mirror of https://github.com/vladmandic/human
147 lines
5.6 KiB
TypeScript
147 lines
5.6 KiB
TypeScript
import { log } from '../helpers';
|
|
import * as tf from '../../dist/tfjs.esm.js';
|
|
import * as profile from '../profile';
|
|
|
|
let model;
|
|
let last = { age: 0 };
|
|
let skipped = Number.MAX_SAFE_INTEGER;
|
|
|
|
type Tensor = typeof tf.Tensor;
|
|
type DB = Array<{ name: string, source: string, embedding: number[] }>;
|
|
|
|
export async function load(config) {
|
|
if (!model) {
|
|
model = await tf.loadGraphModel(config.face.description.modelPath);
|
|
if (config.debug) log(`load model: ${config.face.description.modelPath.match(/\/(.*)\./)[1]}`);
|
|
}
|
|
return model;
|
|
}
|
|
|
|
export function similarity(embedding1, embedding2, order = 2): number {
|
|
if (!embedding1 || !embedding2) return 0;
|
|
if (embedding1?.length === 0 || embedding2?.length === 0) return 0;
|
|
if (embedding1?.length !== embedding2?.length) return 0;
|
|
// general minkowski distance, euclidean distance is limited case where order is 2
|
|
const distance = 4.0 * embedding1
|
|
.map((val, i) => (Math.abs(embedding1[i] - embedding2[i]) ** order)) // distance squared
|
|
.reduce((sum, now) => (sum + now), 0) // sum all distances
|
|
** (1 / order); // get root of
|
|
const res = Math.max(0, 100 - distance) / 100.0;
|
|
return res;
|
|
}
|
|
|
|
export function match(embedding: Array<number>, db: DB, threshold = 0) {
|
|
let best = { similarity: 0, name: '', source: '', embedding: [] as number[] };
|
|
if (!embedding || !db || !Array.isArray(embedding) || !Array.isArray(db)) return best;
|
|
for (const f of db) {
|
|
if (f.embedding && f.name) {
|
|
const perc = similarity(embedding, f.embedding);
|
|
if (perc > threshold && perc > best.similarity) best = { ...f, similarity: perc };
|
|
}
|
|
}
|
|
return best;
|
|
}
|
|
|
|
export function enhance(input): Tensor {
|
|
const image = tf.tidy(() => {
|
|
// input received from detector is already normalized to 0..1
|
|
// input is also assumed to be straightened
|
|
const tensor = input.image || input.tensor || input;
|
|
/*
|
|
// do a tight crop of image and resize it to fit the model
|
|
const box = [[0.05, 0.15, 0.85, 0.85]]; // empyrical values for top, left, bottom, right
|
|
if (!(tensor instanceof tf.Tensor)) return null;
|
|
const crop = (tensor.shape.length === 3)
|
|
? tf.image.cropAndResize(tf.expandDims(tensor, 0), box, [0], [model.inputs[0].shape[2], model.inputs[0].shape[1]]) // add batch dimension if missing
|
|
: tf.image.cropAndResize(tensor, box, [0], [model.inputs[0].shape[2], model.inputs[0].shape[1]]);
|
|
*/
|
|
const crop = tf.image.resizeBilinear(tensor, [model.inputs[0].shape[2], model.inputs[0].shape[1]], false); // just resize to fit the embedding model
|
|
|
|
/*
|
|
// convert to black&white to avoid colorization impact
|
|
const rgb = [0.2989, 0.5870, 0.1140]; // factors for red/green/blue colors when converting to grayscale: https://www.mathworks.com/help/matlab/ref/rgb2gray.html
|
|
const [red, green, blue] = tf.split(crop, 3, 3);
|
|
const redNorm = tf.mul(red, rgb[0]);
|
|
const greenNorm = tf.mul(green, rgb[1]);
|
|
const blueNorm = tf.mul(blue, rgb[2]);
|
|
const grayscale = tf.addN([redNorm, greenNorm, blueNorm]);
|
|
const merge = tf.stack([grayscale, grayscale, grayscale], 3).squeeze(4);
|
|
*/
|
|
|
|
/*
|
|
// optional increase image contrast
|
|
// or do it per-channel so mean is done on each channel
|
|
// or do it based on histogram
|
|
const mean = merge.mean();
|
|
const factor = 5;
|
|
const contrast = merge.sub(mean).mul(factor).add(mean);
|
|
*/
|
|
/*
|
|
// normalize brightness from 0..1
|
|
const darken = crop.sub(crop.min());
|
|
const lighten = darken.div(darken.max());
|
|
*/
|
|
const norm = crop.mul(255);
|
|
|
|
return norm;
|
|
});
|
|
return image;
|
|
}
|
|
|
|
export async function predict(image, config) {
|
|
if (!model) return null;
|
|
if ((skipped < config.face.description.skipFrames) && config.videoOptimized && last.age && (last.age > 0)) {
|
|
skipped++;
|
|
return last;
|
|
}
|
|
if (config.videoOptimized) skipped = 0;
|
|
else skipped = Number.MAX_SAFE_INTEGER;
|
|
return new Promise(async (resolve) => {
|
|
// const resize = tf.image.resizeBilinear(image, [model.inputs[0].shape[2], model.inputs[0].shape[1]], false);
|
|
// const enhanced = tf.mul(resize, [255.0]);
|
|
// tf.dispose(resize);
|
|
const enhanced = enhance(image);
|
|
|
|
let resT;
|
|
const obj = {
|
|
age: <number>0,
|
|
gender: <string>'unknown',
|
|
genderConfidence: <number>0,
|
|
descriptor: <number[]>[] };
|
|
|
|
if (!config.profile) {
|
|
if (config.face.description.enabled) resT = await model.predict(enhanced);
|
|
} else {
|
|
const profileAge = config.face.description.enabled ? await tf.profile(() => model.predict(enhanced)) : {};
|
|
resT = profileAge.result.clone();
|
|
profileAge.result.dispose();
|
|
profile.run('age', profileAge);
|
|
}
|
|
tf.dispose(enhanced);
|
|
|
|
if (resT) {
|
|
tf.tidy(() => {
|
|
const gender = resT.find((t) => t.shape[1] === 1).dataSync();
|
|
const confidence = Math.trunc(200 * Math.abs((gender[0] - 0.5))) / 100;
|
|
if (confidence > config.face.gender.minConfidence) {
|
|
obj.gender = gender[0] <= 0.5 ? 'female' : 'male';
|
|
obj.genderConfidence = Math.min(0.99, confidence);
|
|
}
|
|
const age = resT.find((t) => t.shape[1] === 100).argMax(1).dataSync()[0];
|
|
const all = resT.find((t) => t.shape[1] === 100).dataSync();
|
|
obj.age = Math.round(all[age - 1] > all[age + 1] ? 10 * age - 100 * all[age - 1] : 10 * age + 100 * all[age + 1]) / 10;
|
|
|
|
const desc = resT.find((t) => t.shape[1] === 1024);
|
|
// const reshape = desc.reshape([128, 8]);
|
|
// const reduce = reshape.logSumExp(1); // reduce 2nd dimension by calculating logSumExp on it
|
|
|
|
obj.descriptor = [...desc.dataSync()];
|
|
});
|
|
resT.forEach((t) => tf.dispose(t));
|
|
}
|
|
|
|
last = obj;
|
|
resolve(obj);
|
|
});
|
|
}
|