human/dist/human.js

8029 lines
1.6 MiB

/*
Human
homepage: <https://github.com/vladmandic/human>
author: <https://github.com/vladmandic>'
*/
var Human=(()=>{var u2=Object.defineProperty;var CE=(e,t,n)=>t in e?u2(e,t,{enumerable:!0,configurable:!0,writable:!0,value:n}):e[t]=n;var TE=e=>u2(e,"__esModule",{value:!0});var Zc=(e,t)=>{TE(e);for(var n in t)u2(e,n,{get:t[n],enumerable:!0})};var he=(e,t,n)=>(CE(e,typeof t!="symbol"?t+"":t,n),n),B5=(e,t,n)=>{if(!t.has(e))throw TypeError("Cannot "+n)};var Yc=(e,t,n)=>(B5(e,t,"read from private field"),n?n.call(e):t.get(e)),Jc=(e,t,n)=>{if(t.has(e))throw TypeError("Cannot add the same private member more than once");t instanceof WeakSet?t.add(e):t.set(e,n)},Qc=(e,t,n,s)=>(B5(e,t,"write to private field"),s?s.call(e,n):t.set(e,n),n);var m1e={};Zc(m1e,{Human:()=>RN,default:()=>RN,defaults:()=>Sa,env:()=>de});function J(...e){let t=new Date,n=`${t.getHours().toString().padStart(2,"0")}:${t.getMinutes().toString().padStart(2,"0")}:${t.getSeconds().toString().padStart(2,"0")}.${t.getMilliseconds().toString().padStart(3,"0")}`;e&&console.log(n,"Human:",...e)}function We(e,t){let n=e.endsWith("/")?"":"/",r=t.startsWith(".")||t.startsWith("/")||t.startsWith("http:")||t.startsWith("https:")||t.startsWith("file:")?`${t}`:`${e}${n}${t}`;if(!r.toLocaleLowerCase().includes(".json"))throw new Error(`modelpath error: expecting json file: ${r}`);return r}var ie=()=>typeof performance!="undefined"?performance.now():parseInt((Number(process.hrtime.bigint())/1e3/1e3).toString());function c2(e,t,n="config",s=[]){for(let r of Object.keys(t))if(typeof t[r]=="object")c2(e[r],t[r],r,s);else{let a=e&&typeof e[r]!="undefined";a||s.push({reason:"unknown property",where:`${n}.${r} = ${t[r]}`});let o=e&&typeof e[r]==typeof t[r];a&&!o&&s.push({reason:"property type mismatch",where:`${n}.${r} = ${t[r]}`,expected:typeof e[r]})}return t.debug&&n==="config"&&s.length>0&&J("invalid configuration",s),s}function $n(...e){let t=n=>n&&typeof n=="object";return e.reduce((n,s)=>(Object.keys(s||{}).forEach(r=>{let a=n[r],o=s[r];Array.isArray(a)&&Array.isArray(o)?n[r]=a.concat(...o):t(a)&&t(o)?n[r]=$n(a,o):n[r]=o}),n),{})}var Sa={backend:"",modelBasePath:"",wasmPath:"",debug:!0,async:!0,warmup:"full",cacheSensitivity:.7,skipAllowed:!1,deallocate:!1,filter:{enabled:!0,equalization:!1,width:0,height:0,flip:!1,return:!0,brightness:0,contrast:0,sharpness:0,blur:0,saturation:0,hue:0,negative:!1,sepia:!1,vintage:!1,kodachrome:!1,technicolor:!1,polaroid:!1,pixelate:0},gesture:{enabled:!0},face:{enabled:!0,detector:{modelPath:"blazeface.json",rotation:!0,maxDetected:1,skipFrames:99,skipTime:2500,minConfidence:.2,iouThreshold:.1,cropFactor:1.6,mask:!1,return:!1},mesh:{enabled:!0,modelPath:"facemesh.json"},iris:{enabled:!0,modelPath:"iris.json"},emotion:{enabled:!0,minConfidence:.1,skipFrames:99,skipTime:1500,modelPath:"emotion.json"},description:{enabled:!0,modelPath:"faceres.json",skipFrames:99,skipTime:3e3,minConfidence:.1},antispoof:{enabled:!1,skipFrames:99,skipTime:4e3,modelPath:"antispoof.json"},liveness:{enabled:!1,skipFrames:99,skipTime:4e3,modelPath:"liveness.json"}},body:{enabled:!0,modelPath:"movenet-lightning.json",detector:{modelPath:""},maxDetected:-1,minConfidence:.3,skipFrames:1,skipTime:200},hand:{enabled:!0,rotation:!0,skipFrames:99,skipTime:1e3,minConfidence:.5,iouThreshold:.2,maxDetected:-1,landmarks:!0,detector:{modelPath:"handtrack.json"},skeleton:{modelPath:"handlandmark-full.json"}},object:{enabled:!1,modelPath:"mb3-centernet.json",minConfidence:.2,iouThreshold:.4,maxDetected:10,skipFrames:99,skipTime:2e3},segmentation:{enabled:!1,modelPath:"selfie.json",blur:8}};var Pl={};Zc(Pl,{Abs:()=>di,Acos:()=>ru,Acosh:()=>au,AdadeltaOptimizer:()=>Mf,AdagradOptimizer:()=>zf,AdamOptimizer:()=>Lf,AdamaxOptimizer:()=>Bf,Add:()=>Xr,AddN:()=>Ea,All:()=>ou,Any:()=>iu,ArgMax:()=>Ra,ArgMin:()=>lu,Asin:()=>uu,Asinh:()=>cu,Atan:()=>du,Atan2:()=>hu,Atanh:()=>pu,AvgPool:()=>$a,AvgPool3D:()=>rd,AvgPool3DGrad:()=>Sh,AvgPoolGrad:()=>Ih,BackendWasm:()=>a8,BatchMatMul:()=>_a,BatchToSpaceND:()=>pi,Bincount:()=>Ch,BroadcastArgs:()=>Th,BroadcastTo:()=>n3,Callback:()=>f7,CallbackList:()=>nk,Cast:()=>Da,Ceil:()=>Pa,ClipByValue:()=>Kr,Complex:()=>ad,ComplexAbs:()=>od,Concat:()=>hi,Conv2D:()=>Fa,Conv2DBackpropFilter:()=>Nh,Conv2DBackpropInput:()=>Oa,Conv3D:()=>id,Conv3DBackpropFilterV2:()=>Eh,Conv3DBackpropInputV2:()=>Rh,Cos:()=>Ma,Cosh:()=>za,CropAndResize:()=>mi,Cumsum:()=>fi,CustomCallback:()=>rk,DataStorage:()=>td,DenseBincount:()=>$h,DepthToSpace:()=>gi,DepthwiseConv2dNative:()=>La,DepthwiseConv2dNativeBackpropFilter:()=>_h,DepthwiseConv2dNativeBackpropInput:()=>Dh,Diag:()=>Ph,Dilation2D:()=>ld,Dilation2DBackpropFilter:()=>Oh,Dilation2DBackpropInput:()=>Fh,ENV:()=>Nr,EarlyStopping:()=>g7,Einsum:()=>ud,Elu:()=>Wa,EluGrad:()=>Mh,Environment:()=>e3,Equal:()=>Ai,Erf:()=>fu,Exp:()=>Va,ExpandDims:()=>yi,Expm1:()=>xi,FFT:()=>zh,Fill:()=>mu,FlipLeftRight:()=>bi,Floor:()=>Ua,FloorDiv:()=>Ga,FromPixels:()=>yd,FusedBatchNorm:()=>Ha,FusedConv2D:()=>wo,FusedDepthwiseConv2D:()=>ko,GPGPUContext:()=>Gm,GatherNd:()=>wi,GatherV2:()=>vi,GraphModel:()=>X7,Greater:()=>ki,GreaterEqual:()=>ja,History:()=>sk,IFFT:()=>Lh,Identity:()=>qa,Imag:()=>cd,InputSpec:()=>Zt,IsFinite:()=>gu,IsInf:()=>Au,IsNan:()=>yu,KernelBackend:()=>tu,LRN:()=>pd,LRNGrad:()=>Wh,LayerVariable:()=>Yw,LayersModel:()=>ra,LeakyRelu:()=>Ii,Less:()=>Si,LessEqual:()=>Ci,LinSpace:()=>Bh,Log:()=>Xa,Log1p:()=>xu,LogSoftmax:()=>s3,LogicalAnd:()=>Ti,LogicalNot:()=>bu,LogicalOr:()=>dd,MathBackendCPU:()=>jy,MathBackendWebGL:()=>yp,Max:()=>Ka,MaxPool:()=>Ya,MaxPool3D:()=>hd,MaxPool3DGrad:()=>Uh,MaxPoolGrad:()=>Vh,MaxPoolWithArgmax:()=>Gh,Maximum:()=>Za,Mean:()=>Ja,Min:()=>Qa,Minimum:()=>eo,MirrorPad:()=>to,Mod:()=>vu,MomentumOptimizer:()=>Wf,Multinomial:()=>Hh,Multiply:()=>no,Neg:()=>Ni,NonMaxSuppressionV3:()=>Ri,NonMaxSuppressionV4:()=>wu,NonMaxSuppressionV5:()=>$i,NotEqual:()=>Ei,OP_SCOPE_SUFFIX:()=>y3,OneHot:()=>Di,OnesLike:()=>_i,Optimizer:()=>ta,OptimizerConstructors:()=>Fo,Pack:()=>Pi,PadV2:()=>so,Pool:()=>y9,Pow:()=>ro,Prelu:()=>ao,Prod:()=>Fi,RMSPropOptimizer:()=>Vf,RNN:()=>aa,Range:()=>ku,Rank:()=>v2,Real:()=>fd,RealDiv:()=>Ba,Reciprocal:()=>Iu,Reduction:()=>Vn,Relu:()=>oo,Relu6:()=>lo,Reshape:()=>Oi,ResizeBilinear:()=>io,ResizeBilinearGrad:()=>qh,ResizeNearestNeighbor:()=>Su,ResizeNearestNeighborGrad:()=>jh,Reverse:()=>Mi,RotateWithOffset:()=>Yi,Round:()=>zi,Rsqrt:()=>uo,SGDOptimizer:()=>Vd,ScatterNd:()=>Li,Select:()=>Bi,Selu:()=>Cu,Sequential:()=>hm,Sigmoid:()=>po,Sign:()=>Tu,Sin:()=>co,Sinh:()=>Vi,Slice:()=>Wi,Softmax:()=>mo,Softplus:()=>Nu,SpaceToBatchND:()=>Ui,SparseFillEmptyRows:()=>Xh,SparseReshape:()=>Kh,SparseSegmentMean:()=>Zh,SparseSegmentSum:()=>Yh,SparseToDense:()=>md,SplitV:()=>Gi,Sqrt:()=>ho,Square:()=>Eu,SquaredDifference:()=>go,Step:()=>bo,StridedSlice:()=>Hi,StringNGrams:()=>gd,StringSplit:()=>Jh,StringToHashBucketFast:()=>Qh,Sub:()=>Ao,Sum:()=>fo,SymbolicTensor:()=>br,Tan:()=>ji,Tanh:()=>yo,Tensor:()=>et,TensorBuffer:()=>nn,Tile:()=>Zr,TopK:()=>qi,Transform:()=>Xi,Transpose:()=>xo,Unique:()=>ef,Unpack:()=>Ki,UnsortedSegmentSum:()=>Ad,Variable:()=>Cd,ZerosLike:()=>Zi,_FusedMatMul:()=>vo,abs:()=>sn,acos:()=>av,acosh:()=>ov,add:()=>ue,addN:()=>hf,all:()=>e1,any:()=>ff,argMax:()=>Js,argMin:()=>iv,asin:()=>lv,asinh:()=>uv,atan:()=>cv,atan2:()=>dv,atanh:()=>pv,avgPool:()=>gf,avgPool3d:()=>s1,backend:()=>$r,backend_util:()=>E,basicLSTMCell:()=>a_,batchNorm:()=>Mu,batchNorm2d:()=>gv,batchNorm3d:()=>Av,batchNorm4d:()=>yv,batchToSpaceND:()=>Af,bincount:()=>r1,booleanMaskAsync:()=>AF,broadcastArgs:()=>xv,broadcastTo:()=>_d,broadcast_util:()=>sl,browser:()=>Ys,buffer:()=>ze,callbacks:()=>_U,cast:()=>ge,ceil:()=>bv,clipByValue:()=>As,clone:()=>Bn,complex:()=>Co,concat:()=>It,concat1d:()=>vv,concat2d:()=>zu,concat3d:()=>wv,concat4d:()=>kv,constraints:()=>Rw,conv1d:()=>a1,conv2d:()=>$o,conv2dTranspose:()=>i1,conv3d:()=>l1,conv3dTranspose:()=>Sv,copyRegisteredKernels:()=>w9,cos:()=>yf,cosh:()=>u1,cosineWindow:()=>P1,cumsum:()=>c1,customGrad:()=>Dr,data:()=>K7,denseBincount:()=>Cv,deprecationWarn:()=>J2,depthToSpace:()=>Tv,depthwiseConv2d:()=>Dd,deregisterOp:()=>FU,device_util:()=>_u,diag:()=>F_,dilation2d:()=>Nv,disableDeprecationWarnings:()=>v$,dispose:()=>ne,disposeVariables:()=>w$,div:()=>pe,divNoNan:()=>Ev,dot:()=>V_,dropout:()=>rw,einsum:()=>Rv,elu:()=>Pd,enableDebugMode:()=>b$,enableProdMode:()=>sv,enclosingPowerOfTwo:()=>aw,engine:()=>as,env:()=>Y,equal:()=>Ds,erf:()=>$v,exp:()=>Ps,expandDims:()=>Kt,expm1:()=>_v,eye:()=>d1,fft:()=>Ef,fill:()=>Lu,findBackend:()=>Q2,findBackendFactory:()=>C$,floor:()=>Fd,floorDiv:()=>pf,forceHalfFloat:()=>SC,fused:()=>Po,gather:()=>Bu,gatherND:()=>sw,gather_util:()=>G2,getBackend:()=>_s,getGradient:()=>A2,getKernel:()=>tf,getKernelsForBackend:()=>Yr,getThreadsCount:()=>l2e,gpgpu_util:()=>JS,grad:()=>hD,grads:()=>fD,greater:()=>ys,greaterEqual:()=>ll,ifft:()=>Ld,imag:()=>xf,image:()=>Ce,inTopKAsync:()=>NF,initializers:()=>Mw,input:()=>Tk,io:()=>rs,irfft:()=>N1,isFinite:()=>sD,isInf:()=>aD,isNaN:()=>Dv,keep:()=>An,kernel_impls:()=>tr,layers:()=>Xw,leakyRelu:()=>bf,less:()=>p1,lessEqual:()=>ul,linalg:()=>mw,linspace:()=>Pv,loadGraphModel:()=>Be,loadLayersModel:()=>UW,localResponseNormalization:()=>Fv,log:()=>Fs,log1p:()=>vf,logSigmoid:()=>bD,logSoftmax:()=>h1,logSumExp:()=>Bv,logicalAnd:()=>fr,logicalNot:()=>kf,logicalOr:()=>g1,logicalXor:()=>_D,losses:()=>pM,matMul:()=>je,math:()=>O3,max:()=>yn,maxPool:()=>If,maxPool3d:()=>A1,maxPoolWithArgmax:()=>Wv,maximum:()=>Qr,mean:()=>Wt,memory:()=>cf,meshgrid:()=>zD,metrics:()=>d7,min:()=>_o,minimum:()=>Od,mirrorPad:()=>Vv,mod:()=>Md,model:()=>WW,models:()=>p7,moments:()=>Sf,movingAverage:()=>bF,mul:()=>L,multiRNNCell:()=>jD,multinomial:()=>Uv,neg:()=>Ot,nextFrame:()=>gw,norm:()=>_1,notEqual:()=>Vu,oneHot:()=>Rd,ones:()=>xs,onesLike:()=>Os,op:()=>G,outerProduct:()=>YD,pad:()=>er,pad1d:()=>eP,pad2d:()=>nP,pad3d:()=>rP,pad4d:()=>oP,pool:()=>dP,pow:()=>Do,prelu:()=>Tf,print:()=>R3,prod:()=>y1,profile:()=>k$,rand:()=>gP,randomGamma:()=>bP,randomNormal:()=>Gv,randomUniform:()=>Uu,range:()=>Gu,ready:()=>df,real:()=>zd,reciprocal:()=>Hv,registerBackend:()=>ol,registerCallbackConstructor:()=>GW,registerGradient:()=>r3,registerKernel:()=>dr,registerOp:()=>PU,regularizers:()=>h7,relu:()=>Pr,relu6:()=>v1,removeBackend:()=>S$,reshape:()=>H,reverse:()=>Ms,reverse1d:()=>EP,reverse2d:()=>$P,reverse3d:()=>DP,reverse4d:()=>FP,rfft:()=>Rf,round:()=>w1,rsqrt:()=>k1,scalar:()=>Se,scatterND:()=>nw,scatter_util:()=>H2,selu:()=>I1,separableConv2d:()=>jv,sequential:()=>VW,serialization:()=>ce,setBackend:()=>rv,setPlatform:()=>T$,setThreadsCount:()=>i2e,setWasmPath:()=>o2e,setWasmPaths:()=>i8,setWebGLContext:()=>Fm,setdiff1dAsync:()=>qv,shared:()=>Em,sigmoid:()=>gs,sign:()=>Xv,signal:()=>dM,sin:()=>S1,sinh:()=>C1,slice:()=>Fe,slice1d:()=>Nf,slice2d:()=>T1,slice3d:()=>dl,slice4d:()=>pl,slice_util:()=>Ft,softmax:()=>Hu,softplus:()=>Wu,spaceToBatchND:()=>Cf,sparse:()=>Wd,sparseToDense:()=>D1,spectral:()=>cM,split:()=>rn,sqrt:()=>Dn,square:()=>xt,squaredDifference:()=>E1,squeeze:()=>ut,stack:()=>xn,step:()=>Bd,stridedSlice:()=>Kv,string:()=>Of,sub:()=>fe,sum:()=>we,sumOutType:()=>Td,tan:()=>Zv,tanh:()=>Ou,tensor:()=>pt,tensor1d:()=>Vt,tensor2d:()=>mr,tensor3d:()=>z3,tensor4d:()=>iF,tensor5d:()=>lF,tensor6d:()=>uF,tensor_util:()=>pr,test_util:()=>Q3,tidy:()=>K,tile:()=>Qs,time:()=>I$,topk:()=>Yv,train:()=>hl,transpose:()=>tt,truncatedNormal:()=>$f,unique:()=>R1,unregisterGradient:()=>v9,unregisterKernel:()=>b9,unsortedSegmentSum:()=>Jv,unstack:()=>os,upcastType:()=>Ln,util:()=>v,valueAndGrad:()=>mD,valueAndGrads:()=>gD,variable:()=>Qv,variableGrads:()=>Ov,version:()=>u0,version_converter:()=>zG,version_core:()=>nv,version_cpu:()=>Ij,version_layers:()=>gA,version_wasm:()=>u2e,version_webgl:()=>YQ,webgl:()=>JQ,webgl_util:()=>wS,webgpu:()=>i6,where:()=>Wn,whereAsync:()=>$1,zeros:()=>Ht,zerosLike:()=>nt});var NE=Object.create,Ah=Object.defineProperty,EE=Object.getOwnPropertyDescriptor,RE=Object.getOwnPropertyNames,$E=Object.getPrototypeOf,_E=Object.prototype.hasOwnProperty,W5=e=>Ah(e,"__esModule",{value:!0}),tn=(e,t)=>function(){return t||(0,e[Object.keys(e)[0]])((t={exports:{}}).exports,t),t.exports},Me=(e,t)=>{W5(e);for(var n in t)Ah(e,n,{get:t[n],enumerable:!0})},DE=(e,t,n)=>{if(t&&typeof t=="object"||typeof t=="function")for(let s of RE(t))!_E.call(e,s)&&s!=="default"&&Ah(e,s,{get:()=>t[s],enumerable:!(n=EE(t,s))||n.enumerable});return e},li=e=>DE(W5(Ah(e!=null?NE($E(e)):{},"default",e&&e.__esModule&&"default"in e?{get:()=>e.default,enumerable:!0}:{value:e,enumerable:!0})),e),PE=tn({"src/node_modules/long/src/long.js"(e,t){t.exports=s;var n=null;try{n=new WebAssembly.Instance(new WebAssembly.Module(new Uint8Array([0,97,115,109,1,0,0,0,1,13,2,96,0,1,127,96,4,127,127,127,127,1,127,3,7,6,0,1,1,1,1,1,6,6,1,127,1,65,0,11,7,50,6,3,109,117,108,0,1,5,100,105,118,95,115,0,2,5,100,105,118,95,117,0,3,5,114,101,109,95,115,0,4,5,114,101,109,95,117,0,5,8,103,101,116,95,104,105,103,104,0,0,10,191,1,6,4,0,35,0,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,126,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,127,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,128,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,129,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,130,34,4,66,32,135,167,36,0,32,4,167,11])),{}).exports}catch($){}function s($,T,F){this.low=$|0,this.high=T|0,this.unsigned=!!F}s.prototype.__isLong__,Object.defineProperty(s.prototype,"__isLong__",{value:!0});function r($){return($&&$.__isLong__)===!0}s.isLong=r;var a={},o={};function i($,T){var F,V,X;return T?($>>>=0,(X=0<=$&&$<256)&&(V=o[$],V)?V:(F=c($,($|0)<0?-1:0,!0),X&&(o[$]=F),F)):($|=0,(X=-128<=$&&$<128)&&(V=a[$],V)?V:(F=c($,$<0?-1:0,!1),X&&(a[$]=F),F))}s.fromInt=i;function l($,T){if(isNaN($))return T?b:y;if(T){if($<0)return b;if($>=g)return R}else{if($<=-A)return M;if($+1>=A)return N}return $<0?l(-$,T).neg():c($%m|0,$/m|0,T)}s.fromNumber=l;function c($,T,F){return new s($,T,F)}s.fromBits=c;var u=Math.pow;function d($,T,F){if($.length===0)throw Error("empty string");if($==="NaN"||$==="Infinity"||$==="+Infinity"||$==="-Infinity")return y;if(typeof T=="number"?(F=T,T=!1):T=!!T,F=F||10,F<2||36<F)throw RangeError("radix");var V;if((V=$.indexOf("-"))>0)throw Error("interior hyphen");if(V===0)return d($.substring(1),T,F).neg();for(var X=l(u(F,8)),z=y,j=0;j<$.length;j+=8){var Z=Math.min(8,$.length-j),Q=parseInt($.substring(j,j+Z),F);if(Z<8){var te=l(u(F,Z));z=z.mul(te).add(l(Q))}else z=z.mul(X),z=z.add(l(Q))}return z.unsigned=T,z}s.fromString=d;function p($,T){return typeof $=="number"?l($,T):typeof $=="string"?d($,T):c($.low,$.high,typeof T=="boolean"?T:$.unsigned)}s.fromValue=p;var h=1<<16,f=1<<24,m=h*h,g=m*m,A=g/2,x=i(f),y=i(0);s.ZERO=y;var b=i(0,!0);s.UZERO=b;var w=i(1);s.ONE=w;var k=i(1,!0);s.UONE=k;var S=i(-1);s.NEG_ONE=S;var N=c(4294967295|0,2147483647|0,!1);s.MAX_VALUE=N;var R=c(4294967295|0,4294967295|0,!0);s.MAX_UNSIGNED_VALUE=R;var M=c(0,2147483648|0,!1);s.MIN_VALUE=M;var D=s.prototype;D.toInt=function(){return this.unsigned?this.low>>>0:this.low},D.toNumber=function(){return this.unsigned?(this.high>>>0)*m+(this.low>>>0):this.high*m+(this.low>>>0)},D.toString=function(T){if(T=T||10,T<2||36<T)throw RangeError("radix");if(this.isZero())return"0";if(this.isNegative())if(this.eq(M)){var F=l(T),V=this.div(F),X=V.mul(F).sub(this);return V.toString(T)+X.toInt().toString(T)}else return"-"+this.neg().toString(T);for(var z=l(u(T,6),this.unsigned),j=this,Z="";;){var Q=j.div(z),te=j.sub(Q.mul(z)).toInt()>>>0,ae=te.toString(T);if(j=Q,j.isZero())return ae+Z;for(;ae.length<6;)ae="0"+ae;Z=""+ae+Z}},D.getHighBits=function(){return this.high},D.getHighBitsUnsigned=function(){return this.high>>>0},D.getLowBits=function(){return this.low},D.getLowBitsUnsigned=function(){return this.low>>>0},D.getNumBitsAbs=function(){if(this.isNegative())return this.eq(M)?64:this.neg().getNumBitsAbs();for(var T=this.high!=0?this.high:this.low,F=31;F>0&&(T&1<<F)==0;F--);return this.high!=0?F+33:F+1},D.isZero=function(){return this.high===0&&this.low===0},D.eqz=D.isZero,D.isNegative=function(){return!this.unsigned&&this.high<0},D.isPositive=function(){return this.unsigned||this.high>=0},D.isOdd=function(){return(this.low&1)==1},D.isEven=function(){return(this.low&1)==0},D.equals=function(T){return r(T)||(T=p(T)),this.unsigned!==T.unsigned&&this.high>>>31==1&&T.high>>>31==1?!1:this.high===T.high&&this.low===T.low},D.eq=D.equals,D.notEquals=function(T){return!this.eq(T)},D.neq=D.notEquals,D.ne=D.notEquals,D.lessThan=function(T){return this.comp(T)<0},D.lt=D.lessThan,D.lessThanOrEqual=function(T){return this.comp(T)<=0},D.lte=D.lessThanOrEqual,D.le=D.lessThanOrEqual,D.greaterThan=function(T){return this.comp(T)>0},D.gt=D.greaterThan,D.greaterThanOrEqual=function(T){return this.comp(T)>=0},D.gte=D.greaterThanOrEqual,D.ge=D.greaterThanOrEqual,D.compare=function(T){if(r(T)||(T=p(T)),this.eq(T))return 0;var F=this.isNegative(),V=T.isNegative();return F&&!V?-1:!F&&V?1:this.unsigned?T.high>>>0>this.high>>>0||T.high===this.high&&T.low>>>0>this.low>>>0?-1:1:this.sub(T).isNegative()?-1:1},D.comp=D.compare,D.negate=function(){return!this.unsigned&&this.eq(M)?M:this.not().add(w)},D.neg=D.negate,D.add=function(T){r(T)||(T=p(T));var F=this.high>>>16,V=this.high&65535,X=this.low>>>16,z=this.low&65535,j=T.high>>>16,Z=T.high&65535,Q=T.low>>>16,te=T.low&65535,ae=0,U=0,oe=0,re=0;return re+=z+te,oe+=re>>>16,re&=65535,oe+=X+Q,U+=oe>>>16,oe&=65535,U+=V+Z,ae+=U>>>16,U&=65535,ae+=F+j,ae&=65535,c(oe<<16|re,ae<<16|U,this.unsigned)},D.subtract=function(T){return r(T)||(T=p(T)),this.add(T.neg())},D.sub=D.subtract,D.multiply=function(T){if(this.isZero())return y;if(r(T)||(T=p(T)),n){var F=n.mul(this.low,this.high,T.low,T.high);return c(F,n.get_high(),this.unsigned)}if(T.isZero())return y;if(this.eq(M))return T.isOdd()?M:y;if(T.eq(M))return this.isOdd()?M:y;if(this.isNegative())return T.isNegative()?this.neg().mul(T.neg()):this.neg().mul(T).neg();if(T.isNegative())return this.mul(T.neg()).neg();if(this.lt(x)&&T.lt(x))return l(this.toNumber()*T.toNumber(),this.unsigned);var V=this.high>>>16,X=this.high&65535,z=this.low>>>16,j=this.low&65535,Z=T.high>>>16,Q=T.high&65535,te=T.low>>>16,ae=T.low&65535,U=0,oe=0,re=0,me=0;return me+=j*ae,re+=me>>>16,me&=65535,re+=z*ae,oe+=re>>>16,re&=65535,re+=j*te,oe+=re>>>16,re&=65535,oe+=X*ae,U+=oe>>>16,oe&=65535,oe+=z*te,U+=oe>>>16,oe&=65535,oe+=j*Q,U+=oe>>>16,oe&=65535,U+=V*ae+X*te+z*Q+j*Z,U&=65535,c(re<<16|me,U<<16|oe,this.unsigned)},D.mul=D.multiply,D.divide=function(T){if(r(T)||(T=p(T)),T.isZero())throw Error("division by zero");if(n){if(!this.unsigned&&this.high===-2147483648&&T.low===-1&&T.high===-1)return this;var F=(this.unsigned?n.div_u:n.div_s)(this.low,this.high,T.low,T.high);return c(F,n.get_high(),this.unsigned)}if(this.isZero())return this.unsigned?b:y;var V,X,z;if(this.unsigned){if(T.unsigned||(T=T.toUnsigned()),T.gt(this))return b;if(T.gt(this.shru(1)))return k;z=b}else{if(this.eq(M)){if(T.eq(w)||T.eq(S))return M;if(T.eq(M))return w;var j=this.shr(1);return V=j.div(T).shl(1),V.eq(y)?T.isNegative()?w:S:(X=this.sub(T.mul(V)),z=V.add(X.div(T)),z)}else if(T.eq(M))return this.unsigned?b:y;if(this.isNegative())return T.isNegative()?this.neg().div(T.neg()):this.neg().div(T).neg();if(T.isNegative())return this.div(T.neg()).neg();z=y}for(X=this;X.gte(T);){V=Math.max(1,Math.floor(X.toNumber()/T.toNumber()));for(var Z=Math.ceil(Math.log(V)/Math.LN2),Q=Z<=48?1:u(2,Z-48),te=l(V),ae=te.mul(T);ae.isNegative()||ae.gt(X);)V-=Q,te=l(V,this.unsigned),ae=te.mul(T);te.isZero()&&(te=w),z=z.add(te),X=X.sub(ae)}return z},D.div=D.divide,D.modulo=function(T){if(r(T)||(T=p(T)),n){var F=(this.unsigned?n.rem_u:n.rem_s)(this.low,this.high,T.low,T.high);return c(F,n.get_high(),this.unsigned)}return this.sub(this.div(T).mul(T))},D.mod=D.modulo,D.rem=D.modulo,D.not=function(){return c(~this.low,~this.high,this.unsigned)},D.and=function(T){return r(T)||(T=p(T)),c(this.low&T.low,this.high&T.high,this.unsigned)},D.or=function(T){return r(T)||(T=p(T)),c(this.low|T.low,this.high|T.high,this.unsigned)},D.xor=function(T){return r(T)||(T=p(T)),c(this.low^T.low,this.high^T.high,this.unsigned)},D.shiftLeft=function(T){return r(T)&&(T=T.toInt()),(T&=63)==0?this:T<32?c(this.low<<T,this.high<<T|this.low>>>32-T,this.unsigned):c(0,this.low<<T-32,this.unsigned)},D.shl=D.shiftLeft,D.shiftRight=function(T){return r(T)&&(T=T.toInt()),(T&=63)==0?this:T<32?c(this.low>>>T|this.high<<32-T,this.high>>T,this.unsigned):c(this.high>>T-32,this.high>=0?0:-1,this.unsigned)},D.shr=D.shiftRight,D.shiftRightUnsigned=function(T){if(r(T)&&(T=T.toInt()),T&=63,T===0)return this;var F=this.high;if(T<32){var V=this.low;return c(V>>>T|F<<32-T,F>>>T,this.unsigned)}else return T===32?c(F,0,this.unsigned):c(F>>>T-32,0,this.unsigned)},D.shru=D.shiftRightUnsigned,D.shr_u=D.shiftRightUnsigned,D.toSigned=function(){return this.unsigned?c(this.low,this.high,!1):this},D.toUnsigned=function(){return this.unsigned?this:c(this.low,this.high,!0)},D.toBytes=function(T){return T?this.toBytesLE():this.toBytesBE()},D.toBytesLE=function(){var T=this.high,F=this.low;return[F&255,F>>>8&255,F>>>16&255,F>>>24,T&255,T>>>8&255,T>>>16&255,T>>>24]},D.toBytesBE=function(){var T=this.high,F=this.low;return[T>>>24,T>>>16&255,T>>>8&255,T&255,F>>>24,F>>>16&255,F>>>8&255,F&255]},s.fromBytes=function(T,F,V){return V?s.fromBytesLE(T,F):s.fromBytesBE(T,F)},s.fromBytesLE=function(T,F){return new s(T[0]|T[1]<<8|T[2]<<16|T[3]<<24,T[4]|T[5]<<8|T[6]<<16|T[7]<<24,F)},s.fromBytesBE=function(T,F){return new s(T[4]<<24|T[5]<<16|T[6]<<8|T[7],T[0]<<24|T[1]<<16|T[2]<<8|T[3],F)}}}),FE=tn({"(disabled):src/node_modules/node-fetch/browser.js"(){}}),OE=tn({"(disabled):util"(){}}),ME=tn({"src/node_modules/seedrandom/lib/alea.js"(e,t){(function(n,s,r){function a(c){var u=this,d=l();u.next=function(){var p=2091639*u.s0+u.c*23283064365386963e-26;return u.s0=u.s1,u.s1=u.s2,u.s2=p-(u.c=p|0)},u.c=1,u.s0=d(" "),u.s1=d(" "),u.s2=d(" "),u.s0-=d(c),u.s0<0&&(u.s0+=1),u.s1-=d(c),u.s1<0&&(u.s1+=1),u.s2-=d(c),u.s2<0&&(u.s2+=1),d=null}function o(c,u){return u.c=c.c,u.s0=c.s0,u.s1=c.s1,u.s2=c.s2,u}function i(c,u){var d=new a(c),p=u&&u.state,h=d.next;return h.int32=function(){return d.next()*4294967296|0},h.double=function(){return h()+(h()*2097152|0)*11102230246251565e-32},h.quick=h,p&&(typeof p=="object"&&o(p,d),h.state=function(){return o(d,{})}),h}function l(){var c=4022871197,u=function(d){d=String(d);for(var p=0;p<d.length;p++){c+=d.charCodeAt(p);var h=.02519603282416938*c;c=h>>>0,h-=c,h*=c,c=h>>>0,h-=c,c+=h*4294967296}return(c>>>0)*23283064365386963e-26};return u}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.alea=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),zE=tn({"src/node_modules/seedrandom/lib/xor128.js"(e,t){(function(n,s,r){function a(l){var c=this,u="";c.x=0,c.y=0,c.z=0,c.w=0,c.next=function(){var p=c.x^c.x<<11;return c.x=c.y,c.y=c.z,c.z=c.w,c.w^=c.w>>>19^p^p>>>8},l===(l|0)?c.x=l:u+=l;for(var d=0;d<u.length+64;d++)c.x^=u.charCodeAt(d)|0,c.next()}function o(l,c){return c.x=l.x,c.y=l.y,c.z=l.z,c.w=l.w,c}function i(l,c){var u=new a(l),d=c&&c.state,p=function(){return(u.next()>>>0)/4294967296};return p.double=function(){do var h=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=u.next,p.quick=p,d&&(typeof d=="object"&&o(d,u),p.state=function(){return o(u,{})}),p}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xor128=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),LE=tn({"src/node_modules/seedrandom/lib/xorwow.js"(e,t){(function(n,s,r){function a(l){var c=this,u="";c.next=function(){var p=c.x^c.x>>>2;return c.x=c.y,c.y=c.z,c.z=c.w,c.w=c.v,(c.d=c.d+362437|0)+(c.v=c.v^c.v<<4^(p^p<<1))|0},c.x=0,c.y=0,c.z=0,c.w=0,c.v=0,l===(l|0)?c.x=l:u+=l;for(var d=0;d<u.length+64;d++)c.x^=u.charCodeAt(d)|0,d==u.length&&(c.d=c.x<<10^c.x>>>4),c.next()}function o(l,c){return c.x=l.x,c.y=l.y,c.z=l.z,c.w=l.w,c.v=l.v,c.d=l.d,c}function i(l,c){var u=new a(l),d=c&&c.state,p=function(){return(u.next()>>>0)/4294967296};return p.double=function(){do var h=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=u.next,p.quick=p,d&&(typeof d=="object"&&o(d,u),p.state=function(){return o(u,{})}),p}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xorwow=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),BE=tn({"src/node_modules/seedrandom/lib/xorshift7.js"(e,t){(function(n,s,r){function a(l){var c=this;c.next=function(){var d=c.x,p=c.i,h,f,m;return h=d[p],h^=h>>>7,f=h^h<<24,h=d[p+1&7],f^=h^h>>>10,h=d[p+3&7],f^=h^h>>>3,h=d[p+4&7],f^=h^h<<7,h=d[p+7&7],h=h^h<<13,f^=h^h<<9,d[p]=f,c.i=p+1&7,f};function u(d,p){var h,f,m=[];if(p===(p|0))f=m[0]=p;else for(p=""+p,h=0;h<p.length;++h)m[h&7]=m[h&7]<<15^p.charCodeAt(h)+m[h+1&7]<<13;for(;m.length<8;)m.push(0);for(h=0;h<8&&m[h]===0;++h);for(h==8?f=m[7]=-1:f=m[h],d.x=m,d.i=0,h=256;h>0;--h)d.next()}u(c,l)}function o(l,c){return c.x=l.x.slice(),c.i=l.i,c}function i(l,c){l==null&&(l=+new Date);var u=new a(l),d=c&&c.state,p=function(){return(u.next()>>>0)/4294967296};return p.double=function(){do var h=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=u.next,p.quick=p,d&&(d.x&&o(d,u),p.state=function(){return o(u,{})}),p}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xorshift7=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),WE=tn({"src/node_modules/seedrandom/lib/xor4096.js"(e,t){(function(n,s,r){function a(l){var c=this;c.next=function(){var d=c.w,p=c.X,h=c.i,f,m;return c.w=d=d+1640531527|0,m=p[h+34&127],f=p[h=h+1&127],m^=m<<13,f^=f<<17,m^=m>>>15,f^=f>>>12,m=p[h]=m^f,c.i=h,m+(d^d>>>16)|0};function u(d,p){var h,f,m,g,A,x=[],y=128;for(p===(p|0)?(f=p,p=null):(p=p+"\0",f=0,y=Math.max(y,p.length)),m=0,g=-32;g<y;++g)p&&(f^=p.charCodeAt((g+32)%p.length)),g===0&&(A=f),f^=f<<10,f^=f>>>15,f^=f<<4,f^=f>>>13,g>=0&&(A=A+1640531527|0,h=x[g&127]^=f+A,m=h==0?m+1:0);for(m>=128&&(x[(p&&p.length||0)&127]=-1),m=127,g=4*128;g>0;--g)f=x[m+34&127],h=x[m=m+1&127],f^=f<<13,h^=h<<17,f^=f>>>15,h^=h>>>12,x[m]=f^h;d.w=A,d.X=x,d.i=m}u(c,l)}function o(l,c){return c.i=l.i,c.w=l.w,c.X=l.X.slice(),c}function i(l,c){l==null&&(l=+new Date);var u=new a(l),d=c&&c.state,p=function(){return(u.next()>>>0)/4294967296};return p.double=function(){do var h=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=u.next,p.quick=p,d&&(d.X&&o(d,u),p.state=function(){return o(u,{})}),p}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xor4096=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),VE=tn({"src/node_modules/seedrandom/lib/tychei.js"(e,t){(function(n,s,r){function a(l){var c=this,u="";c.next=function(){var p=c.b,h=c.c,f=c.d,m=c.a;return p=p<<25^p>>>7^h,h=h-f|0,f=f<<24^f>>>8^m,m=m-p|0,c.b=p=p<<20^p>>>12^h,c.c=h=h-f|0,c.d=f<<16^h>>>16^m,c.a=m-p|0},c.a=0,c.b=0,c.c=2654435769|0,c.d=1367130551,l===Math.floor(l)?(c.a=l/4294967296|0,c.b=l|0):u+=l;for(var d=0;d<u.length+20;d++)c.b^=u.charCodeAt(d)|0,c.next()}function o(l,c){return c.a=l.a,c.b=l.b,c.c=l.c,c.d=l.d,c}function i(l,c){var u=new a(l),d=c&&c.state,p=function(){return(u.next()>>>0)/4294967296};return p.double=function(){do var h=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=u.next,p.quick=p,d&&(typeof d=="object"&&o(d,u),p.state=function(){return o(u,{})}),p}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.tychei=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),UE=tn({"(disabled):crypto"(){}}),GE=tn({"src/node_modules/seedrandom/seedrandom.js"(e,t){(function(n,s,r){var a=256,o=6,i=52,l="random",c=r.pow(a,o),u=r.pow(2,i),d=u*2,p=a-1,h;function f(w,k,S){var N=[];k=k==!0?{entropy:!0}:k||{};var R=x(A(k.entropy?[w,b(s)]:w==null?y():w,3),N),M=new m(N),D=function(){for(var $=M.g(o),T=c,F=0;$<u;)$=($+F)*a,T*=a,F=M.g(1);for(;$>=d;)$/=2,T/=2,F>>>=1;return($+F)/T};return D.int32=function(){return M.g(4)|0},D.quick=function(){return M.g(4)/4294967296},D.double=D,x(b(M.S),s),(k.pass||S||function($,T,F,V){return V&&(V.S&&g(V,M),$.state=function(){return g(M,{})}),F?(r[l]=$,T):$})(D,R,"global"in k?k.global:this==r,k.state)}function m(w){var k,S=w.length,N=this,R=0,M=N.i=N.j=0,D=N.S=[];for(S||(w=[S++]);R<a;)D[R]=R++;for(R=0;R<a;R++)D[R]=D[M=p&M+w[R%S]+(k=D[R])],D[M]=k;(N.g=function($){for(var T,F=0,V=N.i,X=N.j,z=N.S;$--;)T=z[V=p&V+1],F=F*a+z[p&(z[V]=z[X=p&X+T])+(z[X]=T)];return N.i=V,N.j=X,F})(a)}function g(w,k){return k.i=w.i,k.j=w.j,k.S=w.S.slice(),k}function A(w,k){var S=[],N=typeof w,R;if(k&&N=="object")for(R in w)try{S.push(A(w[R],k-1))}catch(M){}return S.length?S:N=="string"?w:w+"\0"}function x(w,k){for(var S=w+"",N,R=0;R<S.length;)k[p&R]=p&(N^=k[p&R]*19)+S.charCodeAt(R++);return b(k)}function y(){try{var w;return h&&(w=h.randomBytes)?w=w(a):(w=new Uint8Array(a),(n.crypto||n.msCrypto).getRandomValues(w)),b(w)}catch(N){var k=n.navigator,S=k&&k.plugins;return[+new Date,n,S,n.screen,b(s)]}}function b(w){return String.fromCharCode.apply(0,w)}if(x(r.random(),s),typeof t=="object"&&t.exports){t.exports=f;try{h=UE()}catch(w){}}else typeof define=="function"&&define.amd?define(function(){return f}):r["seed"+l]=f})(typeof self!="undefined"?self:e,[],Math)}}),yh=tn({"src/node_modules/seedrandom/index.js"(e,t){var n=ME(),s=zE(),r=LE(),a=BE(),o=WE(),i=VE(),l=GE();l.alea=n,l.xor128=s,l.xorwow=r,l.xorshift7=a,l.xor4096=o,l.tychei=i,t.exports=l}}),V5=tn({"(disabled):src/node_modules/string_decoder/index.js"(){}}),xh=tn({"(disabled):fs"(){}}),ed=tn({"(disabled):path"(){}}),HE=tn({"(disabled):worker_threads"(){}}),jE=tn({"(disabled):perf_hooks"(){}}),qE=tn({"(disabled):os"(){}}),XE=tn({"src/tfjs-backend-wasm/wasm-out/tfjs-backend-wasm-threaded-simd.js"(e,t){var n=function(){var s=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(s=s||__filename),function(r){r=r||{};function a(){return re.buffer!=it&&ts(re.buffer),hs}function o(){return re.buffer!=it&&ts(re.buffer),In}function i(){return re.buffer!=it&&ts(re.buffer),fs}function l(){return re.buffer!=it&&ts(re.buffer),Ns}function c(){return re.buffer!=it&&ts(re.buffer),Es}var u=typeof r!="undefined"?r:{},d,p;u.ready=new Promise(function(C,_){d=C,p=_});var h;process&&process.listeners&&(h={uncaughtException:process.listeners("uncaughtException"),unhandledRejection:process.listeners("unhandledRejection")});var f={},m;for(m in u)u.hasOwnProperty(m)&&(f[m]=u[m]);var g=[],A="./this.program",x=function(C,_){throw _},y=!1,b=!1,w=!1,k=!1;y=typeof window=="object",b=typeof importScripts=="function",w=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",k=!y&&!w&&!b;var S=u.ENVIRONMENT_IS_PTHREAD||!1;S&&(it=u.buffer);var N="";function R(C){return u.locateFile?u.locateFile(C,N):N+C}var M,D,$,T,F,V;if(w){b?N=ed().dirname(N)+"/":N=__dirname+"/",M=function(_,B){return F||(F=xh()),V||(V=ed()),_=V.normalize(_),F.readFileSync(_,B?null:"utf8")},$=function(_){var B=M(_,!0);return B.buffer||(B=new Uint8Array(B)),Ne(B.buffer),B},process.argv.length>1&&(A=process.argv[1].replace(/\\/g,"/")),g=process.argv.slice(2),process.on("uncaughtException",function(C){if(!(C instanceof Kc))throw C}),process.on("unhandledRejection",Hr),x=function(C){process.exit(C)},u.inspect=function(){return"[Emscripten Module object]"};var X;try{X=HE()}catch(C){throw console.error('The "worker_threads" module is not supported in this node.js build - perhaps a newer version is needed?'),C}global.Worker=X.Worker}else k?(typeof read!="undefined"&&(M=function(_){return read(_)}),$=function(_){var B;return typeof readbuffer=="function"?new Uint8Array(readbuffer(_)):(B=read(_,"binary"),Ne(typeof B=="object"),B)},typeof scriptArgs!="undefined"?g=scriptArgs:typeof arguments!="undefined"&&(g=arguments),typeof quit=="function"&&(x=function(C){quit(C)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(y||b)&&(b?N=self.location.href:typeof document!="undefined"&&document.currentScript&&(N=document.currentScript.src),typeof s!="undefined"&&s&&(N=s),N.indexOf("blob:")!==0?N=N.substr(0,N.lastIndexOf("/")+1):N="",w?(M=function(_,B){return F||(F=xh()),V||(V=ed()),_=V.normalize(_),F.readFileSync(_,B?null:"utf8")},$=function(_){var B=M(_,!0);return B.buffer||(B=new Uint8Array(B)),Ne(B.buffer),B}):(M=function(C){var _=new XMLHttpRequest;return _.open("GET",C,!1),_.send(null),_.responseText},b&&($=function(C){var _=new XMLHttpRequest;return _.open("GET",C,!1),_.responseType="arraybuffer",_.send(null),new Uint8Array(_.response)}),D=function(C,_,B){var ee=new XMLHttpRequest;ee.open("GET",C,!0),ee.responseType="arraybuffer",ee.onload=function(){if(ee.status==200||ee.status==0&&ee.response){_(ee.response);return}B()},ee.onerror=B,ee.send(null)}),T=function(C){document.title=C});w&&typeof performance=="undefined"&&(global.performance=jE().performance);var z=u.print||console.log.bind(console),j=u.printErr||console.warn.bind(console);for(m in f)f.hasOwnProperty(m)&&(u[m]=f[m]);f=null,u.arguments&&(g=u.arguments),u.thisProgram&&(A=u.thisProgram),u.quit&&(x=u.quit);function Z(C){Z.shown||(Z.shown={}),Z.shown[C]||(Z.shown[C]=1,j(C))}var Q=Atomics.load,te=Atomics.store,ae=Atomics.compareExchange,U;u.wasmBinary&&(U=u.wasmBinary);var oe=u.noExitRuntime||!0;typeof WebAssembly!="object"&&Hr("no native wasm support detected");var re,me,ye=!1,Te;function Ne(C,_){C||Hr("Assertion failed: "+_)}function Pe(C){var _=u["_"+C];return Ne(_,"Cannot call unknown function "+C+", make sure it is exported"),_}function Ue(C,_,B,ee,be){var Ae={string:function(On){var eu=0;if(On!=null&&On!==0){var L5=(On.length<<2)+1;eu=Yl(L5),ot(On,eu,L5)}return eu},array:function(On){var eu=Yl(On.length);return Et(On,eu),eu}};function xe(On){return _==="string"?Ze(On):_==="boolean"?Boolean(On):On}var Ee=Pe(C),ht=[],fn=0;if(ee)for(var en=0;en<ee.length;en++){var Ia=Ae[B[en]];Ia?(fn===0&&(fn=Xc()),ht[en]=Ia(ee[en])):ht[en]=ee[en]}var Ql=Ee.apply(null,ht);return Ql=xe(Ql),fn!==0&&Zl(fn),Ql}function at(C,_,B,ee){B=B||[];var be=B.every(function(xe){return xe==="number"}),Ae=_!=="string";return Ae&&be&&!ee?Pe(C):function(){return Ue(C,_,B,arguments,ee)}}function Je(C,_,B){for(var ee=_+B,be="";!(_>=ee);){var Ae=C[_++];if(!Ae)return be;if(!(Ae&128)){be+=String.fromCharCode(Ae);continue}var xe=C[_++]&63;if((Ae&224)==192){be+=String.fromCharCode((Ae&31)<<6|xe);continue}var Ee=C[_++]&63;if((Ae&240)==224?Ae=(Ae&15)<<12|xe<<6|Ee:Ae=(Ae&7)<<18|xe<<12|Ee<<6|C[_++]&63,Ae<65536)be+=String.fromCharCode(Ae);else{var ht=Ae-65536;be+=String.fromCharCode(55296|ht>>10,56320|ht&1023)}}return be}function Ze(C,_){return C?Je(o(),C,_):""}function gt(C,_,B,ee){if(!(ee>0))return 0;for(var be=B,Ae=B+ee-1,xe=0;xe<C.length;++xe){var Ee=C.charCodeAt(xe);if(Ee>=55296&&Ee<=57343){var ht=C.charCodeAt(++xe);Ee=65536+((Ee&1023)<<10)|ht&1023}if(Ee<=127){if(B>=Ae)break;_[B++]=Ee}else if(Ee<=2047){if(B+1>=Ae)break;_[B++]=192|Ee>>6,_[B++]=128|Ee&63}else if(Ee<=65535){if(B+2>=Ae)break;_[B++]=224|Ee>>12,_[B++]=128|Ee>>6&63,_[B++]=128|Ee&63}else{if(B+3>=Ae)break;_[B++]=240|Ee>>18,_[B++]=128|Ee>>12&63,_[B++]=128|Ee>>6&63,_[B++]=128|Ee&63}}return _[B]=0,B-be}function ot(C,_,B){return gt(C,o(),_,B)}function At(C){for(var _=0,B=0;B<C.length;++B){var ee=C.charCodeAt(B);ee>=55296&&ee<=57343&&(ee=65536+((ee&1023)<<10)|C.charCodeAt(++B)&1023),ee<=127?++_:ee<=2047?_+=2:ee<=65535?_+=3:_+=4}return _}function Et(C,_){a().set(C,_)}function Qn(C,_){return C%_>0&&(C+=_-C%_),C}var it,hs,In,js,es,fs,Ns,qs,Es;function ts(C){it=C,u.HEAP8=hs=new Int8Array(C),u.HEAP16=js=new Int16Array(C),u.HEAP32=fs=new Int32Array(C),u.HEAPU8=In=new Uint8Array(C),u.HEAPU16=es=new Uint16Array(C),u.HEAPU32=Ns=new Uint32Array(C),u.HEAPF32=qs=new Float32Array(C),u.HEAPF64=Es=new Float64Array(C)}var Aa=u.INITIAL_MEMORY||16777216;if(S)re=u.wasmMemory,it=u.buffer;else if(u.wasmMemory)re=u.wasmMemory;else if(re=new WebAssembly.Memory({initial:Aa/65536,maximum:2147483648/65536,shared:!0}),!(re.buffer instanceof SharedArrayBuffer))throw j("requested a shared WebAssembly.Memory but the returned buffer is not a SharedArrayBuffer, indicating that while the browser has SharedArrayBuffer it does not have WebAssembly threads support - you may need to set a flag"),w&&console.log("(on node you may need: --experimental-wasm-threads --experimental-wasm-bulk-memory and also use a recent version)"),Error("bad memory");re&&(it=re.buffer),Aa=it.byteLength,ts(it);var Rn,ya=[],Rs=[],Mc=[],zc=[],Gr=[],Gp=!1,B0=!1;S||Rs.push({func:function(){lh()}});function Hp(){if(!S){if(u.preRun)for(typeof u.preRun=="function"&&(u.preRun=[u.preRun]);u.preRun.length;)W0(u.preRun.shift());jl(ya)}}function jp(){Gp=!0,!S&&jl(Rs)}function qp(){S||jl(Mc)}function ns(){S||(B0=!0)}function Xp(){if(!S){if(u.postRun)for(typeof u.postRun=="function"&&(u.postRun=[u.postRun]);u.postRun.length;)V0(u.postRun.shift());jl(Gr)}}function W0(C){ya.unshift(C)}function V0(C){Gr.unshift(C)}var Xs=0,Lc=null,ri=null;function U0(C){Ne(!S,"addRunDependency cannot be used in a pthread worker"),Xs++,u.monitorRunDependencies&&u.monitorRunDependencies(Xs)}function G0(C){if(Xs--,u.monitorRunDependencies&&u.monitorRunDependencies(Xs),Xs==0&&(Lc!==null&&(clearInterval(Lc),Lc=null),ri)){var _=ri;ri=null,_()}}u.preloadedImages={},u.preloadedAudios={};function Hr(C){u.onAbort&&u.onAbort(C),S&&console.error("Pthread aborting at "+new Error().stack),C+="",j(C),ye=!0,Te=1,C="abort("+C+"). Build with -s ASSERTIONS=1 for more info.";var _=new WebAssembly.RuntimeError(C);throw p(_),_}function ai(C,_){return String.prototype.startsWith?C.startsWith(_):C.indexOf(_)===0}var H0="data:application/octet-stream;base64,";function Kp(C){return ai(C,H0)}var j0="file://";function Zp(C){return ai(C,j0)}var ss="tfjs-backend-wasm-threaded-simd.wasm";Kp(ss)||(ss=R(ss));function q0(C){try{if(C==ss&&U)return new Uint8Array(U);if($)return $(C);throw"both async and sync fetching of the wasm failed"}catch(_){Hr(_)}}function Yp(){if(!U&&(y||b)){if(typeof fetch=="function"&&!Zp(ss))return fetch(ss,{credentials:"same-origin"}).then(function(C){if(!C.ok)throw"failed to load wasm binary file at '"+ss+"'";return C.arrayBuffer()}).catch(function(){return q0(ss)});if(D)return new Promise(function(C,_){D(ss,function(B){C(new Uint8Array(B))},_)})}return Promise.resolve().then(function(){return q0(ss)})}function X0(){var C={a:Bg};function _(xe,Ee){var ht=xe.exports;if(u.asm=ht,Rn=u.asm.kb,me=Ee,!S){var fn=$e.unusedWorkers.length;$e.unusedWorkers.forEach(function(en){$e.loadWasmModuleToWorker(en,function(){--fn||G0("wasm-instantiate")})})}}S||U0("wasm-instantiate");function B(xe){_(xe.instance,xe.module)}function ee(xe){return Yp().then(function(Ee){return WebAssembly.instantiate(Ee,C)}).then(xe,function(Ee){j("failed to asynchronously prepare wasm: "+Ee),Hr(Ee)})}function be(){return!U&&typeof WebAssembly.instantiateStreaming=="function"&&!Kp(ss)&&!Zp(ss)&&typeof fetch=="function"?fetch(ss,{credentials:"same-origin"}).then(function(xe){var Ee=WebAssembly.instantiateStreaming(xe,C);return Ee.then(B,function(ht){return j("wasm streaming compile failed: "+ht),j("falling back to ArrayBuffer instantiation"),ee(B)})}):ee(B)}if(u.instantiateWasm)try{var Ae=u.instantiateWasm(C,_);return Ae}catch(xe){return j("Module.instantiateWasm callback failed with error: "+xe),!1}return be().catch(p),{}}var Jp={10072:function(){throw"Canceled!"},10090:function(C,_){setTimeout(function(){_5(C,_)},0)}};function K0(){$e.initRuntime()}function jl(C){for(;C.length>0;){var _=C.shift();if(typeof _=="function"){_(u);continue}var B=_.func;typeof B=="number"?_.arg===void 0?Rn.get(B)():Rn.get(B)(_.arg):B(_.arg===void 0?null:_.arg)}}var xa={EPERM:63,ENOENT:44,ESRCH:71,EINTR:27,EIO:29,ENXIO:60,E2BIG:1,ENOEXEC:45,EBADF:8,ECHILD:12,EAGAIN:6,EWOULDBLOCK:6,ENOMEM:48,EACCES:2,EFAULT:21,ENOTBLK:105,EBUSY:10,EEXIST:20,EXDEV:75,ENODEV:43,ENOTDIR:54,EISDIR:31,EINVAL:28,ENFILE:41,EMFILE:33,ENOTTY:59,ETXTBSY:74,EFBIG:22,ENOSPC:51,ESPIPE:70,EROFS:69,EMLINK:34,EPIPE:64,EDOM:18,ERANGE:68,ENOMSG:49,EIDRM:24,ECHRNG:106,EL2NSYNC:156,EL3HLT:107,EL3RST:108,ELNRNG:109,EUNATCH:110,ENOCSI:111,EL2HLT:112,EDEADLK:16,ENOLCK:46,EBADE:113,EBADR:114,EXFULL:115,ENOANO:104,EBADRQC:103,EBADSLT:102,EDEADLOCK:16,EBFONT:101,ENOSTR:100,ENODATA:116,ETIME:117,ENOSR:118,ENONET:119,ENOPKG:120,EREMOTE:121,ENOLINK:47,EADV:122,ESRMNT:123,ECOMM:124,EPROTO:65,EMULTIHOP:36,EDOTDOT:125,EBADMSG:9,ENOTUNIQ:126,EBADFD:127,EREMCHG:128,ELIBACC:129,ELIBBAD:130,ELIBSCN:131,ELIBMAX:132,ELIBEXEC:133,ENOSYS:52,ENOTEMPTY:55,ENAMETOOLONG:37,ELOOP:32,EOPNOTSUPP:138,EPFNOSUPPORT:139,ECONNRESET:15,ENOBUFS:42,EAFNOSUPPORT:5,EPROTOTYPE:67,ENOTSOCK:57,ENOPROTOOPT:50,ESHUTDOWN:140,ECONNREFUSED:14,EADDRINUSE:3,ECONNABORTED:13,ENETUNREACH:40,ENETDOWN:38,ETIMEDOUT:73,EHOSTDOWN:142,EHOSTUNREACH:23,EINPROGRESS:26,EALREADY:7,EDESTADDRREQ:17,EMSGSIZE:35,EPROTONOSUPPORT:66,ESOCKTNOSUPPORT:137,EADDRNOTAVAIL:4,ENETRESET:39,EISCONN:30,ENOTCONN:53,ETOOMANYREFS:141,EUSERS:136,EDQUOT:19,ESTALE:72,ENOTSUP:138,ENOMEDIUM:148,EILSEQ:25,EOVERFLOW:61,ECANCELED:11,ENOTRECOVERABLE:56,EOWNERDEAD:62,ESTRPIPE:135};function Bc(C,_){if(C<=0||C>a().length||C&!0||_<0)return-28;if(_==0)return 0;_>=2147483647&&(_=1/0);var B=Atomics.load(i(),Jl>>2),ee=0;if(B==C){var be=Atomics.compareExchange(i(),Jl>>2,B,0);if(be==B&&(--_,ee=1,_<=0))return 1}var Ae=Atomics.notify(i(),C>>2,_);if(Ae>=0)return Ae+ee;throw"Atomics.notify returned an unexpected value "+Ae}u._emscripten_futex_wake=Bc;function Z0(C){if(S)throw"Internal Error! killThread() can only ever be called from main application thread!";if(!C)throw"Internal Error! Null pthread_ptr in killThread!";i()[C+12>>2]=0;var _=$e.pthreads[C];_.worker.terminate(),$e.freeThreadData(_),$e.runningWorkers.splice($e.runningWorkers.indexOf(_.worker),1),_.worker.pthread=void 0}function Y0(C){if(S)throw"Internal Error! cancelThread() can only ever be called from main application thread!";if(!C)throw"Internal Error! Null pthread_ptr in cancelThread!";var _=$e.pthreads[C];_.worker.postMessage({cmd:"cancel"})}function Qp(C){if(S)throw"Internal Error! cleanupThread() can only ever be called from main application thread!";if(!C)throw"Internal Error! Null pthread_ptr in cleanupThread!";var _=$e.pthreads[C];if(_){i()[C+12>>2]=0;var B=_.worker;$e.returnWorkerToPool(B)}}var $e={unusedWorkers:[],runningWorkers:[],initMainThreadBlock:function(){for(var C=8,_=0;_<C;++_)$e.allocateUnusedWorker()},initRuntime:function(){for(var C=ii(228),_=0;_<228/4;++_)l()[C/4+_]=0;i()[C+12>>2]=C;var B=C+152;i()[B>>2]=B;for(var ee=ii(512),_=0;_<128;++_)l()[ee/4+_]=0;Atomics.store(l(),C+100>>2,ee),Atomics.store(l(),C+40>>2,C),i2(C,!b,1),R5(C)},initWorker:function(){},pthreads:{},threadExitHandlers:[],setThreadStatus:function(){},runExitHandlers:function(){for(;$e.threadExitHandlers.length>0;)$e.threadExitHandlers.pop()();S&&ka()&&E5()},runExitHandlersAndDeinitThread:function(C,_){Atomics.store(l(),C+56>>2,1),Atomics.store(l(),C+60>>2,0),$e.runExitHandlers(),Atomics.store(l(),C+4>>2,_),Atomics.store(l(),C+0>>2,1),Bc(C+0,2147483647),i2(0,0,0)},threadExit:function(C){var _=ka();_&&($e.runExitHandlersAndDeinitThread(_,C),S&&postMessage({cmd:"exit"}))},threadCancel:function(){$e.runExitHandlersAndDeinitThread(ka(),-1),postMessage({cmd:"cancelDone"})},terminateAllThreads:function(){for(var C in $e.pthreads){var _=$e.pthreads[C];_&&_.worker&&$e.returnWorkerToPool(_.worker)}$e.pthreads={};for(var B=0;B<$e.unusedWorkers.length;++B){var ee=$e.unusedWorkers[B];ee.terminate()}$e.unusedWorkers=[];for(var B=0;B<$e.runningWorkers.length;++B){var ee=$e.runningWorkers[B],_=ee.pthread;$e.freeThreadData(_),ee.terminate()}$e.runningWorkers=[]},freeThreadData:function(C){if(!!C){if(C.threadInfoStruct){var _=i()[C.threadInfoStruct+100>>2];i()[C.threadInfoStruct+100>>2]=0,qc(_),qc(C.threadInfoStruct)}C.threadInfoStruct=0,C.allocatedOwnStack&&C.stackBase&&qc(C.stackBase),C.stackBase=0,C.worker&&(C.worker.pthread=null)}},returnWorkerToPool:function(C){$e.runWithoutMainThreadQueuedCalls(function(){delete $e.pthreads[C.pthread.threadInfoStruct],$e.unusedWorkers.push(C),$e.runningWorkers.splice($e.runningWorkers.indexOf(C),1),$e.freeThreadData(C.pthread),C.pthread=void 0})},runWithoutMainThreadQueuedCalls:function(C){i()[M5>>2]=0;try{C()}finally{i()[M5>>2]=1}},receiveObjectTransfer:function(C){},loadWasmModuleToWorker:function(C,_){C.onmessage=function(B){var ee=B.data,be=ee.cmd;if(C.pthread&&($e.currentProxiedOperationCallerThread=C.pthread.threadInfoStruct),ee.targetThread&&ee.targetThread!=ka()){var Ae=$e.pthreads[ee.targetThread];Ae?Ae.worker.postMessage(B.data,ee.transferList):console.error('Internal error! Worker sent a message "'+be+'" to target pthread '+ee.targetThread+", but that thread no longer exists!"),$e.currentProxiedOperationCallerThread=void 0;return}if(be==="processQueuedMainThreadWork")fh();else if(be==="spawnThread")oh(B.data);else if(be==="cleanupThread")Qp(ee.thread);else if(be==="killThread")Z0(ee.thread);else if(be==="cancelThread")Y0(ee.thread);else if(be==="loaded")C.loaded=!0,_&&_(C),C.runPthread&&(C.runPthread(),delete C.runPthread);else if(be==="print")z("Thread "+ee.threadId+": "+ee.text);else if(be==="printErr")j("Thread "+ee.threadId+": "+ee.text);else if(be==="alert")alert("Thread "+ee.threadId+": "+ee.text);else if(be==="exit"){var xe=C.pthread&&Atomics.load(l(),C.pthread.threadInfoStruct+64>>2);xe&&$e.returnWorkerToPool(C)}else if(be==="exitProcess")try{IE(ee.returnCode)}catch(Ee){if(Ee instanceof Kc)return;throw Ee}else be==="cancelDone"?$e.returnWorkerToPool(C):be==="objectTransfer"?$e.receiveObjectTransfer(B.data):B.data.target==="setimmediate"?C.postMessage(B.data):j("worker sent an unknown command "+be);$e.currentProxiedOperationCallerThread=void 0},C.onerror=function(B){j("pthread sent an error! "+B.filename+":"+B.lineno+": "+B.message)},w&&(C.on("message",function(B){C.onmessage({data:B})}),C.on("error",function(B){C.onerror(B)}),C.on("exit",function(B){})),C.postMessage({cmd:"load",urlOrBlob:u.mainScriptUrlOrBlob||s,wasmMemory:re,wasmModule:me})},allocateUnusedWorker:function(){var C=R("tfjs-backend-wasm-threaded-simd.worker.js");$e.unusedWorkers.push(new Worker(C))},getNewWorker:function(){return $e.unusedWorkers.length==0&&($e.allocateUnusedWorker(),$e.loadWasmModuleToWorker($e.unusedWorkers[0])),$e.unusedWorkers.length>0?$e.unusedWorkers.pop():null},busySpinWait:function(C){for(var _=performance.now()+C;performance.now()<_;);}};function J0(C,_){F5(C,_),Zl(C)}u.establishStackSpace=J0;function Q0(){return oe}u.getNoExitRuntime=Q0;function eg(C,_){return Rn.get(C)(_)}u.invokeEntryPoint=eg;function tg(C,_,B,ee){Hr("Assertion failed: "+Ze(C)+", at: "+[_?Ze(_):"unknown filename",B,ee?Ze(ee):"unknown function"])}function ng(C,_){var B=_main(C,_)}var oi;w?oi=function(){var C=process.hrtime();return C[0]*1e3+C[1]/1e6}:S?oi=function(){return performance.now()-u.__performance_now_clock_drift}:typeof dateNow!="undefined"?oi=dateNow:oi=function(){return performance.now()};function sg(C){return i()[T5()>>2]=C,C}function rg(C,_){if(S)return ba(1,1,C,_)}function ag(C,_){if(C==_)postMessage({cmd:"processQueuedMainThreadWork"});else if(S)postMessage({targetThread:C,cmd:"processThreadQueue"});else{var B=$e.pthreads[C],ee=B&&B.worker;if(!ee)return;ee.postMessage({cmd:"processThreadQueue"})}return 1}function og(){Hr()}function ig(C,_,B){var ee=dg(_,B);return Jp[C].apply(null,ee)}function lg(C,_){}function eh(C,_,B){if(C<=0||C>a().length||C&!0)return-28;if(y){if(Atomics.load(i(),C>>2)!=_)return-6;for(var be=performance.now(),Ae=be+B,xe=Atomics.exchange(i(),Jl>>2,C);;){if(be=performance.now(),be>Ae)return xe=Atomics.exchange(i(),Jl>>2,0),-73;if(xe=Atomics.exchange(i(),Jl>>2,0),xe==0)break;if(fh(),Atomics.load(i(),C>>2)!=_)return-6;xe=Atomics.exchange(i(),Jl>>2,C)}return 0}else{var ee=Atomics.wait(i(),C>>2,_,B);if(ee==="timed-out")return-73;if(ee==="not-equal")return-6;if(ee==="ok")return 0;throw"Atomics.wait returned an unexpected value "+ee}}function ug(C,_,B){o().copyWithin(C,_,_+B)}function cg(){return w?qE().cpus().length:navigator.hardwareConcurrency}function ba(C,_){for(var B=arguments.length-2,ee=Xc(),be=B,Ae=Yl(be*8),xe=Ae>>3,Ee=0;Ee<B;Ee++){var ht=arguments[2+Ee];c()[xe+Ee]=ht}var fn=P5(C,be,Ae,_);return Zl(ee),fn}var Wc=[],Vc=[];function dg(C,_){Vc.length=0;var B;for(_>>=2;B=o()[C++];){var ee=B<105;ee&&_&1&&_++,Vc.push(ee?c()[_++>>1]:i()[_]),++_}return Vc}function pg(C,_,B){Wc.length=_;for(var ee=B>>3,be=0;be<_;be++)Wc[be]=c()[ee+be];var Ae=C<0,xe=Ae?Jp[-C-1]:Lg[C];return xe.apply(null,Wc)}function hg(){return o().length}function fg(C){try{return re.grow(C-it.byteLength+65535>>>16),ts(re.buffer),1}catch(_){}}function mg(C){var _=hg();if(C<=_)return!1;var B=2147483648;if(C>B)return!1;for(var ee=1;ee<=4;ee*=2){var be=_*(1+.2/ee);be=Math.min(be,C+100663296);var Ae=Math.min(B,Qn(Math.max(C,be),65536)),xe=fg(Ae);if(xe)return!0}return!1}var Ge={inEventHandler:0,removeAllEventListeners:function(){for(var C=Ge.eventHandlers.length-1;C>=0;--C)Ge._removeHandler(C);Ge.eventHandlers=[],Ge.deferredCalls=[]},registerRemoveEventListeners:function(){Ge.removeEventListenersRegistered||(zc.push(Ge.removeAllEventListeners),Ge.removeEventListenersRegistered=!0)},deferredCalls:[],deferCall:function(C,_,B){function ee(xe,Ee){if(xe.length!=Ee.length)return!1;for(var ht in xe)if(xe[ht]!=Ee[ht])return!1;return!0}for(var be in Ge.deferredCalls){var Ae=Ge.deferredCalls[be];if(Ae.targetFunction==C&&ee(Ae.argsList,B))return}Ge.deferredCalls.push({targetFunction:C,precedence:_,argsList:B}),Ge.deferredCalls.sort(function(xe,Ee){return xe.precedence<Ee.precedence})},removeDeferredCalls:function(C){for(var _=0;_<Ge.deferredCalls.length;++_)Ge.deferredCalls[_].targetFunction==C&&(Ge.deferredCalls.splice(_,1),--_)},canPerformEventHandlerRequests:function(){return Ge.inEventHandler&&Ge.currentEventHandler.allowsDeferredCalls},runDeferredCalls:function(){if(!!Ge.canPerformEventHandlerRequests())for(var C=0;C<Ge.deferredCalls.length;++C){var _=Ge.deferredCalls[C];Ge.deferredCalls.splice(C,1),--C,_.targetFunction.apply(null,_.argsList)}},eventHandlers:[],removeAllHandlersOnTarget:function(C,_){for(var B=0;B<Ge.eventHandlers.length;++B)Ge.eventHandlers[B].target==C&&(!_||_==Ge.eventHandlers[B].eventTypeString)&&Ge._removeHandler(B--)},_removeHandler:function(C){var _=Ge.eventHandlers[C];_.target.removeEventListener(_.eventTypeString,_.eventListenerFunc,_.useCapture),Ge.eventHandlers.splice(C,1)},registerOrRemoveHandler:function(C){var _=function(be){++Ge.inEventHandler,Ge.currentEventHandler=C,Ge.runDeferredCalls(),C.handlerFunc(be),Ge.runDeferredCalls(),--Ge.inEventHandler};if(C.callbackfunc)C.eventListenerFunc=_,C.target.addEventListener(C.eventTypeString,_,C.useCapture),Ge.eventHandlers.push(C),Ge.registerRemoveEventListeners();else for(var B=0;B<Ge.eventHandlers.length;++B)Ge.eventHandlers[B].target==C.target&&Ge.eventHandlers[B].eventTypeString==C.eventTypeString&&Ge._removeHandler(B--)},queueEventHandlerOnThread_iiii:function(C,_,B,ee,be){var Ae=Xc(),xe=Yl(12);i()[xe>>2]=B,i()[xe+4>>2]=ee,i()[xe+8>>2]=be,o2(0,C,637534208,_,ee,xe),Zl(Ae)},getTargetThreadForEventCallback:function(C){switch(C){case 1:return 0;case 2:return $e.currentProxiedOperationCallerThread;default:return C}},getNodeNameForTarget:function(C){return C?C==window?"#window":C==screen?"#screen":C&&C.nodeName?C.nodeName:"":""},fullscreenEnabled:function(){return document.fullscreenEnabled||document.webkitFullscreenEnabled}};function gg(C){var _=At(C)+1,B=ii(_);return ot(C,B,_),B}function Ag(C,_,B,ee){var be=Xc(),Ae=Yl(12),xe=0;_&&(xe=gg(_)),i()[Ae>>2]=xe,i()[Ae+4>>2]=B,i()[Ae+8>>2]=ee,o2(0,C,657457152,0,xe,Ae),Zl(be)}function yg(C,_,B,ee){_=_?Ze(_):"",Ag(C,_,B,ee)}function xg(C){return C>2?Ze(C):C}var bg=[0,typeof document!="undefined"?document:0,typeof window!="undefined"?window:0];function vg(C){C=xg(C);var _=bg[C]||(typeof document!="undefined"?document.querySelector(C):void 0);return _}function Uc(C){return vg(C)}function th(C,_,B){var ee=Uc(C);if(!ee)return-4;if(ee.canvasSharedPtr&&(i()[ee.canvasSharedPtr>>2]=_,i()[ee.canvasSharedPtr+4>>2]=B),ee.offscreenCanvas||!ee.controlTransferredOffscreen){ee.offscreenCanvas&&(ee=ee.offscreenCanvas);var be=!1;if(ee.GLctxObject&&ee.GLctxObject.GLctx){var Ae=ee.GLctxObject.GLctx.getParameter(2978);be=Ae[0]===0&&Ae[1]===0&&Ae[2]===ee.width&&Ae[3]===ee.height}ee.width=_,ee.height=B,be&&ee.GLctxObject.GLctx.viewport(0,0,_,B)}else if(ee.canvasSharedPtr){var xe=i()[ee.canvasSharedPtr+8>>2];return yg(xe,C,_,B),1}else return-4;return 0}function nh(C,_,B){return S?ba(2,1,C,_,B):th(C,_,B)}function wg(C,_,B){var ee=Uc(C);return ee?th(C,_,B):nh(C,_,B)}function kg(C){}function Ig(C,_){}function Sg(C){var _=C.getExtension("ANGLE_instanced_arrays");if(_)return C.vertexAttribDivisor=function(B,ee){_.vertexAttribDivisorANGLE(B,ee)},C.drawArraysInstanced=function(B,ee,be,Ae){_.drawArraysInstancedANGLE(B,ee,be,Ae)},C.drawElementsInstanced=function(B,ee,be,Ae,xe){_.drawElementsInstancedANGLE(B,ee,be,Ae,xe)},1}function Cg(C){var _=C.getExtension("OES_vertex_array_object");if(_)return C.createVertexArray=function(){return _.createVertexArrayOES()},C.deleteVertexArray=function(B){_.deleteVertexArrayOES(B)},C.bindVertexArray=function(B){_.bindVertexArrayOES(B)},C.isVertexArray=function(B){return _.isVertexArrayOES(B)},1}function Tg(C){var _=C.getExtension("WEBGL_draw_buffers");if(_)return C.drawBuffers=function(B,ee){_.drawBuffersWEBGL(B,ee)},1}function Ng(C){return!!(C.multiDrawWebgl=C.getExtension("WEBGL_multi_draw"))}var dt={counter:1,buffers:[],programs:[],framebuffers:[],renderbuffers:[],textures:[],uniforms:[],shaders:[],vaos:[],contexts:{},offscreenCanvases:{},timerQueriesEXT:[],programInfos:{},stringCache:{},unpackAlignment:4,recordError:function(_){dt.lastError||(dt.lastError=_)},getNewId:function(C){for(var _=dt.counter++,B=C.length;B<_;B++)C[B]=null;return _},getSource:function(C,_,B,ee){for(var be="",Ae=0;Ae<_;++Ae){var xe=ee?i()[ee+Ae*4>>2]:-1;be+=Ze(i()[B+Ae*4>>2],xe<0?void 0:xe)}return be},createContext:function(C,_){var B=C.getContext("webgl",_);if(!B)return 0;var ee=dt.registerContext(B,_);return ee},registerContext:function(C,_){var B=ii(8);i()[B+4>>2]=ka();var ee={handle:B,attributes:_,version:_.majorVersion,GLctx:C};return C.canvas&&(C.canvas.GLctxObject=ee),dt.contexts[B]=ee,(typeof _.enableExtensionsByDefault=="undefined"||_.enableExtensionsByDefault)&&dt.initExtensions(ee),B},makeContextCurrent:function(C){return dt.currentContext=dt.contexts[C],u.ctx=va=dt.currentContext&&dt.currentContext.GLctx,!(C&&!va)},getContext:function(C){return dt.contexts[C]},deleteContext:function(C){dt.currentContext===dt.contexts[C]&&(dt.currentContext=null),typeof Ge=="object"&&Ge.removeAllHandlersOnTarget(dt.contexts[C].GLctx.canvas),dt.contexts[C]&&dt.contexts[C].GLctx.canvas&&(dt.contexts[C].GLctx.canvas.GLctxObject=void 0),qc(dt.contexts[C].handle),dt.contexts[C]=null},initExtensions:function(C){if(C||(C=dt.currentContext),!C.initExtensionsDone){C.initExtensionsDone=!0;var _=C.GLctx;Sg(_),Cg(_),Tg(_),_.disjointTimerQueryExt=_.getExtension("EXT_disjoint_timer_query"),Ng(_);var B=_.getSupportedExtensions()||[];B.forEach(function(ee){ee.indexOf("lose_context")<0&&ee.indexOf("debug")<0&&_.getExtension(ee)})}},populateUniformTable:function(C){for(var _=dt.programs[C],B=dt.programInfos[C]={uniforms:{},maxUniformLength:0,maxAttributeLength:-1,maxUniformBlockNameLength:-1},ee=B.uniforms,be=va.getProgramParameter(_,35718),Ae=0;Ae<be;++Ae){var xe=va.getActiveUniform(_,Ae),Ee=xe.name;B.maxUniformLength=Math.max(B.maxUniformLength,Ee.length+1),Ee.slice(-1)=="]"&&(Ee=Ee.slice(0,Ee.lastIndexOf("[")));var ht=va.getUniformLocation(_,Ee);if(ht){var fn=dt.getNewId(dt.uniforms);ee[Ee]=[xe.size,fn],dt.uniforms[fn]=ht;for(var en=1;en<xe.size;++en){var Ia=Ee+"["+en+"]";ht=va.getUniformLocation(_,Ia),fn=dt.getNewId(dt.uniforms),dt.uniforms[fn]=ht}}}}},Eg=["default","low-power","high-performance"];function Rg(C,_){var B=_>>2,ee=i()[B+(24>>2)],be={alpha:!!i()[B+(0>>2)],depth:!!i()[B+(4>>2)],stencil:!!i()[B+(8>>2)],antialias:!!i()[B+(12>>2)],premultipliedAlpha:!!i()[B+(16>>2)],preserveDrawingBuffer:!!i()[B+(20>>2)],powerPreference:Eg[ee],failIfMajorPerformanceCaveat:!!i()[B+(28>>2)],majorVersion:i()[B+(32>>2)],minorVersion:i()[B+(36>>2)],enableExtensionsByDefault:i()[B+(40>>2)],explicitSwapControl:i()[B+(44>>2)],proxyContextToMainThread:i()[B+(48>>2)],renderViaOffscreenBackBuffer:i()[B+(52>>2)]},Ae=Uc(C);if(!Ae||be.explicitSwapControl)return 0;var xe=dt.createContext(Ae,be);return xe}function $g(C,_){return Rg(C,_)}var ql={mappings:{},buffers:[null,[],[]],printChar:function(C,_){var B=ql.buffers[C];_===0||_===10?((C===1?z:j)(Je(B,0)),B.length=0):B.push(_)},varargs:void 0,get:function(){ql.varargs+=4;var C=i()[ql.varargs-4>>2];return C},getStr:function(C){var _=Ze(C);return _},get64:function(C,_){return C}};function sh(C){return S?ba(3,1,C):0}function rh(C,_,B,ee,be){if(S)return ba(4,1,C,_,B,ee,be)}function ah(C,_,B,ee){if(S)return ba(5,1,C,_,B,ee);for(var be=0,Ae=0;Ae<B;Ae++){for(var xe=i()[_+Ae*8>>2],Ee=i()[_+(Ae*8+4)>>2],ht=0;ht<Ee;ht++)ql.printChar(C,o()[xe+ht]);be+=Ee}return i()[ee>>2]=be,0}function _g(C){var _=$e.threadExitHandlers.pop();C&&_()}function Dg(C,_){$e.threadExitHandlers.push(function(){Rn.get(C)(_)})}function oh(C){if(S)throw"Internal Error! spawnThread() can only ever be called from main application thread!";var _=$e.getNewWorker();if(_.pthread!==void 0)throw"Internal error!";if(!C.pthread_ptr)throw"Internal error, no pthread ptr!";$e.runningWorkers.push(_);for(var B=ii(128*4),ee=0;ee<128;++ee)i()[B+ee*4>>2]=0;var be=C.stackBase+C.stackSize,Ae=$e.pthreads[C.pthread_ptr]={worker:_,stackBase:C.stackBase,stackSize:C.stackSize,allocatedOwnStack:C.allocatedOwnStack,threadInfoStruct:C.pthread_ptr},xe=Ae.threadInfoStruct>>2;Atomics.store(l(),xe+(64>>2),C.detached),Atomics.store(l(),xe+(100>>2),B),Atomics.store(l(),xe+(40>>2),Ae.threadInfoStruct),Atomics.store(l(),xe+(80>>2),C.stackSize),Atomics.store(l(),xe+(76>>2),be),Atomics.store(l(),xe+(104>>2),C.stackSize),Atomics.store(l(),xe+(104+8>>2),be),Atomics.store(l(),xe+(104+12>>2),C.detached);var Ee=N5(),ht=Ee+40;Atomics.store(l(),xe+(172>>2),ht),_.pthread=Ae;var fn={cmd:"run",start_routine:C.startRoutine,arg:C.arg,threadInfoStruct:C.pthread_ptr,stackBase:C.stackBase,stackSize:C.stackSize};_.runPthread=function(){fn.time=performance.now(),_.postMessage(fn,C.transferList)},_.loaded&&(_.runPthread(),delete _.runPthread)}function Pg(C,_,B,ee){if(typeof SharedArrayBuffer=="undefined")return j("Current environment does not support SharedArrayBuffer, pthreads are not available!"),6;if(!C)return j("pthread_create called with a null thread pointer!"),28;var be=[],Ae=0;if(S&&(be.length===0||Ae))return D5(687865856,C,_,B,ee);if(Ae)return Ae;var xe=0,Ee=0,ht=0;_&&_!=-1?(xe=i()[_>>2],xe+=81920,Ee=i()[_+8>>2],ht=i()[_+12>>2]!==0):xe=2097152;var fn=Ee==0;fn?Ee=O5(16,xe):(Ee-=xe,Ne(Ee>0));for(var en=ii(228),Ia=0;Ia<228>>2;++Ia)l()[(en>>2)+Ia]=0;i()[C>>2]=en,i()[en+12>>2]=en;var Ql=en+152;i()[Ql>>2]=Ql;var On={stackBase:Ee,stackSize:xe,allocatedOwnStack:fn,detached:ht,startRoutine:B,pthread_ptr:en,arg:ee,transferList:be};return S?(On.cmd="spawnThread",postMessage(On,be)):oh(On),0}function Fg(){if(!!S){var C=ka();if(!!C){var _=Atomics.load(l(),C+56>>2);if(!_){var B=Atomics.load(l(),C+0>>2);if(B==2)throw"Canceled!"}}}}function Og(){w||b||Z("Blocking on the main thread is very dangerous, see https://emscripten.org/docs/porting/pthreads.html#blocking-on-the-main-browser-thread")}function Mg(C,_,B){if(!C)return j("pthread_join attempted on a null thread pointer!"),xa.ESRCH;if(S&&ka()==C)return j("PThread "+C+" is attempting to join to itself!"),xa.EDEADLK;if(!S&&$5()==C)return j("Main thread "+C+" is attempting to join to itself!"),xa.EDEADLK;var ee=i()[C+12>>2];if(ee!==C)return j("pthread_join attempted on thread "+C+", which does not point to a valid thread, or does not exist anymore!"),xa.ESRCH;var be=Atomics.load(l(),C+64>>2);if(be)return j("Attempted to join thread "+C+", which was already detached!"),xa.EINVAL;for(B&&Og();;){var Ae=Atomics.load(l(),C+0>>2);if(Ae==1){var xe=Atomics.load(l(),C+4>>2);return _&&(i()[_>>2]=xe),Atomics.store(l(),C+64>>2,1),S?postMessage({cmd:"cleanupThread",thread:C}):Qp(C),0}if(!B)return xa.EBUSY;Fg(),S||fh(),eh(C+0,Ae,S?100:1)}}function zg(C,_){return Mg(C,_,!0)}function ih(C){if(S)return ba(6,1,C);switch(C){case 30:return 16384;case 85:var _=2147483648;return _/16384;case 132:case 133:case 12:case 137:case 138:case 15:case 235:case 16:case 17:case 18:case 19:case 20:case 149:case 13:case 10:case 236:case 153:case 9:case 21:case 22:case 159:case 154:case 14:case 77:case 78:case 139:case 82:case 68:case 67:case 164:case 11:case 29:case 47:case 48:case 95:case 52:case 51:case 46:return 200809;case 27:case 246:case 127:case 128:case 23:case 24:case 160:case 161:case 181:case 182:case 242:case 183:case 184:case 243:case 244:case 245:case 165:case 178:case 179:case 49:case 50:case 168:case 169:case 175:case 170:case 171:case 172:case 97:case 76:case 32:case 173:case 35:case 80:case 81:case 79:return-1;case 176:case 177:case 7:case 155:case 8:case 157:case 125:case 126:case 92:case 93:case 129:case 130:case 131:case 94:case 91:return 1;case 74:case 60:case 69:case 70:case 4:return 1024;case 31:case 42:case 72:return 32;case 87:case 26:case 33:return 2147483647;case 34:case 1:return 47839;case 38:case 36:return 99;case 43:case 37:return 2048;case 0:return 2097152;case 3:return 65536;case 28:return 32768;case 44:return 32767;case 75:return 16384;case 39:return 1e3;case 89:return 700;case 71:return 256;case 40:return 255;case 2:return 100;case 180:return 64;case 25:return 20;case 5:return 16;case 6:return 6;case 73:return 4;case 84:return typeof navigator=="object"&&navigator.hardwareConcurrency||1}return sg(28),-1}S||$e.initMainThreadBlock();var va,Lg=[null,rg,nh,sh,rh,ah,ih],Bg={e:tg,r:ng,x:ag,b:og,y:ig,j:lg,d:eh,c:Bc,f:oi,p:ug,A:cg,u:pg,q:mg,v:wg,i:kg,s:Ig,w:$g,l:sh,n:rh,g:ah,o:K0,a:re||u.wasmMemory,z:_g,k:Dg,h:Pg,m:zg,t:ih},C5=X0(),lh=u.___wasm_call_ctors=function(){return(lh=u.___wasm_call_ctors=u.asm.B).apply(null,arguments)},Wg=u._init=function(){return(Wg=u._init=u.asm.C).apply(null,arguments)},Vg=u._init_with_threads_count=function(){return(Vg=u._init_with_threads_count=u.asm.D).apply(null,arguments)},Ug=u._get_threads_count=function(){return(Ug=u._get_threads_count=u.asm.E).apply(null,arguments)},Gg=u._register_tensor=function(){return(Gg=u._register_tensor=u.asm.F).apply(null,arguments)},Hg=u._dispose_data=function(){return(Hg=u._dispose_data=u.asm.G).apply(null,arguments)},jg=u._dispose=function(){return(jg=u._dispose=u.asm.H).apply(null,arguments)},qg=u._Abs=function(){return(qg=u._Abs=u.asm.I).apply(null,arguments)},Xg=u._Add=function(){return(Xg=u._Add=u.asm.J).apply(null,arguments)},Kg=u._AddN=function(){return(Kg=u._AddN=u.asm.K).apply(null,arguments)},Zg=u._All=function(){return(Zg=u._All=u.asm.L).apply(null,arguments)},Yg=u._Any=function(){return(Yg=u._Any=u.asm.M).apply(null,arguments)},Jg=u._ArgMax=function(){return(Jg=u._ArgMax=u.asm.N).apply(null,arguments)},Qg=u._AvgPool=function(){return(Qg=u._AvgPool=u.asm.O).apply(null,arguments)},e2=u._BatchMatMul=function(){return(e2=u._BatchMatMul=u.asm.P).apply(null,arguments)},t2=u._Ceil=function(){return(t2=u._Ceil=u.asm.Q).apply(null,arguments)},n2=u._ClipByValue=function(){return(n2=u._ClipByValue=u.asm.R).apply(null,arguments)},s2=u._Conv2D=function(){return(s2=u._Conv2D=u.asm.S).apply(null,arguments)},uh=u._Conv2DBackpropInput=function(){return(uh=u._Conv2DBackpropInput=u.asm.T).apply(null,arguments)},ch=u._Cos=function(){return(ch=u._Cos=u.asm.U).apply(null,arguments)},Gc=u._Cosh=function(){return(Gc=u._Cosh=u.asm.V).apply(null,arguments)},Xl=u._CropAndResize=function(){return(Xl=u._CropAndResize=u.asm.W).apply(null,arguments)},r2=u._Cumsum=function(){return(r2=u._Cumsum=u.asm.X).apply(null,arguments)},Hc=u._DepthToSpace=function(){return(Hc=u._DepthToSpace=u.asm.Y).apply(null,arguments)},Kl=u._DepthwiseConv2dNative=function(){return(Kl=u._DepthwiseConv2dNative=u.asm.Z).apply(null,arguments)},dh=u._Elu=function(){return(dh=u._Elu=u.asm._).apply(null,arguments)},a2=u._Equal=function(){return(a2=u._Equal=u.asm.$).apply(null,arguments)},se=u._Exp=function(){return(se=u._Exp=u.asm.aa).apply(null,arguments)},le=u._FlipLeftRight=function(){return(le=u._FlipLeftRight=u.asm.ba).apply(null,arguments)},Ie=u._Floor=function(){return(Ie=u._Floor=u.asm.ca).apply(null,arguments)},lt=u._FloorDiv=function(){return(lt=u._FloorDiv=u.asm.da).apply(null,arguments)},Lt=u._FusedBatchNorm=function(){return(Lt=u._FusedBatchNorm=u.asm.ea).apply(null,arguments)},Rt=u._FusedConv2D=function(){return(Rt=u._FusedConv2D=u.asm.fa).apply(null,arguments)},Ye=u._FusedDepthwiseConv2D=function(){return(Ye=u._FusedDepthwiseConv2D=u.asm.ga).apply(null,arguments)},Qe=u._Gather=function(){return(Qe=u._Gather=u.asm.ha).apply(null,arguments)},Sn=u._GatherNd=function(){return(Sn=u._GatherNd=u.asm.ia).apply(null,arguments)},jr=u._Greater=function(){return(jr=u._Greater=u.asm.ja).apply(null,arguments)},qr=u._GreaterEqual=function(){return(qr=u._GreaterEqual=u.asm.ka).apply(null,arguments)},ph=u._LeakyRelu=function(){return(ph=u._LeakyRelu=u.asm.la).apply(null,arguments)},jc=u._Less=function(){return(jc=u._Less=u.asm.ma).apply(null,arguments)},ms=u._LessEqual=function(){return(ms=u._LessEqual=u.asm.na).apply(null,arguments)},wa=u._Log=function(){return(wa=u._Log=u.asm.oa).apply(null,arguments)},hh=u._LogicalAnd=function(){return(hh=u._LogicalAnd=u.asm.pa).apply(null,arguments)},$N=u._Max=function(){return($N=u._Max=u.asm.qa).apply(null,arguments)},_N=u._MaxPool=function(){return(_N=u._MaxPool=u.asm.ra).apply(null,arguments)},DN=u._Maximum=function(){return(DN=u._Maximum=u.asm.sa).apply(null,arguments)},PN=u._Mean=function(){return(PN=u._Mean=u.asm.ta).apply(null,arguments)},FN=u._Min=function(){return(FN=u._Min=u.asm.ua).apply(null,arguments)},ON=u._Minimum=function(){return(ON=u._Minimum=u.asm.va).apply(null,arguments)},MN=u._MirrorPad=function(){return(MN=u._MirrorPad=u.asm.wa).apply(null,arguments)},zN=u._Multiply=function(){return(zN=u._Multiply=u.asm.xa).apply(null,arguments)},LN=u._Neg=function(){return(LN=u._Neg=u.asm.ya).apply(null,arguments)},BN=u._NonMaxSuppressionV3=function(){return(BN=u._NonMaxSuppressionV3=u.asm.za).apply(null,arguments)},WN=u._NonMaxSuppressionV4=function(){return(WN=u._NonMaxSuppressionV4=u.asm.Aa).apply(null,arguments)},VN=u._NonMaxSuppressionV5=function(){return(VN=u._NonMaxSuppressionV5=u.asm.Ba).apply(null,arguments)},UN=u._NotEqual=function(){return(UN=u._NotEqual=u.asm.Ca).apply(null,arguments)},GN=u._OneHot=function(){return(GN=u._OneHot=u.asm.Da).apply(null,arguments)},HN=u._PadV2=function(){return(HN=u._PadV2=u.asm.Ea).apply(null,arguments)},jN=u._Pow=function(){return(jN=u._Pow=u.asm.Fa).apply(null,arguments)},qN=u._Prelu=function(){return(qN=u._Prelu=u.asm.Ga).apply(null,arguments)},XN=u._Prod=function(){return(XN=u._Prod=u.asm.Ha).apply(null,arguments)},KN=u._RealDiv=function(){return(KN=u._RealDiv=u.asm.Ia).apply(null,arguments)},ZN=u._Relu=function(){return(ZN=u._Relu=u.asm.Ja).apply(null,arguments)},YN=u._Relu6=function(){return(YN=u._Relu6=u.asm.Ka).apply(null,arguments)},JN=u._ResizeBilinear=function(){return(JN=u._ResizeBilinear=u.asm.La).apply(null,arguments)},QN=u._Reverse=function(){return(QN=u._Reverse=u.asm.Ma).apply(null,arguments)},eE=u._RotateWithOffset=function(){return(eE=u._RotateWithOffset=u.asm.Na).apply(null,arguments)},tE=u._Round=function(){return(tE=u._Round=u.asm.Oa).apply(null,arguments)},nE=u._Rsqrt=function(){return(nE=u._Rsqrt=u.asm.Pa).apply(null,arguments)},sE=u._ScatterNd=function(){return(sE=u._ScatterNd=u.asm.Qa).apply(null,arguments)},rE=u._SelectV2=function(){return(rE=u._SelectV2=u.asm.Ra).apply(null,arguments)},aE=u._Sigmoid=function(){return(aE=u._Sigmoid=u.asm.Sa).apply(null,arguments)},oE=u._Sin=function(){return(oE=u._Sin=u.asm.Ta).apply(null,arguments)},iE=u._Softmax=function(){return(iE=u._Softmax=u.asm.Ua).apply(null,arguments)},lE=u._Sqrt=function(){return(lE=u._Sqrt=u.asm.Va).apply(null,arguments)},uE=u._Square=function(){return(uE=u._Square=u.asm.Wa).apply(null,arguments)},cE=u._SquaredDifference=function(){return(cE=u._SquaredDifference=u.asm.Xa).apply(null,arguments)},dE=u._Step=function(){return(dE=u._Step=u.asm.Ya).apply(null,arguments)},pE=u._StridedSlice=function(){return(pE=u._StridedSlice=u.asm.Za).apply(null,arguments)},hE=u._Sub=function(){return(hE=u._Sub=u.asm._a).apply(null,arguments)},fE=u._Sum=function(){return(fE=u._Sum=u.asm.$a).apply(null,arguments)},mE=u._Tan=function(){return(mE=u._Tan=u.asm.ab).apply(null,arguments)},gE=u._Tanh=function(){return(gE=u._Tanh=u.asm.bb).apply(null,arguments)},AE=u._Tile=function(){return(AE=u._Tile=u.asm.cb).apply(null,arguments)},yE=u._TopK=function(){return(yE=u._TopK=u.asm.db).apply(null,arguments)},xE=u._Transform=function(){return(xE=u._Transform=u.asm.eb).apply(null,arguments)},bE=u._Transpose=function(){return(bE=u._Transpose=u.asm.fb).apply(null,arguments)},vE=u.__FusedMatMul=function(){return(vE=u.__FusedMatMul=u.asm.gb).apply(null,arguments)},ii=u._malloc=function(){return(ii=u._malloc=u.asm.hb).apply(null,arguments)},qc=u._free=function(){return(qc=u._free=u.asm.ib).apply(null,arguments)},T5=u.___errno_location=function(){return(T5=u.___errno_location=u.asm.jb).apply(null,arguments)},N5=u._emscripten_get_global_libc=function(){return(N5=u._emscripten_get_global_libc=u.asm.lb).apply(null,arguments)},ka=u._pthread_self=function(){return(ka=u._pthread_self=u.asm.mb).apply(null,arguments)},E5=u.___pthread_tsd_run_dtors=function(){return(E5=u.___pthread_tsd_run_dtors=u.asm.nb).apply(null,arguments)},fh=u._emscripten_main_thread_process_queued_calls=function(){return(fh=u._emscripten_main_thread_process_queued_calls=u.asm.ob).apply(null,arguments)},wE=u._emscripten_current_thread_process_queued_calls=function(){return(wE=u._emscripten_current_thread_process_queued_calls=u.asm.pb).apply(null,arguments)},R5=u._emscripten_register_main_browser_thread_id=function(){return(R5=u._emscripten_register_main_browser_thread_id=u.asm.qb).apply(null,arguments)},$5=u._emscripten_main_browser_thread_id=function(){return($5=u._emscripten_main_browser_thread_id=u.asm.rb).apply(null,arguments)},_5=u.__emscripten_do_dispatch_to_thread=function(){return(_5=u.__emscripten_do_dispatch_to_thread=u.asm.sb).apply(null,arguments)},D5=u._emscripten_sync_run_in_main_thread_4=function(){return(D5=u._emscripten_sync_run_in_main_thread_4=u.asm.tb).apply(null,arguments)},P5=u._emscripten_run_in_main_runtime_thread_js=function(){return(P5=u._emscripten_run_in_main_runtime_thread_js=u.asm.ub).apply(null,arguments)},o2=u.__emscripten_call_on_thread=function(){return(o2=u.__emscripten_call_on_thread=u.asm.vb).apply(null,arguments)},kE=u._emscripten_tls_init=function(){return(kE=u._emscripten_tls_init=u.asm.wb).apply(null,arguments)},i2=u.__emscripten_thread_init=function(){return(i2=u.__emscripten_thread_init=u.asm.xb).apply(null,arguments)},Xc=u.stackSave=function(){return(Xc=u.stackSave=u.asm.yb).apply(null,arguments)},Zl=u.stackRestore=function(){return(Zl=u.stackRestore=u.asm.zb).apply(null,arguments)},Yl=u.stackAlloc=function(){return(Yl=u.stackAlloc=u.asm.Ab).apply(null,arguments)},F5=u._emscripten_stack_set_limits=function(){return(F5=u._emscripten_stack_set_limits=u.asm.Bb).apply(null,arguments)},O5=u._memalign=function(){return(O5=u._memalign=u.asm.Cb).apply(null,arguments)},M5=u.__emscripten_allow_main_runtime_queued_calls=10064,Jl=u.__emscripten_main_thread_futex=10268;u.cwrap=at,u.PThread=$e,u.PThread=$e,u.wasmMemory=re,u.ExitStatus=Kc;var mh;function Kc(C){this.name="ExitStatus",this.message="Program terminated with exit("+C+")",this.status=C}ri=function C(){mh||l2(),mh||(ri=C)};function l2(C){if(C=C||g,Xs>0)return;if(S){d(u),jp(),postMessage({cmd:"loaded"});return}if(Hp(),Xs>0)return;function _(){mh||(mh=!0,u.calledRun=!0,!ye&&(jp(),qp(),d(u),u.onRuntimeInitialized&&u.onRuntimeInitialized(),Xp()))}u.setStatus?(u.setStatus("Running..."),setTimeout(function(){setTimeout(function(){u.setStatus("")},1),_()},1)):_()}u.run=l2;function IE(C,_){if(!(_&&oe&&C===0)){if(!_&&S)throw postMessage({cmd:"exitProcess",returnCode:C}),new Kc(C);oe||($e.terminateAllThreads(),Te=C,ns(),u.onExit&&u.onExit(C),ye=!0),x(C,new Kc(C))}}if(u.preInit)for(typeof u.preInit=="function"&&(u.preInit=[u.preInit]);u.preInit.length>0;)u.preInit.pop()();S&&(oe=!1,$e.initWorker()),l2();var gh;h&&(gh={uncaughtException:process.listeners("uncaughtException").filter(function(C){return!h.uncaughtException.indexOf(C)>-1}),unhandledRejection:process.listeners("unhandledRejection").filter(function(C){return!h.unhandledRejection.indexOf(C)>-1})});var z5=WasmBackendModule||r,SE=z5._dispose;return z5._dispose=function(){SE(),gh&&(gh.uncaughtException.forEach(function(C){process.removeListener("uncaughtException",C)}),gh.unhandledRejection.forEach(function(C){process.removeListener("unhandledRejection",C)}))},r.ready}}();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModuleThreadedSimd=n)}}),KE=tn({"src/tfjs-backend-wasm/wasm-out/tfjs-backend-wasm.js"(e,t){var n=function(){var s=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(s=s||__filename),function(r){r=r||{};var a=typeof r!="undefined"?r:{},o,i;a.ready=new Promise(function(se,le){o=se,i=le});var l;process&&process.listeners&&(l={uncaughtException:process.listeners("uncaughtException"),unhandledRejection:process.listeners("unhandledRejection")});var c={},u;for(u in a)a.hasOwnProperty(u)&&(c[u]=a[u]);var d=[],p="./this.program",h=function(se,le){throw le},f=!1,m=!1,g=!1,A=!1;f=typeof window=="object",m=typeof importScripts=="function",g=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",A=!f&&!g&&!m;var x="";function y(se){return a.locateFile?a.locateFile(se,x):x+se}var b,w,k,S,N,R;g?(m?x=ed().dirname(x)+"/":x=__dirname+"/",b=function(le,Ie){return N||(N=xh()),R||(R=ed()),le=R.normalize(le),N.readFileSync(le,Ie?null:"utf8")},k=function(le){var Ie=b(le,!0);return Ie.buffer||(Ie=new Uint8Array(Ie)),z(Ie.buffer),Ie},process.argv.length>1&&(p=process.argv[1].replace(/\\/g,"/")),d=process.argv.slice(2),process.on("uncaughtException",function(se){if(!(se instanceof r2))throw se}),process.on("unhandledRejection",Gr),h=function(se){process.exit(se)},a.inspect=function(){return"[Emscripten Module object]"}):A?(typeof read!="undefined"&&(b=function(le){return read(le)}),k=function(le){var Ie;return typeof readbuffer=="function"?new Uint8Array(readbuffer(le)):(Ie=read(le,"binary"),z(typeof Ie=="object"),Ie)},typeof scriptArgs!="undefined"?d=scriptArgs:typeof arguments!="undefined"&&(d=arguments),typeof quit=="function"&&(h=function(se){quit(se)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(f||m)&&(m?x=self.location.href:typeof document!="undefined"&&document.currentScript&&(x=document.currentScript.src),s&&(x=s),x.indexOf("blob:")!==0?x=x.substr(0,x.lastIndexOf("/")+1):x="",b=function(se){var le=new XMLHttpRequest;return le.open("GET",se,!1),le.send(null),le.responseText},m&&(k=function(se){var le=new XMLHttpRequest;return le.open("GET",se,!1),le.responseType="arraybuffer",le.send(null),new Uint8Array(le.response)}),w=function(se,le,Ie){var lt=new XMLHttpRequest;lt.open("GET",se,!0),lt.responseType="arraybuffer",lt.onload=function(){if(lt.status==200||lt.status==0&&lt.response){le(lt.response);return}Ie()},lt.onerror=Ie,lt.send(null)},S=function(se){document.title=se});var M=a.print||console.log.bind(console),D=a.printErr||console.warn.bind(console);for(u in c)c.hasOwnProperty(u)&&(a[u]=c[u]);c=null,a.arguments&&(d=a.arguments),a.thisProgram&&(p=a.thisProgram),a.quit&&(h=a.quit);var $;a.wasmBinary&&($=a.wasmBinary);var T=a.noExitRuntime||!0;typeof WebAssembly!="object"&&Gr("no native wasm support detected");var F,V=!1,X;function z(se,le){se||Gr("Assertion failed: "+le)}function j(se){var le=a["_"+se];return z(le,"Cannot call unknown function "+se+", make sure it is exported"),le}function Z(se,le,Ie,lt,Lt){var Rt={string:function(ms){var wa=0;if(ms!=null&&ms!==0){var hh=(ms.length<<2)+1;wa=Gc(hh),re(ms,wa,hh)}return wa},array:function(ms){var wa=Gc(ms.length);return me(ms,wa),wa}};function Ye(ms){return le==="string"?U(ms):le==="boolean"?Boolean(ms):ms}var Qe=j(se),Sn=[],jr=0;if(lt)for(var qr=0;qr<lt.length;qr++){var ph=Rt[Ie[qr]];ph?(jr===0&&(jr=uh()),Sn[qr]=ph(lt[qr])):Sn[qr]=lt[qr]}var jc=Qe.apply(null,Sn);return jc=Ye(jc),jr!==0&&ch(jr),jc}function Q(se,le,Ie,lt){Ie=Ie||[];var Lt=Ie.every(function(Ye){return Ye==="number"}),Rt=le!=="string";return Rt&&Lt&&!lt?j(se):function(){return Z(se,le,Ie,arguments,lt)}}var te=typeof TextDecoder!="undefined"?new TextDecoder("utf8"):void 0;function ae(se,le,Ie){for(var lt=le+Ie,Lt=le;se[Lt]&&!(Lt>=lt);)++Lt;if(Lt-le>16&&se.subarray&&te)return te.decode(se.subarray(le,Lt));for(var Rt="";le<Lt;){var Ye=se[le++];if(!(Ye&128)){Rt+=String.fromCharCode(Ye);continue}var Qe=se[le++]&63;if((Ye&224)==192){Rt+=String.fromCharCode((Ye&31)<<6|Qe);continue}var Sn=se[le++]&63;if((Ye&240)==224?Ye=(Ye&15)<<12|Qe<<6|Sn:Ye=(Ye&7)<<18|Qe<<12|Sn<<6|se[le++]&63,Ye<65536)Rt+=String.fromCharCode(Ye);else{var jr=Ye-65536;Rt+=String.fromCharCode(55296|jr>>10,56320|jr&1023)}}return Rt}function U(se,le){return se?ae(Pe,se,le):""}function oe(se,le,Ie,lt){if(!(lt>0))return 0;for(var Lt=Ie,Rt=Ie+lt-1,Ye=0;Ye<se.length;++Ye){var Qe=se.charCodeAt(Ye);if(Qe>=55296&&Qe<=57343){var Sn=se.charCodeAt(++Ye);Qe=65536+((Qe&1023)<<10)|Sn&1023}if(Qe<=127){if(Ie>=Rt)break;le[Ie++]=Qe}else if(Qe<=2047){if(Ie+1>=Rt)break;le[Ie++]=192|Qe>>6,le[Ie++]=128|Qe&63}else if(Qe<=65535){if(Ie+2>=Rt)break;le[Ie++]=224|Qe>>12,le[Ie++]=128|Qe>>6&63,le[Ie++]=128|Qe&63}else{if(Ie+3>=Rt)break;le[Ie++]=240|Qe>>18,le[Ie++]=128|Qe>>12&63,le[Ie++]=128|Qe>>6&63,le[Ie++]=128|Qe&63}}return le[Ie]=0,Ie-Lt}function re(se,le,Ie){return oe(se,Pe,le,Ie)}function me(se,le){Ne.set(se,le)}function ye(se,le){return se%le>0&&(se+=le-se%le),se}var Te,Ne,Pe,Ue,at,Je,Ze,gt,ot;function At(se){Te=se,a.HEAP8=Ne=new Int8Array(se),a.HEAP16=Ue=new Int16Array(se),a.HEAP32=Je=new Int32Array(se),a.HEAPU8=Pe=new Uint8Array(se),a.HEAPU16=at=new Uint16Array(se),a.HEAPU32=Ze=new Uint32Array(se),a.HEAPF32=gt=new Float32Array(se),a.HEAPF64=ot=new Float64Array(se)}var Et=a.INITIAL_MEMORY||16777216,Qn,it=[],hs=[],In=[],js=[],es=!1;hs.push({func:function(){Yp()}});function fs(){if(a.preRun)for(typeof a.preRun=="function"&&(a.preRun=[a.preRun]);a.preRun.length;)ts(a.preRun.shift());Xs(it)}function Ns(){es=!0,Xs(hs)}function qs(){Xs(In)}function Es(){if(a.postRun)for(typeof a.postRun=="function"&&(a.postRun=[a.postRun]);a.postRun.length;)Aa(a.postRun.shift());Xs(js)}function ts(se){it.unshift(se)}function Aa(se){js.unshift(se)}var Rn=0,ya=null,Rs=null;function Mc(se){Rn++,a.monitorRunDependencies&&a.monitorRunDependencies(Rn)}function zc(se){if(Rn--,a.monitorRunDependencies&&a.monitorRunDependencies(Rn),Rn==0&&(ya!==null&&(clearInterval(ya),ya=null),Rs)){var le=Rs;Rs=null,le()}}a.preloadedImages={},a.preloadedAudios={};function Gr(se){a.onAbort&&a.onAbort(se),se+="",D(se),V=!0,X=1,se="abort("+se+"). Build with -s ASSERTIONS=1 for more info.";var le=new WebAssembly.RuntimeError(se);throw i(le),le}function Gp(se,le){return String.prototype.startsWith?se.startsWith(le):se.indexOf(le)===0}var B0="data:application/octet-stream;base64,";function Hp(se){return Gp(se,B0)}var jp="file://";function qp(se){return Gp(se,jp)}var ns="tfjs-backend-wasm.wasm";Hp(ns)||(ns=y(ns));function Xp(se){try{if(se==ns&&$)return new Uint8Array($);if(k)return k(se);throw"both async and sync fetching of the wasm failed"}catch(le){Gr(le)}}function W0(){if(!$&&(f||m)){if(typeof fetch=="function"&&!qp(ns))return fetch(ns,{credentials:"same-origin"}).then(function(se){if(!se.ok)throw"failed to load wasm binary file at '"+ns+"'";return se.arrayBuffer()}).catch(function(){return Xp(ns)});if(w)return new Promise(function(se,le){w(ns,function(Ie){se(new Uint8Array(Ie))},le)})}return Promise.resolve().then(function(){return Xp(ns)})}function V0(){var se={a:ss};function le(Ye,Qe){var Sn=Ye.exports;a.asm=Sn,F=a.asm.h,At(F.buffer),Qn=a.asm.Sa,zc("wasm-instantiate")}Mc("wasm-instantiate");function Ie(Ye){le(Ye.instance)}function lt(Ye){return W0().then(function(Qe){return WebAssembly.instantiate(Qe,se)}).then(Ye,function(Qe){D("failed to asynchronously prepare wasm: "+Qe),Gr(Qe)})}function Lt(){return!$&&typeof WebAssembly.instantiateStreaming=="function"&&!Hp(ns)&&!qp(ns)&&typeof fetch=="function"?fetch(ns,{credentials:"same-origin"}).then(function(Ye){var Qe=WebAssembly.instantiateStreaming(Ye,se);return Qe.then(Ie,function(Sn){return D("wasm streaming compile failed: "+Sn),D("falling back to ArrayBuffer instantiation"),lt(Ie)})}):lt(Ie)}if(a.instantiateWasm)try{var Rt=a.instantiateWasm(se,le);return Rt}catch(Ye){return D("Module.instantiateWasm callback failed with error: "+Ye),!1}return Lt().catch(i),{}}function Xs(se){for(;se.length>0;){var le=se.shift();if(typeof le=="function"){le(a);continue}var Ie=le.func;typeof Ie=="number"?le.arg===void 0?Qn.get(Ie)():Qn.get(Ie)(le.arg):Ie(le.arg===void 0?null:le.arg)}}function Lc(){Gr()}function ri(se,le,Ie){Pe.copyWithin(se,le,le+Ie)}function U0(){return Pe.length}function G0(se){try{return F.grow(se-Te.byteLength+65535>>>16),At(F.buffer),1}catch(le){}}function Hr(se){var le=U0(),Ie=2147483648;if(se>Ie)return!1;for(var lt=1;lt<=4;lt*=2){var Lt=le*(1+.2/lt);Lt=Math.min(Lt,se+100663296);var Rt=Math.min(Ie,ye(Math.max(se,Lt),65536)),Ye=G0(Rt);if(Ye)return!0}return!1}var ai={mappings:{},buffers:[null,[],[]],printChar:function(se,le){var Ie=ai.buffers[se];le===0||le===10?((se===1?M:D)(ae(Ie,0)),Ie.length=0):Ie.push(le)},varargs:void 0,get:function(){ai.varargs+=4;var se=Je[ai.varargs-4>>2];return se},getStr:function(se){var le=U(se);return le},get64:function(se,le){return se}};function H0(se){return 0}function Kp(se,le,Ie,lt,Lt){}function j0(se,le,Ie,lt){for(var Lt=0,Rt=0;Rt<Ie;Rt++){for(var Ye=Je[le+Rt*8>>2],Qe=Je[le+(Rt*8+4)>>2],Sn=0;Sn<Qe;Sn++)ai.printChar(se,Pe[Ye+Sn]);Lt+=Qe}return Je[lt>>2]=Lt,0}function Zp(){return 28}var ss={a:Lc,d:ri,e:Hr,f:H0,c:Kp,b:j0,g:Zp},q0=V0(),Yp=a.___wasm_call_ctors=function(){return(Yp=a.___wasm_call_ctors=a.asm.i).apply(null,arguments)},X0=a._init=function(){return(X0=a._init=a.asm.j).apply(null,arguments)},Jp=a._init_with_threads_count=function(){return(Jp=a._init_with_threads_count=a.asm.k).apply(null,arguments)},K0=a._get_threads_count=function(){return(K0=a._get_threads_count=a.asm.l).apply(null,arguments)},jl=a._register_tensor=function(){return(jl=a._register_tensor=a.asm.m).apply(null,arguments)},xa=a._dispose_data=function(){return(xa=a._dispose_data=a.asm.n).apply(null,arguments)},Bc=a._dispose=function(){return(Bc=a._dispose=a.asm.o).apply(null,arguments)},Z0=a._Abs=function(){return(Z0=a._Abs=a.asm.p).apply(null,arguments)},Y0=a._Add=function(){return(Y0=a._Add=a.asm.q).apply(null,arguments)},Qp=a._AddN=function(){return(Qp=a._AddN=a.asm.r).apply(null,arguments)},$e=a._All=function(){return($e=a._All=a.asm.s).apply(null,arguments)},J0=a._Any=function(){return(J0=a._Any=a.asm.t).apply(null,arguments)},Q0=a._ArgMax=function(){return(Q0=a._ArgMax=a.asm.u).apply(null,arguments)},eg=a._AvgPool=function(){return(eg=a._AvgPool=a.asm.v).apply(null,arguments)},tg=a._BatchMatMul=function(){return(tg=a._BatchMatMul=a.asm.w).apply(null,arguments)},ng=a._Ceil=function(){return(ng=a._Ceil=a.asm.x).apply(null,arguments)},oi=a._ClipByValue=function(){return(oi=a._ClipByValue=a.asm.y).apply(null,arguments)},sg=a._Conv2D=function(){return(sg=a._Conv2D=a.asm.z).apply(null,arguments)},rg=a._Conv2DBackpropInput=function(){return(rg=a._Conv2DBackpropInput=a.asm.A).apply(null,arguments)},ag=a._Cos=function(){return(ag=a._Cos=a.asm.B).apply(null,arguments)},og=a._Cosh=function(){return(og=a._Cosh=a.asm.C).apply(null,arguments)},ig=a._CropAndResize=function(){return(ig=a._CropAndResize=a.asm.D).apply(null,arguments)},lg=a._Cumsum=function(){return(lg=a._Cumsum=a.asm.E).apply(null,arguments)},eh=a._DepthToSpace=function(){return(eh=a._DepthToSpace=a.asm.F).apply(null,arguments)},ug=a._DepthwiseConv2dNative=function(){return(ug=a._DepthwiseConv2dNative=a.asm.G).apply(null,arguments)},cg=a._Elu=function(){return(cg=a._Elu=a.asm.H).apply(null,arguments)},ba=a._Equal=function(){return(ba=a._Equal=a.asm.I).apply(null,arguments)},Wc=a._Exp=function(){return(Wc=a._Exp=a.asm.J).apply(null,arguments)},Vc=a._FlipLeftRight=function(){return(Vc=a._FlipLeftRight=a.asm.K).apply(null,arguments)},dg=a._Floor=function(){return(dg=a._Floor=a.asm.L).apply(null,arguments)},pg=a._FloorDiv=function(){return(pg=a._FloorDiv=a.asm.M).apply(null,arguments)},hg=a._FusedBatchNorm=function(){return(hg=a._FusedBatchNorm=a.asm.N).apply(null,arguments)},fg=a._FusedConv2D=function(){return(fg=a._FusedConv2D=a.asm.O).apply(null,arguments)},mg=a._FusedDepthwiseConv2D=function(){return(mg=a._FusedDepthwiseConv2D=a.asm.P).apply(null,arguments)},Ge=a._Gather=function(){return(Ge=a._Gather=a.asm.Q).apply(null,arguments)},gg=a._GatherNd=function(){return(gg=a._GatherNd=a.asm.R).apply(null,arguments)},Ag=a._Greater=function(){return(Ag=a._Greater=a.asm.S).apply(null,arguments)},yg=a._GreaterEqual=function(){return(yg=a._GreaterEqual=a.asm.T).apply(null,arguments)},xg=a._LeakyRelu=function(){return(xg=a._LeakyRelu=a.asm.U).apply(null,arguments)},bg=a._Less=function(){return(bg=a._Less=a.asm.V).apply(null,arguments)},vg=a._LessEqual=function(){return(vg=a._LessEqual=a.asm.W).apply(null,arguments)},Uc=a._Log=function(){return(Uc=a._Log=a.asm.X).apply(null,arguments)},th=a._LogicalAnd=function(){return(th=a._LogicalAnd=a.asm.Y).apply(null,arguments)},nh=a._Max=function(){return(nh=a._Max=a.asm.Z).apply(null,arguments)},wg=a._MaxPool=function(){return(wg=a._MaxPool=a.asm._).apply(null,arguments)},kg=a._Maximum=function(){return(kg=a._Maximum=a.asm.$).apply(null,arguments)},Ig=a._Mean=function(){return(Ig=a._Mean=a.asm.aa).apply(null,arguments)},Sg=a._Min=function(){return(Sg=a._Min=a.asm.ba).apply(null,arguments)},Cg=a._Minimum=function(){return(Cg=a._Minimum=a.asm.ca).apply(null,arguments)},Tg=a._MirrorPad=function(){return(Tg=a._MirrorPad=a.asm.da).apply(null,arguments)},Ng=a._Multiply=function(){return(Ng=a._Multiply=a.asm.ea).apply(null,arguments)},dt=a._Neg=function(){return(dt=a._Neg=a.asm.fa).apply(null,arguments)},Eg=a._NonMaxSuppressionV3=function(){return(Eg=a._NonMaxSuppressionV3=a.asm.ga).apply(null,arguments)},Rg=a._NonMaxSuppressionV4=function(){return(Rg=a._NonMaxSuppressionV4=a.asm.ha).apply(null,arguments)},$g=a._NonMaxSuppressionV5=function(){return($g=a._NonMaxSuppressionV5=a.asm.ia).apply(null,arguments)},ql=a._NotEqual=function(){return(ql=a._NotEqual=a.asm.ja).apply(null,arguments)},sh=a._OneHot=function(){return(sh=a._OneHot=a.asm.ka).apply(null,arguments)},rh=a._PadV2=function(){return(rh=a._PadV2=a.asm.la).apply(null,arguments)},ah=a._Pow=function(){return(ah=a._Pow=a.asm.ma).apply(null,arguments)},_g=a._Prelu=function(){return(_g=a._Prelu=a.asm.na).apply(null,arguments)},Dg=a._Prod=function(){return(Dg=a._Prod=a.asm.oa).apply(null,arguments)},oh=a._RealDiv=function(){return(oh=a._RealDiv=a.asm.pa).apply(null,arguments)},Pg=a._Relu=function(){return(Pg=a._Relu=a.asm.qa).apply(null,arguments)},Fg=a._Relu6=function(){return(Fg=a._Relu6=a.asm.ra).apply(null,arguments)},Og=a._ResizeBilinear=function(){return(Og=a._ResizeBilinear=a.asm.sa).apply(null,arguments)},Mg=a._Reverse=function(){return(Mg=a._Reverse=a.asm.ta).apply(null,arguments)},zg=a._RotateWithOffset=function(){return(zg=a._RotateWithOffset=a.asm.ua).apply(null,arguments)},ih=a._Round=function(){return(ih=a._Round=a.asm.va).apply(null,arguments)},va=a._Rsqrt=function(){return(va=a._Rsqrt=a.asm.wa).apply(null,arguments)},Lg=a._ScatterNd=function(){return(Lg=a._ScatterNd=a.asm.xa).apply(null,arguments)},Bg=a._SelectV2=function(){return(Bg=a._SelectV2=a.asm.ya).apply(null,arguments)},C5=a._Sigmoid=function(){return(C5=a._Sigmoid=a.asm.za).apply(null,arguments)},lh=a._Sin=function(){return(lh=a._Sin=a.asm.Aa).apply(null,arguments)},Wg=a._Softmax=function(){return(Wg=a._Softmax=a.asm.Ba).apply(null,arguments)},Vg=a._Sqrt=function(){return(Vg=a._Sqrt=a.asm.Ca).apply(null,arguments)},Ug=a._Square=function(){return(Ug=a._Square=a.asm.Da).apply(null,arguments)},Gg=a._SquaredDifference=function(){return(Gg=a._SquaredDifference=a.asm.Ea).apply(null,arguments)},Hg=a._Step=function(){return(Hg=a._Step=a.asm.Fa).apply(null,arguments)},jg=a._StridedSlice=function(){return(jg=a._StridedSlice=a.asm.Ga).apply(null,arguments)},qg=a._Sub=function(){return(qg=a._Sub=a.asm.Ha).apply(null,arguments)},Xg=a._Sum=function(){return(Xg=a._Sum=a.asm.Ia).apply(null,arguments)},Kg=a._Tan=function(){return(Kg=a._Tan=a.asm.Ja).apply(null,arguments)},Zg=a._Tanh=function(){return(Zg=a._Tanh=a.asm.Ka).apply(null,arguments)},Yg=a._Tile=function(){return(Yg=a._Tile=a.asm.La).apply(null,arguments)},Jg=a._TopK=function(){return(Jg=a._TopK=a.asm.Ma).apply(null,arguments)},Qg=a._Transform=function(){return(Qg=a._Transform=a.asm.Na).apply(null,arguments)},e2=a._Transpose=function(){return(e2=a._Transpose=a.asm.Oa).apply(null,arguments)},t2=a.__FusedMatMul=function(){return(t2=a.__FusedMatMul=a.asm.Pa).apply(null,arguments)},n2=a._malloc=function(){return(n2=a._malloc=a.asm.Qa).apply(null,arguments)},s2=a._free=function(){return(s2=a._free=a.asm.Ra).apply(null,arguments)},uh=a.stackSave=function(){return(uh=a.stackSave=a.asm.Ta).apply(null,arguments)},ch=a.stackRestore=function(){return(ch=a.stackRestore=a.asm.Ua).apply(null,arguments)},Gc=a.stackAlloc=function(){return(Gc=a.stackAlloc=a.asm.Va).apply(null,arguments)};a.cwrap=Q;var Xl;function r2(se){this.name="ExitStatus",this.message="Program terminated with exit("+se+")",this.status=se}Rs=function se(){Xl||Hc(),Xl||(Rs=se)};function Hc(se){if(se=se||d,Rn>0||(fs(),Rn>0))return;function le(){Xl||(Xl=!0,a.calledRun=!0,!V&&(Ns(),qs(),o(a),a.onRuntimeInitialized&&a.onRuntimeInitialized(),Es()))}a.setStatus?(a.setStatus("Running..."),setTimeout(function(){setTimeout(function(){a.setStatus("")},1),le()},1)):le()}if(a.run=Hc,a.preInit)for(typeof a.preInit=="function"&&(a.preInit=[a.preInit]);a.preInit.length>0;)a.preInit.pop()();Hc();var Kl;l&&(Kl={uncaughtException:process.listeners("uncaughtException").filter(function(se){return!l.uncaughtException.indexOf(se)>-1}),unhandledRejection:process.listeners("unhandledRejection").filter(function(se){return!l.unhandledRejection.indexOf(se)>-1})});var dh=r||WasmBackendModuleThreadedSimd,a2=dh._dispose;return dh._dispose=function(){a2(),Kl&&(Kl.uncaughtException.forEach(function(se){process.removeListener("uncaughtException",se)}),Kl.unhandledRejection.forEach(function(se){process.removeListener("unhandledRejection",se)}))},r.ready}}();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModule=n)}}),ZE=1e-7,YE=1e-4,td=class{constructor(e,t){this.backend=e,this.dataMover=t,this.data=new WeakMap,this.dataIdsCount=0}get(e){return this.data.has(e)||this.dataMover.moveData(this.backend,e),this.data.get(e)}set(e,t){this.dataIdsCount++,this.data.set(e,t)}has(e){return this.data.has(e)}delete(e){return this.dataIdsCount--,this.data.delete(e)}numDataIds(){return this.dataIdsCount}},tu=class{refCount(e){return Ks("refCount")}incRef(e){return Ks("incRef")}timerAvailable(){return!0}time(e){return Ks("time")}read(e){return Ks("read")}readSync(e){return Ks("readSync")}numDataIds(){return Ks("numDataIds")}disposeData(e,t){return Ks("disposeData")}write(e,t,n){return Ks("write")}move(e,t,n,s,r){return Ks("move")}memory(){return Ks("memory")}floatPrecision(){return Ks("floatPrecision")}epsilon(){return this.floatPrecision()===32?ZE:YE}dispose(){return Ks("dispose")}};function Ks(e){throw new Error(`'${e}' not yet implemented or not found in the registry. This kernel may not be supported by the tfjs backend you have chosen`)}function U5(e){let t=e.length,n=0;for(;t>0;)n=Math.random()*t|0,t--,bh(e,t,n)}function JE(e,t){if(e.length!==t.length)throw new Error(`Array sizes must match to be shuffled together First array length was ${e.length}Second array length was ${t.length}`);let n=e.length,s=0;for(;n>0;)s=Math.random()*n|0,n--,bh(e,n,s),bh(t,n,s)}function nd(e,t,n){return Math.max(e,Math.min(t,n))}function QE(e){return e%2==0?e:e+1}function bh(e,t,n){let s=e[t];e[t]=e[n],e[n]=s}function e9(e){let t=0;for(let n=0;n<e.length;n++)t+=e[n];return t}function t9(e,t){let n=Math.random();return t*n+(1-n)*e}function n9(e,t){let n=0;for(let s=0;s<e.length;s++){let r=Number(e[s])-Number(t[s]);n+=r*r}return n}function O(e,t){if(!e)throw new Error(typeof t=="string"?t:t())}function Mn(e,t,n=""){O(Ca(e,t),()=>n+` Shapes ${e} and ${t} must match`)}function ui(e){O(e!=null,()=>"The input to the tensor constructor must be a non-null value.")}function ci(e,t=[],n=!1){if(t==null&&(t=[]),Array.isArray(e)||_n(e)&&!n)for(let s=0;s<e.length;++s)ci(e[s],t,n);else t.push(e);return t}function Gt(e){if(e.length===0)return 1;let t=e[0];for(let n=1;n<e.length;n++)t*=e[n];return t}function s9(e){return e.length===0}function Ca(e,t){if(e===t)return!0;if(e==null||t==null||e.length!==t.length)return!1;for(let n=0;n<e.length;n++)if(e[n]!==t[n])return!1;return!0}function mn(e){return e%1==0}function r9(e){if(Math.tanh!=null)return Math.tanh(e);if(e===1/0)return 1;if(e===-1/0)return-1;{let t=Math.exp(2*e);return(t-1)/(t+1)}}function a9(e){let t=Math.ceil(Math.sqrt(e));return[t,Math.ceil(e/t)]}function o9(e){let t=new Uint32Array(e);for(let n=0;n<e;++n)t[n]=n;return U5(t),t}function sd(e,t){return t<=e.length?e:e+" ".repeat(t-e.length)}function i9(e,t=s=>0,n){return new Promise((s,r)=>{let a=0,o=()=>{if(e()){s();return}a++;let i=t(a);if(n!=null&&a>=n){r();return}setTimeout(o,i)};o()})}function l9(e,t){let n=1,s=-1;for(let a=0;a<e.length;++a)if(e[a]>=0)n*=e[a];else if(e[a]===-1){if(s!==-1)throw Error(`Shapes can only have 1 implicit size. Found -1 at dim ${s} and dim ${a}`);s=a}else if(e[a]<0)throw Error(`Shapes can not be < 0. Found ${e[a]} at dim ${a}`);if(s===-1){if(t>0&&t!==n)throw Error(`Size(${t}) must match the product of shape ${e}`);return e}if(n===0)throw Error(`Cannot infer the missing size in [${e}] when there are 0 elements`);if(t%n!=0)throw Error(`The implicit shape can't be a fractional number. Got ${t} / ${n}`);let r=e.slice();return r[s]=t/n,r}function Zs(e,t){let n=t.length;return e=e==null?t.map((s,r)=>r):[].concat(e),O(e.every(s=>s>=-n&&s<n),()=>`All values in axis param must be in range [-${n}, ${n}) but got axis ${e}`),O(e.every(s=>mn(s)),()=>`All values in axis param must be integers but got axis ${e}`),e.map(s=>s<0?n+s:s)}function G5(e,t){let n=[],s=[],r=t!=null&&Array.isArray(t)&&t.length===0,a=t==null||r?null:Zs(t,e).sort(),o=0;for(let i=0;i<e.length;++i){if(a!=null){if(a[o]===i&&e[i]!==1)throw new Error(`Can't squeeze axis ${i} since its dim '${e[i]}' is not 1`);(a[o]==null||a[o]>i)&&e[i]===1&&(n.push(e[i]),s.push(i)),a[o]<=i&&o++}e[i]!==1&&(n.push(e[i]),s.push(i))}return{newShape:n,keptDims:s}}function H5(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else throw new Error(`Unknown data type ${e}`);return n}function j5(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else if(e==="string")n=new Array(t);else throw new Error(`Unknown data type ${e}`);return n}function q5(e,t){for(let n=0;n<e.length;n++){let s=e[n];if(isNaN(s)||!isFinite(s))throw Error(`A tensor of type ${t} being uploaded contains ${s}.`)}}function X5(e){return e==="bool"||e==="complex64"||e==="float32"||e==="int32"||e==="string"}function u9(e,t){return!(t==="complex64"||t==="float32"&&e!=="complex64"||t==="int32"&&e!=="float32"&&e!=="complex64"||t==="bool"&&e==="bool")}function _n(e){return e instanceof Float32Array||e instanceof Int32Array||e instanceof Uint8Array||e instanceof Uint8ClampedArray}function d2(e){if(e==="float32"||e==="int32")return 4;if(e==="complex64")return 8;if(e==="bool")return 1;throw new Error(`Unknown dtype ${e}`)}function K5(e){if(e==null)return 0;let t=0;return e.forEach(n=>t+=n.length),t}function Ta(e){return typeof e=="string"||e instanceof String}function Z5(e){return typeof e=="boolean"}function Y5(e){return typeof e=="number"}function vh(e){return Array.isArray(e)?vh(e[0]):e instanceof Float32Array?"float32":e instanceof Int32Array||e instanceof Uint8Array||e instanceof Uint8ClampedArray?"int32":Y5(e)?"float32":Ta(e)?"string":Z5(e)?"bool":"float32"}function Na(e){return!!(e&&e.constructor&&e.call&&e.apply)}function wh(e,t){for(let n=t;n<e;++n)if(e%n==0)return n;return e}function nu(e){let t=e.length;if(t<2)return[];let n=new Array(t-1);n[t-2]=e[t-1];for(let s=t-3;s>=0;--s)n[s]=n[s+1]*e[s+1];return n}function J5(e,t,n,s=!1){let r=new Array;if(t.length===1){let a=t[0]*(s?2:1);for(let o=0;o<a;o++)r[o]=n[e+o]}else{let a=t[0],o=t.slice(1),i=o.reduce((l,c)=>l*c)*(s?2:1);for(let l=0;l<a;l++)r[l]=J5(e+l*i,o,n,s)}return r}function su(e,t,n=!1){if(e.length===0)return t[0];let s=e.reduce((r,a)=>r*a)*(n?2:1);if(s===0)return[];if(s!==t.length)throw new Error(`[${e}] does not match the input size ${t.length}${n?" for a complex tensor":""}.`);return J5(0,e,t,n)}function p2(e,t){let n=kh(e,t);for(let s=0;s<n.length;s++)n[s]=1;return n}function kh(e,t){if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool")return new Uint8Array(e);throw new Error(`Unknown data type ${t}`)}function c9(e,t){let n=e.reduce((s,r)=>s*r,1);if(t==null||t==="float32")return su(e,new Float32Array(n));if(t==="int32")return su(e,new Int32Array(n));if(t==="bool")return su(e,new Uint8Array(n));throw new Error(`Unknown data type ${t}`)}function h2(e){e.forEach(t=>{O(Number.isInteger(t)&&t>=0,()=>`Tensor must have a shape comprised of positive integers but got shape [${e}].`)})}function d9(e,t,n){if(t===0)return 0;if(t===1)return e[0];let s=e[e.length-1];for(let r=0;r<e.length-1;++r)s+=n[r]*e[r];return s}function p9(e,t,n){if(t===0)return[];if(t===1)return[e];let s=new Array(t);for(let r=0;r<s.length-1;++r)s[r]=Math.floor(e/n[r]),e-=s[r]*n[r];return s[s.length-1]=e,s}function f2(e){return e&&e.then&&typeof e.then=="function"}var Q5="tfjsflags",e3=class{constructor(e){this.global=e,this.flags={},this.flagRegistry={},this.urlFlags={},this.getQueryParams=h9,this.populateURLFlags()}setPlatform(e,t){this.platform!=null&&(Y().getBool("IS_TEST")||Y().getBool("PROD")||console.warn(`Platform ${this.platformName} has already been set. Overwriting the platform with ${t}.`)),this.platformName=e,this.platform=t}registerFlag(e,t,n){if(this.flagRegistry[e]={evaluationFn:t,setHook:n},this.urlFlags[e]!=null){let s=this.urlFlags[e];Y().getBool("IS_TEST")||Y().getBool("PROD")||console.warn(`Setting feature override from URL ${e}: ${s}.`),this.set(e,s)}}async getAsync(e){return e in this.flags?this.flags[e]:(this.flags[e]=await this.evaluateFlag(e),this.flags[e])}get(e){if(e in this.flags)return this.flags[e];let t=this.evaluateFlag(e);if(f2(t))throw new Error(`Flag ${e} cannot be synchronously evaluated. Please use getAsync() instead.`);return this.flags[e]=t,this.flags[e]}getNumber(e){return this.get(e)}getBool(e){return this.get(e)}getFlags(){return this.flags}get features(){return this.flags}set(e,t){if(this.flagRegistry[e]==null)throw new Error(`Cannot set flag ${e} as it has not been registered.`);this.flags[e]=t,this.flagRegistry[e].setHook!=null&&this.flagRegistry[e].setHook(t)}evaluateFlag(e){if(this.flagRegistry[e]==null)throw new Error(`Cannot evaluate flag '${e}': no evaluation function found.`);return this.flagRegistry[e].evaluationFn()}setFlags(e){this.flags=Object.assign({},e)}reset(){this.flags={},this.urlFlags={},this.populateURLFlags()}populateURLFlags(){if(typeof this.global=="undefined"||typeof this.global.location=="undefined"||typeof this.global.location.search=="undefined")return;let e=this.getQueryParams(this.global.location.search);Q5 in e&&e[Q5].split(",").forEach(n=>{let[s,r]=n.split(":");this.urlFlags[s]=m9(s,r)})}};function h9(e){let t={};return e.replace(/[?&]([^=?&]+)(?:=([^&]*))?/g,(n,...s)=>(f9(t,s[0],s[1]),s.join("="))),t}function f9(e,t,n){e[decodeURIComponent(t)]=decodeURIComponent(n||"")}function m9(e,t){if(t=t.toLowerCase(),t==="true"||t==="false")return t==="true";if(`${+t}`===t)return+t;throw new Error(`Could not parse value flag value ${t} for flag ${e}.`)}function Y(){return Nr}var Nr=null;function g9(e){Nr=e}var m2;function t3(){if(m2==null){let e;if(typeof window!="undefined")e=window;else if(typeof global!="undefined")e=global;else if(typeof process!="undefined")e=process;else if(typeof self!="undefined")e=self;else throw new Error("Could not find a global object");m2=e}return m2}function A9(){let e=t3();return e._tfGlobals==null&&(e._tfGlobals=new Map),e._tfGlobals}function g2(e,t){let n=A9();if(n.has(e))return n.get(e);{let s=t();return n.set(e,s),n.get(e)}}var di="Abs",ru="Acos",au="Acosh",Xr="Add",Ea="AddN",ou="All",iu="Any",Ra="ArgMax",lu="ArgMin",uu="Asin",cu="Asinh",du="Atan",pu="Atanh",hu="Atan2",$a="AvgPool",Ih="AvgPoolGrad",rd="AvgPool3D",Sh="AvgPool3DGrad",_a="BatchMatMul",pi="BatchToSpaceND",Ch="Bincount",n3="BroadcastTo",Th="BroadcastArgs",Da="Cast",Pa="Ceil",Kr="ClipByValue",ad="Complex",od="ComplexAbs",hi="Concat",Fa="Conv2D",Nh="Conv2DBackpropFilter",Oa="Conv2DBackpropInput",id="Conv3D",Eh="Conv3DBackpropFilterV2",Rh="Conv3DBackpropInputV2",Ma="Cos",za="Cosh",fi="Cumsum",mi="CropAndResize",$h="DenseBincount",gi="DepthToSpace",La="DepthwiseConv2dNative",_h="DepthwiseConv2dNativeBackpropFilter",Dh="DepthwiseConv2dNativeBackpropInput",Ph="Diag",ld="Dilation2D",Fh="Dilation2DBackpropInput",Oh="Dilation2DBackpropFilter",Ba="RealDiv",ud="Einsum",Wa="Elu",Mh="EluGrad",fu="Erf",Ai="Equal",Va="Exp",yi="ExpandDims",xi="Expm1",zh="FFT",mu="Fill",bi="FlipLeftRight",Ua="Floor",Ga="FloorDiv",Ha="FusedBatchNorm",vi="GatherV2",wi="GatherNd",ki="Greater",ja="GreaterEqual",qa="Identity",Lh="IFFT",cd="Imag",gu="IsFinite",Au="IsInf",yu="IsNan",Ii="LeakyRelu",Si="Less",Ci="LessEqual",Bh="LinSpace",Xa="Log",xu="Log1p",Ti="LogicalAnd",bu="LogicalNot",dd="LogicalOr",s3="LogSoftmax",pd="LRN",Wh="LRNGrad",Ka="Max",Za="Maximum",Ya="MaxPool",Vh="MaxPoolGrad",hd="MaxPool3D",Uh="MaxPool3DGrad",Gh="MaxPoolWithArgmax",Ja="Mean",Qa="Min",eo="Minimum",to="MirrorPad",vu="Mod",Hh="Multinomial",no="Multiply",Ni="Neg",Ei="NotEqual",Ri="NonMaxSuppressionV3",wu="NonMaxSuppressionV4",$i="NonMaxSuppressionV5",_i="OnesLike",Di="OneHot",Pi="Pack",so="PadV2",y9="Pool",ro="Pow",ao="Prelu",Fi="Prod",ku="Range",fd="Real",Iu="Reciprocal",oo="Relu",Oi="Reshape",Su="ResizeNearestNeighbor",jh="ResizeNearestNeighborGrad",io="ResizeBilinear",qh="ResizeBilinearGrad",lo="Relu6",Mi="Reverse",zi="Round",uo="Rsqrt",Li="ScatterNd",Bi="Select",Cu="Selu",Wi="Slice",co="Sin",Vi="Sinh",Tu="Sign",po="Sigmoid",Nu="Softplus",ho="Sqrt",fo="Sum",Ui="SpaceToBatchND",Gi="SplitV",mo="Softmax",Xh="SparseFillEmptyRows",Kh="SparseReshape",Zh="SparseSegmentMean",Yh="SparseSegmentSum",md="SparseToDense",go="SquaredDifference",Eu="Square",Hi="StridedSlice",gd="StringNGrams",Jh="StringSplit",Qh="StringToHashBucketFast",Ao="Sub",ji="Tan",yo="Tanh",Zr="Tile",qi="TopK",Xi="Transform",xo="Transpose",ef="Unique",Ki="Unpack",Ad="UnsortedSegmentSum",Zi="ZerosLike",bo="Step",yd="FromPixels",Yi="RotateWithOffset",vo="_FusedMatMul",wo="FusedConv2D",ko="FusedDepthwiseConv2D";function Io(...e){Y().getBool("IS_TEST")||Y().getBool("PROD")||console.warn(...e)}function x9(...e){Y().getBool("IS_TEST")||Y().getBool("PROD")||console.log(...e)}var Ru=g2("kernelRegistry",()=>new Map),xd=g2("gradRegistry",()=>new Map);function tf(e,t){let n=y2(e,t);return Ru.get(n)}function A2(e){return xd.get(e)}function Yr(e){let t=Ru.entries(),n=[];for(;;){let{done:s,value:r}=t.next();if(s)break;let[a,o]=r,[i]=a.split("_");i===e&&n.push(o)}return n}function dr(e){let{kernelName:t,backendName:n}=e,s=y2(t,n);Ru.has(s)&&Io(`The kernel '${t}' for backend '${n}' is already registered`),Ru.set(s,e)}function r3(e){let{kernelName:t}=e;xd.has(t)&&Y().getBool("DEBUG")&&Io(`Overriding the gradient for '${t}'`),xd.set(t,e)}function b9(e,t){let n=y2(e,t);if(!Ru.has(n))throw new Error(`The kernel '${e}' for backend '${t}' is not registered`);Ru.delete(n)}function v9(e){if(!xd.has(e))throw new Error(`The gradient '${e}' for backend is not registered`);xd.delete(e)}function w9(e,t){Yr(e).forEach(s=>{let r=Object.assign({},s,{backendName:t});dr(r)})}function y2(e,t){return`${t}_${e}`}var v={};Me(v,{arraysEqual:()=>Ca,assert:()=>O,assertNonNegativeIntegerDimensions:()=>h2,assertNonNull:()=>ui,assertShapesMatch:()=>Mn,bytesFromStringArray:()=>K5,bytesPerElement:()=>d2,checkConversionForErrors:()=>q5,clamp:()=>nd,computeStrides:()=>nu,createScalarValue:()=>N9,createShuffledIndices:()=>o9,decodeString:()=>rf,distSquared:()=>n9,encodeString:()=>wd,fetch:()=>R9,fingerPrint64:()=>T9,flatten:()=>ci,getArrayFromDType:()=>j5,getTypedArrayFromDType:()=>H5,hasEncodingLoss:()=>u9,hexToLong:()=>bd,indexToLoc:()=>p9,inferDtype:()=>vh,inferFromImplicitShape:()=>l9,isBoolean:()=>Z5,isFunction:()=>Na,isInt:()=>mn,isNumber:()=>Y5,isPromise:()=>f2,isScalarShape:()=>s9,isString:()=>Ta,isTypedArray:()=>_n,isValidDtype:()=>X5,locToIndex:()=>d9,makeOnesTypedArray:()=>p2,makeZerosNestedTypedArray:()=>c9,makeZerosTypedArray:()=>kh,nearestDivisor:()=>wh,nearestLargerEven:()=>QE,now:()=>vd,parseAxisParam:()=>Zs,randUniform:()=>t9,repeatedTry:()=>i9,rightPad:()=>sd,shuffle:()=>U5,shuffleCombo:()=>JE,sizeFromShape:()=>Gt,sizeToSquarishShape:()=>a9,squeezeShape:()=>G5,sum:()=>e9,swap:()=>bh,tanh:()=>r9,toNestedArray:()=>su,toTypedArray:()=>sf});var a3=li(PE()),Ji=a3.default||a3;function bd(e){return Ji.fromString(e,!0,16)}var o3=bd("c3a5c85c97cb3127"),Qi=bd("b492b66fbe98f273"),zn=bd("9ae16a3b2f90404f");function x2(e){return e.xor(e.shru(47))}function i3(e,t,n){let s=e.slice(t,t+n);return Ji.fromBytes(Array.from(s),!0,!0)}function kt(e,t){return i3(e,t,8)}function l3(e,t){return i3(e,t,4)}function gn(e,t){return t===0?e:e.shru(t).or(e.shl(64-t))}function So(e,t,n=bd("9ddfea08eb382d69")){let s=e.xor(t).mul(n);s=s.xor(s.shru(47));let r=t.xor(s).mul(n);return r=r.xor(r.shru(47)),r=r.mul(n),r}function k9(e,t,n,s,r,a){r=r.add(e),a=gn(a.add(r).add(s),21);let o=r;return r=r.add(t),r=r.add(n),a=a.add(gn(r,44)),[r.add(s),a.add(o)]}function nf(e,t,n,s){return k9(kt(e,t),kt(e,t+8),kt(e,t+16),kt(e,t+24),n,s)}function I9(e,t=e.length){if(t>=8){let n=zn.add(t*2),s=kt(e,0).add(zn),r=kt(e,t-8),a=gn(r,37).mul(n).add(s),o=gn(s,25).add(r).mul(n);return So(a,o,n)}if(t>=4){let n=zn.add(t*2),s=l3(e,0);return So(s.shl(3).add(t),l3(e,t-4),n)}if(t>0){let n=e[0],s=e[t>>1],r=e[t-1],a=n+(s<<8),o=t+(r<<2);return x2(zn.mul(a).xor(o3.mul(o))).mul(zn)}return zn}function S9(e,t=e.length){let n=zn.add(t*2),s=kt(e,0).mul(Qi),r=kt(e,8),a=kt(e,t-8).mul(n),o=kt(e,t-16).mul(zn);return So(gn(s.add(r),43).add(gn(a,30)).add(o),s.add(gn(r.add(zn),18)).add(a),n)}function C9(e,t=e.length){let n=zn.add(t*2),s=kt(e,0).mul(zn),r=kt(e,8),a=kt(e,t-8).mul(n),o=kt(e,t-16).mul(zn),i=gn(s.add(r),43).add(gn(a,30)).add(o),l=So(i,s.add(gn(r.add(zn),18)).add(a),n),c=kt(e,16).mul(n),u=kt(e,24),d=i.add(kt(e,t-32)).mul(n),p=l.add(kt(e,t-24)).mul(n);return So(gn(c.add(u),43).add(gn(d,30)).add(p),c.add(gn(u.add(s),18)).add(d),n)}function T9(e,t=e.length){let n=Ji.fromNumber(81,!0);if(t<=32)return t<=16?I9(e,t):S9(e,t);if(t<=64)return C9(e,t);let s=n,r=n.mul(Qi).add(113),a=x2(r.mul(zn).add(113)).mul(zn),o=[Ji.UZERO,Ji.UZERO],i=[Ji.UZERO,Ji.UZERO];s=s.mul(zn).add(kt(e,0));let l=0,c=(t-1>>6)*64,u=c+(t-1&63)-63;do s=gn(s.add(r).add(o[0]).add(kt(e,l+8)),37).mul(Qi),r=gn(r.add(o[1]).add(kt(e,l+48)),42).mul(Qi),s=s.xor(i[1]),r=r.add(o[0]).add(kt(e,l+40)),a=gn(a.add(i[0]),33).mul(Qi),o=nf(e,l,o[1].mul(Qi),s.add(i[0])),i=nf(e,l+32,a.add(i[1]),r.add(kt(e,l+16))),[a,s]=[s,a],l+=64;while(l!==c);let d=Qi.add(a.and(255).shl(1));return l=u,i[0]=i[0].add(t-1&63),o[0]=o[0].add(i[0]),i[0]=i[0].add(o[0]),s=gn(s.add(r).add(o[0]).add(kt(e,l+8)),37).mul(d),r=gn(r.add(o[1]).add(kt(e,l+48)),42).mul(d),s=s.xor(i[1].mul(9)),r=r.add(o[0].mul(9).add(kt(e,l+40))),a=gn(a.add(i[0]),33).mul(d),o=nf(e,l,o[1].mul(d),s.add(i[0])),i=nf(e,l+32,a.add(i[1]),r.add(kt(e,l+16))),[a,s]=[s,a],So(So(o[0],i[0],d).add(x2(r).mul(o3)).add(a),So(o[1],i[1],d).add(s),d)}function N9(e,t){return t==="string"?wd(e):sf([e],t)}function E9(e,t){return e instanceof Float32Array&&t==="float32"||e instanceof Int32Array&&t==="int32"||e instanceof Uint8Array&&t==="bool"}function sf(e,t){if(t==="string")throw new Error("Cannot convert a string[] to a TypedArray");if(Array.isArray(e)&&(e=ci(e)),Y().getBool("DEBUG")&&q5(e,t),E9(e,t))return e;if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool"){let n=new Uint8Array(e.length);for(let s=0;s<n.length;++s)Math.round(e[s])!==0&&(n[s]=1);return n}else throw new Error(`Unknown data type ${t}`)}function vd(){return Y().platform.now()}function R9(e,t){return Y().platform.fetch(e,t)}function wd(e,t="utf-8"){return t=t||"utf-8",Y().platform.encode(e,t)}function rf(e,t="utf-8"){return t=t||"utf-8",Y().platform.decode(e,t)}var $9=class{constructor(e,t){this.backendTimer=e,this.logger=t,t==null&&(this.logger=new D9)}profileKernel(e,t,n){let s,r=()=>{s=n()},a,o=vd();if(this.backendTimer.timerAvailable())a=this.backendTimer.time(r);else{r();for(let l of s)l.dataSync();a=Promise.resolve({kernelMs:vd()-o})}if(Y().getBool("CHECK_COMPUTATION_FOR_ERRORS"))for(let l=0;l<s.length;l++){let c=s[l];c.data().then(u=>{_9(u,c.dtype,e)})}return{kernelName:e,outputs:s,inputs:t,timeMs:a.then(l=>l.kernelMs),extraInfo:a.then(l=>l.getExtraProfileInfo!=null?l.getExtraProfileInfo():"")}}logKernelProfile(e){let{kernelName:t,outputs:n,timeMs:s,inputs:r,extraInfo:a}=e;n.forEach(o=>{Promise.all([o.data(),s,a]).then(i=>{this.logger.logKernelProfile(t,o,i[0],i[1],r,i[2])})})}};function _9(e,t,n){if(t!=="float32")return!1;for(let s=0;s<e.length;s++){let r=e[s];if(isNaN(r)||!isFinite(r))return console.warn(`Found ${r} in the result of '${n}'`),!0}return!1}var D9=class{logKernelProfile(e,t,n,s,r,a){let o=typeof s=="number"?sd(`${s}ms`,9):s.error,i=sd(e,25),l=t.rank,c=t.size,u=sd(t.shape.toString(),14),d="";for(let p in r){let h=r[p];if(h!=null){let f=h.shape||t.shape,m=f.length;d+=`${p}: ${m}D ${m>0?f:""} `}}console.log(`%c${i} %c${o} %c${l}D ${u} %c${c} %c${d} %c${a}`,"font-weight:bold","color:red","color:blue","color: orange","color: green","color: steelblue")}};function P9(e,t,n){let s={},r={};for(let l=0;l<t.length;l++)s[t[l].id]=!0;for(let l=0;l<e.length;l++){let c=e[l],u=c.inputs;for(let d in u){let p=u[d],h=!1;for(let f=0;f<t.length;f++)if(s[p.id]){c.outputs.forEach(m=>s[m.id]=!0),h=!0,r[c.id]=!0;break}if(h)break}}let a={};a[n.id]=!0;let o={};for(let l=e.length-1;l>=0;l--){let c=e[l],u=c.inputs;for(let d=0;d<c.outputs.length;d++)if(a[c.outputs[d].id]){for(let p in u)a[u[p].id]=!0,o[c.id]=!0;break}}let i=[];for(let l=0;l<e.length;l++){let c=e[l];if(r[c.id]&&o[c.id]){let u={};for(let p in c.inputs){let h=c.inputs[p];s[h.id]&&(u[p]=h)}let d=Object.assign({},c);d.inputs=u,d.outputs=c.outputs,i.push(d)}}return i}function F9(e,t,n,s){for(let r=t.length-1;r>=0;r--){let a=t[r],o=[];if(a.outputs.forEach(l=>{let c=e[l.id];c!=null?o.push(c):o.push(null)}),a.gradient==null)throw new Error(`Cannot compute gradient: gradient function not found for ${a.kernelName}.`);let i=a.gradient(o);for(let l in a.inputs){if(!(l in i))throw new Error(`Cannot backprop through input ${l}. Available gradients found: ${Object.keys(i)}.`);let c=n(()=>i[l]());if(c.dtype!=="float32")throw new Error(`Error in gradient for op ${a.kernelName}. The gradient of input ${l} must have 'float32' dtype, but has '${c.dtype}'`);let u=a.inputs[l];if(!Ca(c.shape,u.shape))throw new Error(`Error in gradient for op ${a.kernelName}. The gradient of input '${l}' has shape '${c.shape}', which does not match the shape of the input '${u.shape}'`);if(e[u.id]==null)e[u.id]=c;else{let d=e[u.id];e[u.id]=s(d,c),d.dispose()}}}}var u3=20,kd=3,b2=7;function O9(e,t,n,s){let r=nu(t),a=M9(e,t,n,r),o=t.length,i=af(e,t,n,r,a),l=["Tensor"];return s&&(l.push(` dtype: ${n}`),l.push(` rank: ${o}`),l.push(` shape: [${t}]`),l.push(" values:")),l.push(i.map(c=>" "+c).join(`
`)),l.join(`
`)}function M9(e,t,n,s){let r=Gt(t),a=s[s.length-1],o=new Array(a).fill(0),i=t.length,l=n==="complex64"?Sd(e):e;if(i>1)for(let c=0;c<r/a;c++){let u=c*a;for(let d=0;d<a;d++)o[d]=Math.max(o[d],Id(l[u+d],0,n).length)}return o}function Id(e,t,n){let s;return Array.isArray(e)?s=`${parseFloat(e[0].toFixed(b2))} + ${parseFloat(e[1].toFixed(b2))}j`:Ta(e)?s=`'${e}'`:n==="bool"?s=c3(e):s=parseFloat(e.toFixed(b2)).toString(),sd(s,t)}function c3(e){return e===0?"false":"true"}function af(e,t,n,s,r,a=!0){let o=n==="complex64"?2:1,i=t[0],l=t.length;if(l===0){if(n==="complex64"){let m=Sd(e);return[Id(m[0],0,n)]}return n==="bool"?[c3(e[0])]:[e[0].toString()]}if(l===1){if(i>u3){let g=kd*o,A=Array.from(e.slice(0,g)),x=Array.from(e.slice((i-kd)*o,i*o));return n==="complex64"&&(A=Sd(A),x=Sd(x)),["["+A.map((y,b)=>Id(y,r[b],n)).join(", ")+", ..., "+x.map((y,b)=>Id(y,r[i-kd+b],n)).join(", ")+"]"]}let m=n==="complex64"?Sd(e):Array.from(e);return["["+m.map((g,A)=>Id(g,r[A],n)).join(", ")+"]"]}let c=t.slice(1),u=s.slice(1),d=s[0]*o,p=[];if(i>u3){for(let m=0;m<kd;m++){let g=m*d,A=g+d;p.push(...af(e.slice(g,A),c,n,u,r,!1))}p.push("...");for(let m=i-kd;m<i;m++){let g=m*d,A=g+d;p.push(...af(e.slice(g,A),c,n,u,r,m===i-1))}}else for(let m=0;m<i;m++){let g=m*d,A=g+d;p.push(...af(e.slice(g,A),c,n,u,r,m===i-1))}let h=l===2?",":"";p[0]="["+p[0]+h;for(let m=1;m<p.length-1;m++)p[m]=" "+p[m]+h;let f=`,
`;for(let m=2;m<l;m++)f+=`
`;return p[p.length-1]=" "+p[p.length-1]+"]"+(a?"":f),p}function Sd(e){let t=[];for(let n=0;n<e.length;n+=2)t.push([e[n],e[n+1]]);return t}var nn=class{constructor(e,t,n){if(this.dtype=t,this.shape=e.slice(),this.size=Gt(e),n!=null){let s=n.length;O(s===this.size,()=>`Length of values '${s}' does not match the size inferred by the shape '${this.size}'.`)}if(t==="complex64")throw new Error("complex64 dtype TensorBuffers are not supported. Please create a TensorBuffer for the real and imaginary parts separately and call tf.complex(real, imag).");this.values=n||j5(t,this.size),this.strides=nu(e)}set(e,...t){t.length===0&&(t=[0]),O(t.length===this.rank,()=>`The number of provided coordinates (${t.length}) must match the rank (${this.rank})`);let n=this.locToIndex(t);this.values[n]=e}get(...e){e.length===0&&(e=[0]);let t=0;for(let s of e){if(s<0||s>=this.shape[t]){let r=`Requested out of range element at ${e}. Buffer shape=${this.shape}`;throw new Error(r)}t++}let n=e[e.length-1];for(let s=0;s<e.length-1;++s)n+=this.strides[s]*e[s];return this.values[n]}locToIndex(e){if(this.rank===0)return 0;if(this.rank===1)return e[0];let t=e[e.length-1];for(let n=0;n<e.length-1;++n)t+=this.strides[n]*e[n];return t}indexToLoc(e){if(this.rank===0)return[];if(this.rank===1)return[e];let t=new Array(this.shape.length);for(let n=0;n<t.length-1;++n)t[n]=Math.floor(e/this.strides[n]),e-=t[n]*this.strides[n];return t[t.length-1]=e,t}get rank(){return this.shape.length}toTensor(){return Er().makeTensor(this.values,this.shape,this.dtype)}},Er=null,$u=null,z9=null;function L9(e){Er=e}function B9(e){$u=e}function W9(e){z9=e}var et=class{constructor(e,t,n,s){this.kept=!1,this.isDisposedInternal=!1,this.shape=e.slice(),this.dtype=t||"float32",this.size=Gt(e),this.strides=nu(e),this.dataId=n,this.id=s,this.rankType=this.rank<5?this.rank.toString():"higher"}get rank(){return this.shape.length}async buffer(){let e=await this.data();return $u.buffer(this.shape,this.dtype,e)}bufferSync(){return $u.buffer(this.shape,this.dtype,this.dataSync())}async array(){let e=await this.data();return su(this.shape,e,this.dtype==="complex64")}arraySync(){return su(this.shape,this.dataSync(),this.dtype==="complex64")}async data(){this.throwIfDisposed();let e=Er().read(this.dataId);if(this.dtype==="string"){let t=await e;try{return t.map(n=>rf(n))}catch(n){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}}return e}dataSync(){this.throwIfDisposed();let e=Er().readSync(this.dataId);if(this.dtype==="string")try{return e.map(t=>rf(t))}catch(t){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}return e}async bytes(){this.throwIfDisposed();let e=await Er().read(this.dataId);return this.dtype==="string"?e:new Uint8Array(e.buffer)}dispose(){this.isDisposed||(Er().disposeTensor(this),this.isDisposedInternal=!0)}get isDisposed(){return this.isDisposedInternal}throwIfDisposed(){if(this.isDisposed)throw new Error("Tensor is disposed.")}print(e=!1){return $u.print(this,e)}clone(){return this.throwIfDisposed(),$u.clone(this)}toString(e=!1){let t=this.dataSync();return O9(t,this.shape,this.dtype,e)}cast(e){return this.throwIfDisposed(),$u.cast(this,e)}variable(e=!0,t,n){return this.throwIfDisposed(),Er().makeVariable(this,e,t,n)}};Object.defineProperty(et,Symbol.hasInstance,{value:e=>!!e&&e.data!=null&&e.dataSync!=null&&e.throwIfDisposed!=null});function V9(){return g2("Tensor",()=>et)}V9();var Cd=class extends et{constructor(e,t,n,s){super(e.shape,e.dtype,e.dataId,s);this.trainable=t,this.name=n}assign(e){if(e.dtype!==this.dtype)throw new Error(`dtype of the new value (${e.dtype}) and previous value (${this.dtype}) must match`);if(!Ca(e.shape,this.shape))throw new Error(`shape of the new value (${e.shape}) and previous value (${this.shape}) must match`);Er().disposeTensor(this),this.dataId=e.dataId,Er().incRef(this,null)}dispose(){Er().disposeVariable(this),this.isDisposedInternal=!0}};Object.defineProperty(Cd,Symbol.hasInstance,{value:e=>e instanceof et&&e.assign!=null&&e.assign instanceof Function});var pr={};Me(pr,{assertTypesMatch:()=>d3,getTensorsInContainer:()=>C2,isTensorInList:()=>G9,makeTypesMatch:()=>Pt});var v2;(function(e){e.R0="R0",e.R1="R1",e.R2="R2",e.R3="R3",e.R4="R4",e.R5="R5",e.R6="R6"})(v2||(v2={}));var w2;(function(e){e.float32="float32",e.int32="int32",e.bool="int32",e.complex64="complex64"})(w2||(w2={}));var k2;(function(e){e.float32="float32",e.int32="int32",e.bool="bool",e.complex64="complex64"})(k2||(k2={}));var I2;(function(e){e.float32="float32",e.int32="float32",e.bool="float32",e.complex64="complex64"})(I2||(I2={}));var S2;(function(e){e.float32="complex64",e.int32="complex64",e.bool="complex64",e.complex64="complex64"})(S2||(S2={}));var U9={float32:I2,int32:w2,bool:k2,complex64:S2};function Ln(e,t){if(e==="string"||t==="string"){if(e==="string"&&t==="string")return"string";throw new Error(`Can not upcast ${e} with ${t}`)}return U9[e][t]}function Td(e){return Ln(e,"int32")}function Pt(e,t){if(e.dtype===t.dtype)return[e,t];let n=Ln(e.dtype,t.dtype);return[e.cast(n),t.cast(n)]}function d3(e,t){O(e.dtype===t.dtype,()=>`The dtypes of the first(${e.dtype}) and second(${t.dtype}) input must match`)}function G9(e,t){return t.some(n=>n.id===e.id)}function C2(e){let t=[],n=new Set;return p3(e,t,n),t}function p3(e,t,n){if(e==null)return;if(e instanceof et){t.push(e);return}if(!H9(e))return;let s=e;for(let r in s){let a=s[r];n.has(a)||(n.add(a),p3(a,t,n))}}function H9(e){return Array.isArray(e)||typeof e=="object"}function T2(e){return e.kernelName!=null}var h3=class{constructor(){this.registeredVariables={},this.nextTapeNodeId=0,this.numBytes=0,this.numTensors=0,this.numStringTensors=0,this.numDataBuffers=0,this.gradientDepth=0,this.kernelDepth=0,this.scopeStack=[],this.numDataMovesStack=[],this.nextScopeId=0,this.tensorInfo=new WeakMap,this.profiling=!1,this.activeProfile={newBytes:0,newTensors:0,peakBytes:0,kernels:[],result:null,get kernelNames(){return Array.from(new Set(this.kernels.map(e=>e.name)))}}}dispose(){for(let e in this.registeredVariables)this.registeredVariables[e].dispose()}},N2=class{constructor(e){this.ENV=e,this.registry={},this.registryFactory={},this.pendingBackendInitId=0,this.state=new h3}async ready(){if(this.pendingBackendInit!=null)return this.pendingBackendInit.then(()=>{});if(this.backendInstance!=null)return;let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t];if(await this.initializeBackend(n).success){await this.setBackend(n);return}}throw new Error("Could not initialize any backends, all backend initializations failed.")}get backend(){if(this.pendingBackendInit!=null)throw new Error(`Backend '${this.backendName}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);if(this.backendInstance==null){let{name:e,asyncInit:t}=this.initializeBackendsAndReturnBest();if(t)throw new Error(`The highest priority backend '${e}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);this.setBackend(e)}return this.backendInstance}backendNames(){return Object.keys(this.registryFactory)}findBackend(e){if(!(e in this.registry))if(e in this.registryFactory){let{asyncInit:t}=this.initializeBackend(e);if(t)return null}else return null;return this.registry[e]}findBackendFactory(e){return e in this.registryFactory?this.registryFactory[e].factory:null}registerBackend(e,t,n=1){return e in this.registryFactory?(Io(`${e} backend was already registered. Reusing existing backend factory.`),!1):(this.registryFactory[e]={factory:t,priority:n},!0)}async setBackend(e){if(this.registryFactory[e]==null)throw new Error(`Backend name '${e}' not found in registry`);if(this.backendName=e,this.registry[e]==null){this.backendInstance=null;let{success:t,asyncInit:n}=this.initializeBackend(e);if(!(n?await t:t))return!1}return this.backendInstance=this.registry[e],this.setupRegisteredKernels(),this.profiler=new $9(this.backendInstance),!0}setupRegisteredKernels(){Yr(this.backendName).forEach(t=>{t.setupFunc!=null&&t.setupFunc(this.backendInstance)})}disposeRegisteredKernels(e){Yr(e).forEach(n=>{n.disposeFunc!=null&&n.disposeFunc(this.registry[e])})}initializeBackend(e){let t=this.registryFactory[e];if(t==null)throw new Error(`Cannot initialize backend ${e}, no registration found.`);try{let n=t.factory();if(n&&!(n instanceof tu)&&typeof n.then=="function"){let s=++this.pendingBackendInitId,r=n.then(a=>s<this.pendingBackendInitId?!1:(this.registry[e]=a,this.pendingBackendInit=null,!0)).catch(a=>(s<this.pendingBackendInitId||(this.pendingBackendInit=null,Io(`Initialization of backend ${e} failed`),Io(a.stack||a.message)),!1));return this.pendingBackendInit=r,{success:r,asyncInit:!0}}else return this.registry[e]=n,{success:!0,asyncInit:!1}}catch(n){return Io(`Initialization of backend ${e} failed`),Io(n.stack||n.message),{success:!1,asyncInit:!1}}}removeBackend(e){if(!(e in this.registryFactory))throw new Error(`${e} backend not found in registry`);this.backendName===e&&this.pendingBackendInit!=null&&this.pendingBackendInitId++,e in this.registry&&(this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e]),delete this.registryFactory[e],this.backendName===e&&(this.pendingBackendInit=null,this.backendName=null,this.backendInstance=null)}getSortedBackends(){if(Object.keys(this.registryFactory).length===0)throw new Error("No backend found in registry.");return Object.keys(this.registryFactory).sort((e,t)=>this.registryFactory[t].priority-this.registryFactory[e].priority)}initializeBackendsAndReturnBest(){let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t],{success:s,asyncInit:r}=this.initializeBackend(n);if(r||s)return{name:n,asyncInit:r}}throw new Error("Could not initialize any backends, all backend initializations failed.")}moveData(e,t){let n=this.state.tensorInfo.get(t),s=n.backend,r=this.readSync(t),a=s.refCount(t);s.disposeData(t,!0),n.backend=e,e.move(t,r,n.shape,n.dtype,a),this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack[this.state.numDataMovesStack.length-1]++}tidy(e,t){let n=null;if(t==null){if(typeof e!="function")throw new Error("Please provide a function to tidy()");t=e}else{if(typeof e!="string"&&!(e instanceof String))throw new Error("When calling with two arguments, the first argument to tidy() must be a string");if(typeof t!="function")throw new Error("When calling with two arguments, the 2nd argument to tidy() must be a function");n=e}let s;return this.scopedRun(()=>this.startScope(n),()=>this.endScope(s),()=>(s=t(),s instanceof Promise&&console.error("Cannot return a Promise inside of tidy."),s))}scopedRun(e,t,n){e();try{let s=n();return t(),s}catch(s){throw t(),s}}nextTensorId(){return N2.nextTensorId++}nextVariableId(){return N2.nextVariableId++}clone(e){let t=W.runKernel(qa,{x:e}),n={x:e},s=a=>({x:()=>{let o="float32",i={x:a},l={dtype:o};return W.runKernel(Da,i,l)}}),r=[];return this.addTapeNode(this.state.activeScope.name,n,[t],s,r,{}),t}runKernel(e,t,n){if(this.backendName==null&&this.backend,!(tf(e,this.backendName)!=null))throw new Error(`Kernel '${e}' not registered for backend '${this.backendName}'`);return this.runKernelFunc({kernelName:e,inputs:t,attrs:n})}shouldCheckForMemLeaks(){return this.ENV.getBool("IS_TEST")}checkKernelForMemLeak(e,t,n){let s=this.backend.numDataIds(),r=0;n.forEach(i=>{r+=i.dtype==="complex64"?3:1});let a=this.state.numDataMovesStack[this.state.numDataMovesStack.length-1],o=s-t-r-a;if(o>0)throw new Error(`Backend '${this.backendName}' has an internal memory leak (${o} data ids) after running '${e}'`)}runKernelFunc(e){let t,n=[],s=this.isTapeOn(),r=this.state.numBytes,a=this.state.numTensors;this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack.push(0);let o;this.backendName==null&&this.backend;let i,l=T2(e)?e.kernelName:this.state.activeScope!=null?this.state.activeScope.name:"";if(T2(e)){let{kernelName:h,inputs:f,attrs:m}=e;this.backendName==null&&this.backend;let g=tf(h,this.backendName);O(g!=null,()=>`Cannot find registered kernel '${h}' for backend '${this.backendName}'`),o=()=>{let A=this.backend.numDataIds();i=g.kernelFunc({inputs:f,attrs:m,backend:this.backend});let x=Array.isArray(i)?i:[i];this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(h,A,x);let y=x.map(b=>{if(b.rank!=null)return b;let{dataId:w,shape:k,dtype:S}=b;return this.makeTensorFromDataId(w,k,S)});if(s){let b=this.getTensorsForGradient(h,f,y);n=this.saveTensorsForBackwardMode(b)}return y}}else{let{forwardFunc:h}=e,f=m=>{!s||(n=m.map(g=>this.keep(this.clone(g))))};o=()=>{let m=this.backend.numDataIds();i=this.tidy(()=>h(this.backend,f));let g=Array.isArray(i)?i:[i];return this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(l,m,g),g}}let{inputs:c,attrs:u}=e,d=T2(e)?null:e.backwardsFunc,p;return this.scopedRun(()=>this.state.kernelDepth++,()=>this.state.kernelDepth--,()=>{!this.ENV.getBool("DEBUG")&&!this.state.profiling?t=o():(p=this.profiler.profileKernel(l,c,()=>o()),this.ENV.getBool("DEBUG")&&this.profiler.logKernelProfile(p),t=p.outputs)}),s&&this.addTapeNode(l,c,t,d,n,u),this.state.profiling&&this.state.activeProfile.kernels.push({name:l,bytesAdded:this.state.numBytes-r,totalBytesSnapshot:this.state.numBytes,tensorsAdded:this.state.numTensors-a,totalTensorsSnapshot:this.state.numTensors,inputShapes:Object.keys(c).map(h=>c[h]!=null?c[h].shape:null),outputShapes:t.map(h=>h.shape),kernelTimeMs:p.timeMs,extraInfo:p.extraInfo}),Array.isArray(i)?t:t[0]}saveTensorsForBackwardMode(e){return e.map(n=>this.keep(this.clone(n)))}getTensorsForGradient(e,t,n){let s=A2(e);if(s!=null){let r=s.inputsToSave||[],a=s.outputsToSave||[],o;s.saveAllInputs?(O(Array.isArray(t),()=>"saveAllInputs is true, expected inputs to be an array."),o=Object.keys(t).map(l=>t[l])):o=r.map(l=>t[l]);let i=n.filter((l,c)=>a[c]);return o.concat(i)}return[]}makeTensor(e,t,n,s){if(e==null)throw new Error("Values passed to engine.makeTensor() are null");n=n||"float32",s=s||this.backend;let r=e;n==="string"&&Ta(e[0])&&(r=e.map(i=>wd(i)));let a=s.write(r,t,n),o=new et(t,n,a,this.nextTensorId());if(this.trackTensor(o,s),n==="string"){let i=this.state.tensorInfo.get(a),l=K5(r);this.state.numBytes+=l-i.bytes,i.bytes=l}return o}makeTensorFromDataId(e,t,n,s){n=n||"float32";let r=new et(t,n,e,this.nextTensorId());return this.trackTensor(r,s),r}makeVariable(e,t=!0,n,s){n=n||this.nextVariableId().toString(),s!=null&&s!==e.dtype&&(e=e.cast(s));let r=new Cd(e,t,n,this.nextTensorId());if(this.state.registeredVariables[r.name]!=null)throw new Error(`Variable with name ${r.name} was already registered`);return this.state.registeredVariables[r.name]=r,this.incRef(r,this.backend),r}trackTensor(e,t){this.state.numTensors++,e.dtype==="string"&&this.state.numStringTensors++;let n=0;e.dtype!=="complex64"&&e.dtype!=="string"&&(n=e.size*d2(e.dtype)),this.state.numBytes+=n,this.state.tensorInfo.has(e.dataId)||(this.state.numDataBuffers++,this.state.tensorInfo.set(e.dataId,{backend:t||this.backend,dtype:e.dtype,shape:e.shape,bytes:n})),e instanceof Cd||this.track(e)}incRef(e,t){this.trackTensor(e,t),this.backend.incRef(e.dataId)}removeDataId(e,t){this.state.tensorInfo.has(e)&&this.state.tensorInfo.get(e).backend===t&&(this.state.tensorInfo.delete(e),this.state.numDataBuffers--)}disposeTensor(e){if(!this.state.tensorInfo.has(e.dataId))return;let t=this.state.tensorInfo.get(e.dataId);if(this.state.numTensors--,e.dtype==="string"&&(this.state.numStringTensors--,this.state.numBytes-=t.bytes),e.dtype!=="complex64"&&e.dtype!=="string"){let n=e.size*d2(e.dtype);this.state.numBytes-=n}t.backend.disposeData(e.dataId)&&this.removeDataId(e.dataId,t.backend)}disposeVariables(){for(let e in this.state.registeredVariables){let t=this.state.registeredVariables[e];this.disposeVariable(t)}}disposeVariable(e){this.disposeTensor(e),this.state.registeredVariables[e.name]!=null&&delete this.state.registeredVariables[e.name]}memory(){let e=this.backend.memory();return e.numTensors=this.state.numTensors,e.numDataBuffers=this.state.numDataBuffers,e.numBytes=this.state.numBytes,this.state.numStringTensors>0&&(e.unreliable=!0,e.reasons==null&&(e.reasons=[]),e.reasons.push("Memory usage by string tensors is approximate (2 bytes per character)")),e}async profile(e){this.state.profiling=!0;let t=this.state.numBytes,n=this.state.numTensors;this.state.activeProfile.kernels=[],this.state.activeProfile.result=await e(),this.state.profiling=!1,this.state.activeProfile.peakBytes=Math.max(...this.state.activeProfile.kernels.map(s=>s.totalBytesSnapshot)),this.state.activeProfile.newBytes=this.state.numBytes-t,this.state.activeProfile.newTensors=this.state.numTensors-n;for(let s of this.state.activeProfile.kernels)s.kernelTimeMs=await s.kernelTimeMs,s.extraInfo=await s.extraInfo;return this.state.activeProfile}isTapeOn(){return this.state.gradientDepth>0&&this.state.kernelDepth===0}addTapeNode(e,t,n,s,r,a){let o={id:this.state.nextTapeNodeId++,kernelName:e,inputs:t,outputs:n,saved:r},i=A2(e);i!=null&&(s=i.gradFunc),s!=null&&(o.gradient=l=>(l=l.map((c,u)=>{if(c==null){let d=n[u],p=kh(d.size,d.dtype);return this.makeTensor(p,d.shape,d.dtype)}return c}),s(l.length>1?l:l[0],r,a))),this.state.activeTape.push(o)}keep(e){return e.kept=!0,e}startTape(){this.state.gradientDepth===0&&(this.state.activeTape=[]),this.state.gradientDepth++}endTape(){this.state.gradientDepth--}startScope(e){let t={track:[],name:"unnamed scope",id:this.state.nextScopeId++};e&&(t.name=e),this.state.scopeStack.push(t),this.state.activeScope=t}endScope(e){let t=C2(e),n=new Set(t.map(r=>r.id));for(let r=0;r<this.state.activeScope.track.length;r++){let a=this.state.activeScope.track[r];!a.kept&&!n.has(a.id)&&a.dispose()}let s=this.state.scopeStack.pop();this.state.activeScope=this.state.scopeStack.length===0?null:this.state.scopeStack[this.state.scopeStack.length-1],t.forEach(r=>{!r.kept&&r.scopeId===s.id&&this.track(r)})}gradients(e,t,n,s=!1){if(O(t.length>0,()=>"gradients() received an empty list of xs."),n!=null&&n.dtype!=="float32")throw new Error(`dy must have 'float32' dtype, but has '${n.dtype}'`);let r=this.scopedRun(()=>this.startTape(),()=>this.endTape(),()=>this.tidy("forward",e));O(r instanceof et,()=>"The result y returned by f() must be a tensor.");let a=P9(this.state.activeTape,t,r);if(!s&&a.length===0&&t.length>0)throw new Error("Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.");return this.tidy("backward",()=>{let o={};o[r.id]=n==null?j9(r.shape):n,F9(o,a,l=>this.tidy(l),q9);let i=t.map(l=>o[l.id]);return this.state.gradientDepth===0&&(this.state.activeTape.forEach(l=>{for(let c of l.saved)c.dispose()}),this.state.activeTape=null),{value:r,grads:i}})}customGrad(e){return O(Na(e),()=>"The f passed in customGrad(f) must be a function."),(...t)=>{O(t.every(o=>o instanceof et),()=>"The args passed in customGrad(f)(x1, x2,...) must all be tensors");let n,s={};t.forEach((o,i)=>{s[i]=o});let r=(o,i)=>(n=e(...t,i),O(n.value instanceof et,()=>"The function f passed in customGrad(f) must return an object where `obj.value` is a tensor"),O(Na(n.gradFunc),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function."),n.value),a=(o,i)=>{let l=n.gradFunc(o,i),c=Array.isArray(l)?l:[l];O(c.length===t.length,()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns the same number of tensors as inputs passed to f(...)."),O(c.every(d=>d instanceof et),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns a list of only tensors.");let u={};return c.forEach((d,p)=>{u[p]=()=>d}),u};return this.runKernelFunc({forwardFunc:r,backwardsFunc:a,inputs:s})}}readSync(e){return this.state.tensorInfo.get(e).backend.readSync(e)}read(e){return this.state.tensorInfo.get(e).backend.read(e)}async time(e){let t=vd(),n=await this.backend.time(e);return n.wallMs=vd()-t,n}track(e){return this.state.activeScope!=null&&(e.scopeId=this.state.activeScope.id,this.state.activeScope.track.push(e)),e}get registeredVariables(){return this.state.registeredVariables}reset(){this.pendingBackendInitId++,this.state.dispose(),this.ENV.reset(),this.state=new h3;for(let e in this.registry)this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e];this.backendName=null,this.backendInstance=null,this.pendingBackendInit=null}},E2=N2;E2.nextTensorId=0;E2.nextVariableId=0;function j9(e){let t=p2(Gt(e),"float32");return W.makeTensor(t,e,"float32")}function f3(){let e=t3();if(e._tfengine==null){let t=new e3(e);e._tfengine=new E2(t)}return g9(e._tfengine.ENV),L9(()=>e._tfengine),e._tfengine}var W=f3();function q9(e,t){let n={a:e,b:t};return W.runKernel(Xr,n)}var _u={};Me(_u,{isBrowser:()=>m3,isMobile:()=>Z9,mockIsMobile:()=>K9});function X9(){return typeof navigator!="undefined"&&navigator!=null}var R2;function K9(e){R2=e}function Z9(e){if(R2!==void 0)return R2;if(e||X9()){if(e||(e=navigator),e.product==="ReactNative")return!0;let t=e.userAgent||e.vendor||(typeof window!="undefined"?window.opera:"");if(!t){let n=e;return n.userAgentData&&n.userAgentData.mobile}return/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i.test(t)||/1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(t.substr(0,4))}return!1}function m3(){return typeof window!="undefined"&&window.document!=null||typeof WorkerGlobalScope!="undefined"}var hr=Y();hr.registerFlag("DEBUG",()=>!1,e=>{e&&console.warn("Debugging mode is ON. The output of every math call will be downloaded to CPU and checked for NaNs. This significantly impacts performance.")});hr.registerFlag("IS_BROWSER",()=>m3());hr.registerFlag("IS_NODE",()=>typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined");hr.registerFlag("IS_CHROME",()=>typeof navigator!="undefined"&&navigator!=null&&navigator.userAgent!=null&&/Chrome/.test(navigator.userAgent)&&/Google Inc/.test(navigator.vendor));hr.registerFlag("PROD",()=>!1);hr.registerFlag("TENSORLIKE_CHECK_SHAPE_CONSISTENCY",()=>hr.getBool("DEBUG"));hr.registerFlag("DEPRECATION_WARNINGS_ENABLED",()=>!0);hr.registerFlag("IS_TEST",()=>!1);hr.registerFlag("CHECK_COMPUTATION_FOR_ERRORS",()=>!0);hr.registerFlag("WRAP_TO_IMAGEBITMAP",()=>!1);function Rr(e,t){let n=e;if(_n(e))return t==="string"?[]:[e.length];if(!Array.isArray(e))return[];let s=[];for(;Array.isArray(n)||_n(n)&&t!=="string";)s.push(n.length),n=n[0];return Array.isArray(e)&&Y().getBool("TENSORLIKE_CHECK_SHAPE_CONSISTENCY")&&g3(e,s,[]),s}function g3(e,t,n){if(n=n||[],!Array.isArray(e)&&!_n(e)){O(t.length===0,()=>`Element arr[${n.join("][")}] is a primitive, but should be an array/TypedArray of ${t[0]} elements`);return}O(t.length>0,()=>`Element arr[${n.join("][")}] should be a primitive, but is an array of ${e.length} elements`),O(e.length===t[0],()=>`Element arr[${n.join("][")}] should have ${t[0]} elements, but has ${e.length} elements`);let s=t.slice(1);for(let r=0;r<e.length;++r)g3(e[r],s,n.concat(r))}function A3(e,t,n,s){if(e!=="string_or_numeric"){if(e==null)throw new Error("Expected dtype cannot be null.");if(e!=="numeric"&&e!==t||e==="numeric"&&t==="string")throw new Error(`Argument '${n}' passed to '${s}' must be ${e} tensor, but got ${t} tensor`)}}function P(e,t,n,s="numeric"){if(e instanceof et)return A3(s,e.dtype,t,n),e;let r=vh(e);if(r!=="string"&&["bool","int32","float32"].indexOf(s)>=0&&(r=s),A3(s,r,t,n),e==null||!_n(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string"){let l=e==null?"null":e.constructor.name;throw new Error(`Argument '${t}' passed to '${n}' must be a Tensor or TensorLike, but got '${l}'`)}let a=Rr(e,r);!_n(e)&&!Array.isArray(e)&&(e=[e]);let i=r!=="string"?sf(e,r):ci(e,[],!0);return W.makeTensor(i,a,r)}function Nd(e,t,n,s="numeric"){if(!Array.isArray(e))throw new Error(`Argument ${t} passed to ${n} must be a \`Tensor[]\` or \`TensorLike[]\``);return e.map((a,o)=>P(a,`${t}[${o}]`,n,s))}var y3="__op";function G(e){let t=Object.keys(e);if(t.length!==1)throw new Error(`Please provide an object with a single key (operation name) mapping to a function. Got an object with ${t.length} keys.`);let n=t[0],s=e[n];n.endsWith("_")&&(n=n.substring(0,n.length-1)),n=n+y3;let r=(...a)=>{W.startScope(n);try{let o=s(...a);return f2(o)&&console.error("Cannot return a Promise inside of tidy."),W.endScope(o),o}catch(o){throw W.endScope(null),o}};return Object.defineProperty(r,"name",{value:n,configurable:!0}),r}function Y9(e,t){let n=P(e,"real","complex"),s=P(t,"imag","complex");Mn(n.shape,s.shape,`real and imag shapes, ${n.shape} and ${s.shape}, must match in call to tf.complex().`);let r={real:n,imag:s};return W.runKernel(ad,r)}var Co=G({complex_:Y9});function To(e,t,n,s){if(s==null&&(s=vh(e)),s==="complex64")throw new Error("Cannot construct a complex64 tensor directly. Please use tf.complex(real, imag).");if(!_n(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string")throw new Error("values passed to tensor(values) must be a number/boolean/string or an array of numbers/booleans/strings, or a TypedArray");if(t!=null){h2(t);let r=Gt(t),a=Gt(n);O(r===a,()=>`Based on the provided shape, [${t}], the tensor should have ${r} values but has ${a}`);for(let o=0;o<n.length;++o){let i=n[o],l=o===n.length-1?i!==Gt(t.slice(o)):!0;O(n[o]===t[o]||!l,()=>`Error creating a new Tensor. Inferred shape (${n}) does not match the provided shape (${t}). `)}}return!_n(e)&&!Array.isArray(e)&&(e=[e]),t=t||n,e=s!=="string"?sf(e,s):ci(e,[],!0),W.makeTensor(e,t,s)}function pt(e,t,n){let s=Rr(e,n);return To(e,t,s,n)}var $2={float32:4,float16:2,int32:4,uint16:2,uint8:1,bool:1,complex64:8},of=4;async function J9(e,t){let n=[],s=[],r=Array.isArray(e)?e.map(o=>o.name):Object.keys(e);for(let o=0;o<r.length;++o){let i=r[o],l=Array.isArray(e)?e[o].tensor:e[i];if(l.dtype!=="float32"&&l.dtype!=="int32"&&l.dtype!=="bool"&&l.dtype!=="string"&&l.dtype!=="complex64")throw new Error(`Unsupported dtype in weight '${i}': ${l.dtype}`);let c={name:i,shape:l.shape,dtype:l.dtype};if(l.dtype==="string"){let u=new Promise(async d=>{let p=await l.bytes(),h=p.reduce((g,A)=>g+A.length,0)+of*p.length,f=new Uint8Array(h),m=0;for(let g=0;g<p.length;g++){let A=p[g],x=new Uint8Array(new Uint32Array([A.length]).buffer);f.set(x,m),m+=of,f.set(A,m),m+=A.length}d(f)});s.push(u)}else s.push(l.data());t!=null&&(c.group=t),n.push(c)}let a=await Promise.all(s);return{data:Q9(a),specs:n}}function x3(e,t){let n={},s,r=0;for(let a of t){let o=a.name,i=a.dtype,l=a.shape,c=Gt(l),u;if("quantization"in a){let d=a.quantization;if(d.dtype==="uint8"||d.dtype==="uint16"){if(!("min"in d&&"scale"in d))throw new Error(`Weight ${a.name} with quantization ${d.dtype} doesn't have corresponding metadata min and scale.`)}else if(d.dtype==="float16"){if(i!=="float32")throw new Error(`Weight ${a.name} is quantized with ${d.dtype} which only supports weights of type float32 not ${i}.`)}else throw new Error(`Weight ${a.name} has unknown quantization dtype ${d.dtype}. Supported quantization dtypes are: 'uint8', 'uint16', and 'float16'.`);let p=$2[d.dtype],h=e.slice(r,r+c*p),f=d.dtype==="uint8"?new Uint8Array(h):new Uint16Array(h);if(i==="float32")if(d.dtype==="uint8"||d.dtype==="uint16"){u=new Float32Array(f.length);for(let m=0;m<f.length;m++){let g=f[m];u[m]=g*d.scale+d.min}}else if(d.dtype==="float16")s===void 0&&(s=aR()),u=s(f);else throw new Error(`Unsupported quantization type ${d.dtype} for weight type float32.`);else if(i==="int32"){if(d.dtype!=="uint8"&&d.dtype!=="uint16")throw new Error(`Unsupported quantization type ${d.dtype} for weight type int32.`);u=new Int32Array(f.length);for(let m=0;m<f.length;m++){let g=f[m];u[m]=Math.round(g*d.scale+d.min)}}else throw new Error(`Unsupported dtype in weight '${o}': ${i}`);r+=c*p}else if(i==="string"){let d=Gt(a.shape);u=[];for(let p=0;p<d;p++){let h=new Uint32Array(e.slice(r,r+of))[0];r+=of;let f=new Uint8Array(e.slice(r,r+h));u.push(f),r+=h}}else{let d=$2[i],p=e.slice(r,r+c*d);if(i==="float32")u=new Float32Array(p);else if(i==="int32")u=new Int32Array(p);else if(i==="bool")u=new Uint8Array(p);else if(i==="complex64"){u=new Float32Array(p);let h=new Float32Array(u.length/2),f=new Float32Array(u.length/2);for(let A=0;A<h.length;A++)h[A]=u[A*2],f[A]=u[A*2+1];let m=pt(h,l,"float32"),g=pt(f,l,"float32");n[o]=Co(m,g),m.dispose(),g.dispose()}else throw new Error(`Unsupported dtype in weight '${o}': ${i}`);r+=c*d}i!=="complex64"&&(n[o]=pt(u,l,i))}return n}function Q9(e){if(e===null)throw new Error(`Invalid input value: ${JSON.stringify(e)}`);let t=0,n=[];e.forEach(a=>{if(t+=a.byteLength,n.push(a.byteLength===a.buffer.byteLength?a:new a.constructor(a)),!(a instanceof Float32Array||a instanceof Int32Array||a instanceof Uint8Array))throw new Error(`Unsupported TypedArray subtype: ${a.constructor.name}`)});let s=new Uint8Array(t),r=0;return n.forEach(a=>{s.set(new Uint8Array(a.buffer),r),r+=a.byteLength}),s.buffer}var _2=typeof Buffer!="undefined"&&(typeof Blob=="undefined"||typeof atob=="undefined"||typeof btoa=="undefined");function b3(e){return _2?Buffer.byteLength(e):new Blob([e]).size}function eR(e){if(_2)return Buffer.from(e).toString("base64");let t=new Uint8Array(e),n="";for(let s=0,r=t.length;s<r;s++)n+=String.fromCharCode(t[s]);return btoa(n)}function tR(e){if(_2){let s=Buffer.from(e,"base64");return s.buffer.slice(s.byteOffset,s.byteOffset+s.byteLength)}let t=atob(e),n=new Uint8Array(t.length);for(let s=0;s<t.length;++s)n.set([t.charCodeAt(s)],s);return n.buffer}function D2(e){if(e.length===1)return e[0];let t=0;e.forEach(r=>{t+=r.byteLength});let n=new Uint8Array(t),s=0;return e.forEach(r=>{n.set(new Uint8Array(r),s),s+=r.byteLength}),n.buffer}function v3(e){let t="/";for(e=e.trim();e.endsWith(t);)e=e.slice(0,e.length-1);let n=e.split(t);return n[n.length-1]}function w3(e,t){let n={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:t};return e.signature!=null&&(n.signature=e.signature),e.userDefinedMetadata!=null&&(n.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(n.modelInitializer=e.modelInitializer),e.trainingConfig!=null&&(n.trainingConfig=e.trainingConfig),n}async function P2(e,t){let n={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy};if(e.trainingConfig!=null&&(n.trainingConfig=e.trainingConfig),e.weightsManifest!=null){let[s,r]=await t(e.weightsManifest);n.weightSpecs=s,n.weightData=r}return e.signature!=null&&(n.signature=e.signature),e.userDefinedMetadata!=null&&(n.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(n.modelInitializer=e.modelInitializer),n}function Ed(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("Expected JSON model topology, received ArrayBuffer.");return{dateSaved:new Date,modelTopologyType:"JSON",modelTopologyBytes:e.modelTopology==null?0:b3(JSON.stringify(e.modelTopology)),weightSpecsBytes:e.weightSpecs==null?0:b3(JSON.stringify(e.weightSpecs)),weightDataBytes:e.weightData==null?0:e.weightData.byteLength}}function nR(){let e=n=>{let s=n<<13,r=0;for(;(s&8388608)==0;)r-=8388608,s<<=1;return s&=~8388608,r+=947912704,s|r},t=new Uint32Array(2048);t[0]=0;for(let n=1;n<1024;n++)t[n]=e(n);for(let n=1024;n<2048;n++)t[n]=939524096+(n-1024<<13);return t}function sR(){let e=new Uint32Array(64);e[0]=0,e[31]=1199570944,e[32]=2147483648,e[63]=3347054592;for(let t=1;t<31;t++)e[t]=t<<23;for(let t=33;t<63;t++)e[t]=2147483648+(t-32<<23);return e}function rR(){let e=new Uint32Array(64);for(let t=0;t<64;t++)e[t]=1024;return e[0]=e[32]=0,e}function aR(){let e=nR(),t=sR(),n=rR();return s=>{let r=new ArrayBuffer(4*s.length),a=new Uint32Array(r);for(let o=0;o<s.length;o++){let i=s[o],l=e[n[i>>10]+(i&1023)]+t[i>>10];a[o]=l}return new Float32Array(r)}}var Bt=class{constructor(){this.saveRouters=[],this.loadRouters=[]}static getInstance(){return Bt.instance==null&&(Bt.instance=new Bt),Bt.instance}static registerSaveRouter(e){Bt.getInstance().saveRouters.push(e)}static registerLoadRouter(e){Bt.getInstance().loadRouters.push(e)}static getSaveHandlers(e){return Bt.getHandlers(e,"save")}static getLoadHandlers(e,t){return Bt.getHandlers(e,"load",t)}static getHandlers(e,t,n){let s=[];return(t==="load"?Bt.getInstance().loadRouters:Bt.getInstance().saveRouters).forEach(a=>{let o=a(e,n);o!==null&&s.push(o)}),s}},oR=e=>Bt.registerSaveRouter(e),iR=e=>Bt.registerLoadRouter(e),lR=e=>Bt.getSaveHandlers(e),uR=(e,t)=>Bt.getLoadHandlers(e,t),F2="tensorflowjs",O2=1,el="models_store",No="model_info_store";function k3(){if(!Y().getBool("IS_BROWSER"))throw new Error("Failed to obtain IndexedDB factory because the current environmentis not a web browser.");let e=typeof window=="undefined"?self:window,t=e.indexedDB||e.mozIndexedDB||e.webkitIndexedDB||e.msIndexedDB||e.shimIndexedDB;if(t==null)throw new Error("The current browser does not appear to support IndexedDB.");return t}function M2(e){let t=e.result;t.createObjectStore(el,{keyPath:"modelPath"}),t.createObjectStore(No,{keyPath:"modelPath"})}var tl=class{constructor(e){if(this.indexedDB=k3(),e==null||!e)throw new Error("For IndexedDB, modelPath must not be null, undefined or empty.");this.modelPath=e}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");return this.databaseAction(this.modelPath,e)}async load(){return this.databaseAction(this.modelPath)}databaseAction(e,t){return new Promise((n,s)=>{let r=this.indexedDB.open(F2,O2);r.onupgradeneeded=()=>M2(r),r.onsuccess=()=>{let a=r.result;if(t==null){let o=a.transaction(el,"readonly"),l=o.objectStore(el).get(this.modelPath);l.onsuccess=()=>{if(l.result==null)return a.close(),s(new Error(`Cannot find model with path '${this.modelPath}' in IndexedDB.`));n(l.result.modelArtifacts)},l.onerror=c=>(a.close(),s(l.error)),o.oncomplete=()=>a.close()}else{let o=Ed(t),i=a.transaction(No,"readwrite"),l=i.objectStore(No),c=l.put({modelPath:this.modelPath,modelArtifactsInfo:o}),u;c.onsuccess=()=>{u=a.transaction(el,"readwrite");let p=u.objectStore(el).put({modelPath:this.modelPath,modelArtifacts:t,modelArtifactsInfo:o});p.onsuccess=()=>n({modelArtifactsInfo:o}),p.onerror=h=>{l=i.objectStore(No);let f=l.delete(this.modelPath);f.onsuccess=()=>(a.close(),s(p.error)),f.onerror=m=>(a.close(),s(p.error))}},c.onerror=d=>(a.close(),s(c.error)),i.oncomplete=()=>{u==null?a.close():u.oncomplete=()=>a.close()}}},r.onerror=a=>s(r.error)})}};tl.URL_SCHEME="indexeddb://";var I3=e=>Y().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(tl.URL_SCHEME)?cR(e.slice(tl.URL_SCHEME.length)):null;Bt.registerSaveRouter(I3);Bt.registerLoadRouter(I3);function cR(e){return new tl(e)}function dR(e){return e.startsWith(tl.URL_SCHEME)?e.slice(tl.URL_SCHEME.length):e}var pR=class{constructor(){this.indexedDB=k3()}async listModels(){return new Promise((e,t)=>{let n=this.indexedDB.open(F2,O2);n.onupgradeneeded=()=>M2(n),n.onsuccess=()=>{let s=n.result,r=s.transaction(No,"readonly"),o=r.objectStore(No).getAll();o.onsuccess=()=>{let i={};for(let l of o.result)i[l.modelPath]=l.modelArtifactsInfo;e(i)},o.onerror=i=>(s.close(),t(o.error)),r.oncomplete=()=>s.close()},n.onerror=s=>t(n.error)})}async removeModel(e){return e=dR(e),new Promise((t,n)=>{let s=this.indexedDB.open(F2,O2);s.onupgradeneeded=()=>M2(s),s.onsuccess=()=>{let r=s.result,a=r.transaction(No,"readwrite"),o=a.objectStore(No),i=o.get(e),l;i.onsuccess=()=>{if(i.result==null)return r.close(),n(new Error(`Cannot find model with path '${e}' in IndexedDB.`));{let c=o.delete(e),u=()=>{l=r.transaction(el,"readwrite");let p=l.objectStore(el).delete(e);p.onsuccess=()=>t(i.result.modelArtifactsInfo),p.onerror=h=>n(i.error)};c.onsuccess=u,c.onerror=d=>(u(),r.close(),n(i.error))}},i.onerror=c=>(r.close(),n(i.error)),a.oncomplete=()=>{l==null?r.close():l.oncomplete=()=>r.close()}},s.onerror=r=>n(s.error)})}},Jr="/",Du="tensorflowjs_models",S3="info",hR="model_topology",fR="weight_specs",mR="weight_data",gR="model_metadata";function C3(e){return{info:[Du,e,S3].join(Jr),topology:[Du,e,hR].join(Jr),weightSpecs:[Du,e,fR].join(Jr),weightData:[Du,e,mR].join(Jr),modelMetadata:[Du,e,gR].join(Jr)}}function T3(e){for(let t of Object.values(e))window.localStorage.removeItem(t)}function AR(e){let t=e.split(Jr);if(t.length<3)throw new Error(`Invalid key format: ${e}`);return t.slice(1,t.length-1).join(Jr)}function yR(e){return e.startsWith(nl.URL_SCHEME)?e.slice(nl.URL_SCHEME.length):e}var nl=class{constructor(e){if(!Y().getBool("IS_BROWSER")||typeof window=="undefined"||typeof window.localStorage=="undefined")throw new Error("The current environment does not support local storage.");if(this.LS=window.localStorage,e==null||!e)throw new Error("For local storage, modelPath must not be null, undefined or empty.");this.modelPath=e,this.keys=C3(this.modelPath)}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");{let t=JSON.stringify(e.modelTopology),n=JSON.stringify(e.weightSpecs),s=Ed(e);try{this.LS.setItem(this.keys.info,JSON.stringify(s)),this.LS.setItem(this.keys.topology,t),this.LS.setItem(this.keys.weightSpecs,n),this.LS.setItem(this.keys.weightData,eR(e.weightData));let r={format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,signature:e.signature!=null?e.signature:void 0,userDefinedMetadata:e.userDefinedMetadata!=null?e.userDefinedMetadata:void 0,modelInitializer:e.modelInitializer!=null?e.modelInitializer:void 0,trainingConfig:e.trainingConfig!=null?e.trainingConfig:void 0};return this.LS.setItem(this.keys.modelMetadata,JSON.stringify(r)),{modelArtifactsInfo:s}}catch(r){throw T3(this.keys),new Error(`Failed to save model '${this.modelPath}' to local storage: size quota being exceeded is a possible cause of this failure: modelTopologyBytes=${s.modelTopologyBytes}, weightSpecsBytes=${s.weightSpecsBytes}, weightDataBytes=${s.weightDataBytes}.`)}}}async load(){let e=JSON.parse(this.LS.getItem(this.keys.info));if(e==null)throw new Error(`In local storage, there is no model with name '${this.modelPath}'`);if(e.modelTopologyType!=="JSON")throw new Error("BrowserLocalStorage does not support loading non-JSON model topology yet.");let t={},n=JSON.parse(this.LS.getItem(this.keys.topology));if(n==null)throw new Error(`In local storage, the topology of model '${this.modelPath}' is missing.`);t.modelTopology=n;let s=JSON.parse(this.LS.getItem(this.keys.weightSpecs));if(s==null)throw new Error(`In local storage, the weight specs of model '${this.modelPath}' are missing.`);t.weightSpecs=s;let r=this.LS.getItem(this.keys.modelMetadata);if(r!=null){let o=JSON.parse(r);t.format=o.format,t.generatedBy=o.generatedBy,t.convertedBy=o.convertedBy,o.signature!=null&&(t.signature=o.signature),o.userDefinedMetadata!=null&&(t.userDefinedMetadata=o.userDefinedMetadata),o.modelInitializer!=null&&(t.modelInitializer=o.modelInitializer),o.trainingConfig!=null&&(t.trainingConfig=o.trainingConfig)}let a=this.LS.getItem(this.keys.weightData);if(a==null)throw new Error(`In local storage, the binary weight values of model '${this.modelPath}' are missing.`);return t.weightData=tR(a),t}};nl.URL_SCHEME="localstorage://";var N3=e=>Y().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(nl.URL_SCHEME)?xR(e.slice(nl.URL_SCHEME.length)):null;Bt.registerSaveRouter(N3);Bt.registerLoadRouter(N3);function xR(e){return new nl(e)}var bR=class{constructor(){O(Y().getBool("IS_BROWSER"),()=>"Current environment is not a web browser"),O(typeof window=="undefined"||typeof window.localStorage!="undefined",()=>"Current browser does not appear to support localStorage"),this.LS=window.localStorage}async listModels(){let e={},t=Du+Jr,n=Jr+S3;for(let s=0;s<this.LS.length;++s){let r=this.LS.key(s);if(r.startsWith(t)&&r.endsWith(n)){let a=AR(r);e[a]=JSON.parse(this.LS.getItem(r))}}return e}async removeModel(e){e=yR(e);let t=C3(e);if(this.LS.getItem(t.info)==null)throw new Error(`Cannot find model at path '${e}'`);let n=JSON.parse(this.LS.getItem(t.info));return T3(t),n}},Pu="://",$s=class{constructor(){this.managers={}}static getInstance(){return $s.instance==null&&($s.instance=new $s),$s.instance}static registerManager(e,t){O(e!=null,()=>"scheme must not be undefined or null."),e.endsWith(Pu)&&(e=e.slice(0,e.indexOf(Pu))),O(e.length>0,()=>"scheme must not be an empty string.");let n=$s.getInstance();O(n.managers[e]==null,()=>`A model store manager is already registered for scheme '${e}'.`),n.managers[e]=t}static getManager(e){let t=this.getInstance().managers[e];if(t==null)throw new Error(`Cannot find model manager for scheme '${e}'`);return t}static getSchemes(){return Object.keys(this.getInstance().managers)}};function lf(e){if(e.indexOf(Pu)===-1)throw new Error(`The url string provided does not contain a scheme. Supported schemes are: ${$s.getSchemes().join(",")}`);return{scheme:e.split(Pu)[0],path:e.split(Pu)[1]}}async function E3(e,t,n=!1){O(e!==t,()=>`Old path and new path are the same: '${e}'`);let s=Bt.getLoadHandlers(e);O(s.length>0,()=>`Copying failed because no load handler is found for source URL ${e}.`),O(s.length<2,()=>`Copying failed because more than one (${s.length}) load handlers for source URL ${e}.`);let r=s[0],a=Bt.getSaveHandlers(t);O(a.length>0,()=>`Copying failed because no save handler is found for destination URL ${t}.`),O(a.length<2,()=>`Copying failed because more than one (${s.length}) save handlers for destination URL ${t}.`);let o=a[0],i=lf(e).scheme,l=lf(e).path,c=i===lf(e).scheme,u=await r.load();n&&c&&await $s.getManager(i).removeModel(l);let d=await o.save(u);return n&&!c&&await $s.getManager(i).removeModel(l),d.modelArtifactsInfo}async function vR(){let e=$s.getSchemes(),t={};for(let n of e){let s=await $s.getManager(n).listModels();for(let r in s){let a=n+Pu+r;t[a]=s[r]}}return t}async function wR(e){let t=lf(e);return $s.getManager(t.scheme).removeModel(t.path)}async function kR(e,t){return E3(e,t,!1)}async function IR(e,t){return E3(e,t,!0)}var SR=class{fetch(e,t){return fetch(e,t)}now(){return performance.now()}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Browser's encoder only supports utf-8, but got ${t}`);return this.textEncoder==null&&(this.textEncoder=new TextEncoder),this.textEncoder.encode(e)}decode(e,t){return new TextDecoder(t).decode(e)}};if(Y().get("IS_BROWSER")){Y().setPlatform("browser",new SR);try{$s.registerManager(nl.URL_SCHEME,new bR)}catch(e){}try{$s.registerManager(tl.URL_SCHEME,new pR)}catch(e){}}var CR={importFetch:()=>FE()},z2,TR=class{constructor(){this.util=OE(),this.textEncoder=new this.util.TextEncoder}fetch(e,t){return Y().global.fetch!=null?Y().global.fetch(e,t):(z2==null&&(z2=CR.importFetch()),z2(e,t))}now(){let e=process.hrtime();return e[0]*1e3+e[1]/1e6}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Node built-in encoder only supports utf-8, but got ${t}`);return this.textEncoder.encode(e)}decode(e,t){return e.length===0?"":new this.util.TextDecoder(t).decode(e)}};Y().get("IS_NODE")&&Y().setPlatform("node",new TR);function ze(e,t="float32",n){return t=t||"float32",h2(e),new nn(e,t,n)}function NR(e,t){let n=P(e,"x","cast");if(!X5(t))throw new Error(`Failed to cast to unknown dtype ${t}`);if(t==="string"&&n.dtype!=="string"||t!=="string"&&n.dtype==="string")throw new Error("Only strings can be casted to strings");let s={x:n},r={dtype:t};return W.runKernel(Da,s,r)}var ge=G({cast_:NR});function ER(e){let n={x:P(e,"x","clone","string_or_numeric")};return W.runKernel(qa,n)}var Bn=G({clone_:ER});function R3(e,t=!1){console.log(e.toString(t))}f3();var RR={buffer:ze,cast:ge,clone:Bn,print:R3};B9(RR);var rs={};Me(rs,{browserFiles:()=>MR,browserHTTPRequest:()=>VR,concatenateArrayBuffers:()=>D2,copyModel:()=>kR,decodeWeights:()=>x3,encodeWeights:()=>J9,fromMemory:()=>GR,getLoadHandlers:()=>uR,getModelArtifactsForJSON:()=>P2,getModelArtifactsInfoForJSON:()=>Ed,getSaveHandlers:()=>lR,http:()=>V2,isHTTPScheme:()=>W2,listModels:()=>vR,loadWeights:()=>zR,moveModel:()=>IR,registerLoadRouter:()=>iR,registerSaveRouter:()=>oR,removeModel:()=>wR,weightsLoaderFactory:()=>P3,withSaveHandler:()=>HR});var $R="model",_R=".json",DR=".weights.bin";function $3(e){return new Promise(t=>setTimeout(t)).then(e)}var L2=class{constructor(e){if(!Y().getBool("IS_BROWSER"))throw new Error("browserDownloads() cannot proceed because the current environment is not a browser.");e.startsWith(L2.URL_SCHEME)&&(e=e.slice(L2.URL_SCHEME.length)),(e==null||e.length===0)&&(e=$R),this.modelJsonFileName=e+_R,this.weightDataFileName=e+DR}async save(e){if(typeof document=="undefined")throw new Error("Browser downloads are not supported in this environment since `document` is not present");let t=window.URL.createObjectURL(new Blob([e.weightData],{type:"application/octet-stream"}));if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserDownloads.save() does not support saving model topology in binary formats yet.");{let n=[{paths:["./"+this.weightDataFileName],weights:e.weightSpecs}],s=w3(e,n),r=window.URL.createObjectURL(new Blob([JSON.stringify(s)],{type:"application/json"})),a=this.modelJsonAnchor==null?document.createElement("a"):this.modelJsonAnchor;if(a.download=this.modelJsonFileName,a.href=r,await $3(()=>a.dispatchEvent(new MouseEvent("click"))),e.weightData!=null){let o=this.weightDataAnchor==null?document.createElement("a"):this.weightDataAnchor;o.download=this.weightDataFileName,o.href=t,await $3(()=>o.dispatchEvent(new MouseEvent("click")))}return{modelArtifactsInfo:Ed(e)}}}},uf=L2;uf.URL_SCHEME="downloads://";var PR=class{constructor(e){if(e==null||e.length<1)throw new Error(`When calling browserFiles, at least 1 file is required, but received ${e}`);this.jsonFile=e[0],this.weightsFiles=e.slice(1)}async load(){return new Promise((e,t)=>{let n=new FileReader;n.onload=s=>{let r=JSON.parse(s.target.result),a=r.modelTopology;if(a==null){t(new Error(`modelTopology field is missing from file ${this.jsonFile.name}`));return}if(r.weightsManifest==null){t(new Error(`weightManifest field is missing from file ${this.jsonFile.name}`));return}if(this.weightsFiles.length===0){e({modelTopology:a});return}let i=P2(r,l=>this.loadWeights(l));e(i)},n.onerror=s=>t(`Failed to read model topology and weights manifest JSON from file '${this.jsonFile.name}'. BrowserFiles supports loading Keras-style tf.Model artifacts only.`),n.readAsText(this.jsonFile)})}loadWeights(e){let t=[],n=[];for(let a of e)t.push(...a.weights),n.push(...a.paths);let s=this.checkManifestAndWeightFiles(e),r=n.map(a=>this.loadWeightsFile(a,s[a]));return Promise.all(r).then(a=>[t,D2(a)])}loadWeightsFile(e,t){return new Promise((n,s)=>{let r=new FileReader;r.onload=a=>{let o=a.target.result;n(o)},r.onerror=a=>s(`Failed to weights data from file of path '${e}'.`),r.readAsArrayBuffer(t)})}checkManifestAndWeightFiles(e){let t=[],n=this.weightsFiles.map(r=>v3(r.name)),s={};for(let r of e)r.paths.forEach(a=>{let o=v3(a);if(t.indexOf(o)!==-1)throw new Error(`Duplicate file basename found in weights manifest: '${o}'`);if(t.push(o),n.indexOf(o)===-1)throw new Error(`Weight file with basename '${o}' is not provided.`);s[a]=this.weightsFiles[n.indexOf(o)]});if(t.length!==this.weightsFiles.length)throw new Error(`Mismatch in the number of files in weights manifest (${t.length}) and the number of weight files provided (${this.weightsFiles.length}).`);return s}},FR=e=>Y().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(uf.URL_SCHEME)?OR(e.slice(uf.URL_SCHEME.length)):null;Bt.registerSaveRouter(FR);function OR(e="model"){return new uf(e)}function MR(e){return new PR(e)}function _3(e,t,n,s){o(e),n=n==null?0:n,s=s==null?1:s,i(n,s);let r=0,a=l=>(l.then(c=>{let u=n+ ++r/e.length*(s-n);return t(u),c}),l);function o(l){O(l!=null&&Array.isArray(l)&&l.length>0,()=>"promises must be a none empty array")}function i(l,c){O(l>=0&&l<=1,()=>`Progress fraction must be in range [0, 1], but got startFraction ${l}`),O(c>=0&&c<=1,()=>`Progress fraction must be in range [0, 1], but got endFraction ${c}`),O(c>=l,()=>`startFraction must be no more than endFraction, but got startFraction ${l} and endFraction ${c}`)}return Promise.all(e.map(a))}async function D3(e,t){t==null&&(t={});let n=t.fetchFunc==null?Y().platform.fetch:t.fetchFunc,s=e.map(d=>n(d,t.requestInit,{isBinary:!0})),r=0,a=.5,i=(t.onProgress==null?await Promise.all(s):await _3(s,t.onProgress,r,a)).map(d=>d.arrayBuffer()),l=.5,c=1;return t.onProgress==null?await Promise.all(i):await _3(i,t.onProgress,l,c)}async function zR(e,t="",n,s){return P3(o=>D3(o,{requestInit:s}))(e,t,n)}function P3(e){return async(t,n="",s)=>{let r=t.map(()=>!1),a={},o=s!=null?s.map(()=>!1):[],i=[];if(t.forEach((h,f)=>{let m=0;h.weights.forEach(g=>{let A="quantization"in g?g.quantization.dtype:g.dtype,x=$2[A]*Gt(g.shape),y=()=>{r[f]=!0,a[f]==null&&(a[f]=[]),a[f].push({manifestEntry:g,groupOffset:m,sizeBytes:x})};s!=null?s.forEach((b,w)=>{b===g.name&&(y(),o[w]=!0)}):y(),i.push(g.name),m+=x})}),!o.every(h=>h)){let h=s.filter((f,m)=>!o[m]);throw new Error(`Could not find weights in manifest with names: ${h.join(", ")}.
Manifest JSON has weights with names: ${i.join(", ")}.`)}let l=r.reduce((h,f,m)=>(f&&h.push(m),h),[]),c=[];l.forEach(h=>{t[h].paths.forEach(f=>{let m=n+(n.endsWith("/")?"":"/")+f;c.push(m)})});let u=await e(c),d={},p=0;return l.forEach(h=>{let f=t[h].paths.length,m=0;for(let b=0;b<f;b++)m+=u[p+b].byteLength;let g=new ArrayBuffer(m),A=new Uint8Array(g),x=0;for(let b=0;b<f;b++){let w=new Uint8Array(u[p+b]);A.set(w,x),x+=w.byteLength}a[h].forEach(b=>{let w=g.slice(b.groupOffset,b.groupOffset+b.sizeBytes),k=x3(w,[b.manifestEntry]);for(let S in k)d[S]=k[S]}),p+=f}),d}}var LR="application/octet-stream",BR="application/json",B2=class{constructor(e,t){if(this.DEFAULT_METHOD="POST",t==null&&(t={}),this.weightPathPrefix=t.weightPathPrefix,this.onProgress=t.onProgress,this.weightUrlConverter=t.weightUrlConverter,t.fetchFunc!=null?(O(typeof t.fetchFunc=="function",()=>"Must pass a function that matches the signature of `fetch` (see https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)"),this.fetch=t.fetchFunc):this.fetch=Y().platform.fetch,O(e!=null&&e.length>0,()=>"URL path for http must not be null, undefined or empty."),Array.isArray(e)&&O(e.length===2,()=>`URL paths for http must have a length of 2, (actual length is ${e.length}).`),this.path=e,t.requestInit!=null&&t.requestInit.body!=null)throw new Error("requestInit is expected to have no pre-existing body, but has one.");this.requestInit=t.requestInit||{}}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserHTTPRequest.save() does not support saving model topology in binary formats yet.");let t=Object.assign({method:this.DEFAULT_METHOD},this.requestInit);t.body=new FormData;let n=[{paths:["./model.weights.bin"],weights:e.weightSpecs}],s=w3(e,n);t.body.append("model.json",new Blob([JSON.stringify(s)],{type:BR}),"model.json"),e.weightData!=null&&t.body.append("model.weights.bin",new Blob([e.weightData],{type:LR}),"model.weights.bin");let r=await this.fetch(this.path,t);if(r.ok)return{modelArtifactsInfo:Ed(e),responses:[r]};throw new Error(`BrowserHTTPRequest.save() failed due to HTTP response status ${r.status}.`)}async load(){let e=await this.fetch(this.path,this.requestInit);if(!e.ok)throw new Error(`Request to ${this.path} failed with status code ${e.status}. Please verify this URL points to the model JSON of the model to load.`);let t;try{t=await e.json()}catch(r){let a=`Failed to parse model JSON of response from ${this.path}.`;throw this.path.endsWith(".pb")?a+=" Your path contains a .pb file extension. Support for .pb models have been removed in TensorFlow.js 1.0 in favor of .json models. You can re-convert your Python TensorFlow model using the TensorFlow.js 1.0 conversion scripts or you can convert your.pb models with the 'pb2json'NPM script in the tensorflow/tfjs-converter repository.":a+=" Please make sure the server is serving valid JSON for this request.",new Error(a)}let n=t.modelTopology,s=t.weightsManifest;if(n==null&&s==null)throw new Error(`The JSON from HTTP path ${this.path} contains neither model topology or manifest for weights.`);return P2(t,r=>this.loadWeights(r))}async loadWeights(e){let t=Array.isArray(this.path)?this.path[1]:this.path,[n,s]=WR(t),r=this.weightPathPrefix||n,a=[];for(let c of e)a.push(...c.weights);let o=[],i=[];for(let c of e)for(let u of c.paths)this.weightUrlConverter!=null?i.push(this.weightUrlConverter(u)):o.push(r+u+s);this.weightUrlConverter&&o.push(...await Promise.all(i));let l=await D3(o,{requestInit:this.requestInit,fetchFunc:this.fetch,onProgress:this.onProgress});return[a,D2(l)]}};B2.URL_SCHEME_REGEX=/^https?:\/\//;function WR(e){let t=e.lastIndexOf("/"),n=e.lastIndexOf("?"),s=e.substring(0,t),r=n>t?e.substring(n):"";return[s+"/",r]}function W2(e){return e.match(B2.URL_SCHEME_REGEX)!=null}var F3=(e,t)=>{if(typeof fetch=="undefined"&&(t==null||t.fetchFunc==null))return null;{let n=!0;if(Array.isArray(e)?n=e.every(s=>W2(s)):n=W2(e),n)return V2(e,t)}return null};Bt.registerSaveRouter(F3);Bt.registerLoadRouter(F3);function V2(e,t){return new B2(e,t)}function VR(e,t){return V2(e,t)}var U2=class{constructor(e){this.modelArtifacts=e}async load(){return this.modelArtifacts}},UR=class{constructor(e){this.saveHandler=e}async save(e){return this.saveHandler(e)}};function GR(e,t,n,s){return arguments.length===1?e.modelTopology!=null||e.weightSpecs!=null?new U2(e):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new U2({modelTopology:e})):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new U2({modelTopology:e,weightSpecs:t,weightData:n,trainingConfig:s}))}function HR(e){return new UR(e)}var O3={};Me(O3,{confusionMatrix:()=>ZR});function jR(e,t,n=!1,s=!1){let r=P(e,"a","matMul"),a=P(t,"b","matMul");[r,a]=Pt(r,a);let o={a:r,b:a},i={transposeA:n,transposeB:s};return W.runKernel(_a,o,i)}var je=G({matMul_:jR});function qR(e,t,n=1,s=0){if(t<2)throw new Error(`Error in oneHot: depth must be >=2, but it is ${t}`);let a={indices:P(e,"indices","oneHot","int32")},o={depth:t,onValue:n,offValue:s};return W.runKernel(Di,a,o)}var Rd=G({oneHot_:qR});function XR(e,t){let n=P(e,"x","transpose");if(t==null&&(t=n.shape.map((a,o)=>o).reverse()),O(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of perm ${t}.`),t.forEach(a=>{O(a>=0&&a<n.rank,()=>`All entries in 'perm' must be between 0 and ${n.rank-1} but got ${t}`)}),n.rank<=1)return n.clone();let s={x:n},r={perm:t};return W.runKernel(xo,s,r)}var tt=G({transpose_:XR});function KR(e,t,n){let s=P(e,"labels","confusionMatrix"),r=P(t,"predictions","confusionMatrix");O(n==null||n>0&&Number.isInteger(n),()=>`If provided, numClasses must be a positive integer, but got ${n}`),O(s.rank===1,()=>`Expected the rank of labels to be 1, but got ${s.rank}`),O(r.rank===1,()=>`Expected the rank of predictions to be 1, but got ${r.rank}`),O(s.shape[0]===r.shape[0],()=>`Mismatch in the number of examples: ${s.shape[0]} vs. ${r.shape[0]}. Labels and predictions should have the same number of elements.`),O(n>0&&Number.isInteger(n),()=>`numClasses is required to be a positive integer, but got ${n}`);let a=Rd(ge(s,"int32"),n),o=Rd(ge(r,"int32"),n),i=tt(a),l=je(i,o);return ge(l,"int32")}var ZR=G({confusionMatrix_:KR}),sl={};Me(sl,{assertAndGetBroadcastShape:()=>yt,getBroadcastDims:()=>M3,getReductionAxes:()=>Xt});function M3(e,t){let n=e.length,s=[];for(let r=0;r<n;r++){let a=n-1-r,o=e[a]||1;(t[t.length-1-r]||1)>1&&o===1&&s.unshift(a)}return s}function Xt(e,t){let n=[];for(let s=0;s<t.length;s++){let r=e[e.length-s-1],a=t.length-s-1,o=t[a];(r==null||r===1&&o>1)&&n.unshift(a)}return n}function yt(e,t){let n=[],s=Math.max(e.length,t.length);for(let r=0;r<s;r++){let a=e[e.length-r-1];a==null&&(a=1);let o=t[t.length-r-1];if(o==null&&(o=1),a===1)n.unshift(o);else if(o===1)n.unshift(a);else if(a!==o){let i=`Operands could not be broadcast together with shapes ${e} and ${t}.`;throw Error(i)}else n.unshift(a)}return n}var Ys={};Me(Ys,{fromPixels:()=>s$,fromPixelsAsync:()=>t$,toPixels:()=>n$});function z3(e,t,n){if(ui(e),t!=null&&t.length!==3)throw new Error("tensor3d() requires shape to have three numbers");let s=Rr(e,n);if(s.length!==3&&s.length!==1)throw new Error("tensor3d() requires values to be number[][][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor3d() requires shape to be provided when `values` are a flat array");return To(e,t,s,n)}var rl;function L3(e,t=3){if(t>4)throw new Error("Cannot construct Tensor with more than 4 channels from pixels.");if(e==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let n=!1,s=!1,r=!1,a=!1,o=!1,i=!1;if(e.data instanceof Uint8Array)n=!0;else if(typeof ImageData!="undefined"&&e instanceof ImageData)s=!0;else if(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)r=!0;else if(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)a=!0;else if(e.getContext!=null)o=!0;else if(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)i=!0;else throw new Error(`pixels passed to tf.browser.fromPixels() must be either an HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData in browser, or OffscreenCanvas, ImageData in webworker or {data: Uint32Array, width: number, height: number}, but was ${e.constructor.name}`);if(r){let f=2;if(r&&e.readyState<f)throw new Error("The video element has not loaded data yet. Please wait for `loadeddata` event on the <video> element.")}if(tf(yd,W.backendName)!=null){let f={pixels:e},m={numChannels:t};return W.runKernel(yd,f,m)}let[c,u]=r?[e.videoWidth,e.videoHeight]:[e.width,e.height],d;if(o)d=e.getContext("2d").getImageData(0,0,c,u).data;else if(s||n)d=e.data;else if(a||r||i){if(rl==null)if(typeof document=="undefined")if(typeof OffscreenCanvas!="undefined"&&typeof OffscreenCanvasRenderingContext2D!="undefined")rl=new OffscreenCanvas(1,1).getContext("2d");else throw new Error("Cannot parse input in current context. Reason: OffscreenCanvas Context2D rendering is not supported.");else rl=document.createElement("canvas").getContext("2d");rl.canvas.width=c,rl.canvas.height=u,rl.drawImage(e,0,0,c,u),d=rl.getImageData(0,0,c,u).data}let p;if(t===4)p=new Int32Array(d);else{let f=c*u;p=new Int32Array(f*t);for(let m=0;m<f;m++)for(let g=0;g<t;++g)p[m*t+g]=d[m*4+g]}return z3(p,[u,c,t],"int32")}function YR(e){return e!=null&&e.data instanceof Uint8Array}function JR(){return typeof window!="undefined"&&typeof ImageBitmap!="undefined"&&window.hasOwnProperty("createImageBitmap")}function QR(e){return e!=null&&e.width!==0&&e.height!==0}function e$(e){return JR()&&!(e instanceof ImageBitmap)&&QR(e)&&!YR(e)}async function t$(e,t=3){let n=null;if(Y().getBool("WRAP_TO_IMAGEBITMAP")&&e$(e)){let s;try{s=await createImageBitmap(e,{premultiplyAlpha:"none"})}catch(r){s=null}s!=null&&s.width===e.width&&s.height===e.height?n=s:n=e}else n=e;return L3(n,t)}async function n$(e,t){let n=P(e,"img","toPixels");if(!(e instanceof et)){let c=n;n=ge(c,"int32"),c.dispose()}if(n.rank!==2&&n.rank!==3)throw new Error(`toPixels only supports rank 2 or 3 tensors, got rank ${n.rank}.`);let[s,r]=n.shape.slice(0,2),a=n.rank===2?1:n.shape[2];if(a>4||a===2)throw new Error(`toPixels only supports depth of size 1, 3 or 4 but got ${a}`);if(n.dtype!=="float32"&&n.dtype!=="int32")throw new Error(`Unsupported type for toPixels: ${n.dtype}. Please use float32 or int32 tensors.`);let o=await n.data(),i=n.dtype==="float32"?255:1,l=new Uint8ClampedArray(r*s*4);for(let c=0;c<s*r;++c){let u=[0,0,0,255];for(let p=0;p<a;p++){let h=o[c*a+p];if(n.dtype==="float32"){if(h<0||h>1)throw new Error(`Tensor values for a float32 Tensor must be in the range [0 - 1] but encountered ${h}.`)}else if(n.dtype==="int32"&&(h<0||h>255))throw new Error(`Tensor values for a int32 Tensor must be in the range [0 - 255] but encountered ${h}.`);a===1?(u[0]=h*i,u[1]=h*i,u[2]=h*i):u[p]=h*i}let d=c*4;l[d+0]=Math.round(u[0]),l[d+1]=Math.round(u[1]),l[d+2]=Math.round(u[2]),l[d+3]=Math.round(u[3])}if(t!=null){t.width=r,t.height=s;let c=t.getContext("2d"),u=new ImageData(l,r,s);c.putImageData(u,0,0)}return n!==e&&n.dispose(),l}var s$=G({fromPixels_:L3}),G2={};Me(G2,{prepareAndValidate:()=>B3});function B3(e,t){let n=e.shape.length,s=t.shape.length;if(n<1)throw new Error(`tf.gatherND() expects the input to be rank 1 or higher, but the rank was ${n}.`);if(s<1)throw new Error(`tf.gatherND() expects the indices to be rank 1 or higher, but the rank was ${s}.`);if(t.dtype!=="int32")throw new Error(`tf.gatherND() expects the indices to be int32 type, but the dtype was ${t.dtype}.`);if(t.shape[s-1]>n)throw new Error(`index innermost dimension length must be <= tensor rank; saw: ${t.shape[s-1]} vs. ${n}`);if(Gt(e.shape)===0)throw new Error(`Requested more than 0 entries, but input is empty. Input shape: ${e.shape}.`);let r=t.shape,a=r[r.length-1],o=1;for(let d=0;d<r.length-1;++d)o*=r[d];let i=e.shape,l=r.slice();l.pop();let c=1;for(let d=a;d<n;++d)c*=i[d],l.push(i[d]);let u=[...nu(e.shape).map(d=>d/c),1].slice(0,a);return[l,o,c,u]}var H2={};Me(H2,{calculateShapes:()=>W3,validateInput:()=>q2,validateUpdateShape:()=>j2});function j2(e,t,n){let s=t.rank>1?t.shape[t.rank-1]:1,r=t.rank>1?t.rank-1:1,a=`Must have updates.shape = indices.shape[:batchDim] + shape[sliceDim:], got updates.shape: ${n.shape}, indices.shape: ${t.shape}, shape: ${e}, sliceDim: ${s}, and batchDim: ${r}.`;if(n.rank<r)throw new Error(a+` update.rank < ${r}. `);if(e.length<s+(n.rank-r))throw new Error(a+` Output shape length < ${s+(n.rank-r)}`);if(n.rank!==r+e.length-s)throw new Error(a+` update.rank != ${r+e.length-s}`);for(let o=0;o<r;++o)if(n.shape[o]!==t.shape[o])throw new Error(a+` updates.shape[${o}] (${n.shape[o]}) != indices.shape[${o}] (${t.shape[o]}).`);for(let o=0;o<n.rank-r;++o)if(n.shape[o+r]!==e[o+s])throw new Error(a+` updates.shape[${o+r}] (${n.shape[o+r]}) != shape[${o+r}] (${e[o+r]})`)}function q2(e,t,n){if(t.rank<1)throw new Error(`tf.scatterND() expects the indices to be rank 1 or higher, but the rank was ${t.rank}.`);if(e.rank<1)throw new Error(`tf.scatterND() expects the updates to be rank 1 or higher, but the rank was ${e.rank}.`);if(t.dtype!=="int32")throw new Error(`The dtype of 'indices' should be int32, but got dtype: ${t.dtype}`);if(n.length<1)throw new Error(`Output rank must be greater or equal to 1, but got shape: ${n}`);if(n.length===0){if(t.size===0)throw new Error(`Indices specified for empty output. indices shape: ${t.shape}`);if(e.size===0)throw new Error(`Updates specified for empty output. updates shape: ${e.shape}`)}j2(n,t,e)}function W3(e,t,n){let s=t.shape.length,r=s>1?t.shape[s-1]:1,a=n.length,o=1;for(let d=r;d<a;++d)o*=n[d];let i=r<1?1:r,l=Gt(t.shape)/i,c=[...nu(n.slice(0,r)),1],u=Gt(n);return{sliceRank:r,numUpdates:l,sliceSize:o,strides:c,outputSize:u}}var Ft={};Me(Ft,{assertParamsValid:()=>a$,computeFlatOffset:()=>c$,computeOutShape:()=>i$,getNormalizedAxes:()=>l$,isSliceContinous:()=>u$,maskToAxes:()=>o$,parseSliceParams:()=>Z3,sliceInfo:()=>d$,startForAxis:()=>X3,startIndicesWithElidedDims:()=>H3,stopForAxis:()=>K3,stopIndicesWithElidedDims:()=>j3,stridesForAxis:()=>q3,stridesWithElidedDims:()=>V3});var X2=-2,r$=-1;function a$(e,t,n){let s=e.shape.length;O(s===t.length,()=>`Error in slice${s}D: Length of begin ${t} must match the rank of the array (${s}).`),O(s===n.length,()=>`Error in slice${s}D: Length of size ${n} must match the rank of the array (${s}).`);for(let r=0;r<s;++r)O(t[r]+n[r]<=e.shape[r],()=>`Error in slice${s}D: begin[${r}] + size[${r}] (${t[r]+n[r]}) would overflow input.shape[${r}] (${e.shape[r]})`)}function o$(e){let t=[],n=0;for(;e>0;)e&1&&t.push(n),e/=2,n++;return t}function i$(e,t,n){let s=[];for(let r=0;r<e.length;r++)s[r]=Math.ceil((t[r]-e[r])/n[r]);return s}function V3(e,t,n,s){let r=[...e];for(let a=r.length;a<s.length;a++)r.push(1);for(let a=0;a<n;a++)a===0?r[t]=1:(r.splice(t,0,1),r.pop());return r}function U3(e,t,n){return n<=e?n:n-(t-1)}function G3(e,t){let n=[];for(let s=0;s<e;s++)n.push(t+s);return n}function l$(e,t,n,s,r,a,o,i,l){let c=e.length,u=new Array(c),d=new Array(c),p=new Array(c);if(t.length&&n>0){let h=t[0],f=n+1;u=H3(o,h,f,s,e),d=j3(i,h,f,r,e),p=V3(a,h,f,e)}else for(let h=0;h<c;h++)u[h]=X3(o,s,a,e,h,l),d[h]=K3(i,r,a,e,h,l),p[h]=q3(a,h,l);return{begin:u,end:d,strides:p}}function H3(e,t,n,s,r){let a=[...r],o=G3(n,t);for(let i=0;i<a.length;i++)if(o.indexOf(i)>-1)a[i]=0;else{let l=U3(t,n,i),c=s[l];e&1<<l&&(c=0),a[i]=c}return a}function j3(e,t,n,s,r){let a=[...r],o=G3(n,t);for(let i=0;i<a.length;i++)if(o.indexOf(i)>-1)a[i]=Number.MAX_SAFE_INTEGER;else{let l=U3(t,n,i),c=s[l];e&1<<l&&(c=Number.MAX_SAFE_INTEGER),a[i]=c}for(let i=0;i<a.length;i++){let l=r[i];a[i]<0&&(a[i]+=l),a[i]=nd(0,a[i],r[i])}return a}function q3(e,t,n){let s=e[t];return(n&1<<t||s==null)&&(s=1),s}function X3(e,t,n,s,r,a){let o=t[r],i=n[r]||1;(e&1<<r||a&1<<r||o==null)&&(i>0?o=Number.MIN_SAFE_INTEGER:o=Number.MAX_SAFE_INTEGER);let l=s[r];return o<0&&(o+=l),o=nd(0,o,l-1),o}function K3(e,t,n,s,r,a){let o=t[r],i=n[r]||1;(e&1<<r||a&1<<r||o==null)&&(i>0?o=Number.MAX_SAFE_INTEGER:o=Number.MIN_SAFE_INTEGER);let l=s[r];return o<0&&(o+=l),i>0?o=nd(0,o,l):o=nd(-1,o,l-1),o}function u$(e,t,n){let s=n.length;for(let r=0;r<n.length;r++)if(n[r]>1){s=r;break}for(let r=s+1;r<n.length;r++)if(t[r]>0||n[r]!==e[r])return!1;return!0}function c$(e,t){let n=e.length>0?e[e.length-1]:1;for(let s=0;s<e.length-1;s++)n+=e[s]*t[s];return n}function Z3(e,t,n){let s,r=e.shape.length;typeof t=="number"?s=[t,...new Array(r-1).fill(0)]:t.length<r?s=t.concat(new Array(r-t.length).fill(0)):s=t.slice(),s.forEach(o=>{O(o!==-1,()=>"slice() does not support negative begin indexing.")});let a;return n==null?a=new Array(r).fill(-1):typeof n=="number"?a=[n,...new Array(r-1).fill(-1)]:n.length<r?a=n.concat(new Array(r-n.length).fill(-1)):a=n,a=a.map((o,i)=>o>=0?o:(O(o===-1,()=>`Negative size values should be exactly -1 but got ${o} for the slice() size at index ${i}.`),e.shape[i]-s[i])),[s,a]}function d$(e,t,n,s,r,a,o,i,l){let c;if(s==null?(c=new Array(t.length),c.fill(1)):c=s,o!=null&&(o&o-1)!=0)throw new Error("Multiple ellipses in slice is not allowed.");let u=!1,d={dims:c.length,numAddAxisAfterEllipsis:0,begin:t.slice(),end:n.slice(),strides:c.slice(),beginMask:r,endMask:a,ellipsisMask:o,newAxisMask:i,shrinkAxisMask:l};for(let y=0;y<d.dims;y++)u&&(1<<y&i)!=0&&d.numAddAxisAfterEllipsis++,1<<y&o&&(u=!0);u||(d.ellipsisMask|=1<<d.dims,d.dims++);let p={dims:e.length,beginMask:0,endMask:0,beginValid:!1,endValid:!1};p$(d,p);let h=!0,f=!0,m=!0,g=[],A=[];for(let y=0;y<e.length;++y){if(p.strides[y]===0)throw Error(`strides[${y}] must be non-zero`);let b=!!(p.shrinkAxisMask&1<<y),w=e[y];if(w===-1){g.push(b?1:-1);continue}let k=[p.beginMask&1<<y,p.endMask&1<<y],S=[p.strides[y]>0?0:-1,p.strides[y]>0?w:w-1];if(b&&p.strides[y]<=0)throw Error("only stride 1 allowed on non-range indexing.");m=m&&p.strides[y]===1;let N=!!(p.beginMask&1<<y&&p.endMask&1<<y);if(p.beginValid&&p.endValid){if(b){let $=p.begin[y]<0?w+p.begin[y]:p.begin[y];if(p.begin[y]=$,p.end[y]=p.begin[y]+1,$<0||$>=w)throw Error(`slice index ${p.begin[y]} of dimension ${y} out of bounds.`)}else p.begin[y]=Y3(p.begin[y],0,p.strides[y],w,k,S),p.end[y]=Y3(p.end[y],1,p.strides[y],w,k,S);let D=p.strides[y]===1&&p.begin[y]===0&&p.end[y]===w;h=h&&D,f=f&&(y===0&&p.strides[y]===1||D)}else h=h&&p.strides[y]===1&&N,f=f&&(y===0&&p.strides[y]===1||N);let R,M=!1;if(p.beginValid&&p.endValid?(R=p.end[y]-p.begin[y],M=!0):b?(R=1,M=!0):N&&w>=0&&(p.strides[y]<0?R=-w:R=w,M=!0),M){let D;R===0||R<0!=p.strides[y]<0?D=0:D=Math.trunc(R/p.strides[y])+(R%p.strides[y]!=0?1:0),g.push(D)}else g.push(-1)}for(let y=0;y<p.finalShapeGatherIndices.length;++y){let b=p.finalShapeGatherIndices[y];b>=0?A.push(g[b]):b===X2&&A.push(1)}return{finalShapeSparse:A.filter((y,b)=>p.finalShapeGatherIndices[b]!==X2),finalShape:A,isIdentity:h,sliceDim0:f,isSimpleSlice:m,begin:p.begin,end:p.end,strides:p.strides}}function p$(e,t){t.beginMask=0,t.endMask=0,t.shrinkAxisMask=0;let n=0;t.beginValid=e.begin!=null,t.endValid=e.end!=null,t.begin=new Array(t.dims),t.end=new Array(t.dims),t.strides=new Array(t.dims),t.finalShapeGatherIndices=[],t.finalShapeGatherIndicesSparse=[],t.inputShapeGatherIndicesSparse=new Array(t.dims);for(let s=0;s<e.dims;s++)if(1<<s&e.ellipsisMask){let r=Math.min(t.dims-(e.dims-s)+1+e.numAddAxisAfterEllipsis,t.dims);for(;n<r;n++)t.begin[n]=0,t.end[n]=0,t.strides[n]=1,t.beginMask|=1<<n,t.endMask|=1<<n,t.finalShapeGatherIndices.push(n),t.finalShapeGatherIndicesSparse.push(-1),t.inputShapeGatherIndicesSparse[n]=s}else if(1<<s&e.newAxisMask)t.finalShapeGatherIndices.push(X2),t.finalShapeGatherIndicesSparse.push(-1);else{if(n===t.begin.length)throw Error(`Index out of range using input dim ${n}; input has only ${t.dims} dims, ${t.begin.length}.`);e.begin!=null&&(t.begin[n]=e.begin[s]),e.end!=null&&(t.end[n]=e.end[s]),t.strides[n]=e.strides[s],e.beginMask&1<<s&&(t.beginMask|=1<<n),e.endMask&1<<s&&(t.endMask|=1<<n),e.shrinkAxisMask&1<<s?(t.finalShapeGatherIndices.push(r$),t.finalShapeGatherIndicesSparse.push(-1),t.shrinkAxisMask|=1<<n):(t.finalShapeGatherIndices.push(n),t.finalShapeGatherIndicesSparse.push(s)),t.inputShapeGatherIndicesSparse[n]=s,n++}}function Y3(e,t,n,s,r,a){if(r[t])return n>0?a[t]:a[t+1&1];{let o=e<0?s+e:e;return o<a[0]?a[0]:o>a[1]?a[1]:o}}var ce={};Me(ce,{Serializable:()=>J3,SerializationMap:()=>al,registerClass:()=>Eo});var J3=class{getClassName(){return this.constructor.className}static fromConfig(e,t){return new e(t)}},al=class{constructor(){this.classNameMap={}}static getMap(){return al.instance==null&&(al.instance=new al),al.instance}static register(e){al.getMap().classNameMap[e.className]=[e,e.fromConfig]}};function Eo(e){O(e.className!=null,()=>"Class being registered does not have the static className property defined."),O(typeof e.className=="string",()=>"className is required to be a string, but got type "+typeof e.className),O(e.className.length>0,()=>"Class being registered has an empty-string as its className, which is disallowed."),al.register(e)}var Q3={};Me(Q3,{TEST_EPSILON_FLOAT16:()=>ev,encodeStrings:()=>tv,expectArrayBuffersEqual:()=>x$,expectArraysClose:()=>f$,expectArraysEqual:()=>g$,expectNumbersClose:()=>A$,expectPromiseToFail:()=>m$,expectValuesInRange:()=>y$,testEpsilon:()=>K2});var h$=.001,ev=.1;function f$(e,t,n){return n==null&&(n=K2()),Z2(e,t,(s,r)=>Y2(s,r,n))}function K2(){return W.backend.floatPrecision()===32?h$:ev}function Z2(e,t,n){let s=!0;if((_n(e)||_n(t))&&(s=!1),_n(e)&&_n(t)&&(s=!0),s){let o=e.constructor.name,i=t.constructor.name;if(o!==i)throw new Error(`Arrays are of different type. Actual: ${o}. Expected: ${i}`)}if(Array.isArray(e)&&Array.isArray(t)){let o=Rr(e),i=Rr(t);if(!Ca(o,i))throw new Error(`Arrays have different shapes. Actual: [${o}]. Expected: [${i}]`)}let r=_n(e)?e:ci(e),a=_n(t)?t:ci(t);if(r.length!==a.length)throw new Error(`Arrays have different lengths actual: ${r.length} vs expected: ${a.length}.
Actual: ${r}.
Expected: ${a}.`);for(let o=0;o<a.length;++o){let i=r[o],l=a[o];if(!n(i,l))throw new Error(`Arrays differ: actual[${o}] = ${i}, expected[${o}] = ${l}.
Actual: ${r}.
Expected: ${a}.`)}}function m$(e,t){e().then(()=>t.fail(),()=>t())}function g$(e,t){let n=typeof t=="string"||typeof t=="number"||typeof t=="boolean"?[t]:t;return Ta(e)||Ta(e[0])||Ta(t)||Ta(t[0])?Z2(e,n,(s,r)=>s==r):Z2(e,t,(s,r)=>Y2(s,r,0))}function A$(e,t,n){if(n==null&&(n=K2()),!Y2(e,t,n))throw new Error(`Numbers differ: actual === ${e}, expected === ${t}`)}function Y2(e,t,n){return!isFinite(e)&&!isFinite(t)?!0:!(isNaN(e)||isNaN(t)||Math.abs(e-t)>n)}function y$(e,t,n){for(let s=0;s<e.length;s++)if(e[s]<t||e[s]>n)throw new Error(`Value out of range:${e[s]} low: ${t}, high: ${n}`)}function x$(e,t){expect(new Float32Array(e)).toEqual(new Float32Array(t))}function tv(e){for(let t=0;t<e.length;t++){let n=e[t];Array.isArray(n)?tv(n):e[t]=wd(n)}return e}var nv="0.0.0";function sv(){Y().set("PROD",!0)}function b$(){Y().set("DEBUG",!0)}function v$(){Y().set("DEPRECATION_WARNINGS_ENABLED",!1),console.warn("TensorFlow.js deprecation warnings have been disabled.")}function J2(e){Y().getBool("DEPRECATION_WARNINGS_ENABLED")&&console.warn(e+" You can disable deprecation warnings with tf.disableDeprecationWarnings().")}W9(J2);function w$(){W.disposeVariables()}function as(){return W}function cf(){return W.memory()}function k$(e){return W.profile(e)}function K(e,t){return W.tidy(e,t)}function ne(e){C2(e).forEach(n=>n.dispose())}function An(e){return W.keep(e)}function I$(e){return W.time(e)}function rv(e){return W.setBackend(e)}function df(){return W.ready()}function _s(){return W.backendName}function S$(e){W.removeBackend(e)}function Q2(e){return W.findBackend(e)}function C$(e){return W.findBackendFactory(e)}function ol(e,t,n=1){return W.registerBackend(e,t,n)}function $r(){return W.backend}function T$(e,t){Y().setPlatform(e,t)}function N$(e,t){let n=P(e,"a","add"),s=P(t,"b","add");[n,s]=Pt(n,s);let r={a:n,b:s};return W.runKernel(Xr,r)}var ue=G({add_:N$});function E$(e,t){let n=P(e,"a","floorDiv"),s=P(t,"b","floorDiv");[n,s]=Pt(n,s);let r={a:n,b:s};return W.runKernel(Ga,r)}var pf=G({floorDiv_:E$});function R$(e,t){let n=P(e,"a","div"),s=P(t,"b","div");if([n,s]=Pt(n,s),n.dtype==="int32"&&s.dtype==="int32")return pf(n,s);let r={a:n,b:s},a={};return W.runKernel(Ba,r,a)}var pe=G({div_:R$});function $$(e,t){let n=P(e,"a","mul"),s=P(t,"b","mul");[n,s]=Pt(n,s);let r={a:n,b:s};return W.runKernel(no,r)}var L=G({mul_:$$});function _$(e){let t=P(e,"x","abs");if(t.dtype==="complex64"){let n={x:t};return W.runKernel(od,n)}else{let n={x:t};return W.runKernel(di,n)}}var sn=G({abs_:_$});function D$(e){let n={x:P(e,"x","acos")};return W.runKernel(ru,n)}var av=G({acos_:D$});function P$(e){let n={x:P(e,"x","acosh")};return W.runKernel(au,n)}var ov=G({acosh_:P$});function F$(e){O(Array.isArray(e),()=>"The argument passed to tf.addN() must be a list of tensors"),O(e.length>=1,()=>`Must pass at least one tensor to tf.addN(), but got ${e.length}`);let t=e.map((r,a)=>P(r,`tensors${a}`,"addN")),n=t[0];t.forEach(r=>{if(r.dtype!==n.dtype)throw new Error("All tensors passed to tf.addN() must have the same dtype")}),t.forEach(r=>{if(!Ca(r.shape,n.shape))throw new Error("All tensors passed to tf.addN() must have the same shape")});let s=t;return W.runKernel(Ea,s)}var hf=G({addN_:F$});function O$(e,t=null,n=!1){let r={x:P(e,"x","all","bool")},a={axis:t,keepDims:n};return W.runKernel(ou,r,a)}var e1=G({all_:O$});function M$(e,t=null,n=!1){let r={x:P(e,"x","any","bool")},a={axis:t,keepDims:n};return W.runKernel(iu,r,a)}var ff=G({any_:M$});function z$(e,t=0){let s={x:P(e,"x","argMax")},r={axis:t};return W.runKernel(Ra,s,r)}var Js=G({argMax_:z$});function L$(e,t=0){let s={x:P(e,"x","argMin")},r={axis:t};return W.runKernel(lu,s,r)}var iv=G({argMin_:L$});function B$(e){let n={x:P(e,"x","asin")};return W.runKernel(uu,n)}var lv=G({asin_:B$});function W$(e){let n={x:P(e,"x","asinh")};return W.runKernel(cu,n)}var uv=G({asinh_:W$});function V$(e){let n={x:P(e,"x","atan")};return W.runKernel(du,n)}var cv=G({atan_:V$});function U$(e,t){let n=P(e,"a","atan2"),s=P(t,"b","atan2");[n,s]=Pt(n,s);let r={a:n,b:s};return W.runKernel(hu,r)}var dv=G({atan2_:U$});function G$(e){let n={x:P(e,"x","atanh")};return W.runKernel(pu,n)}var pv=G({atanh_:G$});function H$(e,t,n,s,r="NHWC",a){let o=e[3],i=[...t,o],l=mv(r);return $d(e,i,n,a,s,null,null,l)}function hv(e,t,n,s,r,a,o="channelsLast"){let[i,l]=mf(t),c;if(o==="channelsLast")c=[i,l,e[3],e[3]];else if(o==="channelsFirst")c=[i,l,e[1],e[1]];else throw new Error(`Unknown dataFormat ${o}`);return $d(e,c,n,s,r,a,!1,o)}function j$(e,t,n,s,r,a,o="NDHWC"){let[i,l,c]=n1(t),u,d;if(o==="NDHWC")d="channelsLast",u=[i,l,c,e[4],e[4]];else if(o==="NCDHW")d="channelsFirst",u=[i,l,c,e[1],e[1]];else throw new Error(`Unknown dataFormat ${o}`);return fv(e,u,n,s,r,!1,d,a)}function $d(e,t,n,s,r,a,o=!1,i="channelsLast"){let[l,c,u,d]=[-1,-1,-1,-1];if(i==="channelsLast")[l,c,u,d]=e;else if(i==="channelsFirst")[l,d,c,u]=e;else throw new Error(`Unknown dataFormat ${i}`);let[p,h,,f]=t,[m,g]=mf(n),[A,x]=mf(s),y=Fu(p,A),b=Fu(h,x),{padInfo:w,outHeight:k,outWidth:S}=K$(r,c,u,m,g,y,b,a,i),N=o?f*d:f,R;return i==="channelsFirst"?R=[l,N,k,S]:i==="channelsLast"&&(R=[l,k,S,N]),{batchSize:l,dataFormat:i,inHeight:c,inWidth:u,inChannels:d,outHeight:k,outWidth:S,outChannels:N,padInfo:w,strideHeight:m,strideWidth:g,filterHeight:p,filterWidth:h,effectiveFilterHeight:y,effectiveFilterWidth:b,dilationHeight:A,dilationWidth:x,inShape:e,outShape:R,filterShape:t}}function fv(e,t,n,s,r,a=!1,o="channelsLast",i){let[l,c,u,d,p]=[-1,-1,-1,-1,-1];if(o==="channelsLast")[l,c,u,d,p]=e;else if(o==="channelsFirst")[l,p,c,u,d]=e;else throw new Error(`Unknown dataFormat ${o}`);let[h,f,m,,g]=t,[A,x,y]=n1(n),[b,w,k]=n1(s),S=Fu(h,b),N=Fu(f,w),R=Fu(m,k),{padInfo:M,outDepth:D,outHeight:$,outWidth:T}=Z$(r,c,u,d,A,x,y,S,N,R,i),F=a?g*p:g,V;return o==="channelsFirst"?V=[l,F,D,$,T]:o==="channelsLast"&&(V=[l,D,$,T,F]),{batchSize:l,dataFormat:o,inDepth:c,inHeight:u,inWidth:d,inChannels:p,outDepth:D,outHeight:$,outWidth:T,outChannels:F,padInfo:M,strideDepth:A,strideHeight:x,strideWidth:y,filterDepth:h,filterHeight:f,filterWidth:m,effectiveFilterDepth:S,effectiveFilterHeight:N,effectiveFilterWidth:R,dilationDepth:b,dilationHeight:w,dilationWidth:k,inShape:e,outShape:V,filterShape:t}}function q$(e,t,n,s,r){s==null&&(s=t1(e,t,n));let a=e[0],o=e[1],i=il((a-t+2*s)/n+1,r),l=il((o-t+2*s)/n+1,r);return[i,l]}function X$(e,t,n,s,r,a){r==null&&(r=t1(e,t,s));let o=e[0],i=e[1],l=e[2],c=il((o-t+2*r)/s+1,a),u=il((i-t+2*r)/s+1,a),d=il((l-t+2*r)/s+1,a);return[c,u,d,n]}function t1(e,t,n,s=1){let r=Fu(t,s);return Math.floor((e[0]*(n-1)-n+r)/2)}function mf(e){return typeof e=="number"?[e,e,e]:e.length===2?[e[0],e[1],1]:e}function n1(e){return typeof e=="number"?[e,e,e]:e}function Fu(e,t){return t<=1?e:e+(e-1)*(t-1)}function K$(e,t,n,s,r,a,o,i,l){let c,u,d;if(typeof e=="number"){c={top:e,bottom:e,left:e,right:e,type:e===0?"VALID":"NUMBER"};let h=q$([t,n],a,s,e,i);u=h[0],d=h[1]}else if(e==="same"){u=Math.ceil(t/s),d=Math.ceil(n/r);let p=Math.max(0,(u-1)*s+a-t),h=Math.max(0,(d-1)*r+o-n),f=Math.floor(p/2),m=p-f,g=Math.floor(h/2),A=h-g;c={top:f,bottom:m,left:g,right:A,type:"SAME"}}else if(e==="valid")c={top:0,bottom:0,left:0,right:0,type:"VALID"},u=Math.ceil((t-a+1)/s),d=Math.ceil((n-o+1)/r);else if(typeof e=="object"){let p=l==="channelsLast"?e[1][0]:e[2][0],h=l==="channelsLast"?e[1][1]:e[2][1],f=l==="channelsLast"?e[2][0]:e[3][0],m=l==="channelsLast"?e[2][1]:e[3][1];c={top:p,bottom:h,left:f,right:m,type:p===0&&h===0&&f===0&&m===0?"VALID":"EXPLICIT"},u=il((t-a+p+h)/s+1,i),d=il((n-o+f+m)/r+1,i)}else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:c,outHeight:u,outWidth:d}}function Z$(e,t,n,s,r,a,o,i,l,c,u){let d,p,h,f;if(typeof e=="number"){d={top:e,bottom:e,left:e,right:e,front:e,back:e,type:e===0?"VALID":"NUMBER"};let g=X$([t,n,s,1],i,1,r,e,u);p=g[0],h=g[1],f=g[2]}else if(e==="same"){p=Math.ceil(t/r),h=Math.ceil(n/a),f=Math.ceil(s/o);let m=(p-1)*r+i-t,g=(h-1)*a+l-n,A=(f-1)*o+c-s,x=Math.floor(m/2),y=m-x,b=Math.floor(g/2),w=g-b,k=Math.floor(A/2),S=A-k;d={top:b,bottom:w,left:k,right:S,front:x,back:y,type:"SAME"}}else if(e==="valid")d={top:0,bottom:0,left:0,right:0,front:0,back:0,type:"VALID"},p=Math.ceil((t-i+1)/r),h=Math.ceil((n-l+1)/a),f=Math.ceil((s-c+1)/o);else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:d,outDepth:p,outHeight:h,outWidth:f}}function il(e,t){if(!t)return Math.trunc(e);switch(t){case"round":return Math.round(e);case"ceil":return Math.ceil(e);case"floor":return Math.floor(e);default:throw new Error(`Unknown roundingMode ${t}`)}}function Ro(e){let[t,n,s]=mf(e);return t===1&&n===1&&s===1}function _r(e,t){return Ro(e)||Ro(t)}function mv(e){if(e==="NHWC")return"channelsLast";if(e==="NCHW")return"channelsFirst";throw new Error(`Unknown dataFormat ${e}`)}function Y$(e,t){let s={x:P(e,"x","reshape","string_or_numeric")},r={shape:t};return W.runKernel(Oi,s,r)}var H=G({reshape_:Y$});function J$(e,t,n,s,r){let a=P(e,"x","avgPool","float32"),o=1;O(_r(n,o),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${o}'`);let i=a,l=!1;a.rank===3&&(l=!0,i=H(a,[1,a.shape[0],a.shape[1],a.shape[2]])),O(i.rank===4,()=>`Error in avgPool: x must be rank 4 but got rank ${i.rank}.`),r!=null&&O(mn(s),()=>`Error in avgPool: pad must be an integer when using, dimRoundingMode ${r} but got pad ${s}.`);let c={x:i},u={filterSize:t,strides:n,pad:s,dimRoundingMode:r},d=W.runKernel($a,c,u);return d=ge(d,a.dtype),l?H(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var gf=G({avgPool_:J$});function Q$(e,t,n,s,r,a="NDHWC"){let o=P(e,"x","avgPool3d","float32"),i=o,l=!1;o.rank===4&&(l=!0,i=H(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),O(i.rank===5,()=>`Error in avgPool3d: x must be rank 5 but got rank ${i.rank}.`),O(a==="NDHWC",()=>`Error in avgPool3d: Only NDHWC is currently supported, but got dataFormat of ${a}`),r!=null&&O(mn(s),()=>`Error in avgPool3d: pad must be an integer when using, dimRoundingMode ${r} but got pad ${s}.`);let c={x:i},u={filterSize:t,strides:n,pad:s,dimRoundingMode:r,dataFormat:a},d=W.runKernel(rd,c,u);return d=ge(d,i.dtype),l?H(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var s1=G({avgPool3d_:Q$});function e_(e,t=0){O(e.length>=1,()=>"Pass at least one tensor to concat");let n=Nd(e,"tensors","concat","string_or_numeric");if(n[0].dtype==="complex64"&&n.forEach(a=>{if(a.dtype!=="complex64")throw new Error(`Cannot concatenate complex64 tensors with a tensor
with dtype ${a.dtype}. `)}),n.length===1)return Bn(n[0]);let s=n,r={axis:t};return W.runKernel(hi,s,r)}var It=G({concat_:e_});function t_(e){let n={x:P(e,"x","sigmoid","float32")};return W.runKernel(po,n)}var gs=G({sigmoid_:t_});function n_(e,t,n){let s=P(e,"x","slice","string_or_numeric");if(s.rank===0)throw new Error("Slicing scalar is not possible");let r={x:s},a={begin:t,size:n};return W.runKernel(Wi,r,a)}var Fe=G({slice_:n_});function s_(e){let n={x:P(e,"x","tanh","float32")};return W.runKernel(yo,n)}var Ou=G({tanh_:s_});function r_(e,t,n,s,r,a){let o=P(e,"forgetBias","basicLSTMCell"),i=P(t,"lstmKernel","basicLSTMCell"),l=P(n,"lstmBias","basicLSTMCell"),c=P(s,"data","basicLSTMCell"),u=P(r,"c","basicLSTMCell"),d=P(a,"h","basicLSTMCell"),p=It([c,d],1),h=je(p,i),f=ue(h,l),m=f.shape[0],g=f.shape[1]/4,A=[m,g],x=Fe(f,[0,0],A),y=Fe(f,[0,g],A),b=Fe(f,[0,g*2],A),w=Fe(f,[0,g*3],A),k=ue(L(gs(x),Ou(y)),L(u,gs(ue(o,b)))),S=L(Ou(k),gs(w));return[k,S]}var a_=G({basicLSTMCell_:r_});function o_(e,t,n){let s=P(e,"x","batchToSpaceND"),r=t.reduce((i,l)=>i*l);O(s.rank>=1+t.length,()=>`input rank is ${s.rank} but should be > than blockShape.length ${t.length}`),O(n.length===t.length,()=>`crops.length is ${n.length} but should be equal to blockShape.length ${t.length}`),O(s.shape[0]%r==0,()=>`input tensor batch is ${s.shape[0]} but is not divisible by the product of the elements of blockShape ${t.join(" * ")} === ${r}`);let a={x:s},o={blockShape:t,crops:n};return W.runKernel(pi,a,o)}var Af=G({batchToSpaceND_:o_});function i_(e){let t;return e.rank===0||e.rank===1?t=H(e,[1,1,1,e.size]):e.rank===2?t=H(e,[1,1,e.shape[0],e.shape[1]]):e.rank===3?t=H(e,[1,e.shape[0],e.shape[1],e.shape[2]]):t=e,t}function l_(e,t,n,s,r,a){a==null&&(a=.001);let o=P(e,"x","batchNorm"),i=P(t,"mean","batchNorm"),l=P(n,"variance","batchNorm"),c;r!=null&&(c=P(r,"scale","batchNorm"));let u;s!=null&&(u=P(s,"offset","batchNorm")),O(i.rank===l.rank,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),O(u==null||i.rank===u.rank,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),O(c==null||i.rank===c.rank,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let p={x:i_(o),scale:c,offset:u,mean:i,variance:l},h={varianceEpsilon:a},f=W.runKernel(Ha,p,h);return H(f,o.shape)}var Mu=G({batchNorm_:l_});function u_(e,t,n,s,r,a){let o=P(e,"x","batchNorm"),i=P(t,"mean","batchNorm"),l=P(n,"variance","batchNorm"),c;r!=null&&(c=P(r,"scale","batchNorm"));let u;return s!=null&&(u=P(s,"offset","batchNorm")),O(o.rank===2,()=>`Error in batchNorm2D: x must be rank 2 but got rank ${o.rank}.`),O(i.rank===2||i.rank===1,()=>`Error in batchNorm2D: mean must be rank 2 or rank 1 but got rank ${i.rank}.`),O(l.rank===2||l.rank===1,()=>`Error in batchNorm2D: variance must be rank 2 or rank 1 but got rank ${l.rank}.`),c!=null&&O(c.rank===2||c.rank===1,()=>`Error in batchNorm2D: scale must be rank 2 or rank 1 but got rank ${c.rank}.`),u!=null&&O(u.rank===2||u.rank===1,()=>`Error in batchNorm2D: offset must be rank 2 or rank 1 but got rank ${u.rank}.`),Mu(o,i,l,u,c,a)}var gv=G({batchNorm2d_:u_});function c_(e,t,n,s,r,a){let o=P(e,"x","batchNorm"),i=P(t,"mean","batchNorm"),l=P(n,"variance","batchNorm"),c;r!=null&&(c=P(r,"scale","batchNorm"));let u;return s!=null&&(u=P(s,"offset","batchNorm")),O(o.rank===3,()=>`Error in batchNorm3D: x must be rank 3 but got rank ${o.rank}.`),O(i.rank===3||i.rank===1,()=>`Error in batchNorm3D: mean must be rank 3 or rank 1 but got rank ${i.rank}.`),O(l.rank===3||l.rank===1,()=>`Error in batchNorm3D: variance must be rank 3 or rank 1 but got rank ${l.rank}.`),c!=null&&O(c.rank===3||c.rank===1,()=>`Error in batchNorm3D: scale must be rank 3 or rank 1 but got rank ${c.rank}.`),u!=null&&O(u.rank===3||u.rank===1,()=>`Error in batchNorm3D: offset must be rank 3 or rank 1 but got rank ${u.rank}.`),Mu(o,i,l,u,c,a)}var Av=G({batchNorm3d_:c_});function d_(e,t,n,s,r,a){let o=P(e,"x","batchNorm"),i=P(t,"mean","batchNorm"),l=P(n,"variance","batchNorm"),c;r!=null&&(c=P(r,"scale","batchNorm"));let u;return s!=null&&(u=P(s,"offset","batchNorm")),O(o.rank===4,()=>`Error in batchNorm4D: x must be rank 4 but got rank ${o.rank}.`),O(i.rank===4||i.rank===1,()=>`Error in batchNorm4D: mean must be rank 4 or rank 1 but got rank ${i.rank}.`),O(l.rank===4||l.rank===1,()=>`Error in batchNorm4D: variance must be rank 4 or rank 1 but got rank ${l.rank}.`),c!=null&&O(c.rank===4||c.rank===1,()=>`Error in batchNorm4D: scale must be rank 4 or rank 1 but got rank ${c.rank}.`),u!=null&&O(u.rank===4||u.rank===1,()=>`Error in batchNorm4D: offset must be rank 4 or rank 1 but got rank ${u.rank}.`),Mu(o,i,l,u,c,a)}var yv=G({batchNorm4d_:d_});function p_(e,t,n){let s=P(e,"x","bincount"),r=P(t,"weights","bincount");O(s.dtype==="int32",()=>`Error in bincount: input dtype must be int32, but got ${s.dtype}`),O(n>=0,()=>`size must be non-negative, but got ${n}.`),O(r.size===s.size||r.size===0,()=>`Error in bincount: weights must have the same size as input or0-length, but got input shape: ${s.shape}, weights shape: ${r.shape}.`);let a={x:s,weights:r},o={size:n};return W.runKernel(Ch,a,o)}var r1=G({bincount_:p_});function h_(e,t){let n=P(e,"s0","broadcastArgs","int32"),s=P(t,"s1","broadcastArgs","int32");if(n.rank!==1)throw new Error(`broadcastArgs(): first input must be a vector (rank=1). Has rank ${n.rank}`);if(s.rank!==1)throw new Error(`broadcastArgs(): second input must be a vector (rank=1). Has rank ${s.rank}`);let r={s0:n,s1:s};return W.runKernel(Th,r)}var xv=G({broadcastArgs_:h_});function f_(e,t){let n=P(e,"broadcastTo","x"),s=n.shape;if(t.some(c=>!(c>0)||c%1!=0))throw new Error(`broadcastTo(): Invalid broadcast shape [${t}].`);if(t.length<n.rank)throw new Error(`broadcastTo(): shape.length=${t.length} < input.rank=${n.rank}.`);if(t.length>n.rank){let c=n.shape.slice();for(;c.length<t.length;)c.unshift(1);n=H(n,c)}let r=n.shape,a=Array.from(t);for(let c=t.length-1;c>=0;c--)if(r[c]===t[c])a[c]=1;else if(n.shape[c]!==1)throw new Error(`broadcastTo(): [${s}] cannot be broadcast to [${t}].`);if(a.map((c,u)=>c>1?u:-1).filter(c=>c>=0).length===0)return Bn(n);let i={x:n},l={reps:a};return W.runKernel(Zr,i,l)}var _d=G({broadcastTo_:f_});function m_(e){let n={x:P(e,"x","ceil","float32")};return W.runKernel(Pa,n)}var bv=G({ceil_:m_});function g_(e,t,n){let s=P(e,"x","clipByValue");O(t<=n,()=>`Error in clip: min (${t}) must be less than or equal to max (${n}).`);let r={x:s},a={clipValueMin:t,clipValueMax:n};return W.runKernel(Kr,r,a)}var As=G({clipByValue_:g_});function A_(e){return It(e,0)}var vv=G({concat1d_:A_});function y_(e,t){return It(e,t)}var zu=G({concat2d_:y_});function x_(e,t){return It(e,t)}var wv=G({concat3d_:x_});function b_(e,t){return It(e,t)}var kv=G({concat4d_:b_});function v_(e,t,n,s,r="NHWC",a=[1,1],o){let i=P(e,"x","conv2d","float32"),l=P(t,"filter","conv2d","float32"),c=i,u=!1;i.rank===3&&(u=!0,c=H(i,[1,i.shape[0],i.shape[1],i.shape[2]])),O(c.rank===4,()=>`Error in conv2d: input must be rank 4, but got rank ${c.rank}.`),O(l.rank===4,()=>`Error in conv2d: filter must be rank 4, but got rank ${l.rank}.`),o!=null&&O(mn(s),()=>`Error in conv2d: pad must be an integer when using, dimRoundingMode ${o} but got pad ${s}.`);let d=r==="NHWC"?c.shape[3]:c.shape[1];O(d===l.shape[2],()=>`Error in conv2d: depth of input (${d}) must match input depth for filter ${l.shape[2]}.`),O(_r(n,a),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`);let p={x:c,filter:l},h={strides:n,pad:s,dataFormat:r,dilations:a,dimRoundingMode:o},f=W.runKernel(Fa,p,h);return u?H(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var $o=G({conv2d_:v_});function w_(e,t,n,s,r="NWC",a=1,o){let i=P(e,"x","conv1d"),l=P(t,"filter","conv1d"),c=i,u=!1;i.rank===2&&(u=!0,c=H(i,[1,i.shape[0],i.shape[1]])),O(c.rank===3,()=>`Error in conv1d: input must be rank 3, but got rank ${c.rank}.`),O(l.rank===3,()=>`Error in conv1d: filter must be rank 3, but got rank ${l.rank}.`),o!=null&&O(mn(s),()=>`Error in conv1d: pad must be an integer when using, dimRoundingMode ${o} but got pad ${s}.`),O(c.shape[2]===l.shape[1],()=>`Error in conv1d: depth of input (${c.shape[2]}) must match input depth for filter ${l.shape[1]}.`),O(_r(n,a),()=>`Error in conv1D: Either stride or dilation must be 1. Got stride ${n} and dilation '${a}'`),O(r==="NWC",()=>`Error in conv1d: got dataFormat of ${r} but only NWC is currently supported.`);let d=H(l,[1,l.shape[0],l.shape[1],l.shape[2]]),p=H(c,[c.shape[0],1,c.shape[1],c.shape[2]]),g=$o(p,d,[1,n],s,"NHWC",[1,a],o);return u?H(g,[g.shape[2],g.shape[3]]):H(g,[g.shape[0],g.shape[2],g.shape[3]])}var a1=G({conv1d_:w_});function k_(e,t,n,s,r,a="NHWC",o){O(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let i=e,l=t,c=!1;t.rank===3&&(c=!0,l=H(t,[1,t.shape[0],t.shape[1],t.shape[2]]),i=[1,e[0],e[1],e[2]]),O(i.length===4,()=>`Error in conv2dDerInput: inShape must be length 4, but got length ${i.length}.`),O(l.rank===4,()=>`Error in conv2dDerInput: dy must be rank 4, but got rank ${l.rank}`),O(n.rank===4,()=>`Error in conv2dDerInput: filter must be rank 4, but got rank ${n.rank}`);let u=a==="NHWC"?i[3]:i[1],d=a==="NHWC"?l.shape[3]:l.shape[1];O(u===n.shape[2],()=>`Error in conv2dDerInput: depth of input (${u}) must match input depth for filter ${n.shape[2]}.`),O(d===n.shape[3],()=>`Error in conv2dDerInput: depth of output (${d}) must match output depth for filter ${n.shape[3]}.`),o!=null&&O(mn(r),()=>`Error in conv2dDerInput: pad must be an integer when using, dimRoundingMode ${o} but got pad ${r}.`);let p={dy:l,filter:n},h={strides:s,pad:r,dataFormat:a,dimRoundingMode:o,inputShape:i},f=W.runKernel(Oa,p,h);return c?H(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var o1=G({conv2DBackpropInput_:k_});function I_(e,t,n,s,r,a){let o=P(e,"x","conv2dTranspose"),i=P(t,"filter","conv2dTranspose");return o1(n,o,i,s,r,"NHWC",a)}var i1=G({conv2dTranspose_:I_});function S_(e,t,n,s,r="NDHWC",a=[1,1,1]){let o=P(e,"x","conv3d"),i=P(t,"filter","conv3d"),l=o,c=!1;o.rank===4&&(c=!0,l=H(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),O(l.rank===5,()=>`Error in conv3d: input must be rank 5, but got rank ${l.rank}.`),O(i.rank===5,()=>`Error in conv3d: filter must be rank 5, but got rank ${i.rank}.`),O(l.shape[4]===i.shape[3],()=>`Error in conv3d: depth of input (${l.shape[4]}) must match input depth for filter ${i.shape[3]}.`),O(_r(n,a),()=>`Error in conv3D: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`),O(r==="NDHWC",()=>`Error in conv3d: got dataFormat of ${r} but only NDHWC is currently supported.`);let u={x:l,filter:i},d={strides:n,pad:s,dataFormat:r,dilations:a},p=W.runKernel(id,u,d);return c?H(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var l1=G({conv3d_:S_});function C_(e,t,n,s,r){O(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let a=e,o=t,i=!1;t.rank===4&&(i=!0,o=H(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]]),a=[1,e[0],e[1],e[2],e[3]]);let l=a[4],c=o.shape[4];O(a.length===5,()=>`Error in conv3dDerInput: inShape must be length 5, but got length ${a.length}.`),O(o.rank===5,()=>`Error in conv3dDerInput: dy must be rank 5, but got rank ${o.rank}`),O(n.rank===5,()=>`Error in conv3dDerInput: filter must be rank 5, but got rank ${n.rank}`),O(l===n.shape[3],()=>`Error in conv3dDerInput: depth of input (${l}) must match input depth for filter ${n.shape[3]}.`),O(c===n.shape[4],()=>`Error in conv3dDerInput: depth of output (${c}) must match output depth for filter ${n.shape[4]}.`);let u={dy:o,filter:n},d={pad:r,strides:s,inputShape:a},p=W.runKernel(Rh,u,d);return i?H(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var Iv=G({conv3DBackpropInput_:C_});function T_(e,t,n,s,r){let a=P(e,"x","conv3dTranspose"),o=P(t,"filter","conv3dTranspose");return Iv(n,a,o,s,r)}var Sv=G({conv3dTranspose_:T_});function N_(e){let n={x:P(e,"x","cos","float32")};return W.runKernel(Ma,n)}var yf=G({cos_:N_});function E_(e){let n={x:P(e,"x","cosh","float32")};return W.runKernel(za,n)}var u1=G({cosh_:E_});function R_(e,t=0,n=!1,s=!1){let a={x:P(e,"x","cumsum")},o={axis:t,exclusive:n,reverse:s};return W.runKernel(fi,a,o)}var c1=G({cumsum_:R_});function $_(e,t,n,s=!1){let r=P(e,"x","denseBincount"),a=P(t,"weights","denseBincount");O(r.dtype==="int32",()=>`Error in denseBincount: input dtype must be int32, but got ${r.dtype}`),O(r.rank<=2,()=>`Error in denseBincount: input must be at most rank 2, but got rank ${r.rank}.`),O(n>=0,()=>`size must be non-negative, but got ${n}.`),O(a.size===r.size||a.size===0,()=>`Error in denseBincount: weights must have the same shape as x or 0-length, but got x shape: ${r.shape}, weights shape: ${a.shape}.`);let o={x:r,weights:a},i={size:n,binaryOutput:s};return W.runKernel($h,o,i)}var Cv=G({denseBincount_:$_});function __(e,t,n="NHWC"){let s=P(e,"x","depthToSpace","float32"),r=n==="NHWC"?s.shape[1]:s.shape[2],a=n==="NHWC"?s.shape[2]:s.shape[3],o=n==="NHWC"?s.shape[3]:s.shape[1];O(t>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${t}`),O(r*t>=0,()=>`Negative dimension size caused by overflow when multiplying
${r} and ${t} for depthToSpace with input shape
${s.shape}`),O(a*t>=0,()=>`Negative dimension size caused by overflow when multiplying
${a} and ${t} for depthToSpace with input shape
${s.shape}`),O(o%(t*t)==0,()=>`Dimension size must be evenly divisible by ${t*t} but is ${o} for depthToSpace with input shape ${s.shape}`);let i={x:s},l={blockSize:t,dataFormat:n};return W.runKernel(gi,i,l)}var Tv=G({depthToSpace_:__});function D_(e,t,n,s,r="NHWC",a=[1,1],o){let i=P(e,"x","depthwiseConv2d","float32"),l=P(t,"filter","depthwiseConv2d","float32"),c=i,u=!1;i.rank===3&&(u=!0,c=H(i,[1,i.shape[0],i.shape[1],i.shape[2]])),O(c.rank===4,()=>`Error in depthwiseConv2d: input must be rank 4, but got rank ${c.rank}.`),O(l.rank===4,()=>`Error in depthwiseConv2d: filter must be rank 4, but got rank ${l.rank}.`),O(c.shape[3]===l.shape[2],()=>`Error in depthwiseConv2d: number of input channels (${c.shape[3]}) must match the inChannels dimension in filter ${l.shape[2]}.`),o!=null&&O(mn(s),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${o} but got pad ${s}.`);let d={x:c,filter:l},p={strides:n,pad:s,dataFormat:r,dilations:a,dimRoundingMode:o},h=W.runKernel(La,d,p);return u?H(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var Dd=G({depthwiseConv2d_:D_});function P_(e){let n={x:P(e,"x","diag")};return W.runKernel(Ph,n)}var F_=G({diag_:P_});function O_(e,t,n,s,r=[1,1],a="NHWC"){let o=P(e,"x","dilation2d"),i=P(t,"filter","dilation2d");O(o.rank===3||o.rank===4,()=>`Error in dilation2d: input must be rank 3 or 4, but got rank ${o.rank}.`),O(i.rank===3,()=>`Error in dilation2d: filter must be rank 3, but got rank ${i.rank}.`),O(a==="NHWC",()=>`Error in dilation2d: Only NHWC is currently supported, but got dataFormat of ${a}`);let l=o,c=!1;o.rank===3&&(l=H(o,[1,o.shape[0],o.shape[1],o.shape[2]]),c=!0);let u={x:l,filter:i},d={strides:n,pad:s,dilations:r},p=W.runKernel(ld,u,d);return c?H(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var Nv=G({dilation2d_:O_});function M_(e,t){let n=P(e,"a","equal","string_or_numeric"),s=P(t,"b","equal","string_or_numeric");[n,s]=Pt(n,s),yt(n.shape,s.shape);let r={a:n,b:s};return W.runKernel(Ai,r)}var Ds=G({equal_:M_});function z_(e,t,n){let s=P(t,"a","where"),r=P(n,"b","where"),a=P(e,"condition","where","bool"),o=yt(yt(a.shape,s.shape),r.shape),i=_d(a,o),l=_d(s,o),c=_d(r,o),u={condition:i,t:l,e:c};return W.runKernel(Bi,u)}var Wn=G({where_:z_});function L_(e){let n={x:P(e,"x","zerosLike")};return W.runKernel(Zi,n)}var nt=G({zerosLike_:L_});function B_(e,t){let n=P(e,"a","div"),s=P(t,"b","div");[n,s]=Pt(n,s);let r=pe(n,s),a=nt(r),o=Ds(s,a);return Wn(o,a,r)}var Ev=G({divNoNan_:B_});function W_(e,t){let n=P(e,"t1","dot"),s=P(t,"t2","dot");O((n.rank===1||n.rank===2)&&(s.rank===1||s.rank===2),()=>`Error in dot: inputs must all be rank 1 or 2, but got ranks ${n.rank} and ${s.rank}.`);let r=n.rank===1?n.size:n.shape[1],a=s.rank===1?s.size:s.shape[0];if(O(r===a,()=>`Error in dot: inner dimensions of inputs must match, but got ${r} and ${a}.`),n.rank===1&&s.rank===1){let o=H(n,[1,-1]),i=H(s,[-1,1]),l=je(o,i);return H(l,[])}else if(n.rank===1&&s.rank===2){let o=H(n,[1,-1]),i=H(s,[s.shape[0],s.shape[1]]),l=je(o,i);return H(l,[l.size])}else if(n.rank===2&&s.rank===1){let o=H(s,[-1,1]),i=je(n,o);return H(i,[i.size])}else{let o=H(s,[s.shape[0],s.shape[1]]);return je(n,o)}}var V_=G({dot_:W_});function U_(e,...t){let n=t.map((r,a)=>P(r,`tensors${a}`,"einsum")),s={equation:e};return W.runKernel(ud,n,s)}var Rv=G({einsum_:U_});function G_(e){let n={x:P(e,"x","elu","float32")};return W.runKernel(Wa,n)}var Pd=G({elu_:G_});function H_(e){let t=P(e,"x","erf");O(t.dtype==="int32"||t.dtype==="float32",()=>"Input dtype must be `int32` or `float32`."),t.dtype==="int32"&&(t=ge(t,"float32"));let n={x:t};return W.runKernel(fu,n)}var $v=G({erf_:H_});function j_(e){let n={x:P(e,"x","exp")};return W.runKernel(Va,n)}var Ps=G({exp_:j_});function q_(e,t=0){let n=P(e,"x","expandDims","string_or_numeric");O(t<=n.rank,()=>"Axis must be <= rank of the tensor");let s={input:n},r={dim:t};return W.runKernel(yi,s,r)}var Kt=G({expandDims_:q_});function X_(e){let n={x:P(e,"x","expm1")};return W.runKernel(xi,n)}var _v=G({expm1_:X_});function K_(e,t){let n=P(e,"x","tile","string_or_numeric");O(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of reps ${t}.`);let s={x:n},r={reps:t};return W.runKernel(Zr,s,r)}var Qs=G({tile_:K_});function Z_(e,t,n,s="float32"){t==null&&(t=e);let r=ze([e,t],s),a=e<=t?e:t;for(let i=0;i<a;++i)r.set(1,i,i);let o=H(r.toTensor(),[e,t]);if(n==null)return o;if(n.length===1)return Qs(Kt(o,0),[n[0],1,1]);if(n.length===2)return Qs(Kt(Kt(o,0),0),[n[0],n[1],1,1]);if(n.length===3)return Qs(Kt(Kt(Kt(o,0),0),0),[n[0],n[1],n[2],1,1]);throw new Error(`eye() currently supports only 1D and 2D batchShapes, but received ${n.length}D.`)}var d1=G({eye_:Z_});function Lu(e,t,n){let s={shape:e,value:t,dtype:n};return W.runKernel(mu,{},s)}function Y_(e){let n={x:P(e,"x","floor","float32")};return W.runKernel(Ua,n)}var Fd=G({floor_:Y_});function J_(e,t,n=0,s=0){let r=P(e,"x","gather"),a=P(t,"indices","gather","int32"),o={x:r,indices:a},i={axis:n,batchDims:s};return W.runKernel(vi,o,i)}var Bu=G({gather_:J_});function Q_(e,t){let n=P(e,"a","greater","string_or_numeric"),s=P(t,"b","greater","string_or_numeric");[n,s]=Pt(n,s),yt(n.shape,s.shape);let r={a:n,b:s};return W.runKernel(ki,r)}var ys=G({greater_:Q_});function eD(e,t){let n=P(e,"a","greaterEqual","string_or_numeric"),s=P(t,"b","greaterEqual","string_or_numeric");[n,s]=Pt(n,s),yt(n.shape,s.shape);let r={a:n,b:s};return W.runKernel(ja,r)}var ll=G({greaterEqual_:eD});function tD(e){let n={input:P(e,"input","imag")};return W.runKernel(cd,n)}var xf=G({imag_:tD});function nD(e){let n={x:P(e,"x","isFinite")};return W.runKernel(gu,n)}var sD=G({isFinite_:nD});function rD(e){let n={x:P(e,"x","isInf")};return W.runKernel(Au,n)}var aD=G({isInf_:rD});function oD(e){let n={x:P(e,"x","isNaN")};return W.runKernel(yu,n)}var Dv=G({isNaN_:oD});function iD(e,t=.2){let s={x:P(e,"x","leakyRelu")},r={alpha:t};return W.runKernel(Ii,s,r)}var bf=G({leakyRelu_:iD});function lD(e,t){let n=P(e,"a","less","string_or_numeric"),s=P(t,"b","less","string_or_numeric");[n,s]=Pt(n,s),yt(n.shape,s.shape);let r={a:n,b:s};return W.runKernel(Si,r)}var p1=G({less_:lD});function uD(e,t){let n=P(e,"a","lessEqual","string_or_numeric"),s=P(t,"b","lessEqual","string_or_numeric");[n,s]=Pt(n,s),yt(n.shape,s.shape);let r={a:n,b:s};return W.runKernel(Ci,r)}var ul=G({lessEqual_:uD});function Pv(e,t,n){if(n<=0)throw new Error("The number of values should be positive.");let s={start:e,stop:t,num:n};return W.runKernel(Bh,{},s)}function cD(e,t=5,n=1,s=1,r=.5){let a=P(e,"x","localResponseNormalization");O(a.rank===4||a.rank===3,()=>`Error in localResponseNormalization: x must be rank 3 or 4 but got
rank ${a.rank}.`),O(mn(t),()=>`Error in localResponseNormalization: depthRadius must be an integer but got depthRadius ${t}.`);let o=a,i=!1;a.rank===3&&(i=!0,o=H(a,[1,a.shape[0],a.shape[1],a.shape[2]]));let l={x:o},c={depthRadius:t,bias:n,alpha:s,beta:r},u=W.runKernel(pd,l,c);return i?H(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var Fv=G({localResponseNormalization_:cD});function dD(e){let n={x:P(e,"x","log","float32")};return W.runKernel(Xa,n)}var Fs=G({log_:dD});function pD(e){let n={x:P(e,"x","log1p")};return W.runKernel(xu,n)}var vf=G({log1p_:pD});function hD(e){return O(Na(e),()=>"The f passed in grad(f) must be a function"),(t,n)=>{let s=P(t,"x","tf.grad","string_or_numeric"),r=n!=null?P(n,"dy","tf.grad"):null;return W.tidy(()=>{let{value:a,grads:o}=W.gradients(()=>e(s),[s],r);return r!=null&&Mn(a.shape,r.shape,"The shape of dy passed in grad(f)(x, dy) must match the shape returned by f(x)"),wf(o),o[0]})}}function fD(e){return O(Na(e),()=>"The f passed in grads(f) must be a function"),(t,n)=>{O(Array.isArray(t),()=>"The args passed in grads(f)(args) must be an array of `Tensor`s or `TensorLike`s");let s=Nd(t,"args","tf.grads","string_or_numeric"),r=n!=null?P(n,"dy","tf.grads"):null;return W.tidy(()=>{let{value:a,grads:o}=W.gradients(()=>e(...s),s,r);return r!=null&&Mn(a.shape,r.shape,"The shape of dy passed in grads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),wf(o),o})}}function mD(e){return O(Na(e),()=>"The f passed in valueAndGrad(f) must be a function"),(t,n)=>{O(t instanceof et,()=>"The x passed in valueAndGrad(f)(x) must be a tensor"),O(n==null||n instanceof et,()=>"The dy passed in valueAndGrad(f)(x, dy) must be a tensor");let{grads:s,value:r}=W.gradients(()=>e(t),[t],n);return wf(s),{grad:s[0],value:r}}}function gD(e){return O(Na(e),()=>"The f passed in valueAndGrads(f) must be a function"),(t,n)=>{O(Array.isArray(t)&&t.every(r=>r instanceof et),()=>"The args passed in valueAndGrads(f)(args) must be array of tensors"),O(n==null||n instanceof et,()=>"The dy passed in valueAndGrads(f)(args, dy) must be a tensor");let s=W.gradients(()=>e(...t),t,n);return n!=null&&Mn(s.value.shape,n.shape,"The shape of dy passed in valueAndGrads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),wf(s.grads),s}}function Ov(e,t){O(Na(e),()=>"The f passed in variableGrads(f) must be a function"),O(t==null||Array.isArray(t)&&t.every(c=>c instanceof Cd),()=>"The varList passed in variableGrads(f, varList) must be an array of variables");let n=t!=null;if(!n){t=[];for(let c in W.registeredVariables)t.push(W.registeredVariables[c])}let s=n?t.filter(c=>!c.trainable):null,r=t.length;t=t.filter(c=>c.trainable),O(t.length>0,()=>`variableGrads() expects at least one of the input variables to be trainable, but none of the ${r} variables is trainable.`);let a=!0,{value:o,grads:i}=W.gradients(e,t,null,a);O(i.some(c=>c!=null),()=>"Cannot find a connection between any variable and the result of the loss function y=f(x). Please make sure the operations that use variables are inside the function f passed to minimize()."),O(o.rank===0,()=>`The f passed in variableGrads(f) must return a scalar, but it returned a rank-${o.rank} tensor`);let l={};return t.forEach((c,u)=>{i[u]!=null&&(l[c.name]=i[u])}),s!=null&&s.forEach(c=>l[c.name]=null),{value:o,grads:l}}function Dr(e){return W.customGrad(e)}function wf(e){if(e.filter(n=>n==null).length>0)throw new Error(`Cannot compute gradient of y=f(x) with respect to x. Make sure that
the f you passed encloses all operations that lead from x to y.`)}function AD(e){let n={x:P(e,"x","neg")};return W.runKernel(Ni,n)}var Ot=G({neg_:AD});function yD(e){let n={x:P(e,"x","softplus")};return W.runKernel(Nu,n)}var Wu=G({softplus_:yD});function xD(e){let t=P(e,"x","logSigmoid");return Dr(s=>({value:Ot(Wu(Ot(s))),gradFunc:o=>L(o,gs(Ot(s)))}))(t)}var bD=G({logSigmoid_:xD});function vD(e,t=null,n=!1){let r={x:P(e,"x","max")},a={reductionIndices:t,keepDims:n};return W.runKernel(Ka,r,a)}var yn=G({max_:vD});function wD(e,t){let n=P(e,"a","sub"),s=P(t,"b","sub");[n,s]=Pt(n,s);let r={a:n,b:s};return W.runKernel(Ao,r)}var fe=G({sub_:wD});function kD(e,t=null,n=!1){let s=P(e,"x","sum");s.dtype==="bool"&&(s=ge(s,"int32"));let r={x:s},a={axis:t,keepDims:n};return W.runKernel(fo,r,a)}var we=G({sum_:kD});function ID(e,t=-1){let n=P(e,"logits","logSoftmax");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Log Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and axis was ${t}`);return Dr((r,a)=>{let o=!0,i=yn(r,t,!0),l=fe(r,i),c=fe(ge(l,"float32"),Fs(we(Ps(l),t,o)));return a([c]),{value:c,gradFunc:(d,p)=>{let[h]=p,f=!0,m=Ps(h);return fe(d,L(we(d,t,f),m))}}})(n)}var h1=G({logSoftmax_:ID});function f1(e,t){for(let n=0;n<e.length;++n)if(e[e.length-n-1]!==t-1-n)return!1;return!0}function Mv(e,t,n){let s=e.length+t.length,r=[],a=0,o=0;for(let i=0;i<s;i++)n.indexOf(i)===-1?r.push(e[a++]):r.push(t[o++]);return r}function zv(e,t){let n=[],s=e.length;for(let a=0;a<s;a++)t.indexOf(a)===-1&&n.push(e[a]);let r=t.map(a=>e[a]);return[n,r]}function cl(e,t){let n=t.map(s=>1);return Mv(e,n,t)}function SD(e,t,n){O(f1(t,n),()=>`${e} supports only inner-most axes for now. Got axes ${t} and rank-${n} input.`)}function Lv(e,t){if(f1(e,t))return null;let n=[];for(let s=0;s<t;++s)e.indexOf(s)===-1&&n.push(s);return e.forEach(s=>n.push(s)),n}function m1(e){return e.map((t,n)=>[n,t]).sort((t,n)=>t[1]-n[1]).map(t=>t[0])}function CD(e,t){let n=[];for(let s=t-e;s<t;++s)n.push(s);return n}function TD(e,t=null,n=!1){let s=P(e,"x","logSumExp"),r=Zs(t,s.shape),a=yn(s,r,!0),o=fe(s,a),i=Ps(o),l=we(i,r),c=Fs(l),u=ue(H(a,c.shape),c);if(n){let d=cl(u.shape,r);return H(u,d)}return u}var Bv=G({logSumExp_:TD});function ND(e,t){let n=P(e,"a","logicalAnd","bool"),s=P(t,"b","logicalAnd","bool");yt(n.shape,s.shape);let r={a:n,b:s};return W.runKernel(Ti,r)}var fr=G({logicalAnd_:ND});function ED(e){let n={x:P(e,"x","logicalNot","bool")};return W.runKernel(bu,n)}var kf=G({logicalNot_:ED});function RD(e,t){let n=P(e,"a","logicalOr","bool"),s=P(t,"b","logicalOr","bool");yt(n.shape,s.shape);let r={a:n,b:s};return W.runKernel(dd,r)}var g1=G({logicalOr_:RD});function $D(e,t){let n=P(e,"a","logicalXor","bool"),s=P(t,"b","logicalXor","bool");return yt(n.shape,s.shape),fr(g1(e,t),kf(fr(e,t)))}var _D=G({logicalXor_:$D});function DD(e,t,n,s,r){let a=P(e,"x","maxPool"),o=1,i=a,l=!1;a.rank===3&&(l=!0,i=H(a,[1,a.shape[0],a.shape[1],a.shape[2]])),O(i.rank===4,()=>`Error in maxPool: input must be rank 4 but got rank ${i.rank}.`),O(_r(n,o),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${o}'`),r!=null&&O(mn(s),()=>`Error in maxPool: pad must be an integer when using, dimRoundingMode ${r} but got pad ${s}.`);let c={x:i},u={filterSize:t,strides:n,pad:s,dimRoundingMode:r},d=W.runKernel(Ya,c,u);return l?H(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var If=G({maxPool_:DD});function PD(e,t=[1,1,1],n,s,r,a="NDHWC"){let o=P(e,"x","maxPool3d"),i=o,l=!1;o.rank===4&&(l=!0,i=H(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),O(i.rank===5,()=>`Error in maxPool3d: x must be rank 5 but got rank ${i.rank}.`),O(a==="NDHWC",()=>`Error in maxPool3d: Only NDHWC is currently supported, but got dataFormat of ${a}`),r!=null&&O(mn(s),()=>`Error in maxPool3d: pad must be an integer when using, dimRoundingMode ${r} but got pad ${s}.`);let c={x:i},u={filterSize:t,strides:n,pad:s,dimRoundingMode:r,dataFormat:a},d=W.runKernel(hd,c,u);return l?H(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var A1=G({maxPool3d_:PD});function FD(e,t,n,s,r=!1){let o={x:P(e,"x","maxPoolWithArgmax")},i={filterSize:t,strides:n,pad:s,includeBatchInIndex:r},l=W.runKernel(Gh,o,i);return{result:l[0],indexes:l[1]}}var Wv=G({maxPoolWithArgmax_:FD});function OD(e,t){let n=P(e,"a","maximum"),s=P(t,"b","maximum");[n,s]=Pt(n,s),n.dtype==="bool"&&(n=ge(n,"int32"),s=ge(s,"int32")),yt(n.shape,s.shape);let r={a:n,b:s};return W.runKernel(Za,r)}var Qr=G({maximum_:OD});function MD(e,t=null,n=!1){let r={x:P(e,"x","mean")},a={axis:t,keepDims:n};return W.runKernel(Ja,r,a)}var Wt=G({mean_:MD});function Ht(e,t="float32"){if(t==="complex64"){let s=Ht(e,"float32"),r=Ht(e,"float32");return Co(s,r)}let n=kh(Gt(e),t);return W.makeTensor(n,e,t)}function xs(e,t="float32"){if(t==="complex64"){let s=xs(e,"float32"),r=Ht(e,"float32");return Co(s,r)}let n=p2(Gt(e),t);return W.makeTensor(n,e,t)}function zD(e,t,{indexing:n="xy"}={}){if(n!=="xy"&&n!=="ij")throw new TypeError(`${n} is not a valid third argument to meshgrid`);if(e===void 0)return[];let s=P(e,"x","meshgrid",e instanceof et?e.dtype:"float32");if(t===void 0)return[s];let r=P(t,"y","meshgrid",t instanceof et?t.dtype:"float32"),a=Gt(s.shape),o=Gt(r.shape);return n==="xy"?(s=H(s,[1,-1]),r=H(r,[-1,1]),[je(xs([o,1],s.dtype),s),je(r,xs([1,a],r.dtype))]):(s=H(s,[-1,1]),r=H(r,[1,-1]),[je(s,xs([1,o],s.dtype)),je(xs([a,1],r.dtype),r)])}function LD(e,t=null,n=!1){let r={x:P(e,"x","min")},a={axis:t,keepDims:n};return W.runKernel(Qa,r,a)}var _o=G({min_:LD});function BD(e,t){let n=P(e,"a","minimum"),s=P(t,"b","minimum");[n,s]=Pt(n,s),n.dtype==="bool"&&(n=ge(n,"int32"),s=ge(s,"int32")),yt(n.shape,s.shape);let r={a:n,b:s};return W.runKernel(eo,r)}var Od=G({minimum_:BD});function WD(e,t,n){O(n==="reflect"||n==="symmetric",()=>`Invalid mode. Mode must be either reflect or symmetric. Got ${n}.`);let s=P(e,"x","mirrorPad");if(s.rank===0)throw new Error("mirrorPad(scalar) is not defined. Pass non-scalar to mirrorPad");O(t.length===s.rank,()=>`Padding doesn't match input. Must be ${s.rank}. Got ${t.length}.`);let r=n==="reflect"?1:0;for(let i=0;i<s.rank;i++)O(t[i].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),O(t[i][0]>=0&&t[i][0]<=s.shape[i]-r&&t[i][1]>=0&&t[i][1]<=s.shape[i]-r,()=>`Padding in dimension ${i} cannot be greater than or equal to ${s.shape[i]-r} or less than 0 for input of shape ${s.shape}`);let a={paddings:t,mode:n},o={x:s};return W.runKernel(to,o,a)}var Vv=G({mirrorPad_:WD});function VD(e,t){let n=P(e,"a","mod"),s=P(t,"b","mod");[n,s]=Pt(n,s);let r={a:n,b:s};return W.runKernel(vu,r)}var Md=G({mod_:VD});function UD(e){let t=P(e,"x","square"),n={};return W.runKernel("Square",{x:t},n)}var xt=G({square_:UD});function GD(e,t=null,n=!1){e=P(e,"x","moments");let s=Zs(t,e.shape),r=Wt(e,s,n),a=r.shape;n||(a=cl(r.shape,s));let o=xt(fe(ge(e,"float32"),H(r,a))),i=Wt(o,s,n);return{mean:r,variance:i}}var Sf=G({moments_:GD});function HD(e,t,n,s){let r=P(t,"data","multiRNNCell"),a=Nd(n,"c","multiRNNCell"),o=Nd(s,"h","multiRNNCell"),i=r,l=[];for(let d=0;d<e.length;d++){let p=e[d](i,a[d],o[d]);l.push(p[0]),l.push(p[1]),i=p[1]}let c=[],u=[];for(let d=0;d<l.length;d+=2)c.push(l[d]),u.push(l[d+1]);return[c,u]}var jD=G({multiRNNCell_:HD});function qD(e,t,n,s=!1){let r=P(e,"logits","multinomial"),a=r.size,o=r.rank;if(a<2)throw new Error(`Error in multinomial: you need at least 2 outcomes, but got ${a}.`);if(o>2)throw new Error(`Rank of probabilities must be 1 or 2, but is ${o}`);n=n||Math.random();let l={logits:o===1?H(r,[1,-1]):r},c={numSamples:t,seed:n,normalized:s},u=W.runKernel(Hh,l,c);return o===1?H(u,[u.size]):u}var Uv=G({multinomial_:qD});function XD(e,t){let n=P(e,"a","notEqual","string_or_numeric"),s=P(t,"b","notEqual","string_or_numeric");[n,s]=Pt(n,s),yt(n.shape,s.shape);let r={a:n,b:s};return W.runKernel(Ei,r)}var Vu=G({notEqual_:XD});function KD(e){let n={x:P(e,"x","onesLike")};return W.runKernel(_i,n)}var Os=G({onesLike_:KD});function ZD(e,t){let n=P(e,"v1","outerProduct"),s=P(t,"v2","outerProduct");O(n.rank===1&&s.rank===1,()=>`Error in outerProduct: inputs must be rank 1, but got ranks ${n.rank} and ${s.rank}.`);let r=H(n,[-1,1]),a=H(s,[1,-1]);return je(r,a)}var YD=G({outerProduct_:ZD});function JD(e,t,n=0){let s=P(e,"x","pad");if(s.rank===0)throw new Error("pad(scalar) is not defined. Pass non-scalar to pad");let r={paddings:t,constantValue:n},a={x:s};return W.runKernel(so,a,r)}var er=G({pad_:JD});function QD(e,t,n=0){return O(t.length===2,()=>"Invalid number of paddings. Must be length of 2."),er(e,[t],n)}var eP=G({pad1d_:QD});function tP(e,t,n=0){return O(t.length===2&&t[0].length===2&&t[1].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),er(e,t,n)}var nP=G({pad2d_:tP});function sP(e,t,n=0){return O(t.length===3&&t[0].length===2&&t[1].length===2&&t[2].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),er(e,t,n)}var rP=G({pad3d_:sP});function aP(e,t,n=0){return O(t.length===4&&t[0].length===2&&t[1].length===2&&t[2].length===2&&t[3].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),er(e,t,n)}var oP=G({pad4d_:aP});function iP(e,t,n){let s=P(e,"x","spaceToBatchND");O(s.rank>=1+t.length,()=>`input rank ${s.rank} should be > than [blockShape] ${t.length}`),O(n.length===t.length,()=>`paddings.shape[0] ${n.length} must be equal to [blockShape] ${t.length}`),O(s.shape.reduce((o,i,l)=>l>0&&l<=t.length?o&&(i+n[l-1][0]+n[l-1][1])%t[l-1]==0:o,!0),()=>`input spatial dimensions ${s.shape.slice(1)} with paddings ${n.toString()} must be divisible by blockShapes ${t.toString()}`);let r={x:s},a={blockShape:t,paddings:n};return W.runKernel(Ui,r,a)}var Cf=G({spaceToBatchND_:iP});function lP(e,t,n,s,r,a){r==null&&(r=[1,1]),a==null&&(a=1),s===0&&(s="valid");let o=P(e,"x","maxPool"),i=o,l=!1;o.rank===3&&(l=!0,i=H(o,[1,o.shape[0],o.shape[1],o.shape[2]])),O(_r(a,r),()=>`Error in pool: Either strides or dilations must be 1. Got strides ${a} and dilations '${r}'`);let c=hv(i.shape,t,a,r,s),u=[c.dilationHeight,c.dilationWidth],d;s==="same"?d=cP([c.filterHeight,c.filterWidth],u):d=[[0,0],[0,0]];let p=u[0]===1&&u[1]===1,[h,f]=uP([c.inHeight,c.inWidth],u,d),m=p?s:"valid",g=p?i:Cf(i,u,h),x=(n==="avg"?()=>gf(g,t,a,m):()=>If(g,t,a,m))(),y=p?x:Af(x,u,f);return l?H(y,[y.shape[1],y.shape[2],y.shape[3]]):y}function uP(e,t,n){let s=n.map(u=>u[0]),r=n.map(u=>u[1]),a=e.concat(s,r),o=t.map((u,d)=>(u-a[d]%u)%u),i=r.map((u,d)=>u+o[d]),l=t.map((u,d)=>[s[d],i[d]]),c=t.map((u,d)=>[0,o[d]]);return[l,c]}function cP(e,t){let s=e.map((o,i)=>o+(o-1)*(t[i]-1)).map(o=>o-1),r=s.map(o=>Math.floor(o/2)),a=s.map((o,i)=>o-r[i]);return s.map((o,i)=>[r[i],a[i]])}var dP=G({pool_:lP});function pP(e,t){let n=P(e,"base","pow"),s=P(t,"exp","pow");[n,s]=Pt(n,s);let r={a:n,b:s};return W.runKernel(ro,r)}var Do=G({pow_:pP});function hP(e,t){let n=P(e,"x","prelu"),s=P(t,"alpha","prelu"),r={x:n,alpha:s};return W.runKernel(ao,r)}var Tf=G({prelu_:hP});function fP(e,t=null,n=!1){let s=P(e,"x","prod");s.dtype==="bool"&&(s=ge(s,"int32"));let r={x:s},a={axis:t,keepDims:n};return W.runKernel(Fi,r,a)}var y1=G({prod_:fP});function mP(e,t,n){let s=Gt(e),r=null;if(n==null||n==="float32")r=new Float32Array(s);else if(n==="int32")r=new Int32Array(s);else if(n==="bool")r=new Uint8Array(s);else throw new Error(`Unknown data type ${n}`);for(let a=0;a<s;a++)r[a]=t();return W.makeTensor(r,e,n)}var gP=G({rand_:mP}),x1=li(yh()),b1=class{constructor(e,t,n,s,r){this.mean=e,this.stdDev=t,this.dtype=n,this.nextVal=NaN,this.truncated=s,this.truncated&&(this.upper=this.mean+this.stdDev*2,this.lower=this.mean-this.stdDev*2);let a=r||Math.random();this.random=x1.alea(a.toString())}nextValue(){if(!isNaN(this.nextVal)){let s=this.nextVal;return this.nextVal=NaN,s}let e,t,n=!1;for(;!n;){let s,r,a;do s=2*this.random()-1,r=2*this.random()-1,a=s*s+r*r;while(a>=1||a===0);let o=Math.sqrt(-2*Math.log(a)/a);e=this.mean+this.stdDev*s*o,t=this.mean+this.stdDev*r*o,(!this.truncated||this.isValidTruncated(e))&&(n=!0)}return(!this.truncated||this.isValidTruncated(t))&&(this.nextVal=this.convertValue(t)),this.convertValue(e)}convertValue(e){return this.dtype==null||this.dtype==="float32"?e:Math.round(e)}isValidTruncated(e){return e<=this.upper&&e>=this.lower}},AP=class{constructor(e,t,n,s){this.alpha=e,this.beta=1/t,this.dtype=n;let r=s||Math.random();this.randu=x1.alea(r.toString()),this.randn=new b1(0,1,n,!1,this.randu()),e<1?this.d=e+2/3:this.d=e-1/3,this.c=1/Math.sqrt(9*this.d)}nextValue(){let e,t,n,s,r,a;for(;;){do s=this.randn.nextValue(),a=1+this.c*s;while(a<=0);if(a*=a*a,e=s*s,t=1-.331*e*e,n=.5*e+this.d*(1-a+Math.log(a)),r=this.randu(),r<t||Math.log(r)<n)break}return a=1/this.beta*this.d*a,this.alpha<1&&(a*=Math.pow(this.randu(),1/this.alpha)),this.convertValue(a)}convertValue(e){return this.dtype==="float32"?e:Math.round(e)}},yP=class{constructor(e=0,t=1,n,s){if(this.canReturnFloat=()=>this.dtype==null||this.dtype==="float32",this.min=e,this.range=t-e,this.dtype=n,s==null&&(s=Math.random()),typeof s=="number"&&(s=s.toString()),!this.canReturnFloat()&&this.range<=1)throw new Error(`The difference between ${e} - ${t} <= 1 and dtype is not float`);this.random=x1.alea(s)}convertValue(e){return this.canReturnFloat()?e:Math.round(e)}nextValue(){return this.convertValue(this.min+this.range*this.random())}};function xP(e,t,n=1,s="float32",r){if(n==null&&(n=1),s==null&&(s="float32"),s!=="float32"&&s!=="int32")throw new Error(`Unsupported data type ${s}`);let a=new AP(t,n,s,r),o=ze(e,s);for(let i=0;i<o.values.length;i++)o.values[i]=a.nextValue();return o.toTensor()}var bP=G({randomGamma_:xP});function vP(e,t=0,n=1,s,r){if(s!=null&&s==="bool")throw new Error(`Unsupported data type ${s}`);let a=new b1(t,n,s,!1,r),o=ze(e,s);for(let i=0;i<o.values.length;i++)o.values[i]=a.nextValue();return o.toTensor()}var Gv=G({randomNormal_:vP});function wP(e,t=0,n=1,s="float32",r){let a=ze(e,s),o=new yP(t,n,null,r);for(let i=0;i<a.values.length;i++)a.values[i]=o.nextValue();return a.toTensor()}var Uu=G({randomUniform_:wP});function Gu(e,t,n=1,s="float32"){if(n===0)throw new Error("Cannot have a step of zero");let r={start:e,stop:t,step:n,dtype:s};return W.runKernel(ku,{},r)}function kP(e){let n={input:P(e,"input","real")};return W.runKernel(fd,n)}var zd=G({real_:kP});function IP(e){let n={x:P(e,"x","reciprocal")};return W.runKernel(Iu,n)}var Hv=G({reciprocal_:IP});function SP(e){let n={x:P(e,"x","relu")};return W.runKernel(oo,n)}var Pr=G({relu_:SP});function CP(e){let n={x:P(e,"x","relu6")};return W.runKernel(lo,n)}var v1=G({relu6_:CP});function TP(e,t){let s={x:P(e,"x","reverse")},r={dims:t};return W.runKernel(Mi,s,r)}var Ms=G({reverse_:TP});function NP(e){let t=P(e,"x","reverse");return O(t.rank===1,()=>`Error in reverse1D: x must be rank 1 but got rank ${t.rank}.`),Ms(t,0)}var EP=G({reverse1d_:NP});function RP(e,t){let n=P(e,"x","reverse");return O(n.rank===2,()=>`Error in reverse2D: x must be rank 2 but got rank ${n.rank}.`),Ms(n,t)}var $P=G({reverse2d_:RP});function _P(e,t){let n=P(e,"x","reverse");return O(n.rank===3,()=>`Error in reverse3D: x must be rank 3 but got rank ${n.rank}.`),Ms(n,t)}var DP=G({reverse3d_:_P});function PP(e,t){let n=P(e,"x","reverse");return O(n.rank===4,()=>`Error in reverse4D: x must be rank 4 but got rank ${n.rank}.`),Ms(n,t)}var FP=G({reverse4d_:PP});function OP(e){let n={x:P(e,"x","round")};return W.runKernel(zi,n)}var w1=G({round_:OP});function MP(e){let n={x:P(e,"x","rsqrt","float32")};return W.runKernel(uo,n)}var k1=G({rsqrt_:MP});function Se(e,t){if((_n(e)&&t!=="string"||Array.isArray(e))&&t!=="complex64")throw new Error("Error creating a new Scalar: value must be a primitive (number|boolean|string)");if(t==="string"&&_n(e)&&!(e instanceof Uint8Array))throw new Error("When making a scalar from encoded string, the value must be `Uint8Array`.");return To(e,[],[],t)}function zP(e){let n={x:P(e,"x","selu")};return W.runKernel(Cu,n)}var I1=G({selu_:zP});function LP(e,t,n,s,r,a=[1,1],o="NHWC"){let i=P(e,"x","separableConv2d"),l=P(t,"depthwiseFilter","separableConv2d"),c=P(n,"pointwiseFilter","separableConv2d"),u=i,d=!1;if(i.rank===3&&(d=!0,u=H(i,[1,i.shape[0],i.shape[1],i.shape[2]])),o==="NCHW")throw new Error("separableConv2d currently does not support dataFormat NCHW; only NHWC is supported");O(u.rank===4,()=>`Error in separableConv2d: input must be rank 4, but got rank ${u.rank}.`),O(l.rank===4,()=>`Error in separableConv2d: depthwise filter must be rank 4, but got rank ${l.rank}.`),O(c.rank===4,()=>`Error in separableConv2d: pointwise filter must be rank 4, but got rank ${l.rank}.`),O(c.shape[0]===1,()=>`Error in separableConv2d: the first dimension of pointwise filter must be 1, but got ${c.shape[0]}.`),O(c.shape[1]===1,()=>`Error in separableConv2d: the second dimension of pointwise filter must be 1, but got ${c.shape[1]}.`);let p=l.shape[2],h=l.shape[3];O(c.shape[2]===p*h,()=>`Error in separableConv2d: the third dimension of pointwise filter must be ${p*h}, but got ${c.shape[2]}.`);let f=Dd(u,l,s,r,o,a),g=$o(f,c,1,"valid",o);return d?H(g,[g.shape[1],g.shape[2],g.shape[3]]):g}var jv=G({separableConv2d_:LP});async function BP(e,t){let n=P(e,"x","setdiff1d"),s=P(t,"y","setdiff1d");O(n.dtype===s.dtype,()=>`x and y should have the same dtype, but got x (${n.dtype}) and y (${s.dtype}).`),O(n.rank===1,()=>`x should be 1D tensor, but got x (${n.shape}).`),O(s.rank===1,()=>`y should be 1D tensor, but got y (${s.shape}).`);let r=await n.data(),a=await s.data(),o=new Set(a),i=0;for(let u=0;u<r.length;u++)o.has(r[u])||i++;let l=new nn([i],n.dtype),c=new nn([i],"int32");for(let u=0,d=0;u<r.length;u++)o.has(r[u])||(l.values[d]=r[u],c.values[d]=u,d++);return[l.toTensor(),c.toTensor()]}var qv=BP;function WP(e){let n={x:P(e,"x","sign")};return W.runKernel(Tu,n)}var Xv=G({sign_:WP});function VP(e){let n={x:P(e,"x","sin","float32")};return W.runKernel(co,n)}var S1=G({sin_:VP});function UP(e){let n={x:P(e,"x","sinh")};return W.runKernel(Vi,n)}var C1=G({sinh_:UP});function GP(e,t,n){let s=P(e,"x","slice1d");return O(s.rank===1,()=>`slice1d expects a rank-1 tensor, but got a rank-${s.rank} tensor`),Fe(s,[t],[n])}var Nf=G({slice1d_:GP});function HP(e,t,n){let s=P(e,"x","slice2d");return O(s.rank===2,()=>`slice2d expects a rank-2 tensor, but got a rank-${s.rank} tensor`),Fe(s,t,n)}var T1=G({slice2d_:HP});function jP(e,t,n){let s=P(e,"x","slice3d");return O(s.rank===3,()=>`slice3d expects a rank-3 tensor, but got a rank-${s.rank} tensor`),Fe(s,t,n)}var dl=G({slice3d_:jP});function qP(e,t,n){let s=P(e,"x","slice4d");return O(s.rank===4,()=>`slice4d expects a rank-4 tensor, but got a rank-${s.rank} tensor`),Fe(s,t,n)}var pl=G({slice4d_:qP});function XP(e,t=-1){let n=P(e,"logits","softmax","float32");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and dim was ${t}`);let s={logits:n},r={dim:t};return W.runKernel(mo,s,r)}var Hu=G({softmax_:XP});function KP(e){O(e.dtype==="complex64",()=>`The dtype for tf.spectral.fft() must be complex64 but got ${e.dtype}.`);let t={input:e};return W.runKernel(zh,t)}var Ef=G({fft_:KP});function ZP(e){O(e.dtype==="complex64",()=>`The dtype for tf.spectral.ifft() must be complex64 but got ${e.dtype}.`);let t={input:e};return W.runKernel(Lh,t)}var Ld=G({ifft_:ZP});function YP(e){let t=e.shape[e.shape.length-1],n=e.size/t,s;if(t<=2){let r=H(e,[n,t]);s=Ld(r)}else{let r=[n,2*(t-1)],a=H(zd(e),[n,t]),o=H(xf(e),[n,t]),i=Ms(Fe(a,[0,1],[n,t-2]),1),l=L(Ms(Fe(o,[0,1],[n,t-2]),1),Se(-1)),c=It([a,i],1),u=It([o,l],1),d=H(Co(c,u),[r[0],r[1]]);s=Ld(d)}if(s=zd(s),e.rank===3&&e.shape[0]!==0){let r=s,a=e.shape[0];s=H(s,[a,s.shape[0]/a,s.shape[1]]),r.dispose()}return s}var N1=G({irfft_:YP});function JP(e,t,n=0){let r={x:P(e,"x","split")},a={numOrSizeSplits:t,axis:n};return W.runKernel(Gi,r,a)}var rn=G({split_:JP});function QP(e,t){O(e.dtype==="float32",()=>`The dtype for rfft() must be real value but got ${e.dtype}`);let n=e.shape[e.shape.length-1],s=e.size/n,r;if(t!=null&&t<n){let f=e.shape.map(g=>0),m=e.shape.map(g=>g);m[e.shape.length-1]=t,r=Fe(e,f,m),n=t}else if(t!=null&&t>n){let f=e.shape.map(m=>m);f[e.shape.length-1]=t-n,r=It([e,Ht(f)],e.shape.length-1),n=t}else r=e;let a=nt(r),o=H(Co(r,a),[s,n]),i=Ef(o),l=Math.floor(n/2)+1,c=zd(i),u=xf(i),d=rn(c,[l,n-l],c.shape.length-1),p=rn(u,[l,n-l],u.shape.length-1),h=r.shape.slice();return h[r.shape.length-1]=l,H(Co(d[0],p[0]),h)}var Rf=G({rfft_:QP});function eF(e){let n={x:P(e,"x","sqrt","float32")};return W.runKernel(ho,n)}var Dn=G({sqrt_:eF});function tF(e,t){let n=P(e,"a","squaredDifference"),s=P(t,"b","squaredDifference");[n,s]=Pt(n,s),yt(n.shape,s.shape);let r={a:n,b:s},a={};return W.runKernel(go,r,a)}var E1=G({squaredDifference_:tF});function nF(e,t){let n=P(e,"x","squeeze");return H(n,G5(n.shape,t).newShape)}var ut=G({squeeze_:nF});function sF(e,t=0){let n=Nd(e,"tensors","stack","string_or_numeric");O(n.length>=1,()=>"Pass at least one tensor to tf.stack"),n.length>0&&O(t<=n[0].rank,()=>"Axis must be <= rank of the tensor");let s=n,r={axis:t};return W.runKernel(Pi,s,r)}var xn=G({stack_:sF});function rF(e,t=0){let s={x:P(e,"x","step")},r={alpha:t};return W.runKernel(bo,s,r)}var Bd=G({step_:rF});function aF(e,t,n,s,r=0,a=0,o=0,i=0,l=0){let u={x:P(e,"x","stridedSlice","string_or_numeric")},d={begin:t,end:n,strides:s,beginMask:r,endMask:a,ellipsisMask:o,newAxisMask:i,shrinkAxisMask:l};return W.runKernel(Hi,u,d)}var Kv=G({stridedSlice_:aF});function oF(e){let n={x:P(e,"x","tan","float32")};return W.runKernel(ji,n)}var Zv=G({tan_:oF});function Vt(e,t){ui(e);let n=Rr(e,t);if(n.length!==1)throw new Error("tensor1d() requires values to be a flat/TypedArray");return To(e,null,n,t)}function mr(e,t,n){if(ui(e),t!=null&&t.length!==2)throw new Error("tensor2d() requires shape to have two numbers");let s=Rr(e,n);if(s.length!==2&&s.length!==1)throw new Error("tensor2d() requires values to be number[][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor2d() requires shape to be provided when `values` are a flat/TypedArray");return To(e,t,s,n)}function iF(e,t,n){if(ui(e),t!=null&&t.length!==4)throw new Error("tensor4d() requires shape to have four numbers");let s=Rr(e,n);if(s.length!==4&&s.length!==1)throw new Error("tensor4d() requires values to be number[][][][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor4d() requires shape to be provided when `values` are a flat array");return To(e,t,s,n)}function lF(e,t,n){if(ui(e),t!=null&&t.length!==5)throw new Error("tensor5d() requires shape to have five numbers");let s=Rr(e,n);if(s.length!==5&&s.length!==1)throw new Error("tensor5d() requires values to be number[][][][][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor5d() requires shape to be provided when `values` are a flat array");return To(e,t,s,n)}function uF(e,t,n){if(ui(e),t!=null&&t.length!==6)throw new Error("tensor6d() requires shape to have six numbers");let s=Rr(e,n);if(s.length!==6&&s.length!==1)throw new Error("tensor6d() requires values to be number[][][][][][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor6d() requires shape to be provided when `values` are a flat array");return t=t||s,To(e,t,s,n)}function cF(e,t=1,n=!0){let s=P(e,"x","topk");if(s.rank===0)throw new Error("topk() expects the input to be of rank 1 or higher");let r=s.shape[s.shape.length-1];if(t<0)throw new Error(`'k' passed to topk() must be >= 0 but got ${t}`);if(t>r)throw new Error(`'k' passed to topk() must be <= the last dimension (${r}) but got ${t}`);let a={x:s},o={k:t,sorted:n},[i,l]=W.runKernel(qi,a,o);return{values:i,indices:l}}var Yv=G({topk_:cF});function dF(e,t=0,n=1,s,r){if(s!=null&&s==="bool")throw new Error("Unsupported data type $ { dtype }");let a=new b1(t,n,s,!0,r),o=ze(e,s);for(let i=0;i<o.values.length;i++)o.values[i]=a.nextValue();return o.toTensor()}var $f=G({truncatedNormal_:dF});function pF(e,t=0){let n=P(e,"x","unique","string_or_numeric");O(n.rank>0,()=>"The input tensor must be at least 1D");let s={x:n},r={axis:t},[a,o]=W.runKernel(ef,s,r);return{values:a,indices:o}}var R1=G({unique_:pF});function hF(e,t,n){let s=P(e,"x","unsortedSegmentSum"),r=P(t,"segmentIds","unsortedSegmentSum","int32");O(mn(n),()=>"numSegments must be of dtype int");let a={x:s,segmentIds:r},o={numSegments:n};return W.runKernel(Ad,a,o)}var Jv=G({unsortedSegmentSum_:hF});function fF(e,t=0){let n=P(e,"x","unstack","string_or_numeric");O(t>=-n.shape.length&&t<n.shape.length,()=>`Axis = ${t} is not in [-${n.shape.length}, ${n.shape.length})`);let s={value:n},r={axis:t};return W.runKernel(Ki,s,r)}var os=G({unstack_:fF});function Qv(e,t=!0,n,s){return W.makeVariable(e,t,n,s)}function ew(e,t){let n=[];for(let a=0;a<t.length;a++)t[a]&&n.push(a);let s=ze(e,"int32"),r=ze([n.length,e.length],"int32");for(let a=0;a<n.length;a++){let o=s.indexToLoc(n[a]),i=a*e.length;r.values.set(o,i)}return r.toTensor()}async function mF(e){let t=P(e,"condition","whereAsync","bool"),n=await t.data(),s=ew(t.shape,n);return e!==t&&t.dispose(),s}var $1=mF;async function gF(e,t,n){let s=P(e,"tensor","boolMask"),r=P(t,"mask","boolMask","bool"),a=n==null?0:n,o=r.rank,i=s.shape;O(o>0,()=>"mask cannot be scalar"),Mn(i.slice(a,a+o),r.shape,"mask's shape must match the first K dimensions of tensor's shape,");let l=1;for(let m=a;m<a+o;m++)l*=i[m];let c=i.slice(0,a).concat([l],i.slice(a+o)),u=H(s,c),d=H(r,[-1]),p=await $1(d),h=ut(p,[1]),f=Bu(u,h,a);return e!==s&&s.dispose(),t!==r&&r.dispose(),h.dispose(),u.dispose(),d.dispose(),p.dispose(),f}var AF=gF;function yF(e,t="euclidean",n=null,s=!1){e=P(e,"x","norm");let r=tw(e,t,n),a=r.shape;if(s){let o=Zs(n,e.shape);a=cl(r.shape,o)}return H(r,a)}function tw(e,t,n=null){if(e.rank===0)return sn(e);if(e.rank!==1&&n===null)return tw(H(e,[-1]),t,n);if(e.rank===1||typeof n=="number"||Array.isArray(n)&&n.length===1){if(t===1)return we(sn(e),n);if(t===1/0)return yn(sn(e),n);if(t===-1/0)return _o(sn(e),n);if(t==="euclidean"||t===2)return Dn(we(Do(sn(e),Se(2,"int32")),n));throw new Error(`Error in norm: invalid ord value: ${t}`)}if(Array.isArray(n)&&n.length===2){if(t===1)return yn(we(sn(e),n[0]),n[1]-1);if(t===1/0)return yn(we(sn(e),n[1]),n[0]);if(t===-1/0)return _o(we(sn(e),n[1]),n[0]);if(t==="fro"||t==="euclidean")return Dn(we(xt(e),n));throw new Error(`Error in norm: invalid ord value: ${t}`)}throw new Error(`Error in norm: invalid axis: ${n}`)}var _1=G({norm_:yF});function xF(e,t,n,s,r=!0){let a=P(e,"v","movingAverage"),o=P(t,"x","movingAverage"),i=P(n,"decay","movingAverage");d3(a,o),O(Ca(a.shape,o.shape),()=>"Shape mismatch in v and x");let l=Se(1),c=fe(l,i),u=L(fe(o,a),c);if(r){O(s!=null,()=>"When using zeroDebias: true, step is required.");let d=P(s,"step","movingAverage");u=pe(u,fe(l,Do(i,d)))}return ue(a,u)}var bF=G({movingAverage_:xF});function vF(e,t,n){let s=P(e,"indices","scatterND","int32"),r=P(t,"updates","scatterND");q2(r,s,n);let a={indices:s,updates:r},o={shape:n};return W.runKernel(Li,a,o)}var nw=G({scatterND_:vF});function wF(e,t,n,s){if(e.dtype!=="int32")throw new Error(`tf.sparseToDense() expects the indices to be int32 type, but the dtype was ${e.dtype}.`);if(e.rank>2)throw new Error(`sparseIndices should be a scalar, vector, or matrix, but got shape ${e.shape}.`);let r=e.rank>0?e.shape[0]:1,a=e.rank>1?e.shape[1]:1;if(n.length!==a)throw new Error(`outputShape has incorrect number of elements:, ${n.length}, should be: ${a}.`);let o=t.size;if(!(t.rank===0||t.rank===1&&o===r))throw new Error(`sparseValues has incorrect shape ${t.shape}, should be [] or [${r}]`);if(t.dtype!==s.dtype)throw new Error("sparseValues.dtype must match defaultValues.dtype")}function kF(e,t,n,s=0){let r=P(e,"sparseIndices","sparseToDense","int32"),a=P(t,"sparseValues","sparseToDense"),o=P(s,"defaultValue","sparseToDense",a.dtype);wF(r,a,n,o);let i={sparseIndices:r,sparseValues:a,defaultValue:o},l={outputShape:n};return W.runKernel(md,i,l)}var D1=G({sparseToDense_:kF});function IF(e,t){let n=P(t,"indices","gatherND","int32"),r={params:P(e,"x","gatherND","string_or_numeric"),indices:n};return W.runKernel(wi,r)}var sw=G({gatherND_:IF});function SF(e,t){if(t==null)return e.shape.slice();if(Ca(e.shape,t))return t;if(e.shape.length===t.length){let n=[];for(let s=0;s<e.shape.length;s++)t[s]==null&&e.shape[s]!=null?n.push(e.shape[s]):n.push(t[s]);return n}return t}function CF(e,t,n,s){let r=P(e,"x","dropout");if(O(r.dtype==="float32",()=>`x has to be a floating point tensor since it's going to be scaled, but got a ${r.dtype} tensor instead.`),O(t>=0&&t<1,()=>`rate must be a float in the range [0, 1), but got ${t}.`),t===0)return e instanceof et?r.clone():r;let a=SF(r,n),o=1-t,i=pe(Fd(ue(Uu(a,0,1,"float32",s),o)),o);return L(r,i)}var rw=G({dropout_:CF});function aw(e){return Math.floor(Math.pow(2,Math.ceil(Math.log(e)/Math.log(2))))}function P1(e,t,n){let s=1-e%2,r=new Float32Array(e);for(let a=0;a<e;++a){let o=2*Math.PI*a/(e+s-1);r[a]=t-n*Math.cos(o)}return Vt(r,"float32")}async function TF(e,t,n=1){let s=P(e,"predictions","inTopK"),r=P(t,"targets","inTopK");O(s.rank>1,()=>`inTopK() expects the predictions to be of rank 2 or higher, but got ${s.rank}`),O(s.rank-1===r.rank,()=>`predictions rank should be 1 larger than targets rank, but got predictions rank ${s.rank} and targets rank ${r.rank}`),Mn(s.shape.slice(0,s.shape.length-1),r.shape,"predictions's shape should be align with the targets' shape, except the last dimension.");let a=s.shape[s.shape.length-1];O(n>0&&n<=a,()=>`'k' passed to inTopK() must be > 0 && <= the predictions last dimension (${a}), but got ${n}`);let o=await s.data(),i=await r.data(),[l,c]=[o.length/a,a],u=H5("bool",l);for(let d=0;d<l;d++){let p=d*c,h=o.subarray(p,p+c),f=[];for(let m=0;m<h.length;m++)f.push({value:h[m],index:m});f.sort((m,g)=>g.value-m.value),u[d]=0;for(let m=0;m<n;m++)if(f[m].index===i[d]){u[d]=1;break}}return e!==s&&s.dispose(),t!==r&&r.dispose(),pt(u,r.shape,"bool")}var NF=TF,Po={};Me(Po,{conv2d:()=>$F,depthwiseConv2d:()=>FF,matMul:()=>MF});function EF(e,t,n,s,r,a="NHWC",o){let i=e;e.rank===3&&(i=H(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=H(t,[1,t.shape[0],t.shape[1],t.shape[2]])),O(i.rank===4,()=>`Error in conv2dDerFilter: input must be rank 4, but got shape ${i.shape}.`),O(l.rank===4,()=>`Error in conv2dDerFilter: dy must be rank 4, but got shape ${l.shape}.`),O(n.length===4,()=>`Error in conv2dDerFilter: filterShape must be length 4, but got ${n}.`);let c=a==="NHWC"?i.shape[3]:i.shape[1],u=a==="NHWC"?l.shape[3]:l.shape[1];O(c===n[2],()=>`Error in conv2dDerFilter: depth of input ${c}) must match input depth in filter (${n[2]}.`),O(u===n[3],()=>`Error in conv2dDerFilter: depth of dy (${u}) must match output depth for filter (${n[3]}).`),o!=null&&O(mn(r),()=>`Error in conv2dDerFilter: pad must be an integer when using, dimRoundingMode ${o} but got pad ${r}.`);let d={x:i,dy:l},p={strides:s,pad:r,dataFormat:a,dimRoundingMode:o,filterShape:n};return W.runKernel(Nh,d,p)}var F1=G({conv2DBackpropFilter_:EF});function _f(e,t,n){if(n==null||n==="linear")return e;if(n==="relu")return L(e,Bd(t));throw new Error(`Cannot compute gradient for fused activation ${n}.`)}function Df(e,t){let n=t,s=Xt(e.shape,t.shape);return s.length>0&&(n=we(n,s)),H(n,e.shape)}function Pf(e,t,n,s){if(t==="linear")return e;if(t==="relu")return Pr(e);if(t==="elu")return Pd(e);if(t==="relu6")return v1(e);if(t==="prelu")return Tf(e,n);if(t==="leakyrelu")return bf(e,s);if(t==="sigmoid")return gs(e);throw new Error(`Unknown fused activation ${t}.`)}var Ff=(e,t)=>!(e>0)||t==="linear";function RF({x:e,filter:t,strides:n,pad:s,dataFormat:r="NHWC",dilations:a=[1,1],dimRoundingMode:o,bias:i,activation:l="linear",preluActivationWeights:c,leakyreluAlpha:u}){if(l=l||"linear",Ff(W.state.gradientDepth,l)===!1){let w=$o(e,t,n,s,r,a,o);return i!=null&&(w=ue(w,i)),Pf(w,l,c,u)}let d=P(e,"x","conv2d","float32"),p=P(t,"filter","conv2d","float32"),h=d,f=!1;d.rank===3&&(f=!0,h=H(d,[1,d.shape[0],d.shape[1],d.shape[2]])),O(h.rank===4,()=>`Error in fused conv2d: input must be rank 4, but got rank ${h.rank}.`),O(p.rank===4,()=>`Error in fused conv2d: filter must be rank 4, but got rank ${p.rank}.`),o!=null&&O(mn(s),()=>`Error in fused conv2d: pad must be an integer when using, dimRoundingMode ${o} but got pad ${s}.`),O(h.shape[3]===p.shape[2],()=>`Error in conv2d: depth of input (${h.shape[3]}) must match input depth for filter ${p.shape[2]}.`),O(_r(n,a),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`),O(r==="NHWC",()=>`Error in conv2d: got dataFormat of ${r} but only NHWC is currently supported.`);let m=$d(h.shape,p.shape,n,a,s,o),g;i!=null&&(g=P(i,"bias","fused conv2d"),[g]=Pt(g,d),yt(m.outShape,g.shape));let A;c!=null&&(A=P(c,"prelu weights","fused conv2d"));let x=(w,k)=>{let[S,N,R,M]=k,D=_f(w,R,l);O(Ro(a),()=>`Error in gradient of fused conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${a}'`);let $=o1(N.shape,D,S,n,s),T=F1(N,D,S.shape,n,s),F=[$,T];if(M!=null){let V=Df(M,D);F.push(V)}return F},y={x:h,filter:p,bias:g,preluActivationWeights:A},b={strides:n,pad:s,dataFormat:r,dilations:a,dimRoundingMode:o,activation:l,leakyreluAlpha:u};return i==null?Dr((k,S,N)=>{let R=W.runKernel(wo,y,b);return N([S,k,R]),f&&(R=H(R,[R.shape[1],R.shape[2],R.shape[3]])),{value:R,gradFunc:x}})(h,p):Dr((k,S,N,R)=>{let M=W.runKernel(wo,y,b);return R([S,k,M,N]),f&&(M=H(M,[M.shape[1],M.shape[2],M.shape[3]])),{value:M,gradFunc:x}})(h,p,g)}var $F=G({fusedConv2d_:RF});function _F(e,t,n,s,r,a=[1,1],o){let i=e;e.rank===3&&(i=H(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=H(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let c={x:i,dy:l},u={strides:s,pad:r,dimRoundingMode:o,dilations:a,filterShape:n};return W.runKernel(_h,c,u)}var ow=G({depthwiseConv2dNativeBackpropFilter_:_F});function DF(e,t,n,s,r,a=[1,1],o){let i=t,l=!1;t.rank===3&&(l=!0,i=H(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let c={dy:i,filter:n},u={strides:s,pad:r,dimRoundingMode:o,dilations:a,inputShape:e},d=W.runKernel(Dh,c,u);return l?H(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var iw=G({depthwiseConv2dNativeBackpropInput_:DF});function PF({x:e,filter:t,strides:n,pad:s,dataFormat:r="NHWC",dilations:a=[1,1],dimRoundingMode:o,bias:i,activation:l="linear",preluActivationWeights:c,leakyreluAlpha:u}){if(Ff(W.state.gradientDepth,l)===!1){let w=Dd(e,t,n,s,r,a,o);return i!=null&&(w=ue(w,i)),Pf(w,l,c,u)}let d=P(e,"x","depthwiseConv2d","float32"),p=P(t,"filter","depthwiseConv2d","float32"),h=d,f=!1;d.rank===3&&(f=!0,h=H(d,[1,d.shape[0],d.shape[1],d.shape[2]])),O(h.rank===4,()=>`Error in fused depthwiseConv2d: input must be rank 4, but got rank ${h.rank}.`),O(p.rank===4,()=>`Error in fused depthwiseConv2d: filter must be rank 4, but got rank ${p.rank}.`),O(h.shape[3]===p.shape[2],()=>`Error in fused depthwiseConv2d: number of input channels (${h.shape[3]}) must match the inChannels dimension in filter ${p.shape[2]}.`),a==null&&(a=[1,1]),O(_r(n,a),()=>`Error in fused depthwiseConv2d: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`),o!=null&&O(mn(s),()=>`Error in fused depthwiseConv2d: pad must be an integer when using dimRoundingMode ${o} but got pad ${s}.`);let m=$d(h.shape,p.shape,n,a,s,o,!0),g;i!=null&&(g=P(i,"bias","fused conv2d"),[g]=Pt(g,d),yt(m.outShape,g.shape));let A;c!=null&&(A=P(c,"prelu weights","fused depthwiseConv2d"));let x=(w,k)=>{O(Ro(a),()=>`Error in gradient of fused depthwiseConv2d: dilation rates greater than 1 are not yet supported. Got dilations '${a}'`);let[S,N,R,M]=k,D=_f(w,R,l),$=iw(N.shape,D,S,n,s,a,o),T=ow(N,D,S.shape,n,s,a,o);if(M!=null){let F=Df(g,D);return[$,T,F]}return[$,T]},y={x:h,filter:p,bias:g,preluActivationWeights:A},b={strides:n,pad:s,dataFormat:r,dilations:a,dimRoundingMode:o,activation:l,leakyreluAlpha:u};return i==null?Dr((k,S,N)=>{let R=W.runKernel(ko,y,b);return N([S,k,R]),f&&(R=H(R,[R.shape[1],R.shape[2],R.shape[3]])),{value:R,gradFunc:x}})(h,p):Dr((k,S,N,R)=>{let M=W.runKernel(ko,y,b);return R([S,k,M,N]),f&&(M=H(M,[M.shape[1],M.shape[2],M.shape[3]])),{value:M,gradFunc:x}})(h,p,g)}var FF=G({fusedDepthwiseConv2d_:PF});function OF({a:e,b:t,transposeA:n=!1,transposeB:s=!1,bias:r,activation:a="linear",preluActivationWeights:o,leakyreluAlpha:i}){if(Ff(W.state.gradientDepth,a)===!1){let D=je(e,t,n,s);return r!=null&&(D=ue(D,r)),Pf(D,a,o,i)}let l=P(e,"a","fused matMul"),c=P(t,"b","fused matMul");[l,c]=Pt(l,c);let u=n?l.shape[l.rank-2]:l.shape[l.rank-1],d=s?c.shape[c.rank-1]:c.shape[c.rank-2],p=n?l.shape[l.rank-1]:l.shape[l.rank-2],h=s?c.shape[c.rank-2]:c.shape[c.rank-1],f=l.shape.slice(0,-2),m=c.shape.slice(0,-2),g=Gt(f),A=Gt(m);O(u===d,()=>`Error in fused matMul: inner shapes (${u}) and (${d}) of Tensors with shapes ${l.shape} and ${c.shape} and transposeA=${n} and transposeB=${s} must match.`);let y=yt(l.shape.slice(0,-2),c.shape.slice(0,-2)).concat([p,h]),b=n?H(l,[g,u,p]):H(l,[g,p,u]),w=s?H(c,[A,h,d]):H(c,[A,d,h]),k;r!=null&&(k=P(r,"bias","fused matMul"),[k]=Pt(k,l),yt(y,k.shape));let S;o!=null&&(S=P(o,"prelu weights","fused matMul"));let N=(D,$)=>{let[T,F,V,X]=$,z=_f(H(D,V.shape),V,a),j,Z;if(!n&&!s?(j=je(z,F,!1,!0),Z=je(T,z,!0,!1)):!n&&s?(j=je(z,F,!1,!1),Z=je(z,T,!0,!1)):n&&!s?(j=je(F,z,!1,!0),Z=je(T,z,!1,!1)):(j=je(F,z,!0,!0),Z=je(z,T,!0,!0)),r!=null){let Q=Df(X,z);return[j,Z,Q]}else return[j,Z]},R={a:b,b:w,bias:k,preluActivationWeights:S},M={transposeA:n,transposeB:s,activation:a,leakyreluAlpha:i};return r==null?Dr(($,T,F)=>{let V=W.runKernel(vo,R,M);return F([$,T,V]),{value:H(V,y),gradFunc:N}})(b,w):Dr(($,T,F,V)=>{let X=W.runKernel(vo,R,M);return V([$,T,X,F]),{value:H(X,y),gradFunc:N}})(b,w,k)}var MF=G({fusedMatMul_:OF});function zF(e){return P1(e,.54,.46)}var LF=G({hammingWindow_:zF});function BF(e){return P1(e,.5,.5)}var lw=G({hannWindow_:BF});function WF(e,t,n,s=!1,r=0){let a=0,o=[];for(;a+t<=e.size;)o.push(Fe(e,a,t)),a+=n;if(s)for(;a<e.size;){let i=a+t-e.size,l=It([Fe(e,a,t-i),Lu([i],r)]);o.push(l),a+=n}return o.length===0?mr([],[0,t]):H(It(o),[o.length,t])}var uw=G({frame_:WF});function VF(e,t,n,s,r=lw){s==null&&(s=aw(t));let a=uw(e,t,n),o=L(a,r(t));return Rf(o,s)}var UF=G({stft_:VF});function GF(e,t,n,s,r="bilinear",a=0){let o=P(e,"image","cropAndResize"),i=P(t,"boxes","cropAndResize","float32"),l=P(n,"boxInd","cropAndResize","int32"),c=i.shape[0];O(o.rank===4,()=>`Error in cropAndResize: image must be rank 4,but got rank ${o.rank}.`),O(i.rank===2&&i.shape[1]===4,()=>`Error in cropAndResize: boxes must be have size [${c},4] but had shape ${i.shape}.`),O(l.rank===1&&l.shape[0]===c,()=>`Error in cropAndResize: boxInd must be have size [${c}] but had shape ${i.shape}.`),O(s.length===2,()=>`Error in cropAndResize: cropSize must be of length 2, but got length ${s.length}.`),O(s[0]>=1&&s[1]>=1,()=>`cropSize must be atleast [1,1], but was ${s}`),O(r==="bilinear"||r==="nearest",()=>`method must be bilinear or nearest, but was ${r}`);let u={image:o,boxes:i,boxInd:l},d={method:r,extrapolationValue:a,cropSize:s};return W.runKernel(mi,u,d)}var HF=G({cropAndResize_:GF});function jF(e){let t=P(e,"image","flipLeftRight","float32");O(t.rank===4,()=>`Error in flipLeftRight: image must be rank 4,but got rank ${t.rank}.`);let n={image:t};return W.runKernel(bi,n,{})}var qF=G({flipLeftRight_:jF});function XF(e){let t=P(e,"image","grayscaleToRGB"),n=t.rank-1,s=t.shape[n];O(t.rank>=2,()=>`Error in grayscaleToRGB: images must be at least rank 2, but got rank ${t.rank}.`),O(s===1,()=>`Error in grayscaleToRGB: last dimension of a grayscale image should be size 1, but got size ${s}.`);let r=new Array(t.rank);return r.fill(1,0,n),r[n]=3,Qs(t,r)}var KF=G({grayscaleToRGB_:XF});function ZF(e,t,n=0,s=.5){let r=P(e,"image","rotateWithOffset","float32");O(r.rank===4,()=>`Error in rotateWithOffset: image must be rank 4,but got rank ${r.rank}.`);let a={image:r},o={radians:t,fillValue:n,center:s};return W.runKernel(Yi,a,o)}var YF=G({rotateWithOffset_:ZF});function ju(e,t,n,s,r,a){s==null&&(s=.5),r==null&&(r=Number.NEGATIVE_INFINITY),a==null&&(a=0);let o=e.shape[0];return n=Math.min(n,o),O(0<=s&&s<=1,()=>`iouThreshold must be in [0, 1], but was '${s}'`),O(e.rank===2,()=>`boxes must be a 2D tensor, but was of rank '${e.rank}'`),O(e.shape[1]===4,()=>`boxes must have 4 columns, but 2nd dimension was ${e.shape[1]}`),O(t.rank===1,()=>"scores must be a 1D tensor"),O(t.shape[0]===o,()=>`scores has incompatible shape with boxes. Expected ${o}, but was ${t.shape[0]}`),O(0<=a&&a<=1,()=>`softNmsSigma must be in [0, 1], but was '${a}'`),{maxOutputSize:n,iouThreshold:s,scoreThreshold:r,softNmsSigma:a}}function JF(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY){let a=P(e,"boxes","nonMaxSuppression","float32"),o=P(t,"scores","nonMaxSuppression","float32"),i=ju(a,o,n,s,r);n=i.maxOutputSize,s=i.iouThreshold,r=i.scoreThreshold;let l={maxOutputSize:n,iouThreshold:s,scoreThreshold:r};return W.runKernel(Ri,{boxes:a,scores:o},l)}var QF=G({nonMaxSuppression_:JF});function eO(e,t,n){let s=tO(e,t,n),r=s<0?-(s+1):s;e.splice(r,0,t)}function tO(e,t,n){return sO(e,t,n||nO)}function nO(e,t){return e>t?1:e<t?-1:0}function sO(e,t,n){let s=0,r=e.length,a=0,o=!1;for(;s<r;){a=s+(r-s>>>1);let i=n(t,e[a]);i>0?s=a+1:(r=a,o=!i)}return o?s:-s-1}function cw(e,t,n,s,r){return O1(e,t,n,s,r,0)}function dw(e,t,n,s,r,a){return O1(e,t,n,s,r,0,!1,a,!0)}function pw(e,t,n,s,r,a){return O1(e,t,n,s,r,a,!0)}function O1(e,t,n,s,r,a,o=!1,i=!1,l=!1){let c=[];for(let g=0;g<t.length;g++)t[g]>r&&c.push({score:t[g],boxIndex:g,suppressBeginIndex:0});c.sort(hw);let u=a>0?-.5/a:0,d=[],p=[];for(;d.length<n&&c.length>0;){let g=c.pop(),{score:A,boxIndex:x,suppressBeginIndex:y}=g;if(A<r)break;let b=!1;for(let w=d.length-1;w>=y;--w){let k=rO(e,x,d[w]);if(k>=s){b=!0;break}if(g.score=g.score*aO(s,u,k),g.score<=r)break}g.suppressBeginIndex=d.length,b||(g.score===A?(d.push(x),p.push(g.score)):g.score>r&&eO(c,g,hw))}let h=d.length,f=n-h;i&&f>0&&(d.push(...new Array(f).fill(0)),p.push(...new Array(f).fill(0)));let m={selectedIndices:d};return o&&(m.selectedScores=p),l&&(m.validOutputs=h),m}function rO(e,t,n){let s=e.subarray(t*4,t*4+4),r=e.subarray(n*4,n*4+4),a=Math.min(s[0],s[2]),o=Math.min(s[1],s[3]),i=Math.max(s[0],s[2]),l=Math.max(s[1],s[3]),c=Math.min(r[0],r[2]),u=Math.min(r[1],r[3]),d=Math.max(r[0],r[2]),p=Math.max(r[1],r[3]),h=(i-a)*(l-o),f=(d-c)*(p-u);if(h<=0||f<=0)return 0;let m=Math.max(a,c),g=Math.max(o,u),A=Math.min(i,d),x=Math.min(l,p),y=Math.max(A-m,0)*Math.max(x-g,0);return y/(h+f-y)}function aO(e,t,n){let s=Math.exp(t*n*n);return n<=e?s:0}function hw(e,t){return e.score-t.score||e.score===t.score&&t.boxIndex-e.boxIndex}async function oO(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY){let a=P(e,"boxes","nonMaxSuppressionAsync"),o=P(t,"scores","nonMaxSuppressionAsync"),i=ju(a,o,n,s,r);n=i.maxOutputSize,s=i.iouThreshold,r=i.scoreThreshold;let l=await Promise.all([a.data(),o.data()]),c=l[0],u=l[1],{selectedIndices:d}=cw(c,u,n,s,r);return a!==e&&a.dispose(),o!==t&&o.dispose(),Vt(d,"int32")}var iO=oO;function lO(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY,a=0){let o=P(e,"boxes","nonMaxSuppression"),i=P(t,"scores","nonMaxSuppression"),l=ju(o,i,n,s,r,a);n=l.maxOutputSize,s=l.iouThreshold,r=l.scoreThreshold,a=l.softNmsSigma;let c={boxes:o,scores:i},u={maxOutputSize:n,iouThreshold:s,scoreThreshold:r,softNmsSigma:a},d=W.runKernel($i,c,u);return{selectedIndices:d[0],selectedScores:d[1]}}var uO=G({nonMaxSuppressionWithScore_:lO});async function cO(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY,a=0){let o=P(e,"boxes","nonMaxSuppressionAsync"),i=P(t,"scores","nonMaxSuppressionAsync"),l=ju(o,i,n,s,r,a);n=l.maxOutputSize,s=l.iouThreshold,r=l.scoreThreshold,a=l.softNmsSigma;let c=await Promise.all([o.data(),i.data()]),u=c[0],d=c[1],{selectedIndices:p,selectedScores:h}=pw(u,d,n,s,r,a);return o!==e&&o.dispose(),i!==t&&i.dispose(),{selectedIndices:Vt(p,"int32"),selectedScores:Vt(h)}}var dO=cO;function pO(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY,a=!1){let o=P(e,"boxes","nonMaxSuppression"),i=P(t,"scores","nonMaxSuppression"),l=ju(o,i,n,s,r,null),c=l.maxOutputSize,u=l.iouThreshold,d=l.scoreThreshold,p={boxes:o,scores:i},h={maxOutputSize:c,iouThreshold:u,scoreThreshold:d,padToMaxOutputSize:a},f=W.runKernel(wu,p,h);return{selectedIndices:f[0],validOutputs:f[1]}}var hO=G({nonMaxSuppressionPadded_:pO});async function fO(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY,a=!1){let o=P(e,"boxes","nonMaxSuppressionAsync"),i=P(t,"scores","nonMaxSuppressionAsync"),l=ju(o,i,n,s,r,null),c=l.maxOutputSize,u=l.iouThreshold,d=l.scoreThreshold,[p,h]=await Promise.all([o.data(),i.data()]),{selectedIndices:f,validOutputs:m}=dw(p,h,c,u,d,a);return o!==e&&o.dispose(),i!==t&&i.dispose(),{selectedIndices:Vt(f,"int32"),validOutputs:Se(m,"int32")}}var mO=fO;function gO(e,t,n=!1,s=!1){let r=P(e,"images","resizeBilinear");O(r.rank===3||r.rank===4,()=>`Error in resizeBilinear: x must be rank 3 or 4, but got rank ${r.rank}.`),O(t.length===2,()=>`Error in resizeBilinear: new shape must 2D, but got shape ${t}.`),O(s===!1||n===!1,()=>"Error in resizeBilinear: If halfPixelCenters is true, alignCorners must be false.");let a=r,o=!1;r.rank===3&&(o=!0,a=H(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let[]=t,i={images:a},l={alignCorners:n,halfPixelCenters:s,size:t},c=W.runKernel(io,i,l);return o?H(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var AO=G({resizeBilinear_:gO});function yO(e,t,n=!1,s=!1){let r=P(e,"images","resizeNearestNeighbor");O(r.rank===3||r.rank===4,()=>`Error in resizeNearestNeighbor: x must be rank 3 or 4, but got rank ${r.rank}.`),O(t.length===2,()=>`Error in resizeNearestNeighbor: new shape must 2D, but got shape ${t}.`),O(r.dtype==="float32"||r.dtype==="int32",()=>"`images` must have `int32` or `float32` as dtype"),O(s===!1||n===!1,()=>"Error in resizeNearestNeighbor: If halfPixelCenters is true, alignCorners must be false.");let a=r,o=!1;r.rank===3&&(o=!0,a=H(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let[]=t,i={images:a},l={alignCorners:n,halfPixelCenters:s,size:t},c=W.runKernel(Su,i,l);return o?H(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var xO=G({resizeNearestNeighbor_:yO});function bO(e,t="binary",n=!1,s=.5){let r=P(e,"image","threshold"),a=.2989,o=.587,i=.114,l=r.shape[0]*r.shape[1],c=L(Vt([s]),255),u,d,p,h;if(O(r.rank===3,()=>`Error in threshold: image must be rank 3,but got rank ${r.rank}.`),O(r.shape[2]===3||r.shape[2]===1,()=>`Error in threshold: image color channel must be equal to 3 or 1but got ${r.shape[2]}.`),O(r.dtype==="int32"||r.dtype==="float32",()=>`Error in dtype: image dtype must be int32 or float32,but got dtype ${r.dtype}.`),O(t==="otsu"||t==="binary",()=>`Method must be binary or otsu, but was ${t}`),r.shape[2]===3){[u,d,p]=rn(r,[1,1,1],-1);let g=L(u,a),A=L(d,o),x=L(p,i);h=ue(ue(g,A),x)}else h=e;if(t==="otsu"){let g=r1(ge(w1(h),"int32"),pt([]),256);c=vO(g,l)}let f=n?ul(h,c):ys(h,c);return ge(L(f,255),"int32")}function vO(e,t){let n=Vt([-1]),s=Vt([0]),r=Vt([0]),a,o,i,l,c,u;for(let d=0;d<e.size-1;d++){a=Fe(e,0,d+1),o=Fe(e,d+1),c=pe(we(a),t),u=pe(we(o),t);let p=we(L(a,Gu(0,a.size)));i=pe(p,we(a));let h=Lu(o.shape,a.size),f=ue(Gu(0,o.size),h),m=L(o,f);l=pe(we(m),we(o));let g=fe(i,l),A=fe(i,l),x=L(c,u);r=L(L(x,g),A);let y=ys(r,s);s=Wn(y,r,s),n=Wn(y,Vt([d]),n)}return n}var wO=G({threshold_:bO});function kO(e,t,n="nearest",s="constant",r=0,a){let o=P(e,"image","transform","float32"),i=P(t,"transforms","transform","float32");O(o.rank===4,()=>`Error in transform: image must be rank 4,but got rank ${o.rank}.`),O(i.rank===2&&(i.shape[0]===o.shape[0]||i.shape[0]===1)&&i.shape[1]===8,()=>"Error in transform: Input transform should be batch x 8 or 1 x 8"),O(a==null||a.length===2,()=>`Error in transform: outputShape must be [height, width] or null, but got ${a}.`);let l={image:o,transforms:i},c={interpolation:n,fillMode:s,fillValue:r,outputShape:a};return W.runKernel(Xi,l,c)}var IO=G({transform_:kO});function SO(e,t,n){O(t%1==0,()=>`bandPart(): numLower must be an integer, got ${t}.`),O(n%1==0,()=>`bandPart(): numUpper must be an integer, got ${n}.`);let s=P(e,"a","bandPart");O(s.rank>=2,()=>`bandPart(): Rank must be at least 2, got ${s.rank}.`);let r=s.shape,[a,o]=s.shape.slice(-2);if(!(t<=a))throw new Error(`bandPart(): numLower (${t}) must not be greater than the number of rows (${a}).`);if(!(n<=o))throw new Error(`bandPart(): numUpper (${n}) must not be greater than the number of columns (${o}).`);t<0&&(t=a),n<0&&(n=o);let i=H(Gu(0,a,1,"int32"),[-1,1]),l=Gu(0,o,1,"int32"),c=fe(i,l),u=fr(ul(c,Se(+t,"int32")),ll(c,Se(-n,"int32"))),d=Ht([a,o],s.dtype);return H(xn(os(H(s,[-1,a,o])).map(p=>Wn(u,p,d))),r)}var CO=G({bandPart_:SO});function TO(e){let t;if(Array.isArray(e)){t=!1,O(e!=null&&e.length>0,()=>"Gram-Schmidt process: input must not be null, undefined, or empty");let r=e[0].shape[0];for(let a=1;a<e.length;++a)O(e[a].shape[0]===r,()=>`Gram-Schmidt: Non-unique lengths found in the input vectors: (${e[a].shape[0]} vs. ${r})`)}else t=!0,e=rn(e,e.shape[0],0).map(r=>ut(r,[0]));O(e.length<=e[0].shape[0],()=>`Gram-Schmidt: Number of vectors (${e.length}) exceeds number of dimensions (${e[0].shape[0]}).`);let n=[],s=e;for(let r=0;r<e.length;++r)n.push(W.tidy(()=>{let a=s[r];if(r>0)for(let o=0;o<r;++o){let i=L(we(L(n[o],a)),n[o]);a=fe(a,i)}return pe(a,_1(a,"euclidean"))}));return t?xn(n,0):n}var NO=G({gramSchmidt_:TO});function EO(e,t=!1){if(O(e.rank>=2,()=>`qr() requires input tensor to have a rank >= 2, but got rank ${e.rank}`),e.rank===2)return fw(e,t);{let n=e.shape.slice(0,e.shape.length-2).reduce((l,c)=>l*c),s=os(H(e,[n,e.shape[e.shape.length-2],e.shape[e.shape.length-1]]),0),r=[],a=[];s.forEach(l=>{let[c,u]=fw(l,t);r.push(c),a.push(u)});let o=H(xn(r,0),e.shape),i=H(xn(a,0),e.shape);return[o,i]}}function fw(e,t=!1){return W.tidy(()=>{O(e.shape.length===2,()=>`qr2d() requires a 2D Tensor, but got a ${e.shape.length}D Tensor.`);let n=e.shape[0],s=e.shape[1],r=d1(n),a=Bn(e),o=mr([[1]],[1,1]),i=Bn(o),l=n>=s?s:n;for(let c=0;c<l;++c){let u=a,d=i,p=r;[i,a,r]=W.tidy(()=>{let h=Fe(a,[c,c],[n-c,1]),f=_1(h),m=Fe(a,[c,c],[1,1]),g=Wn(ys(m,0),mr([[-1]]),mr([[1]])),A=fe(m,L(g,f)),x=pe(h,A);x.shape[0]===1?i=Bn(o):i=It([o,Fe(x,[1,0],[x.shape[0]-1,x.shape[1]])],0);let y=Ot(pe(je(g,A),f)),b=Fe(a,[c,0],[n-c,s]),w=L(y,i),k=tt(i);if(c===0)a=fe(b,je(w,je(k,b)));else{let R=fe(b,je(w,je(k,b)));a=It([Fe(a,[0,0],[c,s]),R],0)}let S=tt(w),N=Fe(r,[0,c],[n,r.shape[1]-c]);if(c===0)r=fe(N,je(je(N,i),S));else{let R=fe(N,je(je(N,i),S));r=It([Fe(r,[0,0],[n,c]),R],1)}return[i,a,r]}),ne([u,d,p])}return!t&&n>s&&(r=Fe(r,[0,0],[n,s]),a=Fe(a,[0,0],[s,s])),[r,a]})}var RO=G({qr_:EO}),Vn;(function(e){e[e.NONE=0]="NONE",e[e.MEAN=1]="MEAN",e[e.SUM=2]="SUM",e[e.SUM_BY_NONZERO_WEIGHTS=3]="SUM_BY_NONZERO_WEIGHTS"})(Vn||(Vn={}));function $O(e,t,n=Vn.SUM_BY_NONZERO_WEIGHTS){let s=P(e,"losses","computeWeightedLoss"),r=null;t!=null&&(r=P(t,"weights","computeWeightedLoss"));let a=r==null?s:L(s,r);if(n===Vn.NONE)return a;if(n===Vn.SUM)return we(a);if(n===Vn.MEAN){if(r==null)return Wt(a);{let o=s.size/r.size,i=pe(we(a),we(r));return o>1?pe(i,Se(o)):i}}if(n===Vn.SUM_BY_NONZERO_WEIGHTS){if(r==null)return pe(we(a),Se(s.size));{let o=L(r,xs(s.shape)),i=ge(we(Vu(o,Se(0))),"float32");return pe(we(a),i)}}throw Error(`Unknown reduction: ${n}`)}var ea=G({computeWeightedLoss_:$O});function _O(e,t,n,s=Vn.SUM_BY_NONZERO_WEIGHTS){let r=P(e,"labels","absoluteDifference"),a=P(t,"predictions","absoluteDifference"),o=null;n!=null&&(o=P(n,"weights","absoluteDifference")),Mn(r.shape,a.shape,"Error in absoluteDifference: ");let i=sn(fe(r,a));return ea(i,o,s)}var DO=G({absoluteDifference_:_O});function PO(e,t,n,s,r=Vn.SUM_BY_NONZERO_WEIGHTS){let a=P(e,"labels","cosineDistance"),o=P(t,"predictions","cosineDistance"),i=null;s!=null&&(i=P(s,"weights","cosineDistance")),Mn(a.shape,o.shape,"Error in cosineDistance: ");let l=Se(1),c=fe(l,we(L(a,o),n,!0));return ea(c,i,r)}var FO=G({cosineDistance_:PO});function OO(e,t,n,s=Vn.SUM_BY_NONZERO_WEIGHTS){let r=P(e,"labels","hingeLoss"),a=P(t,"predictions","hingeLoss"),o=null;n!=null&&(o=P(n,"weights","hingeLoss")),Mn(r.shape,a.shape,"Error in hingeLoss: ");let i=Se(1);r=fe(L(Se(2),r),i);let l=Pr(fe(i,L(r,a)));return ea(l,o,s)}var MO=G({hingeLoss_:OO});function zO(e,t,n,s=1,r=Vn.SUM_BY_NONZERO_WEIGHTS){let a=P(e,"labels","huberLoss"),o=P(t,"predictions","huberLoss"),i=null;n!=null&&(i=P(n,"weights","huberLoss")),Mn(a.shape,o.shape,"Error in huberLoss: ");let l=Se(s),c=sn(fe(o,a)),u=Od(c,l),d=fe(c,u),p=ue(L(Se(.5),xt(u)),L(l,d));return ea(p,i,r)}var LO=G({huberLoss_:zO});function BO(e,t,n,s=1e-7,r=Vn.SUM_BY_NONZERO_WEIGHTS){let a=P(e,"labels","logLoss"),o=P(t,"predictions","logLoss"),i=null;n!=null&&(i=P(n,"weights","logLoss")),Mn(a.shape,o.shape,"Error in logLoss: ");let l=Se(1),c=Se(s),u=Ot(L(a,Fs(ue(o,c)))),d=L(fe(l,a),Fs(ue(fe(l,o),c))),p=fe(u,d);return ea(p,i,r)}var WO=G({logLoss_:BO});function VO(e,t,n,s=Vn.SUM_BY_NONZERO_WEIGHTS){let r=P(e,"labels","meanSquaredError"),a=P(t,"predictions","meanSquaredError"),o=null;n!=null&&(o=P(n,"weights","meanSquaredError")),Mn(r.shape,a.shape,"Error in meanSquaredError: ");let i=E1(r,a);return ea(i,o,s)}var UO=G({meanSquaredError_:VO});function GO(e,t){let n=P(e,"labels","sigmoidCrossEntropyWithLogits"),s=P(t,"logits","sigmoidCrossEntropyWithLogits");Mn(n.shape,s.shape,"Error in sigmoidCrossEntropyWithLogits: ");let r=Pr(s),a=L(s,n),o=vf(Ps(Ot(sn(s))));return ue(fe(r,a),o)}function HO(e,t,n,s=0,r=Vn.SUM_BY_NONZERO_WEIGHTS){let a=P(e,"multiClassLabels","sigmoidCrossEntropy"),o=P(t,"logits","sigmoidCrossEntropy"),i=null;if(n!=null&&(i=P(n,"weights","sigmoidCrossEntropy")),Mn(a.shape,o.shape,"Error in sigmoidCrossEntropy: "),s>0){let c=Se(s),u=Se(1),d=Se(.5);a=ue(L(a,fe(u,c)),L(d,c))}let l=GO(a,o);return ea(l,i,r)}var jO=G({sigmoidCrossEntropy_:HO});function qO(e,t,n=-1){if(n===-1&&(n=t.rank-1),n!==t.rank-1)throw Error(`Softmax cross entropy along a non-last dimension is not yet supported. Labels / logits was rank ${t.rank} and dim was ${n}`);return Dr((r,a,o)=>{let l=Bv(a,[n],!0),c=fe(ge(a,"float32"),l);o([r,c]);let u=Ot(L(c,r));return{value:we(u,[n]),gradFunc:(h,f)=>{let[m,g]=f,A=cl(h.shape,[n]);return[L(H(h,A),fe(ge(m,"float32"),Ps(g))),L(H(h,A),fe(Ps(g),ge(m,"float32")))]}}})(e,t)}function XO(e,t,n,s=0,r=Vn.SUM_BY_NONZERO_WEIGHTS){let a=P(e,"onehotLabels","softmaxCrossEntropy"),o=P(t,"logits","softmaxCrossEntropy"),i=null;if(n!=null&&(i=P(n,"weights","softmaxCrossEntropy")),Mn(a.shape,o.shape,"Error in softmaxCrossEntropy: "),s>0){let c=Se(s),u=Se(1),d=Se(a.shape[1]);a=ue(L(a,fe(u,c)),pe(c,d))}let l=qO(a,o);return ea(l,i,r)}var KO=G({softmaxCrossEntropy_:XO});function ZO(e,t,n,s){let r=P(e,"indices","sparseFillEmptyRows"),a=P(t,"values","sparseFillEmptyRows"),o=P(n,"denseShape","sparseFillEmptyRows"),i=P(s,"defaultValue","sparseFillEmptyRows",a.dtype);if(r.rank!==2)throw new Error(`Indices should be Tensor2D but received shape
${r.shape}`);if(a.rank!==1)throw new Error(`Values should be Tensor1D but received shape ${a.shape}`);if(o.rank!==1)throw new Error(`Dense shape should be Tensor1D but received shape ${o.shape}`);if(i.rank!==0)throw new Error(`Default value should be a scalar but received shape ${i.shape}`);let l={indices:r,values:a,denseShape:o,defaultValue:i},c=W.runKernel(Xh,l);return{outputIndices:c[0],outputValues:c[1],emptyRowIndicator:c[2],reverseIndexMap:c[3]}}var YO=G({sparseFillEmptyRows_:ZO});function JO(e,t,n){let s=P(e,"inputIndices","sparseReshape"),r=P(t,"inputShape","sparseReshape"),a=P(n,"newShape","sparseReshape");if(s.rank!==2)throw new Error(`Input indices should be Tensor2D but received shape
${s.shape}`);if(r.rank!==1)throw new Error(`Input shape should be Tensor1D but received shape ${r.shape}`);if(a.rank!==1)throw new Error(`New shape should be Tensor1D but received shape ${a.shape}`);let o={inputIndices:s,inputShape:r,newShape:a},i=W.runKernel(Kh,o);return{outputIndices:i[0],outputShape:i[1]}}var QO=G({sparseReshape_:JO});function eM(e,t,n){let s=P(e,"data","sparseSegmentMean"),r=P(t,"indices","sparseSegmentMean"),a=P(n,"segmentIds","sparseSegmentMean");if(s.rank<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.rank!==1)throw new Error(`Indices should be Tensor1D but received shape
${r.shape}`);if(a.rank!==1)throw new Error(`Segment ids should be Tensor1D but received shape
${a.shape}`);let o={data:s,indices:r,segmentIds:a};return W.runKernel(Zh,o)}var tM=G({sparseSegmentMean_:eM});function nM(e,t,n){let s=P(e,"data","sparseSegmentSum"),r=P(t,"indices","sparseSegmentSum"),a=P(n,"segmentIds","sparseSegmentSum");if(s.rank<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.rank!==1)throw new Error(`Indices should be Tensor1D but received shape
${r.shape}`);if(a.rank!==1)throw new Error(`Segment ids should be Tensor1D but received shape
${a.shape}`);let o={data:s,indices:r,segmentIds:a};return W.runKernel(Yh,o)}var sM=G({sparseSegmentSum_:nM});function rM(e,t,n,s,r,a,o,i){let l=P(e,"data","stringNGrams","string");if(l.dtype!=="string")throw new Error("Data must be of datatype string");if(l.shape.length!==1)throw new Error(`Data must be a vector, saw: ${l.shape}`);let c=P(t,"dataSplits","stringNGrams");if(c.dtype!=="int32")throw new Error("Data splits must be of datatype int32");let u={separator:n,nGramWidths:s,leftPad:r,rightPad:a,padWidth:o,preserveShortSequences:i},d={data:l,dataSplits:c},p=W.runKernel(gd,d,u);return{nGrams:p[0],nGramsSplits:p[1]}}var aM=G({stringNGrams_:rM});function oM(e,t,n=!0){let s=P(e,"input","stringSplit","string"),r=P(t,"delimiter","stringSplit","string");if(s.rank!==1)throw new Error(`Input should be Tensor1D but received shape ${s.shape}`);if(r.rank!==0)throw new Error(`Delimiter should be a scalar but received shape ${r.shape}`);let a={skipEmpty:n},o={input:s,delimiter:r},i=W.runKernel(Jh,o,a);return{indices:i[0],values:i[1],shape:i[2]}}var iM=G({stringSplit_:oM});function lM(e,t){let n=P(e,"input","stringToHashBucketFast","string"),s={numBuckets:t};if(t<=0)throw new Error("Number of buckets must be at least 1");let r={input:n};return W.runKernel(Qh,r,s)}var uM=G({stringToHashBucketFast_:lM}),cM={fft:Ef,ifft:Ld,rfft:Rf,irfft:N1},dM={hammingWindow:LF,hannWindow:lw,frame:uw,stft:UF},Ce={flipLeftRight:qF,grayscaleToRGB:KF,resizeNearestNeighbor:xO,resizeBilinear:AO,rotateWithOffset:YF,cropAndResize:HF,nonMaxSuppression:QF,nonMaxSuppressionAsync:iO,nonMaxSuppressionWithScore:uO,nonMaxSuppressionWithScoreAsync:dO,nonMaxSuppressionPadded:hO,nonMaxSuppressionPaddedAsync:mO,threshold:wO,transform:IO},mw={bandPart:CO,gramSchmidt:NO,qr:RO},pM={absoluteDifference:DO,computeWeightedLoss:ea,cosineDistance:FO,hingeLoss:MO,huberLoss:LO,logLoss:WO,meanSquaredError:UO,sigmoidCrossEntropy:jO,softmaxCrossEntropy:KO},Wd={sparseFillEmptyRows:YO,sparseReshape:QO,sparseSegmentMean:tM,sparseSegmentSum:sM},Of={stringNGrams:aM,stringSplit:iM,stringToHashBucketFast:uM},ta=class extends J3{minimize(e,t=!1,n){let{value:s,grads:r}=this.computeGradients(e,n);if(n!=null){let a=n.map(o=>({name:o.name,tensor:r[o.name]}));this.applyGradients(a)}else this.applyGradients(r);return ne(r),t?s:(s.dispose(),null)}get iterations(){return this.iterations_==null&&(this.iterations_=0),this.iterations_}incrementIterations(){this.iterations_=this.iterations+1}computeGradients(e,t){return Ov(e,t)}dispose(){this.iterations_!=null&&ne(this.iterations_)}async saveIterations(){return this.iterations_==null&&(this.iterations_=0),{name:"iter",tensor:Se(this.iterations_,"int32")}}async getWeights(){throw new Error("getWeights() is not implemented for this optimizer yet.")}async setWeights(e){throw new Error(`setWeights() is not implemented for this optimizer class ${this.getClassName()}`)}async extractIterations(e){return this.iterations_=(await e[0].tensor.data())[0],e.slice(1)}};Object.defineProperty(ta,Symbol.hasInstance,{value:e=>e.minimize!=null&&e.computeGradients!=null&&e.applyGradients!=null});var Mf=class extends ta{constructor(e,t,n=null){super();this.learningRate=e,this.rho=t,this.epsilon=n,this.accumulatedGrads=[],this.accumulatedUpdates=[],n==null&&(this.epsilon=W.backend.epsilon())}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=W.registeredVariables[n],a=!1;this.accumulatedGrads[s]==null&&(this.accumulatedGrads[s]={originalName:`${n}/accum_grad`,variable:K(()=>nt(r).variable(a))}),this.accumulatedUpdates[s]==null&&(this.accumulatedUpdates[s]={originalName:`${n}/accum_var`,variable:K(()=>nt(r).variable(a))});let o=Array.isArray(e)?e[s].tensor:e[n];if(o==null)return;let i=this.accumulatedGrads[s].variable,l=this.accumulatedUpdates[s].variable;K(()=>{let c=ue(L(i,this.rho),L(xt(o),1-this.rho)),u=L(pe(Dn(ue(l,this.epsilon)),Dn(ue(i,this.epsilon))),o),d=ue(L(l,this.rho),L(xt(u),1-this.rho));i.assign(c),l.assign(d);let p=ue(L(u,-this.learningRate),r);r.assign(p)})}),this.incrementIterations()}dispose(){this.accumulatedUpdates!=null&&(ne(this.accumulatedGrads.map(e=>e.variable)),ne(this.accumulatedUpdates.map(e=>e.variable)))}async getWeights(){let e=[...this.accumulatedGrads,...this.accumulatedUpdates];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=e.length/2,n=!1;this.accumulatedGrads=e.slice(0,t).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})),this.accumulatedUpdates=e.slice(t,t*2).map(s=>({originalName:s.name,variable:s.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,rho:this.rho,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.rho,t.epsilon)}};Mf.className="Adadelta";Eo(Mf);var zf=class extends ta{constructor(e,t=.1){super();this.learningRate=e,this.initialAccumulatorValue=t,this.accumulatedGrads=[]}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=W.registeredVariables[n];if(this.accumulatedGrads[s]==null){let i=!1;this.accumulatedGrads[s]={originalName:`${n}/accumulator`,variable:K(()=>Lu(r.shape,this.initialAccumulatorValue).variable(i))}}let a=Array.isArray(e)?e[s].tensor:e[n];if(a==null)return;let o=this.accumulatedGrads[s].variable;K(()=>{let i=ue(o,xt(a));o.assign(i);let l=ue(L(pe(a,Dn(ue(i,W.backend.epsilon()))),-this.learningRate),r);r.assign(l)})}),this.incrementIterations()}dispose(){this.accumulatedGrads!=null&&ne(this.accumulatedGrads.map(e=>e.variable))}async getWeights(){return[await this.saveIterations()].concat(this.accumulatedGrads.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulatedGrads=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,initialAccumulatorValue:this.initialAccumulatorValue}}static fromConfig(e,t){return new e(t.learningRate,t.initialAccumulatorValue)}};zf.className="Adagrad";Eo(zf);var Lf=class extends ta{constructor(e,t,n,s=null){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=s,this.accumulatedFirstMoment=[],this.accumulatedSecondMoment=[],K(()=>{this.accBeta1=Se(t).variable(),this.accBeta2=Se(n).variable()}),s==null&&(this.epsilon=W.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);K(()=>{let n=fe(1,this.accBeta1),s=fe(1,this.accBeta2);t.forEach((r,a)=>{let o=W.registeredVariables[r],i=!1;this.accumulatedFirstMoment[a]==null&&(this.accumulatedFirstMoment[a]={originalName:`${r}/m`,variable:K(()=>nt(o).variable(i))}),this.accumulatedSecondMoment[a]==null&&(this.accumulatedSecondMoment[a]={originalName:`${r}/v`,variable:K(()=>nt(o).variable(i))});let l=Array.isArray(e)?e[a].tensor:e[r];if(l==null)return;let c=this.accumulatedFirstMoment[a].variable,u=this.accumulatedSecondMoment[a].variable,d=ue(L(c,this.beta1),L(l,1-this.beta1)),p=ue(L(u,this.beta2),L(xt(l),1-this.beta2)),h=pe(d,n),f=pe(p,s);c.assign(d),u.assign(p);let m=ue(L(pe(h,ue(Dn(f),this.epsilon)),-this.learningRate),o);o.assign(m)}),this.accBeta1.assign(L(this.accBeta1,this.beta1)),this.accBeta2.assign(L(this.accBeta2,this.beta2))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.accBeta2.dispose(),this.accumulatedFirstMoment!=null&&ne(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedSecondMoment!=null&&ne(this.accumulatedSecondMoment.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedFirstMoment,...this.accumulatedSecondMoment];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e),K(()=>{this.accBeta1.assign(Do(this.beta1,this.iterations_+1)),this.accBeta2.assign(Do(this.beta2,this.iterations_+1))});let t=e.length/2,n=!1;this.accumulatedFirstMoment=e.slice(0,t).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})),this.accumulatedSecondMoment=e.slice(t,t*2).map(s=>({originalName:s.name,variable:s.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon)}};Lf.className="Adam";Eo(Lf);var Bf=class extends ta{constructor(e,t,n,s=null,r=0){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=s,this.decay=r,this.accumulatedFirstMoment=[],this.accumulatedWeightedInfNorm=[],K(()=>{this.iteration=Se(0).variable(),this.accBeta1=Se(t).variable()}),s==null&&(this.epsilon=W.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);K(()=>{let n=fe(1,this.accBeta1),s=pe(-this.learningRate,ue(L(this.iteration,this.decay),1));t.forEach((r,a)=>{let o=W.registeredVariables[r],i=!1;this.accumulatedFirstMoment[a]==null&&(this.accumulatedFirstMoment[a]={originalName:`${r}/m`,variable:nt(o).variable(i)}),this.accumulatedWeightedInfNorm[a]==null&&(this.accumulatedWeightedInfNorm[a]={originalName:`${r}/v`,variable:nt(o).variable(i)});let l=Array.isArray(e)?e[a].tensor:e[r];if(l==null)return;let c=this.accumulatedFirstMoment[a].variable,u=this.accumulatedWeightedInfNorm[a].variable,d=ue(L(c,this.beta1),L(l,1-this.beta1)),p=L(u,this.beta2),h=sn(l),f=Qr(p,h);c.assign(d),u.assign(f);let m=ue(L(pe(s,n),pe(d,ue(f,this.epsilon))),o);o.assign(m)}),this.iteration.assign(ue(this.iteration,1)),this.accBeta1.assign(L(this.accBeta1,this.beta1))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.iteration.dispose(),this.accumulatedFirstMoment!=null&&ne(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedWeightedInfNorm!=null&&ne(this.accumulatedWeightedInfNorm.map(e=>e.variable))}async getWeights(){throw new Error("getWeights() is not implemented for Adamax yet.")}async setWeights(e){throw new Error("setWeights() is not implemented for Adamax yet.")}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon,decay:this.decay}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon,t.decay)}};Bf.className="Adamax";Eo(Bf);var Vd=class extends ta{constructor(e){super();this.learningRate=e,this.setLearningRate(e)}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=Array.isArray(e)?e[s].tensor:e[n];if(r==null)return;let a=W.registeredVariables[n];K(()=>{let o=ue(L(this.c,r),a);a.assign(o)})}),this.incrementIterations()}setLearningRate(e){this.learningRate=e,this.c!=null&&this.c.dispose(),this.c=An(Se(-e))}dispose(){this.c.dispose()}async getWeights(){return[await this.saveIterations()]}async setWeights(e){if(e=await this.extractIterations(e),e.length!==0)throw new Error("SGD optimizer does not have settable weights.")}getConfig(){return{learningRate:this.learningRate}}static fromConfig(e,t){return new e(t.learningRate)}};Vd.className="SGD";Eo(Vd);var Wf=class extends Vd{constructor(e,t,n=!1){super(e);this.learningRate=e,this.momentum=t,this.useNesterov=n,this.accumulations=[],this.m=Se(this.momentum)}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=W.registeredVariables[n];if(this.accumulations[s]==null){let i=!1;this.accumulations[s]={originalName:`${n}/momentum`,variable:K(()=>nt(r).variable(i))}}let a=this.accumulations[s].variable,o=Array.isArray(e)?e[s].tensor:e[n];o!=null&&K(()=>{let i,l=ue(L(this.m,a),o);this.useNesterov?i=ue(L(this.c,ue(o,L(l,this.m))),r):i=ue(L(this.c,l),r),a.assign(l),r.assign(i)})}),this.incrementIterations()}dispose(){this.m.dispose(),this.accumulations!=null&&ne(this.accumulations.map(e=>e.variable))}setMomentum(e){this.momentum=e}async getWeights(){return[await this.saveIterations()].concat(this.accumulations.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulations=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,momentum:this.momentum,useNesterov:this.useNesterov}}static fromConfig(e,t){return new e(t.learningRate,t.momentum,t.useNesterov)}};Wf.className="Momentum";Eo(Wf);var Vf=class extends ta{constructor(e,t=.9,n=0,s=null,r=!1){super();if(this.learningRate=e,this.decay=t,this.momentum=n,this.epsilon=s,this.accumulatedMeanSquares=[],this.accumulatedMoments=[],this.accumulatedMeanGrads=[],this.centered=r,s==null&&(this.epsilon=W.backend.epsilon()),e==null)throw new Error("learningRate for RMSPropOptimizer must be defined.")}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=W.registeredVariables[n],a=!1;this.accumulatedMeanSquares[s]==null&&(this.accumulatedMeanSquares[s]={originalName:`${n}/rms`,variable:K(()=>nt(r).variable(a))}),this.accumulatedMoments[s]==null&&(this.accumulatedMoments[s]={originalName:`${n}/momentum`,variable:K(()=>nt(r).variable(a))}),this.accumulatedMeanGrads[s]==null&&this.centered&&(this.accumulatedMeanGrads[s]={originalName:`${n}/mg`,variable:K(()=>nt(r).variable(a))});let o=Array.isArray(e)?e[s].tensor:e[n];if(o==null)return;let i=this.accumulatedMeanSquares[s].variable,l=this.accumulatedMoments[s].variable;K(()=>{let c=ue(L(i,this.decay),L(xt(o),1-this.decay));if(this.centered){let u=this.accumulatedMeanGrads[s].variable,d=ue(L(u,this.decay),L(o,1-this.decay)),p=pe(L(o,this.learningRate),Dn(fe(c,ue(xt(d),this.epsilon)))),h=ue(L(l,this.momentum),p);i.assign(c),u.assign(d),l.assign(h);let f=fe(r,h);r.assign(f)}else{let u=ue(L(i,this.decay),L(xt(o),1-this.decay)),d=ue(L(l,this.momentum),pe(L(o,this.learningRate),Dn(ue(u,this.epsilon))));i.assign(u),l.assign(d);let p=fe(r,d);r.assign(p)}})}),this.incrementIterations()}dispose(){this.accumulatedMeanSquares!=null&&ne(this.accumulatedMeanSquares.map(e=>e.variable)),this.accumulatedMeanGrads!=null&&this.centered&&ne(this.accumulatedMeanGrads.map(e=>e.variable)),this.accumulatedMoments!=null&&ne(this.accumulatedMoments.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedMeanSquares,...this.accumulatedMoments];return this.centered&&e.push(...this.accumulatedMeanGrads),[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=this.centered?e.length/3:e.length/2,n=!1;this.accumulatedMeanSquares=e.slice(0,t).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})),this.accumulatedMoments=e.slice(t,t*2).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})),this.centered&&(this.accumulatedMeanGrads=e.slice(t*2,t*3).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})))}getConfig(){return{learningRate:this.learningRate,decay:this.decay,momentum:this.momentum,epsilon:this.epsilon,centered:this.centered}}static fromConfig(e,t){return new e(t.learningRate,t.decay,t.momentum,t.epsilon,t.centered)}};Vf.className="RMSProp";Eo(Vf);var Fo=class{static sgd(e){return new Vd(e)}static momentum(e,t,n=!1){return new Wf(e,t,n)}static rmsprop(e,t=.9,n=0,s=null,r=!1){return new Vf(e,t,n,s,r)}static adam(e=.001,t=.9,n=.999,s=null){return new Lf(e,t,n,s)}static adadelta(e=.001,t=.95,n=null){return new Mf(e,t,n)}static adamax(e=.002,t=.9,n=.999,s=null,r=0){return new Bf(e,t,n,s,r)}static adagrad(e,t=.1){return new zf(e,t)}},hl={sgd:Fo.sgd,momentum:Fo.momentum,adadelta:Fo.adadelta,adagrad:Fo.adagrad,rmsprop:Fo.rmsprop,adamax:Fo.adamax,adam:Fo.adam},hM=(()=>typeof requestAnimationFrame!="undefined"?requestAnimationFrame:typeof setImmediate!="undefined"?setImmediate:e=>e())();function gw(){return new Promise(e=>hM(()=>e()))}var E={};Me(E,{ERF_A1:()=>IM,ERF_A2:()=>SM,ERF_A3:()=>CM,ERF_A4:()=>TM,ERF_A5:()=>NM,ERF_P:()=>kM,PARALLELIZE_THRESHOLD:()=>M1,SELU_SCALE:()=>yw,SELU_SCALEALPHA:()=>Aw,applyActivation:()=>Pf,assertAndGetBroadcastShape:()=>yt,assertAxesAreInnerMostDims:()=>SD,assertParamsConsistent:()=>fM,assignToTypedArray:()=>PM,axesAreInnerMostDims:()=>f1,calculateShapes:()=>W3,checkEinsumDimSizes:()=>BM,combineLocations:()=>Mv,complexWithEvenIndex:()=>$M,complexWithOddIndex:()=>_M,computeConv2DInfo:()=>$d,computeConv3DInfo:()=>fv,computeDefaultPad:()=>t1,computeDilation2DInfo:()=>H$,computeOptimalWindowSize:()=>gM,computeOutAndReduceShapes:()=>zv,computeOutShape:()=>mM,computePool2DInfo:()=>hv,computePool3DInfo:()=>j$,convertConv2DDataFormat:()=>mv,decodeEinsumEquation:()=>zM,eitherStridesOrDilationsAreOne:()=>_r,expandShapeToKeepDim:()=>cl,exponent:()=>OM,exponents:()=>FM,fromStringArrayToUint8:()=>KM,fromUint8ToStringArray:()=>XM,getAxesPermutation:()=>Lv,getBroadcastDims:()=>M3,getComplexWithIndex:()=>DM,getEinsumComputePath:()=>WM,getEinsumPermutation:()=>LM,getFusedBiasGradient:()=>Df,getFusedDyActivation:()=>_f,getImageCenter:()=>AM,getInnerMostAxes:()=>CD,getPermuted:()=>xM,getReductionAxes:()=>Xt,getReshaped:()=>yM,getReshapedPermuted:()=>bM,getSliceBeginCoords:()=>vM,getSliceSize:()=>wM,getUndoAxesPermutation:()=>m1,isIdentityPermutation:()=>VM,log:()=>x9,mergeRealAndImagArrays:()=>EM,prepareAndValidate:()=>B3,prepareSplitSize:()=>GM,segment_util:()=>vw,shouldFuse:()=>Ff,slice_util:()=>Ft,splitRealAndImagArrays:()=>RM,tupleValuesAreOne:()=>Ro,upcastType:()=>Ln,validateInput:()=>q2,validateUpdateShape:()=>j2,warn:()=>Io});function fM(e,t){let n=e[0].length;e.forEach((r,a)=>{O(r.length===n,()=>`Error in concat${n}D: rank of tensors[${a}] must be the same as the rank of the rest (${n})`)}),O(t>=0&&t<n,()=>`Error in concat${n}D: axis must be between 0 and ${n-1}.`);let s=e[0];e.forEach((r,a)=>{for(let o=0;o<n;o++)O(o===t||r[o]===s[o],()=>`Error in concat${n}D: Shape of tensors[${a}] (${r}) does not match the shape of the rest (${s}) along the non-concatenated axis ${a}.`)})}function mM(e,t){let n=e[0].slice();for(let s=1;s<e.length;s++)n[t]+=e[s][t];return n}var M1=30;function gM(e){return e<=M1?e:wh(e,Math.floor(Math.sqrt(e)))}function AM(e,t,n){let s=n*(typeof e=="number"?e:e[0]),r=t*(typeof e=="number"?e:e[1]);return[s,r]}function yM(e,t,n,s=!0){let r=[];if(s)r=r.concat(t.slice(0)),r.push(e[0]/n),r=r.concat(e.slice(1));else{r=r.concat(e[0]);let a=t.length;for(let o=0;o<a;++o)r=r.concat([e[o+1]/t[o],t[o]]);r=r.concat(e.slice(a+1))}return r}function xM(e,t,n=!0){let s=[];if(n){s.push(t);for(let r=t+1;r<e;++r)r<=2*t?(s.push(r),s.push(r-(t+1))):s.push(r)}else{let r=[],a=[];for(let o=1;o<e;++o)o>=t*2+1||o%2==1?a.push(o):r.push(o);s.push(...r),s.push(0),s.push(...a)}return s}function bM(e,t,n,s=!0){let r=[];s?r.push(e[0]/n):r.push(e[0]*n);for(let a=1;a<e.length;++a)a<=t.length?s?r.push(t[a-1]*e[a]):r.push(e[a]/t[a-1]):r.push(e[a]);return r}function vM(e,t){let n=[0];for(let s=0;s<t;++s)n.push(e[s][0]);return n}function wM(e,t,n){let s=e.slice(0,1);for(let r=0;r<n;++r)s.push(e[r+1]-t[r][0]-t[r][1]);return s}var Aw=1.7580993408473768,yw=1.0507009873554805,kM=.3275911,IM=.254829592,SM=-.284496736,CM=1.421413741,TM=-1.453152027,NM=1.061405429;function EM(e,t){if(e.length!==t.length)throw new Error(`Cannot merge real and imag arrays of different lengths. real:${e.length}, imag: ${t.length}.`);let n=new Float32Array(e.length*2);for(let s=0;s<n.length;s+=2)n[s]=e[s/2],n[s+1]=t[s/2];return n}function RM(e){let t=new Float32Array(e.length/2),n=new Float32Array(e.length/2);for(let s=0;s<e.length;s+=2)t[s/2]=e[s],n[s/2]=e[s+1];return{real:t,imag:n}}function $M(e){let t=Math.ceil(e.length/4),n=new Float32Array(t),s=new Float32Array(t);for(let r=0;r<e.length;r+=4)n[Math.floor(r/4)]=e[r],s[Math.floor(r/4)]=e[r+1];return{real:n,imag:s}}function _M(e){let t=Math.floor(e.length/4),n=new Float32Array(t),s=new Float32Array(t);for(let r=2;r<e.length;r+=4)n[Math.floor(r/4)]=e[r],s[Math.floor(r/4)]=e[r+1];return{real:n,imag:s}}function DM(e,t){let n=e[t*2],s=e[t*2+1];return{real:n,imag:s}}function PM(e,t,n,s){e[s*2]=t,e[s*2+1]=n}function FM(e,t){let n=new Float32Array(e/2),s=new Float32Array(e/2);for(let r=0;r<Math.ceil(e/2);r++){let a=(t?2:-2)*Math.PI*(r/e);n[r]=Math.cos(a),s[r]=Math.sin(a)}return{real:n,imag:s}}function OM(e,t,n){let s=(n?2:-2)*Math.PI*(e/t),r=Math.cos(s),a=Math.sin(s);return{real:r,imag:a}}var z1="->",MM=/->/g,xw=",",bw="...";function zM(e,t){e=e.replace(/\s/g,"");let n=(e.length-e.replace(MM,"").length)/z1.length;if(n<1)throw new Error("Equations without an arrow are not supported.");if(n>1)throw new Error(`Equation must contain exactly one arrow ("${z1}").`);let[s,r]=e.split(z1);O(s.indexOf(bw)===-1,()=>`The ellipsis notation ("${bw}") is not supported yet.`);let a=s.split(xw),o=a.length;if(t!==o)throw new Error(`Expected ${o} input tensors, received ${t}`);if(o>2)throw new Error("Support for more than 2 input tensors is not implemented yet.");let i=[];for(let p=0;p<r.length;++p){let h=r[p];if(!a.some(f=>f.indexOf(h)!==-1))throw new Error(`Output subscripts contain the label ${h} not present in the input subscripts.`);i.indexOf(h)===-1&&i.push(h)}for(let p=0;p<s.length;++p){let h=s[p];i.indexOf(h)===-1&&h!==xw&&i.push(h)}let l=new Array(a.length);for(let p=0;p<o;++p){if(new Set(a[p].split("")).size!==a[p].length)throw new Error(`Found duplicate axes in input component ${a[p]}. Support for duplicate axes in input is not implemented yet.`);l[p]=[];for(let h=0;h<a[p].length;++h)l[p].push(i.indexOf(a[p][h]))}let c=i.length,u=r.length,d=[];for(let p=u;p<c;++p)d.push(p);return{allDims:i,summedDims:d,idDims:l}}function LM(e,t){let n=new Array(e);n.fill(-1);for(let r=0;r<t.length;++r)n[t[r]]=r;let s=[];for(let r=0;r<e;++r)n[r]===-1&&s.push(r);return n=n.filter(r=>r!==-1),{permutationIndices:n,expandDims:s}}function BM(e,t,n){let s=new Array(e);for(let r=0;r<n.length;++r){let a=n[r].shape;for(let o=0;o<t[r].length;++o)s[t[r][o]]===void 0?s[t[r][o]]=a[o]:O(s[t[r][o]]===a[o],()=>`Expected dimension ${s[t[r][o]]} at axis ${o} of input shaped ${JSON.stringify(a)}, but got dimension ${a[o]}`)}}function WM(e,t){let n=e,s=[],r=0;e.length===0&&n.push(-1),r=e.length+1;for(let o=0;o<r;++o)s.push([]);let a=[];for(let o=0;o<n.length;++o){let i=n[o],l=UM(t,i);for(let c of l)a.indexOf(c)===-1&&(s[o].push(c),a.push(c))}return{path:n,steps:s}}function VM(e){return e.every((t,n)=>t===n)}function UM(e,t){let n=[];for(let s=0;s<e.length;++s)(e[s].length===0||e[s].indexOf(t)!==-1||t===-1)&&n.push(s);return n}function GM(e,t,n=0){let s=[];if(typeof t=="number")O(e.shape[n]%t==0,()=>"Number of splits must evenly divide the axis."),s=new Array(t).fill(e.shape[n]/t);else{let r=t.reduce((o,i)=>(i===-1&&(o+=1),o),0);O(r<=1,()=>"There should be only one negative value in split array.");let a=t.indexOf(-1);if(a!==-1){let o=t.reduce((i,l)=>l>0?i+l:i);t[a]=e.shape[n]-o}O(e.shape[n]===t.reduce((o,i)=>o+i),()=>"The sum of sizes must match the size of the axis dimension."),s=t}return s}var vw={};Me(vw,{collectGatherOpShapeInfo:()=>qM,computeOutShape:()=>jM,segOpComputeOptimalWindowSize:()=>HM});function HM(e,t){let n=!1,s;for(e<=M1?(s=e,n=!0):s=wh(e,Math.floor(Math.sqrt(e)));!n;)s>t||s===e?n=!0:s=wh(e,s+1);return s}function jM(e,t,n){let s=[],r=e.length;for(let a=0;a<r;a++)a!==t?s.push(e[a]):s.push(n);return s}function qM(e,t,n,s){let r=t.shape.length,a=e.shape.length;if(s!==0&&(s<-r||s>r))throw new Error(`Expect batchDims in the range of [-${r}, ${r}], but got ${s}`);if(s<0&&(s+=r),s>a)throw new Error(`batchDims (${s}) must be less than rank(x) (
${a}).`);if(n<s)throw new Error(`batchDims (${s}) must be less than or equal to axis (${n}).`);for(let d=0;d<s;++d)if(e.shape[d]!==t.shape[d])throw new Error(`x.shape[${d}]: ${e.shape[d]} should be equal to indices.shape[${d}]: ${t.shape[d]}.`);let o=e.shape[n],i=[],l=1,c=1,u=1;for(let d=0;d<s;++d)i.push(e.shape[d]),l*=e.shape[d];for(let d=s;d<n;d++)i.push(e.shape[d]),c*=e.shape[d];for(let d=s;d<r;d++)i.push(t.shape[d]);for(let d=n+1;d<a;d++)i.push(e.shape[d]),u*=e.shape[d];return{batchSize:l,sliceSize:u,outerSize:c,dimSize:o,outputShape:i}}function XM(e){try{return e.map(t=>rf(t))}catch(t){throw new Error(`Failed to decode encoded string bytes into utf-8, error: ${t}`)}}function KM(e){return e.map(t=>wd(t))}var tr={};Me(tr,{nonMaxSuppressionV3Impl:()=>cw,nonMaxSuppressionV4Impl:()=>dw,nonMaxSuppressionV5Impl:()=>pw,whereImpl:()=>ew});var ww={kernelName:di,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,Bd(ge(n,"float32"),-1))}}},ZM={kernelName:ru,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let s=xt(ge(n,"float32")),r=Dn(fe(Se(1),s));return Ot(pe(e,r))}}}},YM={kernelName:au,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let s=Dn(fe(xt(ge(n,"float32")),1));return pe(e,s)}}}},JM={kernelName:Xr,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=yt(n.shape,s.shape);return{a:()=>{let i=e,l=Xt(n.shape,r);return l.length>0&&(i=we(i,l)),H(i,n.shape)},b:()=>{let i=e,l=Xt(s.shape,r);return l.length>0&&(i=we(i,l)),H(i,s.shape)}}}},QM={kernelName:Ea,saveAllInputs:!0,gradFunc:(e,t)=>{let n={};return t.forEach((s,r)=>{n[r]=()=>e.clone()}),n}},ez={kernelName:Ra,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>nt(n)}}},tz={kernelName:lu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>nt(n)}}},nz={kernelName:uu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>pe(e,Dn(fe(Se(1),xt(ge(n,"float32")))))}}},sz={kernelName:cu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let s=Dn(ue(Se(1),xt(ge(n,"float32"))));return pe(e,s)}}}},rz={kernelName:hu,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=yt(n.shape,s.shape);return{a:()=>{let i=ue(xt(n),xt(s)),l=L(e,pe(s,i)),c=Xt(n.shape,r);return c.length>0&&(l=we(l,c)),H(l,n.shape)},b:()=>{let i=ue(xt(n),xt(s)),l=Ot(L(e,pe(n,i))),c=Xt(s.shape,r);return c.length>0&&(l=we(l,c)),H(l,s.shape)}}}},az={kernelName:du,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>pe(e,ue(xt(ge(n,"float32")),1))}}},oz={kernelName:pu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>pe(e,fe(Se(1),xt(ge(n,"float32"))))}}};function iz(e,t,n,s,r,a){let o=P(e,"dy","avgPool3dGrad"),i=P(t,"input","avgPool3dGrad"),l=o,c=i,u=!1;i.rank===4&&(u=!0,l=H(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]]),c=H(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),O(l.rank===5,()=>`Error in avgPool3dGrad: dy must be rank 5 but got rank ${l.rank}.`),O(c.rank===5,()=>`Error in avgPool3dGrad: input must be rank 5 but got rank ${c.rank}.`),a!=null&&O(mn(r),()=>`Error in avgPool3dGrad: pad must be an integer when using, dimRoundingMode ${a} but got pad ${r}.`);let d={dy:l,input:c},p={filterSize:n,strides:s,pad:r,dimRoundingMode:a},h=W.runKernel(Sh,d,p);return u?H(h,[h.shape[1],h.shape[2],h.shape[3],h.shape[4]]):h}var lz=G({avgPool3dGrad_:iz}),uz={kernelName:rd,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{filterSize:r,strides:a,pad:o,dimRoundingMode:i}=n;return{x:()=>lz(e,s,r,a,o,i)}}};function cz(e,t,n,s,r){let a=P(e,"dy","avgPoolGrad"),o=P(t,"input","avgPoolGrad");O(o.rank===a.rank,()=>`Rank of input (${o.rank}) does not match rank of dy (${a.rank})`);let i=o,l=a,c=!1;o.rank===3&&(c=!0,i=H(o,[1,o.shape[0],o.shape[1],o.shape[2]]),l=H(a,[1,a.shape[0],a.shape[1],a.shape[2]])),O(l.rank===4,()=>`Error in avgPoolGrad: dy must be rank 4 but got rank ${l.rank}.`),O(i.rank===4,()=>`Error in avgPoolGrad: input must be rank 4 but got rank ${i.rank}.`);let u={dy:l,input:i},d={filterSize:n,strides:s,pad:r},p=W.runKernel(Ih,u,d);return c?H(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var dz=G({avgPoolGrad_:cz}),pz={kernelName:$a,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{filterSize:r,strides:a,pad:o}=n;return{x:()=>dz(e,s,r,a,o)}}},hz={kernelName:_a,inputsToSave:["a","b"],gradFunc:(e,t,n)=>{let[s,r]=t,{transposeA:a,transposeB:o}=n;return!a&&!o?{a:()=>je(e,r,!1,!0),b:()=>je(s,e,!0,!1)}:!a&&o?{a:()=>je(e,r,!1,!1),b:()=>je(e,s,!0,!1)}:a&&!o?{a:()=>je(r,e,!1,!0),b:()=>je(s,e,!1,!1)}:{a:()=>je(r,e,!0,!0),b:()=>je(e,s,!0,!0)}}},fz={kernelName:pi,gradFunc:(e,t,n)=>{let{blockShape:s,crops:r}=n;return{x:()=>Cf(e,s,r)}}},mz={kernelName:n3,gradFunc:(e,t,n)=>{let s=n,r=s.inputShape,a=s.shape,o=Array.from(a);for(let l=r.length-1;l>=0;l--)if(r[l]===a[l])o[l]=1;else if(r[l]!==1)throw new Error(`broadcastTo(): [${r}] cannot be broadcast to [${a}].`);let i=[];for(let l=0;l<o.length;l++)o[l]>1&&i.push(l);return{x:()=>we(e,i,!0)}}},gz={kernelName:Da,gradFunc:e=>({x:()=>e.clone()})},Az={kernelName:Pa,gradFunc:e=>({x:()=>nt(e)})},yz={kernelName:Kr,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{clipValueMin:r,clipValueMax:a}=n;return{x:()=>Wn(fr(ll(s,r),ul(s,a)),e,nt(e))}}},xz={kernelName:od,inputsToSave:["x"],gradFunc:ww.gradFunc},bz={kernelName:hi,saveAllInputs:!0,gradFunc:(e,t,n)=>{let s=t.map(l=>l.shape),{axis:r}=n,a=Zs(r,t[0].shape)[0],o=s.map(l=>l[a]);return rn(e,o,a).map(l=>()=>l)}},vz={kernelName:Fa,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[s,r]=t,{dilations:a,strides:o,pad:i,dataFormat:l}=n;return O(Ro(a),()=>`Error in gradient of conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${a}'`),{x:()=>o1(s.shape,e,r,o,i,l),filter:()=>F1(s,e,r.shape,o,i,l)}}},wz={kernelName:Oa,inputsToSave:["dy","filter"],gradFunc:(e,t,n)=>{let[s,r]=t,{strides:a,pad:o,dataFormat:i,dimRoundingMode:l}=n;return{dy:()=>$o(e,r,a,o,i,1,l),filter:()=>F1(e,s,r.shape,a,o,i,l)}}};function kz(e,t,n,s,r){let a=e;e.rank===4&&(a=H(e,[1,e.shape[0],e.shape[1],e.shape[2],e.shape[3]]));let o=t;o.rank===4&&(o=H(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]])),O(a.rank===5,()=>`Error in conv3dDerFilter: input must be rank 5, but got shape ${a.shape}.`),O(o.rank===5,()=>`Error in conv3dDerFilter: dy must be rank 5, but got shape ${o.shape}.`),O(n.length===5,()=>`Error in conv3dDerFilter: filterShape must be length 5, but got ${n}.`),O(a.shape[4]===n[3],()=>`Error in conv3dDerFilter: depth of input ${a.shape[4]}) must match input depth in filter (${n[3]}.`),O(o.shape[4]===n[4],()=>`Error in conv3dDerFilter: depth of dy (${o.shape[4]}) must match output depth for filter (${n[4]}).`);let i={x:a,dy:o},l={strides:s,pad:r,filterShape:n};return W.runKernel(Eh,i,l)}var Iz=G({conv3DBackpropFilter_:kz}),Sz={kernelName:id,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:s,strides:r,pad:a}=n;O(Ro(s),()=>`Error in gradient of conv3D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`);let[o,i]=t;return{x:()=>Iv(o.shape,e,i,r,a),filter:()=>Iz(o,e,i.shape,r,a)}}},Cz={kernelName:Ma,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(Ot(S1(ge(n,"float32"))),e)}}},Tz={kernelName:za,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(C1(ge(n,"float32")),e)}}},Nz={kernelName:fi,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{axis:r,exclusive:a,reverse:o}=n;return{x:()=>{let i=Lv([r],s.rank),l=c1(e,r,a,!o);return i!=null&&(l=tt(l,i)),l}}}},Ez={kernelName:La,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:s,strides:r,pad:a,dimRoundingMode:o}=n,i=s==null?[1,1]:s;O(Ro(i),()=>`Error in gradient of depthwiseConv2dNative: dilation rates greater than 1 are not yet supported. Got dilations '${i}'`);let[l,c]=t;return O(l.rank===4,()=>`Error in gradient of depthwiseConv2dNative: input must be rank 4, but got rank ${l.rank}.`),O(c.rank===4,()=>`Error in gradient of depthwiseConv2dNative: filter must be rank 4, but got rank ${c.rank}.`),O(l.shape[3]===c.shape[2],()=>`Error in gradient of depthwiseConv2d: number of input channels (${l.shape[3]}) must match the inChannels dimension in filter ${c.shape[2]}.`),O(_r(r,i),()=>`Error in gradient of depthwiseConv2d: Either strides or dilations must be 1. Got strides ${r} and dilations '${i}'.`),o!=null&&O(mn(a),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${o} but got pad ${a}.`),{x:()=>iw(l.shape,e,c,r,a,i,o),filter:()=>ow(l,e,c.shape,r,a,i,o)}}},Rz={kernelName:ld,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[s,r]=t,a={x:s,filter:r,dy:e},o={x:s,filter:r,dy:e};return{x:()=>W.runKernel(Fh,a,n),filter:()=>W.runKernel(Oh,o,n)}}},$z={kernelName:Wa,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t,s={dy:e,y:n};return{x:()=>W.runKernel(Mh,s)}}},_z={kernelName:fu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,s=L(Ps(Ot(xt(n))),2/Math.sqrt(Math.PI));return{x:()=>L(e,s)}}},Dz={kernelName:Va,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,n)}}},Pz={kernelName:yi,inputsToSave:["input"],gradFunc:(e,t)=>{let[n]=t;return{input:()=>H(e,n.shape)}}},Fz={kernelName:xi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,Ps(n))}}},Oz={kernelName:Ua,gradFunc:e=>({x:()=>nt(e)})},Mz={kernelName:Ga,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=yt(n.shape,s.shape);return{a:()=>{let i=pe(e,ge(s,"float32")),l=Xt(n.shape,r);return l.length>0?H(we(i,l),n.shape):i},b:()=>{let i=L(e,ge(n,"float32")),l=Xt(s.shape,r);l.length>0&&(i=H(we(i,l),s.shape));let c=xt(s);return Ot(pe(i,ge(c,"float32")))}}}},zz={kernelName:Ha,inputsToSave:["x","mean","variance","scale"],gradFunc:(e,t,n)=>{let{varianceEpsilon:s}=n,[r,a,o,i]=t,l=i==null?Se(1):i,c=Xt(a.shape,r.shape),u=[];if(a.rank===1){for(let b=0;b<r.shape.length-1;++b)u.push(r.shape[b]);u.push(1)}let d=fe(r,a),p=L(e,l),h=k1(ue(o,Se(s))),f=L(L(L(h,h),h),Se(-.5));return{x:()=>a.rank===1?H(L(L(e,Qs(H(h,[1,1,1,a.shape[0]]),u)),l),r.shape):H(L(L(e,h),l),r.shape),mean:()=>{let b=L(L(h,Se(-1)),p);return a.rank===1&&(b=we(b,c)),H(b,a.shape)},variance:()=>{let b=L(L(f,d),p);return a.rank===1&&(b=we(b,c)),H(b,a.shape)},scale:()=>{let b=L(d,h),w=L(e,b);return a.rank===1&&(w=we(w,c)),H(w,a.shape)},offset:()=>{let b=e;return a.rank===1&&(b=we(b,c)),H(b,a.shape)}}}},Lz={kernelName:vi,inputsToSave:["x","indices"],gradFunc:(e,t,n)=>{let[s,r]=t,{axis:a}=n,o=Zs(a,s.shape)[0];return{x:()=>{let l=s.shape,c=r.size,u=l.slice(0,o),d=u.length,p=l.slice(a,l.length).slice(1),h=p.length,f=kw(0,d),m=kw(d+1,d+1+h),g=Iw([u,[c],p]),A=H(e,g),x=H(r,[c]),y=Iw([[d],f,m]),b=tt(A,y),w=Jv(b,x,s.shape[o]),k=m1(y);return w=tt(w,k),w},indices:()=>r}}};function kw(e,t){let n=[];for(let s=e;s<t;++s)n.push(s);return n}function Iw(e){let t=[];for(let n=0;n<e.length;++n)for(let s=0;s<e[n].length;++s)t.push(e[n][s]);return t}var Bz={kernelName:ja,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t;return{a:()=>nt(n),b:()=>nt(s)}}},Wz={kernelName:qa,gradFunc:e=>({x:()=>ge(e,"float32")})},Vz={kernelName:gu,gradFunc:e=>({x:()=>nt(e)})},Uz={kernelName:Au,gradFunc:e=>({x:()=>nt(e)})},Gz={kernelName:yu,gradFunc:e=>({x:()=>nt(e)})},Hz={kernelName:Ii,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{alpha:r}=n,a=ys(s,0);return{x:()=>Wn(a,e,L(e,r))}}},jz={kernelName:xu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>pe(e,ue(n,1))}}},qz={kernelName:Xa,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>pe(e,ge(n,"float32"))}}},Xz={kernelName:s3,inputsToSave:[],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s]=t,{axis:r}=n;return{logits:()=>{let a=!0,o=Ps(s);return fe(e,L(we(e,r,a),o))}}}};function Kz(e,t,n,s=5,r=1,a=1,o=.5){let i={x:e,y:t,dy:n},l={depthRadius:s,bias:r,alpha:a,beta:o};return W.runKernel(Wh,i,l)}var Zz=G({localResponseNormalizationBackprop_:Kz}),Yz={kernelName:pd,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s,r]=t,{depthRadius:a,bias:o,alpha:i,beta:l}=n;return{x:()=>Zz(s,r,e,a,o,i,l)}}};function Sw(e,t,n,s){return t.rank<n.rank&&(t=H(t,cl(t.shape,s))),e.rank<n.rank&&(e=H(e,cl(e.shape,s))),{x:()=>L(e,ge(Ds(n,t),e.dtype))}}var Cw={kernelName:Ka,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let s=n,{reductionIndices:r}=s,a=t[0],o=t[1],i=Zs(r,a.shape),l=Sw(e,o,a,i);return{x:()=>l.x()}}},Jz={kernelName:Za,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t;return{a:()=>L(e,ge(ll(n,s),"float32")),b:()=>L(e,ge(p1(n,s),"float32"))}}};function Qz(e,t,n,s,r,a,o){let i=P(e,"dy","maxPool3dGrad"),l=P(t,"input","maxPool3dGrad"),c=P(n,"output","maxPool3dGrad"),u=i,d=l,p=c,h=!1;l.rank===4&&(h=!0,u=H(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]]),d=H(l,[1,l.shape[0],l.shape[1],l.shape[2],l.shape[3]]),p=H(c,[1,c.shape[0],c.shape[1],c.shape[2],c.shape[3]])),O(u.rank===5,()=>`Error in maxPool3dGrad: dy must be rank 5 but got rank ${u.rank}.`),O(d.rank===5,()=>`Error in maxPool3dGrad: input must be rank 5 but got rank ${d.rank}.`),O(p.rank===5,()=>`Error in maxPool3dGrad: output must be rank 5 but got rank ${p.rank}.`),o!=null&&O(mn(a),()=>`Error in maxPool3dGrad: pad must be an integer when using, dimRoundingMode ${o} but got pad ${a}.`);let f={dy:u,input:d,output:p},m={filterSize:s,strides:r,pad:a,dimRoundingMode:o},g=W.runKernel(Uh,f,m);return h?H(g,[g.shape[1],g.shape[2],g.shape[3],g.shape[4]]):g}var eL=G({maxPool3dGrad_:Qz}),tL={kernelName:hd,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s,r]=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=n;return{x:()=>eL(e,s,r,a,o,i,l)}}};function nL(e,t,n,s,r,a,o){let i=P(e,"dy","maxPoolGrad"),l=P(t,"input","maxPoolGrad"),c=P(n,"output","maxPoolGrad");O(l.rank===i.rank,()=>`Rank of input (${l.rank}) does not match rank of dy (${i.rank})`),O(i.rank===4,()=>`Error in maxPoolGrad: dy must be rank 4 but got rank ${i.rank}.`),O(l.rank===4,()=>`Error in maxPoolGrad: input must be rank 4 but got rank ${l.rank}.`),o!=null&&O(mn(a),()=>`Error in maxPoolGrad: pad must be an integer when using, dimRoundingMode ${o} but got pad ${a}.`);let u={dy:i,input:l,output:c},d={filterSize:s,strides:r,pad:a,dimRoundingMode:o};return W.runKernel(Vh,u,d)}var sL=G({maxPoolGrad_:nL}),rL={kernelName:Ya,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s,r]=t,{filterSize:a,strides:o,pad:i}=n;return{x:()=>sL(e,s,r,a,o,i)}}},aL={kernelName:Ja,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{axis:r}=n,a=Zs(r,s.shape),i=zv(s.shape,a)[1],l=Gt(i);return{x:()=>{let u=s.shape.slice();a.forEach(h=>{u[h]=1});let d=H(e,u);return pe(L(d,xs(s.shape,"float32")),l)}}}},oL={kernelName:Qa,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let s=n,{axis:r}=s,[a,o]=t,i=Zs(r,a.shape),l=Sw(e,o,a,i);return{x:()=>l.x()}}},iL={kernelName:eo,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t;return{a:()=>L(e,ge(ul(n,s),"float32")),b:()=>L(e,ge(ys(n,s),"float32"))}}},lL={kernelName:to,inputsToSave:["x"],gradFunc:(e,t,n)=>{let s=t[0],{paddings:r}=n,a=r.map(o=>o[0]);return{x:()=>Fe(e,a,s.shape)}}},uL={kernelName:vu,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=yt(n.shape,s.shape);return{a:()=>{let i=Xt(n.shape,r);return i.length>0?H(we(e,i),n.shape):e},b:()=>{let i=L(e,Ot(Fd(pe(n,s)))),l=Xt(s.shape,r);return l.length>0?H(we(i,l),s.shape):i}}}},cL={kernelName:no,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=yt(n.shape,s.shape);return{a:()=>{let i=L(e,ge(s,"float32")),l=Xt(n.shape,r);return l.length>0?H(we(i,l),n.shape):i},b:()=>{let i=L(e,ge(n,"float32")),l=Xt(s.shape,r);return l.length>0?H(we(i,l),s.shape):i}}}},dL={kernelName:Ni,gradFunc:e=>({x:()=>Ot(e)})},pL={kernelName:Di,inputsToSave:["indices"],gradFunc:(e,t)=>{let n=t[0];return{indices:()=>Ht(n.shape,"float32")}}},hL={kernelName:_i,gradFunc:e=>({x:()=>nt(e)})},fL={kernelName:Pi,saveAllInputs:!0,gradFunc:(e,t,n)=>{let{axis:s}=n;return os(e,s).map(a=>()=>a)}},Tw={kernelName:so,inputsToSave:["x"],gradFunc:(e,t,n)=>{let s=t[0],{paddings:r}=n,a=r.map(o=>o[0]);return{x:()=>Fe(e,a,s.shape)}}},mL={kernelName:ro,inputsToSave:["a","b"],outputsToSave:[!0],gradFunc:(e,t)=>{let[n,s,r]=t,a=n,o=s,i=yt(a.shape,o.shape);return{a:()=>{let u=ge(o,"float32"),d=L(e,L(u,Do(a,fe(u,Se(1))))),p=Xt(a.shape,i);return p.length>0&&(d=we(d,p)),H(d,a.shape)},b:()=>{let u=ys(a,0),d=Wn(u,Fs(a),nt(a)),p=L(e,L(r,d)),h=Xt(o.shape,i);return h.length>0&&(p=we(p,h)),H(p,o.shape)}}}},gL={kernelName:ao,inputsToSave:["x","alpha"],gradFunc:(e,t)=>{let[n,s]=t,r=ys(n,0);return{x:()=>Wn(r,e,L(e,s)),alpha:()=>{let a=Wn(r,nt(e),L(e,n)),o=Xt(s.shape,e.shape);return o.length>0&&(a=we(a,o)),H(a,s.shape)}}}},AL={kernelName:Ba,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=yt(n.shape,s.shape);return{a:()=>{let i=pe(e,ge(s,"float32")),l=Xt(n.shape,r);return l.length>0?H(we(i,l),n.shape):i},b:()=>{let i=L(e,ge(n,"float32")),l=Xt(s.shape,r);l.length>0&&(i=H(we(i,l),s.shape));let c=xt(s);return Ot(pe(i,ge(c,"float32")))}}}},yL={kernelName:Iu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>pe(e,Ot(xt(n)))}}},xL={kernelName:lo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,s=L(ul(n,6),Bd(n));return{x:()=>L(e,ge(s,"float32"))}}},bL={kernelName:oo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,ge(Bd(n),"float32"))}}},vL={kernelName:Oi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>H(e,n.shape)}}},wL={kernelName:io,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[s]=t,r={dy:e,images:s};return{images:()=>W.runKernel(qh,r,n)}}},kL={kernelName:Su,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[s]=t,r={dy:e,images:s};return{images:()=>W.runKernel(jh,r,n)}}},IL={kernelName:Mi,gradFunc:(e,t,n)=>{let{dims:s}=n,r=Zs(s,e.shape);return{x:()=>Ms(e,r)}}},SL={kernelName:zi,gradFunc:e=>({x:()=>nt(e)})},CL={kernelName:uo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ot(pe(e,L(Do(n,1.5),2)))}}},TL={kernelName:Bi,inputsToSave:["condition"],gradFunc:(e,t)=>{let[n]=t;return{condition:()=>ge(nt(n),"float32"),t:()=>L(e,ge(n,e.dtype)),e:()=>L(e,ge(kf(n),e.dtype))}}},NL={kernelName:Cu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let s=ys(n,Se(0)),r=Se(Aw),a=Se(yw),o=L(e,a),i=L(L(e,r),Ps(ge(n,"float32")));return Wn(s,o,i)}}}},EL={kernelName:po,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,L(n,fe(Se(1),n)))}}},RL={kernelName:Tu,gradFunc:e=>({x:()=>nt(e)})},$L={kernelName:co,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(yf(ge(n,"float32")),e)}}},_L={kernelName:Vi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(u1(ge(n,"float32")),e)}}},DL={kernelName:Wi,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{begin:r,size:a}=n,o=s.shape,[i,l]=Z3(s,r,a),c=[];for(let u=0;u<e.rank;u++)c.push([i[u],o[u]-i[u]-l[u]]);return{x:()=>er(e,c)}}},PL={kernelName:mo,outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s]=t,{dim:r}=n,a=!0,o=L(e,s);return{logits:()=>fe(o,L(we(o,[r],a),s))}}},FL={kernelName:Nu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,gs(n))}}},Nw={kernelName:Ui,gradFunc:(e,t,n)=>{let{blockShape:s,paddings:r}=n;return{x:()=>Af(e,s,r)}}},Ew={kernelName:Gi,gradFunc:(e,t,n)=>{let{axis:s}=n;return{x:()=>It(e,s)}}},OL={kernelName:ho,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>pe(e,L(Dn(ge(n,"float32")),2))}}},ML={kernelName:Eu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,L(ge(n,"float32"),2))}}},zL={kernelName:go,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=Se(2);return{a:()=>L(e,L(r,fe(n,s))),b:()=>L(e,L(r,fe(s,n)))}}},LL={kernelName:bo,gradFunc:e=>({x:()=>nt(e)})},BL={kernelName:Ao,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=yt(n.shape,s.shape);return{a:()=>{let i=e,l=Xt(n.shape,r);return l.length>0&&(i=we(i,l)),H(i,n.shape)},b:()=>{let i=e,l=Xt(s.shape,r);return l.length>0&&(i=we(i,l)),H(Ot(i),s.shape)}}}},WL={kernelName:fo,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,r=s.shape.slice(),{axis:a}=n;Zs(a,s.shape).forEach(c=>{r[c]=1});let i=H(e,r),l=L(i,xs(s.shape,"float32"));return{x:()=>l}}},VL={kernelName:ji,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>pe(e,xt(yf(n)))}}},UL={kernelName:yo,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(fe(Se(1),xt(n)),e)}}},GL={kernelName:Zr,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{reps:r}=n;return{x:()=>{let o=nt(s);if(s.rank===1)for(let i=0;i<r[0];++i)o=ue(o,Fe(e,[i*s.shape[0]],[s.shape[0]]));else if(s.rank===2)for(let i=0;i<r[0];++i)for(let l=0;l<r[1];++l)o=ue(o,Fe(e,[i*s.shape[0],l*s.shape[1]],[s.shape[0],s.shape[1]]));else if(s.rank===3)for(let i=0;i<r[0];++i)for(let l=0;l<r[1];++l)for(let c=0;c<r[2];++c)o=ue(o,Fe(e,[i*s.shape[0],l*s.shape[1],c*s.shape[2]],[s.shape[0],s.shape[1],s.shape[2]]));else if(s.rank===4)for(let i=0;i<r[0];++i)for(let l=0;l<r[1];++l)for(let c=0;c<r[2];++c)for(let u=0;u<r[3];++u)o=ue(o,Fe(e,[i*s.shape[0],l*s.shape[1],c*s.shape[2],u*s.shape[3]],[s.shape[0],s.shape[1],s.shape[2],s.shape[3]]));else throw new Error(`Gradient for tile operation is not implemented for rank-${s.rank} tensors yet.`);return o}}}},HL={kernelName:xo,gradFunc:(e,t,n)=>{let s=n,{perm:r}=s,a=m1(r);return{x:()=>tt(e,a)}}},jL={kernelName:Ki,gradFunc:(e,t,n)=>{let s=n,{axis:r}=s;return{value:()=>xn(e,r)}}},qL={kernelName:Ad,inputsToSave:["segmentIds"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>XL(e,n)}}};function XL(e,t){let n=Qr(t,nt(t)),s=Bu(e,n),r=ll(t,Se(0,"int32")),a=s.rank-r.rank;for(let i=0;i<a;++i)r=Kt(r,i+1);r=fr(r,xs(s.shape,"bool"));let o=nt(s);return Wn(r,s,o)}var KL={kernelName:Zi,gradFunc:e=>({x:()=>nt(e)})},ZL=[ww,ZM,YM,JM,QM,ez,tz,nz,sz,rz,az,oz,uz,pz,hz,fz,mz,gz,Az,yz,xz,bz,wz,vz,Sz,Cz,Tz,Nz,Ez,Rz,AL,$z,_z,Dz,Pz,Fz,Mz,Oz,zz,Lz,Bz,Wz,Vz,Uz,Gz,Hz,jz,qz,Xz,Yz,Cw,Cw,Jz,tL,rL,aL,oL,iL,lL,uL,cL,dL,pL,hL,fL,Tw,Tw,mL,gL,yL,xL,bL,vL,wL,kL,IL,SL,CL,TL,NL,EL,RL,$L,_L,DL,PL,FL,Nw,Nw,Ew,Ew,OL,zL,ML,LL,BL,WL,VL,UL,GL,HL,jL,qL,KL];for(let e of ZL)r3(e);var Rw={};Me(Rw,{maxNorm:()=>eB,minMaxNorm:()=>sB,nonNeg:()=>nB,unitNorm:()=>tB});var L1;function an(){return L1==null&&(L1=$r().epsilon()),L1}function gr(){return"channelsLast"}var na=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,na.prototype)}},Ar=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Ar.prototype)}},q=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,q.prototype)}},Le=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Le.prototype)}},$w=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,$w.prototype)}};function fl(e,t){if(Array.isArray(e)){let n=[];for(let s=0;s<t;s++)n=n.concat(e);return n}else{let n=new Array(t);return n.fill(e),n}}function Fr(e,t){if(!e)throw new $w(t)}function _w(e,t){let n=0;for(let s of e)s===t&&n++;return n}function is(e){return e.length===1?e[0]:e}function St(e){return Array.isArray(e)?e:[e]}function sa(e){let n=e.replace(/(.)([A-Z][a-z0-9]+)/g,"$1_$2").replace(/([a-z])([A-Z])/g,"$1_$2").toLowerCase();return n[0]!=="_"?n:"private"+n}function ml(e){return e.length<=1||e.indexOf("_")===-1?e:e.replace(/[_]+(\w|$)/g,(t,n)=>n.toUpperCase())}var nr={};function B1(e){if(e==null)return null;let t={};return t.className=e.getClassName(),t.config=e.getConfig(),t}function W1(e){if(!(e==null||typeof e!="object"))if(Array.isArray(e))e.forEach(t=>W1(t));else{let t=Object.keys(e);for(let n of t){let s=e[n];s!=null&&typeof s=="object"&&(!Array.isArray(s)&&s.type==="ndarray"&&typeof s.value=="number"?e[n]=s.value:W1(s))}}}function Ud(e,t={},n={},s="object",r=!1){if(typeof e=="string"){let a=e,o;if(a in n)o=n[a];else if(a in nr)o=nr[a];else if(o=t[a],o==null)throw new q(`Unknown ${s}: ${e}. This may be due to one of the following reasons:
1. The ${s} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
2. The custom ${s} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);return o}else{let a=e;if(a.className==null||a.config==null)throw new q(`${s}: Improper config format: ${JSON.stringify(a)}.
'className' and 'config' must set.`);let o=a.className,i,l;if(o in n?[i,l]=n[o]:o in nr?[i,l]=nr.className:o in t&&([i,l]=t[o]),i==null)throw new q(`Unknown ${s}: ${o}. This may be due to one of the following reasons:
1. The ${s} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
2. The custom ${s} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);if(l!=null){let c={};for(let h of Object.keys(nr))c[h]=nr[h];for(let h of Object.keys(n))c[h]=n[h];let u=a.config;u.customObjects=c;let d={...nr};for(let h of Object.keys(n))nr[h]=n[h];W1(a.config);let p=l(i,a.config,n,r);return nr={...d},p}else{let c={...nr};for(let d of Object.keys(n))nr[d]=n[d];let u=new i(a.config);return nr={...c},u}}}function YL(e,t){return e<t?-1:e>t?1:0}function Uf(e,t){return-1*YL(e,t)}function Oo(e){if(e==null)return e;let t=[];for(let n of e)t.indexOf(n)===-1&&t.push(n);return t}function JL(e){if(e==null)throw new q(`Invalid value in obj: ${JSON.stringify(e)}`);for(let t in e)if(e.hasOwnProperty(t))return!1;return!0}function gl(e,t,n){if(n!=null&&e.indexOf(n)<0)throw new q(`${n} is not a valid ${t}. Valid values are ${e} or null/undefined.`)}function V1(e,t,n=0,s=1/0){return Fr(n>=0),Fr(s>=n),Array.isArray(e)&&e.length>=n&&e.length<=s&&e.every(r=>typeof r===t)}function bn(e,t){Array.isArray(e)?(v.assert(e.length>0,()=>`${t} is unexpectedly an empty array.`),e.forEach((n,s)=>bn(n,`element ${s+1} of ${t}`))):v.assert(Number.isInteger(e)&&e>0,()=>`Expected ${t} to be a positive integer, but got ${Dw(e)}.`)}function Dw(e){return e===null?"null":Array.isArray(e)?"["+e.map(t=>Dw(t)).join(",")+"]":typeof e=="string"?`"${e}"`:`${e}`}function QL(e,t,n){let s=n!=null?n():v.now(),r;return(...o)=>{let i=n!=null?n():v.now();return i-s<t||(s=i,r=e(...o)),r}}function Pw(e){return e==="relu"?"relu":e==="linear"?"linear":e==="elu"?"elu":null}function U1(e,t){return K(()=>Dn(we(L(e,e),t,!0)))}var Gd=class extends ce.Serializable{getConfig(){return{}}},G1=class extends Gd{constructor(e){super();this.defaultMaxValue=2,this.defaultAxis=0,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return K(()=>{let t=U1(e,this.axis),n=As(t,0,this.maxValue);return L(e,pe(n,ue(an(),t)))})}getConfig(){return{maxValue:this.maxValue,axis:this.axis}}};G1.className="MaxNorm";ce.registerClass(G1);var H1=class extends Gd{constructor(e){super();this.defaultAxis=0,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return K(()=>pe(e,ue(an(),U1(e,this.axis))))}getConfig(){return{axis:this.axis}}};H1.className="UnitNorm";ce.registerClass(H1);var j1=class extends Gd{apply(e){return Pr(e)}};j1.className="NonNeg";ce.registerClass(j1);var q1=class extends Gd{constructor(e){super();this.defaultMinValue=0,this.defaultMaxValue=1,this.defaultRate=1,this.defaultAxis=0,this.minValue=e.minValue!=null?e.minValue:this.defaultMinValue,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.rate=e.rate!=null?e.rate:this.defaultRate,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return K(()=>{let t=U1(e,this.axis),n=ue(L(this.rate,As(t,this.minValue,this.maxValue)),L(1-this.rate,t));return L(e,pe(n,ue(an(),t)))})}getConfig(){return{minValue:this.minValue,maxValue:this.maxValue,rate:this.rate,axis:this.axis}}};q1.className="MinMaxNorm";ce.registerClass(q1);var Fw={maxNorm:"MaxNorm",minMaxNorm:"MinMaxNorm",nonNeg:"NonNeg",unitNorm:"UnitNorm"};function on(e){return B1(e)}function Ow(e,t={}){return Ud(e,ce.SerializationMap.getMap().classNameMap,t,"constraint")}function ln(e){if(e==null)return null;if(typeof e=="string"){let n={className:e in Fw?Fw[e]:e,config:{}};return Ow(n)}else return e instanceof Gd?e:Ow(e)}function eB(e){return new G1(e)}function tB(e){return new H1(e)}function nB(){return new j1}function sB(e){return new q1(e)}var Mw={};Me(Mw,{constant:()=>CB,glorotNormal:()=>DB,glorotUniform:()=>_B,heNormal:()=>PB,heUniform:()=>FB,identity:()=>RB,leCunNormal:()=>OB,leCunUniform:()=>MB,ones:()=>SB,orthogonal:()=>zB,randomNormal:()=>NB,randomUniform:()=>TB,truncatedNormal:()=>EB,varianceScaling:()=>$B,zeros:()=>IB});var rB=["channelsFirst","channelsLast"],aB=["nearest","bilinear"],oB=["valid","same","causal"],iB=["max","avg"],lB=["sum","mul","concat","ave"],qu=new Map;function jt(e){gl(rB,"DataFormat",e)}function uB(e){gl(aB,"InterpolationFormat",e)}function zs(e){gl(oB,"PaddingMode",e)}function zw(e){gl(iB,"PoolMode",e)}var Hd=[],Lw="/";function Al(e,t){Hd.push(e);try{let n=t();return Hd.pop(),n}catch(n){throw Hd.pop(),n}}function cB(){return Hd.length===0?"":Hd.join(Lw)+Lw}function Bw(e){if(!Vw(e))throw new Error("Not a valid tensor name: '"+e+"'");return cB()+e}function Ww(e){if(!Vw(e))throw new Error("Not a valid tensor name: '"+e+"'");qu.has(e)||qu.set(e,0);let t=qu.get(e);if(qu.set(e,qu.get(e)+1),t>0){let n=`${e}_${t}`;return qu.set(n,1),n}else return e}var dB=new RegExp(/^[A-Za-z0-9][-A-Za-z0-9\._\/]*$/);function Vw(e){return!!e.match(dB)}function pB(e){return e===parseInt(e.toString(),10)}function Mo(e,t,n){t==null&&(t=0),n==null&&(n=e.length);let s=1;for(let r=t;r<n;++r)s*=e[r];return s}function Xu(e){if(e.length===0)return Number.NaN;let t=Number.POSITIVE_INFINITY;for(let n=0;n<e.length;n++){let s=e[n];s<t&&(t=s)}return t}function zo(e){if(e.length===0)return Number.NaN;let t=Number.NEGATIVE_INFINITY;for(let n=0;n<e.length;n++){let s=e[n];s>t&&(t=s)}return t}function yr(e,t){if(t<e)throw new q(`end (${t}) < begin (${e}) is forbidden.`);let n=[];for(let s=e;s<t;++s)n.push(s);return n}function Gf(e,t){return ge(e,t)}function jd(e,t=-1){let n=e.shape.slice();return t<0&&(t=n.length+t+1),n.splice(t,0,1),H(e,n)}function hB(e,t){return K(()=>{if(e.shape.length!==2)throw new q(`repeat() expects a rank-2 tensor, but received a rank-${e.shape.length} tensor.`);let n=jd(e,1);return Z1(n,[1,t,1])})}function fB(e){let t=[Mo(e.shape)];return H(e,t)}function mB(e){if(e.rank<=1)throw new q(`batchFlatten requires a minimum rank of 2. Got rank: ${e.rank}.`);let t=[e.shape[0],Mo(e.shape,1)];return H(e,t)}function yl(e,t,n){return K(()=>{switch(e.rank){case 1:return Nf(e,t,n);case 2:return T1(e,[t,0],[n,e.shape[1]]);case 3:return dl(e,[t,0,0],[n,e.shape[1],e.shape[2]]);case 4:return pl(e,[t,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3]]);case 5:return Fe(e,[t,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4]]);case 6:return Fe(e,[t,0,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4],e.shape[5]]);default:throw new q(`sliceAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}})}function X1(e,t,n){return K(()=>{switch(e.rank){case 1:return Nf(e,t,n);case 2:return T1(e,[0,t],[e.shape[0],n]);case 3:return dl(e,[0,0,t],[e.shape[0],e.shape[1],n]);case 4:return pl(e,[0,0,0,t],[e.shape[0],e.shape[1],e.shape[2],n]);default:throw new q(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function Hf(e,t,n,s){return K(()=>{switch(e.rank){case 1:return Nf(e,t,n);case 2:switch(s){case 1:return yl(e,t,n);case 2:return X1(e,t,n);default:throw new q(`The axis is not within the rank of the tensor ${s}`)}case 3:switch(s){case 1:return yl(e,t,n);case 2:return dl(e,[0,t,0],[e.shape[0],n,e.shape[2]]);case 3:return X1(e,t,n);default:throw new q(`The axis is not within the rank of the tensor ${s}`)}case 4:switch(s){case 1:return yl(e,t,n);case 2:return pl(e,[0,t,0,0],[e.shape[0],n,e.shape[2],e.shape[3]]);case 3:return pl(e,[0,0,t,0],[e.shape[0],e.shape[1],n,e.shape[3]]);case 4:return X1(e,t,n);default:throw new q(`The axis is not within the rank of the tensor ${s}`)}default:throw new q(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function K1(e,t=-1){let n;return t<0&&(n=e[0].rank,n!==0?t=n:t=0),t===e[0].rank&&(t=-1),It(e,t)}function Uw(e,t){switch(e.rank){case 1:return vv([e,t]);case 2:return zu([e,t],0);case 3:return wv([e,t],0);case 4:return kv([e,t],0);default:throw new q(`concatAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}}function Z1(e,t){if(Array.isArray(t)||(t=[t]),e.rank!==t.length)throw new q(`The length of input n (${t.length}) does not match the number of dimensions in input x (${e.rank})`);return Qs(e,t)}function jf(e,t=0,n=1,s,r){return Gv(e,t,n,s,r)}function Or(e,t,n,s){if(e.rank<2||t.rank<2)throw new Le(`dot requires both inputs to be rank >= 2 but got x shape = ${e.shape} and y shape = ${t.shape}`);if(t.rank>=3){let r=e.shape.slice(-1)[0],a=t.shape.slice(-2)[0];if(r!==a)throw new Le(`If rank y >= 3, then the second last dim of y must equal the last dim of x but got x shape = ${e.shape} and y shape = ${t.shape}`)}if(e.rank===2&&t.rank===2){let r=!1,a=!1;return Po.matMul({a:e,b:t,transposeA:r,transposeB:a,bias:s?Y1(e.rank,s,gr()):null,activation:n})}else{let r=e.shape.slice(),a=r.pop();e=H(e,[-1,a]);let o=t.shape.slice(),i=o.pop(),l=o.pop(),c=[...o,i],u=Array.from({length:t.rank},(f,m)=>m===0?t.rank-2:m<=t.rank-2?m-1:m);t=H(tt(t,u),[l,-1]);let d=[...r,...c],p=!1,h=!1;return H(Po.matMul({a:e,b:t,transposeA:p,transposeB:h,bias:s?Y1(e.rank,s,gr()):null,activation:n}),d)}}function Gw(e,t,n){return K(()=>(Array.isArray(t)?t=Vt(t,"int32"):t=ge(t,"int32"),Bu(e,t,n)))}function qd(e){return L(e,e)}function Y1(e,t,n){let s=t.shape;if(t.rank!==1&&t.rank!==e)throw new q(`Unexpected bias dimensions: ${t.rank}; expected it to be 1 or ${e}`);if(e===5){if(n==="channelsFirst")return s.length===1?H(t,[1,s[0],1,1,1]):H(t,[1,s[3],s[0],s[1],s[2]]);if(n==="channelsLast")return s.length===1?H(t,[1,1,1,1,s[0]]):H(t,[1].concat(s))}else if(e===4){if(n==="channelsFirst")return s.length===1?H(t,[1,s[0],1,1]):H(t,[1,s[2],s[0],s[1]]);if(n==="channelsLast")return s.length===1?H(t,[1,1,1,s[0]]):H(t,[1].concat(s))}else if(e===3){if(n==="channelsFirst")return s.length===1?H(t,[1,s[0],1]):H(t,[1,s[1],s[0]]);if(n==="channelsLast")return s.length===1?H(t,[1,1,s[0]]):H(t,[1].concat(s))}else if(e<3)return t;throw new q(`Unsupported input rank by biasAdd: ${t.rank}`)}function xr(e,t,n){return K(()=>(n==null&&(n=gr()),jt(n),ue(e,Y1(e.rank,t,n))))}function gB(e,t=1){if(t!==1)throw new Le(`Support for alpha values other than 1 (${t}) is not implemented yet.`);return Pd(e)}function AB(e){return K(()=>pe(e,ue(sn(e),1)))}function Hw(e,t,n,s){return K(()=>rw(e,t,n,s))}function yB(e){return K(()=>{let t=ue(.5,L(.2,e));return As(t,0,1)})}function Xd(e,t,n=!1){return n?e():t()}var xB=["fanIn","fanOut","fanAvg"],bB=["normal","uniform","truncatedNormal"];function vB(e){gl(xB,"FanMode",e)}function wB(e){gl(bB,"Distribution",e)}var sr=class extends ce.Serializable{fromConfigUsesCustomObjects(){return!1}getConfig(){return{}}},J1=class extends sr{apply(e,t){return Ht(e,t)}};J1.className="Zeros";ce.registerClass(J1);var qf=class extends sr{apply(e,t){return xs(e,t)}};qf.className="Ones";ce.registerClass(qf);var Q1=class extends sr{constructor(e){super();if(typeof e!="object")throw new q(`Expected argument of type ConstantConfig but got ${e}`);if(e.value===void 0)throw new q(`config must have value set but got ${e}`);this.value=e.value}apply(e,t){return K(()=>L(Se(this.value),xs(e,t)))}getConfig(){return{value:this.value}}};Q1.className="Constant";ce.registerClass(Q1);var eA=class extends sr{constructor(e){super();this.DEFAULT_MINVAL=-.05,this.DEFAULT_MAXVAL=.05,this.minval=e.minval||this.DEFAULT_MINVAL,this.maxval=e.maxval||this.DEFAULT_MAXVAL,this.seed=e.seed}apply(e,t){return Uu(e,this.minval,this.maxval,t)}getConfig(){return{minval:this.minval,maxval:this.maxval,seed:this.seed}}};eA.className="RandomUniform";ce.registerClass(eA);var tA=class extends sr{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Le(`randomNormal does not support dType ${t}.`);return jf(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};tA.className="RandomNormal";ce.registerClass(tA);var nA=class extends sr{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Le(`truncatedNormal does not support dType ${t}.`);return $f(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};nA.className="TruncatedNormal";ce.registerClass(nA);var sA=class extends sr{constructor(e){super();this.gain=e.gain!=null?e.gain:1}apply(e,t){return K(()=>{if(e.length!==2||e[0]!==e[1])throw new q("Identity matrix initializer can only be used for 2D square matrices.");return L(this.gain,d1(e[0]))})}getConfig(){return{gain:this.gain}}};sA.className="Identity";ce.registerClass(sA);function kB(e,t="channelsLast"){let n,s;if(jt(t),e.length===2)n=e[0],s=e[1];else if([3,4,5].indexOf(e.length)!==-1){if(t==="channelsFirst"){let r=Mo(e,2);n=e[1]*r,s=e[0]*r}else if(t==="channelsLast"){let r=Mo(e,0,e.length-2);n=e[e.length-2]*r,s=e[e.length-1]*r}}else{let r=Mo(e);n=Math.sqrt(r),s=Math.sqrt(r)}return[n,s]}var ls=class extends sr{constructor(e){super();if(e.scale<0)throw new q(`scale must be a positive float. Got: ${e.scale}`);this.scale=e.scale==null?1:e.scale,this.mode=e.mode==null?"fanIn":e.mode,vB(this.mode),this.distribution=e.distribution==null?"normal":e.distribution,wB(this.distribution),this.seed=e.seed}apply(e,t){let n=kB(e),s=n[0],r=n[1],a=this.scale;if(this.mode==="fanIn"?a/=Math.max(1,s):this.mode==="fanOut"?a/=Math.max(1,r):a/=Math.max(1,(s+r)/2),this.distribution==="normal"){let o=Math.sqrt(a);if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Le(`${this.getClassName()} does not support dType ${t}.`);return $f(e,0,o,t,this.seed)}else{let o=Math.sqrt(3*a);return Uu(e,-o,o,t)}}getConfig(){return{scale:this.scale,mode:this.mode,distribution:this.distribution,seed:this.seed}}};ls.className="VarianceScaling";ce.registerClass(ls);var Xf=class extends ls{constructor(e){super({scale:1,mode:"fanAvg",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return ls.className}};Xf.className="GlorotUniform";ce.registerClass(Xf);var Kf=class extends ls{constructor(e){super({scale:1,mode:"fanAvg",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return ls.className}};Kf.className="GlorotNormal";ce.registerClass(Kf);var Zf=class extends ls{constructor(e){super({scale:2,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return ls.className}};Zf.className="HeNormal";ce.registerClass(Zf);var Yf=class extends ls{constructor(e){super({scale:2,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return ls.className}};Yf.className="HeUniform";ce.registerClass(Yf);var Jf=class extends ls{constructor(e){super({scale:1,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return ls.className}};Jf.className="LeCunNormal";ce.registerClass(Jf);var Qf=class extends ls{constructor(e){super({scale:1,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return ls.className}};Qf.className="LeCunNormal";ce.registerClass(Qf);var rA=class extends sr{constructor(e){super();if(this.DEFAULT_GAIN=1,this.gain=e.gain==null?this.DEFAULT_GAIN:e.gain,this.seed=e.seed,this.seed!=null)throw new Le("Random seed is not implemented for Orthogonal Initializer yet.")}apply(e,t){return K(()=>{if(e.length<2)throw new Le("Shape must be at least 2D.");e[0]*e[1]>2e3&&console.warn(`Orthogonal initializer is being called on a matrix with more than 2000 (${e[0]*e[1]}) elements: Slowness may result.`);let n=e[0]>e[1]?[e[1],e[0]]:e,s=jf(n,0,1,"float32"),r=mw.gramSchmidt(s);return e[0]>e[1]&&(r=tt(r)),L(this.gain,r)})}getConfig(){return{gain:this.gain,seed:this.seed}}};rA.className="Orthogonal";ce.registerClass(rA);var jw={constant:"Constant",glorotNormal:"GlorotNormal",glorotUniform:"GlorotUniform",heNormal:"HeNormal",heUniform:"HeUniform",identity:"Identity",leCunNormal:"LeCunNormal",leCunUniform:"LeCunUniform",ones:"Ones",orthogonal:"Orthogonal",randomNormal:"RandomNormal",randomUniform:"RandomUniform",truncatedNormal:"TruncatedNormal",varianceScaling:"VarianceScaling",zeros:"Zeros"};function qw(e,t={}){return Ud(e,ce.SerializationMap.getMap().classNameMap,t,"initializer")}function Mt(e){return B1(e)}function $t(e){if(typeof e=="string"){let t=e in jw?jw[e]:e;if(t==="GlorotNormal")return new Kf;if(t==="GlorotUniform")return new Xf;if(t==="HeNormal")return new Zf;if(t==="HeUniform")return new Yf;if(t==="LeCunNormal")return new Jf;if(t==="LeCunUniform")return new Qf;{let n={};return n.className=t,n.config={},qw(n)}}else return e instanceof sr?e:qw(e)}function IB(){return new J1}function SB(){return new qf}function CB(e){return new Q1(e)}function TB(e){return new eA(e)}function NB(e){return new tA(e)}function EB(e){return new nA(e)}function RB(e){return new sA(e)}function $B(e){return new ls(e)}function _B(e){return new Xf(e)}function DB(e){return new Kf(e)}function PB(e){return new Zf(e)}function FB(e){return new Yf(e)}function OB(e){return new Jf(e)}function MB(e){return new Qf(e)}function zB(e){return new rA(e)}var Xw={};Me(Xw,{Layer:()=>st,RNN:()=>aa,RNNCell:()=>tp,activation:()=>xV,add:()=>NV,alphaDropout:()=>dU,average:()=>EV,averagePooling1d:()=>Sy,averagePooling2d:()=>Cy,averagePooling3d:()=>Ty,avgPool1d:()=>zV,avgPool2d:()=>BV,avgPool3d:()=>VV,avgPooling1d:()=>LV,avgPooling2d:()=>WV,avgPooling3d:()=>UV,batchNormalization:()=>FV,bidirectional:()=>sU,concatenate:()=>RV,conv1d:()=>cV,conv2d:()=>dV,conv2dTranspose:()=>pV,conv3d:()=>hV,conv3dTranspose:()=>fV,convLstm2d:()=>QV,convLstm2dCell:()=>eU,cropping2D:()=>gV,dense:()=>bV,depthwiseConv2d:()=>yV,dot:()=>PV,dropout:()=>vV,elu:()=>rV,embedding:()=>TV,flatten:()=>kV,gaussianDropout:()=>cU,gaussianNoise:()=>uU,globalAveragePooling1d:()=>GV,globalAveragePooling2d:()=>HV,globalMaxPool1d:()=>aU,globalMaxPool2d:()=>oU,globalMaxPooling1d:()=>i7,globalMaxPooling2d:()=>l7,gru:()=>qV,gruCell:()=>XV,input:()=>Tk,inputLayer:()=>sV,layerNormalization:()=>OV,leakyReLU:()=>oV,lstm:()=>KV,lstmCell:()=>ZV,masking:()=>pU,maxPool1d:()=>iU,maxPool2d:()=>lU,maxPooling1d:()=>u7,maxPooling2d:()=>c7,maxPooling3d:()=>jV,maximum:()=>$V,minimum:()=>_V,multiply:()=>DV,permute:()=>CV,prelu:()=>iV,reLU:()=>aV,repeatVector:()=>IV,reshape:()=>SV,rnn:()=>tU,separableConv2d:()=>mV,simpleRNN:()=>YV,simpleRNNCell:()=>JV,softmax:()=>lV,spatialDropout1d:()=>wV,stackedRNNCells:()=>nU,thresholdedReLU:()=>uV,timeDistributed:()=>rU,upSampling2d:()=>AV,zeroPadding2d:()=>MV});var LB=0;function Kw(){return LB++}var em={};function tm(e=""){return e in em||(em[e]=0),em[e]+=1,e+em[e].toString()}function aA(e){return Array.isArray(e)&&Array.isArray(e[0])}function nm(e){return e.length===0?[]:Array.isArray(e[0])?e:[e]}function Ve(e){let t;if(Array.isArray(e)){if(e.length!==1)throw new q(`Expected Tensor length to be 1; got ${e.length}`);t=e[0]}else t=e;return t}function ft(e){if(Array.isArray(e)&&Array.isArray(e[0])){if(e.length===1)return e=e,e[0];throw new q(`Expected exactly 1 Shape; got ${e.length}`)}else return e}function sm(e){let t=0;for(let n of e)n.shape.length===0?t+=1:t+=n.shape.reduce((s,r)=>s*r);return t}var Zw="Variable",Yw=class{constructor(e,t="float32",n=Zw,s=!0,r=null){this.dtype=t==null?"float32":t,this.shape=e.shape,this.id=Kw(),n=n==null?Zw:n,this.originalName=Bw(n),this.name=Ww(this.originalName),this.trainable_=s,this.constraint=r,this.val=Qv(e,this.trainable_,this.name,this.dtype)}read(){return this.assertNotDisposed(),this.val}write(e){return this.assertNotDisposed(),BB(this.val,e),this.val.id!==e.id&&(this.val.assign(e),this.constraint!=null&&this.val.assign(this.constraint.apply(this.val))),this}dispose(){this.assertNotDisposed(),this.val.dispose()}assertNotDisposed(){if(this.val.isDisposed)throw new Error(`LayersVariable ${this.name} is already disposed.`)}get trainable(){return this.trainable_}set trainable(e){this.trainable_=e,this.val.trainable=e}};function BB(e,t){if(e.shape.toString()!==t.shape.toString())throw new Error("Shape mismatch: "+JSON.stringify(e.shape)+" vs. "+JSON.stringify(t.shape))}function oA(e){return e.map(t=>t.read())}function iA(e){e.forEach(t=>{t[0].write(t[1])})}var Zt=class{constructor(e){this.dtype=e.dtype,this.shape=e.shape,e.shape!=null?this.ndim=e.shape.length:this.ndim=e.ndim,this.maxNDim=e.maxNDim,this.minNDim=e.minNDim,this.axes=e.axes||{}}},br=class{constructor(e,t,n,s,r,a,o){this.dtype=e,this.shape=t,this.sourceLayer=n,this.inputs=s,this.callArgs=r,this.outputTensorIndex=o,this.id=Kw(),a!=null&&(this.originalName=Bw(a),this.name=Ww(this.originalName)),this.rank=t.length}},WB=0,rm=class{constructor(e,t){this.callArgs=t,this.id=WB++,this.outboundLayer=e.outboundLayer,this.inboundLayers=e.inboundLayers,this.nodeIndices=e.nodeIndices,this.tensorIndices=e.tensorIndices,this.inputTensors=e.inputTensors,this.outputTensors=e.outputTensors,this.inputMasks=e.inputMasks,this.outputMasks=e.outputMasks,this.inputShapes=e.inputShapes,this.outputShapes=e.outputShapes;for(let n of e.inboundLayers)n!=null&&n.outboundNodes.push(this);e.outboundLayer.inboundNodes.push(this)}getConfig(){let e=[];for(let t of this.inboundLayers)t!=null?e.push(t.name):e.push(null);return{outboundLayer:this.outboundLayer?this.outboundLayer.name:null,inboundLayers:e,nodeIndices:this.nodeIndices,tensorIndices:this.tensorIndices}}},VB=0,st=class extends ce.Serializable{constructor(e={}){super();this._callHook=null,this._addedWeightNames=[],this._stateful=!1,this.id=VB++,this.activityRegularizer=null,this.inputSpec=null,this.supportsMasking=!1,this._trainableWeights=[],this._nonTrainableWeights=[],this._losses=[],this._updates=[],this._built=!1,this.inboundNodes=[],this.outboundNodes=[];let t=e.name;if(!t){let n=this.getClassName();t=sa(n)+"_"+tm(n)}if(this.name=t,this.trainable_=e.trainable==null?!0:e.trainable,e.inputShape!=null||e.batchInputShape!=null){let n;if(e.batchInputShape!=null)n=e.batchInputShape;else if(e.inputShape!=null){let r=null;e.batchSize!=null&&(r=e.batchSize),n=[r].concat(e.inputShape)}this.batchInputShape=n;let s=e.dtype;s==null&&(s=e.inputDType),s==null&&(s="float32"),this.dtype=s}e.weights!=null?this.initialWeights=e.weights:this.initialWeights=null,this._refCount=null,this.fastWeightInitDuringBuild=!1}static nodeKey(e,t){return e.name+"_ib-"+t.toString()}getNodeAtIndex(e,t){if(this.inboundNodes.length===0)throw new Ar(`The layer has never been called and thus has no defined ${t}.`);if(this.inboundNodes.length<=e)throw new q(`Asked to get ${t} at node ${e}, but the layer has only ${this.inboundNodes.length} inbound nodes.`);return this.inboundNodes[e]}getInputAt(e){return is(this.getNodeAtIndex(e,"input").inputTensors)}getOutputAt(e){return is(this.getNodeAtIndex(e,"output").outputTensors)}get input(){if(this.inboundNodes.length>1)throw new na(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer input" is ill-defined. Use \`getInputAt(nodeIndex)\` instead.`);if(this.inboundNodes.length===0)throw new na(`Layer ${this.name} is not connected, no input to return.`);return is(this.getNodeAtIndex(0,"input").inputTensors)}get output(){if(this.inboundNodes.length===0)throw new na(`Layer ${this.name} has no inbound nodes.`);if(this.inboundNodes.length>1)throw new na(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer output" is ill-defined. Use \`getOutputAt(nodeIndex)\` instead.`);return is(this.getNodeAtIndex(0,"output").outputTensors)}get losses(){return this._losses}calculateLosses(){return this.losses.map(e=>e())}get updates(){return this._updates}get built(){return this._built}set built(e){this._built=e}get trainable(){return this.trainable_}set trainable(e){this._trainableWeights.forEach(t=>t.trainable=e),this.trainable_=e}get trainableWeights(){return this.trainable_?this._trainableWeights.filter(e=>e.trainable):[]}set trainableWeights(e){this._trainableWeights=e}get nonTrainableWeights(){return this.trainable?this._trainableWeights.filter(e=>!e.trainable).concat(this._nonTrainableWeights):this._trainableWeights.concat(this._nonTrainableWeights)}set nonTrainableWeights(e){this._nonTrainableWeights=e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}get stateful(){return this._stateful}resetStates(){if(!this.stateful)throw new Error("Cannot call the resetStates() method of a non-stateful Layer object.")}assertInputCompatibility(e){if(e=St(e),this.inputSpec==null||this.inputSpec.length===0)return;let t=St(this.inputSpec);if(e.length!==t.length)throw new q(`Layer ${this.name} expects ${t.length} inputs, but it received ${e.length} input tensors. Input received: ${e}`);for(let n=0;n<e.length;n++){let s=e[n],r=t[n];if(r==null)continue;let a=s.rank;if(r.ndim!=null&&a!==r.ndim)throw new q(`Input ${n} is incompatible with layer ${this.name}: expected ndim=${r.ndim}, found ndim=${a}`);if(r.maxNDim!=null&&a>r.maxNDim)throw new q(`Input ${n} is incompatible with layer ${this.name}: expected max_ndim=${r.maxNDim}, found ndim=${a}`);if(r.minNDim!=null&&a<r.minNDim)throw new q(`Input ${n} is incompatible with layer ${this.name}: expected min_ndim=${r.minNDim}, found ndim=${a}.`);if(r.dtype!=null&&s.dtype!==r.dtype)throw new q(`Input ${n} is incompatible with layer ${this.name} : expected dtype=${r.dtype}, found dtype=${s.dtype}.`);if(r.axes){let o=s.shape;for(let i in r.axes){let l=Number(i),c=r.axes[i],u=l>=0?o[l]:o[o.length+l];if(c!=null&&[c,null].indexOf(u)===-1)throw new q(`Input ${n} is incompatible with layer ${this.name}: expected axis ${l} of input shape to have value ${c} but got shape ${o}.`)}}if(r.shape!=null)for(let o=0;o<r.shape.length;++o){let i=r.shape[o],l=s.shape[o];if(i!=null&&l!=null&&i!==l)throw new q(`Input ${n} is incompatible with layer ${this.name}: expected shape=${r.shape}, found shape=${s.shape}.`)}}}call(e,t){return e}invokeCallHook(e,t){this._callHook!=null&&this._callHook(e,t)}setCallHook(e){this._callHook=e}clearCallHook(){this._callHook=null}apply(e,t){t=t||{},this.assertNotDisposed();let n=St(e),s=!0;for(let a of n)if(!(a instanceof br)){s=!1;break}let r=!0;for(let a of n)if(a instanceof br){r=!1;break}if(s===r)throw new q("Arguments to apply() must be all SymbolicTensors or all Tensors");return Al(this.name,()=>{if(!this.built){this.assertInputCompatibility(e);let a=[];for(let o of St(e))a.push(o.shape);this.build(is(a)),this.built=!0,this.initialWeights&&this.setWeights(this.initialWeights),this._refCount===null&&r&&(this._refCount=1)}if(this.assertInputCompatibility(e),r){let a=this.call(e,t),o=St(a),i=[];for(let l of o)n.indexOf(l)!==-1&&(l=l.clone()),i.push(l);if(a=is(i),this.activityRegularizer!=null)throw new Le("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return a}else{let a=UB(e),o=this.computeOutputShape(a),i,l=GB(e);if(this.warnOnIncompatibleInputShape(Array.isArray(e)?a[0]:a),o!=null&&o.length>0&&Array.isArray(o[0])?i=o.map((c,u)=>new br(l,c,this,St(e),t,this.name,u)):i=new br(l,o,this,St(e),t,this.name),this.addInboundNode(e,i,null,null,a,o,t),this._refCount++,this.activityRegularizer!=null)throw new Le("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return i}})}warnOnIncompatibleInputShape(e){if(this.batchInputShape!=null)if(e.length!==this.batchInputShape.length)console.warn(`The rank of the input tensor provided (shape: ${JSON.stringify(e)}) does not match that of the batchInputShape (${JSON.stringify(this.batchInputShape)}) of the layer ${this.name}`);else{let t=!1;this.batchInputShape.forEach((n,s)=>{n!=null&&e[s]!=null&&e[s]!==n&&(t=!0)}),t&&console.warn(`The shape of the input tensor (${JSON.stringify(e)}) does not match the expectation of layer ${this.name}: ${JSON.stringify(this.batchInputShape)}`)}}get outputShape(){if(this.inboundNodes==null||this.inboundNodes.length===0)throw new na(`The layer ${this.name} has never been called and thus has no defined output shape.`);let e=[];for(let t of this.inboundNodes){let n=JSON.stringify(t.outputShapes);e.indexOf(n)===-1&&e.push(n)}if(e.length===1){let t=this.inboundNodes[0].outputShapes;return Array.isArray(t)&&Array.isArray(t[0])&&t.length===1?t[0]:t}else throw new na(`The layer ${this.name} has multiple inbound nodes with different output shapes. Hence the notion of "output shape" is ill-defined for the layer.`)}countParams(){if(!this.built)throw new Ar(`You tried to call countParams() on ${this.name}, but the layer is not built yet. Build it first by calling build(batchInputShape).`);return sm(this.weights)}build(e){this.built=!0}getWeights(e=!1){return oA(e?this.trainableWeights:this.weights)}setWeights(e){K(()=>{let t=this.weights;if(t.length!==e.length)throw new q(`You called setWeights(weights) on layer "${this.name}" with a weight list of length ${e.length}, but the layer was expecting ${t.length} weights. Provided weights: ${e}...`);if(t.length===0)return;let n=[],s=oA(t);for(let r=0;r<s.length;++r){let a=s[r],o=t[r],i=e[r];if(!v.arraysEqual(a.shape,i.shape))throw new q(`Layer weight shape ${a.shape} not compatible with provided weight shape ${i.shape}`);n.push([o,i])}iA(n)})}addWeight(e,t,n,s,r,a,o,i){if(this._addedWeightNames.indexOf(e)!==-1)throw new q(`Duplicate weight name ${e} for layer ${this.name}`);this._addedWeightNames.push(e),n==null&&(n="float32"),this.fastWeightInitDuringBuild&&(s=i!=null?i():$t("zeros"));let l=s.apply(t,n),c=new Yw(l,n,e,a,o);return l.dispose(),r!=null&&this.addLoss(()=>r.apply(c.read())),a==null&&(a=!0),a?this._trainableWeights.push(c):this._nonTrainableWeights.push(c),c}setFastWeightInitDuringBuild(e){this.fastWeightInitDuringBuild=e}addLoss(e){e==null||Array.isArray(e)&&e.length===0||(e=St(e),this._losses!==void 0&&this._losses!==null&&this.losses.push(...e))}computeOutputShape(e){return e}computeMask(e,t){if(!this.supportsMasking){if(t!=null)if(Array.isArray(t))t.forEach(n=>{if(n!=null)throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`)});else throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`);return null}return t}addInboundNode(e,t,n,s,r,a,o=null){let i=St(e);t=St(t),n=St(n),s=St(s),r=nm(r),a=nm(a);let l=[],c=[],u=[];for(let d of i)l.push(d.sourceLayer),c.push(d.nodeIndex),u.push(d.tensorIndex);new rm({outboundLayer:this,inboundLayers:l,nodeIndices:c,tensorIndices:u,inputTensors:i,outputTensors:t,inputMasks:n,outputMasks:s,inputShapes:r,outputShapes:a},o);for(let d=0;d<t.length;d++)t[d].sourceLayer=this,t[d].nodeIndex=this.inboundNodes.length-1,t[d].tensorIndex=d}getConfig(){let e={name:this.name,trainable:this.trainable};return this.batchInputShape!=null&&(e.batchInputShape=this.batchInputShape),this.dtype!=null&&(e.dtype=this.dtype),e}disposeWeights(){return this.weights.forEach(e=>e.dispose()),this.weights.length}assertNotDisposed(){if(this._refCount===0)throw new Error(`Layer '${this.name}' is already disposed.`)}dispose(){if(!this.built)throw new Error(`Cannot dispose Layer ${this.name} because it has not been built yet.`);if(this._refCount===null)throw new Error(`Cannot dispose Layer ${this.name} because it has not been used yet.`);this.assertNotDisposed();let e=0;return--this._refCount==0&&(e=this.disposeWeights()),{refCountAfterDispose:this._refCount,numDisposedVariables:e}}};function UB(e){e=St(e);let t=[];for(let n of e)t.push(n.shape);return is(t)}function GB(e){return"float32"}function Jw(e,t,n){if((t==null||n!=null&&n>0)&&(t=e.sourceLayer,n=e.nodeIndex),t.inboundNodes.length===0)return[e];{let s=t.inboundNodes[n];if(s.inboundLayers.length===0)return s.inputTensors;{let r=[];for(let a=0;a<s.inboundLayers.length;a++){let o=s.inputTensors[a],i=s.inboundLayers[a],l=s.nodeIndices[a],c=Jw(o,i,l);for(let u of c)r.indexOf(u)===-1&&r.push(u)}return r}}}var Ku=class extends st{constructor(e){super({dtype:e.dtype,name:e.name!=null?e.name:tm("input").toString()});if(e.batchSize==null&&(e.batchSize=null),e.sparse==null&&(e.sparse=!1),this.trainable=!1,this.built=!0,this.sparse=e.sparse,e.inputShape!=null&&e.batchInputShape!=null)throw new q("Only provide the inputShape OR batchInputShape argument to inputLayer, not both at the same time.");let t=e.batchInputShape;if(t==null){if(e.inputShape==null)throw new q("An InputLayer should be passed either a `batchInputShape` or an `inputShape`.");t=[e.batchSize].concat(e.inputShape)}else if(e.batchSize!=null)throw new q("Cannot specify batchSize if batchInputShape is specified when creating an InputLayer.");let n=e.dtype||"float32";this.batchInputShape=t,this.dtype=n,this.inputSpec=[{shape:t}];let s=new br(this.dtype,this.batchInputShape,this,[],{},this.name);s.nodeIndex=0,s.tensorIndex=0,new rm({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:[s],outputTensors:[s],inputMasks:[null],outputMasks:[null],inputShapes:[t],outputShapes:[t]})}apply(e,t){throw new q(`Cannot pass any input to an InputLayer's apply() method. InputLayer name: ${this.name}`)}dispose(){return{refCountAfterDispose:this._refCount,numDisposedVariables:0}}getConfig(){return{batchInputShape:this.batchInputShape,dtype:this.dtype,sparse:this.sparse,name:this.name}}};Ku.className="InputLayer";ce.registerClass(Ku);function Qw(e){if(e.batchShape==null&&e.shape==null)throw new Error("Please provide to Input either a `shape` or a `batchShape` argument. Note that `shape` does not include the batch dimension.");if(e.batchShape!=null&&e.shape!=null)throw new q("Please provide either a `shape` or `batchShape` argument to Input, but not both.");let t=e.batchShape;e.shape!=null&&t==null&&(t=[null].concat(e.shape));let n=e.dtype;return n==null&&(n="float32"),new Ku({batchInputShape:t,name:e.name,dtype:n,sparse:e.sparse}).inboundNodes[0].outputTensors[0]}async function Lo(e){if(e==null)return;let t=[],n=[],s=[];for(let r in e){let a=e[r];if(typeof a!="number"){let o=a;t.push(o.data()),n.push(r),s.push(o)}}if(t.length>0){let r=await Promise.all(t);for(let a=0;a<r.length;++a)e[n[a]]=r[a][0];ne(s)}}function ek(e){if(e!=null)for(let t in e){let n=e[t];typeof n!="number"&&n.dispose()}}var tk;(function(e){e[e.SILENT=0]="SILENT",e[e.VERBOSE=1]="VERBOSE"})(tk||(tk={}));var HB=125,Zu=class{constructor(){this.validationData=null}setParams(e){this.params=e}async onEpochBegin(e,t){}async onEpochEnd(e,t){}async onBatchBegin(e,t){}async onBatchEnd(e,t){}async onTrainBegin(e){}async onTrainEnd(e){}setModel(e){}},nk=class{constructor(e,t=10){e==null&&(e=[]),this.callbacks=e,this.queueLength=t}append(e){this.callbacks.push(e)}setParams(e){for(let t of this.callbacks)t.setParams(e)}setModel(e){for(let t of this.callbacks)t.setModel(e)}async onEpochBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochBegin(e,t)}async onEpochEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochEnd(e,t)}async onBatchBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchBegin(e,t)}async onBatchEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchEnd(e,t)}async onTrainBegin(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainBegin(e)}async onTrainEnd(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainEnd(e)}},jB=class extends Zu{constructor(){super()}async onEpochBegin(e){this.seen=0,this.totals={}}async onBatchEnd(e,t){t==null&&(t={});let n=t.size==null?0:t.size;this.seen+=n;for(let s in t){let r=t[s];if(typeof r=="number")this.totals.hasOwnProperty(s)||(this.totals[s]=0),this.totals[s]=this.totals[s]+r*n;else{let a;s in this.totals?a=this.totals[s]:this.totals[s]=0;let o=K(()=>ue(this.totals[s],L(r,n)));this.totals[s]=o,a!=null&&a.dispose()}}}async onEpochEnd(e,t){if(t!=null)for(let n of this.params.metrics)this.totals[n]!=null&&(typeof this.totals[n]=="number"?t[n]=this.totals[n]/this.seen:K(()=>{let s=L(pe(1,this.seen),this.totals[n]);t[n]=s,this.totals[n].dispose(),An(t[n])}))}},sk=class extends Zu{async onTrainBegin(e){this.epoch=[],this.history={}}async onEpochEnd(e,t){t==null&&(t={}),this.epoch.push(e);for(let n in t)this.history[n]==null&&(this.history[n]=[]),this.history[n].push(t[n])}async syncData(){let e=[],t=[],n=[];for(let r in this.history){let a=this.history[r];for(let o=0;o<a.length;++o)if(typeof a[o]!="number"){let i=a[o];e.push(i.data()),t.push(r),n.push(o)}}let s=await Promise.all(e);for(let r=0;r<s.length;++r)this.history[t[r]][n[r]].dispose(),this.history[t[r]][n[r]]=s[r][0]}},rk=class extends Zu{constructor(e,t){super();if(this.currentEpoch=0,this.nowFunc=e.nowFunc,this.nextFrameFunc=e.nextFrameFunc||gw,this.yieldEvery=t||"auto",this.yieldEvery==="auto"&&(this.yieldEvery=HB),this.yieldEvery==="never"&&e.onYield!=null)throw new Error("yieldEvery is `never` but you provided an `onYield` callback. Either change `yieldEvery` or remove the callback");v.isNumber(this.yieldEvery)&&(this.maybeWait=QL(this.maybeWait.bind(this),this.yieldEvery,this.nowFunc)),this.trainBegin=e.onTrainBegin,this.trainEnd=e.onTrainEnd,this.epochBegin=e.onEpochBegin,this.epochEnd=e.onEpochEnd,this.batchBegin=e.onBatchBegin,this.batchEnd=e.onBatchEnd,this.yield=e.onYield}async maybeWait(e,t,n){let s=[];this.yield!=null&&(await Lo(n),s.push(this.yield(e,t,n))),s.push(this.nextFrameFunc()),await Promise.all(s)}async onEpochBegin(e,t){this.currentEpoch=e,this.epochBegin!=null&&(await Lo(t),await this.epochBegin(e,t))}async onEpochEnd(e,t){let n=[];this.epochEnd!=null&&(await Lo(t),n.push(this.epochEnd(e,t))),this.yieldEvery==="epoch"&&n.push(this.nextFrameFunc()),await Promise.all(n)}async onBatchBegin(e,t){this.batchBegin!=null&&(await Lo(t),await this.batchBegin(e,t))}async onBatchEnd(e,t){let n=[];this.batchEnd!=null&&(await Lo(t),n.push(this.batchEnd(e,t))),this.yieldEvery==="batch"?n.push(this.nextFrameFunc()):v.isNumber(this.yieldEvery)&&n.push(this.maybeWait(this.currentEpoch,e,t)),await Promise.all(n)}async onTrainBegin(e){this.trainBegin!=null&&(await Lo(e),await this.trainBegin(e))}async onTrainEnd(e){this.trainEnd!=null&&(await Lo(e),await this.trainEnd(e))}};function ak(e,t){return e==null&&(e={}),e instanceof Zu?[e]:Array.isArray(e)&&e[0]instanceof Zu?e:St(e).map(s=>new rk(s,t))}var Mr=class{constructor(){}static registerCallbackConstructor(e,t){v.assert(e>=0&&Number.isInteger(e),()=>`Verbosity level is expected to be an integer >= 0, but got ${e}`),Mr.checkForDuplicate(t),Mr.constructors[e]==null&&(Mr.constructors[e]=[]),Mr.constructors[e].push(t)}static checkForDuplicate(e){for(let t in Mr.constructors)Mr.constructors[+t].forEach(s=>{if(s===e)throw new q("Duplicate callback constructor.")})}static clear(){Mr.constructors={}}static createCallbacks(e){let t=[];for(let n in Mr.constructors){let s=+n;e>=s&&t.push(...Mr.constructors[s])}return t.map(n=>new n)}},lA=Mr;lA.constructors={};function ok(e,t,n,s,r,a,o,i,l){let c=new sk,u=[new jB,...lA.createCallbacks(t)];e!=null&&u.push(...e),u.push(c);let d=new nk(u);return d.setParams({epochs:n,initialEpoch:s,samples:r,steps:a,batchSize:o,verbose:t,doValidation:i,metrics:l}),{callbackList:d,history:c}}function vr(e,t={},n=!1){return Ud(e,ce.SerializationMap.getMap().classNameMap,t,"layer",n)}function am(e,t){return K(()=>{e.dtype!=="float32"&&(e=ge(e,"float32"));let n=we(qd(e),t,!0),s=Lu(n.shape,an()),r=Dn(Qr(n,s));return pe(e,r)})}function xl(e,t){return K(()=>Wt(qd(fe(t,e)),-1))}function om(e,t){return K(()=>Wt(sn(fe(t,e)),-1))}function Yu(e,t){return K(()=>{let n=fe(e,t),s=As(sn(e),an(),Number.MAX_VALUE),r=sn(pe(n,s));return L(100,Wt(r,-1))})}function qB(e,t){return K(()=>{let n=As(t,an(),Number.MAX_VALUE),s=Fs(ue(1,n)),r=As(e,an(),Number.MAX_VALUE),a=Fs(ue(1,r));return Wt(qd(fe(s,a)),-1)})}function XB(e,t){return K(()=>{let n=Qr(0,fe(1,L(e,t)));return Wt(qd(n),-1)})}function KB(e,t){return K(()=>{let n=Qr(0,fe(1,L(e,t)));return Wt(n,-1)})}function ZB(e,t){return K(()=>{let n=we(L(e,t),-1),s=yn(L(fe(1,e),t),-1);return Qr(0,ue(1,fe(s,n)))})}function YB(e,t){return K(()=>{let n=Math.log(2),s=fe(t,e),r=fe(ue(s,Wu(L(-2,s))),n);return Wt(r,-1)})}function Kd(e,t,n=!1){return K(()=>{if(n)t=Hu(t);else{let s=we(t,t.shape.length-1,!0);t=pe(t,s)}return t=As(t,an(),1-an()),Ot(we(L(ge(e,"float32"),Fs(t)),t.shape.length-1))})}function im(e,t,n=!1){return K(()=>{let s=ge(Fd(fB(e)),"int32");t=As(t,an(),1-an());let r=t.shape,a=H(Rd(s,r[r.length-1]),r);return Kd(a,t,n)})}function JB(e,t){if(!v.arraysEqual(e.shape,t.shape))throw new q(`logits and labels must have the same shape, but got shapes ${JSON.stringify(e.shape)} and ${JSON.stringify(t.shape)}`);return K(()=>{let n=Pr(t),s=Ot(sn(t));return ue(fe(n,L(t,e)),vf(Ps(s)))})}function lm(e,t){return K(()=>{let n;return n=As(t,an(),1-an()),n=Fs(pe(n,fe(1,n))),Wt(JB(e,n),-1)})}function QB(e,t){return K(()=>{let n=As(e,an(),1),s=As(t,an(),1);return we(L(e,Fs(pe(n,s))),-1)})}function eW(e,t){return K(()=>{let n=Fs(ue(an(),t));return Wt(fe(t,L(e,n)),-1)})}function uA(e,t){return K(()=>{let n=am(e,-1),s=am(t,-1),r=L(n,s);return Ot(we(r,-1))})}var um={meanSquaredError:xl,meanAbsoluteError:om,meanAbsolutePercentageError:Yu,meanSquaredLogarithmicError:qB,squaredHinge:XB,hinge:KB,categoricalHinge:ZB,logcosh:YB,categoricalCrossentropy:Kd,sparseCategoricalCrossentropy:im,binaryCrossentropy:lm,kullbackLeiblerDivergence:QB,poisson:eW,cosineProximity:uA};function cA(e){if(typeof e=="string"){if(e in um)return um[e];let t=`Unknown loss ${e}`;throw e.toLowerCase().includes("softmaxcrossentropy")&&(t=`Unknown loss ${e}. Use "categoricalCrossentropy" as the string name for tf.losses.softmaxCrossEntropy`),new q(t)}else return e}function dA(e,t){return K(()=>{let n=L(.5,Os(t)),s=Gf(ys(t,n),e.dtype);return Wt(Ds(e,s),-1)})}function pA(e,t){return K(()=>Gf(Ds(Js(e,-1),Js(t,-1)),"float32"))}function ik(e,t){return K(()=>ge(we(fr(Ds(e,1),Ds(t,1))),"float32"))}function tW(e,t){return K(()=>ge(we(fr(Ds(e,1),Ds(t,0))),"float32"))}function nW(e,t){return K(()=>ge(we(fr(Ds(e,0),Ds(t,1))),"float32"))}function lk(e,t){return K(()=>{let n=ik(e,t),s=nW(e,t),r=ue(n,s);return ge(Wn(ys(r,0),pe(n,r),0),"float32")})}function sW(e,t){return K(()=>{let n=ik(e,t),s=tW(e,t),r=ue(n,s);return ge(Wn(ys(r,0),pe(n,r),0),"float32")})}function uk(e,t){return lm(e,t)}function ck(e,t){return e.rank===t.rank&&(e=ut(e,[e.rank-1])),t=Js(t,-1),t.dtype!==e.dtype&&(t=ge(t,e.dtype)),ge(Ds(e,t),"float32")}var rW=xl,aW=xl,oW=om,iW=om,lW=Yu,uW=Yu,hA=Kd,cW=uA,dk=im,cm={binaryAccuracy:dA,categoricalAccuracy:pA,precision:lk,categoricalCrossentropy:hA,sparseCategoricalCrossentropy:dk,mse:rW,MSE:aW,mae:oW,MAE:iW,mape:lW,MAPE:uW,cosine:cW};function dW(e){if(typeof e=="string"&&e in cm)return cm[e];if(typeof e!="string"&&e!=null)return e;throw new q(`Unknown metric ${e}`)}function dm(e){if(Fr(e!==null,`Unknown LossOrMetricFn ${e}`),typeof e=="string")return e;{let t;for(let n of Object.keys(um))if(um[n]===e){t=n;break}if(t!==void 0)return t;for(let n of Object.keys(cm))if(cm[n]===e){t=n;break}return t!==void 0?t:e.name}}function pW(e){let t={Adagrad:()=>hl.adagrad(.01),Adadelta:()=>hl.adadelta(1,.95,an()),Adam:()=>hl.adam(.001,.9,.999,an()),Adamax:()=>hl.adamax(.002,.9,.999,an(),0),RMSProp:()=>hl.rmsprop(.001,.9,0,an()),SGD:()=>hl.sgd(.01)};if(t.adagrad=t.Adagrad,t.adadelta=t.Adadelta,t.adam=t.Adam,t.adamax=t.Adamax,t.rmsprop=t.RMSProp,t.sgd=t.SGD,e in t)return t[e]();throw new q(`Unknown Optimizer ${e}`)}var pk=1*1024*1024;function hk(e,t,n=!1){if(e==null||typeof e!="object"||Object.getPrototypeOf(e)!==Object.prototype||!fA(e))throw new Error("User-defined metadata is expected to be a JSON object, but is not.");if(n){let s=JSON.stringify(e);s.length>pk&&console.warn(`User-defined metadata of model "${t}" is too large in size (length=${s.length} when serialized). It is not recommended to store such large objects in user-defined metadata. Please make sure its serialized length is <= ${pk}.`)}}function fA(e){if(e===null)return!0;if(typeof e=="object")if(Object.getPrototypeOf(e)===Object.prototype){let t=Object.keys(e);for(let n of t)if(typeof n!="string"||!fA(e[n]))return!1;return!0}else if(Array.isArray(e)){for(let t of e)if(!fA(t))return!1;return!0}else return!1;else{let t=typeof e;return t==="string"||t==="number"||t==="boolean"}}function hW(e,t,n,s=console.log){let r=mW(e),a=["Layer (type)","Output shape","Param #"];r?(t=t||65,n=n||[.45,.85,1]):(t=t||98,n=n||[.33,.55,.67,1]),n[n.length-1]<=1&&(n=n.map(u=>Math.floor(t*u)));let o;if(!r){a.push("Receives inputs"),o=[];for(let u in e.nodesByDepth)o.push(...e.nodesByDepth[u])}s("_".repeat(t)),pm(a,n,s),s("=".repeat(t));let i=e.layers;for(let u=0;u<i.length;++u)r?gW(i[u],n,s):AW(i[u],n,o,s),s((u===i.length-1?"=":"_").repeat(t));e.checkTrainableWeightsConsistency();let l=fW(e),c=sm(e.nonTrainableWeights);s(`Total params: ${l+c}`),s(`Trainable params: ${l}`),s(`Non-trainable params: ${c}`),s("_".repeat(t))}function fW(e){let t;return e.collectedTrainableWeights!=null?t=sm(e.collectedTrainableWeights):t=sm(e.trainableWeights),t}function mW(e){let t=!0,n=[],s=[];for(let r in e.nodesByDepth)n.push(e.nodesByDepth[r]);for(let r of n){if(r.length>1||r.length===1&&r[0].inboundLayers.length>1){t=!1;break}s.push(...r)}if(t)for(let r of e.layers){let a=!1;for(let o of r.inboundNodes)if(s.indexOf(o)!==-1)if(a){t=!1;break}else a=!0;if(!t)break}return t}function pm(e,t,n=console.log){let s="";for(let r=0;r<e.length;++r)r>0&&(s=s.slice(0,s.length-1)+" "),s+=e[r],s=s.slice(0,t[r]),s+=" ".repeat(t[r]-s.length);n(s)}function gW(e,t,n){let s;try{s=JSON.stringify(e.outputShape)}catch(i){s="multiple"}let r=e.name,a=e.getClassName(),o=[`${r} (${a})`,s,e.countParams().toString()];pm(o,t,n)}function AW(e,t,n,s){let r;try{r=JSON.stringify(e.outputShape)}catch(u){r="multiple"}let a=[];for(let u of e.inboundNodes)if(!(n!=null&&n.length>0&&n.indexOf(u)===-1))for(let d=0;d<u.inboundLayers.length;++d){let p=u.inboundLayers[d].name,h=u.nodeIndices[d],f=u.tensorIndices[d];a.push(`${p}[${h}][${f}]`)}let o=e.name,i=e.getClassName(),l=a.length===0?"":a[0],c=[`${o} (${i})`,r,e.countParams().toString(),l];pm(c,t,s);for(let u=1;u<a.length;++u)pm(["","","",a[u]],t,s)}function fk(e,t,n){return(e==="inboundNodes"||e==="outputLayers"||e==="inputLayers")&&t===0&&typeof n=="string"}function Zd(e,t){if(e===null)return null;if(typeof e=="string")return ml(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let n=[],s=e.length;for(let r=0;r<s;++r){let a=e[r];fk(t,r,a)?n.push(a):n.push(Zd(a,t))}return n}else{let n={};for(let s of Object.keys(e)){let r=e[s];if(s==="name"&&typeof r=="string")n[s]=r;else{let a=ml(s);n[a]=Zd(r,a)}}return n}}function mA(e,t){if(e==null)return null;if(typeof e=="string")return sa(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let n=[],s=e.length;for(let r=0;r<s;++r){let a=e[r];fk(t,r,a)?n.push(a):n.push(mA(a,t))}return n}else{let n={};for(let s of Object.keys(e)){let r=e[s],a=sa(s);(s==="name"||s==="className")&&typeof r=="string"?n[a]=r:n[a]=mA(r,s)}return n}}var gA="0.0.0";function yW(e,t){if(e.dtype==null||e.dtype===t.dtype)return t;try{return ge(t,e.dtype)}catch(n){throw new q(`The dtype of the feed (${t.dtype}) can not be cast to the dtype of the key '${e.name}' (${e.dtype}).`)}}var bl=class{constructor(e){if(this.id2Value={},this.id2Mask={},this.name2Id={},e instanceof bl)for(let t in e.id2Value)this.id2Value[t]=e.id2Value[t],t in e.id2Mask&&(this.id2Mask[t]=e.id2Mask[t]);else{if(e==null)return;for(let t of e)this.add(t.key,t.value)}}add(e,t,n){if(this.id2Value[e.id]==null)this.id2Value[e.id]=yW(e,t),this.name2Id[e.name]=e.id,n!=null&&(this.id2Mask[e.id]=n);else throw new q(`Duplicate key: name=${e.name}, id=${e.id}`);return this}addFeed(e){this.add(e.key,e.value)}hasKey(e){return this.id2Value[e.id]!=null}names(){return Object.keys(this.name2Id)}getValue(e){if(e instanceof br){if(this.id2Value[e.id]==null)throw new q(`Nonexistent key: ${e.name}`);return this.id2Value[e.id]}else{let t=this.name2Id[e];if(t==null)throw new q(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Value[t]}}getMask(e){if(e instanceof br){if(this.id2Value[e.id]==null)throw new q(`Nonexistent key: ${e.name}`);return this.id2Mask[e.id]}else{let t=this.name2Id[e];if(t==null)throw new q(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Mask[t]}}disposeMasks(){this.id2Mask!=null&&ne(this.id2Mask)}},AA={},mk={};function Yd(e,t,n,s){let r=n==null?!1:n.training,a=Array.isArray(e),o=a?e:[e],i=o.map(f=>f.name),l=[],c=t.names();for(let f of i)c.indexOf(f)!==-1?l.push(t.getValue(f)):l.push(null);s!=null&&(s.maxNumTensors=-1/0,s.minNumTensors=1/0);let u=i.join(",")+"|"+t.names().join(","),d,p;if(AA[u]==null){let f=xW(o,t);d=f.sorted,p=f.recipientCounts,AA[u]=d,mk[u]=p}d=AA[u],p={},r||Object.assign(p,mk[u]);let h=new bl(t);for(let f=0;f<d.length;++f){if(s!=null){let R=cf().numTensors;R>s.maxNumTensors&&(s.maxNumTensors=R),R<s.minNumTensors&&(s.minNumTensors=R)}let m=d[f],g=m.sourceLayer;if(g instanceof Ku)continue;let A=[],x=[],y=[],b=!1;for(let R of m.inputs){let M=h.getValue(R),D=h.getMask(R);A.push(M),x.push(D),D!=null&&(b=!0),r||(p[R.name]--,p[R.name]===0&&!t.hasKey(R)&&i.indexOf(R.name)===-1&&!M.isDisposed&&R.sourceLayer.stateful!==!0&&y.push(M))}b&&(n=n||{},n.mask=x[0]);let w=St(g.apply(A,n)),k=null;g.supportsMasking&&(k=g.computeMask(A,x));let S=vW(m),N=Array.isArray(S)?S:[S];for(let R=0;R<N.length;++R){h.hasKey(N[R])||h.add(N[R],w[R],Array.isArray(k)?k[0]:k);let M=i.indexOf(N[R].name);M!==-1&&(l[M]=w[R])}r||ne(y)}return h.disposeMasks(),a?l:l[0]}function xW(e,t){v.assert(e!=null&&e.length>0,()=>"Expected at least one fetch, got none");let n=[],s={};if(e.length===1){let r=gk(e[0],t);n=r.sorted,s=r.recipientMap}else{let r=new Set;for(let a of e){let{sorted:o,recipientMap:i}=gk(a,t);for(let l of o)r.has(l.name)||(n.push(l),r.add(l.name));for(let l in i)s[l]==null&&(s[l]=new Set),i[l].forEach(c=>s[l].add(c))}}return{sorted:n,recipientCounts:bW(s)}}function bW(e){let t={};for(let n in e)t[n]=e[n].size;return t}function gk(e,t){let n=new Set,s=[],r={};for(let i of t.names())n.add(i);let a=[],o=[];for(a.push(e);a.length>0;){let i=a[a.length-1];if(n.has(i.name)){a.pop();continue}let l=o[o.length-1]===a.length-1;if(i.inputs.length===0||l)a.pop(),s.push(i),n.add(i.name),l&&o.pop();else{o.push(a.length-1);for(let c of i.inputs)r[c.name]==null&&(r[c.name]=new Set),r[c.name].add(i.name),!n.has(c.name)&&a.push(c)}}return{sorted:s,recipientMap:r}}function vW(e){let t;if(e.sourceLayer.inboundNodes.length===1)t=e.sourceLayer.output;else{let n=null;for(let s=0;s<e.sourceLayer.inboundNodes.length;++s)for(let r of e.sourceLayer.inboundNodes[s].outputTensors)if(r.id===e.id){n=s;break}t=e.sourceLayer.getOutputAt(n)}return t}var zr=class extends st{constructor(e){super({});if(this.containerNodes=new Set,this.name=e.name,this.name==null){let A=this.getClassName().toLowerCase();this.name=tm(A)}if(this.supportsMasking=!1,this.trainable_=!0,Array.isArray(e.inputs)?this.inputs=e.inputs.slice():this.inputs=[e.inputs],Array.isArray(e.outputs)?this.outputs=e.outputs.slice():this.outputs=[e.outputs],Oo(this.inputs).length!==this.inputs.length)throw new q(`The list of inputs passed to the model is redundant. All inputs should only appear once. Found: ${this.inputs.map(A=>A.name)}`);Oo(this.outputs).length!==this.outputs.length&&console.warn(`The list of outputs passed to the model is redundant. All outputs should only appear once. Found: ${this.outputs.map(A=>A.name)}`),this.inputLayers=[],this.inputLayersNodeIndices=[],this.inputLayersTensorIndices=[],this.outputLayers=[],this.outputLayersNodeIndices=[],this.outputLayersTensorIndices=[],this.layers=[],this.internalContainerRefs=[];for(let A of this.outputs){let x=A.sourceLayer,y=A.nodeIndex,b=A.tensorIndex;this.outputLayers.push(x),this.outputLayersNodeIndices.push(y),this.outputLayersTensorIndices.push(b)}for(let A of this.inputs){let x=A.sourceLayer,y=A.nodeIndex,b=A.tensorIndex;Fr(y===0,"input layer has >1 nodes"),Fr(b===0,"input layer has >1 tensors"),this.inputLayers.push(x),this.inputLayersNodeIndices.push(y),this.inputLayersTensorIndices.push(b)}this.inputNames=[],this.outputNames=[],this.feedInputShapes=[],this.feedInputNames=[],this.feedOutputNames=[];for(let A=0;A<this.inputLayers.length;A++){let x=this.inputLayers[A];if(!(x instanceof Ku))throw new TypeError(`Input layers to a LayersModel must be InputLayer objects. Received inputs: ${e.inputs}. Input ${A} (0-based) originates from layer type ${x.getClassName()}.`);this.inputNames.push(x.name),this.feedInputShapes.push(x.batchInputShape),this.feedInputNames.push(x.name)}for(let A of this.outputLayers)this.outputNames.push(A.name);this.internalInputShapes=this.inputs.map(A=>A.shape),this.internalOutputShapes=this.outputs.map(A=>A.shape);let t={},n={},s={},r={},a={},o=[],i=(A,x,y,b,w,k)=>{(b==null||w==null||k==null)&&(b=A.sourceLayer,w=A.nodeIndex,k=A.tensorIndex);let S=b.inboundNodes[w];if(y.indexOf(S)!==-1)throw new Ar(`The tensor ${A.name} at layer "${b.name}" is part of a cycle.`);if(x.indexOf(S)!==-1)return;this.containerNodes.add(zr.nodeKey(b,w)),b.id in a||(a[b.id]=Object.keys(a).length),y.indexOf(S)===-1&&y.push(S);let N=S.inboundLayers.length;for(let R=0;R<N;R++){let M=S.inputTensors[R],D=S.inboundLayers[R],$=S.nodeIndices[R],T=S.tensorIndices[R];i(M,x,y,D,$,T)}for(x.push(S);y.indexOf(S)>=0;)y.splice(y.indexOf(S),1);o.push(S)},l=[],c=[];for(let A of this.outputs)i(A,l,c);let u=o.slice().reverse();for(let A of u){n[A.id]=A,A.id in t||(t[A.id]=0);let x=t[A.id],y=s[A.outboundLayer.id]==null?0:s[A.outboundLayer.id];x=Math.max(x,y),s[A.outboundLayer.id]=x,r[A.outboundLayer.id]=A.outboundLayer,t[A.id]=x;for(let b=0;b<A.inboundLayers.length;b++){let w=A.inboundLayers[b],k=A.nodeIndices[b],S=w.inboundNodes[k],N=t[S.id]==null?0:t[S.id];t[S.id]=Math.max(x+1,N),n[S.id]=S}}let d={};for(let A in t){let x=t[A];x in d||(d[x]=[]),d[x].push(n[A])}let p={};for(let A in s){let x=s[A];x in p||(p[x]=[]),p[x].push(r[A])}let h=Object.keys(p).map(A=>parseInt(A,10)).sort(Uf);this.layers=[];for(let A of h){let x=p[A];x.sort((y,b)=>{let w=a[y.id],k=a[b.id];return w<k?-1:w>k?1:0});for(let y of x)y instanceof zr&&this.internalContainerRefs.push(y),this.layers.push(y)}this.layersByDepth=p,h=Object.keys(d).map(A=>parseInt(A,10)).sort(Uf);let f=this.inputs.slice(),m=[];for(let A of h)for(let x of d[A]){let y=x.outboundLayer;if(y!=null){for(let b of x.inputTensors)if(f.indexOf(b)===-1)throw new Ar(`Graph disconnected: cannot obtain value for tensor ${b} at layer "${y.name}". The following previous layers were accessed without issue: ${m}`);for(let b of x.outputTensors)f.push(b);m.push(y.name)}}this.nodesByDepth=d;let g=this.layers.map(A=>A.name);for(let A of g){let x=g.filter(y=>y===A).length;if(x!==1)throw new Ar(`The name "${A}" is used ${x} times in the model. All layer names should be unique. Layer names: `+JSON.stringify(g))}this.outboundNodes=[],this.inboundNodes=[],new rm({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:this.inputs.map(A=>null),outputMasks:this.outputs.map(A=>null),inputShapes:this.inputs.map(A=>A.shape),outputShapes:this.outputs.map(A=>A.shape)}),this.built=!0,this._refCount=1}assertNotDisposed(){if(this._refCount===0)throw new Error(`Container '${this.name}' is already disposed.`)}dispose(){this.assertNotDisposed();let e={refCountAfterDispose:null,numDisposedVariables:0};if(--this._refCount==0){for(let t of this.layers)e.numDisposedVariables+=t.dispose().numDisposedVariables;for(let t of this.internalContainerRefs)e.numDisposedVariables+=t.dispose().numDisposedVariables}return e.refCountAfterDispose=this._refCount,e}get trainable(){return this.trainable_}set trainable(e){this.layers.forEach(t=>{t._trainableWeights.forEach(n=>n.trainable=e)}),this.trainable_=e}get trainableWeights(){if(this._trainableWeights.length>0)throw new q("Container instance unexpectedly contains _trainableWeights.The trainable weights of a Container are a union of the trainable weights of its consituent Layers. Its own _trainableWeights must remain an empty Array.");if(!this.trainable)return[];let e=[];for(let t of this.layers)e=e.concat(t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.layers)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.layers)t.push(...n.trainableWeights);return t.concat(e)}return e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}loadWeights(e,t=!0){let n={},s=0;for(let a of this.layers)for(let o of a.weights){if(n[o.originalName]!=null)throw new q(`Duplicate weight name: ${o.originalName}`);n[o.originalName]=o,s++}let r=[];for(let a in e){let o=a;if(n[a]==null){let i=a.split("/");o=i.slice(0,-2).concat([i[i.length-1]]).join("/")}if(n[o]!=null)r.push([n[o],e[a]]);else if(t)throw new q(`Provided weight data has no target variable: ${a}`);delete n[o]}if(t){let a=[];for(let o in n)a.push(o);if(a.length>0)throw new q(`${a.length} of ${s} weights are not set: ${a}`)}iA(r)}updatedConfig(){let e=this.getConfig(),t={};return t.className=this.getClassName(),t.config=e,t.kerasVersion=`tfjs-layers ${gA}`,t.backend="TensorFlow.js",t}toJSON(e,t=!0){let n=mA(this.updatedConfig());return t?JSON.stringify(n):n}call(e,t){return K(()=>{e=St(e);let n=new bl;for(let s=0;s<this.inputs.length;++s)n.add(this.inputs[s],e[s]);return Yd(this.outputs,n,t)})}computeMask(e,t){return K(()=>{e=St(e);let n;return t==null?n=fl(null,e.length):n=St(t),this.runInternalGraph(e,n)[1]})}computeOutputShape(e){let t=nm(e);if(t.length!==this.inputLayers.length)throw new q(`Invalid inputShape argument ${e}: model has ${this.inputLayers.length} tensor inputs.`);let n={};for(let o=0;o<t.length;o++){let i=this.inputLayers[o],l=t[o],c=i.name+"_0_0";n[c]=l}let s=Object.keys(this.nodesByDepth).map(o=>parseInt(o,10)).sort(Uf);if(s.length>1)for(let o of s){let i=this.nodesByDepth[o];for(let l of i){let c=l.outboundLayer;if(this.inputLayers.map(f=>f.id).indexOf(c.id)!==-1)continue;let u=[];for(let f=0;f<l.inboundLayers.length;f++){let m=l.inboundLayers[f],g=l.nodeIndices[f],A=l.tensorIndices[f],x=`${m.name}_${g}_${A}`,y=n[x];u.push(y)}let d=c.computeOutputShape(is(u)),p=nm(d),h=c.inboundNodes.indexOf(l);for(let f=0;f<p.length;f++){let m=`${c.name}_${h}_${f}`;n[m]=p[f]}}}let r=[],a=[];for(let o=0;o<this.outputLayers.length;o++){let i=this.outputLayers[o],l=this.outputLayersNodeIndices[o],c=this.outputLayersTensorIndices[o],u=`${i.name}_${l}_${c}`;a.push(u)}for(let o=0;o<a.length;o++){let i=a[o];Fr(i in n),r.push(n[i])}return is(r)}runInternalGraph(e,t){t==null&&(t=fl(null,e.length));let n={};for(let i=0;i<this.inputs.length;++i){let l=this.inputs[i],c=e[i],u=t[i];n[l.id]=[c,u]}let s=Object.keys(this.nodesByDepth).map(i=>parseInt(i,10)).sort(Uf);for(let i of s){let l=this.nodesByDepth[i];for(let c of l){let u=c.outboundLayer,d=c.inputTensors,p=c.outputTensors,h=new Array;for(let f of d)f.id in n&&h.push(n[f.id]);if(h.length===d.length){let f={},m,g,A,x;if(c.callArgs!=null&&(f=c.callArgs),h.length===1){let[y,b]=h[0];f.mask==null&&(f.mask=b),A=St(u.call(y,f)),x=St(u.computeMask(y,b)),m=[y],g=[b]}else m=h.map(y=>y[0]),g=h.map(y=>y[1]),f.mask==null&&(f.mask=g),A=St(u.call(m,f)),x=St(u.computeMask(m,g));if(u.activityRegularizer)throw new Le("LayersModel invocation with concrete Tensor value(s) in the presence of activity regularizer(s) is not supported yet.");for(let y=0;y<p.length;++y){let b=p[y],w=A[y],k=x[y];n[b.id]=[w,k]}}}}let r=[],a=[],o=[];for(let i of this.outputs){Fr(i.id in n,`Could not compute output ${i.name} : ${i.id}`);let[l,c]=n[i.id];o.push(l.shape),r.push(l),a.push(c)}return[r,a,o]}buildNodeConversionMap(e){let t={},n;for(let s of this.layers){n=s instanceof zr?1:0;for(let r=0;r<s.inboundNodes.length;r++){let a=zr.nodeKey(s,r);this.containerNodes.has(a)&&(t[a]=n,n+=1)}}return t}getLayer(e,t){if(t!=null){if(this.layers.length<=t)throw new q(`Was asked to retrieve layer at index ${t}, but model only has ${this.layers.length} layer(s).`);return this.layers[t]}else if(e==null)throw new q("Provide either a layer name or layer index");for(let n of this.layers)if(n.name===e)return n;throw new q(`No such layer: ${e}`)}calculateLosses(){return K(()=>{let e=[];for(let t of this.layers)for(let n=0;n<t.inboundNodes.length;++n){let s=zr.nodeKey(t,n);this.containerNodes.has(s)&&e.push(...t.calculateLosses())}return e})}getConfig(){let e={name:this.name},t=this.buildNodeConversionMap(this.layers),n=[];for(let a of this.layers){let o=a.getClassName(),i=a.getConfig(),l=[];for(let u=0;u<a.inboundNodes.length;u++){let d=a.inboundNodes[u],p=zr.nodeKey(a,u),h={};if(this.containerNodes.has(p)){if(d.callArgs)try{JSON.stringify(d.callArgs),h=d.callArgs}catch(f){console.warn(`Layer ${a.name} was passed non-serializable keyword arguments: ${d.callArgs}. They will not be included in the serialized model (and thus will be missing at deserialization time).`),h={}}if(d.inboundLayers.length>0){let f=[];for(let m=0;m<d.inboundLayers.length;m++){let g=d.inboundLayers[m],A=d.nodeIndices[m],x=d.tensorIndices[m],y=zr.nodeKey(g,A),b=t[y];b==null&&(b=0),f.push([g.name,b,x,h])}l.push(f)}}}let c={};c.name=a.name,c.className=o,c.config=i,c.inboundNodes=l,n.push(c)}e.layers=n;let s=[];for(let a=0;a<this.inputLayers.length;a++){let o=this.inputLayers[a],i=this.inputLayersNodeIndices[a],l=zr.nodeKey(o,i);if(!this.containerNodes.has(l))continue;let c=t[l];c==null&&(c=0);let u=this.inputLayersTensorIndices[a];s.push([o.name,c,u])}e.inputLayers=s;let r=[];for(let a=0;a<this.outputLayers.length;a++){let o=this.outputLayers[a],i=this.outputLayersNodeIndices[a],l=zr.nodeKey(o,i);if(!this.containerNodes.has(l))continue;let c=t[l];c==null&&(c=0);let u=this.outputLayersTensorIndices[a];r.push([o.name,c,u])}return e.outputLayers=r,e}static fromConfig(e,t,n={},s=!1){let r={},a={};function o(m,g){m.name in a?a[m.name].push(g):a[m.name]=[g]}function i(m,g){let A=[],x;for(let y of g){let b=y[0],w=y[1],k=y[2];if(x=y[3]==null?{}:y[3],!(b in r)){o(m,g);return}let S=r[b];if(S.inboundNodes.length<=w){o(m,g);return}let N=S.inboundNodes[w];A.push(N.outputTensors[k])}A.length>0&&m.apply(is(A),x)}function l(m){let g=m.name,A=vr(m,t.customObjects!=null?t.customObjects:{});A.setFastWeightInitDuringBuild(s),r[g]=A,m.inboundNodes.forEach(y=>{if(!(y instanceof Array))throw new q(`Corrupted configuration, expected array for nodeData: ${y}`);o(A,y)})}let c=t.name,u=t.layers;for(let m of u)l(m);for(;!JL(a);)for(let m of u){let g=r[m.name];if(g.name in a){let A=a[g.name];delete a[g.name];for(let x of A)i(g,x)}}let d=[],p=[],h=t.inputLayers;for(let m of h){let g=m[0],A=m[1],x=m[2];Fr(g in r);let b=r[g].inboundNodes[A].outputTensors;d.push(b[x])}let f=t.outputLayers;for(let m of f){let g=m[0],A=m[1],x=m[2];Fr(g in r);let b=r[g].inboundNodes[A].outputTensors;p.push(b[x])}return new e({inputs:d,outputs:p,name:c})}get stateful(){if(this._stateful)throw new q("Container instance unexpectedly has _stateful = true. The statefulness of a Container is determined by the Layers it contains. Its _stateful property must remain the default false.");for(let e of this.layers)if(e.stateful)return!0;return!1}resetStates(){K(()=>{this.layers.forEach(e=>{e.stateful&&e.resetStates()})})}};function wW(e,t,n){let s=t.length;if(e==null||Array.isArray(e)&&e.length===0)return t.map(r=>null);if(s===1)return Array.isArray(e)&&e.length===1?e:typeof e=="object"&&t[0]in e?[e[t[0]]]:[e];if(Array.isArray(e)){if(e.length!==s)throw new Error(`Provided ${n} is an array of ${e.length} element(s), but the model has ${s} outputs. Make sure a set of weights is provided for each model output.`);return e}else if(typeof e=="object"&&Object.keys(e).length>0&&typeof e[Object.keys(e)[0]]=="object"){let r=[];return t.forEach(a=>{a in e?r.push(e[a]):r.push(null)}),r}else throw new Error(`The model has multiple (${s}) outputs, so ${n} must be either an array with ${s} elements or an object with ${t} keys. Provided ${n} not understood: ${JSON.stringify(e)}`)}function Ak(e,t){return wW(e,t,"classWeight")}async function yk(e,t,n,s){if(t!=null||s!=null)throw new Error("Support sampleWeight is not implemented yet");if(n!=null){let r=K(()=>{if(e.shape.length===1)return Bn(e);if(e.shape.length===2){if(e.shape[1]>1)return Js(e,1);if(e.shape[1]===1)return H(e,[e.shape[0]]);throw new Error(`Encountered unexpected last-dimension size (${e.shape[1]}) during handling of class weights. The size is expected to be >= 1.`)}else throw new Error(`Unexpected rank of target (y) tensor (${e.rank}) during handling of class weights. The rank is expected to be 1 or 2.`)}),a=Array.from(await r.data());ne(r);let o=[];return a.forEach(i=>{if(n[i]==null)throw new Error(`classWeight must contain all classes in the training data. The class ${i} exists in the data but not in classWeight`);o.push(n[i])}),Vt(o,"float32")}else return null}function kW(e,t){return L(e,t)}var IW=32;function xk(e,t){let n,s,r=t;n=r.xs,s=r.ys,v.assert(n!=null&&s!=null,()=>`A Dataset iterator for fitDataset() is expected to generate objects of the form \`{xs: xVal, ys: yVal}\`, where the two values may be \`tf.Tensor\`, an array of Tensors, or a map of string to Tensor. The provided Dataset instead generates ${t}`);let a=bk("input",e.inputNames,n),o=bk("output",e.outputNames,s),i=a[0].shape[0];v.assert(a.length===e.inputs.length,()=>`LayersModel has ${e.inputs.length} inputs, but the dataset provides ${a.length} inputs. (Expected input keys: ${JSON.stringify(e.inputNames)})`),v.assert(o.length===e.outputs.length,()=>`LayersModel has ${e.outputs.length} outputs, but the dataset provides ${o.length} outputs. (Expected output keys: ${JSON.stringify(e.outputNames)})`);for(let l=0;l<a.length;l++)v.assert(a[l].shape[0]===i,()=>`Batch size mismatch: input ${e.inputNames[l]} has ${a[l].shape[0]}; expected ${i} based on input ${e.inputNames[0]}.`);for(let l=0;l<o.length;l++)v.assert(o[l].shape[0]===i,()=>`Batch size mismatch: output ${e.outputNames[l]} has ${o[l].shape[0]}; expected ${i} based on input ${e.inputNames[0]}.`);return{xs:a,ys:o}}function bk(e,t,n){if(n instanceof et)return[n];if(Array.isArray(n))return v.assert(n.length===t.length,()=>`Received an array of ${n.length} Tensors, but expected ${t.length} to match the ${e} keys ${t}.`),n;{let s=[];for(let r of t){if(n[r]==null)throw new q(`The feature data generated by the dataset lacks the required ${e} key '${r}'.`);s.push(n[r])}return s}}function SW(e){if(e.length===3)throw new Le("Validation with sample weights is not implemented yet.");return{xs:e[0],ys:e[1]}}async function CW(e,t,n){let s=n.batchesPerEpoch!=null;if(v.assert(e.optimizer!=null,()=>"You must compile a model before training/testing. Use LayersModel.compile(modelCompileConfig)."),v.assert(n!=null,()=>"For fitDataset(), the 2nd argument (config) is required, but it is not provided in this call."),v.assert(n.epochs!=null&&n.epochs>0&&Number.isInteger(n.epochs),()=>`For fitDataset(), config.epochs is expected to be a positive integer, but got ${n.epochs}`),v.assert(!s||n.batchesPerEpoch>0&&Number.isInteger(n.batchesPerEpoch),()=>`For fitDataset(), config.batchesPerEpoch is expected to be a positive integer if specified, but got ${n.batchesPerEpoch}`),v.assert(n.validationSplit==null,()=>"`validationSplit` is not supported by `fitDataset()`. Use validationData instead."),e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;try{let r=n.validationData!=null,a,o;if(r)if(vk(n.validationData))v.assert(n.validationBatches==null||n.validationBatches>0&&Number.isInteger(n.validationBatches),()=>`For fitDataset() with dataset-based validation, config.validationBatches is expected not to be provided, or to be a positive integer, but got ${n.validationBatches}`);else{let g=SW(n.validationData);a=g.xs,o=g.ys}let i=e.makeTrainFunction(),l=e.getDedupedMetricsNames(),c;r?c=l.slice().concat(l.map(g=>"val_"+g)):c=l.slice();let u=ak(n.callbacks,n.yieldEvery),d=n.verbose==null?1:n.verbose,{callbackList:p,history:h}=ok(u,d,n.epochs,null,null,TW(t,n),null,r,c);p.setModel(e),e.history=h,await p.onTrainBegin(),e.stopTraining_=!1;let f=n.initialEpoch==null?0:n.initialEpoch,m=await t.iterator();for(;f<n.epochs;){let g={};await p.onEpochBegin(f);let A=0,x=0;for(s||(m=await t.iterator());s?A<n.batchesPerEpoch:!0;){let y=await m.next();if(s&&y.done){console.warn(`You provided \`batchesPerEpoch\` as ${n.batchesPerEpoch}, but your dataset iterator ran out of data after ${A} batches; interrupting training. Make sure that your dataset can generate at least \`batchesPerEpoch * epochs\` batches (in this case, ${n.batchesPerEpoch*n.epochs} batches). You may need to use the repeat() function when building your dataset.`);break}if(y.value!=null){let{xs:b,ys:w}=xk(e,y.value),k={};k.batch=x,k.size=b[0].shape[0],await p.onBatchBegin(x,k);let S=[];if(n.classWeight!=null){let M=Ak(n.classWeight,e.outputNames);for(let D=0;D<M.length;++D)S.push(await yk(w[D],null,M[D]))}let N=b.concat(w).concat(S),R=i(N);ne(N);for(let M=0;M<l.length;++M){let D=l[M],$=R[M];k[D]=$,An($)}await p.onBatchEnd(x,k),ek(k),x++,A++}if(s?A>=n.batchesPerEpoch:y.done){if(r){let b;vk(n.validationData)?b=St(await e.evaluateDataset(n.validationData,{batches:n.validationBatches})):b=St(e.evaluate(a,o,{batchSize:n.validationBatchSize==null?IW:n.validationBatchSize,verbose:0}));for(let w=0;w<e.metricsNames.length;++w)g[`val_${e.metricsNames[w]}`]=b[w]}break}if(e.stopTraining_)break}if(await p.onEpochEnd(f,g),f++,e.stopTraining_)break}return await p.onTrainEnd(),await e.history.syncData(),e.history}finally{e.isTraining=!1}}function TW(e,t){let n=null;return t.batchesPerEpoch!=null?n=t.batchesPerEpoch:Number.isFinite(e.size)&&(n=e.size),n}function vk(e){return typeof e.iterator=="function"}function NW(e){return typeof e.next=="function"}async function EW(e,t,n){n=n||{};let s=n.batches!=null,r=e.testFunction,a=[];if(n.verbose>0)throw new Le("Verbose mode is not implemented yet.");v.assert(!s||n.batches>0&&Number.isInteger(n.batches),()=>`Test loop expects \`batches\` to be a positive integer, but received ${JSON.stringify(n.batches)}`);let o=NW(t)?t:await t.iterator(),i=0,l=0;for(;s?l<n.batches:!0;){let c=await o.next();if(a=K(()=>{if(c.value){let{xs:u,ys:d}=xk(e,c.value),p=u.concat(d),h=K(()=>r(p));if(ne(p),l===0)for(let m=0;m<h.length;++m)a.push(Se(0));let f=p[0].shape[0];for(let m=0;m<h.length;++m){let g=h[m],A=a[m];a[m]=K(()=>ue(a[m],L(f,g))),l>0&&ne(A)}ne(h),i+=f,++l}return a}),c.done){s&&console.warn(`Your dataset iterator ran out of data during evaluateDataset(). Interrupting evalution. Make sure that your dataset can generate at least \`batches\` batches (in this case, ${n.batches} batches). You may need to use the repeat() function when building your dataset.`);break}}for(let c=0;c<a.length;++c){let u=a[c];a[c]=pe(a[c],i),ne(u)}return is(a)}function yA(e){v.assert(e>0&&Number.isInteger(e),()=>`batchSize is required to be a positive integer, but got ${e}`)}function Jd(e,t,n){return e==null?[null]:Array.isArray(e)?e.map(s=>yl(s,t,n-t)):yl(e,t,n-t)}function xA(e,t){return K(()=>e==null?null:Array.isArray(e)?e.map(n=>xA(n,t)):Gw(e,t.dtype==="int32"?t:ge(t,"int32")))}function bA(e,t){let n=[],s=0,r=null;for(;s<e;)r=s+t,r>=e&&(r=e),n.push([s,r]),s=r;return n}async function RW(e,t,n,s,r,a,o,i,l,c,u,d,p,h,f){r==null&&(r=32),a==null&&(a=1),u==null&&(u=!0),p==null&&(p=0);let m=!1;if(l!=null&&c!=null&&(m=!0),f!=null&&(m=!0,h==null))throw new q("Can only use `validationSteps` when doing step-wise training, i.e., `stepsPerEpoch` must be set.");let g=e.checkNumSamples(n,r,h,"steps_per_epoch"),A;g!=null&&(A=yr(0,g)),o==null&&(o=1);let{callbackList:x,history:y}=ok(i,o,a,p,g,h,r,m,d);x.setModel(e),e.history=y,await x.onTrainBegin(),e.stopTraining_=!1;for(let b=p;b<a;++b){await x.onEpochBegin(b);let w={};if(h!=null)throw new Le("stepsPerEpoch mode is not implemented yet.");{if(u==="batch")throw new Le("batch shuffling is not implemneted yet");u&&v.shuffle(A);let k=Vt(A),S=bA(g,r);for(let N=0;N<S.length;++N){let R={};if(await x.onBatchBegin(N,R),K(()=>{let M=S[N][0],D=S[N][1],$=yl(k,M,D-M);R.batch=N,R.size=D-M;let T=xA(n,$),F=t(T);for(let V=0;V<s.length;++V){let X=s[V],z=F[V];R[X]=z,An(z)}if(N===S.length-1&&m){let V=e.testLoop(l,c,r);for(let X=0;X<s.length;++X){let z=s[X],j=V[X];An(j),w["val_"+z]=j}}}),await x.onBatchEnd(N,R),ek(R),e.stopTraining_)break}k.dispose()}if(await x.onEpochEnd(b,w),e.stopTraining_)break}return await x.onTrainEnd(),await e.history.syncData(),e.history}async function $W(e,t,n,s={}){if(e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;let r,a,o,i,l,c,u;try{let d=s.batchSize==null?32:s.batchSize;yA(d);let p=!1,h=await e.standardizeUserData(t,n,s.sampleWeight,s.classWeight,p,d);r=h[0],a=h[1],u=h[2];let f=!1,m;if(s.validationData!=null&&s.validationData.length>0){if(f=!0,s.validationData.length===2)o=s.validationData[0],i=s.validationData[1];else throw s.validationData.length===3?new Le("validationData including sample weights is not supported yet."):new q(`When passing validation data, it must contain 2 (valX, valY) or 3 (valX, valY, valSampleWeight) items; ${s.validationData} is invalid.`);let S=!0,N=await e.standardizeUserData(o,i,null,null,S,d);l=N[0],c=N[1],m=l.concat(c)}else if(s.validationSplit!=null&&s.validationSplit>0&&s.validationSplit<1){f=!0;let S=Math.floor(r[0].shape[0]*(1-s.validationSplit)),N=r[0].shape[0];l=Jd(r,S,N),r=Jd(r,0,S),c=Jd(a,S,N),a=Jd(a,0,S),m=l.concat(c)}else s.validationSteps!=null&&(f=!0);let g=r.concat(a).concat(u);e.checkTrainableWeightsConsistency();let A=e.makeTrainFunction(),x=e.getDedupedMetricsNames(),y,b;f?(e.makeTestFunction(),y=e.testFunction,b=x.slice().concat(x.map(S=>"val_"+S))):(y=null,m=[],b=x.slice());let w=ak(s.callbacks,s.yieldEvery);return await RW(e,A,g,x,d,s.epochs,s.verbose,w,y,m,s.shuffle,b,s.initialEpoch,null,null)}finally{e.isTraining=!1,vl(r,t),vl(a,n),vl(l,o),vl(c,i),u!=null&&ne(u)}}function wk(e){let t=[];e instanceof et&&(e=[e]);for(let n=0;n<e.length;++n){let s=e[n];if(s.rank===1)t.push(jd(s,1));else{if(s.rank===0)throw new Error("Expected tensor to be at least 1D, but received a 0D tensor (scalar).");t.push(s)}}return t}function vl(e,t){if(e==null)return;let n=[];if(t instanceof et)n.push(t.id);else if(Array.isArray(t))t.forEach(r=>n.push(r.id));else if(t!=null)for(let r in t){let a=t[r];n.push(a.id)}let s=[];if(e instanceof et)n.indexOf(e.id)===-1&&s.push(e);else if(Array.isArray(e))e.forEach(r=>{n.indexOf(r.id)===-1&&s.push(r)});else if(e!=null)for(let r in e){let a=e[r];n.indexOf(a.id)===-1&&s.push(a)}s.forEach(r=>{r.isDisposed||r.dispose()})}function _W(e){return e instanceof et}function vA(e){return Array.isArray(e)}function kk(e){return!_W(e)&&!vA(e)}function Ik(e,t,n,s=!0,r=""){if(t==null||t.length===0){if(e!=null){let o=!1;if(vA(e)&&e.length>0)o=!0;else if(kk(e)){for(let i in e)if(e.hasOwnProperty(i)){o=!0;break}}else o=!0;if(o)throw new q(`Error when checking model ${r} expected no data, but got ${e}`)}return[]}if(e==null)return t.map(o=>null);let a;if(kk(e)){e=e,a=[];for(let o of t){if(e[o]==null)throw new q(`No data provided for "${o}". Need data for each key in: ${t}`);a.push(e[o])}}else if(vA(e)){if(e=e,e.length!==t.length)throw new q(`Error when checking model ${r}: the Array of Tensors that you are passing to your model is not the size the model expected. Expected to see ${t.length} Tensor(s), but instead got the following list of Tensor(s): ${e}`);a=e}else{if(e=e,t.length>1)throw new q(`The model ${r} expects ${t.length} Tensor(s), but only received one Tensor. Found: Tensor with shape ${e.shape}`);a=[e]}if(a=wk(a),n!=null)for(let o=0;o<t.length;++o){if(n[o]==null)continue;let i=a[o];if(i.shape.length!==n[o].length)throw new q(`Error when checking ${r}: expected ${t[o]} to have ${n[o].length} dimension(s). but got array with shape ${i.shape}`);for(let l=0;l<n[o].length;++l){if(l===0&&!s)continue;let c=i.shape[l],u=n[o][l];if(u!=null&&u>=0&&c!==u)throw new q(`${r} expected a batch of elements where each example has shape [${n[o].slice(1,n[o].length)}] (i.e.,tensor shape [*,${n[o].slice(1,n[o].length)}]) but the ${r} received an input with ${i.shape[0]} examples, each with shape [${i.shape.slice(1,i.shape.length)}] (tensor shape [${i.shape}])`)}}return a}function DW(e,t,n){let s=Oo(e.map(a=>a.shape[0]));s.sort();let r=Oo(t.map(a=>a.shape[0]));if(r.sort(),s.length>1)throw new q(`All input Tensors (x) should have the same number of samples. Got array shapes: ${JSON.stringify(e.map(a=>a.shape))}`);if(r.length>1)throw new q(`All target Tensors (y) should have the same number of samples. Got array shapes: ${JSON.stringify(t.map(a=>a.shape))}`);if(s.length>0&&r.length>0&&!v.arraysEqual(s,r))throw new q(`Input Tensors should have the same number of samples as target Tensors. Found ${s[0]} input sample(s) and ${r[0]} target sample(s).`)}function PW(e,t,n){let s=[xl,lm,Kd];for(let r=0;r<e.length;++r){let a=e[r],o=t[r],i=n[r];if(o!=null){if(o===Kd&&a.shape[a.shape.length-1]===1)throw new q(`You are passing a target array of shape ${a.shape} while using a loss 'categorical_crossentropy'. 'categorical_crossentropy'expects targets to be binary matrices (1s and 0s) of shape [samples, classes].`);if(s.indexOf(o)!==-1){let l=a.shape.slice(1),c=i.slice(1);for(let u=0;u<l.length;++u){let d=l[u],p=c[u];if(p!=null&&d!==p)throw new q(`A target Tensor with shape ${a.shape} was passed for an output of shape ${i}, while using a loss function that expects targets to have the same shape as the output.`)}}}}}function Sk(e,t,n,s=!0,r=""){let a;if(Array.isArray(e)){if(e.length!==t.length)throw new q(`Error when checking model ${r}: the Array of Tensors that you are passing to your model is not the size the the model expected. Expected to see ${t.length} Tensor(s), but instead got ${e.length} Tensors(s).`);a=e}else{if(t.length>1)throw new q(`The model expects ${t.length} ${r} Tensors, but only received one Tensor. Found: array with shape ${JSON.stringify(e.shape)}.`);a=[e]}if(n!=null)for(let o=0;o<t.length;++o){if(n[o]==null)continue;let i=a[o];if(i.shape.length!==n[o].length)throw new q(`Error when checking ${r}: expected ${t[o]} to have ${n[o].length} dimension(s), but got array with shape ${JSON.stringify(i.shape)}`);for(let l=0;l<n[o].length;++l){if(l===0&&!s)continue;let c=i.shape[l],u=n[o][l];if(u!=null&&u!==c)throw new q(`Error when checking ${r}: expected ${t[o]} to have shape ${JSON.stringify(n[o])} but got array with shape ${JSON.stringify(i.shape)}.`)}}}function FW(e,t){if(e==null||Array.isArray(e)&&e.length===0)return t.map(s=>[]);let n;if(typeof e=="string"||typeof e=="function")n=[e];else if(Array.isArray(e)||typeof e=="object")n=e;else throw new TypeError(`Type of metrics argument not understood. Expected an string,function, Array, or Object, found: ${e}`);if(Array.isArray(n))return t.map(s=>n);{let s=[];for(let r of t){let a=n.hasOwnProperty(r)?n[r]:[];Array.isArray(a)||(a=[a]),s.push(a)}return s}}var OW="layers-model",ra=class extends zr{constructor(e){super(e);this.isTraining=!1}summary(e,t,n=console.log){if(!this.built)throw new q("This model has never been called, thus its weights have not been created yet. So no summary can be displayed. Build the model first (e.g., by calling it on some test data).");hW(this,e,t,n)}compile(e){if(e.loss==null&&(e.loss=[]),this.loss=e.loss,typeof e.optimizer=="string")this.optimizer_=pW(e.optimizer),this.isOptimizerOwned=!0;else{if(!(e.optimizer instanceof ta))throw new q("User-defined optimizer must be an instance of tf.Optimizer.");this.optimizer_=e.optimizer,this.isOptimizerOwned=!1}let t=[];if(!Array.isArray(e.loss)&&typeof e.loss!="string"&&typeof e.loss!="function"){e.loss=e.loss;for(let a in e.loss)if(this.outputNames.indexOf(a)===-1)throw new q(`Unknown entry in loss dictionary: "${a}". Only expected the following keys: ${this.outputNames}`);for(let a of this.outputNames)e.loss[a]==null&&console.warn(`Output "${a}" is missing from loss dictionary. We assume this was done on purpose, and we will not be expecting data to be passed to ${a} during training`),t.push(cA(e.loss[a]))}else if(Array.isArray(e.loss)){if(e.loss.length!==this.outputs.length)throw new q(`When passing an Array as loss, it should have one entry per model output. The model has ${this.outputs.length} output(s), but you passed loss=${e.loss}.`);t=e.loss.map(o=>cA(o))}else{let a=cA(e.loss);this.outputs.forEach(o=>{t.push(a)})}this.lossFunctions=t,this.feedOutputNames=[],this.feedOutputShapes=[],this.feedLossFns=[];for(let a=0;a<this.outputs.length;++a){let o=this.internalOutputShapes[a],i=this.outputNames[a];this.feedOutputNames.push(i),this.feedOutputShapes.push(o),this.feedLossFns.push(this.lossFunctions[a])}let n=[];this.metrics=e.metrics,this.metricsNames=["loss"],this.metricsTensors=[],Al("loss",()=>{for(let a=0;a<this.outputs.length;++a){if(n.indexOf(a)!==-1)continue;let o=this.lossFunctions[a];this.outputs.length>1&&(this.metricsTensors.push([o,a]),this.metricsNames.push(this.outputNames[a]+"_loss"))}});let s=FW(e.metrics,this.outputNames),r=(a,o,i)=>{this.outputNames.length>1&&(o=this.outputNames[a]+"_"+o),this.metricsNames.push(o),this.metricsTensors.push([i,a])};Al("metric",()=>{for(let a=0;a<this.outputs.length;++a){if(n.indexOf(a)!==-1)continue;let o=s[a];(l=>{let c="",u,d,p;for(let h of l){if(typeof h=="string"&&["accuracy","acc","crossentropy","ce"].indexOf(h)!==-1){let m=this.internalOutputShapes[a];m[m.length-1]===1||this.lossFunctions[a]===lm?["accuracy","acc"].indexOf(h)!==-1?d=dA:["crossentropy","ce"].indexOf(h)!==-1&&(d=uk):this.lossFunctions[a]===im?["accuracy","acc"].indexOf(h)!==-1?d=ck:["crossentropy","ce"].indexOf(h)!==-1&&(d=dk):["accuracy","acc"].indexOf(h)!==-1?d=pA:["crossentropy","ce"].indexOf(h)!==-1&&(d=hA);let g;["accuracy","acc"].indexOf(h)!==-1?g="acc":["crossentropy","ce"].indexOf(h)!==-1&&(g="ce"),p=d,u=c+g}else p=dW(h),u=c+dm(h);let f;Al(u,()=>{f=p}),r(a,u,f)}})(o)}}),this.collectedTrainableWeights=this.trainableWeights}checkTrainableWeightsConsistency(){this.collectedTrainableWeights!=null&&this.trainableWeights.length!==this.collectedTrainableWeights.length&&console.warn("Discrepancy between trainableweights and collected trainable weights. Did you set `model.trainable` without calling `model.compile()` afterwards?")}evaluate(e,t,n={}){let s=n.batchSize==null?32:n.batchSize;yA(s);let r=!0,a=this.standardizeUserDataXY(e,t,r,s);try{let o=a[0].concat(a[1]);this.makeTestFunction();let i=this.testFunction,l=this.testLoop(i,o,s,n.verbose,n.steps);return is(l)}finally{vl(a[0],e),vl(a[1],t)}}async evaluateDataset(e,t){return this.makeTestFunction(),EW(this,e,t)}checkNumSamples(e,t,n,s="steps"){let r;if(n!=null){if(r=null,t!=null)throw new q(`If ${s} is set, batchSize must be null or undefined.Got batchSize = ${t}`)}else if(e!=null)Array.isArray(e)?r=e[0].shape[0]:r=e.shape[0];else throw new q(`Either the input data should have a defined shape, or ${s} shoud be specified.`);return r}execute(e,t){if(Array.isArray(t)&&t.length===0)throw new q("`outputs` is an empty Array, which is not allowed.");let n=Array.isArray(t),s=n?t:[t],r=this.retrieveSymbolicTensors(s),a=new bl;if(e instanceof et&&(e=[e]),Array.isArray(e)){if(e.length!==this.inputs.length)throw new q(`The number of inputs provided (${e.length}) does not match the number of inputs of this model (${this.inputs.length}).`);for(let i=0;i<this.inputs.length;++i)a.add(this.inputs[i],e[i])}else for(let i of this.inputs){let l=e[i.name];if(l==null)throw new q(`No value is provided for the model's input ${i.name}`);a.add(i,l)}let o=Yd(r,a);return n?o:o[0]}retrieveSymbolicTensors(e){let t=fl(null,e.length),n=e.length;for(let s of this.layers){let r=Array.isArray(s.output)?s.output:[s.output],a=r.map(o=>o.name);for(let o=0;o<e.length;++o){let i=a.indexOf(e[o]);if(i!==-1&&(t[o]=r[i],n--),n===0)break}if(n===0)break}if(n>0){let s=[];throw t.forEach((r,a)=>{r==null&&s.push(e[a])}),new q(`Cannot find SymbolicTensors for output name(s): ${JSON.stringify(s)}`)}return t}predictLoop(e,t=32,n=!1){return K(()=>{let s=this.checkNumSamples(e);if(n)throw new Le("Verbose predictLoop() is not implemented yet.");let r=bA(s,t),a=this.outputs.map(o=>[]);for(let o=0;o<r.length;++o)K(()=>{let l=r[o][0],c=r[o][1],u=Jd(e,l,c),d=[];if(Array.isArray(u))for(let h=0;h<u.length;++h)d.push({key:this.inputs[h],value:u[h]});else d.push({key:this.inputs[0],value:u});let p=new bl(d);return Yd(this.outputs,p)}).forEach((l,c)=>a[c].push(l));return is(a.map(o=>It(o,0)))})}predict(e,t={}){let n=wk(e);Sk(n,this.inputNames,this.feedInputShapes,!1);try{let s=t.batchSize==null?32:t.batchSize;return yA(s),this.predictLoop(n,s)}finally{vl(n,e)}}predictOnBatch(e){Sk(e,this.inputNames,this.feedInputShapes,!0);let t=(Array.isArray(e)?e[0]:e).shape[0];return this.predictLoop(e,t)}standardizeUserDataXY(e,t,n=!0,s){if(this.optimizer_==null)throw new Ar("You must compile a model before training/testing. Use LayersModel.compile(modelCompileArgs).");let r=[];for(let a=0;a<this.feedOutputShapes.length;++a){let o=this.feedOutputShapes[a];this.feedLossFns[a]===im?r.push(o.slice(0,o.length-1).concat([1])):r.push(o)}if(e=Ik(e,this.feedInputNames,this.feedInputShapes,!1,"input"),t=Ik(t,this.feedOutputNames,r,!1,"target"),DW(e,t,null),PW(t,this.feedLossFns,this.feedOutputShapes),this.stateful&&s!=null&&s>0&&e[0].shape[0]%s!=0)throw new q(`In a stateful network, you should only pass inputs with a number of samples that is divisible by the batch size ${s}. Found: ${e[0].shape[0]} sample(s).`);return[e,t]}async standardizeUserData(e,t,n,s,r=!0,a){let[o,i]=this.standardizeUserDataXY(e,t,r,a);if(n!=null)throw new Error("sample weight is not supported yet.");let l=null;if(s!=null){let c=Ak(s,this.outputNames);l=[];for(let u=0;u<c.length;++u)l.push(await yk(i[u],null,c[u]))}return[o,i,l]}testLoop(e,t,n,s=0,r){return K(()=>{let a=this.checkNumSamples(t,n,r,"steps"),o=[];if(s>0)throw new Le("Verbose mode is not implemented yet.");if(r!=null)throw new Le("steps mode in testLoop() is not implemented yet");{let i=bA(a,n),l=Vt(yr(0,a));for(let c=0;c<i.length;++c){let u=i[c][0],d=i[c][1],p=yl(l,u,d-u),h=xA(t,p),f=e(h);if(c===0)for(let m=0;m<f.length;++m)o.push(Se(0));for(let m=0;m<f.length;++m){let g=f[m];o[m]=ue(o[m],L(d-u,g))}}for(let c=0;c<o.length;++c)o[c]=pe(o[c],a)}return o})}getDedupedMetricsNames(){let e=this.metricsNames,t=[];for(let n=0;n<e.length;++n){let s=e[n],r=s;_w(e,s)>1&&(r+=`_${_w(e.slice(0,n),s)}`),t.push(r)}return t}makeTrainFunction(){return e=>{let t=[],n=e.slice(0,this.inputs.length),s=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),r=e.slice(this.inputs.length+this.outputs.length,this.inputs.length+this.outputs.length*2),a=[],o=()=>{let u=[];for(let f=0;f<this.inputs.length;++f)u.push({key:this.inputs[f],value:n[f]});let d=new bl(u),p=Yd(this.outputs,d,{training:!0}),h;for(let f=0;f<this.lossFunctions.length;++f){let g=this.lossFunctions[f](s[f],p[f]);r[f]!=null&&(g=kW(g,r[f]));let A=Wt(g);t.push(A),f===0?h=g:h=ue(h,g)}for(let f=0;f<this.metricsTensors.length;++f){let m;if(this.outputs.length>1&&f<this.outputs.length)m=t[f];else{let g=this.metricsTensors[f][0],A=this.metricsTensors[f][1];m=Wt(g(s[A],p[A]))}An(m),a.push(m)}return h=Wt(h),this.calculateLosses().forEach(f=>{h=ue(h,f)}),h},i=this.collectedTrainableWeights.map(u=>u.read()),l=!0;return[this.optimizer_.minimize(o,l,i)].concat(a)}}makeTestFunction(){this.testFunction=e=>K(()=>{let t=[],n,s=e.slice(0,this.inputs.length),r=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),a=[];for(let l=0;l<this.inputs.length;++l)a.push({key:this.inputs[l],value:s[l]});let o=new bl(a),i=Yd(this.outputs,o);for(let l=0;l<this.lossFunctions.length;++l){let c=this.lossFunctions[l],u=Wt(c(r[l],i[l]));l===0?n=u:n=ue(n,u),t.push(n)}for(let l=0;l<this.metricsTensors.length;++l){let c=this.metricsTensors[l][0],u=this.metricsTensors[l][1],d=Wt(c(r[u],i[u]));t.push(d)}return t})}async fit(e,t,n={}){return $W(this,e,t,n)}async fitDataset(e,t){return CW(this,e,t)}async trainOnBatch(e,t){let n=await this.standardizeUserData(e,t),s=n[0],r=n[1],o=this.makeTrainFunction()(s.concat(r)),i=[];for(let l of o){let c=await l.data();i.push(c[0])}return ne(o),is(i)}getNamedWeights(e){let t=[],n=e!=null&&e.trainableOnly,s=n?this.trainableWeights:this.weights,r=this.getWeights(n);for(let a=0;a<s.length;++a)n&&!s[a].trainable||t.push({name:s[a].originalName,tensor:r[a]});return t}set stopTraining(e){this.stopTraining_=e}get stopTraining(){return this.stopTraining_}get optimizer(){return this.optimizer_}set optimizer(e){this.optimizer_!==e&&(this.optimizer_=e,this.isOptimizerOwned=!1)}dispose(){let e=super.dispose();if(e.refCountAfterDispose===0&&this.optimizer!=null&&this.isOptimizerOwned){let t=cf().numTensors;this.optimizer_.dispose(),e.numDisposedVariables+=t-cf().numTensors}return e}getLossIdentifiers(){let e;if(typeof this.loss=="string")e=sa(this.loss);else if(Array.isArray(this.loss)){for(let t of this.loss)if(typeof t!="string")throw new Error("Serialization of non-string loss is not supported.");e=this.loss.map(t=>sa(t))}else{let t=Object.keys(this.loss);e={};let n=this.loss;for(let s of t)if(typeof n[s]=="string")e[s]=sa(n[s]);else throw new Error("Serialization of non-string loss is not supported.")}return e}getMetricIdentifiers(){if(typeof this.metrics=="string"||typeof this.metrics=="function")return[sa(dm(this.metrics))];if(Array.isArray(this.metrics))return this.metrics.map(e=>sa(dm(e)));{let e={};for(let t in this.metrics)e[t]=sa(dm(this.metrics[t]));return e}}getTrainingConfig(){return{loss:this.getLossIdentifiers(),metrics:this.getMetricIdentifiers(),optimizer_config:{class_name:this.optimizer.getClassName(),config:this.optimizer.getConfig()}}}loadTrainingConfig(e){if(e.weighted_metrics!=null)throw new Error("Loading weight_metrics is not supported yet.");if(e.loss_weights!=null)throw new Error("Loading loss_weights is not supported yet.");if(e.sample_weight_mode!=null)throw new Error("Loading sample_weight_mode is not supported yet.");let t=Zd(e.optimizer_config),n=vr(t),s;if(typeof e.loss=="string")s=ml(e.loss);else if(Array.isArray(e.loss))s=e.loss.map(a=>ml(a));else if(e.loss!=null){s={};for(let a in e.loss)s[a]=ml(e.loss[a])}let r;if(Array.isArray(e.metrics))r=e.metrics.map(a=>ml(a));else if(e.metrics!=null){r={};for(let a in e.metrics)r[a]=ml(e.metrics[a])}this.compile({loss:s,metrics:r,optimizer:n})}async save(e,t){if(typeof e=="string"){let l=rs.getSaveHandlers(e);if(l.length===0)throw new q(`Cannot find any save handlers for URL '${e}'`);if(l.length>1)throw new q(`Found more than one (${l.length}) save handlers for URL '${e}'`);e=l[0]}if(e.save==null)throw new q("LayersModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");let n=await rs.encodeWeights(this.getNamedWeights(t)),s=!1,r=null,o={modelTopology:this.toJSON(r,s),format:OW,generatedBy:`TensorFlow.js tfjs-layers v${gA}`,convertedBy:null};if((t==null?!1:t.includeOptimizer)&&this.optimizer!=null){o.trainingConfig=this.getTrainingConfig();let l="optimizer",{data:c,specs:u}=await rs.encodeWeights(await this.optimizer.getWeights(),l);n.specs.push(...u),n.data=rs.concatenateArrayBuffers([n.data,c])}if(this.userDefinedMetadata!=null){let l=!0;hk(this.userDefinedMetadata,this.name,l),o.userDefinedMetadata=this.userDefinedMetadata}return o.weightData=n.data,o.weightSpecs=n.specs,e.save(o)}setUserDefinedMetadata(e){hk(e,this.name),this.userDefinedMetadata=e}getUserDefinedMetadata(){return this.userDefinedMetadata}};ra.className="Model";ce.registerClass(ra);var Ck=class extends ra{};Ck.className="Functional";ce.registerClass(Ck);async function MW(e,t){"modelTopology"in e||(e={modelTopology:e}),e=e;let n=e.modelTopology;n.model_config!=null&&(n=n.model_config);let s=Zd(n),r=vr(s,t);if(e.weightsManifest!=null){let a=await rs.loadWeights(e.weightsManifest,e.pathPrefix,r.weights.map(i=>i.originalName)),o={};for(let i of r.weights)o[i.originalName]=a[i.originalName];r.loadWeights(o),ne(a)}return r}async function zW(e,t){if(t==null&&(t={}),typeof e=="string"){let n=rs.getLoadHandlers(e,t);if(n.length===0)n.push(rs.browserHTTPRequest(e,t));else if(n.length>1)throw new q(`Found more than one (${n.length}) load handlers for URL '${e}'`);e=n[0]}return LW(e,void 0,t)}async function LW(e,t,n){if(n==null&&(n={}),e.load==null)throw new q("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let s=await e.load(),r=s.modelTopology;r.model_config!=null&&(r=r.model_config);let a=n.strict==null?!0:n.strict,o=s.weightData!=null&&s.weightSpecs!=null&&a,i=vr(Zd(r),t,o),l=s.trainingConfig;if(l!=null&&i.loadTrainingConfig(l),s.userDefinedMetadata!=null&&i.setUserDefinedMetadata(s.userDefinedMetadata),s.weightData!=null){if(s.weightSpecs==null)throw new q("LayersModel artifacts contains weight data, but not weight specs. Therefore loading of weights cannot proceed.");let{modelWeights:c,optimizerWeights:u}=BW(s.weightData,s.weightSpecs);i.loadWeights(c,a),i.optimizer!=null&&u.length>0&&await i.optimizer.setWeights(u),ne(c),ne(u.map(d=>d.tensor))}return i}function BW(e,t){let n=rs.decodeWeights(e,t),s={},r=[];return t.forEach(a=>{a.group==="optimizer"?r.push({name:a.name,tensor:n[a.name]}):s[a.name]=n[a.name]}),{modelWeights:s,optimizerWeights:r}}var wA=class extends ra{constructor(e){super({inputs:[],outputs:[]});if(e=e||{},this.trainable=!0,this.built=!1,this.name=e.name!=null?e.name:tm("sequential_"),e.layers!=null)for(let t of e.layers)this.add(t)}checkShape(e){if(e.inboundNodes[0].outputTensors[0].shape.some(n=>n<0))throw new q(`Negative dimension size caused by adding layer ${e.name} with input shape [${e.inboundNodes[0].inputTensors[0].shape}]`)}add(e){let t=e instanceof wA||e instanceof ra,n;if(t){if(n=e,n.outputs.length!==1)throw new q("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");if(n.inputs.length!==1)throw new q("All layers in a Sequential model should have a single input tensor. For multi-input layers, use the functional API.")}if(this.outputs.length===0){if(e.inboundNodes.length===0){if(e.batchInputShape==null)throw new q("The first layer in a Sequential model must get an `inputShape` or `batchInputShape` argument.");let s=Qw({batchShape:e.batchInputShape,dtype:e.dtype,name:e.name+"_input"});e.apply(s)}if(t)this.outputs=n.outputs,this.inputs=n.inputs;else{if(e.inboundNodes.length!==1)throw new q(`A layer added to a Sequential model must not already be connected somewhere else. LayersModel received layer ${e.name} which has ${e.inboundNodes.length} pre-existing inbound connections.`);if(e.inboundNodes[0].outputTensors.length!==1)throw new q("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[e.inboundNodes[0].outputTensors[0]],this.inputs=Jw(this.outputs[0])}this.inboundNodes=[],new rm({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:fl(null,this.inputs.length),outputMasks:[null],inputShapes:this.inputs.map(s=>s.shape),outputShapes:this.outputs[0].shape})}else{let s=e.apply(this.outputs[0]);if(Array.isArray(s))throw new TypeError("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[s],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}this.layers.push(e),this.built=!1}pop(){if(this.layers.length===0)throw new TypeError("There are no layers in the model.");if(this.layers.pop(),this.layers.length===0)this.outputs=[],this.inboundNodes=[],this.outboundNodes=[];else{let e=this.layers.length-1;this.layers[e].outboundNodes=[],this.outputs=[this.layers[e].output],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}}call(e,t){return this.model==null&&this.build(),this.model.call(e,t)}build(e){if(ft(e),this.inputs.length===0||this.outputs.length===0)throw new TypeError("Sequential model cannot be built: model is empty. Add some layers first.");this.model=new ra({inputs:this.inputs,outputs:this.outputs[0],name:this.name+"_model"}),this.model.trainable=this.trainable,this.supportsMasking=this.model.supportsMasking,this.inputLayers=this.model.inputLayers,this.inputLayersNodeIndices=this.model.inputLayersNodeIndices,this.inputLayersTensorIndices=this.model.inputLayersTensorIndices,this.outputLayers=this.model.outputLayers,this.outputLayersNodeIndices=this.model.outputLayersNodeIndices,this.outputLayersTensorIndices=this.model.outputLayersTensorIndices,this.nodesByDepth=this.model.nodesByDepth,this.containerNodes=this.model.containerNodes,this.outputNames=this.model.outputNames,this.inputNames=this.model.inputNames,this.built=!0}countParams(){return this.built||this.build(),super.countParams()}summary(e,t,n=console.log){this.built||this.build(),super.summary(e,t,n)}setWeights(e){this.model==null&&this.build(),this.model.setWeights(e)}evaluate(e,t,n={}){if(!this.built)throw new Ar("The model needs to be compiled before being used.");return this.model.evaluate(e,t,n)}async evaluateDataset(e,t){if(!this.built)throw new Ar("The model needs to be compiled before being used.");return this.model.evaluateDataset(e,t)}predict(e,t={}){return this.model==null&&this.build(),this.model.predict(e,t)}predictOnBatch(e){return this.model==null&&this.build(),this.model.predictOnBatch(e)}compile(e){this.build(),this.model.compile(e),this.optimizer_=this.model.optimizer,this.isOptimizerOwned=this.model.isOptimizerOwned,this.loss=this.model.loss,this.metrics=this.model.metrics,this.metricsTensors=this.model.metricsTensors,this.metricsNames=this.model.metricsNames}get optimizer(){return this.model==null?void 0:this.model.optimizer}set optimizer(e){this.model.optimizer=e}async fit(e,t,n={}){if(!this.built)throw new Ar("The model needs to be compiled before being used.");return this.model.fit(e,t,n)}async fitDataset(e,t){if(!this.built)throw new Ar("The model needs to be compiled before being used.");return this.model.fitDataset(e,t)}async trainOnBatch(e,t){return this.model.trainOnBatch(e,t)}static fromConfig(e,t,n={},s=!1){let r,a={};if(t instanceof Array){if(t[0].className==null||t[0].className==="Merge")throw new q("Legacy serialization format not supported yet.");r=t}else v.assert(t.layers!=null,()=>"When the config data for a Sequential model is not an Array, it must be an Object that contains the 'layers' field."),r=t.layers,delete t.layers,a=t;let o=new e(a);if(!(o instanceof wA))throw new Le(`Sequential.fromConfig called on non-Sequential input: ${o}`);for(let i of r){let c=vr(i,void 0,s);s&&c.setFastWeightInitDuringBuild(!0),o.add(c)}return o}set stopTraining(e){if(this.model==null)throw new q("Cannot set the stopTraining property of a sequential model before it is compiled.");this.model.stopTraining=e}get stopTraining(){if(this.model==null)throw new q("Cannot get the stopTraining property of a sequential model before it is compiled.");return this.model.stopTraining}getConfig(){let e=[];for(let t of this.layers){let n={};n.className=t.getClassName(),n.config=t.getConfig(),e.push(n)}return{name:this.name,layers:e}}},hm=wA;hm.className="Sequential";ce.registerClass(hm);function WW(e){return new ra(e)}function VW(e){return new hm(e)}function UW(e,t){return t==null&&(t={}),zW(e,t)}function Tk(e){return Qw(e)}function GW(e,t){lA.registerCallbackConstructor(e,t)}var us=class extends ce.Serializable{getConfig(){return{}}},Nk=class extends us{apply(e,t=1){return gB(e,t)}};Nk.className="elu";ce.registerClass(Nk);var Ek=class extends us{apply(e){return I1(e)}};Ek.className="selu";ce.registerClass(Ek);var Rk=class extends us{apply(e){return Pr(e)}};Rk.className="relu";ce.registerClass(Rk);var $k=class extends us{apply(e){return K(()=>Od(6,Pr(e)))}};$k.className="relu6";ce.registerClass($k);var _k=class extends us{apply(e){return e}};_k.className="linear";ce.registerClass(_k);var Dk=class extends us{apply(e){return gs(e)}};Dk.className="sigmoid";ce.registerClass(Dk);var Pk=class extends us{apply(e){return yB(e)}};Pk.className="hardSigmoid";ce.registerClass(Pk);var Fk=class extends us{apply(e){return Wu(e)}};Fk.className="softplus";ce.registerClass(Fk);var Ok=class extends us{apply(e){return AB(e)}};Ok.className="softsign";ce.registerClass(Ok);var Mk=class extends us{apply(e){return Ou(e)}};Mk.className="tanh";ce.registerClass(Mk);var kA=class extends us{apply(e,t=-1){return Hu(e,t)}};kA.className="softmax";ce.registerClass(kA);var zk=class extends us{apply(e,t=-1){return h1(e,t)}};zk.className="logSoftmax";ce.registerClass(zk);var Lk=class extends us{apply(e,t=1){return K(()=>L(gs(L(e,t)),e))}};Lk.className="swish";ce.registerClass(Lk);var Bk=class extends us{apply(e){return K(()=>L(e,Ou(Wu(e))))}};Bk.className="mish";ce.registerClass(Bk);function Bo(e){return e.getClassName()}function IA(e,t={}){return Ud(e,ce.SerializationMap.getMap().classNameMap,t,"activation")}function Wo(e){if(e==null){let t={};return t.className="linear",t.config={},IA(t)}if(typeof e=="string"){let t={};return t.className=e,t.config={},IA(t)}else return e instanceof us?e:IA(e)}function SA(e){if(e!=null&&typeof e!="object")throw new Error(`Argument to L1L2 regularizer's constructor is expected to be an object, but received: ${e}`)}var Wk=class extends ce.Serializable{},Qd=class extends Wk{constructor(e){super();SA(e),this.l1=e==null||e.l1==null?.01:e.l1,this.l2=e==null||e.l2==null?.01:e.l2,this.hasL1=this.l1!==0,this.hasL2=this.l2!==0}apply(e){return K(()=>{let t=Ht([1]);return this.hasL1&&(t=ue(t,we(L(this.l1,sn(e))))),this.hasL2&&(t=ue(t,we(L(this.l2,qd(e))))),H(t,[])})}getConfig(){return{l1:this.l1,l2:this.l2}}static fromConfig(e,t){return new e({l1:t.l1,l2:t.l2})}};Qd.className="L1L2";ce.registerClass(Qd);function HW(e){return SA(e),new Qd({l1:e!=null?e.l1:null,l2:0})}function jW(e){return SA(e),new Qd({l2:e!=null?e.l2:null,l1:0})}var Vk={l1l2:"L1L2"};function bt(e){return B1(e)}function Uk(e,t={}){return Ud(e,ce.SerializationMap.getMap().classNameMap,t,"regularizer")}function _t(e){if(e==null)return null;if(typeof e=="string"){let n={className:e in Vk?Vk[e]:e,config:{}};return Uk(n)}else return e instanceof Wk?e:Uk(e)}var CA=class extends st{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null&&(this.maxValue=e.maxValue)}call(e,t){e=Ve(e);let n=Pr(e);return this.maxValue!=null&&(n=As(n,0,this.maxValue)),n}computeOutputShape(e){return e}getConfig(){let e={maxValue:this.maxValue},t=super.getConfig();return Object.assign(e,t),e}};CA.className="ReLU";ce.registerClass(CA);var TA=class extends st{constructor(e){super(e==null?{}:e);this.DEFAULT_ALPHA=.3,e==null&&(e={}),this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=Ve(e);return bf(n,this.alpha)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};TA.className="LeakyReLU";ce.registerClass(TA);var NA=class extends st{constructor(e){super(e==null?{}:e);if(this.DEFAULT_ALPHA_INITIALIZER="zeros",e==null&&(e={}),this.supportsMasking=!0,this.alphaInitializer=$t(e.alphaInitializer||this.DEFAULT_ALPHA_INITIALIZER),this.alphaRegularizer=_t(e.alphaRegularizer),this.alphaConstraint=ln(e.alphaConstraint),e.sharedAxes==null)this.sharedAxes=null;else if(Array.isArray(e.sharedAxes))this.sharedAxes=e.sharedAxes;else if(typeof e.sharedAxes=="number")this.sharedAxes=[e.sharedAxes];else throw new q(`Expected sharedAxes to be a number or an array of numbers, but got ${e.sharedAxes}`)}build(e){e=ft(e);let t=e.slice(1);if(this.sharedAxes!=null)for(let s of this.sharedAxes)t[s-1]=1;this.alpha=this.addWeight("alpha",t,"float32",this.alphaInitializer,this.alphaRegularizer,!0,this.alphaConstraint);let n={};if(this.sharedAxes!=null)for(let s=1;s<e.length;++s)n[s]=e[s];this.inputSpec=[new Zt({ndim:e.length,axes:n})],this.built=!0}call(e,t){return e=Ve(e),Tf(e,this.alpha.read())}getConfig(){let e={alphaInitializer:Mt(this.alphaInitializer),alphaRegularizer:bt(this.alphaRegularizer),alphaConstraint:on(this.alphaConstraint),sharedAxes:this.sharedAxes},t=super.getConfig();return Object.assign(e,t),e}};NA.className="PReLU";ce.registerClass(NA);var EA=class extends st{constructor(e){super(e==null?{}:e);if(this.DEFAULT_ALPHA=1,e==null&&(e={}),e.alpha!=null&&e.alpha!==this.DEFAULT_ALPHA)throw new Le(`Non-default alpha value (${e.alpha}) is not supported by the ELU layer yet.`);this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=Ve(e);return Pd(n)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};EA.className="ELU";ce.registerClass(EA);var RA=class extends st{constructor(e){super(e==null?{}:e);this.DEFAULT_THETA=1,e==null&&(e={}),this.theta=e.theta==null?this.DEFAULT_THETA:e.theta}call(e,t){let n=Ve(e);return L(n,ge(ys(n,this.theta),"float32"))}computeOutputShape(e){return e}getConfig(){let e={theta:this.theta},t=super.getConfig();return Object.assign(e,t),e}};RA.className="ThresholdedReLU";ce.registerClass(RA);var $A=class extends st{constructor(e){super(e==null?{}:e);this.DEFAULT_AXIS=1,e==null&&(e={}),this.softmax=new kA().apply,this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis}call(e,t){let n=Ve(e);return this.softmax(n,this.axis)}computeOutputShape(e){return e}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};$A.className="Softmax";ce.registerClass($A);function Ju(e,t,n){if(typeof e=="number")return fl(e,t);if(e.length!==t)throw new q(`The ${n} argument must be an integer or tuple of ${t} integers. Received: ${e.length} elements.`);for(let s=0;s<t;++s){let r=e[s];if(!pB(r))throw new q(`The ${n} argument must be an integer or tuple of ${t} integers. Received: ${JSON.stringify(e)} including a non-integer number ${r}`)}return e}function wr(e,t,n,s,r=1){if(e==null)return e;let a=t+(t-1)*(r-1),o;return n==="same"?o=e:o=e-a+1,Math.floor((o+s-1)/s)}function Lr(e,t,n,s){if(e==null)return null;if(s==="valid")e=e*t+zo([n-t,0]);else if(s==="same")e=e*t;else throw new q(`Unsupport padding mode: ${s}.`);return e}function _A(e,t){return K(()=>(jt(t),t==="channelsFirst"?tt(e,[0,2,3,1]):e))}function Gk(e,t){return K(()=>(jt(t),t==="channelsFirst"?tt(e,[0,2,3,4,1]):e))}function qW(e,t,n,s=1,r="valid",a,o=1){return K(()=>{if(a==null&&(a=gr()),jt(a),e.shape.length!==3)throw new q(`The input of a conv1dWithBias operation should be 3, but is ${e.shape.length} instead.`);if(t.shape.length!==3)throw new q(`The kernel for a conv1dWithBias operation should be 3, but is ${t.shape.length} instead`);if(n!=null&&n.shape.length!==1)throw new q(`The bias for a conv1dWithBias operation should be 1, but is ${t.shape.length} instead`);if(a==="channelsFirst"&&(e=tt(e,[0,2,1])),r==="causal")throw new Le("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");let i=a1(e,t,s,r==="same"?"same":"valid","NWC",o);return n!=null&&(i=xr(i,n)),i})}function Hk(e,t,n,s=[1,1],r="valid",a,o,i=null){return K(()=>{if(a==null&&(a=gr()),jt(a),e.rank!==3&&e.rank!==4)throw new q(`conv2dWithBiasActivation expects input to be of rank 3 or 4, but received ${e.rank}.`);if(t.rank!==3&&t.rank!==4)throw new q(`conv2dWithBiasActivation expects kernel to be of rank 3 or 4, but received ${e.rank}.`);let l=_A(e,a);if(r==="causal")throw new Le("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");return l=Po.conv2d({x:l,filter:t,strides:s,pad:r==="same"?"same":"valid",dilations:o,dataFormat:"NHWC",bias:n,activation:i}),a==="channelsFirst"&&(l=tt(l,[0,3,1,2])),l})}function XW(e,t,n,s=[1,1,1],r="valid",a,o){return K(()=>{if(a==null&&(a=gr()),jt(a),e.rank!==4&&e.rank!==5)throw new q(`conv3dWithBias expects input to be of rank 4 or 5, but received ${e.rank}.`);if(t.rank!==4&&t.rank!==5)throw new q(`conv3dWithBias expects kernel to be of rank 4 or 5, but received ${e.rank}.`);let i=Gk(e,a);if(r==="causal")throw new Le("The support for CAUSAL padding mode in conv3dWithBias is not implemented yet.");return i=l1(i,t,s,r==="same"?"same":"valid","NDHWC",o),n!=null&&(i=xr(i,n)),a==="channelsFirst"&&(i=tt(i,[0,4,1,2,3])),i})}var DA=class extends st{constructor(e,t){super(t);if(this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",DA.verifyArgs(t),this.rank=e,bn(this.rank,"rank"),this.rank!==1&&this.rank!==2&&this.rank!==3)throw new Le(`Convolution layer for rank other than 1, 2, or 3 (${this.rank}) is not implemented yet.`);if(this.kernelSize=Ju(t.kernelSize,e,"kernelSize"),this.strides=Ju(t.strides==null?1:t.strides,e,"strides"),this.padding=t.padding==null?"valid":t.padding,zs(this.padding),this.dataFormat=t.dataFormat==null?"channelsLast":t.dataFormat,jt(this.dataFormat),this.activation=Wo(t.activation),this.useBias=t.useBias==null?!0:t.useBias,this.biasInitializer=$t(t.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.biasConstraint=ln(t.biasConstraint),this.biasRegularizer=_t(t.biasRegularizer),this.activityRegularizer=_t(t.activityRegularizer),this.dilationRate=Ju(t.dilationRate==null?1:t.dilationRate,e,"dilationRate"),this.rank===1&&Array.isArray(this.dilationRate)&&this.dilationRate.length!==1)throw new q(`dilationRate must be a number or an array of a single number for 1D convolution, but received ${JSON.stringify(this.dilationRate)}`);if(this.rank===2){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==2)throw new q(`dilationRate must be a number or array of two numbers for 2D convolution, but received ${JSON.stringify(this.dilationRate)}`)}else if(this.rank===3){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==3)throw new q(`dilationRate must be a number or array of three numbers for 3D convolution, but received ${JSON.stringify(this.dilationRate)}`)}}static verifyArgs(e){if(Fr("kernelSize"in e,"required key 'kernelSize' not in config"),typeof e.kernelSize!="number"&&!V1(e.kernelSize,"number",1,3))throw new q(`BaseConv expects config.kernelSize to be number or number[] with length 1, 2, or 3, but received ${JSON.stringify(e.kernelSize)}.`)}getConfig(){let e={kernelSize:this.kernelSize,strides:this.strides,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,activation:Bo(this.activation),useBias:this.useBias,biasInitializer:Mt(this.biasInitializer),biasRegularizer:bt(this.biasRegularizer),activityRegularizer:bt(this.activityRegularizer),biasConstraint:on(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}},ep=class extends DA{constructor(e,t){super(e,t);this.kernel=null,ep.verifyArgs(t),this.filters=t.filters,bn(this.filters,"filters"),this.kernelInitializer=$t(t.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.kernelConstraint=ln(t.kernelConstraint),this.kernelRegularizer=_t(t.kernelRegularizer)}build(e){e=ft(e);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new q(`The channel dimension of the input should be defined. Found ${e[t]}`);let n=e[t],s=this.kernelSize.concat([n,this.filters]);this.kernel=this.addWeight("kernel",s,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[{ndim:this.rank+2,axes:{[t]:n}}],this.built=!0}call(e,t){return K(()=>{e=Ve(e);let n,s=this.bias==null?null:this.bias.read(),r=Pw(this.activation.getClassName());if(r!=null&&this.rank===2)n=Hk(e,this.kernel.read(),s,this.strides,this.padding,this.dataFormat,this.dilationRate,r);else{if(this.rank===1)n=qW(e,this.kernel.read(),s,this.strides[0],this.padding,this.dataFormat,this.dilationRate[0]);else if(this.rank===2)n=Hk(e,this.kernel.read(),s,this.strides,this.padding,this.dataFormat,this.dilationRate);else if(this.rank===3)n=XW(e,this.kernel.read(),s,this.strides,this.padding,this.dataFormat,this.dilationRate);else throw new Le("convolutions greater than 3D are not implemented yet.");this.activation!=null&&(n=this.activation.apply(n))}return n})}computeOutputShape(e){e=ft(e);let t=[],n=this.dataFormat==="channelsLast"?e.slice(1,e.length-1):e.slice(2);for(let r=0;r<n.length;++r){let a=wr(n[r],this.kernelSize[r],this.padding,this.strides[r],typeof this.dilationRate=="number"?this.dilationRate:this.dilationRate[r]);t.push(a)}let s=[e[0]];return this.dataFormat==="channelsLast"?(s=s.concat(t),s.push(this.filters)):(s.push(this.filters),s=s.concat(t)),s}getConfig(){let e={filters:this.filters,kernelInitializer:Mt(this.kernelInitializer),kernelRegularizer:bt(this.kernelRegularizer),kernelConstraint:on(this.kernelConstraint)},t=super.getConfig();return Object.assign(e,t),e}static verifyArgs(e){if(!("filters"in e)||typeof e.filters!="number"||e.filters<1)throw new q(`Convolution layer expected config.filters to be a 'number' > 0 but got ${JSON.stringify(e.filters)}`)}},jk=class extends ep{constructor(e){super(2,e);jk.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!V1(e.kernelSize,"number",1,2))throw new q(`Conv2D expects config.kernelSize to be number or number[] with length 1 or 2, but received ${JSON.stringify(e.kernelSize)}.`)}},fm=jk;fm.className="Conv2D";ce.registerClass(fm);var qk=class extends ep{constructor(e){super(3,e);qk.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!(Array.isArray(e.kernelSize)&&(e.kernelSize.length===1||e.kernelSize.length===3)))throw new q(`Conv3D expects config.kernelSize to be number or [number, number, number], but received ${JSON.stringify(e.kernelSize)}.`)}},mm=qk;mm.className="Conv3D";ce.registerClass(mm);var PA=class extends fm{constructor(e){super(e);if(this.inputSpec=[new Zt({ndim:4})],this.padding!=="same"&&this.padding!=="valid")throw new q(`Conv2DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=ft(e),e.length!==4)throw new q("Input should have rank 4; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new q("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],s=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",s,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new Zt({ndim:4,axes:{[t]:n}})],this.built=!0}call(e,t){return K(()=>{let n=Ve(e);if(n.shape.length!==4)throw new q(`Conv2DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let s=n.shape,r=s[0],a,o;this.dataFormat==="channelsFirst"?(a=2,o=3):(a=1,o=2);let i=s[a],l=s[o],c=this.kernelSize[0],u=this.kernelSize[1],d=this.strides[0],p=this.strides[1],h=Lr(i,d,c,this.padding),f=Lr(l,p,u,this.padding),m=[r,h,f,this.filters];this.dataFormat!=="channelsLast"&&(n=tt(n,[0,2,3,1]));let g=i1(n,this.kernel.read(),m,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(g=tt(g,[0,3,1,2])),this.bias!=null&&(g=xr(g,this.bias.read(),this.dataFormat)),this.activation!=null&&(g=this.activation.apply(g)),g})}computeOutputShape(e){e=ft(e);let t=e.slice(),n,s,r;this.dataFormat==="channelsFirst"?(n=1,s=2,r=3):(n=3,s=1,r=2);let a=this.kernelSize[0],o=this.kernelSize[1],i=this.strides[0],l=this.strides[1];return t[n]=this.filters,t[s]=Lr(t[s],i,a,this.padding),t[r]=Lr(t[r],l,o,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};PA.className="Conv2DTranspose";ce.registerClass(PA);var FA=class extends mm{constructor(e){super(e);if(this.inputSpec=[new Zt({ndim:5})],this.padding!=="same"&&this.padding!=="valid")throw new q(`Conv3DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=ft(e),e.length!==5)throw new q("Input should have rank 5; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new q("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],s=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",s,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new Zt({ndim:5,axes:{[t]:n}})],this.built=!0}call(e,t){return K(()=>{let n=Ve(e);if(n.shape.length!==5)throw new q(`Conv3DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let s=n.shape,r=s[0],a,o,i;this.dataFormat==="channelsFirst"?(i=2,a=3,o=4):(i=1,a=2,o=3);let l=s[i],c=s[a],u=s[o],d=this.kernelSize[0],p=this.kernelSize[1],h=this.kernelSize[2],f=this.strides[0],m=this.strides[1],g=this.strides[2],A=Lr(l,f,d,this.padding),x=Lr(c,m,p,this.padding),y=Lr(u,g,h,this.padding),b=[r,A,x,y,this.filters];this.dataFormat!=="channelsLast"&&(n=tt(n,[0,2,3,4,1]));let w=Sv(n,this.kernel.read(),b,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(w=tt(w,[0,4,1,2,3])),this.bias!==null&&(w=xr(w,this.bias.read(),this.dataFormat)),this.activation!==null&&(w=this.activation.apply(w)),w})}computeOutputShape(e){e=ft(e);let t=e.slice(),n,s,r,a;this.dataFormat==="channelsFirst"?(n=1,s=2,r=3,a=4):(n=4,s=1,r=2,a=3);let o=this.kernelSize[0],i=this.kernelSize[1],l=this.kernelSize[2],c=this.strides[0],u=this.strides[1],d=this.strides[2];return t[n]=this.filters,t[s]=Lr(t[s],c,o,this.padding),t[r]=Lr(t[r],u,i,this.padding),t[a]=Lr(t[a],d,l,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};FA.className="Conv3DTranspose";ce.registerClass(FA);var Xk=class extends ep{constructor(e,t){super(e,t);if(this.DEFAULT_DEPTHWISE_INITIALIZER="glorotUniform",this.DEFAULT_POINTWISE_INITIALIZER="glorotUniform",this.depthwiseKernel=null,this.pointwiseKernel=null,t.filters==null)throw new q("The `filters` configuration field is required by SeparableConv, but is unspecified.");if(t.kernelInitializer!=null||t.kernelRegularizer!=null||t.kernelConstraint!=null)throw new q("Fields kernelInitializer, kernelRegularizer and kernelConstraint are invalid for SeparableConv2D. Use depthwiseInitializer, depthwiseRegularizer, depthwiseConstraint, pointwiseInitializer, pointwiseRegularizer and pointwiseConstraint instead.");if(t.padding!=null&&t.padding!=="same"&&t.padding!=="valid")throw new q(`SeparableConv${this.rank}D supports only padding modes: 'same' and 'valid', but received ${JSON.stringify(t.padding)}`);this.depthMultiplier=t.depthMultiplier==null?1:t.depthMultiplier,this.depthwiseInitializer=$t(t.depthwiseInitializer||this.DEFAULT_DEPTHWISE_INITIALIZER),this.depthwiseRegularizer=_t(t.depthwiseRegularizer),this.depthwiseConstraint=ln(t.depthwiseConstraint),this.pointwiseInitializer=$t(t.depthwiseInitializer||this.DEFAULT_POINTWISE_INITIALIZER),this.pointwiseRegularizer=_t(t.pointwiseRegularizer),this.pointwiseConstraint=ln(t.pointwiseConstraint)}build(e){if(e=ft(e),e.length<this.rank+2)throw new q(`Inputs to SeparableConv${this.rank}D should have rank ${this.rank+2}, but received input shape: ${JSON.stringify(e)}`);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null||e[t]<0)throw new q(`The channel dimension of the inputs should be defined, but found ${JSON.stringify(e[t])}`);let n=e[t],s=this.kernelSize.concat([n,this.depthMultiplier]),r=[];for(let o=0;o<this.rank;++o)r.push(1);r.push(n*this.depthMultiplier,this.filters);let a=!0;this.depthwiseKernel=this.addWeight("depthwise_kernel",s,"float32",this.depthwiseInitializer,this.depthwiseRegularizer,a,this.depthwiseConstraint),this.pointwiseKernel=this.addWeight("pointwise_kernel",r,"float32",this.pointwiseInitializer,this.pointwiseRegularizer,a,this.pointwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,a,this.biasConstraint):this.bias=null,this.inputSpec=[new Zt({ndim:this.rank+2,axes:{[t]:n}})],this.built=!0}call(e,t){return K(()=>{e=Ve(e);let n;if(this.rank===1)throw new Le("1D separable convolution is not implemented yet.");return this.rank===2&&(this.dataFormat==="channelsFirst"&&(e=tt(e,[0,2,3,1])),n=jv(e,this.depthwiseKernel.read(),this.pointwiseKernel.read(),this.strides,this.padding,this.dilationRate,"NHWC")),this.useBias&&(n=xr(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),this.dataFormat==="channelsFirst"&&(n=tt(n,[0,3,1,2])),n})}getConfig(){let e=super.getConfig();return delete e.rank,delete e.kernelInitializer,delete e.kernelRegularizer,delete e.kernelConstraint,e.depthwiseInitializer=Mt(this.depthwiseInitializer),e.pointwiseInitializer=Mt(this.pointwiseInitializer),e.depthwiseRegularizer=bt(this.depthwiseRegularizer),e.pointwiseRegularizer=bt(this.pointwiseRegularizer),e.depthwiseConstraint=on(this.depthwiseConstraint),e.pointwiseConstraint=on(this.pointwiseConstraint),e}};Xk.className="SeparableConv";var OA=class extends Xk{constructor(e){super(2,e)}};OA.className="SeparableConv2D";ce.registerClass(OA);var Kk=class extends ep{constructor(e){super(1,e);Kk.verifyArgs(e),this.inputSpec=[{ndim:3}]}getConfig(){let e=super.getConfig();return delete e.rank,delete e.dataFormat,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!V1(e.kernelSize,"number",1,1))throw new q(`Conv1D expects config.kernelSize to be number or number[] with length 1, but received ${JSON.stringify(e.kernelSize)}.`)}},MA=Kk;MA.className="Conv1D";ce.registerClass(MA);var zA=class extends st{constructor(e){super(e);typeof e.cropping=="number"?this.cropping=[[e.cropping,e.cropping],[e.cropping,e.cropping]]:typeof e.cropping[0]=="number"?this.cropping=[[e.cropping[0],e.cropping[0]],[e.cropping[1],e.cropping[1]]]:this.cropping=e.cropping,this.dataFormat=e.dataFormat===void 0?"channelsLast":e.dataFormat,this.inputSpec=[{ndim:4}]}computeOutputShape(e){return this.dataFormat==="channelsFirst"?[e[0],e[1],e[2]-this.cropping[0][0]-this.cropping[0][1],e[3]-this.cropping[1][0]-this.cropping[1][1]]:[e[0],e[1]-this.cropping[0][0]-this.cropping[0][1],e[2]-this.cropping[1][0]-this.cropping[1][1],e[3]]}call(e,t){return K(()=>{if(e=Ve(e),this.dataFormat==="channelsLast"){let n=Hf(e,this.cropping[0][0],e.shape[1]-this.cropping[0][0]-this.cropping[0][1],2);return Hf(n,this.cropping[1][0],e.shape[2]-this.cropping[1][1]-this.cropping[1][0],3)}else{let n=Hf(e,this.cropping[0][0],e.shape[2]-this.cropping[0][0]-this.cropping[0][1],3);return Hf(n,this.cropping[1][0],e.shape[3]-this.cropping[1][1]-this.cropping[1][0],4)}})}getConfig(){let e={cropping:this.cropping,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};zA.className="Cropping2D";ce.registerClass(zA);var LA=class extends st{constructor(e){super(e);this.DEFAULT_SIZE=[2,2],this.inputSpec=[{ndim:4}],this.size=e.size==null?this.DEFAULT_SIZE:e.size,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,jt(this.dataFormat),this.interpolation=e.interpolation==null?"nearest":e.interpolation,uB(this.interpolation)}computeOutputShape(e){if(this.dataFormat==="channelsFirst"){let t=e[2]==null?null:this.size[0]*e[2],n=e[3]==null?null:this.size[1]*e[3];return[e[0],e[1],t,n]}else{let t=e[1]==null?null:this.size[0]*e[1],n=e[2]==null?null:this.size[1]*e[2];return[e[0],t,n,e[3]]}}call(e,t){return K(()=>{let n=Ve(e),s=n.shape;if(this.dataFormat==="channelsFirst"){n=tt(n,[0,2,3,1]);let r=this.size[0]*s[2],a=this.size[1]*s[3],o=this.interpolation==="nearest"?Ce.resizeNearestNeighbor(n,[r,a]):Ce.resizeBilinear(n,[r,a]);return tt(o,[0,3,1,2])}else{let r=this.size[0]*s[1],a=this.size[1]*s[2];return this.interpolation==="nearest"?Ce.resizeNearestNeighbor(n,[r,a]):Ce.resizeBilinear(n,[r,a])}})}getConfig(){let e={size:this.size,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};LA.className="UpSampling2D";ce.registerClass(LA);function KW(e,t,n=[1,1],s="valid",r,a){return K(()=>{r==null&&(r=gr()),jt(r);let o=_A(e,r);if(e.rank!==4)throw new q(`Input for depthwiseConv2d is required to be 4-D, but is instead ${e.rank}-D`);if(t.rank!==4)throw new q(`depthwiseKernel is required to be 4-D, but is instead ${t.rank}-D`);return o=Dd(o,t,n,s==="same"?"same":"valid","NHWC",a),r==="channelsFirst"&&(o=tt(o,[0,3,1,2])),o})}var BA=class extends DA{constructor(e){super(2,e);this.depthwiseKernel=null,this.depthMultiplier=e.depthMultiplier==null?1:e.depthMultiplier,this.depthwiseInitializer=$t(e.depthwiseInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.depthwiseConstraint=ln(e.depthwiseConstraint),this.depthwiseRegularizer=_t(e.depthwiseRegularizer)}build(e){if(e=ft(e),e.length<4)throw new q(`Inputs to DepthwiseConv2D should have rank 4. Received input shape: ${JSON.stringify(e)}.`);let t=this.dataFormat==="channelsFirst"?1:3;if(e[t]==null||e[t]<0)throw new q(`The channel dimension of the inputs to DepthwiseConv2D should be defined, but is not (${e[t]}).`);let n=e[t],s=[this.kernelSize[0],this.kernelSize[1],n,this.depthMultiplier];this.depthwiseKernel=this.addWeight("depthwise_kernel",s,null,this.depthwiseInitializer,this.depthwiseRegularizer,!0,this.depthwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[n*this.depthMultiplier],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return K(()=>{e=Ve(e);let n=KW(e,this.depthwiseKernel.read(),this.strides,this.padding,this.dataFormat,null);return this.useBias&&(n=xr(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),n})}computeOutputShape(e){e=ft(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],s=this.dataFormat==="channelsFirst"?e[1]*this.depthMultiplier:e[3]*this.depthMultiplier,r=wr(t,this.kernelSize[0],this.padding,this.strides[0]),a=wr(n,this.kernelSize[1],this.padding,this.strides[1]);return this.dataFormat==="channelsFirst"?[e[0],s,r,a]:[e[0],r,a,s]}getConfig(){let e=super.getConfig();return e.depthMultiplier=this.depthMultiplier,e.depthwiseInitializer=Mt(this.depthwiseInitializer),e.depthwiseRegularizer=bt(this.depthwiseRegularizer),e.depthwiseConstraint=on(this.depthwiseRegularizer),e}};BA.className="DepthwiseConv2D";ce.registerClass(BA);function Zk(e,t,n,s){if(Array.isArray(e)){if(t!=null||n!=null)throw new q("When inputs is an array, neither initialState or constants should be provided");s!=null&&(n=e.slice(e.length-s,e.length),e=e.slice(0,e.length-s)),e.length>1&&(t=e.slice(1,e.length)),e=e[0]}function r(a){return a==null||Array.isArray(a)?a:[a]}return t=r(t),n=r(n),{inputs:e,initialState:t,constants:n}}function Yk(e,t,n,s=!1,r,a,o=!1,i=!1){return K(()=>{let l=t.shape.length;if(l<3)throw new q(`Input should be at least 3D, but is ${l}D.`);let c=[1,0].concat(yr(2,l));if(t=tt(t,c),a!=null)throw new Le("The rnn() functoin of the deeplearn.js backend does not support constants yet.");o&&console.warn("Backend rnn(): the unroll = true option is not applicable to the imperative deeplearn.js backend."),r!=null&&(r=ge(ge(r,"bool"),"float32"),r.rank===l-1&&(r=Kt(r,-1)),r=tt(r,c)),s&&(t=Ms(t,0),r!=null&&(r=Ms(r,0)));let u=[],d,p=n,h=t.shape[0],f=os(t),m;r!=null&&(m=os(r));for(let A=0;A<h;++A){let x=f[A],y=K(()=>e(x,p));if(r==null)d=y[0],p=y[1];else{let b=K(()=>{let w=m[A],k=fe(Os(w),w),S=ue(L(y[0],w),L(p[0],k)),N=p.map((R,M)=>ue(L(y[1][M],w),L(R,k)));return{output:S,newStates:N}});d=b.output,p=b.newStates}i&&u.push(d)}let g;return i&&(g=xn(u,1)),[d,g,p]})}var Jk=class extends st{constructor(e){super(e);let t;if(e.cell==null)throw new q("cell property is missing for the constructor of RNN.");if(Array.isArray(e.cell)?t=new ym({cells:e.cell}):t=e.cell,t.stateSize==null)throw new q("The RNN cell should have an attribute `stateSize` (tuple of integers, one integer per RNN state).");this.cell=t,this.returnSequences=e.returnSequences==null?!1:e.returnSequences,this.returnState=e.returnState==null?!1:e.returnState,this.goBackwards=e.goBackwards==null?!1:e.goBackwards,this._stateful=e.stateful==null?!1:e.stateful,this.unroll=e.unroll==null?!1:e.unroll,this.supportsMasking=!0,this.inputSpec=[new Zt({ndim:3})],this.stateSpec=null,this.states_=null,this.numConstants=null,this.keptStates=[]}getStates(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;return yr(0,e).map(t=>null)}else return this.states_}setStates(e){this.states_=e}computeOutputShape(e){aA(e)&&(e=e[0]),e=e;let t=this.cell.stateSize;Array.isArray(t)||(t=[t]);let n=t[0],s;if(this.returnSequences?s=[e[0],e[1],n]:s=[e[0],n],this.returnState){let r=[];for(let a of t)r.push([e[0],a]);return[s].concat(r)}else return s}computeMask(e,t){return K(()=>{Array.isArray(t)&&(t=t[0]);let n=this.returnSequences?t:null;if(this.returnState){let s=this.states.map(r=>null);return[n].concat(s)}else return n})}get states(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1,t=[];for(let n=0;n<e;++n)t.push(null);return t}else return this.states_}set states(e){this.states_=e}build(e){let t=null;if(this.numConstants!=null)throw new Le("Constants support is not implemented in RNN yet.");aA(e)&&(e=e[0]),e=e;let n=this.stateful?e[0]:null,s=e.slice(2);this.inputSpec[0]=new Zt({shape:[n,null,...s]});let r=[e[0]].concat(e.slice(2));if(t!=null)throw new Le("Constants support is not implemented in RNN yet.");this.cell.build(r);let a;if(Array.isArray(this.cell.stateSize)?a=this.cell.stateSize:a=[this.cell.stateSize],this.stateSpec!=null){if(!v.arraysEqual(this.stateSpec.map(o=>o.shape[o.shape.length-1]),a))throw new q(`An initialState was passed that is not compatible with cell.stateSize. Received stateSpec=${this.stateSpec}; However cell.stateSize is ${this.cell.stateSize}`)}else this.stateSpec=a.map(o=>new Zt({shape:[null,o]}));this.stateful&&this.resetStates()}resetStates(e,t=!1){K(()=>{if(!this.stateful)throw new na("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape[0];if(n==null)throw new q("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.states_==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(s=>Ht([n,s])):this.states_=[Ht([n,this.cell.stateSize])];else if(e==null)ne(this.states_),this.keptStates!=null&&(ne(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(s=>Ht([n,s])):this.states_[0]=Ht([n,this.cell.stateSize]);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new q(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t===!0?this.keptStates.push(this.states_.slice()):ne(this.states_);for(let s=0;s<this.states_.length;++s){let r=e[s],a=Array.isArray(this.cell.stateSize)?this.cell.stateSize[s]:this.cell.stateSize,o=[n,a];if(!v.arraysEqual(r.shape,o))throw new q(`State ${s} is incompatible with layer ${this.name}: expected shape=${o}, received shape=${r.shape}`);this.states_[s]=r}}this.states_=this.states_.map(s=>An(s.clone()))})}apply(e,t){let n=t==null?null:t.initialState,s=t==null?null:t.constants;t==null&&(t={});let r=Zk(e,n,s,this.numConstants);e=r.inputs,n=r.initialState,s=r.constants;let a=[],o=[];if(n!=null){t.initialState=n,a=a.concat(n),this.stateSpec=[];for(let l of n)this.stateSpec.push(new Zt({shape:l.shape}));o=o.concat(this.stateSpec)}if(s!=null&&(t.constants=s,a=a.concat(s),this.numConstants=s.length),a[0]instanceof br){let l=[e].concat(a),c=this.inputSpec.concat(o),u=this.inputSpec;this.inputSpec=c;let d=super.apply(l,t);return this.inputSpec=u,d}else return super.apply(e,t)}call(e,t){return K(()=>{let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;e=Ve(e),r==null&&(this.stateful?r=this.states_:r=this.getInitialState(e));let a=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;if(r.length!==a)throw new q(`RNN Layer has ${a} state(s) but was passed ${r.length} initial state(s).`);this.unroll&&console.warn("Ignoring unroll = true for RNN layer, due to imperative backend.");let o={training:s},l=Yk((h,f)=>{let m=this.cell.call([h].concat(f),o);return[m[0],m.slice(1)]},e,r,this.goBackwards,n,null,this.unroll,this.returnSequences),c=l[0],u=l[1],d=l[2];this.stateful&&this.resetStates(d,s);let p=this.returnSequences?u:c;return this.returnState?[p].concat(d):p})}getInitialState(e){return K(()=>{let t=Ht(e.shape);return t=we(t,[1,2]),t=jd(t),Array.isArray(this.cell.stateSize)?this.cell.stateSize.map(n=>n>1?Z1(t,[1,n]):t):this.cell.stateSize>1?[Z1(t,[1,this.cell.stateSize])]:[t]})}get trainableWeights(){return this.trainable?this.cell.trainableWeights:[]}get nonTrainableWeights(){return this.trainable?this.cell.nonTrainableWeights:this.cell.weights}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.cell!=null&&this.cell.setFastWeightInitDuringBuild(e)}getConfig(){let e=super.getConfig(),t={returnSequences:this.returnSequences,returnState:this.returnState,goBackwards:this.goBackwards,stateful:this.stateful,unroll:this.unroll};this.numConstants!=null&&(t.numConstants=this.numConstants);let n=this.cell.getConfig();return this.getClassName()===Jk.className&&(t.cell={className:this.cell.getClassName(),config:n}),{...n,...e,...t}}static fromConfig(e,t,n={}){let s=t.cell,r=vr(s,n);return new e(Object.assign(t,{cell:r}))}},aa=Jk;aa.className="RNN";ce.registerClass(aa);var tp=class extends st{},gm=class extends tp{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,bn(this.units,"units"),this.activation=Wo(e.activation==null?this.DEFAULT_ACTIVATION:e.activation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=$t(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=$t(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=$t(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=_t(e.kernelRegularizer),this.recurrentRegularizer=_t(e.recurrentRegularizer),this.biasRegularizer=_t(e.biasRegularizer),this.kernelConstraint=ln(e.kernelConstraint),this.recurrentConstraint=ln(e.recurrentConstraint),this.biasConstraint=ln(e.biasConstraint),this.dropout=Xu([1,zo([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Xu([1,zo([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.dropoutFunc=e.dropoutFunc,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=ft(e),this.kernel=this.addWeight("kernel",[e[e.length-1],this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return K(()=>{if(e=e,e.length!==2)throw new q(`SimpleRNNCell expects 2 input Tensors, got ${e.length}.`);let n=e[1];e=e[0];let s=t.training==null?!1:t.training;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Vo({ones:()=>Os(e),rate:this.dropout,training:s,dropoutFunc:this.dropoutFunc})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Vo({ones:()=>Os(n),rate:this.recurrentDropout,training:s,dropoutFunc:this.dropoutFunc}));let r,a=this.dropoutMask,o=this.recurrentDropoutMask;a!=null?r=Or(L(e,a),this.kernel.read()):r=Or(e,this.kernel.read()),this.bias!=null&&(r=xr(r,this.bias.read())),o!=null&&(n=L(n,o));let i=ue(r,Or(n,this.recurrentKernel.read()));return this.activation!=null&&(i=this.activation.apply(i)),[i,i]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:Bo(this.activation),useBias:this.useBias,kernelInitializer:Mt(this.kernelInitializer),recurrentInitializer:Mt(this.recurrentInitializer),biasInitializer:Mt(this.biasInitializer),kernelRegularizer:bt(this.kernelRegularizer),recurrentRegularizer:bt(this.recurrentRegularizer),biasRegularizer:bt(this.biasRegularizer),activityRegularizer:bt(this.activityRegularizer),kernelConstraint:on(this.kernelConstraint),recurrentConstraint:on(this.recurrentConstraint),biasConstraint:on(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout};return{...e,...t}}};gm.className="SimpleRNNCell";ce.registerClass(gm);var WA=class extends aa{constructor(e){e.cell=new gm(e);super(e)}call(e,t){return K(()=>{this.cell.dropoutMask!=null&&(ne(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(ne(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:s,initialState:r})})}static fromConfig(e,t){return new e(t)}};WA.className="SimpleRNN";ce.registerClass(WA);var Am=class extends tp{constructor(e){super(e);if(this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.resetAfter)throw new q("GRUCell does not support reset_after parameter set to true.");this.units=e.units,bn(this.units,"units"),this.activation=Wo(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=Wo(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=$t(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=$t(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=$t(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=_t(e.kernelRegularizer),this.recurrentRegularizer=_t(e.recurrentRegularizer),this.biasRegularizer=_t(e.biasRegularizer),this.kernelConstraint=ln(e.kernelConstraint),this.recurrentConstraint=ln(e.recurrentConstraint),this.biasConstraint=ln(e.biasConstraint),this.dropout=Xu([1,zo([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Xu([1,zo([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.dropoutFunc=e.dropoutFunc,this.implementation=e.implementation,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=ft(e);let t=e[e.length-1];this.kernel=this.addWeight("kernel",[t,this.units*3],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*3],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units*3],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return K(()=>{if(e=e,e.length!==2)throw new q(`GRUCell expects 2 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training==null?!1:t.training,s=e[1];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Vo({ones:()=>Os(e),rate:this.dropout,training:n,count:3,dropoutFunc:this.dropoutFunc})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Vo({ones:()=>Os(s),rate:this.recurrentDropout,training:n,count:3,dropoutFunc:this.dropoutFunc}));let r=this.dropoutMask,a=this.recurrentDropoutMask,o,i,l;0<this.dropout&&this.dropout<1&&(e=L(e,r[0]));let c=Or(e,this.kernel.read());this.useBias&&(c=xr(c,this.bias.read())),0<this.recurrentDropout&&this.recurrentDropout<1&&(s=L(s,a[0]));let u=this.recurrentKernel.read(),[d,p]=rn(u,[2*this.units,this.units],u.rank-1),h=Or(s,d),[f,m,g]=rn(c,3,c.rank-1),[A,x]=rn(h,2,h.rank-1);o=this.recurrentActivation.apply(ue(f,A)),i=this.recurrentActivation.apply(ue(m,x));let y=Or(L(i,s),p);l=this.activation.apply(ue(g,y));let b=ue(L(o,s),L(ue(1,Ot(o)),l));return[b,b]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:Bo(this.activation),recurrentActivation:Bo(this.recurrentActivation),useBias:this.useBias,kernelInitializer:Mt(this.kernelInitializer),recurrentInitializer:Mt(this.recurrentInitializer),biasInitializer:Mt(this.biasInitializer),kernelRegularizer:bt(this.kernelRegularizer),recurrentRegularizer:bt(this.recurrentRegularizer),biasRegularizer:bt(this.biasRegularizer),activityRegularizer:bt(this.activityRegularizer),kernelConstraint:on(this.kernelConstraint),recurrentConstraint:on(this.recurrentConstraint),biasConstraint:on(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation,resetAfter:!1};return{...e,...t}}};Am.className="GRUCell";ce.registerClass(Am);var VA=class extends aa{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new Am(e);super(e)}call(e,t){return K(()=>{this.cell.dropoutMask!=null&&(ne(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(ne(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:s,initialState:r})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};VA.className="GRU";ce.registerClass(VA);var np=class extends tp{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,bn(this.units,"units"),this.activation=Wo(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=Wo(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=$t(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=$t(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=$t(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.unitForgetBias=e.unitForgetBias,this.kernelRegularizer=_t(e.kernelRegularizer),this.recurrentRegularizer=_t(e.recurrentRegularizer),this.biasRegularizer=_t(e.biasRegularizer),this.kernelConstraint=ln(e.kernelConstraint),this.recurrentConstraint=ln(e.recurrentConstraint),this.biasConstraint=ln(e.biasConstraint),this.dropout=Xu([1,zo([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Xu([1,zo([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.dropoutFunc=e.dropoutFunc,this.implementation=e.implementation,this.stateSize=[this.units,this.units],this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){var t;e=ft(e);let n=e[e.length-1];this.kernel=this.addWeight("kernel",[n,this.units*4],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*4],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint);let s;if(this.useBias){if(this.unitForgetBias){let r=this.biasInitializer,a=this.units;s=new(t=class extends sr{apply(o,i){let l=r.apply([a]),c=new qf().apply([a]),u=r.apply([a*2]);return Uw(Uw(l,c),u)}},t.className="CustomInit",t)}else s=this.biasInitializer;this.bias=this.addWeight("bias",[this.units*4],null,s,this.biasRegularizer,!0,this.biasConstraint)}else this.bias=null;this.built=!0}call(e,t){return K(()=>{let n=t.training==null?!1:t.training;if(e=e,e.length!==3)throw new q(`LSTMCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let s=e[1],r=e[2];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Vo({ones:()=>Os(e),rate:this.dropout,training:n,count:4,dropoutFunc:this.dropoutFunc})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Vo({ones:()=>Os(s),rate:this.recurrentDropout,training:n,count:4,dropoutFunc:this.dropoutFunc}));let a=this.dropoutMask,o=this.recurrentDropoutMask,i,l,c,u;0<this.dropout&&this.dropout<1&&(e=L(e,a[0]));let d=Or(e,this.kernel.read());0<this.recurrentDropout&&this.recurrentDropout<1&&(s=L(s,o[0])),d=ue(d,Or(s,this.recurrentKernel.read())),this.useBias&&(d=xr(d,this.bias.read()));let[p,h,f,m]=rn(d,4,d.rank-1);i=this.recurrentActivation.apply(p),l=this.recurrentActivation.apply(h),c=ue(L(l,r),L(i,this.activation.apply(f))),u=this.recurrentActivation.apply(m);let g=L(u,this.activation.apply(c));return[g,g,c]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:Bo(this.activation),recurrentActivation:Bo(this.recurrentActivation),useBias:this.useBias,kernelInitializer:Mt(this.kernelInitializer),recurrentInitializer:Mt(this.recurrentInitializer),biasInitializer:Mt(this.biasInitializer),unitForgetBias:this.unitForgetBias,kernelRegularizer:bt(this.kernelRegularizer),recurrentRegularizer:bt(this.recurrentRegularizer),biasRegularizer:bt(this.biasRegularizer),activityRegularizer:bt(this.activityRegularizer),kernelConstraint:on(this.kernelConstraint),recurrentConstraint:on(this.recurrentConstraint),biasConstraint:on(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation};return{...e,...t}}};np.className="LSTMCell";ce.registerClass(np);var UA=class extends aa{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new np(e);super(e)}call(e,t){return K(()=>{this.cell.dropoutMask!=null&&(ne(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(ne(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:s,initialState:r})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};UA.className="LSTM";ce.registerClass(UA);var ym=class extends tp{constructor(e){super(e);this.cells=e.cells}get stateSize(){let e=[];for(let t of this.cells.slice().reverse())Array.isArray(t.stateSize)?e.push(...t.stateSize):e.push(t.stateSize);return e}call(e,t){return K(()=>{e=e;let n=e.slice(1),s=[];for(let o of this.cells.slice().reverse())Array.isArray(o.stateSize)?s.push(n.splice(0,o.stateSize.length)):s.push(n.splice(0,1));s.reverse();let r=[],a;for(let o=0;o<this.cells.length;++o){let i=this.cells[o];n=s[o],o===0?a=[e[0]].concat(n):a=[a[0]].concat(n),a=i.call(a,t),r.push(a.slice(1))}n=[];for(let o of r.slice().reverse())n.push(...o);return[a[0]].concat(n)})}build(e){aA(e)&&(e=e[0]),e=e;let t;this.cells.forEach((n,s)=>{Al(`RNNCell_${s}`,()=>{n.build(e),Array.isArray(n.stateSize)?t=n.stateSize[0]:t=n.stateSize,e=[e[0],t]})}),this.built=!0}getConfig(){let e=super.getConfig(),t=r=>({className:r.getClassName(),config:r.getConfig()}),s={cells:this.cells.map(t)};return{...e,...s}}static fromConfig(e,t,n={}){let s=[];for(let r of t.cells)s.push(vr(r,n));return new e({cells:s})}get trainableWeights(){if(!this.trainable)return[];let e=[];for(let t of this.cells)e.push(...t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.cells)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.cells)t.push(...n.trainableWeights);return t.concat(e)}return e}getWeights(){let e=[];for(let t of this.cells)e.push(...t.weights);return oA(e)}setWeights(e){let t=[];for(let n of this.cells){let s=n.weights.length,r=e.splice(s);for(let a=0;a<n.weights.length;++a)t.push([n.weights[a],r[a]])}iA(t)}};ym.className="StackedRNNCells";ce.registerClass(ym);function Vo(e){let{ones:t,rate:n,training:s=!1,count:r=1,dropoutFunc:a}=e,o=()=>a!=null?a(t(),n):Hw(t(),n),i=()=>Xd(o,t,s);return!r||r<=1?An(i().clone()):Array(r).fill(void 0).map(i).map(c=>An(c.clone()))}var Qk=class extends aa{constructor(e){if(e.unroll)throw new Le("Unrolling is not possible with convolutional RNNs.");if(Array.isArray(e.cell))throw new Le("It is not possible at the moment to stack convolutional cells.");super(e);this.inputSpec=[new Zt({ndim:5})]}call(e,t){return K(()=>{if(this.cell.dropoutMask!=null&&(ne(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(ne(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null),t&&t.constants)throw new q("ConvRNN2D cell does not support constants");let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:s,initialState:r})})}computeOutputShape(e){let t=this.computeSingleOutputShape(e);return this.returnSequences||(t=[t[0],...t.slice(2)]),this.returnState&&(t=[t,...Array(2).fill([e[0],...t.slice(-3)])]),t}getInitialState(e){return K(()=>{let{stateSize:t}=this.cell,n=e.shape,s=this.computeSingleOutputShape(n),r=[s[0],...s.slice(2)],a=Ht(r);return Array.isArray(t)?Array(t.length).fill(a):[a]})}resetStates(e,t=!1){K(()=>{if(!this.stateful)throw new na("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape,s=this.computeSingleOutputShape(n),r=[s[0],...s.slice(2)];if(n[0]==null)throw new q("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.getStates()==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>Ht(r)):this.states_=[Ht(r)];else if(e==null)ne(this.states_),this.keptStates!=null&&(ne(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>Ht(r)):this.states_[0]=Ht(r);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new q(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t?this.keptStates.push(this.states_.slice()):ne(this.states_);for(let o=0;o<this.states_.length;++o){let i=e[o],l=r;if(!v.arraysEqual(i.shape,l))throw new q(`State ${o} is incompatible with layer ${this.name}: expected shape=${l}, received shape=${i.shape}`);this.states_[o]=i}}this.states_=this.states_.map(o=>An(o.clone()))})}computeSingleOutputShape(e){let{dataFormat:t,filters:n,kernelSize:s,padding:r,strides:a,dilationRate:o}=this.cell,i=t==="channelsFirst",l=e[i?3:2],c=e[i?4:3],u=wr(l,s[0],r,a[0],o[0]),d=wr(c,s[1],r,a[1],o[1]);return[...e.slice(0,2),...i?[n,u,d]:[u,d,n]]}};Qk.className="ConvRNN2D";var xm=class extends np{constructor(e){let{filters:t,kernelSize:n,strides:s,padding:r,dataFormat:a,dilationRate:o}=e;super({...e,units:t});this.filters=t,bn(this.filters,"filters"),this.kernelSize=Ju(n,2,"kernelSize"),this.kernelSize.forEach(i=>bn(i,"kernelSize")),this.strides=Ju(s||1,2,"strides"),this.strides.forEach(i=>bn(i,"strides")),this.padding=r||"valid",zs(this.padding),this.dataFormat=a||"channelsLast",jt(this.dataFormat),this.dilationRate=Ju(o||1,2,"dilationRate"),this.dilationRate.forEach(i=>bn(i,"dilationRate"))}build(e){var t;e=ft(e);let n=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[n]==null)throw new q(`The channel dimension of the input should be defined. Found ${e[n]}`);let s=e[n],r=4,a=this.kernelSize.concat([s,this.filters*r]);this.kernel=this.addWeight("kernel",a,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint);let o=this.kernelSize.concat([this.filters,this.filters*r]);if(this.recurrentKernel=this.addWeight("recurrent_kernel",o,null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias){let i;if(this.unitForgetBias){let l=this.biasInitializer,c=this.filters;i=new(t=class extends sr{apply(u,d){let p=l.apply([c]),h=xs([c]),f=l.apply([c*2]);return K1([p,h,f])}},t.className="CustomInit",t)}else i=this.biasInitializer;this.bias=this.addWeight("bias",[this.filters*r],null,i,this.biasRegularizer,!0,this.biasConstraint)}this.built=!0}call(e,t){return K(()=>{if(e.length!==3)throw new q(`ConvLSTM2DCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training||!1,s=e[0],r=e[1],a=e[2],o=4;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Vo({ones:()=>Os(s),rate:this.dropout,training:n,count:o,dropoutFunc:this.dropoutFunc}));let i=this.dropoutMask,l=(Z,Q,te)=>!Q||!Q[te]?Z:L(Q[te],Z),c=l(s,i,0),u=l(s,i,1),d=l(s,i,2),p=l(s,i,3);0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Vo({ones:()=>Os(r),rate:this.recurrentDropout,training:n,count:o,dropoutFunc:this.dropoutFunc}));let h=this.recurrentDropoutMask,f=l(r,h,0),m=l(r,h,1),g=l(r,h,2),A=l(r,h,3),x=3,[y,b,w,k]=rn(this.kernel.read(),o,x),[S,N,R,M]=this.useBias?rn(this.bias.read(),o):[null,null,null,null];c=this.inputConv(c,y,S,this.padding),u=this.inputConv(u,b,N,this.padding),d=this.inputConv(d,w,R,this.padding),p=this.inputConv(p,k,M,this.padding);let[D,$,T,F]=rn(this.recurrentKernel.read(),o,x);f=this.recurrentConv(f,D),m=this.recurrentConv(m,$),g=this.recurrentConv(g,T),A=this.recurrentConv(A,F);let V=this.recurrentActivation.apply(ue(c,f)),X=this.recurrentActivation.apply(ue(u,m)),z=ue(L(X,a),L(V,this.activation.apply(ue(d,g)))),j=L(this.recurrentActivation.apply(ue(p,A)),this.activation.apply(z));return[j,j,z]})}getConfig(){let{units:e,...t}=super.getConfig(),n={filters:this.filters,kernelSize:this.kernelSize,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,strides:this.strides};return{...t,...n}}inputConv(e,t,n,s){let r=$o(e,t,this.strides,s||"valid",this.dataFormat==="channelsFirst"?"NCHW":"NHWC",this.dilationRate);return n?xr(r,n,this.dataFormat):r}recurrentConv(e,t){return $o(e,t,1,"same",this.dataFormat==="channelsFirst"?"NCHW":"NHWC")}};xm.className="ConvLSTM2DCell";ce.registerClass(xm);var GA=class extends Qk{constructor(e){let t=new xm(e);super({...e,cell:t})}static fromConfig(e,t){return new e(t)}};GA.className="ConvLSTM2D";ce.registerClass(GA);var bm=class extends st{constructor(e){super(e);this.rate=Math.max(Math.min(e.rate,1),0),this.noiseShape=e.noiseShape,this.seed=e.seed,this.supportsMasking=!0}getNoiseShape(e){if(this.noiseShape==null)return this.noiseShape;let t=e.shape,n=[];for(let s=0;s<this.noiseShape.length;++s)n.push(this.noiseShape[s]==null?t[s]:this.noiseShape[s]);return n}call(e,t){return K(()=>{this.invokeCallHook(e,t);let n=Ve(e);if(0<this.rate&&this.rate<1){let s=t.training==null?!1:t.training,r=this.getNoiseShape(n);return Xd(()=>Hw(n,this.rate,r,this.seed),()=>n,s)}return e})}getConfig(){let e={rate:this.rate,noiseShape:this.noiseShape,seed:this.seed},t=super.getConfig();return Object.assign(e,t),e}dispose(){return super.dispose()}};bm.className="Dropout";ce.registerClass(bm);var HA=class extends bm{constructor(e){super(e);this.inputSpec=[{ndim:3}]}getNoiseShape(e){let t=e.shape;return[t[0],1,t[2]]}};HA.className="SpatialDropout1D";ce.registerClass(HA);var jA=class extends st{constructor(e){super(e);if(this.activation=null,this.useBias=!0,this.kernel=null,this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.batchInputShape==null&&e.inputShape==null&&e.inputDim!=null){let t=null;e.batchSize!=null&&(t=e.batchSize),this.batchInputShape=[t,e.inputDim]}this.units=e.units,bn(this.units,"units"),this.activation=Wo(e.activation),e.useBias!=null&&(this.useBias=e.useBias),this.kernelInitializer=$t(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.biasInitializer=$t(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelConstraint=ln(e.kernelConstraint),this.biasConstraint=ln(e.biasConstraint),this.kernelRegularizer=_t(e.kernelRegularizer),this.biasRegularizer=_t(e.biasRegularizer),this.activityRegularizer=_t(e.activityRegularizer),this.supportsMasking=!0,this.inputSpec=[{minNDim:2}]}build(e){e=ft(e);let t=e[e.length-1];this.kernel==null&&(this.kernel=this.addWeight("kernel",[t,this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint))),this.inputSpec=[{minNDim:2,axes:{[-1]:t}}],this.built=!0}computeOutputShape(e){e=ft(e);let t=e.slice();return t[t.length-1]=this.units,t}call(e,t){return K(()=>{this.invokeCallHook(e,t);let n=Ve(e),s=Pw(this.activation.getClassName()),r;return s!=null?r=Or(n,this.kernel.read(),s,this.bias?this.bias.read():null):(r=Or(n,this.kernel.read()),this.bias!=null&&(r=xr(r,this.bias.read())),this.activation!=null&&(r=this.activation.apply(r))),r})}getConfig(){let e={units:this.units,activation:Bo(this.activation),useBias:this.useBias,kernelInitializer:Mt(this.kernelInitializer),biasInitializer:Mt(this.biasInitializer),kernelRegularizer:bt(this.kernelRegularizer),biasRegularizer:bt(this.biasRegularizer),activityRegularizer:bt(this.activityRegularizer),kernelConstraint:on(this.kernelConstraint),biasConstraint:on(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}};jA.className="Dense";ce.registerClass(jA);var qA=class extends st{constructor(e){e=e||{};super(e);this.inputSpec=[{minNDim:3}],this.dataFormat=e.dataFormat}computeOutputShape(e){e=ft(e);for(let t of e.slice(1))if(t==null)throw new q(`The shape of the input to "Flatten" is not fully defined (got ${e.slice(1)}). Make sure to pass a complete "input_shape" or "batch_input_shape" argument to the first layer in your model.`);return[e[0],Mo(e,1)]}call(e,t){return K(()=>{this.invokeCallHook(e,t);let n=Ve(e);if(this.dataFormat==="channelsFirst"&&n.rank>1){let s=[0];for(let r=2;r<n.rank;++r)s.push(r);s.push(1),n=tt(n,s)}return mB(n)})}getConfig(){let e={};this.dataFormat!=null&&(e.dataFormat=this.dataFormat);let t=super.getConfig();return Object.assign(e,t),e}};qA.className="Flatten";ce.registerClass(qA);var XA=class extends st{constructor(e){super(e);this.supportsMasking=!0,this.activation=Wo(e.activation)}call(e,t){return K(()=>{this.invokeCallHook(e,t);let n=Ve(e);return this.activation.apply(n)})}getConfig(){let e={activation:Bo(this.activation)},t=super.getConfig();return Object.assign(e,t),e}};XA.className="Activation";ce.registerClass(XA);var KA=class extends st{constructor(e){super(e);this.n=e.n,this.inputSpec=[{ndim:2}]}computeOutputShape(e){return[e[0],this.n,e[1]]}call(e,t){return K(()=>(e=Ve(e),hB(e,this.n)))}getConfig(){let e={n:this.n},t=super.getConfig();return Object.assign(e,t),e}};KA.className="RepeatVector";ce.registerClass(KA);var ZA=class extends st{constructor(e){super(e);this.targetShape=e.targetShape;for(let t=0;t<this.targetShape.length;++t)this.isUnknown(this.targetShape[t])&&(this.targetShape[t]=null)}isUnknown(e){return e<0||e==null}fixUnknownDimension(e,t){let n="Total size of new array must be unchanged.",s=t.slice(),r=1,a=null;for(let i=0;i<s.length;++i){let l=s[i];if(this.isUnknown(l))if(a===null)a=i;else throw new q("Can only specifiy one unknown dimension.");else r*=l}let o=Mo(e);if(a!==null){if(r===0||o%r!=0)throw new q(n);s[a]=o/r}else if(o!==r)throw new q(n);return s}computeOutputShape(e){let t=!1;for(let n=0;n<e.length;++n)if(this.isUnknown(e[n])){t=!0;break}return t?e.slice(0,1).concat(this.targetShape):e.slice(0,1).concat(this.fixUnknownDimension(e.slice(1),this.targetShape))}call(e,t){return K(()=>{this.invokeCallHook(e,t);let n=Ve(e),s=n.shape,r=s.slice(0,1).concat(this.fixUnknownDimension(s.slice(1),this.targetShape));return H(n,r)})}getConfig(){let e={targetShape:this.targetShape},t=super.getConfig();return Object.assign(e,t),e}};ZA.className="Reshape";ce.registerClass(ZA);var YA=class extends st{constructor(e){super(e);if(e.dims==null)throw new Error("Required configuration field `dims` is missing during Permute constructor call.");if(!Array.isArray(e.dims))throw new Error(`Permute constructor requires \`dims\` to be an Array, but received ${e.dims} instead.`);let t=yr(1,e.dims.length+1);if(!v.arraysEqual(e.dims.slice().sort(),t))throw new Error("Invalid permutation `dims`: "+JSON.stringify(e.dims)+" `dims` must contain consecutive integers starting from 1.");this.dims=e.dims,this.dimsIncludingBatch=[0].concat(this.dims),this.inputSpec=[new Zt({ndim:this.dims.length+1})]}computeOutputShape(e){e=ft(e);let t=e.slice();return this.dims.forEach((n,s)=>{t[s+1]=e[n]}),t}call(e,t){return tt(Ve(e),this.dimsIncludingBatch)}getConfig(){let e={dims:this.dims},t=super.getConfig();return Object.assign(e,t),e}};YA.className="Permute";ce.registerClass(YA);var JA=class extends st{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null?this.maskValue=e.maskValue==null?0:e.maskValue:this.maskValue=0}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={maskValue:this.maskValue};return Object.assign(t,e),t}computeMask(e,t){let n=Ve(e),s=-1;return ff(Vu(n,this.maskValue),s)}call(e,t){return K(()=>{this.invokeCallHook(e,t);let n=Ve(e),s=-1,r=!0,a=ff(Vu(n,this.maskValue),s,r);return L(n,ge(a,n.dtype))})}};JA.className="Masking";ce.registerClass(JA);var QA=class extends st{constructor(e){super(e);if(this.embeddings=null,this.DEFAULT_EMBEDDINGS_INITIALIZER="randomUniform",e.batchInputShape==null&&e.inputShape==null){let t=null;e.batchSize!=null&&(t=e.batchSize),e.inputLength==null?this.batchInputShape=[t,null]:this.batchInputShape=[t].concat(St(e.inputLength))}this.inputDim=e.inputDim,bn(this.inputDim,"inputDim"),this.outputDim=e.outputDim,bn(this.outputDim,"outputDim"),this.embeddingsInitializer=$t(e.embeddingsInitializer||this.DEFAULT_EMBEDDINGS_INITIALIZER),this.embeddingsRegularizer=_t(e.embeddingsRegularizer),this.activityRegularizer=_t(e.activityRegularizer),this.embeddingsConstraint=ln(e.embeddingsConstraint),this.maskZero=e.maskZero,this.supportsMasking=e.maskZero,this.inputLength=e.inputLength}build(e){this.embeddings=this.addWeight("embeddings",[this.inputDim,this.outputDim],this.dtype,this.embeddingsInitializer,this.embeddingsRegularizer,!0,this.embeddingsConstraint),this.built=!0}warnOnIncompatibleInputShape(e){}computeMask(e,t){return K(()=>this.maskZero?(e=Ve(e),Vu(e,nt(e))):null)}computeOutputShape(e){if(e=ft(e),this.inputLength==null)return[...e,this.outputDim];let t=St(this.inputLength);if(t.length!==e.length-1)throw new q(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);{let n=0;for(let s=0;s<t.length;++s){let r=t[s],a=e[s+1];if(r!=null&&a!=null&&r!==a)throw new q(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);r==null&&(t[n]=a),n++}}return[e[0],...t,this.outputDim]}call(e,t){return K(()=>{this.invokeCallHook(e,t);let n=Ve(e);n.dtype!=="int32"&&(n=Gf(n,"int32"));let s=Gw(this.embeddings.read(),H(n,[n.size]));return H(s,ft(this.computeOutputShape(n.shape)))})}getConfig(){let e={inputDim:this.inputDim,outputDim:this.outputDim,embeddingsInitializer:Mt(this.embeddingsInitializer),embeddingsRegularizer:bt(this.embeddingsRegularizer),activityRegularizer:bt(this.activityRegularizer),embeddingsConstraint:on(this.embeddingsConstraint),maskZero:this.maskZero,inputLength:this.inputLength},t=super.getConfig();return Object.assign(e,t),e}};QA.className="Embedding";ce.registerClass(QA);var wl=class extends st{constructor(e){super(e||{});this.supportsMasking=!0}mergeFunction(e){throw new Le}computeElementwiseOpOutputShape(e,t){if(e==null||t==null)return null;if(e.length<t.length)return this.computeElementwiseOpOutputShape(t,e);if(t.length===0)return e;let n=e.slice(0,e.length-t.length);for(let s=0;s<t.length;++s){let r=e[e.length-t.length+s],a=t[s];if(r==null||a==null||r<0||a<0)n.push(null);else if(r===1)n.push(a);else if(a===1)n.push(r);else{if(r!==a)throw new q("Operands could not be broadcast together with shapes "+JSON.stringify(e)+" "+JSON.stringify(t));n.push(r)}}return n}build(e){if(Array.isArray(e)&&!Array.isArray(e[0])&&(e=[ft(e)]),e=e,e.length<2)throw new q(`A merge layer should be called on an Array of at least 2 inputs. Got ${e.length} input(s).`);let t=[];for(let r of e)r!=null&&r[0]!==null&&t.push(r[0]);if(t=Oo(t),t.length>1)throw new q(`Can not merge tensors with different batch sizes. Got tensors with shapes: ${JSON.stringify(e)}.`);let n=e[0]==null?null:e[0].slice(1);for(let r=1;r<e.length;++r){let a=e[r]==null?null:e[r].slice(1);n=this.computeElementwiseOpOutputShape(n,a)}let s=e.map(r=>r.length);e.indexOf(null)===-1&&Oo(s).length===1?this.reshapeRequired=!1:this.reshapeRequired=!0}call(e,t){return K(()=>{if(e=e,this.reshapeRequired){let n=[],s=e.map(r=>r.rank);if(s.indexOf(null)===-1){let r=zo(s);for(let a of e){let o=a.rank;for(let i=0;i<r-o;++i)a=jd(a,1);n.push(a)}return this.mergeFunction(n)}else{let r=!1;for(let i of e){let l=i.rank;if(l==null){let c=i.shape,u=c[0],d=c.slice(1).concat([u]),p=H(i,[u].concat(Mo(c.slice(1))));p=tt(p,[1,0]),p=H(p,d),n.push(p),r=!0}else if(l>1){let c=yr(1,l).concat([0]);n.push(tt(i,c)),r=!0}else n.push(i)}let a=this.mergeFunction(n),o=a.rank;if(r){if(o==null){let i=a.shape,l=i.length,c=i[l-1],u=[c].concat(i.slice(0,i.length-1));a=H(tt(H(a,[-1,c]),[1,0]),u)}else if(o>1){let i=[o-1].concat(yr(0,o-1));a=tt(a,i)}}return a}}else return this.mergeFunction(e)})}computeOutputShape(e){e=e;let t;e[0]==null?t=null:t=e[0].slice(1);for(let s=1;s<e.length;++s){let r=e[s]==null?null:e[s].slice(1);t=this.computeElementwiseOpOutputShape(t,r)}let n=[];for(let s of e)s!=null&&s[0]!==null&&n.push(s[0]);return n=Oo(n),n.length===1?t=n.concat(t):t=[null].concat(t),t}computeMask(e,t){return K(()=>{if(t==null)return null;if(!Array.isArray(t))throw new q("`mask` should be an Array");if(!Array.isArray(e))throw new q("`inputs` should be an Array");if(t.length!==e.length)throw new q(`The Array 'inputs' and 'mask' are expected to have the same length, but have different lengths (${e.length} vs ${t.length})`);if(t.every(s=>s==null))return null;t=t.map(s=>s==null?s:Kt(s,0));let n=t[0];for(let s=1;s<t.length-1;++s)n=fr(n,t[s]);return n})}},ey=class extends wl{constructor(e){super(e)}mergeFunction(e){return K(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=ue(t,e[n]);return t})}};ey.className="Add";ce.registerClass(ey);var ty=class extends wl{constructor(e){super(e)}mergeFunction(e){return K(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=L(t,e[n]);return t})}};ty.className="Multiply";ce.registerClass(ty);var ny=class extends wl{constructor(e){super(e)}mergeFunction(e){return K(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=ue(t,e[n]);return L(1/e.length,t)})}};ny.className="Average";ce.registerClass(ny);var sy=class extends wl{constructor(e){super(e)}mergeFunction(e){return K(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=Qr(t,e[n]);return t})}};sy.className="Maximum";ce.registerClass(sy);var ry=class extends wl{constructor(e){super(e)}mergeFunction(e){return K(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=Od(t,e[n]);return t})}};ry.className="Minimum";ce.registerClass(ry);var ay=class extends wl{constructor(e){super(e);this.DEFAULT_AXIS=-1,e==null&&(e={}),this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){if(!(Array.isArray(e)&&Array.isArray(e[0]))||e.length===1)throw new q("A `Concatenate` layer should be called on a list of at least 2 inputs");e=e;let t=!0;for(let s of e)if(s!=null){t=!1;break}if(t)return;let n=[];for(let s=0;s<e.length;++s){let r=e[s].slice();r.splice(this.axis,1);let a=!1;for(let o of n)if(v.arraysEqual(o,r)){a=!0;break}a||n.push(r)}if(n.length>1)throw new q("A `Concatenate` layer requires inputs with matching shapes except for the concat axis. Got input shapes: "+JSON.stringify(e))}mergeFunction(e){return K(()=>K1(e,this.axis))}computeOutputShape(e){if(!(Array.isArray(e)&&Array.isArray(e[0])))throw new q("A `Concatenate` layer should be called on a list of inputs.");let t=e,n=t[0].slice(),s=this.axis<0?n.length+this.axis:this.axis;for(let r of t.slice(1)){if(n[s]==null||r[s]==null){n[s]=null;break}n[s]+=r[s]}return n}computeMask(e,t){if(t==null)return null;if(!Array.isArray(t))throw new q("`mask` should be an array for Concatenate");if(!Array.isArray(e))throw new q("`inputs` should be an array for Concatenate");if(t.length!==e.length)throw new q(`Mismatch in the length of mask (${t.length}) and the legnth of inputs (${e.length})`);return K(()=>{let n=!0;if(t.forEach(a=>{if(a!=null){n=!1;return}}),n)return null;let s=[];for(let a=0;a<e.length;++a)t[a]==null?s.push(ge(Os(e[a]),"bool")):t[a].rank<e[a].rank?s.push(Kt(t[a],-1)):s.push(t[a]);let r=It(s,this.axis);return e1(r,-1,!1)})}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};ay.className="Concatenate";ce.registerClass(ay);function sp(e,t){for(;e<0;)e+=t;return e}function ZW(e,t,n){if(e.shape.length>3||t.shape.length>3)throw new Le("batchDot is not implemented for tensors of 4D or higher rank yet");if(v.assert(e.shape.length>=2,()=>`batchDot requires the rank of x to be >= 2, but got ${e.shape.length}`),v.assert(e.shape.length>=2,()=>`batchDot requires the rank of y to be >= 2, but got ${t.shape.length}`),typeof n=="number"&&(n=[n,n]),e.dtype==="complex64"||t.dtype==="complex64")throw new Le("batchDot is not implemented for complex64-type Tensors yet.");let s=e.shape.length,r=t.shape.length;n==null&&(n=[s-1,r-2]);let a=n;return K(()=>{let o;if(s>r){o=s-r;let l=[];for(let c=0;c<o;++c)l.push(1);t=H(t,t.shape.concat(l))}else if(r>s){o=r-s;let l=[];for(let c=0;c<o;++c)l.push(1);e=H(e,e.shape.concat(l))}else o=0;let i;if(e.shape.length===2&&t.shape.length===2)a[0]===a[1]?i=we(L(e,t),a[0]):i=we(L(tt(e,[1,0]),t),a[1]);else{let l=a[0]!==e.shape.length-1,c=a[1]===t.shape.length-1;i=je(e,t,l,c)}if(o>0){let l;s>r?l=s+r-3:l=s-1;let c=[];for(let u=l;u<l+o;++u)c.push(u);i=ut(i,c)}return i.shape.length===1&&(i=Kt(i,1)),i})}var oy=class extends wl{constructor(e){super(e);this.axes=e.axes,this.normalize=e.normalize==null?!1:e.normalize,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){v.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0],n=e[1];if(t.length>3||n.length>3)throw new Le("Dot layer does not support tensors of 4D or higher rank yet.");let s=this.interpretAxes(t,n);if(t[s[0]]!==n[s[1]])throw new q(`Dimension incompatibility: ${t[s[0]]} !== ${n[s[1]]}`)}mergeFunction(e){if(e.length!==2)throw new q(`A \`Dot\` layer must be called on exactly 2 inputs, but received ${e.length} input(s).`);let t=e[0],n=e[1],s;return Array.isArray(this.axes)?s=this.axes.map((r,a)=>sp(r,e[a].shape.length)):s=[sp(this.axes,t.shape.length),sp(this.axes,n.shape.length)],this.normalize&&(t=am(t,s[0]),n=am(n,s[1])),ZW(t,n,s)}interpretAxes(e,t){let n;return Array.isArray(this.axes)?n=this.axes:n=[sp(this.axes,e.length),sp(this.axes,t.length)],n}computeOutputShape(e){v.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0].slice(),n=e[1].slice();if(t.length>3||n.length>3)throw new Le("Dot layer does not support tensors of 4D or higher rank yet.");let s=this.interpretAxes(t,n);t.splice(s[0],1),n.splice(s[1],1),n.splice(0,1);let r=t.concat(n);return r.length===1&&r.push(1),r}computeMask(e,t){return null}getConfig(){let e={axes:this.axes,normalize:this.normalize},t=super.getConfig();return Object.assign(e,t),e}};oy.className="Dot";ce.registerClass(oy);var iy=class extends st{constructor(e){super(e);this.supportsMasking=!0,this.stddev=e.stddev}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={stddev:this.stddev};return Object.assign(t,e),t}call(e,t){return K(()=>{this.invokeCallHook(e,t);let n=Ve(e);return Xd(()=>ue(jf(n.shape,0,this.stddev),n),()=>n,t.training||!1)})}};iy.className="GaussianNoise";ce.registerClass(iy);var ly=class extends st{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return K(()=>{this.invokeCallHook(e,t);let n=Ve(e);return this.rate>0&&this.rate<1?Xd(()=>{let r=Math.sqrt(this.rate/(1-this.rate));return L(n,jf(n.shape,1,r))},()=>n,t.training||!1):n})}};ly.className="GaussianDropout";ce.registerClass(ly);var uy=class extends st{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate,this.noiseShape=e.noiseShape}_getNoiseShape(e){return this.noiseShape||Ve(e).shape}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return K(()=>{if(this.rate<1&&this.rate>0){let n=this._getNoiseShape(e);return Xd(()=>{let r=Ve(e),a=1.6732632423543772,o=1.0507009873554805,i=-a*o,l=ll(Uu(n),this.rate);l=Gf(l,"float32");let c=((1-this.rate)*(1+this.rate*i**2))**-.5,u=-c*i*this.rate,d=ue(L(r,l),L(ue(l,-1),i));return ue(L(d,c),u)},()=>Ve(e),t.training||!1)}return e})}};uy.className="AlphaDropout";ce.registerClass(uy);function rp(e,t,n,s,r,a=.001){let o;if(e.rank===2)o=gv(e,t,n,s,r,a);else if(e.rank===3)o=Av(e,t,n,s,r,a);else if(e.rank===4)o=yv(e,t,n,s,r,a);else throw new Le(`batchNormalization is not implemented for array of rank ${e.rank} yet`);return o}function YW(e,t,n,s,r=.001){return K(()=>{let a=Sf(e,s),o=a.mean,i=a.variance;return[rp(e,o,i,n,t,r),o,i]})}function JW(e,t,n,s,r=.001){return K(()=>{let a=Sf(e,s),o=a.mean,i=a.variance,l=[];for(let f of yr(0,e.rank))s.indexOf(f)!==-1?l.push(1):l.push(e.shape[f]);let c=H(o,l),u=H(i,l),d=t==null?null:H(t,l),p=n==null?null:H(n,l);return[rp(e,c,u,p,d,r),o,i]})}function QW(e,t,n,s,r=.001){return v.arraysEqual(s.slice().sort(),yr(0,e.rank-1))?YW(e,t,n,s,r):JW(e,t,n,s,r)}var cy=class extends st{constructor(e){e==null&&(e={});super(e);this.supportsMasking=!0,this.axis=e.axis==null?-1:e.axis,this.momentum=e.momentum==null?.99:e.momentum,this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=$t(e.betaInitializer||"zeros"),this.gammaInitializer=$t(e.gammaInitializer||"ones"),this.movingMeanInitializer=$t(e.movingMeanInitializer||"zeros"),this.movingVarianceInitializer=$t(e.movingVarianceInitializer||"ones"),this.betaConstraint=ln(e.betaConstraint),this.gammaConstraint=ln(e.gammaConstraint),this.betaRegularizer=_t(e.betaRegularizer),this.gammaRegularizer=_t(e.gammaRegularizer)}build(e){e=ft(e);let t=this.axis>=0?this.axis:this.axis+e.length,n=e[t];if(n==null)throw new q(`Axis ${t} of input tensor should have a defined dimension but the layer received an input with shape ${JSON.stringify(e)}.`);this.inputSpec=[new Zt({ndim:e.length,axes:{[t]:n}})];let s=[n];this.scale&&(this.gamma=this.addWeight("gamma",s,null,this.gammaInitializer,this.gammaRegularizer,!0,this.gammaConstraint)),this.center&&(this.beta=this.addWeight("beta",s,null,this.betaInitializer,this.betaRegularizer,!0,this.betaConstraint)),this.movingMean=this.addWeight("moving_mean",s,null,this.movingMeanInitializer,null,!1),this.movingVariance=this.addWeight("moving_variance",s,null,this.movingVarianceInitializer,null,!1),this.built=!0}call(e,t){return K(()=>{let n=t.training==null?!1:t.training,s=Ve(e),r=s.shape,a=r.length,o=yr(0,a),i=this.axis>=0?this.axis:this.axis+a;o.splice(i,1);let l=fl(1,a);l[i]=r[i];let c=o.slice();c.sort();let u=!v.arraysEqual(c,yr(0,a).slice(0,a-1)),d=()=>{if(u){let A=H(this.movingMean.read(),l),x=H(this.movingVariance.read(),l),y=this.center?H(this.beta.read(),l):null,b=this.scale?H(this.gamma.read(),l):null;return rp(s,A,x,y,b,this.epsilon)}else return rp(s,this.movingMean.read(),this.movingVariance.read(),this.beta==null?null:this.beta.read(),this.gamma==null?null:this.gamma.read(),this.epsilon)};if(!n)return d();let[p,h,f]=QW(s,this.gamma.read(),this.beta.read(),o,this.epsilon),m=(A,x,y)=>{K(()=>{let b=1-y,w=A.read(),k=L(fe(w,x),b);A.write(fe(w,k))})};return(()=>{m(this.movingMean,h,this.momentum),m(this.movingVariance,f,this.momentum)})(),p})}getConfig(){let e={axis:this.axis,momentum:this.momentum,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:Mt(this.betaInitializer),gammaInitializer:Mt(this.gammaInitializer),movingMeanInitializer:Mt(this.movingMeanInitializer),movingVarianceInitializer:Mt(this.movingVarianceInitializer),betaRegularizer:bt(this.betaRegularizer),gammaRegularizer:bt(this.gammaRegularizer),betaConstraint:on(this.betaConstraint),gammaConstraint:on(this.gammaConstraint)},t=super.getConfig();return Object.assign(e,t),e}};cy.className="BatchNormalization";ce.registerClass(cy);var dy=class extends st{constructor(e){e==null&&(e={});super(e);if(this.axis=e.axis==null?-1:e.axis,typeof this.axis=="number"){if(!Number.isInteger(this.axis))throw new Error(`Expected axis to be an integer, but received ${this.axis}`)}else if(Array.isArray(this.axis)){for(let t of this.axis)if(!Number.isInteger(t))throw new Error(`Expected axis to be an array of integers, but received ${JSON.stringify(this.axis)}`)}else throw new Error(`Expected axis to be an integer or an array of integers, but received ${JSON.stringify(this.axis)}`);this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=$t(e.betaInitializer||"zeros"),this.gammaInitializer=$t(e.gammaInitializer||"ones"),this.betaRegularizer=_t(e.betaRegularizer),this.gammaRegularizer=_t(e.gammaRegularizer),this.supportsMasking=!0}build(e){e=ft(e);let t=e.length;typeof this.axis=="number"&&(this.axis=[this.axis]);for(let r=0;r<this.axis.length;++r)this.axis[r]<0&&(this.axis[r]+=t);for(let r of this.axis)if(r<0||r>=t)throw new Error(`Invalid axis: ${r}`);if(this.axis.length!==Oo(this.axis).length)throw new Error(`Found duplicate axes in: ${this.axis}`);let n=this.axis.map(r=>e[r]),s=!0;this.scale?this.gamma=this.addWeight("gamma",n,"float32",this.gammaInitializer,this.gammaRegularizer,s):this.gamma=null,this.center?this.beta=this.addWeight("beta",n,"float32",this.betaInitializer,this.betaRegularizer,s):this.beta=null,this.built=!0}call(e,t){let n=Ve(e),s=n.shape,r=s.length;return K(()=>{let a=!0,{mean:o,variance:i}=Sf(n,this.axis,a),l=fl(1,r);for(let f of this.axis)l[f]=s[f];let c=f=>f!=null&&f.shape.length!==r?H(f,l):f,u=c(this.gamma.read()),d=c(this.beta.read()),p=[],h=[];for(let f=0;f<r;++f)this.axis.indexOf(f)!==-1?(p.push(s[f]),h.push(1)):(p.push(1),h.push(s[f]));return o=Qs(o,p),i=Qs(i,p),u=Qs(u,h),d=Qs(d,h),rp(n,o,i,d,u,this.epsilon)})}getConfig(){let e={axis:this.axis,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:Mt(this.betaInitializer),gammaInitializer:Mt(this.gammaInitializer),betaRegularizer:bt(this.betaRegularizer),gammaRegularizer:bt(this.gammaRegularizer)},t=super.getConfig();return Object.assign(e,t),e}};dy.className="LayerNormalization";ce.registerClass(dy);function eV(e,t,n){return K(()=>{if(e.rank!==4)throw new q(`temporalPadding expects input tensor to be 4-D, but received a ${e.rank}-D tensor.`);if(t==null&&(t=[[1,1],[1,1]]),t.length!==2||t[0].length!==2||t[1].length!==2)throw new q("spatial2dPadding expects `padding` to be an Array of two Arrays, each of which is an Array of two integers.");if(n==null&&(n=gr()),n!=="channelsLast"&&n!=="channelsFirst")throw new q(`Unknown data format: ${n}. Supported data formats are 'channelsLast' and 'channelsFirst.`);let s;return n==="channelsFirst"?s=[[0,0],[0,0],t[0],t[1]]:s=[[0,0],t[0],t[1],[0,0]],er(e,s)})}var py=class extends st{constructor(e){e==null&&(e={});super(e);if(this.dataFormat=e.dataFormat==null?gr():e.dataFormat,e.padding==null)this.padding=[[1,1],[1,1]];else if(typeof e.padding=="number")this.padding=[[e.padding,e.padding],[e.padding,e.padding]];else{if(e.padding=e.padding,e.padding.length!==2)throw new q(`ZeroPadding2D expects padding to be a length-2 array, but received a length-${e.padding.length} array.`);let t,n;if(typeof e.padding[0]=="number")t=[e.padding[0],e.padding[0]],n=[e.padding[1],e.padding[1]];else{if(e.padding=e.padding,e.padding[0].length!==2)throw new q(`ZeroPadding2D expects height padding to be a length-2 array, but received a length-${e.padding[0].length} array.`);if(t=e.padding[0],e.padding[1].length!==2)throw new q(`ZeroPadding2D expects width padding to be a length-2 array, but received a length-${e.padding[1].length} array.`);n=e.padding[1]}this.padding=[t,n]}this.inputSpec=[new Zt({ndim:4})]}computeOutputShape(e){e=ft(e);let t,n;return this.dataFormat==="channelsFirst"?(e[2]!=null&&e[2]>=0?t=e[2]+this.padding[0][0]+this.padding[0][1]:t=null,e[3]!=null&&e[3]>=0?n=e[3]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],e[1],t,n]):(e[1]!=null&&e[1]>=0?t=e[1]+this.padding[0][0]+this.padding[0][1]:t=null,e[2]!=null&&e[2]>=0?n=e[2]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],t,n,e[3]])}call(e,t){return K(()=>eV(Ve(e),this.padding,this.dataFormat))}getConfig(){let e={padding:this.padding,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};py.className="ZeroPadding2D";ce.registerClass(py);function vm(e,t,n,s,r,a){return K(()=>{jt(r),zw(a),zs(s),n==null&&(n=[1,1]),s==null&&(s="valid"),r==null&&(r=gr()),a==null&&(a="max"),e=_A(e,r);let o,i=s==="same"?"same":"valid";return a==="max"?o=If(e,t,n,i):o=gf(e,t,n,i),r==="channelsFirst"&&(o=tt(o,[0,3,1,2])),o})}function e7(e,t,n,s,r,a){return K(()=>{jt(r),zw(a),zs(s),n==null&&(n=[1,1,1]),s==null&&(s="valid"),r==null&&(r=gr()),a==null&&(a="max"),e=Gk(e,r);let o,i=s==="same"?"same":"valid";return a==="max"?o=A1(e,t,n,i):o=s1(e,t,n,i),r==="channelsFirst"&&(o=tt(o,[0,4,1,2,3])),o})}var t7=class extends st{constructor(e){e.poolSize==null&&(e.poolSize=2);super(e);if(typeof e.poolSize=="number")this.poolSize=[e.poolSize];else if(Array.isArray(e.poolSize)&&e.poolSize.length===1&&typeof e.poolSize[0]=="number")this.poolSize=e.poolSize;else throw new q(`poolSize for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.poolSize)}`);if(bn(this.poolSize,"poolSize"),e.strides==null)this.strides=this.poolSize;else if(typeof e.strides=="number")this.strides=[e.strides];else if(Array.isArray(e.strides)&&e.strides.length===1&&typeof e.strides[0]=="number")this.strides=e.strides;else throw new q(`strides for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.strides)}`);bn(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,zs(this.padding),this.inputSpec=[new Zt({ndim:3})]}computeOutputShape(e){e=ft(e);let t=wr(e[1],this.poolSize[0],this.padding,this.strides[0]);return[e[0],t,e[2]]}call(e,t){return K(()=>{this.invokeCallHook(e,t),e=jd(Ve(e),2);let n=this.poolingFunction(Ve(e),[this.poolSize[0],1],[this.strides[0],1],this.padding,"channelsLast");return ut(n,[2])})}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides},t=super.getConfig();return Object.assign(e,t),e}},hy=class extends t7{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return jt(r),zs(s),vm(e,t,n,s,r,"max")}};hy.className="MaxPooling1D";ce.registerClass(hy);var fy=class extends t7{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return jt(r),zs(s),vm(e,t,n,s,r,"avg")}};fy.className="AveragePooling1D";ce.registerClass(fy);var n7=class extends st{constructor(e){e.poolSize==null&&(e.poolSize=[2,2]);super(e);if(this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==2)throw new q(`If the strides property of a 2D pooling layer is an Array, it is expected to have a length of 2, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides];bn(this.poolSize,"poolSize"),bn(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,jt(this.dataFormat),zs(this.padding),this.inputSpec=[new Zt({ndim:4})]}computeOutputShape(e){e=ft(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2];return t=wr(t,this.poolSize[0],this.padding,this.strides[0]),n=wr(n,this.poolSize[1],this.padding,this.strides[1]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n]:[e[0],t,n,e[3]]}call(e,t){return K(()=>(this.invokeCallHook(e,t),this.poolingFunction(Ve(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},my=class extends n7{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return jt(r),zs(s),vm(e,t,n,s,r,"max")}};my.className="MaxPooling2D";ce.registerClass(my);var gy=class extends n7{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return jt(r),zs(s),vm(e,t,n,s,r,"avg")}};gy.className="AveragePooling2D";ce.registerClass(gy);var s7=class extends st{constructor(e){e.poolSize==null&&(e.poolSize=[2,2,2]);super(e);if(this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==3)throw new q(`If the strides property of a 3D pooling layer is an Array, it is expected to have a length of 3, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides,e.strides];bn(this.poolSize,"poolSize"),bn(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,jt(this.dataFormat),zs(this.padding),this.inputSpec=[new Zt({ndim:5})]}computeOutputShape(e){e=ft(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],s=this.dataFormat==="channelsFirst"?e[4]:e[3];return t=wr(t,this.poolSize[0],this.padding,this.strides[0]),n=wr(n,this.poolSize[1],this.padding,this.strides[1]),s=wr(s,this.poolSize[2],this.padding,this.strides[2]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n,s]:[e[0],t,n,s,e[4]]}call(e,t){return K(()=>(this.invokeCallHook(e,t),this.poolingFunction(Ve(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},Ay=class extends s7{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return jt(r),zs(s),e7(e,t,n,s,r,"max")}};Ay.className="MaxPooling3D";ce.registerClass(Ay);var yy=class extends s7{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return jt(r),zs(s),e7(e,t,n,s,r,"avg")}};yy.className="AveragePooling3D";ce.registerClass(yy);var r7=class extends st{constructor(e){super(e);this.inputSpec=[new Zt({ndim:3})]}computeOutputShape(e){return[e[0],e[2]]}call(e,t){throw new Le}},xy=class extends r7{constructor(e){super(e||{})}call(e,t){return K(()=>{let n=Ve(e);return Wt(n,1)})}};xy.className="GlobalAveragePooling1D";ce.registerClass(xy);var by=class extends r7{constructor(e){super(e||{})}call(e,t){return K(()=>{let n=Ve(e);return yn(n,1)})}};by.className="GlobalMaxPooling1D";ce.registerClass(by);var a7=class extends st{constructor(e){super(e);this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,jt(this.dataFormat),this.inputSpec=[new Zt({ndim:4})]}computeOutputShape(e){return e=e,this.dataFormat==="channelsLast"?[e[0],e[3]]:[e[0],e[1]]}call(e,t){throw new Le}getConfig(){let e={dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},vy=class extends a7{call(e,t){return K(()=>{let n=Ve(e);return this.dataFormat==="channelsLast"?Wt(n,[1,2]):Wt(n,[2,3])})}};vy.className="GlobalAveragePooling2D";ce.registerClass(vy);var wy=class extends a7{call(e,t){return K(()=>{let n=Ve(e);return this.dataFormat==="channelsLast"?yn(n,[1,2]):yn(n,[2,3])})}};wy.className="GlobalMaxPooling2D";ce.registerClass(wy);var o7=class extends st{constructor(e){super(e);this.layer=e.layer}build(e){this.built=!0}get trainable(){return this.layer!=null?this.layer.trainable:!1}set trainable(e){this.layer!=null&&(this.layer.trainable=e)}get trainableWeights(){return this.layer.trainableWeights}get nonTrainableWeights(){return this.layer.nonTrainableWeights}get updates(){return this.layer._updates}get losses(){return this.layer.losses}getWeights(){return this.layer.getWeights()}setWeights(e){this.layer.setWeights(e)}getConfig(){let e={layer:{className:this.layer.getClassName(),config:this.layer.getConfig()}},t=super.getConfig();return Object.assign(e,t),e}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.layer!=null&&this.layer.setFastWeightInitDuringBuild(e)}static fromConfig(e,t,n={}){let s=t.layer,r=vr(s,n);delete t.layer;let a={layer:r};return Object.assign(a,t),new e(a)}},ky=class extends o7{constructor(e){super(e);this.supportsMasking=!0}build(e){if(e=ft(e),e.length<3)throw new q(`TimeDistributed layer expects an input shape >= 3D, but received input shape ${JSON.stringify(e)}`);this.inputSpec=[{shape:e}];let t=[e[0]].concat(e.slice(2));this.layer.built||(this.layer.build(t),this.layer.built=!0),super.build(e)}computeOutputShape(e){e=ft(e);let t=[e[0]].concat(e.slice(2)),n=this.layer.computeOutputShape(t),s=e[1];return[n[0],s].concat(n.slice(1))}call(e,t){return K(()=>(e=Ve(e),Yk((a,o)=>[Ve(this.layer.call(a,t)),[]],e,[],!1,null,null,!1,!0)[1]))}};ky.className="TimeDistributed";ce.registerClass(ky);function tV(e){gl(lB,"BidirectionalMergeMode",e)}var nV="concat",Iy=class extends o7{constructor(e){super(e);let t=e.layer.getConfig(),n={};n.className=e.layer.getClassName(),n.config=t,this.forwardLayer=vr(n),t.goBackwards=t.goBackwards!==!0;let s={};if(s.className=e.layer.getClassName(),s.config=t,this.backwardLayer=vr(s),this.forwardLayer.name="forward_"+this.forwardLayer.name,this.backwardLayer.name="backward_"+this.backwardLayer.name,this.mergeMode=e.mergeMode===void 0?nV:e.mergeMode,tV(this.mergeMode),e.weights)throw new Le("weights support is not implemented for Bidirectional layer yet.");this._stateful=e.layer.stateful,this.returnSequences=e.layer.returnSequences,this.returnState=e.layer.returnState,this.supportsMasking=!0,this._trainable=!0,this.inputSpec=e.layer.inputSpec,this.numConstants=null}get trainable(){return this._trainable}set trainable(e){this._trainable=e,this.forwardLayer!=null&&(this.forwardLayer.trainable=e),this.backwardLayer!=null&&(this.backwardLayer.trainable=e)}getWeights(){return this.forwardLayer.getWeights().concat(this.backwardLayer.getWeights())}setWeights(e){let t=e.length,n=Math.floor(t/2);this.forwardLayer.setWeights(e.slice(0,n)),this.backwardLayer.setWeights(e.slice(n))}computeOutputShape(e){let t=this.forwardLayer.computeOutputShape(e);Array.isArray(t)&&Array.isArray(t[0])||(t=[t]),t=t;let n,s,r;return this.returnState&&(r=t.slice(1)),n=t[0],n=n,this.mergeMode==="concat"?(n[n.length-1]*=2,s=[n]):this.mergeMode==null?s=[n,n.slice()]:s=[n],this.returnState?this.mergeMode==null?s.concat(r).concat(r.slice()):[n].concat(r).concat(r.slice()):is(s)}apply(e,t){let n=t==null?null:t.initialState,s=t==null?null:t.constants;t==null&&(t={});let r=Zk(e,n,s,this.numConstants);if(e=r.inputs,n=r.initialState,s=r.constants,Array.isArray(e)&&(n=e.slice(1),e=e[0]),(n==null||n.length===0)&&s==null)return super.apply(e,t);let a=[],o=[];if(n!=null){let l=n.length;if(l%2>0)throw new q("When passing `initialState` to a Bidrectional RNN, the state should be an Array containing the states of the underlying RNNs.");t.initialState=n,a.push(...n);let c=n.map(u=>new Zt({shape:u.shape}));this.forwardLayer.stateSpec=c.slice(0,l/2),this.backwardLayer.stateSpec=c.slice(l/2),o.push(...c)}if(s!=null)throw new Le("Support for constants in Bidirectional layers is not implemented yet.");let i=a[0]instanceof br;for(let l of a)if(l instanceof br!==i)throw new q("The initial state of a Bidirectional layer cannot be specified as a mix of symbolic and non-symbolic tensors");if(i){let l=[e].concat(a),c=this.inputSpec.concat(o),u=this.inputSpec;this.inputSpec=c;let d=super.apply(l,t);return this.inputSpec=u,d}else return super.apply(e,t)}call(e,t){return K(()=>{let n=t.initialState,s,r;if(n==null)s=this.forwardLayer.call(e,t),r=this.backwardLayer.call(e,t);else{let i=n.slice(0,n.length/2),l=n.slice(n.length/2);s=this.forwardLayer.call(e,Object.assign(t,{initialState:i})),r=this.backwardLayer.call(e,Object.assign(t,{initialState:l}))}let a;this.returnState&&(Array.isArray(s)&&(a=s.slice(1).concat(r.slice(1))),s=s[0],r=r[0]),this.returnSequences&&(r=Ms(r,1));let o;return this.mergeMode==="concat"?o=K1([s,r]):this.mergeMode==="sum"?o=ue(s,r):this.mergeMode==="ave"?o=L(.5,ue(s,r)):this.mergeMode==="mul"?o=L(s,r):this.mergeMode==null&&(o=[s,r]),this.returnState?this.mergeMode==null?o.concat(a):[o].concat(a):o})}resetStates(e){this.forwardLayer.resetStates(),this.backwardLayer.resetStates()}build(e){Al(this.forwardLayer.name,()=>{this.forwardLayer.build(e)}),Al(this.backwardLayer.name,()=>{this.backwardLayer.build(e)}),this.built=!0}computeMask(e,t){Array.isArray(t)&&(t=t[0]);let n;if(this.returnSequences?this.mergeMode==null?n=[t,t]:n=t:this.mergeMode==null?n=[null,null]:n=null,this.returnState){let r=this.forwardLayer.states.map(a=>null);return Array.isArray(n)?n.concat(r).concat(r):[n].concat(r).concat(r)}else return n}get trainableWeights(){return this.forwardLayer.trainableWeights.concat(this.backwardLayer.trainableWeights)}get nonTrainableWeights(){return this.forwardLayer.nonTrainableWeights.concat(this.backwardLayer.nonTrainableWeights)}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.forwardLayer!=null&&this.forwardLayer.setFastWeightInitDuringBuild(e),this.backwardLayer!=null&&this.backwardLayer.setFastWeightInitDuringBuild(e)}getConfig(){let e={mergeMode:this.mergeMode},t=super.getConfig();return Object.assign(e,t),e}static fromConfig(e,t){let n=vr(t.layer);if(delete t.layer,t.numConstants!=null)throw new Le("Deserialization of a Bidirectional layer with numConstants present is not supported yet.");let s=t;return s.layer=n,new e(s)}};Iy.className="Bidirectional";ce.registerClass(Iy);function sV(e){return new Ku(e)}function rV(e){return new EA(e)}function aV(e){return new CA(e)}function oV(e){return new TA(e)}function iV(e){return new NA(e)}function lV(e){return new $A(e)}function uV(e){return new RA(e)}function cV(e){return new MA(e)}function dV(e){return new fm(e)}function pV(e){return new PA(e)}function hV(e){return new mm(e)}function fV(e){return new FA(e)}function mV(e){return new OA(e)}function gV(e){return new zA(e)}function AV(e){return new LA(e)}function yV(e){return new BA(e)}function xV(e){return new XA(e)}function bV(e){return new jA(e)}function vV(e){return new bm(e)}function wV(e){return new HA(e)}function kV(e){return new qA(e)}function IV(e){return new KA(e)}function SV(e){return new ZA(e)}function CV(e){return new YA(e)}function TV(e){return new QA(e)}function NV(e){return new ey(e)}function EV(e){return new ny(e)}function RV(e){return new ay(e)}function $V(e){return new sy(e)}function _V(e){return new ry(e)}function DV(e){return new ty(e)}function PV(e){return new oy(e)}function FV(e){return new cy(e)}function OV(e){return new dy(e)}function MV(e){return new py(e)}function Sy(e){return new fy(e)}function zV(e){return Sy(e)}function LV(e){return Sy(e)}function Cy(e){return new gy(e)}function BV(e){return Cy(e)}function WV(e){return Cy(e)}function Ty(e){return new yy(e)}function VV(e){return Ty(e)}function UV(e){return Ty(e)}function GV(e){return new xy(e)}function HV(e){return new vy(e)}function i7(e){return new by(e)}function l7(e){return new wy(e)}function u7(e){return new hy(e)}function c7(e){return new my(e)}function jV(e){return new Ay(e)}function qV(e){return new VA(e)}function XV(e){return new Am(e)}function KV(e){return new UA(e)}function ZV(e){return new np(e)}function YV(e){return new WA(e)}function JV(e){return new gm(e)}function QV(e){return new GA(e)}function eU(e){return new xm(e)}function tU(e){return new aa(e)}function nU(e){return new ym(e)}function sU(e){return new Iy(e)}function rU(e){return new ky(e)}var aU=i7,oU=l7,iU=u7,lU=c7;function uU(e){return new iy(e)}function cU(e){return new ly(e)}function dU(e){return new uy(e)}function pU(e){return new JA(e)}var d7={};Me(d7,{MAPE:()=>kU,MSE:()=>CU,binaryAccuracy:()=>hU,binaryCrossentropy:()=>fU,categoricalAccuracy:()=>gU,categoricalCrossentropy:()=>AU,cosineProximity:()=>bU,mape:()=>IU,meanAbsoluteError:()=>vU,meanAbsolutePercentageError:()=>wU,meanSquaredError:()=>SU,mse:()=>TU,precision:()=>yU,recall:()=>xU,sparseCategoricalAccuracy:()=>mU});function hU(e,t){return dA(e,t)}function fU(e,t){return uk(e,t)}function mU(e,t){return ck(e,t)}function gU(e,t){return pA(e,t)}function AU(e,t){return hA(e,t)}function yU(e,t){return lk(e,t)}function xU(e,t){return sW(e,t)}function bU(e,t){return uA(e,t)}function vU(e,t){return om(e,t)}function wU(e,t){return Yu(e,t)}function kU(e,t){return Yu(e,t)}function IU(e,t){return Yu(e,t)}function SU(e,t){return xl(e,t)}function CU(e,t){return xl(e,t)}function TU(e,t){return xl(e,t)}var p7={};Me(p7,{modelFromJSON:()=>MW});var h7={};Me(h7,{l1:()=>EU,l1l2:()=>NU,l2:()=>RU});function NU(e){return new Qd(e)}function EU(e){return HW(e)}function RU(e){return jW(e)}var f7=class extends Zu{constructor(){super(...arguments);this.model=null}setModel(e){if(!(e instanceof ra))throw new Error("model must be a LayersModel, not some other Container");this.model=e}};function wm(e,t){return e<t}function m7(e,t){return e>t}var g7=class extends f7{constructor(e){super();if(e==null&&(e={}),e.restoreBestWeights)throw new Le("restoreBestWeights = True is not implemented in EarlyStopping yet.");this.monitor=e.monitor||"val_loss",this.minDelta=Math.abs(e.minDelta||0),this.patience=e.patience||0,this.verbose=e.verbose||0,this.mode=e.mode||"auto",this.baseline=e.baseline,["auto","min","max"].indexOf(this.mode)===-1&&(console.warn(`EarlyStopping mode '${this.mode}' is invalid. Falling back to mode 'auto'.`),this.mode="auto"),this.mode==="min"?this.monitorFunc=wm:this.mode==="max"?this.monitorFunc=m7:this.monitor.indexOf("acc")!==-1?this.monitorFunc=m7:this.monitorFunc=wm,this.monitorFunc===wm&&(this.minDelta*=-1)}async onTrainBegin(e){this.wait=0,this.stoppedEpoch=0,this.baseline!=null?this.best=this.baseline:this.best=this.monitorFunc===wm?1/0:-1/0}async onEpochEnd(e,t){await Lo(t);let n=this.getMonitorValue(t);n!=null&&(this.monitorFunc(n-this.minDelta,this.best)?(this.best=n,this.wait=0):(this.wait++,this.wait>=this.patience&&(this.stoppedEpoch=e,this.model.stopTraining=!0)))}async onTrainEnd(e){this.stoppedEpoch>0&&this.verbose&&console.log(`Epoch ${this.stoppedEpoch}: early stopping.`)}getMonitorValue(e){e==null&&(e={});let t=e[this.monitor];return t==null&&console.warn(`Metric for EarlyStopping ${this.monitor} is not available. Available metrics are: ${Object.keys(e)}`),t}};function $U(e){return new g7(e)}var _U={earlyStopping:$U},DU=Y();DU.registerFlag("KEEP_INTERMEDIATE_TENSORS",()=>!1,e=>{e&&console.warn("Keep intermediate tensors is ON. This will print the values of all intermediate tensors during model inference. Not all models support this mode. For details, check e2e/benchmarks/ model_config.js. This significantly impacts performance.")});var rr;(function(e){e[e.DT_INVALID=0]="DT_INVALID",e[e.DT_FLOAT=1]="DT_FLOAT",e[e.DT_DOUBLE=2]="DT_DOUBLE",e[e.DT_INT32=3]="DT_INT32",e[e.DT_UINT8=4]="DT_UINT8",e[e.DT_INT16=5]="DT_INT16",e[e.DT_INT8=6]="DT_INT8",e[e.DT_STRING=7]="DT_STRING",e[e.DT_COMPLEX64=8]="DT_COMPLEX64",e[e.DT_INT64=9]="DT_INT64",e[e.DT_BOOL=10]="DT_BOOL",e[e.DT_QINT8=11]="DT_QINT8",e[e.DT_QUINT8=12]="DT_QUINT8",e[e.DT_QINT32=13]="DT_QINT32",e[e.DT_BFLOAT16=14]="DT_BFLOAT16",e[e.DT_QINT16=15]="DT_QINT16",e[e.DT_QUINT16=16]="DT_QUINT16",e[e.DT_UINT16=17]="DT_UINT16",e[e.DT_COMPLEX128=18]="DT_COMPLEX128",e[e.DT_HALF=19]="DT_HALF",e[e.DT_RESOURCE=20]="DT_RESOURCE",e[e.DT_VARIANT=21]="DT_VARIANT",e[e.DT_UINT32=22]="DT_UINT32",e[e.DT_UINT64=23]="DT_UINT64",e[e.DT_FLOAT_REF=101]="DT_FLOAT_REF",e[e.DT_DOUBLE_REF=102]="DT_DOUBLE_REF",e[e.DT_INT32_REF=103]="DT_INT32_REF",e[e.DT_UINT8_REF=104]="DT_UINT8_REF",e[e.DT_INT16_REF=105]="DT_INT16_REF",e[e.DT_INT8_REF=106]="DT_INT8_REF",e[e.DT_STRING_REF=107]="DT_STRING_REF",e[e.DT_COMPLEX64_REF=108]="DT_COMPLEX64_REF",e[e.DT_INT64_REF=109]="DT_INT64_REF",e[e.DT_BOOL_REF=110]="DT_BOOL_REF",e[e.DT_QINT8_REF=111]="DT_QINT8_REF",e[e.DT_QUINT8_REF=112]="DT_QUINT8_REF",e[e.DT_QINT32_REF=113]="DT_QINT32_REF",e[e.DT_BFLOAT16_REF=114]="DT_BFLOAT16_REF",e[e.DT_QINT16_REF=115]="DT_QINT16_REF",e[e.DT_QUINT16_REF=116]="DT_QUINT16_REF",e[e.DT_UINT16_REF=117]="DT_UINT16_REF",e[e.DT_COMPLEX128_REF=118]="DT_COMPLEX128_REF",e[e.DT_HALF_REF=119]="DT_HALF_REF",e[e.DT_RESOURCE_REF=120]="DT_RESOURCE_REF",e[e.DT_VARIANT_REF=121]="DT_VARIANT_REF",e[e.DT_UINT32_REF=122]="DT_UINT32_REF",e[e.DT_UINT64_REF=123]="DT_UINT64_REF"})(rr||(rr={}));var A7;(function(e){let t;(function(n){n[n.LEGACY=0]="LEGACY",n[n.V1=1]="V1",n[n.V2=2]="V2"})(t=e.CheckpointFormatVersion||(e.CheckpointFormatVersion={}))})(A7||(A7={}));var Ny={};function PU(e,t){let n={tfOpName:e,category:"custom",inputs:[],attrs:[],customExecutor:t};Ny[e]=n}function y7(e){return Ny[e]}function FU(e){delete Ny[e]}function I(e,t,n,s,r){let a=t.inputParams[e];if(a&&a.inputIndexStart!==void 0){let i=a.inputIndexStart,l=a.inputIndexEnd===0?void 0:a.inputIndexEnd===void 0?i+1:a.inputIndexEnd;if(a.type==="tensor")return Un(t.inputNames[a.inputIndexStart],n,s,r);if(a.type==="tensors")return t.inputNames.slice(i,l).map(p=>Un(p,n,s,r));let c=Un(t.inputNames.slice(i)[0],n,s,r),u=c.dataSync();return a.type==="number"?u[0]:v.toNestedArray(c.shape,u)}let o=t.attrParams[e];return o&&o.value}function Un(e,t,n,s){let[r,a]=bs(e);if(s!=null){let i=s.getHashTableHandleByName(r);if(i!=null)return i}let o=n.currentContextIds.find(i=>!!t[km(r,i)]);return o!==void 0?t[km(r,o)][a]:void 0}function OU(e,t,n){return t[km(e,n.currentContextId)]}function Br(e,t){let[n,s,r]=bs(e);return[km(n,t&&t.currentContextId),s,r]}function km(e,t){return t?`${e}-${t}`:e}function bs(e){let t=e.split(":");if(t.length===1)return[e,0,void 0];let n=t[0],s=t.length===3?t[1]:void 0,r=Number(t[t.length-1]);return[n,r,s]}function Im(e,t,n){let s=I("pad",e,t,n);if(s==="explicit"){s=I("explicitPaddings",e,t,n);let r=[[0,0],[0,0],[0,0],[0,0]];for(let a=0;a<4;a++)r[a][0]=s[a*2],r[a][1]=s[a*2+1];return r}return s}function oa(e){return e.kept?e:Bn(e)}var x7={};Me(x7,{json:()=>MU});var MU=[{tfOpName:"Add",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddV2",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddN",category:"arithmetic",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"BiasAdd",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"Sub",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"RealDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Div",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"DivNoNan",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mul",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Maximum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Minimum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Pow",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SquaredDifference",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorMod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],b7={};Me(b7,{json:()=>zU});var zU=[{tfOpName:"Abs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan2",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ceil",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ClipByValue",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"clipValueMin",type:"number"},{start:2,name:"clipValueMax",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Complex",category:"basic_math",inputs:[{start:0,name:"real",type:"tensor"},{start:1,name:"imag",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ComplexAbs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Elu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Exp",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Floor",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Imag",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Neg",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Real",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Prelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"alpha",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu6",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Selu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sigmoid",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Rsqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Square",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sign",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Round",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Expm1",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log1p",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Reciprocal",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Softplus",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Erf",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Prod",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axes",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LeakyRelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"alpha",name:"alpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"IsNan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],v7={};Me(v7,{json:()=>LU});var LU=[{tfOpName:"EmptyTensorList",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"maxNumElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"LoopCond",category:"control",inputs:[{start:0,name:"pred",type:"tensor"}]},{tfOpName:"Switch",category:"control",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"pred",type:"tensor"}]},{tfOpName:"Merge",category:"control",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"Enter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"frame_name",name:"frameName",type:"string"},{tfName:"is_constant",name:"isConstant",type:"bool"}]},{tfOpName:"Exit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NextIteration",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayV3",category:"control",inputs:[{start:0,name:"size",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"dynamic_size",name:"dynamicSize",type:"bool"},{tfName:"clear_after_read",name:"clearAfterRead",type:"bool"},{tfName:"identical_element_shapes",name:"identicalElementShapes",type:"bool"},{tfName:"tensor_array_name",name:"name",type:"string"}]},{tfOpName:"TensorArrayWriteV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayReadV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayGatherV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"}]},{tfOpName:"TensorArrayScatterV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArrayConcatV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape_except0",name:"elementShapeExcept0",type:"shape",notSupported:!0}]},{tfOpName:"TensorArraySplitV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"tensor",type:"tensor"},{start:2,name:"lengths",type:"number[]"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArraySizeV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}]},{tfOpName:"TensorArrayCloseV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"}]},{tfOpName:"StatelessIf",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"If",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"StatelessWhile",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"While",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"TensorListScatter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListScatterV2",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"},{start:3,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGather",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListSetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListReserve",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListFromTensor",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListStack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"},{tfName:"num_elements",name:"numElements",type:"dtype"}]},{tfOpName:"TensorListSplit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"},{start:2,name:"lengths",type:"number[]"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcat",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPopBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPushBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]}],w7={};Me(w7,{json:()=>BU});var BU=[{tfOpName:"AvgPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[],notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPoolWithArgmax",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"include_batch_in_index",name:"includeBatchInIndex",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AvgPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Conv1D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"stride",name:"stride",type:"number"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NWC"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"dilation",name:"dilation",type:"number",defaultValue:1}]},{tfOpName:"Conv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"useCudnnOnGpu",name:"useCudnnOnGpu",type:"bool"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"_FusedConv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"use_cudnn_on_gpu",name:"useCudnnOnGpu",type:"bool",defaultValue:!0},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"leakyrelu_alpha",name:"leakyreluAlpha",type:"number"}]},{tfOpName:"Conv2DBackpropInput",category:"convolution",inputs:[{start:2,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:0,name:"outputShape",type:"number[]"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]",notSupported:!0}]},{tfOpName:"DepthwiseConv2d",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"DepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"FusedDepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]}]},{tfOpName:"Conv3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"Dilation2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"rates",name:"dilations",type:"number[]"},{tfName:"padding",name:"pad",type:"string"}]}],k7={};Me(k7,{json:()=>WU});var WU=[{tfOpName:"Fill",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"},{start:1,name:"value",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"LinSpace",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"num",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"OneHot",category:"creation",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"depth",type:"number"},{start:2,name:"onValue",type:"number",defaultValue:1},{start:3,name:"offValue",type:"number",defaultValue:0}],attrs:[{tfName:"axis",name:"axis",type:"number",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ones",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"OnesLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"RandomUniform",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"minval",name:"minval",type:"number",defaultValue:0},{tfName:"maxval",name:"maxval",type:"number",defaultValue:1},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Range",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"step",type:"number",defaultValue:0}],attrs:[{tfName:"Tidx",name:"dtype",type:"dtype"}]},{tfOpName:"TruncatedNormal",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"means",name:"mean",type:"number",defaultValue:0},{tfName:"stddev",name:"stdDev",type:"number",defaultValue:1},{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Zeros",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"ZerosLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"Multinomial",category:"creation",inputs:[{start:0,name:"logits",type:"tensor"},{start:1,name:"numSamples",type:"number"}],attrs:[{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number"},{tfName:"T",name:"dtype",type:"dtype"},{tfName:"output_dtype",name:"output_dtype",type:"dtype"}]}],I7={};Me(I7,{json:()=>VU});var VU=[{tfOpName:"NonMaxSuppressionV2",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV3",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV4",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"T_threshold",name:"threshold",type:"dtype",notSupported:!0},{tfName:"pad_to_max_output_size",name:"padToMaxOutputSize",type:"bool"}]},{tfOpName:"NonMaxSuppressionV5",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"},{start:5,name:"softNmsSigma",type:"number"}]},{tfOpName:"Where",category:"dynamic",inputs:[{start:0,name:"condition",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ListDiff",category:"dynamic",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],S7={};Me(S7,{json:()=>UU});var UU=[{tfOpName:"TopKV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"k",type:"number"}],attrs:[{tfName:"sorted",name:"sorted",type:"bool"}]},{tfOpName:"Unique",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"UniqueV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]}],C7={};Me(C7,{json:()=>GU});var GU=[{tfOpName:"PlaceholderWithDefault",category:"graph",inputs:[{start:0,name:"default",type:"tensor"}],attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Placeholder",category:"graph",attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Const",category:"graph"},{tfOpName:"Identity",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IdentityN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Snapshot",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Rank",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Size",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Shape",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"ShapeN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Print",category:"graph",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"data",type:"tensors"}],attrs:[{tfName:"message",name:"message",type:"string"},{tfName:"first_n",name:"firstN",type:"number",notSupported:!0},{tfName:"summarize",name:"summarize",type:"number",defaultValue:3}]},{tfOpName:"NoOp",category:"graph",inputs:[]},{tfOpName:"StopGradient",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"FakeQuantWithMinMaxVars",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"min",name:"min",type:"number"},{tfName:"max",name:"max",type:"number"}]}],T7={};Me(T7,{json:()=>HU});var HU=[{tfOpName:"HashTable",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"HashTableV2",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"LookupTableImport",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableImportV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFind",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFindV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableSize",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]},{tfOpName:"LookupTableSizeV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]}],N7={};Me(N7,{json:()=>jU});var jU=[{tfOpName:"ResizeBilinear",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ResizeNearestNeighbor",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"CropAndResize",category:"image",inputs:[{start:0,name:"image",type:"tensor"},{start:1,name:"boxes",type:"tensor"},{start:2,name:"boxInd",type:"tensor"},{start:3,name:"cropSize",type:"number[]"}],attrs:[{tfName:"method",name:"method",type:"string"},{tfName:"extrapolation_value",name:"extrapolationValue",type:"number"}]}],E7={};Me(E7,{json:()=>qU});var qU=[{tfOpName:"Equal",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NotEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Greater",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"GreaterEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Less",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LessEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalAnd",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalNot",category:"logical",inputs:[{start:0,name:"a",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalOr",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Select",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SelectV2",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],R7={};Me(R7,{json:()=>XU});var XU=[{tfOpName:"_FusedMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMulV2",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Transpose",category:"matrices",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"perm",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Einsum",category:"matrices",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"equation",name:"equation",type:"string"},{tfName:"N",name:"n",type:"number",defaultValue:2},{tfName:"T",name:"dtype",type:"dtype"}]}],$7={};Me($7,{json:()=>KU});var KU=[{tfOpName:"FusedBatchNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV2",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV3",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"LRN",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"depth_radius",name:"radius",type:"number",defaultValue:5},{tfName:"bias",name:"bias",type:"number",defaultValue:1},{tfName:"alpha",name:"alpha",type:"number",defaultValue:1},{tfName:"beta",name:"beta",type:"number",defaultValue:.5}]},{tfOpName:"Softmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"LogSoftmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"SparseToDense",category:"normalization",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!0,notSupported:!0}]}],_7={};Me(_7,{json:()=>ZU});var ZU=[{tfOpName:"Bincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}]},{tfOpName:"DenseBincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}],attrs:[{tfName:"binary_output",name:"binaryOutput",type:"bool"}]},{tfOpName:"Max",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Mean",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Min",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Sum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"All",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Any",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"ArgMax",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"ArgMin",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"Prod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Cumsum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]}],D7={};Me(D7,{json:()=>YU});var YU=[{tfOpName:"ConcatV2",category:"slice_join",inputs:[{start:0,end:-1,name:"tensors",type:"tensors"},{start:-1,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"Concat",category:"slice_join",inputs:[{start:1,end:0,name:"tensors",type:"tensors"},{start:0,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"GatherV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"axis",type:"number",defaultValue:0}],attrs:[{tfName:"batch_dims",name:"batchDims",type:"number",defaultValue:0}]},{tfOpName:"Gather",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",notSupported:!0}]},{tfOpName:"Reverse",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"dims",type:"bool[]"}]},{tfOpName:"ReverseV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}]},{tfOpName:"Slice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"size",type:"number[]"}]},{tfOpName:"StridedSlice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"end",type:"number[]"},{start:3,name:"strides",type:"number[]"}],attrs:[{tfName:"begin_mask",name:"beginMask",type:"number",defaultValue:0},{tfName:"end_mask",name:"endMask",type:"number",defaultValue:0},{tfName:"new_axis_mask",name:"newAxisMask",type:"number",defaultValue:0},{tfName:"ellipsis_mask",name:"ellipsisMask",type:"number",defaultValue:0},{tfName:"shrink_axis_mask",name:"shrinkAxisMask",type:"number",defaultValue:0}]},{tfOpName:"Pack",category:"slice_join",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0}]},{tfOpName:"Unpack",category:"slice_join",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0},{tfName:"num",name:"num",type:"number",defaultValue:0,notSupported:!0}]},{tfOpName:"Tile",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"reps",type:"number[]"}]},{tfOpName:"Split",category:"slice_join",inputs:[{start:0,name:"axis",type:"number",defaultValue:0},{start:1,name:"x",type:"tensor"}],attrs:[{tfName:"num_split",name:"numOrSizeSplits",type:"number",defaultValue:1}]},{tfOpName:"SplitV",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"numOrSizeSplits",type:"number[]"},{start:2,name:"axis",type:"number",defaultValue:0}]},{tfOpName:"ScatterNd",category:"slice_join",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"shape",type:"number[]"}]},{tfOpName:"GatherNd",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}]},{tfOpName:"SparseToDense",category:"slice_join",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!1,notSupported:!0}]}],P7={};Me(P7,{json:()=>JU});var JU=[{tfOpName:"SparseFillEmptyRows",category:"sparse",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"denseShape",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}]},{tfOpName:"SparseReshape",category:"sparse",inputs:[{start:0,name:"inputIndices",type:"tensor"},{start:1,name:"inputShape",type:"tensor"},{start:2,name:"newShape",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SparseSegmentMean",category:"sparse",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"segmentIds",type:"tensor"}]},{tfOpName:"SparseSegmentSum",category:"sparse",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"segmentIds",type:"tensor"}]}],F7={};Me(F7,{json:()=>QU});var QU=[{tfOpName:"FFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"RFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]},{tfOpName:"IRFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]}],O7={};Me(O7,{json:()=>eG});var eG=[{tfOpName:"StringNGrams",category:"string",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"dataSplits",type:"tensor"}],attrs:[{tfName:"separator",name:"separator",type:"string"},{tfName:"ngram_widths",name:"nGramWidths",type:"number[]"},{tfName:"left_pad",name:"leftPad",type:"string"},{tfName:"right_pad",name:"rightPad",type:"string"},{tfName:"pad_width",name:"padWidth",type:"number"},{tfName:"preserve_short_sequences",name:"preserveShortSequences",type:"bool"}],outputs:["ngrams","ngrams_splits"]},{tfOpName:"StringSplit",category:"string",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"delimiter",type:"tensor"}],attrs:[{tfName:"skip_empty",name:"skipEmpty",type:"bool"}],outputs:["indices","values","shape"]},{tfOpName:"StringToHashBucketFast",category:"string",inputs:[{start:0,name:"input",type:"tensor"}],attrs:[{tfName:"num_buckets",name:"numBuckets",type:"number"}]}],M7={};Me(M7,{json:()=>tG});var tG=[{tfOpName:"Cast",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"SrcT",name:"sdtype",type:"dtype",notSupported:!0},{tfName:"DstT",name:"dtype",type:"dtype"}]},{tfOpName:"ExpandDims",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"MirrorPad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"mode",name:"mode",type:"string"}]},{tfOpName:"Pad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"constant_value",name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"PadV2",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"},{start:2,name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"Reshape",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}]},{tfOpName:"Squeeze",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"axis",tfDeprecatedName:"squeeze_dims",name:"axis",type:"number[]"}]},{tfOpName:"SpaceToBatchND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"paddings",type:"number[]"}]},{tfOpName:"BatchToSpaceND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"crops",type:"number[]"}]},{tfOpName:"DepthToSpace",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"block_size",name:"blockSize",type:"number"},{tfName:"data_format",name:"dataFormat",type:"string"}]},{tfOpName:"BroadcastTo",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}],attrs:[]},{tfOpName:"BroadcastArgs",category:"transformation",inputs:[{start:0,name:"s0",type:"tensor"},{start:1,name:"s1",type:"tensor"}],attrs:[]}],z7=class{static get Instance(){return this._instance||(this._instance=new this)}constructor(){let e=[x7,b7,v7,w7,k7,I7,S7,C7,T7,N7,E7,R7,$7,_7,D7,P7,F7,O7,M7],t=[].concat(...e.map(n=>n.json));this.opMappers=t.reduce((n,s)=>(n[s.tfOpName]=s,n),{})}transformGraph(e,t={}){let n=e.node,s=[],r=[],a=[],o=n.reduce((f,m)=>(f[m.name]=this.mapNode(m),m.op.startsWith("Placeholder")?s.push(f[m.name]):m.op==="Const"?r.push(f[m.name]):(m.input==null||m.input.length===0)&&a.push(f[m.name]),f),{}),i=[],l=[],c={},u={};t!=null&&(c=this.mapSignatureEntries(t.inputs),u=this.mapSignatureEntries(t.outputs));let d=Object.keys(o);d.forEach(f=>{let m=o[f];m.inputNames.forEach((g,A)=>{let[x,,y]=Br(g),b=o[x];if(b.outputs!=null){let w=b.outputs.indexOf(y);if(w!==-1){let k=`${x}:${w}`;m.inputNames[A]=k}}m.inputs.push(b),b.children.push(m)})}),Object.keys(u).length===0?d.forEach(f=>{let m=o[f];m.children.length===0&&l.push(m)}):Object.keys(u).forEach(f=>{let[m]=Br(f),g=o[m];g!=null&&(g.signatureKey=u[f],l.push(g))}),Object.keys(c).length>0?Object.keys(c).forEach(f=>{let[m]=Br(f),g=o[m];g&&(g.signatureKey=c[f],i.push(g))}):i=s;let p={};e.library!=null&&e.library.function!=null&&(p=e.library.function.reduce((f,m)=>(f[m.signature.name]=this.mapFunction(m),f),{}));let h={nodes:o,inputs:i,outputs:l,weights:r,placeholders:s,signature:t,functions:p};return a.length>0&&(h.initNodes=a),h}mapSignatureEntries(e){return Object.keys(e||{}).reduce((t,n)=>(t[e[n].name]=n,t),{})}mapNode(e){let t=y7(e.op)||this.opMappers[e.op]||{};e.attr==null&&(e.attr={});let n={name:e.name,op:e.op,category:t.category,inputNames:(e.input||[]).map(s=>s.startsWith("^")?s.substr(1):s),inputs:[],children:[],inputParams:{},attrParams:{},rawAttrs:e.attr,outputs:t.outputs};return t.inputs!=null&&(n.inputParams=t.inputs.reduce((s,r)=>(s[r.name]={type:r.type,inputIndexStart:r.start,inputIndexEnd:r.end},s),{})),t.attrs!=null&&(n.attrParams=t.attrs.reduce((s,r)=>{let a=r.type,o;switch(r.type){case"string":o=Ey(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=Ey(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"string[]":o=My(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=My(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"number":o=$y(e.attr,r.tfName,r.defaultValue||0),o===void 0&&!!r.tfDeprecatedName&&(o=$y(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"number[]":o=Oy(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=Oy(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"bool":o=Ry(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=Ry(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"bool[]":o=Ly(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=Ly(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"shape":o=Fy(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=Fy(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"shape[]":o=zy(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=zy(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"dtype":o=Dy(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=Dy(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"dtype[]":o=Py(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=Py(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"func":o=B7(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=B7(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"tensor":case"tensors":break;default:throw new Error(`Unsupported param type: ${r.type} for op: ${e.op}`)}return s[r.name]={value:o,type:a},s},{})),n}mapFunction(e){let t=e.nodeDef,n=[],s=[],r={};t!=null&&(r=t.reduce((u,d)=>(u[d.name]=this.mapNode(d),d.op==="Const"&&s.push(u[d.name]),u),{}));let a=[],o=[];e.signature.inputArg.forEach(u=>{let[d]=Br(u.name),p={name:d,op:"Placeholder",inputs:[],inputNames:[],category:"graph",inputParams:{},attrParams:{dtype:{value:_y(u.type),type:"dtype"}},children:[]};p.signatureKey=u.name,a.push(p),r[d]=p}),Object.keys(r).forEach(u=>{let d=r[u];d.inputNames.forEach((p,h)=>{let[f,,m]=Br(p),g=r[f];if(g.outputs!=null){let A=g.outputs.indexOf(m);if(A!==-1){let x=`${f}:${A}`;d.inputNames[h]=x}}d.inputs.push(g),g.children.push(d)})});let l=e.ret;e.signature.outputArg.forEach(u=>{let[d,p]=Br(l[u.name]),h=r[d];h!=null&&(h.defaultOutput=p,o.push(h))});let c=this.mapArgsToSignature(e);return{nodes:r,inputs:a,outputs:o,weights:s,placeholders:n,signature:c}}mapArgsToSignature(e){return{methodName:e.signature.name,inputs:e.signature.inputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n),t),{}),outputs:e.signature.outputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n,e.ret),t),{})}}mapArgToTensorInfo(e,t){let n=e.name;return t!=null&&(n=t[n]),{name:n,dtype:e.type}}};function nG(e){let t=Y().global;if(typeof t.atob!="undefined")return t.atob(e);if(typeof Buffer!="undefined")return new Buffer(e,"base64").toString();throw new Error("Unable to decode base64 in this environment. Missing built-in atob() or Buffer()")}function L7(e,t){let n=Array.isArray(e)?String.fromCharCode.apply(null,e):nG(e);return t?n:n.toLowerCase()}function Ey(e,t,n,s=!1){let r=e[t];return r!=null?L7(r.s,s):n}function Ry(e,t,n){let s=e[t];return s?s.b:n}function $y(e,t,n){let s=e[t]||{},r=s.i!=null?s.i:s.f!=null?s.f:n;return typeof r=="number"?r:parseInt(r,10)}function _y(e){switch(typeof e=="string"&&(e=rr[e]),e){case rr.DT_FLOAT:case rr.DT_HALF:return"float32";case rr.DT_INT32:case rr.DT_INT64:case rr.DT_INT8:case rr.DT_UINT8:return"int32";case rr.DT_BOOL:return"bool";case rr.DT_DOUBLE:return"float32";case rr.DT_STRING:return"string";default:return null}}function B7(e,t,n){let s=e[t];return s&&s.func?s.func.name:n}function Dy(e,t,n){let s=e[t];return s&&s.type?_y(s.type):n}function Py(e,t,n){let s=e[t];return s&&s.list&&s.list.type?s.list.type.map(r=>_y(r)):n}function W7(e){if(!e.unknownRank)return e.dim!=null?e.dim.map(t=>typeof t.size=="number"?t.size:parseInt(t.size,10)):[]}function Fy(e,t,n){let s=e[t];return s&&s.shape?W7(s.shape):n}function Oy(e,t,n){let s=e[t];return s?((s.list.f&&s.list.f.length?s.list.f:s.list.i)||[]).map(r=>typeof r=="number"?r:parseInt(r,10)):n}function My(e,t,n,s=!1){let r=e[t];return r&&r.list&&r.list.s?r.list.s.map(a=>L7(a,s)):n}function zy(e,t,n){let s=e[t];return s&&s.list&&s.list.shape?s.list.shape.map(r=>W7(r)):n}function Ly(e,t,n){let s=e[t];return s&&s.list&&s.list.b?s.list.b:n}var sG=class{constructor(e,t,n){this.node=e,this.tensorMap=t,this.context=n,this.inputs=[],this.attrs={},this.inputs=e.inputNames.map(s=>this.getInput(s)),e.rawAttrs!=null&&(this.attrs=Object.keys(e.rawAttrs).reduce((s,r)=>(s[r]=this.getAttr(r),s),{}))}getInput(e){return Un(e,this.tensorMap,this.context)}getAttr(e,t){let n=this.node.rawAttrs[e];if(n.tensor!=null)return Un(e,this.tensorMap,this.context);if(n.i!=null||n.f!=null)return $y(this.node.rawAttrs,e,t);if(n.s!=null)return Ey(this.node.rawAttrs,e,t);if(n.b!=null)return Ry(this.node.rawAttrs,e,t);if(n.shape!=null)return Fy(this.node.rawAttrs,e,t);if(n.type!=null)return Dy(this.node.rawAttrs,e,t);if(n.list!=null){if(n.list.i!=null||n.list.f!=null)return Oy(this.node.rawAttrs,e,t);if(n.list.s!=null)return My(this.node.rawAttrs,e,t);if(n.list.shape!=null)return zy(this.node.rawAttrs,e,t);if(n.list.b!=null)return Ly(this.node.rawAttrs,e,t);if(n.list.type!=null)return Py(this.node.rawAttrs,e,t)}return t}},rG=(e,t,n)=>{switch(e.op){case"BiasAdd":case"AddV2":case"Add":return[ue(I("a",e,t,n),I("b",e,t,n))];case"AddN":return[hf(I("tensors",e,t,n))];case"FloorMod":case"Mod":return[Md(I("a",e,t,n),I("b",e,t,n))];case"Mul":return[L(I("a",e,t,n),I("b",e,t,n))];case"RealDiv":case"Div":return[pe(I("a",e,t,n),I("b",e,t,n))];case"DivNoNan":return[Ev(I("a",e,t,n),I("b",e,t,n))];case"FloorDiv":return[pf(I("a",e,t,n),I("b",e,t,n))];case"Sub":return[fe(I("a",e,t,n),I("b",e,t,n))];case"Minimum":return[Od(I("a",e,t,n),I("b",e,t,n))];case"Maximum":return[Qr(I("a",e,t,n),I("b",e,t,n))];case"Pow":return[Do(I("a",e,t,n),I("b",e,t,n))];case"SquaredDifference":return[E1(I("a",e,t,n),I("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},aG=(e,t,n)=>{switch(e.op){case"Abs":case"ComplexAbs":return[sn(I("x",e,t,n))];case"Acos":return[av(I("x",e,t,n))];case"Acosh":return[ov(I("x",e,t,n))];case"Asin":return[lv(I("x",e,t,n))];case"Asinh":return[uv(I("x",e,t,n))];case"Atan":return[cv(I("x",e,t,n))];case"Atan2":return[dv(I("x",e,t,n),I("y",e,t,n))];case"Atanh":return[pv(I("x",e,t,n))];case"Ceil":return[bv(I("x",e,t,n))];case"Complex":return[Co(I("real",e,t,n),I("imag",e,t,n))];case"Cos":return[yf(I("x",e,t,n))];case"Cosh":return[u1(I("x",e,t,n))];case"Elu":return[Pd(I("x",e,t,n))];case"Erf":return[$v(I("x",e,t,n))];case"Exp":return[Ps(I("x",e,t,n))];case"Expm1":return[_v(I("x",e,t,n))];case"Floor":return[Fd(I("x",e,t,n))];case"Log":return[Fs(I("x",e,t,n))];case"Log1p":return[vf(I("x",e,t,n))];case"Imag":return[xf(I("x",e,t,n))];case"Neg":return[Ot(I("x",e,t,n))];case"Reciprocal":return[Hv(I("x",e,t,n))];case"Real":return[zd(I("x",e,t,n))];case"Relu":return[Pr(I("x",e,t,n))];case"Round":return[w1(I("x",e,t,n))];case"Selu":return[I1(I("x",e,t,n))];case"Sigmoid":return[gs(I("x",e,t,n))];case"Sin":return[S1(I("x",e,t,n))];case"Sign":return[Xv(I("x",e,t,n))];case"Sinh":return[C1(I("x",e,t,n))];case"Softplus":return[Wu(I("x",e,t,n))];case"Sqrt":return[Dn(I("x",e,t,n))];case"Square":return[xt(I("x",e,t,n))];case"Tanh":return[Ou(I("x",e,t,n))];case"Tan":return[Zv(I("x",e,t,n))];case"ClipByValue":return[As(I("x",e,t,n),I("clipValueMin",e,t,n),I("clipValueMax",e,t,n))];case"Relu6":return[v1(I("x",e,t,n))];case"Rsqrt":return[k1(Un(e.inputNames[0],t,n))];case"Prod":return[y1(I("x",e,t,n),I("axes",e,t,n))];case"LeakyRelu":return[bf(I("x",e,t,n),I("alpha",e,t,n))];case"Prelu":return[Tf(I("x",e,t,n),I("alpha",e,t,n))];case"IsNan":return[Dv(Un(e.inputNames[0],t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function ar(e,t,n=""){if(!(typeof e=="number"||typeof t=="number")){v.assert(e.length===t.length,()=>n+` Shapes ${e} and ${t} must match`);for(let s=0;s<e.length;s++){let r=e[s],a=t[s];v.assert(r<0||a<0||r===a,()=>n+` Shapes ${e} and ${t} must match`)}}}function V7(e){return!(typeof e=="number"||e.some(t=>t<0))}function ap(e,t,n){let s=By(e,n),r=!V7(s);if(r&&t.length===0)throw new Error(`Tried to calculate elements of an empty list with non-fully-defined elementShape: ${s}`);if(r&&t.forEach(a=>{s=By(a.shape,s)}),!V7(s))throw new Error(`Non-fully-defined elementShape: ${s}`);return s}function By(e,t){if(typeof e=="number")return t;if(typeof t=="number")return e;if(e.length!==t.length)throw new Error(`Incompatible ranks during merge: ${e} vs. ${t}`);let n=[];for(let s=0;s<e.length;++s){let r=e[s],a=t[s];if(r>=0&&a>=0&&r!==a)throw new Error(`Incompatible shape during merge: ${e} vs. ${t}`);n[s]=r>=0?r:a}return n}var oG=class{constructor(e,t,n,s,r,a,o){this.name=e,this.dtype=t,this.maxSize=n,this.elementShape=s,this.identicalElementShapes=r,this.dynamicSize=a,this.clearAfterRead=o,this.tensors=[],this.closed_=!1,this.idTensor=Se(0),An(this.idTensor)}get id(){return this.idTensor.id}get closed(){return this.closed_}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.tensor.id))&&t.tensor.dispose()}),this.tensors=[],this.closed_=!0,this.idTensor.dispose()}size(){return this.tensors.length}read(e){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||e>=this.size())throw new Error(`Tried to read from index ${e}, but array size is: ${this.size()}`);let t=this.tensors[e];if(t.cleared)throw new Error(`TensorArray ${this.name}: Could not read index ${e} twice because it was cleared after a previous read (perhaps try setting clear_after_read = false?).`);return this.clearAfterRead&&(t.cleared=!0),t.read=!0,t.tensor}readMany(e){return e.map(t=>this.read(t))}write(e,t){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||!this.dynamicSize&&e>=this.maxSize)throw new Error(`Tried to write to index ${e}, but array is not resizeable and size is: ${this.maxSize}`);let n=this.tensors[e]||{};if(t.dtype!==this.dtype)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e},
because the value dtype is ${t.dtype}, but TensorArray dtype is ${this.dtype}.`);if(this.size()===0&&(this.elementShape==null||this.elementShape.length===0)&&(this.elementShape=t.shape),ar(this.elementShape,t.shape,`TensorArray ${this.name}: Could not write to TensorArray index ${e}.`),n.read)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been read.`);if(n.written)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been written.`);n.tensor=t,An(t),n.written=!0,this.tensors[e]=n}writeMany(e,t){if(e.length!==t.length)throw new Error(`TensorArray ${this.name}: could not write multiple tensors,because the index size: ${e.length} is not the same as tensors size: ${t.length}.`);e.forEach((n,s)=>this.write(n,t[s]))}gather(e,t){if(!!t&&t!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but gather requested dtype ${t}`);if(e)e=e.slice(0,this.size());else{e=[];for(let s=0;s<this.size();s++)e.push(s)}if(e.length===0)return pt([],[0].concat(this.elementShape));let n=this.readMany(e);return ar(this.elementShape,n[0].shape,"TensorArray shape mismatch: "),xn(n,0)}concat(e){if(!!e&&e!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but concat requested dtype ${e}`);if(this.size()===0)return pt([],[0].concat(this.elementShape));let t=[];for(let s=0;s<this.size();s++)t.push(s);let n=this.readMany(t);return ar(this.elementShape,n[0].shape,`TensorArray shape mismatch: tensor array shape (${this.elementShape}) vs first tensor shape (${n[0].shape})`),It(n,0)}scatter(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);if(e.length!==t.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${e.length} vs. ${t.shape[0]}`);let n=Math.max(...e);if(!this.dynamicSize&&n>=this.maxSize)throw new Error(`Max index must be < array size (${n} vs. ${this.maxSize})`);this.writeMany(e,os(t,0))}split(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);let n=0,s=e.map(i=>(n+=i,n));if(n!==t.shape[0])throw new Error(`Expected sum of lengths to be equal to
tensor.shape[0], but sum of lengths is
${n}, and tensor's shape is: ${t.shape}`);if(!this.dynamicSize&&e.length!==this.maxSize)throw new Error(`TensorArray's size is not equal to the size of lengths (${this.maxSize} vs. ${e.length}), and the TensorArray is not marked as dynamically resizeable`);let r=n===0?0:t.size/n,a=[];K(()=>{t=H(t,[1,n,r]);for(let i=0;i<e.length;++i){let l=i===0?0:s[i-1],c=[0,l,0],u=[1,e[i],r];a[i]=H(Fe(t,c,u),this.elementShape)}return a});let o=[];for(let i=0;i<e.length;i++)o[i]=i;this.writeMany(o,a)}},op=class{constructor(e,t,n,s=-1){this.tensors=e,this.elementShape=t,this.elementDtype=n,e!=null&&e.forEach(r=>{if(n!==r.dtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${r.dtype}`);ar(t,r.shape,"TensorList shape mismatch: "),An(r)}),this.idTensor=Se(0),this.maxNumElements=s,An(this.idTensor)}get id(){return this.idTensor.id}copy(){return new op([...this.tensors],this.elementShape,this.elementDtype)}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.id))&&t.dispose()}),this.tensors.length=0,this.idTensor.dispose()}size(){return this.tensors.length}stack(e,t,n=-1){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(n!==-1&&this.tensors.length!==n)throw new Error(`Operation expected a list with ${n} elements but got a list with ${this.tensors.length} elements.`);ar(e,this.elementShape,"TensorList shape mismatch: ");let s=ap(this.elementShape,this.tensors,e);return K(()=>{let r=this.tensors.map(a=>H(a,s));return xn(r,0)})}popBack(e,t){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(this.size()===0)throw new Error("Trying to pop from an empty list.");let n=ap(this.elementShape,this.tensors,e),s=this.tensors.pop();return ar(s.shape,e,"TensorList shape mismatch: "),H(s,n)}pushBack(e){if(e.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${this.elementDtype}`);if(ar(e.shape,this.elementShape,"TensorList shape mismatch: "),this.maxNumElements===this.size())throw new Error("Trying to push element into a full list.");An(e),this.tensors.push(e)}resize(e){if(e<0)throw new Error(`TensorListResize expects size to be non-negative. Got: ${e}`);if(this.maxNumElements!==-1&&e>this.maxNumElements)throw new Error(`TensorListResize input size ${e} is greater maxNumElement ${this.maxNumElements}.`);this.tensors.length=e}getItem(e,t,n){if(n!==this.elementDtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${this.elementDtype}`);if(e<0||e>this.tensors.length)throw new Error(`Trying to access element ${e} in a list with ${this.tensors.length} elements.`);if(this.tensors[e]==null)throw new Error(`element at index ${e} is null.`);ar(this.tensors[e].shape,t,"TensorList shape mismatch: ");let s=ap(this.elementShape,this.tensors,t);return H(this.tensors[e],s)}setItem(e,t){if(t.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t.dtype}, but list elements ${this.elementDtype}`);if(e<0||this.maxNumElements!==-1&&e>=this.maxNumElements)throw new Error(`Trying to set element ${e} in a list with max ${this.maxNumElements} elements.`);ar(this.elementShape,t.shape,"TensorList shape mismatch: "),An(t),this.tensors[e]=t}gather(e,t,n){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);ar(this.elementShape,n,"TensorList shape mismatch: "),e=e.slice(0,this.size());let s=ap(this.elementShape,this.tensors,n);return e.length===0?pt([],[0].concat(s)):K(()=>{let r=e.map(a=>H(this.tensors[a],s));return xn(r,0)})}concat(e,t){if(!!e&&e!==this.elementDtype)throw new Error(`TensorList dtype is ${this.elementDtype} but concat requested dtype ${e}`);ar(this.elementShape,t,"TensorList shape mismatch: ");let n=ap(this.elementShape,this.tensors,t);return this.size()===0?pt([],[0].concat(n)):K(()=>{let s=this.tensors.map(r=>H(r,n));return It(s,0)})}};function iG(e,t,n){let s=e.dtype;if(e.shape.length<1)throw new Error(`Tensor must be at least a vector, but saw shape: ${e.shape}`);if(e.dtype!==n)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${n}`);let r=e.shape.slice(1);ar(r,t,"TensorList shape mismatch: ");let a=os(e);return new op(a,t,s)}function lG(e,t,n){return new op([],e,t,n)}function uG(e,t,n,s){if(t.length!==e.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${t.length} vs. ${e.shape[0]}`);let r=Math.max(...t);if(s!=null&&s!==-1&&r>=s)throw new Error(`Max index must be < array size (${r} vs. ${s})`);let a=new op([],n,e.dtype,s),o=os(e,0);return t.forEach((i,l)=>{a.setItem(i,o[l])}),a}function cG(e,t,n){let s=0,r=t.map(u=>(s+=u,s));if(s!==e.shape[0])throw new Error(`Expected sum of lengths to be equal to
tensor.shape[0], but sum of lengths is
${s}, and tensor's shape is: ${e.shape}`);let a=e.shape.slice(1),o=By(a,n),i=s===0?0:e.size/s,l=K(()=>{let u=[];e=H(e,[1,s,i]);for(let d=0;d<t.length;++d){let p=d===0?0:r[d-1],h=[0,p,0],f=[1,t[d],i];u[d]=H(Fe(e,h,f),o)}return e.dispose(),u}),c=new op([],n,e.dtype,t.length);for(let u=0;u<l.length;u++)c.setItem(u,l[u]);return c}var dG=async(e,t,n)=>{switch(e.op){case"If":case"StatelessIf":{let s=I("thenBranch",e,t,n),r=I("elseBranch",e,t,n),a=I("cond",e,t,n),o=I("args",e,t,n);return(await a.data())[0]?n.functionMap[s].executeFunctionAsync(o,n.tensorArrayMap,n.tensorListMap):n.functionMap[r].executeFunctionAsync(o,n.tensorArrayMap,n.tensorListMap)}case"While":case"StatelessWhile":{let s=I("body",e,t,n),r=I("cond",e,t,n),a=I("args",e,t,n),o=await n.functionMap[r].executeFunctionAsync(a,n.tensorArrayMap,n.tensorListMap),i=a.map(u=>u.id),l=await o[0].data();o.forEach(u=>{!u.kept&&i.indexOf(u.id)===-1&&u.dispose()});let c=a;for(;l[0];){let u=c;c=await n.functionMap[s].executeFunctionAsync(c,n.tensorArrayMap,n.tensorListMap);let d=c.map(h=>h.id);u.forEach(h=>{!h.kept&&i.indexOf(h.id)===-1&&d.indexOf(h.id)===-1&&h.dispose()});let p=await n.functionMap[r].executeFunctionAsync(c,n.tensorArrayMap,n.tensorListMap);l=await p[0].data(),p.forEach(h=>{!h.kept&&i.indexOf(h.id)===-1&&d.indexOf(h.id)===-1&&h.dispose()})}return c}case"LoopCond":{let s=I("pred",e,t,n);return[oa(s)]}case"Switch":{let s=I("pred",e,t,n),r=I("data",e,t,n);return r.kept||(r=oa(r)),(await s.data())[0]?[void 0,r]:[r,void 0]}case"Merge":{let s=e.inputNames.find(r=>Un(r,t,n)!==void 0);if(s){let r=Un(s,t,n);return[oa(r)]}return}case"Enter":{let s=I("frameName",e,t,n),r=I("tensor",e,t,n);return n.enterFrame(s),[oa(r)]}case"Exit":{let s=I("tensor",e,t,n);return n.exitFrame(),[oa(s)]}case"NextIteration":{let s=I("tensor",e,t,n);return n.nextIteration(),[oa(s)]}case"TensorArrayV3":{let s=I("size",e,t,n),r=I("dtype",e,t,n),a=I("elementShape",e,t,n),o=I("dynamicSize",e,t,n),i=I("clearAfterRead",e,t,n),l=I("identicalElementShapes",e,t,n),c=I("name",e,t,n),u=new oG(c,r,s,a,l,o,i);return n.addTensorArray(u),[u.idTensor,Se(1)]}case"TensorArrayWriteV3":{let s=I("tensorArrayId",e,t,n),r=I("index",e,t,n),a=I("tensor",e,t,n),o=n.getTensorArray(s.id);return o.write(r,a),[o.idTensor]}case"TensorArrayReadV3":{let s=I("tensorArrayId",e,t,n),r=I("index",e,t,n);return[n.getTensorArray(s.id).read(r)]}case"TensorArrayGatherV3":{let s=I("tensorArrayId",e,t,n),r=I("indices",e,t,n),a=I("dtype",e,t,n);return[n.getTensorArray(s.id).gather(r,a)]}case"TensorArrayScatterV3":{let s=I("tensorArrayId",e,t,n),r=I("indices",e,t,n),a=I("tensor",e,t,n),o=n.getTensorArray(s.id);return o.scatter(r,a),[o.idTensor]}case"TensorArrayConcatV3":{let s=I("tensorArrayId",e,t,n),r=n.getTensorArray(s.id),a=I("dtype",e,t,n);return[r.concat(a)]}case"TensorArraySplitV3":{let s=I("tensorArrayId",e,t,n),r=I("tensor",e,t,n),a=I("lengths",e,t,n),o=n.getTensorArray(s.id);return o.split(a,r),[o.idTensor]}case"TensorArraySizeV3":{let s=I("tensorArrayId",e,t,n),r=n.getTensorArray(s.id);return[Se(r.size(),"int32")]}case"TensorArrayCloseV3":{let s=I("tensorArrayId",e,t,n),r=n.getTensorArray(s.id);return r.clearAndClose(),[r.idTensor]}case"TensorListSetItem":{let s=I("tensorListId",e,t,n),r=I("index",e,t,n),a=I("tensor",e,t,n),o=n.getTensorList(s.id);return o.setItem(r,a),[o.idTensor]}case"TensorListGetItem":{let s=I("tensorListId",e,t,n),r=I("index",e,t,n),a=I("elementShape",e,t,n),o=I("elementDType",e,t,n);return[n.getTensorList(s.id).getItem(r,a,o)]}case"TensorListScatterV2":case"TensorListScatter":{let s=I("indices",e,t,n),r=I("tensor",e,t,n),a=I("elementShape",e,t,n),o=I("numElements",e,t,n),i=uG(r,s,a,o);return n.addTensorList(i),[i.idTensor]}case"TensorListReserve":case"EmptyTensorList":{let s=I("elementShape",e,t,n),r=I("elementDType",e,t,n),a;e.op==="TensorListReserve"?a="numElements":a="maxNumElements";let o=I(a,e,t,n),i=lG(s,r,o);return n.addTensorList(i),[i.idTensor]}case"TensorListGather":{let s=I("tensorListId",e,t,n),r=I("indices",e,t,n),a=I("elementShape",e,t,n),o=I("elementDType",e,t,n);return[n.getTensorList(s.id).gather(r,o,a)]}case"TensorListStack":{let s=I("tensorListId",e,t,n),r=I("elementShape",e,t,n),a=I("elementDType",e,t,n),o=I("numElements",e,t,n);return[n.getTensorList(s.id).stack(r,a,o)]}case"TensorListFromTensor":{let s=I("tensor",e,t,n),r=I("elementShape",e,t,n),a=I("elementDType",e,t,n),o=iG(s,r,a);return n.addTensorList(o),[o.idTensor]}case"TensorListConcat":{let s=I("tensorListId",e,t,n),r=n.getTensorList(s.id),a=I("dtype",e,t,n),o=I("elementShape",e,t,n);return[r.concat(a,o)]}case"TensorListPushBack":{let s=I("tensorListId",e,t,n),r=I("tensor",e,t,n),a=n.getTensorList(s.id);return a.pushBack(r),[a.idTensor]}case"TensorListPopBack":{let s=I("tensorListId",e,t,n),r=I("elementShape",e,t,n),a=I("elementDType",e,t,n);return[n.getTensorList(s.id).popBack(r,a)]}case"TensorListSplit":{let s=I("tensor",e,t,n),r=I("elementShape",e,t,n),a=I("lengths",e,t,n),o=cG(s,a,r);return n.addTensorList(o),[o.idTensor]}default:throw TypeError(`Node type ${e.op} is not implemented`)}};function U7(e,t,n){let[s,r]=I("fusedOps",e,t,n),a=s==="biasadd",o=!a,i=r==="prelu",l=s==="fusedbatchnorm",c=I("numArgs",e,t,n);if(a){if(i&&c!==2)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!i&&a&&c!==1)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd must have one extra argument: bias.")}if(l)throw new Error("FusedConv2d and DepthwiseConv2d with FusedBatchNorm is not supported");let u=I("strides",e,t,n),d=Im(e,t,n),p=I("dataFormat",e,t,n).toUpperCase(),h=I("dilations",e,t,n),[f,m]=I("args",e,t,n);o&&(m=f,f=void 0);let g=I("leakyreluAlpha",e,t,n);return{stride:u,pad:d,dataFormat:p,dilations:h,biasArg:f,preluArg:m,activationFunc:r,leakyreluAlpha:g}}var pG=(e,t,n)=>{switch(e.op){case"Conv1D":{let s=I("stride",e,t,n),r=I("pad",e,t,n),a=I("dataFormat",e,t,n).toUpperCase(),o=I("dilation",e,t,n);return[a1(I("x",e,t,n),I("filter",e,t,n),s,r,a,o)]}case"Conv2D":{let s=I("strides",e,t,n),r=Im(e,t,n),a=I("dataFormat",e,t,n).toUpperCase(),o=I("dilations",e,t,n);return[$o(I("x",e,t,n),I("filter",e,t,n),[s[1],s[2]],r,a,[o[1],o[2]])]}case"_FusedConv2D":{let{stride:s,pad:r,dataFormat:a,dilations:o,biasArg:i,preluArg:l,activationFunc:c,leakyreluAlpha:u}=U7(e,t,n);return[Po.conv2d({x:I("x",e,t,n),filter:I("filter",e,t,n),strides:[s[1],s[2]],pad:r,dataFormat:a,dilations:[o[1],o[2]],bias:i,activation:c,preluActivationWeights:l,leakyreluAlpha:u})]}case"FusedDepthwiseConv2dNative":{let{stride:s,pad:r,dataFormat:a,dilations:o,biasArg:i,preluArg:l,activationFunc:c,leakyreluAlpha:u}=U7(e,t,n);return[Po.depthwiseConv2d({x:I("x",e,t,n),filter:I("filter",e,t,n),strides:[s[1],s[2]],pad:r,dataFormat:a,dilations:[o[1],o[2]],bias:i,activation:c,preluActivationWeights:l,leakyreluAlpha:u})]}case"Conv2DBackpropInput":case"Conv2dTranspose":{let s=I("outputShape",e,t,n),r=I("strides",e,t,n),a=Im(e,t,n);return[i1(I("x",e,t,n),I("filter",e,t,n),s,[r[1],r[2]],a)]}case"DepthwiseConv2dNative":case"DepthwiseConv2d":{let s=I("strides",e,t,n),r=Im(e,t,n),a=I("dilations",e,t,n),o=I("dataFormat",e,t,n).toUpperCase();return[Dd(I("input",e,t,n),I("filter",e,t,n),[s[1],s[2]],r,o,[a[1],a[2]])]}case"Conv3D":{let s=I("strides",e,t,n),r=I("pad",e,t,n),a=I("dataFormat",e,t,n).toUpperCase(),o=I("dilations",e,t,n);return[l1(I("x",e,t,n),I("filter",e,t,n),[s[1],s[2],s[3]],r,a,[o[1],o[2],o[3]])]}case"AvgPool":{let s=I("strides",e,t,n),r=I("pad",e,t,n),a=I("kernelSize",e,t,n);return[gf(I("x",e,t,n),[a[1],a[2]],[s[1],s[2]],r)]}case"MaxPool":{let s=I("strides",e,t,n),r=I("pad",e,t,n),a=I("kernelSize",e,t,n);return[If(I("x",e,t,n),[a[1],a[2]],[s[1],s[2]],r)]}case"MaxPoolWithArgmax":{let s=I("strides",e,t,n),r=I("pad",e,t,n),a=I("kernelSize",e,t,n),o=I("includeBatchInIndex",e,t,n),{result:i,indexes:l}=Wv(I("x",e,t,n),[a[1],a[2]],[s[1],s[2]],r,o);return[i,l]}case"AvgPool3D":{let s=I("strides",e,t,n),r=I("pad",e,t,n),a=I("kernelSize",e,t,n);return[s1(I("x",e,t,n),[a[1],a[2],a[3]],[s[1],s[2],s[3]],r)]}case"MaxPool3D":{let s=I("strides",e,t,n),r=I("pad",e,t,n),a=I("kernelSize",e,t,n);return[A1(I("x",e,t,n),[a[1],a[2],a[3]],[s[1],s[2],s[3]],r)]}case"Dilation2D":{let s=I("strides",e,t,n),r=I("pad",e,t,n),a=I("dilations",e,t,n),o=s[1],i=s[2],l=a[1],c=a[2];return[Nv(I("x",e,t,n),I("filter",e,t,n),[o,i],r,[l,c],"NHWC")]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},hG=(e,t,n)=>{switch(e.op){case"Fill":{let s=I("shape",e,t,n),r=I("dtype",e,t,n),a=I("value",e,t,n);return[Lu(s,a,r)]}case"LinSpace":{let s=I("start",e,t,n),r=I("stop",e,t,n),a=I("num",e,t,n);return[Pv(s,r,a)]}case"Multinomial":{let s=I("logits",e,t,n),r=I("numSamples",e,t,n),a=I("seed",e,t,n);return[Uv(s,r,a)]}case"OneHot":{let s=I("indices",e,t,n),r=I("depth",e,t,n),a=I("onValue",e,t,n),o=I("offValue",e,t,n);return[Rd(s,r,a,o)]}case"Ones":return[xs(I("shape",e,t,n),I("dtype",e,t,n))];case"OnesLike":return[Os(I("x",e,t,n))];case"RandomUniform":return[Uu(I("shape",e,t,n),I("minval",e,t,n),I("maxval",e,t,n),I("dtype",e,t,n))];case"Range":{let s=I("start",e,t,n),r=I("stop",e,t,n),a=I("step",e,t,n);return[Gu(s,r,a,I("dtype",e,t,n))]}case"TruncatedNormal":{let s=I("shape",e,t,n),r=I("mean",e,t,n),a=I("stdDev",e,t,n),o=I("seed",e,t,n);return[$f(s,r,a,I("dtype",e,t,n),o)]}case"Zeros":return[Ht(I("shape",e,t,n),I("dtype",e,t,n))];case"ZerosLike":return[nt(I("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function Wy(e,t,n){let s=I("boxes",e,t,n),r=I("scores",e,t,n),a=I("maxOutputSize",e,t,n),o=I("iouThreshold",e,t,n),i=I("scoreThreshold",e,t,n),l=I("softNmsSigma",e,t,n);return{boxes:s,scores:r,maxOutputSize:a,iouThreshold:o,scoreThreshold:i,softNmsSigma:l}}var fG=async(e,t,n)=>{switch(e.op){case"NonMaxSuppressionV5":{let{boxes:s,scores:r,maxOutputSize:a,iouThreshold:o,scoreThreshold:i,softNmsSigma:l}=Wy(e,t,n),c=await Ce.nonMaxSuppressionWithScoreAsync(s,r,a,o,i,l);return[c.selectedIndices,c.selectedScores]}case"NonMaxSuppressionV4":{let{boxes:s,scores:r,maxOutputSize:a,iouThreshold:o,scoreThreshold:i}=Wy(e,t,n),l=I("padToMaxOutputSize",e,t,n),c=await Ce.nonMaxSuppressionPaddedAsync(s,r,a,o,i,l);return[c.selectedIndices,c.validOutputs]}case"NonMaxSuppressionV3":case"NonMaxSuppressionV2":{let{boxes:s,scores:r,maxOutputSize:a,iouThreshold:o,scoreThreshold:i}=Wy(e,t,n);return[await Ce.nonMaxSuppressionAsync(s,r,a,o,i)]}case"Where":{let s=ge(I("condition",e,t,n),"bool"),r=[await $1(s)];return s.dispose(),r}case"ListDiff":return qv(I("x",e,t,n),I("y",e,t,n));default:throw TypeError(`Node type ${e.op} is not implemented`)}},mG=(e,t,n)=>{switch(e.op){case"TopKV2":{let s=I("x",e,t,n),r=I("k",e,t,n),a=I("sorted",e,t,n),o=Yv(s,r,a);return[o.values,o.indices]}case"Unique":{let s=I("x",e,t,n),r=R1(s);return[r.values,r.indices]}case"UniqueV2":{let s=I("x",e,t,n),r=I("axis",e,t,n),a=R1(s,r);return[a.values,a.indices]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},gG=(e,t,n)=>{switch(e.op){case"Const":return t[e.name];case"PlaceholderWithDefault":let s=I("default",e,t,n);return[Un(e.name,t,n)||s];case"Placeholder":return[Un(e.name,t,n)];case"Identity":case"StopGradient":case"FakeQuantWithMinMaxVars":{let c=I("x",e,t,n);return[oa(c)]}case"IdentityN":return I("x",e,t,n).map(c=>oa(c));case"Snapshot":let r=I("x",e,t,n);return[oa(r)];case"Shape":return[Vt(I("x",e,t,n).shape,"int32")];case"ShapeN":return I("x",e,t,n).map(c=>Vt(c.shape));case"Size":return[Se(I("x",e,t,n).size,"int32")];case"Rank":return[Se(I("x",e,t,n).rank,"int32")];case"NoOp":return[Se(1)];case"Print":let a=I("x",e,t,n),o=I("data",e,t,n),i=I("message",e,t,n),l=I("summarize",e,t,n);console.warn("The graph has a tf.print() operation,usually used for debugging, which slows down performance."),console.log(i);for(let c=0;c<o.length;c++)console.log(Array.prototype.slice.call(o[c].dataSync()).slice(0,l));return[a];default:throw TypeError(`Node type ${e.op} is not implemented`)}},AG=class{constructor(e,t){this.keyDType=e,this.valueDType=t,this.handle=Se(0),this.tensorMap=new Map,An(this.handle)}get id(){return this.handle.id}clearAndClose(){this.tensorMap.forEach(e=>e.dispose()),this.tensorMap.clear(),this.handle.dispose()}size(){return this.tensorMap.size}tensorSize(){return Se(this.size(),"int32")}async import(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return this.tensorMap.forEach(s=>s.dispose()),this.tensorMap.clear(),K(()=>{let s=os(t),r=n.length,a=s.length;v.assert(r===a,()=>`The number of elements doesn't match, keys has ${r} elements, the values has ${a} elements.`);for(let o=0;o<r;o++){let i=n[o],l=s[o];An(l),this.tensorMap.set(i,l)}return this.handle})}async find(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return K(()=>{let s=[];for(let r=0;r<n.length;r++){let a=n[r],o=this.findWithDefault(a,t);s.push(o)}return xn(s)})}findWithDefault(e,t){let n=this.tensorMap.get(e);return n!=null?n:t}checkKeyAndValueTensor(e,t){if(e.dtype!==this.keyDType)throw new Error(`Expect key dtype ${this.keyDType}, but got ${e.dtype}`);if(t.dtype!==this.valueDType)throw new Error(`Expect value dtype ${this.valueDType}, but got ${t.dtype}`)}},yG=async(e,t,n,s)=>{switch(e.op){case"HashTable":case"HashTableV2":{let r=I("keyDType",e,t,n),a=I("valueDType",e,t,n),o=new AG(r,a);return s.addHashTable(e.name,o),[o.handle]}case"LookupTableImport":case"LookupTableImportV2":{let r=I("tableHandle",e,t,n,s),a=I("keys",e,t,n),o=I("values",e,t,n);return[await s.getHashTableById(r.id).import(a,o)]}case"LookupTableFind":case"LookupTableFindV2":{let r=I("tableHandle",e,t,n,s),a=I("keys",e,t,n),o=I("defaultValue",e,t,n);return[await s.getHashTableById(r.id).find(a,o)]}case"LookupTableSize":case"LookupTableSizeV2":{let r=I("tableHandle",e,t,n,s);return[s.getHashTableById(r.id).tensorSize()]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},xG=(e,t,n)=>{switch(e.op){case"ResizeBilinear":{let s=I("images",e,t,n),r=I("size",e,t,n),a=I("alignCorners",e,t,n),o=I("halfPixelCenters",e,t,n);return[Ce.resizeBilinear(s,[r[0],r[1]],a,o)]}case"ResizeNearestNeighbor":{let s=I("images",e,t,n),r=I("size",e,t,n),a=I("alignCorners",e,t,n),o=I("halfPixelCenters",e,t,n);return[Ce.resizeNearestNeighbor(s,[r[0],r[1]],a,o)]}case"CropAndResize":{let s=I("image",e,t,n),r=I("boxes",e,t,n),a=I("boxInd",e,t,n),o=I("cropSize",e,t,n),i=I("method",e,t,n),l=I("extrapolationValue",e,t,n);return[Ce.cropAndResize(s,r,a,o,i,l)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},bG=(e,t,n)=>{switch(e.op){case"Equal":return[Ds(I("a",e,t,n),I("b",e,t,n))];case"NotEqual":return[Vu(I("a",e,t,n),I("b",e,t,n))];case"Greater":return[ys(I("a",e,t,n),I("b",e,t,n))];case"GreaterEqual":return[ll(I("a",e,t,n),I("b",e,t,n))];case"Less":return[p1(I("a",e,t,n),I("b",e,t,n))];case"LessEqual":return[ul(I("a",e,t,n),I("b",e,t,n))];case"LogicalAnd":return[fr(I("a",e,t,n),I("b",e,t,n))];case"LogicalNot":return[kf(I("a",e,t,n))];case"LogicalOr":return[g1(I("a",e,t,n),I("b",e,t,n))];case"Select":case"SelectV2":return[Wn(I("condition",e,t,n),I("a",e,t,n),I("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},vG=(e,t,n)=>{switch(e.op){case"BatchMatMul":case"BatchMatMulV2":case"MatMul":return[je(I("a",e,t,n),I("b",e,t,n),I("transposeA",e,t,n),I("transposeB",e,t,n))];case"Einsum":return[Rv(I("equation",e,t,n),...I("tensors",e,t,n))];case"Transpose":return[tt(I("x",e,t,n),I("perm",e,t,n))];case"_FusedMatMul":let[s,r]=I("fusedOps",e,t,n),a=s==="biasadd",o=r==="prelu",i=I("numArgs",e,t,n),l=I("leakyreluAlpha",e,t,n);if(a){if(o&&i!==2)throw new Error("Fused MatMul with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!o&&i!==1)throw new Error("Fused MatMul with BiasAdd must have one extra argument: bias.")}let[c,u]=I("args",e,t,n);return[Po.matMul({a:I("a",e,t,n),b:I("b",e,t,n),transposeA:I("transposeA",e,t,n),transposeB:I("transposeB",e,t,n),bias:c,activation:r,preluActivationWeights:u,leakyreluAlpha:l})];default:throw TypeError(`Node type ${e.op} is not implemented`)}},wG=(e,t,n)=>{switch(e.op){case"FusedBatchNorm":case"FusedBatchNormV2":return[Mu(I("x",e,t,n),I("mean",e,t,n),I("variance",e,t,n),I("offset",e,t,n),I("scale",e,t,n),I("epsilon",e,t,n))];case"FusedBatchNormV3":return[Mu(I("x",e,t,n),I("mean",e,t,n),I("variance",e,t,n),I("offset",e,t,n),I("scale",e,t,n),I("epsilon",e,t,n))];case"LRN":return[Fv(I("x",e,t,n),I("radius",e,t,n),I("bias",e,t,n),I("alpha",e,t,n),I("beta",e,t,n))];case"Softmax":return[Hu(I("x",e,t,n))];case"LogSoftmax":return[h1(I("x",e,t,n))];case"SparseToDense":return[D1(I("sparseIndices",e,t,n),I("outputShape",e,t,n),I("sparseValues",e,t,n),I("defaultValue",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},kG=(e,t,n)=>{switch(e.op){case"Max":{let o=I("axis",e,t,n),i=I("keepDims",e,t,n);return[yn(I("x",e,t,n),o,i)]}case"Mean":{let o=I("axis",e,t,n),i=I("keepDims",e,t,n);return[Wt(I("x",e,t,n),o,i)]}case"Min":{let o=I("axis",e,t,n),i=I("keepDims",e,t,n);return[_o(I("x",e,t,n),o,i)]}case"Sum":{let o=I("axis",e,t,n),i=I("keepDims",e,t,n);return[we(I("x",e,t,n),o,i)]}case"All":{let o=I("axis",e,t,n),i=I("keepDims",e,t,n);return[e1(I("x",e,t,n),o,i)]}case"Any":{let o=I("axis",e,t,n),i=I("keepDims",e,t,n);return[ff(I("x",e,t,n),o,i)]}case"ArgMax":{let o=I("axis",e,t,n);return[Js(I("x",e,t,n),o)]}case"ArgMin":{let o=I("axis",e,t,n);return[iv(I("x",e,t,n),o)]}case"Prod":{let o=I("axis",e,t,n),i=I("keepDims",e,t,n);return[y1(I("x",e,t,n),o,i)]}case"Cumsum":{let o=I("axis",e,t,n),i=I("exclusive",e,t,n),l=I("reverse",e,t,n);return[c1(I("x",e,t,n),o,i,l)]}case"Bincount":let s=I("x",e,t,n),r=I("weights",e,t,n),a=I("size",e,t,n);return[r1(s,r,a)];case"DenseBincount":{let o=I("x",e,t,n),i=I("weights",e,t,n),l=I("size",e,t,n),c=I("binaryOutput",e,t,n);return[Cv(o,i,l,c)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},IG=(e,t,n)=>{switch(e.op){case"ConcatV2":case"Concat":{let s=I("n",e,t,n),r=I("axis",e,t,n),a=I("tensors",e,t,n);return a=a.slice(0,s),[It(a,r)]}case"Gather":{let s=I("x",e,t,n),r=I("indices",e,t,n);return[Bu(s,ge(r,"int32"),0)]}case"GatherV2":{let s=I("axis",e,t,n),r=I("batchDims",e,t,n),a=I("x",e,t,n),o=I("indices",e,t,n);return[Bu(a,ge(o,"int32"),s,r)]}case"Reverse":{let s=I("dims",e,t,n),r=[];for(let o=0;o<s.length;o++)s[o]&&r.push(o);let a=I("x",e,t,n);return[Ms(a,r)]}case"ReverseV2":{let s=I("axis",e,t,n),r=I("x",e,t,n);return[Ms(r,s)]}case"Slice":{let s=I("begin",e,t,n),r=I("size",e,t,n);return[Fe(I("x",e,t,n),s,r)]}case"StridedSlice":{let s=I("begin",e,t,n),r=I("end",e,t,n),a=I("strides",e,t,n),o=I("beginMask",e,t,n),i=I("endMask",e,t,n),l=I("ellipsisMask",e,t,n),c=I("newAxisMask",e,t,n),u=I("shrinkAxisMask",e,t,n),d=I("x",e,t,n);return[Kv(d,s,r,a,o,i,l,c,u)]}case"Pack":return K(()=>{let s=I("axis",e,t,n),r=I("tensors",e,t,n),a=r[0].shape,o=ut(r[0]).shape,i=r.map(l=>{let c=v.arraysEqual(l.shape,a);if(!c&&!v.arraysEqual(ut(l).shape,o))throw new Error("the input tensors shape does not match");return c?l:H(l,a)});return[xn(i,s)]});case"Unpack":{let s=I("axis",e,t,n),r=I("tensor",e,t,n);return os(r,s)}case"Tile":{let s=I("reps",e,t,n);return[Qs(I("x",e,t,n),s)]}case"Split":case"SplitV":{let s=I("axis",e,t,n),r=I("numOrSizeSplits",e,t,n),a=I("x",e,t,n);return rn(a,r,s)}case"ScatterNd":{let s=I("indices",e,t,n),r=I("values",e,t,n),a=I("shape",e,t,n);return[nw(s,r,a)]}case"GatherNd":{let s=I("x",e,t,n),r=I("indices",e,t,n);return[sw(s,r)]}case"SparseToDense":{let s=I("sparseIndices",e,t,n),r=I("outputShape",e,t,n),a=I("sparseValues",e,t,n),o=I("defaultValue",e,t,n);return[D1(s,a,r,a.dtype===o.dtype?o:ge(o,a.dtype))]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},SG=(e,t,n)=>{switch(e.op){case"SparseFillEmptyRows":{let{outputIndices:s,outputValues:r,emptyRowIndicator:a,reverseIndexMap:o}=Wd.sparseFillEmptyRows(I("indices",e,t,n),I("values",e,t,n),I("denseShape",e,t,n),I("defaultValue",e,t,n));return[s,r,a,o]}case"SparseReshape":{let{outputIndices:s,outputShape:r}=Wd.sparseReshape(I("inputIndices",e,t,n),I("inputShape",e,t,n),I("newShape",e,t,n));return[s,r]}case"SparseSegmentMean":return[Wd.sparseSegmentMean(I("data",e,t,n),I("indices",e,t,n),I("segmentIds",e,t,n))];case"SparseSegmentSum":return[Wd.sparseSegmentSum(I("data",e,t,n),I("indices",e,t,n),I("segmentIds",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},CG=(e,t,n)=>{switch(e.op){case"FFT":return[Ef(I("x",e,t,n))];case"IFFT":return[Ld(I("x",e,t,n))];case"RFFT":return[Rf(I("x",e,t,n))];case"IRFFT":return[N1(I("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},TG=(e,t,n)=>{switch(e.op){case"StringNGrams":{let{nGrams:s,nGramsSplits:r}=Of.stringNGrams(I("data",e,t,n),I("dataSplits",e,t,n),I("separator",e,t,n),I("nGramWidths",e,t,n),I("leftPad",e,t,n),I("rightPad",e,t,n),I("padWidth",e,t,n),I("preserveShortSequences",e,t,n));return[s,r]}case"StringSplit":{let{indices:s,values:r,shape:a}=Of.stringSplit(I("input",e,t,n),I("delimiter",e,t,n),I("skipEmpty",e,t,n));return[s,r,a]}case"StringToHashBucketFast":return[Of.stringToHashBucketFast(I("input",e,t,n),I("numBuckets",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},NG=(e,t,n)=>{switch(e.op){case"Cast":return[ge(I("x",e,t,n),I("dtype",e,t,n))];case"ExpandDims":{let s=I("axis",e,t,n);return[Kt(I("x",e,t,n),s)]}case"Squeeze":{let s=I("axis",e,t,n);return[ut(I("x",e,t,n),s)]}case"Reshape":return[H(I("x",e,t,n),I("shape",e,t,n))];case"MirrorPad":return[Vv(I("x",e,t,n),I("padding",e,t,n),I("mode",e,t,n))];case"PadV2":case"Pad":return[er(I("x",e,t,n),I("padding",e,t,n),I("constantValue",e,t,n))];case"SpaceToBatchND":{let s=I("blockShape",e,t,n),r=I("paddings",e,t,n);return[Cf(I("x",e,t,n),s,r)]}case"BatchToSpaceND":{let s=I("blockShape",e,t,n),r=I("crops",e,t,n);return[Af(I("x",e,t,n),s,r)]}case"DepthToSpace":{let s=I("blockSize",e,t,n),r=I("dataFormat",e,t,n).toUpperCase();return[Tv(I("x",e,t,n),s,r)]}case"BroadcastTo":return[_d(I("x",e,t,n),I("shape",e,t,n))];case"BroadcastArgs":return[xv(I("s0",e,t,n),I("s1",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function G7(e,t,n,s){let r=((a,o,i)=>{switch(a.category){case"arithmetic":return K(()=>rG(a,o,i));case"basic_math":return K(()=>aG(a,o,i));case"control":return dG(a,o,i);case"convolution":return K(()=>pG(a,o,i));case"creation":return K(()=>hG(a,o,i));case"dynamic":return fG(a,o,i);case"evaluation":return K(()=>mG(a,o,i));case"image":return K(()=>xG(a,o,i));case"graph":return K(()=>gG(a,o,i));case"logical":return K(()=>bG(a,o,i));case"matrices":return K(()=>vG(a,o,i));case"normalization":return K(()=>wG(a,o,i));case"reduction":return K(()=>kG(a,o,i));case"slice_join":return K(()=>IG(a,o,i));case"sparse":return K(()=>SG(a,o,i));case"spectral":return K(()=>CG(a,o,i));case"string":return K(()=>TG(a,o,i));case"transformation":return K(()=>NG(a,o,i));case"hash_table":return yG(a,o,i,s);case"custom":let l=y7(a.op);if(l&&l.customExecutor)return l.customExecutor(new sG(a,o,i));throw TypeError(`Custom op ${a.op} is not registered.`);default:throw TypeError(`Unknown op '${a.op}'. File an issue at https://github.com/tensorflow/tfjs/issues so we can add it, or register a custom execution with tf.registerOp()`)}})(e,t,n);return v.isPromise(r)?r.then(a=>[].concat(a)):[].concat(r)}var H7=class{constructor(e={},t={},n={},s={}){this.weightMap=e,this.tensorArrayMap=t,this.tensorListMap=n,this.functionMap=s,this.rootContext={id:0,frameName:"",iterationId:0},this.contexts=[this.rootContext],this.lastId=0,this.generateCurrentContextIds()}newFrame(e,t){return{id:e,frameName:t,iterationId:0}}set currentContext(e){this.contexts!==e&&(this.contexts=e,this.generateCurrentContextIds())}get currentContext(){return this.contexts}get currentContextId(){return this._currentContextIds[0]}get currentContextIds(){return this._currentContextIds}generateCurrentContextIds(){let e=[];for(let t=0;t<this.contexts.length-1;t++){let n=this.contexts.slice(0,this.contexts.length-t);e.push(this.contextIdforContexts(n))}e.push(""),this._currentContextIds=e}contextIdforContexts(e){return e?e.map(t=>t.id===0&&t.iterationId===0?"":`${t.frameName}-${t.iterationId}`).join("/"):""}enterFrame(e){this.contexts&&(this.lastId++,this.contexts=this.contexts.slice(),this.contexts.push(this.newFrame(this.lastId,e)),this._currentContextIds.unshift(this.contextIdforContexts(this.contexts)))}exitFrame(){if(this.contexts&&this.contexts.length>1)this.contexts=this.contexts.slice(),this.contexts.splice(-1),this.currentContextIds.shift();else throw new Error("Cannot exit frame, the context is empty")}nextIteration(){if(this.contexts&&this.contexts.length>0){this.contexts=this.contexts.slice(),this.lastId++;let e=Object.assign({},this.contexts[this.contexts.length-1]);e.iterationId+=1,e.id=this.lastId,this.contexts.splice(-1,1,e),this._currentContextIds.splice(0,1,this.contextIdforContexts(this.contexts))}else throw new Error("Cannot increase frame iteration, the context is empty")}getWeight(e){return this.weightMap[e]}addTensorArray(e){this.tensorArrayMap[e.id]=e}getTensorArray(e){return this.tensorArrayMap[e]}addTensorList(e){this.tensorListMap[e.id]=e}getTensorList(e){return this.tensorListMap[e]}dispose(e){for(let t in this.tensorArrayMap)this.tensorArrayMap[t].clearAndClose(e);for(let t in this.tensorListMap)this.tensorListMap[t].clearAndClose(e)}};function j7(e,t,n,s){let r=new Set,a=[],o=null,i=null,l=new Set,c=Object.keys(e).map(p=>bs(p)[0]),u=[];s!=null&&(u=s.map(p=>bs(p.name)[0]));let d=[...t];for(;d.length>0;){let p=d.pop();if((q7(p)||DG(p)||PG(p))&&o==null&&(o=p,i=o.children.map(h=>h.name).filter(h=>r.has(h))),r.add(p.name),n[p.name]==null&&c.indexOf(p.name)===-1&&u.indexOf(p.name)===-1){if(p.inputs.length===0){a.push(p.name);continue}p.inputs.forEach(h=>{l.has(h.name)||(l.add(h.name),d.push(h))})}}return{inputs:e,outputs:t,usedNodes:r,missingInputs:a,dynamicNode:o,syncInputs:i}}function EG(e,t,n){let{usedNodes:s,inputs:r}=n,a=[],o=Object.keys(r).map(u=>bs(u)[0]).map(u=>e.nodes[u]),i=e.initNodes;o.forEach(u=>{s.has(u.name)&&a.push(u)}),e.weights.forEach(u=>{s.has(u.name)&&a.push(u)}),i!=null&&i.forEach(u=>{s.has(u.name)&&a.push(u)});let l=new Set,c=[];for(;a.length>0;){let u=a.pop();l.add(u.name),t[u.name]||c.push(u),u.children.forEach(d=>{!l.has(d.name)&&s.has(d.name)&&d.inputs.every(p=>l.has(p.name))&&a.push(d)})}return c}var RG=["Switch","Merge","Enter","Exit","NextIteration","StatelessIf","StatelessWhile","if","While"],$G=["NonMaxSuppressionV2","NonMaxSuppressionV3","NonMaxSuppressionV5","Where"],_G=["HashTable","HashTableV2","LookupTableImport","LookupTableImportV2","LookupTableFind","LookupTableFindV2","LookupTableSize","LookupTableSizeV2"];function q7(e){return RG.indexOf(e.op)>=0}function DG(e){return $G.indexOf(e.op)>=0}function PG(e){return _G.indexOf(e.op)>=0}var Vy=class{constructor(e,t){this.graph=e,this.parent=t,this.compiledMap=new Map,this._weightMap={},this.SEPERATOR=",",this._functions={},this._functionExecutorMap={},this.intermediateTensors={},this.keepTensorForDebug=!1,this._outputs=e.outputs,this._inputs=e.inputs,this._initNodes=e.initNodes,this._signature=e.signature,this._functions=e.functions,e.functions!=null&&Object.keys(e.functions).forEach(n=>{this._functionExecutorMap[n]=new Vy(e.functions[n],this)})}get weightIds(){return this.parent?this.parent.weightIds:this._weightIds}get functionExecutorMap(){return this.parent?this.parent.functionExecutorMap:this._functionExecutorMap}get weightMap(){return this.parent?this.parent.weightMap:this._weightMap}set weightMap(e){let t=Object.keys(e).map(n=>e[n].map(s=>s.id));this._weightIds=[].concat(...t),this._weightMap=e}set resourceManager(e){this._resourceManager=e}get inputs(){return this._inputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get outputs(){return this._outputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get inputNodes(){return this._inputs.map(e=>e.signatureKey||e.name)}get outputNodes(){return this._outputs.map(e=>{let t=e.signatureKey||e.name;return e.defaultOutput?`${t}:${e.defaultOutput}`:t})}get functions(){return Object.keys(this._functions).reduce((e,t)=>(e[t]=this._functions[t].signature,e),{})}getCompilationKey(e,t){let n=e.map(r=>r.name).sort(),s=t.map(r=>r.name).sort();return n.join(this.SEPERATOR)+"--"+s.join(this.SEPERATOR)}compile(e,t){let n=j7(e,t,this.weightMap,this._initNodes),{missingInputs:s,dynamicNode:r,syncInputs:a}=n;if(r!=null)throw new Error(`This execution contains the node '${r.name}', which has the dynamic op '${r.op}'. Please use model.executeAsync() instead. Alternatively, to avoid the dynamic ops, specify the inputs [${a}]`);if(s.length>0){let o=t.map(l=>l.name),i=Object.keys(e);throw new Error(`Cannot compute the outputs [${o}] from the provided inputs [${i}]. Missing the following inputs: [${s}]`)}return EG(this.graph,this.weightMap,n)}execute(e,t){e=this.mapInputs(e);let n=Object.keys(e).sort();this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t);let s=n.map(u=>this.graph.nodes[bs(u)[0]]),r=t.map(u=>bs(u)[0]),a=r.map(u=>this.graph.nodes[u]);this.resetIntermediateTensors(),a.length===0&&(a=this._outputs);let o=this.getCompilationKey(s,a),i=this.compiledMap.get(o);i==null&&(i=this.compile(e,a),this.compiledMap.set(o,i));let l={},c={};return K(()=>{let u=new H7(this.weightMap,l,c,this.functionExecutorMap),d={...this.weightMap};Object.keys(e).forEach(f=>{let[m,g]=bs(f),A=[];A[g]=e[f],d[m]=A});let p=this.getFrozenTensorIds(d),h={};for(let f=0;f<i.length;f++){let m=i[f];if(!d[m.name]){let g=G7(m,d,u,this._resourceManager);if(v.isPromise(g))throw new Error(`The execution of the op '${m.op}' returned a promise. Please use model.executeAsync() instead.`);d[m.name]=g,this.checkTensorForDisposal(m.name,m,d,u,p,r,h)}}return this.parent==null&&u.dispose(p),t.map(f=>Un(f,d,u))})}getFrozenTensorIds(e){let t=[].concat.apply([],Object.keys(e).map(n=>e[n]).map(n=>n.map(s=>s.id)));return new Set(t)}checkTensorForDisposal(e,t,n,s,r,a,o){t.category==="control"||a.indexOf(e)!==-1||(n[e].forEach(i=>{i!=null&&(o[i.id]=(o[i.id]||0)+t.children.length)}),t.inputs.forEach(i=>{if(i.category!=="control"){let l=OU(i.name,n,s);l!=null&&l.forEach(c=>{if(c&&!c.kept&&!r.has(c.id)){let u=o[c.id];if(u===1){if(!this.keepTensorForDebug)c.dispose();else{let[d,p]=Br(t.name,s);this.intermediateTensors[d]?this.intermediateTensors[d][p]=c:(this.intermediateTensors[d]=[],this.intermediateTensors[d][p]=c)}delete o[c.id]}else u!=null&&o[c.id]--}})}}))}async executeAsync(e,t){return this._executeAsync(e,t)}disposeIntermediateTensors(){!this.intermediateTensors||(Object.keys(this.intermediateTensors).forEach(e=>this.intermediateTensors[e].forEach(t=>t.dispose())),this.disposeTensorsMap())}disposeTensorsMap(){!this.tensorsMap||Object.keys(this.tensorsMap).forEach(e=>{this.tensorsMap[e].forEach(n=>{n&&!n.kept&&!n.isDisposed&&!this.keepIds.has(n.id)&&n.dispose()})})}getIntermediateTensors(){return this.tensorsMap}resetIntermediateTensors(){for(let e in this.intermediateTensors)this.intermediateTensors[e].forEach(t=>t.dispose()),delete this.intermediateTensors[e]}async _executeAsync(e,t,n=!1,s={},r={}){n||(e=this.mapInputs(e),this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t));try{this.keepTensorForDebug=Y().getBool("KEEP_INTERMEDIATE_TENSORS")}catch(c){console.warn(c.message)}this.resetIntermediateTensors();let a=new H7(this.weightMap,s,r,this.functionExecutorMap);this.tensorsMap=await this.executeWithControlFlow(e,a,t,n);let o=t.map(c=>Un(c,this.tensorsMap,a)),i=o.map(c=>c.id),l=Object.keys(e).map(c=>e[c].id);return this.keepIds=new Set([...i,...l,...this.weightIds]),this.keepTensorForDebug||this.disposeTensorsMap(),this.parent==null&&a.dispose(this.keepIds),o}async executeFunctionAsync(e,t,n){let s=e.reduce((r,a,o)=>(r[this.inputs[o].name]=a,r),{});return this._executeAsync(s,this.outputNodes,!0,t,n)}async executeWithControlFlow(e,t,n,s){let r=Object.keys(e),a=r.map(x=>this.graph.nodes[bs(x)[0]]),o=n.map(x=>bs(x)[0]),i=o.map(x=>this.graph.nodes[x]);i.length===0&&(i=this._outputs);let{usedNodes:l,missingInputs:c,dynamicNode:u,syncInputs:d}=j7(e,i,this.weightMap,this._initNodes),p=[...a,...this.graph.weights,...this._initNodes||[]].map(x=>({node:x,contexts:t.currentContext})),h={...this.weightMap};Object.keys(e).forEach(x=>{let[y,b]=bs(x),w=[];w[b]=e[x],h[y]=w});let f={},m=this.getFrozenTensorIds(h),g={};for(;p.length>0;){let x=this.processStack(a,p,t,h,g,m,o,f,l);await Promise.all(x)}u==null&&!s&&console.warn("This model execution did not contain any nodes with control flow or dynamic output shapes. You can use model.execute() instead.");let A=i.filter(x=>!q7(x)&&!Un(x.name,h,t)).map(x=>x.name);if(A.length>0){let x="";throw u!=null&&(x=`Alternatively, to avoid the dynamic ops, use model.execute() and specify the inputs [${d}]`),new Error(`Cannot compute the outputs [${A}] from the provided inputs [${r}]. Consider providing the following inputs: [${c}]. ${x}`)}return h}processStack(e,t,n,s,r,a,o,i,l){let c=[];for(;t.length>0;){let u=t.pop();n.currentContext=u.contexts;let d="";if(u.node.op==="Enter"&&I("isConstant",u.node,s,n)&&([d]=Br(u.node.name,n)),s[u.node.name]==null){let p=G7(u.node,s,n,this._resourceManager);d||([d]=Br(u.node.name,n));let h=n.currentContext;v.isPromise(p)?c.push(p.then(f=>(s[d]=f,n.currentContext=h,this.checkTensorForDisposal(d,u.node,s,n,a,o,i),this.processChildNodes(u.node,t,n,s,r,l),f))):(s[d]=p,this.checkTensorForDisposal(d,u.node,s,n,a,o,i),this.processChildNodes(u.node,t,n,s,r,l))}else this.processChildNodes(u.node,t,n,s,r,l)}return c}processChildNodes(e,t,n,s,r,a){e.children.forEach(o=>{let[i]=Br(o.name,n);r[i]||!a.has(o.name)||(o.op==="Merge"?o.inputNames.some(l=>!!Un(l,s,n))&&(r[i]=!0,t.push({contexts:n.currentContext,node:o})):o.inputNames.every(l=>!!Un(l,s,n))&&(r[i]=!0,t.push({contexts:n.currentContext,node:o})))})}dispose(){Object.keys(this.weightMap).forEach(e=>this.weightMap[e].forEach(t=>t.dispose()))}checkInputShapeAndType(e){Object.keys(e).forEach(t=>{let n=e[t],[s]=bs(t),r=this.graph.nodes[s];if(r.attrParams.shape&&r.attrParams.shape.value){let a=r.attrParams.shape.value,o=a.length===n.shape.length&&n.shape.every((i,l)=>a[l]===-1||a[l]===i);v.assert(o,()=>`The shape of dict['${r.name}'] provided in model.execute(dict) must be [${a}], but was [${n.shape}]`)}r.attrParams.dtype&&r.attrParams.dtype.value&&v.assert(n.dtype===r.attrParams.dtype.value,()=>`The dtype of dict['${r.name}'] provided in model.execute(dict) must be ${r.attrParams.dtype.value}, but was ${n.dtype}`)})}mapInputs(e){let t={};for(let n in e)if(this._signature!=null&&this._signature.inputs!=null&&this._signature.inputs[n]!=null){let s=this._signature.inputs[n];t[s.name]=e[n]}else t[n]=e[n];return t}checkInputs(e){let t=Object.keys(e).filter(n=>{let[s]=bs(n);return this.graph.nodes[s]==null});if(t.length>0)throw new Error(`The dict provided in model.execute(dict) has keys: [${t}] that are not part of graph`)}mapOutputs(e){return e.map(t=>this._signature!=null&&this._signature.outputs!=null&&this._signature.outputs[t]!=null?this._signature.outputs[t].name:t,{})}checkOutputs(e){e.forEach(t=>{let[n]=bs(t);if(!this.graph.nodes[n])throw new Error(`The output '${t}' is not found in the graph`)})}},FG=class{constructor(e={},t={}){this.hashTableNameToHandle=e,this.hashTableMap=t}addHashTable(e,t){this.hashTableNameToHandle[e]=t.handle,this.hashTableMap[t.id]=t}getHashTableHandleByName(e){return this.hashTableNameToHandle[e]}getHashTableById(e){return this.hashTableMap[e]}dispose(){for(let e in this.hashTableMap)this.hashTableMap[e].clearAndClose(),delete this.hashTableMap[e];for(let e in this.hashTableNameToHandle)this.hashTableNameToHandle[e].dispose(),delete this.hashTableNameToHandle[e]}},OG="?tfjs-format=file",MG="model.json",X7=class{constructor(e,t={}){this.modelUrl=e,this.loadOptions=t,this.version="n/a",t==null&&(this.loadOptions={}),this.resourceManager=new FG}get modelVersion(){return this.version}get inputNodes(){return this.executor.inputNodes}get outputNodes(){return this.executor.outputNodes}get inputs(){return this.executor.inputs}get outputs(){return this.executor.outputs}get weights(){return this.executor.weightMap}get metadata(){return this.artifacts.userDefinedMetadata}get modelSignature(){return this.signature}findIOHandler(){let e=this.modelUrl;if(e.load!=null)this.handler=e;else if(this.loadOptions.requestInit!=null)this.handler=rs.browserHTTPRequest(e,this.loadOptions);else{let t=rs.getLoadHandlers(e,this.loadOptions);if(t.length===0)t.push(rs.browserHTTPRequest(e,this.loadOptions));else if(t.length>1)throw new Error(`Found more than one (${t.length}) load handlers for URL '${[e]}'`);this.handler=t[0]}}async load(){if(this.findIOHandler(),this.handler.load==null)throw new Error("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let e=await this.handler.load();return this.loadSync(e)}loadSync(e){this.artifacts=e;let t=this.artifacts.modelTopology,n;this.artifacts.userDefinedMetadata!=null&&this.artifacts.userDefinedMetadata.signature!=null?n=this.artifacts.userDefinedMetadata.signature:n=this.artifacts.signature,this.signature=n,this.version=`${t.versions.producer}.${t.versions.minConsumer}`;let s=rs.decodeWeights(this.artifacts.weightData,this.artifacts.weightSpecs);if(this.executor=new Vy(z7.Instance.transformGraph(t,this.signature)),this.executor.weightMap=this.convertTensorMapToTensorsMap(s),this.executor.resourceManager=this.resourceManager,e.modelInitializer!=null&&e.modelInitializer.node!=null){let r=z7.Instance.transformGraph(e.modelInitializer);this.initializer=new Vy(r),this.initializer.weightMap=this.executor.weightMap,this.initializer.resourceManager=this.resourceManager,this.initializer.executeAsync({},[])}return!0}async save(e,t){if(typeof e=="string"){let n=rs.getSaveHandlers(e);if(n.length===0)throw new Error(`Cannot find any save handlers for URL '${e}'`);if(n.length>1)throw new Error(`Found more than one (${n.length}) save handlers for URL '${e}'`);e=n[0]}if(e.save==null)throw new Error("GraphModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");return e.save(this.artifacts)}predict(e,t){return this.execute(e,this.outputNodes)}normalizeInputs(e){if(!(e instanceof et)&&!Array.isArray(e))return e;if(e=Array.isArray(e)?e:[e],e.length!==this.inputNodes.length)throw new Error(`Input tensor count mismatch,the graph model has ${this.inputNodes.length} placeholders, while there are ${e.length} input tensors.`);return this.inputNodes.reduce((t,n,s)=>(t[n]=e[s],t),{})}normalizeOutputs(e){return e=e||this.outputNodes,Array.isArray(e)?e:[e]}execute(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=this.executor.execute(e,t);return n.length>1?n:n[0]}async executeAsync(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=await this.executor.executeAsync(e,t);return n.length>1?n:n[0]}getIntermediateTensors(){return this.executor.getIntermediateTensors()}disposeIntermediateTensors(){this.executor.disposeIntermediateTensors()}convertTensorMapToTensorsMap(e){return Object.keys(e).reduce((t,n)=>(t[n]=[e[n]],t),{})}dispose(){this.executor.dispose(),this.initializer&&this.initializer.dispose(),this.resourceManager.dispose()}};async function Be(e,t={}){if(e==null)throw new Error("modelUrl in loadGraphModel() cannot be null. Please provide a url or an IOHandler that loads the model");t==null&&(t={}),t.fromTFHub&&e.load==null&&(e.endsWith("/")||(e=e+"/"),e=`${e}${MG}${OG}`);let n=new X7(e,t);return await n.load(),n}var zG="0.0.0",K7={};Me(K7,{CSVDataset:()=>uI,Dataset:()=>ec,FileDataSource:()=>gI,TextLineDataset:()=>oI,URLDataSource:()=>AI,array:()=>iH,csv:()=>yH,func:()=>xH,generator:()=>bH,microphone:()=>wH,version_data:()=>kH,webcam:()=>vH,zip:()=>lH});var LG=li(yh()),BG=li(yh());function WG(e,t){return Sm(e,t)}function Sm(e,t,n=new Map,s=new Set){if(e==null)return null;if(typeof Blob=="function"&&e instanceof Blob)return e.slice();if(s.has(e))throw new Error("Circular references are not supported.");if(n.has(e))return n.get(e);let r=t(e);if(r.recurse&&r.value!==null)throw new Error("A deep map function may not return both a value and recurse=true.");if(r.recurse)if(Qu(e)){let a=Array.isArray(e)?[]:{};s.add(e);for(let o in e){let i=e[o],l=Sm(i,t,n,s);a[o]=l}return s.delete(e),e.__proto__&&(a.__proto__=e.__proto__),a}else throw new Error(`Can't recurse into non-iterable type: ${e}`);else return n.set(e,r.value),r.value}function VG(e,t=Y7){return Z7(e,t)}function Z7(e,t,n=new Set){let s=e[0];if(n.has(s))throw new Error("Circular references are not supported.");let r=t(e);if(r.recurse&&r.value!==null)throw new Error("A deep zip function may not return both a value and recurse=true.");if(r.recurse)if(Qu(s)){let a=Array.isArray(s)?[]:{};n.add(s);for(let o in s){let i=e.map(c=>c[o]),l=Z7(i,t,n);a[o]=l}return n.delete(s),a}else throw new Error(`Can't recurse into non-iterable type: ${s}`);else return r.value}function Y7(e){return e===null?null:Qu(e[0])?{value:null,recurse:!0}:{value:e,recurse:!1}}async function J7(e,t){let n=new Map;Sm(e,t,n);for(let r of Array.from(n.keys())){let a=n.get(r);if(v.isPromise(a)){let o=await a;n.set(r,o)}}return Sm(e,t,n)}function Qu(e){let t=!1;if(Y().get("IS_BROWSER"))t=e instanceof TextDecoder;else{let{StringDecoder:n}=V5();t=e instanceof n}return e!=null&&!ArrayBuffer.isView(e)&&(Array.isArray(e)||typeof e=="object"&&!(e instanceof et)&&!(e instanceof Promise)&&!t)}function UG(e){return e==null||GG(e)||Array.isArray(e)||typeof e=="object"&&e instanceof et||v.isTypedArray(e)}function GG(e){return e===null||typeof e!="object"&&typeof e!="function"}function HG(e){return WG(e,jG)}function jG(e){return e instanceof et?{value:e.clone(),recurse:!1}:Qu(e)?{value:null,recurse:!0}:{value:e,recurse:!1}}var Q7=class{constructor(e){if(this.capacity=e,this.begin=0,this.end=0,e==null)throw new RangeError("Can't create a ring buffer of unknown capacity.");if(e<1)throw new RangeError("Can't create ring buffer of capacity < 1.");this.data=new Array(e),this.doubledCapacity=2*e}wrap(e){for(;e<0;)e+=this.doubledCapacity;return e%this.doubledCapacity}get(e){if(e<0)throw new RangeError("Can't get item at a negative index.");return this.data[e%this.capacity]}set(e,t){if(e<0)throw new RangeError("Can't set item at a negative index.");this.data[e%this.capacity]=t}length(){let e=this.end-this.begin;return e<0&&(e=this.doubledCapacity+e),e}isFull(){return this.length()===this.capacity}isEmpty(){return this.length()===0}push(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.set(this.end,e),this.end=this.wrap(this.end+1)}pushAll(e){for(let t of e)this.push(t)}pop(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");this.end=this.wrap(this.end-1);let e=this.get(this.end);return this.set(this.end,void 0),e}unshift(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.begin=this.wrap(this.begin-1),this.set(this.begin,e)}shift(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let e=this.get(this.begin);return this.set(this.begin,void 0),this.begin=this.wrap(this.begin+1),e}shuffleExcise(e){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let t=this.wrap(this.begin+e),n=this.get(t);return this.set(t,this.pop()),n}},eI=class extends Q7{constructor(){super(eI.INITIAL_CAPACITY)}isFull(){return!1}push(e){super.isFull()&&this.expand(),super.push(e)}unshift(e){super.isFull()&&this.expand(),super.unshift(e)}expand(){let e=this.capacity*2,t=new Array(e),n=this.length();for(let s=0;s<n;s++)t[s]=this.get(this.wrap(this.begin+s));this.data=t,this.capacity=e,this.doubledCapacity=2*this.capacity,this.begin=0,this.end=n}},tI=eI;tI.INITIAL_CAPACITY=32;function nI(e){return new KG(e)}function Uy(e){return new ZG(e)}function qG(e,t){return new rI(e,t)}function XG(e,t=Cm.FAIL){return new aH(e,t)}var vn=class{async toArray(){let e=[],t=await this.next();for(;!t.done;)e.push(t.value),t=await this.next();return e}async toArrayForTest(){let e=this.prefetch(100),t=[],n=await e.next();for(;!n.done;)t.push(n.value),n=await e.next();return t}async resolveFully(){let e=await this.next();for(;!e.done;)e=await this.next()}async resolveWhile(e){let t=await this.next(),n=e(t.value);for(;!t.done&&n;)t=await this.next(),n=e(t.value)}handleErrors(e){return new sH(this,e)}filter(e){return new tH(this,e)}map(e){return new nH(this,e)}mapAsync(e){return new sI(this,e)}serialMapAsync(e){return new sI(this,e).serial()}flatmap(e){return new rH(this,e)}async forEachAsync(e){return this.map(e).resolveFully()}async serialForEach(e){return this.serialMapAsync(e).resolveWhile(t=>t===!0)}rowMajorBatch(e,t=!0){return new eH(this,e,t)}columnMajorBatch(e,t=!0,n=Y7){return this.rowMajorBatch(e,t).map(r=>VG(r,n))}concatenate(e,t){return new rI(nI([this,e]),t)}take(e){return e<0||e==null?this:new QG(this,e)}skip(e){return e<0||e==null?this:new JG(this,e)}prefetch(e){return new aI(this,e)}shuffle(e,t){return new oH(this,e,t)}serial(){return new YG(this)}},KG=class extends vn{constructor(e){super();this.items=e,this.trav=0}summary(){return`Array of ${this.items.length} items`}async next(){if(this.trav>=this.items.length)return{value:null,done:!0};let e=this.items[this.trav];return this.trav++,{value:HG(e),done:!1}}},ZG=class extends vn{constructor(e){super();this.nextFn=e}summary(){return"Function call"}async next(){try{return this.nextFn()}catch(e){throw e.message=`Error thrown while iterating through a dataset: ${e.message}`,e}}},YG=class extends vn{constructor(e){super();this.upstream=e,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Serial`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){return this.upstream.next()}},JG=class extends vn{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Skip`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.count++<this.maxCount;){let e=await this.upstream.next();if(e.done)return e;ne(e.value)}return this.upstream.next()}},QG=class extends vn{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0}summary(){return`${this.upstream.summary()} -> Take`}async next(){return this.count++>=this.maxCount?{value:null,done:!0}:this.upstream.next()}},eH=class extends vn{constructor(e,t,n=!0){super();this.upstream=e,this.batchSize=t,this.enableSmallLastBatch=n,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> RowMajorBatch`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){let e=[];for(;e.length<this.batchSize;){let t=await this.upstream.next();if(t.done)return this.enableSmallLastBatch&&e.length>0?{value:e,done:!1}:{value:null,done:!0};e.push(t.value)}return{value:e,done:!1}}},tH=class extends vn{constructor(e,t){super();this.upstream=e,this.predicate=t,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Filter`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;){let e=await this.upstream.next();if(e.done||this.predicate(e.value))return e;ne(e.value)}}},nH=class extends vn{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Map`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=pr.getTensorsInContainer(e.value),n=this.transform(e.value),s=pr.getTensorsInContainer(n);for(let r of t)pr.isTensorInList(r,s)||r.dispose();return{value:n,done:!1}}},sH=class extends vn{constructor(e,t){super();this.upstream=e,this.handler=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> handleErrors`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;)try{return await this.upstream.next()}catch(e){if(!this.handler(e))return{value:null,done:!0}}}},sI=class extends vn{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> AsyncMap`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=pr.getTensorsInContainer(e.value),n=await this.transform(e.value),s=pr.getTensorsInContainer(n);for(let r of t)pr.isTensorInList(r,s)||r.dispose();return{value:n,done:!1}}},Gy=class extends vn{constructor(){super();this.outputQueue=new tI,this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.outputQueue.length()===0;)if(!await this.pump())return{value:null,done:!0};return{value:this.outputQueue.shift(),done:!1}}},rH=class extends Gy{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Flatmap`}async pump(){let e=await this.upstream.next();if(e.done)return!1;let t=pr.getTensorsInContainer(e.value),n=this.transform(e.value),s=pr.getTensorsInContainer(n);this.outputQueue.pushAll(n);for(let r of t)pr.isTensorInList(r,s)||r.dispose();return!0}},rI=class extends vn{constructor(e,t){super();this.baseErrorHandler=t,this.lastRead=null,this.iterator=null,this.moreIterators=e}summary(){return"TODO: fill in upstream of chained summaries -> Chained"}async next(){return this.lastRead=this.readFromChain(this.lastRead),this.lastRead}async readFromChain(e){if(await e,this.iterator==null){let n=await this.moreIterators.next();if(n.done)return{value:null,done:!0};this.iterator=n.value,this.baseErrorHandler!=null&&(this.iterator=this.iterator.handleErrors(this.baseErrorHandler))}let t=await this.iterator.next();return t.done?(this.iterator=null,this.readFromChain(e)):t}},Cm;(function(e){e[e.FAIL=0]="FAIL",e[e.SHORTEST=1]="SHORTEST",e[e.LONGEST=2]="LONGEST"})(Cm||(Cm={}));var aH=class extends vn{constructor(e,t=0){super();this.iterators=e,this.mismatchMode=t,this.count=0,this.currentPromise=null}summary(){return"{TODO: fill in upstream of zip summaries} -> Zip"}async nextState(e){await e;let t=0,n=0;function s(a){return a instanceof vn?{value:a.next().then(i=>(t++,i.done&&n++,i.value)),recurse:!1}:{value:null,recurse:!0}}let r=await J7(this.iterators,s);if(t===n)return{value:null,done:!0};if(n>0)switch(this.mismatchMode){case 0:throw new Error(`Zipped streams should have the same length. Mismatched at element ${this.count}.`);case 1:return{value:null,done:!0};case 2:default:}return this.count++,{value:r,done:!1}}async next(){return this.currentPromise=this.nextState(this.currentPromise),this.currentPromise}},aI=class extends vn{constructor(e,t){super();this.upstream=e,this.bufferSize=t,this.buffer=new Q7(t)}summary(){return`${this.upstream.summary()} -> Prefetch`}refill(){for(;!this.buffer.isFull();){let e=this.upstream.next();this.buffer.push(e)}}next(){return this.refill(),this.buffer.shift()}},oH=class extends aI{constructor(e,t,n){super(e,t);this.upstream=e,this.windowSize=t,this.upstreamExhausted=!1,this.random=BG.alea(n||v.now().toString()),this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}randomInt(e){return Math.floor(this.random()*e)}chooseIndex(){return this.randomInt(this.buffer.length())}async serialNext(){for(this.upstreamExhausted||this.refill();!this.buffer.isEmpty();){let e=this.chooseIndex(),t=await this.buffer.shuffleExcise(e);if(t.done)this.upstreamExhausted=!0;else return this.refill(),t}return{value:null,done:!0}}},ec=class{constructor(){this.size=null}batch(e,t=!0){let n=this;v.assert(e>0,()=>`batchSize needs to be positive, but it is
${e}`);let s;return this.size===1/0||this.size==null?s=this.size:t?s=Math.ceil(this.size/e):s=Math.floor(this.size/e),vs(async()=>(await n.iterator()).columnMajorBatch(e,t,uH),s)}concatenate(e){let t=this,n;return this.size===1/0||e.size===1/0?n=1/0:this.size!=null&&e.size!=null?n=this.size+e.size:n=null,vs(async()=>(await t.iterator()).concatenate(await e.iterator()),n)}filter(e){let t=this,n;return this.size===1/0?n=1/0:n=null,vs(async()=>(await t.iterator()).filter(s=>K(()=>e(s))),n)}async forEachAsync(e){return(await this.iterator()).forEachAsync(e)}map(e){let t=this;return vs(async()=>(await t.iterator()).map(n=>K(()=>e(n))),this.size)}mapAsync(e){let t=this;return vs(async()=>(await t.iterator()).mapAsync(e),this.size)}prefetch(e){if(e==null)throw new RangeError("`Dataset.prefetch()` requires bufferSize to be specified.");let t=this;return vs(async()=>(await t.iterator()).prefetch(e),this.size)}repeat(e){let t=this,n;return this.size!=null&&e>0?n=this.size*e:e===0?n=0:this.size!=null&&(e===void 0||e<0)?n=1/0:n=null,vs(async()=>{let s=Uy(async()=>({value:await t.iterator(),done:!1}));return qG(s.take(e))},n)}skip(e){let t=this,n;return this.size!=null&&e>=0&&this.size>=e?n=this.size-e:this.size!=null&&(this.size<e||e===void 0||e<0)?n=0:n=null,vs(async()=>(await t.iterator()).skip(e),n)}shuffle(e,t,n=!0){if(e==null||e<0)throw this.size==null?new RangeError("`Dataset.shuffle()` requires bufferSize to be specified."):new RangeError(`\`Dataset.shuffle()\` requires bufferSize to be specified. If your data fits in main memory (for regular JS objects), and/or GPU memory (for \`tf.Tensor\`s), consider setting bufferSize to the dataset size (${this.size} elements)`);let s=this,r=LG.alea(t||v.now().toString());return vs(async()=>{let a=r.int32();return n&&(a+=r.int32()),(await s.iterator()).shuffle(e,a.toString())},this.size)}take(e){let t=this,n;return this.size!=null&&this.size>e?n=e:this.size!=null&&this.size<=e?n=this.size:n=null,vs(async()=>(await t.iterator()).take(e),n)}async toArray(){if(this.size===1/0)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArray()}async toArrayForTest(){if(this.size===1/0)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArrayForTest()}};ec.MAX_BUFFER_SIZE=1e4;function vs(e,t=null){return new class extends ec{constructor(){super(...arguments);this.size=t}async iterator(){return e()}}}function iH(e){return vs(async()=>nI(e),e.length)}function lH(e){if(!Qu(e))throw new Error("The argument to zip() must be an object or array.");let t;if(Array.isArray(e))for(let n=0;n<e.length;n++)t=t==null?e[n].size:Math.min(t,e[n].size);else if(e instanceof Object)for(let n in e)t=t==null?e[n].size:Math.min(t,e[n].size);return vs(async()=>{let n=await J7(e,s=>{if(s instanceof ec)return{value:s.iterator(),recurse:!1};if(Qu(s))return{value:null,recurse:!0};throw new Error("Leaves of the structure passed to zip() must be Datasets, not primitives.")});return XG(n,Cm.SHORTEST)},t)}function uH(e){if(e===null)return null;let t=e[0];return UG(t)?{value:cH(e),recurse:!1}:{value:null,recurse:!0}}function cH(e){if(e.length===0)throw new Error("Can't make a batch of zero elements.");return e[0]instanceof et?xn(e):pt(e)}var oI=class extends ec{constructor(e){super();this.input=e}async iterator(){return(await this.input.iterator()).decodeUTF8().split(`
`).map(s=>(s.endsWith("\r")&&(s=s.slice(0,-1)),s))}},Tm='"',ip=Symbol("out"),iI=Symbol("field"),Nm=Symbol("quote"),Hy=Symbol("quoteafterquote"),lI=Symbol("quoteinquote"),uI=class extends ec{constructor(e,t){super();this.input=e,this.hasHeader=!0,this.fullColumnNames=null,this.columnNamesValidated=!1,this.columnConfigs=null,this.configuredColumnsOnly=!1,this.delimiter=",",this.delimWhitespace=!1,this.base=new oI(e),t||(t={}),this.hasHeader=t.hasHeader!==!1,this.fullColumnNames=t.columnNames,this.columnConfigs=t.columnConfigs,this.configuredColumnsOnly=t.configuredColumnsOnly,t.delimWhitespace?(v.assert(t.delimiter==null,()=>"Delimiter should not be provided when delimWhitespace is true."),this.delimWhitespace=!0,this.delimiter=" "):this.delimiter=t.delimiter?t.delimiter:","}async columnNames(){return this.columnNamesValidated||await this.setColumnNames(),this.configuredColumnsOnly?Object.keys(this.columnConfigs):this.fullColumnNames}async setColumnNames(){let e=await this.maybeReadHeaderLine();if(!this.fullColumnNames&&!e)throw new Error("Column names must be provided if there is no header line.");this.fullColumnNames&&e&&v.assert(e.length===this.fullColumnNames.length,()=>"The length of provided columnNames ("+this.fullColumnNames.length.toString()+") does not match the length of the header line read from file ("+e.length.toString()+")."),this.fullColumnNames||(this.fullColumnNames=e);let t=this.fullColumnNames.reduce((s,r)=>(s[r]=s[r]+1||1,s),{}),n=Object.keys(t).filter(s=>t[s]>1);if(v.assert(n.length===0,()=>"Duplicate column names found: "+n.toString()),this.columnConfigs){for(let s of Object.keys(this.columnConfigs))if(this.fullColumnNames.indexOf(s)===-1)throw new Error('The key "'+s+'" provided in columnConfigs does not match any of the column names ('+this.fullColumnNames.toString()+").")}this.columnNamesValidated=!0}async maybeReadHeaderLine(){if(this.hasHeader){let t=await(await this.base.iterator()).next();if(t.done)throw new Error("No data was found for CSV parsing.");let n=t.value;return this.parseRow(n,!1)}else return null}async iterator(){this.columnNamesValidated||await this.setColumnNames();let e=await this.base.iterator();return this.hasHeader&&(e=e.skip(1)),e.map(t=>this.makeDataElement(t))}makeDataElement(e){let t=this.parseRow(e),n={},s={};for(let r=0;r<this.fullColumnNames.length;r++){let a=this.fullColumnNames[r],o=this.columnConfigs?this.columnConfigs[a]:null;if(!(this.configuredColumnsOnly&&!o)){let i=t[r],l=null;if(i==="")if(o&&o.default!==void 0)l=o.default;else{if(o&&(o.required||o.isLabel))throw new Error(`Required column ${a} is empty in this line: ${e}`);l=void 0}else{let c=Number(i);if(isNaN(c))o&&o.dtype==="bool"?l=this.getBoolean(i):l=i;else if(!o||!o.dtype)l=c;else switch(o.dtype){case"float32":l=c;break;case"int32":l=Math.floor(c);break;case"bool":l=this.getBoolean(i);break;default:l=c}}o&&o.isLabel?s[a]=l:n[a]=l}}return Object.keys(s).length===0?n:{xs:n,ys:s}}getBoolean(e){return e==="1"||e.toLowerCase()==="true"?1:0}parseRow(e,t=!0){let n=[],s=0,r=e.length,a=ip;for(let o=0;o<r;o++)switch(a){case ip:switch(e.charAt(o)){case Tm:s=o+1,a=Nm;break;case this.delimiter:if(s=o+1,this.delimiter===" "&&this.delimWhitespace)break;n.push(""),a=ip;break;default:a=iI,s=o;break}break;case iI:switch(e.charAt(o)){case this.delimiter:n.push(e.substring(s,o)),a=ip,s=o+1;break;default:}break;case Nm:switch(e.charAt(o)){case Tm:a=Hy;break;default:}break;case Hy:switch(e.charAt(o)){case this.delimiter:n.push(e.substring(s,o-1)),a=ip,s=o+1;break;case Tm:a=Nm;break;default:a=lI;break}break;case lI:switch(e.charAt(o)){case Tm:a=Nm;break;default:}break;default:}if(a===Hy?n.push(e.substring(s,r-1)):n.push(e.substring(s)),t&&n.length!==this.fullColumnNames.length)throw new Error(`Invalid row in csv file. Should have ${this.fullColumnNames.length} elements in a row, but got ${n}`);return n}},cI=class extends vn{constructor(e){super();this.microphoneConfig=e,this.isClosed=!1,this.fftSize=e.fftSize||1024;let t=Math.log2(this.fftSize);if(this.fftSize<0||t<4||t>14||!Number.isInteger(t))throw new Error(`Invalid fftSize: it must be a power of 2 between 2 to 4 and 2 to 14, but got ${this.fftSize}`);if(this.numFrames=e.numFramesPerSpectrogram||43,this.sampleRateHz=e.sampleRateHz,this.columnTruncateLength=e.columnTruncateLength||this.fftSize,this.audioTrackConstraints=e.audioTrackConstraints,this.smoothingTimeConstant=e.smoothingTimeConstant||0,this.includeSpectrogram=e.includeSpectrogram!==!1,this.includeWaveform=e.includeWaveform===!0,!this.includeSpectrogram&&!this.includeWaveform)throw new Error("Both includeSpectrogram and includeWaveform are false. At least one type of data should be returned.")}summary(){return"microphone"}static async create(e={}){if(Y().get("IS_NODE"))throw new Error("microphone API is only supported in browser environment.");let t=new cI(e);return await t.start(),t}async start(){try{this.stream=await navigator.mediaDevices.getUserMedia({audio:this.audioTrackConstraints==null?!0:this.audioTrackConstraints,video:!1})}catch(n){throw new Error(`Error thrown while initializing video stream: ${n.message}`)}if(!this.stream)throw new Error("Could not obtain audio from microphone.");let e=window.AudioContext||window.webkitAudioContext;if(this.audioContext=new e,!this.sampleRateHz)this.sampleRateHz=this.audioContext.sampleRate;else if(this.audioContext.sampleRate!==this.sampleRateHz)throw new Error(`Mismatch in sampling rate: Expected: ${this.sampleRateHz}; Actual: ${this.audioContext.sampleRate}`);let t=this.audioContext.createMediaStreamSource(this.stream);this.analyser=this.audioContext.createAnalyser(),this.analyser.fftSize=this.fftSize*2,this.analyser.smoothingTimeConstant=this.smoothingTimeConstant,t.connect(this.analyser),this.freqData=new Float32Array(this.fftSize),this.timeData=new Float32Array(this.fftSize)}async next(){if(this.isClosed)return{value:null,done:!0};let e,t,n=await this.getAudioData();if(this.includeSpectrogram){let s=this.flattenQueue(n.freqDataQueue);e=this.getTensorFromAudioDataArray(s,[this.numFrames,this.columnTruncateLength,1])}if(this.includeWaveform){let s=this.flattenQueue(n.timeDataQueue);t=this.getTensorFromAudioDataArray(s,[this.numFrames*this.fftSize,1])}return{value:{spectrogram:e,waveform:t},done:!1}}async capture(){return(await this.next()).value}async getAudioData(){let e=[],t=[],n=0;return new Promise(s=>{let r=setInterval(()=>{this.includeSpectrogram&&(this.analyser.getFloatFrequencyData(this.freqData),this.freqData[0]===-1/0&&s({freqDataQueue:e,timeDataQueue:t}),e.push(this.freqData.slice(0,this.columnTruncateLength))),this.includeWaveform&&(this.analyser.getFloatTimeDomainData(this.timeData),t.push(this.timeData.slice())),++n===this.numFrames&&(clearInterval(r),s({freqDataQueue:e,timeDataQueue:t}))},this.fftSize/this.sampleRateHz*1e3)})}stop(){this.isClosed||(this.isClosed=!0,this.analyser.disconnect(),this.audioContext.close(),this.stream!=null&&this.stream.getTracks().length>0&&this.stream.getTracks()[0].stop())}toArray(){throw new Error("Can not convert infinite audio stream to array.")}getSampleRate(){return this.sampleRateHz}flattenQueue(e){let t=e[0].length,n=new Float32Array(e.length*t);return e.forEach((s,r)=>n.set(s,r*t)),n}getTensorFromAudioDataArray(e,t){let n=new Float32Array(v.sizeFromShape(t));return n.set(e,n.length-e.length),pt(n,t)}},dI=class extends vn{constructor(e,t){super();if(this.webcamVideoElement=e,this.webcamConfig=t,this.isClosed=!0,this.resize=!1,this.needToResize())if(this.resize=!0,this.cropSize=[this.webcamConfig.resizeHeight,this.webcamConfig.resizeWidth],this.cropBoxInd=Vt([0],"int32"),this.webcamConfig.centerCrop){let n=this.webcamConfig.resizeWidth*1/this.webcamVideoElement.width,s=this.webcamConfig.resizeHeight*1/this.webcamVideoElement.height,r=(1-n)/2,a=(1-s)/2,o=r+n,i=s+a;this.cropBox=mr([a,r,i,o],[1,4])}else this.cropBox=mr([0,0,1,1],[1,4])}summary(){return"webcam"}static async create(e,t={}){if(Y().get("IS_NODE"))throw new Error("tf.data.webcam is only supported in browser environment.");if(!e){if(e=document.createElement("video"),!t.resizeWidth||!t.resizeHeight)throw new Error("Please provide webcam video element, or resizeWidth and resizeHeight to create a hidden video element.");e.width=t.resizeWidth,e.height=t.resizeHeight}let n=new dI(e,t);return await n.start(),n}async start(){this.webcamConfig.facingMode&&v.assert(this.webcamConfig.facingMode==="user"||this.webcamConfig.facingMode==="environment",()=>`Invalid webcam facing mode: ${this.webcamConfig.facingMode}. Please provide 'user' or 'environment'`);try{this.stream=await navigator.mediaDevices.getUserMedia({video:{deviceId:this.webcamConfig.deviceId,facingMode:this.webcamConfig.facingMode?this.webcamConfig.facingMode:"user",width:this.webcamVideoElement.width,height:this.webcamVideoElement.height}})}catch(e){throw e.message=`Error thrown while initializing video stream: ${e.message}`,e}if(!this.stream)throw new Error("Could not obtain video from webcam.");try{this.webcamVideoElement.srcObject=this.stream}catch(e){console.log(e),this.webcamVideoElement.src=window.URL.createObjectURL(this.stream)}return this.webcamVideoElement.play(),this.isClosed=!1,new Promise(e=>{this.webcamVideoElement.onloadedmetadata=()=>{e()}})}async next(){if(this.isClosed)return{value:null,done:!0};let e;try{e=Ys.fromPixels(this.webcamVideoElement)}catch(t){throw new Error(`Error thrown converting video to pixels: ${JSON.stringify(t)}`)}if(this.resize)try{return{value:this.cropAndResizeFrame(e),done:!1}}catch(t){throw new Error(`Error thrown cropping the video: ${t.message}`)}finally{e.dispose()}else return{value:e,done:!1}}needToResize(){return!!(this.webcamConfig.resizeWidth&&this.webcamConfig.resizeHeight&&(this.webcamVideoElement.width!==this.webcamConfig.resizeWidth||this.webcamVideoElement.height!==this.webcamConfig.resizeHeight))}cropAndResizeFrame(e){return K(()=>{let t=Kt(ge(e,"float32"),0),n;n=Ce.cropAndResize(t,this.cropBox,this.cropBoxInd,this.cropSize,"bilinear");let s=n.shape;return H(n,s.slice(1))})}async capture(){return(await this.next()).value}stop(){this.stream.getTracks().forEach(t=>t.stop());try{this.webcamVideoElement.srcObject=null}catch(t){console.log(t),this.webcamVideoElement.src=null}this.isClosed=!0}toArray(){throw new Error("Can not convert infinite video stream to array.")}},pI=class{},hI=class extends vn{split(e){return new dH(this,e)}},dH=class extends hI{constructor(e,t){super();this.upstream=e,this.impl=new pH(e,t)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},pH=class extends Gy{constructor(e,t){super();this.upstream=e,this.separator=t,this.carryover=""}summary(){return`${this.upstream.summary()} -> Split('${this.separator}')`}async pump(){let e=await this.upstream.next();if(e.done)return this.carryover===""?!1:(this.outputQueue.push(this.carryover),this.carryover="",!0);let t=e.value.split(this.separator);t[0]=this.carryover+t[0];for(let n of t.slice(0,-1))this.outputQueue.push(n);return this.carryover=t[t.length-1],!0}},hH=class extends vn{decodeUTF8(){return new fH(this)}},fH=class extends hI{constructor(e){super();this.upstream=e,this.impl=new mH(e)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},mH=class extends Gy{constructor(e){super();if(this.upstream=e,Y().get("IS_BROWSER"))this.decoder=new TextDecoder("utf-8");else{let{StringDecoder:t}=V5();this.decoder=new t("utf8")}}summary(){return`${this.upstream.summary()} -> Utf8`}async pump(){let e=await this.upstream.next(),t;if(e.done)return!1;t=e.value;let n;return Y().get("IS_BROWSER")?n=this.decoder.decode(t,{stream:!0}):n=this.decoder.write(Buffer.from(t.buffer)),this.outputQueue.push(n),!0}},fI=class extends hH{constructor(e,t={}){super();this.file=e,this.options=t,v.assert(e instanceof Uint8Array||(Y().get("IS_BROWSER")?e instanceof File||e instanceof Blob:!1),()=>"FileChunkIterator only supports File, Blob and Uint8Array right now."),this.offset=t.offset||0,this.chunkSize=t.chunkSize||1024*1024}summary(){return`FileChunks ${this.file}`}async next(){return this.offset>=(this.file instanceof Uint8Array?this.file.byteLength:this.file.size)?{value:null,done:!0}:{value:await new Promise((t,n)=>{let s=this.offset+this.chunkSize;if(this.file instanceof Uint8Array)t(new Uint8Array(this.file.slice(this.offset,s)));else{let r=new FileReader;r.onload=o=>{let i=r.result;if(i instanceof ArrayBuffer&&(i=new Uint8Array(i)),!(i instanceof Uint8Array))return n(new TypeError("FileReader returned unknown type."));t(i)},r.onabort=o=>n(new Error("Aborted")),r.onerror=o=>n(new Error(o.type));let a=this.file.slice(this.offset,s);r.readAsArrayBuffer(a)}this.offset=s}),done:!1}}};async function gH(e,t={},n){let s,r;typeof e=="string"?s=e:(s=e.url,r=AH(e));let a=await(n||v.fetch)(s,r);if(a.ok){let o=new Uint8Array(await a.arrayBuffer());return new fI(o,t)}else throw new Error(a.statusText)}var AH=e=>({method:e.method,headers:e.headers,body:e.body,mode:e.mode,credentials:e.credentials,cache:e.cache,redirect:e.redirect,referrer:e.referrer,integrity:e.integrity});function mI(e){return typeof e=="string"&&e.substr(0,7)==="file://"}var gI=class extends pI{constructor(e,t={}){super();this.input=e,this.options=t}async iterator(){if(mI(this.input)&&Y().get("IS_NODE")){let e=xh();this.input=e.readFileSync(this.input.substr(7))}return new fI(this.input,this.options)}},AI=class extends pI{constructor(e,t={}){super();this.url=e,this.fileOptions=t}async iterator(){return mI(this.url)?new gI(this.url,this.fileOptions).iterator():gH(this.url,this.fileOptions)}};function yH(e,t={}){return new uI(new AI(e),t)}function xH(e){let t=Uy(e);return vs(async()=>t)}function bH(e){return vs(async()=>{let t=await e();return Uy(()=>t.next())})}async function vH(e,t){return dI.create(e,t)}async function wH(e){return cI.create(e)}var kH="0.0.0";function Re(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&v.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the CPU backend.`)})}var IH=tr.whereImpl,yI=class extends tu{constructor(){super();this.blockSize=48,this.firstUse=!0,this.data=new td(this,as())}nextDataId(){return yI.nextDataId++}write(e,t,n){this.firstUse&&(this.firstUse=!1,Y().get("IS_NODE")&&E.warn(`
============================
Hi there \u{1F44B}. Looks like you are running TensorFlow.js in Node.js. To speed things up dramatically, install our node backend, which binds to TensorFlow C++, by running npm i @tensorflow/tfjs-node, or npm i @tensorflow/tfjs-node-gpu if you have CUDA. Then call require('@tensorflow/tfjs-node'); (-gpu suffix for CUDA) at the start of your program. Visit https://github.com/tensorflow/tfjs-node for more details.
============================`));let s={id:this.nextDataId()};return this.data.set(s,{values:e,dtype:n,refCount:1}),s}makeTensorInfo(e,t,n){let s;if(t==="string"&&n!=null&&n.length>0&&v.isString(n[0])){let r=n.map(a=>v.encodeString(a));s=this.write(r,e,t)}else s=this.write(n,e,t);return{dataId:s,shape:e,dtype:t}}refCount(e){return this.data.has(e)?this.data.get(e).refCount:0}incRef(e){let t=this.data.get(e);t.refCount++}decRef(e){if(this.data.has(e)){let t=this.data.get(e);t.refCount--}}move(e,t,n,s,r){this.data.set(e,{values:t,dtype:s,refCount:r})}numDataIds(){return this.data.numDataIds()}async read(e){return this.readSync(e)}readSync(e){let{dtype:t,complexTensorInfos:n}=this.data.get(e);if(t==="complex64"){let s=this.readSync(n.real.dataId),r=this.readSync(n.imag.dataId);return E.mergeRealAndImagArrays(s,r)}return this.data.get(e).values}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(s=>v.decodeString(s))}catch(s){throw new Error("Failed to decode encoded string bytes into utf-8")}return ze(e.shape,e.dtype,n)}makeOutput(e,t,n){let s=this.write(e,t,n);return as().makeTensorFromDataId(s,t,n,this)}disposeData(e,t=!1){if(this.data.has(e)){if(this.data.get(e).refCount--,!t&&this.data.get(e).refCount>0)return!1;let{complexTensorInfos:n}=this.data.get(e);n!=null&&(this.disposeData(n.real.dataId,!0),this.disposeData(n.imag.dataId,!0)),this.data.delete(e)}return!0}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}async time(e){let t=v.now();return e(),{kernelMs:v.now()-t}}memory(){return{unreliable:!0,reasons:["The reported memory is an upper bound. Due to automatic garbage collection, the true allocated memory may be less."]}}where(e){Re([e],"where");let t=this.readSync(e.dataId);return IH(e.shape,t)}dispose(){}floatPrecision(){return 32}epsilon(){return super.epsilon()}},jy=yI;jy.nextDataId=0;var Em={};Me(Em,{addImpl:()=>bI,bincountImpl:()=>Xy,bincountReduceImpl:()=>vI,ceilImpl:()=>wI,concatImpl:()=>Ky,equalImpl:()=>kI,expImpl:()=>SI,expm1Impl:()=>TI,floorImpl:()=>NI,gatherNdImpl:()=>EI,gatherV2Impl:()=>RI,greaterEqualImpl:()=>_I,greaterImpl:()=>$I,lessEqualImpl:()=>PI,lessImpl:()=>DI,linSpaceImpl:()=>FI,logImpl:()=>OI,maxImpl:()=>MI,maximumImpl:()=>zI,minimumImpl:()=>LI,multiplyImpl:()=>Zy,negImpl:()=>BI,notEqualImpl:()=>WI,prodImpl:()=>VI,rangeImpl:()=>Jy,rsqrtImpl:()=>UI,sigmoidImpl:()=>pj,simpleAbsImpl:()=>xI,sliceImpl:()=>_m,sparseFillEmptyRowsImpl:()=>HI,sparseReshapeImpl:()=>jI,sparseSegmentReductionImpl:()=>Qy,sqrtImpl:()=>mj,squaredDifferenceImpl:()=>qI,stridedSliceImpl:()=>XI,stringNGramsImpl:()=>KI,stringSplitImpl:()=>ZI,stringToHashBucketFastImpl:()=>YI,subImpl:()=>JI,tileImpl:()=>QI,topKImpl:()=>tS,transposeImpl:()=>Yy,uniqueImpl:()=>nS});function xI(e){let t=new Float32Array(e.length);for(let n=0;n<e.length;++n)t[n]=Math.abs(e[n]);return t}var SH=e=>{let{x:t}=e.inputs,n=e.backend;Re(t,"abs");let s=new Float32Array(v.sizeFromShape(t.shape)),r=n.data.get(t.dataId).values;return s=xI(r),n.makeOutput(s,t.shape,t.dtype)},CH={kernelName:di,backendName:"cpu",kernelFunc:SH};function Yt(e){return(t,n,s,r,a)=>{let o=E.assertAndGetBroadcastShape(t,n),i=o.length,l=v.computeStrides(o),c=v.sizeFromShape(o),u=v.getTypedArrayFromDType(a,c),d=t.length,p=n.length,h=v.computeStrides(t),f=v.computeStrides(n),m=E.getBroadcastDims(t,o),g=E.getBroadcastDims(n,o);if(m.length+g.length===0)for(let A=0;A<u.length;++A)u[A]=e(s[A%s.length],r[A%r.length]);else for(let A=0;A<u.length;++A){let x=v.indexToLoc(A,i,l),y=x.slice(-d);m.forEach(S=>y[S]=0);let b=v.locToIndex(y,d,h),w=x.slice(-p);g.forEach(S=>w[S]=0);let k=v.locToIndex(w,p,f);u[A]=e(s[b],r[k])}return[u,o]}}function ws(e){let{inputs:t,backend:n}=e,{real:s,imag:r}=t,a=n.data.get(s.dataId).values,o=n.data.get(r.dataId).values,i=n.makeTensorInfo(s.shape,"complex64"),l=n.data.get(i.dataId);return l.complexTensorInfos={real:n.makeTensorInfo(s.shape,"float32",a),imag:n.makeTensorInfo(r.shape,"float32",o)},i}var TH={kernelName:ad,backendName:"cpu",kernelFunc:ws};function Rm(e,t,n="float32"){if(n==="complex64"){let r=Rm(e,t,"float32"),a=Rm(e,t,"float32");return ws({inputs:{real:r,imag:a},backend:e})}let s=v.makeZerosTypedArray(v.sizeFromShape(t),n);return e.makeTensorInfo(t,n,s)}function Wr(e){let{inputs:t,backend:n}=e,{x:s}=t;return n.incRef(s.dataId),{dataId:s.dataId,shape:s.shape,dtype:s.dtype}}var NH={kernelName:qa,backendName:"cpu",kernelFunc:Wr};function kl(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.data.get(s.dataId).complexTensorInfos.real,a=n.data.get(r.dataId).values;return n.makeTensorInfo(r.shape,r.dtype,a)}var EH={kernelName:fd,backendName:"cpu",kernelFunc:kl};function Uo(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dtype:a}=s;if(a==="complex64"){if(r.dtype==="complex64")return Wr({inputs:{x:r},backend:n});let o=Rm(n,r.shape,r.dtype),i=Uo({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),l=ws({inputs:{real:i,imag:o},backend:n});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),l}if(r.dtype==="complex64"){let o=kl({inputs:{input:r},backend:n}),i=Uo({inputs:{x:o},backend:n,attrs:{dtype:a}});return n.disposeIntermediateTensorInfo(o),i}if(!v.hasEncodingLoss(r.dtype,a)){let o=Wr({inputs:{x:r},backend:n});return{dataId:o.dataId,shape:o.shape,dtype:a}}if(a==="int32"){let o=n.data.get(r.dataId).values,i=Int32Array.from(o);return n.makeTensorInfo(r.shape,"int32",i)}if(a==="bool"){let o=n.data.get(r.dataId).values,i=v.toTypedArray([0],r.dtype),[l,c]=Yt((u,d)=>u!==d?1:0)(r.shape,[],o,i,"bool");return n.makeTensorInfo(c,"bool",l)}throw new Error(`Error in Cast: failed to cast ${r.dtype} to ${a}`)}var RH={kernelName:Da,backendName:"cpu",kernelFunc:Uo};function wn(e,t,n,s){return n==null?({inputs:r,backend:a})=>{let{a:o,b:i}=r,l=a;Re([o,i],e);let c=l.data.get(o.dataId).values,u=l.data.get(i.dataId).values,d=o.dtype==="string"?E.fromUint8ToStringArray(c):c,p=o.dtype==="string"?E.fromUint8ToStringArray(u):u,h=s||o.dtype,[f,m]=t(o.shape,i.shape,d,p,h);return l.makeTensorInfo(m,h,f)}:({inputs:r,backend:a})=>{let{a:o,b:i}=r,l=a;if(o.dtype==="complex64"||i.dtype==="complex64"){let c=Uo({inputs:{x:o},backend:l,attrs:{dtype:"complex64"}}),u=l.data.get(c.dataId),d=u.complexTensorInfos.real,p=u.complexTensorInfos.imag,h=l.data.get(d.dataId).values,f=l.data.get(p.dataId).values,m=Uo({inputs:{x:i},backend:l,attrs:{dtype:"complex64"}}),g=l.data.get(m.dataId),A=g.complexTensorInfos.real,x=g.complexTensorInfos.imag,y=l.data.get(A.dataId).values,b=l.data.get(x.dataId).values,[w,k,S]=n(o.shape,i.shape,h,f,y,b),N=l.makeTensorInfo(S,"float32",w),R=l.makeTensorInfo(S,"float32",k),M=ws({inputs:{real:N,imag:R},backend:l});return l.disposeIntermediateTensorInfo(c),l.disposeIntermediateTensorInfo(m),l.disposeIntermediateTensorInfo(N),l.disposeIntermediateTensorInfo(R),M}else{let c=l.data.get(o.dataId).values,u=l.data.get(i.dataId).values,d=s||o.dtype,[p,h]=t(o.shape,i.shape,c,u,d);return l.makeTensorInfo(h,d,p)}}}function qy(e){return(t,n,s,r,a,o)=>{let i=E.assertAndGetBroadcastShape(t,n),l=v.sizeFromShape(i),c=i.length,u=v.computeStrides(i),d=v.getTypedArrayFromDType("float32",l),p=v.getTypedArrayFromDType("float32",l),h=E.getBroadcastDims(t,i),f=E.getBroadcastDims(n,i),m=E.mergeRealAndImagArrays(s,r),g=E.mergeRealAndImagArrays(a,o),A=t.length,x=v.computeStrides(t),y=n.length,b=v.computeStrides(n);if(h.length+f.length===0)for(let w=0;w<d.length;w++){let k=w%m.length,S=w%g.length,N=e(m[k*2],m[k*2+1],g[S*2],g[S*2+1]);d[w]=N.real,p[w]=N.imag}else for(let w=0;w<d.length;w++){let k=v.indexToLoc(w,c,u),S=k.slice(-A);h.forEach($=>S[$]=0);let N=v.locToIndex(S,A,x),R=k.slice(-y);f.forEach($=>R[$]=0);let M=v.locToIndex(R,y,b),D=e(m[N*2],m[N*2+1],g[M*2],g[M*2+1]);d[w]=D.real,p[w]=D.imag}return[d,p,i]}}var bI=Yt((e,t)=>e+t),$H=qy((e,t,n,s)=>({real:e+n,imag:t+s})),lp=wn(Xr,bI,$H),_H={kernelName:Xr,backendName:"cpu",kernelFunc:lp};function Xy(e,t,n,s,r){let a=v.sizeFromShape(s),o=v.makeZerosTypedArray(r,n);for(let i=0;i<e.length;i++){let l=e[i];if(l<0)throw new Error("Input x must be non-negative!");l>=r||(a>0?o[l]+=t[i]:o[l]+=1)}return o}function vI(e,t,n,s=!1){let r=e.shape[0],a=e.shape[1],o=ze([r,n],t.dtype);for(let i=0;i<r;i++)for(let l=0;l<a;l++){let c=e.get(i,l);if(c<0)throw new Error("Input x must be non-negative!");c>=n||(s?o.set(1,i,c):t.size>0?o.set(o.get(i,c)+t.get(i,l),i,c):o.set(o.get(i,c)+1,i,c))}return o}function Go(e){return(t,n,s)=>{let r=v.getTypedArrayFromDType(n,t.length);for(let a=0;a<t.length;++a)r[a]=e(t[a],s);return r}}function mt(e,t,n){return({inputs:s,attrs:r,backend:a})=>{let{x:o}=s;if(Re(o,e),o.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let i=a,l=i.data.get(o.dataId).values,c=v.sizeFromShape(o.shape),u=n||o.dtype,d=v.getArrayFromDType(u,c);for(let p=0;p<c;++p)d[p]=t(l[p],r);return i.makeTensorInfo(o.shape,u,d)}}function tc(e,t,n){return({inputs:s,attrs:r,backend:a})=>{let{x:o}=s;if(Re(o,e),o.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let i=a,l=i.data.get(o.dataId).values,c=n||o.dtype,u=t(l,c,r);return i.makeTensorInfo(o.shape,c,u)}}var wI=Go(e=>Math.ceil(e)),DH=tc(Pa,wI),PH={kernelName:Pa,backendName:"cpu",kernelFunc:DH};function Ky(e,t,n,s){let r=v.getArrayFromDType(n,v.sizeFromShape(t));if(s&&n!=="string"){let a=0;e.forEach(o=>{let i=v.sizeFromShape(o.shape);r.set(o.vals,a),a+=i})}else{let a=0;e.forEach(o=>{let i=n==="string"?E.fromUint8ToStringArray(o.vals):o.vals,l=0;for(let c=0;c<o.shape[0];++c){let u=c*t[1]+a;for(let d=0;d<o.shape[1];++d)r[u+d]=i[l++]}a+=o.shape[1]})}return r}var kI=Yt((e,t)=>e===t?1:0),II=wn(Ai,kI,null,"bool"),FH={kernelName:Ai,backendName:"cpu",kernelFunc:II},SI=Go(e=>Math.exp(e)),CI=tc(Va,SI,"float32"),OH={kernelName:Va,backendName:"cpu",kernelFunc:CI},TI=Go(e=>Math.expm1(e)),MH=tc(xi,TI),zH={kernelName:xi,backendName:"cpu",kernelFunc:MH},NI=Go(e=>Math.floor(e)),LH=tc(Ua,NI),BH={kernelName:Ua,backendName:"cpu",kernelFunc:LH};function EI(e,t,n,s,r,a,o,i,l){let c=ze([s,a],n);for(let u=0;u<s;u++){let d=[],p=0;for(let h=0;h<r;h++){let f=e[u*r+h];p+=f*o[h],d.push(f)}if(p<0||p>=l/a)throw new Error(`Invalid indices: ${d} does not index into ${i}`);for(let h=0;h<a;h++)c.values[u*a+h]=t.get(...t.indexToLoc(p*a+h))}return c}function RI(e,t,n){let s=ze(n,e.dtype);for(let r=0;r<s.size;++r){let o=s.indexToLoc(r).slice(),i=o[0],l=o[2],c=t.locToIndex([i,l]);o[2]=t.values[c];let u=e.locToIndex(o);s.values[r]=e.values[u]}return s}var $I=Yt((e,t)=>e>t?1:0),WH=wn(ki,$I,null,"bool"),VH={kernelName:ki,backendName:"cpu",kernelFunc:WH},_I=Yt((e,t)=>e>=t?1:0),UH=wn(ja,_I,null,"bool"),GH={kernelName:ja,backendName:"cpu",kernelFunc:UH},DI=Yt((e,t)=>e<t?1:0),HH=wn(Si,DI,null,"bool"),jH={kernelName:Si,backendName:"cpu",kernelFunc:HH},PI=Yt((e,t)=>e<=t?1:0),qH=wn(Ci,PI,null,"bool"),XH={kernelName:Ci,backendName:"cpu",kernelFunc:qH};function FI(e,t,n){let s=(t-e)/(n-1),r=v.makeZerosTypedArray(n,"float32");r[0]=e;for(let a=1;a<r.length;a++)r[a]=r[a-1]+s;return r}var OI=Go(e=>Math.log(e)),KH=tc(Xa,OI),ZH={kernelName:Xa,backendName:"cpu",kernelFunc:KH};function MI(e,t,n,s){let r=v.getTypedArrayFromDType(s,v.sizeFromShape(n));for(let a=0;a<r.length;++a){let o=a*t,i=e[o];for(let l=0;l<t;++l){let c=e[o+l];(Number.isNaN(c)||c>i)&&(i=c)}r[a]=i}return r}var zI=Yt((e,t)=>Math.max(e,t)),YH=wn(Za,zI),JH={kernelName:Za,backendName:"cpu",kernelFunc:YH},LI=Yt((e,t)=>Math.min(e,t)),QH=wn(eo,LI),ej={kernelName:eo,backendName:"cpu",kernelFunc:QH},Zy=Yt((e,t)=>e*t),tj=qy((e,t,n,s)=>({real:e*n-t*s,imag:e*s+t*n})),$m=wn(no,Zy,tj),nj={kernelName:no,backendName:"cpu",kernelFunc:$m};function BI(e,t,n){let s=v.createScalarValue(-1,n);return Zy([],t,s,e,n)}function sj(e){let{inputs:t,backend:n}=e,{x:s}=t;Re(s,"neg");let r=n.data.get(s.dataId).values,[a,o]=BI(r,s.shape,s.dtype);return n.makeTensorInfo(o,s.dtype,a)}var rj={kernelName:Ni,backendName:"cpu",kernelFunc:sj},WI=Yt((e,t)=>e!==t?1:0),aj=wn(Ei,WI,null,"bool"),oj={kernelName:Ei,backendName:"cpu",kernelFunc:aj};function Yy(e,t,n,s,r){let a=t.length,o=v.sizeFromShape(t),i=v.computeStrides(t),l=v.computeStrides(r),c=v.getTypedArrayFromDType(n,v.sizeFromShape(r));for(let u=0;u<o;++u){let d=v.indexToLoc(u,a,i),p=new Array(d.length);for(let f=0;f<p.length;f++)p[f]=d[s[f]];let h=v.locToIndex(p,a,l);c[h]=e[u]}return c}function Ls(e){let{inputs:t,attrs:n,backend:s}=e,{x:r}=t,{perm:a}=n;Re(r,"transpose");let o=r.shape.length,i=new Array(o);for(let d=0;d<i.length;d++)i[d]=r.shape[a[d]];let l=s.data.get(r.dataId).values,c=Yy(l,r.shape,r.dtype,a,i);return{dataId:s.write(c,i,r.dtype),shape:i,dtype:r.dtype}}var ij={kernelName:xo,backendName:"cpu",kernelFunc:Ls};function VI(e,t,n,s){let[r,a]=E.computeOutAndReduceShapes(e,s),o=Ln(t,"int32"),i=v.makeZerosTypedArray(v.sizeFromShape(r),o),l=v.sizeFromShape(a);for(let c=0;c<i.length;++c){let u=c*l,d=1;for(let p=0;p<l;++p)d*=n[u+p];i[c]=d}return{outVals:i,outShape:r,outDtype:o}}function lj(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;Re(r,"prod");let i=r.shape.length,l=v.parseAxisParam(a,r.shape),c=E.getAxesPermutation(l,i),u=l,d=r,p=[];c!=null&&(d=Ls({inputs:{x:r},backend:n,attrs:{perm:c}}),p.push(d),u=E.getInnerMostAxes(u.length,i));let h=n.data.get(d.dataId).values,{outVals:f,outShape:m,outDtype:g}=VI(d.shape,d.dtype,h,u),A=m;return o&&(A=E.expandShapeToKeepDim(m,l)),p.forEach(x=>n.disposeIntermediateTensorInfo(x)),n.makeTensorInfo(A,g,f)}var uj={kernelName:Fi,backendName:"cpu",kernelFunc:lj};function Jy(e,t,n,s){let r=e===t,a=e<t&&n<0,o=t<e&&n>1;if(r||a||o)return v.makeZerosTypedArray(0,s);let i=Math.abs(Math.ceil((t-e)/n)),l=v.makeZerosTypedArray(i,s);t<e&&n===1&&(n=-1),l[0]=e;for(let c=1;c<l.length;c++)l[c]=l[c-1]+n;return l}var UI=Go(e=>1/Math.sqrt(e)),cj=tc(uo,UI),dj={kernelName:uo,backendName:"cpu",kernelFunc:cj},pj=Go(e=>1/(1+Math.exp(-e))),GI=mt(po,e=>1/(1+Math.exp(-e))),hj={kernelName:po,backendName:"cpu",kernelFunc:GI};function _m(e,t,n,s,r){let a=Ft.isSliceContinous(s,t,n),o=v.sizeFromShape(n),i=v.computeStrides(s);if(a){let d=Ft.computeFlatOffset(t,i);return r==="string"?e.slice(d,d+o):e.subarray(d,d+o)}let l=r==="string"?E.fromUint8ToStringArray(e):e,c=ze(s,r,l),u=ze(n,r);for(let d=0;d<u.size;++d){let p=u.indexToLoc(d),h=p.map((f,m)=>f+t[m]);u.set(c.get(...h),...p)}return r==="string"?E.fromStringArrayToUint8(u.values):u.values}function Il(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,size:o}=s;Re(r,"slice");let[i,l]=Ft.parseSliceParams(r,a,o);Ft.assertParamsValid(r,i,l);let c=n.data.get(r.dataId).values,u=_m(c,i,l,r.shape,r.dtype);return n.makeTensorInfo(l,r.dtype,u)}var fj={kernelName:Wi,backendName:"cpu",kernelFunc:Il};function HI(e,t,n,s,r,a,o){let i=t[0],l=a[0],c=new Array(l),u=new Array(i),d=t[1];if(l===0){if(i!==0)throw new Error(`Received SparseTensor with denseShape[0] = 0 but
indices.shape[0] = ${i}`);let g=v.getArrayFromDType(n,0),A=v.getArrayFromDType(r,0);return[g,[0,d],A,c,u]}let p=!0,h=0,f=new Array(l).fill(0);for(let g=0;g<i;++g){let A=e[g*d];if(A<0)throw new Error(`indices(${g}, 0) is invalid: ${A} < 0`);if(A>=l)throw new Error(`indices(${g}, 0) is invalid: ${A} >= ${l}`);++f[A],p=p&&A>=h,h=A}let m=!0;for(let g=0;g<l;++g){let A=f[g]===0;c[g]=A,m=m&&!A,f[g]=Math.max(f[g],1),g>0&&(f[g]+=f[g-1])}if(m&&p){let g=e,A=s;for(let x=0;x<i;++x)u[x]=x;return[g,[i,d],A,c,u]}else{let g=f[l-1],A=v.getArrayFromDType(n,g*d),x=v.getArrayFromDType(r,g),y=new Array(l).fill(0);for(let b=0;b<i;++b){let w=e[b*d],k=y[w],S=(w===0?0:f[w-1])+k;y[w]++;for(let N=0;N<d;++N)A[S*d+N]=e[b*d+N];x[S]=s[b],u[b]=S}for(let b=0;b<l;++b)if(y[b]===0){let k=b===0?0:f[b-1];A[k*d+0]=b;for(let S=1;S<d;++S)A[k*d+S]=0;x[k]=o}return[A,[g,d],x,c,u]}}function jI(e,t,n,s,r){let a=v.sizeFromShape(s),o=t[0],i=r.length,l=[],c=1,u=-1;for(let g=0;g<i;++g){let A=r[g];if(A===-1){if(u!==-1)throw new Error(`only one output dimension may be -1, not both ${u} and ${g}`);u=g,l.push(1)}else{if(A<0)throw new Error(`size ${g} must be non-negative, not ${A}`);c*=A,l.push(A)}}if(u!==-1){if(c<=0)throw new Error("reshape cannot infer the missing input size for an empty tensor unless all specified input sizes are non-zero");let g=Math.trunc(a/c);if(c*g!==a)throw new Error(`Input to reshape is a SparseTensor with ${a}
dense values, but the requested shape requires a multiple of ${c}. inputShape=${s} outputShape= ${l}`);l[u]=g}let d=v.sizeFromShape(l);if(d!==a)throw new Error(`Input to reshape is a tensor with ${a} dense values, but the requested shape has ${d}. inputShape=${s} outputShape=${l}`);let p=s.length,h=[];if(p>0){h[p-1]=1;for(let g=p-2;g>=0;--g)h[g]=h[g+1]*s[g+1]}let f=[];if(i>0){f[i-1]=1;for(let g=i-2;g>=0;--g)f[g]=f[g+1]*l[g+1]}let m=v.getArrayFromDType(n,o*i);for(let g=0;g<o;++g){let A=0;for(let x=0;x<p;++x)A+=e[g*p+x]*h[x];for(let x=0;x<i;++x)m[g*i+x]=Math.trunc(A/f[x]),A%=f[x]}return[m,[o,i],l]}function Qy(e,t,n,s,r,a=!1,o=0){let i=s.length;if(i!==r.length)throw new Error("segmentIds and indices should have same size.");let l=[t[0],e.length/t[0]],c=l[1],d=i>0?r[i-1]+1:0;if(d<0)throw new Error("segment ids must be >= 0");let p=t.slice();p[0]=d;let h=p.reduce((y,b)=>y*b,1),f=v.getArrayFromDType(n,h);if(i===0)return d>0&&f.fill(o),[f,p];if(d<=0)throw new Error("segment ids must be >= 0");let m=0,g=1,A=0,x=r[m];for(;;){let y=0;if(g<i){if(y=r[g],x===y){++g;continue}if(x>=y)throw new Error("segment ids are not increasing")}if(x<0||x>=d)throw new Error(`Segment id ${x} out of range [0, ${d}), possibly because segmentIds input is not sorted.`);x>A&&f.fill(o,A*c,x*c);for(let b=m;b<g;++b){let w=s[b];if(w<0||w>=l[0])throw new Error(`Bad: indices[${b}] == ${s[b]} out of range [0, ${l[0]})`);for(let k=0;k<c;k++)f[x*c+k]+=e[w*c+k]}if(a)for(let b=0;b<c;b++)f[x*c+b]/=g-m;if(m=g,++g,A=x+1,x=y,g>i)break}return A<d&&f.fill(o,A*c,d*c),[f,p]}var mj=Go(e=>Math.sqrt(e)),gj=mt(ho,e=>Math.sqrt(e)),Aj={kernelName:ho,backendName:"cpu",kernelFunc:gj},qI=Yt((e,t)=>{let n=e-t;return n*n}),yj=wn(go,qI),xj={kernelName:go,backendName:"cpu",kernelFunc:yj};function XI(e,t,n,s){let r=ze(e,t.dtype);for(let a=0;a<r.size;a++){let o=r.indexToLoc(a),i=new Array(o.length);for(let l=0;l<i.length;l++)i[l]=o[l]*n[l]+s[l];r.set(t.get(...i),...o)}return r}var bj=class{constructor(e,t,n,s,r,a){this.separator=v.encodeString(e),this.nGramWidths=t,this.leftPad=v.encodeString(n),this.rightPad=v.encodeString(s),this.padWidth=r,this.preserveShort=a}getPadWidth(e){return Math.min(this.padWidth<0?e-1:this.padWidth,e-1)}getNumNGrams(e,t){let n=this.getPadWidth(t);return Math.max(0,e+2*n-t+1)}createNGrams(e,t,n,s,r,a){for(let o=0;o<r;++o){let i=this.getPadWidth(a),l=Math.max(0,i-o),c=Math.max(0,i-(r-(o+1))),u=a-(l+c),d=t+(l>0?0:o-i),p=0;p+=l*this.leftPad.length;for(let A=0;A<u;++A)p+=e[d+A].length;p+=c*this.rightPad.length,p+=(l+c+u-1)*this.separator.length,n[s+o]=new Uint8Array(p);let f=n[s+o],m=0,g=A=>A.forEach(x=>f[m++]=x);for(let A=0;A<l;++A)g(this.leftPad),g(this.separator);for(let A=0;A<u-1;++A)g(e[d+A]),g(this.separator);if(u>0){g(e[d+u-1]);for(let A=0;A<c;++A)g(this.separator),g(this.rightPad)}else{for(let A=0;A<c-1;++A)g(this.rightPad),g(this.separator);g(this.rightPad)}}}compute(e,t){let n=e.length,s=t.length;if(s>0){let i=t[0];if(i!==0)throw new Error(`First split value must be 0, got ${i}`);for(let l=1;l<s;++l){let c=t[l]>=i;if(c=c&&t[l]<=n,!c)throw new Error(`Invalid split value ${t[l]}, must be in [${i}, ${n}]`);i=t[l]}if(i!==n)throw new Error(`Last split value must be data size. Expected ${n}, got ${i}`)}let r=s-1,a=v.getArrayFromDType("int32",s);if(n===0||s===0){let i=new Array(n);for(let l=0;l<=r;++l)a[l]=0;return[i,a]}a[0]=0;for(let i=1;i<=r;++i){let l=t[i]-t[i-1],c=0;this.nGramWidths.forEach(u=>{c+=this.getNumNGrams(l,u)}),this.preserveShort&&l>0&&c===0&&(c=1),a[i]=a[i-1]+c}let o=new Array(a[r]);for(let i=0;i<r;++i){let l=t[i],c=a[i];if(this.nGramWidths.forEach(u=>{let d=t[i+1]-t[i],p=this.getNumNGrams(d,u);this.createNGrams(e,l,o,c,p,u),c+=p}),this.preserveShort&&c===a[i]){let u=t[i+1]-t[i];if(u===0)continue;let d=u+2*this.padWidth,p=1;this.createNGrams(e,l,o,c,p,d)}}return[o,a]}};function KI(e,t,n,s,r,a,o,i){return new bj(n,s,r,a,o,i).compute(e,t)}function vj(e,t,n,s){if(!e.length)return;if(t.length===0){for(let a=0;a<e.length;++a)s.push(e.subarray(a,a+1));return}if(t.length===1){let a=t[0],o=e.indexOf(a);for(;o!==-1;){let i=e.subarray(0,o);(!n||i.length!==0)&&s.push(i),e=e.subarray(o+1),o=e.indexOf(a)}(!n||e.length!==0)&&s.push(e);return}let r=0;for(let a=0;a<e.length+1;a++)if(a===e.length||t.indexOf(e[a])!==-1){let o=e.subarray(r,a);(!n||o.length!==0)&&s.push(o),r=a+1}}function ZI(e,t,n){let s=e.length,r=[],a=0,o=0,i=new Array(s);for(let p=0;p<s;++p){let h=r.length;vj(e[p],t,n,r);let f=r.length-h;i[p]=f,a+=f,o=Math.max(o,f)}let l=v.getArrayFromDType("int32",a*2),c=new Array(a),u=[s,o],d=0;for(let p=0;p<s;++p)for(let h=0;h<i[p];++h)l[d*2]=p,l[d*2+1]=h,c[d]=r[d],++d;return[l,c,u]}function YI(e,t){let n=v.getArrayFromDType("int32",e.length);for(let s=0;s<e.length;++s)n[s]=v.fingerPrint64(e[s]).modulo(t).getLowBitsUnsigned();return n}var JI=Yt((e,t)=>e-t),wj=qy((e,t,n,s)=>({real:e-n,imag:t-s})),ex=wn(Ao,JI,wj),kj={kernelName:Ao,backendName:"cpu",kernelFunc:ex};function QI(e,t){let n=new Array(e.rank);for(let r=0;r<n.length;r++)n[r]=e.shape[r]*t[r];let s=ze(n,e.dtype);for(let r=0;r<s.values.length;++r){let a=s.indexToLoc(r),o=new Array(e.rank);for(let l=0;l<o.length;l++)o[l]=a[l]%e.shape[l];let i=e.locToIndex(o);s.values[r]=e.values[i]}return s}var up=(e,t)=>{let n=t.value-e.value;return n===0?e.index-t.index:n};function eS(e,t,n=0,s=e.length-1){for(;s>n;){if(s-n>600){let i=s-n+1,l=t-n+1,c=Math.log(i),u=.5*Math.exp(2*c/3),d=.5*Math.sqrt(c*u*(i-u)/i)*Math.sign(l-i/2),p=Math.max(n,Math.floor(t-l*u/i+d)),h=Math.min(s,Math.floor(t+(i-l)*u/i+d));eS(e,t,p,h)}let r=e[t],a=n,o=s;for(v.swap(e,n,t),up(e[s],r)>0&&v.swap(e,n,s);a<o;){for(v.swap(e,a,o),a++,o--;up(e[a],r)<0;)a=a+1;for(;up(e[o],r)>0;)o=o-1}up(e[n],r)===0?v.swap(e,n,o):(o=o+1,v.swap(e,o,s)),o<=t&&(n=o+1),t<=o&&(s=o-1)}}function tS(e,t,n,s,r){let a=t[t.length-1],[o,i]=[e.length/a,a],l=v.getTypedArrayFromDType(n,o*s),c=v.getTypedArrayFromDType("int32",o*s);for(let d=0;d<o;d++){let p=d*i,h=e.subarray(p,p+i),f=new Array(h.length);h.forEach((x,y)=>f[y]={value:x,index:y}),s<f.length&&(eS(f,s),f=f.slice(0,s)),r&&f.sort(up);let m=d*s,g=l.subarray(m,m+s),A=c.subarray(m,m+s);for(let x=0;x<s;x++)g[x]=f[x].value,A[x]=f[x].index}let u=t.slice();return u[u.length-1]=s,[ze(u,n,l),ze(u,"int32",c)]}function nS(e,t,n,s){let r=v.parseAxisParam(t,n)[0],a=[1,n[0],1];for(let f=0;f<r;f++)a[0]*=n[f];a[1]=n[r];for(let f=r+1;f<n.length;f++)a[2]*=n[f];let o={},i=new Int32Array(n[r]),l=new nn(a,s,e),c=[],u=a[0]===1&&a[2]===1;for(let f=0;f<n[r];f++){let m;if(u)m=e[f].toString();else{let g=[];for(let A=0;A<a[0];A++)for(let x=0;x<a[2];x++)g.push(l.get(A,f,x));m=g.join(",")}if(o[m]!==void 0)i[f]=o[m];else{let g=Object.keys(o).length;o[m]=g,i[f]=g,c.push(f)}}let d=a.slice();d[1]=Object.keys(o).length;let p=new nn(d,s);c.forEach((f,m)=>{for(let g=0;g<a[0];g++)for(let A=0;A<a[2];A++)p.set(l.get(g,f,A),g,m,A)});let h=n.slice();return h[r]=d[1],{outputValues:p.values,outputShape:h,indices:i}}var Ij="0.0.0";ol("cpu",()=>new jy,1);var sS=mt(Wa,e=>e>=0?e:Math.exp(e)-1),Sj={kernelName:Wa,backendName:"cpu",kernelFunc:sS};function rS(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{alpha:a}=s;Re([r],"leakyRelu");let o=v.sizeFromShape(r.shape),i=n.data.get(r.dataId).values,l=v.getTypedArrayFromDType("float32",o);for(let c=0;c<i.length;c++)l[c]=i[c]<0?a*i[c]:i[c];return n.makeTensorInfo(r.shape,"float32",l)}var Cj={kernelName:Ii,backendName:"cpu",kernelFunc:rS},Tj=Yt((e,t)=>e<0?t*e:e);function aS(e){let{inputs:t,backend:n}=e,{x:s,alpha:r}=t;Re([s,r],"prelu");let a=n.data.get(s.dataId).values,o=n.data.get(r.dataId).values,[i,l]=Tj(s.shape,r.shape,a,o,"float32");return n.makeTensorInfo(l,"float32",i)}var Nj={kernelName:ao,backendName:"cpu",kernelFunc:aS},oS=mt(oo,e=>Math.max(0,e)),Ej={kernelName:oo,backendName:"cpu",kernelFunc:oS},iS=mt(lo,e=>Math.min(Math.max(0,e),6)),Rj={kernelName:lo,backendName:"cpu",kernelFunc:iS};function tx(e,t,n,s,r){if(n==="linear")return Wr({inputs:{x:t},backend:e});if(n==="relu")return oS({inputs:{x:t},backend:e});if(n==="elu")return sS({inputs:{x:t},backend:e});if(n==="relu6")return iS({inputs:{x:t},backend:e});if(n==="prelu")return aS({inputs:{x:t,alpha:s},backend:e});if(n==="leakyrelu")return rS({inputs:{x:t},backend:e,attrs:{alpha:r}});if(n==="sigmoid")return GI({inputs:{x:t},backend:e});throw new Error(`Activation ${n} has not been implemented for the CPU backend.`)}function Dt(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{shape:a}=s,o=v.sizeFromShape(r.shape),i=v.inferFromImplicitShape(a,o),l=v.sizeFromShape(i);v.assert(o===l,()=>`The new shape (${i}) has ${l} elements and the old shape (${r.shape}) has ${o} elements. The new shape and old shape must have the same number of elements.`),n.incRef(r.dataId);let c=n.data.get(r.dataId);if(c.complexTensorInfos!=null){let u=c.complexTensorInfos.real,d=c.complexTensorInfos.imag;u.shape=i,d.shape=i}return{dataId:r.dataId,shape:i,dtype:r.dtype}}var $j={kernelName:Oi,backendName:"cpu",kernelFunc:Dt};function lS(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a}=t,{transposeA:o,transposeB:i}=s;Re([r,a],"matMul");let l=r.shape.length,c=a.shape.length,u=o?r.shape[l-2]:r.shape[l-1],d=i?a.shape[c-1]:a.shape[c-2],p=o?r.shape[l-1]:r.shape[l-2],h=i?a.shape[c-2]:a.shape[c-1],f=r.shape.slice(0,-2),m=a.shape.slice(0,-2),g=v.sizeFromShape(f),A=v.sizeFromShape(m),y=sl.assertAndGetBroadcastShape(r.shape.slice(0,-2),a.shape.slice(0,-2)).concat([p,h]);v.assert(u===d,()=>`Error in matMul: inner shapes (${u}) and (${d}) of Tensors with shapes ${r.shape} and ${a.shape} and transposeA=${o} and transposeB=${i} must match.`);let b=o?[g,u,p]:[g,p,u],w=i?[A,h,d]:[A,d,h],k=Dt({inputs:{x:r},backend:n,attrs:{shape:b}}),S=Dt({inputs:{x:a},backend:n,attrs:{shape:w}}),N=o?k.shape[1]:k.shape[2],R=o?k.shape[2]:k.shape[1],M=i?S.shape[1]:S.shape[2],D=Math.max(g,A),$=n.data.get(k.dataId).values,T=n.data.get(S.dataId).values,F=v.computeStrides(k.shape),V=v.computeStrides(S.shape),[X,z,j]=o?[F[0],1,F[1]]:[F[0],F[1],1],[Z,Q,te]=i?[1,V[1],V[0]]:[V[1],1,V[0]],ae=R*M,U=ze([D,R,M],k.dtype),oe=U.values,re=n.blockSize;for(let me=0;me<D;me++)for(let ye=0;ye<R;ye+=re)for(let Te=0;Te<M;Te+=re)for(let Ne=0;Ne<N;Ne+=re){let Pe=Math.min(ye+re,R),Ue=Math.min(Te+re,M),at=Math.min(Ne+re,N);for(let Je=ye;Je<Pe;Je++)for(let Ze=Te;Ze<Ue;Ze++){let gt=0;for(let ot=Ne;ot<at;ot++){let At=Math.min(me,g-1)*X,Et=Math.min(me,A-1)*te,Qn=$[At+Je*z+ot*j],it=T[ot*Z+Ze*Q+Et];gt+=Qn*it}oe[me*ae+(Je*M+Ze)]+=gt}}return n.disposeIntermediateTensorInfo(k),n.disposeIntermediateTensorInfo(S),n.makeTensorInfo(y,U.dtype,U.values)}var _j={kernelName:_a,backendName:"cpu",kernelFunc:lS};function Dj(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a,bias:o,preluActivationWeights:i}=t,{transposeA:l,transposeB:c,activation:u,leakyreluAlpha:d}=s,p,h,f,m=[];p=lS({inputs:{a:r,b:a},attrs:{transposeA:l,transposeB:c},backend:n}),o&&(h=lp({inputs:{a:p,b:o},backend:n}),m.push(p),p=h),u&&(f=tx(n,p,u,i,d),m.push(p),p=f);for(let A of m)n.disposeIntermediateTensorInfo(A);return p}var Pj={kernelName:vo,backendName:"cpu",kernelFunc:Dj},Fj=mt(ru,e=>Math.acos(e)),Oj={kernelName:ru,backendName:"cpu",kernelFunc:Fj},Mj=mt(au,e=>Math.acosh(e)),zj={kernelName:au,backendName:"cpu",kernelFunc:Mj};function Lj(e){let{inputs:t,backend:n}=e,s=t;Re(t,"addN");let r=s.map(i=>n.data.get(i.dataId).values),a=ze(s[0].shape,s[0].dtype),o=a.values;for(let i=0;i<s.length;i++){let l=r[i];for(let c=0;c<o.length;c++)o[c]+=l[c]}return n.makeTensorInfo(a.shape,a.dtype,a.values)}var Bj={kernelName:Ea,backendName:"cpu",kernelFunc:Lj};function Wj(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;Re(r,"all");let i=v.parseAxisParam(a,r.shape),l=i,c=E.getAxesPermutation(l,r.shape.length),u=r;c!=null&&(u=Ls({inputs:{x:r},backend:n,attrs:{perm:c}}),l=E.getInnerMostAxes(l.length,r.shape.length)),E.assertAxesAreInnerMostDims("all",l,u.shape.length);let[d,p]=E.computeOutAndReduceShapes(u.shape,l),h=v.sizeFromShape(p),f=v.makeZerosTypedArray(v.sizeFromShape(d),u.dtype),m=n.data.get(u.dataId).values;for(let A=0;A<f.length;++A){let x=A*h,y=m[x];for(let b=0;b<h;++b){let w=m[x+b];y=y&&w}f[A]=y}c!=null&&n.disposeIntermediateTensorInfo(u);let g=n.makeTensorInfo(d,u.dtype,f);if(o){let A=E.expandShapeToKeepDim(d,i),x=Dt({inputs:{x:g},backend:n,attrs:{shape:A}});return n.disposeIntermediateTensorInfo(g),x}return g}var Vj={kernelName:ou,backendName:"cpu",kernelFunc:Wj};function Uj(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;Re(r,"any");let i=v.parseAxisParam(a,r.shape),l=i,c=E.getAxesPermutation(l,r.shape.length),u=r;c!=null&&(u=Ls({inputs:{x:r},backend:n,attrs:{perm:c}}),l=E.getInnerMostAxes(l.length,r.shape.length)),E.assertAxesAreInnerMostDims("any",l,u.shape.length);let[d,p]=E.computeOutAndReduceShapes(u.shape,l),h=v.sizeFromShape(p),f=v.makeZerosTypedArray(v.sizeFromShape(d),u.dtype),m=n.data.get(u.dataId).values;for(let A=0;A<f.length;++A){let x=A*h,y=m[x];for(let b=0;b<h;++b){let w=m[x+b];y=y||w}f[A]=y}c!=null&&n.disposeIntermediateTensorInfo(u);let g=n.makeTensorInfo(d,u.dtype,f);if(o){let A=E.expandShapeToKeepDim(d,i),x=Dt({inputs:{x:g},backend:n,attrs:{shape:A}});return n.disposeIntermediateTensorInfo(g),x}return g}var Gj={kernelName:iu,backendName:"cpu",kernelFunc:Uj};function Hj(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s;Re(r,"argMax");let o=v.parseAxisParam(a,r.shape),i=E.getAxesPermutation(o,r.shape.length),l=r,c=[];i!=null&&(l=Ls({inputs:{x:r},backend:n,attrs:{perm:i}}),c.push(l),o=E.getInnerMostAxes(o.length,l.shape.length)),o=[o[0]],E.assertAxesAreInnerMostDims("argMax",o,l.shape.length);let[u,d]=E.computeOutAndReduceShapes(l.shape,o),p=v.sizeFromShape(u),h=v.makeZerosTypedArray(p,"int32"),f=v.sizeFromShape(d),m=n.data.get(l.dataId).values;for(let g=0;g<h.length;++g){let A=g*f,x=m[A],y=0;for(let b=0;b<f;++b){let w=m[A+b];w>x&&(x=w,y=b)}h[g]=y}return c.forEach(g=>n.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(u,"int32",h)}var jj={kernelName:Ra,backendName:"cpu",kernelFunc:Hj};function qj(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s;Re(r,"argMin");let o=v.parseAxisParam(a,r.shape),i=E.getAxesPermutation(o,r.shape.length),l=r,c=[];i!=null&&(l=Ls({inputs:{x:r},backend:n,attrs:{perm:i}}),c.push(l),o=E.getInnerMostAxes(o.length,l.shape.length)),o=[o[0]],E.assertAxesAreInnerMostDims("argMin",o,l.shape.length);let[u,d]=E.computeOutAndReduceShapes(l.shape,o),p=v.sizeFromShape(u),h=v.makeZerosTypedArray(p,"int32"),f=v.sizeFromShape(d),m=n.data.get(l.dataId).values;for(let g=0;g<h.length;++g){let A=g*f,x=m[A],y=0;for(let b=0;b<f;++b){let w=m[A+b];w<x&&(x=w,y=b)}h[g]=y}return c.forEach(g=>n.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(u,"int32",h)}var Xj={kernelName:lu,backendName:"cpu",kernelFunc:qj},Kj=mt(uu,e=>Math.asin(e)),Zj={kernelName:uu,backendName:"cpu",kernelFunc:Kj},Yj=mt(cu,e=>Math.asinh(e)),Jj={kernelName:cu,backendName:"cpu",kernelFunc:Yj},Qj=mt(du,e=>Math.atan(e)),eq={kernelName:du,backendName:"cpu",kernelFunc:Qj},tq=Yt((e,t)=>Math.atan2(e,t)),nq=wn(hu,tq),sq={kernelName:hu,backendName:"cpu",kernelFunc:nq},rq=mt(pu,e=>Math.atanh(e)),aq={kernelName:pu,backendName:"cpu",kernelFunc:rq};function nx(e,t,n,s,r,a){let o=r.strideHeight,i=r.strideWidth,l=r.dilationHeight,c=r.dilationWidth,u=r.effectiveFilterHeight,d=r.effectiveFilterWidth,p=r.padInfo.top,h=r.padInfo.left,f=a==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,m=ze(r.outShape,n),g=m.values,A=r.outShape[1]*r.outShape[2]*r.outShape[3],x=r.outShape[2]*r.outShape[3],y=r.outShape[3];for(let b=0;b<r.batchSize;++b){let w=b*A,k=b*s[0];for(let S=0;S<r.inChannels;++S)for(let N=0;N<r.outHeight;++N){let R=N*o-p,M=Math.max(0,R),D=Math.min(r.inHeight,u+R),$=w+N*x;for(let T=0;T<r.outWidth;++T){let F=T*i-h,V=Math.max(0,F),X=Math.min(r.inWidth,d+F),z=f,j=0,Z=0;for(let te=M;te<D;te+=l){let ae=k+te*s[1];for(let U=V;U<X;U+=c){let oe=ae+U*s[2],re=e[oe+S];a==="max"&&re>z?z=re:a==="avg"&&(j+=re,Z++)}if(isNaN(z))break}let Q=$+T*y+S;g[Q]=a==="avg"?j/Z:z}}}return m}function uS(e,t,n,s,r=!1,a=!1){let o=ze(s.outShape,"int32"),i=s.strideHeight,l=s.strideWidth,c=s.dilationHeight,u=s.dilationWidth,d=s.effectiveFilterHeight,p=s.effectiveFilterWidth,h=s.padInfo.top,f=s.padInfo.left,m=ze(t,n,e);for(let g=0;g<s.batchSize;++g)for(let A=0;A<s.inChannels;++A)for(let x=0;x<s.outHeight;++x){let y=x*i-h,b=y;for(;b<0;)b+=c;let w=Math.min(s.inHeight,d+y);for(let k=0;k<s.outWidth;++k){let S=k*l-f,N=S;for(;N<0;)N+=u;let R=Math.min(s.inWidth,p+S),M=Number.NEGATIVE_INFINITY,D=-1;for(let $=b;$<w;$+=c){let T=$-y;for(let F=N;F<R;F+=u){let V=F-S,X=m.get(g,$,F,A);X>M&&(M=X,r?D=a?((g*s.inHeight+$)*s.inWidth+F)*s.inChannels+A:($*s.inWidth+F)*s.inChannels+A:D=T*p+V)}}o.set(D,g,x,k,A)}}return o}function cS(e,t,n,s,r,a){let o=r.strideDepth,i=r.strideHeight,l=r.strideWidth,c=r.dilationDepth,u=r.dilationHeight,d=r.dilationWidth,p=r.effectiveFilterDepth,h=r.effectiveFilterHeight,f=r.effectiveFilterWidth,m=r.padInfo.front,g=r.padInfo.top,A=r.padInfo.left,x=a==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,y=ze(r.outShape,n),b=y.values,w=r.outShape[1]*r.outShape[2]*r.outShape[3]*r.outShape[4],k=r.outShape[2]*r.outShape[3]*r.outShape[4],S=r.outShape[3]*r.outShape[4],N=r.outShape[4];for(let R=0;R<r.batchSize;++R){let M=R*w,D=R*s[0];for(let $=0;$<r.inChannels;++$)for(let T=0;T<r.outDepth;++T){let F=T*o-m,V=F;for(;V<0;)V+=c;let X=Math.min(r.inDepth,p+F),z=M+T*k;for(let j=0;j<r.outHeight;++j){let Z=j*i-g,Q=Z;for(;Q<0;)Q+=u;let te=Math.min(r.inHeight,h+Z),ae=z+j*S;for(let U=0;U<r.outWidth;++U){let oe=U*l-A,re=oe;for(;re<0;)re+=d;let me=Math.min(r.inWidth,f+oe),ye=ae+U*N,Te=x,Ne=0,Pe=0;for(let at=V;at<X;at+=c){let Je=D+at*s[1];for(let Ze=Q;Ze<te;Ze+=u){let gt=Je+Ze*s[2];for(let ot=re;ot<me;ot+=d){let At=gt+ot*s[3],Et=e[At+$];if(a==="max"&&Et>Te?Te=Et:a==="avg"&&(Ne+=Et,Pe++),isNaN(Te))break}if(isNaN(Te))break}if(isNaN(Te))break}let Ue=ye+$;b[Ue]=a==="avg"?Ne/Pe:Te}}}}return y}function oq(e,t){let n=ze(t.outShape,"int32"),s=t.strideDepth,r=t.strideHeight,a=t.strideWidth,o=t.dilationDepth,i=t.dilationHeight,l=t.dilationWidth,c=t.effectiveFilterDepth,u=t.effectiveFilterHeight,d=t.effectiveFilterWidth,p=t.padInfo.front,h=t.padInfo.top,f=t.padInfo.left;for(let m=0;m<t.batchSize;++m)for(let g=0;g<t.inChannels;++g)for(let A=0;A<t.outDepth;++A){let x=A*s-p,y=x;for(;y<0;)y+=o;let b=Math.min(t.inDepth,c+x);for(let w=0;w<t.outHeight;++w){let k=w*r-h,S=k;for(;S<0;)S+=i;let N=Math.min(t.inHeight,u+k);for(let R=0;R<t.outWidth;++R){let M=R*a-f,D=M;for(;D<0;)D+=l;let $=Math.min(t.inWidth,d+M),T=Number.NEGATIVE_INFINITY,F=-1;for(let V=y;V<b;V+=o){let X=V-x;for(let z=S;z<N;z+=i){let j=z-k;for(let Z=D;Z<$;Z+=l){let Q=Z-M,te=e.get(m,V,z,Z,g);te>=T&&(T=te,F=X*u*d+j*u+Q)}}}n.set(F,m,A,w,R,g)}}}return n}function iq(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t;Re(r,"avgPool");let{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=s,c=1;v.assert(E.eitherStridesOrDilationsAreOne(o,c),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${o} and dilations '${c}'`);let u=E.computePool2DInfo(r.shape,a,o,c,i,l),d;if(u.filterWidth===1&&u.filterHeight===1&&v.arraysEqual(u.inShape,u.outShape))d=Wr({inputs:{x:r},backend:n});else{let p=n.data.get(r.dataId).values,h=v.computeStrides(r.shape),f=nx(p,r.shape,r.dtype,h,u,"avg");d=n.makeTensorInfo(u.outShape,r.dtype,f.values)}return d}var lq={kernelName:$a,backendName:"cpu",kernelFunc:iq};function uq(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l,dataFormat:c}=s;Re(r,"avgPool3d");let u=E.computePool3DInfo(r.shape,a,o,1,i,l,c),d=n.data.get(r.dataId).values,p=cS(d,r.shape,r.dtype,v.computeStrides(r.shape),u,"avg");return n.makeTensorInfo(p.shape,"float32",p.values)}var cq={kernelName:rd,backendName:"cpu",kernelFunc:uq};function dq(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,{filterSize:o,strides:i,pad:l,dimRoundingMode:c}=s;Re([r,a],"avgPool3DGrad");let u=E.computePool3DInfo(a.shape,o,i,1,l,c),d=u.strideDepth,p=u.strideHeight,h=u.strideWidth,f=u.filterDepth,m=u.filterHeight,g=u.filterWidth,A=u.dilationDepth,x=u.dilationHeight,y=u.dilationWidth,b=u.effectiveFilterDepth,w=u.effectiveFilterHeight,k=u.effectiveFilterWidth,S=b-1-u.padInfo.front,N=k-1-u.padInfo.left,R=w-1-u.padInfo.top,M=ze(a.shape,"float32"),D=1/(f*m*g),$=n.bufferSync(r);for(let T=0;T<u.batchSize;++T)for(let F=0;F<u.inChannels;++F)for(let V=0;V<u.inDepth;++V)for(let X=0;X<u.inHeight;++X)for(let z=0;z<u.inWidth;++z){let j=V-S,Z=X-R,Q=z-N,te=0;for(let ae=0;ae<b;ae+=A){let U=(j+ae)/d;if(!(U<0||U>=u.outDepth||Math.floor(U)!==U))for(let oe=0;oe<w;oe+=x){let re=(Z+oe)/p;if(!(re<0||re>=u.outHeight||Math.floor(re)!==re))for(let me=0;me<k;me+=y){let ye=(Q+me)/h;if(ye<0||ye>=u.outWidth||Math.floor(ye)!==ye)continue;te+=$.get(T,U,re,ye,F)}}}M.set(te*D,T,V,X,z,F)}return n.makeTensorInfo(M.shape,M.dtype,M.values)}var pq={kernelName:Sh,backendName:"cpu",kernelFunc:dq};function hq(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,o=a;Re([r,a],"avgPoolGrad");let{filterSize:i,strides:l,pad:c}=s,u=E.computePool2DInfo(o.shape,i,l,1,c),d=u.strideHeight,p=u.strideWidth,h=u.filterHeight,f=u.filterWidth,m=u.dilationHeight,g=u.dilationWidth,A=u.effectiveFilterHeight,x=u.effectiveFilterWidth,y=x-1-u.padInfo.left,b=A-1-u.padInfo.top,w=ze(o.shape,"float32"),k=1/(h*f),S=n.data.get(r.dataId).values,N=ze(r.shape,"float32",S);for(let R=0;R<u.batchSize;++R)for(let M=0;M<u.inChannels;++M)for(let D=0;D<u.inHeight;++D)for(let $=0;$<u.inWidth;++$){let T=D-b,F=$-y,V=0;for(let X=0;X<A;X+=m){let z=(T+X)/d;if(!(z<0||z>=u.outHeight||Math.floor(z)!==z))for(let j=0;j<x;j+=g){let Z=(F+j)/p;if(Z<0||Z>=u.outWidth||Math.floor(Z)!==Z)continue;V+=N.get(R,z,Z,M)}}w.set(V*k,R,D,$,M)}return n.makeTensorInfo(w.shape,w.dtype,w.values)}var fq={kernelName:Ih,backendName:"cpu",kernelFunc:hq};function mq(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,scale:a,offset:o,mean:i,variance:l}=t;v.assert(i.shape.length===l.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),v.assert(o==null||i.shape.length===o.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),v.assert(a==null||i.shape.length===a.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks."),Re([r,i,l,a,o],"batchNorm");let{varianceEpsilon:c}=s;c==null&&(c=.001);let u=n.data.get(r.dataId).values,d=n.data.get(i.dataId).values,p=n.data.get(l.dataId).values,h=a?n.data.get(a.dataId).values:new Float32Array([1]),f=o?n.data.get(o.dataId).values:new Float32Array([0]),m=new Float32Array(u.length),g=f.length,A=h.length,x=p.length,y=d.length,b=0,w=0,k=0,S=0;for(let N=0;N<u.length;++N)m[N]=f[b++]+(u[N]-d[w++])*h[k++]/Math.sqrt(p[S++]+c),b>=g&&(b=0),w>=y&&(w=0),k>=A&&(k=0),S>=x&&(S=0);return n.makeTensorInfo(r.shape,r.dtype,m)}var gq={kernelName:Ha,backendName:"cpu",kernelFunc:mq};function Aq(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,crops:o}=s;Re([r],"batchToSpaceND");let i=a.reduce((A,x)=>A*x),l=E.getReshaped(r.shape,a,i),c=E.getPermuted(l.length,a.length),u=E.getReshapedPermuted(r.shape,a,i),d=E.getSliceBeginCoords(o,a.length),p=E.getSliceSize(u,o,a.length),h=Dt({inputs:{x:r},backend:n,attrs:{shape:l}}),f=Ls({inputs:{x:h},backend:n,attrs:{perm:c}}),m=Dt({inputs:{x:f},backend:n,attrs:{shape:u}}),g=Il({inputs:{x:m},backend:n,attrs:{begin:d,size:p}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(m),g}var yq={kernelName:pi,backendName:"cpu",kernelFunc:Aq};function xq(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,weights:a}=t,{size:o}=s,i=n.data.get(r.dataId).values,l=n.data.get(a.dataId).values,c=Xy(i,l,a.dtype,a.shape,o);return n.makeTensorInfo([o],a.dtype,c)}var bq={kernelName:Ch,backendName:"cpu",kernelFunc:xq};function vq(e){let{inputs:t,backend:n}=e,{s0:s,s1:r}=t,a=n.data.get(s.dataId).values,o=n.data.get(r.dataId).values,i=E.assertAndGetBroadcastShape(Array.from(a),Array.from(o));return n.makeTensorInfo([i.length],"int32",Int32Array.from(i))}var wq={kernelName:Th,backendName:"cpu",kernelFunc:vq},kq=mt(Kr,(e,t)=>{let n=t;return e>n.clipValueMax?n.clipValueMax:e<n.clipValueMin?n.clipValueMin:e}),Iq={kernelName:Kr,backendName:"cpu",kernelFunc:kq},Sq=e=>{let{x:t}=e.inputs,n=e.backend,s=new Float32Array(v.sizeFromShape(t.shape)),r=n.data.get(t.dataId),a=r.complexTensorInfos.real,o=r.complexTensorInfos.imag,i=n.data.get(a.dataId).values,l=n.data.get(o.dataId).values;for(let c=0;c<i.length;c++){let u=i[c],d=l[c];s[c]=Math.hypot(u,d)}return n.makeOutput(s,t.shape,"float32")},Cq={kernelName:od,backendName:"cpu",kernelFunc:Sq};function nc(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.data.get(s.dataId).complexTensorInfos.imag,a=n.data.get(r.dataId).values;return n.makeTensorInfo(r.shape,r.dtype,a)}var Tq={kernelName:cd,backendName:"cpu",kernelFunc:nc};function sc(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s,a=v.parseAxisParam(r,t[0].shape)[0],o=E.computeOutShape(t.map(m=>m.shape),a);if(v.sizeFromShape(o)===0)return n.makeTensorInfo(o,t[0].dtype,[]);let i=t.filter(m=>v.sizeFromShape(m.shape)>0);if(i.length===1)return Wr({inputs:{x:i[0]},backend:n});let l=i.map(m=>m.shape);if(E.assertParamsConsistent(l,a),i[0].dtype==="complex64"){let m=i.map(b=>kl({inputs:{input:b},backend:n})),g=i.map(b=>nc({inputs:{input:b},backend:n})),A=sc({inputs:m,backend:n,attrs:{axis:a}}),x=sc({inputs:g,backend:n,attrs:{axis:a}}),y=ws({inputs:{real:A,imag:x},backend:n});return m.forEach(b=>n.disposeIntermediateTensorInfo(b)),g.forEach(b=>n.disposeIntermediateTensorInfo(b)),n.disposeIntermediateTensorInfo(A),n.disposeIntermediateTensorInfo(x),y}let c=i.map(m=>{let g=v.sizeFromShape(m.shape.slice(a));return Dt({inputs:{x:m},backend:n,attrs:{shape:[-1,g]}})}),u=c.map(m=>({vals:n.data.get(m.dataId).values,shape:m.shape}));o=E.computeOutShape(c.map(m=>m.shape),1);let d=c[0].shape[0]===1,p=Ky(u,o,t[0].dtype,d),h=E.computeOutShape(i.map(m=>m.shape),a),f=n.makeTensorInfo(h,t[0].dtype,p);return c.forEach(m=>n.disposeIntermediateTensorInfo(m)),f}var Nq={kernelName:hi,backendName:"cpu",kernelFunc:sc};function dS(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dataFormat:l,dilations:c,dimRoundingMode:u}=s;Re([r,a],"conv2d");let d=E.convertConv2DDataFormat(l),p=E.computeConv2DInfo(r.shape,a.shape,o,c,i,u,!1,d),h=p.filterHeight,f=p.filterWidth,m=p.dilationHeight,g=p.dilationWidth,A=p.padInfo.left,x=p.padInfo.top,y=p.dataFormat==="channelsLast",b=new nn(p.outShape,r.dtype),w=v.computeStrides(r.shape),k=v.computeStrides(a.shape),S=w[0],N=y?w[1]:w[2],R=y?w[2]:1,M=y?1:w[1],D=b.strides[0],$=y?b.strides[1]:b.strides[2],T=y?b.strides[2]:1,F=y?1:b.strides[1],V=n.data.get(r.dataId).values,X=n.data.get(a.dataId).values,z=b.values;for(let j=0;j<p.batchSize;++j){let Z=j*S,Q=j*D;for(let te=0;te<p.outHeight;++te){let ae=Q+te*$,U=te*p.strideHeight-x;for(let oe=0;oe<h;++oe){let re=U+oe*m;if(re<0||re>=p.inHeight)continue;let me=oe*k[0],ye=Z+re*N;for(let Te=0;Te<p.outWidth;++Te){let Ne=ae+Te*T,Pe=Te*p.strideWidth-A;for(let Ue=0;Ue<f;++Ue){let at=Pe+Ue*g;if(at<0||at>=p.inWidth)continue;let Je=me+Ue*k[1],Ze=ye+at*R,gt=Je;for(let ot=0;ot<p.inChannels;++ot){let At=V[Ze+ot*M];for(let Et=0;Et<p.outChannels;++Et)z[Ne+Et*F]+=At*X[gt+Et];gt+=p.outChannels}}}}}}return n.makeTensorInfo(b.shape,b.dtype,z)}var Eq={kernelName:Fa,backendName:"cpu",kernelFunc:dS};function Rq(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,pad:i,dataFormat:l,dimRoundingMode:c,filterShape:u}=s;Re([r,a],"conv2dBackpropFilter");let d=E.convertConv2DDataFormat(l),p=E.computeConv2DInfo(r.shape,u,o,1,i,c,!1,d),{strideHeight:h,strideWidth:f,filterHeight:m,filterWidth:g}=p,A=p.dataFormat==="channelsLast",x=new nn(p.filterShape,"float32"),y=p.padInfo.left,b=p.padInfo.top,w=n.data.get(r.dataId).values,k=n.data.get(a.dataId).values,S=new nn(r.shape,r.dtype,w),N=new nn(a.shape,a.dtype,k);for(let R=0;R<m;++R){let M=Math.max(0,Math.ceil((b-R)/h)),D=Math.min(p.outHeight,(p.inHeight+b-R)/h);for(let $=0;$<g;++$){let T=Math.max(0,Math.ceil((y-$)/f)),F=Math.min(p.outWidth,(p.inWidth+y-$)/f);for(let V=0;V<p.inChannels;++V)for(let X=0;X<p.outChannels;++X){let z=0;for(let j=0;j<p.batchSize;++j)for(let Z=M;Z<D;++Z){let Q=R+Z*h-b;for(let te=T;te<F;++te){let ae=$+te*f-y;A?z+=S.get(j,Q,ae,V)*N.get(j,Z,te,X):z+=S.get(j,V,Q,ae)*N.get(j,X,Z,te)}}x.set(z,R,$,V,X)}}}return n.makeTensorInfo(x.shape,x.dtype,x.values)}var $q={kernelName:Nh,backendName:"cpu",kernelFunc:Rq};function _q(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{inputShape:o,strides:i,pad:l,dataFormat:c,dimRoundingMode:u}=s;Re([r,a],"conv2dBackpropInput");let d=v.computeStrides(a.shape),p=v.computeStrides(r.shape),h=E.convertConv2DDataFormat(c),f=E.computeConv2DInfo(o,a.shape,i,1,l,u,!1,h),m=new nn(f.inShape,"float32"),g=m.values,A=n.data.get(r.dataId).values,x=n.data.get(a.dataId).values,[y,b,w]=d,{batchSize:k,filterHeight:S,filterWidth:N,inChannels:R,inHeight:M,inWidth:D,outChannels:$,outHeight:T,outWidth:F,strideHeight:V,strideWidth:X}=f;h=f.dataFormat;let z=S-1-f.padInfo.top,j=N-1-f.padInfo.left,Z=h==="channelsLast",Q=m.strides[0],te=Z?m.strides[1]:m.strides[2],ae=Z?m.strides[2]:1,U=Z?1:m.strides[1],oe=p[0],re=Z?p[1]:p[2],me=Z?p[2]:1,ye=Z?1:p[1];for(let Te=0;Te<k;++Te)for(let Ne=0;Ne<R;++Ne)for(let Pe=0;Pe<M;++Pe){let Ue=Pe-z,at=Math.max(0,Math.ceil(Ue/V)),Je=Math.min(T,(S+Ue)/V);for(let Ze=0;Ze<D;++Ze){let gt=Ze-j,ot=Math.max(0,Math.ceil(gt/X)),At=Math.min(F,(N+gt)/X),Et=0;for(let it=at;it<Je;++it){let hs=it*V-Ue;for(let In=ot;In<At;++In){let js=In*X-gt,es=oe*Te+re*it+me*In,fs=y*(S-1-hs)+b*(N-1-js)+w*Ne;for(let Ns=0;Ns<$;++Ns){let qs=A[es+ye*Ns],Es=x[fs+Ns];Et+=qs*Es}}}let Qn=Q*Te+te*Pe+ae*Ze+U*Ne;g[Qn]=Et}}return n.makeTensorInfo(m.shape,m.dtype,m.values)}var Dq={kernelName:Oa,backendName:"cpu",kernelFunc:_q};function Pq(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dilations:l}=s;Re([r,a],"conv3d");let c=E.computeConv3DInfo(r.shape,a.shape,o,l,i),{filterDepth:u,filterHeight:d,filterWidth:p,dilationDepth:h,dilationHeight:f,dilationWidth:m,padInfo:g}=c,A=g.front,x=g.left,y=g.top,b=new nn(c.outShape,r.dtype),w=n.data.get(r.dataId).values,k=n.data.get(a.dataId).values,S=b.values,N=v.computeStrides(r.shape),R=v.computeStrides(a.shape);for(let M=0;M<c.batchSize;++M){let D=M*N[0],$=M*b.strides[0];for(let T=0;T<c.outDepth;++T){let F=$+T*b.strides[1],V=T*c.strideDepth-A;for(let X=0;X<u;++X){let z=V+X*h;if(z<0||z>=c.inDepth)continue;let j=X*R[0],Z=D+z*N[1];for(let Q=0;Q<c.outHeight;++Q){let te=F+Q*b.strides[2],ae=Q*c.strideHeight-y;for(let U=0;U<d;++U){let oe=ae+U*f;if(oe<0||oe>=c.inHeight)continue;let re=j+U*R[1],me=Z+oe*N[2];for(let ye=0;ye<c.outWidth;++ye){let Te=te+ye*c.outChannels,Ne=ye*c.strideWidth-x;for(let Pe=0;Pe<p;++Pe){let Ue=Ne+Pe*m;if(Ue<0||Ue>=c.inWidth)continue;let at=re+Pe*R[2],Je=me+Ue*c.inChannels,Ze=at;for(let gt=0;gt<c.inChannels;++gt){let ot=w[Je+gt];for(let At=0;At<c.outChannels;++At)S[Te+At]+=ot*k[Ze+At];Ze+=c.outChannels}}}}}}}}return n.makeTensorInfo(b.shape,b.dtype,b.values)}var Fq={kernelName:id,backendName:"cpu",kernelFunc:Pq};function Oq(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,pad:i,filterShape:l}=s;Re([r,a],"conv3dBackpropFilterV2");let c=v.computeStrides(r.shape),u=v.computeStrides(a.shape),d=E.computeConv3DInfo(r.shape,l,o,1,i),p=d.strideDepth,h=d.strideHeight,f=d.strideWidth,m=d.filterDepth,g=d.filterHeight,A=d.filterWidth,x=new nn(d.filterShape,"float32"),y=x.values,[b,w,k,S]=x.strides,N=n.data.get(a.dataId).values,[R,M,D,$]=u,T=n.data.get(r.dataId).values,[F,V,X,z]=c,j=d.padInfo.front,Z=d.padInfo.left,Q=d.padInfo.top;for(let te=0;te<m;++te){let ae=Math.max(0,Math.ceil((j-te)/p)),U=Math.min(d.outDepth,(d.inDepth+j-te)/p),oe=te*b;for(let re=0;re<g;++re){let me=Math.max(0,Math.ceil((Q-re)/h)),ye=Math.min(d.outHeight,(d.inHeight+Q-re)/h),Te=re*w+oe;for(let Ne=0;Ne<A;++Ne){let Pe=Math.max(0,Math.ceil((Z-Ne)/f)),Ue=Math.min(d.outWidth,(d.inWidth+Z-Ne)/f),at=Ne*k+Te;for(let Je=0;Je<d.inChannels;++Je){let Ze=Je*S+at;for(let gt=0;gt<d.outChannels;++gt){let ot=0;for(let At=0;At<d.batchSize;++At){let Et=At*F,Qn=At*R;for(let it=ae;it<U;++it){let In=(te+it*p-j)*V+Et,js=it*M+Qn;for(let es=me;es<ye;++es){let Ns=(re+es*h-Q)*X+In,qs=es*D+js;for(let Es=Pe;Es<Ue;++Es){let Aa=(Ne+Es*f-Z)*z+Ns,Rn=Es*$+qs;ot+=T[Aa+Je]*N[Rn+gt]}}}}y[Ze+gt]=ot}}}}}return n.makeTensorInfo(x.shape,x.dtype,x.values)}var Mq={kernelName:Eh,backendName:"cpu",kernelFunc:Oq};function zq(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{pad:o,strides:i,inputShape:l}=s;Re([r],"conv3dBackpropInputV2");let c=v.computeStrides(r.shape),u=v.computeStrides(a.shape),d=E.computeConv3DInfo(l,a.shape,i,1,o),p=new nn(d.inShape,"float32"),h=p.values,[f,m,g,A]=p.strides,x=n.data.get(r.dataId).values,[y,b,w,k]=c,S=n.data.get(a.dataId).values,[N,R,M,D]=u,{batchSize:$,filterDepth:T,filterHeight:F,filterWidth:V,inChannels:X,inDepth:z,inHeight:j,inWidth:Z,outChannels:Q,outDepth:te,outHeight:ae,outWidth:U,strideDepth:oe,strideHeight:re,strideWidth:me}=d,ye=T-1-d.padInfo.front,Te=F-1-d.padInfo.top,Ne=V-1-d.padInfo.left;for(let Pe=0;Pe<$;++Pe)for(let Ue=0;Ue<X;++Ue)for(let at=0;at<z;++at){let Je=at-ye,Ze=Math.max(0,Math.ceil(Je/oe)),gt=Math.min(te,(T+Je)/oe);for(let ot=0;ot<j;++ot){let At=ot-Te,Et=Math.max(0,Math.ceil(At/re)),Qn=Math.min(ae,(F+At)/re);for(let it=0;it<Z;++it){let hs=it-Ne,In=Math.max(0,Math.ceil(hs/me)),js=Math.min(U,(V+hs)/me),es=0;for(let fs=Ze;fs<gt;++fs){let Ns=fs*oe-Je;for(let qs=Et;qs<Qn;++qs){let Es=qs*re-At;for(let ts=In;ts<js;++ts){let Aa=ts*me-hs,Rn=y*Pe+b*fs+w*qs+k*ts,ya=N*(T-1-Ns)+R*(F-1-Es)+M*(V-1-Aa)+D*Ue;for(let Rs=0;Rs<Q;++Rs){let Mc=x[Rn+Rs],zc=S[ya+Rs];es+=Mc*zc}}}}h[f*Pe+m*at+g*ot+A*it+Ue]=es}}}return n.makeTensorInfo(p.shape,p.dtype,p.values)}var Lq={kernelName:Rh,backendName:"cpu",kernelFunc:zq},Bq=mt(Ma,e=>Math.cos(e)),Wq={kernelName:Ma,backendName:"cpu",kernelFunc:Bq},Vq=mt(za,e=>Math.cosh(e)),Uq={kernelName:za,backendName:"cpu",kernelFunc:Vq};function Gq(e){let{inputs:t,backend:n,attrs:s}=e,{image:r,boxes:a,boxInd:o}=t,{cropSize:i,method:l,extrapolationValue:c}=s,[u,d,p,h]=r.shape,f=a.shape[0],[m,g]=i,A=ze([f,m,g,h],"float32"),x=n.data.get(a.dataId).values,y=n.data.get(o.dataId).values,b=n.data.get(r.dataId).values,w=v.computeStrides(r.shape),k=v.computeStrides(A.shape);for(let S=0;S<f;S++){let N=S*4,R=x[N],M=x[N+1],D=x[N+2],$=x[N+3],T=y[S];if(T>=u)continue;let F=m>1?(D-R)*(d-1)/(m-1):0,V=g>1?($-M)*(p-1)/(g-1):0;for(let X=0;X<m;X++){let z=m>1?R*(d-1)+X*F:.5*(R+D)*(d-1);if(z<0||z>d-1){for(let j=0;j<g;j++)for(let Z=0;Z<h;Z++){let Q=Z+j*k[2]+X*k[1]+S*k[0];A.values[Q]=c}continue}if(l==="bilinear"){let j=Math.floor(z),Z=Math.ceil(z),Q=z-j;for(let te=0;te<g;te++){let ae=g>1?M*(p-1)+te*V:.5*(M+$)*(p-1);if(ae<0||ae>p-1){for(let me=0;me<h;me++){let ye=me+te*k[2]+X*k[1]+S*k[0];A.values[ye]=c}continue}let U=Math.floor(ae),oe=Math.ceil(ae),re=ae-U;for(let me=0;me<h;me++){let ye=me+U*w[2]+j*w[1]+T*w[0],Te=b[ye];ye=me+oe*w[2]+j*w[1]+T*w[0];let Ne=b[ye];ye=me+U*w[2]+Z*w[1]+T*w[0];let Pe=b[ye];ye=me+oe*w[2]+Z*w[1]+T*w[0];let Ue=b[ye],at=Te+(Ne-Te)*re,Je=Pe+(Ue-Pe)*re;ye=me+te*k[2]+X*k[1]+S*k[0],A.values[ye]=at+(Je-at)*Q}}}else for(let j=0;j<g;++j){let Z=g>1?M*(p-1)+j*V:.5*(M+$)*(p-1);if(Z<0||Z>p-1){for(let ae=0;ae<h;ae++){let U=ae+j*k[2]+X*k[1]+S*k[0];A.values[U]=c}continue}let Q=Math.round(Z),te=Math.round(z);for(let ae=0;ae<h;ae++){let U=ae+Q*w[2]+te*w[1]+T*w[0],oe=ae+j*k[2]+X*k[1]+S*k[0];A.values[oe]=b[U]}}}}return n.makeTensorInfo(A.shape,A.dtype,A.values)}var Hq={kernelName:mi,backendName:"cpu",kernelFunc:Gq};function jq(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,exclusive:o,reverse:i}=s;Re(r,"cumsum");let l=E.getAxesPermutation([a],r.shape.length),c=r;l!=null&&(c=Ls({inputs:{x:r},backend:n,attrs:{perm:l}}));let u=E.getInnerMostAxes(1,r.shape.length)[0];if(u!==c.shape.length-1)throw new Error(`backend.cumsum in CPU expects an inner-most axis=${c.shape.length-1} but got axis=${u}`);let d=Ln(c.dtype,"int32"),p=v.makeZerosTypedArray(v.sizeFromShape(c.shape),d),h=n.data.get(c.dataId).values,f=c.shape[c.shape.length-1],m=i?(A,x)=>A+f-x-1:(A,x)=>A+x;for(let A=0;A<h.length;A+=f)for(let x=0;x<f;x++){let y=m(A,x);if(x===0)p[y]=o?0:h[y];else{let b=m(A,x-1);p[y]=o?h[b]+p[b]:h[y]+p[b]}}let g=n.makeTensorInfo(c.shape,d,p);if(l!=null){let A=E.getUndoAxesPermutation(l),x=Ls({inputs:{x:g},backend:n,attrs:{perm:A}});return n.disposeIntermediateTensorInfo(g),n.disposeIntermediateTensorInfo(c),x}return g}var qq={kernelName:fi,backendName:"cpu",kernelFunc:jq};function Xq(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,weights:a}=t,{size:o,binaryOutput:i}=s;if(r.shape.length===1){let l=n.data.get(r.dataId).values,c=n.data.get(a.dataId).values,u=Xy(l,c,a.dtype,a.shape,o);return n.makeTensorInfo([o],a.dtype,u)}else if(r.shape.length===2){let l=n.bufferSync(r),c=n.bufferSync(a),u=vI(l,c,o,i);return n.makeTensorInfo(u.shape,a.dtype,u.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${r.shape.length}.`)}var Kq={kernelName:$h,backendName:"cpu",kernelFunc:Xq};function Zq(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockSize:a,dataFormat:o}=s;v.assert(o==="NHWC",()=>`Only NHWC dataFormat supported on CPU for depthToSpace. Got ${o}`);let i=r.shape[0],l=r.shape[1],c=r.shape[2],u=r.shape[3],d=l*a,p=c*a,h=u/(a*a),f=n.data.get(r.dataId).values,m=new Float32Array(i*d*p*h),g=0;for(let A=0;A<i;++A)for(let x=0;x<d;++x){let y=Math.floor(x/a),b=x%a;for(let w=0;w<p;++w){let k=Math.floor(w/a),S=w%a,N=(b*a+S)*h;for(let R=0;R<h;++R){let D=R+N+u*(k+c*(y+l*A));m[g++]=f[D]}}}return n.makeTensorInfo([i,d,p,h],r.dtype,m)}var Yq={kernelName:gi,backendName:"cpu",kernelFunc:Zq};function pS(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dilations:l,dimRoundingMode:c}=s;Re([r,a],"depthwiseConv2DNative");let u=v.computeStrides(r.shape),d=v.computeStrides(a.shape),p=l;p==null&&(p=[1,1]),v.assert(E.eitherStridesOrDilationsAreOne(o,p),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${o} and dilations '${p}'`);let h=E.computeConv2DInfo(r.shape,a.shape,o,p,i,c,!0),{filterHeight:f,filterWidth:m,dilationHeight:g,dilationWidth:A,padInfo:x}=h,y=x.left,b=x.top,w=h.outChannels/h.inChannels,k=new nn(h.outShape,r.dtype),S=n.data.get(r.dataId).values,N=n.data.get(a.dataId).values,R=k.values;for(let M=0;M<h.batchSize;++M){let D=M*u[0],$=M*k.strides[0];for(let T=0;T<h.outHeight;++T){let F=$+T*k.strides[1],V=T*h.strideHeight-b;for(let X=0;X<f;++X){let z=V+X*g;if(z<0||z>=h.inHeight)continue;let j=X*d[0],Z=D+z*u[1];for(let Q=0;Q<h.outWidth;++Q){let te=F+Q*k.strides[2],ae=Q*h.strideWidth-y;for(let U=0;U<m;++U){let oe=ae+U*A;if(oe<0||oe>=h.inWidth)continue;let re=j+U*d[1],me=Z+oe*h.inChannels,ye=te,Te=re;for(let Ne=0;Ne<h.inChannels;++Ne){let Pe=S[me+Ne];for(let Ue=0;Ue<w;++Ue)R[ye+Ue]+=Pe*N[Te+Ue];ye+=w,Te+=w}}}}}}return n.makeTensorInfo(k.shape,k.dtype,k.values)}var Jq={kernelName:La,backendName:"cpu",kernelFunc:pS};function Qq(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,dilations:i,pad:l,dimRoundingMode:c,filterShape:u}=s;Re([r,a],"depthwiseConv2dNativeBackpropFilter");let d=E.computeConv2DInfo(r.shape,u,o,i,l,c,!0),{strideHeight:p,strideWidth:h,filterHeight:f,filterWidth:m}=d,g=new nn(d.filterShape,"float32"),A=d.padInfo.left,x=d.padInfo.top,y=d.outChannels/d.inChannels,b=n.data.get(r.dataId).values,w=new nn(r.shape,r.dtype,b),k=n.data.get(a.dataId).values,S=new nn(a.shape,a.dtype,k);for(let N=0;N<f;++N){let R=Math.max(0,Math.ceil((x-N)/p)),M=Math.min(d.outHeight,(d.inHeight+x-N)/p);for(let D=0;D<m;++D){let $=Math.max(0,Math.ceil((A-D)/h)),T=Math.min(d.outWidth,(d.inWidth+A-D)/h);for(let F=0;F<d.outChannels;++F){let V=Math.trunc(F/y),X=F%y,z=0;for(let j=0;j<d.batchSize;++j)for(let Z=R;Z<M;++Z){let Q=N+Z*p-x;for(let te=$;te<T;++te){let ae=D+te*h-A;z+=w.get(j,Q,ae,V)*S.get(j,Z,te,F)}}g.set(z,N,D,V,X)}}}return n.makeTensorInfo(g.shape,g.dtype,g.values)}var eX={kernelName:_h,backendName:"cpu",kernelFunc:Qq};function tX(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{strides:o,dilations:i,pad:l,dimRoundingMode:c,inputShape:u}=s;Re([r,a],"depthwiseConv2DNativeBackpropInput");let d=v.computeStrides(r.shape),p=v.computeStrides(a.shape),h=E.computeConv2DInfo(u,a.shape,o,i,l,c,!0),f=new nn(h.inShape,"float32"),m=f.values,[g,A,x]=f.strides,y=n.data.get(r.dataId).values,[b,w,k]=d,S=n.data.get(a.dataId).values,[N,R,M]=p,{batchSize:D,filterHeight:$,filterWidth:T,inChannels:F,inHeight:V,inWidth:X,outChannels:z,outHeight:j,outWidth:Z,strideHeight:Q,strideWidth:te}=h,ae=$-1-h.padInfo.top,U=T-1-h.padInfo.left,oe=z/F;for(let re=0;re<D;++re)for(let me=0;me<F;++me)for(let ye=0;ye<V;++ye){let Te=ye-ae,Ne=Math.max(0,Math.ceil(Te/Q)),Pe=Math.min(j,($+Te)/Q);for(let Ue=0;Ue<X;++Ue){let at=Ue-U,Je=Math.max(0,Math.ceil(at/te)),Ze=Math.min(Z,(T+at)/te),gt=0;for(let ot=Ne;ot<Pe;++ot){let At=ot*Q-Te;for(let Et=Je;Et<Ze;++Et){let Qn=Et*te-at,it=b*re+w*ot+k*Et,hs=N*($-1-At)+R*(T-1-Qn)+M*me;for(let In=0;In<oe;++In){let js=me*oe+In,es=y[it+js],fs=S[hs+In];gt+=es*fs}}}m[g*re+A*ye+x*Ue+me]=gt}}return n.makeTensorInfo(f.shape,f.dtype,f.values)}var nX={kernelName:Dh,backendName:"cpu",kernelFunc:tX};function sX(e){let{inputs:t,backend:n}=e,{x:s}=t,r=v.sizeFromShape(s.shape),a=n.data.get(s.dataId).values,o=ze([r,r],s.dtype),i=o.values;for(let c=0;c<a.length;c++)i[c*r+c]=a[c];let l=[...s.shape,...s.shape];return n.makeTensorInfo(l,o.dtype,o.values)}var rX={kernelName:Ph,backendName:"cpu",kernelFunc:sX},aX={kernelName:ld,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:s,filter:r}=e,{strides:a,pad:o,dilations:i}=n,l=t,c=l.data.get(s.dataId).values,u=s.shape.length,d=l.data.get(r.dataId).values,p=r.shape.length,{batchSize:h,inHeight:f,inWidth:m,inChannels:g,outHeight:A,outWidth:x,padInfo:y,strideHeight:b,strideWidth:w,filterHeight:k,filterWidth:S,dilationHeight:N,dilationWidth:R,outShape:M}=E.computeDilation2DInfo(s.shape,r.shape,a,o,"NHWC",i),D=v.sizeFromShape(M),$=M.length,T=v.getArrayFromDType(s.dtype,D);for(let V=0;V<h;++V)for(let X=0;X<A;++X){let z=X*b-y.top;for(let j=0;j<x;++j){let Z=j*w-y.left;for(let Q=0;Q<g;++Q){let te=Number.MIN_SAFE_INTEGER;for(let U=0;U<k;++U){let oe=z+U*N;if(oe>=0&&oe<f)for(let re=0;re<S;++re){let me=Z+re*R;if(me>=0&&me<m){let ye=v.locToIndex([V,oe,me,Q],u,v.computeStrides(s.shape)),Te=v.locToIndex([U,re,Q],p,v.computeStrides(r.shape)),Ne=c[ye]+d[Te];Ne>te&&(te=Ne)}}}let ae=v.locToIndex([V,X,j,Q],$,v.computeStrides(M));T[ae]=te}}}return{dataId:l.write(v.toTypedArray(T,s.dtype),M,s.dtype),shape:M,dtype:s.dtype}}},oX={kernelName:Oh,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:s,filter:r,dy:a}=e,{strides:o,pad:i,dilations:l}=n,c=t,u=v.toNestedArray(s.shape,c.data.get(s.dataId).values),d=v.toNestedArray(r.shape,c.data.get(r.dataId).values),{batchSize:p,inHeight:h,inWidth:f,inChannels:m,outHeight:g,outWidth:A,padInfo:x,strideHeight:y,strideWidth:b,filterHeight:w,filterWidth:k,dilationHeight:S,dilationWidth:N,outShape:R}=E.computeDilation2DInfo(s.shape,r.shape,o,i,"NHWC",l);v.assert(a.rank===R.length,()=>`Error in ${Oh}, dy must have the same rank as output ${R.length}, but got ${a.rank}`);let M=v.toNestedArray(R,c.data.get(a.dataId).values),D=v.makeZerosNestedTypedArray(r.shape,r.dtype);for(let T=0;T<p;++T)for(let F=0;F<g;++F){let V=F*y-x.top;for(let X=0;X<A;++X){let z=X*b-x.left;for(let j=0;j<m;++j){let Z=Number.MIN_SAFE_INTEGER,Q=0,te=0;for(let ae=0;ae<w;++ae){let U=V+ae*S;if(U>=0&&U<h)for(let oe=0;oe<k;++oe){let re=z+oe*N;if(re>=0&&re<f){let me=u[T][U][re][j]+d[ae][oe][j];me>Z&&(Z=me,Q=ae,te=oe)}}}D[Q][te][j]+=M[T][F][X][j]}}}return{dataId:c.write(v.toTypedArray(D,s.dtype),r.shape,r.dtype),shape:r.shape,dtype:r.dtype}}},iX={kernelName:Fh,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:s,filter:r,dy:a}=e,{strides:o,pad:i,dilations:l}=n,c=t,u=v.toNestedArray(s.shape,c.data.get(s.dataId).values),d=v.toNestedArray(r.shape,c.data.get(r.dataId).values),{batchSize:p,inHeight:h,inWidth:f,inChannels:m,outHeight:g,outWidth:A,padInfo:x,strideHeight:y,strideWidth:b,filterHeight:w,filterWidth:k,dilationHeight:S,dilationWidth:N,outShape:R}=E.computeDilation2DInfo(s.shape,r.shape,o,i,"NHWC",l);v.assert(a.rank===R.length,()=>`Error in ${Fh}, dy must have the same rank as output ${R.length}, but got ${a.rank}`);let M=v.toNestedArray(R,c.data.get(a.dataId).values),D=v.makeZerosNestedTypedArray(s.shape,s.dtype);for(let T=0;T<p;++T)for(let F=0;F<g;++F){let V=F*y-x.top;for(let X=0;X<A;++X){let z=X*b-x.left;for(let j=0;j<m;++j){let Z=Number.MIN_SAFE_INTEGER,Q=V<0?0:V,te=z<0?0:z;for(let ae=0;ae<w;++ae){let U=V+ae*S;if(U>=0&&U<h)for(let oe=0;oe<k;++oe){let re=z+oe*N;if(re>=0&&re<f){let me=u[T][U][re][j]+d[ae][oe][j];me>Z&&(Z=me,Q=U,te=re)}}}D[T][Q][te][j]+=M[T][F][X][j]}}}return{dataId:c.write(v.toTypedArray(D,s.dtype),s.shape,s.dtype),shape:s.shape,dtype:s.dtype}}};function cp(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;Re(r,"sum");let i;r.dtype==="bool"?i=Uo({inputs:{x:r},backend:n,attrs:{dtype:"int32"}}):i=Wr({inputs:{x:r},backend:n});let l=i.shape.length,c=v.parseAxisParam(a,i.shape),u=E.getAxesPermutation(c,l),d=c,p=i;u!=null&&(p=Ls({inputs:{x:i},backend:n,attrs:{perm:u}}),d=E.getInnerMostAxes(d.length,l)),E.assertAxesAreInnerMostDims("sum",d,p.shape.length);let[h,f]=E.computeOutAndReduceShapes(p.shape,d),m=E.upcastType(p.dtype,"int32"),g=Rm(n,h,m),A=v.sizeFromShape(f),x=n.data.get(g.dataId).values,y=n.data.get(p.dataId).values;for(let b=0;b<x.length;++b){let w=b*A,k=0;for(let S=0;S<A;++S)k+=y[w+S];x[b]=k}if(o){let b=E.expandShapeToKeepDim(g.shape,c),w=g;g=Dt({inputs:{x:g},backend:n,attrs:{shape:b}}),n.disposeIntermediateTensorInfo(w)}return n.disposeIntermediateTensorInfo(i),u!=null&&n.disposeIntermediateTensorInfo(p),g}var lX={kernelName:fo,backendName:"cpu",kernelFunc:cp};function uX(e){let{inputs:t,backend:n,attrs:s}=e,{equation:r}=s,a=t,{allDims:o,summedDims:i,idDims:l}=E.decodeEinsumEquation(r,a.length);E.checkEinsumDimSizes(o.length,l,a);let{path:c,steps:u}=E.getEinsumComputePath(i,l),d=u.length,p=null,h=o.length,f=[];for(let m=0;m<d;++m){for(let g of u[m]){let{permutationIndices:A,expandDims:x}=E.getEinsumPermutation(h,l[g]),y;E.isIdentityPermutation(A)?y=a[g]:(y=Ls({inputs:{x:a[g]},backend:n,attrs:{perm:A}}),f.push(y));let b=y.shape.slice();for(let w=0;w<x.length;++w)b.splice(x[w],0,1);v.arraysEqual(y.shape,b)||(y=Dt({inputs:{x:y},backend:n,attrs:{shape:b}}),f.push(y)),p===null?p=y:(p=$m({inputs:{a:y,b:p},backend:n}),f.push(p))}m<d-1&&(c[m]>=0&&(p=cp({inputs:{x:p},backend:n,attrs:{axis:c[m]-(o.length-h),keepDims:!1}}),f.push(p)),h--)}for(let m of f)m!==p&&n.disposeIntermediateTensorInfo(m);return p}var cX={kernelName:ud,backendName:"cpu",kernelFunc:uX};function dX(e){let{inputs:t,backend:n}=e,{dy:s,y:r}=t;Re([s,r],"eluGrad");let a=new Float32Array(v.sizeFromShape(r.shape)),o=n.data.get(r.dataId).values,i=n.data.get(s.dataId).values;for(let l=0;l<o.length;++l){let c=o[l];c>=1?a[l]=i[l]:a[l]=i[l]*(c+1)}return n.makeTensorInfo(r.shape,"float32",a)}var pX={kernelName:Mh,backendName:"cpu",kernelFunc:dX},hX=E.ERF_P,fX=E.ERF_A1,mX=E.ERF_A2,gX=E.ERF_A3,AX=E.ERF_A4,yX=E.ERF_A5,xX=mt(fu,e=>{let t=Math.sign(e),n=Math.abs(e),s=1/(1+hX*n);return t*(1-((((yX*s+AX)*s+gX)*s+mX)*s+fX)*s*Math.exp(-n*n))}),bX={kernelName:fu,backendName:"cpu",kernelFunc:xX};function Dm(e){let{inputs:t,backend:n,attrs:s}=e,{input:r}=t,{dim:a}=s,o=r.shape.length,i=r.shape.slice(),l=a;return a<0&&(v.assert(-(o+1)<=a,()=>`Axis must be in the interval [${-(o+1)}, ${o}]`),l=o+a+1),i.splice(l,0,1),Dt({inputs:{x:r},backend:n,attrs:{shape:i}})}var vX={kernelName:yi,backendName:"cpu",kernelFunc:Dm},wX=Yt((e,t)=>e/t),sx=wn(Ba,wX),rx={kernelName:Ba,backendName:"cpu",kernelFunc:sx};function hS(e,t,n){let s=e.shape,r=s[0],a=s[1],o=n.data.get(e.dataId),i=o.complexTensorInfos.real,l=o.complexTensorInfos.imag,c=[r,a],u=v.sizeFromShape(c),d=v.getTypedArrayFromDType("float32",u),p=v.getTypedArrayFromDType("float32",u);for(let g=0;g<r;g++){let A=Il({inputs:{x:i},backend:n,attrs:{begin:[g,0],size:[1,a]}}),x=Il({inputs:{x:l},backend:n,attrs:{begin:[g,0],size:[1,a]}}),y=ws({inputs:{real:A,imag:x},backend:n}),{real:b,imag:w}=kX(y,t,n),k=E.mergeRealAndImagArrays(b,w);for(let S=0;S<a;S++){let N=E.getComplexWithIndex(k,S);d[g*a+S]=N.real,p[g*a+S]=N.imag}n.disposeIntermediateTensorInfo(A),n.disposeIntermediateTensorInfo(x),n.disposeIntermediateTensorInfo(y)}let h=n.makeTensorInfo(c,"float32",d),f=n.makeTensorInfo(c,"float32",p),m=ws({inputs:{real:h,imag:f},backend:n});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),m}function kX(e,t,n){let s=v.sizeFromShape(e.shape),r=n.data.get(e.dataId),a=n.data.get(r.complexTensorInfos.real.dataId).values,o=n.data.get(r.complexTensorInfos.imag.dataId).values;if(IX(s)){let i=ax(a,o,s,t,n),l=[e.shape[0],e.shape[1]];if(t){let c=n.makeTensorInfo(l,"float32",i.real),u=n.makeTensorInfo(l,"float32",i.imag),d=n.makeTensorInfo([],"float32",v.createScalarValue(s,"float32")),p=Wr({inputs:{x:d},backend:n}),h=rx.kernelFunc({inputs:{a:c,b:d},backend:n}),f=rx.kernelFunc({inputs:{a:u,b:p},backend:n}),m=n.data.get(h.dataId).values,g=n.data.get(f.dataId).values;return n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),{real:m,imag:g}}return i}else{let i=E.mergeRealAndImagArrays(a,o),l=SX(i,s,t);return E.splitRealAndImagArrays(l)}}function IX(e){return(e&e-1)==0}function ax(e,t,n,s,r){if(n===1)return{real:e,imag:t};let a=E.mergeRealAndImagArrays(e,t),o=n/2,i=E.complexWithEvenIndex(a),l=i.real,c=i.imag,u=[l.length],d=r.makeTensorInfo(u,"float32",l),p=r.makeTensorInfo(u,"float32",c),h=ws({inputs:{real:d,imag:p},backend:r}),f=E.complexWithOddIndex(a),m=f.real,g=f.imag,A=[m.length],x=r.makeTensorInfo(A,"float32",m),y=r.makeTensorInfo(A,"float32",g),b=ws({inputs:{real:x,imag:y},backend:r}),w=ax(l,c,o,s,r),k=w.real,S=w.imag,N=[k.length],R=r.makeTensorInfo(N,"float32",k),M=r.makeTensorInfo(N,"float32",S),D=ws({inputs:{real:R,imag:M},backend:r}),$=ax(m,g,o,s,r),T=$.real,F=$.imag,V=[T.length],X=r.makeTensorInfo(V,"float32",T),z=r.makeTensorInfo(V,"float32",F),j=ws({inputs:{real:X,imag:z},backend:r}),Z=E.exponents(n,s),Q=[Z.real.length],te=r.makeTensorInfo(Q,"float32",Z.real),ae=r.makeTensorInfo(Q,"float32",Z.imag),U=ws({inputs:{real:te,imag:ae},backend:r}),oe=$m({inputs:{a:U,b:j},backend:r}),re=lp({inputs:{a:D,b:oe},backend:r}),me=ex({inputs:{a:D,b:oe},backend:r}),ye=kl({inputs:{input:re},backend:r}),Te=kl({inputs:{input:me},backend:r}),Ne=nc({inputs:{input:re},backend:r}),Pe=nc({inputs:{input:me},backend:r}),Ue=sc({inputs:[ye,Te],backend:r,attrs:{axis:0}}),at=sc({inputs:[Ne,Pe],backend:r,attrs:{axis:0}}),Je=r.data.get(Ue.dataId).values,Ze=r.data.get(at.dataId).values;return r.disposeIntermediateTensorInfo(d),r.disposeIntermediateTensorInfo(p),r.disposeIntermediateTensorInfo(h),r.disposeIntermediateTensorInfo(x),r.disposeIntermediateTensorInfo(y),r.disposeIntermediateTensorInfo(b),r.disposeIntermediateTensorInfo(R),r.disposeIntermediateTensorInfo(M),r.disposeIntermediateTensorInfo(D),r.disposeIntermediateTensorInfo(X),r.disposeIntermediateTensorInfo(z),r.disposeIntermediateTensorInfo(j),r.disposeIntermediateTensorInfo(te),r.disposeIntermediateTensorInfo(ae),r.disposeIntermediateTensorInfo(U),r.disposeIntermediateTensorInfo(oe),r.disposeIntermediateTensorInfo(re),r.disposeIntermediateTensorInfo(me),r.disposeIntermediateTensorInfo(ye),r.disposeIntermediateTensorInfo(Ne),r.disposeIntermediateTensorInfo(Te),r.disposeIntermediateTensorInfo(Pe),r.disposeIntermediateTensorInfo(Ue),r.disposeIntermediateTensorInfo(at),{real:Je,imag:Ze}}function SX(e,t,n){let s=new Float32Array(t*2);for(let r=0;r<t;r++){let a=0,o=0;for(let i=0;i<t;i++){let l=E.exponent(r*i,t,n),c=E.getComplexWithIndex(e,i);a+=c.real*l.real-c.imag*l.imag,o+=c.real*l.imag+c.imag*l.real}n&&(a/=t,o/=t),E.assignToTypedArray(s,a,o,r)}return s}function CX(e){let{inputs:t,backend:n}=e,{input:s}=t,r=v.sizeFromShape(s.shape),a=s.shape[s.shape.length-1],o=r/a,i=Dt({inputs:{x:s},backend:n,attrs:{shape:[o,a]}}),l=hS(i,!1,n),c=Dt({inputs:{x:l},backend:n,attrs:{shape:s.shape}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(l),c}var TX={kernelName:zh,backendName:"cpu",kernelFunc:CX};function ox(e){let{backend:t,attrs:n}=e,{shape:s,value:r,dtype:a}=n,o=a||v.inferDtype(r),i=v.getArrayFromDType(o,v.sizeFromShape(s));return EX(i,r,o),t.makeTensorInfo(s,o,i)}var NX={kernelName:mu,backendName:"cpu",kernelFunc:ox};function EX(e,t,n){e.fill(t)}var RX={kernelName:bi,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:s}=e,r=n,a=v.getTypedArrayFromDType(s.dtype,v.sizeFromShape(s.shape)),[o,i,l,c]=s.shape,u=r.data.get(s.dataId).values;for(let p=0;p<o;p++){let h=p*l*i*c;for(let f=0;f<i;f++){let m=f*(l*c);for(let g=0;g<l;g++){let A=g*c;for(let x=0;x<c;x++){let y=Math.round(l-g-1),b=h+m+A+x,w=u[b];if(y>=0&&y<l){let k=y*c,S=h+m+k+x;w=u[S]}a[b]=w}}}}return{dataId:r.write(a,s.shape,s.dtype),shape:s.shape,dtype:s.dtype}}},$X=Yt((e,t)=>Math.floor(e/t)),_X=wn(Ga,$X,null,"int32"),DX={kernelName:Ga,backendName:"cpu",kernelFunc:_X};function PX(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:c,dataFormat:u,dilations:d,dimRoundingMode:p,activation:h,leakyreluAlpha:f}=s,m=dS({inputs:{x:r,filter:a},backend:n,attrs:{strides:l,pad:c,dataFormat:u,dilations:d,dimRoundingMode:p}});if(o){let g=m;m=lp({inputs:{a:m,b:o},backend:n}),n.disposeIntermediateTensorInfo(g)}if(h){let g=m;m=tx(n,m,h,i,f),n.disposeIntermediateTensorInfo(g)}return m}var FX={kernelName:wo,backendName:"cpu",kernelFunc:PX};function OX(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:c,dataFormat:u,dilations:d,dimRoundingMode:p,activation:h,leakyreluAlpha:f}=s,m=pS({inputs:{x:r,filter:a},backend:n,attrs:{strides:l,pad:c,dataFormat:u,dilations:d,dimRoundingMode:p}});if(o){let g=m;m=lp({inputs:{a:m,b:o},backend:n}),n.disposeIntermediateTensorInfo(g)}if(h){let g=m;m=tx(n,m,h,i,f),n.disposeIntermediateTensorInfo(g)}return m}var MX={kernelName:ko,backendName:"cpu",kernelFunc:OX};function zX(e){let{inputs:t,backend:n}=e,{params:s,indices:r}=t,a=v.sizeFromShape(s.shape),o=r.shape,i=o[o.length-1],[l,c,u,d]=E.prepareAndValidate(s,r);if(c===0)return n.makeTensorInfo(l,s.dtype,[]);let p=n.data.get(r.dataId).values,h=n.bufferSync(s),f=EI(p,h,s.dtype,c,i,u,d,s.shape,a);return n.makeTensorInfo(l,s.dtype,f.values)}var LX={kernelName:wi,backendName:"cpu",kernelFunc:zX};function BX(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,indices:a}=t,{axis:o,batchDims:i}=s;Re([r,a],"gatherV2");let l=v.parseAxisParam(o,r.shape)[0],c=n.data.get(a.dataId).values,u=r.shape[l];for(let b=0;b<c.length;++b){let w=c[b];v.assert(w<=u-1&&w>=0,()=>`GatherV2: the index value ${w} is not in [0, ${u-1}]`)}let d=i;i==null&&(d=0);let p=v.sizeFromShape(a.shape),h=E.segment_util.collectGatherOpShapeInfo(r,a,l,d),f=Dt({inputs:{x:r},backend:n,attrs:{shape:[h.batchSize,h.outerSize,h.dimSize,h.sliceSize]}}),m=Dt({inputs:{x:a},backend:n,attrs:{shape:[h.batchSize,p/h.batchSize]}}),g=[h.batchSize,h.outerSize,p/h.batchSize,h.sliceSize],A=n.bufferSync(m),x=n.bufferSync(f),y=RI(x,A,g);return n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(m),n.makeTensorInfo(h.outputShape,y.dtype,y.values)}var WX={kernelName:vi,backendName:"cpu",kernelFunc:BX};function VX(e){let{inputs:t,backend:n}=e,{input:s}=t,r=v.sizeFromShape(s.shape),a=s.shape[s.shape.length-1],o=r/a,i=Dt({inputs:{x:s},backend:n,attrs:{shape:[o,a]}}),l=hS(i,!0,n),c=Dt({inputs:{x:l},backend:n,attrs:{shape:s.shape}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(l),c}var UX={kernelName:Lh,backendName:"cpu",kernelFunc:VX},GX=mt(gu,e=>Number.isFinite(e)?1:0,"bool"),HX={kernelName:gu,backendName:"cpu",kernelFunc:GX},jX=mt(Au,e=>Math.abs(e)===1/0?1:0,"bool"),qX={kernelName:Au,backendName:"cpu",kernelFunc:jX},XX=mt(yu,e=>Number.isNaN(e)?1:0,"bool"),KX={kernelName:yu,backendName:"cpu",kernelFunc:XX};function ZX(e){let{backend:t,attrs:n}=e,{start:s,stop:r,num:a}=n,o=FI(s,r,a);return t.makeTensorInfo([o.length],"float32",o)}var YX={kernelName:Bh,backendName:"cpu",kernelFunc:ZX},JX=mt(xu,e=>Math.log1p(e)),QX={kernelName:xu,backendName:"cpu",kernelFunc:JX},eK=Yt((e,t)=>e&&t),tK=wn(Ti,eK,null,"bool"),nK={kernelName:Ti,backendName:"cpu",kernelFunc:tK},sK=mt(bu,e=>e?0:1,"bool"),rK={kernelName:bu,backendName:"cpu",kernelFunc:sK},aK=Yt((e,t)=>e||t),oK=wn(dd,aK,null,"bool"),iK={kernelName:dd,backendName:"cpu",kernelFunc:oK};function lK(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{depthRadius:a,bias:o,alpha:i,beta:l}=s;Re(r,"LRN");let c=r.shape[3],u=c-1,d=n.data.get(r.dataId).values,p=v.sizeFromShape(r.shape),h=new Float32Array(p);function f(m){let g=m%c,A=m-g+Math.max(0,g-a),x=m-g+Math.min(g+a,u),y=0;for(;A<=x;A++){let b=d[A];y+=b*b}return y}for(let m=0;m<p;m++){let g=f(m),A=d[m]*Math.pow(o+i*g,-l);h[m]=A}return n.makeTensorInfo(r.shape,r.dtype,h)}var uK={kernelName:pd,backendName:"cpu",kernelFunc:lK};function cK(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,y:a,dy:o}=t,{depthRadius:i,bias:l,alpha:c,beta:u}=s;Re(o,"LRNGrad");let d=v.sizeFromShape(o.shape),p=o.shape[3],h=n.data.get(o.dataId).values,f=n.data.get(r.dataId).values,m=n.data.get(a.dataId).values,g=new Float32Array(d),A=d;for(let x=0;x<A;x++){let y=x%p,b=x-y+Math.max(0,y-i),w=x-y+Math.min(p,y+i+1),k=0;for(let S=b;S<w;S++)k+=Math.pow(f[S],2);k=c*k+l;for(let S=b;S<w;S++){let N=-2*c*u*f[S]*m[x]/k;x===S&&(N+=Math.pow(k,-u)),N*=h[x],g[S]+=N}}return n.makeTensorInfo(o.shape,r.dtype,g)}var dK={kernelName:Wh,backendName:"cpu",kernelFunc:cK};function fS(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reductionIndices:a,keepDims:o}=s,i=n,l=r.shape,c=l.length,u=v.parseAxisParam(a,l),d=u,p=E.getAxesPermutation(d,c),h=i.data.get(r.dataId).values;if(p!=null){let b=new Array(c);for(let w=0;w<b.length;w++)b[w]=l[p[w]];h=Yy(h,l,r.dtype,p,b),d=E.getInnerMostAxes(d.length,c),l=b}Re(r,"max"),E.assertAxesAreInnerMostDims("max",d,c);let[f,m]=E.computeOutAndReduceShapes(l,d),g=v.sizeFromShape(m),A=MI(h,g,f,r.dtype),x=i.write(A,f,r.dtype),y=f;return o&&(y=E.expandShapeToKeepDim(f,u)),{dataId:x,shape:y,dtype:r.dtype}}var pK={kernelName:Ka,backendName:"cpu",kernelFunc:fS};function hK(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t;Re(r,"maxPool");let{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=s,c=1;v.assert(E.eitherStridesOrDilationsAreOne(o,c),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${o} and dilations '${c}'`);let u=E.computePool2DInfo(r.shape,a,o,c,i,l),d;if(u.filterWidth===1&&u.filterHeight===1&&v.arraysEqual(u.inShape,u.outShape))d=Wr({inputs:{x:r},backend:n});else{let p=n.data.get(r.dataId).values,h=v.computeStrides(r.shape),f=nx(p,r.shape,r.dtype,h,u,"max");d=n.makeTensorInfo(u.outShape,r.dtype,f.values)}return d}var fK={kernelName:Ya,backendName:"cpu",kernelFunc:hK};function mK(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l,dataFormat:c}=s;Re(r,"maxPool3d");let u=E.computePool3DInfo(r.shape,a,o,1,i,l,c),d=n.data.get(r.dataId).values,p=cS(d,r.shape,r.dtype,v.computeStrides(r.shape),u,"max");return n.makeTensorInfo(p.shape,"float32",p.values)}var gK={kernelName:hd,backendName:"cpu",kernelFunc:mK};function AK(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,{filterSize:o,strides:i,pad:l,dimRoundingMode:c}=s;Re([r,a],"maxPool3DGrad");let u=E.computePool3DInfo(a.shape,o,i,1,l,c),d=n.bufferSync(a),p=oq(d,u),h=u.strideDepth,f=u.strideHeight,m=u.strideWidth,g=u.dilationDepth,A=u.dilationHeight,x=u.dilationWidth,y=u.effectiveFilterDepth,b=u.effectiveFilterHeight,w=u.effectiveFilterWidth,k=y-1-u.padInfo.front,S=w-1-u.padInfo.left,N=b-1-u.padInfo.top,R=ze(a.shape,"float32"),M=n.bufferSync(r);for(let D=0;D<u.batchSize;++D)for(let $=0;$<u.inChannels;++$)for(let T=0;T<u.inDepth;++T)for(let F=0;F<u.inHeight;++F)for(let V=0;V<u.inWidth;++V){let X=T-k,z=F-N,j=V-S,Z=0;for(let Q=0;Q<y;Q+=g){let te=(X+Q)/h;if(!(te<0||te>=u.outDepth||Math.floor(te)!==te))for(let ae=0;ae<b;ae+=A){let U=(z+ae)/f;if(!(U<0||U>=u.outHeight||Math.floor(U)!==U))for(let oe=0;oe<w;oe+=x){let re=(j+oe)/m;if(re<0||re>=u.outWidth||Math.floor(re)!==re)continue;let me=y*b*w-1-p.get(D,te,U,re,$),ye=Q*b*w+ae*w+oe,Te=me===ye?1:0;if(Te===0)continue;Z+=M.get(D,te,U,re,$)*Te}}}R.set(Z,D,T,F,V,$)}return n.makeTensorInfo(R.shape,R.dtype,R.values)}var yK={kernelName:Uh,backendName:"cpu",kernelFunc:AK};function xK(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a,output:o}=t,i=a;Re([a,o],"maxPoolGrad");let{filterSize:l,strides:c,pad:u,dimRoundingMode:d}=s,p=E.computePool2DInfo(i.shape,l,c,1,u,d),h=n.data.get(i.dataId).values,f=ze(p.outShape,i.dtype,uS(h,i.shape,i.dtype,p).values),m=p.strideHeight,g=p.strideWidth,A=p.dilationHeight,x=p.dilationWidth,y=p.effectiveFilterHeight,b=p.effectiveFilterWidth,w=b-1-p.padInfo.left,k=y-1-p.padInfo.top,S=ze(i.shape,"float32"),N=n.data.get(r.dataId).values,R=ze(r.shape,"float32",N);for(let M=0;M<p.batchSize;++M)for(let D=0;D<p.inChannels;++D)for(let $=0;$<p.inHeight;++$)for(let T=0;T<p.inWidth;++T){let F=$-k,V=T-w,X=0;for(let z=0;z<y;z+=A){let j=(F+z)/m;if(!(j<0||j>=p.outHeight||Math.floor(j)!==j))for(let Z=0;Z<b;Z+=x){let Q=(V+Z)/g;if(Q<0||Q>=p.outWidth||Math.floor(Q)!==Q)continue;let te=y*b-1-f.get(M,j,Q,D),ae=z*b+Z,U=te===ae?1:0;if(U===0)continue;X+=R.get(M,j,Q,D)*U}}S.set(X,M,$,T,D)}return n.makeTensorInfo(S.shape,S.dtype,S.values)}var bK={kernelName:Vh,backendName:"cpu",kernelFunc:xK};function vK(e,t,n,s,r){let a=v.computeStrides(t),o=nx(e,t,n,a,r,"max"),i=uS(e,t,n,r,!0,s);return[o.values,i.values]}var wK={kernelName:Gh,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:s}=e,{filterSize:r,strides:a,pad:o,includeBatchInIndex:i}=t,l=n;Re(s,"MaxPoolWithArgmax");let c=l.data.get(s.dataId).values,u=E.computePool2DInfo(s.shape,r,a,[1,1],o),[d,p]=vK(c,s.shape,s.dtype,i,u),h=l.write(d,u.outShape,s.dtype),f=l.write(p,u.outShape,s.dtype);return[{dataId:h,shape:u.outShape,dtype:s.dtype},{dataId:f,shape:u.outShape,dtype:"int32"}]}};function kK(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s,i=v.parseAxisParam(a,r.shape),c=E.computeOutAndReduceShapes(r.shape,i)[1],u=v.sizeFromShape(c),d=[],p=n.makeTensorInfo([],"float32",new Float32Array([u]));d.push(p);let h=Uo({inputs:{x:r},backend:n,attrs:{dtype:"float32"}});d.push(h);let f=sx({inputs:{a:h,b:p},backend:n});d.push(f);let m=cp({inputs:{x:f},backend:n,attrs:{axis:a,keepDims:o}});return d.forEach(g=>n.disposeIntermediateTensorInfo(g)),m}var IK={kernelName:Ja,backendName:"cpu",kernelFunc:kK};function SK(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;Re(r,"min");let i=v.parseAxisParam(a,r.shape),l=i,c=E.getAxesPermutation(l,r.shape.length),u=r;c!=null&&(u=Ls({inputs:{x:r},backend:n,attrs:{perm:c}}),l=E.getInnerMostAxes(l.length,r.shape.length)),E.assertAxesAreInnerMostDims("min",l,u.shape.length);let[d,p]=E.computeOutAndReduceShapes(u.shape,l),h=v.sizeFromShape(p),f=v.makeZerosTypedArray(v.sizeFromShape(d),u.dtype),m=n.data.get(u.dataId).values;for(let A=0;A<f.length;++A){let x=A*h,y=m[x];for(let b=0;b<h;++b){let w=m[x+b];(Number.isNaN(w)||w<y)&&(y=w)}f[A]=y}c!=null&&n.disposeIntermediateTensorInfo(u);let g=n.makeTensorInfo(d,u.dtype,f);if(o){let A=E.expandShapeToKeepDim(d,i),x=Dt({inputs:{x:g},backend:n,attrs:{shape:A}});return n.disposeIntermediateTensorInfo(g),x}return g}var CK={kernelName:Qa,backendName:"cpu",kernelFunc:SK};function TK(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{paddings:a,mode:o}=s;Re(r,"mirrorPad");let i=a.map((y,b)=>y[0]+r.shape[b]+y[1]),l=a.map(y=>y[0]),c=a.map((y,b)=>y[0]+r.shape[b]),u=o==="reflect"?0:1,d=n.data.get(r.dataId).values,p=r.shape.length,h=v.computeStrides(r.shape),f=v.sizeFromShape(i),m=i.length,g=v.computeStrides(i),A=v.getTypedArrayFromDType(r.dtype,f);for(let y=0;y<f;y++){let b=v.indexToLoc(y,m,g);for(let k=0;k<m;k++)b[k]<l[k]?b[k]=l[k]*2-b[k]-u:b[k]>=c[k]&&(b[k]=(c[k]-1)*2-b[k]+u);b=b.map((k,S)=>k-l[S]);let w=v.locToIndex(b,p,h);A[y]=d[w]}return{dataId:n.write(A,i,r.dtype),shape:i,dtype:r.dtype}}var NK={kernelName:to,backendName:"cpu",kernelFunc:TK},EK=Yt((e,t)=>{let n=e%t;return e<0&&t<0||e>=0&&t>=0?n:(n+t)%t}),RK=wn(vu,EK),$K={kernelName:vu,backendName:"cpu",kernelFunc:RK},_K=li(yh());function mS(e){let{inputs:t,backend:n,attrs:s}=e,{logits:r}=t,{dim:a}=s,o=r.shape.length,i=a;if(i===-1&&(i=o-1),i!==o-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${o} and dim was ${i}`);let l=v.parseAxisParam([i],r.shape),c=fS({inputs:{x:r},backend:n,attrs:{reductionIndices:l,keepDims:!1}}),u=E.expandShapeToKeepDim(c.shape,l),d=Dt({inputs:{x:c},backend:n,attrs:{shape:u}}),p=ex({inputs:{a:r,b:d},backend:n}),h=CI({inputs:{x:p},backend:n}),f=cp({inputs:{x:h},backend:n,attrs:{axis:l,keepDims:!1}}),m=Dt({inputs:{x:f},backend:n,attrs:{shape:u}}),g=sx({inputs:{a:h,b:m},backend:n});return n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(m),g}var DK={kernelName:mo,backendName:"cpu",kernelFunc:mS};function PK(e){let{inputs:t,backend:n,attrs:s}=e,{logits:r}=t,{numSamples:a,seed:o,normalized:i}=s;Re(r,"multinomial");let l=i?r:mS({inputs:{logits:r},backend:n,attrs:{dim:-1}}),c=l.shape[0],u=l.shape[1],d=n.data.get(l.dataId).values,p=[c,a],h=v.makeZerosTypedArray(v.sizeFromShape(p),"int32");for(let f=0;f<c;++f){let m=f*u,g=new Float32Array(u-1);g[0]=d[m];for(let y=1;y<g.length;++y)g[y]=g[y-1]+d[m+y];let A=_K.alea(o.toString()),x=f*a;for(let y=0;y<a;++y){let b=A();h[x+y]=g.length;for(let w=0;w<g.length;w++)if(b<g[w]){h[x+y]=w;break}}}return i||n.disposeIntermediateTensorInfo(l),n.makeTensorInfo(p,"int32",h)}var FK={kernelName:Hh,backendName:"cpu",kernelFunc:PK},OK=tr.nonMaxSuppressionV3Impl;function MK(e){let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l}=s;Re(r,"NonMaxSuppression");let c=n.data.get(r.dataId).values,u=n.data.get(a.dataId).values,{selectedIndices:d}=OK(c,u,o,i,l);return n.makeTensorInfo([d.length],"int32",new Int32Array(d))}var zK={kernelName:Ri,backendName:"cpu",kernelFunc:MK},LK=tr.nonMaxSuppressionV4Impl;function BK(e){let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l,padToMaxOutputSize:c}=s;Re(r,"NonMaxSuppressionPadded");let u=n.data.get(r.dataId).values,d=n.data.get(a.dataId).values,{selectedIndices:p,validOutputs:h}=LK(u,d,o,i,l,c);return[n.makeTensorInfo([p.length],"int32",new Int32Array(p)),n.makeTensorInfo([],"int32",new Int32Array([h]))]}var WK={kernelName:wu,backendName:"cpu",kernelFunc:BK},VK=tr.nonMaxSuppressionV5Impl;function UK(e){let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l,softNmsSigma:c}=s;Re(r,"NonMaxSuppressionWithScore");let u=n.data.get(r.dataId).values,d=n.data.get(a.dataId).values,p=o,h=i,f=l,m=c,{selectedIndices:g,selectedScores:A}=VK(u,d,p,h,f,m);return[n.makeTensorInfo([g.length],"int32",new Int32Array(g)),n.makeTensorInfo([A.length],"float32",new Float32Array(A))]}var GK={kernelName:$i,backendName:"cpu",kernelFunc:UK};function HK(e){let{inputs:t,backend:n,attrs:s}=e,{indices:r}=t,{depth:a,onValue:o,offValue:i}=s;Re(r,"oneHot");let l=v.sizeFromShape(r.shape),c=new Float32Array(l*a);c.fill(i);let u=n.data.get(r.dataId).values;for(let d=0;d<l;++d)u[d]>=0&&u[d]<a&&(c[d*a+u[d]]=o);return n.makeTensorInfo([...r.shape,a],"int32",c)}var jK={kernelName:Di,backendName:"cpu",kernelFunc:HK};function Pm(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="string")throw new Error("zerosLike is not supported for string tensors");if(s.dtype==="complex64"){let r=kl({inputs:{input:s},backend:n}),a=Pm({inputs:{x:r},backend:n}),o=nc({inputs:{input:s},backend:n}),i=Pm({inputs:{x:o},backend:n}),l=ws({inputs:{real:a,imag:i},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),l}else return ox({backend:n,attrs:{shape:s.shape,value:0,dtype:s.dtype}})}var qK={kernelName:Zi,backendName:"cpu",kernelFunc:Pm};function gS(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="string")throw new Error("onesLike is not supported for string tensors");if(s.dtype==="complex64"){let r=kl({inputs:{input:s},backend:n}),a=gS({inputs:{x:r},backend:n}),o=nc({inputs:{input:s},backend:n}),i=Pm({inputs:{x:o},backend:n}),l=ws({inputs:{real:a,imag:i},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),l}else return ox({backend:n,attrs:{shape:s.shape,value:1,dtype:s.dtype}})}var XK={kernelName:_i,backendName:"cpu",kernelFunc:gS};function AS(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s;if(t.length===1)return Dm({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let a=t[0].shape,o=t[0].dtype;t.forEach(u=>{v.assertShapesMatch(a,u.shape,"All tensors passed to stack must have matching shapes"),v.assert(o===u.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],l=t.map(u=>{let d=Dm({inputs:{input:u},backend:n,attrs:{dim:r}});return i.push(d),d}),c=sc({inputs:l,backend:n,attrs:{axis:r}});return i.forEach(u=>n.disposeIntermediateTensorInfo(u)),c}var KK={kernelName:Pi,backendName:"cpu",kernelFunc:AS};function ZK(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{paddings:a,constantValue:o}=s;Re(r,"pad");let i=a.map((x,y)=>x[0]+r.shape[y]+x[1]),l=a.map(x=>x[0]),c=n.data.get(r.dataId).values,u=v.sizeFromShape(r.shape),d=r.shape.length,p=v.computeStrides(r.shape),h=v.sizeFromShape(i),f=i.length,m=v.computeStrides(i),g=v.getTypedArrayFromDType(r.dtype,h);o!==0&&g.fill(o);for(let x=0;x<u;x++){let b=v.indexToLoc(x,d,p).map((k,S)=>k+l[S]),w=v.locToIndex(b,f,m);g[w]=c[x]}return{dataId:n.write(g,i,r.dtype),shape:i,dtype:r.dtype}}var yS={kernelName:so,backendName:"cpu",kernelFunc:ZK},YK=Yt((e,t)=>Math.pow(e,t)),JK=wn(ro,YK),QK={kernelName:ro,backendName:"cpu",kernelFunc:JK};function eZ(e){let{backend:t,attrs:n}=e,{start:s,stop:r,dtype:a,step:o}=n,i=Jy(s,r,o,a);return t.makeTensorInfo([i.length],a,i)}var tZ={kernelName:ku,backendName:"cpu",kernelFunc:eZ},nZ=mt(Iu,e=>1/e),sZ={kernelName:Iu,backendName:"cpu",kernelFunc:nZ};function rZ(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,halfPixelCenters:o,size:i}=s;Re(r,"resizeBilinear");let l=v.computeStrides(r.shape),[c,u]=i,[d,p,h,f]=r.shape,m=n.data.get(r.dataId).values,g=new Float32Array(v.sizeFromShape([d,c,u,f])),A=[a&&c>1?p-1:p,a&&u>1?h-1:h],x=[a&&c>1?c-1:c,a&&u>1?u-1:u],y=0,b=A[0]/x[0],w=A[1]/x[1];for(let k=0;k<d;k++)for(let S=0;S<c;S++){let N;o?N=b*(S+.5)-.5:N=b*S;let R=Math.max(0,Math.floor(N)),M=N-R,D=Math.min(p-1,Math.ceil(N)),$=k*l[0]+R*l[1],T=k*l[0]+D*l[1];for(let F=0;F<u;F++){let V;o?V=w*(F+.5)-.5:V=w*F;let X=Math.max(0,Math.floor(V)),z=V-X,j=Math.min(h-1,Math.ceil(V)),Z=$+X*l[2],Q=T+X*l[2],te=$+j*l[2],ae=T+j*l[2];for(let U=0;U<f;U++){let oe=m[Z+U],re=m[Q+U],me=m[te+U],ye=m[ae+U],Te=oe+(me-oe)*z,Ne=re+(ye-re)*z,Pe=Te+(Ne-Te)*M;g[y++]=Pe}}}return n.makeTensorInfo([d,c,u,f],"float32",g)}var aZ={kernelName:io,backendName:"cpu",kernelFunc:rZ};function oZ(e){let{inputs:t,backend:n,attrs:s}=e,{images:r,dy:a}=t,{alignCorners:o}=s;Re([a,r],"resizeBilinearGrad");let i=v.computeStrides(r.shape),[l,c,u,d]=r.shape,[,p,h]=a.shape,f=new Float32Array(l*c*u*d),m=[o&&p>1?c-1:c,o&&h>1?u-1:u],g=[o&&p>1?p-1:p,o&&h>1?h-1:h],A=m[0]/g[0],x=m[1]/g[1],y=n.data.get(a.dataId).values,b=0;for(let w=0;w<l;w++){let k=w*i[0];for(let S=0;S<p;S++){let N=S*A,R=Math.floor(N),M=Math.min(Math.ceil(N),c-1),D=k+R*i[1],$=k+M*i[1],T=N-R,F=1-T;for(let V=0;V<h;V++){let X=V*x,z=Math.floor(X),j=Math.min(Math.ceil(X),u-1),Z=X-z,Q=1-Z,te=D+z*i[2],ae=D+j*i[2],U=$+z*i[2],oe=$+j*i[2],re=F*Q,me=F*Z,ye=T*Q,Te=T*Z;for(let Ne=0;Ne<d;Ne++){let Pe=y[b++];f[te+Ne]+=Pe*re,f[ae+Ne]+=Pe*me,f[U+Ne]+=Pe*ye,f[oe+Ne]+=Pe*Te}}}}return n.makeTensorInfo([l,u,c,d],"float32",f)}var iZ={kernelName:qh,backendName:"cpu",kernelFunc:oZ};function lZ(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,halfPixelCenters:o,size:i}=s;Re(r,"resizeNearestNeighbor");let l=v.computeStrides(r.shape),[c,u]=i,[d,p,h,f]=r.shape,m=n.data.get(r.dataId).values,g=new Float32Array(d*c*u*f),A=[a&&c>1?p-1:p,a&&u>1?h-1:h],x=[a&&c>1?c-1:c,a&&u>1?u-1:u],y=A[0]/x[0],b=A[1]/x[1],w=0;for(let k=0;k<d;k++){let S=k*l[0];for(let N=0;N<c;N++){let R=o?y*(N+.5):y*N,M=Math.min(p-1,a?Math.round(R):Math.floor(R));o&&(M=Math.max(0,M));let D=S+M*l[1];for(let $=0;$<u;$++){let T=o?b*($+.5):b*$,F=Math.min(h-1,a?Math.round(T):Math.floor(T));o&&(F=Math.max(0,F));let V=D+F*l[2];for(let X=0;X<f;X++){let z=m[V+X];g[w++]=z}}}}return n.makeTensorInfo([d,c,u,f],r.dtype,g)}var uZ={kernelName:Su,backendName:"cpu",kernelFunc:lZ};function cZ(e){let{inputs:t,backend:n,attrs:s}=e,{images:r,dy:a}=t,{alignCorners:o}=s;Re([a,r],"resizeNearestNeighborGrad");let i=v.computeStrides(r.shape),l=v.computeStrides(a.shape),[c,u,d,p]=r.shape,[,h,f]=a.shape,m=new Float32Array(c*u*d*p),g=n.data.get(a.dataId).values,A=[o&&h>1?u-1:u,o&&f>1?d-1:d],x=[o&&h>1?h-1:h,o&&f>1?f-1:f],y=A[0]/x[0],b=A[1]/x[1],w=1/y,k=1/b,S=Math.ceil(w)*2+2,N=Math.ceil(k)*2+2;for(let R=0;R<c;R++){let M=R*i[0];for(let D=0;D<u;D++){let $=M+D*i[1],T=Math.floor(D*w),F=Math.floor(T-S/2);for(let V=0;V<d;V++){let X=$+V*i[2],z=Math.floor(V*k),j=Math.floor(z-N/2);for(let Z=0;Z<p;Z++){let Q=0;for(let te=0;te<S;te++){let ae=te+F;if(ae<0||ae>=h)continue;let U=M+ae*l[1],oe=ae*y,re=Math.min(u-1,o?Math.round(oe):Math.floor(oe));if(D===re)for(let me=0;me<N;me++){let ye=me+j;if(ye<0||ye>=f)continue;let Te=U+ye*l[2],Ne=ye*b,Pe=Math.min(d-1,o?Math.round(Ne):Math.floor(Ne));V===Pe&&(Q+=g[Te+Z])}}m[X+Z]=Q}}}}return n.makeTensorInfo(r.shape,r.dtype,m)}var dZ={kernelName:jh,backendName:"cpu",kernelFunc:cZ};function pZ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dims:a}=s;Re(r,"reverse");let o=r.shape.length,i=v.parseAxisParam(a,r.shape);if(o===0)return Wr({inputs:{x:r},backend:n});let l=new nn(r.shape,r.dtype),c=n.bufferSync(r);for(let u=0;u<l.size;u++){let d=l.indexToLoc(u),p=d.slice();i.forEach(h=>p[h]=r.shape[h]-1-p[h]),l.set(c.get(...p),...d)}return n.makeTensorInfo(l.shape,l.dtype,l.values)}var hZ={kernelName:Mi,backendName:"cpu",kernelFunc:pZ},fZ={kernelName:Yi,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:s}=e,{radians:r,fillValue:a,center:o}=t,i=n,l=v.getTypedArrayFromDType(s.dtype,v.sizeFromShape(s.shape)),[c,u,d,p]=s.shape,[h,f]=E.getImageCenter(o,u,d),m=255,g=Math.sin(r),A=Math.cos(r),x=i.data.get(s.dataId).values;for(let b=0;b<c;b++){let w=b*d*u*p;for(let k=0;k<u;k++){let S=k*(d*p);for(let N=0;N<d;N++){let R=N*p;for(let M=0;M<p;M++){let D=[c,k,N,M],$=D[2],T=D[1],F=($-h)*A-(T-f)*g,V=($-h)*g+(T-f)*A;F=Math.round(F+h),V=Math.round(V+f);let X=a;if(typeof a!="number"&&(M===3?X=m:X=a[M]),F>=0&&F<d&&V>=0&&V<u){let j=V*(d*p),Z=F*p,Q=w+j+Z+M;X=x[Q]}let z=w+S+R+M;l[z]=X}}}}return{dataId:i.write(l,s.shape,s.dtype),shape:s.shape,dtype:s.dtype}}},mZ=mt(zi,e=>{let t=Math.floor(e);return e-t<.5?Math.floor(e):e-t>.5?Math.ceil(e):t%2==0?t:t+1}),gZ={kernelName:zi,backendName:"cpu",kernelFunc:mZ};function xS(e,t,n,s,r,a,o,i,l,c){let u=[s/r,r],d=e.values,p=t.values;if(s===0)return ze(n,t.dtype);let h=ze(u,t.dtype);h.values.fill(l);for(let f=0;f<a;f++){let m=[],g=0;for(let A=0;A<o;A++){let x=d[f*o+A];m.push(x),g+=x*i[A]}if(g<0||g>=s/r)throw new Error(`Invalid indices: ${m} does not index into ${n}`);for(let A=0;A<r;A++)c?h.values[g*r+A]+=p[f*r+A]:h.values[g*r+A]=t.rank===0?p[0]:p[f*r+A]}return h}function AZ(e){let{inputs:t,backend:n,attrs:s}=e,{indices:r,updates:a}=t,{shape:o}=s,{sliceRank:i,numUpdates:l,sliceSize:c,strides:u,outputSize:d}=E.calculateShapes(a,r,o),p=!0,h=n.bufferSync(r),f=n.bufferSync(a),m=xS(h,f,o,d,c,l,i,u,0,p);return n.makeTensorInfo(o,m.dtype,m.values)}var yZ={kernelName:Li,backendName:"cpu",kernelFunc:AZ};function xZ(e){let{inputs:t,backend:n}=e,{condition:s,t:r,e:a}=t;Re([s,r,a],"select");let o=s.shape.length,i=n.data.get(s.dataId).values,l=n.data.get(r.dataId).values,c=n.data.get(a.dataId).values,u=Ln(r.dtype,a.dtype),d=v.makeZerosTypedArray(v.sizeFromShape(r.shape),u),p=0,h=o===0||o>1||r.shape.length===1?1:v.sizeFromShape(r.shape.slice(1));for(let f=0;f<i.length;f++)for(let m=0;m<h;m++)i[f]===1?d[p++]=l[f]:d[p++]=c[f];return n.makeTensorInfo(r.shape,u,d)}var bZ={kernelName:Bi,backendName:"cpu",kernelFunc:xZ},vZ=E.SELU_SCALEALPHA,wZ=E.SELU_SCALE,kZ=mt(Cu,e=>e>=0?wZ*e:vZ*(Math.exp(e)-1)),IZ={kernelName:Cu,backendName:"cpu",kernelFunc:kZ},SZ=mt(Tu,e=>e<0?-1:e>0?1:0),CZ={kernelName:Tu,backendName:"cpu",kernelFunc:SZ},TZ=mt(co,e=>Math.sin(e)),NZ={kernelName:co,backendName:"cpu",kernelFunc:TZ},EZ=mt(Vi,e=>Math.sinh(e)),RZ={kernelName:Vi,backendName:"cpu",kernelFunc:EZ},$Z=11920928955078125e-23,bS=Math.log($Z)+2,_Z=mt(Nu,e=>{let t=e>-bS,n=e<bS,s=Math.exp(e),r;return n?r=s:t?r=e:r=Math.log(1+s),r}),DZ={kernelName:Nu,backendName:"cpu",kernelFunc:_Z};function PZ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,paddings:o}=s;Re([r],"spaceToBatchND");let i=v.sizeFromShape(a),l=[[0,0]];l.push(...o);for(let k=1+a.length;k<r.shape.length;++k)l.push([0,0]);let c=yS.kernelFunc({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),u=E.getReshaped(c.shape,a,i,!1),d=E.getPermuted(u.length,a.length,!1),p=E.getReshapedPermuted(c.shape,a,i,!1),m=Dt({inputs:{x:c},backend:n,attrs:{shape:u}}),x=Ls({inputs:{x:m},backend:n,attrs:{perm:d}}),w=Dt({inputs:{x},backend:n,attrs:{shape:p}});return n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(x),w}var FZ={kernelName:Ui,backendName:"cpu",kernelFunc:PZ};function OZ(e){let{inputs:t,backend:n}=e,{indices:s,values:r,denseShape:a,defaultValue:o}=t;if(a.shape.length!==1)throw new Error(`Dense shape must be a vector, saw:
${a.shape}`);if(s.shape.length!==2)throw new Error(`Indices must be a matrix, saw:
${s.shape}`);if(r.shape.length!==1)throw new Error(`Values must be a vector, saw:
${r.shape}`);if(o.shape.length!==0)throw new Error(`Default value must be a scalar, saw:
${o.shape}`);let i=n.data.get(s.dataId).values,l=n.data.get(r.dataId).values,c=n.data.get(a.dataId).values,u=n.data.get(o.dataId).values[0],[d,p,h,f,m]=HI(i,s.shape,s.dtype,l,r.dtype,c,u);return[n.makeTensorInfo(p,s.dtype,d),n.makeTensorInfo([p[0]],r.dtype,h),n.makeTensorInfo([f.length],"bool",new Uint8Array(f.map(g=>Number(g)))),n.makeTensorInfo([m.length],s.dtype,new Int32Array(m))]}var MZ={kernelName:Xh,backendName:"cpu",kernelFunc:OZ};function zZ(e){let{inputs:t,backend:n}=e,{inputIndices:s,inputShape:r,newShape:a}=t;if(s.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape
${s.shape}`);if(r.shape.length!==1)throw new Error(`Input shape should be a vector but received shape
${r.shape}`);if(a.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${a.shape}`);let o=Array.from(n.data.get(r.dataId).values),i=n.data.get(s.dataId).values,l=Array.from(n.data.get(a.dataId).values),[c,u,d]=jI(i,s.shape,s.dtype,o,l);return[n.makeTensorInfo(u,s.dtype,c),n.makeTensorInfo([d.length],a.dtype,new Int32Array(d))]}var LZ={kernelName:Kh,backendName:"cpu",kernelFunc:zZ};function BZ(e){let{inputs:t,backend:n}=e,{data:s,indices:r,segmentIds:a}=t;if(s.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
${r.shape}`);if(a.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
${a.shape}`);let o=n.data.get(s.dataId).values,i=n.data.get(r.dataId).values,l=n.data.get(a.dataId).values,[c,u]=Qy(o,s.shape,s.dtype,i,l,!0);return n.makeTensorInfo(u,s.dtype,c)}var WZ={kernelName:Zh,backendName:"cpu",kernelFunc:BZ};function VZ(e){let{inputs:t,backend:n}=e,{data:s,indices:r,segmentIds:a}=t;if(s.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
${r.shape}`);if(a.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
${a.shape}`);let o=n.data.get(s.dataId).values,i=n.data.get(r.dataId).values,l=n.data.get(a.dataId).values,[c,u]=Qy(o,s.shape,s.dtype,i,l);return n.makeTensorInfo(u,s.dtype,c)}var UZ={kernelName:Yh,backendName:"cpu",kernelFunc:VZ};function GZ(e){let{inputs:t,backend:n,attrs:s}=e,{sparseIndices:r,sparseValues:a,defaultValue:o}=t,{outputShape:i}=s,{sliceRank:l,numUpdates:c,sliceSize:u,strides:d,outputSize:p}=E.calculateShapes(a,r,i),h=!1,f=n.bufferSync(r),m=n.bufferSync(a),g=n.data.get(o.dataId).values[0],A=xS(f,m,i,p,u,c,l,d,g,h);return n.makeTensorInfo(i,A.dtype,A.values)}var HZ={kernelName:md,backendName:"cpu",kernelFunc:GZ};function jZ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{numOrSizeSplits:a,axis:o}=s,i=v.parseAxisParam(o,r.shape)[0],l=E.prepareSplitSize(r,a,i),c=new Array(r.shape.length).fill(0),u=r.shape.slice();return l.map(d=>{let p=[...u];p[i]=d;let h=Il({inputs:{x:r},backend:n,attrs:{begin:c,size:p}});return c[i]+=d,h})}var qZ={kernelName:Gi,backendName:"cpu",kernelFunc:jZ},XZ={kernelName:Eu,backendName:"cpu",kernelFunc:({inputs:e,backend:t})=>{let{x:n}=e,s=t;Re(n,"square");let r=s.data.get(n.dataId).values,a=new Float32Array(r.length);for(let i=0;i<r.length;++i){let l=r[i];a[i]=l*l}return{dataId:s.write(a,n.shape,n.dtype),shape:n.shape,dtype:n.dtype}}},KZ=mt(bo,(e,t)=>{let n=t;return isNaN(e)?NaN:e>0?1:n.alpha}),ZZ={kernelName:bo,backendName:"cpu",kernelFunc:KZ};function YZ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,end:o,strides:i,beginMask:l,endMask:c,ellipsisMask:u,newAxisMask:d,shrinkAxisMask:p}=s;Re(r,"stridedSlice");let{finalShapeSparse:h,finalShape:f,isIdentity:m,sliceDim0:g,isSimpleSlice:A,begin:x,end:y,strides:b}=Ft.sliceInfo(r.shape,a,o,i,l,c,u,d,p),w;if(m)w=Dt({inputs:{x:r},backend:n,attrs:{shape:f}});else if(g||A){v.assert(r.shape.length>=1,()=>`Input must have rank at least 1, got: ${r.shape.length}`);let k=Ft.computeOutShape(x,y,b),S=Il({inputs:{x:r},backend:n,attrs:{begin:x,size:k}});w=Dt({inputs:{x:S},backend:n,attrs:{shape:f}}),n.disposeIntermediateTensorInfo(S)}else{let k=n.bufferSync(r),S=XI(h,k,b,x);w=n.makeTensorInfo(f,S.dtype,S.values)}return w}var JZ={kernelName:Hi,backendName:"cpu",kernelFunc:YZ};function QZ(e){let{inputs:t,backend:n,attrs:s}=e,{separator:r,nGramWidths:a,leftPad:o,rightPad:i,padWidth:l,preserveShortSequences:c}=s,{data:u,dataSplits:d}=t,p=n.data.get(u.dataId).values,h=n.data.get(d.dataId).values,[f,m]=KI(p,h,r,a,o,i,l,c);return[n.makeTensorInfo([f.length],"string",f),n.makeTensorInfo(d.shape,"int32",m)]}var eY={kernelName:gd,backendName:"cpu",kernelFunc:QZ};function tY(e){let{inputs:t,backend:n,attrs:s}=e,{skipEmpty:r}=s,{input:a,delimiter:o}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(a.shape.length!==1)throw new Error(`Input must be a vector, got shape: ${a.shape}`);if(o.shape.length!==0)throw new Error(`Delimiter must be a scalar, got shape: ${o.shape}`);let i=n.data.get(a.dataId).values,l=n.data.get(o.dataId).values[0],[c,u,d]=ZI(i,l,r),p=u.length;return[n.makeTensorInfo([p,2],"int32",c),n.makeTensorInfo([p],"string",u),n.makeTensorInfo([2],"int32",new Int32Array(d))]}var nY={kernelName:Jh,backendName:"cpu",kernelFunc:tY};function sY(e){let{inputs:t,backend:n,attrs:s}=e,{numBuckets:r}=s,{input:a}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(r<=0)throw new Error("Number of buckets must be at least 1");let o=n.data.get(a.dataId).values,i=YI(o,r);return n.makeTensorInfo(a.shape,"int32",i)}var rY={kernelName:Qh,backendName:"cpu",kernelFunc:sY},aY=mt(ji,e=>Math.tan(e)),oY={kernelName:ji,backendName:"cpu",kernelFunc:aY},iY=mt(yo,e=>Math.tanh(e)),lY={kernelName:yo,backendName:"cpu",kernelFunc:iY};function uY(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reps:a}=s;Re(r,"tile");let o=QI(n.bufferSync(r),a);return n.makeTensorInfo(o.shape,o.dtype,o.values)}var cY={kernelName:Zr,backendName:"cpu",kernelFunc:uY};function dY(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{k:a,sorted:o}=s;Re(r,"topk");let i=n.data.get(r.dataId).values,[l,c]=tS(i,r.shape,r.dtype,a,o);return[n.makeTensorInfo(l.shape,l.dtype,l.values),n.makeTensorInfo(c.shape,c.dtype,c.values)]}var pY={kernelName:qi,backendName:"cpu",kernelFunc:dY};function hY(e){let{inputs:t,attrs:n,backend:s}=e,{image:r,transforms:a}=t,{interpolation:o,fillMode:i,fillValue:l,outputShape:c}=n,[u,d,p,h]=r.shape,[f,m]=c!=null?c:[d,p],g=[u,f,m,h],A=v.computeStrides(r.shape),x=A[0],y=A[1],b=A[2],w=v.getTypedArrayFromDType(r.dtype,v.sizeFromShape(g));w.fill(l);let k=s.data.get(r.dataId).values,S=s.data.get(a.dataId).values;for(let R=0;R<u;++R){let M=a.shape[0]===1?S:S.subarray(R*8,R*8+8);for(let D=0;D<f;++D)for(let $=0;$<m;++$)for(let T=0;T<h;++T){let F,V=M[6]*$+M[7]*D+1;if(V===0)continue;let X=(M[0]*$+M[1]*D+M[2])/V,z=(M[3]*$+M[4]*D+M[5])/V,j=vS(X,p,i),Z=vS(z,d,i);switch(o){case"nearest":F=xY(k,d,p,x,y,b,R,Z,j,T,l);break;case"bilinear":F=bY(k,d,p,x,y,b,R,Z,j,T,l);break;default:throw new Error(`Error in Transform: Expect 'nearest' or 'bilinear', but got ${o}`)}let Q=R*x+D*y+$*b+T;w[Q]=F}return s.makeTensorInfo(g,r.dtype,w)}return{dataId:s.write(w,g,r.dtype),shape:r.shape,dtype:r.dtype}}var fY={kernelName:Xi,backendName:"cpu",kernelFunc:hY};function vS(e,t,n){switch(n){case"reflect":return mY(e,t);case"wrap":return gY(e,t);case"nearest":return yY(e,t);case"constant":default:return AY(e,t)}}function mY(e,t){let n=e;if(n<0)if(t<=1)n=0;else{let s=2*t;n<s&&(n=s*Math.trunc(-n/s)+n),n=n<-t?n+s:-n-1}else if(n>t-1)if(t<=1)n=0;else{let s=2*t;n-=s*Math.trunc(n/s),n>=t&&(n=s-n-1)}return v.clamp(0,n,t-1)}function gY(e,t){let n=e;if(n<0)if(t<=1)n=0;else{let s=t-1;n+=t*(Math.trunc(-n/s)+1)}else if(n>t-1)if(t<=1)n=0;else{let s=t-1;n-=t*Math.trunc(n/s)}return v.clamp(0,n,t-1)}function AY(e,t){return e}function yY(e,t){return v.clamp(0,e,t-1)}function dp(e,t,n,s,r,a,o,i,l,c,u){let d=o*s+i*r+l*a+c;return 0<=i&&i<t&&0<=l&&l<n?e[d]:u}function xY(e,t,n,s,r,a,o,i,l,c,u){let d=Math.round(i),p=Math.round(l);return dp(e,t,n,s,r,a,o,d,p,c,u)}function bY(e,t,n,s,r,a,o,i,l,c,u){let d=Math.floor(i),p=Math.floor(l),h=d+1,f=p+1,m=(f-l)*dp(e,t,n,s,r,a,o,d,p,c,u)+(l-p)*dp(e,t,n,s,r,a,o,d,f,c,u),g=(f-l)*dp(e,t,n,s,r,a,o,h,p,c,u)+(l-p)*dp(e,t,n,s,r,a,o,h,f,c,u);return(h-i)*m+(i-d)*g}function vY(e){let{inputs:t,attrs:n,backend:s}=e,{axis:r}=n,{x:a}=t;Re(a,"unique");let o=s.data.get(a.dataId).values,{outputValues:i,outputShape:l,indices:c}=nS(o,r,a.shape,a.dtype);return[s.makeTensorInfo(l,a.dtype,i),s.makeTensorInfo([c.length],"int32",c)]}var wY={kernelName:ef,backendName:"cpu",kernelFunc:vY};function kY(e){let{inputs:t,backend:n,attrs:s}=e,{value:r}=t,{axis:a}=s;a<0&&(a+=r.shape.length);let o=r.shape.length,i=r.shape[a],l=new Array(o-1),c=0;for(let h=0;h<o;h++)h!==a&&(l[c++]=r.shape[h]);let u=new Array(o).fill(0),d=r.shape.slice();d[a]=1;let p=new Array(i);for(let h=0;h<p.length;h++){u[a]=h;let f=Il({inputs:{x:r},backend:n,attrs:{begin:u,size:d}});p[h]=Dt({inputs:{x:f},backend:n,attrs:{shape:l}}),n.disposeIntermediateTensorInfo(f)}return p}var IY={kernelName:Ki,backendName:"cpu",kernelFunc:kY};function SY(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,segmentIds:a}=t,{numSegments:o}=s;Re(r,"unsortedSegmentSum");let i=r.shape.length,l=a.shape.length,c=[],u=[],d=i-l,p=a;for(let f=0;f<d;++f){let m=Dm({inputs:{input:p},backend:n,attrs:{dim:f+1}});p=m,u.push(m)}for(let f=0;f<o;++f){let m=v.createScalarValue(f,"int32"),g=n.makeTensorInfo([],"int32",m),A=II({inputs:{a:g,b:p},backend:n}),x=Uo({inputs:{x:A},backend:n,attrs:{dtype:"float32"}}),y=$m({inputs:{a:x,b:r},backend:n}),b=cp({inputs:{x:y},backend:n,attrs:{axis:0,keepDims:!1}});c.push(b),u.push(g),u.push(A),u.push(x),u.push(y),u.push(b)}let h=AS({inputs:c,backend:n,attrs:{axis:0}});return u.forEach(f=>n.disposeIntermediateTensorInfo(f)),h}var CY={kernelName:Ad,backendName:"cpu",kernelFunc:SY},TY=[Pj,CH,Oj,zj,_H,Bj,Vj,Gj,jj,Xj,Zj,Jj,eq,sq,aq,lq,cq,pq,fq,_j,gq,yq,bq,wq,RH,PH,Iq,TH,Cq,Nq,$q,Dq,Eq,Mq,Lq,Fq,Wq,Uq,Hq,qq,Kq,Yq,Jq,eX,nX,rX,aX,iX,oX,rx,cX,Sj,pX,FH,bX,OH,vX,zH,TX,NX,RX,BH,DX,FX,MX,LX,WX,VH,GH,NH,UX,Tq,HX,qX,KX,Cj,jH,XH,YX,ZH,QX,nK,rK,iK,uK,dK,JH,fK,gK,yK,bK,wK,pK,IK,CK,ej,NK,$K,FK,nj,rj,zK,WK,GK,oj,jK,XK,KK,yS,QK,Nj,uj,tZ,EH,sZ,Ej,Rj,$j,aZ,iZ,uZ,dZ,hZ,fZ,gZ,dj,yZ,bZ,IZ,hj,CZ,NZ,RZ,fj,DK,DZ,FZ,MZ,LZ,WZ,UZ,HZ,qZ,Aj,XZ,xj,ZZ,JZ,eY,nY,rY,kj,lX,oY,lY,cY,pY,ij,fY,wY,IY,CY,qK];for(let e of TY)dr(e);var wS={};Me(wS,{assertNotComplex:()=>ac,bindCanvasToFramebuffer:()=>LY,bindColorTextureToFramebuffer:()=>zm,bindTextureToProgramUniformSampler:()=>MS,bindTextureUnit:()=>PS,bindVertexBufferToProgramAttribute:()=>ux,callAndCheck:()=>ke,canBeRepresented:()=>kS,createFragmentShader:()=>CS,createFramebuffer:()=>DS,createProgram:()=>TS,createStaticIndexBuffer:()=>RS,createStaticVertexBuffer:()=>ES,createTexture:()=>$S,createVertexShader:()=>SS,getBatchDim:()=>Cl,getExtensionOrThrow:()=>fp,getFramebufferErrorMessage:()=>zS,getMaxTexturesInShader:()=>VS,getNumChannels:()=>MY,getProgramUniformLocation:()=>OS,getProgramUniformLocationOrThrow:()=>FS,getRowsCols:()=>Tl,getShapeAs3D:()=>Lm,getTextureShapeFromLogicalShape:()=>BS,getWebGLDisjointQueryTimerVersion:()=>US,getWebGLErrorMessage:()=>IS,getWebGLMaxTextureSize:()=>WS,hasExtension:()=>Ws,isCapableOfRenderingToFloatTexture:()=>GS,isDownloadFloatTextureEnabled:()=>HS,isReshapeFree:()=>gp,isWebGLFenceEnabled:()=>jS,isWebGLVersionEnabled:()=>dx,linkProgram:()=>NS,resetMaxTextureSize:()=>BY,resetMaxTexturesInShader:()=>WY,unbindColorTextureFromFramebuffer:()=>cx,unbindTextureUnit:()=>zY,validateFramebuffer:()=>mp,validateProgram:()=>Mm,validateTextureSize:()=>_S});var Sl={},ix={alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!0};function Fm(e,t){Sl[e]=t}function Vr(e){if(!(e in Sl)){let n=EY(e);if(n!==null)Sl[e]=n;else return console.log("Could not get context for WebGL version",e),null}let t=Sl[e];return t==null||t.isContextLost()?(delete Sl[e],Vr(e)):(t.disable(t.DEPTH_TEST),t.disable(t.STENCIL_TEST),t.disable(t.BLEND),t.disable(t.DITHER),t.disable(t.POLYGON_OFFSET_FILL),t.disable(t.SAMPLE_COVERAGE),t.enable(t.SCISSOR_TEST),t.enable(t.CULL_FACE),t.cullFace(t.BACK),Sl[e])}function NY(e){if(typeof OffscreenCanvas!="undefined"&&e===2)return new OffscreenCanvas(300,150);if(typeof document!="undefined")return document.createElement("canvas");throw new Error("Cannot create a canvas in this context")}function EY(e){if(e!==1&&e!==2)throw new Error("Cannot get WebGL rendering context, WebGL is disabled.");let t=NY(e);return t.addEventListener("webglcontextlost",n=>{n.preventDefault(),delete Sl[e]},!1),e===1?t.getContext("webgl",ix)||t.getContext("experimental-webgl",ix):t.getContext("webgl2",ix)}var pp;(function(e){e[e.DENSE=0]="DENSE",e[e.SHARED_BATCH=1]="SHARED_BATCH"})(pp||(pp={}));var Bs;(function(e){e[e.RENDER=0]="RENDER",e[e.UPLOAD=1]="UPLOAD",e[e.PIXELS=2]="PIXELS",e[e.DOWNLOAD=3]="DOWNLOAD"})(Bs||(Bs={}));var Cn;(function(e){e[e.UNPACKED_FLOAT16=0]="UNPACKED_FLOAT16",e[e.UNPACKED_FLOAT32=1]="UNPACKED_FLOAT32",e[e.PACKED_4X1_UNSIGNED_BYTE=2]="PACKED_4X1_UNSIGNED_BYTE",e[e.PACKED_2X2_FLOAT32=3]="PACKED_2X2_FLOAT32",e[e.PACKED_2X2_FLOAT16=4]="PACKED_2X2_FLOAT16"})(Cn||(Cn={}));function hp(e,t){return[t,e]}function RY(e,t){return e*t}function Om(e){let t=v.sizeFromShape(e),n=Math.ceil(t/4);return v.sizeToSquarishShape(n)}function rc(e,t){return[Math.max(1,Math.ceil(t/2)),Math.max(1,Math.ceil(e/2))]}function $Y(e,t){let[n,s]=rc(e,t);return n*s*4}function lx(e,t){let n=e,s,r,a,o,i,l,c,u,d,p;return Y().getNumber("WEBGL_VERSION")===2?(s=n.R32F,r=n.R16F,a=n.RGBA16F,o=n.RGBA32F,i=n.RED,c=4,u=1,d=n.HALF_FLOAT,p=n.FLOAT,l=n.RGBA8):(s=e.RGBA,r=e.RGBA,a=e.RGBA,o=n.RGBA,i=e.RGBA,c=4,u=4,d=t!=null?t.HALF_FLOAT_OES:null,p=e.FLOAT,l=e.RGBA),{internalFormatFloat:s,internalFormatHalfFloat:r,internalFormatPackedHalfFloat:a,internalFormatPackedFloat:o,textureFormatFloat:i,downloadTextureFormat:l,downloadUnpackNumChannels:c,defaultNumChannels:u,textureTypeHalfFloat:d,textureTypeFloat:p}}function ke(e,t){let n=t();return Y().getBool("DEBUG")&&_Y(e),n}function _Y(e){let t=e.getError();if(t!==e.NO_ERROR)throw new Error("WebGL Error: "+IS(e,t))}var DY=596e-10,PY=65504;function kS(e){return!!(Y().getBool("WEBGL_RENDER_FLOAT32_ENABLED")||e===0||DY<Math.abs(e)&&Math.abs(e)<PY)}function IS(e,t){switch(t){case e.NO_ERROR:return"NO_ERROR";case e.INVALID_ENUM:return"INVALID_ENUM";case e.INVALID_VALUE:return"INVALID_VALUE";case e.INVALID_OPERATION:return"INVALID_OPERATION";case e.INVALID_FRAMEBUFFER_OPERATION:return"INVALID_FRAMEBUFFER_OPERATION";case e.OUT_OF_MEMORY:return"OUT_OF_MEMORY";case e.CONTEXT_LOST_WEBGL:return"CONTEXT_LOST_WEBGL";default:return`Unknown error code ${t}`}}function fp(e,t){return ia(e,()=>e.getExtension(t),'Extension "'+t+'" not supported on this browser.')}function SS(e,t){let n=ia(e,()=>e.createShader(e.VERTEX_SHADER),"Unable to create vertex WebGLShader.");if(ke(e,()=>e.shaderSource(n,t)),ke(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw console.log(e.getShaderInfoLog(n)),new Error("Failed to compile vertex shader.");return n}function CS(e,t){let n=ia(e,()=>e.createShader(e.FRAGMENT_SHADER),"Unable to create fragment WebGLShader.");if(ke(e,()=>e.shaderSource(n,t)),ke(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw OY(t,e.getShaderInfoLog(n)),new Error("Failed to compile fragment shader.");return n}var FY=/ERROR: [0-9]+:([0-9]+):/g;function OY(e,t){let n=FY.exec(t);if(n==null){console.log(`Couldn't parse line number in error: ${t}`),console.log(e);return}let s=+n[1],r=e.split(`
`),a=r.length.toString().length+2,o=r.map((d,p)=>v.rightPad((p+1).toString(),a)+d),i=0;for(let d=0;d<o.length;d++)i=Math.max(o[d].length,i);let l=o.slice(0,s-1),c=o.slice(s-1,s),u=o.slice(s);console.log(l.join(`
`)),console.log(t.split(`
`)[0]),console.log(`%c ${v.rightPad(c[0],i)}`,"border:1px solid red; background-color:#e3d2d2; color:#a61717"),console.log(u.join(`
`))}function TS(e){return ia(e,()=>e.createProgram(),"Unable to create WebGLProgram.")}function NS(e,t){if(ke(e,()=>e.linkProgram(t)),e.getProgramParameter(t,e.LINK_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Failed to link vertex and fragment shaders.")}function Mm(e,t){if(ke(e,()=>e.validateProgram(t)),e.getProgramParameter(t,e.VALIDATE_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Shader program validation failed.")}function ES(e,t){let n=ia(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return ke(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),ke(e,()=>e.bufferData(e.ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function RS(e,t){let n=ia(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return ke(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,n)),ke(e,()=>e.bufferData(e.ELEMENT_ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function MY(){return Y().getNumber("WEBGL_VERSION")===2?1:4}function $S(e){return ia(e,()=>e.createTexture(),"Unable to create WebGLTexture.")}function _S(e,t){let n=Y().getNumber("WEBGL_MAX_TEXTURE_SIZE");if(e<=0||t<=0){let s=`[${e}x${t}]`;throw new Error("Requested texture size "+s+" is invalid.")}if(e>n||t>n){let s=`[${e}x${t}]`,r=`[${n}x${n}]`;throw new Error("Requested texture size "+s+" greater than WebGL maximum on this browser / GPU "+r+".")}}function DS(e){return ia(e,()=>e.createFramebuffer(),"Unable to create WebGLFramebuffer.")}function ux(e,t,n,s,r,a,o){let i=e.getAttribLocation(t,n);return i===-1?!1:(ke(e,()=>e.bindBuffer(e.ARRAY_BUFFER,s)),ke(e,()=>e.vertexAttribPointer(i,r,e.FLOAT,!1,a,o)),ke(e,()=>e.enableVertexAttribArray(i)),!0)}function PS(e,t,n){LS(e,n),ke(e,()=>e.activeTexture(e.TEXTURE0+n)),ke(e,()=>e.bindTexture(e.TEXTURE_2D,t))}function zY(e,t){LS(e,t),ke(e,()=>e.activeTexture(e.TEXTURE0+t)),ke(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function FS(e,t,n){return ia(e,()=>e.getUniformLocation(t,n),'uniform "'+n+'" not present in program.')}function OS(e,t,n){return e.getUniformLocation(t,n)}function MS(e,t,n,s){ke(e,()=>PS(e,t,s)),ke(e,()=>e.uniform1i(n,s))}function LY(e){ke(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),ke(e,()=>e.viewport(0,0,e.canvas.width,e.canvas.height)),ke(e,()=>e.scissor(0,0,e.canvas.width,e.canvas.height))}function zm(e,t,n){ke(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,n)),ke(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,t,0))}function cx(e,t){ke(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,t)),ke(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,null,0))}function mp(e){let t=e.checkFramebufferStatus(e.FRAMEBUFFER);if(t!==e.FRAMEBUFFER_COMPLETE)throw new Error("Error binding framebuffer: "+zS(e,t))}function zS(e,t){switch(t){case e.FRAMEBUFFER_INCOMPLETE_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_DIMENSIONS:return"FRAMEBUFFER_INCOMPLETE_DIMENSIONS";case e.FRAMEBUFFER_UNSUPPORTED:return"FRAMEBUFFER_UNSUPPORTED";default:return`unknown error ${t}`}}function ia(e,t,n){let s=ke(e,()=>t());if(s==null)throw new Error(n);return s}function LS(e,t){let n=e.MAX_COMBINED_TEXTURE_IMAGE_UNITS-1,s=t+e.TEXTURE0;if(s<e.TEXTURE0||s>n){let r=`[gl.TEXTURE0, gl.TEXTURE${n}]`;throw new Error(`textureUnit must be in ${r}.`)}}function Cl(e,t=2){return v.sizeFromShape(e.slice(0,e.length-t))}function Tl(e){if(e.length===0)throw Error("Cannot get rows and columns of an empty shape array.");return[e.length>1?e[e.length-2]:1,e[e.length-1]]}function Lm(e){let t=[1,1,1];return e.length===0||e.length===1&&e[0]===1||(t=[Cl(e),...Tl(e)]),t}function BS(e,t=!1){let n=Y().getNumber("WEBGL_MAX_TEXTURE_SIZE");t&&(n=n*2,e=e.map((r,a)=>a>=e.length-2?v.nearestLargerEven(e[a]):e[a]),e.length===1&&(e=[2,e[0]])),e.length!==2&&(e=v.squeezeShape(e).newShape);let s=v.sizeFromShape(e);if(e.length<=1&&s<=n)return[1,s];if(e.length===2&&e[0]<=n&&e[1]<=n)return e;if(e.length===3&&e[0]*e[1]<=n&&e[2]<=n)return[e[0]*e[1],e[2]];if(e.length===3&&e[0]<=n&&e[1]*e[2]<=n)return[e[0],e[1]*e[2]];if(e.length===4&&e[0]*e[1]*e[2]<=n&&e[3]<=n)return[e[0]*e[1]*e[2],e[3]];if(e.length===4&&e[0]<=n&&e[1]*e[2]*e[3]<=n)return[e[0],e[1]*e[2]*e[3]];if(t){let r=Cl(e),a=2,o=2;return e.length&&([a,o]=Tl(e)),s=r*(a/2)*(o/2),v.sizeToSquarishShape(s).map(i=>i*2)}return v.sizeToSquarishShape(s)}function Bm(e){return e%2==0}function gp(e,t){if(e=e.slice(-2),t=t.slice(-2),v.arraysEqual(e,t)||!e.length||!t.length||e[0]===0||e[1]===0||t[0]===0||t[1]===0)return!0;if(e.length!==t.length){let n=e.slice(-1)[0],s=t.slice(-1)[0];if(n===s||Bm(n)&&Bm(s)&&(e[0]===1||t[0]===1))return!0}return e[1]===t[1]&&Bm(e[0])&&Bm(t[0])}var Wm,Vm;function WS(e){if(Wm==null){let t=Vr(e);Wm=t.getParameter(t.MAX_TEXTURE_SIZE)}return Wm}function BY(){Wm=null}function WY(){Vm=null}function VS(e){if(Vm==null){let t=Vr(e);Vm=t.getParameter(t.MAX_TEXTURE_IMAGE_UNITS)}return Math.min(16,Vm)}function US(e){if(e===0)return 0;let t,n=Vr(e);return Ws(n,"EXT_disjoint_timer_query_webgl2")&&e===2?t=2:Ws(n,"EXT_disjoint_timer_query")?t=1:t=0,t}function Ws(e,t){return e.getExtension(t)!=null}function dx(e){try{if(Vr(e)!=null)return!0}catch(t){return console.log("Error when getting WebGL context: ",t),!1}return!1}function GS(e){if(e===0)return!1;let t=Vr(e);if(e===1){if(!Ws(t,"OES_texture_float"))return!1}else if(!Ws(t,"EXT_color_buffer_float"))return!1;return px(t)}function HS(e){if(e===0)return!1;let t=Vr(e);if(e===1){if(!Ws(t,"OES_texture_float")||!Ws(t,"WEBGL_color_buffer_float"))return!1}else{if(Ws(t,"EXT_color_buffer_float"))return px(t);let s="EXT_color_buffer_half_float";if(Ws(t,s)){let r=t.getExtension(s);return VY(t,r)}return!1}return px(t)}function px(e){let t=lx(e),n=e.createTexture();e.bindTexture(e.TEXTURE_2D,n);let s=1,r=1;e.texImage2D(e.TEXTURE_2D,0,t.internalFormatFloat,s,r,0,t.textureFormatFloat,t.textureTypeFloat,null);let a=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,a),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,n,0);let o=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(n),e.deleteFramebuffer(a),o}function VY(e,t){let n=lx(e,t),s=e.createTexture();e.bindTexture(e.TEXTURE_2D,s);let r=1,a=1;e.texImage2D(e.TEXTURE_2D,0,n.internalFormatHalfFloat,r,a,0,n.textureFormatFloat,n.textureTypeHalfFloat,null);let o=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,o),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,s,0);let i=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(s),e.deleteFramebuffer(o),i}function jS(e){return e!==2?!1:Vr(e).fenceSync!=null}function ac(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&v.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the WebGL backend.`)})}var De=Y();De.registerFlag("HAS_WEBGL",()=>De.getNumber("WEBGL_VERSION")>0);De.registerFlag("WEBGL_VERSION",()=>dx(2)?2:dx(1)?1:0);De.registerFlag("WEBGL_CHECK_NUMERICAL_PROBLEMS",()=>!1);De.registerFlag("WEBGL_BUFFER_SUPPORTED",()=>De.get("WEBGL_VERSION")===2);De.registerFlag("WEBGL_CPU_FORWARD",()=>!0);De.registerFlag("WEBGL_FORCE_F16_TEXTURES",()=>!1);De.registerFlag("WEBGL_PACK",()=>De.getBool("HAS_WEBGL"));De.registerFlag("WEBGL_PACK_NORMALIZATION",()=>De.getBool("WEBGL_PACK"));De.registerFlag("WEBGL_PACK_CLIP",()=>De.getBool("WEBGL_PACK"));De.registerFlag("WEBGL_PACK_DEPTHWISECONV",()=>De.getBool("WEBGL_PACK"));De.registerFlag("WEBGL_PACK_BINARY_OPERATIONS",()=>De.getBool("WEBGL_PACK"));De.registerFlag("WEBGL_PACK_UNARY_OPERATIONS",()=>De.getBool("WEBGL_PACK"));De.registerFlag("WEBGL_PACK_ARRAY_OPERATIONS",()=>De.getBool("WEBGL_PACK"));De.registerFlag("WEBGL_PACK_IMAGE_OPERATIONS",()=>De.getBool("WEBGL_PACK"));De.registerFlag("WEBGL_PACK_REDUCE",()=>De.getBool("WEBGL_PACK"));De.registerFlag("WEBGL_LAZILY_UNPACK",()=>De.getBool("WEBGL_PACK"));De.registerFlag("WEBGL_CONV_IM2COL",()=>De.getBool("WEBGL_PACK"));De.registerFlag("WEBGL_MAX_TEXTURE_SIZE",()=>WS(De.getNumber("WEBGL_VERSION")));De.registerFlag("WEBGL_MAX_TEXTURES_IN_SHADER",()=>VS(De.getNumber("WEBGL_VERSION")));De.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION",()=>{let e=De.getNumber("WEBGL_VERSION");return e===0?0:US(e)});De.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE",()=>De.getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0&&!_u.isMobile());De.registerFlag("WEBGL_RENDER_FLOAT32_CAPABLE",()=>GS(De.getNumber("WEBGL_VERSION")));De.registerFlag("WEBGL_RENDER_FLOAT32_ENABLED",()=>De.getBool("WEBGL_FORCE_F16_TEXTURES")?!1:De.getBool("WEBGL_RENDER_FLOAT32_CAPABLE"));De.registerFlag("WEBGL_DOWNLOAD_FLOAT_ENABLED",()=>HS(De.getNumber("WEBGL_VERSION")));De.registerFlag("WEBGL_FENCE_API_ENABLED",()=>jS(De.getNumber("WEBGL_VERSION")));De.registerFlag("WEBGL_SIZE_UPLOAD_UNIFORM",()=>De.getBool("WEBGL_RENDER_FLOAT32_ENABLED")?4:0);De.registerFlag("WEBGL_DELETE_TEXTURE_THRESHOLD",()=>-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_DELETE_TEXTURE_THRESHOLD must be -1 (indicating never delete) or at least 0, but got ${e}.`)});De.registerFlag("WEBGL_FLUSH_THRESHOLD",()=>_u.isMobile()?1:-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_FLUSH_THRESHOLD must be -1 (indicating never manual flush) or at least 0, but got ${e}.`)});De.registerFlag("CPU_HANDOFF_SIZE_THRESHOLD",()=>128);De.registerFlag("WEBGL_USE_SHAPES_UNIFORMS",()=>!1);De.registerFlag("TOPK_LAST_DIM_CPU_HANDOFF_SIZE_THRESHOLD",()=>1e5);De.registerFlag("TOPK_K_CPU_HANDOFF_THRESHOLD",()=>128);function Gn(){let e,t,n,s,r,a,o,i,l,c;return Y().getNumber("WEBGL_VERSION")===2?(e="#version 300 es",t="in",n="out",s="in",r="texture",a="outputColor",o="out vec4 outputColor;",i=`
bool isnan_custom(float val) {
return (val > 0.0 || val < 0.0) ? false : val != 0.0;
}
bvec4 isnan_custom(vec4 val) {
return bvec4(isnan_custom(val.x),
isnan_custom(val.y), isnan_custom(val.z), isnan_custom(val.w));
}
#define isnan(value) isnan_custom(value)
`,l="",c=`
#define round(value) newRound(value)
int newRound(float value) {
return int(floor(value + 0.5));
}
ivec4 newRound(vec4 value) {
return ivec4(floor(value + vec4(0.5)));
}
`):(e="",t="attribute",n="varying",s="varying",r="texture2D",a="gl_FragColor",o="",i=`
#define isnan(value) isnan_custom(value)
bool isnan_custom(float val) {
return (val > 0. || val < 1. || val == 0.) ? false : true;
}
bvec4 isnan_custom(vec4 val) {
return bvec4(isnan(val.x), isnan(val.y), isnan(val.z), isnan(val.w));
}
`,l=`
uniform float INFINITY;
bool isinf(float val) {
return abs(val) == INFINITY;
}
bvec4 isinf(vec4 val) {
return equal(abs(val), vec4(INFINITY));
}
`,c=`
int round(float value) {
return int(floor(value + 0.5));
}
ivec4 round(vec4 value) {
return ivec4(floor(value + vec4(0.5)));
}
`),{version:e,attribute:t,varyingVs:n,varyingFs:s,texture2D:r,output:a,defineOutput:o,defineSpecialNaN:i,defineSpecialInf:l,defineRound:c}}function Nl(e,t,n="index"){let s=v.computeStrides(t);return s.map((r,a)=>{let o=`int ${e[a]} = ${n} / ${r}`,i=a===s.length-1?`int ${e[a+1]} = ${n} - ${e[a]} * ${r}`:`index -= ${e[a]} * ${r}`;return`${o}; ${i};`}).join("")}function Um(e,t,n="index"){let s=v.computeStrides(t);return s.map((r,a)=>{let o=`int ${e[a]} = ${n} / outShapeStrides[${a}]`,i=a===s.length-1?`int ${e[a+1]} = ${n} - ${e[a]} * outShapeStrides[${a}]`:`index -= ${e[a]} * outShapeStrides[${a}]`;return`${o}; ${i};`}).join("")}function UY(e,t){let n=e.length,s=e.map(a=>`${t}[${a}]`),r=new Array(n-1);r[n-2]=s[n-1];for(let a=n-3;a>=0;--a)r[a]=`(${r[a+1]} * ${s[a+1]})`;return r}function GY(e,t,n="index"){let s=e.map((a,o)=>o),r=UY(s,t);return r.map((a,o)=>{let i=`int ${e[o]} = ${n} / ${r[o]}`,l=o===r.length-1?`int ${e[o+1]} = ${n} - ${e[o]} * ${r[o]}`:`index -= ${e[o]} * ${r[o]}`;return`${i}; ${l};`}).join("")}function hx(e){let t=v.computeStrides(e).map(n=>n.toString());return`
int getFlatIndex(ivec3 coords) {
return coords.x * ${t[0]} + coords.y * ${t[1]} + coords.z;
}
`}function fx(){return`
int getFlatIndex(ivec3 coords) {
return coords.x * outShapeStrides[0] + coords.y * outShapeStrides[1] + coords.z;
}
`}var qS=`
const float FLOAT_MAX = 1.70141184e38;
const float FLOAT_MIN = 1.17549435e-38;
lowp vec4 encode_float(highp float v) {
if (isnan(v)) {
return vec4(255, 255, 255, 255);
}
highp float av = abs(v);
if(av < FLOAT_MIN) {
return vec4(0.0, 0.0, 0.0, 0.0);
} else if(v > FLOAT_MAX) {
return vec4(0.0, 0.0, 128.0, 127.0) / 255.0;
} else if(v < -FLOAT_MAX) {
return vec4(0.0, 0.0, 128.0, 255.0) / 255.0;
}
highp vec4 c = vec4(0,0,0,0);
highp float e = floor(log2(av));
highp float m = exp2(fract(log2(av))) - 1.0;
c[2] = floor(128.0 * m);
m -= c[2] / 128.0;
c[1] = floor(32768.0 * m);
m -= c[1] / 32768.0;
c[0] = floor(8388608.0 * m);
highp float ebias = e + 127.0;
c[3] = floor(ebias / 2.0);
ebias -= c[3] * 2.0;
c[2] += floor(ebias) * 128.0;
c[3] += 128.0 * step(0.0, -v);
return c / 255.0;
}
`,{getBroadcastDims:XS}=E;function HY(e,t,n){let s=[];if(e.forEach(h=>{let f=v.sizeFromShape(h.shapeInfo.logicalShape);if(h.shapeInfo.isUniform?s.push(`uniform float ${h.name}${f>1?`[${f}]`:""};`):(s.push(`uniform sampler2D ${h.name};`),s.push(`uniform int offset${h.name};`)),n.enableShapeUniforms){let{uniformShape:m}=mx(n.packedInputs,h.shapeInfo.logicalShape,h.shapeInfo.texShape);switch(m.length){case 1:s.push(`uniform int ${h.name}Shape;`);break;case 2:s.push(`uniform ivec2 ${h.name}Shape;`);break;case 3:s.push(`uniform ivec3 ${h.name}Shape;`);break;case 4:s.push(`uniform ivec4 ${h.name}Shape;`);break;default:break}s.push(`uniform ivec2 ${h.name}TexShape;`)}}),n.enableShapeUniforms){switch(t.logicalShape.length){case 1:s.push("uniform int outShape;");break;case 2:s.push("uniform ivec2 outShape;"),s.push("uniform int outShapeStrides;");break;case 3:s.push("uniform ivec3 outShape;"),s.push("uniform ivec2 outShapeStrides;");break;case 4:s.push("uniform ivec4 outShape;"),s.push("uniform ivec3 outShapeStrides;");break;default:break}s.push("uniform ivec2 outTexShape;")}n.customUniforms&&n.customUniforms.forEach(h=>{s.push(`uniform ${h.type} ${h.name}${h.arrayIndex?`[${h.arrayIndex}]`:""};`)});let r=s.join(`
`),a=e.map(h=>jY(h,t,n.packedInputs,n.enableShapeUniforms)).join(`
`),o=t.texShape,i=Gn(),l=KY(i),c,u,d=JY(i);return t.isPacked?(c=qY(t.logicalShape,o,n.enableShapeUniforms),u=YY(i)):(c=XY(t.logicalShape,o,n.enableShapeUniforms),u=ZY(i)),n.packedInputs&&(d+=nJ),[d,l,u,r,c,a,n.userCode].join(`
`)}function oc(e,t=!1){let n=e.shapeInfo.logicalShape;switch(n.length){case 0:return fJ(e,t);case 1:return gJ(e,t);case 2:return yJ(e,t);case 3:return bJ(e,t);case 4:return wJ(e,t);case 5:return kJ(e);case 6:return IJ(e);default:throw new Error(`${n.length}-D input sampling is not yet supported`)}}function KS(e,t){switch(e.shapeInfo.logicalShape.length){case 0:return hJ(e);case 1:return mJ(e,t);case 2:return AJ(e,t);case 3:return xJ(e,t);default:return vJ(e,t)}}function jY(e,t,n=!1,s){let r="";n?r+=KS(e,s):r+=oc(e,s);let a=e.shapeInfo.logicalShape,o=t.logicalShape;return a.length<=o.length&&(n?r+=SJ(e,t):r+=CJ(e,t)),r}function qY(e,t,n){switch(e.length){case 0:return ZS();case 1:return sJ(e,t,n);case 2:return dJ(e,t,n);case 3:return aJ(e,t,n);default:return iJ(e,t,n)}}function XY(e,t,n){switch(e.length){case 0:return ZS();case 1:return rJ(e,t,n);case 2:return pJ(e,t,n);case 3:return oJ(e,t,n);case 4:return lJ(e,t,n);case 5:return uJ(e,t);case 6:return cJ(e,t);default:throw new Error(`${e.length}-D output sampling is not yet supported`)}}function KY(e){return`
float sampleTexture(sampler2D textureSampler, vec2 uv) {
return ${e.texture2D}(textureSampler, uv).r;
}
`}function ZY(e){return`
void setOutput(float val) {
${e.output} = vec4(val, 0, 0, 0);
}
`}function YY(e){return`
void setOutput(vec4 val) {
${e.output} = val;
}
`}function JY(e){return`${e.version}
precision highp float;
precision highp int;
precision highp sampler2D;
${e.varyingFs} vec2 resultUV;
${e.defineOutput}
const vec2 halfCR = vec2(0.5, 0.5);
struct ivec5
{
int x;
int y;
int z;
int w;
int u;
};
struct ivec6
{
int x;
int y;
int z;
int w;
int u;
int v;
};
uniform float NAN;
${e.defineSpecialNaN}
${e.defineSpecialInf}
${e.defineRound}
int imod(int x, int y) {
return x - y * (x / y);
}
int idiv(int a, int b, float sign) {
int res = a / b;
int mod = imod(a, b);
if (sign < 0. && mod != 0) {
res -= 1;
}
return res;
}
//Based on the work of Dave Hoskins
//https://www.shadertoy.com/view/4djSRW
#define HASHSCALE1 443.8975
float random(float seed){
vec2 p = resultUV * seed;
vec3 p3 = fract(vec3(p.xyx) * HASHSCALE1);
p3 += dot(p3, p3.yzx + 19.19);
return fract((p3.x + p3.y) * p3.z);
}
${QY}
${eJ}
${tJ}
`}var QY=`
vec2 uvFromFlat(int texNumR, int texNumC, int index) {
int texR = index / texNumC;
int texC = index - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
vec2 packedUVfrom1D(int texNumR, int texNumC, int index) {
int texelIndex = index / 2;
int texR = texelIndex / texNumC;
int texC = texelIndex - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
`,eJ=`
vec2 packedUVfrom2D(int texelsInLogicalRow, int texNumR,
int texNumC, int row, int col) {
int texelIndex = (row / 2) * texelsInLogicalRow + (col / 2);
int texR = texelIndex / texNumC;
int texC = texelIndex - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
`,tJ=`
vec2 packedUVfrom3D(int texNumR, int texNumC,
int texelsInBatch, int texelsInLogicalRow, int b,
int row, int col) {
int index = b * texelsInBatch + (row / 2) * texelsInLogicalRow + (col / 2);
int texR = index / texNumC;
int texC = index - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
`,nJ=`
float getChannel(vec4 frag, vec2 innerDims) {
vec2 modCoord = mod(innerDims, 2.);
return modCoord.x == 0. ?
(modCoord.y == 0. ? frag.r : frag.g) :
(modCoord.y == 0. ? frag.b : frag.a);
}
float getChannel(vec4 frag, int dim) {
float modCoord = mod(float(dim), 2.);
return modCoord == 0. ? frag.r : frag.g;
}
`;function ZS(){return`
int getOutputCoords() {
return 0;
}
`}function sJ(e,t,n){let s=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];return s[0]===1?n?`
int getOutputCoords() {
return 2 * int(resultUV.x * ceil(float(outTexShape[1]) / 2.0));
}
`:`
int getOutputCoords() {
return 2 * int(resultUV.x * ${s[1]}.0);
}
`:s[1]===1?n?`
int getOutputCoords() {
return 2 * int(resultUV.y * ceil(float(outTexShape[0]) / 2.0));
}
`:`
int getOutputCoords() {
return 2 * int(resultUV.y * ${s[0]}.0);
}
`:n?`
int getOutputCoords() {
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(packedTexShape[0], packedTexShape[1]));
return 2 * (resTexRC.x * packedTexShape[1] + resTexRC.y);
}
`:`
int getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${s[0]}, ${s[1]}));
return 2 * (resTexRC.x * ${s[1]} + resTexRC.y);
}
`}function rJ(e,t,n){return t[0]===1?n?`
int getOutputCoords() {
return int(resultUV.x * float(outTexShape[1]));
}
`:`
int getOutputCoords() {
return int(resultUV.x * ${t[1]}.0);
}
`:t[1]===1?n?`
int getOutputCoords() {
return int(resultUV.y * float(outTexShape[0]));
}
`:`
int getOutputCoords() {
return int(resultUV.y * ${t[0]}.0);
}
`:n?`
int getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(outTexShape[0], outTexShape[1]));
return resTexRC.x * outTexShape[1] + resTexRC.y;
}
`:`
int getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
return resTexRC.x * ${t[1]} + resTexRC.y;
}
`}function aJ(e,t,n){if(n)return`
ivec3 getOutputCoords() {
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
int texelsInLogicalRow = int(ceil(float(outShape[2]) / 2.0));
int texelsInBatch = texelsInLogicalRow * int(ceil(float(outShape[1]) / 2.0));
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(packedTexShape[0], packedTexShape[1]));
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
int b = index / texelsInBatch;
index -= b * texelsInBatch;
int r = 2 * (index / texelsInLogicalRow);
int c = imod(index, texelsInLogicalRow) * 2;
return ivec3(b, r, c);
}
`;let s=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],r=Math.ceil(e[2]/2),a=r*Math.ceil(e[1]/2);return`
ivec3 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${s[0]}, ${s[1]}));
int index = resTexRC.x * ${s[1]} + resTexRC.y;
int b = index / ${a};
index -= b * ${a};
int r = 2 * (index / ${r});
int c = imod(index, ${r}) * 2;
return ivec3(b, r, c);
}
`}function oJ(e,t,n){if(n)return`
ivec3 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(outTexShape[0], outTexShape[1]));
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
${Um(["r","c","d"],e)}
return ivec3(r, c, d);
}
`;let s=Nl(["r","c","d"],e);return`
ivec3 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${s}
return ivec3(r, c, d);
}
`}function iJ(e,t,n){if(n)return`
ivec4 getOutputCoords() {
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(packedTexShape[0], packedTexShape[1]));
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
int texelsInLogicalRow = int(ceil(float(outShape[3]) / 2.0));
int texelsInBatch = texelsInLogicalRow * int(ceil(float(outShape[2]) / 2.0));
int texelsInBatchN = texelsInBatch * outShape[1];
int b2 = index / texelsInBatchN;
index -= b2 * texelsInBatchN;
int b = index / texelsInBatch;
index -= b * texelsInBatch;
int r = 2 * (index / texelsInLogicalRow);
int c = imod(index, texelsInLogicalRow) * 2;
return ivec4(b2, b, r, c);
}
`;let s=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],r=Math.ceil(e[e.length-1]/2),a=r*Math.ceil(e[e.length-2]/2),o=a,i="",l="b, r, c";for(let c=2;c<e.length-1;c++)o*=e[e.length-c-1],i=`
int b${c} = index / ${o};
index -= b${c} * ${o};
`+i,l=`b${c}, `+l;return`
ivec${e.length} getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${s[0]}, ${s[1]}));
int index = resTexRC.x * ${s[1]} + resTexRC.y;
${i}
int b = index / ${a};
index -= b * ${a};
int r = 2 * (index / ${r});
int c = imod(index, ${r}) * 2;
return ivec${e.length}(${l});
}
`}function lJ(e,t,n){if(n)return`
ivec4 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(outTexShape[0], outTexShape[1]));
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
${Um(["r","c","d","d2"],e)}
return ivec4(r, c, d, d2);
}
`;let s=Nl(["r","c","d","d2"],e);return`
ivec4 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${s}
return ivec4(r, c, d, d2);
}
`}function uJ(e,t){let n=Nl(["r","c","d","d2","d3"],e);return`
ivec5 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx * vec2(${t[0]},
${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${n}
ivec5 outShape = ivec5(r, c, d, d2, d3);
return outShape;
}
`}function cJ(e,t){let n=Nl(["r","c","d","d2","d3","d4"],e);return`
ivec6 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${n}
ivec6 result = ivec6(r, c, d, d2, d3, d4);
return result;
}
`}function dJ(e,t,n){let s=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];if(v.arraysEqual(e,t))return n?`
ivec2 getOutputCoords() {
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
return 2 * ivec2(resultUV.yx * vec2(packedTexShape[0], packedTexShape[1]));
}
`:`
ivec2 getOutputCoords() {
return 2 * ivec2(resultUV.yx * vec2(${s[0]}, ${s[1]}));
}
`;let r=Math.ceil(e[1]/2);return n?`
ivec2 getOutputCoords() {
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
int texelsInLogicalRow = int(ceil(float(outShape[1]) / 2.0));
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(packedTexShape[0], packedTexShape[1]));
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
int r = 2 * (index / texelsInLogicalRow);
int c = imod(index, texelsInLogicalRow) * 2;
return ivec2(r, c);
}
`:`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${s[0]}, ${s[1]}));
int index = resTexRC.x * ${s[1]} + resTexRC.y;
int r = 2 * (index / ${r});
int c = imod(index, ${r}) * 2;
return ivec2(r, c);
}
`}function pJ(e,t,n){return v.arraysEqual(e,t)?n?`
ivec2 getOutputCoords() {
return ivec2(resultUV.yx * vec2(outTexShape[0], outTexShape[1]));
}
`:`
ivec2 getOutputCoords() {
return ivec2(resultUV.yx * vec2(${t[0]}, ${t[1]}));
}
`:e[1]===1?n?`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(outTexShape[0], outTexShape[1]));
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
return ivec2(index, 0);
}
`:`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
return ivec2(index, 0);
}
`:e[0]===1?n?`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(outTexShape[0], outTexShape[1]));
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
return ivec2(0, index);
}
`:`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
return ivec2(0, index);
}
`:n?`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(outTexShape[0], outTexShape[1]));
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
int r = index / outShape[1];
int c = index - r * outShape[1];
return ivec2(r, c);
}
`:`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
int r = index / ${e[1]};
int c = index - r * ${e[1]};
return ivec2(r, c);
}
`}function El(e){return`offset${e}`}function hJ(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1),s=Gn();return`
vec4 ${n}() {
return ${s.texture2D}(${t}, halfCR);
}
`}function fJ(e,t){let n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1);if(e.shapeInfo.isUniform)return`float ${s}() {return ${n};}`;let[r,a]=e.shapeInfo.texShape;if(r===1&&a===1)return`
float ${s}() {
return sampleTexture(${n}, halfCR);
}
`;let o=El(n);if(t)return`
float ${s}() {
vec2 uv = uvFromFlat(${n}TexShape[0], ${n}TexShape[1], ${o});
return sampleTexture(${n}, uv);
}
`;let[i,l]=e.shapeInfo.texShape;return`
float ${s}() {
vec2 uv = uvFromFlat(${i}, ${l}, ${o});
return sampleTexture(${n}, uv);
}
`}function mJ(e,t){let n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1),r=e.shapeInfo.texShape,a=Gn();if(t)return`
vec4 ${s}(int index) {
ivec2 packedTexShape = ivec2(ceil(float(${n}TexShape[0]) / 2.0), ceil(float(${n}TexShape[1]) / 2.0));
vec2 uv = packedUVfrom1D(
packedTexShape[0], packedTexShape[1], index);
return ${a.texture2D}(${n}, uv);
}
`;let o=[Math.ceil(r[0]/2),Math.ceil(r[1]/2)];return`
vec4 ${s}(int index) {
vec2 uv = packedUVfrom1D(
${o[0]}, ${o[1]}, index);
return ${a.texture2D}(${n}, uv);
}
`}function gJ(e,t){let n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1);if(e.shapeInfo.isUniform)return`
float ${s}(int index) {
${ic(e)}
}
`;let r=e.shapeInfo.texShape,a=r[0],o=r[1];if(o===1&&a===1)return`
float ${s}(int index) {
return sampleTexture(${n}, halfCR);
}
`;let i=El(n);return o===1?t?`
float ${s}(int index) {
vec2 uv = vec2(0.5, (float(index + ${i}) + 0.5) / float(${n}TexShape[0]));
return sampleTexture(${n}, uv);
}
`:`
float ${s}(int index) {
vec2 uv = vec2(0.5, (float(index + ${i}) + 0.5) / ${a}.0);
return sampleTexture(${n}, uv);
}
`:a===1?t?`
float ${s}(int index) {
vec2 uv = vec2((float(index + ${i}) + 0.5) / float(${n}TexShape[1]), 0.5);
return sampleTexture(${n}, uv);
}
`:`
float ${s}(int index) {
vec2 uv = vec2((float(index + ${i}) + 0.5) / ${o}.0, 0.5);
return sampleTexture(${n}, uv);
}
`:t?`
float ${s}(int index) {
vec2 uv = uvFromFlat(${n}TexShape[0], ${n}TexShape[1], index + ${i});
return sampleTexture(${n}, uv);
}
`:`
float ${s}(int index) {
vec2 uv = uvFromFlat(${a}, ${o}, index + ${i});
return sampleTexture(${n}, uv);
}
`}function AJ(e,t){let n=e.shapeInfo.logicalShape,s=e.name,r="get"+s.charAt(0).toUpperCase()+s.slice(1),a=e.shapeInfo.texShape,o=a[0],i=a[1],l=Gn();if(a!=null&&v.arraysEqual(n,a))return t?`
vec4 ${r}(int row, int col) {
vec2 uv = (vec2(col, row) + halfCR) / vec2(${s}TexShape[1], ${s}TexShape[0]);
return ${l.texture2D}(${s}, uv);
}
`:`
vec4 ${r}(int row, int col) {
vec2 uv = (vec2(col, row) + halfCR) / vec2(${i}.0, ${o}.0);
return ${l.texture2D}(${s}, uv);
}
`;if(t)return`
vec4 ${r}(int row, int col) {
ivec2 packedTexShape = ivec2(ceil(float(${s}TexShape[0]) / 2.0), ceil(float(${s}TexShape[1]) / 2.0));
int valuesPerRow = int(ceil(float(${s}Shape[1]) / 2.0));
vec2 uv = packedUVfrom2D(valuesPerRow, packedTexShape[0], packedTexShape[1], row, col);
return ${l.texture2D}(${s}, uv);
}
`;let c=[Math.ceil(a[0]/2),Math.ceil(a[1]/2)],u=Math.ceil(n[1]/2);return`
vec4 ${r}(int row, int col) {
vec2 uv = packedUVfrom2D(${u}, ${c[0]}, ${c[1]}, row, col);
return ${l.texture2D}(${s}, uv);
}
`}function yJ(e,t){let n=e.shapeInfo.logicalShape,s=e.name,r="get"+s.charAt(0).toUpperCase()+s.slice(1),a=e.shapeInfo.texShape;if(a!=null&&v.arraysEqual(n,a)){if(t)return`
float ${r}(int row, int col) {
vec2 uv = (vec2(col, row) + halfCR) / vec2(${s}TexShape[1], ${s}TexShape[0]);
return sampleTexture(${s}, uv);
}
`;let p=a[0],h=a[1];return`
float ${r}(int row, int col) {
vec2 uv = (vec2(col, row) + halfCR) / vec2(${h}.0, ${p}.0);
return sampleTexture(${s}, uv);
}
`}let{newShape:o,keptDims:i}=v.squeezeShape(n),l=o;if(l.length<n.length){let p=lc(e,l),h=["row","col"];return`
${oc(p,t)}
float ${r}(int row, int col) {
return ${r}(${uc(h,i)});
}
`}if(e.shapeInfo.isUniform)return`
float ${r}(int row, int col) {
int index = round(dot(vec2(row, col), vec2(${n[1]}, 1)));
${ic(e)}
}
`;let c=a[0],u=a[1],d=El(s);return u===1?t?`
float ${r}(int row, int col) {
float index = dot(vec3(row, col, ${d}), vec3(${s}Shape[1], 1, 1));
vec2 uv = vec2(0.5, (index + 0.5) / float(${s}TexShape[0]));
return sampleTexture(${s}, uv);
}
`:`
float ${r}(int row, int col) {
float index = dot(vec3(row, col, ${d}), vec3(${n[1]}, 1, 1));
vec2 uv = vec2(0.5, (index + 0.5) / ${c}.0);
return sampleTexture(${s}, uv);
}
`:c===1?t?`
float ${r}(int row, int col) {
float index = dot(vec3(row, col, ${d}), vec3(${s}Shape[1], 1, 1));
vec2 uv = vec2((index + 0.5) / float(${s}TexShape[1]), 0.5);
return sampleTexture(${s}, uv);
}
`:`
float ${r}(int row, int col) {
float index = dot(vec3(row, col, ${d}), vec3(${n[1]}, 1, 1));
vec2 uv = vec2((index + 0.5) / ${u}.0, 0.5);
return sampleTexture(${s}, uv);
}
`:t?`
float ${r}(int row, int col) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${s}Shape[1] + col + ${d};
vec2 uv = uvFromFlat(${s}TexShape[0], ${s}TexShape[1], index);
return sampleTexture(${s}, uv);
}
`:`
float ${r}(int row, int col) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${n[1]} + col + ${d};
vec2 uv = uvFromFlat(${c}, ${u}, index);
return sampleTexture(${s}, uv);
}
`}function xJ(e,t){let n=e.shapeInfo.logicalShape,s=e.name,r="get"+s.charAt(0).toUpperCase()+s.slice(1),a=e.shapeInfo.texShape,o=[Math.ceil(a[0]/2),Math.ceil(a[1]/2)];if(n[0]===1){let p=n.slice(1),h=[1,2],f=lc(e,p),m=["b","row","col"];return`
${KS(f,t)}
vec4 ${r}(int b, int row, int col) {
return ${r}(${uc(m,h)});
}
`}let i=Gn();if(t)return`
vec4 ${r}(int b, int row, int col) {
ivec2 packedTexShape = ivec2(ceil(float(${s}TexShape[0]) / 2.0), ceil(float(${s}TexShape[1]) / 2.0));
int valuesPerRow = int(ceil(float(${s}Shape[2]) / 2.0));
int texelsInBatch = valuesPerRow * int(ceil(float(${s}Shape[1]) / 2.0));
vec2 uv = packedUVfrom3D(
packedTexShape[0], packedTexShape[1], texelsInBatch, valuesPerRow, b, row, col);
return ${i.texture2D}(${s}, uv);
}
`;let l=o[0],c=o[1],u=Math.ceil(n[2]/2),d=u*Math.ceil(n[1]/2);return`
vec4 ${r}(int b, int row, int col) {
vec2 uv = packedUVfrom3D(
${l}, ${c}, ${d}, ${u}, b, row, col);
return ${i.texture2D}(${s}, uv);
}
`}function bJ(e,t){let n=e.shapeInfo.logicalShape,s=e.name,r="get"+s.charAt(0).toUpperCase()+s.slice(1),a=n[1]*n[2],o=n[2],{newShape:i,keptDims:l}=v.squeezeShape(n),c=i;if(c.length<n.length){let m=lc(e,c),g=["row","col","depth"];return`
${oc(m,t)}
float ${r}(int row, int col, int depth) {
return ${r}(${uc(g,l)});
}
`}if(e.shapeInfo.isUniform)return`
float ${r}(int row, int col, int depth) {
int index = round(dot(vec3(row, col, depth),
vec3(${a}, ${o}, 1)));
${ic(e)}
}
`;let u=e.shapeInfo.texShape,d=u[0],p=u[1],h=e.shapeInfo.flatOffset;if(p===a&&h==null)return t?`
float ${r}(int row, int col, int depth) {
int stride1 = ${s}Shape[2];
float texR = float(row);
float texC = dot(vec2(col, depth), vec2(stride1, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${s}TexShape[1], ${s}TexShape[0]);
return sampleTexture(${s}, uv);
}
`:`
float ${r}(int row, int col, int depth) {
float texR = float(row);
float texC = dot(vec2(col, depth), vec2(${o}, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${p}.0, ${d}.0);
return sampleTexture(${s}, uv);
}
`;if(p===o&&h==null)return t?`
float ${r}(int row, int col, int depth) {
float texR = dot(vec2(row, col), vec2(${s}Shape[1], 1));
float texC = float(depth);
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${s}TexShape[1], ${s}TexShape[0]);
return sampleTexture(${s}, uv);
}
`:`
float ${r}(int row, int col, int depth) {
float texR = dot(vec2(row, col), vec2(${n[1]}, 1));
float texC = float(depth);
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${p}.0, ${d}.0);
return sampleTexture(${s}, uv);
}
`;let f=El(s);return t?`
float ${r}(int row, int col, int depth) {
// Explicitly use integer operations as dot() only works on floats.
int stride0 = ${s}Shape[1] * ${s}Shape[2];
int stride1 = ${s}Shape[2];
int index = row * ${a} + col * ${o} + depth + ${f};
vec2 uv = uvFromFlat(${s}TexShape[0], ${s}TexShape[1], index);
return sampleTexture(${s}, uv);
}
`:`
float ${r}(int row, int col, int depth) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${a} + col * ${o} + depth + ${f};
vec2 uv = uvFromFlat(${d}, ${p}, index);
return sampleTexture(${s}, uv);
}
`}function vJ(e,t){let n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1),r=Gn();if(t)return`
vec4 ${s}(int b2, int b, int row, int col) {
int valuesPerRow = int(ceil(float(${n}Shape[3]) / 2.0));
int texelsInBatch = valuesPerRow * int(ceil(float(${n}Shape[2]) / 2.0));
int index = b * texelsInBatch + (row / 2) * valuesPerRow + (col / 2);
texelsInBatch *= ${n}Shape[1];
index = b2 * texelsInBatch + index;
ivec2 packedTexShape = ivec2(ceil(float(${n}TexShape[0]) / 2.0), ceil(float(${n}TexShape[1]) / 2.0));
int texR = index / packedTexShape[1];
int texC = index - texR * packedTexShape[1];
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(packedTexShape[1], packedTexShape[0]); return ${r.texture2D}(${n}, uv);
}
`;let a=e.shapeInfo.logicalShape,o=a.length,i=e.shapeInfo.texShape,l=[Math.ceil(i[0]/2),Math.ceil(i[1]/2)],c=l[0],u=l[1],d=Math.ceil(a[o-1]/2),p=d*Math.ceil(a[o-2]/2),h="int b, int row, int col",f=`b * ${p} + (row / 2) * ${d} + (col / 2)`;for(let m=2;m<o-1;m++)h=`int b${m}, `+h,p*=a[o-m-1],f=`b${m} * ${p} + `+f;return`
vec4 ${s}(${h}) {
int index = ${f};
int texR = index / ${u};
int texC = index - texR * ${u};
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${u}, ${c});
return ${r.texture2D}(${n}, uv);
}
`}function wJ(e,t){let n=e.shapeInfo.logicalShape,s=e.name,r="get"+s.charAt(0).toUpperCase()+s.slice(1),a=n[3],o=n[2]*a,i=n[1]*o,{newShape:l,keptDims:c}=v.squeezeShape(n);if(l.length<n.length){let x=lc(e,l),y=["row","col","depth","depth2"];return`
${oc(x,t)}
float ${r}(int row, int col, int depth, int depth2) {
return ${r}(${uc(y,c)});
}
`}if(e.shapeInfo.isUniform)return`
float ${r}(int row, int col, int depth, int depth2) {
int index = round(dot(vec4(row, col, depth, depth2),
vec4(${i}, ${o}, ${a}, 1)));
${ic(e)}
}
`;let u=e.shapeInfo.flatOffset,d=e.shapeInfo.texShape,p=d[0],h=d[1],f=`int stride2 = ${s}Shape[3];`,m=`int stride1 = ${s}Shape[2] * stride2;`,g=`int stride0 = ${s}Shape[1] * stride1;`;if(h===i&&u==null)return t?`
float ${r}(int row, int col, int depth, int depth2) {
${f}
${m}
float texR = float(row);
float texC =
dot(vec3(col, depth, depth2),
vec3(stride1, stride2, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${s}TexShape[1], ${s}TexShape[0]);
return sampleTexture(${s}, uv);
}
`:`
float ${r}(int row, int col, int depth, int depth2) {
float texR = float(row);
float texC =
dot(vec3(col, depth, depth2),
vec3(${o}, ${a}, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${h}.0, ${p}.0);
return sampleTexture(${s}, uv);
}
`;if(h===a&&u==null)return t?`
float ${r}(int row, int col, int depth, int depth2) {
float texR = dot(vec3(row, col, depth),
vec3(${s}Shape[1] * ${s}Shape[2], ${s}Shape[2], 1));
float texC = float(depth2);
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${s}TexShape[1], ${s}TexShape[0]);
return sampleTexture(${s}, uv);
}
`:`
float ${r}(int row, int col, int depth, int depth2) {
float texR = dot(vec3(row, col, depth),
vec3(${n[1]*n[2]}, ${n[2]}, 1));
float texC = float(depth2);
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${h}.0, ${p}.0);
return sampleTexture(${s}, uv);
}
`;let A=El(s);return t?`
float ${r}(int row, int col, int depth, int depth2) {
// Explicitly use integer operations as dot() only works on floats.
${f}
${m}
${g}
int index = row * stride0 + col * stride1 +
depth * stride2 + depth2;
vec2 uv = uvFromFlat(${s}TexShape[0], ${s}TexShape[1], index + ${A});
return sampleTexture(${s}, uv);
}
`:`
float ${r}(int row, int col, int depth, int depth2) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${i} + col * ${o} +
depth * ${a} + depth2;
vec2 uv = uvFromFlat(${p}, ${h}, index + ${A});
return sampleTexture(${s}, uv);
}
`}function kJ(e){let t=e.shapeInfo.logicalShape,n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1),r=t[4],a=t[3]*r,o=t[2]*a,i=t[1]*o,{newShape:l,keptDims:c}=v.squeezeShape(t);if(l.length<t.length){let m=lc(e,l),g=["row","col","depth","depth2","depth3"];return`
${oc(m)}
float ${s}(int row, int col, int depth, int depth2, int depth3) {
return ${s}(${uc(g,c)});
}
`}if(e.shapeInfo.isUniform)return`
float ${s}(int row, int col, int depth, int depth2, int depth3) {
float index = dot(
vec4(row, col, depth, depth2),
vec4(${i}, ${o}, ${a}, ${r})) +
depth3;
${ic(e)}
}
`;let u=e.shapeInfo.flatOffset,d=e.shapeInfo.texShape,p=d[0],h=d[1];if(h===i&&u==null)return`
float ${s}(int row, int col, int depth, int depth2, int depth3) {
int texR = row;
float texC = dot(vec4(col, depth, depth2, depth3),
vec4(${o}, ${a}, ${r}, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${h}.0, ${p}.0);
return sampleTexture(${n}, uv);
}
`;if(h===r&&u==null)return`
float ${s}(int row, int col, int depth, int depth2, int depth3) {
float texR = dot(
vec4(row, col, depth, depth2),
vec4(${t[1]*t[2]*t[3]},
${t[2]*t[3]}, ${t[3]}, 1));
int texC = depth3;
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${h}.0, ${p}.0);
return sampleTexture(${n}, uv);
}
`;let f=El(n);return`
float ${s}(int row, int col, int depth, int depth2, int depth3) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${i} + col * ${o} + depth * ${a} +
depth2 * ${r} + depth3 + ${f};
vec2 uv = uvFromFlat(${p}, ${h}, index);
return sampleTexture(${n}, uv);
}
`}function IJ(e){let t=e.shapeInfo.logicalShape,n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1),{newShape:r,keptDims:a}=v.squeezeShape(t);if(r.length<t.length){let g=lc(e,r),A=["row","col","depth","depth2","depth3","depth4"];return`
${oc(g)}
float ${s}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
return ${s}(${uc(A,a)});
}
`}let o=t[5],i=t[4]*o,l=t[3]*i,c=t[2]*l,u=t[1]*c;if(e.shapeInfo.isUniform)return`
float ${s}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
int index = round(dot(
vec4(row, col, depth, depth2),
vec4(${u}, ${c}, ${l}, ${i})) +
dot(
vec2(depth3, depth4),
vec2(${o}, 1)));
${ic(e)}
}
`;let d=e.shapeInfo.flatOffset,p=e.shapeInfo.texShape,h=p[0],f=p[1];if(f===u&&d==null)return`
float ${s}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
int texR = row;
float texC = dot(vec4(col, depth, depth2, depth3),
vec4(${c}, ${l}, ${i}, ${o})) +
float(depth4);
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${f}.0, ${h}.0);
return sampleTexture(${n}, uv);
}
`;if(f===o&&d==null)return`
float ${s}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
float texR = dot(vec4(row, col, depth, depth2),
vec4(${t[1]*t[2]*t[3]*t[4]},
${t[2]*t[3]*t[4]},
${t[3]*t[4]},
${t[4]})) + float(depth3);
int texC = depth4;
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${f}.0, ${h}.0);
return sampleTexture(${n}, uv);
}
`;let m=El(n);return`
float ${s}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${u} + col * ${c} + depth * ${l} +
depth2 * ${i} + depth3 * ${o} + depth4 + ${m};
vec2 uv = uvFromFlat(${h}, ${f}, index);
return sampleTexture(${n}, uv);
}
`}function ic(e){let t=e.name,n=v.sizeFromShape(e.shapeInfo.logicalShape);return n<2?`return ${t};`:`
for (int i = 0; i < ${n}; i++) {
if (i == index) {
return ${t}[i];
}
}
`}function SJ(e,t){let n=e.name,s=n.charAt(0).toUpperCase()+n.slice(1),r="get"+s+"AtOutCoords",a=e.shapeInfo.logicalShape.length,o=t.logicalShape.length,i=XS(e.shapeInfo.logicalShape,t.logicalShape),l=vt(o),c=o-a,u,d=["x","y","z","w","u","v"];a===0?u="":o<2&&i.length>=1?u="coords = 0;":u=i.map(x=>`coords.${d[x+c]} = 0;`).join(`
`);let p="";o<2&&a>0?p="coords":p=e.shapeInfo.logicalShape.map((x,y)=>`coords.${d[y+c]}`).join(", ");let h="return outputValue;",m=v.sizeFromShape(e.shapeInfo.logicalShape)===1,A=v.sizeFromShape(t.logicalShape)===1;if(a===1&&!m&&!A)h=`
return vec4(outputValue.xy, outputValue.xy);
`;else if(m&&!A)o===1?h=`
return vec4(outputValue.x, outputValue.x, 0., 0.);
`:h=`
return vec4(outputValue.x);
`;else if(i.length){let x=a-2,y=a-1;i.indexOf(x)>-1&&i.indexOf(y)>-1?h="return vec4(outputValue.x);":i.indexOf(x)>-1?h="return vec4(outputValue.x, outputValue.y, outputValue.x, outputValue.y);":i.indexOf(y)>-1&&(h="return vec4(outputValue.xx, outputValue.zz);")}return`
vec4 ${r}() {
${l} coords = getOutputCoords();
${u}
vec4 outputValue = get${s}(${p});
${h}
}
`}function CJ(e,t){let n=e.name,s=n.charAt(0).toUpperCase()+n.slice(1),r="get"+s+"AtOutCoords",a=t.texShape,o=e.shapeInfo.texShape,i=e.shapeInfo.logicalShape.length,l=t.logicalShape.length;if(!e.shapeInfo.isUniform&&i===l&&e.shapeInfo.flatOffset==null&&v.arraysEqual(o,a))return`
float ${r}() {
return sampleTexture(${n}, resultUV);
}
`;let c=vt(l),u=XS(e.shapeInfo.logicalShape,t.logicalShape),d=l-i,p,h=["x","y","z","w","u","v"];i===0?p="":l<2&&u.length>=1?p="coords = 0;":p=u.map(m=>`coords.${h[m+d]} = 0;`).join(`
`);let f="";return l<2&&i>0?f="coords":f=e.shapeInfo.logicalShape.map((m,g)=>`coords.${h[g+d]}`).join(", "),`
float ${r}() {
${c} coords = getOutputCoords();
${p}
return get${s}(${f});
}
`}function vt(e){if(e<=1)return"int";if(e===2)return"ivec2";if(e===3)return"ivec3";if(e===4)return"ivec4";if(e===5)return"ivec5";if(e===6)return"ivec6";throw Error(`GPU for rank ${e} is not yet supported`)}function mx(e,t,n){let{newShape:s,keptDims:r}=v.squeezeShape(t),a=t.length,o=e&&a===3&&t[0]===1,i=o?t.slice(1):s,l=!e&&a>1&&!v.arraysEqual(t,n)&&s.length<a||o;return{useSqueezeShape:l,uniformShape:l?i:t,keptDims:r}}function lc(e,t){let n=JSON.parse(JSON.stringify(e));return n.shapeInfo.logicalShape=t,n}function uc(e,t){return t.map(n=>e[n]).join(", ")}function TJ(e,t,n,s){let r=n.map((b,w)=>{let k={logicalShape:b.shape,texShape:b.isUniform?null:b.texData.texShape,isUniform:b.isUniform,isPacked:b.isUniform?!1:b.texData.isPacked,flatOffset:null};return b.texData!=null&&b.texData.slice!=null&&b.texData.slice.flatOffset>0&&(k.flatOffset=b.texData.slice.flatOffset),{name:t.variableNames[w],shapeInfo:k}}),a=r.map(b=>b.shapeInfo),o={logicalShape:s.shape,texShape:s.texData.texShape,isUniform:!1,isPacked:s.texData.isPacked,flatOffset:null},i=HY(r,o,t),l=CS(e.gl,i),c=e.createProgram(l),u=null,d=e.getUniformLocation(c,"NAN",!1);Y().getNumber("WEBGL_VERSION")===1&&(u=e.getUniformLocation(c,"INFINITY",!1));let p=!1,h={},f={},m={};for(let b=0;b<t.variableNames.length;b++){let w=t.variableNames[b];h[w]=e.getUniformLocation(c,w,p),h[`offset${w}`]=e.getUniformLocation(c,`offset${w}`,p),t.enableShapeUniforms&&(f[`${w}Shape`]=e.getUniformLocation(c,`${w}Shape`,p),m[`${w}TexShape`]=e.getUniformLocation(c,`${w}TexShape`,p))}let g,A,x;t.enableShapeUniforms&&(g=e.getUniformLocation(c,"outShape",p),x=e.getUniformLocation(c,"outShapeStrides",p),A=e.getUniformLocation(c,"outTexShape",p));let y=[];return t.customUniforms&&t.customUniforms.forEach((b,w)=>{y[w]=e.getUniformLocation(c,b.name,p)}),{program:t,fragmentShader:l,source:i,webGLProgram:c,uniformLocations:h,customUniformLocations:y,inShapeInfos:a,outShapeInfo:o,infLoc:u,nanLoc:d,inShapesLocations:f,inTexShapesLocations:m,outShapeLocation:g,outShapeStridesLocation:x,outTexShapeLocation:A}}function YS(e,t){if(e.length!==t.length)throw Error(`Binary was compiled with ${e.length} inputs, but was executed with ${t.length} inputs`);e.forEach((n,s)=>{let r=n.logicalShape,a=t[s],o=a.shape;if(!v.arraysEqual(r,o))throw Error(`Binary was compiled with different shapes than the current args. Shapes ${r} and ${o} must match`);if(n.isUniform&&a.isUniform)return;let i=n.texShape,l=a.isUniform?null:a.texData.texShape;if(!v.arraysEqual(i,l))throw Error(`Binary was compiled with different texture shapes than the current args. Shape ${i} and ${l} must match`)})}function NJ(e,t,n,s,r){t.program.enableShapeUniforms||(YS(t.inShapeInfos,n),YS([t.outShapeInfo],[s]));let a=s.texData.texture,o=s.texData.texShape;s.texData.isPacked?e.setOutputPackedMatrixTexture(a,o[0],o[1]):e.setOutputMatrixTexture(a,o[0],o[1]),e.setProgram(t.webGLProgram),Y().getNumber("WEBGL_VERSION")===1&&t.infLoc!==null&&e.gl.uniform1f(t.infLoc,1/0),t.nanLoc!==null&&e.gl.uniform1f(t.nanLoc,NaN),n.forEach((l,c)=>{let u=t.program.variableNames[c],d=t.uniformLocations[u],p=t.uniformLocations[`offset${u}`],h=t.inShapesLocations[`${u}Shape`],f=t.inTexShapesLocations[`${u}TexShape`];if(h){let{uniformShape:m}=mx(t.program.packedInputs,l.shape,l.texData.texShape);switch(m.length){case 1:e.gl.uniform1iv(h,new Int32Array(m));break;case 2:e.gl.uniform2iv(h,new Int32Array(m));break;case 3:e.gl.uniform3iv(h,new Int32Array(m));break;case 4:e.gl.uniform4iv(h,new Int32Array(m));break;default:break}}if(f&&e.gl.uniform2i(f,l.texData.texShape[0],l.texData.texShape[1]),d!=null){if(l.isUniform){if(v.sizeFromShape(l.shape)<2)e.gl.uniform1f(d,l.uniformValues[0]);else{let m=l.uniformValues;m instanceof Float32Array||(m=new Float32Array(m)),e.gl.uniform1fv(d,m)}return}l.texData.slice!=null&&p!=null&&e.gl.uniform1i(p,l.texData.slice.flatOffset),e.setInputMatrixTexture(l.texData.texture,d,c)}});let i=t.outShapeLocation;if(i)switch(s.shape.length){case 1:e.gl.uniform1iv(i,new Int32Array(s.shape));break;case 2:e.gl.uniform2iv(i,new Int32Array(s.shape));break;case 3:e.gl.uniform3iv(i,new Int32Array(s.shape));break;case 4:e.gl.uniform4iv(i,new Int32Array(s.shape));break;default:break}if(t.outShapeStridesLocation){let l=v.computeStrides(s.shape);switch(s.shape.length){case 2:e.gl.uniform1iv(t.outShapeStridesLocation,new Int32Array(l));break;case 3:e.gl.uniform2iv(t.outShapeStridesLocation,new Int32Array(l));break;case 4:e.gl.uniform3iv(t.outShapeStridesLocation,new Int32Array(l));break;default:break}}t.outTexShapeLocation&&e.gl.uniform2i(t.outTexShapeLocation,s.texData.texShape[0],s.texData.texShape[1]),t.program.customUniforms&&r&&t.program.customUniforms.forEach((l,c)=>{let u=t.customUniformLocations[c],d=r[c];if(l.type==="float")e.gl.uniform1fv(u,d);else if(l.type==="vec2")e.gl.uniform2fv(u,d);else if(l.type==="vec3")e.gl.uniform3fv(u,d);else if(l.type==="vec4")e.gl.uniform4fv(u,d);else if(l.type==="int")e.gl.uniform1iv(u,d);else if(l.type==="ivec2")e.gl.uniform2iv(u,d);else if(l.type==="ivec3")e.gl.uniform3iv(u,d);else if(l.type==="ivec4")e.gl.uniform4iv(u,d);else throw Error(`uniform type ${l.type} is not supported yet.`)}),e.executeProgram()}function EJ(e,t,n){let s="";t.concat(n).forEach(o=>{let i=o.texData!=null&&o.texData.slice!=null&&o.texData.slice.flatOffset>0;if(e.enableShapeUniforms&&!o.isUniform){let l=o.texData.texShape,{useSqueezeShape:c,uniformShape:u,keptDims:d}=mx(e.packedInputs,o.shape,l),p="",h="",f="";if(u.length===1&&e.packedInputs){let w=[Math.ceil(l[0]/2),Math.ceil(l[1]/2)];p=`${w[0]>1}_${w[1]>1}`}else if(u.length===2&&!e.packedInputs)h=`${u[0]>1}_${u[1]>1}`;else if(u.length>2&&!e.packedInputs){let w=v.computeStrides(u);f=`${w[0]===l[1]}_${w[w.length-1]===l[1]}`}let m=o.shape.length,g=u.length===2&&v.arraysEqual(o.shape,l),A=v.sizeFromShape(o.shape)===1,x=E.getBroadcastDims(o.shape,n.shape),y=!e.packedInputs&&m===n.shape.length&&v.arraysEqual(l,n.texData.texShape),b=e.packedInputs||u.length>2?"":`${l[0]>1}_${l[1]>1}`;s+=`${m}_${y}_${c?d:""}_${u.length}_${A}_${x}_${g}_${p}_${h}_${f}_${b}_${i}`}else{let l=o.isUniform?"uniform":o.texData.texShape;s+=`${o.shape}_${l}_${i}`}});let r=e.userCode,a=e.constructor.name;return a+="_"+s+"_"+r+`${Y().getNumber("WEBGL_VERSION")}`,a}function Vs(e){return Y().getBool("WEBGL_USE_SHAPES_UNIFORMS")&&e<=4}var RJ=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outPackingScheme=pp.DENSE,this.customUniforms=[{name:"texShape",type:"ivec2"}];let t=Gn();this.outputShape=e,this.enableShapeUniforms=Vs(this.outputShape.length),this.userCode=`
ivec3 outCoordsFromFlatIndex(int index) {
${this.enableShapeUniforms?Um(["r","c","d"],e):Nl(["r","c","d"],e)}
return ivec3(r, c, d);
}
void main() {
ivec2 resTexRC = ivec2(resultUV.yx * vec2(texShape[0], texShape[1]));
int index = 4 * (resTexRC.x * texShape[1] + resTexRC.y);
vec4 result = vec4(0.);
for (int i=0; i<4; i++) {
int flatIndex = index + i;
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
result[i] = getA(rc.x, rc.y, rc.z);
}
${t.output} = result;
}
`}},$J=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outPackingScheme=pp.DENSE,this.customUniforms=[{name:"texShape",type:"ivec2"}];let t=Gn();this.outputShape=e,this.enableShapeUniforms=Vs(this.outputShape.length),this.userCode=`
ivec3 outCoordsFromFlatIndex(int index) {
${this.enableShapeUniforms?Um(["r","c","d"],e):Nl(["r","c","d"],e)}
return ivec3(r, c, d);
}
void main() {
ivec2 resTexRC = ivec2(resultUV.yx * vec2(texShape[0], texShape[1]));
int index = 4 * (resTexRC.x * texShape[1] + resTexRC.y);
vec4 result = vec4(0.);
for (int i=0; i<4; i++) {
int flatIndex = index + i;
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
result[i] = getChannel(getA(rc.x, rc.y, rc.z), vec2(rc.y, rc.z));
}
${t.output} = result;
}
`}},_J=class{constructor(e){this.variableNames=["A"],this.outTexUsage=Bs.DOWNLOAD;let t=Gn();this.outputShape=e,this.userCode=`
${qS}
void main() {
float x = getAAtOutCoords();
${t.output} = encode_float(x);
}
`}},DJ=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outTexUsage=Bs.DOWNLOAD;let t=Gn();this.outputShape=e,this.userCode=`
${qS}
void main() {
ivec3 coords = getOutputCoords();
float x = getChannel(getAAtOutCoords(), vec2(coords.y, coords.z));
${t.output} = encode_float(x);
}
`}},PJ=class{constructor(e,t=!1){this.variableNames=["A"],this.customUniforms=[{name:"texShape",type:"ivec2"}];let n=Gn();this.outputShape=e,this.enableShapeUniforms=Vs(this.outputShape.length);let s="result";t&&(s="floor(result * 255. + 0.5)"),this.userCode=`
${this.enableShapeUniforms?fx():hx(e)}
void main() {
ivec3 coords = getOutputCoords();
int flatIndex = getFlatIndex(coords);
int offset = imod(flatIndex, 4);
flatIndex = idiv(flatIndex, 4, 1.);
int r = flatIndex / texShape[1];
int c = imod(flatIndex, texShape[1]);
vec2 uv = (vec2(c, r) + halfCR) / vec2(texShape[1], texShape[0]);
vec4 values = ${n.texture2D}(A, uv);
float result;
if(offset == 0) {
result = values[0];
} else if(offset == 1) {
result = values[1];
} else if(offset == 2) {
result = values[2];
} else {
result = values[3];
}
${n.output} = vec4(${s}, 0., 0., 0.);
}
`}},FJ=class{constructor(e,t=!1){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.customUniforms=[{name:"texShape",type:"ivec2"}];let n=Gn();this.outputShape=e,this.enableShapeUniforms=Vs(this.outputShape.length);let s="",r="result";t&&(r="floor(result * 255. + 0.5)");for(let a=0;a<=1;a++)for(let o=0;o<=1;o++){let i=a*2+o;s+=`
localCoords = coords;
if(localCoords[2] + ${o} < ${this.enableShapeUniforms?"outShape[2]":`${e[2]}`}) {
localCoords[2] += ${o};
if (localCoords[1] + ${a} < ${this.enableShapeUniforms?"outShape[1]":`${e[1]}`}) {
localCoords[1] += ${a};
flatIndex = getFlatIndex(localCoords);
offset = imod(flatIndex, 4);
flatIndex = idiv(flatIndex, 4, 1.);
int r = flatIndex / texShape[1];
int c = imod(flatIndex, texShape[1]);
vec2 uv = (vec2(c, r) + halfCR) / vec2(texShape[1], texShape[0]);
values = ${n.texture2D}(A, uv);
if (offset == 0) {
result[${i}] = values[0];
} else if (offset == 1) {
result[${i}] = values[1];
} else if (offset == 2) {
result[${i}] = values[2];
} else {
result[${i}] = values[3];
}
}
}
`}this.userCode=`
${this.enableShapeUniforms?fx():hx(e)}
void main() {
ivec3 coords = getOutputCoords();
vec4 result = vec4(0.);
int flatIndex, r, c, offset;
ivec3 localCoords;
vec2 uv;
vec4 values;
${s}
${n.output} = ${r};
}
`}},JS={};Me(JS,{bindVertexProgramAttributeStreams:()=>iC,createBufferFromOutputTexture:()=>cC,createFloat16MatrixTexture:()=>sC,createFloat16PackedMatrixTexture:()=>oC,createFloat32MatrixTexture:()=>nC,createIndexBuffer:()=>tC,createPackedMatrixTexture:()=>aC,createUnsignedBytesMatrixTexture:()=>rC,createVertexBuffer:()=>eC,createVertexShader:()=>QS,downloadByteEncodedFloatMatrixFromOutputTexture:()=>pC,downloadFloat32MatrixFromBuffer:()=>dC,downloadMatrixFromPackedOutputTexture:()=>fC,downloadPackedMatrixFromBuffer:()=>hC,getInternalFormatForFloat16MatrixTexture:()=>Ax,getInternalFormatForFloat16PackedMatrixTexture:()=>bx,getInternalFormatForFloat32MatrixTexture:()=>gx,getInternalFormatForPackedMatrixTexture:()=>xx,getInternalFormatForUnsignedBytesMatrixTexture:()=>yx,uploadDenseMatrixToTexture:()=>lC,uploadPixelDataToTexture:()=>uC});function QS(e){let t=Gn(),n=`${t.version}
precision highp float;
${t.attribute} vec3 clipSpacePos;
${t.attribute} vec2 uv;
${t.varyingVs} vec2 resultUV;
void main() {
gl_Position = vec4(clipSpacePos, 1);
resultUV = uv;
}`;return SS(e,n)}function eC(e){let t=new Float32Array([-1,1,0,0,1,-1,-1,0,0,0,1,1,0,1,1,1,-1,0,1,0]);return ES(e,t)}function tC(e){let t=new Uint16Array([0,1,2,2,1,3]);return RS(e,t)}function Ap(e,t,n,s,r,a){_S(t,n);let o=$S(e),i=e.TEXTURE_2D;return ke(e,()=>e.bindTexture(i,o)),ke(e,()=>e.texParameteri(i,e.TEXTURE_WRAP_S,e.CLAMP_TO_EDGE)),ke(e,()=>e.texParameteri(i,e.TEXTURE_WRAP_T,e.CLAMP_TO_EDGE)),ke(e,()=>e.texParameteri(i,e.TEXTURE_MIN_FILTER,e.NEAREST)),ke(e,()=>e.texParameteri(i,e.TEXTURE_MAG_FILTER,e.NEAREST)),Y().getNumber("WEBGL_VERSION")===1?ke(e,()=>e.texImage2D(i,0,s,t,n,0,r,a,null)):ke(e,()=>e.texStorage2D(i,1,s,t,n)),ke(e,()=>e.bindTexture(e.TEXTURE_2D,null)),o}function gx(e){return e.internalFormatFloat}function nC(e,t,n,s){let[r,a]=hp(t,n);return Ap(e,r,a,gx(s),s.textureFormatFloat,e.FLOAT)}function Ax(e){return e.internalFormatHalfFloat}function sC(e,t,n,s){let[r,a]=hp(t,n);return Ap(e,r,a,Ax(s),s.textureFormatFloat,s.textureTypeHalfFloat)}function yx(e){return e.downloadTextureFormat}function rC(e,t,n,s){let[r,a]=hp(t,n);return Ap(e,r,a,yx(s),e.RGBA,e.UNSIGNED_BYTE)}function xx(e){return e.internalFormatPackedFloat}function aC(e,t,n,s){let[r,a]=rc(t,n);return Ap(e,r,a,xx(s),e.RGBA,e.FLOAT)}function bx(e){return e.internalFormatPackedHalfFloat}function oC(e,t,n,s){let[r,a]=rc(t,n);return Ap(e,r,a,bx(s),e.RGBA,s.textureTypeHalfFloat)}function iC(e,t,n){let s=0,r=3*4,a=3*4+2*4;return ke(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),ux(e,t,"clipSpacePos",n,3,a,s)&&ux(e,t,"uv",n,2,a,r)}function lC(e,t,n,s,r,a){ke(e,()=>e.bindTexture(e.TEXTURE_2D,t));let o,i,l;r instanceof Uint8Array?(o=new Uint8Array(n*s*4),i=e.UNSIGNED_BYTE,l=e.RGBA):(o=new Float32Array(n*s*4),i=e.FLOAT,l=a.internalFormatPackedFloat),o.set(r),Y().getNumber("WEBGL_VERSION")===2?ke(e,()=>e.texSubImage2D(e.TEXTURE_2D,0,0,0,n,s,e.RGBA,i,o)):ke(e,()=>e.texImage2D(e.TEXTURE_2D,0,l,n,s,0,e.RGBA,i,o)),ke(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function uC(e,t,n){ke(e,()=>e.bindTexture(e.TEXTURE_2D,t)),n.data instanceof Uint8Array?Y().getNumber("WEBGL_VERSION")===2?(ke(e,()=>e.texSubImage2D(e.TEXTURE_2D,0,0,0,n.width,n.height,e.RGBA,e.UNSIGNED_BYTE,n.data)),e.flush()):ke(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,n.width,n.height,0,e.RGBA,e.UNSIGNED_BYTE,n.data)):Y().getNumber("WEBGL_VERSION")===2?(ke(e,()=>e.texSubImage2D(e.TEXTURE_2D,0,0,0,e.RGBA,e.UNSIGNED_BYTE,n)),e.flush()):ke(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,e.RGBA,e.UNSIGNED_BYTE,n)),ke(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function cC(e,t,n,s){let r=e.createBuffer();ke(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,r));let i=4*4*t*n;return ke(e,()=>e.bufferData(e.PIXEL_PACK_BUFFER,i,e.STREAM_READ)),ke(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,0)),ke(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,null)),r}function dC(e,t,n){let s=e,r=new Float32Array(n);return s.bindBuffer(s.PIXEL_PACK_BUFFER,t),s.getBufferSubData(s.PIXEL_PACK_BUFFER,0,r),s.bindBuffer(s.PIXEL_PACK_BUFFER,null),r}function pC(e,t,n,s){let[r,a]=hp(t,n),o=4,i=new Uint8Array(RY(t*n,o));return ke(e,()=>e.readPixels(0,0,r,a,s.downloadTextureFormat,e.UNSIGNED_BYTE,i)),new Float32Array(i.buffer)}function hC(e,t,n,s,r,a,o,i){let l=e,c=new Float32Array($Y(a,o));return l.bindBuffer(l.PIXEL_PACK_BUFFER,t),l.getBufferSubData(l.PIXEL_PACK_BUFFER,0,c),l.bindBuffer(l.PIXEL_PACK_BUFFER,null),c}function fC(e,t,n){let s=new Float32Array(t*n*4);return ke(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,s)),s}var Gm=class{constructor(e){this.outputTexture=null,this.program=null,this.disposed=!1,this.vertexAttrsAreBound=!1,this.itemsToPoll=[];let t=Y().getNumber("WEBGL_VERSION");e!=null?(this.gl=e,Fm(t,e)):this.gl=Vr(t);let n="WEBGL_color_buffer_float",s="EXT_color_buffer_half_float";if(Y().getNumber("WEBGL_VERSION")===1){let r="OES_texture_float",a="OES_texture_half_float";if(this.textureFloatExtension=fp(this.gl,r),Ws(this.gl,a))this.textureHalfFloatExtension=fp(this.gl,a);else if(Y().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support half float textures, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.");if(this.colorBufferFloatExtension=this.gl.getExtension(n),Ws(this.gl,s))this.colorBufferHalfFloatExtension=fp(this.gl,s);else if(Y().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support color renderable half floats, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.")}else if(n="EXT_color_buffer_float",Ws(this.gl,n))this.colorBufferFloatExtension=this.gl.getExtension(n);else if(Ws(this.gl,s))this.colorBufferHalfFloatExtension=this.gl.getExtension(s);else throw new Error("GL context does not support color renderable floats");this.vertexBuffer=eC(this.gl),this.indexBuffer=tC(this.gl),this.framebuffer=DS(this.gl),this.textureConfig=lx(this.gl,this.textureHalfFloatExtension)}get debug(){return Y().getBool("DEBUG")}dispose(){if(this.disposed)return;this.program!=null&&console.warn("Disposing a GPGPUContext that still has a bound WebGLProgram. This is probably a resource leak, delete the program with GPGPUContext.deleteProgram before disposing."),this.outputTexture!=null&&console.warn("Disposing a GPGPUContext that still has a bound output matrix texture. This is probably a resource leak, delete the output matrix texture with GPGPUContext.deleteMatrixTexture before disposing.");let e=this.gl;ke(e,()=>e.finish()),ke(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),ke(e,()=>e.deleteFramebuffer(this.framebuffer)),ke(e,()=>e.bindBuffer(e.ARRAY_BUFFER,null)),ke(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,null)),ke(e,()=>e.deleteBuffer(this.indexBuffer)),this.disposed=!0}createFloat32MatrixTexture(e,t){return this.throwIfDisposed(),nC(this.gl,e,t,this.textureConfig)}createFloat16MatrixTexture(e,t){return this.throwIfDisposed(),sC(this.gl,e,t,this.textureConfig)}createUnsignedBytesMatrixTexture(e,t){return this.throwIfDisposed(),rC(this.gl,e,t,this.textureConfig)}uploadPixelDataToTexture(e,t){this.throwIfDisposed(),uC(this.gl,e,t)}uploadDenseMatrixToTexture(e,t,n,s){this.throwIfDisposed(),lC(this.gl,e,t,n,s,this.textureConfig)}createFloat16PackedMatrixTexture(e,t){return this.throwIfDisposed(),oC(this.gl,e,t,this.textureConfig)}createPackedMatrixTexture(e,t){return this.throwIfDisposed(),aC(this.gl,e,t,this.textureConfig)}deleteMatrixTexture(e){this.throwIfDisposed(),this.outputTexture===e&&(cx(this.gl,this.framebuffer),this.outputTexture=null),ke(this.gl,()=>this.gl.deleteTexture(e))}downloadByteEncodedFloatMatrixFromOutputTexture(e,t,n){return this.downloadMatrixDriver(e,()=>pC(this.gl,t,n,this.textureConfig))}downloadPackedMatrixFromBuffer(e,t,n,s,r,a){return hC(this.gl,e,t,n,s,r,a,this.textureConfig)}downloadFloat32MatrixFromBuffer(e,t){return dC(this.gl,e,t)}createBufferFromTexture(e,t,n){this.bindTextureToFrameBuffer(e);let s=cC(this.gl,t,n,this.textureConfig);return this.unbindTextureToFrameBuffer(),s}createAndWaitForFence(){let e=this.createFence(this.gl);return this.pollFence(e)}createFence(e){let t,n;if(Y().getBool("WEBGL_FENCE_API_ENABLED")){let s=e,r=s.fenceSync(s.SYNC_GPU_COMMANDS_COMPLETE,0);e.flush(),n=()=>{let a=s.clientWaitSync(r,0,0);return a===s.ALREADY_SIGNALED||a===s.CONDITION_SATISFIED},t=r}else Y().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0?(t=this.beginQuery(),this.endQuery(),n=()=>this.isQueryAvailable(t,Y().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))):n=()=>!0;return{query:t,isFencePassed:n}}downloadMatrixFromPackedTexture(e,t,n){return this.downloadMatrixDriver(e,()=>fC(this.gl,t,n))}createProgram(e){this.throwIfDisposed();let t=this.gl;this.vertexShader==null&&(this.vertexShader=QS(t));let n=TS(t);return ke(t,()=>t.attachShader(n,this.vertexShader)),ke(t,()=>t.attachShader(n,e)),NS(t,n),this.debug&&Mm(t,n),this.vertexAttrsAreBound||(this.setProgram(n),this.vertexAttrsAreBound=iC(t,this.program,this.vertexBuffer)),n}deleteProgram(e){this.throwIfDisposed(),e===this.program&&(this.program=null),e!=null&&ke(this.gl,()=>this.gl.deleteProgram(e))}setProgram(e){this.throwIfDisposed(),this.program=e,this.program!=null&&this.debug&&Mm(this.gl,this.program),ke(this.gl,()=>this.gl.useProgram(e))}getUniformLocation(e,t,n=!0){return this.throwIfDisposed(),n?FS(this.gl,e,t):OS(this.gl,e,t)}getAttributeLocation(e,t){return this.throwIfDisposed(),ke(this.gl,()=>this.gl.getAttribLocation(e,t))}getUniformLocationNoThrow(e,t){return this.throwIfDisposed(),this.gl.getUniformLocation(e,t)}setInputMatrixTexture(e,t,n){this.throwIfDisposed(),this.throwIfNoProgram(),MS(this.gl,e,t,n)}setOutputMatrixTexture(e,t,n){this.setOutputMatrixTextureDriver(e,n,t)}setOutputPackedMatrixTexture(e,t,n){this.throwIfDisposed();let[s,r]=rc(t,n);this.setOutputMatrixTextureDriver(e,s,r)}setOutputMatrixWriteRegion(e,t,n,s){this.setOutputMatrixWriteRegionDriver(n,e,s,t)}setOutputPackedMatrixWriteRegion(e,t,n,s){throw new Error("setOutputPackedMatrixWriteRegion not implemented.")}debugValidate(){this.program!=null&&Mm(this.gl,this.program),mp(this.gl)}executeProgram(){this.throwIfDisposed(),this.throwIfNoProgram();let e=this.gl;this.debug&&this.debugValidate(),ke(e,()=>e.drawElements(e.TRIANGLES,6,e.UNSIGNED_SHORT,0))}blockUntilAllProgramsCompleted(){this.throwIfDisposed(),ke(this.gl,()=>this.gl.finish())}getQueryTimerExtension(){return this.disjointQueryTimerExtension==null&&(this.disjointQueryTimerExtension=fp(this.gl,Y().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2?"EXT_disjoint_timer_query_webgl2":"EXT_disjoint_timer_query")),this.disjointQueryTimerExtension}getQueryTimerExtensionWebGL2(){return this.getQueryTimerExtension()}getQueryTimerExtensionWebGL1(){return this.getQueryTimerExtension()}beginQuery(){if(Y().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let n=this.gl,s=this.getQueryTimerExtensionWebGL2(),r=n.createQuery();return n.beginQuery(s.TIME_ELAPSED_EXT,r),r}let e=this.getQueryTimerExtensionWebGL1(),t=e.createQueryEXT();return e.beginQueryEXT(e.TIME_ELAPSED_EXT,t),t}endQuery(){if(Y().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let t=this.gl,n=this.getQueryTimerExtensionWebGL2();t.endQuery(n.TIME_ELAPSED_EXT);return}let e=this.getQueryTimerExtensionWebGL1();e.endQueryEXT(e.TIME_ELAPSED_EXT)}async waitForQueryAndGetTime(e){return await v.repeatedTry(()=>this.disposed||this.isQueryAvailable(e,Y().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))),this.getQueryTime(e,Y().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))}getQueryTime(e,t){if(t===0)return null;if(t===2){let n=this.gl;return n.getQueryParameter(e,n.QUERY_RESULT)/1e6}else{let n=this.getQueryTimerExtensionWebGL1();return n.getQueryObjectEXT(e,n.QUERY_RESULT_EXT)/1e6}}isQueryAvailable(e,t){if(t===0)return!0;if(t===2){let n=this.gl,s=this.getQueryTimerExtensionWebGL2(),r=n.getQueryParameter(e,n.QUERY_RESULT_AVAILABLE);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(s.GPU_DISJOINT_EXT)),r&&!this.disjoint}else{let n=this.getQueryTimerExtensionWebGL1(),s=n.getQueryObjectEXT(e,n.QUERY_RESULT_AVAILABLE_EXT);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(n.GPU_DISJOINT_EXT)),s&&!this.disjoint}}pollFence(e){return new Promise(t=>{this.addItemToPoll(()=>e.isFencePassed(),()=>t())})}pollItems(){let e=OJ(this.itemsToPoll.map(t=>t.isDoneFn));for(let t=0;t<=e;++t){let{resolveFn:n}=this.itemsToPoll[t];n()}this.itemsToPoll=this.itemsToPoll.slice(e+1)}addItemToPoll(e,t){this.itemsToPoll.push({isDoneFn:e,resolveFn:t}),!(this.itemsToPoll.length>1)&&v.repeatedTry(()=>(this.pollItems(),this.itemsToPoll.length===0))}bindTextureToFrameBuffer(e){this.throwIfDisposed(),zm(this.gl,e,this.framebuffer),this.debug&&mp(this.gl)}unbindTextureToFrameBuffer(){this.outputTexture!=null?(zm(this.gl,this.outputTexture,this.framebuffer),this.debug&&mp(this.gl)):cx(this.gl,this.framebuffer)}downloadMatrixDriver(e,t){this.bindTextureToFrameBuffer(e);let n=t();return this.unbindTextureToFrameBuffer(),n}setOutputMatrixTextureDriver(e,t,n){this.throwIfDisposed();let s=this.gl;zm(s,e,this.framebuffer),this.debug&&mp(s),this.outputTexture=e,ke(s,()=>s.viewport(0,0,t,n)),ke(s,()=>s.scissor(0,0,t,n))}setOutputMatrixWriteRegionDriver(e,t,n,s){this.throwIfDisposed(),ke(this.gl,()=>this.gl.scissor(e,t,n,s))}throwIfDisposed(){if(this.disposed)throw new Error("Attempted to use disposed GPGPUContext.")}throwIfNoProgram(){if(this.program==null)throw new Error("No GPU program is currently set.")}};function OJ(e){let t=0;for(;t<e.length&&e[t]();++t);return t-1}var{addImpl:MJ,bincountImpl:mC,bincountReduceImpl:zJ,ceilImpl:LJ,concatImpl:BJ,equalImpl:WJ,expImpl:VJ,expm1Impl:UJ,floorImpl:GJ,gatherNdImpl:HJ,gatherV2Impl:jJ,greaterImpl:qJ,greaterEqualImpl:XJ,lessImpl:KJ,lessEqualImpl:ZJ,linSpaceImpl:YJ,logImpl:JJ,maxImpl:QJ,maximumImpl:eQ,minimumImpl:tQ,multiplyImpl:nQ,negImpl:sQ,notEqualImpl:rQ,prodImpl:aQ,rangeImpl:oQ,rsqrtImpl:iQ,sigmoidImpl:lQ,simpleAbsImpl:gC,sliceImpl:uQ,sparseFillEmptyRowsImpl:cQ,sparseReshapeImpl:dQ,sparseSegmentReductionImpl:AC,sqrtImpl:pQ,stridedSliceImpl:hQ,stringNGramsImpl:fQ,stringSplitImpl:mQ,stringToHashBucketFastImpl:gQ,subImpl:AQ,tileImpl:yQ,topKImpl:xQ,transposeImpl:vx,uniqueImpl:bQ}=Em;function yC(e,t){return["x","y","z","w","u","v"].slice(0,t).map(n=>`${e}.${n}`)}function Hn(e,t){return t===1?[e]:yC(e,t)}function vQ(e,t){if(e===1)return"rc";let n="";for(let s=0;s<e;s++)n+=t[s],s<e-1&&(n+=",");return n}var wQ=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outputShape=e;let t=e.length;if(t===0)this.userCode=`
void main() {
setOutput(vec4(getA(), 0., 0., 0.));
}
`;else{let n=Hn("rc",t),s=vt(t),r=IQ(t,e,n),a=SQ(t,e[e.length-1],e[e.length-2],n),o=CQ(e,n);this.userCode=`
void main() {
${s} rc = getOutputCoords();
if(${r}) {
setOutput(vec4(0));
} else {
${a}
setOutput(vec4(${o}));
}
}
`}}};function kQ(e,t){let n=[];for(let s=0;s<=1;s++)for(let r=0;r<=1;r++){let a=`${s===0?"r":"rp1"}, ${r===0?"c":"cp1"}`;for(let o=2;o<e;o++)a=`${t[t.length-1-o]},`+a;n.push(a)}return n}function IQ(e,t,n){if(e===1)return`rc > ${t[0]}`;let s="";for(let r=e-2;r<e;r++)s+=`${n[r]} >= ${t[r]}`,r<e-1&&(s+="||");return s}function SQ(e,t,n,s){if(e===1)return"";let r=s.slice(-2);return`
int r = ${r[0]};
int c = ${r[1]};
int rp1 = r + 1;
int cp1 = c + 1;
bool cEdge = cp1 >= ${t};
bool rEdge = rp1 >= ${n};
`}function CQ(e,t){let n=e.length,s=kQ(n,t);return n===1?`getA(rc),
rc + 1 >= ${e[0]} ? 0. : getA(rc + 1),
0, 0`:`getA(${s[0]}),
cEdge ? 0. : getA(${s[1]}),
rEdge ? 0. : getA(${s[2]}),
rEdge || cEdge ? 0. : getA(${s[3]})`}var xC=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"inputShape",type:"ivec3"}],this.outputShape=e,this.enableShapeUniforms=Vs(this.outputShape.length);let n="";for(let s=0;s<4;s++){let r="thisRC = rc;";s%2==1&&(r+="thisRC.z += 1;"),s>1&&(r+="thisRC.y += 1;"),n+=`
${r}
${s>0?"if(thisRC.y < rows && thisRC.z < cols){":""}
int flatIndex = getFlatIndex(thisRC);
ivec3 inputRC = inputCoordsFromReshapedOutCoords(flatIndex);
vec2 inputRCInnerDims = vec2(float(inputRC.y),float(inputRC.z));
result[${s}] =
getChannel(getA(inputRC.x, inputRC.y, inputRC.z), inputRCInnerDims);
${s>0?"}":""}
`}this.userCode=`
${TQ(t,this.enableShapeUniforms)}
${this.enableShapeUniforms?fx():hx(e)}
void main() {
ivec3 rc = getOutputCoords();
vec4 result = vec4(0.);
ivec3 thisRC;
int rows = ${this.enableShapeUniforms?"outShape[1]":e[1]};
int cols = ${this.enableShapeUniforms?"outShape[2]":e[2]};
${n}
setOutput(result);
}
`}};function TQ(e,t){return`
ivec3 inputCoordsFromReshapedOutCoords(int index) {
${t?GY(["r","c","d"],"inputShape"):Nl(["r","c","d"],e)}
return ivec3(r, c, d);
}
`}var NQ=class{constructor(e){this.gpgpu=e,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0,this.freeTextures={},this.logEnabled=!1,this.usedTextures={}}acquireTexture(e,t,n){let s=vC(t,n),r=wC(e,s,n);r in this.freeTextures||(this.freeTextures[r]=[]),r in this.usedTextures||(this.usedTextures[r]=[]);let a=bC(e,s,this.gpgpu.gl,this.gpgpu.textureConfig,n);if(this.freeTextures[r].length>0){this.numFreeTextures--,this.numUsedTextures++,this._numBytesFree-=a,this.log();let i=this.freeTextures[r].shift();return this.usedTextures[r].push(i),i}let o;return s===Cn.PACKED_2X2_FLOAT32?o=this.gpgpu.createPackedMatrixTexture(e[0],e[1]):s===Cn.PACKED_2X2_FLOAT16?o=this.gpgpu.createFloat16PackedMatrixTexture(e[0],e[1]):s===Cn.UNPACKED_FLOAT32?o=this.gpgpu.createFloat32MatrixTexture(e[0],e[1]):s===Cn.UNPACKED_FLOAT16?o=this.gpgpu.createFloat16MatrixTexture(e[0],e[1]):s===Cn.PACKED_4X1_UNSIGNED_BYTE&&(o=this.gpgpu.createUnsignedBytesMatrixTexture(e[0],e[1])),this.usedTextures[r].push(o),this.numUsedTextures++,this._numBytesAllocated+=a,this.log(),o}releaseTexture(e,t,n,s){if(this.freeTextures==null)return;let r=vC(n,s),a=wC(t,r,s);a in this.freeTextures||(this.freeTextures[a]=[]);let o=bC(t,r,this.gpgpu.gl,this.gpgpu.textureConfig,s),i=Y().get("WEBGL_DELETE_TEXTURE_THRESHOLD");i!==-1&&this._numBytesAllocated>i?(this.gpgpu.deleteMatrixTexture(e),this._numBytesAllocated-=o):(this.freeTextures[a].push(e),this.numFreeTextures++,this._numBytesFree+=o),this.numUsedTextures--;let l=this.usedTextures[a],c=l.indexOf(e);if(c<0)throw new Error("Cannot release a texture that was never provided by this texture manager");l.splice(c,1),this.log()}log(){if(!this.logEnabled)return;let e=this.numFreeTextures+this.numUsedTextures;console.log("Free/Used",`${this.numFreeTextures} / ${this.numUsedTextures}`,`(${e})`);let t=this._numBytesFree/this._numBytesAllocated;console.log(`Bytes allocated: ${this._numBytesAllocated}`),console.log(`Bytes unused: ${this._numBytesFree} (${Math.round(100*t)}%)`)}get numBytesAllocated(){return this._numBytesAllocated}get numBytesFree(){return this._numBytesFree}getNumUsedTextures(){return this.numUsedTextures}getNumFreeTextures(){return this.numFreeTextures}dispose(){if(this.freeTextures!=null){for(let e in this.freeTextures)this.freeTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});for(let e in this.usedTextures)this.usedTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});this.freeTextures=null,this.usedTextures=null,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0}}};function EQ(e,t){let n=e;if(t===n.R32F)return 4;if(t===n.R16F)return 2;if(t===n.RGBA32F)return 16;if(t===e.RGBA)return 16;if(t===n.RGBA16F)return 8;if(t===n.RGBA8)return 4;throw new Error(`Unknown internal format ${t}`)}function bC(e,t,n,s,r){let a=RQ(t,s),o;if(r){let[l,c]=rc(e[0],e[1]);o=l*c}else{let[l,c]=hp(e[0],e[1]);o=l*c}let i=EQ(n,a);return o*i}function RQ(e,t){switch(e){case Cn.PACKED_2X2_FLOAT32:return xx(t);case Cn.PACKED_2X2_FLOAT16:return bx(t);case Cn.UNPACKED_FLOAT32:return gx(t);case Cn.UNPACKED_FLOAT16:return Ax(t);case Cn.PACKED_4X1_UNSIGNED_BYTE:return yx(t);default:throw new Error(`Unknown physical texture type ${e}`)}}function $Q(e){return Y().getBool("WEBGL_RENDER_FLOAT32_ENABLED")?e?Cn.PACKED_2X2_FLOAT32:Cn.UNPACKED_FLOAT32:e?Cn.PACKED_2X2_FLOAT16:Cn.UNPACKED_FLOAT16}function vC(e,t){if(e===Bs.UPLOAD)return Cn.PACKED_2X2_FLOAT32;if(e===Bs.RENDER||e==null)return $Q(t);if(e===Bs.DOWNLOAD||e===Bs.PIXELS)return Cn.PACKED_4X1_UNSIGNED_BYTE;throw new Error(`Unknown logical texture type ${e}`)}function wC(e,t,n){return`${e[0]}_${e[1]}_${t}_${n}`}var Ho=class{constructor(e,t){this.variableNames=["A"],this.outputShape=e,this.enableShapeUniforms=Vs(this.outputShape.length),this.userCode=`
float unaryOperation(float x) {
${t}
}
void main() {
float x = getAAtOutCoords();
float y = unaryOperation(x);
setOutput(y);
}
`}},kr="if (isnan(x)) return x;",_Q="return x;",kC="return abs(x);",DQ="return (x >= 0.0) ? x : (exp(x) - 1.0);",PQ=kr+`
return (x < 0.0) ? 0.0 : x;
`,FQ=kr+`
return (x < 0.0) ? 0.0 : min(6.0, x);
`,Hm="return x;",OQ="return 1.0 / (1.0 + exp(-1.0 * x));",MQ="return x;",zQ=`
vec4 result;
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
return result;
`,LQ=`
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,BQ=`
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,WQ="return 1.0 / (1.0 + exp(-1.0 * x));",cc=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.enableShapeUniforms=Vs(this.outputShape.length),this.userCode=`
vec4 unaryOperation(vec4 x) {
${t}
}
void main() {
vec4 x = getAAtOutCoords();
vec4 y = unaryOperation(x);
setOutput(y);
}
`}},VQ=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outputShape=e;let t=e.length,n=Hn("rc",t),s=vt(t),r=vQ(t,n),a=n.slice(-2),o=t<=1?"rc":`vec2(${a.join(",")})`;this.userCode=`
void main() {
${s} rc = getOutputCoords();
vec4 packedInput = getA(${r});
setOutput(getChannel(packedInput, ${o}));
}
`}},UQ=tr.whereImpl,GQ=1e-7,HQ=1e-4,jm={};function jQ(e){return e in jm||(jm[e]={}),jm[e]}var qQ=Y().getNumber("CPU_HANDOFF_SIZE_THRESHOLD"),XQ=600;function KQ(){return Y().global.screen==null?1024:Y().global.screen.height*Y().global.screen.width*window.devicePixelRatio*XQ/1024/1024}var IC=class extends tu{constructor(e){super();if(this.pendingRead=new WeakMap,this.pendingDisposal=new WeakSet,this.dataRefCount=new WeakMap,this.numBytesInGPU=0,this.uploadWaitMs=0,this.downloadWaitMs=0,this.lastGlFlushTime=0,this.warnedAboutMemory=!1,this.pendingDeletes=0,this.disposed=!1,!Y().getBool("HAS_WEBGL"))throw new Error("WebGL is not supported on this device");if(e==null){let t=Vr(Y().getNumber("WEBGL_VERSION"));this.binaryCache=jQ(Y().getNumber("WEBGL_VERSION")),this.gpgpu=new Gm(t),this.canvas=t.canvas,this.gpgpuCreatedLocally=!0}else this.gpgpu=e,this.binaryCache={},this.gpgpuCreatedLocally=!1,this.canvas=e.gl.canvas;this.textureManager=new NQ(this.gpgpu),this.numMBBeforeWarning=KQ(),this.texData=new td(this,as())}nextDataId(){return IC.nextDataId++}numDataIds(){return this.texData.numDataIds()-this.pendingDeletes}write(e,t,n){if((Y().getBool("WEBGL_CHECK_NUMERICAL_PROBLEMS")||Y().getBool("DEBUG"))&&this.checkNumericalProblems(e),n==="complex64"&&e!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let s={id:this.nextDataId()};return this.texData.set(s,{shape:t,dtype:n,values:e,usage:Bs.UPLOAD,refCount:1}),s}refCount(e){return this.texData.has(e)?this.texData.get(e).refCount:0}incRef(e){let t=this.texData.get(e);t.refCount++}decRef(e){if(this.texData.has(e)){let t=this.texData.get(e);t.refCount--}}move(e,t,n,s,r){if(Y().getBool("DEBUG")&&this.checkNumericalProblems(t),s==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");this.texData.set(e,{shape:n,dtype:s,values:t,usage:Bs.UPLOAD,refCount:r})}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}readSync(e){let t=this.texData.get(e),{values:n,dtype:s,complexTensorInfos:r,slice:a,shape:o,isPacked:i}=t;if(a!=null){let d;i?d=new cc(o,Hm):d=new Ho(o,Hm);let p=this.runWebGLProgram(d,[{dataId:e,shape:o,dtype:s}],s),h=this.readSync(p.dataId);return this.disposeIntermediateTensorInfo(p),h}if(n!=null)return this.convertAndCacheOnCPU(e);if(s==="string")return n;let l=this.activeTimers!=null,c;l&&(c=v.now());let u;if(s==="complex64"){let d=this.readSync(r.real.dataId),p=this.readSync(r.imag.dataId);u=E.mergeRealAndImagArrays(d,p)}else u=this.getValuesFromTexture(e);return l&&(this.downloadWaitMs+=v.now()-c),this.convertAndCacheOnCPU(e,u)}async read(e){if(this.pendingRead.has(e)){let h=this.pendingRead.get(e);return new Promise(f=>h.push(f))}let t=this.texData.get(e),{values:n,shape:s,slice:r,dtype:a,complexTensorInfos:o,isPacked:i}=t;if(r!=null){let h;i?h=new cc(s,Hm):h=new Ho(s,Hm);let f=this.runWebGLProgram(h,[{dataId:e,shape:s,dtype:a}],a),m=this.read(f.dataId);return this.disposeIntermediateTensorInfo(f),m}if(n!=null)return this.convertAndCacheOnCPU(e);if(Y().getBool("DEBUG")&&!Y().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")&&Y().getNumber("WEBGL_VERSION")===2)throw new Error("tensor.data() with WEBGL_DOWNLOAD_FLOAT_ENABLED=false and WEBGL_VERSION=2 not yet supported.");let l=null,c;if(a!=="complex64"&&Y().get("WEBGL_BUFFER_SUPPORTED")){c=this.decode(e);let h=this.texData.get(c.dataId);l=this.gpgpu.createBufferFromTexture(h.texture,...Om(s))}this.pendingRead.set(e,[]),a!=="complex64"&&await this.gpgpu.createAndWaitForFence();let u;if(a==="complex64"){let h=await Promise.all([this.read(o.real.dataId),this.read(o.imag.dataId)]),f=h[0],m=h[1];u=E.mergeRealAndImagArrays(f,m)}else if(l==null)u=this.getValuesFromTexture(e);else{let h=v.sizeFromShape(s);u=this.gpgpu.downloadFloat32MatrixFromBuffer(l,h)}if(c!=null&&this.disposeIntermediateTensorInfo(c),l!=null){let h=this.gpgpu.gl;ke(h,()=>h.deleteBuffer(l))}let d=this.convertAndCacheOnCPU(e,u),p=this.pendingRead.get(e);return this.pendingRead.delete(e),p.forEach(h=>h(d)),this.pendingDisposal.has(e)&&(this.pendingDisposal.delete(e),this.disposeData(e)&&as().removeDataId(e,this),this.pendingDeletes--),d}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(s=>v.decodeString(s))}catch(s){throw new Error("Failed to decode encoded string bytes into utf-8")}return ze(e.shape,e.dtype,n)}checkNumericalProblems(e){if(e!=null)for(let t=0;t<e.length;t++){let n=e[t];if(!kS(n))throw Y().getBool("WEBGL_RENDER_FLOAT32_CAPABLE")?Error(`The value ${n} cannot be represented with your current settings. Consider enabling float32 rendering: 'tf.env().set('WEBGL_RENDER_FLOAT32_ENABLED', true);'`):Error(`The value ${n} cannot be represented on this device.`)}}getValuesFromTexture(e){let{shape:t,dtype:n,isPacked:s}=this.texData.get(e),r=v.sizeFromShape(t);if(Y().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")){let d=this.decode(e),p=this.texData.get(d.dataId),h=this.gpgpu.downloadMatrixFromPackedTexture(p.texture,...Om(t)).subarray(0,r);return this.disposeIntermediateTensorInfo(d),h}let a=Y().getBool("WEBGL_PACK")&&s===!0,o=a?Lm(t):t,i=a?new DJ(o):new _J(o),l=this.runWebGLProgram(i,[{shape:o,dtype:n,dataId:e}],"float32"),c=this.texData.get(l.dataId),u=this.gpgpu.downloadByteEncodedFloatMatrixFromOutputTexture(c.texture,c.texShape[0],c.texShape[1]).subarray(0,r);return this.disposeIntermediateTensorInfo(l),u}timerAvailable(){return Y().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0}async time(e){let t=this.activeTimers,n=[],s=!1;this.programTimersStack==null?(this.programTimersStack=n,s=!0):this.activeTimers.push(n),this.activeTimers=n,e();let r=v.flatten(this.activeTimers.map(i=>i.query)).filter(i=>i!=null),a=v.flatten(this.activeTimers.map(i=>i.name)).filter(i=>i!=null);this.activeTimers=t,s&&(this.programTimersStack=null);let o={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null};if(Y().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0){let i=await Promise.all(r);o.kernelMs=v.sum(i),o.getExtraProfileInfo=()=>i.map((l,c)=>({name:a[c],ms:l})).map(l=>`${l.name}: ${l.ms}`).join(", ")}else o.kernelMs={error:"WebGL query timers are not supported in this environment."};return this.uploadWaitMs=0,this.downloadWaitMs=0,o}memory(){return{unreliable:!1,numBytesInGPU:this.numBytesInGPU,numBytesInGPUAllocated:this.textureManager.numBytesAllocated,numBytesInGPUFree:this.textureManager.numBytesFree}}startTimer(){return Y().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?this.gpgpu.beginQuery():{startMs:v.now(),endMs:null}}endTimer(e){return Y().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?(this.gpgpu.endQuery(),e):(e.endMs=v.now(),e)}async getQueryTime(e){if(Y().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0)return this.gpgpu.waitForQueryAndGetTime(e);let t=e;return t.endMs-t.startMs}disposeData(e,t=!1){if(this.pendingDisposal.has(e))return!1;if(!this.texData.has(e))return!0;if(t?this.texData.get(e).refCount=0:this.texData.get(e).refCount--,!t&&this.texData.get(e).refCount>0)return!1;if(this.pendingRead.has(e))return this.pendingDisposal.add(e),this.pendingDeletes++,!1;this.releaseGPUData(e);let{complexTensorInfos:n}=this.texData.get(e);return n!=null&&(this.disposeData(n.real.dataId,t),this.disposeData(n.imag.dataId,t)),this.texData.delete(e),!0}releaseGPUData(e){let{texture:t,dtype:n,texShape:s,usage:r,isPacked:a,slice:o}=this.texData.get(e),i=o&&o.origDataId||e,l=this.dataRefCount.get(i);l>1?this.dataRefCount.set(i,l-1):(this.dataRefCount.delete(i),t!=null&&(this.numBytesInGPU-=this.computeBytes(s,n),this.textureManager.releaseTexture(t,s,r,a)));let c=this.texData.get(e);c.texture=null,c.texShape=null,c.isPacked=!1,c.slice=null}getTexture(e){return this.uploadToGPU(e),this.texData.get(e).texture}getDataInfo(e){return this.texData.get(e)}shouldExecuteOnCPU(e,t=qQ){return Y().getBool("WEBGL_CPU_FORWARD")&&e.every(n=>this.texData.get(n.dataId).texture==null&&v.sizeFromShape(n.shape)<t)}getGPGPUContext(){return this.gpgpu}where(e){E.warn("tf.where() in webgl locks the UI thread. Call tf.whereAsync() instead");let t=e.dataSync();return UQ(e.shape,t)}packedUnaryOp(e,t,n){let s=new cc(e.shape,t),r=this.compileAndRun(s,[e],n);return as().makeTensorFromDataId(r.dataId,r.shape,r.dtype)}abs(e){if(this.shouldExecuteOnCPU([e])&&e.dtype!=="complex64"){let s=gC(this.texData.get(e.dataId).values);return this.makeOutput(e.shape,e.dtype,s)}if(Y().getBool("WEBGL_PACK_UNARY_OPERATIONS"))return this.packedUnaryOp(e,kC,e.dtype);let t=new Ho(e.shape,kC),n=this.compileAndRun(t,[e]);return as().makeTensorFromDataId(n.dataId,n.shape,n.dtype)}makeTensorInfo(e,t,n){let s;if(t==="string"&&n!=null&&n.length>0&&v.isString(n[0])){let r=n.map(a=>v.encodeString(a));s=this.write(r,e,t)}else s=this.write(n,e,t);return this.texData.get(s).usage=null,{dataId:s,shape:e,dtype:t}}makeOutput(e,t,n){let{dataId:s}=this.makeTensorInfo(e,t,n);return as().makeTensorFromDataId(s,e,t,this)}unpackTensor(e){let t=new VQ(e.shape);return this.runWebGLProgram(t,[e],e.dtype)}packTensor(e){let t=new wQ(e.shape),n=!0;return this.runWebGLProgram(t,[e],e.dtype,null,n)}packedReshape(e,t){let n=[Cl(e.shape),...Tl(e.shape)],s={dtype:e.dtype,shape:n,dataId:e.dataId},r=[Cl(t),...Tl(t)],a=new xC(r,n),o=!0,i=[n],l=this.runWebGLProgram(a,[s],e.dtype,i,o);return{dataId:l.dataId,shape:t,dtype:l.dtype}}decode(e){let t=this.texData.get(e),{isPacked:n,shape:s,dtype:r}=t,a=Lm(s),o,i=Om(a);n?o=new $J(a):o=new RJ(a);let l=!0,c=[i],u=this.runWebGLProgram(o,[{shape:a,dtype:r,dataId:e}],r,c,l);return{dtype:r,shape:s,dataId:u.dataId}}runWebGLProgram(e,t,n,s,r=!1){let a=this.makeTensorInfo(e.outputShape,n),o=this.texData.get(a.dataId);if(e.packedOutput&&(o.isPacked=!0),e.outPackingScheme===pp.DENSE){let m=Om(e.outputShape);o.texShape=m.map(g=>g*2)}if(e.outTexUsage!=null&&(o.usage=e.outTexUsage),v.sizeFromShape(a.shape)===0)return o.values=v.getTypedArrayFromDType(a.dtype,0),a;let i=[],l=t.map(m=>{if(m.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");let g=this.texData.get(m.dataId);if(g.texture==null){if(!e.packedInputs&&v.sizeFromShape(m.shape)<=Y().getNumber("WEBGL_SIZE_UPLOAD_UNIFORM"))return{shape:m.shape,texData:null,isUniform:!0,uniformValues:g.values};e.packedInputs&&(g.isPacked=!0,g.shape=m.shape)}if(this.uploadToGPU(m.dataId),!!g.isPacked!=!!e.packedInputs)m=g.isPacked?this.unpackTensor(m):this.packTensor(m),i.push(m),g=this.texData.get(m.dataId);else if(g.isPacked&&!gp(g.shape,m.shape)){let A=m,x=m.shape;m.shape=g.shape,m=this.packedReshape(m,x),i.push(m),g=this.texData.get(m.dataId),A.shape=x}return{shape:m.shape,texData:g,isUniform:!1}});this.uploadToGPU(a.dataId);let c={shape:a.shape,texData:o,isUniform:!1},u=EJ(e,l,c),d=this.getAndSaveBinary(u,()=>TJ(this.gpgpu,e,l,c)),p=this.activeTimers!=null,h;p&&(h=this.startTimer()),NJ(this.gpgpu,d,l,c,s),i.forEach(m=>this.disposeIntermediateTensorInfo(m)),p&&(h=this.endTimer(h),this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(h)}));let f=Y().get("WEBGL_FLUSH_THRESHOLD");if(f>0){let m=v.now();m-this.lastGlFlushTime>f&&(this.gpgpu.gl.flush(),this.lastGlFlushTime=m)}if(!Y().getBool("WEBGL_LAZILY_UNPACK")&&o.isPacked&&r===!1){let m=this.unpackTensor(a);return this.disposeIntermediateTensorInfo(a),m}return a}compileAndRun(e,t,n,s,r=!1){return n=n||t[0].dtype,this.runWebGLProgram(e,t,n,s,r)}getAndSaveBinary(e,t){return e in this.binaryCache||(this.binaryCache[e]=t()),this.binaryCache[e]}getTextureManager(){return this.textureManager}dispose(){this.disposed||(Y().getBool("IS_TEST")||Object.keys(this.binaryCache).forEach(t=>{this.gpgpu.deleteProgram(this.binaryCache[t].webGLProgram),delete this.binaryCache[t]}),this.textureManager.dispose(),this.canvas!=null&&typeof HTMLCanvasElement!="undefined"&&this.canvas instanceof HTMLCanvasElement?this.canvas.remove():this.canvas=null,this.gpgpuCreatedLocally&&(this.gpgpu.program=null,this.gpgpu.dispose()),this.disposed=!0)}floatPrecision(){return this.floatPrecisionValue==null&&(this.floatPrecisionValue=K(()=>{if(!Y().get("WEBGL_RENDER_FLOAT32_ENABLED")){let e=Y().getBool("DEBUG");Y().set("DEBUG",!1);let t=this.abs(Se(1e-8)).dataSync()[0];if(Y().set("DEBUG",e),t>0)return 32}return 16})),this.floatPrecisionValue}epsilon(){return this.floatPrecision()===32?GQ:HQ}uploadToGPU(e){let t=this.texData.get(e),{shape:n,dtype:s,values:r,texture:a,usage:o,isPacked:i}=t;if(a!=null)return;let l=this.activeTimers!=null,c;l&&(c=v.now());let u=t.texShape;if(u==null&&(u=BS(n,i),t.texShape=u),r!=null){let d=Lm(n),p,h=u[1],f=u[0],m=r instanceof Uint8Array||r instanceof Uint8ClampedArray;(i||!m)&&([h,f]=rc(u[0],u[1])),i?p=new FJ(d,m):p=new PJ(d,m);let g=m?[f,h]:u,A=this.makeTensorInfo(g,s),x=this.texData.get(A.dataId);m?x.usage=Bs.PIXELS:x.usage=Bs.UPLOAD,x.texShape=g,this.gpgpu.uploadDenseMatrixToTexture(this.getTexture(A.dataId),h,f,r);let y=[[f,h]],b=!0,w=this.runWebGLProgram(p,[A],s,y,b),k=this.texData.get(w.dataId);t.texture=k.texture,t.texShape=k.texShape,t.isPacked=k.isPacked,t.usage=k.usage,this.disposeIntermediateTensorInfo(A),this.texData.delete(w.dataId),t.values=null,l&&(this.uploadWaitMs+=v.now()-c)}else{let d=this.acquireTexture(u,o,s,i);t.texture=d}}convertAndCacheOnCPU(e,t){let n=this.texData.get(e),{dtype:s}=n;return this.releaseGPUData(e),t!=null&&(n.values=ZQ(t,s)),n.values}acquireTexture(e,t,n,s){if(this.numBytesInGPU+=this.computeBytes(e,n),!this.warnedAboutMemory&&this.numBytesInGPU>this.numMBBeforeWarning*1024*1024){let r=(this.numBytesInGPU/1024/1024).toFixed(2);this.warnedAboutMemory=!0,console.warn(`High memory usage in GPU: ${r} MB, most likely due to a memory leak`)}return this.textureManager.acquireTexture(e,t,s)}computeBytes(e,t){return e[0]*e[1]*v.bytesPerElement(t)}},yp=IC;yp.nextDataId=0;function ZQ(e,t){if(t==="float32"||t==="complex64")return e;if(t==="int32"||t==="bool"){let n=t==="int32"?new Int32Array(e.length):new Uint8Array(e.length);for(let s=0;s<n.length;++s)n[s]=Math.round(e[s]);return n}else throw new Error(`Unknown dtype ${t}`)}var YQ="0.0.0";function SC(){Y().set("WEBGL_FORCE_F16_TEXTURES",!0)}_u.isBrowser()&&ol("webgl",()=>new yp,2);var JQ={forceHalfFloat:SC},CC=`
if (isnan(a)) return a;
if (isnan(b)) return b;
`,dc=class{constructor(e,t,n){this.variableNames=["A","B"],this.outputShape=E.assertAndGetBroadcastShape(t,n),this.enableShapeUniforms=Vs(this.outputShape.length),this.userCode=`
float binaryOperation(float a, float b) {
${e}
}
void main() {
float a = getAAtOutCoords();
float b = getBAtOutCoords();
setOutput(binaryOperation(a, b));
}
`}},qm=`
result.r = isNaN.r > 0. ? NAN : result.r;
result.g = isNaN.g > 0. ? NAN : result.g;
result.b = isNaN.b > 0. ? NAN : result.b;
result.a = isNaN.a > 0. ? NAN : result.a;
`,xp=class{constructor(e,t,n,s=!1){this.variableNames=["A","B"],this.supportsBroadcasting=!0,this.packedInputs=!0,this.packedOutput=!0,this.outputShape=E.assertAndGetBroadcastShape(t,n);let r=this.outputShape.length;this.enableShapeUniforms=Vs(r);let a="";if(s)if(r===0||v.sizeFromShape(this.outputShape)===1)a=`
result.y = 0.;
result.z = 0.;
result.w = 0.;
`;else if(a=`
${vt(r)} coords = getOutputCoords();
`,r===1)this.enableShapeUniforms?a+=`
result.y = (coords + 1) >= outShape ? 0. : result.y;
result.z = 0.;
result.w = 0.;
`:a+=`
result.y = (coords + 1) >= ${this.outputShape[0]} ? 0. : result.y;
result.z = 0.;
result.w = 0.;
`;else{let i=Hn("coords",r);this.enableShapeUniforms?a+=`
bool nextRowOutOfBounds =
(${i[r-2]} + 1) >= outShape[${r} - 2];
bool nextColOutOfBounds =
(${i[r-1]} + 1) >= outShape[${r} - 1];
result.y = nextColOutOfBounds ? 0. : result.y;
result.z = nextRowOutOfBounds ? 0. : result.z;
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
`:a+=`
bool nextRowOutOfBounds =
(${i[r-2]} + 1) >= ${this.outputShape[r-2]};
bool nextColOutOfBounds =
(${i[r-1]} + 1) >= ${this.outputShape[r-1]};
result.y = nextColOutOfBounds ? 0. : result.y;
result.z = nextRowOutOfBounds ? 0. : result.z;
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
`}this.userCode=`
vec4 binaryOperation(vec4 a, vec4 b) {
${e}
}
void main() {
vec4 a = getAAtOutCoords();
vec4 b = getBAtOutCoords();
vec4 result = binaryOperation(a, b);
${a}
setOutput(result);
}
`}};function ks(e){let{inputs:t,backend:n}=e,{x:s}=t;return n.incRef(s.dataId),{dataId:s.dataId,shape:s.shape,dtype:s.dtype}}var QQ={kernelName:qa,backendName:"webgl",kernelFunc:ks};function jo(e){let{inputs:t,backend:n}=e,{real:s,imag:r}=t,a=n.makeTensorInfo(s.shape,"complex64"),o=n.texData.get(a.dataId),i=ks({inputs:{x:s},backend:n}),l=ks({inputs:{x:r},backend:n});return o.complexTensorInfos={real:i,imag:l},a}var eee={kernelName:ad,backendName:"webgl",kernelFunc:jo},TC="return (a < 0.) ? b * a : a;",NC=`
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
`;function tee(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{alpha:a}=s,o=n.makeTensorInfo([],"float32",v.createScalarValue(a,"float32")),i=Y().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new xp(NC,r.shape,o.shape):new dc(TC,r.shape,o.shape),l=n.runWebGLProgram(i,[r,o],"float32");return n.disposeIntermediateTensorInfo(o),l}var nee={kernelName:Ii,backendName:"webgl",kernelFunc:tee},EC="return (a < 0.) ? b * a : a;",RC=`
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
`;function see(e){let{inputs:t,backend:n}=e,{x:s,alpha:r}=t,a=Y().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new xp(RC,s.shape,r.shape):new dc(EC,s.shape,r.shape);return n.runWebGLProgram(a,[s,r],"float32")}var ree={kernelName:ao,backendName:"webgl",kernelFunc:see},$C="if (isnan(x)) return x;",aee=`
if (isnan(a)) return a;
if (isnan(b)) return b;
`,oee=`
result.r = isNaN.r > 0. ? NAN : result.r;
result.g = isNaN.g > 0. ? NAN : result.g;
result.b = isNaN.b > 0. ? NAN : result.b;
result.a = isNaN.a > 0. ? NAN : result.a;
`;function rt({opSnippet:e,packedOpSnippet:t,cpuKernelImpl:n,dtype:s}){return({inputs:r,backend:a})=>{let{x:o}=r,i=a,l=s||o.dtype;if(i.shouldExecuteOnCPU([o])&&n!=null){let d=i.texData.get(o.dataId),p=n(d.values,l);return i.makeTensorInfo(o.shape,l,p)}let c=Y().getBool("WEBGL_PACK_UNARY_OPERATIONS")&&t!=null,u;return c?u=new cc(o.shape,t):u=new Ho(o.shape,e),i.runWebGLProgram(u,[o],l)}}function Tn({opSnippet:e,packedOpSnippet:t,checkOutOfBounds:n=!1,supportsComplex:s=!1,cpuKernelImpl:r,dtype:a}){return({inputs:o,backend:i})=>{let{a:l,b:c}=o,u=i;if(s&&l.dtype==="complex64"){let f=u.texData.get(l.dataId),m=u.texData.get(c.dataId),[g,A]=[[f.complexTensorInfos.real,m.complexTensorInfos.real],[f.complexTensorInfos.imag,m.complexTensorInfos.imag]].map(y=>{let[b,w]=y,k={dataId:b.dataId,dtype:b.dtype,shape:l.shape},S={dataId:w.dataId,dtype:w.dtype,shape:c.shape},N=new dc(e,l.shape,c.shape);return u.runWebGLProgram(N,[k,S],Ln(b.dtype,w.dtype))}),x=jo({inputs:{real:g,imag:A},backend:u});return u.disposeIntermediateTensorInfo(g),u.disposeIntermediateTensorInfo(A),x}let d=a||Ln(l.dtype,c.dtype);if((l.dtype==="string"||c.dtype==="string"||u.shouldExecuteOnCPU([l,c]))&&r!=null){let f=u.texData.get(l.dataId).values,m=u.texData.get(c.dataId).values,g=l.dtype==="string"?E.fromUint8ToStringArray(f):f,A=l.dtype==="string"?E.fromUint8ToStringArray(m):m,[x,y]=r(l.shape,c.shape,g,A,d),b=u.makeTensorInfo(y,d),w=u.texData.get(b.dataId);return w.values=x,b}let p=Y().getBool("WEBGL_PACK_BINARY_OPERATIONS")&&t!=null,h;return p?h=new xp(t,l.shape,c.shape,n):h=new dc(e,l.shape,c.shape),u.runWebGLProgram(h,[l,c],d)}}function Xm(e,t=!1){if(e==="linear")return t?MQ:_Q;if(e==="relu")return t?LQ:PQ;if(e==="elu")return t?zQ:DQ;if(e==="relu6")return t?BQ:FQ;if(e==="prelu")return t?RC:EC;if(e==="leakyrelu")return t?NC:TC;if(e==="sigmoid")return t?WQ:OQ;throw new Error(`Activation ${e} has not been implemented for the WebGL backend.`)}var _C=class{constructor(e,t,n,s=!1,r=!1,a=!1,o=null,i=!1,l=!1){this.variableNames=["matrixA","matrixB"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=n,this.enableShapeUniforms=Vs(this.outputShape.length);let c=s?e[1]:e[2],u=Math.ceil(c/2),d=s?"i * 2, rc.y":"rc.y, i * 2",p=r?"rc.z, i * 2":"i * 2, rc.z",h=s?["a.xxyy","a.zzww"]:["a.xxzz","a.yyww"],f=r?["b.xzxz","b.ywyw"]:["b.xyxy","b.zwzw"],m="",g="";o&&(i?m=`vec4 activation(vec4 a) {
vec4 b = getPreluActivationWeightsAtOutCoords();
${o}
}`:l?m=`vec4 activation(vec4 a) {
vec4 b = getLeakyreluAlphaAtOutCoords();
${o}
}`:m=`vec4 activation(vec4 x) {
${o}
}`,g="result = activation(result);");let A=a?"result += getBiasAtOutCoords();":"";a&&this.variableNames.push("bias"),i&&this.variableNames.push("preluActivationWeights"),l&&this.variableNames.push("leakyreluAlpha");let x="rc.x",y="rc.x";e[0]<t[0]?x=`int(min(float(rc.x), ${e[0]-1}.))`:t[0]<e[0]&&(y=`int(min(float(rc.x), ${t[0]-1}.))`),this.userCode=`
${m}
// Don't use uniform for sharedDimensionPacked for performance.
const float sharedDimension = ${u}.0;
vec4 dot2x2ARowBCol(ivec3 rc) {
vec4 result = vec4(0);
for (int i = 0; i < ${u}; i++) {
int batchA = ${x};
int batchB = ${y};
vec4 a = getMatrixA(batchA, ${d});
vec4 b = getMatrixB(batchB, ${p});
// These swizzled products need to be separately added.
// See: https://github.com/tensorflow/tfjs/issues/1735
result += (${h[0]} * ${f[0]});
result += (${h[1]} * ${f[1]});
}
return result;
}
void main() {
ivec3 rc = getOutputCoords();
vec4 result = dot2x2ARowBCol(rc);
${A}
${g}
setOutput(result);
}
`}},DC={REAL:"return areal * breal - aimag * bimag;",IMAG:"return areal * bimag + aimag * breal;"},PC=class{constructor(e,t,n){this.variableNames=["AReal","AImag","BReal","BImag"],this.outputShape=E.assertAndGetBroadcastShape(t,n),this.userCode=`
float binaryOpComplex(
float areal, float aimag, float breal, float bimag) {
${e}
}
void main() {
float areal = getARealAtOutCoords();
float aimag = getAImagAtOutCoords();
float breal = getBRealAtOutCoords();
float bimag = getBImagAtOutCoords();
setOutput(binaryOpComplex(areal, aimag, breal, bimag));
}
`}},FC="return a * b;";function wx(e){let{inputs:t,backend:n}=e,{a:s,b:r}=t,a=E.upcastType(s.dtype,r.dtype);if(s.dtype==="complex64"){let i=n.texData.get(s.dataId),l=n.texData.get(r.dataId),c=new PC(DC.REAL,s.shape,r.shape),u=new PC(DC.IMAG,s.shape,r.shape),d=[{dataId:i.complexTensorInfos.real.dataId,dtype:i.complexTensorInfos.real.dtype,shape:s.shape},{dataId:i.complexTensorInfos.imag.dataId,dtype:i.complexTensorInfos.imag.dtype,shape:s.shape},{dataId:l.complexTensorInfos.real.dataId,dtype:l.complexTensorInfos.real.dtype,shape:r.shape},{dataId:l.complexTensorInfos.imag.dataId,dtype:l.complexTensorInfos.imag.dtype,shape:r.shape}],p=n.runWebGLProgram(c,d,"float32"),h=n.runWebGLProgram(u,d,"float32"),f=jo({inputs:{real:p,imag:h},backend:n});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(h),f}if(n.shouldExecuteOnCPU([s,r])){let i=n.texData.get(s.dataId),l=n.texData.get(r.dataId),[c,u]=nQ(s.shape,r.shape,i.values,l.values,a),d=n.makeTensorInfo(u,a),p=n.texData.get(d.dataId);return p.values=c,d}let o;return Y().getBool("WEBGL_PACK_BINARY_OPERATIONS")?o=new xp(FC,s.shape,r.shape):o=new dc(FC,s.shape,r.shape),n.runWebGLProgram(o,[s,r],a)}var iee={kernelName:no,backendName:"webgl",kernelFunc:wx};function lee(e,t,n){let s=[Cl(e.shape),...Tl(e.shape)],r={dtype:e.dtype,shape:s,dataId:e.dataId},a=[Cl(t),...Tl(t)],o=new xC(a,s),i=!0,l=[s],c=n.runWebGLProgram(o,[r],e.dtype,l,i);return{dataId:c.dataId,shape:t,dtype:c.dtype}}function ve(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{shape:a}=s,o=n,i=v.sizeFromShape(r.shape),l=v.inferFromImplicitShape(a,i),c=v.sizeFromShape(l);v.assert(i===c,()=>`The new shape (${l}) has ${c} elements and the old shape (${r.shape}) has ${i} elements. The new shape and old shape must have the same number of elements.`);let u=o.texData.get(r.dataId);return u.isPacked&&!gp(r.shape,l)&&!(u.texture!==null&&gp(u.shape,l))?lee(r,l,o):(o.incRef(r.dataId),{dataId:r.dataId,shape:l,dtype:r.dtype})}var uee={kernelName:Oi,backendName:"webgl",kernelFunc:ve},OC=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:s,inSize:r,outSize:a}=e;this.outputShape=[s,a];let o=Math.floor(n/4)*4,i=n%4,l="sumValue += dot(values, ones);";if(t!=null){let u=1/t;l=`sumValue += dot(values * ${v.isInt(u)?u.toPrecision(2):u}, ones);`}let c="";r%n>0&&(c=`
if (inIdx < 0 || inIdx >= ${r}) {
return 0.0;
}
`),this.userCode=`
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float getValue(int batch, int inIdx) {
${c}
return getX(batch, inIdx);
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = outIdx * ${n};
float sumValue = 0.0;
for (int i = 0; i < ${o}; i += 4) {
int inIdx = inOffset + i;
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
getValue(batch, inIdx + 3)
);
${l}
}
int inIdx = inOffset + ${o};
if (${i===1}) {
vec4 values = vec4(getValue(batch, inIdx), 0.0, 0.0, 0.0);
${l}
} else if (${i===2}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1), 0.0, 0.0);
${l}
} else if (${i===3}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2), 0.0);
${l}
}
setOutput(sumValue);
}
`}},cee=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:s,inSize:r,outSize:a}=e;this.outputShape=[s,a];let o="0.0",i="";t==="prod"?o="1.0":t==="min"?(o="1.0 / 1e-20",i="min"):t==="max"&&(o="-1.0 / 1e-20",i="max");let l=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="sum"?l="sumValue":t==="prod"?l="prodValue":t==="all"?l="allValue":t==="any"&&(l="anyValue");let c=Math.floor(n/4)*4,u=n%4,d=`
if (${t==="sum"}) {
sumValue += dot(values, ones);
} else if (${t==="prod"}) {
vec2 tmp = vec2(values[0], values[1]) * vec2(values[2], values[3]);
prodValue *= tmp[0] * tmp[1];
} else {
minMaxValue = ${i}(values, minMaxValue);
if (${t==="min"} || ${t==="max"}) {
minMaxValue = ${i}(values, minMaxValue);
bvec4 isNaN = isnan(values);
if (isNaN.r || isNaN.g || isNaN.b || isNaN.a) {
minMaxValue = vec4(NAN);
}
}
}
`,p="vec4";t==="all"?(o="1.0",d=`
bool reducedAllValue = all(values);
float floatedReducedAllValue = float(reducedAllValue);
allValue = float(allValue >= 1.0 && floatedReducedAllValue >= 1.0);
`,p="bvec4"):t==="any"&&(o="0.0",d=`
bool reducedAnyValue = any(values);
float floatedReducedAnyValue = float(reducedAnyValue);
anyValue = float(anyValue >= 1.0 || floatedReducedAnyValue >= 1.0);
`,p="bvec4");let h="";r%n>0&&(h=`
if (inIdx < 0 || inIdx >= ${r}) {
return initializationValue;
}
`),this.userCode=`
const float initializationValue = ${o};
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float getValue(int batch, int inIdx) {
${h}
return getX(batch, inIdx);
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = outIdx * ${n};
vec4 minMaxValue = vec4(${o});
float prodValue = 1.0;
float sumValue = 0.0;
float allValue = 1.0;
float anyValue = 0.0;
for (int i = 0; i < ${c}; i += 4) {
int inIdx = inOffset + i;
${p} values = ${p}(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
getValue(batch, inIdx + 3)
);
${d}
}
int inIdx = inOffset + ${c};
if (${u===1}) {
${p} values = ${p}(
getValue(batch, inIdx),
initializationValue,
initializationValue,
initializationValue
);
${d}
} else if (${u===2}) {
${p} values = ${p}(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
initializationValue,
initializationValue
);
${d}
} else if (${u===3}) {
${p} values = ${p}(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
initializationValue
);
${d}
}
setOutput(${l});
}
`}};function dee(e){let t=[];for(;t.length===0||t[t.length-1].outSize!==1;){let n=t.length?t[t.length-1].outSize:e[1],s=E.computeOptimalWindowSize(n);t.push({inSize:n,windowSize:s,outSize:Math.ceil(n/s)})}return t}function Rl(e,t,n,s){let r=dee(e.shape),a=e;for(let o=0;o<r.length;o++){let{inSize:i,windowSize:l,outSize:c}=r[o],u,d;n==="mean"?u=o===0?new OC({windowSize:l,inSize:i,batchSize:e.shape[0],outSize:c},i):new OC({windowSize:l,inSize:i,batchSize:e.shape[0],outSize:c}):u=new cee({windowSize:l,inSize:i,batchSize:e.shape[0],outSize:c},n),d=a,a=s.runWebGLProgram(u,[a],t),d.dataId!==e.dataId&&s.disposeIntermediateTensorInfo(d)}return a}var pee=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let a=0;a<n.length;a++)n[a]=e[t[a]];this.outputShape=n,this.rank=n.length;let s=vt(this.rank),r=hee(t);this.userCode=`
void main() {
${s} resRC = getOutputCoords();
setOutput(getA(${r}));
}
`}};function hee(e){let t=e.length;if(t>6)throw Error(`Transpose for rank ${t} is not yet supported`);let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u","resRC.v"],s=new Array(t);for(let r=0;r<e.length;r++)s[e[r]]=n[r];return s.join()}var fee=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0;let n=new Array(e.length);for(let c=0;c<n.length;c++)n[c]=e[t[c]];if(this.outputShape=n,this.rank=n.length,this.rank>6)throw Error(`Packed transpose for rank ${this.rank} is not yet supported.`);let s=vt(this.rank),r=yC("rc",this.rank),a=new Array(this.rank);for(let c=0;c<t.length;c++)a[t[c]]=r[c];let o=`vec2(${a.slice(-2).join()})`,i=`++${r[this.rank-1]} < ${n[this.rank-1]}`,l=`getChannel(getA(${a.join()}), ${o})`;this.userCode=`
void main() {
${s} rc = getOutputCoords();
vec4 result = vec4(0.);
result[0] = ${l};
if(${i}) {
result[1] = ${l};
}
--${r[this.rank-1]};
if(++${r[this.rank-2]} < ${n[this.rank-2]}) {
result[2] = ${l};
if(${i}) {
result[3] = ${l};
}
}
setOutput(result);
}
`}};function Km(e,t,n){let s=Y().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new fee(e.shape,t):new pee(e.shape,t);return n.runWebGLProgram(s,[e],e.dtype)}function mee(e,t,n,s){let r=t,a=e.shape.length,o=v.parseAxisParam(r,e.shape),i=o,l=E.getAxesPermutation(i,a),c=l!=null,u=e;c&&(u=Km(e,l,s),i=E.getInnerMostAxes(i.length,a)),E.assertAxesAreInnerMostDims("sum",i,a);let[d,p]=E.computeOutAndReduceShapes(u.shape,i),h=d;n&&(h=E.expandShapeToKeepDim(d,o));let f=v.sizeFromShape(p),g=v.sizeFromShape(e.shape)/f,A=ve({inputs:{x:u},attrs:{shape:[g,f]},backend:s}),x=Td(e.dtype),y=Rl(A,x,"sum",s),b=ve({inputs:{x:y},attrs:{shape:h},backend:s});return s.disposeIntermediateTensorInfo(A),s.disposeIntermediateTensorInfo(y),c&&s.disposeIntermediateTensorInfo(u),b}function Zm(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;return mee(r,a,o,n)}var gee={kernelName:fo,backendName:"webgl",kernelFunc:Zm};function jn(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{perm:a}=s,o=n,i=r.shape.length,l=new Array(i);for(let u=0;u<l.length;u++)l[u]=r.shape[a[u]];let c;if(o.shouldExecuteOnCPU([r])){let d=o.texData.get(r.dataId).values,p=vx(d,r.shape,r.dtype,a,l);c=o.makeTensorInfo(l,r.dtype);let h=o.texData.get(c.dataId);h.values=p}else c=Km(r,a,o);return c}var Aee={kernelName:xo,backendName:"webgl",kernelFunc:jn},MC=1e3;function Ym({a:e,b:t,transposeA:n,transposeB:s,backend:r,bias:a=null,preluActivationWeights:o=null,leakyreluAlpha:i=0,activation:l=null}){let c=e.shape.length,u=t.shape.length,d=n?e.shape[c-2]:e.shape[c-1],p=s?t.shape[u-1]:t.shape[u-2],h=n?e.shape[c-1]:e.shape[c-2],f=s?t.shape[u-2]:t.shape[u-1],m=e.shape.slice(0,-2),g=t.shape.slice(0,-2),A=v.sizeFromShape(m),x=v.sizeFromShape(g),b=sl.assertAndGetBroadcastShape(e.shape.slice(0,-2),t.shape.slice(0,-2)).concat([h,f]);v.assert(d===p,()=>`Error in matMul: inner shapes (${d}) and (${p}) of Tensors with shapes ${e.shape} and ${t.shape} and transposeA=${n} and transposeB=${s} must match.`);let w=n?[A,d,h]:[A,h,d],k=s?[x,f,p]:[x,p,f],S=ve({inputs:{x:e},backend:r,attrs:{shape:w}}),N=ve({inputs:{x:t},backend:r,attrs:{shape:k}}),R=[S,N],M=Math.max(A,x),D=n?S.shape[1]:S.shape[2],$=a!=null,T=o!=null,F=l==="leakyrelu",V=l!=null?Xm(l,!0):null,X=$||T||F||V!=null,z;if((h===1||f===1)&&D>MC&&X===!1){let Z=S,Q=N;n&&(Z=jn({inputs:{x:S},backend:r,attrs:{perm:[0,2,1]}}),R.push(Z)),s&&(Q=jn({inputs:{x:N},backend:r,attrs:{perm:[0,2,1]}}),R.push(Q));let te=f!==1,ae=f===1,U=Z;te&&(U=ve({inputs:{x:Z},backend:r,attrs:{shape:[M,D,1]}}),R.push(U));let oe=f===1?2:1,re=Q;ae&&(re=ve({inputs:{x:Q},backend:r,attrs:{shape:[M,1,D]}}),R.push(re));let me=wx({inputs:{a:U,b:re},backend:r});z=Zm({inputs:{x:me},backend:r,attrs:{axis:oe,keepDims:!0}}),R.push(me)}else{let Z=Ln(e.dtype,t.dtype),Q=new _C(w,k,[M,h,f],n,s,$,V,T,F),te=[S,N];if(a!=null&&te.push(a),T&&te.push(o),F){let ae=r.makeTensorInfo([],"float32",v.createScalarValue(i,"float32"));te.push(ae),R.push(ae)}z=r.runWebGLProgram(Q,te,Z)}let j=ve({inputs:{x:z},backend:r,attrs:{shape:b}});R.push(z);for(let Z of R)r.disposeIntermediateTensorInfo(Z);return j}function yee(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a,bias:o,preluActivationWeights:i}=t,{transposeA:l,transposeB:c,activation:u,leakyreluAlpha:d}=s;return Ym({a:r,b:a,transposeA:l,transposeB:c,backend:n,bias:o,preluActivationWeights:i,leakyreluAlpha:d,activation:u})}var xee={kernelName:vo,backendName:"webgl",kernelFunc:yee},zC="return abs(x);";function bee(e){let{inputs:t,backend:n}=e,{x:s}=t;if(n.shouldExecuteOnCPU([s])&&s.dtype!=="complex64"){let a=n.texData.get(s.dataId),o=gC(a.values);return n.makeTensorInfo(s.shape,s.dtype,o)}let r;return Y().getBool("WEBGL_PACK_UNARY_OPERATIONS")?r=new cc(s.shape,zC):r=new Ho(s.shape,zC),n.runWebGLProgram(r,[s],s.dtype)}var vee={kernelName:di,backendName:"webgl",kernelFunc:bee},wee=kr+`
if (abs(x) > 1.) {
return NAN;
}
return acos(x);
`,kee=rt({opSnippet:wee}),Iee={kernelName:ru,backendName:"webgl",kernelFunc:kee},See=kr+`
if (x < 1.0) return NAN;
return log(x + sqrt(x * x - 1.0));`,Cee=rt({opSnippet:See}),Tee={kernelName:au,backendName:"webgl",kernelFunc:Cee},LC="return a + b;",Nee=Tn({opSnippet:LC,packedOpSnippet:LC,supportsComplex:!0,cpuKernelImpl:MJ}),Eee={kernelName:Xr,backendName:"webgl",kernelFunc:Nee},Ree=class{constructor(e,t){this.outputShape=[],this.outputShape=e,this.variableNames=t.map((r,a)=>`T${a}`);let n=[];this.variableNames.forEach(r=>{n.push(`float v${r} = get${r}AtOutCoords();`)});let s=this.variableNames.map(r=>`v${r}`).join(" + ");this.userCode=`
void main() {
${n.join(`
`)}
float result = ${s};
setOutput(result);
}
`}},$ee=class{constructor(e,t){this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.variableNames=t.map((r,a)=>`T${a}`);let n=[];this.variableNames.forEach(r=>{n.push(`vec4 v${r} = get${r}AtOutCoords();`)});let s=this.variableNames.map(r=>`v${r}`).join(" + ");this.userCode=`
void main() {
${n.join(`
`)}
vec4 result = ${s};
setOutput(result);
}
`}};function Jm(e){let{inputs:t,backend:n}=e,s=t;if(s.length===1)return ks({inputs:{x:s[0]},backend:n});if(s.length>Y().get("WEBGL_MAX_TEXTURES_IN_SHADER")){let l=Math.floor(s.length/2),c=Jm({inputs:s.slice(0,l),backend:n}),u=Jm({inputs:s.slice(l),backend:n});return Jm({inputs:[c,u],backend:n})}let r=s.map(l=>l.dtype).reduce((l,c)=>Ln(l,c)),a=s.map(l=>l.shape),i=Y().getBool("WEBGL_PACK")?new $ee(s[0].shape,a):new Ree(s[0].shape,a);return n.runWebGLProgram(i,s,r)}var _ee={kernelName:Ea,backendName:"webgl",kernelFunc:Jm};function Dee(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s,i=r.shape.length,l=v.parseAxisParam(a,r.shape),c=l,u=E.getAxesPermutation(c,i),d=r;u!=null&&(d=jn({inputs:{x:r},backend:n,attrs:{perm:u}}),c=E.getInnerMostAxes(c.length,i)),E.assertAxesAreInnerMostDims("all",c,i);let[p,h]=E.computeOutAndReduceShapes(d.shape,c),f=v.sizeFromShape(h),m=ve({inputs:{x:d},backend:n,attrs:{shape:[-1,f]}}),g=Rl(m,m.dtype,"all",n),A;if(o){let x=E.expandShapeToKeepDim(p,l);A=ve({inputs:{x:g},backend:n,attrs:{shape:x}})}else A=ve({inputs:{x:g},backend:n,attrs:{shape:p}});return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(g),u!=null&&n.disposeIntermediateTensorInfo(d),A}var Pee={kernelName:ou,backendName:"webgl",kernelFunc:Dee};function Fee(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s,i=r.shape.length,l=v.parseAxisParam(a,r.shape),c=l,u=E.getAxesPermutation(c,i),d=r;u!=null&&(d=jn({inputs:{x:r},backend:n,attrs:{perm:u}}),c=E.getInnerMostAxes(c.length,i)),E.assertAxesAreInnerMostDims("any",c,i);let[p,h]=E.computeOutAndReduceShapes(d.shape,c),f=v.sizeFromShape(h),m=ve({inputs:{x:d},backend:n,attrs:{shape:[-1,f]}}),g=Rl(m,m.dtype,"any",n),A;if(o){let x=E.expandShapeToKeepDim(p,l);A=ve({inputs:{x:g},backend:n,attrs:{shape:x}})}else A=ve({inputs:{x:g},backend:n,attrs:{shape:p}});return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(g),u!=null&&n.disposeIntermediateTensorInfo(d),A}var Oee={kernelName:iu,backendName:"webgl",kernelFunc:Fee},Mee=class{constructor(e,t,n){this.variableNames=["A"];let{windowSize:s,batchSize:r,outSize:a}=e;n||this.variableNames.push("bestIndicesA"),this.outputShape=[r,a];let o=t==="max"?">":"<",i=n?"inOffset + i;":"round(getBestIndicesA(batch, inOffset + i));";this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = outIdx * ${s};
int bestIndex = inOffset;
float bestValue = getA(batch, bestIndex);
for (int i = 0; i < ${s}; i++) {
int inIdx = ${i};
float candidate = getA(batch, inIdx);
if (candidate ${o} bestValue) {
bestValue = candidate;
bestIndex = inIdx;
}
}
setOutput(float(bestIndex));
}
`}},zee=class{constructor(e,t,n,s){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,v.assert(e.length>2,()=>`Packed arg${n.charAt(0).toUpperCase()+n.slice(1)} supports only inputs with rank above 2.`);let r=e[e.length-1],a=Math.ceil(r/t);this.outputShape=e.slice(0,-1),a>1&&this.outputShape.push(a),s||this.variableNames.push("bestIndicesA");let o=this.outputShape,i=o.length,l=vt(i),c=Hn("coords",i),u,d;if(a===1){d=i+1;let S=vt(d);u=`
${S} sourceLocR = ${S}(${c.join()}, 0);
++${c[i-1]};
${S} sourceLocG = ${S}(${c.join()}, 0);
++${c[i-2]};
${S} sourceLocA = ${S}(${c.join()}, 0);
--${c[i-1]};
${S} sourceLocB = ${S}(${c.join()}, 0);
--${c[i-2]};`}else d=i,u=`
${l} sourceLocR = coords;
++${c[i-1]};
${l} sourceLocG = coords;
++${c[i-2]};
${l} sourceLocA = coords;
--${c[i-1]};
${l} sourceLocB = coords;
--${c[i-2]};`;let p=["x","y","z","w","u","v"].slice(0,d),h="."+p[d-1],f=p.map(S=>"int "+S),m=Hn("sourceLocR",d-1).concat("inIdx.r"),g=Hn("sourceLocG",d-1).concat("inIdx.g"),A=Hn("sourceLocB",d-1).concat("inIdx.b"),x=Hn("sourceLocA",d-1).concat("inIdx.a"),y=n==="max"?"greaterThan":"lessThan",b=s?"":`
inIdx = round(vec4(getBestIndicesAChannel(${m.join()}),
getBestIndicesAChannel(${g.join()}),
getBestIndicesAChannel(${A.join()}),
getBestIndicesAChannel(${x.join()})));`,w=`vec4(
getAChannel(${m.join()}),
hasNextCol ? getAChannel(${g.join()}) : 0.,
hasNextRow ? getAChannel(${A.join()}) : 0.,
hasNextRow && hasNextCol ? getAChannel(${x.join()}) : 0.)`,k=s?"":`
float getBestIndicesAChannel(${f.join()}) {
return getChannel(getBestIndicesA(${p.join()}),
vec2(${p.slice(-2).join()}));
}`;this.userCode=`
float getAChannel(${f.join()}) {
return getChannel(getA(${p.join()}),
vec2(${p.slice(-2).join()}));
}
${k}
void main() {
${l} coords = getOutputCoords();
bool hasNextCol = ${c[i-1]} < ${o[i-1]-1};
bool hasNextRow = ${c[i-2]} < ${o[i-2]-1};
${u}
ivec4 srcIdx = ivec4(sourceLocR${h}, sourceLocG${h},
sourceLocB${h}, sourceLocA${h}) * ${t};
ivec4 inIdx = srcIdx;
vec4 bestIndex = vec4(inIdx);
vec4 bestValue = ${w};
for (int i = 0; i < ${t}; i++) {
inIdx = srcIdx;
${b}
vec4 candidate = ${w};
bvec4 nan = isnan(candidate);
bvec4 replace = bvec4(
vec4(${y}(candidate, bestValue)) * (vec4(1.0) - vec4(nan)));
bestValue = vec4(replace.x ? candidate.x : bestValue.x,
replace.y ? candidate.y : bestValue.y,
replace.z ? candidate.z : bestValue.z,
replace.w ? candidate.w : bestValue.w);
bestIndex = mix(bestIndex, vec4(inIdx), vec4(replace));
srcIdx++;
}
setOutput(bestIndex);
}
`}};function BC(e,t,n,s=null){let r=t.shape[0],a=t.shape[1];s!=null&&(r=s.shape[0],a=s.shape[1]);let o=E.computeOptimalWindowSize(a),i={windowSize:o,inSize:a,batchSize:r,outSize:Math.ceil(a/o)},l=new Mee(i,n,s==null),c=[t];s!=null&&c.push(s);let u=e.runWebGLProgram(l,c,"int32");if(u.shape[1]===1)return u;let d=BC(e,t,n,u);return e.disposeIntermediateTensorInfo(u),d}function WC(e,t,n,s=null){let r=s!=null?s.shape:t.shape,a=r[r.length-1],o=E.computeOptimalWindowSize(a),i=new zee(r,o,n,s==null),l=s==null?[t]:[t,s],c=e.runWebGLProgram(i,l,"int32");if(c.shape.length===t.shape.length){let u=WC(e,t,n,c);return e.disposeIntermediateTensorInfo(c),u}return c}function VC(e,t,n,s){let r=[n];if(E.assertAxesAreInnerMostDims("arg"+s.charAt(0).toUpperCase()+s.slice(1),r,t.shape.length),!Y().getBool("WEBGL_PACK_REDUCE")||t.shape.length<=2){let a=[],o=e.texData.get(t.dataId),i=o!==null&&o.isPacked,l=t;i&&(l=e.unpackTensor(t),a.push(l));let[c,u]=E.computeOutAndReduceShapes(l.shape,r),d=v.sizeFromShape(u),p=ve({inputs:{x:l},backend:e,attrs:{shape:[-1,d]}});a.push(p);let h=BC(e,p,s);a.push(h);let f=ve({inputs:{x:h},backend:e,attrs:{shape:c}});return a.forEach(m=>e.disposeIntermediateTensorInfo(m)),f}return WC(e,t,s)}function Lee(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s,o=v.parseAxisParam(a,r.shape),i=E.getAxesPermutation(o,r.shape.length),l=r,c=[];i!=null&&(l=jn({inputs:{x:r},backend:n,attrs:{perm:i}}),c.push(l),o=E.getInnerMostAxes(o.length,l.shape.length)),E.assertAxesAreInnerMostDims("argMax",[o[0]],l.shape.length);let u=VC(n,l,o[0],"max");return c.forEach(d=>n.disposeIntermediateTensorInfo(d)),u}var Bee={kernelName:Ra,backendName:"webgl",kernelFunc:Lee};function Wee(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s,o=v.parseAxisParam(a,r.shape),i=E.getAxesPermutation(o,r.shape.length),l=r,c=[];i!=null&&(l=jn({inputs:{x:r},backend:n,attrs:{perm:i}}),c.push(l),o=E.getInnerMostAxes(o.length,l.shape.length)),E.assertAxesAreInnerMostDims("argMin",[o[0]],l.shape.length);let u=VC(n,l,o[0],"min");return c.forEach(d=>n.disposeIntermediateTensorInfo(d)),u}var Vee={kernelName:lu,backendName:"webgl",kernelFunc:Wee},Uee=kr+`
if (abs(x) > 1.) {
return NAN;
}
return asin(x);
`,Gee=rt({opSnippet:Uee}),Hee={kernelName:uu,backendName:"webgl",kernelFunc:Gee},jee=kr+"return log(x + sqrt(x * x + 1.0));",qee=rt({opSnippet:jee}),Xee={kernelName:cu,backendName:"webgl",kernelFunc:qee},Kee=kr+`
return atan(x);
`,Zee=rt({opSnippet:Kee}),Yee={kernelName:du,backendName:"webgl",kernelFunc:Zee},Jee=aee+`
return atan(a, b);
`,Qee=`
vec4 result = atan(a, b);
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
`+oee+`
return result;
`,ete=Tn({opSnippet:Jee,packedOpSnippet:Qee}),tte={kernelName:hu,backendName:"webgl",kernelFunc:ete},nte=kr+`
if ((x < -1.0) || (x > 1.0)) return NAN;
return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,ste=rt({opSnippet:nte}),rte={kernelName:pu,backendName:"webgl",kernelFunc:ste},bp=class{constructor(e,t,n,s=!1,r=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let a=e.filterWidth,o=e.strideHeight,i=e.strideWidth,l=e.dilationHeight,c=e.dilationWidth,u=e.effectiveFilterHeight,d=e.effectiveFilterWidth,p=e.padInfo.top,h=e.padInfo.left;this.outputShape=e.outShape;let f=t==="avg",m=`((batch * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + d`,g=`(xR * ${e.inWidth} + xC) * ${e.inChannels} + d`,A="0.0";if(f||(A="-1.0 / 1e-20"),n){let S=">=";this.userCode=`
const ivec2 strides = ivec2(${o}, ${i});
const ivec2 pads = ivec2(${p}, ${h});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d = coords[3];
ivec2 xRCCorner = coords.yz * strides - pads;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// max/min x(?, ?, d) to get y(yR, yC, d).
// ? = to be determined
float minMaxValue = 0.0;
float minMaxValueFound = 0.0;
int minMaxPosition = 0;
float avgValue = 0.0;
for (int wR = 0; wR < ${u};
wR += ${l}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${d};
wC += ${c}) {
int xC = xCCorner + wC;
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float value = getX(batch, xR, xC, d);
// If a min / max value has already been found, use it. If not,
// use the current value.
float currMinMaxValue = mix(
value, minMaxValue, minMaxValueFound);
if (value ${S} currMinMaxValue) {
minMaxValue = value;
minMaxValueFound = 1.0;
minMaxPosition = ${s?r?m:g:`wR * ${d} + wC`};
}
}
}
setOutput(float(minMaxPosition));
}
`;return}let x="max",y=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(y="avgValue / count");let b=Math.floor(a/4)*4,w=a%4,k=`
if (${f}) {
avgValue += dot(values, ones);
} else {
minMaxValue = ${x}(values, minMaxValue);
}
`;this.userCode=`
const ivec2 strides = ivec2(${o}, ${i});
const ivec2 pads = ivec2(${p}, ${h});
const float initializationValue = ${A};
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float count = 0.0;
float getValue(int batch, int xR, int xC, int d) {
if (xC < 0 || xC >= ${e.inWidth}) {
return initializationValue;
}
count += 1.0;
return getX(batch, xR, xC, d);
}
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d = coords[3];
ivec2 xRCCorner = coords.yz * strides - pads;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// max/min x(?, ?, d) to get y(yR, yC, d).
// ? = to be determined
vec4 minMaxValue = vec4(${A});
float avgValue = 0.0;
count = 0.0;
for (int wR = 0; wR < ${u};
wR += ${l}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${b}; wC += 4) {
int xC = xCCorner + wC * ${c};
vec4 values = vec4(
getValue(batch, xR, xC, d),
getValue(batch, xR, xC + ${c}, d),
getValue(batch, xR, xC + 2 * ${c}, d),
getValue(batch, xR, xC + 3 * ${c}, d)
);
${k}
}
int xC = xCCorner + ${b};
if (${w===1}) {
vec4 values = vec4(
getValue(batch, xR, xC, d),
initializationValue,
initializationValue,
initializationValue
);
${k}
} else if (${w===2}) {
vec4 values = vec4(
getValue(batch, xR, xC, d),
getValue(batch, xR, xC + ${c}, d),
initializationValue,
initializationValue
);
${k}
} else if (${w===3}) {
vec4 values = vec4(
getValue(batch, xR, xC, d),
getValue(batch, xR, xC + ${c}, d),
getValue(batch, xR, xC + 2 * ${c}, d),
initializationValue
);
${k}
}
}
setOutput(${y});
}
`}},kx=class{constructor(e,t,n,s=!1,r=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let a=e.filterWidth,o=e.strideDepth,i=e.strideHeight,l=e.strideWidth,c=e.dilationDepth,u=e.dilationHeight,d=e.dilationWidth,p=e.effectiveFilterDepth,h=e.effectiveFilterHeight,f=e.effectiveFilterWidth,m=e.padInfo.front,g=e.padInfo.top,A=e.padInfo.left;this.outputShape=e.outShape;let x=t==="avg",y="0.0";if(x||(y="-1.0 / 1e-20"),n){let R=">=";this.userCode=`
const ivec3 strides =
ivec3(${o}, ${i}, ${l});
const ivec3 pads = ivec3(${m}, ${g}, ${A});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
int xDCorner = xCorner.x;
int xRCorner = xCorner.y;
int xCCorner = xCorner.z;
// max/min x(?, ?, ?, ch) to get y(yD, yR, yC, ch).
// ? = to be determined
float minMaxValue = 0.0;
float minMaxValueFound = 0.0;
int minMaxPosition = 0;
for (int wD = 0; wD < ${p};
wD += ${c}) {
int xD = xDCorner + wD;
if (xD < 0 || xD >= ${e.inDepth}) {
continue;
}
for (int wR = 0; wR < ${h};
wR += ${u}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${f};
wC += ${d}) {
int xC = xCCorner + wC;
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float value = getX(batch, xD, xR, xC, ch);
// If a min / max value has already been found, use it. If not,
// use the current value.
float currMinMaxValue = mix(
value, minMaxValue, minMaxValueFound);
if (value ${R} currMinMaxValue) {
minMaxValue = value;
minMaxValueFound = 1.0;
minMaxPosition = ${s?r?`(((batch * ${e.inDepth} + xD) * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`((xD * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`wD * ${h} * ${f} +
wR * ${f} + wC`};
}
}
}
}
setOutput(float(minMaxPosition));
}
`;return}let b="max",w=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(w="avgValue / count");let k=Math.floor(a/4)*4,S=a%4,N=`
if (${x}) {
avgValue += dot(values, ones);
} else {
minMaxValue = ${b}(values, minMaxValue);
}
`;this.userCode=`
const ivec3 strides =
ivec3(${o}, ${i}, ${l});
const ivec3 pads = ivec3(${m}, ${g}, ${A});
const float initializationValue = ${y};
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float count = 0.0;
float getValue(int batch, int xD, int xR, int xC, int ch) {
if (xC < 0 || xC >= ${e.inWidth}) {
return initializationValue;
}
count += 1.0;
return getX(batch, xD, xR, xC, ch);
}
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
int xDCorner = xCorner.x;
int xRCorner = xCorner.y;
int xCCorner = xCorner.z;
// max/min x(?, ?, ?, d) to get y(yD, yR, yC, ch).
// ? = to be determined
vec4 minMaxValue = vec4(${y});
float avgValue = 0.0;
count = 0.0;
for (int wD = 0; wD < ${p};
wD += ${c}) {
int xD = xDCorner + wD;
if (xD < 0 || xD >= ${e.inDepth}) {
continue;
}
for (int wR = 0; wR < ${h};
wR += ${u}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${k}; wC += 4) {
int xC = xCCorner + wC * ${d};
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
getValue(batch, xD, xR, xC + ${d}, ch),
getValue(batch, xD, xR, xC + 2 * ${d}, ch),
getValue(batch, xD, xR, xC + 3 * ${d}, ch)
);
${N}
}
int xC = xCCorner + ${k};
if (${S===1}) {
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
initializationValue,
initializationValue,
initializationValue
);
${N}
} else if (${S===2}) {
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
getValue(batch, xD, xR, xC + ${d}, ch),
initializationValue,
initializationValue
);
${N}
} else if (${S===3}) {
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
getValue(batch, xD, xR, xC + ${d}, ch),
getValue(batch, xD, xR, xC + 2 * ${d}, ch),
initializationValue
);
${N}
}
}
setOutput(${w});
}
}
`}};function ate(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t;ac(r,"avgPool");let{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=s,c=1;v.assert(E.eitherStridesOrDilationsAreOne(o,c),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${o} and dilations '${c}'`);let u=E.computePool2DInfo(r.shape,a,o,c,i,l);if(u.filterWidth===1&&u.filterHeight===1&&v.arraysEqual(u.inShape,u.outShape))return ks({inputs:{x:r},backend:n});let d=new bp(u,"avg",!1);return n.runWebGLProgram(d,[r],"float32")}var ote={kernelName:$a,backendName:"webgl",kernelFunc:ate};function ite(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l,dataFormat:c}=s,u=[1,1,1],d=E.computePool3DInfo(r.shape,a,o,u,i,l,c),p=new kx(d,"avg",!1);return n.runWebGLProgram(p,[r],"float32")}var lte={kernelName:rd,backendName:"webgl",kernelFunc:ite},ute=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,s=e.strideHeight,r=e.strideWidth,a=e.dilationHeight,o=e.dilationWidth,i=e.effectiveFilterHeight,l=e.effectiveFilterWidth,c=i-1-e.padInfo.top,u=l-1-e.padInfo.left,d=1/(t*n);this.userCode=`
const ivec2 pads = ivec2(${c}, ${u});
const float avgMultiplier = float(${d});
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 dyRCCorner = coords.yz - pads;
int dyRCorner = dyRCCorner.x;
int dyCCorner = dyRCCorner.y;
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${i};
wR += ${a}) {
float dyR = float(dyRCorner + wR) / ${s}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${l};
wC+= ${o}) {
float dyC = float(dyCCorner + wC) / ${r}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(b, idyR, idyC, d);
dotProd += dyValue * avgMultiplier;
}
}
setOutput(dotProd);
}
`}},cte=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,s=e.filterWidth,r=e.strideDepth,a=e.strideHeight,o=e.strideWidth,i=e.dilationDepth,l=e.dilationHeight,c=e.dilationWidth,u=e.effectiveFilterDepth,d=e.effectiveFilterHeight,p=e.effectiveFilterWidth,h=u-1-e.padInfo.front,f=d-1-e.padInfo.top,m=p-1-e.padInfo.left,g=1/(t*n*s);this.userCode=`
const ivec3 pads = ivec3(${h}, ${f}, ${m});
const float avgMultiplier = float(${g});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
int dyDCorner = dyCorner.x;
int dyRCorner = dyCorner.y;
int dyCCorner = dyCorner.z;
// Convolve dy(?, ?, ?, d) with pos mask(:, :, :, ch) to get
// dx(xD, xR, xC, ch).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wD = 0; wD < ${u};
wD += ${i}) {
float dyD = float(dyDCorner + wD) / ${r}.0;
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
continue;
}
int idyD = int(dyD);
for (int wR = 0; wR < ${d};
wR += ${l}) {
float dyR = float(dyRCorner + wR) / ${a}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${p};
wC += ${c}) {
float dyC = float(dyCCorner + wC) / ${o}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
dotProd += dyValue * avgMultiplier;
}
}
}
setOutput(dotProd);
}
`}};function dte(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,o=a,{filterSize:i,strides:l,pad:c,dimRoundingMode:u}=s,d=[1,1,1],p=E.computePool3DInfo(o.shape,i,l,d,c,u),h=new cte(p);return n.runWebGLProgram(h,[r],o.dtype)}var pte={kernelName:Sh,backendName:"webgl",kernelFunc:dte};function hte(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,o=a;ac([r,a],"avgPoolGrad");let{filterSize:i,strides:l,pad:c}=s,u=E.computePool2DInfo(o.shape,i,l,1,c),d=new ute(u);return n.runWebGLProgram(d,[r],o.dtype)}var fte={kernelName:Ih,backendName:"webgl",kernelFunc:hte};function mte(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a}=t,{transposeA:o,transposeB:i}=s;return Ym({a:r,b:a,transposeA:o,transposeB:i,backend:n})}var gte={kernelName:_a,backendName:"webgl",kernelFunc:mte},Ate=class{constructor(e,t,n,s,r,a){this.outputShape=[],this.variableNames=["x","mean","variance"],E.assertAndGetBroadcastShape(e,t),E.assertAndGetBroadcastShape(e,n);let o="0.0";s!=null&&(E.assertAndGetBroadcastShape(e,s),this.variableNames.push("offset"),o="getOffsetAtOutCoords()");let i="1.0";r!=null&&(E.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale"),i="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
void main() {
float x = getXAtOutCoords();
float mean = getMeanAtOutCoords();
float variance = getVarianceAtOutCoords();
float offset = ${o};
float scale = ${i};
float inv = scale * inversesqrt(variance + float(${a}));
setOutput(dot(vec3(x, -mean, offset), vec3(inv, inv, 1)));
}
`}},yte=class{constructor(e,t,n,s,r,a){this.packedInputs=!0,this.packedOutput=!0,this.variableNames=["x","mean","variance"],E.assertAndGetBroadcastShape(e,t),E.assertAndGetBroadcastShape(e,n);let o="vec4(0.0)";s!=null&&(E.assertAndGetBroadcastShape(e,s),this.variableNames.push("offset"),o="getOffsetAtOutCoords()");let i="vec4(1.0)";r!=null&&(E.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale"),i="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
void main() {
vec4 offset = ${o};
vec4 scale = ${i};
vec4 x = getXAtOutCoords();
vec4 mean = getMeanAtOutCoords();
vec4 variance = getVarianceAtOutCoords();
vec4 inv = scale * inversesqrt(variance + vec4(${a}));
setOutput((x - mean) * inv + offset);
}
`}},xte=({inputs:e,backend:t,attrs:n})=>{let{x:s,mean:r,variance:a,offset:o,scale:i}=e;v.assert(r.shape.length===a.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),v.assert(o==null||r.shape.length===o.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),v.assert(i==null||r.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let{varianceEpsilon:l}=n;l==null&&(l=.001);let c=[s,r,a],u=null;o!=null&&(u=o.shape,c.push(o));let d=null;i!=null&&(d=i.shape,c.push(i));let p=Y().getBool("WEBGL_PACK_NORMALIZATION")?new yte(s.shape,r.shape,a.shape,u,d,l):new Ate(s.shape,r.shape,a.shape,u,d,l);return t.runWebGLProgram(p,c,c[0].dtype)},bte={kernelName:Ha,backendName:"webgl",kernelFunc:xte},vte=class{constructor(e){this.variableNames=["source"],this.outputShape=e,this.rank=e.length;let t=vt(this.rank);this.customUniforms=[{name:"start",arrayIndex:this.rank,type:"int"}];let n=wte(this.rank),s,r=e.map((a,o)=>`sourceLoc.${Ix[o]} = start[${o}] + coords.${Ix[o]};`);s=`
${t} sourceLoc;
${t} coords = getOutputCoords();
${r.join(`
`)}
`,this.userCode=`
void main() {
${s}
setOutput(getSource(${n}));
}
`}},Ix=["x","y","z","w","u","v"];function wte(e){if(e===1)return"sourceLoc";if(e<=6)return Ix.slice(0,e).map(t=>"sourceLoc."+t).join(",");throw Error(`Slicing for rank ${e} is not yet supported`)}var kte=class{constructor(e){this.variableNames=["source"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.rank=e.length,this.customUniforms=[{name:"start",arrayIndex:this.rank,type:"int"}];let t=vt(this.rank),n=Hn("coords",this.rank),s=Hn("sourceLoc",this.rank),r=this.rank===1?"sourceLoc":`vec2(${s.slice(-2).join()})`,a=`getChannel(getSource(${s.join()}), ${r})`,o=`
result.x = ${a};
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
++${s[this.rank-1]};
result.y = ${a};
--${s[this.rank-1]};
}
`,i=this.rank===1?"":`
--${n[this.rank-1]};
if (++${n[this.rank-2]} < ${e[this.rank-2]}) {
++${s[this.rank-2]};
result.z = ${a};
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
++${s[this.rank-1]};
result.w = ${a};
}
}
`,l=this.rank<=4?`sourceLoc = coords +
${t}(${e.map((c,u)=>`start[${u}]`).join()});`:e.map((c,u)=>`${s[u]} = ${n[u]} + start[${u}];`).join(`
`);this.userCode=`
void main() {
${t} coords = getOutputCoords();
${t} sourceLoc;
${l}
vec4 result = vec4(0.);
${o}
${i}
setOutput(result);
}
`}};function Ite(e,t,n,s){let r=s.texData.get(e.dataId),a=s.makeTensorInfo(n,e.dtype),o=s.texData.get(a.dataId);Object.assign(o,r),o.refCount=1,o.shape=n,o.dtype=e.dtype;let i=Ft.computeFlatOffset(t,v.computeStrides(e.shape));r.slice&&(i+=r.slice.flatOffset),o.slice={flatOffset:i,origDataId:r.slice&&r.slice.origDataId||e.dataId};let l=s.dataRefCount.get(o.slice.origDataId)||1;return s.dataRefCount.set(o.slice.origDataId,l+1),a}function pc(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,size:o}=s,[i,l]=Ft.parseSliceParams(r,a,o);if(Ft.assertParamsValid(r,i,l),v.sizeFromShape(l)===0)return n.makeTensorInfo(l,r.dtype,[]);if(n.shouldExecuteOnCPU([r])||r.dtype==="string"){let d=n.texData.get(r.dataId),p=uQ(d.values,i,l,r.shape,r.dtype);return n.makeTensorInfo(l,r.dtype,p)}let{isPacked:c}=n.texData.get(r.dataId),u=Ft.isSliceContinous(r.shape,i,l);if(c||!u){let d=Y().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new kte(l):new vte(l),p=[i];return n.runWebGLProgram(d,[r],r.dtype,p)}return n.uploadToGPU(r.dataId),Ite(r,i,l,n)}var Ste={kernelName:Wi,backendName:"webgl",kernelFunc:pc},Cte=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,crops:o}=s;v.assert(r.shape.length<=4,()=>"batchToSpaceND for rank > 4 with a WebGL backend not implemented yet");let i=a.reduce((x,y)=>x*y),l=E.getReshaped(r.shape,a,i),c=E.getPermuted(l.length,a.length),u=E.getReshapedPermuted(r.shape,a,i),d=E.getSliceBeginCoords(o,a.length),p=E.getSliceSize(u,o,a.length),h=[],f=ve({inputs:{x:r},backend:n,attrs:{shape:l}}),m=jn({inputs:{x:f},backend:n,attrs:{perm:c}}),g=ve({inputs:{x:m},backend:n,attrs:{shape:u}}),A=pc({inputs:{x:g},backend:n,attrs:{begin:d,size:p}});return h.push(f),h.push(m),h.push(g),h.forEach(x=>n.disposeIntermediateTensorInfo(x)),A},Tte={kernelName:pi,backendName:"webgl",kernelFunc:Cte};function Nte(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,weights:a}=t,{size:o}=s,i=n.readSync(r.dataId),l=n.readSync(a.dataId),c=mC(i,l,a.dtype,a.shape,o);return n.makeTensorInfo([o],a.dtype,c)}var Ete={kernelName:Ch,backendName:"webgl",kernelFunc:Nte};function Rte(e){let{inputs:t,backend:n}=e,{s0:s,s1:r}=t,a=n.readSync(s.dataId),o=n.readSync(r.dataId),i=E.assertAndGetBroadcastShape(Array.from(a),Array.from(o));return n.makeTensorInfo([i.length],"int32",Int32Array.from(i))}var $te={kernelName:Th,backendName:"webgl",kernelFunc:Rte},_te="return float(a != b);",UC=Tn({opSnippet:_te,cpuKernelImpl:rQ,dtype:"bool"}),Dte={kernelName:Ei,backendName:"webgl",kernelFunc:UC};function vp(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.texData.get(s.dataId);return ks({inputs:{x:r.complexTensorInfos.real},backend:n})}var Pte={kernelName:fd,backendName:"webgl",kernelFunc:vp},Fte="return float(int(x));";function Ote(e,t){let n=new Ho(e.shape,Fte),s=t.runWebGLProgram(n,[e],"int32");return{dataId:s.dataId,shape:s.shape,dtype:s.dtype}}function Sx(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dtype:a}=s;if(a==="complex64"){if(r.dtype==="complex64")return ks({inputs:{x:r},backend:n});let o=Ht(r.shape),i=Sx({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),l=jo({inputs:{real:i,imag:o},backend:n});return o.dispose(),n.disposeIntermediateTensorInfo(i),l}if(r.dtype==="complex64"){let o=vp({inputs:{input:r},backend:n}),i=Sx({inputs:{x:o},backend:n,attrs:{dtype:a}});return n.disposeIntermediateTensorInfo(o),i}if(!v.hasEncodingLoss(r.dtype,a)){let o=ks({inputs:{x:r},backend:n});return{dataId:o.dataId,shape:o.shape,dtype:a}}if(a==="int32")return Ote(r,n);if(a==="bool"){let o=n.makeTensorInfo([],"bool",v.getTypedArrayFromDType("bool",1)),l=UC({inputs:{a:r,b:o},backend:n});return n.disposeIntermediateTensorInfo(o),l}throw new Error(`Error in Cast: failed to cast ${r.dtype} to ${a}`)}var Mte={kernelName:Da,backendName:"webgl",kernelFunc:Sx},GC="return ceil(x);",zte=rt({opSnippet:GC,packedOpSnippet:GC,cpuKernelImpl:LJ}),Lte={kernelName:Pa,backendName:"webgl",kernelFunc:zte},Bte=class{constructor(e){this.variableNames=["A"],this.customUniforms=[{name:"minVal",type:"float"},{name:"maxVal",type:"float"}],this.outputShape=e,this.userCode=`
void main() {
float value = getAAtOutCoords();
if (isnan(value)) {
setOutput(value);
return;
}
setOutput(clamp(value, minVal, maxVal));
}
`}},Wte=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"minVal",type:"float"},{name:"maxVal",type:"float"}],this.outputShape=e,this.userCode=`
void main() {
vec4 value = getAAtOutCoords();
if (any(isnan(value))) {
setOutput(value);
return;
}
setOutput(clamp(value, vec4(minVal), vec4(maxVal)));
}
`}};function Vte(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{clipValueMin:a,clipValueMax:o}=s,i;Y().getBool("WEBGL_PACK_CLIP")?i=new Wte(r.shape):i=new Bte(r.shape);let l=[[a],[o]];return n.runWebGLProgram(i,[r],r.dtype,l)}var Ute={kernelName:Kr,backendName:"webgl",kernelFunc:Vte},Gte=class{constructor(e){this.variableNames=["real","imag"],this.outputShape=e,this.userCode=`
void main() {
float re = abs(getRealAtOutCoords());
float im = abs(getImagAtOutCoords());
float mx = max(re, im);
// sadly the length function in glsl is not underflow-safe
// (at least not on Intel GPUs). So the safe solution is
// to ensure underflow-safety in all cases.
setOutput(
mx == 0.0 ? 0.0 : mx * length(vec2(1, min(re, im)/mx))
);
}
`}};function HC(e,t){return{dataId:t.dataId,dtype:t.dtype,shape:e.shape}}function Hte(e){let{inputs:t,backend:n}=e,{x:s}=t,r=n.texData.get(s.dataId),a=new Gte(s.shape),o=[HC(s,r.complexTensorInfos.real),HC(s,r.complexTensorInfos.imag)];return n.runWebGLProgram(a,o,o[0].dtype)}var jte={kernelName:od,backendName:"webgl",kernelFunc:Hte},qte=class{constructor(e){this.outputShape=[],this.outputShape=E.computeOutShape(e,1),this.variableNames=e.map((a,o)=>`T${o}`);let t=new Array(e.length-1);t[0]=e[0][1];for(let a=1;a<t.length;a++)t[a]=t[a-1]+e[a][1];let n=[`if (yC < ${t[0]}) setOutput(getT0(yR, yC));`];for(let a=1;a<t.length;a++){let o=t[a-1];n.push(`else if (yC < ${t[a]}) setOutput(getT${a}(yR, yC-${o}));`)}let s=t.length,r=t[t.length-1];n.push(`else setOutput(getT${s}(yR, yC-${r}));`),this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int yR = coords.x;
int yC = coords.y;
${n.join(`
`)}
}
`}},Xte=class{constructor(e,t){this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[],this.outputShape=E.computeOutShape(e,t);let n=this.outputShape,s=n.length,r=vt(s),a=Hn("coords",s),o=["x","y","z","w","u","v"].slice(0,s);this.variableNames=e.map((f,m)=>`T${m}`);let i=new Array(e.length-1);i[0]=e[0][t];for(let f=1;f<i.length;f++)i[f]=i[f-1]+e[f][t];let l=o[t],c=o.slice(-2),u=o.join(),d=`if (${l} < ${i[0]}) {
return getChannel(
getT0(${u}), vec2(${c.join()}));
}`;for(let f=1;f<i.length;f++){let m=i[f-1];d+=`
if (${l} < ${i[f]} && ${l} >= ${i[f-1]}) {
return getChannel(
getT${f}(${Qm(o,l,m)}),
vec2(${Qm(c,l,m)}));
}`}let p=i.length,h=i[i.length-1];d+=`
return getChannel(
getT${p}(${Qm(o,l,h)}),
vec2(${Qm(c,l,h)}));`,this.userCode=`
float getValue(${o.map(f=>"int "+f)}) {
${d}
}
void main() {
${r} coords = getOutputCoords();
vec4 result = vec4(getValue(${a}), 0., 0., 0.);
${a[s-1]} = ${a[s-1]} + 1;
if (${a[s-1]} < ${n[s-1]}) {
result.g = getValue(${a});
}
${a[s-2]} = ${a[s-2]} + 1;
if (${a[s-2]} < ${n[s-2]}) {
result.a = getValue(${a});
}
${a[s-1]} = ${a[s-1]} - 1;
if (${a[s-2]} < ${n[s-2]} &&
${a[s-1]} < ${n[s-1]}) {
result.b = getValue(${a});
}
setOutput(result);
}
`}};function Qm(e,t,n){let s=e.indexOf(t);return e.map((a,o)=>o===s?`${a} - ${n}`:a).join()}function e0(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.texData.get(s.dataId);return ks({inputs:{x:r.complexTensorInfos.imag},backend:n})}var Kte={kernelName:cd,backendName:"webgl",kernelFunc:e0};function hc(e,t,n){let s=e[0].dtype;if(s==="complex64"){let u=e.map(m=>vp({inputs:{input:m},backend:n})),d=e.map(m=>e0({inputs:{input:m},backend:n})),p=hc(u,t,n),h=hc(d,t,n),f=jo({inputs:{real:p,imag:h},backend:n});return u.forEach(m=>n.disposeIntermediateTensorInfo(m)),d.forEach(m=>n.disposeIntermediateTensorInfo(m)),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(h),f}let r=n.shouldExecuteOnCPU(e);if(s==="string"&&(r=!0),r){let u=e.map(A=>{let x=v.sizeFromShape(A.shape.slice(t));return ve({inputs:{x:A},backend:n,attrs:{shape:[-1,x]}})}),d=u.map(A=>({vals:n.readSync(A.dataId),shape:A.shape})),p=E.computeOutShape(u.map(A=>A.shape),1),h=u[0].shape[0]===1,f=BJ(d,p,s,h),m=E.computeOutShape(e.map(A=>A.shape),t),g=n.makeTensorInfo(m,s,f);return u.forEach(A=>n.disposeIntermediateTensorInfo(A)),g}if(e.length>Y().getNumber("WEBGL_MAX_TEXTURES_IN_SHADER")){let u=Math.floor(e.length/2),d=hc(e.slice(0,u),t,n),p=hc(e.slice(u),t,n),h=hc([d,p],t,n);return n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),h}if(Y().getBool("WEBGL_PACK_ARRAY_OPERATIONS")&&e[0].shape.length>1){let u=new Xte(e.map(d=>d.shape),t);return n.runWebGLProgram(u,e,s)}let{tensors2D:a,outShape:o}=Zte(e,t,n),i=new qte(a.map(u=>u.shape)),l=n.runWebGLProgram(i,a,s);a.forEach(u=>n.disposeIntermediateTensorInfo(u));let c=ve({inputs:{x:l},attrs:{shape:o},backend:n});return n.disposeIntermediateTensorInfo(l),c}function Zte(e,t,n){let s=E.computeOutShape(e.map(a=>a.shape),t);return{tensors2D:e.map(a=>ve({inputs:{x:a},attrs:{shape:[-1,v.sizeFromShape(a.shape.slice(t))]},backend:n})),outShape:s}}function jC(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s,a=v.parseAxisParam(r,t[0].shape)[0],o=E.computeOutShape(t.map(c=>c.shape),a);if(v.sizeFromShape(o)===0)return n.makeTensorInfo(o,t[0].dtype,[]);let i=t.filter(c=>v.sizeFromShape(c.shape)>0);if(i.length===1)return ks({inputs:{x:i[0]},backend:n});let l=i.map(c=>c.shape);return E.assertParamsConsistent(l,a),hc(i,a,n)}var Yte={kernelName:hi,backendName:"webgl",kernelFunc:jC},qC=class{constructor(e,t=!1,n=null,s=!1,r=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let a=e.padInfo.top,o=e.padInfo.left,i=e.strideHeight,l=e.strideWidth,c=e.dilationHeight,u=e.dilationWidth,d=e.filterHeight,p=e.filterWidth,h=Math.floor(e.inChannels/4)*4,f=e.inChannels%4,m=e.dataFormat==="channelsLast",g=m?1:2,A=m?2:3,x=m?3:1,y="",b="";n&&(s?y=`float activation(float a) {
float b = getPreluActivationWeightsAtOutCoords();
${n}
}`:r?y=`float activation(float a) {
float b = getLeakyreluAlphaAtOutCoords();
${n}
}`:y=`
float activation(float x) {
${n}
}
`,b="result = activation(result);");let w=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
${y}
const ivec2 strides = ivec2(${i}, ${l});
const ivec2 pads = ivec2(${a}, ${o});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d2 = coords[${x}];
ivec2 xRCCorner =
ivec2(coords[${g}], coords[${A}]) * strides - pads;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// Convolve x(?, ?, d1) with w(:, :, d1, d2) to get y(yR, yC, d2).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${d}; wR++) {
int xR = xRCorner + wR * ${c};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${p}; wC++) {
int xC = xCCorner + wC * ${u};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
for (int d1 = 0; d1 < ${h}; d1 += 4) {
vec4 wValues = vec4(
getW(wR, wC, d1, d2),
getW(wR, wC, d1 + 1, d2),
getW(wR, wC, d1 + 2, d2),
getW(wR, wC, d1 + 3, d2)
);
if (${m}) {
vec4 xValues = vec4(
getX(batch, xR, xC, d1),
getX(batch, xR, xC, d1 + 1),
getX(batch, xR, xC, d1 + 2),
getX(batch, xR, xC, d1 + 3)
);
dotProd += dot(xValues, wValues);
} else {
vec4 xValues = vec4(
getX(batch, d1, xR, xC),
getX(batch, d1 + 1, xR, xC),
getX(batch, d1 + 2, xR, xC),
getX(batch, d1 + 3, xR, xC)
);
dotProd += dot(xValues, wValues);
}
}
if (${f===1}) {
if (${m}) {
dotProd +=
getX(batch, xR, xC, ${h}) *
getW(wR, wC, ${h}, d2);
} else {
dotProd +=
getX(batch, ${h}, xR, xC) *
getW(wR, wC, ${h}, d2);
}
} else if (${f===2}) {
vec2 wValues = vec2(
getW(wR, wC, ${h}, d2),
getW(wR, wC, ${h} + 1, d2)
);
if (${m}) {
vec2 xValues = vec2(
getX(batch, xR, xC, ${h}),
getX(batch, xR, xC, ${h} + 1)
);
dotProd += dot(xValues, wValues);
} else {
vec2 xValues = vec2(
getX(batch, ${h}, xR, xC),
getX(batch, ${h} + 1, xR, xC)
);
dotProd += dot(xValues, wValues);
}
} else if (${f===3}) {
vec3 wValues = vec3(
getW(wR, wC, ${h}, d2),
getW(wR, wC, ${h} + 1, d2),
getW(wR, wC, ${h} + 2, d2)
);
if (${m}) {
vec3 xValues = vec3(
getX(batch, xR, xC, ${h}),
getX(batch, xR, xC, ${h} + 1),
getX(batch, xR, xC, ${h} + 2)
);
dotProd += dot(xValues, wValues);
} else {
vec3 xValues = vec3(
getX(batch, ${h}, xR, xC),
getX(batch, ${h} + 1, xR, xC),
getX(batch, ${h} + 2, xR, xC)
);
dotProd += dot(xValues, wValues);
}
}
}
}
float result = dotProd;
${w}
${b}
setOutput(result);
}
`}},Jte=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let t=e.padInfo.front,n=e.padInfo.top,s=e.padInfo.left,r=e.strideDepth,a=e.strideHeight,o=e.strideWidth,i=e.dilationDepth,l=e.dilationHeight,c=e.dilationWidth,u=e.filterDepth,d=e.filterHeight,p=e.filterWidth,h=Math.floor(e.inChannels/4)*4,f=e.inChannels%4;this.userCode=`
const ivec3 strides = ivec3(${r}, ${a}, ${o});
const ivec3 pads = ivec3(${t}, ${n}, ${s});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int d2 = coords.u;
ivec3 xFRCCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
int xFCorner = xFRCCorner.x;
int xRCorner = xFRCCorner.y;
int xCCorner = xFRCCorner.z;
// Convolve x(?, ?, ?, d1) with w(:, :, :, d1, d2) to get
// y(yF, yR, yC, d2). ? = to be determined. : = across all
// values in that axis.
float dotProd = 0.0;
for (int wF = 0; wF < ${u}; wF++) {
int xF = xFCorner + wF * ${i};
if (xF < 0 || xF >= ${e.inDepth}) {
continue;
}
for (int wR = 0; wR < ${d}; wR++) {
int xR = xRCorner + wR * ${l};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${p}; wC++) {
int xC = xCCorner + wC * ${c};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
for (int d1 = 0; d1 < ${h}; d1 += 4) {
vec4 xValues = vec4(
getX(batch, xF, xR, xC, d1),
getX(batch, xF, xR, xC, d1 + 1),
getX(batch, xF, xR, xC, d1 + 2),
getX(batch, xF, xR, xC, d1 + 3)
);
vec4 wValues = vec4(
getW(wF, wR, wC, d1, d2),
getW(wF, wR, wC, d1 + 1, d2),
getW(wF, wR, wC, d1 + 2, d2),
getW(wF, wR, wC, d1 + 3, d2)
);
dotProd += dot(xValues, wValues);
}
if (${f===1}) {
dotProd +=
getX(batch, xF, xR, xC, ${h}) *
getW(wF, wR, wC, ${h}, d2);
} else if (${f===2}) {
vec2 xValues = vec2(
getX(batch, xF, xR, xC, ${h}),
getX(batch, xF, xR, xC, ${h} + 1)
);
vec2 wValues = vec2(
getW(wF, wR, wC, ${h}, d2),
getW(wF, wR, wC, ${h} + 1, d2)
);
dotProd += dot(xValues, wValues);
} else if (${f===3}) {
vec3 xValues = vec3(
getX(batch, xF, xR, xC, ${h}),
getX(batch, xF, xR, xC, ${h} + 1),
getX(batch, xF, xR, xC, ${h} + 2)
);
vec3 wValues = vec3(
getW(wF, wR, wC, ${h}, d2),
getW(wF, wR, wC, ${h} + 1, d2),
getW(wF, wR, wC, ${h} + 2, d2)
);
dotProd += dot(xValues, wValues);
}
}
}
}
setOutput(dotProd);
}
`}},Qte=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"inputShape",type:"ivec3"},{name:"pad",type:"ivec2"},{name:"stride",type:"ivec2"},{name:"dilation",type:"ivec2"},{name:"inChannels",type:"int"},{name:"itemsPerBlockRow",type:"int"},{name:"outWidth",type:"int"}],this.outputShape=e,this.enableShapeUniforms=Vs(this.outputShape.length);let{dataFormat:n}=t,s=Gn(),r=n==="channelsLast",a=r?0:1,o=r?1:2,i=this.enableShapeUniforms?"if(blockIndex < outShape[1] && pos < outShape[0]) {":`if(blockIndex < ${e[1]} && pos < ${e[0]}) {`,l="";for(let c=0;c<=1;c++)for(let u=0;u<=1;u++)l+=`
blockIndex = rc.y + ${u};
pos = rc.x + ${c};
${i}
offsetY = int(blockIndex / outWidth) * stride[0] - pad[0];
d0 = offsetY + dilation[0] * (pos / itemsPerBlockRow);
if(d0 < inputShape[${a}] && d0 >= 0) {
// Use custom imod instead mod. On Intel GPU, mod may generate
// unexpected value.
// https://github.com/tensorflow/tfjs/issues/5447
offsetX = imod(blockIndex, outWidth) * stride[1] - pad[1];
d1 = offsetX + dilation[1] * (imod(pos, itemsPerBlockRow) /
inChannels);
if(d1 < inputShape[${o}] && d1 >= 0) {
ch = imod(pos, inChannels);
if (${r}) {
innerDims = vec2(d1, ch);
result[${c*2+u}] = getChannel(
getA(d0, int(innerDims.x),
int(innerDims.y)), innerDims);
} else {
innerDims = vec2(d0, d1);
result[${c*2+u}] = getChannel(
getA(ch, int(innerDims.x),
int(innerDims.y)), innerDims);
}
}
}
}
`;this.userCode=`
void main() {
ivec2 rc = getOutputCoords();
vec4 result = vec4(0);
int blockIndex, pos, offsetY, d0, offsetX, d1, ch;
vec2 innerDims;
${l}
${s.output} = result;
}
`}};function XC({x:e,filter:t,convInfo:n,backend:s,bias:r=null,preluActivationWeights:a=null,leakyreluAlpha:o=0,activation:i=null}){let l=e.shape,c=s.texData.get(e.dataId),u=n.inChannels,d=l[0]*l[1]*l[2],p=n.outChannels,h=n.dataFormat==="channelsLast",f=!1,m=!1,g,A=[];if(!((d===1||p===1)&&u>MC)&&c.isPacked&&h&&c.texture!=null&&l[2]%2!=0&&v.arraysEqual(c.shape.slice(-3),l.slice(-3))){let b=l[0]*l[1]*(l[2]+1),w={dataId:e.dataId,shape:[1,b,n.inChannels],dtype:e.dtype},k=c.shape;c.shape=c.shape.slice(),c.shape[c.shape.length-2]++,v.assert(gp(c.shape,w.shape),()=>`packed reshape ${c.shape} to ${w.shape} isn't free`);let S=ve({inputs:{x:t},backend:s,attrs:{shape:[1,n.inChannels,n.outChannels]}});A.push(S);let N=Ym({a:w,b:S,backend:s,transposeA:f,transposeB:m,bias:r,activation:i,preluActivationWeights:a,leakyreluAlpha:o}),R=s.texData.get(N.dataId);v.assert(R.isPacked,()=>"batchMatMul result is expected to be packed"),c.shape=k,R.shape=n.outShape,g=ks({inputs:{x:N},backend:s}),g.shape=n.outShape,A.push(N)}else{let b=h?l[0]*l[1]*l[2]:l[0]*l[2]*l[3],w=ve({inputs:{x:e},backend:s,attrs:{shape:[1,b,n.inChannels]}}),k=ve({inputs:{x:t},backend:s,attrs:{shape:[1,n.inChannels,n.outChannels]}}),S=Ym({a:w,b:k,transposeA:f,transposeB:m,backend:s,bias:r,activation:i,preluActivationWeights:a,leakyreluAlpha:o});g=ve({inputs:{x:S},backend:s,attrs:{shape:n.outShape}}),A.push(w),A.push(k),A.push(S)}for(let b of A)s.disposeIntermediateTensorInfo(b);return g}function KC({x:e,filter:t,convInfo:n,backend:s,bias:r=null,preluActivationWeights:a=null,leakyreluAlpha:o=0,activation:i=null}){let{filterWidth:l,filterHeight:c,inChannels:u,outWidth:d,outHeight:p,dataFormat:h}=n,f=h==="channelsLast",m=l*c*u,g=p*d,A=[m,g],x=!0,y=!1,b=[],w=ve({inputs:{x:e},backend:s,attrs:{shape:e.shape.slice(1)}}),k=ve({inputs:{x:t},backend:s,attrs:{shape:[1,m,v.sizeFromShape(t.shape)/m]}});b.push(w),b.push(k);let S=new Qte(A,n),N=[w.shape,[n.padInfo.top,n.padInfo.left],[n.strideHeight,n.strideWidth],[n.dilationHeight,n.dilationWidth],[n.inChannels],[n.filterWidth*n.inChannels],[n.outWidth]],R=s.runWebGLProgram(S,[w],"float32",N),M=ve({inputs:{x:R},backend:s,attrs:{shape:[1,A[0],A[1]]}});b.push(R),b.push(M);let D=r!=null,$=a!=null,T=i==="leakyrelu",F=i?Xm(i,!0):null,V=new _C(M.shape,k.shape,[1,g,n.outChannels],x,y,D,F,$,T),X=[M,k];if(r&&X.push(r),$&&X.push(a),T){let Q=s.makeTensorInfo([],"float32",v.createScalarValue(o,"float32"));X.push(Q),b.push(Q)}let z=s.runWebGLProgram(V,X,"float32"),j=f?[1,p,d,n.outChannels]:[1,n.outChannels,p,d],Z=ve({inputs:{x:z},backend:s,attrs:{shape:j}});b.push(z);for(let Q of b)s.disposeIntermediateTensorInfo(Q);return Z}function ene(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dataFormat:l,dilations:c,dimRoundingMode:u}=s,d=E.convertConv2DDataFormat(l),p=E.computeConv2DInfo(r.shape,a.shape,o,c,i,u,!1,d),h;if(p.filterHeight===1&&p.filterWidth===1&&p.dilationHeight===1&&p.dilationWidth===1&&p.strideHeight===1&&p.strideWidth===1&&(p.padInfo.type==="SAME"||p.padInfo.type==="VALID"))h=XC({x:r,filter:a,convInfo:p,backend:n});else if(Y().getBool("WEBGL_CONV_IM2COL")&&r.shape[0]===1)h=KC({x:r,filter:a,convInfo:p,backend:n});else{let m=new qC(p);h=n.runWebGLProgram(m,[r,a],"float32")}let f=ve({inputs:{x:h},backend:n,attrs:{shape:p.outShape}});return n.disposeIntermediateTensorInfo(h),f}var tne={kernelName:Fa,backendName:"webgl",kernelFunc:ene},nne=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,s=e.padInfo.top,r=e.padInfo.left,a=e.dataFormat==="channelsLast";this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int wR = coords.x;
int wC = coords.y;
int d1 = coords.z;
int d2 = coords.w;
// Convolve x(?, ?, d1) with dy(:, :, d2) to get dw(wR, wC, d1, d2).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int b = 0; b < ${e.batchSize}; b++) {
for (int yR = 0; yR < ${e.outHeight}; yR++) {
int xR = wR + yR * ${t} - ${s};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int yC = 0; yC < ${e.outWidth}; yC++) {
int xC = wC + yC * ${n} - ${r};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
if (${a}) {
float dyValue = getDy(b, yR, yC, d2);
float xValue = getX(b, xR, xC, d1);
dotProd += (xValue * dyValue);
} else {
float dyValue = getDy(b, d2, yR, yC);
float xValue = getX(b, d1, xR, xC);
dotProd += (xValue * dyValue);
}
}
}
}
setOutput(dotProd);
}
`}},sne=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,s=e.strideHeight,r=e.strideWidth,a=e.dataFormat==="channelsLast",o=t-1-e.padInfo.top,i=n-1-e.padInfo.left,l=a?1:2,c=a?2:3,u=a?3:1;this.userCode=`
const ivec2 pads = ivec2(${o}, ${i});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d1 = coords[${u}];
ivec2 dyCorner = ivec2(coords[${l}], coords[${c}]) - pads;
int dyRCorner = dyCorner.x;
int dyCCorner = dyCorner.y;
// Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${t}; wR++) {
float dyR = float(dyRCorner + wR) / ${s}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
int wRPerm = ${t} - 1 - wR;
for (int wC = 0; wC < ${n}; wC++) {
float dyC = float(dyCCorner + wC) / ${r}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
int wCPerm = ${n} - 1 - wC;
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
if (${a}) {
float xValue = getDy(batch, idyR, idyC, d2);
float wValue = getW(wRPerm, wCPerm, d1, d2);
dotProd += xValue * wValue;
} else {
float xValue = getDy(batch, d2, idyR, idyC);
float wValue = getW(wRPerm, wCPerm, d1, d2);
dotProd += xValue * wValue;
}
}
}
}
setOutput(dotProd);
}
`}},rne=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideDepth,n=e.strideHeight,s=e.strideWidth,r=e.padInfo.front,a=e.padInfo.top,o=e.padInfo.left;this.userCode=`
void main() {
ivec5 coords = getOutputCoords();
int wF = coords.x;
int wR = coords.y;
int wC = coords.z;
int d1 = coords.w;
int d2 = coords.u;
float dotProd = 0.0;
for (int b = 0; b < ${e.batchSize}; b++) {
for (int yF = 0; yF < ${e.outDepth}; yF++) {
int xF = wF + yF * ${t} - ${r};
if (xF < 0 || xF >= ${e.inDepth}) {
continue;
}
for (int yR = 0; yR < ${e.outHeight}; yR++) {
int xR = wR + yR * ${n} - ${a};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int yC = 0; yC < ${e.outWidth}; yC++) {
int xC = wC + yC * ${s} - ${o};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float dyValue = getDy(b, yF, yR, yC, d2);
float xValue = getX(b, xF, xR, xC, d1);
dotProd += (xValue * dyValue);
}
}
}
}
setOutput(dotProd);
}
`}},ane=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,s=e.filterWidth,r=e.strideDepth,a=e.strideHeight,o=e.strideWidth,i=t-1-e.padInfo.front,l=n-1-e.padInfo.top,c=s-1-e.padInfo.left;this.userCode=`
const ivec3 pads = ivec3(${i}, ${l}, ${c});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int d1 = coords.u;
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
int dyFCorner = dyCorner.x;
int dyRCorner = dyCorner.y;
int dyCCorner = dyCorner.z;
float dotProd = 0.0;
for (int wF = 0; wF < ${t}; wF++) {
float dyF = float(dyFCorner + wF) / ${r}.0;
if (dyF < 0.0 || dyF >= ${e.outDepth}.0 || fract(dyF) > 0.0) {
continue;
}
int idyF = int(dyF);
int wFPerm = ${t} - 1 - wF;
for (int wR = 0; wR < ${n}; wR++) {
float dyR = float(dyRCorner + wR) / ${a}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
int wRPerm = ${n} - 1 - wR;
for (int wC = 0; wC < ${s}; wC++) {
float dyC = float(dyCCorner + wC) / ${o}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
int wCPerm = ${s} - 1 - wC;
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
float xValue = getDy(batch, idyF, idyR, idyC, d2);
float wValue = getW(wFPerm, wRPerm, wCPerm, d1, d2);
dotProd += xValue * wValue;
}
}
}
}
setOutput(dotProd);
}
`}};function one(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,pad:i,dataFormat:l,dimRoundingMode:c,filterShape:u}=s,d=E.convertConv2DDataFormat(l),p=E.computeConv2DInfo(r.shape,u,o,1,i,c,!1,d),h=new nne(p);return n.runWebGLProgram(h,[r,a],"float32")}var ine={kernelName:Nh,backendName:"webgl",kernelFunc:one};function lne(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{inputShape:o,strides:i,pad:l,dataFormat:c,dimRoundingMode:u}=s,d=E.convertConv2DDataFormat(c),p=E.computeConv2DInfo(o,a.shape,i,1,l,u,!1,d),h=new sne(p);return n.runWebGLProgram(h,[r,a],"float32")}var une={kernelName:Oa,backendName:"webgl",kernelFunc:lne};function cne(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dilations:l}=s,c=E.computeConv3DInfo(r.shape,a.shape,o,l,i),u=new Jte(c);return n.runWebGLProgram(u,[r,a],"float32")}var dne={kernelName:id,backendName:"webgl",kernelFunc:cne};function pne(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,pad:i,filterShape:l}=s,c=E.computeConv3DInfo(r.shape,l,o,1,i),u=new rne(c);return n.runWebGLProgram(u,[r,a],"float32")}var hne={kernelName:Eh,backendName:"webgl",kernelFunc:pne};function fne(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{pad:o,strides:i,inputShape:l}=s,c=E.computeConv3DInfo(l,a.shape,i,1,o),u=new ane(c);return n.runWebGLProgram(u,[r,a],"float32")}var mne={kernelName:Rh,backendName:"webgl",kernelFunc:fne},gne=$C+`
return cos(x);
`,Ane=rt({opSnippet:gne}),yne={kernelName:Ma,backendName:"webgl",kernelFunc:Ane},xne=`
float e2x = exp(-x);
return (e2x + 1.0 / e2x) / 2.0;
`,bne=rt({opSnippet:xne}),vne={kernelName:za,backendName:"webgl",kernelFunc:bne},wne=class{constructor(e,t,n,s,r){this.variableNames=["Image","Boxes","BoxInd"],this.outputShape=[];let[a,o,i,l]=e,[c]=t,[u,d]=n;this.outputShape=[c,u,d,l];let p=s==="bilinear"?1:0,[h,f]=[`${o-1}.0`,`${i-1}.0`],[m,g,A]=u>1?[`${(o-1)/(u-1)}`,"(y2-y1) * height_ratio",`y1*${h} + float(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${h}`],[x,y,b]=d>1?[`${(i-1)/(d-1)}`,"(x2-x1) * width_ratio",`x1*${f} + float(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${f}`];this.userCode=`
const float height_ratio = float(${m});
const float width_ratio = float(${x});
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int y = coords[1];
int x = coords[2];
int d = coords[3];
// get box vals
float y1 = getBoxes(b,0);
float x1 = getBoxes(b,1);
float y2 = getBoxes(b,2);
float x2 = getBoxes(b,3);
// get image in batch index
int bInd = round(getBoxInd(b));
if(bInd < 0 || bInd >= ${a}) {
return;
}
float height_scale = ${g};
float width_scale = ${y};
float in_y = ${A};
if( in_y < 0.0 || in_y > ${h} ) {
setOutput(float(${r}));
return;
}
float in_x = ${b};
if( in_x < 0.0 || in_x > ${f} ) {
setOutput(float(${r}));
return;
}
vec2 sourceFracIndexCR = vec2(in_x,in_y);
if(${p} == 1) {
// Compute the four integer indices.
ivec2 sourceFloorCR = ivec2(sourceFracIndexCR);
ivec2 sourceCeilCR = ivec2(ceil(sourceFracIndexCR));
float topLeft = getImage(b, sourceFloorCR.y, sourceFloorCR.x, d);
float bottomLeft = getImage(b, sourceCeilCR.y, sourceFloorCR.x, d);
float topRight = getImage(b, sourceFloorCR.y, sourceCeilCR.x, d);
float bottomRight = getImage(b, sourceCeilCR.y, sourceCeilCR.x, d);
vec2 fracCR = sourceFracIndexCR - vec2(sourceFloorCR);
float top = topLeft + (topRight - topLeft) * fracCR.x;
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracCR.x;
float newValue = top + (bottom - top) * fracCR.y;
setOutput(newValue);
} else {
// Compute the coordinators of nearest neighbor point.
ivec2 sourceNearestCR = ivec2(floor(
sourceFracIndexCR + vec2(0.5,0.5)));
float newValue = getImage(b, sourceNearestCR.y, sourceNearestCR.x, d);
setOutput(newValue);
}
}
`}},kne=e=>{let{inputs:t,backend:n,attrs:s}=e,{image:r,boxes:a,boxInd:o}=t,{cropSize:i,method:l,extrapolationValue:c}=s,u=new wne(r.shape,a.shape,i,l,c);return n.runWebGLProgram(u,[r,a,o],"float32")},Ine={kernelName:mi,backendName:"webgl",kernelFunc:kne},ZC=class{constructor(e,t,n){this.variableNames=["x"],this.customUniforms=[{name:"index",type:"float"}],this.outputShape=e;let s=e.length,r=t?"0.0":`getX(${YC(s,"coords")})`,a=e[e.length-1],o="",i="";t?(o=n?`end != ${a-1}`:"end != 0",i=n?"end + 1":"end - 1"):(o=n?`end + pow2 < ${a}`:"end >= pow2",i=n?"end + pow2":"end - pow2"),this.userCode=`
void main() {
${vt(s)} coords = getOutputCoords();
int end = ${JC(s,"coords")};
float val = ${r};
int pow2 = int(pow(2.0, index));
if (${o}) {
int idx = ${i};
${JC(s,"coords")} = idx;
val += getX(${YC(s,"coords")});
}
setOutput(val);
}
`}};function YC(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.x, ${t}.y`;if(e===3)return`${t}.x, ${t}.y, ${t}.z`;if(e===4)return`${t}.x, ${t}.y, ${t}.z, ${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function JC(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.y`;if(e===3)return`${t}.z`;if(e===4)return`${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function Sne(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,exclusive:o,reverse:i}=s,l=r.shape.length,c=E.getAxesPermutation([a],l),u=r;c!=null&&(u=jn({inputs:{x:r},backend:n,attrs:{perm:c}}));let d=E.getInnerMostAxes(1,l)[0];if(d!==l-1)throw new Error(`WebGL cumsum shader expects an inner-most axis=${r.shape.length-1} but got axis=${a}`);let p=u.shape[d],h=ks({inputs:{x:u},backend:n});for(let f=0;f<=Math.ceil(Math.log2(p))-1;f++){let m=new ZC(u.shape,!1,i),g=[[f]],A=h;h=n.runWebGLProgram(m,[h],h.dtype,g),n.disposeIntermediateTensorInfo(A)}if(o){let f=new ZC(u.shape,o,i),m=h;h=n.runWebGLProgram(f,[h],h.dtype),n.disposeIntermediateTensorInfo(m)}if(c!=null){let f=E.getUndoAxesPermutation(c),m=jn({inputs:{x:h},backend:n,attrs:{perm:f}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(u),m}return h}var Cne={kernelName:fi,backendName:"webgl",kernelFunc:Sne};function Tne(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,weights:a}=t,{size:o,binaryOutput:i}=s;if(r.shape.length===1){let l=n.readSync(r.dataId),c=n.readSync(a.dataId),u=mC(l,c,a.dtype,a.shape,o);return n.makeTensorInfo([o],a.dtype,u)}else if(r.shape.length===2){let l=n.bufferSync(r),c=n.bufferSync(a),u=zJ(l,c,o,i);return n.makeTensorInfo(u.shape,a.dtype,u.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${r.shape.length}.`)}var Nne={kernelName:$h,backendName:"webgl",kernelFunc:Tne},Ene=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=[],this.outputShape=e,this.blockSize=t,this.dataFormat=n,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int h = ${this.getHeightCoordString()};
int w = ${this.getWidthCoordString()};
int d = ${this.getDepthCoordString()};
int in_h = h / ${t};
int offset_h = imod(h, ${t});
int in_w = w / ${t};
int offset_w = imod(w, ${t});
int offset_d = (offset_h * ${t} + offset_w) *
${this.getOutputDepthSize()};
int in_d = d + offset_d;
float result = ${this.getInputSamplingString()};
setOutput(result);
}
`}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?this.outputShape[3]:this.outputShape[1]}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}};function Rne(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockSize:a,dataFormat:o}=s,i=r.shape[0],l=o==="NHWC"?r.shape[1]:r.shape[2],c=o==="NHWC"?r.shape[2]:r.shape[3],u=o==="NHWC"?r.shape[3]:r.shape[1],d=l*a,p=c*a,h=u/(a*a),f=o==="NHWC"?[i,d,p,h]:[i,h,d,p],m=new Ene(f,a,o);return n.runWebGLProgram(m,[r],r.dtype)}var $ne={kernelName:gi,backendName:"webgl",kernelFunc:Rne},QC=class{constructor(e,t=!1,n=null,s=!1,r=!1){this.variableNames=["x","W"],this.customUniforms=[{name:"pads",type:"ivec2"},{name:"strides",type:"ivec2"},{name:"dilations",type:"ivec2"},{name:"inDims",type:"ivec2"}],this.outputShape=e.outShape,this.enableShapeUniforms=Vs(this.outputShape.length);let a=e.filterHeight,o=e.filterWidth,i=e.outChannels/e.inChannels,l="",c="";n&&(s?l=`float activation(float a) {
float b = getPreluActivationWeightsAtOutCoords();
${n}
}`:r?l=`float activation(float a) {
float b = getLeakyreluAlphaAtOutCoords();
${n}
}`:l=`
float activation(float x) {
${n}
}
`,c="result = activation(result);");let u=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
${l}
void main() {
ivec4 coords = getOutputCoords();
int batch = coords.x;
ivec2 xRCCorner = coords.yz * strides - pads;
int d2 = coords.w;
int d1 = d2 / ${i};
int q = d2 - d1 * ${i};
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// Convolve x(?, ?, d1) with w(:, :, d1, q) to get y(yR, yC, d2).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
// TO DO(dsmilkov): Flatten the two for loops and vec4 the operations.
for (int wR = 0; wR < ${a}; wR++) {
int xR = xRCorner + wR * dilations[0];
if (xR < 0 || xR >= inDims[0]) {
continue;
}
for (int wC = 0; wC < ${o}; wC++) {
int xC = xCCorner + wC * dilations[1];
if (xC < 0 || xC >= inDims[1]) {
continue;
}
float xVal = getX(batch, xR, xC, d1);
float wVal = getW(wR, wC, d1, q);
dotProd += xVal * wVal;
}
}
float result = dotProd;
${u}
${c}
setOutput(result);
}
`}},e4=class{constructor(e,t=!1,n=null,s=!1,r=!1){this.variableNames=["x","W"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"pads",type:"ivec2"},{name:"strides",type:"ivec2"},{name:"dilations",type:"ivec2"},{name:"inDims",type:"ivec2"}],this.outputShape=e.outShape,this.enableShapeUniforms=Vs(this.outputShape.length);let a=e.outChannels/e.inChannels,o=e.padInfo.left,i=e.strideWidth,l=e.dilationWidth,c=e.filterHeight,u=e.filterWidth,d=u,p=`
int xR; int xC; int xCOffset;
vec4 wTexel; vec4 previous; vec4 final;`;for(let g=0;g<u;g++)p+=`
vec4 xTexelC${g*2};
int xTexelC${g*2}Ready;
vec4 xTexelC${g*2+1};
int xTexelC${g*2+1}Ready;
vec4 xC${g};`;p+=`
for (int r = 0; r < ${c}; r++) {
`;for(let g=0;g<u;g++)p+=`
xTexelC${g*2} = vec4(0.0);
xTexelC${g*2}Ready = 0;
xTexelC${g*2+1} = vec4(0.0);
xTexelC${g*2+1}Ready = 0;
xC${g} = vec4(0.0);`;p+=`
xR = xRCorner + r * dilations[0];
if (xR >=0 && xR < inDims[0]) {
`;for(let g=0;g<(d+1)/2;g++){let A=g*2;if(p+=`
xC = xCCorner + ${A*l};
`,i===1){if(A<u&&(o%2==1?(p+=`
xCOffset = xC + 1;
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${A}Ready == 0) {
xTexelC${A} = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= inDims[1]) {
xTexelC${A}.zw = vec2(0.0);
}
xTexelC${A}Ready = 1;
}
`,l===1&&A>0?p+=`
xC${A} = vec4(xTexelC${A-2}.zw, xTexelC${A}.xy);
`:p+=`
xCOffset = xC + 1 - 2;
if (xCOffset >= 0 && xCOffset < inDims[1]) {
previous = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= inDims[1]) {
previous.zw = vec2(0.0);
}
xC${A} = vec4(previous.zw, xTexelC${A}.xy);
} else {
xC${A} = vec4(0.0, 0.0, xTexelC${A}.xy);
}
`):p+=`
if (xC >= 0 && xC < inDims[1] && xTexelC${A}Ready == 0) {
xTexelC${A} = getX(batch, xR, xC, d1);
if (xC + 1 >= inDims[1]) {
xTexelC${A}.zw = vec2(0.0);
}
xTexelC${A}Ready = 1;
}
xC${A} = xTexelC${A};
`,A+1<u)){let x=o%2==0?v.nearestLargerEven(l):l;l%2==0&&o%2==1||l%2!=0&&o%2!=1?(p+=`
xCOffset = xC + imod(pads[1], 2) + ${x};
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${A+1}Ready == 0) {
xTexelC${A+1} = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= inDims[1]) {
xTexelC${A+1}.zw = vec2(0.0);
}
xTexelC${A+1}Ready = 1;
}
`,l>1&&(p+=`
xCOffset -= 2;
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${A}Ready == 0) {
xTexelC${A} = getX(batch, xR, xCOffset, d1);
xTexelC${A}Ready = 1;
}
`),p+=`
xC${A+1} = vec4(xTexelC${A}.zw, xTexelC${A+1}.xy);
`):x===1?p+=`
xC${A+1} = xTexelC${A};
`:p+=`
xCOffset = xC + ${x};
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${A+1}Ready == 0) {
xTexelC${A+1} = getX(batch, xR, xCOffset, d1);
if (xCOffset + 1 >= inDims[1]) {
xTexelC${A+1}.zw = vec2(0.0);
}
xTexelC${A+1}Ready = 1;
}
xC${A+1} = xTexelC${A+1};
`}}else A<u&&(o%2==1?(p+=`
xCOffset = xC + 1 - strides[1];
if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${A}Ready == 0) {
xTexelC${A} = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= inDims[1]) {
xTexelC${A}.zw = vec2(0.0);
}
xTexelC${A}Ready = 1;
}
if(xC + 1 >= 0 && xC + 1 < inDims[1] && xTexelC${A+1}Ready == 0) {
xTexelC${A+1} = getX(batch, xR, xC + 1, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xC + 2 >= inDims[1]) {
xTexelC${A+1}.zw = vec2(0.0);
}
xTexelC${A+1}Ready = 1;
}
xC${A} = vec4(xTexelC${A}.zw, xTexelC${A+1}.zw);
`,A+1<u&&(p+=`
final = vec4(0.0);
xCOffset = xC + 1 + strides[1];
if(xCOffset >= 0 && xCOffset < inDims[1]) {
final = getX(batch, xR, xCOffset, d1);
}
xC${A+1} = vec4(xTexelC${A+1}.xy, final.xy);
`)):(p+=`
if(xC >= 0 && xC < inDims[1] && xTexelC${A}Ready == 0) {
xTexelC${A} = getX(batch, xR, xC, d1);
if (xC + 1 >= inDims[1]) {
xTexelC${A}.zw = vec2(0.0);
}
xTexelC${A}Ready = 1;
}
xCOffset = xC + strides[1];
if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${A+1}Ready == 0) {
xTexelC${A+1} = getX(batch, xR, xCOffset, d1);
if (xCOffset + 1 >= inDims[1]) {
xTexelC${A+1}.zw = vec2(0.);
}
xTexelC${A+1}Ready = 1;
}
xC${A} = vec4(
xTexelC${A}.xy, xTexelC${A+1}.xy);
`,A+1<u&&(p+=`
xC${A+1} = vec4(xTexelC${A}.zw, xTexelC${A+1}.zw);
`)));A<u&&(p+=`
wTexel = getW(r, ${A}, d1, q);
dotProd += xC${A} * vec4(wTexel.xz, wTexel.xz);
`,A+1<u&&(p+=`
wTexel = getW(r, ${A+1}, d1, q);
dotProd += xC${A+1} * vec4(wTexel.xz, wTexel.xz);
`))}p+=`
}
`,p+=`
}
`;let h="",f="";n&&(s?h=`vec4 activation(vec4 a) {
vec4 b = getPreluActivationWeightsAtOutCoords();
${n}
}`:r?h=`vec4 activation(vec4 a) {
vec4 b = getLeakyreluAlphaAtOutCoords();
${n}
}`:h=`vec4 activation(vec4 x) {
${n}
}`,f="result = activation(result);");let m=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
${h}
void main() {
ivec4 coords = getOutputCoords();
int batch = coords.x;
ivec2 xRCCorner = coords.yz * strides - pads;
int d2 = coords.w;
int d1 = d2 / ${a};
int q = d2 - d1 * ${a};
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
//intialize dotProd with a small epsilon seems to reduce GPU accuracy loss.
vec4 dotProd = vec4(0.000000000000001);
${p}
vec4 result = dotProd - vec4(0.000000000000001);
${m}
${f}
setOutput(result);
}
`}};function _ne(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dilations:l,dimRoundingMode:c}=s,u=l;u==null&&(u=[1,1]),v.assert(E.eitherStridesOrDilationsAreOne(o,u),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${o} and dilations '${u}'`);let d=E.computeConv2DInfo(r.shape,a.shape,o,u,i,c,!0),p;Y().getBool("WEBGL_PACK_DEPTHWISECONV")&&d.strideWidth<=2&&d.outChannels/d.inChannels==1?p=new e4(d):p=new QC(d);let h=[[d.padInfo.top,d.padInfo.left],[d.strideHeight,d.strideWidth],[d.dilationHeight,d.dilationWidth],[d.inHeight,d.inWidth]];return n.runWebGLProgram(p,[r,a],"float32",h)}var Dne={kernelName:La,backendName:"webgl",kernelFunc:_ne},Pne=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,s=e.padInfo.top,r=e.padInfo.left,a=e.outChannels/e.inChannels;this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int wR = coords.x;
int wC = coords.y;
int d1 = coords.z;
int dm = coords.w;
int d2 = d1 * ${a} + dm;
float dotProd = 0.0;
// TO DO: Vec4 over the batch size
for (int b = 0; b < ${e.batchSize}; b++) {
for (int yR = 0; yR < ${e.outHeight}; yR++) {
int xR = wR + yR * ${t} - ${s};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int yC = 0; yC < ${e.outWidth}; yC++) {
int xC = wC + yC * ${n} - ${r};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float dyValue = getDy(b, yR, yC, d2);
float xValue = getX(b, xR, xC, d1);
dotProd += (xValue * dyValue);
}
}
}
setOutput(dotProd);
}
`}},Fne=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,s=e.strideHeight,r=e.strideWidth,a=t-1-e.padInfo.top,o=n-1-e.padInfo.left,i=e.outChannels/e.inChannels;this.userCode=`
const ivec2 pads = ivec2(${a}, ${o});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d1 = coords[3];
ivec2 dyCorner = coords.yz - pads;
int dyRCorner = dyCorner.x;
int dyCCorner = dyCorner.y;
float dotProd = 0.0;
for (int wR = 0; wR < ${t}; wR++) {
float dyR = float(dyRCorner + wR) / ${s}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
int wRPerm = ${t} - 1 - wR;
for (int wC = 0; wC < ${n}; wC++) {
float dyC = float(dyCCorner + wC) / ${r}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
int wCPerm = ${n} - 1 - wC;
// TO DO: Vec4 over the channelMul
for (int dm = 0; dm < ${i}; dm++) {
int d2 = d1 * ${i} + dm;
float xValue = getDy(batch, idyR, idyC, d2);
float wValue = getW(wRPerm, wCPerm, d1, dm);
dotProd += xValue * wValue;
}
}
}
setOutput(dotProd);
}
`}};function One(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,dilations:i,pad:l,dimRoundingMode:c,filterShape:u}=s,d=E.computeConv2DInfo(r.shape,u,o,i,l,c,!0),p=new Pne(d);return n.runWebGLProgram(p,[r,a],"float32")}var Mne={kernelName:_h,backendName:"webgl",kernelFunc:One};function zne(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{strides:o,dilations:i,pad:l,dimRoundingMode:c,inputShape:u}=s,d=E.computeConv2DInfo(u,a.shape,o,i,l,c,!0),p=new Fne(d);return n.runWebGLProgram(p,[r,a],"float32")}var Lne={kernelName:Dh,backendName:"webgl",kernelFunc:zne},Bne=class{constructor(e){this.variableNames=["X"],this.outputShape=[e,e],this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
float val = coords[0] == coords[1] ? getX(coords[0]) : 0.0;
setOutput(val);
}
`}};function Wne(e){let{inputs:t,backend:n}=e,{x:s}=t,r=[...s.shape,...s.shape],a=v.sizeFromShape(s.shape),o=ve({inputs:{x:s},backend:n,attrs:{shape:[a]}}),i=new Bne(a),l=n.runWebGLProgram(i,[o],o.dtype),c=ve({inputs:{x:l},backend:n,attrs:{shape:r}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(l),c}var Vne={kernelName:Ph,backendName:"webgl",kernelFunc:Wne},Une=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let{inHeight:t,inWidth:n,padInfo:s,strideHeight:r,strideWidth:a,filterHeight:o,filterWidth:i,dilationHeight:l,dilationWidth:c}=e,{top:u,left:d}=s;this.userCode=`
const ivec2 strides = ivec2(${r}, ${a});
const ivec2 pads = ivec2(${u}, ${d});
const float neg_infinity = -3.4e38;
void main() {
ivec4 coords = getOutputCoords();
int batch = coords.x;
int d1 = coords.w;
ivec2 outTopLeftCorner =
coords.yz * strides - pads;
int hBeg = outTopLeftCorner.x;
int wBeg = outTopLeftCorner.y;
float curVal = neg_infinity;
for (int h = 0; h < ${o}; h++) {
int hIn = hBeg + h * ${l};
if (hIn >= 0 && hIn < ${t}) {
for (int w = 0; w < ${i}; w++) {
int wIn = wBeg + w * ${c};
if (wIn >= 0 && wIn < ${n}) {
float xVal = getX(batch, hIn, wIn, d1);
float wVal = getW(h, w, d1);
float val = xVal + wVal;
if (val > curVal) {
curVal = val;
}
}
}
}
}
float result = curVal;
setOutput(result);
}
`}};function Gne(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dilations:l}=s,c=E.computeDilation2DInfo(r.shape,a.shape,o,i,"NHWC",l),u,d=new Une(c);u=n.runWebGLProgram(d,[r,a],"float32");let p=ve({inputs:{x:u},backend:n,attrs:{shape:c.outShape}});return n.disposeIntermediateTensorInfo(u),p}var Hne={kernelName:ld,backendName:"webgl",kernelFunc:Gne};function jne(e){let{inputs:t,backend:n,attrs:s}=e,{equation:r}=s,a=t,{allDims:o,summedDims:i,idDims:l}=E.decodeEinsumEquation(r,a.length);E.checkEinsumDimSizes(o.length,l,a);let{path:c,steps:u}=E.getEinsumComputePath(i,l),d=u.length,p=null,h=o.length,f=[];for(let m=0;m<d;++m){for(let g of u[m]){let{permutationIndices:A,expandDims:x}=E.getEinsumPermutation(h,l[g]),y;E.isIdentityPermutation(A)?y=a[g]:(y=jn({inputs:{x:a[g]},backend:n,attrs:{perm:A}}),f.push(y));let b=y.shape.slice();for(let w=0;w<x.length;++w)b.splice(x[w],0,1);v.arraysEqual(y.shape,b)||(y=ve({inputs:{x:y},backend:n,attrs:{shape:b}}),f.push(y)),p===null?p=y:(p=wx({inputs:{a:y,b:p},backend:n}),f.push(p))}m<d-1&&(c[m]>=0&&(p=Zm({inputs:{x:p},backend:n,attrs:{axis:c[m]-(o.length-h),keepDims:!1}}),f.push(p)),h--)}for(let m of f)m!==p&&n.disposeIntermediateTensorInfo(m);return p}var qne={kernelName:ud,backendName:"webgl",kernelFunc:jne},Xne="return (x >= 0.0) ? x : (exp(x) - 1.0);",Kne=`
vec4 result;
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
return result;
`,Zne=rt({opSnippet:Xne,packedOpSnippet:Kne}),Yne={kernelName:Wa,backendName:"webgl",kernelFunc:Zne},Jne="return (b >= 1.0) ? a : a * (b + 1.0);",Qne=`
vec4 bGTEZero = vec4(greaterThanEqual(b, vec4(0.)));
return (bGTEZero * a) + ((vec4(1.0) - bGTEZero) * (a * (b + vec4(1.0))));
`,ese=e=>{let{inputs:t,backend:n}=e,{dy:s,y:r}=t,a=Y().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new xp(Qne,s.shape,r.shape):new dc(Jne,s.shape,r.shape);return n.runWebGLProgram(a,[s,r],s.dtype)},tse={kernelName:Mh,backendName:"webgl",kernelFunc:ese},nse=`
return vec4(equal(a, b));
`,sse="return float(a == b);",rse=Tn({opSnippet:sse,packedOpSnippet:nse,dtype:"bool",cpuKernelImpl:WJ}),ase={kernelName:Ai,backendName:"webgl",kernelFunc:rse},ose=`
// Error function is calculated approximately with elementary function.
// See "Handbook of Mathematical Functions with Formulas,
// Graphs, and Mathematical Tables", Abramowitz and Stegun.
float p = ${E.ERF_P};
float a1 = ${E.ERF_A1};
float a2 = ${E.ERF_A2};
float a3 = ${E.ERF_A3};
float a4 = ${E.ERF_A4};
float a5 = ${E.ERF_A5};
float sign = sign(x);
x = abs(x);
float t = 1.0 / (1.0 + p * x);
return sign * (1.0 - (((((a5*t + a4)*t) + a3)*t + a2)*t + a1)*t*exp(-x*x));
`,ise=rt({opSnippet:ose}),lse={kernelName:fu,backendName:"webgl",kernelFunc:ise},t4="return exp(x);",n4=rt({opSnippet:t4,packedOpSnippet:t4,cpuKernelImpl:VJ,dtype:"float32"}),use={kernelName:Va,backendName:"webgl",kernelFunc:n4};function Cx(e){let{inputs:t,attrs:n,backend:s}=e,{dim:r}=n,{input:a}=t,o=a.shape.length,i=a.shape.slice(),l=r;return r<0&&(v.assert(-(o+1)<=r,()=>`Axis must be in the interval [${-(o+1)}, ${o}]`),l=o+r+1),i.splice(l,0,1),ve({inputs:{x:a},backend:s,attrs:{shape:i}})}var cse={kernelName:yi,backendName:"webgl",kernelFunc:Cx},s4="return exp(x) - 1.0;",dse=rt({opSnippet:s4,packedOpSnippet:s4,cpuKernelImpl:UJ}),pse={kernelName:xi,backendName:"webgl",kernelFunc:dse},r4=class{constructor(e,t,n){this.variableNames=["real","imag"];let s=t[1];this.outputShape=t;let r=n?`2.0 * ${Math.PI}`:`-2.0 * ${Math.PI}`,a=n?`${s}.0`:"1.0",o;if(e==="real")o="return real * expR - imag * expI;";else if(e==="imag")o="return real * expI + imag * expR;";else throw new Error(`FFT component must be either "real" or "imag", got ${e}.`);this.userCode=`
const float exponentMultiplier = ${r};
float unaryOpComplex(float real, float expR, float imag, float expI) {
${o}
}
float mulMatDFT(int batch, int index) {
float indexRatio = float(index) / float(${s});
float exponentMultiplierTimesIndexRatio =
exponentMultiplier * indexRatio;
float result = 0.0;
for (int i = 0; i < ${s}; i++) {
// x = (-2|2 * PI / N) * index * i;
float x = exponentMultiplierTimesIndexRatio * float(i);
float expR = cos(x);
float expI = sin(x);
float real = getReal(batch, i);
float imag = getImag(batch, i);
result +=
unaryOpComplex(real, expR, imag, expI) / ${a};
}
return result;
}
void main() {
ivec2 coords = getOutputCoords();
setOutput(mulMatDFT(coords[0], coords[1]));
}
`}};function a4(e,t,n){let s=n.texData.get(e.dataId),r=v.sizeFromShape(e.shape),a=e.shape[e.shape.length-1],o=r/a,i=ve({inputs:{x:e},backend:n,attrs:{shape:[o,a]}}),l=i.shape,c=new r4("real",l,t),u=new r4("imag",l,t),d=[{dataId:s.complexTensorInfos.real.dataId,dtype:s.complexTensorInfos.real.dtype,shape:l},{dataId:s.complexTensorInfos.imag.dataId,dtype:s.complexTensorInfos.imag.dtype,shape:l}],p=n.runWebGLProgram(c,d,"float32"),h=n.runWebGLProgram(u,d,"float32"),f=jo({inputs:{real:p,imag:h},backend:n});n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(h);let m=ve({inputs:{x:f},backend:n,attrs:{shape:e.shape}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(f),m}function hse(e){let{inputs:t,backend:n}=e,{input:s}=t;return a4(s,!1,n)}var fse={kernelName:zh,backendName:"webgl",kernelFunc:hse},mse=class{constructor(e,t){this.outputShape=[],this.customUniforms=[{name:"value",type:"float"}],this.variableNames=["x"],this.outputShape=e,this.userCode=`
void main() {
// Input can be obtained from uniform value.
setOutput(value);
}
`}};function wp(e){let{backend:t,attrs:n}=e,{shape:s,value:r}=n,{dtype:a}=n;if(a=a||v.inferDtype(r),a==="string"){let o=v.getArrayFromDType(a,v.sizeFromShape(s));return o.fill(r),t.makeTensorInfo(s,a,o)}else{let o=new mse(s,r),i=[[r]];return t.runWebGLProgram(o,[],a,i)}}var gse={kernelName:mu,backendName:"webgl",kernelFunc:wp},Ase=class{constructor(e){this.variableNames=["Image"],this.outputShape=[];let t=e[2];this.outputShape=e,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int x = coords[2];
int coordX = ${t} - x - 1;
float outputValue;
if(coordX >= 0 && coordX < ${t}) {
outputValue = getImage(coords[0], coords[1], coordX, coords[3]);
} else {
outputValue = getImage(coords[0], coords[1], coords[2], coords[3]);
}
setOutput(outputValue);
}
`}},yse={kernelName:bi,backendName:"webgl",kernelFunc:({inputs:e,backend:t})=>{let{image:n}=e,s=t,r=new Ase(n.shape);return s.runWebGLProgram(r,[n],n.dtype)}},o4="return floor(x);",xse=rt({opSnippet:o4,packedOpSnippet:o4,cpuKernelImpl:GJ}),bse={kernelName:Ua,backendName:"webgl",kernelFunc:xse},vse=`
float s = sign(a) * sign(b);
int ia = round(a);
int ib = round(b);
if (ib != 0) {
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
return float(idiv(ia, ib, s));
} else {
return NAN;
}
`,wse=`
ivec4 ia = round(a);
ivec4 ib = round(b);
bvec4 cond = notEqual(ib, ivec4(0));
ivec4 result = ivec4(0);
vec4 s = sign(a) * sign(b);
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
if (cond[0]) {
result[0] = idiv(ia[0], ib[0], s[0]);
}
if (cond[1]) {
result[1] = idiv(ia[1], ib[1], s[1]);
}
if (cond[2]) {
result[2] = idiv(ia[2], ib[2], s[2]);
}
if (cond[3]) {
result[3] = idiv(ia[3], ib[3], s[3]);
}
return vec4(result);
`,kse=Tn({opSnippet:vse,packedOpSnippet:wse,dtype:"int32"}),Ise={kernelName:Ga,backendName:"webgl",kernelFunc:kse},Sse=class{constructor(e){this.variableNames=["A"];let t=Gn(),[n,s]=e;this.outputShape=e,this.userCode=`
void main() {
ivec3 coords = getOutputCoords();
int texR = coords[0];
int texC = coords[1];
int depth = coords[2];
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${s}.0, ${n}.0);
vec4 values = ${t.texture2D}(A, uv);
float value;
if (depth == 0) {
value = values.r;
} else if (depth == 1) {
value = values.g;
} else if (depth == 2) {
value = values.b;
} else if (depth == 3) {
value = values.a;
}
setOutput(floor(value * 255.0 + 0.5));
}
`}},Cse=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let t=Gn(),[n,s]=e;this.outputShape=e,this.userCode=`
void main() {
ivec3 coords = getOutputCoords();
int texR = coords[0];
int texC = coords[1];
int depth = coords[2];
vec4 result = vec4(0.);
for(int row=0; row<=1; row++) {
for(int col=0; col<=1; col++) {
texC = coords[1] + row;
depth = coords[2] + col;
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${s}.0, ${n}.0);
vec4 values = ${t.texture2D}(A, uv);
float value;
if (depth == 0) {
value = values.r;
} else if (depth == 1) {
value = values.g;
} else if (depth == 2) {
value = values.b;
} else if (depth == 3) {
value = values.a;
}
result[row * 2 + col] = floor(value * 255.0 + 0.5);
}
}
${t.output} = result;
}
`}},Tse={kernelName:yd,backendName:"webgl",kernelFunc:Nse},fc;function Nse(e){let{inputs:t,backend:n,attrs:s}=e,{pixels:r}=t,{numChannels:a}=s,o=typeof HTMLVideoElement!="undefined"&&r instanceof HTMLVideoElement,i=typeof HTMLImageElement!="undefined"&&r instanceof HTMLImageElement,[l,c]=o?[r.videoWidth,r.videoHeight]:[r.width,r.height],u=[c,l],d=[c,l,a];(i||o)&&(fc==null&&(fc=document.createElement("canvas").getContext("2d")),fc.canvas.width=l,fc.canvas.height=c,fc.drawImage(r,0,0,l,c),r=fc.canvas);let p=n.makeTensorInfo(u,"int32");n.texData.get(p.dataId).usage=Bs.PIXELS,n.gpgpu.uploadPixelDataToTexture(n.getTexture(p.dataId),r);let h=Y().getBool("WEBGL_PACK")?new Cse(d):new Sse(d),f=n.runWebGLProgram(h,[p],"int32");return n.disposeData(p.dataId),f}function Ese(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:c,dataFormat:u,dilations:d,dimRoundingMode:p,activation:h,leakyreluAlpha:f}=s,m=E.convertConv2DDataFormat(u),g=E.computeConv2DInfo(r.shape,a.shape,l,d,c,p,!1,m),A,x=[];if(g.filterHeight===1&&g.filterWidth===1&&g.dilationHeight===1&&g.dilationWidth===1&&g.strideHeight===1&&g.strideWidth===1&&(g.padInfo.type==="SAME"||g.padInfo.type==="VALID"))A=XC({x:r,filter:a,convInfo:g,backend:n,bias:o,activation:h,preluActivationWeights:i,leakyreluAlpha:f});else if(Y().getBool("WEBGL_CONV_IM2COL")&&r.shape[0]===1)A=KC({x:r,filter:a,convInfo:g,backend:n,bias:o,activation:h,preluActivationWeights:i,leakyreluAlpha:f});else{let b=o!=null,w=i!=null,k=h==="leakyrelu",S=h?Xm(h,!1):null,N=new qC(g,b,S,w,k),R=[r,a];if(o&&R.push(o),i&&R.push(i),k){let M=n.makeTensorInfo([],"float32",v.createScalarValue(f,"float32"));R.push(M),x.push(M)}A=n.runWebGLProgram(N,R,"float32")}let y=ve({inputs:{x:A},backend:n,attrs:{shape:g.outShape}});return x.push(A),x.forEach(b=>n.disposeIntermediateTensorInfo(b)),y}var Rse={kernelName:wo,backendName:"webgl",kernelFunc:Ese};function $se(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:c,dilations:u,dimRoundingMode:d,activation:p,leakyreluAlpha:h}=s,f=[],m=u;m==null&&(m=[1,1]),v.assert(E.eitherStridesOrDilationsAreOne(l,m),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${l} and dilations '${m}'`);let g=E.computeConv2DInfo(r.shape,a.shape,l,m,c,d,!0),A=Y().getBool("WEBGL_PACK_DEPTHWISECONV")&&g.strideWidth<=2&&g.outChannels/g.inChannels==1,x=p?Xm(p,A):null,y=[r,a],b=o!=null,w=i!=null,k=p==="leakyrelu";if(b&&y.push(o),w&&y.push(i),k){let M=n.makeTensorInfo([],"float32",v.createScalarValue(h,"float32"));y.push(M),f.push(M)}let S;A?S=new e4(g,b,x,w,k):S=new QC(g,b,x,w,k);let N=[[g.padInfo.top,g.padInfo.left],[g.strideHeight,g.strideWidth],[g.dilationHeight,g.dilationWidth],[g.inHeight,g.inWidth]],R=n.runWebGLProgram(S,y,"float32",N);return f.forEach(M=>n.disposeIntermediateTensorInfo(M)),R}var _se={kernelName:ko,backendName:"webgl",kernelFunc:$se},Dse=class{constructor(e,t,n){this.sliceDim=e,this.strides=t,this.variableNames=["x","indices"],this.outputShape=n;let s=vt(t.length),r=vt(n.length),a=this.sliceDim>1?"strides[j]":"strides";this.userCode=`
${s} strides = ${s}(${this.strides});
void main() {
${r} coords = getOutputCoords();
int flattenIndex = 0;
for (int j = 0; j < ${this.sliceDim}; j++) {
int index = round(getIndices(coords[0], j));
flattenIndex += index * ${a};
}
setOutput(getX(flattenIndex, coords[1]));
}
`}};function Pse(e){let{inputs:t,backend:n}=e,{params:s,indices:r}=t,a=r.shape,o=a[a.length-1],i=v.sizeFromShape(s.shape),[l,c,u,d]=E.prepareAndValidate(s,r),p=ve({inputs:{x:r},backend:n,attrs:{shape:[c,o]}}),h=ve({inputs:{x:s},backend:n,attrs:{shape:[v.sizeFromShape(s.shape)/u,u]}});if(n.shouldExecuteOnCPU([s,r])||s.dtype==="string"){let A=n.readSync(r.dataId),x=n.bufferSync(s),y=HJ(A,x,s.dtype,c,o,u,d,s.shape,i);return n.makeTensorInfo(l,s.dtype,y.values)}let f=new Dse(o,d,[c,u]),m=n.runWebGLProgram(f,[h,p],h.dtype),g=ve({inputs:{x:m},backend:n,attrs:{shape:l}});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),g}var Fse={kernelName:wi,backendName:"webgl",kernelFunc:Pse},Ose=class{constructor(e,t){this.variableNames=["A","indices"],this.outputShape=t,this.rank=t.length;let n=vt(this.rank),s=Mse(e,2);this.userCode=`
void main() {
${n} resRC = getOutputCoords();
setOutput(getA(${s}));
}
`}};function Mse(e,t){let n=["resRC.x","resRC.y","resRC.z","resRC.w"],s=[];for(let r=0;r<e.length;r++)r===2?s.push("int(getIndices(resRC.x, resRC.z))"):s.push(`${n[r]}`);return s.join()}function i4(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,indices:a}=t,{axis:o,batchDims:i}=s,l=v.parseAxisParam(o,r.shape)[0],c=n.readSync(a.dataId),u=r.shape[l];for(let b=0;b<c.length;++b){let w=c[b];v.assert(w<=u-1&&w>=0,()=>`GatherV2: the index value ${w} is not in [0, ${u-1}]`)}let d=E.segment_util.collectGatherOpShapeInfo(r,a,l,i),p=v.sizeFromShape(a.shape),h=[],f=ve({inputs:{x:r},backend:n,attrs:{shape:[d.batchSize,d.outerSize,d.dimSize,d.sliceSize]}}),m=ve({inputs:{x:a},backend:n,attrs:{shape:[d.batchSize,p/d.batchSize]}});h.push(f),h.push(m);let g=[d.batchSize,d.outerSize,p/d.batchSize,d.sliceSize];if(n.shouldExecuteOnCPU([r,a])||r.dtype==="string"){let b=n.bufferSync(m),w=n.bufferSync(f),k=jJ(w,b,g);return h.forEach(S=>n.disposeIntermediateTensorInfo(S)),n.makeTensorInfo(d.outputShape,k.dtype,k.values)}let A=new Ose(f.shape,g),x=n.runWebGLProgram(A,[f,m],f.dtype);h.push(x);let y=ve({inputs:{x},backend:n,attrs:{shape:d.outputShape}});return h.forEach(b=>n.disposeIntermediateTensorInfo(b)),y}var zse={kernelName:vi,backendName:"webgl",kernelFunc:i4},Lse="return float(a > b);",Bse=`
return vec4(greaterThan(a, b));
`,Wse=Tn({opSnippet:Lse,packedOpSnippet:Bse,cpuKernelImpl:qJ,dtype:"bool"}),Vse={kernelName:ki,backendName:"webgl",kernelFunc:Wse},Use="return float(a >= b);",Gse=`
return vec4(greaterThanEqual(a, b));
`,Hse=Tn({opSnippet:Use,packedOpSnippet:Gse,dtype:"bool",cpuKernelImpl:XJ}),jse={kernelName:ja,backendName:"webgl",kernelFunc:Hse};function qse(e){let{inputs:t,backend:n}=e,{input:s}=t;return a4(s,!0,n)}var Xse={kernelName:Lh,backendName:"webgl",kernelFunc:qse},Kse="return float(!isnan(x) && !isinf(x));",Zse=rt({opSnippet:Kse,dtype:"bool"}),Yse={kernelName:gu,backendName:"webgl",kernelFunc:Zse},Jse="return float(isinf(x));",Qse=rt({opSnippet:Jse,dtype:"bool"}),ere={kernelName:Au,backendName:"webgl",kernelFunc:Qse},tre="return float(isnan(x));",nre=rt({opSnippet:tre,dtype:"bool"}),sre={kernelName:yu,backendName:"webgl",kernelFunc:nre},rre="return float(a < b);",are=`
return vec4(lessThan(a, b));
`,ore=Tn({opSnippet:rre,packedOpSnippet:are,cpuKernelImpl:KJ,dtype:"bool"}),ire={kernelName:Si,backendName:"webgl",kernelFunc:ore},lre="return float(a <= b);",ure=`
return vec4(lessThanEqual(a, b));
`,cre=Tn({opSnippet:lre,packedOpSnippet:ure,cpuKernelImpl:ZJ,dtype:"bool"}),dre={kernelName:Ci,backendName:"webgl",kernelFunc:cre};function pre(e){let{backend:t,attrs:n}=e,{start:s,stop:r,num:a}=n,o=YJ(s,r,a);return t.makeTensorInfo([o.length],"float32",o)}var hre={kernelName:Bh,backendName:"webgl",kernelFunc:pre},fre=`if (x < 0.0) return NAN;
return log(x);`,mre=`
vec4 result = log(x);
vec4 isNaN = vec4(lessThan(x, vec4(0.0)));
result.r = isNaN.r == 1.0 ? NAN : result.r;
result.g = isNaN.g == 1.0 ? NAN : result.g;
result.b = isNaN.b == 1.0 ? NAN : result.b;
result.a = isNaN.a == 1.0 ? NAN : result.a;
return result;
`,gre=rt({opSnippet:fre,packedOpSnippet:mre,cpuKernelImpl:JJ}),Are={kernelName:Xa,backendName:"webgl",kernelFunc:gre},yre="return log(1.0 + x);",xre=rt({opSnippet:yre}),bre={kernelName:xu,backendName:"webgl",kernelFunc:xre},vre="return float(a >= 1.0 && b >= 1.0);",wre=`
return vec4(
vec4(greaterThanEqual(a, vec4(1.0))) *
vec4(greaterThanEqual(b, vec4(1.0))));
`,kre=Tn({opSnippet:vre,packedOpSnippet:wre,dtype:"bool"}),Ire={kernelName:Ti,backendName:"webgl",kernelFunc:kre},Sre="return float(!(x >= 1.0));",Cre=rt({opSnippet:Sre}),Tre={kernelName:bu,backendName:"webgl",kernelFunc:Cre},Nre="return float(a >= 1.0 || b >= 1.0);",Ere=`
return min(
vec4(greaterThanEqual(a, vec4(1.0))) +
vec4(greaterThanEqual(b, vec4(1.0))),
vec4(1.0));
`,Rre=Tn({opSnippet:Nre,packedOpSnippet:Ere,dtype:"bool"}),$re={kernelName:dd,backendName:"webgl",kernelFunc:Rre},_re=class{constructor(e,t,n,s,r){this.variableNames=["x"],this.outputShape=[];let a=t,o=e[3]-1;this.outputShape=e;let i,l=`float(${n}) + float(${s}) * sum`;r===.5?i=`inversesqrt(${l})`:r===1?i=`1.0/(${l})`:i=`exp(log(${l}) * float(-${r}));`,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int r = coords[1];
int c = coords[2];
int d = coords[3];
float x = getX(b, r, c, d);
float sum = 0.0;
for (int j = -${a}; j <= ${a}; j++) {
int idx = d + j;
if (idx >= 0 && idx <= ${o}) {
float z = getX(b, r, c, idx);
sum += z * z;
}
}
float val = x * ${i};
setOutput(val);
}
`}},Dre=class{constructor(e,t,n,s,r){this.variableNames=["x"],this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0;let a=t,o=e[3]-1;this.outputShape=e;let i,l=`float(${n}) + float(${s}) * sum`;r===.5?i=`inversesqrt(${l})`:r===1?i=`1.0/(${l})`:i=`exp(log(${l}) * float(-${r}));`,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords.x;
int r = coords.y;
int c = coords.z;
int d = coords.w;
bool hasNextCol = d < ${this.outputShape[3]};
bool hasNextRow = c < ${this.outputShape[2]};
vec4 sum = vec4(0.);
vec4 xFragAtOutputCoords = getX(b, r, c, d);
vec4 xAtOutputCoords = vec4(
getChannel(xFragAtOutputCoords, vec2(c, d)),
hasNextCol ?
getChannel(xFragAtOutputCoords, vec2(c, d + 1)) : 0.0,
hasNextRow ?
getChannel(xFragAtOutputCoords , vec2(c + 1, d)) : 0.0,
(hasNextRow && hasNextCol) ?
getChannel(xFragAtOutputCoords, vec2(c + 1, d + 1)) : 0.0
);
int firstChannel = d - ${a};
vec2 cache = vec2(0.);
if(firstChannel >= 0){
vec4 firstChannelFrag = getX(b, r, c, firstChannel);
cache.x = getChannel(firstChannelFrag, vec2(c, firstChannel));
if(hasNextRow){
cache.y = getChannel(firstChannelFrag, vec2(c + 1, firstChannel));
}
}
ivec2 depth = ivec2(d, d + 1);
for (int j = - ${a}; j <= ${a}; j++) {
ivec2 idx = depth + j;
bvec2 aboveLowerBound = greaterThanEqual(idx, ivec2(0));
bvec2 belowUpperBound = lessThanEqual(idx, ivec2(${o}));
bool depthInRange = aboveLowerBound.x && belowUpperBound.x;
bool depthPlusOneInRange = aboveLowerBound.y && belowUpperBound.y;
if(depthInRange || depthPlusOneInRange){
vec4 z = vec4(0.);
vec4 xFragAtCurrentDepth;
z.xz = cache.xy;
if(depthPlusOneInRange && hasNextCol){
xFragAtCurrentDepth = idx.y != d ?
getX(b, r, c, idx.y) : xFragAtOutputCoords;
z.y = getChannel(xFragAtCurrentDepth, vec2(c, idx.y));
if(hasNextRow){
z.w = getChannel(xFragAtCurrentDepth, vec2(c + 1, idx.y));
}
}
cache.xy = z.yw;
sum += z * z;
}
}
vec4 result = xAtOutputCoords * ${i};
setOutput(result);
}
`}},Pre=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{depthRadius:a,bias:o,alpha:i,beta:l}=s,c=Y().getBool("WEBGL_PACK_NORMALIZATION")?new Dre(r.shape,a,o,i,l):new _re(r.shape,a,o,i,l);return n.runWebGLProgram(c,[r],r.dtype)},Fre={kernelName:pd,backendName:"webgl",kernelFunc:Pre},Ore=class{constructor(e,t,n,s,r){this.variableNames=["inputImage","outputImage","dy"],this.outputShape=[],this.outputShape=e,this.depth=e[3],this.depthRadius=t,this.bias=n,this.alpha=s,this.beta=r,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int r = coords[1];
int c = coords[2];
float result = 0.0;
for (int d = 0; d < ${this.depth}; ++d) {
int depthBegin = int(max(0.0, float(d - ${t})));
int depthEnd = int(min(float(${this.depth}),
float(d + ${t} + 1)));
const int MIN_DEPTH_BEGIN = 0;
const int MAX_DEPTH_END = ${this.depth};
float norm = 0.0;
for (int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k) {
if (k < depthBegin){
continue;
}
else if (k >= depthBegin && k < depthEnd) {
norm += getInputImage(b, r, c, k) * getInputImage(b, r, c, k);
}
else {
break;
}
}
norm = float(${s}) * norm + float(${n});
for(int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k){
if (k < depthBegin){
continue;
}
else if (k >= depthBegin && k < depthEnd){
float dyi = -2.0 * float(${s})
* float(${r})
* getInputImage(b ,r ,c, k) * getOutputImage(b, r, c, d)
/ norm;
if (k == d) {
dyi += pow(norm, -1.0 * ${r});
}
if (k == coords[3]) {
dyi *= getDy(b, r, c, d);
result += dyi;
}
}
else {
break;
}
}
}
setOutput(result);
}
`}},Mre=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r,y:a,dy:o}=t,{depthRadius:i,bias:l,alpha:c,beta:u}=s,d=new Ore(r.shape,i,l,c,u);return n.runWebGLProgram(d,[r,a,o],r.dtype)},zre={kernelName:Wh,backendName:"webgl",kernelFunc:Mre};function Lre(e,t,n,s){let r=v.sizeFromShape(t),o=v.sizeFromShape(e.shape)/r,i=ve({inputs:{x:e},attrs:{shape:[o,r]},backend:s}),l=Rl(i,e.dtype,"max",s),c=ve({inputs:{x:l},attrs:{shape:n},backend:s});return s.disposeIntermediateTensorInfo(i),s.disposeIntermediateTensorInfo(l),c}function l4(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reductionIndices:a,keepDims:o}=s,i=r.shape.length,l=v.parseAxisParam(a,r.shape),c=l,u=E.getAxesPermutation(c,i),d=u!=null,p=n.shouldExecuteOnCPU([r]),h=r;if(d){if(p){let y=n.texData.get(h.dataId).values,b=new Array(i);for(let S=0;S<b.length;S++)b[S]=r.shape[u[S]];let w=vx(y,r.shape,r.dtype,u,b);h=n.makeTensorInfo(b,r.dtype);let k=n.texData.get(h.dataId);k.values=w}else h=Km(r,u,n);c=E.getInnerMostAxes(c.length,i)}E.assertAxesAreInnerMostDims("max",c,i);let[f,m]=E.computeOutAndReduceShapes(h.shape,c),g=f;o&&(g=E.expandShapeToKeepDim(f,l));let A;if(p){let y=n.texData.get(h.dataId).values,b=QJ(y,v.sizeFromShape(m),g,r.dtype);A=n.makeTensorInfo(g,r.dtype);let w=n.texData.get(A.dataId);w.values=b}else A=Lre(h,m,g,n);return d&&n.disposeIntermediateTensorInfo(h),A}var Bre={kernelName:Ka,backendName:"webgl",kernelFunc:l4},Wre=CC+`
return max(a, b);
`,Vre=`
vec4 result = vec4(max(a, b));
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
`+qm+`
return result;
`,Ure=Tn({opSnippet:Wre,packedOpSnippet:Vre,cpuKernelImpl:eQ}),Gre={kernelName:Za,backendName:"webgl",kernelFunc:Ure};function Hre(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t;ac(r,"maxPool");let{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=s,c=1;v.assert(E.eitherStridesOrDilationsAreOne(o,c),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${o} and dilations '${c}'`);let u=E.computePool2DInfo(r.shape,a,o,c,i,l);if(u.filterWidth===1&&u.filterHeight===1&&v.arraysEqual(u.inShape,u.outShape))return ks({inputs:{x:r},backend:n});let d=new bp(u,"max",!1);return n.runWebGLProgram(d,[r],r.dtype)}var jre={kernelName:Ya,backendName:"webgl",kernelFunc:Hre};function qre(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:o,pad:i,dataFormat:l,dimRoundingMode:c}=s,u=[1,1,1],d=E.computePool3DInfo(r.shape,a,o,u,i,c,l),p=new kx(d,"max",!1);return n.runWebGLProgram(p,[r],r.dtype)}var Xre={kernelName:hd,backendName:"webgl",kernelFunc:qre},Kre=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideHeight,n=e.strideWidth,s=e.dilationHeight,r=e.effectiveFilterHeight,a=e.effectiveFilterWidth,o=r-1-e.padInfo.top,i=a-1-e.padInfo.left,l=r*a-1;this.userCode=`
const ivec2 pads = ivec2(${o}, ${i});
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 dyRCCorner = coords.yz - pads;
int dyRCorner = dyRCCorner.x;
int dyCCorner = dyRCCorner.y;
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${r};
wR += ${s}) {
float dyR = float(dyRCorner + wR) / ${t}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${a}; wC++) {
float dyC = float(dyCCorner + wC) / ${n}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(b, idyR, idyC, d);
int maxPosValue = ${l} - int(getMaxPos(b, idyR, idyC, d));
// Get the current value, check it against the value from the
// position matrix.
int curPosValue = wR * ${a} + wC;
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
dotProd += dyValue * mask;
}
}
setOutput(dotProd);
}
`}},Zre=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideDepth,n=e.strideHeight,s=e.strideWidth,r=e.dilationDepth,a=e.dilationHeight,o=e.dilationWidth,i=e.effectiveFilterDepth,l=e.effectiveFilterHeight,c=e.effectiveFilterWidth,u=i-1-e.padInfo.front,d=l-1-e.padInfo.top,p=c-1-e.padInfo.left,h=i*l*c-1;this.userCode=`
const ivec3 pads = ivec3(${u}, ${d}, ${p});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
int dyDCorner = dyCorner.x;
int dyRCorner = dyCorner.y;
int dyCCorner = dyCorner.z;
// Convolve dy(?, ?, ?, ch) with pos mask(:, :, :, d) to get
// dx(xD, xR, xC, ch).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wD = 0; wD < ${i};
wD += ${r}) {
float dyD = float(dyDCorner + wD) / ${t}.0;
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
continue;
}
int idyD = int(dyD);
for (int wR = 0; wR < ${l};
wR += ${a}) {
float dyR = float(dyRCorner + wR) / ${n}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${c};
wC += ${o}) {
float dyC = float(dyCCorner + wC) / ${s}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
int maxPosValue = ${h} -
int(getMaxPos(batch, idyD, idyR, idyC, ch));
// Get the current value, check it against the value from the
// position matrix.
int curPosValue =
wD * ${l} * ${c} +
wR * ${c} + wC;
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
dotProd += dyValue * mask;
}
}
}
setOutput(dotProd);
}
`}};function Yre(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,o=a,{filterSize:i,strides:l,pad:c,dimRoundingMode:u}=s,d=[1,1,1],p=E.computePool3DInfo(o.shape,i,l,d,c,u),h=new kx(p,"max",!0),f=n.runWebGLProgram(h,[o],o.dtype),m=new Zre(p),g=n.runWebGLProgram(m,[r,f],o.dtype);return n.disposeIntermediateTensorInfo(f),g}var Jre={kernelName:Uh,backendName:"webgl",kernelFunc:Yre};function Qre(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a,output:o}=t,i=a;ac([a,o],"maxPoolGrad");let{filterSize:l,strides:c,pad:u,dimRoundingMode:d}=s,p=E.computePool2DInfo(i.shape,l,c,1,u,d),h=!0,f=new bp(p,"max",h),m=n.runWebGLProgram(f,[i],i.dtype),g=new Kre(p),A=n.runWebGLProgram(g,[r,m],i.dtype);return n.disposeIntermediateTensorInfo(m),A}var eae={kernelName:Vh,backendName:"webgl",kernelFunc:Qre};function tae(e,t,n,s){let r=new bp(n,"max",!1),a=s.runWebGLProgram(r,[e],"float32");r=new bp(n,"max",!0,!0,t);let o=s.runWebGLProgram(r,[e],"float32");return[a,o]}var nae={kernelName:Gh,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:s}=e,{filterSize:r,strides:a,pad:o,includeBatchInIndex:i}=t,l=n;v.assert(s.shape.length===4,()=>`Error in maxPool: input must be rank 4 but got rank ${s.shape.length}.`);let c=[1,1];v.assert(E.eitherStridesOrDilationsAreOne(a,c),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${a} and dilations '${c}'`);let u=E.computePool2DInfo(s.shape,r,a,c,o),[d,p]=tae(s,i,u,l);return[d,p]}};function sae(e,t,n,s){let r=v.sizeFromShape(t),o=v.sizeFromShape(e.shape)/r,i=ve({inputs:{x:e},attrs:{shape:[o,r]},backend:s}),l=Rl(i,"float32","mean",s),c=ve({inputs:{x:l},attrs:{shape:n},backend:s});return s.disposeIntermediateTensorInfo(i),s.disposeIntermediateTensorInfo(l),c}var rae={kernelName:Ja,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:s}=e,{keepDims:r,axis:a}=t,o=n,i=s.shape.length,l=v.parseAxisParam(a,s.shape),c=l,u=E.getAxesPermutation(c,i),d=u!=null,p=o.shouldExecuteOnCPU([s]),h=[],f=s;if(d){if(p){let b=o.texData.get(f.dataId).values,w=new Array(i);for(let N=0;N<w.length;N++)w[N]=s.shape[u[N]];let k=vx(b,s.shape,s.dtype,u,w);f=o.makeTensorInfo(w,s.dtype);let S=o.texData.get(f.dataId);S.values=k}else f=Km(s,u,o);h.push(f),c=E.getInnerMostAxes(c.length,i)}E.assertAxesAreInnerMostDims("sum",c,i);let[m,g]=E.computeOutAndReduceShapes(f.shape,c),A=m;r&&(A=E.expandShapeToKeepDim(m,l));let x=sae(f,g,A,o);for(let y of h)o.disposeIntermediateTensorInfo(y);return x}};function aae(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s,i=r.shape.length,l=v.parseAxisParam(a,r.shape),c=l,u=E.getAxesPermutation(c,i),d=r;u!=null&&(d=jn({inputs:{x:r},backend:n,attrs:{perm:u}}),c=E.getInnerMostAxes(c.length,r.shape.length)),E.assertAxesAreInnerMostDims("min",c,i);let[p,h]=E.computeOutAndReduceShapes(d.shape,c),f=v.sizeFromShape(h),m=ve({inputs:{x:d},backend:n,attrs:{shape:[-1,f]}}),g=Rl(m,m.dtype,"min",n),A;if(o){let x=E.expandShapeToKeepDim(p,l);A=ve({inputs:{x:g},backend:n,attrs:{shape:x}})}else A=ve({inputs:{x:g},backend:n,attrs:{shape:p}});return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(g),u!=null&&n.disposeIntermediateTensorInfo(d),A}var oae={kernelName:Qa,backendName:"webgl",kernelFunc:aae},iae=CC+`
return min(a, b);
`,lae=`
vec4 result = vec4(min(a, b));
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
`+qm+`
return result;
`,uae=Tn({opSnippet:iae,packedOpSnippet:lae,cpuKernelImpl:tQ}),cae={kernelName:eo,backendName:"webgl",kernelFunc:uae},dae=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=t.map((c,u)=>c[0]+e[u]+c[1]);let s=e.length,r=vt(s),a=t.map(c=>c[0]).join(","),o=t.map((c,u)=>c[0]+e[u]).join(","),i=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,s),l=n==="reflect"?0:1;if(s===1){this.userCode=`
int start = ${a};
int end = ${o};
void main() {
int outC = getOutputCoords();
if (outC < start) {
outC = start * 2 - outC - ${l};
} else if(outC >= end) {
outC = (end - 1) * 2 - outC + ${l};
}
setOutput(getX(outC - start));
}
`;return}this.userCode=`
${r} start = ${r}(${a});
${r} end = ${r}(${o});
void main() {
${r} outC = getOutputCoords();
for (int i = 0; i < ${s}; i++) {
if (outC[i] < start[i]) {
outC[i] = start[i] * 2 - outC[i] - ${l};
} else if(outC[i] >= end[i]) {
outC[i] = (end[i] - 1) * 2 - outC[i] + ${l};
}
}
${r} coords = outC - start;
setOutput(getX(${i}));
}
`}},pae=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((h,f)=>h[0]+e[f]+h[1]);let s=e.length,r=vt(s),a=t.map(h=>h[0]).join(","),o=t.map((h,f)=>h[0]+e[f]).join(","),i=Hn("rc",s),l=Hn("source",s),c=`${i[s-1]} < ${this.outputShape[s-1]}`,u=s===1?"source":`vec2(${l.slice(-2).join()})`,d=n==="reflect"?0:1,p="";if(s===1){let h=`
${r} source = rc;
if (source < start) {
source = start * 2 - source - ${d};
} else if (source >= end) {
source = (end - 1) * 2 - source + ${d};
}
source -= start;
`;p=`
${r} rc = outputLoc;
${h}
result[0] = getChannel(getX(${l.join()}), ${u});
${i[s-1]} += 1;
if(${c}) {
${h}
result[1] = getChannel(getX(${l.join()}), ${u});
}
`}else{let h=`
${r} source = rc;
${r} lt = ${r}(lessThan(source, start));
${r} gte = ${r}(greaterThanEqual(source, end));
${r} orig = 1 - (lt + gte);
source = orig * source +
lt * (start * 2 - source - ${d}) +
gte * ((end - 1) * 2 - source + ${d});
source -= start;
`;p=`
${r} rc = outputLoc;
${h}
result[0] = getChannel(getX(${l.join()}), ${u});
${i[s-1]} += 1;
if(${c}) {
${h}
result[1] = getChannel(getX(${l.join()}), ${u});
}
rc = outputLoc;
${i[s-2]} += 1;
if(${i[s-2]} < ${this.outputShape[s-2]}) {
${h}
result[2] = getChannel(getX(${l.join()}), ${u});
${i[s-1]} += 1;
if(${c}) {
${h}
result[3] = getChannel(getX(${l.join()}), ${u});
}
}
`}this.userCode=`
const ${r} start = ${r}(${a});
const ${r} end = ${r}(${o});
void main() {
${r} outputLoc = getOutputCoords();
vec4 result = vec4(0.);
${p}
setOutput(result);
}
`}},hae=({inputs:e,backend:t,attrs:n})=>{let{x:s}=e,{paddings:r,mode:a}=n,o=Y().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new pae(s.shape,r,a):new dae(s.shape,r,a);return t.runWebGLProgram(o,[s],s.dtype)},fae={kernelName:to,backendName:"webgl",kernelFunc:hae},mae=`if (b == 0.0) return NAN;
return mod(a, b);`,gae=`
vec4 result = mod(a, b);
vec4 isNaN = vec4(equal(b, vec4(0.0)));
`+qm+`
return result;
`,Aae=Tn({opSnippet:mae,packedOpSnippet:gae}),yae={kernelName:vu,backendName:"webgl",kernelFunc:Aae},xae=class{constructor(e,t,n){this.variableNames=["probs"],this.customUniforms=[{name:"seed",type:"float"}],this.outputShape=[e,n],this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
float r = random(seed);
float cdf = 0.0;
for (int i = 0; i < ${t-1}; i++) {
cdf += getProbs(batch, i);
if (r < cdf) {
setOutput(float(i));
return;
}
}
// If no other event happened, last event happened.
setOutput(float(${t-1}));
}
`}},bae=`
if (a == b) {
return 1.0;
};
return a / b;`,vae=`
// vec4 one = vec4(equal(a, b));
// return one + (vec4(1.0) - one) * a / b;
vec4 result = a / b;
if(a.x == b.x) {
result.x = 1.;
}
if(a.y == b.y) {
result.y = 1.;
}
if(a.z == b.z) {
result.z = 1.;
}
if(a.w == b.w) {
result.w = 1.;
}
return result;
`,u4=Tn({opSnippet:bae,packedOpSnippet:vae,checkOutOfBounds:!0}),wae={kernelName:Ba,backendName:"webgl",kernelFunc:u4},c4="return a - b;",d4=Tn({opSnippet:c4,packedOpSnippet:c4,supportsComplex:!0,cpuKernelImpl:AQ}),kae={kernelName:Ao,backendName:"webgl",kernelFunc:d4};function p4(e){let{inputs:t,backend:n,attrs:s}=e,{logits:r}=t,{dim:a}=s,o=v.parseAxisParam([a],r.shape),i=l4({inputs:{x:r},backend:n,attrs:{reductionIndices:o,keepDims:!1}}),l=E.expandShapeToKeepDim(i.shape,o),c=ve({inputs:{x:i},backend:n,attrs:{shape:l}}),u=d4({inputs:{a:r,b:c},backend:n}),d=n4({inputs:{x:u},backend:n}),p=Zm({inputs:{x:d},backend:n,attrs:{axis:o,keepDims:!1}}),h=ve({inputs:{x:p},backend:n,attrs:{shape:l}}),f=u4({inputs:{a:d,b:h},backend:n});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(h),f}var Iae={kernelName:mo,backendName:"webgl",kernelFunc:p4};function Sae(e){let{inputs:t,backend:n,attrs:s}=e,{logits:r}=t,{numSamples:a,seed:o,normalized:i}=s,l=i?r:p4({inputs:{logits:r},backend:n,attrs:{dim:r.shape.length-1}}),c=l.shape[0],u=l.shape[1],d=new xae(c,u,a),p=[[o]],h=n.runWebGLProgram(d,[l],"int32",p);return i||n.disposeIntermediateTensorInfo(l),h}var Cae={kernelName:Hh,backendName:"webgl",kernelFunc:Sae},h4="return -x;";function Tae(e){let{inputs:t,backend:n}=e,{x:s}=t;if(n.shouldExecuteOnCPU([s])){let a=n.texData.get(s.dataId),[o,i]=sQ(a.values,s.shape,s.dtype);return n.makeTensorInfo(i,s.dtype,o)}let r;return Y().getBool("WEBGL_PACK_UNARY_OPERATIONS")?r=new cc(s.shape,h4):r=new Ho(s.shape,h4),n.runWebGLProgram(r,[s],s.dtype)}var Nae={kernelName:Ni,backendName:"webgl",kernelFunc:Tae},Eae=tr.nonMaxSuppressionV3Impl;function Rae(e){E.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l}=s,c=n.readSync(r.dataId),u=n.readSync(a.dataId),{selectedIndices:d}=Eae(c,u,o,i,l);return n.makeTensorInfo([d.length],"int32",new Int32Array(d))}var $ae={kernelName:Ri,backendName:"webgl",kernelFunc:Rae},_ae=tr.nonMaxSuppressionV4Impl;function Dae(e){E.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l,padToMaxOutputSize:c}=s,u=n.readSync(r.dataId),d=n.readSync(a.dataId),{selectedIndices:p,validOutputs:h}=_ae(u,d,o,i,l,c);return[n.makeTensorInfo([p.length],"int32",new Int32Array(p)),n.makeTensorInfo([],"int32",new Int32Array([h]))]}var Pae={kernelName:wu,backendName:"webgl",kernelFunc:Dae},Fae=tr.nonMaxSuppressionV5Impl;function Oae(e){E.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l,softNmsSigma:c}=s,u=n.readSync(r.dataId),d=n.readSync(a.dataId),p=o,h=i,f=l,m=c,{selectedIndices:g,selectedScores:A}=Fae(u,d,p,h,f,m);return[n.makeTensorInfo([g.length],"int32",new Int32Array(g)),n.makeTensorInfo([A.length],"float32",new Float32Array(A))]}var Mae={kernelName:$i,backendName:"webgl",kernelFunc:Oae},zae=class{constructor(e,t,n,s){this.variableNames=["indices"],this.outputShape=[e,t],this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int index = round(getIndices(coords.x));
setOutput(mix(float(${s}), float(${n}),
float(index == coords.y)));
}
`}},Lae=e=>{let{inputs:t,backend:n,attrs:s}=e,{indices:r}=t,{depth:a,onValue:o,offValue:i}=s,l=v.sizeFromShape(r.shape),c=new zae(l,a,o,i),u=ve({inputs:{x:r},backend:n,attrs:{shape:[l]}}),d=n.runWebGLProgram(c,[u],r.dtype);n.disposeIntermediateTensorInfo(u);let p=[...r.shape,a],h=ve({inputs:{x:d},backend:n,attrs:{shape:p}});return n.disposeIntermediateTensorInfo(d),h},Bae={kernelName:Di,backendName:"webgl",kernelFunc:Lae};function t0(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="complex64"){let r=vp({inputs:{input:s},backend:n}),a=t0({inputs:{x:r},backend:n}),o=e0({inputs:{input:s},backend:n}),i=t0({inputs:{x:o},backend:n}),l=jo({inputs:{real:a,imag:i},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),l}else return wp({attrs:{shape:s.shape,dtype:s.dtype,value:s.dtype==="string"?"":0},backend:n})}var Wae={kernelName:Zi,backendName:"webgl",kernelFunc:t0};function f4(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="string")throw new Error("onesLike is not supported under string dtype");if(s.dtype==="complex64"){let r=vp({inputs:{input:s},backend:n}),a=f4({inputs:{x:r},backend:n}),o=e0({inputs:{input:s},backend:n}),i=t0({inputs:{x:o},backend:n}),l=jo({inputs:{real:a,imag:i},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),l}else return wp({attrs:{shape:s.shape,dtype:s.dtype,value:1},backend:n})}var Vae={kernelName:_i,backendName:"webgl",kernelFunc:f4};function Uae(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s;if(t.length===1)return Cx({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let a=t[0].shape,o=t[0].dtype;t.forEach(u=>{v.assertShapesMatch(a,u.shape,"All tensors passed to stack must have matching shapes"),v.assert(o===u.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],l=t.map(u=>{let d=Cx({inputs:{input:u},backend:n,attrs:{dim:r}});return i.push(d),d}),c=jC({inputs:l,backend:n,attrs:{axis:r}});return i.forEach(u=>n.disposeIntermediateTensorInfo(u)),c}var Gae={kernelName:Pi,backendName:"webgl",kernelFunc:Uae},Hae=class{constructor(e,t,n){this.variableNames=["x"],this.customUniforms=[{name:"value",type:"float"}],this.outputShape=t.map((l,c)=>l[0]+e[c]+l[1]);let s=e.length,r=vt(s),a=t.map(l=>l[0]).join(","),o=t.map((l,c)=>l[0]+e[c]).join(","),i=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,s);if(s===1){this.userCode=`
int start = ${a};
int end = ${o};
void main() {
int outC = getOutputCoords();
if (outC < start || outC >= end) {
setOutput(value);
} else {
setOutput(getX(outC - start));
}
}
`;return}this.userCode=`
${r} start = ${r}(${a});
${r} end = ${r}(${o});
void main() {
${r} outC = getOutputCoords();
if (any(lessThan(outC, start)) || any(greaterThanEqual(outC, end))) {
setOutput(value);
} else {
${r} coords = outC - start;
setOutput(getX(${i}));
}
}
`}},jae=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"value",type:"float"}],this.outputShape=t.map((f,m)=>f[0]+e[m]+f[1]);let s=e.length,r=vt(s),a=t.map(f=>f[0]).join(","),o=t.map((f,m)=>f[0]+e[m]).join(","),i=Hn("rc",s),l=Hn("source",s),c=`${i[s-1]} < ${this.outputShape[s-1]}`,u=s===1?"source":`vec2(${l.slice(-2).join()})`,d=[`${r} rc = outputLoc;`,`${i[s-1]} += 1;
if(${c}) {
`,s===1?"":`}
rc = outputLoc;
${i[s-2]} += 1;
if(${i[s-2]} < ${this.outputShape[s-2]}) {`,s===1?"":` ${i[s-1]} += 1;
if(${c}) {`],p=s===1?"rc < start || rc >= end":"any(lessThan(rc, start)) || any(greaterThanEqual(rc, end))",h="";for(let f=0,m=s===1?2:4;f<m;f++)h+=`
${d[f]}
if (${p}) {
result[${f}] = float(value);
} else {
${r} source = rc - start;
result[${f}] = getChannel(getX(${l.join()}), ${u});
}
`;h+=s===1?"} ":"}}",this.userCode=`
const ${r} start = ${r}(${a});
const ${r} end = ${r}(${o});
void main() {
${r} outputLoc = getOutputCoords();
vec4 result = vec4(0.);
${h}
setOutput(result);
}
`}},m4=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{paddings:a,constantValue:o}=s;if(v.sizeFromShape(r.shape)===0){let c=a.map((u,d)=>u[0]+r.shape[d]+u[1]);return wp({backend:n,attrs:{shape:c,value:o,dtype:r.dtype}})}let i=Y().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new jae(r.shape,a,o):new Hae(r.shape,a,o),l=[[o]];return n.runWebGLProgram(i,[r],r.dtype,l)},qae={kernelName:so,backendName:"webgl",kernelFunc:m4},Xae=`
if(a < 0.0 && floor(b) < b){
return NAN;
}
if (b == 0.0) {
return 1.0;
}
return (round(mod(b, 2.0)) != 1) ?
pow(abs(a), b) : sign(a) * pow(abs(a), b);
`,Kae=`
// isModRound1 has 1 for components with round(mod(b, 2.0)) == 1, 0 otherwise.
vec4 isModRound1 = vec4(equal(round(mod(b, 2.0)), ivec4(1)));
vec4 multiplier = sign(a) * isModRound1 + (vec4(1.0) - isModRound1);
vec4 result = multiplier * pow(abs(a), b);
// Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS
bvec4 isExpZero = equal(b, vec4(0.0));
result.r = isExpZero.r ? 1.0 : result.r;
result.g = isExpZero.g ? 1.0 : result.g;
result.b = isExpZero.b ? 1.0 : result.b;
result.a = isExpZero.a ? 1.0 : result.a;
vec4 isNaN = vec4(lessThan(a, vec4(0.0))) * vec4(lessThan(floor(b), b));
`+qm+`
return result;
`,Zae=Tn({opSnippet:Xae,packedOpSnippet:Kae}),Yae={kernelName:ro,backendName:"webgl",kernelFunc:Zae};function Jae(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s,i=r.shape.length,l=[],c=v.parseAxisParam(a,r.shape),u=c,d=E.getAxesPermutation(u,i),p=r;d!=null&&(p=jn({inputs:{x:r},backend:n,attrs:{perm:d}}),u=E.getInnerMostAxes(u.length,i),l.push(p)),E.assertAxesAreInnerMostDims("prod",u,i);let h;if(n.shouldExecuteOnCPU([p])){let f=n.texData.get(p.dataId).values,{outVals:m,outShape:g,outDtype:A}=aQ(p.shape,p.dtype,f,u);h=n.makeTensorInfo(g,A,m)}else{let[f,m]=E.computeOutAndReduceShapes(p.shape,u),g=v.sizeFromShape(m),A=ve({inputs:{x:p},backend:n,attrs:{shape:[-1,g]}}),x=Td(r.dtype),y=Rl(A,x,"prod",n);h=ve({inputs:{x:y},backend:n,attrs:{shape:f}}),l.push(A),l.push(y)}if(o){l.push(h);let f=E.expandShapeToKeepDim(h.shape,c);h=ve({inputs:{x:h},backend:n,attrs:{shape:f}})}return l.forEach(f=>n.disposeIntermediateTensorInfo(f)),h}var Qae={kernelName:Fi,backendName:"webgl",kernelFunc:Jae},g4=e=>{let{backend:t,attrs:n}=e,{start:s,stop:r,step:a,dtype:o}=n,i=oQ(s,r,a,o);return t.makeTensorInfo([i.length],o,i)},eoe={kernelName:ku,backendName:"webgl",kernelFunc:g4},toe="return 1.0 / x;",noe=rt({opSnippet:toe}),soe={kernelName:Iu,backendName:"webgl",kernelFunc:noe},roe=kr+`
return (x < 0.0) ? 0.0 : x;
`,aoe=`
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,ooe=rt({opSnippet:roe,packedOpSnippet:aoe}),ioe={kernelName:oo,backendName:"webgl",kernelFunc:ooe},loe=kr+`
return (x < 0.0) ? 0.0 : min(6.0, x);
`,uoe=`
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,coe=rt({opSnippet:loe,packedOpSnippet:uoe}),doe={kernelName:lo,backendName:"webgl",kernelFunc:coe},poe=class{constructor(e,t,n,s,r){this.variableNames=["A"],this.outputShape=[];let[a,o,i,l]=e;this.outputShape=[a,t,n,l];let c=[s&&t>1?o-1:o,s&&n>1?i-1:i],u=[s&&t>1?t-1:t,s&&n>1?n-1:n],d;r?d="(vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC - vec2(0.5)":d="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec2 effectiveInputOverOutputRatioRC = vec2(
${c[0]/u[0]},
${c[1]/u[1]});
const vec2 inputShapeRC = vec2(${o}.0, ${i}.0);
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 yRC = coords.yz;
// Fractional source index.
vec2 sourceFracIndexRC = ${d};
// Compute the four integer indices.
ivec2 sourceFloorRC = ivec2(max(sourceFracIndexRC, vec2(0.0)));
ivec2 sourceCeilRC = ivec2(
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
float topLeft = getA(b, sourceFloorRC.x, sourceFloorRC.y, d);
float bottomLeft = getA(b, sourceCeilRC.x, sourceFloorRC.y, d);
float topRight = getA(b, sourceFloorRC.x, sourceCeilRC.y, d);
float bottomRight = getA(b, sourceCeilRC.x, sourceCeilRC.y, d);
vec2 fracRC = sourceFracIndexRC - vec2(sourceFloorRC);
float top = topLeft + (topRight - topLeft) * fracRC.y;
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracRC.y;
float newValue = top + (bottom - top) * fracRC.x;
setOutput(newValue);
}
`}},hoe=class{constructor(e,t,n,s,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[a,o,i,l]=e;this.outputShape=[a,t,n,l];let c=[s&&t>1?o-1:o,s&&n>1?i-1:i],u=[s&&t>1?t-1:t,s&&n>1?n-1:n],d;r?d="(vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC - vec3(0.5)":d="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec3 effectiveInputOverOutputRatioRC = vec3(
${c[0]/u[0]},
${c[1]/u[1]},
${c[1]/u[1]});
const vec3 inputShapeRC = vec3(${o}.0, ${i}.0,
${i}.0);
float getAValue(int b, int r, int c, int d) {
return getChannel(getA(b, r, c, d), vec2(c, d));
}
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
// Calculate values for next column in yRC.z.
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
// Fractional source index.
vec3 sourceFracIndexRC = ${d};
// Compute the four integer indices.
ivec3 sourceFloorRC = ivec3(max(sourceFracIndexRC, vec3(0.0)));
ivec3 sourceCeilRC = ivec3(
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
// Should we calculate next column and row elements in 2x2 packed cell.
bool hasNextCol = d < ${l-1};
bool hasNextRow = coords.z < ${n-1};
// In parallel, construct four corners for all four components in
// packed 2x2 cell.
vec4 topLeft = vec4(
getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d),
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d + 1) : 0.0);
vec4 bottomLeft = vec4(
getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d),
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d + 1) : 0.0);
vec4 topRight = vec4(
getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d),
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d + 1) : 0.0);
vec4 bottomRight = vec4(
getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d),
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d + 1) : 0.0);
vec3 fracRC = sourceFracIndexRC - vec3(sourceFloorRC);
vec4 top = mix(topLeft, topRight, fracRC.yyzz);
vec4 bottom = mix(bottomLeft, bottomRight, fracRC.yyzz);
vec4 newValue = mix(top, bottom, fracRC.x);
setOutput(newValue);
}
`}};function foe(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,halfPixelCenters:o,size:i}=s,[l,c]=i,u=Y().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new hoe(r.shape,l,c,a,o):new poe(r.shape,l,c,a,o);return n.runWebGLProgram(u,[r],"float32")}var moe={kernelName:io,backendName:"webgl",kernelFunc:foe},goe=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,s,r]=t,[,a,o]=e,i=[n&&a>1?s-1:s,n&&o>1?r-1:r],l=[n&&a>1?a-1:a,n&&o>1?o-1:o],c=i[0]/l[0],u=i[1]/l[1],d=1/c,p=1/u,h=Math.ceil(d)*2+2,f=Math.ceil(p)*2+2;this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
int r = coords[1];
int c = coords[2];
float accumulator = 0.0;
const float heightScale = float(${c});
const float widthScale = float(${u});
const float invHeightScale = float(${d});
const float invWidthScale = float(${p});
const int winHeight = int(${h});
const int winWidth = int(${f});
// Compute bounds for where in dy we will look
float startRLerp = floor(float(r) * invHeightScale);
int startDyR = int(startRLerp - float(winHeight / 2));
float startCLerp = floor(float(c) * invWidthScale);
int startDyC = int(startCLerp - float(winWidth / 2));
// Loop over dy
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
int dyR = dyROffset + startDyR;
// Guard against the window exceeding the bounds of dy
if (dyR < 0 || dyR >= ${a}) {
continue;
}
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
int dyC = dyCOffset + startDyC;
// Guard against the window exceeding the bounds of dy
if (dyC < 0 || dyC >= ${o}) {
continue;
}
float dxR = float(dyR) * heightScale;
int topDxRIndex = int(floor(dxR));
int bottomDxRIndex = int(min(ceil(dxR), ${s-1}.0));
float dxRLerp = dxR - float(topDxRIndex);
float inverseDxRLerp = 1.0 - dxRLerp;
float dxC = float(dyC) * widthScale;
int leftDxCIndex = int(floor(dxC));
int rightDxCIndex = int(min(ceil(dxC), ${r-1}.0));
float dxCLerp = dxC - float(leftDxCIndex);
float inverseDxCLerp = 1.0 - dxCLerp;
if (r == topDxRIndex && c == leftDxCIndex) {
// topLeft
accumulator +=
getDy(b, dyR, dyC, d) * inverseDxRLerp * inverseDxCLerp;
}
if (r == topDxRIndex && c == rightDxCIndex) {
// topRight
accumulator += getDy(b, dyR, dyC, d) * inverseDxRLerp * dxCLerp;
}
if (r == bottomDxRIndex && c == leftDxCIndex) {
// bottomLeft
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * inverseDxCLerp;
}
if (r == bottomDxRIndex && c == rightDxCIndex) {
// bottomRight
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * dxCLerp;
}
}
}
// End loop over dy
setOutput(accumulator);
}
`}};function Aoe(e){let{inputs:t,backend:n,attrs:s}=e,{images:r,dy:a}=t,{alignCorners:o}=s,i=new goe(a.shape,r.shape,o);return n.runWebGLProgram(i,[a],a.dtype)}var yoe={kernelName:qh,backendName:"webgl",kernelFunc:Aoe},xoe=class{constructor(e,t,n,s,r){this.variableNames=["A"],this.outputShape=[];let[a,o,i,l]=e;this.outputShape=[a,t,n,l];let c=[s&&t>1?o-1:o,s&&n>1?i-1:i],u=[s&&t>1?t-1:t,s&&n>1?n-1:n],d=s?"0.5":"0.0",p;r?p="max((vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC, vec2(0.0))":p="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec2 effectiveInputOverOutputRatioRC = vec2(
${c[0]/u[0]},
${c[1]/u[1]});
const vec2 inputShapeRC = vec2(${o}.0, ${i}.0);
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 yRC = coords.yz;
// Fractional source index.
vec2 sourceFracIndexRC = ${p};
// Compute the coordinators of nearest neighbor point.
ivec2 sourceNearestRC = ivec2(
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${d})));
float newValue = getA(b, sourceNearestRC.x, sourceNearestRC.y, d);
setOutput(newValue);
}
`}},boe=class{constructor(e,t,n,s,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[a,o,i,l]=e;this.outputShape=[a,t,n,l];let c=[s&&t>1?o-1:o,s&&n>1?i-1:i],u=[s&&t>1?t-1:t,s&&n>1?n-1:n],d=s?"0.5":"0.0",p;r?p="max((vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC, vec3(0.0))":p="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec3 effectiveInputOverOutputRatioRC = vec3(
${c[0]/u[0]},
${c[1]/u[1]},
${c[1]/u[1]});
const vec3 inputShapeRC = vec3(${o}.0, ${i}.0,
${i}.0);
float getAValue(int b, int r, int c, int d) {
return getChannel(getA(b, r, c, d), vec2(c, d));
}
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
// Calculate values for next column in yRC.z.
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
// Fractional source index.
vec3 sourceFracIndexRC = ${p};
// Compute the coordinators of nearest neighbor point.
ivec3 sourceNearestRC = ivec3(
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${d})));
// Should we calculate next column and row elements in 2x2 packed cell.
bool hasNextCol = d < ${l-1};
bool hasNextRow = coords.z < ${n-1};
vec4 newValue = vec4(
getAValue(b, sourceNearestRC.x, sourceNearestRC.y, d),
hasNextCol ? getAValue(b, sourceNearestRC.x, sourceNearestRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceNearestRC.x, sourceNearestRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceNearestRC.x, sourceNearestRC.z, d + 1) : 0.0);
setOutput(newValue);
}
`}};function voe(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,halfPixelCenters:o,size:i}=s,[l,c]=i,u=Y().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new boe(r.shape,l,c,a,o):new xoe(r.shape,l,c,a,o);return n.runWebGLProgram(u,[r],r.dtype)}var woe={kernelName:Su,backendName:"webgl",kernelFunc:voe},koe=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,s,r]=t,[,a,o]=e,i=[n&&a>1?s-1:s,n&&o>1?r-1:r],l=[n&&a>1?a-1:a,n&&o>1?o-1:o],c=i[0]/l[0],u=i[1]/l[1],d=1/c,p=1/u,h=Math.ceil(d)*2+2,f=Math.ceil(p)*2+2;this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
int r = coords[1];
int c = coords[2];
float accumulator = 0.0;
const float heightScale = float(${c});
const float widthScale = float(${u});
const float invHeightScale = float(${d});
const float invWidthScale = float(${p});
const int winHeight = int(${h});
const int winWidth = int(${f});
// Compute bounds for where in dy we will look
float startRLerp = floor(float(r) * invHeightScale);
int startDyR = int(floor(startRLerp - float(winHeight / 2)));
float startCLerp = floor(float(c) * invWidthScale);
int startDyC = int(floor(startCLerp - float(winWidth / 2)));
// Loop over dy
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
int dyR = dyROffset + startDyR;
// Guard against the window exceeding the bounds of dy
if (dyR < 0 || dyR >= ${a}) {
continue;
}
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
int dyC = dyCOffset + startDyC;
// Guard against the window exceeding the bounds of dy
if (dyC < 0 || dyC >= ${o}) {
continue;
}
float sourceFracRow =
float(${i[0]}) *
(float(dyR) / float(${l[0]}));
float sourceFracCol =
float(${i[1]}) *
(float(dyC) / float(${l[1]}));
int sourceNearestRow = int(min(
float(int(${s}) - 1),
${n} ? float(round(sourceFracRow)) :
float(floor(sourceFracRow))));
int sourceNearestCol = int(min(
float(int(${r}) - 1),
${n} ? float(round(sourceFracCol)) :
float(floor(sourceFracCol))));
if (r == sourceNearestRow && c == sourceNearestCol) {
accumulator += getDy(b, dyR, dyC, d);
}
}
}
// End loop over dy
setOutput(accumulator);
}
`}};function Ioe(e){let{inputs:t,backend:n,attrs:s}=e,{images:r,dy:a}=t,{alignCorners:o}=s,i=new koe(a.shape,r.shape,o);return n.runWebGLProgram(i,[a],a.dtype)}var Soe={kernelName:jh,backendName:"webgl",kernelFunc:Ioe},Coe=class{constructor(e,t){this.variableNames=["x"];let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);if(this.outputShape=e,n===1){this.userCode=`
void main() {
int coord = getOutputCoords();
setOutput(getX(${e[0]} - coord - 1));
}
`;return}let s=o=>t.indexOf(o)!==-1&&e[o]!==1?`${e[o]} - coords[${o}] - 1`:`coords[${o}]`,r=e.map((o,i)=>s(i)).join(","),a=vt(n);this.userCode=`
void main() {
${a} coords = getOutputCoords();
setOutput(getX(${r}));
}
`}},Toe=class{constructor(e,t){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0;let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);this.outputShape=e;let s=Hn("rc",n),r=`${s[n-1]} + 1 < ${this.outputShape[n-1]}`,a=`${s[n-2]} + 1 < ${this.outputShape[n-2]}`,o=vt(n);n===1?this.userCode=`
void main(){
int rc = getOutputCoords();
vec4 result = vec4(0.);
result.r = getChannel(getX(${e[0]} - rc - 1),
${e[0]} - rc - 1);
if(${r}){
result.g = getChannel(getX(${e[0]} - (rc + 1) - 1),
${e[0]} - (rc + 1) - 1);
}
setOutput(result);
}
`:this.userCode=`
void main() {
${o} rc = getOutputCoords();
vec4 result = vec4(0.);
result.r = ${i(s.slice())};
if(${r}){
result.g = ${l(s.slice())};
}
if(${a}) {
result.b = ${c(s.slice())};
if(${r}) {
result.a = ${u(s.slice())};
}
}
setOutput(result);
}
`;function i(h){return d(h)}function l(h){return h[n-1]="("+h[n-1]+" + 1)",d(h)}function c(h){return h[n-2]="("+h[n-2]+" + 1)",d(h)}function u(h){return h[n-1]="("+h[n-1]+" + 1)",h[n-2]="("+h[n-2]+" + 1)",d(h)}function d(h){let f=e.map((A,x)=>p(x,h)),m=f.join(","),g=f.slice(-2).join(",");return`getChannel(getX(${m}), vec2(${g}))`}function p(h,f){return t.indexOf(h)!==-1&&e[h]!==1?`${e[h]} - ${f[h]} - 1`:`${f[h]}`}}};function Noe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dims:a}=s,o=r.shape.length,i=v.parseAxisParam(a,r.shape);if(o===0)return ks({inputs:{x:r},backend:n});let l=Y().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new Toe(r.shape,i):new Coe(r.shape,i);return n.runWebGLProgram(l,[r],r.dtype)}var Eoe={kernelName:Mi,backendName:"webgl",kernelFunc:Noe},Roe=class{constructor(e,t){this.variableNames=["Image"],this.outputShape=[],this.customUniforms=[{name:"params",type:"vec4"}];let n=e[1],s=e[2];this.outputShape=e;let r="";typeof t=="number"?r=`float outputValue = ${t.toFixed(2)};`:r=`
vec3 fill = vec3(${t.join(",")});
float outputValue = fill[coords[3]];`,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int x = coords[2];
int y = coords[1];
float coordXFloat = (float(x) - params[0]) * params[3] -
(float(y) - params[1]) * params[2];
float coordYFloat = (float(x) - params[0]) * params[2] +
(float(y) - params[1]) * params[3];
int coordX = int(round(coordXFloat + params[0]));
int coordY = int(round(coordYFloat + params[1]));
${r}
if(coordX >= 0 && coordX < ${s} && coordY >= 0 && coordY < ${n}) {
outputValue = getImage(coords[0], coordY, coordX, coords[3]);
}
setOutput(outputValue);
}
`}},$oe={kernelName:Yi,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:s}=e,{radians:r,fillValue:a,center:o}=t,i=n,l=new Roe(s.shape,a),[c,u]=E.getImageCenter(o,s.shape[1],s.shape[2]),d=[[c,u,Math.sin(r),Math.cos(r)]];return i.runWebGLProgram(l,[s],s.dtype,d)}},_oe=`
// OpenGL ES does not support round function.
// The algorithm is based on banker's rounding.
float base = floor(x);
if ((x - base) < 0.5) {
return floor(x);
} else if ((x - base) > 0.5) {
return ceil(x);
} else {
if (mod(base, 2.0) == 0.0) {
return base;
} else {
return base + 1.0;
}
}
`,Doe=rt({opSnippet:_oe}),Poe={kernelName:zi,backendName:"webgl",kernelFunc:Doe},Foe="return inversesqrt(x);",Ooe=rt({opSnippet:Foe,cpuKernelImpl:iQ}),Moe={kernelName:uo,backendName:"webgl",kernelFunc:Ooe},A4=class{constructor(e,t,n,s,r,a,o=!0){this.variableNames=["updates","indices","defaultValue"],this.outputShape=a;let i=vt(r.length),l=vt(a.length),c="";n===1?c="i":n===2&&(c="i, j");let u=`getIndices(${c})`,d="";s===1?d="i":s===2&&(d="i, coords[1]");let p=`getUpdates(${d})`,h=t>1?"strides[j]":"strides";this.userCode=`
${i} strides = ${i}(${r});
void main() {
${l} coords = getOutputCoords();
float sum = 0.0;
bool found = false;
for (int i = 0; i < ${e}; i++) {
int flattenedIndex = 0;
for (int j = 0; j < ${t}; j++) {
int index = round(${u});
flattenedIndex += index * ${h};
}
if (flattenedIndex == coords[0]) {
sum += ${p};
found = true;
}
}
setOutput(mix(getDefaultValue(), sum, float(found)));
}
`}};function zoe(e){let{inputs:t,backend:n,attrs:s}=e,{indices:r,updates:a}=t,{shape:o}=s,{sliceRank:i,numUpdates:l,sliceSize:c,strides:u,outputSize:d}=E.calculateShapes(a,r,o),p=[d/c,c];if(d===0)return n.makeTensorInfo(o,r.dtype);let h=ve({inputs:{x:r},backend:n,attrs:{shape:[l,i]}}),f=ve({inputs:{x:a},backend:n,attrs:{shape:[l,c]}}),m=n.makeTensorInfo([],"float32",new Float32Array([0])),g=new A4(l,i,h.shape.length,f.shape.length,u,p),A=n.runWebGLProgram(g,[f,h,m],f.dtype),x=ve({inputs:{x:A},backend:n,attrs:{shape:o}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(A),n.disposeIntermediateTensorInfo(m),x}var Loe={kernelName:Li,backendName:"webgl",kernelFunc:zoe},Boe=class{constructor(e,t,n){this.variableNames=["c","a","b"],this.outputShape=t;let s,r;if(n>4)throw Error(`Where for rank ${n} is not yet supported`);if(n===1)r="resRC",s="resRC";else{let o=["resRC.x","resRC.y","resRC.z","resRC.w"],i=[],l=[];for(let c=0;c<t.length;c++)l.push(`${o[c]}`),c<e&&i.push(`${o[c]}`);s=i.join(),r=l.join()}let a=vt(n);this.userCode=`
void main() {
${a} resRC = getOutputCoords();
float cVal = getC(${s});
if (cVal >= 1.0) {
setOutput(getA(${r}));
} else {
setOutput(getB(${r}));
}
}
`}};function Woe(e){let{inputs:t,backend:n}=e,{condition:s,t:r,e:a}=t,o=new Boe(s.shape.length,r.shape,r.shape.length);return n.runWebGLProgram(o,[s,r,a],Ln(r.dtype,a.dtype))}var Voe={kernelName:Bi,backendName:"webgl",kernelFunc:Woe},Uoe=`
// Stable and Attracting Fixed Point (0, 1) for Normalized Weights.
// see: https://arxiv.org/abs/1706.02515
float scaleAlpha = ${E.SELU_SCALEALPHA};
float scale = ${E.SELU_SCALE};
return (x >= 0.0) ? scale * x : scaleAlpha * (exp(x) - 1.0);
`,Goe=rt({opSnippet:Uoe}),Hoe={kernelName:Cu,backendName:"webgl",kernelFunc:Goe},y4="return 1.0 / (1.0 + exp(-1.0 * x));",joe=rt({opSnippet:y4,packedOpSnippet:y4,cpuKernelImpl:lQ}),qoe={kernelName:po,backendName:"webgl",kernelFunc:joe},Xoe=`
if (isnan(x)) { return 0.0; }
return sign(x);
`,Koe=rt({opSnippet:Xoe}),Zoe={kernelName:Tu,backendName:"webgl",kernelFunc:Koe},Yoe=$C+`
return sin(x);
`,Joe=rt({opSnippet:Yoe}),Qoe={kernelName:co,backendName:"webgl",kernelFunc:Joe},eie=`
float e2x = exp(x);
return (e2x - 1.0 / e2x) / 2.0;
`,tie=rt({opSnippet:eie}),nie={kernelName:Vi,backendName:"webgl",kernelFunc:tie},sie=`
float epsilon = 1.1920928955078125e-7;
float threshold = log(epsilon) + 2.0;
bool too_large = x > -threshold;
bool too_small = x < threshold;
float result;
float exp_x = exp(x);
if (too_large){
result = x;
}
else if (too_small){
result = exp_x;
}
else{
result = log(exp_x + 1.0);
}
return result;
`,rie=rt({opSnippet:sie}),aie={kernelName:Nu,backendName:"webgl",kernelFunc:rie},oie=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,paddings:o}=s;v.assert(r.shape.length<=4,()=>"spaceToBatchND for rank > 4 with a WebGL backend not implemented yet");let i=a.reduce((A,x)=>A*x),l=[[0,0]];l.push(...o);for(let A=1+a.length;A<r.shape.length;++A)l.push([0,0]);let c=[],u=m4({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),d=E.getReshaped(u.shape,a,i,!1),p=E.getPermuted(d.length,a.length,!1),h=E.getReshapedPermuted(u.shape,a,i,!1),f=ve({inputs:{x:u},backend:n,attrs:{shape:d}}),m=jn({inputs:{x:f},backend:n,attrs:{perm:p}}),g=ve({inputs:{x:m},backend:n,attrs:{shape:h}});return c.push(u),c.push(f),c.push(m),c.forEach(A=>n.disposeIntermediateTensorInfo(A)),g},iie={kernelName:Ui,backendName:"webgl",kernelFunc:oie};function lie(e){let{inputs:t,backend:n}=e,{indices:s,values:r,denseShape:a,defaultValue:o}=t;if(a.shape.length!==1)throw new Error(`Dense shape must be a vector, saw:
${a.shape}`);if(s.shape.length!==2)throw new Error(`Indices must be a matrix, saw:
${s.shape}`);if(r.shape.length!==1)throw new Error(`Values must be a vector, saw:
${r.shape}`);if(o.shape.length!==0)throw new Error(`Default value must be a scalar, saw:
${o.shape}`);let i=n.readSync(s.dataId),l=n.readSync(r.dataId),c=n.readSync(a.dataId),u=n.readSync(o.dataId)[0],[d,p,h,f,m]=cQ(i,s.shape,s.dtype,l,r.dtype,c,u);return[n.makeTensorInfo(p,s.dtype,d),n.makeTensorInfo([p[0]],r.dtype,h),n.makeTensorInfo([f.length],"bool",new Uint8Array(f.map(g=>Number(g)))),n.makeTensorInfo([m.length],s.dtype,new Int32Array(m))]}var uie={kernelName:Xh,backendName:"webgl",kernelFunc:lie};function cie(e){let{inputs:t,backend:n}=e,{inputIndices:s,inputShape:r,newShape:a}=t;if(s.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape ${s.shape}`);if(r.shape.length!==1)throw new Error(`Input shape should be a vector but received shape ${r.shape}`);if(a.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${a.shape}`);let o=Array.from(n.readSync(r.dataId)),i=n.readSync(s.dataId),l=Array.from(n.readSync(a.dataId)),[c,u,d]=dQ(i,s.shape,s.dtype,o,l);return[n.makeTensorInfo(u,s.dtype,c),n.makeTensorInfo([d.length],a.dtype,new Int32Array(d))]}var die={kernelName:Kh,backendName:"webgl",kernelFunc:cie};function pie(e){let{inputs:t,backend:n}=e,{data:s,indices:r,segmentIds:a}=t;if(s.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
${r.shape}`);if(a.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
${a.shape}`);let o=n.readSync(s.dataId),i=n.readSync(r.dataId),l=n.readSync(a.dataId),[c,u]=AC(o,s.shape,s.dtype,i,l,!0);return n.makeTensorInfo(u,s.dtype,c)}var hie={kernelName:Zh,backendName:"webgl",kernelFunc:pie};function fie(e){let{inputs:t,backend:n}=e,{data:s,indices:r,segmentIds:a}=t;if(s.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
${r.shape}`);if(a.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
${a.shape}`);let o=n.readSync(s.dataId),i=n.readSync(r.dataId),l=n.readSync(a.dataId),[c,u]=AC(o,s.shape,s.dtype,i,l);return n.makeTensorInfo(u,s.dtype,c)}var mie={kernelName:Yh,backendName:"webgl",kernelFunc:fie};function gie(e){let{inputs:t,backend:n,attrs:s}=e,{sparseIndices:r,sparseValues:a,defaultValue:o}=t,{outputShape:i}=s,{sliceRank:l,numUpdates:c,strides:u,outputSize:d}=E.calculateShapes(a,r,i),p=!1,h=new A4(c,l,r.shape.length,a.shape.length,u,[d,1],p),f=n.runWebGLProgram(h,[a,r,o],a.dtype),m=ve({inputs:{x:f},backend:n,attrs:{shape:i}});return n.disposeIntermediateTensorInfo(f),m}var Aie={kernelName:md,backendName:"webgl",kernelFunc:gie};function yie(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{numOrSizeSplits:a,axis:o}=s,i=v.parseAxisParam(o,r.shape)[0],l=E.prepareSplitSize(r,a,i),c=r.shape.length,u=new Array(c).fill(0),d=r.shape.slice();return l.map(p=>{let h=[...d];h[i]=p;let f=pc({inputs:{x:r},backend:n,attrs:{begin:u,size:h}});return u[i]+=p,f})}var xie={kernelName:Gi,backendName:"webgl",kernelFunc:yie},x4="return sqrt(x);",bie=rt({opSnippet:x4,packedOpSnippet:x4,cpuKernelImpl:pQ}),vie={kernelName:ho,backendName:"webgl",kernelFunc:bie},wie="return x * x;",kie=rt({opSnippet:wie}),Iie={kernelName:Eu,backendName:"webgl",kernelFunc:kie},b4="return (a - b) * (a - b);",Sie=Tn({opSnippet:b4,packedOpSnippet:b4}),Cie={kernelName:go,backendName:"webgl",kernelFunc:Sie};function Tie({inputs:e,attrs:t,backend:n}){let{x:s}=e,r=kr+`
return x > 0.0 ? 1.0 : float(${t.alpha});
`,a=new Ho(s.shape,r);return n.runWebGLProgram(a,[s],s.dtype)}var Nie={kernelName:bo,backendName:"webgl",kernelFunc:Tie},Eie=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=n;let s=n.length,r=vt(n.length),a=vt(n.length),o="";if(s===1)o="coords * strides + begin";else{let i=0;o=n.map((l,c)=>(i++,n.length===1?`coords * strides[${c}] + begin[${c}]`:`coords[${i-1}] * strides[${c}] + begin[${c}]`)).join(",")}this.userCode=`
${r} begin = ${r}(${e});
${r} strides = ${r}(${t});
void main() {
${a} coords = getOutputCoords();
setOutput(getX(${o}));
}
`}};function Rie(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,end:o,strides:i,beginMask:l,endMask:c,ellipsisMask:u,newAxisMask:d,shrinkAxisMask:p}=s,{finalShapeSparse:h,finalShape:f,isIdentity:m,sliceDim0:g,isSimpleSlice:A,begin:x,end:y,strides:b}=Ft.sliceInfo(r.shape,a,o,i,l,c,u,d,p),w;if(m)w=ve({inputs:{x:r},backend:n,attrs:{shape:f}});else if(g||A){v.assert(r.shape.length>=1,()=>`Input must have rank at least 1, got: ${r.shape.length}`);let S=Ft.computeOutShape(x,y,b),N=pc({inputs:{x:r},backend:n,attrs:{begin:x,size:S}});w=ve({inputs:{x:N},backend:n,attrs:{shape:f}}),n.disposeIntermediateTensorInfo(N)}else if(n.shouldExecuteOnCPU([r])){let N=n.readSync(r.dataId),R=ze(r.shape,r.dtype,N),M=hQ(h,R,b,x);w=n.makeTensorInfo(f,r.dtype,M.values)}else{let N=new Eie(x,b,h);w=n.runWebGLProgram(N,[r],r.dtype)}let k=ve({inputs:{x:w},backend:n,attrs:{shape:f}});return n.disposeIntermediateTensorInfo(w),k}var $ie={kernelName:Hi,backendName:"webgl",kernelFunc:Rie};function _ie(e){let{inputs:t,backend:n,attrs:s}=e,{separator:r,nGramWidths:a,leftPad:o,rightPad:i,padWidth:l,preserveShortSequences:c}=s,{data:u,dataSplits:d}=t,p=n.readSync(u.dataId),h=n.readSync(d.dataId),[f,m]=fQ(p,h,r,a,o,i,l,c);return[n.makeTensorInfo([f.length],"string",f),n.makeTensorInfo(d.shape,"int32",m)]}var Die={kernelName:gd,backendName:"webgl",kernelFunc:_ie};function Pie(e){let{inputs:t,backend:n,attrs:s}=e,{skipEmpty:r}=s,{input:a,delimiter:o}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(a.shape.length!==1)throw new Error(`Input must be a vector, got shape: ${a.shape}`);if(o.shape.length!==0)throw new Error(`Delimiter must be a scalar, got shape: ${o.shape}`);let i=n.readSync(a.dataId),l=n.readSync(o.dataId)[0],[c,u,d]=mQ(i,l,r),p=u.length;return[n.makeTensorInfo([p,2],"int32",c),n.makeTensorInfo([p],"string",u),n.makeTensorInfo([2],"int32",new Int32Array(d))]}var Fie={kernelName:Jh,backendName:"webgl",kernelFunc:Pie};function Oie(e){let{inputs:t,backend:n,attrs:s}=e,{numBuckets:r}=s,{input:a}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(r<=0)throw new Error("Number of buckets must be at least 1");let o=n.readSync(a.dataId),i=gQ(o,r);return n.makeTensorInfo(a.shape,"int32",i)}var Mie={kernelName:Qh,backendName:"webgl",kernelFunc:Oie},zie="return tan(x);",Lie=rt({opSnippet:zie}),Bie={kernelName:ji,backendName:"webgl",kernelFunc:Lie},Wie=`
float e2x = exp(-2.0 * abs(x));
return sign(x) * (1.0 - e2x) / (1.0 + e2x);
`,Vie=rt({opSnippet:Wie}),Uie={kernelName:yo,backendName:"webgl",kernelFunc:Vie},Gie=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let a=0;a<n.length;a++)n[a]=e[a]*t[a];this.outputShape=n,this.rank=n.length;let s=vt(this.rank),r=Hie(e);this.userCode=`
void main() {
${s} resRC = getOutputCoords();
setOutput(getA(${r}));
}
`}};function Hie(e){let t=e.length;if(t>5)throw Error(`Tile for rank ${t} is not yet supported`);if(t===1)return`imod(resRC, ${e[0]})`;let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u"],s=[];for(let r=0;r<e.length;r++)s.push(`imod(${n[r]}, ${e[r]})`);return s.join()}function v4(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reps:a}=s;if(r.dtype==="string"||r.shape.length>5){let l=n.readSync(r.dataId),c=r.dtype==="string"?l.map(p=>v.decodeString(p)):l,u=ze(r.shape,r.dtype,c),d=yQ(u,a);return n.makeTensorInfo(d.shape,d.dtype,d.values)}let o=new Gie(r.shape,a);return n.runWebGLProgram(o,[r],r.dtype)}var jie={kernelName:Zr,backendName:"webgl",kernelFunc:v4},qie=class{constructor(e){this.variableNames=["x","indices"],this.customUniforms=[{name:"n",type:"int"},{name:"firstPass",type:"int"},{name:"negativeInf",type:"float"},{name:"dir",type:"int"},{name:"inc",type:"int"}],this.outputShape=e,this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int elemIdx = coords[1];
// We compare elements pair-wise within a group of size 2 * inc.
// The comparing rule for each group alternates between ascending
// and descending. Within each group, we compare each pair at
// positions i and i+inc. To decide whether an element at position i
// is x0 or x1, we mod it by 2 * inc, if the result is smaller than
// inc, it is in the first half of the group, we denote it as x0,
// otherwise we denote it as x1.
// For example, as shown in the Bitonic top K paper referenced above,
// Figure5(a) shows that element[1] is in the
// second half of the group when group size is 2, but it is in the
// first half of the group when group size is 4.
bool isFirstInPair = imod(elemIdx, 2 * inc) < inc;
int i = isFirstInPair ? elemIdx : elemIdx - inc;
int i0 = firstPass == 1 ? i : int(getIndices(batch, i));
int i1 = firstPass == 1 ? i + inc : int(getIndices(batch, i + inc));
float x0 = i0 < n ? getX(batch, i0) : negativeInf;
float x1 = i1 < n ? getX(batch, i1) : negativeInf;
// Denotes which direction indices are in (ascending or descending).
bool reverse = imod(elemIdx, 2 * dir) >= dir;
bool isGreater = x0 > x1 || (x0 == x1 && i1 > i0);
if (reverse == isGreater) { // Elements in opposite order of direction
int iTemp = i0;
i0 = i1;
i1 = iTemp;
}
if (isFirstInPair) {
setOutput(float(i0));
} else {
setOutput(float(i1));
}
}
`}},Xie=class{constructor(e){this.variableNames=["x","indices"],this.customUniforms=[{name:"n",type:"int"},{name:"firstPass",type:"int"},{name:"k",type:"int"}],this.outputShape=e,this.userCode=`
void main() {
// Takes max of indices (0, k), (1, k + 1), (2, k + 2) ...
ivec2 coords = getOutputCoords();
int batch = coords[0];
int elemIdx = coords[1];
// The output size is half of the previous size.
// If the previous sequence is | | | | _ _ _ _ | | | | _ _ _ _ (k=4),
// we only need to output the indices at positions |, the indices at
// positions _ can be thrown away, see Figure5(b) After Phase 2
// (Merge phase) in the Bitonic Top K paper referenced above.
// For example, the paper shows we only need to output the orange bars.
// The output sequence should look like this | | | | | | | |.
// Because the sequence is halved, to map the output index back
// to the previous sequence to find the corresponding value,
// we need to double the index. When we double the index,
// we basically interpolate a position, so 2i looks like
// | _ | _ | _ | _ | _ | _ | _. We move the | to the first k position
// of each 2k positions by - elemIdx % k. E.g. for output at
// index 4,5,6,7, we want to get the corresponding element at
// original index 8,9,10,11, for output at index 8,9,10,11,
// we want to get the corresponding element at original index
// 16,17,18,19, so on and so forth.
int i = elemIdx < k ? elemIdx : (elemIdx * 2 - imod(elemIdx, k));
int i0 = firstPass == 1 ? i : int(getIndices(batch, i));
int i1 = firstPass == 1 ? i + k : int(getIndices(batch, i + k));
float x0 = getX(batch, i0);
float x1 = i1 < n ? getX(batch, i1) : x0;
setOutput(x0 >= x1 ? float(i0) : float(i1));
}
`}};function $l(e,t){t!==null&&e.disposeIntermediateTensorInfo(t)}function w4(e){let t=1;for(;t<e;)t*=2;return t}function Kie(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{k:a,sorted:o}=s,i=Y().getNumber("TOPK_LAST_DIM_CPU_HANDOFF_SIZE_THRESHOLD"),l=Y().getNumber("TOPK_K_CPU_HANDOFF_THRESHOLD"),c=r.shape,u=c[c.length-1];if(n.shouldExecuteOnCPU([r])||u<i||a>l){let M=n.readSync(r.dataId),[D,$]=xQ(M,c,r.dtype,a,o);return[n.makeTensorInfo(D.shape,D.dtype,D.values),n.makeTensorInfo($.shape,$.dtype,$.values)]}if(a===0)return c[c.length-1]=0,[n.makeTensorInfo(c,r.dtype,[]),n.makeTensorInfo(c,"int32",[])];if(u===1)return[r,wp({attrs:{shape:c,dtype:"int32",value:0},backend:n})];let d=n.texData.get(r.dataId),p=d!==null&&d.isPacked,h=p?n.unpackTensor(r):r,m=v.sizeFromShape(c)/u,g=ve({inputs:{x:h},attrs:{shape:[m,u]},backend:n});p&&$l(n,h);let A=w4(a),x=w4(u),y=null,b=()=>y===null?[g,g]:[g,y],w=(M,D,$)=>{let T=b(),F=new qie($),X=[[u],[y===null?1:0],[Number.NEGATIVE_INFINITY],[M],[D]],z=y;y=n.runWebGLProgram(F,T,"int32",X),$l(n,z)};for(let M=1;M<A;M*=2){let D=M*2;for(let $=M;$>=1;$/=2)w(D,$,[m,x])}for(let M=x;M>A;M/=2){let D=b(),$=new Xie([m,M/2]),F=[[u],[y===null?1:0],[A]],V=y;y=n.runWebGLProgram($,D,"int32",F),$l(n,V);let X=A/2,z=X*2;for(let j=X;j>=1;j/=2)w(z,j,y.shape)}let k=y;y=pc({inputs:{x:y},backend:n,attrs:{begin:0,size:[m,a]}}),$l(n,k);let S=i4({inputs:{x:g,indices:y},backend:n,attrs:{axis:1,batchDims:1}});$l(n,g);let N=c.slice(0,-1);N.push(a),k=y,y=ve({inputs:{x:y},attrs:{shape:N},backend:n}),$l(n,k);let R=S;return S=ve({inputs:{x:S},attrs:{shape:N},backend:n}),$l(n,R),[S,y]}var Zie={kernelName:qi,backendName:"webgl",kernelFunc:Kie},Yie=class{constructor(e,t,n,s,r,a){this.variableNames=["Image","Transforms"],this.outputShape=a;let o=n==="nearest"?1:2,i;switch(s){case"constant":i=1;break;case"reflect":i=2;break;case"wrap":i=3;break;case"nearest":i=4;break;default:i=1;break}this.userCode=`
float mapCoord(float outCoord, float len) {
float inCoord = outCoord;
if(${i} == 2) {
if (inCoord < 0.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
float sz2 = 2.0 * len;
if (inCoord < sz2) {
inCoord = sz2 * float(int(float(-inCoord / sz2))) +
inCoord;
}
inCoord = inCoord < -len ? inCoord + sz2 : -inCoord - 1.0;
}
} else if (inCoord > len - 1.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
float sz2 = 2.0 * len;
inCoord -= sz2 * float(int(float(inCoord / sz2)));
if (inCoord >= len) {
inCoord = sz2 - inCoord - 1.0;
}
}
}
return clamp(inCoord, 0.0, len - 1.0);
} else if (${i} == 3) {
if (inCoord < 0.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
float sz = len - 1.0;
inCoord += len * (float(int(float(-inCoord / sz))) + 1.0);
}
} else if (inCoord > len - 1.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
float sz = len - 1.0;
inCoord -= len * float(int(float(inCoord / sz)));
}
}
return clamp(inCoord, 0.0, len - 1.0);
} else if (${i} == 4) {
return clamp(outCoord, 0.0, len - 1.0);
} else {
return outCoord;
}
}
float readWithFillValue(int batch, int coordY, int coordX,
int channel) {
float outputValue;
if (0 <= coordY && coordY < ${e} && 0 <= coordX && coordX < ${t}) {
outputValue = getImage(batch, coordY, coordX, channel);
} else {
outputValue = float(${r});
}
return outputValue;
}
void main() {
ivec4 coords = getOutputCoords();
float outputValue;
int batch = coords[0];
int x = coords[2];
int y = coords[1];
int channel = coords[3];
float xf = float(x);
float yf = float(y);
float a1 = getTransforms(batch, 0);
float a2 = getTransforms(batch, 1);
float a3 = getTransforms(batch, 2);
float b1 = getTransforms(batch, 3);
float b2 = getTransforms(batch, 4);
float b3 = getTransforms(batch, 5);
float c1 = getTransforms(batch, 6);
float c2 = getTransforms(batch, 7);
float projection = c1 * xf + c2 * yf + 1.0;
if (projection == 0.0) {
outputValue = float(${r});
} else {
float inX = (a1 * xf + a2 * yf + a3) / projection;
float inY = (b1 * xf + b2 * yf + b3) / projection;
float mapX = mapCoord(inX, float(${t}));
float mapY = mapCoord(inY, float(${e}));
if (${o} == 1) {
int coordY = int(round(mapY));
int coordX = int(round(mapX));
outputValue = readWithFillValue(batch, coordY, coordX,
channel);
} else {
float yFloor = floor(mapY);
float xFloor = floor(mapX);
float yCeil = yFloor + 1.0;
float xCeil = xFloor + 1.0;
float valueYFloor = (xCeil - mapX) *
readWithFillValue(batch, int(yFloor), int(xFloor), channel) +
(mapX - xFloor) *
readWithFillValue(batch, int(yFloor), int(xCeil), channel);
float valueYCeil = (xCeil - mapX) *
readWithFillValue(batch, int(yCeil), int(xFloor), channel) +
(mapX - xFloor) *
readWithFillValue(batch, int(yCeil), int(xCeil), channel);
outputValue = (yCeil - mapY) * valueYFloor +
(mapY - yFloor) * valueYCeil;
}
}
setOutput(outputValue);
}
`}};function Jie(e){let{inputs:t,backend:n,attrs:s}=e,{image:r,transforms:a}=t,{interpolation:o,fillMode:i,fillValue:l,outputShape:c}=s,[u,d,p,h]=r.shape,[f,m]=c!=null?c:[d,p],g=[u,f,m,h],A=new Yie(d,p,o,i,l,g);return n.runWebGLProgram(A,[r,a],"float32")}var Qie={kernelName:Xi,backendName:"webgl",kernelFunc:Jie};function ele(e){let{inputs:t,attrs:n,backend:s}=e,{axis:r}=n,{x:a}=t;ac(a,"unique"),console.warn("WARNING: ","UI might be locked temporarily as data is being downloaded");let o=s.readSync(a.dataId),{outputValues:i,outputShape:l,indices:c}=bQ(o,r,a.shape,a.dtype);return[s.makeTensorInfo(l,a.dtype,i),s.makeTensorInfo([c.length],"int32",c)]}var tle={kernelName:ef,backendName:"webgl",kernelFunc:ele};function nle(e){let{inputs:t,backend:n,attrs:s}=e,{value:r}=t,{axis:a}=s;a<0&&(a+=r.shape.length);let o=r,i=o.shape.length,l=r.shape[a],c=new Array(i-1),u=0;for(let m=0;m<i;m++)m!==a&&(c[u++]=o.shape[m]);let d=[],p=new Array(i).fill(0),h=o.shape.slice();h[a]=1;let f=new Array(l);for(let m=0;m<f.length;m++){p[a]=m;let g=pc({inputs:{x:o},backend:n,attrs:{begin:p,size:h}}),A=ve({inputs:{x:g},backend:n,attrs:{shape:c}});f[m]=A,d.push(g)}return d.forEach(m=>n.disposeIntermediateTensorInfo(m)),f}var sle={kernelName:Ki,backendName:"webgl",kernelFunc:nle},rle=class{constructor(e,t){this.variableNames=["x","segmentIds"];let n=e.windowSize,s=e.batchSize,r=e.inSize,a=e.numSegments,o=a*Math.ceil(r/n);this.outputShape=[s,o];let i="0.0",l="sumValue",c=Math.floor(n/4)*4,u=n%4,d=`
sumValue += dot(values, segFilter);
`,p="";r%n>0&&(p=`
if (inIdx < 0 || inIdx >= ${r}) {
return initializationValue;
}
`);let h="";r%n>0&&(h=`
if (inIdx < 0 || inIdx >= ${r}) {
return -1.0;
}
`),this.userCode=`
const float initializationValue = ${i};
float getValue(int batch, int inIdx) {
${p}
return getX(batch, inIdx);
}
float getSegmentIdAtIndex(int inIdx) {
${h}
return getSegmentIds(inIdx);
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = int(floor(float(outIdx) / float(
${a})) * float(${n}));
int currentSeg = int(mod(float(outIdx), float(${a})));
float sumValue = 0.0;
for (int i = 0; i < ${c}; i += 4) {
int inIdx = inOffset + i;
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
getValue(batch, inIdx + 3)
);
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 3)) == currentSeg ? 1 : 0
);
${d}
}
int inIdx = inOffset + ${c};
if (${u===1}) {
vec4 values = vec4(
getValue(batch, inIdx),
initializationValue,
initializationValue,
initializationValue
);
int inIdxSeg = int(getSegmentIdAtIndex(inIdx));
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
0,
0,
0
);
${d}
} else if (${u===2}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
initializationValue,
initializationValue
);
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
0,
0
);
${d}
} else if (${u===3}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
initializationValue
);
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
0
);
${d}
}
setOutput(${l});
}
`}};function ale(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,segmentIds:a}=t,{numSegments:o}=s,i=r.shape.length,l=[],c=0,u=E.getAxesPermutation([c],i),d=r;u!=null&&(d=jn({inputs:{x:r},backend:n,attrs:{perm:u}}),l.push(d),c=E.getInnerMostAxes(1,i)[0]);let p=E.segment_util.computeOutShape(d.shape,c,o),h=v.sizeFromShape([d.shape[c]]),f=ve({inputs:{x:d},backend:n,attrs:{shape:[-1,h]}});l.push(f);let m=Td(r.dtype),g=(b,w,k,S,N)=>{let R=b.shape[0],M=b.shape[1],D=E.segment_util.segOpComputeOptimalWindowSize(M,N),$={windowSize:D,inSize:M,batchSize:R,numSegments:N},T=new rle($,w),F=n.compileAndRun(T,[b,k],S);if(l.push(F),F.shape[1]===N)return F;let V=g4({backend:n,attrs:{start:0,stop:N,step:1,dtype:"float32"}}),X=v4({inputs:{x:V},backend:n,attrs:{reps:[M/D]}});return l.push(V),l.push(X),g(F,w,X,S,N)},A=g(f,"unsortedSegmentSum",a,m,o),x=ve({inputs:{x:A},backend:n,attrs:{shape:p}}),y=x;if(u!=null){l.push(x);let b=E.getUndoAxesPermutation(u);y=jn({inputs:{x:y},backend:n,attrs:{perm:b}})}return l.forEach(b=>n.disposeIntermediateTensorInfo(b)),y}var ole={kernelName:Ad,backendName:"webgl",kernelFunc:ale},ile=[Fre,zre,xee,vee,Iee,Tee,Eee,_ee,Pee,Oee,Bee,Vee,Hee,Xee,tte,Yee,rte,lte,ote,pte,fte,gte,bte,Tte,Ete,$te,Mte,Lte,Ute,jte,eee,Yte,ine,une,tne,hne,mne,dne,yne,vne,Ine,Cne,Nne,$ne,Mne,Lne,Dne,Vne,Hne,qne,Yne,tse,ase,lse,use,cse,pse,fse,gse,yse,bse,Ise,Tse,Rse,_se,Fse,zse,Vse,jse,QQ,Xse,Kte,Yse,ere,sre,nee,ire,dre,hre,bre,Are,Ire,Tre,$re,Bre,Xre,jre,Jre,eae,nae,Gre,rae,oae,cae,fae,yae,Cae,iee,Nae,$ae,Pae,Mae,Dte,Bae,Vae,Gae,qae,Yae,ree,Qae,eoe,Pte,wae,soe,doe,ioe,uee,moe,yoe,woe,Soe,Eoe,$oe,Poe,Moe,Loe,Voe,Hoe,qoe,Zoe,Qoe,nie,Ste,Iae,aie,iie,uie,die,hie,mie,Aie,xie,vie,Iie,Cie,Nie,$ie,Die,Fie,Mie,kae,gee,Bie,Uie,jie,Zie,Qie,Aee,tle,sle,ole,Wae];for(let e of ile)dr(e);var Ur=Y();Ur.registerFlag("WEBGPU_DEFERRED_SUBMIT_BATCH_SIZE",()=>15);Ur.registerFlag("WEBGPU_CPU_FORWARD",()=>!0);Ur.registerFlag("WEBGPU_MATMUL_WORK_PER_THREAD",()=>4);Ur.registerFlag("WEBGPU_USE_NAIVE_CONV2D",()=>!1);Ur.registerFlag("WEBGPU_USE_NAIVE_CONV2D_TRANSPOSE",()=>!1);Ur.registerFlag("WEBGPU_CONV_SEPARATE_IM2COL_SHADER",()=>!1);Ur.registerFlag("WEBGPU_USE_LOW_POWER_GPU",()=>!1);Ur.registerFlag("WEBGPU_CPU_HANDOFF_SIZE_THRESHOLD",()=>1e3);Ur.registerFlag("WEBGPU_USE_PROFILE_TOOL",()=>!1);Ur.registerFlag("WEBGPU_USE_IMPORT",()=>!1);function lle(e,t){if(Math.max(...e)>3)throw new Error("Cannot symbolically compute strides for rank > 4 tensor.");let n=e.length,s=e.map(a=>`${t}[${a}]`),r=new Array(n-1);r[n-2]=s[n-1];for(let a=n-3;a>=0;--a)r[a]=`(${r[a+1]} * ${s[a+1]})`;return r}function kn(e){if(e<=1)return"i32";if(e===2)return"vec2<i32>";if(e===3)return"vec3<i32>";if(e===4)return"vec4<i32>";throw Error(`GPU for rank ${e} is not yet supported`)}function n0(e,t){return e==="float32"?t?"vec4<f32>":"f32":e==="int32"||e==="bool"?t?"vec4<i32>":"i32":e}function s0(){return`
[[stage(compute), workgroup_size(workGroupSizeX, workGroupSizeY, workGroupSizeZ)]]
`}function Tx(){return`
${s0()}
fn main([[builtin(local_invocation_id)]] localId : vec3<u32>,
[[builtin(global_invocation_id)]] globalId : vec3<u32>,
[[builtin(num_workgroups)]] numWorkgroups: vec3<u32>)
`}function mc(){return`
${s0()}
fn main([[builtin(local_invocation_id)]] localId : vec3<u32>,
[[builtin(global_invocation_id)]] globalId : vec3<u32>)
`}function Ke(){return`
${Tx()} {
let index = getGlobalIndex(globalId, localId, numWorkgroups);
`}function ule(e,t,n,s=!1){let r=`
let workGroupSizeX = ${n.workGroupSize[0]}u;
let workGroupSizeY = ${n.workGroupSize[1]}u;
let workGroupSizeZ = ${n.workGroupSize[2]}u;`;if(s===!0){let h=S4(t.shape),f=`
[[block]] struct Matrix0 {
numbers: array<${n0(t.dtype,n.isVec4)}>;
};
[[block]] struct Uniform {
size : i32;
numChannels : i32;
outShapeStrides : vec2<i32>;
dispatchSize : vec3<u32>;
};
[[group(0), binding(0)]] var<storage, write> result : Matrix0;
[[group(0), binding(2)]] var<uniform> uniforms: Uniform;
`;return[k4,f,r,I4,h,n.getUserCode()].join(`
`)}let a=[],o="[[block]] struct Uniforms { NAN : f32; ";n.variableNames.forEach((h,f)=>{o+=`${h.charAt(0).toLowerCase()+h.slice(1)}Shape : ${kn(e[f].shape.length)}; `}),o+=`outShape : ${kn(t.shape.length)} ; `;let i=t.shape.length-1;o+=`
outShapeStrides: ${kn(i)}; `,n.size&&(o+="size : i32; "),n.uniforms&&(o+=n.uniforms),o+="};",a.push(o),n.atomic?a.push(`
[[block]] struct Matrix0 {
numbers: array<atomic<i32>>;
};
[[group(0), binding(0)]] var<storage, read_write> result : Matrix0;
`):a.push(`
[[block]] struct Matrix0 {
numbers: array<${n0(t.dtype,n.isVec4)}>;
};
[[group(0), binding(0)]] var<storage, write> result : Matrix0;
`),n.variableNames.forEach((h,f)=>{a.push(`
[[block]] struct Matrix${1+f} {
numbers: array<${n0(e[f].dtype,n.isVec4)}>;
};
[[group(0), binding(${1+f})]] var<storage, read> ${h} : Matrix${1+f};
`)}),o!==""&&a.push(`
[[group(0), binding(${1+n.variableNames.length})]] var<uniform> uniforms : Uniforms;
`),a.push(r);let[l,c]=mle(t.shape,n.dispatchLayout),u=S4(t.shape),d=[k4,a.join(`
`),I4,u,l,cle(t.shape.length)];if(n.atomic||d.push(dle(t.shape,t.dtype,n.isVec4)),c===t.shape.length){let h=e.map(f=>ple(f,t.shape,n.isVec4,n.dispatchLayout.x.length===t.shape.length)).join(`
`);d.push(h)}return d.push(n.getUserCode()),d.join(`
`)}var k4=`
fn idiv(a: i32, b: i32, sign: f32) -> i32 {
var res: i32 = a / b;
let mod: i32 = a % b;
if (sign < 0. && mod != 0) {
res = res - 1;
}
return res;
}
fn isNanCustom(val : f32) -> bool {
if (val > 0.0) {
return false;
}
if (val < 0.0) {
return false;
}
if (val == 0.0) {
return false;
}
return true;
}
fn isNanCustomVec4F32(val : vec4<f32>) -> vec4<f32> {
var res = vec4<f32> (0.0);
for (var i = 0u; i < 4u; i = i + 1u) {
if (isNanCustom(val[i])) {
res[i] = 1.0;
} else {
res[i] = 0.0;
}
}
return res;
}
// Checks whether coordinates lie within the bounds of the shape.
fn coordsInBounds4D(coord : vec4<i32>, shape : vec4<i32>) -> bool {
return all(coord >= vec4<i32>(0)) &&
all(coord < shape);
}
fn coordsInBounds3D(coord : vec3<i32>, shape : vec3<i32>) -> bool {
return all(coord >= vec3<i32>(0)) &&
all(coord < shape);
}
fn coordsInBounds2D(coord : vec2<i32>, shape : vec2<i32>) -> bool {
return all(coord >= vec2<i32>(0)) &&
all(coord < shape);
}
`,I4=`
fn getFlatIndex1D(coord : i32, shape : i32) -> i32 {
return coord;
}
fn getFlatIndex2D(coords : vec2<i32>, shape : vec2<i32>) -> i32 {
return i32(dot(vec2<f32>(coords), vec2<f32>(f32(shape.y), 1.0)));
}
fn getFlatIndex3D(coords : vec3<i32>, shape : vec3<i32>) -> i32 {
return i32(dot(vec3<f32>(coords), vec3<f32>(f32(shape.y) * f32(shape.z), f32(shape.z), 1.0)));
}
fn getFlatIndex4D(coords : vec4<i32>, shape : vec4<i32>) -> i32 {
return i32(dot(vec4<f32>(coords), vec4<f32>(
f32(shape.y) * f32(shape.z) * f32(shape.w), f32(shape.z) * f32(shape.w), f32(shape.w), 1.0)));
}
// Only used when the y/z dimension of workgroup size is 1.
fn getGlobalIndex(globalId : vec3<u32>, localId : vec3<u32>, numWorkgroups: vec3<u32>) -> i32 {
if (numWorkgroups.y == 1u && numWorkgroups.z == 1u) {
return i32(globalId.x);
}
let localInvocationIndex = localId.z * workGroupSizeX * workGroupSizeY +
localId.y * workGroupSizeX + localId.x;
let workGroupID = (globalId - localId)/vec3<u32>(
workGroupSizeX, workGroupSizeY, workGroupSizeZ);
return i32((workGroupID.z * numWorkgroups.x * numWorkgroups.y +
workGroupID.y * numWorkgroups.x + workGroupID.x) *
(workGroupSizeX * workGroupSizeY * workGroupSizeZ) +
localInvocationIndex);
}
`;function cle(e){let t="";switch(e){case 0:case 1:t+=`
fn getOutputFlatIndex(coords : i32) -> i32 {
return coords;
}
`;break;case 2:t+=`
fn getOutputFlatIndex(coords : vec2<i32>) -> i32 {
return i32(dot(vec2<f32>(coords), vec2<f32>(f32(uniforms.outShapeStrides), 1.0)));
}
`;break;case 3:t+=`
fn getOutputFlatIndex(coords : vec3<i32>) -> i32 {
return i32(dot(vec3<f32>(coords), vec3<f32>(f32(uniforms.outShapeStrides.x), f32(uniforms.outShapeStrides.y), 1.0)));
}
`;break;case 4:t+=`
fn getOutputFlatIndex(coords : vec4<i32>) -> i32 {
return i32(dot(vec4<f32>(coords), vec4<f32>(
f32(uniforms.outShapeStrides.x), f32(uniforms.outShapeStrides.y), f32(uniforms.outShapeStrides.z), 1.0)));
}
`;break;default:v.assert(!1,()=>`Unsupported ${e}D shape`);break}return t}function dle(e,t,n){let s=e.length,r=n0(t,n),a;if(n?a=`fn setOutputFlat(flatIndex : i32, value : vec4<f32>) {
result.numbers[flatIndex] = ${r}(value);
}
fn setOutputFlatI32(flatIndex : i32, value : vec4<i32>) {
result.numbers[flatIndex] = ${r}(value);
}`:a=`fn setOutputFlat(flatIndex : i32, value : f32) {
result.numbers[flatIndex] = ${r}(value);
}
fn setOutputFlatI32(flatIndex : i32, value : i32) {
result.numbers[flatIndex] = ${r}(value);
}`,s>=2){let o=["d0","d1","d2","d3"].slice(0,s),i=kn(s);n?a+=`
fn setOutput(${o.map(l=>`${l} : i32`).join(", ")}, value : vec4<f32>) {
let flatIndex = getOutputFlatIndex(${i}(${o.join(", ")}));
setOutputFlat(flatIndex / 4, value);
}
fn setOutputI32(${o.map(l=>`${l} : i32`).join(", ")}, value : vec4<i32>) {
let flatIndex = getOutputFlatIndex(${i}(${o.join(", ")}));
setOutputFlatI32(flatIndex / 4, value);
}
`:a+=`
fn setOutput(${o.map(l=>`${l} : i32`).join(", ")}, value : f32) {
let flatIndex = getOutputFlatIndex(${i}(${o.join(", ")}));
setOutputFlat(flatIndex, value);
}
fn setOutputI32(${o.map(l=>`${l} : i32`).join(", ")}, value : i32) {
let flatIndex = getOutputFlatIndex(${i}(${o.join(", ")}));
setOutputFlatI32(flatIndex, value);
}
`}return a}function ple(e,t,n,s){let r=hle(e,n);return e.shape.length<=t.length&&(r+=fle(e,t,n,s)),r}function hle(e,t){let n=e.name,s=e.shape.length,r=kn(s),a="get"+n.charAt(0).toUpperCase()+n.slice(1),o=["d0","d1","d2","d3"].slice(0,s),i=o.map(u=>`${u} : i32`).join(", ");if(s<1)return t?`
fn ${a}() -> vec4<f32> {
return vec4<f32>(${n}.numbers[0]);
}
`:`
fn ${a}() ->f32 {
return f32(${n}.numbers[0]);
}
`;let l=`uniforms.${n.charAt(0).toLowerCase()+n.slice(1)}Shape`,c=`${s}D`;return s===0&&(c="1D"),t?`
fn ${a}(${i}) -> vec4<f32> {
return vec4<f32>(${n}.numbers[getFlatIndex${c}(${r}(${o.join(",")}),
${l}) / 4]);
}
`:`
fn ${a}(${i}) -> f32 {
return f32(${n}.numbers[getFlatIndex${c}(${r}(${o.join(",")}),
${l})]);
}
`}function fle(e,t,n,s){let r=e.name,a=r.charAt(0).toUpperCase()+r.slice(1),o="get"+a+"AtOutCoords",i=e.shape.length,l=t.length,c=kn(l);if(v.arraysEqual(e.shape,t)&&s)return n?`
fn ${o}ByGlobalIndex(globalIndex : i32) -> vec4<f32> {
return vec4<f32>(${r}.numbers[globalIndex]);
}
fn ${o}ByCoords(coords : ${c}) -> vec4<f32> {
return vec4<f32>(${r}.numbers[${l>1?"getOutputFlatIndex(coords)":"coords"} / 4]);
}
`:`
fn ${o}ByGlobalIndex(globalIndex : i32) -> f32 {
return f32(${r}.numbers[globalIndex]);
}
fn ${o}ByCoords(coords : ${c}) -> f32 {
return f32(${r}.numbers[${l>1?"getOutputFlatIndex(coords)":"coords"}]);
}
`;let u=E.getBroadcastDims(e.shape,t),d=l-i,p="";if(i===0)return n?`
fn ${o}ByGlobalIndex(globalIndex : i32) -> vec4<f32> {
return get${a}();
}
fn ${o}ByCoords(coords : ${c}) -> vec4<f32> {
return get${a}();
}
`:`
fn ${o}ByGlobalIndex(globalIndex : i32) -> f32{
return get${a}();
}
fn ${o}ByCoords(coords : ${c}) -> f32{
return get${a}();
}
`;l<2&&u.length>=1?p="coords = 0;":p=u.map(g=>`coords[${g+d}] = 0;`).join(`
`);let h="";if(l<2&&i>0)h="coords";else if(l>1){let g=kn(i),A=e.shape.map((x,y)=>`coords[${y+d}]`).join(", ");h=`${g}(${A})`}else h="coords";let f=`uniforms.${r.charAt(0).toLowerCase()+r.slice(1)}Shape`,m=`${i}D`;return n?`
fn ${o}ByGlobalIndex(globalIndex : i32) -> vec4<f32> {
var coords = getCoordsFromFlatIndex(globalIndex);
${p}
return ${r}.numbers[getFlatIndex${m}(${h}, ${f}) / 4];
}
fn ${o}ByCoords(coordsIn : ${c}) -> vec4<f32> {
var coords = coordsIn;
${p}
return ${r}.numbers[getFlatIndex${m}(${h}, ${f}) / 4];
}
`:`
fn ${o}ByGlobalIndex(globalIndex : i32) -> f32 {
var coords = getCoordsFromFlatIndex(globalIndex);
${p}
return f32(${r}.numbers[getFlatIndex${m}(${h}, ${f})]);
}
fn ${o}ByCoords(coordsIn : ${c}) -> f32 {
var coords = coordsIn;
${p}
return f32(${r}.numbers[getFlatIndex${m}(${h}, ${f})]);
}
`}function mle(e,t){let{x:n,y:s=[],z:r=[]}=t,a=e.length;if(n.length===a)return[`fn getOutputCoordsWithFlatDispatchLayout(globalId : vec3<u32>, localId : vec3<u32>, numWorkgroups: vec3<u32>) -> ${kn(a)}{
let globalIndex = getGlobalIndex(globalId, localId, numWorkgroups);
return getCoordsFromFlatIndex(globalIndex);
}
`,a];let o="",i=[n,s,r],l=0;for(let p=0;p<i.length;p++){let h=i[p];if(h.length!==0)if(l+=h.length,h.length===1)o+=`let d${h[0]} = i32(globalId[${p}]);`;else{let f=lle(h,"uniforms.outShape");o+=`var index${p} = i32(globalId[${p}]);`;for(let m=0;m<f.length;m++)o+=`let d${h[m]} = index${p} / ${f[m]};`,m===f.length-1?o+=`let d${h[m+1]} = index${p} - d${h[m]} * ${f[m]};`:o+=`index${p} = index${p} - d${h[m]} * ${f[m]};`}}let c=[];for(let p=0;p<l;p++)c.push(`d${p}`);let u=kn(l),d=`fn getOutputCoordsWithNonFlatDispatchLayout(globalId : vec3<u32>) -> ${u} {
${o}
`;return c.length===0?d+=`return ${u}(0); }`:d+=`return ${u}(${c.join(",")}); }`,[d,l]}function S4(e){let t=e.length;if(t<=1)return"fn getCoordsFromFlatIndex(index : i32) -> i32 { return index; }";let n=v.computeStrides(e),s=kn(t),r=[];for(let o=0;o<t;o++)r.push(`d${o}`);if(n.length===1)return` fn getCoordsFromFlatIndex(index : i32) -> vec2<i32> {
let d0 = index / uniforms.outShapeStrides; let d1 = index - d0 * uniforms.outShapeStrides;
return vec2<i32>(d0, d1);
}`;let a="var index2 = index;"+n.map((o,i)=>{let l=`let ${r[i]} = index2 / uniforms.outShapeStrides[${i}]`,c=i===n.length-1?`let ${r[i+1]} = index2 - ${r[i]} * uniforms.outShapeStrides[${i}]`:`index2 = index2 - ${r[i]} * uniforms.outShapeStrides[${i}]`;return`${l}; ${c};`}).join("");return`
fn getCoordsFromFlatIndex(index : i32) -> ${s} {
${a}
return ${s}(${r.join(",")});
}
`}var C4={};Me(C4,{ArrayBufferToTypedArray:()=>T4,GPUBytesPerElement:()=>$x,computeDispatch:()=>Oe,computeWorkGroupSizeForConv2d:()=>Nx,computeWorkGroupSizeForMatMul:()=>Ex,computeWorkPerThreadForConv2d:()=>Rx,flatDispatchLayout:()=>He,isWebGPUSupported:()=>_x,tilesFitEvenlyIntoShape:()=>la});var gc=65535,_l=e=>{let t=1;for(let n=0;n<e.length;n++)t*=e[n];return t};function la(e,t){if(e.length!==t.length)throw new Error(`Cannot compute whether rank ${e.length} tiles fit evenly into rank ${t.length} shape - ranks must match.`);return t.every((n,s)=>n%e[s]==0)}function Oe(e,t,n=[1,1,1],s=[1,1,1]){let[r,a,o]=[Math.ceil(_l(e.x.map(l=>t[l]))/(n[0]*s[0])),e.y?Math.ceil(_l(e.y.map(l=>t[l]))/(n[1]*s[1])):1,e.z?Math.ceil(_l(e.z.map(l=>t[l]))/(n[2]*s[2])):1];if(r<=gc&&a<=gc&&o<=gc)return[r,a,o];v.assert(r>gc&&e.y===void 0&&e.z===void 0,()=>"Dispatch size exceeds WebGPU limits in Y or Z dimension.");let i=Math.ceil(Math.sqrt(r));return i>gc?(i=Math.ceil(Math.cbrt(r)),v.assert(i<=gc,()=>"Total dispatch size exceeds WebGPU maximum."),[i,i,i]):[i,i,1]}function Nx(e,t){let n=_l(e.x.map(r=>t[r])),s=_l(e.y.map(r=>t[r]));return n<=4?[4,16,1]:s<=4?[16,4,1]:[16,16,1]}function Ex(e,t,n){return e===1?[32,1,1]:n===1?[1,32,1]:[8,8,1]}function Rx(e,t){let n=_l(e.x.map(r=>t[r])),s=_l(e.y.map(r=>t[r]));return n<=4?[1,2,1]:s<=4?[2,1,1]:[2,2,1]}function He(e){return{x:e.map((t,n)=>n)}}function $x(e){if(e==="float32"||e==="int32"||e==="bool"||e==="string")return 4;if(e==="complex64")return 8;throw new Error(`Unknown dtype ${e}`)}function T4(e,t){if(t==="float32")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool"||t==="string"){let n=new Int32Array(e),s=new ArrayBuffer(n.length),r=new Uint8Array(s);for(let a=0;a<n.length;a++)r[a]=n[a];return r}else throw new Error(`Unknown dtype ${t}`)}function _x(){return!!navigator.gpu}var Ut;(function(e){e[e.MUL=0]="MUL",e[e.ADD=1]="ADD",e[e.SUB=2]="SUB",e[e.DIV=3]="DIV",e[e.EQUAL=4]="EQUAL",e[e.GREATER=5]="GREATER",e[e.GREATER_EQUAL=6]="GREATER_EQUAL",e[e.LESS=7]="LESS",e[e.LESS_EQUAL=8]="LESS_EQUAL",e[e.LOGICAL_AND=9]="LOGICAL_AND",e[e.NOT_EQUAL=10]="NOT_EQUAL",e[e.SQUARED_DIFFERENCE=11]="SQUARED_DIFFERENCE",e[e.INT_DIV=12]="INT_DIV",e[e.POW=13]="POW",e[e.PRELU=14]="PRELU",e[e.MAX=15]="MAX",e[e.MIN=16]="MIN",e[e.COMPLEX_MULTIPLY_REAL=17]="COMPLEX_MULTIPLY_REAL",e[e.COMPLEX_MULTIPLY_IMAG=18]="COMPLEX_MULTIPLY_IMAG"})(Ut||(Ut={}));var gle="return a + b;",Ale="return areal * breal - aimag * bimag;",yle="return areal * bimag + aimag * breal;",xle="return a / b;",ble="return a * b;",vle="return (a - b) * (a - b);",wle="return a - b;",kle="return f32(a == b);",Ile="return vec4<f32>(a == b);",Sle="return f32(a > b);",Cle="return vec4<f32>(a > b);",Tle="return f32(a >= b);",Nle="return vec4<f32>(a >= b);",Ele="return f32(a < b);",Rle="return vec4<f32>(a < b);",$le="return f32(a <= b);",_le="return vec4<f32>(a <= b);",Dle="return f32(f32(a) >= 1.0 && f32(b) >= 1.0);",Ple=`return (vec4<f32>(a >= vec4<f32>(1.0)) *
vec4<f32>(b >= vec4<f32>(1.0)));`,Fle=`
if (isNanCustom(a)) { return a; }
if (isNanCustom(b)) { return b; }
`,N4=`
if (isNaN.r > 0.) {
resultTemp.r = uniforms.NAN;
}
if (isNaN.g > 0.) {
resultTemp.g = uniforms.NAN;
}
if (isNaN.b > 0.) {
resultTemp.b = uniforms.NAN;
}
if (isNaN.a > 0.) {
resultTemp.a = uniforms.NAN;
}
`,Ole=`
let s = sign(a) * sign(b);
let ia = i32(round(a));
let ib = i32(round(b));
return f32(idiv(ia, ib, s));
`,Mle=`
let ia = vec4<i32>(round(a));
let ib = vec4<i32>(round(b));
let cond = ib != vec4<i32>(0);
var resultTemp = vec4<i32>(0);
let s = sign(a) * sign(b);
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
if (cond[0]) {
resultTemp[0] = idiv(ia[0], ib[0], s[0]);
}
if (cond[1]) {
resultTemp[1] = idiv(ia[1], ib[1], s[1]);
}
if (cond[2]) {
resultTemp[2] = idiv(ia[2], ib[2], s[2]);
}
if (cond[3]) {
resultTemp[3] = idiv(ia[3], ib[3], s[3]);
}
return vec4<f32>(resultTemp);
`,zle="return f32(a != b);",Lle="return vec4<f32>(a != b);",Ble=`
if(a < 0.0 && floor(b) < b) {
return uniforms.NAN;
}
if (b == 0.0) {
return 1.0;
}
if (round(abs(b) % 2.0) != 1.0) {
return pow(abs(a), b);
}
return sign(a) * pow(abs(a), b);
`,Wle=`
let isModRound1Bool = vec4<i32>(round(abs(b) % vec4<f32>(2.0))) == vec4<i32>(1);
let isModRound1 = vec4<f32>(isModRound1Bool);
let multiplier = sign(a) * isModRound1 + (vec4<f32>(1.0) - isModRound1);
var resultTemp = multiplier * pow(abs(a), b);
// Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS
let isExpZero = b == vec4<f32>(0.0);
if (isExpZero.r) {
resultTemp.r = 1.0;
}
if (isExpZero.g) {
resultTemp.g = 1.0;
}
if (isExpZero.b) {
resultTemp.b = 1.0;
}
if (isExpZero.a) {
resultTemp.a = 1.0;
}
let isNaN = vec4<f32>(a < vec4<f32>(0.0)) * vec4<f32>(floor(b) < b);
${N4}
return resultTemp;
`,Vle="if (a < 0.0) { return b * a; } return a;",Ule=`
let aLessThanZero = vec4<f32>(a < vec4<f32>(0.0));
return (aLessThanZero * (b * a)) + ((vec4<f32>(1.0) - aLessThanZero) * a);
`;function E4(e,t){let n=t?N4:Fle;return t?`
var resultTemp = vec4<f32>(${e}(a, b));
let isNaN = min(vec4<f32>(isNanCustomVec4F32(a)) + vec4<f32>(isNanCustomVec4F32(b)), vec4<f32>(1.0));
`+n+`
return resultTemp;
`:n+`
return ${e}(a, b);
`}function kp(e,t){switch(e){case 0:return ble;case 1:return gle;case 2:return wle;case 3:return xle;case 4:return t?Ile:kle;case 5:return t?Cle:Sle;case 6:return t?Nle:Tle;case 7:return t?Rle:Ele;case 8:return t?_le:$le;case 9:return t?Ple:Dle;case 10:return t?Lle:zle;case 11:return vle;case 12:return t?Mle:Ole;case 14:return t?Ule:Vle;case 15:return E4("max",t);case 16:return E4("min",t);case 13:return t?Wle:Ble;case 17:return Ale;case 18:return yle;default:throw new Error(`BinaryType ${e} is not implemented!`)}}var wt;(function(e){e[e.ABS=0]="ABS",e[e.CEIL=1]="CEIL",e[e.COS=2]="COS",e[e.COSH=3]="COSH",e[e.ELU=4]="ELU",e[e.EXP=5]="EXP",e[e.EXPM1=6]="EXPM1",e[e.FLOOR=7]="FLOOR",e[e.LINEAR=8]="LINEAR",e[e.LOG=9]="LOG",e[e.LOGICAL_NOT=10]="LOGICAL_NOT",e[e.NEG=11]="NEG",e[e.PRELU=12]="PRELU",e[e.RELU=13]="RELU",e[e.RELU6=14]="RELU6",e[e.RSQRT=15]="RSQRT",e[e.SIN=16]="SIN",e[e.SINH=17]="SINH",e[e.SIGMOID=18]="SIGMOID",e[e.SQRT=19]="SQRT",e[e.SQUARE=20]="SQUARE",e[e.TANH=21]="TANH",e[e.TO_INT=22]="TO_INT"})(wt||(wt={}));var Gle="return abs(a);",Hle="return ceil(a);",jle="return cos(a);",qle=`
let e2x = exp(-a);
return (e2x + 1.0 / e2x) / 2.0;
`,Xle="return exp(a) - 1.0;",Kle="if (a >= 0.0) { return a; } return (exp(a) - 1.0);",Zle=`
var resFloat = exp(a) - vec4<f32>(1.0);
if (a.r >= 0.0) {
resFloat.r = a.r;
}
if (a.g >= 0.0) {
resFloat.g = a.g;
}
if (a.b >= 0.0) {
resFloat.b = a.b;
}
if (a.a >= 0.0) {
resFloat.a = a.a;
}
return resFloat;
`,Yle="return exp(a);",Jle="return floor(a);",Qle="return a;",eue=`if (a < 0.0) { return 1.0/0.0; }
return log(a);`,tue="return f32(!(a >= 1.0));",nue="return -a;",sue="return (a < 0.0) ? b * a : a;",rue="return max(a, 0.0);",aue="return clamp(a, 0.0, 6.0);",oue="return clamp(a, vec4<f32>(0.0, 0.0, 0.0, 0.0), vec4<f32>(6.0, 6.0, 6.0, 6.0));",iue=`
var resFloat = a * vec4<f32>(a >= vec4<f32>(0.0));
let isNaN = isNan(a);
if (isNaN.r) {
resFloat.r = a.r;
}
if (isNaN.g) {
resFloat.g = a.g;
}
if (isNaN.b) {
resFloat.b = a.b;
}
if (isNaN.a) {
resFloat.a = a.a;
}
return resFloat;
`,lue="return 1.0/sqrt(a);",uue="return 1.0 / (1.0 + exp(-1.0 * a));",cue="return sin(a);",due=`
let e2x = exp(a);
return (e2x - 1.0 / e2x) / 2.0;
`,pue="return sqrt(a);",hue="return a * a;",fue=`
let e2x = exp(-2.0 * abs(a));
return sign(a) * (1.0 - e2x) / (1.0 + e2x);
`,mue="return f32(i32((a)));";function Ac(e,t){switch(e){case 0:return Gle;case 2:return jle;case 3:return qle;case 1:return Hle;case 4:return t?Zle:Kle;case 5:return Yle;case 6:return Xle;case 7:return Jle;case 8:return Qle;case 9:return eue;case 10:return tue;case 11:return nue;case 12:return sue;case 13:return t?iue:rue;case 14:return t?oue:aue;case 15:return lue;case 18:return uue;case 16:return cue;case 17:return due;case 19:return pue;case 20:return hue;case 21:return fue;case 22:return mue;default:throw new Error(`BinaryType ${e} is not implemented!`)}}function ua(e,t=!1){if(e===null)return null;if(e==="linear")return Ac(wt.LINEAR);if(e==="relu")return Ac(wt.RELU,t);if(e==="elu")return Ac(wt.ELU,t);if(e==="relu6")return Ac(wt.RELU6,t);if(e==="prelu")return kp(Ut.PRELU,t);if(e==="sigmoid")return Ac(wt.SIGMOID);throw new Error(`Activation ${e} has not been implemented for the WebGPU backend.`)}function R4(e,t){let n={RowPerThread:e[1],ColPerThread:e[0],TileAOuter:t[1]*e[1],TileBOuter:t[0]*e[0],TileInner:t[0]*e[0]};return`
var<workgroup> mm_Asub : array<array<vec4<f32>, ${n.TileInner/n.ColPerThread}>, ${n.TileAOuter}>;
var<workgroup> mm_Bsub : array<array<vec4<f32>, ${n.TileBOuter/n.ColPerThread}>, ${n.TileInner}>;
let RowPerThread = ${n.RowPerThread};
let ColPerThread = ${n.ColPerThread}; // only support ColPerThread = 4
let TileAOuter = ${n.TileAOuter};
let TileBOuter = ${n.TileBOuter};
let TileInner = ${n.TileInner};
${mc()} {
let tileRow = i32(localId.y) * RowPerThread;
let tileCol = i32(localId.x);
let globalRow = i32(globalId.y) * RowPerThread;
let globalCol = i32(globalId.x);
let numTiles = (uniforms.dimInner - 1) / TileInner + 1;
var acc: array<vec4<f32>, ${n.RowPerThread}>;
var ACached : vec4<f32>;
var BCached : array<vec4<f32>, 4>;
// Loop over shared dimension.
var globalColA = tileCol;
let RowPerThreadB = TileInner / ${t[1]};
let tileRowB = i32(localId.y) * RowPerThreadB;
for (var t = 0; t < numTiles; t = t + 1) {
// Load one tile of A into local memory.
for (var innerRow = 0; innerRow < RowPerThread; innerRow = innerRow + 1) {
let inputRow = tileRow + innerRow;
let inputCol = tileCol;
mm_Asub[inputRow][inputCol] = mm_readA(globalRow + innerRow, globalColA, globalId);
}
globalColA = globalColA + TileInner / ColPerThread;
// Load one tile of B into local memory.
for (var innerRow = 0; innerRow < RowPerThreadB; innerRow = innerRow + 1) {
let inputRow = tileRowB + innerRow;
let inputCol = tileCol;
mm_Bsub[inputRow][inputCol] = mm_readB(t * TileInner + inputRow, globalCol, globalId);
}
workgroupBarrier();
// Compute acc values for a single thread.
for (var k = 0; k < TileInner / ColPerThread; k = k + 1) {
BCached[0] = mm_Bsub[k * ColPerThread][tileCol];
BCached[1] = mm_Bsub[k * ColPerThread + 1][tileCol];
BCached[2] = mm_Bsub[k * ColPerThread + 2][tileCol];
BCached[3] = mm_Bsub[k * ColPerThread + 3][tileCol];
for (var i = 0; i < RowPerThread; i = i + 1) {
ACached = mm_Asub[tileRow + i][k];
acc[i] = BCached[0] * ACached.x + acc[i];
acc[i] = BCached[1] * ACached.y + acc[i];
acc[i] = BCached[2] * ACached.z + acc[i];
acc[i] = BCached[3] * ACached.w + acc[i];
}
}
workgroupBarrier();
}
for (var innerRow = 0; innerRow < RowPerThread; innerRow = innerRow + 1) {
mm_write(globalRow + innerRow,
globalCol,
acc[innerRow], globalId);
}
}`}function gue(e){return`
var<workgroup> mm_Asub : array<vec4<f32>, ${e[0]}>;
let tileSize = ${e[0]*4};
${mc()} {
let tileCol = i32(localId.x);
let globalCol = i32(globalId.x);
let globalRow = i32(globalId.y);
let numTiles = (uniforms.dimInner - 1) / tileSize + 1;
// Without this initialization strange values show up in acc.
var acc = vec4<f32>(0.0);
// Loop over shared dimension.
for (var t = 0; t < numTiles; t = t + 1) {
// Load one tile of A into local memory.
let colA = t * tileSize / 4 + tileCol;
mm_Asub[tileCol] = mm_readA(globalRow, colA, globalId);
workgroupBarrier();
// Compute acc values for a single thread.
for (var k = 0; k < tileSize / 4; k = k + 1) {
let rowB = t * tileSize + k * 4;
let BCached0 = mm_readB(rowB, globalCol, globalId);
let BCached1 = mm_readB(rowB + 1, globalCol, globalId);
let BCached2 = mm_readB(rowB + 2, globalCol, globalId);
let BCached3 = mm_readB(rowB + 3, globalCol, globalId);
let ACached = mm_Asub[k];
acc = acc + BCached0 * ACached.x;
acc = acc + BCached1 * ACached.y;
acc = acc + BCached2 * ACached.z;
acc = acc + BCached3 * ACached.w;
}
workgroupBarrier();
}
if (globalRow < uniforms.dimAOuter && globalCol < uniforms.dimBOuter) {
mm_write(globalRow, globalCol, acc, globalId);
}
}
`}var Aue=class{constructor(e,t,n,s=null,r=null,a=null){this.variableNames=["A","B"],this.uniforms="dimAOuter : i32; dimBOuter : i32; dimInner : i32;",this.workGroupSize=[16,16,1],this.isVec4=!0,this.vecSize=4,this.outputShape=t,this.workGroupSize=Ex(t[1],e[2],t[2]),this.dispatchLayout={x:[2],y:[1],z:[0]},t[1]===1&&(n=1),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.vecSize,n,1]);let o=s!=null,i=a!=null;o&&this.variableNames.push("bias"),i&&this.variableNames.push("preluActivationWeights"),this.workPerThread=n,this.aShape=e,this.addBias=o,this.activation=r,this.hasPreluActivationWeights=i,[this.fitA,this.fitB]=this.getShapeFit(),this.shaderKey=`matMulPackedVec4_${n}_${this.activation}_${this.fitA}_${this.fitB}_${this.outputShape[1]>1}`}getShapeFit(){let e=this.aShape[2],t=this.outputShape[2],n=[this.outputShape[0],e,t],s=this.workGroupSize[1]*this.workPerThread,r=this.workGroupSize[0]*this.vecSize,a=r,o=[s,a],i=[a,r];return[la(o,this.aShape.slice(1)),la(i,n.slice(1))]}getUserCode(){let e=this.fitA?"return A.numbers[batch * batchASize + row * uniforms.dimInner / 4 + col]":`if (coordsInBounds2D(vec2<i32>(row, col * 4), vec2<i32>(uniforms.dimAOuter, uniforms.dimInner))) {
return A.numbers[batch * batchASize + row * uniforms.dimInner / 4 + col];
}
return vec4<f32>(0.0)`,t=this.fitB?"return B.numbers[batch * batchBSize + row * uniforms.dimBOuter / 4 + col]":`if(coordsInBounds2D(vec2<i32>(row, col * 4), vec2<i32>(uniforms.dimInner, uniforms.dimBOuter))) {
return B.numbers[batch * batchBSize + row * uniforms.dimBOuter / 4 + col];
}
return vec4<f32>(0.0)`,n="",s="";if(this.activation){let o=ua(this.activation,this.isVec4);this.hasPreluActivationWeights?n=`fn activation(a : vec4<f32>, outCoord : vec3<i32>) -> vec4<f32> {
let b = getPreluActivationWeightsAtOutCoordsByCoords(outCoord);
${o}
}`:n=`
fn activation(a : vec4<f32>, outCoord : vec3<i32>) -> vec4<f32> {
${o}
}`,s="value = activation(value, outCoord);"}let r=this.addBias?"value = value + getBiasAtOutCoordsByCoords(outCoord);":"";return`
${n}
fn mm_readA(row : i32, col : i32, globalId : vec3<u32>) -> vec4<f32> {
let batchASize = uniforms.aShape[1] * uniforms.aShape[2] / ${this.vecSize};
let batch = i32(globalId.z);
${e};
}
fn mm_readB(row : i32, col : i32, globalId : vec3<u32>) -> vec4<f32> {
let batchBSize = uniforms.bShape[1] * uniforms.bShape[2] / ${this.vecSize};
let batch = i32(globalId.z);
${t};
}
fn mm_write(row : i32, col : i32, valueIn : vec4<f32>, globalId : vec3<u32>) {
if (row < uniforms.aShape[1] && col * 4 < uniforms.bShape[2])
{
var value = valueIn;
let batch = i32(globalId.z);
let outCoord = vec3<i32>(batch, row, col * 4);
${r}
${s}
setOutput(outCoord[0], outCoord[1], outCoord[2], value);
}
}
${this.outputShape[1]>1?R4([this.vecSize,this.workPerThread,1],this.workGroupSize):gue(this.workGroupSize)}
`}};function Dx(e,t){let n=t[1]*e[1],s=t[0]*e[0],r=n>s?n:s;return`
var<workgroup> mm_Asub : array<array<f32, ${r}>, ${n}>;
var<workgroup> mm_Bsub : array<array<f32, ${s}>, ${r}>;
${mc()} {
let tileRow = i32(localId.y) * ${e[1]};
let tileCol = i32(localId.x) * ${e[0]};
let globalRow = i32(globalId.y) * ${e[1]};
let globalCol = i32(globalId.x) * ${e[0]};
let numTiles = (uniforms.dimInner - 1) / ${r} + 1;
var acc : array<array<f32, ${e[0]}>, ${e[1]}>;
var ACached : f32;
var BCached : array<f32, ${e[0]}>;
// Without this initialization strange values show up in acc.
for (var innerRow = 0; innerRow < ${e[1]}; innerRow = innerRow + 1) {
for (var innerCol = 0; innerCol < ${e[0]}; innerCol = innerCol + 1) {
acc[innerRow][innerCol] = 0.0;
}
}
let ColPerThreadA = ${r} / ${t[0]};
let tileColA = i32(localId.x) * ColPerThreadA;
let RowPerThreadB = ${r} / ${t[1]};
let tileRowB = i32(localId.y) * RowPerThreadB;
// Loop over shared dimension.
for (var t = 0; t < numTiles; t = t + 1) {
// Load one tile of A into local memory.
for (var innerRow = 0; innerRow < ${e[1]}; innerRow = innerRow + 1) {
for (var innerCol = 0; innerCol < ColPerThreadA; innerCol = innerCol + 1) {
let inputRow = tileRow + innerRow;
let inputCol = tileColA + innerCol;
mm_Asub[inputRow][inputCol] = mm_readA(
globalRow + innerRow,
t * ${r} + inputCol, globalId);
}
}
// Load one tile of B into local memory.
for (var innerRow = 0; innerRow < RowPerThreadB; innerRow = innerRow + 1) {
for (var innerCol = 0; innerCol < ${e[0]}; innerCol = innerCol + 1) {
let inputRow = tileRowB + innerRow;
let inputCol = tileCol + innerCol;
mm_Bsub[inputRow][inputCol] = mm_readB(
t * ${r} + inputRow,
globalCol + innerCol, globalId);
}
}
workgroupBarrier();
// Compute acc values for a single thread.
for (var k = 0; k < ${r}; k = k + 1) {
for (var inner = 0; inner < ${e[0]}; inner = inner + 1) {
BCached[inner] = mm_Bsub[k][tileCol + inner];
}
for (var innerRow = 0; innerRow < ${e[1]}; innerRow = innerRow + 1) {
ACached = mm_Asub[tileRow + innerRow][k];
for (var innerCol = 0; innerCol < ${e[0]}; innerCol = innerCol + 1) {
acc[innerRow][innerCol] = acc[innerRow][innerCol] + ACached * BCached[innerCol];
}
}
}
workgroupBarrier();
}
for (var innerRow = 0; innerRow < ${e[1]}; innerRow = innerRow + 1) {
for (var innerCol = 0; innerCol < ${e[0]}; innerCol = innerCol + 1) {
if ((globalCol + innerCol) < uniforms.dimBOuter &&
(globalRow + innerRow) < uniforms.dimAOuter) {
mm_write(globalRow + innerRow,
globalCol + innerCol,
acc[innerRow][innerCol], globalId);
}
}
}
}
`}function yue(e){return`
let TileSize = ${e[0]*4};
var<workgroup> mm_Asub : array<vec4<f32>, ${e[0]}>;
${mc()} {
let tileCol = i32(localId.x);
let globalCol = i32(globalId.x);
let globalRow = i32(globalId.y);
let numTiles = (uniforms.dimInner - 1) / TileSize + 1;
// Without this initialization strange values show up in acc.
var acc = 0.0;
// Loop over shared dimension.
for (var t = 0; t < numTiles; t = t + 1) {
// Load one tile of A into local memory.
let colA = t * TileSize + tileCol * 4;
mm_Asub[tileCol] = vec4<f32>(mm_readA(globalRow, colA, globalId),
mm_readA(globalRow, colA + 1, globalId),
mm_readA(globalRow, colA + 2, globalId),
mm_readA(globalRow, colA + 3, globalId));
workgroupBarrier();
// Compute acc values for a single thread.
for (var k = 0; k < TileSize / 4; k = k + 1) {
let rowB = t * TileSize + k * 4;
let BCached = vec4<f32>(mm_readB(rowB, globalCol, globalId),
mm_readB(rowB + 1, globalCol, globalId),
mm_readB(rowB + 2, globalCol, globalId),
mm_readB(rowB + 3, globalCol, globalId));
let ACached = mm_Asub[k];
acc = acc + dot(ACached, BCached);
}
workgroupBarrier();
}
if (globalRow < uniforms.dimAOuter && globalCol < uniforms.dimBOuter) {
mm_write(globalRow, globalCol, acc, globalId);
}
}
`}var $4=class{constructor(e,t,n,s=!1,r=!1,a=null,o=null,i=null){this.variableNames=["A","B"],this.uniforms="dimAOuter : i32; dimBOuter : i32; dimInner : i32;",this.workGroupSize=[16,16,1],this.outputShape=t,this.dispatchLayout={x:[2],y:[1],z:[0]};let l=s?e[1]:e[2];this.workGroupSize=Ex(t[1],l,t[2]),(t[1]===1||t[2]===1)&&(n=1),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize,[n,n,1]),v.arraysEqual(this.dispatch,[1,1,1])&&(n=1,this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize,[n,n,1]));let c=a!=null,u=i!=null;c&&this.variableNames.push("bias"),u&&this.variableNames.push("preluActivationWeights"),this.workPerThread=n,this.aShape=e,this.transposeA=s,this.transposeB=r,this.addBias=c,this.activation=o,this.hasPreluActivationWeights=u;let d=this.outputShape[2],p=this.transposeB?[this.outputShape[0],d,l]:[this.outputShape[0],l,d];[this.fitA,this.fitB]=this.getShapeFit(p),this.shaderKey=`matMulPacked_${this.workPerThread}_${s}_${r}_${this.activation}_${this.fitA}_${this.fitB}_${this.outputShape[1]>1}`}getShapeFit(e){let t=this.workGroupSize[1]*this.workPerThread,n=this.workGroupSize[0]*this.workPerThread,s=t>n?t:n;this.outputShape[1]===1&&(s*=4),v.assert(s%this.workGroupSize[0]==0&&s%this.workGroupSize[1]==0,()=>"tileInner must be multiple of workgroupsize.x and workgroupsize.y");let r=[t,s],a=[s,n];return[la(r,this.aShape.slice(1)),la(a,e.slice(1))]}getUserCode(){let e;this.transposeA===!1?e=this.fitA?"return A.numbers[batch * batchASize + row * uniforms.dimInner + col];":`if(coordsInBounds2D(vec2<i32>(row, col), vec2<i32>(uniforms.dimAOuter, uniforms.dimInner))) {
return A.numbers[batch * batchASize + row * uniforms.dimInner + col];
}
return 0.0;`:e=this.fitA?"return A.numbers[batch * batchASize + col * uniforms.dimAOuter + row];":`if(coordsInBounds2D(vec2<i32>(row, col), vec2<i32>(uniforms.dimAOuter, uniforms.dimInner))) {
return A.numbers[batch* batchASize + col * uniforms.dimAOuter + row];
}
return 0.0;`;let t;this.transposeB===!1?t=this.fitB?"return B.numbers[batch * batchBSize + row * uniforms.dimBOuter + col];":`if(coordsInBounds2D(vec2<i32>(row, col), vec2<i32>(uniforms.dimInner, uniforms.dimBOuter))) {
return B.numbers[batch * batchBSize + row * uniforms.dimBOuter + col];
}
return 0.0;`:t=this.fitB?"return B.numbers[batch * batchBSize + col * uniforms.dimInner + row];":`if(coordsInBounds2D(vec2<i32>(row, col), vec2<i32>(uniforms.dimInner, uniforms.dimBOuter))) {
return B.numbers[batch * batchBSize + col * uniforms.dimInner + row];
}
return 0.0;`;let n="",s="";if(this.activation){let o=ua(this.activation,!1);this.hasPreluActivationWeights?n=`fn activation(a : f32, outCoord : vec3<i32>) -> f32 {
let b = getPreluActivationWeightsAtOutCoordsByCoords(outCoord);
${o}
}`:n=`
fn activation(a : f32, outCoord : vec3<i32>) -> f32 {
${o}
}
`,s="value = activation(value, outCoord);"}let r=this.addBias?"value = value + getBiasAtOutCoordsByCoords(outCoord);":"";return`
${n}
fn mm_readA(row : i32, col : i32, globalId : vec3<u32>) -> f32 {
let batchASize = uniforms.aShape[1] * uniforms.aShape[2];
let batch = i32(globalId.z);
${e}
}
fn mm_readB(row : i32, col : i32, globalId : vec3<u32>) -> f32 {
let batch = i32(globalId.z);
let batchBSize = uniforms.bShape[1] * uniforms.bShape[2];
${t}
}
fn mm_write(row : i32, col : i32, valueIn : f32, globalId : vec3<u32>) {
var value = valueIn;
let batch = i32(globalId.z);
let outCoord = vec3<i32>(batch, row, col);
${r}
${s}
setOutput(batch, row, col, value);
}
${this.outputShape[1]>1?Dx([this.workPerThread,this.workPerThread,1],this.workGroupSize):yue(this.workGroupSize)}
`}};function xue(){return`
var<workgroup> sumValues : array<f32, workGroupSizeX>;
${mc()} {
let coords = getOutputCoordsWithNonFlatDispatchLayout(globalId);
let batch = coords[0];
let row = coords[1];
let col = coords[2];
var sum = 0.0;
let Length = uniforms.dimInner;
for (var k = i32(localId.x); k < Length; k = k + i32(workGroupSizeX)) {
let dataA = mm_readA(batch, row, k);
let dataB = mm_readB(batch, k, col);
sum = sum + dataA * dataB;
}
sumValues[localId.x] = sum;
workgroupBarrier();
for(var currentSize = workGroupSizeX / 2u; currentSize > 1u;
currentSize = currentSize / 2u) {
if (localId.x < currentSize)
{
sumValues[localId.x] = sumValues[localId.x] + sumValues[localId.x + currentSize];
}
workgroupBarrier();
}
if (localId.x == 0u) {
sum = sumValues[0] + sumValues[1];
mm_write(batch, row, col, sum);
}
}
`}var bue=class{constructor(e,t=!1,n=!1,s=null,r=null,a=null){this.variableNames=["A","B"],this.uniforms="dimAOuter : i32; dimBOuter : i32; dimInner : i32;",this.workGroupSize=[256,1,1],this.outputShape=e,this.dispatchLayout={x:[],y:[1,2],z:[0]},this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize);let o=s!=null,i=a!=null;o&&this.variableNames.push("bias"),i&&this.variableNames.push("preluActivationWeights"),this.transposeA=t,this.transposeB=n,this.addBias=o,this.activation=r,this.hasPreluActivationWeights=i,this.shaderKey=`matMulReduce_${this.activation}_${t}_${n}`}getUserCode(){let e;this.transposeA===!1?e="return A.numbers[batch * batchASize + row * uniforms.dimInner + col];":e="return A.numbers[batch * batchASize + col * uniforms.dimAOuter + row];";let t;this.transposeB===!1?t="return B.numbers[batch * batchBSize + row * uniforms.dimBOuter + col];":t="return B.numbers[batch * batchBSize + col * uniforms.dimInner + row];";let n="",s="";if(this.activation){let o=ua(this.activation,!1);this.hasPreluActivationWeights?n=`fn activation(a : f32, outCoord : vec3<i32>) -> f32 {
let b = getPreluActivationWeightsAtOutCoordsByCoords(outCoord);
${o}
}`:n=`
fn activation(a : f32, outCoord : vec3<i32>) -> f32 {
${o}
}
`,s="value = activation(value, outCoord);"}let r=this.addBias?"value = value + getBiasAtOutCoordsByCoords(outCoord);":"";return`
${n}
fn mm_readA(batch: i32, row : i32, col : i32) -> f32 {
let batchASize = uniforms.aShape[1] * uniforms.aShape[2];
${e}
}
fn mm_readB(batch: i32, row : i32, col : i32) -> f32 {
let batchBSize = uniforms.bShape[1] * uniforms.bShape[2];
${t}
}
fn mm_write(batch: i32, row : i32, col : i32, valueIn : f32) {
var value = valueIn;
let outCoord = vec3<i32>(batch, row, col);
${r}
${s}
setOutput(batch, row, col, value);
}
${xue()}
`}};function vue(e){let t=e[1]/2,n=e[0],s=t>n?t:n;return`
var<workgroup> mm_Asub1 : array<array<f32, ${s}>, ${t}>;
var<workgroup> mm_Bsub1 : array<array<f32, ${n}>, ${s}>;
var<workgroup> mm_Asub2 : array<array<f32, ${s}>, ${t}>;
var<workgroup> mm_Bsub2 : array<array<f32, ${n}>, ${s}>;
// If the output size is small for matrix multiplication, avoid to use vec4
// and handle some elements per thread to optimally utilize the ALU.
// Introduces two shared memory buffers, some logical threads could handle
// arithmetic operations and others handle IO operations between barrier api,
// makes ALUs and load/store units work simultaneously, could improves
// the performance.
${mc()} {
let tileRow = i32(localId.y);
let tileCol = i32(localId.x);
let globalRow = i32(globalId.y);
let globalCol = i32(globalId.x);
// uniforms.dimInner should be greater than 0.
let numTiles = (uniforms.dimInner - 1) / ${s} + 1;
var acc = 0.0;
var globalColA = tileCol;
var globalRowB = tileRow;
for (var t = 0; t < numTiles; t = t + 1) {
if (t == 0) {
if (tileRow < ${t}) {
// Load one tile of A and B into local memory.
// globalRow is always greater than or equal tileRow.
mm_Asub1[tileRow][tileCol] =
mm_readA((globalRow - tileRow) / 2 + tileRow, globalColA, globalId);
globalColA = globalColA + ${s};
mm_Bsub1[tileRow][tileCol] = mm_readB(globalRowB, globalCol, globalId);
globalRowB = globalRowB + ${s};
}
} else {
if (tileRow < ${t}) {
// Load one tile of A and B into local memory.
// globalRow is always greater than or equal tileRow.
mm_Asub1[tileRow][tileCol] =
mm_readA((globalRow - tileRow) / 2 + tileRow, globalColA, globalId);
globalColA = globalColA + ${s};
mm_Bsub1[tileRow][tileCol] = mm_readB(globalRowB, globalCol, globalId);
globalRowB = globalRowB + ${s};
} else {
// Compute acc values for a single thread.
for (var k = 0; k < ${s}; k = k + 1) {
let subRow = tileRow - ${t};
if (subRow < 0) {
continue;
}
acc = acc + mm_Asub2[subRow][k] * mm_Bsub2[k][tileCol];
}
}
}
workgroupBarrier();
if (t != 0) {
t = t + 1;
}
if (t < numTiles) {
if (tileRow < ${t}) {
// Load one tile of A and B into local memory.
// globalRow is always greater than or equal tileRow.
mm_Asub2[tileRow][tileCol] =
mm_readA((globalRow - tileRow) / 2 + tileRow, globalColA, globalId);
globalColA = globalColA + ${s};
mm_Bsub2[tileRow][tileCol] = mm_readB(globalRowB, globalCol, globalId);
globalRowB = globalRowB + ${s};
} else {
// Compute acc values for a single thread.
for (var k = 0; k < ${s}; k = k + 1) {
let subRow = tileRow - ${t};
if (subRow < 0) {
continue;
}
acc = acc + mm_Asub1[subRow][k] * mm_Bsub1[k][tileCol];
}
}
}
workgroupBarrier();
}
let writeCol = (globalRow - tileRow) / 2 + tileRow - ${t};
if (tileRow >= ${t} && writeCol >= 0) {
mm_write(writeCol, globalCol, acc, globalId);
}
}
`}var wue=class{constructor(e,t,n,s=null,r=null,a=null){this.variableNames=["A","B"],this.uniforms="dimAOuter : i32; dimBOuter : i32; dimInner : i32;",this.workGroupSize=[8,16,1],v.assert(e[1]<=16||t[2]<=16,()=>"This program can be only used when A width or B Height are small"),this.outputShape=n,this.dispatchLayout={x:[2],y:[1],z:[0]},this.dispatch=[Math.ceil(n[2]/this.workGroupSize[0]),Math.ceil(n[1]*2/this.workGroupSize[1]),n[0]];let o=s!=null;o&&this.variableNames.push("bias");let i=a!=null;i&&this.variableNames.push("preluActivationWeights"),this.addBias=o,this.activation=r,this.hasPreluActivationWeights=i,this.shaderKey=`matMulSmallOutputSize_${this.activation}`}getUserCode(){let e=`if (coordsInBounds2D(vec2<i32>(row, col), vec2<i32>(uniforms.dimAOuter, uniforms.dimInner))) {
return A.numbers[batch * batchASize + row * uniforms.dimInner + col];
}
return 0.0;`,t=`if (coordsInBounds2D(vec2<i32>(row, col), vec2<i32>(uniforms.dimInner, uniforms.dimBOuter))) {
return B.numbers[batch * batchBSize + row * uniforms.dimBOuter + col];
}
return 0.0;`,n="",s="";if(this.activation){let o=ua(this.activation,!1);this.hasPreluActivationWeights?n=`fn activation(a : f32, outCoord : vec3<i32>) -> f32 {
let b = getPreluActivationWeightsAtOutCoordsByCoords(outCoord);
${o}
}`:n=`fn activation(a : f32, outCoord : vec3<i32>) -> f32 {
${o}
}`,s="value = activation(value, outCoord);"}let r=this.addBias?"value = value + getBiasAtOutCoordsByCoords(outCoord);":"";return`
${n}
fn mm_readA(row : i32, col : i32, globalId : vec3<u32>) -> f32 {
let batchASize = uniforms.aShape[1] * uniforms.aShape[2];
let batch = i32(globalId.z);
${e}
}
fn mm_readB(row : i32, col : i32, globalId : vec3<u32>) -> f32 {
let batch = i32(globalId.z);
let batchBSize = uniforms.bShape[1] * uniforms.bShape[2];
${t}
}
fn mm_write(row : i32, col : i32, valueIn : f32, globalId : vec3<u32>) {
if (coordsInBounds2D(vec2<i32>(row, col), vec2<i32>(uniforms.dimAOuter, uniforms.dimBOuter))) {
let batch = i32(globalId.z);
let outCoord = vec3<i32>(batch, row, col);
var value = valueIn;
${r}
${s}
setOutput(batch, row, col, value);
}
}
${vue(this.workGroupSize)}
`}};function qe(e){let{inputs:t,attrs:n}=e,{x:s}=t,{shape:r}=n,a=v.sizeFromShape(s.shape),o=v.inferFromImplicitShape(r,a),i=v.sizeFromShape(o);return v.assert(a===i,()=>`The new shape (${o}) has ${i} elements and the old shape (${s.shape}) has ${a} elements. The new shape and old shape must have the same number of elements.`),e.backend.incRef(s.dataId),{dataId:s.dataId,shape:o,dtype:s.dtype}}var kue={kernelName:Oi,backendName:"webgpu",kernelFunc:qe};function Px({a:e,b:t,transposeA:n,transposeB:s,backend:r,bias:a=null,preluActivationWeights:o=null,leakyreluAlpha:i=0,activation:l=null}){let c=e.shape.length,u=t.shape.length,d=n?e.shape[c-2]:e.shape[c-1],p=s?t.shape[u-1]:t.shape[u-2],h=n?e.shape[c-1]:e.shape[c-2],f=s?t.shape[u-2]:t.shape[u-1],m=e.shape.slice(0,-2),g=t.shape.slice(0,-2),A=v.sizeFromShape(m),x=v.sizeFromShape(g),b=sl.assertAndGetBroadcastShape(e.shape.slice(0,-2),t.shape.slice(0,-2)).concat([h,f]);v.assert(d===p,()=>`Error in matMul: inner shapes (${d}) and (${p}) of Tensors with shapes ${e.shape} and ${t.shape} and transposeA=${n} and transposeB=${s} must match.`);let w=n?[A,d,h]:[A,h,d],k=s?[x,f,p]:[x,p,f],S=qe({inputs:{x:e},backend:r,attrs:{shape:w}}),N=qe({inputs:{x:t},backend:r,attrs:{shape:k}}),R=[S,N],M=Math.max(A,x),D=d%4==0&&f%4==0&&!n&&!s&&f>=32,$;h*f<=32?$=new bue([M,h,f],n,s,a,l,o):!n&&!s&&(h<=16&&(f<=512||p>=2*f)||f<=16&&(h<=512||d>=2*h))?$=new wue(w,k,[M,h,f],a,l,o):D?$=new Aue(w,[M,h,f],Y().get("WEBGPU_MATMUL_WORK_PER_THREAD"),a,l,o):$=new $4(w,[M,h,f],Y().get("WEBGPU_MATMUL_WORK_PER_THREAD"),n,s,a,l,o);let T=[S,N];a&&T.push(a),o&&T.push(o);let F=[{type:"int32",data:[h]},{type:"int32",data:[f]},{type:"int32",data:[d]}],V=r.runWebGPUProgram($,T,e.dtype,F),X=qe({inputs:{x:V},backend:r,attrs:{shape:b}});R.push(V);for(let z of R)r.disposeData(z.dataId);return X}function Iue(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a,bias:o,preluActivationWeights:i}=t,{transposeA:l,transposeB:c,activation:u,leakyreluAlpha:d}=s;return Px({a:r,b:a,transposeA:l,transposeB:c,backend:n,bias:o,preluActivationWeights:i,leakyreluAlpha:d,activation:u})}var Sue={kernelName:vo,backendName:"webgpu",kernelFunc:Iue},_4=class{constructor(e,t,n){this.variableNames=["AReal","AImag","BReal","BImag"],this.workGroupSize=[128,1,1],this.size=!0,this.outputShape=E.assertAndGetBroadcastShape(t,n),this.dispatchLayout=He(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey=`binaryOpComplex_${e}`,this.op=e}getUserCode(){return`
fn binaryOpComplex(
areal : f32, aimag : f32, breal : f32, bimag : f32) -> f32 {
${kp(this.op,!1)}
}
${Ke()}
if(index < uniforms.size) {
let areal = getARealAtOutCoordsByGlobalIndex(index);
let aimag = getAImagAtOutCoordsByGlobalIndex(index);
let breal = getBRealAtOutCoordsByGlobalIndex(index);
let bimag = getBImagAtOutCoordsByGlobalIndex(index);
setOutputFlat(index, binaryOpComplex(areal, aimag, breal, bimag));
}
}
`}},Cue=class{constructor(e,t,n,s){this.variableNames=["A","B"],this.size=!0;let r=256;this.workGroupSize=[r,1,1],this.outputShape=E.assertAndGetBroadcastShape(t,n),this.dispatchLayout=He(this.outputShape),this.lastDimensionSize=s?n[0]:t[0],this.lastDimensionSize<256?this.workPerThread=1:this.lastDimensionSize<512?this.workPerThread=2:this.workPerThread=4,this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.useSharedMemoryWithB=s,this.op=e,this.shaderKey=`binaryShared_${e}_${this.lastDimensionSize}_${this.useSharedMemoryWithB}`}getUserCode(){let e=this.lastDimensionSize>1?`coords[${this.outputShape.length-1}]`:"0",t=this.useSharedMemoryWithB?`let a = getAAtOutCoordsByCoords(coords);
let b = sharedBuf[${e}];`:`let a = sharedBuf[${e}];
let b = getBAtOutCoordsByCoords(coords);`;return`
fn binaryOperation(a : f32, b : f32) -> f32 {
${kp(this.op,!1)}
}
var<workgroup> sharedBuf : array<f32, ${this.lastDimensionSize}>;
${Ke()}
// Fill in the shared memory buffer. Here we need a loop to make sure
// that all data in A|B are uploaded when |sharedMemorySize| is larger
// than work group size.
for(var localIndex = i32(localId.x); localIndex < ${this.lastDimensionSize}; localIndex = localIndex + ${this.workGroupSize[0]}) {
sharedBuf[localIndex] = f32(${this.useSharedMemoryWithB?"B":"A"}.numbers[localIndex]);
}
workgroupBarrier();
for(var i = 0; i < ${this.workPerThread}; i = i + 1) {
let flatIndex = index * ${this.workPerThread} + i;
if(flatIndex < uniforms.size) {
let coords = getCoordsFromFlatIndex(flatIndex);
${t}
setOutputFlat(flatIndex, binaryOperation(a, b));
}
}
}
`}},Tue=class{constructor(e,t,n){this.variableNames=["A","B"],this.workPerThread=4,this.isVec4=!0,this.size=!0;let s=128;this.workGroupSize=[s,1,1],this.outputShape=E.assertAndGetBroadcastShape(t,n),this.dispatchLayout=He(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.op=e,this.shaderKey=`binaryVec4_${e}`}getUserCode(){return`
fn binaryOperation(a : vec4<f32>, b : vec4<f32>) -> vec4<f32> {
${kp(this.op,this.isVec4)}
}
${Ke()}
if (index < uniforms.size) {
let a = getAAtOutCoordsByGlobalIndex(index);
let b = getBAtOutCoordsByGlobalIndex(index);
setOutputFlat(index, binaryOperation(a, b));
}
}
`}},D4=class{constructor(e,t,n){this.variableNames=["A","B"],this.size=!0;let s=128;this.workGroupSize=[s,1,1],this.outputShape=E.assertAndGetBroadcastShape(t,n),this.dispatchLayout=He(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey=`binary_${e}`,this.op=e}getUserCode(){return`
fn binaryOperation(a : f32, b : f32) -> f32 {
${kp(this.op,!1)}
}
${Ke()}
if (index < uniforms.size) {
let a = getAAtOutCoordsByGlobalIndex(index);
let b = getBAtOutCoordsByGlobalIndex(index);
setOutputFlat(index, binaryOperation(a, b));
}
}
`}};function P4(e,t,n){if(v.arraysEqual(t,n)&&v.sizeFromShape(t)%4==0)return new Tue(e,t,n);let r=t.length===1&&n.length>1&&t[0]<1024,a=n.length===1&&t.length>1&&n[0]<1024;return r||a?new Cue(e,t,n,a):new D4(e,t,n)}function or(e){let{inputs:t}=e,{x:n}=t;return e.backend.incRef(n.dataId),{dataId:n.dataId,shape:n.shape,dtype:n.dtype}}var Nue={kernelName:qa,backendName:"webgpu",kernelFunc:or};function yc(e){let{inputs:t,backend:n}=e,{real:s,imag:r}=t,a=n.makeTensorInfo(s.shape,"complex64"),o=n.tensorMap.get(a.dataId),i=or({inputs:{x:s},backend:n}),l=or({inputs:{x:r},backend:n});return o.complexTensorInfos={real:i,imag:l},a}var Eue={kernelName:ad,backendName:"webgpu",kernelFunc:yc},r0=class{constructor(e,t){this.variableNames=["A"],this.size=!0;let n=128;this.workGroupSize=[n,1,1],this.outputShape=e,this.dispatchLayout=He(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.op=t,this.shaderKey=`unary_${t}`}getUserCode(){return`
fn unaryOperation(a : f32) -> f32 {
${Ac(this.op,!1)}
}
${Ke()}
if (index < uniforms.size) {
let a = getAAtOutCoordsByGlobalIndex(index);
setOutputFlat(index, unaryOperation(a));
}
}
`}};function Nn({opType:e,cpuKernelImpl:t,dtype:n}){return({inputs:s,backend:r})=>{let{x:a}=s,o=r,i=n||a.dtype;if(o.shouldExecuteOnCPU([a])&&t!=null){let c=o.tensorMap.get(a.dataId),u=t(c.values,i);return o.makeTensorInfo(a.shape,i,u)}let l=new r0(a.shape,e);return o.runWebGPUProgram(l,[a],i)}}function qn({opSnippet:e,cpuKernelImpl:t,supportsComplex:n=!1,dtype:s}){return({inputs:r,backend:a})=>{let{a:o,b:i}=r,l=a;if(n&&o.dtype==="complex64"){let d=l.tensorMap.get(o.dataId),p=l.tensorMap.get(i.dataId),h,f;if(e!==Ut.MUL)[h,f]=[[d.complexTensorInfos.real,p.complexTensorInfos.real],[d.complexTensorInfos.imag,p.complexTensorInfos.imag]].map(g=>{let[A,x]=g,y={dataId:A.dataId,dtype:A.dtype,shape:o.shape},b={dataId:x.dataId,dtype:x.dtype,shape:i.shape},w=P4(e,o.shape,i.shape);return l.runWebGPUProgram(w,[y,b],Ln(A.dtype,x.dtype))});else{let g=new _4(Ut.COMPLEX_MULTIPLY_REAL,o.shape,i.shape),A=new _4(Ut.COMPLEX_MULTIPLY_IMAG,o.shape,i.shape),x=[{dataId:d.complexTensorInfos.real.dataId,dtype:d.complexTensorInfos.real.dtype,shape:o.shape},{dataId:d.complexTensorInfos.imag.dataId,dtype:d.complexTensorInfos.imag.dtype,shape:o.shape},{dataId:p.complexTensorInfos.real.dataId,dtype:p.complexTensorInfos.real.dtype,shape:i.shape},{dataId:p.complexTensorInfos.imag.dataId,dtype:p.complexTensorInfos.imag.dtype,shape:i.shape}];h=l.runWebGPUProgram(g,x,"float32"),f=l.runWebGPUProgram(A,x,"float32")}let m=yc({inputs:{real:h,imag:f},backend:l});return l.disposeData(h.dataId),l.disposeData(f.dataId),m}let c=s||Ln(o.dtype,i.dtype);if((o.dtype==="string"||i.dtype==="string"||l.shouldExecuteOnCPU([o,i]))&&t!=null){let d=l.tensorMap.get(o.dataId).values,p=l.tensorMap.get(i.dataId).values,h=o.dtype==="string"?E.fromUint8ToStringArray(d):d,f=o.dtype==="string"?E.fromUint8ToStringArray(p):p,[m,g]=t(o.shape,i.shape,h,f,c);return l.makeTensorInfo(g,c,m)}let u=P4(e,o.shape,i.shape);return l.runWebGPUProgram(u,[o,i],c)}}var{addImpl:Rue,ceilImpl:$ue,concatImpl:_ue,equalImpl:Due,expImpl:Pue,expm1Impl:Fue,floorImpl:Oue,gatherNdImpl:Mue,gatherV2Impl:zue,greaterEqualImpl:Lue,greaterImpl:Bue,lessEqualImpl:Wue,lessImpl:Vue,logImpl:Uue,maxImpl:Gue,maximumImpl:Hue,minimumImpl:jue,multiplyImpl:que,negImpl:Xue,notEqualImpl:Kue,prodImpl:Zue,rangeImpl:Yue,rsqrtImpl:Jue,simpleAbsImpl:Que,sliceImpl:ece,stridedSliceImpl:tce,stringNGramsImpl:nce,subImpl:sce,tileImpl:rce,topKImpl:ace,transposeImpl:oce,uniqueImpl:x1e}=Em,ice=Nn({opType:wt.ABS,cpuKernelImpl:Que}),lce={kernelName:di,backendName:"webgpu",kernelFunc:ice},uce=qn({opSnippet:Ut.ADD,cpuKernelImpl:Rue,supportsComplex:!0}),cce={kernelName:Xr,backendName:"webgpu",kernelFunc:uce},dce=class{constructor(e){this.workPerThread=4,this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e[0],this.variableNames=e.map((t,n)=>`T${n}`),this.dispatchLayout=He(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.shaderKey="addN"}getUserCode(){let e=[];this.variableNames.forEach(s=>{e.push(`let v${s} = get${s}AtOutCoordsByCoords(coords);`)});let t=this.variableNames.map(s=>`v${s}`).join(" + ");return`
${Ke()}
for (var i = 0; i < ${this.workPerThread}; i = i + 1) {
let flatIndex = index * ${this.workPerThread} + i;
if (flatIndex < uniforms.size) {
let coords = getCoordsFromFlatIndex(flatIndex);
${e.join(`
`)}
setOutputFlat(flatIndex, ${t});
}
}
}
`}};function pce(e){let{inputs:t,backend:n}=e,s=t;if(s.length===1)return or({inputs:{x:s[0]},backend:n});let r=s.map(i=>i.dtype).reduce((i,l)=>Ln(i,l)),a=s.map(i=>i.shape),o=new dce(a);return n.runWebGPUProgram(o,s,r)}var hce={kernelName:Ea,backendName:"webgpu",kernelFunc:pce},F4=class{constructor(e,t,n){this.workGroupSize=[64,1,1],this.variableNames=["x"],this.uniforms="axis : i32; infinityValue : f32;",this.size=!0;let s=[t];E.assertAxesAreInnerMostDims("arg"+n.charAt(0).toUpperCase()+n.slice(1),s,e.length),this.op=n==="min"?"<":">";let[r]=E.computeOutAndReduceShapes(e,s);this.outputShape=r.length===0?[1]:r,this.dispatchLayout=He(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,[1,1,1]),this.inputShape=e,this.shaderKey=`argMinMax${this.op}`}getUserCode(){let e=`
var<workgroup> xBestIndices : array<i32, ${this.workGroupSize[0]}>;
var<workgroup> xBestValues : array<f32, ${this.workGroupSize[0]}>;
`,t=(r,a)=>this.outputShape.length===1?r:`${r}[${a}]`,n=r=>this.inputShape.length===1?"uniforms.xShape":`uniforms.xShape[${r}]`;return`
fn DIV_CEIL(a : u32, b : u32) -> u32 {
return ((a - 1u) / b + 1u);
}
${e}
// In order to get a flattened index into the input tensor, we need to
// add back the index along the reduced dimension to |outputCoords|.
// This function outputs the offset to the first value along
// |axis| and the stride to get the next value of the input along |axis|.
fn getInputCoordInfo(outputIndex : i32) -> vec2<i32>{
let outputCoords = getCoordsFromFlatIndex(outputIndex);
var i = ${this.outputShape.length-1};
var stride = 1;
var inputStride = 1;
var offset = 0;
for (var r = 1; r <= ${this.inputShape.length}; r = r + 1) {
let length = ${n(`${this.inputShape.length} - r`)};
if (${this.inputShape.length} - r == uniforms.axis) {
inputStride = stride;
} else {
offset = offset + ${t("outputCoords","i")} * stride;
i = i - 1;
}
stride = stride * length;
}
return vec2<i32>(offset, inputStride);
}
fn getInputIndex(coordInfo : vec2<i32>, index : i32) -> i32{
return coordInfo[0] + coordInfo[1] * index;
}
${Ke()}
let outputIndex = index / i32(workGroupSizeX);
let coordInfo = getInputCoordInfo(outputIndex);
let Length = ${n("uniforms.axis")};
var bestIndex = i32(localId.x);
var bestValue = uniforms.infinityValue;
for (var k = i32(localId.x); k < Length && outputIndex < uniforms.size;
k = k + i32(workGroupSizeX)) {
let candidate = f32(x.numbers[getInputIndex(coordInfo, k)]);
if (!isNanCustom(candidate) && candidate ${this.op} bestValue) {
bestValue = candidate;
bestIndex = k;
}
}
xBestValues[localId.x] = bestValue;
xBestIndices[localId.x] = bestIndex;
workgroupBarrier();
var reduceSize = min(u32(Length), workGroupSizeX);
for (var currentSize = reduceSize / 2u; reduceSize > 1u;
currentSize = reduceSize / 2u) {
let interval = DIV_CEIL(reduceSize, 2u);
if (localId.x < currentSize) {
let candidate = xBestValues[localId.x + interval];
if (candidate ${this.op} bestValue) {
bestValue = candidate;
xBestValues[localId.x] = bestValue;
xBestIndices[localId.x] = xBestIndices[localId.x + interval];
}
}
reduceSize = interval;
workgroupBarrier();
}
if (localId.x == 0u && outputIndex < uniforms.size) {
setOutputFlatI32(outputIndex, xBestIndices[localId.x]);
}
}
`}},fce=class{constructor(e,t){this.variableNames=["A"],this.workGroupSize=[16,16,1];let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[t[s]];this.outputShape=n,this.dispatchLayout={x:[0],y:[1]},this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize,[1,1,1]),this.shaderKey="transposeShared"}getUserCode(){return`
let TILE_DIM = ${this.workGroupSize[0]};
var<workgroup> tile : array<array<f32, ${this.workGroupSize[0]+1}>, ${this.workGroupSize[0]}>;
${s0()}
fn main([[builtin(local_invocation_id)]] localId : vec3<u32>,
[[builtin(workgroup_id)]] workgroupId : vec3<u32>) {
var x = i32(workgroupId.x) * TILE_DIM + i32(localId.x);
var y = i32(workgroupId.y) * TILE_DIM + i32(localId.y);
let width = uniforms.outShape[0];
let height = uniforms.outShape[1];
if (x < width && y < height) {
tile[localId.y][localId.x] =
A.numbers[y * width + x];
}
workgroupBarrier();
x = i32(workgroupId.y) * TILE_DIM + i32(localId.x);
y = i32(workgroupId.x) * TILE_DIM + i32(localId.y);
if (x < height && y < width) {
setOutputFlat((y * height + x), tile[localId.x]
[localId.y]);
}
}
`}},mce=class{constructor(e,t){this.variableNames=["A"],this.workPerThread=4,this.workGroupSize=[64,1,1],this.size=!0;let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[t[s]];this.outputShape=n,this.dispatchLayout=He(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.newDim=t,this.shaderKey=`transpose_${t}`}getUserCode(){let e=kn(this.outputShape.length),t=gce(this.newDim);return`
${Ke()}
for(var i = 0; i < ${this.workPerThread}; i = i + 1) {
let flatIndex = index * ${this.workPerThread} + i;
if(flatIndex < uniforms.size) {
let resRC = getCoordsFromFlatIndex(flatIndex);
setOutputFlat(flatIndex, A.numbers[getFlatIndex${this.outputShape.length}D(
${e}(${t}), uniforms.aShape)]);
}
}
}
`}};function gce(e){let t=e.length;if(t>4)throw Error(`Transpose for rank ${t} is not yet supported`);let n=new Array(t);for(let s=0;s<e.length;s++)n[e[s]]=`resRC[${s}]`;return n.join()}function Dl(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{perm:a}=s,o=n,i=r.shape.length,l=new Array(i);for(let u=0;u<l.length;u++)l[u]=r.shape[a[u]];if(n.shouldExecuteOnCPU([r])){let d=o.tensorMap.get(r.dataId).values,p=oce(d,r.shape,r.dtype,a,l);return n.makeTensorInfo(l,r.dtype,p)}if(r.shape.length===2&&v.arraysEqual(a,[1,0])){let u=new fce(r.shape,a);return o.runWebGPUProgram(u,[r],r.dtype)}let c=new mce(r.shape,a);return o.runWebGPUProgram(c,[r],r.dtype)}var Ace={kernelName:xo,backendName:"webgpu",kernelFunc:Dl};function yce(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s,o=v.parseAxisParam(a,r.shape),i=E.getAxesPermutation(o,r.shape.length),l=r,c=[];i!=null&&(l=Dl({inputs:{x:r},backend:n,attrs:{perm:i}}),c.push(l),o=E.getInnerMostAxes(o.length,l.shape.length)),E.assertAxesAreInnerMostDims("argMax",[o[0]],l.shape.length);let u=new F4(l.shape,o[0],"max"),d=[{type:"int32",data:[o[0]]},{type:"float32",data:[Number.NEGATIVE_INFINITY]}],p=n.runWebGPUProgram(u,[l],"int32",d);return c.forEach(h=>n.disposeData(h.dataId)),p}var xce={kernelName:Ra,backendName:"webgpu",kernelFunc:yce};function bce(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s,o=v.parseAxisParam(a,r.shape),i=E.getAxesPermutation(o,r.shape.length),l=r,c=[];i!=null&&(l=Dl({inputs:{x:r},backend:n,attrs:{perm:i}}),c.push(l),o=E.getInnerMostAxes(o.length,l.shape.length)),E.assertAxesAreInnerMostDims("argMin",[o[0]],l.shape.length);let u=new F4(l.shape,o[0],"min"),d=[{type:"int32",data:[o[0]]},{type:"float32",data:[Number.POSITIVE_INFINITY]}],p=n.runWebGPUProgram(u,[l],"int32",d);return c.forEach(h=>n.disposeData(h.dataId)),p}var vce={kernelName:lu,backendName:"webgpu",kernelFunc:bce},O4=class{constructor(e,t){this.variableNames=["x"],this.uniforms="stride : vec2<i32>; pad : vec2<i32>; dilation : vec2<i32>; convDims : vec2<i32>; filterDims : vec2<i32>;",this.workGroupSize=[128,1,1],this.size=!0,this.outputShape=e.outShape,this.dispatchLayout=He(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey=`pool2D_${t}`,this.poolType=t}getUserCode(){let e="resultValue = max(value, resultValue);";this.poolType==="avg"&&(e="resultValue = resultValue + value; count = count + 1.0;");let t="resultValue";return this.poolType==="avg"&&(t="resultValue / count"),`
${Ke()}
if (index < uniforms.size) {
let coords = getCoordsFromFlatIndex(index);
let batch = coords[0];
let xRCCorner = vec2<i32>(coords.yz) * uniforms.stride - uniforms.pad;
let xRCorner = xRCCorner.x;
let xCCorner = xRCCorner.y;
var resultValue = ${this.poolType==="avg"?"0.0":"-1.0 / pow(10.0, -20.0)"};
var count = 0.0;
for (var wR = 0; wR < uniforms.filterDims.x; wR = wR + uniforms.dilation.x) {
let xR = xRCorner + wR;
if (xR < 0 || xR >= uniforms.convDims.x) {
continue;
}
for (var wC = 0; wC < uniforms.filterDims.y; wC = wC + uniforms.dilation.y) {
let xC = xCCorner + wC;
if (xC < 0 || xC >= uniforms.convDims.y) {
continue;
}
let value = getX(batch, xR, xC, coords[3]);
${e}
}
}
setOutputFlat(index, ${t});
}
}
`}},M4=class{constructor(e){this.variableNames=["x"],this.uniforms="stride : vec2<i32>;",this.workGroupSize=[256,1,1],this.size=!0,this.outputShape=e.outShape,this.dispatchLayout=He(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="poolWithFilterSizeEqualsOne"}getUserCode(){return`
${Ke()}
if (index < uniforms.size) {
let coords = getCoordsFromFlatIndex(index);
let batch = coords[0];
let d = coords[3];
let xRCCorner = coords.yz * uniforms.stride;
let xRCorner = xRCCorner.x;
let xCCorner = xRCCorner.y;
let value = getX(batch, xRCorner, xCCorner, d);
setOutputFlat(index, value);
}
}
`}};function wce(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=s,c=1,u=E.computePool2DInfo(r.shape,a,o,c,i,l);if(u.filterWidth===1&&u.filterHeight===1&&v.arraysEqual(u.inShape,u.outShape))return or({inputs:{x:r},backend:n});let d,p=[{type:"int32",data:[u.strideHeight,u.strideWidth]}];return u.filterHeight===1&&u.filterWidth===1?d=new M4(u):(d=new O4(u,"avg"),p.push({type:"int32",data:[u.padInfo.top,u.padInfo.left]},{type:"int32",data:[u.dilationHeight,u.dilationWidth]},{type:"int32",data:[u.inHeight,u.inWidth]},{type:"int32",data:[u.effectiveFilterHeight,u.effectiveFilterWidth]})),n.runWebGPUProgram(d,[r],r.dtype,p)}var kce={kernelName:$a,backendName:"webgpu",kernelFunc:wce};function Ice(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a}=t,{transposeA:o,transposeB:i}=s;return Px({a:r,b:a,transposeA:o,transposeB:i,backend:n})}var Sce={kernelName:_a,backendName:"webgpu",kernelFunc:Ice},Cce=class{constructor(e,t){this.variableNames=["source"],this.workPerThread=1,this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=t,this.rank=t.length,this.dispatchLayout=He(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.start=e,this.uniforms=`start : ${kn(e.length)}; `,this.shaderKey="slice"}getUserCode(){let e=kn(this.rank),t=Tce(this.rank),n;return this.start.length===1?n=this.outputShape.map((r,a)=>"sourceLoc = uniforms.start + coords;"):n=this.outputShape.map((r,a)=>`sourceLoc.${Fx[a]} = uniforms.start[${a}] + coords.${Fx[a]};`),`
${Ke()}
if (index < uniforms.size) {
var sourceLoc : ${e};
let coords = getCoordsFromFlatIndex(index);
${n.join(`
`)}
setOutputFlat(index, getSource(${t}));
}
}
`}},Fx=["x","y","z","w","u","v"];function Tce(e){if(e===1)return"sourceLoc";if(e<=6)return Fx.slice(0,e).map(t=>`sourceLoc.${t}`).join(",");throw Error(`Slicing for rank ${e} is not yet supported`)}function xc(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,size:o}=s,[i,l]=Ft.parseSliceParams(r,a,o);if(Ft.assertParamsValid(r,i,l),n.shouldExecuteOnCPU([r])||r.dtype==="string"){let d=n.tensorMap.get(r.dataId),p=ece(d.values,i,l,r.shape,r.dtype);return n.makeTensorInfo(l,r.dtype,p)}if(v.sizeFromShape(l)===0)return n.makeTensorInfo(l,r.dtype,[]);let c=new Cce(i,l),u=[{type:"int32",data:i}];return n.runWebGPUProgram(c,[r],r.dtype,u)}var Nce={kernelName:Wi,backendName:"webgpu",kernelFunc:xc},Ece=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,crops:o}=s;v.assert(r.shape.length<=4,()=>"batchToSpaceND for rank > 4 with a WebGPU backend not implemented yet");let i=a.reduce((x,y)=>x*y),l=E.getReshaped(r.shape,a,i),c=E.getPermuted(l.length,a.length),u=E.getReshapedPermuted(r.shape,a,i),d=E.getSliceBeginCoords(o,a.length),p=E.getSliceSize(u,o,a.length),h=[],f=qe({inputs:{x:r},backend:n,attrs:{shape:l}}),m=Dl({inputs:{x:f},backend:n,attrs:{perm:c}}),g=qe({inputs:{x:m},backend:n,attrs:{shape:u}}),A=xc({inputs:{x:g},backend:n,attrs:{begin:d,size:p}});return h.push(f),h.push(m),h.push(g),h.forEach(x=>n.disposeData(x.dataId)),A},Rce={kernelName:pi,backendName:"webgpu",kernelFunc:Ece},z4=qn({opSnippet:Ut.NOT_EQUAL,dtype:"bool",cpuKernelImpl:Kue}),$ce={kernelName:Ei,backendName:"webgpu",kernelFunc:z4};function Ip(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.tensorMap.get(s.dataId);return or({inputs:{x:r.complexTensorInfos.real},backend:n})}var _ce={kernelName:fd,backendName:"webgpu",kernelFunc:Ip};function Dce(e,t){let n=new r0(e.shape,wt.TO_INT),s=t.runWebGPUProgram(n,[e],"int32");return{dataId:s.dataId,shape:s.shape,dtype:s.dtype}}function Ox(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dtype:a}=s;if(a==="complex64"){if(r.dtype==="complex64")return or({inputs:{x:r},backend:n});let o=Ht(r.shape),i=Ox({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),l=yc({inputs:{real:i,imag:o},backend:n});return o.dispose(),n.disposeData(i.dataId),l}if(r.dtype==="complex64"){let o=Ip({inputs:{input:r},backend:n}),i=Ox({inputs:{x:o},backend:n,attrs:{dtype:a}});return n.disposeData(o.dataId),i}if(!v.hasEncodingLoss(r.dtype,a)){let o=or({inputs:{x:r},backend:n});return{dataId:o.dataId,shape:o.shape,dtype:a}}if(a==="int32")return Dce(r,n);if(a==="bool"){let o=n.makeTensorInfo([],"bool",v.getTypedArrayFromDType("bool",1)),l=z4({inputs:{a:r,b:o},backend:n});return n.disposeData(o.dataId),l}throw new Error(`Error in Cast: failed to cast ${r.dtype} to ${a}`)}var Pce={kernelName:Da,backendName:"webgpu",kernelFunc:Ox},Fce=Nn({opType:wt.CEIL,cpuKernelImpl:$ue}),Oce={kernelName:Pa,backendName:"webgpu",kernelFunc:Fce},Mce=class{constructor(e){this.variableNames=["A"],this.uniforms="minVal : f32; maxVal : f32;",this.workPerThread=4,this.workGroupSize=[64,1,1],this.isVec4=!0,this.size=!0,this.outputShape=e,this.dispatchLayout=He(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.shaderKey="clipVec4"}getUserCode(){return`
${Ke()}
if(index < uniforms.size) {
let value = getAAtOutCoordsByGlobalIndex(index);
var clampedValue : vec4<f32>;
for (var i = 0; i < 4; i = i + 1) {
if (isNanCustom(value[i])) {
clampedValue[i] = value[i];
} else {
clampedValue[i] = clamp(value[i], uniforms.minVal, uniforms.maxVal);
}
}
setOutputFlat(index, clampedValue);
}
}
`}},zce=class{constructor(e){this.variableNames=["A"],this.uniforms="minVal : f32; maxVal : f32;",this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=He(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="clip"}getUserCode(){return`
${Ke()}
if(index < uniforms.size) {
let value = getAAtOutCoordsByGlobalIndex(index);
if (isNanCustom(value)) {
setOutputFlat(index, value);
return;
}
setOutputFlat(index, clamp(value, uniforms.minVal, uniforms.maxVal));
}
}
`}};function Lce(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{clipValueMin:a,clipValueMax:o}=s,i,l=[{type:"float32",data:[a]},{type:"float32",data:[o]}];return v.sizeFromShape(r.shape)%4==0?i=new Mce(r.shape):i=new zce(r.shape),n.runWebGPUProgram(i,[r],r.dtype,l)}var Bce={kernelName:Kr,backendName:"webgpu",kernelFunc:Lce},Wce=class{constructor(e){this.workPerThread=4,this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=E.computeOutShape(e,1),this.variableNames=e.map((t,n)=>`T${n}`),this.dispatchLayout=He(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.shapes=e,this.shaderKey=`concat${e}`}getUserCode(){let e=new Array(this.shapes.length-1),t=[];if(e.length>0){e[0]=this.shapes[0][1];for(let a=1;a<e.length;a++)e[a]=e[a-1]+this.shapes[a][1];t.push(`if (yC < ${e[0]}){ setOutput(coords.x, coords.y, getT0(yR, yC)); }`);for(let a=1;a<e.length;a++){let o=e[a-1];t.push(`elseif (yC < ${e[a]}){ setOutput(coords.x, coords.y, getT${a}(yR, yC - ${o})); }`)}let s=e.length,r=e[e.length-1];t.push(`else { setOutput(coords.x, coords.y, getT${s}(yR, yC - ${r})); }`)}else t.push("setOutput(coords.x, coords.y, getT0(yR, yC));");return`
${Ke()}
for(var i = 0; i < ${this.workPerThread}; i = i + 1) {
let flatIndex = index * ${this.workPerThread} + i;
if(flatIndex < uniforms.size) {
let coords = getCoordsFromFlatIndex(flatIndex);
let yR = coords.x;
let yC = coords.y;
${t.join(`
`)}
}
}
}
`}};function a0(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.tensorMap.get(s.dataId);return or({inputs:{x:r.complexTensorInfos.imag},backend:n})}var Vce={kernelName:cd,backendName:"webgpu",kernelFunc:a0};function Mx(e,t,n){let s=e[0].dtype;if(s==="complex64"){let u=e.map(m=>Ip({inputs:{input:m},backend:n})),d=e.map(m=>a0({inputs:{input:m},backend:n})),p=Mx(u,t,n),h=Mx(d,t,n),f=yc({inputs:{real:p,imag:h},backend:n});return u.forEach(m=>n.disposeData(m.dataId)),d.forEach(m=>n.disposeData(m.dataId)),n.disposeData(p.dataId),n.disposeData(h.dataId),f}let r=n.shouldExecuteOnCPU(e);if(s==="string"&&(r=!0),r){let u=e.map(A=>{let x=v.sizeFromShape(A.shape.slice(t));return qe({inputs:{x:A},backend:n,attrs:{shape:[-1,x]}})}),d=u.map(A=>({vals:n.readSync(A.dataId),shape:A.shape})),p=E.computeOutShape(u.map(A=>A.shape),1),h=u[0].shape[0]===1,f=_ue(d,p,s,h),m=E.computeOutShape(e.map(A=>A.shape),t),g=n.makeTensorInfo(m,s,f);return u.forEach(A=>n.disposeData(A.dataId)),g}let{tensors2D:a,outShape:o}=Uce(e,t,n),i=new Wce(a.map(u=>u.shape)),l=n.runWebGPUProgram(i,a,a[0].dtype);a.forEach(u=>n.disposeData(u.dataId));let c=qe({inputs:{x:l},backend:n,attrs:{shape:o}});return n.disposeData(l.dataId),c}function Uce(e,t,n){let s=E.computeOutShape(e.map(a=>a.shape),t);return{tensors2D:e.map(a=>qe({inputs:{x:a},backend:n,attrs:{shape:[v.sizeFromShape(a.shape.slice(0,t)),v.sizeFromShape(a.shape.slice(t))]}})),outShape:s}}function L4(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s,a=v.parseAxisParam(r,t[0].shape)[0],o=E.computeOutShape(t.map(c=>c.shape),a);if(v.sizeFromShape(o)===0)return n.makeTensorInfo(o,t[0].dtype,[]);let i=t.filter(c=>v.sizeFromShape(c.shape)>0);if(i.length===1)return or({inputs:{x:i[0]},backend:n});let l=i.map(c=>c.shape);return E.assertParamsConsistent(l,a),Mx(i,a,n)}var Gce={kernelName:hi,backendName:"webgpu",kernelFunc:L4},Hce=class{constructor(e,t){this.variableNames=["A"],this.uniforms=`pad : vec2<i32>; stride : vec2<i32>; dilation : vec2<i32>; outWidth : i32; itemsPerBlockRow : i32;
inChannels : i32;`,this.workPerThread=4,this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=He(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.isChannelsLast=t,this.shaderKey=`im2col_${this.isChannelsLast}`}getUserCode(){let e=this.isChannelsLast?0:1,t=this.isChannelsLast?1:2;return`
${Ke()}
for(var i = 0; i<${this.workPerThread}; i = i + 1) {
let flatIndex = index * ${this.workPerThread} + i;
let rc = getCoordsFromFlatIndex(flatIndex);
if(flatIndex < uniforms.size) {
let blockIndex = rc[0];
let pos = rc[1];
let offsetY = blockIndex / uniforms.outWidth * uniforms.stride[1] - uniforms.pad[1];
let d0 = offsetY + uniforms.dilation[1] * pos / uniforms.itemsPerBlockRow;
var value = 0.0;
if(d0 < uniforms.aShape[${e}] && d0 >= 0) {
let offsetX = (blockIndex % uniforms.outWidth) * uniforms.stride[0] -
uniforms.pad[0];
let d1 = offsetX + uniforms.dilation[0] * ((pos %
uniforms.itemsPerBlockRow) / uniforms.inChannels);
let ch = pos % uniforms.inChannels;
if(d1 < uniforms.aShape[${t}] && d1 >= 0) {
value = getA(d0, d1, ch);
}
}
setOutputFlat(flatIndex, value);
}
}
}
`}};function B4({x:e,filter:t,convInfo:n,backend:s,bias:r=null,preluActivationWeights:a=null,leakyreluAlpha:o=0,activation:i=null}){let l=e.shape,c=n.dataFormat==="channelsLast",u=!1,d=!1,p=c?l[0]*l[1]*l[2]:l[0]*l[2]*l[3],h=qe({inputs:{x:e},backend:s,attrs:{shape:[1,p,n.inChannels]}}),f=qe({inputs:{x:t},backend:s,attrs:{shape:[1,n.inChannels,n.outChannels]}}),m=Px({a:h,b:f,transposeA:u,transposeB:d,backend:s,bias:r,activation:i,preluActivationWeights:a,leakyreluAlpha:o}),g=qe({inputs:{x:m},backend:s,attrs:{shape:n.outShape}});return s.disposeData(h.dataId),s.disposeData(f.dataId),s.disposeData(m.dataId),g}function jce({x:e,filter:t,convInfo:n,backend:s,bias:r=null,preluActivationWeights:a=null,leakyreluAlpha:o=0,activation:i=null}){let{filterWidth:l,filterHeight:c,inChannels:u,strideWidth:d,strideHeight:p,padInfo:h,outWidth:f,outHeight:m,dilationWidth:g,dilationHeight:A,dataFormat:x}=n,y=x==="channelsLast",b=l*c*u,w=m*f,k=[w,b],S=!1,N=!1,R=[],M=qe({inputs:{x:e},backend:s,attrs:{shape:e.shape.slice(1)}}),D=qe({inputs:{x:t},backend:s,attrs:{shape:[1,b,-1]}});R.push(M),R.push(D);let $=new Hce(k,y),T=[{type:"int32",data:[h.left,h.top]},{type:"int32",data:[d,p]},{type:"int32",data:[g,A]},{type:"int32",data:[f]},{type:"int32",data:[u*l]},{type:"int32",data:[u]}],F=s.runWebGPUProgram($,[M],M.dtype,T),V=qe({inputs:{x:F},backend:s,attrs:{shape:[1,k[0],k[1]]}});R.push(F),R.push(V);let X=[1,k[0],k[1]],z=new $4(X,[1,w,n.outChannels],Y().get("WEBGPU_MATMUL_WORK_PER_THREAD"),S,N),j=X[1],Z=X[2],Q=n.outChannels,te=[{type:"int32",data:[j]},{type:"int32",data:[Q]},{type:"int32",data:[Z]}],ae=s.runWebGPUProgram(z,[V,D],V.dtype,te),U=y?[1,m,f,n.outChannels]:[1,n.outChannels,m,f],oe=qe({inputs:{x:ae},backend:s,attrs:{shape:U}});R.push(ae);for(let re of R)s.disposeData(re.dataId);return oe}var W4=class{constructor(e,t=!1,n=null,s=!1,r=!1){this.variableNames=["x","W"],this.uniforms=`filterDims : vec2<i32>; pad : vec2<i32>; stride : vec2<i32>; dilation : vec2<i32>;
dimAOuter : i32; dimBOuter : i32; dimInner : i32;`,this.isVec4=!0,this.outputShape=e.outShape,v.assert(e.dataFormat==="channelsLast",()=>"TODO: NCHW is unimplemented"),this.dispatchLayout={x:[3],y:[1,2],z:[0]},this.workGroupSize=[8,8,1];let a=[4,4,1];this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize,a),this.convInfo=e,this.addBias=t,this.activation=n,this.hasPreluActivationWeights=s,this.hasLeakyreluAlpha=r,this.addBias&&this.variableNames.push("bias"),this.hasPreluActivationWeights&&this.variableNames.push("preluActivationWeights"),this.hasLeakyreluAlpha&&this.variableNames.push("leakyreluAlpha"),[this.fitA,this.fitB]=this.getShapeFit(a),this.shaderKey=`conv2DMMVec4_${this.activation}_${this.fitA}_${this.fitB}`}getShapeFit(e){let t=this.workGroupSize[1]*e[1],n=this.workGroupSize[0]*e[0],s=n,r=[t,s],a=[s,n],o=this.outputShape[1]*this.outputShape[2],i=this.outputShape[3],l=this.convInfo.filterHeight*this.convInfo.filterWidth*this.convInfo.inChannels;return[la(r,[o,l]),la(a,[l,i])]}getSampleAWithRemainder(e){return`let flatIndex${e} = getFlatIndex4D(coord, uniforms.xShape);
let divBy4Remainder${e} = flatIndex${e} % 4;
let divBy4Index${e} = flatIndex${e} / 4;
let curData${e} = x.numbers[divBy4Index${e}];
if (divBy4Remainder${e} == 0) {
temp = curData${e};
} else {
// TODO: This could end up being a redundant load with another one in
// the same shader invocation. Perhaps there's an opportunity for
// optimization
let nextData${e} = x.numbers[divBy4Index${e} + 1];
if (divBy4Remainder${e} == 1) {
temp = vec4<f32>(curData${e}.yzw, nextData${e}.x);
} elseif (divBy4Remainder${e} == 2) {
temp = vec4<f32>(curData${e}.zw, nextData${e}.xy);
} elseif (divBy4Remainder${e} == 3) {
temp = vec4<f32>(curData${e}.w, nextData${e}.xyz);
}
}
`}getUserCode(){let t=R4([4,4,1],this.workGroupSize),r=`let outRow = r / uniforms.outShape[2];
let outCol = r % uniforms.outShape[2];
let WRow = c / (uniforms.filterDims[1] * uniforms.xShape[3]);
let WCol = c / uniforms.xShape[3] % uniforms.filterDims[1];
let inChCoord = c % uniforms.xShape[3];
var coord = vec4<i32>(
batch,
outRow * uniforms.stride[0] + uniforms.dilation[0] * WRow - uniforms.pad[0],
outCol * uniforms.stride[1] + uniforms.dilation[1] * WCol - uniforms.pad[1],
inChCoord);
var resData = vec4<f32>(0.0);
${this.convInfo.inChannels%4===0?`// The bounds checking is always needed since we use it to pad zero for
// the 'same' padding type.
if (coordsInBounds4D(coord, uniforms.xShape)) {
resData = x.numbers[getFlatIndex4D(coord, uniforms.xShape) / 4];
} else {
resData = vec4<f32>(0.0); }`:`var temp = vec4<f32>(0.0);
${this.getSampleAWithRemainder(1)}
resData = temp;
if (WCol == (uniforms.filterDims[1] - 1)) {
coord = vec4<i32>(
coord.x, coord.y + 1, coord.z + 1 - uniforms.filterDims[1], 0);
${this.getSampleAWithRemainder(2)}
if (inChCoord == 0) {
resData = vec4<f32>(resData.xyz, temp.x);
} elseif (inChCoord == 1) {
resData = vec4<f32>(resData.xy, temp.xy);
} else {
resData = vec4<f32>(resData.x, temp.xyz);
}
}
`}
return resData;`,a=this.fitA?`${r}`:`if (r < uniforms.dimAOuter && c < uniforms.dimInner) {
${r}
}
return vec4<f32>(0.0);
`,o=this.fitB?"return W.numbers[row * uniforms.dimBOuter / 4 + col];":`if(coordsInBounds2D(vec2<i32>(row, col * 4), vec2<i32>(uniforms.dimInner, uniforms.dimBOuter))) {
return W.numbers[row * uniforms.dimBOuter / 4 + col];
}
return vec4<f32>(0.0);
`,i="",l="";if(this.activation){let d=ua(this.activation,this.isVec4);if(this.hasPreluActivationWeights)i=`fn activation(a : vec4<f32>, outCoord : vec4<i32>) -> vec4<f32> {
let b = getPreluActivationWeightsAtOutCoordsByCoords(outCoord);
${d}
}`;else{if(this.hasLeakyreluAlpha)throw i=`fn activation(a: vec4<f32>) -> vec4<f32> {
let b = getLeakyreluAlphaAtOutCoords();
${d}
}`,new Error("Leakyrelu is not supported.");i=`
fn activation(a : vec4<f32>, outCoord : vec4<i32>) -> vec4<f32> {
${d}
}`}l="value = activation(value, outCoord);"}let c=this.addBias?"value = value + getBiasAtOutCoordsByCoords(outCoord);":"";return`
${i}
fn mm_readA(row : i32, col : i32, globalId : vec3<u32>) -> vec4<f32> {
let r = row;
let c = col * 4;
var batch = i32(globalId.z);
${a}
}
fn mm_readB(row : i32, col : i32, globalId : vec3<u32>) -> vec4<f32> {
${o}
}
fn mm_write(row : i32, col : i32, valueInput : vec4<f32>, globalId : vec3<u32>) {
var batch = i32(globalId.z);
var value = valueInput;
if (row < uniforms.dimAOuter && col * 4 < uniforms.dimBOuter)
{
let outCoord = vec4<i32>(
batch,
row / uniforms.outShape[2],
row % uniforms.outShape[2],
col * 4);
${c}
${l}
setOutput(outCoord[0], outCoord[1], outCoord[2], outCoord[3],
value);
}
}
${t}
`}},V4=class{constructor(e,t=!1,n=null,s=!1){this.variableNames=["x","W"],this.uniforms="filterDims : vec2<i32>; pad : vec2<i32>; stride : vec2<i32>; dilation : vec2<i32>; dimAOuter : i32; dimBOuter : i32; dimInner : i32;",this.outputShape=e.outShape,v.assert(e.dataFormat==="channelsLast",()=>"TODO: NCHW is unimplemented"),this.dispatchLayout={x:[3],y:[1,2],z:[0]},this.workGroupSize=Nx(this.dispatchLayout,this.outputShape),this.elementsPerThread=Rx(this.dispatchLayout,this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize,this.elementsPerThread),t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),this.convInfo=e,this.addBias=t,this.activation=n,this.hasPreluActivationWeights=s,[this.fitA,this.fitB]=this.getShapeFit(),this.shaderKey=`conv2DMM_${this.elementsPerThread}_${this.activation}_${this.fitA}_${this.fitB}`}getShapeFit(){let e=this.workGroupSize[1]*this.elementsPerThread[1],t=this.workGroupSize[0]*this.elementsPerThread[0],n=e>t?e:t;v.assert(n%this.workGroupSize[0]==0&&n%this.workGroupSize[1]==0,()=>"tileInner must be multiple of workgroupsize.x and workgroupsize.y");let s=[e,n],r=[n,t],a=this.outputShape[1]*this.outputShape[2],o=this.outputShape[3],i=this.convInfo.filterHeight*this.convInfo.filterWidth*this.convInfo.inChannels;return[la(s,[a,i]),la(r,[i,o])]}getUserCode(){let e=Dx(this.elementsPerThread,this.workGroupSize),t=`
let outRow = row / uniforms.outShape[2];
let outCol = row % uniforms.outShape[2];
let WRow = col / (uniforms.filterDims[1] * uniforms.xShape[3]);
let WCol = col / uniforms.xShape[3] % uniforms.filterDims[1];
let coord = vec4<i32>(
batch,
outRow * uniforms.stride[0] + uniforms.dilation[0] * WRow - uniforms.pad[0],
outCol * uniforms.stride[1] + uniforms.dilation[1] * WCol - uniforms.pad[1],
col % uniforms.xShape[3]);
// The bounds checking is always needed since we use it to pad zero for the
// 'same' padding type.
if(coordsInBounds4D(coord, uniforms.xShape)) {
return x.numbers[getFlatIndex4D(coord, uniforms.xShape)];
}
return 0.0;`,n=this.fitA?`${t}`:`if (row < uniforms.dimAOuter && col < uniforms.dimInner) {
${t}
}
return 0.0;
`,s=this.fitB?"return W.numbers[row * uniforms.dimBOuter + col];":`if(coordsInBounds2D(vec2<i32>(row, col), vec2<i32>(uniforms.dimInner, uniforms.dimBOuter))) {
return W.numbers[row * uniforms.dimBOuter + col];
}
return 0.0;
`,r="",a="";if(this.activation){let l=ua(this.activation,!1);this.hasPreluActivationWeights?r=`fn activation(a: f32, outCoord : vec4<i32>) -> f32 {
let b = getPreluActivationWeightsAtOutCoordsByCoords(outCoord);
${l}
}`:r=`
fn activation(a : f32, outCoord : vec4<i32>) -> f32 {
${l}
}
`,a="value = activation(value, outCoord);"}let o=this.addBias?"value = value + getBiasAtOutCoordsByCoords(outCoord);":"";return`
${r}
fn mm_readA(row : i32, col : i32, globalId : vec3<u32>) -> f32 {
var batch = i32(globalId.z);
${n}
}
fn mm_readB(row : i32, col : i32, globalId : vec3<u32>) -> f32 {
${s}
}
fn mm_write(row : i32, col : i32, valueInput : f32, globalId : vec3<u32>) {
var batch = i32(globalId.z);
var value = valueInput;
let outCoord = vec4<i32>(
batch,
row / uniforms.outShape[2],
row % uniforms.outShape[2],
col);
${o}
${a}
result.numbers[getFlatIndex4D(outCoord, uniforms.outShape)] = value;
}
${e}
`}},U4=class{constructor(e,t=!1,n=null,s=!1){this.variableNames=["x","W"],this.uniforms="filterDims : vec2<i32>; pad : vec2<i32>; stride : vec2<i32>; dilation : vec2<i32>;",this.workGroupSize=[128,1,1],this.outputShape=e.outShape,this.dispatchLayout=He(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),v.assert(e.dataFormat==="channelsLast",()=>"TODO: NCHW is unimplemented"),t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),this.convInfo=e,this.addBias=t,this.activation=n,this.hasPreluActivationWeights=s,this.shaderKey=`conv2DNaive_${this.activation}`}getUserCode(){let e="",t="";if(this.activation){let r=ua(this.activation);this.hasPreluActivationWeights?e=`fn activation(a : f32, outCoord : vec4<i32>) -> f32{
let b = getPreluActivationWeightsAtOutCoordsByCoords(outCoord);
${r}
}`:e=`
fn activation(a : f32, outCoord : vec4<i32>) -> f32{
${r}
}
`,t="value = activation(value, outCoord);"}let n=this.addBias?"value = value + getBiasAtOutCoordsByCoords(outCoord);":"";return`
${e}
fn readInp(batch : i32, row : i32, col : i32, chan : i32) -> f32 {
let coord = vec4<i32>(batch, row, col, chan);
if(coordsInBounds4D(coord, uniforms.xShape)) {
return getX(batch, row, col, chan);
}
return 0.0;
}
fn readFilt(row : i32, col : i32, xChannel : i32, outChannel : i32) -> f32{
let coord = vec4<i32>(row, col, xChannel, outChannel);
if(coordsInBounds4D(coord, uniforms.wShape)) {
return getW(row, col, xChannel, outChannel);
}
return 0.0;
}
fn writeResult(batch : i32, row : i32, col : i32, chan : i32, value : f32) {
let coord = vec4<i32>(batch, row, col, chan);
if (coordsInBounds4D(coord, uniforms.outShape)) {
${n}
${t}
setOutput(batch, row, col, chan, value);
}
}
${Tx()} {
let coords = getOutputCoordsWithFlatDispatchLayout(globalId, localId, numWorkgroups);
let batch = coords[0];
let outChannel = coords[3];
var acc = 0.0;
for (var row = 0; row < uniforms.filterDims[0]; row = row + 1) {
for (var col = 0; col < uniforms.filterDims[1]; col = col + 1) {
for (var xChannel = 0; xChannel < uniforms.xShape[3]; xChannel = xChannel + 1) {
let coordRow = coords[1] * uniforms.stride[0] + uniforms.dilation[0] * row - uniforms.pad[0];
let coordCol = coords[2] * uniforms.stride[1] + uniforms.dilation[1] * col - uniforms.pad[1];
let v = readInp(batch, coordRow, coordCol, xChannel);
let f = readFilt(row, col, xChannel, outChannel);
acc = acc + v * f;
}
}
}
writeResult(batch, coords[1], coords[2], outChannel, acc);
}
`}};function qce(e){let{inputs:t,attrs:n,backend:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dataFormat:l,dilations:c,dimRoundingMode:u}=n,d=E.convertConv2DDataFormat(l),p=E.computeConv2DInfo(r.shape,a.shape,o,c,i,u,!1,d);if(p.filterHeight===1&&p.filterWidth===1&&p.dilationHeight===1&&p.dilationWidth===1&&p.strideHeight===1&&p.strideWidth===1&&(p.padInfo.type==="SAME"||p.padInfo.type==="VALID"))return B4({x:r,filter:a,convInfo:p,backend:s});if(Y().getBool("WEBGPU_CONV_SEPARATE_IM2COL_SHADER")&&r.shape[0]===1)return jce({x:r,filter:a,convInfo:p,backend:s});let h,f=[p.padInfo.top,p.padInfo.left],m=[{type:"int32",data:[p.filterHeight,p.filterWidth]},{type:"int32",data:[...f]},{type:"int32",data:[p.strideHeight,p.strideWidth]},{type:"int32",data:[p.dilationHeight,p.dilationWidth]}],g=Y().getBool("WEBGPU_USE_NAIVE_CONV2D");if(g?h=new U4(p):(p.inChannels%4==0||p.inChannels===3&&p.padInfo.type==="VALID")&&p.outChannels%4==0&&p.outChannels>=64?h=new W4(p):h=new V4(p),!g){let A=p.outShape[1]*p.outShape[2],x=p.outShape[3],y=p.filterHeight*p.filterWidth*p.inShape[3];m.push({type:"int32",data:[A]},{type:"int32",data:[x]},{type:"int32",data:[y]})}return s.runWebGPUProgram(h,[r,a],r.dtype,m)}var Xce={kernelName:Fa,backendName:"webgpu",kernelFunc:qce},Kce=class{constructor(e){this.variableNames=["x","W"],this.uniforms="filterDims : vec2<i32>; pads : vec2<i32>; stride : vec2<i32>; outBackprop : vec4<i32>; dimAOuter : i32; dimBOuter : i32; dimInner : i32;",this.outputShape=e.inShape,v.assert(e.dataFormat==="channelsLast",()=>"TODO: NCHW is unimplemented"),this.dispatchLayout={x:[3],y:[1,2],z:[0]},this.workGroupSize=Nx(this.dispatchLayout,this.outputShape),this.elementsPerThread=Rx(this.dispatchLayout,this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize,this.elementsPerThread),this.shaderKey=`conv2DDerInputMM_${this.elementsPerThread}`}getUserCode(){return`
fn mm_readA(row : i32, col : i32, globalId : vec3<u32>) -> f32 {
var batch = i32(globalId.z);
if (row < uniforms.dimAOuter && col < uniforms.dimInner) {
let outRow = row / uniforms.outShape[2];
let outCol = row % uniforms.outShape[2];
let WRow = col / (uniforms.filterDims[1] * uniforms.outBackprop[3]);
let WCol = col / uniforms.outBackprop[3] % uniforms.filterDims[1];
let xR = f32(outRow - uniforms.pads[0] + WRow) / f32(uniforms.stride[0]);
let xC = f32(outCol - uniforms.pads[1] + WCol) / f32(uniforms.stride[1]);
if (xR < 0.0 || xR >= f32(uniforms.outBackprop[1]) || fract(xR) > 0.0) {
return 0.0;
}
if (xC < 0.0 || xC >= f32(uniforms.outBackprop[2]) || fract(xC) > 0.0) {
return 0.0;
}
let coord = vec4<i32>(
batch,
i32(xR),
i32(xC),
col % uniforms.outBackprop[3]);
return x.numbers[getFlatIndex4D(coord, uniforms.xShape)];
}
return 0.0;
}
fn mm_readB(row : i32, col : i32, globalId : vec3<u32>) -> f32 {
let coordX = uniforms.filterDims.x - 1 -
row / (uniforms.filterDims[1] * uniforms.outBackprop[3]);
let coordY = uniforms.filterDims.y - 1 -
(row / uniforms.outBackprop[3]) % uniforms.filterDims[1];
if (row < uniforms.dimInner && col < uniforms.dimBOuter &&
coordX >= 0 && coordY >= 0) {
let coord = vec4<i32>(coordX, coordY, col,
row % uniforms.outBackprop[3]);
return W.numbers[getFlatIndex4D(coord, uniforms.wShape)];
}
return 0.0;
}
fn mm_write(row : i32, col : i32, valueInput : f32, globalId : vec3<u32>) {
var batch = i32(globalId.z);
var value = valueInput;
let outCoord = vec4<i32>(
batch,
row / uniforms.outShape[2],
row % uniforms.outShape[2],
col);
result.numbers[getFlatIndex4D(outCoord, uniforms.outShape)] = value;
}
${Dx(this.elementsPerThread,this.workGroupSize)}
`}},Zce=class{constructor(e){this.variableNames=["dy","W"],this.uniforms="filterDims : vec2<i32>; pads : vec2<i32>; stride : vec2<i32>; outBackprop : vec4<i32>;",this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e.inShape,this.dispatchLayout=He(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.isChannelsLast=e.dataFormat==="channelsLast",this.shaderKey=`conv2DDerInput_${this.isChannelsLast}`}getUserCode(){let e=this.isChannelsLast?1:2,t=this.isChannelsLast?2:3,n=this.isChannelsLast?3:1;return`
${Ke()} {
if(index < uniforms.size) {
let coords = getCoordsFromFlatIndex(index);
let batch = coords[0];
let d1 = coords[${n}];
let dyCorner = vec2<i32>(coords[${e}]), coords[${t}]) - uniforms.pads;
let dyRCorner = dyCorner.x;
let dyCCorner = dyCorner.y;
// Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1).
// ? = to be determined. : = across all values in that axis.
var dotProd = 0.0;
for (var wR = 0; wR < uniforms.filterDims.x; wR = wR + 1) {
let dyR = (f32(dyRCorner) + f32(wR)) / f32(uniforms.stride.x);
let wRPerm = uniforms.filterDims.x - 1 - wR;
if (dyR < 0.0 || dyR >= f32(uniforms.outBackprop[1]) || fract(dyR) > 0.0 ||
wRPerm < 0) {
continue;
}
let idyR = dyR;
for (var wC = 0; wC < uniforms.filterDims.y; wC = wC + 1) {
let dyC = (f32(dyCCorner) + f32(wC)) / f32(uniforms.stride.y);
let wCPerm = uniforms.filterDims.y - 1 - wC;
if (dyC < 0.0 || dyC >= f32(uniforms.outBackprop[2]) ||
fract(dyC) > 0.0 || wCPerm < 0) {
continue;
}
let idyC = dyC;
for (var d2 = 0; d2 < uniforms.outBackprop[3]; d2 = d2 + 1) {
if (${this.isChannelsLast}) {
let xValue = getDy(batch, idyR, idyC, d2);
let wValue = getW(wRPerm, wCPerm, d1, d2);
dotProd = dotProd + xValue * wValue;
} else {
let xValue = getDy(batch, d2, idyR, idyC);
let wValue = getW(wRPerm, wCPerm, d1, d2);
dotProd = dotProd + xValue * wValue;
}
}
}
}
setOutputFlat(index, dotProd);
}
}
`}};function Yce(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{inputShape:o,strides:i,pad:l,dataFormat:c,dimRoundingMode:u}=s,d=E.convertConv2DDataFormat(c),p=E.computeConv2DInfo(o,a.shape,i,1,l,u,!1,d),h=[{type:"int32",data:[p.filterHeight,p.filterWidth]},{type:"int32",data:[p.filterHeight-1-p.padInfo.top,p.filterWidth-1-p.padInfo.left]},{type:"int32",data:[p.strideHeight,p.strideWidth]},{type:"int32",data:[p.batchSize,p.outHeight,p.outWidth,p.outChannels]}],f;if(Y().getBool("WEBGPU_USE_NAIVE_CONV2D_TRANSPOSE"))f=new Zce(p);else{f=new Kce(p);let m=p.inShape[1]*p.inShape[2],g=p.inShape[3],A=p.filterHeight*p.filterWidth*p.outChannels;h.push({type:"uint32",data:[m]},{type:"uint32",data:[g]},{type:"uint32",data:[A]})}return n.runWebGPUProgram(f,[r,a],"float32",h)}var Jce={kernelName:Oa,backendName:"webgpu",kernelFunc:Yce},Qce=Nn({opType:wt.COS}),ede={kernelName:Ma,backendName:"webgpu",kernelFunc:Qce},tde=Nn({opType:wt.COSH}),nde={kernelName:za,backendName:"webgpu",kernelFunc:tde},sde=class{constructor(e,t,n,s){this.variableNames=["Image","Boxes","BoxInd"],this.uniforms="extrapolationValue : f32;",this.workGroupSize=[64,1,1],this.size=!0;let[r]=t;this.outputShape=[r,n[0],n[1],e],this.dispatchLayout=He(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.methodId=s==="bilinear"?1:0,this.cropHeightBiggerThan1=this.outputShape[1]>1,this.cropWidthBiggerThan1=this.outputShape[2]>1,this.shaderKey=`cropAndResize_${this.methodId}_${this.cropHeightBiggerThan1}_${this.cropWidthBiggerThan1}`}getUserCode(){let[e,t]=["f32(uniforms.imageShape[1] - 1)","f32(uniforms.imageShape[2] - 1)"],[n,s,r]=this.cropHeightBiggerThan1?[`(${e} / f32(uniforms.outShape[1] - 1))`,"(y2-y1) * height_ratio",`y1*${e} + f32(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${e}`],[a,o,i]=this.cropWidthBiggerThan1?[`(${t} / f32(uniforms.outShape[2] - 1))`,"(x2-x1) * width_ratio",`x1*${t} + f32(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${t}`];return`
${Ke()}
if (index < uniforms.size) {
let coords = getCoordsFromFlatIndex(index);
let height_ratio = f32(${n});
let width_ratio = f32(${a});
let b = coords[0];
let y = coords[1];
let x = coords[2];
let d = coords[3];
// get box vals
let y1 = getBoxes(b, 0);
let x1 = getBoxes(b, 1);
let y2 = getBoxes(b, 2);
let x2 = getBoxes(b, 3);
// get image in batch index
let bInd = i32(round(getBoxInd(b)));
if(bInd < 0 || bInd >= uniforms.outShape[0]) {
return;
}
let height_scale = ${s};
let width_scale = ${o};
let in_y = ${r};
if( in_y < 0.0 || in_y > ${e} ) {
setOutputFlat(index, uniforms.extrapolationValue);
return;
}
let in_x = ${i};
if( in_x < 0.0 || in_x > ${t} ) {
setOutputFlat(index, uniforms.extrapolationValue);
return;
}
let sourceFracIndexCR = vec2<f32>(in_x,in_y);
if(${this.methodId} == 1) {
// Compute the four integer indices.
let sourceFloorCR = vec2<i32>(sourceFracIndexCR);
let sourceCeilCR = vec2<i32>(ceil(sourceFracIndexCR));
let topLeft = getImage(bInd, sourceFloorCR.y, sourceFloorCR.x, d);
let bottomLeft = getImage(bInd, sourceCeilCR.y, sourceFloorCR.x, d);
let topRight = getImage(bInd, sourceFloorCR.y, sourceCeilCR.x, d);
let bottomRight = getImage(bInd, sourceCeilCR.y, sourceCeilCR.x, d);
let fracCR = sourceFracIndexCR - vec2<f32>(sourceFloorCR);
let top = topLeft + (topRight - topLeft) * fracCR.x;
let bottom = bottomLeft + (bottomRight - bottomLeft) * fracCR.x;
let newValue = top + (bottom - top) * fracCR.y;
setOutputFlat(index, newValue);
} else {
// Compute the coordinators of nearest neighbor point.
let sourceNearestCR = vec2<i32>(floor(
sourceFracIndexCR + vec2<f32>(0.5,0.5)));
let newValue = getImage(
bInd, sourceNearestCR.y, sourceNearestCR.x, d);
setOutputFlat(index, newValue);
}
}
}
`}},rde=e=>{let{inputs:t,backend:n,attrs:s}=e,{image:r,boxes:a,boxInd:o}=t,{cropSize:i,method:l,extrapolationValue:c}=s,u=new sde(r.shape[3],a.shape,i,l),d=[{type:"float32",data:[c]}];return n.runWebGPUProgram(u,[r,a,o],"float32",d)},ade={kernelName:mi,backendName:"webgpu",kernelFunc:rde},ode=class{constructor(e,t){this.variableNames=["x"],this.workGroupSize=[64,1,1],this.size=!0,this.uniforms="blockSize : i32;",this.outputShape=e,this.dispatchLayout=He(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey=`depthToSpace_${t}`,this.dataFormat=t}getUserCode(){return`
${Ke()}
if (index < uniforms.size) {
let coords = getCoordsFromFlatIndex(index);
let b = coords[0];
let h = ${this.getHeightCoordString()};
let w = ${this.getWidthCoordString()};
let d = ${this.getDepthCoordString()};
let in_h = h / uniforms.blockSize;
let offset_h = h % uniforms.blockSize;
let in_w = w / uniforms.blockSize;
let offset_w = w % uniforms.blockSize;
let offset_d = (offset_h * uniforms.blockSize + offset_w) *
${this.getOutputDepthSize()};
let in_d = d + offset_d;
let rlt = ${this.getInputSamplingString()};
setOutputFlat(index, rlt);
}
}`}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?"uniforms.outShape[3]":"uniforms.outShape[1]"}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}};function ide(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockSize:a,dataFormat:o}=s,i=r.shape[0],l=o==="NHWC"?r.shape[1]:r.shape[2],c=o==="NHWC"?r.shape[2]:r.shape[3],u=o==="NHWC"?r.shape[3]:r.shape[1],d=l*a,p=c*a,h=u/(a*a),f=o==="NHWC"?[i,d,p,h]:[i,h,d,p],m=[{type:"int32",data:[a]}],g=new ode(f,o);return n.runWebGPUProgram(g,[r],r.dtype,m)}var lde={kernelName:gi,backendName:"webgpu",kernelFunc:ide},G4=class{constructor(e,t=!1,n=null,s=!1){this.variableNames=["x","W"],this.uniforms="pad : vec2<i32>; stride : vec2<i32>; dilation : vec2<i32>; inDims : vec2<i32>;",this.workGroupSize=[4,4,4],this.isVec4=!0,this.outputShape=e.outShape,this.dispatchLayout={x:[0,1],y:[2],z:[3]},this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize,[1,4,4]),v.assert(e.dataFormat==="channelsLast",()=>"TODO: NCHW is unimplemented"),t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),this.convInfo=e,this.addBias=t,this.activation=n,this.hasPreluActivation=s,this.shaderKey=`depthwise3x3_${n}`}getUserCode(){let e="",t="";if(this.activation){let r=ua(this.activation,this.isVec4);this.hasPreluActivation?e=`fn activation(a : vec4<f32>, outCoord : vec4<i32>) -> vec4<f32> {
let b = getPreluActivationWeightsAtOutCoordsByCoords(outCoord);
${r}
}`:e=`
fn activation(a : vec4<f32>, outCoord : vec4<i32>) -> vec4<f32> {
${r}
}
`,t="dotProd[i] = activation(dotProd[i], coords);"}let n=this.addBias?"dotProd[i] = dotProd[i] + getBiasAtOutCoordsByCoords(coords);":"";return`
${e}
${s0()}
fn main([[builtin(global_invocation_id)]] globalId: vec3<u32>) {
let batch = 0;
let r = i32(globalId.x);
let c = i32(globalId.y) * 4;
let d2 = i32(globalId.z) * 4;
let xRCCorner = vec2<i32>(r, c) * uniforms.stride - uniforms.pad;
let d1 = d2;
let q = 0;
let xRCorner = xRCCorner.x;
let xCCorner = xRCCorner.y;
var wVals : array<vec4<f32>, 9>;
wVals[0] = getW(0, 0, d1, q);
wVals[1] = getW(0, 1, d1, q);
wVals[2] = getW(0, 2, d1, q);
wVals[3] = getW(1, 0, d1, q);
wVals[4] = getW(1, 1, d1, q);
wVals[5] = getW(1, 2, d1, q);
wVals[6] = getW(2, 0, d1, q);
wVals[7] = getW(2, 1, d1, q);
wVals[8] = getW(2, 2, d1, q);
var xVals : array<array<vec4<f32>, 6>, 3>;
for (var wR = 0; wR < 3; wR = wR + 1) {
let xR = xRCorner + wR * uniforms.dilation[0];
for (var wC = 0; wC < 6; wC = wC + 1) {
let xC = xCCorner + wC * uniforms.dilation[1];
if (xR < 0 || xR >= uniforms.inDims[0] || xC < 0 || xC >= uniforms.inDims[1]) {
xVals[wR][wC] = vec4<f32>(0.0);
} else {
xVals[wR][wC] = getX(batch, xR, xC, d1);
}
}
}
var dotProd : array<vec4<f32>, 4>;
dotProd[0] = vec4<f32>(0.0);
dotProd[1] = vec4<f32>(0.0);
dotProd[2] = vec4<f32>(0.0);
dotProd[3] = vec4<f32>(0.0);
for (var wR = 0; wR < 3; wR = wR + 1) {
for (var wC = 0; wC < 3; wC = wC + 1) {
let indexW = wR * 3 + wC;
dotProd[0] = dotProd[0] + xVals[wR][0 + wC] * wVals[indexW];
dotProd[1] = dotProd[1] + xVals[wR][1 + wC] * wVals[indexW];
dotProd[2] = dotProd[2] + xVals[wR][2 + wC] * wVals[indexW];
dotProd[3] = dotProd[3] + xVals[wR][3 + wC] * wVals[indexW];
}
}
for (var i = 0; i < 4; i = i + 1) {
let coords = vec4<i32>(batch, r, c + i, d2);
if (coordsInBounds4D(coords, uniforms.outShape)) {
${n}
${t}
setOutput(coords[0], coords[1], coords[2], coords[3], dotProd[i]);
}
}
}
`}},H4=class{constructor(e,t=!1,n=null,s=!1){this.variableNames=["x","W"],this.uniforms="pad : vec2<i32>; stride : vec2<i32>; dilation : vec2<i32>; inDims : vec2<i32>;",this.workGroupSize=[256,1,1],this.outputShape=e.outShape,this.dispatchLayout=He(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),v.assert(e.dataFormat==="channelsLast",()=>"TODO: NCHW is unimplemented"),t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),this.convInfo=e,this.addBias=t,this.activation=n,this.hasPreluActivation=s,this.shaderKey=`depthwise_${this.convInfo.filterHeight}_${this.convInfo.filterWidth}_${this.activation}_${this.convInfo.outChannels/this.convInfo.inChannels}`}getUserCode(){let e=this.convInfo.outChannels/this.convInfo.inChannels,t="",n="";if(this.activation){let a=ua(this.activation,!1);this.hasPreluActivation?t=`fn activation(a : f32, outCoord : vec4<i32>) -> f32 {
let b = getPreluActivationWeightsAtOutCoordsByCoords(outCoord);
${a}
}`:t=`
fn activation(a : f32, outCoord : vec4<i32>) -> f32 {
${a}
}
`,n="dotProd = activation(dotProd, coords);"}let s=this.addBias?"dotProd = dotProd + getBiasAtOutCoordsByCoords(coords);":"";return`
${t}
fn writeResult(batch : i32, row : i32, col : i32, chan : i32, value : f32) {
let coord = vec4<i32>(batch, row, col, chan);
if (coordsInBounds4D(coord, uniforms.outShape)) {
setOutput(batch, row, col, chan, value);
}
}
${Tx()} {
let coords = getOutputCoordsWithFlatDispatchLayout(globalId, localId, numWorkgroups);
let batch = coords[0];
let xRCCorner = vec2<i32>(coords.yz) * uniforms.stride - uniforms.pad;
let d2 = coords[3];
let d1 = d2 / ${e};
let q = d2 - d1 * ${e};
let inputRowStart = xRCCorner.x;
let inputColStart = xRCCorner.y;
let inputRowEnd = inputRowStart + ${this.convInfo.filterHeight} * uniforms.dilation[0];
let inputColEnd = inputColStart + ${this.convInfo.filterWidth} * uniforms.dilation[1];
// Convolve x(?, ?, d1) with w(:, :, d1, q) to get y(yR, yC, d2).
// ? = to be determined. : = across all values in that axis.
var dotProd = 0.0;
// Extract if checking out of for loop for performance.
if (inputRowStart >= 0 && inputColStart >= 0 &&
inputRowEnd < uniforms.inDims[0] && inputColEnd < uniforms.inDims[1]) {
// Here using a constant value |this.convInfo.filterHeight| instead
// of uniform value is in order to loop unrolling.
for (var wR = 0; wR < ${this.convInfo.filterHeight}; wR = wR + 1) {
let xR = inputRowStart + wR * uniforms.dilation[0];
for (var wC = 0; wC < ${this.convInfo.filterWidth}; wC = wC + 1) {
let xC = inputColStart + wC * uniforms.dilation[1];
let xVal = getX(batch, xR, xC, d1);
let wVal = getW(wR, wC, d1, q);
dotProd = dotProd + xVal * wVal;
}
}
} else {
for (var wR = 0; wR < ${this.convInfo.filterHeight}; wR = wR + 1) {
let xR = inputRowStart + wR * uniforms.dilation[0];
if (xR < 0 || xR >= uniforms.inDims[0]) {
continue;
}
for (var wC = 0; wC < ${this.convInfo.filterWidth}; wC = wC + 1) {
let xC = inputColStart + wC * uniforms.dilation[1];
if (xC < 0 || xC >= uniforms.inDims[1]) {
continue;
}
let xVal = getX(batch, xR, xC, d1);
let wVal = getW(wR, wC, d1, q);
dotProd = dotProd + xVal * wVal;
}
}
}
${s}
${n}
writeResult(batch, coords[1], coords[2], d2, dotProd);
}
`}};function ude(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dilations:l,dimRoundingMode:c}=s,u=l;u==null&&(u=[1,1]);let d=E.computeConv2DInfo(r.shape,a.shape,o,u,i,c,!0),p;d.batchSize===1&&d.inHeight===d.outHeight&&d.inWidth===d.outWidth&&d.strideHeight===1&&d.strideWidth===1&&d.filterHeight===d.filterWidth&&d.inChannels===d.outChannels&&d.filterHeight===3&&d.inChannels%4==0?p=new G4(d):p=new H4(d);let h=[{type:"int32",data:[d.padInfo.top,d.padInfo.left]},{type:"int32",data:[d.strideHeight,d.strideWidth]},{type:"int32",data:[d.dilationHeight,d.dilationWidth]},{type:"int32",data:[d.inHeight,d.inWidth]}];return n.runWebGPUProgram(p,[r,a],r.dtype,h)}var cde={kernelName:La,backendName:"webgpu",kernelFunc:ude},j4=qn({opSnippet:Ut.MUL,cpuKernelImpl:que,supportsComplex:!0}),dde={kernelName:no,backendName:"webgpu",kernelFunc:j4},pde=class{constructor(e,t){this.workGroupSize=[64,1,1],this.variableNames=["x"],this.uniforms="reduceSize : i32;",this.size=!0,this.inputShape=[e.batchSize,e.inSize];let[n]=E.computeOutAndReduceShapes(this.inputShape,[1]);this.outputShape=n.length===0?[1]:n,this.dispatchLayout=He(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,[1,1,1]),this.reduceType=t,this.shaderKey=`reduce_${t}`}getUserCode(){let e="",t="0.0";this.reduceType==="min"||this.reduceType==="max"?(e=`
if (isNanCustom(candidate)) {
bestValue = uniforms.NAN;
} elseif (!isNanCustom(bestValue) && candidate ${this.reduceType==="min"?"<":">"} bestValue)
{ bestValue = candidate; }`,t="f32(x.numbers[offset])"):this.reduceType==="sum"||this.reduceType==="mean"?e=" bestValue = bestValue + candidate; ":this.reduceType==="prod"&&(e=" bestValue = bestValue * candidate; ",t="1.0");let n=this.reduceType==="mean"?"setOutputFlat(outputIndex, bestValue / f32(uniforms.reduceSize));":"setOutputFlat(outputIndex, bestValue);";return`
fn DIV_CEIL(a : u32, b : u32) -> u32 {
return ((a - 1u) / b + 1u);
}
${`
var<workgroup> xBestValues : array<f32, ${this.workGroupSize[0]}>;
`}
fn getOffset(outputIndex : i32) -> i32 {
let outputCoords = getCoordsFromFlatIndex(outputIndex);
let offset = ${this.outputShape.length===1?"outputCoords":"outputCoords[0]"} * uniforms.reduceSize;
return offset;
}
${Ke()}
let outputIndex = index / i32(workGroupSizeX);
let offset = getOffset(outputIndex);
var bestValue = ${t};
let Length = uniforms.reduceSize;
let WorkPerThread = DIV_CEIL(u32(Length), workGroupSizeX);
for (var k = i32(localId.x); k < Length && outputIndex < uniforms.size;
k = k + i32(workGroupSizeX)) {
let candidate = f32(x.numbers[offset + k]);
${e}
}
xBestValues[localId.x] = bestValue;
workgroupBarrier();
var reduceSize = min(u32(Length), workGroupSizeX);
for (var currentSize = reduceSize / 2u; reduceSize > 1u;
currentSize = reduceSize / 2u) {
let interval = DIV_CEIL(reduceSize, 2u);
if (localId.x < currentSize) {
let candidate = xBestValues[localId.x + interval];
${e}
xBestValues[localId.x] = bestValue;
}
reduceSize = interval;
workgroupBarrier();
}
if (localId.x == 0u && outputIndex < uniforms.size) {
${n}
}
}
`}};function Sp(e,t,n,s,r){let a=e.shape.length,o=[],i=v.parseAxisParam(t,e.shape),l=i,c=E.getAxesPermutation(l,a),u=e;c!=null&&(u=Dl({inputs:{x:e},attrs:{perm:c},backend:r}),l=E.getInnerMostAxes(l.length,a),o.push(u)),E.assertAxesAreInnerMostDims(s,l,a);let[d,p]=E.computeOutAndReduceShapes(u.shape,l),h=d;n&&(h=E.expandShapeToKeepDim(d,i));let f;if((s==="max"||s==="prod")&&r.shouldExecuteOnCPU([u])){let m=r.tensorMap.get(u.dataId).values;switch(s){case"max":let g=Gue(m,v.sizeFromShape(p),h,e.dtype);f=r.makeTensorInfo(h,e.dtype,g);break;case"prod":let{outVals:A,outShape:x,outDtype:y}=Zue(u.shape,u.dtype,m,l);f=r.makeTensorInfo(x,y,A);break;default:throw new Error(`${s} CPU implementation is not yet supported.`)}}else{let m=v.sizeFromShape(p),A=v.sizeFromShape(u.shape)/m,x={windowSize:m,inSize:m,batchSize:A,outSize:1},y=s==="mean"?"float32":Td(e.dtype),b=[{type:"int32",data:[m]}],w=new pde(x,s),k=r.runWebGPUProgram(w,[u],y,b);o.push(k),f=qe({inputs:{x:k},attrs:{shape:h},backend:r})}return o.forEach(m=>r.disposeData(m.dataId)),f}function zx(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;return Sp(r,a,o,"sum",n)}var hde={kernelName:fo,backendName:"webgpu",kernelFunc:zx};function fde(e){let{inputs:t,backend:n,attrs:s}=e,{equation:r}=s,a=t,{allDims:o,summedDims:i,idDims:l}=E.decodeEinsumEquation(r,a.length);E.checkEinsumDimSizes(o.length,l,a);let{path:c,steps:u}=E.getEinsumComputePath(i,l),d=u.length,p=null,h=o.length,f=[];for(let m=0;m<d;++m){for(let g of u[m]){let{permutationIndices:A,expandDims:x}=E.getEinsumPermutation(h,l[g]),y;E.isIdentityPermutation(A)?y=a[g]:(y=Dl({inputs:{x:a[g]},backend:n,attrs:{perm:A}}),f.push(y));let b=y.shape.slice();for(let w=0;w<x.length;++w)b.splice(x[w],0,1);v.arraysEqual(y.shape,b)||(y=qe({inputs:{x:y},backend:n,attrs:{shape:b}}),f.push(y)),p===null?p=y:(p=j4({inputs:{a:y,b:p},backend:n}),f.push(p))}m<d-1&&(c[m]>=0&&(p=zx({inputs:{x:p},backend:n,attrs:{axis:c[m]-(o.length-h),keepDims:!1}}),f.push(p)),h--)}for(let m of f)m!==p&&n.disposeData(m.dataId);return p}var mde={kernelName:ud,backendName:"webgpu",kernelFunc:fde},gde=Nn({opType:wt.ELU}),Ade={kernelName:Wa,backendName:"webgpu",kernelFunc:gde},yde=qn({opSnippet:Ut.EQUAL,dtype:"bool",cpuKernelImpl:Due}),xde={kernelName:Ai,backendName:"webgpu",kernelFunc:yde},q4=Nn({opType:wt.EXP,cpuKernelImpl:Pue,dtype:"float32"}),bde={kernelName:Va,backendName:"webgpu",kernelFunc:q4};function Lx(e){let{inputs:t,attrs:n,backend:s}=e,{dim:r}=n,{input:a}=t,o=a.shape.length,i=a.shape.slice(),l=r;return r<0&&(v.assert(-(o+1)<=r,()=>`Axis must be in the interval [${-(o+1)}, ${o}]`),l=o+r+1),i.splice(l,0,1),qe({inputs:{x:a},backend:s,attrs:{shape:i}})}var vde={kernelName:yi,backendName:"webgpu",kernelFunc:Lx},wde=Nn({opType:wt.EXPM1,cpuKernelImpl:Fue}),kde={kernelName:xi,backendName:"webgpu",kernelFunc:wde},Ide=class{constructor(e){this.variableNames=[],this.outputShape=[],this.uniforms="value : f32;",this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=He(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="fill"}getUserCode(){return`
${Ke()}
if (index < uniforms.size) {
setOutputFlat(index, uniforms.value);
}
}
`}};function bc(e){let{backend:t,attrs:n}=e,{shape:s,value:r}=n,{dtype:a}=n;if(a=a||v.inferDtype(r),a==="string"){let o=v.getArrayFromDType(a,v.sizeFromShape(s));return o.fill(r),t.makeTensorInfo(s,a,o)}else{let o=new Ide(s),i=[{type:"float32",data:[r]}];return t.runWebGPUProgram(o,[],a,i)}}var Sde={kernelName:mu,backendName:"webgpu",kernelFunc:bc},Cde=class{constructor(e){this.outputShape=[],this.variableNames=["x"],this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=He(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="flipLeftRight"}getUserCode(){return`
${Ke()}
if (index < uniforms.size) {
let coords = getCoordsFromFlatIndex(index);
let coordX = uniforms.xShape[2] - coords[2] - 1;
let outputValue = getX(coords[0], coords[1], coordX, coords[3]);
setOutputFlat(index, outputValue);
}
}
`}},Tde={kernelName:bi,backendName:"webgpu",kernelFunc:({inputs:e,backend:t})=>{let{image:n}=e,s=t,r=new Cde(n.shape);return s.runWebGPUProgram(r,[n],n.dtype)}},Nde=Nn({opType:wt.FLOOR,cpuKernelImpl:Oue}),Ede={kernelName:Ua,backendName:"webgpu",kernelFunc:Nde},Rde=qn({opSnippet:Ut.INT_DIV,dtype:"int32"}),$de={kernelName:Ga,backendName:"webgpu",kernelFunc:Rde},_de=(e,t,n,s,r)=>{let a=[s,...n];return r&&a.push(r),e.createBindGroup({layout:t,entries:a.map((o,i)=>({binding:i,resource:o}))})},X4=(e,t,n,s,r,a=!1)=>{let o={dtype:r.dtype,shape:r.shape},i=ule(s,o,t,a),l=e.createShaderModule({code:i});return e.createComputePipeline({layout:n,compute:{module:l,entryPoint:"main"}})};function K4(e,t,n,s="",r=""){return e.shaderKey+"_"+(e.workGroupSize?e.workGroupSize.join(","):"")+t.map(o=>o.length).join(",")+n.join(",")+e.variableNames.join(",")+s+r}function Z4(e){let{externalImage:t,backend:n,attrs:s,outShape:r,useImport:a}=e,{numChannels:o}=s,i=v.sizeFromShape(r),l=v.computeStrides(r),c=n.makeTensorInfo(r,"int32"),u=n.getFromPixelsProgram(a?"import":"copyExternal");u.updateOutputShape(r);let d=[c.shape],p=[c.dtype,a?"import":"copyExternal"],h=K4(u,d,p),f=u.getLayout(n.device),m=n.getAndSavePipeline(h,()=>X4(n.device,u,f.pipelineLayout,[],c,!0));u.setPipeline(m),a||n.queue.copyExternalImageToTexture({source:t,origin:{x:0,y:0}},{texture:u.makeInputTexture(n.device,r[1],r[0])},[r[1],r[0]]);let g=n.tensorMap.get(c.dataId);g.bufferInfo.buffer=n.acquireBuffer(g.bufferInfo.byteSize);let A=[i,o,...l,...u.dispatch];u.setUniform(n.device,A);let x;if(a){let y={source:t};x=n.device.importExternalTexture(y)}else x=u.inputTexture.createView();return n.runFromPixelsProgram(u,g.bufferInfo.buffer,f,x,c.dataId),c}var Dde={kernelName:yd,backendName:"webgpu",kernelFunc:Pde},vc;function Pde(e){let{inputs:t,backend:n,attrs:s}=e,{pixels:r}=t,{numChannels:a}=s;if(r==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let o=typeof HTMLVideoElement!="undefined"&&r instanceof HTMLVideoElement,i=typeof HTMLImageElement!="undefined"&&r instanceof HTMLImageElement,l=typeof HTMLCanvasElement!="undefined"&&r instanceof HTMLCanvasElement||typeof OffscreenCanvas!="undefined"&&r instanceof OffscreenCanvas,c=typeof ImageBitmap!="undefined"&&r instanceof ImageBitmap,[u,d]=o?[r.videoWidth,r.videoHeight]:[r.width,r.height],p=[d,u,a];if(Y().getBool("WEBGPU_USE_IMPORT")&&o)return Z4({externalImage:r,backend:n,attrs:s,outShape:p,useImport:!0});if((o||i)&&(vc==null&&(vc=document.createElement("canvas").getContext("2d")),vc.canvas.width=u,vc.canvas.height=d,vc.drawImage(r,0,0,u,d),r=vc.canvas),c||l||o||i)return Z4({externalImage:r,backend:n,attrs:s,outShape:p,useImport:!1});let h=r.data,f=h;if(a!=null&&a!==4){f=new Uint8Array(r.width*r.height*a);let A=h.length,x=0;for(let y=0;y<A;y++)y%4<a&&(f[x++]=h[y])}let m=n.makeTensorInfo(p,"int32"),g=n.tensorMap.get(m.dataId);return g.values=new Int32Array(f),n.maybeReleaseBuffer(m.dataId),n.uploadToGPU(m.dataId),m}var Fde=class{constructor(e,t,n,s,r){this.uniforms="varianceEpsilon : f32;",this.workGroupSize=[128,1,1],this.size=!0,this.variableNames=["x","mean","variance"],E.assertAndGetBroadcastShape(e,t),E.assertAndGetBroadcastShape(e,n),this.outputShape=e,this.dispatchLayout=He(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),s!=null&&(E.assertAndGetBroadcastShape(e,s),this.variableNames.push("offset")),r!=null&&(E.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale")),this.offsetShape=s,this.scaleShape=r,this.shaderKey="batchNorm"}getUserCode(){let e="0.0";this.offsetShape!=null&&(e="getOffsetAtOutCoordsByGlobalIndex(index)");let t="1.0";return this.scaleShape!=null&&(t="getScaleAtOutCoordsByGlobalIndex(index)"),`
${Ke()}
if (index < uniforms.size)
{
let xValue = getXAtOutCoordsByGlobalIndex(index);
let meanValue = getMeanAtOutCoordsByGlobalIndex(index);
let varianValue = getVarianceAtOutCoordsByGlobalIndex(index);
let offsetValue = ${e};
let scaleValue = ${t};
let inv = scaleValue * inverseSqrt(varianValue + f32(uniforms.varianceEpsilon));
setOutputFlat(index,dot(vec3<f32>(xValue, -meanValue, offsetValue), vec3<f32>(inv, inv, 1.0)));
}
}
`}},Ode={kernelName:Ha,backendName:"webgpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:s,scale:r,offset:a,mean:o,variance:i}=e,{varianceEpsilon:l}=t,c=n,u=[s,o,i],d=null;a!=null&&(d=a.shape,u.push(a));let p=null;r!=null&&(p=r.shape,u.push(r));let h=new Fde(s.shape,o.shape,i.shape,d,p),f=[{type:"float32",data:[l]}];return c.runWebGPUProgram(h,u,s.dtype,f)}};function Mde(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:c,dataFormat:u,dilations:d,dimRoundingMode:p,activation:h,leakyreluAlpha:f}=s,m=E.convertConv2DDataFormat(u),g=E.computeConv2DInfo(r.shape,a.shape,l,d,c,p,!1,m),A=o!=null,x=i!=null,y;if(g.filterHeight===1&&g.filterWidth===1&&g.dilationHeight===1&&g.dilationWidth===1&&g.strideHeight===1&&g.strideWidth===1&&(g.padInfo.type==="SAME"||g.padInfo.type==="VALID"))return B4({x:r,filter:a,convInfo:g,backend:n,bias:o,activation:h,preluActivationWeights:i,leakyreluAlpha:f});let b=Y().getBool("WEBGPU_USE_NAIVE_CONV2D"),w=g.inChannels%4==0&&g.outChannels%4==0,k=[g.padInfo.top,g.padInfo.left],S=[{type:"int32",data:[g.filterHeight,g.filterWidth]},{type:"int32",data:[...k]},{type:"int32",data:[g.strideHeight,g.strideWidth]},{type:"int32",data:[g.dilationHeight,g.dilationWidth]}];if(b)y=new U4(g,A,h,x);else{w?y=new W4(g,A,h,x):y=new V4(g,A,h,x);let R=g.outShape[1]*g.outShape[2],M=g.outShape[3],D=g.filterHeight*g.filterWidth*g.inShape[3];S.push({type:"int32",data:[R]},{type:"int32",data:[M]},{type:"int32",data:[D]})}let N=[r,a];return A&&N.push(o),x&&N.push(i),n.runWebGPUProgram(y,N,r.dtype,S)}var zde={kernelName:wo,backendName:"webgpu",kernelFunc:Mde};function Lde(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:c,dilations:u,dimRoundingMode:d,activation:p}=s,h=u;h==null&&(h=[1,1]),v.assert(E.eitherStridesOrDilationsAreOne(l,h),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${l} and dilations '${h}'`);let f=E.computeConv2DInfo(r.shape,a.shape,l,h,c,d,!0),m=[r,a],g=o!=null,A=i!=null;g&&m.push(o),A&&m.push(i);let x;f.batchSize===1&&f.inHeight===f.outHeight&&f.inWidth===f.outWidth&&f.strideHeight===1&&f.strideWidth===1&&f.filterHeight===f.filterWidth&&f.inChannels===f.outChannels&&f.filterHeight===3&&f.inChannels%4==0?x=new G4(f,g,p,A):x=new H4(f,g,p,A);let y=[{type:"int32",data:[f.padInfo.top,f.padInfo.left]},{type:"int32",data:[f.strideHeight,f.strideWidth]},{type:"int32",data:[f.dilationHeight,f.dilationWidth]},{type:"int32",data:[f.inHeight,f.inWidth]}];return n.runWebGPUProgram(x,m,"float32",y)}var Bde={kernelName:ko,backendName:"webgpu",kernelFunc:Lde},Wde=class{constructor(e,t){this.variableNames=["A","indices"],this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=t,this.dispatchLayout=He(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey=`gathernd_${e}`,this.sliceDim=e,this.uniforms=`sliceDim : i32; strides : ${kn(e)};`}getUserCode(){let e;return this.sliceDim>1?e="uniforms.strides[j]":e="uniforms.strides",`
${Ke()}
if (index < uniforms.size) {
let coords = getCoordsFromFlatIndex(index);
var flattenIndex = 0;
for (var j = 0; j < uniforms.sliceDim; j = j + 1) {
let indexTemp = i32(round(getIndices(coords[0], j)));
let strideNum = ${e};
flattenIndex = flattenIndex + indexTemp * strideNum;
}
setOutputFlat(index, getA(flattenIndex, coords[1]));
}
}
`}};function Vde(e){let{inputs:t,backend:n}=e,{params:s,indices:r}=t,a=r.shape,o=a[a.length-1],i=v.sizeFromShape(s.shape),[l,c,u,d]=E.prepareAndValidate(s,r),p=qe({inputs:{x:r},backend:n,attrs:{shape:[c,o]}}),h=qe({inputs:{x:s},backend:n,attrs:{shape:[v.sizeFromShape(s.shape)/u,u]}});if(n.shouldExecuteOnCPU([s,r])||s.dtype==="string"){let x=n.readSync(r.dataId),y=n.bufferSync(s),b=Mue(x,y,s.dtype,c,o,u,d,s.shape,i);return n.makeTensorInfo(l,s.dtype,b.values)}let f=new Wde(o,[c,u]),m=[{type:"int32",data:[o]},{type:"int32",data:d}],g=n.runWebGPUProgram(f,[h,p],h.dtype,m),A=qe({inputs:{x:g},backend:n,attrs:{shape:l}});return n.disposeData(p.dataId),n.disposeData(h.dataId),n.disposeData(g.dataId),A}var Ude={kernelName:wi,backendName:"webgpu",kernelFunc:Vde},Gde=class{constructor(e,t){this.variableNames=["A","indices"],this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e.slice(),this.aShape=e,this.outputShape=t,this.dispatchLayout=He(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="gather"}getUserCode(){let e=Hde(this.aShape,"i32");return`
${Ke()}
if (index < uniforms.size) {
let resRC = getCoordsFromFlatIndex(index);
setOutputFlat(index, getA(${e}));
}
}
`}};function Hde(e,t="int"){let n=["resRC.x","resRC.y","resRC.z","resRC.w"],s=[];for(let r=0;r<e.length;r++)r===2?s.push(`${t}(getIndices(resRC.x, resRC.z))`):s.push(`${n[r]}`);return s.join()}function Y4(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,indices:a}=t,{axis:o,batchDims:i}=s,l=v.parseAxisParam(o,r.shape)[0],c=E.segment_util.collectGatherOpShapeInfo(r,a,l,i),u=v.sizeFromShape(a.shape),d=[],p=qe({inputs:{x:r},backend:n,attrs:{shape:[c.batchSize,c.outerSize,c.dimSize,c.sliceSize]}}),h=qe({inputs:{x:a},backend:n,attrs:{shape:[c.batchSize,u/c.batchSize]}});d.push(p),d.push(h);let f=[c.batchSize,c.outerSize,u/c.batchSize,c.sliceSize];if(n.shouldExecuteOnCPU([r,a])){let y=n.tensorMap.get(h.dataId).values,b=ze(h.shape,h.dtype,y),k=n.tensorMap.get(p.dataId).values,S=ze(p.shape,p.dtype,k),N=zue(S,b,f);return d.forEach(R=>n.disposeData(R.dataId)),n.makeTensorInfo(c.outputShape,N.dtype,N.values)}let m=new Gde(p.shape,f),g=n.runWebGPUProgram(m,[p,h],p.dtype);d.push(g);let A=qe({inputs:{x:g},backend:n,attrs:{shape:c.outputShape}});return d.forEach(x=>n.disposeData(x.dataId)),A}var jde={kernelName:vi,backendName:"webgpu",kernelFunc:Y4},qde=qn({opSnippet:Ut.GREATER,cpuKernelImpl:Bue,dtype:"bool"}),Xde={kernelName:ki,backendName:"webgpu",kernelFunc:qde},Kde=qn({opSnippet:Ut.GREATER_EQUAL,dtype:"bool",cpuKernelImpl:Lue}),Zde={kernelName:ja,backendName:"webgpu",kernelFunc:Kde},Yde=qn({opSnippet:Ut.LESS,dtype:"bool",cpuKernelImpl:Vue}),Jde={kernelName:Si,backendName:"webgpu",kernelFunc:Yde},Qde=qn({opSnippet:Ut.LESS_EQUAL,dtype:"bool",cpuKernelImpl:Wue}),epe={kernelName:Ci,backendName:"webgpu",kernelFunc:Qde},tpe=Nn({opType:wt.LOG,cpuKernelImpl:Uue}),npe={kernelName:Xa,backendName:"webgpu",kernelFunc:tpe},spe=qn({opSnippet:Ut.LOGICAL_AND,dtype:"bool"}),rpe={kernelName:Ti,backendName:"webgpu",kernelFunc:spe},ape=Nn({opType:wt.LOGICAL_NOT}),ope={kernelName:bu,backendName:"webgpu",kernelFunc:ape};function J4(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reductionIndices:a,keepDims:o}=s;return Sp(r,a,o,"max",n)}var ipe={kernelName:Ka,backendName:"webgpu",kernelFunc:J4},lpe=qn({opSnippet:Ut.MAX,cpuKernelImpl:Hue}),upe={kernelName:Za,backendName:"webgpu",kernelFunc:lpe};function cpe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=s,c=1,u=E.computePool2DInfo(r.shape,a,o,c,i,l),d,p=[];if(u.filterHeight===1&&u.filterWidth===1){if(v.arraysEqual(u.inShape,u.outShape))return or({inputs:{x:r},backend:n});d=new M4(u),p.push({type:"int32",data:[u.strideHeight,u.strideWidth]})}else d=new O4(u,"max"),p.push({type:"int32",data:[u.strideHeight,u.strideWidth]},{type:"int32",data:[u.padInfo.top,u.padInfo.left]},{type:"int32",data:[u.dilationHeight,u.dilationWidth]},{type:"int32",data:[u.inHeight,u.inWidth]},{type:"int32",data:[u.effectiveFilterHeight,u.effectiveFilterWidth]});return n.runWebGPUProgram(d,[r],r.dtype,p)}var dpe={kernelName:Ya,backendName:"webgpu",kernelFunc:cpe};function ppe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{keepDims:a,axis:o}=s;return Sp(r,o,a,"mean",n)}var hpe={kernelName:Ja,backendName:"webgpu",kernelFunc:ppe};function fpe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;return Sp(r,a,o,"min",n)}var mpe={kernelName:Qa,backendName:"webgpu",kernelFunc:fpe},gpe=qn({opSnippet:Ut.MIN,cpuKernelImpl:jue}),Ape={kernelName:eo,backendName:"webgpu",kernelFunc:gpe},ype=class{constructor(e,t,n){this.uniforms="",this.variableNames=["x"],this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=t.map((s,r)=>s[0]+e[r]+s[1]),this.dispatchLayout=He(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.xShape=e,t.map((s,r)=>{this.uniforms+=` pad${r} : vec2<i32>;`}),this.offset=n==="reflect"?0:1,this.shaderKey=`mirrorPad_${n}`}getUserCode(){let e=this.xShape.length,t=this.xShape.map((l,c)=>`uniforms.pad${c}[0]`).join(","),n=this.xShape.map((l,c)=>`uniforms.pad${c}[0] + uniforms.xShape${e>1?`[${c}]`:""}`).join(","),s=e===1?"start":"start[i]",r=e===1?"end":"end[i]",a=e===1?"outC":"outC[i]",o=kn(e),i=e>1?["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,e):"coords";return`
${Ke()}
if (index < uniforms.size) {
let start = ${o}(${t});
let end = ${o}(${n});
var outC = getCoordsFromFlatIndex(index);
for (var i = 0; i < ${e}; i = i + 1) {
if (${a} < ${s}) {
${a} = ${s} * 2 - ${a} - ${this.offset};
} elseif(${a} >= ${r}) {
${a} = (${r} - 1) * 2 - ${a} + ${this.offset};
}
}
let coords = outC - start;
setOutputFlat(index, getX(${i}));
}
}
`}},xpe={kernelName:to,backendName:"webgpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:s}=e,{paddings:r,mode:a}=t,o=n,i=r.map(u=>({type:"int32",data:[u[0],u[1]]})),l=new ype(s.shape,r,a);return o.runWebGPUProgram(l,[s],s.dtype,i)}};function bpe(e){let{inputs:t,backend:n}=e,{x:s}=t;if(n.shouldExecuteOnCPU([s])){let a=n.tensorMap.get(s.dataId),[o,i]=Xue(a.values,s.shape,s.dtype);return n.makeTensorInfo(i,s.dtype,o)}let r=new r0(s.shape,wt.NEG);return n.runWebGPUProgram(r,[s],s.dtype)}var vpe={kernelName:Ni,backendName:"webgpu",kernelFunc:bpe};function wpe(e){console.warn("tf.nonMaxSuppression() in webgpu locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l}=s,c=n.readSync(r.dataId),u=n.readSync(a.dataId),{selectedIndices:d}=tr.nonMaxSuppressionV3Impl(c,u,o,i,l);return n.makeTensorInfo([d.length],"int32",new Int32Array(d))}var kpe={kernelName:Ri,backendName:"webgpu",kernelFunc:wpe};function Ipe(e){console.warn("tf.nonMaxSuppression() in webgpu locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l,softNmsSigma:c}=s,u=n.readSync(r.dataId),d=n.readSync(a.dataId),p=o,h=i,f=l,m=c,{selectedIndices:g,selectedScores:A}=tr.nonMaxSuppressionV5Impl(u,d,p,h,f,m);return[n.makeTensorInfo([g.length],"int32",new Int32Array(g)),n.makeTensorInfo([A.length],"float32",new Float32Array(A))]}var Spe={kernelName:$i,backendName:"webgpu",kernelFunc:Ipe};function o0(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="complex64"){let r=Ip({inputs:{input:s},backend:n}),a=o0({inputs:{x:r},backend:n}),o=a0({inputs:{input:s},backend:n}),i=o0({inputs:{x:o},backend:n}),l=yc({inputs:{real:a,imag:i},backend:n});return n.disposeData(r.dataId),n.disposeData(a.dataId),n.disposeData(o.dataId),n.disposeData(i.dataId),l}else return bc({attrs:{shape:s.shape,dtype:s.dtype,value:s.dtype==="string"?"":0},backend:n})}var Cpe={kernelName:Zi,backendName:"webgpu",kernelFunc:o0};function Q4(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="string")throw new Error("onesLike is not supported under string dtype");if(s.dtype==="complex64"){let r=Ip({inputs:{input:s},backend:n}),a=Q4({inputs:{x:r},backend:n}),o=a0({inputs:{input:s},backend:n}),i=o0({inputs:{x:o},backend:n}),l=yc({inputs:{real:a,imag:i},backend:n});return n.disposeData(r.dataId),n.disposeData(a.dataId),n.disposeData(o.dataId),n.disposeData(i.dataId),l}else return bc({attrs:{shape:s.shape,dtype:s.dtype,value:1},backend:n})}var Tpe={kernelName:_i,backendName:"webgpu",kernelFunc:Q4};function Npe(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s;if(t.length===1)return Lx({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let a=t[0].shape,o=t[0].dtype;t.forEach(u=>{v.assertShapesMatch(a,u.shape,"All tensors passed to stack must have matching shapes"),v.assert(o===u.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],l=t.map(u=>{let d=Lx({inputs:{input:u},backend:n,attrs:{dim:r}});return i.push(d),d}),c=L4({inputs:l,backend:n,attrs:{axis:r}});return i.forEach(u=>n.disposeData(u.dataId)),c}var Epe={kernelName:Pi,backendName:"webgpu",kernelFunc:Npe},Rpe=class{constructor(e,t){this.variableNames=["x"],this.uniforms="constantValue : f32;",this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=t.map((n,s)=>n[0]+e[s]+n[1]),this.dispatchLayout=He(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),t.map((n,s)=>{this.uniforms+=` pad${s} : vec2<i32>;`}),this.xShape=e,this.shaderKey="pad"}getUserCode(){let e=this.xShape.length,t=kn(e),n=this.xShape.map((u,d)=>`uniforms.pad${d}[0]`).join(","),s=this.xShape.map((u,d)=>`uniforms.pad${d}[0] + uniforms.xShape${e>1?`[${d}]`:""}`).join(","),r=e>1?`${t}(${n})`:`${n}`,a=e>1?`${t}(${s})`:`${s}`,o=e>1?"any(outC < start)":"outC < start",i=e>1?"any(outC >= end)":"outC >= end",l=e>1?["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,e):"coords";return`
${Ke()}
if (index < uniforms.size) {
let start = ${r};
let end = ${a};
let outC = getCoordsFromFlatIndex(index);
if (${o} || ${i}) {
setOutputFlat(index, uniforms.constantValue);
} else {
let coords = outC - start;
setOutputFlat(index, getX(${l}));
}
}
}
`}},e6=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{paddings:a,constantValue:o}=s;if(a.every(c=>v.arraysEqual(c,[0,0])))return or({inputs:{x:r},backend:n});if(v.sizeFromShape(r.shape)===0){let c=a.map((u,d)=>u[0]+r.shape[d]+u[1]);return bc({backend:n,attrs:{shape:c,value:o,dtype:r.dtype}})}let i=[{type:"float32",data:[o]}];a.map(c=>i.push({type:"int32",data:[c[0],c[1]]}));let l=new Rpe(r.shape,a);return n.runWebGPUProgram(l,[r],r.dtype,i)},$pe={kernelName:so,backendName:"webgpu",kernelFunc:e6},_pe=qn({opSnippet:Ut.POW}),Dpe={kernelName:ro,backendName:"webgpu",kernelFunc:_pe};function Ppe(e){let{inputs:t,backend:n}=e,{x:s,alpha:r}=t,a=new D4(Ut.PRELU,s.shape,r.shape);return n.runWebGPUProgram(a,[s,r],"float32")}var Fpe={kernelName:ao,backendName:"webgpu",kernelFunc:Ppe};function Ope(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;return Sp(r,a,o,"prod",n)}var Mpe={kernelName:Fi,backendName:"webgpu",kernelFunc:Ope},zpe=e=>{let{backend:t,attrs:n}=e,{start:s,stop:r,step:a,dtype:o}=n,i=Yue(s,r,a,o);return t.makeTensorInfo([i.length],o,i)},Lpe={kernelName:ku,backendName:"webgpu",kernelFunc:zpe},t6=qn({opSnippet:Ut.DIV}),Bpe={kernelName:Ba,backendName:"webgpu",kernelFunc:t6},Wpe=Nn({opType:wt.RELU}),Vpe={kernelName:oo,backendName:"webgpu",kernelFunc:Wpe},Upe=Nn({opType:wt.RELU6}),Gpe={kernelName:lo,backendName:"webgpu",kernelFunc:Upe},Hpe=class{constructor(e,t,n,s,r){this.variableNames=["x"],this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=[e[0],t,n,e[3]],this.dispatchLayout=He(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.alignCorners=s,this.halfPixelCenters=r,this.shaderKey=`resizeBilinear_${s}_${r}_${this.outputShape[1]>1}_${this.outputShape[2]>1}`}getUserCode(){let e=this.alignCorners&&this.outputShape[1]>1,t=this.alignCorners&&this.outputShape[2]>1;return`
${Ke()}
if (index < uniforms.size) {
let coords = getCoordsFromFlatIndex(index);
let b = coords[0];
let d = coords[3];
let rc = coords.yz;
let effectiveInSize = vec2<f32>(
${e?"f32(uniforms.xShape.y) - 1.0":"f32(uniforms.xShape.y)"},
${t?"f32(uniforms.xShape.z) - 1.0":"f32(uniforms.xShape.z)"});
let effectiveOutSize = vec2<f32>(
${e?"f32(uniforms.outShape.y) - 1.0":"f32(uniforms.outShape.y)"},
${t?"f32(uniforms.outShape.z) - 1.0":"f32(uniforms.outShape.z)"});
let effectiveInputOverOutputRatioRC =
effectiveInSize / effectiveOutSize;
// Fractional source index
let sourceFracIndexRC = ${this.halfPixelCenters?"(vec2<f32>(rc) + vec2<f32>(0.5)) * effectiveInputOverOutputRatioRC - vec2<f32>(0.5)":"vec2<f32>(rc) * effectiveInputOverOutputRatioRC"};
// Compute the four integer indices.
let sourceFloorRC = vec2<i32>(sourceFracIndexRC);
let sourceCeilRC = vec2<i32>(
min(vec2<f32>(uniforms.xShape.yz) - vec2<f32>(1.0), ceil(sourceFracIndexRC)));
let topLeft = getX(b, sourceFloorRC.x, sourceFloorRC.y, d);
let bottomLeft = getX(b, sourceCeilRC.x, sourceFloorRC.y, d);
let topRight = getX(b, sourceFloorRC.x, sourceCeilRC.y, d);
let bottomRight = getX(b, sourceCeilRC.x, sourceCeilRC.y, d);
let fracRC = sourceFracIndexRC - vec2<f32>(sourceFloorRC);
let top = topLeft + (topRight - topLeft) * fracRC.y;
let bottom = bottomLeft + (bottomRight - bottomLeft) * fracRC.y;
let newValue = top + (bottom - top) * fracRC.x;
setOutputFlat(index, newValue);
}
}
`}};function jpe(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,size:o,halfPixelCenters:i}=s,[l,c]=o,u=new Hpe(r.shape,l,c,a,i);return n.runWebGPUProgram(u,[r],"float32")}var qpe={kernelName:io,backendName:"webgpu",kernelFunc:jpe},Xpe=class{constructor(e,t,n,s,r){this.variableNames=["x"],this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=[e[0],t,n,e[3]],this.dispatchLayout=He(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.alignCorners=s,this.halfPixelCenters=r,this.shaderKey=`resizeNearest_${s}_${this.outputShape[1]>1}_${this.outputShape[2]>1}_${r}`}getUserCode(){let e=this.alignCorners?"0.5":"0.0",t;this.halfPixelCenters?t="max((vec2<f32>(rc) + vec2<f32>(0.5)) * effectiveInputOverOutputRatioRC, vec2<f32>(0.0))":t="vec2<f32>(rc) * effectiveInputOverOutputRatioRC";let n=this.alignCorners&&this.outputShape[1]>1,s=this.alignCorners&&this.outputShape[2]>1;return`
${Ke()}
if (index < uniforms.size) {
let coords = getCoordsFromFlatIndex(index);
let b = coords[0];
let d = coords[3];
let rc = coords.yz;
let effectiveInSize = vec2<f32>(
${n?"f32(uniforms.xShape.y) - 1.0":"f32(uniforms.xShape.y)"},
${s?"f32(uniforms.xShape.z) - 1.0":"f32(uniforms.xShape.z)"});
let effectiveOutSize = vec2<f32>(
${n?"f32(uniforms.outShape.y) - 1.0":"f32(uniforms.outShape.y)"},
${s?"f32(uniforms.outShape.z) - 1.0":"f32(uniforms.outShape.z)"});
let effectiveInputOverOutputRatioRC =
effectiveInSize / effectiveOutSize;
// Fractional source index
let sourceFracIndexRC = ${t};
// Compute the coordinators of nearest neighbor point.
let inputShapeRC = vec2<f32>(f32(uniforms.xShape.y), f32(uniforms.xShape.z));
let sourceNearestRC = vec2<i32>(
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${e})));
let newValue = getX(b, sourceNearestRC.x, sourceNearestRC.y, d);
setOutputFlat(index, newValue);
}
}
`}};function Kpe(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,halfPixelCenters:o,size:i}=s,[l,c]=i,u=new Xpe(r.shape,l,c,a,o);return n.runWebGPUProgram(u,[r],r.dtype)}var Zpe={kernelName:Su,backendName:"webgpu",kernelFunc:Kpe},Ype=class{constructor(e,t){this.outputShape=[],this.variableNames=["x"],this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=He(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.uniforms=`centerX : f32; centerY : f32; sinRadians : f32;
cosRadians : f32;`,this.shaderKey="rotate",this.outputShape=e,typeof t=="number"?(this.uniforms+=" fillValue : f32;",this.fillSnippet="var outputValue = uniforms.fillValue;",this.shaderKey+="_float"):(this.uniforms+=" fillValue : vec3<f32>;",this.fillSnippet="var outputValue = uniforms.fillValue[coords[3]];",this.shaderKey+="_vec3")}getUserCode(){return`
${Ke()}
if (index < uniforms.size) {
let coords = getCoordsFromFlatIndex(index);
let coordXFloat = (f32(coords[2]) - uniforms.centerX) *
uniforms.cosRadians - (f32(coords[1]) - uniforms.centerY) *
uniforms.sinRadians;
let coordYFloat = (f32(coords[2]) - uniforms.centerX) *
uniforms.sinRadians + (f32(coords[1]) - uniforms.centerY) *
uniforms.cosRadians;
let coordX = i32(round(coordXFloat + uniforms.centerX));
let coordY = i32(round(coordYFloat + uniforms.centerY));
${this.fillSnippet}
if(coordX >= 0 && coordX < uniforms.xShape[2] && coordY >= 0 &&
coordY < uniforms.xShape[1]) {
outputValue = getX(coords[0], coordY, coordX, coords[3]);
}
setOutputFlat(index, outputValue);
}
}
`}},Jpe={kernelName:Yi,backendName:"webgpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:s}=e,{radians:r,fillValue:a,center:o}=t,i=n,l=new Ype(s.shape,a),[c,u]=E.getImageCenter(o,s.shape[1],s.shape[2]),d=[{type:"float32",data:[c]},{type:"float32",data:[u]},{type:"float32",data:[Math.sin(r)]},{type:"float32",data:[Math.cos(r)]}];return typeof a=="number"?d.push({type:"float32",data:[Number.parseFloat(a.toFixed(2))]}):d.push({type:"float32",data:a}),i.runWebGPUProgram(l,[s],s.dtype,d)}},Qpe=Nn({opType:wt.RSQRT,cpuKernelImpl:Jue}),ehe={kernelName:uo,backendName:"webgpu",kernelFunc:Qpe},the=class{constructor(e,t,n,s,r,a,o){this.variableNames=["updates","indices"],this.workGroupSize=[64,1,1],this.atomic=!0,this.outputShape=a,this.type=o,this.dispatchLayout=He(e),this.dispatch=Oe(this.dispatchLayout,e,this.workGroupSize),this.sliceDimGreaterThanOne=t>1,this.shaderKey=`scatter_${n}_${s}_${this.sliceDimGreaterThanOne}_${o}`;let i=kn(r.length);this.uniforms=`sliceDim : i32; strides: ${i}; size: i32;`,this.updatesRank=s,this.indicesRank=n}getUserCode(){let e="";this.indicesRank===1?e="coords[0]":this.indicesRank===2&&(e="coords[0], j");let t=`getIndices(${e})`,n=this.sliceDimGreaterThanOne?"uniforms.strides[j]":"uniforms.strides",s="",r="",a="";this.updatesRank===1?(s="coords[0]",r="flattenedIndex",a=`
fn getUpdatesCoordsFromFlatIndex(index : i32) -> i32 {
return index;
}
`):this.updatesRank===2&&(s="coords[0], coords[1]",r="vec2<i32>(flattenedIndex, coords[1])",a=`
fn getUpdatesCoordsFromFlatIndex(index : i32) -> vec2<i32> {
let d0 = index / uniforms.updatesShape[1];
let d1 = index - d0 * uniforms.updatesShape[1];
return vec2<i32>(d0, d1);
}
`);let o=`getUpdates(${s})`,i=this.type==="int32"?"atomicAdd(&(result.numbers[flatIndex]), i32(updateValue));":`
var assumed = atomicLoad(&(result.numbers[flatIndex]));
var success = 0;
for (; success == 0;) {
let new = bitcast<f32>(assumed) + updateValue;
let newI32 = bitcast<i32>(new);
let resValue = atomicCompareExchangeWeak(&(result.numbers[flatIndex]), assumed, newI32);
assumed = resValue[0];
success = resValue[1];
}
`;return`
${a}
${Ke()}
if (index < uniforms.size) {
let coords = getUpdatesCoordsFromFlatIndex(index);
var flattenedIndex = 0;
for (var j = 0; j < uniforms.sliceDim; j = j + 1) {
let indexInside = i32(round(${t}));
flattenedIndex = flattenedIndex + indexInside * ${n};
}
let updateValue = ${o};
let flatIndex = getOutputFlatIndex(${r});
${i}
}
}`}};function nhe(e){let{inputs:t,backend:n,attrs:s}=e,{indices:r,updates:a}=t,{shape:o}=s,{sliceRank:i,numUpdates:l,sliceSize:c,strides:u,outputSize:d}=E.calculateShapes(a,r,o),p=[d/c,c];if(d===0)return n.makeTensorInfo(o,r.dtype);let h=qe({inputs:{x:r},backend:n,attrs:{shape:[l,i]}}),f=qe({inputs:{x:a},backend:n,attrs:{shape:[l,c]}}),m=f.dtype,g=bc({backend:n,attrs:{shape:p,value:0,dtype:m}}),A=v.sizeFromShape(f.shape),x=[{type:"int32",data:[i]},{type:"int32",data:u},{type:"int32",data:[A]}],y=new the(f.shape,i,h.shape.length,f.shape.length,u,p,m),b=n.runWebGPUProgram(y,[f,h],m,x,g),w=qe({inputs:{x:b},backend:n,attrs:{shape:o}});return n.disposeData(h.dataId),n.disposeData(f.dataId),n.disposeData(b.dataId),w}var she={kernelName:Li,backendName:"webgpu",kernelFunc:nhe},rhe=class{constructor(e,t,n){this.variableNames=["c","a","b"],this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=t,this.dispatchLayout=He(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.cRank=e,this.rank=n,this.shaderKey="select"}getUserCode(){let e,t;if(this.rank>4)throw Error(`Where for rank ${this.rank} is not yet supported`);if(this.rank===1)t="resRC",e="resRC";else{let s=["resRC.x","resRC.y","resRC.z","resRC.w"],r=[],a=[];for(let o=0;o<this.outputShape.length;o++)a.push(`${s[o]}`),o<this.cRank&&r.push(`${s[o]}`);e=r.join(),t=a.join()}return`
${Ke()}
if (index < uniforms.size) {
let resRC = getCoordsFromFlatIndex(index);
let cVal = getC(${e});
if (cVal >= 1.0) {
setOutputFlat(index, getA(${t}));
} else {
setOutputFlat(index, getB(${t}));
}
}
}
`}};function ahe(e){let{inputs:t,backend:n}=e,{condition:s,t:r,e:a}=t,o=new rhe(s.shape.length,r.shape,r.shape.length);return n.runWebGPUProgram(o,[s,r,a],Ln(r.dtype,a.dtype))}var ohe={kernelName:Bi,backendName:"webgpu",kernelFunc:ahe},ihe=Nn({opType:wt.SIGMOID}),lhe={kernelName:po,backendName:"webgpu",kernelFunc:ihe},uhe=Nn({opType:wt.SIN}),che={kernelName:co,backendName:"webgpu",kernelFunc:uhe},dhe=Nn({opType:wt.SINH}),phe={kernelName:Vi,backendName:"webgpu",kernelFunc:dhe},n6=qn({opSnippet:Ut.SUB,cpuKernelImpl:sce,supportsComplex:!0}),hhe={kernelName:Ao,backendName:"webgpu",kernelFunc:n6};function fhe(e){let{inputs:t,backend:n,attrs:s}=e,{logits:r}=t,{dim:a}=s,o=v.parseAxisParam([a],r.shape),i=J4({inputs:{x:r},backend:n,attrs:{reductionIndices:o,keepDims:!1}}),l=E.expandShapeToKeepDim(i.shape,o),c=qe({inputs:{x:i},backend:n,attrs:{shape:l}}),u=n6({inputs:{a:r,b:c},backend:n}),d=q4({inputs:{x:u},backend:n}),p=zx({inputs:{x:d},backend:n,attrs:{axis:o,keepDims:!1}}),h=qe({inputs:{x:p},backend:n,attrs:{shape:l}}),f=t6({inputs:{a:d,b:h},backend:n});return n.disposeData(i.dataId),n.disposeData(c.dataId),n.disposeData(u.dataId),n.disposeData(d.dataId),n.disposeData(p.dataId),n.disposeData(h.dataId),f}var mhe={kernelName:mo,backendName:"webgpu",kernelFunc:fhe},ghe=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,paddings:o}=s;v.assert(r.shape.length<=4,()=>"spaceToBatchND for rank > 4 with a WebGPU backend not implemented yet");let i=a.reduce((A,x)=>A*x),l=[[0,0]];l.push(...o);for(let A=1+a.length;A<r.shape.length;++A)l.push([0,0]);let c=[],u=e6({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),d=E.getReshaped(u.shape,a,i,!1),p=E.getPermuted(d.length,a.length,!1),h=E.getReshapedPermuted(u.shape,a,i,!1),f=qe({inputs:{x:u},backend:n,attrs:{shape:d}}),m=Dl({inputs:{x:f},backend:n,attrs:{perm:p}}),g=qe({inputs:{x:m},backend:n,attrs:{shape:h}});return c.push(u),c.push(f),c.push(m),c.forEach(A=>n.disposeData(A.dataId)),g},Ahe={kernelName:Ui,backendName:"webgpu",kernelFunc:ghe},yhe=class{constructor(e,t,n,s,r,a,o=!0){this.variableNames=["updates","indices","defaultValue"],this.workGroupSize=[64,1,1],this.workPerThread=4,this.size=!0,this.outputShape=a,this.dispatchLayout=He(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]);let i=t>1;this.shaderKey=`scatter_${n}_${s}_${i}`;let l=kn(r.length);this.uniforms=`updateSize : i32; sliceDim : i32; strides: ${l};`;let c="";n===1?c="i":n===2&&(c="i, j"),this.indicesSnippet=`getIndices(${c})`;let u="";s===1?u="i":s===2&&(u="i, coords[1]"),this.updatesSnippet=`getUpdates(${u})`,this.strideString=i?"uniforms.strides[j]":"uniforms.strides"}getUserCode(){return`
${Ke()}
let globalIndex = index * ${this.workPerThread};
if (globalIndex < uniforms.size) {
var sum = vec4<f32>(0.0);
var found = vec4<bool>(false);
for (var i = 0; i < uniforms.updateSize; i = i + 1) {
var flattenedIndex = 0;
for (var j = 0; j < uniforms.sliceDim; j = j + 1) {
let indexInside = i32(round(${this.indicesSnippet}));
flattenedIndex = flattenedIndex + indexInside * ${this.strideString};
}
for (var innerIndex = 0; innerIndex < ${this.workPerThread}; innerIndex = innerIndex + 1) {
let curIndex = globalIndex + innerIndex;
let coords = getCoordsFromFlatIndex(curIndex);
if (flattenedIndex == coords[0]) {
sum[innerIndex] = sum[innerIndex] + ${this.updatesSnippet};
found[innerIndex] = true;
}
}
}
for (var innerIndex = 0; innerIndex < ${this.workPerThread}; innerIndex = innerIndex + 1) {
let curIndex = globalIndex + innerIndex;
if (curIndex < uniforms.size)
{
setOutputFlat(curIndex, mix(getDefaultValue(), sum[innerIndex], f32(found[innerIndex])));
}
}
}
}`}};function xhe(e){let{inputs:t,backend:n,attrs:s}=e,{sparseIndices:r,sparseValues:a,defaultValue:o}=t,{outputShape:i}=s,{sliceRank:l,numUpdates:c,strides:u,outputSize:d}=E.calculateShapes(a,r,i),p=!1,h=[{type:"int32",data:[c]},{type:"int32",data:[l]},{type:"int32",data:u}],f=new yhe(c,l,r.shape.length,a.shape.length,u,[d,1],p),m=n.runWebGPUProgram(f,[a,r,o],a.dtype,h),g=qe({inputs:{x:m},backend:n,attrs:{shape:i}});return n.disposeData(m.dataId),g}var bhe={kernelName:md,backendName:"webgpu",kernelFunc:xhe};function vhe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{numOrSizeSplits:a,axis:o}=s,i=v.parseAxisParam(o,r.shape)[0],l=E.prepareSplitSize(r,a,i),c=r.shape.length,u=new Array(c).fill(0),d=r.shape.slice();return l.map(p=>{let h=[...d];h[i]=p;let f=xc({inputs:{x:r},backend:n,attrs:{begin:u,size:h}});return u[i]+=p,f})}var whe={kernelName:Gi,backendName:"webgpu",kernelFunc:vhe},khe=Nn({opType:wt.SQRT}),Ihe={kernelName:ho,backendName:"webgpu",kernelFunc:khe},She={kernelName:Eu,backendName:"webgpu",kernelFunc:({inputs:e,backend:t})=>{let{x:n}=e,s=t,r=new r0(n.shape,wt.SQUARE);return s.runWebGPUProgram(r,[n],n.dtype)}},Che=qn({opSnippet:Ut.SQUARED_DIFFERENCE}),The={kernelName:go,backendName:"webgpu",kernelFunc:Che},Nhe=class{constructor(e){this.variableNames=["x"],this.workPerThread=1,this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=He(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]);let t=kn(this.outputShape.length);this.uniforms=`begin : ${t}; strides : ${t}; `,this.shaderKey="stridedSlice"}getUserCode(){let e=this.outputShape.length,t="";if(e===1)t="coords * uniforms.strides + uniforms.begin";else{let s=0;t=this.outputShape.map((r,a)=>(s++,this.outputShape.length===1?`coords * uniforms.strides[${a}] + uniforms.begin[${a}]`:`coords[${s-1}] * uniforms.strides[${a}] + uniforms.begin[${a}]`)).join(",")}return`
${Ke()}
if (index < uniforms.size) {
let coords = getCoordsFromFlatIndex(index);
setOutputFlat(index, getX(${t}));
}
}
`}};function Ehe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,end:o,strides:i,beginMask:l,endMask:c,ellipsisMask:u,newAxisMask:d,shrinkAxisMask:p}=s,{finalShapeSparse:h,finalShape:f,isIdentity:m,sliceDim0:g,isSimpleSlice:A,begin:x,end:y,strides:b}=Ft.sliceInfo(r.shape,a,o,i,l,c,u,d,p),w;if(m)w=qe({inputs:{x:r},backend:n,attrs:{shape:f}});else if(g||A){v.assert(r.shape.length>=1,()=>`Input must have rank at least 1, got: ${r.shape.length}`);let k=Ft.computeOutShape(x,y,b),S=xc({inputs:{x:r},backend:n,attrs:{begin:x,size:k}});w=qe({inputs:{x:S},backend:n,attrs:{shape:f}}),n.disposeData(S.dataId)}else if(n.shouldExecuteOnCPU([r])){let S=n.readSync(r.dataId),N=ze(r.shape,r.dtype,S),R=tce(h,N,b,x);w=n.makeTensorInfo(f,r.dtype,R.values)}else{let S=new Nhe(h),N=[{type:"int32",data:x},{type:"int32",data:b}],R=n.runWebGPUProgram(S,[r],r.dtype,N);w=qe({inputs:{x:R},backend:n,attrs:{shape:f}}),n.disposeData(R.dataId)}return w}var Rhe={kernelName:Hi,backendName:"webgpu",kernelFunc:Ehe};function $he(e){let{inputs:t,backend:n,attrs:s}=e,{separator:r,nGramWidths:a,leftPad:o,rightPad:i,padWidth:l,preserveShortSequences:c}=s,{data:u,dataSplits:d}=t,p=n.readSync(u.dataId),h=n.readSync(d.dataId),[f,m]=nce(p,h,r,a,o,i,l,c);return[n.makeTensorInfo([f.length],"string",f),n.makeTensorInfo(d.shape,"int32",m)]}var _he={kernelName:gd,backendName:"webgpu",kernelFunc:$he},Dhe=Nn({opType:wt.TANH}),Phe={kernelName:yo,backendName:"webgpu",kernelFunc:Dhe},Fhe=class{constructor(e,t){this.variableNames=["A"],this.workGroupSize=[64,1,1],this.size=!0;let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[s]*t[s];this.outputShape=n,this.dispatchLayout=He(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.rank=this.outputShape.length,this.shaderKey="tile"}getUserCode(){let e=Ohe(this.rank,"uniforms.");return`
${Ke()}
if (index < uniforms.size) {
let resRC = getCoordsFromFlatIndex(index);
setOutputFlat(index, getA(${e}));
}
}
`}};function Ohe(e,t=""){if(e>=5)throw Error(`Tile for rank ${e} is not yet supported`);if(e===1)return`(resRC % ${t}aShape)`;let n=["resRC.x","resRC.y","resRC.z","resRC.w"],s=[];for(let r=0;r<e;r++)s.push(`(${n[r]} % ${t}aShape[${r}])`);return s.join()}function Mhe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reps:a}=s;if(n.shouldExecuteOnCPU([r])||r.dtype==="string"||r.shape.length>=5){let l=n.readSync(r.dataId),c=r.dtype==="string"?l.map(p=>v.decodeString(p)):l,u=ze(r.shape,r.dtype,c),d=rce(u,a);return n.makeTensorInfo(d.shape,d.dtype,d.values)}let o=new Fhe(r.shape,a);return n.runWebGPUProgram(o,[r],r.dtype)}var zhe={kernelName:Zr,backendName:"webgpu",kernelFunc:Mhe},Lhe=class{constructor(e){this.variableNames=["x","indices"],this.workGroupSize=[256,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=He(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.uniforms=`inputSize : i32; firstPass : i32; negativeInf : f32;
dir : i32; inc : i32;`,this.shaderKey="swap"}getUserCode(){return`
${Ke()}
if (index < uniforms.size) {
let outC = getCoordsFromFlatIndex(index);
let batch = outC[0];
let elemIdx = outC[1];
// We compare elements pair-wise within a group of size 2 * inc.
// The comparing rule for each group alternates between ascending
// and descending. Within each group, we compare each pair at
// positions i and i+inc. To decide whether an element at position i
// is x0 or x1, we mod it by 2 * inc, if the result is smaller than
// inc, it is in the first half of the group, we denote it as x0,
// otherwise we denote it as x1.
// For example, as shown in the Bitonic top K paper referenced
// above, Figure5(a) shows that element[1] is in the second half of
// the group when group size is 2, but it is in the first half of
// the group when group size is 4.
let isFirstInPair = elemIdx % (2 * uniforms.inc) < uniforms.inc;
var i = 0;
if (isFirstInPair) {
i = elemIdx;
} else {
i = elemIdx - uniforms.inc;
}
var i0 = 0;
if (uniforms.firstPass == 1) {
i0 = i;
} else {
i0 = i32(getIndices(batch, i));
}
var i1 = 0;
if (uniforms.firstPass == 1) {
i1 = i + uniforms.inc;
} else {
i1 = i32(getIndices(batch, i + uniforms.inc));
}
var x0 = f32(0.0);
var x1 = f32(0.0);
if (i0 < uniforms.inputSize) {
x0 = getX(batch, i0);
} else {
x0 = uniforms.negativeInf;
}
if (i1 < uniforms.inputSize) {
x1 = getX(batch, i1);
} else {
x1 = uniforms.negativeInf;
}
let reverse = elemIdx % (2 * uniforms.dir) >= uniforms.dir;
let isGreater = x0 > x1 || (x0 == x1 && i1 > i0);
if (reverse == isGreater) {
// Elements in opposite order of direction
let iTemp = i0;
i0 = i1;
i1 = iTemp;
}
if (isFirstInPair) {
setOutputFlat(index, f32(i0));
} else {
setOutputFlat(index, f32(i1));
}
}
}
`}},Bhe=class{constructor(e){this.variableNames=["x","indices"],this.workGroupSize=[256,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=He(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.uniforms="inputSize : i32; firstPass : i32; k : i32;",this.shaderKey="merge"}getUserCode(){return`
${Ke()}
if (index < uniforms.size) {
let outC = getCoordsFromFlatIndex(index);
let batch = outC[0];
let elemIdx = outC[1];
// The output size is half of the previous size.
// If the previous sequence is | | | | _ _ _ _ | | | | _ _ _ _
// (k=4), we only need to output the indices at positions |, the
// indices at positions _ can be thrown away, see Figure5(b) After
// Phase 2 (Merge phase) in the Bitonic Top K paper referenced
// above.
// For example, the paper shows we only need to output the orange
// bars. The output sequence should look like this | | | | | | | |.
// Because the sequence is halved, to map the output index back to
// the previous sequence to find the corresponding value, we need
// to double the index. When we double the index, we basically
// interpolate a position, so 2i looks like
// | _ | _ | _ | _ | _ | _ | _. We move the | to the first k
// position of each 2k positions by - elemIdx % k. E.g. for output
// at index 4,5,6,7, we want to get the corresponding element at
// original index 8,9,10,11, for output at index 8,9,10,11,
// we want to get the corresponding element at original index
// 16,17,18,19, so on and so forth.
var i = 0;
if (elemIdx < uniforms.k) {
i = elemIdx;
} else {
i = elemIdx * 2 - elemIdx % uniforms.k;
}
var i0 = 0;
if (uniforms.firstPass == 1) {
i0 = i;
} else {
i0 = i32(getIndices(batch, i));
}
var i1 = 0;
if (uniforms.firstPass == 1) {
i1 = i + uniforms.k;
} else {
i1 = i32(getIndices(batch, i + uniforms.k));
}
let x0 = getX(batch, i0);
var x1 = f32(0.0);
if (i1 < uniforms.inputSize) {
x1 = getX(batch, i1);
} else {
x1 = x0;
}
if (x0 >= x1) {
setOutputFlat(index, f32(i0));
} else {
setOutputFlat(index, f32(i1));
}
}
}
`}};function wc(e,t){t!==null&&e.disposeData(t.dataId)}function s6(e){let t=1;for(;t<e;)t*=2;return t}function Whe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{k:a,sorted:o}=s,i=r.shape,l=i[i.length-1];if(n.shouldExecuteOnCPU([r])){let w=n.readSync(r.dataId),[k,S]=ace(w,i,r.dtype,a,o);return[n.makeTensorInfo(k.shape,k.dtype,k.values),n.makeTensorInfo(S.shape,S.dtype,S.values)]}if(a===0)return i[i.length-1]=0,[n.makeTensorInfo(i,r.dtype,[]),n.makeTensorInfo(i,"int32",[])];if(l===1)return[r,bc({attrs:{shape:i,dtype:"int32",value:0},backend:n})];let u=v.sizeFromShape(i)/l,d=qe({inputs:{x:r},attrs:{shape:[u,l]},backend:n}),p=s6(a),h=s6(l),f=null,m=()=>f===null?[d,d]:[d,f],g=(w,k,S)=>{let N=m(),R=new Lhe(S),D=[{type:"int32",data:[l]},{type:"int32",data:[f===null?1:0]},{type:"float32",data:[Number.NEGATIVE_INFINITY]},{type:"int32",data:[w]},{type:"int32",data:[k]}],$=f;f=n.runWebGPUProgram(R,N,"int32",D),wc(n,$)};for(let w=1;w<p;w*=2){let k=w*2;for(let S=w;S>=1;S/=2)g(k,S,[u,h])}for(let w=h;w>p;w/=2){let k=m(),S=new Bhe([u,w/2]),R=[{type:"int32",data:[l]},{type:"int32",data:[f===null?1:0]},{type:"int32",data:[p]}],M=f;f=n.runWebGPUProgram(S,k,"int32",R),wc(n,M);let D=p/2,$=D*2;for(let T=D;T>=1;T/=2)g($,T,f.shape)}let A=f;f=xc({inputs:{x:f},backend:n,attrs:{begin:0,size:[u,a]}}),wc(n,A);let x=Y4({inputs:{x:d,indices:f},backend:n,attrs:{axis:1,batchDims:1}});wc(n,d);let y=i.slice(0,-1);y.push(a),A=f,f=qe({inputs:{x:f},attrs:{shape:y},backend:n}),wc(n,A);let b=x;return x=qe({inputs:{x},attrs:{shape:y},backend:n}),wc(n,b),[x,f]}var Vhe={kernelName:qi,backendName:"webgpu",kernelFunc:Whe},Uhe=class{constructor(e){this.variableNames=["Image","Transforms"],this.uniforms="interpolationModeId : i32; fillModeId : i32; fillValue : f32;",this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=He(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="transform"}getUserCode(){return`
fn mapCoord(outCoord : f32, len : f32) -> f32{
var inCoord = outCoord;
if(uniforms.fillModeId == 2) {
if (inCoord < 0.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
let sz2 = 2.0 * len;
if (inCoord < sz2) {
inCoord = sz2 * f32(i32(f32(-inCoord / sz2))) +
inCoord;
}
if (inCoord < -len) {
inCoord = inCoord + sz2;
} else {
inCoord = -inCoord - 1.0;
}
}
} elseif (inCoord > len - 1.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
let sz2 = 2.0 * len;
inCoord = inCoord - sz2 * f32(i32(f32(inCoord / sz2)));
if (inCoord >= len) {
inCoord = sz2 - inCoord - 1.0;
}
}
}
return clamp(inCoord, 0.0, len - 1.0);
} elseif (uniforms.fillModeId == 3) {
if (inCoord < 0.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
let sz = len - 1.0;
inCoord = inCoord + len * (f32(i32(f32(-inCoord / sz))) + 1.0);
}
} elseif (inCoord > len - 1.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
let sz = len - 1.0;
inCoord = inCoord - len * f32(i32(f32(inCoord / sz)));
}
}
return clamp(inCoord, 0.0, len - 1.0);
} elseif (uniforms.fillModeId == 4) {
return clamp(outCoord, 0.0, len - 1.0);
}
return outCoord;
}
fn readWithFillValue(batch : i32, coordY : i32, coordX : i32,
channel : i32) -> f32 {
var outputValue : f32;
if (0 <= coordY && coordY < uniforms.imageShape[1] && 0 <= coordX && coordX < uniforms.imageShape[2]) {
outputValue = getImage(batch, coordY, coordX, channel);
} else {
outputValue = uniforms.fillValue;
}
return outputValue;
}
${Ke()}
if (index < uniforms.size) {
let coords = getCoordsFromFlatIndex(index);
var outputValue : f32;
let batch = coords[0];
let x = coords[2];
let y = coords[1];
let channel = coords[3];
let xf = f32(x);
let yf = f32(y);
let a1 = getTransforms(batch, 0);
let a2 = getTransforms(batch, 1);
let a3 = getTransforms(batch, 2);
let b1 = getTransforms(batch, 3);
let b2 = getTransforms(batch, 4);
let b3 = getTransforms(batch, 5);
let c1 = getTransforms(batch, 6);
let c2 = getTransforms(batch, 7);
let projection = c1 * xf + c2 * yf + 1.0;
if (projection == 0.0) {
outputValue = uniforms.fillValue;
} else {
let inX = (a1 * xf + a2 * yf + a3) / projection;
let inY = (b1 * xf + b2 * yf + b3) / projection;
let mapX = mapCoord(inX, f32(uniforms.imageShape[2]));
let mapY = mapCoord(inY, f32(uniforms.imageShape[1]));
if (uniforms.interpolationModeId == 1) {
let coordY = i32(round(mapY));
let coordX = i32(round(mapX));
outputValue = readWithFillValue(batch, coordY, coordX,
channel);
} else {
let yFloor = floor(mapY);
let xFloor = floor(mapX);
let yCeil = yFloor + 1.0;
let xCeil = xFloor + 1.0;
let valueYFloor = (xCeil - mapX) *
readWithFillValue(batch, i32(yFloor), i32(xFloor), channel) +
(mapX - xFloor) *
readWithFillValue(batch, i32(yFloor), i32(xCeil), channel);
let valueYCeil = (xCeil - mapX) *
readWithFillValue(batch, i32(yCeil), i32(xFloor), channel) +
(mapX - xFloor) *
readWithFillValue(batch, i32(yCeil), i32(xCeil), channel);
outputValue = (yCeil - mapY) * valueYFloor +
(mapY - yFloor) * valueYCeil;
}
}
setOutputFlat(index, outputValue);
}
}
`}};function Ghe(e){let{inputs:t,backend:n,attrs:s}=e,{image:r,transforms:a}=t,{interpolation:o,fillMode:i,fillValue:l,outputShape:c}=s,[u,d,p,h]=r.shape,[f,m]=c!=null?c:[d,p],g=[u,f,m,h],A=new Uhe(g),x=o==="nearest"?1:2,y;switch(i){case"constant":y=1;break;case"reflect":y=2;break;case"wrap":y=3;break;case"nearest":y=4;break;default:y=1;break}let b=[{type:"int32",data:[x]},{type:"int32",data:[y]},{type:"float32",data:[l]}];return n.runWebGPUProgram(A,[r,a],"float32",b)}var Hhe={kernelName:Xi,backendName:"webgpu",kernelFunc:Ghe};function jhe(e){let{inputs:t,backend:n,attrs:s}=e,{value:r}=t,{axis:a}=s;a<0&&(a+=r.shape.length);let o=r,i=o.shape.length,l=r.shape[a],c=new Array(i-1),u=0;for(let m=0;m<i;m++)m!==a&&(c[u++]=o.shape[m]);let d=[],p=new Array(i).fill(0),h=o.shape.slice();h[a]=1;let f=new Array(l);for(let m=0;m<f.length;m++){p[a]=m;let g=xc({inputs:{x:o},backend:n,attrs:{begin:p,size:h}}),A=qe({inputs:{x:g},backend:n,attrs:{shape:c}});f[m]=A,d.push(g)}return d.forEach(m=>n.disposeData(m.dataId)),f}var qhe={kernelName:Ki,backendName:"webgpu",kernelFunc:jhe},Xhe=[Sue,lce,cce,hce,xce,vce,kce,Sce,Rce,Pce,Oce,Bce,Eue,Gce,Xce,Jce,ede,nde,ade,lde,cde,mde,Ade,xde,vde,bde,kde,Sde,Tde,Dde,Ede,$de,Ode,zde,Bde,Ude,jde,Xde,Zde,Nue,Vce,Jde,epe,npe,rpe,ope,ipe,upe,dpe,hpe,mpe,Ape,xpe,dde,vpe,kpe,Spe,$ce,Tpe,Epe,$pe,Fpe,Mpe,Dpe,Lpe,_ce,Bpe,Vpe,Gpe,kue,qpe,Zpe,Jpe,ehe,she,ohe,lhe,che,phe,Nce,Rhe,_he,mhe,Ahe,whe,bhe,Ihe,She,The,hhe,hde,Phe,zhe,Vhe,Hhe,Ace,qhe,Cpe];for(let e of Xhe)dr(e);var Khe=class{constructor(e){this.device=e,this.numUsedBuffers=0,this.numFreeBuffers=0,this.freeBuffers=new Map,this.usedBuffers=new Map,this.numBytesUsed=0,this.numBytesAllocated=0}acquireBuffer(e,t){let n=r6(e,t);if(this.freeBuffers.has(n)||this.freeBuffers.set(n,[]),this.usedBuffers.has(n)||this.usedBuffers.set(n,[]),this.numBytesUsed+=e,this.numUsedBuffers++,this.freeBuffers.get(n).length>0){this.numFreeBuffers--;let r=this.freeBuffers.get(n).shift();return this.usedBuffers.get(n).push(r),r}this.numBytesAllocated+=e;let s=this.device.createBuffer({size:e,usage:t});return this.usedBuffers.get(n).push(s),s}releaseBuffer(e,t,n){if(this.freeBuffers==null)return;let s=r6(t,n);this.freeBuffers.has(s)||this.freeBuffers.set(s,[]),this.freeBuffers.get(s).push(e),this.numFreeBuffers++,this.numUsedBuffers--;let r=this.usedBuffers.get(s),a=r.indexOf(e);if(a<0)throw new Error("Cannot release a buffer that was never provided by this buffer manager");r.splice(a,1),this.numBytesUsed-=t}getNumUsedBuffers(){return this.numUsedBuffers}getNumFreeBuffers(){return this.numFreeBuffers}reset(){this.freeBuffers=new Map,this.usedBuffers=new Map,this.numUsedBuffers=0,this.numFreeBuffers=0,this.numBytesUsed=0,this.numBytesAllocated=0}dispose(){this.freeBuffers==null&&this.usedBuffers==null||(this.freeBuffers.forEach((e,t)=>{e.forEach(n=>{n.destroy()})}),this.usedBuffers.forEach((e,t)=>{e.forEach(n=>{n.destroy()})}),this.freeBuffers=null,this.usedBuffers=null,this.numUsedBuffers=0,this.numFreeBuffers=0,this.numBytesUsed=0,this.numBytesAllocated=0)}};function r6(e,t){return`${e}_${t}`}var a6=class{constructor(){this.outputShape=[0],this.variableNames=[],this.workGroupSize=[256,1,1],this.lastUniformData=[],this.inputTexture=null,this.layout=null,this.lastPixelSize={width:0,height:0},this.disposed=!1,this.shaderKey="fromPixels",this.useImport=!1}updateOutputShape(e){v.arraysEqual(this.outputShape,e)||(this.outputShape=e,this.workPerThread=e[2],this.dispatchLayout=He(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]))}makeFromPixelsSource(){let e=this.useImport?"textureLoad(src, vec2<i32>(coords.yx));":"textureLoad(src, vec2<i32>(coords.yx), 0)";return`
[[binding(1), group(0)]] var src: ${this.useImport?"texture_external":"texture_2d<f32>"};
${Ke()}
let flatIndexBase = index * uniforms.numChannels;
for (var i = 0; i < uniforms.numChannels; i = i + 1) {
let flatIndex = flatIndexBase + i;
if (flatIndex < uniforms.size) {
let coords = getCoordsFromFlatIndex(flatIndexBase);
let values = ${e};
result.numbers[flatIndex] = i32(floor(255.0 * values[i]));
}
}
}
`}getUserCode(){return this.makeFromPixelsSource()}setPipeline(e){this.pipeline=e}setUniform(e,t){if(!this.uniform){let n=e.createBuffer({size:t.length*4,usage:GPUBufferUsage.UNIFORM|GPUBufferUsage.COPY_DST});this.uniform=n}!t||t.length===this.lastUniformData.length&&t.every((n,s)=>n===this.lastUniformData[s])||(e.queue.writeBuffer(this.uniform,0,new Uint32Array(t)),this.lastUniformData=t)}makeInputTexture(e,t,n){return(!this.inputTexture||this.lastPixelSize.width!==t||this.lastPixelSize.height!==n)&&(this.inputTexture&&this.inputTexture.destroy(),this.inputTexture=e.createTexture({size:[t,n],format:"rgba8unorm",usage:GPUTextureUsage.COPY_DST|GPUTextureUsage.RENDER_ATTACHMENT|GPUTextureUsage.TEXTURE_BINDING}),this.lastPixelSize.width=t,this.lastPixelSize.height=n),this.inputTexture}dispose(){this.disposed||(this.uniform&&this.uniform.destroy(),this.inputTexture&&this.inputTexture.destroy(),this.disposed=!0)}getLayout(e){return this.layout===null&&(this.layout=this.createTextureLayout(e)),this.layout}createTextureLayout(e){let t=[];t.push({binding:0,visibility:GPUShaderStage.COMPUTE,buffer:{type:"storage"}}),t.push({binding:1,visibility:GPUShaderStage.COMPUTE,texture:{}}),t.push({binding:2,visibility:GPUShaderStage.COMPUTE,buffer:{}});let n=e.createBindGroupLayout({entries:t}),s=e.createPipelineLayout({bindGroupLayouts:[n]});return{bindGroupLayout:n,pipelineLayout:s}}},Zhe=class extends a6{constructor(){super(...arguments);this.layout=null,this.useImport=!0}getUserCode(){return this.makeFromPixelsSource()}getLayout(e){return this.layout===null&&(this.layout=this.createTextureImportLayout(e)),this.layout}createTextureImportLayout(e){let t=[];t.push({binding:0,visibility:GPUShaderStage.COMPUTE,buffer:{type:"storage"}}),t.push({binding:1,visibility:GPUShaderStage.COMPUTE,externalTexture:{}}),t.push({binding:2,visibility:GPUShaderStage.COMPUTE,buffer:{}});let n=e.createBindGroupLayout({entries:t}),s=e.createPipelineLayout({bindGroupLayouts:[n]});return{bindGroupLayout:n,pipelineLayout:s}}},Yhe=Y().getNumber("WEBGPU_CPU_HANDOFF_SIZE_THRESHOLD"),o6=class extends tu{constructor(e,t=!1){super();if(this.commandQueueOwnedIds=new WeakSet,this.tensorDisposalQueue=[],this.uniformDisposalQueue=[],this.disposed=!1,this.uploadWaitMs=0,this.downloadWaitMs=0,this.dispatchNumberInEncoder=0,!_x())throw new Error("WebGPU is not supported on this device");this.layoutCache={},this.pipelineCache={},this.device=e,this.queue=e.queue,this.currentCommandEncoder=null,this.currentComputePass=null,this.supportTimeQuery=t,this.bufferManager=new Khe(this.device),this.tensorMap=new td(this,as()),this.supportTimeQuery&&(this.querySet=this.device.createQuerySet({type:"timestamp",count:2})),Y().getBool("WEBGPU_USE_PROFILE_TOOL")&&(this.dummyCanvas=document.createElement("canvas"),this.dummyCanvas.width=1,this.dummyCanvas.height=1,this.dummyContext=this.dummyCanvas.getContext("webgpu"),this.dummyContext.configure({device:e,format:"bgra8unorm"}),document.body.appendChild(this.dummyCanvas))}nextDataId(){return o6.nextDataId++}floatPrecision(){return 32}defaultGpuBufferUsage(){return GPUBufferUsage.STORAGE|GPUBufferUsage.COPY_SRC|GPUBufferUsage.COPY_DST}flushDisposalQueue(){this.tensorDisposalQueue.forEach(e=>{this.maybeReleaseBuffer(e),this.tensorMap.delete(e)}),this.uniformDisposalQueue.forEach(e=>this.bufferManager.releaseBuffer(e.buffer,e.byteSize,e.usage)),this.tensorDisposalQueue=[],this.uniformDisposalQueue=[]}disposeData(e,t=!1){if(this.tensorMap.has(e)){let n=this.tensorMap.get(e);if(n.refCount--,!t&&n.refCount>0)return!1;if(this.commandQueueOwnedIds.has(e))return this.tensorDisposalQueue.push(e),!1;this.maybeReleaseBuffer(e);let{complexTensorInfos:s}=this.tensorMap.get(e);s!=null&&(this.disposeData(s.real.dataId,!0),this.disposeData(s.imag.dataId,!0)),this.tensorMap.delete(e)}return!0}memory(){return{numBytesInGPU:this.bufferManager.numBytesUsed,numBytesAllocatedInGPU:this.bufferManager.numBytesAllocated,unreliable:!1}}getBufferManager(){return this.bufferManager}acquireBuffer(e,t=this.defaultGpuBufferUsage()){return this.bufferManager.acquireBuffer(e,t)}maybeReleaseBuffer(e){let t=this.tensorMap.get(e);t!=null&&t.bufferInfo.buffer!=null&&(this.bufferManager.releaseBuffer(t.bufferInfo.buffer,t.bufferInfo.byteSize,t.bufferInfo.usage),t.bufferInfo.buffer=null)}refCount(e){return this.tensorMap.has(e)?this.tensorMap.get(e).refCount:0}incRef(e){let t=this.tensorMap.get(e);t.refCount++}decRef(e){if(this.tensorMap.has(e)){let t=this.tensorMap.get(e);t.refCount--}}write(e,t,n){if(n==="complex64"&&e!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let s={id:this.nextDataId()},r=v.sizeFromShape(t)*$x(n);return n==="bool"&&e instanceof Uint8Array&&(e=Int32Array.from(e)),this.tensorMap.set(s,{dtype:n,values:e,bufferInfo:{byteSize:r,usage:this.defaultGpuBufferUsage()},refCount:1}),s}move(e,t,n,s,r){if(s==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let a=v.sizeFromShape(n)*$x(s);this.tensorMap.set(e,{dtype:s,values:t,bufferInfo:{byteSize:a,usage:this.defaultGpuBufferUsage()},refCount:r})}submitQueue(){this.ensureComputePassEnded(),this.queue.submit([this.currentCommandEncoder.finish()]),this.currentCommandEncoder=null,this.dispatchNumberInEncoder=0,this.commandQueueOwnedIds=new WeakSet,this.flushDisposalQueue()}getBuffer(e){return this.uploadToGPU(e),this.tensorMap.get(e).bufferInfo.buffer}getFromPixelsProgram(e){switch(e){case"copyExternal":return this.fromPixelProgram||(this.fromPixelProgram=new a6),this.fromPixelProgram;case"import":return this.fromPixelImportProgram||(this.fromPixelImportProgram=new Zhe),this.fromPixelImportProgram;default:v.assert(!1,()=>"Unsupported fromPixels shape");return}}ensureCommandEncoderReady(){this.currentCommandEncoder||(this.currentCommandEncoder=this.device.createCommandEncoder())}ensureComputePassEnded(){this.currentComputePass&&(this.currentComputePass.endPass(),this.currentComputePass=null)}getComputePass(){return this.currentComputePass||(this.currentComputePass=this.currentCommandEncoder.beginComputePass()),this.currentComputePass}async getBufferData(e){if(e.values!=null)return e.values;let t=this.acquireBuffer(e.bufferInfo.byteSize,GPUBufferUsage.COPY_DST|GPUBufferUsage.MAP_READ);this.ensureCommandEncoderReady(),this.ensureComputePassEnded(),this.currentCommandEncoder.copyBufferToBuffer(e.bufferInfo.buffer,0,t,0,e.bufferInfo.byteSize),this.submitQueue(),await t.mapAsync(GPUMapMode.READ);let n=t.getMappedRange().slice(0);return t.unmap(),t!=null&&this.bufferManager.releaseBuffer(t,e.bufferInfo.byteSize,GPUBufferUsage.COPY_DST|GPUBufferUsage.MAP_READ),Y().getBool("WEBGPU_USE_PROFILE_TOOL")&&(v.assert(this.dummyContext!==void 0,()=>"Fail to get context for profiling tool"),this.dummyContext.getCurrentTexture()),n}convertAndCacheOnCPU(e,t){let n=this.tensorMap.get(e);return this.maybeReleaseBuffer(e),n.values=t,n.values}readSync(e){let t=this.tensorMap.get(e),{values:n}=t;if(n==null)throw new Error("WebGPU readSync is only available for CPU-resident tensors.");return n}async read(e){if(!this.tensorMap.has(e))throw new Error(`Tensor ${e} was not registered!`);let t=this.tensorMap.get(e),{values:n}=t;if(n!=null)return this.convertAndCacheOnCPU(e,n);let s;if(t.dtype==="complex64"){let r=await Promise.all([this.read(t.complexTensorInfos.real.dataId),this.read(t.complexTensorInfos.imag.dataId)]),a=r[0],o=r[1];s=E.mergeRealAndImagArrays(a,o)}else{let r=await this.getBufferData(t);s=T4(r,t.dtype)}return this.convertAndCacheOnCPU(e,s),s}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(s=>v.decodeString(s))}catch(s){throw new Error("Failed to decode encoded string bytes into utf-8")}return ze(e.shape,e.dtype,n)}async time(e){let t=this.activeTimers,n=[],s=!1;this.programTimersStack==null?(this.programTimersStack=n,s=!0):this.activeTimers.push(n),this.activeTimers=n,e();let r=v.flatten(this.activeTimers.map(l=>l.query)).filter(l=>l!=null),a=v.flatten(this.activeTimers.map(l=>l.name)).filter(l=>l!=null);this.activeTimers=t,s&&(this.programTimersStack=null);let o={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null},i=await Promise.all(r);return o.kernelMs=v.sum(i),o.getExtraProfileInfo=()=>i.map((l,c)=>({name:a[c],ms:l})).map(l=>`${l.name}: ${l.ms}`).join(", "),this.uploadWaitMs=0,this.downloadWaitMs=0,o}getAndSavePipeline(e,t){return e in this.pipelineCache||(this.pipelineCache[e]=t()),this.pipelineCache[e]}makeTensorInfo(e,t,n){let s;if(t==="string"&&n!=null&&n.length>0&&v.isString(n[0])){let r=n.map(a=>v.encodeString(a));s=this.write(r,e,t)}else s=this.write(n,e,t);return{dataId:s,shape:e,dtype:t}}tensorToBinding(e){if(!e)return null;let t=this.tensorMap.get(e.dataId);return{offset:0,size:t.bufferInfo.byteSize,buffer:t.bufferInfo.buffer}}async getQueryTime(e){return this.supportTimeQuery?this.getTimeFromQuerySet(e):0}uploadToGPU(e){let t=this.tensorMap.get(e);t.bufferInfo.buffer==null&&(t.bufferInfo.buffer=this.acquireBuffer(t.bufferInfo.byteSize),t.values&&this.queue.writeBuffer(t.bufferInfo.buffer,0,t.values))}makeUniformsDataView(e){let t=this.acquireBuffer(e.byteLength,GPUBufferUsage.COPY_DST|GPUBufferUsage.UNIFORM);return this.queue.writeBuffer(t,0,e),{offset:0,size:e.byteLength,buffer:t}}arrayToDataView(e,t){let n=4,s=new DataView(new ArrayBuffer(t*n)),r=0;return e.forEach(a=>{let o=a.data;if(a.type!=="int32"&&a.type!=="float32"&&a.type!=="uint32")throw new Error(`${a.type} not supported!`);a.type==="int32"?o.forEach(i=>{s.setInt32(r*n,i,!0),r++}):a.type==="uint32"?o.forEach(i=>{s.setUint32(r*n,i,!0),r++}):o.forEach(i=>{s.setFloat32(r*n,i,!0),r++})}),s}computePadding(e){let t=0,n=0,s=0,r=[];return e.forEach((a,o)=>{a.data.length===0&&(a.data=[1]);let i;switch(a.data.length){case 0:i=1;break;case 1:i=1;break;case 2:i=2;break;case 3:i=4;break;case 4:i=4;break;default:v.assert(!1,()=>`Unsupported ${a.data.length}D shape`)}n=Math.ceil(t/i)*i-t;for(let l=0;l<n;++l)r.push({type:a.type,data:[0]}),s++;r.push({type:a.type,data:a.data}),s=s+a.data.length,t+=a.data.length+n}),this.arrayToDataView(r,s)}createLayout(e){let t=[];t.push({binding:0,visibility:GPUShaderStage.COMPUTE,buffer:{type:"storage"}});for(let r=0;r<e;r++)t.push({binding:r+1,visibility:GPUShaderStage.COMPUTE,buffer:{type:"read-only-storage"}});t.push({binding:e+1,visibility:GPUShaderStage.COMPUTE,buffer:{type:"uniform"}});let n=this.device.createBindGroupLayout({entries:t}),s=this.device.createPipelineLayout({bindGroupLayouts:[n]});return{bindGroupLayout:n,pipelineLayout:s}}getCachedOrCreateLayout(e){return e in this.layoutCache||(this.layoutCache[e]=this.createLayout(e)),this.layoutCache[e]}runWebGPUProgram(e,t,n,s,r){if(!r){if(r=this.makeTensorInfo(e.outputShape,n),v.sizeFromShape(r.shape)===0){let N=this.tensorMap.get(r.dataId);return N.values=v.getTypedArrayFromDType(r.dtype,0),r}this.uploadToGPU(r.dataId)}let a=[{type:"float32",data:[NaN]}],o=t.concat(r).map(N=>N.shape),i="int32";o.map(N=>{a.push({type:i,data:N})});let l=v.computeStrides(r.shape);if(a.push({type:i,data:l}),e.size){let N=v.sizeFromShape(e.outputShape);a.push({type:i,data:[e.isVec4?N/4:N]})}s&&(a=[...a,...s]);let c=null,u=this.computePadding(a),d=u.byteLength;c=this.makeUniformsDataView(u);let p=t.map((N,R)=>{if(N.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");return this.uploadToGPU(N.dataId),{dtype:this.tensorMap.get(N.dataId).dtype,shape:N.shape,name:e.variableNames[R]}}),h=p.map(N=>N.dtype).concat(r.dtype),f=p.map(N=>E.getBroadcastDims(N.shape,r.shape)),m=p.map(N=>v.arraysEqual(N.shape,r.shape)).join("_"),g=f.map(N=>N.join("_")).join(";"),A=K4(e,o,h,g,m),{bindGroupLayout:x,pipelineLayout:y}=this.getCachedOrCreateLayout(e.variableNames.length),b=this.getAndSavePipeline(A,()=>X4(this.device,e,y,p,r)),w=this.activeTimers!=null,k=_de(this.device,x,t.map(N=>this.tensorToBinding(N)),this.tensorToBinding(r),c);this.ensureCommandEncoderReady();let S=this.getComputePass();if(w&&this.supportTimeQuery&&S.writeTimestamp(this.querySet,0),S.setPipeline(b),S.setBindGroup(0,k),S.dispatch(e.dispatch[0],e.dispatch[1],e.dispatch[2]),w&&this.supportTimeQuery&&S.writeTimestamp(this.querySet,1),this.dispatchNumberInEncoder++,t.forEach(N=>{this.commandQueueOwnedIds.add(N.dataId)}),this.commandQueueOwnedIds.add(r.dataId),c){let N={byteSize:d,usage:GPUBufferUsage.COPY_DST|GPUBufferUsage.UNIFORM,buffer:c.buffer};this.uniformDisposalQueue.push(N)}return Y().get("WEBGPU_DEFERRED_SUBMIT_BATCH_SIZE")<=this.dispatchNumberInEncoder&&this.submitQueue(),w&&this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(this.querySet)}),r}runFromPixelsProgram(e,t,n,s,r){let a=this.device.createBindGroup({layout:n.bindGroupLayout,entries:[{binding:0,resource:{buffer:t}},{binding:1,resource:s},{binding:2,resource:{buffer:e.uniform}}]});this.ensureCommandEncoderReady();let o=this.getComputePass(),i=this.activeTimers!=null;i&&this.supportTimeQuery&&o.writeTimestamp(this.querySet,0),o.setPipeline(e.pipeline),o.setBindGroup(0,a),o.dispatch(e.dispatch[0],e.dispatch[1],e.dispatch[2]),i&&this.supportTimeQuery&&o.writeTimestamp(this.querySet,1),this.commandQueueOwnedIds.add(r),this.submitQueue(),i&&this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(this.querySet)})}async getTimeFromQuerySet(e){let t=this.acquireBuffer(16,GPUBufferUsage.COPY_SRC|GPUBufferUsage.QUERY_RESOLVE),n=this.acquireBuffer(16,GPUBufferUsage.MAP_READ|GPUBufferUsage.COPY_DST);this.ensureCommandEncoderReady(),this.ensureComputePassEnded(),this.currentCommandEncoder.resolveQuerySet(e,0,2,t,0),this.currentCommandEncoder.copyBufferToBuffer(t,0,n,0,16),this.submitQueue(),await n.mapAsync(GPUMapMode.READ);let s=new BigUint64Array(n.getMappedRange()),r=Number(s[1]-s[0]);return n.unmap(),this.bufferManager.releaseBuffer(n,16,GPUBufferUsage.MAP_READ|GPUBufferUsage.COPY_DST),this.bufferManager.releaseBuffer(t,16,GPUBufferUsage.COPY_SRC|GPUBufferUsage.QUERY_RESOLVE),r/1e6}shouldExecuteOnCPU(e,t=Yhe){return Y().getBool("WEBGPU_CPU_FORWARD")&&e.every(n=>this.tensorMap.get(n.dataId).bufferInfo.buffer==null&&v.sizeFromShape(n.shape)<t)}numDataIds(){return this.tensorMap.numDataIds()-this.tensorDisposalQueue.length}dispose(){this.disposed||(this.bufferManager.dispose(),this.fromPixelProgram&&this.fromPixelProgram.dispose(),this.fromPixelImportProgram&&this.fromPixelImportProgram.dispose(),this.disposed=!0)}},Bx=o6;Bx.nextDataId=0;var i6={};Me(i6,{WebGPUBackend:()=>Bx,webgpu_util:()=>C4});_u.isBrowser()&&_x()&&ol("webgpu",async()=>{Y().set("CHECK_COMPUTATION_FOR_ERRORS",!1);let e={powerPreference:Y().get("WEBGPU_USE_LOW_POWER_GPU")?"low-power":"high-performance"},t=await navigator.gpu.requestAdapter(e),n={},s=t.features.has("timestamp-query");s?n={requiredFeatures:["timestamp-query"]}:console.warn("This device doesn't support timestamp-query extension. Start Chrome browser with flag --disable-dawn-features=disallow_unsafe_apis then try again. Or zero will shown for the kernel time when profiling mode isenabled. Using performance.now is not workable for webgpu sinceit doesn't support synchronously to read data from GPU.");let r=await t.requestDevice(n);return new Bx(r,s)},3);var Jt;(function(e){e[e.float32=0]="float32",e[e.int32=1]="int32",e[e.bool=2]="bool",e[e.string=3]="string",e[e.complex64=4]="complex64"})(Jt||(Jt={}));var Cp;(function(e){e[e.linear=0]="linear",e[e.relu=1]="relu",e[e.relu6=2]="relu6",e[e.prelu=3]="prelu",e[e.leakyrelu=4]="leakyrelu",e[e.sigmoid=5]="sigmoid",e[e.elu=6]="elu"})(Cp||(Cp={}));var l6;function Jhe(e){l6=e.wasm.cwrap(vo,null,["number","array","number","number","array","number","number","number","number","number","number","number","number"])}function Qhe(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a,bias:o,preluActivationWeights:i}=t;if(r.dtype!=="float32"||a.dtype!=="float32")throw new Error("_FusedMatMul for non non-float32 tensors not yet supported.");let{transposeA:l,transposeB:c,activation:u,leakyreluAlpha:d}=s,p=n.dataIdMap.get(r.dataId).id,h=n.dataIdMap.get(a.dataId).id,f=0;if(o!=null){let N=n.dataIdMap.get(o.dataId);if(N.shape.length!==1)throw new Error(`_FusedMatMul only supports rank-1 bias but got rank ${N.shape.length}.`);f=N.id}let m=i==null?0:n.dataIdMap.get(i.dataId).id,g=Cp[u];if(g==null)throw new Error(`${u} activation not yet supported for FusedConv2D in the wasm backend.`);let A=l?r.shape[2]:r.shape[1],x=c?a.shape[1]:a.shape[2],y=sl.assertAndGetBroadcastShape(r.shape.slice(0,-2),a.shape.slice(0,-2)),b=n.makeOutput([...y,A,x],r.dtype),w=n.dataIdMap.get(b.dataId).id,k=new Uint8Array(new Int32Array(r.shape).buffer),S=new Uint8Array(new Int32Array(a.shape).buffer);return l6(p,k,r.shape.length,h,S,a.shape.length,l,c,g,f,m,d||0,w),b}var efe={kernelName:vo,backendName:"wasm",setupFunc:Jhe,kernelFunc:Qhe};function En(e,t){let n;function s(a){n=a.wasm.cwrap(e,null,["number","number","number"])}function r(a){let{backend:o,inputs:{x:i}}=a,l=o.dataIdMap.get(i.dataId).id,c=o.makeOutput(i.shape,t||i.dtype),u=o.dataIdMap.get(c.dataId).id;return v.sizeFromShape(c.shape)===0||n(l,Jt[i.dtype],u),c}return{kernelName:e,backendName:"wasm",setupFunc:s,kernelFunc:r}}var tfe=En(di);function Xn(e,t,n){let s;function r(o){s=o.wasm.cwrap(e,null,["number","array","number","number","array","number","number","number"])}function a(o){let{backend:i,inputs:l}=o,{a:c,b:u}=l,d=i.dataIdMap.get(c.dataId).id,p=i.dataIdMap.get(u.dataId).id,h=n!=null?n:c.dtype,f=E.assertAndGetBroadcastShape(c.shape,u.shape),m=i.makeOutput(f,h);if(v.sizeFromShape(f)===0)return m;let g=new Uint8Array(new Int32Array(c.shape).buffer),A=new Uint8Array(new Int32Array(u.shape).buffer),x=i.dataIdMap.get(m.dataId).id,y=()=>s(d,g,c.shape.length,p,A,u.shape.length,Jt[c.dtype],x);if(t&&c.dtype==="float32")return y(),m;let b=E.getBroadcastDims(c.shape,f),w=E.getBroadcastDims(u.shape,f),k=b.every((N,R)=>N===R),S=w.every((N,R)=>N===R);if(k&&S)return y(),m;throw new Error(`Broadcasting along outer dims is not yet supported for ${c.dtype} ${e}.`)}return{kernelName:e,backendName:"wasm",setupFunc:r,kernelFunc:a}}var nfe=!0,sfe=Xn(Xr,nfe),u6;function rfe(e){u6=e.wasm.cwrap(Ea,null,["array","number","number","number"])}function afe(e){let{inputs:t,backend:n}=e,s=n.makeOutput(t[0].shape,t[0].dtype);if(v.sizeFromShape(s.shape)===0)return s;let r=t.map(i=>n.dataIdMap.get(i.dataId).id),a=new Uint8Array(new Int32Array(r).buffer),o=n.dataIdMap.get(s.dataId).id;return u6(a,r.length,Jt[s.dtype],o),s}var ofe={kernelName:Ea,backendName:"wasm",setupFunc:rfe,kernelFunc:afe};function i0(e){let{inputs:{x:t},backend:n}=e,s=n.makeOutput(t.shape,t.dtype),r=n.typedArrayFromHeap(t);return n.typedArrayFromHeap(s).set(r),s}var ife={kernelName:qa,backendName:"wasm",kernelFunc:i0},c6;function lfe(e){c6=e.wasm.cwrap(xo,null,["number","array","number","number","number","array","number"])}function kc(e){let{inputs:t,backend:n,attrs:s}=e,[r,a]=cfe(t.x.shape,s.perm),o=!0;for(let f=0;f<a.length;f++)a[f]!==f&&(o=!1);let i=ufe(t.x.shape,s.perm),l={dataId:t.x.dataId,shape:r,dtype:t.x.dtype};if(o){let f=i0({inputs:t,backend:n});return f.shape=i,f}let c=n.makeOutput(i,l.dtype),u=n.dataIdMap.get(l.dataId).id,d=n.dataIdMap.get(c.dataId).id,p=new Uint8Array(new Int32Array(a).buffer),h=new Uint8Array(new Int32Array(l.shape).buffer);return c6(u,h,l.shape.length,Jt[l.dtype],d,p,a.length),c}function ufe(e,t){let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[t[s]];return n}function cfe(e,t){let n=[],s=[];for(let r=0;r<e.length;++r)e[r]!==1&&n.push(e[r]),e[t[r]]!==1&&s.push(t[r]);for(let r=0;r<s.length;++r){let a=-1;for(let o=0;o<s.length;++o)s[o]>=r&&(a===-1||s[a]>s[o])&&(a=o);s[a]=r}return[n,s]}var dfe={kernelName:xo,backendName:"wasm",kernelFunc:kc,setupFunc:lfe};function qo(e,t,n){let s=e.shape,r=e.shape.length,a=v.parseAxisParam(t,s),o=a,i=E.getAxesPermutation(o,r),l=null,c=!1;if(i!=null){let u=new Array(r);for(let h=0;h<u.length;h++)u[h]=s[i[h]];o=E.getInnerMostAxes(o.length,r),l=kc({inputs:{x:e},attrs:{perm:i},backend:n});let d=n.dataIdMap.get(e.dataId).id;n.dataIdMap.get(l.dataId).id!==d&&(c=!0)}return{transposed:l,originalAxes:a,axes:o,inputWasTransposed:c}}var d6;function pfe(e){d6=e.wasm.cwrap(ou,null,["number, number, number"])}function hfe(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,l=t.dataIdMap.get(o.dataId).id,c=o,{transposed:u,axes:d,originalAxes:p,inputWasTransposed:h}=qo(o,r,t);if(h){let y=t.dataIdMap.get(u.dataId).id;c=u,l=y}let f=c.shape.length;E.assertAxesAreInnerMostDims("all",d,f);let[m,g]=E.computeOutAndReduceShapes(c.shape,d),A=v.sizeFromShape(g),x=t.makeOutput(m,o.dtype);if(v.sizeFromShape(c.shape)!==0){let y=t.dataIdMap.get(x.dataId).id;d6(l,A,y)}if(h&&t.disposeData(u.dataId),a){let y=E.expandShapeToKeepDim(x.shape,p);x.shape=y}return x}var ffe={kernelName:ou,backendName:"wasm",setupFunc:pfe,kernelFunc:hfe},p6;function mfe(e){p6=e.wasm.cwrap(iu,null,["number, number, number"])}function gfe(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,l=t.dataIdMap.get(o.dataId).id,c=o,{transposed:u,axes:d,originalAxes:p,inputWasTransposed:h}=qo(o,r,t);if(h){let y=t.dataIdMap.get(u.dataId).id;c=u,l=y}let f=c.shape.length;E.assertAxesAreInnerMostDims("any",d,f);let[m,g]=E.computeOutAndReduceShapes(c.shape,d),A=v.sizeFromShape(g),x=t.makeOutput(m,o.dtype);if(v.sizeFromShape(c.shape)!==0){let y=t.dataIdMap.get(x.dataId).id;p6(l,A,y)}if(h&&t.disposeData(u.dataId),a){let y=E.expandShapeToKeepDim(x.shape,p);x.shape=y}return x}var Afe={kernelName:iu,backendName:"wasm",setupFunc:mfe,kernelFunc:gfe},h6;function yfe(e){h6=e.wasm.cwrap(Ra,null,["number","number","number","number","number"])}function xfe(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r}=s,{x:a}=n,o=t.dataIdMap.get(a.dataId).id,i=o,l=a,{transposed:c,axes:u,inputWasTransposed:d}=qo(a,r,t);if(d){let A=t.dataIdMap.get(c.dataId).id;A!==o&&(l=c,i=A)}let p=l.shape.slice(0,-1),h=t.makeOutput(p,"int32"),f=t.dataIdMap.get(h.dataId).id,m=v.sizeFromShape(h.shape),g=l.shape[u[0]];return h6(i,Jt[l.dtype],m,g,f),d&&t.disposeData(c.dataId),h}var bfe={kernelName:Ra,backendName:"wasm",kernelFunc:xfe,setupFunc:yfe},f6;function vfe(e){f6=e.wasm.cwrap($a,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function wfe(e){let{inputs:t,attrs:n,backend:s}=e,r=t.x,a=s.dataIdMap.get(r.dataId).id,{filterSize:o,strides:i,pad:l,dimRoundingMode:c}=n,u=E.computePool2DInfo(r.shape,o,i,1,l,c),d=u.filterHeight,p=u.filterWidth,h=u.padInfo.top,f=u.padInfo.right,m=u.padInfo.bottom,g=u.padInfo.left,A=u.strideHeight,x=u.strideWidth,y=u.inChannels;if(u.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${u.dataFormat}'. Please use 'channelsLast'.`);if(u.dilationWidth!==1||u.dilationHeight!==1)throw new Error(`was backend only supports average pooling with dilation = [1, 1], got [${u.dilationHeight}, ${u.dilationWidth}].`);let b=s.makeOutput(u.outShape,"float32"),w=s.dataIdMap.get(b.dataId).id;return f6(a,r.shape[0],r.shape[1],r.shape[2],d,p,h,f,m,g,A,x,y,w),b}var kfe={kernelName:$a,backendName:"wasm",setupFunc:vfe,kernelFunc:wfe};function cs(e){let{inputs:t,attrs:n}=e,{x:s}=t,{shape:r}=n,a=v.sizeFromShape(s.shape),o=v.inferFromImplicitShape(r,a);return v.assert(a===v.sizeFromShape(o),()=>`new shape: ${o}, old shape: ${s.shape}. New shape and old shape must have the same number of elements.`),e.backend.incRef(s.dataId),{dataId:s.dataId,shape:o,dtype:s.dtype}}var Ife={kernelName:Oi,backendName:"wasm",kernelFunc:cs},m6;function Sfe(e){m6=e.wasm.cwrap(_a,null,["number","array","number","number","array","number","number","number","number"])}function Cfe(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a}=t,{transposeA:o,transposeB:i}=s;if(r.dtype!=="float32"||a.dtype!=="float32")throw new Error("BatchMatMul for non non-float32 tensors not yet supported.");let l=r.shape.length,c=a.shape.length,u=o?r.shape[l-2]:r.shape[l-1],d=i?a.shape[c-1]:a.shape[c-2],p=o?r.shape[l-1]:r.shape[l-2],h=i?a.shape[c-2]:a.shape[c-1],f=r.shape.slice(0,-2),m=a.shape.slice(0,-2),g=v.sizeFromShape(f),A=v.sizeFromShape(m),y=sl.assertAndGetBroadcastShape(r.shape.slice(0,-2),a.shape.slice(0,-2)).concat([p,h]);v.assert(u===d,()=>`Error in matMul: inner shapes (${u}) and (${d}) of Tensors with shapes ${r.shape} and ${a.shape} and transposeA=${o} and transposeB=${i} must match.`);let b=o?[g,u,p]:[g,p,u],w=i?[A,h,d]:[A,d,h],k=cs({inputs:{x:r},backend:n,attrs:{shape:b}}),S=cs({inputs:{x:a},backend:n,attrs:{shape:w}}),N=n.dataIdMap.get(k.dataId).id,R=n.dataIdMap.get(S.dataId).id,M=o?k.shape[2]:k.shape[1],D=i?S.shape[1]:S.shape[2],$=Math.max(g,A),T=n.makeOutput([$,M,D],k.dtype),F=n.dataIdMap.get(T.dataId).id,V=new Uint8Array(new Int32Array(k.shape).buffer),X=new Uint8Array(new Int32Array(S.shape).buffer);return m6(N,V,k.shape.length,R,X,S.shape.length,o,i,F),n.disposeData(k.dataId),n.disposeData(S.dataId),T.shape=y,T}var Tfe={kernelName:_a,backendName:"wasm",setupFunc:Sfe,kernelFunc:Cfe};function Tp(e){let{inputs:{x:t},attrs:{begin:n,size:s},backend:r}=e,[a,o]=Ft.parseSliceParams(t,n,s),i=Ft.isSliceContinous(t.shape,a,o),l=r.readSync(t.dataId),c=r.makeOutput(o,t.dtype),u=v.computeStrides(t.shape),d=r.dataIdMap.get(c.dataId);if(i){let f=Ft.computeFlatOffset(a,u);return t.dtype==="string"?d.stringBytes=l.slice(f,f+v.sizeFromShape(o)):r.typedArrayFromHeap(c).set(l.subarray(f,f+v.sizeFromShape(o))),c}if(t.dtype==="string"){let f=_m(l,a,o,t.shape,t.dtype);return d.stringBytes=f,c}let p=r.typedArrayFromHeap(c),h=t.shape.length;if(h===2)Nfe(l,u[0],p,a,o);else if(h===3)Efe(l,u[0],u[1],p,a,o);else if(h===4)Rfe(l,u[0],u[1],u[2],p,a,o);else{let f=_m(l,a,o,t.shape,t.dtype);p.set(f)}return c}function Nfe(e,t,n,s,r){let a=0,o=s[0],i=s[1],l=o+r[0];for(let c=o;c<l;c++){let u=c*t+i;n.set(e.subarray(u,u+r[1]),a),a+=r[1]}}function Efe(e,t,n,s,r,a){let o=0,i=r[0],l=r[1],c=r[2],u=i+a[0],d=l+a[1];for(let p=i;p<u;p++)for(let h=l;h<d;h++){let f=p*t+h*n+c;s.set(e.subarray(f,f+a[2]),o),o+=a[2]}}function Rfe(e,t,n,s,r,a,o){let i=0,l=a[0],c=a[1],u=a[2],d=l+o[0],p=c+o[1],h=u+o[2],f=a[3];for(let m=l;m<d;m++)for(let g=c;g<p;g++)for(let A=u;A<h;A++){let x=m*t+g*n+A*s+f;r.set(e.subarray(x,x+o[3]),i),i+=o[3]}}var $fe={kernelName:Wi,backendName:"wasm",kernelFunc:Tp};function _fe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,crops:o}=s,i=a.reduce((A,x)=>A*x),l=E.getReshaped(r.shape,a,i),c=E.getPermuted(l.length,a.length),u=E.getReshapedPermuted(r.shape,a,i),d=E.getSliceBeginCoords(o,a.length),p=E.getSliceSize(u,o,a.length),h=cs({inputs:{x:r},backend:n,attrs:{shape:l}}),f=kc({inputs:{x:h},backend:n,attrs:{perm:c}}),m=cs({inputs:{x:f},backend:n,attrs:{shape:u}}),g=Tp({inputs:{x:m},backend:n,attrs:{begin:d,size:p}});return n.disposeData(h.dataId),n.disposeData(f.dataId),n.disposeData(h.dataId),g}var Dfe={kernelName:pi,backendName:"wasm",kernelFunc:_fe};function Np(e){let{inputs:{x:t},attrs:{dtype:n},backend:s}=e,r=s.makeOutput(t.shape,n),a=s.typedArrayFromHeap(t);return s.typedArrayFromHeap(r).set(a),r}var Pfe={kernelName:Da,backendName:"wasm",kernelFunc:Np},Ffe=En(Pa),g6;function Ofe(e){g6=e.wasm.cwrap(Kr,null,["number","number","number","number"])}function Mfe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{clipValueMin:a,clipValueMax:o}=s,i=n.dataIdMap.get(r.dataId).id,l=n.makeOutput(r.shape,r.dtype),c=n.dataIdMap.get(l.dataId).id;return g6(i,a,o,c),l}var zfe={kernelName:Kr,backendName:"wasm",setupFunc:Ofe,kernelFunc:Mfe};function A6(e){let{inputs:t,backend:n}=e,s=v.parseAxisParam(e.attrs.axis,t[0].shape)[0],r=E.computeOutShape(t.map(h=>h.shape),s),a=t.filter(h=>v.sizeFromShape(h.shape)>0);if(a.length===1)return i0({inputs:{x:a[0]},backend:n});let o=n.makeOutput(r,t[0].dtype);if(v.sizeFromShape(r)===0)return o;let i=a.map(h=>h.shape);if(E.assertParamsConsistent(i,s),a[0].dtype==="string"){let h=a.map(y=>{let b=v.sizeFromShape(y.shape.slice(s));return cs({inputs:{x:y},backend:n,attrs:{shape:[-1,b]}})}),f=h.map(y=>({vals:n.readSync(y.dataId),shape:y.shape}));r=E.computeOutShape(h.map(y=>y.shape),1);let m=h[0].shape[0]===1,g=Ky(f,r,t[0].dtype,m),A=E.computeOutShape(a.map(y=>y.shape),s);o.shape=A;let x=n.dataIdMap.get(o.dataId);return x.stringBytes=E.fromStringArrayToUint8(g),h.forEach(y=>n.disposeData(y.dataId)),o}let l=v.sizeFromShape(a[0].shape.slice(0,s)),c=0,u=a.map(h=>{let f=v.sizeFromShape(h.shape.slice(s));return c+=f,f}),d=a.map(h=>n.typedArrayFromHeap(h)),p=n.typedArrayFromHeap(o);for(let h=0;h<l;h++){let f=h*c;for(let m=0;m<d.length;m++){let g=u[m],A=h*g,x=d[m].subarray(A,A+g);p.set(x,f),f+=g}}return o}var Lfe={kernelName:hi,backendName:"wasm",kernelFunc:A6},y6;function Bfe(e){y6=e.wasm.cwrap(Fa,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Wfe(e){let{inputs:t,attrs:n,backend:s}=e,{x:r,filter:a}=t,o=s.dataIdMap.get(r.dataId).id,i=s.dataIdMap.get(a.dataId).id,{strides:l,dilations:c,pad:u,dimRoundingMode:d,dataFormat:p}=n,h=E.convertConv2DDataFormat(p),f=E.computeConv2DInfo(r.shape,a.shape,l,c,u,d,!1,h),m=f.filterHeight,g=f.filterWidth,A=f.padInfo.top,x=f.padInfo.right,y=f.padInfo.bottom,b=f.padInfo.left,w=f.dilationHeight,k=f.dilationWidth,S=f.strideHeight,N=f.strideWidth,R=f.inChannels,M=f.outChannels,D=f.padInfo.type==="SAME"?1:0;if(f.dataFormat!=="channelsLast")throw new Error(`wasm backend Conv2D does not support dataFormat:'${f.dataFormat}'. Please use 'channelsLast'.`);let $=s.makeOutput(f.outShape,"float32"),T=s.dataIdMap.get($.dataId).id;return y6(o,r.shape[0],r.shape[1],r.shape[2],i,m,g,A,x,y,b,D,w,k,S,N,R,M,T),$}var Vfe={kernelName:Fa,backendName:"wasm",setupFunc:Bfe,kernelFunc:Wfe},x6;function Ufe(e){x6=e.wasm.cwrap(Oa,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Gfe(e){let{backend:t,inputs:n,attrs:s}=e,{dy:r,filter:a}=n,{strides:o,pad:i,dataFormat:l,dimRoundingMode:c,inputShape:u}=s,d=1,p=E.convertConv2DDataFormat(l),h=E.computeConv2DInfo(u,a.shape,o,d,i,c,!1,p),{batchSize:f,filterHeight:m,filterWidth:g,inChannels:A,inHeight:x,inWidth:y,outChannels:b,outHeight:w,outWidth:k,strideHeight:S,strideWidth:N}=h,R=m-1-h.padInfo.top,M=g-1-h.padInfo.left,D=h.dataFormat==="channelsLast",$=v.computeStrides(h.inShape),T=v.computeStrides(r.shape),[F,V,X]=v.computeStrides(a.shape),z=$[0],j=D?$[1]:$[2],Z=D?$[2]:1,Q=D?1:$[1],te=T[0],ae=D?T[1]:T[2],U=D?T[2]:1,oe=D?1:T[1],re=t.makeOutput(h.inShape,"float32"),me=t.dataIdMap.get(re.dataId).id,ye=t.dataIdMap.get(r.dataId).id,Te=t.dataIdMap.get(a.dataId).id;return x6(ye,Te,f,m,g,x,y,A,w,k,b,S,N,R,M,F,V,X,z,j,Z,Q,te,ae,U,oe,me),re}var Hfe={kernelName:Oa,backendName:"wasm",setupFunc:Ufe,kernelFunc:Gfe},jfe=En(Ma),qfe=En(za),Wx;(function(e){e[e.bilinear=0]="bilinear",e[e.nearest=1]="nearest"})(Wx||(Wx={}));var b6;function Xfe(e){b6=e.wasm.cwrap(mi,null,["number","number","number","number","array","number","number","number","number","number"])}function Kfe(e){let{backend:t,inputs:n,attrs:s}=e,{method:r,extrapolationValue:a,cropSize:o}=s,{image:i,boxes:l,boxInd:c}=n,u=l.shape[0],[d,p]=o,h=[u,d,p,i.shape[3]],f=t.dataIdMap.get(i.dataId),m;i.dtype!=="float32"&&(m=Np({backend:t,inputs:{x:i},attrs:{dtype:"float32"}}),f=t.dataIdMap.get(m.dataId));let g=f.id,A=t.dataIdMap.get(l.dataId).id,x=t.dataIdMap.get(c.dataId).id,y=t.makeOutput(h,"float32"),b=t.dataIdMap.get(y.dataId).id,w=new Uint8Array(new Int32Array(i.shape).buffer);return b6(g,A,x,u,w,d,p,Wx[r],a,b),m!=null&&t.disposeData(m.dataId),y}var Zfe={kernelName:mi,backendName:"wasm",setupFunc:Xfe,kernelFunc:Kfe},v6;function Yfe(e){v6=e.wasm.cwrap(fi,null,["number","number","number","number","number","number"])}function Jfe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,exclusive:o,reverse:i}=s,l=r.shape.length;v.assert(r.dtype==="float32"||r.dtype==="int32",()=>`cumsum does not support ${r.dtype} tensors in the WASM backend`);let c=E.getAxesPermutation([a],l),u=r;c!==null&&(u=kc({inputs:{x:r},attrs:{perm:c},backend:n}));let d=E.getInnerMostAxes(1,l)[0];E.assertAxesAreInnerMostDims("cumsum",[d],l);let p=n.makeOutput(u.shape,u.dtype),h=u.shape[d],f=n.dataIdMap.get(u.dataId).id,m=n.dataIdMap.get(p.dataId).id;v6(f,o?1:0,i?1:0,h,m,Jt[r.dtype]);let g=p;if(c!==null){let A=E.getUndoAxesPermutation(c);g=kc({inputs:{x:p},attrs:{perm:A},backend:n}),n.disposeData(u.dataId),n.disposeData(p.dataId)}return g}var Qfe={kernelName:fi,backendName:"wasm",setupFunc:Yfe,kernelFunc:Jfe},w6;function eme(e){w6=e.wasm.cwrap(gi,null,["number","number","number","array","number","array","array","number","number"])}function tme(e){let{backend:t,inputs:n,attrs:s}=e,{x:r}=n,{blockSize:a,dataFormat:o}=s,i=r.shape[0],l=o==="NHWC"?r.shape[1]:r.shape[2],c=o==="NHWC"?r.shape[2]:r.shape[3],u=o==="NHWC"?r.shape[3]:r.shape[1],d=l*a,p=c*a,h=u/(a*a),f=o==="NHWC"?[i,d,p,h]:[i,h,d,p],m=t.makeOutput(f,"float32"),A=t.dataIdMap.get(r.dataId).id,x=new Uint8Array(new Int32Array(v.computeStrides(r.shape)).buffer),y=new Uint8Array(new Int32Array(f).buffer),b=new Uint8Array(new Int32Array(v.computeStrides(f)).buffer),w=t.dataIdMap.get(m.dataId).id;return w6(A,a,o==="NHWC"?1:0,x,r.shape.length-1,y,b,f.length,w),m}var nme={kernelName:gi,backendName:"wasm",setupFunc:eme,kernelFunc:tme},k6;function sme(e){k6=e.wasm.cwrap(La,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function rme(e){let{inputs:t,attrs:n,backend:s}=e,{x:r,filter:a}=t,o=s.dataIdMap.get(r.dataId).id,i=s.dataIdMap.get(a.dataId).id,{strides:l,dilations:c,pad:u,dimRoundingMode:d}=n,p=c==null?[1,1]:c,h=E.computeConv2DInfo(r.shape,a.shape,l,p,u,d,!0),f=h.filterHeight,m=h.filterWidth,g=h.padInfo.top,A=h.padInfo.right,x=h.padInfo.bottom,y=h.padInfo.left,b=h.dilationHeight,w=h.dilationWidth,k=h.strideHeight,S=h.strideWidth,N=h.inChannels,R=h.outChannels,M=h.padInfo.type==="SAME"?1:0;if(h.dataFormat!=="channelsLast")throw new Error(`wasm backend DepthwiseConv2dNative does not support dataFormat:'${h.dataFormat}'. Please use 'channelsLast'.`);let D=s.makeOutput(h.outShape,"float32"),$=s.dataIdMap.get(D.dataId).id;return k6(o,r.shape[0],r.shape[1],r.shape[2],i,f,m,g,A,x,y,M,b,w,k,S,N,R,$),D}var ame={kernelName:La,backendName:"wasm",setupFunc:sme,kernelFunc:rme},ome=En(Wa),ime=!1,lme=Xn(Ai,ime,"bool"),ume=En(Va,"float32");function Vx(e){let{inputs:t,attrs:n,backend:s}=e,{input:r}=t,{dim:a}=n,o=r.shape.length,i=r.shape.slice(),l=a;return a<0&&(v.assert(-(o+1)<=a,()=>`Axis must be in the interval [${-(o+1)}, ${o}]`),l=o+a+1),i.splice(l,0,1),cs({inputs:{x:r},backend:s,attrs:{shape:i}})}var cme={kernelName:yi,backendName:"wasm",kernelFunc:Vx};function I6(e){let{attrs:{shape:t,value:n,dtype:s},backend:r}=e,a=r.makeOutput(t,s);return r.typedArrayFromHeap(a).fill(n),a}var dme={kernelName:mu,backendName:"wasm",kernelFunc:I6},S6;function pme(e){S6=e.wasm.cwrap(bi,null,["number","number","number","number","number","number"])}function hme(e){let{inputs:t,backend:n}=e,{image:s}=t,r=n.makeOutput(s.shape,s.dtype),a=n.dataIdMap.get(s.dataId).id,o=n.dataIdMap.get(r.dataId).id,[i,l,c,u]=s.shape;return S6(a,i,l,c,u,o),r}var fme={kernelName:bi,backendName:"wasm",kernelFunc:hme,setupFunc:pme},mme=En(Ua),gme=!1,Ame=Xn(Ga,gme),C6;function yme(e){C6=e.wasm.cwrap(Ha,null,["number","number","number","number","number","number","number"])}function xme(e){let{backend:t,inputs:n,attrs:s}=e,{varianceEpsilon:r}=s,{x:a,mean:o,variance:i,offset:l,scale:c}=n,u=t.dataIdMap.get(a.dataId).id,d=t.dataIdMap.get(o.dataId).id,p=t.dataIdMap.get(i.dataId).id,h=l!=null?t.dataIdMap.get(l.dataId).id:0,f=c!=null?t.dataIdMap.get(c.dataId).id:0,m=t.makeOutput(a.shape,a.dtype);if(v.sizeFromShape(a.shape)===0)return m;let g=t.dataIdMap.get(m.dataId).id;return C6(u,d,p,h,f,r,g),m}var bme={kernelName:Ha,backendName:"wasm",setupFunc:yme,kernelFunc:xme},T6;function vme(e){T6=e.wasm.cwrap(wo,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function wme(e){let{inputs:t,attrs:n,backend:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:c,dilations:u,dataFormat:d,dimRoundingMode:p,activation:h,leakyreluAlpha:f}=n,m=E.computeConv2DInfo(r.shape,a.shape,l,u,c,p),g=Cp[h];if(g==null)throw new Error(`${h} activation not yet supported for FusedConv2D in the wasm backend.`);let A=s.dataIdMap.get(r.dataId).id,x=s.dataIdMap.get(a.dataId).id,y=m.outChannels,b=0;if(o!=null){let U=s.dataIdMap.get(o.dataId);if(U.shape.length!==1)throw new Error(`FusedConv2D only supports rank-1 bias but got rank ${U.shape.length}.`);if(U.shape[0]!==y)throw new Error(`FusedConv2D bias shape (${U.shape}) does not match the number of output channels (${y})`);b=U.id}let w=m.filterHeight,k=m.filterWidth,S=m.padInfo.top,N=m.padInfo.right,R=m.padInfo.bottom,M=m.padInfo.left,D=m.dilationHeight,$=m.dilationWidth,T=m.strideHeight,F=m.strideWidth,V=m.inChannels,X=m.padInfo.type==="SAME"?1:0,z=m.batchSize,j=m.inHeight,Z=m.inWidth;if(d!=="NHWC")throw new Error(`wasm backend FusedConv2D does not support dataFormat:'${d}'. Please use 'NHWC'.`);let Q=s.makeOutput(m.outShape,"float32"),te=s.dataIdMap.get(Q.dataId).id,ae=i==null?0:s.dataIdMap.get(i.dataId).id;return T6(A,z,j,Z,x,w,k,b,S,N,R,M,X,D,$,T,F,V,y,g,ae,f||0,te),Q}var kme={kernelName:wo,backendName:"wasm",setupFunc:vme,kernelFunc:wme},N6;function Ime(e){N6=e.wasm.cwrap(ko,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Sme(e){let{inputs:t,attrs:n,backend:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:c,dilations:u,dataFormat:d,dimRoundingMode:p,activation:h,leakyreluAlpha:f}=n,m=E.computeConv2DInfo(r.shape,a.shape,l,u,c,p,!0),g=Cp[h];if(g==null)throw new Error(`${h} activation not yet supported for FusedDepthwiseConv2D in the wasm backend.`);let A=s.dataIdMap.get(r.dataId).id,x=s.dataIdMap.get(a.dataId).id,y=m.outChannels,b=0;if(o!=null){let U=s.dataIdMap.get(o.dataId);if(U.shape.length!==1)throw new Error(`FusedDepthwiseConv2D only supports rank-1 bias but got rank ${U.shape.length}.`);if(U.shape[0]!==y)throw new Error(`FusedDepthwiseConv2D bias shape (${U.shape}) does not match the number of output channels (${y})`);b=U.id}let w=m.filterHeight,k=m.filterWidth,S=m.padInfo.top,N=m.padInfo.right,R=m.padInfo.bottom,M=m.padInfo.left,D=m.dilationHeight,$=m.dilationWidth,T=m.strideHeight,F=m.strideWidth,V=m.inChannels,X=m.padInfo.type==="SAME"?1:0,z=m.batchSize,j=m.inHeight,Z=m.inWidth;if(d!=="NHWC")throw new Error(`wasm backend FusedDepthwiseConv2D does not support dataFormat:'${d}'. Please use 'NHWC'.`);let Q=s.makeOutput(m.outShape,"float32"),te=s.dataIdMap.get(Q.dataId).id,ae=i==null?0:s.dataIdMap.get(i.dataId).id;return N6(A,z,j,Z,x,w,k,b,S,N,R,M,X,D,$,T,F,V,y,g,ae,f||0,te),Q}var Cme={kernelName:ko,backendName:"wasm",setupFunc:Ime,kernelFunc:Sme},E6;function Tme(e){E6=e.wasm.cwrap(wi,null,["number","number","number","number","number","number","array","number"])}function Nme(e){let{backend:t,inputs:n}=e,{params:s,indices:r}=n,[a,o,i,l]=G2.prepareAndValidate(s,r),c=t.makeOutput(a,s.dtype);if(o===0)return c;let u=r.shape,d=u[u.length-1],h=t.dataIdMap.get(s.dataId).id,m=t.dataIdMap.get(r.dataId).id,g=new Uint8Array(new Int32Array(l).buffer),A=t.dataIdMap.get(c.dataId).id;return E6(h,Jt[s.dtype],m,o,d,i,g,A),c}var Eme={kernelName:wi,backendName:"wasm",setupFunc:Tme,kernelFunc:Nme},R6;function Rme(e){R6=e.wasm.cwrap("Gather",null,["number","number","array","number","number","number","array","number"])}function $me(e){let{backend:t,inputs:n,attrs:s}=e,{x:r,indices:a}=n,{axis:o,batchDims:i}=s,l=v.parseAxisParam(o,r.shape)[0],c=t.readSync(a.dataId),u=r.shape[l];for(let R=0;R<c.length;++R){let M=c[R];v.assert(M<=u-1&&M>=0,()=>`GatherV2: the index value ${M} is not in [0, ${u-1}]`)}let d=E.segment_util.collectGatherOpShapeInfo(r,a,l,i),p=cs({inputs:{x:r},attrs:{shape:[d.batchSize,d.outerSize,d.dimSize,d.sliceSize]},backend:t}),h=v.sizeFromShape(a.shape),f=cs({inputs:{x:a},attrs:{shape:[d.batchSize,h/d.batchSize]},backend:t}),m=[d.batchSize,d.outerSize,h/d.batchSize,d.sliceSize],g=t.makeOutput(m,r.dtype);if(v.sizeFromShape(r.shape)===0)return g;let A=p.shape.length-1,y=t.dataIdMap.get(p.dataId).id,w=t.dataIdMap.get(f.dataId).id,k=t.dataIdMap.get(g.dataId).id,S=new Uint8Array(new Int32Array(v.computeStrides(p.shape)).buffer),N=new Uint8Array(new Int32Array(v.computeStrides(m)).buffer);return R6(y,Jt[r.dtype],S,A,w,d.batchSize,N,k),t.disposeData(p.dataId),t.disposeData(f.dataId),g.shape=d.outputShape,g}var _me={kernelName:vi,backendName:"wasm",setupFunc:Rme,kernelFunc:$me},Dme=!1,Pme=Xn(ki,Dme,"bool"),Fme=!1,Ome=Xn(ja,Fme,"bool"),$6;function Mme(e){$6=e.wasm.cwrap(Ii,null,["number","number","number","number"])}function zme(e){let{inputs:{x:t},attrs:{alpha:n},backend:s}=e,r=s.dataIdMap.get(t.dataId).id,a=s.makeOutput(t.shape,"float32");if(v.sizeFromShape(t.shape)!==0){let o=s.dataIdMap.get(a.dataId).id;$6(r,Jt[t.dtype],n,o)}return a}var Lme={kernelName:Ii,backendName:"wasm",setupFunc:Mme,kernelFunc:zme},Bme=!1,Wme=Xn(Si,Bme,"bool"),Vme=!1,Ume=Xn(Ci,Vme,"bool"),Gme=En(Xa),Hme=!1,jme=Xn(Ti,Hme,"bool"),_6;function qme(e){_6=e.wasm.cwrap(Ka,null,["number","number","number","number"])}function Xme(e){let{backend:t,inputs:n,attrs:s}=e,{reductionIndices:r,keepDims:a}=s,{x:o}=n,l=t.dataIdMap.get(o.dataId).id,c=o,{transposed:u,axes:d,originalAxes:p,inputWasTransposed:h}=qo(o,r,t);if(h){let y=t.dataIdMap.get(u.dataId).id;c=u,l=y}let f=c.shape.length;E.assertAxesAreInnerMostDims("max",d,f);let[m,g]=E.computeOutAndReduceShapes(c.shape,d),A=v.sizeFromShape(g),x=t.makeOutput(m,o.dtype);if(v.sizeFromShape(c.shape)!==0){let y=t.dataIdMap.get(x.dataId).id;_6(l,Jt[o.dtype],A,y)}if(h&&t.disposeData(u.dataId),a){let y=E.expandShapeToKeepDim(x.shape,p);x.shape=y}return x}var Kme={kernelName:Ka,backendName:"wasm",setupFunc:qme,kernelFunc:Xme},Zme=!1,Yme=Xn(Za,Zme),D6;function Jme(e){D6=e.wasm.cwrap(Ya,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Qme(e){let{inputs:t,attrs:n,backend:s}=e,r=t.x,a=s.dataIdMap.get(r.dataId).id;v.assert(r.dtype==="float32",()=>`Error in MaxPool: only float32 input is supported. Got ${r.dtype}.`);let{filterSize:o,strides:i,pad:l,dimRoundingMode:c}=n,u=E.computePool2DInfo(r.shape,o,i,1,l,c),d=u.filterHeight,p=u.filterWidth,h=u.padInfo.top,f=u.padInfo.right,m=u.padInfo.bottom,g=u.padInfo.left,A=u.dilationHeight,x=u.dilationWidth,y=u.strideHeight,b=u.strideWidth,w=u.inChannels,k=u.outChannels;if(u.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${u.dataFormat}'. Please use 'channelsLast'.`);let S=s.makeOutput(u.outShape,"float32"),N=s.dataIdMap.get(S.dataId).id;return D6(a,r.shape[0],r.shape[1],r.shape[2],d,p,h,f,m,g,A,x,y,b,w,k,N),S}var e0e={kernelName:Ya,backendName:"wasm",setupFunc:Jme,kernelFunc:Qme},P6;function t0e(e){P6=e.wasm.cwrap(Ja,null,["number, number, number"])}function n0e(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,i=t.dataIdMap.get(o.dataId).id,l=i,c=o,{transposed:u,axes:d,originalAxes:p,inputWasTransposed:h}=qo(o,r,t),f=d;if(h){let b=t.dataIdMap.get(u.dataId).id;b!==i&&(c=u,l=b,f=E.getInnerMostAxes(f.length,c.shape.length))}E.assertAxesAreInnerMostDims("mean",f,c.shape.length);let[m,g]=E.computeOutAndReduceShapes(c.shape,f),A=v.sizeFromShape(g),x=c;c.dtype!=="float32"&&(x=Np({backend:t,inputs:{x:c},attrs:{dtype:"float32"}}),l=t.dataIdMap.get(x.dataId).id);let y=t.makeOutput(m,"float32");if(v.sizeFromShape(c.shape)!==0){let b=t.dataIdMap.get(y.dataId).id;P6(l,A,b)}if(h&&t.disposeData(u.dataId),a){let b=E.expandShapeToKeepDim(y.shape,p);y.shape=b}return c.dtype!=="float32"&&t.disposeData(x.dataId),y}var s0e={kernelName:Ja,backendName:"wasm",setupFunc:t0e,kernelFunc:n0e},F6;function r0e(e){F6=e.wasm.cwrap(Qa,null,["number","number","number","number"])}function a0e(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,i=t.dataIdMap.get(o.dataId).id,l=i,c=o,{transposed:u,axes:d,originalAxes:p,inputWasTransposed:h}=qo(o,r,t);if(h){let y=t.dataIdMap.get(u.dataId).id;y!==i&&(c=u,l=y)}let f=c.shape.length;E.assertAxesAreInnerMostDims("min",d,f);let[m,g]=E.computeOutAndReduceShapes(c.shape,d),A=v.sizeFromShape(g),x=t.makeOutput(m,c.dtype);if(v.sizeFromShape(c.shape)!==0){let y=t.dataIdMap.get(x.dataId).id;F6(l,Jt[o.dtype],A,y)}if(h&&t.disposeData(u.dataId),a){let y=E.expandShapeToKeepDim(x.shape,p);x.shape=y}return x}var o0e={kernelName:Qa,backendName:"wasm",setupFunc:r0e,kernelFunc:a0e},i0e=!1,l0e=Xn(eo,i0e),Ux;(function(e){e[e.reflect=0]="reflect",e[e.symmetric=1]="symmetric"})(Ux||(Ux={}));var O6;function u0e(e){O6=e.wasm.cwrap(to,null,["number","array","number","number","array","array","number","number"])}function c0e(e){let{inputs:{x:t},backend:n,attrs:{paddings:s,mode:r}}=e,a=s.map((f,m)=>f[0]+t.shape[m]+f[1]),o=n.dataIdMap.get(t.dataId).id,i=n.makeOutput(a,t.dtype),l=n.dataIdMap.get(i.dataId).id,c=new Uint8Array(new Int32Array(t.shape).buffer),u=s.map(f=>f[0]),d=s.map(f=>f[1]),p=new Uint8Array(new Int32Array(u).buffer),h=new Uint8Array(new Int32Array(d).buffer);return O6(o,c,t.shape.length,Jt[t.dtype],p,h,Ux[r],l),i}var d0e={kernelName:to,backendName:"wasm",kernelFunc:c0e,setupFunc:u0e},p0e=!0,h0e=Xn(no,p0e),f0e=En(Ni);function Gx(e,t){let n=new Int32Array(e.wasm.HEAPU8.buffer,t,4),s=n[0],r=n[1],a=n[2],o=n[3];return e.wasm._free(t),{pSelectedIndices:s,selectedSize:r,pSelectedScores:a,pValidOutputs:o}}var M6;function m0e(e){M6=e.wasm.cwrap(Ri,"number",["number","number","number","number","number"])}function g0e(e){let{backend:t,inputs:n,attrs:s}=e,{iouThreshold:r,maxOutputSize:a,scoreThreshold:o}=s,{boxes:i,scores:l}=n,c=t.dataIdMap.get(i.dataId).id,u=t.dataIdMap.get(l.dataId).id,d=M6(c,u,a,r,o),{pSelectedIndices:p,selectedSize:h,pSelectedScores:f,pValidOutputs:m}=Gx(t,d);return t.wasm._free(f),t.wasm._free(m),t.makeOutput([h],"int32",p)}var A0e={kernelName:Ri,backendName:"wasm",setupFunc:m0e,kernelFunc:g0e},z6;function y0e(e){z6=e.wasm.cwrap(wu,"number",["number","number","number","number","number","bool"])}function x0e(e){let{backend:t,inputs:n,attrs:s}=e,{iouThreshold:r,maxOutputSize:a,scoreThreshold:o,padToMaxOutputSize:i}=s,{boxes:l,scores:c}=n,u=t.dataIdMap.get(l.dataId).id,d=t.dataIdMap.get(c.dataId).id,p=z6(u,d,a,r,o,i),{pSelectedIndices:h,selectedSize:f,pSelectedScores:m,pValidOutputs:g}=Gx(t,p);t.wasm._free(m);let A=t.makeOutput([f],"int32",h),x=t.makeOutput([],"int32",g);return[A,x]}var b0e={kernelName:wu,backendName:"wasm",setupFunc:y0e,kernelFunc:x0e},L6;function v0e(e){L6=e.wasm.cwrap($i,"number",["number","number","number","number","number","number"])}function w0e(e){let{backend:t,inputs:n,attrs:s}=e,{iouThreshold:r,maxOutputSize:a,scoreThreshold:o,softNmsSigma:i}=s,{boxes:l,scores:c}=n,u=t.dataIdMap.get(l.dataId).id,d=t.dataIdMap.get(c.dataId).id,p=L6(u,d,a,r,o,i),{pSelectedIndices:h,selectedSize:f,pSelectedScores:m,pValidOutputs:g}=Gx(t,p);t.wasm._free(g);let A=t.makeOutput([f],"int32",h),x=t.makeOutput([f],"float32",m);return[A,x]}var k0e={kernelName:$i,backendName:"wasm",setupFunc:v0e,kernelFunc:w0e},I0e=!1,S0e=Xn(Ei,I0e,"bool"),B6;function C0e(e){B6=e.wasm.cwrap(Di,null,["number","number","number","number","number"])}function T0e(e){let{inputs:t,backend:n,attrs:s}=e,{indices:r}=t,{depth:a,onValue:o,offValue:i}=s,l=n.makeOutput([...r.shape,a],"int32"),c=n.dataIdMap.get(l.dataId).id,d=n.dataIdMap.get(r.dataId).id;return B6(d,a,o,i,c),l}var N0e={kernelName:Di,backendName:"wasm",setupFunc:C0e,kernelFunc:T0e};function E0e(e){let{inputs:{x:t},backend:n}=e,s=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(s).fill(1),s}var R0e={kernelName:_i,backendName:"wasm",kernelFunc:E0e};function $0e(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s;if(t.length===1)return Vx({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let a=t[0].shape,o=t[0].dtype;t.forEach(u=>{v.assertShapesMatch(a,u.shape,"All tensors passed to stack must have matching shapes"),v.assert(o===u.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],l=t.map(u=>{let d=Vx({inputs:{input:u},backend:n,attrs:{dim:r}});return i.push(d),d}),c=A6({inputs:l,backend:n,attrs:{axis:r}});return i.forEach(u=>n.disposeData(u.dataId)),c}var _0e={kernelName:Pi,backendName:"wasm",kernelFunc:$0e},W6;function D0e(e){W6=e.wasm.cwrap(so,null,["number","array","number","number","array","array","number","number"])}function P0e(e){let{inputs:{x:t},backend:n,attrs:{paddings:s,constantValue:r}}=e,a=s.map((m,g)=>m[0]+t.shape[g]+m[1]);if(v.sizeFromShape(t.shape)===0)return I6({backend:n,attrs:{shape:a,value:r,dtype:t.dtype}});let o=n.dataIdMap.get(t.dataId).id,i=n.makeOutput(a,t.dtype),c=n.dataIdMap.get(i.dataId).id,u=new Uint8Array(new Int32Array(t.shape).buffer),d=s.map(m=>m[0]),p=s.map(m=>m[1]),h=new Uint8Array(new Int32Array(d).buffer),f=new Uint8Array(new Int32Array(p).buffer);return W6(o,u,t.shape.length,Jt[t.dtype],h,f,r,c),i}var V6={kernelName:so,backendName:"wasm",kernelFunc:P0e,setupFunc:D0e},F0e=!1,O0e=Xn(ro,F0e),U6;function M0e(e){U6=e.wasm.cwrap(ao,null,["number","number","number"])}function z0e(e){let{inputs:t,backend:n}=e,{x:s,alpha:r}=t,a=n.dataIdMap.get(s.dataId).id,o=n.dataIdMap.get(r.dataId).id,i=a,l=s,c=l;l.dtype!=="float32"&&(c=Np({backend:n,inputs:{x:s},attrs:{dtype:"float32"}}),i=n.dataIdMap.get(c.dataId).id);let u=n.makeOutput(s.shape,"float32"),d=n.dataIdMap.get(u.dataId).id;return U6(i,o,d),l.dtype!=="float32"&&n.disposeData(c.dataId),u}var L0e={kernelName:ao,backendName:"wasm",setupFunc:M0e,kernelFunc:z0e},G6;function B0e(e){G6=e.wasm.cwrap(Fi,null,["number","number","number","number"])}function W0e(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,i=t.dataIdMap.get(o.dataId).id,l=i,c=o,{transposed:u,axes:d,originalAxes:p,inputWasTransposed:h}=qo(o,r,t),f=d;if(h){let y=t.dataIdMap.get(u.dataId).id;y!==i&&(c=u,l=y,f=E.getInnerMostAxes(f.length,c.shape.length))}E.assertAxesAreInnerMostDims("prod",f,c.shape.length);let[m,g]=E.computeOutAndReduceShapes(c.shape,f),A=v.sizeFromShape(g),x=t.makeOutput(m,c.dtype);if(v.sizeFromShape(c.shape)!==0){let y=t.dataIdMap.get(x.dataId).id;G6(l,A,Jt[x.dtype],y)}if(h&&t.disposeData(u.dataId),a){let y=E.expandShapeToKeepDim(x.shape,p);x.shape=y}return x}var V0e={kernelName:Fi,backendName:"wasm",setupFunc:B0e,kernelFunc:W0e},U0e=e=>{let{backend:t,attrs:n}=e,{start:s,stop:r,step:a,dtype:o}=n,i=Jy(s,r,a,o),l=t.makeOutput([i.length],o);return t.typedArrayFromHeap(l).set(i),l},G0e={kernelName:ku,backendName:"wasm",kernelFunc:U0e},H0e=!0,j0e=Xn(Ba,H0e),q0e=En(oo),X0e=En(lo),H6;function K0e(e){H6=e.wasm.cwrap(io,null,["number","number","number","number","number","number","number","number","number","number"])}function Z0e(e){let{backend:t,inputs:n,attrs:s}=e,{images:r}=n,{alignCorners:a,halfPixelCenters:o,size:i}=s,[l,c]=i,[u,d,p,h]=r.shape,f=[u,l,c,h],m=t.dataIdMap.get(r.dataId),g;m.dtype!=="float32"&&(g=Np({backend:t,inputs:{x:r},attrs:{dtype:"float32"}}),m=t.dataIdMap.get(g.dataId));let A=m.id,x=t.makeOutput(f,"float32");if(v.sizeFromShape(r.shape)===0)return x;let y=t.dataIdMap.get(x.dataId).id;return H6(A,u,d,p,h,l,c,a?1:0,o?1:0,y),g!=null&&t.disposeData(g.dataId),x}var Y0e={kernelName:io,backendName:"wasm",setupFunc:K0e,kernelFunc:Z0e},j6;function J0e(e){j6=e.wasm.cwrap(Mi,null,["number","array","number","array","number","number"])}function Q0e(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dims:a}=s,o=v.parseAxisParam(a,r.shape);if(r.shape.length===0)return i0({inputs:{x:r},backend:n});let i=n.makeOutput(r.shape,r.dtype),l=n.dataIdMap.get(r.dataId).id,c=n.dataIdMap.get(i.dataId).id,u=new Uint8Array(new Int32Array(o).buffer),d=new Uint8Array(new Int32Array(r.shape).buffer);j6(l,u,o.length,d,r.shape.length,c);let p=cs({inputs:{x:i},attrs:{shape:r.shape},backend:n});return n.disposeData(i.dataId),p}var ege={kernelName:Mi,backendName:"wasm",kernelFunc:Q0e,setupFunc:J0e},q6;function tge(e){q6=e.wasm.cwrap(Yi,null,["number","number","number","number","number","number","number","number","array","number","number"])}function nge(e){let{inputs:t,backend:n,attrs:s}=e,{image:r}=t,{radians:a,fillValue:o,center:i}=s,l=n.makeOutput(r.shape,r.dtype),c=n.dataIdMap.get(r.dataId).id,u=n.dataIdMap.get(l.dataId).id,[d,p,h,f]=r.shape,[m,g]=E.getImageCenter(i,p,h),A=o===0,x=255,y=typeof o=="number"?[o,o,o,A?0:x]:[...o,x],b=new Uint8Array(new Int32Array(y).buffer);return q6(c,d,p,h,f,a,m,g,b,y.length,u),l}var sge={kernelName:Yi,backendName:"wasm",kernelFunc:nge,setupFunc:tge},rge=En(zi),age=En(uo),X6;function oge(e){X6=e.wasm.cwrap(Li,null,["number","number","number","number","number","number","array","number","number"])}function ige(e){let{backend:t,inputs:n,attrs:s}=e,{indices:r,updates:a}=n,{shape:o}=s,i=t.makeOutput(o,a.dtype);if(v.sizeFromShape(o)===0)return i;let{sliceRank:l,numUpdates:c,sliceSize:u,strides:d,outputSize:p}=H2.calculateShapes(a,r,o),f=t.dataIdMap.get(r.dataId).id,g=t.dataIdMap.get(a.dataId).id,A=new Uint8Array(new Int32Array(d).buffer),x=t.dataIdMap.get(i.dataId).id;return X6(f,g,Jt[a.dtype],l,c,u,A,p,x),i}var lge={kernelName:Li,backendName:"wasm",setupFunc:oge,kernelFunc:ige},K6;function uge(e){K6=e.wasm.cwrap("SelectV2",null,["number","number","number","number","number"])}function cge(e){let{inputs:t,backend:n}=e,{condition:s,t:r,e:a}=t,o=n.dataIdMap.get(s.dataId).id,i=n.dataIdMap.get(r.dataId).id,l=n.dataIdMap.get(a.dataId).id,c=n.makeOutput(r.shape,r.dtype),u=n.dataIdMap.get(c.dataId).id,d=s.shape.length,p=r.shape.length,h=d===0||d>1||p===1?1:v.sizeFromShape(r.shape.slice(1));return K6(o,i,l,h,u),c}var dge={kernelName:Bi,backendName:"wasm",kernelFunc:cge,setupFunc:uge},Z6;function pge(e){Z6=e.wasm.cwrap(po,null,["number","number"])}function hge(e){let{backend:t,inputs:{x:n}}=e,s=t.dataIdMap.get(n.dataId).id,r=t.makeOutput(n.shape,n.dtype),a=t.dataIdMap.get(r.dataId).id;return v.sizeFromShape(r.shape)===0||Z6(s,a),r}var fge={kernelName:"Sigmoid",backendName:"wasm",setupFunc:pge,kernelFunc:hge},mge=En(co),Y6;function gge(e){Y6=e.wasm.cwrap(mo,null,["number","number","number","number"])}function Age(e){let{backend:t,inputs:{logits:n},attrs:{dim:s}}=e,r=t.dataIdMap.get(n.dataId).id,a=t.makeOutput(n.shape,n.dtype),o=t.dataIdMap.get(a.dataId).id,i=n.shape[s],l=v.sizeFromShape(n.shape)/i;return v.sizeFromShape(a.shape)===0||Y6(r,o,i,l),a}var yge={kernelName:mo,backendName:"wasm",setupFunc:gge,kernelFunc:Age};function xge(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,paddings:o}=s,i=v.sizeFromShape(a),l=[[0,0]];l.push(...o);for(let k=1+a.length;k<r.shape.length;++k)l.push([0,0]);let c=V6.kernelFunc({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),u=E.getReshaped(c.shape,a,i,!1),d=E.getPermuted(u.length,a.length,!1),p=E.getReshapedPermuted(c.shape,a,i,!1),m=cs({inputs:{x:c},backend:n,attrs:{shape:u}}),x=kc({inputs:{x:m},backend:n,attrs:{perm:d}}),w=cs({inputs:{x},backend:n,attrs:{shape:p}});return n.disposeData(c.dataId),n.disposeData(m.dataId),n.disposeData(x.dataId),w}var bge={kernelName:Ui,backendName:"wasm",kernelFunc:xge};function vge(e){let{inputs:t,attrs:n,backend:s}=e,{x:r}=t,{numOrSizeSplits:a,axis:o}=n,i=v.parseAxisParam(o,r.shape)[0],l=E.prepareSplitSize(r,a,i),c=new Array(r.shape.length).fill(0),u=r.shape.slice();return l.map(d=>{let p=[...u];p[i]=d;let h=Tp({inputs:{x:r},attrs:{begin:c,size:p},backend:s});return c[i]+=d,h})}var wge={kernelName:Gi,backendName:"wasm",kernelFunc:vge},kge=En(ho),Ige=En(Eu),Sge=!0,Cge=Xn(go,Sge),J6;function Tge(e){J6=e.wasm.cwrap(bo,null,["number","number","number","number"])}function Nge(e){let{backend:t,inputs:n,attrs:s}=e,{alpha:r}=s,{x:a}=n,o=t.dataIdMap.get(a.dataId).id,i=t.makeOutput(a.shape,a.dtype),l=t.dataIdMap.get(i.dataId).id;return J6(o,r,Jt[a.dtype],l),i}var Ege={kernelName:bo,backendName:"wasm",setupFunc:Tge,kernelFunc:Nge},Q6;function Rge(e){Q6=e.wasm.cwrap(Hi,null,["number","array","number","array","array","array","array","array","number","number"])}function $ge(e){let{backend:t,inputs:n,attrs:s}=e,{x:r}=n,{begin:a,end:o,strides:i,beginMask:l,endMask:c,ellipsisMask:u,newAxisMask:d,shrinkAxisMask:p}=s,{finalShapeSparse:h,finalShape:f,isIdentity:m,sliceDim0:g,isSimpleSlice:A,begin:x,end:y,strides:b}=Ft.sliceInfo(r.shape,a,o,i,l,c,u,d,p),w;if(m)w=cs({inputs:{x:r},backend:t,attrs:{shape:f}});else if(g||A){v.assert(r.shape.length>=1,()=>`Input must have rank at least 1, got: ${r.shape.length}`);let k=Ft.computeOutShape(x,y,b),S=Tp({inputs:{x:r},backend:t,attrs:{begin:x,size:k}});w=cs({inputs:{x:S},backend:t,attrs:{shape:f}}),t.disposeData(S.dataId)}else{let k=t.makeOutput(h,"float32"),S=t.dataIdMap.get(r.dataId).id,N=new Uint8Array(new Int32Array(v.computeStrides(r.shape)).buffer),R=new Uint8Array(new Int32Array(x).buffer),M=new Uint8Array(new Int32Array(y).buffer),D=new Uint8Array(new Int32Array(b).buffer),$=new Uint8Array(new Int32Array(h).buffer),T=new Uint8Array(new Int32Array(v.computeStrides(h)).buffer),F=t.dataIdMap.get(k.dataId).id;Q6(S,N,r.shape.length,R,M,D,$,T,h.length,F),w=cs({inputs:{x:k},backend:t,attrs:{shape:f}}),t.disposeData(k.dataId)}return w}var _ge={kernelName:Hi,backendName:"wasm",setupFunc:Rge,kernelFunc:$ge},Dge=!0,Pge=Xn(Ao,Dge),e8;function Fge(e){e8=e.wasm.cwrap(fo,null,["number","number","number","number"])}function Oge(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,i=t.dataIdMap.get(o.dataId).id,l=i,c=o,{transposed:u,axes:d,originalAxes:p,inputWasTransposed:h}=qo(o,r,t),f=d;if(h){let y=t.dataIdMap.get(u.dataId).id;y!==i&&(c=u,l=y,f=E.getInnerMostAxes(f.length,c.shape.length))}E.assertAxesAreInnerMostDims("sum",f,c.shape.length);let[m,g]=E.computeOutAndReduceShapes(c.shape,f),A=v.sizeFromShape(g),x=t.makeOutput(m,c.dtype);if(v.sizeFromShape(c.shape)!==0){let y=t.dataIdMap.get(x.dataId).id;e8(l,A,Jt[x.dtype],y)}if(h&&t.disposeData(u.dataId),a){let y=E.expandShapeToKeepDim(x.shape,p);x.shape=y}return x}var Mge={kernelName:fo,backendName:"wasm",setupFunc:Fge,kernelFunc:Oge},zge=En(ji),Lge=En(yo),t8;function Bge(e){t8=e.wasm.cwrap(Zr,null,["number","array","number","array","number","number"])}function Wge(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,a=n.dataIdMap.get(r.dataId).id,{reps:o}=s,i=new Array(r.shape.length);for(let p=0;p<i.length;p++)i[p]=r.shape[p]*o[p];let l=new Uint8Array(new Int32Array(r.shape).buffer),c=new Uint8Array(new Int32Array(i).buffer),u=n.makeOutput(i,r.dtype),d=n.dataIdMap.get(u.dataId).id;return t8(a,l,r.shape.length,c,i.length,Jt[u.dtype],d),u}var Vge={kernelName:Zr,backendName:"wasm",setupFunc:Bge,kernelFunc:Wge},n8;function Uge(e){n8=e.wasm.cwrap(qi,null,["number","array","number","number","number","bool","number","number"])}var Gge=({inputs:e,backend:t,attrs:n})=>{let{x:s}=e,{k:r,sorted:a}=n,o=t.dataIdMap.get(s.dataId).id,i=new Uint8Array(new Int32Array(s.shape).buffer),l=s.shape.slice();l[l.length-1]=r;let c=t.makeOutput(l,s.dtype),u=t.dataIdMap.get(c.dataId).id,d=t.makeOutput(l,"int32"),p=t.dataIdMap.get(d.dataId).id;return n8(o,i,s.shape.length,Jt[s.dtype],r,a,u,p),[c,d]},Hge={kernelName:qi,backendName:"wasm",setupFunc:Uge,kernelFunc:Gge},s8;function jge(e){s8=e.wasm.cwrap(Xi,null,["number","number","bool","number","number","number","number","number","number","array","number","number","number","number","number"])}function qge(e){let{backend:t,inputs:n,attrs:s}=e,{image:r,transforms:a}=n,{interpolation:o,fillMode:i,fillValue:l,outputShape:c}=s,[u,d,p,h]=r.shape,[f,m]=c!=null?c:[d,p],g=[u,f,m,h],A=new Uint8Array(new Int32Array(v.computeStrides(r.shape)).buffer),x=t.makeOutput(g,r.dtype),y=t.dataIdMap.get(x.dataId).id,w=t.dataIdMap.get(r.dataId).id,S=t.dataIdMap.get(a.dataId).id,N=o==="nearest"?1:2,R;switch(i){case"constant":R=1;break;case"reflect":R=2;break;case"wrap":R=3;break;case"nearest":R=4;break;default:R=1;break}return s8(w,S,a.shape[0]>1,u,f,m,h,p,d,A,r.shape.length-1,N,R,l,y),x}var Xge={kernelName:Xi,backendName:"wasm",setupFunc:jge,kernelFunc:qge};function Kge(e){let{inputs:t,backend:n,attrs:s}=e,{value:r}=t,{axis:a}=s;a<0&&(a+=r.shape.length);let o=r.shape[a],i=r.shape.length,l=new Array(i-1),c=0;for(let h=0;h<i;h++)h!==a&&(l[c++]=r.shape[h]);let u=new Array(o),d=new Array(i).fill(0),p=r.shape.slice();p[a]=1;for(let h=0;h<u.length;h++)d[a]=h,u[h]=Tp({inputs:{x:r},attrs:{begin:d,size:p},backend:n});return u.map(({dataId:h,dtype:f})=>({dataId:h,dtype:f,shape:l}))}var Zge={kernelName:Ki,backendName:"wasm",kernelFunc:Kge};function Yge(e){let{inputs:{x:t},backend:n}=e,s=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(s).fill(0),s}var Jge={kernelName:Zi,backendName:"wasm",kernelFunc:Yge},Qge=[tfe,sfe,ofe,ffe,Afe,bfe,kfe,Tfe,Dfe,Pfe,Ffe,zfe,Lfe,Vfe,Hfe,jfe,qfe,Zfe,Qfe,nme,ame,ome,lme,ume,cme,dme,fme,mme,Ame,efe,bme,kme,Cme,Eme,_me,Pme,Ome,ife,Lme,Wme,Ume,Gme,jme,Kme,Yme,e0e,s0e,o0e,l0e,d0e,h0e,f0e,A0e,b0e,k0e,S0e,N0e,R0e,_0e,V6,O0e,L0e,V0e,G0e,j0e,q0e,X0e,Ife,Y0e,ege,sge,age,rge,lge,dge,fge,mge,$fe,yge,bge,wge,kge,Ige,Cge,Ege,_ge,Pge,Mge,zge,Lge,Vge,Hge,Xge,dfe,Zge,Jge];for(let e of Qge)dr(e);var Hx=Y();Hx.registerFlag("WASM_HAS_SIMD_SUPPORT",async()=>WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,10,9,1,7,0,65,0,253,15,26,11])));Hx.registerFlag("WASM_HAS_MULTITHREAD_SUPPORT",async()=>{if(Hx.get("IS_NODE"))return!1;try{return new MessageChannel().port1.postMessage(new SharedArrayBuffer(1)),WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,5,4,1,3,1,1,10,11,1,9,0,65,0,254,16,2,0,26,11]))}catch(e){return!1}});var r8=li(XE()),e2e='var Module={};function threadPrintErr(){var text=Array.prototype.slice.call(arguments).join(" ");console.error(text)}function threadAlert(){var text=Array.prototype.slice.call(arguments).join(" ");postMessage({cmd:"alert",text:text,threadId:Module["_pthread_self"]()})}var err=threadPrintErr;this.alert=threadAlert;Module["instantiateWasm"]=function(info,receiveInstance){var instance=new WebAssembly.Instance(Module["wasmModule"],info);Module["wasmModule"]=null;receiveInstance(instance);return instance.exports};function moduleLoaded(){}this.onmessage=function(e){try{if(e.data.cmd==="load"){Module["wasmModule"]=e.data.wasmModule;Module["wasmMemory"]=e.data.wasmMemory;Module["buffer"]=Module["wasmMemory"].buffer;Module["ENVIRONMENT_IS_PTHREAD"]=true;if(typeof e.data.urlOrBlob==="string"){importScripts(e.data.urlOrBlob)}else{var objectUrl=URL.createObjectURL(e.data.urlOrBlob);importScripts(objectUrl);URL.revokeObjectURL(objectUrl)}WasmBackendModuleThreadedSimd(Module).then(function(instance){Module=instance;moduleLoaded()})}else if(e.data.cmd==="objectTransfer"){Module["PThread"].receiveObjectTransfer(e.data)}else if(e.data.cmd==="run"){Module["__performance_now_clock_drift"]=performance.now()-e.data.time;Module["__emscripten_thread_init"](e.data.threadInfoStruct,0,0);var max=e.data.stackBase;var top=e.data.stackBase+e.data.stackSize;Module["establishStackSpace"](top,max);Module["_emscripten_tls_init"]();Module["PThread"].receiveObjectTransfer(e.data);Module["PThread"].setThreadStatus(Module["_pthread_self"](),1);try{var result=Module["invokeEntryPoint"](e.data.start_routine,e.data.arg);if(!Module["getNoExitRuntime"]())Module["PThread"].threadExit(result)}catch(ex){if(ex==="Canceled!"){Module["PThread"].threadCancel()}else if(ex!="unwind"){if(ex instanceof Module["ExitStatus"]){if(Module["getNoExitRuntime"]()){}else{Module["PThread"].threadExit(ex.status)}}else{Module["PThread"].threadExit(-2);throw ex}}}}else if(e.data.cmd==="cancel"){if(Module["_pthread_self"]()){Module["PThread"].threadCancel()}}else if(e.data.target==="setimmediate"){}else if(e.data.cmd==="processThreadQueue"){if(Module["_pthread_self"]()){Module["_emscripten_current_thread_process_queued_calls"]()}}else{err("worker.js received unknown command "+e.data.cmd);err(e.data)}}catch(ex){err("worker.js onmessage() captured an uncaught exception: "+ex);if(ex&&ex.stack)err(ex.stack);throw ex}};if(typeof process==="object"&&typeof process.versions==="object"&&typeof process.versions.node==="string"){self={location:{href:__filename}};var onmessage=this.onmessage;var nodeWorkerThreads=require("worker_threads");global.Worker=nodeWorkerThreads.Worker;var parentPort=nodeWorkerThreads.parentPort;parentPort.on("message",function(data){onmessage({data:data})});var nodeFS=require("fs");var nodeRead=function(filename){return nodeFS.readFileSync(filename,"utf8")};function globalEval(x){global.require=require;global.Module=Module;eval.call(null,x)}importScripts=function(f){globalEval(nodeRead(f))};postMessage=function(msg){parentPort.postMessage(msg)};if(typeof performance==="undefined"){performance={now:function(){return Date.now()}}}}',t2e=li(KE()),a8=class extends tu{constructor(e){super();this.wasm=e,this.dataIdNextNumber=1,this.wasm.tfjs.initWithThreadsCount(l8),qx=this.wasm.tfjs.getThreadsCount(),this.dataIdMap=new td(this,as())}write(e,t,n){let s={id:this.dataIdNextNumber++};return this.move(s,e,t,n,1),s}numDataIds(){return this.dataIdMap.numDataIds()}async time(e){let t=v.now();return e(),{kernelMs:v.now()-t}}move(e,t,n,s,r){let a=this.dataIdNextNumber++;if(s==="string"){let c=t;this.dataIdMap.set(e,{id:a,stringBytes:c,shape:n,dtype:s,memoryOffset:null,refCount:r});return}let o=v.sizeFromShape(n),i=o*v.bytesPerElement(s),l=this.wasm._malloc(i);this.dataIdMap.set(e,{id:a,memoryOffset:l,shape:n,dtype:s,refCount:r}),this.wasm.tfjs.registerTensor(a,o,l),t!=null&&this.wasm.HEAPU8.set(new Uint8Array(t.buffer,t.byteOffset,i),l)}async read(e){return this.readSync(e)}readSync(e){let{memoryOffset:t,dtype:n,shape:s,stringBytes:r}=this.dataIdMap.get(e);if(n==="string")return r;let a=this.wasm.HEAPU8.slice(t,t+v.sizeFromShape(s)*v.bytesPerElement(n));return r2e(a.buffer,n)}disposeData(e,t=!1){if(this.dataIdMap.has(e)){let n=this.dataIdMap.get(e);if(n.refCount--,!t&&n.refCount>0)return!1;this.wasm._free(n.memoryOffset),this.wasm.tfjs.disposeData(n.id),this.dataIdMap.delete(e)}return!0}refCount(e){return this.dataIdMap.has(e)?this.dataIdMap.get(e).refCount:0}incRef(e){let t=this.dataIdMap.get(e);t!=null&&t.refCount++}floatPrecision(){return 32}getMemoryOffset(e){return this.dataIdMap.get(e).memoryOffset}dispose(){this.wasm.tfjs.dispose(),"PThread"in this.wasm&&this.wasm.PThread.terminateAllThreads(),this.wasm=null}memory(){return{unreliable:!1}}makeOutput(e,t,n){let s;if(n==null)s=this.write(null,e,t);else{let r=this.dataIdNextNumber++;s={id:r},this.dataIdMap.set(s,{id:r,memoryOffset:n,shape:e,dtype:t,refCount:1});let a=v.sizeFromShape(e);this.wasm.tfjs.registerTensor(r,a,n)}return{dataId:s,shape:e,dtype:t}}typedArrayFromHeap({shape:e,dtype:t,dataId:n}){let s=this.wasm.HEAPU8.buffer,{memoryOffset:r}=this.dataIdMap.get(n),a=v.sizeFromShape(e);switch(t){case"float32":return new Float32Array(s,r,a);case"int32":return new Int32Array(s,r,a);case"bool":return new Uint8Array(s,r,a);default:throw new Error(`Unknown dtype ${t}`)}}};function n2e(e){return(t,n)=>(v.fetch(e,{credentials:"same-origin"}).then(s=>{s.ok||t.env.a(`failed to load wasm binary file at '${e}'`),s.arrayBuffer().then(r=>{WebAssembly.instantiate(r,t).then(a=>{n(a.instance,a.module)})})}),{})}function o8(e,t,n){if(l0!=null)return l0;let s="tfjs-backend-wasm.wasm";return e&&t?s="tfjs-backend-wasm-threaded-simd.wasm":e&&(s="tfjs-backend-wasm-simd.wasm"),Rp!=null&&Rp[s]!=null?Rp[s]:n+s}async function s2e(){let[e,t]=await Promise.all([Y().getAsync("WASM_HAS_SIMD_SUPPORT"),Y().getAsync("WASM_HAS_MULTITHREAD_SUPPORT")]);return new Promise((n,s)=>{let r={};r.locateFile=(i,l)=>{if(i.endsWith(".worker.js")){let c=e2e,u=new Blob([c],{type:"application/javascript"});return URL.createObjectURL(u)}return i.endsWith(".wasm")?o8(e,t,Ep!=null?Ep:l):l+i},jx&&(r.instantiateWasm=n2e(o8(e,t,Ep!=null?Ep:"")));let a=!1;r.onAbort=()=>{if(a||$p)return;$p=!0,s({message:"Make sure the server can serve the `.wasm` file relative to the bundled js file. For more details see https://github.com/tensorflow/tfjs/blob/master/tfjs-backend-wasm/README.md#using-bundlers"})};let o;t&&e&&l0==null?(r.mainScriptUrlOrBlob=new Blob(["var WasmBackendModuleThreadedSimd = "+r8.default.toString()],{type:"text/javascript"}),o=(0,r8.default)(r)):o=(0,t2e.default)(r),o.then(i=>{a=!0,$p=!1;let l=null;i.tfjs={init:i.cwrap("init",null,[]),initWithThreadsCount:i.cwrap("init_with_threads_count",null,["number"]),getThreadsCount:i.cwrap("get_threads_count","number",[]),registerTensor:i.cwrap("register_tensor",null,["number","number","number"]),disposeData:i.cwrap("dispose_data",l,["number"]),dispose:i.cwrap("dispose",l,[])},n({wasm:i})})})}function r2e(e,t){switch(t){case"float32":return new Float32Array(e);case"int32":return new Int32Array(e);case"bool":return new Uint8Array(e);default:throw new Error(`Unknown dtype ${t}`)}}var a2e=["tfjs-backend-wasm.wasm","tfjs-backend-wasm-simd.wasm","tfjs-backend-wasm-threaded-simd.wasm"],l0=null,Ep=null,Rp={},$p=!1,jx=!1;function o2e(e,t=!1){if(J2("setWasmPath has been deprecated in favor of setWasmPaths and will be removed in a future release."),$p)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPath()` before you call `tf.setBackend()` or `tf.ready()`");l0=e,jx=t}function i8(e,t=!1){if($p)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPaths()` before you call `tf.setBackend()` or `tf.ready()`");if(typeof e=="string")Ep=e;else{Rp=e;let n=a2e.filter(s=>Rp[s]==null);if(n.length>0)throw new Error(`There were no entries found for the following binaries: ${n.join(",")}. Please either call setWasmPaths with a map providing a path for each binary, or with a string indicating the directory where all the binaries can be found.`)}jx=t}var l8=-1,qx=-1;function i2e(e){l8=e}function l2e(){if(qx===-1)throw new Error("WASM backend not initialized.");return qx}var u2e="0.0.0",c2e=2;ol("wasm",async()=>{let{wasm:e}=await s2e();return new a8(e)},c2e);var Xo="3.11.0-20211121",u0={tfjs:Xo,"tfjs-core":Xo,"tfjs-data":Xo,"tfjs-layers":Xo,"tfjs-converter":Xo,"tfjs-backend-cpu":Xo,"tfjs-backend-webgl":Xo,"tfjs-backend-wasm":Xo};var u8=`
precision highp float;
attribute vec2 pos;
attribute vec2 uv;
varying vec2 vUv;
uniform float flipY;
void main(void) {
vUv = uv;
gl_Position = vec4(pos.x, pos.y*flipY, 0.0, 1.);
}
`;var c8=`
precision highp float;
varying vec2 vUv;
uniform sampler2D texture;
uniform float m[20];
void main(void) {
vec4 c = texture2D(texture, vUv);
gl_FragColor.r = m[0] * c.r + m[1] * c.g + m[2] * c.b + m[3] * c.a + m[4];
gl_FragColor.g = m[5] * c.r + m[6] * c.g + m[7] * c.b + m[8] * c.a + m[9];
gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[13] * c.a + m[14];
gl_FragColor.a = m[15] * c.r + m[16] * c.g + m[17] * c.b + m[18] * c.a + m[19];
}
`,d8=`
precision highp float;
varying vec2 vUv;
uniform sampler2D texture;
uniform float m[20];
void main(void) {
vec4 c = texture2D(texture, vUv);
gl_FragColor.r = m[0] * c.r + m[1] * c.g + m[2] * c.b + m[4];
gl_FragColor.g = m[5] * c.r + m[6] * c.g + m[7] * c.b + m[9];
gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[14];
gl_FragColor.a = c.a;
}
`,p8=`
precision highp float;
varying vec2 vUv;
uniform vec2 size;
uniform sampler2D texture;
vec2 pixelate(vec2 coord, vec2 size) {
return floor( coord / size ) * size;
}
void main(void) {
gl_FragColor = vec4(0.0);
vec2 coord = pixelate(vUv, size);
gl_FragColor += texture2D(texture, coord);
}
`,h8=`
precision highp float;
varying vec2 vUv;
uniform sampler2D texture;
uniform vec2 px;
void main(void) {
gl_FragColor = vec4(0.0);
gl_FragColor += texture2D(texture, vUv + vec2(-7.0*px.x, -7.0*px.y))*0.0044299121055113265;
gl_FragColor += texture2D(texture, vUv + vec2(-6.0*px.x, -6.0*px.y))*0.00895781211794;
gl_FragColor += texture2D(texture, vUv + vec2(-5.0*px.x, -5.0*px.y))*0.0215963866053;
gl_FragColor += texture2D(texture, vUv + vec2(-4.0*px.x, -4.0*px.y))*0.0443683338718;
gl_FragColor += texture2D(texture, vUv + vec2(-3.0*px.x, -3.0*px.y))*0.0776744219933;
gl_FragColor += texture2D(texture, vUv + vec2(-2.0*px.x, -2.0*px.y))*0.115876621105;
gl_FragColor += texture2D(texture, vUv + vec2(-1.0*px.x, -1.0*px.y))*0.147308056121;
gl_FragColor += texture2D(texture, vUv )*0.159576912161;
gl_FragColor += texture2D(texture, vUv + vec2( 1.0*px.x, 1.0*px.y))*0.147308056121;
gl_FragColor += texture2D(texture, vUv + vec2( 2.0*px.x, 2.0*px.y))*0.115876621105;
gl_FragColor += texture2D(texture, vUv + vec2( 3.0*px.x, 3.0*px.y))*0.0776744219933;
gl_FragColor += texture2D(texture, vUv + vec2( 4.0*px.x, 4.0*px.y))*0.0443683338718;
gl_FragColor += texture2D(texture, vUv + vec2( 5.0*px.x, 5.0*px.y))*0.0215963866053;
gl_FragColor += texture2D(texture, vUv + vec2( 6.0*px.x, 6.0*px.y))*0.00895781211794;
gl_FragColor += texture2D(texture, vUv + vec2( 7.0*px.x, 7.0*px.y))*0.0044299121055113265;
}
`,f8=`
precision highp float;
varying vec2 vUv;
uniform sampler2D texture;
uniform vec2 px;
uniform float m[9];
void main(void) {
vec4 c11 = texture2D(texture, vUv - px); // top left
vec4 c12 = texture2D(texture, vec2(vUv.x, vUv.y - px.y)); // top center
vec4 c13 = texture2D(texture, vec2(vUv.x + px.x, vUv.y - px.y)); // top right
vec4 c21 = texture2D(texture, vec2(vUv.x - px.x, vUv.y) ); // mid left
vec4 c22 = texture2D(texture, vUv); // mid center
vec4 c23 = texture2D(texture, vec2(vUv.x + px.x, vUv.y) ); // mid right
vec4 c31 = texture2D(texture, vec2(vUv.x - px.x, vUv.y + px.y) ); // bottom left
vec4 c32 = texture2D(texture, vec2(vUv.x, vUv.y + px.y) ); // bottom center
vec4 c33 = texture2D(texture, vUv + px ); // bottom right
gl_FragColor =
c11 * m[0] + c12 * m[1] + c22 * m[2] +
c21 * m[3] + c22 * m[4] + c23 * m[5] +
c31 * m[6] + c32 * m[7] + c33 * m[8];
gl_FragColor.a = c22.a;
}
`;var Xx=(e,t,n)=>{let s=new RegExp("\\b"+t+" \\w+ (\\w+)","ig");e.replace(s,(r,a)=>(n[a]=0,r))},m8=class{constructor(t,n,s){he(this,"uniform",{});he(this,"attribute",{});he(this,"gl");he(this,"id");he(this,"compile",(t,n)=>{let s=this.gl.createShader(n);return s?(this.gl.shaderSource(s,t),this.gl.compileShader(s),this.gl.getShaderParameter(s,this.gl.COMPILE_STATUS)?s:(J(`filter: gl compile failed: ${this.gl.getShaderInfoLog(s)}`),null)):(J("filter: could not create shader"),null)});this.gl=t;let r=this.compile(n,this.gl.VERTEX_SHADER),a=this.compile(s,this.gl.FRAGMENT_SHADER);if(this.id=this.gl.createProgram(),!(!r||!a)){if(!this.id){J("filter: could not create webgl program");return}if(this.gl.attachShader(this.id,r),this.gl.attachShader(this.id,a),this.gl.linkProgram(this.id),!this.gl.getProgramParameter(this.id,this.gl.LINK_STATUS)){J(`filter: gl link failed: ${this.gl.getProgramInfoLog(this.id)}`);return}this.gl.useProgram(this.id),Xx(n,"attribute",this.attribute);for(let o in this.attribute)this.attribute[o]=this.gl.getAttribLocation(this.id,o);Xx(n,"uniform",this.uniform),Xx(s,"uniform",this.uniform);for(let o in this.uniform)this.uniform[o]=this.gl.getUniformLocation(this.id,o)}}};function g8(){let e=0,t=null,n=!1,s=-1,r=[null,null],a=[],o=null,i=null,l=Kn(100,100),c={},u={INTERMEDIATE:1},d=l.getContext("webgl");if(this.gl=d,!d){J("filter: cannot get webgl context");return}function p(x,y){if(!(x===l.width&&y===l.height)){if(l.width=x,l.height=y,!o){let b=new Float32Array([-1,-1,0,1,1,-1,1,1,-1,1,0,0,-1,1,0,0,1,-1,1,1,1,1,1,0]);o=d.createBuffer(),d.bindBuffer(d.ARRAY_BUFFER,o),d.bufferData(d.ARRAY_BUFFER,b,d.STATIC_DRAW),d.pixelStorei(d.UNPACK_PREMULTIPLY_ALPHA_WEBGL,!0)}d.viewport(0,0,l.width,l.height),r=[null,null]}}function h(x,y){let b=d.createFramebuffer();d.bindFramebuffer(d.FRAMEBUFFER,b);let w=d.createRenderbuffer();d.bindRenderbuffer(d.RENDERBUFFER,w);let k=d.createTexture();return d.bindTexture(d.TEXTURE_2D,k),d.texImage2D(d.TEXTURE_2D,0,d.RGBA,x,y,0,d.RGBA,d.UNSIGNED_BYTE,null),d.texParameteri(d.TEXTURE_2D,d.TEXTURE_MAG_FILTER,d.LINEAR),d.texParameteri(d.TEXTURE_2D,d.TEXTURE_MIN_FILTER,d.LINEAR),d.texParameteri(d.TEXTURE_2D,d.TEXTURE_WRAP_S,d.CLAMP_TO_EDGE),d.texParameteri(d.TEXTURE_2D,d.TEXTURE_WRAP_T,d.CLAMP_TO_EDGE),d.framebufferTexture2D(d.FRAMEBUFFER,d.COLOR_ATTACHMENT0,d.TEXTURE_2D,k,0),d.bindTexture(d.TEXTURE_2D,null),d.bindFramebuffer(d.FRAMEBUFFER,null),{fbo:b,texture:k}}function f(x){return r[x]=r[x]||h(l.width,l.height),r[x]}function m(x=0){if(!i)return;let y=null,b=null,w=!1;e===0?y=t:y=f(s).texture||null,e++,n&&!(x&u.INTERMEDIATE)?(b=null,w=e%2==0):(s=(s+1)%2,b=f(s).fbo||null),d.bindTexture(d.TEXTURE_2D,y),d.bindFramebuffer(d.FRAMEBUFFER,b),d.uniform1f(i.uniform.flipY,w?-1:1),d.drawArrays(d.TRIANGLES,0,6)}function g(x){if(c[x])return i=c[x],d.useProgram((i?i.id:null)||null),i;if(i=new m8(d,u8,x),!i)return J("filter: could not get webgl program"),null;let y=Float32Array.BYTES_PER_ELEMENT,b=4*y;return d.enableVertexAttribArray(i.attribute.pos),d.vertexAttribPointer(i.attribute.pos,2,d.FLOAT,!1,b,0*y),d.enableVertexAttribArray(i.attribute.uv),d.vertexAttribPointer(i.attribute.uv,2,d.FLOAT,!1,b,2*y),c[x]=i,i}let A={colorMatrix:x=>{let y=new Float32Array(x);y[4]/=255,y[9]/=255,y[14]/=255,y[19]/=255;let b=y[18]===1&&y[3]===0&&y[8]===0&&y[13]===0&&y[15]===0&&y[16]===0&&y[17]===0&&y[19]===0?d8:c8,w=g(b);!w||(d.uniform1fv(w.uniform.m,y),m())},brightness:x=>{let y=(x||0)+1;A.colorMatrix([y,0,0,0,0,0,y,0,0,0,0,0,y,0,0,0,0,0,1,0])},saturation:x=>{let y=(x||0)*2/3+1,b=(y-1)*-.5;A.colorMatrix([y,b,b,0,0,b,y,b,0,0,b,b,y,0,0,0,0,0,1,0])},desaturate:()=>{A.saturation(-1)},contrast:x=>{let y=(x||0)+1,b=-128*(y-1);A.colorMatrix([y,0,0,0,b,0,y,0,0,b,0,0,y,0,b,0,0,0,1,0])},negative:()=>{A.contrast(-2)},hue:x=>{x=(x||0)/180*Math.PI;let y=Math.cos(x),b=Math.sin(x),w=.213,k=.715,S=.072;A.colorMatrix([w+y*(1-w)+b*-w,k+y*-k+b*-k,S+y*-S+b*(1-S),0,0,w+y*-w+b*.143,k+y*(1-k)+b*.14,S+y*-S+b*-.283,0,0,w+y*-w+b*-(1-w),k+y*-k+b*k,S+y*(1-S)+b*S,0,0,0,0,0,1,0])},desaturateLuminance:()=>{A.colorMatrix([.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,0,0,0,1,0])},sepia:()=>{A.colorMatrix([.393,.7689999,.18899999,0,0,.349,.6859999,.16799999,0,0,.272,.5339999,.13099999,0,0,0,0,0,1,0])},brownie:()=>{A.colorMatrix([.5997023498159715,.34553243048391263,-.2708298674538042,0,47.43192855600873,-.037703249837783157,.8609577587992641,.15059552388459913,0,-36.96841498319127,.24113635128153335,-.07441037908422492,.44972182064877153,0,-7.562075277591283,0,0,0,1,0])},vintagePinhole:()=>{A.colorMatrix([.6279345635605994,.3202183420819367,-.03965408211312453,0,9.651285835294123,.02578397704808868,.6441188644374771,.03259127616149294,0,7.462829176470591,.0466055556782719,-.0851232987247891,.5241648018700465,0,5.159190588235296,0,0,0,1,0])},kodachrome:()=>{A.colorMatrix([1.1285582396593525,-.3967382283601348,-.03992559172921793,0,63.72958762196502,-.16404339962244616,1.0835251566291304,-.05498805115633132,0,24.732407896706203,-.16786010706155763,-.5603416277695248,1.6014850761964943,0,35.62982807460946,0,0,0,1,0])},technicolor:()=>{A.colorMatrix([1.9125277891456083,-.8545344976951645,-.09155508482755585,0,11.793603434377337,-.3087833385928097,1.7658908555458428,-.10601743074722245,0,-70.35205161461398,-.231103377548616,-.7501899197440212,1.847597816108189,0,30.950940869491138,0,0,0,1,0])},polaroid:()=>{A.colorMatrix([1.438,-.062,-.062,0,0,-.122,1.378,-.122,0,0,-.016,-.016,1.483,0,0,0,0,0,1,0])},shiftToBGR:()=>{A.colorMatrix([0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,1,0])},convolution:x=>{let y=new Float32Array(x),b=1/l.width,w=1/l.height,k=g(f8);!k||(d.uniform1fv(k.uniform.m,y),d.uniform2f(k.uniform.px,b,w),m())},detectEdges:()=>{A.convolution.call(this,[0,1,0,1,-4,1,0,1,0])},sobelX:()=>{A.convolution.call(this,[-1,0,1,-2,0,2,-1,0,1])},sobelY:()=>{A.convolution.call(this,[-1,-2,-1,0,0,0,1,2,1])},sharpen:x=>{let y=x||1;A.convolution.call(this,[0,-1*y,0,-1*y,1+4*y,-1*y,0,-1*y,0])},emboss:x=>{let y=x||1;A.convolution.call(this,[-2*y,-1*y,0,-1*y,1,1*y,0,1*y,2*y])},blur:x=>{let y=x/7/l.width,b=x/7/l.height,w=g(h8);!w||(d.uniform2f(w.uniform.px,0,b),m(u.INTERMEDIATE),d.uniform2f(w.uniform.px,y,0),m())},pixelate:x=>{let y=x/l.width,b=x/l.height,w=g(p8);!w||(d.uniform2f(w.uniform.size,y,b),m())}};this.add=function(x){let y=Array.prototype.slice.call(arguments,1),b=A[x];a.push({func:b,args:y})},this.reset=function(){a=[]},this.get=function(){return a},this.apply=function(x){p(x.width,x.height),e=0,t||(t=d.createTexture()),d.bindTexture(d.TEXTURE_2D,t),d.texParameteri(d.TEXTURE_2D,d.TEXTURE_WRAP_S,d.CLAMP_TO_EDGE),d.texParameteri(d.TEXTURE_2D,d.TEXTURE_WRAP_T,d.CLAMP_TO_EDGE),d.texParameteri(d.TEXTURE_2D,d.TEXTURE_MIN_FILTER,d.NEAREST),d.texParameteri(d.TEXTURE_2D,d.TEXTURE_MAG_FILTER,d.NEAREST),d.texImage2D(d.TEXTURE_2D,0,d.RGBA,d.RGBA,d.UNSIGNED_BYTE,x);for(let y=0;y<a.length;y++){n=y===a.length-1;let b=a[y];b.func.apply(this,b.args||[])}return l},this.draw=function(x){return this.add("brightness",0),this.apply(x)}}async function c0(e){let t=e.shape.length===4?ut(e):e,n=rn(t,3,2),s=[_o(n[0]),_o(n[1]),_o(n[2])],r=[yn(n[0]),yn(n[1]),yn(n[2])],a=await Promise.all(r.map(h=>h.data())),o=.99*Math.max(a[0][0],a[1][0],a[2][0]),i=[fe(n[0],s[0]),fe(n[1],s[1]),fe(n[2],s[2])],l=[fe(r[0],s[0]),fe(r[1],s[1]),fe(r[2],s[2])],c=[pe(o,l[0]),pe(o,l[1]),pe(o,l[2])],u=[L(i[0],c[0]),L(i[1],c[1]),L(i[2],c[2])],d=xn([u[0],u[1],u[2]],2),p=H(d,[1,t.shape[0],t.shape[1],3]);return ne([...n,...s,...r,...i,...l,...c,...u,d,t]),p}var d0=2048,ct=null,un=null,Ic=null,Ct,ca={inputSum:0,cacheDiff:1,sumMethod:0,inputTensor:void 0};function Kn(e,t){let n;if(de.browser)if(de.worker){if(typeof OffscreenCanvas=="undefined")throw new Error("canvas error: attempted to run in web worker but OffscreenCanvas is not supported");n=new OffscreenCanvas(e,t)}else{if(typeof document=="undefined")throw new Error("canvas error: attempted to run in browser but DOM is not defined");n=document.createElement("canvas"),n.width=e,n.height=t}else typeof de.Canvas!="undefined"?n=new de.Canvas(e,t):typeof globalThis.Canvas!="undefined"&&(n=new globalThis.Canvas(e,t));return n}function Kx(e,t){let n=t||Kn(e.width,e.height);return n.getContext("2d").drawImage(e,0,0),n}async function Sc(e,t,n=!0){if(!e)return t.debug&&J("input error: input is missing"),{tensor:null,canvas:null};if(!(e instanceof et)&&!(typeof Image!="undefined"&&e instanceof Image)&&!(typeof de.Canvas!="undefined"&&e instanceof de.Canvas)&&!(typeof globalThis.Canvas!="undefined"&&e instanceof globalThis.Canvas)&&!(typeof ImageData!="undefined"&&e instanceof ImageData)&&!(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)&&!(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)&&!(typeof HTMLMediaElement!="undefined"&&e instanceof HTMLMediaElement)&&!(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)&&!(typeof HTMLCanvasElement!="undefined"&&e instanceof HTMLCanvasElement)&&!(typeof OffscreenCanvas!="undefined"&&e instanceof OffscreenCanvas))throw new Error("input error: type is not recognized");if(e instanceof et){let s=null;if(e.isDisposedInternal)throw new Error("input error: attempted to use tensor but it is disposed");if(!e.shape)throw new Error("input error: attempted to use tensor without a shape");if(e.shape.length===3){if(e.shape[2]===3)s=Kt(e,0);else if(e.shape[2]===4){let r=dl(e,[0,0,0],[-1,-1,3]);s=Kt(r,0),ne(r)}}else e.shape.length===4&&(e.shape[3]===3?s=Bn(e):e.shape[3]===4&&(s=pl(e,[0,0,0,0],[-1,-1,-1,3])));if(s==null||s.shape.length!==4||s.shape[0]!==1||s.shape[3]!==3)throw new Error(`input error: attempted to use tensor with unrecognized shape: ${e.shape}`);if(s.dtype==="int32"){let r=ge(s,"float32");ne(s),s=r}return{tensor:s,canvas:t.filter.return?un:null}}else{if(typeof e.readyState!="undefined"&&e.readyState<=2)return t.debug&&J("input stream is not ready"),{tensor:null,canvas:ct};let s=e.naturalWidth||e.videoWidth||e.width||e.shape&&e.shape[1]>0,r=e.naturalHeight||e.videoHeight||e.height||e.shape&&e.shape[2]>0;if(!s||!r)return t.debug&&J("cannot determine input dimensions"),{tensor:null,canvas:ct};let a=s,o=r;if(a>d0&&(a=d0,o=Math.trunc(a*r/s)),o>d0&&(o=d0,a=Math.trunc(o*s/r)),(t.filter.width||0)>0?a=t.filter.width:(t.filter.height||0)>0&&(a=s*((t.filter.height||0)/r)),(t.filter.height||0)>0?o=t.filter.height:(t.filter.width||0)>0&&(o=r*((t.filter.width||0)/s)),!a||!o)throw new Error("input error: cannot determine dimension");(!ct||(ct==null?void 0:ct.width)!==a||(ct==null?void 0:ct.height)!==o)&&(ct=Kn(a,o));let i=ct.getContext("2d");if(typeof ImageData!="undefined"&&e instanceof ImageData?i.putImageData(e,0,0):t.filter.flip&&typeof i.translate!="undefined"?(i.translate(s,0),i.scale(-1,1),i.drawImage(e,0,0,s,r,0,0,ct==null?void 0:ct.width,ct==null?void 0:ct.height),i.setTransform(1,0,0,1,0,0)):i.drawImage(e,0,0,s,r,0,0,ct==null?void 0:ct.width,ct==null?void 0:ct.height),(!un||ct.width!==un.width||(ct==null?void 0:ct.height)!==(un==null?void 0:un.height))&&(un=Kn(ct.width,ct.height)),t.filter.enabled&&de.webgl.supported){if(Ct||(Ct=de.browser?new g8:null),de.filter=!!Ct,!Ct||!Ct.add)return t.debug&&J("input process error: cannot initialize filters"),{tensor:null,canvas:ct};Ct.reset(),t.filter.brightness!==0&&Ct.add("brightness",t.filter.brightness),t.filter.contrast!==0&&Ct.add("contrast",t.filter.contrast),t.filter.sharpness!==0&&Ct.add("sharpen",t.filter.sharpness),t.filter.blur!==0&&Ct.add("blur",t.filter.blur),t.filter.saturation!==0&&Ct.add("saturation",t.filter.saturation),t.filter.hue!==0&&Ct.add("hue",t.filter.hue),t.filter.negative&&Ct.add("negative"),t.filter.sepia&&Ct.add("sepia"),t.filter.vintage&&Ct.add("brownie"),t.filter.sepia&&Ct.add("sepia"),t.filter.kodachrome&&Ct.add("kodachrome"),t.filter.technicolor&&Ct.add("technicolor"),t.filter.polaroid&&Ct.add("polaroid"),t.filter.pixelate!==0&&Ct.add("pixelate",t.filter.pixelate),Ct.get()>0?un=Ct.apply(ct):un=Ct.draw(ct)}else Kx(ct,un),Ct&&(Ct=null),de.filter=!!Ct;if(!n)return{tensor:null,canvas:un};if(!un)throw new Error("canvas error: cannot create output");let l,c=3;if(typeof ImageData!="undefined"&&e instanceof ImageData||e.data&&e.width&&e.height)if(de.browser&&Ys)l=Ys?Ys.fromPixels(e):null;else{c=e.data.length/e.height/e.width;let p=new Uint8Array(e.data.buffer);l=pt(p,[e.height,e.width,c],"int32")}else if((!Ic||un.width!==Ic.width||un.height!==Ic.height)&&(Ic=Kn(un.width,un.height)),Ys&&de.browser)t.backend==="webgl"||t.backend==="humangl"||t.backend==="webgpu"?l=Ys.fromPixels(un):(Ic=Kx(un),l=Ys.fromPixels(Ic));else{let f=Kx(un).getContext("2d").getImageData(0,0,a,o);c=f.data.length/a/o;let m=new Uint8Array(f.data.buffer);l=pt(m,[a,o,c])}if(c===4){let p=dl(l,[0,0,0],[-1,-1,3]);ne(l),l=p}if(!l)throw new Error("input error: cannot create tensor");let u=ge(l,"float32"),d=t.filter.equalization?await c0(u):Kt(u,0);return ne([l,u]),{tensor:d,canvas:t.filter.return?un:null}}}async function A8(e,t){let n=!1;if(e.cacheSensitivity===0||!t.shape||t.shape.length!==4||t.shape[1]>2048||t.shape[2]>2048)return n;if(!ca.inputTensor)ca.inputTensor=Bn(t);else if(ca.inputTensor.shape[1]!==t.shape[1]||ca.inputTensor.shape[2]!==t.shape[2])ne(ca.inputTensor),ca.inputTensor=Bn(t);else{let s={};s.diff=fe(t,ca.inputTensor),s.squared=L(s.diff,s.diff),s.sum=we(s.squared);let a=(await s.sum.data())[0]/(t.shape[1]||1)/(t.shape[2]||1)/255/3;ne([ca.inputTensor,s.diff,s.squared,s.sum]),ca.inputTensor=Bn(t),n=a<=e.cacheSensitivity}return n}async function y8(e,t,n){let s={};if(!t||!n||t.shape.length!==4||t.shape.length!==n.shape.length)return e.debug||J("invalid input tensor or tensor shapes do not match:",t.shape,n.shape),0;if(t.shape[0]!==1||n.shape[0]!==1||t.shape[3]!==3||n.shape[3]!==3)return e.debug||J("input tensors must be of shape [1, height, width, 3]:",t.shape,n.shape),0;s.input1=Bn(t),s.input2=t.shape[1]!==n.shape[1]||t.shape[2]!==n.shape[2]?Ce.resizeBilinear(n,[t.shape[1],t.shape[2]]):Bn(n),s.diff=fe(s.input1,s.input2),s.squared=L(s.diff,s.diff),s.sum=we(s.squared);let a=(await s.sum.data())[0]/(t.shape[1]||1)/(t.shape[2]||1)/255/3;return ne([s.input1,s.input2,s.diff,s.squared,s.sum]),a}var x8=class{constructor(){he(this,"browser");he(this,"node");he(this,"worker");he(this,"platform","");he(this,"agent","");he(this,"backends",[]);he(this,"initial");he(this,"filter");he(this,"tfjs");he(this,"offscreen");he(this,"perfadd",!1);he(this,"wasm",{supported:void 0,backend:void 0,simd:void 0,multithread:void 0});he(this,"webgl",{supported:void 0,backend:void 0,version:void 0,renderer:void 0});he(this,"webgpu",{supported:void 0,backend:void 0,adapter:void 0});he(this,"cpu",{model:void 0,flags:[]});he(this,"kernels",[]);he(this,"Canvas");he(this,"Image");he(this,"ImageData");if(this.browser=typeof navigator!="undefined",this.node=typeof process!="undefined",this.tfjs={version:u0["tfjs-core"]},this.offscreen=typeof OffscreenCanvas!="undefined",this.initial=!0,this.worker=this.browser&&this.offscreen?typeof WorkerGlobalScope!="undefined":void 0,typeof navigator!="undefined"){let t=navigator.userAgent.match(/\(([^()]+)\)/g);if(t&&t[0]){let n=t[0].match(/\(([^()]+)\)/g);this.platform=n&&n[0]?n[0].replace(/\(|\)/g,""):"",this.agent=navigator.userAgent.replace(t[0],""),this.platform[1]&&(this.agent=this.agent.replace(t[1],"")),this.agent=this.agent.replace(/ /g," ")}}else typeof process!="undefined"&&(this.platform=`${process.platform} ${process.arch}`,this.agent=`NodeJS ${process.version}`)}async updateBackend(){this.backends=Object.keys(as().registryFactory),this.wasm.supported=typeof WebAssembly!="undefined",this.wasm.backend=this.backends.includes("wasm"),this.wasm.supported&&this.wasm.backend&&_s()==="wasm"&&(this.wasm.simd=await Y().getAsync("WASM_HAS_SIMD_SUPPORT"),this.wasm.multithread=await Y().getAsync("WASM_HAS_MULTITHREAD_SUPPORT"));let t=Kn(100,100),n=t?t.getContext("webgl2"):void 0;if(this.webgl.supported=typeof n!="undefined",this.webgl.backend=this.backends.includes("webgl"),this.webgl.supported&&this.webgl.backend&&(_s()==="webgl"||_s()==="humangl")){let s=$r().gpgpu!=="undefined"?await $r().getGPGPUContext().gl:null;s&&(this.webgl.version=s.getParameter(s.VERSION),this.webgl.renderer=s.getParameter(s.RENDERER))}this.webgpu.supported=this.browser&&typeof navigator.gpu!="undefined",this.webgpu.backend=this.backends.includes("webgpu");try{this.webgpu.supported&&(this.webgpu.adapter=(await navigator.gpu.requestAdapter()).name)}catch(s){this.webgpu.supported=!1}try{this.kernels=Yr(_s()).map(s=>s.kernelName.toLowerCase())}catch(s){}}async updateCPU(){let t={model:"",flags:[]};this.node&&this.platform.startsWith("linux"),this.cpu?this.cpu=t:Object.defineProperty(this,"cpu",{value:t})}},de=new x8;var Zx="2.5.3";var ds,Yx=[],p2e=["white","black","asian","indian","other"],h2e=[15,23,28,35.5,45.5,55.5,65],b8=0,v8=0,Jx=Number.MAX_SAFE_INTEGER;async function w8(e){return de.initial&&(ds=null),ds?e.debug&&J("cached model:",ds.modelUrl):(ds=await Be(We(e.modelBasePath,e.face.gear.modelPath)),!ds||!ds.modelUrl?J("load model failed:",e.face.gear.modelPath):e.debug&&J("load model:",ds.modelUrl)),ds}async function Qx(e,t,n,s){var o,i;if(!ds)return{age:0,gender:"unknown",genderScore:0,race:[]};let r=Jx<(((o=t.face.gear)==null?void 0:o.skipFrames)||0),a=(((i=t.face.gear)==null?void 0:i.skipTime)||0)>ie()-v8;return t.skipAllowed&&a&&r&&b8===s&&Yx[n]?(Jx++,Yx[n]):(Jx=0,new Promise(async l=>{var A,x;if(!(ds==null?void 0:ds.inputs[0].shape))return;let c={},u=[[0,.1,.9,.9]];c.resize=Ce.cropAndResize(e,u,[0],[ds.inputs[0].shape[2],ds.inputs[0].shape[1]]);let d={age:0,gender:"unknown",genderScore:0,race:[]};((A=t.face.gear)==null?void 0:A.enabled)&&([c.age,c.gender,c.race]=ds.execute(c.resize,["age_output","gender_output","race_output"]));let p=await c.gender.data();d.gender=p[0]>p[1]?"male":"female",d.genderScore=Math.round(100*(p[0]>p[1]?p[0]:p[1]))/100;let h=await c.race.data();for(let y=0;y<h.length;y++)h[y]>(((x=t.face.gear)==null?void 0:x.minConfidence)||.2)&&d.race.push({score:Math.round(100*h[y])/100,race:p2e[y]});d.race.sort((y,b)=>b.score-y.score);let m=Array.from(await c.age.data()).map((y,b)=>[h2e[b],y]).sort((y,b)=>b[1]-y[1]),g=m[0][0];for(let y=1;y<m.length;y++)g+=m[y][1]*(m[y][0]-g);d.age=Math.round(10*g)/10,Object.keys(c).forEach(y=>ne(c[y])),Yx[n]=d,b8=s,v8=ie(),l(d)}))}var Xe={tf255:255,tf1:1,tf2:2,tf05:.5,tf127:127.5,rgb:[.2989,.587,.114]};function k8(){Xe.tf255=Se(255,"float32"),Xe.tf1=Se(1,"float32"),Xe.tf2=Se(2,"float32"),Xe.tf05=Se(.5,"float32"),Xe.tf127=Se(127.5,"float32"),Xe.rgb=Vt([.2989,.587,.114],"float32")}var Pn,p0=[],I8=0,S8=0,eb=Number.MAX_SAFE_INTEGER;async function C8(e){return de.initial&&(Pn=null),Pn?e.debug&&J("cached model:",Pn.modelUrl):(Pn=await Be(We(e.modelBasePath,e.face.ssrnet.modelPathAge)),!Pn||!Pn.modelUrl?J("load model failed:",e.face.ssrnet.modelPathAge):e.debug&&J("load model:",Pn.modelUrl)),Pn}async function tb(e,t,n,s){var o,i,l,c;if(!Pn)return{age:0};let r=eb<(((o=t.face.ssrnet)==null?void 0:o.skipFrames)||0),a=(((i=t.face.ssrnet)==null?void 0:i.skipTime)||0)>ie()-S8;return t.skipAllowed&&r&&a&&I8===s&&((l=p0[n])==null?void 0:l.age)&&((c=p0[n])==null?void 0:c.age)>0?(eb++,p0[n]):(eb=0,new Promise(async u=>{if(!(Pn==null?void 0:Pn.inputs)||!Pn.inputs[0]||!Pn.inputs[0].shape)return;let d={};d.resize=Ce.resizeBilinear(e,[Pn.inputs[0].shape[2],Pn.inputs[0].shape[1]],!1),d.enhance=L(d.resize,Xe.tf255);let p={age:0};if(t.face.ssrnet.enabled&&(d.age=Pn.execute(d.enhance)),d.age){let h=await d.age.data();p.age=Math.trunc(10*h[0])/10}Object.keys(d).forEach(h=>ne(d[h])),p0[n]=p,I8=s,S8=ie(),u(p)}))}var ps,h0=[],T8=0,N8=0,nb=Number.MAX_SAFE_INTEGER,sb=[.2989,.587,.114];async function E8(e){return de.initial&&(ps=null),ps?e.debug&&J("cached model:",ps.modelUrl):(ps=await Be(We(e.modelBasePath,e.face.ssrnet.modelPathGender)),!ps||!ps.modelUrl?J("load model failed:",e.face.ssrnet.modelPathGender):e.debug&&J("load model:",ps.modelUrl)),ps}async function rb(e,t,n,s){var o,i,l,c;if(!ps)return{gender:"unknown",genderScore:0};let r=nb<(((o=t.face.ssrnet)==null?void 0:o.skipFrames)||0),a=(((i=t.face.ssrnet)==null?void 0:i.skipTime)||0)>ie()-N8;return t.skipAllowed&&r&&a&&T8===s&&((l=h0[n])==null?void 0:l.gender)&&((c=h0[n])==null?void 0:c.genderScore)>0?(nb++,h0[n]):(nb=0,new Promise(async u=>{if(!(ps==null?void 0:ps.inputs[0].shape))return;let d={};d.resize=Ce.resizeBilinear(e,[ps.inputs[0].shape[2],ps.inputs[0].shape[1]],!1),d.enhance=K(()=>{let[f,m,g]=rn(d.resize,3,3),A=L(f,sb[0]),x=L(m,sb[1]),y=L(g,sb[2]),b=hf([A,x,y]);return L(fe(b,Xe.tf05),2)});let p={gender:"",genderScore:0};t.face.ssrnet.enabled&&(d.gender=ps.execute(d.enhance));let h=await d.gender.data();p.gender=h[0]>h[1]?"female":"male",p.genderScore=h[0]>h[1]?Math.trunc(100*h[0])/100:Math.trunc(100*h[1])/100,Object.keys(d).forEach(f=>ne(d[f])),h0[n]=p,T8=s,N8=ie(),u(p)}))}var cn,f0=[],ab=Number.MAX_SAFE_INTEGER,R8=0,$8=0;async function _8(e){var t,n;return de.initial&&(cn=null),cn?e.debug&&J("cached model:",cn.modelUrl):(cn=await Be(We(e.modelBasePath,((t=e.face.antispoof)==null?void 0:t.modelPath)||"")),!cn||!cn.modelUrl?J("load model failed:",(n=e.face.antispoof)==null?void 0:n.modelPath):e.debug&&J("load model:",cn.modelUrl)),cn}async function ob(e,t,n,s){var o,i;if(!cn)return 0;let r=(((o=t.face.antispoof)==null?void 0:o.skipTime)||0)>ie()-$8,a=ab<(((i=t.face.antispoof)==null?void 0:i.skipFrames)||0);return t.skipAllowed&&r&&a&&R8===s&&f0[n]?(ab++,f0[n]):(ab=0,new Promise(async l=>{let c=Ce.resizeBilinear(e,[(cn==null?void 0:cn.inputs[0].shape)?cn.inputs[0].shape[2]:0,(cn==null?void 0:cn.inputs[0].shape)?cn.inputs[0].shape[1]:0],!1),u=cn==null?void 0:cn.execute(c),d=(await u.data())[0];f0[n]=Math.round(100*d)/100,R8=s,$8=ie(),ne([c,u]),l(f0[n])}))}var ir={silhouette:[10,338,297,332,284,251,389,356,454,323,361,288,397,365,379,378,400,377,152,148,176,149,150,136,172,58,132,93,234,127,162,21,54,103,67,109],lipsUpperOuter:[61,185,40,39,37,0,267,269,270,409,291],lipsLowerOuter:[146,91,181,84,17,314,405,321,375,291],lipsUpperInner:[78,191,80,81,82,13,312,311,310,415,308],lipsLowerInner:[78,95,88,178,87,14,317,402,318,324,308],rightEyeUpper0:[246,161,160,159,158,157,173],rightEyeLower0:[33,7,163,144,145,153,154,155,133],rightEyeUpper1:[247,30,29,27,28,56,190],rightEyeLower1:[130,25,110,24,23,22,26,112,243],rightEyeUpper2:[113,225,224,223,222,221,189],rightEyeLower2:[226,31,228,229,230,231,232,233,244],rightEyeLower3:[143,111,117,118,119,120,121,128,245],rightEyebrowUpper:[156,70,63,105,66,107,55,193],rightEyebrowLower:[35,124,46,53,52,65],rightEyeIris:[473,474,475,476,477],leftEyeUpper0:[466,388,387,386,385,384,398],leftEyeLower0:[263,249,390,373,374,380,381,382,362],leftEyeUpper1:[467,260,259,257,258,286,414],leftEyeLower1:[359,255,339,254,253,252,256,341,463],leftEyeUpper2:[342,445,444,443,442,441,413],leftEyeLower2:[446,261,448,449,450,451,452,453,464],leftEyeLower3:[372,340,346,347,348,349,350,357,465],leftEyebrowUpper:[383,300,293,334,296,336,285,417],leftEyebrowLower:[265,353,276,283,282,295],leftEyeIris:[468,469,470,471,472],midwayBetweenEyes:[168],noseTip:[1],noseBottom:[2],noseRightCorner:[98],noseLeftCorner:[327],rightCheek:[205],leftCheek:[425]},ib={count:468,mouth:13,symmetryLine:[13,ir.midwayBetweenEyes[0]]},_p={leftEye:0,rightEye:1,nose:2,mouth:3,leftEar:4,rightEar:5,symmetryLine:[3,2]},lb=[{key:"EyeUpper0",indices:[9,10,11,12,13,14,15]},{key:"EyeUpper1",indices:[25,26,27,28,29,30,31]},{key:"EyeUpper2",indices:[41,42,43,44,45,46,47]},{key:"EyeLower0",indices:[0,1,2,3,4,5,6,7,8]},{key:"EyeLower1",indices:[16,17,18,19,20,21,22,23,24]},{key:"EyeLower2",indices:[32,33,34,35,36,37,38,39,40]},{key:"EyeLower3",indices:[54,55,56,57,58,59,60,61,62]}],Dp=[[.499976992607117,.652534008026123],[.500025987625122,.547487020492554],[.499974012374878,.602371990680695],[.482113003730774,.471979022026062],[.500150978565216,.527155995368958],[.499909996986389,.498252987861633],[.499523013830185,.40106201171875],[.289712011814117,.380764007568359],[.499954998493195,.312398016452789],[.499987006187439,.269918978214264],[.500023007392883,.107050001621246],[.500023007392883,.666234016418457],[.5000159740448,.679224014282227],[.500023007392883,.692348003387451],[.499976992607117,.695277988910675],[.499976992607117,.70593398809433],[.499976992607117,.719385027885437],[.499976992607117,.737019002437592],[.499967992305756,.781370997428894],[.499816000461578,.562981009483337],[.473773002624512,.573909997940063],[.104906998574734,.254140973091125],[.365929991006851,.409575998783112],[.338757991790771,.41302502155304],[.311120003461838,.409460008144379],[.274657994508743,.389131009578705],[.393361985683441,.403706014156342],[.345234006643295,.344011008739471],[.370094001293182,.346076011657715],[.319321990013123,.347265005111694],[.297903001308441,.353591024875641],[.24779200553894,.410809993743896],[.396889001131058,.842755019664764],[.280097991228104,.375599980354309],[.106310002505779,.399955987930298],[.2099249958992,.391353011131287],[.355807989835739,.534406006336212],[.471751004457474,.65040397644043],[.474155008792877,.680191993713379],[.439785003662109,.657229006290436],[.414617002010345,.66654098033905],[.450374007225037,.680860996246338],[.428770989179611,.682690978050232],[.374971002340317,.727805018424988],[.486716985702515,.547628998756409],[.485300987958908,.527395009994507],[.257764995098114,.314490020275116],[.401223003864288,.455172002315521],[.429818987846375,.548614978790283],[.421351999044418,.533740997314453],[.276895999908447,.532056987285614],[.483370006084442,.499586999416351],[.33721199631691,.282882988452911],[.296391993761063,.293242990970612],[.169294998049736,.193813979625702],[.447580009698868,.302609980106354],[.392390012741089,.353887975215912],[.354490011930466,.696784019470215],[.067304998636246,.730105042457581],[.442739009857178,.572826027870178],[.457098007202148,.584792017936707],[.381974011659622,.694710969924927],[.392388999462128,.694203019142151],[.277076005935669,.271932005882263],[.422551989555359,.563233017921448],[.385919004678726,.281364023685455],[.383103013038635,.255840003490448],[.331431001424789,.119714021682739],[.229923993349075,.232002973556519],[.364500999450684,.189113974571228],[.229622006416321,.299540996551514],[.173287004232407,.278747975826263],[.472878992557526,.666198015213013],[.446828007698059,.668527007102966],[.422762006521225,.673889994621277],[.445307999849319,.580065965652466],[.388103008270264,.693961024284363],[.403039008378983,.706539988517761],[.403629004955292,.693953037261963],[.460041999816895,.557139039039612],[.431158006191254,.692366003990173],[.452181994915009,.692366003990173],[.475387006998062,.692366003990173],[.465828001499176,.779190003871918],[.472328990697861,.736225962638855],[.473087012767792,.717857003211975],[.473122000694275,.704625964164734],[.473033010959625,.695277988910675],[.427942007780075,.695277988910675],[.426479011774063,.703539967536926],[.423162013292313,.711845993995667],[.4183090031147,.720062971115112],[.390094995498657,.639572978019714],[.013953999616206,.560034036636353],[.499913990497589,.58014702796936],[.413199990987778,.69539999961853],[.409626007080078,.701822996139526],[.468080013990402,.601534962654114],[.422728985548019,.585985004901886],[.463079988956451,.593783974647522],[.37211999297142,.47341400384903],[.334562003612518,.496073007583618],[.411671012639999,.546965003013611],[.242175996303558,.14767599105835],[.290776997804642,.201445996761322],[.327338010072708,.256527006626129],[.399509996175766,.748921036720276],[.441727995872498,.261676013469696],[.429764986038208,.187834024429321],[.412198007106781,.108901023864746],[.288955003023148,.398952007293701],[.218936994671822,.435410976409912],[.41278201341629,.398970007896423],[.257135003805161,.355440020561218],[.427684992551804,.437960982322693],[.448339998722076,.536936044692993],[.178560003638268,.45755398273468],[.247308000922203,.457193970680237],[.286267012357712,.467674970626831],[.332827985286713,.460712015628815],[.368755996227264,.447206974029541],[.398963987827301,.432654976844788],[.476410001516342,.405806005001068],[.189241006970406,.523923993110657],[.228962004184723,.348950982093811],[.490725994110107,.562400996685028],[.404670000076294,.485132992267609],[.019469000399113,.401564002037048],[.426243007183075,.420431017875671],[.396993011236191,.548797011375427],[.266469985246658,.376977026462555],[.439121007919312,.51895797252655],[.032313998788595,.644356966018677],[.419054001569748,.387154996395111],[.462783008813858,.505746960639954],[.238978996872902,.779744982719421],[.198220998048782,.831938028335571],[.107550002634525,.540755033493042],[.183610007166862,.740257024765015],[.134409993886948,.333683013916016],[.385764002799988,.883153975009918],[.490967005491257,.579378008842468],[.382384985685349,.508572995662689],[.174399003386497,.397670984268188],[.318785011768341,.39623498916626],[.343364000320435,.400596976280212],[.396100014448166,.710216999053955],[.187885001301765,.588537991046906],[.430987000465393,.944064974784851],[.318993002176285,.898285031318665],[.266247987747192,.869701027870178],[.500023007392883,.190576016902924],[.499976992607117,.954452991485596],[.366169989109039,.398822009563446],[.393207013607025,.39553701877594],[.410373002290726,.391080021858215],[.194993004202843,.342101991176605],[.388664990663528,.362284004688263],[.365961998701096,.355970978736877],[.343364000320435,.355356991291046],[.318785011768341,.35834002494812],[.301414996385574,.363156020641327],[.058132998645306,.319076001644135],[.301414996385574,.387449026107788],[.499987989664078,.618434011936188],[.415838003158569,.624195992946625],[.445681989192963,.566076993942261],[.465844005346298,.620640993118286],[.49992299079895,.351523995399475],[.288718998432159,.819945991039276],[.335278987884521,.852819979190826],[.440512001514435,.902418971061707],[.128294005990028,.791940987110138],[.408771991729736,.373893976211548],[.455606997013092,.451801002025604],[.499877005815506,.908990025520325],[.375436991453171,.924192011356354],[.11421000212431,.615022003650665],[.448662012815475,.695277988910675],[.4480200111866,.704632043838501],[.447111994028091,.715808033943176],[.444831997156143,.730794012546539],[.430011987686157,.766808986663818],[.406787008047104,.685672998428345],[.400738000869751,.681069016456604],[.392399996519089,.677703022956848],[.367855995893478,.663918972015381],[.247923001646996,.601333022117615],[.452769994735718,.420849978923798],[.43639200925827,.359887003898621],[.416164010763168,.368713974952698],[.413385987281799,.692366003990173],[.228018000721931,.683571994304657],[.468268007040024,.352671027183533],[.411361992359161,.804327011108398],[.499989002943039,.469825029373169],[.479153990745544,.442654013633728],[.499974012374878,.439637005329132],[.432112008333206,.493588984012604],[.499886006116867,.866917014122009],[.49991300702095,.821729004383087],[.456548988819122,.819200992584229],[.344549000263214,.745438992977142],[.37890899181366,.574010014533997],[.374292999505997,.780184984207153],[.319687992334366,.570737957954407],[.357154995203018,.604269981384277],[.295284003019333,.621580958366394],[.447750002145767,.862477004528046],[.410986006259918,.508723020553589],[.31395098567009,.775308012962341],[.354128003120422,.812552988529205],[.324548006057739,.703992962837219],[.189096003770828,.646299958229065],[.279776990413666,.71465802192688],[.1338230073452,.682700991630554],[.336768001317978,.644733011722565],[.429883986711502,.466521978378296],[.455527991056442,.548622965812683],[.437114000320435,.558896005153656],[.467287987470627,.529924988746643],[.414712011814117,.335219979286194],[.37704598903656,.322777986526489],[.344107985496521,.320150971412659],[.312875986099243,.32233202457428],[.283526003360748,.333190023899078],[.241245999932289,.382785975933075],[.102986000478268,.468762993812561],[.267612010240555,.424560010433197],[.297879010438919,.433175981044769],[.333433985710144,.433878004550934],[.366427004337311,.426115989685059],[.396012008190155,.416696012020111],[.420121014118195,.41022801399231],[.007561000064015,.480777025222778],[.432949006557465,.569517970085144],[.458638995885849,.479089021682739],[.473466008901596,.545744001865387],[.476087987422943,.563830018043518],[.468472003936768,.555056989192963],[.433990985155106,.582361996173859],[.483518004417419,.562983989715576],[.482482999563217,.57784903049469],[.42645001411438,.389798998832703],[.438998997211456,.39649498462677],[.450067013502121,.400434017181396],[.289712011814117,.368252992630005],[.276670008897781,.363372981548309],[.517862021923065,.471948027610779],[.710287988185883,.380764007568359],[.526226997375488,.573909997940063],[.895093023777008,.254140973091125],[.634069979190826,.409575998783112],[.661242008209229,.41302502155304],[.688880026340485,.409460008144379],[.725341975688934,.389131009578705],[.606630027294159,.40370500087738],[.654766023159027,.344011008739471],[.629905998706818,.346076011657715],[.680678009986877,.347265005111694],[.702096998691559,.353591024875641],[.75221198797226,.410804986953735],[.602918028831482,.842862963676453],[.719901978969574,.375599980354309],[.893692970275879,.399959981441498],[.790081977844238,.391354024410248],[.643998026847839,.534487962722778],[.528249025344849,.65040397644043],[.525849997997284,.680191040039062],[.560214996337891,.657229006290436],[.585384011268616,.66654098033905],[.549625992774963,.680860996246338],[.57122802734375,.682691991329193],[.624852001667023,.72809898853302],[.513050019741058,.547281980514526],[.51509702205658,.527251958847046],[.742246985435486,.314507007598877],[.598631024360657,.454979002475739],[.570338010787964,.548575043678284],[.578631997108459,.533622980117798],[.723087012767792,.532054007053375],[.516445994377136,.499638974666595],[.662801027297974,.282917976379395],[.70362401008606,.293271005153656],[.830704987049103,.193813979625702],[.552385985851288,.302568018436432],[.607609987258911,.353887975215912],[.645429015159607,.696707010269165],[.932694971561432,.730105042457581],[.557260990142822,.572826027870178],[.542901992797852,.584792017936707],[.6180260181427,.694710969924927],[.607590973377228,.694203019142151],[.722943007946014,.271963000297546],[.577413976192474,.563166975975037],[.614082992076874,.281386971473694],[.616907000541687,.255886018276215],[.668509006500244,.119913995265961],[.770092010498047,.232020974159241],[.635536015033722,.189248979091644],[.77039098739624,.299556016921997],[.826722025871277,.278755009174347],[.527121007442474,.666198015213013],[.553171992301941,.668527007102966],[.577238023281097,.673889994621277],[.554691970348358,.580065965652466],[.611896991729736,.693961024284363],[.59696102142334,.706539988517761],[.596370995044708,.693953037261963],[.539958000183105,.557139039039612],[.568841993808746,.692366003990173],[.547818005084991,.692366003990173],[.52461302280426,.692366003990173],[.534089982509613,.779141008853912],[.527670979499817,.736225962638855],[.526912987232208,.717857003211975],[.526877999305725,.704625964164734],[.526966989040375,.695277988910675],[.572058022022247,.695277988910675],[.573521018028259,.703539967536926],[.57683801651001,.711845993995667],[.581691026687622,.720062971115112],[.609944999217987,.639909982681274],[.986046016216278,.560034036636353],[.5867999792099,.69539999961853],[.590372025966644,.701822996139526],[.531915009021759,.601536989212036],[.577268004417419,.585934996604919],[.536915004253387,.593786001205444],[.627542972564697,.473352015018463],[.665585994720459,.495950996875763],[.588353991508484,.546862006187439],[.757824003696442,.14767599105835],[.709249973297119,.201507985591888],[.672684013843536,.256581008434296],[.600408971309662,.74900496006012],[.55826598405838,.261672019958496],[.570303976535797,.187870979309082],[.588165998458862,.109044015407562],[.711045026779175,.398952007293701],[.781069993972778,.435405015945435],[.587247014045715,.398931980133057],[.742869973182678,.355445981025696],[.572156012058258,.437651991844177],[.55186802148819,.536570012569427],[.821442008018494,.457556009292603],[.752701997756958,.457181990146637],[.71375697851181,.467626988887787],[.66711300611496,.460672974586487],[.631101012229919,.447153985500336],[.6008620262146,.432473003864288],[.523481011390686,.405627012252808],[.810747981071472,.523926019668579],[.771045982837677,.348959028720856],[.509127020835876,.562718033790588],[.595292985439301,.485023975372314],[.980530977249146,.401564002037048],[.573499977588654,.420000016689301],[.602994978427887,.548687994480133],[.733529984951019,.376977026462555],[.560611009597778,.519016981124878],[.967685997486115,.644356966018677],[.580985009670258,.387160003185272],[.537728011608124,.505385041236877],[.760966002941132,.779752969741821],[.801778972148895,.831938028335571],[.892440974712372,.54076099395752],[.816350996494293,.740260004997253],[.865594983100891,.333687007427216],[.614073991775513,.883246004581451],[.508952975273132,.579437971115112],[.617941975593567,.508316040039062],[.825608015060425,.397674977779388],[.681214988231659,.39623498916626],[.656635999679565,.400596976280212],[.603900015354156,.710216999053955],[.81208598613739,.588539004325867],[.56801301240921,.944564998149872],[.681007981300354,.898285031318665],[.733752012252808,.869701027870178],[.633830010890961,.398822009563446],[.606792986392975,.39553701877594],[.589659988880157,.391062021255493],[.805015981197357,.342108011245728],[.611334979534149,.362284004688263],[.634037971496582,.355970978736877],[.656635999679565,.355356991291046],[.681214988231659,.35834002494812],[.698584973812103,.363156020641327],[.941866993904114,.319076001644135],[.698584973812103,.387449026107788],[.584177017211914,.624107003211975],[.554318010807037,.566076993942261],[.534153997898102,.62064003944397],[.711217999458313,.819975018501282],[.664629995822906,.852871000766754],[.559099972248077,.902631998062134],[.871706008911133,.791940987110138],[.591234028339386,.373893976211548],[.544341027736664,.451583981513977],[.624562978744507,.924192011356354],[.88577002286911,.615028977394104],[.551338016986847,.695277988910675],[.551980018615723,.704632043838501],[.552887976169586,.715808033943176],[.555167973041534,.730794012546539],[.569944024085999,.767035007476807],[.593203008174896,.685675978660583],[.599261999130249,.681069016456604],[.607599973678589,.677703022956848],[.631937980651855,.663500010967255],[.752032995223999,.601315021514893],[.547226011753082,.420395016670227],[.563543975353241,.359827995300293],[.583841025829315,.368713974952698],[.586614012718201,.692366003990173],[.771915018558502,.683578014373779],[.531597018241882,.352482974529266],[.588370978832245,.804440975189209],[.52079701423645,.442565023899078],[.567984998226166,.493479013442993],[.543282985687256,.819254994392395],[.655317008495331,.745514988899231],[.621008992195129,.574018001556396],[.625559985637665,.78031200170517],[.680198013782501,.570719003677368],[.64276397228241,.604337990283966],[.704662978649139,.621529996395111],[.552012026309967,.862591981887817],[.589071989059448,.508637011051178],[.685944974422455,.775357007980347],[.645735025405884,.812640011310577],[.675342977046967,.703978002071381],[.810858011245728,.646304965019226],[.72012197971344,.714666962623596],[.866151988506317,.682704985141754],[.663187026977539,.644596993923187],[.570082008838654,.466325998306274],[.544561982154846,.548375964164734],[.562758982181549,.558784961700439],[.531987011432648,.530140042304993],[.585271000862122,.335177004337311],[.622952997684479,.32277899980545],[.655896008014679,.320163011550903],[.687132000923157,.322345972061157],[.716481983661652,.333200991153717],[.758756995201111,.382786989212036],[.897013008594513,.468769013881683],[.732392013072968,.424547016620636],[.70211398601532,.433162987232208],[.66652500629425,.433866024017334],[.633504986763,.426087975502014],[.603875994682312,.416586995124817],[.579657971858978,.409945011138916],[.992439985275269,.480777025222778],[.567192018032074,.569419980049133],[.54136598110199,.478899002075195],[.526564002037048,.546118021011353],[.523913025856018,.563830018043518],[.531529009342194,.555056989192963],[.566035985946655,.582329034805298],[.51631098985672,.563053965568542],[.5174720287323,.577877044677734],[.573594987392426,.389806985855103],[.560697972774506,.395331978797913],[.549755990505219,.399751007556915],[.710287988185883,.368252992630005],[.723330020904541,.363372981548309]],Fl=[127,34,139,11,0,37,232,231,120,72,37,39,128,121,47,232,121,128,104,69,67,175,171,148,157,154,155,118,50,101,73,39,40,9,151,108,48,115,131,194,204,211,74,40,185,80,42,183,40,92,186,230,229,118,202,212,214,83,18,17,76,61,146,160,29,30,56,157,173,106,204,194,135,214,192,203,165,98,21,71,68,51,45,4,144,24,23,77,146,91,205,50,187,201,200,18,91,106,182,90,91,181,85,84,17,206,203,36,148,171,140,92,40,39,193,189,244,159,158,28,247,246,161,236,3,196,54,68,104,193,168,8,117,228,31,189,193,55,98,97,99,126,47,100,166,79,218,155,154,26,209,49,131,135,136,150,47,126,217,223,52,53,45,51,134,211,170,140,67,69,108,43,106,91,230,119,120,226,130,247,63,53,52,238,20,242,46,70,156,78,62,96,46,53,63,143,34,227,173,155,133,123,117,111,44,125,19,236,134,51,216,206,205,154,153,22,39,37,167,200,201,208,36,142,100,57,212,202,20,60,99,28,158,157,35,226,113,160,159,27,204,202,210,113,225,46,43,202,204,62,76,77,137,123,116,41,38,72,203,129,142,64,98,240,49,102,64,41,73,74,212,216,207,42,74,184,169,170,211,170,149,176,105,66,69,122,6,168,123,147,187,96,77,90,65,55,107,89,90,180,101,100,120,63,105,104,93,137,227,15,86,85,129,102,49,14,87,86,55,8,9,100,47,121,145,23,22,88,89,179,6,122,196,88,95,96,138,172,136,215,58,172,115,48,219,42,80,81,195,3,51,43,146,61,171,175,199,81,82,38,53,46,225,144,163,110,246,33,7,52,65,66,229,228,117,34,127,234,107,108,69,109,108,151,48,64,235,62,78,191,129,209,126,111,35,143,163,161,246,117,123,50,222,65,52,19,125,141,221,55,65,3,195,197,25,7,33,220,237,44,70,71,139,122,193,245,247,130,33,71,21,162,153,158,159,170,169,150,188,174,196,216,186,92,144,160,161,2,97,167,141,125,241,164,167,37,72,38,12,145,159,160,38,82,13,63,68,71,226,35,111,158,153,154,101,50,205,206,92,165,209,198,217,165,167,97,220,115,218,133,112,243,239,238,241,214,135,169,190,173,133,171,208,32,125,44,237,86,87,178,85,86,179,84,85,180,83,84,181,201,83,182,137,93,132,76,62,183,61,76,184,57,61,185,212,57,186,214,207,187,34,143,156,79,239,237,123,137,177,44,1,4,201,194,32,64,102,129,213,215,138,59,166,219,242,99,97,2,94,141,75,59,235,24,110,228,25,130,226,23,24,229,22,23,230,26,22,231,112,26,232,189,190,243,221,56,190,28,56,221,27,28,222,29,27,223,30,29,224,247,30,225,238,79,20,166,59,75,60,75,240,147,177,215,20,79,166,187,147,213,112,233,244,233,128,245,128,114,188,114,217,174,131,115,220,217,198,236,198,131,134,177,132,58,143,35,124,110,163,7,228,110,25,356,389,368,11,302,267,452,350,349,302,303,269,357,343,277,452,453,357,333,332,297,175,152,377,384,398,382,347,348,330,303,304,270,9,336,337,278,279,360,418,262,431,304,408,409,310,415,407,270,409,410,450,348,347,422,430,434,313,314,17,306,307,375,387,388,260,286,414,398,335,406,418,364,367,416,423,358,327,251,284,298,281,5,4,373,374,253,307,320,321,425,427,411,421,313,18,321,405,406,320,404,405,315,16,17,426,425,266,377,400,369,322,391,269,417,465,464,386,257,258,466,260,388,456,399,419,284,332,333,417,285,8,346,340,261,413,441,285,327,460,328,355,371,329,392,439,438,382,341,256,429,420,360,364,394,379,277,343,437,443,444,283,275,440,363,431,262,369,297,338,337,273,375,321,450,451,349,446,342,467,293,334,282,458,461,462,276,353,383,308,324,325,276,300,293,372,345,447,382,398,362,352,345,340,274,1,19,456,248,281,436,427,425,381,256,252,269,391,393,200,199,428,266,330,329,287,273,422,250,462,328,258,286,384,265,353,342,387,259,257,424,431,430,342,353,276,273,335,424,292,325,307,366,447,345,271,303,302,423,266,371,294,455,460,279,278,294,271,272,304,432,434,427,272,407,408,394,430,431,395,369,400,334,333,299,351,417,168,352,280,411,325,319,320,295,296,336,319,403,404,330,348,349,293,298,333,323,454,447,15,16,315,358,429,279,14,15,316,285,336,9,329,349,350,374,380,252,318,402,403,6,197,419,318,319,325,367,364,365,435,367,397,344,438,439,272,271,311,195,5,281,273,287,291,396,428,199,311,271,268,283,444,445,373,254,339,263,466,249,282,334,296,449,347,346,264,447,454,336,296,299,338,10,151,278,439,455,292,407,415,358,371,355,340,345,372,390,249,466,346,347,280,442,443,282,19,94,370,441,442,295,248,419,197,263,255,359,440,275,274,300,383,368,351,412,465,263,467,466,301,368,389,380,374,386,395,378,379,412,351,419,436,426,322,373,390,388,2,164,393,370,462,461,164,0,267,302,11,12,374,373,387,268,12,13,293,300,301,446,261,340,385,384,381,330,266,425,426,423,391,429,355,437,391,327,326,440,457,438,341,382,362,459,457,461,434,430,394,414,463,362,396,369,262,354,461,457,316,403,402,315,404,403,314,405,404,313,406,405,421,418,406,366,401,361,306,408,407,291,409,408,287,410,409,432,436,410,434,416,411,264,368,383,309,438,457,352,376,401,274,275,4,421,428,262,294,327,358,433,416,367,289,455,439,462,370,326,2,326,370,305,460,455,254,449,448,255,261,446,253,450,449,252,451,450,256,452,451,341,453,452,413,464,463,441,413,414,258,442,441,257,443,442,259,444,443,260,445,444,467,342,445,459,458,250,289,392,290,290,328,460,376,433,435,250,290,392,411,416,433,341,463,464,453,464,465,357,465,412,343,412,399,360,363,440,437,399,456,420,456,363,401,435,288,372,383,353,339,255,249,448,261,255,133,243,190,133,155,112,33,246,247,33,130,25,398,384,286,362,398,414,362,463,341,263,359,467,263,249,255,466,467,260,75,60,166,238,239,79,162,127,139,72,11,37,121,232,120,73,72,39,114,128,47,233,232,128,103,104,67,152,175,148,173,157,155,119,118,101,74,73,40,107,9,108,49,48,131,32,194,211,184,74,185,191,80,183,185,40,186,119,230,118,210,202,214,84,83,17,77,76,146,161,160,30,190,56,173,182,106,194,138,135,192,129,203,98,54,21,68,5,51,4,145,144,23,90,77,91,207,205,187,83,201,18,181,91,182,180,90,181,16,85,17,205,206,36,176,148,140,165,92,39,245,193,244,27,159,28,30,247,161,174,236,196,103,54,104,55,193,8,111,117,31,221,189,55,240,98,99,142,126,100,219,166,218,112,155,26,198,209,131,169,135,150,114,47,217,224,223,53,220,45,134,32,211,140,109,67,108,146,43,91,231,230,120,113,226,247,105,63,52,241,238,242,124,46,156,95,78,96,70,46,63,116,143,227,116,123,111,1,44,19,3,236,51,207,216,205,26,154,22,165,39,167,199,200,208,101,36,100,43,57,202,242,20,99,56,28,157,124,35,113,29,160,27,211,204,210,124,113,46,106,43,204,96,62,77,227,137,116,73,41,72,36,203,142,235,64,240,48,49,64,42,41,74,214,212,207,183,42,184,210,169,211,140,170,176,104,105,69,193,122,168,50,123,187,89,96,90,66,65,107,179,89,180,119,101,120,68,63,104,234,93,227,16,15,85,209,129,49,15,14,86,107,55,9,120,100,121,153,145,22,178,88,179,197,6,196,89,88,96,135,138,136,138,215,172,218,115,219,41,42,81,5,195,51,57,43,61,208,171,199,41,81,38,224,53,225,24,144,110,105,52,66,118,229,117,227,34,234,66,107,69,10,109,151,219,48,235,183,62,191,142,129,126,116,111,143,7,163,246,118,117,50,223,222,52,94,19,141,222,221,65,196,3,197,45,220,44,156,70,139,188,122,245,139,71,162,145,153,159,149,170,150,122,188,196,206,216,92,163,144,161,164,2,167,242,141,241,0,164,37,11,72,12,144,145,160,12,38,13,70,63,71,31,226,111,157,158,154,36,101,205,203,206,165,126,209,217,98,165,97,237,220,218,237,239,241,210,214,169,140,171,32,241,125,237,179,86,178,180,85,179,181,84,180,182,83,181,194,201,182,177,137,132,184,76,183,185,61,184,186,57,185,216,212,186,192,214,187,139,34,156,218,79,237,147,123,177,45,44,4,208,201,32,98,64,129,192,213,138,235,59,219,141,242,97,97,2,141,240,75,235,229,24,228,31,25,226,230,23,229,231,22,230,232,26,231,233,112,232,244,189,243,189,221,190,222,28,221,223,27,222,224,29,223,225,30,224,113,247,225,99,60,240,213,147,215,60,20,166,192,187,213,243,112,244,244,233,245,245,128,188,188,114,174,134,131,220,174,217,236,236,198,134,215,177,58,156,143,124,25,110,7,31,228,25,264,356,368,0,11,267,451,452,349,267,302,269,350,357,277,350,452,357,299,333,297,396,175,377,381,384,382,280,347,330,269,303,270,151,9,337,344,278,360,424,418,431,270,304,409,272,310,407,322,270,410,449,450,347,432,422,434,18,313,17,291,306,375,259,387,260,424,335,418,434,364,416,391,423,327,301,251,298,275,281,4,254,373,253,375,307,321,280,425,411,200,421,18,335,321,406,321,320,405,314,315,17,423,426,266,396,377,369,270,322,269,413,417,464,385,386,258,248,456,419,298,284,333,168,417,8,448,346,261,417,413,285,326,327,328,277,355,329,309,392,438,381,382,256,279,429,360,365,364,379,355,277,437,282,443,283,281,275,363,395,431,369,299,297,337,335,273,321,348,450,349,359,446,467,283,293,282,250,458,462,300,276,383,292,308,325,283,276,293,264,372,447,346,352,340,354,274,19,363,456,281,426,436,425,380,381,252,267,269,393,421,200,428,371,266,329,432,287,422,290,250,328,385,258,384,446,265,342,386,387,257,422,424,430,445,342,276,422,273,424,306,292,307,352,366,345,268,271,302,358,423,371,327,294,460,331,279,294,303,271,304,436,432,427,304,272,408,395,394,431,378,395,400,296,334,299,6,351,168,376,352,411,307,325,320,285,295,336,320,319,404,329,330,349,334,293,333,366,323,447,316,15,315,331,358,279,317,14,316,8,285,9,277,329,350,253,374,252,319,318,403,351,6,419,324,318,325,397,367,365,288,435,397,278,344,439,310,272,311,248,195,281,375,273,291,175,396,199,312,311,268,276,283,445,390,373,339,295,282,296,448,449,346,356,264,454,337,336,299,337,338,151,294,278,455,308,292,415,429,358,355,265,340,372,388,390,466,352,346,280,295,442,282,354,19,370,285,441,295,195,248,197,457,440,274,301,300,368,417,351,465,251,301,389,385,380,386,394,395,379,399,412,419,410,436,322,387,373,388,326,2,393,354,370,461,393,164,267,268,302,12,386,374,387,312,268,13,298,293,301,265,446,340,380,385,381,280,330,425,322,426,391,420,429,437,393,391,326,344,440,438,458,459,461,364,434,394,428,396,262,274,354,457,317,316,402,316,315,403,315,314,404,314,313,405,313,421,406,323,366,361,292,306,407,306,291,408,291,287,409,287,432,410,427,434,411,372,264,383,459,309,457,366,352,401,1,274,4,418,421,262,331,294,358,435,433,367,392,289,439,328,462,326,94,2,370,289,305,455,339,254,448,359,255,446,254,253,449,253,252,450,252,256,451,256,341,452,414,413,463,286,441,414,286,258,441,258,257,442,257,259,443,259,260,444,260,467,445,309,459,250,305,289,290,305,290,460,401,376,435,309,250,392,376,411,433,453,341,464,357,453,465,343,357,412,437,343,399,344,360,440,420,437,456,360,420,363,361,401,288,265,372,353,390,339,249,339,448,255];var f2e=[127,234,132,58,172,150,149,148,152,377,378,379,397,288,361,454,356,70,63,105,66,107,336,296,334,293,300,168,6,195,4,98,97,2,326,327,33,160,158,133,153,144,362,385,387,263,373,380,57,40,37,0,267,270,287,321,314,17,84,91,78,81,13,311,308,402,14,178],m2e=[33,133,362,263,1,62,308,159,145,386,374,6,102,331,2,13,14,70,105,107,336,334,300,54,10,284,50,280,234,454,58,288,152],g2e=[33,133,362,263,1,78,308],sAe=f2e.map(e=>Dp[e]),rAe=m2e.map(e=>Dp[e]),aAe=g2e.map(e=>Dp[e]);var Pp=e=>[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])],m0=e=>[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2],ub=(e,t)=>e?[Math.trunc(Math.max(0,e.startPoint[0])),Math.trunc(Math.max(0,e.startPoint[1])),Math.trunc(Math.min(t.shape[2]||0,e.endPoint[0])-Math.max(0,e.startPoint[0])),Math.trunc(Math.min(t.shape[1]||0,e.endPoint[1])-Math.max(0,e.startPoint[1]))]:[0,0,0,0],cb=(e,t)=>e?[e.startPoint[0]/(t.shape[2]||0),e.startPoint[1]/(t.shape[1]||0),(e.endPoint[0]-e.startPoint[0])/(t.shape[2]||0),(e.endPoint[1]-e.startPoint[1])/(t.shape[1]||0)]:[0,0,0,0],D8=(e,t)=>{let n=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],s=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]];return{startPoint:n,endPoint:s,landmarks:e.landmarks,confidence:e.confidence}},db=(e,t,n)=>{let s=t.shape[1],r=t.shape[2],a=Ce.cropAndResize(t,[[e.startPoint[1]/s,e.startPoint[0]/r,e.endPoint[1]/s,e.endPoint[0]/r]],[0],n),o=pe(a,Xe.tf255);return ne(a),o},Fp=(e,t)=>{let n=m0(e),s=Pp(e),r=[t*s[0]/2,t*s[1]/2];return{startPoint:[n[0]-r[0],n[1]-r[1]],endPoint:[n[0]+r[0],n[1]+r[1]],landmarks:e.landmarks,confidence:e.confidence}},Op=e=>{let t=m0(e),n=Pp(e),s=Math.max(...n)/2;return{startPoint:[Math.round(t[0]-s),Math.round(t[1]-s)],endPoint:[Math.round(t[0]+s),Math.round(t[1]+s)],landmarks:e.landmarks,confidence:e.confidence}},g0=e=>{let t=e.map(s=>s[0]),n=e.map(s=>s[1]);return{startPoint:[Math.min(...t),Math.min(...n)],endPoint:[Math.max(...t),Math.max(...n)],landmarks:e}},pb=[[1,0,0],[0,1,0],[0,0,1]],A2e=e=>e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI)),y2e=(e,t)=>A2e(Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]));var P8=(e,t)=>[[1,0,e],[0,1,t],[0,0,1]],Ol=(e,t)=>{let n=0;for(let s=0;s<e.length;s++)n+=e[s]*t[s];return n},x2e=(e,t)=>{let n=[];for(let s=0;s<e.length;s++)n.push(e[s][t]);return n},F8=(e,t)=>{let n=[],s=e.length;for(let r=0;r<s;r++){n.push([]);for(let a=0;a<s;a++)n[r].push(Ol(e[r],x2e(t,a)))}return n},O8=(e,t)=>{let n=Math.cos(e),s=Math.sin(e),r=[[n,-s,0],[s,n,0],[0,0,1]],a=P8(t[0],t[1]),o=F8(a,r),i=P8(-t[0],-t[1]);return F8(o,i)},b2e=e=>{let t=[[e[0][0],e[1][0]],[e[0][1],e[1][1]]],n=[e[0][2],e[1][2]],s=[-Ol(t[0],n),-Ol(t[1],n)];return[t[0].concat(s[0]),t[1].concat(s[1]),[0,0,1]]},v2e=(e,t)=>[Ol(e,t[0]),Ol(e,t[1])];function M8(e){let t={strides:[e/16,e/8],anchors:[2,6]},n=[];for(let s=0;s<t.strides.length;s++){let r=t.strides[s],a=Math.floor((e+r-1)/r),o=Math.floor((e+r-1)/r),i=t.anchors[s];for(let l=0;l<a;l++){let c=r*(l+.5);for(let u=0;u<o;u++){let d=r*(u+.5);for(let p=0;p<i;p++)n.push([d,c])}}}return n}function z8(e,t,n,s,r){let a=Pp(t),o=e.map(p=>[a[0]/r*(p[0]-r/2),a[1]/r*(p[1]-r/2),p[2]||0]),i=n&&n!==0&&Math.abs(n)>.2,l=i?O8(n,[0,0]):pb,c=i?o.map(p=>[...v2e(p,l),p[2]]):o,u=i?b2e(s):pb,d=[...m0({startPoint:t.startPoint,endPoint:t.endPoint}),1];return c.map(p=>[Math.round(p[0]+Ol(d,u[0])),Math.round(p[1]+Ol(d,u[1])),Math.round(p[2]||0)])}function hb(e,t,n,s){let r=t.landmarks.length>=ib.count?ib.symmetryLine:_p.symmetryLine,a=0,o=pb,i;if(e&&de.kernels.includes("rotatewithoffset"))if(a=y2e(t.landmarks[r[0]],t.landmarks[r[1]]),a&&a!==0&&Math.abs(a)>.2){let c=m0({startPoint:t.startPoint,endPoint:t.endPoint}),u=[c[0]/n.shape[2],c[1]/n.shape[1]],d=Ce.rotateWithOffset(n,a,0,u);o=O8(-a,c),i=db(t,d,[s,s]),ne(d)}else i=db(t,n,[s,s]);else i=db(t,n,[s,s]);return[a,o,i]}var L8=6,Us,B8=null,Ko=0,Mp=null,A0=()=>Ko;async function W8(e){var t,n;return de.initial&&(Us=null),Us?e.debug&&J("cached model:",Us.modelUrl):(Us=await Be(We(e.modelBasePath,((t=e.face.detector)==null?void 0:t.modelPath)||"")),!Us||!Us.modelUrl?J("load model failed:",(n=e.face.detector)==null?void 0:n.modelPath):e.debug&&J("load model:",Us.modelUrl)),Ko=Us.inputs[0].shape?Us.inputs[0].shape[2]:0,Mp=Se(Ko,"int32"),B8=mr(M8(Ko)),Us}function w2e(e){let t={};t.boxStarts=Fe(e,[0,1],[-1,2]),t.centers=ue(t.boxStarts,B8),t.boxSizes=Fe(e,[0,3],[-1,2]),t.boxSizesNormalized=pe(t.boxSizes,Mp),t.centersNormalized=pe(t.centers,Mp),t.halfBoxSize=pe(t.boxSizesNormalized,Xe.tf2),t.starts=fe(t.centersNormalized,t.halfBoxSize),t.ends=ue(t.centersNormalized,t.halfBoxSize),t.startNormalized=L(t.starts,Mp),t.endNormalized=L(t.ends,Mp);let n=zu([t.startNormalized,t.endNormalized],1);return Object.keys(t).forEach(s=>ne(t[s])),n}async function V8(e,t){var i,l,c,u;if(!e||e.isDisposedInternal||e.shape.length!==4||e.shape[1]<1||e.shape[2]<1)return{boxes:[]};let n={};n.resized=Ce.resizeBilinear(e,[Ko,Ko]),n.div=pe(n.resized,Xe.tf127),n.normalized=fe(n.div,Xe.tf05);let s=Us==null?void 0:Us.execute(n.normalized);if(Array.isArray(s)){let d=s.sort((p,h)=>p.size-h.size);n.concat384=It([d[0],d[2]],2),n.concat512=It([d[1],d[3]],2),n.concat=It([n.concat512,n.concat384],1),n.batch=ut(n.concat,0)}else n.batch=ut(s);ne(s),n.boxes=w2e(n.batch),n.logits=Fe(n.batch,[0,0],[-1,1]),n.sigmoid=gs(n.logits),n.scores=ut(n.sigmoid),n.nms=await Ce.nonMaxSuppressionAsync(n.boxes,n.scores,((i=t.face.detector)==null?void 0:i.maxDetected)||0,((l=t.face.detector)==null?void 0:l.iouThreshold)||0,((c=t.face.detector)==null?void 0:c.minConfidence)||0);let r=await n.nms.array(),a=[],o=await n.scores.data();for(let d=0;d<r.length;d++){let p=o[r[d]];if(p>(((u=t.face.detector)==null?void 0:u.minConfidence)||0)){let h={};h.bbox=Fe(n.boxes,[r[d],0],[1,-1]),h.slice=Fe(n.batch,[r[d],L8-1],[1,-1]),h.squeeze=ut(h.slice),h.landmarks=H(h.squeeze,[L8,-1]);let f=await h.bbox.data();a.push({box:{startPoint:[f[0],f[1]],endPoint:[f[2],f[3]]},landmarks:await h.landmarks.array(),confidence:p}),Object.keys(h).forEach(m=>ne(h[m]))}}return Object.keys(n).forEach(d=>ne(n[d])),{boxes:a,scaleFactor:[e.shape[2]/Ko,e.shape[1]/Ko]}}var gb={};Zc(gb,{connected:()=>mb,kpt:()=>fb});var fb=["nose","leftEyeInside","leftEye","leftEyeOutside","rightEyeInside","rightEye","rightEyeOutside","leftEar","rightEar","leftMouth","rightMouth","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftPinky","rightPinky","leftIndex","rightIndex","leftThumb","rightThumb","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle","leftHeel","rightHeel","leftFoot","rightFoot","bodyCenter","bodyTop","leftPalm","leftHand","rightPalm","rightHand"],mb={leftLeg:["leftHip","leftKnee","leftAnkle","leftHeel","leftFoot"],rightLeg:["rightHip","rightKnee","rightAnkle","rightHeel","rightFoot"],torso:["leftShoulder","rightShoulder","rightHip","leftHip","leftShoulder","rightShoulder"],leftArm:["leftShoulder","leftElbow","leftWrist","leftPalm"],rightArm:["rightShoulder","rightElbow","rightWrist","rightPalm"],leftEye:["leftEyeInside","leftEye","leftEyeOutside"],rightEye:["rightEyeInside","rightEye","rightEyeOutside"],mouth:["leftMouth","rightMouth"]};var U8={initial:!0},dn=[null,null],Ir=[[0,0],[0,0]],Ab=Number.MAX_SAFE_INTEGER,yb,y0=null,Zo=[[0,0],[0,0],[0,0],[0,0]],G8=0;async function H8(e){var t,n,s;if(U8.initial&&(dn[0]=null),!dn[0]&&((t=e.body.detector)==null?void 0:t.modelPath)){dn[0]=await Be(We(e.modelBasePath,((n=e.body.detector)==null?void 0:n.modelPath)||""));let r=Object.values(dn[0].modelSignature.inputs);Ir[0][0]=Array.isArray(r)?parseInt(r[0].tensorShape.dim[1].size):0,Ir[0][1]=Array.isArray(r)?parseInt(r[0].tensorShape.dim[2].size):0,!dn[0]||!dn[0].modelUrl?J("load model failed:",(s=e.body.detector)==null?void 0:s.modelPath):e.debug&&J("load model:",dn[0].modelUrl)}else e.debug&&dn[0]&&J("cached model:",dn[0].modelUrl);return dn[0]}async function j8(e){var t;if(U8.initial&&(dn[1]=null),dn[1])e.debug&&J("cached model:",dn[1].modelUrl);else{dn[1]=await Be(We(e.modelBasePath,e.body.modelPath||""));let n=Object.values(dn[1].modelSignature.inputs);Ir[1][0]=Array.isArray(n)?parseInt(n[0].tensorShape.dim[1].size):0,Ir[1][1]=Array.isArray(n)?parseInt(n[0].tensorShape.dim[2].size):0,((t=e.body.modelPath)==null?void 0:t.includes("lite"))?yb=["ld_3d","output_segmentation","output_heatmap","world_3d","output_poseflag"]:yb=["Identity","Identity_2","Identity_3","Identity_4","Identity_1"],!dn[1]||!dn[1].modelUrl?J("load model failed:",e.body.modelPath):e.debug&&J("load model:",dn[1].modelUrl)}return dn[1]}function k2e(e,t){let n=e.map(o=>o.position[0]),s=e.map(o=>o.position[1]),r=[Math.min(...n),Math.min(...s),Math.max(...n)-Math.min(...n),Math.max(...s)-Math.min(...s)],a=[r[0]/t[0],r[1]/t[1],r[2]/t[0],r[3]/t[1]];return{keypointsBox:r,keypointsBoxRaw:a}}async function I2e(e){let t={};if(!e.shape||!e.shape[1]||!e.shape[2])return e;let n;return e.shape[1]!==e.shape[2]?(Zo=[[0,0],[e.shape[2]>e.shape[1]?Math.trunc((e.shape[2]-e.shape[1])/2):0,e.shape[2]>e.shape[1]?Math.trunc((e.shape[2]-e.shape[1])/2):0],[e.shape[1]>e.shape[2]?Math.trunc((e.shape[1]-e.shape[2])/2):0,e.shape[1]>e.shape[2]?Math.trunc((e.shape[1]-e.shape[2])/2):0],[0,0]],t.pad=er(e,Zo),t.resize=Ce.resizeBilinear(t.pad,[Ir[1][0],Ir[1][1]]),n=pe(t.resize,Xe.tf255)):e.shape[1]!==Ir[1][0]?(t.resize=Ce.resizeBilinear(e,[Ir[1][0],Ir[1][1]]),n=pe(t.resize,Xe.tf255)):n=pe(e,Xe.tf255),Object.keys(t).forEach(s=>ne(t[s])),n}function S2e(e,t){for(let n of e)n.position=[n.position[0]*(t[0]+Zo[2][0]+Zo[2][1])/t[0]-Zo[2][0],n.position[1]*(t[1]+Zo[1][0]+Zo[1][1])/t[1]-Zo[1][0],n.position[2]],n.positionRaw=[n.position[0]/t[0],n.position[1]/t[1],n.position[2]];return e}var q8=e=>1-1/(1+Math.exp(e));async function C2e(e,t,n){var h;let s={};s.input=await I2e(e),[s.ld,s.segmentation,s.heatmap,s.world,s.poseflag]=(h=dn[1])==null?void 0:h.execute(s.input,yb);let r=(await s.poseflag.data())[0],a=Math.max(0,(r-.8)/(1-.8)),o=await s.ld.data(),i=[],l=5;for(let f=0;f<o.length/l;f++){let m=q8(o[l*f+3]),g=q8(o[l*f+4]),A=Math.trunc(100*m*g*a)/100,x=[o[l*f+0]/Ir[1][0],o[l*f+1]/Ir[1][1],o[l*f+2]+0],y=[Math.trunc(n[0]*x[0]),Math.trunc(n[1]*x[1]),x[2]];i.push({part:fb[f],positionRaw:x,position:y,score:A})}if(a<(t.body.minConfidence||0))return null;let c=S2e(i,n),u=k2e(c,[n[0],n[1]]);Object.keys(s).forEach(f=>ne(s[f]));let d={};for(let[f,m]of Object.entries(mb)){let g=[];for(let A=0;A<m.length-1;A++){let x=c.find(b=>b.part===m[A]),y=c.find(b=>b.part===m[A+1]);x&&y&&g.push([x.position,y.position])}d[f]=g}return{id:0,score:Math.trunc(100*a)/100,box:u.keypointsBox,boxRaw:u.keypointsBoxRaw,keypoints:c,annotations:d}}async function xb(e,t){let n=[e.shape[2]||0,e.shape[1]||0],s=(t.body.skipTime||0)>ie()-G8,r=Ab<(t.body.skipFrames||0);return t.skipAllowed&&s&&r&&y0!==null?Ab++:(y0=await C2e(e,t,n),G8=ie(),Ab=0),y0?[y0]:[]}var Cc=[{class:1,label:"person"},{class:2,label:"bicycle"},{class:3,label:"car"},{class:4,label:"motorcycle"},{class:5,label:"airplane"},{class:6,label:"bus"},{class:7,label:"train"},{class:8,label:"truck"},{class:9,label:"boat"},{class:10,label:"traffic light"},{class:11,label:"fire hydrant"},{class:12,label:"stop sign"},{class:13,label:"parking meter"},{class:14,label:"bench"},{class:15,label:"bird"},{class:16,label:"cat"},{class:17,label:"dog"},{class:18,label:"horse"},{class:19,label:"sheep"},{class:20,label:"cow"},{class:21,label:"elephant"},{class:22,label:"bear"},{class:23,label:"zebra"},{class:24,label:"giraffe"},{class:25,label:"backpack"},{class:26,label:"umbrella"},{class:27,label:"handbag"},{class:28,label:"tie"},{class:29,label:"suitcase"},{class:30,label:"frisbee"},{class:31,label:"skis"},{class:32,label:"snowboard"},{class:33,label:"sports ball"},{class:34,label:"kite"},{class:35,label:"baseball bat"},{class:36,label:"baseball glove"},{class:37,label:"skateboard"},{class:38,label:"surfboard"},{class:39,label:"tennis racket"},{class:40,label:"bottle"},{class:41,label:"wine glass"},{class:42,label:"cup"},{class:43,label:"fork"},{class:44,label:"knife"},{class:45,label:"spoon"},{class:46,label:"bowl"},{class:47,label:"banana"},{class:48,label:"apple"},{class:49,label:"sandwich"},{class:50,label:"orange"},{class:51,label:"broccoli"},{class:52,label:"carrot"},{class:53,label:"hot dog"},{class:54,label:"pizza"},{class:55,label:"donut"},{class:56,label:"cake"},{class:57,label:"chair"},{class:58,label:"couch"},{class:59,label:"potted plant"},{class:60,label:"bed"},{class:61,label:"dining table"},{class:62,label:"toilet"},{class:63,label:"tv"},{class:64,label:"laptop"},{class:65,label:"mouse"},{class:66,label:"remote"},{class:67,label:"keyboard"},{class:68,label:"cell phone"},{class:69,label:"microwave"},{class:70,label:"oven"},{class:71,label:"toaster"},{class:72,label:"sink"},{class:73,label:"refrigerator"},{class:74,label:"book"},{class:75,label:"clock"},{class:76,label:"vase"},{class:77,label:"scissors"},{class:78,label:"teddy bear"},{class:79,label:"hair drier"},{class:80,label:"toothbrush"}];var lr,Ml=0,bb=[],X8=0,vb=Number.MAX_SAFE_INTEGER;async function K8(e){if(de.initial&&(lr=null),lr)e.debug&&J("cached model:",lr.modelUrl);else{lr=await Be(We(e.modelBasePath,e.object.modelPath||""));let t=Object.values(lr.modelSignature.inputs);Ml=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):0,!lr||!lr.modelUrl?J("load model failed:",e.object.modelPath):e.debug&&J("load model:",lr.modelUrl)}return lr}async function T2e(e,t,n){if(!e)return[];let s={},r=[],a=await e.array();s.squeeze=ut(e);let o=rn(s.squeeze,6,1);s.stack=xn([o[1],o[0],o[3],o[2]],1),s.boxes=ut(s.stack),s.scores=ut(o[4]),s.classes=ut(o[5]),ne([e,...o]),s.nms=await Ce.nonMaxSuppressionAsync(s.boxes,s.scores,n.object.maxDetected,n.object.iouThreshold,n.object.minConfidence);let i=await s.nms.data(),l=0;for(let c of Array.from(i)){let u=Math.trunc(100*a[0][c][4])/100,d=a[0][c][5],p=Cc[d].label,[h,f]=[a[0][c][0]/Ml,a[0][c][1]/Ml],m=[h,f,a[0][c][2]/Ml-h,a[0][c][3]/Ml-f],g=[Math.trunc(m[0]*t[0]),Math.trunc(m[1]*t[1]),Math.trunc(m[2]*t[0]),Math.trunc(m[3]*t[1])];r.push({id:l++,score:u,class:d,label:p,box:g,boxRaw:m})}return Object.keys(s).forEach(c=>ne(s[c])),r}async function wb(e,t){let n=(t.object.skipTime||0)>ie()-X8,s=vb<(t.object.skipFrames||0);return t.skipAllowed&&n&&s&&bb.length>0?(vb++,bb):(vb=0,new Promise(async r=>{let a=[e.shape[2],e.shape[1]],o=Ce.resizeBilinear(e,[Ml,Ml]),i=t.object.enabled?lr==null?void 0:lr.execute(o,["tower_0/detections"]):null;X8=ie(),ne(o);let l=await T2e(i,a,t);bb=l,r(l)}))}var Sb={};Zc(Sb,{connected:()=>Ib,kpt:()=>kb});var kb=["head","neck","rightShoulder","rightElbow","rightWrist","chest","leftShoulder","leftElbow","leftWrist","bodyCenter","rightHip","rightKnee","rightAnkle","leftHip","leftKnee","leftAnkle"],Ib={leftLeg:["leftHip","leftKnee","leftAnkle"],rightLeg:["rightHip","rightKnee","rightAnkle"],torso:["leftShoulder","rightShoulder","rightHip","leftHip","leftShoulder"],leftArm:["leftShoulder","leftElbow","leftWrist"],rightArm:["rightShoulder","rightElbow","rightWrist"],head:[]};var pn,Z8=0,Zn={id:0,keypoints:[],box:[0,0,0,0],boxRaw:[0,0,0,0],score:0,annotations:{}},Cb=Number.MAX_SAFE_INTEGER;async function Y8(e){return de.initial&&(pn=null),pn?e.debug&&J("cached model:",pn.modelUrl):(pn=await Be(We(e.modelBasePath,e.body.modelPath||"")),!pn||!pn.modelUrl?J("load model failed:",e.body.modelPath):e.debug&&J("load model:",pn.modelUrl)),pn}async function N2e(e,t){let[n,s]=e.shape,r=H(e,[s*n]),a=yn(r,0),o=(await a.data())[0];if(ne([r,a]),o>t){let i=Js(r,0),l=Md(i,n),c=(await l.data())[0],u=pe(i,Se(n,"int32")),d=(await u.data())[0];return ne([l,u]),[c,d,o]}return[0,0,o]}async function Tb(e,t){let n=(t.body.skipTime||0)>ie()-Z8,s=Cb<(t.body.skipFrames||0);return t.skipAllowed&&n&&s&&Object.keys(Zn.keypoints).length>0?(Cb++,[Zn]):(Cb=0,new Promise(async r=>{var d;let a=K(()=>{if(!(pn==null?void 0:pn.inputs[0].shape))return null;let p=Ce.resizeBilinear(e,[pn.inputs[0].shape[2],pn.inputs[0].shape[1]],!1),h=L(p,Xe.tf2);return fe(h,Xe.tf1)}),o;if(t.body.enabled&&(o=pn==null?void 0:pn.execute(a)),Z8=ie(),ne(a),o){Zn.keypoints.length=0;let p=o.squeeze();ne(o);let h=p.unstack(2);ne(p);for(let f=0;f<h.length;f++){let[m,g,A]=await N2e(h[f],t.body.minConfidence);A>(((d=t.body)==null?void 0:d.minConfidence)||0)&&Zn.keypoints.push({score:Math.round(100*A)/100,part:kb[f],positionRaw:[m/pn.inputs[0].shape[2],g/pn.inputs[0].shape[1]],position:[Math.round(e.shape[2]*m/pn.inputs[0].shape[2]),Math.round(e.shape[1]*g/pn.inputs[0].shape[1])]})}h.forEach(f=>ne(f))}Zn.score=Zn.keypoints.reduce((p,h)=>h.score>p?h.score:p,0);let i=Zn.keypoints.map(p=>p.position[0]),l=Zn.keypoints.map(p=>p.position[1]);Zn.box=[Math.min(...i),Math.min(...l),Math.max(...i)-Math.min(...i),Math.max(...l)-Math.min(...l)];let c=Zn.keypoints.map(p=>p.positionRaw[0]),u=Zn.keypoints.map(p=>p.positionRaw[1]);Zn.boxRaw=[Math.min(...c),Math.min(...u),Math.max(...c)-Math.min(...c),Math.max(...u)-Math.min(...u)];for(let[p,h]of Object.entries(Ib)){let f=[];for(let m=0;m<h.length-1;m++){let g=Zn.keypoints.find(x=>x.part===h[m]),A=Zn.keypoints.find(x=>x.part===h[m+1]);g&&A&&g.score>(t.body.minConfidence||0)&&A.score>(t.body.minConfidence||0)&&f.push([g.position,A.position])}Zn.annotations[p]=f}r([Zn])}))}var E2e=["angry","disgust","fear","happy","sad","surprise","neutral"],Yn,x0=[],J8=0,Q8=0,Nb=Number.MAX_SAFE_INTEGER;async function eT(e){var t,n;return de.initial&&(Yn=null),Yn?e.debug&&J("cached model:",Yn.modelUrl):(Yn=await Be(We(e.modelBasePath,((t=e.face.emotion)==null?void 0:t.modelPath)||"")),!Yn||!Yn.modelUrl?J("load model failed:",(n=e.face.emotion)==null?void 0:n.modelPath):e.debug&&J("load model:",Yn.modelUrl)),Yn}async function Eb(e,t,n,s){var o,i;if(!Yn)return[];let r=Nb<(((o=t.face.emotion)==null?void 0:o.skipFrames)||0),a=(((i=t.face.emotion)==null?void 0:i.skipTime)||0)>ie()-Q8;return t.skipAllowed&&a&&r&&J8===s&&x0[n]&&x0[n].length>0?(Nb++,x0[n]):(Nb=0,new Promise(async l=>{var u,d;let c=[];if((u=t.face.emotion)==null?void 0:u.enabled){let p={},h=(Yn==null?void 0:Yn.inputs[0].shape)?Yn.inputs[0].shape[2]:0;p.resize=Ce.resizeBilinear(e,[h,h],!1),p.channels=L(p.resize,Xe.rgb),p.grayscale=we(p.channels,3,!0),p.grayscaleSub=fe(p.grayscale,Xe.tf05),p.grayscaleMul=L(p.grayscaleSub,Xe.tf2),p.emotion=Yn==null?void 0:Yn.execute(p.grayscaleMul),Q8=ie();let f=await p.emotion.data();for(let m=0;m<f.length;m++)f[m]>(((d=t.face.emotion)==null?void 0:d.minConfidence)||0)&&c.push({score:Math.min(.99,Math.trunc(100*f[m])/100),emotion:E2e[m]});c.sort((m,g)=>g.score-m.score),Object.keys(p).forEach(m=>ne(p[m]))}x0[n]=c,J8=s,l(c)}))}var Is,Rb=[],tT=0,nT=0,sT=Number.MAX_SAFE_INTEGER;async function rT(e){let t=We(e.modelBasePath,e.face.mobilefacenet.modelPath);return de.initial&&(Is=null),Is?e.debug&&J("cached model:",t):(Is=await Be(t),Is?e.debug&&J("load model:",t):J("load model failed:",e.face.mobilefacenet.modelPath)),Is}async function $b(e,t,n,s){var o,i;if(!Is)return[];let r=sT<(((o=t.face.embedding)==null?void 0:o.skipFrames)||0),a=(((i=t.face.embedding)==null?void 0:i.skipTime)||0)>ie()-nT;return t.skipAllowed&&a&&r&&tT===s&&Rb[n]?(sT++,Rb[n]):new Promise(async l=>{var u;let c=[];if(((u=t.face.embedding)==null?void 0:u.enabled)&&(Is==null?void 0:Is.inputs[0].shape)){let d={};d.crop=Ce.resizeBilinear(e,[Is.inputs[0].shape[2],Is.inputs[0].shape[1]],!1),d.data=Is==null?void 0:Is.execute(d.crop);let p=await d.data.data();c=Array.from(p)}Rb[n]=c,tT=s,nT=ie(),l(c)})}var ur,Yo=0,R2e=2.3,_b=ir.leftEyeLower0,Db=ir.rightEyeLower0,Tc={leftBounds:[_b[0],_b[_b.length-1]],rightBounds:[Db[0],Db[Db.length-1]]},Nc={upperCenter:3,lowerCenter:4,index:71,numCoordinates:76};async function aT(e){var t,n;return de.initial&&(ur=null),ur?e.debug&&J("cached model:",ur.modelUrl):(ur=await Be(We(e.modelBasePath,((t=e.face.iris)==null?void 0:t.modelPath)||"")),!ur||!ur.modelUrl?J("load model failed:",(n=e.face.iris)==null?void 0:n.modelPath):e.debug&&J("load model:",ur.modelUrl)),Yo=ur.inputs[0].shape?ur.inputs[0].shape[2]:0,Yo===-1&&(Yo=64),ur}function b0(e,t,n,s){for(let r=0;r<lb.length;r++){let{key:a,indices:o}=lb[r],i=ir[`${n}${a}`];if(!s||s.includes(a))for(let l=0;l<o.length;l++){let c=o[l];e[i[l]]=[t[c][0],t[c][1],(t[c][2]+e[i[l]][2])/2]}}}var $2e=e=>{let t=e[Tc.leftBounds[0]][2],n=e[Tc.rightBounds[0]][2];return t-n},oT=(e,t,n,s,r,a=!1)=>{let o=Op(Fp(g0([e[n],e[s]]),R2e)),i=Pp(o),l=Ce.cropAndResize(t,[[o.startPoint[1]/r,o.startPoint[0]/r,o.endPoint[1]/r,o.endPoint[0]/r]],[0],[Yo,Yo]);if(a&&de.kernels.includes("flipleftright")){let c=Ce.flipLeftRight(l);ne(l),l=c}return{box:o,boxSize:i,crop:l}},iT=(e,t,n,s=!1)=>{let r=[];for(let a=0;a<Nc.numCoordinates;a++){let o=e[a*3],i=e[a*3+1],l=e[a*3+2];r.push([(s?1-o/Yo:o/Yo)*n[0]+t.startPoint[0],i/Yo*n[1]+t.startPoint[1],l])}return{rawCoords:r,iris:r.slice(Nc.index)}},lT=(e,t,n)=>{let s=e[ir[`${n}EyeUpper0`][Nc.upperCenter]][2],r=e[ir[`${n}EyeLower0`][Nc.lowerCenter]][2],a=(s+r)/2;return t.map((o,i)=>{let l=a;return i===2?l=s:i===4&&(l=r),[o[0],o[1],l]})};async function uT(e,t,n,s){if(!ur)return n.debug&&J("face mesh iris detection requested, but model is not loaded"),e;let{box:r,boxSize:a,crop:o}=oT(e,t,Tc.leftBounds[0],Tc.leftBounds[1],s,!0),{box:i,boxSize:l,crop:c}=oT(e,t,Tc.rightBounds[0],Tc.rightBounds[1],s,!0),u=It([o,c]);ne(o),ne(c);let d=ur.execute(u);ne(u);let p=await d.data();ne(d);let h=p.slice(0,Nc.numCoordinates*3),{rawCoords:f,iris:m}=iT(h,r,a,!0),g=p.slice(Nc.numCoordinates*3),{rawCoords:A,iris:x}=iT(g,i,l),y=$2e(e);Math.abs(y)<30?(b0(e,f,"left",null),b0(e,A,"right",null)):y<1?b0(e,f,"left",["EyeUpper0","EyeLower0"]):b0(e,A,"right",["EyeUpper0","EyeLower0"]);let b=lT(e,m,"left"),w=lT(e,x,"right");return e.concat(b).concat(w)}var Ec=[],cr=null,zl=0,Pb=Number.MAX_SAFE_INTEGER,cT=0;async function dT(e,t){var i,l,c,u,d,p,h,f,m,g,A;let n=(((i=t.face.detector)==null?void 0:i.skipTime)||0)>ie()-cT,s=Pb<(((l=t.face.detector)==null?void 0:l.skipFrames)||0);if(!t.skipAllowed||!n||!s||Ec.length===0){let x=await V8(e,t);cT=ie(),Ec=[];for(let y of x.boxes){let b={startPoint:y.box.startPoint,endPoint:y.box.endPoint,landmarks:y.landmarks,confidence:y.confidence},w=D8(b,x.scaleFactor),k=Fp(w,Math.sqrt(((c=t.face.detector)==null?void 0:c.cropFactor)||1.6)),S=Op(k);Ec.push(S)}Pb=0}else Pb++;let r=[],a=[],o=0;for(let x=0;x<Ec.length;x++){let y=Ec[x],b=0,w,k={id:o++,mesh:[],meshRaw:[],box:[0,0,0,0],boxRaw:[0,0,0,0],score:0,boxScore:0,faceScore:0,annotations:{}};if([b,w,k.tensor]=hb((u=t.face.detector)==null?void 0:u.rotation,y,e,((d=t.face.mesh)==null?void 0:d.enabled)?zl:A0()),(p=t==null?void 0:t.filter)==null?void 0:p.equalization){let S=await c0(k.tensor);ne(k.tensor),k.tensor=S}if(k.boxScore=Math.round(100*y.confidence)/100,(h=t.face.mesh)==null?void 0:h.enabled)if(!cr)t.debug&&J("face mesh detection requested, but model is not loaded");else{let[S,N,R]=cr.execute(k.tensor),M=await N.data();k.faceScore=Math.round(100*M[0])/100;let D=H(R,[-1,3]),$=await D.array();if(ne([R,D,N,S]),k.faceScore<(((f=t.face.detector)==null?void 0:f.minConfidence)||1))y.confidence=k.faceScore;else{((m=t.face.iris)==null?void 0:m.enabled)&&($=await uT($,k.tensor,t,zl)),k.mesh=z8($,y,b,w,zl),k.meshRaw=k.mesh.map(T=>[T[0]/(e.shape[2]||0),T[1]/(e.shape[1]||0),(T[2]||0)/zl]);for(let T of Object.keys(ir))k.annotations[T]=ir[T].map(F=>k.mesh[F]);y=Op({...Fp(g0(k.mesh),((g=t.face.detector)==null?void 0:g.cropFactor)||1.6),confidence:y.confidence}),k.box=ub(y,e),k.boxRaw=cb(y,e),k.score=k.faceScore,a.push(y),ne(k.tensor),[b,w,k.tensor]=hb((A=t.face.detector)==null?void 0:A.rotation,y,e,zl)}}else{k.box=ub(y,e),k.boxRaw=cb(y,e),k.score=k.boxScore,k.mesh=y.landmarks.map(S=>[(y.startPoint[0]+y.endPoint[0])/2+(y.endPoint[0]+y.startPoint[0])*S[0]/A0(),(y.startPoint[1]+y.endPoint[1])/2+(y.endPoint[1]+y.startPoint[1])*S[1]/A0()]),k.meshRaw=k.mesh.map(S=>[S[0]/(e.shape[2]||0),S[1]/(e.shape[1]||0),(S[2]||0)/zl]);for(let S of Object.keys(_p))k.annotations[S]=[k.mesh[_p[S]]]}r.push(k)}return Ec=[...a],r}async function pT(e){var t,n;return de.initial&&(cr=null),cr?e.debug&&J("cached model:",cr.modelUrl):(cr=await Be(We(e.modelBasePath,((t=e.face.mesh)==null?void 0:t.modelPath)||"")),!cr||!cr.modelUrl?J("load model failed:",(n=e.face.mesh)==null?void 0:n.modelPath):e.debug&&J("load model:",cr.modelUrl)),zl=cr.inputs[0].shape?cr.inputs[0].shape[2]:0,cr}var hT=Fl,fT=Dp;var Ss,v0=[],mT=0,gT=0,Fb=Number.MAX_SAFE_INTEGER;async function AT(e){var n,s;let t=We(e.modelBasePath,((n=e.face.description)==null?void 0:n.modelPath)||"");return de.initial&&(Ss=null),Ss?e.debug&&J("cached model:",t):(Ss=await Be(t),Ss?e.debug&&J("load model:",t):J("load model failed:",((s=e.face.description)==null?void 0:s.modelPath)||"")),Ss}function Ob(e){let t=e.image||e.tensor||e;if(!(Ss==null?void 0:Ss.inputs[0].shape))return t;let n=Ce.resizeBilinear(t,[Ss.inputs[0].shape[2],Ss.inputs[0].shape[1]],!1),s=L(n,Xe.tf255);return ne(n),s}async function Mb(e,t,n,s){var o,i,l,c;if(!Ss)return{age:0,gender:"unknown",genderScore:0,descriptor:[]};let r=Fb<(((o=t.face.description)==null?void 0:o.skipFrames)||0),a=(((i=t.face.description)==null?void 0:i.skipTime)||0)>ie()-mT;return t.skipAllowed&&r&&a&&gT===s&&((l=v0[n])==null?void 0:l.age)&&((c=v0[n])==null?void 0:c.age)>0?(Fb++,v0[n]):(Fb=0,new Promise(async u=>{var p,h;let d={age:0,gender:"unknown",genderScore:0,descriptor:[]};if((p=t.face.description)==null?void 0:p.enabled){let f=Ob(e),m=Ss==null?void 0:Ss.execute(f);mT=ie(),ne(f);let A=await(await m.find(R=>R.shape[1]===1)).data(),x=Math.trunc(200*Math.abs(A[0]-.5))/100;x>(((h=t.face.description)==null?void 0:h.minConfidence)||0)&&(d.gender=A[0]<=.5?"female":"male",d.genderScore=Math.min(.99,x));let y=Js(m.find(R=>R.shape[1]===100),1),b=(await y.data())[0];ne(y);let k=await m.find(R=>R.shape[1]===100).data();d.age=Math.round(k[b-1]>k[b+1]?10*b-100*k[b-1]:10*b+100*k[b+1])/10;let S=m.find(R=>R.shape[1]===1024),N=S?await S.data():[];d.descriptor=Array.from(N),m.forEach(R=>ne(R))}v0[n]=d,gT=s,u(d)}))}function w0(e){return[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])]}function zp(e){return[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2]}function yT(e,t,n){let s=t.shape[1],r=t.shape[2],a=[[e.startPoint[1]/s,e.startPoint[0]/r,e.endPoint[1]/s,e.endPoint[0]/r]];return Ce.cropAndResize(t,a,[0],n)}function xT(e,t){let n=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],s=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]],r=e.palmLandmarks.map(a=>[a[0]*t[0],a[1]*t[1]]);return{startPoint:n,endPoint:s,palmLandmarks:r,confidence:e.confidence}}function k0(e,t=1.5){let n=zp(e),s=w0(e),r=[t*s[0]/2,t*s[1]/2],a=[n[0]-r[0],n[1]-r[1]],o=[n[0]+r[0],n[1]+r[1]];return{startPoint:a,endPoint:o,palmLandmarks:e.palmLandmarks}}function I0(e){let t=zp(e),n=w0(e),r=Math.max(...n)/2,a=[t[0]-r,t[1]-r],o=[t[0]+r,t[1]+r];return{startPoint:a,endPoint:o,palmLandmarks:e.palmLandmarks}}function _2e(e){return e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI))}function bT(e,t){let n=Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]);return _2e(n)}var vT=(e,t)=>[[1,0,e],[0,1,t],[0,0,1]];function Jo(e,t){let n=0;for(let s=0;s<e.length;s++)n+=e[s]*t[s];return n}function D2e(e,t){let n=[];for(let s=0;s<e.length;s++)n.push(e[s][t]);return n}function wT(e,t){let n=[],s=e.length;for(let r=0;r<s;r++){n.push([]);for(let a=0;a<s;a++)n[r].push(Jo(e[r],D2e(t,a)))}return n}function zb(e,t){let n=Math.cos(e),s=Math.sin(e),r=[[n,-s,0],[s,n,0],[0,0,1]],a=vT(t[0],t[1]),o=wT(a,r),i=vT(-t[0],-t[1]);return wT(o,i)}function kT(e){let t=[[e[0][0],e[1][0]],[e[0][1],e[1][1]]],n=[e[0][2],e[1][2]],s=[-Jo(t[0],n),-Jo(t[1],n)];return[t[0].concat(s[0]),t[1].concat(s[1]),[0,0,1]]}function Lb(e,t){return[Jo(e,t[0]),Jo(e,t[1])]}var IT=[{x:.015625,y:.015625},{x:.015625,y:.015625},{x:.046875,y:.015625},{x:.046875,y:.015625},{x:.078125,y:.015625},{x:.078125,y:.015625},{x:.109375,y:.015625},{x:.109375,y:.015625},{x:.140625,y:.015625},{x:.140625,y:.015625},{x:.171875,y:.015625},{x:.171875,y:.015625},{x:.203125,y:.015625},{x:.203125,y:.015625},{x:.234375,y:.015625},{x:.234375,y:.015625},{x:.265625,y:.015625},{x:.265625,y:.015625},{x:.296875,y:.015625},{x:.296875,y:.015625},{x:.328125,y:.015625},{x:.328125,y:.015625},{x:.359375,y:.015625},{x:.359375,y:.015625},{x:.390625,y:.015625},{x:.390625,y:.015625},{x:.421875,y:.015625},{x:.421875,y:.015625},{x:.453125,y:.015625},{x:.453125,y:.015625},{x:.484375,y:.015625},{x:.484375,y:.015625},{x:.515625,y:.015625},{x:.515625,y:.015625},{x:.546875,y:.015625},{x:.546875,y:.015625},{x:.578125,y:.015625},{x:.578125,y:.015625},{x:.609375,y:.015625},{x:.609375,y:.015625},{x:.640625,y:.015625},{x:.640625,y:.015625},{x:.671875,y:.015625},{x:.671875,y:.015625},{x:.703125,y:.015625},{x:.703125,y:.015625},{x:.734375,y:.015625},{x:.734375,y:.015625},{x:.765625,y:.015625},{x:.765625,y:.015625},{x:.796875,y:.015625},{x:.796875,y:.015625},{x:.828125,y:.015625},{x:.828125,y:.015625},{x:.859375,y:.015625},{x:.859375,y:.015625},{x:.890625,y:.015625},{x:.890625,y:.015625},{x:.921875,y:.015625},{x:.921875,y:.015625},{x:.953125,y:.015625},{x:.953125,y:.015625},{x:.984375,y:.015625},{x:.984375,y:.015625},{x:.015625,y:.046875},{x:.015625,y:.046875},{x:.046875,y:.046875},{x:.046875,y:.046875},{x:.078125,y:.046875},{x:.078125,y:.046875},{x:.109375,y:.046875},{x:.109375,y:.046875},{x:.140625,y:.046875},{x:.140625,y:.046875},{x:.171875,y:.046875},{x:.171875,y:.046875},{x:.203125,y:.046875},{x:.203125,y:.046875},{x:.234375,y:.046875},{x:.234375,y:.046875},{x:.265625,y:.046875},{x:.265625,y:.046875},{x:.296875,y:.046875},{x:.296875,y:.046875},{x:.328125,y:.046875},{x:.328125,y:.046875},{x:.359375,y:.046875},{x:.359375,y:.046875},{x:.390625,y:.046875},{x:.390625,y:.046875},{x:.421875,y:.046875},{x:.421875,y:.046875},{x:.453125,y:.046875},{x:.453125,y:.046875},{x:.484375,y:.046875},{x:.484375,y:.046875},{x:.515625,y:.046875},{x:.515625,y:.046875},{x:.546875,y:.046875},{x:.546875,y:.046875},{x:.578125,y:.046875},{x:.578125,y:.046875},{x:.609375,y:.046875},{x:.609375,y:.046875},{x:.640625,y:.046875},{x:.640625,y:.046875},{x:.671875,y:.046875},{x:.671875,y:.046875},{x:.703125,y:.046875},{x:.703125,y:.046875},{x:.734375,y:.046875},{x:.734375,y:.046875},{x:.765625,y:.046875},{x:.765625,y:.046875},{x:.796875,y:.046875},{x:.796875,y:.046875},{x:.828125,y:.046875},{x:.828125,y:.046875},{x:.859375,y:.046875},{x:.859375,y:.046875},{x:.890625,y:.046875},{x:.890625,y:.046875},{x:.921875,y:.046875},{x:.921875,y:.046875},{x:.953125,y:.046875},{x:.953125,y:.046875},{x:.984375,y:.046875},{x:.984375,y:.046875},{x:.015625,y:.078125},{x:.015625,y:.078125},{x:.046875,y:.078125},{x:.046875,y:.078125},{x:.078125,y:.078125},{x:.078125,y:.078125},{x:.109375,y:.078125},{x:.109375,y:.078125},{x:.140625,y:.078125},{x:.140625,y:.078125},{x:.171875,y:.078125},{x:.171875,y:.078125},{x:.203125,y:.078125},{x:.203125,y:.078125},{x:.234375,y:.078125},{x:.234375,y:.078125},{x:.265625,y:.078125},{x:.265625,y:.078125},{x:.296875,y:.078125},{x:.296875,y:.078125},{x:.328125,y:.078125},{x:.328125,y:.078125},{x:.359375,y:.078125},{x:.359375,y:.078125},{x:.390625,y:.078125},{x:.390625,y:.078125},{x:.421875,y:.078125},{x:.421875,y:.078125},{x:.453125,y:.078125},{x:.453125,y:.078125},{x:.484375,y:.078125},{x:.484375,y:.078125},{x:.515625,y:.078125},{x:.515625,y:.078125},{x:.546875,y:.078125},{x:.546875,y:.078125},{x:.578125,y:.078125},{x:.578125,y:.078125},{x:.609375,y:.078125},{x:.609375,y:.078125},{x:.640625,y:.078125},{x:.640625,y:.078125},{x:.671875,y:.078125},{x:.671875,y:.078125},{x:.703125,y:.078125},{x:.703125,y:.078125},{x:.734375,y:.078125},{x:.734375,y:.078125},{x:.765625,y:.078125},{x:.765625,y:.078125},{x:.796875,y:.078125},{x:.796875,y:.078125},{x:.828125,y:.078125},{x:.828125,y:.078125},{x:.859375,y:.078125},{x:.859375,y:.078125},{x:.890625,y:.078125},{x:.890625,y:.078125},{x:.921875,y:.078125},{x:.921875,y:.078125},{x:.953125,y:.078125},{x:.953125,y:.078125},{x:.984375,y:.078125},{x:.984375,y:.078125},{x:.015625,y:.109375},{x:.015625,y:.109375},{x:.046875,y:.109375},{x:.046875,y:.109375},{x:.078125,y:.109375},{x:.078125,y:.109375},{x:.109375,y:.109375},{x:.109375,y:.109375},{x:.140625,y:.109375},{x:.140625,y:.109375},{x:.171875,y:.109375},{x:.171875,y:.109375},{x:.203125,y:.109375},{x:.203125,y:.109375},{x:.234375,y:.109375},{x:.234375,y:.109375},{x:.265625,y:.109375},{x:.265625,y:.109375},{x:.296875,y:.109375},{x:.296875,y:.109375},{x:.328125,y:.109375},{x:.328125,y:.109375},{x:.359375,y:.109375},{x:.359375,y:.109375},{x:.390625,y:.109375},{x:.390625,y:.109375},{x:.421875,y:.109375},{x:.421875,y:.109375},{x:.453125,y:.109375},{x:.453125,y:.109375},{x:.484375,y:.109375},{x:.484375,y:.109375},{x:.515625,y:.109375},{x:.515625,y:.109375},{x:.546875,y:.109375},{x:.546875,y:.109375},{x:.578125,y:.109375},{x:.578125,y:.109375},{x:.609375,y:.109375},{x:.609375,y:.109375},{x:.640625,y:.109375},{x:.640625,y:.109375},{x:.671875,y:.109375},{x:.671875,y:.109375},{x:.703125,y:.109375},{x:.703125,y:.109375},{x:.734375,y:.109375},{x:.734375,y:.109375},{x:.765625,y:.109375},{x:.765625,y:.109375},{x:.796875,y:.109375},{x:.796875,y:.109375},{x:.828125,y:.109375},{x:.828125,y:.109375},{x:.859375,y:.109375},{x:.859375,y:.109375},{x:.890625,y:.109375},{x:.890625,y:.109375},{x:.921875,y:.109375},{x:.921875,y:.109375},{x:.953125,y:.109375},{x:.953125,y:.109375},{x:.984375,y:.109375},{x:.984375,y:.109375},{x:.015625,y:.140625},{x:.015625,y:.140625},{x:.046875,y:.140625},{x:.046875,y:.140625},{x:.078125,y:.140625},{x:.078125,y:.140625},{x:.109375,y:.140625},{x:.109375,y:.140625},{x:.140625,y:.140625},{x:.140625,y:.140625},{x:.171875,y:.140625},{x:.171875,y:.140625},{x:.203125,y:.140625},{x:.203125,y:.140625},{x:.234375,y:.140625},{x:.234375,y:.140625},{x:.265625,y:.140625},{x:.265625,y:.140625},{x:.296875,y:.140625},{x:.296875,y:.140625},{x:.328125,y:.140625},{x:.328125,y:.140625},{x:.359375,y:.140625},{x:.359375,y:.140625},{x:.390625,y:.140625},{x:.390625,y:.140625},{x:.421875,y:.140625},{x:.421875,y:.140625},{x:.453125,y:.140625},{x:.453125,y:.140625},{x:.484375,y:.140625},{x:.484375,y:.140625},{x:.515625,y:.140625},{x:.515625,y:.140625},{x:.546875,y:.140625},{x:.546875,y:.140625},{x:.578125,y:.140625},{x:.578125,y:.140625},{x:.609375,y:.140625},{x:.609375,y:.140625},{x:.640625,y:.140625},{x:.640625,y:.140625},{x:.671875,y:.140625},{x:.671875,y:.140625},{x:.703125,y:.140625},{x:.703125,y:.140625},{x:.734375,y:.140625},{x:.734375,y:.140625},{x:.765625,y:.140625},{x:.765625,y:.140625},{x:.796875,y:.140625},{x:.796875,y:.140625},{x:.828125,y:.140625},{x:.828125,y:.140625},{x:.859375,y:.140625},{x:.859375,y:.140625},{x:.890625,y:.140625},{x:.890625,y:.140625},{x:.921875,y:.140625},{x:.921875,y:.140625},{x:.953125,y:.140625},{x:.953125,y:.140625},{x:.984375,y:.140625},{x:.984375,y:.140625},{x:.015625,y:.171875},{x:.015625,y:.171875},{x:.046875,y:.171875},{x:.046875,y:.171875},{x:.078125,y:.171875},{x:.078125,y:.171875},{x:.109375,y:.171875},{x:.109375,y:.171875},{x:.140625,y:.171875},{x:.140625,y:.171875},{x:.171875,y:.171875},{x:.171875,y:.171875},{x:.203125,y:.171875},{x:.203125,y:.171875},{x:.234375,y:.171875},{x:.234375,y:.171875},{x:.265625,y:.171875},{x:.265625,y:.171875},{x:.296875,y:.171875},{x:.296875,y:.171875},{x:.328125,y:.171875},{x:.328125,y:.171875},{x:.359375,y:.171875},{x:.359375,y:.171875},{x:.390625,y:.171875},{x:.390625,y:.171875},{x:.421875,y:.171875},{x:.421875,y:.171875},{x:.453125,y:.171875},{x:.453125,y:.171875},{x:.484375,y:.171875},{x:.484375,y:.171875},{x:.515625,y:.171875},{x:.515625,y:.171875},{x:.546875,y:.171875},{x:.546875,y:.171875},{x:.578125,y:.171875},{x:.578125,y:.171875},{x:.609375,y:.171875},{x:.609375,y:.171875},{x:.640625,y:.171875},{x:.640625,y:.171875},{x:.671875,y:.171875},{x:.671875,y:.171875},{x:.703125,y:.171875},{x:.703125,y:.171875},{x:.734375,y:.171875},{x:.734375,y:.171875},{x:.765625,y:.171875},{x:.765625,y:.171875},{x:.796875,y:.171875},{x:.796875,y:.171875},{x:.828125,y:.171875},{x:.828125,y:.171875},{x:.859375,y:.171875},{x:.859375,y:.171875},{x:.890625,y:.171875},{x:.890625,y:.171875},{x:.921875,y:.171875},{x:.921875,y:.171875},{x:.953125,y:.171875},{x:.953125,y:.171875},{x:.984375,y:.171875},{x:.984375,y:.171875},{x:.015625,y:.203125},{x:.015625,y:.203125},{x:.046875,y:.203125},{x:.046875,y:.203125},{x:.078125,y:.203125},{x:.078125,y:.203125},{x:.109375,y:.203125},{x:.109375,y:.203125},{x:.140625,y:.203125},{x:.140625,y:.203125},{x:.171875,y:.203125},{x:.171875,y:.203125},{x:.203125,y:.203125},{x:.203125,y:.203125},{x:.234375,y:.203125},{x:.234375,y:.203125},{x:.265625,y:.203125},{x:.265625,y:.203125},{x:.296875,y:.203125},{x:.296875,y:.203125},{x:.328125,y:.203125},{x:.328125,y:.203125},{x:.359375,y:.203125},{x:.359375,y:.203125},{x:.390625,y:.203125},{x:.390625,y:.203125},{x:.421875,y:.203125},{x:.421875,y:.203125},{x:.453125,y:.203125},{x:.453125,y:.203125},{x:.484375,y:.203125},{x:.484375,y:.203125},{x:.515625,y:.203125},{x:.515625,y:.203125},{x:.546875,y:.203125},{x:.546875,y:.203125},{x:.578125,y:.203125},{x:.578125,y:.203125},{x:.609375,y:.203125},{x:.609375,y:.203125},{x:.640625,y:.203125},{x:.640625,y:.203125},{x:.671875,y:.203125},{x:.671875,y:.203125},{x:.703125,y:.203125},{x:.703125,y:.203125},{x:.734375,y:.203125},{x:.734375,y:.203125},{x:.765625,y:.203125},{x:.765625,y:.203125},{x:.796875,y:.203125},{x:.796875,y:.203125},{x:.828125,y:.203125},{x:.828125,y:.203125},{x:.859375,y:.203125},{x:.859375,y:.203125},{x:.890625,y:.203125},{x:.890625,y:.203125},{x:.921875,y:.203125},{x:.921875,y:.203125},{x:.953125,y:.203125},{x:.953125,y:.203125},{x:.984375,y:.203125},{x:.984375,y:.203125},{x:.015625,y:.234375},{x:.015625,y:.234375},{x:.046875,y:.234375},{x:.046875,y:.234375},{x:.078125,y:.234375},{x:.078125,y:.234375},{x:.109375,y:.234375},{x:.109375,y:.234375},{x:.140625,y:.234375},{x:.140625,y:.234375},{x:.171875,y:.234375},{x:.171875,y:.234375},{x:.203125,y:.234375},{x:.203125,y:.234375},{x:.234375,y:.234375},{x:.234375,y:.234375},{x:.265625,y:.234375},{x:.265625,y:.234375},{x:.296875,y:.234375},{x:.296875,y:.234375},{x:.328125,y:.234375},{x:.328125,y:.234375},{x:.359375,y:.234375},{x:.359375,y:.234375},{x:.390625,y:.234375},{x:.390625,y:.234375},{x:.421875,y:.234375},{x:.421875,y:.234375},{x:.453125,y:.234375},{x:.453125,y:.234375},{x:.484375,y:.234375},{x:.484375,y:.234375},{x:.515625,y:.234375},{x:.515625,y:.234375},{x:.546875,y:.234375},{x:.546875,y:.234375},{x:.578125,y:.234375},{x:.578125,y:.234375},{x:.609375,y:.234375},{x:.609375,y:.234375},{x:.640625,y:.234375},{x:.640625,y:.234375},{x:.671875,y:.234375},{x:.671875,y:.234375},{x:.703125,y:.234375},{x:.703125,y:.234375},{x:.734375,y:.234375},{x:.734375,y:.234375},{x:.765625,y:.234375},{x:.765625,y:.234375},{x:.796875,y:.234375},{x:.796875,y:.234375},{x:.828125,y:.234375},{x:.828125,y:.234375},{x:.859375,y:.234375},{x:.859375,y:.234375},{x:.890625,y:.234375},{x:.890625,y:.234375},{x:.921875,y:.234375},{x:.921875,y:.234375},{x:.953125,y:.234375},{x:.953125,y:.234375},{x:.984375,y:.234375},{x:.984375,y:.234375},{x:.015625,y:.265625},{x:.015625,y:.265625},{x:.046875,y:.265625},{x:.046875,y:.265625},{x:.078125,y:.265625},{x:.078125,y:.265625},{x:.109375,y:.265625},{x:.109375,y:.265625},{x:.140625,y:.265625},{x:.140625,y:.265625},{x:.171875,y:.265625},{x:.171875,y:.265625},{x:.203125,y:.265625},{x:.203125,y:.265625},{x:.234375,y:.265625},{x:.234375,y:.265625},{x:.265625,y:.265625},{x:.265625,y:.265625},{x:.296875,y:.265625},{x:.296875,y:.265625},{x:.328125,y:.265625},{x:.328125,y:.265625},{x:.359375,y:.265625},{x:.359375,y:.265625},{x:.390625,y:.265625},{x:.390625,y:.265625},{x:.421875,y:.265625},{x:.421875,y:.265625},{x:.453125,y:.265625},{x:.453125,y:.265625},{x:.484375,y:.265625},{x:.484375,y:.265625},{x:.515625,y:.265625},{x:.515625,y:.265625},{x:.546875,y:.265625},{x:.546875,y:.265625},{x:.578125,y:.265625},{x:.578125,y:.265625},{x:.609375,y:.265625},{x:.609375,y:.265625},{x:.640625,y:.265625},{x:.640625,y:.265625},{x:.671875,y:.265625},{x:.671875,y:.265625},{x:.703125,y:.265625},{x:.703125,y:.265625},{x:.734375,y:.265625},{x:.734375,y:.265625},{x:.765625,y:.265625},{x:.765625,y:.265625},{x:.796875,y:.265625},{x:.796875,y:.265625},{x:.828125,y:.265625},{x:.828125,y:.265625},{x:.859375,y:.265625},{x:.859375,y:.265625},{x:.890625,y:.265625},{x:.890625,y:.265625},{x:.921875,y:.265625},{x:.921875,y:.265625},{x:.953125,y:.265625},{x:.953125,y:.265625},{x:.984375,y:.265625},{x:.984375,y:.265625},{x:.015625,y:.296875},{x:.015625,y:.296875},{x:.046875,y:.296875},{x:.046875,y:.296875},{x:.078125,y:.296875},{x:.078125,y:.296875},{x:.109375,y:.296875},{x:.109375,y:.296875},{x:.140625,y:.296875},{x:.140625,y:.296875},{x:.171875,y:.296875},{x:.171875,y:.296875},{x:.203125,y:.296875},{x:.203125,y:.296875},{x:.234375,y:.296875},{x:.234375,y:.296875},{x:.265625,y:.296875},{x:.265625,y:.296875},{x:.296875,y:.296875},{x:.296875,y:.296875},{x:.328125,y:.296875},{x:.328125,y:.296875},{x:.359375,y:.296875},{x:.359375,y:.296875},{x:.390625,y:.296875},{x:.390625,y:.296875},{x:.421875,y:.296875},{x:.421875,y:.296875},{x:.453125,y:.296875},{x:.453125,y:.296875},{x:.484375,y:.296875},{x:.484375,y:.296875},{x:.515625,y:.296875},{x:.515625,y:.296875},{x:.546875,y:.296875},{x:.546875,y:.296875},{x:.578125,y:.296875},{x:.578125,y:.296875},{x:.609375,y:.296875},{x:.609375,y:.296875},{x:.640625,y:.296875},{x:.640625,y:.296875},{x:.671875,y:.296875},{x:.671875,y:.296875},{x:.703125,y:.296875},{x:.703125,y:.296875},{x:.734375,y:.296875},{x:.734375,y:.296875},{x:.765625,y:.296875},{x:.765625,y:.296875},{x:.796875,y:.296875},{x:.796875,y:.296875},{x:.828125,y:.296875},{x:.828125,y:.296875},{x:.859375,y:.296875},{x:.859375,y:.296875},{x:.890625,y:.296875},{x:.890625,y:.296875},{x:.921875,y:.296875},{x:.921875,y:.296875},{x:.953125,y:.296875},{x:.953125,y:.296875},{x:.984375,y:.296875},{x:.984375,y:.296875},{x:.015625,y:.328125},{x:.015625,y:.328125},{x:.046875,y:.328125},{x:.046875,y:.328125},{x:.078125,y:.328125},{x:.078125,y:.328125},{x:.109375,y:.328125},{x:.109375,y:.328125},{x:.140625,y:.328125},{x:.140625,y:.328125},{x:.171875,y:.328125},{x:.171875,y:.328125},{x:.203125,y:.328125},{x:.203125,y:.328125},{x:.234375,y:.328125},{x:.234375,y:.328125},{x:.265625,y:.328125},{x:.265625,y:.328125},{x:.296875,y:.328125},{x:.296875,y:.328125},{x:.328125,y:.328125},{x:.328125,y:.328125},{x:.359375,y:.328125},{x:.359375,y:.328125},{x:.390625,y:.328125},{x:.390625,y:.328125},{x:.421875,y:.328125},{x:.421875,y:.328125},{x:.453125,y:.328125},{x:.453125,y:.328125},{x:.484375,y:.328125},{x:.484375,y:.328125},{x:.515625,y:.328125},{x:.515625,y:.328125},{x:.546875,y:.328125},{x:.546875,y:.328125},{x:.578125,y:.328125},{x:.578125,y:.328125},{x:.609375,y:.328125},{x:.609375,y:.328125},{x:.640625,y:.328125},{x:.640625,y:.328125},{x:.671875,y:.328125},{x:.671875,y:.328125},{x:.703125,y:.328125},{x:.703125,y:.328125},{x:.734375,y:.328125},{x:.734375,y:.328125},{x:.765625,y:.328125},{x:.765625,y:.328125},{x:.796875,y:.328125},{x:.796875,y:.328125},{x:.828125,y:.328125},{x:.828125,y:.328125},{x:.859375,y:.328125},{x:.859375,y:.328125},{x:.890625,y:.328125},{x:.890625,y:.328125},{x:.921875,y:.328125},{x:.921875,y:.328125},{x:.953125,y:.328125},{x:.953125,y:.328125},{x:.984375,y:.328125},{x:.984375,y:.328125},{x:.015625,y:.359375},{x:.015625,y:.359375},{x:.046875,y:.359375},{x:.046875,y:.359375},{x:.078125,y:.359375},{x:.078125,y:.359375},{x:.109375,y:.359375},{x:.109375,y:.359375},{x:.140625,y:.359375},{x:.140625,y:.359375},{x:.171875,y:.359375},{x:.171875,y:.359375},{x:.203125,y:.359375},{x:.203125,y:.359375},{x:.234375,y:.359375},{x:.234375,y:.359375},{x:.265625,y:.359375},{x:.265625,y:.359375},{x:.296875,y:.359375},{x:.296875,y:.359375},{x:.328125,y:.359375},{x:.328125,y:.359375},{x:.359375,y:.359375},{x:.359375,y:.359375},{x:.390625,y:.359375},{x:.390625,y:.359375},{x:.421875,y:.359375},{x:.421875,y:.359375},{x:.453125,y:.359375},{x:.453125,y:.359375},{x:.484375,y:.359375},{x:.484375,y:.359375},{x:.515625,y:.359375},{x:.515625,y:.359375},{x:.546875,y:.359375},{x:.546875,y:.359375},{x:.578125,y:.359375},{x:.578125,y:.359375},{x:.609375,y:.359375},{x:.609375,y:.359375},{x:.640625,y:.359375},{x:.640625,y:.359375},{x:.671875,y:.359375},{x:.671875,y:.359375},{x:.703125,y:.359375},{x:.703125,y:.359375},{x:.734375,y:.359375},{x:.734375,y:.359375},{x:.765625,y:.359375},{x:.765625,y:.359375},{x:.796875,y:.359375},{x:.796875,y:.359375},{x:.828125,y:.359375},{x:.828125,y:.359375},{x:.859375,y:.359375},{x:.859375,y:.359375},{x:.890625,y:.359375},{x:.890625,y:.359375},{x:.921875,y:.359375},{x:.921875,y:.359375},{x:.953125,y:.359375},{x:.953125,y:.359375},{x:.984375,y:.359375},{x:.984375,y:.359375},{x:.015625,y:.390625},{x:.015625,y:.390625},{x:.046875,y:.390625},{x:.046875,y:.390625},{x:.078125,y:.390625},{x:.078125,y:.390625},{x:.109375,y:.390625},{x:.109375,y:.390625},{x:.140625,y:.390625},{x:.140625,y:.390625},{x:.171875,y:.390625},{x:.171875,y:.390625},{x:.203125,y:.390625},{x:.203125,y:.390625},{x:.234375,y:.390625},{x:.234375,y:.390625},{x:.265625,y:.390625},{x:.265625,y:.390625},{x:.296875,y:.390625},{x:.296875,y:.390625},{x:.328125,y:.390625},{x:.328125,y:.390625},{x:.359375,y:.390625},{x:.359375,y:.390625},{x:.390625,y:.390625},{x:.390625,y:.390625},{x:.421875,y:.390625},{x:.421875,y:.390625},{x:.453125,y:.390625},{x:.453125,y:.390625},{x:.484375,y:.390625},{x:.484375,y:.390625},{x:.515625,y:.390625},{x:.515625,y:.390625},{x:.546875,y:.390625},{x:.546875,y:.390625},{x:.578125,y:.390625},{x:.578125,y:.390625},{x:.609375,y:.390625},{x:.609375,y:.390625},{x:.640625,y:.390625},{x:.640625,y:.390625},{x:.671875,y:.390625},{x:.671875,y:.390625},{x:.703125,y:.390625},{x:.703125,y:.390625},{x:.734375,y:.390625},{x:.734375,y:.390625},{x:.765625,y:.390625},{x:.765625,y:.390625},{x:.796875,y:.390625},{x:.796875,y:.390625},{x:.828125,y:.390625},{x:.828125,y:.390625},{x:.859375,y:.390625},{x:.859375,y:.390625},{x:.890625,y:.390625},{x:.890625,y:.390625},{x:.921875,y:.390625},{x:.921875,y:.390625},{x:.953125,y:.390625},{x:.953125,y:.390625},{x:.984375,y:.390625},{x:.984375,y:.390625},{x:.015625,y:.421875},{x:.015625,y:.421875},{x:.046875,y:.421875},{x:.046875,y:.421875},{x:.078125,y:.421875},{x:.078125,y:.421875},{x:.109375,y:.421875},{x:.109375,y:.421875},{x:.140625,y:.421875},{x:.140625,y:.421875},{x:.171875,y:.421875},{x:.171875,y:.421875},{x:.203125,y:.421875},{x:.203125,y:.421875},{x:.234375,y:.421875},{x:.234375,y:.421875},{x:.265625,y:.421875},{x:.265625,y:.421875},{x:.296875,y:.421875},{x:.296875,y:.421875},{x:.328125,y:.421875},{x:.328125,y:.421875},{x:.359375,y:.421875},{x:.359375,y:.421875},{x:.390625,y:.421875},{x:.390625,y:.421875},{x:.421875,y:.421875},{x:.421875,y:.421875},{x:.453125,y:.421875},{x:.453125,y:.421875},{x:.484375,y:.421875},{x:.484375,y:.421875},{x:.515625,y:.421875},{x:.515625,y:.421875},{x:.546875,y:.421875},{x:.546875,y:.421875},{x:.578125,y:.421875},{x:.578125,y:.421875},{x:.609375,y:.421875},{x:.609375,y:.421875},{x:.640625,y:.421875},{x:.640625,y:.421875},{x:.671875,y:.421875},{x:.671875,y:.421875},{x:.703125,y:.421875},{x:.703125,y:.421875},{x:.734375,y:.421875},{x:.734375,y:.421875},{x:.765625,y:.421875},{x:.765625,y:.421875},{x:.796875,y:.421875},{x:.796875,y:.421875},{x:.828125,y:.421875},{x:.828125,y:.421875},{x:.859375,y:.421875},{x:.859375,y:.421875},{x:.890625,y:.421875},{x:.890625,y:.421875},{x:.921875,y:.421875},{x:.921875,y:.421875},{x:.953125,y:.421875},{x:.953125,y:.421875},{x:.984375,y:.421875},{x:.984375,y:.421875},{x:.015625,y:.453125},{x:.015625,y:.453125},{x:.046875,y:.453125},{x:.046875,y:.453125},{x:.078125,y:.453125},{x:.078125,y:.453125},{x:.109375,y:.453125},{x:.109375,y:.453125},{x:.140625,y:.453125},{x:.140625,y:.453125},{x:.171875,y:.453125},{x:.171875,y:.453125},{x:.203125,y:.453125},{x:.203125,y:.453125},{x:.234375,y:.453125},{x:.234375,y:.453125},{x:.265625,y:.453125},{x:.265625,y:.453125},{x:.296875,y:.453125},{x:.296875,y:.453125},{x:.328125,y:.453125},{x:.328125,y:.453125},{x:.359375,y:.453125},{x:.359375,y:.453125},{x:.390625,y:.453125},{x:.390625,y:.453125},{x:.421875,y:.453125},{x:.421875,y:.453125},{x:.453125,y:.453125},{x:.453125,y:.453125},{x:.484375,y:.453125},{x:.484375,y:.453125},{x:.515625,y:.453125},{x:.515625,y:.453125},{x:.546875,y:.453125},{x:.546875,y:.453125},{x:.578125,y:.453125},{x:.578125,y:.453125},{x:.609375,y:.453125},{x:.609375,y:.453125},{x:.640625,y:.453125},{x:.640625,y:.453125},{x:.671875,y:.453125},{x:.671875,y:.453125},{x:.703125,y:.453125},{x:.703125,y:.453125},{x:.734375,y:.453125},{x:.734375,y:.453125},{x:.765625,y:.453125},{x:.765625,y:.453125},{x:.796875,y:.453125},{x:.796875,y:.453125},{x:.828125,y:.453125},{x:.828125,y:.453125},{x:.859375,y:.453125},{x:.859375,y:.453125},{x:.890625,y:.453125},{x:.890625,y:.453125},{x:.921875,y:.453125},{x:.921875,y:.453125},{x:.953125,y:.453125},{x:.953125,y:.453125},{x:.984375,y:.453125},{x:.984375,y:.453125},{x:.015625,y:.484375},{x:.015625,y:.484375},{x:.046875,y:.484375},{x:.046875,y:.484375},{x:.078125,y:.484375},{x:.078125,y:.484375},{x:.109375,y:.484375},{x:.109375,y:.484375},{x:.140625,y:.484375},{x:.140625,y:.484375},{x:.171875,y:.484375},{x:.171875,y:.484375},{x:.203125,y:.484375},{x:.203125,y:.484375},{x:.234375,y:.484375},{x:.234375,y:.484375},{x:.265625,y:.484375},{x:.265625,y:.484375},{x:.296875,y:.484375},{x:.296875,y:.484375},{x:.328125,y:.484375},{x:.328125,y:.484375},{x:.359375,y:.484375},{x:.359375,y:.484375},{x:.390625,y:.484375},{x:.390625,y:.484375},{x:.421875,y:.484375},{x:.421875,y:.484375},{x:.453125,y:.484375},{x:.453125,y:.484375},{x:.484375,y:.484375},{x:.484375,y:.484375},{x:.515625,y:.484375},{x:.515625,y:.484375},{x:.546875,y:.484375},{x:.546875,y:.484375},{x:.578125,y:.484375},{x:.578125,y:.484375},{x:.609375,y:.484375},{x:.609375,y:.484375},{x:.640625,y:.484375},{x:.640625,y:.484375},{x:.671875,y:.484375},{x:.671875,y:.484375},{x:.703125,y:.484375},{x:.703125,y:.484375},{x:.734375,y:.484375},{x:.734375,y:.484375},{x:.765625,y:.484375},{x:.765625,y:.484375},{x:.796875,y:.484375},{x:.796875,y:.484375},{x:.828125,y:.484375},{x:.828125,y:.484375},{x:.859375,y:.484375},{x:.859375,y:.484375},{x:.890625,y:.484375},{x:.890625,y:.484375},{x:.921875,y:.484375},{x:.921875,y:.484375},{x:.953125,y:.484375},{x:.953125,y:.484375},{x:.984375,y:.484375},{x:.984375,y:.484375},{x:.015625,y:.515625},{x:.015625,y:.515625},{x:.046875,y:.515625},{x:.046875,y:.515625},{x:.078125,y:.515625},{x:.078125,y:.515625},{x:.109375,y:.515625},{x:.109375,y:.515625},{x:.140625,y:.515625},{x:.140625,y:.515625},{x:.171875,y:.515625},{x:.171875,y:.515625},{x:.203125,y:.515625},{x:.203125,y:.515625},{x:.234375,y:.515625},{x:.234375,y:.515625},{x:.265625,y:.515625},{x:.265625,y:.515625},{x:.296875,y:.515625},{x:.296875,y:.515625},{x:.328125,y:.515625},{x:.328125,y:.515625},{x:.359375,y:.515625},{x:.359375,y:.515625},{x:.390625,y:.515625},{x:.390625,y:.515625},{x:.421875,y:.515625},{x:.421875,y:.515625},{x:.453125,y:.515625},{x:.453125,y:.515625},{x:.484375,y:.515625},{x:.484375,y:.515625},{x:.515625,y:.515625},{x:.515625,y:.515625},{x:.546875,y:.515625},{x:.546875,y:.515625},{x:.578125,y:.515625},{x:.578125,y:.515625},{x:.609375,y:.515625},{x:.609375,y:.515625},{x:.640625,y:.515625},{x:.640625,y:.515625},{x:.671875,y:.515625},{x:.671875,y:.515625},{x:.703125,y:.515625},{x:.703125,y:.515625},{x:.734375,y:.515625},{x:.734375,y:.515625},{x:.765625,y:.515625},{x:.765625,y:.515625},{x:.796875,y:.515625},{x:.796875,y:.515625},{x:.828125,y:.515625},{x:.828125,y:.515625},{x:.859375,y:.515625},{x:.859375,y:.515625},{x:.890625,y:.515625},{x:.890625,y:.515625},{x:.921875,y:.515625},{x:.921875,y:.515625},{x:.953125,y:.515625},{x:.953125,y:.515625},{x:.984375,y:.515625},{x:.984375,y:.515625},{x:.015625,y:.546875},{x:.015625,y:.546875},{x:.046875,y:.546875},{x:.046875,y:.546875},{x:.078125,y:.546875},{x:.078125,y:.546875},{x:.109375,y:.546875},{x:.109375,y:.546875},{x:.140625,y:.546875},{x:.140625,y:.546875},{x:.171875,y:.546875},{x:.171875,y:.546875},{x:.203125,y:.546875},{x:.203125,y:.546875},{x:.234375,y:.546875},{x:.234375,y:.546875},{x:.265625,y:.546875},{x:.265625,y:.546875},{x:.296875,y:.546875},{x:.296875,y:.546875},{x:.328125,y:.546875},{x:.328125,y:.546875},{x:.359375,y:.546875},{x:.359375,y:.546875},{x:.390625,y:.546875},{x:.390625,y:.546875},{x:.421875,y:.546875},{x:.421875,y:.546875},{x:.453125,y:.546875},{x:.453125,y:.546875},{x:.484375,y:.546875},{x:.484375,y:.546875},{x:.515625,y:.546875},{x:.515625,y:.546875},{x:.546875,y:.546875},{x:.546875,y:.546875},{x:.578125,y:.546875},{x:.578125,y:.546875},{x:.609375,y:.546875},{x:.609375,y:.546875},{x:.640625,y:.546875},{x:.640625,y:.546875},{x:.671875,y:.546875},{x:.671875,y:.546875},{x:.703125,y:.546875},{x:.703125,y:.546875},{x:.734375,y:.546875},{x:.734375,y:.546875},{x:.765625,y:.546875},{x:.765625,y:.546875},{x:.796875,y:.546875},{x:.796875,y:.546875},{x:.828125,y:.546875},{x:.828125,y:.546875},{x:.859375,y:.546875},{x:.859375,y:.546875},{x:.890625,y:.546875},{x:.890625,y:.546875},{x:.921875,y:.546875},{x:.921875,y:.546875},{x:.953125,y:.546875},{x:.953125,y:.546875},{x:.984375,y:.546875},{x:.984375,y:.546875},{x:.015625,y:.578125},{x:.015625,y:.578125},{x:.046875,y:.578125},{x:.046875,y:.578125},{x:.078125,y:.578125},{x:.078125,y:.578125},{x:.109375,y:.578125},{x:.109375,y:.578125},{x:.140625,y:.578125},{x:.140625,y:.578125},{x:.171875,y:.578125},{x:.171875,y:.578125},{x:.203125,y:.578125},{x:.203125,y:.578125},{x:.234375,y:.578125},{x:.234375,y:.578125},{x:.265625,y:.578125},{x:.265625,y:.578125},{x:.296875,y:.578125},{x:.296875,y:.578125},{x:.328125,y:.578125},{x:.328125,y:.578125},{x:.359375,y:.578125},{x:.359375,y:.578125},{x:.390625,y:.578125},{x:.390625,y:.578125},{x:.421875,y:.578125},{x:.421875,y:.578125},{x:.453125,y:.578125},{x:.453125,y:.578125},{x:.484375,y:.578125},{x:.484375,y:.578125},{x:.515625,y:.578125},{x:.515625,y:.578125},{x:.546875,y:.578125},{x:.546875,y:.578125},{x:.578125,y:.578125},{x:.578125,y:.578125},{x:.609375,y:.578125},{x:.609375,y:.578125},{x:.640625,y:.578125},{x:.640625,y:.578125},{x:.671875,y:.578125},{x:.671875,y:.578125},{x:.703125,y:.578125},{x:.703125,y:.578125},{x:.734375,y:.578125},{x:.734375,y:.578125},{x:.765625,y:.578125},{x:.765625,y:.578125},{x:.796875,y:.578125},{x:.796875,y:.578125},{x:.828125,y:.578125},{x:.828125,y:.578125},{x:.859375,y:.578125},{x:.859375,y:.578125},{x:.890625,y:.578125},{x:.890625,y:.578125},{x:.921875,y:.578125},{x:.921875,y:.578125},{x:.953125,y:.578125},{x:.953125,y:.578125},{x:.984375,y:.578125},{x:.984375,y:.578125},{x:.015625,y:.609375},{x:.015625,y:.609375},{x:.046875,y:.609375},{x:.046875,y:.609375},{x:.078125,y:.609375},{x:.078125,y:.609375},{x:.109375,y:.609375},{x:.109375,y:.609375},{x:.140625,y:.609375},{x:.140625,y:.609375},{x:.171875,y:.609375},{x:.171875,y:.609375},{x:.203125,y:.609375},{x:.203125,y:.609375},{x:.234375,y:.609375},{x:.234375,y:.609375},{x:.265625,y:.609375},{x:.265625,y:.609375},{x:.296875,y:.609375},{x:.296875,y:.609375},{x:.328125,y:.609375},{x:.328125,y:.609375},{x:.359375,y:.609375},{x:.359375,y:.609375},{x:.390625,y:.609375},{x:.390625,y:.609375},{x:.421875,y:.609375},{x:.421875,y:.609375},{x:.453125,y:.609375},{x:.453125,y:.609375},{x:.484375,y:.609375},{x:.484375,y:.609375},{x:.515625,y:.609375},{x:.515625,y:.609375},{x:.546875,y:.609375},{x:.546875,y:.609375},{x:.578125,y:.609375},{x:.578125,y:.609375},{x:.609375,y:.609375},{x:.609375,y:.609375},{x:.640625,y:.609375},{x:.640625,y:.609375},{x:.671875,y:.609375},{x:.671875,y:.609375},{x:.703125,y:.609375},{x:.703125,y:.609375},{x:.734375,y:.609375},{x:.734375,y:.609375},{x:.765625,y:.609375},{x:.765625,y:.609375},{x:.796875,y:.609375},{x:.796875,y:.609375},{x:.828125,y:.609375},{x:.828125,y:.609375},{x:.859375,y:.609375},{x:.859375,y:.609375},{x:.890625,y:.609375},{x:.890625,y:.609375},{x:.921875,y:.609375},{x:.921875,y:.609375},{x:.953125,y:.609375},{x:.953125,y:.609375},{x:.984375,y:.609375},{x:.984375,y:.609375},{x:.015625,y:.640625},{x:.015625,y:.640625},{x:.046875,y:.640625},{x:.046875,y:.640625},{x:.078125,y:.640625},{x:.078125,y:.640625},{x:.109375,y:.640625},{x:.109375,y:.640625},{x:.140625,y:.640625},{x:.140625,y:.640625},{x:.171875,y:.640625},{x:.171875,y:.640625},{x:.203125,y:.640625},{x:.203125,y:.640625},{x:.234375,y:.640625},{x:.234375,y:.640625},{x:.265625,y:.640625},{x:.265625,y:.640625},{x:.296875,y:.640625},{x:.296875,y:.640625},{x:.328125,y:.640625},{x:.328125,y:.640625},{x:.359375,y:.640625},{x:.359375,y:.640625},{x:.390625,y:.640625},{x:.390625,y:.640625},{x:.421875,y:.640625},{x:.421875,y:.640625},{x:.453125,y:.640625},{x:.453125,y:.640625},{x:.484375,y:.640625},{x:.484375,y:.640625},{x:.515625,y:.640625},{x:.515625,y:.640625},{x:.546875,y:.640625},{x:.546875,y:.640625},{x:.578125,y:.640625},{x:.578125,y:.640625},{x:.609375,y:.640625},{x:.609375,y:.640625},{x:.640625,y:.640625},{x:.640625,y:.640625},{x:.671875,y:.640625},{x:.671875,y:.640625},{x:.703125,y:.640625},{x:.703125,y:.640625},{x:.734375,y:.640625},{x:.734375,y:.640625},{x:.765625,y:.640625},{x:.765625,y:.640625},{x:.796875,y:.640625},{x:.796875,y:.640625},{x:.828125,y:.640625},{x:.828125,y:.640625},{x:.859375,y:.640625},{x:.859375,y:.640625},{x:.890625,y:.640625},{x:.890625,y:.640625},{x:.921875,y:.640625},{x:.921875,y:.640625},{x:.953125,y:.640625},{x:.953125,y:.640625},{x:.984375,y:.640625},{x:.984375,y:.640625},{x:.015625,y:.671875},{x:.015625,y:.671875},{x:.046875,y:.671875},{x:.046875,y:.671875},{x:.078125,y:.671875},{x:.078125,y:.671875},{x:.109375,y:.671875},{x:.109375,y:.671875},{x:.140625,y:.671875},{x:.140625,y:.671875},{x:.171875,y:.671875},{x:.171875,y:.671875},{x:.203125,y:.671875},{x:.203125,y:.671875},{x:.234375,y:.671875},{x:.234375,y:.671875},{x:.265625,y:.671875},{x:.265625,y:.671875},{x:.296875,y:.671875},{x:.296875,y:.671875},{x:.328125,y:.671875},{x:.328125,y:.671875},{x:.359375,y:.671875},{x:.359375,y:.671875},{x:.390625,y:.671875},{x:.390625,y:.671875},{x:.421875,y:.671875},{x:.421875,y:.671875},{x:.453125,y:.671875},{x:.453125,y:.671875},{x:.484375,y:.671875},{x:.484375,y:.671875},{x:.515625,y:.671875},{x:.515625,y:.671875},{x:.546875,y:.671875},{x:.546875,y:.671875},{x:.578125,y:.671875},{x:.578125,y:.671875},{x:.609375,y:.671875},{x:.609375,y:.671875},{x:.640625,y:.671875},{x:.640625,y:.671875},{x:.671875,y:.671875},{x:.671875,y:.671875},{x:.703125,y:.671875},{x:.703125,y:.671875},{x:.734375,y:.671875},{x:.734375,y:.671875},{x:.765625,y:.671875},{x:.765625,y:.671875},{x:.796875,y:.671875},{x:.796875,y:.671875},{x:.828125,y:.671875},{x:.828125,y:.671875},{x:.859375,y:.671875},{x:.859375,y:.671875},{x:.890625,y:.671875},{x:.890625,y:.671875},{x:.921875,y:.671875},{x:.921875,y:.671875},{x:.953125,y:.671875},{x:.953125,y:.671875},{x:.984375,y:.671875},{x:.984375,y:.671875},{x:.015625,y:.703125},{x:.015625,y:.703125},{x:.046875,y:.703125},{x:.046875,y:.703125},{x:.078125,y:.703125},{x:.078125,y:.703125},{x:.109375,y:.703125},{x:.109375,y:.703125},{x:.140625,y:.703125},{x:.140625,y:.703125},{x:.171875,y:.703125},{x:.171875,y:.703125},{x:.203125,y:.703125},{x:.203125,y:.703125},{x:.234375,y:.703125},{x:.234375,y:.703125},{x:.265625,y:.703125},{x:.265625,y:.703125},{x:.296875,y:.703125},{x:.296875,y:.703125},{x:.328125,y:.703125},{x:.328125,y:.703125},{x:.359375,y:.703125},{x:.359375,y:.703125},{x:.390625,y:.703125},{x:.390625,y:.703125},{x:.421875,y:.703125},{x:.421875,y:.703125},{x:.453125,y:.703125},{x:.453125,y:.703125},{x:.484375,y:.703125},{x:.484375,y:.703125},{x:.515625,y:.703125},{x:.515625,y:.703125},{x:.546875,y:.703125},{x:.546875,y:.703125},{x:.578125,y:.703125},{x:.578125,y:.703125},{x:.609375,y:.703125},{x:.609375,y:.703125},{x:.640625,y:.703125},{x:.640625,y:.703125},{x:.671875,y:.703125},{x:.671875,y:.703125},{x:.703125,y:.703125},{x:.703125,y:.703125},{x:.734375,y:.703125},{x:.734375,y:.703125},{x:.765625,y:.703125},{x:.765625,y:.703125},{x:.796875,y:.703125},{x:.796875,y:.703125},{x:.828125,y:.703125},{x:.828125,y:.703125},{x:.859375,y:.703125},{x:.859375,y:.703125},{x:.890625,y:.703125},{x:.890625,y:.703125},{x:.921875,y:.703125},{x:.921875,y:.703125},{x:.953125,y:.703125},{x:.953125,y:.703125},{x:.984375,y:.703125},{x:.984375,y:.703125},{x:.015625,y:.734375},{x:.015625,y:.734375},{x:.046875,y:.734375},{x:.046875,y:.734375},{x:.078125,y:.734375},{x:.078125,y:.734375},{x:.109375,y:.734375},{x:.109375,y:.734375},{x:.140625,y:.734375},{x:.140625,y:.734375},{x:.171875,y:.734375},{x:.171875,y:.734375},{x:.203125,y:.734375},{x:.203125,y:.734375},{x:.234375,y:.734375},{x:.234375,y:.734375},{x:.265625,y:.734375},{x:.265625,y:.734375},{x:.296875,y:.734375},{x:.296875,y:.734375},{x:.328125,y:.734375},{x:.328125,y:.734375},{x:.359375,y:.734375},{x:.359375,y:.734375},{x:.390625,y:.734375},{x:.390625,y:.734375},{x:.421875,y:.734375},{x:.421875,y:.734375},{x:.453125,y:.734375},{x:.453125,y:.734375},{x:.484375,y:.734375},{x:.484375,y:.734375},{x:.515625,y:.734375},{x:.515625,y:.734375},{x:.546875,y:.734375},{x:.546875,y:.734375},{x:.578125,y:.734375},{x:.578125,y:.734375},{x:.609375,y:.734375},{x:.609375,y:.734375},{x:.640625,y:.734375},{x:.640625,y:.734375},{x:.671875,y:.734375},{x:.671875,y:.734375},{x:.703125,y:.734375},{x:.703125,y:.734375},{x:.734375,y:.734375},{x:.734375,y:.734375},{x:.765625,y:.734375},{x:.765625,y:.734375},{x:.796875,y:.734375},{x:.796875,y:.734375},{x:.828125,y:.734375},{x:.828125,y:.734375},{x:.859375,y:.734375},{x:.859375,y:.734375},{x:.890625,y:.734375},{x:.890625,y:.734375},{x:.921875,y:.734375},{x:.921875,y:.734375},{x:.953125,y:.734375},{x:.953125,y:.734375},{x:.984375,y:.734375},{x:.984375,y:.734375},{x:.015625,y:.765625},{x:.015625,y:.765625},{x:.046875,y:.765625},{x:.046875,y:.765625},{x:.078125,y:.765625},{x:.078125,y:.765625},{x:.109375,y:.765625},{x:.109375,y:.765625},{x:.140625,y:.765625},{x:.140625,y:.765625},{x:.171875,y:.765625},{x:.171875,y:.765625},{x:.203125,y:.765625},{x:.203125,y:.765625},{x:.234375,y:.765625},{x:.234375,y:.765625},{x:.265625,y:.765625},{x:.265625,y:.765625},{x:.296875,y:.765625},{x:.296875,y:.765625},{x:.328125,y:.765625},{x:.328125,y:.765625},{x:.359375,y:.765625},{x:.359375,y:.765625},{x:.390625,y:.765625},{x:.390625,y:.765625},{x:.421875,y:.765625},{x:.421875,y:.765625},{x:.453125,y:.765625},{x:.453125,y:.765625},{x:.484375,y:.765625},{x:.484375,y:.765625},{x:.515625,y:.765625},{x:.515625,y:.765625},{x:.546875,y:.765625},{x:.546875,y:.765625},{x:.578125,y:.765625},{x:.578125,y:.765625},{x:.609375,y:.765625},{x:.609375,y:.765625},{x:.640625,y:.765625},{x:.640625,y:.765625},{x:.671875,y:.765625},{x:.671875,y:.765625},{x:.703125,y:.765625},{x:.703125,y:.765625},{x:.734375,y:.765625},{x:.734375,y:.765625},{x:.765625,y:.765625},{x:.765625,y:.765625},{x:.796875,y:.765625},{x:.796875,y:.765625},{x:.828125,y:.765625},{x:.828125,y:.765625},{x:.859375,y:.765625},{x:.859375,y:.765625},{x:.890625,y:.765625},{x:.890625,y:.765625},{x:.921875,y:.765625},{x:.921875,y:.765625},{x:.953125,y:.765625},{x:.953125,y:.765625},{x:.984375,y:.765625},{x:.984375,y:.765625},{x:.015625,y:.796875},{x:.015625,y:.796875},{x:.046875,y:.796875},{x:.046875,y:.796875},{x:.078125,y:.796875},{x:.078125,y:.796875},{x:.109375,y:.796875},{x:.109375,y:.796875},{x:.140625,y:.796875},{x:.140625,y:.796875},{x:.171875,y:.796875},{x:.171875,y:.796875},{x:.203125,y:.796875},{x:.203125,y:.796875},{x:.234375,y:.796875},{x:.234375,y:.796875},{x:.265625,y:.796875},{x:.265625,y:.796875},{x:.296875,y:.796875},{x:.296875,y:.796875},{x:.328125,y:.796875},{x:.328125,y:.796875},{x:.359375,y:.796875},{x:.359375,y:.796875},{x:.390625,y:.796875},{x:.390625,y:.796875},{x:.421875,y:.796875},{x:.421875,y:.796875},{x:.453125,y:.796875},{x:.453125,y:.796875},{x:.484375,y:.796875},{x:.484375,y:.796875},{x:.515625,y:.796875},{x:.515625,y:.796875},{x:.546875,y:.796875},{x:.546875,y:.796875},{x:.578125,y:.796875},{x:.578125,y:.796875},{x:.609375,y:.796875},{x:.609375,y:.796875},{x:.640625,y:.796875},{x:.640625,y:.796875},{x:.671875,y:.796875},{x:.671875,y:.796875},{x:.703125,y:.796875},{x:.703125,y:.796875},{x:.734375,y:.796875},{x:.734375,y:.796875},{x:.765625,y:.796875},{x:.765625,y:.796875},{x:.796875,y:.796875},{x:.796875,y:.796875},{x:.828125,y:.796875},{x:.828125,y:.796875},{x:.859375,y:.796875},{x:.859375,y:.796875},{x:.890625,y:.796875},{x:.890625,y:.796875},{x:.921875,y:.796875},{x:.921875,y:.796875},{x:.953125,y:.796875},{x:.953125,y:.796875},{x:.984375,y:.796875},{x:.984375,y:.796875},{x:.015625,y:.828125},{x:.015625,y:.828125},{x:.046875,y:.828125},{x:.046875,y:.828125},{x:.078125,y:.828125},{x:.078125,y:.828125},{x:.109375,y:.828125},{x:.109375,y:.828125},{x:.140625,y:.828125},{x:.140625,y:.828125},{x:.171875,y:.828125},{x:.171875,y:.828125},{x:.203125,y:.828125},{x:.203125,y:.828125},{x:.234375,y:.828125},{x:.234375,y:.828125},{x:.265625,y:.828125},{x:.265625,y:.828125},{x:.296875,y:.828125},{x:.296875,y:.828125},{x:.328125,y:.828125},{x:.328125,y:.828125},{x:.359375,y:.828125},{x:.359375,y:.828125},{x:.390625,y:.828125},{x:.390625,y:.828125},{x:.421875,y:.828125},{x:.421875,y:.828125},{x:.453125,y:.828125},{x:.453125,y:.828125},{x:.484375,y:.828125},{x:.484375,y:.828125},{x:.515625,y:.828125},{x:.515625,y:.828125},{x:.546875,y:.828125},{x:.546875,y:.828125},{x:.578125,y:.828125},{x:.578125,y:.828125},{x:.609375,y:.828125},{x:.609375,y:.828125},{x:.640625,y:.828125},{x:.640625,y:.828125},{x:.671875,y:.828125},{x:.671875,y:.828125},{x:.703125,y:.828125},{x:.703125,y:.828125},{x:.734375,y:.828125},{x:.734375,y:.828125},{x:.765625,y:.828125},{x:.765625,y:.828125},{x:.796875,y:.828125},{x:.796875,y:.828125},{x:.828125,y:.828125},{x:.828125,y:.828125},{x:.859375,y:.828125},{x:.859375,y:.828125},{x:.890625,y:.828125},{x:.890625,y:.828125},{x:.921875,y:.828125},{x:.921875,y:.828125},{x:.953125,y:.828125},{x:.953125,y:.828125},{x:.984375,y:.828125},{x:.984375,y:.828125},{x:.015625,y:.859375},{x:.015625,y:.859375},{x:.046875,y:.859375},{x:.046875,y:.859375},{x:.078125,y:.859375},{x:.078125,y:.859375},{x:.109375,y:.859375},{x:.109375,y:.859375},{x:.140625,y:.859375},{x:.140625,y:.859375},{x:.171875,y:.859375},{x:.171875,y:.859375},{x:.203125,y:.859375},{x:.203125,y:.859375},{x:.234375,y:.859375},{x:.234375,y:.859375},{x:.265625,y:.859375},{x:.265625,y:.859375},{x:.296875,y:.859375},{x:.296875,y:.859375},{x:.328125,y:.859375},{x:.328125,y:.859375},{x:.359375,y:.859375},{x:.359375,y:.859375},{x:.390625,y:.859375},{x:.390625,y:.859375},{x:.421875,y:.859375},{x:.421875,y:.859375},{x:.453125,y:.859375},{x:.453125,y:.859375},{x:.484375,y:.859375},{x:.484375,y:.859375},{x:.515625,y:.859375},{x:.515625,y:.859375},{x:.546875,y:.859375},{x:.546875,y:.859375},{x:.578125,y:.859375},{x:.578125,y:.859375},{x:.609375,y:.859375},{x:.609375,y:.859375},{x:.640625,y:.859375},{x:.640625,y:.859375},{x:.671875,y:.859375},{x:.671875,y:.859375},{x:.703125,y:.859375},{x:.703125,y:.859375},{x:.734375,y:.859375},{x:.734375,y:.859375},{x:.765625,y:.859375},{x:.765625,y:.859375},{x:.796875,y:.859375},{x:.796875,y:.859375},{x:.828125,y:.859375},{x:.828125,y:.859375},{x:.859375,y:.859375},{x:.859375,y:.859375},{x:.890625,y:.859375},{x:.890625,y:.859375},{x:.921875,y:.859375},{x:.921875,y:.859375},{x:.953125,y:.859375},{x:.953125,y:.859375},{x:.984375,y:.859375},{x:.984375,y:.859375},{x:.015625,y:.890625},{x:.015625,y:.890625},{x:.046875,y:.890625},{x:.046875,y:.890625},{x:.078125,y:.890625},{x:.078125,y:.890625},{x:.109375,y:.890625},{x:.109375,y:.890625},{x:.140625,y:.890625},{x:.140625,y:.890625},{x:.171875,y:.890625},{x:.171875,y:.890625},{x:.203125,y:.890625},{x:.203125,y:.890625},{x:.234375,y:.890625},{x:.234375,y:.890625},{x:.265625,y:.890625},{x:.265625,y:.890625},{x:.296875,y:.890625},{x:.296875,y:.890625},{x:.328125,y:.890625},{x:.328125,y:.890625},{x:.359375,y:.890625},{x:.359375,y:.890625},{x:.390625,y:.890625},{x:.390625,y:.890625},{x:.421875,y:.890625},{x:.421875,y:.890625},{x:.453125,y:.890625},{x:.453125,y:.890625},{x:.484375,y:.890625},{x:.484375,y:.890625},{x:.515625,y:.890625},{x:.515625,y:.890625},{x:.546875,y:.890625},{x:.546875,y:.890625},{x:.578125,y:.890625},{x:.578125,y:.890625},{x:.609375,y:.890625},{x:.609375,y:.890625},{x:.640625,y:.890625},{x:.640625,y:.890625},{x:.671875,y:.890625},{x:.671875,y:.890625},{x:.703125,y:.890625},{x:.703125,y:.890625},{x:.734375,y:.890625},{x:.734375,y:.890625},{x:.765625,y:.890625},{x:.765625,y:.890625},{x:.796875,y:.890625},{x:.796875,y:.890625},{x:.828125,y:.890625},{x:.828125,y:.890625},{x:.859375,y:.890625},{x:.859375,y:.890625},{x:.890625,y:.890625},{x:.890625,y:.890625},{x:.921875,y:.890625},{x:.921875,y:.890625},{x:.953125,y:.890625},{x:.953125,y:.890625},{x:.984375,y:.890625},{x:.984375,y:.890625},{x:.015625,y:.921875},{x:.015625,y:.921875},{x:.046875,y:.921875},{x:.046875,y:.921875},{x:.078125,y:.921875},{x:.078125,y:.921875},{x:.109375,y:.921875},{x:.109375,y:.921875},{x:.140625,y:.921875},{x:.140625,y:.921875},{x:.171875,y:.921875},{x:.171875,y:.921875},{x:.203125,y:.921875},{x:.203125,y:.921875},{x:.234375,y:.921875},{x:.234375,y:.921875},{x:.265625,y:.921875},{x:.265625,y:.921875},{x:.296875,y:.921875},{x:.296875,y:.921875},{x:.328125,y:.921875},{x:.328125,y:.921875},{x:.359375,y:.921875},{x:.359375,y:.921875},{x:.390625,y:.921875},{x:.390625,y:.921875},{x:.421875,y:.921875},{x:.421875,y:.921875},{x:.453125,y:.921875},{x:.453125,y:.921875},{x:.484375,y:.921875},{x:.484375,y:.921875},{x:.515625,y:.921875},{x:.515625,y:.921875},{x:.546875,y:.921875},{x:.546875,y:.921875},{x:.578125,y:.921875},{x:.578125,y:.921875},{x:.609375,y:.921875},{x:.609375,y:.921875},{x:.640625,y:.921875},{x:.640625,y:.921875},{x:.671875,y:.921875},{x:.671875,y:.921875},{x:.703125,y:.921875},{x:.703125,y:.921875},{x:.734375,y:.921875},{x:.734375,y:.921875},{x:.765625,y:.921875},{x:.765625,y:.921875},{x:.796875,y:.921875},{x:.796875,y:.921875},{x:.828125,y:.921875},{x:.828125,y:.921875},{x:.859375,y:.921875},{x:.859375,y:.921875},{x:.890625,y:.921875},{x:.890625,y:.921875},{x:.921875,y:.921875},{x:.921875,y:.921875},{x:.953125,y:.921875},{x:.953125,y:.921875},{x:.984375,y:.921875},{x:.984375,y:.921875},{x:.015625,y:.953125},{x:.015625,y:.953125},{x:.046875,y:.953125},{x:.046875,y:.953125},{x:.078125,y:.953125},{x:.078125,y:.953125},{x:.109375,y:.953125},{x:.109375,y:.953125},{x:.140625,y:.953125},{x:.140625,y:.953125},{x:.171875,y:.953125},{x:.171875,y:.953125},{x:.203125,y:.953125},{x:.203125,y:.953125},{x:.234375,y:.953125},{x:.234375,y:.953125},{x:.265625,y:.953125},{x:.265625,y:.953125},{x:.296875,y:.953125},{x:.296875,y:.953125},{x:.328125,y:.953125},{x:.328125,y:.953125},{x:.359375,y:.953125},{x:.359375,y:.953125},{x:.390625,y:.953125},{x:.390625,y:.953125},{x:.421875,y:.953125},{x:.421875,y:.953125},{x:.453125,y:.953125},{x:.453125,y:.953125},{x:.484375,y:.953125},{x:.484375,y:.953125},{x:.515625,y:.953125},{x:.515625,y:.953125},{x:.546875,y:.953125},{x:.546875,y:.953125},{x:.578125,y:.953125},{x:.578125,y:.953125},{x:.609375,y:.953125},{x:.609375,y:.953125},{x:.640625,y:.953125},{x:.640625,y:.953125},{x:.671875,y:.953125},{x:.671875,y:.953125},{x:.703125,y:.953125},{x:.703125,y:.953125},{x:.734375,y:.953125},{x:.734375,y:.953125},{x:.765625,y:.953125},{x:.765625,y:.953125},{x:.796875,y:.953125},{x:.796875,y:.953125},{x:.828125,y:.953125},{x:.828125,y:.953125},{x:.859375,y:.953125},{x:.859375,y:.953125},{x:.890625,y:.953125},{x:.890625,y:.953125},{x:.921875,y:.953125},{x:.921875,y:.953125},{x:.953125,y:.953125},{x:.953125,y:.953125},{x:.984375,y:.953125},{x:.984375,y:.953125},{x:.015625,y:.984375},{x:.015625,y:.984375},{x:.046875,y:.984375},{x:.046875,y:.984375},{x:.078125,y:.984375},{x:.078125,y:.984375},{x:.109375,y:.984375},{x:.109375,y:.984375},{x:.140625,y:.984375},{x:.140625,y:.984375},{x:.171875,y:.984375},{x:.171875,y:.984375},{x:.203125,y:.984375},{x:.203125,y:.984375},{x:.234375,y:.984375},{x:.234375,y:.984375},{x:.265625,y:.984375},{x:.265625,y:.984375},{x:.296875,y:.984375},{x:.296875,y:.984375},{x:.328125,y:.984375},{x:.328125,y:.984375},{x:.359375,y:.984375},{x:.359375,y:.984375},{x:.390625,y:.984375},{x:.390625,y:.984375},{x:.421875,y:.984375},{x:.421875,y:.984375},{x:.453125,y:.984375},{x:.453125,y:.984375},{x:.484375,y:.984375},{x:.484375,y:.984375},{x:.515625,y:.984375},{x:.515625,y:.984375},{x:.546875,y:.984375},{x:.546875,y:.984375},{x:.578125,y:.984375},{x:.578125,y:.984375},{x:.609375,y:.984375},{x:.609375,y:.984375},{x:.640625,y:.984375},{x:.640625,y:.984375},{x:.671875,y:.984375},{x:.671875,y:.984375},{x:.703125,y:.984375},{x:.703125,y:.984375},{x:.734375,y:.984375},{x:.734375,y:.984375},{x:.765625,y:.984375},{x:.765625,y:.984375},{x:.796875,y:.984375},{x:.796875,y:.984375},{x:.828125,y:.984375},{x:.828125,y:.984375},{x:.859375,y:.984375},{x:.859375,y:.984375},{x:.890625,y:.984375},{x:.890625,y:.984375},{x:.921875,y:.984375},{x:.921875,y:.984375},{x:.953125,y:.984375},{x:.953125,y:.984375},{x:.984375,y:.984375},{x:.984375,y:.984375},{x:.03125,y:.03125},{x:.03125,y:.03125},{x:.09375,y:.03125},{x:.09375,y:.03125},{x:.15625,y:.03125},{x:.15625,y:.03125},{x:.21875,y:.03125},{x:.21875,y:.03125},{x:.28125,y:.03125},{x:.28125,y:.03125},{x:.34375,y:.03125},{x:.34375,y:.03125},{x:.40625,y:.03125},{x:.40625,y:.03125},{x:.46875,y:.03125},{x:.46875,y:.03125},{x:.53125,y:.03125},{x:.53125,y:.03125},{x:.59375,y:.03125},{x:.59375,y:.03125},{x:.65625,y:.03125},{x:.65625,y:.03125},{x:.71875,y:.03125},{x:.71875,y:.03125},{x:.78125,y:.03125},{x:.78125,y:.03125},{x:.84375,y:.03125},{x:.84375,y:.03125},{x:.90625,y:.03125},{x:.90625,y:.03125},{x:.96875,y:.03125},{x:.96875,y:.03125},{x:.03125,y:.09375},{x:.03125,y:.09375},{x:.09375,y:.09375},{x:.09375,y:.09375},{x:.15625,y:.09375},{x:.15625,y:.09375},{x:.21875,y:.09375},{x:.21875,y:.09375},{x:.28125,y:.09375},{x:.28125,y:.09375},{x:.34375,y:.09375},{x:.34375,y:.09375},{x:.40625,y:.09375},{x:.40625,y:.09375},{x:.46875,y:.09375},{x:.46875,y:.09375},{x:.53125,y:.09375},{x:.53125,y:.09375},{x:.59375,y:.09375},{x:.59375,y:.09375},{x:.65625,y:.09375},{x:.65625,y:.09375},{x:.71875,y:.09375},{x:.71875,y:.09375},{x:.78125,y:.09375},{x:.78125,y:.09375},{x:.84375,y:.09375},{x:.84375,y:.09375},{x:.90625,y:.09375},{x:.90625,y:.09375},{x:.96875,y:.09375},{x:.96875,y:.09375},{x:.03125,y:.15625},{x:.03125,y:.15625},{x:.09375,y:.15625},{x:.09375,y:.15625},{x:.15625,y:.15625},{x:.15625,y:.15625},{x:.21875,y:.15625},{x:.21875,y:.15625},{x:.28125,y:.15625},{x:.28125,y:.15625},{x:.34375,y:.15625},{x:.34375,y:.15625},{x:.40625,y:.15625},{x:.40625,y:.15625},{x:.46875,y:.15625},{x:.46875,y:.15625},{x:.53125,y:.15625},{x:.53125,y:.15625},{x:.59375,y:.15625},{x:.59375,y:.15625},{x:.65625,y:.15625},{x:.65625,y:.15625},{x:.71875,y:.15625},{x:.71875,y:.15625},{x:.78125,y:.15625},{x:.78125,y:.15625},{x:.84375,y:.15625},{x:.84375,y:.15625},{x:.90625,y:.15625},{x:.90625,y:.15625},{x:.96875,y:.15625},{x:.96875,y:.15625},{x:.03125,y:.21875},{x:.03125,y:.21875},{x:.09375,y:.21875},{x:.09375,y:.21875},{x:.15625,y:.21875},{x:.15625,y:.21875},{x:.21875,y:.21875},{x:.21875,y:.21875},{x:.28125,y:.21875},{x:.28125,y:.21875},{x:.34375,y:.21875},{x:.34375,y:.21875},{x:.40625,y:.21875},{x:.40625,y:.21875},{x:.46875,y:.21875},{x:.46875,y:.21875},{x:.53125,y:.21875},{x:.53125,y:.21875},{x:.59375,y:.21875},{x:.59375,y:.21875},{x:.65625,y:.21875},{x:.65625,y:.21875},{x:.71875,y:.21875},{x:.71875,y:.21875},{x:.78125,y:.21875},{x:.78125,y:.21875},{x:.84375,y:.21875},{x:.84375,y:.21875},{x:.90625,y:.21875},{x:.90625,y:.21875},{x:.96875,y:.21875},{x:.96875,y:.21875},{x:.03125,y:.28125},{x:.03125,y:.28125},{x:.09375,y:.28125},{x:.09375,y:.28125},{x:.15625,y:.28125},{x:.15625,y:.28125},{x:.21875,y:.28125},{x:.21875,y:.28125},{x:.28125,y:.28125},{x:.28125,y:.28125},{x:.34375,y:.28125},{x:.34375,y:.28125},{x:.40625,y:.28125},{x:.40625,y:.28125},{x:.46875,y:.28125},{x:.46875,y:.28125},{x:.53125,y:.28125},{x:.53125,y:.28125},{x:.59375,y:.28125},{x:.59375,y:.28125},{x:.65625,y:.28125},{x:.65625,y:.28125},{x:.71875,y:.28125},{x:.71875,y:.28125},{x:.78125,y:.28125},{x:.78125,y:.28125},{x:.84375,y:.28125},{x:.84375,y:.28125},{x:.90625,y:.28125},{x:.90625,y:.28125},{x:.96875,y:.28125},{x:.96875,y:.28125},{x:.03125,y:.34375},{x:.03125,y:.34375},{x:.09375,y:.34375},{x:.09375,y:.34375},{x:.15625,y:.34375},{x:.15625,y:.34375},{x:.21875,y:.34375},{x:.21875,y:.34375},{x:.28125,y:.34375},{x:.28125,y:.34375},{x:.34375,y:.34375},{x:.34375,y:.34375},{x:.40625,y:.34375},{x:.40625,y:.34375},{x:.46875,y:.34375},{x:.46875,y:.34375},{x:.53125,y:.34375},{x:.53125,y:.34375},{x:.59375,y:.34375},{x:.59375,y:.34375},{x:.65625,y:.34375},{x:.65625,y:.34375},{x:.71875,y:.34375},{x:.71875,y:.34375},{x:.78125,y:.34375},{x:.78125,y:.34375},{x:.84375,y:.34375},{x:.84375,y:.34375},{x:.90625,y:.34375},{x:.90625,y:.34375},{x:.96875,y:.34375},{x:.96875,y:.34375},{x:.03125,y:.40625},{x:.03125,y:.40625},{x:.09375,y:.40625},{x:.09375,y:.40625},{x:.15625,y:.40625},{x:.15625,y:.40625},{x:.21875,y:.40625},{x:.21875,y:.40625},{x:.28125,y:.40625},{x:.28125,y:.40625},{x:.34375,y:.40625},{x:.34375,y:.40625},{x:.40625,y:.40625},{x:.40625,y:.40625},{x:.46875,y:.40625},{x:.46875,y:.40625},{x:.53125,y:.40625},{x:.53125,y:.40625},{x:.59375,y:.40625},{x:.59375,y:.40625},{x:.65625,y:.40625},{x:.65625,y:.40625},{x:.71875,y:.40625},{x:.71875,y:.40625},{x:.78125,y:.40625},{x:.78125,y:.40625},{x:.84375,y:.40625},{x:.84375,y:.40625},{x:.90625,y:.40625},{x:.90625,y:.40625},{x:.96875,y:.40625},{x:.96875,y:.40625},{x:.03125,y:.46875},{x:.03125,y:.46875},{x:.09375,y:.46875},{x:.09375,y:.46875},{x:.15625,y:.46875},{x:.15625,y:.46875},{x:.21875,y:.46875},{x:.21875,y:.46875},{x:.28125,y:.46875},{x:.28125,y:.46875},{x:.34375,y:.46875},{x:.34375,y:.46875},{x:.40625,y:.46875},{x:.40625,y:.46875},{x:.46875,y:.46875},{x:.46875,y:.46875},{x:.53125,y:.46875},{x:.53125,y:.46875},{x:.59375,y:.46875},{x:.59375,y:.46875},{x:.65625,y:.46875},{x:.65625,y:.46875},{x:.71875,y:.46875},{x:.71875,y:.46875},{x:.78125,y:.46875},{x:.78125,y:.46875},{x:.84375,y:.46875},{x:.84375,y:.46875},{x:.90625,y:.46875},{x:.90625,y:.46875},{x:.96875,y:.46875},{x:.96875,y:.46875},{x:.03125,y:.53125},{x:.03125,y:.53125},{x:.09375,y:.53125},{x:.09375,y:.53125},{x:.15625,y:.53125},{x:.15625,y:.53125},{x:.21875,y:.53125},{x:.21875,y:.53125},{x:.28125,y:.53125},{x:.28125,y:.53125},{x:.34375,y:.53125},{x:.34375,y:.53125},{x:.40625,y:.53125},{x:.40625,y:.53125},{x:.46875,y:.53125},{x:.46875,y:.53125},{x:.53125,y:.53125},{x:.53125,y:.53125},{x:.59375,y:.53125},{x:.59375,y:.53125},{x:.65625,y:.53125},{x:.65625,y:.53125},{x:.71875,y:.53125},{x:.71875,y:.53125},{x:.78125,y:.53125},{x:.78125,y:.53125},{x:.84375,y:.53125},{x:.84375,y:.53125},{x:.90625,y:.53125},{x:.90625,y:.53125},{x:.96875,y:.53125},{x:.96875,y:.53125},{x:.03125,y:.59375},{x:.03125,y:.59375},{x:.09375,y:.59375},{x:.09375,y:.59375},{x:.15625,y:.59375},{x:.15625,y:.59375},{x:.21875,y:.59375},{x:.21875,y:.59375},{x:.28125,y:.59375},{x:.28125,y:.59375},{x:.34375,y:.59375},{x:.34375,y:.59375},{x:.40625,y:.59375},{x:.40625,y:.59375},{x:.46875,y:.59375},{x:.46875,y:.59375},{x:.53125,y:.59375},{x:.53125,y:.59375},{x:.59375,y:.59375},{x:.59375,y:.59375},{x:.65625,y:.59375},{x:.65625,y:.59375},{x:.71875,y:.59375},{x:.71875,y:.59375},{x:.78125,y:.59375},{x:.78125,y:.59375},{x:.84375,y:.59375},{x:.84375,y:.59375},{x:.90625,y:.59375},{x:.90625,y:.59375},{x:.96875,y:.59375},{x:.96875,y:.59375},{x:.03125,y:.65625},{x:.03125,y:.65625},{x:.09375,y:.65625},{x:.09375,y:.65625},{x:.15625,y:.65625},{x:.15625,y:.65625},{x:.21875,y:.65625},{x:.21875,y:.65625},{x:.28125,y:.65625},{x:.28125,y:.65625},{x:.34375,y:.65625},{x:.34375,y:.65625},{x:.40625,y:.65625},{x:.40625,y:.65625},{x:.46875,y:.65625},{x:.46875,y:.65625},{x:.53125,y:.65625},{x:.53125,y:.65625},{x:.59375,y:.65625},{x:.59375,y:.65625},{x:.65625,y:.65625},{x:.65625,y:.65625},{x:.71875,y:.65625},{x:.71875,y:.65625},{x:.78125,y:.65625},{x:.78125,y:.65625},{x:.84375,y:.65625},{x:.84375,y:.65625},{x:.90625,y:.65625},{x:.90625,y:.65625},{x:.96875,y:.65625},{x:.96875,y:.65625},{x:.03125,y:.71875},{x:.03125,y:.71875},{x:.09375,y:.71875},{x:.09375,y:.71875},{x:.15625,y:.71875},{x:.15625,y:.71875},{x:.21875,y:.71875},{x:.21875,y:.71875},{x:.28125,y:.71875},{x:.28125,y:.71875},{x:.34375,y:.71875},{x:.34375,y:.71875},{x:.40625,y:.71875},{x:.40625,y:.71875},{x:.46875,y:.71875},{x:.46875,y:.71875},{x:.53125,y:.71875},{x:.53125,y:.71875},{x:.59375,y:.71875},{x:.59375,y:.71875},{x:.65625,y:.71875},{x:.65625,y:.71875},{x:.71875,y:.71875},{x:.71875,y:.71875},{x:.78125,y:.71875},{x:.78125,y:.71875},{x:.84375,y:.71875},{x:.84375,y:.71875},{x:.90625,y:.71875},{x:.90625,y:.71875},{x:.96875,y:.71875},{x:.96875,y:.71875},{x:.03125,y:.78125},{x:.03125,y:.78125},{x:.09375,y:.78125},{x:.09375,y:.78125},{x:.15625,y:.78125},{x:.15625,y:.78125},{x:.21875,y:.78125},{x:.21875,y:.78125},{x:.28125,y:.78125},{x:.28125,y:.78125},{x:.34375,y:.78125},{x:.34375,y:.78125},{x:.40625,y:.78125},{x:.40625,y:.78125},{x:.46875,y:.78125},{x:.46875,y:.78125},{x:.53125,y:.78125},{x:.53125,y:.78125},{x:.59375,y:.78125},{x:.59375,y:.78125},{x:.65625,y:.78125},{x:.65625,y:.78125},{x:.71875,y:.78125},{x:.71875,y:.78125},{x:.78125,y:.78125},{x:.78125,y:.78125},{x:.84375,y:.78125},{x:.84375,y:.78125},{x:.90625,y:.78125},{x:.90625,y:.78125},{x:.96875,y:.78125},{x:.96875,y:.78125},{x:.03125,y:.84375},{x:.03125,y:.84375},{x:.09375,y:.84375},{x:.09375,y:.84375},{x:.15625,y:.84375},{x:.15625,y:.84375},{x:.21875,y:.84375},{x:.21875,y:.84375},{x:.28125,y:.84375},{x:.28125,y:.84375},{x:.34375,y:.84375},{x:.34375,y:.84375},{x:.40625,y:.84375},{x:.40625,y:.84375},{x:.46875,y:.84375},{x:.46875,y:.84375},{x:.53125,y:.84375},{x:.53125,y:.84375},{x:.59375,y:.84375},{x:.59375,y:.84375},{x:.65625,y:.84375},{x:.65625,y:.84375},{x:.71875,y:.84375},{x:.71875,y:.84375},{x:.78125,y:.84375},{x:.78125,y:.84375},{x:.84375,y:.84375},{x:.84375,y:.84375},{x:.90625,y:.84375},{x:.90625,y:.84375},{x:.96875,y:.84375},{x:.96875,y:.84375},{x:.03125,y:.90625},{x:.03125,y:.90625},{x:.09375,y:.90625},{x:.09375,y:.90625},{x:.15625,y:.90625},{x:.15625,y:.90625},{x:.21875,y:.90625},{x:.21875,y:.90625},{x:.28125,y:.90625},{x:.28125,y:.90625},{x:.34375,y:.90625},{x:.34375,y:.90625},{x:.40625,y:.90625},{x:.40625,y:.90625},{x:.46875,y:.90625},{x:.46875,y:.90625},{x:.53125,y:.90625},{x:.53125,y:.90625},{x:.59375,y:.90625},{x:.59375,y:.90625},{x:.65625,y:.90625},{x:.65625,y:.90625},{x:.71875,y:.90625},{x:.71875,y:.90625},{x:.78125,y:.90625},{x:.78125,y:.90625},{x:.84375,y:.90625},{x:.84375,y:.90625},{x:.90625,y:.90625},{x:.90625,y:.90625},{x:.96875,y:.90625},{x:.96875,y:.90625},{x:.03125,y:.96875},{x:.03125,y:.96875},{x:.09375,y:.96875},{x:.09375,y:.96875},{x:.15625,y:.96875},{x:.15625,y:.96875},{x:.21875,y:.96875},{x:.21875,y:.96875},{x:.28125,y:.96875},{x:.28125,y:.96875},{x:.34375,y:.96875},{x:.34375,y:.96875},{x:.40625,y:.96875},{x:.40625,y:.96875},{x:.46875,y:.96875},{x:.46875,y:.96875},{x:.53125,y:.96875},{x:.53125,y:.96875},{x:.59375,y:.96875},{x:.59375,y:.96875},{x:.65625,y:.96875},{x:.65625,y:.96875},{x:.71875,y:.96875},{x:.71875,y:.96875},{x:.78125,y:.96875},{x:.78125,y:.96875},{x:.84375,y:.96875},{x:.84375,y:.96875},{x:.90625,y:.96875},{x:.90625,y:.96875},{x:.96875,y:.96875},{x:.96875,y:.96875},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375}];var Bb=class{constructor(t){he(this,"model");he(this,"anchors");he(this,"anchorsTensor");he(this,"inputSize");he(this,"inputSizeTensor");he(this,"doubleInputSizeTensor");this.model=t,this.anchors=IT.map(n=>[n.x,n.y]),this.anchorsTensor=mr(this.anchors),this.inputSize=this.model&&this.model.inputs&&this.model.inputs[0].shape?this.model.inputs[0].shape[2]:0,this.inputSizeTensor=Vt([this.inputSize,this.inputSize]),this.doubleInputSizeTensor=Vt([this.inputSize*2,this.inputSize*2])}normalizeBoxes(t){let n={};n.boxOffsets=Fe(t,[0,0],[-1,2]),n.boxSizes=Fe(t,[0,2],[-1,2]),n.div=pe(n.boxOffsets,this.inputSizeTensor),n.boxCenterPoints=ue(n.div,this.anchorsTensor),n.halfBoxSizes=pe(n.boxSizes,this.doubleInputSizeTensor),n.sub=fe(n.boxCenterPoints,n.halfBoxSizes),n.startPoints=L(n.sub,this.inputSizeTensor),n.add=ue(n.boxCenterPoints,n.halfBoxSizes),n.endPoints=L(n.add,this.inputSizeTensor);let s=zu([n.startPoints,n.endPoints],1);return Object.keys(n).forEach(r=>ne(n[r])),s}normalizeLandmarks(t,n){let s={};s.reshape=H(t,[-1,7,2]),s.div=pe(s.reshape,this.inputSizeTensor),s.landmarks=ue(s.div,this.anchors[n]);let r=L(s.landmarks,this.inputSizeTensor);return Object.keys(s).forEach(a=>ne(s[a])),r}async predict(t,n){let s={};s.resize=Ce.resizeBilinear(t,[this.inputSize,this.inputSize]),s.div=pe(s.resize,Xe.tf127),s.image=fe(s.div,Xe.tf1),s.batched=this.model.execute(s.image),s.predictions=ut(s.batched),s.slice=Fe(s.predictions,[0,0],[-1,1]),s.sigmoid=gs(s.slice),s.scores=ut(s.sigmoid);let r=await s.scores.data();s.boxes=Fe(s.predictions,[0,1],[-1,4]),s.norm=this.normalizeBoxes(s.boxes),s.nms=await Ce.nonMaxSuppressionAsync(s.norm,s.scores,3*n.hand.maxDetected,n.hand.iouThreshold,n.hand.minConfidence);let a=await s.nms.array(),o=[];for(let i of a){let l={};l.box=Fe(s.norm,[i,0],[1,-1]),l.slice=Fe(s.predictions,[i,5],[1,14]),l.norm=this.normalizeLandmarks(l.slice,i),l.palmLandmarks=H(l.norm,[-1,2]);let c=await l.box.data(),u=c.slice(0,2),d=c.slice(2,4),p=await l.palmLandmarks.array(),h={startPoint:u,endPoint:d,palmLandmarks:p,confidence:r[i]},f=xT(h,[t.shape[2]/this.inputSize,t.shape[1]/this.inputSize]);o.push(f),Object.keys(l).forEach(m=>ne(l[m]))}return Object.keys(s).forEach(i=>ne(s[i])),o}};var P2e=5,ST=1.65,CT=[0,5,9,13,17,1,2],F2e=0,O2e=2,TT=0,Wb=class{constructor(t,n){he(this,"handDetector");he(this,"handPoseModel");he(this,"inputSize");he(this,"storedBoxes");he(this,"skipped");he(this,"detectedHands");this.handDetector=t,this.handPoseModel=n,this.inputSize=this.handPoseModel&&this.handPoseModel.inputs[0].shape?this.handPoseModel.inputs[0].shape[2]:0,this.storedBoxes=[],this.skipped=Number.MAX_SAFE_INTEGER,this.detectedHands=0}calculateLandmarksBoundingBox(t){let n=t.map(o=>o[0]),s=t.map(o=>o[1]),r=[Math.min(...n),Math.min(...s)],a=[Math.max(...n),Math.max(...s)];return{startPoint:r,endPoint:a}}getBoxForPalmLandmarks(t,n){let s=t.map(a=>Lb([...a,1],n)),r=this.calculateLandmarksBoundingBox(s);return k0(I0(r),P2e)}getBoxForHandLandmarks(t){let n=this.calculateLandmarksBoundingBox(t),s=k0(I0(n),ST);s.palmLandmarks=[];for(let r=0;r<CT.length;r++)s.palmLandmarks.push(t[CT[r]].slice(0,2));return s}transformRawCoords(t,n,s,r){let a=w0(n),o=[a[0]/this.inputSize,a[1]/this.inputSize,(a[0]+a[1])/this.inputSize/2],i=t.map(h=>[o[0]*(h[0]-this.inputSize/2),o[1]*(h[1]-this.inputSize/2),o[2]*h[2]]),l=zb(s,[0,0]),c=i.map(h=>[...Lb(h,l),h[2]]),u=kT(r),d=[...zp(n),1],p=[Jo(d,u[0]),Jo(d,u[1])];return c.map(h=>[Math.trunc(h[0]+p[0]),Math.trunc(h[1]+p[1]),Math.trunc(h[2])])}async estimateHands(t,n){let s=!1,r,a=(n.hand.skipTime||0)>ie()-TT,o=this.skipped<(n.hand.skipFrames||0);n.skipAllowed&&a&&o&&(r=await this.handDetector.predict(t,n),this.skipped=0),n.skipAllowed&&this.skipped++,r&&r.length>0&&(r.length!==this.detectedHands&&this.detectedHands!==n.hand.maxDetected||!n.hand.landmarks)&&(this.detectedHands=0,this.storedBoxes=[...r],this.storedBoxes.length>0&&(s=!0));let i=[];for(let l=0;l<this.storedBoxes.length;l++){let c=this.storedBoxes[l];if(!!c)if(n.hand.landmarks){let u=n.hand.rotation?bT(c.palmLandmarks[F2e],c.palmLandmarks[O2e]):0,d=zp(c),p=[d[0]/t.shape[2],d[1]/t.shape[1]],h=n.hand.rotation&&de.kernels.includes("rotatewithoffset")?Ce.rotateWithOffset(t,u,0,p):t.clone(),f=zb(-u,d),m=s?this.getBoxForPalmLandmarks(c.palmLandmarks,f):c,g=yT(m,h,[this.inputSize,this.inputSize]),A=pe(g,Xe.tf255);ne(g),ne(h);let[x,y]=this.handPoseModel.execute(A);TT=ie(),ne(A);let b=(await x.data())[0];if(ne(x),b>=n.hand.minConfidence/4){let w=H(y,[-1,3]),k=await w.array();ne(y),ne(w);let S=this.transformRawCoords(k,m,u,f),N=this.getBoxForHandLandmarks(S);this.storedBoxes[l]={...N,confidence:b};let R={landmarks:S,confidence:b,boxConfidence:c.confidence,fingerConfidence:b,box:{topLeft:N.startPoint,bottomRight:N.endPoint}};i.push(R)}else this.storedBoxes[l]=null;ne(y)}else{let u=k0(I0(c),ST),d={confidence:c.confidence,boxConfidence:c.confidence,fingerConfidence:0,box:{topLeft:u.startPoint,bottomRight:u.endPoint},landmarks:[]};i.push(d)}}return this.storedBoxes=this.storedBoxes.filter(l=>l!==null),this.detectedHands=i.length,i.length>n.hand.maxDetected&&(i.length=n.hand.maxDetected),i}};var Jn={thumb:0,index:1,middle:2,ring:3,pinky:4,all:[0,1,2,3,4],nameMapping:{0:"thumb",1:"index",2:"middle",3:"ring",4:"pinky"},pointsMapping:{0:[[0,1],[1,2],[2,3],[3,4]],1:[[0,5],[5,6],[6,7],[7,8]],2:[[0,9],[9,10],[10,11],[11,12]],3:[[0,13],[13,14],[14,15],[15,16]],4:[[0,17],[17,18],[18,19],[19,20]]},getName:e=>Jn.nameMapping[e],getPoints:e=>Jn.pointsMapping[e]},Qo={none:0,half:1,full:2,nameMapping:{0:"none",1:"half",2:"full"},getName:e=>Qo.nameMapping[e]},zt={verticalUp:0,verticalDown:1,horizontalLeft:2,horizontalRight:3,diagonalUpRight:4,diagonalUpLeft:5,diagonalDownRight:6,diagonalDownLeft:7,nameMapping:{0:"verticalUp",1:"verticalDown",2:"horizontalLeft",3:"horizontalRight",4:"diagonalUpRight",5:"diagonalUpLeft",6:"diagonalDownRight",7:"diagonalDownLeft"},getName:e=>zt.nameMapping[e]},Ll=class{constructor(t){he(this,"name");he(this,"curls");he(this,"directions");he(this,"weights");he(this,"weightsRelative");this.name=t,this.curls={},this.directions={},this.weights=[1,1,1,1,1],this.weightsRelative=[1,1,1,1,1]}curl(t,n,s){typeof this.curls[t]=="undefined"&&(this.curls[t]=[]),this.curls[t].push([n,s])}direction(t,n,s){this.directions[t]||(this.directions[t]=[]),this.directions[t].push([n,s])}weight(t,n){this.weights[t]=n;let s=this.weights.reduce((r,a)=>r+a,0);this.weightsRelative=this.weights.map(r=>r*5/s)}matchAgainst(t,n){let s=0;for(let r in t){let a=t[r],o=this.curls[r];if(typeof o=="undefined"){s+=this.weightsRelative[r];continue}for(let[i,l]of o)if(a===i){s+=l*this.weightsRelative[r];break}}for(let r in n){let a=n[r],o=this.directions[r];if(typeof o=="undefined"){s+=this.weightsRelative[r];continue}for(let[i,l]of o)if(a===i){s+=l*this.weightsRelative[r];break}}return s/10}};var{thumb:Sr,index:da,middle:pa,ring:Bl,pinky:Wl}=Jn,{none:Cr,half:M2e,full:Tr}=Qo,{verticalUp:Rc,verticalDown:Cye,horizontalLeft:Vb,horizontalRight:z2e,diagonalUpRight:L2e,diagonalUpLeft:$c,diagonalDownRight:Tye,diagonalDownLeft:Nye}=zt,ei=new Ll("thumbs up");ei.curl(Sr,Cr,1);ei.direction(Sr,Rc,1);ei.direction(Sr,$c,.25);ei.direction(Sr,L2e,.25);for(let e of[Jn.index,Jn.middle,Jn.ring,Jn.pinky])ei.curl(e,Tr,1),ei.direction(e,Vb,1),ei.direction(e,z2e,1);var Qt=new Ll("victory");Qt.curl(Sr,M2e,.5);Qt.curl(Sr,Cr,.5);Qt.direction(Sr,Rc,1);Qt.direction(Sr,$c,1);Qt.curl(da,Cr,1);Qt.direction(da,Rc,.75);Qt.direction(da,$c,1);Qt.curl(pa,Cr,1);Qt.direction(pa,Rc,1);Qt.direction(pa,$c,.75);Qt.curl(Bl,Tr,1);Qt.direction(Bl,Rc,.2);Qt.direction(Bl,$c,1);Qt.direction(Bl,Vb,.2);Qt.curl(Wl,Tr,1);Qt.direction(Wl,Rc,.2);Qt.direction(Wl,$c,1);Qt.direction(Wl,Vb,.2);Qt.weight(da,2);Qt.weight(pa,2);var ti=new Ll("point");ti.curl(Sr,Tr,1);ti.curl(da,Cr,.5);ti.curl(pa,Tr,.5);ti.curl(Bl,Tr,.5);ti.curl(Wl,Tr,.5);ti.weight(da,2);ti.weight(pa,2);var ni=new Ll("middle finger");ni.curl(Sr,Cr,1);ni.curl(da,Tr,.5);ni.curl(pa,Tr,.5);ni.curl(Bl,Tr,.5);ni.curl(Wl,Tr,.5);ni.weight(da,2);ni.weight(pa,2);var _c=new Ll("open palm");_c.curl(Sr,Cr,.75);_c.curl(da,Cr,.75);_c.curl(pa,Cr,.75);_c.curl(Bl,Cr,.75);_c.curl(Wl,Cr,.75);var NT=[ei,Qt,ti,ni,_c];var B2e=.7,Vl={HALF_CURL_START_LIMIT:60,NO_CURL_START_LIMIT:130,DISTANCE_VOTE_POWER:1.1,SINGLE_ANGLE_VOTE_POWER:.9,TOTAL_ANGLE_VOTE_POWER:1.6};function ET(e,t,n,s){let r=(t-s)/(e-n),a=Math.atan(r)*180/Math.PI;return a<=0?a=-a:a>0&&(a=180-a),a}function RT(e,t){if(!e||!t)return[0,0];let n=ET(e[0],e[1],t[0],t[1]);if(e.length===2)return n;let s=ET(e[1],e[2],t[1],t[2]);return[n,s]}function $T(e,t=1){let n=0,s=0,r=0;return e>=75&&e<=105?n=1*t:e>=25&&e<=155?s=1*t:r=1*t,[n,s,r]}function W2e(e,t,n){let s=e[0]-t[0],r=e[0]-n[0],a=t[0]-n[0],o=e[1]-t[1],i=e[1]-n[1],l=t[1]-n[1],c=e[2]-t[2],u=e[2]-n[2],d=t[2]-n[2],p=Math.sqrt(s*s+o*o+c*c),h=Math.sqrt(r*r+i*i+u*u),f=Math.sqrt(a*a+l*l+d*d),m=(f*f+p*p-h*h)/(2*f*p);m>1?m=1:m<-1&&(m=-1);let g=Math.acos(m);g=57.2958*g%180;let A;return g>Vl.NO_CURL_START_LIMIT?A=Qo.none:g>Vl.HALF_CURL_START_LIMIT?A=Qo.half:A=Qo.full,A}function _T(e,t,n,s){let r;return s===Math.abs(e)?e>0?r=zt.horizontalLeft:r=zt.horizontalRight:s===Math.abs(t)?t>0?r=zt.horizontalLeft:r=zt.horizontalRight:n>0?r=zt.horizontalLeft:r=zt.horizontalRight,r}function DT(e,t,n,s){let r;return s===Math.abs(e)?e<0?r=zt.verticalDown:r=zt.verticalUp:s===Math.abs(t)?t<0?r=zt.verticalDown:r=zt.verticalUp:n<0?r=zt.verticalDown:r=zt.verticalUp,r}function V2e(e,t,n,s,r,a,o,i){let l,c=DT(e,t,n,s),u=_T(r,a,o,i);return c===zt.verticalUp?u===zt.horizontalLeft?l=zt.diagonalUpLeft:l=zt.diagonalUpRight:u===zt.horizontalLeft?l=zt.diagonalDownLeft:l=zt.diagonalDownRight,l}function U2e(e,t,n,s){let r=e[0]-t[0],a=e[0]-n[0],o=t[0]-n[0],i=e[1]-t[1],l=e[1]-n[1],c=t[1]-n[1],u=Math.max(Math.abs(r),Math.abs(a),Math.abs(o)),d=Math.max(Math.abs(i),Math.abs(l),Math.abs(c)),p=0,h=0,f=0,m=d/(u+1e-5);m>1.5?p+=Vl.DISTANCE_VOTE_POWER:m>.66?h+=Vl.DISTANCE_VOTE_POWER:f+=Vl.DISTANCE_VOTE_POWER;let g=Math.sqrt(r*r+i*i),A=Math.sqrt(a*a+l*l),x=Math.sqrt(o*o+c*c),y=Math.max(g,A,x),b=e[0],w=e[1],k=n[0],S=n[1];y===g?(k=n[0],S=n[1]):y===x&&(b=t[0],w=t[1]);let M=RT([b,w],[k,S]),D=$T(M,Vl.TOTAL_ANGLE_VOTE_POWER);p+=D[0],h+=D[1],f+=D[2];for(let T of s){let F=$T(T,Vl.SINGLE_ANGLE_VOTE_POWER);p+=F[0],h+=F[1],f+=F[2]}let $;return p===Math.max(p,h,f)?$=DT(l,i,c,d):f===Math.max(h,f)?$=_T(a,r,o,u):$=V2e(l,i,c,d,a,r,o,u),$}function PT(e){let t=[],n=[],s=[],r=[];if(!e)return{curls:s,directions:r};for(let a of Jn.all){let o=Jn.getPoints(a),i=[],l=[];for(let c of o){let u=e[c[0]],d=e[c[1]],p=RT(u,d),h=p[0],f=p[1];i.push(h),l.push(f)}t.push(i),n.push(l)}for(let a of Jn.all){let o=a===Jn.thumb?1:0,i=Jn.getPoints(a),l=e[i[o][0]],c=e[i[o+1][1]],u=e[i[3][1]],d=W2e(l,c,u),p=U2e(l,c,u,t[a].slice(o));s[a]=d,r[a]=p}return{curls:s,directions:r}}function S0(e){if(!e||e.length===0)return null;let t=PT(e),n={};for(let s of Jn.all)n[Jn.getName(s)]={curl:Qo.getName(t.curls[s]),direction:zt.getName(t.directions[s])};return n}function FT(e){let t=[];if(!e||e.length===0)return t;let n=PT(e);for(let s of NT){let r=s.matchAgainst(n.curls,n.directions);r>=B2e&&t.push({name:s.name,confidence:r})}return t}var OT={thumb:[1,2,3,4],index:[5,6,7,8],middle:[9,10,11,12],ring:[13,14,15,16],pinky:[17,18,19,20],palm:[0]},ha,fa,MT;async function Ub(e,t){let n=await MT.estimateHands(e,t);if(!n)return[];let s=[];for(let r=0;r<n.length;r++){let a={};if(n[r].landmarks)for(let u of Object.keys(OT))a[u]=OT[u].map(d=>n[r].landmarks[d]);let o=n[r].landmarks,i=[Number.MAX_SAFE_INTEGER,Number.MAX_SAFE_INTEGER,0,0],l=[0,0,0,0];if(o&&o.length>0){for(let u of o)u[0]<i[0]&&(i[0]=u[0]),u[1]<i[1]&&(i[1]=u[1]),u[0]>i[2]&&(i[2]=u[0]),u[1]>i[3]&&(i[3]=u[1]);i[2]-=i[0],i[3]-=i[1],l=[i[0]/(e.shape[2]||0),i[1]/(e.shape[1]||0),i[2]/(e.shape[2]||0),i[3]/(e.shape[1]||0)]}else i=n[r].box?[Math.trunc(Math.max(0,n[r].box.topLeft[0])),Math.trunc(Math.max(0,n[r].box.topLeft[1])),Math.trunc(Math.min(e.shape[2]||0,n[r].box.bottomRight[0])-Math.max(0,n[r].box.topLeft[0])),Math.trunc(Math.min(e.shape[1]||0,n[r].box.bottomRight[1])-Math.max(0,n[r].box.topLeft[1]))]:[0,0,0,0],l=[n[r].box.topLeft[0]/(e.shape[2]||0),n[r].box.topLeft[1]/(e.shape[1]||0),(n[r].box.bottomRight[0]-n[r].box.topLeft[0])/(e.shape[2]||0),(n[r].box.bottomRight[1]-n[r].box.topLeft[1])/(e.shape[1]||0)];let c=S0(o);s.push({id:r,score:Math.round(100*n[r].confidence)/100,boxScore:Math.round(100*n[r].boxConfidence)/100,fingerScore:Math.round(100*n[r].fingerConfidence)/100,label:"hand",box:i,boxRaw:l,keypoints:o,annotations:a,landmarks:c})}return s}async function Gb(e){var n,s,r,a,o,i;de.initial&&(ha=null,fa=null),!ha||!fa?([ha,fa]=await Promise.all([e.hand.enabled?Be(We(e.modelBasePath,((n=e.hand.detector)==null?void 0:n.modelPath)||""),{fromTFHub:(((s=e.hand.detector)==null?void 0:s.modelPath)||"").includes("tfhub.dev")}):null,e.hand.landmarks?Be(We(e.modelBasePath,((r=e.hand.skeleton)==null?void 0:r.modelPath)||""),{fromTFHub:(((a=e.hand.skeleton)==null?void 0:a.modelPath)||"").includes("tfhub.dev")}):null]),e.hand.enabled&&(!ha||!ha.modelUrl?J("load model failed:",((o=e.hand.detector)==null?void 0:o.modelPath)||""):e.debug&&J("load model:",ha.modelUrl),!fa||!fa.modelUrl?J("load model failed:",((i=e.hand.skeleton)==null?void 0:i.modelPath)||""):e.debug&&J("load model:",fa.modelUrl))):(e.debug&&J("cached model:",ha.modelUrl),e.debug&&J("cached model:",fa.modelUrl));let t=new Bb(ha);return MT=new Wb(t,fa),[ha,fa]}function Ul(e,t=[1,1]){let n=[e.map(i=>i[0]),e.map(i=>i[1])],s=[Math.min(...n[0]),Math.min(...n[1])],r=[Math.max(...n[0]),Math.max(...n[1])],a=[s[0],s[1],r[0]-s[0],r[1]-s[1]],o=[a[0]/t[0],a[1]/t[1],a[2]/t[0],a[3]/t[1]];return{box:a,boxRaw:o}}function zT(e,t=[1,1]){let n=[e.map(c=>c[0]),e.map(c=>c[1])],s=[Math.min(...n[0]),Math.min(...n[1])],r=[Math.max(...n[0]),Math.max(...n[1])],a=[(s[0]+r[0])/2,(s[1]+r[1])/2],o=Math.max(a[0]-s[0],a[1]-s[1],-a[0]+r[0],-a[1]+r[1]),i=[Math.trunc(a[0]-o),Math.trunc(a[1]-o),Math.trunc(2*o),Math.trunc(2*o)],l=[i[0]/t[0],i[1]/t[1],i[2]/t[0],i[3]/t[1]];return{box:i,boxRaw:l}}function C0(e,t){let n=[e[2]*t,e[3]*t];return[e[0]-(n[0]-e[2])/2,e[1]-(n[1]-e[3])/2,n[0],n[1]]}function Hb(e){return[Math.max(0,e[1]),Math.max(0,e[0]),Math.min(1,e[3]+e[1]),Math.min(1,e[2]+e[0])]}var Tt=[null,null],G2e=["StatefulPartitionedCall/Postprocessor/Slice","StatefulPartitionedCall/Postprocessor/ExpandDims_1"],si=[[0,0],[0,0]],H2e=["hand","fist","pinch","point","face","tip","pinchtip"],LT=4,BT=1.6,j2e=512,q2e=1.4,T0=Number.MAX_SAFE_INTEGER,jb=0,ma=[0,0],qt={boxes:[],hands:[]},WT={thumb:[1,2,3,4],index:[5,6,7,8],middle:[9,10,11,12],ring:[13,14,15,16],pinky:[17,18,19,20],palm:[0]};async function VT(e){var t,n;if(de.initial&&(Tt[0]=null),Tt[0])e.debug&&J("cached model:",Tt[0].modelUrl);else{N0(["tensorlistreserve","enter","tensorlistfromtensor","merge","loopcond","switch","exit","tensorliststack","nextiteration","tensorlistsetitem","tensorlistgetitem","reciprocal","shape","split","where"],e),Tt[0]=await Be(We(e.modelBasePath,((t=e.hand.detector)==null?void 0:t.modelPath)||""));let s=Object.values(Tt[0].modelSignature.inputs);si[0][0]=Array.isArray(s)?parseInt(s[0].tensorShape.dim[1].size):0,si[0][1]=Array.isArray(s)?parseInt(s[0].tensorShape.dim[2].size):0,!Tt[0]||!Tt[0].modelUrl?J("load model failed:",(n=e.hand.detector)==null?void 0:n.modelPath):e.debug&&J("load model:",Tt[0].modelUrl)}return Tt[0]}async function UT(e){var t,n;if(de.initial&&(Tt[1]=null),Tt[1])e.debug&&J("cached model:",Tt[1].modelUrl);else{Tt[1]=await Be(We(e.modelBasePath,((t=e.hand.skeleton)==null?void 0:t.modelPath)||""));let s=Object.values(Tt[1].modelSignature.inputs);si[1][0]=Array.isArray(s)?parseInt(s[0].tensorShape.dim[1].size):0,si[1][1]=Array.isArray(s)?parseInt(s[0].tensorShape.dim[2].size):0,!Tt[1]||!Tt[1].modelUrl?J("load model failed:",(n=e.hand.skeleton)==null?void 0:n.modelPath):e.debug&&J("load model:",Tt[1].modelUrl)}return Tt[1]}async function X2e(e,t){let n=[];if(!e||!Tt[0])return n;let s={},r=(e.shape[2]||1)/(e.shape[1]||1),a=Math.min(Math.round((e.shape[1]||0)/8)*8,j2e),o=Math.round(a*r/8)*8;s.resize=Ce.resizeBilinear(e,[a,o]),s.cast=ge(s.resize,"int32"),[s.rawScores,s.rawBoxes]=await Tt[0].executeAsync(s.cast,G2e),s.boxes=ut(s.rawBoxes,[0,2]),s.scores=ut(s.rawScores,[0]);let i=os(s.scores,1);ne(i[LT]),i.splice(LT,1),s.filtered=xn(i,1),ne(i),s.max=yn(s.filtered,1),s.argmax=Js(s.filtered,1);let l=0;s.nms=await Ce.nonMaxSuppressionAsync(s.boxes,s.max,t.hand.maxDetected,t.hand.iouThreshold,t.hand.minConfidence);let c=await s.nms.data(),u=await s.max.data(),d=await s.argmax.data();for(let p of Array.from(c)){let h=Fe(s.boxes,p,1),f=await h.data();ne(h);let m=[f[1],f[0],f[3]-f[1],f[2]-f[0]],g=C0(m,q2e),A=Hb(g),x=[Math.trunc(m[0]*ma[0]),Math.trunc(m[1]*ma[1]),Math.trunc(m[2]*ma[0]),Math.trunc(m[3]*ma[1])],y=u[p],b=H2e[d[p]],w={id:l++,score:y,box:x,boxRaw:g,boxCrop:A,label:b};n.push(w)}return Object.keys(s).forEach(p=>ne(s[p])),n.sort((p,h)=>h.score-p.score),n.length>(t.hand.maxDetected||1)&&(n.length=t.hand.maxDetected||1),n}async function qb(e,t,n){let s={id:t.id,score:Math.round(100*t.score)/100,boxScore:Math.round(100*t.score)/100,fingerScore:0,box:t.box,boxRaw:t.boxRaw,label:t.label,keypoints:[],landmarks:{},annotations:{}};if(e&&Tt[1]&&n.hand.landmarks&&t.score>(n.hand.minConfidence||0)){let r={};r.crop=Ce.cropAndResize(e,[t.boxCrop],[0],[si[1][0],si[1][1]],"bilinear"),r.div=pe(r.crop,Xe.tf255),[r.score,r.keypoints]=Tt[1].execute(r.div,["Identity_1","Identity"]);let a=(await r.score.data())[0],o=(100-Math.trunc(100/(1+Math.exp(a))))/100;if(o>=(n.hand.minConfidence||0)){s.fingerScore=o,r.reshaped=H(r.keypoints,[-1,3]);let c=(await r.reshaped.array()).map(u=>[u[0]/si[1][1],u[1]/si[1][0],u[2]||0]).map(u=>[u[0]*t.boxRaw[2],u[1]*t.boxRaw[3],u[2]||0]);s.keypoints=c.map(u=>[ma[0]*(u[0]+t.boxRaw[0]),ma[1]*(u[1]+t.boxRaw[1]),u[2]||0]),s.landmarks=S0(s.keypoints);for(let u of Object.keys(WT))s.annotations[u]=WT[u].map(d=>s.landmarks&&s.keypoints[d]?s.keypoints[d]:null)}Object.keys(r).forEach(i=>ne(r[i]))}return s}async function Xb(e,t){var r,a;if(!Tt[0]||!Tt[1]||!((r=Tt[0])==null?void 0:r.inputs[0].shape)||!((a=Tt[1])==null?void 0:a.inputs[0].shape))return[];ma=[e.shape[2]||0,e.shape[1]||0],T0++;let n=(t.hand.skipTime||0)>ie()-jb,s=T0<(t.hand.skipFrames||0);return t.skipAllowed&&n&&s?qt.hands:new Promise(async o=>{let i=3*(t.hand.skipTime||0)>ie()-jb,l=T0<3*(t.hand.skipFrames||0);t.skipAllowed&&qt.hands.length===t.hand.maxDetected?qt.hands=await Promise.all(qt.boxes.map(u=>qb(e,u,t))):t.skipAllowed&&i&&l&&qt.hands.length>0?qt.hands=await Promise.all(qt.boxes.map(u=>qb(e,u,t))):(qt.boxes=await X2e(e,t),jb=ie(),qt.hands=await Promise.all(qt.boxes.map(u=>qb(e,u,t))),T0=0);let c=[...qt.boxes];if(qt.boxes.length=0,t.cacheSensitivity>0)for(let u=0;u<qt.hands.length;u++){let d=zT(qt.hands[u].keypoints,ma);if(d.box[2]/(e.shape[2]||1)>.05&&d.box[3]/(e.shape[1]||1)>.05&&qt.hands[u].fingerScore&&qt.hands[u].fingerScore>(t.hand.minConfidence||0)){let p=C0(d.box,BT),h=C0(d.boxRaw,BT),f=Hb(h);qt.boxes.push({...c[u],box:p,boxRaw:h,boxCrop:f})}}for(let u=0;u<qt.hands.length;u++){let d=Ul(qt.hands[u].keypoints,ma);qt.hands[u].box=d.box,qt.hands[u].boxRaw=d.boxRaw}o(qt.hands)})}var hn,E0=[],Kb=Number.MAX_SAFE_INTEGER,GT=0,HT=0;async function jT(e){var t,n;return de.initial&&(hn=null),hn?e.debug&&J("cached model:",hn.modelUrl):(hn=await Be(We(e.modelBasePath,((t=e.face.liveness)==null?void 0:t.modelPath)||"")),!hn||!hn.modelUrl?J("load model failed:",(n=e.face.liveness)==null?void 0:n.modelPath):e.debug&&J("load model:",hn.modelUrl)),hn}async function Zb(e,t,n,s){var o,i;if(!hn)return 0;let r=(((o=t.face.liveness)==null?void 0:o.skipTime)||0)>ie()-HT,a=Kb<(((i=t.face.liveness)==null?void 0:i.skipFrames)||0);return t.skipAllowed&&r&&a&&GT===s&&E0[n]?(Kb++,E0[n]):(Kb=0,new Promise(async l=>{let c=Ce.resizeBilinear(e,[(hn==null?void 0:hn.inputs[0].shape)?hn.inputs[0].shape[2]:0,(hn==null?void 0:hn.inputs[0].shape)?hn.inputs[0].shape[1]:0],!1),u=hn==null?void 0:hn.execute(c),d=(await u.data())[0];E0[n]=Math.round(100*d)/100,GT=s,HT=ie(),ne([c,u]),l(E0[n])}))}var e5={};Zc(e5,{connected:()=>$0,horizontal:()=>Yb,kpt:()=>R0,relative:()=>Qb,vertical:()=>Jb});var R0=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"],Yb=[["leftEye","rightEye"],["leftEar","rightEar"],["leftShoulder","rightShoulder"],["leftElbow","rightElbow"],["leftWrist","rightWrist"],["leftHip","rightHip"],["leftKnee","rightKnee"],["leftAnkle","rightAnkle"]],Jb=[["leftKnee","leftShoulder"],["rightKnee","rightShoulder"],["leftAnkle","leftKnee"],["rightAnkle","rightKnee"]],Qb=[[["leftHip","rightHip"],["leftShoulder","rightShoulder"]],[["leftElbow","rightElbow"],["leftShoulder","rightShoulder"]]],$0={leftLeg:["leftHip","leftKnee","leftAnkle"],rightLeg:["rightHip","rightKnee","rightAnkle"],torso:["leftShoulder","rightShoulder","rightHip","leftHip","leftShoulder"],leftArm:["leftShoulder","leftElbow","leftWrist"],rightArm:["rightShoulder","rightElbow","rightWrist"],head:[]};var qT=.005,Cs={keypoints:[],padding:[[0,0],[0,0],[0,0],[0,0]]};function t5(e){for(let t of Yb){let n=e.keypoints.findIndex(r=>r.part===t[0]),s=e.keypoints.findIndex(r=>r.part===t[1]);if(e.keypoints[n]&&e.keypoints[s]&&e.keypoints[n].position[0]<e.keypoints[s].position[0]){let r=e.keypoints[n];e.keypoints[n]=e.keypoints[s],e.keypoints[s]=r}}for(let t of Jb){let n=e.keypoints.findIndex(r=>r&&r.part===t[0]),s=e.keypoints.findIndex(r=>r&&r.part===t[1]);e.keypoints[n]&&e.keypoints[s]&&e.keypoints[n].position[1]<e.keypoints[s].position[1]&&e.keypoints.splice(n,1)}for(let[t,n]of Qb){let s=e.keypoints.findIndex(c=>c&&c.part===t[0]),r=e.keypoints.findIndex(c=>c&&c.part===t[1]),a=e.keypoints.findIndex(c=>c&&c.part===n[0]),o=e.keypoints.findIndex(c=>c&&c.part===n[1]);if(!e.keypoints[a]||!e.keypoints[o])continue;let i=e.keypoints[s]?[Math.abs(e.keypoints[a].position[0]-e.keypoints[s].position[0]),Math.abs(e.keypoints[o].position[0]-e.keypoints[s].position[0])]:[0,0],l=e.keypoints[r]?[Math.abs(e.keypoints[o].position[0]-e.keypoints[r].position[0]),Math.abs(e.keypoints[a].position[0]-e.keypoints[r].position[0])]:[0,0];if(i[0]>i[1]||l[0]>l[1]){let c=e.keypoints[s];e.keypoints[s]=e.keypoints[r],e.keypoints[r]=c}}}function XT(e){for(let t=0;t<e.length;t++)if(e[t]&&Cs.keypoints[t]){let n=[Math.abs(e[t].positionRaw[0]-Cs.keypoints[t].positionRaw[0]),Math.abs(e[t].positionRaw[1]-Cs.keypoints[t].positionRaw[1])];n[0]<qT&&n[1]<qT?e[t]=Cs.keypoints[t]:Cs.keypoints[t]=e[t]}else Cs.keypoints[t]=e[t];return e}function KT(e,t){let n={};if(!e.shape||!e.shape[1]||!e.shape[2])return e;Cs.padding=[[0,0],[e.shape[2]>e.shape[1]?Math.trunc((e.shape[2]-e.shape[1])/2):0,e.shape[2]>e.shape[1]?Math.trunc((e.shape[2]-e.shape[1])/2):0],[e.shape[1]>e.shape[2]?Math.trunc((e.shape[1]-e.shape[2])/2):0,e.shape[1]>e.shape[2]?Math.trunc((e.shape[1]-e.shape[2])/2):0],[0,0]],n.pad=er(e,Cs.padding),n.resize=Ce.resizeBilinear(n.pad,[t,t]);let s=ge(n.resize,"int32");return Object.keys(n).forEach(r=>ne(n[r])),s}function ZT(e,t){e.keypoints=e.keypoints.filter(s=>s&&s.position);for(let s of e.keypoints)s.position=[s.position[0]*(t[0]+Cs.padding[2][0]+Cs.padding[2][1])/t[0]-Cs.padding[2][0],s.position[1]*(t[1]+Cs.padding[1][0]+Cs.padding[1][1])/t[1]-Cs.padding[1][0]],s.positionRaw=[s.position[0]/t[0],s.position[1]/t[1]];let n=Ul(e.keypoints.map(s=>s.position),t);return e.box=n.box,e.boxRaw=n.boxRaw,e}var Fn,YT=0,n5=Number.MAX_SAFE_INTEGER,Gl={boxes:[],bodies:[],last:0};async function JT(e){return de.initial&&(Fn=null),Fn?e.debug&&J("cached model:",Fn.modelUrl):(N0(["size"],e),Fn=await Be(We(e.modelBasePath,e.body.modelPath||"")),!Fn||!Fn.modelUrl?J("load model failed:",e.body.modelPath):e.debug&&J("load model:",Fn.modelUrl)),YT=Fn.inputs[0].shape?Fn.inputs[0].shape[2]:0,Fn}async function K2e(e,t,n){let s=e[0][0],r=[],a=0;for(let u=0;u<s.length;u++)if(a=s[u][2],a>t.body.minConfidence){let d=[s[u][1],s[u][0]];r.push({score:Math.round(100*a)/100,part:R0[u],positionRaw:d,position:[Math.round((n.shape[2]||0)*d[0]),Math.round((n.shape[1]||0)*d[1])]})}a=r.reduce((u,d)=>d.score>u?d.score:u,0);let o=[],i=Ul(r.map(u=>u.position),[n.shape[2],n.shape[1]]),l={};for(let[u,d]of Object.entries($0)){let p=[];for(let h=0;h<d.length-1;h++){let f=r.find(g=>g.part===d[h]),m=r.find(g=>g.part===d[h+1]);f&&m&&f.score>(t.body.minConfidence||0)&&m.score>(t.body.minConfidence||0)&&p.push([f.position,m.position])}l[u]=p}let c={id:0,score:a,box:i.box,boxRaw:i.boxRaw,keypoints:r,annotations:l};return t5(c),o.push(c),o}async function Z2e(e,t,n){let s=[];for(let r=0;r<e[0].length;r++){let a=e[0][r],o=Math.round(100*a[51+4])/100;if(o>t.body.minConfidence){let i=[];for(let d=0;d<17;d++){let p=a[3*d+2];if(p>t.body.minConfidence){let h=[a[3*d+1],a[3*d+0]];i.push({part:R0[d],score:Math.round(100*p)/100,positionRaw:h,position:[Math.round((n.shape[2]||0)*h[0]),Math.round((n.shape[1]||0)*h[1])]})}}let l=Ul(i.map(d=>d.position),[n.shape[2],n.shape[1]]),c={};for(let[d,p]of Object.entries($0)){let h=[];for(let f=0;f<p.length-1;f++){let m=i.find(A=>A.part===p[f]),g=i.find(A=>A.part===p[f+1]);m&&g&&m.score>(t.body.minConfidence||0)&&g.score>(t.body.minConfidence||0)&&h.push([m.position,g.position])}c[d]=h}let u={id:r,score:o,box:l.box,boxRaw:l.boxRaw,keypoints:[...i],annotations:c};t5(u),s.push(u)}}return s.sort((r,a)=>a.score-r.score),s.length>t.body.maxDetected&&(s.length=t.body.maxDetected),s}async function s5(e,t){if(!Fn||!(Fn==null?void 0:Fn.inputs[0].shape))return[];t.skipAllowed||(Gl.boxes.length=0),n5++;let n=(t.body.skipTime||0)>ie()-Gl.last,s=n5<(t.body.skipFrames||0);return t.skipAllowed&&n&&s?Gl.bodies:new Promise(async r=>{let a={};n5=0,a.input=KT(e,YT),a.res=Fn==null?void 0:Fn.execute(a.input),Gl.last=ie();let o=await a.res.array();Gl.bodies=a.res.shape[2]===17?await K2e(o,t,e):await Z2e(o,t,e);for(let i of Gl.bodies)ZT(i,[e.shape[2]||1,e.shape[1]||1]),XT(i.keypoints);Object.keys(a).forEach(i=>ne(a[i])),r(Gl.bodies)})}var Gs,_0=[],QT=0,r5=Number.MAX_SAFE_INTEGER,D0=2.5;async function eN(e){if(!Gs||de.initial){Gs=await Be(We(e.modelBasePath,e.object.modelPath||""));let t=Object.values(Gs.modelSignature.inputs);Gs.inputSize=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):null,!Gs||!Gs.modelUrl?J("load model failed:",e.object.modelPath):e.debug&&J("load model:",Gs.modelUrl)}else e.debug&&J("cached model:",Gs.modelUrl);return Gs}async function Y2e(e,t,n,s){let r=0,a=[];for(let c of[1,2,4])K(async()=>{var g,A;let u=c*13,d=(g=e.find(x=>x.shape[1]===u**2&&x.shape[2]===Cc.length))==null?void 0:g.squeeze(),p=(A=e.find(x=>x.shape[1]===u**2&&x.shape[2]<Cc.length))==null?void 0:A.squeeze(),f=await p.reshape([-1,4,p.shape[1]/4]).argMax(2).array(),m=await d.array();for(let x=0;x<d.shape[0];x++)for(let y=0;y<d.shape[1];y++){let b=m[x][y];if(b>s.object.minConfidence&&y!==61){let w=(.5+Math.trunc(x%u))/u,k=(.5+Math.trunc(x/u))/u,S=f[x].map(V=>V*(u/c/t)),[N,R]=[w-D0/c*S[0],k-D0/c*S[1]],[M,D]=[w+D0/c*S[2]-N,k+D0/c*S[3]-R],$=[N,R,M,D];$=$.map(V=>Math.max(0,Math.min(V,1)));let T=[$[0]*n[0],$[1]*n[1],$[2]*n[0],$[3]*n[1]],F={id:r++,score:Math.round(100*b)/100,class:y+1,label:Cc[y].label,box:T.map(V=>Math.trunc(V)),boxRaw:$};a.push(F)}}});e.forEach(c=>ne(c));let o=a.map(c=>[c.boxRaw[1],c.boxRaw[0],c.boxRaw[3],c.boxRaw[2]]),i=a.map(c=>c.score),l=[];if(o&&o.length>0){let c=await Ce.nonMaxSuppressionAsync(o,i,s.object.maxDetected,s.object.iouThreshold,s.object.minConfidence);l=await c.data(),ne(c)}return a=a.filter((c,u)=>l.includes(u)).sort((c,u)=>u.score-c.score),a}async function a5(e,t){let n=(t.object.skipTime||0)>ie()-QT,s=r5<(t.object.skipFrames||0);return t.skipAllowed&&n&&s&&_0.length>0?(r5++,_0):(r5=0,!de.kernels.includes("mod")||!de.kernels.includes("sparsetodense")?_0:new Promise(async r=>{let a=[e.shape[2],e.shape[1]],o=Ce.resizeBilinear(e,[Gs.inputSize,Gs.inputSize],!1),i=pe(o,Xe.tf255),l=i.transpose([0,3,1,2]);ne(i),ne(o);let c;t.object.enabled&&(c=Gs.execute(l)),QT=ie(),ne(l);let u=await Y2e(c,Gs.inputSize,a,t);_0=u,r(u)}))}var Lp=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"],J2e=Lp.length,Bp=Lp.reduce((e,t,n)=>(e[t]=n,e),{}),Q2e=[["leftHip","leftShoulder"],["leftElbow","leftShoulder"],["leftElbow","leftWrist"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["rightHip","rightShoulder"],["rightElbow","rightShoulder"],["rightElbow","rightWrist"],["rightHip","rightKnee"],["rightKnee","rightAnkle"],["leftShoulder","rightShoulder"],["leftHip","rightHip"]],Axe=Q2e.map(([e,t])=>[Bp[e],Bp[t]]),tN=[["nose","leftEye"],["leftEye","leftEar"],["nose","rightEye"],["rightEye","rightEar"],["nose","leftShoulder"],["leftShoulder","leftElbow"],["leftElbow","leftWrist"],["leftShoulder","leftHip"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["nose","rightShoulder"],["rightShoulder","rightElbow"],["rightElbow","rightWrist"],["rightShoulder","rightHip"],["rightHip","rightKnee"],["rightKnee","rightAnkle"]];function nN(e){let t=e.reduce(({maxX:n,maxY:s,minX:r,minY:a},{position:{x:o,y:i}})=>({maxX:Math.max(n,o),maxY:Math.max(s,i),minX:Math.min(r,o),minY:Math.min(a,i)}),{maxX:Number.NEGATIVE_INFINITY,maxY:Number.NEGATIVE_INFINITY,minX:Number.POSITIVE_INFINITY,minY:Number.POSITIVE_INFINITY});return[t.minX,t.minY,t.maxX-t.minX,t.maxY-t.minY]}function sN(e,[t,n],[s,r]){let a=t/s,o=n/r,i=(c,u)=>({id:u,score:c.score,boxRaw:[c.box[0]/r,c.box[1]/s,c.box[2]/r,c.box[3]/s],box:[Math.trunc(c.box[0]*o),Math.trunc(c.box[1]*a),Math.trunc(c.box[2]*o),Math.trunc(c.box[3]*a)],keypoints:c.keypoints.map(({score:d,part:p,position:h})=>({score:d,part:p,position:[Math.trunc(h.x*o),Math.trunc(h.y*a)],positionRaw:[h.x/s,h.y/s]}))});return e.map((c,u)=>i(c,u))}var o5=class{constructor(t,n){he(this,"priorityQueue");he(this,"numberOfElements");he(this,"getElementValue");this.priorityQueue=new Array(t),this.numberOfElements=-1,this.getElementValue=n}enqueue(t){this.priorityQueue[++this.numberOfElements]=t,this.swim(this.numberOfElements)}dequeue(){let t=this.priorityQueue[0];return this.exchange(0,this.numberOfElements--),this.sink(0),this.priorityQueue[this.numberOfElements+1]=null,t}empty(){return this.numberOfElements===-1}size(){return this.numberOfElements+1}all(){return this.priorityQueue.slice(0,this.numberOfElements+1)}max(){return this.priorityQueue[0]}swim(t){for(;t>0&&this.less(Math.floor(t/2),t);)this.exchange(t,Math.floor(t/2)),t=Math.floor(t/2)}sink(t){for(;2*t<=this.numberOfElements;){let n=2*t;if(n<this.numberOfElements&&this.less(n,n+1)&&n++,!this.less(t,n))break;this.exchange(t,n),t=n}}getValueAt(t){return this.getElementValue(this.priorityQueue[t])}less(t,n){return this.getValueAt(t)<this.getValueAt(n)}exchange(t,n){let s=this.priorityQueue[t];this.priorityQueue[t]=this.priorityQueue[n],this.priorityQueue[n]=s}};function i5(e,t,n,s){return{y:s.get(e,t,n),x:s.get(e,t,n+J2e)}}function l5(e,t,n){let{heatmapY:s,heatmapX:r,id:a}=e,{y:o,x:i}=i5(s,r,a,n);return{x:e.heatmapX*t+i,y:e.heatmapY*t+o}}function u5(e,t,n){return e<t?t:e>n?n:e}function rN(e,t,n,s){let r=n-e,a=s-t;return r*r+a*a}function c5(e,t){return{x:e.x+t.x,y:e.y+t.y}}var Ts,e1e=["MobilenetV1/offset_2/BiasAdd","MobilenetV1/heatmap_2/BiasAdd","MobilenetV1/displacement_fwd_2/BiasAdd","MobilenetV1/displacement_bwd_2/BiasAdd"],P0=1,Dc=16,t1e=50**2;function aN(e,t,n,s,r,a,o=2){let i=A=>({y:a.get(A.y,A.x,e),x:a.get(A.y,A.x,a.shape[2]/2+e)}),l=(A,x,y)=>({y:u5(Math.round(A.y/Dc),0,x-1),x:u5(Math.round(A.x/Dc),0,y-1)}),[c,u]=s.shape,d=l(t.position,c,u),p=i(d),f=c5(t.position,p);for(let A=0;A<o;A++){let x=l(f,c,u),y=i5(x.y,x.x,n,r);f=c5({x:x.x*Dc,y:x.y*Dc},{x:y.x,y:y.y})}let m=l(f,c,u),g=s.get(m.y,m.x,n);return{position:f,part:Lp[n],score:g}}function n1e(e,t,n,s,r){let a=tN.map(([p,h])=>[Bp[p],Bp[h]]),o=a.map(([,p])=>p),i=a.map(([p])=>p),l=t.shape[2],c=o.length,u=new Array(l),d=l5(e.part,Dc,n);u[e.part.id]={score:e.score,part:Lp[e.part.id],position:d};for(let p=c-1;p>=0;--p){let h=o[p],f=i[p];u[h]&&!u[f]&&(u[f]=aN(p,u[h],f,t,n,r))}for(let p=0;p<c;++p){let h=i[p],f=o[p];u[h]&&!u[f]&&(u[f]=aN(p,u[h],f,t,n,s))}return u}function s1e(e,t,n,s,r){let[a,o]=r.shape,i=!0,l=Math.max(n-P0,0),c=Math.min(n+P0+1,a);for(let u=l;u<c;++u){let d=Math.max(s-P0,0),p=Math.min(s+P0+1,o);for(let h=d;h<p;++h)if(r.get(u,h,e)>t){i=!1;break}if(!i)break}return i}function r1e(e,t){let[n,s,r]=t.shape,a=new o5(n*s*r,({score:o})=>o);for(let o=0;o<n;++o)for(let i=0;i<s;++i)for(let l=0;l<r;++l){let c=t.get(o,i,l);c<e||s1e(l,c,o,i,t)&&a.enqueue({score:c,part:{heatmapY:o,heatmapX:i,id:l}})}return a}function oN(e,{x:t,y:n},s){return e.some(({keypoints:r})=>{var o;let a=(o=r[s])==null?void 0:o.position;return a?rN(n,t,a.y,a.x)<=t1e:!1})}function a1e(e,t){return t.reduce((s,{position:r,score:a},o)=>(oN(e,r,o)||(s+=a),s),0)/t.length}function o1e(e,t,n,s,r,a){let o=[],i=r1e(a,t);for(;o.length<r&&!i.empty();){let l=i.dequeue(),c=l5(l.part,Dc,e);if(oN(o,c,l.part.id))continue;let u=n1e(l,t,e,n,s);u=u.filter(h=>h.score>a);let d=a1e(o,u),p=nN(u);d>a&&o.push({keypoints:u,box:p,score:Math.round(100*d)/100})}return o}async function d5(e,t){let n=K(()=>{if(!Ts.inputs[0].shape)return[];let o=Ce.resizeBilinear(e,[Ts.inputs[0].shape[2],Ts.inputs[0].shape[1]]),i=fe(pe(ge(o,"float32"),127.5),1),c=Ts.execute(i,e1e).map(u=>ut(u,[0]));return c[1]=c[1].sigmoid(),c}),s=await Promise.all(n.map(o=>o.buffer()));for(let o of n)ne(o);let r=await o1e(s[0],s[1],s[2],s[3],t.body.maxDetected,t.body.minConfidence);return Ts.inputs[0].shape?sN(r,[e.shape[1],e.shape[2]],[Ts.inputs[0].shape[2],Ts.inputs[0].shape[1]]):[]}async function iN(e){return!Ts||de.initial?(Ts=await Be(We(e.modelBasePath,e.body.modelPath||"")),!Ts||!Ts.modelUrl?J("load model failed:",e.body.modelPath):e.debug&&J("load model:",Ts.modelUrl)):e.debug&&J("cached model:",Ts.modelUrl),Ts}var Hs,p5=!1;async function h5(e){return!Hs||de.initial?(Hs=await Be(We(e.modelBasePath,e.segmentation.modelPath||"")),!Hs||!Hs.modelUrl?J("load model failed:",e.segmentation.modelPath):e.debug&&J("load model:",Hs.modelUrl)):e.debug&&J("cached model:",Hs.modelUrl),Hs}async function lN(e,t,n){var m,g;if(p5)return{data:[],canvas:null,alpha:null};p5=!0,Hs||await h5(n);let s=await Sc(e,n),r=((m=s.tensor)==null?void 0:m.shape[2])||0,a=((g=s.tensor)==null?void 0:g.shape[1])||0;if(!s.tensor)return{data:[],canvas:null,alpha:null};let o={};o.resize=Ce.resizeBilinear(s.tensor,[Hs.inputs[0].shape?Hs.inputs[0].shape[1]:0,Hs.inputs[0].shape?Hs.inputs[0].shape[2]:0],!1),ne(s.tensor),o.norm=pe(o.resize,Xe.tf255),o.res=Hs.execute(o.norm),o.squeeze=ut(o.res,0),o.squeeze.shape[2]===2?(o.softmax=Hu(o.squeeze),[o.bg,o.fg]=os(o.softmax,2),o.expand=Kt(o.fg,2),o.pad=Kt(o.expand,0),o.crop=Ce.cropAndResize(o.pad,[[0,0,.5,.5]],[0],[r,a]),o.data=ut(o.crop,0)):o.data=Ce.resizeBilinear(o.squeeze,[a,r]);let i=Array.from(await o.data.data());if(de.node&&!de.Canvas&&typeof ImageData=="undefined")return n.debug&&J("canvas support missing"),Object.keys(o).forEach(A=>ne(o[A])),{data:i,canvas:null,alpha:null};let l=Kn(r,a);await Ys.toPixels(o.data,l);let c=l.getContext("2d");n.segmentation.blur&&n.segmentation.blur>0&&(c.filter=`blur(${n.segmentation.blur}px)`);let u=c.getImageData(0,0,r,a),d=Kn(r,a),p=d.getContext("2d");s.canvas&&p.drawImage(s.canvas,0,0),p.globalCompositeOperation="darken",n.segmentation.blur&&n.segmentation.blur>0&&(p.filter=`blur(${n.segmentation.blur}px)`),p.drawImage(l,0,0),p.globalCompositeOperation="source-over",p.filter="none";let h=p.getImageData(0,0,r,a);for(let A=0;A<r*a;A++)h.data[4*A+3]=u.data[4*A+0];p.putImageData(h,0,0);let f=null;if(t&&d){f=Kn(r,a);let A=await Sc(t,n);ne(A.tensor);let x=f.getContext("2d");x.drawImage(A.canvas,0,0,f.width,f.height),x.drawImage(d,0,0)}return Object.keys(o).forEach(A=>ne(o[A])),p5=!1,{data:i,canvas:d,alpha:l}}var f5=class{constructor(){he(this,"ssrnetage",null);he(this,"gear",null);he(this,"blazeposedetect",null);he(this,"blazepose",null);he(this,"centernet",null);he(this,"efficientpose",null);he(this,"mobilefacenet",null);he(this,"emotion",null);he(this,"facedetect",null);he(this,"faceiris",null);he(this,"facemesh",null);he(this,"faceres",null);he(this,"ssrnetgender",null);he(this,"handpose",null);he(this,"handskeleton",null);he(this,"handtrack",null);he(this,"liveness",null);he(this,"movenet",null);he(this,"nanodet",null);he(this,"posenet",null);he(this,"segmentation",null);he(this,"antispoof",null)}};function m5(e){for(let t of Object.keys(e.models))e.models[t]=null}async function uN(e){var t,n,s,r,a,o,i,l,c,u,d,p,h,f,m,g,A,x,y,b,w,k,S,N,R,M,D,$,T,F,V,X,z;de.initial&&m5(e),e.config.hand.enabled&&(!e.models.handpose&&((n=(t=e.config.hand.detector)==null?void 0:t.modelPath)==null?void 0:n.includes("handdetect"))&&([e.models.handpose,e.models.handskeleton]=await Gb(e.config)),!e.models.handskeleton&&e.config.hand.landmarks&&((r=(s=e.config.hand.detector)==null?void 0:s.modelPath)==null?void 0:r.includes("handdetect"))&&([e.models.handpose,e.models.handskeleton]=await Gb(e.config))),e.config.body.enabled&&!e.models.blazepose&&((o=(a=e.config.body)==null?void 0:a.modelPath)==null?void 0:o.includes("blazepose"))&&(e.models.blazepose=j8(e.config)),e.config.body.enabled&&!e.models.blazeposedetect&&((i=e.config.body.detector)==null?void 0:i.modelPath)&&((c=(l=e.config.body)==null?void 0:l.modelPath)==null?void 0:c.includes("blazepose"))&&(e.models.blazeposedetect=H8(e.config)),e.config.body.enabled&&!e.models.efficientpose&&((d=(u=e.config.body)==null?void 0:u.modelPath)==null?void 0:d.includes("efficientpose"))&&(e.models.efficientpose=Y8(e.config)),e.config.body.enabled&&!e.models.movenet&&((h=(p=e.config.body)==null?void 0:p.modelPath)==null?void 0:h.includes("movenet"))&&(e.models.movenet=JT(e.config)),e.config.body.enabled&&!e.models.posenet&&((m=(f=e.config.body)==null?void 0:f.modelPath)==null?void 0:m.includes("posenet"))&&(e.models.posenet=iN(e.config)),e.config.face.enabled&&!e.models.facedetect&&(e.models.facedetect=W8(e.config)),e.config.face.enabled&&((g=e.config.face.antispoof)==null?void 0:g.enabled)&&!e.models.antispoof&&(e.models.antispoof=_8(e.config)),e.config.face.enabled&&((A=e.config.face.liveness)==null?void 0:A.enabled)&&!e.models.liveness&&(e.models.liveness=jT(e.config)),e.config.face.enabled&&((x=e.config.face.description)==null?void 0:x.enabled)&&!e.models.faceres&&(e.models.faceres=AT(e.config)),e.config.face.enabled&&((y=e.config.face.emotion)==null?void 0:y.enabled)&&!e.models.emotion&&(e.models.emotion=eT(e.config)),e.config.face.enabled&&((b=e.config.face.iris)==null?void 0:b.enabled)&&!e.models.faceiris&&(e.models.faceiris=aT(e.config)),e.config.face.enabled&&((w=e.config.face.mesh)==null?void 0:w.enabled)&&!e.models.facemesh&&(e.models.facemesh=pT(e.config)),e.config.face.enabled&&((k=e.config.face.gear)==null?void 0:k.enabled)&&!e.models.gear&&(e.models.gear=w8(e.config)),e.config.face.enabled&&((S=e.config.face.ssrnet)==null?void 0:S.enabled)&&!e.models.ssrnetage&&(e.models.ssrnetage=C8(e.config)),e.config.face.enabled&&((N=e.config.face.ssrnet)==null?void 0:N.enabled)&&!e.models.ssrnetgender&&(e.models.ssrnetgender=E8(e.config)),e.config.face.enabled&&((R=e.config.face.mobilefacenet)==null?void 0:R.enabled)&&!e.models.mobilefacenet&&(e.models.mobilefacenet=rT(e.config)),e.config.hand.enabled&&!e.models.handtrack&&((D=(M=e.config.hand.detector)==null?void 0:M.modelPath)==null?void 0:D.includes("handtrack"))&&(e.models.handtrack=VT(e.config)),e.config.hand.enabled&&e.config.hand.landmarks&&!e.models.handskeleton&&((T=($=e.config.hand.detector)==null?void 0:$.modelPath)==null?void 0:T.includes("handtrack"))&&(e.models.handskeleton=UT(e.config)),e.config.object.enabled&&!e.models.centernet&&((V=(F=e.config.object)==null?void 0:F.modelPath)==null?void 0:V.includes("centernet"))&&(e.models.centernet=K8(e.config)),e.config.object.enabled&&!e.models.nanodet&&((z=(X=e.config.object)==null?void 0:X.modelPath)==null?void 0:z.includes("nanodet"))&&(e.models.nanodet=eN(e.config)),e.config.segmentation.enabled&&!e.models.segmentation&&(e.models.segmentation=h5(e.config));for await(let j of Object.keys(e.models))e.models[j]&&typeof e.models[j]!="undefined"&&(e.models[j]=await e.models[j])}async function cN(e){let t=["const","placeholder","noop","pad","squeeze","add","sub","mul","div"];for(let n of Object.keys(e.models))if(e.models[n]){let s=[];Array.isArray(e.models[n])?s=e.models[n].filter(r=>r!==null).map(r=>r&&r.executor?r:r.model):s=[e.models[n]];for(let r of s){if(!r){e.config.debug&&J("model marked as loaded but not defined:",n);continue}let a=[],o=r==null?void 0:r.executor;if(o&&o.graph.nodes)for(let l of Object.values(o.graph.nodes)){let c=l.op.toLowerCase();a.includes(c)||a.push(c)}else!o&&e.config.debug&&J("model signature not determined:",n);let i=[];for(let l of a)!t.includes(l)&&!e.env.kernels.includes(l)&&!e.env.kernels.includes(l.replace("_",""))&&!e.env.kernels.includes(l.replace("native",""))&&!e.env.kernels.includes(l.replace("v2",""))&&i.push(l);i.length>0&&e.config.debug&&J("model validation:",n,i)}}}var Nt={name:"humangl",priority:999,canvas:null,gl:null,extensions:[],webGLattr:{alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!1,desynchronized:!0}};function i1e(){let e=Nt.gl;!e||(Nt.extensions=e.getSupportedExtensions())}async function dN(e){var t;if(e.config.backend==="humangl"&&(Nt.name in as().registry&&(!Nt.gl||!Nt.gl.getParameter(Nt.gl.VERSION))&&(J("error: humangl backend invalid context"),m5(e)),!Q2(Nt.name))){try{Nt.canvas=await Kn(100,100)}catch(s){J("error: cannot create canvas:",s);return}try{if(Nt.gl=(t=Nt.canvas)==null?void 0:t.getContext("webgl2",Nt.webGLattr),!Nt.gl.getParameter(Nt.gl.VERSION).includes("2.0")){J("override: using fallback webgl backend as webgl 2.0 is not detected"),e.config.backend="webgl";return}Nt.canvas&&(Nt.canvas.addEventListener("webglcontextlost",async r=>{throw J("error: humangl:",r.type),J("possible browser memory leak using webgl or conflict with multiple backend registrations"),e.emit("error"),new Error("backend error: webgl context lost")}),Nt.canvas.addEventListener("webglcontextrestored",r=>{J("error: humangl context restored:",r)}),Nt.canvas.addEventListener("webglcontextcreationerror",r=>{J("error: humangl context create:",r)}))}catch(s){J("error: cannot get WebGL context:",s);return}try{Fm(2,Nt.gl)}catch(s){J("error: cannot set WebGL context:",s);return}try{let s=new Gm(Nt.gl);ol(Nt.name,()=>new yp(s),Nt.priority)}catch(s){J("error: cannot register WebGL backend:",s);return}try{Yr("webgl").forEach(r=>{let a={...r,backendName:Nt.name};dr(a)})}catch(s){J("error: cannot update WebGL backend registration:",s);return}let n=$r().getGPGPUContext?$r().getGPGPUContext().gl:null;if(n)J(`humangl webgl version:${n.getParameter(n.VERSION)} renderer:${n.getParameter(n.RENDERER)}`);else{J("error: no current gl context:",n,Nt.gl);return}try{Nr.set("WEBGL_VERSION",2)}catch(s){J("error: cannot set WebGL backend flags:",s);return}i1e(),J("backend registered:",Nt.name)}}function l1e(){if(!de.kernels.includes("mod")){let e={kernelName:"Mod",backendName:_s(),kernelFunc:t=>K(()=>fe(t.inputs.a,L(pe(t.inputs.a,t.inputs.b),t.inputs.b)))};dr(e),de.kernels.push("mod")}if(!de.kernels.includes("floormod")){let e={kernelName:"FloorMod",backendName:_s(),kernelFunc:t=>K(()=>pf(t.inputs.a/t.inputs.b)*t.inputs.b+Md(t.inputs.a,t.inputs.b))};dr(e),de.kernels.push("floormod")}}async function F0(e,t=!1){if(e.state="backend",t||de.initial||e.config.backend&&e.config.backend.length>0&&_s()!==e.config.backend){let n=ie();if(e.config.backend&&e.config.backend.length>0){if(typeof window=="undefined"&&typeof WorkerGlobalScope!="undefined"&&e.config.debug&&e.config.debug&&J("running inside web worker"),de.browser&&e.config.backend==="tensorflow"&&(e.config.debug&&J("override: backend set to tensorflow while running in browser"),e.config.backend="humangl"),de.node&&(e.config.backend==="webgl"||e.config.backend==="humangl")&&(e.config.debug&&J(`override: backend set to ${e.config.backend} while running in nodejs`),e.config.backend="tensorflow"),de.browser&&e.config.backend==="webgpu")if(typeof navigator=="undefined"||typeof navigator.gpu=="undefined")J("override: backend set to webgpu but browser does not support webgpu"),e.config.backend="humangl";else{let r=await navigator.gpu.requestAdapter();e.config.debug&&J("enumerated webgpu adapter:",r)}e.config.backend==="humangl"&&await dN(e);let s=Object.keys(as().registryFactory);if(e.config.debug&&J("available backends:",s),s.includes(e.config.backend)||(J(`error: backend ${e.config.backend} not found in registry`),e.config.backend=de.node?"tensorflow":"webgl",e.config.debug&&J(`override: setting backend ${e.config.backend}`)),e.config.debug&&J("setting backend:",e.config.backend),e.config.backend==="wasm"){if(e.config.debug&&J("wasm path:",e.config.wasmPath),typeof(Pl==null?void 0:Pl.setWasmPaths)!="undefined")await i8(e.config.wasmPath);else throw new Error("backend error: attempting to use wasm backend but wasm path is not set");let r=await Y().getAsync("WASM_HAS_SIMD_SUPPORT"),a=await Y().getAsync("WASM_HAS_MULTITHREAD_SUPPORT");e.config.debug&&J(`wasm execution: ${r?"SIMD":"no SIMD"} ${a?"multithreaded":"singlethreaded"}`),e.config.debug&&!r&&J("warning: wasm simd support is not enabled")}try{await rv(e.config.backend),await df(),k8()}catch(r){return J("error: cannot set backend:",e.config.backend,r),!1}}if(_s()==="humangl"&&(Nr.set("CHECK_COMPUTATION_FOR_ERRORS",!1),Nr.set("WEBGL_CPU_FORWARD",!0),Nr.set("WEBGL_USE_SHAPES_UNIFORMS",!0),Nr.set("CPU_HANDOFF_SIZE_THRESHOLD",256),typeof e.config.deallocate!="undefined"&&e.config.deallocate&&(J("changing webgl: WEBGL_DELETE_TEXTURE_THRESHOLD:",!0),Nr.set("WEBGL_DELETE_TEXTURE_THRESHOLD",0)),$r().getGPGPUContext)){let s=await $r().getGPGPUContext().gl;e.config.debug&&J(`gl version:${s.getParameter(s.VERSION)} renderer:${s.getParameter(s.RENDERER)}`)}_s()==="webgpu",sv(),await df(),e.performance.initBackend=Math.trunc(ie()-n),e.config.backend=_s(),await de.updateBackend(),l1e()}return!0}function N0(e,t){for(let n of e){let s={kernelName:n,backendName:t.backend,kernelFunc:()=>{t.debug&&J("kernelFunc",n,t.backend)}};dr(s)}de.kernels=Yr(_s()).map(n=>n.kernelName.toLowerCase())}var ga={color:"rgba(173, 216, 230, 0.6)",labelColor:"rgba(173, 216, 230, 1)",shadowColor:"black",font:'small-caps 16px "Segoe UI"',lineHeight:18,lineWidth:4,pointSize:2,roundRect:8,drawPoints:!1,drawLabels:!0,drawBoxes:!0,drawGestures:!0,drawPolygons:!0,drawGaze:!0,fillPolygons:!1,useDepth:!0,useCurves:!1},g5=0,Hl=e=>{if(!e)J("draw error: invalid canvas");else if(!e.getContext)J("draw error: canvas context not defined");else{let t=e.getContext("2d");if(!t)J("draw error: cannot get canvas context");else return t}return null},Pc=e=>Math.round(e*180/Math.PI);function A5(e,t,n,s,r){s=s||0,e.fillStyle=r.useDepth&&s?`rgba(${127.5+2*s}, ${127.5-2*s}, 255, 0.3)`:r.color,e.beginPath(),e.arc(t,n,r.pointSize,0,2*Math.PI),e.fill()}function Wp(e,t,n,s,r,a){if(e.beginPath(),a.useCurves){let o=(t+t+s)/2,i=(n+n+r)/2;e.ellipse(o,i,s/2,r/2,0,0,2*Math.PI)}else e.lineWidth=a.lineWidth,e.moveTo(t+a.roundRect,n),e.lineTo(t+s-a.roundRect,n),e.quadraticCurveTo(t+s,n,t+s,n+a.roundRect),e.lineTo(t+s,n+r-a.roundRect),e.quadraticCurveTo(t+s,n+r,t+s-a.roundRect,n+r),e.lineTo(t+a.roundRect,n+r),e.quadraticCurveTo(t,n+r,t,n+r-a.roundRect),e.lineTo(t,n+a.roundRect),e.quadraticCurveTo(t,n,t+a.roundRect,n),e.closePath();e.stroke()}function pN(e,t,n){if(!(t.length<2)){e.beginPath(),e.moveTo(t[0][0],t[0][1]);for(let s of t){let r=s[2]||0;e.strokeStyle=n.useDepth&&r!==0?`rgba(${127.5+2*r}, ${127.5-2*r}, 255, 0.3)`:n.color,e.fillStyle=n.useDepth&&r!==0?`rgba(${127.5+2*r}, ${127.5-2*r}, 255, 0.3)`:n.color,e.lineTo(s[0],Math.round(s[1]))}e.stroke(),n.fillPolygons&&(e.closePath(),e.fill())}}function u1e(e,t,n){if(!(t.length<2)){if(!n.useCurves||t.length<=2){pN(e,t,n);return}e.moveTo(t[0][0],t[0][1]);for(let s=0;s<t.length-2;s++){let r=(t[s][0]+t[s+1][0])/2,a=(t[s][1]+t[s+1][1])/2;e.quadraticCurveTo(t[s][0],t[s][1],r,a)}e.quadraticCurveTo(t[t.length-2][0],t[t.length-2][1],t[t.length-1][0],t[t.length-1][1]),e.stroke(),n.fillPolygons&&(e.closePath(),e.fill())}}function hN(e,t,n,s=5){let r,a,o;e.beginPath(),e.moveTo(t[0],t[1]),e.lineTo(n[0],n[1]),r=Math.atan2(n[1]-t[1],n[0]-t[0]),a=s*Math.cos(r)+n[0],o=s*Math.sin(r)+n[1],e.moveTo(a,o),r+=1/3*(2*Math.PI),a=s*Math.cos(r)+n[0],o=s*Math.sin(r)+n[1],e.lineTo(a,o),r+=1/3*(2*Math.PI),a=s*Math.cos(r)+n[0],o=s*Math.sin(r)+n[1],e.lineTo(a,o),e.closePath(),e.stroke(),e.fill()}async function y5(e,t,n){let s=$n(ga,n);if(!(!t||!e)&&s.drawGestures){let r=Hl(e);if(!r)return;r.font=s.font,r.fillStyle=s.color;let a=1;for(let o=0;o<t.length;o++){let i=[],l=[];if([i,l]=Object.entries(t[o]),l.length>1&&l[1].length>0){let c=i[1]>0?`#${i[1]}`:"",u=`${i[0]} ${c}: ${l[1]}`;s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText(u,8,2+a*s.lineHeight)),r.fillStyle=s.labelColor,r.fillText(u,6,0+a*s.lineHeight),a+=1}}}}async function x5(e,t,n){var a,o,i,l,c;let s=$n(ga,n);if(!t||!e)return;let r=Hl(e);if(!!r)for(let u of t){if(r.font=s.font,r.strokeStyle=s.color,r.fillStyle=s.color,s.drawBoxes&&Wp(r,u.box[0],u.box[1],u.box[2],u.box[3],s),s.drawLabels){let d=[];if(d.push(`face: ${Math.trunc(100*u.score)}%`),u.genderScore&&d.push(`${u.gender||""} ${Math.trunc(100*u.genderScore)}%`),u.age&&d.push(`age: ${u.age||""}`),u.iris&&d.push(`distance: ${u.iris}`),u.real&&d.push(`real: ${Math.trunc(100*u.real)}%`),u.live&&d.push(`live: ${Math.trunc(100*u.live)}%`),u.emotion&&u.emotion.length>0){let p=u.emotion.map(h=>`${Math.trunc(100*h.score)}% ${h.emotion}`);p.length>3&&(p.length=3),d.push(p.join(" "))}u.rotation&&u.rotation.angle&&u.rotation.gaze&&(u.rotation.angle.roll&&d.push(`roll: ${Pc(u.rotation.angle.roll)}\xB0 yaw:${Pc(u.rotation.angle.yaw)}\xB0 pitch:${Pc(u.rotation.angle.pitch)}\xB0`),u.rotation.gaze.bearing&&d.push(`gaze: ${Pc(u.rotation.gaze.bearing)}\xB0`)),d.length===0&&d.push("face"),r.fillStyle=s.color;for(let p=d.length-1;p>=0;p--){let h=Math.max(u.box[0],0),f=p*s.lineHeight+u.box[1];s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText(d[p],h+5,f+16)),r.fillStyle=s.labelColor,r.fillText(d[p],h+4,f+15)}}if(r.lineWidth=1,u.mesh&&u.mesh.length>0){if(s.drawPoints)for(let d of u.mesh)A5(r,d[0],d[1],d[2],s);if(s.drawPolygons){if(r.lineWidth=1,u.mesh.length>450)for(let d=0;d<Fl.length/3;d++){let p=[Fl[d*3+0],Fl[d*3+1],Fl[d*3+2]].map(h=>u.mesh[h]);pN(r,p,s)}if(u.annotations&&u.annotations.leftEyeIris&&u.annotations.leftEyeIris[0]){r.strokeStyle=s.useDepth?"rgba(255, 200, 255, 0.3)":s.color,r.beginPath();let d=Math.abs(u.annotations.leftEyeIris[3][0]-u.annotations.leftEyeIris[1][0])/2,p=Math.abs(u.annotations.leftEyeIris[4][1]-u.annotations.leftEyeIris[2][1])/2;r.ellipse(u.annotations.leftEyeIris[0][0],u.annotations.leftEyeIris[0][1],d,p,0,0,2*Math.PI),r.stroke(),s.fillPolygons&&(r.fillStyle=s.useDepth?"rgba(255, 255, 200, 0.3)":s.color,r.fill())}if(u.annotations&&u.annotations.rightEyeIris&&u.annotations.rightEyeIris[0]){r.strokeStyle=s.useDepth?"rgba(255, 200, 255, 0.3)":s.color,r.beginPath();let d=Math.abs(u.annotations.rightEyeIris[3][0]-u.annotations.rightEyeIris[1][0])/2,p=Math.abs(u.annotations.rightEyeIris[4][1]-u.annotations.rightEyeIris[2][1])/2;r.ellipse(u.annotations.rightEyeIris[0][0],u.annotations.rightEyeIris[0][1],d,p,0,0,2*Math.PI),r.stroke(),s.fillPolygons&&(r.fillStyle=s.useDepth?"rgba(255, 255, 200, 0.3)":s.color,r.fill())}if(s.drawGaze&&((a=u.rotation)==null?void 0:a.angle)&&typeof Path2D!="undefined"){r.strokeStyle="pink";let d=u.box[0]+u.box[2]/2-u.box[3]*Pc(u.rotation.angle.yaw)/90,p=u.box[1]+u.box[3]/2+u.box[2]*Pc(u.rotation.angle.pitch)/90,h=new Path2D(`
M ${u.box[0]+u.box[2]/2} ${u.box[1]}
C
${d} ${u.box[1]},
${d} ${u.box[1]+u.box[3]},
${u.box[0]+u.box[2]/2} ${u.box[1]+u.box[3]}
`),f=new Path2D(`
M ${u.box[0]} ${u.box[1]+u.box[3]/2}
C
${u.box[0]} ${p},
${u.box[0]+u.box[2]} ${p},
${u.box[0]+u.box[2]} ${u.box[1]+u.box[3]/2}
`);r.stroke(f),r.stroke(h)}if(s.drawGaze&&((i=(o=u.rotation)==null?void 0:o.gaze)==null?void 0:i.strength)&&((c=(l=u.rotation)==null?void 0:l.gaze)==null?void 0:c.bearing)&&u.annotations.leftEyeIris&&u.annotations.rightEyeIris&&u.annotations.leftEyeIris[0]&&u.annotations.rightEyeIris[0]){r.strokeStyle="pink",r.fillStyle="pink";let d=[u.annotations.leftEyeIris[0][0]+Math.sin(u.rotation.gaze.bearing)*u.rotation.gaze.strength*u.box[3],u.annotations.leftEyeIris[0][1]+Math.cos(u.rotation.gaze.bearing)*u.rotation.gaze.strength*u.box[2]];hN(r,[u.annotations.leftEyeIris[0][0],u.annotations.leftEyeIris[0][1]],[d[0],d[1]],4);let p=[u.annotations.rightEyeIris[0][0]+Math.sin(u.rotation.gaze.bearing)*u.rotation.gaze.strength*u.box[3],u.annotations.rightEyeIris[0][1]+Math.cos(u.rotation.gaze.bearing)*u.rotation.gaze.strength*u.box[2]];hN(r,[u.annotations.rightEyeIris[0][0],u.annotations.rightEyeIris[0][1]],[p[0],p[1]],4)}}}}}async function b5(e,t,n){var a;let s=$n(ga,n);if(!t||!e)return;let r=Hl(e);if(!!r){r.lineJoin="round";for(let o=0;o<t.length;o++){if(r.strokeStyle=s.color,r.fillStyle=s.color,r.lineWidth=s.lineWidth,r.font=s.font,s.drawBoxes&&t[o].box&&((a=t[o].box)==null?void 0:a.length)===4&&(Wp(r,t[o].box[0],t[o].box[1],t[o].box[2],t[o].box[3],s),s.drawLabels&&(s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText(`body ${100*t[o].score}%`,t[o].box[0]+3,1+t[o].box[1]+s.lineHeight,t[o].box[2])),r.fillStyle=s.labelColor,r.fillText(`body ${100*t[o].score}%`,t[o].box[0]+2,0+t[o].box[1]+s.lineHeight,t[o].box[2]))),s.drawPoints&&t[o].keypoints)for(let i=0;i<t[o].keypoints.length;i++)!t[o].keypoints[i].score||t[o].keypoints[i].score===0||(r.fillStyle=s.useDepth&&t[o].keypoints[i].position[2]?`rgba(${127.5+2*(t[o].keypoints[i].position[2]||0)}, ${127.5-2*(t[o].keypoints[i].position[2]||0)}, 255, 0.5)`:s.color,A5(r,t[o].keypoints[i].position[0],t[o].keypoints[i].position[1],0,s));if(s.drawLabels&&t[o].keypoints){r.font=s.font;for(let i of t[o].keypoints)!i.score||i.score===0||(r.fillStyle=s.useDepth&&i.position[2]?`rgba(${127.5+2*i.position[2]}, ${127.5-2*i.position[2]}, 255, 0.5)`:s.color,r.fillText(`${i.part} ${Math.trunc(100*i.score)}%`,i.position[0]+4,i.position[1]+4))}if(s.drawPolygons&&t[o].keypoints&&t[o].annotations)for(let i of Object.values(t[o].annotations))for(let l of i)u1e(r,l,s)}}}async function v5(e,t,n){let s=$n(ga,n);if(!t||!e)return;let r=Hl(e);if(!!r){r.lineJoin="round",r.font=s.font;for(let a of t){if(s.drawBoxes&&(r.strokeStyle=s.color,r.fillStyle=s.color,Wp(r,a.box[0],a.box[1],a.box[2],a.box[3],s),s.drawLabels&&(s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText(`hand:${Math.trunc(100*a.score)}%`,a.box[0]+3,1+a.box[1]+s.lineHeight,a.box[2])),r.fillStyle=s.labelColor,r.fillText(`hand:${Math.trunc(100*a.score)}%`,a.box[0]+2,0+a.box[1]+s.lineHeight,a.box[2])),r.stroke()),s.drawPoints&&a.keypoints&&a.keypoints.length>0)for(let o of a.keypoints)r.fillStyle=s.useDepth?`rgba(${127.5+2*(o[2]||0)}, ${127.5-2*(o[2]||0)}, 255, 0.5)`:s.color,A5(r,o[0],o[1],0,s);if(s.drawLabels&&a.annotations){let o=(i,l)=>{!i||i.length===0||!i[0]||(r.fillStyle=s.useDepth?`rgba(${127.5+2*i[i.length-1][2]}, ${127.5-2*i[i.length-1][2]}, 255, 0.5)`:s.color,r.fillText(l,i[i.length-1][0]+4,i[i.length-1][1]+4))};r.font=s.font,o(a.annotations.index,"index"),o(a.annotations.middle,"middle"),o(a.annotations.ring,"ring"),o(a.annotations.pinky,"pinky"),o(a.annotations.thumb,"thumb"),o(a.annotations.palm,"palm")}if(s.drawPolygons&&a.annotations){let o=i=>{if(!(!i||i.length===0||!i[0]))for(let l=0;l<i.length;l++)r.beginPath(),r.strokeStyle=s.useDepth?`rgba(${127.5+l*i[l][2]}, ${127.5-l*i[l][2]}, 255, 0.5)`:s.color,r.moveTo(i[l>0?l-1:0][0],i[l>0?l-1:0][1]),r.lineTo(i[l][0],i[l][1]),r.stroke()};r.lineWidth=s.lineWidth,o(a.annotations.index),o(a.annotations.middle),o(a.annotations.ring),o(a.annotations.pinky),o(a.annotations.thumb)}}}}async function w5(e,t,n){let s=$n(ga,n);if(!t||!e)return;let r=Hl(e);if(!!r){r.lineJoin="round",r.font=s.font;for(let a of t)if(s.drawBoxes){if(r.strokeStyle=s.color,r.fillStyle=s.color,Wp(r,a.box[0],a.box[1],a.box[2],a.box[3],s),s.drawLabels){let o=`${a.label} ${Math.round(100*a.score)}%`;s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText(o,a.box[0]+3,1+a.box[1]+s.lineHeight,a.box[2])),r.fillStyle=s.labelColor,r.fillText(o,a.box[0]+2,0+a.box[1]+s.lineHeight,a.box[2])}r.stroke()}}}async function fN(e,t,n){let s=$n(ga,n);if(!t||!e)return;let r=Hl(e);if(!!r){r.lineJoin="round",r.font=s.font;for(let a=0;a<t.length;a++)if(s.drawBoxes){if(r.strokeStyle=s.color,r.fillStyle=s.color,Wp(r,t[a].box[0],t[a].box[1],t[a].box[2],t[a].box[3],s),s.drawLabels){let o=`person #${a}`;s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText(o,t[a].box[0]+3,1+t[a].box[1]+s.lineHeight,t[a].box[2])),r.fillStyle=s.labelColor,r.fillText(o,t[a].box[0]+2,0+t[a].box[1]+s.lineHeight,t[a].box[2])}r.stroke()}}}async function mN(e,t){if(!e||!t)return;let n=Hl(t);!n||n.drawImage(e,0,0)}async function gN(e,t,n){if(!t||!t.performance||!t||!e)return null;let s=ie(),r=$n(ga,n),a=Promise.all([x5(e,t.face,r),b5(e,t.body,r),v5(e,t.hand,r),w5(e,t.object,r),y5(e,t.gesture,r)]);return g5=de.perfadd?g5+Math.round(ie()-s):Math.round(ie()-s),t.performance.draw=g5,a}var Fc=.1,k5=.5;function c1e(e,t,n){let s=!1,r=n.length-1;for(let a=0;a<n.length;r=a++)n[a].y>t!=n[r].y>t&&e<(n[r].x-n[a].x)*(t-n[a].y)/(n[r].y-n[a].y)+n[a].x&&(s=!s);return s}async function AN(e){if(!e.tensor||!e.mesh||e.mesh.length<100)return e.tensor;let t=e.tensor.shape[2]||0,n=e.tensor.shape[1]||0,s=await e.tensor.buffer(),r=[];for(let o of ir.silhouette)r.push({x:(e.mesh[o][0]-e.box[0])/e.box[2],y:(e.mesh[o][1]-e.box[1])/e.box[3]});Fc&&Fc>0&&(r=r.map(o=>({x:o.x>.5?o.x+Fc:o.x-Fc,y:o.y>.5?o.y+Fc:o.y-Fc})));for(let o=0;o<t;o++)for(let i=0;i<n;i++)c1e(o/t,i/t,r)||(s.set(k5*s.get(0,i,o,0),0,i,o,0),s.set(k5*s.get(0,i,o,1),0,i,o,1),s.set(k5*s.get(0,i,o,2),0,i,o,2));let a=s.toTensor();return ne(s),a}var d1e=e=>{let t=(d,p)=>Math.atan2(d[1]-p[1],d[0]-p[0]);if(!e.annotations.rightEyeIris||!e.annotations.leftEyeIris)return{bearing:0,strength:0};let n=[0,-.1],s=1,r=e.mesh[33][2]>e.mesh[263][2],a=r?e.mesh[473]:e.mesh[468],o=r?[(e.mesh[133][0]+e.mesh[33][0])/2,(e.mesh[133][1]+e.mesh[33][1])/2]:[(e.mesh[263][0]+e.mesh[362][0])/2,(e.mesh[263][1]+e.mesh[362][1])/2],i=r?[e.mesh[133][0]-e.mesh[33][0],e.mesh[23][1]-e.mesh[27][1]]:[e.mesh[263][0]-e.mesh[362][0],e.mesh[253][1]-e.mesh[257][1]],l=[(o[0]-a[0])/i[0]-n[0],s*(a[1]-o[1])/i[1]-n[1]],c=Math.sqrt(l[0]**2+l[1]**2);return c=Math.min(c,e.boxRaw[2]/2,e.boxRaw[3]/2),{bearing:(t([0,0],l)+Math.PI/2)%Math.PI,strength:c}},yN=(e,t)=>{let n=g=>{let A=Math.sqrt(g[0]*g[0]+g[1]*g[1]+g[2]*g[2]);return g[0]/=A,g[1]/=A,g[2]/=A,g},s=(g,A)=>{let x=g[0]-A[0],y=g[1]-A[1],b=g[2]-A[2];return[x,y,b]},r=(g,A)=>{let x=g[1]*A[2]-g[2]*A[1],y=g[2]*A[0]-g[0]*A[2],b=g[0]*A[1]-g[1]*A[0];return[x,y,b]},a=g=>{let[A,x,y,b,w,k,S,N,R]=g,M,D,$;return b<1?b>-1?($=Math.asin(b),D=Math.atan2(-S,A),M=Math.atan2(-k,w)):($=-Math.PI/2,D=-Math.atan2(N,R),M=0):($=Math.PI/2,D=Math.atan2(N,R),M=0),isNaN(M)&&(M=0),isNaN(D)&&(D=0),isNaN($)&&($=0),{pitch:2*-M,yaw:2*-D,roll:2*-$}},o=g=>{let A=(y,b,w,k)=>Math.atan2(k-b,w-y);return{pitch:A(g[10][1],g[10][2],g[152][1],g[152][2]),yaw:A(g[33][0],g[33][2],g[263][0],g[263][2]),roll:A(g[33][0],g[33][1],g[263][0],g[263][1])}},i=e.meshRaw;if(!i||i.length<300)return{angle:{pitch:0,yaw:0,roll:0},matrix:[1,0,0,0,1,0,0,0,1],gaze:{bearing:0,strength:0}};let l=Math.max(e.boxRaw[2]*t[0],e.boxRaw[3]*t[1])/1.5,c=[i[10],i[152],i[234],i[454]].map(g=>[g[0]*t[0]/l,g[1]*t[1]/l,g[2]]),u=n(s(c[1],c[0])),d=n(s(c[3],c[2])),p=n(r(d,u));d=r(u,p);let h=[d[0],d[1],d[2],u[0],u[1],u[2],p[0],p[1],p[2]],f=a(h),m=i.length===478?d1e(e):{bearing:0,strength:0};return{angle:f,matrix:h,gaze:m}};var I5=async(e,t)=>{var h,f,m,g,A,x,y,b,w,k,S,N,R,M,D,$,T,F,V,X,z,j,Z,Q,te,ae;let n,s,r,a,o,i,l,c,u,d=[];e.state="run:face",n=ie();let p=await dT(t,e.config);if(e.performance.face=de.perfadd?(e.performance.face||0)+Math.trunc(ie()-n):Math.trunc(ie()-n),!t.shape||t.shape.length!==4)return[];if(!p)return[];for(let U=0;U<p.length;U++){if(e.analyze("Get Face"),!p[U].tensor||p[U].tensor.isDisposedInternal){J("Face object is disposed:",p[U].tensor);continue}if((h=e.config.face.detector)==null?void 0:h.mask){let Te=await AN(p[U]);ne(p[U].tensor),p[U].tensor=Te}let oe=p[U].mesh&&p[U].mesh.length>200?yN(p[U],[t.shape[2],t.shape[1]]):null;e.analyze("Start Emotion:"),e.config.async?o=((f=e.config.face.emotion)==null?void 0:f.enabled)?Eb(p[U].tensor||pt([]),e.config,U,p.length):null:(e.state="run:emotion",n=ie(),o=((m=e.config.face.emotion)==null?void 0:m.enabled)?await Eb(p[U].tensor||pt([]),e.config,U,p.length):null,e.performance.emotion=de.perfadd?(e.performance.emotion||0)+Math.trunc(ie()-n):Math.trunc(ie()-n)),e.analyze("End Emotion:"),e.analyze("Start AntiSpoof:"),e.config.async?l=((g=e.config.face.antispoof)==null?void 0:g.enabled)?ob(p[U].tensor||pt([]),e.config,U,p.length):null:(e.state="run:antispoof",n=ie(),l=((A=e.config.face.antispoof)==null?void 0:A.enabled)?await ob(p[U].tensor||pt([]),e.config,U,p.length):null,e.performance.antispoof=de.perfadd?(e.performance.antispoof||0)+Math.trunc(ie()-n):Math.trunc(ie()-n)),e.analyze("End AntiSpoof:"),e.analyze("Start Liveness:"),e.config.async?c=((x=e.config.face.liveness)==null?void 0:x.enabled)?Zb(p[U].tensor||pt([]),e.config,U,p.length):null:(e.state="run:liveness",n=ie(),c=((y=e.config.face.liveness)==null?void 0:y.enabled)?await Zb(p[U].tensor||pt([]),e.config,U,p.length):null,e.performance.liveness=de.perfadd?(e.performance.antispoof||0)+Math.trunc(ie()-n):Math.trunc(ie()-n)),e.analyze("End Liveness:"),e.analyze("Start GEAR:"),e.config.async?r=((b=e.config.face.gear)==null?void 0:b.enabled)?Qx(p[U].tensor||pt([]),e.config,U,p.length):{}:(e.state="run:gear",n=ie(),r=((w=e.config.face.gear)==null?void 0:w.enabled)?await Qx(p[U].tensor||pt([]),e.config,U,p.length):{},e.performance.gear=Math.trunc(ie()-n)),e.analyze("End GEAR:"),e.analyze("Start SSRNet:"),e.config.async?(s=((k=e.config.face.ssrnet)==null?void 0:k.enabled)?tb(p[U].tensor||pt([]),e.config,U,p.length):{},a=((S=e.config.face.ssrnet)==null?void 0:S.enabled)?rb(p[U].tensor||pt([]),e.config,U,p.length):{}):(e.state="run:ssrnet",n=ie(),s=((N=e.config.face.ssrnet)==null?void 0:N.enabled)?await tb(p[U].tensor||pt([]),e.config,U,p.length):{},a=((R=e.config.face.ssrnet)==null?void 0:R.enabled)?await rb(p[U].tensor||pt([]),e.config,U,p.length):{},e.performance.ssrnet=Math.trunc(ie()-n)),e.analyze("End SSRNet:"),e.analyze("Start MobileFaceNet:"),e.config.async?i=((M=e.config.face.mobilefacenet)==null?void 0:M.enabled)?$b(p[U].tensor||pt([]),e.config,U,p.length):{}:(e.state="run:mobilefacenet",n=ie(),i=((D=e.config.face.mobilefacenet)==null?void 0:D.enabled)?await $b(p[U].tensor||pt([]),e.config,U,p.length):{},e.performance.mobilefacenet=Math.trunc(ie()-n)),e.analyze("End MobileFaceNet:"),e.analyze("Start Description:"),e.config.async?u=(($=e.config.face.description)==null?void 0:$.enabled)?Mb(p[U].tensor||pt([]),e.config,U,p.length):null:(e.state="run:description",n=ie(),u=((T=e.config.face.description)==null?void 0:T.enabled)?await Mb(p[U].tensor||pt([]),e.config,U,p.length):null,e.performance.description=de.perfadd?(e.performance.description||0)+Math.trunc(ie()-n):Math.trunc(ie()-n)),e.analyze("End Description:"),e.config.async&&([s,a,o,i,u,r,l,c]=await Promise.all([s,a,o,i,u,r,l,c])),e.analyze("Finish Face:"),((F=e.config.face.ssrnet)==null?void 0:F.enabled)&&s&&a&&(u={age:s.age,gender:a.gender,genderScore:a.genderScore}),((V=e.config.face.gear)==null?void 0:V.enabled)&&r&&(u={age:r.age,gender:r.gender,genderScore:r.genderScore,race:r.race}),((X=e.config.face.mobilefacenet)==null?void 0:X.enabled)&&i&&(u.descriptor=i),!((z=e.config.face.iris)==null?void 0:z.enabled)&&((Z=(j=p[U])==null?void 0:j.annotations)==null?void 0:Z.leftEyeIris)&&((te=(Q=p[U])==null?void 0:Q.annotations)==null?void 0:te.rightEyeIris)&&(delete p[U].annotations.leftEyeIris,delete p[U].annotations.rightEyeIris);let re=p[U].annotations&&p[U].annotations.leftEyeIris&&p[U].annotations.leftEyeIris[0]&&p[U].annotations.rightEyeIris&&p[U].annotations.rightEyeIris[0]&&p[U].annotations.leftEyeIris.length>0&&p[U].annotations.rightEyeIris.length>0&&p[U].annotations.leftEyeIris[0]!==null&&p[U].annotations.rightEyeIris[0]!==null?Math.max(Math.abs(p[U].annotations.leftEyeIris[3][0]-p[U].annotations.leftEyeIris[1][0]),Math.abs(p[U].annotations.rightEyeIris[4][1]-p[U].annotations.rightEyeIris[2][1]))/t.shape[2]:0,me=((ae=e.config.face.detector)==null?void 0:ae.return)?ut(p[U].tensor):null;ne(p[U].tensor),p[U].tensor&&delete p[U].tensor;let ye={...p[U],id:U};(u==null?void 0:u.age)&&(ye.age=u.age),(u==null?void 0:u.gender)&&(ye.gender=u.gender),(u==null?void 0:u.genderScore)&&(ye.genderScore=u==null?void 0:u.genderScore),(u==null?void 0:u.descriptor)&&(ye.embedding=u==null?void 0:u.descriptor),(u==null?void 0:u.race)&&(ye.race=u==null?void 0:u.race),o&&(ye.emotion=o),l&&(ye.real=l),c&&(ye.live=c),re&&re!==0&&(ye.iris=Math.trunc(500/re/11.7)/100),oe&&(ye.rotation=oe),me&&(ye.tensor=me),d.push(ye),e.analyze("End Face")}return e.analyze("End FaceMesh:"),e.config.async&&(e.performance.face&&delete e.performance.face,e.performance.age&&delete e.performance.age,e.performance.gender&&delete e.performance.gender,e.performance.emotion&&delete e.performance.emotion),d};var xN=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++){let s=e[n].keypoints.find(l=>l.part==="leftWrist"),r=e[n].keypoints.find(l=>l.part==="rightWrist"),a=e[n].keypoints.find(l=>l.part==="nose");a&&s&&r&&s.position[1]<a.position[1]&&r.position[1]<a.position[1]?t.push({body:n,gesture:"i give up"}):a&&s&&s.position[1]<a.position[1]?t.push({body:n,gesture:"raise left hand"}):a&&r&&r.position[1]<a.position[1]&&t.push({body:n,gesture:"raise right hand"});let o=e[n].keypoints.find(l=>l.part==="leftShoulder"),i=e[n].keypoints.find(l=>l.part==="rightShoulder");o&&i&&Math.abs(o.positionRaw[1]-i.positionRaw[1])>.1&&t.push({body:n,gesture:`leaning ${o.position[1]>i.position[1]?"left":"right"}`})}return t},bN=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++)if(e[n].mesh&&e[n].mesh.length>450){let s=(e[n].mesh[33][2]||0)-(e[n].mesh[263][2]||0),r=e[n].mesh[33][0]-e[n].mesh[263][0];Math.abs(s/r)<=.15?t.push({face:n,gesture:"facing center"}):t.push({face:n,gesture:`facing ${s<0?"left":"right"}`}),Math.abs(e[n].mesh[374][1]-e[n].mesh[386][1])/Math.abs(e[n].mesh[443][1]-e[n].mesh[450][1])<.2&&t.push({face:n,gesture:"blink left eye"}),Math.abs(e[n].mesh[145][1]-e[n].mesh[159][1])/Math.abs(e[n].mesh[223][1]-e[n].mesh[230][1])<.2&&t.push({face:n,gesture:"blink right eye"});let i=Math.min(100,500*Math.abs(e[n].mesh[13][1]-e[n].mesh[14][1])/Math.abs(e[n].mesh[10][1]-e[n].mesh[152][1]));i>10&&t.push({face:n,gesture:`mouth ${Math.trunc(i)}% open`});let l=e[n].mesh[152][2]||0;Math.abs(l)>10&&t.push({face:n,gesture:`head ${l<0?"up":"down"}`})}return t},vN=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++){if(!e[n].annotations||!e[n].annotations.leftEyeIris||!e[n].annotations.leftEyeIris[0]||!e[n].annotations.rightEyeIris||!e[n].annotations.rightEyeIris[0])continue;let s=e[n].annotations.leftEyeIris[3][0]-e[n].annotations.leftEyeIris[1][0],r=e[n].annotations.leftEyeIris[4][1]-e[n].annotations.leftEyeIris[2][1],a=Math.abs(s*r),o=e[n].annotations.rightEyeIris[3][0]-e[n].annotations.rightEyeIris[1][0],i=e[n].annotations.rightEyeIris[4][1]-e[n].annotations.rightEyeIris[2][1],l=Math.abs(o*i),c=!1;Math.abs(a-l)/Math.max(a,l)<.25&&(c=!0,t.push({iris:n,gesture:"facing center"}));let d=Math.abs(e[n].mesh[263][0]-e[n].annotations.leftEyeIris[0][0])/e[n].box[2],p=Math.abs(e[n].mesh[33][0]-e[n].annotations.rightEyeIris[0][0])/e[n].box[2];(d>.06||p>.06)&&(c=!1),d>p?d>.05&&t.push({iris:n,gesture:"looking right"}):p>.05&&t.push({iris:n,gesture:"looking left"});let h=Math.abs(e[n].mesh[145][1]-e[n].annotations.rightEyeIris[0][1])/e[n].box[3],f=Math.abs(e[n].mesh[374][1]-e[n].annotations.leftEyeIris[0][1])/e[n].box[3];(f<.01||h<.01||f>.022||h>.022)&&(c=!1),(f<.01||h<.01)&&t.push({iris:n,gesture:"looking down"}),(f>.022||h>.022)&&t.push({iris:n,gesture:"looking up"}),c&&t.push({iris:n,gesture:"looking center"})}return t},wN=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++){let s=[];if(e[n].annotations)for(let[r,a]of Object.entries(e[n].annotations))r!=="palmBase"&&Array.isArray(a)&&a[0]&&s.push({name:r.toLowerCase(),position:a[0]});if(s&&s.length>0){let r=s.reduce((o,i)=>(o.position[2]||0)<(i.position[2]||0)?o:i);t.push({hand:n,gesture:`${r.name} forward`});let a=s.reduce((o,i)=>o.position[1]<i.position[1]?o:i);t.push({hand:n,gesture:`${a.name} up`})}if(e[n].keypoints){let r=FT(e[n].keypoints);for(let a of r)t.push({hand:n,gesture:a.name})}}return t};var _e={face:[],body:[],hand:[],gesture:[],object:[],persons:[],performance:{},timestamp:0,error:null},S5=0;function kN(e,t){var o,i,l,c,u,d,p,h,f,m,g,A,x,y,b,w,k,S,N,R,M,D,$,T,F,V,X;let n=ie();if(!e)return{face:[],body:[],hand:[],gesture:[],object:[],persons:[],performance:{},timestamp:0,error:null};let s=Date.now()-e.timestamp,r=s<1e3?8-Math.log(s+1):1;if(e.canvas&&(_e.canvas=e.canvas),e.error&&(_e.error=e.error),!_e.body||e.body.length!==_e.body.length)_e.body=JSON.parse(JSON.stringify(e.body));else for(let z=0;z<e.body.length;z++){let j=e.body[z].box.map((U,oe)=>((r-1)*_e.body[z].box[oe]+U)/r),Z=e.body[z].boxRaw.map((U,oe)=>((r-1)*_e.body[z].boxRaw[oe]+U)/r),Q=e.body[z].keypoints.map((U,oe)=>({score:U.score,part:U.part,position:[_e.body[z].keypoints[oe]?((r-1)*_e.body[z].keypoints[oe].position[0]+U.position[0])/r:U.position[0],_e.body[z].keypoints[oe]?((r-1)*_e.body[z].keypoints[oe].position[1]+U.position[1])/r:U.position[1],_e.body[z].keypoints[oe]?((r-1)*(_e.body[z].keypoints[oe].position[2]||0)+(U.position[2]||0))/r:U.position[2]],positionRaw:[_e.body[z].keypoints[oe]?((r-1)*_e.body[z].keypoints[oe].positionRaw[0]+U.positionRaw[0])/r:U.position[0],_e.body[z].keypoints[oe]?((r-1)*_e.body[z].keypoints[oe].positionRaw[1]+U.positionRaw[1])/r:U.position[1],_e.body[z].keypoints[oe]?((r-1)*(_e.body[z].keypoints[oe].positionRaw[2]||0)+(U.positionRaw[2]||0))/r:U.position[1]]})),te={},ae={connected:{}};((i=(o=t.body)==null?void 0:o.modelPath)==null?void 0:i.includes("efficientpose"))?ae=Sb:((c=(l=t.body)==null?void 0:l.modelPath)==null?void 0:c.includes("blazepose"))?ae=gb:((d=(u=t.body)==null?void 0:u.modelPath)==null?void 0:d.includes("movenet"))&&(ae=e5);for(let[U,oe]of Object.entries(ae.connected)){let re=[];for(let me=0;me<oe.length-1;me++){let ye=Q.find(Ne=>Ne.part===oe[me]),Te=Q.find(Ne=>Ne.part===oe[me+1]);ye&&Te&&ye.score>(t.body.minConfidence||0)&&Te.score>(t.body.minConfidence||0)&&re.push([ye.position,Te.position])}te[U]=re}_e.body[z]={...e.body[z],box:j,boxRaw:Z,keypoints:Q,annotations:te}}if(!_e.hand||e.hand.length!==_e.hand.length)_e.hand=JSON.parse(JSON.stringify(e.hand));else for(let z=0;z<e.hand.length;z++){let j=e.hand[z].box.map((ae,U)=>((r-1)*_e.hand[z].box[U]+ae)/r),Z=e.hand[z].boxRaw.map((ae,U)=>((r-1)*_e.hand[z].boxRaw[U]+ae)/r);_e.hand[z].keypoints.length!==e.hand[z].keypoints.length&&(_e.hand[z].keypoints=e.hand[z].keypoints);let Q=e.hand[z].keypoints&&e.hand[z].keypoints.length>0?e.hand[z].keypoints.map((ae,U)=>ae.map((oe,re)=>((r-1)*(_e.hand[z].keypoints[U][re]||1)+(oe||0))/r)):[],te={};if(Object.keys(_e.hand[z].annotations).length!==Object.keys(e.hand[z].annotations).length)_e.hand[z].annotations=e.hand[z].annotations,te=_e.hand[z].annotations;else if(e.hand[z].annotations)for(let ae of Object.keys(e.hand[z].annotations))te[ae]=e.hand[z].annotations[ae]&&e.hand[z].annotations[ae][0]?e.hand[z].annotations[ae].map((U,oe)=>U.map((re,me)=>((r-1)*_e.hand[z].annotations[ae][oe][me]+re)/r)):null;_e.hand[z]={...e.hand[z],box:j,boxRaw:Z,keypoints:Q,annotations:te}}if(!_e.face||e.face.length!==_e.face.length)_e.face=JSON.parse(JSON.stringify(e.face));else for(let z=0;z<e.face.length;z++){let j=e.face[z].box.map((Q,te)=>((r-1)*_e.face[z].box[te]+Q)/r),Z=e.face[z].boxRaw.map((Q,te)=>((r-1)*_e.face[z].boxRaw[te]+Q)/r);if(e.face[z].rotation){let Q={matrix:[0,0,0,0,0,0,0,0,0],angle:{roll:0,yaw:0,pitch:0},gaze:{bearing:0,strength:0}};Q.matrix=(p=e.face[z].rotation)==null?void 0:p.matrix,Q.angle={roll:((r-1)*(((f=(h=_e.face[z].rotation)==null?void 0:h.angle)==null?void 0:f.roll)||0)+(((g=(m=e.face[z].rotation)==null?void 0:m.angle)==null?void 0:g.roll)||0))/r,yaw:((r-1)*(((x=(A=_e.face[z].rotation)==null?void 0:A.angle)==null?void 0:x.yaw)||0)+(((b=(y=e.face[z].rotation)==null?void 0:y.angle)==null?void 0:b.yaw)||0))/r,pitch:((r-1)*(((k=(w=_e.face[z].rotation)==null?void 0:w.angle)==null?void 0:k.pitch)||0)+(((N=(S=e.face[z].rotation)==null?void 0:S.angle)==null?void 0:N.pitch)||0))/r},Q.gaze={bearing:((r-1)*(((M=(R=_e.face[z].rotation)==null?void 0:R.gaze)==null?void 0:M.bearing)||0)+((($=(D=e.face[z].rotation)==null?void 0:D.gaze)==null?void 0:$.bearing)||0))/r,strength:((r-1)*(((F=(T=_e.face[z].rotation)==null?void 0:T.gaze)==null?void 0:F.strength)||0)+(((X=(V=e.face[z].rotation)==null?void 0:V.gaze)==null?void 0:X.strength)||0))/r},_e.face[z]={...e.face[z],rotation:Q,box:j,boxRaw:Z}}_e.face[z]={...e.face[z],box:j,boxRaw:Z}}if(!_e.object||e.object.length!==_e.object.length)_e.object=JSON.parse(JSON.stringify(e.object));else for(let z=0;z<e.object.length;z++){let j=e.object[z].box.map((Q,te)=>((r-1)*_e.object[z].box[te]+Q)/r),Z=e.object[z].boxRaw.map((Q,te)=>((r-1)*_e.object[z].boxRaw[te]+Q)/r);_e.object[z]={...e.object[z],box:j,boxRaw:Z}}if(e.persons){let z=e.persons;if(!_e.persons||z.length!==_e.persons.length)_e.persons=JSON.parse(JSON.stringify(z));else for(let j=0;j<z.length;j++)_e.persons[j].box=z[j].box.map((Z,Q)=>((r-1)*_e.persons[j].box[Q]+Z)/r)}e.gesture&&(_e.gesture=e.gesture);let a=ie();return S5=de.perfadd?S5+Math.round(a-n):Math.round(a-n),e.performance&&(_e.performance={...e.performance,interpolate:S5}),_e}function O0(e,t,n={order:2,multiplier:25}){let s=0;for(let r=0;r<e.length;r++){let a=!n.order||n.order===2?e[r]-t[r]:Math.abs(e[r]-t[r]);s+=!n.order||n.order===2?a*a:a**n.order}return(n.multiplier||20)*s}var IN=(e,t,n,s)=>{if(e===0)return 1;let r=t===2?Math.sqrt(e):e**(1/t),a=(1-r/100-n)/(s-n);return Math.max(Math.min(a,1),0)};function SN(e,t,n={order:2,multiplier:25,min:.2,max:.8}){let s=O0(e,t,n);return IN(s,n.order||2,n.min||0,n.max||1)}function CN(e,t,n={order:2,multiplier:25,threshold:0,min:.2,max:.8}){if(!Array.isArray(e)||!Array.isArray(t)||e.length<64||t.length===0||e.length!==t[0].length)return{index:-1,distance:Number.POSITIVE_INFINITY,similarity:0};let s=Number.MAX_SAFE_INTEGER,r=-1;for(let o=0;o<t.length;o++){let i=O0(e,t[o],n);if(i<s&&(s=i,r=o),s<(n.threshold||0))break}let a=IN(s,n.order||2,n.min||0,n.max||1);return{index:r,distance:s,similarity:a}}function TN(e,t,n,s,r){var i,l,c,u,d,p,h,f,m,g,A,x,y,b,w,k;let a=0,o=[];for(let S of e){let N={id:a++,face:S,body:null,hands:{left:null,right:null},gestures:[],box:[0,0,0,0]};for(let F of t)S.box[0]>F.box[0]&&S.box[0]<F.box[0]+F.box[2]&&S.box[1]+S.box[3]>F.box[1]&&S.box[1]+S.box[3]<F.box[1]+F.box[3]&&(N.body=F);if(N.body)for(let F of n)F.box[0]+F.box[2]>N.body.box[0]&&F.box[0]+F.box[2]<N.body.box[0]+N.body.box[2]&&F.box[1]+F.box[3]>N.body.box[1]&&F.box[1]+F.box[3]<N.body.box[1]+N.body.box[3]&&N.hands&&(N.hands.left=F),F.box[0]<N.body.box[0]+N.body.box[2]&&F.box[0]>N.body.box[0]&&F.box[1]+F.box[3]>N.body.box[1]&&F.box[1]+F.box[3]<N.body.box[1]+N.body.box[3]&&N.hands&&(N.hands.right=F);for(let F of s)F.face!==void 0&&F.face===S.id?(i=N.gestures)==null||i.push(F):F.iris!==void 0&&F.iris===S.id?(l=N.gestures)==null||l.push(F):F.body!==void 0&&F.body===((c=N.body)==null?void 0:c.id)?(u=N.gestures)==null||u.push(F):F.hand!==void 0&&F.hand===((p=(d=N.hands)==null?void 0:d.left)==null?void 0:p.id)?(h=N.gestures)==null||h.push(F):F.hand!==void 0&&F.hand===((m=(f=N.hands)==null?void 0:f.right)==null?void 0:m.id)&&((g=N.gestures)==null||g.push(F));let R=[],M=[],D=F=>{F&&F.length===4&&(R.push(F[0],F[0]+F[2]),M.push(F[1],F[1]+F[3]))};D((A=N.face)==null?void 0:A.box),D((x=N.body)==null?void 0:x.box),D((b=(y=N.hands)==null?void 0:y.left)==null?void 0:b.box),D((k=(w=N.hands)==null?void 0:w.right)==null?void 0:k.box);let $=Math.min(...R),T=Math.min(...M);N.box=[$,T,Math.max(...R)-$,Math.max(...M)-T],r&&r[1]&&r[2]&&(N.boxRaw=[N.box[0]/r[2],N.box[1]/r[1],N.box[2]/r[2],N.box[3]/r[1]]),o.push(N)}return o}var M0=`
/9j/4AAQSkZJRgABAQEAYABgAAD/4QBoRXhpZgAATU0AKgAAAAgABAEaAAUAAAABAAAAPgEbAAUA
AAABAAAARgEoAAMAAAABAAIAAAExAAIAAAARAAAATgAAAAAAAABgAAAAAQAAAGAAAAABcGFpbnQu
bmV0IDQuMi4xMwAA/9sAQwAGBAUGBQQGBgUGBwcGCAoQCgoJCQoUDg8MEBcUGBgXFBYWGh0lHxob
IxwWFiAsICMmJykqKRkfLTAtKDAlKCko/9sAQwEHBwcKCAoTCgoTKBoWGigoKCgoKCgoKCgoKCgo
KCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgo/8AAEQgBAAEAAwEhAAIRAQMRAf/E
AB8AAAEFAQEBAQEBAAAAAAAAAAABAgMEBQYHCAkKC//EALUQAAIBAwMCBAMFBQQEAAABfQECAwAE
EQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZH
SElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1
tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+v/EAB8BAAMBAQEBAQEB
AQEAAAAAAAABAgMEBQYHCAkKC//EALURAAIBAgQEAwQHBQQEAAECdwABAgMRBAUhMQYSQVEHYXET
IjKBCBRCkaGxwQkjM1LwFWJy0QoWJDThJfEXGBkaJicoKSo1Njc4OTpDREVGR0hJSlNUVVZXWFla
Y2RlZmdoaWpzdHV2d3h5eoKDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXG
x8jJytLT1NXW19jZ2uLj5OXm5+jp6vLz9PX29/j5+v/aAAwDAQACEQMRAD8A+qaKACigApGOKAML
Xp8xlF5A7V4X8RtYs7PzfNImnx8sa8Kp9z3q2tEgp6angWs62ZZ5CTGoJ6DArGNz5p+UrID6EUrF
PUlW1EuN0XNW7PQ2L5j3JnoKXN0KijqNP0eYoqXBdgPuuo+ZPeupisWn2Jd4+0r924XgsQOCff3/
AJ1FzRKxDqGii6m3siiQ8F1XGfXI6YNWLfRbiRQMkcZI9fpTDluT2/h6Qy8gDPbtmtG38JeY480Z
5zSLUTZg8M28YwYxjAArXtdPt402qgHbpSaLWhma3o0Uqk7Nx9DWLaaVblgPs6qRyds2M/gRSQp9
zZOni2iWS2hlQ+kjYz9OMGrdjq89vIPPVhj+8M/lQyDq9P1WOYBlMZz1AOD+VdDaTiReOKulK0jO
tHmi0WDTlr0TyxRVhT8tJjIX+9SUxHXUV553BRQAVBcPhSBTSuxPY86+IGti0s5I7dsORy9fM3i6
8e8mfDO5P90ZrWWiJicNPpZZtxV/xrW0jQt4DOv6Vk2dEEdTY6BHuB25rpbPSo0QARjP0qTRI17W
wA/hFaMWmoQMgflQXYsDS142rU9tpqqenfNA7GgtihxkdKuRW6qMY/GkDZY8sY4Ap4hXbyB+VArk
EtuH4wPyrk/EGkOm+a3jw3suRQLc5i38SX9hJ9nnY+XnBUdPyNdFY6pa3KkkAE9l6f8AfJ/pSJT6
GhDmI+Zb4ZRycdv6ium0nUhKFydrelTsNnS2829RnrVgV6NKXNG55lWPLIM81Op+WrZkRMfmNNzT
A7GivPO4KKAEY4XNYWt3vkwPg4OK0giJdjw/xrqhm87Zs8tc7pX5A+leSajf6aHYJ50kn4AZpTep
rBWRm2Vobm4BXfyehPFdnpmnBFUY5rI2SN63tlToK0YI+KZpFF+3QdavwoKTLtoW0Toaswpk5pCb
LCxipAhoIuP2dKevHXoaYDylRyxhlwRQI4nxVoCXWZI1GfpXGtbSWjYPGP73+NIGupt6TqMsLruZ
ih4xnP5V09mQ+JLd8gn0xSYJnVaVdkook69K34zuUGunDS3Rx4qOzHVIp4rrOMY3NJQI7GivPO8K
KAILt9kZrz3xlebYiu8KCCWb0XvW0NFch6ysfO3jLVjfXLIn+pQkKorl7WxNxIPl71g2dUUdpo+l
pBGvHPet23iC8ihFosrxirkHQUFo0IF4FXI1O726CpKLacCrMJoJLYHAPpTwucHpSRJJ5e4AZI9x
UqpxzVpCuOC8cUpQUMRnXttuB4rjNdsYyeVwfXpmpGmcvcQyafMCFJjPY10eg34BUg4DcZP8jUO4
HaRq3lLNF+IHet7R7jz7c56rwa2wz9+xhiVeFy/T1PFegeaNPWigDsc0ZrzzvDNIaAM7VpNqdegr
xL4l6kywyRhseZ19lrdfAZL4jxYg3Fw20d63tJsdrDI5rm3Z3R0R0Mce1eKnQYAplIkWrMJ45oZS
NO3PHbNXIyfpSGWowSOasxLUiZdjFSqtNEMkUemKlAGKsRJjAppFAiORMjmsTVrNZEO4cfSoZSOD
1eJ7WXBUzQZ+7nkfSo7e2Ei+ZaMzxntjBX2NSU1Y6/wxqojiEFzkA8KTXYaUoWRyv3W5rSjpNHPX
+BmpSg8V6J5gUUAdhRXnneFFAGHrTfu5PpXzj8S70/aZtxzztXFbv4DKHxHI+H4GZiz9zxXXW8G3
GBXMjvLRXAx0oPGPSmMVeOnWrMTYpFI0bcg1fh54xmgovRcD3qxETSIZcRvzp+/BpEkqsBUqsM9K
q4Em4Gkxk0yRGXrVW6i8yFhkg+tJjRxGsWrxllkUMh9eK5uMz6bcebbnfG33kPcVkay2OntPKuo0
nhXI67c8qa7Lw3c+adjcEDGK1paSRhVV4s6A0or0jyRRQ1AHX0V553hRQBz+vNtt5z3xXzX8Qbdm
uic5YnOMdK3l8JnTXvlbwpYl+WySOgrp5YfLOOB9O1c62O7qQkc+9RsKChFPWp4DluOlSykaNruH
ArUgHShFNF2NT1qxGO3NBmyxGcE1N2560CFzjrUysO9JAPDDjFOVuKoQuSRTWouBkazbCa3cd8cV
wF7IISQccHBzUSWpV9C3o1x5b5GAjdQD1rs9DjC3kckbEhqKfxIzn8LOupRXqnkPccBSkUAzraK8
87wooA5rxMSI3HqK8B8bQl9Q8sffY5b/AAraXwkUviNrw9pH2W1ViMMRTdRjw4HpWNtDti9TPc4P
FQs2M5qdyyMHLcfjV63HTAoBGtap0wK0YxigpsuRDtVhVYd6GQydVwwIqdRnqKCR23I5pCMUW6gD
YNKuetAEise9KTxQBWuFyhrznxNZkXjFeN3I+tTIZg2OqmzmxNF0PO3vXp/g2+hukVl4zyPanTXv
JmVR+60dpThXpnlPceopWFAbnV0V553hSGgRynjC5FujOey14Ssp1HxNmTnc+a3kvcIpv37HoEYQ
QmMdVHSsnVbYJF5jVk0dsNzlruVIsl2wKxbjWrVHILjg1CRbZJb+ILHPzyhfStODWLQgFJFYd+el
UJM27HUIXxhga1Y5lLVLKLkMnoauxnPPrSEx7ShF+Y/n2qrc6xBbhizDAqkK1zJuvG9nbg8ZA681
ly/Ei052RO3uKAsZlx8QGd8xxvt9Aa1NH8dK7AXMcip64zigdkdrZX8F7EJLdwwNXMkrz1qRMRly
CK4TxmpidWI49felPYSOMmi80NIoOV6qRzXYeA5SskYPfirpfEjGr8LPWVHyD6U4CvQPL3ZItOYc
UDOoNFeed4Uhpks4H4iE/Z5MeleMeGULeLgjds10S+BGdL+Jc9OSBU2Huc5Nc74yvUtrcDBrJnZF
63PJdXvLy/lKWw46bvQVz82jXhkLO5Y+9ZlsYthcRnbIjY9R3q3awTRkEM3WmJI6C0ea3dGRsr1x
XY6TqW9FLHnjrUs0izpLK5DDjofSta3ckH09KRUkZuuTvFGdvPauE1Y3U6Mqbssf/rUxHPTaJPK2
ZmJPbBqzY6DCZh5xJC9s9aBJHU6dpemJjfEmfetJtI0+VPkUr/unFOxdiextHs33W07YHQHk11mk
Xb3KbZ1xIvcd6LEyWho4Nct41sTPYb16ipexCPPZN+wYGCvH1rrPAEJmvkPoc1VL4kZVvgZ6yFwK
cBXoHkkqinFaVyzo80GuE7WJRQSziPiGdthK5HQV4x4J/wBI8WPIewNdEvgRNL42emO/yj1UHNef
eNpRczbC+I17DvWT2OqJxc0sMK4TCisy41q0hfEkqj8aixdwTXNOlwvmqD9anS9tXH7uVG+hosO4
/wC0oOhrR0+6G4YNIEzsNEuCxAPNdjZruA4xxUmjINSjURksOlcbqFykbnjFA1sYGoassaknCqO5
rl7rxhGm7yBnBxuJq0rkSlYpw+NLlsfd5P8AerVsvHEqSBHwPVgcgVpyMyVXU3rXxcHYETAk+hru
/DWti6ZSTyOKzZqndHaxvvUGq2rQ+dYyqR24qWI8dvbr7LqDxyDAzXpvw6FvIxePGSM06Xxoyr/A
zviKFHNegeX1J41zUhXioGbuaSuM6wpCaBHG/EcA6HN/exxXjXw2jL67cv8A3Qa6H8CFR+NnoWpO
I4XI44rxLxrqjQzSEsQM1gdSPM9U1uR1YbmWIdXHf2rmpIb67YS28UrRlsLI3c/jW0VZGUpO5pW1
jfLNOjahawzwReYI5cjzMkDavHJ5/SrVv9uhtPtVxCPLBwzxnlT9KGghLU3tKvvPjHzbl7EGuisJ
GRxWLOg7nRXJEbDjmvSNK+aFSfSoZr0KutRkphc4NcRrdkVjL9aVio7Hk3iqS8ubhrWzUlsZY9kG
cZNc5D4aee5MclzJIFTzHAO0MfatqSOWu7bFS1srDUZEis0vIZoUxPvfcC+4/dx2xjr712XiTwXb
WmlQ6hol3cRhoFd4rlg3zY5wR0GelavQwjq7GD4etdVvSnk2wAB+9v8A8mvcfA2kXiRo0/UdcDis
ZnTTulqeoWqbUAJqWUb42X1FZlnjfjSwlGrr5S/eNdD4RkvLAAQ4yRyaUZcruVKl7TQ9I0G+mnzH
ckFwM8VuIK7ac3KF2eXiKapz5UWYxipNtMyNejNch0jSar3cjR27uoyQCRVRWom9DxTx54gu5fMi
lbKdMVjfCZPNlv5v9rFbVHpYqjGzbOn8SzFI9o715L4u0r7arYzk+lYdTqSujy7U/C0u4vHk+WwO
xuh9q3J9dgvbdVukMV1EwbDDgn04rZMwlHoZ+orZ6hfQ3RWVnQYCgZAq+8U0ln5NtBsV2yxYcfgK
JtW0CnB31LlroVwJ1nQLGDjeP7w+lb0dsFxjrWB0tHS6NuWPJ6A16ToUm63T3Gallr4S7cxiTjrX
PaxaF7dlVeSMUhxZ5jd+H7qCa4eF3DSE5x3zXN3Wk6jbyeaiFWUY6ZyPStYS5SalPmVipFbX0E4c
W0alvmPHJrag0rVvEE6LdljGpG2NRtQD+tW5XMI0uU9M8NeFo9PiQhecDIIrtrOMIoG3H4VlJm9t
C6CB06VPGM1IHLeItGS6uw+ORT7e3jsbQvj7gzUNam0JaWE+HN7NqOqX80n3FO1RXo8YzXdS+BHk
4z+KyzGPapcU2YIv7qQtiuaxvcaWqG4O6FwfSrS1JbPnrxoxkv7qIfejcitj4V2f2exumI+8+aKn
xHTT+G5d8Txlm4rjLxMsQwzWT3OiK0Mm6sEkVsAcjFc1d+FEmlGwEDPQVopaEuOpr6f4ZWNAu3tW
vHpAj5ZQcUFIWaDjGMVUMQ3cVDBmvbhY7QAV2nh+T/R1yeKhlrY31+b61FcQK6nIoJMi401WblRi
qr6PCw5UYq9y+YgOgWzNkRrx3xWjp+nx2v3FQcelAbmko9anQ4GBUNisPHWr1qMrQhS2K11HvmYV
hamcxSRZ5xRIqluS/DKAQQXZxyXrvo2FdlL4EeZjH+/ZbjNSZpswLNBrE1Gt7VE4ODVIlnh/j61F
j4lmeTGyUbq6LwdEqWbeX0YbhSqfEddP4Bddj4JIrhL5d8h7VjI6oLQqKNzelWre3yc4/ClFjaL6
wqBxxUUxwCKu5BmXRA6c+9ZjP83FSBoQuPs4BrsNBlUW659KmRrDY6G1lyQtW3Hy0lqQ1qVJnAbm
oy3b9KYJCqRj3o4zRctIlhjLHmpSuOBRbQOpLGpPFaES7UqkZzKN1KsEc87/AHUUmvPLTVGv72aQ
k7WJwKmRrQ3ud74Ltilgz4++2a6iNDXdS0gjyMU71my7GpqTbxSbMki3SViajTTHqkSeR/GeyZmg
nQHkEE1S+F+oPPavBL96I4/Cia1udVF+4dVrkW+Fq8+v4tjMDWUkdVJ6WM0cNV+F+MVmjUcZgqnP
1qpNNnkcVRLiZtxIS1UzzIF7mghlxUZpVQdq6nTVdAoAOKzkbQWhvwM6gMM1twOJYx3NOJE11Kt1
H1/pVVlwBkk+9NocXoOQ45FPj+fkUJFF2NSB700v/hTEty5ZpkjvVyUgcCq6GM9zC14/8Se6GcZQ
1574Xs5WkI2HBPHFQ1dm1KSSZ7Rotn9l0+KPHIHNacae1dy0Vjxaj5ptlhVp+2s2CJ9ppCKzuWNx
zSFc1SYrHNeNdIGpaYw25ZeRXmvheyk0jVpEdcLJ0q3ZxNKTa0O3vQHg/DNcHrsJDmsmjspnNzNt
fFIJ24GazOhC+azDmgZIOOKBsp3J2qSaZodubq58yQ4QAnmhGT3NO18pb7BORmu205LfYpyKVkWp
Oxr5gKYWoIZWgfGfloFq1qTPLubnGO1RPtxg4P0oBAkY/hBz6VNDDkZ6AU0W2WSdqkdKr9ZOaGSj
VtcLHmnOcgmmYvcz7mBLy3MbdD1q9ouiRK6bUAVeelOC1InPlidSsWMDFOCEdq3uefykqrinYqGy
rFvApMVka2DAowKAsMkRXQqwyDXn/iWyitNQ3qPl6itIvRoF8RXinW4tQ6HI6GuW8SIVBPalc6qe
5x9x97r3qruwTjrWZ0ksZ9TUmcDNAmZ9/wAoao63rR0+w22MLPtAzt6mghmfofiB76LdJBJBIp5D
d/oa7bSdWLIPnpDi9TM8TeKdas51XTbIyxd3J/pXS+E/EFxqNoFu7do5OmD60maHWrnZyDRkn/69
MlEyOR0xntVoNx+FUgYjPxg4FLCuWDZyKQr2RoRnP0qO+nEFpJITgAUzLqZnhu6+0rknOTXpOmwJ
Fbrt5yMmnHYyr6Oxb2ijaKLnPYMClwKQWK3n0hn+lachHOJ9pNNN0apQFzsY10a4v4hXQh0xpieQ
MA1XLZNjhK80cT8OdV+3Wl3A7ZZJCw+hrR1qLcjZ/CsbnfHRnFXseHJArOYYbrUs1uPhYbuatqFP
ByfSkMq3UIINYkto+87Tx6GkSxfsDbflGD7CtTw/pk4nzITtPIFMFudsukh4Rxz71paTpKwP5jcn
0qTRy0NORMDgVCqewoJTJgAoxjntTiTu7fWmFxAcnn1q3EPl+X8KZMi4gKqB1Peob/Tv7Us5bfeU
yOoq4R5nYxqT5I8xieH9J1DTbvyJELRg8ODwa9Ms5mSFV9BWiptbnNVrKdmif7Q1KLg96XIZc5Is
pNL5pqeUrmMtZs0jzV08phchaY00zH1p2ZNxjS1g+LdJOt6U9ssmxjyGp2urDjLlaZzng/wUPDqz
TSTmWeTrjpVjVk3Rvjr2rnqQ5dDvo1XUd2cTqSNk9OKxXGCeKxZ1DAxHTr2q5C/y8GokUhsz54qu
uCxzSQjQ0+FZblR2ro4bZYiMVQ0dBb7Qi5x0qzuG5QOh71LYErDufpSeWrHnimIXbjkUjLkH1Hem
gGxryc+tXI19KYmWegq9YLiLJ7mtqS945cS7QsWehqxA9dEjz4krPSxyZqbFFhGxUm6smjRM55Lk
HvSvNxXTY57kLT+9MNwKdhXGm5FIbkU7Bca1wMEVhaiuQcVhXWiZ14R6tHGanGBI2OtYkqEHjgVy
s9ErEeo6UBsHipKEZs5qpPdRxcbhx70NCSuybTNWihc5brW9Fq6vjMnFSdEIdDRi8RRKygZbHFbu
m6nb3RA3gMegNJhOm0jbXGOoxTuCc1Rz3FyoGKawz9KaAVcZqeMgCmIkB4FaUTbYwB6V00Fuzixb
0SFMuDU8Mlbs4UPeXHeiOXkUrDuXYnyKk3cVk0ap6HMxxketSMhrcwRC0dMMZFMQ3yzSeVQAeUaz
9Vj8uPd271nVV4m+GdpnHX67pCeKyLtBtNcR6xlk9RVeWTb3qRnO6trgttyIfm71z7ai8j7/AJmN
DNqUVa5Yi1AnjynHuBV+11YJhWWXcP8AZNSzqgmaEerSsf3NtIQP4mGKtRavdRgMIpVI9KjU0a7n
R6T43uYQI7qN2Tpkqciu503VVuQGAYZHQjFVc4alPlZrpKGAznpTwxOc9+lWjIlUACnM4XApiLNk
nmvnsK0NvpXZRVonmYqV52GsmanhXitTmFkSiJTSAvwrxUxXIrJ7miOfjf1pzNWxkRlqYWpgJupu
6gQbuahvIxPA6eo4pNXVioS5WmefakGhndH4INZs5DJXA10PaTurmLO21uKpSZqGMoXGnRzBiyjd
9Kx5rcQS428fSkjanLoaOliHGZFB56VswW+mtPufcBsGOAfmxz+tFkd8HpoaUx09FAtFY8DO71qb
Sms/Nb7RbecG6AEjFLS5c78t+p0djpVs9wsyQiJAdyr1rW+zqjErzSe559Sbk9S3C+MA1bjbgE1S
MSXzMVG0vNUI2tPKrAuCMnrVzNd0PhR49W/O2xrHmp4TxVMzQshpIzzQBehqesnuaI5VGzT2bitz
FEbNTC1ADS1JupgG6l3UAc14s04yR/aYRll+8BXCtLncDXFWjys9TCz5oW7GddH5qqNzWDOgQnC8
VSuo1kHzAGkPYopEY2+RWxV23Vzj5G/Kg3jWaNazhZuqNXS6TaKhB2c0jR1nJWOlhOxRxU4YkCgx
Y0OQatQyDbyaaFYe8uF4NY3iC9ltbVGj43NTIL3h7WzMihjzXVQXYYDdW9Cf2WcOJpfaRZ3g9KsQ
mupnCLIabGeaAL0LcVY3cVmzRHIxtUhetzEjZqjLUAIWpN1ArhupwagAfDKQ3Q1594v0c2bm6tx+
5Y8j+6ayrR5onThp8s7dzkZjuqAAmuBnqC7c0iwgtzSA0rWzjfGRW3ZadDu4AoNYo2rfS4v7orSh
05UA2r0pDbsTm29KRottBNyJ0wpJ9KhD7f6U0ikNWffIFBz60zVUW52ow4UcUN6EPcx44WsbgOmd
ua7TT5Bd24KHnFKnLlZFSN4koluLdueRWvp14swweG9DXoxldHlTjYtzGoo25qzEvwtUxas2jRPQ
5CNqkLVsYoYzUzdQA3dSFqBBmnqaBhuqhriCXTpVIzxUz+Fl03aSPI9QTypW2/dz0qKNw3SvOPZR
Mqin8VLKRcs3O4Cuk0w/MDjt1NBtHY6O2IIHY1pxgFaETIRwMkjtVSUEk4570MlFW5bap6dKzWm8
1tqH8aY+hp2FvGoGayNevVt7/ap4xzUvYjqTLtvLPcvJxSaVcyWsxTnFZlnT2t15xHmCtOBYwQy4
B9q7cPO+jPPxFO2qLEj5HWo42+aus4HpoX4W4FTF+KlotbHII9SFuK0MUNZqiLUDE3UbqBBupwag
Bc1DefPbyD/ZND2KjujyPWlKzuPesRZjHJXms9lMuw3StjnmphKDSLTJ7OfE3JrpbO4GQc9qlnRA
3LO82k5NbFvdADkjBoCSHyXIIIzgVQvdRigT7wzjgUzO1jHknlvG7qnp61etYFQDIpCZoqVijzXn
3iC8EmsOuaCGb/heR/s0ijkVv6fbxy3QMg5xmsnuX0Ldzut3+UYTPWk+2GJSe+M1pFtamcldalmx
1eO4XaThhWnC+TXqR2PHqL3maUJ4qRjxSEjj42qXdxVmaGs1MJoATfSbqBAG5p6mgAzTJTmNvpQU
tzzHXY83D/U1zF5FhjgV5r3Pa6FMsV5HWnLe7RhqBRdmTwagN2d2K2rPU1C5LAnPrUs6Iysbdrq6
f3gK0BrUKj/WClY05iM6xLOcQAj3NT29uznfKSzHuadzNu7NSBFjHNSm5VO9IRnajqoWMhTzXFtA
bvUfMduSeg702Qz0rS7FbTToQFwzjJqaGTFyfK5PQViyzUuFmuIdgGABya5u/vTaN5cnUHFUmLoZ
zyskwlgJweSK6zQdUEwVJeGr0aUrxPLxEfe0OrhPAqVjxWhznGRtUwatDK4jNxURbmkAm6jNABup
6tQAFqhupNtu59qUnZFwV5JHnWsHdIx96w5lz15rzT2uhRmt85xWbcxMnUGmZlB0bdxmrNvFIcfM
350mWjbs7YkDJY/jW5ZWW4jikWkdNp9mqYJFaJdEHHakUULu/VB1rLn1Ld/FgetMGYd/qWSQmSa0
/AemS32pfa7piLeLkg9z6UmQtz0W7uQ2cZx0A9BVzR7cAea6j2rPqX0L99KRat5A6Dk1wOoKZ52a
YfMORTYRLujiGWEq6/NWza2yKQVHNdOHerRy4laJo6TTnbbtb8KuM3Fdh5z3OJjbmpt3FaMxAtUZ
agBN1GaQBzTwaAAms3VbjERUGsa07RsdeFpuUuY4jUjljWTKK4j02RE4IpJYFk6imQkVl0xWarsO
mAEcUi0bNnZBR0rWtoguMCkUi21wI161mXuocEKaYXMS4u+pY/hVCSWSY4HT0pEmlouiSahdpEBl
mOceleiwWcNjClvHgJH97Hc1EmVFFi3Czy7mwIl/WtJbjP7uLgd/apQ2VNVvtsBhiPzdK5S4nAuR
nqOCaTGi9pcytPlU+XpmumtWII44rah8ZjiNIXRuWeNvvViQ/LXpJWPJbu7nCRvVkNxVsxBmqJmo
EPiXca0YLMuOlJsuKuPlsSi5IrNuG8s4HWs5VEkbwoOTKsk+FJY4rC1K53k1xTk5O7PSpwVNWRzt
4cms+WpKICtSLTETQj5q0YeBSGiys23pUguGxQMq3E59ayrm4x3yaAKiRtO2WPHcmhruKFxFajzZ
ScA44qRHoXhuMaLpxaUg6hcDLMf4F9KlhuDeXGASIl+8azZslYma68y48m1+7nFW5rtbRNhb5z1p
iMKbUg0zuW4A4rPgb7VdKXOMmpA7HRbMS7nUYiUda0lkQOBngVrS+JGdbWLRt2bAx5BqeQ/LXpnj
PQ4GJ+ashuK0MhWaoWcA0AaOmASMK7jRNPWYBmHyiuepO2x10qfcv6vYxCzYqoGK4HVYVTJrmb5l
c6oaM5TUJ8EgGsG4kLNUHT0M64OaqMMikSRsuKbnFMRLG3zVehOaGNE445NNlnVFpDMu6uie9Vo1
8z5mOAOST2pDK91cNN+5tsrH3PrW54a06KxT7fdrlh/q1Pc+tJ6IUdZGvHPLezMcnBOWbsPap5r3
ylFtbdT1xUWNWzU0/Zbwlgfmx8zGsHWtRHmMqE59aAMyNifvHPc1f0gtPdqkY5JosJHeNci2tktY
euPnNY+oXWZEVJNrZ9aun8SIq/CzodHuriIokhDIR1ronbKZr0o6o8ipoz//2Q==`,z0=`
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAsICAoIBwsKCQoNDAsNERwSEQ8PESIZGhQcKSQrKigk
JyctMkA3LTA9MCcnOEw5PUNFSElIKzZPVU5GVEBHSEX/2wBDAQwNDREPESESEiFFLicuRUVFRUVF
RUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUX/wAARCASwBLADASIA
AhEBAxEB/8QAGwABAAIDAQEAAAAAAAAAAAAAAAEDAgQFBgf/xABDEAEAAgECBAMECQIDBgUFAQAA
AQIDBBEFEiExE0FRBiJhcRQjMkJSgZGhsWLBJDNyFSVTY3OSNEPR4fAHFjWCokT/xAAYAQEAAwEA
AAAAAAAAAAAAAAAAAQIDBP/EACARAQEBAQADAQEBAQEBAAAAAAABAhEDITFBEjJRIhP/2gAMAwEA
AhEDEQA/APqYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAKNTq8OkxzfNkisQC8eb1XtRNbzXT4q7eU2nu0MntRq/D8StMccvW29ZmdvgjsTyvZjxOLj
+s8WLxn8TFPXs6Oj9oct7c14rkxz22nrB2I49KOdTjelmszfmpMeUxv/AA28OqwZ4icWWtt/SUi4
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmdo3nsPNe0Pt
Fh09Z0+DNWL7+9O/7A3eJcZppsV5raI27esvH6jX5ddM25p79Ilo59VbUZOe2Tm/PeGvfPfT2iKR
PLv1+DO678XmW/a97U6TtOyzTbTF538/T9WjTNecm9a7126tqk3rSYxY5ta1plRZqZNXGjyZcPXl
mZmsx+qjBrsuO16xM7eXRt04JrdTltk5OWJnfaWf0a2lty5MdZnfzSn+WOHiOutFpjHa9e8bQ2fp
+alYy462pk7zXbuxjPesbRS0f6ZZV1ET1tErzXFLHo+A+1ddZf6NrI8PJHa1vN6iJi0bxMTHwfOa
zhzd61v1846utwniM6DUdb3nBaNrVmd9vjC/ZVePYirBqMWppz4rxaPgtEAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAItaK1m09ojcHnvarjM8P0vh49+a/eY8ng9D
h1fGM1rxjtGPfvbzdbjuTJxHX48cTPNltM/KsS9Dw7S49Jp6UpHaGe2vjz1y9J7LYK13vHWe7bj2
ex1tvM80ekuxW3RnW3Vm6P5jRx8H0+OYmMcb+bapo8GKPdpC6bQwtdHU8JpWkdJ/JweL6e23iU67
d4dubSqyVi9Zi0bwIs68XGp36TtEq7ZJmZmevzdbifCKWtbJinkt6eTgZPFw32t+sRurbWVzxs1y
Rv6T8V1NZNPtfq0seTm+Kevr+SZuxXjvaPiV8N4viycto9HseG6+uu08W6Rkj7UPmFck1tE1nlmP
Ld3eA8V8HVVi1pjq6Ma/pnqce/ERMTETHaUrKgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAADW19+TQ5p/p2bLS4v04Zmt5VjeQeJ4bjnLqsupv+Ka1+ERLv4reTmcNxcuC
vy3l0qdI2hlr66sT02ot0ZV7qqrInruzrVZLGSZ37JjqgYTG0K5lbaFVhDT1Ub456RPweY4hixWi
eSdpjvD1eWejz3FNHWYtkpvFo9EIseb3tS3SerOms22rfpPqZKzvvHSYUz70TExG6Gdbs2rljeJ/
Mx5L0vEzPaelnOi98c9J2bFNTFpit47+a+PVUvx9T9nOIfT+GV5p3yY/ds67wvsXqpxau+G09Lx+
r3TqrEAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADV4ljnLw3U0jvO
O0fs2lWqyUw6XLkyfYrWZkHldBEV09eveG3Fq1mI3jd4vPrOIaid8G9MP3Y38k6fNrt/rMk9Ou8s
tfXXn49rGWInuy8SO/k5Gl1E3rG/fzbOe94wTy99mbRvTrMOOvNfJWsesywniukrG/jU6fF43WYN
TmtEeJtEQ06aSmK2+bNtEd+qfSO17unF9Hmvy1y13XWyVmN4tExLxVK8PmNq5NrT58zawam+m/yc
0Xj8NpRYSvQZ7xEOdqI3rPozxayNRXe0ct/ON03jmrKB5nV4q1yTO20Obmv4c+cx8HoeI6WZpNoj
q83niYmYscU0r8aJ6T1n49zeJ+Meqm1drb9J+Kd5p136StGVem9l9TbHxLDFp7W7+sS+q1nesT6w
+PcAzVjiGHftzQ+v4f8AJpv6On8jH9ZgIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAABp8VrW/C9TW0ztOO3b5Nxp8VmI4bn37TWYB8f1HFtTfUfR9FWJmsdZ9I7MtJxDX5s
d8ta1y0xzteaR2277rcuhycP12SceLxMeWNpjttHwlu8I0mfQ1y+D7k5YmJmY36T36Ka43z/AF1t
cI1ds+qxVj7/AEej19PCw9HJ4NoK4OIU5Y35YmZdzVTGebVZabx5jJS+Tmns81rNLm1Wrzc9rVw4
Yibbem72mXTTS0w0M3BvEta1bWrM95ie5EanY87wXgNOL6XPfxraXLhra/W28bR/dzYzarBqJxRe
bzE7Rt5vWU9n8mPHOGmS0Ypnea1naJb+k9ncNLR7u2y/WcxXO4TOoyUrN6zD0FaW5Y3hu49FiwUi
KxCvLMR0hlW0jn6ukWw3iXjOJzbDlneOj3GaN6zDzfFOH+LE7SRGo83XNSZ2lbG2/WfdlvaT2cy6
rNFInlrv1mfJ37cK4PwTTxOoidRm2+/2/KFuyMp47XB4LivXiunrH2b2iH2qn2K/J8x4fGDNxTSZ
9Nh8OviRvTyfT6xtWI+DeXs9MNZubypASqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAOZx6/LoOWPvWiHTcf2hiZ0e8fc2mf1E5+vP/AEeuSd7RC2uKtI6QjHfeINTfwtPf
Jvty9WPfbt/lucP03gxfJf7d/wBoReYpm97zaNeLb4Ims9Nt94auDjem1Wo5PFi1onylS+1o7l8V
bxvtupjDMdNkYtXS1+Stt+m63xImEJ4xjHER2ZxMUjeUTO3VRmydBbjLJqPi08mbeVOXJPq1sl5Q
Vbkz9+rRy35rxHqzmZlVEe/Ez5LRlW5iyfR6zffaIjq1OSNZps2a21rZInafSPJhxGMl9LStLRWM
lorM/A4dkrWbYfLZC2W/7K6eubX6b4RzT+W76K8b7G6X62cu3Sten59nsm3j+OXz3/0ANGIAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0OIYfpOHPijvNNo+fdvtXJO18k/
/OwPFYbz2ls3jx8VqW6xMdWPEdP9D4lkx/dt79flLLHbkxTPwY6nt2512ORTRzE2x4/dpE7cvkme
E4IrW3hRMxO8THRtU1FKWtvtvK2upx22rzRCtXkqzh2jtF7ZbT122b01ndnpuWuP3Z3+Ky20qDVv
fauzVy3mejZzNK8dVjqi87KLRLYtXruqvXzkQp7Qoid88R6rcl+WGlW0/Sa22mfhCZOq2x082ix6
jkm822pO8VrPdr4dNObVeDo8XW3uzMbzK+mvxT7szE27cvnu9j7PcNjSaXx8mOIzZevbrEeic5tN
+SZnpt8J4fHD9HXHO3PPW0x/DeBtJxx29vaAJQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAKNRim9Z5e89Nl4DzXtVh5babURHrSf7f3ec1+qnDorWrvvt5Pccb0n0zhmWk
Rvevv1+cPE2rGTFNZU26PFfxwa5dVkjelI2772nZnX6bbrEUq3o0d678u8wmuDL2ittvVjXdneeK
cGv4jpJ6U56+kS7+j118+GLXpakzHaWlp9NNY3tv+bbiYiNoQy1y30uyZJlrWmZnuym6q1iIJnop
yW2Te8bdWnnypQqzZOadokiIpSZntWN5lrxki19vNRxrUeBwnNNd+fJEY6/OejXLn3Xe/wDp9wyn
E8uo4lqqxblv7lJ26T6vpD5X7G8QycKzeBMbzMRM1/FH/wA/h9QwZ6ajDXLitvWzRgsAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeL45w+dDrZvWv1OWd4+E+j2jX
12jx67TWw5Y6T2nzifU+rZ1y9eHwzDYxxEy18+DJodXfT5o96vafWPVbjyxDn1OOzHudbM0rt2UW
iI69mVtRXZq5tREb9VUoy2iIlRbJ0UX1VZ6btTLrI7V6yk62M2oisT1c7JmtkttVMUyZp6x0beDS
RWOvdKijDimvWd3G9pNRMfRcNfvZOb9Hpb0itJeP47k/3hgjaZnbaP1XxWW3T0movbNS0W645nbf
0nrMPpXs3xamoxdJiLbe/X1n8Uf3fKsOTw4jbaXo+EarJhtGTHMxeJ6xH7Sti9Zaj6x3HM4NxXFx
DS1mtoi8dJrv2l011QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AGjxLhODieOIye7kr9m8d4eM4to9RwjPXFa0ZIvG9bR0fQXmPbDFvTTZPOJmEWS/V8bs9R43NxLL
G8eFbePg1bajU5/s0l1ceKLx1hbjwRE9mOpx0y2uRTSZsm3PMw2aaKtIjo6kYo9EXpET0hVLXxYK
xC6MZvyx1lFs0RHfaPiCnU12pLyHGNDbUajBekWma2npWN3p8+opa20e9LSyZLxExTlpM+vdOdcZ
a9tPS8MyUvFrzWlI6727u1pYxYrbVmb7x+TQx6au3Nqcl7/0rcmW9axGnwZJj1novmxnZXV0fFp4
ZxLBPgTGK8xzXr5fOH0bFlpmxVyY7Rato3iYfNuG2x56Wrqa8s2jz+7Lu8O12bS6jkwzN6THNNI6
tvrN68Y4rxlx1vHa0bskAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAA4XtTTm0OKfTJ/aXdcL2pyRGjwU362yb7fkJz9eTxxyZJjyltRXzUZK7TFtl9Lbwy06YzrHwa+
fJFd/wCVt8m0bQ0eS2qzcm+1K/an+zNZFL5M1pjFXeI72ky48eGnPkvNp27+TPU6nHpMfLXaIjpE
erk5dRMxOfN1mPeisfshW1ne1a1577Y6x5R3U0zze31FOWI6ze0byU098kRlzbxM9qrMlPDpyRMR
Md5Vt/Ihp5898mWZm1pjftE91uCt7fCI7dWeHDEW3t723l6rslqxWZnasR+SYhFbzhnfxJ2jyeq9
lcGXWZcmW0zWKxHLaI7794eJx5fpfEKabT8t8l5isddo3l9S4VjrwrRUwzSJt3tav3pdOL6Y6dXD
j8HFWm+/KsU4NRXPvtWazHquWVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAa+fXYNP9u8b+kdZBsDkZOO135cWOZn4y5Wu4xqctbe9y19Kp4njt6vi+PDm8DFMWybbzPlV
5PiGtz67UxbNbeKTtWIjaIXYpnwuaftT5tXJT3vmi1pMsrU5qIrG1V1a+5DCa7b9GFbRr5J6Wnbt
Cu+Wmk0m8956z8ZWZNorbfzcbX5rZslazPux3hUt41NTntktObJ13+zX1bek01r4/HzVm0bxPXy/
+bNfDgjVa2uOY92kdfg6ufJOKvLXtttVVSqbcta2vM7zXtHpLQy5ZtMd+vWd+7Zy3mdJHXra3f0c
vUarw7zFY5rT2hH1Lavnrgx81p3U49Pk4nE5L35MO/StfNRXR5tXnrS8W67WvfyiPSPi7uLHFK1p
jrtSsbR5Lc4RzsXBaYreP4l45esRD2HD9fnw6evvWvO3Tfr0aGk0U55ra0TFInv6uzgrXFXlx0i0
77RPlC83Yj+JW7oddqr6vHzTTw9/f6dod+L1t9m0T8pcbFSmPHER3892W0zPuz+jSbVvidkcqmfP
Sel7bekrI4n4dZnPWIrHeYnZee2Wpy8dEaml4npNZblw5qzb8M9JbYgAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAABEzFYmZnaI7yCXL1XGa0jJXT0571nbee27DiXEprp8nhbxG20W8
5cbD0ikfnKO+urTPvjoZdXqctdsmTaPSvRpWmsdZ6yztfaGplvv3lWW1tyRlz1x0vkn7Vo5atTNe
Y0+1o79V2KsZsvX7Ne5mwxnyTNvsx2iGneM/rCdRSuOsTasTt5kRFtpjqmOH4t4nk7estiMNa97R
Hwhna0iuKTEdmGWa4672nZtRele1N59Zlq6vLOSsYorEc07qcW65euzRvtXvPZy52naZ7ujr6fXV
rWdukREK8+njHgmZmPc67bq6ivVWhxxgxZLztNrT1mZ/SP4VZs0zaOvfp84WUtNsXLvtv3699+rU
z7+Jtt5qURqMnPpctaR1rMSw4ZoK57eNk6xHaJRh97Ltt7lo5Z+L1HAPZvVauZ2nFTSzMTzeJEz8
to6xPfvsZntPZ9rXxabmxzefdrv0j1dXh/BcmstW1qxTHHasR3+b0GPhGl+kWmd64dNEVjf73T7X
y8vy+Ddx6O3iRakxTH5RXrMw1/lX+3Itw2MFIraN48qRHdZi0cUjmmPen9noox1iO0fNzdXEYrTt
stcmd9aX0bJ+HePmiKTitO8TMLZ1cVjrMfqpz6ys4pjfrPRWZ9rXXptUit6zO+23VyaRHEc05L1/
w9J9ys/en1ljqdVbwYw452tlnl3jyjzbmmiMeKtYjpEbLeTXPUU8ee/+qjJpsV5rbkrFqzE1tEbT
DpYNbW21Mnu29fKWna0KbqTdjXXjld0cvQ63ltGHNPSfs2n+HUbS9c2s2UASqAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAOVxPWe99HpP8ArmP4b+r1EabT3yT3iOkesvMVtN7za07zad5l
XV5GmM9vVfEstvDx0jtaVVMlq+UJ18b5cMRvPeSuK87bUt+i2Z3PtG7zXpjkzXt6R+TXyTMzvM7t
ydHqZ+zhv1+Cv/ZuqvPTHMfOYaTMil1a1K2vHSLTELq2v+KWzThGo84rH5rq8JzedqR+ZeI7WnOS
34pYTafWXR/2Pln/AMyrKOCWnvmiPyR6O1y9585lhWJvl557Q6eo4T4dYiMvW3b3UanhldHpJtGX
e09unmjsT7eb1l4trI2t0hsZfrdNO0bzy+nzU20/+NmkzO9esz+TZxWis9dttvPv+Tn21jjaW8zn
26bTG3mp1M/Wzv3t0jyWXiKZJmsTERaZhXXDbNl8WaztWenxZLstPp5pau8frDtVrNMM5cfTfpMf
3aunxxbes9d/R09Dp8ebJi09ptFr3jtt2WyrW9wy1Jx132mK+Xq9PotT0iIU19ntLtExa3T47T+q
6nBaYvsZstZ+cT/LeMnUi0TXffo1s2m8Ws2/OIMWk5Jib5L328rS2t94Sh5TV4ppklpW6PT6rh+P
NbebTHyas8E081mZy5P2W6OFhjxNTE/hr/LoRO0Kvo9dPqctKzMxEx1la5t3tdnjnMs4noievcrO
yZjeFF1OSnNV0OG62cn1GWffj7Mz5w05joovzY7xes7TE7w0xrjPeex6Ua+j1UarBFu1o6Wj0lsN
3JfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrU5o0+nvlt92P3BxuM6nxNRGCs+7Tv8
2hToxm1r3m9utrTvMsonqyt7XTmcja0u3O6FMfi5t/u0/lzdJM81p9O3zdvHTwsUR5+bfPqOfX1h
dqV+3O7bs1+T31oqmI3TEM4rvCdkDGIIhlFd2daboS0NXG2bD6bufxXU1vlmu/u4us/N0+L1tTSx
kr9qk7w89j1FNZMV3jxLzvaJ8mer+LSOZqK2xZotbvljfr/89U453rXt9lse081xZtNjx7TGKu0t
DHlrevSevaN5Y6+tJ8c7VRNMt63n3ub+6/R54rERMztDYy4a5omclYmfxKcenrjtHLvtPrCnVmdb
eFe3JXmjy6eS/DrMuLVYsta9Mdt++6qLxO+0dEc8UmInr18iUfReHcXrqccb9Z27Q61Lb13eJ9nc
1Z35rTvE9avY4bTkpG8xEfB05vYxqybc07R281naGMREdoT5JQqy9mply7Q3bV3iXG1eXw7TWSka
c258t7+tpT5/BjT7MfHqndz12Z+M4lMMKyziUJJiN1WSu9fku23RaOgKNJqbaTU1t9yelo+D0cTE
xEx1iXmM1Nt3W4PqvFweDaffx9vjDbGvxz+TP66QDRiAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAOJxzU73rp6z296zsZMkYsdr2naKxvLyObNOfNfJbvad1dXkaeOdpvsc2yuZVzfbfqybutwu
s5s8R92J3dvJb3tnO4HSMegtmt3nfZvYp8SZl0z45NfSK7onH1bNcfRFqnUKJr0Y7dVtq7prjEsK
0XVpEM6028mW20IHK41aPo3J6zs4ODhdcvPnvExFevNXpMOrxi/PlrTee7PLX6Pwa09uaNlKtHg9
dM3z5d7ReOu02nu0JzZMfblrv5R5uvrcdImZ26T1mYhxs1Os7RH93PZ7axuafNfLitvbaYU3yZYt
PXs9NwHhui1HBa5LVicsb81onrEuVqNNSuS8Y67dZ6xPZa59Il9uX41vEitImZme3q2Kxbxora0T
Md/ROSa4Ztkj7c9OafL5LuGYubmyX3iu/TfbdSfVnpvZLT/XZK233+Mbbva1xRXyiPk8pwbH4N6T
adq5a71n0tD1WDL4tPe6Xr0tDpz8YVnJHWEXYxbqlBedoef4tW0XraO09HdyztSZcbUz43C+ee9b
SVMaeOfqq7+jGckQ1Yz7+7v2RN/WXPXZPjci2+2yyJaVMuy+uSJlA2d+pNoVRbeDcSxyTE+TDDlt
pdRXLTynrHrDOyiyZeVFnY9TjvXJjres71tG8MnJ4Nqt4tp7T1jrV1nRL1x2cvABKAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAHJ49qfD09cNZ97JPX5PPw2uI6j6Vrsl/ux7tfk1mWr7dOM8iLdm
vfebREefRsWldw7SxqNbWbR7lPesrn3Vteo7dYjDpMGCvfbeXQ0uLlxRLRxROfUc34p6fCHYrXlr
EejqrjY8uzCYW7MZjdVKqK9VlaxCYrsnYExBMRMJRPZA8/xPHtmpP9W2xx76vhWOInvt/C7ike7N
vwzE9kcapGfhlevTaFbFo8RqJ5vy8/RoW09ek0msxHfp3dzNoLzp4zUmZpMbT8HJyYJi20X2n0lh
ZY1li/RaidBF4w2mK3jrHaFGp1lN+tptPp5IjBkid5mIp16TKu0abBPv33vPlM7z+iPdFNcWXU5I
tkrNce/b1W5db1nTaf3ax9q0fxDW1ebNk2phty1mOu09VOm8W19orEz23j1TwfSeERFuEYMddptW
d43dvBn21eKJ75KbW+cf/JcTgMxXTb3nbljz+TpcPmc2uyZO1KRtVtGVdi0bx07qJnllsRO6rNTe
N4XVamsy8mnvPwc3R2jPwe8TPbdlxXNOPSZfhWWpwO85OFzv57qrODkzeHntSe8Sn6Rv0a3EZ218
8nXekfr1a0ZLVnqx19dWb6demXybOO7lYMvNMdW9S/VVLo0us7tPHdtUtEwJiZU3jq2Jhham8CVG
PNODNTJXvWd3qcWSubFXJWd4tG8PK3pPd1OB6veLaa89Y61/u2xfxh5c/rsgNHOAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAANLimq+i6O0xPv392rdeZ4rq/pOqnlnelOkIt5F8Z7Wj27I2I6sb25YY
V1ImY3dbQ08LRc23vZp2j5OJG+XJWle9p2h6HHtbJXFT7OOIpX+7TxT31j5rycdTh+Dpz+XaG/sw
w18PHWseULN2trBE9UcrJKBhFU7JAQi0dEomegNDUYovM7x3jb5tO1ZvpbaTLtzRExWfWPJ08kbT
Ex5NXWYYyV5omYtHWJieyeDzuizfRs19Jn6TM7Ru1uMcJxZqTkw+5f4ebqa7SV1MR4tdrx2vEfy1
axqsNOTLjnLXytVXi3Xj8+nmsxTLM16d5npPyUzpekTtSK+U7vS6vQ/SYmK1vWPS1HOn2dvvvvE/
tDO5XlcO+LbfHSd/W3o6/BdDOXPTnj3Kz38rS6Wm4FNrRyRzTH3p6RH/AKvR8L4dXSzE3jmtHn5I
mbfqLV+m4dbLSsZInHjr3iI6zLpYaxS01rHuxHRHiT9mv6s67Vj1aqL6326MrWiYa+/Q54BxPaGe
XRZpj8MquB4+Xg8zPnB7SX30to379GxpK1xcHiKz5IS8xr8PLPixH2bftLTy05o6dHYyVjLhy0t1
izjZa3pMVv3iO/qz1G2L+NbSajbNyW7xLsY8kTDz+fJXFqKZN4iZnafi6WHL0iYlStI7OO+7axW2
crFl7dW9jvE9ULN+J3ZbdFGOy+AYWpEqN7afNXLj+1Wd23KrJVMvCzseh0+auow1yU7WhY4fCdV4
OadPefcvPuz6S7jol649Tl4AJVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAV581NPhtkvO0R+4NPi2
r8DB4dJ9+/7Q83Po2NTqLanNbLfvPaPSFDHV66sZ5ET0hRknyW2lTtMyouz0c8usx2n7s7vScKwx
zc1vu/y85p+maJh6Th+SOWeveXR4/wDLm8v+nX5mUWa9bbrInolmu5jdTNkxYFk2Isr3TuCzeGMz
+THdEyDDJO9Ja823rt2XWnya946pGvktDXta0ztWu/ybvLE9dkcoOf4GbJPWK1j49VmLh9JtE33v
Mevb9G7WsW8l1ccREISophiJ2jpDYpijbaOjOuOJ8ujOdqxsgVcsUjaETYvbaFFrgu5lVsm0yUtu
ryg43H5m+GIj1XcJzePoL4pnrWGtxmfchr8JvfHS1622if3QljzTTLes+qrNjrkiYtCzPMxnm095
YZJ6boS5teB49Tqscza97VtvWvlv8V/FOF34RrIxTM2xXjelp/eHoeA6XnzReY3ivX/0dfivDcfE
9HbDbaLx1pb0lOs+jO7K8Lis3cN+0NKcd9PmthzV5clJ2mF9J9GHHVL108dm1SznYr/Ft0tuhLb8
mNohFbMhLWy0mJ3rPXvDvcO1karBG8/WV6Wj+7kWrvDDBlvpdRGSnbzj1hpjX4z8mOx6UYYstc2O
uSk71tG7Ns5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZ2jeXneJ62dVl5KT9VTt8Z9W9xbWclPo+O
fft9qfSHEU1pv48ftYST23ZTDC/p0YtlVuvVjMbM5+LCZjYGWGdrTPxiHY4ffaf3cjTxz1v6xMS6
Olty2iXVj/Dk8n+ndrkhnGRo1v8AFdW3RCrZ5uiYsqrboncSu508yjmZRYQt50TfowYTbYGVrKrT
uTZjvukQnYhMIGVY2ZxPVWyrHVCWzXpVXkt3TE7Va+W4K7X3jv1auTNy3jdba0RZpamfroQN7Hk3
6wr1GTaN2OOJiu6Mu98NvgDi8Wy74d/yZ8PiPAiO2zU4nb6qIn1bugjfFE/ASp1ke9u15mbbRDZ1
Mb823kx0Ontn1OOkedoJCvT8I03gaKsz9q/WW+isRWsVjtHRKyrhe0XCfpWL6Vgr9fjjrEfeh5fF
feH0V5Dj3DPoOo+k4a/U5J6xH3ZZ7z3228evytOk7NvFbo0cdols47bSybt7HbddHVqUs2aW3Qnq
xVeu8LILR3SlZw3V/R8nhXn6u0/pLuPMXjeHT4Zruf6jLPvR9mZ8/g1xrvpz+TH7HUAaMAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAABRq9VXSYJyW79qx6yvmdo3l5viGs+maqYrO+OnSvx+KLeLZz2te1rZL2v
ed7WneZYWnZl5K72YV1xEyxmeqJljzIEWlVkszvbZp5soN3h2SJz3pP3odCnuWmPRxuERfJrZmtZ
mtY96fR28kbX3dXj/wAuTyf6bmK+9YX1s0cNtm3Sd4LFY2K23W1s16StiUJW7bp22RW3RluBuruz
mWEgrmCGWyNkoExKE1QlPmsqRDKeyBjaejWy2W3ttDUyz1QKslvehVqKTNosyyTvELabXptIJpaP
B39Ia2mz+JGpr51jdZefDx2hzuHZObNq58poJaGtjxJ2+LoaKP8ADRPo5+T3skx5OhpOmC0fBNQ0
5yTbn+bt8A0u9raiY6RHLVwY62mI6zMvaaHBGn0mPHt1iN5+aYVsACBXqMFNTgviyxvW0bSsAeE1
mkvw7V2w5Ote9besJx2er4rw2nEdNNekZa9aW9JeQjnxZLYskTW9Z2mJY7zz26fHrrdpbZsY7NGt
mxjvso1b9NmUwpx33XRO4K7VUTE1nmrvEx1bVo2VWiJE/XY4frY1WPlt0y17x6/FuPM0m+HJGTHO
1qu9pNVXVYt46Xj7VfRtnXXL5MfzexsALsgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHM4jxOMFJphmJv529Dq
ZLfjDjPEIx450+K3v2+1MeUOHSOWFc3nJkmZnf4yujpVlqunOeFpV2nctLCZUXRM7MJtsWlRkv3Q
ky5NmpWt9RnrixVm17TtEQnJabXisRMzPSIew9n+CRoccajURvqLx5/chfOest642OGcIpoOG2w7
ROW9d72+LQvXevyejcPUU5M+SvpLeOataraw2a0dLbLqTtK1G3Es4lVWWUSoldFtmcXUbpidgXzK
GEW3TuCUSncnsDFMMLSms9EC6J6FpVzbZE5ALy0809ZbFr9GtfrEoFMzuuwz0Ueey3HbaBLDXe7i
tMOfwWnP9I+NZbuttvhs1uBRtXPb4SDm3iIvf57N7Dbl0VrS5+XrltEd+Z1Jx7cNms9N4TURRw3T
+PrcO3WszEvZOD7P6aYiMlvu16S7y1QAIAABxOPcLnUY/pWCv1tI96I+9DtgmXl68Biy7/NtUu3+
O8HnFa2s0tfd75KR5fFyMWTdhrPHVnX9R0cd21S3Rzsdm1iuqs256wrmGcT0RYSx5d047X02SMmO
esd49YRE9WcdSXhZ2O1p89NRji9J+cei1xMc3wXi+KZj1j1dTTaqmor06WjvWW+ddcu8XK8BZmAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAMMmWmKu952UZ9XFZmuP3revlDTtzWnmvO8q3XGmfHb9ZanV3yxtWeWn7y4es
vPNtDqZJ6Ts5mppvdl/XXRMyfGvSNlu/RVvtOzLfoipLT1VTKbSpvfogRkvtDVyZOhkyvQcA4Dzz
XV6yvTvTHMfvK+c9U3rkW+zvA/D21urr789cdZ8vi9KDb45rejl8Rry6iJ/FV1HP4vXbBTJEfYt1
+UpiHM295bXsqrO9l8QkZ0lZEqqLeyBZHZLGvZkhIndADKJ3TMoqWQMZ6pjsxll2jsCLSrmU2lFY
36gieyu0LJk3jbsga0wdqzK20QpyztQGprL/AFMrOE05NLkt6qdVWZxNrSe5o9vWBLiUjnzXn0vL
q555dHt8HOwV928/1z/LpzXxbYccRvzTB+jucOwxh0dI22mY3ltIrHLWIjyjZKyoAAAAACJiJjaY
3iXleM8InR5J1GniZw2n3oj7s/8Ao9Wi9a3rNbRE1mNpifNFnVs65XhcWTdt47bnFuF24dm8TFEz
p7T0/pn0a+HJux1OOrOux08d1ndqY7tillVkzExLOk7yd4YxGwluViJhE45raL0na0dtlWO0+bZr
1TKi+2zptZGTamT3b/tLacvJjiY3XaTWdYxZZ6/dtPm1zrv1z78fPcbwC7EAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABhkyV
xUm152iAZWtFazNp2iGhm1Vss8uP3aevnKrNntqLdelI7VRHRnrX/HRjx/tZREVjZXeybW6KbWZt
pCZ6S08tN7Nmbb7zCrJtyoS5145bSx5mWafelr3tsKmS/o08uXyhlly7RPV2+AcBnPNdZrK+53pS
fP4ytnPVda4y4BwHxOXV6uvu96Unz+MvVxG0bQRG0bR2G0nHLb2gCUDX12LxtFmpHeazt82wT1gH
mMN4tWs+rcr2aEV8DU5sM/cvO3yb+O0csLUTSdrLphRE8tlkZI7Atr2ZMazDJVKTYSCawi7Ksq7z
1QERvLK3ZGPrKbyCrbdnMcsbeaa18/RhvvM7oGEwTG0JmYYTIML22a2e28xELM19oURPNO4lOem+
n3ZY5+prVnMc2GYU4/L4A0a15cNf6rz/AC6fC6+NxCPOuOu/5tHJTbHj+F5/l1+BYumXJMd9o3/d
MRXYASgAAAAAAABhlxUz4rY8lYtS0bTEvH8R4ffhmo6bzhtPu29Pg9mq1Gnx6rDbFmrzVsizq2df
zXkMWTeIbNL7tbXaHLwzUctvexWn3bmPL8WFnHVL326VZ91MfFVjvvVlz79kLrcf2m7j7bNHH3bl
J2SirLQoy4t1++7G0dBC/RanxI8PJPv18/WG241+alovSdrV6w6mDNGfFF4/OPSW2b1zeTPL1aAs
zAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAVZ9RXBTe3WZ7R6iZOpzZq4ac1p+UermZMl89+a/byj0Ra9815ted59PQ32hlrXXRjH
DpCLX6ML5NlNsm/ZRqstfdXzbsZt06sLZNvNB1Za8RDWyZdo7q8udq5Mu/mIMt4md2lmy7JzZuWJ
dHgfBL8RvGo1MTXTxPSPx/8AstJ1XWpIs4BwSdbeNVqq/URPu0n73/s9hEREbRG0QUpWlYrWIisR
tER5JbSccur2gCUAAAAPM8Sry8Uyz67fwuxbzVPGsE49XGbvF42V4M0TEL33ERnktsxpk3sumK2j
admFdPFZ33VS2Mdui2J3UU6LYlFSsN2O5NkCyJ6K7T1TEsbAsxdpReerKkTFGMxvYEz0rsqtbbpC
b2VT1QEzuwtbaGUxspuJU3neWdKoiu8rq12gCI92YatLcublnzbEz1aOptyZqTuDHLfxN6R0+t5X
qdJhjBp6UiPLeXl9NSMnEKxHa1+bb8nrlvxUAAAAAAAAAAABTqtNj1eC2LLXeto/R43VabJw/VTh
ydY+7b1h7ho8V4dXiGlmvbJXrS3xRZ1fGv5rzeHN02bEW3cys3xZJx5ImtqztMS3MeTeGFjqlb2O
8btql3NpbZtYsnSBLeiWfdTjtutid+ghherHS5p0+f3vsX6T8Fkw181d4lMvEWdnHaGnw/UeNh5L
T7+PpPxbjdyWcvAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAo1Oprgr63ntAmTqdRqK4K9etp7Q5d7Wy2m953lNrWyWm953mVd77R0
Za1104xxlN9lV8qnJl2a9s3xUXX2ybsJyRDWtl3YWydEC+2VRkzeW6q+T4tbJm+KRdfK1cmWZnlr
vNp7RC/R6HU8SycmCk7ed57Q9ZwvgOn4fEXtHi5/O9o7fJaZ6z1uRyOEezVstq6jiEbV71xevzer
rWtKxWsRFY6REeSRrJxz22gCUAAAAAANbX6aNVpL0npMRvWfSXlKamsRMVvXm+EvZXjmpaPWHzfL
oNRjzXicfWJ8phfPxFejx72x7xMzK+sXiNoiXlq+Pi6fWV/VfTNqfLJl/WTg9Pji8R70LqvMV1Gq
j/zcv6yz+lanzzZP1lWpelTET6S81Gp1P/Gyf90s412rjtnyfqql6asREdWM9+jz9eJ6yP8Az7uh
odZqMt458tpB1JvEViI3/RhzRt13/R1MNaziiZiJn5K9ZNceKZiIiQcu/WekT+iYrWI3lzdTrs+8
8uW0fJzcur1Np/zsn6g79phVaIeetqNR/wAXJ/3SwnUaj/i5P+6UD0ldonum161h5mNRqP8Ai5P1
lNtRqJjacuT9Qd22WN5aGeZyZd/KHJy59RHbLf8AVq31Gp/4uT9ZEvS8Lr/vSs2npzRtL1z53wK+
oza/HW2XJNd99pmX0Rb8VAAAAAAAAAAAAAAcHj/C5yV+l4I9+v24jzj1cLFk8nu5jeNpeW41wmdL
knU6ev1Vp96sfdn/ANFdTrXG+eq1q5F2LLtbZoY8m8d11bbSydErsYsm+zZrO/zcnBm226uhiyRK
EtrvCrJDOJTeu8A1MWX6Lqq5N/dnpb5O5ExMbx2cPNTeJb/DM/iYPDtPvY+nzhri/jDy5/W6AuwA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAa2p1UYo5adbz+xbxMlvqJ1OqjDHLXree0ejmzNrWm953tPmTPWbWneZ7yoy5YhjrXXTjH8s75N
mtkyxt0VZM2/m175N1V03yTKubMLXVXybeYLLX2VXy7eam+b0bOg4VquJW+rry4/O9uyZOq3UjVm
9r25axMzPaIdvhns1kzbZddM0p5Y47z8/R2+HcF03Doi1a8+Xzvbv+TotJnjDXkt+K8ODHp8cY8N
IpSO0RCwF2YAAAAAAAAACvUZYw6fJkntWN3k8dfHz2vLucdz8mkjFE9bz1+UOZosX1UzPm0nqI/W
MYo9FlcPNklfFGeH/NshLGun+Cz6PtHZtVZWlRLS+jxPkRpIn7rdoupHTdA5s6SI+7H6Mfo+32Y2
+To3neSIiZ7A0IjPXpXLePlMotGW3272t85datKzHZjbTVnsDj+FG/2Y/RlGP4R+jo20u7H6N1Ql
o+H8I/REY957R+jpfReiK6eOYHLtj2tttH6KrY/6Y/R2c+kjeJiFVtLG24hxpw7/AHY/RRkw9O37
O99Hrt1YX0tfOBLjcGp4XF8c+u8fs9c4dcVcGemSI61nd3IneN1orQAAAAAAAAAAAAABFqxes1tE
TE9JiUgPKcX4RbRXnNgiZwWnrH4XPi28PdXpW9JraImsxtMS8pxXhF9DecuGJtgmf+1TWW2N/la1
L7N7T5e3Vy6W3hsYcvLbqzbO9jvvCzvDR0+XeO7crO6FmGSvRThy/RtVXJ92elvk2rRvDUzU7pl4
izsd2J3jeBpcNz+Lg5LT7+Pp+Xk3W7js5eAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADs0NTrN96Yp6edkW8Wzm6+LNTq4pvTHO9vOfRoWtt
1mes95YWvs1s2fZldddOczLPLn2ju0MmebT3YZc2/mpm3qqllN1drsbZIhr3yzvtHf4AsvlYYseb
V5Yx4KTe0+UQ6nDvZ3UazbJqd8OKeu33peq0eh0+hxcmnxxWPOfOfm0mP+steT/ji8N9mKY9suum
L37+HHaPm9DSlaVitKxWsdohI0Y22gAgAAAAAAAAAABXnyRhw3yT92Nwef4xm8bVzET0rPJH5d12
CvLhho3rN9RWs9Z23n5y6O21YhrVYbdGOCfrrLPJRpv863zVS6FS09SvZj3lVZZRdPSqmnSWdrIE
ebOkK4ldTsgW1WKqd1oMZhEVZyRAImOjGI6rJ7IiATNd46qL02bHkiaxaoNGY2n4ImPgtyV2n0Vo
Gvlx7x2beiyTk08RPevSVUxux00+Fn2n7N+n5rRFb4AAAAAAAAAAAAAAACLVres1tETWekxKQHlu
L8InR2nPp43wz3j8P/s5dLveWrFqzW0bxPeJeV4xwmdFec+CJnDM9Y/CrY1xv8qvTZ+WYdbDk5oh
5zHk283U0eo3jaZZ2N5XYjrCnLSJhOK+8d1kxvCqzSwZvousrb7k9LfJ3nB1OLeJdLhufx9LEWn3
6e7LXN9Ofy5/W4AuxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAETaKxMzO0Qi9646Ta07RDmZ9VbPbaOlI7Qi3i+c3TPUaqcu9adKfy0722ZXvFa9
XO1OrjrESxt66ZJmcjPUanlidmhkzTZVfLN5VWvsC2b7R3U3yqrZZtO1esz2h2+F+zWTUcuXXTNM
feKR3n5+iZLVbqRzNJo9TxHLyaekz62ntD1fDOA6fQbZL7Zc/wCKY6R8odLBgxabFGPDSKUjyiFj
SZkYa3aALKAAAAAAAAAAAAAADQ4pl2pTFH3p3n5Q33E12Tn1eSfKscsLZ+orS00eJqbW+Lfnu1tF
XaJnZsz3WpCfsyp00fWSvmPdVYOmSUDd8kR3InoQosy7JmUX7MdwZ17ro7KKT1XRPRAsrO0rYndr
79V1ZBaQiJ6JgCSIJASwrO07MpV2nqBlrv1a1o2bf2qtfLXaQUTO0sb05o3jv3ZXhjS20xEphW5h
yeJjjf7UdJWNKLziyRePsz0lux1SgAQAAAAAAAAAAAAAADG9K5KTS8Rato2mJZAPIcU4ZbQZuekT
OC3afT4NXFkmlntc2GmoxWx5K71tG0vHa/RX0GpmlutJ61t6wrY2xr8dXS5uesN+tt4ef0eaa223
2dnHk3juyreM81OaFGiy/RtZET9jJ7s/2bdutd2jqKeic3iNTsd8a2h1H0jTVtP2o6W+bZbOO+gA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABje9cdJt
adohGTLXFTmvO0fy52bJfU23t0pHaqLeL5xdK9Rnvqb+cUjtCi94xxvK3JetKuHrdZvaa1ljb10y
cnIs1Wt3naJc++TmVWvMz1YWybfMGdsm3eWek0mo4jm8PT0mfW3lDf4V7P5tdMZdRviwfvZ6/TaX
DpMMYsFIpWPTzXmf+steT8jn8L4Dp+HxF77Zc/4pjpHydYGjC3oAAAAAAAAAAAAAAAAADG9opS1p
7RG7zszN6WtPe0zLua+3Joss/wBOzhzG2OsL5+IrY09dsSyYRijbHEMvOChb7KjF0yS2LQ169Mso
S24noyrPVXWejNVKbTuw3T3REdQWU6LYlVvsyiUDPfqupPRr79VuOQX1lZEqoZxIMksd0gT2VT0l
bPZVbuCaW8i8bwr32WxbcGnkjaZa9p2ndv5qbw5+aNugLItF6TEtvTX5sMb969HMpfazc0d9stqe
vVZDdAQAAAAAAAAAAAAAAAADV1+iprtPOO/2u9bektoB4TJTJpNRbHkja1Z6uto8viVht+0HDvpG
H6Tjj6zHHvbecONw7Ltfkmeqmo6Ma69DXbbZTkr1mGWO3RneOaGbZRoM30fVzSelMnT83aef1FZ7
x3h1tBqfpGnjmn369LNc3sc3kzy9bQCzIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAa+q1dNNXr7157VhGp1Xh70x+9f9ocy283m1p5rz3mVbrjXHjt91lz
5c9+fJ1nyjyhdM8lZlOOIiqrUXikd+kMreunnI5XEdX4dZiZcG+XmtNl/F83PeeWWHDOGanieSKY
q+5H2rz2hMzWd1Iqx1yajJXHhrNrW6REeb1nCPZumn2z62Ivl7xTyr/6uhwzhGn4Zj2xxzZJ+1kn
vLoNJnjHW7TbbsAszAAAAAAAAAAAAAAAAAAAAaPFrbaSK/itEOXt0rDf4xb/ACa/GZacRvaF58Q2
IjasQnzPIhCU92tMbZGzHmotG10C6nZkwpPRmipIllEbMIZIE7solgmJBnCyk9VMM6z1BtVllEqK
z0WRILYlluriWcSDJVbusV27gwInaSWM9ECyZ3hqamnSWxFmOSOaqRx725bNnSZNs9J+OynVY+WZ
YYr7TE+nVaIr0Ais81Yn1hKAAAAAAAAAAAAAAAAAABExvG09peU4nov9n66L0j6q/WPg9Y1OJaON
ZpL0+9HWs/EWzeVz9PbmrEtnyc3h9reHy26TWdnSr2YX6657ijLXpLX0+onSamL/AHJ6W+Tbv2aW
ekTv16JzeI1Ox6KJiYiY7Slz+E6jxdN4dp3vj6fl5Og2clnKACAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZ2jeQRMxEbzO0Q08uqtkma4ulfO3r8lefUePMxWf
cjy9WvlzVxV6T1Z61/x0Y8f7Wc7Ur1lqVy+LqOWJ2hp6rXddon5rOF1tfmz5OkT0qzb8dWbxjp1c
biuuilJ5Z6r+IcQrixzEy8zl1E6rNt1tMztFY81sztU1eRucN4ffi2p5esRM72n0h7rS6XFo8FcO
CkVpX082nwXh3+z9FWLxHi36328vg6TZyW9ABAAAAAAAAAAAAAAAAAAAAAADj8Unm1tK/hqppHvw
y1k8/EMk+m0GOPeafiFpCZYwolnXspvHvLa9mF46gmnZmwozRUiUCBKYYsoBLOFbKAX0llEqqyzi
QXRLOJVRLOOwLIljZMEgrlhKyYYTAK5nZPN0RZjugUanHzVlz6xtLq361c+9eXItPpXX0dubTU+E
bL2lw2++O1fSW6m/VYAISAAAAAAAAAAAAAAAAAp1GbwcfTreelYEydcuMcRrM/L9nnlsV6wqpi2r
tv133mfWVkRyRtEdGFva7MzkYZNoamWN4bV4mYa9qztKIujhVppxGI8r1mJegeZpknBqKZY+7L0t
LRekWrO8TG8Ns/HJ5ZypAWZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAADS12fp4VJ6z9qVuq1HgUiI+3bpDl589cOKZmevqprXPTbx477rDJlrhr1nq4+s182tMRP
RqaziXiZJrWekNG17ZbxWJ336M5LXRbI3dLTJrs07RMY6fan1dHLrowY+X7MVjt6N3R6Kul0EbWm
s7bz8Z+LnabQX43r7Y53php/mXj+Dnv0f1JO1x/8ZxbUzj02O15mfLtD13AvZqnDds+pmMmo26el
XX0Wh0/D8EYtNjilY7+s/NstpOOTW7QBKgAAAAAAAAAAAAAAAAAAAAAADG88tLW9I3BwJtz6nNf1
vK/DHVqYJ3pzT5y3MPZeojOWMQylEKpTVjZnDCwkqzYQyRRICATCITAJZQxhMAshnEq4ZQC2srKq
qrIBZCWNZZgwswmFloVyCu0dFcx1WyrtCBhv5NTPHXds2U5o3hIz4ffbPt+KHUcTSW5c9Jme0u2v
VYAKpAAAAAAAAAAAAAAAAYZctcVOa35R6tLrltN795/YvknNqrfhpPLH92V5isd9mWq6fHjk6rn0
ZxG8KK5Jm/wbVZiYZtqrmkqL023bkxvCiY3lJHNyRG81mHS4Rn5sNsNp64+3yaWaNrzOzHBl+i6q
mT7s9J+S+ay8mex6EIneN47SNXKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAImYiJme0JafEs3h6fkidrZOn5eaLeJk7eOdm1Hi2vmtPTry/CHmOJcUvmvOPF1n09Pm
6HF9ZGm01qxO3R5vSY7XwzmzTy47zzTEd7en5Mfvt2/PURWdo3tvPrPlKymbktFqTtMTvHzbOLDG
f63JXbFX7FdnoODcDprZpq9TjiMMTvSn4vj8l5fxnrk91saPSa7i2hpOfbTVt5x1m0fLydzR6PDo
dPGHBXasd585n1lsRERG0dIF5OOe6tAEqgAAAAAAAAAAAAAAAAAAAAAAADX11+TRZrf0y2Gjxe22
gtH4piP3TPpXKwxtjhuYo9xq442iIblI2pC1RET2ILd9kxCqRjZmwlCSEohIJAQAAJZISDKGUd2M
MoBnVbVVCyAWVWeSuqyOwIlXZZKue4MJV2WWYT2QKbKL9YlfdRdIo35b7/Hd3KTzUrPrDh27uxpb
c2mpPwX/ABX9XAKpAAAAAAAAAAAAAACekTIp1eTwtJmv+GkyJn1oafeazbfpMzLR4jq/o8b823zX
6XNF8ERCvTcNpxLV5LauvPhx9Irv3lhztdtv8TtaWLicXrt03jzjzb2k1nid56ty3s/w+a7Uwzjn
1raejlarhmbhl/FpbxMO/fzj5p/ixSeXOvTtRfeI280ZI26tfDm3pWe63LaZx7qtGvniJ6tPLvOK
fOa9WzbJvTbza02jl3n5SSljscK1MajSxWZ96nSW88xw/VfQ9XMT9nfa3yemid43jtLeXsce88qQ
EqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADia3UTm1l4j7OP3Y/u
7Vp2rM+kPJW1PhYcmS0+9MzKm/jbwz31weMzbV8UppazPL9q0/BF4rk1GLDSNqxPWPhCnHmnNrtT
qPKteWPm6U6OdHaZvO+SaRNvhv12Ub/q3FhtrNVj0uKOt56z6R5y9zix1w4qY6RtWsREOJ7L6OKa
S2rvX6zNM7T6Vh3mmZyOfya7eACzIAAAAAAAAAAAAAAAAAAAAAAAAAAczjVvqMVfW/8AZ03I41bf
Lp6/OVs/UVrY47NyOzUxd4bUJpEbb3Z7IiOrKIVSjZhMLJYyhKIgmGUQSDESIEbJEgQmCITEAmGU
IiGUAyhZVhDOoM4Wx2VQtqBKuyyWEgqlhKyyuyBVaGtkbNmvk7A15l1eH2300R6TMORPSXT4ZO+O
8fFefEX63gEAAAAAAAAAAAAAAAq1WPxdLlp+Kkx+y1Fvsz8gjhaDauGK8sx07y3OE3m1tT6RaP4c
vU6yMNKUx73zT0ilY3l2eF6a+m0kRl/zbzz3+Ez5M8z26fJruW6wzYq5sV8d43raNpZjRzPPaTmx
5b6bJ9rHO3zb2WJ8GWPEscY9bgzxH2t62n19GWW0eHOzHU5XbjXZ1x8WTnz2iZ7S2M1IjH2+LX0V
KTqs8zO9ot0j8nUthi1J3UaOFMTfLFo6xMbS9BwHWTqdHOO8+/hnln5eTjYMFo1WTH5VnePzXcIm
2k4zlpPSmXy/hfF5eMfJns69OA2cgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAADG/2LfJ874rW845mubliY7bPoto5qzHrDz0+yePNF41OotaJ7RWNtpV1OtfHqZ715fhu
j8adNpcVfeyzE2/vLuanhOu1nEctIxTTFa/+ZPbZ3eHcF0vDbTfFE2yzG03t32+DokynXl9+leDB
TTYKYccbUpWIhYCzEAAAAAAAAAAAAAAAAAAAAAAAAAAAAcXjE/4zDH9M/wAu04XF5/3jj/0f3Wz9
RUYmzDWxS2I7FSyjuzY1ZKpRKEygEwiWUIkGIk2QJNhKQhMIhkCYZQxhlAMoZwwZwgWQshVCyATL
CWc9ldpBhZXLOVdpQK7NfJPRdaWvknoDVvPvOnwuel4+TlXn3nS4VPvXj4QtEV0wAAAAAAAAAAAA
AAAAAVV02CmTxK4qRf8AFFeq0AAAanEsfPpZmO9Ji0NDLfkwdOsulrumiyzHlVzJrz4Ovoy26vB8
cTBa9NffLtMY77Rv8Yegx5ImkKdJoY1HC81Y+3OSbVn0mGGkmbY45u6tnrrTOu2xGO0RxCd+nNVj
qKxTV1vH2pjaGtnyzXXYdo96ZmGXEMk15b7/AGZiVerWPTYckZcNbx5wzc7hGbnxXxzPWk7x8pdF
0S9jh1OXgAlUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAcPjEf4/FP9H93ccXjMf4vDP9Mx+62fqKrx+S+GvibEFSsqyYwlVK
ZYsmIMoRKYJQIPIEiQ2ATCUQygCGUIhMAyhnDCGUIFkLIV1ZxIMpVWWSrsCuyqyyyq09ECq8tfJK
66jJ2Bp5J6upwn7dv9Lk5J951uE/av8AJaIrqAAAAAAAAAAAAAAAAAAAAAAq1Mc2myxPnWf4cmtu
XT9fR0tffk0WSe28bfq5Wbamm3326MtunwfK6PCv/AxPraZ/dz9PO97/AOqf5dHhdZrw7Dv3mOb9
XOxRFM+avpe38mvkPHf/AFWlrKba7Tzt99ZxKkfR7euyNXMTrtPHfa0z+zPiM/UR8Zj+Wbdu8HpN
M2bfzrV13M4dO2pyR61dNvj44/J/oAWZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADj8bj63BPzdhyeNx0wz8ZWz9RWri7Nmv
VrYu0NmqaRZHZlDGGSiwxZSgCEkCBCQSCQBMJRCYgEsoYx3Z17AlMIhlCBnDOGEM4AlhZZKq4KrK
7LLKrIFN2vdfZReAaObu6/CO9vk5OePR1uEd7fJeIrqAIAAAAAAAAAAAAAAAAAAAAGtxCk5NFliI
3mI32+XVyNTyZOHTee946PQKPoeDffw4777eW/yVs60xv+ZxOnr4Okx1t05KRv8Ao41Z5q3yed5m
XY1szXRZ5jvFJ/hxItP0aOSN9q7yrtr4f2tHFM5+KT16Yq/vK/iGSbXw4vO14UcPx5MGfNbPG18m
1oj4THRsTw7VanPXVYpi3gzMcnrvCnG11JOupwuN8+a3pEQ6jT4divjxWnJExa09pbjbM5HHu90A
JUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAHM41H1GOf6nTc/jEf4Ws+lls/UX45uGekNujTwdm5RNIthKIZKLDFlsiQIShIC
EgCUJ7AmGTGO7IDzZQhMSDJMMYZQgZwzhhDOATuqssmVdgVWVWWyqtCBTeVF19lF+wNLNG7q8I+9
8nLyupwnt+S8RXUAQAAAAAAAAAAAAAAAAAAAAAAItWL1mto3iY2lyrcLyUxzix2ia2nvPeK+jrCL
OrTVnxpanhuPPemSs8l6RtE7dJj0ldpNP9GwRSZ3neZmV4cR/Vs4AJQAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANHi1d9H
M+kt5ra+vPoskfDdOfqK4mn7Q3aNHBPZu0W0RdDOGFWcKLCJZeTGQQlCQSgASBsCYZQxhlAJTAmA
TsmAgGcM4YQyjsgRLC3VnaVcgwsrt3Z2V2QK7tbJ1bN5a9waeWO7p8Knt8nNyebpcK8vkvlFdQBA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAK9RXmwZI+ErEWjesx6wQeZwejeo0cccuW8
elpblJaaRGxVnCuss4ZrMvJEgCAASISCQIBlCYYpieoM0wx8k7gzIRueYM4Z79FcSy3QEsLJmWFp
BjaVVpZWlXMoGNmvkXXlr3kGtknu6XCf7OXkl1OEdl8orqgIAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAHmskcmtzV/rls0U62OXiWX4zErcc9GmkRfWVkSqqziWayxCPIANwBIhIJSxS
CRG6dwZwlhEs4BluMdzfqgZxLLdXuy3AmVdpZTKuZBjaVVpWWV2QlhZRdfZRcGpl7urwfrzfJy8r
rcH61vPyWitdMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHA4nHLxKZ9awnH2ZcY
jbW459aq8fZpfiI2IZwrqzhmsz3Ebm4JN0AMhCQSIASndiAziWUSriWcAyRujc80DM3RCfIETLCW
UsZEsJYSslXZAwlTddPZTkBp5e7r8Gj6rJPxhx8k9Xa4PG2C8/FaK10QAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAcfjcbZMFvnDWx9m5x2PqcNvS+zSxT7sNPxH62YZQwqzhRZO6UCB
KUAJTux3SDIRuAncQAmJZRLBMSgZ7iIAZRKd2DICUSlAljLCYWMLIFVukNfI2bNbIDTyT7zu8Ijb
Sz/qcG/2nf4T/wCE/wD2WnxWt4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHL9oL
+Hw2cm28VvEuPptfgyVj6yIn0no7/FtJfW8NzYMe3PaPd39d3iMug1WktNc2C9dvPbeP1aZ9xF+v
T471tHu2iflK2HkqWmvaZj5Surqc9Ps5bx+alTHqYHm68S1Vf/NmfnC2vGNTXvyT84Ql6A3cSvHM
sfaxVn5Ssrxyv3sM/lKB1xza8bwT3pePyWV4tpZ+/MfOEjfGrXiGlt2zV/PotrqcN/s5aT/+wLRj
FontMSlAlKEgndO6IAZQljDIEgeQljLCzOVdkCu/SGrkbF56NPNeKxMzMRHxENe0+89DwuNtHHzl
5PJr8NcnLW3Pbf7r1nCZm2gpae8zMrz4i/W6AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAETETG0xukB4HVaeMHEtRi26RedvkyjBSfX9W77QYvC4xz7dMlYlrU7M929dWJLFc6aPK0q
7YLxPS0S22FlP6q38Zac0yR92s/KVc3tHfFf8tpbcsLRvB/dR/8ALLVnU0r9uL1+dZI1mnmdvGpv
6TOy6ym+Oto2tWJ+cJ/tW+KLK5KW+zes/KU7tG+h01p64qx8Y6NXNo6Y+uPJlp8rLf0rfG7MXtHa
0x8pZxqs9e2a8f8A7Oj7HaTHn0+f6RWM23LETfr6vRW4PoL99NT8ui7F4+vEdXXtnt+fVbXjGsr/
AOZE/OsPS29nuH27YrV+VpeV9pdPXhOtw49NG9Mld55+vXcTPd42I47qo7xSfyWV9oM8d8VJ/VxM
d8l46xWF9cV7en6o/qLfxp2I9ob+eCv/AHMo9op89P8A/wBORGmyT5R+qfo2X8P7n9Q/jTsx7RR5
6ef+4/8AuHftg/8A6cWcOSO9J/WEbWr3pY7Efzp2Lcfv5YK/9zWy8d1E/ZpSv5Oba1/+Hb9lc+LP
bFt87I7E/wAabWbiurvEx4nL/pjZzc2bJkn372t85ZXx55/BX85lucC0vPxnTxlnnjm32mOiZqUu
LJ2p4TwnVavNWaYbRTfre0bQ99pcH0bT0xb78vmtiIiNojaErMwAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAHnfarF7umzRHaZrLjYrdIen9ocPi8JyTt1xzF4eUw23rCm3R4r6bMy
wt6kdTaWLdjswmNoZontsCm0K5XWjopnuDC0dGpqG5bs08/daKV672MjbSaif6oh6Z5f2LtvptRX
0tEvUN3Jfo8f7cYve0eX4zV7B5z20xc/C8eSPuZIRficfXlcPaG7ino08HWIbePpLF2NuiyOyrHK
3fZFSwuovHVfaVF4QK5YWTM9UT0EKry6Ps1Tn4zjn8NZn9nOtLseydObiWW34cf918fWfk+PYANn
KAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAq1WKM+ly4p+/WYeBxTNd6zG0xO0
vobw3FcP0bi2em20Tbmj5Srr418V9sa2Z7qKyzi07MXUylhaU7yjqhLCeiq3ddaFNxFYW7NLNG8t
zya+WO6Va9J7FW66mvwidnrXiPY3Ny8RyUn71Jj9Ht3RPjk19HK9pMHj8D1ER3rHN+jqqtTjjNps
uOe16zAifXzfTz7kNyndpYazS9qT0mszDdoxrsi6m8LazMq6zDOsq1ZEyrt1WWlXaUCqyq0rbKbi
Fdp6PReyFd8uqv8ACsfy83aXrPZHHto89/xX2/SP/dpj6y8vx6EBq5gAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAB5n2q03LfDqqx39y39npmlxbS/TOG5se29tuavzgWzeV4mtui2
O3RRSY2hdVhqO2MvI36iu9lUsrSrvDHn6spnmSiq5jooyV6tq1VV69RC32byTh43h8otMx+r6I+Z
aK/g8TwX7bXh9Mid4iW+fjl8n1ICWb57xLBOm4zqse20Tbmj8+qKdnS9q8PhcTw5tumSm0/OHMxz
0Za+uzx3sX1t0Zxurr1ZxvspWiZYWZbsbT0QK7KLrZVZJFaqt5vbezNOTg9J/FaZeJns93wCvLwb
T/GJn92uGHldIBowAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADuAPA67F9H4l
qMW20VvO3yRWW97T4fC4rXJHSMtI/WGhVlue3b473K2KzMML4+62tujG9pnozXaOSOVFMnVbmq1t
trJRW5E7wwvUxTvCyY6CHOt7moxz6Wh9PxTzYaT61h8x1MbZK/OH0zTf+Fxf6I/htj45vL9WgLMn
mvbPFvocGWO9L7fq85p5maw9d7VYvE4JkmPu2if3eW0+PasdFNOnxfF1Y2hlykRsmY+LJ0MZjZXa
eq2eyi8oQTO0KLdZWzPRjWu6VaqtHR73g0bcI0sf0Q8Nkq93wqNuFaWP+XDTDDytwBowAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAef9q8HNpcGaI60vtPyl56k9Iew49j8ThGe
PwxFv0l4zH2U26fDfTYiyJljvsjf4sm6vJ1hrXjq2MkqLdZEVbgbMx0auGdmzNt6iHN1Ub5af6of
TdPG2nxx6Vj+HzaaTm1+nx/iyVj930ysbViPRrj45vL9SAuyc7j1efguqj+jd4/T33rD3HEcPj8O
1GP8WOY/Z4TTT7sKadHhbcsZnaCJ3TPZk6VdrKbTutmP0U2nqgrGOsr8deiuI2X09EqKM1dt3uuG
f/jdN/06/wAPE546S9rwud+Gaaf+XH8NMMPK2wGjAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAABrcRp4nDtRWPPHP8PCYusPoWSvNjtX1iYfPuWaXtX8MzCuvjfw32siu8ptXoxi
0wy5t4YulReqmazu2skbquURWFInddM7VYRGyL291KFnCcfj8e0le/Lbmn8n0N4b2Ur4nHLWmPsY
5e5a5+OXyXugBZmiY3iY9Xz7NjnTa3Ph/BeYj5PoTxftFg8Hjk2iOmWkW/Psrr418V5WrWd2faFc
V2jdnEMXWxntupmN7NiYU27iWML6dVMVnddjgVqMsdHr+CW5uE6f4Rt+7yuSsTDv+zWXn0WTHP3L
/tK+GHl+O0A1c4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8Dn93W56/wDM
t/L3z59qp24jn+OS38lnpr4r7ZxHQ2TEstt3PXUrt27K57rr1VT0BjKnJPRbMqMs7QlV2fYvHvrd
VknyrEfu9m8f7FZI8fVU85iJewbT45NfQBKo817W4eulzxHaZrL0rje09ItwqbfhtBVs3leai8RD
KLw1sduesL606dWFdsZT1jdhNeq6K9DlhCVUU6s4jZnt1YzAhnM71dH2bycmszY/K1d/0c6OzY4R
fwuK4p8rTstn6z8k7HrwGzkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHz3
Vxvr80/8y38voTwGpj/F5/8AqT/JfjTx/WVeyY6FPspc9dZPVXaOq2WEwIUTVRmjo2rNfLHRI3vZ
DJycXtX8dZh7t879nsnhcbwz23tt+r6I2nxyb+gCVBzuPY/E4PqI9K7ui19fTxNBnp60n+Aj5/pJ
3jZu1aOnnltMNussdfXbm+l3ZM9URHREdZVXTuT1Nk7boQiOkJw28PU47/htEp5eivJPLMTCZ9Vv
x7mJ3iJ9UqNHk8XR4b+tIXuhxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD
weqjbWZ4/wCZP8vePCaz/wDIaiP+Zb+UX408f0r9lOxWOifJhXWjfyYWllPRXYQxnrCrJHRd3YZI
6A1NJecHEsN/S0T+76bE7xE+r5dk93LW3pL6ZpMni6PDf8VIn9m2fjm8s9rgFmQxvHNS0esbMiew
PnHLyai9fS0w2aNfUTtrs3+uf5bGPqy068fF227KtSsdFlKqNGMV6myyY6sbdIQI8tlOWOi6Jhhk
j3RD0vA8nicMx9etZmHRcT2Zyb6XNT8N9/2dt0T449T2AJVAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAHhdfG3E9TH9cvdPEcXjk4zqI/q3L8aeP6xr2TsxpLOekMK6mFo6qpXSrm
OqBixvHSVmzC4OfqK7S9/wAByeLwbTW9K7fo8Fqo6Paeyl+fglI/Da0NcMPK7QC7AAB8313TiOf/
AKk/y2MHWrX4jG3E9R/1Lfyv0/aFNOrHxuU7LI7MMayGTVlHWUXhNe6Z6wIUsb9d1m20q7dkDpez
N9tRqKT5xEvRvKez9+Xis1/FSYerb5+OTyf6AFlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAB43j9eXjN/jWJ/Z7J5L2mry8Upb8VIF8f6aGOey2eynHvOy7bowrrYSxZSwQJ2YXZ
92N4BoanrEvVexmTm4blr+HJ/aHltRHSXofYm/1Wrp5RaJaYY+X49WA0c4AD51xONuKan/qW/lbp
+0MOLRtxbU/9SU4J7KadWPjep2WQrr2WRPRk1TvsndXMpiRCb9FNu0rbTuqvKBscCjfi9PhWZeue
V9n434rafTHL1TfPxy+T/QAszAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHmv
avHtfTZfnV6VxPajHzcNrf8ABeJFs/XnMcr4no18c+6vr2YadkY2YM57sEDLyY37Mo7MMnYGlqO0
vQ+xNfqNVb1tEfs87qZ2rL0/sVX/AHdnt65P7Q0wx8vx6UBo5wAHz/jUbcX1PT78qtO2vaCnJxjP
8Zif2amnnspp04+OjWejKJ6MKdmcMmyJn4m5ZHzEVPMwtJv0VZLbQDqezcb8RzT6Y/7vUPM+ytZt
n1OTyiIh6Ztn45N/6AFlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABocbxeLw
nUR5xXm/Rvq8+OMuDJjntaswEeBxT0bNZ6NatZpNqz3rO0rqsdO3PxlaWEMpY+aqWXkryT0ZT2V3
7A0dVPuy9f7G124NM/iyT/Z4zWT7sw957MYfB4Fp4/FE2/WWmGHldcBowAAeM9qKcvFeb8VIly9P
0nq7ntbTbVYL+tJj93CwT76unR4/jo0nozhhTsy3Y1sWljM9Ce7HyQIm3RRlttVbaWrnt0Sh6n2U
x8vD8mSfv3/h3XN4Bi8Lg2nj8Uc36y6TeOPXugCUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAPD8RxeBxXUU26Tbmj8+quro+02Lw+I4ssdslNvzhzazvDPbq8d7GW7Dfqz2VzG
0s2qd+iu/Zn5Ksk9BVztX1mI8930zh2LwOHabH+HHWP2fNYp4+vwYvxXiP3fUqxtWIjyjZtj45/L
faQFmQADzftfj3w6fJ6WmHmsP23rvaqnNwqLfhvEvIYZ+sV038bo0noy36MK9oZQxrdMyrlnMbMZ
QKrS1M07zEestq/RRjr4utwY/wAV4j91p9V18fQdJj8LR4ccfdpEfsuREbREJbuMAAAAAAAAAAAA
BAJAAAAEAJEAJQAJQAJEAJQAJQAJEACUJAQlAJEAJQAJQJAAAEAJEAJBAAAJAABAJEJAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABwvanDzaPFmjvjv8A
tLztJ3h7HjGHx+FainnFeaPnHV4vFbeIU038VbHeGF+kso7Mb9mTdhKnLK3dRm7SIrHhGPxeP6Sv
9cT/AHfSnz72Zx+J7Q45/BWZ/Z9BbZ+OXyfQBZQABzeP4/E4NqI9Ii36S8Ng/wAx9C4jTxOH6ivr
jn+Hz3B/mQi/GvjdCnWNlsdI2V07LIlg6USrt2ZzZXMoFV+zPhGLxeOaavpbm/RVltEN72Yx+Jxm
b7dKUmf7L5+s9/HtRA2cqRACRACRACRACUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAACQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQCQQCRACRACRCQBCQBCQB
ACRACRACRACRACL1i9LVntMbPATTwdRkxT3pea/u+gPE8Xx+DxrPHlaYt+qNfGvjvtXXsi0dOrKk
dEXjZg6VMtbP2bMtXUdpEV0/Y2nNxbNf8OP+727xvsXH+N1U/wBEfy9k3nxyb+gCVQAGOWvNivX1
rMPnGGOXNNfOJ2fSZ6w+dZKeHxDPX8N7R+6L8a+L63KdoZ7q6zvEMpnowdKJ6ywmWUyqvIKM0vQ+
x+D6rU55+9aKx+TzWa36vbezmDwODYenW+95/Nphj5L6dQBo5wAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAEiAAAEoA
AAAAAAAAAAAAAEAkEAkRuAkQbgkQAkQAkQAkQAl5T2nx8nEMOT8dNv0l6pwfarHvpcGWPu32/WCr
YvK4mOem6b9mGKd4Z3idmFdka0y1c892zfpMtLPaNpEV6D2Kj/Eauf6YeweQ9ieuTVz8K/3evbT4
5NfQBKoAA8FxCvJxrUx/XMvevD8Zry8fz/Haf2RfjTx/6RSOnRMyypHu9kXjowrqVSrvPRnZVl6V
kK0775MsUjvadn0nT4ow6bFijtSsVfPuFYvpPGtNTy54mfy6vorXDm8l9pEC7JIgBIgBIgBIgBIg
BIgBIhIAgBIhIAgBIgBIIBIAAhIAhIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJAAAAAAAAAAAAAAA
AAAAAAAAABAJQkAEAAAAAAAAAAjc3BIjdG4Mkbo5kcwMjdhzHMDPc3V8xzAs3N1fMjmBZubq+Y5g
Wbm6vmOYFm5ur5jmBZubq+Y5gWbm6vmOYFm5ur5jmBZubq+Y5gWbm6vmTzAz3N2HMnmBlu5ftFTx
OEZJ/DMW/d0t2rxKni8N1FPWkiZ9eS08e7Cy8dGGn6UhZaJljXZGnmc3UT3dPP2cnUT78xCIV6j2
H/8A9c/6f7vXPI+w8bU1U+vL/d63du5NfUiDcVSIAS8b7RV5eOb/AIqRL2TyXtNX/e2KfXH/AHlF
+NPH/pr4+2xcxx0hFpY11K7R16KM32ZWz3UaidqSgrc9kcPicWyZJjfw6T+727y3sXh2xarN+K0V
h6lvPjj3e0ASqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJQAAAAAkQAkQAkAAAAAAAAAAAAAAA
EgAAAAAAAAAAAAAAAAAAAAAgAAABKDcAN0bgkY8xzAyRux5kcwM9zdXNkTcFm6OZXzMeYFvMibKu
ZHMC2bo51U2RuC2bom6rc3BZzom6sBZzI52ADPnOdggFnMc6skFnMc6rc3BbznOp3RzAv50c6nml
HMC/nOf4qOY5wX85zqOc5wbHOc7X5znBsc6edr85zg2ec52vzpi4NjmY5bROG+/bllVzsNTk5dLl
n0pP8BHmMHWNmzt0aum8obm08vVjfrtnxztR0mXHzTvaZdjVRMTLkZo6yiFen9iZ2pqY/wBP93rN
3kPY+/LfPX1rE/u9XzN3HfqzdO6vmTuIZ7m7Hc3Bnu8t7TR/vHBP9E/y9Pu837SV31umn+if5Rfi
/j/01MMb1hjkrtKzBG0bMsmOZY11tOYamr6Und0LUc7XT7u3rJPqL8er9lcPhcFpbzyWm39v7O00
+FYvA4Zpsc94xxu227jv1IAgAAAAAAAAABKAAAASgASgBIgBIgBIgBIhIAAAAAAAAAAAAAAAAAAC
UACUJAAAAAAAAAAAABIAAAAAAAAAAAAAAAAAAAAg3AEbomQZbo3YzLGbAz3RNlc3YzcFs2YzdVN2
M2Bdzom6nmNwW86JurTAMuY3REJ2BB1ZRVMVBhsbSsiqeUFXLucq3lTygp5TlXcpygp5TlXcpygp
5TlXcqOUFXKjlXcrGYBXysdlswiYBVMdUTCyY6sZBWxlnMMZgGLGZZSwkDdHMiWO4MuY5mEyjcFn
N1OdVzHMC3nTzqeY5gX85zqOZPMC+Lqdbk20eb/RKOZr8QybaK/XvtH7iZ9aGlp2luzT3fg19NHS
OjbmPcYX67XH1XSZ9XIzRvMuzrK7zLkZYmYnciunb9lZ5dTk+OP+71cXeP8AZnJ/ip2nf3J/l6iL
/Fu5L9bMWZczXi6YuIbEWTzKIuyiwLt3nuO25uI4a/hx7/rLuczg8TicvFLbfdpEK6+NPH/phhjo
stLGkctUWnoxrrU3j1cnWTzZq1jzl1clo5Zcu8c+txR63iP3Tn6pv4+g4o5cVI9IiGe7CJ2iE7t3
GyN2O6dwSINwSISAlAAlACRAAlAAlACRACRCQAAAAAAAAAASgASISAAAAAAAAAAAAACQAAAAAAAA
AAAAAASAAAAAAAAAAAAAAAAIAAAQCAJljuljsCJlhMs9mOwMJYys5TkBVsjZdyHICrZPKt5E8oK4
qmKrOVOwMIqyirPY2Bjyp2ZbAI2NmSARsbMgEbI2ZAMdjZICNkbMkSCNmOzJEgx2YyzljMAwlhKy
WEwCuWErJhhMArlhLOWEgxljMpljIImWMyTKJA3N0IBO5vux3NwZbnMx3NwZczT4jf3MdPW27a3a
fJOq1XNP2KdIRfi+J2trSYfcjeF+Wm1OicVeWIiN9kai8xjY12ORqultnI1Ecsujq79XP1FovWYI
rTgeq+j8QrWZ+3Mx+r2UXeC0WG2Ti2kiN5mL807eUREvbzbaejefHJv62Iv8WUXa0WTFhVtRdlF2
rz9WUXBtc7jR9dqc2T1ttHyhvZMvJitb0jdq6XHNcNenWVN3028U99WRj6Kb02be3Tq18/SN2Lpc
3UdN9nOmZrqKX/DaJ/d0svvTLRzV3jomK6+Pd1vvWJj0ZczT0mXxNJht60hfFnQ4qu3N1cWTEgs3
Tur5k7gz3N2O5uDM3Y7m4MtxBuCQASIASIASAAAAAAACRCQAAAAAAAAEoSAAAAAAAAAAAlAAlCQA
AAAAAAAAAAASAAAAAAAAAAAAIASgAAAEJAQJQCNkbMgGOyOVnsAw5TlZ7GwMOVPKy2NgY7GzIBGx
skA2AAAAAAAAAAQkBAEghEskAxYzDPZGwK5hjMLJhjMAqmGEwumrCagomFcw2JqqtUFEsLLrV82F
o7gqljKyYYTGwMZRKUSCAQAboJnaN5Bjkneu0d5W4ccViIiOzHFWbTzNumP1Zarr8eeRMbxDW1Mx
NO67NbkhzNVnmInqzaOZrL93JyZeV0M1++7S02jvxDWxhxx033tPpC8Z6rrezWjmZyazJG2/u03h
2vFibTHoqvamiwVwY+nLGzV0+SZ1Mx8G0/45tOhzJ5lXMc3UVXRdlF1HP+iYsDPLPPy49/tz1+Te
pSIr0ho6ak5Ms5J8o2q6NImOrHV7XX488ypzTtHXo0s9t6zG7c1G1qz6ubeZiZ3UatXJG3yauSO7
cvMTEx5tPLb3prPRMVr0HB8vicNxf0+7+kt+LOJwTJyY/Bnz3tH93X36N58cWvq6LSyiyndMSlC7
mZcymLJiwLosmJVRLKLAtiU7q4lMSCzc3YxJuDMRuAlKAEgAAAlAkAAAAAABKAEgAAAAAJAAAAAA
AAAAAAAEgAAAAAAAAAAAAAkAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAhIAAACAAAASgAAAAAAEAAAA
hGzJAImGMwzQDDZjNVuyNgUTVhNGxysZqDVmiu1G5NN2M4waM0+DCaN2cbGcQNGaMZq3JxMJxA1J
qx2bU4kU09slorWNwa20z02RXHbJbl26QvtFovbHWkxEdJt5y2MOHlr2U1W3jx+1hiw8vSO63lmI
XRTaEWmtY6snRHO1VpmJ+DjavpSZl2s8b7y4HFcnh0n0gha5ebJN55KRM2mdoiPN6fh+kpwXh0Wy
RHj5Otp/s5Ps1p62y31+em9aTMYt/OfVfxTiPjZ52naI7fBrI5t66xz5+a1rW7yx0eSL6iZjtEOX
qNbSletom3lENjh2fbHzbbWt3iVozruc+5ztWubf4M4ybpQ2Oboyrva0Vjza8WdDR4OkXt3n9ldX
kaePP9VtYqctYhdvt5oivTeCZ2YOxXk6ubqMfV0b9mrljfqlFcq88k7z2U5axeItDa1OPessuC8P
ya7XRWYnwqdbT/ZMilvIu4dpslNdixXja8Y5tt85djZdbDWnGOesRtXFtuw6T27No5Kx2OrKYQlC
ExKJgBnEpiyvdlEgsizKLKollFgWxLKJVRLKJBbEp3VxLKJBnuMWQJEbpBIAAAJAAAABIAAAAAAA
lAJAAAAAAAAAAAAAASAAAAAAAAAAAAAJAAAABAJABAlAAAAAAAAAAAAAAAAAAAAAAAAIAAAAAAAA
AAABAJQAAAAgAABAAI2EoBGyJhkgGPKxmqxAKpownHC+YRMdN5BrTj67R3bOn01o7p01Iv71u89o
b9a7LfBTfS1vWI2jf12VfQPSW8KX2mas+NC2iv6xMNfJpMnLtEbuuxtMRCtzF55NR5rPps1N/ctP
y6uHreE6nXZ4pak48X3rT06fB7fNeI33cbX6mI32R/MWu7XF116aDSRhxbRERs8f499bkyZeeKae
kzE2mdon81/tfxDLGOunwbzlzbx08oaHBvZHJlx48mrvaa94pu04y617576rNGLRRM0397JEd/lu
9Dw/S3x4qxffo6mm4NjwUiKY4iI9Ib1dHFY6QIaNabbrYrLfrpJtaK1rMzPZb/s+05IpP59OyLeJ
k7eNfRaOc1ue32I7fGXYpi5Y77M8OGMeOKxHSFsU3Y29deZMzirl6dlVvhLatCjJHeYQv1rXnps1
8k9/VsW6qLVmZIi1rzitlvFKRvaZ2h6TSaenC9FFY+3brM+sqeG8Prp4+kZ+lvuxPkr1mqm95nfp
DXM459676a2q1dsV7XietvNno78+CJn1cjX6mOeIm0bR33dfRU5NJjidt9t5afjG/V6JZ7I2QMNh
nyo2BhsMuVG3wAhMSbbQRAMolnE+iuGUSCyJZRKuGUSCyJZK4llEgyZMYTuCUsYSCQASISAAAlCQ
AAAAAAEoASCASAAAAAAAAAAAAlACRACQAAAAAAAAAEgCEoASCAAAAAAAAAAAAAAAAAAAAAAABAAA
AAAAAAAISAIAAAAAAQAAACASgAAAQJAQAAhIDHZhln3do7z0WS18mWsajHjmes7pg3dNi5aRMNqO
yvDHTpPRaigHZhN4hHRlaVN59JY3zRENLUavaO+yq0iNVlitJ6vNcR1MVi0zO0era1/Ea0rPvbz5
PM5MWp45qvo2GZrhmfrsnpHpHzTCseEcM/2vrr8Q1Eb4qzy44nziPN63HpYiIiI7LNHoqabBTFii
IpSNohuVxrKtWMEejPwY9G1FFmHB4mWJn7MdfnIM9JpIx15to5pbUaas/a6rqViI7MxPxqX0UT1r
O3wVzpbR2hviP5i03Y5s6a879FNtHljydhExCv8AMTPJXBnRZbz0iG5ptFjwe/l96zctMVamTJtE
yTMibu1VrdTzRMR0j0ed4lr64MVpm0RERvMz5NvX62uOJ69XhOKX1HH9bHDtFvNYnfJeOy0Z2ojX
6jjnEq6fRUmccTvN/J9H0eKcOnx45neaxEbubwHgOHg+milI3vP2resu3Wu0JQmITsmISDHZHKz2
JgFc1RMLJhGwK9iIZ7MZgEdgmAEwyiWCdwWRLKJVxKYsC2JTuriWUSDNlEsIlMAySx3SCRCQSIAS
AAACRACQAAAAAAASIASAAAAAAAAAAAAAAACRACRACQASIAAAAAAAAAAAAAAAAAAAAAAAAQCUAAAA
AAAAAAIAAAAAAAAQAAAAAACBICBICAAEJAQJQCJcLjuS2ny6fPG/LWdpd1o8T0X07SXx/e7wCdJx
Wa0jmneHQpxPDMdZmJfNtZm49weZrh0/j4o7VtSZ2+Uw0/8A7o49k92vBLc/ntFohFW9PqGXimOI
6Tu1L8T3eCx6r2t1O3JwvHjifO99v7t/Bwf2l1PXU6rS6eJ8qUm8x+so5TsekzcSjbvs4mt4rzW5
K2mbT0itesy2cHsvbvqtbmyz5xERWP2jd1tJwrTaONsOKtZ8585+cnDrzmn4Rq+IZObUROHD32n7
Vv8A0ej0uhxaXFGPFSK1j0bkY4jyZRVZVXFGUVWbGwKsk8mObekNrSW3pWf1a2aYjHbm7bNnQ1id
PW0TvuDdhJEbQABMsLW2R0ZTMQrvfbz2YWzVhpanUxEd0dWkW5c8R5uXxDX1w4pnfr5Q19XxKuOJ
2neXltVqtVxbV/RdJ715+1bypANfiOu1HENV9C0MTfNeesx2rD1PAeBYuE6aKx72W3W9/WVnBuB4
eF4dqRzZbdb5J72l160WVK02ZxCYhOwI23TsnY2BGxsnYBjsiYZsZBjMMZZSgGEolMsQDdG6NwZ7
piVe6YkFsSziVMWZRILolMSriWUSCyJTuwhMSDMRCQSI3SAlACRCQAAEoAEoASAAAAAAAAACUACR
ACQAAAAAAAAAAAAASAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAABAAAAAAAAAAAAACBKAAAAAAAQ
JQAAAhICEbJAYTWJ7wx8KvpC0BV4ceieWGewDHlNmWwCNjZICNhIDmcZredBecdpiY69FXCOLW+i
UiZidukulmxxlx2paN4mNng+K4+I8Hy2yaTfl37TXetoCPfRxfp1qi3F48ofKMvtvxak8s6LDv61
rZji9rPaLUf5PC+bfttS0q8q3p9W/wBrRMdpUZuKdN99nzvFqPbTVz7nD8OKs+do2/mW3h4D7Xaq
ZnPrtNpqz35aRaYOHY9Zk4pNt9rR+rl6zi+OnS+WN57Rv1lXp/YrNaYtruL6zNPnGO3hxP6O5w/2
f0HDuun09Yv55Le9afznqcOvO4tBreMTHu30unnva0bWt8on+70nDuE4OHYYx4Kbesz3tPrMuhGO
IjpDOKrK9YVpsyiGUQnYGOyUgI2SlAIEmwMWMs9kTAMJYzDOYRMArmGErZhhMArlHmzmGMwDE3Ts
bAbs4swj5pgFkSziVcM4BZEsolXDKAZwyhjCYBkACQhIAAAAAAAJAAAAAAAAAAAAAAAAAAAShIAA
AAAAAAJAAAAAAAAAAAAAABAJEAAAAAAAAAAAAAAAIEoBKAAAAAAAAAAAAAAABAlAAAAAAAIAAAAA
BAkBAkBAkBAlACEgMZjdjbFW8bWrEx8YWANb6Fp+bfwab+vLDKMFK9qxH5L0bAr8OPRPKz2AY7J2
SbAjYZAI2E7AIEgIEgIEgMdkSy2NgY7MdlmyNoBXsxmFuyNgVTVjNV3KjlBRNTlXTVHKCrlIqt5T
lBhEMohlFerLlBjEMohMVTEARDKCITsAk2AEgAAAkAAAAAAAAAAAAAAAAAAAAAAAASAAAAAAAAD/
2Q==`;async function p1e(e){let t=(r,a="application/octet-stream")=>fetch(`data:${a};base64,${r}`).then(o=>o.blob()),n,s;switch(e.config.warmup){case"face":n=await t(M0);break;case"body":case"full":n=await t(z0);break;default:n=null}if(n){let r=await createImageBitmap(n);s=await e.detect(r,e.config),r.close()}return s}async function h1e(e){return new Promise(t=>{let n;switch(e.config.warmup){case"face":n="data:image/jpeg;base64,"+M0;break;case"full":case"body":n="data:image/jpeg;base64,"+z0;break;default:n=null}let s;if(typeof Image!="undefined")s=new Image;else if(de.Image)s=new de.Image;else return;s.onload=async()=>{let r=Kn(s.naturalWidth,s.naturalHeight);if(!r)J("Warmup: Canvas not found"),t({});else{let a=r.getContext("2d");a&&a.drawImage(s,0,0);let o=await e.image(r),i=await e.detect(o.tensor,e.config);t(i)}},n?s.src=n:t(null)})}async function f1e(e){let t=r=>Buffer.from(r,"base64"),n;if(e.config.warmup==="face"&&(n=t(M0)),(e.config.warmup==="body"||e.config.warmup==="full")&&(n=t(z0)),!n)return null;let s;if(typeof void 0!="undefined"){let r=(void 0).decodeJpeg(n),a=r.expandDims(0);e.tf.dispose(r),s=await e.detect(a,e.config),e.tf.dispose(a)}else e.config.debug&&J("Warmup tfjs-node not loaded");return s}async function NN(e,t){let n=ie();if(e.state="warmup",t&&(e.config=$n(e.config,t)),!e.config.warmup||e.config.warmup.length===0||e.config.warmup==="none")return{face:[],body:[],hand:[],gesture:[],object:[],performance:e.performance,timestamp:ie(),persons:[],error:null};let s;return new Promise(async r=>{typeof createImageBitmap=="function"?s=await p1e(e):typeof Image!="undefined"||de.Canvas!==void 0?s=await h1e(e):s=await f1e(e);let a=ie();e.config.debug&&J("Warmup",e.config.warmup,Math.round(a-n),"ms"),e.emit("warmup"),r(s)})}var Oc,Vp,Up,L0,RN=class{constructor(t){he(this,"version");he(this,"config");he(this,"result");he(this,"state");he(this,"process");he(this,"tf");he(this,"env");he(this,"draw");he(this,"models");he(this,"events");he(this,"faceTriangulation");he(this,"faceUVMap");he(this,"performance");Jc(this,Oc,void 0);Jc(this,Vp,void 0);Jc(this,Up,void 0);he(this,"gl");he(this,"analyze",(...t)=>{if(!Yc(this,Vp))return;let n=this.tf.engine().state.numTensors,s=Yc(this,Oc);Qc(this,Oc,n);let r=n-s;r!==0&&J(...t,r)});Jc(this,L0,t=>{if(!Yc(this,Up))return null;if(!t)return"input is not defined";if(this.env.node&&!(t instanceof et))return"input must be a tensor";try{this.tf.getBackend()}catch(n){return"backend not loaded"}return null});he(this,"similarity",SN);he(this,"distance",O0);he(this,"match",CN);he(this,"emit",t=>{var n;this.events&&this.events.dispatchEvent&&((n=this.events)==null||n.dispatchEvent(new Event(t)))});this.env=de,Sa.wasmPath=u0["tfjs-core"].includes("-")?"https://vladmandic.github.io/tfjs/dist/":`https://cdn.jsdelivr.net/npm/@tensorflow/tfjs-backend-wasm@${nv}/dist/`,Sa.modelBasePath=de.browser?"../models/":"file://models/",Sa.backend=de.browser?"humangl":"tensorflow",this.version=Zx,Object.defineProperty(this,"version",{value:Zx}),this.config=JSON.parse(JSON.stringify(Sa)),Object.seal(this.config),t&&(this.config=$n(this.config,t)),this.tf=Pl,this.state="idle",Qc(this,Oc,0),Qc(this,Vp,!1),Qc(this,Up,!1),this.performance={},this.events=typeof EventTarget!="undefined"?new EventTarget:void 0,this.models=new f5,this.draw={options:ga,canvas:(n,s)=>mN(n,s),face:(n,s,r)=>x5(n,s,r),body:(n,s,r)=>b5(n,s,r),hand:(n,s,r)=>v5(n,s,r),gesture:(n,s,r)=>y5(n,s,r),object:(n,s,r)=>w5(n,s,r),person:(n,s,r)=>fN(n,s,r),all:(n,s,r)=>gN(n,s,r)},this.result={face:[],body:[],hand:[],gesture:[],object:[],performance:{},timestamp:0,persons:[],error:null},this.process={tensor:null,canvas:null},this.faceTriangulation=hT,this.faceUVMap=fT,this.gl=Nt,this.emit("create")}reset(){let t=this.config.backend;this.config=JSON.parse(JSON.stringify(Sa)),this.config.backend=t}validate(t){return c2(Sa,t||this.config)}now(){return ie()}image(t,n=!0){return Sc(t,this.config,n)}async segmentation(t,n){return lN(t,n,this.config)}enhance(t){return Ob(t)}compare(t,n){return y8(this.config,t,n)}async init(){await F0(this,!0),await this.tf.ready()}async load(t){this.state="load";let n=ie(),s=Object.values(this.models).filter(o=>o).length;t&&(this.config=$n(this.config,t)),this.env.initial&&(this.config.debug&&J(`version: ${this.version}`),this.config.debug&&J(`tfjs version: ${this.tf.version["tfjs-core"]}`),await F0(this)||J("error: backend check failed"),await df(),this.env.browser&&(this.config.debug&&J("configuration:",this.config),this.config.debug&&J("environment:",this.env),this.config.debug&&J("tf flags:",this.tf.ENV.flags))),await uN(this),this.env.initial&&this.config.debug&&J("tf engine state:",this.tf.engine().state.numBytes,"bytes",this.tf.engine().state.numTensors,"tensors"),this.env.initial=!1,Object.values(this.models).filter(o=>o).length!==s&&(await cN(this),this.emit("load"));let a=Math.trunc(ie()-n);a>(this.performance.loadModels||0)&&(this.performance.loadModels=this.env.perfadd?(this.performance.loadModels||0)+a:a)}next(t=this.result){return kN(t,this.config)}async warmup(t){let n=ie(),s=await NN(this,t),r=ie();return this.performance.warmup=Math.trunc(r-n),s}async profile(t,n){let s=await this.tf.profile(()=>this.detect(t,n)),r={};for(let i of s.kernels)r[i.name]?r[i.name]+=i.kernelTimeMs:r[i.name]=i.kernelTimeMs;let a=[];Object.entries(r).forEach(i=>a.push({name:i[0],ms:i[1]})),a.sort((i,l)=>l.ms-i.ms),a.length=20;let o={};for(let i of a)o[i.name]=i.ms;return o}async detect(t,n){return this.state="detect",new Promise(async s=>{var g,A,x,y,b,w,k,S,N,R,M,D,$,T,F,V,X,z,j,Z,Q,te;this.state="config";let r;this.config=$n(this.config,n),this.state="check";let a=Yc(this,L0).call(this,t);a&&(J(a,t),this.emit("error"),s({face:[],body:[],hand:[],gesture:[],object:[],performance:this.performance,timestamp:ie(),persons:[],error:a}));let o=ie();await F0(this),await this.load(),r=ie(),this.state="image";let i=await Sc(t,this.config);if(this.process=i,this.performance.inputProcess=this.env.perfadd?(this.performance.inputProcess||0)+Math.trunc(ie()-r):Math.trunc(ie()-r),this.analyze("Get Image:"),!i.tensor){this.config.debug&&J("could not convert input to tensor"),this.emit("error"),s({face:[],body:[],hand:[],gesture:[],object:[],performance:this.performance,timestamp:ie(),persons:[],error:"could not convert input to tensor"});return}this.emit("image"),r=ie(),this.config.skipAllowed=await A8(this.config,i.tensor),this.performance.totalFrames||(this.performance.totalFrames=0),this.performance.cachedFrames||(this.performance.cachedFrames=0),this.performance.totalFrames++,this.config.skipAllowed&&this.performance.cachedFrames++,this.performance.cacheCheck=this.env.perfadd?(this.performance.cacheCheck||0)+Math.trunc(ie()-r):Math.trunc(ie()-r),this.analyze("Check Changed:");let l=[],c=[],u=[],d=[];this.state="detect:face",this.config.async?(l=this.config.face.enabled?I5(this,i.tensor):[],this.performance.face&&delete this.performance.face):(r=ie(),l=this.config.face.enabled?await I5(this,i.tensor):[],this.performance.face=this.env.perfadd?(this.performance.face||0)+Math.trunc(ie()-r):Math.trunc(ie()-r)),this.config.async&&(this.config.body.maxDetected===-1||this.config.hand.maxDetected===-1)&&(l=await l),this.analyze("Start Body:"),this.state="detect:body";let p=this.config.body.maxDetected===-1?$n(this.config,{body:{maxDetected:this.config.face.enabled?1*l.length:1}}):this.config;this.config.async?(((g=this.config.body.modelPath)==null?void 0:g.includes("posenet"))?c=this.config.body.enabled?d5(i.tensor,p):[]:((A=this.config.body.modelPath)==null?void 0:A.includes("blazepose"))?c=this.config.body.enabled?xb(i.tensor,p):[]:((x=this.config.body.modelPath)==null?void 0:x.includes("efficientpose"))?c=this.config.body.enabled?Tb(i.tensor,p):[]:((y=this.config.body.modelPath)==null?void 0:y.includes("movenet"))&&(c=this.config.body.enabled?s5(i.tensor,p):[]),this.performance.body&&delete this.performance.body):(r=ie(),((b=this.config.body.modelPath)==null?void 0:b.includes("posenet"))?c=this.config.body.enabled?await d5(i.tensor,p):[]:((w=this.config.body.modelPath)==null?void 0:w.includes("blazepose"))?c=this.config.body.enabled?await xb(i.tensor,p):[]:((k=this.config.body.modelPath)==null?void 0:k.includes("efficientpose"))?c=this.config.body.enabled?await Tb(i.tensor,p):[]:((S=this.config.body.modelPath)==null?void 0:S.includes("movenet"))&&(c=this.config.body.enabled?await s5(i.tensor,p):[]),this.performance.body=this.env.perfadd?(this.performance.body||0)+Math.trunc(ie()-r):Math.trunc(ie()-r)),this.analyze("End Body:"),this.analyze("Start Hand:"),this.state="detect:hand";let h=this.config.hand.maxDetected===-1?$n(this.config,{hand:{maxDetected:this.config.face.enabled?2*l.length:1}}):this.config;this.config.async?(((R=(N=this.config.hand.detector)==null?void 0:N.modelPath)==null?void 0:R.includes("handdetect"))?u=this.config.hand.enabled?Ub(i.tensor,h):[]:((D=(M=this.config.hand.detector)==null?void 0:M.modelPath)==null?void 0:D.includes("handtrack"))&&(u=this.config.hand.enabled?Xb(i.tensor,h):[]),this.performance.hand&&delete this.performance.hand):(r=ie(),((T=($=this.config.hand.detector)==null?void 0:$.modelPath)==null?void 0:T.includes("handdetect"))?u=this.config.hand.enabled?await Ub(i.tensor,h):[]:((V=(F=this.config.hand.detector)==null?void 0:F.modelPath)==null?void 0:V.includes("handtrack"))&&(u=this.config.hand.enabled?await Xb(i.tensor,h):[]),this.performance.hand=this.env.perfadd?(this.performance.hand||0)+Math.trunc(ie()-r):Math.trunc(ie()-r)),this.analyze("End Hand:"),this.analyze("Start Object:"),this.state="detect:object",this.config.async?(((X=this.config.object.modelPath)==null?void 0:X.includes("nanodet"))?d=this.config.object.enabled?a5(i.tensor,this.config):[]:((z=this.config.object.modelPath)==null?void 0:z.includes("centernet"))&&(d=this.config.object.enabled?wb(i.tensor,this.config):[]),this.performance.object&&delete this.performance.object):(r=ie(),((j=this.config.object.modelPath)==null?void 0:j.includes("nanodet"))?d=this.config.object.enabled?await a5(i.tensor,this.config):[]:((Z=this.config.object.modelPath)==null?void 0:Z.includes("centernet"))&&(d=this.config.object.enabled?await wb(i.tensor,this.config):[]),this.performance.object=this.env.perfadd?(this.performance.object||0)+Math.trunc(ie()-r):Math.trunc(ie()-r)),this.analyze("End Object:"),this.state="detect:await",this.config.async&&([l,c,u,d]=await Promise.all([l,c,u,d])),this.state="detect:gesture";let f=[];this.config.gesture.enabled&&(r=ie(),f=[...bN(l),...xN(c),...wN(u),...vN(l)],this.config.async?this.performance.gesture&&delete this.performance.gesture:this.performance.gesture=this.env.perfadd?(this.performance.gesture||0)+Math.trunc(ie()-r):Math.trunc(ie()-r)),this.performance.total=this.env.perfadd?(this.performance.total||0)+Math.trunc(ie()-o):Math.trunc(ie()-o);let m=((te=(Q=this.process)==null?void 0:Q.tensor)==null?void 0:te.shape)||[];this.result={face:l,body:c,hand:u,gesture:f,object:d,performance:this.performance,canvas:this.process.canvas,timestamp:Date.now(),error:null,get persons(){return TN(l,c,u,f,m)}},ne(i.tensor),this.emit("detect"),this.state="idle",s(this.result)})}};Oc=new WeakMap,Vp=new WeakMap,Up=new WeakMap,L0=new WeakMap;return m1e;})();
/**
* @license
* Copyright 2017 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2018 Google LLC
*
* Use of this source code is governed by an MIT-style
* license that can be found in the LICENSE file or at
* https://opensource.org/licenses/MIT.
* =============================================================================
*/
/**
* @license
* Copyright 2018 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* =============================================================================
*/
/**
* @license
* Copyright 2018 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2019 Google LLC
*
* Use of this source code is governed by an MIT-style
* license that can be found in the LICENSE file or at
* https://opensource.org/licenses/MIT.
* =============================================================================
*/
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* =============================================================================
*/
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2020 Google Inc. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2020 Google LLC
*
* Use of this source code is governed by an MIT-style
* license that can be found in the LICENSE file or at
* https://opensource.org/licenses/MIT.
* =============================================================================
*/
/**
* @license
* Copyright 2020 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use backend file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2020 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2020 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the License);
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2021 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2021 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2021 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the License);
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* Human main module
* @default Human Library
* @summary <https://github.com/vladmandic/human>
* @author <https://github.com/vladmandic>
* @copyright <https://github.com/vladmandic>
* @license MIT
*/
/**
* @license
* Copyright 2018 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/** @license See the LICENSE file. */