mirror of https://github.com/vladmandic/human
77 lines
3.2 KiB
TypeScript
77 lines
3.2 KiB
TypeScript
/**
|
|
* Emotion model implementation
|
|
*
|
|
* [**Oarriaga**](https://github.com/oarriaga/face_classification)
|
|
*/
|
|
|
|
import { log, join, now } from '../util/util';
|
|
import type { Config } from '../config';
|
|
import type { GraphModel, Tensor } from '../tfjs/types';
|
|
import * as tf from '../../dist/tfjs.esm.js';
|
|
import { env } from '../util/env';
|
|
|
|
const annotations = ['angry', 'disgust', 'fear', 'happy', 'sad', 'surprise', 'neutral'];
|
|
let model: GraphModel | null;
|
|
// let last: Array<{ score: number, emotion: string }> = [];
|
|
const last: Array<Array<{ score: number, emotion: string }>> = [];
|
|
let lastCount = 0;
|
|
let lastTime = 0;
|
|
let skipped = Number.MAX_SAFE_INTEGER;
|
|
|
|
// tuning values
|
|
const rgb = [0.2989, 0.5870, 0.1140]; // factors for red/green/blue colors when converting to grayscale
|
|
|
|
export async function load(config: Config): Promise<GraphModel> {
|
|
if (env.initial) model = null;
|
|
if (!model) {
|
|
model = await tf.loadGraphModel(join(config.modelBasePath, config.face.emotion?.modelPath || '')) as unknown as GraphModel;
|
|
if (!model || !model['modelUrl']) log('load model failed:', config.face.emotion?.modelPath);
|
|
else if (config.debug) log('load model:', model['modelUrl']);
|
|
} else if (config.debug) log('cached model:', model['modelUrl']);
|
|
return model;
|
|
}
|
|
|
|
export async function predict(image: Tensor, config: Config, idx, count) {
|
|
if (!model) return null;
|
|
const skipFrame = skipped < (config.face.emotion?.skipFrames || 0);
|
|
const skipTime = (config.face.emotion?.skipTime || 0) > (now() - lastTime);
|
|
if (config.skipAllowed && skipTime && skipFrame && (lastCount === count) && last[idx] && (last[idx].length > 0)) {
|
|
skipped++;
|
|
return last[idx];
|
|
}
|
|
skipped = 0;
|
|
return new Promise(async (resolve) => {
|
|
const obj: Array<{ score: number, emotion: string }> = [];
|
|
if (config.face.emotion?.enabled) {
|
|
const resize = tf.image.resizeBilinear(image, [model?.inputs[0].shape ? model.inputs[0].shape[2] : 0, model?.inputs[0].shape ? model.inputs[0].shape[1] : 0], false);
|
|
const [red, green, blue] = tf.split(resize, 3, 3);
|
|
tf.dispose(resize);
|
|
// weighted rgb to grayscale: https://www.mathworks.com/help/matlab/ref/rgb2gray.html
|
|
const redNorm = tf.mul(red, rgb[0]);
|
|
const greenNorm = tf.mul(green, rgb[1]);
|
|
const blueNorm = tf.mul(blue, rgb[2]);
|
|
tf.dispose(red);
|
|
tf.dispose(green);
|
|
tf.dispose(blue);
|
|
const grayscale = tf.addN([redNorm, greenNorm, blueNorm]);
|
|
tf.dispose(redNorm);
|
|
tf.dispose(greenNorm);
|
|
tf.dispose(blueNorm);
|
|
const normalize = tf.tidy(() => tf.mul(tf.sub(grayscale, 0.5), 2));
|
|
tf.dispose(grayscale);
|
|
const emotionT = await model?.predict(normalize) as Tensor; // result is already in range 0..1, no need for additional activation
|
|
lastTime = now();
|
|
const data = await emotionT.data();
|
|
tf.dispose(emotionT);
|
|
for (let i = 0; i < data.length; i++) {
|
|
if (data[i] > (config.face.emotion?.minConfidence || 0)) obj.push({ score: Math.min(0.99, Math.trunc(100 * data[i]) / 100), emotion: annotations[i] });
|
|
}
|
|
obj.sort((a, b) => b.score - a.score);
|
|
tf.dispose(normalize);
|
|
}
|
|
last[idx] = obj;
|
|
lastCount = count;
|
|
resolve(obj);
|
|
});
|
|
}
|