human/demo/node.js

88 lines
2.9 KiB
JavaScript

const log = require('@vladmandic/pilogger');
const fs = require('fs');
const process = require('process');
// for Node, `tfjs-node` or `tfjs-node-gpu` should be loaded before using Human
const tf = require('@tensorflow/tfjs-node'); // or const tf = require('@tensorflow/tfjs-node-gpu');
// load specific version of Human library that matches TensorFlow mode
const Human = require('../dist/human.node.js').default; // or const Human = require('../dist/human.node-gpu.js').default;
let human = null;
const myConfig = {
backend: 'tensorflow',
console: true,
videoOptimized: false,
async: false,
face: {
detector: { modelPath: 'file://models/faceboxes.json' }, // cannot use blazeface in nodejs due to missing required kernel function in tfjs-node
mesh: { modelPath: 'file://models/facemesh.json' },
iris: { modelPath: 'file://models/iris.json' },
age: { modelPath: 'file://models/age-ssrnet-imdb.json' },
gender: { modelPath: 'file://models/gender-ssrnet-imdb.json' },
emotion: { modelPath: 'file://models/emotion-large.json' },
},
body: { modelPath: 'file://models/posenet.json' },
hand: {
detector: { modelPath: 'file://models/handdetect.json' },
skeleton: { modelPath: 'file://models/handskeleton.json' },
},
};
async function init() {
// wait until tf is ready
await tf.ready();
// create instance of human
human = new Human(myConfig);
// pre-load models
await human.load();
}
async function detect(input) {
// read input image file and create tensor to be used for processing
const buffer = fs.readFileSync(input);
const decoded = human.tf.node.decodeImage(buffer);
const casted = decoded.toFloat();
const image = casted.expandDims(0);
decoded.dispose();
casted.dispose();
// image shape contains image dimensions and depth
log.state('Processing:', image.shape);
// run actual detection
const result = await human.detect(image, myConfig);
// dispose image tensor as we no longer need it
image.dispose();
// print data to console
log.data(result);
}
async function test() {
// test with embedded face image
log.state('Processing embedded warmup image: face');
myConfig.warmup = 'face';
const resultFace = await human.warmup(myConfig);
log.data('Face: ', resultFace.face);
// test with embedded full body image
log.state('Processing embedded warmup image: full');
myConfig.warmup = 'full';
const resultFull = await human.warmup(myConfig);
log.data('Body:', resultFull.body);
log.data('Hand:', resultFull.hand);
log.data('Gesture:', resultFull.gesture);
}
async function main() {
log.info('NodeJS:', process.version);
await init();
if (process.argv.length !== 3) {
log.warn('Parameters: <input image> missing');
await test();
} else if (!fs.existsSync(process.argv[2])) {
log.error(`File not found: ${process.argv[2]}`);
} else {
await detect(process.argv[2]);
}
}
main();