human/src/gear/ssrnet-age.ts

61 lines
2.2 KiB
TypeScript

/**
* Age model implementation
*
* Based on: [**SSR-Net**](https://github.com/shamangary/SSR-Net)
*/
import { log, join, now } from '../util/util';
import * as tf from '../../dist/tfjs.esm.js';
import { env } from '../util/env';
import { constants } from '../tfjs/constants';
import type { Config } from '../config';
import type { GraphModel, Tensor } from '../tfjs/types';
let model: GraphModel | null;
const last: Array<{ age: number }> = [];
let lastCount = 0;
let lastTime = 0;
let skipped = Number.MAX_SAFE_INTEGER;
// eslint-disable-next-line @typescript-eslint/no-explicit-any
export async function load(config: Config) {
if (env.initial) model = null;
if (!model) {
model = await tf.loadGraphModel(join(config.modelBasePath, config.face['ssrnet'].modelPathAge)) as unknown as GraphModel;
if (!model || !model['modelUrl']) log('load model failed:', config.face['ssrnet'].modelPathAge);
else if (config.debug) log('load model:', model['modelUrl']);
} else {
if (config.debug) log('cached model:', model['modelUrl']);
}
return model;
}
// eslint-disable-next-line @typescript-eslint/no-explicit-any
export async function predict(image: Tensor, config: Config, idx, count): Promise<{ age: number }> {
if (!model) return { age: 0 };
const skipFrame = skipped < (config.face['ssrnet']?.skipFrames || 0);
const skipTime = (config.face['ssrnet']?.skipTime || 0) > (now() - lastTime);
if (config.skipAllowed && skipFrame && skipTime && (lastCount === count) && last[idx]?.age && (last[idx]?.age > 0)) {
skipped++;
return last[idx];
}
skipped = 0;
return new Promise(async (resolve) => {
if (!model?.inputs || !model.inputs[0] || !model.inputs[0].shape) return;
const t: Record<string, Tensor> = {};
t.resize = tf.image.resizeBilinear(image, [model.inputs[0].shape[2], model.inputs[0].shape[1]], false);
t.enhance = tf.mul(t.resize, constants.tf255);
const obj = { age: 0 };
if (config.face['ssrnet'].enabled) t.age = model.execute(t.enhance) as Tensor;
if (t.age) {
const data = await t.age.data();
obj.age = Math.trunc(10 * data[0]) / 10;
}
Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));
last[idx] = obj;
lastCount = count;
lastTime = now();
resolve(obj);
});
}