e,r.embedding);a>n&&a>s.similarity&&(s={...r,similarity:a})}return s}function X1(e){return H(()=>{let n=e.image||e.tensor||e;if(!(n instanceof Ue))return null;let s=[[.05,.15,.85,.85]];if(!Ws.inputs[0].shape)return null;let r=n.shape.length===3?_e.cropAndResize(Ft(n,0),s,[0],[Ws.inputs[0].shape[2],Ws.inputs[0].shape[1]]):_e.cropAndResize(n,s,[0],[Ws.inputs[0].shape[2],Ws.inputs[0].shape[1]]);return z(r,255)})}async function K1(e,t,n,s){var r,a;return Ws?G1<t.face.description.skipFrames&&t.skipFrame&&zk===s&&((r=Rf[n])==null?void 0:r.age)&&((a=Rf[n])==null?void 0:a.age)>0?(G1++,Rf[n]):(G1=0,new Promise(async o=>{let i=X1(e),l,u={age:0,gender:"unknown",genderScore:0,descriptor:[]};if(t.face.description.enabled&&(l=await Ws.predict(i)),K(i),l){let c=await l.find(g=>g.shape[1]===1).data(),d=Math.trunc(200*Math.abs(c[0]-.5))/100;d>t.face.description.minConfidence&&(u.gender=c[0]<=.5?"female":"male",u.genderScore=Math.min(.99,d));let p=(await Xs(l.find(g=>g.shape[1]===100),1).data())[0],f=await l.find(g=>g.shape[1]===100).data();u.age=Math.round(f[p-1]>f[p+1]?10*p-100*f[p-1]:10*p+100*f[p+1])/10;let A=await l.find(g=>g.shape[1]===1024).data();u.descriptor=[...A],l.forEach(g=>K(g))}Rf[n]=u,zk=s,o(u)})):null}var yie=["angry","disgust","fear","happy","sad","surprise","neutral"],Vs,_f=[],Bk=0,Z1=Number.MAX_SAFE_INTEGER,Y1=[.2989,.587,.114];async function J1(e){return Vs?e.debug&&ue("cached model:",Vs.modelUrl):(Vs=await pt(ft(e.modelBasePath,e.face.emotion.modelPath)),!Vs||!Vs.modelUrl?ue("load model failed:",e.face.emotion.modelPath):e.debug&&ue("load model:",Vs.modelUrl)),Vs}async function Q1(e,t,n,s){return Vs?Z1<t.face.emotion.skipFrames&&t.skipFrame&&Bk===s&&_f[n]&&_f[n].length>0?(Z1++,_f[n]):(Z1=0,new Promise(async r=>{let a=_e.resizeBilinear(e,[Vs.inputs[0].shape[2],Vs.inputs[0].shape[1]],!1),[o,i,l]=nn(a,3,3);K(a);let u=z(o,Y1[0]),c=z(i,Y1[1]),d=z(l,Y1[2]);K(o),K(i),K(l);let h=$h([u,c,d]);K(u),K(c),K(d);let p=H(()=>z(Ae(h,.5),2));K(h);let f=[];if(t.face.emotion.enabled){let m=await Vs.predict(p),A=await m.data();K(m);for(let g=0;g<A.length;g++)A[g]>t.face.emotion.minConfidence&&f.push({score:Math.min(.99,Math.trunc(100*A[g])/100),emotion:yie[g]});f.sort((g,y)=>y.score-g.score)}K(p),_f[n]=f,Bk=s,r(f)})):null}var nd=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"],Wk=nd.length,sd=nd.reduce((e,t,n)=>(e[t]=n,e),{}),xie=[["leftHip","leftShoulder"],["leftElbow","leftShoulder"],["leftElbow","leftWrist"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["rightHip","rightShoulder"],["rightElbow","rightShoulder"],["rightElbow","rightWrist"],["rightHip","rightKnee"],["rightKnee","rightAnkle"],["leftShoulder","rightShoulder"],["leftHip","rightHip"]],bie=xie.map(([e,t])=>[sd[e],sd[t]]),Vk=[["nose","leftEye"],["leftEye","leftEar"],["nose","rightEye"],["rightEye","rightEar"],["nose","leftShoulder"],["leftShoulder","leftElbow"],["leftElbow","leftWrist"],["leftShoulder","leftHip"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["nose","rightShoulder"],["rightShoulder","rightElbow"],["rightElbow","rightWrist"],["rightShoulder","rightHip"],["rightHip","rightKnee"],["rightKnee","rightAnkle"]];function Uk(e){let t=e.reduce(({maxX:n,maxY:s,minX:r,minY:a},{position:{x:o,y:i}})=>({maxX:Math.max(n,o),maxY:Math.max(s,i),minX:Math.min(r,o),minY:Math.min(a,i)}),{maxX:Number.NEGATIVE_INFINITY,maxY:Number.NEGATIVE_INFINITY,minX:Number.POSITIVE_INFINITY,minY:Number.POSITIVE_INFINITY});return[t.minX,t.minY,t.maxX-t.minX,t.maxY-t.minY]}function Hk(e,[t,n],[s,r]){let a=t/s,o=n/r,i=(u,c)=>({id:c,score:u.score,boxRaw:[u.box[0]/r,u.box[1]/s,u.box[2]/r,u.box[3]/s],box:[Math.trunc(u.box[0]*o),Math.trunc(u.box[1]*a),Math.trunc(u.box[2]*o),Math.trunc(u.box[3]*a)],keypoints:u.keypoints.map(({score:d,part:h,position:p})=>({score:d,part:h,position:[Math.trunc(p.x*o),Math.trunc(p.y*a)],positionRaw:[p.x/s,p.y/s]}))});return e.map((u,c)=>i(u,c))}var ey=class{constructor(t,n){this.priorityQueue=new Array(t),this.numberOfElements=-1,this.getElementValue=n}enqueue(t){this.priorityQueue[++this.numberOfElements]=t,this.swim(this.numberOfElements)}dequeue(){let t=this.priorityQueue[0];return this.exchange(0,this.numberOfElements--),this.sink(0),this.priorityQueue[this.numberOfElements+1]=null,t}empty(){return this.numberOfElements===-1}size(){return this.numberOfElements+1}all(){return this.priorityQueue.slice(0,this.numberOfElements+1)}max(){return this.priorityQueue[0]}swim(t){for(;t>0&&this.less(Math.floor(t/2),t);)this.exchange(t,Math.floor(t/2)),t=Math.floor(t/2)}sink(t){for(;2*t<=this.numberOfElements;){let n=2*t;if(n<this.numberOfElements&&this.less(n,n+1)&&n++,!this.less(t,n))break;this.exchange(t,n),t=n}}getValueAt(t){return this.getElementValue(this.priorityQueue[t])}less(t,n){return this.getValueAt(t)<this.getValueAt(n)}exchange(t,n){let s=this.priorityQueue[t];this.priorityQueue[t]=this.priorityQueue[n],this.priorityQueue[n]=s}};function ty(e,t,n,s){return{y:s.get(e,t,n),x:s.get(e,t,n+Wk)}}function ny(e,t,n){let{heatmapY:s,heatmapX:r,id:a}=e,{y:o,x:i}=ty(s,r,a,n);return{x:e.heatmapX*t+i,y:e.heatmapY*t+o}}function sy(e,t,n){return e<t?t:e>n?n:e}function Gk(e,t,n,s){let r=n-e,a=s-t;return r*r+a*a}function ry(e,t){return{x:e.x+t.x,y:e.y+t.y}}var $f=1,ou=16,vie=50**2;function jk(e,t,n,s,r,a,o=2){let i=g=>({y:a.get(g.y,g.x,e),x:a.get(g.y,g.x,a.shape[2]/2+e)}),l=(g,y,x)=>({y:sy(Math.round(g.y/ou),0,y-1),x:sy(Math.round(g.x/ou),0,x-1)}),[u,c]=s.shape,d=l(t.position,u,c),h=i(d),f=ry(t.position,h);for(let g=0;g<o;g++){let y=l(f,u,c),x=ty(y.y,y.x,n,r);f=ry({x:y.x*ou,y:y.y*ou},{x:x.x,y:x.y})}let m=l(f,u,c),A=s.get(m.y,m.x,n);return{position:f,part:nd[n],score:A}}function wie(e,t,n,s,r){let a=Vk.map(([h,p])=>[sd[h],sd[p]]),o=a.map(([,h])=>h),i=a.map(([h])=>h),l=t.shape[2],u=o.length,c=new Array(l),d=ny(e.part,ou,n);c[e.part.id]={score:e.score,part:nd[e.part.id],position:d};for(let h=u-1;h>=0;--h){let p=o[h],f=i[h];c[p]&&!c[f]&&(c[f]=jk(h,c[p],f,t,n,r))}for(let h=0;h<u;++h){let p=i[h],f=o[h];c[p]&&!c[f]&&(c[f]=jk(h,c[p],f,t,n,s))}return c}function kie(e,t,n,s,r){let[a,o]=r.shape,i=!0,l=Math.max(n-$f,0),u=Math.min(n+$f+1,a);for(let c=l;c<u;++c){let d=Math.max(s-$f,0),h=Math.min(s+$f+1,o);for(let p=d;p<h;++p)if(r.get(c,p,e)>t){i=!1;break}if(!i)break}return i}function Iie(e,t){let[n,s,r]=t.shape,a=new ey(n*s*r,({score:o})=>o);for(let o=0;o<n;++o)for(let i=0;i<s;++i)for(let l=0;l<r;++l){let u=t.get(o,i,l);u<e||kie(l,u,o,i,t)&&a.enqueue({score:u,part:{heatmapY:o,heatmapX:i,id:l}})}return a}function qk(e,{x:t,y:n},s){return e.some(({keypoints:r})=>{var o;let a=(o=r[s])==null?void 0:o.position;return a?Gk(n,t,a.y,a.x)<=vie:!1})}function Sie(e,t){return t.reduce((s,{position:r,score:a},o)=>(qk(e,r,o)||(s+=a),s),0)/t.length}function Xk(e,t,n,s,r,a){let o=[],i=Iie(a,t);for(;o.length<r&&!i.empty();){let l=i.dequeue(),u=ny(l.part,ou,e);if(qk(o,u,l.part.id))continue;let c=wie(l,t,e,n,s);c=c.filter(p=>p.score>a);let d=Sie(o,c),h=Uk(c);d>a&&o.push({keypoints:c,box:h,score:Math.round(100*d)/100})}return o}var Xn,Cie=["MobilenetV1/offset_2/BiasAdd","MobilenetV1/heatmap_2/BiasAdd","MobilenetV1/displacement_fwd_2/BiasAdd","MobilenetV1/displacement_bwd_2/BiasAdd"];async function ay(e,t){let n=H(()=>{if(!Xn.inputs[0].shape)return[];let o=_e.resizeBilinear(e,[Xn.inputs[0].shape[2],Xn.inputs[0].shape[1]]),i=Ae(de(ce(o,"float32"),127.5),1),u=Xn.execute(i,Cie).map(c=>ot(c,[0]));return u[1]=u[1].sigmoid(),u}),s=await Promise.all(n.map(o=>o.buffer()));for(let o of n)K(o);let r=await Xk(s[0],s[1],s[2],s[3],t.body.maxDetected,t.body.minConfidence);return Xn.inputs[0].shape?Hk(r,[e.shape[1],e.shape[2]],[Xn.inputs[0].shape[2],Xn.inputs[0].shape[1]]):[]}async function oy(e){return Xn?e.debug&&ue("cached model:",Xn.modelUrl):(Xn=await pt(ft(e.modelBasePath,e.body.modelPath)),!Xn||!Xn.modelUrl?ue("load model failed:",e.body.modelPath):e.debug&&ue("load model:",Xn.modelUrl)),Xn}function Ff(e){return[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])]}function rd(e){return[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2]}function Kk(e,t,n){let s=t.shape[1],r=t.shape[2],a=[[e.startPoint[1]/s,e.startPoint[0]/r,e.endPoint[1]/s,e.endPoint[0]/r]];return _e.cropAndResize(t,a,[0],n)}function Zk(e,t){let n=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],s=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]],r=e.palmLandmarks.map(a=>[a[0]*t[0],a[1]*t[1]]);return{startPoint:n,endPoint:s,palmLandmarks:r,confidence:e.confidence}}function Df(e,t=1.5){let n=rd(e),s=Ff(e),r=[t*s[0]/2,t*s[1]/2],a=[n[0]-r[0],n[1]-r[1]],o=[n[0]+r[0],n[1]+r[1]];return{startPoint:a,endPoint:o,palmLandmarks:e.palmLandmarks}}function Of(e){let t=rd(e),n=Ff(e),r=Math.max(...n)/2,a=[t[0]-r,t[1]-r],o=[t[0]+r,t[1]+r];return{startPoint:a,endPoint:o,palmLandmarks:e.palmLandmarks}}var Yk=[{x:.015625,y:.015625},{x:.015625,y:.015625},{x:.046875,y:.015625},{x:.046875,y:.015625},{x:.078125,y:.015625},{x:.078125,y:.015625},{x:.109375,y:.015625},{x:.109375,y:.015625},{x:.140625,y:.015625},{x:.140625,y:.015625},{x:.171875,y:.015625},{x:.171875,y:.015625},{x:.203125,y:.015625},{x:.203125,y:.015625},{x:.234375,y:.015625},{x:.234375,y:.015625},{x:.265625,y:.015625},{x:.265625,y:.015625},{x:.296875,y:.015625},{x:.296875,y:.015625},{x:.328125,y:.015625},{x:.328125,y:.015625},{x:.359375,y:.015625},{x:.359375,y:.015625},{x:.390625,y:.015625},{x:.390625,y:.015625},{x:.421875,y:.015625},{x:.421875,y:.015625},{x:.453125,y:.015625},{x:.453125,y:.015625},{x:.484375,y:.015625},{x:.484375,y:.015625},{x:.515625,y:.015625},{x:.515625,y:.015625},{x:.546875,y:.015625},{x:.546875,y:.015625},{x:.578125,y:.015625},{x:.578125,y:.015625},{x:.609375,y:.015625},{x:.609375,y:.015625},{x:.640625,y:.015625},{x:.640625,y:.015625},{x:.671875,y:.015625},{x:.671875,y:.015625},{x:.703125,y:.015625},{x:.703125,y:.015625},{x:.734375,y:.015625},{x:.734375,y:.015625},{x:.765625,y:.015625},{x:.765625,y:.015625},{x:.796875,y:.015625},{x:.796875,y:.015625},{x:.828125,y:.015625},{x:.828125,y:.015625},{x:.859375,y:.015625},{x:.859375,y:.015625},{x:.890625,y:.015625},{x:.890625,y:.015625},{x:.921875,y:.015625},{x:.921875,y:.015625},{x:.953125,y:.015625},{x:.953125,y:.015625},{x:.984375,y:.015625},{x:.984375,y:.015625},{x:.015625,y:.046875},{x:.015625,y:.046875},{x:.046875,y:.046875},{x:.046875,y:.046875},{x:.078125,y:.046875},{x:.078125,y:.046875},{x:.109375,y:.046875},{x:.109375,y:.046875},{x:.140625,y:.046875},{x:.140625,y:.046875},{x:.171875,y:.046875},{x:.171875,y:.046875},{x:.203125,y:.046875},{x:.203125,y:.046875},{x:.234375,y:.046875},{x:.234375,y:.046875},{x:.265625,y:.046875},{x:.265625,y:.046875},{x:.296875,y:.046875},{x:.296875,y:.046875},{x:.328125,y:.046875},{x:.328125,y:.046875},{x:.359375,y:.046875},{x:.359375,y:.046875},{x:.390625,y:.046875},{x:.390625,y:.046875},{x:.421875,y:.046875},{x:.421875,y:.046875},{x:.453125,y:.046875},{x:.453125,y:.046875},{x:.484375,y:.046875},{x:.484375,y:.046875},{x:.515625,y:.046875},{x:.515625,y:.046875},{x:.546875,y:.046875},{x:.546875,y:.046875},{x:.578125,y:.046875},{x:.578125,y:.046875},{x:.609375,y:.046875},{x:.609375,y:.046875},{x:.640625,y:.046875},{x:.640625,y:.046875},{x:.671875,y:.046875},{x:.671875,y:.046875},{x:.703125,y:.046875},{x:.703125,y:.046875},{x:.734375,y:.046875},{x:.734375,y:.046875},{x:.765625,y:.046875},{x:.765625,y:.046875},{x:.796875,y:.046875},{x:.796875,y:.046875},{x:.828125,y:.046875},{x:.828125,y:.046875},{x:.859375,y:.046875},{x:.859375,y:.046875},{x:.890625,y:.046875},{x:.890625,y:.046875},{x:.921875,y:.046875},{x:.921875,y:.046875},{x:.953125,y:.046875},{x:.953125,y:.046875},{x:.984375,y:.046875},{x:.984375,y:.046875},{x:.015625,y:.078125},{x:.015625,y:.078125},{x:.046875,y:.078125},{x:.046875,y:.078125},{x:.078125,y:.078125},{x:.078125,y:.078125},{x:.109375,y:.078125},{x:.109375,y:.078125},{x:.140625,y:.078125},{x:.140625,y:.078125},{x:.171875,y:.078125},{x:.171875,y:.078125},{x:.203125,y:.078125},{x:.203125,y:.078125},{x:.234375,y:.078125},{x:.234375,y:.078125},{x:.265625,y:.078125},{x:.265625,y:.078125},{x:.296875,y:.078125},{x:.296875,y:.078125},{x:.328125,y:.078125},{x:.328125,y:.078125},{x:.359375,y:.078125},{x:.359375,y:.078125},{x:.390625,y:.078125},{x:.390625,y:.078125},{x:.421875,y:.078125},{x:.421875,y:.078125},{x:.453125,y:.078125},{x:.453125,y:.078125},{x:.484375,y:.078125},{x:.484375,y:.078125},{x:.515625,y:.078125},{x:.515625,y:.078125},{x:.546875,y:.078125},{x:.546875,y:.078125},{x:.578125,y:.078125},{x:.578125,y:.078125},{x:.609375,y:.078125},{x:.609375,y:.078125},{x:.640625,y:.078125},{x:.640625,y:.078125},{x:.671875,y:.078125},{x:.671875,y:.078125},{x:.703125,y:.078125},{x:.703125,y:.078125},{x:.734375,y:.078125},{x:.734375,y:.078125},{x:.765625,y:.078125},{x:.765625,y:.078125},{x:.796875,y:.078125},{x:.796875,y:.078125},{x:.828125,y:.078125},{x:.828125,y:.078125},{x:.859375,y:.078125},{x:.859375,y:.078125},{x:.890625,y:.078125},{x:.890625,y:.078125},{x:.921875,y:.078125},{x:.921875,y:.078125},{x:.953125,y:.078125},{x:.953125,y:.078125},{x:.984375,y:.078125},{x:.984375,y:.078125},{x:.015625,y:.109375},{x:.015625,y:.109375},{x:.046875,y:.109375},{x:.046875,y:.109375},{x:.078125,y:.109375},{x:.078125,y:.109375},{x:.109375,y:.109375},{x:.109375,y:.109375},{x:.140625,y:.109375},{x:.140625,y:.109375},{x:.171875,y:.109375},{x:.171875,y:.109375},{x:.203125,y:.109375},{x:.203125,y:.109375},{x:.234375,y:.109375},{x:.234375,y:.109375},{x:.265625,y:.109375},{x:.265625,y:.109375},{x:.296875,y:.109375},{x:.296875,y:.109375},{x:.328125,y:.109375},{x:.328125,y:.109375},{x:.359375,y:.109375},{x:.359375,y:.109375},{x:.390625,y:.109375},{x:.390625,y:.109375},{x:.421875,y:.109375},{x:.421875,y:.109375},{x:.453125,y:.109375},{x:.453125,y:.109375},{x:.484375,y:.109375},{x:.484375,y:.109375},{x:.515625,y:.109375},{x:.515625,y:.109375},{x:.546875,y:.109375},{x:.546875,y:.109375},{x:.578125,y:.109375},{x:.578125,y:.109375},{x:.609375,y:.109375},{x:.609375,y:.109375},{x:.640625,y:.109375},{x:.640625,y:.109375},{x:.671875,y:.109375},{x:.671875,y:.109375},{x:.703125,y:.109375},{x:.703125,y:.109375},{x:.734375,y:.109375},{x:.734375,y:.109375},{x:.765625,y:.109375},{x:.765625,y:.109375},{x:.796875,y:.109375},{x:.796875,y:.109375},{x:.828125,y:.109375},{x:.828125,y:.109375},{x:.859375,y:.109375},{x:.859375,y:.109375},{x:.890625,y:.109375},{x:.890625,y:.109375},{x:.921875,y:.109375},{x:.921875,y:.109375},{x:.953125,y:.109375},{x:.953125,y:.109375},{x:.984375,y:.109375},{x:.984375,y:.109375},{x:.015625,y:.140625},{x:.015625,y:.140625},{x:.046875,y:.140625},{x:.046875,y:.140625},{x:.078125,y:.140625},{x:.078125,y:.140625},{x:.109375,y:.140625},{x:.109375,y:.140625},{x:.140625,y:.140625},{x:.140625,y:.140625},{x:.171875,y:.140625},{x:.171875,y:.140625},{x:.203125,y:.140625},{x:.203125,y:.140625},{x:.234375,y:.140625},{x:.234375,y:.140625},{x:.265625,y:.140625},{x:.265625,y:.140625},{x:.296875,y:.140625},{x:.296875,y:.140625},{x:.328125,y:.140625},{x:.328125,y:.140625},{x:.359375,y:.140625},{x:.359375,y:.140625},{x:.390625,y:.140625},{x:.390625,y:.140625},{x:.421875,y:.140625},{x:.421875,y:.140625},{x:.453125,y:.140625},{x:.453125,y:.140625},{x:.484375,y:.140625},{x:.484375,y:.140625},{x:.515625,y:.140625},{x:.515625,y:.140625},{x:.546875,y:.140625},{x:.546875,y:.140625},{x:.578125,y:.140625},{x:.578125,y:.140625},{x:.609375,y:.140625},{x:.609375,y:.140625},{x:.640625,y:.140625},{x:.640625,y:.140625},{x:.671875,y:.140625},{x:.671875,y:.140625},{x:.703125,y:.140625},{x:.703125,y:.140625},{x:.734375,y:.140625},{x:.734375,y:.140625},{x:.765625,y:.140625},{x:.765625,y:.140625},{x:.796875,y:.140625},{x:.796875,y:.140625},{x:.828125,y:.140625},{x:.828125,y:.140625},{x:.859375,y:.140625},{x:.859375,y:.140625},{x:.890625,y:.140625},{x:.890625,y:.140625},{x:.921875,y:.140625},{x:.921875,y:.140625},{x:.953125,y:.140625},{x:.953125,y:.140625},{x:.984375,y:.140625},{x:.984375,y:.140625},{x:.015625,y:.171875},{x:.015625,y:.171875},{x:.046875,y:.171875},{x:.046875,y:.171875},{x:.078125,y:.171875},{x:.078125,y:.171875},{x:.109375,y:.171875},{x:.109375,y:.171875},{x:.140625,y:.171875},{x:.140625,y:.171875},{x:.171875,y:.171875},{x:.171875,y:.171875},{x:.203125,y:.171875},{x:.203125,y:.171875},{x:.234375,y:.171875},{x:.234375,y:.171875},{x:.265625,y:.171875},{x:.265625,y:.171875},{x:.296875,y:.171875},{x:.296875,y:.171875},{x:.328125,y:.171875},{x:.328125,y:.171875},{x:.359375,y:.171875},{x:.359375,y:.171875},{x:.390625,y:.171875},{x:.390625,y:.171875},{x:.421875,y:.171875},{x:.421875,y:.171875},{x:.453125,y:.171875},{x:.453125,y:.171875},{x:.484375,y:.171875},{x:.484375,y:.171875},{x:.515625,y:.171875},{x:.515625,y:.171875},{x:.546875,y:.171875},{x:.546875,y:.171875},{x:.578125,y:.171875},{x:.578125,y:.171875},{x:.609375,y:.171875},{x:.609375,y:.171875},{x:.640625,y:.171875},{x:.640625,y:.171875},{x:.671875,y:.171875},{x:.671875,y:.171875},{x:.703125,y:.171875},{x:.703125,y:.171875},{x:.734375,y:.171875},{x:.734375,y:.171875},{x:.765625,y:.171875},{x:.765625,y:.171875},{x:.796875,y:.171875},{x:.796875,y:.171875},{x:.828125,y:.171875},{x:.828125,y:.171875},{x:.859375,y:.171875},{x:.859375,y:.171875},{x:.890625,y:.171875},{x:.890625,y:.171875},{x:.921875,y:.171875},{x:.921875,y:.171875},{x:.953125,y:.171875},{x:.953125,y:.171875},{x:.984375,y:.171875},{x:.984375,y:.171875},{x:.015625,y:.203125},{x:.015625,y:.203125},{x:.046875,y:.203125},{x:.046875,y:.203125},{x:.078125,y:.203125},{x:.078125,y:.203125},{x:.109375,y:.203125},{x:.109375,y:.203125},{x:.140625,y:.203125},{x:.140625,y:.203125},{x:.171875,y:.203125},{x:.171875,y:.203125},{x:.203125,y:.203125},{x:.203125,y:.203125},{x:.234375,y:.203125},{x:.234375,y:.203125},{x:.265625,y:.203125},{x:.265625,y:.203125},{x:.296875,y:.203125},{x:.296875,y:.203125},{x:.328125,y:.203125},{x:.328125,y:.203125},{x:.359375,y:.203125},{x:.359375,y:.203125},{x:.390625,y:.203125},{x:.390625,y:.203125},{x:.421875,y:.203125},{x:.421875,y:.203125},{x:.453125,y:.203125},{x:.453125,y:.203125},{x:.484375,y:.203125},{x:.484375,y:.203125},{x:.515625,y:.203125},{x:.515625,y:.203125},{x:.546875,y:.203125},{x:.546875,y:.203125},{x:.578125,y:.203125},{x:.578125,y:.203125},{x:.609375,y:.203125},{x:.609375,y:.203125},{x:.640625,y:.203125},{x:.640625,y:.203125},{x:.671875,y:.203125},{x:.671875,y:.203125},{x:.703125,y:.203125},{x:.703125,y:.203125},{x:.734375,y:.203125},{x:.734375,y:.203125},{x:.765625,y:.203125},{x:.765625,y:.203125},{x:.796875,y:.203125},{x:.796875,y:.203125},{x:.828125,y:.203125},{x:.828125,y:.203125},{x:.859375,y:.203125},{x:.859375,y:.203125},{x:.890625,y:.203125},{x:.890625,y:.203125},{x:.921875,y:.203125},{x:.921875,y:.203125},{x:.953125,y:.203125},{x:.953125,y:.203125},{x:.984375,y:.203125},{x:.984375,y:.203125},{x:.015625,y:.234375},{x:.015625,y:.234375},{x:.046875,y:.234375},{x:.046875,y:.234375},{x:.078125,y:.234375},{x:.078125,y:.234375},{x:.109375,y:.234375},{x:.109375,y:.234375},{x:.140625,y:.234375},{x:.140625,y:.234375},{x:.171875,y:.234375},{x:.171875,y:.234375},{x:.203125,y:.234375},{x:.203125,y:.234375},{x:.234375,y:.234375},{x:.234375,y:.234375},{x:.265625,y:.234375},{x:.265625,y:.234375},{x:.296875,y:.234375},{x:.296875,y:.234375},{x:.328125,y:.234375},{x:.328125,y:.234375},{x:.359375,y:.234375},{x:.359375,y:.234375},{x:.390625,y:.234375},{x:.390625,y:.234375},{x:.421875,y:.234375},{x:.421875,y:.234375},{x:.453125,y:.234375},{x:.453125,y:.234375},{x:.484375,y:.234375},{x:.484375,y:.234375},{x:.515625,y:.234375},{x:.515625,y:.234375},{x:.546875,y:.234375},{x:.546875,y:.234375},{x:.578125,y:.234375},{x:.578125,y:.234375},{x:.609375,y:.234375},{x:.609375,y:.234375},{x:.640625,y:.234375},{x:.640625,y:.234375},{x:.671875,y:.234375},{x:.671875,y:.234375},{x:.703125,y:.234375},{x:.703125,y:.234375},{x:.734375,y:.234375},{x:.734375,y:.234375},{x:.765625,y:.234375},{x:.765625,y:.234375},{x:.796875,y:.234375},{x:.796875,y:.234375},{x:.828125,y:.234375},{x:.828125,y:.234375},{x:.859375,y:.234375},{x:.859375,y:.234375},{x:.890625,y:.234375},{x:.890625,y:.234375},{x:.921875,y:.234375},{x:.921875,y:.234375},{x:.953125,y:.234375},{x:.953125,y:.234375},{x:.984375,y:.234375},{x:.984375,y:.234375},{x:.015625,y:.265625},{x:.015625,y:.265625},{x:.046875,y:.265625},{x:.046875,y:.265625},{x:.078125,y:.265625},{x:.078125,y:.265625},{x:.109375,y:.265625},{x:.109375,y:.265625},{x:.140625,y:.265625},{x:.140625,y:.265625},{x:.171875,y:.265625},{x:.171875,y:.265625},{x:.203125,y:.265625},{x:.203125,y:.265625},{x:.234375,y:.265625},{x:.234375,y:.265625},{x:.265625,y:.265625},{x:.265625,y:.265625},{x:.296875,y:.265625},{x:.296875,y:.265625},{x:.328125,y:.265625},{x:.328125,y:.265625},{x:.359375,y:.265625},{x:.359375,y:.265625},{x:.390625,y:.265625},{x:.390625,y:.265625},{x:.421875,y:.265625},{x:.421875,y:.265625},{x:.453125,y:.265625},{x:.453125,y:.265625},{x:.484375,y:.265625},{x:.484375,y:.265625},{x:.515625,y:.265625},{x:.515625,y:.265625},{x:.546875,y:.265625},{x:.546875,y:.265625},{x:.578125,y:.265625},{x:.578125,y:.265625},{x:.609375,y:.265625},{x:.609375,y:.265625},{x:.640625,y:.265625},{x:.640625,y:.265625},{x:.671875,y:.265625},{x:.671875,y:.265625},{x:.703125,y:.265625},{x:.703125,y:.265625},{x:.734375,y:.265625},{x:.734375,y:.265625},{x:.765625,y:.265625},{x:.765625,y:.265625},{x:.796875,y:.265625},{x:.796875,y:.265625},{x:.828125,y:.265625},{x:.828125,y:.265625},{x:.859375,y:.265625},{x:.859375,y:.265625},{x:.890625,y:.265625},{x:.890625,y:.265625},{x:.921875,y:.265625},{x:.921875,y:.265625},{x:.953125,y:.265625},{x:.953125,y:.265625},{x:.984375,y:.265625},{x:.984375,y:.265625},{x:.015625,y:.296875},{x:.015625,y:.296875},{x:.046875,y:.296875},{x:.046875,y:.296875},{x:.078125,y:.296875},{x:.078125,y:.296875},{x:.109375,y:.296875},{x:.109375,y:.296875},{x:.140625,y:.296875},{x:.140625,y:.296875},{x:.171875,y:.296875},{x:.171875,y:.296875},{x:.203125,y:.296875},{x:.203125,y:.296875},{x:.234375,y:.296875},{x:.234375,y:.296875},{x:.265625,y:.296875},{x:.265625,y:.296875},{x:.296875,y:.296875},{x:.296875,y:.296875},{x:.328125,y:.296875},{x:.328125,y:.296875},{x:.359375,y:.296875},{x:.359375,y:.296875},{x:.390625,y:.296875},{x:.390625,y:.296875},{x:.421875,y:.296875},{x:.421875,y:.296875},{x:.453125,y:.296875},{x:.453125,y:.296875},{x:.484375,y:.296875},{x:.484375,y:.296875},{x:.515625,y:.296875},{x:.515625,y:.296875},{x:.546875,y:.296875},{x:.546875,y:.296875},{x:.578125,y:.296875},{x:.578125,y:.296875},{x:.609375,y:.296875},{x:.609375,y:.296875},{x:.640625,y:.296875},{x:.640625,y:.296875},{x:.671875,y:.296875},{x:.671875,y:.296875},{x:.703125,y:.296875},{x:.703125,y:.296875},{x:.734375,y:.296875},{x:.734375,y:.296875},{x:.765625,y:.296875},{x:.765625,y:.296875},{x:.796875,y:.296875},{x:.796875,y:.296875},{x:.828125,y:.296875},{x:.828125,y:.296875},{x:.859375,y:.296875},{x:.859375,y:.296875},{x:.890625,y:.296875},{x:.890625,y:.296875},{x:.921875,y:.296875},{x:.921875,y:.296875},{x:.953125,y:.296875},{x:.953125,y:.296875},{x:.984375,y:.296875},{x:.984375,y:.296875},{x:.015625,y:.328125},{x:.015625,y:.328125},{x:.046875,y:.328125},{x:.046875,y:.328125},{x:.078125,y:.328125},{x:.078125,y:.328125},{x:.109375,y:.328125},{x:.109375,y:.328125},{x:.140625,y:.328125},{x:.140625,y:.328125},{x:.171875,y:.328125},{x:.171875,y:.328125},{x:.203125,y:.328125},{x:.203125,y:.328125},{x:.234375,y:.328125},{x:.234375,y:.328125},{x:.265625,y:.328125},{x:.265625,y:.328125},{x:.296875,y:.328125},{x:.296875,y:.328125},{x:.328125,y:.328125},{x:.328125,y:.328125},{x:.359375,y:.328125},{x:.359375,y:.328125},{x:.390625,y:.328125},{x:.390625,y:.328125},{x:.421875,y:.328125},{x:.421875,y:.328125},{x:.453125,y:.328125},{x:.453125,y:.328125},{x:.484375,y:.328125},{x:.484375,y:.328125},{x:.515625,y:.328125},{x:.515625,y:.328125},{x:.546875,y:.328125},{x:.546875,y:.328125},{x:.578125,y:.328125},{x:.578125,y:.328125},{x:.609375,y:.328125},{x:.609375,y:.328125},{x:.640625,y:.328125},{x:.640625,y:.328125},{x:.671875,y:.328125},{x:.671875,y:.328125},{x:.703125,y:.328125},{x:.703125,y:.328125},{x:.734375,y:.328125},{x:.734375,y:.328125},{x:.765625,y:.328125},{x:.765625,y:.328125},{x:.796875,y:.328125},{x:.796875,y:.328125},{x:.828125,y:.328125},{x:.828125,y:.328125},{x:.859375,y:.328125},{x:.859375,y:.328125},{x:.890625,y:.328125},{x:.890625,y:.328125},{x:.921875,y:.328125},{x:.921875,y:.328125},{x:.953125,y:.328125},{x:.953125,y:.328125},{x:.984375,y:.328125},{x:.984375,y:.328125},{x:.015625,y:.359375},{x:.015625,y:.359375},{x:.046875,y:.359375},{x:.046875,y:.359375},{x:.078125,y:.359375},{x:.078125,y:.359375},{x:.109375,y:.359375},{x:.109375,y:.359375},{x:.140625,y:.359375},{x:.140625,y:.359375},{x:.171875,y:.359375},{x:.171875,y:.359375},{x:.203125,y:.359375},{x:.203125,y:.359375},{x:.234375,y:.359375},{x:.234375,y:.359375},{x:.265625,y:.359375},{x:.265625,y:.359375},{x:.296875,y:.359375},{x:.296875,y:.359375},{x:.328125,y:.359375},{x:.328125,y:.359375},{x:.359375,y:.359375},{x:.359375,y:.359375},{x:.390625,y:.359375},{x:.390625,y:.359375},{x:.421875,y:.359375},{x:.421875,y:.359375},{x:.453125,y:.359375},{x:.453125,y:.359375},{x:.484375,y:.359375},{x:.484375,y:.359375},{x:.515625,y:.359375},{x:.515625,y:.359375},{x:.546875,y:.359375},{x:.546875,y:.359375},{x:.578125,y:.359375},{x:.578125,y:.359375},{x:.609375,y:.359375},{x:.609375,y:.359375},{x:.640625,y:.359375},{x:.640625,y:.359375},{x:.671875,y:.359375},{x:.671875,y:.359375},{x:.703125,y:.359375},{x:.703125,y:.359375},{x:.734375,y:.359375},{x:.734375,y:.359375},{x:.765625,y:.359375},{x:.765625,y:.359375},{x:.796875,y:.359375},{x:.796875,y:.359375},{x:.828125,y:.359375},{x:.828125,y:.359375},{x:.859375,y:.359375},{x:.859375,y:.359375},{x:.890625,y:.359375},{x:.890625,y:.359375},{x:.921875,y:.359375},{x:.921875,y:.359375},{x:.953125,y:.359375},{x:.953125,y:.359375},{x:.984375,y:.359375},{x:.984375,y:.359375},{x:.015625,y:.390625},{x:.015625,y:.390625},{x:.046875,y:.390625},{x:.046875,y:.390625},{x:.078125,y:.390625},{x:.078125,y:.390625},{x:.109375,y:.390625},{x:.109375,y:.390625},{x:.140625,y:.390625},{x:.140625,y:.390625},{x:.171875,y:.390625},{x:.171875,y:.390625},{x:.203125,y:.390625},{x:.203125,y:.390625},{x:.234375,y:.390625},{x:.234375,y:.390625},{x:.265625,y:.390625},{x:.265625,y:.390625},{x:.296875,y:.390625},{x:.296875,y:.390625},{x:.328125,y:.390625},{x:.328125,y:.390625},{x:.359375,y:.390625},{x:.359375,y:.390625},{x:.390625,y:.390625},{x:.390625,y:.390625},{x:.421875,y:.390625},{x:.421875,y:.390625},{x:.453125,y:.390625},{x:.453125,y:.390625},{x:.484375,y:.390625},{x:.484375,y:.390625},{x:.515625,y:.390625},{x:.515625,y:.390625},{x:.546875,y:.390625},{x:.546875,y:.390625},{x:.578125,y:.390625},{x:.578125,y:.390625},{x:.609375,y:.390625},{x:.609375,y:.390625},{x:.640625,y:.390625},{x:.640625,y:.390625},{x:.671875,y:.390625},{x:.671875,y:.390625},{x:.703125,y:.390625},{x:.703125,y:.390625},{x:.734375,y:.390625},{x:.734375,y:.390625},{x:.765625,y:.390625},{x:.765625,y:.390625},{x:.796875,y:.390625},{x:.796875,y:.390625},{x:.828125,y:.390625},{x:.828125,y:.390625},{x:.859375,y:.390625},{x:.859375,y:.390625},{x:.890625,y:.390625},{x:.890625,y:.390625},{x:.921875,y:.390625},{x:.921875,y:.390625},{x:.953125,y:.390625},{x:.953125,y:.390625},{x:.984375,y:.390625},{x:.984375,y:.390625},{x:.015625,y:.421875},{x:.015625,y:.421875},{x:.046875,y:.421875},{x:.046875,y:.421875},{x:.078125,y:.421875},{x:.078125,y:.421875},{x:.109375,y:.421875},{x:.109375,y:.421875},{x:.140625,y:.421875},{x:.140625,y:.421875},{x:.171875,y:.421875},{x:.171875,y:.421875},{x:.203125,y:.421875},{x:.203125,y:.421875},{x:.234375,y:.421875},{x:.234375,y:.421875},{x:.265625,y:.421875},{x:.265625,y:.421875},{x:.296875,y:.421875},{x:.296875,y:.421875},{x:.328125,y:.421875},{x:.328125,y:.421875},{x:.359375,y:.421875},{x:.359375,y:.421875},{x:.390625,y:.421875},{x:.390625,y:.421875},{x:.421875,y:.421875},{x:.421875,y:.421875},{x:.453125,y:.421875},{x:.453125,y:.421875},{x:.484375,y:.421875},{x:.484375,y:.421875},{x:.515625,y:.421875},{x:.515625,y:.421875},{x:.546875,y:.421875},{x:.546875,y:.421875},{x:.578125,y:.421875},{x:.578125,y:.421875},{x:.609375,y:.421875},{x:.609375,y:.421875},{x:.640625,y:.421875},{x:.640625,y:.421875},{x:.671875,y:.421875},{x:.671875,y:.421875},{x:.703125,y:.421875},{x:.703125,y:.421875},{x:.734375,y:.421875},{x:.734375,y:.421875},{x:.765625,y:.421875},{x:.765625,y:.421875},{x:.796875,y:.421875},{x:.796875,y:.421875},{x:.828125,y:.421875},{x:.828125,y:.421875},{x:.859375,y:.421875},{x:.859375,y:.421875},{x:.890625,y:.421875},{x:.890625,y:.421875},{x:.921875,y:.421875},{x:.921875,y:.421875},{x:.953125,y:.421875},{x:.953125,y:.421875},{x:.984375,y:.421875},{x:.984375,y:.421875},{x:.015625,y:.453125},{x:.015625,y:.453125},{x:.046875,y:.453125},{x:.046875,y:.453125},{x:.078125,y:.453125},{x:.078125,y:.453125},{x:.109375,y:.453125},{x:.109375,y:.453125},{x:.140625,y:.453125},{x:.140625,y:.453125},{x:.171875,y:.453125},{x:.171875,y:.453125},{x:.203125,y:.453125},{x:.203125,y:.453125},{x:.234375,y:.453125},{x:.234375,y:.453125},{x:.265625,y:.453125},{x:.265625,y:.453125},{x:.296875,y:.453125},{x:.296875,y:.453125},{x:.328125,y:.453125},{x:.328125,y:.453125},{x:.359375,y:.453125},{x:.359375,y:.453125},{x:.390625,y:.453125},{x:.390625,y:.453125},{x:.421875,y:.453125},{x:.421875,y:.453125},{x:.453125,y:.453125},{x:.453125,y:.453125},{x:.484375,y:.453125},{x:.484375,y:.453125},{x:.515625,y:.453125},{x:.515625,y:.453125},{x:.546875,y:.453125},{x:.546875,y:.453125},{x:.578125,y:.453125},{x:.578125,y:.453125},{x:.609375,y:.453125},{x:.609375,y:.453125},{x:.640625,y:.453125},{x:.640625,y:.453125},{x:.671875,y:.453125},{x:.671875,y:.453125},{x:.703125,y:.453125},{x:.703125,y:.453125},{x:.734375,y:.453125},{x:.734375,y:.453125},{x:.765625,y:.453125},{x:.765625,y:.453125},{x:.796875,y:.453125},{x:.796875,y:.453125},{x:.828125,y:.453125},{x:.828125,y:.453125},{x:.859375,y:.453125},{x:.859375,y:.453125},{x:.890625,y:.453125},{x:.890625,y:.453125},{x:.921875,y:.453125},{x:.921875,y:.453125},{x:.953125,y:.453125},{x:.953125,y:.453125},{x:.984375,y:.453125},{x:.984375,y:.453125},{x:.015625,y:.484375},{x:.015625,y:.484375},{x:.046875,y:.484375},{x:.046875,y:.484375},{x:.078125,y:.484375},{x:.078125,y:.484375},{x:.109375,y:.484375},{x:.109375,y:.484375},{x:.140625,y:.484375},{x:.140625,y:.484375},{x:.171875,y:.484375},{x:.171875,y:.484375},{x:.203125,y:.484375},{x:.203125,y:.484375},{x:.234375,y:.484375},{x:.234375,y:.484375},{x:.265625,y:.484375},{x:.265625,y:.484375},{x:.296875,y:.484375},{x:.296875,y:.484375},{x:.328125,y:.484375},{x:.328125,y:.484375},{x:.359375,y:.484375},{x:.359375,y:.484375},{x:.390625,y:.484375},{x:.390625,y:.484375},{x:.421875,y:.484375},{x:.421875,y:.484375},{x:.453125,y:.484375},{x:.453125,y:.484375},{x:.484375,y:.484375},{x:.484375,y:.484375},{x:.515625,y:.484375},{x:.515625,y:.484375},{x:.546875,y:.484375},{x:.546875,y:.484375},{x:.578125,y:.484375},{x:.578125,y:.484375},{x:.609375,y:.484375},{x:.609375,y:.484375},{x:.640625,y:.484375},{x:.640625,y:.484375},{x:.671875,y:.484375},{x:.671875,y:.484375},{x:.703125,y:.484375},{x:.703125,y:.484375},{x:.734375,y:.484375},{x:.734375,y:.484375},{x:.765625,y:.484375},{x:.765625,y:.484375},{x:.796875,y:.484375},{x:.796875,y:.484375},{x:.828125,y:.484375},{x:.828125,y:.484375},{x:.859375,y:.484375},{x:.859375,y:.484375},{x:.890625,y:.484375},{x:.890625,y:.484375},{x:.921875,y:.484375},{x:.921875,y:.484375},{x:.953125,y:.484375},{x:.953125,y:.484375},{x:.984375,y:.484375},{x:.984375,y:.484375},{x:.015625,y:.515625},{x:.015625,y:.515625},{x:.046875,y:.515625},{x:.046875,y:.515625},{x:.078125,y:.515625},{x:.078125,y:.515625},{x:.109375,y:.515625},{x:.109375,y:.515625},{x:.140625,y:.515625},{x:.140625,y:.515625},{x:.171875,y:.515625},{x:.171875,y:.515625},{x:.203125,y:.515625},{x:.203125,y:.515625},{x:.234375,y:.515625},{x:.234375,y:.515625},{x:.265625,y:.515625},{x:.265625,y:.515625},{x:.296875,y:.515625},{x:.296875,y:.515625},{x:.328125,y:.515625},{x:.328125,y:.515625},{x:.359375,y:.515625},{x:.359375,y:.515625},{x:.390625,y:.515625},{x:.390625,y:.515625},{x:.421875,y:.515625},{x:.421875,y:.515625},{x:.453125,y:.515625},{x:.453125,y:.515625},{x:.484375,y:.515625},{x:.484375,y:.515625},{x:.515625,y:.515625},{x:.515625,y:.515625},{x:.546875,y:.515625},{x:.546875,y:.515625},{x:.578125,y:.515625},{x:.578125,y:.515625},{x:.609375,y:.515625},{x:.609375,y:.515625},{x:.640625,y:.515625},{x:.640625,y:.515625},{x:.671875,y:.515625},{x:.671875,y:.515625},{x:.703125,y:.515625},{x:.703125,y:.515625},{x:.734375,y:.515625},{x:.734375,y:.515625},{x:.765625,y:.515625},{x:.765625,y:.515625},{x:.796875,y:.515625},{x:.796875,y:.515625},{x:.828125,y:.515625},{x:.828125,y:.515625},{x:.859375,y:.515625},{x:.859375,y:.515625},{x:.890625,y:.515625},{x:.890625,y:.515625},{x:.921875,y:.515625},{x:.921875,y:.515625},{x:.953125,y:.515625},{x:.953125,y:.515625},{x:.984375,y:.515625},{x:.984375,y:.515625},{x:.015625,y:.546875},{x:.015625,y:.546875},{x:.046875,y:.546875},{x:.046875,y:.546875},{x:.078125,y:.546875},{x:.078125,y:.546875},{x:.109375,y:.546875},{x:.109375,y:.546875},{x:.140625,y:.546875},{x:.140625,y:.546875},{x:.171875,y:.546875},{x:.171875,y:.546875},{x:.203125,y:.546875},{x:.203125,y:.546875},{x:.234375,y:.546875},{x:.234375,y:.546875},{x:.265625,y:.546875},{x:.265625,y:.546875},{x:.296875,y:.546875},{x:.296875,y:.546875},{x:.328125,y:.546875},{x:.328125,y:.546875},{x:.359375,y:.546875},{x:.359375,y:.546875},{x:.390625,y:.546875},{x:.390625,y:.546875},{x:.421875,y:.546875},{x:.421875,y:.546875},{x:.453125,y:.546875},{x:.453125,y:.546875},{x:.484375,y:.546875},{x:.484375,y:.546875},{x:.515625,y:.546875},{x:.515625,y:.546875},{x:.546875,y:.546875},{x:.546875,y:.546875},{x:.578125,y:.546875},{x:.578125,y:.546875},{x:.609375,y:.546875},{x:.609375,y:.546875},{x:.640625,y:.546875},{x:.640625,y:.546875},{x:.671875,y:.546875},{x:.671875,y:.546875},{x:.703125,y:.546875},{x:.703125,y:.546875},{x:.734375,y:.546875},{x:.734375,y:.546875},{x:.765625,y:.546875},{x:.765625,y:.546875},{x:.796875,y:.546875},{x:.796875,y:.546875},{x:.828125,y:.546875},{x:.828125,y:.546875},{x:.859375,y:.546875},{x:.859375,y:.546875},{x:.890625,y:.546875},{x:.890625,y:.546875},{x:.921875,y:.546875},{x:.921875,y:.546875},{x:.953125,y:.546875},{x:.953125,y:.546875},{x:.984375,y:.546875},{x:.984375,y:.546875},{x:.015625,y:.578125},{x:.015625,y:.578125},{x:.046875,y:.578125},{x:.046875,y:.578125},{x:.078125,y:.578125},{x:.078125,y:.578125},{x:.109375,y:.578125},{x:.109375,y:.578125},{x:.140625,y:.578125},{x:.140625,y:.578125},{x:.171875,y:.578125},{x:.171875,y:.578125},{x:.203125,y:.578125},{x:.203125,y:.578125},{x:.234375,y:.578125},{x:.234375,y:.578125},{x:.265625,y:.578125},{x:.265625,y:.578125},{x:.296875,y:.578125},{x:.296875,y:.578125},{x:.328125,y:.578125},{x:.328125,y:.578125},{x:.359375,y:.578125},{x:.359375,y:.578125},{x:.390625,y:.578125},{x:.390625,y:.578125},{x:.421875,y:.578125},{x:.421875,y:.578125},{x:.453125,y:.578125},{x:.453125,y:.578125},{x:.484375,y:.578125},{x:.484375,y:.578125},{x:.515625,y:.578125},{x:.515625,y:.578125},{x:.546875,y:.578125},{x:.546875,y:.578125},{x:.578125,y:.578125},{x:.578125,y:.578125},{x:.609375,y:.578125},{x:.609375,y:.578125},{x:.640625,y:.578125},{x:.640625,y:.578125},{x:.671875,y:.578125},{x:.671875,y:.578125},{x:.703125,y:.578125},{x:.703125,y:.578125},{x:.734375,y:.578125},{x:.734375,y:.578125},{x:.765625,y:.578125},{x:.765625,y:.578125},{x:.796875,y:.578125},{x:.796875,y:.578125},{x:.828125,y:.578125},{x:.828125,y:.578125},{x:.859375,y:.578125},{x:.859375,y:.578125},{x:.890625,y:.578125},{x:.890625,y:.578125},{x:.921875,y:.578125},{x:.921875,y:.578125},{x:.953125,y:.578125},{x:.953125,y:.578125},{x:.984375,y:.578125},{x:.984375,y:.578125},{x:.015625,y:.609375},{x:.015625,y:.609375},{x:.046875,y:.609375},{x:.046875,y:.609375},{x:.078125,y:.609375},{x:.078125,y:.609375},{x:.109375,y:.609375},{x:.109375,y:.609375},{x:.140625,y:.609375},{x:.140625,y:.609375},{x:.171875,y:.609375},{x:.171875,y:.609375},{x:.203125,y:.609375},{x:.203125,y:.609375},{x:.234375,y:.609375},{x:.234375,y:.609375},{x:.265625,y:.609375},{x:.265625,y:.609375},{x:.296875,y:.609375},{x:.296875,y:.609375},{x:.328125,y:.609375},{x:.328125,y:.609375},{x:.359375,y:.609375},{x:.359375,y:.609375},{x:.390625,y:.609375},{x:.390625,y:.609375},{x:.421875,y:.609375},{x:.421875,y:.609375},{x:.453125,y:.609375},{x:.453125,y:.609375},{x:.484375,y:.609375},{x:.484375,y:.609375},{x:.515625,y:.609375},{x:.515625,y:.609375},{x:.546875,y:.609375},{x:.546875,y:.609375},{x:.578125,y:.609375},{x:.578125,y:.609375},{x:.609375,y:.609375},{x:.609375,y:.609375},{x:.640625,y:.609375},{x:.640625,y:.609375},{x:.671875,y:.609375},{x:.671875,y:.609375},{x:.703125,y:.609375},{x:.703125,y:.609375},{x:.734375,y:.609375},{x:.734375,y:.609375},{x:.765625,y:.609375},{x:.765625,y:.609375},{x:.796875,y:.609375},{x:.796875,y:.609375},{x:.828125,y:.609375},{x:.828125,y:.609375},{x:.859375,y:.609375},{x:.859375,y:.609375},{x:.890625,y:.609375},{x:.890625,y:.609375},{x:.921875,y:.609375},{x:.921875,y:.609375},{x:.953125,y:.609375},{x:.953125,y:.609375},{x:.984375,y:.609375},{x:.984375,y:.609375},{x:.015625,y:.640625},{x:.015625,y:.640625},{x:.046875,y:.640625},{x:.046875,y:.640625},{x:.078125,y:.640625},{x:.078125,y:.640625},{x:.109375,y:.640625},{x:.109375,y:.640625},{x:.140625,y:.640625},{x:.140625,y:.640625},{x:.171875,y:.640625},{x:.171875,y:.640625},{x:.203125,y:.640625},{x:.203125,y:.640625},{x:.234375,y:.640625},{x:.234375,y:.640625},{x:.265625,y:.640625},{x:.265625,y:.640625},{x:.296875,y:.640625},{x:.296875,y:.640625},{x:.328125,y:.640625},{x:.328125,y:.640625},{x:.359375,y:.640625},{x:.359375,y:.640625},{x:.390625,y:.640625},{x:.390625,y:.640625},{x:.421875,y:.640625},{x:.421875,y:.640625},{x:.453125,y:.640625},{x:.453125,y:.640625},{x:.484375,y:.640625},{x:.484375,y:.640625},{x:.515625,y:.640625},{x:.515625,y:.640625},{x:.546875,y:.640625},{x:.546875,y:.640625},{x:.578125,y:.640625},{x:.578125,y:.640625},{x:.609375,y:.640625},{x:.609375,y:.640625},{x:.640625,y:.640625},{x:.640625,y:.640625},{x:.671875,y:.640625},{x:.671875,y:.640625},{x:.703125,y:.640625},{x:.703125,y:.640625},{x:.734375,y:.640625},{x:.734375,y:.640625},{x:.765625,y:.640625},{x:.765625,y:.640625},{x:.796875,y:.640625},{x:.796875,y:.640625},{x:.828125,y:.640625},{x:.828125,y:.640625},{x:.859375,y:.640625},{x:.859375,y:.640625},{x:.890625,y:.640625},{x:.890625,y:.640625},{x:.921875,y:.640625},{x:.921875,y:.640625},{x:.953125,y:.640625},{x:.953125,y:.640625},{x:.984375,y:.640625},{x:.984375,y:.640625},{x:.015625,y:.671875},{x:.015625,y:.671875},{x:.046875,y:.671875},{x:.046875,y:.671875},{x:.078125,y:.671875},{x:.078125,y:.671875},{x:.109375,y:.671875},{x:.109375,y:.671875},{x:.140625,y:.671875},{x:.140625,y:.671875},{x:.171875,y:.671875},{x:.171875,y:.671875},{x:.203125,y:.671875},{x:.203125,y:.671875},{x:.234375,y:.671875},{x:.234375,y:.671875},{x:.265625,y:.671875},{x:.265625,y:.671875},{x:.296875,y:.671875},{x:.296875,y:.671875},{x:.328125,y:.671875},{x:.328125,y:.671875},{x:.359375,y:.671875},{x:.359375,y:.671875},{x:.390625,y:.671875},{x:.390625,y:.671875},{x:.421875,y:.671875},{x:.421875,y:.671875},{x:.453125,y:.671875},{x:.453125,y:.671875},{x:.484375,y:.671875},{x:.484375,y:.671875},{x:.515625,y:.671875},{x:.515625,y:.671875},{x:.546875,y:.671875},{x:.546875,y:.671875},{x:.578125,y:.671875},{x:.578125,y:.671875},{x:.609375,y:.671875},{x:.609375,y:.671875},{x:.640625,y:.671875},{x:.640625,y:.671875},{x:.671875,y:.671875},{x:.671875,y:.671875},{x:.703125,y:.671875},{x:.703125,y:.671875},{x:.734375,y:.671875},{x:.734375,y:.671875},{x:.765625,y:.671875},{x:.765625,y:.671875},{x:.796875,y:.671875},{x:.796875,y:.671875},{x:.828125,y:.671875},{x:.828125,y:.671875},{x:.859375,y:.671875},{x:.859375,y:.671875},{x:.890625,y:.671875},{x:.890625,y:.671875},{x:.921875,y:.671875},{x:.921875,y:.671875},{x:.953125,y:.671875},{x:.953125,y:.671875},{x:.984375,y:.671875},{x:.984375,y:.671875},{x:.015625,y:.703125},{x:.015625,y:.703125},{x:.046875,y:.703125},{x:.046875,y:.703125},{x:.078125,y:.703125},{x:.078125,y:.703125},{x:.109375,y:.703125},{x:.109375,y:.703125},{x:.140625,y:.703125},{x:.140625,y:.703125},{x:.171875,y:.703125},{x:.171875,y:.703125},{x:.203125,y:.703125},{x:.203125,y:.703125},{x:.234375,y:.703125},{x:.234375,y:.703125},{x:.265625,y:.703125},{x:.265625,y:.703125},{x:.296875,y:.703125},{x:.296875,y:.703125},{x:.328125,y:.703125},{x:.328125,y:.703125},{x:.359375,y:.703125},{x:.359375,y:.703125},{x:.390625,y:.703125},{x:.390625,y:.703125},{x:.421875,y:.703125},{x:.421875,y:.703125},{x:.453125,y:.703125},{x:.453125,y:.703125},{x:.484375,y:.703125},{x:.484375,y:.703125},{x:.515625,y:.703125},{x:.515625,y:.703125},{x:.546875,y:.703125},{x:.546875,y:.703125},{x:.578125,y:.703125},{x:.578125,y:.703125},{x:.609375,y:.703125},{x:.609375,y:.703125},{x:.640625,y:.703125},{x:.640625,y:.703125},{x:.671875,y:.703125},{x:.671875,y:.703125},{x:.703125,y:.703125},{x:.703125,y:.703125},{x:.734375,y:.703125},{x:.734375,y:.703125},{x:.765625,y:.703125},{x:.765625,y:.703125},{x:.796875,y:.703125},{x:.796875,y:.703125},{x:.828125,y:.703125},{x:.828125,y:.703125},{x:.859375,y:.703125},{x:.859375,y:.703125},{x:.890625,y:.703125},{x:.890625,y:.703125},{x:.921875,y:.703125},{x:.921875,y:.703125},{x:.953125,y:.703125},{x:.953125,y:.703125},{x:.984375,y:.703125},{x:.984375,y:.703125},{x:.015625,y:.734375},{x:.015625,y:.734375},{x:.046875,y:.734375},{x:.046875,y:.734375},{x:.078125,y:.734375},{x:.078125,y:.734375},{x:.109375,y:.734375},{x:.109375,y:.734375},{x:.140625,y:.734375},{x:.140625,y:.734375},{x:.171875,y:.734375},{x:.171875,y:.734375},{x:.203125,y:.734375},{x:.203125,y:.734375},{x:.234375,y:.734375},{x:.234375,y:.734375},{x:.265625,y:.734375},{x:.265625,y:.734375},{x:.296875,y:.734375},{x:.296875,y:.734375},{x:.328125,y:.734375},{x:.328125,y:.734375},{x:.359375,y:.734375},{x:.359375,y:.734375},{x:.390625,y:.734375},{x:.390625,y:.734375},{x:.421875,y:.734375},{x:.421875,y:.734375},{x:.453125,y:.734375},{x:.453125,y:.734375},{x:.484375,y:.734375},{x:.484375,y:.734375},{x:.515625,y:.734375},{x:.515625,y:.734375},{x:.546875,y:.734375},{x:.546875,y:.734375},{x:.578125,y:.734375},{x:.578125,y:.734375},{x:.609375,y:.734375},{x:.609375,y:.734375},{x:.640625,y:.734375},{x:.640625,y:.734375},{x:.671875,y:.734375},{x:.671875,y:.734375},{x:.703125,y:.734375},{x:.703125,y:.734375},{x:.734375,y:.734375},{x:.734375,y:.734375},{x:.765625,y:.734375},{x:.765625,y:.734375},{x:.796875,y:.734375},{x:.796875,y:.734375},{x:.828125,y:.734375},{x:.828125,y:.734375},{x:.859375,y:.734375},{x:.859375,y:.734375},{x:.890625,y:.734375},{x:.890625,y:.734375},{x:.921875,y:.734375},{x:.921875,y:.734375},{x:.953125,y:.734375},{x:.953125,y:.734375},{x:.984375,y:.734375},{x:.984375,y:.734375},{x:.015625,y:.765625},{x:.015625,y:.765625},{x:.046875,y:.765625},{x:.046875,y:.765625},{x:.078125,y:.765625},{x:.078125,y:.765625},{x:.109375,y:.765625},{x:.109375,y:.765625},{x:.140625,y:.765625},{x:.140625,y:.765625},{x:.171875,y:.765625},{x:.171875,y:.765625},{x:.203125,y:.765625},{x:.203125,y:.765625},{x:.234375,y:.765625},{x:.234375,y:.765625},{x:.265625,y:.765625},{x:.265625,y:.765625},{x:.296875,y:.765625},{x:.296875,y:.765625},{x:.328125,y:.765625},{x:.328125,y:.765625},{x:.359375,y:.765625},{x:.359375,y:.765625},{x:.390625,y:.765625},{x:.390625,y:.765625},{x:.421875,y:.765625},{x:.421875,y:.765625},{x:.453125,y:.765625},{x:.453125,y:.765625},{x:.484375,y:.765625},{x:.484375,y:.765625},{x:.515625,y:.765625},{x:.515625,y:.765625},{x:.546875,y:.765625},{x:.546875,y:.765625},{x:.578125,y:.765625},{x:.578125,y:.765625},{x:.609375,y:.765625},{x:.609375,y:.765625},{x:.640625,y:.765625},{x:.640625,y:.765625},{x:.671875,y:.765625},{x:.671875,y:.765625},{x:.703125,y:.765625},{x:.703125,y:.765625},{x:.734375,y:.765625},{x:.734375,y:.765625},{x:.765625,y:.765625},{x:.765625,y:.765625},{x:.796875,y:.765625},{x:.796875,y:.765625},{x:.828125,y:.765625},{x:.828125,y:.765625},{x:.859375,y:.765625},{x:.859375,y:.765625},{x:.890625,y:.765625},{x:.890625,y:.765625},{x:.921875,y:.765625},{x:.921875,y:.765625},{x:.953125,y:.765625},{x:.953125,y:.765625},{x:.984375,y:.765625},{x:.984375,y:.765625},{x:.015625,y:.796875},{x:.015625,y:.796875},{x:.046875,y:.796875},{x:.046875,y:.796875},{x:.078125,y:.796875},{x:.078125,y:.796875},{x:.109375,y:.796875},{x:.109375,y:.796875},{x:.140625,y:.796875},{x:.140625,y:.796875},{x:.171875,y:.796875},{x:.171875,y:.796875},{x:.203125,y:.796875},{x:.203125,y:.796875},{x:.234375,y:.796875},{x:.234375,y:.796875},{x:.265625,y:.796875},{x:.265625,y:.796875},{x:.296875,y:.796875},{x:.296875,y:.796875},{x:.328125,y:.796875},{x:.328125,y:.796875},{x:.359375,y:.796875},{x:.359375,y:.796875},{x:.390625,y:.796875},{x:.390625,y:.796875},{x:.421875,y:.796875},{x:.421875,y:.796875},{x:.453125,y:.796875},{x:.453125,y:.796875},{x:.484375,y:.796875},{x:.484375,y:.796875},{x:.515625,y:.796875},{x:.515625,y:.796875},{x:.546875,y:.796875},{x:.546875,y:.796875},{x:.578125,y:.796875},{x:.578125,y:.796875},{x:.609375,y:.796875},{x:.609375,y:.796875},{x:.640625,y:.796875},{x:.640625,y:.796875},{x:.671875,y:.796875},{x:.671875,y:.796875},{x:.703125,y:.796875},{x:.703125,y:.796875},{x:.734375,y:.796875},{x:.734375,y:.796875},{x:.765625,y:.796875},{x:.765625,y:.796875},{x:.796875,y:.796875},{x:.796875,y:.796875},{x:.828125,y:.796875},{x:.828125,y:.796875},{x:.859375,y:.796875},{x:.859375,y:.796875},{x:.890625,y:.796875},{x:.890625,y:.796875},{x:.921875,y:.796875},{x:.921875,y:.796875},{x:.953125,y:.796875},{x:.953125,y:.796875},{x:.984375,y:.796875},{x:.984375,y:.796875},{x:.015625,y:.828125},{x:.015625,y:.828125},{x:.046875,y:.828125},{x:.046875,y:.828125},{x:.078125,y:.828125},{x:.078125,y:.828125},{x:.109375,y:.828125},{x:.109375,y:.828125},{x:.140625,y:.828125},{x:.140625,y:.828125},{x:.171875,y:.828125},{x:.171875,y:.828125},{x:.203125,y:.828125},{x:.203125,y:.828125},{x:.234375,y:.828125},{x:.234375,y:.828125},{x:.265625,y:.828125},{x:.265625,y:.828125},{x:.296875,y:.828125},{x:.296875,y:.828125},{x:.328125,y:.828125},{x:.328125,y:.828125},{x:.359375,y:.828125},{x:.359375,y:.828125},{x:.390625,y:.828125},{x:.390625,y:.828125},{x:.421875,y:.828125},{x:.421875,y:.828125},{x:.453125,y:.828125},{x:.453125,y:.828125},{x:.484375,y:.828125},{x:.484375,y:.828125},{x:.515625,y:.828125},{x:.515625,y:.828125},{x:.546875,y:.828125},{x:.546875,y:.828125},{x:.578125,y:.828125},{x:.578125,y:.828125},{x:.609375,y:.828125},{x:.609375,y:.828125},{x:.640625,y:.828125},{x:.640625,y:.828125},{x:.671875,y:.828125},{x:.671875,y:.828125},{x:.703125,y:.828125},{x:.703125,y:.828125},{x:.734375,y:.828125},{x:.734375,y:.828125},{x:.765625,y:.828125},{x:.765625,y:.828125},{x:.796875,y:.828125},{x:.796875,y:.828125},{x:.828125,y:.828125},{x:.828125,y:.828125},{x:.859375,y:.828125},{x:.859375,y:.828125},{x:.890625,y:.828125},{x:.890625,y:.828125},{x:.921875,y:.828125},{x:.921875,y:.828125},{x:.953125,y:.828125},{x:.953125,y:.828125},{x:.984375,y:.828125},{x:.984375,y:.828125},{x:.015625,y:.859375},{x:.015625,y:.859375},{x:.046875,y:.859375},{x:.046875,y:.859375},{x:.078125,y:.859375},{x:.078125,y:.859375},{x:.109375,y:.859375},{x:.109375,y:.859375},{x:.140625,y:.859375},{x:.140625,y:.859375},{x:.171875,y:.859375},{x:.171875,y:.859375},{x:.203125,y:.859375},{x:.203125,y:.859375},{x:.234375,y:.859375},{x:.234375,y:.859375},{x:.265625,y:.859375},{x:.265625,y:.859375},{x:.296875,y:.859375},{x:.296875,y:.859375},{x:.328125,y:.859375},{x:.328125,y:.859375},{x:.359375,y:.859375},{x:.359375,y:.859375},{x:.390625,y:.859375},{x:.390625,y:.859375},{x:.421875,y:.859375},{x:.421875,y:.859375},{x:.453125,y:.859375},{x:.453125,y:.859375},{x:.484375,y:.859375},{x:.484375,y:.859375},{x:.515625,y:.859375},{x:.515625,y:.859375},{x:.546875,y:.859375},{x:.546875,y:.859375},{x:.578125,y:.859375},{x:.578125,y:.859375},{x:.609375,y:.859375},{x:.609375,y:.859375},{x:.640625,y:.859375},{x:.640625,y:.859375},{x:.671875,y:.859375},{x:.671875,y:.859375},{x:.703125,y:.859375},{x:.703125,y:.859375},{x:.734375,y:.859375},{x:.734375,y:.859375},{x:.765625,y:.859375},{x:.765625,y:.859375},{x:.796875,y:.859375},{x:.796875,y:.859375},{x:.828125,y:.859375},{x:.828125,y:.859375},{x:.859375,y:.859375},{x:.859375,y:.859375},{x:.890625,y:.859375},{x:.890625,y:.859375},{x:.921875,y:.859375},{x:.921875,y:.859375},{x:.953125,y:.859375},{x:.953125,y:.859375},{x:.984375,y:.859375},{x:.984375,y:.859375},{x:.015625,y:.890625},{x:.015625,y:.890625},{x:.046875,y:.890625},{x:.046875,y:.890625},{x:.078125,y:.890625},{x:.078125,y:.890625},{x:.109375,y:.890625},{x:.109375,y:.890625},{x:.140625,y:.890625},{x:.140625,y:.890625},{x:.171875,y:.890625},{x:.171875,y:.890625},{x:.203125,y:.890625},{x:.203125,y:.890625},{x:.234375,y:.890625},{x:.234375,y:.890625},{x:.265625,y:.890625},{x:.265625,y:.890625},{x:.296875,y:.890625},{x:.296875,y:.890625},{x:.328125,y:.890625},{x:.328125,y:.890625},{x:.359375,y:.890625},{x:.359375,y:.890625},{x:.390625,y:.890625},{x:.390625,y:.890625},{x:.421875,y:.890625},{x:.421875,y:.890625},{x:.453125,y:.890625},{x:.453125,y:.890625},{x:.484375,y:.890625},{x:.484375,y:.890625},{x:.515625,y:.890625},{x:.515625,y:.890625},{x:.546875,y:.890625},{x:.546875,y:.890625},{x:.578125,y:.890625},{x:.578125,y:.890625},{x:.609375,y:.890625},{x:.609375,y:.890625},{x:.640625,y:.890625},{x:.640625,y:.890625},{x:.671875,y:.890625},{x:.671875,y:.890625},{x:.703125,y:.890625},{x:.703125,y:.890625},{x:.734375,y:.890625},{x:.734375,y:.890625},{x:.765625,y:.890625},{x:.765625,y:.890625},{x:.796875,y:.890625},{x:.796875,y:.890625},{x:.828125,y:.890625},{x:.828125,y:.890625},{x:.859375,y:.890625},{x:.859375,y:.890625},{x:.890625,y:.890625},{x:.890625,y:.890625},{x:.921875,y:.890625},{x:.921875,y:.890625},{x:.953125,y:.890625},{x:.953125,y:.890625},{x:.984375,y:.890625},{x:.984375,y:.890625},{x:.015625,y:.921875},{x:.015625,y:.921875},{x:.046875,y:.921875},{x:.046875,y:.921875},{x:.078125,y:.921875},{x:.078125,y:.921875},{x:.109375,y:.921875},{x:.109375,y:.921875},{x:.140625,y:.921875},{x:.140625,y:.921875},{x:.171875,y:.921875},{x:.171875,y:.921875},{x:.203125,y:.921875},{x:.203125,y:.921875},{x:.234375,y:.921875},{x:.234375,y:.921875},{x:.265625,y:.921875},{x:.265625,y:.921875},{x:.296875,y:.921875},{x:.296875,y:.921875},{x:.328125,y:.921875},{x:.328125,y:.921875},{x:.359375,y:.921875},{x:.359375,y:.921875},{x:.390625,y:.921875},{x:.390625,y:.921875},{x:.421875,y:.921875},{x:.421875,y:.921875},{x:.453125,y:.921875},{x:.453125,y:.921875},{x:.484375,y:.921875},{x:.484375,y:.921875},{x:.515625,y:.921875},{x:.515625,y:.921875},{x:.546875,y:.921875},{x:.546875,y:.921875},{x:.578125,y:.921875},{x:.578125,y:.921875},{x:.609375,y:.921875},{x:.609375,y:.921875},{x:.640625,y:.921875},{x:.640625,y:.921875},{x:.671875,y:.921875},{x:.671875,y:.921875},{x:.703125,y:.921875},{x:.703125,y:.921875},{x:.734375,y:.921875},{x:.734375,y:.921875},{x:.765625,y:.921875},{x:.765625,y:.921875},{x:.796875,y:.921875},{x:.796875,y:.921875},{x:.828125,y:.921875},{x:.828125,y:.921875},{x:.859375,y:.921875},{x:.859375,y:.921875},{x:.890625,y:.921875},{x:.890625,y:.921875},{x:.921875,y:.921875},{x:.921875,y:.921875},{x:.953125,y:.921875},{x:.953125,y:.921875},{x:.984375,y:.921875},{x:.984375,y:.921875},{x:.015625,y:.953125},{x:.015625,y:.953125},{x:.046875,y:.953125},{x:.046875,y:.953125},{x:.078125,y:.953125},{x:.078125,y:.953125},{x:.109375,y:.953125},{x:.109375,y:.953125},{x:.140625,y:.953125},{x:.140625,y:.953125},{x:.171875,y:.953125},{x:.171875,y:.953125},{x:.203125,y:.953125},{x:.203125,y:.953125},{x:.234375,y:.953125},{x:.234375,y:.953125},{x:.265625,y:.953125},{x:.265625,y:.953125},{x:.296875,y:.953125},{x:.296875,y:.953125},{x:.328125,y:.953125},{x:.328125,y:.953125},{x:.359375,y:.953125},{x:.359375,y:.953125},{x:.390625,y:.953125},{x:.390625,y:.953125},{x:.421875,y:.953125},{x:.421875,y:.953125},{x:.453125,y:.953125},{x:.453125,y:.953125},{x:.484375,y:.953125},{x:.484375,y:.953125},{x:.515625,y:.953125},{x:.515625,y:.953125},{x:.546875,y:.953125},{x:.546875,y:.953125},{x:.578125,y:.953125},{x:.578125,y:.953125},{x:.609375,y:.953125},{x:.609375,y:.953125},{x:.640625,y:.953125},{x:.640625,y:.953125},{x:.671875,y:.953125},{x:.671875,y:.953125},{x:.703125,y:.953125},{x:.703125,y:.953125},{x:.734375,y:.953125},{x:.734375,y:.953125},{x:.765625,y:.953125},{x:.765625,y:.953125},{x:.796875,y:.953125},{x:.796875,y:.953125},{x:.828125,y:.953125},{x:.828125,y:.953125},{x:.859375,y:.953125},{x:.859375,y:.953125},{x:.890625,y:.953125},{x:.890625,y:.953125},{x:.921875,y:.953125},{x:.921875,y:.953125},{x:.953125,y:.953125},{x:.953125,y:.953125},{x:.984375,y:.953125},{x:.984375,y:.953125},{x:.015625,y:.984375},{x:.015625,y:.984375},{x:.046875,y:.984375},{x:.046875,y:.984375},{x:.078125,y:.984375},{x:.078125,y:.984375},{x:.109375,y:.984375},{x:.109375,y:.984375},{x:.140625,y:.984375},{x:.140625,y:.984375},{x:.171875,y:.984375},{x:.171875,y:.984375},{x:.203125,y:.984375},{x:.203125,y:.984375},{x:.234375,y:.984375},{x:.234375,y:.984375},{x:.265625,y:.984375},{x:.265625,y:.984375},{x:.296875,y:.984375},{x:.296875,y:.984375},{x:.328125,y:.984375},{x:.328125,y:.984375},{x:.359375,y:.984375},{x:.359375,y:.984375},{x:.390625,y:.984375},{x:.390625,y:.984375},{x:.421875,y:.984375},{x:.421875,y:.984375},{x:.453125,y:.984375},{x:.453125,y:.984375},{x:.484375,y:.984375},{x:.484375,y:.984375},{x:.515625,y:.984375},{x:.515625,y:.984375},{x:.546875,y:.984375},{x:.546875,y:.984375},{x:.578125,y:.984375},{x:.578125,y:.984375},{x:.609375,y:.984375},{x:.609375,y:.984375},{x:.640625,y:.984375},{x:.640625,y:.984375},{x:.671875,y:.984375},{x:.671875,y:.984375},{x:.703125,y:.984375},{x:.703125,y:.984375},{x:.734375,y:.984375},{x:.734375,y:.984375},{x:.765625,y:.984375},{x:.765625,y:.984375},{x:.796875,y:.984375},{x:.796875,y:.984375},{x:.828125,y:.984375},{x:.828125,y:.984375},{x:.859375,y:.984375},{x:.859375,y:.984375},{x:.890625,y:.984375},{x:.890625,y:.984375},{x:.921875,y:.984375},{x:.921875,y:.984375},{x:.953125,y:.984375},{x:.953125,y:.984375},{x:.984375,y:.984375},{x:.984375,y:.984375},{x:.03125,y:.03125},{x:.03125,y:.03125},{x:.09375,y:.03125},{x:.09375,y:.03125},{x:.15625,y:.03125},{x:.15625,y:.03125},{x:.21875,y:.03125},{x:.21875,y:.03125},{x:.28125,y:.03125},{x:.28125,y:.03125},{x:.34375,y:.03125},{x:.34375,y:.03125},{x:.40625,y:.03125},{x:.40625,y:.03125},{x:.46875,y:.03125},{x:.46875,y:.03125},{x:.53125,y:.03125},{x:.53125,y:.03125},{x:.59375,y:.03125},{x:.59375,y:.03125},{x:.65625,y:.03125},{x:.65625,y:.03125},{x:.71875,y:.03125},{x:.71875,y:.03125},{x:.78125,y:.03125},{x:.78125,y:.03125},{x:.84375,y:.03125},{x:.84375,y:.03125},{x:.90625,y:.03125},{x:.90625,y:.03125},{x:.96875,y:.03125},{x:.96875,y:.03125},{x:.03125,y:.09375},{x:.03125,y:.09375},{x:.09375,y:.09375},{x:.09375,y:.09375},{x:.15625,y:.09375},{x:.15625,y:.09375},{x:.21875,y:.09375},{x:.21875,y:.09375},{x:.28125,y:.09375},{x:.28125,y:.09375},{x:.34375,y:.09375},{x:.34375,y:.09375},{x:.40625,y:.09375},{x:.40625,y:.09375},{x:.46875,y:.09375},{x:.46875,y:.09375},{x:.53125,y:.09375},{x:.53125,y:.09375},{x:.59375,y:.09375},{x:.59375,y:.09375},{x:.65625,y:.09375},{x:.65625,y:.09375},{x:.71875,y:.09375},{x:.71875,y:.09375},{x:.78125,y:.09375},{x:.78125,y:.09375},{x:.84375,y:.09375},{x:.84375,y:.09375},{x:.90625,y:.09375},{x:.90625,y:.09375},{x:.96875,y:.09375},{x:.96875,y:.09375},{x:.03125,y:.15625},{x:.03125,y:.15625},{x:.09375,y:.15625},{x:.09375,y:.15625},{x:.15625,y:.15625},{x:.15625,y:.15625},{x:.21875,y:.15625},{x:.21875,y:.15625},{x:.28125,y:.15625},{x:.28125,y:.15625},{x:.34375,y:.15625},{x:.34375,y:.15625},{x:.40625,y:.15625},{x:.40625,y:.15625},{x:.46875,y:.15625},{x:.46875,y:.15625},{x:.53125,y:.15625},{x:.53125,y:.15625},{x:.59375,y:.15625},{x:.59375,y:.15625},{x:.65625,y:.15625},{x:.65625,y:.15625},{x:.71875,y:.15625},{x:.71875,y:.15625},{x:.78125,y:.15625},{x:.78125,y:.15625},{x:.84375,y:.15625},{x:.84375,y:.15625},{x:.90625,y:.15625},{x:.90625,y:.15625},{x:.96875,y:.15625},{x:.96875,y:.15625},{x:.03125,y:.21875},{x:.03125,y:.21875},{x:.09375,y:.21875},{x:.09375,y:.21875},{x:.15625,y:.21875},{x:.15625,y:.21875},{x:.21875,y:.21875},{x:.21875,y:.21875},{x:.28125,y:.21875},{x:.28125,y:.21875},{x:.34375,y:.21875},{x:.34375,y:.21875},{x:.40625,y:.21875},{x:.40625,y:.21875},{x:.46875,y:.21875},{x:.46875,y:.21875},{x:.53125,y:.21875},{x:.53125,y:.21875},{x:.59375,y:.21875},{x:.59375,y:.21875},{x:.65625,y:.21875},{x:.65625,y:.21875},{x:.71875,y:.21875},{x:.71875,y:.21875},{x:.78125,y:.21875},{x:.78125,y:.21875},{x:.84375,y:.21875},{x:.84375,y:.21875},{x:.90625,y:.21875},{x:.90625,y:.21875},{x:.96875,y:.21875},{x:.96875,y:.21875},{x:.03125,y:.28125},{x:.03125,y:.28125},{x:.09375,y:.28125},{x:.09375,y:.28125},{x:.15625,y:.28125},{x:.15625,y:.28125},{x:.21875,y:.28125},{x:.21875,y:.28125},{x:.28125,y:.28125},{x:.28125,y:.28125},{x:.34375,y:.28125},{x:.34375,y:.28125},{x:.40625,y:.28125},{x:.40625,y:.28125},{x:.46875,y:.28125},{x:.46875,y:.28125},{x:.53125,y:.28125},{x:.53125,y:.28125},{x:.59375,y:.28125},{x:.59375,y:.28125},{x:.65625,y:.28125},{x:.65625,y:.28125},{x:.71875,y:.28125},{x:.71875,y:.28125},{x:.78125,y:.28125},{x:.78125,y:.28125},{x:.84375,y:.28125},{x:.84375,y:.28125},{x:.90625,y:.28125},{x:.90625,y:.28125},{x:.96875,y:.28125},{x:.96875,y:.28125},{x:.03125,y:.34375},{x:.03125,y:.34375},{x:.09375,y:.34375},{x:.09375,y:.34375},{x:.15625,y:.34375},{x:.15625,y:.34375},{x:.21875,y:.34375},{x:.21875,y:.34375},{x:.28125,y:.34375},{x:.28125,y:.34375},{x:.34375,y:.34375},{x:.34375,y:.34375},{x:.40625,y:.34375},{x:.40625,y:.34375},{x:.46875,y:.34375},{x:.46875,y:.34375},{x:.53125,y:.34375},{x:.53125,y:.34375},{x:.59375,y:.34375},{x:.59375,y:.34375},{x:.65625,y:.34375},{x:.65625,y:.34375},{x:.71875,y:.34375},{x:.71875,y:.34375},{x:.78125,y:.34375},{x:.78125,y:.34375},{x:.84375,y:.34375},{x:.84375,y:.34375},{x:.90625,y:.34375},{x:.90625,y:.34375},{x:.96875,y:.34375},{x:.96875,y:.34375},{x:.03125,y:.40625},{x:.03125,y:.40625},{x:.09375,y:.40625},{x:.09375,y:.40625},{x:.15625,y:.40625},{x:.15625,y:.40625},{x:.21875,y:.40625},{x:.21875,y:.40625},{x:.28125,y:.40625},{x:.28125,y:.40625},{x:.34375,y:.40625},{x:.34375,y:.40625},{x:.40625,y:.40625},{x:.40625,y:.40625},{x:.46875,y:.40625},{x:.46875,y:.40625},{x:.53125,y:.40625},{x:.53125,y:.40625},{x:.59375,y:.40625},{x:.59375,y:.40625},{x:.65625,y:.40625},{x:.65625,y:.40625},{x:.71875,y:.40625},{x:.71875,y:.40625},{x:.78125,y:.40625},{x:.78125,y:.40625},{x:.84375,y:.40625},{x:.84375,y:.40625},{x:.90625,y:.40625},{x:.90625,y:.40625},{x:.96875,y:.40625},{x:.96875,y:.40625},{x:.03125,y:.46875},{x:.03125,y:.46875},{x:.09375,y:.46875},{x:.09375,y:.46875},{x:.15625,y:.46875},{x:.15625,y:.46875},{x:.21875,y:.46875},{x:.21875,y:.46875},{x:.28125,y:.46875},{x:.28125,y:.46875},{x:.34375,y:.46875},{x:.34375,y:.46875},{x:.40625,y:.46875},{x:.40625,y:.46875},{x:.46875,y:.46875},{x:.46875,y:.46875},{x:.53125,y:.46875},{x:.53125,y:.46875},{x:.59375,y:.46875},{x:.59375,y:.46875},{x:.65625,y:.46875},{x:.65625,y:.46875},{x:.71875,y:.46875},{x:.71875,y:.46875},{x:.78125,y:.46875},{x:.78125,y:.46875},{x:.84375,y:.46875},{x:.84375,y:.46875},{x:.90625,y:.46875},{x:.90625,y:.46875},{x:.96875,y:.46875},{x:.96875,y:.46875},{x:.03125,y:.53125},{x:.03125,y:.53125},{x:.09375,y:.53125},{x:.09375,y:.53125},{x:.15625,y:.53125},{x:.15625,y:.53125},{x:.21875,y:.53125},{x:.21875,y:.53125},{x:.28125,y:.53125},{x:.28125,y:.53125},{x:.34375,y:.53125},{x:.34375,y:.53125},{x:.40625,y:.53125},{x:.40625,y:.53125},{x:.46875,y:.53125},{x:.46875,y:.53125},{x:.53125,y:.53125},{x:.53125,y:.53125},{x:.59375,y:.53125},{x:.59375,y:.53125},{x:.65625,y:.53125},{x:.65625,y:.53125},{x:.71875,y:.53125},{x:.71875,y:.53125},{x:.78125,y:.53125},{x:.78125,y:.53125},{x:.84375,y:.53125},{x:.84375,y:.53125},{x:.90625,y:.53125},{x:.90625,y:.53125},{x:.96875,y:.53125},{x:.96875,y:.53125},{x:.03125,y:.59375},{x:.03125,y:.59375},{x:.09375,y:.59375},{x:.09375,y:.59375},{x:.15625,y:.59375},{x:.15625,y:.59375},{x:.21875,y:.59375},{x:.21875,y:.59375},{x:.28125,y:.59375},{x:.28125,y:.59375},{x:.34375,y:.59375},{x:.34375,y:.59375},{x:.40625,y:.59375},{x:.40625,y:.59375},{x:.46875,y:.59375},{x:.46875,y:.59375},{x:.53125,y:.59375},{x:.53125,y:.59375},{x:.59375,y:.59375},{x:.59375,y:.59375},{x:.65625,y:.59375},{x:.65625,y:.59375},{x:.71875,y:.59375},{x:.71875,y:.59375},{x:.78125,y:.59375},{x:.78125,y:.59375},{x:.84375,y:.59375},{x:.84375,y:.59375},{x:.90625,y:.59375},{x:.90625,y:.59375},{x:.96875,y:.59375},{x:.96875,y:.59375},{x:.03125,y:.65625},{x:.03125,y:.65625},{x:.09375,y:.65625},{x:.09375,y:.65625},{x:.15625,y:.65625},{x:.15625,y:.65625},{x:.21875,y:.65625},{x:.21875,y:.65625},{x:.28125,y:.65625},{x:.28125,y:.65625},{x:.34375,y:.65625},{x:.34375,y:.65625},{x:.40625,y:.65625},{x:.40625,y:.65625},{x:.46875,y:.65625},{x:.46875,y:.65625},{x:.53125,y:.65625},{x:.53125,y:.65625},{x:.59375,y:.65625},{x:.59375,y:.65625},{x:.65625,y:.65625},{x:.65625,y:.65625},{x:.71875,y:.65625},{x:.71875,y:.65625},{x:.78125,y:.65625},{x:.78125,y:.65625},{x:.84375,y:.65625},{x:.84375,y:.65625},{x:.90625,y:.65625},{x:.90625,y:.65625},{x:.96875,y:.65625},{x:.96875,y:.65625},{x:.03125,y:.71875},{x:.03125,y:.71875},{x:.09375,y:.71875},{x:.09375,y:.71875},{x:.15625,y:.71875},{x:.15625,y:.71875},{x:.21875,y:.71875},{x:.21875,y:.71875},{x:.28125,y:.71875},{x:.28125,y:.71875},{x:.34375,y:.71875},{x:.34375,y:.71875},{x:.40625,y:.71875},{x:.40625,y:.71875},{x:.46875,y:.71875},{x:.46875,y:.71875},{x:.53125,y:.71875},{x:.53125,y:.71875},{x:.59375,y:.71875},{x:.59375,y:.71875},{x:.65625,y:.71875},{x:.65625,y:.71875},{x:.71875,y:.71875},{x:.71875,y:.71875},{x:.78125,y:.71875},{x:.78125,y:.71875},{x:.84375,y:.71875},{x:.84375,y:.71875},{x:.90625,y:.71875},{x:.90625,y:.71875},{x:.96875,y:.71875},{x:.96875,y:.71875},{x:.03125,y:.78125},{x:.03125,y:.78125},{x:.09375,y:.78125},{x:.09375,y:.78125},{x:.15625,y:.78125},{x:.15625,y:.78125},{x:.21875,y:.78125},{x:.21875,y:.78125},{x:.28125,y:.78125},{x:.28125,y:.78125},{x:.34375,y:.78125},{x:.34375,y:.78125},{x:.40625,y:.78125},{x:.40625,y:.78125},{x:.46875,y:.78125},{x:.46875,y:.78125},{x:.53125,y:.78125},{x:.53125,y:.78125},{x:.59375,y:.78125},{x:.59375,y:.78125},{x:.65625,y:.78125},{x:.65625,y:.78125},{x:.71875,y:.78125},{x:.71875,y:.78125},{x:.78125,y:.78125},{x:.78125,y:.78125},{x:.84375,y:.78125},{x:.84375,y:.78125},{x:.90625,y:.78125},{x:.90625,y:.78125},{x:.96875,y:.78125},{x:.96875,y:.78125},{x:.03125,y:.84375},{x:.03125,y:.84375},{x:.09375,y:.84375},{x:.09375,y:.84375},{x:.15625,y:.84375},{x:.15625,y:.84375},{x:.21875,y:.84375},{x:.21875,y:.84375},{x:.28125,y:.84375},{x:.28125,y:.84375},{x:.34375,y:.84375},{x:.34375,y:.84375},{x:.40625,y:.84375},{x:.40625,y:.84375},{x:.46875,y:.84375},{x:.46875,y:.84375},{x:.53125,y:.84375},{x:.53125,y:.84375},{x:.59375,y:.84375},{x:.59375,y:.84375},{x:.65625,y:.84375},{x:.65625,y:.84375},{x:.71875,y:.84375},{x:.71875,y:.84375},{x:.78125,y:.84375},{x:.78125,y:.84375},{x:.84375,y:.84375},{x:.84375,y:.84375},{x:.90625,y:.84375},{x:.90625,y:.84375},{x:.96875,y:.84375},{x:.96875,y:.84375},{x:.03125,y:.90625},{x:.03125,y:.90625},{x:.09375,y:.90625},{x:.09375,y:.90625},{x:.15625,y:.90625},{x:.15625,y:.90625},{x:.21875,y:.90625},{x:.21875,y:.90625},{x:.28125,y:.90625},{x:.28125,y:.90625},{x:.34375,y:.90625},{x:.34375,y:.90625},{x:.40625,y:.90625},{x:.40625,y:.90625},{x:.46875,y:.90625},{x:.46875,y:.90625},{x:.53125,y:.90625},{x:.53125,y:.90625},{x:.59375,y:.90625},{x:.59375,y:.90625},{x:.65625,y:.90625},{x:.65625,y:.90625},{x:.71875,y:.90625},{x:.71875,y:.90625},{x:.78125,y:.90625},{x:.78125,y:.90625},{x:.84375,y:.90625},{x:.84375,y:.90625},{x:.90625,y:.90625},{x:.90625,y:.90625},{x:.96875,y:.90625},{x:.96875,y:.90625},{x:.03125,y:.96875},{x:.03125,y:.96875},{x:.09375,y:.96875},{x:.09375,y:.96875},{x:.15625,y:.96875},{x:.15625,y:.96875},{x:.21875,y:.96875},{x:.21875,y:.96875},{x:.28125,y:.96875},{x:.28125,y:.96875},{x:.34375,y:.96875},{x:.34375,y:.96875},{x:.40625,y:.96875},{x:.40625,y:.96875},{x:.46875,y:.96875},{x:.46875,y:.96875},{x:.53125,y:.96875},{x:.53125,y:.96875},{x:.59375,y:.96875},{x:.59375,y:.96875},{x:.65625,y:.96875},{x:.65625,y:.96875},{x:.71875,y:.96875},{x:.71875,y:.96875},{x:.78125,y:.96875},{x:.78125,y:.96875},{x:.84375,y:.96875},{x:.84375,y:.96875},{x:.90625,y:.96875},{x:.90625,y:.96875},{x:.96875,y:.96875},{x:.96875,y:.96875},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375}];var iy=class{constructor(t){this.model=t,this.anchors=Yk.map(n=>[n.x,n.y]),this.anchorsTensor=_s(this.anchors),this.inputSize=this.model&&this.model.inputs&&this.model.inputs[0].shape?this.model.inputs[0].shape[2]:0,this.inputSizeTensor=Ot([this.inputSize,this.inputSize]),this.doubleInputSizeTensor=Ot([this.inputSize*2,this.inputSize*2])}normalizeBoxes(t){return H(()=>{let n=Re(t,[0,0],[-1,2]),s=Re(t,[0,2],[-1,2]),r=ae(de(n,this.inputSizeTensor),this.anchorsTensor),a=de(s,this.doubleInputSizeTensor),o=z(Ae(r,a),this.inputSizeTensor),i=z(ae(r,a),this.inputSizeTensor);return Il([o,i],1)})}normalizeLandmarks(t,n){return H(()=>{let s=ae(de(U(t,[-1,7,2]),this.inputSizeTensor),this.anchors[n]);return z(s,this.inputSizeTensor)})}async getBoxes(t,n){let s=this.model.predict(t),r=ot(s);K(s);let a=H(()=>ot(Bn(Re(r,[0,0],[-1,1])))),o=await a.data(),i=Re(r,[0,1],[-1,4]),l=this.normalizeBoxes(i);K(i);let u=await _e.nonMaxSuppressionAsync(l,o,n.hand.maxDetected,n.hand.iouThreshold,n.hand.minConfidence),c=await u.array();K(a),K(u);let d=[];for(let h of c)if(o[h]>=n.hand.minConfidence){let p=Re(l,[h,0],[1,-1]),f=Re(r,[h,5],[1,14]),m=H(()=>U(this.normalizeLandmarks(f,h),[-1,2]));K(f),d.push({box:p,palmLandmarks:m,confidence:o[h]})}return K(r),K(l),d}async estimateHandBounds(t,n){let s=t.shape[1],r=t.shape[2],a=H(()=>Ae(de(_e.resizeBilinear(t,[this.inputSize,this.inputSize]),127.5),1)),o=await this.getBoxes(a,n);K(a);let i=[];if(!o||o.length===0)return i;for(let l of o){let u=await l.box.data(),c=u.slice(0,2),d=u.slice(2,4),h=await l.palmLandmarks.array();K(l.box),K(l.palmLandmarks),i.push(Zk({startPoint:c,endPoint:d,palmLandmarks:h,confidence:l.confidence},[r/this.inputSize,s/this.inputSize]))}return i}};function Tie(e){return e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI))}function Jk(e,t){let n=Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]);return Tie(n)}var Qk=(e,t)=>[[1,0,e],[0,1,t],[0,0,1]];function ia(e,t){let n=0;for(let s=0;s<e.length;s++)n+=e[s]*t[s];return n}function Nie(e,t){let n=[];for(let s=0;s<e.length;s++)n.push(e[s][t]);return n}function e8(e,t){let n=[],s=e.length;for(let r=0;r<s;r++){n.push([]);for(let a=0;a<s;a++)n[r].push(ia(e[r],Nie(t,a)))}return n}function ly(e,t){let n=Math.cos(e),s=Math.sin(e),r=[[n,-s,0],[s,n,0],[0,0,1]],a=Qk(t[0],t[1]),o=e8(a,r),i=Qk(-t[0],-t[1]);return e8(o,i)}function t8(e){let t=[[e[0][0],e[1][0]],[e[0][1],e[1][1]]],n=[e[0][2],e[1][2]],s=[-ia(t[0],n),-ia(t[1],n)];return[t[0].concat(s[0]),t[1].concat(s[1]),[0,0,1]]}function uy(e,t){return[ia(e,t[0]),ia(e,t[1])]}var Eie=5,n8=1.65,s8=[0,5,9,13,17,1,2],Rie=0,_ie=2,cy=class{constructor(t,n){var s;this.handDetector=t,this.handPoseModel=n,this.inputSize=(s=this.handPoseModel)==null?void 0:s.inputs[0].shape[2],this.storedBoxes=[],this.skipped=0,this.detectedHands=0}calculateLandmarksBoundingBox(t){let n=t.map(o=>o[0]),s=t.map(o=>o[1]),r=[Math.min(...n),Math.min(...s)],a=[Math.max(...n),Math.max(...s)];return{startPoint:r,endPoint:a}}getBoxForPalmLandmarks(t,n){let s=t.map(a=>uy([...a,1],n)),r=this.calculateLandmarksBoundingBox(s);return Df(Of(r),Eie)}getBoxForHandLandmarks(t){let n=this.calculateLandmarksBoundingBox(t),s=Df(Of(n),n8);s.palmLandmarks=[];for(let r=0;r<s8.length;r++)s.palmLandmarks.push(t[s8[r]].slice(0,2));return s}transformRawCoords(t,n,s,r){let a=Ff(n),o=[a[0]/this.inputSize,a[1]/this.inputSize,(a[0]+a[1])/this.inputSize/2],i=t.map(p=>[o[0]*(p[0]-this.inputSize/2),o[1]*(p[1]-this.inputSize/2),o[2]*p[2]]),l=ly(s,[0,0]),u=i.map(p=>[...uy(p,l),p[2]]),c=t8(r),d=[...rd(n),1],h=[ia(d,c[0]),ia(d,c[1])];return u.map(p=>[Math.trunc(p[0]+h[0]),Math.trunc(p[1]+h[1]),Math.trunc(p[2])])}async estimateHands(t,n){let s=!1,r;(this.skipped===0||this.skipped>n.hand.skipFrames||!n.hand.landmarks||!n.skipFrame)&&(r=await this.handDetector.estimateHandBounds(t,n),this.skipped=0),n.skipFrame&&this.skipped++,r&&r.length>0&&(r.length!==this.detectedHands&&this.detectedHands!==n.hand.maxDetected||!n.hand.landmarks)&&(this.detectedHands=0,this.storedBoxes=[...r],this.storedBoxes.length>0&&(s=!0));let a=[];for(let o=0;o<this.storedBoxes.length;o++){let i=this.storedBoxes[o];if(!!i)if(n.hand.landmarks){let l=n.hand.rotation?Jk(i.palmLandmarks[Rie],i.palmLandmarks[_ie]):0,u=rd(i),c=[u[0]/t.shape[2],u[1]/t.shape[1]],d=n.hand.rotation&&ns.flags.IS_BROWSER?_e.rotateWithOffset(t,l,0,c):t.clone(),h=ly(-l,u),p=s?this.getBoxForPalmLandmarks(i.palmLandmarks,h):i,f=Kk(p,d,[this.inputSize,this.inputSize]),m=de(f,255);K(f),K(d);let[A,g]=await this.handPoseModel.predict(m);K(m);let y=(await A.data())[0];if(K(A),y>=n.hand.minConfidence){let x=U(g,[-1,3]),b=await x.array();K(g),K(x);let v=this.transformRawCoords(b,p,l,h),k=this.getBoxForHandLandmarks(v);this.storedBoxes[o]={...k,confidence:y};let w={landmarks:v,confidence:y,box:{topLeft:k.startPoint,bottomRight:k.endPoint}};a.push(w)}else this.storedBoxes[o]=null;K(g)}else{let l=Df(Of(i),n8),u={confidence:i.confidence,box:{topLeft:l.startPoint,bottomRight:l.endPoint}};a.push(u)}}return this.storedBoxes=this.storedBoxes.filter(o=>o!==null),this.detectedHands=a.length,a}};var r8={thumb:[1,2,3,4],indexFinger:[5,6,7,8],middleFinger:[9,10,11,12],ringFinger:[13,14,15,16],pinky:[17,18,19,20],palmBase:[0]},la,ua,a8;async function dy(e,t){let n=await a8.estimateHands(e,t);if(!n)return[];let s=[];for(let r=0;r<n.length;r++){let a={};if(n[r].landmarks)for(let u of Object.keys(r8))a[u]=r8[u].map(c=>n[r].landmarks[c]);let o=n[r].landmarks,i=[Number.MAX_SAFE_INTEGER,Number.MAX_SAFE_INTEGER,0,0],l=[0,0,0,0];if(o&&o.length>0){for(let u of o)u[0]<i[0]&&(i[0]=u[0]),u[1]<i[1]&&(i[1]=u[1]),u[0]>i[2]&&(i[2]=u[0]),u[1]>i[3]&&(i[3]=u[1]);i[2]-=i[0],i[3]-=i[1],l=[i[0]/(e.shape[2]||0),i[1]/(e.shape[1]||0),i[2]/(e.shape[2]||0),i[3]/(e.shape[1]||0)]}else i=n[r].box?[Math.trunc(Math.max(0,n[r].box.topLeft[0])),Math.trunc(Math.max(0,n[r].box.topLeft[1])),Math.trunc(Math.min(e.shape[2]||0,n[r].box.bottomRight[0])-Math.max(0,n[r].box.topLeft[0])),Math.trunc(Math.min(e.shape[1]||0,n[r].box.bottomRight[1])-Math.max(0,n[r].box.topLeft[1]))]:[0,0,0,0],l=[n[r].box.topLeft[0]/(e.shape[2]||0),n[r].box.topLeft[1]/(e.shape[1]||0),(n[r].box.bottomRight[0]-n[r].box.topLeft[0])/(e.shape[2]||0),(n[r].box.bottomRight[1]-n[r].box.topLeft[1])/(e.shape[1]||0)];s.push({id:r,score:Math.round(100*n[r].confidence)/100,box:i,boxRaw:l,keypoints:o,annotations:a})}return s}async function hy(e){!la||!ua?([la,ua]=await Promise.all([e.hand.enabled?pt(ft(e.modelBasePath,e.hand.detector.modelPath),{fromTFHub:e.hand.detector.modelPath.includes("tfhub.dev")}):null,e.hand.landmarks?pt(ft(e.modelBasePath,e.hand.skeleton.modelPath),{fromTFHub:e.hand.skeleton.modelPath.includes("tfhub.dev")}):null]),e.hand.enabled&&(!la||!la.modelUrl?ue("load model failed:",e.hand.detector.modelPath):e.debug&&ue("load model:",la.modelUrl),!ua||!ua.modelUrl?ue("load model failed:",e.hand.skeleton.modelPath):e.debug&&ue("load model:",ua.modelUrl))):(e.debug&&ue("cached model:",la.modelUrl),e.debug&&ue("cached model:",ua.modelUrl));let t=new iy(la);return a8=new cy(t,ua),[la,ua]}var o8=["nose","leftEyeInside","leftEye","leftEyeOutside","rightEyeInside","rightEye","rightEyeOutside","leftEar","rightEar","leftMouth","rightMouth","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftPalm","rightPalm","leftIndex","rightIndex","leftPinky","rightPinky","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle","leftHeel","rightHeel","leftFoot","rightFoot","midHip","forehead","leftThumb","leftHand","rightThumb","rightHand"],i8=["nose","leftEyeInside","leftEye","leftEyeOutside","rightEyeInside","rightEye","rightEyeOutside","leftEar","rightEar","leftMouth","rightMouth","leftShoulder","rightShoulder","leftElbow","rightElbow","left:15","right:16","left:17","right:18","left:19","right:20","left:21","right:22","leftChest","rightChest","neck","forehead","left:27","right:28","left:29","right:30"];var On;async function Pf(e){return On?e.debug&&ue("cached model:",On.modelUrl):(On=await pt(ft(e.modelBasePath,e.body.modelPath)),On.width=parseInt(On.signature.inputs["input_1:0"].tensorShape.dim[2].size),On.height=parseInt(On.signature.inputs["input_1:0"].tensorShape.dim[1].size),!On||!On.modelUrl?ue("load model failed:",e.body.modelPath):e.debug&&ue("load model:",On.modelUrl)),On}async function py(e,t){if(!On)return[];if(!t.body.enabled)return[];let n={width:e.shape[2]||0,height:e.shape[1]||0},s=_e.resizeBilinear(e,[On.width,On.height],!1),r=de(s,[255]);K(s);let a=await On.predict(r),o=a.find(A=>A.size===195||A.size===155),i=await(o==null?void 0:o.data())||[];a.forEach(A=>K(A)),K(r);let l=[],u=(i==null?void 0:i.length)===195?o8:i8,c=5;for(let A=0;A<i.length/c;A++)l.push({id:A,part:u[A],position:[Math.trunc(n.width*i[c*A+0]/255),Math.trunc(n.height*i[c*A+1]/255),Math.trunc(i[c*A+2])+0],positionRaw:[i[c*A+0]/255,i[c*A+1]/255,i[c*A+2]+0],score:(100-Math.trunc(100/(1+Math.exp(i[c*A+3]))))/100,presence:(100-Math.trunc(100/(1+Math.exp(i[c*A+4]))))/100});let d=l.map(A=>A.position[0]),h=l.map(A=>A.position[1]),p=[Math.min(...d),Math.min(...h),Math.max(...d)-Math.min(...d),Math.max(...h)-Math.min(...d)],f=[0,0,0,0],m=l.reduce((A,g)=>g.score>A?g.score:A,0);return[{id:0,score:m,box:p,boxRaw:f,keypoints:l}]}var Pn,ir=[],fy=[0,0,0,0],my=[0,0,0,0],Mf=0,Ay=Number.MAX_SAFE_INTEGER,$ie=["head","neck","rightShoulder","rightElbow","rightWrist","chest","leftShoulder","leftElbow","leftWrist","pelvis","rightHip","rightKnee","rightAnkle","leftHip","leftKnee","leftAnkle"];async function l8(e){return Pn?e.debug&&ue("cached model:",Pn.modelUrl):(Pn=await pt(ft(e.modelBasePath,e.body.modelPath)),!Pn||!Pn.modelUrl?ue("load model failed:",e.body.modelPath):e.debug&&ue("load model:",Pn.modelUrl)),Pn}function Fie(e,t){let[n,s]=e.shape;return H(()=>{let r=(i,l)=>Ae(i,z(de(i,Ie(l,"int32")),Ie(l,"int32"))),a=U(e,[s*n]),o=ls(a,0).dataSync()[0];if(o>t){let i=Xs(a,0),l=r(i,n).dataSync()[0],u=de(i,Ie(n,"int32")).dataSync()[0];return[l,u,o]}return[0,0,o]})}async function gy(e,t){return Ay<t.body.skipFrames&&t.skipFrame&&Object.keys(ir).length>0?(Ay++,[{id:0,score:Mf,box:fy,boxRaw:my,keypoints:ir}]):(Ay=0,new Promise(async n=>{let s=H(()=>{if(!Pn.inputs[0].shape)return null;let u=_e.resizeBilinear(e,[Pn.inputs[0].shape[2],Pn.inputs[0].shape[1]],!1);return z(u,2).sub(1)}),r;if(t.body.enabled&&(r=await Pn.predict(s)),K(s),r){ir.length=0;let u=r.squeeze();K(r);let c=u.unstack(2);K(u);for(let d=0;d<c.length;d++){let[h,p,f]=Fie(c[d],t.body.minConfidence);Mf>t.body.minConfidence&&ir.push({score:Math.round(100*f)/100,part:$ie[d],positionRaw:[h/Pn.inputs[0].shape[2],p/Pn.inputs[0].shape[1]],position:[Math.round(e.shape[2]*h/Pn.inputs[0].shape[2]),Math.round(e.shape[1]*p/Pn.inputs[0].shape[1])]})}c.forEach(d=>K(d))}Mf=ir.reduce((u,c)=>c.score>u?c.score:u,0);let a=ir.map(u=>u.position[0]),o=ir.map(u=>u.position[1]);fy=[Math.min(...a),Math.min(...o),Math.max(...a)-Math.min(...a),Math.max(...o)-Math.min(...o)];let i=ir.map(u=>u.positionRaw[0]),l=ir.map(u=>u.positionRaw[1]);my=[Math.min(...i),Math.min(...l),Math.max(...i)-Math.min(...i),Math.max(...l)-Math.min(...l)],n([{id:0,score:Mf,box:fy,boxRaw:my,keypoints:ir}])}))}var Us,lr=[],yy=[0,0,0,0],xy=[0,0,0,0],iu=0,by=Number.MAX_SAFE_INTEGER,Die=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"];async function vy(e){return Us?e.debug&&ue("cached model:",Us.modelUrl):(Us=await pt(ft(e.modelBasePath,e.body.modelPath)),!Us||!Us.modelUrl?ue("load model failed:",e.body.modelPath):e.debug&&ue("load model:",Us.modelUrl)),Us}async function wy(e,t){return by<t.body.skipFrames&&t.skipFrame&&Object.keys(lr).length>0?(by++,[{id:0,score:iu,box:yy,boxRaw:xy,keypoints:lr}]):(by=0,new Promise(async n=>{let s=H(()=>{if(!Us.inputs[0].shape)return null;let u=_e.resizeBilinear(e,[Us.inputs[0].shape[2],Us.inputs[0].shape[1]],!1);return ce(u,"int32")}),r;if(t.body.enabled&&(r=await Us.predict(s)),K(s),r){lr.length=0;let u=await r.array();K(r);let c=u[0][0];for(let d=0;d<c.length;d++)iu=c[d][2],iu>t.body.minConfidence&&lr.push({score:Math.round(100*iu)/100,part:Die[d],positionRaw:[c[d][1],c[d][0]],position:[Math.round((e.shape[2]||0)*c[d][1]),Math.round((e.shape[1]||0)*c[d][0])]})}iu=lr.reduce((u,c)=>c.score>u?c.score:u,0);let a=lr.map(u=>u.position[0]),o=lr.map(u=>u.position[1]);yy=[Math.min(...a),Math.min(...o),Math.max(...a)-Math.min(...a),Math.max(...o)-Math.min(...o)];let i=lr.map(u=>u.positionRaw[0]),l=lr.map(u=>u.positionRaw[1]);xy=[Math.min(...i),Math.min(...l),Math.max(...i)-Math.min(...i),Math.max(...l)-Math.min(...l)],n([{id:0,score:iu,box:yy,boxRaw:xy,keypoints:lr}])}))}var lu=[{class:1,label:"person"},{class:2,label:"bicycle"},{class:3,label:"car"},{class:4,label:"motorcycle"},{class:5,label:"airplane"},{class:6,label:"bus"},{class:7,label:"train"},{class:8,label:"truck"},{class:9,label:"boat"},{class:10,label:"traffic light"},{class:11,label:"fire hydrant"},{class:12,label:"stop sign"},{class:13,label:"parking meter"},{class:14,label:"bench"},{class:15,label:"bird"},{class:16,label:"cat"},{class:17,label:"dog"},{class:18,label:"horse"},{class:19,label:"sheep"},{class:20,label:"cow"},{class:21,label:"elephant"},{class:22,label:"bear"},{class:23,label:"zebra"},{class:24,label:"giraffe"},{class:25,label:"backpack"},{class:26,label:"umbrella"},{class:27,label:"handbag"},{class:28,label:"tie"},{class:29,label:"suitcase"},{class:30,label:"frisbee"},{class:31,label:"skis"},{class:32,label:"snowboard"},{class:33,label:"sports ball"},{class:34,label:"kite"},{class:35,label:"baseball bat"},{class:36,label:"baseball glove"},{class:37,label:"skateboard"},{class:38,label:"surfboard"},{class:39,label:"tennis racket"},{class:40,label:"bottle"},{class:41,label:"wine glass"},{class:42,label:"cup"},{class:43,label:"fork"},{class:44,label:"knife"},{class:45,label:"spoon"},{class:46,label:"bowl"},{class:47,label:"banana"},{class:48,label:"apple"},{class:49,label:"sandwich"},{class:50,label:"orange"},{class:51,label:"broccoli"},{class:52,label:"carrot"},{class:53,label:"hot dog"},{class:54,label:"pizza"},{class:55,label:"donut"},{class:56,label:"cake"},{class:57,label:"chair"},{class:58,label:"couch"},{class:59,label:"potted plant"},{class:60,label:"bed"},{class:61,label:"dining table"},{class:62,label:"toilet"},{class:63,label:"tv"},{class:64,label:"laptop"},{class:65,label:"mouse"},{class:66,label:"remote"},{class:67,label:"keyboard"},{class:68,label:"cell phone"},{class:69,label:"microwave"},{class:70,label:"oven"},{class:71,label:"toaster"},{class:72,label:"sink"},{class:73,label:"refrigerator"},{class:74,label:"book"},{class:75,label:"clock"},{class:76,label:"vase"},{class:77,label:"scissors"},{class:78,label:"teddy bear"},{class:79,label:"hair drier"},{class:80,label:"toothbrush"}];var Kn,ky=[],Iy=Number.MAX_SAFE_INTEGER,zf=2.5;async function Sy(e){if(Kn)e.debug&&ue("cached model:",Kn.modelUrl);else{Kn=await pt(ft(e.modelBasePath,e.object.modelPath));let t=Object.values(Kn.modelSignature.inputs);if(Kn.inputSize=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):null,!Kn.inputSize)throw new Error(`Human: Cannot determine model inputSize: ${e.object.modelPath}`);!Kn||!Kn.modelUrl?ue("load model failed:",e.object.modelPath):e.debug&&ue("load model:",Kn.modelUrl)}return Kn}async function Oie(e,t,n,s){let r=0,a=[];for(let u of[1,2,4])H(async()=>{var A,g;let c=u*13,d=(A=e.find(y=>y.shape[1]===c**2&&y.shape[2]===lu.length))==null?void 0:A.squeeze(),h=(g=e.find(y=>y.shape[1]===c**2&&y.shape[2]<lu.length))==null?void 0:g.squeeze(),f=await h.reshape([-1,4,h.shape[1]/4]).argMax(2).array(),m=await d.array();for(let y=0;y<d.shape[0];y++)for(let x=0;x<d.shape[1];x++){let b=m[y][x];if(b>s.object.minConfidence&&x!==61){let v=(.5+Math.trunc(y%c))/c,k=(.5+Math.trunc(y/c))/c,w=f[y].map(W=>W*(c/u/t)),[C,E]=[v-zf/u*w[0],k-zf/u*w[1]],[M,R]=[v+zf/u*w[2]-C,k+zf/u*w[3]-E],_=[C,E,M,R];_=_.map(W=>Math.max(0,Math.min(W,1)));let N=[_[0]*n[0],_[1]*n[1],_[2]*n[0],_[3]*n[1]],O={id:r++,score:Math.round(100*b)/100,class:x+1,label:lu[x].label,box:N.map(W=>Math.trunc(W)),boxRaw:_};a.push(O)}}});e.forEach(u=>K(u));let o=a.map(u=>[u.boxRaw[1],u.boxRaw[0],u.boxRaw[3],u.boxRaw[2]]),i=a.map(u=>u.score),l=[];if(o&&o.length>0){let u=await _e.nonMaxSuppressionAsync(o,i,s.object.maxDetected,s.object.iouThreshold,s.object.minConfidence);l=await u.data(),K(u)}return a=a.filter((u,c)=>l.includes(c)).sort((u,c)=>c.score-u.score),a}async function Cy(e,t){return Iy<t.object.skipFrames&&t.skipFrame&&ky.length>0?(Iy++,ky):(Iy=0,new Promise(async n=>{let s=[e.shape[2],e.shape[1]],r=_e.resizeBilinear(e,[Kn.inputSize,Kn.inputSize],!1),a=de(r,255),o=a.transpose([0,3,1,2]);K(a),K(r);let i;t.object.enabled&&(i=await Kn.predict(o)),K(o);let l=await Oie(i,Kn.inputSize,s,t);ky=l,n(l)}))}var Zn,Ty=[],Ny=Number.MAX_SAFE_INTEGER;async function Ey(e){if(Zn)e.debug&&ue("cached model:",Zn.modelUrl);else{Zn=await pt(ft(e.modelBasePath,e.object.modelPath));let t=Object.values(Zn.modelSignature.inputs);if(Zn.inputSize=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):null,!Zn.inputSize)throw new Error(`Human: Cannot determine model inputSize: ${e.object.modelPath}`);!Zn||!Zn.modelUrl?ue("load model failed:",e.object.modelPath):e.debug&&ue("load model:",Zn.modelUrl)}return Zn}async function Pie(e,t,n,s){if(!e)return[];let r=[],a=await e.array(),o=ot(e);K(e);let i=nn(o,6,1);K(o);let l=Nn([i[1],i[0],i[3],i[2]],1),u=ot(l),c=ot(i[4]),d=ot(i[5]);i.forEach(m=>K(m));let h=await _e.nonMaxSuppressionAsync(u,c,s.object.maxDetected,s.object.iouThreshold,s.object.minConfidence);K(u),K(c),K(d);let p=await h.data();K(h);let f=0;for(let m of p){let A=Math.trunc(100*a[0][m][4])/100,g=a[0][m][5],y=lu[g].label,[x,b]=[a[0][m][0]/t,a[0][m][1]/t],v=[x,b,a[0][m][2]/t-x,a[0][m][3]/t-b],k=[Math.trunc(v[0]*n[0]),Math.trunc(v[1]*n[1]),Math.trunc(v[2]*n[0]),Math.trunc(v[3]*n[1])];r.push({id:f++,score:A,class:g,label:y,box:k,boxRaw:v})}return r}async function Ry(e,t){return Ny<t.object.skipFrames&&t.skipFrame&&Ty.length>0?(Ny++,Ty):(Ny=0,new Promise(async n=>{let s=[e.shape[2],e.shape[1]],r=_e.resizeBilinear(e,[Zn.inputSize,Zn.inputSize]),a=t.object.enabled?Zn.execute(r,["tower_0/detections"]):null;K(r);let o=await Pie(a,Zn.inputSize,s,t);Ty=o,n(o)}))}function Mie(e,t,n){let s=function(i,l,u){let c=new RegExp("\\b"+l+" \\w+ (\\w+)","ig");i.replace(c,(d,h)=>(u[h]=0,d))},r=function(i,l){let u=e.createShader(l);if(e.shaderSource(u,i),e.compileShader(u),!e.getShaderParameter(u,e.COMPILE_STATUS))throw new Error("Filter: GL compile failed",e.getShaderInfoLog(u));return u};this.uniform={},this.attribute={};let a=r(t,e.VERTEX_SHADER),o=r(n,e.FRAGMENT_SHADER);if(this.id=e.createProgram(),e.attachShader(this.id,a),e.attachShader(this.id,o),e.linkProgram(this.id),!e.getProgramParameter(this.id,e.LINK_STATUS))throw new Error("Filter: GL link failed",e.getProgramInfoLog(this.id));e.useProgram(this.id),s(t,"attribute",this.attribute);for(let i in this.attribute)this.attribute[i]=e.getAttribLocation(this.id,i);s(t,"uniform",this.uniform),s(n,"uniform",this.uniform);for(let i in this.uniform)this.uniform[i]=e.getUniformLocation(this.id,i)}function u8(e){e||(e={});let t=0,n=null,s=!1,r=-1,a=[null,null],o=[],i=-1,l=-1,u=null,c=null,d={},h=e.canvas||document.createElement("canvas"),p={},f={INTERMEDIATE:1},m=h.getContext("webgl");if(!m)throw new Error("Filter: getContext() failed");this.addFilter=function(v){let k=Array.prototype.slice.call(arguments,1),w=d[v];o.push({func:w,args:k})},this.reset=function(){o=[]};let A=function(v,k){if(!(v===i&&k===l)){if(h.width=v,i=v,h.height=k,l=k,!u){let w=new Float32Array([-1,-1,0,1,1,-1,1,1,-1,1,0,0,-1,1,0,0,1,-1,1,1,1,1,1,0]);u=m.createBuffer(),m.bindBuffer(m.ARRAY_BUFFER,u),m.bufferData(m.ARRAY_BUFFER,w,m.STATIC_DRAW),m.pixelStorei(m.UNPACK_PREMULTIPLY_ALPHA_WEBGL,!0)}m.viewport(0,0,i,l),a=[null,null]}},g=function(v,k){let w=m.createFramebuffer();m.bindFramebuffer(m.FRAMEBUFFER,w);let C=m.createRenderbuffer();m.bindRenderbuffer(m.RENDERBUFFER,C);let E=m.createTexture();return m.bindTexture(m.TEXTURE_2D,E),m.texImage2D(m.TEXTURE_2D,0,m.RGBA,v,k,0,m.RGBA,m.UNSIGNED_BYTE,null),m.texParameteri(m.TEXTURE_2D,m.TEXTURE_MAG_FILTER,m.LINEAR),m.texParameteri(m.TEXTURE_2D,m.TEXTURE_MIN_FILTER,m.LINEAR),m.texParameteri(m.TEXTURE_2D,m.TEXTURE_WRAP_S,m.CLAMP_TO_EDGE),m.texParameteri(m.TEXTURE_2D,m.TEXTURE_WRAP_T,m.CLAMP_TO_EDGE),m.framebufferTexture2D(m.FRAMEBUFFER,m.COLOR_ATTACHMENT0,m.TEXTURE_2D,E,0),m.bindTexture(m.TEXTURE_2D,null),m.bindFramebuffer(m.FRAMEBUFFER,null),{fbo:w,texture:E}},y=function(v){return a[v]=a[v]||g(i,l),a[v]},x=function(v=null){var E,M;let k=null,w=null,C=!1;t===0?k=n:k=(E=y(r))==null?void 0:E.texture,t++,s&&!(v&f.INTERMEDIATE)?(w=null,C=t%2==0):(r=(r+1)%2,w=(M=y(r))==null?void 0:M.fbo),m.bindTexture(m.TEXTURE_2D,k),m.bindFramebuffer(m.FRAMEBUFFER,w),m.uniform1f(c.uniform.flipY,C?-1:1),m.drawArrays(m.TRIANGLES,0,6)};this.apply=function(v){if(A(v.width,v.height),t=0,n||(n=m.createTexture()),m.bindTexture(m.TEXTURE_2D,n),m.texParameteri(m.TEXTURE_2D,m.TEXTURE_WRAP_S,m.CLAMP_TO_EDGE),m.texParameteri(m.TEXTURE_2D,m.TEXTURE_WRAP_T,m.CLAMP_TO_EDGE),m.texParameteri(m.TEXTURE_2D,m.TEXTURE_MIN_FILTER,m.NEAREST),m.texParameteri(m.TEXTURE_2D,m.TEXTURE_MAG_FILTER,m.NEAREST),m.texImage2D(m.TEXTURE_2D,0,m.RGBA,m.RGBA,m.UNSIGNED_BYTE,v),o.length===0)return x(),h;for(let k=0;k<o.length;k++){s=k===o.length-1;let w=o[k];w.func.apply(this,w.args||[])}return h};let b=function(v){if(p[v])return c=p[v],m.useProgram(c.id),c;let k={};k.VERTEX_IDENTITY=["precision highp float;","attribute vec2 pos;","attribute vec2 uv;","varying vec2 vUv;","uniform float flipY;","void main(void) {","vUv = uv;","gl_Position = vec4(pos.x, pos.y*flipY, 0.0, 1.);","}"].join(`
|
|
`),k.FRAGMENT_IDENTITY=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","void main(void) {","gl_FragColor = texture2D(texture, vUv);","}"].join(`
|
|
`),c=new Mie(m,k.VERTEX_IDENTITY,v);let w=Float32Array.BYTES_PER_ELEMENT,C=4*w;return m.enableVertexAttribArray(c.attribute.pos),m.vertexAttribPointer(c.attribute.pos,2,m.FLOAT,!1,C,0*w),m.enableVertexAttribArray(c.attribute.uv),m.vertexAttribPointer(c.attribute.uv,2,m.FLOAT,!1,C,2*w),p[v]=c,c};d.colorMatrix=function(v){let k=new Float32Array(v);k[4]/=255,k[9]/=255,k[14]/=255,k[19]/=255;let w=k[18]===1&&k[3]===0&&k[8]===0&&k[13]===0&&k[15]===0&&k[16]===0&&k[17]===0&&k[19]===0?d.colorMatrix.SHADER.WITHOUT_ALPHA:d.colorMatrix.SHADER.WITH_ALPHA,C=b(w);m.uniform1fv(C.uniform.m,k),x()},d.colorMatrix.SHADER={},d.colorMatrix.SHADER.WITH_ALPHA=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","uniform float m[20];","void main(void) {","vec4 c = texture2D(texture, vUv);","gl_FragColor.r = m[0] * c.r + m[1] * c.g + m[2] * c.b + m[3] * c.a + m[4];","gl_FragColor.g = m[5] * c.r + m[6] * c.g + m[7] * c.b + m[8] * c.a + m[9];","gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[13] * c.a + m[14];","gl_FragColor.a = m[15] * c.r + m[16] * c.g + m[17] * c.b + m[18] * c.a + m[19];","}"].join(`
|
|
`),d.colorMatrix.SHADER.WITHOUT_ALPHA=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","uniform float m[20];","void main(void) {","vec4 c = texture2D(texture, vUv);","gl_FragColor.r = m[0] * c.r + m[1] * c.g + m[2] * c.b + m[4];","gl_FragColor.g = m[5] * c.r + m[6] * c.g + m[7] * c.b + m[9];","gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[14];","gl_FragColor.a = c.a;","}"].join(`
|
|
`),d.brightness=function(v){let k=(v||0)+1;d.colorMatrix([k,0,0,0,0,0,k,0,0,0,0,0,k,0,0,0,0,0,1,0])},d.saturation=function(v){let k=(v||0)*2/3+1,w=(k-1)*-.5;d.colorMatrix([k,w,w,0,0,w,k,w,0,0,w,w,k,0,0,0,0,0,1,0])},d.desaturate=function(){d.saturation(-1)},d.contrast=function(v){let k=(v||0)+1,w=-128*(k-1);d.colorMatrix([k,0,0,0,w,0,k,0,0,w,0,0,k,0,w,0,0,0,1,0])},d.negative=function(){d.contrast(-2)},d.hue=function(v){v=(v||0)/180*Math.PI;let k=Math.cos(v),w=Math.sin(v),C=.213,E=.715,M=.072;d.colorMatrix([C+k*(1-C)+w*-C,E+k*-E+w*-E,M+k*-M+w*(1-M),0,0,C+k*-C+w*.143,E+k*(1-E)+w*.14,M+k*-M+w*-.283,0,0,C+k*-C+w*-(1-C),E+k*-E+w*E,M+k*(1-M)+w*M,0,0,0,0,0,1,0])},d.desaturateLuminance=function(){d.colorMatrix([.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,0,0,0,1,0])},d.sepia=function(){d.colorMatrix([.393,.7689999,.18899999,0,0,.349,.6859999,.16799999,0,0,.272,.5339999,.13099999,0,0,0,0,0,1,0])},d.brownie=function(){d.colorMatrix([.5997023498159715,.34553243048391263,-.2708298674538042,0,47.43192855600873,-.037703249837783157,.8609577587992641,.15059552388459913,0,-36.96841498319127,.24113635128153335,-.07441037908422492,.44972182064877153,0,-7.562075277591283,0,0,0,1,0])},d.vintagePinhole=function(){d.colorMatrix([.6279345635605994,.3202183420819367,-.03965408211312453,0,9.651285835294123,.02578397704808868,.6441188644374771,.03259127616149294,0,7.462829176470591,.0466055556782719,-.0851232987247891,.5241648018700465,0,5.159190588235296,0,0,0,1,0])},d.kodachrome=function(){d.colorMatrix([1.1285582396593525,-.3967382283601348,-.03992559172921793,0,63.72958762196502,-.16404339962244616,1.0835251566291304,-.05498805115633132,0,24.732407896706203,-.16786010706155763,-.5603416277695248,1.6014850761964943,0,35.62982807460946,0,0,0,1,0])},d.technicolor=function(){d.colorMatrix([1.9125277891456083,-.8545344976951645,-.09155508482755585,0,11.793603434377337,-.3087833385928097,1.7658908555458428,-.10601743074722245,0,-70.35205161461398,-.231103377548616,-.7501899197440212,1.847597816108189,0,30.950940869491138,0,0,0,1,0])},d.polaroid=function(){d.colorMatrix([1.438,-.062,-.062,0,0,-.122,1.378,-.122,0,0,-.016,-.016,1.483,0,0,0,0,0,1,0])},d.shiftToBGR=function(){d.colorMatrix([0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,1,0])},d.convolution=function(v){let k=new Float32Array(v),w=1/i,C=1/l,E=b(d.convolution.SHADER);m.uniform1fv(E.uniform.m,k),m.uniform2f(E.uniform.px,w,C),x()},d.convolution.SHADER=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","uniform vec2 px;","uniform float m[9];","void main(void) {","vec4 c11 = texture2D(texture, vUv - px);","vec4 c12 = texture2D(texture, vec2(vUv.x, vUv.y - px.y));","vec4 c13 = texture2D(texture, vec2(vUv.x + px.x, vUv.y - px.y));","vec4 c21 = texture2D(texture, vec2(vUv.x - px.x, vUv.y) );","vec4 c22 = texture2D(texture, vUv);","vec4 c23 = texture2D(texture, vec2(vUv.x + px.x, vUv.y) );","vec4 c31 = texture2D(texture, vec2(vUv.x - px.x, vUv.y + px.y) );","vec4 c32 = texture2D(texture, vec2(vUv.x, vUv.y + px.y) );","vec4 c33 = texture2D(texture, vUv + px );","gl_FragColor = ","c11 * m[0] + c12 * m[1] + c22 * m[2] +","c21 * m[3] + c22 * m[4] + c23 * m[5] +","c31 * m[6] + c32 * m[7] + c33 * m[8];","gl_FragColor.a = c22.a;","}"].join(`
|
|
`),d.detectEdges=function(){d.convolution.call(this,[0,1,0,1,-4,1,0,1,0])},d.sobelX=function(){d.convolution.call(this,[-1,0,1,-2,0,2,-1,0,1])},d.sobelY=function(){d.convolution.call(this,[-1,-2,-1,0,0,0,1,2,1])},d.sharpen=function(v){let k=v||1;d.convolution.call(this,[0,-1*k,0,-1*k,1+4*k,-1*k,0,-1*k,0])},d.emboss=function(v){let k=v||1;d.convolution.call(this,[-2*k,-1*k,0,-1*k,1,1*k,0,1*k,2*k])},d.blur=function(v){let k=v/7/i,w=v/7/l,C=b(d.blur.SHADER);m.uniform2f(C.uniform.px,0,w),x(f.INTERMEDIATE),m.uniform2f(C.uniform.px,k,0),x()},d.blur.SHADER=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","uniform vec2 px;","void main(void) {","gl_FragColor = vec4(0.0);","gl_FragColor += texture2D(texture, vUv + vec2(-7.0*px.x, -7.0*px.y))*0.0044299121055113265;","gl_FragColor += texture2D(texture, vUv + vec2(-6.0*px.x, -6.0*px.y))*0.00895781211794;","gl_FragColor += texture2D(texture, vUv + vec2(-5.0*px.x, -5.0*px.y))*0.0215963866053;","gl_FragColor += texture2D(texture, vUv + vec2(-4.0*px.x, -4.0*px.y))*0.0443683338718;","gl_FragColor += texture2D(texture, vUv + vec2(-3.0*px.x, -3.0*px.y))*0.0776744219933;","gl_FragColor += texture2D(texture, vUv + vec2(-2.0*px.x, -2.0*px.y))*0.115876621105;","gl_FragColor += texture2D(texture, vUv + vec2(-1.0*px.x, -1.0*px.y))*0.147308056121;","gl_FragColor += texture2D(texture, vUv )*0.159576912161;","gl_FragColor += texture2D(texture, vUv + vec2( 1.0*px.x, 1.0*px.y))*0.147308056121;","gl_FragColor += texture2D(texture, vUv + vec2( 2.0*px.x, 2.0*px.y))*0.115876621105;","gl_FragColor += texture2D(texture, vUv + vec2( 3.0*px.x, 3.0*px.y))*0.0776744219933;","gl_FragColor += texture2D(texture, vUv + vec2( 4.0*px.x, 4.0*px.y))*0.0443683338718;","gl_FragColor += texture2D(texture, vUv + vec2( 5.0*px.x, 5.0*px.y))*0.0215963866053;","gl_FragColor += texture2D(texture, vUv + vec2( 6.0*px.x, 6.0*px.y))*0.00895781211794;","gl_FragColor += texture2D(texture, vUv + vec2( 7.0*px.x, 7.0*px.y))*0.0044299121055113265;","}"].join(`
|
|
`),d.pixelate=function(v){let k=v/i,w=v/l,C=b(d.pixelate.SHADER);m.uniform2f(C.uniform.size,k,w),x()},d.pixelate.SHADER=["precision highp float;","varying vec2 vUv;","uniform vec2 size;","uniform sampler2D texture;","vec2 pixelate(vec2 coord, vec2 size) {","return floor( coord / size ) * size;","}","void main(void) {","gl_FragColor = vec4(0.0);","vec2 coord = pixelate(vUv, size);","gl_FragColor += texture2D(texture, coord);","}"].join(`
|
|
`)}var Lf=2048,Ee,wt,zt;function Xo(e,t){let n;if(!e)throw new Error("Human: Input is missing");if(!(e instanceof Ue)&&!(typeof Image!="undefined"&&e instanceof Image)&&!(typeof ImageData!="undefined"&&e instanceof ImageData)&&!(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)&&!(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)&&!(typeof HTMLMediaElement!="undefined"&&e instanceof HTMLMediaElement)&&!(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)&&!(typeof HTMLCanvasElement!="undefined"&&e instanceof HTMLCanvasElement)&&!(typeof OffscreenCanvas!="undefined"&&e instanceof OffscreenCanvas))throw new Error("Human: Input type is not recognized");if(e instanceof Ue)if(e.shape&&e.shape.length===4&&e.shape[0]===1&&e.shape[3]===3)n=Ns(e);else throw new Error(`Human: Input tensor shape must be [1, height, width, 3] and instead was ${e.shape}`);else{let r=e.naturalWidth||e.videoWidth||e.width||e.shape&&e.shape[1]>0,a=e.naturalHeight||e.videoHeight||e.height||e.shape&&e.shape[2]>0;if(!r||!a)return{tensor:null,canvas:Ee};let o=r,i=a;if(o>Lf&&(o=Lf,i=o*a/r),i>Lf&&(i=Lf,o=i*r/a),t.filter.width>0?o=t.filter.width:t.filter.height>0&&(o=r*(t.filter.height/a)),t.filter.height>0?i=t.filter.height:t.filter.width>0&&(i=a*(t.filter.width/r)),!o||!i)throw new Error("Human: Input cannot determine dimension");(!Ee||(Ee==null?void 0:Ee.width)!==o||(Ee==null?void 0:Ee.height)!==i)&&(Ee=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(o,i):document.createElement("canvas"),(Ee==null?void 0:Ee.width)!==o&&(Ee.width=o),(Ee==null?void 0:Ee.height)!==i&&(Ee.height=i));let l=Ee.getContext("2d");if(e instanceof ImageData?l.putImageData(e,0,0):t.filter.flip&&typeof l.translate!="undefined"?(l.translate(r,0),l.scale(-1,1),l.drawImage(e,0,0,r,a,0,0,Ee==null?void 0:Ee.width,Ee==null?void 0:Ee.height),l.setTransform(1,0,0,1,0,0)):l.drawImage(e,0,0,r,a,0,0,Ee==null?void 0:Ee.width,Ee==null?void 0:Ee.height),t.filter.enabled){if((!zt||!wt||Ee.width!==wt.width||(Ee==null?void 0:Ee.height)!==(wt==null?void 0:wt.height))&&(wt=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(Ee==null?void 0:Ee.width,Ee==null?void 0:Ee.height):document.createElement("canvas"),(wt==null?void 0:wt.width)!==(Ee==null?void 0:Ee.width)&&(wt.width=Ee==null?void 0:Ee.width),(wt==null?void 0:wt.height)!==(Ee==null?void 0:Ee.height)&&(wt.height=Ee==null?void 0:Ee.height),zt=ns.flags.IS_BROWSER?new u8({canvas:wt}):null),!zt)return{tensor:null,canvas:Ee};zt.reset(),zt.addFilter("brightness",t.filter.brightness),t.filter.contrast!==0&&zt.addFilter("contrast",t.filter.contrast),t.filter.sharpness!==0&&zt.addFilter("sharpen",t.filter.sharpness),t.filter.blur!==0&&zt.addFilter("blur",t.filter.blur),t.filter.saturation!==0&&zt.addFilter("saturation",t.filter.saturation),t.filter.hue!==0&&zt.addFilter("hue",t.filter.hue),t.filter.negative&&zt.addFilter("negative"),t.filter.sepia&&zt.addFilter("sepia"),t.filter.vintage&&zt.addFilter("brownie"),t.filter.sepia&&zt.addFilter("sepia"),t.filter.kodachrome&&zt.addFilter("kodachrome"),t.filter.technicolor&&zt.addFilter("technicolor"),t.filter.polaroid&&zt.addFilter("polaroid"),t.filter.pixelate!==0&&zt.addFilter("pixelate",t.filter.pixelate),zt.apply(Ee)}else wt=Ee,zt&&(zt=null);if(!n){let u;if(wt.data){let c=[wt.height,wt.width,3];u=Eh(wt.data,c,"int32")}else if(wt instanceof ImageData)u=rs?rs.fromPixels(wt):null;else if(t.backend==="webgl"||t.backend==="humangl"){let c=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(o,i):document.createElement("canvas");c.width=o,c.height=i;let d=c.getContext("2d");d==null||d.drawImage(wt,0,0),u=rs?rs.fromPixels(c):null}else{let c=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(o,i):document.createElement("canvas");c.width=o,c.height=i;let d=c.getContext("2d");d==null||d.drawImage(wt,0,0);let h=d==null?void 0:d.getImageData(0,0,o,i);u=rs?rs.fromPixels(h):null}if(u){let c=ce(u,"float32");n=Ft(c,0),K(u),K(c)}}}let s=t.filter.return?wt:null;return{tensor:n,canvas:s}}var As,_y=!1;async function Bf(e){return As?e.debug&&ue("cached model:",As.modelUrl):(As=await pt(ft(e.modelBasePath,e.segmentation.modelPath)),!As||!As.modelUrl?ue("load model failed:",e.segmentation.modelPath):e.debug&&ue("load model:",As.modelUrl)),As}async function $y(e){var f,m;let t=((f=e.tensor)==null?void 0:f.shape[1])||0,n=((m=e.tensor)==null?void 0:m.shape[2])||0;if(!e.tensor||!As||!As.inputs[0].shape)return null;let s=_e.resizeBilinear(e.tensor,[As.inputs[0].shape[1],As.inputs[0].shape[2]],!1),r=de(s,255),a=As.predict(r);K(s),K(r);let o=ot(a,0),i;if(o.shape[2]===2){let A=o.softmax(),[g,y]=ds(A,2),x=Ft(y,2),b=Ft(x,0);K(A),K(g),K(y);let v=_e.cropAndResize(b,[[0,0,.5,.5]],[0],[t,n]);i=ot(v,0),K(v),K(x),K(b)}else i=_e.resizeBilinear(o,[t,n]);if(typeof document=="undefined")return i.data();let l=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(t,n):document.createElement("canvas");l.width=t,l.height=n,rs&&await rs.toPixels(i,l),K(i),K(o),K(a);let u=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(t,n):document.createElement("canvas");u.width=t,u.height=n;let c=u.getContext("2d");c.filter="blur(8px",await c.drawImage(l,0,0);let d=c.getImageData(0,0,t,n).data,h=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(t,n):document.createElement("canvas");h.width=t,h.height=n;let p=h.getContext("2d");return e.canvas&&await p.drawImage(e.canvas,0,0),p.globalCompositeOperation="darken",p.filter="blur(8px)",await p.drawImage(l,0,0),p.globalCompositeOperation="source-over",p.filter="none",e.canvas=h,d}async function c8(e,t,n){var a;if(_y)return null;_y=!0,As||await Bf(n);let s=Xo(e,n),r=await $y(s);if(K(s.tensor),t&&r){let o=Xo(t,n),i=o.canvas;K(o.tensor);let l=s.canvas,u=(a=l.getContext("2d"))==null?void 0:a.getImageData(0,0,l.width,l.height).data,c=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(l.width,l.height):document.createElement("canvas");c.width=l.width,c.height=l.height;let d=c.getContext("2d");d.globalCompositeOperation="copy",d.drawImage(i,0,0,c.width,c.height);let h=d.getImageData(0,0,c.width,c.height);for(let p=0;p<c.width*c.height;p++)h.data[4*p+0]=(255-r[4*p+0])/255*h.data[4*p+0]+r[4*p+0]/255*u[4*p+0],h.data[4*p+1]=(255-r[4*p+1])/255*h.data[4*p+1]+r[4*p+1]/255*u[4*p+1],h.data[4*p+2]=(255-r[4*p+2])/255*h.data[4*p+2]+r[4*p+2]/255*u[4*p+2],h.data[4*p+3]=(255-r[4*p+3])/255*h.data[4*p+3]+r[4*p+3]/255*u[4*p+3];d.putImageData(h,0,0),s.canvas=c}return _y=!1,s.canvas}async function d8(e){e.config.async?[e.models.face,e.models.emotion,e.models.handpose,e.models.posenet,e.models.blazepose,e.models.efficientpose,e.models.movenet,e.models.nanodet,e.models.centernet,e.models.faceres,e.models.segmentation]=await Promise.all([e.models.face||(e.config.face.enabled?H1(e.config):null),e.models.emotion||(e.config.face.enabled&&e.config.face.emotion.enabled?J1(e.config):null),e.models.handpose||(e.config.hand.enabled?hy(e.config):null),e.models.posenet||(e.config.body.enabled&&e.config.body.modelPath.includes("posenet")?oy(e.config):null),e.models.blazepose||(e.config.body.enabled&&e.config.body.modelPath.includes("blazepose")?Pf(e.config):null),e.models.efficientpose||(e.config.body.enabled&&e.config.body.modelPath.includes("efficientpose")?l8(e.config):null),e.models.movenet||(e.config.body.enabled&&e.config.body.modelPath.includes("movenet")?vy(e.config):null),e.models.nanodet||(e.config.object.enabled&&e.config.object.modelPath.includes("nanodet")?Sy(e.config):null),e.models.centernet||(e.config.object.enabled&&e.config.object.modelPath.includes("centernet")?Ey(e.config):null),e.models.faceres||(e.config.face.enabled&&e.config.face.description.enabled?j1(e.config):null),e.models.segmentation||(e.config.segmentation.enabled?Bf(e.config):null)]):(e.config.face.enabled&&!e.models.face&&(e.models.face=await H1(e.config)),e.config.face.enabled&&e.config.face.emotion.enabled&&!e.models.emotion&&(e.models.emotion=await J1(e.config)),e.config.hand.enabled&&!e.models.handpose&&(e.models.handpose=await hy(e.config)),e.config.body.enabled&&!e.models.posenet&&e.config.body.modelPath.includes("posenet")&&(e.models.posenet=await oy(e.config)),e.config.body.enabled&&!e.models.blazepose&&e.config.body.modelPath.includes("blazepose")&&(e.models.blazepose=await Pf(e.config)),e.config.body.enabled&&!e.models.efficientpose&&e.config.body.modelPath.includes("efficientpose")&&(e.models.efficientpose=await Pf(e.config)),e.config.body.enabled&&!e.models.movenet&&e.config.body.modelPath.includes("movenet")&&(e.models.movenet=await vy(e.config)),e.config.object.enabled&&!e.models.nanodet&&e.config.object.modelPath.includes("nanodet")&&(e.models.nanodet=await Sy(e.config)),e.config.object.enabled&&!e.models.centernet&&e.config.object.modelPath.includes("centernet")&&(e.models.centernet=await Ey(e.config)),e.config.face.enabled&&e.config.face.description.enabled&&!e.models.faceres&&(e.models.faceres=await j1(e.config)),e.config.segmentation.enabled&&!e.models.segmentation&&(e.models.segmentation=await Bf(e.config)))}var zie=e=>{let t=(d,h)=>Math.atan2(d[1]-h[1],d[0]-h[0]);if(!e.annotations.rightEyeIris||!e.annotations.leftEyeIris)return{bearing:0,strength:0};let n=[0,-.1],s=1,r=e.mesh[33][2]>e.mesh[263][2],a=r?e.mesh[473]:e.mesh[468],o=r?[(e.mesh[133][0]+e.mesh[33][0])/2,(e.mesh[133][1]+e.mesh[33][1])/2]:[(e.mesh[263][0]+e.mesh[362][0])/2,(e.mesh[263][1]+e.mesh[362][1])/2],i=r?[e.mesh[133][0]-e.mesh[33][0],e.mesh[23][1]-e.mesh[27][1]]:[e.mesh[263][0]-e.mesh[362][0],e.mesh[253][1]-e.mesh[257][1]],l=[(o[0]-a[0])/i[0]-n[0],s*(a[1]-o[1])/i[1]-n[1]],u=Math.sqrt(l[0]**2+l[1]**2);return u=Math.min(u,e.boxRaw[2]/2,e.boxRaw[3]/2),{bearing:(t([0,0],l)+Math.PI/2)%Math.PI,strength:u}},Lie=(e,t)=>{let n=A=>{let g=Math.sqrt(A[0]*A[0]+A[1]*A[1]+A[2]*A[2]);return A[0]/=g,A[1]/=g,A[2]/=g,A},s=(A,g)=>{let y=A[0]-g[0],x=A[1]-g[1],b=A[2]-g[2];return[y,x,b]},r=(A,g)=>{let y=A[1]*g[2]-A[2]*g[1],x=A[2]*g[0]-A[0]*g[2],b=A[0]*g[1]-A[1]*g[0];return[y,x,b]},a=A=>{let[g,y,x,b,v,k,w,C,E]=A,M,R,_;return b<1?b>-1?(_=Math.asin(b),R=Math.atan2(-w,g),M=Math.atan2(-k,v)):(_=-Math.PI/2,R=-Math.atan2(C,E),M=0):(_=Math.PI/2,R=Math.atan2(C,E),M=0),{pitch:2*-M,yaw:2*-R,roll:2*-_}},o=A=>{let g=(x,b,v,k)=>Math.atan2(k-b,v-x);return{pitch:g(A[10][1],A[10][2],A[152][1],A[152][2]),yaw:g(A[33][0],A[33][2],A[263][0],A[263][2]),roll:g(A[33][0],A[33][1],A[263][0],A[263][1])}},i=e.meshRaw;if(!i||i.length<300)return{angle:{pitch:0,yaw:0,roll:0},matrix:[1,0,0,0,1,0,0,0,1],gaze:{bearing:0,strength:0}};let l=Math.max(e.boxRaw[2]*t[0],e.boxRaw[3]*t[1])/1.5,u=[i[10],i[152],i[234],i[454]].map(A=>[A[0]*t[0]/l,A[1]*t[1]/l,A[2]]),c=n(s(u[1],u[0])),d=n(s(u[3],u[2])),h=n(r(d,c));d=r(c,h);let p=[d[0],d[1],d[2],c[0],c[1],c[2],h[0],h[1],h[2]],f=a(p),m=i.length===478?zie(e):{bearing:0,strength:0};return{angle:f,matrix:p,gaze:m}},Fy=async(e,t)=>{var d,h,p,f,m,A;let n,s,r,a,o,i,l,u=[];e.state="run:face",n=Ke();let c=await Ok(t,e.config);if(e.performance.face=Math.trunc(Ke()-n),!t.shape||t.shape.length!==4)return[];if(!c)return[];for(let g=0;g<c.length;g++){if(e.analyze("Get Face"),!c[g].tensor||c[g].tensor.isDisposedInternal){ue("Face object is disposed:",c[g].tensor);continue}let y=Lie(c[g],[t.shape[2],t.shape[1]]);e.analyze("Start Emotion:"),e.config.async?o=e.config.face.emotion.enabled?Q1(c[g].tensor||on([]),e.config,g,c.length):{}:(e.state="run:emotion",n=Ke(),o=e.config.face.emotion.enabled?await Q1(c[g].tensor||on([]),e.config,g,c.length):{},e.performance.emotion=Math.trunc(Ke()-n)),e.analyze("End Emotion:"),e.analyze("Start Description:"),e.config.async?l=e.config.face.description.enabled?K1(c[g].tensor||on([]),e.config,g,c.length):[]:(e.state="run:description",n=Ke(),l=e.config.face.description.enabled?await K1(c[g].tensor||on([]),e.config,g,c.length):[],e.performance.embedding=Math.trunc(Ke()-n)),e.analyze("End Description:"),e.config.async&&([s,a,o,i,l,r]=await Promise.all([s,a,o,i,l,r])),e.analyze("Finish Face:"),!e.config.face.iris.enabled&&((h=(d=c[g])==null?void 0:d.annotations)==null?void 0:h.leftEyeIris)&&((f=(p=c[g])==null?void 0:p.annotations)==null?void 0:f.rightEyeIris)&&(delete c[g].annotations.leftEyeIris,delete c[g].annotations.rightEyeIris);let x=((m=c[g].annotations)==null?void 0:m.leftEyeIris)&&((A=c[g].annotations)==null?void 0:A.rightEyeIris)?Math.max(Math.abs(c[g].annotations.leftEyeIris[3][0]-c[g].annotations.leftEyeIris[1][0]),Math.abs(c[g].annotations.rightEyeIris[4][1]-c[g].annotations.rightEyeIris[2][1]))/t.shape[2]:0,b=e.config.face.detector.return?ot(c[g].tensor):null;K(c[g].tensor),c[g].tensor&&delete c[g].tensor,u.push({...c[g],id:g,age:l.age,gender:l.gender,genderScore:l.genderScore,embedding:l.descriptor,emotion:o,iris:x!==0?Math.trunc(500/x/11.7)/100:0,rotation:y,tensor:b}),e.analyze("End Face")}return e.analyze("End FaceMesh:"),e.config.async&&(e.performance.face&&delete e.performance.face,e.performance.age&&delete e.performance.age,e.performance.gender&&delete e.performance.gender,e.performance.emotion&&delete e.performance.emotion),u};var h8=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++){let s=e[n].keypoints.find(l=>l.part==="leftWrist"),r=e[n].keypoints.find(l=>l.part==="rightWrist"),a=e[n].keypoints.find(l=>l.part==="nose");a&&s&&r&&s.position.y<a.position.y&&r.position.y<a.position.y?t.push({body:n,gesture:"i give up"}):a&&s&&s.position.y<a.position.y?t.push({body:n,gesture:"raise left hand"}):a&&r&&r.position.y<a.position.y&&t.push({body:n,gesture:"raise right hand"});let o=e[n].keypoints.find(l=>l.part==="leftShoulder"),i=e[n].keypoints.find(l=>l.part==="rightShoulder");o&&i&&t.push({body:n,gesture:`leaning ${o.position.y>i.position.y?"left":"right"}`})}return t},p8=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++)if(e[n].mesh&&e[n].mesh.length>0){let s=e[n].mesh[33][2]-e[n].mesh[263][2];Math.abs(s)<10?t.push({face:n,gesture:"facing center"}):t.push({face:n,gesture:`facing ${s<0?"left":"right"}`}),Math.abs(e[n].mesh[374][1]-e[n].mesh[386][1])/Math.abs(e[n].mesh[443][1]-e[n].mesh[450][1])<.2&&t.push({face:n,gesture:"blink left eye"}),Math.abs(e[n].mesh[145][1]-e[n].mesh[159][1])/Math.abs(e[n].mesh[223][1]-e[n].mesh[230][1])<.2&&t.push({face:n,gesture:"blink right eye"});let o=Math.min(100,500*Math.abs(e[n].mesh[13][1]-e[n].mesh[14][1])/Math.abs(e[n].mesh[10][1]-e[n].mesh[152][1]));o>10&&t.push({face:n,gesture:`mouth ${Math.trunc(o)}% open`});let i=e[n].mesh[152][2];Math.abs(i)>10&&t.push({face:n,gesture:`head ${i<0?"up":"down"}`})}return t},f8=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++){if(!e[n].annotations||!e[n].annotations.leftEyeIris||!e[n].annotations.rightEyeIris)continue;let s=e[n].annotations.leftEyeIris[3][0]-e[n].annotations.leftEyeIris[1][0],r=e[n].annotations.leftEyeIris[4][1]-e[n].annotations.leftEyeIris[2][1],a=Math.abs(s*r),o=e[n].annotations.rightEyeIris[3][0]-e[n].annotations.rightEyeIris[1][0],i=e[n].annotations.rightEyeIris[4][1]-e[n].annotations.rightEyeIris[2][1],l=Math.abs(o*i),u=!1;Math.abs(a-l)/Math.max(a,l)<.25&&(u=!0,t.push({iris:n,gesture:"facing center"}));let d=Math.abs(e[n].mesh[33][0]-e[n].annotations.rightEyeIris[0][0])/e[n].box[2],h=Math.abs(e[n].mesh[263][0]-e[n].annotations.leftEyeIris[0][0])/e[n].box[2];(h>.06||d>.06)&&(u=!1),h>.06&&t.push({iris:n,gesture:"looking right"}),d>.06&&t.push({iris:n,gesture:"looking left"});let p=Math.abs(e[n].mesh[145][1]-e[n].annotations.rightEyeIris[0][1])/e[n].box[3],f=Math.abs(e[n].mesh[374][1]-e[n].annotations.leftEyeIris[0][1])/e[n].box[3];(f<.01||p<.01||f>.022||p>.022)&&(u=!1),(f<.01||p<.01)&&t.push({iris:n,gesture:"looking down"}),(f>.022||p>.022)&&t.push({iris:n,gesture:"looking up"}),u&&t.push({iris:n,gesture:"looking center"})}return t},m8=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++){let s=[];for(let[r,a]of Object.entries(e[n].annotations))r!=="palmBase"&&Array.isArray(a)&&s.push({name:r.toLowerCase(),position:a[0]});if(s&&s.length>0){let r=s.reduce((o,i)=>o.position[2]<i.position[2]?o:i);t.push({hand:n,gesture:`${r.name} forward`});let a=s.reduce((o,i)=>o.position[1]<i.position[1]?o:i);t.push({hand:n,gesture:`${a.name} up`})}}return t};var Py={};vm(Py,{all:()=>Vie,body:()=>y8,canvas:()=>Wie,face:()=>g8,gesture:()=>A8,hand:()=>x8,object:()=>b8,options:()=>ca,person:()=>Bie});var ca={color:"rgba(173, 216, 230, 0.6)",labelColor:"rgba(173, 216, 230, 1)",shadowColor:"black",font:'small-caps 14px "Segoe UI"',lineHeight:18,lineWidth:4,pointSize:2,roundRect:8,drawPoints:!1,drawLabels:!0,drawBoxes:!0,drawPolygons:!0,drawGaze:!0,fillPolygons:!1,useDepth:!0,useCurves:!1,bufferedOutput:!0},Wf=e=>Math.round(e*180/Math.PI);function Dy(e,t,n,s=0,r){e.fillStyle=r.useDepth&&s?`rgba(${127.5+2*s}, ${127.5-2*s}, 255, 0.3)`:r.color,e.beginPath(),e.arc(t,n,r.pointSize,0,2*Math.PI),e.fill()}function ad(e,t,n,s,r,a){if(e.beginPath(),a.useCurves){let o=(t+t+s)/2,i=(n+n+r)/2;e.ellipse(o,i,s/2,r/2,0,0,2*Math.PI)}else e.lineWidth=a.lineWidth,e.moveTo(t+a.roundRect,n),e.lineTo(t+s-a.roundRect,n),e.quadraticCurveTo(t+s,n,t+s,n+a.roundRect),e.lineTo(t+s,n+r-a.roundRect),e.quadraticCurveTo(t+s,n+r,t+s-a.roundRect,n+r),e.lineTo(t+a.roundRect,n+r),e.quadraticCurveTo(t,n+r,t,n+r-a.roundRect),e.lineTo(t,n+a.roundRect),e.quadraticCurveTo(t,n,t+a.roundRect,n),e.closePath();e.stroke()}function Oy(e,t=[],n){if(!(t===void 0||t.length===0)){e.beginPath(),e.moveTo(t[0][0],t[0][1]);for(let s of t){let r=s[2]||0;e.strokeStyle=n.useDepth&&r?`rgba(${127.5+2*r}, ${127.5-2*r}, 255, 0.3)`:n.color,e.fillStyle=n.useDepth&&r?`rgba(${127.5+2*r}, ${127.5-2*r}, 255, 0.3)`:n.color,e.lineTo(s[0],Math.round(s[1]))}e.stroke(),n.fillPolygons&&(e.closePath(),e.fill())}}function od(e,t=[],n){if(!(t===void 0||t.length===0)){if(!n.useCurves||t.length<=2){Oy(e,t,n);return}e.moveTo(t[0][0],t[0][1]);for(let s=0;s<t.length-2;s++){let r=(t[s][0]+t[s+1][0])/2,a=(t[s][1]+t[s+1][1])/2;e.quadraticCurveTo(t[s][0],t[s][1],r,a)}e.quadraticCurveTo(t[t.length-2][0],t[t.length-2][1],t[t.length-1][0],t[t.length-1][1]),e.stroke(),n.fillPolygons&&(e.closePath(),e.fill())}}async function A8(e,t,n){let s=pn(ca,n);if(!t||!e||!(e instanceof HTMLCanvasElement))return;let r=e.getContext("2d");if(!r)return;r.font=s.font,r.fillStyle=s.color;let a=1;for(let o=0;o<t.length;o++){let i=[],l=[];if([i,l]=Object.entries(t[o]),l.length>1&&l[1].length>0){let u=i[1]>0?`#${i[1]}`:"",c=`${i[0]} ${u}: ${l[1]}`;s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText(c,8,2+a*s.lineHeight)),r.fillStyle=s.labelColor,r.fillText(c,6,0+a*s.lineHeight),a+=1}}}async function g8(e,t,n){var a,o,i,l;let s=pn(ca,n);if(!t||!e||!(e instanceof HTMLCanvasElement))return;let r=e.getContext("2d");if(!!r)for(let u of t){r.font=s.font,r.strokeStyle=s.color,r.fillStyle=s.color,s.drawBoxes&&ad(r,u.box[0],u.box[1],u.box[2],u.box[3],s);let c=[];if(c.push(`face: ${Math.trunc(100*u.score)}%`),u.genderScore&&c.push(`${u.gender||""} ${Math.trunc(100*u.genderScore)}%`),u.age&&c.push(`age: ${u.age||""}`),u.iris&&c.push(`distance: ${u.iris}`),u.emotion&&u.emotion.length>0){let d=u.emotion.map(h=>`${Math.trunc(100*h.score)}% ${h.emotion}`);d.length>3&&(d.length=3),c.push(d.join(" "))}u.rotation&&u.rotation.angle&&u.rotation.gaze&&(u.rotation.angle.roll&&c.push(`roll: ${Wf(u.rotation.angle.roll)}\xB0 yaw:${Wf(u.rotation.angle.yaw)}\xB0 pitch:${Wf(u.rotation.angle.pitch)}\xB0`),u.rotation.gaze.bearing&&c.push(`gaze: ${Wf(u.rotation.gaze.bearing)}\xB0`)),c.length===0&&c.push("face"),r.fillStyle=s.color;for(let d=c.length-1;d>=0;d--){let h=Math.max(u.box[0],0),p=d*s.lineHeight+u.box[1];s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText(c[d],h+5,p+16)),r.fillStyle=s.labelColor,r.fillText(c[d],h+4,p+15)}if(r.lineWidth=1,u.mesh&&u.mesh.length>0){if(s.drawPoints)for(let d of u.mesh)Dy(r,d[0],d[1],d[2],s);if(s.drawPolygons){r.lineWidth=1;for(let d=0;d<qo.length/3;d++){let h=[qo[d*3+0],qo[d*3+1],qo[d*3+2]].map(p=>u.mesh[p]);Oy(r,h,s)}if(u.annotations&&u.annotations.leftEyeIris){r.strokeStyle=s.useDepth?"rgba(255, 200, 255, 0.3)":s.color,r.beginPath();let d=Math.abs(u.annotations.leftEyeIris[3][0]-u.annotations.leftEyeIris[1][0])/2,h=Math.abs(u.annotations.leftEyeIris[4][1]-u.annotations.leftEyeIris[2][1])/2;r.ellipse(u.annotations.leftEyeIris[0][0],u.annotations.leftEyeIris[0][1],d,h,0,0,2*Math.PI),r.stroke(),s.fillPolygons&&(r.fillStyle=s.useDepth?"rgba(255, 255, 200, 0.3)":s.color,r.fill())}if(u.annotations&&u.annotations.rightEyeIris){r.strokeStyle=s.useDepth?"rgba(255, 200, 255, 0.3)":s.color,r.beginPath();let d=Math.abs(u.annotations.rightEyeIris[3][0]-u.annotations.rightEyeIris[1][0])/2,h=Math.abs(u.annotations.rightEyeIris[4][1]-u.annotations.rightEyeIris[2][1])/2;r.ellipse(u.annotations.rightEyeIris[0][0],u.annotations.rightEyeIris[0][1],d,h,0,0,2*Math.PI),r.stroke(),s.fillPolygons&&(r.fillStyle=s.useDepth?"rgba(255, 255, 200, 0.3)":s.color,r.fill())}if(s.drawGaze&&((o=(a=u.rotation)==null?void 0:a.gaze)==null?void 0:o.strength)&&((l=(i=u.rotation)==null?void 0:i.gaze)==null?void 0:l.bearing)&&u.annotations.leftEyeIris&&u.annotations.rightEyeIris&&u.annotations.leftEyeIris[0]&&u.annotations.rightEyeIris[0]){r.strokeStyle="pink",r.beginPath();let d=[u.annotations.leftEyeIris[0][0]+Math.sin(u.rotation.gaze.bearing)*u.rotation.gaze.strength*u.box[3],u.annotations.leftEyeIris[0][1]+Math.cos(u.rotation.gaze.bearing)*u.rotation.gaze.strength*u.box[2]];r.moveTo(u.annotations.leftEyeIris[0][0],u.annotations.leftEyeIris[0][1]),r.lineTo(d[0],d[1]);let h=[u.annotations.rightEyeIris[0][0]+Math.sin(u.rotation.gaze.bearing)*u.rotation.gaze.strength*u.box[3],u.annotations.rightEyeIris[0][1]+Math.cos(u.rotation.gaze.bearing)*u.rotation.gaze.strength*u.box[2]];r.moveTo(u.annotations.rightEyeIris[0][0],u.annotations.rightEyeIris[0][1]),r.lineTo(h[0],h[1]),r.stroke()}}}}}async function y8(e,t,n){var a;let s=pn(ca,n);if(!t||!e||!(e instanceof HTMLCanvasElement))return;let r=e.getContext("2d");if(!!r){r.lineJoin="round";for(let o=0;o<t.length;o++){if(r.strokeStyle=s.color,r.fillStyle=s.color,r.lineWidth=s.lineWidth,r.font=s.font,s.drawBoxes&&t[o].box&&((a=t[o].box)==null?void 0:a.length)===4&&(ad(r,t[o].box[0],t[o].box[1],t[o].box[2],t[o].box[3],s),s.drawLabels&&(s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText(`body ${100*t[o].score}%`,t[o].box[0]+3,1+t[o].box[1]+s.lineHeight,t[o].box[2])),r.fillStyle=s.labelColor,r.fillText(`body ${100*t[o].score}%`,t[o].box[0]+2,0+t[o].box[1]+s.lineHeight,t[o].box[2]))),s.drawPoints)for(let i=0;i<t[o].keypoints.length;i++)r.fillStyle=s.useDepth&&t[o].keypoints[i].position[2]?`rgba(${127.5+2*(t[o].keypoints[i].position[2]||0)}, ${127.5-2*(t[o].keypoints[i].position[2]||0)}, 255, 0.5)`:s.color,Dy(r,t[o].keypoints[i].position[0],t[o].keypoints[i].position[1],0,s);if(s.drawLabels&&(r.font=s.font,t[o].keypoints))for(let i of t[o].keypoints)r.fillStyle=s.useDepth&&i.position[2]?`rgba(${127.5+2*i.position[2]}, ${127.5-2*i.position[2]}, 255, 0.5)`:s.color,r.fillText(`${i.part} ${Math.trunc(100*i.score)}%`,i.position[0]+4,i.position[1]+4);if(s.drawPolygons&&t[o].keypoints){let i,l=[];l.length=0,i=t[o].keypoints.find(u=>u.part==="leftShoulder"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="rightShoulder"),i&&l.push([i.position[0],i.position[1]]),od(r,l,s),l.length=0,i=t[o].keypoints.find(u=>u.part==="rightShoulder"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="rightHip"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="leftHip"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="leftShoulder"),i&&l.push([i.position[0],i.position[1]]),l.length===4&&Oy(r,l,s),l.length=0,i=t[o].keypoints.find(u=>u.part==="leftHip"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="leftKnee"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="leftAnkle"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="leftHeel"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="leftFoot"),i&&l.push([i.position[0],i.position[1]]),od(r,l,s),l.length=0,i=t[o].keypoints.find(u=>u.part==="rightHip"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="rightKnee"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="rightAnkle"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="rightHeel"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="rightFoot"),i&&l.push([i.position[0],i.position[1]]),od(r,l,s),l.length=0,i=t[o].keypoints.find(u=>u.part==="leftShoulder"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="leftElbow"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="leftWrist"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="leftPalm"),i&&l.push([i.position[0],i.position[1]]),od(r,l,s),l.length=0,i=t[o].keypoints.find(u=>u.part==="rightShoulder"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="rightElbow"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="rightWrist"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="rightPalm"),i&&l.push([i.position[0],i.position[1]]),od(r,l,s)}}}}async function x8(e,t,n){let s=pn(ca,n);if(!t||!e||!(e instanceof HTMLCanvasElement))return;let r=e.getContext("2d");if(!!r){r.lineJoin="round",r.font=s.font;for(let a of t){if(s.drawBoxes&&(r.strokeStyle=s.color,r.fillStyle=s.color,ad(r,a.box[0],a.box[1],a.box[2],a.box[3],s),s.drawLabels&&(s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText("hand",a.box[0]+3,1+a.box[1]+s.lineHeight,a.box[2])),r.fillStyle=s.labelColor,r.fillText("hand",a.box[0]+2,0+a.box[1]+s.lineHeight,a.box[2])),r.stroke()),s.drawPoints&&a.keypoints&&a.keypoints.length>0)for(let o of a.keypoints)r.fillStyle=s.useDepth?`rgba(${127.5+2*o[2]}, ${127.5-2*o[2]}, 255, 0.5)`:s.color,Dy(r,o[0],o[1],0,s);if(s.drawLabels){let o=(i,l)=>{r.fillStyle=s.useDepth?`rgba(${127.5+2*i[i.length-1][2]}, ${127.5-2*i[i.length-1][2]}, 255, 0.5)`:s.color,r.fillText(l,i[i.length-1][0]+4,i[i.length-1][1]+4)};r.font=s.font,o(a.annotations.indexFinger,"index"),o(a.annotations.middleFinger,"middle"),o(a.annotations.ringFinger,"ring"),o(a.annotations.pinky,"pinky"),o(a.annotations.thumb,"thumb"),o(a.annotations.palmBase,"palm")}if(s.drawPolygons){let o=i=>{if(!!i)for(let l=0;l<i.length;l++)r.beginPath(),r.strokeStyle=s.useDepth?`rgba(${127.5+2*i[l][2]}, ${127.5-2*i[l][2]}, 255, 0.5)`:s.color,r.moveTo(i[l>0?l-1:0][0],i[l>0?l-1:0][1]),r.lineTo(i[l][0],i[l][1]),r.stroke()};r.lineWidth=s.lineWidth,o(a.annotations.indexFinger),o(a.annotations.middleFinger),o(a.annotations.ringFinger),o(a.annotations.pinky),o(a.annotations.thumb)}}}}async function b8(e,t,n){let s=pn(ca,n);if(!t||!e||!(e instanceof HTMLCanvasElement))return;let r=e.getContext("2d");if(!!r){r.lineJoin="round",r.font=s.font;for(let a of t)if(s.drawBoxes){if(r.strokeStyle=s.color,r.fillStyle=s.color,ad(r,a.box[0],a.box[1],a.box[2],a.box[3],s),s.drawLabels){let o=`${a.label} ${Math.round(100*a.score)}%`;s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText(o,a.box[0]+3,1+a.box[1]+s.lineHeight,a.box[2])),r.fillStyle=s.labelColor,r.fillText(o,a.box[0]+2,0+a.box[1]+s.lineHeight,a.box[2])}r.stroke()}}}async function Bie(e,t,n){let s=pn(ca,n);if(!t||!e||!(e instanceof HTMLCanvasElement))return;let r=e.getContext("2d");if(!!r){r.lineJoin="round",r.font=s.font;for(let a=0;a<t.length;a++)if(s.drawBoxes){if(r.strokeStyle=s.color,r.fillStyle=s.color,ad(r,t[a].box[0],t[a].box[1],t[a].box[2],t[a].box[3],s),s.drawLabels){let o=`person #${a}`;s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText(o,t[a].box[0]+3,1+t[a].box[1]+s.lineHeight,t[a].box[2])),r.fillStyle=s.labelColor,r.fillText(o,t[a].box[0]+2,0+t[a].box[1]+s.lineHeight,t[a].box[2])}r.stroke()}}}async function Wie(e,t){if(!e||!t||!(e instanceof HTMLCanvasElement)||!(t instanceof HTMLCanvasElement))return;let n=e.getContext("2d");n==null||n.drawImage(e,0,0)}async function Vie(e,t,n){let s=Ke(),r=pn(ca,n);if(!t||!e||!(e instanceof HTMLCanvasElement))return null;let a=Promise.all([g8(e,t.face,r),y8(e,t.body,r),x8(e,t.hand,r),b8(e,t.object,r),A8(e,t.gesture,r)]);return t.performance.draw=Math.trunc(Ke()-s),a}function v8(e,t,n,s,r){var i,l,u,c,d,h,p,f,m,A,g,y,x,b,v,k;let a=0,o=[];for(let w of e){let C={id:a++,face:w,body:null,hands:{left:null,right:null},gestures:[],box:[0,0,0,0]};for(let O of t)w.box[0]>O.box[0]&&w.box[0]<O.box[0]+O.box[2]&&w.box[1]+w.box[3]>O.box[1]&&w.box[1]+w.box[3]<O.box[1]+O.box[3]&&(C.body=O);if(C.body)for(let O of n)O.box[0]+O.box[2]>C.body.box[0]&&O.box[0]+O.box[2]<C.body.box[0]+C.body.box[2]&&O.box[1]+O.box[3]>C.body.box[1]&&O.box[1]+O.box[3]<C.body.box[1]+C.body.box[3]&&C.hands&&(C.hands.left=O),O.box[0]<C.body.box[0]+C.body.box[2]&&O.box[0]>C.body.box[0]&&O.box[1]+O.box[3]>C.body.box[1]&&O.box[1]+O.box[3]<C.body.box[1]+C.body.box[3]&&C.hands&&(C.hands.right=O);for(let O of s)O.face!==void 0&&O.face===w.id?(i=C.gestures)==null||i.push(O):O.iris!==void 0&&O.iris===w.id?(l=C.gestures)==null||l.push(O):O.body!==void 0&&O.body===((u=C.body)==null?void 0:u.id)?(c=C.gestures)==null||c.push(O):O.hand!==void 0&&O.hand===((h=(d=C.hands)==null?void 0:d.left)==null?void 0:h.id)?(p=C.gestures)==null||p.push(O):O.hand!==void 0&&O.hand===((m=(f=C.hands)==null?void 0:f.right)==null?void 0:m.id)&&((A=C.gestures)==null||A.push(O));let E=[],M=[],R=O=>{O&&O.length===4&&(E.push(O[0],O[0]+O[2]),M.push(O[1],O[1]+O[3]))};R((g=C.face)==null?void 0:g.box),R((y=C.body)==null?void 0:y.box),R((b=(x=C.hands)==null?void 0:x.left)==null?void 0:b.box),R((k=(v=C.hands)==null?void 0:v.right)==null?void 0:k.box);let _=Math.min(...E),N=Math.min(...M);C.box=[_,N,Math.max(...E)-_,Math.max(...M)-N],r&&r[1]&&r[2]&&(C.boxRaw=[C.box[0]/r[2],C.box[1]/r[1],C.box[2]/r[2],C.box[3]/r[1]]),o.push(C)}return o}var Fe={face:[],body:[],hand:[],gesture:[],object:[],persons:[],performance:{},timestamp:0};function w8(e){var s,r,a,o,i,l,u,c,d,h,p,f,m,A,g,y,x,b,v,k,w;if(!e)return{face:[],body:[],hand:[],gesture:[],object:[],persons:[],performance:{},timestamp:0};let t=Date.now()-e.timestamp,n=t<1e3?8-Math.log(t):1;if(Fe.canvas=e.canvas,!Fe.body||e.body.length!==Fe.body.length)Fe.body=JSON.parse(JSON.stringify(e.body));else for(let C=0;C<e.body.length;C++){let E=e.body[C].box.map((_,N)=>((n-1)*Fe.body[C].box[N]+_)/n),M=e.body[C].boxRaw.map((_,N)=>((n-1)*Fe.body[C].boxRaw[N]+_)/n),R=e.body[C].keypoints.map((_,N)=>({score:_.score,part:_.part,position:[Fe.body[C].keypoints[N]?((n-1)*Fe.body[C].keypoints[N].position[0]+_.position[0])/n:_.position[0],Fe.body[C].keypoints[N]?((n-1)*Fe.body[C].keypoints[N].position[1]+_.position[1])/n:_.position[1]],positionRaw:[Fe.body[C].keypoints[N]?((n-1)*Fe.body[C].keypoints[N].positionRaw[0]+_.positionRaw[0])/n:_.position[0],Fe.body[C].keypoints[N]?((n-1)*Fe.body[C].keypoints[N].positionRaw[1]+_.positionRaw[1])/n:_.position[1]]}));Fe.body[C]={...e.body[C],box:E,boxRaw:M,keypoints:R}}if(!Fe.hand||e.hand.length!==Fe.hand.length)Fe.hand=JSON.parse(JSON.stringify(e.hand));else for(let C=0;C<e.hand.length;C++){let E=e.hand[C].box.map((O,W)=>((n-1)*Fe.hand[C].box[W]+O)/n),M=e.hand[C].boxRaw.map((O,W)=>((n-1)*Fe.hand[C].boxRaw[W]+O)/n),R=e.hand[C].keypoints.map((O,W)=>O.map((j,q)=>((n-1)*Fe.hand[C].keypoints[W][q]+j)/n)),_=Object.keys(e.hand[C].annotations),N={};for(let O of _)N[O]=e.hand[C].annotations[O].map((W,j)=>W.map((q,X)=>((n-1)*Fe.hand[C].annotations[O][j][X]+q)/n));Fe.hand[C]={...e.hand[C],box:E,boxRaw:M,keypoints:R,annotations:N}}if(!Fe.face||e.face.length!==Fe.face.length)Fe.face=JSON.parse(JSON.stringify(e.face));else for(let C=0;C<e.face.length;C++){let E=e.face[C].box.map((_,N)=>((n-1)*Fe.face[C].box[N]+_)/n),M=e.face[C].boxRaw.map((_,N)=>((n-1)*Fe.face[C].boxRaw[N]+_)/n),R={matrix:[0,0,0,0,0,0,0,0,0],angle:{roll:0,yaw:0,pitch:0},gaze:{bearing:0,strength:0}};R.matrix=(s=e.face[C].rotation)==null?void 0:s.matrix,R.angle={roll:((n-1)*(((a=(r=Fe.face[C].rotation)==null?void 0:r.angle)==null?void 0:a.roll)||0)+(((i=(o=e.face[C].rotation)==null?void 0:o.angle)==null?void 0:i.roll)||0))/n,yaw:((n-1)*(((u=(l=Fe.face[C].rotation)==null?void 0:l.angle)==null?void 0:u.yaw)||0)+(((d=(c=e.face[C].rotation)==null?void 0:c.angle)==null?void 0:d.yaw)||0))/n,pitch:((n-1)*(((p=(h=Fe.face[C].rotation)==null?void 0:h.angle)==null?void 0:p.pitch)||0)+(((m=(f=e.face[C].rotation)==null?void 0:f.angle)==null?void 0:m.pitch)||0))/n},R.gaze={bearing:((n-1)*(((g=(A=Fe.face[C].rotation)==null?void 0:A.gaze)==null?void 0:g.bearing)||0)+(((x=(y=e.face[C].rotation)==null?void 0:y.gaze)==null?void 0:x.bearing)||0))/n,strength:((n-1)*(((v=(b=Fe.face[C].rotation)==null?void 0:b.gaze)==null?void 0:v.strength)||0)+(((w=(k=e.face[C].rotation)==null?void 0:k.gaze)==null?void 0:w.strength)||0))/n},Fe.face[C]={...e.face[C],rotation:R,box:E,boxRaw:M}}if(!Fe.object||e.object.length!==Fe.object.length)Fe.object=JSON.parse(JSON.stringify(e.object));else for(let C=0;C<e.object.length;C++){let E=e.object[C].box.map((R,_)=>((n-1)*Fe.object[C].box[_]+R)/n),M=e.object[C].boxRaw.map((R,_)=>((n-1)*Fe.object[C].boxRaw[_]+R)/n);Fe.object[C]={...e.object[C],box:E,boxRaw:M}}if(e.persons){let C=e.persons;if(!Fe.persons||C.length!==Fe.persons.length)Fe.persons=JSON.parse(JSON.stringify(C));else for(let E=0;E<C.length;E++)Fe.persons[E].box=C[E].box.map((M,R)=>((n-1)*Fe.persons[E].box[R]+M)/n)}return e.gesture&&(Fe.gesture=e.gesture),e.performance&&(Fe.performance=e.performance),Fe}var Vf=`
|
|
/9j/4AAQSkZJRgABAQEAYABgAAD/4QBoRXhpZgAATU0AKgAAAAgABAEaAAUAAAABAAAAPgEbAAUA
|
|
AAABAAAARgEoAAMAAAABAAIAAAExAAIAAAARAAAATgAAAAAAAABgAAAAAQAAAGAAAAABcGFpbnQu
|
|
bmV0IDQuMi4xMwAA/9sAQwAGBAUGBQQGBgUGBwcGCAoQCgoJCQoUDg8MEBcUGBgXFBYWGh0lHxob
|
|
IxwWFiAsICMmJykqKRkfLTAtKDAlKCko/9sAQwEHBwcKCAoTCgoTKBoWGigoKCgoKCgoKCgoKCgo
|
|
KCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgo/8AAEQgBAAEAAwEhAAIRAQMRAf/E
|
|
AB8AAAEFAQEBAQEBAAAAAAAAAAABAgMEBQYHCAkKC//EALUQAAIBAwMCBAMFBQQEAAABfQECAwAE
|
|
EQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZH
|
|
SElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1
|
|
tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+v/EAB8BAAMBAQEBAQEB
|
|
AQEAAAAAAAABAgMEBQYHCAkKC//EALURAAIBAgQEAwQHBQQEAAECdwABAgMRBAUhMQYSQVEHYXET
|
|
IjKBCBRCkaGxwQkjM1LwFWJy0QoWJDThJfEXGBkaJicoKSo1Njc4OTpDREVGR0hJSlNUVVZXWFla
|
|
Y2RlZmdoaWpzdHV2d3h5eoKDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXG
|
|
x8jJytLT1NXW19jZ2uLj5OXm5+jp6vLz9PX29/j5+v/aAAwDAQACEQMRAD8A+qaKACigApGOKAML
|
|
Xp8xlF5A7V4X8RtYs7PzfNImnx8sa8Kp9z3q2tEgp6angWs62ZZ5CTGoJ6DArGNz5p+UrID6EUrF
|
|
PUlW1EuN0XNW7PQ2L5j3JnoKXN0KijqNP0eYoqXBdgPuuo+ZPeupisWn2Jd4+0r924XgsQOCff3/
|
|
AJ1FzRKxDqGii6m3siiQ8F1XGfXI6YNWLfRbiRQMkcZI9fpTDluT2/h6Qy8gDPbtmtG38JeY480Z
|
|
5zSLUTZg8M28YwYxjAArXtdPt402qgHbpSaLWhma3o0Uqk7Nx9DWLaaVblgPs6qRyds2M/gRSQp9
|
|
zZOni2iWS2hlQ+kjYz9OMGrdjq89vIPPVhj+8M/lQyDq9P1WOYBlMZz1AOD+VdDaTiReOKulK0jO
|
|
tHmi0WDTlr0TyxRVhT8tJjIX+9SUxHXUV553BRQAVBcPhSBTSuxPY86+IGti0s5I7dsORy9fM3i6
|
|
8e8mfDO5P90ZrWWiJicNPpZZtxV/xrW0jQt4DOv6Vk2dEEdTY6BHuB25rpbPSo0QARjP0qTRI17W
|
|
wA/hFaMWmoQMgflQXYsDS142rU9tpqqenfNA7GgtihxkdKuRW6qMY/GkDZY8sY4Ap4hXbyB+VArk
|
|
EtuH4wPyrk/EGkOm+a3jw3suRQLc5i38SX9hJ9nnY+XnBUdPyNdFY6pa3KkkAE9l6f8AfJ/pSJT6
|
|
GhDmI+Zb4ZRycdv6ium0nUhKFydrelTsNnS2829RnrVgV6NKXNG55lWPLIM81Op+WrZkRMfmNNzT
|
|
A7GivPO4KKAEY4XNYWt3vkwPg4OK0giJdjw/xrqhm87Zs8tc7pX5A+leSajf6aHYJ50kn4AZpTep
|
|
rBWRm2Vobm4BXfyehPFdnpmnBFUY5rI2SN63tlToK0YI+KZpFF+3QdavwoKTLtoW0Toaswpk5pCb
|
|
LCxipAhoIuP2dKevHXoaYDylRyxhlwRQI4nxVoCXWZI1GfpXGtbSWjYPGP73+NIGupt6TqMsLruZ
|
|
ih4xnP5V09mQ+JLd8gn0xSYJnVaVdkook69K34zuUGunDS3Rx4qOzHVIp4rrOMY3NJQI7GivPO8K
|
|
KAILt9kZrz3xlebYiu8KCCWb0XvW0NFch6ysfO3jLVjfXLIn+pQkKorl7WxNxIPl71g2dUUdpo+l
|
|
pBGvHPet23iC8ihFosrxirkHQUFo0IF4FXI1O726CpKLacCrMJoJLYHAPpTwucHpSRJJ5e4AZI9x
|
|
UqpxzVpCuOC8cUpQUMRnXttuB4rjNdsYyeVwfXpmpGmcvcQyafMCFJjPY10eg34BUg4DcZP8jUO4
|
|
HaRq3lLNF+IHet7R7jz7c56rwa2wz9+xhiVeFy/T1PFegeaNPWigDsc0ZrzzvDNIaAM7VpNqdegr
|
|
xL4l6kywyRhseZ19lrdfAZL4jxYg3Fw20d63tJsdrDI5rm3Z3R0R0Mce1eKnQYAplIkWrMJ45oZS
|
|
NO3PHbNXIyfpSGWowSOasxLUiZdjFSqtNEMkUemKlAGKsRJjAppFAiORMjmsTVrNZEO4cfSoZSOD
|
|
1eJ7WXBUzQZ+7nkfSo7e2Ei+ZaMzxntjBX2NSU1Y6/wxqojiEFzkA8KTXYaUoWRyv3W5rSjpNHPX
|
|
+BmpSg8V6J5gUUAdhRXnneFFAGHrTfu5PpXzj8S70/aZtxzztXFbv4DKHxHI+H4GZiz9zxXXW8G3
|
|
GBXMjvLRXAx0oPGPSmMVeOnWrMTYpFI0bcg1fh54xmgovRcD3qxETSIZcRvzp+/BpEkqsBUqsM9K
|
|
q4Em4Gkxk0yRGXrVW6i8yFhkg+tJjRxGsWrxllkUMh9eK5uMz6bcebbnfG33kPcVkay2OntPKuo0
|
|
nhXI67c8qa7Lw3c+adjcEDGK1paSRhVV4s6A0or0jyRRQ1AHX0V553hRQBz+vNtt5z3xXzX8Qbdm
|
|
uic5YnOMdK3l8JnTXvlbwpYl+WySOgrp5YfLOOB9O1c62O7qQkc+9RsKChFPWp4DluOlSykaNruH
|
|
ArUgHShFNF2NT1qxGO3NBmyxGcE1N2560CFzjrUysO9JAPDDjFOVuKoQuSRTWouBkazbCa3cd8cV
|
|
wF7IISQccHBzUSWpV9C3o1x5b5GAjdQD1rs9DjC3kckbEhqKfxIzn8LOupRXqnkPccBSkUAzraK8
|
|
87wooA5rxMSI3HqK8B8bQl9Q8sffY5b/AAraXwkUviNrw9pH2W1ViMMRTdRjw4HpWNtDti9TPc4P
|
|
FQs2M5qdyyMHLcfjV63HTAoBGtap0wK0YxigpsuRDtVhVYd6GQydVwwIqdRnqKCR23I5pCMUW6gD
|
|
YNKuetAEise9KTxQBWuFyhrznxNZkXjFeN3I+tTIZg2OqmzmxNF0PO3vXp/g2+hukVl4zyPanTXv
|
|
JmVR+60dpThXpnlPceopWFAbnV0V553hSGgRynjC5FujOey14Ssp1HxNmTnc+a3kvcIpv37HoEYQ
|
|
QmMdVHSsnVbYJF5jVk0dsNzlruVIsl2wKxbjWrVHILjg1CRbZJb+ILHPzyhfStODWLQgFJFYd+el
|
|
UJM27HUIXxhga1Y5lLVLKLkMnoauxnPPrSEx7ShF+Y/n2qrc6xBbhizDAqkK1zJuvG9nbg8ZA681
|
|
ly/Ei052RO3uKAsZlx8QGd8xxvt9Aa1NH8dK7AXMcip64zigdkdrZX8F7EJLdwwNXMkrz1qRMRly
|
|
CK4TxmpidWI49felPYSOMmi80NIoOV6qRzXYeA5SskYPfirpfEjGr8LPWVHyD6U4CvQPL3ZItOYc
|
|
UDOoNFeed4Uhpks4H4iE/Z5MeleMeGULeLgjds10S+BGdL+Jc9OSBU2Huc5Nc74yvUtrcDBrJnZF
|
|
63PJdXvLy/lKWw46bvQVz82jXhkLO5Y+9ZlsYthcRnbIjY9R3q3awTRkEM3WmJI6C0ea3dGRsr1x
|
|
XY6TqW9FLHnjrUs0izpLK5DDjofSta3ckH09KRUkZuuTvFGdvPauE1Y3U6Mqbssf/rUxHPTaJPK2
|
|
ZmJPbBqzY6DCZh5xJC9s9aBJHU6dpemJjfEmfetJtI0+VPkUr/unFOxdiextHs33W07YHQHk11mk
|
|
Xb3KbZ1xIvcd6LEyWho4Nct41sTPYb16ipexCPPZN+wYGCvH1rrPAEJmvkPoc1VL4kZVvgZ6yFwK
|
|
cBXoHkkqinFaVyzo80GuE7WJRQSziPiGdthK5HQV4x4J/wBI8WPIewNdEvgRNL42emO/yj1UHNef
|
|
eNpRczbC+I17DvWT2OqJxc0sMK4TCisy41q0hfEkqj8aixdwTXNOlwvmqD9anS9tXH7uVG+hosO4
|
|
/wC0oOhrR0+6G4YNIEzsNEuCxAPNdjZruA4xxUmjINSjURksOlcbqFykbnjFA1sYGoassaknCqO5
|
|
rl7rxhGm7yBnBxuJq0rkSlYpw+NLlsfd5P8AerVsvHEqSBHwPVgcgVpyMyVXU3rXxcHYETAk+hru
|
|
/DWti6ZSTyOKzZqndHaxvvUGq2rQ+dYyqR24qWI8dvbr7LqDxyDAzXpvw6FvIxePGSM06Xxoyr/A
|
|
zviKFHNegeX1J41zUhXioGbuaSuM6wpCaBHG/EcA6HN/exxXjXw2jL67cv8A3Qa6H8CFR+NnoWpO
|
|
I4XI44rxLxrqjQzSEsQM1gdSPM9U1uR1YbmWIdXHf2rmpIb67YS28UrRlsLI3c/jW0VZGUpO5pW1
|
|
jfLNOjahawzwReYI5cjzMkDavHJ5/SrVv9uhtPtVxCPLBwzxnlT9KGghLU3tKvvPjHzbl7EGuisJ
|
|
GRxWLOg7nRXJEbDjmvSNK+aFSfSoZr0KutRkphc4NcRrdkVjL9aVio7Hk3iqS8ubhrWzUlsZY9kG
|
|
cZNc5D4aee5MclzJIFTzHAO0MfatqSOWu7bFS1srDUZEis0vIZoUxPvfcC+4/dx2xjr712XiTwXb
|
|
WmlQ6hol3cRhoFd4rlg3zY5wR0GelavQwjq7GD4etdVvSnk2wAB+9v8A8mvcfA2kXiRo0/UdcDis
|
|
ZnTTulqeoWqbUAJqWUb42X1FZlnjfjSwlGrr5S/eNdD4RkvLAAQ4yRyaUZcruVKl7TQ9I0G+mnzH
|
|
ckFwM8VuIK7ac3KF2eXiKapz5UWYxipNtMyNejNch0jSar3cjR27uoyQCRVRWom9DxTx54gu5fMi
|
|
lbKdMVjfCZPNlv5v9rFbVHpYqjGzbOn8SzFI9o715L4u0r7arYzk+lYdTqSujy7U/C0u4vHk+WwO
|
|
xuh9q3J9dgvbdVukMV1EwbDDgn04rZMwlHoZ+orZ6hfQ3RWVnQYCgZAq+8U0ln5NtBsV2yxYcfgK
|
|
JtW0CnB31LlroVwJ1nQLGDjeP7w+lb0dsFxjrWB0tHS6NuWPJ6A16ToUm63T3Gallr4S7cxiTjrX
|
|
PaxaF7dlVeSMUhxZ5jd+H7qCa4eF3DSE5x3zXN3Wk6jbyeaiFWUY6ZyPStYS5SalPmVipFbX0E4c
|
|
W0alvmPHJrag0rVvEE6LdljGpG2NRtQD+tW5XMI0uU9M8NeFo9PiQhecDIIrtrOMIoG3H4VlJm9t
|
|
C6CB06VPGM1IHLeItGS6uw+ORT7e3jsbQvj7gzUNam0JaWE+HN7NqOqX80n3FO1RXo8YzXdS+BHk
|
|
4z+KyzGPapcU2YIv7qQtiuaxvcaWqG4O6FwfSrS1JbPnrxoxkv7qIfejcitj4V2f2exumI+8+aKn
|
|
xHTT+G5d8Txlm4rjLxMsQwzWT3OiK0Mm6sEkVsAcjFc1d+FEmlGwEDPQVopaEuOpr6f4ZWNAu3tW
|
|
vHpAj5ZQcUFIWaDjGMVUMQ3cVDBmvbhY7QAV2nh+T/R1yeKhlrY31+b61FcQK6nIoJMi401WblRi
|
|
qr6PCw5UYq9y+YgOgWzNkRrx3xWjp+nx2v3FQcelAbmko9anQ4GBUNisPHWr1qMrQhS2K11HvmYV
|
|
hamcxSRZ5xRIqluS/DKAQQXZxyXrvo2FdlL4EeZjH+/ZbjNSZpswLNBrE1Gt7VE4ODVIlnh/j61F
|
|
j4lmeTGyUbq6LwdEqWbeX0YbhSqfEddP4Bddj4JIrhL5d8h7VjI6oLQqKNzelWre3yc4/ClFjaL6
|
|
wqBxxUUxwCKu5BmXRA6c+9ZjP83FSBoQuPs4BrsNBlUW659KmRrDY6G1lyQtW3Hy0lqQ1qVJnAbm
|
|
oy3b9KYJCqRj3o4zRctIlhjLHmpSuOBRbQOpLGpPFaES7UqkZzKN1KsEc87/AHUUmvPLTVGv72aQ
|
|
k7WJwKmRrQ3ud74Ltilgz4++2a6iNDXdS0gjyMU71my7GpqTbxSbMki3SViajTTHqkSeR/GeyZmg
|
|
nQHkEE1S+F+oPPavBL96I4/Cia1udVF+4dVrkW+Fq8+v4tjMDWUkdVJ6WM0cNV+F+MVmjUcZgqnP
|
|
1qpNNnkcVRLiZtxIS1UzzIF7mghlxUZpVQdq6nTVdAoAOKzkbQWhvwM6gMM1twOJYx3NOJE11Kt1
|
|
H1/pVVlwBkk+9NocXoOQ45FPj+fkUJFF2NSB700v/hTEty5ZpkjvVyUgcCq6GM9zC14/8Se6GcZQ
|
|
1574Xs5WkI2HBPHFQ1dm1KSSZ7Rotn9l0+KPHIHNacae1dy0Vjxaj5ptlhVp+2s2CJ9ppCKzuWNx
|
|
zSFc1SYrHNeNdIGpaYw25ZeRXmvheyk0jVpEdcLJ0q3ZxNKTa0O3vQHg/DNcHrsJDmsmjspnNzNt
|
|
fFIJ24GazOhC+azDmgZIOOKBsp3J2qSaZodubq58yQ4QAnmhGT3NO18pb7BORmu205LfYpyKVkWp
|
|
Oxr5gKYWoIZWgfGfloFq1qTPLubnGO1RPtxg4P0oBAkY/hBz6VNDDkZ6AU0W2WSdqkdKr9ZOaGSj
|
|
VtcLHmnOcgmmYvcz7mBLy3MbdD1q9ouiRK6bUAVeelOC1InPlidSsWMDFOCEdq3uefykqrinYqGy
|
|
rFvApMVka2DAowKAsMkRXQqwyDXn/iWyitNQ3qPl6itIvRoF8RXinW4tQ6HI6GuW8SIVBPalc6qe
|
|
5x9x97r3qruwTjrWZ0ksZ9TUmcDNAmZ9/wAoao63rR0+w22MLPtAzt6mghmfofiB76LdJBJBIp5D
|
|
d/oa7bSdWLIPnpDi9TM8TeKdas51XTbIyxd3J/pXS+E/EFxqNoFu7do5OmD60maHWrnZyDRkn/69
|
|
MlEyOR0xntVoNx+FUgYjPxg4FLCuWDZyKQr2RoRnP0qO+nEFpJITgAUzLqZnhu6+0rknOTXpOmwJ
|
|
Fbrt5yMmnHYyr6Oxb2ijaKLnPYMClwKQWK3n0hn+lachHOJ9pNNN0apQFzsY10a4v4hXQh0xpieQ
|
|
MA1XLZNjhK80cT8OdV+3Wl3A7ZZJCw+hrR1qLcjZ/CsbnfHRnFXseHJArOYYbrUs1uPhYbuatqFP
|
|
ByfSkMq3UIINYkto+87Tx6GkSxfsDbflGD7CtTw/pk4nzITtPIFMFudsukh4Rxz71paTpKwP5jcn
|
|
0qTRy0NORMDgVCqewoJTJgAoxjntTiTu7fWmFxAcnn1q3EPl+X8KZMi4gKqB1Peob/Tv7Us5bfeU
|
|
yOoq4R5nYxqT5I8xieH9J1DTbvyJELRg8ODwa9Ms5mSFV9BWiptbnNVrKdmif7Q1KLg96XIZc5Is
|
|
pNL5pqeUrmMtZs0jzV08phchaY00zH1p2ZNxjS1g+LdJOt6U9ssmxjyGp2urDjLlaZzng/wUPDqz
|
|
TSTmWeTrjpVjVk3Rvjr2rnqQ5dDvo1XUd2cTqSNk9OKxXGCeKxZ1DAxHTr2q5C/y8GokUhsz54qu
|
|
uCxzSQjQ0+FZblR2ro4bZYiMVQ0dBb7Qi5x0qzuG5QOh71LYErDufpSeWrHnimIXbjkUjLkH1Hem
|
|
gGxryc+tXI19KYmWegq9YLiLJ7mtqS945cS7QsWehqxA9dEjz4krPSxyZqbFFhGxUm6smjRM55Lk
|
|
HvSvNxXTY57kLT+9MNwKdhXGm5FIbkU7Bca1wMEVhaiuQcVhXWiZ14R6tHGanGBI2OtYkqEHjgVy
|
|
s9ErEeo6UBsHipKEZs5qpPdRxcbhx70NCSuybTNWihc5brW9Fq6vjMnFSdEIdDRi8RRKygZbHFbu
|
|
m6nb3RA3gMegNJhOm0jbXGOoxTuCc1Rz3FyoGKawz9KaAVcZqeMgCmIkB4FaUTbYwB6V00Fuzixb
|
|
0SFMuDU8Mlbs4UPeXHeiOXkUrDuXYnyKk3cVk0ap6HMxxketSMhrcwRC0dMMZFMQ3yzSeVQAeUaz
|
|
9Vj8uPd271nVV4m+GdpnHX67pCeKyLtBtNcR6xlk9RVeWTb3qRnO6trgttyIfm71z7ai8j7/AJmN
|
|
DNqUVa5Yi1AnjynHuBV+11YJhWWXcP8AZNSzqgmaEerSsf3NtIQP4mGKtRavdRgMIpVI9KjU0a7n
|
|
R6T43uYQI7qN2Tpkqciu503VVuQGAYZHQjFVc4alPlZrpKGAznpTwxOc9+lWjIlUACnM4XApiLNk
|
|
nmvnsK0NvpXZRVonmYqV52GsmanhXitTmFkSiJTSAvwrxUxXIrJ7miOfjf1pzNWxkRlqYWpgJupu
|
|
6gQbuahvIxPA6eo4pNXVioS5WmefakGhndH4INZs5DJXA10PaTurmLO21uKpSZqGMoXGnRzBiyjd
|
|
9Kx5rcQS428fSkjanLoaOliHGZFB56VswW+mtPufcBsGOAfmxz+tFkd8HpoaUx09FAtFY8DO71qb
|
|
Sms/Nb7RbecG6AEjFLS5c78t+p0djpVs9wsyQiJAdyr1rW+zqjErzSe559Sbk9S3C+MA1bjbgE1S
|
|
MSXzMVG0vNUI2tPKrAuCMnrVzNd0PhR49W/O2xrHmp4TxVMzQshpIzzQBehqesnuaI5VGzT2bitz
|
|
FEbNTC1ADS1JupgG6l3UAc14s04yR/aYRll+8BXCtLncDXFWjys9TCz5oW7GddH5qqNzWDOgQnC8
|
|
VSuo1kHzAGkPYopEY2+RWxV23Vzj5G/Kg3jWaNazhZuqNXS6TaKhB2c0jR1nJWOlhOxRxU4YkCgx
|
|
Y0OQatQyDbyaaFYe8uF4NY3iC9ltbVGj43NTIL3h7WzMihjzXVQXYYDdW9Cf2WcOJpfaRZ3g9KsQ
|
|
mupnCLIabGeaAL0LcVY3cVmzRHIxtUhetzEjZqjLUAIWpN1ArhupwagAfDKQ3Q1594v0c2bm6tx+
|
|
5Y8j+6ayrR5onThp8s7dzkZjuqAAmuBnqC7c0iwgtzSA0rWzjfGRW3ZadDu4AoNYo2rfS4v7orSh
|
|
05UA2r0pDbsTm29KRottBNyJ0wpJ9KhD7f6U0ikNWffIFBz60zVUW52ow4UcUN6EPcx44WsbgOmd
|
|
ua7TT5Bd24KHnFKnLlZFSN4koluLdueRWvp14swweG9DXoxldHlTjYtzGoo25qzEvwtUxas2jRPQ
|
|
5CNqkLVsYoYzUzdQA3dSFqBBmnqaBhuqhriCXTpVIzxUz+Fl03aSPI9QTypW2/dz0qKNw3SvOPZR
|
|
Mqin8VLKRcs3O4Cuk0w/MDjt1NBtHY6O2IIHY1pxgFaETIRwMkjtVSUEk4570MlFW5bap6dKzWm8
|
|
1tqH8aY+hp2FvGoGayNevVt7/ap4xzUvYjqTLtvLPcvJxSaVcyWsxTnFZlnT2t15xHmCtOBYwQy4
|
|
B9q7cPO+jPPxFO2qLEj5HWo42+aus4HpoX4W4FTF+KlotbHII9SFuK0MUNZqiLUDE3UbqBBupwag
|
|
Bc1DefPbyD/ZND2KjujyPWlKzuPesRZjHJXms9lMuw3StjnmphKDSLTJ7OfE3JrpbO4GQc9qlnRA
|
|
3LO82k5NbFvdADkjBoCSHyXIIIzgVQvdRigT7wzjgUzO1jHknlvG7qnp61etYFQDIpCZoqVijzXn
|
|
3iC8EmsOuaCGb/heR/s0ijkVv6fbxy3QMg5xmsnuX0Ldzut3+UYTPWk+2GJSe+M1pFtamcldalmx
|
|
1eO4XaThhWnC+TXqR2PHqL3maUJ4qRjxSEjj42qXdxVmaGs1MJoATfSbqBAG5p6mgAzTJTmNvpQU
|
|
tzzHXY83D/U1zF5FhjgV5r3Pa6FMsV5HWnLe7RhqBRdmTwagN2d2K2rPU1C5LAnPrUs6Iysbdrq6
|
|
f3gK0BrUKj/WClY05iM6xLOcQAj3NT29uznfKSzHuadzNu7NSBFjHNSm5VO9IRnajqoWMhTzXFtA
|
|
bvUfMduSeg702Qz0rS7FbTToQFwzjJqaGTFyfK5PQViyzUuFmuIdgGABya5u/vTaN5cnUHFUmLoZ
|
|
zyskwlgJweSK6zQdUEwVJeGr0aUrxPLxEfe0OrhPAqVjxWhznGRtUwatDK4jNxURbmkAm6jNABup
|
|
6tQAFqhupNtu59qUnZFwV5JHnWsHdIx96w5lz15rzT2uhRmt85xWbcxMnUGmZlB0bdxmrNvFIcfM
|
|
350mWjbs7YkDJY/jW5ZWW4jikWkdNp9mqYJFaJdEHHakUULu/VB1rLn1Ld/FgetMGYd/qWSQmSa0
|
|
/AemS32pfa7piLeLkg9z6UmQtz0W7uQ2cZx0A9BVzR7cAea6j2rPqX0L99KRat5A6Dk1wOoKZ52a
|
|
YfMORTYRLujiGWEq6/NWza2yKQVHNdOHerRy4laJo6TTnbbtb8KuM3Fdh5z3OJjbmpt3FaMxAtUZ
|
|
agBN1GaQBzTwaAAms3VbjERUGsa07RsdeFpuUuY4jUjljWTKK4j02RE4IpJYFk6imQkVl0xWarsO
|
|
mAEcUi0bNnZBR0rWtoguMCkUi21wI161mXuocEKaYXMS4u+pY/hVCSWSY4HT0pEmlouiSahdpEBl
|
|
mOceleiwWcNjClvHgJH97Hc1EmVFFi3Czy7mwIl/WtJbjP7uLgd/apQ2VNVvtsBhiPzdK5S4nAuR
|
|
nqOCaTGi9pcytPlU+XpmumtWII44rah8ZjiNIXRuWeNvvViQ/LXpJWPJbu7nCRvVkNxVsxBmqJmo
|
|
EPiXca0YLMuOlJsuKuPlsSi5IrNuG8s4HWs5VEkbwoOTKsk+FJY4rC1K53k1xTk5O7PSpwVNWRzt
|
|
4cms+WpKICtSLTETQj5q0YeBSGiys23pUguGxQMq3E59ayrm4x3yaAKiRtO2WPHcmhruKFxFajzZ
|
|
ScA44qRHoXhuMaLpxaUg6hcDLMf4F9KlhuDeXGASIl+8azZslYma68y48m1+7nFW5rtbRNhb5z1p
|
|
iMKbUg0zuW4A4rPgb7VdKXOMmpA7HRbMS7nUYiUda0lkQOBngVrS+JGdbWLRt2bAx5BqeQ/LXpnj
|
|
PQ4GJ+ashuK0MhWaoWcA0AaOmASMK7jRNPWYBmHyiuepO2x10qfcv6vYxCzYqoGK4HVYVTJrmb5l
|
|
c6oaM5TUJ8EgGsG4kLNUHT0M64OaqMMikSRsuKbnFMRLG3zVehOaGNE445NNlnVFpDMu6uie9Vo1
|
|
8z5mOAOST2pDK91cNN+5tsrH3PrW54a06KxT7fdrlh/q1Pc+tJ6IUdZGvHPLezMcnBOWbsPap5r3
|
|
ylFtbdT1xUWNWzU0/Zbwlgfmx8zGsHWtRHmMqE59aAMyNifvHPc1f0gtPdqkY5JosJHeNci2tktY
|
|
euPnNY+oXWZEVJNrZ9aun8SIq/CzodHuriIokhDIR1ronbKZr0o6o8ipoz//2Q==`,Uf=`
|
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAsICAoIBwsKCQoNDAsNERwSEQ8PESIZGhQcKSQrKigk
|
|
JyctMkA3LTA9MCcnOEw5PUNFSElIKzZPVU5GVEBHSEX/2wBDAQwNDREPESESEiFFLicuRUVFRUVF
|
|
RUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUX/wAARCASwBLADASIA
|
|
AhEBAxEB/8QAGwABAAIDAQEAAAAAAAAAAAAAAAEDAgQFBgf/xABDEAEAAgECBAMECQIDBgUFAQAA
|
|
AQIDBBEFEiExE0FRBiJhcRQjMkJSgZGhsWLBJDNyFSVTY3OSNEPR4fAHFjWCokT/xAAYAQEAAwEA
|
|
AAAAAAAAAAAAAAAAAQIDBP/EACARAQEBAQADAQEBAQEBAAAAAAABAhEDITFBEjJRIhP/2gAMAwEA
|
|
AhEDEQA/APqYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAKNTq8OkxzfNkisQC8eb1XtRNbzXT4q7eU2nu0MntRq/D8StMccvW29ZmdvgjsTyvZjxOLj
|
|
+s8WLxn8TFPXs6Oj9oct7c14rkxz22nrB2I49KOdTjelmszfmpMeUxv/AA28OqwZ4icWWtt/SUi4
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmdo3nsPNe0Pt
|
|
Fh09Z0+DNWL7+9O/7A3eJcZppsV5raI27esvH6jX5ddM25p79Ilo59VbUZOe2Tm/PeGvfPfT2iKR
|
|
PLv1+DO678XmW/a97U6TtOyzTbTF538/T9WjTNecm9a7126tqk3rSYxY5ta1plRZqZNXGjyZcPXl
|
|
mZmsx+qjBrsuO16xM7eXRt04JrdTltk5OWJnfaWf0a2lty5MdZnfzSn+WOHiOutFpjHa9e8bQ2fp
|
|
+alYy462pk7zXbuxjPesbRS0f6ZZV1ET1tErzXFLHo+A+1ddZf6NrI8PJHa1vN6iJi0bxMTHwfOa
|
|
zhzd61v1846utwniM6DUdb3nBaNrVmd9vjC/ZVePYirBqMWppz4rxaPgtEAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAItaK1m09ojcHnvarjM8P0vh49+a/eY8ng9D
|
|
h1fGM1rxjtGPfvbzdbjuTJxHX48cTPNltM/KsS9Dw7S49Jp6UpHaGe2vjz1y9J7LYK13vHWe7bj2
|
|
ex1tvM80ekuxW3RnW3Vm6P5jRx8H0+OYmMcb+bapo8GKPdpC6bQwtdHU8JpWkdJ/JweL6e23iU67
|
|
d4dubSqyVi9Zi0bwIs68XGp36TtEq7ZJmZmevzdbifCKWtbJinkt6eTgZPFw32t+sRurbWVzxs1y
|
|
Rv6T8V1NZNPtfq0seTm+Kevr+SZuxXjvaPiV8N4viycto9HseG6+uu08W6Rkj7UPmFck1tE1nlmP
|
|
Ld3eA8V8HVVi1pjq6Ma/pnqce/ERMTETHaUrKgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAADW19+TQ5p/p2bLS4v04Zmt5VjeQeJ4bjnLqsupv+Ka1+ERLv4reTmcNxcuC
|
|
vy3l0qdI2hlr66sT02ot0ZV7qqrInruzrVZLGSZ37JjqgYTG0K5lbaFVhDT1Ub456RPweY4hixWi
|
|
eSdpjvD1eWejz3FNHWYtkpvFo9EIseb3tS3SerOms22rfpPqZKzvvHSYUz70TExG6Gdbs2rljeJ/
|
|
Mx5L0vEzPaelnOi98c9J2bFNTFpit47+a+PVUvx9T9nOIfT+GV5p3yY/ds67wvsXqpxau+G09Lx+
|
|
r3TqrEAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADV4ljnLw3U0jvO
|
|
O0fs2lWqyUw6XLkyfYrWZkHldBEV09eveG3Fq1mI3jd4vPrOIaid8G9MP3Y38k6fNrt/rMk9Ou8s
|
|
tfXXn49rGWInuy8SO/k5Gl1E3rG/fzbOe94wTy99mbRvTrMOOvNfJWsesywniukrG/jU6fF43WYN
|
|
TmtEeJtEQ06aSmK2+bNtEd+qfSO17unF9Hmvy1y13XWyVmN4tExLxVK8PmNq5NrT58zawam+m/yc
|
|
0Xj8NpRYSvQZ7xEOdqI3rPozxayNRXe0ct/ON03jmrKB5nV4q1yTO20Obmv4c+cx8HoeI6WZpNoj
|
|
q83niYmYscU0r8aJ6T1n49zeJ+Meqm1drb9J+Kd5p136StGVem9l9TbHxLDFp7W7+sS+q1nesT6w
|
|
+PcAzVjiGHftzQ+v4f8AJpv6On8jH9ZgIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAABp8VrW/C9TW0ztOO3b5Nxp8VmI4bn37TWYB8f1HFtTfUfR9FWJmsdZ9I7MtJxDX5s
|
|
d8ta1y0xzteaR2277rcuhycP12SceLxMeWNpjttHwlu8I0mfQ1y+D7k5YmJmY36T36Ka43z/AF1t
|
|
cI1ds+qxVj7/AEej19PCw9HJ4NoK4OIU5Y35YmZdzVTGebVZabx5jJS+Tmns81rNLm1Wrzc9rVw4
|
|
Yibbem72mXTTS0w0M3BvEta1bWrM95ie5EanY87wXgNOL6XPfxraXLhra/W28bR/dzYzarBqJxRe
|
|
bzE7Rt5vWU9n8mPHOGmS0Ypnea1naJb+k9ncNLR7u2y/WcxXO4TOoyUrN6zD0FaW5Y3hu49FiwUi
|
|
KxCvLMR0hlW0jn6ukWw3iXjOJzbDlneOj3GaN6zDzfFOH+LE7SRGo83XNSZ2lbG2/WfdlvaT2cy6
|
|
rNFInlrv1mfJ37cK4PwTTxOoidRm2+/2/KFuyMp47XB4LivXiunrH2b2iH2qn2K/J8x4fGDNxTSZ
|
|
9Nh8OviRvTyfT6xtWI+DeXs9MNZubypASqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAOZx6/LoOWPvWiHTcf2hiZ0e8fc2mf1E5+vP/AEeuSd7RC2uKtI6QjHfeINTfwtPf
|
|
Jvty9WPfbt/lucP03gxfJf7d/wBoReYpm97zaNeLb4Ims9Nt94auDjem1Wo5PFi1onylS+1o7l8V
|
|
bxvtupjDMdNkYtXS1+Stt+m63xImEJ4xjHER2ZxMUjeUTO3VRmydBbjLJqPi08mbeVOXJPq1sl5Q
|
|
Vbkz9+rRy35rxHqzmZlVEe/Ez5LRlW5iyfR6zffaIjq1OSNZps2a21rZInafSPJhxGMl9LStLRWM
|
|
lorM/A4dkrWbYfLZC2W/7K6eubX6b4RzT+W76K8b7G6X62cu3Sten59nsm3j+OXz3/0ANGIAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0OIYfpOHPijvNNo+fdvtXJO18k/
|
|
/OwPFYbz2ls3jx8VqW6xMdWPEdP9D4lkx/dt79flLLHbkxTPwY6nt2512ORTRzE2x4/dpE7cvkme
|
|
E4IrW3hRMxO8THRtU1FKWtvtvK2upx22rzRCtXkqzh2jtF7ZbT122b01ndnpuWuP3Z3+Ky20qDVv
|
|
fauzVy3mejZzNK8dVjqi87KLRLYtXruqvXzkQp7Qoid88R6rcl+WGlW0/Sa22mfhCZOq2x082ix6
|
|
jkm822pO8VrPdr4dNObVeDo8XW3uzMbzK+mvxT7szE27cvnu9j7PcNjSaXx8mOIzZevbrEeic5tN
|
|
+SZnpt8J4fHD9HXHO3PPW0x/DeBtJxx29vaAJQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAKNRim9Z5e89Nl4DzXtVh5babURHrSf7f3ec1+qnDorWrvvt5Pccb0n0zhmWk
|
|
Rvevv1+cPE2rGTFNZU26PFfxwa5dVkjelI2772nZnX6bbrEUq3o0d678u8wmuDL2ittvVjXdneeK
|
|
cGv4jpJ6U56+kS7+j118+GLXpakzHaWlp9NNY3tv+bbiYiNoQy1y30uyZJlrWmZnuym6q1iIJnop
|
|
yW2Te8bdWnnypQqzZOadokiIpSZntWN5lrxki19vNRxrUeBwnNNd+fJEY6/OejXLn3Xe/wDp9wyn
|
|
E8uo4lqqxblv7lJ26T6vpD5X7G8QycKzeBMbzMRM1/FH/wA/h9QwZ6ajDXLitvWzRgsAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeL45w+dDrZvWv1OWd4+E+j2jX
|
|
12jx67TWw5Y6T2nzifU+rZ1y9eHwzDYxxEy18+DJodXfT5o96vafWPVbjyxDn1OOzHudbM0rt2UW
|
|
iI69mVtRXZq5tREb9VUoy2iIlRbJ0UX1VZ6btTLrI7V6yk62M2oisT1c7JmtkttVMUyZp6x0beDS
|
|
RWOvdKijDimvWd3G9pNRMfRcNfvZOb9Hpb0itJeP47k/3hgjaZnbaP1XxWW3T0movbNS0W645nbf
|
|
0nrMPpXs3xamoxdJiLbe/X1n8Uf3fKsOTw4jbaXo+EarJhtGTHMxeJ6xH7Sti9Zaj6x3HM4NxXFx
|
|
DS1mtoi8dJrv2l011QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AGjxLhODieOIye7kr9m8d4eM4to9RwjPXFa0ZIvG9bR0fQXmPbDFvTTZPOJmEWS/V8bs9R43NxLL
|
|
G8eFbePg1bajU5/s0l1ceKLx1hbjwRE9mOpx0y2uRTSZsm3PMw2aaKtIjo6kYo9EXpET0hVLXxYK
|
|
xC6MZvyx1lFs0RHfaPiCnU12pLyHGNDbUajBekWma2npWN3p8+opa20e9LSyZLxExTlpM+vdOdcZ
|
|
a9tPS8MyUvFrzWlI6727u1pYxYrbVmb7x+TQx6au3Nqcl7/0rcmW9axGnwZJj1novmxnZXV0fFp4
|
|
ZxLBPgTGK8xzXr5fOH0bFlpmxVyY7Rato3iYfNuG2x56Wrqa8s2jz+7Lu8O12bS6jkwzN6THNNI6
|
|
tvrN68Y4rxlx1vHa0bskAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAA4XtTTm0OKfTJ/aXdcL2pyRGjwU362yb7fkJz9eTxxyZJjyltRXzUZK7TFtl9Lbwy06YzrHwa+
|
|
fJFd/wCVt8m0bQ0eS2qzcm+1K/an+zNZFL5M1pjFXeI72ky48eGnPkvNp27+TPU6nHpMfLXaIjpE
|
|
erk5dRMxOfN1mPeisfshW1ne1a1577Y6x5R3U0zze31FOWI6ze0byU098kRlzbxM9qrMlPDpyRMR
|
|
Md5Vt/Ihp5898mWZm1pjftE91uCt7fCI7dWeHDEW3t723l6rslqxWZnasR+SYhFbzhnfxJ2jyeq9
|
|
lcGXWZcmW0zWKxHLaI7794eJx5fpfEKabT8t8l5isddo3l9S4VjrwrRUwzSJt3tav3pdOL6Y6dXD
|
|
j8HFWm+/KsU4NRXPvtWazHquWVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAa+fXYNP9u8b+kdZBsDkZOO135cWOZn4y5Wu4xqctbe9y19Kp4njt6vi+PDm8DFMWybbzPlV
|
|
5PiGtz67UxbNbeKTtWIjaIXYpnwuaftT5tXJT3vmi1pMsrU5qIrG1V1a+5DCa7b9GFbRr5J6Wnbt
|
|
Cu+Wmk0m8956z8ZWZNorbfzcbX5rZslazPux3hUt41NTntktObJ13+zX1bek01r4/HzVm0bxPXy/
|
|
+bNfDgjVa2uOY92kdfg6ufJOKvLXtttVVSqbcta2vM7zXtHpLQy5ZtMd+vWd+7Zy3mdJHXra3f0c
|
|
vUarw7zFY5rT2hH1Lavnrgx81p3U49Pk4nE5L35MO/StfNRXR5tXnrS8W67WvfyiPSPi7uLHFK1p
|
|
jrtSsbR5Lc4RzsXBaYreP4l45esRD2HD9fnw6evvWvO3Tfr0aGk0U55ra0TFInv6uzgrXFXlx0i0
|
|
77RPlC83Yj+JW7oddqr6vHzTTw9/f6dod+L1t9m0T8pcbFSmPHER3892W0zPuz+jSbVvidkcqmfP
|
|
Sel7bekrI4n4dZnPWIrHeYnZee2Wpy8dEaml4npNZblw5qzb8M9JbYgAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAABEzFYmZnaI7yCXL1XGa0jJXT0571nbee27DiXEprp8nhbxG20W8
|
|
5cbD0ikfnKO+urTPvjoZdXqctdsmTaPSvRpWmsdZ6yztfaGplvv3lWW1tyRlz1x0vkn7Vo5atTNe
|
|
Y0+1o79V2KsZsvX7Ne5mwxnyTNvsx2iGneM/rCdRSuOsTasTt5kRFtpjqmOH4t4nk7estiMNa97R
|
|
Hwhna0iuKTEdmGWa4672nZtRele1N59Zlq6vLOSsYorEc07qcW65euzRvtXvPZy52naZ7ujr6fXV
|
|
rWdukREK8+njHgmZmPc67bq6ivVWhxxgxZLztNrT1mZ/SP4VZs0zaOvfp84WUtNsXLvtv3699+rU
|
|
z7+Jtt5qURqMnPpctaR1rMSw4ZoK57eNk6xHaJRh97Ltt7lo5Z+L1HAPZvVauZ2nFTSzMTzeJEz8
|
|
to6xPfvsZntPZ9rXxabmxzefdrv0j1dXh/BcmstW1qxTHHasR3+b0GPhGl+kWmd64dNEVjf73T7X
|
|
y8vy+Ddx6O3iRakxTH5RXrMw1/lX+3Itw2MFIraN48qRHdZi0cUjmmPen9noox1iO0fNzdXEYrTt
|
|
stcmd9aX0bJ+HePmiKTitO8TMLZ1cVjrMfqpz6ys4pjfrPRWZ9rXXptUit6zO+23VyaRHEc05L1/
|
|
w9J9ys/en1ljqdVbwYw452tlnl3jyjzbmmiMeKtYjpEbLeTXPUU8ee/+qjJpsV5rbkrFqzE1tEbT
|
|
DpYNbW21Mnu29fKWna0KbqTdjXXjld0cvQ63ltGHNPSfs2n+HUbS9c2s2UASqAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAOVxPWe99HpP8ArmP4b+r1EabT3yT3iOkesvMVtN7za07zad5l
|
|
XV5GmM9vVfEstvDx0jtaVVMlq+UJ18b5cMRvPeSuK87bUt+i2Z3PtG7zXpjkzXt6R+TXyTMzvM7t
|
|
ydHqZ+zhv1+Cv/ZuqvPTHMfOYaTMil1a1K2vHSLTELq2v+KWzThGo84rH5rq8JzedqR+ZeI7WnOS
|
|
34pYTafWXR/2Pln/AMyrKOCWnvmiPyR6O1y9585lhWJvl557Q6eo4T4dYiMvW3b3UanhldHpJtGX
|
|
e09unmjsT7eb1l4trI2t0hsZfrdNO0bzy+nzU20/+NmkzO9esz+TZxWis9dttvPv+Tn21jjaW8zn
|
|
26bTG3mp1M/Wzv3t0jyWXiKZJmsTERaZhXXDbNl8WaztWenxZLstPp5pau8frDtVrNMM5cfTfpMf
|
|
3aunxxbes9d/R09Dp8ebJi09ptFr3jtt2WyrW9wy1Jx132mK+Xq9PotT0iIU19ntLtExa3T47T+q
|
|
6nBaYvsZstZ+cT/LeMnUi0TXffo1s2m8Ws2/OIMWk5Jib5L328rS2t94Sh5TV4ppklpW6PT6rh+P
|
|
NbebTHyas8E081mZy5P2W6OFhjxNTE/hr/LoRO0Kvo9dPqctKzMxEx1la5t3tdnjnMs4noievcrO
|
|
yZjeFF1OSnNV0OG62cn1GWffj7Mz5w05joovzY7xes7TE7w0xrjPeex6Ua+j1UarBFu1o6Wj0lsN
|
|
3JfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrU5o0+nvlt92P3BxuM6nxNRGCs+7Tv8
|
|
2hToxm1r3m9utrTvMsonqyt7XTmcja0u3O6FMfi5t/u0/lzdJM81p9O3zdvHTwsUR5+bfPqOfX1h
|
|
dqV+3O7bs1+T31oqmI3TEM4rvCdkDGIIhlFd2daboS0NXG2bD6bufxXU1vlmu/u4us/N0+L1tTSx
|
|
kr9qk7w89j1FNZMV3jxLzvaJ8mer+LSOZqK2xZotbvljfr/89U453rXt9lse081xZtNjx7TGKu0t
|
|
DHlrevSevaN5Y6+tJ8c7VRNMt63n3ub+6/R54rERMztDYy4a5omclYmfxKcenrjtHLvtPrCnVmdb
|
|
eFe3JXmjy6eS/DrMuLVYsta9Mdt++6qLxO+0dEc8UmInr18iUfReHcXrqccb9Z27Q61Lb13eJ9nc
|
|
1Z35rTvE9avY4bTkpG8xEfB05vYxqybc07R281naGMREdoT5JQqy9mply7Q3bV3iXG1eXw7TWSka
|
|
c258t7+tpT5/BjT7MfHqndz12Z+M4lMMKyziUJJiN1WSu9fku23RaOgKNJqbaTU1t9yelo+D0cTE
|
|
xEx1iXmM1Nt3W4PqvFweDaffx9vjDbGvxz+TP66QDRiAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAOJxzU73rp6z296zsZMkYsdr2naKxvLyObNOfNfJbvad1dXkaeOdpvsc2yuZVzfbfqybutwu
|
|
s5s8R92J3dvJb3tnO4HSMegtmt3nfZvYp8SZl0z45NfSK7onH1bNcfRFqnUKJr0Y7dVtq7prjEsK
|
|
0XVpEM6028mW20IHK41aPo3J6zs4ODhdcvPnvExFevNXpMOrxi/PlrTee7PLX6Pwa09uaNlKtHg9
|
|
dM3z5d7ReOu02nu0JzZMfblrv5R5uvrcdImZ26T1mYhxs1Os7RH93PZ7axuafNfLitvbaYU3yZYt
|
|
PXs9NwHhui1HBa5LVicsb81onrEuVqNNSuS8Y67dZ6xPZa59Il9uX41vEitImZme3q2Kxbxora0T
|
|
Md/ROSa4Ztkj7c9OafL5LuGYubmyX3iu/TfbdSfVnpvZLT/XZK233+Mbbva1xRXyiPk8pwbH4N6T
|
|
adq5a71n0tD1WDL4tPe6Xr0tDpz8YVnJHWEXYxbqlBedoef4tW0XraO09HdyztSZcbUz43C+ee9b
|
|
SVMaeOfqq7+jGckQ1Yz7+7v2RN/WXPXZPjci2+2yyJaVMuy+uSJlA2d+pNoVRbeDcSxyTE+TDDlt
|
|
pdRXLTynrHrDOyiyZeVFnY9TjvXJjres71tG8MnJ4Nqt4tp7T1jrV1nRL1x2cvABKAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAHJ49qfD09cNZ97JPX5PPw2uI6j6Vrsl/ux7tfk1mWr7dOM8iLdm
|
|
vfebREefRsWldw7SxqNbWbR7lPesrn3Vteo7dYjDpMGCvfbeXQ0uLlxRLRxROfUc34p6fCHYrXlr
|
|
EejqrjY8uzCYW7MZjdVKqK9VlaxCYrsnYExBMRMJRPZA8/xPHtmpP9W2xx76vhWOInvt/C7ike7N
|
|
vwzE9kcapGfhlevTaFbFo8RqJ5vy8/RoW09ek0msxHfp3dzNoLzp4zUmZpMbT8HJyYJi20X2n0lh
|
|
ZY1li/RaidBF4w2mK3jrHaFGp1lN+tptPp5IjBkid5mIp16TKu0abBPv33vPlM7z+iPdFNcWXU5I
|
|
tkrNce/b1W5db1nTaf3ax9q0fxDW1ebNk2phty1mOu09VOm8W19orEz23j1TwfSeERFuEYMddptW
|
|
d43dvBn21eKJ75KbW+cf/JcTgMxXTb3nbljz+TpcPmc2uyZO1KRtVtGVdi0bx07qJnllsRO6rNTe
|
|
N4XVamsy8mnvPwc3R2jPwe8TPbdlxXNOPSZfhWWpwO85OFzv57qrODkzeHntSe8Sn6Rv0a3EZ218
|
|
8nXekfr1a0ZLVnqx19dWb6demXybOO7lYMvNMdW9S/VVLo0us7tPHdtUtEwJiZU3jq2Jhham8CVG
|
|
PNODNTJXvWd3qcWSubFXJWd4tG8PK3pPd1OB6veLaa89Y61/u2xfxh5c/rsgNHOAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAANLimq+i6O0xPv392rdeZ4rq/pOqnlnelOkIt5F8Z7Wj27I2I6sb25YY
|
|
V1ImY3dbQ08LRc23vZp2j5OJG+XJWle9p2h6HHtbJXFT7OOIpX+7TxT31j5rycdTh+Dpz+XaG/sw
|
|
w18PHWseULN2trBE9UcrJKBhFU7JAQi0dEomegNDUYovM7x3jb5tO1ZvpbaTLtzRExWfWPJ08kbT
|
|
Ex5NXWYYyV5omYtHWJieyeDzuizfRs19Jn6TM7Ru1uMcJxZqTkw+5f4ebqa7SV1MR4tdrx2vEfy1
|
|
axqsNOTLjnLXytVXi3Xj8+nmsxTLM16d5npPyUzpekTtSK+U7vS6vQ/SYmK1vWPS1HOn2dvvvvE/
|
|
tDO5XlcO+LbfHSd/W3o6/BdDOXPTnj3Kz38rS6Wm4FNrRyRzTH3p6RH/AKvR8L4dXSzE3jmtHn5I
|
|
mbfqLV+m4dbLSsZInHjr3iI6zLpYaxS01rHuxHRHiT9mv6s67Vj1aqL6326MrWiYa+/Q54BxPaGe
|
|
XRZpj8MquB4+Xg8zPnB7SX30to379GxpK1xcHiKz5IS8xr8PLPixH2bftLTy05o6dHYyVjLhy0t1
|
|
izjZa3pMVv3iO/qz1G2L+NbSajbNyW7xLsY8kTDz+fJXFqKZN4iZnafi6WHL0iYlStI7OO+7axW2
|
|
crFl7dW9jvE9ULN+J3ZbdFGOy+AYWpEqN7afNXLj+1Wd23KrJVMvCzseh0+auow1yU7WhY4fCdV4
|
|
OadPefcvPuz6S7jol649Tl4AJVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAV581NPhtkvO0R+4NPi2
|
|
r8DB4dJ9+/7Q83Po2NTqLanNbLfvPaPSFDHV66sZ5ET0hRknyW2lTtMyouz0c8usx2n7s7vScKwx
|
|
zc1vu/y85p+maJh6Th+SOWeveXR4/wDLm8v+nX5mUWa9bbrInolmu5jdTNkxYFk2Isr3TuCzeGMz
|
|
+THdEyDDJO9Ja823rt2XWnya946pGvktDXta0ztWu/ybvLE9dkcoOf4GbJPWK1j49VmLh9JtE33v
|
|
Mevb9G7WsW8l1ccREISophiJ2jpDYpijbaOjOuOJ8ujOdqxsgVcsUjaETYvbaFFrgu5lVsm0yUtu
|
|
ryg43H5m+GIj1XcJzePoL4pnrWGtxmfchr8JvfHS1622if3QljzTTLes+qrNjrkiYtCzPMxnm095
|
|
YZJ6boS5teB49Tqscza97VtvWvlv8V/FOF34RrIxTM2xXjelp/eHoeA6XnzReY3ivX/0dfivDcfE
|
|
9HbDbaLx1pb0lOs+jO7K8Lis3cN+0NKcd9PmthzV5clJ2mF9J9GHHVL108dm1SznYr/Ft0tuhLb8
|
|
mNohFbMhLWy0mJ3rPXvDvcO1karBG8/WV6Wj+7kWrvDDBlvpdRGSnbzj1hpjX4z8mOx6UYYstc2O
|
|
uSk71tG7Ns5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZ2jeXneJ62dVl5KT9VTt8Z9W9xbWclPo+O
|
|
fft9qfSHEU1pv48ftYST23ZTDC/p0YtlVuvVjMbM5+LCZjYGWGdrTPxiHY4ffaf3cjTxz1v6xMS6
|
|
Olty2iXVj/Dk8n+ndrkhnGRo1v8AFdW3RCrZ5uiYsqrboncSu508yjmZRYQt50TfowYTbYGVrKrT
|
|
uTZjvukQnYhMIGVY2ZxPVWyrHVCWzXpVXkt3TE7Va+W4K7X3jv1auTNy3jdba0RZpamfroQN7Hk3
|
|
6wr1GTaN2OOJiu6Mu98NvgDi8Wy74d/yZ8PiPAiO2zU4nb6qIn1bugjfFE/ASp1ke9u15mbbRDZ1
|
|
Mb823kx0Ontn1OOkedoJCvT8I03gaKsz9q/WW+isRWsVjtHRKyrhe0XCfpWL6Vgr9fjjrEfeh5fF
|
|
feH0V5Dj3DPoOo+k4a/U5J6xH3ZZ7z3228evytOk7NvFbo0cdols47bSybt7HbddHVqUs2aW3Qnq
|
|
xVeu8LILR3SlZw3V/R8nhXn6u0/pLuPMXjeHT4Zruf6jLPvR9mZ8/g1xrvpz+TH7HUAaMAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAABRq9VXSYJyW79qx6yvmdo3l5viGs+maqYrO+OnSvx+KLeLZz2te1rZL2v
|
|
ed7WneZYWnZl5K72YV1xEyxmeqJljzIEWlVkszvbZp5soN3h2SJz3pP3odCnuWmPRxuERfJrZmtZ
|
|
mtY96fR28kbX3dXj/wAuTyf6bmK+9YX1s0cNtm3Sd4LFY2K23W1s16StiUJW7bp22RW3RluBuruz
|
|
mWEgrmCGWyNkoExKE1QlPmsqRDKeyBjaejWy2W3ttDUyz1QKslvehVqKTNosyyTvELabXptIJpaP
|
|
B39Ia2mz+JGpr51jdZefDx2hzuHZObNq58poJaGtjxJ2+LoaKP8ADRPo5+T3skx5OhpOmC0fBNQ0
|
|
5yTbn+bt8A0u9raiY6RHLVwY62mI6zMvaaHBGn0mPHt1iN5+aYVsACBXqMFNTgviyxvW0bSsAeE1
|
|
mkvw7V2w5Ote9besJx2er4rw2nEdNNekZa9aW9JeQjnxZLYskTW9Z2mJY7zz26fHrrdpbZsY7NGt
|
|
mxjvso1b9NmUwpx33XRO4K7VUTE1nmrvEx1bVo2VWiJE/XY4frY1WPlt0y17x6/FuPM0m+HJGTHO
|
|
1qu9pNVXVYt46Xj7VfRtnXXL5MfzexsALsgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHM4jxOMFJphmJv529Dq
|
|
ZLfjDjPEIx450+K3v2+1MeUOHSOWFc3nJkmZnf4yujpVlqunOeFpV2nctLCZUXRM7MJtsWlRkv3Q
|
|
ky5NmpWt9RnrixVm17TtEQnJabXisRMzPSIew9n+CRoccajURvqLx5/chfOest642OGcIpoOG2w7
|
|
ROW9d72+LQvXevyejcPUU5M+SvpLeOataraw2a0dLbLqTtK1G3Es4lVWWUSoldFtmcXUbpidgXzK
|
|
GEW3TuCUSncnsDFMMLSms9EC6J6FpVzbZE5ALy0809ZbFr9GtfrEoFMzuuwz0Ueey3HbaBLDXe7i
|
|
tMOfwWnP9I+NZbuttvhs1uBRtXPb4SDm3iIvf57N7Dbl0VrS5+XrltEd+Z1Jx7cNms9N4TURRw3T
|
|
+PrcO3WszEvZOD7P6aYiMlvu16S7y1QAIAABxOPcLnUY/pWCv1tI96I+9DtgmXl68Biy7/NtUu3+
|
|
O8HnFa2s0tfd75KR5fFyMWTdhrPHVnX9R0cd21S3Rzsdm1iuqs256wrmGcT0RYSx5d047X02SMmO
|
|
esd49YRE9WcdSXhZ2O1p89NRji9J+cei1xMc3wXi+KZj1j1dTTaqmor06WjvWW+ddcu8XK8BZmAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAMMmWmKu952UZ9XFZmuP3revlDTtzWnmvO8q3XGmfHb9ZanV3yxtWeWn7y4es
|
|
vPNtDqZJ6Ts5mppvdl/XXRMyfGvSNlu/RVvtOzLfoipLT1VTKbSpvfogRkvtDVyZOhkyvQcA4Dzz
|
|
XV6yvTvTHMfvK+c9U3rkW+zvA/D21urr789cdZ8vi9KDb45rejl8Rry6iJ/FV1HP4vXbBTJEfYt1
|
|
+UpiHM295bXsqrO9l8QkZ0lZEqqLeyBZHZLGvZkhIndADKJ3TMoqWQMZ6pjsxll2jsCLSrmU2lFY
|
|
36gieyu0LJk3jbsga0wdqzK20QpyztQGprL/AFMrOE05NLkt6qdVWZxNrSe5o9vWBLiUjnzXn0vL
|
|
q555dHt8HOwV928/1z/LpzXxbYccRvzTB+jucOwxh0dI22mY3ltIrHLWIjyjZKyoAAAAACJiJjaY
|
|
3iXleM8InR5J1GniZw2n3oj7s/8Ao9Wi9a3rNbRE1mNpifNFnVs65XhcWTdt47bnFuF24dm8TFEz
|
|
p7T0/pn0a+HJux1OOrOux08d1ndqY7tillVkzExLOk7yd4YxGwluViJhE45raL0na0dtlWO0+bZr
|
|
1TKi+2zptZGTamT3b/tLacvJjiY3XaTWdYxZZ6/dtPm1zrv1z78fPcbwC7EAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABhkyV
|
|
xUm152iAZWtFazNp2iGhm1Vss8uP3aevnKrNntqLdelI7VRHRnrX/HRjx/tZREVjZXeybW6KbWZt
|
|
pCZ6S08tN7Nmbb7zCrJtyoS5145bSx5mWafelr3tsKmS/o08uXyhlly7RPV2+AcBnPNdZrK+53pS
|
|
fP4ytnPVda4y4BwHxOXV6uvu96Unz+MvVxG0bQRG0bR2G0nHLb2gCUDX12LxtFmpHeazt82wT1gH
|
|
mMN4tWs+rcr2aEV8DU5sM/cvO3yb+O0csLUTSdrLphRE8tlkZI7Atr2ZMazDJVKTYSCawi7Ksq7z
|
|
1QERvLK3ZGPrKbyCrbdnMcsbeaa18/RhvvM7oGEwTG0JmYYTIML22a2e28xELM19oURPNO4lOem+
|
|
n3ZY5+prVnMc2GYU4/L4A0a15cNf6rz/AC6fC6+NxCPOuOu/5tHJTbHj+F5/l1+BYumXJMd9o3/d
|
|
MRXYASgAAAAAAABhlxUz4rY8lYtS0bTEvH8R4ffhmo6bzhtPu29Pg9mq1Gnx6rDbFmrzVsizq2df
|
|
zXkMWTeIbNL7tbXaHLwzUctvexWn3bmPL8WFnHVL326VZ91MfFVjvvVlz79kLrcf2m7j7bNHH3bl
|
|
J2SirLQoy4t1++7G0dBC/RanxI8PJPv18/WG241+alovSdrV6w6mDNGfFF4/OPSW2b1zeTPL1aAs
|
|
zAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAVZ9RXBTe3WZ7R6iZOpzZq4ac1p+UermZMl89+a/byj0Ra9815ted59PQ32hlrXXRjH
|
|
DpCLX6ML5NlNsm/ZRqstfdXzbsZt06sLZNvNB1Za8RDWyZdo7q8udq5Mu/mIMt4md2lmy7JzZuWJ
|
|
dHgfBL8RvGo1MTXTxPSPx/8AstJ1XWpIs4BwSdbeNVqq/URPu0n73/s9hEREbRG0QUpWlYrWIisR
|
|
tER5JbSccur2gCUAAAAPM8Sry8Uyz67fwuxbzVPGsE49XGbvF42V4M0TEL33ERnktsxpk3sumK2j
|
|
admFdPFZ33VS2Mdui2J3UU6LYlFSsN2O5NkCyJ6K7T1TEsbAsxdpReerKkTFGMxvYEz0rsqtbbpC
|
|
b2VT1QEzuwtbaGUxspuJU3neWdKoiu8rq12gCI92YatLcublnzbEz1aOptyZqTuDHLfxN6R0+t5X
|
|
qdJhjBp6UiPLeXl9NSMnEKxHa1+bb8nrlvxUAAAAAAAAAAABTqtNj1eC2LLXeto/R43VabJw/VTh
|
|
ydY+7b1h7ho8V4dXiGlmvbJXrS3xRZ1fGv5rzeHN02bEW3cys3xZJx5ImtqztMS3MeTeGFjqlb2O
|
|
8btql3NpbZtYsnSBLeiWfdTjtutid+ghherHS5p0+f3vsX6T8Fkw181d4lMvEWdnHaGnw/UeNh5L
|
|
T7+PpPxbjdyWcvAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAo1Oprgr63ntAmTqdRqK4K9etp7Q5d7Wy2m953lNrWyWm953mVd77R0
|
|
Za1104xxlN9lV8qnJl2a9s3xUXX2ybsJyRDWtl3YWydEC+2VRkzeW6q+T4tbJm+KRdfK1cmWZnlr
|
|
vNp7RC/R6HU8SycmCk7ed57Q9ZwvgOn4fEXtHi5/O9o7fJaZ6z1uRyOEezVstq6jiEbV71xevzer
|
|
rWtKxWsRFY6REeSRrJxz22gCUAAAAAANbX6aNVpL0npMRvWfSXlKamsRMVvXm+EvZXjmpaPWHzfL
|
|
oNRjzXicfWJ8phfPxFejx72x7xMzK+sXiNoiXlq+Pi6fWV/VfTNqfLJl/WTg9Pji8R70LqvMV1Gq
|
|
j/zcv6yz+lanzzZP1lWpelTET6S81Gp1P/Gyf90s412rjtnyfqql6asREdWM9+jz9eJ6yP8Az7uh
|
|
odZqMt458tpB1JvEViI3/RhzRt13/R1MNaziiZiJn5K9ZNceKZiIiQcu/WekT+iYrWI3lzdTrs+8
|
|
8uW0fJzcur1Np/zsn6g79phVaIeetqNR/wAXJ/3SwnUaj/i5P+6UD0ldonum161h5mNRqP8Ai5P1
|
|
lNtRqJjacuT9Qd22WN5aGeZyZd/KHJy59RHbLf8AVq31Gp/4uT9ZEvS8Lr/vSs2npzRtL1z53wK+
|
|
oza/HW2XJNd99pmX0Rb8VAAAAAAAAAAAAAAcHj/C5yV+l4I9+v24jzj1cLFk8nu5jeNpeW41wmdL
|
|
knU6ev1Vp96sfdn/ANFdTrXG+eq1q5F2LLtbZoY8m8d11bbSydErsYsm+zZrO/zcnBm226uhiyRK
|
|
EtrvCrJDOJTeu8A1MWX6Lqq5N/dnpb5O5ExMbx2cPNTeJb/DM/iYPDtPvY+nzhri/jDy5/W6AuwA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAa2p1UYo5adbz+xbxMlvqJ1OqjDHLXree0ejmzNrWm953tPmTPWbWneZ7yoy5YhjrXXTjH8s75N
|
|
mtkyxt0VZM2/m175N1V03yTKubMLXVXybeYLLX2VXy7eam+b0bOg4VquJW+rry4/O9uyZOq3UjVm
|
|
9r25axMzPaIdvhns1kzbZddM0p5Y47z8/R2+HcF03Doi1a8+Xzvbv+TotJnjDXkt+K8ODHp8cY8N
|
|
IpSO0RCwF2YAAAAAAAAACvUZYw6fJkntWN3k8dfHz2vLucdz8mkjFE9bz1+UOZosX1UzPm0nqI/W
|
|
MYo9FlcPNklfFGeH/NshLGun+Cz6PtHZtVZWlRLS+jxPkRpIn7rdoupHTdA5s6SI+7H6Mfo+32Y2
|
|
+To3neSIiZ7A0IjPXpXLePlMotGW3272t85datKzHZjbTVnsDj+FG/2Y/RlGP4R+jo20u7H6N1Ql
|
|
o+H8I/REY957R+jpfReiK6eOYHLtj2tttH6KrY/6Y/R2c+kjeJiFVtLG24hxpw7/AHY/RRkw9O37
|
|
O99Hrt1YX0tfOBLjcGp4XF8c+u8fs9c4dcVcGemSI61nd3IneN1orQAAAAAAAAAAAAABFqxes1tE
|
|
TE9JiUgPKcX4RbRXnNgiZwWnrH4XPi28PdXpW9JraImsxtMS8pxXhF9DecuGJtgmf+1TWW2N/la1
|
|
L7N7T5e3Vy6W3hsYcvLbqzbO9jvvCzvDR0+XeO7crO6FmGSvRThy/RtVXJ92elvk2rRvDUzU7pl4
|
|
izsd2J3jeBpcNz+Lg5LT7+Pp+Xk3W7js5eAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADs0NTrN96Yp6edkW8Wzm6+LNTq4pvTHO9vOfRoWtt
|
|
1mes95YWvs1s2fZldddOczLPLn2ju0MmebT3YZc2/mpm3qqllN1drsbZIhr3yzvtHf4AsvlYYseb
|
|
V5Yx4KTe0+UQ6nDvZ3UazbJqd8OKeu33peq0eh0+hxcmnxxWPOfOfm0mP+steT/ji8N9mKY9suum
|
|
L37+HHaPm9DSlaVitKxWsdohI0Y22gAgAAAAAAAAAABXnyRhw3yT92Nwef4xm8bVzET0rPJH5d12
|
|
CvLhho3rN9RWs9Z23n5y6O21YhrVYbdGOCfrrLPJRpv863zVS6FS09SvZj3lVZZRdPSqmnSWdrIE
|
|
ebOkK4ldTsgW1WKqd1oMZhEVZyRAImOjGI6rJ7IiATNd46qL02bHkiaxaoNGY2n4ImPgtyV2n0Vo
|
|
Gvlx7x2beiyTk08RPevSVUxux00+Fn2n7N+n5rRFb4AAAAAAAAAAAAAAACLVres1tETWekxKQHlu
|
|
L8InR2nPp43wz3j8P/s5dLveWrFqzW0bxPeJeV4xwmdFec+CJnDM9Y/CrY1xv8qvTZ+WYdbDk5oh
|
|
5zHk283U0eo3jaZZ2N5XYjrCnLSJhOK+8d1kxvCqzSwZvousrb7k9LfJ3nB1OLeJdLhufx9LEWn3
|
|
6e7LXN9Ofy5/W4AuxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAETaKxMzO0Qi9646Ta07RDmZ9VbPbaOlI7Qi3i+c3TPUaqcu9adKfy0722ZXvFa9
|
|
XO1OrjrESxt66ZJmcjPUanlidmhkzTZVfLN5VWvsC2b7R3U3yqrZZtO1esz2h2+F+zWTUcuXXTNM
|
|
feKR3n5+iZLVbqRzNJo9TxHLyaekz62ntD1fDOA6fQbZL7Zc/wCKY6R8odLBgxabFGPDSKUjyiFj
|
|
SZkYa3aALKAAAAAAAAAAAAAADQ4pl2pTFH3p3n5Q33E12Tn1eSfKscsLZ+orS00eJqbW+Lfnu1tF
|
|
XaJnZsz3WpCfsyp00fWSvmPdVYOmSUDd8kR3InoQosy7JmUX7MdwZ17ro7KKT1XRPRAsrO0rYndr
|
|
79V1ZBaQiJ6JgCSIJASwrO07MpV2nqBlrv1a1o2bf2qtfLXaQUTO0sb05o3jv3ZXhjS20xEphW5h
|
|
yeJjjf7UdJWNKLziyRePsz0lux1SgAQAAAAAAAAAAAAAADG9K5KTS8Rato2mJZAPIcU4ZbQZuekT
|
|
OC3afT4NXFkmlntc2GmoxWx5K71tG0vHa/RX0GpmlutJ61t6wrY2xr8dXS5uesN+tt4ef0eaa223
|
|
2dnHk3juyreM81OaFGiy/RtZET9jJ7s/2bdutd2jqKeic3iNTsd8a2h1H0jTVtP2o6W+bZbOO+gA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABje9cdJt
|
|
adohGTLXFTmvO0fy52bJfU23t0pHaqLeL5xdK9Rnvqb+cUjtCi94xxvK3JetKuHrdZvaa1ljb10y
|
|
cnIs1Wt3naJc++TmVWvMz1YWybfMGdsm3eWek0mo4jm8PT0mfW3lDf4V7P5tdMZdRviwfvZ6/TaX
|
|
DpMMYsFIpWPTzXmf+steT8jn8L4Dp+HxF77Zc/4pjpHydYGjC3oAAAAAAAAAAAAAAAAADG9opS1p
|
|
7RG7zszN6WtPe0zLua+3Joss/wBOzhzG2OsL5+IrY09dsSyYRijbHEMvOChb7KjF0yS2LQ169Mso
|
|
S24noyrPVXWejNVKbTuw3T3REdQWU6LYlVvsyiUDPfqupPRr79VuOQX1lZEqoZxIMksd0gT2VT0l
|
|
bPZVbuCaW8i8bwr32WxbcGnkjaZa9p2ndv5qbw5+aNugLItF6TEtvTX5sMb969HMpfazc0d9stqe
|
|
vVZDdAQAAAAAAAAAAAAAAAADV1+iprtPOO/2u9bektoB4TJTJpNRbHkja1Z6uto8viVht+0HDvpG
|
|
H6Tjj6zHHvbecONw7Ltfkmeqmo6Ma69DXbbZTkr1mGWO3RneOaGbZRoM30fVzSelMnT83aef1FZ7
|
|
x3h1tBqfpGnjmn369LNc3sc3kzy9bQCzIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAa+q1dNNXr7157VhGp1Xh70x+9f9ocy283m1p5rz3mVbrjXHjt91lz
|
|
5c9+fJ1nyjyhdM8lZlOOIiqrUXikd+kMreunnI5XEdX4dZiZcG+XmtNl/F83PeeWWHDOGanieSKY
|
|
q+5H2rz2hMzWd1Iqx1yajJXHhrNrW6REeb1nCPZumn2z62Ivl7xTyr/6uhwzhGn4Zj2xxzZJ+1kn
|
|
vLoNJnjHW7TbbsAszAAAAAAAAAAAAAAAAAAAAaPFrbaSK/itEOXt0rDf4xb/ACa/GZacRvaF58Q2
|
|
IjasQnzPIhCU92tMbZGzHmotG10C6nZkwpPRmipIllEbMIZIE7solgmJBnCyk9VMM6z1BtVllEqK
|
|
z0WRILYlluriWcSDJVbusV27gwInaSWM9ECyZ3hqamnSWxFmOSOaqRx725bNnSZNs9J+OynVY+WZ
|
|
YYr7TE+nVaIr0Ais81Yn1hKAAAAAAAAAAAAAAAAAABExvG09peU4nov9n66L0j6q/WPg9Y1OJaON
|
|
ZpL0+9HWs/EWzeVz9PbmrEtnyc3h9reHy26TWdnSr2YX6657ijLXpLX0+onSamL/AHJ6W+Tbv2aW
|
|
ekTv16JzeI1Ox6KJiYiY7Slz+E6jxdN4dp3vj6fl5Og2clnKACAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZ2jeQRMxEbzO0Q08uqtkma4ulfO3r8lefUePMxWf
|
|
cjy9WvlzVxV6T1Z61/x0Y8f7Wc7Ur1lqVy+LqOWJ2hp6rXddon5rOF1tfmz5OkT0qzb8dWbxjp1c
|
|
biuuilJ5Z6r+IcQrixzEy8zl1E6rNt1tMztFY81sztU1eRucN4ffi2p5esRM72n0h7rS6XFo8FcO
|
|
CkVpX082nwXh3+z9FWLxHi36328vg6TZyW9ABAAAAAAAAAAAAAAAAAAAAAADj8Unm1tK/hqppHvw
|
|
y1k8/EMk+m0GOPeafiFpCZYwolnXspvHvLa9mF46gmnZmwozRUiUCBKYYsoBLOFbKAX0llEqqyzi
|
|
QXRLOJVRLOOwLIljZMEgrlhKyYYTAK5nZPN0RZjugUanHzVlz6xtLq361c+9eXItPpXX0dubTU+E
|
|
bL2lw2++O1fSW6m/VYAISAAAAAAAAAAAAAAAAAp1GbwcfTreelYEydcuMcRrM/L9nnlsV6wqpi2r
|
|
tv133mfWVkRyRtEdGFva7MzkYZNoamWN4bV4mYa9qztKIujhVppxGI8r1mJegeZpknBqKZY+7L0t
|
|
LRekWrO8TG8Ns/HJ5ZypAWZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAADS12fp4VJ6z9qVuq1HgUiI+3bpDl589cOKZmevqprXPTbx477rDJlrhr1nq4+s182tMRP
|
|
RqaziXiZJrWekNG17ZbxWJ336M5LXRbI3dLTJrs07RMY6fan1dHLrowY+X7MVjt6N3R6Kul0EbWm
|
|
s7bz8Z+LnabQX43r7Y53php/mXj+Dnv0f1JO1x/8ZxbUzj02O15mfLtD13AvZqnDds+pmMmo26el
|
|
XX0Wh0/D8EYtNjilY7+s/NstpOOTW7QBKgAAAAAAAAAAAAAAAAAAAAAADG88tLW9I3BwJtz6nNf1
|
|
vK/DHVqYJ3pzT5y3MPZeojOWMQylEKpTVjZnDCwkqzYQyRRICATCITAJZQxhMAshnEq4ZQC2srKq
|
|
qrIBZCWNZZgwswmFloVyCu0dFcx1WyrtCBhv5NTPHXds2U5o3hIz4ffbPt+KHUcTSW5c9Jme0u2v
|
|
VYAKpAAAAAAAAAAAAAAAAYZctcVOa35R6tLrltN795/YvknNqrfhpPLH92V5isd9mWq6fHjk6rn0
|
|
ZxG8KK5Jm/wbVZiYZtqrmkqL023bkxvCiY3lJHNyRG81mHS4Rn5sNsNp64+3yaWaNrzOzHBl+i6q
|
|
mT7s9J+S+ay8mex6EIneN47SNXKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAImYiJme0JafEs3h6fkidrZOn5eaLeJk7eOdm1Hi2vmtPTry/CHmOJcUvmvOPF1n09Pm
|
|
6HF9ZGm01qxO3R5vSY7XwzmzTy47zzTEd7en5Mfvt2/PURWdo3tvPrPlKymbktFqTtMTvHzbOLDG
|
|
f63JXbFX7FdnoODcDprZpq9TjiMMTvSn4vj8l5fxnrk91saPSa7i2hpOfbTVt5x1m0fLydzR6PDo
|
|
dPGHBXasd585n1lsRERG0dIF5OOe6tAEqgAAAAAAAAAAAAAAAAAAAAAAADX11+TRZrf0y2Gjxe22
|
|
gtH4piP3TPpXKwxtjhuYo9xq442iIblI2pC1RET2ILd9kxCqRjZmwlCSEohIJAQAAJZISDKGUd2M
|
|
MoBnVbVVCyAWVWeSuqyOwIlXZZKue4MJV2WWYT2QKbKL9YlfdRdIo35b7/Hd3KTzUrPrDh27uxpb
|
|
c2mpPwX/ABX9XAKpAAAAAAAAAAAAAACekTIp1eTwtJmv+GkyJn1oafeazbfpMzLR4jq/o8b823zX
|
|
6XNF8ERCvTcNpxLV5LauvPhx9Irv3lhztdtv8TtaWLicXrt03jzjzb2k1nid56ty3s/w+a7Uwzjn
|
|
1raejlarhmbhl/FpbxMO/fzj5p/ixSeXOvTtRfeI280ZI26tfDm3pWe63LaZx7qtGvniJ6tPLvOK
|
|
fOa9WzbJvTbza02jl3n5SSljscK1MajSxWZ96nSW88xw/VfQ9XMT9nfa3yemid43jtLeXsce88qQ
|
|
EqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADia3UTm1l4j7OP3Y/u
|
|
7Vp2rM+kPJW1PhYcmS0+9MzKm/jbwz31weMzbV8UppazPL9q0/BF4rk1GLDSNqxPWPhCnHmnNrtT
|
|
qPKteWPm6U6OdHaZvO+SaRNvhv12Ub/q3FhtrNVj0uKOt56z6R5y9zix1w4qY6RtWsREOJ7L6OKa
|
|
S2rvX6zNM7T6Vh3mmZyOfya7eACzIAAAAAAAAAAAAAAAAAAAAAAAAAAczjVvqMVfW/8AZ03I41bf
|
|
Lp6/OVs/UVrY47NyOzUxd4bUJpEbb3Z7IiOrKIVSjZhMLJYyhKIgmGUQSDESIEbJEgQmCITEAmGU
|
|
IiGUAyhZVhDOoM4Wx2VQtqBKuyyWEgqlhKyyuyBVaGtkbNmvk7A15l1eH2300R6TMORPSXT4ZO+O
|
|
8fFefEX63gEAAAAAAAAAAAAAAAq1WPxdLlp+Kkx+y1Fvsz8gjhaDauGK8sx07y3OE3m1tT6RaP4c
|
|
vU6yMNKUx73zT0ilY3l2eF6a+m0kRl/zbzz3+Ez5M8z26fJruW6wzYq5sV8d43raNpZjRzPPaTmx
|
|
5b6bJ9rHO3zb2WJ8GWPEscY9bgzxH2t62n19GWW0eHOzHU5XbjXZ1x8WTnz2iZ7S2M1IjH2+LX0V
|
|
KTqs8zO9ot0j8nUthi1J3UaOFMTfLFo6xMbS9BwHWTqdHOO8+/hnln5eTjYMFo1WTH5VnePzXcIm
|
|
2k4zlpPSmXy/hfF5eMfJns69OA2cgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAADG/2LfJ874rW845mubliY7bPoto5qzHrDz0+yePNF41OotaJ7RWNtpV1OtfHqZ715fhu
|
|
j8adNpcVfeyzE2/vLuanhOu1nEctIxTTFa/+ZPbZ3eHcF0vDbTfFE2yzG03t32+DokynXl9+leDB
|
|
TTYKYccbUpWIhYCzEAAAAAAAAAAAAAAAAAAAAAAAAAAAAcXjE/4zDH9M/wAu04XF5/3jj/0f3Wz9
|
|
RUYmzDWxS2I7FSyjuzY1ZKpRKEygEwiWUIkGIk2QJNhKQhMIhkCYZQxhlAMoZwwZwgWQshVCyATL
|
|
CWc9ldpBhZXLOVdpQK7NfJPRdaWvknoDVvPvOnwuel4+TlXn3nS4VPvXj4QtEV0wAAAAAAAAAAAA
|
|
AAAAAVV02CmTxK4qRf8AFFeq0AAAanEsfPpZmO9Ji0NDLfkwdOsulrumiyzHlVzJrz4Ovoy26vB8
|
|
cTBa9NffLtMY77Rv8Yegx5ImkKdJoY1HC81Y+3OSbVn0mGGkmbY45u6tnrrTOu2xGO0RxCd+nNVj
|
|
qKxTV1vH2pjaGtnyzXXYdo96ZmGXEMk15b7/AGZiVerWPTYckZcNbx5wzc7hGbnxXxzPWk7x8pdF
|
|
0S9jh1OXgAlUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAcPjEf4/FP9H93ccXjMf4vDP9Mx+62fqKrx+S+GvibEFSsqyYwlVK
|
|
ZYsmIMoRKYJQIPIEiQ2ATCUQygCGUIhMAyhnDCGUIFkLIV1ZxIMpVWWSrsCuyqyyyq09ECq8tfJK
|
|
66jJ2Bp5J6upwn7dv9Lk5J951uE/av8AJaIrqAAAAAAAAAAAAAAAAAAAAAAq1Mc2myxPnWf4cmtu
|
|
XT9fR0tffk0WSe28bfq5Wbamm3326MtunwfK6PCv/AxPraZ/dz9PO97/AOqf5dHhdZrw7Dv3mOb9
|
|
XOxRFM+avpe38mvkPHf/AFWlrKba7Tzt99ZxKkfR7euyNXMTrtPHfa0z+zPiM/UR8Zj+Wbdu8HpN
|
|
M2bfzrV13M4dO2pyR61dNvj44/J/oAWZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADj8bj63BPzdhyeNx0wz8ZWz9RWri7Nmv
|
|
VrYu0NmqaRZHZlDGGSiwxZSgCEkCBCQSCQBMJRCYgEsoYx3Z17AlMIhlCBnDOGEM4AlhZZKq4KrK
|
|
7LLKrIFN2vdfZReAaObu6/CO9vk5OePR1uEd7fJeIrqAIAAAAAAAAAAAAAAAAAAAAGtxCk5NFliI
|
|
3mI32+XVyNTyZOHTee946PQKPoeDffw4777eW/yVs60xv+ZxOnr4Okx1t05KRv8Ao41Z5q3yed5m
|
|
XY1szXRZ5jvFJ/hxItP0aOSN9q7yrtr4f2tHFM5+KT16Yq/vK/iGSbXw4vO14UcPx5MGfNbPG18m
|
|
1oj4THRsTw7VanPXVYpi3gzMcnrvCnG11JOupwuN8+a3pEQ6jT4divjxWnJExa09pbjbM5HHu90A
|
|
JUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAHM41H1GOf6nTc/jEf4Ws+lls/UX45uGekNujTwdm5RNIthKIZKLDFlsiQIShIC
|
|
EgCUJ7AmGTGO7IDzZQhMSDJMMYZQgZwzhhDOATuqssmVdgVWVWWyqtCBTeVF19lF+wNLNG7q8I+9
|
|
8nLyupwnt+S8RXUAQAAAAAAAAAAAAAAAAAAAAAAItWL1mto3iY2lyrcLyUxzix2ia2nvPeK+jrCL
|
|
OrTVnxpanhuPPemSs8l6RtE7dJj0ldpNP9GwRSZ3neZmV4cR/Vs4AJQAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANHi1d9H
|
|
M+kt5ra+vPoskfDdOfqK4mn7Q3aNHBPZu0W0RdDOGFWcKLCJZeTGQQlCQSgASBsCYZQxhlAJTAmA
|
|
TsmAgGcM4YQyjsgRLC3VnaVcgwsrt3Z2V2QK7tbJ1bN5a9waeWO7p8Knt8nNyebpcK8vkvlFdQBA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAK9RXmwZI+ErEWjesx6wQeZwejeo0cccuW8
|
|
elpblJaaRGxVnCuss4ZrMvJEgCAASISCQIBlCYYpieoM0wx8k7gzIRueYM4Z79FcSy3QEsLJmWFp
|
|
BjaVVpZWlXMoGNmvkXXlr3kGtknu6XCf7OXkl1OEdl8orqgIAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAHmskcmtzV/rls0U62OXiWX4zErcc9GmkRfWVkSqqziWayxCPIANwBIhIJSxS
|
|
CRG6dwZwlhEs4BluMdzfqgZxLLdXuy3AmVdpZTKuZBjaVVpWWV2QlhZRdfZRcGpl7urwfrzfJy8r
|
|
rcH61vPyWitdMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHA4nHLxKZ9awnH2ZcY
|
|
jbW459aq8fZpfiI2IZwrqzhmsz3Ebm4JN0AMhCQSIASndiAziWUSriWcAyRujc80DM3RCfIETLCW
|
|
UsZEsJYSslXZAwlTddPZTkBp5e7r8Gj6rJPxhx8k9Xa4PG2C8/FaK10QAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAcfjcbZMFvnDWx9m5x2PqcNvS+zSxT7sNPxH62YZQwqzhRZO6UCB
|
|
KUAJTux3SDIRuAncQAmJZRLBMSgZ7iIAZRKd2DICUSlAljLCYWMLIFVukNfI2bNbIDTyT7zu8Ijb
|
|
Sz/qcG/2nf4T/wCE/wD2WnxWt4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHL9oL
|
|
+Hw2cm28VvEuPptfgyVj6yIn0no7/FtJfW8NzYMe3PaPd39d3iMug1WktNc2C9dvPbeP1aZ9xF+v
|
|
T471tHu2iflK2HkqWmvaZj5Surqc9Ps5bx+alTHqYHm68S1Vf/NmfnC2vGNTXvyT84Ql6A3cSvHM
|
|
sfaxVn5Ssrxyv3sM/lKB1xza8bwT3pePyWV4tpZ+/MfOEjfGrXiGlt2zV/PotrqcN/s5aT/+wLRj
|
|
FontMSlAlKEgndO6IAZQljDIEgeQljLCzOVdkCu/SGrkbF56NPNeKxMzMRHxENe0+89DwuNtHHzl
|
|
5PJr8NcnLW3Pbf7r1nCZm2gpae8zMrz4i/W6AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAETETG0xukB4HVaeMHEtRi26RedvkyjBSfX9W77QYvC4xz7dMlYlrU7M929dWJLFc6aPK0q
|
|
7YLxPS0S22FlP6q38Zac0yR92s/KVc3tHfFf8tpbcsLRvB/dR/8ALLVnU0r9uL1+dZI1mnmdvGpv
|
|
6TOy6ym+Oto2tWJ+cJ/tW+KLK5KW+zes/KU7tG+h01p64qx8Y6NXNo6Y+uPJlp8rLf0rfG7MXtHa
|
|
0x8pZxqs9e2a8f8A7Oj7HaTHn0+f6RWM23LETfr6vRW4PoL99NT8ui7F4+vEdXXtnt+fVbXjGsr/
|
|
AOZE/OsPS29nuH27YrV+VpeV9pdPXhOtw49NG9Mld55+vXcTPd42I47qo7xSfyWV9oM8d8VJ/VxM
|
|
d8l46xWF9cV7en6o/qLfxp2I9ob+eCv/AHMo9op89P8A/wBORGmyT5R+qfo2X8P7n9Q/jTsx7RR5
|
|
6ef+4/8AuHftg/8A6cWcOSO9J/WEbWr3pY7Efzp2Lcfv5YK/9zWy8d1E/ZpSv5Oba1/+Hb9lc+LP
|
|
bFt87I7E/wAabWbiurvEx4nL/pjZzc2bJkn372t85ZXx55/BX85lucC0vPxnTxlnnjm32mOiZqUu
|
|
LJ2p4TwnVavNWaYbRTfre0bQ99pcH0bT0xb78vmtiIiNojaErMwAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAHnfarF7umzRHaZrLjYrdIen9ocPi8JyTt1xzF4eUw23rCm3R4r6bMy
|
|
wt6kdTaWLdjswmNoZontsCm0K5XWjopnuDC0dGpqG5bs08/daKV672MjbSaif6oh6Z5f2LtvptRX
|
|
0tEvUN3Jfo8f7cYve0eX4zV7B5z20xc/C8eSPuZIRficfXlcPaG7ino08HWIbePpLF2NuiyOyrHK
|
|
3fZFSwuovHVfaVF4QK5YWTM9UT0EKry6Ps1Tn4zjn8NZn9nOtLseydObiWW34cf918fWfk+PYANn
|
|
KAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAq1WKM+ly4p+/WYeBxTNd6zG0xO0
|
|
vobw3FcP0bi2em20Tbmj5Srr418V9sa2Z7qKyzi07MXUylhaU7yjqhLCeiq3ddaFNxFYW7NLNG8t
|
|
zya+WO6Va9J7FW66mvwidnrXiPY3Ny8RyUn71Jj9Ht3RPjk19HK9pMHj8D1ER3rHN+jqqtTjjNps
|
|
uOe16zAifXzfTz7kNyndpYazS9qT0mszDdoxrsi6m8LazMq6zDOsq1ZEyrt1WWlXaUCqyq0rbKbi
|
|
Fdp6PReyFd8uqv8ACsfy83aXrPZHHto89/xX2/SP/dpj6y8vx6EBq5gAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAB5n2q03LfDqqx39y39npmlxbS/TOG5se29tuavzgWzeV4mtui2
|
|
O3RRSY2hdVhqO2MvI36iu9lUsrSrvDHn6spnmSiq5jooyV6tq1VV69RC32byTh43h8otMx+r6I+Z
|
|
aK/g8TwX7bXh9Mid4iW+fjl8n1ICWb57xLBOm4zqse20Tbmj8+qKdnS9q8PhcTw5tumSm0/OHMxz
|
|
0Za+uzx3sX1t0Zxurr1ZxvspWiZYWZbsbT0QK7KLrZVZJFaqt5vbezNOTg9J/FaZeJns93wCvLwb
|
|
T/GJn92uGHldIBowAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADuAPA67F9H4l
|
|
qMW20VvO3yRWW97T4fC4rXJHSMtI/WGhVlue3b473K2KzMML4+62tujG9pnozXaOSOVFMnVbmq1t
|
|
trJRW5E7wwvUxTvCyY6CHOt7moxz6Wh9PxTzYaT61h8x1MbZK/OH0zTf+Fxf6I/htj45vL9WgLMn
|
|
mvbPFvocGWO9L7fq85p5maw9d7VYvE4JkmPu2if3eW0+PasdFNOnxfF1Y2hlykRsmY+LJ0MZjZXa
|
|
eq2eyi8oQTO0KLdZWzPRjWu6VaqtHR73g0bcI0sf0Q8Nkq93wqNuFaWP+XDTDDytwBowAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAef9q8HNpcGaI60vtPyl56k9Iew49j8ThGe
|
|
PwxFv0l4zH2U26fDfTYiyJljvsjf4sm6vJ1hrXjq2MkqLdZEVbgbMx0auGdmzNt6iHN1Ub5af6of
|
|
TdPG2nxx6Vj+HzaaTm1+nx/iyVj930ysbViPRrj45vL9SAuyc7j1efguqj+jd4/T33rD3HEcPj8O
|
|
1GP8WOY/Z4TTT7sKadHhbcsZnaCJ3TPZk6VdrKbTutmP0U2nqgrGOsr8deiuI2X09EqKM1dt3uuG
|
|
f/jdN/06/wAPE546S9rwud+Gaaf+XH8NMMPK2wGjAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAABrcRp4nDtRWPPHP8PCYusPoWSvNjtX1iYfPuWaXtX8MzCuvjfw32siu8ptXoxi
|
|
0wy5t4YulReqmazu2skbquURWFInddM7VYRGyL291KFnCcfj8e0le/Lbmn8n0N4b2Ur4nHLWmPsY
|
|
5e5a5+OXyXugBZmiY3iY9Xz7NjnTa3Ph/BeYj5PoTxftFg8Hjk2iOmWkW/Psrr418V5WrWd2faFc
|
|
V2jdnEMXWxntupmN7NiYU27iWML6dVMVnddjgVqMsdHr+CW5uE6f4Rt+7yuSsTDv+zWXn0WTHP3L
|
|
/tK+GHl+O0A1c4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8Dn93W56/wDM
|
|
t/L3z59qp24jn+OS38lnpr4r7ZxHQ2TEstt3PXUrt27K57rr1VT0BjKnJPRbMqMs7QlV2fYvHvrd
|
|
VknyrEfu9m8f7FZI8fVU85iJewbT45NfQBKo817W4eulzxHaZrL0rje09ItwqbfhtBVs3leai8RD
|
|
KLw1sduesL606dWFdsZT1jdhNeq6K9DlhCVUU6s4jZnt1YzAhnM71dH2bycmszY/K1d/0c6OzY4R
|
|
fwuK4p8rTstn6z8k7HrwGzkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHz3
|
|
Vxvr80/8y38voTwGpj/F5/8AqT/JfjTx/WVeyY6FPspc9dZPVXaOq2WEwIUTVRmjo2rNfLHRI3vZ
|
|
DJycXtX8dZh7t879nsnhcbwz23tt+r6I2nxyb+gCVBzuPY/E4PqI9K7ui19fTxNBnp60n+Aj5/pJ
|
|
3jZu1aOnnltMNussdfXbm+l3ZM9URHREdZVXTuT1Nk7boQiOkJw28PU47/htEp5eivJPLMTCZ9Vv
|
|
x7mJ3iJ9UqNHk8XR4b+tIXuhxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD
|
|
weqjbWZ4/wCZP8vePCaz/wDIaiP+Zb+UX408f0r9lOxWOifJhXWjfyYWllPRXYQxnrCrJHRd3YZI
|
|
6A1NJecHEsN/S0T+76bE7xE+r5dk93LW3pL6ZpMni6PDf8VIn9m2fjm8s9rgFmQxvHNS0esbMiew
|
|
PnHLyai9fS0w2aNfUTtrs3+uf5bGPqy068fF227KtSsdFlKqNGMV6myyY6sbdIQI8tlOWOi6Jhhk
|
|
j3RD0vA8nicMx9etZmHRcT2Zyb6XNT8N9/2dt0T449T2AJVAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAHhdfG3E9TH9cvdPEcXjk4zqI/q3L8aeP6xr2TsxpLOekMK6mFo6qpXSrm
|
|
OqBixvHSVmzC4OfqK7S9/wAByeLwbTW9K7fo8Fqo6Paeyl+fglI/Da0NcMPK7QC7AAB8313TiOf/
|
|
AKk/y2MHWrX4jG3E9R/1Lfyv0/aFNOrHxuU7LI7MMayGTVlHWUXhNe6Z6wIUsb9d1m20q7dkDpez
|
|
N9tRqKT5xEvRvKez9+Xis1/FSYerb5+OTyf6AFlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAB43j9eXjN/jWJ/Z7J5L2mry8Upb8VIF8f6aGOey2eynHvOy7bowrrYSxZSwQJ2YXZ
|
|
92N4BoanrEvVexmTm4blr+HJ/aHltRHSXofYm/1Wrp5RaJaYY+X49WA0c4AD51xONuKan/qW/lbp
|
|
+0MOLRtxbU/9SU4J7KadWPjep2WQrr2WRPRk1TvsndXMpiRCb9FNu0rbTuqvKBscCjfi9PhWZeue
|
|
V9n434rafTHL1TfPxy+T/QAszAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHmv
|
|
avHtfTZfnV6VxPajHzcNrf8ABeJFs/XnMcr4no18c+6vr2YadkY2YM57sEDLyY37Mo7MMnYGlqO0
|
|
vQ+xNfqNVb1tEfs87qZ2rL0/sVX/AHdnt65P7Q0wx8vx6UBo5wAHz/jUbcX1PT78qtO2vaCnJxjP
|
|
8Zif2amnnspp04+OjWejKJ6MKdmcMmyJn4m5ZHzEVPMwtJv0VZLbQDqezcb8RzT6Y/7vUPM+ytZt
|
|
n1OTyiIh6Ztn45N/6AFlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABocbxeLw
|
|
nUR5xXm/Rvq8+OMuDJjntaswEeBxT0bNZ6NatZpNqz3rO0rqsdO3PxlaWEMpY+aqWXkryT0ZT2V3
|
|
7A0dVPuy9f7G124NM/iyT/Z4zWT7sw957MYfB4Fp4/FE2/WWmGHldcBowAAeM9qKcvFeb8VIly9P
|
|
0nq7ntbTbVYL+tJj93CwT76unR4/jo0nozhhTsy3Y1sWljM9Ce7HyQIm3RRlttVbaWrnt0Sh6n2U
|
|
x8vD8mSfv3/h3XN4Bi8Lg2nj8Uc36y6TeOPXugCUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAPD8RxeBxXUU26Tbmj8+quro+02Lw+I4ssdslNvzhzazvDPbq8d7GW7Dfqz2VzG
|
|
0s2qd+iu/Zn5Ksk9BVztX1mI8930zh2LwOHabH+HHWP2fNYp4+vwYvxXiP3fUqxtWIjyjZtj45/L
|
|
faQFmQADzftfj3w6fJ6WmHmsP23rvaqnNwqLfhvEvIYZ+sV038bo0noy36MK9oZQxrdMyrlnMbMZ
|
|
QKrS1M07zEestq/RRjr4utwY/wAV4j91p9V18fQdJj8LR4ccfdpEfsuREbREJbuMAAAAAAAAAAAA
|
|
BAJAAAAEAJEAJQAJQAJEAJQAJQAJEACUJAQlAJEAJQAJQJAAAEAJEAJBAAAJAABAJEJAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABwvanDzaPFmjvjv8A
|
|
tLztJ3h7HjGHx+FainnFeaPnHV4vFbeIU038VbHeGF+kso7Mb9mTdhKnLK3dRm7SIrHhGPxeP6Sv
|
|
9cT/AHfSnz72Zx+J7Q45/BWZ/Z9BbZ+OXyfQBZQABzeP4/E4NqI9Ii36S8Ng/wAx9C4jTxOH6ivr
|
|
jn+Hz3B/mQi/GvjdCnWNlsdI2V07LIlg6USrt2ZzZXMoFV+zPhGLxeOaavpbm/RVltEN72Yx+Jxm
|
|
b7dKUmf7L5+s9/HtRA2cqRACRACRACRACUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAACQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQCQQCRACRACRCQBCQBCQB
|
|
ACRACRACRACRACL1i9LVntMbPATTwdRkxT3pea/u+gPE8Xx+DxrPHlaYt+qNfGvjvtXXsi0dOrKk
|
|
dEXjZg6VMtbP2bMtXUdpEV0/Y2nNxbNf8OP+727xvsXH+N1U/wBEfy9k3nxyb+gCVQAGOWvNivX1
|
|
rMPnGGOXNNfOJ2fSZ6w+dZKeHxDPX8N7R+6L8a+L63KdoZ7q6zvEMpnowdKJ6ywmWUyqvIKM0vQ+
|
|
x+D6rU55+9aKx+TzWa36vbezmDwODYenW+95/Nphj5L6dQBo5wAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAEiAAAEoA
|
|
AAAAAAAAAAAAAEAkEAkRuAkQbgkQAkQAkQAkQAl5T2nx8nEMOT8dNv0l6pwfarHvpcGWPu32/WCr
|
|
YvK4mOem6b9mGKd4Z3idmFdka0y1c892zfpMtLPaNpEV6D2Kj/Eauf6YeweQ9ieuTVz8K/3evbT4
|
|
5NfQBKoAA8FxCvJxrUx/XMvevD8Zry8fz/Haf2RfjTx/6RSOnRMyypHu9kXjowrqVSrvPRnZVl6V
|
|
kK0775MsUjvadn0nT4ow6bFijtSsVfPuFYvpPGtNTy54mfy6vorXDm8l9pEC7JIgBIgBIgBIgBIg
|
|
BIgBIhIAgBIhIAgBIgBIIBIAAhIAhIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJAAAAAAAAAAAAAAA
|
|
AAAAAAAAABAJQkAEAAAAAAAAAAjc3BIjdG4Mkbo5kcwMjdhzHMDPc3V8xzAs3N1fMjmBZubq+Y5g
|
|
Wbm6vmOYFm5ur5jmBZubq+Y5gWbm6vmOYFm5ur5jmBZubq+Y5gWbm6vmTzAz3N2HMnmBlu5ftFTx
|
|
OEZJ/DMW/d0t2rxKni8N1FPWkiZ9eS08e7Cy8dGGn6UhZaJljXZGnmc3UT3dPP2cnUT78xCIV6j2
|
|
H/8A9c/6f7vXPI+w8bU1U+vL/d63du5NfUiDcVSIAS8b7RV5eOb/AIqRL2TyXtNX/e2KfXH/AHlF
|
|
+NPH/pr4+2xcxx0hFpY11K7R16KM32ZWz3UaidqSgrc9kcPicWyZJjfw6T+727y3sXh2xarN+K0V
|
|
h6lvPjj3e0ASqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJQAAAAAkQAkQAkAAAAAAAAAAAAAAA
|
|
EgAAAAAAAAAAAAAAAAAAAAAgAAABKDcAN0bgkY8xzAyRux5kcwM9zdXNkTcFm6OZXzMeYFvMibKu
|
|
ZHMC2bo51U2RuC2bom6rc3BZzom6sBZzI52ADPnOdggFnMc6skFnMc6rc3BbznOp3RzAv50c6nml
|
|
HMC/nOf4qOY5wX85zqOc5wbHOc7X5znBsc6edr85zg2ec52vzpi4NjmY5bROG+/bllVzsNTk5dLl
|
|
n0pP8BHmMHWNmzt0aum8obm08vVjfrtnxztR0mXHzTvaZdjVRMTLkZo6yiFen9iZ2pqY/wBP93rN
|
|
3kPY+/LfPX1rE/u9XzN3HfqzdO6vmTuIZ7m7Hc3Bnu8t7TR/vHBP9E/y9Pu837SV31umn+if5Rfi
|
|
/j/01MMb1hjkrtKzBG0bMsmOZY11tOYamr6Und0LUc7XT7u3rJPqL8er9lcPhcFpbzyWm39v7O00
|
|
+FYvA4Zpsc94xxu227jv1IAgAAAAAAAAABKAAAASgASgBIgBIgBIgBIhIAAAAAAAAAAAAAAAAAAC
|
|
UACUJAAAAAAAAAAAABIAAAAAAAAAAAAAAAAAAAAg3AEbomQZbo3YzLGbAz3RNlc3YzcFs2YzdVN2
|
|
M2Bdzom6nmNwW86JurTAMuY3REJ2BB1ZRVMVBhsbSsiqeUFXLucq3lTygp5TlXcpygp5TlXcpygp
|
|
5TlXcqOUFXKjlXcrGYBXysdlswiYBVMdUTCyY6sZBWxlnMMZgGLGZZSwkDdHMiWO4MuY5mEyjcFn
|
|
N1OdVzHMC3nTzqeY5gX85zqOZPMC+Lqdbk20eb/RKOZr8QybaK/XvtH7iZ9aGlp2luzT3fg19NHS
|
|
OjbmPcYX67XH1XSZ9XIzRvMuzrK7zLkZYmYnciunb9lZ5dTk+OP+71cXeP8AZnJ/ip2nf3J/l6iL
|
|
/Fu5L9bMWZczXi6YuIbEWTzKIuyiwLt3nuO25uI4a/hx7/rLuczg8TicvFLbfdpEK6+NPH/phhjo
|
|
stLGkctUWnoxrrU3j1cnWTzZq1jzl1clo5Zcu8c+txR63iP3Tn6pv4+g4o5cVI9IiGe7CJ2iE7t3
|
|
GyN2O6dwSINwSISAlAAlACRAAlAAlACRACRCQAAAAAAAAAASgASISAAAAAAAAAAAAACQAAAAAAAA
|
|
AAAAAASAAAAAAAAAAAAAAAAIAAAQCAJljuljsCJlhMs9mOwMJYys5TkBVsjZdyHICrZPKt5E8oK4
|
|
qmKrOVOwMIqyirPY2Bjyp2ZbAI2NmSARsbMgEbI2ZAMdjZICNkbMkSCNmOzJEgx2YyzljMAwlhKy
|
|
WEwCuWErJhhMArlhLOWEgxljMpljIImWMyTKJA3N0IBO5vux3NwZbnMx3NwZczT4jf3MdPW27a3a
|
|
fJOq1XNP2KdIRfi+J2trSYfcjeF+Wm1OicVeWIiN9kai8xjY12ORqultnI1Ecsujq79XP1FovWYI
|
|
rTgeq+j8QrWZ+3Mx+r2UXeC0WG2Ti2kiN5mL807eUREvbzbaejefHJv62Iv8WUXa0WTFhVtRdlF2
|
|
rz9WUXBtc7jR9dqc2T1ttHyhvZMvJitb0jdq6XHNcNenWVN3028U99WRj6Kb02be3Tq18/SN2Lpc
|
|
3UdN9nOmZrqKX/DaJ/d0svvTLRzV3jomK6+Pd1vvWJj0ZczT0mXxNJht60hfFnQ4qu3N1cWTEgs3
|
|
Tur5k7gz3N2O5uDM3Y7m4MtxBuCQASIASIASAAAAAAACRCQAAAAAAAAEoSAAAAAAAAAAAlAAlCQA
|
|
AAAAAAAAAAASAAAAAAAAAAAAIASgAAAEJAQJQCNkbMgGOyOVnsAw5TlZ7GwMOVPKy2NgY7GzIBGx
|
|
skA2AAAAAAAAAAQkBAEghEskAxYzDPZGwK5hjMLJhjMAqmGEwumrCagomFcw2JqqtUFEsLLrV82F
|
|
o7gqljKyYYTGwMZRKUSCAQAboJnaN5Bjkneu0d5W4ccViIiOzHFWbTzNumP1Zarr8eeRMbxDW1Mx
|
|
NO67NbkhzNVnmInqzaOZrL93JyZeV0M1++7S02jvxDWxhxx033tPpC8Z6rrezWjmZyazJG2/u03h
|
|
2vFibTHoqvamiwVwY+nLGzV0+SZ1Mx8G0/45tOhzJ5lXMc3UVXRdlF1HP+iYsDPLPPy49/tz1+Te
|
|
pSIr0ho6ak5Ms5J8o2q6NImOrHV7XX488ypzTtHXo0s9t6zG7c1G1qz6ubeZiZ3UatXJG3yauSO7
|
|
cvMTEx5tPLb3prPRMVr0HB8vicNxf0+7+kt+LOJwTJyY/Bnz3tH93X36N58cWvq6LSyiyndMSlC7
|
|
mZcymLJiwLosmJVRLKLAtiU7q4lMSCzc3YxJuDMRuAlKAEgAAAlAkAAAAAABKAEgAAAAAJAAAAAA
|
|
AAAAAAAEgAAAAAAAAAAAAAkAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAhIAAACAAAASgAAAAAAEAAAA
|
|
hGzJAImGMwzQDDZjNVuyNgUTVhNGxysZqDVmiu1G5NN2M4waM0+DCaN2cbGcQNGaMZq3JxMJxA1J
|
|
qx2bU4kU09slorWNwa20z02RXHbJbl26QvtFovbHWkxEdJt5y2MOHlr2U1W3jx+1hiw8vSO63lmI
|
|
XRTaEWmtY6snRHO1VpmJ+DjavpSZl2s8b7y4HFcnh0n0gha5ebJN55KRM2mdoiPN6fh+kpwXh0Wy
|
|
RHj5Otp/s5Ps1p62y31+em9aTMYt/OfVfxTiPjZ52naI7fBrI5t66xz5+a1rW7yx0eSL6iZjtEOX
|
|
qNbSletom3lENjh2fbHzbbWt3iVozruc+5ztWubf4M4ybpQ2Oboyrva0Vjza8WdDR4OkXt3n9ldX
|
|
kaePP9VtYqctYhdvt5oivTeCZ2YOxXk6ubqMfV0b9mrljfqlFcq88k7z2U5axeItDa1OPessuC8P
|
|
ya7XRWYnwqdbT/ZMilvIu4dpslNdixXja8Y5tt85djZdbDWnGOesRtXFtuw6T27No5Kx2OrKYQlC
|
|
ExKJgBnEpiyvdlEgsizKLKollFgWxLKJVRLKJBbEp3VxLKJBnuMWQJEbpBIAAAJAAAABIAAAAAAA
|
|
lAJAAAAAAAAAAAAAASAAAAAAAAAAAAAJAAAABAJABAlAAAAAAAAAAAAAAAAAAAAAAAAIAAAAAAAA
|
|
AAABAJQAAAAgAABAAI2EoBGyJhkgGPKxmqxAKpownHC+YRMdN5BrTj67R3bOn01o7p01Iv71u89o
|
|
b9a7LfBTfS1vWI2jf12VfQPSW8KX2mas+NC2iv6xMNfJpMnLtEbuuxtMRCtzF55NR5rPps1N/ctP
|
|
y6uHreE6nXZ4pak48X3rT06fB7fNeI33cbX6mI32R/MWu7XF116aDSRhxbRERs8f499bkyZeeKae
|
|
kzE2mdon81/tfxDLGOunwbzlzbx08oaHBvZHJlx48mrvaa94pu04y617576rNGLRRM0397JEd/lu
|
|
9Dw/S3x4qxffo6mm4NjwUiKY4iI9Ib1dHFY6QIaNabbrYrLfrpJtaK1rMzPZb/s+05IpP59OyLeJ
|
|
k7eNfRaOc1ue32I7fGXYpi5Y77M8OGMeOKxHSFsU3Y29deZMzirl6dlVvhLatCjJHeYQv1rXnps1
|
|
8k9/VsW6qLVmZIi1rzitlvFKRvaZ2h6TSaenC9FFY+3brM+sqeG8Prp4+kZ+lvuxPkr1mqm95nfp
|
|
DXM459676a2q1dsV7XietvNno78+CJn1cjX6mOeIm0bR33dfRU5NJjidt9t5afjG/V6JZ7I2QMNh
|
|
nyo2BhsMuVG3wAhMSbbQRAMolnE+iuGUSCyJZRKuGUSCyJZK4llEgyZMYTuCUsYSCQASISAAAlCQ
|
|
AAAAAAEoASCASAAAAAAAAAAAAlACRACQAAAAAAAAAEgCEoASCAAAAAAAAAAAAAAAAAAAAAAABAAA
|
|
AAAAAAAISAIAAAAAAQAAACASgAAAQJAQAAhIDHZhln3do7z0WS18mWsajHjmes7pg3dNi5aRMNqO
|
|
yvDHTpPRaigHZhN4hHRlaVN59JY3zRENLUavaO+yq0iNVlitJ6vNcR1MVi0zO0era1/Ea0rPvbz5
|
|
PM5MWp45qvo2GZrhmfrsnpHpHzTCseEcM/2vrr8Q1Eb4qzy44nziPN63HpYiIiI7LNHoqabBTFii
|
|
IpSNohuVxrKtWMEejPwY9G1FFmHB4mWJn7MdfnIM9JpIx15to5pbUaas/a6rqViI7MxPxqX0UT1r
|
|
O3wVzpbR2hviP5i03Y5s6a879FNtHljydhExCv8AMTPJXBnRZbz0iG5ptFjwe/l96zctMVamTJtE
|
|
yTMibu1VrdTzRMR0j0ed4lr64MVpm0RERvMz5NvX62uOJ69XhOKX1HH9bHDtFvNYnfJeOy0Z2ojX
|
|
6jjnEq6fRUmccTvN/J9H0eKcOnx45neaxEbubwHgOHg+milI3vP2resu3Wu0JQmITsmISDHZHKz2
|
|
JgFc1RMLJhGwK9iIZ7MZgEdgmAEwyiWCdwWRLKJVxKYsC2JTuriWUSDNlEsIlMAySx3SCRCQSIAS
|
|
AAACRACQAAAAAAASIASAAAAAAAAAAAAAAACRACRACQASIAAAAAAAAAAAAAAAAAAAAAAAAQCUAAAA
|
|
AAAAAAIAAAAAAAAQAAAAAACBICBICAAEJAQJQCJcLjuS2ny6fPG/LWdpd1o8T0X07SXx/e7wCdJx
|
|
Wa0jmneHQpxPDMdZmJfNtZm49weZrh0/j4o7VtSZ2+Uw0/8A7o49k92vBLc/ntFohFW9PqGXimOI
|
|
6Tu1L8T3eCx6r2t1O3JwvHjifO99v7t/Bwf2l1PXU6rS6eJ8qUm8x+so5TsekzcSjbvs4mt4rzW5
|
|
K2mbT0itesy2cHsvbvqtbmyz5xERWP2jd1tJwrTaONsOKtZ8585+cnDrzmn4Rq+IZObUROHD32n7
|
|
Vv8A0ej0uhxaXFGPFSK1j0bkY4jyZRVZVXFGUVWbGwKsk8mObekNrSW3pWf1a2aYjHbm7bNnQ1id
|
|
PW0TvuDdhJEbQABMsLW2R0ZTMQrvfbz2YWzVhpanUxEd0dWkW5c8R5uXxDX1w4pnfr5Q19XxKuOJ
|
|
2neXltVqtVxbV/RdJ715+1bypANfiOu1HENV9C0MTfNeesx2rD1PAeBYuE6aKx72W3W9/WVnBuB4
|
|
eF4dqRzZbdb5J72l160WVK02ZxCYhOwI23TsnY2BGxsnYBjsiYZsZBjMMZZSgGEolMsQDdG6NwZ7
|
|
piVe6YkFsSziVMWZRILolMSriWUSCyJTuwhMSDMRCQSI3SAlACRCQAAEoAEoASAAAAAAAAACUACR
|
|
ACQAAAAAAAAAAAAASAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAABAAAAAAAAAAAAACBKAAAAAAAQ
|
|
JQAAAhICEbJAYTWJ7wx8KvpC0BV4ceieWGewDHlNmWwCNjZICNhIDmcZredBecdpiY69FXCOLW+i
|
|
UiZidukulmxxlx2paN4mNng+K4+I8Hy2yaTfl37TXetoCPfRxfp1qi3F48ofKMvtvxak8s6LDv61
|
|
rZji9rPaLUf5PC+bfttS0q8q3p9W/wBrRMdpUZuKdN99nzvFqPbTVz7nD8OKs+do2/mW3h4D7Xaq
|
|
ZnPrtNpqz35aRaYOHY9Zk4pNt9rR+rl6zi+OnS+WN57Rv1lXp/YrNaYtruL6zNPnGO3hxP6O5w/2
|
|
f0HDuun09Yv55Le9afznqcOvO4tBreMTHu30unnva0bWt8on+70nDuE4OHYYx4Kbesz3tPrMuhGO
|
|
IjpDOKrK9YVpsyiGUQnYGOyUgI2SlAIEmwMWMs9kTAMJYzDOYRMArmGErZhhMArlHmzmGMwDE3Ts
|
|
bAbs4swj5pgFkSziVcM4BZEsolXDKAZwyhjCYBkACQhIAAAAAAAJAAAAAAAAAAAAAAAAAAAShIAA
|
|
AAAAAAJAAAAAAAAAAAAAABAJEAAAAAAAAAAAAAAAIEoBKAAAAAAAAAAAAAAABAlAAAAAAAIAAAAA
|
|
BAkBAkBAkBAlACEgMZjdjbFW8bWrEx8YWANb6Fp+bfwab+vLDKMFK9qxH5L0bAr8OPRPKz2AY7J2
|
|
SbAjYZAI2E7AIEgIEgIEgMdkSy2NgY7MdlmyNoBXsxmFuyNgVTVjNV3KjlBRNTlXTVHKCrlIqt5T
|
|
lBhEMohlFerLlBjEMohMVTEARDKCITsAk2AEgAAAkAAAAAAAAAAAAAAAAAAAAAAAASAAAAAAAAD/
|
|
2Q==`;var k8="2.1.3";var uu,id,ld,Ko,Zo,cu,Hf,ud,Gf,jf,qf,Xf,I8=class{constructor(t){ts(this,uu,void 0);ts(this,id,void 0);ts(this,ld,void 0);ts(this,Ko,void 0);ts(this,Zo,void 0);ts(this,cu,void 0);this.analyze=(...t)=>{if(!hn(this,id))return;let n=this.tf.engine().state.numTensors,s=hn(this,uu);Ss(this,uu,n);let r=n-s;r!==0&&ue(...t,r)};ts(this,Hf,t=>{if(!hn(this,ld))return null;if(!t)return"input is not defined";if(this.tf.ENV.flags.IS_NODE&&!(t instanceof Ue))return"input must be a tensor";try{this.tf.getBackend()}catch(n){return"backend not loaded"}return null});ts(this,ud,async(t=!1)=>{var n;if(this.config.backend&&this.config.backend.length>0&&t||this.tf.getBackend()!==this.config.backend){let s=Ke();if(this.state="backend",this.config.backend&&this.config.backend.length>0){if(typeof window=="undefined"&&typeof WorkerGlobalScope!="undefined"&&this.config.debug&&ue("running inside web worker"),this.tf.ENV.flags.IS_BROWSER&&this.config.backend==="tensorflow"&&(ue("override: backend set to tensorflow while running in browser"),this.config.backend="humangl"),this.tf.ENV.flags.IS_NODE&&(this.config.backend==="webgl"||this.config.backend==="humangl")&&(ue("override: backend set to webgl while running in nodejs"),this.config.backend="tensorflow"),this.tf.ENV.flags.IS_BROWSER&&this.config.backend==="webgpu")if(typeof navigator=="undefined"||typeof navigator.gpu=="undefined")ue("override: backend set to webgpu but browser does not support webgpu"),this.config.backend="humangl";else{let a=await navigator.gpu.requestAdapter();this.config.debug&&ue("enumerated webgpu adapter:",a)}this.config.backend==="humangl"&&wk();let r=Object.keys(this.tf.engine().registryFactory);if(this.config.debug&&ue("available backends:",r),r.includes(this.config.backend)||(ue(`error: backend ${this.config.backend} not found in registry`),this.config.backend=this.tf.ENV.flags.IS_NODE?"tensorflow":"humangl",ue(`override: using backend ${this.config.backend} instead`)),this.config.debug&&ue("setting backend:",this.config.backend),this.config.backend==="wasm"){if(this.config.debug&&ue("wasm path:",this.config.wasmPath),typeof((n=this.tf)==null?void 0:n.setWasmPaths)!="undefined")this.tf.setWasmPaths(this.config.wasmPath);else throw new Error("Human: WASM backend is not loaded");let a=await this.tf.env().getAsync("WASM_HAS_SIMD_SUPPORT"),o=await this.tf.env().getAsync("WASM_HAS_MULTITHREAD_SUPPORT");this.config.debug&&ue(`wasm execution: ${a?"SIMD":"no SIMD"} ${o?"multithreaded":"singlethreaded"}`),this.config.debug&&!a&&ue("warning: wasm simd support is not enabled")}try{await this.tf.setBackend(this.config.backend)}catch(a){ue("error: cannot set backend:",this.config.backend,a)}}if(this.tf.getBackend()==="webgl"||this.tf.getBackend()==="humangl"){this.tf.ENV.set("CHECK_COMPUTATION_FOR_ERRORS",!1),this.tf.ENV.set("WEBGL_CPU_FORWARD",!0),this.tf.ENV.set("WEBGL_PACK_DEPTHWISECONV",!1),this.tf.ENV.set("WEBGL_USE_SHAPES_UNIFORMS",!0),typeof this.config.deallocate!="undefined"&&this.config.deallocate&&(ue("changing webgl: WEBGL_DELETE_TEXTURE_THRESHOLD:",!0),this.tf.ENV.set("WEBGL_DELETE_TEXTURE_THRESHOLD",0));let r=await this.tf.backend().getGPGPUContext().gl;this.config.debug&&ue(`gl version:${r.getParameter(r.VERSION)} renderer:${r.getParameter(r.RENDERER)}`)}this.tf.enableProdMode(),await this.tf.ready(),this.performance.backend=Math.trunc(Ke()-s)}});this.next=t=>w8(t||this.result);ts(this,Gf,async t=>{if(this.config.cacheSensitivity===0)return!1;let n=32;if(!t.shape[1]||!t.shape[2])return!1;let s=_e.resizeBilinear(t,[Math.trunc(t.shape[1]/n),Math.trunc(t.shape[2]/n)]),r=await s.data(),a=0;for(let l=0;l<r.length/3;l++)a+=r[3*l+2];s.dispose();let o=100*(Math.max(a,hn(this,Zo))/Math.min(a,hn(this,Zo))-1);Ss(this,Zo,a);let i=o<Math.max(this.config.cacheSensitivity,hn(this,cu));return Ss(this,cu,o>10*this.config.cacheSensitivity?0:o),i});ts(this,jf,async()=>{let t=(r,a="application/octet-stream")=>fetch(`data:${a};base64,${r}`).then(o=>o.blob()),n,s;switch(this.config.warmup){case"face":n=await t(Vf);break;case"full":n=await t(Uf);break;default:n=null}if(n){let r=await createImageBitmap(n);s=await this.detect(r,this.config),r.close()}return s});ts(this,qf,async()=>new Promise(t=>{let n,s=0;switch(this.config.warmup){case"face":s=256,n="data:image/jpeg;base64,"+Vf;break;case"full":case"body":s=1200,n="data:image/jpeg;base64,"+Uf;break;default:n=null}let r=new Image;r.onload=async()=>{let a=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(s,s):document.createElement("canvas");a.width=r.naturalWidth,a.height=r.naturalHeight;let o=a.getContext("2d");o==null||o.drawImage(r,0,0);let i=await this.detect(a,this.config);t(i)},n?r.src=n:t(null)}));ts(this,Xf,async()=>{let t=r=>Buffer.from(r,"base64"),n;if(this.config.warmup==="face"&&(n=t(Vf)),(this.config.warmup==="body"||this.config.warmup==="full")&&(n=t(Uf)),!n)return null;let s;if(typeof void 0!="undefined"){let r=(void 0).decodeJpeg(n),a=r.expandDims(0);this.tf.dispose(r),s=await this.detect(a,this.config),this.tf.dispose(a)}else this.config.debug&&ue("Warmup tfjs-node not loaded");return s});this.config=pn(Yy,t||{}),this.tf=Yc,this.draw=Py,this.version=k8,this.state="idle",Ss(this,uu,0),Ss(this,id,!1),Ss(this,ld,!1),Ss(this,Ko,!0),Ss(this,cu,0),this.performance={backend:0,load:0,image:0,frames:0,cached:0,changed:0,total:0,draw:0},this.models={face:null,posenet:null,blazepose:null,efficientpose:null,movenet:null,handpose:null,age:null,gender:null,emotion:null,embedding:null,nanodet:null,centernet:null,faceres:null,segmentation:null},this.result={face:[],body:[],hand:[],gesture:[],object:[],performance:{},timestamp:0,persons:[]},this.image=n=>Xo(n,this.config),this.faceTriangulation=Pk,this.faceUVMap=Mk,this.sysinfo=Jy(),Ss(this,Zo,1)}similarity(t,n){return q1(t,n)}segmentation(t,n){return c8(t,n,this.config)}enhance(t){return X1(t)}match(t,n,s=0){return Lk(t,n,s)}async load(t){this.state="load";let n=Ke();t&&(this.config=pn(this.config,t)),hn(this,Ko)&&(this.config.debug&&ue(`version: ${this.version}`),this.config.debug&&ue(`tfjs version: ${this.tf.version_core}`),this.config.debug&&ue("platform:",this.sysinfo.platform),this.config.debug&&ue("agent:",this.sysinfo.agent),await hn(this,ud).call(this,!0),this.tf.ENV.flags.IS_BROWSER&&(this.config.debug&&ue("configuration:",this.config),this.config.debug&&ue("tf flags:",this.tf.ENV.flags))),await d8(this),hn(this,Ko)&&(this.config.debug&&ue("tf engine state:",this.tf.engine().state.numBytes,"bytes",this.tf.engine().state.numTensors,"tensors"),Ss(this,Ko,!1));let s=Math.trunc(Ke()-n);s>(this.performance.load||0)&&(this.performance.load=s)}async detect(t,n){return new Promise(async s=>{this.state="config";let r,a;this.config=pn(this.config,n),this.state="check";let o=hn(this,Hf).call(this,t);o&&(ue(o,t),s({error:o}));let i=Ke();await hn(this,ud).call(this),await this.load(),r=Ke();let l=Xo(t,this.config);if(this.performance.image=Math.trunc(Ke()-r),this.analyze("Get Image:"),this.config.segmentation.enabled&&l&&l.tensor&&(this.analyze("Start Segmentation:"),this.state="run:segmentation",r=Ke(),await $y(l),a=Math.trunc(Ke()-r),a>0&&(this.performance.segmentation=a),l.canvas&&(K(l.tensor),l=Xo(l.canvas,this.config)),this.analyze("End Segmentation:")),!l||!l.tensor){ue("could not convert input to tensor"),s({error:"could not convert input to tensor"});return}r=Ke(),this.config.skipFrame=await hn(this,Gf).call(this,l.tensor),this.performance.frames||(this.performance.frames=0),this.performance.cached||(this.performance.cached=0),this.performance.frames++,this.config.skipFrame&&this.performance.cached++,this.performance.changed=Math.trunc(Ke()-r),this.analyze("Check Changed:");let u=[],c=[],d=[],h=[];this.config.async?(u=this.config.face.enabled?Fy(this,l.tensor):[],this.performance.face&&delete this.performance.face):(this.state="run:face",r=Ke(),u=this.config.face.enabled?await Fy(this,l.tensor):[],a=Math.trunc(Ke()-r),a>0&&(this.performance.face=a)),this.analyze("Start Body:"),this.config.async?(this.config.body.modelPath.includes("posenet")?c=this.config.body.enabled?ay(l.tensor,this.config):[]:this.config.body.modelPath.includes("blazepose")?c=this.config.body.enabled?py(l.tensor,this.config):[]:this.config.body.modelPath.includes("efficientpose")?c=this.config.body.enabled?gy(l.tensor,this.config):[]:this.config.body.modelPath.includes("movenet")&&(c=this.config.body.enabled?wy(l.tensor,this.config):[]),this.performance.body&&delete this.performance.body):(this.state="run:body",r=Ke(),this.config.body.modelPath.includes("posenet")?c=this.config.body.enabled?await ay(l.tensor,this.config):[]:this.config.body.modelPath.includes("blazepose")?c=this.config.body.enabled?await py(l.tensor,this.config):[]:this.config.body.modelPath.includes("efficientpose")?c=this.config.body.enabled?await gy(l.tensor,this.config):[]:this.config.body.modelPath.includes("movenet")&&(c=this.config.body.enabled?await wy(l.tensor,this.config):[]),a=Math.trunc(Ke()-r),a>0&&(this.performance.body=a)),this.analyze("End Body:"),this.analyze("Start Hand:"),this.config.async?(d=this.config.hand.enabled?dy(l.tensor,this.config):[],this.performance.hand&&delete this.performance.hand):(this.state="run:hand",r=Ke(),d=this.config.hand.enabled?await dy(l.tensor,this.config):[],a=Math.trunc(Ke()-r),a>0&&(this.performance.hand=a)),this.analyze("End Hand:"),this.analyze("Start Object:"),this.config.async?(this.config.object.modelPath.includes("nanodet")?h=this.config.object.enabled?Cy(l.tensor,this.config):[]:this.config.object.modelPath.includes("centernet")&&(h=this.config.object.enabled?Ry(l.tensor,this.config):[]),this.performance.object&&delete this.performance.object):(this.state="run:object",r=Ke(),this.config.object.modelPath.includes("nanodet")?h=this.config.object.enabled?await Cy(l.tensor,this.config):[]:this.config.object.modelPath.includes("centernet")&&(h=this.config.object.enabled?await Ry(l.tensor,this.config):[]),a=Math.trunc(Ke()-r),a>0&&(this.performance.object=a)),this.analyze("End Object:"),this.config.async&&([u,c,d,h]=await Promise.all([u,c,d,h]));let p=[];this.config.gesture.enabled&&(r=Ke(),p=[...p8(u),...h8(c),...m8(d),...f8(u)],this.config.async?this.performance.gesture&&delete this.performance.gesture:this.performance.gesture=Math.trunc(Ke()-r)),this.performance.total=Math.trunc(Ke()-i),this.state="idle",this.result={face:u,body:c,hand:d,gesture:p,object:h,performance:this.performance,canvas:l.canvas,timestamp:Date.now(),get persons(){var f;return v8(u,c,d,p,(f=l==null?void 0:l.tensor)==null?void 0:f.shape)}},K(l.tensor),s(this.result)})}async warmup(t){let n=Ke();if(t&&(this.config=pn(this.config,t)),!this.config.warmup||this.config.warmup==="none")return{error:"null"};let s;typeof createImageBitmap=="function"?s=await hn(this,jf).call(this):typeof Image!="undefined"?s=await hn(this,qf).call(this):s=await hn(this,Xf).call(this);let r=Ke();return this.config.debug&&ue("Warmup",this.config.warmup,Math.round(r-n),"ms",s),s}};uu=new WeakMap,id=new WeakMap,ld=new WeakMap,Ko=new WeakMap,Zo=new WeakMap,cu=new WeakMap,Hf=new WeakMap,ud=new WeakMap,Gf=new WeakMap,jf=new WeakMap,qf=new WeakMap,Xf=new WeakMap;return Hie;})();
|
|
/**
|
|
* @license
|
|
* Copyright 2017 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2019 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2019 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2019 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google Inc. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the License);
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an AS IS BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2021 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2021 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* https://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/** @license See the LICENSE file. */
|