human/dist/tfjs.esm.js

4224 lines
1.0 MiB

/*
Human library
homepage: <https://github.com/vladmandic/human>
author: <https://github.com/vladmandic>'
*/
var VB=Object.create,Gh=Object.defineProperty,GB=Object.getPrototypeOf,jB=Object.prototype.hasOwnProperty,WB=Object.getOwnPropertyNames,UB=Object.getOwnPropertyDescriptor;var qB=r=>Gh(r,"__esModule",{value:!0});var ht=(r,e)=>()=>(e||(e={exports:{}},r(e.exports,e)),e.exports),Ye=(r,e)=>{for(var t in e)Gh(r,t,{get:e[t],enumerable:!0})},HB=(r,e,t)=>{if(e&&typeof e=="object"||typeof e=="function")for(let n of WB(e))!jB.call(r,n)&&n!=="default"&&Gh(r,n,{get:()=>e[n],enumerable:!(t=UB(e,n))||t.enumerable});return r},Tc=r=>r&&r.__esModule?r:HB(qB(Gh(r!=null?VB(GB(r)):{},"default",{value:r,enumerable:!0})),r);var aN=ht(()=>{});var BN=ht((zN,jw)=>{(function(r,e,t){function n(i){var l=this,u=a();l.next=function(){var c=2091639*l.s0+l.c*23283064365386963e-26;return l.s0=l.s1,l.s1=l.s2,l.s2=c-(l.c=c|0)},l.c=1,l.s0=u(" "),l.s1=u(" "),l.s2=u(" "),l.s0-=u(i),l.s0<0&&(l.s0+=1),l.s1-=u(i),l.s1<0&&(l.s1+=1),l.s2-=u(i),l.s2<0&&(l.s2+=1),u=null}function o(i,l){return l.c=i.c,l.s0=i.s0,l.s1=i.s1,l.s2=i.s2,l}function s(i,l){var u=new n(i),c=l&&l.state,p=u.next;return p.int32=function(){return u.next()*4294967296|0},p.double=function(){return p()+(p()*2097152|0)*11102230246251565e-32},p.quick=p,c&&(typeof c=="object"&&o(c,u),p.state=function(){return o(u,{})}),p}function a(){var i=4022871197,l=function(u){u=u.toString();for(var c=0;c<u.length;c++){i+=u.charCodeAt(c);var p=.02519603282416938*i;i=p>>>0,p-=i,p*=i,i=p>>>0,p-=i,i+=p*4294967296}return(i>>>0)*23283064365386963e-26};return l}e&&e.exports?e.exports=s:t&&t.amd?t(function(){return s}):this.alea=s})(zN,typeof jw=="object"&&jw,typeof define=="function"&&define)});var GN=ht((VN,Ww)=>{(function(r,e,t){function n(a){var i=this,l="";i.x=0,i.y=0,i.z=0,i.w=0,i.next=function(){var c=i.x^i.x<<11;return i.x=i.y,i.y=i.z,i.z=i.w,i.w^=i.w>>>19^c^c>>>8},a===(a|0)?i.x=a:l+=a;for(var u=0;u<l.length+64;u++)i.x^=l.charCodeAt(u)|0,i.next()}function o(a,i){return i.x=a.x,i.y=a.y,i.z=a.z,i.w=a.w,i}function s(a,i){var l=new n(a),u=i&&i.state,c=function(){return(l.next()>>>0)/4294967296};return c.double=function(){do var p=l.next()>>>11,m=(l.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=l.next,c.quick=c,u&&(typeof u=="object"&&o(u,l),c.state=function(){return o(l,{})}),c}e&&e.exports?e.exports=s:t&&t.amd?t(function(){return s}):this.xor128=s})(VN,typeof Ww=="object"&&Ww,typeof define=="function"&&define)});var WN=ht((jN,Uw)=>{(function(r,e,t){function n(a){var i=this,l="";i.next=function(){var c=i.x^i.x>>>2;return i.x=i.y,i.y=i.z,i.z=i.w,i.w=i.v,(i.d=i.d+362437|0)+(i.v=i.v^i.v<<4^(c^c<<1))|0},i.x=0,i.y=0,i.z=0,i.w=0,i.v=0,a===(a|0)?i.x=a:l+=a;for(var u=0;u<l.length+64;u++)i.x^=l.charCodeAt(u)|0,u==l.length&&(i.d=i.x<<10^i.x>>>4),i.next()}function o(a,i){return i.x=a.x,i.y=a.y,i.z=a.z,i.w=a.w,i.v=a.v,i.d=a.d,i}function s(a,i){var l=new n(a),u=i&&i.state,c=function(){return(l.next()>>>0)/4294967296};return c.double=function(){do var p=l.next()>>>11,m=(l.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=l.next,c.quick=c,u&&(typeof u=="object"&&o(u,l),c.state=function(){return o(l,{})}),c}e&&e.exports?e.exports=s:t&&t.amd?t(function(){return s}):this.xorwow=s})(jN,typeof Uw=="object"&&Uw,typeof define=="function"&&define)});var qN=ht((UN,qw)=>{(function(r,e,t){function n(a){var i=this;i.next=function(){var u=i.x,c=i.i,p,m,f;return p=u[c],p^=p>>>7,m=p^p<<24,p=u[c+1&7],m^=p^p>>>10,p=u[c+3&7],m^=p^p>>>3,p=u[c+4&7],m^=p^p<<7,p=u[c+7&7],p=p^p<<13,m^=p^p<<9,u[c]=m,i.i=c+1&7,m};function l(u,c){var p,m,f=[];if(c===(c|0))m=f[0]=c;else for(c=""+c,p=0;p<c.length;++p)f[p&7]=f[p&7]<<15^c.charCodeAt(p)+f[p+1&7]<<13;for(;f.length<8;)f.push(0);for(p=0;p<8&&f[p]===0;++p);for(p==8?m=f[7]=-1:m=f[p],u.x=f,u.i=0,p=256;p>0;--p)u.next()}l(i,a)}function o(a,i){return i.x=a.x.slice(),i.i=a.i,i}function s(a,i){a==null&&(a=+new Date);var l=new n(a),u=i&&i.state,c=function(){return(l.next()>>>0)/4294967296};return c.double=function(){do var p=l.next()>>>11,m=(l.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=l.next,c.quick=c,u&&(u.x&&o(u,l),c.state=function(){return o(l,{})}),c}e&&e.exports?e.exports=s:t&&t.amd?t(function(){return s}):this.xorshift7=s})(UN,typeof qw=="object"&&qw,typeof define=="function"&&define)});var KN=ht((HN,Hw)=>{(function(r,e,t){function n(a){var i=this;i.next=function(){var u=i.w,c=i.X,p=i.i,m,f;return i.w=u=u+1640531527|0,f=c[p+34&127],m=c[p=p+1&127],f^=f<<13,m^=m<<17,f^=f>>>15,m^=m>>>12,f=c[p]=f^m,i.i=p,f+(u^u>>>16)|0};function l(u,c){var p,m,f,d,h,g=[],x=128;for(c===(c|0)?(m=c,c=null):(c=c+"\0",m=0,x=Math.max(x,c.length)),f=0,d=-32;d<x;++d)c&&(m^=c.charCodeAt((d+32)%c.length)),d===0&&(h=m),m^=m<<10,m^=m>>>15,m^=m<<4,m^=m>>>13,d>=0&&(h=h+1640531527|0,p=g[d&127]^=m+h,f=p==0?f+1:0);for(f>=128&&(g[(c&&c.length||0)&127]=-1),f=127,d=4*128;d>0;--d)m=g[f+34&127],p=g[f=f+1&127],m^=m<<13,p^=p<<17,m^=m>>>15,p^=p>>>12,g[f]=m^p;u.w=h,u.X=g,u.i=f}l(i,a)}function o(a,i){return i.i=a.i,i.w=a.w,i.X=a.X.slice(),i}function s(a,i){a==null&&(a=+new Date);var l=new n(a),u=i&&i.state,c=function(){return(l.next()>>>0)/4294967296};return c.double=function(){do var p=l.next()>>>11,m=(l.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=l.next,c.quick=c,u&&(u.X&&o(u,l),c.state=function(){return o(l,{})}),c}e&&e.exports?e.exports=s:t&&t.amd?t(function(){return s}):this.xor4096=s})(HN,typeof Hw=="object"&&Hw,typeof define=="function"&&define)});var YN=ht((XN,Kw)=>{(function(r,e,t){function n(a){var i=this,l="";i.next=function(){var c=i.b,p=i.c,m=i.d,f=i.a;return c=c<<25^c>>>7^p,p=p-m|0,m=m<<24^m>>>8^f,f=f-c|0,i.b=c=c<<20^c>>>12^p,i.c=p=p-m|0,i.d=m<<16^p>>>16^f,i.a=f-c|0},i.a=0,i.b=0,i.c=2654435769|0,i.d=1367130551,a===Math.floor(a)?(i.a=a/4294967296|0,i.b=a|0):l+=a;for(var u=0;u<l.length+20;u++)i.b^=l.charCodeAt(u)|0,i.next()}function o(a,i){return i.a=a.a,i.b=a.b,i.c=a.c,i.d=a.d,i}function s(a,i){var l=new n(a),u=i&&i.state,c=function(){return(l.next()>>>0)/4294967296};return c.double=function(){do var p=l.next()>>>11,m=(l.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=l.next,c.quick=c,u&&(typeof u=="object"&&o(u,l),c.state=function(){return o(l,{})}),c}e&&e.exports?e.exports=s:t&&t.amd?t(function(){return s}):this.tychei=s})(XN,typeof Kw=="object"&&Kw,typeof define=="function"&&define)});var pg=ht(()=>{});var ZN=ht((sbe,mg)=>{(function(r,e){var t=this,n=256,o=6,s=52,a="random",i=e.pow(n,o),l=e.pow(2,s),u=l*2,c=n-1,p;function m(w,_,k){var E=[];_=_==!0?{entropy:!0}:_||{};var S=g(h(_.entropy?[w,b(r)]:w==null?x():w,3),E),R=new f(E),F=function(){for(var P=R.g(o),j=i,G=0;P<l;)P=(P+G)*n,j*=n,G=R.g(1);for(;P>=u;)P/=2,j/=2,G>>>=1;return(P+G)/j};return F.int32=function(){return R.g(4)|0},F.quick=function(){return R.g(4)/4294967296},F.double=F,g(b(R.S),r),(_.pass||k||function(P,j,G,U){return U&&(U.S&&d(U,R),P.state=function(){return d(R,{})}),G?(e[a]=P,j):P})(F,S,"global"in _?_.global:this==e,_.state)}e["seed"+a]=m;function f(w){var _,k=w.length,E=this,S=0,R=E.i=E.j=0,F=E.S=[];for(k||(w=[k++]);S<n;)F[S]=S++;for(S=0;S<n;S++)F[S]=F[R=c&R+w[S%k]+(_=F[S])],F[R]=_;(E.g=function(P){for(var j,G=0,U=E.i,X=E.j,K=E.S;P--;)j=K[U=c&U+1],G=G*n+K[c&(K[U]=K[X=c&X+j])+(K[X]=j)];return E.i=U,E.j=X,G})(n)}function d(w,_){return _.i=w.i,_.j=w.j,_.S=w.S.slice(),_}function h(w,_){var k=[],E=typeof w,S;if(_&&E=="object")for(S in w)try{k.push(h(w[S],_-1))}catch(R){}return k.length?k:E=="string"?w:w+"\0"}function g(w,_){for(var k=w+"",E,S=0;S<k.length;)_[c&S]=c&(E^=_[c&S]*19)+k.charCodeAt(S++);return b(_)}function x(){try{var w;return p&&(w=p.randomBytes)?w=w(n):(w=new Uint8Array(n),(t.crypto||t.msCrypto).getRandomValues(w)),b(w)}catch(E){var _=t.navigator,k=_&&_.plugins;return[+new Date,t,k,t.screen,b(r)]}}function b(w){return String.fromCharCode.apply(0,w)}if(g(e.random(),r),typeof mg=="object"&&mg.exports){mg.exports=m;try{p=pg()}catch(w){}}else typeof define=="function"&&define.amd&&define(function(){return m})})([],Math)});var QN=ht((ibe,JN)=>{var y4=BN(),b4=GN(),w4=WN(),_4=qN(),k4=KN(),v4=YN(),Ru=ZN();Ru.alea=y4;Ru.xor128=b4;Ru.xorwow=w4;Ru.xorshift7=_4;Ru.xor4096=k4;Ru.tychei=v4;JN.exports=Ru});var Z1=ht((Y1,$_)=>{(function(r,e,t){function n(i){var l=this,u=a();l.next=function(){var c=2091639*l.s0+l.c*23283064365386963e-26;return l.s0=l.s1,l.s1=l.s2,l.s2=c-(l.c=c|0)},l.c=1,l.s0=u(" "),l.s1=u(" "),l.s2=u(" "),l.s0-=u(i),l.s0<0&&(l.s0+=1),l.s1-=u(i),l.s1<0&&(l.s1+=1),l.s2-=u(i),l.s2<0&&(l.s2+=1),u=null}function o(i,l){return l.c=i.c,l.s0=i.s0,l.s1=i.s1,l.s2=i.s2,l}function s(i,l){var u=new n(i),c=l&&l.state,p=u.next;return p.int32=function(){return u.next()*4294967296|0},p.double=function(){return p()+(p()*2097152|0)*11102230246251565e-32},p.quick=p,c&&(typeof c=="object"&&o(c,u),p.state=function(){return o(u,{})}),p}function a(){var i=4022871197,l=function(u){u=u.toString();for(var c=0;c<u.length;c++){i+=u.charCodeAt(c);var p=.02519603282416938*i;i=p>>>0,p-=i,p*=i,i=p>>>0,p-=i,i+=p*4294967296}return(i>>>0)*23283064365386963e-26};return l}e&&e.exports?e.exports=s:t&&t.amd?t(function(){return s}):this.alea=s})(Y1,typeof $_=="object"&&$_,typeof define=="function"&&define)});var Q1=ht((J1,R_)=>{(function(r,e,t){function n(a){var i=this,l="";i.x=0,i.y=0,i.z=0,i.w=0,i.next=function(){var c=i.x^i.x<<11;return i.x=i.y,i.y=i.z,i.z=i.w,i.w^=i.w>>>19^c^c>>>8},a===(a|0)?i.x=a:l+=a;for(var u=0;u<l.length+64;u++)i.x^=l.charCodeAt(u)|0,i.next()}function o(a,i){return i.x=a.x,i.y=a.y,i.z=a.z,i.w=a.w,i}function s(a,i){var l=new n(a),u=i&&i.state,c=function(){return(l.next()>>>0)/4294967296};return c.double=function(){do var p=l.next()>>>11,m=(l.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=l.next,c.quick=c,u&&(typeof u=="object"&&o(u,l),c.state=function(){return o(l,{})}),c}e&&e.exports?e.exports=s:t&&t.amd?t(function(){return s}):this.xor128=s})(J1,typeof R_=="object"&&R_,typeof define=="function"&&define)});var tE=ht((eE,F_)=>{(function(r,e,t){function n(a){var i=this,l="";i.next=function(){var c=i.x^i.x>>>2;return i.x=i.y,i.y=i.z,i.z=i.w,i.w=i.v,(i.d=i.d+362437|0)+(i.v=i.v^i.v<<4^(c^c<<1))|0},i.x=0,i.y=0,i.z=0,i.w=0,i.v=0,a===(a|0)?i.x=a:l+=a;for(var u=0;u<l.length+64;u++)i.x^=l.charCodeAt(u)|0,u==l.length&&(i.d=i.x<<10^i.x>>>4),i.next()}function o(a,i){return i.x=a.x,i.y=a.y,i.z=a.z,i.w=a.w,i.v=a.v,i.d=a.d,i}function s(a,i){var l=new n(a),u=i&&i.state,c=function(){return(l.next()>>>0)/4294967296};return c.double=function(){do var p=l.next()>>>11,m=(l.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=l.next,c.quick=c,u&&(typeof u=="object"&&o(u,l),c.state=function(){return o(l,{})}),c}e&&e.exports?e.exports=s:t&&t.amd?t(function(){return s}):this.xorwow=s})(eE,typeof F_=="object"&&F_,typeof define=="function"&&define)});var nE=ht((rE,O_)=>{(function(r,e,t){function n(a){var i=this;i.next=function(){var u=i.x,c=i.i,p,m,f;return p=u[c],p^=p>>>7,m=p^p<<24,p=u[c+1&7],m^=p^p>>>10,p=u[c+3&7],m^=p^p>>>3,p=u[c+4&7],m^=p^p<<7,p=u[c+7&7],p=p^p<<13,m^=p^p<<9,u[c]=m,i.i=c+1&7,m};function l(u,c){var p,m,f=[];if(c===(c|0))m=f[0]=c;else for(c=""+c,p=0;p<c.length;++p)f[p&7]=f[p&7]<<15^c.charCodeAt(p)+f[p+1&7]<<13;for(;f.length<8;)f.push(0);for(p=0;p<8&&f[p]===0;++p);for(p==8?m=f[7]=-1:m=f[p],u.x=f,u.i=0,p=256;p>0;--p)u.next()}l(i,a)}function o(a,i){return i.x=a.x.slice(),i.i=a.i,i}function s(a,i){a==null&&(a=+new Date);var l=new n(a),u=i&&i.state,c=function(){return(l.next()>>>0)/4294967296};return c.double=function(){do var p=l.next()>>>11,m=(l.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=l.next,c.quick=c,u&&(u.x&&o(u,l),c.state=function(){return o(l,{})}),c}e&&e.exports?e.exports=s:t&&t.amd?t(function(){return s}):this.xorshift7=s})(rE,typeof O_=="object"&&O_,typeof define=="function"&&define)});var sE=ht((oE,P_)=>{(function(r,e,t){function n(a){var i=this;i.next=function(){var u=i.w,c=i.X,p=i.i,m,f;return i.w=u=u+1640531527|0,f=c[p+34&127],m=c[p=p+1&127],f^=f<<13,m^=m<<17,f^=f>>>15,m^=m>>>12,f=c[p]=f^m,i.i=p,f+(u^u>>>16)|0};function l(u,c){var p,m,f,d,h,g=[],x=128;for(c===(c|0)?(m=c,c=null):(c=c+"\0",m=0,x=Math.max(x,c.length)),f=0,d=-32;d<x;++d)c&&(m^=c.charCodeAt((d+32)%c.length)),d===0&&(h=m),m^=m<<10,m^=m>>>15,m^=m<<4,m^=m>>>13,d>=0&&(h=h+1640531527|0,p=g[d&127]^=m+h,f=p==0?f+1:0);for(f>=128&&(g[(c&&c.length||0)&127]=-1),f=127,d=4*128;d>0;--d)m=g[f+34&127],p=g[f=f+1&127],m^=m<<13,p^=p<<17,m^=m>>>15,p^=p>>>12,g[f]=m^p;u.w=h,u.X=g,u.i=f}l(i,a)}function o(a,i){return i.i=a.i,i.w=a.w,i.X=a.X.slice(),i}function s(a,i){a==null&&(a=+new Date);var l=new n(a),u=i&&i.state,c=function(){return(l.next()>>>0)/4294967296};return c.double=function(){do var p=l.next()>>>11,m=(l.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=l.next,c.quick=c,u&&(u.X&&o(u,l),c.state=function(){return o(l,{})}),c}e&&e.exports?e.exports=s:t&&t.amd?t(function(){return s}):this.xor4096=s})(oE,typeof P_=="object"&&P_,typeof define=="function"&&define)});var aE=ht((iE,M_)=>{(function(r,e,t){function n(a){var i=this,l="";i.next=function(){var c=i.b,p=i.c,m=i.d,f=i.a;return c=c<<25^c>>>7^p,p=p-m|0,m=m<<24^m>>>8^f,f=f-c|0,i.b=c=c<<20^c>>>12^p,i.c=p=p-m|0,i.d=m<<16^p>>>16^f,i.a=f-c|0},i.a=0,i.b=0,i.c=2654435769|0,i.d=1367130551,a===Math.floor(a)?(i.a=a/4294967296|0,i.b=a|0):l+=a;for(var u=0;u<l.length+20;u++)i.b^=l.charCodeAt(u)|0,i.next()}function o(a,i){return i.a=a.a,i.b=a.b,i.c=a.c,i.d=a.d,i}function s(a,i){var l=new n(a),u=i&&i.state,c=function(){return(l.next()>>>0)/4294967296};return c.double=function(){do var p=l.next()>>>11,m=(l.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=l.next,c.quick=c,u&&(typeof u=="object"&&o(u,l),c.state=function(){return o(l,{})}),c}e&&e.exports?e.exports=s:t&&t.amd?t(function(){return s}):this.tychei=s})(iE,typeof M_=="object"&&M_,typeof define=="function"&&define)});var lE=ht((n3e,Eg)=>{(function(r,e){var t=this,n=256,o=6,s=52,a="random",i=e.pow(n,o),l=e.pow(2,s),u=l*2,c=n-1,p;function m(w,_,k){var E=[];_=_==!0?{entropy:!0}:_||{};var S=g(h(_.entropy?[w,b(r)]:w==null?x():w,3),E),R=new f(E),F=function(){for(var P=R.g(o),j=i,G=0;P<l;)P=(P+G)*n,j*=n,G=R.g(1);for(;P>=u;)P/=2,j/=2,G>>>=1;return(P+G)/j};return F.int32=function(){return R.g(4)|0},F.quick=function(){return R.g(4)/4294967296},F.double=F,g(b(R.S),r),(_.pass||k||function(P,j,G,U){return U&&(U.S&&d(U,R),P.state=function(){return d(R,{})}),G?(e[a]=P,j):P})(F,S,"global"in _?_.global:this==e,_.state)}e["seed"+a]=m;function f(w){var _,k=w.length,E=this,S=0,R=E.i=E.j=0,F=E.S=[];for(k||(w=[k++]);S<n;)F[S]=S++;for(S=0;S<n;S++)F[S]=F[R=c&R+w[S%k]+(_=F[S])],F[R]=_;(E.g=function(P){for(var j,G=0,U=E.i,X=E.j,K=E.S;P--;)j=K[U=c&U+1],G=G*n+K[c&(K[U]=K[X=c&X+j])+(K[X]=j)];return E.i=U,E.j=X,G})(n)}function d(w,_){return _.i=w.i,_.j=w.j,_.S=w.S.slice(),_}function h(w,_){var k=[],E=typeof w,S;if(_&&E=="object")for(S in w)try{k.push(h(w[S],_-1))}catch(R){}return k.length?k:E=="string"?w:w+"\0"}function g(w,_){for(var k=w+"",E,S=0;S<k.length;)_[c&S]=c&(E^=_[c&S]*19)+k.charCodeAt(S++);return b(_)}function x(){try{var w;return p&&(w=p.randomBytes)?w=w(n):(w=new Uint8Array(n),(t.crypto||t.msCrypto).getRandomValues(w)),b(w)}catch(E){var _=t.navigator,k=_&&_.plugins;return[+new Date,t,k,t.screen,b(r)]}}function b(w){return String.fromCharCode.apply(0,w)}if(g(e.random(),r),typeof Eg=="object"&&Eg.exports){Eg.exports=m;try{p=pg()}catch(w){}}else typeof define=="function"&&define.amd&&define(function(){return m})})([],Math)});var cE=ht((o3e,uE)=>{var ZK=Z1(),JK=Q1(),QK=tE(),e6=nE(),t6=sE(),r6=aE(),Ku=lE();Ku.alea=ZK;Ku.xor128=JK;Ku.xorwow=QK;Ku.xorshift7=e6;Ku.xor4096=t6;Ku.tychei=r6;uE.exports=Ku});var Cp=ht(()=>{});var MO=ht(()=>{});var LO=ht(()=>{});var zO=ht((ux,p0)=>{var m0=function(){var r=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(r=r||__filename),function(e){e=e||{};function t(){return Y.buffer!=He&&kr(Y.buffer),Ot}function n(){return Y.buffer!=He&&kr(Y.buffer),mn}function o(){return Y.buffer!=He&&kr(Y.buffer),_r}function s(){return Y.buffer!=He&&kr(Y.buffer),Bn}function a(){return Y.buffer!=He&&kr(Y.buffer),dn}var i=typeof e!="undefined"?e:{},l={},u;for(u in i)i.hasOwnProperty(u)&&(l[u]=i[u]);var c=[],p="./this.program",m=function(I,$){throw $},f=!1,d=!1,h=!1,g=!1;f=typeof window=="object",d=typeof importScripts=="function",h=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",g=!f&&!h&&!d;var x=i.ENVIRONMENT_IS_PTHREAD||!1;x&&(He=i.buffer,ts=i.DYNAMIC_BASE,Tn=i.DYNAMICTOP_PTR);var b="";function w(I){return i.locateFile?i.locateFile(I,b):b+I}var _,k,E,S,R,F;if(h){d?b=Cp().dirname(b)+"/":b=__dirname+"/",_=function($,L){return R||(R=require("fs")),F||(F=Cp()),$=F.normalize($),R.readFileSync($,L?null:"utf8")},E=function($){var L=_($,!0);return L.buffer||(L=new Uint8Array(L)),ge(L.buffer),L},process.argv.length>1&&(p=process.argv[1].replace(/\\/g,"/")),c=process.argv.slice(2),process.on("uncaughtException",function(I){if(!(I instanceof gI))throw I}),process.on("unhandledRejection",ea),m=function(I){process.exit(I)},i.inspect=function(){return"[Emscripten Module object]"};var P;try{P=MO()}catch(I){throw console.error('The "worker_threads" module is not supported in this node.js build - perhaps a newer version is needed?'),I}Worker=P.Worker}else g?(typeof read!="undefined"&&(_=function($){return read($)}),E=function($){var L;return typeof readbuffer=="function"?new Uint8Array(readbuffer($)):(L=read($,"binary"),ge(typeof L=="object"),L)},typeof scriptArgs!="undefined"?c=scriptArgs:typeof arguments!="undefined"&&(c=arguments),typeof quit=="function"&&(m=function(I){quit(I)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(f||d)&&(d?b=self.location.href:document.currentScript&&(b=document.currentScript.src),typeof r!="undefined"&&r&&(b=r),b.indexOf("blob:")!==0?b=b.substr(0,b.lastIndexOf("/")+1):b="",h?(_=function($,L){return R||(R=require("fs")),F||(F=Cp()),$=F.normalize($),R.readFileSync($,L?null:"utf8")},E=function($){var L=_($,!0);return L.buffer||(L=new Uint8Array(L)),ge(L.buffer),L}):(_=function($){var L=new XMLHttpRequest;return L.open("GET",$,!1),L.send(null),L.responseText},d&&(E=function($){var L=new XMLHttpRequest;return L.open("GET",$,!1),L.responseType="arraybuffer",L.send(null),new Uint8Array(L.response)}),k=function($,L,q){var me=new XMLHttpRequest;me.open("GET",$,!0),me.responseType="arraybuffer",me.onload=function(){if(me.status==200||me.status==0&&me.response){L(me.response);return}q()},me.onerror=q,me.send(null)}),S=function(I){document.title=I});h&&typeof performance=="undefined"&&(performance=LO().performance);var j=i.print||console.log.bind(console),G=i.printErr||console.warn.bind(console);for(u in l)l.hasOwnProperty(u)&&(i[u]=l[u]);l=null,i.arguments&&(c=i.arguments),i.thisProgram&&(p=i.thisProgram),i.quit&&(m=i.quit);var U=Atomics.load,X=Atomics.store,K=Atomics.compareExchange,Z;i.wasmBinary&&(Z=i.wasmBinary);var te;i.noExitRuntime&&(te=i.noExitRuntime),typeof WebAssembly!="object"&&G("no native wasm support detected");var Y,re=new WebAssembly.Table({initial:169,maximum:169+0,element:"anyfunc"}),ie,se=0,pe=0,ae=!1,xe=0;function ge(I,$){I||ea("Assertion failed: "+$)}function we(I){var $=i["_"+I];return ge($,"Cannot call unknown function "+I+", make sure it is exported"),$}function ke(I,$,L,q,me){var he={string:function(gn){var Za=0;if(gn!=null&&gn!==0){var hm=(gn.length<<2)+1;Za=Cc(hm),ut(gn,Za,hm)}return Za},array:function(gn){var Za=Cc(gn.length);return vt(gn,Za),Za}};function fe(gn){return $==="string"?Re(gn):$==="boolean"?Boolean(gn):gn}var Te=we(I),mt=[],mr=0;if(q)for(var Dr=0;Dr<q.length;Dr++){var Nc=he[L[Dr]];Nc?(mr===0&&(mr=mm()),mt[Dr]=Nc(q[Dr])):mt[Dr]=q[Dr]}var dm=Te.apply(null,mt);return dm=fe(dm),mr!==0&&Ic(mr),dm}function De(I,$,L,q){L=L||[];var me=L.every(function(fe){return fe==="number"}),he=$!=="string";return he&&me&&!q?we(I):function(){return ke(I,$,L,arguments,q)}}function $e(I,$,L){for(var q=$+L,me="";!($>=q);){var he=I[$++];if(!he)return me;if(!(he&128)){me+=String.fromCharCode(he);continue}var fe=I[$++]&63;if((he&224)==192){me+=String.fromCharCode((he&31)<<6|fe);continue}var Te=I[$++]&63;if((he&240)==224?he=(he&15)<<12|fe<<6|Te:he=(he&7)<<18|fe<<12|Te<<6|I[$++]&63,he<65536)me+=String.fromCharCode(he);else{var mt=he-65536;me+=String.fromCharCode(55296|mt>>10,56320|mt&1023)}}return me}function Re(I,$){return I?$e(n(),I,$):""}function qe(I,$,L,q){if(!(q>0))return 0;for(var me=L,he=L+q-1,fe=0;fe<I.length;++fe){var Te=I.charCodeAt(fe);if(Te>=55296&&Te<=57343){var mt=I.charCodeAt(++fe);Te=65536+((Te&1023)<<10)|mt&1023}if(Te<=127){if(L>=he)break;$[L++]=Te}else if(Te<=2047){if(L+1>=he)break;$[L++]=192|Te>>6,$[L++]=128|Te&63}else if(Te<=65535){if(L+2>=he)break;$[L++]=224|Te>>12,$[L++]=128|Te>>6&63,$[L++]=128|Te&63}else{if(L+3>=he)break;$[L++]=240|Te>>18,$[L++]=128|Te>>12&63,$[L++]=128|Te>>6&63,$[L++]=128|Te&63}}return $[L]=0,L-me}function ut(I,$,L){return qe(I,n(),$,L)}function kt(I){for(var $=0,L=0;L<I.length;++L){var q=I.charCodeAt(L);q>=55296&&q<=57343&&(q=65536+((q&1023)<<10)|I.charCodeAt(++L)&1023),q<=127?++$:q<=2047?$+=2:q<=65535?$+=3:$+=4}return $}function vt(I,$){t().set(I,$)}var pt=65536;function Ct(I,$){return I%$>0&&(I+=$-I%$),I}var He,Ot,mn,Jt,fn,_r,Bn,Jr,dn;function kr(I){He=I,i.HEAP8=Ot=new Int8Array(I),i.HEAP16=Jt=new Int16Array(I),i.HEAP32=_r=new Int32Array(I),i.HEAPU8=mn=new Uint8Array(I),i.HEAPU16=fn=new Uint16Array(I),i.HEAPU32=Bn=new Uint32Array(I),i.HEAPF32=Jr=new Float32Array(I),i.HEAPF64=dn=new Float64Array(I)}var Sn=5256480,Vn=Sn,Qr=13600,ts=5256480,Tn=12672,xc=i.INITIAL_MEMORY||16777216;if(x)Y=i.wasmMemory,He=i.buffer;else if(i.wasmMemory)Y=i.wasmMemory;else if(Y=new WebAssembly.Memory({initial:xc/pt,maximum:2147483648/pt,shared:!0}),!(Y.buffer instanceof SharedArrayBuffer))throw G("requested a shared WebAssembly.Memory but the returned buffer is not a SharedArrayBuffer, indicating that while the browser has SharedArrayBuffer it does not have WebAssembly threads support - you may need to set a flag"),h&&console.log("(on node you may need: --experimental-wasm-threads --experimental-wasm-bulk-memory and also use a recent version)"),Error("bad memory");Y&&(He=Y.buffer),xc=He.byteLength,kr(He),x||(o()[Tn>>2]=ts);function rs(I){for(;I.length>0;){var $=I.shift();if(typeof $=="function"){$(i);continue}var L=$.func;typeof L=="number"?$.arg===void 0?i.dynCall_v(L):i.dynCall_vi(L,$.arg):L($.arg===void 0?null:$.arg)}}var Ji=[],$l=[],xy=[],Qp=[],_h=[],em=!1;x&&(em=!0);function Gn(){if(!x){if(i.preRun)for(typeof i.preRun=="function"&&(i.preRun=[i.preRun]);i.preRun.length;)wy(i.preRun.shift());rs(Ji)}}function kh(){em=!0,rs($l)}function yy(){x||rs(xy)}function by(){if(!x){if(i.postRun)for(typeof i.postRun=="function"&&(i.postRun=[i.postRun]);i.postRun.length;)Rl(i.postRun.shift());rs(_h)}}function wy(I){Ji.unshift(I)}function Rl(I){_h.unshift(I)}var yc=Math.ceil,_y=Math.floor,Qi=0,tm=null,Fl=null;function ky(I){ge(!x,"addRunDependency cannot be used in a pthread worker"),Qi++,i.monitorRunDependencies&&i.monitorRunDependencies(Qi)}function vy(I){if(Qi--,i.monitorRunDependencies&&i.monitorRunDependencies(Qi),Qi==0&&(tm!==null&&(clearInterval(tm),tm=null),Fl)){var $=Fl;Fl=null,$()}}i.preloadedImages={},i.preloadedAudios={};function ea(I){throw i.onAbort&&i.onAbort(I),x&&console.error("Pthread aborting at "+new Error().stack),I+="",j(I),G(I),ae=!0,xe=1,I="abort("+I+"). Build with -s ASSERTIONS=1 for more info.",new WebAssembly.RuntimeError(I)}function rm(I,$){return String.prototype.startsWith?I.startsWith($):I.indexOf($)===0}var Cy="data:application/octet-stream;base64,";function vh(I){return rm(I,Cy)}var Iy="file://";function Ch(I){return rm(I,Iy)}var jn="tfjs-backend-wasm-threaded-simd.wasm";vh(jn)||(jn=w(jn));function Ih(){try{if(Z)return new Uint8Array(Z);if(E)return E(jn);throw"both async and sync fetching of the wasm failed"}catch(I){ea(I)}}function Ny(){return!Z&&(f||d)&&typeof fetch=="function"&&!Ch(jn)?fetch(jn,{credentials:"same-origin"}).then(function(I){if(!I.ok)throw"failed to load wasm binary file at '"+jn+"'";return I.arrayBuffer()}).catch(function(){return Ih()}):new Promise(function(I,$){I(Ih())})}function Sy(){var I={a:yb};function $(fe,Te){var mt=fe.exports;if(i.asm=mt,ie=Te,!x){var mr=_e.unusedWorkers.length;_e.unusedWorkers.forEach(function(Dr){_e.loadWasmModuleToWorker(Dr,function(){--mr||vy("wasm-instantiate")})})}}x||ky("wasm-instantiate");function L(fe){$(fe.instance,fe.module)}function q(fe){return Ny().then(function(Te){return WebAssembly.instantiate(Te,I)}).then(fe,function(Te){G("failed to asynchronously prepare wasm: "+Te),ea(Te)})}function me(){if(!Z&&typeof WebAssembly.instantiateStreaming=="function"&&!vh(jn)&&!Ch(jn)&&typeof fetch=="function")fetch(jn,{credentials:"same-origin"}).then(function(fe){var Te=WebAssembly.instantiateStreaming(fe,I);return Te.then(L,function(mt){G("wasm streaming compile failed: "+mt),G("falling back to ArrayBuffer instantiation"),q(L)})});else return q(L)}if(i.instantiateWasm)try{var he=i.instantiateWasm(I,$);return he}catch(fe){return G("Module.instantiateWasm callback failed with error: "+fe),!1}return me(),{}}var Ty={};function Ey(){_e.initRuntime()}x||$l.push({func:function(){sm()}});var Nh=0,Sh=0,Th=0;function bc(I,$,L){I=I|0,$=$|0,L=L|0,Nh=I,Th=$,Sh=L}i.__register_pthread_ptr=bc;var nm={EPERM:63,ENOENT:44,ESRCH:71,EINTR:27,EIO:29,ENXIO:60,E2BIG:1,ENOEXEC:45,EBADF:8,ECHILD:12,EAGAIN:6,EWOULDBLOCK:6,ENOMEM:48,EACCES:2,EFAULT:21,ENOTBLK:105,EBUSY:10,EEXIST:20,EXDEV:75,ENODEV:43,ENOTDIR:54,EISDIR:31,EINVAL:28,ENFILE:41,EMFILE:33,ENOTTY:59,ETXTBSY:74,EFBIG:22,ENOSPC:51,ESPIPE:70,EROFS:69,EMLINK:34,EPIPE:64,EDOM:18,ERANGE:68,ENOMSG:49,EIDRM:24,ECHRNG:106,EL2NSYNC:156,EL3HLT:107,EL3RST:108,ELNRNG:109,EUNATCH:110,ENOCSI:111,EL2HLT:112,EDEADLK:16,ENOLCK:46,EBADE:113,EBADR:114,EXFULL:115,ENOANO:104,EBADRQC:103,EBADSLT:102,EDEADLOCK:16,EBFONT:101,ENOSTR:100,ENODATA:116,ETIME:117,ENOSR:118,ENONET:119,ENOPKG:120,EREMOTE:121,ENOLINK:47,EADV:122,ESRMNT:123,ECOMM:124,EPROTO:65,EMULTIHOP:36,EDOTDOT:125,EBADMSG:9,ENOTUNIQ:126,EBADFD:127,EREMCHG:128,ELIBACC:129,ELIBBAD:130,ELIBSCN:131,ELIBMAX:132,ELIBEXEC:133,ENOSYS:52,ENOTEMPTY:55,ENAMETOOLONG:37,ELOOP:32,EOPNOTSUPP:138,EPFNOSUPPORT:139,ECONNRESET:15,ENOBUFS:42,EAFNOSUPPORT:5,EPROTOTYPE:67,ENOTSOCK:57,ENOPROTOOPT:50,ESHUTDOWN:140,ECONNREFUSED:14,EADDRINUSE:3,ECONNABORTED:13,ENETUNREACH:40,ENETDOWN:38,ETIMEDOUT:73,EHOSTDOWN:142,EHOSTUNREACH:23,EINPROGRESS:26,EALREADY:7,EDESTADDRREQ:17,EMSGSIZE:35,EPROTONOSUPPORT:66,ESOCKTNOSUPPORT:137,EADDRNOTAVAIL:4,ENETRESET:39,EISCONN:30,ENOTCONN:53,ETOOMANYREFS:141,EUSERS:136,EDQUOT:19,ESTALE:72,ENOTSUP:138,ENOMEDIUM:148,EILSEQ:25,EOVERFLOW:61,ECANCELED:11,ENOTRECOVERABLE:56,EOWNERDEAD:62,ESTRPIPE:135},wc=13584;function _c(I,$){if(I<=0||I>t().length||I&!0||$<0)return-28;if($==0)return 0;$>=2147483647&&($=Infinity);var L=Atomics.load(o(),wc>>2),q=0;if(L==I){var me=Atomics.compareExchange(o(),wc>>2,L,0);if(me==L&&(--$,q=1,$<=0))return 1}var he=Atomics.notify(o(),I>>2,$);if(he>=0)return he+q;throw"Atomics.notify returned an unexpected value "+he}i._emscripten_futex_wake=_c;function Ay(I){if(x)throw"Internal Error! _kill_thread() can only ever be called from main application thread!";if(!I)throw"Internal Error! Null pthread_ptr in _kill_thread!";o()[I+12>>2]=0;var $=_e.pthreads[I];$.worker.terminate(),_e.freeThreadData($),_e.runningWorkers.splice(_e.runningWorkers.indexOf($.worker),1),$.worker.pthread=void 0}function Dy(I){if(x)throw"Internal Error! _cancel_thread() can only ever be called from main application thread!";if(!I)throw"Internal Error! Null pthread_ptr in _cancel_thread!";var $=_e.pthreads[I];$.worker.postMessage({cmd:"cancel"})}function $y(I){if(x)throw"Internal Error! _cleanup_thread() can only ever be called from main application thread!";if(!I)throw"Internal Error! Null pthread_ptr in _cleanup_thread!";o()[I+12>>2]=0;var $=_e.pthreads[I];if($){var L=$.worker;_e.returnWorkerToPool(L)}}var _e={MAIN_THREAD_ID:1,mainThreadInfo:{schedPolicy:0,schedPrio:0},unusedWorkers:[],runningWorkers:[],initRuntime:function(){bc(_e.mainThreadBlock,!d,1),mI(_e.mainThreadBlock)},initMainThreadBlock:function(){for(var I=8,$=0;$<I;++$)_e.allocateUnusedWorker();_e.mainThreadBlock=12832;for(var $=0;$<232/4;++$)s()[_e.mainThreadBlock/4+$]=0;o()[_e.mainThreadBlock+12>>2]=_e.mainThreadBlock;var L=_e.mainThreadBlock+156;o()[L>>2]=L;for(var q=13072,$=0;$<128;++$)s()[q/4+$]=0;Atomics.store(s(),_e.mainThreadBlock+104>>2,q),Atomics.store(s(),_e.mainThreadBlock+40>>2,_e.mainThreadBlock),Atomics.store(s(),_e.mainThreadBlock+44>>2,42)},initWorker:function(){},pthreads:{},exitHandlers:null,setThreadStatus:function(){},runExitHandlers:function(){if(_e.exitHandlers!==null){for(;_e.exitHandlers.length>0;)_e.exitHandlers.pop()();_e.exitHandlers=null}x&&se&&pI()},threadExit:function(I){var $=js();$&&(Atomics.store(s(),$+4>>2,I),Atomics.store(s(),$+0>>2,1),Atomics.store(s(),$+60>>2,1),Atomics.store(s(),$+64>>2,0),_e.runExitHandlers(),_c($+0,2147483647),bc(0,0,0),se=0,x&&postMessage({cmd:"exit"}))},threadCancel:function(){_e.runExitHandlers(),Atomics.store(s(),se+4>>2,-1),Atomics.store(s(),se+0>>2,1),_c(se+0,2147483647),se=pe=0,bc(0,0,0),postMessage({cmd:"cancelDone"})},terminateAllThreads:function(){for(var I in _e.pthreads){var $=_e.pthreads[I];$&&$.worker&&_e.returnWorkerToPool($.worker)}_e.pthreads={};for(var L=0;L<_e.unusedWorkers.length;++L){var q=_e.unusedWorkers[L];q.terminate()}_e.unusedWorkers=[];for(var L=0;L<_e.runningWorkers.length;++L){var q=_e.runningWorkers[L],$=q.pthread;_e.freeThreadData($),q.terminate()}_e.runningWorkers=[]},freeThreadData:function(I){if(!!I){if(I.threadInfoStruct){var $=o()[I.threadInfoStruct+104>>2];o()[I.threadInfoStruct+104>>2]=0,pm($),pm(I.threadInfoStruct)}I.threadInfoStruct=0,I.allocatedOwnStack&&I.stackBase&&pm(I.stackBase),I.stackBase=0,I.worker&&(I.worker.pthread=null)}},returnWorkerToPool:function(I){delete _e.pthreads[I.pthread.thread],_e.unusedWorkers.push(I),_e.runningWorkers.splice(_e.runningWorkers.indexOf(I),1),_e.freeThreadData(I.pthread),I.pthread=void 0},receiveObjectTransfer:function(I){},loadWasmModuleToWorker:function(I,$){I.onmessage=function(L){var q=L.data,me=q.cmd;if(I.pthread&&(_e.currentProxiedOperationCallerThread=I.pthread.threadInfoStruct),q.targetThread&&q.targetThread!=js()){var he=_e.pthreads[q.targetThread];he?he.worker.postMessage(L.data,q.transferList):console.error('Internal error! Worker sent a message "'+me+'" to target pthread '+q.targetThread+", but that thread no longer exists!"),_e.currentProxiedOperationCallerThread=void 0;return}if(me==="processQueuedMainThreadWork")_b();else if(me==="spawnThread")Fh(L.data);else if(me==="cleanupThread")$y(q.thread);else if(me==="killThread")Ay(q.thread);else if(me==="cancelThread")Dy(q.thread);else if(me==="loaded")I.loaded=!0,$&&$(I),I.runPthread&&(I.runPthread(),delete I.runPthread);else if(me==="print")j("Thread "+q.threadId+": "+q.text);else if(me==="printErr")G("Thread "+q.threadId+": "+q.text);else if(me==="alert")alert("Thread "+q.threadId+": "+q.text);else if(me==="exit"){var fe=I.pthread&&Atomics.load(s(),I.pthread.thread+68>>2);fe&&_e.returnWorkerToPool(I)}else me==="cancelDone"?_e.returnWorkerToPool(I):me==="objectTransfer"?_e.receiveObjectTransfer(L.data):L.data.target==="setimmediate"?I.postMessage(L.data):G("worker sent an unknown command "+me);_e.currentProxiedOperationCallerThread=void 0},I.onerror=function(L){G("pthread sent an error! "+L.filename+":"+L.lineno+": "+L.message)},h&&(I.on("message",function(L){I.onmessage({data:L})}),I.on("error",function(L){I.onerror(L)}),I.on("exit",function(L){console.log("worker exited - TODO: update the worker queue?")})),I.postMessage({cmd:"load",urlOrBlob:i.mainScriptUrlOrBlob||r,wasmMemory:Y,wasmModule:ie,DYNAMIC_BASE:ts,DYNAMICTOP_PTR:Tn})},allocateUnusedWorker:function(){var I=w("tfjs-backend-wasm-threaded-simd.worker.js");_e.unusedWorkers.push(new Worker(I))},getNewWorker:function(){return _e.unusedWorkers.length==0&&(_e.allocateUnusedWorker(),_e.loadWasmModuleToWorker(_e.unusedWorkers[0])),_e.unusedWorkers.length>0?_e.unusedWorkers.pop():null},busySpinWait:function(I){for(var $=performance.now()+I;performance.now()<$;);}};function Ry(I,$){Sn=Vn=I,Qr=$,Ic(I)}i.establishStackSpace=Ry;function Fy(){return te}i.getNoExitRuntime=Fy;function Oy(I,$,L,q){ea("Assertion failed: "+Re(I)+", at: "+[$?Re($):"unknown filename",L,q?Re(q):"unknown function"])}function Py(I,$){var L=_main(I,$)}var Ol;h?Ol=function(){var I=process.hrtime();return I[0]*1e3+I[1]/1e6}:x?Ol=function(){return performance.now()-i.__performance_now_clock_drift}:typeof dateNow!="undefined"?Ol=dateNow:Ol=function(){return performance.now()};function My(I){return o()[lI()>>2]=I,I}function Ly(I,$){if(x)return Ka(1,1,I,$);Qp.unshift({func:I,arg:$})}function zy(I,$){if(I==$)postMessage({cmd:"processQueuedMainThreadWork"});else if(x)postMessage({targetThread:I,cmd:"processThreadQueue"});else{var L=_e.pthreads[I],q=L&&L.worker;if(!q)return;q.postMessage({cmd:"processThreadQueue"})}return 1}function By(){ea()}function Vy(I,$){I=I|0,$=$|0}function Gy(I,$,L){if(I<=0||I>t().length||I&!0)return-28;if(d){var q=Atomics.wait(o(),I>>2,$,L);if(q==="timed-out")return-73;if(q==="not-equal")return-6;if(q==="ok")return 0;throw"Atomics.wait returned an unexpected value "+q}else{var me=Atomics.load(o(),I>>2);if($!=me)return-6;var he=performance.now(),fe=he+L;Atomics.store(o(),wc>>2,I);for(var Te=I;I==Te;){if(he=performance.now(),he>fe)return-73;_b(),I=Atomics.load(o(),wc>>2)}return 0}}function jy(){return Th|0}function Wy(){return Sh|0}function Uy(I,$,L){n().copyWithin(I,$,$+L)}function qy(){return navigator.hardwareConcurrency}function Ka(I,$){for(var L=arguments.length-2,q=mm(),me=Cc(L*8),he=me>>3,fe=0;fe<L;fe++)a()[he+fe]=arguments[2+fe];var Te=dI(I,L,me,$);return Ic(q),Te}var Pl=[];function kc(I,$){kc.array||(kc.array=[]);var L=kc.array;L.length=0;for(var q;q=n()[I++];)q===100||q===102?($=$+7&~7,L.push(a()[$>>3]),$+=8):($=$+3&~3,L.push(o()[$>>2]),$+=4);return L}function Hy(I,$,L){Pl.length=$;for(var q=L>>3,me=0;me<$;me++)Pl[me]=a()[q+me];var he=I<0,fe=he?Ty[-I-1]:xb[I];if(he){var Te=Pl[1],mt=Pl[2],mr=kc(Te,mt);return fe.apply(null,mr)}return fe.apply(null,Pl)}function Ky(){return n().length}function Xy(I){try{return Y.grow(I-He.byteLength+65535>>>16),kr(Y.buffer),1}catch($){}}function Yy(I){I=I>>>0;var $=Ky();if(I<=$)return!1;var L=65536,q=2147483648;if(I>q)return!1;for(var me=16777216,he=1;he<=4;he*=2){var fe=$*(1+.2/he);fe=Math.min(fe,I+100663296);var Te=Math.min(q,Ct(Math.max(me,I,fe),L)),mt=Xy(Te);if(mt)return!0}return!1}var Je={keyEvent:0,mouseEvent:0,wheelEvent:0,uiEvent:0,focusEvent:0,deviceOrientationEvent:0,deviceMotionEvent:0,fullscreenChangeEvent:0,pointerlockChangeEvent:0,visibilityChangeEvent:0,touchEvent:0,previousFullscreenElement:null,previousScreenX:null,previousScreenY:null,removeEventListenersRegistered:!1,removeAllEventListeners:function(){for(var I=Je.eventHandlers.length-1;I>=0;--I)Je._removeHandler(I);Je.eventHandlers=[],Je.deferredCalls=[]},registerRemoveEventListeners:function(){Je.removeEventListenersRegistered||(Qp.push(Je.removeAllEventListeners),Je.removeEventListenersRegistered=!0)},deferredCalls:[],deferCall:function(I,$,L){function q(fe,Te){if(fe.length!=Te.length)return!1;for(var mt in fe)if(fe[mt]!=Te[mt])return!1;return!0}for(var me in Je.deferredCalls){var he=Je.deferredCalls[me];if(he.targetFunction==I&&q(he.argsList,L))return}Je.deferredCalls.push({targetFunction:I,precedence:$,argsList:L}),Je.deferredCalls.sort(function(fe,Te){return fe.precedence<Te.precedence})},removeDeferredCalls:function(I){for(var $=0;$<Je.deferredCalls.length;++$)Je.deferredCalls[$].targetFunction==I&&(Je.deferredCalls.splice($,1),--$)},canPerformEventHandlerRequests:function(){return Je.inEventHandler&&Je.currentEventHandler.allowsDeferredCalls},runDeferredCalls:function(){if(!!Je.canPerformEventHandlerRequests())for(var I=0;I<Je.deferredCalls.length;++I){var $=Je.deferredCalls[I];Je.deferredCalls.splice(I,1),--I,$.targetFunction.apply(null,$.argsList)}},inEventHandler:0,currentEventHandler:null,eventHandlers:[],removeAllHandlersOnTarget:function(I,$){for(var L=0;L<Je.eventHandlers.length;++L)Je.eventHandlers[L].target==I&&(!$||$==Je.eventHandlers[L].eventTypeString)&&Je._removeHandler(L--)},_removeHandler:function(I){var $=Je.eventHandlers[I];$.target.removeEventListener($.eventTypeString,$.eventListenerFunc,$.useCapture),Je.eventHandlers.splice(I,1)},registerOrRemoveHandler:function(I){var $=function(me){++Je.inEventHandler,Je.currentEventHandler=I,Je.runDeferredCalls(),I.handlerFunc(me),Je.runDeferredCalls(),--Je.inEventHandler};if(I.callbackfunc)I.eventListenerFunc=$,I.target.addEventListener(I.eventTypeString,$,I.useCapture),Je.eventHandlers.push(I),Je.registerRemoveEventListeners();else for(var L=0;L<Je.eventHandlers.length;++L)Je.eventHandlers[L].target==I.target&&Je.eventHandlers[L].eventTypeString==I.eventTypeString&&Je._removeHandler(L--)},queueEventHandlerOnThread_iiii:function(I,$,L,q,me){var he=mm(),fe=Cc(12);o()[fe>>2]=L,o()[fe+4>>2]=q,o()[fe+8>>2]=me,kb(I,637534208,$,q,fe),Ic(he)},getTargetThreadForEventCallback:function(I){switch(I){case 1:return 0;case 2:return _e.currentProxiedOperationCallerThread;default:return I}},getNodeNameForTarget:function(I){return I?I==window?"#window":I==screen?"#screen":I&&I.nodeName?I.nodeName:"":""},fullscreenEnabled:function(){return document.fullscreenEnabled||document.webkitFullscreenEnabled}};function Zy(I){var $=kt(I)+1,L=cm($);return ut(I,L,$),L}function Jy(I,$,L,q){var me=mm(),he=Cc(12),fe=0;$&&(fe=Zy($)),o()[he>>2]=fe,o()[he+4>>2]=L,o()[he+8>>2]=q,kb(I,657457152,0,fe,he),Ic(me)}function Qy(I,$,L,q){$=$?Re($):"",Jy(I,$,L,q)}function eb(I){return I>2?Re(I):I}var tb=[0,typeof document!="undefined"?document:0,typeof window!="undefined"?window:0];function rb(I){I=eb(I);var $=tb[I]||(typeof document!="undefined"?document.querySelector(I):void 0);return $}function om(I){return rb(I)}function Eh(I,$,L){var q=om(I);if(!q)return-4;if(q.canvasSharedPtr&&(o()[q.canvasSharedPtr>>2]=$,o()[q.canvasSharedPtr+4>>2]=L),q.offscreenCanvas||!q.controlTransferredOffscreen){q.offscreenCanvas&&(q=q.offscreenCanvas);var me=!1;if(q.GLctxObject&&q.GLctxObject.GLctx){var he=q.GLctxObject.GLctx.getParameter(2978);me=he[0]===0&&he[1]===0&&he[2]===q.width&&he[3]===q.height}q.width=$,q.height=L,me&&q.GLctxObject.GLctx.viewport(0,0,$,L)}else if(q.canvasSharedPtr){var fe=o()[q.canvasSharedPtr+8>>2];return Qy(fe,I,$,L),1}else return-4;return 0}function Ah(I,$,L){return x?Ka(2,1,I,$,L):Eh(I,$,L)}function nb(I,$,L){var q=om(I);return q?Eh(I,$,L):Ah(I,$,L)}function ob(I){I=I|0}function sb(I,$){I=I|0,$=$|0}function ib(I){var $=I.getExtension("ANGLE_instanced_arrays");if($)return I.vertexAttribDivisor=function(L,q){$.vertexAttribDivisorANGLE(L,q)},I.drawArraysInstanced=function(L,q,me,he){$.drawArraysInstancedANGLE(L,q,me,he)},I.drawElementsInstanced=function(L,q,me,he,fe){$.drawElementsInstancedANGLE(L,q,me,he,fe)},1}function ab(I){var $=I.getExtension("OES_vertex_array_object");if($)return I.createVertexArray=function(){return $.createVertexArrayOES()},I.deleteVertexArray=function(L){$.deleteVertexArrayOES(L)},I.bindVertexArray=function(L){$.bindVertexArrayOES(L)},I.isVertexArray=function(L){return $.isVertexArrayOES(L)},1}function lb(I){var $=I.getExtension("WEBGL_draw_buffers");if($)return I.drawBuffers=function(L,q){$.drawBuffersWEBGL(L,q)},1}var rt={counter:1,lastError:0,buffers:[],mappedBuffers:{},programs:[],framebuffers:[],renderbuffers:[],textures:[],uniforms:[],shaders:[],vaos:[],contexts:{},currentContext:null,offscreenCanvases:{},timerQueriesEXT:[],programInfos:{},stringCache:{},unpackAlignment:4,init:function(){for(var I=new Float32Array(rt.MINI_TEMP_BUFFER_SIZE),$=0;$<rt.MINI_TEMP_BUFFER_SIZE;$++)rt.miniTempBufferFloatViews[$]=I.subarray(0,$+1);for(var L=new Int32Array(rt.MINI_TEMP_BUFFER_SIZE),$=0;$<rt.MINI_TEMP_BUFFER_SIZE;$++)rt.miniTempBufferIntViews[$]=L.subarray(0,$+1)},recordError:function($){rt.lastError||(rt.lastError=$)},getNewId:function(I){for(var $=rt.counter++,L=I.length;L<$;L++)I[L]=null;return $},MINI_TEMP_BUFFER_SIZE:256,miniTempBufferFloatViews:[0],miniTempBufferIntViews:[0],getSource:function(I,$,L,q){for(var me="",he=0;he<$;++he){var fe=q?o()[q+he*4>>2]:-1;me+=Re(o()[L+he*4>>2],fe<0?void 0:fe)}return me},createContext:function(I,$){var L=I.getContext("webgl",$);if(!L)return 0;var q=rt.registerContext(L,$);return q},registerContext:function(I,$){var L=cm(8);o()[L+4>>2]=js();var q={handle:L,attributes:$,version:$.majorVersion,GLctx:I};return I.canvas&&(I.canvas.GLctxObject=q),rt.contexts[L]=q,(typeof $.enableExtensionsByDefault=="undefined"||$.enableExtensionsByDefault)&&rt.initExtensions(q),L},makeContextCurrent:function(I){return rt.currentContext=rt.contexts[I],i.ctx=Xa=rt.currentContext&&rt.currentContext.GLctx,!(I&&!Xa)},getContext:function(I){return rt.contexts[I]},deleteContext:function(I){rt.currentContext===rt.contexts[I]&&(rt.currentContext=null),typeof Je=="object"&&Je.removeAllHandlersOnTarget(rt.contexts[I].GLctx.canvas),rt.contexts[I]&&rt.contexts[I].GLctx.canvas&&(rt.contexts[I].GLctx.canvas.GLctxObject=void 0),pm(rt.contexts[I].handle),rt.contexts[I]=null},initExtensions:function(I){if(I||(I=rt.currentContext),!I.initExtensionsDone){I.initExtensionsDone=!0;var $=I.GLctx;ib($),ab($),lb($),$.disjointTimerQueryExt=$.getExtension("EXT_disjoint_timer_query");var L=["OES_texture_float","OES_texture_half_float","OES_standard_derivatives","OES_vertex_array_object","WEBGL_compressed_texture_s3tc","WEBGL_depth_texture","OES_element_index_uint","EXT_texture_filter_anisotropic","EXT_frag_depth","WEBGL_draw_buffers","ANGLE_instanced_arrays","OES_texture_float_linear","OES_texture_half_float_linear","EXT_blend_minmax","EXT_shader_texture_lod","EXT_texture_norm16","WEBGL_compressed_texture_pvrtc","EXT_color_buffer_half_float","WEBGL_color_buffer_float","EXT_sRGB","WEBGL_compressed_texture_etc1","EXT_disjoint_timer_query","WEBGL_compressed_texture_etc","WEBGL_compressed_texture_astc","EXT_color_buffer_float","WEBGL_compressed_texture_s3tc_srgb","EXT_disjoint_timer_query_webgl2","WEBKIT_WEBGL_compressed_texture_pvrtc"],q=$.getSupportedExtensions()||[];q.forEach(function(me){L.indexOf(me)!=-1&&$.getExtension(me)})}},populateUniformTable:function(I){for(var $=rt.programs[I],L=rt.programInfos[I]={uniforms:{},maxUniformLength:0,maxAttributeLength:-1,maxUniformBlockNameLength:-1},q=L.uniforms,me=Xa.getProgramParameter($,35718),he=0;he<me;++he){var fe=Xa.getActiveUniform($,he),Te=fe.name;L.maxUniformLength=Math.max(L.maxUniformLength,Te.length+1),Te.slice(-1)=="]"&&(Te=Te.slice(0,Te.lastIndexOf("[")));var mt=Xa.getUniformLocation($,Te);if(mt){var mr=rt.getNewId(rt.uniforms);q[Te]=[fe.size,mr],rt.uniforms[mr]=mt;for(var Dr=1;Dr<fe.size;++Dr){var Nc=Te+"["+Dr+"]";mt=Xa.getUniformLocation($,Nc),mr=rt.getNewId(rt.uniforms),rt.uniforms[mr]=mt}}}}},ub=["default","low-power","high-performance"];function cb(I,$){var L={},q=$>>2;L.alpha=!!o()[q+(0>>2)],L.depth=!!o()[q+(4>>2)],L.stencil=!!o()[q+(8>>2)],L.antialias=!!o()[q+(12>>2)],L.premultipliedAlpha=!!o()[q+(16>>2)],L.preserveDrawingBuffer=!!o()[q+(20>>2)];var me=o()[q+(24>>2)];L.powerPreference=ub[me],L.failIfMajorPerformanceCaveat=!!o()[q+(28>>2)],L.majorVersion=o()[q+(32>>2)],L.minorVersion=o()[q+(36>>2)],L.enableExtensionsByDefault=o()[q+(40>>2)],L.explicitSwapControl=o()[q+(44>>2)],L.proxyContextToMainThread=o()[q+(48>>2)],L.renderViaOffscreenBackBuffer=o()[q+(52>>2)];var he=om(I);if(!he)return-4;if(L.explicitSwapControl)return-1;var fe=rt.createContext(he,L);return fe}function pb(I,$){return cb(I,$)}var Ml={splitPath:function(I){var $=/^(\/?|)([\s\S]*?)((?:\.{1,2}|[^\/]+?|)(\.[^.\/]*|))(?:[\/]*)$/;return $.exec(I).slice(1)},normalizeArray:function(I,$){for(var L=0,q=I.length-1;q>=0;q--){var me=I[q];me==="."?I.splice(q,1):me===".."?(I.splice(q,1),L++):L&&(I.splice(q,1),L--)}if($)for(;L;L--)I.unshift("..");return I},normalize:function(I){var $=I.charAt(0)==="/",L=I.substr(-1)==="/";return I=Ml.normalizeArray(I.split("/").filter(function(q){return!!q}),!$).join("/"),!I&&!$&&(I="."),I&&L&&(I+="/"),($?"/":"")+I},dirname:function(I){var $=Ml.splitPath(I),L=$[0],q=$[1];return!L&&!q?".":(q&&(q=q.substr(0,q.length-1)),L+q)},basename:function(I){if(I==="/")return"/";var $=I.lastIndexOf("/");return $===-1?I:I.substr($+1)},extname:function(I){return Ml.splitPath(I)[3]},join:function(){var I=Array.prototype.slice.call(arguments,0);return Ml.normalize(I.join("/"))},join2:function(I,$){return Ml.normalize(I+"/"+$)}},vc={mappings:{},buffers:[null,[],[]],printChar:function(I,$){var L=vc.buffers[I];$===0||$===10?((I===1?j:G)($e(L,0)),L.length=0):L.push($)},varargs:void 0,get:function(){vc.varargs+=4;var I=o()[vc.varargs-4>>2];return I},getStr:function(I){var $=Re(I);return $},get64:function(I,$){return I}};function Dh(I){return x?Ka(3,1,I):0}function $h(I,$,L,q,me){if(x)return Ka(4,1,I,$,L,q,me)}function Rh(I,$,L,q){if(x)return Ka(5,1,I,$,L,q);for(var me=0,he=0;he<L;he++){for(var fe=o()[$+he*8>>2],Te=o()[$+(he*8+4)>>2],mt=0;mt<Te;mt++)vc.printChar(I,n()[fe+mt]);me+=Te}return o()[q>>2]=me,0}function mb(I){var $=_e.exitHandlers.pop();I&&$()}function fb(I,$){_e.exitHandlers===null&&(_e.exitHandlers=[]),_e.exitHandlers.push(function(){hI(I,$)})}function Fh(I){if(x)throw"Internal Error! _spawn_thread() can only ever be called from main application thread!";var $=_e.getNewWorker();if($.pthread!==void 0)throw"Internal error!";if(!I.pthread_ptr)throw"Internal error, no pthread ptr!";_e.runningWorkers.push($);for(var L=cm(128*4),q=0;q<128;++q)o()[L+q*4>>2]=0;var me=I.stackBase+I.stackSize,he=_e.pthreads[I.pthread_ptr]={worker:$,stackBase:I.stackBase,stackSize:I.stackSize,allocatedOwnStack:I.allocatedOwnStack,thread:I.pthread_ptr,threadInfoStruct:I.pthread_ptr},fe=he.threadInfoStruct>>2;Atomics.store(s(),fe+(0>>2),0),Atomics.store(s(),fe+(4>>2),0),Atomics.store(s(),fe+(8>>2),0),Atomics.store(s(),fe+(68>>2),I.detached),Atomics.store(s(),fe+(104>>2),L),Atomics.store(s(),fe+(48>>2),0),Atomics.store(s(),fe+(40>>2),he.threadInfoStruct),Atomics.store(s(),fe+(44>>2),42),Atomics.store(s(),fe+(108>>2),I.stackSize),Atomics.store(s(),fe+(84>>2),I.stackSize),Atomics.store(s(),fe+(80>>2),me),Atomics.store(s(),fe+(108+8>>2),me),Atomics.store(s(),fe+(108+12>>2),I.detached),Atomics.store(s(),fe+(108+20>>2),I.schedPolicy),Atomics.store(s(),fe+(108+24>>2),I.schedPrio);var Te=uI(),mt=Te+40;Atomics.store(s(),fe+(176>>2),mt),$.pthread=he;var mr={cmd:"run",start_routine:I.startRoutine,arg:I.arg,threadInfoStruct:I.pthread_ptr,selfThreadId:I.pthread_ptr,parentThreadId:I.parent_pthread_ptr,stackBase:I.stackBase,stackSize:I.stackSize};$.runPthread=function(){mr.time=performance.now(),$.postMessage(mr,I.transferList)},$.loaded&&($.runPthread(),delete $.runPthread)}function db(I,$,L){if(!$&&!L)return nm.EINVAL;if(!I)return G("pthread_getschedparam called with a null thread pointer!"),nm.ESRCH;var q=o()[I+12>>2];if(q!==I)return G("pthread_getschedparam attempted on thread "+I+", which does not point to a valid thread, or does not exist anymore!"),nm.ESRCH;var me=Atomics.load(s(),I+108+20>>2),he=Atomics.load(s(),I+108+24>>2);return $&&(o()[$>>2]=me),L&&(o()[L>>2]=he),0}function js(){return Nh|0}i._pthread_self=js;function hb(I,$,L,q){if(typeof SharedArrayBuffer=="undefined")return G("Current environment does not support SharedArrayBuffer, pthreads are not available!"),6;if(!I)return G("pthread_create called with a null thread pointer!"),28;var me=[],he=0;if(x&&(me.length===0||he))return fI(687865856,I,$,L,q);if(he)return he;var fe=0,Te=0,mt=0,mr=0,Dr=0;if($){fe=o()[$>>2],fe+=81920,Te=o()[$+8>>2],mt=o()[$+12>>2]!==0;var Nc=o()[$+16>>2]===0;if(Nc){var dm=o()[$+20>>2],gn=o()[$+24>>2],Za=_e.currentProxiedOperationCallerThread?_e.currentProxiedOperationCallerThread:js();db(Za,$+20,$+24),mr=o()[$+20>>2],Dr=o()[$+24>>2],o()[$+20>>2]=dm,o()[$+24>>2]=gn}else mr=o()[$+20>>2],Dr=o()[$+24>>2]}else fe=2097152;var hm=Te==0;hm?Te=cI(16,fe):(Te-=fe,ge(Te>0));for(var Sc=cm(232),Cb=0;Cb<232>>2;++Cb)s()[(Sc>>2)+Cb]=0;o()[I>>2]=Sc,o()[Sc+12>>2]=Sc;var xI=Sc+156;o()[xI>>2]=xI;var Ib={stackBase:Te,stackSize:fe,allocatedOwnStack:hm,schedPolicy:mr,schedPrio:Dr,detached:mt,startRoutine:L,pthread_ptr:Sc,parent_pthread_ptr:js(),arg:q,transferList:me};return x?(Ib.cmd="spawnThread",postMessage(Ib,me)):Fh(Ib),0}function gb(I){return I=+I,I>=0?+_y(I+.5):+yc(I-.5)}function Oh(I){if(x)return Ka(6,1,I);switch(I){case 30:return 16384;case 85:var $=2147483648;return $/16384;case 132:case 133:case 12:case 137:case 138:case 15:case 235:case 16:case 17:case 18:case 19:case 20:case 149:case 13:case 10:case 236:case 153:case 9:case 21:case 22:case 159:case 154:case 14:case 77:case 78:case 139:case 80:case 81:case 82:case 68:case 67:case 164:case 11:case 29:case 47:case 48:case 95:case 52:case 51:case 46:case 79:return 200809;case 27:case 246:case 127:case 128:case 23:case 24:case 160:case 161:case 181:case 182:case 242:case 183:case 184:case 243:case 244:case 245:case 165:case 178:case 179:case 49:case 50:case 168:case 169:case 175:case 170:case 171:case 172:case 97:case 76:case 32:case 173:case 35:return-1;case 176:case 177:case 7:case 155:case 8:case 157:case 125:case 126:case 92:case 93:case 129:case 130:case 131:case 94:case 91:return 1;case 74:case 60:case 69:case 70:case 4:return 1024;case 31:case 42:case 72:return 32;case 87:case 26:case 33:return 2147483647;case 34:case 1:return 47839;case 38:case 36:return 99;case 43:case 37:return 2048;case 0:return 2097152;case 3:return 65536;case 28:return 32768;case 44:return 32767;case 75:return 16384;case 39:return 1e3;case 89:return 700;case 71:return 256;case 40:return 255;case 2:return 100;case 180:return 64;case 25:return 20;case 5:return 16;case 6:return 6;case 73:return 4;case 84:return typeof navigator=="object"&&navigator.hardwareConcurrency||1}return My(28),-1}x?_e.initWorker():_e.initMainThreadBlock();var Xa;rt.init();var xb=[null,Ly,Ah,Dh,$h,Rh,Oh],yb={e:Oy,r:Py,w:zy,a:By,l:Vy,d:Gy,c:_c,h:Ol,g:jy,x:Wy,q:Uy,B:qy,t:Hy,A:Yy,u:nb,k:ob,s:sb,v:pb,m:Dh,o:$h,i:Rh,p:Ey,memory:Y||i.wasmMemory,y:mb,z:fb,j:hb,b:js,f:gb,n:Oh,table:re},Ph=Sy();i.asm=Ph;var sm=i.___wasm_call_ctors=function(){return(sm=i.___wasm_call_ctors=i.asm.C).apply(null,arguments)},im=i._init=function(){return(im=i._init=i.asm.D).apply(null,arguments)},Mh=i._register_tensor=function(){return(Mh=i._register_tensor=i.asm.E).apply(null,arguments)},Ll=i._dispose_data=function(){return(Ll=i._dispose_data=i.asm.F).apply(null,arguments)},am=i._dispose=function(){return(am=i._dispose=i.asm.G).apply(null,arguments)},bb=i._Abs=function(){return(bb=i._Abs=i.asm.H).apply(null,arguments)},wb=i._Add=function(){return(wb=i._Add=i.asm.I).apply(null,arguments)},lm=i._AddN=function(){return(lm=i._AddN=i.asm.J).apply(null,arguments)},Lh=i._ArgMax=function(){return(Lh=i._ArgMax=i.asm.K).apply(null,arguments)},zh=i._AvgPool=function(){return(zh=i._AvgPool=i.asm.L).apply(null,arguments)},H=i._BatchMatMul=function(){return(H=i._BatchMatMul=i.asm.M).apply(null,arguments)},oe=i._ClipByValue=function(){return(oe=i._ClipByValue=i.asm.N).apply(null,arguments)},be=i._Conv2D=function(){return(be=i._Conv2D=i.asm.O).apply(null,arguments)},Ke=i._Conv2DBackpropInput=function(){return(Ke=i._Conv2DBackpropInput=i.asm.P).apply(null,arguments)},Xe=i._Cos=function(){return(Xe=i._Cos=i.asm.Q).apply(null,arguments)},Ht=i._CropAndResize=function(){return(Ht=i._CropAndResize=i.asm.R).apply(null,arguments)},at=i._Cumsum=function(){return(at=i._Cumsum=i.asm.S).apply(null,arguments)},ot=i._DepthToSpace=function(){return(ot=i._DepthToSpace=i.asm.T).apply(null,arguments)},yr=i._DepthwiseConv2dNative=function(){return(yr=i._DepthwiseConv2dNative=i.asm.U).apply(null,arguments)},ta=i._Equal=function(){return(ta=i._Equal=i.asm.V).apply(null,arguments)},ra=i._Exp=function(){return(ra=i._Exp=i.asm.W).apply(null,arguments)},Bh=i._FlipLeftRight=function(){return(Bh=i._FlipLeftRight=i.asm.X).apply(null,arguments)},um=i._Floor=function(){return(um=i._Floor=i.asm.Y).apply(null,arguments)},hn=i._FloorDiv=function(){return(hn=i._FloorDiv=i.asm.Z).apply(null,arguments)},Ya=i._FusedBatchNorm=function(){return(Ya=i._FusedBatchNorm=i.asm._).apply(null,arguments)},Vh=i._FusedConv2D=function(){return(Vh=i._FusedConv2D=i.asm.$).apply(null,arguments)},S3=i._FusedDepthwiseConv2D=function(){return(S3=i._FusedDepthwiseConv2D=i.asm.aa).apply(null,arguments)},T3=i._Gather=function(){return(T3=i._Gather=i.asm.ba).apply(null,arguments)},E3=i._GatherNd=function(){return(E3=i._GatherNd=i.asm.ca).apply(null,arguments)},A3=i._Greater=function(){return(A3=i._Greater=i.asm.da).apply(null,arguments)},D3=i._GreaterEqual=function(){return(D3=i._GreaterEqual=i.asm.ea).apply(null,arguments)},$3=i._LeakyRelu=function(){return($3=i._LeakyRelu=i.asm.fa).apply(null,arguments)},R3=i._Less=function(){return(R3=i._Less=i.asm.ga).apply(null,arguments)},F3=i._LessEqual=function(){return(F3=i._LessEqual=i.asm.ha).apply(null,arguments)},O3=i._Log=function(){return(O3=i._Log=i.asm.ia).apply(null,arguments)},P3=i._LogicalAnd=function(){return(P3=i._LogicalAnd=i.asm.ja).apply(null,arguments)},M3=i._Max=function(){return(M3=i._Max=i.asm.ka).apply(null,arguments)},L3=i._MaxPool=function(){return(L3=i._MaxPool=i.asm.la).apply(null,arguments)},z3=i._Maximum=function(){return(z3=i._Maximum=i.asm.ma).apply(null,arguments)},B3=i._Mean=function(){return(B3=i._Mean=i.asm.na).apply(null,arguments)},V3=i._Min=function(){return(V3=i._Min=i.asm.oa).apply(null,arguments)},G3=i._Minimum=function(){return(G3=i._Minimum=i.asm.pa).apply(null,arguments)},j3=i._Multiply=function(){return(j3=i._Multiply=i.asm.qa).apply(null,arguments)},W3=i._Neg=function(){return(W3=i._Neg=i.asm.ra).apply(null,arguments)},U3=i._NonMaxSuppressionV3=function(){return(U3=i._NonMaxSuppressionV3=i.asm.sa).apply(null,arguments)},q3=i._NonMaxSuppressionV4=function(){return(q3=i._NonMaxSuppressionV4=i.asm.ta).apply(null,arguments)},H3=i._NonMaxSuppressionV5=function(){return(H3=i._NonMaxSuppressionV5=i.asm.ua).apply(null,arguments)},K3=i._NotEqual=function(){return(K3=i._NotEqual=i.asm.va).apply(null,arguments)},X3=i._OneHot=function(){return(X3=i._OneHot=i.asm.wa).apply(null,arguments)},Y3=i._PadV2=function(){return(Y3=i._PadV2=i.asm.xa).apply(null,arguments)},Z3=i._Pow=function(){return(Z3=i._Pow=i.asm.ya).apply(null,arguments)},J3=i._Prelu=function(){return(J3=i._Prelu=i.asm.za).apply(null,arguments)},Q3=i._Prod=function(){return(Q3=i._Prod=i.asm.Aa).apply(null,arguments)},eB=i._RealDiv=function(){return(eB=i._RealDiv=i.asm.Ba).apply(null,arguments)},tB=i._Relu=function(){return(tB=i._Relu=i.asm.Ca).apply(null,arguments)},rB=i._Relu6=function(){return(rB=i._Relu6=i.asm.Da).apply(null,arguments)},nB=i._ResizeBilinear=function(){return(nB=i._ResizeBilinear=i.asm.Ea).apply(null,arguments)},oB=i._Reverse=function(){return(oB=i._Reverse=i.asm.Fa).apply(null,arguments)},sB=i._RotateWithOffset=function(){return(sB=i._RotateWithOffset=i.asm.Ga).apply(null,arguments)},iB=i._Round=function(){return(iB=i._Round=i.asm.Ha).apply(null,arguments)},aB=i._Rsqrt=function(){return(aB=i._Rsqrt=i.asm.Ia).apply(null,arguments)},lB=i._ScatterNd=function(){return(lB=i._ScatterNd=i.asm.Ja).apply(null,arguments)},uB=i._SelectV2=function(){return(uB=i._SelectV2=i.asm.Ka).apply(null,arguments)},cB=i._Sigmoid=function(){return(cB=i._Sigmoid=i.asm.La).apply(null,arguments)},pB=i._Sin=function(){return(pB=i._Sin=i.asm.Ma).apply(null,arguments)},mB=i._Softmax=function(){return(mB=i._Softmax=i.asm.Na).apply(null,arguments)},fB=i._Sqrt=function(){return(fB=i._Sqrt=i.asm.Oa).apply(null,arguments)},dB=i._Square=function(){return(dB=i._Square=i.asm.Pa).apply(null,arguments)},hB=i._SquaredDifference=function(){return(hB=i._SquaredDifference=i.asm.Qa).apply(null,arguments)},gB=i._Step=function(){return(gB=i._Step=i.asm.Ra).apply(null,arguments)},xB=i._StridedSlice=function(){return(xB=i._StridedSlice=i.asm.Sa).apply(null,arguments)},yB=i._Sub=function(){return(yB=i._Sub=i.asm.Ta).apply(null,arguments)},bB=i._Sum=function(){return(bB=i._Sum=i.asm.Ua).apply(null,arguments)},wB=i._Tanh=function(){return(wB=i._Tanh=i.asm.Va).apply(null,arguments)},_B=i._Tile=function(){return(_B=i._Tile=i.asm.Wa).apply(null,arguments)},kB=i._TopK=function(){return(kB=i._TopK=i.asm.Xa).apply(null,arguments)},vB=i._Transpose=function(){return(vB=i._Transpose=i.asm.Ya).apply(null,arguments)},CB=i.__FusedMatMul=function(){return(CB=i.__FusedMatMul=i.asm.Za).apply(null,arguments)},cm=i._malloc=function(){return(cm=i._malloc=i.asm._a).apply(null,arguments)},pm=i._free=function(){return(pm=i._free=i.asm.$a).apply(null,arguments)},IB=i.___em_js__initPthreadsJS=function(){return(IB=i.___em_js__initPthreadsJS=i.asm.ab).apply(null,arguments)},lI=i.___errno_location=function(){return(lI=i.___errno_location=i.asm.bb).apply(null,arguments)},uI=i._emscripten_get_global_libc=function(){return(uI=i._emscripten_get_global_libc=i.asm.cb).apply(null,arguments)},cI=i._memalign=function(){return(cI=i._memalign=i.asm.db).apply(null,arguments)},pI=i.___pthread_tsd_run_dtors=function(){return(pI=i.___pthread_tsd_run_dtors=i.asm.eb).apply(null,arguments)},_b=i._emscripten_main_thread_process_queued_calls=function(){return(_b=i._emscripten_main_thread_process_queued_calls=i.asm.fb).apply(null,arguments)},NB=i._emscripten_current_thread_process_queued_calls=function(){return(NB=i._emscripten_current_thread_process_queued_calls=i.asm.gb).apply(null,arguments)},mI=i._emscripten_register_main_browser_thread_id=function(){return(mI=i._emscripten_register_main_browser_thread_id=i.asm.hb).apply(null,arguments)},SB=i._emscripten_main_browser_thread_id=function(){return(SB=i._emscripten_main_browser_thread_id=i.asm.ib).apply(null,arguments)},TB=i._emscripten_async_run_in_main_thread=function(){return(TB=i._emscripten_async_run_in_main_thread=i.asm.jb).apply(null,arguments)},EB=i._emscripten_sync_run_in_main_thread=function(){return(EB=i._emscripten_sync_run_in_main_thread=i.asm.kb).apply(null,arguments)},AB=i._emscripten_sync_run_in_main_thread_0=function(){return(AB=i._emscripten_sync_run_in_main_thread_0=i.asm.lb).apply(null,arguments)},DB=i._emscripten_sync_run_in_main_thread_1=function(){return(DB=i._emscripten_sync_run_in_main_thread_1=i.asm.mb).apply(null,arguments)},$B=i._emscripten_sync_run_in_main_thread_2=function(){return($B=i._emscripten_sync_run_in_main_thread_2=i.asm.nb).apply(null,arguments)},RB=i._emscripten_sync_run_in_main_thread_xprintf_varargs=function(){return(RB=i._emscripten_sync_run_in_main_thread_xprintf_varargs=i.asm.ob).apply(null,arguments)},FB=i._emscripten_sync_run_in_main_thread_3=function(){return(FB=i._emscripten_sync_run_in_main_thread_3=i.asm.pb).apply(null,arguments)},fI=i._emscripten_sync_run_in_main_thread_4=function(){return(fI=i._emscripten_sync_run_in_main_thread_4=i.asm.qb).apply(null,arguments)},OB=i._emscripten_sync_run_in_main_thread_5=function(){return(OB=i._emscripten_sync_run_in_main_thread_5=i.asm.rb).apply(null,arguments)},PB=i._emscripten_sync_run_in_main_thread_6=function(){return(PB=i._emscripten_sync_run_in_main_thread_6=i.asm.sb).apply(null,arguments)},MB=i._emscripten_sync_run_in_main_thread_7=function(){return(MB=i._emscripten_sync_run_in_main_thread_7=i.asm.tb).apply(null,arguments)},dI=i._emscripten_run_in_main_runtime_thread_js=function(){return(dI=i._emscripten_run_in_main_runtime_thread_js=i.asm.ub).apply(null,arguments)},kb=i._emscripten_async_queue_on_thread_=function(){return(kb=i._emscripten_async_queue_on_thread_=i.asm.vb).apply(null,arguments)},LB=i._emscripten_tls_init=function(){return(LB=i._emscripten_tls_init=i.asm.wb).apply(null,arguments)},mm=i.stackSave=function(){return(mm=i.stackSave=i.asm.xb).apply(null,arguments)},Cc=i.stackAlloc=function(){return(Cc=i.stackAlloc=i.asm.yb).apply(null,arguments)},Ic=i.stackRestore=function(){return(Ic=i.stackRestore=i.asm.zb).apply(null,arguments)},hI=i.dynCall_vi=function(){return(hI=i.dynCall_vi=i.asm.Ab).apply(null,arguments)},zB=i.dynCall_v=function(){return(zB=i.dynCall_v=i.asm.Bb).apply(null,arguments)},BB=i.dynCall_ii=function(){return(BB=i.dynCall_ii=i.asm.Cb).apply(null,arguments)};i.asm=Ph,i.cwrap=De,i.PThread=_e,i.PThread=_e,i._pthread_self=js,i.wasmMemory=Y,i.ExitStatus=gI;var fm;i.then=function(I){if(fm)I(i);else{var $=i.onRuntimeInitialized;i.onRuntimeInitialized=function(){$&&$(),I(i)}}return i};function gI(I){this.name="ExitStatus",this.message="Program terminated with exit("+I+")",this.status=I}Fl=function I(){fm||vb(),fm||(Fl=I)};function vb(I){if(I=I||c,Qi>0||(Gn(),Qi>0))return;function $(){fm||(fm=!0,i.calledRun=!0,!ae&&(kh(),yy(),i.onRuntimeInitialized&&i.onRuntimeInitialized(),by()))}i.setStatus?(i.setStatus("Running..."),setTimeout(function(){setTimeout(function(){i.setStatus("")},1),$()},1)):$()}if(i.run=vb,i.preInit)for(typeof i.preInit=="function"&&(i.preInit=[i.preInit]);i.preInit.length>0;)i.preInit.pop()();return x||(te=!0),x||vb(),e}}();typeof ux=="object"&&typeof p0=="object"?p0.exports=m0:typeof define=="function"&&define.amd?define([],function(){return m0}):typeof ux=="object"&&(ux.WasmBackendModuleThreadedSimd=m0)});var VO=ht((cx,f0)=>{var d0=function(){var r=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(r=r||__filename),function(e){e=e||{};var t=typeof e!="undefined"?e:{},n={},o;for(o in t)t.hasOwnProperty(o)&&(n[o]=t[o]);var s=[],a="./this.program",i=function(H,oe){throw oe},l=!1,u=!1,c=!1,p=!1;l=typeof window=="object",u=typeof importScripts=="function",c=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",p=!l&&!c&&!u;var m="";function f(H){return t.locateFile?t.locateFile(H,m):m+H}var d,h,g,x,b,w;c?(u?m=Cp().dirname(m)+"/":m=__dirname+"/",d=function(oe,be){return b||(b=require("fs")),w||(w=Cp()),oe=w.normalize(oe),b.readFileSync(oe,be?null:"utf8")},g=function(oe){var be=d(oe,!0);return be.buffer||(be=new Uint8Array(be)),G(be.buffer),be},process.argv.length>1&&(a=process.argv[1].replace(/\\/g,"/")),s=process.argv.slice(2),process.on("uncaughtException",function(H){if(!(H instanceof am))throw H}),process.on("unhandledRejection",Ji),i=function(H){process.exit(H)},t.inspect=function(){return"[Emscripten Module object]"}):p?(typeof read!="undefined"&&(d=function(oe){return read(oe)}),g=function(oe){var be;return typeof readbuffer=="function"?new Uint8Array(readbuffer(oe)):(be=read(oe,"binary"),G(typeof be=="object"),be)},typeof scriptArgs!="undefined"?s=scriptArgs:typeof arguments!="undefined"&&(s=arguments),typeof quit=="function"&&(i=function(H){quit(H)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(l||u)&&(u?m=self.location.href:document.currentScript&&(m=document.currentScript.src),r&&(m=r),m.indexOf("blob:")!==0?m=m.substr(0,m.lastIndexOf("/")+1):m="",d=function(oe){var be=new XMLHttpRequest;return be.open("GET",oe,!1),be.send(null),be.responseText},u&&(g=function(oe){var be=new XMLHttpRequest;return be.open("GET",oe,!1),be.responseType="arraybuffer",be.send(null),new Uint8Array(be.response)}),h=function(oe,be,Ke){var Xe=new XMLHttpRequest;Xe.open("GET",oe,!0),Xe.responseType="arraybuffer",Xe.onload=function(){if(Xe.status==200||Xe.status==0&&Xe.response){be(Xe.response);return}Ke()},Xe.onerror=Ke,Xe.send(null)},x=function(H){document.title=H});var _=t.print||console.log.bind(console),k=t.printErr||console.warn.bind(console);for(o in n)n.hasOwnProperty(o)&&(t[o]=n[o]);n=null,t.arguments&&(s=t.arguments),t.thisProgram&&(a=t.thisProgram),t.quit&&(i=t.quit);var E;t.wasmBinary&&(E=t.wasmBinary);var S;t.noExitRuntime&&(S=t.noExitRuntime),typeof WebAssembly!="object"&&k("no native wasm support detected");var R,F=new WebAssembly.Table({initial:151,maximum:151+0,element:"anyfunc"}),P=!1,j=0;function G(H,oe){H||Ji("Assertion failed: "+oe)}function U(H){var oe=t["_"+H];return G(oe,"Cannot call unknown function "+H+", make sure it is exported"),oe}function X(H,oe,be,Ke,Xe){var Ht={string:function(hn){var Ya=0;if(hn!=null&&hn!==0){var Vh=(hn.length<<2)+1;Ya=im(Vh),ie(hn,Ya,Vh)}return Ya},array:function(hn){var Ya=im(hn.length);return se(hn,Ya),Ya}};function at(hn){return oe==="string"?Y(hn):oe==="boolean"?Boolean(hn):hn}var ot=U(H),yr=[],ta=0;if(Ke)for(var ra=0;ra<Ke.length;ra++){var Bh=Ht[be[ra]];Bh?(ta===0&&(ta=sm()),yr[ra]=Bh(Ke[ra])):yr[ra]=Ke[ra]}var um=ot.apply(null,yr);return um=at(um),ta!==0&&Mh(ta),um}function K(H,oe,be,Ke){be=be||[];var Xe=be.every(function(at){return at==="number"}),Ht=oe!=="string";return Ht&&Xe&&!Ke?U(H):function(){return X(H,oe,be,arguments,Ke)}}var Z=typeof TextDecoder!="undefined"?new TextDecoder("utf8"):void 0;function te(H,oe,be){for(var Ke=oe+be,Xe=oe;H[Xe]&&!(Xe>=Ke);)++Xe;if(Xe-oe>16&&H.subarray&&Z)return Z.decode(H.subarray(oe,Xe));for(var Ht="";oe<Xe;){var at=H[oe++];if(!(at&128)){Ht+=String.fromCharCode(at);continue}var ot=H[oe++]&63;if((at&224)==192){Ht+=String.fromCharCode((at&31)<<6|ot);continue}var yr=H[oe++]&63;if((at&240)==224?at=(at&15)<<12|ot<<6|yr:at=(at&7)<<18|ot<<12|yr<<6|H[oe++]&63,at<65536)Ht+=String.fromCharCode(at);else{var ta=at-65536;Ht+=String.fromCharCode(55296|ta>>10,56320|ta&1023)}}return Ht}function Y(H,oe){return H?te(xe,H,oe):""}function re(H,oe,be,Ke){if(!(Ke>0))return 0;for(var Xe=be,Ht=be+Ke-1,at=0;at<H.length;++at){var ot=H.charCodeAt(at);if(ot>=55296&&ot<=57343){var yr=H.charCodeAt(++at);ot=65536+((ot&1023)<<10)|yr&1023}if(ot<=127){if(be>=Ht)break;oe[be++]=ot}else if(ot<=2047){if(be+1>=Ht)break;oe[be++]=192|ot>>6,oe[be++]=128|ot&63}else if(ot<=65535){if(be+2>=Ht)break;oe[be++]=224|ot>>12,oe[be++]=128|ot>>6&63,oe[be++]=128|ot&63}else{if(be+3>=Ht)break;oe[be++]=240|ot>>18,oe[be++]=128|ot>>12&63,oe[be++]=128|ot>>6&63,oe[be++]=128|ot&63}}return oe[be]=0,be-Xe}function ie(H,oe,be){return re(H,xe,oe,be)}function se(H,oe){ae.set(H,oe)}var pe,ae,xe,ge,we,ke,De,$e,Re;function qe(H){pe=H,t.HEAP8=ae=new Int8Array(H),t.HEAP16=ge=new Int16Array(H),t.HEAP32=ke=new Int32Array(H),t.HEAPU8=xe=new Uint8Array(H),t.HEAPU16=we=new Uint16Array(H),t.HEAPU32=De=new Uint32Array(H),t.HEAPF32=$e=new Float32Array(H),t.HEAPF64=Re=new Float64Array(H)}var ut=t.INITIAL_MEMORY||16777216;function kt(H){for(;H.length>0;){var oe=H.shift();if(typeof oe=="function"){oe(t);continue}var be=oe.func;typeof be=="number"?oe.arg===void 0?t.dynCall_v(be):t.dynCall_vi(be,oe.arg):be(oe.arg===void 0?null:oe.arg)}}var vt=[],pt=[],Ct=[],He=[],Ot=!1,mn=!1;function Jt(){if(t.preRun)for(typeof t.preRun=="function"&&(t.preRun=[t.preRun]);t.preRun.length;)dn(t.preRun.shift());kt(vt)}function fn(){Ot=!0,kt(pt)}function _r(){kt(Ct)}function Bn(){mn=!0}function Jr(){if(t.postRun)for(typeof t.postRun=="function"&&(t.postRun=[t.postRun]);t.postRun.length;)kr(t.postRun.shift());kt(He)}function dn(H){vt.unshift(H)}function kr(H){He.unshift(H)}var Sn=Math.ceil,Vn=Math.floor,Qr=0,ts=null,Tn=null;function xc(H){Qr++,t.monitorRunDependencies&&t.monitorRunDependencies(Qr)}function rs(H){if(Qr--,t.monitorRunDependencies&&t.monitorRunDependencies(Qr),Qr==0&&(ts!==null&&(clearInterval(ts),ts=null),Tn)){var oe=Tn;Tn=null,oe()}}t.preloadedImages={},t.preloadedAudios={};function Ji(H){throw t.onAbort&&t.onAbort(H),H+="",_(H),k(H),P=!0,j=1,H="abort("+H+"). Build with -s ASSERTIONS=1 for more info.",new WebAssembly.RuntimeError(H)}function $l(H,oe){return String.prototype.startsWith?H.startsWith(oe):H.indexOf(oe)===0}var xy="data:application/octet-stream;base64,";function Qp(H){return $l(H,xy)}var _h="file://";function em(H){return $l(H,_h)}var Gn="tfjs-backend-wasm.wasm";Qp(Gn)||(Gn=f(Gn));function kh(){try{if(E)return new Uint8Array(E);if(g)return g(Gn);throw"both async and sync fetching of the wasm failed"}catch(H){Ji(H)}}function yy(){return!E&&(l||u)&&typeof fetch=="function"&&!em(Gn)?fetch(Gn,{credentials:"same-origin"}).then(function(H){if(!H.ok)throw"failed to load wasm binary file at '"+Gn+"'";return H.arrayBuffer()}).catch(function(){return kh()}):new Promise(function(H,oe){H(kh())})}function by(){var H={env:ea,wasi_snapshot_preview1:ea};function oe(at,ot){var yr=at.exports;t.asm=yr,R=yr.memory,qe(R.buffer),rs("wasm-instantiate")}xc("wasm-instantiate");function be(at){oe(at.instance)}function Ke(at){return yy().then(function(ot){return WebAssembly.instantiate(ot,H)}).then(at,function(ot){k("failed to asynchronously prepare wasm: "+ot),Ji(ot)})}function Xe(){if(!E&&typeof WebAssembly.instantiateStreaming=="function"&&!Qp(Gn)&&!em(Gn)&&typeof fetch=="function")fetch(Gn,{credentials:"same-origin"}).then(function(at){var ot=WebAssembly.instantiateStreaming(at,H);return ot.then(be,function(yr){k("wasm streaming compile failed: "+yr),k("falling back to ArrayBuffer instantiation"),Ke(be)})});else return Ke(be)}if(t.instantiateWasm)try{var Ht=t.instantiateWasm(H,oe);return Ht}catch(at){return k("Module.instantiateWasm callback failed with error: "+at),!1}return Xe(),{}}pt.push();function wy(H){qe(R.buffer)}var Rl={splitPath:function(H){var oe=/^(\/?|)([\s\S]*?)((?:\.{1,2}|[^\/]+?|)(\.[^.\/]*|))(?:[\/]*)$/;return oe.exec(H).slice(1)},normalizeArray:function(H,oe){for(var be=0,Ke=H.length-1;Ke>=0;Ke--){var Xe=H[Ke];Xe==="."?H.splice(Ke,1):Xe===".."?(H.splice(Ke,1),be++):be&&(H.splice(Ke,1),be--)}if(oe)for(;be;be--)H.unshift("..");return H},normalize:function(H){var oe=H.charAt(0)==="/",be=H.substr(-1)==="/";return H=Rl.normalizeArray(H.split("/").filter(function(Ke){return!!Ke}),!oe).join("/"),!H&&!oe&&(H="."),H&&be&&(H+="/"),(oe?"/":"")+H},dirname:function(H){var oe=Rl.splitPath(H),be=oe[0],Ke=oe[1];return!be&&!Ke?".":(Ke&&(Ke=Ke.substr(0,Ke.length-1)),be+Ke)},basename:function(H){if(H==="/")return"/";var oe=H.lastIndexOf("/");return oe===-1?H:H.substr(oe+1)},extname:function(H){return Rl.splitPath(H)[3]},join:function(){var H=Array.prototype.slice.call(arguments,0);return Rl.normalize(H.join("/"))},join2:function(H,oe){return Rl.normalize(H+"/"+oe)}},yc={mappings:{},buffers:[null,[],[]],printChar:function(H,oe){var be=yc.buffers[H];oe===0||oe===10?((H===1?_:k)(te(be,0)),be.length=0):be.push(oe)},varargs:void 0,get:function(){yc.varargs+=4;var H=ke[yc.varargs-4>>2];return H},getStr:function(H){var oe=Y(H);return oe},get64:function(H,oe){return H}};function _y(H){return 0}function Qi(H,oe,be,Ke,Xe){}function tm(H,oe,be,Ke){for(var Xe=0,Ht=0;Ht<be;Ht++){for(var at=ke[oe+Ht*8>>2],ot=ke[oe+(Ht*8+4)>>2],yr=0;yr<ot;yr++)yc.printChar(H,xe[at+yr]);Xe+=ot}return ke[Ke>>2]=Xe,0}function Fl(H){Lh(H)}function ky(H){Fl(H)}function vy(H){return H=+H,H>=0?+Vn(H+.5):+Sn(H-.5)}var ea={emscripten_notify_memory_growth:wy,fd_close:_y,fd_seek:Qi,fd_write:tm,proc_exit:ky,roundf:vy},rm=by();t.asm=rm;var Cy=t._init=function(){return(Cy=t._init=t.asm.init).apply(null,arguments)},vh=t._register_tensor=function(){return(vh=t._register_tensor=t.asm.register_tensor).apply(null,arguments)},Iy=t._dispose_data=function(){return(Iy=t._dispose_data=t.asm.dispose_data).apply(null,arguments)},Ch=t._dispose=function(){return(Ch=t._dispose=t.asm.dispose).apply(null,arguments)},jn=t._Abs=function(){return(jn=t._Abs=t.asm.Abs).apply(null,arguments)},Ih=t._Add=function(){return(Ih=t._Add=t.asm.Add).apply(null,arguments)},Ny=t._AddN=function(){return(Ny=t._AddN=t.asm.AddN).apply(null,arguments)},Sy=t._ArgMax=function(){return(Sy=t._ArgMax=t.asm.ArgMax).apply(null,arguments)},Ty=t._AvgPool=function(){return(Ty=t._AvgPool=t.asm.AvgPool).apply(null,arguments)},Ey=t._BatchMatMul=function(){return(Ey=t._BatchMatMul=t.asm.BatchMatMul).apply(null,arguments)},Nh=t._ClipByValue=function(){return(Nh=t._ClipByValue=t.asm.ClipByValue).apply(null,arguments)},Sh=t._Conv2D=function(){return(Sh=t._Conv2D=t.asm.Conv2D).apply(null,arguments)},Th=t._Conv2DBackpropInput=function(){return(Th=t._Conv2DBackpropInput=t.asm.Conv2DBackpropInput).apply(null,arguments)},bc=t._Cos=function(){return(bc=t._Cos=t.asm.Cos).apply(null,arguments)},nm=t._CropAndResize=function(){return(nm=t._CropAndResize=t.asm.CropAndResize).apply(null,arguments)},wc=t._Cumsum=function(){return(wc=t._Cumsum=t.asm.Cumsum).apply(null,arguments)},_c=t._DepthToSpace=function(){return(_c=t._DepthToSpace=t.asm.DepthToSpace).apply(null,arguments)},Ay=t._DepthwiseConv2dNative=function(){return(Ay=t._DepthwiseConv2dNative=t.asm.DepthwiseConv2dNative).apply(null,arguments)},Dy=t._Equal=function(){return(Dy=t._Equal=t.asm.Equal).apply(null,arguments)},$y=t._Exp=function(){return($y=t._Exp=t.asm.Exp).apply(null,arguments)},_e=t._FlipLeftRight=function(){return(_e=t._FlipLeftRight=t.asm.FlipLeftRight).apply(null,arguments)},Ry=t._Floor=function(){return(Ry=t._Floor=t.asm.Floor).apply(null,arguments)},Fy=t._FloorDiv=function(){return(Fy=t._FloorDiv=t.asm.FloorDiv).apply(null,arguments)},Oy=t._FusedBatchNorm=function(){return(Oy=t._FusedBatchNorm=t.asm.FusedBatchNorm).apply(null,arguments)},Py=t._FusedConv2D=function(){return(Py=t._FusedConv2D=t.asm.FusedConv2D).apply(null,arguments)},Ol=t._FusedDepthwiseConv2D=function(){return(Ol=t._FusedDepthwiseConv2D=t.asm.FusedDepthwiseConv2D).apply(null,arguments)},My=t._Gather=function(){return(My=t._Gather=t.asm.Gather).apply(null,arguments)},Ly=t._GatherNd=function(){return(Ly=t._GatherNd=t.asm.GatherNd).apply(null,arguments)},zy=t._Greater=function(){return(zy=t._Greater=t.asm.Greater).apply(null,arguments)},By=t._GreaterEqual=function(){return(By=t._GreaterEqual=t.asm.GreaterEqual).apply(null,arguments)},Vy=t._LeakyRelu=function(){return(Vy=t._LeakyRelu=t.asm.LeakyRelu).apply(null,arguments)},Gy=t._Less=function(){return(Gy=t._Less=t.asm.Less).apply(null,arguments)},jy=t._LessEqual=function(){return(jy=t._LessEqual=t.asm.LessEqual).apply(null,arguments)},Wy=t._Log=function(){return(Wy=t._Log=t.asm.Log).apply(null,arguments)},Uy=t._LogicalAnd=function(){return(Uy=t._LogicalAnd=t.asm.LogicalAnd).apply(null,arguments)},qy=t._Max=function(){return(qy=t._Max=t.asm.Max).apply(null,arguments)},Ka=t._MaxPool=function(){return(Ka=t._MaxPool=t.asm.MaxPool).apply(null,arguments)},Pl=t._Maximum=function(){return(Pl=t._Maximum=t.asm.Maximum).apply(null,arguments)},kc=t._Mean=function(){return(kc=t._Mean=t.asm.Mean).apply(null,arguments)},Hy=t._Min=function(){return(Hy=t._Min=t.asm.Min).apply(null,arguments)},Ky=t._Minimum=function(){return(Ky=t._Minimum=t.asm.Minimum).apply(null,arguments)},Xy=t._Multiply=function(){return(Xy=t._Multiply=t.asm.Multiply).apply(null,arguments)},Yy=t._Neg=function(){return(Yy=t._Neg=t.asm.Neg).apply(null,arguments)},Je=t._NonMaxSuppressionV3=function(){return(Je=t._NonMaxSuppressionV3=t.asm.NonMaxSuppressionV3).apply(null,arguments)},Zy=t._NonMaxSuppressionV4=function(){return(Zy=t._NonMaxSuppressionV4=t.asm.NonMaxSuppressionV4).apply(null,arguments)},Jy=t._NonMaxSuppressionV5=function(){return(Jy=t._NonMaxSuppressionV5=t.asm.NonMaxSuppressionV5).apply(null,arguments)},Qy=t._NotEqual=function(){return(Qy=t._NotEqual=t.asm.NotEqual).apply(null,arguments)},eb=t._OneHot=function(){return(eb=t._OneHot=t.asm.OneHot).apply(null,arguments)},tb=t._PadV2=function(){return(tb=t._PadV2=t.asm.PadV2).apply(null,arguments)},rb=t._Pow=function(){return(rb=t._Pow=t.asm.Pow).apply(null,arguments)},om=t._Prelu=function(){return(om=t._Prelu=t.asm.Prelu).apply(null,arguments)},Eh=t._Prod=function(){return(Eh=t._Prod=t.asm.Prod).apply(null,arguments)},Ah=t._RealDiv=function(){return(Ah=t._RealDiv=t.asm.RealDiv).apply(null,arguments)},nb=t._Relu=function(){return(nb=t._Relu=t.asm.Relu).apply(null,arguments)},ob=t._Relu6=function(){return(ob=t._Relu6=t.asm.Relu6).apply(null,arguments)},sb=t._ResizeBilinear=function(){return(sb=t._ResizeBilinear=t.asm.ResizeBilinear).apply(null,arguments)},ib=t._Reverse=function(){return(ib=t._Reverse=t.asm.Reverse).apply(null,arguments)},ab=t._RotateWithOffset=function(){return(ab=t._RotateWithOffset=t.asm.RotateWithOffset).apply(null,arguments)},lb=t._Round=function(){return(lb=t._Round=t.asm.Round).apply(null,arguments)},rt=t._Rsqrt=function(){return(rt=t._Rsqrt=t.asm.Rsqrt).apply(null,arguments)},ub=t._ScatterNd=function(){return(ub=t._ScatterNd=t.asm.ScatterNd).apply(null,arguments)},cb=t._SelectV2=function(){return(cb=t._SelectV2=t.asm.SelectV2).apply(null,arguments)},pb=t._Sigmoid=function(){return(pb=t._Sigmoid=t.asm.Sigmoid).apply(null,arguments)},Ml=t._Sin=function(){return(Ml=t._Sin=t.asm.Sin).apply(null,arguments)},vc=t._Softmax=function(){return(vc=t._Softmax=t.asm.Softmax).apply(null,arguments)},Dh=t._Sqrt=function(){return(Dh=t._Sqrt=t.asm.Sqrt).apply(null,arguments)},$h=t._Square=function(){return($h=t._Square=t.asm.Square).apply(null,arguments)},Rh=t._SquaredDifference=function(){return(Rh=t._SquaredDifference=t.asm.SquaredDifference).apply(null,arguments)},mb=t._Step=function(){return(mb=t._Step=t.asm.Step).apply(null,arguments)},fb=t._StridedSlice=function(){return(fb=t._StridedSlice=t.asm.StridedSlice).apply(null,arguments)},Fh=t._Sub=function(){return(Fh=t._Sub=t.asm.Sub).apply(null,arguments)},db=t._Sum=function(){return(db=t._Sum=t.asm.Sum).apply(null,arguments)},js=t._Tanh=function(){return(js=t._Tanh=t.asm.Tanh).apply(null,arguments)},hb=t._Tile=function(){return(hb=t._Tile=t.asm.Tile).apply(null,arguments)},gb=t._TopK=function(){return(gb=t._TopK=t.asm.TopK).apply(null,arguments)},Oh=t._Transpose=function(){return(Oh=t._Transpose=t.asm.Transpose).apply(null,arguments)},Xa=t.__FusedMatMul=function(){return(Xa=t.__FusedMatMul=t.asm._FusedMatMul).apply(null,arguments)},xb=t._malloc=function(){return(xb=t._malloc=t.asm.malloc).apply(null,arguments)},yb=t._free=function(){return(yb=t._free=t.asm.free).apply(null,arguments)},Ph=t.__start=function(){return(Ph=t.__start=t.asm._start).apply(null,arguments)},sm=t.stackSave=function(){return(sm=t.stackSave=t.asm.stackSave).apply(null,arguments)},im=t.stackAlloc=function(){return(im=t.stackAlloc=t.asm.stackAlloc).apply(null,arguments)},Mh=t.stackRestore=function(){return(Mh=t.stackRestore=t.asm.stackRestore).apply(null,arguments)};t.asm=rm,t.cwrap=K;var Ll;t.then=function(H){if(Ll)H(t);else{var oe=t.onRuntimeInitialized;t.onRuntimeInitialized=function(){oe&&oe(),H(t)}}return t};function am(H){this.name="ExitStatus",this.message="Program terminated with exit("+H+")",this.status=H}var bb=!1;Tn=function H(){Ll||lm(),Ll||(Tn=H)};function wb(H){var oe=t.__start;try{oe();var be=0;Lh(be,!0)}catch(Xe){if(Xe instanceof am)return;if(Xe=="unwind"){S=!0;return}else{var Ke=Xe;Xe&&typeof Xe=="object"&&Xe.stack&&(Ke=[Xe,Xe.stack]),k("exception thrown: "+Ke),i(1,Xe)}}finally{bb=!0}}function lm(H){if(H=H||s,Qr>0||(Jt(),Qr>0))return;function oe(){Ll||(Ll=!0,t.calledRun=!0,!P&&(fn(),_r(),t.onRuntimeInitialized&&t.onRuntimeInitialized(),zh&&wb(H),Jr()))}t.setStatus?(t.setStatus("Running..."),setTimeout(function(){setTimeout(function(){t.setStatus("")},1),oe()},1)):oe()}t.run=lm;function Lh(H,oe){oe&&S&&H===0||(S||(P=!0,j=H,Bn(),t.onExit&&t.onExit(H)),i(H,new am(H)))}if(t.preInit)for(typeof t.preInit=="function"&&(t.preInit=[t.preInit]);t.preInit.length>0;)t.preInit.pop()();var zh=!0;return t.noInitialRun&&(zh=!1),S=!0,lm(),e}}();typeof cx=="object"&&typeof f0=="object"?f0.exports=d0:typeof define=="function"&&define.amd?define([],function(){return d0}):typeof cx=="object"&&(cx.WasmBackendModule=d0)});var Az=ht((Ez,KC)=>{(function(r,e,t){function n(i){var l=this,u=a();l.next=function(){var c=2091639*l.s0+l.c*23283064365386963e-26;return l.s0=l.s1,l.s1=l.s2,l.s2=c-(l.c=c|0)},l.c=1,l.s0=u(" "),l.s1=u(" "),l.s2=u(" "),l.s0-=u(i),l.s0<0&&(l.s0+=1),l.s1-=u(i),l.s1<0&&(l.s1+=1),l.s2-=u(i),l.s2<0&&(l.s2+=1),u=null}function o(i,l){return l.c=i.c,l.s0=i.s0,l.s1=i.s1,l.s2=i.s2,l}function s(i,l){var u=new n(i),c=l&&l.state,p=u.next;return p.int32=function(){return u.next()*4294967296|0},p.double=function(){return p()+(p()*2097152|0)*11102230246251565e-32},p.quick=p,c&&(typeof c=="object"&&o(c,u),p.state=function(){return o(u,{})}),p}function a(){var i=4022871197,l=function(u){u=String(u);for(var c=0;c<u.length;c++){i+=u.charCodeAt(c);var p=.02519603282416938*i;i=p>>>0,p-=i,p*=i,i=p>>>0,p-=i,i+=p*4294967296}return(i>>>0)*23283064365386963e-26};return l}e&&e.exports?e.exports=s:t&&t.amd?t(function(){return s}):this.alea=s})(Ez,typeof KC=="object"&&KC,typeof define=="function"&&define)});var $z=ht((Dz,XC)=>{(function(r,e,t){function n(a){var i=this,l="";i.x=0,i.y=0,i.z=0,i.w=0,i.next=function(){var c=i.x^i.x<<11;return i.x=i.y,i.y=i.z,i.z=i.w,i.w^=i.w>>>19^c^c>>>8},a===(a|0)?i.x=a:l+=a;for(var u=0;u<l.length+64;u++)i.x^=l.charCodeAt(u)|0,i.next()}function o(a,i){return i.x=a.x,i.y=a.y,i.z=a.z,i.w=a.w,i}function s(a,i){var l=new n(a),u=i&&i.state,c=function(){return(l.next()>>>0)/4294967296};return c.double=function(){do var p=l.next()>>>11,m=(l.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=l.next,c.quick=c,u&&(typeof u=="object"&&o(u,l),c.state=function(){return o(l,{})}),c}e&&e.exports?e.exports=s:t&&t.amd?t(function(){return s}):this.xor128=s})(Dz,typeof XC=="object"&&XC,typeof define=="function"&&define)});var Fz=ht((Rz,YC)=>{(function(r,e,t){function n(a){var i=this,l="";i.next=function(){var c=i.x^i.x>>>2;return i.x=i.y,i.y=i.z,i.z=i.w,i.w=i.v,(i.d=i.d+362437|0)+(i.v=i.v^i.v<<4^(c^c<<1))|0},i.x=0,i.y=0,i.z=0,i.w=0,i.v=0,a===(a|0)?i.x=a:l+=a;for(var u=0;u<l.length+64;u++)i.x^=l.charCodeAt(u)|0,u==l.length&&(i.d=i.x<<10^i.x>>>4),i.next()}function o(a,i){return i.x=a.x,i.y=a.y,i.z=a.z,i.w=a.w,i.v=a.v,i.d=a.d,i}function s(a,i){var l=new n(a),u=i&&i.state,c=function(){return(l.next()>>>0)/4294967296};return c.double=function(){do var p=l.next()>>>11,m=(l.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=l.next,c.quick=c,u&&(typeof u=="object"&&o(u,l),c.state=function(){return o(l,{})}),c}e&&e.exports?e.exports=s:t&&t.amd?t(function(){return s}):this.xorwow=s})(Rz,typeof YC=="object"&&YC,typeof define=="function"&&define)});var Pz=ht((Oz,ZC)=>{(function(r,e,t){function n(a){var i=this;i.next=function(){var u=i.x,c=i.i,p,m,f;return p=u[c],p^=p>>>7,m=p^p<<24,p=u[c+1&7],m^=p^p>>>10,p=u[c+3&7],m^=p^p>>>3,p=u[c+4&7],m^=p^p<<7,p=u[c+7&7],p=p^p<<13,m^=p^p<<9,u[c]=m,i.i=c+1&7,m};function l(u,c){var p,m,f=[];if(c===(c|0))m=f[0]=c;else for(c=""+c,p=0;p<c.length;++p)f[p&7]=f[p&7]<<15^c.charCodeAt(p)+f[p+1&7]<<13;for(;f.length<8;)f.push(0);for(p=0;p<8&&f[p]===0;++p);for(p==8?m=f[7]=-1:m=f[p],u.x=f,u.i=0,p=256;p>0;--p)u.next()}l(i,a)}function o(a,i){return i.x=a.x.slice(),i.i=a.i,i}function s(a,i){a==null&&(a=+new Date);var l=new n(a),u=i&&i.state,c=function(){return(l.next()>>>0)/4294967296};return c.double=function(){do var p=l.next()>>>11,m=(l.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=l.next,c.quick=c,u&&(u.x&&o(u,l),c.state=function(){return o(l,{})}),c}e&&e.exports?e.exports=s:t&&t.amd?t(function(){return s}):this.xorshift7=s})(Oz,typeof ZC=="object"&&ZC,typeof define=="function"&&define)});var Lz=ht((Mz,JC)=>{(function(r,e,t){function n(a){var i=this;i.next=function(){var u=i.w,c=i.X,p=i.i,m,f;return i.w=u=u+1640531527|0,f=c[p+34&127],m=c[p=p+1&127],f^=f<<13,m^=m<<17,f^=f>>>15,m^=m>>>12,f=c[p]=f^m,i.i=p,f+(u^u>>>16)|0};function l(u,c){var p,m,f,d,h,g=[],x=128;for(c===(c|0)?(m=c,c=null):(c=c+"\0",m=0,x=Math.max(x,c.length)),f=0,d=-32;d<x;++d)c&&(m^=c.charCodeAt((d+32)%c.length)),d===0&&(h=m),m^=m<<10,m^=m>>>15,m^=m<<4,m^=m>>>13,d>=0&&(h=h+1640531527|0,p=g[d&127]^=m+h,f=p==0?f+1:0);for(f>=128&&(g[(c&&c.length||0)&127]=-1),f=127,d=4*128;d>0;--d)m=g[f+34&127],p=g[f=f+1&127],m^=m<<13,p^=p<<17,m^=m>>>15,p^=p>>>12,g[f]=m^p;u.w=h,u.X=g,u.i=f}l(i,a)}function o(a,i){return i.i=a.i,i.w=a.w,i.X=a.X.slice(),i}function s(a,i){a==null&&(a=+new Date);var l=new n(a),u=i&&i.state,c=function(){return(l.next()>>>0)/4294967296};return c.double=function(){do var p=l.next()>>>11,m=(l.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=l.next,c.quick=c,u&&(u.X&&o(u,l),c.state=function(){return o(l,{})}),c}e&&e.exports?e.exports=s:t&&t.amd?t(function(){return s}):this.xor4096=s})(Mz,typeof JC=="object"&&JC,typeof define=="function"&&define)});var Bz=ht((zz,QC)=>{(function(r,e,t){function n(a){var i=this,l="";i.next=function(){var c=i.b,p=i.c,m=i.d,f=i.a;return c=c<<25^c>>>7^p,p=p-m|0,m=m<<24^m>>>8^f,f=f-c|0,i.b=c=c<<20^c>>>12^p,i.c=p=p-m|0,i.d=m<<16^p>>>16^f,i.a=f-c|0},i.a=0,i.b=0,i.c=2654435769|0,i.d=1367130551,a===Math.floor(a)?(i.a=a/4294967296|0,i.b=a|0):l+=a;for(var u=0;u<l.length+20;u++)i.b^=l.charCodeAt(u)|0,i.next()}function o(a,i){return i.a=a.a,i.b=a.b,i.c=a.c,i.d=a.d,i}function s(a,i){var l=new n(a),u=i&&i.state,c=function(){return(l.next()>>>0)/4294967296};return c.double=function(){do var p=l.next()>>>11,m=(l.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=l.next,c.quick=c,u&&(typeof u=="object"&&o(u,l),c.state=function(){return o(l,{})}),c}e&&e.exports?e.exports=s:t&&t.amd?t(function(){return s}):this.tychei=s})(zz,typeof QC=="object"&&QC,typeof define=="function"&&define)});var Gz=ht((Vz,uy)=>{(function(r,e,t){var n=256,o=6,s=52,a="random",i=t.pow(n,o),l=t.pow(2,s),u=l*2,c=n-1,p;function m(w,_,k){var E=[];_=_==!0?{entropy:!0}:_||{};var S=g(h(_.entropy?[w,b(e)]:w==null?x():w,3),E),R=new f(E),F=function(){for(var P=R.g(o),j=i,G=0;P<l;)P=(P+G)*n,j*=n,G=R.g(1);for(;P>=u;)P/=2,j/=2,G>>>=1;return(P+G)/j};return F.int32=function(){return R.g(4)|0},F.quick=function(){return R.g(4)/4294967296},F.double=F,g(b(R.S),e),(_.pass||k||function(P,j,G,U){return U&&(U.S&&d(U,R),P.state=function(){return d(R,{})}),G?(t[a]=P,j):P})(F,S,"global"in _?_.global:this==t,_.state)}function f(w){var _,k=w.length,E=this,S=0,R=E.i=E.j=0,F=E.S=[];for(k||(w=[k++]);S<n;)F[S]=S++;for(S=0;S<n;S++)F[S]=F[R=c&R+w[S%k]+(_=F[S])],F[R]=_;(E.g=function(P){for(var j,G=0,U=E.i,X=E.j,K=E.S;P--;)j=K[U=c&U+1],G=G*n+K[c&(K[U]=K[X=c&X+j])+(K[X]=j)];return E.i=U,E.j=X,G})(n)}function d(w,_){return _.i=w.i,_.j=w.j,_.S=w.S.slice(),_}function h(w,_){var k=[],E=typeof w,S;if(_&&E=="object")for(S in w)try{k.push(h(w[S],_-1))}catch(R){}return k.length?k:E=="string"?w:w+"\0"}function g(w,_){for(var k=w+"",E,S=0;S<k.length;)_[c&S]=c&(E^=_[c&S]*19)+k.charCodeAt(S++);return b(_)}function x(){try{var w;return p&&(w=p.randomBytes)?w=w(n):(w=new Uint8Array(n),(r.crypto||r.msCrypto).getRandomValues(w)),b(w)}catch(E){var _=r.navigator,k=_&&_.plugins;return[+new Date,r,k,r.screen,b(e)]}}function b(w){return String.fromCharCode.apply(0,w)}if(g(t.random(),e),typeof uy=="object"&&uy.exports){uy.exports=m;try{p=pg()}catch(w){}}else typeof define=="function"&&define.amd?define(function(){return m}):t["seed"+a]=m})(typeof self!="undefined"?self:Vz,[],Math)});var eI=ht((ePt,jz)=>{var Pte=Az(),Mte=$z(),Lte=Fz(),zte=Pz(),Bte=Lz(),Vte=Bz(),gc=Gz();gc.alea=Pte;gc.xor128=Mte;gc.xorwow=Lte;gc.xorshift7=zte;gc.xor4096=Bte;gc.tychei=Vte;jz.exports=gc});var x3=ht(()=>{});var yI="3.0.0";var bI="3.0.0";var wI="3.0.0";var _I="3.0.0";var kI="3.0.0";var KB=1e-7,XB=1e-4,Ja=class{constructor(e,t){this.backend=e,this.dataMover=t,this.data=new WeakMap,this.dataIdsCount=0}get(e){return this.data.has(e)||this.dataMover.moveData(this.backend,e),this.data.get(e)}set(e,t){this.dataIdsCount++,this.data.set(e,t)}has(e){return this.data.has(e)}delete(e){return this.dataIdsCount--,this.data.delete(e)}numDataIds(){return this.dataIdsCount}},Ws=class{decComplexRef(e){}time(e){return Us("time")}read(e){return Us("read")}readSync(e){return Us("readSync")}numDataIds(){return Us("numDataIds")}disposeData(e){return Us("disposeData")}write(e,t,n){return Us("write")}move(e,t,n,o){return Us("move")}memory(){return Us("memory")}floatPrecision(){return Us("floatPrecision")}epsilon(){return this.floatPrecision()===32?KB:XB}dispose(){return Us("dispose")}};function Us(r){throw new Error(`'${r}' not yet implemented or not found in the registry. This kernel may not be supported by the tfjs backend you have chosen`)}function vI(r){let e=r.length,t=0,n=0;for(;e>0;)n=Math.random()*e|0,e--,t=r[e],r[e]=r[n],r[n]=t}function YB(r,e){if(r.length!==e.length)throw Error(`Array sizes must match to be shuffled together First array length was ${r.length}Second array length was ${e.length}`);let t=r.length,n,o,s=0;for(;t>0;)s=Math.random()*t|0,t--,n=r[t],o=e[t],r[t]=r[s],e[t]=e[s],r[s]=n,e[s]=o}function Ec(r,e,t){return Math.max(r,Math.min(e,t))}function ZB(r){return r%2==0?r:r+1}function JB(r){let e=0;for(let t=0;t<r.length;t++)e+=r[t];return e}function QB(r,e){let t=Math.random();return e*t+(1-t)*r}function eV(r,e){let t=0;for(let n=0;n<r.length;n++){let o=Number(r[n])-Number(e[n]);t+=o*o}return t}function A(r,e){if(!r)throw new Error(typeof e=="string"?e:e())}function St(r,e,t=""){A(Vr(r,e),()=>t+` Shapes ${r} and ${e} must match`)}function En(r){A(r!=null,()=>"The input to the tensor constructor must be a non-null value.")}function ns(r,e=[],t=!1){if(e==null&&(e=[]),Array.isArray(r)||nr(r)&&!t)for(let n=0;n<r.length;++n)ns(r[n],e,t);else e.push(r);return e}function ft(r){if(r.length===0)return 1;let e=r[0];for(let t=1;t<r.length;t++)e*=r[t];return e}function tV(r){return r.length===0}function Vr(r,e){if(r===e)return!0;if(r==null||e==null||r.length!==e.length)return!1;for(let t=0;t<r.length;t++)if(r[t]!==e[t])return!1;return!0}function st(r){return r%1==0}function rV(r){if(Math.tanh!=null)return Math.tanh(r);if(r===Infinity)return 1;if(r===-Infinity)return-1;{let e=Math.exp(2*r);return(e-1)/(e+1)}}function nV(r){let e=Math.ceil(Math.sqrt(r));return[e,Math.ceil(r/e)]}function oV(r){let e=new Uint32Array(r);for(let t=0;t<r;++t)e[t]=t;return vI(e),e}function zl(r,e){return e<=r.length?r:r+" ".repeat(e-r.length)}function sV(r,e=n=>0,t){return new Promise((n,o)=>{let s=0,a=()=>{if(r()){n();return}s++;let i=e(s);if(t!=null&&s>=t){o();return}setTimeout(a,i)};a()})}function iV(r,e){let t=1,n=-1;for(let s=0;s<r.length;++s)if(r[s]>=0)t*=r[s];else if(r[s]===-1){if(n!==-1)throw Error(`Shapes can only have 1 implicit size. Found -1 at dim ${n} and dim ${s}`);n=s}else if(r[s]<0)throw Error(`Shapes can not be < 0. Found ${r[s]} at dim ${s}`);if(n===-1){if(e>0&&e!==t)throw Error(`Size(${e}) must match the product of shape ${r}`);return r}if(t===0)throw Error(`Cannot infer the missing size in [${r}] when there are 0 elements`);if(e%t!=0)throw Error(`The implicit shape can't be a fractional number. Got ${e} / ${t}`);let o=r.slice();return o[n]=e/t,o}function Qt(r,e){let t=e.length;return r=r==null?e.map((n,o)=>o):[].concat(r),A(r.every(n=>n>=-t&&n<t),()=>`All values in axis param must be in range [-${t}, ${t}) but got axis ${r}`),A(r.every(n=>st(n)),()=>`All values in axis param must be integers but got axis ${r}`),r.map(n=>n<0?t+n:n)}function Nb(r,e){let t=[],n=[],o=e!=null&&Array.isArray(e)&&e.length===0,s=e==null||o?null:Qt(e,r).sort(),a=0;for(let i=0;i<r.length;++i){if(s!=null){if(s[a]===i&&r[i]!==1)throw new Error(`Can't squeeze axis ${i} since its dim '${r[i]}' is not 1`);(s[a]==null||s[a]>i)&&r[i]===1&&(t.push(r[i]),n.push(i)),s[a]<=i&&a++}r[i]!==1&&(t.push(r[i]),n.push(i))}return{newShape:t,keptDims:n}}function Sb(r,e){let t=null;if(r==null||r==="float32")t=new Float32Array(e);else if(r==="int32")t=new Int32Array(e);else if(r==="bool")t=new Uint8Array(e);else throw new Error(`Unknown data type ${r}`);return t}function Tb(r,e){let t=null;if(r==null||r==="float32")t=new Float32Array(e);else if(r==="int32")t=new Int32Array(e);else if(r==="bool")t=new Uint8Array(e);else if(r==="string")t=new Array(e);else throw new Error(`Unknown data type ${r}`);return t}function Eb(r,e){for(let t=0;t<r.length;t++){let n=r[t];if(isNaN(n)||!isFinite(n))throw Error(`A tensor of type ${e} being uploaded contains ${n}.`)}}function Ab(r){return r==="bool"||r==="complex64"||r==="float32"||r==="int32"||r==="string"}function aV(r,e){return!(e==="complex64"||e==="float32"&&r!=="complex64"||e==="int32"&&r!=="float32"&&r!=="complex64"||e==="bool"&&r==="bool")}function nr(r){return r instanceof Float32Array||r instanceof Int32Array||r instanceof Uint8Array}function Db(r){if(r==="float32"||r==="int32")return 4;if(r==="complex64")return 8;if(r==="bool")return 1;throw new Error(`Unknown dtype ${r}`)}function $b(r){if(r==null)return 0;let e=0;return r.forEach(t=>e+=t.length),e}function os(r){return typeof r=="string"||r instanceof String}function CI(r){return typeof r=="boolean"}function II(r){return typeof r=="number"}function Ac(r){return Array.isArray(r)?Ac(r[0]):r instanceof Float32Array?"float32":r instanceof Int32Array||r instanceof Uint8Array?"int32":II(r)?"float32":os(r)?"string":CI(r)?"bool":"float32"}function qs(r){return!!(r&&r.constructor&&r.call&&r.apply)}function Dc(r,e){for(let t=e;t<r;++t)if(r%t==0)return t;return r}function Hs(r){let e=r.length;if(e<2)return[];let t=new Array(e-1);t[e-2]=r[e-1];for(let n=e-3;n>=0;--n)t[n]=t[n+1]*r[n+1];return t}function NI(r,e,t){let n=new Array;if(e.length===1){let o=e[0];for(let s=0;s<o;s++)n[s]=t[r+s]}else{let o=e[0],s=e.slice(1),a=s.reduce((i,l)=>i*l);for(let i=0;i<o;i++)n[i]=NI(r+i*a,s,t)}return n}function Bl(r,e){if(r.length===0)return e[0];let t=r.reduce((n,o)=>n*o);if(t===0)return[];if(t!==e.length)throw new Error(`[${r}] does not match the input size ${e.length}.`);return NI(0,r,e)}function gm(r,e){let t=$c(r,e);for(let n=0;n<t.length;n++)t[n]=1;return t}function $c(r,e){if(e==null||e==="float32"||e==="complex64")return new Float32Array(r);if(e==="int32")return new Int32Array(r);if(e==="bool")return new Uint8Array(r);throw new Error(`Unknown data type ${e}`)}function lV(r,e){let t=r.reduce((n,o)=>n*o,1);if(e==null||e==="float32")return Bl(r,new Float32Array(t));if(e==="int32")return Bl(r,new Int32Array(t));if(e==="bool")return Bl(r,new Uint8Array(t));throw new Error(`Unknown data type ${e}`)}function xm(r){r.forEach(e=>{A(Number.isInteger(e)&&e>=0,()=>`Tensor must have a shape comprised of positive integers but got shape [${r}].`)})}function uV(r,e,t){if(e===0)return 0;if(e===1)return r[0];let n=r[r.length-1];for(let o=0;o<r.length-1;++o)n+=t[o]*r[o];return n}function cV(r,e,t){if(e===0)return[];if(e===1)return[r];let n=new Array(e);for(let o=0;o<n.length-1;++o)n[o]=Math.floor(r/t[o]),r-=n[o]*t[o];return n[n.length-1]=r,n}function ym(r){return r&&r.then&&typeof r.then=="function"}var SI="tfjsflags",jh=class{constructor(e){this.global=e,this.flags={},this.flagRegistry={},this.urlFlags={},this.populateURLFlags()}setPlatform(e,t){this.platform!=null&&console.warn(`Platform ${this.platformName} has already been set. Overwriting the platform with ${t}.`),this.platformName=e,this.platform=t}registerFlag(e,t,n){if(this.flagRegistry[e]={evaluationFn:t,setHook:n},this.urlFlags[e]!=null){let o=this.urlFlags[e];console.warn(`Setting feature override from URL ${e}: ${o}.`),this.set(e,o)}}async getAsync(e){return e in this.flags?this.flags[e]:(this.flags[e]=await this.evaluateFlag(e),this.flags[e])}get(e){if(e in this.flags)return this.flags[e];let t=this.evaluateFlag(e);if(ym(t))throw new Error(`Flag ${e} cannot be synchronously evaluated. Please use getAsync() instead.`);return this.flags[e]=t,this.flags[e]}getNumber(e){return this.get(e)}getBool(e){return this.get(e)}getFlags(){return this.flags}get features(){return this.flags}set(e,t){if(this.flagRegistry[e]==null)throw new Error(`Cannot set flag ${e} as it has not been registered.`);this.flags[e]=t,this.flagRegistry[e].setHook!=null&&this.flagRegistry[e].setHook(t)}evaluateFlag(e){if(this.flagRegistry[e]==null)throw new Error(`Cannot evaluate flag '${e}': no evaluation function found.`);return this.flagRegistry[e].evaluationFn()}setFlags(e){this.flags=Object.assign({},e)}reset(){this.flags={},this.urlFlags={},this.populateURLFlags()}populateURLFlags(){if(typeof this.global=="undefined"||typeof this.global.location=="undefined"||typeof this.global.location.search=="undefined")return;let e=pV(this.global.location.search);SI in e&&e[SI].split(",").forEach(n=>{let[o,s]=n.split(":");this.urlFlags[o]=mV(o,s)})}};function pV(r){let e={};return r.replace(/[?&]([^=?&]+)(?:=([^&]*))?/g,(t,...n)=>(fV(e,n[0],n[1]),n.join("="))),e}function fV(r,e,t){r[decodeURIComponent(e)]=decodeURIComponent(t||"")}function mV(r,e){if(e=e.toLowerCase(),e==="true"||e==="false")return e==="true";if(`${+e}`===e)return+e;throw new Error(`Could not parse value flag value ${e} for flag ${r}.`)}function W(){return Rb}var Rb=null;function TI(r){Rb=r}var Fb;function Ob(){if(Fb==null){let r;if(typeof window!="undefined")r=window;else if(typeof global!="undefined")r=global;else if(typeof process!="undefined")r=process;else if(typeof self!="undefined")r=self;else throw new Error("Could not find a global object");Fb=r}return Fb}function dV(){let r=Ob();return r._tfGlobals==null&&(r._tfGlobals=new Map),r._tfGlobals}function bm(r,e){let t=dV();if(t.has(r))return t.get(r);{let n=e();return t.set(r,n),t.get(r)}}var ss="Abs",Ks="Acos",Xs="Acosh",xn="Add",Wn="AddN",Vl="All",Gl="Any",Un="ArgMax",na="ArgMin",Ys="Asin",Zs="Asinh",Js="Atan",Qs="Atanh",ei="Atan2",qn="AvgPool",jl="AvgPoolGrad",oa="AvgPool3D",Wl="AvgPool3DGrad",Hn="BatchMatMul",sa="BatchToSpaceND",Ul="Bincount",Pb="BroadcastTo",An="Cast",ti="Ceil",Dn="ClipByValue",ql="Complex",ia="ComplexAbs",is="Concat",Kn="Conv2D",Hl="Conv2DBackpropFilter",Xn="Conv2DBackpropInput",aa="Conv3D",Kl="Conv3DBackpropFilterV2",Xl="Conv3DBackpropInputV2",Yn="Cos",ri="Cosh",Zn="Cumsum",ni="CropAndResize",Yl="DenseBincount",oi="DepthToSpace",Jn="DepthwiseConv2dNative",Zl="DepthwiseConv2dNativeBackpropFilter",Jl="DepthwiseConv2dNativeBackpropInput",Ql="Diag",la="Dilation2D",Rc="Dilation2DBackpropInput",Fc="Dilation2DBackpropFilter",Qn="RealDiv",si="Elu",eu="EluGrad",ii="Erf",ai="Equal",eo="Exp",as="ExpandDims",li="Expm1",tu="FFT",ua="Fill",ui="FlipLeftRight",to="Floor",ro="FloorDiv",no="FusedBatchNorm",ls="GatherV2",ci="GatherNd",pi="Greater",oo="GreaterEqual",us="Identity",ru="IFFT",nu="Imag",mi="IsFinite",fi="IsInf",di="IsNan",so="LeakyRelu",hi="Less",gi="LessEqual",ou="LinSpace",io="Log",xi="Log1p",yi="LogicalAnd",Qa="LogicalNot",el="LogicalOr",Mb="LogSoftmax",ca="LRN",su="LRNGrad",ao="Max",lo="Maximum",uo="MaxPool",iu="MaxPoolGrad",pa="MaxPool3D",au="MaxPool3DGrad",lu="MaxPoolWithArgmax",co="Mean",po="Min",mo="Minimum",ma="MirrorPad",bi="Mod",uu="Multinomial",fo="Multiply",cs="Neg",wi="NotEqual",_i="NonMaxSuppressionV3",ki="NonMaxSuppressionV4",vi="NonMaxSuppressionV5",ps="OnesLike",ho="OneHot",ms="Pack",go="PadV2",hV="Pool",xo="Pow",yo="Prelu",Ci="Prod",fa="Range",cu="Real",Ii="Reciprocal",bo="Relu",fs="Reshape",da="ResizeNearestNeighbor",pu="ResizeNearestNeighborGrad",wo="ResizeBilinear",mu="ResizeBilinearGrad",_o="Relu6",ko="Reverse",vo="Round",Co="Rsqrt",Ni="ScatterNd",ds="Select",Si="Selu",hs="Slice",Io="Sin",Ti="Sinh",Ei="Sign",No="Sigmoid",Ai="Softplus",So="Sqrt",To="Sum",ha="SpaceToBatchND",gs="SplitV",Eo="Softmax",Ao="SquaredDifference",ga="Square",Do="Sub",fu="SparseToDense",Di="StridedSlice",$i="Tan",$o="Tanh",yn="Tile",Ri="TopK",Ro="Transpose",du="Unique",xs="Unpack",xa="UnsortedSegmentSum",ys="ZerosLike",$n="Step",Oc="FromPixels",Fi="RotateWithOffset",bs="_FusedMatMul",ws="FusedConv2D",_s="FusedDepthwiseConv2D";var Pc=bm("kernelRegistry",()=>new Map),wm=bm("gradRegistry",()=>new Map);function Mc(r,e){let t=Lb(r,e);return Pc.get(t)}function Wh(r){return wm.get(r)}function _m(r){let e=Pc.entries(),t=[];for(;;){let{done:n,value:o}=e.next();if(n)break;let[s,a]=o,[i]=s.split("_");i===r&&t.push(a)}return t}function tl(r){let{kernelName:e,backendName:t}=r,n=Lb(e,t);Pc.has(n)&&console.warn(`The kernel '${e}' for backend '${t}' is already registered`),Pc.set(n,r)}function zb(r){let{kernelName:e}=r;wm.has(e)&&W().getBool("DEBUG")&&console.warn(`Overriding the gradient for '${e}'`),wm.set(e,r)}function gV(r,e){let t=Lb(r,e);if(!Pc.has(t))throw new Error(`The kernel '${r}' for backend '${e}' is not registered`);Pc.delete(t)}function xV(r){if(!wm.has(r))throw new Error(`The gradient '${r}' for backend is not registered`);wm.delete(r)}function yV(r,e){_m(r).forEach(n=>{let o=Object.assign({},n,{backendName:e});tl(o)})}function Lb(r,e){return`${e}_${r}`}var y={};Ye(y,{arraysEqual:()=>Vr,assert:()=>A,assertNonNegativeIntegerDimensions:()=>xm,assertNonNull:()=>En,assertShapesMatch:()=>St,bytesFromStringArray:()=>$b,bytesPerElement:()=>Db,checkConversionForErrors:()=>Eb,clamp:()=>Ec,computeStrides:()=>Hs,createScalarValue:()=>bV,createShuffledIndices:()=>oV,decodeString:()=>zc,distSquared:()=>eV,encodeString:()=>rl,fetch:()=>_V,flatten:()=>ns,getArrayFromDType:()=>Tb,getTypedArrayFromDType:()=>Sb,hasEncodingLoss:()=>aV,indexToLoc:()=>cV,inferDtype:()=>Ac,inferFromImplicitShape:()=>iV,isBoolean:()=>CI,isFunction:()=>qs,isInt:()=>st,isNumber:()=>II,isPromise:()=>ym,isScalarShape:()=>tV,isString:()=>os,isTypedArray:()=>nr,isValidDtype:()=>Ab,locToIndex:()=>uV,makeOnesTypedArray:()=>gm,makeZerosNestedTypedArray:()=>lV,makeZerosTypedArray:()=>$c,nearestDivisor:()=>Dc,nearestLargerEven:()=>ZB,now:()=>Uh,parseAxisParam:()=>Qt,randUniform:()=>QB,repeatedTry:()=>sV,rightPad:()=>zl,shuffle:()=>vI,shuffleCombo:()=>YB,sizeFromShape:()=>ft,sizeToSquarishShape:()=>nV,squeezeShape:()=>Nb,sum:()=>JB,tanh:()=>rV,toNestedArray:()=>Bl,toTypedArray:()=>Lc});function bV(r,e){return e==="string"?rl(r):Lc([r],e)}function wV(r,e){return r instanceof Float32Array&&e==="float32"||r instanceof Int32Array&&e==="int32"||r instanceof Uint8Array&&e==="bool"}function Lc(r,e){if(e==="string")throw new Error("Cannot convert a string[] to a TypedArray");if(Array.isArray(r)&&(r=ns(r)),W().getBool("DEBUG")&&Eb(r,e),wV(r,e))return r;if(e==null||e==="float32"||e==="complex64")return new Float32Array(r);if(e==="int32")return new Int32Array(r);if(e==="bool"){let t=new Uint8Array(r.length);for(let n=0;n<t.length;++n)Math.round(r[n])!==0&&(t[n]=1);return t}else throw new Error(`Unknown data type ${e}`)}function Uh(){return W().platform.now()}function _V(r,e){return W().platform.fetch(r,e)}function rl(r,e="utf-8"){return e=e||"utf-8",W().platform.encode(r,e)}function zc(r,e="utf-8"){return e=e||"utf-8",W().platform.decode(r,e)}var Bb=class{constructor(e,t){this.backendTimer=e,this.logger=t,t==null&&(this.logger=new EI)}profileKernel(e,t,n){let o,s=()=>{o=n()},a=this.backendTimer.time(s);if(W().getBool("CHECK_COMPUTATION_FOR_ERRORS"))for(let l=0;l<o.length;l++){let u=o[l];u.data().then(c=>{kV(c,u.dtype,e)})}return{kernelName:e,outputs:o,inputs:t,timeMs:a.then(l=>l.kernelMs),extraInfo:a.then(l=>l.getExtraProfileInfo!=null?l.getExtraProfileInfo():"")}}logKernelProfile(e){let{kernelName:t,outputs:n,timeMs:o,inputs:s,extraInfo:a}=e;n.forEach(i=>{Promise.all([i.data(),o,a]).then(l=>{this.logger.logKernelProfile(t,i,l[0],l[1],s,l[2])})})}};function kV(r,e,t){if(e!=="float32")return!1;for(let n=0;n<r.length;n++){let o=r[n];if(isNaN(o)||!isFinite(o))return console.warn(`Found ${o} in the result of '${t}'`),!0}return!1}var EI=class{logKernelProfile(e,t,n,o,s,a){let i=typeof o=="number"?zl(`${o}ms`,9):o.error,l=zl(e,25),u=t.rank,c=t.size,p=zl(t.shape.toString(),14),m="";for(let f in s){let d=s[f];if(d!=null){let h=d.shape||t.shape,g=h.length;m+=`${f}: ${g}D ${g>0?h:""} `}}console.log(`%c${l} %c${i} %c${u}D ${p} %c${c} %c${m} %c${a}`,"font-weight:bold","color:red","color:blue","color: orange","color: green","color: steelblue")}};function AI(r,e,t){let n={},o={};for(let l=0;l<e.length;l++)n[e[l].id]=!0;for(let l=0;l<r.length;l++){let u=r[l],c=u.inputs;for(let p in c){let m=c[p],f=!1;for(let d=0;d<e.length;d++)if(n[m.id]){u.outputs.forEach(h=>n[h.id]=!0),f=!0,o[u.id]=!0;break}if(f)break}}let s={};s[t.id]=!0;let a={};for(let l=r.length-1;l>=0;l--){let u=r[l],c=u.inputs;for(let p=0;p<u.outputs.length;p++)if(s[u.outputs[p].id]){for(let m in c)s[c[m].id]=!0,a[u.id]=!0;break}}let i=[];for(let l=0;l<r.length;l++){let u=r[l];if(o[u.id]&&a[u.id]){let c={};for(let m in u.inputs){let f=u.inputs[m];n[f.id]&&(c[m]=f)}let p=Object.assign({},u);p.inputs=c,p.outputs=u.outputs,i.push(p)}}return i}function DI(r,e,t,n){for(let o=e.length-1;o>=0;o--){let s=e[o],a=[];if(s.outputs.forEach(l=>{let u=r[l.id];u!=null?a.push(u):a.push(null)}),s.gradient==null)throw new Error(`Cannot compute gradient: gradient function not found for ${s.kernelName}.`);let i=s.gradient(a);for(let l in s.inputs){if(!(l in i))throw new Error(`Cannot backprop through input ${l}. Available gradients found: ${Object.keys(i)}.`);let u=t(()=>i[l]());if(u.dtype!=="float32")throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input ${l} must have 'float32' dtype, but has '${u.dtype}'`);let c=s.inputs[l];if(!Vr(u.shape,c.shape))throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input '${l}' has shape '${u.shape}', which does not match the shape of the input '${c.shape}'`);if(r[c.id]==null)r[c.id]=u;else{let p=r[c.id];r[c.id]=n(p,u),p.dispose()}}}}var $I=20,km=3,Vb=7;function RI(r,e,t,n){let o=Hs(e),s=vV(r,e,t,o),a=e.length,i=qh(r,e,t,o,s),l=["Tensor"];return n&&(l.push(` dtype: ${t}`),l.push(` rank: ${a}`),l.push(` shape: [${e}]`),l.push(" values:")),l.push(i.map(u=>" "+u).join(`
`)),l.join(`
`)}function vV(r,e,t,n){let o=ft(e),s=n[n.length-1],a=new Array(s).fill(0),i=e.length,l=t==="complex64"?Cm(r):r;if(i>1)for(let u=0;u<o/s;u++){let c=u*s;for(let p=0;p<s;p++)a[p]=Math.max(a[p],vm(l[c+p],0,t).length)}return a}function vm(r,e,t){let n;return Array.isArray(r)?n=`${parseFloat(r[0].toFixed(Vb))} + ${parseFloat(r[1].toFixed(Vb))}j`:os(r)?n=`'${r}'`:t==="bool"?n=FI(r):n=parseFloat(r.toFixed(Vb)).toString(),zl(n,e)}function FI(r){return r===0?"false":"true"}function qh(r,e,t,n,o,s=!0){let a=t==="complex64"?2:1,i=e[0],l=e.length;if(l===0){if(t==="complex64"){let h=Cm(r);return[vm(h[0],0,t)]}return t==="bool"?[FI(r[0])]:[r[0].toString()]}if(l===1){if(i>$I){let g=km*a,x=Array.from(r.slice(0,g)),b=Array.from(r.slice((i-km)*a,i*a));return t==="complex64"&&(x=Cm(x),b=Cm(b)),["["+x.map((w,_)=>vm(w,o[_],t)).join(", ")+", ..., "+b.map((w,_)=>vm(w,o[i-km+_],t)).join(", ")+"]"]}let h=t==="complex64"?Cm(r):Array.from(r);return["["+h.map((g,x)=>vm(g,o[x],t)).join(", ")+"]"]}let u=e.slice(1),c=n.slice(1),p=n[0]*a,m=[];if(i>$I){for(let h=0;h<km;h++){let g=h*p,x=g+p;m.push(...qh(r.slice(g,x),u,t,c,o,!1))}m.push("...");for(let h=i-km;h<i;h++){let g=h*p,x=g+p;m.push(...qh(r.slice(g,x),u,t,c,o,h===i-1))}}else for(let h=0;h<i;h++){let g=h*p,x=g+p;m.push(...qh(r.slice(g,x),u,t,c,o,h===i-1))}let f=l===2?",":"";m[0]="["+m[0]+f;for(let h=1;h<m.length-1;h++)m[h]=" "+m[h]+f;let d=`,
`;for(let h=2;h<l;h++)d+=`
`;return m[m.length-1]=" "+m[m.length-1]+"]"+(s?"":d),m}function Cm(r){let e=[];for(let t=0;t<r.length;t+=2)e.push([r[t],r[t+1]]);return e}var ct=class{constructor(e,t,n){if(this.dtype=t,this.shape=e.slice(),this.size=ft(e),n!=null){let o=n.length;A(o===this.size,()=>`Length of values '${o}' does not match the size inferred by the shape '${this.size}'.`)}if(t==="complex64")throw new Error("complex64 dtype TensorBuffers are not supported. Please create a TensorBuffer for the real and imaginary parts separately and call tf.complex(real, imag).");this.values=n||Tb(t,this.size),this.strides=Hs(e)}set(e,...t){t.length===0&&(t=[0]),A(t.length===this.rank,()=>`The number of provided coordinates (${t.length}) must match the rank (${this.rank})`);let n=this.locToIndex(t);this.values[n]=e}get(...e){e.length===0&&(e=[0]);let t=0;for(let o of e){if(o<0||o>=this.shape[t]){let s=`Requested out of range element at ${e}. Buffer shape=${this.shape}`;throw new Error(s)}t++}let n=e[e.length-1];for(let o=0;o<e.length-1;++o)n+=this.strides[o]*e[o];return this.values[n]}locToIndex(e){if(this.rank===0)return 0;if(this.rank===1)return e[0];let t=e[e.length-1];for(let n=0;n<e.length-1;++n)t+=this.strides[n]*e[n];return t}indexToLoc(e){if(this.rank===0)return[];if(this.rank===1)return[e];let t=new Array(this.shape.length);for(let n=0;n<t.length-1;++n)t[n]=Math.floor(e/this.strides[n]),e-=t[n]*this.strides[n];return t[t.length-1]=e,t}get rank(){return this.shape.length}toTensor(){return Oi().makeTensor(this.values,this.shape,this.dtype)}},Oi=null,Bc=null,CV=null;function OI(r){Oi=r}function PI(r){Bc=r}function MI(r){CV=r}var Ve=class{constructor(e,t,n,o){this.kept=!1,this.isDisposedInternal=!1,this.shape=e.slice(),this.dtype=t||"float32",this.size=ft(e),this.strides=Hs(e),this.dataId=n,this.id=o,this.rankType=this.rank<5?this.rank.toString():"higher"}get rank(){return this.shape.length}async buffer(){let e=await this.data();return Bc.buffer(this.shape,this.dtype,e)}bufferSync(){return Bc.buffer(this.shape,this.dtype,this.dataSync())}async array(){let e=await this.data();return Bl(this.shape,e)}arraySync(){return Bl(this.shape,this.dataSync())}async data(){this.throwIfDisposed();let e=Oi().read(this.dataId);if(this.dtype==="string"){let t=await e;try{return t.map(n=>zc(n))}catch(n){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}}return e}dataSync(){this.throwIfDisposed();let e=Oi().readSync(this.dataId);if(this.dtype==="string")try{return e.map(t=>zc(t))}catch(t){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}return e}async bytes(){this.throwIfDisposed();let e=await Oi().read(this.dataId);return this.dtype==="string"?e:new Uint8Array(e.buffer)}dispose(){this.isDisposed||(Oi().disposeTensor(this),this.isDisposedInternal=!0)}get isDisposed(){return this.isDisposedInternal}throwIfDisposed(){if(this.isDisposed)throw new Error("Tensor is disposed.")}print(e=!1){return Bc.print(this,e)}clone(){return this.throwIfDisposed(),Bc.clone(this)}toString(e=!1){let t=this.dataSync();return RI(t,this.shape,this.dtype,e)}cast(e){return this.throwIfDisposed(),Bc.cast(this,e)}variable(e=!0,t,n){return this.throwIfDisposed(),Oi().makeVariable(this,e,t,n)}};Object.defineProperty(Ve,Symbol.hasInstance,{value:r=>!!r&&r.data!=null&&r.dataSync!=null&&r.throwIfDisposed!=null});function O(){return bm("Tensor",()=>Ve)}O();var nl=class extends Ve{constructor(e,t,n,o){super(e.shape,e.dtype,e.dataId,o);this.trainable=t,this.name=n}assign(e){if(e.dtype!==this.dtype)throw new Error(`dtype of the new value (${e.dtype}) and previous value (${this.dtype}) must match`);if(!Vr(e.shape,this.shape))throw new Error(`shape of the new value (${e.shape}) and previous value (${this.shape}) must match`);Oi().disposeTensor(this),this.dataId=e.dataId,Oi().incRef(this,null)}dispose(){Oi().disposeVariable(this),this.isDisposedInternal=!0}};Object.defineProperty(nl,Symbol.hasInstance,{value:r=>r instanceof Ve&&r.assign!=null&&r.assign instanceof Function});var Fo={};Ye(Fo,{assertTypesMatch:()=>Hb,getTensorsInContainer:()=>Im,isTensorInList:()=>NV,makeTypesMatch:()=>Ge});var Gb;(function(r){r.R0="R0",r.R1="R1",r.R2="R2",r.R3="R3",r.R4="R4",r.R5="R5",r.R6="R6"})(Gb||(Gb={}));var jb;(function(r){r.float32="float32",r.int32="int32",r.bool="int32",r.complex64="complex64"})(jb||(jb={}));var Wb;(function(r){r.float32="float32",r.int32="int32",r.bool="bool",r.complex64="complex64"})(Wb||(Wb={}));var Ub;(function(r){r.float32="float32",r.int32="float32",r.bool="float32",r.complex64="complex64"})(Ub||(Ub={}));var qb;(function(r){r.float32="complex64",r.int32="complex64",r.bool="complex64",r.complex64="complex64"})(qb||(qb={}));var IV={float32:Ub,int32:jb,bool:Wb,complex64:qb};function fr(r,e){if(r==="string"||e==="string"){if(r==="string"&&e==="string")return"string";throw new Error(`Can not upcast ${r} with ${e}`)}return IV[r][e]}function hu(r){return fr(r,"int32")}function Ge(r,e){if(r.dtype===e.dtype)return[r,e];let t=fr(r.dtype,e.dtype);return[r.cast(t),e.cast(t)]}function Hb(r,e){A(r.dtype===e.dtype,()=>`The dtypes of the first(${r.dtype}) and second(${e.dtype}) input must match`)}function NV(r,e){return e.some(t=>t.id===r.id)}function Im(r){let e=[],t=new Set;return LI(r,e,t),e}function LI(r,e,t){if(r==null)return;if(r instanceof Ve){e.push(r);return}if(!SV(r))return;let n=r;for(let o in n){let s=n[o];t.has(s)||(t.add(s),LI(s,e,t))}}function SV(r){return Array.isArray(r)||typeof r=="object"}function Kb(r){return r.kernelName!=null}var Xb=class{constructor(){this.registeredVariables={},this.nextTapeNodeId=0,this.numBytes=0,this.numTensors=0,this.numStringTensors=0,this.numDataBuffers=0,this.gradientDepth=0,this.kernelDepth=0,this.scopeStack=[],this.numDataMovesStack=[],this.nextScopeId=0,this.tensorInfo=new WeakMap,this.profiling=!1,this.activeProfile={newBytes:0,newTensors:0,peakBytes:0,kernels:[],result:null,get kernelNames(){return Array.from(new Set(this.kernels.map(e=>e.name)))}}}dispose(){for(let e in this.registeredVariables)this.registeredVariables[e].dispose()}},gu=class{constructor(e){this.ENV=e,this.registry={},this.registryFactory={},this.pendingBackendInitId=0,this.state=new Xb}async ready(){if(this.pendingBackendInit!=null)return this.pendingBackendInit.then(()=>{});if(this.backendInstance!=null)return;let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t];if(await this.initializeBackend(n).success){await this.setBackend(n);return}}throw new Error("Could not initialize any backends, all backend initializations failed.")}get backend(){if(this.pendingBackendInit!=null)throw new Error(`Backend '${this.backendName}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);if(this.backendInstance==null){let{name:e,asyncInit:t}=this.initializeBackendsAndReturnBest();if(t)throw new Error(`The highest priority backend '${e}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);this.setBackend(e)}return this.backendInstance}backendNames(){return Object.keys(this.registryFactory)}findBackend(e){if(!(e in this.registry))if(e in this.registryFactory){let{asyncInit:t}=this.initializeBackend(e);if(t)return null}else return null;return this.registry[e]}findBackendFactory(e){return e in this.registryFactory?this.registryFactory[e].factory:null}registerBackend(e,t,n=1){return e in this.registryFactory?(console.warn(`${e} backend was already registered. Reusing existing backend factory.`),!1):(this.registryFactory[e]={factory:t,priority:n},!0)}async setBackend(e){if(this.registryFactory[e]==null)throw new Error(`Backend name '${e}' not found in registry`);if(this.backendName=e,this.registry[e]==null){this.backendInstance=null;let{success:t,asyncInit:n}=this.initializeBackend(e);if(!(n?await t:t))return!1}return this.backendInstance=this.registry[e],this.setupRegisteredKernels(),this.profiler=new Bb(this.backendInstance),!0}setupRegisteredKernels(){_m(this.backendName).forEach(t=>{t.setupFunc!=null&&t.setupFunc(this.backendInstance)})}disposeRegisteredKernels(e){_m(e).forEach(n=>{n.disposeFunc!=null&&n.disposeFunc(this.registry[e])})}initializeBackend(e){let t=this.registryFactory[e];if(t==null)throw new Error(`Cannot initialize backend ${e}, no registration found.`);try{let n=t.factory();if(n&&!(n instanceof Ws)&&typeof n.then=="function"){let o=++this.pendingBackendInitId,s=n.then(a=>o<this.pendingBackendInitId?!1:(this.registry[e]=a,this.pendingBackendInit=null,!0)).catch(a=>(o<this.pendingBackendInitId||(this.pendingBackendInit=null,console.warn(`Initialization of backend ${e} failed`),console.warn(a.stack||a.message)),!1));return this.pendingBackendInit=s,{success:s,asyncInit:!0}}else return this.registry[e]=n,{success:!0,asyncInit:!1}}catch(n){return console.warn(`Initialization of backend ${e} failed`),console.warn(n.stack||n.message),{success:!1,asyncInit:!1}}}removeBackend(e){if(!(e in this.registryFactory))throw new Error(`${e} backend not found in registry`);this.backendName===e&&this.pendingBackendInit!=null&&this.pendingBackendInitId++,e in this.registry&&(this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e]),delete this.registryFactory[e],this.backendName===e&&(this.pendingBackendInit=null,this.backendName=null,this.backendInstance=null)}getSortedBackends(){if(Object.keys(this.registryFactory).length===0)throw new Error("No backend found in registry.");return Object.keys(this.registryFactory).sort((e,t)=>this.registryFactory[t].priority-this.registryFactory[e].priority)}initializeBackendsAndReturnBest(){let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t],{success:o,asyncInit:s}=this.initializeBackend(n);if(s||o)return{name:n,asyncInit:s}}throw new Error("Could not initialize any backends, all backend initializations failed.")}moveData(e,t){let n=this.state.tensorInfo.get(t),o=n.backend,s=this.readSync(t);o.disposeData(t),n.backend=e,e.move(t,s,n.shape,n.dtype),this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack[this.state.numDataMovesStack.length-1]++}tidy(e,t){let n=null;if(t==null){if(typeof e!="function")throw new Error("Please provide a function to tidy()");t=e}else{if(typeof e!="string"&&!(e instanceof String))throw new Error("When calling with two arguments, the first argument to tidy() must be a string");if(typeof t!="function")throw new Error("When calling with two arguments, the 2nd argument to tidy() must be a function");n=e}let o;return this.scopedRun(()=>this.startScope(n),()=>this.endScope(o),()=>(o=t(),o instanceof Promise&&console.error("Cannot return a Promise inside of tidy."),o))}scopedRun(e,t,n){e();try{let o=n();return t(),o}catch(o){throw t(),o}}nextTensorId(){return gu.nextTensorId++}nextVariableId(){return gu.nextVariableId++}clone(e){let t=this.makeTensorFromDataId(e.dataId,e.shape,e.dtype),n={x:e},o=a=>({x:()=>{let i="float32",l={x:a},u={dtype:i};return D.runKernel(An,l,u)}}),s=[];return this.addTapeNode(this.state.activeScope.name,n,[t],o,s,{}),t}runKernel(e,t,n){if(!(Mc(e,this.backendName)!=null))throw new Error(`Kernel '${e}' not registered for backend '${this.backendName}'`);return this.runKernelFunc({kernelName:e,inputs:t,attrs:n})}shouldCheckForMemLeaks(){return this.ENV.getBool("IS_TEST")}checkKernelForMemLeak(e,t,n){let o=this.backend.numDataIds(),s=0;n.forEach(l=>{s+=l.dtype==="complex64"?3:1});let a=this.state.numDataMovesStack[this.state.numDataMovesStack.length-1],i=o-t-s-a;if(i>0)throw new Error(`Backend '${this.backendName}' has an internal memory leak (${i} data ids) after running '${e}'`)}runKernelFunc(e){let t,n=[],o=this.isTapeOn(),s=this.state.numBytes,a=this.state.numTensors;this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack.push(0);let i;this.backendName==null&&this.backend;let l,u=Kb(e)?e.kernelName:this.state.activeScope!=null?this.state.activeScope.name:"";if(Kb(e)){let{kernelName:d,inputs:h,attrs:g}=e;this.backendName==null&&this.backend;let x=Mc(d,this.backendName);A(x!=null,()=>`Cannot find registered kernel '${d}' for backend '${this.backendName}'`),i=()=>{let b=this.backend.numDataIds();l=x.kernelFunc({inputs:h,attrs:g,backend:this.backend});let w=Array.isArray(l)?l:[l];this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(d,b,w);let _=w.map(k=>{if(k.rank!=null)return k;let{dataId:E,shape:S,dtype:R}=k;return this.makeTensorFromDataId(E,S,R)});if(o){let k=this.getTensorsForGradient(d,h,_);n=this.saveTensorsForBackwardMode(k)}return _}}else{let{forwardFunc:d}=e,h=g=>{!o||(n=g.map(x=>this.keep(this.clone(x))))};i=()=>{let g=this.backend.numDataIds();l=this.tidy(()=>d(this.backend,h));let x=Array.isArray(l)?l:[l];return this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(u,g,x),x}}let{inputs:c,attrs:p}=e,m=Kb(e)?null:e.backwardsFunc,f;return this.scopedRun(()=>this.state.kernelDepth++,()=>this.state.kernelDepth--,()=>{!this.ENV.getBool("DEBUG")&&!this.state.profiling?t=i():(f=this.profiler.profileKernel(u,c,()=>i()),this.ENV.getBool("DEBUG")&&this.profiler.logKernelProfile(f),t=f.outputs)}),o&&this.addTapeNode(u,c,t,m,n,p),this.state.profiling&&this.state.activeProfile.kernels.push({name:u,bytesAdded:this.state.numBytes-s,totalBytesSnapshot:this.state.numBytes,tensorsAdded:this.state.numTensors-a,totalTensorsSnapshot:this.state.numTensors,inputShapes:Object.keys(c).map(d=>c[d]!=null?c[d].shape:null),outputShapes:t.map(d=>d.shape),kernelTimeMs:f.timeMs,extraInfo:f.extraInfo}),Array.isArray(l)?t:t[0]}saveTensorsForBackwardMode(e){return e.map(n=>this.keep(this.clone(n)))}getTensorsForGradient(e,t,n){let o=Wh(e);if(o!=null){let s=o.inputsToSave||[],a=o.outputsToSave||[],i;o.saveAllInputs?(A(Array.isArray(t),()=>"saveAllInputs is true, expected inputs to be an array."),i=Object.keys(t).map(u=>t[u])):i=s.map(u=>t[u]);let l=n.filter((u,c)=>a[c]);return i.concat(l)}return[]}makeTensor(e,t,n,o){if(e==null)throw new Error("Values passed to engine.makeTensor() are null");n=n||"float32",o=o||this.backend;let s=e;n==="string"&&os(e[0])&&(s=e.map(l=>rl(l)));let a=o.write(s,t,n),i=new Ve(t,n,a,this.nextTensorId());if(this.incRef(i,o),n==="string"){let l=this.state.tensorInfo.get(a),u=$b(s);this.state.numBytes+=u-l.bytes,l.bytes=u}return i}makeTensorFromDataId(e,t,n,o){n=n||"float32";let s=new Ve(t,n,e,this.nextTensorId());return this.incRef(s,o),s}makeVariable(e,t=!0,n,o){n=n||this.nextVariableId().toString(),o!=null&&o!==e.dtype&&(e=e.cast(o));let s=new nl(e,t,n,this.nextTensorId());if(this.state.registeredVariables[s.name]!=null)throw new Error(`Variable with name ${s.name} was already registered`);return this.state.registeredVariables[s.name]=s,this.incRef(s,this.backend),s}incRef(e,t){let n=this.state.tensorInfo.has(e.dataId)?this.state.tensorInfo.get(e.dataId).refCount:0;if(this.state.numTensors++,e.dtype==="string"&&this.state.numStringTensors++,n===0){this.state.numDataBuffers++;let o=0;e.dtype!=="complex64"&&e.dtype!=="string"&&(o=e.size*Db(e.dtype)),this.state.tensorInfo.set(e.dataId,{backend:t||this.backend,dtype:e.dtype,shape:e.shape,bytes:o,refCount:0}),this.state.numBytes+=o}this.state.tensorInfo.get(e.dataId).refCount++,e instanceof nl||this.track(e)}disposeTensor(e){if(!this.state.tensorInfo.has(e.dataId))return;this.state.numTensors--,e.dtype==="string"&&this.state.numStringTensors--;let t=this.state.tensorInfo.get(e.dataId);t.refCount<=1?(e.dtype!=="complex64"&&(this.state.numBytes-=t.bytes),this.state.numDataBuffers--,t.backend.disposeData(e.dataId),this.state.tensorInfo.delete(e.dataId)):(t.backend.decComplexRef(e.dataId),this.state.tensorInfo.get(e.dataId).refCount--)}disposeVariables(){for(let e in this.state.registeredVariables){let t=this.state.registeredVariables[e];this.disposeVariable(t)}}disposeVariable(e){this.disposeTensor(e),this.state.registeredVariables[e.name]!=null&&delete this.state.registeredVariables[e.name]}memory(){let e=this.backend.memory();return e.numTensors=this.state.numTensors,e.numDataBuffers=this.state.numDataBuffers,e.numBytes=this.state.numBytes,this.state.numStringTensors>0&&(e.unreliable=!0,e.reasons==null&&(e.reasons=[]),e.reasons.push("Memory usage by string tensors is approximate (2 bytes per character)")),e}async profile(e){this.state.profiling=!0;let t=this.state.numBytes,n=this.state.numTensors;this.state.activeProfile.kernels=[],this.state.activeProfile.result=await e(),this.state.profiling=!1,this.state.activeProfile.peakBytes=Math.max(...this.state.activeProfile.kernels.map(o=>o.totalBytesSnapshot)),this.state.activeProfile.newBytes=this.state.numBytes-t,this.state.activeProfile.newTensors=this.state.numTensors-n;for(let o of this.state.activeProfile.kernels)o.kernelTimeMs=await o.kernelTimeMs,o.extraInfo=await o.extraInfo;return this.state.activeProfile}isTapeOn(){return this.state.gradientDepth>0&&this.state.kernelDepth===0}addTapeNode(e,t,n,o,s,a){let i={id:this.state.nextTapeNodeId++,kernelName:e,inputs:t,outputs:n,saved:s},l=Wh(e);l!=null&&(o=l.gradFunc),o!=null&&(i.gradient=u=>(u=u.map((c,p)=>{if(c==null){let m=n[p],f=$c(m.size,m.dtype);return this.makeTensor(f,m.shape,m.dtype)}return c}),o(u.length>1?u:u[0],s,a))),this.state.activeTape.push(i)}keep(e){return e.kept=!0,e}startTape(){this.state.gradientDepth===0&&(this.state.activeTape=[]),this.state.gradientDepth++}endTape(){this.state.gradientDepth--}startScope(e){let t={track:[],name:"unnamed scope",id:this.state.nextScopeId++};e&&(t.name=e),this.state.scopeStack.push(t),this.state.activeScope=t}endScope(e){let t=Im(e),n=new Set(t.map(s=>s.id));for(let s=0;s<this.state.activeScope.track.length;s++){let a=this.state.activeScope.track[s];!a.kept&&!n.has(a.id)&&a.dispose()}let o=this.state.scopeStack.pop();this.state.activeScope=this.state.scopeStack.length===0?null:this.state.scopeStack[this.state.scopeStack.length-1],t.forEach(s=>{!s.kept&&s.scopeId===o.id&&this.track(s)})}gradients(e,t,n,o=!1){if(A(t.length>0,()=>"gradients() received an empty list of xs."),n!=null&&n.dtype!=="float32")throw new Error(`dy must have 'float32' dtype, but has '${n.dtype}'`);let s=this.scopedRun(()=>this.startTape(),()=>this.endTape(),()=>this.tidy("forward",e));A(s instanceof Ve,()=>"The result y returned by f() must be a tensor.");let a=AI(this.state.activeTape,t,s);if(!o&&a.length===0&&t.length>0)throw new Error("Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.");return this.tidy("backward",()=>{let i={};i[s.id]=n==null?TV(s.shape):n,DI(i,a,u=>this.tidy(u),EV);let l=t.map(u=>i[u.id]);return this.state.gradientDepth===0&&(this.state.activeTape.forEach(u=>{for(let c of u.saved)c.dispose()}),this.state.activeTape=null),{value:s,grads:l}})}customGrad(e){return A(qs(e),()=>"The f passed in customGrad(f) must be a function."),(...t)=>{A(t.every(i=>i instanceof Ve),()=>"The args passed in customGrad(f)(x1, x2,...) must all be tensors");let n,o={};t.forEach((i,l)=>{o[l]=i});let s=(i,l)=>(n=e(...t,l),A(n.value instanceof Ve,()=>"The function f passed in customGrad(f) must return an object where `obj.value` is a tensor"),A(qs(n.gradFunc),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function."),n.value),a=(i,l)=>{let u=n.gradFunc(i,l),c=Array.isArray(u)?u:[u];A(c.length===t.length,()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns the same number of tensors as inputs passed to f(...)."),A(c.every(m=>m instanceof Ve),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns a list of only tensors.");let p={};return c.forEach((m,f)=>{p[f]=()=>m}),p};return this.runKernelFunc({forwardFunc:s,backwardsFunc:a,inputs:o})}}readSync(e){return this.state.tensorInfo.get(e).backend.readSync(e)}read(e){return this.state.tensorInfo.get(e).backend.read(e)}async time(e){let t=Uh(),n=await this.backend.time(e);return n.wallMs=Uh()-t,n}track(e){return this.state.activeScope!=null&&(e.scopeId=this.state.activeScope.id,this.state.activeScope.track.push(e)),e}get registeredVariables(){return this.state.registeredVariables}reset(){this.pendingBackendInitId++,this.state.dispose(),this.ENV.reset(),this.state=new Xb;for(let e in this.registry)this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e];this.backendName=null,this.backendInstance=null,this.pendingBackendInit=null}};gu.nextTensorId=0;gu.nextVariableId=0;function TV(r){let e=gm(ft(r),"float32");return D.makeTensor(e,r,"float32")}function Yb(){let r=Ob();if(r._tfengine==null){let e=new jh(r);r._tfengine=new gu(e)}return TI(r._tfengine.ENV),OI(()=>r._tfengine),r._tfengine}var D=Yb();function EV(r,e){let t={a:r,b:e};return D.runKernel(xn,t)}var Vc={};Ye(Vc,{isBrowser:()=>Zb,isMobile:()=>DV});function AV(){return typeof navigator!="undefined"&&navigator!=null}function DV(){if(AV()){let r=navigator.userAgent||navigator.vendor||window.opera;return/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i.test(r)||/1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(r.substr(0,4))}return!1}function Zb(){return typeof window!="undefined"&&window.document!=null||typeof WorkerGlobalScope!="undefined"}var Pi=W();Pi.registerFlag("DEBUG",()=>!1,r=>{r&&console.warn("Debugging mode is ON. The output of every math call will be downloaded to CPU and checked for NaNs. This significantly impacts performance.")});Pi.registerFlag("IS_BROWSER",()=>Zb());Pi.registerFlag("IS_NODE",()=>typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined");Pi.registerFlag("IS_CHROME",()=>typeof navigator!="undefined"&&navigator!=null&&navigator.userAgent!=null&&/Chrome/.test(navigator.userAgent)&&/Google Inc/.test(navigator.vendor));Pi.registerFlag("PROD",()=>!1);Pi.registerFlag("TENSORLIKE_CHECK_SHAPE_CONSISTENCY",()=>Pi.getBool("DEBUG"));Pi.registerFlag("DEPRECATION_WARNINGS_ENABLED",()=>!0);Pi.registerFlag("IS_TEST",()=>!1);Pi.registerFlag("CHECK_COMPUTATION_FOR_ERRORS",()=>!0);function vr(r,e){let t=r;if(nr(r))return e==="string"?[]:[r.length];if(!Array.isArray(r))return[];let n=[];for(;Array.isArray(t)||nr(t)&&e!=="string";)n.push(t.length),t=t[0];return Array.isArray(r)&&W().getBool("TENSORLIKE_CHECK_SHAPE_CONSISTENCY")&&zI(r,n,[]),n}function zI(r,e,t){if(t=t||[],!Array.isArray(r)&&!nr(r)){A(e.length===0,()=>`Element arr[${t.join("][")}] is a primitive, but should be an array/TypedArray of ${e[0]} elements`);return}A(e.length>0,()=>`Element arr[${t.join("][")}] should be a primitive, but is an array of ${r.length} elements`),A(r.length===e[0],()=>`Element arr[${t.join("][")}] should have ${e[0]} elements, but has ${r.length} elements`);let n=e.slice(1);for(let o=0;o<r.length;++o)zI(r[o],n,t.concat(o))}function BI(r,e,t,n){if(r!=="string_or_numeric"){if(r==null)throw new Error("Expected dtype cannot be null.");if(r!=="numeric"&&r!==e||r==="numeric"&&e==="string")throw new Error(`Argument '${t}' passed to '${n}' must be ${r} tensor, but got ${e} tensor`)}}function v(r,e,t,n="numeric"){if(r instanceof Ve)return BI(n,r.dtype,e,t),r;let o=Ac(r);if(o!=="string"&&["bool","int32","float32"].indexOf(n)>=0&&(o=n),BI(n,o,e,t),r==null||!nr(r)&&!Array.isArray(r)&&typeof r!="number"&&typeof r!="boolean"&&typeof r!="string"){let l=r==null?"null":r.constructor.name;throw new Error(`Argument '${e}' passed to '${t}' must be a Tensor or TensorLike, but got '${l}'`)}let s=vr(r,o);!nr(r)&&!Array.isArray(r)&&(r=[r]);let i=o!=="string"?Lc(r,o):ns(r,[],!0);return D.makeTensor(i,s,o)}function ya(r,e,t,n="numeric"){if(!Array.isArray(r))throw new Error(`Argument ${e} passed to ${t} must be a \`Tensor[]\` or \`TensorLike[]\``);return r.map((s,a)=>v(s,`${e}[${a}]`,t,n))}var VI="__op";function T(r){let e=Object.keys(r);if(e.length!==1)throw new Error(`Please provide an object with a single key (operation name) mapping to a function. Got an object with ${e.length} keys.`);let t=e[0],n=r[t];t.endsWith("_")&&(t=t.substring(0,t.length-1)),t=t+VI;let o=(...s)=>{D.startScope(t);try{let a=n(...s);return ym(a)&&console.error("Cannot return a Promise inside of tidy."),D.endScope(a),a}catch(a){throw D.endScope(null),a}};return Object.defineProperty(o,"name",{value:t,configurable:!0}),o}function $V(r,e){let t=v(r,"real","complex"),n=v(e,"imag","complex");St(t.shape,n.shape,`real and imag shapes, ${t.shape} and ${n.shape}, must match in call to tf.complex().`);let o={real:t,imag:n};return D.runKernel(ql,o)}var bn=T({complex_:$V});function Gr(r,e,t,n){if(n==null&&(n=Ac(r)),n==="complex64")throw new Error("Cannot construct a complex64 tensor directly. Please use tf.complex(real, imag).");if(!nr(r)&&!Array.isArray(r)&&typeof r!="number"&&typeof r!="boolean"&&typeof r!="string")throw new Error("values passed to tensor(values) must be a number/boolean/string or an array of numbers/booleans/strings, or a TypedArray");if(e!=null){xm(e);let o=ft(e),s=ft(t);A(o===s,()=>`Based on the provided shape, [${e}], the tensor should have ${o} values but has ${s}`);for(let a=0;a<t.length;++a){let i=t[a],l=a===t.length-1?i!==ft(e.slice(a)):!0;A(t[a]===e[a]||!l,()=>`Error creating a new Tensor. Inferred shape (${t}) does not match the provided shape (${e}). `)}}return!nr(r)&&!Array.isArray(r)&&(r=[r]),e=e||t,r=n!=="string"?Lc(r,n):ns(r,[],!0),D.makeTensor(r,e,n)}function $r(r,e,t){let n=vr(r,t);return Gr(r,e,n,t)}var Nm={float32:4,float16:2,int32:4,uint16:2,uint8:1,bool:1,complex64:8};var Hh=4;async function GI(r,e){let t=[],n=[],o=Array.isArray(r)?r.map(a=>a.name):Object.keys(r);for(let a=0;a<o.length;++a){let i=o[a],l=Array.isArray(r)?r[a].tensor:r[i];if(l.dtype!=="float32"&&l.dtype!=="int32"&&l.dtype!=="bool"&&l.dtype!=="string"&&l.dtype!=="complex64")throw new Error(`Unsupported dtype in weight '${i}': ${l.dtype}`);let u={name:i,shape:l.shape,dtype:l.dtype};if(l.dtype==="string"){let c=new Promise(async p=>{let m=await l.bytes(),f=m.reduce((g,x)=>g+x.length,0)+Hh*m.length,d=new Uint8Array(f),h=0;for(let g=0;g<m.length;g++){let x=m[g],b=new Uint8Array(new Uint32Array([x.length]).buffer);d.set(b,h),h+=Hh,d.set(x,h),h+=x.length}p(d)});n.push(c)}else n.push(l.data());e!=null&&(u.group=e),t.push(u)}let s=await Promise.all(n);return{data:RV(s),specs:t}}function Kh(r,e){let t={},n,o=0;for(let s of e){let a=s.name,i=s.dtype,l=s.shape,u=ft(l),c;if("quantization"in s){let p=s.quantization;if(p.dtype==="uint8"||p.dtype==="uint16"){if(!("min"in p&&"scale"in p))throw new Error(`Weight ${s.name} with quantization ${p.dtype} doesn't have corresponding metadata min and scale.`)}else if(p.dtype==="float16"){if(i!=="float32")throw new Error(`Weight ${s.name} is quantized with ${p.dtype} which only supports weights of type float32 not ${i}.`)}else throw new Error(`Weight ${s.name} has unknown quantization dtype ${p.dtype}. Supported quantization dtypes are: 'uint8', 'uint16', and 'float16'.`);let m=Nm[p.dtype],f=r.slice(o,o+u*m),d=p.dtype==="uint8"?new Uint8Array(f):new Uint16Array(f);if(i==="float32")if(p.dtype==="uint8"||p.dtype==="uint16"){c=new Float32Array(d.length);for(let h=0;h<d.length;h++){let g=d[h];c[h]=g*p.scale+p.min}}else if(p.dtype==="float16")n===void 0&&(n=FV()),c=n(d);else throw new Error(`Unsupported quantization type ${p.dtype} for weight type float32.`);else if(i==="int32"){if(p.dtype!=="uint8"&&p.dtype!=="uint16")throw new Error(`Unsupported quantization type ${p.dtype} for weight type int32.`);c=new Int32Array(d.length);for(let h=0;h<d.length;h++){let g=d[h];c[h]=Math.round(g*p.scale+p.min)}}else throw new Error(`Unsupported dtype in weight '${a}': ${i}`);o+=u*m}else if(i==="string"){let p=ft(s.shape);c=[];for(let m=0;m<p;m++){let f=new Uint32Array(r.slice(o,o+Hh))[0];o+=Hh;let d=new Uint8Array(r.slice(o,o+f));c.push(d),o+=f}}else{let p=Nm[i],m=r.slice(o,o+u*p);if(i==="float32")c=new Float32Array(m);else if(i==="int32")c=new Int32Array(m);else if(i==="bool")c=new Uint8Array(m);else if(i==="complex64"){c=new Float32Array(m);let f=new Float32Array(c.length/2),d=new Float32Array(c.length/2);for(let x=0;x<f.length;x++)f[x]=c[x*2],d[x]=c[x*2+1];let h=$r(f,l,"float32"),g=$r(d,l,"float32");t[a]=bn(h,g),h.dispose(),g.dispose()}else throw new Error(`Unsupported dtype in weight '${a}': ${i}`);o+=u*p}i!=="complex64"&&(t[a]=$r(c,l,i))}return t}function RV(r){if(r===null)throw new Error(`Invalid input value: ${JSON.stringify(r)}`);let e=0,t=[];r.forEach(s=>{if(e+=s.byteLength,t.push(s.byteLength===s.buffer.byteLength?s:new s.constructor(s)),!(s instanceof Float32Array||s instanceof Int32Array||s instanceof Uint8Array))throw new Error(`Unsupported TypedArray subtype: ${s.constructor.name}`)});let n=new Uint8Array(e),o=0;return t.forEach(s=>{n.set(new Uint8Array(s.buffer),o),o+=s.byteLength}),n.buffer}var Jb=typeof Buffer!="undefined"&&(typeof Blob=="undefined"||typeof atob=="undefined"||typeof btoa=="undefined");function jI(r){return Jb?Buffer.byteLength(r):new Blob([r]).size}function WI(r){if(Jb)return Buffer.from(r).toString("base64");let e=new Uint8Array(r),t="";for(let n=0,o=e.length;n<o;n++)t+=String.fromCharCode(e[n]);return btoa(t)}function UI(r){if(Jb){let n=Buffer.from(r,"base64");return n.buffer.slice(n.byteOffset,n.byteOffset+n.byteLength)}let e=atob(r),t=new Uint8Array(e.length);for(let n=0;n<e.length;++n)t.set([e.charCodeAt(n)],n);return t.buffer}function Gc(r){if(r.length===1)return r[0];let e=0;r.forEach(o=>{e+=o.byteLength});let t=new Uint8Array(e),n=0;return r.forEach(o=>{t.set(new Uint8Array(o),n),n+=o.byteLength}),t.buffer}function Qb(r){let e="/";for(r=r.trim();r.endsWith(e);)r=r.slice(0,r.length-1);let t=r.split(e);return t[t.length-1]}function Mi(r){if(r.modelTopology instanceof ArrayBuffer)throw new Error("Expected JSON model topology, received ArrayBuffer.");return{dateSaved:new Date,modelTopologyType:"JSON",modelTopologyBytes:r.modelTopology==null?0:jI(JSON.stringify(r.modelTopology)),weightSpecsBytes:r.weightSpecs==null?0:jI(JSON.stringify(r.weightSpecs)),weightDataBytes:r.weightData==null?0:r.weightData.byteLength}}function OV(){let r=t=>{let n=t<<13,o=0;for(;(n&8388608)==0;)o-=8388608,n<<=1;return n&=~8388608,o+=947912704,n|o},e=new Uint32Array(2048);e[0]=0;for(let t=1;t<1024;t++)e[t]=r(t);for(let t=1024;t<2048;t++)e[t]=939524096+(t-1024<<13);return e}function PV(){let r=new Uint32Array(64);r[0]=0,r[31]=1199570944,r[32]=2147483648,r[63]=3347054592;for(let e=1;e<31;e++)r[e]=e<<23;for(let e=33;e<63;e++)r[e]=2147483648+(e-32<<23);return r}function MV(){let r=new Uint32Array(64);for(let e=0;e<64;e++)r[e]=1024;return r[0]=r[32]=0,r}function FV(){let r=OV(),e=PV(),t=MV();return n=>{let o=new ArrayBuffer(4*n.length),s=new Uint32Array(o);for(let a=0;a<n.length;a++){let i=n[a],l=r[t[i>>10]+(i&1023)]+e[i>>10];s[a]=l}return new Float32Array(o)}}var Tt=class{constructor(){this.saveRouters=[],this.loadRouters=[]}static getInstance(){return Tt.instance==null&&(Tt.instance=new Tt),Tt.instance}static registerSaveRouter(e){Tt.getInstance().saveRouters.push(e)}static registerLoadRouter(e){Tt.getInstance().loadRouters.push(e)}static getSaveHandlers(e){return Tt.getHandlers(e,"save")}static getLoadHandlers(e,t){return Tt.getHandlers(e,"load",t)}static getHandlers(e,t,n){let o=[];return(t==="load"?Tt.getInstance().loadRouters:Tt.getInstance().saveRouters).forEach(a=>{let i=a(e,n);i!==null&&o.push(i)}),o}},qI=r=>Tt.registerSaveRouter(r),HI=r=>Tt.registerLoadRouter(r),KI=r=>Tt.getSaveHandlers(r),XI=(r,e)=>Tt.getLoadHandlers(r,e);var ew="tensorflowjs",tw=1,xu="models_store",ol="model_info_store";function YI(){if(!W().getBool("IS_BROWSER"))throw new Error("Failed to obtain IndexedDB factory because the current environmentis not a web browser.");let r=typeof window=="undefined"?self:window,e=r.indexedDB||r.mozIndexedDB||r.webkitIndexedDB||r.msIndexedDB||r.shimIndexedDB;if(e==null)throw new Error("The current browser does not appear to support IndexedDB.");return e}function rw(r){let e=r.result;e.createObjectStore(xu,{keyPath:"modelPath"}),e.createObjectStore(ol,{keyPath:"modelPath"})}var ba=class{constructor(e){if(this.indexedDB=YI(),e==null||!e)throw new Error("For IndexedDB, modelPath must not be null, undefined or empty.");this.modelPath=e}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");return this.databaseAction(this.modelPath,e)}async load(){return this.databaseAction(this.modelPath)}databaseAction(e,t){return new Promise((n,o)=>{let s=this.indexedDB.open(ew,tw);s.onupgradeneeded=()=>rw(s),s.onsuccess=()=>{let a=s.result;if(t==null){let i=a.transaction(xu,"readonly"),u=i.objectStore(xu).get(this.modelPath);u.onsuccess=()=>{if(u.result==null)return a.close(),o(new Error(`Cannot find model with path '${this.modelPath}' in IndexedDB.`));n(u.result.modelArtifacts)},u.onerror=c=>(a.close(),o(u.error)),i.oncomplete=()=>a.close()}else{let i=Mi(t),l=a.transaction(ol,"readwrite"),u=l.objectStore(ol),c=u.put({modelPath:this.modelPath,modelArtifactsInfo:i}),p;c.onsuccess=()=>{p=a.transaction(xu,"readwrite");let f=p.objectStore(xu).put({modelPath:this.modelPath,modelArtifacts:t,modelArtifactsInfo:i});f.onsuccess=()=>n({modelArtifactsInfo:i}),f.onerror=d=>{u=l.objectStore(ol);let h=u.delete(this.modelPath);h.onsuccess=()=>(a.close(),o(f.error)),h.onerror=g=>(a.close(),o(f.error))}},c.onerror=m=>(a.close(),o(c.error)),l.oncomplete=()=>{p==null?a.close():p.oncomplete=()=>a.close()}}},s.onerror=a=>o(s.error)})}};ba.URL_SCHEME="indexeddb://";var ZI=r=>W().getBool("IS_BROWSER")&&!Array.isArray(r)&&r.startsWith(ba.URL_SCHEME)?LV(r.slice(ba.URL_SCHEME.length)):null;Tt.registerSaveRouter(ZI);Tt.registerLoadRouter(ZI);function LV(r){return new ba(r)}function zV(r){return r.startsWith(ba.URL_SCHEME)?r.slice(ba.URL_SCHEME.length):r}var nw=class{constructor(){this.indexedDB=YI()}async listModels(){return new Promise((e,t)=>{let n=this.indexedDB.open(ew,tw);n.onupgradeneeded=()=>rw(n),n.onsuccess=()=>{let o=n.result,s=o.transaction(ol,"readonly"),i=s.objectStore(ol).getAll();i.onsuccess=()=>{let l={};for(let u of i.result)l[u.modelPath]=u.modelArtifactsInfo;e(l)},i.onerror=l=>(o.close(),t(i.error)),s.oncomplete=()=>o.close()},n.onerror=o=>t(n.error)})}async removeModel(e){return e=zV(e),new Promise((t,n)=>{let o=this.indexedDB.open(ew,tw);o.onupgradeneeded=()=>rw(o),o.onsuccess=()=>{let s=o.result,a=s.transaction(ol,"readwrite"),i=a.objectStore(ol),l=i.get(e),u;l.onsuccess=()=>{if(l.result==null)return s.close(),n(new Error(`Cannot find model with path '${e}' in IndexedDB.`));{let c=i.delete(e),p=()=>{u=s.transaction(xu,"readwrite");let f=u.objectStore(xu).delete(e);f.onsuccess=()=>t(l.result.modelArtifactsInfo),f.onerror=d=>n(l.error)};c.onsuccess=p,c.onerror=m=>(p(),s.close(),n(l.error))}},l.onerror=c=>(s.close(),n(l.error)),a.oncomplete=()=>{u==null?s.close():u.oncomplete=()=>s.close()}},o.onerror=s=>n(o.error)})}};var wa="/",jc="tensorflowjs_models",JI="info",BV="model_topology",VV="weight_specs",GV="weight_data",jV="model_metadata";function QI(r){return{info:[jc,r,JI].join(wa),topology:[jc,r,BV].join(wa),weightSpecs:[jc,r,VV].join(wa),weightData:[jc,r,GV].join(wa),modelMetadata:[jc,r,jV].join(wa)}}function WV(r){let e=r.split(wa);if(e.length<3)throw new Error(`Invalid key format: ${r}`);return e.slice(1,e.length-1).join(wa)}function UV(r){return r.startsWith(_a.URL_SCHEME)?r.slice(_a.URL_SCHEME.length):r}var _a=class{constructor(e){if(!W().getBool("IS_BROWSER")||typeof window=="undefined"||typeof window.localStorage=="undefined")throw new Error("The current environment does not support local storage.");if(this.LS=window.localStorage,e==null||!e)throw new Error("For local storage, modelPath must not be null, undefined or empty.");this.modelPath=e,this.keys=QI(this.modelPath)}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");{let t=JSON.stringify(e.modelTopology),n=JSON.stringify(e.weightSpecs),o=Mi(e);try{this.LS.setItem(this.keys.info,JSON.stringify(o)),this.LS.setItem(this.keys.topology,t),this.LS.setItem(this.keys.weightSpecs,n),this.LS.setItem(this.keys.weightData,WI(e.weightData));let s={format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy};return e.signature!=null&&(s.signature=e.signature),e.userDefinedMetadata!=null&&(s.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(s.modelInitializer=e.modelInitializer),this.LS.setItem(this.keys.modelMetadata,JSON.stringify(s)),{modelArtifactsInfo:o}}catch(s){throw this.LS.removeItem(this.keys.info),this.LS.removeItem(this.keys.topology),this.LS.removeItem(this.keys.weightSpecs),this.LS.removeItem(this.keys.weightData),this.LS.removeItem(this.keys.modelMetadata),new Error(`Failed to save model '${this.modelPath}' to local storage: size quota being exceeded is a possible cause of this failure: modelTopologyBytes=${o.modelTopologyBytes}, weightSpecsBytes=${o.weightSpecsBytes}, weightDataBytes=${o.weightDataBytes}.`)}}}async load(){let e=JSON.parse(this.LS.getItem(this.keys.info));if(e==null)throw new Error(`In local storage, there is no model with name '${this.modelPath}'`);if(e.modelTopologyType!=="JSON")throw new Error("BrowserLocalStorage does not support loading non-JSON model topology yet.");let t={},n=JSON.parse(this.LS.getItem(this.keys.topology));if(n==null)throw new Error(`In local storage, the topology of model '${this.modelPath}' is missing.`);t.modelTopology=n;let o=JSON.parse(this.LS.getItem(this.keys.weightSpecs));if(o==null)throw new Error(`In local storage, the weight specs of model '${this.modelPath}' are missing.`);t.weightSpecs=o;let s=this.LS.getItem(this.keys.modelMetadata);if(s!=null){let i=JSON.parse(s);t.format=i.format,t.generatedBy=i.generatedBy,t.convertedBy=i.convertedBy,i.signature!=null&&(t.signature=i.signature),i.userDefinedMetadata!=null&&(t.userDefinedMetadata=i.userDefinedMetadata),i.modelInitializer!=null&&(t.modelInitializer=i.modelInitializer)}let a=this.LS.getItem(this.keys.weightData);if(a==null)throw new Error(`In local storage, the binary weight values of model '${this.modelPath}' are missing.`);return t.weightData=UI(a),t}};_a.URL_SCHEME="localstorage://";var eN=r=>W().getBool("IS_BROWSER")&&!Array.isArray(r)&&r.startsWith(_a.URL_SCHEME)?qV(r.slice(_a.URL_SCHEME.length)):null;Tt.registerSaveRouter(eN);Tt.registerLoadRouter(eN);function qV(r){return new _a(r)}var ow=class{constructor(){A(W().getBool("IS_BROWSER"),()=>"Current environment is not a web browser"),A(typeof window=="undefined"||typeof window.localStorage!="undefined",()=>"Current browser does not appear to support localStorage"),this.LS=window.localStorage}async listModels(){let e={},t=jc+wa,n=wa+JI;for(let o=0;o<this.LS.length;++o){let s=this.LS.key(o);if(s.startsWith(t)&&s.endsWith(n)){let a=WV(s);e[a]=JSON.parse(this.LS.getItem(s))}}return e}async removeModel(e){e=UV(e);let t=QI(e);if(this.LS.getItem(t.info)==null)throw new Error(`Cannot find model at path '${e}'`);let n=JSON.parse(this.LS.getItem(t.info));return this.LS.removeItem(t.info),this.LS.removeItem(t.topology),this.LS.removeItem(t.weightSpecs),this.LS.removeItem(t.weightData),n}};var Wc="://",jr=class{constructor(){this.managers={}}static getInstance(){return jr.instance==null&&(jr.instance=new jr),jr.instance}static registerManager(e,t){A(e!=null,()=>"scheme must not be undefined or null."),e.endsWith(Wc)&&(e=e.slice(0,e.indexOf(Wc))),A(e.length>0,()=>"scheme must not be an empty string.");let n=jr.getInstance();A(n.managers[e]==null,()=>`A model store manager is already registered for scheme '${e}'.`),n.managers[e]=t}static getManager(e){let t=this.getInstance().managers[e];if(t==null)throw new Error(`Cannot find model manager for scheme '${e}'`);return t}static getSchemes(){return Object.keys(this.getInstance().managers)}};function Xh(r){if(r.indexOf(Wc)===-1)throw new Error(`The url string provided does not contain a scheme. Supported schemes are: ${jr.getSchemes().join(",")}`);return{scheme:r.split(Wc)[0],path:r.split(Wc)[1]}}async function tN(r,e,t=!1){A(r!==e,()=>`Old path and new path are the same: '${r}'`);let n=Tt.getLoadHandlers(r);A(n.length>0,()=>`Copying failed because no load handler is found for source URL ${r}.`),A(n.length<2,()=>`Copying failed because more than one (${n.length}) load handlers for source URL ${r}.`);let o=n[0],s=Tt.getSaveHandlers(e);A(s.length>0,()=>`Copying failed because no save handler is found for destination URL ${e}.`),A(s.length<2,()=>`Copying failed because more than one (${n.length}) save handlers for destination URL ${e}.`);let a=s[0],i=Xh(r).scheme,l=Xh(r).path,u=i===Xh(r).scheme,c=await o.load();t&&u&&await jr.getManager(i).removeModel(l);let p=await a.save(c);return t&&!u&&await jr.getManager(i).removeModel(l),p.modelArtifactsInfo}async function rN(){let r=jr.getSchemes(),e={};for(let t of r){let n=await jr.getManager(t).listModels();for(let o in n){let s=t+Wc+o;e[s]=n[o]}}return e}async function nN(r){let e=Xh(r);return jr.getManager(e.scheme).removeModel(e.path)}async function oN(r,e){return tN(r,e,!1)}async function sN(r,e){return tN(r,e,!0)}var iN=class{fetch(e,t){return fetch(e,t)}now(){return performance.now()}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Browser's encoder only supports utf-8, but got ${t}`);return this.textEncoder==null&&(this.textEncoder=new TextEncoder),this.textEncoder.encode(e)}decode(e,t){return new TextDecoder(t).decode(e)}};if(W().get("IS_BROWSER")){W().setPlatform("browser",new iN);try{jr.registerManager(_a.URL_SCHEME,new ow)}catch(r){}try{jr.registerManager(ba.URL_SCHEME,new nw)}catch(r){}}var HV={importFetch:()=>aN()},sw;var lN=class{constructor(){this.util=require("util"),this.textEncoder=new this.util.TextEncoder}fetch(e,t){return W().global.fetch!=null?W().global.fetch(e,t):(sw==null&&(sw=HV.importFetch()),sw(e,t))}now(){let e=process.hrtime();return e[0]*1e3+e[1]/1e6}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Node built-in encoder only supports utf-8, but got ${t}`);return this.textEncoder.encode(e)}decode(e,t){return e.length===0?"":new this.util.TextDecoder(t).decode(e)}};W().get("IS_NODE")&&W().setPlatform("node",new lN);function Ce(r,e="float32",t){return e=e||"float32",xm(r),new ct(r,e,t)}function KV(r,e){let t=v(r,"x","cast");if(!Ab(e))throw new Error(`Failed to cast to unknown dtype ${e}`);if(e==="string"&&t.dtype!=="string"||e!=="string"&&t.dtype==="string")throw new Error("Only strings can be casted to strings");let n={x:t},o={dtype:e};return D.runKernel(An,n,o)}var ne=T({cast_:KV});function XV(r){let t={x:v(r,"x","clone","string_or_numeric")};return D.runKernel(us,t)}var Rn=T({clone_:XV});function iw(r,e=!1){console.log(r.toString(e))}Yb();var YV={buffer:Ce,cast:ne,clone:Rn,print:iw};PI(YV);var Cr={};Ye(Cr,{browserFiles:()=>pN,browserHTTPRequest:()=>dN,concatenateArrayBuffers:()=>Gc,copyModel:()=>oN,decodeWeights:()=>Kh,encodeWeights:()=>GI,fromMemory:()=>gN,getLoadHandlers:()=>XI,getModelArtifactsInfoForJSON:()=>Mi,getSaveHandlers:()=>KI,http:()=>Jh,isHTTPScheme:()=>Zh,listModels:()=>rN,loadWeights:()=>mN,moveModel:()=>sN,registerLoadRouter:()=>HI,registerSaveRouter:()=>qI,removeModel:()=>nN,weightsLoaderFactory:()=>uw,withSaveHandler:()=>xN});var ZV="model",JV=".json",QV=".weights.bin";function uN(r){return new Promise(e=>setTimeout(e)).then(r)}var sl=class{constructor(e){if(!W().getBool("IS_BROWSER"))throw new Error("browserDownloads() cannot proceed because the current environment is not a browser.");e.startsWith(sl.URL_SCHEME)&&(e=e.slice(sl.URL_SCHEME.length)),(e==null||e.length===0)&&(e=ZV),this.modelTopologyFileName=e+JV,this.weightDataFileName=e+QV}async save(e){if(typeof document=="undefined")throw new Error("Browser downloads are not supported in this environment since `document` is not present");let t=window.URL.createObjectURL(new Blob([e.weightData],{type:"application/octet-stream"}));if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserDownloads.save() does not support saving model topology in binary formats yet.");{let n=[{paths:["./"+this.weightDataFileName],weights:e.weightSpecs}],o={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:n};e.signature!=null&&(o.signature=e.signature),e.userDefinedMetadata!=null&&(o.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(o.modelInitializer=e.modelInitializer);let s=window.URL.createObjectURL(new Blob([JSON.stringify(o)],{type:"application/json"})),a=this.jsonAnchor==null?document.createElement("a"):this.jsonAnchor;if(a.download=this.modelTopologyFileName,a.href=s,await uN(()=>a.dispatchEvent(new MouseEvent("click"))),e.weightData!=null){let i=this.weightDataAnchor==null?document.createElement("a"):this.weightDataAnchor;i.download=this.weightDataFileName,i.href=t,await uN(()=>i.dispatchEvent(new MouseEvent("click")))}return{modelArtifactsInfo:Mi(e)}}}};sl.URL_SCHEME="downloads://";var cN=class{constructor(e){if(e==null||e.length<1)throw new Error(`When calling browserFiles, at least 1 file is required, but received ${e}`);this.files=e}async load(){let e=this.files[0],t=this.files.slice(1);return new Promise((n,o)=>{let s=new FileReader;s.onload=a=>{let i=JSON.parse(a.target.result),l=i.modelTopology;if(l==null){o(new Error(`modelTopology field is missing from file ${e.name}`));return}t.length===0&&n({modelTopology:l});let u=i.weightsManifest;if(u==null){o(new Error(`weightManifest field is missing from file ${e.name}`));return}let c;try{c=this.checkManifestAndWeightFiles(u,t)}catch(d){o(d);return}let p=[],m=[],f=[];u.forEach(d=>{d.paths.forEach(h=>{m.push(h),f.push(null)}),p.push(...d.weights)}),u.forEach(d=>{d.paths.forEach(h=>{let g=new FileReader;g.onload=x=>{let b=x.target.result,w=m.indexOf(h);if(f[w]=b,f.indexOf(null)===-1){let _={modelTopology:l,weightSpecs:p,weightData:Gc(f),format:i.format,generatedBy:i.generatedBy,convertedBy:i.convertedBy};i.signature!=null&&(_.signature=i.signature),i.userDefinedMetadata!=null&&(_.userDefinedMetadata=i.userDefinedMetadata),i.modelInitializer!=null&&(_.modelInitializer=i.modelInitializer),n(_)}},g.onerror=x=>o(`Failed to weights data from file of path '${h}'.`),g.readAsArrayBuffer(c[h])})})},s.onerror=a=>o(`Failed to read model topology and weights manifest JSON from file '${e.name}'. BrowserFiles supports loading Keras-style tf.Model artifacts only.`),s.readAsText(e)})}checkManifestAndWeightFiles(e,t){let n=[],o=t.map(a=>Qb(a.name)),s={};for(let a of e)a.paths.forEach(i=>{let l=Qb(i);if(n.indexOf(l)!==-1)throw new Error(`Duplicate file basename found in weights manifest: '${l}'`);if(n.push(l),o.indexOf(l)===-1)throw new Error(`Weight file with basename '${l}' is not provided.`);s[i]=t[o.indexOf(l)]});if(n.length!==t.length)throw new Error(`Mismatch in the number of files in weights manifest (${n.length}) and the number of weight files provided (${t.length}).`);return s}},tG=r=>W().getBool("IS_BROWSER")&&!Array.isArray(r)&&r.startsWith(sl.URL_SCHEME)?eG(r.slice(sl.URL_SCHEME.length)):null;Tt.registerSaveRouter(tG);function eG(r="model"){return new sl(r)}function pN(r){return new cN(r)}function aw(r,e,t,n){a(r),t=t==null?0:t,n=n==null?1:n,i(t,n);let o=0,s=l=>(l.then(u=>{let c=t+ ++o/r.length*(n-t);return e(c),u}),l);function a(l){A(l!=null&&Array.isArray(l)&&l.length>0,()=>"promises must be a none empty array")}function i(l,u){A(l>=0&&l<=1,()=>`Progress fraction must be in range [0, 1], but got startFraction ${l}`),A(u>=0&&u<=1,()=>`Progress fraction must be in range [0, 1], but got endFraction ${u}`),A(u>=l,()=>`startFraction must be no more than endFraction, but got startFraction ${l} and endFraction ${u}`)}return Promise.all(r.map(s))}async function lw(r,e){e==null&&(e={});let t=e.fetchFunc==null?W().platform.fetch:e.fetchFunc,n=r.map(p=>t(p,e.requestInit,{isBinary:!0})),o=0,s=.5,i=(e.onProgress==null?await Promise.all(n):await aw(n,e.onProgress,o,s)).map(p=>p.arrayBuffer()),l=.5,u=1;return e.onProgress==null?await Promise.all(i):await aw(i,e.onProgress,l,u)}async function mN(r,e="",t,n){return uw(a=>lw(a,{requestInit:n}))(r,e,t)}function uw(r){return async(e,t="",n)=>{let o=e.map(()=>!1),s={},a=n!=null?n.map(()=>!1):[],i=[];if(e.forEach((f,d)=>{let h=0;f.weights.forEach(g=>{let x="quantization"in g?g.quantization.dtype:g.dtype,b=Nm[x]*ft(g.shape),w=()=>{o[d]=!0,s[d]==null&&(s[d]=[]),s[d].push({manifestEntry:g,groupOffset:h,sizeBytes:b})};n!=null?n.forEach((_,k)=>{_===g.name&&(w(),a[k]=!0)}):w(),i.push(g.name),h+=b})}),!a.every(f=>f)){let f=n.filter((d,h)=>!a[h]);throw new Error(`Could not find weights in manifest with names: ${f.join(", ")}.
Manifest JSON has weights with names: ${i.join(", ")}.`)}let l=o.reduce((f,d,h)=>(d&&f.push(h),f),[]),u=[];l.forEach(f=>{e[f].paths.forEach(d=>{let h=t+(t.endsWith("/")?"":"/")+d;u.push(h)})});let c=await r(u),p={},m=0;return l.forEach(f=>{let d=e[f].paths.length,h=0;for(let _=0;_<d;_++)h+=c[m+_].byteLength;let g=new ArrayBuffer(h),x=new Uint8Array(g),b=0;for(let _=0;_<d;_++){let k=new Uint8Array(c[m+_]);x.set(k,b),b+=k.byteLength}s[f].forEach(_=>{let k=g.slice(_.groupOffset,_.groupOffset+_.sizeBytes),E=Kh(k,[_.manifestEntry]);for(let S in E)p[S]=E[S]}),m+=d}),p}}var rG="application/octet-stream",nG="application/json",Yh=class{constructor(e,t){if(this.DEFAULT_METHOD="POST",t==null&&(t={}),this.weightPathPrefix=t.weightPathPrefix,this.onProgress=t.onProgress,this.weightUrlConverter=t.weightUrlConverter,t.fetchFunc!=null?(A(typeof t.fetchFunc=="function",()=>"Must pass a function that matches the signature of `fetch` (see https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)"),this.fetch=t.fetchFunc):this.fetch=W().platform.fetch,A(e!=null&&e.length>0,()=>"URL path for http must not be null, undefined or empty."),Array.isArray(e)&&A(e.length===2,()=>`URL paths for http must have a length of 2, (actual length is ${e.length}).`),this.path=e,t.requestInit!=null&&t.requestInit.body!=null)throw new Error("requestInit is expected to have no pre-existing body, but has one.");this.requestInit=t.requestInit||{}}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserHTTPRequest.save() does not support saving model topology in binary formats yet.");let t=Object.assign({method:this.DEFAULT_METHOD},this.requestInit);t.body=new FormData;let n=[{paths:["./model.weights.bin"],weights:e.weightSpecs}],o={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:n};e.signature!=null&&(o.signature=e.signature),e.userDefinedMetadata!=null&&(o.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(o.modelInitializer=e.modelInitializer),t.body.append("model.json",new Blob([JSON.stringify(o)],{type:nG}),"model.json"),e.weightData!=null&&t.body.append("model.weights.bin",new Blob([e.weightData],{type:rG}),"model.weights.bin");let s=await this.fetch(this.path,t);if(s.ok)return{modelArtifactsInfo:Mi(e),responses:[s]};throw new Error(`BrowserHTTPRequest.save() failed due to HTTP response status ${s.status}.`)}async load(){let e=await this.fetch(this.path,this.requestInit);if(!e.ok)throw new Error(`Request to ${this.path} failed with status code ${e.status}. Please verify this URL points to the model JSON of the model to load.`);let t;try{t=await e.json()}catch(d){let h=`Failed to parse model JSON of response from ${this.path}.`;throw this.path.endsWith(".pb")?h+=" Your path contains a .pb file extension. Support for .pb models have been removed in TensorFlow.js 1.0 in favor of .json models. You can re-convert your Python TensorFlow model using the TensorFlow.js 1.0 conversion scripts or you can convert your.pb models with the 'pb2json'NPM script in the tensorflow/tfjs-converter repository.":h+=" Please make sure the server is serving valid JSON for this request.",new Error(h)}let n=t.modelTopology,o=t.weightsManifest,s=t.generatedBy,a=t.convertedBy,i=t.format,l=t.signature,u=t.userDefinedMetadata;if(n==null&&o==null)throw new Error(`The JSON from HTTP path ${this.path} contains neither model topology or manifest for weights.`);let c,p;o!=null&&([c,p]=await this.loadWeights(o));let m={modelTopology:n,weightSpecs:c,weightData:p,generatedBy:s,convertedBy:a,format:i};l!=null&&(m.signature=l),u!=null&&(m.userDefinedMetadata=u);let f=t.modelInitializer;return f&&(m.modelInitializer=f),m}async loadWeights(e){let t=Array.isArray(this.path)?this.path[1]:this.path,[n,o]=oG(t),s=this.weightPathPrefix||n,a=[];for(let c of e)a.push(...c.weights);let i=[],l=[];for(let c of e)for(let p of c.paths)this.weightUrlConverter!=null?l.push(this.weightUrlConverter(p)):i.push(s+p+o);this.weightUrlConverter&&i.push(...await Promise.all(l));let u=await lw(i,{requestInit:this.requestInit,fetchFunc:this.fetch,onProgress:this.onProgress});return[a,Gc(u)]}};Yh.URL_SCHEME_REGEX=/^https?:\/\//;function oG(r){let e=r.lastIndexOf("/"),t=r.lastIndexOf("?"),n=r.substring(0,e),o=t>e?r.substring(t):"";return[n+"/",o]}function Zh(r){return r.match(Yh.URL_SCHEME_REGEX)!=null}var fN=(r,e)=>{if(typeof fetch=="undefined"&&(e==null||e.fetchFunc==null))return null;{let t=!0;if(Array.isArray(r)?t=r.every(n=>Zh(n)):t=Zh(r),t)return Jh(r,e)}return null};Tt.registerSaveRouter(fN);Tt.registerLoadRouter(fN);function Jh(r,e){return new Yh(r,e)}function dN(r,e){return Jh(r,e)}var Qh=class{constructor(e){this.modelArtifacts=e}async load(){return this.modelArtifacts}},hN=class{constructor(e){this.saveHandler=e}async save(e){return this.saveHandler(e)}};function gN(r,e,t,n){return arguments.length===1?r.modelTopology!=null||r.weightSpecs!=null?new Qh(r):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new Qh({modelTopology:r})):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new Qh({modelTopology:r,weightSpecs:e,weightData:t,trainingConfig:n}))}function xN(r){return new hN(r)}var yN={};Ye(yN,{confusionMatrix:()=>uG});function sG(r,e,t=!1,n=!1){let o=v(r,"a","matMul"),s=v(e,"b","matMul");[o,s]=Ge(o,s);let a={a:o,b:s},i={transposeA:t,transposeB:n};return D.runKernel(Hn,a,i)}var je=T({matMul_:sG});function iG(r,e,t=1,n=0){if(e<2)throw new Error(`Error in oneHot: depth must be >=2, but it is ${e}`);let s={indices:v(r,"indices","oneHot","int32")},a={depth:e,onValue:t,offValue:n};return D.runKernel(ho,s,a)}var ks=T({oneHot_:iG});function aG(r,e){let t=v(r,"x","transpose");if(e==null&&(e=t.shape.map((s,a)=>a).reverse()),A(t.rank===e.length,()=>`Error in transpose: rank of input ${t.rank} must match length of perm ${e}.`),e.forEach(s=>{A(s>=0&&s<t.rank,()=>`All entries in 'perm' must be between 0 and ${t.rank-1} but got ${e}`)}),t.rank<=1)return t.clone();let n={x:t},o={perm:e};return D.runKernel(Ro,n,o)}var We=T({transpose_:aG});function lG(r,e,t){let n=v(r,"labels","confusionMatrix"),o=v(e,"predictions","confusionMatrix");A(t==null||t>0&&Number.isInteger(t),()=>`If provided, numClasses must be a positive integer, but got ${t}`),A(n.rank===1,()=>`Expected the rank of labels to be 1, but got ${n.rank}`),A(o.rank===1,()=>`Expected the rank of predictions to be 1, but got ${o.rank}`),A(n.shape[0]===o.shape[0],()=>`Mismatch in the number of examples: ${n.shape[0]} vs. ${o.shape[0]}. Labels and predictions should have the same number of elements.`),A(t>0&&Number.isInteger(t),()=>`numClasses is required to be a positive integer, but got ${t}`);let s=ks(ne(n,"int32"),t),a=ks(ne(o,"int32"),t),i=We(s),l=je(i,a);return ne(l,"int32")}var uG=T({confusionMatrix_:lG});var eg={};Ye(eg,{fromPixels:()=>mG,toPixels:()=>pG});function cw(r,e,t){if(En(r),e!=null&&e.length!==3)throw new Error("tensor3d() requires shape to have three numbers");let n=vr(r,t);if(n.length!==3&&n.length!==1)throw new Error("tensor3d() requires values to be number[][][] or flat/TypedArray");if(n.length===1&&e==null)throw new Error("tensor3d() requires shape to be provided when `values` are a flat array");return Gr(r,e,n,t)}var Uc;function cG(r,e=3){if(e>4)throw new Error("Cannot construct Tensor with more than 4 channels from pixels.");if(r==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let t=!1,n=!1,o=!1,s=!1,a=!1,i=!1;if(r.data instanceof Uint8Array)t=!0;else if(typeof ImageData!="undefined"&&r instanceof ImageData)n=!0;else if(typeof HTMLVideoElement!="undefined"&&r instanceof HTMLVideoElement)o=!0;else if(typeof HTMLImageElement!="undefined"&&r instanceof HTMLImageElement)s=!0;else if(r.getContext!=null)a=!0;else if(typeof ImageBitmap!="undefined"&&r instanceof ImageBitmap)i=!0;else throw new Error(`pixels passed to tf.browser.fromPixels() must be either an HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData in browser, or OffscreenCanvas, ImageData in webworker or {data: Uint32Array, width: number, height: number}, but was ${r.constructor.name}`);if(o){let d=2;if(o&&r.readyState<d)throw new Error("The video element has not loaded data yet. Please wait for `loadeddata` event on the <video> element.")}if(Mc(Oc,D.backendName)!=null){let d={pixels:r},h={numChannels:e};return D.runKernel(Oc,d,h)}let[u,c]=o?[r.videoWidth,r.videoHeight]:[r.width,r.height],p;a?p=r.getContext("2d").getImageData(0,0,u,c).data:n||t?p=r.data:(s||o||i)&&(Uc==null&&(Uc=document.createElement("canvas").getContext("2d")),Uc.canvas.width=u,Uc.canvas.height=c,Uc.drawImage(r,0,0,u,c),p=Uc.getImageData(0,0,u,c).data);let m;if(e===4)m=new Int32Array(p);else{let d=u*c;m=new Int32Array(d*e);for(let h=0;h<d;h++)for(let g=0;g<e;++g)m[h*e+g]=p[h*4+g]}return cw(m,[c,u,e],"int32")}async function pG(r,e){let t=v(r,"img","toPixels");if(!(r instanceof Ve)){let u=t;t=ne(u,"int32"),u.dispose()}if(t.rank!==2&&t.rank!==3)throw new Error(`toPixels only supports rank 2 or 3 tensors, got rank ${t.rank}.`);let[n,o]=t.shape.slice(0,2),s=t.rank===2?1:t.shape[2];if(s>4||s===2)throw new Error(`toPixels only supports depth of size 1, 3 or 4 but got ${s}`);if(t.dtype!=="float32"&&t.dtype!=="int32")throw new Error(`Unsupported type for toPixels: ${t.dtype}. Please use float32 or int32 tensors.`);let a=await t.data(),i=t.dtype==="float32"?255:1,l=new Uint8ClampedArray(o*n*4);for(let u=0;u<n*o;++u){let c=[0,0,0,255];for(let m=0;m<s;m++){let f=a[u*s+m];if(t.dtype==="float32"){if(f<0||f>1)throw new Error(`Tensor values for a float32 Tensor must be in the range [0 - 1] but encountered ${f}.`)}else if(t.dtype==="int32"&&(f<0||f>255))throw new Error(`Tensor values for a int32 Tensor must be in the range [0 - 255] but encountered ${f}.`);s===1?(c[0]=f*i,c[1]=f*i,c[2]=f*i):c[m]=f*i}let p=u*4;l[p+0]=Math.round(c[0]),l[p+1]=Math.round(c[1]),l[p+2]=Math.round(c[2]),l[p+3]=Math.round(c[3])}if(e!=null){e.width=o,e.height=n;let u=e.getContext("2d"),c=new ImageData(l,o,n);u.putImageData(c,0,0)}return t!==r&&t.dispose(),l}var mG=T({fromPixels_:cG});var tg={};Ye(tg,{prepareAndValidate:()=>bN});function bN(r,e){let t=r.shape.length,n=e.shape.length;if(t<1)throw new Error(`tf.gatherND() expects the input to be rank 1 or higher, but the rank was ${t}.`);if(n<1)throw new Error(`tf.gatherND() expects the indices to be rank 1 or higher, but the rank was ${n}.`);if(e.dtype!=="int32")throw new Error(`tf.gatherND() expects the indices to be int32 type, but the dtype was ${e.dtype}.`);if(e.shape[n-1]>t)throw new Error(`index innermost dimension length must be <= tensor rank; saw: ${e.shape[n-1]} vs. ${t}`);if(ft(r.shape)===0)throw new Error(`Requested more than 0 entries, but input is empty. Input shape: ${r.shape}.`);let o=e.shape,s=o[o.length-1],a=1;for(let p=0;p<o.length-1;++p)a*=o[p];let i=r.shape,l=o.slice();l.pop();let u=1;for(let p=s;p<t;++p)u*=i[p],l.push(i[p]);let c=[...Hs(r.shape).map(p=>p/u),1].slice(0,s);return[l,a,u,c]}var rg={};Ye(rg,{calculateShapes:()=>wN,validateInput:()=>ng,validateUpdateShape:()=>pw});function pw(r,e,t){let n=e.rank>1?e.shape[e.rank-1]:1,o=e.rank>1?e.rank-1:1,s=`Must have updates.shape = indices.shape[:batchDim] + shape[sliceDim:], got updates.shape: ${t.shape}, indices.shape: ${e.shape}, shape: ${r}, sliceDim: ${n}, and batchDim: ${o}.`;if(t.rank<o)throw new Error(s+` update.rank < ${o}. `);if(r.length<n+(t.rank-o))throw new Error(s+` Output shape length < ${n+(t.rank-o)}`);if(t.rank!==o+r.length-n)throw new Error(s+` update.rank != ${o+r.length-n}`);for(let a=0;a<o;++a)if(t.shape[a]!==e.shape[a])throw new Error(s+` updates.shape[${a}] (${t.shape[a]}) != indices.shape[${a}] (${e.shape[a]}).`);for(let a=0;a<t.rank-o;++a)if(t.shape[a+o]!==r[a+n])throw new Error(s+` updates.shape[${a+o}] (${t.shape[a+o]}) != shape[${a+o}] (${r[a+o]})`)}function ng(r,e,t){if(e.rank<1)throw new Error(`tf.scatterND() expects the indices to be rank 1 or higher, but the rank was ${e.rank}.`);if(r.rank<1)throw new Error(`tf.scatterND() expects the updates to be rank 1 or higher, but the rank was ${r.rank}.`);if(e.dtype!=="int32")throw new Error(`The dtype of 'indices' should be int32, but got dtype: ${e.dtype}`);if(t.length<1)throw new Error(`Output rank must be greater or equal to 1, but got shape: ${t}`);if(t.length===0){if(e.size===0)throw new Error(`Indices specified for empty output. indices shape: ${e.shape}`);if(r.size===0)throw new Error(`Updates specified for empty output. updates shape: ${r.shape}`)}pw(t,e,r)}function wN(r,e,t){let n=e.shape.length,o=n>1?e.shape[n-1]:1,s=t.length,a=1;for(let p=o;p<s;++p)a*=t[p];let i=o<1?1:o,l=ft(e.shape)/i,u=[...Hs(t.slice(0,o)),1],c=ft(t);return{sliceRank:o,numUpdates:l,sliceSize:a,strides:u,outputSize:c}}var or={};Ye(or,{assertParamsValid:()=>fG,computeFlatOffset:()=>hG,computeOutShape:()=>_N,getNormalizedAxes:()=>AN,isSliceContinous:()=>dG,maskToAxes:()=>og,parseSliceParams:()=>mw,sliceInfo:()=>gG,startForAxis:()=>TN,startIndicesWithElidedDims:()=>IN,stopForAxis:()=>EN,stopIndicesWithElidedDims:()=>NN,stridesForAxis:()=>SN,stridesWithElidedDims:()=>kN});function fG(r,e,t){let n=r.shape.length;A(n===e.length,()=>`Error in slice${n}D: Length of begin ${e} must match the rank of the array (${n}).`),A(n===t.length,()=>`Error in slice${n}D: Length of size ${t} must match the rank of the array (${n}).`);for(let o=0;o<n;++o)A(e[o]+t[o]<=r.shape[o],()=>`Error in slice${n}D: begin[${o}] + size[${o}] (${e[o]+t[o]}) would overflow input.shape[${o}] (${r.shape[o]})`)}function og(r){let e=[],t=0;for(;r>0;)r&1&&e.push(t),r/=2,t++;return e}function _N(r,e,t){let n=[];for(let o=0;o<r.length;o++)n[o]=Math.ceil((e[o]-r[o])/t[o]);return n}function kN(r,e,t,n){let o=[...r];for(let s=o.length;s<n.length;s++)o.push(1);for(let s=0;s<t;s++)s===0?o[e]=1:(o.splice(e,0,1),o.pop());return o}function vN(r,e,t){return t<=r?t:t-(e-1)}function CN(r,e){let t=[];for(let n=0;n<r;n++)t.push(e+n);return t}function AN(r,e,t,n,o,s,a,i,l){let u=r.length,c=new Array(u),p=new Array(u),m=new Array(u);if(e.length&&t>0){let f=e[0],d=t+1;c=IN(a,f,d,n,r),p=NN(i,f,d,o,r),m=kN(s,f,d,r)}else for(let f=0;f<u;f++)c[f]=TN(a,n,s,r,f,l),p[f]=EN(i,o,s,r,f,l),m[f]=SN(s,f,l);return{begin:c,end:p,strides:m}}function IN(r,e,t,n,o){let s=[...o],a=CN(t,e);for(let i=0;i<s.length;i++)if(a.indexOf(i)>-1)s[i]=0;else{let l=vN(e,t,i),u=n[l];r&1<<l&&(u=0),s[i]=u}return s}function NN(r,e,t,n,o){let s=[...o],a=CN(t,e);for(let i=0;i<s.length;i++)if(a.indexOf(i)>-1)s[i]=Number.MAX_SAFE_INTEGER;else{let l=vN(e,t,i),u=n[l];r&1<<l&&(u=Number.MAX_SAFE_INTEGER),s[i]=u}for(let i=0;i<s.length;i++){let l=o[i];s[i]<0&&(s[i]+=l),s[i]=Ec(0,s[i],o[i])}return s}function SN(r,e,t){let n=r[e];return(t&1<<e||n==null)&&(n=1),n}function TN(r,e,t,n,o,s){let a=e[o],i=t[o]||1;(r&1<<o||s&1<<o||a==null)&&(i>0?a=Number.MIN_SAFE_INTEGER:a=Number.MAX_SAFE_INTEGER);let l=n[o];return a<0&&(a+=l),a=Ec(0,a,l-1),a}function EN(r,e,t,n,o,s){let a=e[o],i=t[o]||1;(r&1<<o||s&1<<o||a==null)&&(i>0?a=Number.MAX_SAFE_INTEGER:a=Number.MIN_SAFE_INTEGER);let l=n[o];return a<0&&(a+=l),i>0?a=Ec(0,a,l):a=Ec(-1,a,l-1),a}function dG(r,e,t){let n=t.length;for(let o=0;o<t.length;o++)if(t[o]>1){n=o;break}for(let o=n+1;o<t.length;o++)if(e[o]>0||t[o]!==r[o])return!1;return!0}function hG(r,e){let t=r.length>0?r[r.length-1]:1;for(let n=0;n<r.length-1;n++)t+=r[n]*e[n];return t}function mw(r,e,t){let n,o=r.shape.length;typeof e=="number"?n=[e,...new Array(o-1).fill(0)]:e.length<o?n=e.concat(new Array(o-e.length).fill(0)):n=e.slice(),n.forEach(a=>{A(a!==-1,()=>"slice() does not support negative begin indexing.")});let s;return t==null?s=new Array(o).fill(-1):typeof t=="number"?s=[t,...new Array(o-1).fill(-1)]:t.length<o?s=t.concat(new Array(o-t.length).fill(-1)):s=t,s=s.map((a,i)=>a>=0?a:(A(a===-1,()=>`Negative size values should be exactly -1 but got ${a} for the slice() size at index ${i}.`),r.shape[i]-n[i])),[n,s]}function gG(r,e,t,n,o,s,a,i,l){let u=e.slice(),c=t.slice(),p=n;n==null&&(p=new Array(u.length));let m=og(a);if(m.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(a!==0&&i!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(a!==0&&l!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let f=r.length-u.length,d=og(i),h=r.slice();d.forEach(S=>{u[S]=0,c[S]=1,h.splice(S,0,1)});let{begin:g,end:x,strides:b}=AN(h,m,f,u,c,p,o,s,a);u=g,c=x,p=b;let w=og(l);w.forEach(S=>{c[S]=u[S]+1,p[S]=1});let _=_N(u,c,p),k=_.filter((S,R)=>w.indexOf(R)===-1);return{nonStrided:p.every(S=>S===1),$begin:u,$end:c,$strides:p,size:_,newShape:h,outShape:k}}var J={};Ye(J,{Serializable:()=>sg,SerializationMap:()=>ka,registerClass:()=>en});var sg=class{getClassName(){return this.constructor.className}static fromConfig(e,t){return new e(t)}},ka=class{constructor(){this.classNameMap={}}static getMap(){return ka.instance==null&&(ka.instance=new ka),ka.instance}static register(e){ka.getMap().classNameMap[e.className]=[e,e.fromConfig]}};function en(r){A(r.className!=null,()=>"Class being registered does not have the static className property defined."),A(typeof r.className=="string",()=>"className is required to be a string, but got type "+typeof r.className),A(r.className.length>0,()=>"Class being registered has an empty-string as its className, which is disallowed."),ka.register(r)}var DN={};Ye(DN,{TEST_EPSILON_FLOAT16:()=>$N,encodeStrings:()=>RN,expectArrayBuffersEqual:()=>vG,expectArraysClose:()=>yG,expectArraysEqual:()=>wG,expectNumbersClose:()=>_G,expectPromiseToFail:()=>bG,expectValuesInRange:()=>kG,testEpsilon:()=>fw});var xG=.001,$N=.1;function yG(r,e,t){return t==null&&(t=fw()),dw(r,e,(n,o)=>hw(n,o,t))}function fw(){return D.backend.floatPrecision()===32?xG:$N}function dw(r,e,t){let n=!0;if((nr(r)||nr(e))&&(n=!1),nr(r)&&nr(e)&&(n=!0),n){let a=r.constructor.name,i=e.constructor.name;if(a!==i)throw new Error(`Arrays are of different type. Actual: ${a}. Expected: ${i}`)}if(Array.isArray(r)&&Array.isArray(e)){let a=vr(r),i=vr(e);if(!Vr(a,i))throw new Error(`Arrays have different shapes. Actual: [${a}]. Expected: [${i}]`)}let o=nr(r)?r:ns(r),s=nr(e)?e:ns(e);if(o.length!==s.length)throw new Error(`Arrays have different lengths actual: ${o.length} vs expected: ${s.length}.
Actual: ${o}.
Expected: ${s}.`);for(let a=0;a<s.length;++a){let i=o[a],l=s[a];if(!t(i,l))throw new Error(`Arrays differ: actual[${a}] = ${i}, expected[${a}] = ${l}.
Actual: ${o}.
Expected: ${s}.`)}}function bG(r,e){r().then(()=>e.fail(),()=>e())}function wG(r,e){let t=typeof e=="string"||typeof e=="number"||typeof e=="boolean"?[e]:e;return os(r)||os(r[0])||os(e)||os(e[0])?dw(r,t,(n,o)=>n==o):dw(r,e,(n,o)=>hw(n,o,0))}function _G(r,e,t){if(t==null&&(t=fw()),!hw(r,e,t))throw new Error(`Numbers differ: actual === ${r}, expected === ${e}`)}function hw(r,e,t){return!isFinite(r)&&!isFinite(e)?!0:!(isNaN(r)||isNaN(e)||Math.abs(r-e)>t)}function kG(r,e,t){for(let n=0;n<r.length;n++)if(r[n]<e||r[n]>t)throw new Error(`Value out of range:${r[n]} low: ${e}, high: ${t}`)}function vG(r,e){expect(new Float32Array(r)).toEqual(new Float32Array(e))}function RN(r){for(let e=0;e<r.length;e++){let t=r[e];Array.isArray(t)?RN(t):r[e]=rl(t)}return r}var CG="3.0.0";function IG(){W().set("PROD",!0)}function NG(){W().set("DEBUG",!0)}function SG(){W().set("DEPRECATION_WARNINGS_ENABLED",!1),console.warn("TensorFlow.js deprecation warnings have been disabled.")}function ig(r){W().getBool("DEPRECATION_WARNINGS_ENABLED")&&console.warn(r+" You can disable deprecation warnings with tf.disableDeprecationWarnings().")}MI(ig);function TG(){D.disposeVariables()}function vs(){return D}function qc(){return D.memory()}function EG(r){return D.profile(r)}function V(r,e){return D.tidy(r,e)}function Ee(r){Im(r).forEach(t=>t.dispose())}function Dt(r){return D.keep(r)}function AG(r){return D.time(r)}function FN(r){return D.setBackend(r)}function DG(){return D.ready()}function $G(){return D.backendName}function RG(r){D.removeBackend(r)}function FG(r){return D.findBackend(r)}function OG(r){return D.findBackendFactory(r)}function yu(r,e,t=1){return D.registerBackend(r,e,t)}function gw(){return D.backend}function PG(r,e){W().setPlatform(r,e)}function MG(r,e){let t=v(r,"a","add"),n=v(e,"b","add");[t,n]=Ge(t,n);let o={a:t,b:n};return D.runKernel(xn,o)}var Q=T({add_:MG});function LG(r,e){let t=v(r,"a","floorDiv"),n=v(e,"b","floorDiv");[t,n]=Ge(t,n);let o={a:t,b:n};return D.runKernel(ro,o)}var bu=T({floorDiv_:LG});function zG(r,e){let t=v(r,"a","div"),n=v(e,"b","div");if([t,n]=Ge(t,n),t.dtype==="int32"&&n.dtype==="int32")return bu(t,n);let o={a:t,b:n},s={};return D.runKernel(Qn,o,s)}var de=T({div_:zG});function BG(r,e){let t=v(r,"a","mul"),n=v(e,"b","mul");[t,n]=Ge(t,n);let o={a:t,b:n};return D.runKernel(fo,o)}var M=T({mul_:BG});function VG(r){let e=v(r,"x","abs");if(e.dtype==="complex64"){let t={x:e};return D.runKernel(ia,t)}else{let t={x:e};return D.runKernel(ss,t)}}var Et=T({abs_:VG});function GG(r){let t={x:v(r,"x","acos")};return D.runKernel(Ks,t)}var Sm=T({acos_:GG});function jG(r){let t={x:v(r,"x","acosh")};return D.runKernel(Xs,t)}var Tm=T({acosh_:jG});function WG(r){A(Array.isArray(r),()=>"The argument passed to tf.addN() must be a list of tensors"),A(r.length>=1,()=>`Must pass at least one tensor to tf.addN(), but got ${r.length}`);let e=r.map((o,s)=>v(o,`tensors${s}`,"addN")),t=e[0];e.forEach(o=>{if(o.dtype!==t.dtype)throw new Error("All tensors passed to tf.addN() must have the same dtype")}),e.forEach(o=>{if(!Vr(o.shape,t.shape))throw new Error("All tensors passed to tf.addN() must have the same shape")});let n=e;return D.runKernel(Wn,n)}var xw=T({addN_:WG});function UG(r,e=null,t=!1){let o={x:v(r,"x","all","bool")},s={axis:e,keepDims:t};return D.runKernel(Vl,o,s)}var wu=T({all_:UG});function qG(r,e=null,t=!1){let o={x:v(r,"x","any","bool")},s={axis:e,keepDims:t};return D.runKernel(Gl,o,s)}var il=T({any_:qG});function HG(r,e=0){let n={x:v(r,"x","argMax")},o={axis:e};return D.runKernel(Un,n,o)}var al=T({argMax_:HG});function KG(r,e=0){let n={x:v(r,"x","argMin")},o={axis:e};return D.runKernel(na,n,o)}var Em=T({argMin_:KG});function XG(r){let t={x:v(r,"x","asin")};return D.runKernel(Ys,t)}var Am=T({asin_:XG});function YG(r){let t={x:v(r,"x","asinh")};return D.runKernel(Zs,t)}var Dm=T({asinh_:YG});function ZG(r){let t={x:v(r,"x","atan")};return D.runKernel(Js,t)}var $m=T({atan_:ZG});function JG(r,e){let t=v(r,"a","atan2"),n=v(e,"b","atan2");[t,n]=Ge(t,n);let o={a:t,b:n};return D.runKernel(ei,o)}var Rm=T({atan2_:JG});function QG(r){let t={x:v(r,"x","atanh")};return D.runKernel(Qs,t)}var Fm=T({atanh_:QG});function ej(r,e,t,n,o="NHWC",s){let a=r[3],i=[...e,a],l=ON(o);return _u(r,i,t,s,n,null,null,l)}function yw(r,e,t,n,o,s,a="channelsLast"){let[i,l]=ag(e),u;if(a==="channelsLast")u=[i,l,r[3],r[3]];else if(a==="channelsFirst")u=[i,l,r[1],r[1]];else throw new Error(`Unknown dataFormat ${a}`);return _u(r,u,t,n,o,s,!1,a)}function tj(r,e,t,n,o,s,a="NDHWC"){let[i,l,u]=bw(e),c,p;if(a==="NDHWC")p="channelsLast",c=[i,l,u,r[4],r[4]];else if(a==="NCDHW")p="channelsFirst",c=[i,l,u,r[1],r[1]];else throw new Error(`Unknown dataFormat ${a}`);return PN(r,c,t,n,o,!1,p,s)}function _u(r,e,t,n,o,s,a=!1,i="channelsLast"){let[l,u,c,p]=[-1,-1,-1,-1];if(i==="channelsLast")[l,u,c,p]=r;else if(i==="channelsFirst")[l,p,u,c]=r;else throw new Error(`Unknown dataFormat ${i}`);let[m,f,,d]=e,[h,g]=ag(t),[x,b]=ag(n),w=Hc(m,x),_=Hc(f,b),{padInfo:k,outHeight:E,outWidth:S}=rj(o,u,c,h,g,w,_,s,i),R=a?d*p:d,F;return i==="channelsFirst"?F=[l,R,E,S]:i==="channelsLast"&&(F=[l,E,S,R]),{batchSize:l,dataFormat:i,inHeight:u,inWidth:c,inChannels:p,outHeight:E,outWidth:S,outChannels:R,padInfo:k,strideHeight:h,strideWidth:g,filterHeight:m,filterWidth:f,effectiveFilterHeight:w,effectiveFilterWidth:_,dilationHeight:x,dilationWidth:b,inShape:r,outShape:F,filterShape:e}}function PN(r,e,t,n,o,s=!1,a="channelsLast",i){let[l,u,c,p,m]=[-1,-1,-1,-1,-1];if(a==="channelsLast")[l,u,c,p,m]=r;else if(a==="channelsFirst")[l,m,u,c,p]=r;else throw new Error(`Unknown dataFormat ${a}`);let[f,d,h,,g]=e,[x,b,w]=bw(t),[_,k,E]=bw(n),S=Hc(f,_),R=Hc(d,k),F=Hc(h,E),{padInfo:P,outDepth:j,outHeight:G,outWidth:U}=nj(o,u,c,p,x,b,w,S,R,F,i),X=s?g*m:g,K;return a==="channelsFirst"?K=[l,X,j,G,U]:a==="channelsLast"&&(K=[l,j,G,U,X]),{batchSize:l,dataFormat:a,inDepth:u,inHeight:c,inWidth:p,inChannels:m,outDepth:j,outHeight:G,outWidth:U,outChannels:X,padInfo:P,strideDepth:x,strideHeight:b,strideWidth:w,filterDepth:f,filterHeight:d,filterWidth:h,effectiveFilterDepth:S,effectiveFilterHeight:R,effectiveFilterWidth:F,dilationDepth:_,dilationHeight:k,dilationWidth:E,inShape:r,outShape:K,filterShape:e}}function oj(r,e,t,n,o){n==null&&(n=ww(r,e,t));let s=r[0],a=r[1],i=ku((s-e+2*n)/t+1,o),l=ku((a-e+2*n)/t+1,o);return[i,l]}function sj(r,e,t,n,o,s){o==null&&(o=ww(r,e,n));let a=r[0],i=r[1],l=r[2],u=ku((a-e+2*o)/n+1,s),c=ku((i-e+2*o)/n+1,s),p=ku((l-e+2*o)/n+1,s);return[u,c,p,t]}function ww(r,e,t,n=1){let o=Hc(e,n);return Math.floor((r[0]*(t-1)-t+o)/2)}function ag(r){return typeof r=="number"?[r,r,r]:r.length===2?[r[0],r[1],1]:r}function bw(r){return typeof r=="number"?[r,r,r]:r}function Hc(r,e){return e<=1?r:r+(r-1)*(e-1)}function rj(r,e,t,n,o,s,a,i,l){let u,c,p;if(typeof r=="number"){u={top:r,bottom:r,left:r,right:r,type:r===0?"VALID":"NUMBER"};let f=oj([e,t],s,n,r,i);c=f[0],p=f[1]}else if(r==="same"){c=Math.ceil(e/n),p=Math.ceil(t/o);let m=Math.max(0,(c-1)*n+s-e),f=Math.max(0,(p-1)*o+a-t),d=Math.floor(m/2),h=m-d,g=Math.floor(f/2),x=f-g;u={top:d,bottom:h,left:g,right:x,type:"SAME"}}else if(r==="valid")u={top:0,bottom:0,left:0,right:0,type:"VALID"},c=Math.ceil((e-s+1)/n),p=Math.ceil((t-a+1)/o);else if(typeof r=="object"){let m=l==="channelsLast"?r[1][0]:r[2][0],f=l==="channelsLast"?r[1][1]:r[2][1],d=l==="channelsLast"?r[2][0]:r[3][0],h=l==="channelsLast"?r[2][1]:r[3][1];u={top:m,bottom:f,left:d,right:h,type:m===0&&f===0&&d===0&&h===0?"VALID":"EXPLICIT"},c=ku((e-s+m+f)/n+1,i),p=ku((t-a+d+h)/o+1,i)}else throw Error(`Unknown padding parameter: ${r}`);return{padInfo:u,outHeight:c,outWidth:p}}function nj(r,e,t,n,o,s,a,i,l,u,c){let p,m,f,d;if(typeof r=="number"){p={top:r,bottom:r,left:r,right:r,front:r,back:r,type:r===0?"VALID":"NUMBER"};let g=sj([e,t,n,1],i,1,o,r,c);m=g[0],f=g[1],d=g[2]}else if(r==="same"){m=Math.ceil(e/o),f=Math.ceil(t/s),d=Math.ceil(n/a);let h=(m-1)*o+i-e,g=(f-1)*s+l-t,x=(d-1)*a+u-n,b=Math.floor(h/2),w=h-b,_=Math.floor(g/2),k=g-_,E=Math.floor(x/2),S=x-E;p={top:_,bottom:k,left:E,right:S,front:b,back:w,type:"SAME"}}else if(r==="valid")p={top:0,bottom:0,left:0,right:0,front:0,back:0,type:"VALID"},m=Math.ceil((e-i+1)/o),f=Math.ceil((t-l+1)/s),d=Math.ceil((n-u+1)/a);else throw Error(`Unknown padding parameter: ${r}`);return{padInfo:p,outDepth:m,outHeight:f,outWidth:d}}function ku(r,e){if(!e)return Math.trunc(r);switch(e){case"round":return Math.round(r);case"ceil":return Math.ceil(r);case"floor":return Math.floor(r);default:throw new Error(`Unknown roundingMode ${e}`)}}function Fn(r){let[e,t,n]=ag(r);return e===1&&t===1&&n===1}function br(r,e){return Fn(r)||Fn(e)}function ON(r){if(r==="NHWC")return"channelsLast";if(r==="NCHW")return"channelsFirst";throw new Error(`Unknown dataFormat ${r}`)}function ij(r,e){let n={x:v(r,"x","reshape","string_or_numeric")},o={shape:e};return D.runKernel(fs,n,o)}var z=T({reshape_:ij});function aj(r,e,t,n,o){let s=v(r,"x","avgPool","float32"),a=1;A(br(t,a),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${t} and dilations '${a}'`);let i=s,l=!1;s.rank===3&&(l=!0,i=z(s,[1,s.shape[0],s.shape[1],s.shape[2]])),A(i.rank===4,()=>`Error in avgPool: x must be rank 4 but got rank ${i.rank}.`),o!=null&&A(st(n),()=>`Error in avgPool: pad must be an integer when using, dimRoundingMode ${o} but got pad ${n}.`);let u={x:i},c={filterSize:e,strides:t,pad:n,dimRoundingMode:o},p=D.runKernel(qn,u,c);return p=ne(p,s.dtype),l?z(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var va=T({avgPool_:aj});function lj(r,e,t,n,o,s="NDHWC"){let a=v(r,"x","avgPool3d","float32"),i=a,l=!1;a.rank===4&&(l=!0,i=z(a,[1,a.shape[0],a.shape[1],a.shape[2],a.shape[3]])),A(i.rank===5,()=>`Error in avgPool3d: x must be rank 5 but got rank ${i.rank}.`),A(s==="NDHWC",()=>`Error in avgPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),o!=null&&A(st(n),()=>`Error in avgPool3d: pad must be an integer when using, dimRoundingMode ${o} but got pad ${n}.`);let u={x:i},c={filterSize:e,strides:t,pad:n,dimRoundingMode:o,dataFormat:s},p=D.runKernel(oa,u,c);return p=ne(p,i.dtype),l?z(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var Om=T({avgPool3d_:lj});function uj(r,e=0){A(r.length>=1,()=>"Pass at least one tensor to concat");let t=ya(r,"tensors","concat","string_or_numeric");if(t[0].dtype==="complex64"&&t.forEach(s=>{if(s.dtype!=="complex64")throw new Error(`Cannot concatenate complex64 tensors with a tensor
with dtype ${s.dtype}. `)}),t.length===1)return Rn(t[0]);let n=t,o={axis:e};return D.runKernel(is,n,o)}var Qe=T({concat_:uj});function cj(r){let t={x:v(r,"x","sigmoid")};return D.runKernel(No,t)}var Wr=T({sigmoid_:cj});function pj(r,e,t){let n=v(r,"x","slice","string_or_numeric");if(n.rank===0)throw new Error("Slicing scalar is not possible");let o={x:n},s={begin:e,size:t};return D.runKernel(hs,o,s)}var Fe=T({slice_:pj});function mj(r){let t={x:v(r,"x","tanh")};return D.runKernel($o,t)}var Li=T({tanh_:mj});function fj(r,e,t,n,o,s){let a=v(r,"forgetBias","basicLSTMCell"),i=v(e,"lstmKernel","basicLSTMCell"),l=v(t,"lstmBias","basicLSTMCell"),u=v(n,"data","basicLSTMCell"),c=v(o,"c","basicLSTMCell"),p=v(s,"h","basicLSTMCell"),m=Qe([u,p],1),f=je(m,i),d=Q(f,l),h=d.shape[0],g=d.shape[1]/4,x=[h,g],b=Fe(d,[0,0],x),w=Fe(d,[0,g],x),_=Fe(d,[0,g*2],x),k=Fe(d,[0,g*3],x),E=Q(M(Wr(b),Li(w)),M(c,Wr(Q(a,_)))),S=M(Li(E),Wr(k));return[E,S]}var dj=T({basicLSTMCell_:fj});function hj(r,e,t){let n=v(r,"x","batchToSpaceND"),o=e.reduce((i,l)=>i*l);A(n.rank>=1+e.length,()=>`input rank is ${n.rank} but should be > than blockShape.length ${e.length}`),A(t.length===e.length,()=>`crops.length is ${t.length} but should be equal to blockShape.length ${e.length}`),A(n.shape[0]%o==0,()=>`input tensor batch is ${n.shape[0]} but is not divisible by the product of the elements of blockShape ${e.join(" * ")} === ${o}`);let s={x:n},a={blockShape:e,crops:t};return D.runKernel(sa,s,a)}var Ca=T({batchToSpaceND_:hj});function MN(r){let e;return r.rank===0||r.rank===1?e=z(r,[1,1,1,r.size]):r.rank===2?e=z(r,[1,1,r.shape[0],r.shape[1]]):r.rank===3?e=z(r,[1,r.shape[0],r.shape[1],r.shape[2]]):e=r,e}function gj(r,e,t,n,o,s){s==null&&(s=.001);let a=v(r,"x","batchNorm"),i=v(e,"mean","batchNorm"),l=v(t,"variance","batchNorm"),u;o!=null&&(u=v(o,"scale","batchNorm"));let c;n!=null&&(c=v(n,"offset","batchNorm")),A(i.rank===l.rank,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),A(c==null||i.rank===c.rank,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),A(u==null||i.rank===u.rank,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let m={x:MN(a),scale:u,offset:c,mean:i,variance:l},f={varianceEpsilon:s},d=D.runKernel(no,m,f);return z(d,a.shape)}var Oo=T({batchNorm_:gj});function xj(r,e,t,n,o,s){let a=v(r,"x","batchNorm"),i=v(e,"mean","batchNorm"),l=v(t,"variance","batchNorm"),u;o!=null&&(u=v(o,"scale","batchNorm"));let c;return n!=null&&(c=v(n,"offset","batchNorm")),A(a.rank===2,()=>`Error in batchNorm2D: x must be rank 2 but got rank ${a.rank}.`),A(i.rank===2||i.rank===1,()=>`Error in batchNorm2D: mean must be rank 2 or rank 1 but got rank ${i.rank}.`),A(l.rank===2||l.rank===1,()=>`Error in batchNorm2D: variance must be rank 2 or rank 1 but got rank ${l.rank}.`),u!=null&&A(u.rank===2||u.rank===1,()=>`Error in batchNorm2D: scale must be rank 2 or rank 1 but got rank ${u.rank}.`),c!=null&&A(c.rank===2||c.rank===1,()=>`Error in batchNorm2D: offset must be rank 2 or rank 1 but got rank ${c.rank}.`),Oo(a,i,l,c,u,s)}var _w=T({batchNorm2d_:xj});function yj(r,e,t,n,o,s){let a=v(r,"x","batchNorm"),i=v(e,"mean","batchNorm"),l=v(t,"variance","batchNorm"),u;o!=null&&(u=v(o,"scale","batchNorm"));let c;return n!=null&&(c=v(n,"offset","batchNorm")),A(a.rank===3,()=>`Error in batchNorm3D: x must be rank 3 but got rank ${a.rank}.`),A(i.rank===3||i.rank===1,()=>`Error in batchNorm3D: mean must be rank 3 or rank 1 but got rank ${i.rank}.`),A(l.rank===3||l.rank===1,()=>`Error in batchNorm3D: variance must be rank 3 or rank 1 but got rank ${l.rank}.`),u!=null&&A(u.rank===3||u.rank===1,()=>`Error in batchNorm3D: scale must be rank 3 or rank 1 but got rank ${u.rank}.`),c!=null&&A(c.rank===3||c.rank===1,()=>`Error in batchNorm3D: offset must be rank 3 or rank 1 but got rank ${c.rank}.`),Oo(a,i,l,c,u,s)}var kw=T({batchNorm3d_:yj});function bj(r,e,t,n,o,s){let a=v(r,"x","batchNorm"),i=v(e,"mean","batchNorm"),l=v(t,"variance","batchNorm"),u;o!=null&&(u=v(o,"scale","batchNorm"));let c;return n!=null&&(c=v(n,"offset","batchNorm")),A(a.rank===4,()=>`Error in batchNorm4D: x must be rank 4 but got rank ${a.rank}.`),A(i.rank===4||i.rank===1,()=>`Error in batchNorm4D: mean must be rank 4 or rank 1 but got rank ${i.rank}.`),A(l.rank===4||l.rank===1,()=>`Error in batchNorm4D: variance must be rank 4 or rank 1 but got rank ${l.rank}.`),u!=null&&A(u.rank===4||u.rank===1,()=>`Error in batchNorm4D: scale must be rank 4 or rank 1 but got rank ${u.rank}.`),c!=null&&A(c.rank===4||c.rank===1,()=>`Error in batchNorm4D: offset must be rank 4 or rank 1 but got rank ${c.rank}.`),Oo(a,i,l,c,u,s)}var vw=T({batchNorm4d_:bj});function wj(r,e,t){let n=v(r,"x","bincount"),o=v(e,"weights","bincount");A(n.dtype==="int32",()=>`Error in bincount: input dtype must be int32, but got ${n.dtype}`),A(t>=0,()=>`size must be non-negative, but got ${t}.`),A(o.size===n.size||o.size===0,()=>`Error in bincount: weights must have the same size as input or0-length, but got input shape: ${n.shape}, weights shape: ${o.shape}.`);let s={x:n,weights:o},a={size:t};return D.runKernel(Ul,s,a)}var Cw=T({bincount_:wj});function _j(r,e){let t=v(r,"broadcastTo","x"),n=t.shape;if(e.some(u=>!(u>0)||u%1!=0))throw new Error(`broadcastTo(): Invalid broadcast shape [${e}].`);if(e.length<t.rank)throw new Error(`broadcastTo(): shape.length=${e.length} < input.rank=${t.rank}.`);if(e.length>t.rank){let u=t.shape.slice();for(;u.length<e.length;)u.unshift(1);t=z(t,u)}let o=t.shape,s=Array.from(e);for(let u=e.length-1;u>=0;u--)if(o[u]===e[u])s[u]=1;else if(t.shape[u]!==1)throw new Error(`broadcastTo(): [${n}] cannot be broadcast to [${e}].`);if(s.map((u,c)=>u>1?c:-1).filter(u=>u>=0).length===0)return Rn(t);let i={x:t},l={reps:s};return D.runKernel(yn,i,l)}var ll=T({broadcastTo_:_j});function kj(r){let t={x:v(r,"x","ceil")};return D.runKernel(ti,t)}var Pm=T({ceil_:kj});function vj(r,e,t){let n=v(r,"x","clipByValue");A(e<=t,()=>`Error in clip: min (${e}) must be less than or equal to max (${t}).`);let o={x:n},s={clipValueMin:e,clipValueMax:t};return D.runKernel(Dn,o,s)}var sr=T({clipByValue_:vj});function Cj(r){return Qe(r,0)}var Iw=T({concat1d_:Cj});function Ij(r,e){return Qe(r,e)}var Nw=T({concat2d_:Ij});function Nj(r,e){return Qe(r,e)}var Sw=T({concat3d_:Nj});function Sj(r,e){return Qe(r,e)}var Tw=T({concat4d_:Sj});function Tj(r,e,t,n,o="NHWC",s=[1,1],a){let i=v(r,"x","conv2d"),l=v(e,"filter","conv2d"),u=i,c=!1;i.rank===3&&(c=!0,u=z(i,[1,i.shape[0],i.shape[1],i.shape[2]])),A(u.rank===4,()=>`Error in conv2d: input must be rank 4, but got rank ${u.rank}.`),A(l.rank===4,()=>`Error in conv2d: filter must be rank 4, but got rank ${l.rank}.`),a!=null&&A(st(n),()=>`Error in conv2d: pad must be an integer when using, dimRoundingMode ${a} but got pad ${n}.`);let p=o==="NHWC"?u.shape[3]:u.shape[1];A(p===l.shape[2],()=>`Error in conv2d: depth of input (${p}) must match input depth for filter ${l.shape[2]}.`),A(br(t,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${t} and dilations '${s}'`);let m={x:u,filter:l},f={strides:t,pad:n,dataFormat:o,dilations:s,dimRoundingMode:a},d=D.runKernel(Kn,m,f);return c?z(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var Ur=T({conv2d_:Tj});function Ej(r,e,t,n,o="NWC",s=1,a){let i=v(r,"x","conv1d"),l=v(e,"filter","conv1d"),u=i,c=!1;i.rank===2&&(c=!0,u=z(i,[1,i.shape[0],i.shape[1]])),A(u.rank===3,()=>`Error in conv1d: input must be rank 3, but got rank ${u.rank}.`),A(l.rank===3,()=>`Error in conv1d: filter must be rank 3, but got rank ${l.rank}.`),a!=null&&A(st(n),()=>`Error in conv1d: pad must be an integer when using, dimRoundingMode ${a} but got pad ${n}.`),A(u.shape[2]===l.shape[1],()=>`Error in conv1d: depth of input (${u.shape[2]}) must match input depth for filter ${l.shape[1]}.`),A(br(t,s),()=>`Error in conv1D: Either stride or dilation must be 1. Got stride ${t} and dilation '${s}'`),A(o==="NWC",()=>`Error in conv1d: got dataFormat of ${o} but only NWC is currently supported.`);let p=z(l,[1,l.shape[0],l.shape[1],l.shape[2]]),m=z(u,[u.shape[0],1,u.shape[1],u.shape[2]]),g=Ur(m,p,[1,t],n,"NHWC",[1,s],a);return c?z(g,[g.shape[2],g.shape[3]]):z(g,[g.shape[0],g.shape[2],g.shape[3]])}var vu=T({conv1d_:Ej});function Aj(r,e,t,n,o,s="NHWC",a){A(r.length===e.rank,()=>`Length of inShape (${r.length}) and rank of dy (${e.rank}) must match`);let i=r,l=e,u=!1;e.rank===3&&(u=!0,l=z(e,[1,e.shape[0],e.shape[1],e.shape[2]]),i=[1,r[0],r[1],r[2]]),A(i.length===4,()=>`Error in conv2dDerInput: inShape must be length 4, but got length ${i.length}.`),A(l.rank===4,()=>`Error in conv2dDerInput: dy must be rank 4, but got rank ${l.rank}`),A(t.rank===4,()=>`Error in conv2dDerInput: filter must be rank 4, but got rank ${t.rank}`);let c=s==="NHWC"?i[3]:i[1],p=s==="NHWC"?l.shape[3]:l.shape[1];A(c===t.shape[2],()=>`Error in conv2dDerInput: depth of input (${c}) must match input depth for filter ${t.shape[2]}.`),A(p===t.shape[3],()=>`Error in conv2dDerInput: depth of output (${p}) must match output depth for filter ${t.shape[3]}.`),a!=null&&A(st(o),()=>`Error in conv2dDerInput: pad must be an integer when using, dimRoundingMode ${a} but got pad ${o}.`);let m={dy:l,filter:t},f={strides:n,pad:o,dataFormat:s,dimRoundingMode:a,inputShape:i},d=D.runKernel(Xn,m,f);return u?z(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var Kc=T({conv2DBackpropInput_:Aj});function Dj(r,e,t,n,o,s){let a=v(r,"x","conv2dTranspose"),i=v(e,"filter","conv2dTranspose");return Kc(t,a,i,n,o,"NHWC",s)}var Cu=T({conv2dTranspose_:Dj});function $j(r,e,t,n,o="NDHWC",s=[1,1,1]){let a=v(r,"x","conv3d"),i=v(e,"filter","conv3d"),l=a,u=!1;a.rank===4&&(u=!0,l=z(a,[1,a.shape[0],a.shape[1],a.shape[2],a.shape[3]])),A(l.rank===5,()=>`Error in conv3d: input must be rank 5, but got rank ${l.rank}.`),A(i.rank===5,()=>`Error in conv3d: filter must be rank 5, but got rank ${i.rank}.`),A(l.shape[4]===i.shape[3],()=>`Error in conv3d: depth of input (${l.shape[4]}) must match input depth for filter ${i.shape[3]}.`),A(br(t,s),()=>`Error in conv3D: Either strides or dilations must be 1. Got strides ${t} and dilations '${s}'`),A(o==="NDHWC",()=>`Error in conv3d: got dataFormat of ${o} but only NDHWC is currently supported.`);let c={x:l,filter:i},p={strides:t,pad:n,dataFormat:o,dilations:s},m=D.runKernel(aa,c,p);return u?z(m,[m.shape[1],m.shape[2],m.shape[3],m.shape[4]]):m}var Mm=T({conv3d_:$j});function Rj(r,e,t,n,o){A(r.length===e.rank,()=>`Length of inShape (${r.length}) and rank of dy (${e.rank}) must match`);let s=r,a=e,i=!1;e.rank===4&&(i=!0,a=z(e,[1,e.shape[0],e.shape[1],e.shape[2],e.shape[3]]),s=[1,r[0],r[1],r[2],r[3]]);let l=s[4],u=a.shape[4];A(s.length===5,()=>`Error in conv3dDerInput: inShape must be length 5, but got length ${s.length}.`),A(a.rank===5,()=>`Error in conv3dDerInput: dy must be rank 5, but got rank ${a.rank}`),A(t.rank===5,()=>`Error in conv3dDerInput: filter must be rank 5, but got rank ${t.rank}`),A(l===t.shape[3],()=>`Error in conv3dDerInput: depth of input (${l}) must match input depth for filter ${t.shape[3]}.`),A(u===t.shape[4],()=>`Error in conv3dDerInput: depth of output (${u}) must match output depth for filter ${t.shape[4]}.`);let c={dy:a,filter:t},p={pad:o,strides:n,inputShape:s},m=D.runKernel(Xl,c,p);return i?z(m,[m.shape[1],m.shape[2],m.shape[3],m.shape[4]]):m}var lg=T({conv3DBackpropInput_:Rj});function Fj(r,e,t,n,o){let s=v(r,"x","conv3dTranspose"),a=v(e,"filter","conv3dTranspose");return lg(t,s,a,n,o)}var Oj=T({conv3dTranspose_:Fj});function Pj(r){let t={x:v(r,"x","cos")};return D.runKernel(Yn,t)}var Ia=T({cos_:Pj});function Mj(r){let t={x:v(r,"x","cosh")};return D.runKernel(ri,t)}var Iu=T({cosh_:Mj});function Lj(r,e=0,t=!1,n=!1){let s={x:v(r,"x","cumsum")},a={axis:e,exclusive:t,reverse:n};return D.runKernel(Zn,s,a)}var Nu=T({cumsum_:Lj});function zj(r,e,t,n=!1){let o=v(r,"x","denseBincount"),s=v(e,"weights","denseBincount");A(o.dtype==="int32",()=>`Error in denseBincount: input dtype must be int32, but got ${o.dtype}`),A(o.rank<=2,()=>`Error in denseBincount: input must be at most rank 2, but got rank ${o.rank}.`),A(t>=0,()=>`size must be non-negative, but got ${t}.`),A(s.size===o.size||s.size===0,()=>`Error in denseBincount: weights must have the same shape as x or 0-length, but got x shape: ${o.shape}, weights shape: ${s.shape}.`);let a={x:o,weights:s},i={size:t,binaryOutput:n};return D.runKernel(Yl,a,i)}var Ew=T({denseBincount_:zj});function Bj(r,e,t="NHWC"){let n=v(r,"x","depthToSpace"),o=t==="NHWC"?n.shape[1]:n.shape[2],s=t==="NHWC"?n.shape[2]:n.shape[3],a=t==="NHWC"?n.shape[3]:n.shape[1];A(o*e>=0,()=>`Negative dimension size caused by overflow when multiplying
${o} and ${e} for depthToSpace with input shape
${n.shape}`),A(s*e>=0,()=>`Negative dimension size caused by overflow when multiplying
${s} and ${e} for depthToSpace with input shape
${n.shape}`),A(a%(e*e)==0,()=>`Dimension size must be evenly divisible by ${e*e} but is ${a} for depthToSpace with input shape ${n.shape}`);let i={x:n},l={blockSize:e,dataFormat:t};return D.runKernel(oi,i,l)}var Lm=T({depthToSpace_:Bj});function Vj(r,e,t,n,o="NHWC",s=[1,1],a){let i=v(r,"x","depthwiseConv2d"),l=v(e,"filter","depthwiseConv2d"),u=i,c=!1;i.rank===3&&(c=!0,u=z(i,[1,i.shape[0],i.shape[1],i.shape[2]])),A(u.rank===4,()=>`Error in depthwiseConv2d: input must be rank 4, but got rank ${u.rank}.`),A(l.rank===4,()=>`Error in depthwiseConv2d: filter must be rank 4, but got rank ${l.rank}.`),A(u.shape[3]===l.shape[2],()=>`Error in depthwiseConv2d: number of input channels (${u.shape[3]}) must match the inChannels dimension in filter ${l.shape[2]}.`),a!=null&&A(st(n),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${a} but got pad ${n}.`);let p={x:u,filter:l},m={strides:t,pad:n,dataFormat:o,dilations:s,dimRoundingMode:a},f=D.runKernel(Jn,p,m);return c?z(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var Cs=T({depthwiseConv2d_:Vj});function Gj(r){let t={x:v(r,"x","diag")};return D.runKernel(Ql,t)}var jj=T({diag_:Gj});function Wj(r,e,t,n,o=[1,1],s="NHWC"){let a=v(r,"x","dilation2d"),i=v(e,"filter","dilation2d");A(a.rank===3||a.rank===4,()=>`Error in dilation2d: input must be rank 3 or 4, but got rank ${a.rank}.`),A(i.rank===3,()=>`Error in dilation2d: filter must be rank 3, but got rank ${i.rank}.`),A(s==="NHWC",()=>`Error in dilation2d: Only NHWC is currently supported, but got dataFormat of ${s}`);let l=a,u=!1;a.rank===3&&(l=z(a,[1,a.shape[0],a.shape[1],a.shape[2]]),u=!0);let c={x:l,filter:i},p={strides:t,pad:n,dilations:o},m=D.runKernel(la,c,p);return u?z(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var zm=T({dilation2d_:Wj});function Uj(r,e){let t=r.length,n=[];for(let o=0;o<t;o++){let s=t-1-o,a=r[s]||1;(e[e.length-1-o]||1)>1&&a===1&&n.unshift(s)}return n}function It(r,e){let t=[];for(let n=0;n<e.length;n++){let o=r[r.length-n-1],s=e.length-n-1,a=e[s];(o==null||o===1&&a>1)&&t.unshift(s)}return t}function ze(r,e){let t=[],n=Math.max(r.length,e.length);for(let o=0;o<n;o++){let s=r[r.length-o-1];s==null&&(s=1);let a=e[e.length-o-1];if(a==null&&(a=1),s===1)t.unshift(a);else if(a===1)t.unshift(s);else if(s!==a){let i=`Operands could not be broadcast together with shapes ${r} and ${e}.`;throw Error(i)}else t.unshift(s)}return t}function qj(r,e){let t=v(r,"a","equal"),n=v(e,"b","equal");[t,n]=Ge(t,n),ze(t.shape,n.shape);let o={a:t,b:n};return D.runKernel(ai,o)}var wn=T({equal_:qj});function Hj(r,e,t){let n=v(e,"a","where"),o=v(t,"b","where"),s=v(r,"condition","where","bool"),a=ze(n.shape,o.shape),i=ll(n,a),l=ll(o,a);s.rank===1&&A(s.shape[0]===n.shape[0],()=>"The first dimension of `a` must match the size of `condition`."),s.rank!==1&&St(s.shape,l.shape,"Error in where: ");let u={condition:s,t:i,e:l};return D.runKernel(ds,u)}var $t=T({where_:Hj});function Kj(r){let t={x:v(r,"x","zerosLike")};return D.runKernel(ys,t)}var Ie=T({zerosLike_:Kj});function Xj(r,e){let t=v(r,"a","div"),n=v(e,"b","div");[t,n]=Ge(t,n);let o=de(t,n),s=Ie(o),a=wn(n,s);return $t(a,s,o)}var Bm=T({divNoNan_:Xj});function Yj(r,e){let t=v(r,"t1","dot"),n=v(e,"t2","dot");A((t.rank===1||t.rank===2)&&(n.rank===1||n.rank===2),()=>`Error in dot: inputs must all be rank 1 or 2, but got ranks ${t.rank} and ${n.rank}.`);let o=t.rank===1?t.size:t.shape[1],s=n.rank===1?n.size:n.shape[0];if(A(o===s,()=>`Error in dot: inner dimensions of inputs must match, but got ${o} and ${s}.`),t.rank===1&&n.rank===1){let a=z(t,[1,-1]),i=z(n,[-1,1]),l=je(a,i);return z(l,[])}else if(t.rank===1&&n.rank===2){let a=z(t,[1,-1]),i=z(n,[n.shape[0],n.shape[1]]),l=je(a,i);return z(l,[l.size])}else if(t.rank===2&&n.rank===1){let a=z(n,[-1,1]),i=je(t,a);return z(i,[i.size])}else{let a=z(n,[n.shape[0],n.shape[1]]);return je(t,a)}}var Aw=T({dot_:Yj});function Zj(r){let t={x:v(r,"x","elu")};return D.runKernel(si,t)}var Is=T({elu_:Zj});function Jj(r){let e=v(r,"x","erf");A(e.dtype==="int32"||e.dtype==="float32",()=>"Input dtype must be `int32` or `float32`."),e.dtype==="int32"&&(e=ne(e,"float32"));let t={x:e};return D.runKernel(ii,t)}var Vm=T({erf_:Jj});function Qj(r){let t={x:v(r,"x","exp")};return D.runKernel(eo,t)}var Yt=T({exp_:Qj});function eW(r,e=0){let t=v(r,"x","expandDims","string_or_numeric");A(e<=t.rank,()=>"Axis must be <= rank of the tensor");let n={input:t},o={dim:e};return D.runKernel(as,n,o)}var ir=T({expandDims_:eW});function tW(r){let t={x:v(r,"x","expm1")};return D.runKernel(li,t)}var Gm=T({expm1_:tW});function rW(r,e){let t=v(r,"x","tile","string_or_numeric");A(t.rank===e.length,()=>`Error in transpose: rank of input ${t.rank} must match length of reps ${e}.`);let n={x:t},o={reps:e};return D.runKernel(yn,n,o)}var On=T({tile_:rW});function nW(r,e,t,n="float32"){e==null&&(e=r);let o=Ce([r,e],n),s=r<=e?r:e;for(let i=0;i<s;++i)o.set(1,i,i);let a=z(o.toTensor(),[r,e]);if(t==null)return a;if(t.length===1)return On(ir(a,0),[t[0],1,1]);if(t.length===2)return On(ir(ir(a,0),0),[t[0],t[1],1,1]);if(t.length===3)return On(ir(ir(ir(a,0),0),0),[t[0],t[1],t[2],1,1]);throw new Error(`eye() currently supports only 1D and 2D batchShapes, but received ${t.length}D.`)}var Xc=T({eye_:nW});function Na(r,e,t){let n={shape:r,value:e,dtype:t};return D.runKernel(ua,{},n)}function oW(r){let t={x:v(r,"x","floor")};return D.runKernel(to,t)}var Ns=T({floor_:oW});function sW(r,e,t=0,n=0){let o=v(r,"x","gather"),s=v(e,"indices","gather","int32"),a={x:o,indices:s},i={axis:t,batchDims:n};return D.runKernel(ls,a,i)}var Po=T({gather_:sW});function iW(r,e){let t=v(r,"a","greater"),n=v(e,"b","greater");[t,n]=Ge(t,n),ze(t.shape,n.shape);let o={a:t,b:n};return D.runKernel(pi,o)}var er=T({greater_:iW});function aW(r,e){let t=v(r,"a","greaterEqual"),n=v(e,"b","greaterEqual");[t,n]=Ge(t,n),ze(t.shape,n.shape);let o={a:t,b:n};return D.runKernel(oo,o)}var tn=T({greaterEqual_:aW});function lW(r){let t={input:v(r,"input","imag")};return D.runKernel(nu,t)}var Su=T({imag_:lW});function uW(r){let t={x:v(r,"x","isFinite")};return D.runKernel(mi,t)}var Dw=T({isFinite_:uW});function cW(r){let t={x:v(r,"x","isInf")};return D.runKernel(fi,t)}var $w=T({isInf_:cW});function pW(r){let t={x:v(r,"x","isNaN")};return D.runKernel(di,t)}var Rw=T({isNaN_:pW});function mW(r,e=.2){let n={x:v(r,"x","leakyRelu")},o={alpha:e};return D.runKernel(so,n,o)}var Sa=T({leakyRelu_:mW});function fW(r,e){let t=v(r,"a","less"),n=v(e,"b","less");[t,n]=Ge(t,n),ze(t.shape,n.shape);let o={a:t,b:n};return D.runKernel(hi,o)}var Tu=T({less_:fW});function dW(r,e){let t=v(r,"a","lessEqual"),n=v(e,"b","lessEqual");[t,n]=Ge(t,n),ze(t.shape,n.shape);let o={a:t,b:n};return D.runKernel(gi,o)}var Pn=T({lessEqual_:dW});function Fw(r,e,t){if(t<=0)throw new Error("The number of values should be positive.");let n={start:r,stop:e,num:t};return D.runKernel(ou,{},n)}function hW(r,e=5,t=1,n=1,o=.5){let s=v(r,"x","localResponseNormalization");A(s.rank===4||s.rank===3,()=>`Error in localResponseNormalization: x must be rank 3 or 4 but got
rank ${s.rank}.`),A(st(e),()=>`Error in localResponseNormalization: depthRadius must be an integer but got depthRadius ${e}.`);let a=s,i=!1;s.rank===3&&(i=!0,a=z(s,[1,s.shape[0],s.shape[1],s.shape[2]]));let l={x:a},u={depthRadius:e,bias:t,alpha:n,beta:o},c=D.runKernel(ca,l,u);return i?z(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var jm=T({localResponseNormalization_:hW});function gW(r){let t={x:v(r,"x","log")};return D.runKernel(io,t)}var ar=T({log_:gW});function xW(r){let t={x:v(r,"x","log1p")};return D.runKernel(xi,t)}var Eu=T({log1p_:xW});function yW(r){return A(qs(r),()=>"The f passed in grad(f) must be a function"),(e,t)=>{let n=v(e,"x","tf.grad","string_or_numeric"),o=t!=null?v(t,"dy","tf.grad"):null;return D.tidy(()=>{let{value:s,grads:a}=D.gradients(()=>r(n),[n],o);return o!=null&&St(s.shape,o.shape,"The shape of dy passed in grad(f)(x, dy) must match the shape returned by f(x)"),ug(a),a[0]})}}function bW(r){return A(qs(r),()=>"The f passed in grads(f) must be a function"),(e,t)=>{A(Array.isArray(e),()=>"The args passed in grads(f)(args) must be an array of `Tensor`s or `TensorLike`s");let n=ya(e,"args","tf.grads","string_or_numeric"),o=t!=null?v(t,"dy","tf.grads"):null;return D.tidy(()=>{let{value:s,grads:a}=D.gradients(()=>r(...n),n,o);return o!=null&&St(s.shape,o.shape,"The shape of dy passed in grads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),ug(a),a})}}function wW(r){return A(qs(r),()=>"The f passed in valueAndGrad(f) must be a function"),(e,t)=>{A(e instanceof Ve,()=>"The x passed in valueAndGrad(f)(x) must be a tensor"),A(t==null||t instanceof Ve,()=>"The dy passed in valueAndGrad(f)(x, dy) must be a tensor");let{grads:n,value:o}=D.gradients(()=>r(e),[e],t);return ug(n),{grad:n[0],value:o}}}function _W(r){return A(qs(r),()=>"The f passed in valueAndGrads(f) must be a function"),(e,t)=>{A(Array.isArray(e)&&e.every(o=>o instanceof Ve),()=>"The args passed in valueAndGrads(f)(args) must be array of tensors"),A(t==null||t instanceof Ve,()=>"The dy passed in valueAndGrads(f)(args, dy) must be a tensor");let n=D.gradients(()=>r(...e),e,t);return t!=null&&St(n.value.shape,t.shape,"The shape of dy passed in valueAndGrads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),ug(n.grads),n}}function cg(r,e){A(qs(r),()=>"The f passed in variableGrads(f) must be a function"),A(e==null||Array.isArray(e)&&e.every(u=>u instanceof nl),()=>"The varList passed in variableGrads(f, varList) must be an array of variables");let t=e!=null;if(!t){e=[];for(let u in D.registeredVariables)e.push(D.registeredVariables[u])}let n=t?e.filter(u=>!u.trainable):null,o=e.length;e=e.filter(u=>u.trainable),A(e.length>0,()=>`variableGrads() expects at least one of the input variables to be trainable, but none of the ${o} variables is trainable.`);let s=!0,{value:a,grads:i}=D.gradients(r,e,null,s);A(i.some(u=>u!=null),()=>"Cannot find a connection between any variable and the result of the loss function y=f(x). Please make sure the operations that use variables are inside the function f passed to minimize()."),A(a.rank===0,()=>`The f passed in variableGrads(f) must return a scalar, but it returned a rank-${a.rank} tensor`);let l={};return e.forEach((u,c)=>{i[c]!=null&&(l[u.name]=i[c])}),n!=null&&n.forEach(u=>l[u.name]=null),{value:a,grads:l}}function qr(r){return D.customGrad(r)}function ug(r){if(r.filter(t=>t==null).length>0)throw new Error(`Cannot compute gradient of y=f(x) with respect to x. Make sure that
the f you passed encloses all operations that lead from x to y.`)}function kW(r){let t={x:v(r,"x","neg")};return D.runKernel(cs,t)}var Ue=T({neg_:kW});function vW(r){let t={x:v(r,"x","softplus")};return D.runKernel(Ai,t)}var Ss=T({softplus_:vW});function CW(r){let e=v(r,"x","logSigmoid");return qr(n=>({value:Ue(Ss(Ue(n))),gradFunc:a=>M(a,Wr(Ue(n)))}))(e)}var Ow=T({logSigmoid_:CW});function IW(r,e=null,t=!1){let o={x:v(r,"x","max")},s={reductionIndices:e,keepDims:t};return D.runKernel(ao,o,s)}var lr=T({max_:IW});function NW(r,e){let t=v(r,"a","sub"),n=v(e,"b","sub");[t,n]=Ge(t,n);let o={a:t,b:n};return D.runKernel(Do,o)}var ue=T({sub_:NW});function SW(r,e=null,t=!1){let n=v(r,"x","sum");n.dtype==="bool"&&(n=ne(n,"int32"));let o={x:n},s={axis:e,keepDims:t};return D.runKernel(To,o,s)}var ye=T({sum_:SW});function TW(r,e=-1){let t=v(r,"logits","logSoftmax");if(e===-1&&(e=t.rank-1),e!==t.rank-1)throw Error(`Log Softmax along a non-last dimension is not yet supported. Logits was rank ${t.rank} and axis was ${e}`);return qr((o,s)=>{let a=!0,i=lr(o,e,!0),l=ue(o,i),u=ue(ne(l,"float32"),ar(ye(Yt(l),e,a)));return s([u]),{value:u,gradFunc:(p,m)=>{let[f]=m,d=!0,h=Yt(f);return ue(p,M(ye(p,e,d),h))}}})(t)}var Au=T({logSoftmax_:TW});function Pw(r,e){for(let t=0;t<r.length;++t)if(r[r.length-t-1]!==e-1-t)return!1;return!0}function LN(r,e,t){let n=r.length+e.length,o=[],s=0,a=0;for(let i=0;i<n;i++)t.indexOf(i)===-1?o.push(r[s++]):o.push(e[a++]);return o}function Mw(r,e){let t=[],n=r.length;for(let s=0;s<n;s++)e.indexOf(s)===-1&&t.push(r[s]);let o=e.map(s=>r[s]);return[t,o]}function Mo(r,e){let t=e.map(n=>1);return LN(r,t,e)}function EW(r,e,t){A(Pw(e,t),()=>`${r} supports only inner-most axes for now. Got axes ${e} and rank-${t} input.`)}function Lw(r,e){if(Pw(r,e))return null;let t=[];for(let n=0;n<e;++n)r.indexOf(n)===-1&&t.push(n);return r.forEach(n=>t.push(n)),t}function Wm(r){return r.map((e,t)=>[t,e]).sort((e,t)=>e[1]-t[1]).map(e=>e[0])}function AW(r,e){let t=[];for(let n=e-r;n<e;++n)t.push(n);return t}function DW(r,e=null,t=!1){let n=v(r,"x","logSumExp"),o=Qt(e,n.shape),s=lr(n,o,!0),a=ue(n,s),i=Yt(a),l=ye(i,o),u=ar(l),c=Q(z(s,u.shape),u);if(t){let p=Mo(c.shape,o);return z(c,p)}return c}var Um=T({logSumExp_:DW});function $W(r,e){let t=v(r,"a","logicalAnd","bool"),n=v(e,"b","logicalAnd","bool");ze(t.shape,n.shape);let o={a:t,b:n};return D.runKernel(yi,o)}var dr=T({logicalAnd_:$W});function RW(r){let t={x:v(r,"x","logicalNot","bool")};return D.runKernel(Qa,t)}var Ta=T({logicalNot_:RW});function FW(r,e){let t=v(r,"a","logicalOr","bool"),n=v(e,"b","logicalOr","bool");ze(t.shape,n.shape);let o={a:t,b:n};return D.runKernel(el,o)}var Du=T({logicalOr_:FW});function OW(r,e){let t=v(r,"a","logicalXor","bool"),n=v(e,"b","logicalXor","bool");return ze(t.shape,n.shape),dr(Du(r,e),Ta(dr(r,e)))}var zw=T({logicalXor_:OW});function PW(r,e,t,n,o){let s=v(r,"x","maxPool"),a=1,i=s,l=!1;s.rank===3&&(l=!0,i=z(s,[1,s.shape[0],s.shape[1],s.shape[2]])),A(i.rank===4,()=>`Error in maxPool: input must be rank 4 but got rank ${i.rank}.`),A(br(t,a),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${t} and dilations '${a}'`),o!=null&&A(st(n),()=>`Error in maxPool: pad must be an integer when using, dimRoundingMode ${o} but got pad ${n}.`);let u={x:i},c={filterSize:e,strides:t,pad:n,dimRoundingMode:o},p=D.runKernel(uo,u,c);return l?z(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var Ea=T({maxPool_:PW});function MW(r,e=[1,1,1],t,n,o,s="NDHWC"){let a=v(r,"x","maxPool3d"),i=a,l=!1;a.rank===4&&(l=!0,i=z(a,[1,a.shape[0],a.shape[1],a.shape[2],a.shape[3]])),A(i.rank===5,()=>`Error in maxPool3d: x must be rank 5 but got rank ${i.rank}.`),A(s==="NDHWC",()=>`Error in maxPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),o!=null&&A(st(n),()=>`Error in maxPool3d: pad must be an integer when using, dimRoundingMode ${o} but got pad ${n}.`);let u={x:i},c={filterSize:e,strides:t,pad:n,dimRoundingMode:o,dataFormat:s},p=D.runKernel(pa,u,c);return l?z(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var qm=T({maxPool3d_:MW});function LW(r,e,t,n,o=!1){let a={x:v(r,"x","maxPoolWithArgmax")},i={filterSize:e,strides:t,pad:n,includeBatchInIndex:o},l=D.runKernel(lu,a,i);return{result:l[0],indexes:l[1]}}var Bw=T({maxPoolWithArgmax_:LW});function zW(r,e){let t=v(r,"a","maximum"),n=v(e,"b","maximum");[t,n]=Ge(t,n),t.dtype==="bool"&&(t=ne(t,"int32"),n=ne(n,"int32")),ze(t.shape,n.shape);let o={a:t,b:n};return D.runKernel(lo,o)}var Hr=T({maximum_:zW});function BW(r,e=null,t=!1){let o={x:v(r,"x","mean")},s={axis:e,keepDims:t};return D.runKernel(co,o,s)}var gt=T({mean_:BW});function VW(r,e=null,t=!1){let o={x:v(r,"x","min")},s={axis:e,keepDims:t};return D.runKernel(po,o,s)}var zi=T({min_:VW});function GW(r,e){let t=v(r,"a","minimum"),n=v(e,"b","minimum");[t,n]=Ge(t,n),t.dtype==="bool"&&(t=ne(t,"int32"),n=ne(n,"int32")),ze(t.shape,n.shape);let o={a:t,b:n};return D.runKernel(mo,o)}var Ts=T({minimum_:GW});function jW(r,e,t){A(t==="reflect"||t==="symmetric",()=>`Invalid mode. Mode must be either reflect or symmetric. Got ${t}.`);let n=v(r,"x","mirrorPad");if(n.rank===0)throw new Error("mirrorPad(scalar) is not defined. Pass non-scalar to mirrorPad");A(e.length===n.rank,()=>`Padding doesn't match input. Must be ${n.rank}. Got ${e.length}.`);let o=t==="reflect"?1:0;for(let i=0;i<n.rank;i++)A(e[i].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),A(e[i][0]>=0&&e[i][0]<=n.shape[i]-o&&e[i][1]>=0&&e[i][1]<=n.shape[i]-o,()=>`Padding in dimension ${i} cannot be greater than or equal to ${n.shape[i]-o} or less than 0 for input of shape ${n.shape}`);let s={paddings:e,mode:t},a={x:n};return D.runKernel(ma,a,s)}var Hm=T({mirrorPad_:jW});function WW(r,e){let t=v(r,"a","mod"),n=v(e,"b","mod");[t,n]=Ge(t,n);let o={a:t,b:n};return D.runKernel(bi,o)}var Km=T({mod_:WW});function UW(r){let e=v(r,"x","square"),t={};return D.runKernel("Square",{x:e},t)}var Pe=T({square_:UW});function qW(r,e=null,t=!1){r=v(r,"x","moments");let n=Qt(e,r.shape),o=gt(r,n,t),s=o.shape;t||(s=Mo(o.shape,n));let a=Pe(ue(ne(r,"float32"),z(o,s))),i=gt(a,n,t);return{mean:o,variance:i}}var Yc=T({moments_:qW});function HW(r,e,t,n){let o=v(e,"data","multiRNNCell"),s=ya(t,"c","multiRNNCell"),a=ya(n,"h","multiRNNCell"),i=o,l=[];for(let p=0;p<r.length;p++){let m=r[p](i,s[p],a[p]);l.push(m[0]),l.push(m[1]),i=m[1]}let u=[],c=[];for(let p=0;p<l.length;p+=2)u.push(l[p]),c.push(l[p+1]);return[u,c]}var KW=T({multiRNNCell_:HW});function XW(r,e,t,n=!1){let o=v(r,"logits","multinomial"),s=o.size,a=o.rank;if(s<2)throw new Error(`Error in multinomial: you need at least 2 outcomes, but got ${s}.`);if(a>2)throw new Error(`Rank of probabilities must be 1 or 2, but is ${a}`);t=t||Math.random();let l={logits:a===1?z(o,[1,-1]):o},u={numSamples:e,seed:t,normalized:n},c=D.runKernel(uu,l,u);return a===1?z(c,[c.size]):c}var Vw=T({multinomial_:XW});function YW(r,e){let t=v(r,"a","notEqual"),n=v(e,"b","notEqual");[t,n]=Ge(t,n),ze(t.shape,n.shape);let o={a:t,b:n};return D.runKernel(wi,o)}var Lo=T({notEqual_:YW});function xt(r,e="float32"){if(e==="complex64"){let n=xt(r,"float32"),o=xt(r,"float32");return bn(n,o)}let t=$c(ft(r),e);return D.makeTensor(t,r,e)}function Ir(r,e="float32"){if(e==="complex64"){let n=Ir(r,"float32"),o=xt(r,"float32");return bn(n,o)}let t=gm(ft(r),e);return D.makeTensor(t,r,e)}function ZW(r){let t={x:v(r,"x","onesLike")};return D.runKernel(ps,t)}var tr=T({onesLike_:ZW});function JW(r,e){let t=v(r,"v1","outerProduct"),n=v(e,"v2","outerProduct");A(t.rank===1&&n.rank===1,()=>`Error in outerProduct: inputs must be rank 1, but got ranks ${t.rank} and ${n.rank}.`);let o=z(t,[-1,1]),s=z(n,[1,-1]);return je(o,s)}var QW=T({outerProduct_:JW});function e4(r,e,t=0){let n=v(r,"x","pad");if(n.rank===0)throw new Error("pad(scalar) is not defined. Pass non-scalar to pad");let o={paddings:e,constantValue:t},s={x:n};return D.runKernel(go,s,o)}var Rr=T({pad_:e4});function t4(r,e,t=0){return A(e.length===2,()=>"Invalid number of paddings. Must be length of 2."),Rr(r,[e],t)}var r4=T({pad1d_:t4});function n4(r,e,t=0){return A(e.length===2&&e[0].length===2&&e[1].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Rr(r,e,t)}var o4=T({pad2d_:n4});function s4(r,e,t=0){return A(e.length===3&&e[0].length===2&&e[1].length===2&&e[2].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Rr(r,e,t)}var i4=T({pad3d_:s4});function a4(r,e,t=0){return A(e.length===4&&e[0].length===2&&e[1].length===2&&e[2].length===2&&e[3].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Rr(r,e,t)}var l4=T({pad4d_:a4});function u4(r,e,t){let n=v(r,"x","spaceToBatchND");A(n.rank>=1+e.length,()=>`input rank ${n.rank} should be > than [blockShape] ${e.length}`),A(t.length===e.length,()=>`paddings.shape[0] ${t.length} must be equal to [blockShape] ${e.length}`),A(n.shape.reduce((a,i,l)=>l>0&&l<=e.length?a&&(i+t[l-1][0]+t[l-1][1])%e[l-1]==0:a,!0),()=>`input spatial dimensions ${n.shape.slice(1)} with paddings ${t.toString()} must be divisible by blockShapes ${e.toString()}`);let o={x:n},s={blockShape:e,paddings:t};return D.runKernel(ha,o,s)}var Aa=T({spaceToBatchND_:u4});function m4(r,e,t,n,o,s){o==null&&(o=[1,1]),s==null&&(s=1),n===0&&(n="valid");let a=v(r,"x","maxPool"),i=a,l=!1;a.rank===3&&(l=!0,i=z(a,[1,a.shape[0],a.shape[1],a.shape[2]])),A(br(s,o),()=>`Error in pool: Either strides or dilations must be 1. Got strides ${s} and dilations '${o}'`);let u=yw(i.shape,e,s,o,n),c=[u.dilationHeight,u.dilationWidth],p;n==="same"?p=p4([u.filterHeight,u.filterWidth],c):p=[[0,0],[0,0]];let m=c[0]===1&&c[1]===1,[f,d]=c4([u.inHeight,u.inWidth],c,p),h=m?n:"valid",g=m?i:Aa(i,c,f),b=(t==="avg"?()=>va(g,e,s,h):()=>Ea(g,e,s,h))(),w=m?b:Ca(b,c,d);return l?z(w,[w.shape[1],w.shape[2],w.shape[3]]):w}function c4(r,e,t){let n=t.map(c=>c[0]),o=t.map(c=>c[1]),s=r.concat(n,o),a=e.map((c,p)=>(c-s[p]%c)%c),i=o.map((c,p)=>c+a[p]),l=e.map((c,p)=>[n[p],i[p]]),u=e.map((c,p)=>[0,a[p]]);return[l,u]}function p4(r,e){let n=r.map((a,i)=>a+(a-1)*(e[i]-1)).map(a=>a-1),o=n.map(a=>Math.floor(a/2)),s=n.map((a,i)=>a-o[i]);return n.map((a,i)=>[o[i],s[i]])}var Gw=T({pool_:m4});function f4(r,e){let t=v(r,"base","pow"),n=v(e,"exp","pow");[t,n]=Ge(t,n);let o={a:t,b:n};return D.runKernel(xo,o)}var Fr=T({pow_:f4});function d4(r,e){let t=v(r,"x","prelu"),n=v(e,"alpha","prelu"),o={x:t,alpha:n};return D.runKernel(yo,o)}var Da=T({prelu_:d4});function h4(r,e=null,t=!1){let n=v(r,"x","prod");n.dtype==="bool"&&(n=ne(n,"int32"));let o={x:n},s={axis:e,keepDims:t};return D.runKernel(Ci,o,s)}var $u=T({prod_:h4});function g4(r,e,t){let n=ft(r),o=null;if(t==null||t==="float32")o=new Float32Array(n);else if(t==="int32")o=new Int32Array(n);else if(t==="bool")o=new Uint8Array(n);else throw new Error(`Unknown data type ${t}`);for(let s=0;s<n;s++)o[s]=e();return D.makeTensor(o,r,t)}var x4=T({rand_:g4});var fg=Tc(QN());var Zc=class{constructor(e,t,n,o,s){this.mean=e,this.stdDev=t,this.dtype=n,this.nextVal=NaN,this.truncated=o,this.truncated&&(this.upper=this.mean+this.stdDev*2,this.lower=this.mean-this.stdDev*2);let a=s||Math.random();this.random=fg.alea(a.toString())}nextValue(){if(!isNaN(this.nextVal)){let o=this.nextVal;return this.nextVal=NaN,o}let e,t,n=!1;for(;!n;){let o,s,a;do o=2*this.random()-1,s=2*this.random()-1,a=o*o+s*s;while(a>=1||a===0);let i=Math.sqrt(-2*Math.log(a)/a);e=this.mean+this.stdDev*o*i,t=this.mean+this.stdDev*s*i,(!this.truncated||this.isValidTruncated(e))&&(n=!0)}return(!this.truncated||this.isValidTruncated(t))&&(this.nextVal=this.convertValue(t)),this.convertValue(e)}convertValue(e){return this.dtype==null||this.dtype==="float32"?e:Math.round(e)}isValidTruncated(e){return e<=this.upper&&e>=this.lower}},Xw=class{constructor(e,t,n,o){this.alpha=e,this.beta=1/t,this.dtype=n;let s=o||Math.random();this.randu=fg.alea(s.toString()),this.randn=new Zc(0,1,n,!1,this.randu()),e<1?this.d=e+2/3:this.d=e-1/3,this.c=1/Math.sqrt(9*this.d)}nextValue(){let e,t,n,o,s,a;for(;;){do o=this.randn.nextValue(),a=1+this.c*o;while(a<=0);if(a*=a*a,e=o*o,t=1-.331*e*e,n=.5*e+this.d*(1-a+Math.log(a)),s=this.randu(),s<t||Math.log(s)<n)break}return a=1/this.beta*this.d*a,this.alpha<1&&(a*=Math.pow(this.randu(),1/this.alpha)),this.convertValue(a)}convertValue(e){return this.dtype==="float32"?e:Math.round(e)}},Yw=class{constructor(e=0,t=1,n,o){if(this.canReturnFloat=()=>this.dtype==null||this.dtype==="float32",this.min=e,this.range=t-e,this.dtype=n,o==null&&(o=Math.random()),typeof o=="number"&&(o=o.toString()),!this.canReturnFloat()&&this.range<=1)throw new Error(`The difference between ${e} - ${t} <= 1 and dtype is not float`);this.random=fg.alea(o)}convertValue(e){return this.canReturnFloat()?e:Math.round(e)}nextValue(){return this.convertValue(this.min+this.range*this.random())}};function C4(r,e,t=1,n="float32",o){if(t==null&&(t=1),n==null&&(n="float32"),n!=="float32"&&n!=="int32")throw new Error(`Unsupported data type ${n}`);let s=new Xw(e,t,n,o),a=Ce(r,n);for(let i=0;i<a.values.length;i++)a.values[i]=s.nextValue();return a.toTensor()}var I4=T({randomGamma_:C4});function N4(r,e=0,t=1,n,o){if(n!=null&&n==="bool")throw new Error(`Unsupported data type ${n}`);let s=new Zc(e,t,n,!1,o),a=Ce(r,n);for(let i=0;i<a.values.length;i++)a.values[i]=s.nextValue();return a.toTensor()}var dg=T({randomNormal_:N4});function S4(r,e=0,t=1,n="float32",o){let s=Ce(r,n),a=new Yw(e,t,null,o);for(let i=0;i<s.values.length;i++)s.values[i]=a.nextValue();return s.toTensor()}var Es=T({randomUniform_:S4});function Jc(r,e,t=1,n="float32"){if(t===0)throw new Error("Cannot have a step of zero");let o={start:r,stop:e,step:t,dtype:n};return D.runKernel(fa,{},o)}function T4(r){let t={input:v(r,"input","real")};return D.runKernel(cu,t)}var ul=T({real_:T4});function E4(r){let t={x:v(r,"x","reciprocal")};return D.runKernel(Ii,t)}var Xm=T({reciprocal_:E4});function A4(r){let t={x:v(r,"x","relu")};return D.runKernel(bo,t)}var Nr=T({relu_:A4});function D4(r){let t={x:v(r,"x","relu6")};return D.runKernel(_o,t)}var Fu=T({relu6_:D4});function $4(r,e){let n={x:v(r,"x","reverse")},o={dims:e};return D.runKernel(ko,n,o)}var Kt=T({reverse_:$4});function R4(r){let e=v(r,"x","reverse");return A(e.rank===1,()=>`Error in reverse1D: x must be rank 1 but got rank ${e.rank}.`),Kt(e,0)}var F4=T({reverse1d_:R4});function O4(r,e){let t=v(r,"x","reverse");return A(t.rank===2,()=>`Error in reverse2D: x must be rank 2 but got rank ${t.rank}.`),Kt(t,e)}var P4=T({reverse2d_:O4});function M4(r,e){let t=v(r,"x","reverse");return A(t.rank===3,()=>`Error in reverse3D: x must be rank 3 but got rank ${t.rank}.`),Kt(t,e)}var L4=T({reverse3d_:M4});function z4(r,e){let t=v(r,"x","reverse");return A(t.rank===4,()=>`Error in reverse4D: x must be rank 4 but got rank ${t.rank}.`),Kt(t,e)}var B4=T({reverse4d_:z4});function V4(r){let t={x:v(r,"x","round")};return D.runKernel(vo,t)}var Ym=T({round_:V4});function G4(r){let t={x:v(r,"x","rsqrt")};return D.runKernel(Co,t)}var Ou=T({rsqrt_:G4});function le(r,e){if((nr(r)&&e!=="string"||Array.isArray(r))&&e!=="complex64")throw new Error("Error creating a new Scalar: value must be a primitive (number|boolean|string)");if(e==="string"&&nr(r)&&!(r instanceof Uint8Array))throw new Error("When making a scalar from encoded string, the value must be `Uint8Array`.");return Gr(r,[],[],e)}function j4(r){let t={x:v(r,"x","selu")};return D.runKernel(Si,t)}var Pu=T({selu_:j4});function W4(r,e,t,n,o,s=[1,1],a="NHWC"){let i=v(r,"x","separableConv2d"),l=v(e,"depthwiseFilter","separableConv2d"),u=v(t,"pointwiseFilter","separableConv2d"),c=i,p=!1;if(i.rank===3&&(p=!0,c=z(i,[1,i.shape[0],i.shape[1],i.shape[2]])),a==="NCHW")throw new Error("separableConv2d currently does not support dataFormat NCHW; only NHWC is supported");A(c.rank===4,()=>`Error in separableConv2d: input must be rank 4, but got rank ${c.rank}.`),A(l.rank===4,()=>`Error in separableConv2d: depthwise filter must be rank 4, but got rank ${l.rank}.`),A(u.rank===4,()=>`Error in separableConv2d: pointwise filter must be rank 4, but got rank ${l.rank}.`),A(u.shape[0]===1,()=>`Error in separableConv2d: the first dimension of pointwise filter must be 1, but got ${u.shape[0]}.`),A(u.shape[1]===1,()=>`Error in separableConv2d: the second dimension of pointwise filter must be 1, but got ${u.shape[1]}.`);let m=l.shape[2],f=l.shape[3];A(u.shape[2]===m*f,()=>`Error in separableConv2d: the third dimension of pointwise filter must be ${m*f}, but got ${u.shape[2]}.`);let d=Cs(c,l,n,o,a,s),g=Ur(d,u,1,"valid",a);return p?z(g,[g.shape[1],g.shape[2],g.shape[3]]):g}var Zm=T({separableConv2d_:W4});async function U4(r,e){let t=v(r,"x","setdiff1d"),n=v(e,"y","setdiff1d");A(t.dtype===n.dtype,()=>`x and y should have the same dtype, but got x (${t.dtype}) and y (${n.dtype}).`),A(t.rank===1,()=>`x should be 1D tensor, but got x (${t.shape}).`),A(n.rank===1,()=>`y should be 1D tensor, but got y (${n.shape}).`);let o=await t.data(),s=await n.data(),a=new Set(s),i=0;for(let c=0;c<o.length;c++)a.has(o[c])||i++;let l=new ct([i],t.dtype),u=new ct([i],"int32");for(let c=0,p=0;c<o.length;c++)a.has(o[c])||(l.values[p]=o[c],u.values[p]=c,p++);return[l.toTensor(),u.toTensor()]}var Zw=U4;function q4(r){let t={x:v(r,"x","sign")};return D.runKernel(Ei,t)}var Jm=T({sign_:q4});function H4(r){let t={x:v(r,"x","sin")};return D.runKernel(Io,t)}var Mu=T({sin_:H4});function K4(r){let t={x:v(r,"x","sinh")};return D.runKernel(Ti,t)}var Lu=T({sinh_:K4});function X4(r,e,t){let n=v(r,"x","slice1d");return A(n.rank===1,()=>`slice1d expects a rank-1 tensor, but got a rank-${n.rank} tensor`),Fe(n,[e],[t])}var Qm=T({slice1d_:X4});function Y4(r,e,t){let n=v(r,"x","slice2d");return A(n.rank===2,()=>`slice2d expects a rank-2 tensor, but got a rank-${n.rank} tensor`),Fe(n,e,t)}var hg=T({slice2d_:Y4});function Z4(r,e,t){let n=v(r,"x","slice3d");return A(n.rank===3,()=>`slice3d expects a rank-3 tensor, but got a rank-${n.rank} tensor`),Fe(n,e,t)}var ef=T({slice3d_:Z4});function J4(r,e,t){let n=v(r,"x","slice4d");return A(n.rank===4,()=>`slice4d expects a rank-4 tensor, but got a rank-${n.rank} tensor`),Fe(n,e,t)}var Qc=T({slice4d_:J4});function Q4(r,e=-1){let t=v(r,"logits","softmax","float32");if(e===-1&&(e=t.rank-1),e!==t.rank-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${t.rank} and dim was ${e}`);let n={logits:t},o={dim:e};return D.runKernel(Eo,n,o)}var $a=T({softmax_:Q4});function eU(r){A(r.dtype==="complex64",()=>`The dtype for tf.spectral.fft() must be complex64 but got ${r.dtype}.`);let e={input:r};return D.runKernel(tu,e)}var Ra=T({fft_:eU});function tU(r){A(r.dtype==="complex64",()=>`The dtype for tf.spectral.ifft() must be complex64 but got ${r.dtype}.`);let e={input:r};return D.runKernel(ru,e)}var Bi=T({ifft_:tU});function rU(r){let e=r.shape[r.shape.length-1],t=r.size/e,n;if(e<=2){let o=z(r,[t,e]);n=Bi(o)}else{let o=[t,2*(e-1)],s=z(ul(r),[t,e]),a=z(Su(r),[t,e]),i=Kt(Fe(s,[0,1],[t,e-2]),1),l=M(Kt(Fe(a,[0,1],[t,e-2]),1),le(-1)),u=Qe([s,i],1),c=Qe([a,l],1),p=z(bn(u,c),[o[0],o[1]]);n=Bi(p)}if(n=ul(n),r.rank===3&&r.shape[0]!==0){let o=n,s=r.shape[0];n=z(n,[s,n.shape[0]/s,n.shape[1]]),o.dispose()}return n}var zu=T({irfft_:rU});function nU(r,e,t=0){let o={x:v(r,"x","split")},s={numOrSizeSplits:e,axis:t};return D.runKernel(gs,o,s)}var ur=T({split_:nU});function oU(r,e){A(r.dtype==="float32",()=>`The dtype for rfft() must be real value but got ${r.dtype}`);let t=r.shape[r.shape.length-1],n=r.size/t,o;if(e!=null&&e<t){let d=r.shape.map(g=>0),h=r.shape.map(g=>g);h[r.shape.length-1]=e,o=Fe(r,d,h),t=e}else if(e!=null&&e>t){let d=r.shape.map(h=>h);d[r.shape.length-1]=e-t,o=Qe([r,xt(d)],r.shape.length-1),t=e}else o=r;let s=Ie(o),a=z(bn(o,s),[n,t]),i=Ra(a),l=Math.floor(t/2)+1,u=ul(i),c=Su(i),p=ur(u,[l,t-l],u.shape.length-1),m=ur(c,[l,t-l],c.shape.length-1),f=o.shape.slice();return f[o.shape.length-1]=l,z(bn(p[0],m[0]),f)}var Fa=T({rfft_:oU});function sU(r){let t={x:v(r,"x","sqrt")};return D.runKernel(So,t)}var yt=T({sqrt_:sU});function iU(r,e){let t=v(r,"a","squaredDifference"),n=v(e,"b","squaredDifference");[t,n]=Ge(t,n),ze(t.shape,n.shape);let o={a:t,b:n},s={};return D.runKernel(Ao,o,s)}var Bu=T({squaredDifference_:iU});function aU(r,e){let t=v(r,"x","squeeze");return z(t,Nb(t.shape,e).newShape)}var _n=T({squeeze_:aU});function lU(r,e=0){let t=ya(r,"tensors","stack","string_or_numeric");A(t.length>=1,()=>"Pass at least one tensor to tf.stack"),t.length>0&&A(e<=t[0].rank,()=>"Axis must be <= rank of the tensor");let n=t,o={axis:e};return D.runKernel(ms,n,o)}var Vt=T({stack_:lU});function uU(r,e=0){let n={x:v(r,"x","step")},o={alpha:e};return D.runKernel($n,n,o)}var As=T({step_:uU});function cU(r,e,t,n,o=0,s=0,a=0,i=0,l=0){let c={x:v(r,"x","stridedSlice")},p={begin:e,end:t,strides:n,beginMask:o,endMask:s,ellipsisMask:a,newAxisMask:i,shrinkAxisMask:l};return D.runKernel(Di,c,p)}var tf=T({stridedSlice_:cU});function pU(r){let t={x:v(r,"x","tan")};return D.runKernel($i,t)}var rf=T({tan_:pU});function Gt(r,e){En(r);let t=vr(r,e);if(t.length!==1)throw new Error("tensor1d() requires values to be a flat/TypedArray");return Gr(r,null,t,e)}function Vi(r,e,t){if(En(r),e!=null&&e.length!==2)throw new Error("tensor2d() requires shape to have two numbers");let n=vr(r,t);if(n.length!==2&&n.length!==1)throw new Error("tensor2d() requires values to be number[][] or flat/TypedArray");if(n.length===1&&e==null)throw new Error("tensor2d() requires shape to be provided when `values` are a flat/TypedArray");return Gr(r,e,n,t)}function mU(r,e,t){if(En(r),e!=null&&e.length!==4)throw new Error("tensor4d() requires shape to have four numbers");let n=vr(r,t);if(n.length!==4&&n.length!==1)throw new Error("tensor4d() requires values to be number[][][][] or flat/TypedArray");if(n.length===1&&e==null)throw new Error("tensor4d() requires shape to be provided when `values` are a flat array");return Gr(r,e,n,t)}function fU(r,e,t){if(En(r),e!=null&&e.length!==5)throw new Error("tensor5d() requires shape to have five numbers");let n=vr(r,t);if(n.length!==5&&n.length!==1)throw new Error("tensor5d() requires values to be number[][][][][] or flat/TypedArray");if(n.length===1&&e==null)throw new Error("tensor5d() requires shape to be provided when `values` are a flat array");return Gr(r,e,n,t)}function dU(r,e,t){if(En(r),e!=null&&e.length!==6)throw new Error("tensor6d() requires shape to have six numbers");let n=vr(r,t);if(n.length!==6&&n.length!==1)throw new Error("tensor6d() requires values to be number[][][][][][] or flat/TypedArray");if(n.length===1&&e==null)throw new Error("tensor6d() requires shape to be provided when `values` are a flat array");return e=e||n,Gr(r,e,n,t)}function hU(r,e=1,t=!0){let n=v(r,"x","topk");if(n.rank===0)throw new Error("topk() expects the input to be of rank 1 or higher");let o=n.shape[n.shape.length-1];if(e>o)throw new Error(`'k' passed to topk() must be <= the last dimension (${o}) but got ${e}`);let s={x:n},a={k:e,sorted:t},[i,l]=D.runKernel(Ri,s,a);return{values:i,indices:l}}var nf=T({topk_:hU});function gU(r,e=0,t=1,n,o){if(n!=null&&n==="bool")throw new Error("Unsupported data type $ { dtype }");let s=new Zc(e,t,n,!0,o),a=Ce(r,n);for(let i=0;i<a.values.length;i++)a.values[i]=s.nextValue();return a.toTensor()}var Vu=T({truncatedNormal_:gU});function xU(r,e=0){let t=v(r,"x","unique","string_or_numeric");A(t.rank>0,()=>"The input tensor must be at least 1D");let n={x:t},o={axis:e},[s,a]=D.runKernel(du,n,o);return{values:s,indices:a}}var ep=T({unique_:xU});function yU(r,e,t){let n=v(r,"x","unsortedSegmentSum"),o=v(e,"segmentIds","unsortedSegmentSum","int32");A(st(t),()=>"numSegments must be of dtype int");let s={x:n,segmentIds:o},a={numSegments:t};return D.runKernel(xa,s,a)}var of=T({unsortedSegmentSum_:yU});function bU(r,e=0){let t=v(r,"x","unstack","string_or_numeric");A(e>=-t.shape.length&&e<t.shape.length,()=>`Axis = ${e} is not in [-${t.shape.length}, ${t.shape.length})`);let n={value:t},o={axis:e};return D.runKernel(xs,n,o)}var cr=T({unstack_:bU});function Jw(r,e=!0,t,n){return D.makeVariable(r,e,t,n)}function Qw(r,e){let t=[];for(let s=0;s<e.length;s++)e[s]&&t.push(s);let n=Ce(r,"int32"),o=Ce([t.length,r.length],"int32");for(let s=0;s<t.length;s++){let a=n.indexToLoc(t[s]),i=s*r.length;o.values.set(a,i)}return o.toTensor()}async function wU(r){let e=v(r,"condition","whereAsync","bool"),t=await e.data(),n=Qw(e.shape,t);return r!==e&&e.dispose(),n}var sf=wU;async function _U(r,e,t){let n=v(r,"tensor","boolMask"),o=v(e,"mask","boolMask","bool"),s=t==null?0:t,a=o.rank,i=n.shape;A(a>0,()=>"mask cannot be scalar"),St(i.slice(s,s+a),o.shape,"mask's shape must match the first K dimensions of tensor's shape,");let l=1;for(let h=s;h<s+a;h++)l*=i[h];let u=i.slice(0,s).concat([l],i.slice(s+a)),c=z(n,u),p=z(o,[-1]),m=await sf(p),f=_n(m,[1]),d=Po(c,f,s);return r!==n&&n.dispose(),e!==o&&o.dispose(),f.dispose(),c.dispose(),p.dispose(),m.dispose(),d}var kU=_U;function vU(r,e="euclidean",t=null,n=!1){r=v(r,"x","norm");let o=eS(r,e,t),s=o.shape;if(n){let a=Qt(t,r.shape);s=Mo(o.shape,a)}return z(o,s)}function eS(r,e,t=null){if(r.rank===0)return Et(r);if(r.rank!==1&&t===null)return eS(z(r,[-1]),e,t);if(r.rank===1||typeof t=="number"||Array.isArray(t)&&t.length===1){if(e===1)return ye(Et(r),t);if(e===Infinity)return lr(Et(r),t);if(e===-Infinity)return zi(Et(r),t);if(e==="euclidean"||e===2)return yt(ye(Fr(Et(r),le(2,"int32")),t));throw new Error(`Error in norm: invalid ord value: ${e}`)}if(Array.isArray(t)&&t.length===2){if(e===1)return lr(ye(Et(r),t[0]),t[1]-1);if(e===Infinity)return lr(ye(Et(r),t[1]),t[0]);if(e===-Infinity)return zi(ye(Et(r),t[1]),t[0]);if(e==="fro"||e==="euclidean")return yt(ye(Pe(r),t));throw new Error(`Error in norm: invalid ord value: ${e}`)}throw new Error(`Error in norm: invalid axis: ${t}`)}var Gu=T({norm_:vU});function CU(r,e,t,n,o=!0){let s=v(r,"v","movingAverage"),a=v(e,"x","movingAverage"),i=v(t,"decay","movingAverage");Hb(s,a),A(Vr(s.shape,a.shape),()=>"Shape mismatch in v and x");let l=le(1),u=ue(l,i),c=M(ue(a,s),u);if(o){A(n!=null,()=>"When using zeroDebias: true, step is required.");let p=v(n,"step","movingAverage");c=de(c,ue(l,Fr(i,p)))}return Q(s,c)}var IU=T({movingAverage_:CU});function NU(r,e,t){let n=v(r,"indices","scatterND","int32"),o=v(e,"updates","scatterND");ng(o,n,t);let s={indices:n,updates:o},a={shape:t};return D.runKernel(Ni,s,a)}var e_=T({scatterND_:NU});function tS(r,e,t,n){if(r.dtype!=="int32")throw new Error(`tf.sparseToDense() expects the indices to be int32 type, but the dtype was ${r.dtype}.`);if(r.rank>2)throw new Error(`sparseIndices should be a scalar, vector, or matrix, but got shape ${r.shape}.`);let o=r.rank>0?r.shape[0]:1,s=r.rank>1?r.shape[1]:1;if(t.length!==s)throw new Error(`outputShape has incorrect number of elements:, ${t.length}, should be: ${s}.`);let a=e.size;if(!(e.rank===0||e.rank===1&&a===o))throw new Error(`sparseValues has incorrect shape ${e.shape}, should be [] or [${o}]`);if(e.dtype!==n.dtype)throw new Error("sparseValues.dtype must match defaultValues.dtype")}function SU(r,e,t,n=0){let o=v(r,"sparseIndices","sparseToDense","int32"),s=v(e,"sparseValues","sparseToDense"),a=v(n,"defaultValue","sparseToDense",s.dtype);tS(o,s,t,a);let i={sparseIndices:o,sparseValues:s,defaultValue:a},l={outputShape:t};return D.runKernel(fu,i,l)}var af=T({sparseToDense_:SU});function TU(r,e){let t=v(e,"indices","gatherND","int32"),o={params:v(r,"x","gatherND"),indices:t};return D.runKernel(ci,o)}var t_=T({gatherND_:TU});function rS(r,e){if(e==null)return r.shape.slice();if(Vr(r.shape,e))return e;if(r.shape.length===e.length){let t=[];for(let n=0;n<r.shape.length;n++)e[n]==null&&r.shape[n]!=null?t.push(r.shape[n]):t.push(e[n]);return t}return e}function EU(r,e,t,n){let o=v(r,"x","dropout");if(A(o.dtype==="float32",()=>`x has to be a floating point tensor since it's going to be scaled, but got a ${o.dtype} tensor instead.`),A(e>=0&&e<1,()=>`rate must be a float in the range [0, 1), but got ${e}.`),e===0)return r instanceof Ve?o.clone():o;let s=rS(o,t),a=1-e,i=de(Ns(Q(Es(s,0,1,"float32",n),a)),a);return M(o,i)}var r_=T({dropout_:EU});function n_(r){return Math.floor(Math.pow(2,Math.ceil(Math.log(r)/Math.log(2))))}function lf(r,e,t){let n=1-r%2,o=new Float32Array(r);for(let s=0;s<r;++s){let a=2*Math.PI*s/(r+n-1);o[s]=e-t*Math.cos(a)}return Gt(o,"float32")}async function AU(r,e,t=1){let n=v(r,"predictions","inTopK"),o=v(e,"targets","inTopK");A(n.rank>1,()=>`inTopK() expects the predictions to be of rank 2 or higher, but got ${n.rank}`),A(n.rank-1===o.rank,()=>`predictions rank should be 1 larger than targets rank, but got predictions rank ${n.rank} and targets rank ${o.rank}`),St(n.shape.slice(0,n.shape.length-1),o.shape,"predictions's shape should be align with the targets' shape, except the last dimension.");let s=n.shape[n.shape.length-1];A(t>0&&t<=s,()=>`'k' passed to inTopK() must be > 0 && <= the predictions last dimension (${s}), but got ${t}`);let a=await n.data(),i=await o.data(),[l,u]=[a.length/s,s],c=Sb("bool",l);for(let p=0;p<l;p++){let m=p*u,f=a.subarray(m,m+u),d=[];for(let h=0;h<f.length;h++)d.push({value:f[h],index:h});d.sort((h,g)=>g.value-h.value),c[p]=0;for(let h=0;h<t;h++)if(d[h].index===i[p]){c[p]=1;break}}return r!==n&&n.dispose(),e!==o&&o.dispose(),$r(c,o.shape,"bool")}var DU=AU;var zo={};Ye(zo,{conv2d:()=>FU,depthwiseConv2d:()=>LU,matMul:()=>BU});function $U(r,e,t,n,o,s="NHWC",a){let i=r;r.rank===3&&(i=z(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let l=e;l.rank===3&&(l=z(e,[1,e.shape[0],e.shape[1],e.shape[2]])),A(i.rank===4,()=>`Error in conv2dDerFilter: input must be rank 4, but got shape ${i.shape}.`),A(l.rank===4,()=>`Error in conv2dDerFilter: dy must be rank 4, but got shape ${l.shape}.`),A(t.length===4,()=>`Error in conv2dDerFilter: filterShape must be length 4, but got ${t}.`);let u=s==="NHWC"?i.shape[3]:i.shape[1],c=s==="NHWC"?l.shape[3]:l.shape[1];A(u===t[2],()=>`Error in conv2dDerFilter: depth of input ${u}) must match input depth in filter (${t[2]}.`),A(c===t[3],()=>`Error in conv2dDerFilter: depth of dy (${c}) must match output depth for filter (${t[3]}).`),a!=null&&A(st(o),()=>`Error in conv2dDerFilter: pad must be an integer when using, dimRoundingMode ${a} but got pad ${o}.`);let p={x:i,dy:l},m={strides:n,pad:o,dataFormat:s,dimRoundingMode:a,filterShape:t};return D.runKernel(Hl,p,m)}var tp=T({conv2DBackpropFilter_:$U});function ju(r,e,t){if(t==null||t==="linear")return r;if(t==="relu")return M(r,As(e));throw new Error(`Cannot compute gradient for fused activation ${t}.`)}function Wu(r,e){let t=e,n=It(r.shape,e.shape);return n.length>0&&(t=ye(t,n)),z(t,r.shape)}function Uu(r,e,t,n){if(e==="linear")return r;if(e==="relu")return Nr(r);if(e==="elu")return Is(r);if(e==="relu6")return Fu(r);if(e==="prelu")return Da(r,t);if(e==="leakyrelu")return Sa(r,n);throw new Error(`Unknown fused activation ${e}.`)}var qu=(r,e)=>!(r>0)||e==="linear";function RU({x:r,filter:e,strides:t,pad:n,dataFormat:o="NHWC",dilations:s=[1,1],dimRoundingMode:a,bias:i,activation:l="linear",preluActivationWeights:u,leakyreluAlpha:c}){if(l=l||"linear",qu(D.state.gradientDepth,l)===!1){let k=Ur(r,e,t,n,o,s,a);return i!=null&&(k=Q(k,i)),Uu(k,l,u,c)}let p=v(r,"x","conv2d"),m=v(e,"filter","conv2d"),f=p,d=!1;p.rank===3&&(d=!0,f=z(p,[1,p.shape[0],p.shape[1],p.shape[2]])),A(f.rank===4,()=>`Error in fused conv2d: input must be rank 4, but got rank ${f.rank}.`),A(m.rank===4,()=>`Error in fused conv2d: filter must be rank 4, but got rank ${m.rank}.`),a!=null&&A(st(n),()=>`Error in fused conv2d: pad must be an integer when using, dimRoundingMode ${a} but got pad ${n}.`),A(f.shape[3]===m.shape[2],()=>`Error in conv2d: depth of input (${f.shape[3]}) must match input depth for filter ${m.shape[2]}.`),A(br(t,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${t} and dilations '${s}'`),A(o==="NHWC",()=>`Error in conv2d: got dataFormat of ${o} but only NHWC is currently supported.`);let h=_u(f.shape,m.shape,t,s,n,a),g;i!=null&&(g=v(i,"bias","fused conv2d"),[g]=Ge(g,p),ze(h.outShape,g.shape));let x;u!=null&&(x=v(u,"prelu weights","fused conv2d"));let b=(k,E)=>{let[S,R,F,P]=E,j=ju(k,F,l);A(Fn(s),()=>`Error in gradient of fused conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`);let G=Kc(R.shape,j,S,t,n),U=tp(R,j,S.shape,t,n),X=[G,U];if(P!=null){let K=Wu(P,j);X.push(K)}return X},w={x:f,filter:m,bias:g,preluActivationWeights:x},_={strides:t,pad:n,dataFormat:o,dilations:s,dimRoundingMode:a,activation:l,leakyreluAlpha:c};return i==null?qr((E,S,R)=>{let F=D.runKernel(ws,w,_);return R([S,E,F]),d&&(F=z(F,[F.shape[1],F.shape[2],F.shape[3]])),{value:F,gradFunc:b}})(f,m):qr((E,S,R,F)=>{let P=D.runKernel(ws,w,_);return F([S,E,P,R]),d&&(P=z(P,[P.shape[1],P.shape[2],P.shape[3]])),{value:P,gradFunc:b}})(f,m,g)}var FU=T({fusedConv2d_:RU});function OU(r,e,t,n,o,s=[1,1],a){let i=r;r.rank===3&&(i=z(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let l=e;l.rank===3&&(l=z(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let u={x:i,dy:l},c={strides:n,pad:o,dimRoundingMode:a,dilations:s,filterShape:t};return D.runKernel(Zl,u,c)}var gg=T({depthwiseConv2dNativeBackpropFilter_:OU});function PU(r,e,t,n,o,s=[1,1],a){let i=e,l=!1;e.rank===3&&(l=!0,i=z(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let u={dy:i,filter:t},c={strides:n,pad:o,dimRoundingMode:a,dilations:s,inputShape:r},p=D.runKernel(Jl,u,c);return l?z(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var xg=T({depthwiseConv2dNativeBackpropInput_:PU});function MU({x:r,filter:e,strides:t,pad:n,dataFormat:o="NHWC",dilations:s=[1,1],dimRoundingMode:a,bias:i,activation:l="linear",preluActivationWeights:u,leakyreluAlpha:c}){if(qu(D.state.gradientDepth,l)===!1){let k=Cs(r,e,t,n,o,s,a);return i!=null&&(k=Q(k,i)),Uu(k,l,u,c)}let p=v(r,"x","depthwiseConv2d"),m=v(e,"filter","depthwiseConv2d"),f=p,d=!1;p.rank===3&&(d=!0,f=z(p,[1,p.shape[0],p.shape[1],p.shape[2]])),A(f.rank===4,()=>`Error in fused depthwiseConv2d: input must be rank 4, but got rank ${f.rank}.`),A(m.rank===4,()=>`Error in fused depthwiseConv2d: filter must be rank 4, but got rank ${m.rank}.`),A(f.shape[3]===m.shape[2],()=>`Error in fused depthwiseConv2d: number of input channels (${f.shape[3]}) must match the inChannels dimension in filter ${m.shape[2]}.`),s==null&&(s=[1,1]),A(br(t,s),()=>`Error in fused depthwiseConv2d: Either strides or dilations must be 1. Got strides ${t} and dilations '${s}'`),a!=null&&A(st(n),()=>`Error in fused depthwiseConv2d: pad must be an integer when using dimRoundingMode ${a} but got pad ${n}.`);let h=_u(f.shape,m.shape,t,s,n,a,!0),g;i!=null&&(g=v(i,"bias","fused conv2d"),[g]=Ge(g,p),ze(h.outShape,g.shape));let x;u!=null&&(x=v(u,"prelu weights","fused depthwiseConv2d"));let b=(k,E)=>{A(Fn(s),()=>`Error in gradient of fused depthwiseConv2d: dilation rates greater than 1 are not yet supported. Got dilations '${s}'`);let[S,R,F,P]=E,j=ju(k,F,l),G=xg(R.shape,j,S,t,n,s,a),U=gg(R,j,S.shape,t,n,s,a);if(P!=null){let X=Wu(g,j);return[G,U,X]}return[G,U]},w={x:f,filter:m,bias:g,preluActivationWeights:x},_={strides:t,pad:n,dataFormat:o,dilations:s,dimRoundingMode:a,activation:l,leakyreluAlpha:c};return i==null?qr((E,S,R)=>{let F=D.runKernel(_s,w,_);return R([S,E,F]),d&&(F=z(F,[F.shape[1],F.shape[2],F.shape[3]])),{value:F,gradFunc:b}})(f,m):qr((E,S,R,F)=>{let P=D.runKernel(_s,w,_);return F([S,E,P,R]),d&&(P=z(P,[P.shape[1],P.shape[2],P.shape[3]])),{value:P,gradFunc:b}})(f,m,g)}var LU=T({fusedDepthwiseConv2d_:MU});function zU({a:r,b:e,transposeA:t=!1,transposeB:n=!1,bias:o,activation:s="linear",preluActivationWeights:a,leakyreluAlpha:i}){if(qu(D.state.gradientDepth,s)===!1){let P=je(r,e,t,n);return o!=null&&(P=Q(P,o)),Uu(P,s,a,i)}let l=v(r,"a","fused matMul"),u=v(e,"b","fused matMul");[l,u]=Ge(l,u);let c=t?l.shape[l.rank-2]:l.shape[l.rank-1],p=n?u.shape[u.rank-1]:u.shape[u.rank-2],m=t?l.shape[l.rank-1]:l.shape[l.rank-2],f=n?u.shape[u.rank-2]:u.shape[u.rank-1],d=l.shape.slice(0,-2),h=u.shape.slice(0,-2),g=ft(d),x=ft(h);A(l.rank>=2&&u.rank>=2&&l.rank===u.rank,()=>`Error in fused matMul: inputs must have the same rank of at least 2, got ranks ${l.rank} and ${u.rank}.`),A(Vr(d,h),()=>`Error in fused matMul: outer dimensions (${d}) and (${h}) of Tensors with shapes ${l.shape} and ${u.shape} must match.`),A(c===p,()=>`Error in fused matMul: inner shapes (${c}) and (${p}) of Tensors with shapes ${l.shape} and ${u.shape} and transposeA=${t} and transposeB=${n} must match.`);let b=l.shape.slice(0,-2).concat([m,f]),w=t?z(l,[g,c,m]):z(l,[g,m,c]),_=n?z(u,[x,f,p]):z(u,[x,p,f]),k;o!=null&&(k=v(o,"bias","fused matMul"),[k]=Ge(k,l),ze(b,k.shape));let E;a!=null&&(E=v(a,"prelu weights","fused matMul"));let S=(P,j)=>{let[G,U,X,K]=j,Z=ju(z(P,X.shape),X,s),te,Y;if(!t&&!n?(te=je(Z,U,!1,!0),Y=je(G,Z,!0,!1)):!t&&n?(te=je(Z,U,!1,!1),Y=je(Z,G,!0,!1)):t&&!n?(te=je(U,Z,!1,!0),Y=je(G,Z,!1,!1)):(te=je(U,Z,!0,!0),Y=je(Z,G,!0,!0)),o!=null){let re=Wu(K,Z);return[te,Y,re]}else return[te,Y]},R={a:w,b:_,bias:k,preluActivationWeights:E},F={transposeA:t,transposeB:n,activation:s,leakyreluAlpha:i};return o==null?qr((j,G,U)=>{let X=D.runKernel(bs,R,F);return U([j,G,X]),{value:z(X,b),gradFunc:S}})(w,_):qr((j,G,U,X)=>{let K=D.runKernel(bs,R,F);return X([j,G,K,U]),{value:z(K,b),gradFunc:S}})(w,_,k)}var BU=T({fusedMatMul_:zU});function VU(r){return lf(r,.54,.46)}var nS=T({hammingWindow_:VU});function GU(r){return lf(r,.5,.5)}var yg=T({hannWindow_:GU});function jU(r,e,t,n=!1,o=0){let s=0,a=[];for(;s+e<=r.size;)a.push(Fe(r,s,e)),s+=t;if(n)for(;s<r.size;){let i=s+e-r.size,l=Qe([Fe(r,s,e-i),Na([i],o)]);a.push(l),s+=t}return a.length===0?Vi([],[0,e]):z(Qe(a),[a.length,e])}var bg=T({frame_:jU});function WU(r,e,t,n,o=yg){n==null&&(n=n_(e));let s=bg(r,e,t),a=M(s,o(e)),i=[];for(let l=0;l<s.shape[0];l++)i.push(Fa(Fe(a,[l,0],[1,e]),n));return Qe(i)}var oS=T({stft_:WU});function UU(r,e,t,n,o="bilinear",s=0){let a=v(r,"image","cropAndResize"),i=v(e,"boxes","cropAndResize","float32"),l=v(t,"boxInd","cropAndResize","int32"),u=i.shape[0];A(a.rank===4,()=>`Error in cropAndResize: image must be rank 4,but got rank ${a.rank}.`),A(i.rank===2&&i.shape[1]===4,()=>`Error in cropAndResize: boxes must be have size [${u},4] but had shape ${i.shape}.`),A(l.rank===1&&l.shape[0]===u,()=>`Error in cropAndResize: boxInd must be have size [${u}] but had shape ${i.shape}.`),A(n.length===2,()=>`Error in cropAndResize: cropSize must be of length 2, but got length ${n.length}.`),A(n[0]>=1&&n[1]>=1,()=>`cropSize must be atleast [1,1], but was ${n}`),A(o==="bilinear"||o==="nearest",()=>`method must be bilinear or nearest, but was ${o}`);let c={image:a,boxes:i,boxInd:l},p={method:o,extrapolationValue:s,cropSize:n};return D.runKernel(ni,c,p)}var sS=T({cropAndResize_:UU});function qU(r){let e=v(r,"image","flipLeftRight","float32");A(e.rank===4,()=>`Error in flipLeftRight: image must be rank 4,but got rank ${e.rank}.`);let t={image:e};return D.runKernel(ui,t,{})}var iS=T({flipLeftRight_:qU});function HU(r,e,t=0,n=.5){let o=v(r,"image","rotateWithOffset","float32");A(o.rank===4,()=>`Error in rotateWithOffset: image must be rank 4,but got rank ${o.rank}.`);let s={image:o},a={radians:e,fillValue:t,center:n};return D.runKernel(Fi,s,a)}var aS=T({rotateWithOffset_:HU});function Bo(r,e,t,n,o,s){n==null&&(n=.5),o==null&&(o=Number.NEGATIVE_INFINITY),s==null&&(s=0);let a=r.shape[0];return t=Math.min(t,a),A(0<=n&&n<=1,()=>`iouThreshold must be in [0, 1], but was '${n}'`),A(r.rank===2,()=>`boxes must be a 2D tensor, but was of rank '${r.rank}'`),A(r.shape[1]===4,()=>`boxes must have 4 columns, but 2nd dimension was ${r.shape[1]}`),A(e.rank===1,()=>"scores must be a 1D tensor"),A(e.shape[0]===a,()=>`scores has incompatible shape with boxes. Expected ${a}, but was ${e.shape[0]}`),A(0<=s&&s<=1,()=>`softNmsSigma must be in [0, 1], but was '${s}'`),{maxOutputSize:t,iouThreshold:n,scoreThreshold:o,softNmsSigma:s}}function KU(r,e,t,n=.5,o=Number.NEGATIVE_INFINITY){let s=v(r,"boxes","nonMaxSuppression"),a=v(e,"scores","nonMaxSuppression"),i=Bo(s,a,t,n,o);t=i.maxOutputSize,n=i.iouThreshold,o=i.scoreThreshold;let l={maxOutputSize:t,iouThreshold:n,scoreThreshold:o};return D.runKernel(_i,{boxes:s,scores:a},l)}var lS=T({nonMaxSuppression_:KU});function uS(r,e,t){let n=XU(r,e,t),o=n<0?-(n+1):n;r.splice(o,0,e)}function XU(r,e,t){return ZU(r,e,t||YU)}function YU(r,e){return r>e?1:r<e?-1:0}function ZU(r,e,t){let n=0,o=r.length,s=0,a=!1;for(;n<o;){s=n+(o-n>>>1);let i=t(e,r[s]);i>0?n=s+1:(o=s,a=!i)}return a?n:-n-1}function s_(r,e,t,n,o){return o_(r,e,t,n,o,0)}function i_(r,e,t,n,o,s){return o_(r,e,t,n,o,0,!1,s,!0)}function a_(r,e,t,n,o,s){return o_(r,e,t,n,o,s,!0)}function o_(r,e,t,n,o,s,a=!1,i=!1,l=!1){let u=[];for(let g=0;g<e.length;g++)e[g]>o&&u.push({score:e[g],boxIndex:g,suppressBeginIndex:0});u.sort(cS);let c=s>0?-.5/s:0,p=[],m=[];for(;p.length<t&&u.length>0;){let g=u.pop(),{score:x,boxIndex:b,suppressBeginIndex:w}=g;if(x<o)break;let _=!1;for(let k=p.length-1;k>=w;--k){let E=JU(r,b,p[k]);if(E>=n){_=!0;break}if(g.score=g.score*QU(n,c,E),g.score<=o)break}g.suppressBeginIndex=p.length,_||(g.score===x?(p.push(b),m.push(g.score)):g.score>o&&uS(u,g,cS))}let f=p.length,d=t-f;i&&d>0&&(p.push(...new Array(d).fill(0)),m.push(...new Array(d).fill(0)));let h={selectedIndices:p};return a&&(h.selectedScores=m),l&&(h.validOutputs=f),h}function JU(r,e,t){let n=r.subarray(e*4,e*4+4),o=r.subarray(t*4,t*4+4),s=Math.min(n[0],n[2]),a=Math.min(n[1],n[3]),i=Math.max(n[0],n[2]),l=Math.max(n[1],n[3]),u=Math.min(o[0],o[2]),c=Math.min(o[1],o[3]),p=Math.max(o[0],o[2]),m=Math.max(o[1],o[3]),f=(i-s)*(l-a),d=(p-u)*(m-c);if(f<=0||d<=0)return 0;let h=Math.max(s,u),g=Math.max(a,c),x=Math.min(i,p),b=Math.min(l,m),w=Math.max(x-h,0)*Math.max(b-g,0);return w/(f+d-w)}function QU(r,e,t){let n=Math.exp(e*t*t);return t<=r?n:0}function cS(r,e){return r.score-e.score||r.score===e.score&&e.boxIndex-r.boxIndex}async function eq(r,e,t,n=.5,o=Number.NEGATIVE_INFINITY){let s=v(r,"boxes","nonMaxSuppressionAsync"),a=v(e,"scores","nonMaxSuppressionAsync"),i=Bo(s,a,t,n,o);t=i.maxOutputSize,n=i.iouThreshold,o=i.scoreThreshold;let l=await Promise.all([s.data(),a.data()]),u=l[0],c=l[1],{selectedIndices:p}=s_(u,c,t,n,o);return s!==r&&s.dispose(),a!==e&&a.dispose(),Gt(p,"int32")}var pS=eq;function tq(r,e,t,n=.5,o=Number.NEGATIVE_INFINITY,s=0){let a=v(r,"boxes","nonMaxSuppression"),i=v(e,"scores","nonMaxSuppression"),l=Bo(a,i,t,n,o,s);t=l.maxOutputSize,n=l.iouThreshold,o=l.scoreThreshold,s=l.softNmsSigma;let u={boxes:a,scores:i},c={maxOutputSize:t,iouThreshold:n,scoreThreshold:o,softNmsSigma:s},p=D.runKernel(vi,u,c);return{selectedIndices:p[0],selectedScores:p[1]}}var mS=T({nonMaxSuppressionWithScore_:tq});async function rq(r,e,t,n=.5,o=Number.NEGATIVE_INFINITY,s=0){let a=v(r,"boxes","nonMaxSuppressionAsync"),i=v(e,"scores","nonMaxSuppressionAsync"),l=Bo(a,i,t,n,o,s);t=l.maxOutputSize,n=l.iouThreshold,o=l.scoreThreshold,s=l.softNmsSigma;let u=await Promise.all([a.data(),i.data()]),c=u[0],p=u[1],{selectedIndices:m,selectedScores:f}=a_(c,p,t,n,o,s);return a!==r&&a.dispose(),i!==e&&i.dispose(),{selectedIndices:Gt(m,"int32"),selectedScores:Gt(f)}}var fS=rq;function nq(r,e,t,n=.5,o=Number.NEGATIVE_INFINITY,s=!1){let a=v(r,"boxes","nonMaxSuppression"),i=v(e,"scores","nonMaxSuppression"),l=Bo(a,i,t,n,o,null),u=l.maxOutputSize,c=l.iouThreshold,p=l.scoreThreshold,m={boxes:a,scores:i},f={maxOutputSize:u,iouThreshold:c,scoreThreshold:p,padToMaxOutputSize:s},d=D.runKernel(ki,m,f);return{selectedIndices:d[0],validOutputs:d[1]}}var dS=T({nonMaxSuppressionPadded_:nq});async function oq(r,e,t,n=.5,o=Number.NEGATIVE_INFINITY,s=!1){let a=v(r,"boxes","nonMaxSuppressionAsync"),i=v(e,"scores","nonMaxSuppressionAsync"),l=Bo(a,i,t,n,o,null),u=l.maxOutputSize,c=l.iouThreshold,p=l.scoreThreshold,[m,f]=await Promise.all([a.data(),i.data()]),{selectedIndices:d,validOutputs:h}=i_(m,f,u,c,p,s);return a!==r&&a.dispose(),i!==e&&i.dispose(),{selectedIndices:Gt(d,"int32"),validOutputs:le(h,"int32")}}var hS=oq;function sq(r,e,t=!1,n=!1){let o=v(r,"images","resizeBilinear");A(o.rank===3||o.rank===4,()=>`Error in resizeBilinear: x must be rank 3 or 4, but got rank ${o.rank}.`),A(e.length===2,()=>`Error in resizeBilinear: new shape must 2D, but got shape ${e}.`),A(n===!1||t===!1,()=>"Error in resizeBilinear: If halfPixelCenters is true, alignCorners must be false.");let s=o,a=!1;o.rank===3&&(a=!0,s=z(o,[1,o.shape[0],o.shape[1],o.shape[2]]));let[]=e,i={images:s},l={alignCorners:t,halfPixelCenters:n,size:e},u=D.runKernel(wo,i,l);return a?z(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var wg=T({resizeBilinear_:sq});function iq(r,e,t=!1,n=!1){let o=v(r,"images","resizeNearestNeighbor");A(o.rank===3||o.rank===4,()=>`Error in resizeNearestNeighbor: x must be rank 3 or 4, but got rank ${o.rank}.`),A(e.length===2,()=>`Error in resizeNearestNeighbor: new shape must 2D, but got shape ${e}.`),A(o.dtype==="float32"||o.dtype==="int32",()=>"`images` must have `int32` or `float32` as dtype"),A(n===!1||t===!1,()=>"Error in resizeNearestNeighbor: If halfPixelCenters is true, alignCorners must be false.");let s=o,a=!1;o.rank===3&&(a=!0,s=z(o,[1,o.shape[0],o.shape[1],o.shape[2]]));let[]=e,i={images:s},l={alignCorners:t,halfPixelCenters:n,size:e},u=D.runKernel(da,i,l);return a?z(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var _g=T({resizeNearestNeighbor_:iq});function aq(r,e,t){A(e%1==0,()=>`bandPart(): numLower must be an integer, got ${e}.`),A(t%1==0,()=>`bandPart(): numUpper must be an integer, got ${t}.`);let n=v(r,"a","bandPart");A(n.rank>=2,()=>`bandPart(): Rank must be at least 2, got ${n.rank}.`);let o=n.shape,[s,a]=n.shape.slice(-2);if(!(e<=s))throw new Error(`bandPart(): numLower (${e}) must not be greater than the number of rows (${s}).`);if(!(t<=a))throw new Error(`bandPart(): numUpper (${t}) must not be greater than the number of columns (${a}).`);e<0&&(e=s),t<0&&(t=a);let i=z(Jc(0,s,1,"int32"),[-1,1]),l=Jc(0,a,1,"int32"),u=ue(i,l),c=dr(Pn(u,le(+e,"int32")),tn(u,le(-t,"int32"))),p=xt([s,a],n.dtype);return z(Vt(cr(z(n,[-1,s,a])).map(m=>$t(c,m,p))),o)}var gS=T({bandPart_:aq});function lq(r){let e;if(Array.isArray(r)){e=!1,A(r!=null&&r.length>0,()=>"Gram-Schmidt process: input must not be null, undefined, or empty");let o=r[0].shape[0];for(let s=1;s<r.length;++s)A(r[s].shape[0]===o,()=>`Gram-Schmidt: Non-unique lengths found in the input vectors: (${r[s].shape[0]} vs. ${o})`)}else e=!0,r=ur(r,r.shape[0],0).map(o=>_n(o,[0]));A(r.length<=r[0].shape[0],()=>`Gram-Schmidt: Number of vectors (${r.length}) exceeds number of dimensions (${r[0].shape[0]}).`);let t=[],n=r;for(let o=0;o<r.length;++o)t.push(D.tidy(()=>{let s=n[o];if(o>0)for(let a=0;a<o;++a){let i=M(ye(M(t[a],s)),t[a]);s=ue(s,i)}return de(s,Gu(s,"euclidean"))}));return e?Vt(t,0):t}var xS=T({gramSchmidt_:lq});function uq(r,e=!1){if(A(r.rank>=2,()=>`qr() requires input tensor to have a rank >= 2, but got rank ${r.rank}`),r.rank===2)return yS(r,e);{let t=r.shape.slice(0,r.shape.length-2).reduce((l,u)=>l*u),n=cr(z(r,[t,r.shape[r.shape.length-2],r.shape[r.shape.length-1]]),0),o=[],s=[];n.forEach(l=>{let[u,c]=yS(l,e);o.push(u),s.push(c)});let a=z(Vt(o,0),r.shape),i=z(Vt(s,0),r.shape);return[a,i]}}function yS(r,e=!1){return D.tidy(()=>{A(r.shape.length===2,()=>`qr2d() requires a 2D Tensor, but got a ${r.shape.length}D Tensor.`);let t=r.shape[0],n=r.shape[1],o=Xc(t),s=Rn(r),a=Vi([[1]],[1,1]),i=Rn(a),l=t>=n?n:t;for(let u=0;u<l;++u){let c=s,p=i,m=o;[i,s,o]=D.tidy(()=>{let f=Fe(s,[u,u],[t-u,1]),d=Gu(f),h=Fe(s,[u,u],[1,1]),g=$t(er(h,0),Vi([[-1]]),Vi([[1]])),x=ue(h,M(g,d)),b=de(f,x);b.shape[0]===1?i=Rn(a):i=Qe([a,Fe(b,[1,0],[b.shape[0]-1,b.shape[1]])],0);let w=Ue(de(je(g,x),d)),_=Fe(s,[u,0],[t-u,n]),k=M(w,i),E=We(i);if(u===0)s=ue(_,je(k,je(E,_)));else{let F=ue(_,je(k,je(E,_)));s=Qe([Fe(s,[0,0],[u,n]),F],0)}let S=We(k),R=Fe(o,[0,u],[t,o.shape[1]-u]);if(u===0)o=ue(R,je(je(R,i),S));else{let F=ue(R,je(je(R,i),S));o=Qe([Fe(o,[0,0],[t,u]),F],1)}return[i,s,o]}),Ee([c,p,m])}return!e&&t>n&&(o=Fe(o,[0,0],[t,n]),s=Fe(s,[0,0],[n,n])),[o,s]})}var bS=T({qr_:uq});var jt;(function(r){r[r.NONE=0]="NONE",r[r.MEAN=1]="MEAN",r[r.SUM=2]="SUM",r[r.SUM_BY_NONZERO_WEIGHTS=3]="SUM_BY_NONZERO_WEIGHTS"})(jt||(jt={}));function cq(r,e,t=jt.SUM_BY_NONZERO_WEIGHTS){let n=v(r,"losses","computeWeightedLoss"),o=null;e!=null&&(o=v(e,"weights","computeWeightedLoss"));let s=o==null?n:M(n,o);if(t===jt.NONE)return s;if(t===jt.SUM)return ye(s);if(t===jt.MEAN){if(o==null)return gt(s);{let a=n.size/o.size,i=de(ye(s),ye(o));return a>1?de(i,le(a)):i}}if(t===jt.SUM_BY_NONZERO_WEIGHTS){if(o==null)return de(ye(s),le(n.size));{let a=M(o,Ir(n.shape)),i=ne(ye(Lo(a,le(0))),"float32");return de(ye(s),i)}}throw Error(`Unknown reduction: ${t}`)}var Sr=T({computeWeightedLoss_:cq});function pq(r,e,t,n=jt.SUM_BY_NONZERO_WEIGHTS){let o=v(r,"labels","absoluteDifference"),s=v(e,"predictions","absoluteDifference"),a=null;t!=null&&(a=v(t,"weights","absoluteDifference")),St(o.shape,s.shape,"Error in absoluteDifference: ");let i=Et(ue(o,s));return Sr(i,a,n)}var wS=T({absoluteDifference_:pq});function mq(r,e,t,n,o=jt.SUM_BY_NONZERO_WEIGHTS){let s=v(r,"labels","cosineDistance"),a=v(e,"predictions","cosineDistance"),i=null;n!=null&&(i=v(n,"weights","cosineDistance")),St(s.shape,a.shape,"Error in cosineDistance: ");let l=le(1),u=ue(l,ye(M(s,a),t,!0));return Sr(u,i,o)}var _S=T({cosineDistance_:mq});function fq(r,e,t,n=jt.SUM_BY_NONZERO_WEIGHTS){let o=v(r,"labels","hingeLoss"),s=v(e,"predictions","hingeLoss"),a=null;t!=null&&(a=v(t,"weights","hingeLoss")),St(o.shape,s.shape,"Error in hingeLoss: ");let i=le(1);o=ue(M(le(2),o),i);let l=Nr(ue(i,M(o,s)));return Sr(l,a,n)}var kS=T({hingeLoss_:fq});function dq(r,e,t,n=1,o=jt.SUM_BY_NONZERO_WEIGHTS){let s=v(r,"labels","huberLoss"),a=v(e,"predictions","huberLoss"),i=null;t!=null&&(i=v(t,"weights","huberLoss")),St(s.shape,a.shape,"Error in huberLoss: ");let l=le(n),u=Et(ue(a,s)),c=Ts(u,l),p=ue(u,c),m=Q(M(le(.5),Pe(c)),M(l,p));return Sr(m,i,o)}var vS=T({huberLoss_:dq});function hq(r,e,t,n=1e-7,o=jt.SUM_BY_NONZERO_WEIGHTS){let s=v(r,"labels","logLoss"),a=v(e,"predictions","logLoss"),i=null;t!=null&&(i=v(t,"weights","logLoss")),St(s.shape,a.shape,"Error in logLoss: ");let l=le(1),u=le(n),c=Ue(M(s,ar(Q(a,u)))),p=M(ue(l,s),ar(Q(ue(l,a),u))),m=ue(c,p);return Sr(m,i,o)}var CS=T({logLoss_:hq});function gq(r,e,t,n=jt.SUM_BY_NONZERO_WEIGHTS){let o=v(r,"labels","meanSquaredError"),s=v(e,"predictions","meanSquaredError"),a=null;t!=null&&(a=v(t,"weights","meanSquaredError")),St(o.shape,s.shape,"Error in meanSquaredError: ");let i=Bu(o,s);return Sr(i,a,n)}var IS=T({meanSquaredError_:gq});function xq(r,e){let t=v(r,"labels","sigmoidCrossEntropyWithLogits"),n=v(e,"logits","sigmoidCrossEntropyWithLogits");St(t.shape,n.shape,"Error in sigmoidCrossEntropyWithLogits: ");let o=Nr(n),s=M(n,t),a=Eu(Yt(Ue(Et(n))));return Q(ue(o,s),a)}function yq(r,e,t,n=0,o=jt.SUM_BY_NONZERO_WEIGHTS){let s=v(r,"multiClassLabels","sigmoidCrossEntropy"),a=v(e,"logits","sigmoidCrossEntropy"),i=null;if(t!=null&&(i=v(t,"weights","sigmoidCrossEntropy")),St(s.shape,a.shape,"Error in sigmoidCrossEntropy: "),n>0){let u=le(n),c=le(1),p=le(.5);s=Q(M(s,ue(c,u)),M(p,u))}let l=xq(s,a);return Sr(l,i,o)}var NS=T({sigmoidCrossEntropy_:yq});function bq(r,e,t=-1){if(t===-1&&(t=e.rank-1),t!==e.rank-1)throw Error(`Softmax cross entropy along a non-last dimension is not yet supported. Labels / logits was rank ${e.rank} and dim was ${t}`);return qr((o,s,a)=>{let l=Um(s,[t],!0),u=ue(ne(s,"float32"),l);a([o,u]);let c=Ue(M(u,o));return{value:ye(c,[t]),gradFunc:(f,d)=>{let[h,g]=d,x=Mo(f.shape,[t]);return[M(z(f,x),ue(ne(h,"float32"),Yt(g))),M(z(f,x),ue(Yt(g),ne(h,"float32")))]}}})(r,e)}function wq(r,e,t,n=0,o=jt.SUM_BY_NONZERO_WEIGHTS){let s=v(r,"onehotLabels","softmaxCrossEntropy"),a=v(e,"logits","softmaxCrossEntropy"),i=null;if(t!=null&&(i=v(t,"weights","softmaxCrossEntropy")),St(s.shape,a.shape,"Error in softmaxCrossEntropy: "),n>0){let u=le(n),c=le(1),p=le(s.shape[1]);s=Q(M(s,ue(c,u)),de(u,p))}let l=bq(s,a);return Sr(l,i,o)}var SS=T({softmaxCrossEntropy_:wq});var _q={fft:Ra,ifft:Bi,rfft:Fa,irfft:zu},kq={hammingWindow:nS,hannWindow:yg,frame:bg,stft:oS},Ds={flipLeftRight:iS,resizeNearestNeighbor:_g,resizeBilinear:wg,rotateWithOffset:aS,cropAndResize:sS,nonMaxSuppression:lS,nonMaxSuppressionAsync:pS,nonMaxSuppressionWithScore:mS,nonMaxSuppressionWithScoreAsync:fS,nonMaxSuppressionPadded:dS,nonMaxSuppressionPaddedAsync:hS},l_={bandPart:gS,gramSchmidt:xS,qr:bS},vq={absoluteDifference:wS,computeWeightedLoss:Sr,cosineDistance:_S,hingeLoss:kS,huberLoss:vS,logLoss:CS,meanSquaredError:IS,sigmoidCrossEntropy:NS,softmaxCrossEntropy:SS};var Or=class extends sg{minimize(e,t=!1,n){let{value:o,grads:s}=this.computeGradients(e,n);if(n!=null){let a=n.map(i=>({name:i.name,tensor:s[i.name]}));this.applyGradients(a)}else this.applyGradients(s);return Ee(s),t?o:(o.dispose(),null)}get iterations(){return this.iterations_==null&&(this.iterations_=0),this.iterations_}incrementIterations(){this.iterations_=this.iterations+1}computeGradients(e,t){return cg(e,t)}dispose(){this.iterations_!=null&&Ee(this.iterations_)}async saveIterations(){return this.iterations_==null&&(this.iterations_=0),{name:"iter",tensor:le(this.iterations_,"int32")}}async getWeights(){throw new Error("getWeights() is not implemented for this optimizer yet.")}async setWeights(e){throw new Error(`setWeights() is not implemented for this optimizer class ${this.getClassName()}`)}async extractIterations(e){return this.iterations_=(await e[0].tensor.data())[0],e.slice(1)}};Object.defineProperty(Or,Symbol.hasInstance,{value:r=>r.minimize!=null&&r.computeGradients!=null&&r.applyGradients!=null});var rp=class extends Or{constructor(e,t,n=null){super();this.learningRate=e,this.rho=t,this.epsilon=n,this.accumulatedGrads=[],this.accumulatedUpdates=[],n==null&&(this.epsilon=D.backend.epsilon())}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,o)=>{let s=D.registeredVariables[n],a=!1;this.accumulatedGrads[o]==null&&(this.accumulatedGrads[o]={originalName:`${n}/accum_grad`,variable:V(()=>Ie(s).variable(a))}),this.accumulatedUpdates[o]==null&&(this.accumulatedUpdates[o]={originalName:`${n}/accum_var`,variable:V(()=>Ie(s).variable(a))});let i=Array.isArray(e)?e[o].tensor:e[n];if(i==null)return;let l=this.accumulatedGrads[o].variable,u=this.accumulatedUpdates[o].variable;V(()=>{let c=Q(M(l,this.rho),M(Pe(i),1-this.rho)),p=M(de(yt(Q(u,this.epsilon)),yt(Q(l,this.epsilon))),i),m=Q(M(u,this.rho),M(Pe(p),1-this.rho));l.assign(c),u.assign(m);let f=Q(M(p,-this.learningRate),s);s.assign(f)})}),this.incrementIterations()}dispose(){this.accumulatedUpdates!=null&&(Ee(this.accumulatedGrads.map(e=>e.variable)),Ee(this.accumulatedUpdates.map(e=>e.variable)))}async getWeights(){let e=[...this.accumulatedGrads,...this.accumulatedUpdates];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=e.length/2,n=!1;this.accumulatedGrads=e.slice(0,t).map(o=>({originalName:o.name,variable:o.tensor.variable(n)})),this.accumulatedUpdates=e.slice(t,t*2).map(o=>({originalName:o.name,variable:o.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,rho:this.rho,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.rho,t.epsilon)}};rp.className="Adadelta";en(rp);var np=class extends Or{constructor(e,t=.1){super();this.learningRate=e,this.initialAccumulatorValue=t,this.accumulatedGrads=[]}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,o)=>{let s=D.registeredVariables[n];if(this.accumulatedGrads[o]==null){let l=!1;this.accumulatedGrads[o]={originalName:`${n}/accumulator`,variable:V(()=>Na(s.shape,this.initialAccumulatorValue).variable(l))}}let a=Array.isArray(e)?e[o].tensor:e[n];if(a==null)return;let i=this.accumulatedGrads[o].variable;V(()=>{let l=Q(i,Pe(a));i.assign(l);let u=Q(M(de(a,yt(Q(l,D.backend.epsilon()))),-this.learningRate),s);s.assign(u)})}),this.incrementIterations()}dispose(){this.accumulatedGrads!=null&&Ee(this.accumulatedGrads.map(e=>e.variable))}async getWeights(){return[await this.saveIterations()].concat(this.accumulatedGrads.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulatedGrads=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,initialAccumulatorValue:this.initialAccumulatorValue}}static fromConfig(e,t){return new e(t.learningRate,t.initialAccumulatorValue)}};np.className="Adagrad";en(np);var op=class extends Or{constructor(e,t,n,o=null){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=o,this.accumulatedFirstMoment=[],this.accumulatedSecondMoment=[],V(()=>{this.accBeta1=le(t).variable(),this.accBeta2=le(n).variable()}),o==null&&(this.epsilon=D.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);V(()=>{let n=ue(1,this.accBeta1),o=ue(1,this.accBeta2);t.forEach((s,a)=>{let i=D.registeredVariables[s],l=!1;this.accumulatedFirstMoment[a]==null&&(this.accumulatedFirstMoment[a]={originalName:`${s}/m`,variable:V(()=>Ie(i).variable(l))}),this.accumulatedSecondMoment[a]==null&&(this.accumulatedSecondMoment[a]={originalName:`${s}/v`,variable:V(()=>Ie(i).variable(l))});let u=Array.isArray(e)?e[a].tensor:e[s];if(u==null)return;let c=this.accumulatedFirstMoment[a].variable,p=this.accumulatedSecondMoment[a].variable,m=Q(M(c,this.beta1),M(u,1-this.beta1)),f=Q(M(p,this.beta2),M(Pe(u),1-this.beta2)),d=de(m,n),h=de(f,o);c.assign(m),p.assign(f);let g=Q(M(de(d,Q(yt(h),this.epsilon)),-this.learningRate),i);i.assign(g)}),this.accBeta1.assign(M(this.accBeta1,this.beta1)),this.accBeta2.assign(M(this.accBeta2,this.beta2))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.accBeta2.dispose(),this.accumulatedFirstMoment!=null&&Ee(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedSecondMoment!=null&&Ee(this.accumulatedSecondMoment.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedFirstMoment,...this.accumulatedSecondMoment];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e),V(()=>{this.accBeta1.assign(Fr(this.beta1,this.iterations_+1)),this.accBeta2.assign(Fr(this.beta2,this.iterations_+1))});let t=e.length/2,n=!1;this.accumulatedFirstMoment=e.slice(0,t).map(o=>({originalName:o.name,variable:o.tensor.variable(n)})),this.accumulatedSecondMoment=e.slice(t,t*2).map(o=>({originalName:o.name,variable:o.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon)}};op.className="Adam";en(op);var sp=class extends Or{constructor(e,t,n,o=null,s=0){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=o,this.decay=s,this.accumulatedFirstMoment=[],this.accumulatedWeightedInfNorm=[],V(()=>{this.iteration=le(0).variable(),this.accBeta1=le(t).variable()}),o==null&&(this.epsilon=D.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);V(()=>{let n=ue(1,this.accBeta1),o=de(-this.learningRate,Q(M(this.iteration,this.decay),1));t.forEach((s,a)=>{let i=D.registeredVariables[s],l=!1;this.accumulatedFirstMoment[a]==null&&(this.accumulatedFirstMoment[a]={originalName:`${s}/m`,variable:Ie(i).variable(l)}),this.accumulatedWeightedInfNorm[a]==null&&(this.accumulatedWeightedInfNorm[a]={originalName:`${s}/v`,variable:Ie(i).variable(l)});let u=Array.isArray(e)?e[a].tensor:e[s];if(u==null)return;let c=this.accumulatedFirstMoment[a].variable,p=this.accumulatedWeightedInfNorm[a].variable,m=Q(M(c,this.beta1),M(u,1-this.beta1)),f=M(p,this.beta2),d=Et(u),h=Hr(f,d);c.assign(m),p.assign(h);let g=Q(M(de(o,n),de(m,Q(h,this.epsilon))),i);i.assign(g)}),this.iteration.assign(Q(this.iteration,1)),this.accBeta1.assign(M(this.accBeta1,this.beta1))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.iteration.dispose(),this.accumulatedFirstMoment!=null&&Ee(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedWeightedInfNorm!=null&&Ee(this.accumulatedWeightedInfNorm.map(e=>e.variable))}async getWeights(){throw new Error("getWeights() is not implemented for Adamax yet.")}async setWeights(e){throw new Error("setWeights() is not implemented for Adamax yet.")}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon,decay:this.decay}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon,t.decay)}};sp.className="Adamax";en(sp);var cl=class extends Or{constructor(e){super();this.learningRate=e,this.setLearningRate(e)}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,o)=>{let s=Array.isArray(e)?e[o].tensor:e[n];if(s==null)return;let a=D.registeredVariables[n];V(()=>{let i=Q(M(this.c,s),a);a.assign(i)})}),this.incrementIterations()}setLearningRate(e){this.learningRate=e,this.c!=null&&this.c.dispose(),this.c=Dt(le(-e))}dispose(){this.c.dispose()}async getWeights(){return[await this.saveIterations()]}async setWeights(e){if(e=await this.extractIterations(e),e.length!==0)throw new Error("SGD optimizer does not have settable weights.")}getConfig(){return{learningRate:this.learningRate}}static fromConfig(e,t){return new e(t.learningRate)}};cl.className="SGD";en(cl);var ip=class extends cl{constructor(e,t,n=!1){super(e);this.learningRate=e,this.momentum=t,this.useNesterov=n,this.accumulations=[],this.m=le(this.momentum)}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,o)=>{let s=D.registeredVariables[n];if(this.accumulations[o]==null){let l=!1;this.accumulations[o]={originalName:`${n}/momentum`,variable:V(()=>Ie(s).variable(l))}}let a=this.accumulations[o].variable,i=Array.isArray(e)?e[o].tensor:e[n];i!=null&&V(()=>{let l,u=Q(M(this.m,a),i);this.useNesterov?l=Q(M(this.c,Q(i,M(u,this.m))),s):l=Q(M(this.c,u),s),a.assign(u),s.assign(l)})}),this.incrementIterations()}dispose(){this.m.dispose(),this.accumulations!=null&&Ee(this.accumulations.map(e=>e.variable))}setMomentum(e){this.momentum=e}async getWeights(){return[await this.saveIterations()].concat(this.accumulations.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulations=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,momentum:this.momentum,useNesterov:this.useNesterov}}static fromConfig(e,t){return new e(t.learningRate,t.momentum,t.useNesterov)}};ip.className="Momentum";en(ip);var ap=class extends Or{constructor(e,t=.9,n=0,o=null,s=!1){super();if(this.learningRate=e,this.decay=t,this.momentum=n,this.epsilon=o,this.accumulatedMeanSquares=[],this.accumulatedMoments=[],this.accumulatedMeanGrads=[],this.centered=s,o==null&&(this.epsilon=D.backend.epsilon()),e==null)throw new Error("learningRate for RMSPropOptimizer must be defined.")}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,o)=>{let s=D.registeredVariables[n],a=!1;this.accumulatedMeanSquares[o]==null&&(this.accumulatedMeanSquares[o]={originalName:`${n}/rms`,variable:V(()=>Ie(s).variable(a))}),this.accumulatedMoments[o]==null&&(this.accumulatedMoments[o]={originalName:`${n}/momentum`,variable:V(()=>Ie(s).variable(a))}),this.accumulatedMeanGrads[o]==null&&this.centered&&(this.accumulatedMeanGrads[o]={originalName:`${n}/mg`,variable:V(()=>Ie(s).variable(a))});let i=Array.isArray(e)?e[o].tensor:e[n];if(i==null)return;let l=this.accumulatedMeanSquares[o].variable,u=this.accumulatedMoments[o].variable;V(()=>{let c=Q(M(l,this.decay),M(Pe(i),1-this.decay));if(this.centered){let p=this.accumulatedMeanGrads[o].variable,m=Q(M(p,this.decay),M(i,1-this.decay)),f=de(M(i,this.learningRate),yt(ue(c,Q(Pe(m),this.epsilon)))),d=Q(M(u,this.momentum),f);l.assign(c),p.assign(m),u.assign(d);let h=ue(s,d);s.assign(h)}else{let p=Q(M(l,this.decay),M(Pe(i),1-this.decay)),m=Q(M(u,this.momentum),de(M(i,this.learningRate),yt(Q(p,this.epsilon))));l.assign(p),u.assign(m);let f=ue(s,m);s.assign(f)}})}),this.incrementIterations()}dispose(){this.accumulatedMeanSquares!=null&&Ee(this.accumulatedMeanSquares.map(e=>e.variable)),this.accumulatedMeanGrads!=null&&this.centered&&Ee(this.accumulatedMeanGrads.map(e=>e.variable)),this.accumulatedMoments!=null&&Ee(this.accumulatedMoments.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedMeanSquares,...this.accumulatedMoments];return this.centered&&e.push(...this.accumulatedMeanGrads),[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=this.centered?e.length/3:e.length/2,n=!1;this.accumulatedMeanSquares=e.slice(0,t).map(o=>({originalName:o.name,variable:o.tensor.variable(n)})),this.accumulatedMoments=e.slice(t,t*2).map(o=>({originalName:o.name,variable:o.tensor.variable(n)})),this.centered&&(this.accumulatedMeanGrads=e.slice(t*2,t*3).map(o=>({originalName:o.name,variable:o.tensor.variable(n)})))}getConfig(){return{learningRate:this.learningRate,decay:this.decay,momentum:this.momentum,epsilon:this.epsilon,centered:this.centered}}static fromConfig(e,t){return new e(t.learningRate,t.decay,t.momentum,t.epsilon,t.centered)}};ap.className="RMSProp";en(ap);var Oa=class{static sgd(e){return new cl(e)}static momentum(e,t,n=!1){return new ip(e,t,n)}static rmsprop(e,t=.9,n=0,o=null,s=!1){return new ap(e,t,n,o,s)}static adam(e=.001,t=.9,n=.999,o=null){return new op(e,t,n,o)}static adadelta(e=.001,t=.95,n=null){return new rp(e,t,n)}static adamax(e=.002,t=.9,n=.999,o=null,s=0){return new sp(e,t,n,o,s)}static adagrad(e,t=.1){return new np(e,t)}};var pl={sgd:Oa.sgd,momentum:Oa.momentum,adadelta:Oa.adadelta,adagrad:Oa.adagrad,rmsprop:Oa.rmsprop,adamax:Oa.adamax,adam:Oa.adam};var Cq=(()=>typeof requestAnimationFrame!="undefined"?requestAnimationFrame:typeof setImmediate!="undefined"?setImmediate:r=>r())();function uf(){return new Promise(r=>Cq(()=>r()))}var N={};Ye(N,{ERF_A1:()=>Oq,ERF_A2:()=>Pq,ERF_A3:()=>Mq,ERF_A4:()=>Lq,ERF_A5:()=>zq,ERF_P:()=>Fq,PARALLELIZE_THRESHOLD:()=>kg,SELU_SCALE:()=>c_,SELU_SCALEALPHA:()=>u_,applyActivation:()=>Uu,assertAndGetBroadcastShape:()=>ze,assertAxesAreInnerMostDims:()=>EW,assertParamsConsistent:()=>Iq,assignToTypedArray:()=>Hq,axesAreInnerMostDims:()=>Pw,calculateShapes:()=>wN,combineLocations:()=>LN,complexWithEvenIndex:()=>Wq,complexWithOddIndex:()=>Uq,computeConv2DInfo:()=>_u,computeConv3DInfo:()=>PN,computeDefaultPad:()=>ww,computeDilation2DInfo:()=>ej,computeOptimalWindowSize:()=>Sq,computeOutAndReduceShapes:()=>Mw,computeOutShape:()=>Nq,computePool2DInfo:()=>yw,computePool3DInfo:()=>tj,convertConv2DDataFormat:()=>ON,eitherStridesOrDilationsAreOne:()=>br,expandShapeToKeepDim:()=>Mo,exponent:()=>Xq,exponents:()=>Kq,fromStringArrayToUint8:()=>tH,fromUint8ToStringArray:()=>eH,getAxesPermutation:()=>Lw,getBroadcastDims:()=>Uj,getComplexWithIndex:()=>qq,getFusedBiasGradient:()=>Wu,getFusedDyActivation:()=>ju,getImageCenter:()=>Tq,getInnerMostAxes:()=>AW,getPermuted:()=>Aq,getReductionAxes:()=>It,getReshaped:()=>Eq,getReshapedPermuted:()=>Dq,getSliceBeginCoords:()=>$q,getSliceSize:()=>Rq,getUndoAxesPermutation:()=>Wm,log:()=>Vq,mergeRealAndImagArrays:()=>Gq,prepareAndValidate:()=>bN,prepareSplitSize:()=>Yq,segment_util:()=>TS,shouldFuse:()=>qu,slice_util:()=>or,splitRealAndImagArrays:()=>jq,tupleValuesAreOne:()=>Fn,upcastType:()=>fr,validateInput:()=>ng,validateUpdateShape:()=>pw,warn:()=>Bq});function Iq(r,e){let t=r[0].length;r.forEach((o,s)=>{A(o.length===t,()=>`Error in concat${t}D: rank of tensors[${s}] must be the same as the rank of the rest (${t})`)}),A(e>=0&&e<t,()=>`Error in concat${t}D: axis must be between 0 and ${t-1}.`);let n=r[0];r.forEach((o,s)=>{for(let a=0;a<t;a++)A(a===e||o[a]===n[a],()=>`Error in concat${t}D: Shape of tensors[${s}] (${o}) does not match the shape of the rest (${n}) along the non-concatenated axis ${s}.`)})}function Nq(r,e){let t=r[0].slice();for(let n=1;n<r.length;n++)t[e]+=r[n][e];return t}var kg=30;function Sq(r){return r<=kg?r:Dc(r,Math.floor(Math.sqrt(r)))}function Tq(r,e,t){let n=t*(typeof r=="number"?r:r[0]),o=e*(typeof r=="number"?r:r[1]);return[n,o]}function Eq(r,e,t,n=!0){let o=[];if(n)o=o.concat(e.slice(0)),o.push(r[0]/t),o=o.concat(r.slice(1));else{o=o.concat(r[0]);let s=e.length;for(let a=0;a<s;++a)o=o.concat([r[a+1]/e[a],e[a]]);o=o.concat(r.slice(s+1))}return o}function Aq(r,e,t=!0){let n=[];if(t){n.push(e);for(let o=e+1;o<r;++o)o<=2*e?(n.push(o),n.push(o-(e+1))):n.push(o)}else{let o=[],s=[];for(let a=1;a<r;++a)a>=e*2+1||a%2==1?s.push(a):o.push(a);n.push(...o),n.push(0),n.push(...s)}return n}function Dq(r,e,t,n=!0){let o=[];n?o.push(r[0]/t):o.push(r[0]*t);for(let s=1;s<r.length;++s)s<=e.length?n?o.push(e[s-1]*r[s]):o.push(r[s]/e[s-1]):o.push(r[s]);return o}function $q(r,e){let t=[0];for(let n=0;n<e;++n)t.push(r[n][0]);return t}function Rq(r,e,t){let n=r.slice(0,1);for(let o=0;o<t;++o)n.push(r[o+1]-e[o][0]-e[o][1]);return n}var u_=1.7580993408473768,c_=1.0507009873554805;var Fq=.3275911,Oq=.254829592,Pq=-.284496736,Mq=1.421413741,Lq=-1.453152027,zq=1.061405429;function Bq(...r){W().getBool("IS_TEST")||console.warn(...r)}function Vq(...r){W().getBool("IS_TEST")||console.log(...r)}function Gq(r,e){if(r.length!==e.length)throw new Error(`Cannot merge real and imag arrays of different lengths. real:${r.length}, imag: ${e.length}.`);let t=new Float32Array(r.length*2);for(let n=0;n<t.length;n+=2)t[n]=r[n/2],t[n+1]=e[n/2];return t}function jq(r){let e=new Float32Array(r.length/2),t=new Float32Array(r.length/2);for(let n=0;n<r.length;n+=2)e[n/2]=r[n],t[n/2]=r[n+1];return{real:e,imag:t}}function Wq(r){let e=Math.ceil(r.length/4),t=new Float32Array(e),n=new Float32Array(e);for(let o=0;o<r.length;o+=4)t[Math.floor(o/4)]=r[o],n[Math.floor(o/4)]=r[o+1];return{real:t,imag:n}}function Uq(r){let e=Math.floor(r.length/4),t=new Float32Array(e),n=new Float32Array(e);for(let o=2;o<r.length;o+=4)t[Math.floor(o/4)]=r[o],n[Math.floor(o/4)]=r[o+1];return{real:t,imag:n}}function qq(r,e){let t=r[e*2],n=r[e*2+1];return{real:t,imag:n}}function Hq(r,e,t,n){r[n*2]=e,r[n*2+1]=t}function Kq(r,e){let t=new Float32Array(r/2),n=new Float32Array(r/2);for(let o=0;o<Math.ceil(r/2);o++){let s=(e?2:-2)*Math.PI*(o/r);t[o]=Math.cos(s),n[o]=Math.sin(s)}return{real:t,imag:n}}function Xq(r,e,t){let n=(t?2:-2)*Math.PI*(r/e),o=Math.cos(n),s=Math.sin(n);return{real:o,imag:s}}function Yq(r,e,t=0){let n=[];if(typeof e=="number")A(r.shape[t]%e==0,()=>"Number of splits must evenly divide the axis."),n=new Array(e).fill(r.shape[t]/e);else{let o=e.reduce((a,i)=>(i===-1&&(a+=1),a),0);A(o<=1,()=>"There should be only one negative value in split array.");let s=e.indexOf(-1);if(s!==-1){let a=e.reduce((i,l)=>l>0?i+l:i);e[s]=r.shape[t]-a}A(r.shape[t]===e.reduce((a,i)=>a+i),()=>"The sum of sizes must match the size of the axis dimension."),n=e}return n}var TS={};Ye(TS,{collectGatherOpShapeInfo:()=>Qq,computeOutShape:()=>Jq,segOpComputeOptimalWindowSize:()=>Zq});function Zq(r,e){let t=!1,n;for(r<=kg?(n=r,t=!0):n=Dc(r,Math.floor(Math.sqrt(r)));!t;)n>e||n===r?t=!0:n=Dc(r,n+1);return n}function Jq(r,e,t){let n=[],o=r.length;for(let s=0;s<o;s++)s!==e?n.push(r[s]):n.push(t);return n}function Qq(r,e,t,n){let o=e.shape.length,s=r.shape.length;if(n!==0&&(n<-o||n>o))throw new Error(`Expect batchDims in the range of [-${o}, ${o}], but got ${n}`);if(n<0&&(n+=o),n>s)throw new Error(`batchDims (${n}) must be less than rank(x) (
${s}).`);if(t<n)throw new Error(`batchDims (${n}) must be less than or equal to axis (${t}).`);for(let p=0;p<n;++p)if(r.shape[p]!==e.shape[p])throw new Error(`x.shape[${p}]: ${r.shape[p]} should be equal to indices.shape[${p}]: ${e.shape[p]}.`);let a=r.shape[t],i=[],l=1,u=1,c=1;for(let p=0;p<n;++p)i.push(r.shape[p]),l*=r.shape[p];for(let p=n;p<t;p++)i.push(r.shape[p]),u*=r.shape[p];for(let p=n;p<o;p++)i.push(e.shape[p]);for(let p=t+1;p<s;p++)i.push(r.shape[p]),c*=r.shape[p];return{batchSize:l,sliceSize:c,outerSize:u,dimSize:a,outputShape:i}}function eH(r){try{return r.map(e=>zc(e))}catch(e){throw new Error(`Failed to decode encoded string bytes into utf-8, error: ${e}`)}}function tH(r){return r.map(e=>rl(e))}var Tr={};Ye(Tr,{nonMaxSuppressionV3Impl:()=>s_,nonMaxSuppressionV4Impl:()=>i_,nonMaxSuppressionV5Impl:()=>a_,whereImpl:()=>Qw});function ee(r,e){Array.isArray(r)||(r=[r]),r.forEach(t=>{t!=null&&y.assert(t.dtype!=="complex64",()=>`${e} does not support complex64 tensors in the CPU backend.`)})}var rH=Tr.whereImpl,vg=class extends Ws{constructor(){super();this.blockSize=48,this.firstUse=!0,this.data=new Ja(this,vs())}write(e,t,n){this.firstUse&&(this.firstUse=!1,W().get("IS_NODE")&&N.warn(`
============================
Hi there \u{1F44B}. Looks like you are running TensorFlow.js in Node.js. To speed things up dramatically, install our node backend, which binds to TensorFlow C++, by running npm i @tensorflow/tfjs-node, or npm i @tensorflow/tfjs-node-gpu if you have CUDA. Then call require('@tensorflow/tfjs-node'); (-gpu suffix for CUDA) at the start of your program. Visit https://github.com/tensorflow/tfjs-node for more details.
============================`));let o={};return this.data.set(o,{values:e,dtype:n,refCount:1}),o}makeTensorInfo(e,t,n){let o;if(t==="string"&&n!=null&&n.length>0&&y.isString(n[0])){let s=n.map(a=>y.encodeString(a));o=this.write(s,e,t)}else o=this.write(n,e,t);return{dataId:o,shape:e,dtype:t}}incRef(e){let t=this.data.get(e);t.refCount++}decRef(e){if(this.data.has(e)){let t=this.data.get(e);t.refCount--}}move(e,t,n,o){this.data.set(e,{values:t,dtype:o,refCount:1})}numDataIds(){return this.data.numDataIds()}async read(e){return this.readSync(e)}readSync(e){let{dtype:t,complexTensorInfos:n}=this.data.get(e);if(t==="complex64"){let o=this.readSync(n.real.dataId),s=this.readSync(n.imag.dataId);return N.mergeRealAndImagArrays(o,s)}return this.data.get(e).values}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(o=>y.decodeString(o))}catch(o){throw new Error("Failed to decode encoded string bytes into utf-8")}return Ce(e.shape,e.dtype,n)}makeOutput(e,t,n){let o=this.write(e,t,n);return vs().makeTensorFromDataId(o,t,n,this)}disposeData(e){if(this.data.has(e)){let{complexTensorInfos:t}=this.data.get(e);t!=null&&(this.disposeData(t.real.dataId),this.disposeData(t.imag.dataId)),this.data.delete(e)}}disposeIntermediateTensorInfo(e){let t=e.dataId;if(this.data.has(t)){let n=this.data.get(t);n.refCount--,n.refCount<1&&this.disposeData(t)}}async time(e){let t=y.now();return e(),{kernelMs:y.now()-t}}memory(){return{unreliable:!0,reasons:["The reported memory is an upper bound. Due to automatic garbage collection, the true allocated memory may be less."]}}where(e){ee([e],"where");let t=this.readSync(e.dataId);return rH(e.shape,t)}dispose(){}floatPrecision(){return 32}epsilon(){return super.epsilon()}};var Ig={};Ye(Ig,{addImpl:()=>OS,bincountImpl:()=>cf,bincountReduceImpl:()=>p_,ceilImpl:()=>MS,concatImpl:()=>pf,expImpl:()=>zS,expm1Impl:()=>VS,floorImpl:()=>jS,gatherV2Impl:()=>f_,greaterImpl:()=>US,lessImpl:()=>HS,linSpaceImpl:()=>d_,logImpl:()=>XS,maxImpl:()=>h_,maximumImpl:()=>ZS,minimumImpl:()=>QS,multiplyImpl:()=>Cg,negImpl:()=>rT,notEqualImpl:()=>oT,prodImpl:()=>aT,rangeImpl:()=>df,rsqrtImpl:()=>uT,simpleAbsImpl:()=>ES,sliceImpl:()=>hf,squaredDifferenceImpl:()=>mT,stridedSliceImpl:()=>g_,subImpl:()=>dT,tileImpl:()=>x_,topKImpl:()=>y_,transposeImpl:()=>ff,uniqueImpl:()=>b_});function ES(r){let e=new Float32Array(r.length);for(let t=0;t<r.length;++t)e[t]=Math.abs(r[t]);return e}var nH=r=>{let{x:e}=r.inputs,t=r.backend;ee(e,"abs");let n=new Float32Array(y.sizeFromShape(e.shape)),o=t.data.get(e.dataId).values;return n=ES(o),t.makeOutput(n,e.shape,"float32")},AS={kernelName:ss,backendName:"cpu",kernelFunc:nH};function Ze(r){return(e,t,n,o,s)=>{let a=N.assertAndGetBroadcastShape(e,t),i=a.length,l=y.computeStrides(a),u=y.sizeFromShape(a),c=y.getTypedArrayFromDType(s,u),p=e.length,m=t.length,f=y.computeStrides(e),d=y.computeStrides(t),h=N.getBroadcastDims(e,a),g=N.getBroadcastDims(t,a);if(h.length+g.length===0)for(let x=0;x<c.length;++x)c[x]=r(n[x%n.length],o[x%o.length]);else for(let x=0;x<c.length;++x){let b=y.indexToLoc(x,i,l),w=b.slice(-p);h.forEach(S=>w[S]=0);let _=y.locToIndex(w,p,f),k=b.slice(-m);g.forEach(S=>k[S]=0);let E=y.locToIndex(k,m,d);c[x]=r(n[_],o[E])}return[c,a]}}function pr(r){let{inputs:e,backend:t}=r,{real:n,imag:o}=e,s=t.data.get(n.dataId).values,a=t.data.get(o.dataId).values,i=t.makeTensorInfo(n.shape,"complex64"),l=t.data.get(i.dataId);return l.complexTensorInfos={real:t.makeTensorInfo(n.shape,"float32",s),imag:t.makeTensorInfo(o.shape,"float32",a)},i}var DS={kernelName:ql,backendName:"cpu",kernelFunc:pr};function lp(r,e,t="float32"){if(t==="complex64"){let o=lp(r,e,"float32"),s=lp(r,e,"float32");return pr({inputs:{real:o,imag:s},backend:r})}let n=y.makeZerosTypedArray(y.sizeFromShape(e),t);return r.makeTensorInfo(e,t,n)}function Er(r){let{inputs:e,backend:t}=r,{x:n}=e;return t.incRef(n.dataId),{dataId:n.dataId,shape:n.shape,dtype:n.dtype}}var $S={kernelName:us,backendName:"cpu",kernelFunc:Er};function Vo(r){let{inputs:e,backend:t}=r,{input:n}=e,o=t.data.get(n.dataId).complexTensorInfos.real,s=t.data.get(o.dataId).values;return t.makeTensorInfo(o.shape,o.dtype,s)}var RS={kernelName:cu,backendName:"cpu",kernelFunc:Vo};function Go(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{dtype:s}=n;if(s==="complex64"){if(o.dtype==="complex64")return Er({inputs:{x:o},backend:t});let a=lp(t,o.shape,o.dtype),i=Go({inputs:{x:o},backend:t,attrs:{dtype:"float32"}}),l=pr({inputs:{real:i,imag:a},backend:t});return t.disposeIntermediateTensorInfo(a),t.disposeIntermediateTensorInfo(i),l}if(o.dtype==="complex64"){let a=Vo({inputs:{input:o},backend:t}),i=Go({inputs:{x:a},backend:t,attrs:{dtype:s}});return t.disposeIntermediateTensorInfo(a),i}if(!y.hasEncodingLoss(o.dtype,s)){let a=Er({inputs:{x:o},backend:t});return{dataId:a.dataId,shape:a.shape,dtype:s}}if(s==="int32"){let a=t.data.get(o.dataId).values,i=Int32Array.from(a);return t.makeTensorInfo(o.shape,"int32",i)}if(s==="bool"){let a=t.data.get(o.dataId).values,i=y.toTypedArray([0],o.dtype),[l,u]=Ze((c,p)=>c!==p?1:0)(o.shape,[],a,i,"bool");return t.makeTensorInfo(u,"bool",l)}throw new Error(`Error in Cast: failed to cast ${o.dtype} to ${s}`)}var FS={kernelName:An,backendName:"cpu",kernelFunc:Go};function nt(r,e,t,n){return t==null?({inputs:o,backend:s})=>{let{a,b:i}=o,l=s;ee([a,i],r);let u=l.data.get(a.dataId).values,c=l.data.get(i.dataId).values,p=n||a.dtype,[m,f]=e(a.shape,i.shape,u,c,p);return l.makeTensorInfo(f,p,m)}:({inputs:o,backend:s})=>{let{a,b:i}=o,l=s;if(a.dtype==="complex64"||i.dtype==="complex64"){let u=Go({inputs:{x:a},backend:l,attrs:{dtype:"complex64"}}),c=l.data.get(u.dataId),p=c.complexTensorInfos.real,m=c.complexTensorInfos.imag,f=l.data.get(p.dataId).values,d=l.data.get(m.dataId).values,h=Go({inputs:{x:i},backend:l,attrs:{dtype:"complex64"}}),g=l.data.get(h.dataId),x=g.complexTensorInfos.real,b=g.complexTensorInfos.imag,w=l.data.get(x.dataId).values,_=l.data.get(b.dataId).values,[k,E,S]=t(a.shape,i.shape,f,d,w,_),R=l.makeTensorInfo(S,"float32",k),F=l.makeTensorInfo(S,"float32",E),P=pr({inputs:{real:R,imag:F},backend:l});return l.disposeIntermediateTensorInfo(u),l.disposeIntermediateTensorInfo(h),l.disposeIntermediateTensorInfo(R),l.disposeIntermediateTensorInfo(F),P}else{let u=l.data.get(a.dataId).values,c=l.data.get(i.dataId).values,p=n||a.dtype,[m,f]=e(a.shape,i.shape,u,c,p);return l.makeTensorInfo(f,p,m)}}}function up(r){return(e,t,n,o,s,a)=>{let i=N.assertAndGetBroadcastShape(e,t),l=y.sizeFromShape(i),u=i.length,c=y.computeStrides(i),p=y.getTypedArrayFromDType("float32",l),m=y.getTypedArrayFromDType("float32",l),f=N.getBroadcastDims(e,i),d=N.getBroadcastDims(t,i),h=N.mergeRealAndImagArrays(n,o),g=N.mergeRealAndImagArrays(s,a),x=e.length,b=y.computeStrides(e),w=t.length,_=y.computeStrides(t);if(f.length+d.length===0)for(let k=0;k<p.length;k++){let E=k%h.length,S=k%g.length,R=r(h[E*2],h[E*2+1],g[S*2],g[S*2+1]);p[k]=R.real,m[k]=R.imag}else for(let k=0;k<p.length;k++){let E=y.indexToLoc(k,u,c),S=E.slice(-x);f.forEach(G=>S[G]=0);let R=y.locToIndex(S,x,b),F=E.slice(-w);d.forEach(G=>F[G]=0);let P=y.locToIndex(F,w,_),j=r(h[R*2],h[R*2+1],g[P*2],g[P*2+1]);p[k]=j.real,m[k]=j.imag}return[p,m,i]}}var OS=Ze((r,e)=>r+e),oH=up((r,e,t,n)=>({real:r+t,imag:e+n})),Pa=nt(xn,OS,oH),PS={kernelName:xn,backendName:"cpu",kernelFunc:Pa};function cf(r,e,t,n,o){let s=y.sizeFromShape(n),a=y.makeZerosTypedArray(o,t);for(let i=0;i<r.length;i++){let l=r[i];if(l<0)throw new Error("Input x must be non-negative!");l>=o||(s>0?a[l]+=e[i]:a[l]+=1)}return a}function p_(r,e,t,n=!1){let o=r.shape[0],s=r.shape[1],a=Ce([o,t],e.dtype);for(let i=0;i<o;i++)for(let l=0;l<s;l++){let u=r.get(i,l);if(u<0)throw new Error("Input x must be non-negative!");u>=t||(n?a.set(1,i,u):e.size>0?a.set(a.get(i,u)+e.get(i,l),i,u):a.set(a.get(i,u)+1,i,u))}return a}function jo(r){return(e,t,n)=>{let o=y.getTypedArrayFromDType(t,e.length);for(let s=0;s<e.length;++s)o[s]=r(e[s],n);return o}}function Ae(r,e,t){return({inputs:n,attrs:o,backend:s})=>{let{x:a}=n;if(ee(a,r),a.dtype==="string"||t==="string")throw new Error("unaryKernelFunc does not support string input/output");let i=s,l=i.data.get(a.dataId).values,u=y.sizeFromShape(a.shape),c=t||a.dtype,p=y.getArrayFromDType(c,u);for(let m=0;m<u;++m)p[m]=e(l[m],o);return i.makeTensorInfo(a.shape,c,p)}}function Wo(r,e,t){return({inputs:n,attrs:o,backend:s})=>{let{x:a}=n;if(ee(a,r),a.dtype==="string"||t==="string")throw new Error("unaryKernelFunc does not support string input/output");let i=s,l=i.data.get(a.dataId).values,u=t||a.dtype,c=e(l,u,o);return i.makeTensorInfo(a.shape,u,c)}}var MS=jo(r=>Math.ceil(r)),sH=Wo(ti,MS),LS={kernelName:ti,backendName:"cpu",kernelFunc:sH};function pf(r,e,t,n){let o=y.getArrayFromDType(t,y.sizeFromShape(e));if(n&&t!=="string"){let s=0;r.forEach(a=>{let i=y.sizeFromShape(a.shape);o.set(a.vals,s),s+=i})}else{let s=0;r.forEach(a=>{let i=t==="string"?N.fromUint8ToStringArray(a.vals):a.vals,l=0;for(let u=0;u<a.shape[0];++u){let c=u*e[1]+s;for(let p=0;p<a.shape[1];++p)o[c+p]=i[l++]}s+=a.shape[1]})}return o}var zS=jo(r=>Math.exp(r)),m_=Wo(eo,zS),BS={kernelName:eo,backendName:"cpu",kernelFunc:m_};var VS=jo(r=>Math.expm1(r)),iH=Wo(li,VS),GS={kernelName:li,backendName:"cpu",kernelFunc:iH};var jS=jo(r=>Math.floor(r)),aH=Wo(to,jS),WS={kernelName:to,backendName:"cpu",kernelFunc:aH};function f_(r,e,t){let n=Ce(t,r.dtype);for(let o=0;o<n.size;++o){let a=n.indexToLoc(o).slice(),i=a[0],l=a[2],u=e.locToIndex([i,l]);a[2]=e.values[u];let c=r.locToIndex(a);n.values[o]=r.values[c]}return n}var US=Ze((r,e)=>r>e?1:0),lH=nt(pi,US,null,"bool"),qS={kernelName:pi,backendName:"cpu",kernelFunc:lH};var HS=Ze((r,e)=>r<e?1:0),uH=nt(hi,HS,null,"bool"),KS={kernelName:hi,backendName:"cpu",kernelFunc:uH};function d_(r,e,t){let n=(e-r)/(t-1),o=y.makeZerosTypedArray(t,"float32");o[0]=r;for(let s=1;s<o.length;s++)o[s]=o[s-1]+n;return o}var XS=jo(r=>Math.log(r)),cH=Wo(io,XS),YS={kernelName:io,backendName:"cpu",kernelFunc:cH};function h_(r,e,t,n){let o=y.getTypedArrayFromDType(n,y.sizeFromShape(t));for(let s=0;s<o.length;++s){let a=s*e,i=r[a];for(let l=0;l<e;++l){let u=r[a+l];u>i&&(i=u)}o[s]=i}return o}var ZS=Ze((r,e)=>Math.max(r,e)),pH=nt(lo,ZS),JS={kernelName:lo,backendName:"cpu",kernelFunc:pH};var QS=Ze((r,e)=>Math.min(r,e)),mH=nt(mo,QS),eT={kernelName:mo,backendName:"cpu",kernelFunc:mH};var Cg=Ze((r,e)=>r*e),fH=up((r,e,t,n)=>({real:r*t-e*n,imag:r*n+e*t})),mf=nt(fo,Cg,fH),tT={kernelName:fo,backendName:"cpu",kernelFunc:mf};function rT(r,e,t){let n=y.createScalarValue(-1,t);return Cg([],e,n,r,t)}function dH(r){let{inputs:e,backend:t}=r,{x:n}=e;ee(n,"neg");let o=t.data.get(n.dataId).values,[s,a]=rT(o,n.shape,n.dtype);return t.makeTensorInfo(a,n.dtype,s)}var nT={kernelName:cs,backendName:"cpu",kernelFunc:dH};var oT=Ze((r,e)=>r!==e?1:0),hH=nt(wi,oT,null,"bool"),sT={kernelName:wi,backendName:"cpu",kernelFunc:hH};function ff(r,e,t,n,o){let s=e.length,a=y.sizeFromShape(e),i=y.computeStrides(e),l=y.computeStrides(o),u=y.getTypedArrayFromDType(t,y.sizeFromShape(o));for(let c=0;c<a;++c){let p=y.indexToLoc(c,s,i),m=new Array(p.length);for(let d=0;d<m.length;d++)m[d]=p[n[d]];let f=y.locToIndex(m,s,l);u[f]=r[c]}return u}function rr(r){let{inputs:e,attrs:t,backend:n}=r,{x:o}=e,{perm:s}=t;ee(o,"transpose");let a=o.shape.length,i=new Array(a);for(let p=0;p<i.length;p++)i[p]=o.shape[s[p]];let l=n.data.get(o.dataId).values,u=ff(l,o.shape,o.dtype,s,i);return{dataId:n.write(u,i,o.dtype),shape:i,dtype:o.dtype}}var iT={kernelName:Ro,backendName:"cpu",kernelFunc:rr};function aT(r,e,t,n){let[o,s]=N.computeOutAndReduceShapes(r,n),a=fr(e,"int32"),i=y.makeZerosTypedArray(y.sizeFromShape(o),a),l=y.sizeFromShape(s);for(let u=0;u<i.length;++u){let c=u*l,p=1;for(let m=0;m<l;++m)p*=t[c+m];i[u]=p}return{outVals:i,outShape:o,outDtype:a}}function gH(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{axis:s,keepDims:a}=n;ee(o,"prod");let i=o.shape.length,l=y.parseAxisParam(s,o.shape),u=N.getAxesPermutation(l,i),c=l,p=o,m=[];u!=null&&(p=rr({inputs:{x:o},backend:t,attrs:{perm:u}}),m.push(p),c=N.getInnerMostAxes(c.length,i));let f=t.data.get(p.dataId).values,{outVals:d,outShape:h,outDtype:g}=aT(p.shape,p.dtype,f,c),x=h;return a&&(x=N.expandShapeToKeepDim(h,l)),m.forEach(b=>t.disposeIntermediateTensorInfo(b)),t.makeTensorInfo(x,g,d)}var lT={kernelName:Ci,backendName:"cpu",kernelFunc:gH};function df(r,e,t,n){let o=r===e,s=r<e&&t<0,a=e<r&&t>1;if(o||s||a)return y.makeZerosTypedArray(0,n);let i=Math.abs(Math.ceil((e-r)/t)),l=y.makeZerosTypedArray(i,n);e<r&&t===1&&(t=-1),l[0]=r;for(let u=1;u<l.length;u++)l[u]=l[u-1]+t;return l}var uT=jo(r=>1/Math.sqrt(r)),xH=Wo(Co,uT),cT={kernelName:Co,backendName:"cpu",kernelFunc:xH};function hf(r,e,t,n,o){let s=or.isSliceContinous(n,e,t),a=y.sizeFromShape(t),i=y.computeStrides(n);if(s){let p=or.computeFlatOffset(e,i);return o==="string"?r.slice(p,p+a):r.subarray(p,p+a)}let l=o==="string"?N.fromUint8ToStringArray(r):r,u=Ce(n,o,l),c=Ce(t,o);for(let p=0;p<c.size;++p){let m=c.indexToLoc(p),f=m.map((d,h)=>d+e[h]);c.set(u.get(...f),...m)}return o==="string"?N.fromStringArrayToUint8(c.values):c.values}function Uo(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{begin:s,size:a}=n;ee(o,"slice");let[i,l]=or.parseSliceParams(o,s,a);or.assertParamsValid(o,i,l);let u=t.data.get(o.dataId).values,c=hf(u,i,l,o.shape,o.dtype);return t.makeTensorInfo(l,o.dtype,c)}var pT={kernelName:hs,backendName:"cpu",kernelFunc:Uo};var mT=Ze((r,e)=>{let t=r-e;return t*t}),yH=nt(Ao,mT),fT={kernelName:Ao,backendName:"cpu",kernelFunc:yH};function g_(r,e,t,n){let o=Ce(r,e.dtype);for(let s=0;s<o.size;s++){let a=o.indexToLoc(s),i=new Array(a.length);for(let l=0;l<i.length;l++)i[l]=a[l]*t[l]+n[l];o.set(e.get(...i),...a)}return o}var dT=Ze((r,e)=>r-e),bH=up((r,e,t,n)=>({real:r-t,imag:e-n})),gf=nt(Do,dT,bH),hT={kernelName:Do,backendName:"cpu",kernelFunc:gf};function x_(r,e){let t=new Array(r.rank);for(let o=0;o<t.length;o++)t[o]=r.shape[o]*e[o];let n=Ce(t,r.dtype);for(let o=0;o<n.values.length;++o){let s=n.indexToLoc(o),a=new Array(r.rank);for(let l=0;l<a.length;l++)a[l]=s[l]%r.shape[l];let i=r.locToIndex(a);n.values[o]=r.values[i]}return n}function y_(r,e,t,n,o){let s=e[e.length-1],[a,i]=[r.length/s,s],l=y.getTypedArrayFromDType(t,a*n),u=y.getTypedArrayFromDType("int32",a*n);for(let p=0;p<a;p++){let m=p*i,f=r.subarray(m,m+i),d=[];for(let b=0;b<f.length;b++)d.push({value:f[b],index:b});d.sort((b,w)=>w.value-b.value);let h=p*n,g=l.subarray(h,h+n),x=u.subarray(h,h+n);for(let b=0;b<n;b++)g[b]=d[b].value,x[b]=d[b].index}let c=e.slice();return c[c.length-1]=n,[Ce(c,t,l),Ce(c,"int32",u)]}function b_(r,e,t,n){let o=y.parseAxisParam(e,t)[0],s=[1,t[0],1];for(let d=0;d<o;d++)s[0]*=t[d];s[1]=t[o];for(let d=o+1;d<t.length;d++)s[2]*=t[d];let a={},i=new Int32Array(t[o]),l=new ct(s,n,r),u=[],c=s[0]===1&&s[2]===1;for(let d=0;d<t[o];d++){let h;if(c)h=r[d].toString();else{let g=[];for(let x=0;x<s[0];x++)for(let b=0;b<s[2];b++)g.push(l.get(x,d,b));h=g.join(",")}if(a[h]!==void 0)i[d]=a[h];else{let g=Object.keys(a).length;a[h]=g,i[d]=g,u.push(d)}}let p=s.slice();p[1]=Object.keys(a).length;let m=new ct(p,n);u.forEach((d,h)=>{for(let g=0;g<s[0];g++)for(let x=0;x<s[2];x++)m.set(l.get(g,d,x),g,h,x)});let f=t.slice();return f[o]=p[1],{outputValues:m.values,outputShape:f,indices:i}}var w_="3.0.0";yu("cpu",()=>new vg,1);var __=Ae(si,r=>r>=0?r:Math.exp(r)-1),gT={kernelName:si,backendName:"cpu",kernelFunc:__};function k_(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{alpha:s}=n;ee([o],"leakyRelu");let a=y.sizeFromShape(o.shape),i=t.data.get(o.dataId).values,l=y.getTypedArrayFromDType("float32",a);for(let u=0;u<i.length;u++)l[u]=i[u]<0?s*i[u]:i[u];return t.makeTensorInfo(o.shape,"float32",l)}var xT={kernelName:so,backendName:"cpu",kernelFunc:k_};var wH=Ze((r,e)=>r<0?e*r:r);function v_(r){let{inputs:e,backend:t}=r,{x:n,alpha:o}=e;ee([n,o],"prelu");let s=t.data.get(n.dataId).values,a=t.data.get(o.dataId).values,[i,l]=wH(n.shape,o.shape,s,a,n.dtype);return t.makeTensorInfo(l,n.dtype,i)}var yT={kernelName:yo,backendName:"cpu",kernelFunc:v_};var C_=Ae(bo,r=>Math.max(0,r)),bT={kernelName:bo,backendName:"cpu",kernelFunc:C_};var I_=Ae(_o,r=>Math.min(Math.max(0,r),6)),wT={kernelName:_o,backendName:"cpu",kernelFunc:I_};function cp(r,e,t,n,o){if(t==="linear")return Er({inputs:{x:e},backend:r});if(t==="relu")return C_({inputs:{x:e},backend:r});if(t==="elu")return __({inputs:{x:e},backend:r});if(t==="relu6")return I_({inputs:{x:e},backend:r});if(t==="prelu")return v_({inputs:{x:e,alpha:n},backend:r});if(t==="leakyrelu")return k_({inputs:{x:e},backend:r,attrs:{alpha:o}});throw new Error(`Activation ${t} has not been implemented for the CPU backend.`)}function tt(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{shape:s}=n,a=y.sizeFromShape(o.shape),i=y.inferFromImplicitShape(s,a),l=y.sizeFromShape(i);y.assert(a===l,()=>`The new shape (${i}) has ${l} elements and the old shape (${o.shape}) has ${a} elements. The new shape and old shape must have the same number of elements.`),t.incRef(o.dataId);let u=t.data.get(o.dataId);if(u.complexTensorInfos!=null){let c=u.complexTensorInfos.real,p=u.complexTensorInfos.imag;c.shape=i,p.shape=i}return{dataId:o.dataId,shape:i,dtype:o.dtype}}var _T={kernelName:fs,backendName:"cpu",kernelFunc:tt};function N_(r){let{inputs:e,backend:t,attrs:n}=r,{a:o,b:s}=e,{transposeA:a,transposeB:i}=n;ee([o,s],"matMul");let l=o.shape.length,u=s.shape.length,c=a?o.shape[l-2]:o.shape[l-1],p=i?s.shape[u-1]:s.shape[u-2],m=a?o.shape[l-1]:o.shape[l-2],f=i?s.shape[u-2]:s.shape[u-1],d=o.shape.slice(0,-2),h=s.shape.slice(0,-2),g=y.sizeFromShape(d),x=y.sizeFromShape(h),b=g===x||g===1||x===1;y.assert(l>=2&&u>=2&&b,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${d}) and (${h}).`);let _=(g>x?o.shape.slice(0,-2):s.shape.slice(0,-2)).concat([m,f]);y.assert(c===p,()=>`Error in matMul: inner shapes (${c}) and (${p}) of Tensors with shapes ${o.shape} and ${s.shape} and transposeA=${a} and transposeB=${i} must match.`);let k=a?[g,c,m]:[g,m,c],E=i?[x,f,p]:[x,p,f],S=tt({inputs:{x:o},backend:t,attrs:{shape:k}}),R=tt({inputs:{x:s},backend:t,attrs:{shape:E}}),F=a?S.shape[1]:S.shape[2],P=a?S.shape[2]:S.shape[1],j=i?R.shape[1]:R.shape[2],G=Math.max(g,x),U=t.data.get(S.dataId).values,X=t.data.get(R.dataId).values,K=y.computeStrides(S.shape),Z=y.computeStrides(R.shape),[te,Y,re]=a?[K[0],1,K[1]]:[K[0],K[1],1],[ie,se,pe]=i?[1,Z[1],Z[0]]:[Z[1],1,Z[0]],ae=P*j,xe=Ce([G,P,j],S.dtype),ge=xe.values,we=t.blockSize;for(let ke=0;ke<G;ke++)for(let De=0;De<P;De+=we)for(let $e=0;$e<j;$e+=we)for(let Re=0;Re<F;Re+=we){let qe=Math.min(De+we,P),ut=Math.min($e+we,j),kt=Math.min(Re+we,F);for(let vt=De;vt<qe;vt++)for(let pt=$e;pt<ut;pt++){let Ct=0;for(let He=Re;He<kt;He++){let Ot=Math.min(ke,g-1)*te,mn=Math.min(ke,x-1)*pe,Jt=U[Ot+vt*Y+He*re],fn=X[He*ie+pt*se+mn];Ct+=Jt*fn}ge[ke*ae+(vt*j+pt)]+=Ct}}return t.disposeIntermediateTensorInfo(S),t.disposeIntermediateTensorInfo(R),t.makeTensorInfo(_,xe.dtype,xe.values)}var kT={kernelName:Hn,backendName:"cpu",kernelFunc:N_};function _H(r){let{inputs:e,backend:t,attrs:n}=r,{a:o,b:s,bias:a,preluActivationWeights:i}=e,{transposeA:l,transposeB:u,activation:c,leakyreluAlpha:p}=n,m,f,d,h=[];m=N_({inputs:{a:o,b:s},attrs:{transposeA:l,transposeB:u},backend:t}),a&&(f=Pa({inputs:{a:m,b:a},backend:t}),h.push(m),m=f),c&&(d=cp(t,m,c,i,p),h.push(m),m=d);for(let x of h)t.disposeIntermediateTensorInfo(x);return m}var vT={kernelName:bs,backendName:"cpu",kernelFunc:_H};var kH=Ae(Ks,r=>Math.acos(r)),CT={kernelName:Ks,backendName:"cpu",kernelFunc:kH};var vH=Ae(Xs,r=>Math.acosh(r)),IT={kernelName:Xs,backendName:"cpu",kernelFunc:vH};function CH(r){let{inputs:e,backend:t}=r,n=e;ee(e,"addN");let o=n.map(i=>t.data.get(i.dataId).values),s=Ce(n[0].shape,n[0].dtype),a=s.values;for(let i=0;i<n.length;i++){let l=o[i];for(let u=0;u<a.length;u++)a[u]+=l[u]}return t.makeTensorInfo(s.shape,s.dtype,s.values)}var NT={kernelName:Wn,backendName:"cpu",kernelFunc:CH};function IH(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{axis:s,keepDims:a}=n;ee(o,"all");let i=y.parseAxisParam(s,o.shape),l=i,u=N.getAxesPermutation(l,o.shape.length),c=o;u!=null&&(c=rr({inputs:{x:o},backend:t,attrs:{perm:u}}),l=N.getInnerMostAxes(l.length,o.shape.length)),N.assertAxesAreInnerMostDims("all",l,c.shape.length);let[p,m]=N.computeOutAndReduceShapes(c.shape,l),f=y.sizeFromShape(m),d=y.makeZerosTypedArray(y.sizeFromShape(p),c.dtype),h=t.data.get(c.dataId).values;for(let x=0;x<d.length;++x){let b=x*f,w=h[b];for(let _=0;_<f;++_){let k=h[b+_];w=w&&k}d[x]=w}u!=null&&t.disposeIntermediateTensorInfo(c);let g=t.makeTensorInfo(p,c.dtype,d);if(a){let x=N.expandShapeToKeepDim(p,i),b=tt({inputs:{x:g},backend:t,attrs:{shape:x}});return t.disposeIntermediateTensorInfo(g),b}return g}var ST={kernelName:Vl,backendName:"cpu",kernelFunc:IH};function NH(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{axis:s,keepDims:a}=n;ee(o,"any");let i=y.parseAxisParam(s,o.shape),l=i,u=N.getAxesPermutation(l,o.shape.length),c=o;u!=null&&(c=rr({inputs:{x:o},backend:t,attrs:{perm:u}}),l=N.getInnerMostAxes(l.length,o.shape.length)),N.assertAxesAreInnerMostDims("any",l,c.shape.length);let[p,m]=N.computeOutAndReduceShapes(c.shape,l),f=y.sizeFromShape(m),d=y.makeZerosTypedArray(y.sizeFromShape(p),c.dtype),h=t.data.get(c.dataId).values;for(let x=0;x<d.length;++x){let b=x*f,w=h[b];for(let _=0;_<f;++_){let k=h[b+_];w=w||k}d[x]=w}u!=null&&t.disposeIntermediateTensorInfo(c);let g=t.makeTensorInfo(p,c.dtype,d);if(a){let x=N.expandShapeToKeepDim(p,i),b=tt({inputs:{x:g},backend:t,attrs:{shape:x}});return t.disposeIntermediateTensorInfo(g),b}return g}var TT={kernelName:Gl,backendName:"cpu",kernelFunc:NH};function SH(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{axis:s}=n;ee(o,"argMax");let a=y.parseAxisParam(s,o.shape),i=N.getAxesPermutation(a,o.shape.length),l=o,u=[];i!=null&&(l=rr({inputs:{x:o},backend:t,attrs:{perm:i}}),u.push(l),a=N.getInnerMostAxes(a.length,l.shape.length)),a=[a[0]],N.assertAxesAreInnerMostDims("argMax",a,l.shape.length);let[c,p]=N.computeOutAndReduceShapes(l.shape,a),m=y.sizeFromShape(c),f=y.makeZerosTypedArray(m,"int32"),d=y.sizeFromShape(p),h=t.data.get(l.dataId).values;for(let g=0;g<f.length;++g){let x=g*d,b=h[x],w=0;for(let _=0;_<d;++_){let k=h[x+_];k>b&&(b=k,w=_)}f[g]=w}return u.forEach(g=>t.disposeIntermediateTensorInfo(g)),t.makeTensorInfo(c,"int32",f)}var ET={kernelName:Un,backendName:"cpu",kernelFunc:SH};function TH(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{axis:s}=n;ee(o,"argMin");let a=y.parseAxisParam(s,o.shape),i=N.getAxesPermutation(a,o.shape.length),l=o,u=[];i!=null&&(l=rr({inputs:{x:o},backend:t,attrs:{perm:i}}),u.push(l),a=N.getInnerMostAxes(a.length,l.shape.length)),a=[a[0]],N.assertAxesAreInnerMostDims("argMin",a,l.shape.length);let[c,p]=N.computeOutAndReduceShapes(l.shape,a),m=y.sizeFromShape(c),f=y.makeZerosTypedArray(m,"int32"),d=y.sizeFromShape(p),h=t.data.get(l.dataId).values;for(let g=0;g<f.length;++g){let x=g*d,b=h[x],w=0;for(let _=0;_<d;++_){let k=h[x+_];k<b&&(b=k,w=_)}f[g]=w}return u.forEach(g=>t.disposeIntermediateTensorInfo(g)),t.makeTensorInfo(c,"int32",f)}var AT={kernelName:na,backendName:"cpu",kernelFunc:TH};var EH=Ae(Ys,r=>Math.asin(r)),DT={kernelName:Ys,backendName:"cpu",kernelFunc:EH};var AH=Ae(Zs,r=>Math.asinh(r)),$T={kernelName:Zs,backendName:"cpu",kernelFunc:AH};var DH=Ae(Js,r=>Math.atan(r)),RT={kernelName:Js,backendName:"cpu",kernelFunc:DH};var $H=Ze((r,e)=>Math.atan2(r,e)),RH=nt(ei,$H),FT={kernelName:ei,backendName:"cpu",kernelFunc:RH};var FH=Ae(Qs,r=>Math.atanh(r)),OT={kernelName:Qs,backendName:"cpu",kernelFunc:FH};function pp(r,e,t,n,o,s){let a=o.strideHeight,i=o.strideWidth,l=o.dilationHeight,u=o.dilationWidth,c=o.effectiveFilterHeight,p=o.effectiveFilterWidth,m=o.padInfo.top,f=o.padInfo.left,d=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,h=Ce(o.outShape,t),g=h.values,x=o.outShape[1]*o.outShape[2]*o.outShape[3],b=o.outShape[2]*o.outShape[3],w=o.outShape[3];for(let _=0;_<o.batchSize;++_){let k=_*x,E=_*n[0];for(let S=0;S<o.inChannels;++S)for(let R=0;R<o.outHeight;++R){let F=R*a-m,P=Math.max(0,F),j=Math.min(o.inHeight,c+F),G=k+R*b;for(let U=0;U<o.outWidth;++U){let X=U*i-f,K=Math.max(0,X),Z=Math.min(o.inWidth,p+X),te=d,Y=0,re=0;for(let se=P;se<j;se+=l){let pe=E+se*n[1];for(let ae=K;ae<Z;ae+=u){let xe=pe+ae*n[2],ge=r[xe+S];s==="max"&&ge>te?te=ge:s==="avg"&&(Y+=ge,re++)}if(isNaN(te))break}let ie=G+U*w+S;g[ie]=s==="avg"?Y/re:te}}}return h}function Ng(r,e,t,n,o=!1,s=!1){let a=Ce(n.outShape,"int32"),i=n.strideHeight,l=n.strideWidth,u=n.dilationHeight,c=n.dilationWidth,p=n.effectiveFilterHeight,m=n.effectiveFilterWidth,f=n.padInfo.top,d=n.padInfo.left,h=Ce(e,t,r);for(let g=0;g<n.batchSize;++g)for(let x=0;x<n.inChannels;++x)for(let b=0;b<n.outHeight;++b){let w=b*i-f,_=w;for(;_<0;)_+=u;let k=Math.min(n.inHeight,p+w);for(let E=0;E<n.outWidth;++E){let S=E*l-d,R=S;for(;R<0;)R+=c;let F=Math.min(n.inWidth,m+S),P=Number.NEGATIVE_INFINITY,j=-1;for(let G=_;G<k;G+=u){let U=G-w;for(let X=R;X<F;X+=c){let K=X-S,Z=h.get(g,G,X,x);Z>P&&(P=Z,o?j=s?((g*n.inHeight+G)*n.inWidth+X)*n.inChannels+x:(G*n.inWidth+X)*n.inChannels+x:j=U*m+K)}}a.set(j,g,b,E,x)}}return a}function Sg(r,e,t,n,o,s){let a=o.strideDepth,i=o.strideHeight,l=o.strideWidth,u=o.dilationDepth,c=o.dilationHeight,p=o.dilationWidth,m=o.effectiveFilterDepth,f=o.effectiveFilterHeight,d=o.effectiveFilterWidth,h=o.padInfo.front,g=o.padInfo.top,x=o.padInfo.left,b=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,w=Ce(o.outShape,t),_=w.values,k=o.outShape[1]*o.outShape[2]*o.outShape[3]*o.outShape[4],E=o.outShape[2]*o.outShape[3]*o.outShape[4],S=o.outShape[3]*o.outShape[4],R=o.outShape[4];for(let F=0;F<o.batchSize;++F){let P=F*k,j=F*n[0];for(let G=0;G<o.inChannels;++G)for(let U=0;U<o.outDepth;++U){let X=U*a-h,K=X;for(;K<0;)K+=u;let Z=Math.min(o.inDepth,m+X),te=P+U*E;for(let Y=0;Y<o.outHeight;++Y){let re=Y*i-g,ie=re;for(;ie<0;)ie+=c;let se=Math.min(o.inHeight,f+re),pe=te+Y*S;for(let ae=0;ae<o.outWidth;++ae){let xe=ae*l-x,ge=xe;for(;ge<0;)ge+=p;let we=Math.min(o.inWidth,d+xe),ke=pe+ae*R,De=b,$e=0,Re=0;for(let ut=K;ut<Z;ut+=u){let kt=j+ut*n[1];for(let vt=ie;vt<se;vt+=c){let pt=kt+vt*n[2];for(let Ct=ge;Ct<we;Ct+=p){let He=pt+Ct*n[3],Ot=r[He+G];if(s==="max"&&Ot>De?De=Ot:s==="avg"&&($e+=Ot,Re++),isNaN(De))break}if(isNaN(De))break}if(isNaN(De))break}let qe=ke+G;_[qe]=s==="avg"?$e/Re:De}}}}return w}function PT(r,e){let t=Ce(e.outShape,"int32"),n=e.strideDepth,o=e.strideHeight,s=e.strideWidth,a=e.dilationDepth,i=e.dilationHeight,l=e.dilationWidth,u=e.effectiveFilterDepth,c=e.effectiveFilterHeight,p=e.effectiveFilterWidth,m=e.padInfo.front,f=e.padInfo.top,d=e.padInfo.left;for(let h=0;h<e.batchSize;++h)for(let g=0;g<e.inChannels;++g)for(let x=0;x<e.outDepth;++x){let b=x*n-m,w=b;for(;w<0;)w+=a;let _=Math.min(e.inDepth,u+b);for(let k=0;k<e.outHeight;++k){let E=k*o-f,S=E;for(;S<0;)S+=i;let R=Math.min(e.inHeight,c+E);for(let F=0;F<e.outWidth;++F){let P=F*s-d,j=P;for(;j<0;)j+=l;let G=Math.min(e.inWidth,p+P),U=Number.NEGATIVE_INFINITY,X=-1;for(let K=w;K<_;K+=a){let Z=K-b;for(let te=S;te<R;te+=i){let Y=te-E;for(let re=j;re<G;re+=l){let ie=re-P,se=r.get(h,K,te,re,g);se>=U&&(U=se,X=Z*c*p+Y*c+ie)}}}t.set(X,h,x,k,F,g)}}}return t}function OH(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e;ee(o,"avgPool");let{filterSize:s,strides:a,pad:i,dimRoundingMode:l}=n,u=1;y.assert(N.eitherStridesOrDilationsAreOne(a,u),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${a} and dilations '${u}'`);let c=N.computePool2DInfo(o.shape,s,a,u,i,l),p;if(c.filterWidth===1&&c.filterHeight===1&&y.arraysEqual(c.inShape,c.outShape))p=Er({inputs:{x:o},backend:t});else{let m=t.data.get(o.dataId).values,f=y.computeStrides(o.shape),d=pp(m,o.shape,o.dtype,f,c,"avg");p=t.makeTensorInfo(c.outShape,o.dtype,d.values)}return p}var MT={kernelName:qn,backendName:"cpu",kernelFunc:OH};function PH(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{filterSize:s,strides:a,pad:i,dimRoundingMode:l,dataFormat:u}=n;ee(o,"avgPool3d");let c=N.computePool3DInfo(o.shape,s,a,1,i,l,u),p=t.data.get(o.dataId).values,m=Sg(p,o.shape,o.dtype,y.computeStrides(o.shape),c,"avg");return t.makeTensorInfo(m.shape,"float32",m.values)}var LT={kernelName:oa,backendName:"cpu",kernelFunc:PH};function MH(r){let{inputs:e,backend:t,attrs:n}=r,{dy:o,input:s}=e,{filterSize:a,strides:i,pad:l,dimRoundingMode:u}=n;ee([o,s],"avgPool3DGrad");let c=N.computePool3DInfo(s.shape,a,i,1,l,u),p=c.strideDepth,m=c.strideHeight,f=c.strideWidth,d=c.filterDepth,h=c.filterHeight,g=c.filterWidth,x=c.dilationDepth,b=c.dilationHeight,w=c.dilationWidth,_=c.effectiveFilterDepth,k=c.effectiveFilterHeight,E=c.effectiveFilterWidth,S=_-1-c.padInfo.front,R=E-1-c.padInfo.left,F=k-1-c.padInfo.top,P=Ce(s.shape,"float32"),j=1/(d*h*g),G=t.bufferSync(o);for(let U=0;U<c.batchSize;++U)for(let X=0;X<c.inChannels;++X)for(let K=0;K<c.inDepth;++K)for(let Z=0;Z<c.inHeight;++Z)for(let te=0;te<c.inWidth;++te){let Y=K-S,re=Z-F,ie=te-R,se=0;for(let pe=0;pe<_;pe+=x){let ae=(Y+pe)/p;if(!(ae<0||ae>=c.outDepth||Math.floor(ae)!==ae))for(let xe=0;xe<k;xe+=b){let ge=(re+xe)/m;if(!(ge<0||ge>=c.outHeight||Math.floor(ge)!==ge))for(let we=0;we<E;we+=w){let ke=(ie+we)/f;if(ke<0||ke>=c.outWidth||Math.floor(ke)!==ke)continue;se+=G.get(U,ae,ge,ke,X)}}}P.set(se*j,U,K,Z,te,X)}return t.makeTensorInfo(P.shape,P.dtype,P.values)}var zT={kernelName:Wl,backendName:"cpu",kernelFunc:MH};function LH(r){let{inputs:e,backend:t,attrs:n}=r,{dy:o,input:s}=e,a=s;ee([o,s],"avgPoolGrad");let{filterSize:i,strides:l,pad:u}=n,c=N.computePool2DInfo(a.shape,i,l,1,u),p=c.strideHeight,m=c.strideWidth,f=c.filterHeight,d=c.filterWidth,h=c.dilationHeight,g=c.dilationWidth,x=c.effectiveFilterHeight,b=c.effectiveFilterWidth,w=b-1-c.padInfo.left,_=x-1-c.padInfo.top,k=Ce(a.shape,"float32"),E=1/(f*d),S=t.data.get(o.dataId).values,R=Ce(o.shape,"float32",S);for(let F=0;F<c.batchSize;++F)for(let P=0;P<c.inChannels;++P)for(let j=0;j<c.inHeight;++j)for(let G=0;G<c.inWidth;++G){let U=j-_,X=G-w,K=0;for(let Z=0;Z<x;Z+=h){let te=(U+Z)/p;if(!(te<0||te>=c.outHeight||Math.floor(te)!==te))for(let Y=0;Y<b;Y+=g){let re=(X+Y)/m;if(re<0||re>=c.outWidth||Math.floor(re)!==re)continue;K+=R.get(F,te,re,P)}}k.set(K*E,F,j,G,P)}return t.makeTensorInfo(k.shape,k.dtype,k.values)}var BT={kernelName:jl,backendName:"cpu",kernelFunc:LH};function zH(r){let{inputs:e,backend:t,attrs:n}=r,{x:o,scale:s,offset:a,mean:i,variance:l}=e;y.assert(i.shape.length===l.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),y.assert(a==null||i.shape.length===a.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),y.assert(s==null||i.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks."),ee([o,i,l,s,a],"batchNorm");let{varianceEpsilon:u}=n;u==null&&(u=.001);let c=t.data.get(o.dataId).values,p=t.data.get(i.dataId).values,m=t.data.get(l.dataId).values,f=s?t.data.get(s.dataId).values:new Float32Array([1]),d=a?t.data.get(a.dataId).values:new Float32Array([0]),h=new Float32Array(c.length),g=d.length,x=f.length,b=m.length,w=p.length,_=0,k=0,E=0,S=0;for(let R=0;R<c.length;++R)h[R]=d[_++]+(c[R]-p[k++])*f[E++]/Math.sqrt(m[S++]+u),_>=g&&(_=0),k>=w&&(k=0),E>=x&&(E=0),S>=b&&(S=0);return t.makeTensorInfo(o.shape,o.dtype,h)}var VT={kernelName:no,backendName:"cpu",kernelFunc:zH};function BH(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{blockShape:s,crops:a}=n;ee([o],"batchToSpaceND");let i=s.reduce((x,b)=>x*b),l=N.getReshaped(o.shape,s,i),u=N.getPermuted(l.length,s.length),c=N.getReshapedPermuted(o.shape,s,i),p=N.getSliceBeginCoords(a,s.length),m=N.getSliceSize(c,a,s.length),f=tt({inputs:{x:o},backend:t,attrs:{shape:l}}),d=rr({inputs:{x:f},backend:t,attrs:{perm:u}}),h=tt({inputs:{x:d},backend:t,attrs:{shape:c}}),g=Uo({inputs:{x:h},backend:t,attrs:{begin:p,size:m}});return t.disposeIntermediateTensorInfo(f),t.disposeIntermediateTensorInfo(d),t.disposeIntermediateTensorInfo(h),g}var GT={kernelName:sa,backendName:"cpu",kernelFunc:BH};function VH(r){let{inputs:e,backend:t,attrs:n}=r,{x:o,weights:s}=e,{size:a}=n,i=t.data.get(o.dataId).values,l=t.data.get(s.dataId).values,u=cf(i,l,s.dtype,s.shape,a);return t.makeTensorInfo([a],s.dtype,u)}var jT={kernelName:Ul,backendName:"cpu",kernelFunc:VH};var GH=Ae(Dn,(r,e)=>{let t=e;return r>t.clipValueMax?t.clipValueMax:r<t.clipValueMin?t.clipValueMin:r}),WT={kernelName:Dn,backendName:"cpu",kernelFunc:GH};var jH=r=>{let{x:e}=r.inputs,t=r.backend,n=new Float32Array(y.sizeFromShape(e.shape)),o=t.data.get(e.dataId),s=o.complexTensorInfos.real,a=o.complexTensorInfos.imag,i=t.data.get(s.dataId).values,l=t.data.get(a.dataId).values;for(let u=0;u<i.length;u++){let c=i[u],p=l[u];n[u]=Math.hypot(c,p)}return t.makeOutput(n,e.shape,"float32")},UT={kernelName:ia,backendName:"cpu",kernelFunc:jH};function Gi(r){let{inputs:e,backend:t}=r,{input:n}=e,o=t.data.get(n.dataId).complexTensorInfos.imag,s=t.data.get(o.dataId).values;return t.makeTensorInfo(o.shape,o.dtype,s)}var qT={kernelName:nu,backendName:"cpu",kernelFunc:Gi};function ml(r){let{inputs:e,backend:t,attrs:n}=r,{axis:o}=n,s=y.parseAxisParam(o,e[0].shape)[0],a=N.computeOutShape(e.map(h=>h.shape),s);if(y.sizeFromShape(a)===0)return t.makeTensorInfo(a,e[0].dtype,[]);let i=e.filter(h=>y.sizeFromShape(h.shape)>0);if(i.length===1)return Er({inputs:{x:i[0]},backend:t});let l=i.map(h=>h.shape);if(N.assertParamsConsistent(l,s),i[0].dtype==="complex64"){let h=i.map(_=>Vo({inputs:{input:_},backend:t})),g=i.map(_=>Gi({inputs:{input:_},backend:t})),x=ml({inputs:h,backend:t,attrs:{axis:s}}),b=ml({inputs:g,backend:t,attrs:{axis:s}}),w=pr({inputs:{real:x,imag:b},backend:t});return h.forEach(_=>t.disposeIntermediateTensorInfo(_)),g.forEach(_=>t.disposeIntermediateTensorInfo(_)),t.disposeIntermediateTensorInfo(x),t.disposeIntermediateTensorInfo(b),w}let u=i.map(h=>{let g=y.sizeFromShape(h.shape.slice(s));return tt({inputs:{x:h},backend:t,attrs:{shape:[-1,g]}})}),c=u.map(h=>({vals:t.data.get(h.dataId).values,shape:h.shape}));a=N.computeOutShape(u.map(h=>h.shape),1);let p=u[0].shape[0]===1,m=pf(c,a,e[0].dtype,p),f=N.computeOutShape(i.map(h=>h.shape),s),d=t.makeTensorInfo(f,e[0].dtype,m);return u.forEach(h=>t.disposeIntermediateTensorInfo(h)),d}var HT={kernelName:is,backendName:"cpu",kernelFunc:ml};function S_(r){let{inputs:e,backend:t,attrs:n}=r,{x:o,filter:s}=e,{strides:a,pad:i,dataFormat:l,dilations:u,dimRoundingMode:c}=n;ee([o,s],"conv2d");let p=N.convertConv2DDataFormat(l),m=N.computeConv2DInfo(o.shape,s.shape,a,u,i,c,!1,p),f=m.filterHeight,d=m.filterWidth,h=m.dilationHeight,g=m.dilationWidth,x=m.padInfo.left,b=m.padInfo.top,w=m.dataFormat==="channelsLast",_=new ct(m.outShape,o.dtype),k=y.computeStrides(o.shape),E=y.computeStrides(s.shape),S=k[0],R=w?k[1]:k[2],F=w?k[2]:1,P=w?1:k[1],j=_.strides[0],G=w?_.strides[1]:_.strides[2],U=w?_.strides[2]:1,X=w?1:_.strides[1],K=t.data.get(o.dataId).values,Z=t.data.get(s.dataId).values,te=_.values;for(let Y=0;Y<m.batchSize;++Y){let re=Y*S,ie=Y*j;for(let se=0;se<m.outHeight;++se){let pe=ie+se*G,ae=se*m.strideHeight-b;for(let xe=0;xe<f;++xe){let ge=ae+xe*h;if(ge<0||ge>=m.inHeight)continue;let we=xe*E[0],ke=re+ge*R;for(let De=0;De<m.outWidth;++De){let $e=pe+De*U,Re=De*m.strideWidth-x;for(let qe=0;qe<d;++qe){let ut=Re+qe*g;if(ut<0||ut>=m.inWidth)continue;let kt=we+qe*E[1],vt=ke+ut*F,pt=kt;for(let Ct=0;Ct<m.inChannels;++Ct){let He=K[vt+Ct*P];for(let Ot=0;Ot<m.outChannels;++Ot)te[$e+Ot*X]+=He*Z[pt+Ot];pt+=m.outChannels}}}}}}return t.makeTensorInfo(_.shape,_.dtype,te)}var KT={kernelName:Kn,backendName:"cpu",kernelFunc:S_};function WH(r){let{inputs:e,backend:t,attrs:n}=r,{x:o,dy:s}=e,{strides:a,pad:i,dataFormat:l,dimRoundingMode:u,filterShape:c}=n;ee([o,s],"conv2dBackpropFilter");let p=N.convertConv2DDataFormat(l),m=N.computeConv2DInfo(o.shape,c,a,1,i,u,!1,p),{strideHeight:f,strideWidth:d,filterHeight:h,filterWidth:g}=m,x=m.dataFormat==="channelsLast",b=new ct(m.filterShape,"float32"),w=m.padInfo.left,_=m.padInfo.top,k=t.data.get(o.dataId).values,E=t.data.get(s.dataId).values,S=new ct(o.shape,o.dtype,k),R=new ct(s.shape,s.dtype,E);for(let F=0;F<h;++F){let P=Math.max(0,Math.ceil((_-F)/f)),j=Math.min(m.outHeight,(m.inHeight+_-F)/f);for(let G=0;G<g;++G){let U=Math.max(0,Math.ceil((w-G)/d)),X=Math.min(m.outWidth,(m.inWidth+w-G)/d);for(let K=0;K<m.inChannels;++K)for(let Z=0;Z<m.outChannels;++Z){let te=0;for(let Y=0;Y<m.batchSize;++Y)for(let re=P;re<j;++re){let ie=F+re*f-_;for(let se=U;se<X;++se){let pe=G+se*d-w;x?te+=S.get(Y,ie,pe,K)*R.get(Y,re,se,Z):te+=S.get(Y,K,ie,pe)*R.get(Y,Z,re,se)}}b.set(te,F,G,K,Z)}}}return t.makeTensorInfo(b.shape,b.dtype,b.values)}var XT={kernelName:Hl,backendName:"cpu",kernelFunc:WH};function UH(r){let{inputs:e,backend:t,attrs:n}=r,{dy:o,filter:s}=e,{inputShape:a,strides:i,pad:l,dataFormat:u,dimRoundingMode:c}=n;ee([o,s],"conv2dBackpropInput");let p=y.computeStrides(s.shape),m=y.computeStrides(o.shape),f=N.convertConv2DDataFormat(u),d=N.computeConv2DInfo(a,s.shape,i,1,l,c,!1,f),h=new ct(d.inShape,"float32"),g=h.values,x=t.data.get(o.dataId).values,b=t.data.get(s.dataId).values,[w,_,k]=p,{batchSize:E,filterHeight:S,filterWidth:R,inChannels:F,inHeight:P,inWidth:j,outChannels:G,outHeight:U,outWidth:X,strideHeight:K,strideWidth:Z}=d;f=d.dataFormat;let te=S-1-d.padInfo.top,Y=R-1-d.padInfo.left,re=f==="channelsLast",ie=h.strides[0],se=re?h.strides[1]:h.strides[2],pe=re?h.strides[2]:1,ae=re?1:h.strides[1],xe=m[0],ge=re?m[1]:m[2],we=re?m[2]:1,ke=re?1:m[1];for(let De=0;De<E;++De)for(let $e=0;$e<F;++$e)for(let Re=0;Re<P;++Re){let qe=Re-te,ut=Math.max(0,Math.ceil(qe/K)),kt=Math.min(U,(S+qe)/K);for(let vt=0;vt<j;++vt){let pt=vt-Y,Ct=Math.max(0,Math.ceil(pt/Z)),He=Math.min(X,(R+pt)/Z),Ot=0;for(let Jt=ut;Jt<kt;++Jt){let fn=Jt*K-qe;for(let _r=Ct;_r<He;++_r){let Bn=_r*Z-pt,Jr=xe*De+ge*Jt+we*_r,dn=w*(S-1-fn)+_*(R-1-Bn)+k*$e;for(let kr=0;kr<G;++kr){let Sn=x[Jr+ke*kr],Vn=b[dn+kr];Ot+=Sn*Vn}}}let mn=ie*De+se*Re+pe*vt+ae*$e;g[mn]=Ot}}return t.makeTensorInfo(h.shape,h.dtype,h.values)}var YT={kernelName:Xn,backendName:"cpu",kernelFunc:UH};function qH(r){let{inputs:e,backend:t,attrs:n}=r,{x:o,filter:s}=e,{strides:a,pad:i,dilations:l}=n;ee([o,s],"conv3d");let u=N.computeConv3DInfo(o.shape,s.shape,a,l,i),{filterDepth:c,filterHeight:p,filterWidth:m,dilationDepth:f,dilationHeight:d,dilationWidth:h,padInfo:g}=u,x=g.front,b=g.left,w=g.top,_=new ct(u.outShape,o.dtype),k=t.data.get(o.dataId).values,E=t.data.get(s.dataId).values,S=_.values,R=y.computeStrides(o.shape),F=y.computeStrides(s.shape);for(let P=0;P<u.batchSize;++P){let j=P*R[0],G=P*_.strides[0];for(let U=0;U<u.outDepth;++U){let X=G+U*_.strides[1],K=U*u.strideDepth-x;for(let Z=0;Z<c;++Z){let te=K+Z*f;if(te<0||te>=u.inDepth)continue;let Y=Z*F[0],re=j+te*R[1];for(let ie=0;ie<u.outHeight;++ie){let se=X+ie*_.strides[2],pe=ie*u.strideHeight-w;for(let ae=0;ae<p;++ae){let xe=pe+ae*d;if(xe<0||xe>=u.inHeight)continue;let ge=Y+ae*F[1],we=re+xe*R[2];for(let ke=0;ke<u.outWidth;++ke){let De=se+ke*u.outChannels,$e=ke*u.strideWidth-b;for(let Re=0;Re<m;++Re){let qe=$e+Re*h;if(qe<0||qe>=u.inWidth)continue;let ut=ge+Re*F[2],kt=we+qe*u.inChannels,vt=ut;for(let pt=0;pt<u.inChannels;++pt){let Ct=k[kt+pt];for(let He=0;He<u.outChannels;++He)S[De+He]+=Ct*E[vt+He];vt+=u.outChannels}}}}}}}}return t.makeTensorInfo(_.shape,_.dtype,_.values)}var ZT={kernelName:aa,backendName:"cpu",kernelFunc:qH};function HH(r){let{inputs:e,backend:t,attrs:n}=r,{x:o,dy:s}=e,{strides:a,pad:i,filterShape:l}=n;ee([o,s],"conv3dBackpropFilterV2");let u=y.computeStrides(o.shape),c=y.computeStrides(s.shape),p=N.computeConv3DInfo(o.shape,l,a,1,i),m=p.strideDepth,f=p.strideHeight,d=p.strideWidth,h=p.filterDepth,g=p.filterHeight,x=p.filterWidth,b=new ct(p.filterShape,"float32"),w=b.values,[_,k,E,S]=b.strides,R=t.data.get(s.dataId).values,[F,P,j,G]=c,U=t.data.get(o.dataId).values,[X,K,Z,te]=u,Y=p.padInfo.front,re=p.padInfo.left,ie=p.padInfo.top;for(let se=0;se<h;++se){let pe=Math.max(0,Math.ceil((Y-se)/m)),ae=Math.min(p.outDepth,(p.inDepth+Y-se)/m),xe=se*_;for(let ge=0;ge<g;++ge){let we=Math.max(0,Math.ceil((ie-ge)/f)),ke=Math.min(p.outHeight,(p.inHeight+ie-ge)/f),De=ge*k+xe;for(let $e=0;$e<x;++$e){let Re=Math.max(0,Math.ceil((re-$e)/d)),qe=Math.min(p.outWidth,(p.inWidth+re-$e)/d),ut=$e*E+De;for(let kt=0;kt<p.inChannels;++kt){let vt=kt*S+ut;for(let pt=0;pt<p.outChannels;++pt){let Ct=0;for(let He=0;He<p.batchSize;++He){let Ot=He*X,mn=He*F;for(let Jt=pe;Jt<ae;++Jt){let _r=(se+Jt*m-Y)*K+Ot,Bn=Jt*P+mn;for(let Jr=we;Jr<ke;++Jr){let kr=(ge+Jr*f-ie)*Z+_r,Sn=Jr*j+Bn;for(let Vn=Re;Vn<qe;++Vn){let ts=($e+Vn*d-re)*te+kr,Tn=Vn*G+Sn;Ct+=U[ts+kt]*R[Tn+pt]}}}}w[vt+pt]=Ct}}}}}return t.makeTensorInfo(b.shape,b.dtype,b.values)}var JT={kernelName:Kl,backendName:"cpu",kernelFunc:HH};function KH(r){let{inputs:e,backend:t,attrs:n}=r,{dy:o,filter:s}=e,{pad:a,strides:i,inputShape:l}=n;ee([o],"conv3dBackpropInputV2");let u=y.computeStrides(o.shape),c=y.computeStrides(s.shape),p=N.computeConv3DInfo(l,s.shape,i,1,a),m=new ct(p.inShape,"float32"),f=m.values,[d,h,g,x]=m.strides,b=t.data.get(o.dataId).values,[w,_,k,E]=u,S=t.data.get(s.dataId).values,[R,F,P,j]=c,{batchSize:G,filterDepth:U,filterHeight:X,filterWidth:K,inChannels:Z,inDepth:te,inHeight:Y,inWidth:re,outChannels:ie,outDepth:se,outHeight:pe,outWidth:ae,strideDepth:xe,strideHeight:ge,strideWidth:we}=p,ke=U-1-p.padInfo.front,De=X-1-p.padInfo.top,$e=K-1-p.padInfo.left;for(let Re=0;Re<G;++Re)for(let qe=0;qe<Z;++qe)for(let ut=0;ut<te;++ut){let kt=ut-ke,vt=Math.max(0,Math.ceil(kt/xe)),pt=Math.min(se,(U+kt)/xe);for(let Ct=0;Ct<Y;++Ct){let He=Ct-De,Ot=Math.max(0,Math.ceil(He/ge)),mn=Math.min(pe,(X+He)/ge);for(let Jt=0;Jt<re;++Jt){let fn=Jt-$e,_r=Math.max(0,Math.ceil(fn/we)),Bn=Math.min(ae,(K+fn)/we),Jr=0;for(let dn=vt;dn<pt;++dn){let kr=dn*xe-kt;for(let Sn=Ot;Sn<mn;++Sn){let Vn=Sn*ge-He;for(let Qr=_r;Qr<Bn;++Qr){let ts=Qr*we-fn,Tn=w*Re+_*dn+k*Sn+E*Qr,xc=R*(U-1-kr)+F*(X-1-Vn)+P*(K-1-ts)+j*qe;for(let rs=0;rs<ie;++rs){let Ji=b[Tn+rs],$l=S[xc+rs];Jr+=Ji*$l}}}}f[d*Re+h*ut+g*Ct+x*Jt+qe]=Jr}}}return t.makeTensorInfo(m.shape,m.dtype,m.values)}var QT={kernelName:Xl,backendName:"cpu",kernelFunc:KH};var XH=Ae(Yn,r=>Math.cos(r)),e1={kernelName:Yn,backendName:"cpu",kernelFunc:XH};var YH=Ae(ri,r=>Math.cosh(r)),t1={kernelName:ri,backendName:"cpu",kernelFunc:YH};function ZH(r){let{inputs:e,backend:t,attrs:n}=r,{image:o,boxes:s,boxInd:a}=e,{cropSize:i,method:l,extrapolationValue:u}=n,[c,p,m,f]=o.shape,d=s.shape[0],[h,g]=i,x=Ce([d,h,g,f],"float32"),b=t.data.get(s.dataId).values,w=t.data.get(a.dataId).values,_=t.data.get(o.dataId).values,k=y.computeStrides(o.shape),E=y.computeStrides(x.shape);for(let S=0;S<d;S++){let R=S*4,F=b[R],P=b[R+1],j=b[R+2],G=b[R+3],U=w[S];if(U>=c)continue;let X=h>1?(j-F)*(p-1)/(h-1):0,K=g>1?(G-P)*(m-1)/(g-1):0;for(let Z=0;Z<h;Z++){let te=h>1?F*(p-1)+Z*X:.5*(F+j)*(p-1);if(te<0||te>p-1){for(let Y=0;Y<g;Y++)for(let re=0;re<f;re++){let ie=re+Y*E[2]+Z*E[1]+S*E[0];x.values[ie]=u}continue}if(l==="bilinear"){let Y=Math.floor(te),re=Math.ceil(te),ie=te-Y;for(let se=0;se<g;se++){let pe=g>1?P*(m-1)+se*K:.5*(P+G)*(m-1);if(pe<0||pe>m-1){for(let we=0;we<f;we++){let ke=we+se*E[2]+Z*E[1]+S*E[0];x.values[ke]=u}continue}let ae=Math.floor(pe),xe=Math.ceil(pe),ge=pe-ae;for(let we=0;we<f;we++){let ke=we+ae*k[2]+Y*k[1]+U*k[0],De=_[ke];ke=we+xe*k[2]+Y*k[1]+U*k[0];let $e=_[ke];ke=we+ae*k[2]+re*k[1]+U*k[0];let Re=_[ke];ke=we+xe*k[2]+re*k[1]+U*k[0];let qe=_[ke],ut=De+($e-De)*ge,kt=Re+(qe-Re)*ge;ke=we+se*E[2]+Z*E[1]+S*E[0],x.values[ke]=ut+(kt-ut)*ie}}}else for(let Y=0;Y<g;++Y){let re=g>1?P*(m-1)+Y*K:.5*(P+G)*(m-1);if(re<0||re>m-1){for(let pe=0;pe<f;pe++){let ae=pe+Y*E[2]+Z*E[1]+S*E[0];x.values[ae]=u}continue}let ie=Math.round(re),se=Math.round(te);for(let pe=0;pe<f;pe++){let ae=pe+ie*k[2]+se*k[1]+U*k[0],xe=pe+Y*E[2]+Z*E[1]+S*E[0];x.values[xe]=_[ae]}}}}return t.makeTensorInfo(x.shape,x.dtype,x.values)}var r1={kernelName:ni,backendName:"cpu",kernelFunc:ZH};function JH(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{axis:s,exclusive:a,reverse:i}=n;ee(o,"cumsum");let l=N.getAxesPermutation([s],o.shape.length),u=o;l!=null&&(u=rr({inputs:{x:o},backend:t,attrs:{perm:l}}));let c=N.getInnerMostAxes(1,o.shape.length)[0];if(c!==u.shape.length-1)throw new Error(`backend.cumsum in CPU expects an inner-most axis=${u.shape.length-1} but got axis=${c}`);let p=fr(u.dtype,"int32"),m=y.makeZerosTypedArray(y.sizeFromShape(u.shape),p),f=t.data.get(u.dataId).values,d=u.shape[u.shape.length-1],h=i?(x,b)=>x+d-b-1:(x,b)=>x+b;for(let x=0;x<f.length;x+=d)for(let b=0;b<d;b++){let w=h(x,b);if(b===0)m[w]=a?0:f[w];else{let _=h(x,b-1);m[w]=a?f[_]+m[_]:f[w]+m[_]}}let g=t.makeTensorInfo(u.shape,p,m);if(l!=null){let x=N.getUndoAxesPermutation(l),b=rr({inputs:{x:g},backend:t,attrs:{perm:x}});return t.disposeIntermediateTensorInfo(g),t.disposeIntermediateTensorInfo(u),b}return g}var n1={kernelName:Zn,backendName:"cpu",kernelFunc:JH};function QH(r){let{inputs:e,backend:t,attrs:n}=r,{x:o,weights:s}=e,{size:a,binaryOutput:i}=n;if(o.shape.length===1){let l=t.data.get(o.dataId).values,u=t.data.get(s.dataId).values,c=cf(l,u,s.dtype,s.shape,a);return t.makeTensorInfo([a],s.dtype,c)}else if(o.shape.length===2){let l=t.bufferSync(o),u=t.bufferSync(s),c=p_(l,u,a,i);return t.makeTensorInfo(c.shape,s.dtype,c.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${o.shape.length}.`)}var o1={kernelName:Yl,backendName:"cpu",kernelFunc:QH};function eK(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{blockSize:s,dataFormat:a}=n;y.assert(a==="NHWC",()=>`Only NHWC dataFormat supported on CPU for depthToSpace. Got ${a}`),y.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let i=o.shape[0],l=o.shape[1],u=o.shape[2],c=o.shape[3],p=l*s,m=u*s,f=c/(s*s),d=t.data.get(o.dataId).values,h=new Float32Array(i*p*m*f),g=0;for(let x=0;x<i;++x)for(let b=0;b<p;++b){let w=Math.floor(b/s),_=b%s;for(let k=0;k<m;++k){let E=Math.floor(k/s),S=k%s,R=(_*s+S)*f;for(let F=0;F<f;++F){let j=F+R+c*(E+u*(w+l*x));h[g++]=d[j]}}}return t.makeTensorInfo([i,p,m,f],o.dtype,h)}var s1={kernelName:oi,backendName:"cpu",kernelFunc:eK};function T_(r){let{inputs:e,backend:t,attrs:n}=r,{x:o,filter:s}=e,{strides:a,pad:i,dilations:l,dimRoundingMode:u}=n;ee([o,s],"depthwiseConv2DNative");let c=y.computeStrides(o.shape),p=y.computeStrides(s.shape),m=l;m==null&&(m=[1,1]),y.assert(N.eitherStridesOrDilationsAreOne(a,m),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${a} and dilations '${m}'`);let f=N.computeConv2DInfo(o.shape,s.shape,a,m,i,u,!0),{filterHeight:d,filterWidth:h,dilationHeight:g,dilationWidth:x,padInfo:b}=f,w=b.left,_=b.top,k=f.outChannels/f.inChannels,E=new ct(f.outShape,o.dtype),S=t.data.get(o.dataId).values,R=t.data.get(s.dataId).values,F=E.values;for(let P=0;P<f.batchSize;++P){let j=P*c[0],G=P*E.strides[0];for(let U=0;U<f.outHeight;++U){let X=G+U*E.strides[1],K=U*f.strideHeight-w;for(let Z=0;Z<d;++Z){let te=K+Z*g;if(te<0||te>=f.inHeight)continue;let Y=Z*p[0],re=j+te*c[1];for(let ie=0;ie<f.outWidth;++ie){let se=X+ie*E.strides[2],pe=ie*f.strideWidth-_;for(let ae=0;ae<h;++ae){let xe=pe+ae*x;if(xe<0||xe>=f.inWidth)continue;let ge=Y+ae*p[1],we=re+xe*f.inChannels,ke=se,De=ge;for(let $e=0;$e<f.inChannels;++$e){let Re=S[we+$e];for(let qe=0;qe<k;++qe)F[ke+qe]+=Re*R[De+qe];ke+=k,De+=k}}}}}}return t.makeTensorInfo(E.shape,E.dtype,E.values)}var i1={kernelName:Jn,backendName:"cpu",kernelFunc:T_};function tK(r){let{inputs:e,backend:t,attrs:n}=r,{x:o,dy:s}=e,{strides:a,dilations:i,pad:l,dimRoundingMode:u,filterShape:c}=n;ee([o,s],"depthwiseConv2dNativeBackpropFilter");let p=N.computeConv2DInfo(o.shape,c,a,i,l,u,!0),{strideHeight:m,strideWidth:f,filterHeight:d,filterWidth:h}=p,g=new ct(p.filterShape,"float32"),x=p.padInfo.left,b=p.padInfo.top,w=p.outChannels/p.inChannels,_=t.data.get(o.dataId).values,k=new ct(o.shape,o.dtype,_),E=t.data.get(s.dataId).values,S=new ct(s.shape,s.dtype,E);for(let R=0;R<d;++R){let F=Math.max(0,Math.ceil((b-R)/m)),P=Math.min(p.outHeight,(p.inHeight+b-R)/m);for(let j=0;j<h;++j){let G=Math.max(0,Math.ceil((x-j)/f)),U=Math.min(p.outWidth,(p.inWidth+x-j)/f);for(let X=0;X<p.outChannels;++X){let K=Math.trunc(X/w),Z=X%w,te=0;for(let Y=0;Y<p.batchSize;++Y)for(let re=F;re<P;++re){let ie=R+re*m-b;for(let se=G;se<U;++se){let pe=j+se*f-x;te+=k.get(Y,ie,pe,K)*S.get(Y,re,se,X)}}g.set(te,R,j,K,Z)}}}return t.makeTensorInfo(g.shape,g.dtype,g.values)}var a1={kernelName:Zl,backendName:"cpu",kernelFunc:tK};function rK(r){let{inputs:e,backend:t,attrs:n}=r,{dy:o,filter:s}=e,{strides:a,dilations:i,pad:l,dimRoundingMode:u,inputShape:c}=n;ee([o,s],"depthwiseConv2DNativeBackpropInput");let p=y.computeStrides(o.shape),m=y.computeStrides(s.shape),f=N.computeConv2DInfo(c,s.shape,a,i,l,u,!0),d=new ct(f.inShape,"float32"),h=d.values,[g,x,b]=d.strides,w=t.data.get(o.dataId).values,[_,k,E]=p,S=t.data.get(s.dataId).values,[R,F,P]=m,{batchSize:j,filterHeight:G,filterWidth:U,inChannels:X,inHeight:K,inWidth:Z,outChannels:te,outHeight:Y,outWidth:re,strideHeight:ie,strideWidth:se}=f,pe=G-1-f.padInfo.top,ae=U-1-f.padInfo.left,xe=te/X;for(let ge=0;ge<j;++ge)for(let we=0;we<X;++we)for(let ke=0;ke<K;++ke){let De=ke-pe,$e=Math.max(0,Math.ceil(De/ie)),Re=Math.min(Y,(G+De)/ie);for(let qe=0;qe<Z;++qe){let ut=qe-ae,kt=Math.max(0,Math.ceil(ut/se)),vt=Math.min(re,(U+ut)/se),pt=0;for(let Ct=$e;Ct<Re;++Ct){let He=Ct*ie-De;for(let Ot=kt;Ot<vt;++Ot){let mn=Ot*se-ut,Jt=_*ge+k*Ct+E*Ot,fn=R*(G-1-He)+F*(U-1-mn)+P*we;for(let _r=0;_r<xe;++_r){let Bn=we*xe+_r,Jr=w[Jt+Bn],dn=S[fn+_r];pt+=Jr*dn}}}h[g*ge+x*ke+b*qe+we]=pt}}return t.makeTensorInfo(d.shape,d.dtype,d.values)}var l1={kernelName:Jl,backendName:"cpu",kernelFunc:rK};function nK(r){let{inputs:e,backend:t}=r,{x:n}=e,o=y.sizeFromShape(n.shape),s=t.data.get(n.dataId).values,a=Ce([o,o],n.dtype),i=a.values;for(let u=0;u<s.length;u++)i[u*o+u]=s[u];let l=[...n.shape,...n.shape];return t.makeTensorInfo(l,a.dtype,a.values)}var u1={kernelName:Ql,backendName:"cpu",kernelFunc:nK};var c1={kernelName:la,backendName:"cpu",kernelFunc:({inputs:r,backend:e,attrs:t})=>{let{x:n,filter:o}=r,{strides:s,pad:a,dilations:i}=t,l=e,u=l.data.get(n.dataId).values,c=n.shape.length,p=l.data.get(o.dataId).values,m=o.shape.length,{batchSize:f,inHeight:d,inWidth:h,inChannels:g,outHeight:x,outWidth:b,padInfo:w,strideHeight:_,strideWidth:k,filterHeight:E,filterWidth:S,dilationHeight:R,dilationWidth:F,outShape:P}=N.computeDilation2DInfo(n.shape,o.shape,s,a,"NHWC",i),j=y.sizeFromShape(P),G=P.length,U=y.getArrayFromDType(n.dtype,j);for(let K=0;K<f;++K)for(let Z=0;Z<x;++Z){let te=Z*_-w.top;for(let Y=0;Y<b;++Y){let re=Y*k-w.left;for(let ie=0;ie<g;++ie){let se=Number.MIN_SAFE_INTEGER;for(let ae=0;ae<E;++ae){let xe=te+ae*R;if(xe>=0&&xe<d)for(let ge=0;ge<S;++ge){let we=re+ge*F;if(we>=0&&we<h){let ke=y.locToIndex([K,xe,we,ie],c,y.computeStrides(n.shape)),De=y.locToIndex([ae,ge,ie],m,y.computeStrides(o.shape)),$e=u[ke]+p[De];$e>se&&(se=$e)}}}let pe=y.locToIndex([K,Z,Y,ie],G,y.computeStrides(P));U[pe]=se}}}return{dataId:l.write(y.toTypedArray(U,n.dtype),P,n.dtype),shape:P,dtype:n.dtype}}};var p1={kernelName:Fc,backendName:"cpu",kernelFunc:({inputs:r,backend:e,attrs:t})=>{let{x:n,filter:o,dy:s}=r,{strides:a,pad:i,dilations:l}=t,u=e,c=y.toNestedArray(n.shape,u.data.get(n.dataId).values),p=y.toNestedArray(o.shape,u.data.get(o.dataId).values),{batchSize:m,inHeight:f,inWidth:d,inChannels:h,outHeight:g,outWidth:x,padInfo:b,strideHeight:w,strideWidth:_,filterHeight:k,filterWidth:E,dilationHeight:S,dilationWidth:R,outShape:F}=N.computeDilation2DInfo(n.shape,o.shape,a,i,"NHWC",l);y.assert(s.rank===F.length,()=>`Error in ${Fc}, dy must have the same rank as output ${F.length}, but got ${s.rank}`);let P=y.toNestedArray(F,u.data.get(s.dataId).values),j=y.makeZerosNestedTypedArray(o.shape,o.dtype);for(let U=0;U<m;++U)for(let X=0;X<g;++X){let K=X*w-b.top;for(let Z=0;Z<x;++Z){let te=Z*_-b.left;for(let Y=0;Y<h;++Y){let re=Number.MIN_SAFE_INTEGER,ie=0,se=0;for(let pe=0;pe<k;++pe){let ae=K+pe*S;if(ae>=0&&ae<f)for(let xe=0;xe<E;++xe){let ge=te+xe*R;if(ge>=0&&ge<d){let we=c[U][ae][ge][Y]+p[pe][xe][Y];we>re&&(re=we,ie=pe,se=xe)}}}j[ie][se][Y]+=P[U][X][Z][Y]}}}return{dataId:u.write(y.toTypedArray(j,n.dtype),o.shape,o.dtype),shape:o.shape,dtype:o.dtype}}};var m1={kernelName:Rc,backendName:"cpu",kernelFunc:({inputs:r,backend:e,attrs:t})=>{let{x:n,filter:o,dy:s}=r,{strides:a,pad:i,dilations:l}=t,u=e,c=y.toNestedArray(n.shape,u.data.get(n.dataId).values),p=y.toNestedArray(o.shape,u.data.get(o.dataId).values),{batchSize:m,inHeight:f,inWidth:d,inChannels:h,outHeight:g,outWidth:x,padInfo:b,strideHeight:w,strideWidth:_,filterHeight:k,filterWidth:E,dilationHeight:S,dilationWidth:R,outShape:F}=N.computeDilation2DInfo(n.shape,o.shape,a,i,"NHWC",l);y.assert(s.rank===F.length,()=>`Error in ${Rc}, dy must have the same rank as output ${F.length}, but got ${s.rank}`);let P=y.toNestedArray(F,u.data.get(s.dataId).values),j=y.makeZerosNestedTypedArray(n.shape,n.dtype);for(let U=0;U<m;++U)for(let X=0;X<g;++X){let K=X*w-b.top;for(let Z=0;Z<x;++Z){let te=Z*_-b.left;for(let Y=0;Y<h;++Y){let re=Number.MIN_SAFE_INTEGER,ie=K<0?0:K,se=te<0?0:te;for(let pe=0;pe<k;++pe){let ae=K+pe*S;if(ae>=0&&ae<f)for(let xe=0;xe<E;++xe){let ge=te+xe*R;if(ge>=0&&ge<d){let we=c[U][ae][ge][Y]+p[pe][xe][Y];we>re&&(re=we,ie=ae,se=ge)}}}j[U][ie][se][Y]+=P[U][X][Z][Y]}}}return{dataId:u.write(y.toTypedArray(j,n.dtype),n.shape,n.dtype),shape:n.shape,dtype:n.dtype}}};function oK(r){let{inputs:e,backend:t}=r,{dy:n,y:o}=e;ee([n,o],"eluGrad");let s=new Float32Array(y.sizeFromShape(o.shape)),a=t.data.get(o.dataId).values,i=t.data.get(n.dataId).values;for(let l=0;l<a.length;++l){let u=a[l];u>=1?s[l]=i[l]:s[l]=i[l]*(u+1)}return t.makeTensorInfo(o.shape,"float32",s)}var f1={kernelName:eu,backendName:"cpu",kernelFunc:oK};var sK=Ze((r,e)=>r===e?1:0),E_=nt(ai,sK,null,"bool"),d1={kernelName:ai,backendName:"cpu",kernelFunc:E_};var iK=N.ERF_P,aK=N.ERF_A1,lK=N.ERF_A2,uK=N.ERF_A3,cK=N.ERF_A4,pK=N.ERF_A5,mK=Ae(ii,r=>{let e=Math.sign(r),t=Math.abs(r),n=1/(1+iK*t);return e*(1-((((pK*n+cK)*n+uK)*n+lK)*n+aK)*n*Math.exp(-t*t))}),h1={kernelName:ii,backendName:"cpu",kernelFunc:mK};function mp(r){let{inputs:e,backend:t,attrs:n}=r,{input:o}=e,{dim:s}=n,a=o.shape.length,i=o.shape.slice(),l=s;return s<0&&(y.assert(-(a+1)<=s,()=>`Axis must be in the interval [${-(a+1)}, ${a}]`),l=a+s+1),i.splice(l,0,1),tt({inputs:{x:o},backend:t,attrs:{shape:i}})}var g1={kernelName:as,backendName:"cpu",kernelFunc:mp};var fK=Ze((r,e)=>r/e),xf=nt(Qn,fK),yf={kernelName:Qn,backendName:"cpu",kernelFunc:xf};function Tg(r,e,t){let n=r.shape,o=n[0],s=n[1],a=t.data.get(r.dataId),i=a.complexTensorInfos.real,l=a.complexTensorInfos.imag,u=[o,s],c=y.sizeFromShape(u),p=y.getTypedArrayFromDType("float32",c),m=y.getTypedArrayFromDType("float32",c);for(let g=0;g<o;g++){let x=Uo({inputs:{x:i},backend:t,attrs:{begin:[g,0],size:[1,s]}}),b=Uo({inputs:{x:l},backend:t,attrs:{begin:[g,0],size:[1,s]}}),w=pr({inputs:{real:x,imag:b},backend:t}),{real:_,imag:k}=dK(w,e,t),E=N.mergeRealAndImagArrays(_,k);for(let S=0;S<s;S++){let R=N.getComplexWithIndex(E,S);p[g*s+S]=R.real,m[g*s+S]=R.imag}t.disposeIntermediateTensorInfo(x),t.disposeIntermediateTensorInfo(b),t.disposeIntermediateTensorInfo(w)}let f=t.makeTensorInfo(u,"float32",p),d=t.makeTensorInfo(u,"float32",m),h=pr({inputs:{real:f,imag:d},backend:t});return t.disposeIntermediateTensorInfo(f),t.disposeIntermediateTensorInfo(d),h}function dK(r,e,t){let n=y.sizeFromShape(r.shape),o=t.data.get(r.dataId),s=t.data.get(o.complexTensorInfos.real.dataId).values,a=t.data.get(o.complexTensorInfos.imag.dataId).values;if(hK(n)){let i=A_(s,a,n,e,t),l=[r.shape[0],r.shape[1]];if(e){let u=t.makeTensorInfo(l,"float32",i.real),c=t.makeTensorInfo(l,"float32",i.imag),p=t.makeTensorInfo([],"float32",y.createScalarValue(n,"float32")),m=Er({inputs:{x:p},backend:t}),f=yf.kernelFunc({inputs:{a:u,b:p},backend:t}),d=yf.kernelFunc({inputs:{a:c,b:m},backend:t}),h=t.data.get(f.dataId).values,g=t.data.get(d.dataId).values;return t.disposeIntermediateTensorInfo(u),t.disposeIntermediateTensorInfo(c),t.disposeIntermediateTensorInfo(p),t.disposeIntermediateTensorInfo(m),t.disposeIntermediateTensorInfo(f),t.disposeIntermediateTensorInfo(d),{real:h,imag:g}}return i}else{let i=N.mergeRealAndImagArrays(s,a),l=gK(i,n,e);return N.splitRealAndImagArrays(l)}}function hK(r){return(r&r-1)==0}function A_(r,e,t,n,o){if(t===1)return{real:r,imag:e};let s=N.mergeRealAndImagArrays(r,e),a=t/2,i=N.complexWithEvenIndex(s),l=i.real,u=i.imag,c=[l.length],p=o.makeTensorInfo(c,"float32",l),m=o.makeTensorInfo(c,"float32",u),f=pr({inputs:{real:p,imag:m},backend:o}),d=N.complexWithOddIndex(s),h=d.real,g=d.imag,x=[h.length],b=o.makeTensorInfo(x,"float32",h),w=o.makeTensorInfo(x,"float32",g),_=pr({inputs:{real:b,imag:w},backend:o}),k=A_(l,u,a,n,o),E=k.real,S=k.imag,R=[E.length],F=o.makeTensorInfo(R,"float32",E),P=o.makeTensorInfo(R,"float32",S),j=pr({inputs:{real:F,imag:P},backend:o}),G=A_(h,g,a,n,o),U=G.real,X=G.imag,K=[U.length],Z=o.makeTensorInfo(K,"float32",U),te=o.makeTensorInfo(K,"float32",X),Y=pr({inputs:{real:Z,imag:te},backend:o}),re=N.exponents(t,n),ie=[re.real.length],se=o.makeTensorInfo(ie,"float32",re.real),pe=o.makeTensorInfo(ie,"float32",re.imag),ae=pr({inputs:{real:se,imag:pe},backend:o}),xe=mf({inputs:{a:ae,b:Y},backend:o}),ge=Pa({inputs:{a:j,b:xe},backend:o}),we=gf({inputs:{a:j,b:xe},backend:o}),ke=Vo({inputs:{input:ge},backend:o}),De=Vo({inputs:{input:we},backend:o}),$e=Gi({inputs:{input:ge},backend:o}),Re=Gi({inputs:{input:we},backend:o}),qe=ml({inputs:[ke,De],backend:o,attrs:{axis:0}}),ut=ml({inputs:[$e,Re],backend:o,attrs:{axis:0}}),kt=o.data.get(qe.dataId).values,vt=o.data.get(ut.dataId).values;return o.disposeIntermediateTensorInfo(p),o.disposeIntermediateTensorInfo(m),o.disposeIntermediateTensorInfo(f),o.disposeIntermediateTensorInfo(b),o.disposeIntermediateTensorInfo(w),o.disposeIntermediateTensorInfo(_),o.disposeIntermediateTensorInfo(F),o.disposeIntermediateTensorInfo(P),o.disposeIntermediateTensorInfo(j),o.disposeIntermediateTensorInfo(Z),o.disposeIntermediateTensorInfo(te),o.disposeIntermediateTensorInfo(Y),o.disposeIntermediateTensorInfo(se),o.disposeIntermediateTensorInfo(pe),o.disposeIntermediateTensorInfo(ae),o.disposeIntermediateTensorInfo(xe),o.disposeIntermediateTensorInfo(ge),o.disposeIntermediateTensorInfo(we),o.disposeIntermediateTensorInfo(ke),o.disposeIntermediateTensorInfo($e),o.disposeIntermediateTensorInfo(De),o.disposeIntermediateTensorInfo(Re),o.disposeIntermediateTensorInfo(qe),o.disposeIntermediateTensorInfo(ut),{real:kt,imag:vt}}function gK(r,e,t){let n=new Float32Array(e*2);for(let o=0;o<e;o++){let s=0,a=0;for(let i=0;i<e;i++){let l=N.exponent(o*i,e,t),u=N.getComplexWithIndex(r,i);s+=u.real*l.real-u.imag*l.imag,a+=u.real*l.imag+u.imag*l.real}t&&(s/=e,a/=e),N.assignToTypedArray(n,s,a,o)}return n}function xK(r){let{inputs:e,backend:t}=r,{input:n}=e,o=y.sizeFromShape(n.shape),s=n.shape[n.shape.length-1],a=o/s,i=tt({inputs:{x:n},backend:t,attrs:{shape:[a,s]}}),l=Tg(i,!1,t),u=tt({inputs:{x:l},backend:t,attrs:{shape:n.shape}});return t.disposeIntermediateTensorInfo(i),t.disposeIntermediateTensorInfo(l),u}var x1={kernelName:tu,backendName:"cpu",kernelFunc:xK};function bf(r){let{backend:e,attrs:t}=r,{shape:n,value:o,dtype:s}=t,a=s||y.inferDtype(o),i=y.getArrayFromDType(a,y.sizeFromShape(n));return yK(i,o,a),e.makeTensorInfo(n,a,i)}var y1={kernelName:ua,backendName:"cpu",kernelFunc:bf};function yK(r,e,t){r.fill(e)}var b1={kernelName:ui,backendName:"cpu",kernelFunc:({inputs:r,attrs:e,backend:t})=>{let{image:n}=r,o=t,s=y.getTypedArrayFromDType(n.dtype,y.sizeFromShape(n.shape)),[a,i,l,u]=n.shape,c=o.data.get(n.dataId).values;for(let m=0;m<a;m++){let f=m*l*i*u;for(let d=0;d<i;d++){let h=d*(l*u);for(let g=0;g<l;g++){let x=g*u;for(let b=0;b<u;b++){let _=[a,d,g,b][2],k=Math.round(l-_),E=f+h+x+b,S=c[E];if(k>=0&&k<l){let R=k*u,F=f+h+R+b;S=c[F]}s[E]=S}}}}return{dataId:o.write(s,n.shape,n.dtype),shape:n.shape,dtype:n.dtype}}};var bK=Ze((r,e)=>Math.floor(r/e)),wK=nt(ro,bK,null,"int32"),w1={kernelName:ro,backendName:"cpu",kernelFunc:wK};function _K(r){let{inputs:e,backend:t,attrs:n}=r,{x:o,filter:s,bias:a,preluActivationWeights:i}=e,{strides:l,pad:u,dataFormat:c,dilations:p,dimRoundingMode:m,activation:f,leakyreluAlpha:d}=n,h=S_({inputs:{x:o,filter:s},backend:t,attrs:{strides:l,pad:u,dataFormat:c,dilations:p,dimRoundingMode:m}});if(a){let g=h;h=Pa({inputs:{a:h,b:a},backend:t}),t.disposeIntermediateTensorInfo(g)}if(f){let g=h;h=cp(t,h,f,i,d),t.disposeIntermediateTensorInfo(g)}return h}var _1={kernelName:ws,backendName:"cpu",kernelFunc:_K};function kK(r){let{inputs:e,backend:t,attrs:n}=r,{x:o,filter:s,bias:a,preluActivationWeights:i}=e,{strides:l,pad:u,dataFormat:c,dilations:p,dimRoundingMode:m,activation:f,leakyreluAlpha:d}=n,h=T_({inputs:{x:o,filter:s},backend:t,attrs:{strides:l,pad:u,dataFormat:c,dilations:p,dimRoundingMode:m}});if(a){let g=h;h=Pa({inputs:{a:h,b:a},backend:t}),t.disposeIntermediateTensorInfo(g)}if(f){let g=h;h=cp(t,h,f,i,d),t.disposeIntermediateTensorInfo(g)}return h}var k1={kernelName:_s,backendName:"cpu",kernelFunc:kK};function vK(r){let{inputs:e,backend:t}=r,{params:n,indices:o}=e,s=y.sizeFromShape(n.shape),a=o.shape,i=a[a.length-1],[l,u,c,p]=N.prepareAndValidate(n,o);if(u===0)return t.makeTensorInfo(l,n.dtype,[]);let m=Ce([u,c],n.dtype),f=t.data.get(o.dataId).values,d=t.data.get(n.dataId).values;for(let h=0;h<u;h++){let g=[],x=0;for(let b=0;b<i;b++){let w=f[h*i+b];x+=w*p[b],g.push(w)}if(x<0||x>=s/c)throw new Error(`Invalid indices: ${g} does not index into ${n.shape}`);for(let b=0;b<c;b++)m.values[h*c+b]=d[x*c+b]}return t.makeTensorInfo(l,m.dtype,m.values)}var v1={kernelName:ci,backendName:"cpu",kernelFunc:vK};function CK(r){let{inputs:e,backend:t,attrs:n}=r,{x:o,indices:s}=e,{axis:a,batchDims:i}=n;ee([o,s],"gatherV2");let l=i;i==null&&(l=0);let u=y.sizeFromShape(s.shape),c=y.parseAxisParam(a,o.shape)[0],p=N.segment_util.collectGatherOpShapeInfo(o,s,c,l),m=tt({inputs:{x:o},backend:t,attrs:{shape:[p.batchSize,p.outerSize,p.dimSize,p.sliceSize]}}),f=tt({inputs:{x:s},backend:t,attrs:{shape:[p.batchSize,u/p.batchSize]}}),d=[p.batchSize,p.outerSize,u/p.batchSize,p.sliceSize],h=t.bufferSync(f),g=t.bufferSync(m),x=f_(g,h,d);return t.disposeIntermediateTensorInfo(m),t.disposeIntermediateTensorInfo(f),t.makeTensorInfo(p.outputShape,x.dtype,x.values)}var C1={kernelName:ls,backendName:"cpu",kernelFunc:CK};var IK=Ze((r,e)=>r>=e?1:0),NK=nt(oo,IK,null,"bool"),I1={kernelName:oo,backendName:"cpu",kernelFunc:NK};function SK(r){let{inputs:e,backend:t}=r,{input:n}=e,o=y.sizeFromShape(n.shape),s=n.shape[n.shape.length-1],a=o/s,i=tt({inputs:{x:n},backend:t,attrs:{shape:[a,s]}}),l=Tg(i,!0,t),u=tt({inputs:{x:l},backend:t,attrs:{shape:n.shape}});return t.disposeIntermediateTensorInfo(i),t.disposeIntermediateTensorInfo(l),u}var N1={kernelName:ru,backendName:"cpu",kernelFunc:SK};var TK=Ae(mi,r=>Number.isFinite(r)?1:0,"bool"),S1={kernelName:mi,backendName:"cpu",kernelFunc:TK};var EK=Ae(fi,r=>Math.abs(r)===Infinity?1:0,"bool"),T1={kernelName:fi,backendName:"cpu",kernelFunc:EK};var AK=Ae(di,r=>Number.isNaN(r)?1:0,"bool"),E1={kernelName:di,backendName:"cpu",kernelFunc:AK};var DK=Ze((r,e)=>r<=e?1:0),$K=nt(gi,DK,null,"bool"),A1={kernelName:gi,backendName:"cpu",kernelFunc:$K};function RK(r){let{backend:e,attrs:t}=r,{start:n,stop:o,num:s}=t,a=d_(n,o,s);return e.makeTensorInfo([a.length],"float32",a)}var D1={kernelName:ou,backendName:"cpu",kernelFunc:RK};var FK=Ae(xi,r=>Math.log1p(r)),$1={kernelName:xi,backendName:"cpu",kernelFunc:FK};var OK=Ze((r,e)=>r&&e),PK=nt(yi,OK,null,"bool"),R1={kernelName:yi,backendName:"cpu",kernelFunc:PK};var MK=Ae(Qa,r=>r?0:1,"bool"),F1={kernelName:Qa,backendName:"cpu",kernelFunc:MK};var LK=Ze((r,e)=>r||e),zK=nt(el,LK,null,"bool"),O1={kernelName:el,backendName:"cpu",kernelFunc:zK};function BK(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{depthRadius:s,bias:a,alpha:i,beta:l}=n;ee(o,"LRN");let u=o.shape[3],c=u-1,p=t.data.get(o.dataId).values,m=y.sizeFromShape(o.shape),f=new Float32Array(m);function d(h){let g=h%u,x=h-g+Math.max(0,g-s),b=h-g+Math.min(g+s,c),w=0;for(;x<=b;x++){let _=p[x];w+=_*_}return w}for(let h=0;h<m;h++){let g=d(h),x=p[h]*Math.pow(a+i*g,-l);f[h]=x}return t.makeTensorInfo(o.shape,o.dtype,f)}var P1={kernelName:ca,backendName:"cpu",kernelFunc:BK};function VK(r){let{inputs:e,backend:t,attrs:n}=r,{x:o,y:s,dy:a}=e,{depthRadius:i,bias:l,alpha:u,beta:c}=n;ee(a,"LRNGrad");let p=y.sizeFromShape(a.shape),m=a.shape[3],f=t.data.get(a.dataId).values,d=t.data.get(o.dataId).values,h=t.data.get(s.dataId).values,g=new Float32Array(p),x=p;for(let b=0;b<x;b++){let w=b%m,_=b-w+Math.max(0,w-i),k=b-w+Math.min(m,w+i+1),E=0;for(let S=_;S<k;S++)E+=Math.pow(d[S],2);E=u*E+l;for(let S=_;S<k;S++){let R=-2*u*c*d[S]*h[b]/E;b===S&&(R+=Math.pow(E,-c)),R*=f[b],g[S]+=R}}return t.makeTensorInfo(a.shape,o.dtype,g)}var M1={kernelName:su,backendName:"cpu",kernelFunc:VK};function D_(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{reductionIndices:s,keepDims:a}=n,i=t,l=o.shape,u=l.length,c=y.parseAxisParam(s,l),p=c,m=N.getAxesPermutation(p,u),f=i.data.get(o.dataId).values;if(m!=null){let _=new Array(u);for(let k=0;k<_.length;k++)_[k]=l[m[k]];f=ff(f,l,o.dtype,m,_),p=N.getInnerMostAxes(p.length,u),l=_}ee(o,"max"),N.assertAxesAreInnerMostDims("max",p,u);let[d,h]=N.computeOutAndReduceShapes(l,p),g=y.sizeFromShape(h),x=h_(f,g,d,o.dtype),b=i.write(x,d,o.dtype),w=d;return a&&(w=N.expandShapeToKeepDim(d,c)),{dataId:b,shape:w,dtype:o.dtype}}var L1={kernelName:ao,backendName:"cpu",kernelFunc:D_};function GK(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e;ee(o,"maxPool");let{filterSize:s,strides:a,pad:i,dimRoundingMode:l}=n,u=1;y.assert(N.eitherStridesOrDilationsAreOne(a,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${a} and dilations '${u}'`);let c=N.computePool2DInfo(o.shape,s,a,u,i,l),p;if(c.filterWidth===1&&c.filterHeight===1&&y.arraysEqual(c.inShape,c.outShape))p=Er({inputs:{x:o},backend:t});else{let m=t.data.get(o.dataId).values,f=y.computeStrides(o.shape),d=pp(m,o.shape,o.dtype,f,c,"max");p=t.makeTensorInfo(c.outShape,o.dtype,d.values)}return p}var z1={kernelName:uo,backendName:"cpu",kernelFunc:GK};function jK(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{filterSize:s,strides:a,pad:i,dimRoundingMode:l,dataFormat:u}=n;ee(o,"maxPool3d");let c=N.computePool3DInfo(o.shape,s,a,1,i,l,u),p=t.data.get(o.dataId).values,m=Sg(p,o.shape,o.dtype,y.computeStrides(o.shape),c,"max");return t.makeTensorInfo(m.shape,"float32",m.values)}var B1={kernelName:pa,backendName:"cpu",kernelFunc:jK};function WK(r){let{inputs:e,backend:t,attrs:n}=r,{dy:o,input:s}=e,{filterSize:a,strides:i,pad:l,dimRoundingMode:u}=n;ee([o,s],"maxPool3DGrad");let c=N.computePool3DInfo(s.shape,a,i,1,l,u),p=t.bufferSync(s),m=PT(p,c),f=c.strideDepth,d=c.strideHeight,h=c.strideWidth,g=c.dilationDepth,x=c.dilationHeight,b=c.dilationWidth,w=c.effectiveFilterDepth,_=c.effectiveFilterHeight,k=c.effectiveFilterWidth,E=w-1-c.padInfo.front,S=k-1-c.padInfo.left,R=_-1-c.padInfo.top,F=Ce(s.shape,"float32"),P=t.bufferSync(o);for(let j=0;j<c.batchSize;++j)for(let G=0;G<c.inChannels;++G)for(let U=0;U<c.inDepth;++U)for(let X=0;X<c.inHeight;++X)for(let K=0;K<c.inWidth;++K){let Z=U-E,te=X-R,Y=K-S,re=0;for(let ie=0;ie<w;ie+=g){let se=(Z+ie)/f;if(!(se<0||se>=c.outDepth||Math.floor(se)!==se))for(let pe=0;pe<_;pe+=x){let ae=(te+pe)/d;if(!(ae<0||ae>=c.outHeight||Math.floor(ae)!==ae))for(let xe=0;xe<k;xe+=b){let ge=(Y+xe)/h;if(ge<0||ge>=c.outWidth||Math.floor(ge)!==ge)continue;let we=w*_*k-1-m.get(j,se,ae,ge,G),ke=ie*_*k+pe*k+xe,De=we===ke?1:0;if(De===0)continue;re+=P.get(j,se,ae,ge,G)*De}}}F.set(re,j,U,X,K,G)}return t.makeTensorInfo(F.shape,F.dtype,F.values)}var V1={kernelName:au,backendName:"cpu",kernelFunc:WK};function UK(r){let{inputs:e,backend:t,attrs:n}=r,{dy:o,input:s,output:a}=e,i=s;ee([s,a],"maxPoolGrad");let{filterSize:l,strides:u,pad:c,dimRoundingMode:p}=n,m=N.computePool2DInfo(i.shape,l,u,1,c,p),f=t.data.get(i.dataId).values,d=Ce(m.outShape,i.dtype,Ng(f,i.shape,i.dtype,m).values),h=m.strideHeight,g=m.strideWidth,x=m.dilationHeight,b=m.dilationWidth,w=m.effectiveFilterHeight,_=m.effectiveFilterWidth,k=_-1-m.padInfo.left,E=w-1-m.padInfo.top,S=Ce(i.shape,"float32"),R=t.data.get(o.dataId).values,F=Ce(o.shape,"float32",R);for(let P=0;P<m.batchSize;++P)for(let j=0;j<m.inChannels;++j)for(let G=0;G<m.inHeight;++G)for(let U=0;U<m.inWidth;++U){let X=G-E,K=U-k,Z=0;for(let te=0;te<w;te+=x){let Y=(X+te)/h;if(!(Y<0||Y>=m.outHeight||Math.floor(Y)!==Y))for(let re=0;re<_;re+=b){let ie=(K+re)/g;if(ie<0||ie>=m.outWidth||Math.floor(ie)!==ie)continue;let se=w*_-1-d.get(P,Y,ie,j),pe=te*_+re,ae=se===pe?1:0;if(ae===0)continue;Z+=F.get(P,Y,ie,j)*ae}}S.set(Z,P,G,U,j)}return t.makeTensorInfo(S.shape,S.dtype,S.values)}var G1={kernelName:iu,backendName:"cpu",kernelFunc:UK};function j1(r,e,t,n,o){let s=y.computeStrides(e),a=pp(r,e,t,s,o,"max"),i=Ng(r,e,t,o,!0,n);return[a.values,i.values]}var W1={kernelName:lu,backendName:"cpu",kernelFunc:({inputs:r,attrs:e,backend:t})=>{let{x:n}=r,{filterSize:o,strides:s,pad:a,includeBatchInIndex:i}=e,l=t;ee(n,"MaxPoolWithArgmax");let u=l.data.get(n.dataId).values,c=N.computePool2DInfo(n.shape,o,s,[1,1],a),[p,m]=j1(u,n.shape,n.dtype,i,c),f=l.write(p,c.outShape,n.dtype),d=l.write(m,c.outShape,n.dtype);return[{dataId:f,shape:c.outShape,dtype:n.dtype},{dataId:d,shape:c.outShape,dtype:"int32"}]}};function Hu(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{axis:s,keepDims:a}=n;ee(o,"sum");let i;o.dtype==="bool"?i=Go({inputs:{x:o},backend:t,attrs:{dtype:"int32"}}):i=Er({inputs:{x:o},backend:t});let l=i.shape.length,u=y.parseAxisParam(s,i.shape),c=N.getAxesPermutation(u,l),p=u,m=i;c!=null&&(m=rr({inputs:{x:i},backend:t,attrs:{perm:c}}),p=N.getInnerMostAxes(p.length,l)),N.assertAxesAreInnerMostDims("sum",p,m.shape.length);let[f,d]=N.computeOutAndReduceShapes(m.shape,p),h=N.upcastType(m.dtype,"int32"),g=lp(t,f,h),x=y.sizeFromShape(d),b=t.data.get(g.dataId).values,w=t.data.get(m.dataId).values;for(let _=0;_<b.length;++_){let k=_*x,E=0;for(let S=0;S<x;++S)E+=w[k+S];b[_]=E}if(a){let _=N.expandShapeToKeepDim(g.shape,u),k=g;g=tt({inputs:{x:g},backend:t,attrs:{shape:_}}),t.disposeIntermediateTensorInfo(k)}return t.disposeIntermediateTensorInfo(i),c!=null&&t.disposeIntermediateTensorInfo(m),g}var U1={kernelName:To,backendName:"cpu",kernelFunc:Hu};function qK(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{axis:s,keepDims:a}=n,i=y.parseAxisParam(s,o.shape),u=N.computeOutAndReduceShapes(o.shape,i)[1],c=y.sizeFromShape(u),p=[],m=t.makeTensorInfo([],"float32",new Float32Array([c]));p.push(m);let f=Go({inputs:{x:o},backend:t,attrs:{dtype:"float32"}});p.push(f);let d=xf({inputs:{a:f,b:m},backend:t});p.push(d);let h=Hu({inputs:{x:d},backend:t,attrs:{axis:s,keepDims:a}});return p.forEach(g=>t.disposeIntermediateTensorInfo(g)),h}var q1={kernelName:co,backendName:"cpu",kernelFunc:qK};function HK(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{axis:s,keepDims:a}=n;ee(o,"min");let i=y.parseAxisParam(s,o.shape),l=i,u=N.getAxesPermutation(l,o.shape.length),c=o;u!=null&&(c=rr({inputs:{x:o},backend:t,attrs:{perm:u}}),l=N.getInnerMostAxes(l.length,o.shape.length)),N.assertAxesAreInnerMostDims("min",l,c.shape.length);let[p,m]=N.computeOutAndReduceShapes(c.shape,l),f=y.sizeFromShape(m),d=y.makeZerosTypedArray(y.sizeFromShape(p),c.dtype),h=t.data.get(c.dataId).values;for(let x=0;x<d.length;++x){let b=x*f,w=h[b];for(let _=0;_<f;++_){let k=h[b+_];k<w&&(w=k)}d[x]=w}u!=null&&t.disposeIntermediateTensorInfo(c);let g=t.makeTensorInfo(p,c.dtype,d);if(a){let x=N.expandShapeToKeepDim(p,i),b=tt({inputs:{x:g},backend:t,attrs:{shape:x}});return t.disposeIntermediateTensorInfo(g),b}return g}var H1={kernelName:po,backendName:"cpu",kernelFunc:HK};function KK(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{paddings:s,mode:a}=n;ee(o,"mirrorPad");let i=s.map((w,_)=>w[0]+o.shape[_]+w[1]),l=s.map(w=>w[0]),u=s.map((w,_)=>w[0]+o.shape[_]),c=a==="reflect"?0:1,p=t.data.get(o.dataId).values,m=o.shape.length,f=y.computeStrides(o.shape),d=y.sizeFromShape(i),h=i.length,g=y.computeStrides(i),x=y.getTypedArrayFromDType(o.dtype,d);for(let w=0;w<d;w++){let _=y.indexToLoc(w,h,g);for(let E=0;E<h;E++)_[E]<l[E]?_[E]=l[E]*2-_[E]-c:_[E]>=u[E]&&(_[E]=(u[E]-1)*2-_[E]+c);_=_.map((E,S)=>E-l[S]);let k=y.locToIndex(_,m,f);x[w]=p[k]}return{dataId:t.write(x,i,o.dtype),shape:i,dtype:o.dtype}}var K1={kernelName:ma,backendName:"cpu",kernelFunc:KK};var XK=Ze((r,e)=>{let t=r%e;return r<0&&e<0||r>=0&&e>=0?t:(t+e)%e}),YK=nt(bi,XK),X1={kernelName:bi,backendName:"cpu",kernelFunc:YK};var mE=Tc(cE());function L_(r){let{inputs:e,backend:t,attrs:n}=r,{logits:o}=e,{dim:s}=n,a=o.shape.length,i=s;if(i===-1&&(i=a-1),i!==a-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${a} and dim was ${i}`);let l=y.parseAxisParam([i],o.shape),u=D_({inputs:{x:o},backend:t,attrs:{reductionIndices:l,keepDims:!1}}),c=N.expandShapeToKeepDim(u.shape,l),p=tt({inputs:{x:u},backend:t,attrs:{shape:c}}),m=gf({inputs:{a:o,b:p},backend:t}),f=m_({inputs:{x:m},backend:t}),d=Hu({inputs:{x:f},backend:t,attrs:{axis:l,keepDims:!1}}),h=tt({inputs:{x:d},backend:t,attrs:{shape:c}}),g=xf({inputs:{a:f,b:h},backend:t});return t.disposeIntermediateTensorInfo(u),t.disposeIntermediateTensorInfo(p),t.disposeIntermediateTensorInfo(m),t.disposeIntermediateTensorInfo(f),t.disposeIntermediateTensorInfo(d),t.disposeIntermediateTensorInfo(h),g}var pE={kernelName:Eo,backendName:"cpu",kernelFunc:L_};function n6(r){let{inputs:e,backend:t,attrs:n}=r,{logits:o}=e,{numSamples:s,seed:a,normalized:i}=n;ee(o,"multinomial");let l=i?o:L_({inputs:{logits:o},backend:t,attrs:{dim:-1}}),u=l.shape[0],c=l.shape[1],p=t.data.get(l.dataId).values,m=[u,s],f=y.makeZerosTypedArray(y.sizeFromShape(m),"int32");for(let d=0;d<u;++d){let h=d*c,g=new Float32Array(c-1);g[0]=p[h];for(let w=1;w<g.length;++w)g[w]=g[w-1]+p[h+w];let x=mE.alea(a.toString()),b=d*s;for(let w=0;w<s;++w){let _=x();f[b+w]=g.length;for(let k=0;k<g.length;k++)if(_<g[k]){f[b+w]=k;break}}}return i||t.disposeIntermediateTensorInfo(l),t.makeTensorInfo(m,"int32",f)}var fE={kernelName:uu,backendName:"cpu",kernelFunc:n6};var o6=Tr.nonMaxSuppressionV3Impl;function s6(r){let{inputs:e,backend:t,attrs:n}=r,{boxes:o,scores:s}=e,{maxOutputSize:a,iouThreshold:i,scoreThreshold:l}=n;ee(o,"NonMaxSuppression");let u=t.data.get(o.dataId).values,c=t.data.get(s.dataId).values,{selectedIndices:p}=o6(u,c,a,i,l);return t.makeTensorInfo([p.length],"int32",new Int32Array(p))}var dE={kernelName:_i,backendName:"cpu",kernelFunc:s6};var i6=Tr.nonMaxSuppressionV4Impl;function a6(r){let{inputs:e,backend:t,attrs:n}=r,{boxes:o,scores:s}=e,{maxOutputSize:a,iouThreshold:i,scoreThreshold:l,padToMaxOutputSize:u}=n;ee(o,"NonMaxSuppressionPadded");let c=t.data.get(o.dataId).values,p=t.data.get(s.dataId).values,{selectedIndices:m,validOutputs:f}=i6(c,p,a,i,l,u);return[t.makeTensorInfo([m.length],"int32",new Int32Array(m)),t.makeTensorInfo([],"int32",new Int32Array([f]))]}var hE={kernelName:ki,backendName:"cpu",kernelFunc:a6};var l6=Tr.nonMaxSuppressionV5Impl;function u6(r){let{inputs:e,backend:t,attrs:n}=r,{boxes:o,scores:s}=e,{maxOutputSize:a,iouThreshold:i,scoreThreshold:l,softNmsSigma:u}=n;ee(o,"NonMaxSuppressionWithScore");let c=t.data.get(o.dataId).values,p=t.data.get(s.dataId).values,m=a,f=i,d=l,h=u,{selectedIndices:g,selectedScores:x}=l6(c,p,m,f,d,h);return[t.makeTensorInfo([g.length],"int32",new Int32Array(g)),t.makeTensorInfo([x.length],"float32",new Float32Array(x))]}var gE={kernelName:vi,backendName:"cpu",kernelFunc:u6};function c6(r){let{inputs:e,backend:t,attrs:n}=r,{indices:o}=e,{depth:s,onValue:a,offValue:i}=n;ee(o,"oneHot");let l=y.sizeFromShape(o.shape),u=new Float32Array(l*s);u.fill(i);let c=t.data.get(o.dataId).values;for(let p=0;p<l;++p)c[p]>=0&&c[p]<s&&(u[p*s+c[p]]=a);return t.makeTensorInfo([...o.shape,s],"int32",u)}var xE={kernelName:ho,backendName:"cpu",kernelFunc:c6};function wf(r){let{inputs:e,backend:t}=r,{x:n}=e;if(n.dtype==="string")throw new Error("zerosLike is not supported for string tensors");if(n.dtype==="complex64"){let o=Vo({inputs:{input:n},backend:t}),s=wf({inputs:{x:o},backend:t}),a=Gi({inputs:{input:n},backend:t}),i=wf({inputs:{x:a},backend:t}),l=pr({inputs:{real:s,imag:i},backend:t});return t.disposeIntermediateTensorInfo(o),t.disposeIntermediateTensorInfo(s),t.disposeIntermediateTensorInfo(a),t.disposeIntermediateTensorInfo(i),l}else return bf({backend:t,attrs:{shape:n.shape,value:0,dtype:n.dtype}})}var yE={kernelName:ys,backendName:"cpu",kernelFunc:wf};function bE(r){let{inputs:e,backend:t}=r,{x:n}=e;if(n.dtype==="string")throw new Error("onesLike is not supported for string tensors");if(n.dtype==="complex64"){let o=Vo({inputs:{input:n},backend:t}),s=bE({inputs:{x:o},backend:t}),a=Gi({inputs:{input:n},backend:t}),i=wf({inputs:{x:a},backend:t}),l=pr({inputs:{real:s,imag:i},backend:t});return t.disposeIntermediateTensorInfo(o),t.disposeIntermediateTensorInfo(s),t.disposeIntermediateTensorInfo(a),t.disposeIntermediateTensorInfo(i),l}else return bf({backend:t,attrs:{shape:n.shape,value:1,dtype:n.dtype}})}var wE={kernelName:ps,backendName:"cpu",kernelFunc:bE};function z_(r){let{inputs:e,backend:t,attrs:n}=r,{axis:o}=n;if(e.length===1)return mp({inputs:{input:e[0]},backend:t,attrs:{dim:o}});let s=e[0].shape,a=e[0].dtype;e.forEach(c=>{y.assertShapesMatch(s,c.shape,"All tensors passed to stack must have matching shapes"),y.assert(a===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],l=e.map(c=>{let p=mp({inputs:{input:c},backend:t,attrs:{dim:o}});return i.push(p),p}),u=ml({inputs:l,backend:t,attrs:{axis:o}});return i.forEach(c=>t.disposeIntermediateTensorInfo(c)),u}var _E={kernelName:ms,backendName:"cpu",kernelFunc:z_};function p6(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{paddings:s,constantValue:a}=n;ee(o,"pad");let i=s.map((b,w)=>b[0]+o.shape[w]+b[1]),l=s.map(b=>b[0]),u=t.data.get(o.dataId).values,c=y.sizeFromShape(o.shape),p=o.shape.length,m=y.computeStrides(o.shape),f=y.sizeFromShape(i),d=i.length,h=y.computeStrides(i),g=y.getTypedArrayFromDType(o.dtype,f);a!==0&&g.fill(a);for(let b=0;b<c;b++){let _=y.indexToLoc(b,p,m).map((E,S)=>E+l[S]),k=y.locToIndex(_,d,h);g[k]=u[b]}return{dataId:t.write(g,i,o.dtype),shape:i,dtype:o.dtype}}var Ag={kernelName:go,backendName:"cpu",kernelFunc:p6};var m6=Ze((r,e)=>Math.pow(r,e)),f6=nt(xo,m6),kE={kernelName:xo,backendName:"cpu",kernelFunc:f6};function d6(r){let{backend:e,attrs:t}=r,{start:n,stop:o,dtype:s,step:a}=t,i=df(n,o,a,s);return e.makeTensorInfo([i.length],s,i)}var vE={kernelName:fa,backendName:"cpu",kernelFunc:d6};var h6=Ae(Ii,r=>1/r),CE={kernelName:Ii,backendName:"cpu",kernelFunc:h6};function g6(r){let{inputs:e,backend:t,attrs:n}=r,{images:o}=e,{alignCorners:s,halfPixelCenters:a,size:i}=n;ee(o,"resizeBilinear");let l=y.computeStrides(o.shape),[u,c]=i,[p,m,f,d]=o.shape,h=t.data.get(o.dataId).values,g=new Float32Array(y.sizeFromShape([p,u,c,d])),x=[s&&u>1?m-1:m,s&&c>1?f-1:f],b=[s&&u>1?u-1:u,s&&c>1?c-1:c],w=0,_=x[0]/b[0],k=x[1]/b[1];for(let E=0;E<p;E++)for(let S=0;S<u;S++){let R;a?R=_*(S+.5)-.5:R=_*S;let F=Math.max(0,Math.floor(R)),P=R-F,j=Math.min(m-1,Math.ceil(R)),G=E*l[0]+F*l[1],U=E*l[0]+j*l[1];for(let X=0;X<c;X++){let K;a?K=k*(X+.5)-.5:K=k*X;let Z=Math.max(0,Math.floor(K)),te=K-Z,Y=Math.min(f-1,Math.ceil(K)),re=G+Z*l[2],ie=U+Z*l[2],se=G+Y*l[2],pe=U+Y*l[2];for(let ae=0;ae<d;ae++){let xe=h[re+ae],ge=h[ie+ae],we=h[se+ae],ke=h[pe+ae],De=xe+(we-xe)*te,$e=ge+(ke-ge)*te,Re=De+($e-De)*P;g[w++]=Re}}}return t.makeTensorInfo([p,u,c,d],"float32",g)}var IE={kernelName:wo,backendName:"cpu",kernelFunc:g6};function x6(r){let{inputs:e,backend:t,attrs:n}=r,{images:o,dy:s}=e,{alignCorners:a}=n;ee([s,o],"resizeBilinearGrad");let i=y.computeStrides(o.shape),[l,u,c,p]=o.shape,[,m,f]=s.shape,d=new Float32Array(l*u*c*p),h=[a&&m>1?u-1:u,a&&f>1?c-1:c],g=[a&&m>1?m-1:m,a&&f>1?f-1:f],x=h[0]/g[0],b=h[1]/g[1],w=t.data.get(s.dataId).values,_=0;for(let k=0;k<l;k++){let E=k*i[0];for(let S=0;S<m;S++){let R=S*x,F=Math.floor(R),P=Math.min(Math.ceil(R),u-1),j=E+F*i[1],G=E+P*i[1],U=R-F,X=1-U;for(let K=0;K<f;K++){let Z=K*b,te=Math.floor(Z),Y=Math.min(Math.ceil(Z),c-1),re=Z-te,ie=1-re,se=j+te*i[2],pe=j+Y*i[2],ae=G+te*i[2],xe=G+Y*i[2],ge=X*ie,we=X*re,ke=U*ie,De=U*re;for(let $e=0;$e<p;$e++){let Re=w[_++];d[se+$e]+=Re*ge,d[pe+$e]+=Re*we,d[ae+$e]+=Re*ke,d[xe+$e]+=Re*De}}}}return t.makeTensorInfo([l,c,u,p],"float32",d)}var NE={kernelName:mu,backendName:"cpu",kernelFunc:x6};function y6(r){let{inputs:e,backend:t,attrs:n}=r,{images:o}=e,{alignCorners:s,halfPixelCenters:a,size:i}=n;ee(o,"resizeNearestNeighbor");let l=y.computeStrides(o.shape),[u,c]=i,[p,m,f,d]=o.shape,h=t.data.get(o.dataId).values,g=new Float32Array(p*u*c*d),x=[s&&u>1?m-1:m,s&&c>1?f-1:f],b=[s&&u>1?u-1:u,s&&c>1?c-1:c],w=x[0]/b[0],_=x[1]/b[1],k=0;for(let E=0;E<p;E++){let S=E*l[0];for(let R=0;R<u;R++){let F=a?w*(R+.5):w*R,P=Math.min(m-1,s?Math.round(F):Math.floor(F));a&&(P=Math.max(0,P));let j=S+P*l[1];for(let G=0;G<c;G++){let U=a?_*(G+.5):_*G,X=Math.min(f-1,s?Math.round(U):Math.floor(U));a&&(X=Math.max(0,X));let K=j+X*l[2];for(let Z=0;Z<d;Z++){let te=h[K+Z];g[k++]=te}}}}return t.makeTensorInfo([p,u,c,d],o.dtype,g)}var SE={kernelName:da,backendName:"cpu",kernelFunc:y6};function b6(r){let{inputs:e,backend:t,attrs:n}=r,{images:o,dy:s}=e,{alignCorners:a}=n;ee([s,o],"resizeNearestNeighborGrad");let i=y.computeStrides(o.shape),l=y.computeStrides(s.shape),[u,c,p,m]=o.shape,[,f,d]=s.shape,h=new Float32Array(u*c*p*m),g=t.data.get(s.dataId).values,x=[a&&f>1?c-1:c,a&&d>1?p-1:p],b=[a&&f>1?f-1:f,a&&d>1?d-1:d],w=x[0]/b[0],_=x[1]/b[1],k=1/w,E=1/_,S=Math.ceil(k)*2+2,R=Math.ceil(E)*2+2;for(let F=0;F<u;F++){let P=F*i[0];for(let j=0;j<c;j++){let G=P+j*i[1],U=Math.floor(j*k),X=Math.floor(U-S/2);for(let K=0;K<p;K++){let Z=G+K*i[2],te=Math.floor(K*E),Y=Math.floor(te-R/2);for(let re=0;re<m;re++){let ie=0;for(let se=0;se<S;se++){let pe=se+X;if(pe<0||pe>=f)continue;let ae=P+pe*l[1],xe=pe*w,ge=Math.min(c-1,a?Math.round(xe):Math.floor(xe));if(j===ge)for(let we=0;we<R;we++){let ke=we+Y;if(ke<0||ke>=d)continue;let De=ae+ke*l[2],$e=ke*_,Re=Math.min(p-1,a?Math.round($e):Math.floor($e));K===Re&&(ie+=g[De+re])}}h[Z+re]=ie}}}}return t.makeTensorInfo(o.shape,o.dtype,h)}var TE={kernelName:pu,backendName:"cpu",kernelFunc:b6};function w6(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{dims:s}=n;ee(o,"reverse");let a=o.shape.length,i=y.parseAxisParam(s,o.shape);if(a===0)return Er({inputs:{x:o},backend:t});let l=new ct(o.shape,o.dtype),u=t.bufferSync(o);for(let c=0;c<l.size;c++){let p=l.indexToLoc(c),m=p.slice();i.forEach(f=>m[f]=o.shape[f]-1-m[f]),l.set(u.get(...m),...p)}return t.makeTensorInfo(l.shape,l.dtype,l.values)}var EE={kernelName:ko,backendName:"cpu",kernelFunc:w6};var AE={kernelName:Fi,backendName:"cpu",kernelFunc:({inputs:r,attrs:e,backend:t})=>{let{image:n}=r,{radians:o,fillValue:s,center:a}=e,i=t,l=y.getTypedArrayFromDType(n.dtype,y.sizeFromShape(n.shape)),[u,c,p,m]=n.shape,[f,d]=N.getImageCenter(a,c,p),h=255,g=Math.sin(o),x=Math.cos(o),b=i.data.get(n.dataId).values;for(let _=0;_<u;_++){let k=_*p*c*m;for(let E=0;E<c;E++){let S=E*(p*m);for(let R=0;R<p;R++){let F=R*m;for(let P=0;P<m;P++){let j=[u,E,R,P],G=j[2],U=j[1],X=(G-f)*x-(U-d)*g,K=(G-f)*g+(U-d)*x;X=Math.round(X+f),K=Math.round(K+d);let Z=s;if(typeof s!="number"&&(P===3?Z=h:Z=s[P]),X>=0&&X<p&&K>=0&&K<c){let Y=K*(p*m),re=X*m,ie=k+Y+re+P;Z=b[ie]}let te=k+S+F+P;l[te]=Z}}}}return{dataId:i.write(l,n.shape,n.dtype),shape:n.shape,dtype:n.dtype}}};var _6=Ae(vo,r=>{let e=Math.floor(r);return r-e<.5?Math.floor(r):r-e>.5?Math.ceil(r):e%2==0?e:e+1}),DE={kernelName:vo,backendName:"cpu",kernelFunc:_6};function Dg(r,e,t,n,o,s,a,i,l,u){let c=[n/o,o],p=r.values,m=e.values;if(n===0)return Ce(t,e.dtype);let f=Ce(c,e.dtype);f.values.fill(l);for(let d=0;d<s;d++){let h=[],g=0;for(let x=0;x<a;x++){let b=p[d*a+x];h.push(b),g+=b*i[x]}if(g<0||g>=n/o)throw new Error(`Invalid indices: ${h} does not index into ${t}`);for(let x=0;x<o;x++)u?f.values[g*o+x]+=m[d*o+x]:f.values[g*o+x]=e.rank===0?m[0]:m[d*o+x]}return f}function k6(r){let{inputs:e,backend:t,attrs:n}=r,{indices:o,updates:s}=e,{shape:a}=n,{sliceRank:i,numUpdates:l,sliceSize:u,strides:c,outputSize:p}=N.calculateShapes(s,o,a),m=!0,f=t.bufferSync(o),d=t.bufferSync(s),h=Dg(f,d,a,p,u,l,i,c,0,m);return t.makeTensorInfo(a,h.dtype,h.values)}var $E={kernelName:Ni,backendName:"cpu",kernelFunc:k6};function v6(r){let{inputs:e,backend:t}=r,{condition:n,t:o,e:s}=e;ee([n,o,s],"select");let a=n.shape.length,i=t.data.get(n.dataId).values,l=t.data.get(o.dataId).values,u=t.data.get(s.dataId).values,c=fr(o.dtype,s.dtype),p=y.makeZerosTypedArray(y.sizeFromShape(o.shape),c),m=0,f=a===0||a>1||o.shape.length===1?1:y.sizeFromShape(o.shape.slice(1));for(let d=0;d<i.length;d++)for(let h=0;h<f;h++)i[d]===1?p[m++]=l[d]:p[m++]=u[d];return t.makeTensorInfo(o.shape,c,p)}var RE={kernelName:ds,backendName:"cpu",kernelFunc:v6};var C6=N.SELU_SCALEALPHA,I6=N.SELU_SCALE,N6=Ae(Si,r=>r>=0?I6*r:C6*(Math.exp(r)-1)),FE={kernelName:Si,backendName:"cpu",kernelFunc:N6};var S6=Ae(No,r=>1/(1+Math.exp(-r))),OE={kernelName:No,backendName:"cpu",kernelFunc:S6};var T6=Ae(Ei,r=>r<0?-1:r>0?1:0),PE={kernelName:Ei,backendName:"cpu",kernelFunc:T6};var E6=Ae(Io,r=>Math.sin(r)),ME={kernelName:Io,backendName:"cpu",kernelFunc:E6};var A6=Ae(Ti,r=>Math.sinh(r)),LE={kernelName:Ti,backendName:"cpu",kernelFunc:A6};var D6=11920928955078125e-23,zE=Math.log(D6)+2,$6=Ae(Ai,r=>{let e=r>-zE,t=r<zE,n=Math.exp(r),o;return t?o=n:e?o=r:o=Math.log(1+n),o}),BE={kernelName:Ai,backendName:"cpu",kernelFunc:$6};function R6(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{blockShape:s,paddings:a}=n;ee([o],"spaceToBatchND");let i=y.sizeFromShape(s),l=[[0,0]];l.push(...a);for(let E=1+s.length;E<o.shape.length;++E)l.push([0,0]);let u=Ag.kernelFunc({inputs:{x:o},backend:t,attrs:{paddings:l,constantValue:0}}),c=N.getReshaped(u.shape,s,i,!1),p=N.getPermuted(c.length,s.length,!1),m=N.getReshapedPermuted(u.shape,s,i,!1),h=tt({inputs:{x:u},backend:t,attrs:{shape:c}}),b=rr({inputs:{x:h},backend:t,attrs:{perm:p}}),k=tt({inputs:{x:b},backend:t,attrs:{shape:m}});return t.disposeIntermediateTensorInfo(u),t.disposeIntermediateTensorInfo(h),t.disposeIntermediateTensorInfo(b),k}var VE={kernelName:ha,backendName:"cpu",kernelFunc:R6};function F6(r){let{inputs:e,backend:t,attrs:n}=r,{sparseIndices:o,sparseValues:s,defaultValue:a}=e,{outputShape:i}=n,{sliceRank:l,numUpdates:u,sliceSize:c,strides:p,outputSize:m}=N.calculateShapes(s,o,i),f=!1,d=t.bufferSync(o),h=t.bufferSync(s),g=t.data.get(a.dataId).values[0],x=Dg(d,h,i,m,c,u,l,p,g,f);return t.makeTensorInfo(i,x.dtype,x.values)}var GE={kernelName:fu,backendName:"cpu",kernelFunc:F6};function O6(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{numOrSizeSplits:s,axis:a}=n,i=y.parseAxisParam(a,o.shape)[0],l=N.prepareSplitSize(o,s,i),u=new Array(o.shape.length).fill(0),c=o.shape.slice();return l.map(p=>{let m=[...c];m[i]=p;let f=Uo({inputs:{x:o},backend:t,attrs:{begin:u,size:m}});return u[i]+=p,f})}var jE={kernelName:gs,backendName:"cpu",kernelFunc:O6};var P6=Ae(So,r=>Math.sqrt(r)),WE={kernelName:So,backendName:"cpu",kernelFunc:P6};var UE={kernelName:ga,backendName:"cpu",kernelFunc:({inputs:r,backend:e})=>{let{x:t}=r,n=e;ee(t,"square");let o=n.data.get(t.dataId).values,s=new Float32Array(o.length);for(let i=0;i<o.length;++i){let l=o[i];s[i]=l*l}return{dataId:n.write(s,t.shape,t.dtype),shape:t.shape,dtype:t.dtype}}};var M6=Ae($n,(r,e)=>{let t=e;return isNaN(r)?NaN:r>0?1:t.alpha}),qE={kernelName:$n,backendName:"cpu",kernelFunc:M6};function L6(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{begin:s,end:a,strides:i,beginMask:l,endMask:u,ellipsisMask:c,newAxisMask:p,shrinkAxisMask:m}=n;ee(o,"stridedSlice");let{nonStrided:f,$begin:d,$strides:h,size:g,newShape:x,outShape:b}=or.sliceInfo(o.shape,s,a,i,l,u,c,p,m),w=tt({inputs:{x:o},backend:t,attrs:{shape:x}}),_;if(f){let E=Uo({inputs:{x:w},backend:t,attrs:{begin:d,size:g}});_=tt({inputs:{x:E},backend:t,attrs:{shape:b}}),t.disposeIntermediateTensorInfo(E)}else if(b.some(E=>E===0))_=t.makeTensorInfo(b,o.dtype,[]);else{let E=t.bufferSync(w),S=g_(b,E,h,d);_=t.makeTensorInfo(S.shape,S.dtype,S.values)}let k=tt({inputs:{x:_},backend:t,attrs:{shape:b}});return t.disposeIntermediateTensorInfo(w),t.disposeIntermediateTensorInfo(_),k}var HE={kernelName:Di,backendName:"cpu",kernelFunc:L6};var z6=Ae($i,r=>Math.tan(r)),KE={kernelName:$i,backendName:"cpu",kernelFunc:z6};var B6=Ae($o,r=>Math.tanh(r)),XE={kernelName:$o,backendName:"cpu",kernelFunc:B6};function V6(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{reps:s}=n;ee(o,"tile");let a=x_(t.bufferSync(o),s);return t.makeTensorInfo(a.shape,a.dtype,a.values)}var YE={kernelName:yn,backendName:"cpu",kernelFunc:V6};function G6(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{k:s,sorted:a}=n;ee(o,"topk");let i=t.data.get(o.dataId).values,[l,u]=y_(i,o.shape,o.dtype,s,a);return[t.makeTensorInfo(l.shape,l.dtype,l.values),t.makeTensorInfo(u.shape,u.dtype,u.values)]}var ZE={kernelName:Ri,backendName:"cpu",kernelFunc:G6};function j6(r){let{inputs:e,attrs:t,backend:n}=r,{axis:o}=t,{x:s}=e;ee(s,"unique");let a=n.data.get(s.dataId).values,{outputValues:i,outputShape:l,indices:u}=b_(a,o,s.shape,s.dtype);return[n.makeTensorInfo(l,s.dtype,i),n.makeTensorInfo([u.length],"int32",u)]}var JE={kernelName:du,backendName:"cpu",kernelFunc:j6};function W6(r){let{inputs:e,backend:t,attrs:n}=r,{value:o}=e,{axis:s}=n;s<0&&(s+=o.shape.length);let a=o.shape.length,i=o.shape[s],l=new Array(a-1),u=0;for(let f=0;f<a;f++)f!==s&&(l[u++]=o.shape[f]);let c=new Array(a).fill(0),p=o.shape.slice();p[s]=1;let m=new Array(i);for(let f=0;f<m.length;f++){c[s]=f;let d=Uo({inputs:{x:o},backend:t,attrs:{begin:c,size:p}});m[f]=tt({inputs:{x:d},backend:t,attrs:{shape:l}}),t.disposeIntermediateTensorInfo(d)}return m}var QE={kernelName:xs,backendName:"cpu",kernelFunc:W6};function U6(r){let{inputs:e,backend:t,attrs:n}=r,{x:o,segmentIds:s}=e,{numSegments:a}=n;ee(o,"unsortedSegmentSum");let i=o.shape.length,l=s.shape.length,u=[],c=[],p=i-l,m=s;for(let d=0;d<p;++d){let h=mp({inputs:{input:m},backend:t,attrs:{dim:d+1}});m=h,c.push(h)}for(let d=0;d<a;++d){let h=y.createScalarValue(d,"int32"),g=t.makeTensorInfo([],"int32",h),x=E_({inputs:{a:g,b:m},backend:t}),b=Go({inputs:{x},backend:t,attrs:{dtype:"float32"}}),w=mf({inputs:{a:b,b:o},backend:t}),_=Hu({inputs:{x:w},backend:t,attrs:{axis:0,keepDims:!1}});u.push(_),c.push(g),c.push(x),c.push(b),c.push(w),c.push(_)}let f=z_({inputs:u,backend:t,attrs:{axis:0}});return c.forEach(d=>t.disposeIntermediateTensorInfo(d)),f}var eA={kernelName:xa,backendName:"cpu",kernelFunc:U6};var q6=[vT,AS,CT,IT,PS,NT,ST,TT,ET,AT,DT,$T,RT,FT,OT,MT,LT,zT,BT,kT,VT,GT,jT,FS,LS,WT,DS,UT,HT,XT,YT,KT,JT,QT,ZT,e1,t1,r1,n1,o1,s1,i1,a1,l1,u1,c1,m1,p1,yf,gT,f1,d1,h1,BS,g1,GS,x1,y1,b1,WS,w1,_1,k1,v1,C1,qS,I1,$S,N1,qT,S1,T1,E1,xT,KS,A1,D1,YS,$1,R1,F1,O1,P1,M1,JS,z1,B1,V1,G1,W1,L1,q1,H1,eT,K1,X1,fE,tT,nT,dE,hE,gE,sT,xE,wE,_E,Ag,kE,yT,lT,vE,RS,CE,bT,wT,_T,IE,NE,SE,TE,EE,AE,DE,cT,$E,RE,FE,OE,PE,ME,LE,pT,pE,BE,VE,GE,jE,WE,UE,fT,qE,HE,hT,U1,KE,XE,YE,ZE,iT,JE,QE,eA,yE];for(let r of q6)tl(r);var nA={};Ye(nA,{assertNotComplex:()=>$s,bindCanvasToFramebuffer:()=>r5,bindColorTextureToFramebuffer:()=>vf,bindTextureToProgramUniformSampler:()=>ek,bindTextureUnit:()=>iA,bindVertexBufferToProgramAttribute:()=>$g,callAndCheck:()=>Ne,canBeRepresented:()=>G_,createFragmentShader:()=>W_,createFramebuffer:()=>Z_,createProgram:()=>U_,createStaticIndexBuffer:()=>K_,createStaticVertexBuffer:()=>H_,createTexture:()=>X_,createVertexShader:()=>j_,getBatchDim:()=>La,getExtensionOrThrow:()=>fp,getFramebufferErrorMessage:()=>aA,getMaxTexturesInShader:()=>nk,getNumChannels:()=>e5,getProgramUniformLocation:()=>Q_,getProgramUniformLocationOrThrow:()=>J_,getRowsCols:()=>za,getShapeAs3D:()=>Cf,getTextureShapeFromLogicalShape:()=>tk,getWebGLDisjointQueryTimerVersion:()=>ok,getWebGLErrorMessage:()=>oA,getWebGLMaxTextureSize:()=>rk,hasExtension:()=>kn,isCapableOfRenderingToFloatTexture:()=>ik,isDownloadFloatTextureEnabled:()=>ak,isReshapeFree:()=>hl,isWebGLFenceEnabled:()=>lk,isWebGLVersionEnabled:()=>Mg,linkProgram:()=>q_,resetMaxTextureSize:()=>n5,resetMaxTexturesInShader:()=>o5,unbindColorTextureFromFramebuffer:()=>Rg,unbindTextureUnit:()=>t5,validateFramebuffer:()=>dp,validateProgram:()=>kf,validateTextureSize:()=>Y_});var Xu={},B_={alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!0};function V_(r,e){Xu[r]=e}function Mn(r){if(!(r in Xu)){let t=H6(r);if(t!==null)Xu[r]=t;else return console.log("Could not get context for WebGL version",r),null}let e=Xu[r];return e.isContextLost()?(delete Xu[r],Mn(r)):(e.disable(e.DEPTH_TEST),e.disable(e.STENCIL_TEST),e.disable(e.BLEND),e.disable(e.DITHER),e.disable(e.POLYGON_OFFSET_FILL),e.disable(e.SAMPLE_COVERAGE),e.enable(e.SCISSOR_TEST),e.enable(e.CULL_FACE),e.cullFace(e.BACK),Xu[r])}function K6(r){if(typeof OffscreenCanvas!="undefined"&&r===2)return new OffscreenCanvas(300,150);if(typeof document!="undefined")return document.createElement("canvas");throw new Error("Cannot create a canvas in this context")}function H6(r){if(r!==1&&r!==2)throw new Error("Cannot get WebGL rendering context, WebGL is disabled.");let e=K6(r);return e.addEventListener("webglcontextlost",t=>{t.preventDefault(),delete Xu[r]},!1),r===1?e.getContext("webgl",B_)||e.getContext("experimental-webgl",B_):e.getContext("webgl2",B_)}var fl;(function(r){r[r.DENSE=0]="DENSE",r[r.SHARED_BATCH=1]="SHARED_BATCH"})(fl||(fl={}));var Ar;(function(r){r[r.RENDER=0]="RENDER",r[r.UPLOAD=1]="UPLOAD",r[r.PIXELS=2]="PIXELS",r[r.DOWNLOAD=3]="DOWNLOAD"})(Ar||(Ar={}));var wr;(function(r){r[r.UNPACKED_FLOAT16=0]="UNPACKED_FLOAT16",r[r.UNPACKED_FLOAT32=1]="UNPACKED_FLOAT32",r[r.PACKED_4X1_UNSIGNED_BYTE=2]="PACKED_4X1_UNSIGNED_BYTE",r[r.PACKED_2X2_FLOAT32=3]="PACKED_2X2_FLOAT32",r[r.PACKED_2X2_FLOAT16=4]="PACKED_2X2_FLOAT16"})(wr||(wr={}));function Yu(r,e){return[e,r]}function tA(r,e){return r*e}function dl(r){let e=y.sizeFromShape(r),t=Math.ceil(e/4);return y.sizeToSquarishShape(t)}function ji(r,e){return[Math.max(1,Math.ceil(e/2)),Math.max(1,Math.ceil(r/2))]}function rA(r,e){let[t,n]=ji(r,e);return t*n*4}function _f(r,e){let t=r,n,o,s,a,i,l,u,c,p,m;return W().getNumber("WEBGL_VERSION")===2?(n=t.R32F,o=t.R16F,s=t.RGBA16F,a=t.RGBA32F,i=t.RED,u=4,c=1,p=t.HALF_FLOAT,m=t.FLOAT):(n=r.RGBA,o=r.RGBA,s=r.RGBA,a=t.RGBA,i=r.RGBA,u=4,c=4,p=e!=null?e.HALF_FLOAT_OES:null,m=r.FLOAT),l=r.RGBA,{internalFormatFloat:n,internalFormatHalfFloat:o,internalFormatPackedHalfFloat:s,internalFormatPackedFloat:a,textureFormatFloat:i,downloadTextureFormat:l,downloadUnpackNumChannels:u,defaultNumChannels:c,textureTypeHalfFloat:p,textureTypeFloat:m}}function Ne(r,e){let t=e();return W().getBool("DEBUG")&&X6(r),t}function X6(r){let e=r.getError();if(e!==r.NO_ERROR)throw new Error("WebGL Error: "+oA(r,e))}var Y6=596e-10,Z6=65504;function G_(r){return!!(W().getBool("WEBGL_RENDER_FLOAT32_ENABLED")||r===0||Y6<Math.abs(r)&&Math.abs(r)<Z6)}function oA(r,e){switch(e){case r.NO_ERROR:return"NO_ERROR";case r.INVALID_ENUM:return"INVALID_ENUM";case r.INVALID_VALUE:return"INVALID_VALUE";case r.INVALID_OPERATION:return"INVALID_OPERATION";case r.INVALID_FRAMEBUFFER_OPERATION:return"INVALID_FRAMEBUFFER_OPERATION";case r.OUT_OF_MEMORY:return"OUT_OF_MEMORY";case r.CONTEXT_LOST_WEBGL:return"CONTEXT_LOST_WEBGL";default:return`Unknown error code ${e}`}}function fp(r,e){return Ma(r,()=>r.getExtension(e),'Extension "'+e+'" not supported on this browser.')}function j_(r,e){let t=Ma(r,()=>r.createShader(r.VERTEX_SHADER),"Unable to create vertex WebGLShader.");if(Ne(r,()=>r.shaderSource(t,e)),Ne(r,()=>r.compileShader(t)),r.getShaderParameter(t,r.COMPILE_STATUS)===!1)throw console.log(r.getShaderInfoLog(t)),new Error("Failed to compile vertex shader.");return t}function W_(r,e){let t=Ma(r,()=>r.createShader(r.FRAGMENT_SHADER),"Unable to create fragment WebGLShader.");if(Ne(r,()=>r.shaderSource(t,e)),Ne(r,()=>r.compileShader(t)),r.getShaderParameter(t,r.COMPILE_STATUS)===!1)throw J6(e,r.getShaderInfoLog(t)),new Error("Failed to compile fragment shader.");return t}var Q6=/ERROR: [0-9]+:([0-9]+):/g;function J6(r,e){let t=Q6.exec(e);if(t==null){console.log(`Couldn't parse line number in error: ${e}`),console.log(r);return}let n=+t[1],o=r.split(`
`),s=o.length.toString().length+2,a=o.map((p,m)=>y.rightPad((m+1).toString(),s)+p),i=0;for(let p=0;p<a.length;p++)i=Math.max(a[p].length,i);let l=a.slice(0,n-1),u=a.slice(n-1,n),c=a.slice(n);console.log(l.join(`
`)),console.log(e.split(`
`)[0]),console.log(`%c ${y.rightPad(u[0],i)}`,"border:1px solid red; background-color:#e3d2d2; color:#a61717"),console.log(c.join(`
`))}function U_(r){return Ma(r,()=>r.createProgram(),"Unable to create WebGLProgram.")}function q_(r,e){if(Ne(r,()=>r.linkProgram(e)),r.getProgramParameter(e,r.LINK_STATUS)===!1)throw console.log(r.getProgramInfoLog(e)),new Error("Failed to link vertex and fragment shaders.")}function kf(r,e){if(Ne(r,()=>r.validateProgram(e)),r.getProgramParameter(e,r.VALIDATE_STATUS)===!1)throw console.log(r.getProgramInfoLog(e)),new Error("Shader program validation failed.")}function H_(r,e){let t=Ma(r,()=>r.createBuffer(),"Unable to create WebGLBuffer");return Ne(r,()=>r.bindBuffer(r.ARRAY_BUFFER,t)),Ne(r,()=>r.bufferData(r.ARRAY_BUFFER,e,r.STATIC_DRAW)),t}function K_(r,e){let t=Ma(r,()=>r.createBuffer(),"Unable to create WebGLBuffer");return Ne(r,()=>r.bindBuffer(r.ELEMENT_ARRAY_BUFFER,t)),Ne(r,()=>r.bufferData(r.ELEMENT_ARRAY_BUFFER,e,r.STATIC_DRAW)),t}function e5(){return W().getNumber("WEBGL_VERSION")===2?1:4}function X_(r){return Ma(r,()=>r.createTexture(),"Unable to create WebGLTexture.")}function Y_(r,e){let t=W().getNumber("WEBGL_MAX_TEXTURE_SIZE");if(r<=0||e<=0){let n=`[${r}x${e}]`;throw new Error("Requested texture size "+n+" is invalid.")}if(r>t||e>t){let n=`[${r}x${e}]`,o=`[${t}x${t}]`;throw new Error("Requested texture size "+n+" greater than WebGL maximum on this browser / GPU "+o+".")}}function Z_(r){return Ma(r,()=>r.createFramebuffer(),"Unable to create WebGLFramebuffer.")}function $g(r,e,t,n,o,s,a){let i=r.getAttribLocation(e,t);return i===-1?!1:(Ne(r,()=>r.bindBuffer(r.ARRAY_BUFFER,n)),Ne(r,()=>r.vertexAttribPointer(i,o,r.FLOAT,!1,s,a)),Ne(r,()=>r.enableVertexAttribArray(i)),!0)}function iA(r,e,t){sA(r,t),Ne(r,()=>r.activeTexture(r.TEXTURE0+t)),Ne(r,()=>r.bindTexture(r.TEXTURE_2D,e))}function t5(r,e){sA(r,e),Ne(r,()=>r.activeTexture(r.TEXTURE0+e)),Ne(r,()=>r.bindTexture(r.TEXTURE_2D,null))}function J_(r,e,t){return Ma(r,()=>r.getUniformLocation(e,t),'uniform "'+t+'" not present in program.')}function Q_(r,e,t){return r.getUniformLocation(e,t)}function ek(r,e,t,n){Ne(r,()=>iA(r,e,n)),Ne(r,()=>r.uniform1i(t,n))}function r5(r){Ne(r,()=>r.bindFramebuffer(r.FRAMEBUFFER,null)),Ne(r,()=>r.viewport(0,0,r.canvas.width,r.canvas.height)),Ne(r,()=>r.scissor(0,0,r.canvas.width,r.canvas.height))}function vf(r,e,t){Ne(r,()=>r.bindFramebuffer(r.FRAMEBUFFER,t)),Ne(r,()=>r.framebufferTexture2D(r.FRAMEBUFFER,r.COLOR_ATTACHMENT0,r.TEXTURE_2D,e,0))}function Rg(r,e){Ne(r,()=>r.bindFramebuffer(r.FRAMEBUFFER,e)),Ne(r,()=>r.framebufferTexture2D(r.FRAMEBUFFER,r.COLOR_ATTACHMENT0,r.TEXTURE_2D,null,0))}function dp(r){let e=r.checkFramebufferStatus(r.FRAMEBUFFER);if(e!==r.FRAMEBUFFER_COMPLETE)throw new Error("Error binding framebuffer: "+aA(r,e))}function aA(r,e){switch(e){case r.FRAMEBUFFER_INCOMPLETE_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_ATTACHMENT";case r.FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT";case r.FRAMEBUFFER_INCOMPLETE_DIMENSIONS:return"FRAMEBUFFER_INCOMPLETE_DIMENSIONS";case r.FRAMEBUFFER_UNSUPPORTED:return"FRAMEBUFFER_UNSUPPORTED";default:return`unknown error ${e}`}}function Ma(r,e,t){let n=Ne(r,()=>e());if(n==null)throw new Error(t);return n}function sA(r,e){let t=r.MAX_COMBINED_TEXTURE_IMAGE_UNITS-1,n=e+r.TEXTURE0;if(n<r.TEXTURE0||n>t){let o=`[gl.TEXTURE0, gl.TEXTURE${t}]`;throw new Error(`textureUnit must be in ${o}.`)}}function La(r,e=2){return y.sizeFromShape(r.slice(0,r.length-e))}function za(r){if(r.length===0)throw Error("Cannot get rows and columns of an empty shape array.");return[r.length>1?r[r.length-2]:1,r[r.length-1]]}function Cf(r){let e=[1,1,1];return r.length===0||r.length===1&&r[0]===1||(e=[La(r),...za(r)]),e}function tk(r,e=!1){let t=W().getNumber("WEBGL_MAX_TEXTURE_SIZE");e&&(t=t*2,r=r.map((o,s)=>s>=r.length-2?y.nearestLargerEven(r[s]):r[s]),r.length===1&&(r=[2,r[0]])),r.length!==2&&(r=y.squeezeShape(r).newShape);let n=y.sizeFromShape(r);if(r.length<=1&&n<=t)return[1,n];if(r.length===2&&r[0]<=t&&r[1]<=t)return r;if(r.length===3&&r[0]*r[1]<=t&&r[2]<=t)return[r[0]*r[1],r[2]];if(r.length===3&&r[0]<=t&&r[1]*r[2]<=t)return[r[0],r[1]*r[2]];if(r.length===4&&r[0]*r[1]*r[2]<=t&&r[3]<=t)return[r[0]*r[1]*r[2],r[3]];if(r.length===4&&r[0]<=t&&r[1]*r[2]*r[3]<=t)return[r[0],r[1]*r[2]*r[3]];if(e){let o=La(r),s=2,a=2;return r.length&&([s,a]=za(r)),n=o*(s/2)*(a/2),y.sizeToSquarishShape(n).map(i=>i*2)}return y.sizeToSquarishShape(n)}function Fg(r){return r%2==0}function hl(r,e){if(r=r.slice(-2),e=e.slice(-2),y.arraysEqual(r,e)||!r.length||!e.length||r[0]===0||r[1]===0||e[0]===0||e[1]===0)return!0;if(r.length!==e.length){let t=r.slice(-1)[0],n=e.slice(-1)[0];if(t===n||Fg(t)&&Fg(n)&&(r[0]===1||e[0]===1))return!0}return r[1]===e[1]&&Fg(r[0])&&Fg(e[0])}var Og,Pg;function rk(r){if(Og==null){let e=Mn(r);Og=e.getParameter(e.MAX_TEXTURE_SIZE)}return Og}function n5(){Og=null}function o5(){Pg=null}function nk(r){if(Pg==null){let e=Mn(r);Pg=e.getParameter(e.MAX_TEXTURE_IMAGE_UNITS)}return Math.min(16,Pg)}function ok(r){if(r===0)return 0;let e,t=Mn(r);return kn(t,"EXT_disjoint_timer_query_webgl2")&&r===2?e=2:kn(t,"EXT_disjoint_timer_query")?e=1:e=0,e}function kn(r,e){return r.getExtension(e)!=null}function Mg(r){try{if(Mn(r)!=null)return!0}catch(e){return console.log("Error when getting WebGL context: ",e),!1}return!1}function ik(r){if(r===0)return!1;let e=Mn(r);if(r===1){if(!kn(e,"OES_texture_float"))return!1}else if(!kn(e,"EXT_color_buffer_float"))return!1;return sk(e)}function ak(r){if(r===0)return!1;let e=Mn(r);if(r===1){if(!kn(e,"OES_texture_float")||!kn(e,"WEBGL_color_buffer_float"))return!1}else{if(kn(e,"EXT_color_buffer_float"))return sk(e);let n="EXT_color_buffer_half_float";if(kn(e,n)){let o=e.getExtension(n);return s5(e,o)}return!1}return sk(e)}function sk(r){let e=_f(r),t=r.createTexture();r.bindTexture(r.TEXTURE_2D,t);let n=1,o=1;r.texImage2D(r.TEXTURE_2D,0,e.internalFormatFloat,n,o,0,e.textureFormatFloat,e.textureTypeFloat,null);let s=r.createFramebuffer();r.bindFramebuffer(r.FRAMEBUFFER,s),r.framebufferTexture2D(r.FRAMEBUFFER,r.COLOR_ATTACHMENT0,r.TEXTURE_2D,t,0);let a=r.checkFramebufferStatus(r.FRAMEBUFFER)===r.FRAMEBUFFER_COMPLETE;return r.bindTexture(r.TEXTURE_2D,null),r.bindFramebuffer(r.FRAMEBUFFER,null),r.deleteTexture(t),r.deleteFramebuffer(s),a}function s5(r,e){let t=_f(r,e),n=r.createTexture();r.bindTexture(r.TEXTURE_2D,n);let o=1,s=1;r.texImage2D(r.TEXTURE_2D,0,t.internalFormatHalfFloat,o,s,0,t.textureFormatFloat,t.textureTypeHalfFloat,null);let a=r.createFramebuffer();r.bindFramebuffer(r.FRAMEBUFFER,a),r.framebufferTexture2D(r.FRAMEBUFFER,r.COLOR_ATTACHMENT0,r.TEXTURE_2D,n,0);let i=r.checkFramebufferStatus(r.FRAMEBUFFER)===r.FRAMEBUFFER_COMPLETE;return r.bindTexture(r.TEXTURE_2D,null),r.bindFramebuffer(r.FRAMEBUFFER,null),r.deleteTexture(n),r.deleteFramebuffer(a),i}function lk(r){return r!==2?!1:Mn(r).fenceSync!=null}function $s(r,e){Array.isArray(r)||(r=[r]),r.forEach(t=>{t!=null&&y.assert(t.dtype!=="complex64",()=>`${e} does not support complex64 tensors in the WebGL backend.`)})}var Be=W();Be.registerFlag("HAS_WEBGL",()=>Be.getNumber("WEBGL_VERSION")>0);Be.registerFlag("WEBGL_VERSION",()=>Mg(2)?2:Mg(1)?1:0);Be.registerFlag("WEBGL_CHECK_NUMERICAL_PROBLEMS",()=>!1);Be.registerFlag("WEBGL_BUFFER_SUPPORTED",()=>Be.get("WEBGL_VERSION")===2);Be.registerFlag("WEBGL_CPU_FORWARD",()=>!0);Be.registerFlag("WEBGL_FORCE_F16_TEXTURES",()=>!1);Be.registerFlag("WEBGL_PACK",()=>Be.getBool("HAS_WEBGL"));Be.registerFlag("WEBGL_PACK_NORMALIZATION",()=>Be.getBool("WEBGL_PACK"));Be.registerFlag("WEBGL_PACK_CLIP",()=>Be.getBool("WEBGL_PACK"));Be.registerFlag("WEBGL_PACK_DEPTHWISECONV",()=>!1);Be.registerFlag("WEBGL_PACK_BINARY_OPERATIONS",()=>Be.getBool("WEBGL_PACK"));Be.registerFlag("WEBGL_PACK_UNARY_OPERATIONS",()=>Be.getBool("WEBGL_PACK"));Be.registerFlag("WEBGL_PACK_ARRAY_OPERATIONS",()=>Be.getBool("WEBGL_PACK"));Be.registerFlag("WEBGL_PACK_IMAGE_OPERATIONS",()=>Be.getBool("WEBGL_PACK"));Be.registerFlag("WEBGL_PACK_REDUCE",()=>Be.getBool("WEBGL_PACK"));Be.registerFlag("WEBGL_LAZILY_UNPACK",()=>Be.getBool("WEBGL_PACK"));Be.registerFlag("WEBGL_CONV_IM2COL",()=>Be.getBool("WEBGL_PACK"));Be.registerFlag("WEBGL_MAX_TEXTURE_SIZE",()=>rk(Be.getNumber("WEBGL_VERSION")));Be.registerFlag("WEBGL_MAX_TEXTURES_IN_SHADER",()=>nk(Be.getNumber("WEBGL_VERSION")));Be.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION",()=>{let r=Be.getNumber("WEBGL_VERSION");return r===0?0:ok(r)});Be.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE",()=>Be.getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0&&!Vc.isMobile());Be.registerFlag("WEBGL_RENDER_FLOAT32_CAPABLE",()=>ik(Be.getNumber("WEBGL_VERSION")));Be.registerFlag("WEBGL_RENDER_FLOAT32_ENABLED",()=>Be.getBool("WEBGL_FORCE_F16_TEXTURES")?!1:Be.getBool("WEBGL_RENDER_FLOAT32_CAPABLE"));Be.registerFlag("WEBGL_DOWNLOAD_FLOAT_ENABLED",()=>ak(Be.getNumber("WEBGL_VERSION")));Be.registerFlag("WEBGL_FENCE_API_ENABLED",()=>lk(Be.getNumber("WEBGL_VERSION")));Be.registerFlag("WEBGL_SIZE_UPLOAD_UNIFORM",()=>Be.getBool("WEBGL_RENDER_FLOAT32_ENABLED")?4:0);Be.registerFlag("WEBGL_DELETE_TEXTURE_THRESHOLD",()=>-1,r=>{if(r<0&&r!==-1)throw new Error(`WEBGL_DELETE_TEXTURE_THRESHOLD must be -1 (indicating never delete) or at least 0, but got ${r}.`)});function Pt(){let r,e,t,n,o,s,a,i,l,u;return W().getNumber("WEBGL_VERSION")===2?(r="#version 300 es",e="in",t="out",n="in",o="texture",s="outputColor",a="out vec4 outputColor;",i=`
bool isnan_custom(float val) {
return (val > 0.0 || val < 0.0) ? false : val != 0.0;
}
bvec4 isnan_custom(vec4 val) {
return bvec4(isnan_custom(val.x),
isnan_custom(val.y), isnan_custom(val.z), isnan_custom(val.w));
}
#define isnan(value) isnan_custom(value)
`,l="",u=`
#define round(value) newRound(value)
int newRound(float value) {
return int(floor(value + 0.5));
}
ivec4 newRound(vec4 value) {
return ivec4(floor(value + vec4(0.5)));
}
`):(r="",e="attribute",t="varying",n="varying",o="texture2D",s="gl_FragColor",a="",i=`
#define isnan(value) isnan_custom(value)
bool isnan_custom(float val) {
return (val > 0. || val < 1. || val == 0.) ? false : true;
}
bvec4 isnan_custom(vec4 val) {
return bvec4(isnan(val.x), isnan(val.y), isnan(val.z), isnan(val.w));
}
`,l=`
uniform float INFINITY;
bool isinf(float val) {
return abs(val) == INFINITY;
}
bvec4 isinf(vec4 val) {
return equal(abs(val), vec4(INFINITY));
}
`,u=`
int round(float value) {
return int(floor(value + 0.5));
}
ivec4 round(vec4 value) {
return ivec4(floor(value + vec4(0.5)));
}
`),{version:r,attribute:e,varyingVs:t,varyingFs:n,texture2D:o,output:s,defineOutput:a,defineSpecialNaN:i,defineSpecialInf:l,defineRound:u}}function Rs(r,e,t="index"){let n=y.computeStrides(e);return n.map((o,s)=>{let a=`int ${r[s]} = ${t} / ${o}`,i=s===n.length-1?`int ${r[s+1]} = ${t} - ${r[s]} * ${o}`:`index -= ${r[s]} * ${o}`;return`${a}; ${i};`}).join("")}function hp(r){let e=y.computeStrides(r).map(t=>t.toString());return`
int getFlatIndex(ivec3 coords) {
return coords.x * ${e[0]} + coords.y * ${e[1]} + coords.z;
}
`}var Lg=`
const float FLOAT_MAX = 1.70141184e38;
const float FLOAT_MIN = 1.17549435e-38;
lowp vec4 encode_float(highp float v) {
if (isnan(v)) {
return vec4(255, 255, 255, 255);
}
highp float av = abs(v);
if(av < FLOAT_MIN) {
return vec4(0.0, 0.0, 0.0, 0.0);
} else if(v > FLOAT_MAX) {
return vec4(0.0, 0.0, 128.0, 127.0) / 255.0;
} else if(v < -FLOAT_MAX) {
return vec4(0.0, 0.0, 128.0, 255.0) / 255.0;
}
highp vec4 c = vec4(0,0,0,0);
highp float e = floor(log2(av));
highp float m = exp2(fract(log2(av))) - 1.0;
c[2] = floor(128.0 * m);
m -= c[2] / 128.0;
c[1] = floor(32768.0 * m);
m -= c[1] / 32768.0;
c[0] = floor(8388608.0 * m);
highp float ebias = e + 127.0;
c[3] = floor(ebias / 2.0);
ebias -= c[3] * 2.0;
c[2] += floor(ebias) * 128.0;
c[3] += 128.0 * step(0.0, -v);
return c / 255.0;
}
`;var uk=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outPackingScheme=fl.DENSE;let t=dl(e),n=Pt();this.outputShape=e,this.userCode=`
ivec3 outCoordsFromFlatIndex(int index) {
${Rs(["r","c","d"],e)}
return ivec3(r, c, d);
}
void main() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = 4 * (resTexRC.x * ${t[1]} + resTexRC.y);
vec4 result = vec4(0.);
for (int i=0; i<4; i++) {
int flatIndex = index + i;
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
result[i] = getA(rc.x, rc.y, rc.z);
}
${n.output} = result;
}
`}};var ck=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outPackingScheme=fl.DENSE;let t=dl(e),n=Pt();this.outputShape=e,this.userCode=`
ivec3 outCoordsFromFlatIndex(int index) {
${Rs(["r","c","d"],e)}
return ivec3(r, c, d);
}
void main() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = 4 * (resTexRC.x * ${t[1]} + resTexRC.y);
vec4 result = vec4(0.);
for (int i=0; i<4; i++) {
int flatIndex = index + i;
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
result[i] = getChannel(getA(rc.x, rc.y, rc.z), vec2(rc.y, rc.z));
}
${n.output} = result;
}
`}};var pk=class{constructor(e){this.variableNames=["A"],this.outTexUsage=Ar.DOWNLOAD;let t=Pt();this.outputShape=e,this.userCode=`
${Lg}
void main() {
float x = getAAtOutCoords();
${t.output} = encode_float(x);
}
`}};var mk=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outTexUsage=Ar.DOWNLOAD;let t=Pt();this.outputShape=e,this.userCode=`
${Lg}
void main() {
ivec3 coords = getOutputCoords();
float x = getChannel(getAAtOutCoords(), vec2(coords.y, coords.z));
${t.output} = encode_float(x);
}
`}};var fk=class{constructor(e,t,n=!1){this.variableNames=["A"];let o=Pt(),[s,a]=t;this.outputShape=e;let i="result";n&&(i="floor(result * 255. + 0.5)"),this.userCode=`
${hp(e)}
void main() {
ivec3 coords = getOutputCoords();
int flatIndex = getFlatIndex(coords);
int offset = imod(flatIndex, 4);
flatIndex = idiv(flatIndex, 4, 1.);
int r = flatIndex / ${a};
int c = imod(flatIndex, ${a});
vec2 uv = (vec2(c, r) + halfCR) / vec2(${a}.0, ${s}.0);
vec4 values = ${o.texture2D}(A, uv);
float result;
if(offset == 0) {
result = values[0];
} else if(offset == 1) {
result = values[1];
} else if(offset == 2) {
result = values[2];
} else {
result = values[3];
}
${o.output} = vec4(${i}, 0., 0., 0.);
}
`}};var dk=class{constructor(e,t,n=!1){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let o=Pt(),[s,a]=t;this.outputShape=e;let i="",l="result";n&&(l="floor(result * 255. + 0.5)");for(let u=0;u<=1;u++)for(let c=0;c<=1;c++){let p=u*2+c;i+=`
localCoords = coords;
if(localCoords[2] + ${c} < ${e[2]}) {
localCoords[2] += ${c};
if(localCoords[1] + ${u} < ${e[1]}) {
localCoords[1] += ${u};
flatIndex = getFlatIndex(localCoords);
offset = imod(flatIndex, 4);
flatIndex = idiv(flatIndex, 4, 1.);
r = flatIndex / ${a};
c = imod(flatIndex, ${a});
uv = (vec2(c, r) + halfCR) / vec2(${a}.0, ${s}.0);
values = ${o.texture2D}(A, uv);
if(offset == 0) {
result[${p}] = values[0];
} else if(offset == 1) {
result[${p}] = values[1];
} else if(offset == 2) {
result[${p}] = values[2];
} else {
result[${p}] = values[3];
}
}
}
`}this.userCode=`
${hp(e)}
void main() {
ivec3 coords = getOutputCoords();
vec4 result = vec4(0.);
int flatIndex, r, c, offset;
ivec3 localCoords;
vec2 uv;
vec4 values;
${i}
${o.output} = ${l};
}
`}};var lA={};Ye(lA,{bindVertexProgramAttributeStreams:()=>vk,createBufferFromOutputTexture:()=>Nk,createFloat16MatrixTexture:()=>bk,createFloat16PackedMatrixTexture:()=>kk,createFloat32MatrixTexture:()=>yk,createIndexBuffer:()=>xk,createPackedMatrixTexture:()=>_k,createUnsignedBytesMatrixTexture:()=>wk,createVertexBuffer:()=>gk,createVertexShader:()=>hk,downloadByteEncodedFloatMatrixFromOutputTexture:()=>Tk,downloadFloat32MatrixFromBuffer:()=>Sk,downloadMatrixFromPackedOutputTexture:()=>Ak,downloadPackedMatrixFromBuffer:()=>Ek,getInternalFormatForFloat16MatrixTexture:()=>Bg,getInternalFormatForFloat16PackedMatrixTexture:()=>jg,getInternalFormatForFloat32MatrixTexture:()=>zg,getInternalFormatForPackedMatrixTexture:()=>Gg,getInternalFormatForUnsignedBytesMatrixTexture:()=>Vg,uploadDenseMatrixToTexture:()=>Ck,uploadPixelDataToTexture:()=>Ik});function hk(r){let e=Pt(),t=`${e.version}
precision highp float;
${e.attribute} vec3 clipSpacePos;
${e.attribute} vec2 uv;
${e.varyingVs} vec2 resultUV;
void main() {
gl_Position = vec4(clipSpacePos, 1);
resultUV = uv;
}`;return j_(r,t)}function gk(r){let e=new Float32Array([-1,1,0,0,1,-1,-1,0,0,0,1,1,0,1,1,1,-1,0,1,0]);return H_(r,e)}function xk(r){let e=new Uint16Array([0,1,2,2,1,3]);return K_(r,e)}function If(r,e,t,n,o,s){Y_(e,t);let a=X_(r),i=r.TEXTURE_2D;return Ne(r,()=>r.bindTexture(i,a)),Ne(r,()=>r.texParameteri(i,r.TEXTURE_WRAP_S,r.CLAMP_TO_EDGE)),Ne(r,()=>r.texParameteri(i,r.TEXTURE_WRAP_T,r.CLAMP_TO_EDGE)),Ne(r,()=>r.texParameteri(i,r.TEXTURE_MIN_FILTER,r.NEAREST)),Ne(r,()=>r.texParameteri(i,r.TEXTURE_MAG_FILTER,r.NEAREST)),Ne(r,()=>r.texImage2D(i,0,n,e,t,0,o,s,null)),Ne(r,()=>r.bindTexture(r.TEXTURE_2D,null)),a}function zg(r){return r.internalFormatFloat}function yk(r,e,t,n){let[o,s]=Yu(e,t);return If(r,o,s,zg(n),n.textureFormatFloat,r.FLOAT)}function Bg(r){return r.internalFormatHalfFloat}function bk(r,e,t,n){let[o,s]=Yu(e,t);return If(r,o,s,Bg(n),n.textureFormatFloat,n.textureTypeHalfFloat)}function Vg(r){return r.downloadTextureFormat}function wk(r,e,t,n){let[o,s]=Yu(e,t);return If(r,o,s,Vg(n),r.RGBA,r.UNSIGNED_BYTE)}function Gg(r){return r.internalFormatPackedFloat}function _k(r,e,t,n){let[o,s]=ji(e,t);return If(r,o,s,Gg(n),r.RGBA,r.FLOAT)}function jg(r){return r.internalFormatPackedHalfFloat}function kk(r,e,t,n){let[o,s]=ji(e,t);return If(r,o,s,jg(n),r.RGBA,n.textureTypeHalfFloat)}function vk(r,e,t){let n=0,o=3*4,s=3*4+2*4;return Ne(r,()=>r.bindBuffer(r.ARRAY_BUFFER,t)),$g(r,e,"clipSpacePos",t,3,s,n)&&$g(r,e,"uv",t,2,s,o)}function Ck(r,e,t,n,o,s){Ne(r,()=>r.bindTexture(r.TEXTURE_2D,e));let a,i,l;o instanceof Uint8Array?(a=new Uint8Array(t*n*4),i=r.UNSIGNED_BYTE,l=r.RGBA):(a=new Float32Array(t*n*4),i=r.FLOAT,l=s.internalFormatPackedFloat),a.set(o),Ne(r,()=>r.texImage2D(r.TEXTURE_2D,0,l,t,n,0,r.RGBA,i,a)),Ne(r,()=>r.bindTexture(r.TEXTURE_2D,null))}function Ik(r,e,t){Ne(r,()=>r.bindTexture(r.TEXTURE_2D,e)),t.data instanceof Uint8Array?Ne(r,()=>r.texImage2D(r.TEXTURE_2D,0,r.RGBA,t.width,t.height,0,r.RGBA,r.UNSIGNED_BYTE,t.data)):Ne(r,()=>r.texImage2D(r.TEXTURE_2D,0,r.RGBA,r.RGBA,r.UNSIGNED_BYTE,t)),Ne(r,()=>r.bindTexture(r.TEXTURE_2D,null))}function Nk(r,e,t,n){let o=r.createBuffer();Ne(r,()=>r.bindBuffer(r.PIXEL_PACK_BUFFER,o));let i=4*4*e*t;return Ne(r,()=>r.bufferData(r.PIXEL_PACK_BUFFER,i,r.STREAM_READ)),Ne(r,()=>r.readPixels(0,0,t,e,r.RGBA,r.FLOAT,0)),Ne(r,()=>r.bindBuffer(r.PIXEL_PACK_BUFFER,null)),o}function Sk(r,e,t){let n=r,o=new Float32Array(t);return n.bindBuffer(n.PIXEL_PACK_BUFFER,e),n.getBufferSubData(n.PIXEL_PACK_BUFFER,0,o),n.bindBuffer(n.PIXEL_PACK_BUFFER,null),o}function Tk(r,e,t,n){let[o,s]=Yu(e,t),a=4,i=new Uint8Array(tA(e*t,a));return Ne(r,()=>r.readPixels(0,0,o,s,n.downloadTextureFormat,r.UNSIGNED_BYTE,i)),new Float32Array(i.buffer)}function Ek(r,e,t,n,o,s,a,i){let l=r,u=new Float32Array(rA(s,a));return l.bindBuffer(l.PIXEL_PACK_BUFFER,e),l.getBufferSubData(l.PIXEL_PACK_BUFFER,0,u),l.bindBuffer(l.PIXEL_PACK_BUFFER,null),u}function Ak(r,e,t){let n=new Float32Array(e*t*4);return Ne(r,()=>r.readPixels(0,0,t,e,r.RGBA,r.FLOAT,n)),n}var Wg=class{constructor(e){this.outputTexture=null,this.program=null,this.disposed=!1,this.vertexAttrsAreBound=!1,this.itemsToPoll=[];let t=W().getNumber("WEBGL_VERSION");e!=null?(this.gl=e,V_(t,e)):this.gl=Mn(t);let n="WEBGL_color_buffer_float",o="EXT_color_buffer_half_float";if(W().getNumber("WEBGL_VERSION")===1){let s="OES_texture_float",a="OES_texture_half_float";if(this.textureFloatExtension=fp(this.gl,s),kn(this.gl,a))this.textureHalfFloatExtension=fp(this.gl,a);else if(W().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support half float textures, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.");if(this.colorBufferFloatExtension=this.gl.getExtension(n),kn(this.gl,o))this.colorBufferHalfFloatExtension=fp(this.gl,o);else if(W().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support color renderable half floats, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.")}else if(n="EXT_color_buffer_float",kn(this.gl,n))this.colorBufferFloatExtension=this.gl.getExtension(n);else if(kn(this.gl,o))this.colorBufferHalfFloatExtension=this.gl.getExtension(o);else throw new Error("GL context does not support color renderable floats");this.vertexBuffer=gk(this.gl),this.indexBuffer=xk(this.gl),this.framebuffer=Z_(this.gl),this.textureConfig=_f(this.gl,this.textureHalfFloatExtension)}get debug(){return W().getBool("DEBUG")}dispose(){if(this.disposed)return;this.program!=null&&console.warn("Disposing a GPGPUContext that still has a bound WebGLProgram. This is probably a resource leak, delete the program with GPGPUContext.deleteProgram before disposing."),this.outputTexture!=null&&console.warn("Disposing a GPGPUContext that still has a bound output matrix texture. This is probably a resource leak, delete the output matrix texture with GPGPUContext.deleteMatrixTexture before disposing.");let e=this.gl;Ne(e,()=>e.finish()),Ne(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),Ne(e,()=>e.deleteFramebuffer(this.framebuffer)),Ne(e,()=>e.bindBuffer(e.ARRAY_BUFFER,null)),Ne(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,null)),Ne(e,()=>e.deleteBuffer(this.indexBuffer)),this.disposed=!0}createFloat32MatrixTexture(e,t){return this.throwIfDisposed(),yk(this.gl,e,t,this.textureConfig)}createFloat16MatrixTexture(e,t){return this.throwIfDisposed(),bk(this.gl,e,t,this.textureConfig)}createUnsignedBytesMatrixTexture(e,t){return this.throwIfDisposed(),wk(this.gl,e,t,this.textureConfig)}uploadPixelDataToTexture(e,t){this.throwIfDisposed(),Ik(this.gl,e,t)}uploadDenseMatrixToTexture(e,t,n,o){this.throwIfDisposed(),Ck(this.gl,e,t,n,o,this.textureConfig)}createFloat16PackedMatrixTexture(e,t){return this.throwIfDisposed(),kk(this.gl,e,t,this.textureConfig)}createPackedMatrixTexture(e,t){return this.throwIfDisposed(),_k(this.gl,e,t,this.textureConfig)}deleteMatrixTexture(e){this.throwIfDisposed(),this.outputTexture===e&&(Rg(this.gl,this.framebuffer),this.outputTexture=null),Ne(this.gl,()=>this.gl.deleteTexture(e))}downloadByteEncodedFloatMatrixFromOutputTexture(e,t,n){return this.downloadMatrixDriver(e,()=>Tk(this.gl,t,n,this.textureConfig))}downloadPackedMatrixFromBuffer(e,t,n,o,s,a){return Ek(this.gl,e,t,n,o,s,a,this.textureConfig)}downloadFloat32MatrixFromBuffer(e,t){return Sk(this.gl,e,t)}createBufferFromTexture(e,t,n){this.bindTextureToFrameBuffer(e);let o=Nk(this.gl,t,n,this.textureConfig);return this.unbindTextureToFrameBuffer(),o}createAndWaitForFence(){let e=this.createFence(this.gl);return this.pollFence(e)}createFence(e){let t,n;if(W().getBool("WEBGL_FENCE_API_ENABLED")){let o=e,s=o.fenceSync(o.SYNC_GPU_COMMANDS_COMPLETE,0);e.flush(),n=()=>{let a=o.clientWaitSync(s,0,0);return a===o.ALREADY_SIGNALED||a===o.CONDITION_SATISFIED},t=s}else W().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0?(t=this.beginQuery(),this.endQuery(),n=()=>this.isQueryAvailable(t,W().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))):n=()=>!0;return{query:t,isFencePassed:n}}downloadMatrixFromPackedTexture(e,t,n){return this.downloadMatrixDriver(e,()=>Ak(this.gl,t,n))}createProgram(e){this.throwIfDisposed();let t=this.gl,n=W_(t,e),o=hk(t),s=U_(t);return Ne(t,()=>t.attachShader(s,o)),Ne(t,()=>t.attachShader(s,n)),q_(t,s),this.debug&&kf(t,s),this.vertexAttrsAreBound||(this.setProgram(s),this.vertexAttrsAreBound=vk(t,this.program,this.vertexBuffer)),s}deleteProgram(e){this.throwIfDisposed(),e===this.program&&(this.program=null),e!=null&&Ne(this.gl,()=>this.gl.deleteProgram(e))}setProgram(e){this.throwIfDisposed(),this.program=e,this.program!=null&&this.debug&&kf(this.gl,this.program),Ne(this.gl,()=>this.gl.useProgram(e))}getUniformLocation(e,t,n=!0){return this.throwIfDisposed(),n?J_(this.gl,e,t):Q_(this.gl,e,t)}getAttributeLocation(e,t){return this.throwIfDisposed(),Ne(this.gl,()=>this.gl.getAttribLocation(e,t))}getUniformLocationNoThrow(e,t){return this.throwIfDisposed(),this.gl.getUniformLocation(e,t)}setInputMatrixTexture(e,t,n){this.throwIfDisposed(),this.throwIfNoProgram(),ek(this.gl,e,t,n)}setOutputMatrixTexture(e,t,n){this.setOutputMatrixTextureDriver(e,n,t)}setOutputPackedMatrixTexture(e,t,n){this.throwIfDisposed();let[o,s]=ji(t,n);this.setOutputMatrixTextureDriver(e,o,s)}setOutputMatrixWriteRegion(e,t,n,o){this.setOutputMatrixWriteRegionDriver(n,e,o,t)}setOutputPackedMatrixWriteRegion(e,t,n,o){throw new Error("setOutputPackedMatrixWriteRegion not implemented.")}debugValidate(){this.program!=null&&kf(this.gl,this.program),dp(this.gl)}executeProgram(){this.throwIfDisposed(),this.throwIfNoProgram();let e=this.gl;this.debug&&this.debugValidate(),Ne(e,()=>e.drawElements(e.TRIANGLES,6,e.UNSIGNED_SHORT,0))}blockUntilAllProgramsCompleted(){this.throwIfDisposed(),Ne(this.gl,()=>this.gl.finish())}getQueryTimerExtension(){return this.disjointQueryTimerExtension==null&&(this.disjointQueryTimerExtension=fp(this.gl,W().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2?"EXT_disjoint_timer_query_webgl2":"EXT_disjoint_timer_query")),this.disjointQueryTimerExtension}getQueryTimerExtensionWebGL2(){return this.getQueryTimerExtension()}getQueryTimerExtensionWebGL1(){return this.getQueryTimerExtension()}beginQuery(){if(W().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let n=this.gl,o=this.getQueryTimerExtensionWebGL2(),s=n.createQuery();return n.beginQuery(o.TIME_ELAPSED_EXT,s),s}let e=this.getQueryTimerExtensionWebGL1(),t=e.createQueryEXT();return e.beginQueryEXT(e.TIME_ELAPSED_EXT,t),t}endQuery(){if(W().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let t=this.gl,n=this.getQueryTimerExtensionWebGL2();t.endQuery(n.TIME_ELAPSED_EXT);return}let e=this.getQueryTimerExtensionWebGL1();e.endQueryEXT(e.TIME_ELAPSED_EXT)}async waitForQueryAndGetTime(e){return await y.repeatedTry(()=>this.disposed||this.isQueryAvailable(e,W().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))),this.getQueryTime(e,W().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))}getQueryTime(e,t){if(t===0)return null;if(t===2){let n=this.gl;return n.getQueryParameter(e,n.QUERY_RESULT)/1e6}else{let n=this.getQueryTimerExtensionWebGL1();return n.getQueryObjectEXT(e,n.QUERY_RESULT_EXT)/1e6}}isQueryAvailable(e,t){if(t===0)return!0;if(t===2){let n=this.gl,o=this.getQueryTimerExtensionWebGL2(),s=n.getQueryParameter(e,n.QUERY_RESULT_AVAILABLE);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(o.GPU_DISJOINT_EXT)),s&&!this.disjoint}else{let n=this.getQueryTimerExtensionWebGL1(),o=n.getQueryObjectEXT(e,n.QUERY_RESULT_AVAILABLE_EXT);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(n.GPU_DISJOINT_EXT)),o&&!this.disjoint}}pollFence(e){return new Promise(t=>{this.addItemToPoll(()=>e.isFencePassed(),()=>t())})}pollItems(){let e=i5(this.itemsToPoll.map(t=>t.isDoneFn));for(let t=0;t<=e;++t){let{resolveFn:n}=this.itemsToPoll[t];n()}this.itemsToPoll=this.itemsToPoll.slice(e+1)}addItemToPoll(e,t){this.itemsToPoll.push({isDoneFn:e,resolveFn:t}),!(this.itemsToPoll.length>1)&&y.repeatedTry(()=>(this.pollItems(),this.itemsToPoll.length===0))}bindTextureToFrameBuffer(e){this.throwIfDisposed(),vf(this.gl,e,this.framebuffer),this.debug&&dp(this.gl)}unbindTextureToFrameBuffer(){this.outputTexture!=null?(vf(this.gl,this.outputTexture,this.framebuffer),this.debug&&dp(this.gl)):Rg(this.gl,this.framebuffer)}downloadMatrixDriver(e,t){this.bindTextureToFrameBuffer(e);let n=t();return this.unbindTextureToFrameBuffer(),n}setOutputMatrixTextureDriver(e,t,n){this.throwIfDisposed();let o=this.gl;vf(o,e,this.framebuffer),this.debug&&dp(o),this.outputTexture=e,Ne(o,()=>o.viewport(0,0,t,n)),Ne(o,()=>o.scissor(0,0,t,n))}setOutputMatrixWriteRegionDriver(e,t,n,o){this.throwIfDisposed(),Ne(this.gl,()=>this.gl.scissor(e,t,n,o))}throwIfDisposed(){if(this.disposed)throw new Error("Attempted to use disposed GPGPUContext.")}throwIfNoProgram(){if(this.program==null)throw new Error("No GPU program is currently set.")}};function i5(r){let e=0;for(;e<r.length&&r[e]();++e);return e-1}var{getBroadcastDims:uA}=N;function cA(r,e,t,n){let o=[];r.forEach(d=>{let h=y.sizeFromShape(d.shapeInfo.logicalShape);d.shapeInfo.isUniform?o.push(`uniform float ${d.name}${h>1?`[${h}]`:""};`):(o.push(`uniform sampler2D ${d.name};`),o.push(`uniform int offset${d.name};`))});let s=o.join(`
`),a=r.map(d=>a5(d,e,n)).join(`
`),i=e.texShape,l=Pt(),u=c5(l),c,p,m=f5(l);return e.isPacked?(c=l5(e.logicalShape,i),p=m5(l)):(c=u5(e.logicalShape,i),p=p5(l)),n&&(m+=d5),[m,u,p,s,c,a,t].join(`
`)}function gp(r){let e=r.shapeInfo.logicalShape;switch(e.length){case 0:return h5(r);case 1:return g5(r);case 2:return x5(r);case 3:return y5(r);case 4:return b5(r);case 5:return w5(r);case 6:return _5(r);default:throw new Error(`${e.length}-D input sampling is not yet supported`)}}function pA(r){switch(r.shapeInfo.logicalShape.length){case 0:return k5(r);case 1:return v5(r);case 2:return C5(r);case 3:return I5(r);default:return N5(r)}}function a5(r,e,t=!1){let n="";t?n+=pA(r):n+=gp(r);let o=r.shapeInfo.logicalShape,s=e.logicalShape;return o.length<=s.length&&(t?n+=S5(r,e):n+=T5(r,e)),n}function l5(r,e){switch(r.length){case 0:return mA();case 1:return E5(r,e);case 2:return $5(r,e);case 3:return A5(r,e);default:return D5(r,e)}}function u5(r,e){switch(r.length){case 0:return mA();case 1:return R5(r,e);case 2:return L5(r,e);case 3:return F5(r,e);case 4:return O5(r,e);case 5:return P5(r,e);case 6:return M5(r,e);default:throw new Error(`${r.length}-D output sampling is not yet supported`)}}function c5(r){return`
float sampleTexture(sampler2D textureSampler, vec2 uv) {
return ${r.texture2D}(textureSampler, uv).r;
}
`}function p5(r){return`
void setOutput(float val) {
${r.output} = vec4(val, 0, 0, 0);
}
`}function m5(r){return`
void setOutput(vec4 val) {
${r.output} = val;
}
`}function f5(r){return`${r.version}
precision highp float;
precision highp int;
precision highp sampler2D;
${r.varyingFs} vec2 resultUV;
${r.defineOutput}
const vec2 halfCR = vec2(0.5, 0.5);
struct ivec5
{
int x;
int y;
int z;
int w;
int u;
};
struct ivec6
{
int x;
int y;
int z;
int w;
int u;
int v;
};
uniform float NAN;
${r.defineSpecialNaN}
${r.defineSpecialInf}
${r.defineRound}
int imod(int x, int y) {
return x - y * (x / y);
}
int idiv(int a, int b, float sign) {
int res = a / b;
int mod = imod(a, b);
if (sign < 0. && mod != 0) {
res -= 1;
}
return res;
}
//Based on the work of Dave Hoskins
//https://www.shadertoy.com/view/4djSRW
#define HASHSCALE1 443.8975
float random(float seed){
vec2 p = resultUV * seed;
vec3 p3 = fract(vec3(p.xyx) * HASHSCALE1);
p3 += dot(p3, p3.yzx + 19.19);
return fract((p3.x + p3.y) * p3.z);
}
${z5}
${B5}
${V5}
`}var z5=`
vec2 uvFromFlat(int texNumR, int texNumC, int index) {
int texR = index / texNumC;
int texC = index - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
vec2 packedUVfrom1D(int texNumR, int texNumC, int index) {
int texelIndex = index / 2;
int texR = texelIndex / texNumC;
int texC = texelIndex - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
`,B5=`
vec2 packedUVfrom2D(int texelsInLogicalRow, int texNumR,
int texNumC, int row, int col) {
int texelIndex = (row / 2) * texelsInLogicalRow + (col / 2);
int texR = texelIndex / texNumC;
int texC = texelIndex - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
`,V5=`
vec2 packedUVfrom3D(int texNumR, int texNumC,
int texelsInBatch, int texelsInLogicalRow, int b,
int row, int col) {
int index = b * texelsInBatch + (row / 2) * texelsInLogicalRow + (col / 2);
int texR = index / texNumC;
int texC = index - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
`,d5=`
float getChannel(vec4 frag, vec2 innerDims) {
vec2 modCoord = mod(innerDims, 2.);
return modCoord.x == 0. ?
(modCoord.y == 0. ? frag.r : frag.g) :
(modCoord.y == 0. ? frag.b : frag.a);
}
float getChannel(vec4 frag, int dim) {
float modCoord = mod(float(dim), 2.);
return modCoord == 0. ? frag.r : frag.g;
}
`;function mA(){return`
int getOutputCoords() {
return 0;
}
`}function E5(r,e){let t=[Math.ceil(e[0]/2),Math.ceil(e[1]/2)];return t[0]===1?`
int getOutputCoords() {
return 2 * int(resultUV.x * ${t[1]}.0);
}
`:t[1]===1?`
int getOutputCoords() {
return 2 * int(resultUV.y * ${t[0]}.0);
}
`:`
int getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
return 2 * (resTexRC.x * ${t[1]} + resTexRC.y);
}
`}function R5(r,e){return e[0]===1?`
int getOutputCoords() {
return int(resultUV.x * ${e[1]}.0);
}
`:e[1]===1?`
int getOutputCoords() {
return int(resultUV.y * ${e[0]}.0);
}
`:`
int getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${e[0]}, ${e[1]}));
return resTexRC.x * ${e[1]} + resTexRC.y;
}
`}function A5(r,e){let t=[Math.ceil(e[0]/2),Math.ceil(e[1]/2)],n=Math.ceil(r[2]/2),o=n*Math.ceil(r[1]/2);return`
ivec3 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
int b = index / ${o};
index -= b * ${o};
int r = 2 * (index / ${n});
int c = imod(index, ${n}) * 2;
return ivec3(b, r, c);
}
`}function F5(r,e){let t=Rs(["r","c","d"],r);return`
ivec3 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${e[0]}, ${e[1]}));
int index = resTexRC.x * ${e[1]} + resTexRC.y;
${t}
return ivec3(r, c, d);
}
`}function D5(r,e){let t=[Math.ceil(e[0]/2),Math.ceil(e[1]/2)],n=Math.ceil(r[r.length-1]/2),o=n*Math.ceil(r[r.length-2]/2),s=o,a="",i="b, r, c";for(let l=2;l<r.length-1;l++)s*=r[r.length-l-1],a=`
int b${l} = index / ${s};
index -= b${l} * ${s};
`+a,i=`b${l}, `+i;return`
ivec${r.length} getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${a}
int b = index / ${o};
index -= b * ${o};
int r = 2 * (index / ${n});
int c = imod(index, ${n}) * 2;
return ivec${r.length}(${i});
}
`}function O5(r,e){let t=Rs(["r","c","d","d2"],r);return`
ivec4 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${e[0]}, ${e[1]}));
int index = resTexRC.x * ${e[1]} + resTexRC.y;
${t}
return ivec4(r, c, d, d2);
}
`}function P5(r,e){let t=Rs(["r","c","d","d2","d3"],r);return`
ivec5 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx * vec2(${e[0]},
${e[1]}));
int index = resTexRC.x * ${e[1]} + resTexRC.y;
${t}
ivec5 outShape = ivec5(r, c, d, d2, d3);
return outShape;
}
`}function M5(r,e){let t=Rs(["r","c","d","d2","d3","d4"],r);return`
ivec6 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${e[0]}, ${e[1]}));
int index = resTexRC.x * ${e[1]} + resTexRC.y;
${t}
ivec6 result = ivec6(r, c, d, d2, d3, d4);
return result;
}
`}function $5(r,e){let t=[Math.ceil(e[0]/2),Math.ceil(e[1]/2)];if(y.arraysEqual(r,e))return`
ivec2 getOutputCoords() {
return 2 * ivec2(resultUV.yx * vec2(${t[0]}, ${t[1]}));
}
`;let n=Math.ceil(r[1]/2);return`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
int r = 2 * (index / ${n});
int c = imod(index, ${n}) * 2;
return ivec2(r, c);
}
`}function L5(r,e){return y.arraysEqual(r,e)?`
ivec2 getOutputCoords() {
return ivec2(resultUV.yx * vec2(${e[0]}, ${e[1]}));
}
`:r[1]===1?`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${e[0]}, ${e[1]}));
int index = resTexRC.x * ${e[1]} + resTexRC.y;
return ivec2(index, 0);
}
`:r[0]===1?`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${e[0]}, ${e[1]}));
int index = resTexRC.x * ${e[1]} + resTexRC.y;
return ivec2(0, index);
}
`:`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${e[0]}, ${e[1]}));
int index = resTexRC.x * ${e[1]} + resTexRC.y;
int r = index / ${r[1]};
int c = index - r * ${r[1]};
return ivec2(r, c);
}
`}function Zu(r){return`offset${r}`}function k5(r){let e=r.name,t="get"+e.charAt(0).toUpperCase()+e.slice(1),n=Pt();return`
vec4 ${t}() {
return ${n.texture2D}(${e}, halfCR);
}
`}function h5(r){let e=r.name,t="get"+e.charAt(0).toUpperCase()+e.slice(1);if(r.shapeInfo.isUniform)return`float ${t}() {return ${e};}`;let[n,o]=r.shapeInfo.texShape;if(n===1&&o===1)return`
float ${t}() {
return sampleTexture(${e}, halfCR);
}
`;let[s,a]=r.shapeInfo.texShape,i=Zu(e);return`
float ${t}() {
vec2 uv = uvFromFlat(${s}, ${a}, ${i});
return sampleTexture(${e}, uv);
}
`}function v5(r){let e=r.name,t="get"+e.charAt(0).toUpperCase()+e.slice(1),n=r.shapeInfo.texShape,o=[Math.ceil(n[0]/2),Math.ceil(n[1]/2)],s=Pt();return`
vec4 ${t}(int index) {
vec2 uv = packedUVfrom1D(
${o[0]}, ${o[1]}, index);
return ${s.texture2D}(${e}, uv);
}
`}function g5(r){let e=r.name,t="get"+e.charAt(0).toUpperCase()+e.slice(1);if(r.shapeInfo.isUniform)return`
float ${t}(int index) {
${xp(r)}
}
`;let n=r.shapeInfo.texShape,o=n[0],s=n[1];if(s===1&&o===1)return`
float ${t}(int index) {
return sampleTexture(${e}, halfCR);
}
`;let a=Zu(e);return s===1?`
float ${t}(int index) {
vec2 uv = vec2(0.5, (float(index + ${a}) + 0.5) / ${o}.0);
return sampleTexture(${e}, uv);
}
`:o===1?`
float ${t}(int index) {
vec2 uv = vec2((float(index + ${a}) + 0.5) / ${s}.0, 0.5);
return sampleTexture(${e}, uv);
}
`:`
float ${t}(int index) {
vec2 uv = uvFromFlat(${o}, ${s}, index + ${a});
return sampleTexture(${e}, uv);
}
`}function C5(r){let e=r.shapeInfo.logicalShape,t=r.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1),o=r.shapeInfo.texShape,s=o[0],a=o[1],i=Pt();if(o!=null&&y.arraysEqual(e,o))return`
vec4 ${n}(int row, int col) {
vec2 uv = (vec2(col, row) + halfCR) / vec2(${a}.0, ${s}.0);
return ${i.texture2D}(${t}, uv);
}
`;let l=[Math.ceil(o[0]/2),Math.ceil(o[1]/2)],u=Math.ceil(e[1]/2);return`
vec4 ${n}(int row, int col) {
vec2 uv = packedUVfrom2D(${u}, ${l[0]}, ${l[1]}, row, col);
return ${i.texture2D}(${t}, uv);
}
`}function x5(r){let e=r.shapeInfo.logicalShape,t=r.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1),o=r.shapeInfo.texShape;if(o!=null&&y.arraysEqual(e,o)){let p=o[0],m=o[1];return`
float ${n}(int row, int col) {
vec2 uv = (vec2(col, row) + halfCR) / vec2(${m}.0, ${p}.0);
return sampleTexture(${t}, uv);
}
`}let{newShape:s,keptDims:a}=y.squeezeShape(e),i=s;if(i.length<e.length){let p=yp(r,i),m=["row","col"];return`
${gp(p)}
float ${n}(int row, int col) {
return ${n}(${bp(m,a)});
}
`}if(r.shapeInfo.isUniform)return`
float ${n}(int row, int col) {
int index = round(dot(vec2(row, col), vec2(${e[1]}, 1)));
${xp(r)}
}
`;let l=o[0],u=o[1],c=Zu(t);return u===1?`
float ${n}(int row, int col) {
float index = dot(vec3(row, col, ${c}), vec3(${e[1]}, 1, 1));
vec2 uv = vec2(0.5, (index + 0.5) / ${l}.0);
return sampleTexture(${t}, uv);
}
`:l===1?`
float ${n}(int row, int col) {
float index = dot(vec3(row, col, ${c}), vec3(${e[1]}, 1, 1));
vec2 uv = vec2((index + 0.5) / ${u}.0, 0.5);
return sampleTexture(${t}, uv);
}
`:`
float ${n}(int row, int col) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${e[1]} + col + ${c};
vec2 uv = uvFromFlat(${l}, ${u}, index);
return sampleTexture(${t}, uv);
}
`}function I5(r){let e=r.shapeInfo.logicalShape,t=r.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1),o=r.shapeInfo.texShape,s=[Math.ceil(o[0]/2),Math.ceil(o[1]/2)];if(e[0]===1){let p=e.slice(1),m=[1,2],f=yp(r,p),d=["b","row","col"];return`
${pA(f)}
vec4 ${n}(int b, int row, int col) {
return ${n}(${bp(d,m)});
}
`}let a=s[0],i=s[1],l=Math.ceil(e[2]/2),u=l*Math.ceil(e[1]/2),c=Pt();return`
vec4 ${n}(int b, int row, int col) {
vec2 uv = packedUVfrom3D(
${a}, ${i}, ${u}, ${l}, b, row, col);
return ${c.texture2D}(${t}, uv);
}
`}function y5(r){let e=r.shapeInfo.logicalShape,t=r.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1),o=e[1]*e[2],s=e[2],{newShape:a,keptDims:i}=y.squeezeShape(e),l=a;if(l.length<e.length){let d=yp(r,l),h=["row","col","depth"];return`
${gp(d)}
float ${n}(int row, int col, int depth) {
return ${n}(${bp(h,i)});
}
`}if(r.shapeInfo.isUniform)return`
float ${n}(int row, int col, int depth) {
int index = round(dot(vec3(row, col, depth),
vec3(${o}, ${s}, 1)));
${xp(r)}
}
`;let u=r.shapeInfo.texShape,c=u[0],p=u[1],m=r.shapeInfo.flatOffset;if(p===o&&m==null)return`
float ${n}(int row, int col, int depth) {
float texR = float(row);
float texC = dot(vec2(col, depth), vec2(${s}, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${p}.0, ${c}.0);
return sampleTexture(${t}, uv);
}
`;if(p===s&&m==null)return`
float ${n}(int row, int col, int depth) {
float texR = dot(vec2(row, col), vec2(${e[1]}, 1));
float texC = float(depth);
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${p}.0, ${c}.0);
return sampleTexture(${t}, uv);
}
`;let f=Zu(t);return`
float ${n}(int row, int col, int depth) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${o} + col * ${s} + depth + ${f};
vec2 uv = uvFromFlat(${c}, ${p}, index);
return sampleTexture(${t}, uv);
}
`}function N5(r){let e=r.shapeInfo.logicalShape,t=e.length,n=r.name,o="get"+n.charAt(0).toUpperCase()+n.slice(1),s=r.shapeInfo.texShape,a=[Math.ceil(s[0]/2),Math.ceil(s[1]/2)],i=a[0],l=a[1],u=Math.ceil(e[t-1]/2),c=u*Math.ceil(e[t-2]/2),p="int b, int row, int col",m=`b * ${c} + (row / 2) * ${u} + (col / 2)`;for(let d=2;d<t-1;d++)p=`int b${d}, `+p,c*=e[t-d-1],m=`b${d} * ${c} + `+m;let f=Pt();return`
vec4 ${o}(${p}) {
int index = ${m};
int texR = index / ${l};
int texC = index - texR * ${l};
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${l}, ${i});
return ${f.texture2D}(${n}, uv);
}
`}function b5(r){let e=r.shapeInfo.logicalShape,t=r.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1),o=e[3],s=e[2]*o,a=e[1]*s,{newShape:i,keptDims:l}=y.squeezeShape(e);if(i.length<e.length){let d=yp(r,i),h=["row","col","depth","depth2"];return`
${gp(d)}
float ${n}(int row, int col, int depth, int depth2) {
return ${n}(${bp(h,l)});
}
`}if(r.shapeInfo.isUniform)return`
float ${n}(int row, int col, int depth, int depth2) {
int index = round(dot(vec4(row, col, depth, depth2),
vec4(${a}, ${s}, ${o}, 1)));
${xp(r)}
}
`;let u=r.shapeInfo.flatOffset,c=r.shapeInfo.texShape,p=c[0],m=c[1];if(m===a&&u==null)return`
float ${n}(int row, int col, int depth, int depth2) {
float texR = float(row);
float texC =
dot(vec3(col, depth, depth2),
vec3(${s}, ${o}, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${m}.0, ${p}.0);
return sampleTexture(${t}, uv);
}
`;if(m===o&&u==null)return`
float ${n}(int row, int col, int depth, int depth2) {
float texR = dot(vec3(row, col, depth),
vec3(${e[1]*e[2]}, ${e[2]}, 1));
float texC = float(depth2);
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${m}.0, ${p}.0);
return sampleTexture(${t}, uv);
}
`;let f=Zu(t);return`
float ${n}(int row, int col, int depth, int depth2) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${a} + col * ${s} +
depth * ${o} + depth2;
vec2 uv = uvFromFlat(${p}, ${m}, index + ${f});
return sampleTexture(${t}, uv);
}
`}function w5(r){let e=r.shapeInfo.logicalShape,t=r.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1),o=e[4],s=e[3]*o,a=e[2]*s,i=e[1]*a,{newShape:l,keptDims:u}=y.squeezeShape(e);if(l.length<e.length){let h=yp(r,l),g=["row","col","depth","depth2","depth3"];return`
${gp(h)}
float ${n}(int row, int col, int depth, int depth2, int depth3) {
return ${n}(${bp(g,u)});
}
`}if(r.shapeInfo.isUniform)return`
float ${n}(int row, int col, int depth, int depth2, int depth3) {
float index = dot(
vec4(row, col, depth, depth2),
vec4(${i}, ${a}, ${s}, ${o})) +
depth3;
${xp(r)}
}
`;let c=r.shapeInfo.flatOffset,p=r.shapeInfo.texShape,m=p[0],f=p[1];if(f===i&&c==null)return`
float ${n}(int row, int col, int depth, int depth2, int depth3) {
int texR = row;
float texC = dot(vec4(col, depth, depth2, depth3),
vec4(${a}, ${s}, ${o}, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${f}.0, ${m}.0);
return sampleTexture(${t}, uv);
}
`;if(f===o&&c==null)return`
float ${n}(int row, int col, int depth, int depth2, int depth3) {
float texR = dot(
vec4(row, col, depth, depth2),
vec4(${e[1]*e[2]*e[3]},
${e[2]*e[3]}, ${e[3]}, 1));
int texC = depth3;
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${f}.0, ${m}.0);
return sampleTexture(${t}, uv);
}
`;let d=Zu(t);return`
float ${n}(int row, int col, int depth, int depth2, int depth3) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${i} + col * ${a} + depth * ${s} +
depth2 * ${o} + depth3 + ${d};
vec2 uv = uvFromFlat(${m}, ${f}, index);
return sampleTexture(${t}, uv);
}
`}function _5(r){let e=r.shapeInfo.logicalShape,t=r.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1),{newShape:o,keptDims:s}=y.squeezeShape(e);if(o.length<e.length){let g=yp(r,o),x=["row","col","depth","depth2","depth3","depth4"];return`
${gp(g)}
float ${n}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
return ${n}(${bp(x,s)});
}
`}let a=e[5],i=e[4]*a,l=e[3]*i,u=e[2]*l,c=e[1]*u;if(r.shapeInfo.isUniform)return`
float ${n}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
int index = round(dot(
vec4(row, col, depth, depth2),
vec4(${c}, ${u}, ${l}, ${i})) +
dot(
vec2(depth3, depth4),
vec2(${a}, 1)));
${xp(r)}
}
`;let p=r.shapeInfo.flatOffset,m=r.shapeInfo.texShape,f=m[0],d=m[1];if(d===c&&p==null)return`
float ${n}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
int texR = row;
float texC = dot(vec4(col, depth, depth2, depth3),
vec4(${u}, ${l}, ${i}, ${a})) +
float(depth4);
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${d}.0, ${f}.0);
return sampleTexture(${t}, uv);
}
`;if(d===a&&p==null)return`
float ${n}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
float texR = dot(vec4(row, col, depth, depth2),
vec4(${e[1]*e[2]*e[3]*e[4]},
${e[2]*e[3]*e[4]},
${e[3]*e[4]},
${e[4]})) + float(depth3);
int texC = depth4;
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${d}.0, ${f}.0);
return sampleTexture(${t}, uv);
}
`;let h=Zu(t);return`
float ${n}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${c} + col * ${u} + depth * ${l} +
depth2 * ${i} + depth3 * ${a} + depth4 + ${h};
vec2 uv = uvFromFlat(${f}, ${d}, index);
return sampleTexture(${t}, uv);
}
`}function xp(r){let e=r.name,t=y.sizeFromShape(r.shapeInfo.logicalShape);return t<2?`return ${e};`:`
for (int i = 0; i < ${t}; i++) {
if (i == index) {
return ${e}[i];
}
}
`}function S5(r,e){let t=r.name,n=t.charAt(0).toUpperCase()+t.slice(1),o="get"+n+"AtOutCoords",s=r.shapeInfo.logicalShape.length,a=e.logicalShape.length,i=uA(r.shapeInfo.logicalShape,e.logicalShape),l=Le(a),u=a-s,c,p=["x","y","z","w","u","v"];s===0?c="":a<2&&i.length>=1?c="coords = 0;":c=i.map(b=>`coords.${p[b+u]} = 0;`).join(`
`);let m="";a<2&&s>0?m="coords":m=r.shapeInfo.logicalShape.map((b,w)=>`coords.${p[w+u]}`).join(", ");let f="return outputValue;",h=y.sizeFromShape(r.shapeInfo.logicalShape)===1,x=y.sizeFromShape(e.logicalShape)===1;if(s===1&&!h&&!x)f=`
return vec4(outputValue.xy, outputValue.xy);
`;else if(h&&!x)a===1?f=`
return vec4(outputValue.x, outputValue.x, 0., 0.);
`:f=`
return vec4(outputValue.x);
`;else if(i.length){let b=s-2,w=s-1;i.indexOf(b)>-1&&i.indexOf(w)>-1?f="return vec4(outputValue.x);":i.indexOf(b)>-1?f="return vec4(outputValue.x, outputValue.y, outputValue.x, outputValue.y);":i.indexOf(w)>-1&&(f="return vec4(outputValue.xx, outputValue.zz);")}return`
vec4 ${o}() {
${l} coords = getOutputCoords();
${c}
vec4 outputValue = get${n}(${m});
${f}
}
`}function T5(r,e){let t=r.name,n=t.charAt(0).toUpperCase()+t.slice(1),o="get"+n+"AtOutCoords",s=e.texShape,a=r.shapeInfo.texShape,i=r.shapeInfo.logicalShape.length,l=e.logicalShape.length;if(!r.shapeInfo.isUniform&&i===l&&r.shapeInfo.flatOffset==null&&y.arraysEqual(a,s))return`
float ${o}() {
return sampleTexture(${t}, resultUV);
}
`;let u=Le(l),c=uA(r.shapeInfo.logicalShape,e.logicalShape),p=l-i,m,f=["x","y","z","w","u","v"];i===0?m="":l<2&&c.length>=1?m="coords = 0;":m=c.map(h=>`coords.${f[h+p]} = 0;`).join(`
`);let d="";return l<2&&i>0?d="coords":d=r.shapeInfo.logicalShape.map((h,g)=>`coords.${f[g+p]}`).join(", "),`
float ${o}() {
${u} coords = getOutputCoords();
${m}
return get${n}(${d});
}
`}function Le(r){if(r<=1)return"int";if(r===2)return"ivec2";if(r===3)return"ivec3";if(r===4)return"ivec4";if(r===5)return"ivec5";if(r===6)return"ivec6";throw Error(`GPU for rank ${r} is not yet supported`)}function yp(r,e){let t=JSON.parse(JSON.stringify(r));return t.shapeInfo.logicalShape=e,t}function bp(r,e){return e.map(t=>r[t]).join(", ")}function fA(r,e,t,n){let o=e.userCode,s=t.map((f,d)=>{let h={logicalShape:f.shape,texShape:f.isUniform?null:f.texData.texShape,isUniform:f.isUniform,isPacked:f.isUniform?!1:f.texData.isPacked,flatOffset:null};return f.texData!=null&&f.texData.slice!=null&&f.texData.slice.flatOffset>0&&(h.flatOffset=f.texData.slice.flatOffset),{name:e.variableNames[d],shapeInfo:h}}),a=s.map(f=>f.shapeInfo),i={logicalShape:n.shape,texShape:n.texData.texShape,isUniform:!1,isPacked:n.texData.isPacked,flatOffset:null},l=cA(s,i,o,e.packedInputs),u=r.createProgram(l),c=null,p=r.getUniformLocation(u,"NAN",!1);W().getNumber("WEBGL_VERSION")===1&&(c=r.getUniformLocation(u,"INFINITY",!1));let m={};for(let f=0;f<e.variableNames.length;f++){let d=e.variableNames[f],h=!1;m[d]=r.getUniformLocation(u,d,h),m[`offset${d}`]=r.getUniformLocation(u,`offset${d}`,h)}return{program:e,source:l,webGLProgram:u,uniformLocations:m,inShapeInfos:a,outShapeInfo:i,infLoc:c,nanLoc:p}}function dA(r,e){if(r.length!==e.length)throw Error(`Binary was compiled with ${r.length} inputs, but was executed with ${e.length} inputs`);r.forEach((t,n)=>{let o=t.logicalShape,s=e[n],a=s.shape;if(!y.arraysEqual(o,a))throw Error(`Binary was compiled with different shapes than the current args. Shapes ${o} and ${a} must match`);if(t.isUniform&&s.isUniform)return;let i=t.texShape,l=s.isUniform?null:s.texData.texShape;if(!y.arraysEqual(i,l))throw Error(`Binary was compiled with different texture shapes than the current args. Shape ${i} and ${l} must match`)})}function hA(r,e,t,n,o){dA(e.inShapeInfos,t),dA([e.outShapeInfo],[n]);let s=n.texData.texture,a=n.texData.texShape;n.texData.isPacked?r.setOutputPackedMatrixTexture(s,a[0],a[1]):r.setOutputMatrixTexture(s,a[0],a[1]),r.setProgram(e.webGLProgram),W().getNumber("WEBGL_VERSION")===1&&e.infLoc!==null&&r.gl.uniform1f(e.infLoc,Infinity),e.nanLoc!==null&&r.gl.uniform1f(e.nanLoc,NaN),t.forEach((i,l)=>{let u=e.program.variableNames[l],c=e.uniformLocations[u],p=e.uniformLocations[`offset${u}`];if(c!=null){if(i.isUniform){if(y.sizeFromShape(i.shape)<2)r.gl.uniform1f(c,i.uniformValues[0]);else{let m=i.uniformValues;m instanceof Float32Array||(m=new Float32Array(m)),r.gl.uniform1fv(c,m)}return}i.texData.slice!=null&&p!=null&&r.gl.uniform1i(p,i.texData.slice.flatOffset),r.setInputMatrixTexture(i.texData.texture,c,l)}}),o!=null&&o(r,e.webGLProgram),r.executeProgram()}function gA(r,e,t){let n="";e.concat(t).forEach(a=>{let i=a.texData!=null&&a.texData.slice!=null&&a.texData.slice.flatOffset>0,l=a.isUniform?"uniform":a.texData.texShape;n+=`${a.shape}_${l}_${i}`});let o=r.userCode,s=r.constructor.name;return s+="_"+n+"_"+o,s}var{addImpl:xA,bincountImpl:Ug,bincountReduceImpl:yA,ceilImpl:bA,concatImpl:wA,expImpl:_A,expm1Impl:kA,floorImpl:vA,gatherV2Impl:CA,greaterImpl:IA,lessImpl:NA,linSpaceImpl:SA,logImpl:TA,maxImpl:EA,maximumImpl:AA,minimumImpl:DA,multiplyImpl:$A,negImpl:RA,prodImpl:FA,rangeImpl:OA,rsqrtImpl:PA,simpleAbsImpl:qg,sliceImpl:MA,stridedSliceImpl:LA,subImpl:zA,tileImpl:BA,topKImpl:VA,transposeImpl:wp,uniqueImpl:GA}=Ig;function Dk(r,e){return["x","y","z","w","u","v"].slice(0,e).map(t=>`${r}.${t}`)}function Wt(r,e){return e===1?[r]:Dk(r,e)}function jA(r,e){if(r===1)return"rc";let t="";for(let n=0;n<r;n++)t+=e[n],n<r-1&&(t+=",");return t}var $k=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outputShape=e;let t=e.length;if(t===0)this.userCode=`
void main() {
setOutput(vec4(getA(), 0., 0., 0.));
}
`;else{let n=Wt("rc",t),o=Le(t),s=G5(t,e,n),a=j5(t,e[e.length-1],e[e.length-2],n),i=W5(e,n);this.userCode=`
void main() {
${o} rc = getOutputCoords();
if(${s}) {
setOutput(vec4(0));
} else {
${a}
setOutput(vec4(${i}));
}
}
`}}};function U5(r,e){let t=[];for(let n=0;n<=1;n++)for(let o=0;o<=1;o++){let s=`${n===0?"r":"rp1"}, ${o===0?"c":"cp1"}`;for(let a=2;a<r;a++)s=`${e[e.length-1-a]},`+s;t.push(s)}return t}function G5(r,e,t){if(r===1)return`rc > ${e[0]}`;let n="";for(let o=r-2;o<r;o++)n+=`${t[o]} >= ${e[o]}`,o<r-1&&(n+="||");return n}function j5(r,e,t,n){if(r===1)return"";let o=n.slice(-2);return`
int r = ${o[0]};
int c = ${o[1]};
int rp1 = r + 1;
int cp1 = c + 1;
bool cEdge = cp1 >= ${e};
bool rEdge = rp1 >= ${t};
`}function W5(r,e){let t=r.length,n=U5(t,e);return t===1?`getA(rc),
rc + 1 >= ${r[0]} ? 0. : getA(rc + 1),
0, 0`:`getA(${n[0]}),
cEdge ? 0. : getA(${n[1]}),
rEdge ? 0. : getA(${n[2]}),
rEdge || cEdge ? 0. : getA(${n[3]})`}var Nf=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e;let n="";for(let o=0;o<4;o++){let s="thisRC = rc;";o%2==1&&(s+="thisRC.z += 1;"),o>1&&(s+="thisRC.y += 1;"),n+=`
${s}
${o>0?"if(thisRC.y < rows && thisRC.z < cols){":""}
int flatIndex = getFlatIndex(thisRC);
ivec3 inputRC = inputCoordsFromReshapedOutCoords(flatIndex);
vec2 inputRCInnerDims = vec2(float(inputRC.y),float(inputRC.z));
result[${o}] =
getChannel(getA(inputRC.x, inputRC.y, inputRC.z), inputRCInnerDims);
${o>0?"}":""}
`}this.userCode=`
${q5(t)}
${hp(e)}
void main() {
ivec3 rc = getOutputCoords();
vec4 result = vec4(0.);
ivec3 thisRC;
int rows = ${e[1]};
int cols = ${e[2]};
${n}
setOutput(result);
}
`}};function q5(r){return`
ivec3 inputCoordsFromReshapedOutCoords(int index) {
${Rs(["r","c","d"],r)}
return ivec3(r, c, d);
}
`}var Rk=class{constructor(e){this.gpgpu=e,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0,this.freeTextures={},this.logEnabled=!1,this.usedTextures={}}acquireTexture(e,t,n){let o=UA(t,n),s=qA(e,o,n);s in this.freeTextures||(this.freeTextures[s]=[]),s in this.usedTextures||(this.usedTextures[s]=[]);let a=WA(e,o,this.gpgpu.gl,this.gpgpu.textureConfig,n);if(this.freeTextures[s].length>0){this.numFreeTextures--,this.numUsedTextures++,this._numBytesFree-=a,this.log();let l=this.freeTextures[s].shift();return this.usedTextures[s].push(l),l}let i;return o===wr.PACKED_2X2_FLOAT32?i=this.gpgpu.createPackedMatrixTexture(e[0],e[1]):o===wr.PACKED_2X2_FLOAT16?i=this.gpgpu.createFloat16PackedMatrixTexture(e[0],e[1]):o===wr.UNPACKED_FLOAT32?i=this.gpgpu.createFloat32MatrixTexture(e[0],e[1]):o===wr.UNPACKED_FLOAT16?i=this.gpgpu.createFloat16MatrixTexture(e[0],e[1]):o===wr.PACKED_4X1_UNSIGNED_BYTE&&(i=this.gpgpu.createUnsignedBytesMatrixTexture(e[0],e[1])),this.usedTextures[s].push(i),this.numUsedTextures++,this._numBytesAllocated+=a,this.log(),i}releaseTexture(e,t,n,o){if(this.freeTextures==null)return;let s=UA(n,o),a=qA(t,s,o);a in this.freeTextures||(this.freeTextures[a]=[]);let i=WA(t,s,this.gpgpu.gl,this.gpgpu.textureConfig,o),l=W().get("WEBGL_DELETE_TEXTURE_THRESHOLD");l!==-1&&this._numBytesAllocated>l?(this.gpgpu.deleteMatrixTexture(e),this._numBytesAllocated-=i):(this.freeTextures[a].push(e),this.numFreeTextures++,this._numBytesFree+=i),this.numUsedTextures--;let u=this.usedTextures[a],c=u.indexOf(e);if(c<0)throw new Error("Cannot release a texture that was never provided by this texture manager");u.splice(c,1),this.log()}log(){if(!this.logEnabled)return;let e=this.numFreeTextures+this.numUsedTextures;console.log("Free/Used",`${this.numFreeTextures} / ${this.numUsedTextures}`,`(${e})`);let t=this._numBytesFree/this._numBytesAllocated;console.log(`Bytes allocated: ${this._numBytesAllocated}`),console.log(`Bytes unused: ${this._numBytesFree} (${Math.round(100*t)}%)`)}get numBytesAllocated(){return this._numBytesAllocated}get numBytesFree(){return this._numBytesFree}getNumUsedTextures(){return this.numUsedTextures}getNumFreeTextures(){return this.numFreeTextures}dispose(){if(this.freeTextures!=null){for(let e in this.freeTextures)this.freeTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});for(let e in this.usedTextures)this.usedTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});this.freeTextures=null,this.usedTextures=null,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0}}};function H5(r,e){let t=r;if(e===t.R32F)return 4;if(e===t.R16F)return 2;if(e===t.RGBA32F)return 16;if(e===r.RGBA)return 16;if(e===t.RGBA16F)return 8;throw new Error(`Unknown internal format ${e}`)}function WA(r,e,t,n,o){let s=K5(e,n),a;if(o){let[l,u]=ji(r[0],r[1]);a=l*u}else{let[l,u]=Yu(r[0],r[1]);a=l*u}let i=H5(t,s);return a*i}function K5(r,e){switch(r){case wr.PACKED_2X2_FLOAT32:return Gg(e);case wr.PACKED_2X2_FLOAT16:return jg(e);case wr.UNPACKED_FLOAT32:return zg(e);case wr.UNPACKED_FLOAT16:return Bg(e);case wr.PACKED_4X1_UNSIGNED_BYTE:return Vg(e);default:throw new Error(`Unknown physical texture type ${r}`)}}function X5(r){return W().getBool("WEBGL_RENDER_FLOAT32_ENABLED")?r?wr.PACKED_2X2_FLOAT32:wr.UNPACKED_FLOAT32:r?wr.PACKED_2X2_FLOAT16:wr.UNPACKED_FLOAT16}function UA(r,e){if(r===Ar.UPLOAD)return wr.PACKED_2X2_FLOAT32;if(r===Ar.RENDER||r==null)return X5(e);if(r===Ar.DOWNLOAD||r===Ar.PIXELS)return wr.PACKED_4X1_UNSIGNED_BYTE;throw new Error(`Unknown logical texture type ${r}`)}function qA(r,e,t){return`${r[0]}_${r[1]}_${e}_${t}`}var rn=class{constructor(e,t){this.variableNames=["A"],this.outputShape=e,this.userCode=`
float unaryOperation(float x) {
${t}
}
void main() {
float x = getAAtOutCoords();
float y = unaryOperation(x);
setOutput(y);
}
`}},hr="if (isnan(x)) return x;",HA="return x;",Fk="return abs(x);";var KA="return (x >= 0.0) ? x : (exp(x) - 1.0);",XA=hr+`
return (x < 0.0) ? 0.0 : x;
`,YA=hr+`
return (x < 0.0) ? 0.0 : min(6.0, x);
`,Sf="return x;";var ZA="return x;",JA=`
vec4 result;
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
return result;
`,QA=`
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,e2=`
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,Fs=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.userCode=`
vec4 unaryOperation(vec4 x) {
${t}
}
void main() {
vec4 x = getAAtOutCoords();
vec4 y = unaryOperation(x);
setOutput(y);
}
`}};var Ok=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outputShape=e;let t=e.length,n=Wt("rc",t),o=Le(t),s=jA(t,n),a=n.slice(-2),i=t<=1?"rc":`vec2(${a.join(",")})`;this.userCode=`
void main() {
${o} rc = getOutputCoords();
vec4 packedInput = getA(${s});
setOutput(getChannel(packedInput, ${i}));
}
`}};var Y5=Tr.whereImpl,Z5=1e-7,J5=1e-4,Hg={};function Q5(r){return r in Hg||(Hg[r]={}),Hg[r]}var e8=128,t8=600;function r8(){return W().global.screen==null?1024:W().global.screen.height*W().global.screen.width*window.devicePixelRatio*t8/1024/1024}var Kg=class extends Ws{constructor(e){super();if(this.pendingRead=new WeakMap,this.pendingDisposal=new WeakSet,this.dataRefCount=new WeakMap,this.numBytesInGPU=0,this.uploadWaitMs=0,this.downloadWaitMs=0,this.warnedAboutMemory=!1,this.warnedAboutCPUBackend=!1,this.pendingDeletes=0,this.disposed=!1,!W().getBool("HAS_WEBGL"))throw new Error("WebGL is not supported on this device");if(e==null){let t=Mn(W().getNumber("WEBGL_VERSION"));this.binaryCache=Q5(W().getNumber("WEBGL_VERSION")),this.gpgpu=new Wg(t),this.canvas=t.canvas,this.gpgpuCreatedLocally=!0}else this.gpgpu=e,this.binaryCache={},this.gpgpuCreatedLocally=!1,this.canvas=e.gl.canvas;this.textureManager=new Rk(this.gpgpu),this.numMBBeforeWarning=r8(),this.texData=new Ja(this,vs())}numDataIds(){return this.texData.numDataIds()+(this.cpuBackend?this.cpuBackend.numDataIds():0)-this.pendingDeletes}write(e,t,n){if((W().getBool("WEBGL_CHECK_NUMERICAL_PROBLEMS")||W().getBool("DEBUG"))&&this.checkNumericalProblems(e),n==="complex64"&&e!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let o={};return this.texData.set(o,{shape:t,dtype:n,values:e,usage:Ar.UPLOAD,refCount:1,complexParentRefCount:0}),o}incRef(e){let t=this.texData.get(e);t.refCount++}decRef(e){if(this.texData.has(e)){let t=this.texData.get(e);t.refCount--}}decComplexRef(e){if(this.texData.has(e)){let t=this.texData.get(e);t.complexParentRefCount>0&&t.refCount--}}move(e,t,n,o){if(W().getBool("DEBUG")&&this.checkNumericalProblems(t),o==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");this.texData.set(e,{shape:n,dtype:o,values:t,usage:Ar.UPLOAD,refCount:1,complexParentRefCount:0})}disposeIntermediateTensorInfo(e){let t=e.dataId;if(this.texData.has(t)){let n=this.texData.get(t);n.refCount--,n.refCount<1&&this.disposeData(t)}}readSync(e){let t=this.texData.get(e),{values:n,dtype:o,complexTensorInfos:s,slice:a,shape:i,isPacked:l}=t;if(a!=null){let m;l?m=new Fs(i,Sf):m=new rn(i,Sf);let f=this.runWebGLProgram(m,[{dataId:e,shape:i,dtype:o}],o),d=this.readSync(f.dataId);return this.disposeIntermediateTensorInfo(f),d}if(n!=null)return this.convertAndCacheOnCPU(e);if(o==="string")return n;let u=this.activeTimers!=null,c;u&&(c=y.now());let p;if(o==="complex64"){let m=this.readSync(s.real.dataId),f=this.readSync(s.imag.dataId);p=N.mergeRealAndImagArrays(m,f)}else p=this.getValuesFromTexture(e);return u&&(this.downloadWaitMs+=y.now()-c),this.convertAndCacheOnCPU(e,p)}async read(e){if(this.pendingRead.has(e)){let d=this.pendingRead.get(e);return new Promise(h=>d.push(h))}let t=this.texData.get(e),{values:n,shape:o,slice:s,dtype:a,complexTensorInfos:i,isPacked:l}=t;if(s!=null){let d;l?d=new Fs(o,Sf):d=new rn(o,Sf);let h=this.runWebGLProgram(d,[{dataId:e,shape:o,dtype:a}],a),g=this.read(h.dataId);return this.disposeIntermediateTensorInfo(h),g}if(n!=null)return this.convertAndCacheOnCPU(e);if(!W().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")&&W().getNumber("WEBGL_VERSION")===2)throw new Error("tensor.data() with WEBGL_DOWNLOAD_FLOAT_ENABLED=false and WEBGL_VERSION=2 not yet supported.");let u=null,c;if(a!=="complex64"&&W().get("WEBGL_BUFFER_SUPPORTED")){c=this.decode(e);let d=this.texData.get(c.dataId);u=this.gpgpu.createBufferFromTexture(d.texture,...dl(o))}this.pendingRead.set(e,[]),a!=="complex64"&&await this.gpgpu.createAndWaitForFence();let p;if(a==="complex64"){let d=await Promise.all([this.read(i.real.dataId),this.read(i.imag.dataId)]),h=d[0],g=d[1];p=N.mergeRealAndImagArrays(h,g)}else if(u==null)p=this.getValuesFromTexture(e);else{let d=y.sizeFromShape(o);p=this.gpgpu.downloadFloat32MatrixFromBuffer(u,d)}c!=null&&this.disposeIntermediateTensorInfo(c);let m=this.convertAndCacheOnCPU(e,p),f=this.pendingRead.get(e);return this.pendingRead.delete(e),f.forEach(d=>d(m)),this.pendingDisposal.has(e)&&(this.pendingDisposal.delete(e),this.disposeData(e),this.pendingDeletes--),m}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(o=>y.decodeString(o))}catch(o){throw new Error("Failed to decode encoded string bytes into utf-8")}return Ce(e.shape,e.dtype,n)}checkNumericalProblems(e){if(e!=null)for(let t=0;t<e.length;t++){let n=e[t];if(!G_(n))throw W().getBool("WEBGL_RENDER_FLOAT32_CAPABLE")?Error(`The value ${n} cannot be represented with your current settings. Consider enabling float32 rendering: 'tf.env().set('WEBGL_RENDER_FLOAT32_ENABLED', true);'`):Error(`The value ${n} cannot be represented on this device.`)}}getValuesFromTexture(e){let{shape:t,dtype:n,isPacked:o}=this.texData.get(e),s=y.sizeFromShape(t);if(W().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")){let m=this.decode(e),f=this.texData.get(m.dataId),d=this.gpgpu.downloadMatrixFromPackedTexture(f.texture,...dl(t)).subarray(0,s);return this.disposeIntermediateTensorInfo(m),d}let a=W().getBool("WEBGL_PACK")&&o===!0,i=a?Cf(t):t,l=a?new mk(i):new pk(i),u=this.runWebGLProgram(l,[{shape:i,dtype:n,dataId:e}],"float32"),c=this.texData.get(u.dataId),p=this.gpgpu.downloadByteEncodedFloatMatrixFromOutputTexture(c.texture,c.texShape[0],c.texShape[1]).subarray(0,s);return this.disposeIntermediateTensorInfo(u),p}async time(e){let t=this.activeTimers,n=[],o=!1;this.programTimersStack==null?(this.programTimersStack=n,o=!0):this.activeTimers.push(n),this.activeTimers=n,e();let s=y.flatten(this.activeTimers.map(l=>l.query)).filter(l=>l!=null),a=y.flatten(this.activeTimers.map(l=>l.name)).filter(l=>l!=null);this.activeTimers=t,o&&(this.programTimersStack=null);let i={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null};if(W().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0){let l=await Promise.all(s);i.kernelMs=y.sum(l),i.getExtraProfileInfo=()=>l.map((u,c)=>({name:a[c],ms:u})).map(u=>`${u.name}: ${u.ms}`).join(", ")}else i.kernelMs={error:"WebGL query timers are not supported in this environment."};return this.uploadWaitMs=0,this.downloadWaitMs=0,i}memory(){return{unreliable:!1,numBytesInGPU:this.numBytesInGPU,numBytesInGPUAllocated:this.textureManager.numBytesAllocated,numBytesInGPUFree:this.textureManager.numBytesFree}}startTimer(){return W().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?this.gpgpu.beginQuery():{startMs:y.now(),endMs:null}}endTimer(e){return W().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?(this.gpgpu.endQuery(),e):(e.endMs=y.now(),e)}async getQueryTime(e){if(W().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0)return this.gpgpu.waitForQueryAndGetTime(e);let t=e;return t.endMs-t.startMs}disposeData(e){if(this.pendingDisposal.has(e))return;if(this.pendingRead.has(e)){this.pendingDisposal.add(e),this.pendingDeletes++;return}if(!this.texData.has(e))return;if(this.texData.get(e).complexParentRefCount>0){this.texData.get(e).refCount--;return}this.releaseGPUData(e);let{complexTensorInfos:t}=this.texData.get(e);t!=null&&(this.texData.get(t.real.dataId).complexParentRefCount--,this.disposeIntermediateTensorInfo(t.real),this.texData.get(t.imag.dataId).complexParentRefCount--,this.disposeIntermediateTensorInfo(t.imag)),this.texData.delete(e)}releaseGPUData(e){let{texture:t,dtype:n,texShape:o,usage:s,isPacked:a,slice:i}=this.texData.get(e),l=i&&i.origDataId||e,u=this.dataRefCount.get(l);u>1?this.dataRefCount.set(l,u-1):(this.dataRefCount.delete(l),t!=null&&(this.numBytesInGPU-=this.computeBytes(o,n),this.textureManager.releaseTexture(t,o,s,a)));let c=this.texData.get(e);c.texture=null,c.texShape=null,c.isPacked=!1,c.slice=null}getTexture(e){return this.uploadToGPU(e),this.texData.get(e).texture}getDataInfo(e){return this.texData.get(e)}getCPUBackend(){return W().getBool("WEBGL_CPU_FORWARD")?(this.cpuBackend==null&&(this.cpuBackend=vs().findBackend("cpu")),this.cpuBackend):null}shouldExecuteOnCPU(e,t=e8){let n=this.getCPUBackend();return!W().getBool("IS_TEST")&&!this.warnedAboutCPUBackend&&n==null&&(console.warn("Your application contains ops that are small enough to be executed on the CPU backend, however the CPU backend cannot be found. Consider importing the CPU backend (@tensorflow/tfjs-backend-cpu) for better performance."),this.warnedAboutCPUBackend=!0),n!=null&&e.every(o=>this.texData.get(o.dataId).texture==null&&y.sizeFromShape(o.shape)<t)}getGPGPUContext(){return this.gpgpu}where(e){N.warn("tf.where() in webgl locks the UI thread. Call tf.whereAsync() instead");let t=e.dataSync();return Y5(e.shape,t)}packedUnaryOp(e,t,n){let o=new Fs(e.shape,t);return this.compileAndRun(o,[e],n)}abs(e){if(this.shouldExecuteOnCPU([e])&&e.dtype!=="complex64"){let n=qg(this.texData.get(e.dataId).values);return this.makeOutput(e.shape,e.dtype,n)}if(W().getBool("WEBGL_PACK_UNARY_OPERATIONS"))return this.packedUnaryOp(e,Fk,e.dtype);let t=new rn(e.shape,Fk);return this.compileAndRun(t,[e])}makeTensorInfo(e,t,n){let o;if(t==="string"&&n!=null&&n.length>0&&y.isString(n[0])){let s=n.map(a=>y.encodeString(a));o=this.write(s,e,t)}else o=this.write(n,e,t);return this.texData.get(o).usage=null,{dataId:o,shape:e,dtype:t}}makeOutput(e,t,n){let{dataId:o}=this.makeTensorInfo(e,t,n);return vs().makeTensorFromDataId(o,e,t,this)}unpackTensor(e){let t=new Ok(e.shape);return this.runWebGLProgram(t,[e],e.dtype)}packTensor(e){let t=new $k(e.shape),n=!0;return this.runWebGLProgram(t,[e],e.dtype,null,n)}packedReshape(e,t){let n=[La(e.shape),...za(e.shape)],o={dtype:e.dtype,shape:n,dataId:e.dataId},s=[La(t),...za(t)],a=new Nf(s,n),i=!0,l=this.runWebGLProgram(a,[o],e.dtype,null,i);return{dataId:l.dataId,shape:t,dtype:l.dtype}}decode(e){let t=this.texData.get(e),{isPacked:n,shape:o,dtype:s}=t,a=Cf(o),i;n?i=new ck(a):i=new uk(a);let l=!0,u=this.runWebGLProgram(i,[{shape:a,dtype:s,dataId:e}],s,null,l);return{dtype:s,shape:o,dataId:u.dataId}}runWebGLProgram(e,t,n,o,s=!1){let a=this.makeTensorInfo(e.outputShape,n),i=this.texData.get(a.dataId);if(e.packedOutput&&(i.isPacked=!0),e.outPackingScheme===fl.DENSE){let h=dl(e.outputShape);i.texShape=h.map(g=>g*2)}if(e.outTexUsage!=null&&(i.usage=e.outTexUsage),y.sizeFromShape(a.shape)===0)return i.values=y.getTypedArrayFromDType(a.dtype,0),a;let l=[],u=t.map(h=>{if(h.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");let g=this.texData.get(h.dataId);if(g.texture==null){if(!e.packedInputs&&y.sizeFromShape(h.shape)<=W().getNumber("WEBGL_SIZE_UPLOAD_UNIFORM"))return{shape:h.shape,texData:null,isUniform:!0,uniformValues:g.values};e.packedInputs&&(g.isPacked=!0,g.shape=h.shape)}else if(!!g.isPacked!=!!e.packedInputs)h=g.isPacked?this.unpackTensor(h):this.packTensor(h),l.push(h),g=this.texData.get(h.dataId);else if(g.isPacked&&!hl(g.shape,h.shape)){let x=h,b=h.shape;h.shape=g.shape,h=this.packedReshape(h,b),l.push(h),g=this.texData.get(h.dataId),x.shape=b}return this.uploadToGPU(h.dataId),{shape:h.shape,texData:g,isUniform:!1}});this.uploadToGPU(a.dataId);let c={shape:a.shape,texData:i,isUniform:!1},p=gA(e,u,c),m=this.getAndSaveBinary(p,()=>fA(this.gpgpu,e,u,c)),f=this.activeTimers!=null,d;if(f&&(d=this.startTimer()),hA(this.gpgpu,m,u,c,o),l.forEach(h=>this.disposeIntermediateTensorInfo(h)),f&&(d=this.endTimer(d),this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(d)})),!W().getBool("WEBGL_LAZILY_UNPACK")&&i.isPacked&&s===!1){let h=this.unpackTensor(a);return this.disposeIntermediateTensorInfo(a),h}return a}compileAndRun(e,t,n,o,s=!1){n=n||t[0].dtype;let a=this.runWebGLProgram(e,t,n,o,s);return vs().makeTensorFromDataId(a.dataId,a.shape,a.dtype)}getAndSaveBinary(e,t){return e in this.binaryCache||(this.binaryCache[e]=t()),this.binaryCache[e]}getTextureManager(){return this.textureManager}dispose(){this.disposed||(W().getBool("IS_TEST")||Object.keys(this.binaryCache).forEach(t=>{this.gpgpu.deleteProgram(this.binaryCache[t].webGLProgram),delete this.binaryCache[t]}),this.textureManager.dispose(),this.canvas!=null&&typeof HTMLCanvasElement!="undefined"&&this.canvas instanceof HTMLCanvasElement?this.canvas.remove():this.canvas=null,this.gpgpuCreatedLocally&&(this.gpgpu.program=null,this.gpgpu.dispose()),this.disposed=!0)}floatPrecision(){return this.floatPrecisionValue==null&&(this.floatPrecisionValue=V(()=>{if(!W().get("WEBGL_RENDER_FLOAT32_ENABLED")){let e=W().getBool("DEBUG");W().set("DEBUG",!1);let t=this.abs(le(1e-8)).dataSync()[0];if(W().set("DEBUG",e),t>0)return 32}return 16})),this.floatPrecisionValue}epsilon(){return this.floatPrecision()===32?Z5:J5}uploadToGPU(e){let t=this.texData.get(e),{shape:n,dtype:o,values:s,texture:a,usage:i,isPacked:l}=t;if(a!=null)return;let u=this.activeTimers!=null,c;u&&(c=y.now());let p=t.texShape;if(p==null&&(p=tk(n,l),t.texShape=p),s!=null){let m=Cf(n),f,d=p[1],h=p[0],g=s instanceof Uint8Array;l?([d,h]=ji(p[0],p[1]),f=new dk(m,[h,d],g)):f=new fk(m,[h,d],g);let x=this.makeTensorInfo([h,d],o);g?this.texData.get(x.dataId).usage=Ar.PIXELS:this.texData.get(x.dataId).usage=Ar.UPLOAD,this.gpgpu.uploadDenseMatrixToTexture(this.getTexture(x.dataId),d,h,s);let b=!0,w=this.runWebGLProgram(f,[x],o,null,b),_=this.texData.get(w.dataId);t.texture=_.texture,t.texShape=_.texShape,t.isPacked=_.isPacked,t.usage=_.usage,this.disposeIntermediateTensorInfo(x),this.texData.delete(w.dataId),t.values=null,u&&(this.uploadWaitMs+=y.now()-c)}else{let m=this.acquireTexture(p,i,o,l);t.texture=m}}convertAndCacheOnCPU(e,t){let n=this.texData.get(e),{dtype:o}=n;return this.releaseGPUData(e),t!=null&&(n.values=n8(t,o)),n.values}acquireTexture(e,t,n,o){if(this.numBytesInGPU+=this.computeBytes(e,n),!this.warnedAboutMemory&&this.numBytesInGPU>this.numMBBeforeWarning*1024*1024){let s=(this.numBytesInGPU/1024/1024).toFixed(2);this.warnedAboutMemory=!0,console.warn(`High memory usage in GPU: ${s} MB, most likely due to a memory leak`)}return this.textureManager.acquireTexture(e,t,o)}computeBytes(e,t){return e[0]*e[1]*y.bytesPerElement(t)}};function n8(r,e){if(e==="float32"||e==="complex64")return r;if(e==="int32"||e==="bool"){let t=e==="int32"?new Int32Array(r.length):new Uint8Array(r.length);for(let n=0;n<t.length;++n)t[n]=Math.round(r[n]);return t}else throw new Error(`Unknown dtype ${e}`)}var Pk="3.0.0";function Mk(){W().set("WEBGL_FORCE_F16_TEXTURES",!0)}Vc.isBrowser()&&yu("webgl",()=>new Kg,2);var o8={forceHalfFloat:Mk};var Xg=`
if (isnan(a)) return a;
if (isnan(b)) return b;
`;var qo=class{constructor(e,t,n){this.variableNames=["A","B"],this.outputShape=N.assertAndGetBroadcastShape(t,n),this.userCode=`
float binaryOperation(float a, float b) {
${e}
}
void main() {
float a = getAAtOutCoords();
float b = getBAtOutCoords();
setOutput(binaryOperation(a, b));
}
`}};var gl=`
result.r = isNaN.r > 0. ? NAN : result.r;
result.g = isNaN.g > 0. ? NAN : result.g;
result.b = isNaN.b > 0. ? NAN : result.b;
result.a = isNaN.a > 0. ? NAN : result.a;
`;var Os=class{constructor(e,t,n,o=!1){this.variableNames=["A","B"],this.supportsBroadcasting=!0,this.packedInputs=!0,this.packedOutput=!0,this.outputShape=N.assertAndGetBroadcastShape(t,n);let s=this.outputShape.length,a="";if(o)if(s===0||y.sizeFromShape(this.outputShape)===1)a=`
result.y = 0.;
result.z = 0.;
result.w = 0.;
`;else if(a=`
${Le(s)} coords = getOutputCoords();
`,s===1)a+=`
result.y = (coords + 1) >= ${this.outputShape[0]} ? 0. : result.y;
result.z = 0.;
result.w = 0.;
`;else{let l=Wt("coords",s);a+=`
bool nextRowOutOfBounds =
(${l[s-2]} + 1) >= ${this.outputShape[s-2]};
bool nextColOutOfBounds =
(${l[s-1]} + 1) >= ${this.outputShape[s-1]};
result.y = nextColOutOfBounds ? 0. : result.y;
result.z = nextRowOutOfBounds ? 0. : result.z;
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
`}this.userCode=`
vec4 binaryOperation(vec4 a, vec4 b) {
${e}
}
void main() {
vec4 a = getAAtOutCoords();
vec4 b = getBAtOutCoords();
vec4 result = binaryOperation(a, b);
${a}
setOutput(result);
}
`}};function Ut(r){let{inputs:e,backend:t}=r,{x:n}=e;return t.incRef(n.dataId),{dataId:n.dataId,shape:n.shape,dtype:n.dtype}}var t2={kernelName:us,backendName:"webgl",kernelFunc:Ut};function nn(r){let{inputs:e,backend:t}=r,{real:n,imag:o}=e,s=t.makeTensorInfo(n.shape,"complex64"),a=t.texData.get(s.dataId),i=Ut({inputs:{x:n},backend:t}),l=t.texData.get(i.dataId);l.complexParentRefCount++;let u=Ut({inputs:{x:o},backend:t}),c=t.texData.get(u.dataId);return c.complexParentRefCount++,a.complexTensorInfos={real:i,imag:u},s}var r2={kernelName:ql,backendName:"webgl",kernelFunc:nn};var Lk="return (a < 0.) ? b * a : a;",zk=`
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
`;function s8(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{alpha:s}=n,a=t.makeTensorInfo([],"float32",y.createScalarValue(s,"float32")),i=W().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Os(zk,o.shape,a.shape):new qo(Lk,o.shape,a.shape),l=t.runWebGLProgram(i,[o,a],o.dtype);return t.disposeIntermediateTensorInfo(a),l}var n2={kernelName:so,backendName:"webgl",kernelFunc:s8};var Bk="return (a < 0.) ? b * a : a;",Vk=`
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
`;function i8(r){let{inputs:e,backend:t}=r,{x:n,alpha:o}=e,s=W().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Os(Vk,n.shape,o.shape):new qo(Bk,n.shape,o.shape);return t.runWebGLProgram(s,[n,o],n.dtype)}var o2={kernelName:yo,backendName:"webgl",kernelFunc:i8};var Yg="if (isnan(x)) return x;",s2=`
if (isnan(a)) return a;
if (isnan(b)) return b;
`,i2=`
result.r = isNaN.r > 0. ? NAN : result.r;
result.g = isNaN.g > 0. ? NAN : result.g;
result.b = isNaN.b > 0. ? NAN : result.b;
result.a = isNaN.a > 0. ? NAN : result.a;
`;function ve({opSnippet:r,packedOpSnippet:e,cpuKernelImpl:t,dtype:n}){return({inputs:o,backend:s})=>{let{x:a}=o,i=s,l=n||a.dtype;if(i.shouldExecuteOnCPU([a])&&t!=null){let p=i.texData.get(a.dataId),m=t(p.values,l);return i.makeTensorInfo(a.shape,l,m)}let u=W().getBool("WEBGL_PACK_UNARY_OPERATIONS")&&e!=null,c;return u?c=new Fs(a.shape,e):c=new rn(a.shape,r),i.runWebGLProgram(c,[a],l)}}function it({opSnippet:r,packedOpSnippet:e,checkOutOfBounds:t=!1,supportsComplex:n=!1,cpuKernelImpl:o,dtype:s}){return({inputs:a,backend:i})=>{let{a:l,b:u}=a,c=i;if(n&&l.dtype==="complex64"){let d=c.texData.get(l.dataId),h=c.texData.get(u.dataId),[g,x]=[[d.complexTensorInfos.real,h.complexTensorInfos.real],[d.complexTensorInfos.imag,h.complexTensorInfos.imag]].map(w=>{let[_,k]=w,E={dataId:_.dataId,dtype:_.dtype,shape:l.shape},S={dataId:k.dataId,dtype:k.dtype,shape:u.shape},R=new qo(r,l.shape,u.shape);return c.runWebGLProgram(R,[E,S],fr(_.dtype,k.dtype))}),b=nn({inputs:{real:g,imag:x},backend:c});return c.disposeIntermediateTensorInfo(g),c.disposeIntermediateTensorInfo(x),b}let p=s||fr(l.dtype,u.dtype);if(c.shouldExecuteOnCPU([l,u])&&o!=null){let d=c.texData.get(l.dataId),h=c.texData.get(u.dataId),[g,x]=o(l.shape,u.shape,d.values,h.values,p),b=c.makeTensorInfo(x,p),w=c.texData.get(b.dataId);return w.values=g,b}let m=W().getBool("WEBGL_PACK_BINARY_OPERATIONS")&&e!=null,f;return m?f=new Os(e,l.shape,u.shape,t):f=new qo(r,l.shape,u.shape),c.runWebGLProgram(f,[l,u],p)}}function xl(r,e=!1){if(r==="linear")return e?ZA:HA;if(r==="relu")return e?QA:XA;if(r==="elu")return e?JA:KA;if(r==="relu6")return e?e2:YA;if(r==="prelu")return e?Vk:Bk;if(r==="leakyrelu")return e?zk:Lk;throw new Error(`Activation ${r} has not been implemented for the WebGL backend.`)}var Tf=class{constructor(e,t,n,o=!1,s=!1,a=!1,i=null,l=!1,u=!1){this.variableNames=["matrixA","matrixB"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=n;let c=o?e[1]:e[2],p=Math.ceil(c/2),m=o?"i * 2, rc.y":"rc.y, i * 2",f=s?"rc.z, i * 2":"i * 2, rc.z",d=o?["a.xxyy","a.zzww"]:["a.xxzz","a.yyww"],h=s?["b.xzxz","b.ywyw"]:["b.xyxy","b.zwzw"],g="",x="";i&&(l?g=`vec4 activation(vec4 a) {
vec4 b = getPreluActivationWeightsAtOutCoords();
${i}
}`:u?g=`vec4 activation(vec4 a) {
vec4 b = getLeakyreluAlphaAtOutCoords();
${i}
}`:g=`vec4 activation(vec4 x) {
${i}
}`,x="result = activation(result);");let b=a?"result += getBiasAtOutCoords();":"";a&&this.variableNames.push("bias"),l&&this.variableNames.push("preluActivationWeights"),u&&this.variableNames.push("leakyreluAlpha");let w="rc.x",_="rc.x";e[0]<t[0]?w=`int(min(float(rc.x), ${e[0]-1}.))`:t[0]<e[0]&&(_=`int(min(float(rc.x), ${t[0]-1}.))`),this.userCode=`
${g}
const float sharedDimension = ${p}.0;
vec4 dot2x2ARowBCol(ivec3 rc) {
vec4 result = vec4(0);
for (int i = 0; i < ${p}; i++) {
int batchA = ${w};
int batchB = ${_};
vec4 a = getMatrixA(batchA, ${m});
vec4 b = getMatrixB(batchB, ${f});
// These swizzled products need to be separately added.
// See: https://github.com/tensorflow/tfjs/issues/1735
result += (${d[0]} * ${h[0]});
result += (${d[1]} * ${h[1]});
}
return result;
}
void main() {
ivec3 rc = getOutputCoords();
vec4 result = dot2x2ARowBCol(rc);
${b}
${x}
setOutput(result);
}
`}};var Gk={REAL:"return areal * breal - aimag * bimag;",IMAG:"return areal * bimag + aimag * breal;"},Zg=class{constructor(e,t,n){this.variableNames=["AReal","AImag","BReal","BImag"],this.outputShape=N.assertAndGetBroadcastShape(t,n),this.userCode=`
float binaryOpComplex(
float areal, float aimag, float breal, float bimag) {
${e}
}
void main() {
float areal = getARealAtOutCoords();
float aimag = getAImagAtOutCoords();
float breal = getBRealAtOutCoords();
float bimag = getBImagAtOutCoords();
setOutput(binaryOpComplex(areal, aimag, breal, bimag));
}
`}};var a2="return a * b;";function jk(r){let{inputs:e,backend:t}=r,{a:n,b:o}=e,s=N.upcastType(n.dtype,o.dtype);if(n.dtype==="complex64"){let i=t.texData.get(n.dataId),l=t.texData.get(o.dataId),u=new Zg(Gk.REAL,n.shape,o.shape),c=new Zg(Gk.IMAG,n.shape,o.shape),p=[{dataId:i.complexTensorInfos.real.dataId,dtype:i.complexTensorInfos.real.dtype,shape:n.shape},{dataId:i.complexTensorInfos.imag.dataId,dtype:i.complexTensorInfos.imag.dtype,shape:n.shape},{dataId:l.complexTensorInfos.real.dataId,dtype:l.complexTensorInfos.real.dtype,shape:o.shape},{dataId:l.complexTensorInfos.imag.dataId,dtype:l.complexTensorInfos.imag.dtype,shape:o.shape}],m=t.runWebGLProgram(u,p,"float32"),f=t.runWebGLProgram(c,p,"float32"),d=nn({inputs:{real:m,imag:f},backend:t});return t.disposeIntermediateTensorInfo(m),t.disposeIntermediateTensorInfo(f),d}if(t.shouldExecuteOnCPU([n,o])){let i=t.texData.get(n.dataId),l=t.texData.get(o.dataId),[u,c]=$A(n.shape,o.shape,i.values,l.values,s),p=t.makeTensorInfo(c,s),m=t.texData.get(p.dataId);return m.values=u,p}let a;return W().getBool("WEBGL_PACK_BINARY_OPERATIONS")?a=new Os(a2,n.shape,o.shape):a=new qo(a2,n.shape,o.shape),t.runWebGLProgram(a,[n,o],s)}var l2={kernelName:fo,backendName:"webgl",kernelFunc:jk};function u2(r,e,t){let n=[La(r.shape),...za(r.shape)],o={dtype:r.dtype,shape:n,dataId:r.dataId},s=[La(e),...za(e)],a=new Nf(s,n),i=!0,l=t.runWebGLProgram(a,[o],r.dtype,null,i);return{dataId:l.dataId,shape:e,dtype:l.dtype}}function ce(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{shape:s}=n,a=t,i=y.sizeFromShape(o.shape),l=y.inferFromImplicitShape(s,i),u=y.sizeFromShape(l);y.assert(i===u,()=>`The new shape (${l}) has ${u} elements and the old shape (${o.shape}) has ${i} elements. The new shape and old shape must have the same number of elements.`);let c=a.texData.get(o.dataId);return c.isPacked&&!hl(o.shape,l)&&!(c.texture!==null&&hl(c.shape,l))?u2(o,l,a):(a.incRef(o.dataId),{dataId:o.dataId,shape:l,dtype:o.dtype})}var c2={kernelName:fs,backendName:"webgl",kernelFunc:ce};var Jg=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:o,inSize:s,outSize:a}=e;this.outputShape=[o,a];let i=Math.floor(n/4)*4,l=n%4,u="sumValue += dot(values, ones);";if(t!=null){let p=1/t;u=`sumValue += dot(values * ${y.isInt(p)?p.toPrecision(2):p}, ones);`}let c="";s%n>0&&(c=`
if (inIdx < 0 || inIdx >= ${s}) {
return 0.0;
}
`),this.userCode=`
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float getValue(int batch, int inIdx) {
${c}
return getX(batch, inIdx);
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = outIdx * ${n};
float sumValue = 0.0;
for (int i = 0; i < ${i}; i += 4) {
int inIdx = inOffset + i;
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
getValue(batch, inIdx + 3)
);
${u}
}
int inIdx = inOffset + ${i};
if (${l===1}) {
vec4 values = vec4(getValue(batch, inIdx), 0.0, 0.0, 0.0);
${u}
} else if (${l===2}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1), 0.0, 0.0);
${u}
} else if (${l===3}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2), 0.0);
${u}
}
setOutput(sumValue);
}
`}};var Wk=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:o,inSize:s,outSize:a}=e;this.outputShape=[o,a];let i="0.0",l="";t==="prod"?i="1.0":t==="min"?(i="1.0 / 1e-20",l="min"):t==="max"&&(i="-1.0 / 1e-20",l="max");let u=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="sum"?u="sumValue":t==="prod"?u="prodValue":t==="all"?u="allValue":t==="any"&&(u="anyValue");let c=Math.floor(n/4)*4,p=n%4,m=`
if (${t==="sum"}) {
sumValue += dot(values, ones);
} else if (${t==="prod"}) {
vec2 tmp = vec2(values[0], values[1]) * vec2(values[2], values[3]);
prodValue *= tmp[0] * tmp[1];
} else {
minMaxValue = ${l}(values, minMaxValue);
}
`,f="vec4";t==="all"?(i="1.0",m=`
bool reducedAllValue = all(values);
float floatedReducedAllValue = float(reducedAllValue);
allValue = float(allValue >= 1.0 && floatedReducedAllValue >= 1.0);
`,f="bvec4"):t==="any"&&(i="0.0",m=`
bool reducedAnyValue = any(values);
float floatedReducedAnyValue = float(reducedAnyValue);
anyValue = float(anyValue >= 1.0 || floatedReducedAnyValue >= 1.0);
`,f="bvec4");let d="";s%n>0&&(d=`
if (inIdx < 0 || inIdx >= ${s}) {
return initializationValue;
}
`),this.userCode=`
const float initializationValue = ${i};
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float getValue(int batch, int inIdx) {
${d}
return getX(batch, inIdx);
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = outIdx * ${n};
vec4 minMaxValue = vec4(${i});
float prodValue = 1.0;
float sumValue = 0.0;
float allValue = 1.0;
float anyValue = 0.0;
for (int i = 0; i < ${c}; i += 4) {
int inIdx = inOffset + i;
${f} values = ${f}(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
getValue(batch, inIdx + 3)
);
${m}
}
int inIdx = inOffset + ${c};
if (${p===1}) {
${f} values = ${f}(
getValue(batch, inIdx),
initializationValue,
initializationValue,
initializationValue
);
${m}
} else if (${p===2}) {
${f} values = ${f}(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
initializationValue,
initializationValue
);
${m}
} else if (${p===3}) {
${f} values = ${f}(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
initializationValue
);
${m}
}
setOutput(${u});
}
`}};function a8(r){let e=[];for(;e.length===0||e[e.length-1].outSize!==1;){let t=e.length?e[e.length-1].outSize:r[1],n=N.computeOptimalWindowSize(t);e.push({inSize:t,windowSize:n,outSize:Math.ceil(t/n)})}return e}function vn(r,e,t,n){let o=a8(r.shape),s=r;for(let a=0;a<o.length;a++){let{inSize:i,windowSize:l,outSize:u}=o[a],c,p;t==="mean"?c=a===0?new Jg({windowSize:l,inSize:i,batchSize:r.shape[0],outSize:u},i):new Jg({windowSize:l,inSize:i,batchSize:r.shape[0],outSize:u}):c=new Wk({windowSize:l,inSize:i,batchSize:r.shape[0],outSize:u},t),p=s,s=n.runWebGLProgram(c,[s],e),p.dataId!==r.dataId&&n.disposeIntermediateTensorInfo(p)}return s}var Uk=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let a=0;a<n.length;a++)n[a]=e[t[a]];this.outputShape=n,this.rank=n.length;let o=Le(this.rank),s=l8(t);this.userCode=`
void main() {
${o} resRC = getOutputCoords();
setOutput(getA(${s}));
}
`}};function l8(r){let e=r.length;if(e>6)throw Error(`Transpose for rank ${e} is not yet supported`);let t=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u","resRC.v"],n=new Array(e);for(let o=0;o<r.length;o++)n[r[o]]=t[o];return n.join()}var qk=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0;let n=new Array(e.length);for(let c=0;c<n.length;c++)n[c]=e[t[c]];if(this.outputShape=n,this.rank=n.length,this.rank>6)throw Error(`Packed transpose for rank ${this.rank} is not yet supported.`);let o=Le(this.rank),s=Dk("rc",this.rank),a=new Array(this.rank);for(let c=0;c<t.length;c++)a[t[c]]=s[c];let i=`vec2(${a.slice(-2).join()})`,l=`++${s[this.rank-1]} < ${n[this.rank-1]}`,u=`getChannel(getA(${a.join()}), ${i})`;this.userCode=`
void main() {
${o} rc = getOutputCoords();
vec4 result = vec4(0.);
result[0] = ${u};
if(${l}) {
result[1] = ${u};
}
--${s[this.rank-1]};
if(++${s[this.rank-2]} < ${n[this.rank-2]}) {
result[2] = ${u};
if(${l}) {
result[3] = ${u};
}
}
setOutput(result);
}
`}};function yl(r,e,t){let n=W().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new qk(r.shape,e):new Uk(r.shape,e);return t.runWebGLProgram(n,[r],r.dtype)}function p2(r,e,t,n){let o=e,s=r.shape.length,a=y.parseAxisParam(o,r.shape),i=a,l=N.getAxesPermutation(i,s),u=l!=null,c=r;u&&(c=yl(r,l,n),i=N.getInnerMostAxes(i.length,s)),N.assertAxesAreInnerMostDims("sum",i,s);let[p,m]=N.computeOutAndReduceShapes(c.shape,i),f=p;t&&(f=N.expandShapeToKeepDim(p,a));let d=y.sizeFromShape(m),g=y.sizeFromShape(r.shape)/d,x=ce({inputs:{x:c},attrs:{shape:[g,d]},backend:n}),b=hu(r.dtype),w=vn(x,b,"sum",n),_=ce({inputs:{x:w},attrs:{shape:f},backend:n});return n.disposeIntermediateTensorInfo(x),n.disposeIntermediateTensorInfo(w),u&&n.disposeIntermediateTensorInfo(c),_}function Ef(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{axis:s,keepDims:a}=n;return p2(o,s,a,t)}var m2={kernelName:To,backendName:"webgl",kernelFunc:Ef};function zt(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{perm:s}=n,a=t,i=o.shape.length,l=new Array(i);for(let c=0;c<l.length;c++)l[c]=o.shape[s[c]];let u;if(a.shouldExecuteOnCPU([o])){let p=a.texData.get(o.dataId).values,m=wp(p,o.shape,o.dtype,s,l);u=a.makeTensorInfo(l,o.dtype);let f=a.texData.get(u.dataId);f.values=m}else u=yl(o,s,a);return u}var f2={kernelName:Ro,backendName:"webgl",kernelFunc:zt};var Hk=1e3;function Ju({a:r,b:e,transposeA:t,transposeB:n,backend:o,bias:s=null,preluActivationWeights:a=null,leakyreluAlpha:i=0,activation:l=null}){let u=r.shape.length,c=e.shape.length,p=t?r.shape[u-2]:r.shape[u-1],m=n?e.shape[c-1]:e.shape[c-2],f=t?r.shape[u-1]:r.shape[u-2],d=n?e.shape[c-2]:e.shape[c-1],h=r.shape.slice(0,-2),g=e.shape.slice(0,-2),x=y.sizeFromShape(h),b=y.sizeFromShape(g),w=x===b||x===1||b===1;y.assert(u>=2&&c>=2&&w,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${h}) and (${g}).`);let k=(x>b?r.shape.slice(0,-2):e.shape.slice(0,-2)).concat([f,d]);y.assert(p===m,()=>`Error in matMul: inner shapes (${p}) and (${m}) of Tensors with shapes ${r.shape} and ${e.shape} and transposeA=${t} and transposeB=${n} must match.`);let E=t?[x,p,f]:[x,f,p],S=n?[b,d,m]:[b,m,d],R=ce({inputs:{x:r},backend:o,attrs:{shape:E}}),F=ce({inputs:{x:e},backend:o,attrs:{shape:S}}),P=[R,F],j=Math.max(x,b),G=t?R.shape[1]:R.shape[2],U=s!=null,X=a!=null,K=l==="leakyrelu",Z=l!=null?xl(l,!0):null,te=U||X||K||Z!=null,Y;if((f===1||d===1)&&G>Hk&&te===!1){let ie=R,se=F;t&&(ie=zt({inputs:{x:R},backend:o,attrs:{perm:[0,2,1]}}),P.push(ie)),n&&(se=zt({inputs:{x:F},backend:o,attrs:{perm:[0,2,1]}}),P.push(se));let pe=d!==1,ae=d===1,xe=ie;pe&&(xe=ce({inputs:{x:ie},backend:o,attrs:{shape:[j,G,1]}}),P.push(xe));let ge=d===1?2:1,we=se;ae&&(we=ce({inputs:{x:se},backend:o,attrs:{shape:[j,1,G]}}),P.push(we));let ke=jk({inputs:{a:xe,b:we},backend:o});Y=Ef({inputs:{x:ke},backend:o,attrs:{axis:ge,keepDims:!0}}),P.push(ke)}else{let ie=fr(r.dtype,e.dtype),se=new Tf(E,S,[j,f,d],t,n,U,Z,X,K),pe=[R,F];if(s!=null&&pe.push(s),X&&pe.push(a),K){let ae=o.makeTensorInfo([],"float32",y.createScalarValue(i,"float32"));pe.push(ae),P.push(ae)}Y=o.runWebGLProgram(se,pe,ie)}let re=ce({inputs:{x:Y},backend:o,attrs:{shape:k}});P.push(Y);for(let ie of P)o.disposeIntermediateTensorInfo(ie);return re}function u8(r){let{inputs:e,backend:t,attrs:n}=r,{a:o,b:s,bias:a,preluActivationWeights:i}=e,{transposeA:l,transposeB:u,activation:c,leakyreluAlpha:p}=n;return Ju({a:o,b:s,transposeA:l,transposeB:u,backend:t,bias:a,preluActivationWeights:i,leakyreluAlpha:p,activation:c})}var d2={kernelName:bs,backendName:"webgl",kernelFunc:u8};var h2="return abs(x);";function c8(r){let{inputs:e,backend:t}=r,{x:n}=e;if(t.shouldExecuteOnCPU([n])&&n.dtype!=="complex64"){let s=t.texData.get(n.dataId),a=qg(s.values);return t.makeTensorInfo(n.shape,n.dtype,a)}let o;return W().getBool("WEBGL_PACK_UNARY_OPERATIONS")?o=new Fs(n.shape,h2):o=new rn(n.shape,h2),t.runWebGLProgram(o,[n],n.dtype)}var g2={kernelName:ss,backendName:"webgl",kernelFunc:c8};var p8=hr+`
if (abs(x) > 1.) {
return NAN;
}
return acos(x);
`,m8=ve({opSnippet:p8}),x2={kernelName:Ks,backendName:"webgl",kernelFunc:m8};var f8=hr+`
if (x < 1.0) return NAN;
return log(x + sqrt(x * x - 1.0));`,d8=ve({opSnippet:f8}),y2={kernelName:Xs,backendName:"webgl",kernelFunc:d8};var b2="return a + b;",h8=it({opSnippet:b2,packedOpSnippet:b2,supportsComplex:!0,cpuKernelImpl:xA}),w2={kernelName:xn,backendName:"webgl",kernelFunc:h8};var Kk=class{constructor(e,t){this.outputShape=[],this.outputShape=e,this.variableNames=t.map((s,a)=>`T${a}`);let n=[];this.variableNames.forEach(s=>{n.push(`float v${s} = get${s}AtOutCoords();`)});let o=this.variableNames.map(s=>`v${s}`).join(" + ");this.userCode=`
void main() {
${n.join(`
`)}
float result = ${o};
setOutput(result);
}
`}};var Xk=class{constructor(e,t){this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.variableNames=t.map((s,a)=>`T${a}`);let n=[];this.variableNames.forEach(s=>{n.push(`vec4 v${s} = get${s}AtOutCoords();`)});let o=this.variableNames.map(s=>`v${s}`).join(" + ");this.userCode=`
void main() {
${n.join(`
`)}
vec4 result = ${o};
setOutput(result);
}
`}};function Qg(r){let{inputs:e,backend:t}=r,n=e;if(n.length===1)return Ut({inputs:{x:n[0]},backend:t});if(n.length>W().get("WEBGL_MAX_TEXTURES_IN_SHADER")){let l=Math.floor(n.length/2),u=Qg({inputs:n.slice(0,l),backend:t}),c=Qg({inputs:n.slice(l),backend:t});return Qg({inputs:[u,c],backend:t})}let o=n.map(l=>l.dtype).reduce((l,u)=>fr(l,u)),s=n.map(l=>l.shape),i=W().getBool("WEBGL_PACK")?new Xk(n[0].shape,s):new Kk(n[0].shape,s);return t.runWebGLProgram(i,n,o)}var _2={kernelName:Wn,backendName:"webgl",kernelFunc:Qg};function g8(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{axis:s,keepDims:a}=n,i=o.shape.length,l=y.parseAxisParam(s,o.shape),u=l,c=N.getAxesPermutation(u,i),p=o;c!=null&&(p=zt({inputs:{x:o},backend:t,attrs:{perm:c}}),u=N.getInnerMostAxes(u.length,i)),N.assertAxesAreInnerMostDims("all",u,i);let[m,f]=N.computeOutAndReduceShapes(p.shape,u),d=y.sizeFromShape(f),h=ce({inputs:{x:p},backend:t,attrs:{shape:[-1,d]}}),g=vn(h,h.dtype,"all",t),x;if(a){let b=N.expandShapeToKeepDim(m,l);x=ce({inputs:{x:g},backend:t,attrs:{shape:b}})}else x=ce({inputs:{x:g},backend:t,attrs:{shape:m}});return t.disposeIntermediateTensorInfo(h),t.disposeIntermediateTensorInfo(g),c!=null&&t.disposeIntermediateTensorInfo(p),x}var k2={kernelName:Vl,backendName:"webgl",kernelFunc:g8};function x8(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{axis:s,keepDims:a}=n,i=o.shape.length,l=y.parseAxisParam(s,o.shape),u=l,c=N.getAxesPermutation(u,i),p=o;c!=null&&(p=zt({inputs:{x:o},backend:t,attrs:{perm:c}}),u=N.getInnerMostAxes(u.length,i)),N.assertAxesAreInnerMostDims("any",u,i);let[m,f]=N.computeOutAndReduceShapes(p.shape,u),d=y.sizeFromShape(f),h=ce({inputs:{x:p},backend:t,attrs:{shape:[-1,d]}}),g=vn(h,h.dtype,"any",t),x;if(a){let b=N.expandShapeToKeepDim(m,l);x=ce({inputs:{x:g},backend:t,attrs:{shape:b}})}else x=ce({inputs:{x:g},backend:t,attrs:{shape:m}});return t.disposeIntermediateTensorInfo(h),t.disposeIntermediateTensorInfo(g),c!=null&&t.disposeIntermediateTensorInfo(p),x}var v2={kernelName:Gl,backendName:"webgl",kernelFunc:x8};var Yk=class{constructor(e,t,n){this.variableNames=["A"];let{windowSize:o,batchSize:s,outSize:a}=e;n||this.variableNames.push("bestIndicesA"),this.outputShape=[s,a];let i=t==="max"?">":"<",l=n?"inOffset + i;":"round(getBestIndicesA(batch, inOffset + i));";this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = outIdx * ${o};
int bestIndex = inOffset;
float bestValue = getA(batch, bestIndex);
for (int i = 0; i < ${o}; i++) {
int inIdx = ${l};
float candidate = getA(batch, inIdx);
if (candidate ${i} bestValue) {
bestValue = candidate;
bestIndex = inIdx;
}
}
setOutput(float(bestIndex));
}
`}};var Zk=class{constructor(e,t,n,o){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,y.assert(e.length>2,()=>`Packed arg${n.charAt(0).toUpperCase()+n.slice(1)} supports only inputs with rank above 2.`);let s=e[e.length-1],a=Math.ceil(s/t);this.outputShape=e.slice(0,-1),a>1&&this.outputShape.push(a),o||this.variableNames.push("bestIndicesA");let i=this.outputShape,l=i.length,u=Le(l),c=Wt("coords",l),p,m;if(a===1){m=l+1;let R=Le(m);p=`
${R} sourceLocR = ${R}(${c.join()}, 0);
++${c[l-1]};
${R} sourceLocG = ${R}(${c.join()}, 0);
++${c[l-2]};
${R} sourceLocA = ${R}(${c.join()}, 0);
--${c[l-1]};
${R} sourceLocB = ${R}(${c.join()}, 0);
--${c[l-2]};`}else m=l,p=`
${u} sourceLocR = coords;
++${c[l-1]};
${u} sourceLocG = coords;
++${c[l-2]};
${u} sourceLocA = coords;
--${c[l-1]};
${u} sourceLocB = coords;
--${c[l-2]};`;let f=["x","y","z","w","u","v"].slice(0,m),d="."+f[m-1],h=f.map(R=>"int "+R),g=Wt("sourceLocR",m-1).concat("inIdx.r"),x=Wt("sourceLocG",m-1).concat("inIdx.g"),b=Wt("sourceLocB",m-1).concat("inIdx.b"),w=Wt("sourceLocA",m-1).concat("inIdx.a"),_=n==="max"?"greaterThan":"lessThan",k=o?"":`
inIdx = round(vec4(getBestIndicesAChannel(${g.join()}),
getBestIndicesAChannel(${x.join()}),
getBestIndicesAChannel(${b.join()}),
getBestIndicesAChannel(${w.join()})));`,E=`vec4(
getAChannel(${g.join()}),
hasNextCol ? getAChannel(${x.join()}) : 0.,
hasNextRow ? getAChannel(${b.join()}) : 0.,
hasNextRow && hasNextCol ? getAChannel(${w.join()}) : 0.)`,S=o?"":`
float getBestIndicesAChannel(${h.join()}) {
return getChannel(getBestIndicesA(${f.join()}),
vec2(${f.slice(-2).join()}));
}`;this.userCode=`
float getAChannel(${h.join()}) {
return getChannel(getA(${f.join()}),
vec2(${f.slice(-2).join()}));
}
${S}
void main() {
${u} coords = getOutputCoords();
bool hasNextCol = ${c[l-1]} < ${i[l-1]-1};
bool hasNextRow = ${c[l-2]} < ${i[l-2]-1};
${p}
ivec4 srcIdx = ivec4(sourceLocR${d}, sourceLocG${d},
sourceLocB${d}, sourceLocA${d}) * ${t};
ivec4 inIdx = srcIdx;
vec4 bestIndex = vec4(inIdx);
vec4 bestValue = ${E};
for (int i = 0; i < ${t}; i++) {
inIdx = srcIdx;
${k}
vec4 candidate = ${E};
bvec4 nan = isnan(candidate);
bvec4 replace = bvec4(
vec4(${_}(candidate, bestValue)) * (vec4(1.0) - vec4(nan)));
bestValue = vec4(replace.x ? candidate.x : bestValue.x,
replace.y ? candidate.y : bestValue.y,
replace.z ? candidate.z : bestValue.z,
replace.w ? candidate.w : bestValue.w);
bestIndex = mix(bestIndex, vec4(inIdx), vec4(replace));
srcIdx++;
}
setOutput(bestIndex);
}
`}};function C2(r,e,t,n=null){let o=e.shape[0],s=e.shape[1];n!=null&&(o=n.shape[0],s=n.shape[1]);let a=N.computeOptimalWindowSize(s),i={windowSize:a,inSize:s,batchSize:o,outSize:Math.ceil(s/a)},l=new Yk(i,t,n==null),u=[e];n!=null&&u.push(n);let c=r.runWebGLProgram(l,u,"int32");if(c.shape[1]===1)return c;let p=C2(r,e,t,c);return r.disposeIntermediateTensorInfo(c),p}function I2(r,e,t,n=null){let o=n!=null?n.shape:e.shape,s=o[o.length-1],a=N.computeOptimalWindowSize(s),i=new Zk(o,a,t,n==null),l=n==null?[e]:[e,n],u=r.runWebGLProgram(i,l,"int32");if(u.shape.length===e.shape.length){let c=I2(r,e,t,u);return r.disposeIntermediateTensorInfo(u),c}return u}function ex(r,e,t,n){let o=[t];if(N.assertAxesAreInnerMostDims("arg"+n.charAt(0).toUpperCase()+n.slice(1),o,e.shape.length),!W().getBool("WEBGL_PACK_REDUCE")||e.shape.length<=2){let s=[],[a,i]=N.computeOutAndReduceShapes(e.shape,o),l=y.sizeFromShape(i),u=ce({inputs:{x:e},backend:r,attrs:{shape:[-1,l]}});s.push(u);let c=C2(r,u,n);s.push(c);let p=ce({inputs:{x:c},backend:r,attrs:{shape:a}});return s.forEach(m=>r.disposeIntermediateTensorInfo(m)),p}return I2(r,e,n)}function y8(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{axis:s}=n,a=y.parseAxisParam(s,o.shape),i=N.getAxesPermutation(a,o.shape.length),l=o,u=[];i!=null&&(l=zt({inputs:{x:o},backend:t,attrs:{perm:i}}),u.push(l),a=N.getInnerMostAxes(a.length,l.shape.length)),N.assertAxesAreInnerMostDims("argMax",[a[0]],l.shape.length);let c=ex(t,l,a[0],"max");return u.forEach(p=>t.disposeIntermediateTensorInfo(p)),c}var N2={kernelName:Un,backendName:"webgl",kernelFunc:y8};function b8(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{axis:s}=n,a=y.parseAxisParam(s,o.shape),i=N.getAxesPermutation(a,o.shape.length),l=o,u=[];i!=null&&(l=zt({inputs:{x:o},backend:t,attrs:{perm:i}}),u.push(l),a=N.getInnerMostAxes(a.length,l.shape.length)),N.assertAxesAreInnerMostDims("argMin",[a[0]],l.shape.length);let c=ex(t,l,a[0],"min");return u.forEach(p=>t.disposeIntermediateTensorInfo(p)),c}var S2={kernelName:na,backendName:"webgl",kernelFunc:b8};var w8=hr+`
if (abs(x) > 1.) {
return NAN;
}
return asin(x);
`,_8=ve({opSnippet:w8}),T2={kernelName:Ys,backendName:"webgl",kernelFunc:_8};var k8=hr+"return log(x + sqrt(x * x + 1.0));",v8=ve({opSnippet:k8}),E2={kernelName:Zs,backendName:"webgl",kernelFunc:v8};var C8=hr+`
return atan(x);
`,I8=ve({opSnippet:C8}),A2={kernelName:Js,backendName:"webgl",kernelFunc:I8};var N8=s2+`
return atan(a, b);
`,S8=`
vec4 result = atan(a, b);
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
`+i2+`
return result;
`,T8=it({opSnippet:N8,packedOpSnippet:S8}),D2={kernelName:ei,backendName:"webgl",kernelFunc:T8};var E8=hr+`
if ((x < -1.0) || (x > 1.0)) return NAN;
return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,A8=ve({opSnippet:E8}),$2={kernelName:Qs,backendName:"webgl",kernelFunc:A8};var Wi=class{constructor(e,t,n,o=!1,s=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let a=e.filterWidth,i=e.strideHeight,l=e.strideWidth,u=e.dilationHeight,c=e.dilationWidth,p=e.effectiveFilterHeight,m=e.effectiveFilterWidth,f=e.padInfo.top,d=e.padInfo.left;this.outputShape=e.outShape;let h=t==="avg",g=`((batch * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + d`,x=`(xR * ${e.inWidth} + xC) * ${e.inChannels} + d`,b="0.0";if(h||(b="-1.0 / 1e-20"),n){let R=">=";this.userCode=`
const ivec2 strides = ivec2(${i}, ${l});
const ivec2 pads = ivec2(${f}, ${d});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d = coords[3];
ivec2 xRCCorner = coords.yz * strides - pads;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// max/min x(?, ?, d) to get y(yR, yC, d).
// ? = to be determined
float minMaxValue = 0.0;
float minMaxValueFound = 0.0;
int minMaxPosition = 0;
float avgValue = 0.0;
for (int wR = 0; wR < ${p};
wR += ${u}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${m};
wC += ${c}) {
int xC = xCCorner + wC;
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float value = getX(batch, xR, xC, d);
// If a min / max value has already been found, use it. If not,
// use the current value.
float currMinMaxValue = mix(
value, minMaxValue, minMaxValueFound);
if (value ${R} currMinMaxValue) {
minMaxValue = value;
minMaxValueFound = 1.0;
minMaxPosition = ${o?s?g:x:`wR * ${m} + wC`};
}
}
}
setOutput(float(minMaxPosition));
}
`;return}let w="max",_=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(_="avgValue / count");let k=Math.floor(a/4)*4,E=a%4,S=`
if (${h}) {
avgValue += dot(values, ones);
} else {
minMaxValue = ${w}(values, minMaxValue);
}
`;this.userCode=`
const ivec2 strides = ivec2(${i}, ${l});
const ivec2 pads = ivec2(${f}, ${d});
const float initializationValue = ${b};
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float count = 0.0;
float getValue(int batch, int xR, int xC, int d) {
if (xC < 0 || xC >= ${e.inWidth}) {
return initializationValue;
}
count += 1.0;
return getX(batch, xR, xC, d);
}
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d = coords[3];
ivec2 xRCCorner = coords.yz * strides - pads;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// max/min x(?, ?, d) to get y(yR, yC, d).
// ? = to be determined
vec4 minMaxValue = vec4(${b});
float avgValue = 0.0;
count = 0.0;
for (int wR = 0; wR < ${p};
wR += ${u}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${k}; wC += 4) {
int xC = xCCorner + wC * ${c};
vec4 values = vec4(
getValue(batch, xR, xC, d),
getValue(batch, xR, xC + ${c}, d),
getValue(batch, xR, xC + 2 * ${c}, d),
getValue(batch, xR, xC + 3 * ${c}, d)
);
${S}
}
int xC = xCCorner + ${k};
if (${E===1}) {
vec4 values = vec4(
getValue(batch, xR, xC, d),
initializationValue,
initializationValue,
initializationValue
);
${S}
} else if (${E===2}) {
vec4 values = vec4(
getValue(batch, xR, xC, d),
getValue(batch, xR, xC + ${c}, d),
initializationValue,
initializationValue
);
${S}
} else if (${E===3}) {
vec4 values = vec4(
getValue(batch, xR, xC, d),
getValue(batch, xR, xC + ${c}, d),
getValue(batch, xR, xC + 2 * ${c}, d),
initializationValue
);
${S}
}
}
setOutput(${_});
}
`}},Qu=class{constructor(e,t,n,o=!1,s=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let a=e.filterWidth,i=e.strideDepth,l=e.strideHeight,u=e.strideWidth,c=e.dilationDepth,p=e.dilationHeight,m=e.dilationWidth,f=e.effectiveFilterDepth,d=e.effectiveFilterHeight,h=e.effectiveFilterWidth,g=e.padInfo.front,x=e.padInfo.top,b=e.padInfo.left;this.outputShape=e.outShape;let w=t==="avg",_="0.0";if(w||(_="-1.0 / 1e-20"),n){let P=">=";this.userCode=`
const ivec3 strides =
ivec3(${i}, ${l}, ${u});
const ivec3 pads = ivec3(${g}, ${x}, ${b});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
int xDCorner = xCorner.x;
int xRCorner = xCorner.y;
int xCCorner = xCorner.z;
// max/min x(?, ?, ?, ch) to get y(yD, yR, yC, ch).
// ? = to be determined
float minMaxValue = 0.0;
float minMaxValueFound = 0.0;
int minMaxPosition = 0;
for (int wD = 0; wD < ${f};
wD += ${c}) {
int xD = xDCorner + wD;
if (xD < 0 || xD >= ${e.inDepth}) {
continue;
}
for (int wR = 0; wR < ${d};
wR += ${p}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${h};
wC += ${m}) {
int xC = xCCorner + wC;
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float value = getX(batch, xD, xR, xC, ch);
// If a min / max value has already been found, use it. If not,
// use the current value.
float currMinMaxValue = mix(
value, minMaxValue, minMaxValueFound);
if (value ${P} currMinMaxValue) {
minMaxValue = value;
minMaxValueFound = 1.0;
minMaxPosition = ${o?s?`(((batch * ${e.inDepth} + xD) * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`((xD * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`wD * ${d} * ${h} +
wR * ${h} + wC`};
}
}
}
}
setOutput(float(minMaxPosition));
}
`;return}let k="max",E=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(E="avgValue / count");let S=Math.floor(a/4)*4,R=a%4,F=`
if (${w}) {
avgValue += dot(values, ones);
} else {
minMaxValue = ${k}(values, minMaxValue);
}
`;this.userCode=`
const ivec3 strides =
ivec3(${i}, ${l}, ${u});
const ivec3 pads = ivec3(${g}, ${x}, ${b});
const float initializationValue = ${_};
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float count = 0.0;
float getValue(int batch, int xD, int xR, int xC, int ch) {
if (xC < 0 || xC >= ${e.inWidth}) {
return initializationValue;
}
count += 1.0;
return getX(batch, xD, xR, xC, ch);
}
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
int xDCorner = xCorner.x;
int xRCorner = xCorner.y;
int xCCorner = xCorner.z;
// max/min x(?, ?, ?, d) to get y(yD, yR, yC, ch).
// ? = to be determined
vec4 minMaxValue = vec4(${_});
float avgValue = 0.0;
count = 0.0;
for (int wD = 0; wD < ${f};
wD += ${c}) {
int xD = xDCorner + wD;
if (xD < 0 || xD >= ${e.inDepth}) {
continue;
}
for (int wR = 0; wR < ${d};
wR += ${p}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${S}; wC += 4) {
int xC = xCCorner + wC * ${m};
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
getValue(batch, xD, xR, xC + ${m}, ch),
getValue(batch, xD, xR, xC + 2 * ${m}, ch),
getValue(batch, xD, xR, xC + 3 * ${m}, ch)
);
${F}
}
int xC = xCCorner + ${S};
if (${R===1}) {
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
initializationValue,
initializationValue,
initializationValue
);
${F}
} else if (${R===2}) {
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
getValue(batch, xD, xR, xC + ${m}, ch),
initializationValue,
initializationValue
);
${F}
} else if (${R===3}) {
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
getValue(batch, xD, xR, xC + ${m}, ch),
getValue(batch, xD, xR, xC + 2 * ${m}, ch),
initializationValue
);
${F}
}
}
setOutput(${E});
}
}
`}};function D8(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e;$s(o,"avgPool");let{filterSize:s,strides:a,pad:i,dimRoundingMode:l}=n,u=1;y.assert(N.eitherStridesOrDilationsAreOne(a,u),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${a} and dilations '${u}'`);let c=N.computePool2DInfo(o.shape,s,a,u,i,l);if(c.filterWidth===1&&c.filterHeight===1&&y.arraysEqual(c.inShape,c.outShape))return Ut({inputs:{x:o},backend:t});let p=new Wi(c,"avg",!1);return t.runWebGLProgram(p,[o],"float32")}var R2={kernelName:qn,backendName:"webgl",kernelFunc:D8};function $8(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{filterSize:s,strides:a,pad:i,dimRoundingMode:l,dataFormat:u}=n,c=[1,1,1],p=N.computePool3DInfo(o.shape,s,a,c,i,l,u),m=new Qu(p,"avg",!1);return t.runWebGLProgram(m,[o],"float32")}var F2={kernelName:oa,backendName:"webgl",kernelFunc:$8};var Jk=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,o=e.strideHeight,s=e.strideWidth,a=e.dilationHeight,i=e.dilationWidth,l=e.effectiveFilterHeight,u=e.effectiveFilterWidth,c=l-1-e.padInfo.top,p=u-1-e.padInfo.left,m=1/(t*n);this.userCode=`
const ivec2 pads = ivec2(${c}, ${p});
const float avgMultiplier = float(${m});
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 dyRCCorner = coords.yz - pads;
int dyRCorner = dyRCCorner.x;
int dyCCorner = dyRCCorner.y;
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${l};
wR += ${a}) {
float dyR = float(dyRCorner + wR) / ${o}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${u};
wC+= ${i}) {
float dyC = float(dyCCorner + wC) / ${s}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(b, idyR, idyC, d);
dotProd += dyValue * avgMultiplier;
}
}
setOutput(dotProd);
}
`}},Qk=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,o=e.filterWidth,s=e.strideDepth,a=e.strideHeight,i=e.strideWidth,l=e.dilationDepth,u=e.dilationHeight,c=e.dilationWidth,p=e.effectiveFilterDepth,m=e.effectiveFilterHeight,f=e.effectiveFilterWidth,d=p-1-e.padInfo.front,h=m-1-e.padInfo.top,g=f-1-e.padInfo.left,x=1/(t*n*o);this.userCode=`
const ivec3 pads = ivec3(${d}, ${h}, ${g});
const float avgMultiplier = float(${x});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
int dyDCorner = dyCorner.x;
int dyRCorner = dyCorner.y;
int dyCCorner = dyCorner.z;
// Convolve dy(?, ?, ?, d) with pos mask(:, :, :, ch) to get
// dx(xD, xR, xC, ch).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wD = 0; wD < ${p};
wD += ${l}) {
float dyD = float(dyDCorner + wD) / ${s}.0;
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
continue;
}
int idyD = int(dyD);
for (int wR = 0; wR < ${m};
wR += ${u}) {
float dyR = float(dyRCorner + wR) / ${a}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${f};
wC += ${c}) {
float dyC = float(dyCCorner + wC) / ${i}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
dotProd += dyValue * avgMultiplier;
}
}
}
setOutput(dotProd);
}
`}};function R8(r){let{inputs:e,backend:t,attrs:n}=r,{dy:o,input:s}=e,a=s,{filterSize:i,strides:l,pad:u,dimRoundingMode:c}=n,p=[1,1,1],m=N.computePool3DInfo(a.shape,i,l,p,u,c),f=new Qk(m);return t.runWebGLProgram(f,[o],a.dtype)}var O2={kernelName:Wl,backendName:"webgl",kernelFunc:R8};function F8(r){let{inputs:e,backend:t,attrs:n}=r,{dy:o,input:s}=e,a=s;$s([o,s],"avgPoolGrad");let{filterSize:i,strides:l,pad:u}=n,c=N.computePool2DInfo(a.shape,i,l,1,u),p=new Jk(c);return t.runWebGLProgram(p,[o],a.dtype)}var P2={kernelName:jl,backendName:"webgl",kernelFunc:F8};function O8(r){let{inputs:e,backend:t,attrs:n}=r,{a:o,b:s}=e,{transposeA:a,transposeB:i}=n;return Ju({a:o,b:s,transposeA:a,transposeB:i,backend:t})}var M2={kernelName:Hn,backendName:"webgl",kernelFunc:O8};var ev=class{constructor(e,t,n,o,s,a){this.outputShape=[],this.variableNames=["x","mean","variance"],N.assertAndGetBroadcastShape(e,t),N.assertAndGetBroadcastShape(e,n);let i="0.0";o!=null&&(N.assertAndGetBroadcastShape(e,o),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let l="1.0";s!=null&&(N.assertAndGetBroadcastShape(e,s),this.variableNames.push("scale"),l="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
void main() {
float x = getXAtOutCoords();
float mean = getMeanAtOutCoords();
float variance = getVarianceAtOutCoords();
float offset = ${i};
float scale = ${l};
float inv = scale * inversesqrt(variance + float(${a}));
setOutput(dot(vec3(x, -mean, offset), vec3(inv, inv, 1)));
}
`}};var tv=class{constructor(e,t,n,o,s,a){this.packedInputs=!0,this.packedOutput=!0,this.variableNames=["x","mean","variance"],N.assertAndGetBroadcastShape(e,t),N.assertAndGetBroadcastShape(e,n);let i="vec4(0.0)";o!=null&&(N.assertAndGetBroadcastShape(e,o),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let l="vec4(1.0)";s!=null&&(N.assertAndGetBroadcastShape(e,s),this.variableNames.push("scale"),l="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
void main() {
vec4 offset = ${i};
vec4 scale = ${l};
vec4 x = getXAtOutCoords();
vec4 mean = getMeanAtOutCoords();
vec4 variance = getVarianceAtOutCoords();
vec4 inv = scale * inversesqrt(variance + vec4(${a}));
setOutput((x - mean) * inv + offset);
}
`}};var P8=({inputs:r,backend:e,attrs:t})=>{let{x:n,mean:o,variance:s,offset:a,scale:i}=r;y.assert(o.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),y.assert(a==null||o.shape.length===a.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),y.assert(i==null||o.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let{varianceEpsilon:l}=t;l==null&&(l=.001);let u=[n,o,s],c=null;a!=null&&(c=a.shape,u.push(a));let p=null;i!=null&&(p=i.shape,u.push(i));let m=W().getBool("WEBGL_PACK_NORMALIZATION")?new tv(n.shape,o.shape,s.shape,c,p,l):new ev(n.shape,o.shape,s.shape,c,p,l);return e.runWebGLProgram(m,u,u[0].dtype)},L2={kernelName:no,backendName:"webgl",kernelFunc:P8};var rv=class{constructor(e){this.variableNames=["source"],this.outputShape=e,this.rank=e.length;let t=Le(this.rank),n=`uniform int start[${this.rank}];`,o=M8(this.rank),s,a=e.map((i,l)=>`sourceLoc.${nv[l]} = start[${l}] + coords.${nv[l]};`);s=`
${t} sourceLoc;
${t} coords = getOutputCoords();
${a.join(`
`)}
`,this.userCode=`
${n}
void main() {
${s}
setOutput(getSource(${o}));
}
`}getCustomSetupFunc(e){if(e.length!==this.rank)throw Error(`The rank (${this.rank}) of the program must match the length of start (${e.length})`);return(t,n)=>{this.startLoc==null&&(this.startLoc=t.getUniformLocationNoThrow(n,"start"),this.startLoc==null)||t.gl.uniform1iv(this.startLoc,e)}}},nv=["x","y","z","w","u","v"];function M8(r){if(r===1)return"sourceLoc";if(r<=6)return nv.slice(0,r).map(e=>"sourceLoc."+e).join(",");throw Error(`Slicing for rank ${r} is not yet supported`)}var ov=class{constructor(e){this.variableNames=["source"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.rank=e.length;let t=Le(this.rank),n=Wt("coords",this.rank),o=Wt("sourceLoc",this.rank),s=this.rank===1?"sourceLoc":`vec2(${o.slice(-2).join()})`,a=`getChannel(getSource(${o.join()}), ${s})`,i=`
result.x = ${a};
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
++${o[this.rank-1]};
result.y = ${a};
--${o[this.rank-1]};
}
`,l=this.rank===1?"":`
--${n[this.rank-1]};
if (++${n[this.rank-2]} < ${e[this.rank-2]}) {
++${o[this.rank-2]};
result.z = ${a};
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
++${o[this.rank-1]};
result.w = ${a};
}
}
`,u=this.rank<=4?`sourceLoc = coords +
${t}(${e.map((c,p)=>`start[${p}]`).join()});`:e.map((c,p)=>`${o[p]} = ${n[p]} + start[${p}];`).join(`
`);this.userCode=`
uniform int start[${this.rank}];
void main() {
${t} coords = getOutputCoords();
${t} sourceLoc;
${u}
vec4 result = vec4(0.);
${i}
${l}
setOutput(result);
}
`}getCustomSetupFunc(e){if(e.length!==this.rank)throw Error(`The rank (${this.rank}) of the program must match the length of start (${e.length})`);return(t,n)=>{this.startLoc==null&&(this.startLoc=t.getUniformLocationNoThrow(n,"start"),this.startLoc==null)||t.gl.uniform1iv(this.startLoc,e)}}};function L8(r,e,t,n){let o=n.texData.get(r.dataId),s=n.makeTensorInfo(t,r.dtype),a=n.texData.get(s.dataId);Object.assign(a,o),a.complexParentRefCount=0,a.refCount=1,a.shape=t,a.dtype=r.dtype;let i=or.computeFlatOffset(e,y.computeStrides(r.shape));o.slice&&(i+=o.slice.flatOffset),a.slice={flatOffset:i,origDataId:o.slice&&o.slice.origDataId||r.dataId};let l=n.dataRefCount.get(a.slice.origDataId)||1;return n.dataRefCount.set(a.slice.origDataId,l+1),s}function Ba(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{begin:s,size:a}=n,[i,l]=or.parseSliceParams(o,s,a);if(or.assertParamsValid(o,i,l),y.sizeFromShape(l)===0)return t.makeTensorInfo(l,o.dtype,[]);if(t.shouldExecuteOnCPU([o])||o.dtype==="string"){let p=t.texData.get(o.dataId),m=MA(p.values,i,l,o.shape,o.dtype);return t.makeTensorInfo(l,o.dtype,m)}let{isPacked:u}=t.texData.get(o.dataId),c=or.isSliceContinous(o.shape,i,l);if(u||!c){let p=W().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new ov(l):new rv(l),m=p.getCustomSetupFunc(i);return t.runWebGLProgram(p,[o],o.dtype,m)}return t.uploadToGPU(o.dataId),L8(o,i,l,t)}var z2={kernelName:hs,backendName:"webgl",kernelFunc:Ba};var z8=r=>{let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{blockShape:s,crops:a}=n;y.assert(o.shape.length<=4,()=>"batchToSpaceND for rank > 4 with a WebGL backend not implemented yet");let i=s.reduce((b,w)=>b*w),l=N.getReshaped(o.shape,s,i),u=N.getPermuted(l.length,s.length),c=N.getReshapedPermuted(o.shape,s,i),p=N.getSliceBeginCoords(a,s.length),m=N.getSliceSize(c,a,s.length),f=[],d=ce({inputs:{x:o},backend:t,attrs:{shape:l}}),h=zt({inputs:{x:d},backend:t,attrs:{perm:u}}),g=ce({inputs:{x:h},backend:t,attrs:{shape:c}}),x=Ba({inputs:{x:g},backend:t,attrs:{begin:p,size:m}});return f.push(d),f.push(h),f.push(g),f.forEach(b=>t.disposeIntermediateTensorInfo(b)),x},B2={kernelName:sa,backendName:"webgl",kernelFunc:z8};function B8(r){let{inputs:e,backend:t,attrs:n}=r,{x:o,weights:s}=e,{size:a}=n,i=t.readSync(o.dataId),l=t.readSync(s.dataId),u=Ug(i,l,s.dtype,s.shape,a);return t.makeTensorInfo([a],s.dtype,u)}var V2={kernelName:Ul,backendName:"webgl",kernelFunc:B8};var V8="return float(a != b);",sv=it({opSnippet:V8,dtype:"bool"}),G2={kernelName:wi,backendName:"webgl",kernelFunc:sv};function Va(r){let{inputs:e,backend:t}=r,{input:n}=e,o=t.texData.get(n.dataId);return Ut({inputs:{x:o.complexTensorInfos.real},backend:t})}var j2={kernelName:cu,backendName:"webgl",kernelFunc:Va};var G8="return float(int(x));";function W2(r,e){let t=new rn(r.shape,G8),n=e.runWebGLProgram(t,[r],"int32");return{dataId:n.dataId,shape:n.shape,dtype:n.dtype}}function iv(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{dtype:s}=n;if(s==="complex64"){if(o.dtype==="complex64")return Ut({inputs:{x:o},backend:t});let a=xt(o.shape),i=iv({inputs:{x:o},backend:t,attrs:{dtype:"float32"}}),l=nn({inputs:{real:i,imag:a},backend:t});return a.dispose(),t.disposeIntermediateTensorInfo(i),l}if(o.dtype==="complex64"){let a=Va({inputs:{input:o},backend:t}),i=iv({inputs:{x:a},backend:t,attrs:{dtype:s}});return t.disposeIntermediateTensorInfo(a),i}if(!y.hasEncodingLoss(o.dtype,s)){let a=Ut({inputs:{x:o},backend:t});return{dataId:a.dataId,shape:a.shape,dtype:s}}if(s==="int32")return W2(o,t);if(s==="bool"){let a=t.makeTensorInfo([],"bool",y.getTypedArrayFromDType("bool",1)),l=sv({inputs:{a:o,b:a},backend:t});return t.disposeIntermediateTensorInfo(a),l}throw new Error(`Error in Cast: failed to cast ${o.dtype} to ${s}`)}var U2={kernelName:An,backendName:"webgl",kernelFunc:iv};var q2="return ceil(x);",j8=ve({opSnippet:q2,packedOpSnippet:q2,cpuKernelImpl:bA}),H2={kernelName:ti,backendName:"webgl",kernelFunc:j8};var av=class{constructor(e){this.variableNames=["A"],this.outputShape=e,this.userCode=`
uniform float minVal;
uniform float maxVal;
void main() {
float value = getAAtOutCoords();
if (isnan(value)) {
setOutput(value);
return;
}
setOutput(clamp(value, minVal, maxVal));
}
`}getCustomSetupFunc(e,t){return(n,o)=>{this.minLoc==null&&(this.minLoc=n.getUniformLocationNoThrow(o,"minVal"),this.maxLoc=n.getUniformLocationNoThrow(o,"maxVal")),n.gl.uniform1f(this.minLoc,e),n.gl.uniform1f(this.maxLoc,t)}}};var lv=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.userCode=`
uniform float minVal;
uniform float maxVal;
void main() {
vec4 value = getAAtOutCoords();
if (any(isnan(value))) {
setOutput(value);
return;
}
setOutput(clamp(value, vec4(minVal), vec4(maxVal)));
}
`}getCustomSetupFunc(e,t){return(n,o)=>{this.minLoc==null&&(this.minLoc=n.getUniformLocationNoThrow(o,"minVal"),this.maxLoc=n.getUniformLocationNoThrow(o,"maxVal")),n.gl.uniform1f(this.minLoc,e),n.gl.uniform1f(this.maxLoc,t)}}};function W8(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{clipValueMin:s,clipValueMax:a}=n,i;W().getBool("WEBGL_PACK_CLIP")?i=new lv(o.shape):i=new av(o.shape);let l=i.getCustomSetupFunc(s,a);return t.runWebGLProgram(i,[o],o.dtype,l)}var K2={kernelName:Dn,backendName:"webgl",kernelFunc:W8};var uv=class{constructor(e){this.variableNames=["real","imag"],this.outputShape=e,this.userCode=`
void main() {
float re = abs(getRealAtOutCoords());
float im = abs(getImagAtOutCoords());
float mx = max(re, im);
// sadly the length function in glsl is not underflow-safe
// (at least not on Intel GPUs). So the safe solution is
// to ensure underflow-safety in all cases.
setOutput(
mx == 0.0 ? 0.0 : mx * length(vec2(1, min(re, im)/mx))
);
}
`}};function X2(r,e){return{dataId:e.dataId,dtype:e.dtype,shape:r.shape}}function U8(r){let{inputs:e,backend:t}=r,{x:n}=e,o=t.texData.get(n.dataId),s=new uv(n.shape),a=[X2(n,o.complexTensorInfos.real),X2(n,o.complexTensorInfos.imag)];return t.runWebGLProgram(s,a,a[0].dtype)}var Y2={kernelName:ia,backendName:"webgl",kernelFunc:U8};var cv=class{constructor(e){this.outputShape=[],this.outputShape=N.computeOutShape(e,1),this.variableNames=e.map((a,i)=>`T${i}`);let t=new Array(e.length-1);t[0]=e[0][1];for(let a=1;a<t.length;a++)t[a]=t[a-1]+e[a][1];let n=[`if (yC < ${t[0]}) setOutput(getT0(yR, yC));`];for(let a=1;a<t.length;a++){let i=t[a-1];n.push(`else if (yC < ${t[a]}) setOutput(getT${a}(yR, yC-${i}));`)}let o=t.length,s=t[t.length-1];n.push(`else setOutput(getT${o}(yR, yC-${s}));`),this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int yR = coords.x;
int yC = coords.y;
${n.join(`
`)}
}
`}};var pv=class{constructor(e,t){this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[],this.outputShape=N.computeOutShape(e,t);let n=this.outputShape,o=n.length,s=Le(o),a=Wt("coords",o),i=["x","y","z","w","u","v"].slice(0,o);this.variableNames=e.map((h,g)=>`T${g}`);let l=new Array(e.length-1);l[0]=e[0][t];for(let h=1;h<l.length;h++)l[h]=l[h-1]+e[h][t];let u=i[t],c=i.slice(-2),p=i.join(),m=`if (${u} < ${l[0]}) {
return getChannel(
getT0(${p}), vec2(${c.join()}));
}`;for(let h=1;h<l.length;h++){let g=l[h-1];m+=`
if (${u} < ${l[h]} && ${u} >= ${l[h-1]}) {
return getChannel(
getT${h}(${tx(i,u,g)}),
vec2(${tx(c,u,g)}));
}`}let f=l.length,d=l[l.length-1];m+=`
return getChannel(
getT${f}(${tx(i,u,d)}),
vec2(${tx(c,u,d)}));`,this.userCode=`
float getValue(${i.map(h=>"int "+h)}) {
${m}
}
void main() {
${s} coords = getOutputCoords();
vec4 result = vec4(getValue(${a}), 0., 0., 0.);
${a[o-1]} = ${a[o-1]} + 1;
if (${a[o-1]} < ${n[o-1]}) {
result.g = getValue(${a});
}
${a[o-2]} = ${a[o-2]} + 1;
if (${a[o-2]} < ${n[o-2]}) {
result.a = getValue(${a});
}
${a[o-1]} = ${a[o-1]} - 1;
if (${a[o-2]} < ${n[o-2]} &&
${a[o-1]} < ${n[o-1]}) {
result.b = getValue(${a});
}
setOutput(result);
}
`}};function tx(r,e,t){let n=r.indexOf(e);return r.map((s,a)=>a===n?`${s} - ${t}`:s).join()}function ec(r){let{inputs:e,backend:t}=r,{input:n}=e,o=t.texData.get(n.dataId);return Ut({inputs:{x:o.complexTensorInfos.imag},backend:t})}var Z2={kernelName:nu,backendName:"webgl",kernelFunc:ec};function tc(r,e,t){let n=r[0].dtype;if(n==="complex64"){let u=r.map(d=>Va({inputs:{input:d},backend:t})),c=r.map(d=>ec({inputs:{input:d},backend:t})),p=tc(u,e,t),m=tc(c,e,t),f=nn({inputs:{real:p,imag:m},backend:t});return u.forEach(d=>t.disposeIntermediateTensorInfo(d)),c.forEach(d=>t.disposeIntermediateTensorInfo(d)),t.disposeIntermediateTensorInfo(p),t.disposeIntermediateTensorInfo(m),f}if(n==="string"){let{tensors2D:u,outShape:c}=J2(r,e,t),p=u.map(g=>({vals:t.readSync(g.dataId),shape:g.shape})),m=u[0].shape[0]===1,f=wA(p,c,n,m),d=N.computeOutShape(r.map(g=>g.shape),e),h=t.makeTensorInfo(d,n,f);return u.forEach(g=>t.disposeIntermediateTensorInfo(g)),h}if(r.length>W().getNumber("WEBGL_MAX_TEXTURES_IN_SHADER")){let u=Math.floor(r.length/2),c=tc(r.slice(0,u),e,t),p=tc(r.slice(u),e,t),m=tc([c,p],e,t);return t.disposeIntermediateTensorInfo(c),t.disposeIntermediateTensorInfo(p),m}if(W().getBool("WEBGL_PACK_ARRAY_OPERATIONS")&&r[0].shape.length>1){let u=new pv(r.map(c=>c.shape),e);return t.runWebGLProgram(u,r,n)}let{tensors2D:o,outShape:s}=J2(r,e,t),a=new cv(o.map(u=>u.shape)),i=t.runWebGLProgram(a,o,n);o.forEach(u=>t.disposeIntermediateTensorInfo(u));let l=ce({inputs:{x:i},attrs:{shape:s},backend:t});return t.disposeIntermediateTensorInfo(i),l}function J2(r,e,t){let n=N.computeOutShape(r.map(s=>s.shape),e);return{tensors2D:r.map(s=>ce({inputs:{x:s},attrs:{shape:[-1,y.sizeFromShape(s.shape.slice(e))]},backend:t})),outShape:n}}function mv(r){let{inputs:e,backend:t,attrs:n}=r,{axis:o}=n,s=y.parseAxisParam(o,e[0].shape)[0],a=N.computeOutShape(e.map(u=>u.shape),s);if(y.sizeFromShape(a)===0)return t.makeTensorInfo(a,e[0].dtype,[]);let i=e.filter(u=>y.sizeFromShape(u.shape)>0);if(i.length===1)return Ut({inputs:{x:i[0]},backend:t});let l=i.map(u=>u.shape);return N.assertParamsConsistent(l,s),tc(i,s,t)}var Q2={kernelName:is,backendName:"webgl",kernelFunc:mv};var Af=class{constructor(e,t=!1,n=null,o=!1,s=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let a=e.padInfo.top,i=e.padInfo.left,l=e.strideHeight,u=e.strideWidth,c=e.dilationHeight,p=e.dilationWidth,m=e.filterHeight,f=e.filterWidth,d=Math.floor(e.inChannels/4)*4,h=e.inChannels%4,g=e.dataFormat==="channelsLast",x=g?1:2,b=g?2:3,w=g?3:1,_="",k="";n&&(o?_=`float activation(float a) {
float b = getPreluActivationWeightsAtOutCoords();
${n}
}`:s?_=`float activation(float a) {
float b = getLeakyreluAlphaAtOutCoords();
${n}
}`:_=`
float activation(float x) {
${n}
}
`,k="result = activation(result);");let E=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),o&&this.variableNames.push("preluActivationWeights"),s&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
${_}
const ivec2 strides = ivec2(${l}, ${u});
const ivec2 pads = ivec2(${a}, ${i});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d2 = coords[${w}];
ivec2 xRCCorner =
ivec2(coords[${x}], coords[${b}]) * strides - pads;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// Convolve x(?, ?, d1) with w(:, :, d1, d2) to get y(yR, yC, d2).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${m}; wR++) {
int xR = xRCorner + wR * ${c};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${f}; wC++) {
int xC = xCCorner + wC * ${p};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
for (int d1 = 0; d1 < ${d}; d1 += 4) {
vec4 wValues = vec4(
getW(wR, wC, d1, d2),
getW(wR, wC, d1 + 1, d2),
getW(wR, wC, d1 + 2, d2),
getW(wR, wC, d1 + 3, d2)
);
if (${g}) {
vec4 xValues = vec4(
getX(batch, xR, xC, d1),
getX(batch, xR, xC, d1 + 1),
getX(batch, xR, xC, d1 + 2),
getX(batch, xR, xC, d1 + 3)
);
dotProd += dot(xValues, wValues);
} else {
vec4 xValues = vec4(
getX(batch, d1, xR, xC),
getX(batch, d1 + 1, xR, xC),
getX(batch, d1 + 2, xR, xC),
getX(batch, d1 + 3, xR, xC)
);
dotProd += dot(xValues, wValues);
}
}
if (${h===1}) {
if (${g}) {
dotProd +=
getX(batch, xR, xC, ${d}) *
getW(wR, wC, ${d}, d2);
} else {
dotProd +=
getX(batch, ${d}, xR, xC) *
getW(wR, wC, ${d}, d2);
}
} else if (${h===2}) {
vec2 wValues = vec2(
getW(wR, wC, ${d}, d2),
getW(wR, wC, ${d} + 1, d2)
);
if (${g}) {
vec2 xValues = vec2(
getX(batch, xR, xC, ${d}),
getX(batch, xR, xC, ${d} + 1)
);
dotProd += dot(xValues, wValues);
} else {
vec2 xValues = vec2(
getX(batch, ${d}, xR, xC),
getX(batch, ${d} + 1, xR, xC)
);
dotProd += dot(xValues, wValues);
}
} else if (${h===3}) {
vec3 wValues = vec3(
getW(wR, wC, ${d}, d2),
getW(wR, wC, ${d} + 1, d2),
getW(wR, wC, ${d} + 2, d2)
);
if (${g}) {
vec3 xValues = vec3(
getX(batch, xR, xC, ${d}),
getX(batch, xR, xC, ${d} + 1),
getX(batch, xR, xC, ${d} + 2)
);
dotProd += dot(xValues, wValues);
} else {
vec3 xValues = vec3(
getX(batch, ${d}, xR, xC),
getX(batch, ${d} + 1, xR, xC),
getX(batch, ${d} + 2, xR, xC)
);
dotProd += dot(xValues, wValues);
}
}
}
}
float result = dotProd;
${E}
${k}
setOutput(result);
}
`}},fv=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let t=e.padInfo.front,n=e.padInfo.top,o=e.padInfo.left,s=e.strideDepth,a=e.strideHeight,i=e.strideWidth,l=e.dilationDepth,u=e.dilationHeight,c=e.dilationWidth,p=e.filterDepth,m=e.filterHeight,f=e.filterWidth,d=Math.floor(e.inChannels/4)*4,h=e.inChannels%4;this.userCode=`
const ivec3 strides = ivec3(${s}, ${a}, ${i});
const ivec3 pads = ivec3(${t}, ${n}, ${o});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int d2 = coords.u;
ivec3 xFRCCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
int xFCorner = xFRCCorner.x;
int xRCorner = xFRCCorner.y;
int xCCorner = xFRCCorner.z;
// Convolve x(?, ?, ?, d1) with w(:, :, :, d1, d2) to get
// y(yF, yR, yC, d2). ? = to be determined. : = across all
// values in that axis.
float dotProd = 0.0;
for (int wF = 0; wF < ${p}; wF++) {
int xF = xFCorner + wF * ${l};
if (xF < 0 || xF >= ${e.inDepth}) {
continue;
}
for (int wR = 0; wR < ${m}; wR++) {
int xR = xRCorner + wR * ${u};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${f}; wC++) {
int xC = xCCorner + wC * ${c};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
for (int d1 = 0; d1 < ${d}; d1 += 4) {
vec4 xValues = vec4(
getX(batch, xF, xR, xC, d1),
getX(batch, xF, xR, xC, d1 + 1),
getX(batch, xF, xR, xC, d1 + 2),
getX(batch, xF, xR, xC, d1 + 3)
);
vec4 wValues = vec4(
getW(wF, wR, wC, d1, d2),
getW(wF, wR, wC, d1 + 1, d2),
getW(wF, wR, wC, d1 + 2, d2),
getW(wF, wR, wC, d1 + 3, d2)
);
dotProd += dot(xValues, wValues);
}
if (${h===1}) {
dotProd +=
getX(batch, xF, xR, xC, ${d}) *
getW(wF, wR, wC, ${d}, d2);
} else if (${h===2}) {
vec2 xValues = vec2(
getX(batch, xF, xR, xC, ${d}),
getX(batch, xF, xR, xC, ${d} + 1)
);
vec2 wValues = vec2(
getW(wF, wR, wC, ${d}, d2),
getW(wF, wR, wC, ${d} + 1, d2)
);
dotProd += dot(xValues, wValues);
} else if (${h===3}) {
vec3 xValues = vec3(
getX(batch, xF, xR, xC, ${d}),
getX(batch, xF, xR, xC, ${d} + 1),
getX(batch, xF, xR, xC, ${d} + 2)
);
vec3 wValues = vec3(
getW(wF, wR, wC, ${d}, d2),
getW(wF, wR, wC, ${d} + 1, d2),
getW(wF, wR, wC, ${d} + 2, d2)
);
dotProd += dot(xValues, wValues);
}
}
}
}
setOutput(dotProd);
}
`}};var dv=class{constructor(e,t,n){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e;let{filterWidth:o,inChannels:s,strideWidth:a,strideHeight:i,padInfo:l,outWidth:u,dilationWidth:c,dilationHeight:p,dataFormat:m}=n,{left:f,top:d}=l,h=s*o,g=Pt(),x=m==="channelsLast",b=x?0:1,w=x?1:2,_="";for(let k=0;k<=1;k++)for(let E=0;E<=1;E++)_+=`
blockIndex = rc.y + ${E};
pos = rc.x + ${k};
if(blockIndex < ${e[1]} && pos < ${e[0]}) {
offsetY = int(blockIndex / (${u})) * ${i} - ${d};
d0 = offsetY + ${p} * (pos / ${h});
if(d0 < ${t[b]} && d0 >= 0) {
offsetX = int(mod(float(blockIndex), ${u}.) * ${a}. - ${f}.);
d1 = offsetX + ${c} * (int(mod(float(pos), ${h}.) / ${s}.));
if(d1 < ${t[w]} && d1 >= 0) {
ch = int(mod(float(pos), ${s}.));
if (${x}) {
innerDims = vec2(d1, ch);
result[${k*2+E}] = getChannel(
getA(d0, int(innerDims.x),
int(innerDims.y)), innerDims);
} else {
innerDims = vec2(d0, d1);
result[${k*2+E}] = getChannel(
getA(ch, int(innerDims.x),
int(innerDims.y)), innerDims);
}
}
}
}
`;this.userCode=`
void main() {
ivec2 rc = getOutputCoords();
vec4 result = vec4(0);
int blockIndex, pos, offsetY, d0, offsetX, d1, ch;
vec2 innerDims;
${_}
${g.output} = result;
}
`}};function rx({x:r,filter:e,convInfo:t,backend:n,bias:o=null,preluActivationWeights:s=null,leakyreluAlpha:a=0,activation:i=null}){let l=r.shape,u=n.texData.get(r.dataId),c=t.inChannels,p=l[0]*l[1]*l[2],m=t.outChannels,f=t.dataFormat==="channelsLast",d=!1,h=!1,g,x=[],b=(p===1||m===1)&&c>Hk,w=l[2]%2!=0&&!!u.isPacked;if(b||!W().getBool("WEBGL_LAZILY_UNPACK")||!W().getBool("WEBGL_PACK_BINARY_OPERATIONS")||!w){let _=f?l[0]*l[1]*l[2]:l[0]*l[2]*l[3],k=ce({inputs:{x:r},backend:n,attrs:{shape:[1,_,t.inChannels]}}),E=ce({inputs:{x:e},backend:n,attrs:{shape:[1,t.inChannels,t.outChannels]}}),S=Ju({a:k,b:E,transposeA:d,transposeB:h,backend:n,bias:o,activation:i,preluActivationWeights:s,leakyreluAlpha:a});g=ce({inputs:{x:S},backend:n,attrs:{shape:t.outShape}}),x.push(k),x.push(E),x.push(S)}else{let _=f?l[0]*l[1]*(l[2]+1):l[0]*l[2]*(l[3]+1),k={dataId:r.dataId,shape:[1,_,t.inChannels],dtype:r.dtype},E=u.shape;u.shape=u.shape.slice(),u.shape[u.shape.length-2]++,y.assert(hl(u.shape,k.shape),()=>`packed reshape ${u.shape} to ${k.shape} isn't free`);let S=ce({inputs:{x:e},backend:n,attrs:{shape:[1,t.inChannels,t.outChannels]}});x.push(S);let R=Ju({a:k,b:S,backend:n,transposeA:d,transposeB:h,bias:o,activation:i,preluActivationWeights:s,leakyreluAlpha:a}),F=n.texData.get(R.dataId);y.assert(F.isPacked,()=>"batchMatMul result is expected to be packed"),u.shape=E,F.shape=t.outShape,g=Ut({inputs:{x:R},backend:n}),g.shape=t.outShape,x.push(R)}for(let _ of x)n.disposeIntermediateTensorInfo(_);return g}function nx({x:r,filter:e,convInfo:t,backend:n,bias:o=null,preluActivationWeights:s=null,leakyreluAlpha:a=0,activation:i=null}){let{filterWidth:l,filterHeight:u,inChannels:c,outWidth:p,outHeight:m,dataFormat:f}=t,d=f==="channelsLast",h=l*u*c,g=m*p,x=[h,g],b=!0,w=!1,_=[],k=ce({inputs:{x:r},backend:n,attrs:{shape:r.shape.slice(1)}}),E=ce({inputs:{x:e},backend:n,attrs:{shape:[1,h,y.sizeFromShape(e.shape)/h]}});_.push(k),_.push(E);let S=new dv(x,k.shape,t),R=n.runWebGLProgram(S,[k],"float32"),F=ce({inputs:{x:R},backend:n,attrs:{shape:[1,x[0],x[1]]}});_.push(R),_.push(F);let P=o!=null,j=s!=null,G=i==="leakyrelu",U=i?xl(i,!0):null,X=new Tf(F.shape,E.shape,[1,g,t.outChannels],b,w,P,U,j,G),K=[F,E];if(o&&K.push(o),j&&K.push(s),G){let re=n.makeTensorInfo([],"float32",y.createScalarValue(a,"float32"));K.push(re),_.push(re)}let Z=n.runWebGLProgram(X,K,"float32"),te=d?[1,m,p,t.outChannels]:[1,t.outChannels,m,p],Y=ce({inputs:{x:Z},backend:n,attrs:{shape:te}});_.push(Z);for(let re of _)n.disposeIntermediateTensorInfo(re);return Y}function q8(r){let{inputs:e,backend:t,attrs:n}=r,{x:o,filter:s}=e,{strides:a,pad:i,dataFormat:l,dilations:u,dimRoundingMode:c}=n,p=N.convertConv2DDataFormat(l),m=N.computeConv2DInfo(o.shape,s.shape,a,u,i,c,!1,p),f;if(m.filterHeight===1&&m.filterWidth===1&&m.dilationHeight===1&&m.dilationWidth===1&&m.strideHeight===1&&m.strideWidth===1&&(m.padInfo.type==="SAME"||m.padInfo.type==="VALID"))f=rx({x:o,filter:s,convInfo:m,backend:t});else if(W().getBool("WEBGL_CONV_IM2COL")&&o.shape[0]===1)f=nx({x:o,filter:s,convInfo:m,backend:t});else{let h=new Af(m);f=t.runWebGLProgram(h,[o,s],"float32")}let d=ce({inputs:{x:f},backend:t,attrs:{shape:m.outShape}});return t.disposeIntermediateTensorInfo(f),d}var eD={kernelName:Kn,backendName:"webgl",kernelFunc:q8};var hv=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,o=e.padInfo.top,s=e.padInfo.left,a=e.dataFormat==="channelsLast";this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int wR = coords.x;
int wC = coords.y;
int d1 = coords.z;
int d2 = coords.w;
// Convolve x(?, ?, d1) with dy(:, :, d2) to get dw(wR, wC, d1, d2).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int b = 0; b < ${e.batchSize}; b++) {
for (int yR = 0; yR < ${e.outHeight}; yR++) {
int xR = wR + yR * ${t} - ${o};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int yC = 0; yC < ${e.outWidth}; yC++) {
int xC = wC + yC * ${n} - ${s};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
if (${a}) {
float dyValue = getDy(b, yR, yC, d2);
float xValue = getX(b, xR, xC, d1);
dotProd += (xValue * dyValue);
} else {
float dyValue = getDy(b, d2, yR, yC);
float xValue = getX(b, d1, xR, xC);
dotProd += (xValue * dyValue);
}
}
}
}
setOutput(dotProd);
}
`}},gv=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,o=e.strideHeight,s=e.strideWidth,a=e.dataFormat==="channelsLast",i=t-1-e.padInfo.top,l=n-1-e.padInfo.left,u=a?1:2,c=a?2:3,p=a?3:1;this.userCode=`
const ivec2 pads = ivec2(${i}, ${l});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d1 = coords[${p}];
ivec2 dyCorner = ivec2(coords[${u}], coords[${c}]) - pads;
int dyRCorner = dyCorner.x;
int dyCCorner = dyCorner.y;
// Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${t}; wR++) {
float dyR = float(dyRCorner + wR) / ${o}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
int wRPerm = ${t} - 1 - wR;
for (int wC = 0; wC < ${n}; wC++) {
float dyC = float(dyCCorner + wC) / ${s}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
int wCPerm = ${n} - 1 - wC;
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
if (${a}) {
float xValue = getDy(batch, idyR, idyC, d2);
float wValue = getW(wRPerm, wCPerm, d1, d2);
dotProd += xValue * wValue;
} else {
float xValue = getDy(batch, d2, idyR, idyC);
float wValue = getW(wRPerm, wCPerm, d1, d2);
dotProd += xValue * wValue;
}
}
}
}
setOutput(dotProd);
}
`}},xv=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideDepth,n=e.strideHeight,o=e.strideWidth,s=e.padInfo.front,a=e.padInfo.top,i=e.padInfo.left;this.userCode=`
void main() {
ivec5 coords = getOutputCoords();
int wF = coords.x;
int wR = coords.y;
int wC = coords.z;
int d1 = coords.w;
int d2 = coords.u;
float dotProd = 0.0;
for (int b = 0; b < ${e.batchSize}; b++) {
for (int yF = 0; yF < ${e.outDepth}; yF++) {
int xF = wF + yF * ${t} - ${s};
if (xF < 0 || xF >= ${e.inDepth}) {
continue;
}
for (int yR = 0; yR < ${e.outHeight}; yR++) {
int xR = wR + yR * ${n} - ${a};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int yC = 0; yC < ${e.outWidth}; yC++) {
int xC = wC + yC * ${o} - ${i};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float dyValue = getDy(b, yF, yR, yC, d2);
float xValue = getX(b, xF, xR, xC, d1);
dotProd += (xValue * dyValue);
}
}
}
}
setOutput(dotProd);
}
`}},yv=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,o=e.filterWidth,s=e.strideDepth,a=e.strideHeight,i=e.strideWidth,l=t-1-e.padInfo.front,u=n-1-e.padInfo.top,c=o-1-e.padInfo.left;this.userCode=`
const ivec3 pads = ivec3(${l}, ${u}, ${c});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int d1 = coords.u;
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
int dyFCorner = dyCorner.x;
int dyRCorner = dyCorner.y;
int dyCCorner = dyCorner.z;
float dotProd = 0.0;
for (int wF = 0; wF < ${t}; wF++) {
float dyF = float(dyFCorner + wF) / ${s}.0;
if (dyF < 0.0 || dyF >= ${e.outDepth}.0 || fract(dyF) > 0.0) {
continue;
}
int idyF = int(dyF);
int wFPerm = ${t} - 1 - wF;
for (int wR = 0; wR < ${n}; wR++) {
float dyR = float(dyRCorner + wR) / ${a}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
int wRPerm = ${n} - 1 - wR;
for (int wC = 0; wC < ${o}; wC++) {
float dyC = float(dyCCorner + wC) / ${i}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
int wCPerm = ${o} - 1 - wC;
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
float xValue = getDy(batch, idyF, idyR, idyC, d2);
float wValue = getW(wFPerm, wRPerm, wCPerm, d1, d2);
dotProd += xValue * wValue;
}
}
}
}
setOutput(dotProd);
}
`}};function H8(r){let{inputs:e,backend:t,attrs:n}=r,{x:o,dy:s}=e,{strides:a,pad:i,dataFormat:l,dimRoundingMode:u,filterShape:c}=n,p=N.convertConv2DDataFormat(l),m=N.computeConv2DInfo(o.shape,c,a,1,i,u,!1,p),f=new hv(m);return t.runWebGLProgram(f,[o,s],"float32")}var tD={kernelName:Hl,backendName:"webgl",kernelFunc:H8};function K8(r){let{inputs:e,backend:t,attrs:n}=r,{dy:o,filter:s}=e,{inputShape:a,strides:i,pad:l,dataFormat:u,dimRoundingMode:c}=n,p=N.convertConv2DDataFormat(u),m=N.computeConv2DInfo(a,s.shape,i,1,l,c,!1,p),f=new gv(m);return t.runWebGLProgram(f,[o,s],"float32")}var rD={kernelName:Xn,backendName:"webgl",kernelFunc:K8};function X8(r){let{inputs:e,backend:t,attrs:n}=r,{x:o,filter:s}=e,{strides:a,pad:i,dilations:l}=n,u=N.computeConv3DInfo(o.shape,s.shape,a,l,i),c=new fv(u);return t.runWebGLProgram(c,[o,s],"float32")}var nD={kernelName:aa,backendName:"webgl",kernelFunc:X8};function Y8(r){let{inputs:e,backend:t,attrs:n}=r,{x:o,dy:s}=e,{strides:a,pad:i,filterShape:l}=n,u=N.computeConv3DInfo(o.shape,l,a,1,i),c=new xv(u);return t.runWebGLProgram(c,[o,s],"float32")}var oD={kernelName:Kl,backendName:"webgl",kernelFunc:Y8};function Z8(r){let{inputs:e,backend:t,attrs:n}=r,{dy:o,filter:s}=e,{pad:a,strides:i,inputShape:l}=n,u=N.computeConv3DInfo(l,s.shape,i,1,a),c=new yv(u);return t.runWebGLProgram(c,[o,s],"float32")}var sD={kernelName:Xl,backendName:"webgl",kernelFunc:Z8};var J8=Yg+`
return cos(x);
`,Q8=ve({opSnippet:J8}),iD={kernelName:Yn,backendName:"webgl",kernelFunc:Q8};var eX=`
float e2x = exp(-x);
return (e2x + 1.0 / e2x) / 2.0;
`,tX=ve({opSnippet:eX}),aD={kernelName:ri,backendName:"webgl",kernelFunc:tX};var bv=class{constructor(e,t,n,o,s){this.variableNames=["Image","Boxes","BoxInd"],this.outputShape=[];let[a,i,l,u]=e,[c]=t,[p,m]=n;this.outputShape=[c,p,m,u];let f=o==="bilinear"?1:0,[d,h]=[`${i-1}.0`,`${l-1}.0`],[g,x,b]=p>1?[`${(i-1)/(p-1)}`,"(y2-y1) * height_ratio",`y1*${d} + float(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${d}`],[w,_,k]=m>1?[`${(l-1)/(m-1)}`,"(x2-x1) * width_ratio",`x1*${h} + float(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${h}`];this.userCode=`
const float height_ratio = float(${g});
const float width_ratio = float(${w});
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int y = coords[1];
int x = coords[2];
int d = coords[3];
// get box vals
float y1 = getBoxes(b,0);
float x1 = getBoxes(b,1);
float y2 = getBoxes(b,2);
float x2 = getBoxes(b,3);
// get image in batch index
int bInd = round(getBoxInd(b));
if(bInd < 0 || bInd >= ${a}) {
return;
}
float height_scale = ${x};
float width_scale = ${_};
float in_y = ${b};
if( in_y < 0.0 || in_y > ${d} ) {
setOutput(float(${s}));
return;
}
float in_x = ${k};
if( in_x < 0.0 || in_x > ${h} ) {
setOutput(float(${s}));
return;
}
vec2 sourceFracIndexCR = vec2(in_x,in_y);
if(${f} == 1) {
// Compute the four integer indices.
ivec2 sourceFloorCR = ivec2(sourceFracIndexCR);
ivec2 sourceCeilCR = ivec2(ceil(sourceFracIndexCR));
float topLeft = getImage(b, sourceFloorCR.y, sourceFloorCR.x, d);
float bottomLeft = getImage(b, sourceCeilCR.y, sourceFloorCR.x, d);
float topRight = getImage(b, sourceFloorCR.y, sourceCeilCR.x, d);
float bottomRight = getImage(b, sourceCeilCR.y, sourceCeilCR.x, d);
vec2 fracCR = sourceFracIndexCR - vec2(sourceFloorCR);
float top = topLeft + (topRight - topLeft) * fracCR.x;
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracCR.x;
float newValue = top + (bottom - top) * fracCR.y;
setOutput(newValue);
} else {
// Compute the coordinators of nearest neighbor point.
ivec2 sourceNearestCR = ivec2(floor(
sourceFracIndexCR + vec2(0.5,0.5)));
float newValue = getImage(b, sourceNearestCR.y, sourceNearestCR.x, d);
setOutput(newValue);
}
}
`}};var rX=r=>{let{inputs:e,backend:t,attrs:n}=r,{image:o,boxes:s,boxInd:a}=e,{cropSize:i,method:l,extrapolationValue:u}=n,c=new bv(o.shape,s.shape,i,l,u);return t.runWebGLProgram(c,[o,s,a],"float32")},lD={kernelName:ni,backendName:"webgl",kernelFunc:rX};var ox=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=e;let o=e.length,s=t?"0.0":`getX(${uD(o,"coords")})`,a=e[e.length-1],i="",l="";t?(i=n?`end != ${a-1}`:"end != 0",l=n?"end + 1":"end - 1"):(i=n?`end + pow2 < ${a}`:"end >= pow2",l=n?"end + pow2":"end - pow2"),this.userCode=`
uniform float index;
void main() {
${Le(o)} coords = getOutputCoords();
int end = ${cD(o,"coords")};
float val = ${s};
int pow2 = int(pow(2.0, index));
if (${i}) {
int idx = ${l};
${cD(o,"coords")} = idx;
val += getX(${uD(o,"coords")});
}
setOutput(val);
}
`}getCustomSetupFunc(e){return(t,n)=>{this.index==null&&(this.index=t.getUniformLocation(n,"index")),t.gl.uniform1f(this.index,e)}}};function uD(r,e){if(r===1)return`${e}`;if(r===2)return`${e}.x, ${e}.y`;if(r===3)return`${e}.x, ${e}.y, ${e}.z`;if(r===4)return`${e}.x, ${e}.y, ${e}.z, ${e}.w`;throw Error(`Cumulative sum for rank ${r} is not yet supported`)}function cD(r,e){if(r===1)return`${e}`;if(r===2)return`${e}.y`;if(r===3)return`${e}.z`;if(r===4)return`${e}.w`;throw Error(`Cumulative sum for rank ${r} is not yet supported`)}function nX(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{axis:s,exclusive:a,reverse:i}=n,l=o.shape.length,u=N.getAxesPermutation([s],l),c=o;u!=null&&(c=zt({inputs:{x:o},backend:t,attrs:{perm:u}}));let p=N.getInnerMostAxes(1,l)[0];if(p!==l-1)throw new Error(`WebGL cumsum shader expects an inner-most axis=${o.shape.length-1} but got axis=${s}`);let m=o.shape[p],f=Ut({inputs:{x:c},backend:t});for(let d=0;d<=Math.ceil(Math.log2(m))-1;d++){let h=new ox(c.shape,!1,i),g=h.getCustomSetupFunc(d),x=f;f=t.runWebGLProgram(h,[f],f.dtype,g),t.disposeIntermediateTensorInfo(x)}if(a){let d=new ox(c.shape,a,i),h=f;f=t.runWebGLProgram(d,[f],f.dtype),t.disposeIntermediateTensorInfo(h)}if(u!=null){let d=N.getUndoAxesPermutation(u),h=zt({inputs:{x:f},backend:t,attrs:{perm:d}});return t.disposeIntermediateTensorInfo(f),t.disposeIntermediateTensorInfo(c),h}return f}var pD={kernelName:Zn,backendName:"webgl",kernelFunc:nX};function oX(r){let{inputs:e,backend:t,attrs:n}=r,{x:o,weights:s}=e,{size:a,binaryOutput:i}=n;if(o.shape.length===1){let l=t.readSync(o.dataId),u=t.readSync(s.dataId),c=Ug(l,u,s.dtype,s.shape,a);return t.makeTensorInfo([a],s.dtype,c)}else if(o.shape.length===2){let l=t.bufferSync(o),u=t.bufferSync(s),c=yA(l,u,a,i);return t.makeTensorInfo(c.shape,s.dtype,c.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${o.shape.length}.`)}var mD={kernelName:Yl,backendName:"webgl",kernelFunc:oX};var wv=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=[],this.outputShape=e,this.blockSize=t,this.dataFormat=n,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int h = ${this.getHeightCoordString()};
int w = ${this.getWidthCoordString()};
int d = ${this.getDepthCoordString()};
int in_h = h / ${t};
int offset_h = imod(h, ${t});
int in_w = w / ${t};
int offset_w = imod(w, ${t});
int offset_d = (offset_h * ${t} + offset_w) *
${this.getOutputDepthSize()};
int in_d = d + offset_d;
float result = ${this.getInputSamplingString()};
setOutput(result);
}
`}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?this.outputShape[3]:this.outputShape[1]}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}};function sX(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{blockSize:s,dataFormat:a}=n;y.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let i=o.shape[0],l=a==="NHWC"?o.shape[1]:o.shape[2],u=a==="NHWC"?o.shape[2]:o.shape[3],c=a==="NHWC"?o.shape[3]:o.shape[1],p=l*s,m=u*s,f=c/(s*s),d=a==="NHWC"?[i,p,m,f]:[i,f,p,m],h=new wv(d,s,a);return t.runWebGLProgram(h,[o],o.dtype)}var fD={kernelName:oi,backendName:"webgl",kernelFunc:sX};var Df=class{constructor(e,t=!1,n=null,o=!1,s=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let a=e.inHeight,i=e.inWidth,l=e.padInfo.top,u=e.padInfo.left,c=e.strideHeight,p=e.strideWidth,m=e.dilationHeight,f=e.dilationWidth,d=e.filterHeight,h=e.filterWidth,g=e.outChannels/e.inChannels,x="",b="";n&&(o?x=`float activation(float a) {
float b = getPreluActivationWeightsAtOutCoords();
${n}
}`:s?x=`float activation(float a) {
float b = getLeakyreluAlphaAtOutCoords();
${n}
}`:x=`
float activation(float x) {
${n}
}
`,b="result = activation(result);");let w=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),o&&this.variableNames.push("preluActivationWeights"),s&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
${x}
const ivec2 strides = ivec2(${c}, ${p});
const ivec2 pads = ivec2(${l}, ${u});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords.x;
ivec2 xRCCorner = coords.yz * strides - pads;
int d2 = coords.w;
int d1 = d2 / ${g};
int q = d2 - d1 * ${g};
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// Convolve x(?, ?, d1) with w(:, :, d1, q) to get y(yR, yC, d2).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
// TO DO(dsmilkov): Flatten the two for loops and vec4 the operations.
for (int wR = 0; wR < ${d}; wR++) {
int xR = xRCorner + wR * ${m};
if (xR < 0 || xR >= ${a}) {
continue;
}
for (int wC = 0; wC < ${h}; wC++) {
int xC = xCCorner + wC * ${f};
if (xC < 0 || xC >= ${i}) {
continue;
}
float xVal = getX(batch, xR, xC, d1);
float wVal = getW(wR, wC, d1, q);
dotProd += xVal * wVal;
}
}
float result = dotProd;
${w}
${b}
setOutput(result);
}
`}};var $f=class{constructor(e,t=!1,n=null,o=!1,s=!1){this.variableNames=["x","W"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e.outShape;let a=e.inHeight,i=e.inWidth,l=e.padInfo.top,u=e.padInfo.left,c=e.strideHeight,p=e.strideWidth,m=e.dilationHeight,f=e.dilationWidth,d=e.filterHeight,h=e.filterWidth,g=h,x="int xR; int xC; int xCOffset;";for(let k=0;k<d;k++)for(let E=0;E<h;E++)x+=`
vec4 xTexelR${k}C${E*2} = vec4(0.);
vec4 wR${k}C${E} = vec4(0.);
vec4 xR${k}C${E} = vec4(0.);`;for(let k=0;k<d;k++)for(let E=0;E<g;E++){let S=E*2;if(x+=`
xR = xRCorner + ${k*m};
xC = xCCorner + ${S*f};
`,p===1){if(S<h&&(u%2==1?x+=`
xCOffset = xC + 1;
if(xR >= 0 && xR < ${a} && xCOffset >= 0 && xCOffset < ${i}) {
xTexelR${k}C${S} = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if(xCOffset + 1 >= ${i}) {
xTexelR${k}C${S}.zw = vec2(0.);
}
} else {
xTexelR${k}C${S} = vec4(0.);
}
xCOffset = xC + 1 - 2;
if(xR >= 0 && xR < ${a} && xCOffset >= 0 && xCOffset < ${i}) {
vec4 previous = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if(xCOffset + 1 >= ${i}) {
previous.zw = vec2(0.);
}
xR${k}C${S} = vec4(previous.zw, xTexelR${k}C${S}.xy);
} else {
xR${k}C${S} = vec4(0, 0, xTexelR${k}C${S}.xy);
}
`:x+=`
if(xR >= 0 && xR < ${a} && xC >= 0 && xC < ${i}) {
xTexelR${k}C${S} = getX(batch, xR, xC, d1);
} else {
xTexelR${k}C${S} = vec4(0.);
}
xR${k}C${S} = xTexelR${k}C${S};
`,S+1<h)){let R=u%2==0?y.nearestLargerEven(f):f;f%2==0&&u%2==1||f%2!=0&&u%2!=1?(x+=`
xCOffset = xC + ${u%2} + ${R};
if(xR >= 0 && xR < ${a} &&
xCOffset >= 0 && xCOffset < ${i}) {
xTexelR${k}C${S+2} = getX(batch, xR, xCOffset, d1);
}
`,f>1&&(x+=`
xCOffset -= 2;
if(xR >= 0 && xR < ${a} &&
xCOffset >= 0 && xCOffset < ${i}) {
xTexelR${k}C${S} = getX(batch, xR, xCOffset, d1);
} else {
xTexelR${k}C${S} = vec4(0.);
}
`),x+=`
xR${k}C${S+1} = vec4(
xTexelR${k}C${S}.zw, xTexelR${k}C${S+2}.xy);
`):x+=`
xCOffset = xC + ${R};
if(xR >= 0 && xR < ${a} &&
xCOffset >= 0 && xCOffset < ${i}) {
xTexelR${k}C${S+2} = getX(batch, xR, xCOffset, d1);
}
xR${k}C${S+1} = xTexelR${k}C${S+2};
`}}else S<h&&(x+=`
if(xR >= 0 && xR < ${a}) {
`,u%2==1?(x+=`
xCOffset = xC + 1 - ${p};
if(xCOffset >= 0 && xCOffset < ${i}) {
xTexelR${k}C${S} = getX(batch, xR, xCOffset, d1);
} else {
xTexelR${k}C${S} = vec4(0.);
}
if(xC + 1 >= 0 && xC + 1 < ${i}) {
xTexelR${k}C${S+2} = getX(batch, xR, xC + 1, d1);
} else {
xTexelR${k}C${S+2} = vec4(0.);
}
xR${k}C${S} = vec4(
xTexelR${k}C${S}.zw, xTexelR${k}C${S+2}.zw);
`,S+1<h&&(x+=`
vec4 final = vec4(0.);
xCOffset = xC + 1 + ${p};
if(xCOffset >= 0 && xCOffset < ${i}) {
final = getX(batch, xR, xCOffset, d1);
}
xR${k}C${S+1} = vec4(xTexelR${k}C${S+2}.xy, final.xy);
`)):(x+=`
if(xC >= 0 && xC < ${i}) {
xTexelR${k}C${S} = getX(batch, xR, xC, d1);
} else {
xTexelR${k}C${S} = vec4(0.);
}
xCOffset = xC + ${p};
if(xCOffset >= 0 && xCOffset < ${i}) {
xTexelR${k}C${S+2} = getX(batch, xR, xCOffset, d1);
} else {
xTexelR${k}C${S+2} = vec4(0.);
}
xR${k}C${S} = vec4(
xTexelR${k}C${S}.xy, xTexelR${k}C${S+2}.xy);
`,S+1<h&&(x+=`
xR${k}C${S+1} = vec4(
xTexelR${k}C${S}.zw, xTexelR${k}C${S+2}.zw);
`)),x+="}");S<h&&(x+=`
vec4 wTexelR${k}C${S} = getW(${k}, ${S}, d1, q);
wR${k}C${S} = vec4(wTexelR${k}C${S}.xz, wTexelR${k}C${S}.xz);
`,S+1<h&&(x+=`
vec4 wTexelR${k}C${S+1} = getW(${k}, ${S+1}, d1, q);
wR${k}C${S+1} =
vec4(wTexelR${k}C${S+1}.xz, wTexelR${k}C${S+1}.xz);`))}for(let k=0;k<d;k++)for(let E=0;E<h;E++)x+=`dotProd += xR${k}C${E} * wR${k}C${E};`;let b="",w="";n&&(o?b=`vec4 activation(vec4 a) {
vec4 b = getPreluActivationWeightsAtOutCoords();
${n}
}`:s?b=`vec4 activation(vec4 a) {
vec4 b = getLeakyreluAlphaAtOutCoords();
${n}
}`:b=`vec4 activation(vec4 x) {
${n}
}`,w="result = activation(result);");let _=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),o&&this.variableNames.push("preluActivationWeights"),s&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
${b}
const ivec2 strides = ivec2(${c}, ${p});
const ivec2 pads = ivec2(${l}, ${u});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords.x;
ivec2 xRCCorner = coords.yz * strides - pads;
int d2 = coords.w;
int d1 = d2;
int q = 0;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
vec4 dotProd = vec4(0.);
${x}
vec4 result = dotProd;
${_}
${w}
setOutput(result);
}
`}};function iX(r){let{inputs:e,backend:t,attrs:n}=r,{x:o,filter:s}=e,{strides:a,pad:i,dilations:l,dimRoundingMode:u}=n,c=l;c==null&&(c=[1,1]),y.assert(N.eitherStridesOrDilationsAreOne(a,c),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${a} and dilations '${c}'`);let p=N.computeConv2DInfo(o.shape,s.shape,a,c,i,u,!0),m;return W().getBool("WEBGL_PACK_DEPTHWISECONV")&&p.strideWidth<=2&&p.outChannels/p.inChannels==1?m=new $f(p):m=new Df(p),t.runWebGLProgram(m,[o,s],"float32")}var dD={kernelName:Jn,backendName:"webgl",kernelFunc:iX};var _v=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,o=e.padInfo.top,s=e.padInfo.left,a=e.outChannels/e.inChannels;this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int wR = coords.x;
int wC = coords.y;
int d1 = coords.z;
int dm = coords.w;
int d2 = d1 * ${a} + dm;
float dotProd = 0.0;
// TO DO: Vec4 over the batch size
for (int b = 0; b < ${e.batchSize}; b++) {
for (int yR = 0; yR < ${e.outHeight}; yR++) {
int xR = wR + yR * ${t} - ${o};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int yC = 0; yC < ${e.outWidth}; yC++) {
int xC = wC + yC * ${n} - ${s};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float dyValue = getDy(b, yR, yC, d2);
float xValue = getX(b, xR, xC, d1);
dotProd += (xValue * dyValue);
}
}
}
setOutput(dotProd);
}
`}},kv=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,o=e.strideHeight,s=e.strideWidth,a=t-1-e.padInfo.top,i=n-1-e.padInfo.left,l=e.outChannels/e.inChannels;this.userCode=`
const ivec2 pads = ivec2(${a}, ${i});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d1 = coords[3];
ivec2 dyCorner = coords.yz - pads;
int dyRCorner = dyCorner.x;
int dyCCorner = dyCorner.y;
float dotProd = 0.0;
for (int wR = 0; wR < ${t}; wR++) {
float dyR = float(dyRCorner + wR) / ${o}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
int wRPerm = ${t} - 1 - wR;
for (int wC = 0; wC < ${n}; wC++) {
float dyC = float(dyCCorner + wC) / ${s}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
int wCPerm = ${n} - 1 - wC;
// TO DO: Vec4 over the channelMul
for (int dm = 0; dm < ${l}; dm++) {
int d2 = d1 * ${l} + dm;
float xValue = getDy(batch, idyR, idyC, d2);
float wValue = getW(wRPerm, wCPerm, d1, dm);
dotProd += xValue * wValue;
}
}
}
setOutput(dotProd);
}
`}};function aX(r){let{inputs:e,backend:t,attrs:n}=r,{x:o,dy:s}=e,{strides:a,dilations:i,pad:l,dimRoundingMode:u,filterShape:c}=n,p=N.computeConv2DInfo(o.shape,c,a,i,l,u,!0),m=new _v(p);return t.runWebGLProgram(m,[o,s],"float32")}var hD={kernelName:Zl,backendName:"webgl",kernelFunc:aX};function lX(r){let{inputs:e,backend:t,attrs:n}=r,{dy:o,filter:s}=e,{strides:a,dilations:i,pad:l,dimRoundingMode:u,inputShape:c}=n,p=N.computeConv2DInfo(c,s.shape,a,i,l,u,!0),m=new kv(p);return t.runWebGLProgram(m,[o,s],"float32")}var gD={kernelName:Jl,backendName:"webgl",kernelFunc:lX};var vv=class{constructor(e){this.variableNames=["X"],this.outputShape=[e,e],this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
float val = coords[0] == coords[1] ? getX(coords[0]) : 0.0;
setOutput(val);
}
`}};function uX(r){let{inputs:e,backend:t}=r,{x:n}=e,o=[...n.shape,...n.shape],s=y.sizeFromShape(n.shape),a=ce({inputs:{x:n},backend:t,attrs:{shape:[s]}}),i=new vv(s),l=t.runWebGLProgram(i,[a],a.dtype),u=ce({inputs:{x:l},backend:t,attrs:{shape:o}});return t.disposeIntermediateTensorInfo(a),t.disposeIntermediateTensorInfo(l),u}var xD={kernelName:Ql,backendName:"webgl",kernelFunc:uX};var Cv=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let{inHeight:t,inWidth:n,padInfo:o,strideHeight:s,strideWidth:a,filterHeight:i,filterWidth:l,dilationHeight:u,dilationWidth:c}=e,{top:p,left:m}=o;this.userCode=`
const ivec2 strides = ivec2(${s}, ${a});
const ivec2 pads = ivec2(${p}, ${m});
const float neg_infinity = -3.4e38;
void main() {
ivec4 coords = getOutputCoords();
int batch = coords.x;
int d1 = coords.w;
ivec2 outTopLeftCorner =
coords.yz * strides - pads;
int hBeg = outTopLeftCorner.x;
int wBeg = outTopLeftCorner.y;
float curVal = neg_infinity;
for (int h = 0; h < ${i}; h++) {
int hIn = hBeg + h * ${u};
if (hIn >= 0 && hIn < ${t}) {
for (int w = 0; w < ${l}; w++) {
int wIn = wBeg + w * ${c};
if (wIn >= 0 && wIn < ${n}) {
float xVal = getX(batch, hIn, wIn, d1);
float wVal = getW(h, w, d1);
float val = xVal + wVal;
if (val > curVal) {
curVal = val;
}
}
}
}
}
float result = curVal;
setOutput(result);
}
`}};function cX(r){let{inputs:e,backend:t,attrs:n}=r,{x:o,filter:s}=e,{strides:a,pad:i,dilations:l}=n,u=N.computeDilation2DInfo(o.shape,s.shape,a,i,"NHWC",l),c,p=new Cv(u);c=t.runWebGLProgram(p,[o,s],"float32");let m=ce({inputs:{x:c},backend:t,attrs:{shape:u.outShape}});return t.disposeIntermediateTensorInfo(c),m}var yD={kernelName:la,backendName:"webgl",kernelFunc:cX};var pX="return (x >= 0.0) ? x : (exp(x) - 1.0);",mX=`
vec4 result;
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
return result;
`,fX=ve({opSnippet:pX,packedOpSnippet:mX}),bD={kernelName:si,backendName:"webgl",kernelFunc:fX};var dX="return (b >= 1.0) ? a : a * (b + 1.0);",hX=`
vec4 bGTEZero = vec4(greaterThanEqual(b, vec4(0.)));
return (bGTEZero * a) + ((vec4(1.0) - bGTEZero) * (a * (b + vec4(1.0))));
`,gX=r=>{let{inputs:e,backend:t}=r,{dy:n,y:o}=e,s=W().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Os(hX,n.shape,o.shape):new qo(dX,n.shape,o.shape);return t.runWebGLProgram(s,[n,o],n.dtype)},wD={kernelName:eu,backendName:"webgl",kernelFunc:gX};var xX=`
return vec4(equal(a, b));
`,yX="return float(a == b);",bX=it({opSnippet:yX,packedOpSnippet:xX,dtype:"bool"}),_D={kernelName:ai,backendName:"webgl",kernelFunc:bX};var wX=`
// Error function is calculated approximately with elementary function.
// See "Handbook of Mathematical Functions with Formulas,
// Graphs, and Mathematical Tables", Abramowitz and Stegun.
float p = ${N.ERF_P};
float a1 = ${N.ERF_A1};
float a2 = ${N.ERF_A2};
float a3 = ${N.ERF_A3};
float a4 = ${N.ERF_A4};
float a5 = ${N.ERF_A5};
float sign = sign(x);
x = abs(x);
float t = 1.0 / (1.0 + p * x);
return sign * (1.0 - (((((a5*t + a4)*t) + a3)*t + a2)*t + a1)*t*exp(-x*x));
`,_X=ve({opSnippet:wX}),kD={kernelName:ii,backendName:"webgl",kernelFunc:_X};var vD="return exp(x);",Iv=ve({opSnippet:vD,packedOpSnippet:vD,cpuKernelImpl:_A}),CD={kernelName:eo,backendName:"webgl",kernelFunc:Iv};function sx(r){let{inputs:e,attrs:t,backend:n}=r,{dim:o}=t,{input:s}=e,a=s.shape.length,i=s.shape.slice(),l=o;return o<0&&(y.assert(-(a+1)<=o,()=>`Axis must be in the interval [${-(a+1)}, ${a}]`),l=a+o+1),i.splice(l,0,1),ce({inputs:{x:s},backend:n,attrs:{shape:i}})}var ID={kernelName:as,backendName:"webgl",kernelFunc:sx};var ND="return exp(x) - 1.0;",kX=ve({opSnippet:ND,packedOpSnippet:ND,cpuKernelImpl:kA}),SD={kernelName:li,backendName:"webgl",kernelFunc:kX};var ix=class{constructor(e,t,n){this.variableNames=["real","imag"];let o=t[1];this.outputShape=t;let s=n?`2.0 * ${Math.PI}`:`-2.0 * ${Math.PI}`,a=n?`${o}.0`:"1.0",i;if(e==="real")i="return real * expR - imag * expI;";else if(e==="imag")i="return real * expI + imag * expR;";else throw new Error(`FFT component must be either "real" or "imag", got ${e}.`);this.userCode=`
const float exponentMultiplier = ${s};
float unaryOpComplex(float real, float expR, float imag, float expI) {
${i}
}
float mulMatDFT(int batch, int index) {
float indexRatio = float(index) / float(${o});
float exponentMultiplierTimesIndexRatio =
exponentMultiplier * indexRatio;
float result = 0.0;
for (int i = 0; i < ${o}; i++) {
// x = (-2|2 * PI / N) * index * i;
float x = exponentMultiplierTimesIndexRatio * float(i);
float expR = cos(x);
float expI = sin(x);
float real = getReal(batch, i);
float imag = getImag(batch, i);
result +=
unaryOpComplex(real, expR, imag, expI) / ${a};
}
return result;
}
void main() {
ivec2 coords = getOutputCoords();
setOutput(mulMatDFT(coords[0], coords[1]));
}
`}};function ax(r,e,t){let n=t.texData.get(r.dataId),o=y.sizeFromShape(r.shape),s=r.shape[r.shape.length-1],a=o/s,i=ce({inputs:{x:r},backend:t,attrs:{shape:[a,s]}}),l=i.shape,u=new ix("real",l,e),c=new ix("imag",l,e),p=[{dataId:n.complexTensorInfos.real.dataId,dtype:n.complexTensorInfos.real.dtype,shape:l},{dataId:n.complexTensorInfos.imag.dataId,dtype:n.complexTensorInfos.imag.dtype,shape:l}],m=t.runWebGLProgram(u,p,"float32"),f=t.runWebGLProgram(c,p,"float32"),d=nn({inputs:{real:m,imag:f},backend:t});t.disposeIntermediateTensorInfo(m),t.disposeIntermediateTensorInfo(f);let h=ce({inputs:{x:d},backend:t,attrs:{shape:r.shape}});return t.disposeIntermediateTensorInfo(i),t.disposeIntermediateTensorInfo(d),h}function vX(r){let{inputs:e,backend:t}=r,{input:n}=e;return ax(n,!1,t)}var TD={kernelName:tu,backendName:"webgl",kernelFunc:vX};var Nv=class{constructor(e,t){this.outputShape=[],this.variableNames=["x"],this.outputShape=e,this.userCode=`
uniform float value;
void main() {
// Input can be obtained from uniform value.
setOutput(value);
}
`}getCustomSetupFunc(e){return(t,n)=>{this.valueLoc==null&&(this.valueLoc=t.getUniformLocationNoThrow(n,"value")),t.gl.uniform1f(this.valueLoc,e)}}};function Rf(r){let{backend:e,attrs:t}=r,{shape:n,value:o}=t,{dtype:s}=t;if(s=s||y.inferDtype(o),s==="string"){let a=y.getArrayFromDType(s,y.sizeFromShape(n));return a.fill(o),e.makeTensorInfo(n,s,a)}else{let a=new Nv(n,o),i=a.getCustomSetupFunc(o);return e.runWebGLProgram(a,[],s,i)}}var ED={kernelName:ua,backendName:"webgl",kernelFunc:Rf};var Sv=class{constructor(e){this.variableNames=["Image"],this.outputShape=[];let t=e[2];this.outputShape=e,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int x = coords[2];
int coordX = ${t} - x;
float outputValue;
if(coordX >= 0 && coordX < ${t}) {
outputValue = getImage(coords[0], coords[1], coordX, coords[3]);
} else {
outputValue = getImage(coords[0], coords[1], coords[2], coords[3]);
}
setOutput(outputValue);
}
`}};var AD={kernelName:ui,backendName:"webgl",kernelFunc:({inputs:r,backend:e})=>{let{image:t}=r,n=e,o=new Sv(t.shape);return n.runWebGLProgram(o,[t],t.dtype)}};var DD="return floor(x);",CX=ve({opSnippet:DD,packedOpSnippet:DD,cpuKernelImpl:vA}),$D={kernelName:to,backendName:"webgl",kernelFunc:CX};var IX=`
float s = sign(a) * sign(b);
int ia = round(a);
int ib = round(b);
if (ib != 0) {
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
return float(idiv(ia, ib, s));
} else {
return NAN;
}
`,NX=`
ivec4 ia = round(a);
ivec4 ib = round(b);
bvec4 cond = notEqual(ib, ivec4(0));
ivec4 result = ivec4(0);
vec4 s = sign(a) * sign(b);
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
if (cond[0]) {
result[0] = idiv(ia[0], ib[0], s[0]);
}
if (cond[1]) {
result[1] = idiv(ia[1], ib[1], s[1]);
}
if (cond[2]) {
result[2] = idiv(ia[2], ib[2], s[2]);
}
if (cond[3]) {
result[3] = idiv(ia[3], ib[3], s[3]);
}
return vec4(result);
`,SX=it({opSnippet:IX,packedOpSnippet:NX,dtype:"int32"}),RD={kernelName:ro,backendName:"webgl",kernelFunc:SX};var Tv=class{constructor(e){this.variableNames=["A"];let t=Pt(),[n,o]=e;this.outputShape=e,this.userCode=`
void main() {
ivec3 coords = getOutputCoords();
int texR = coords[0];
int texC = coords[1];
int depth = coords[2];
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${o}.0, ${n}.0);
vec4 values = ${t.texture2D}(A, uv);
float value;
if (depth == 0) {
value = values.r;
} else if (depth == 1) {
value = values.g;
} else if (depth == 2) {
value = values.b;
} else if (depth == 3) {
value = values.a;
}
setOutput(floor(value * 255.0 + 0.5));
}
`}};var Ev=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let t=Pt(),[n,o]=e;this.outputShape=e,this.userCode=`
void main() {
ivec3 coords = getOutputCoords();
int texR = coords[0];
int texC = coords[1];
int depth = coords[2];
vec4 result = vec4(0.);
for(int row=0; row<=1; row++) {
for(int col=0; col<=1; col++) {
texC = coords[1] + row;
depth = coords[2] + col;
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${o}.0, ${n}.0);
vec4 values = ${t.texture2D}(A, uv);
float value;
if (depth == 0) {
value = values.r;
} else if (depth == 1) {
value = values.g;
} else if (depth == 2) {
value = values.b;
} else if (depth == 3) {
value = values.a;
}
result[row * 2 + col] = floor(value * 255.0 + 0.5);
}
}
${t.output} = result;
}
`}};var FD={kernelName:Oc,backendName:"webgl",kernelFunc:TX},_p;function TX(r){let{inputs:e,backend:t,attrs:n}=r,{pixels:o}=e,{numChannels:s}=n,a=typeof HTMLVideoElement!="undefined"&&o instanceof HTMLVideoElement,i=typeof HTMLImageElement!="undefined"&&o instanceof HTMLImageElement,l=typeof ImageBitmap!="undefined"&&o instanceof ImageBitmap,[u,c]=a?[o.videoWidth,o.videoHeight]:[o.width,o.height],p=[c,u],m=[c,u,s];(i||a||l)&&(_p==null&&(_p=document.createElement("canvas").getContext("2d")),_p.canvas.width=u,_p.canvas.height=c,_p.drawImage(o,0,0,u,c),o=_p.canvas);let f=t.makeTensorInfo(p,"int32");t.texData.get(f.dataId).usage=Ar.PIXELS,t.gpgpu.uploadPixelDataToTexture(t.getTexture(f.dataId),o);let d=W().getBool("WEBGL_PACK")?new Ev(m):new Tv(m),h=t.runWebGLProgram(d,[f],"int32");return t.disposeData(f.dataId),h}function EX(r){let{inputs:e,backend:t,attrs:n}=r,{x:o,filter:s,bias:a,preluActivationWeights:i}=e,{strides:l,pad:u,dataFormat:c,dilations:p,dimRoundingMode:m,activation:f,leakyreluAlpha:d}=n,h=N.convertConv2DDataFormat(c),g=N.computeConv2DInfo(o.shape,s.shape,l,p,u,m,!1,h),x,b=[];if(g.filterHeight===1&&g.filterWidth===1&&g.dilationHeight===1&&g.dilationWidth===1&&g.strideHeight===1&&g.strideWidth===1&&(g.padInfo.type==="SAME"||g.padInfo.type==="VALID"))x=rx({x:o,filter:s,convInfo:g,backend:t,bias:a,activation:f,preluActivationWeights:i,leakyreluAlpha:d});else if(W().getBool("WEBGL_CONV_IM2COL")&&o.shape[0]===1)x=nx({x:o,filter:s,convInfo:g,backend:t,bias:a,activation:f,preluActivationWeights:i,leakyreluAlpha:d});else{let _=a!=null,k=i!=null,E=f==="leakyrelu",S=f?xl(f,!1):null,R=new Af(g,_,S,k,E),F=[o,s];if(a&&F.push(a),i&&F.push(i),E){let P=t.makeTensorInfo([],"float32",y.createScalarValue(d,"float32"));F.push(P),b.push(P)}x=t.runWebGLProgram(R,F,"float32")}let w=ce({inputs:{x},backend:t,attrs:{shape:g.outShape}});return b.push(x),b.forEach(_=>t.disposeIntermediateTensorInfo(_)),w}var OD={kernelName:ws,backendName:"webgl",kernelFunc:EX};function AX(r){let{inputs:e,backend:t,attrs:n}=r,{x:o,filter:s,bias:a,preluActivationWeights:i}=e,{strides:l,pad:u,dilations:c,dimRoundingMode:p,activation:m,leakyreluAlpha:f}=n,d=[],h=c;h==null&&(h=[1,1]),y.assert(N.eitherStridesOrDilationsAreOne(l,h),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${l} and dilations '${h}'`);let g=N.computeConv2DInfo(o.shape,s.shape,l,h,u,p,!0),x=W().getBool("WEBGL_PACK_DEPTHWISECONV")&&g.strideWidth<=2&&g.outChannels/g.inChannels==1,b=m?xl(m,x):null,w=[o,s],_=a!=null,k=i!=null,E=m==="leakyrelu";if(_&&w.push(a),k&&w.push(i),E){let F=t.makeTensorInfo([],"float32",y.createScalarValue(f,"float32"));w.push(F),d.push(F)}let S;x?S=new $f(g,_,b,k,E):S=new Df(g,_,b,k,E);let R=t.runWebGLProgram(S,w,"float32");return d.forEach(F=>t.disposeIntermediateTensorInfo(F)),R}var PD={kernelName:_s,backendName:"webgl",kernelFunc:AX};var Av=class{constructor(e,t,n){this.sliceDim=e,this.strides=t,this.variableNames=["x","indices"],this.outputShape=n;let o=Le(t.length),s=Le(n.length),a=this.sliceDim>1?"strides[j]":"strides";this.userCode=`
${o} strides = ${o}(${this.strides});
void main() {
${s} coords = getOutputCoords();
int flattenIndex = 0;
for (int j = 0; j < ${this.sliceDim}; j++) {
int index = round(getIndices(coords[0], j));
flattenIndex += index * ${a};
}
setOutput(getX(flattenIndex, coords[1]));
}
`}};function DX(r){let{inputs:e,backend:t}=r,{params:n,indices:o}=e,s=o.shape,a=s[s.length-1],[i,l,u,c]=N.prepareAndValidate(n,o),p=ce({inputs:{x:o},backend:t,attrs:{shape:[l,a]}}),m=ce({inputs:{x:n},backend:t,attrs:{shape:[y.sizeFromShape(n.shape)/u,u]}}),f=new Av(a,c,[l,u]),d=t.runWebGLProgram(f,[m,p],m.dtype),h=ce({inputs:{x:d},backend:t,attrs:{shape:i}});return t.disposeIntermediateTensorInfo(p),t.disposeIntermediateTensorInfo(m),t.disposeIntermediateTensorInfo(d),h}var MD={kernelName:ci,backendName:"webgl",kernelFunc:DX};var Dv=class{constructor(e,t){this.variableNames=["A","indices"],this.outputShape=t,this.rank=t.length;let n=Le(this.rank),o=$X(e,2);this.userCode=`
void main() {
${n} resRC = getOutputCoords();
setOutput(getA(${o}));
}
`}};function $X(r,e){let t=["resRC.x","resRC.y","resRC.z","resRC.w"],n=[];for(let o=0;o<r.length;o++)o===2?n.push("int(getIndices(resRC.x, resRC.z))"):n.push(`${t[o]}`);return n.join()}function RX(r){let{inputs:e,backend:t,attrs:n}=r,{x:o,indices:s}=e,{axis:a,batchDims:i}=n,l=y.parseAxisParam(a,o.shape)[0],u=N.segment_util.collectGatherOpShapeInfo(o,s,l,i),c=y.sizeFromShape(s.shape),p=[],m=ce({inputs:{x:o},backend:t,attrs:{shape:[u.batchSize,u.outerSize,u.dimSize,u.sliceSize]}}),f=ce({inputs:{x:s},backend:t,attrs:{shape:[u.batchSize,c/u.batchSize]}});p.push(m),p.push(f);let d=[u.batchSize,u.outerSize,c/u.batchSize,u.sliceSize];if(t.shouldExecuteOnCPU([o,s])||o.dtype==="string"){let b=t.bufferSync(f),w=t.bufferSync(m),_=CA(w,b,d);return p.forEach(k=>t.disposeIntermediateTensorInfo(k)),t.makeTensorInfo(u.outputShape,_.dtype,_.values)}let h=new Dv(m.shape,d),g=t.runWebGLProgram(h,[m,f],m.dtype);p.push(g);let x=ce({inputs:{x:g},backend:t,attrs:{shape:u.outputShape}});return p.forEach(b=>t.disposeIntermediateTensorInfo(b)),x}var LD={kernelName:ls,backendName:"webgl",kernelFunc:RX};var FX="return float(a > b);",OX=`
return vec4(greaterThan(a, b));
`,PX=it({opSnippet:FX,packedOpSnippet:OX,cpuKernelImpl:IA,dtype:"bool"}),zD={kernelName:pi,backendName:"webgl",kernelFunc:PX};var MX="return float(a >= b);",LX=`
return vec4(greaterThanEqual(a, b));
`,zX=it({opSnippet:MX,packedOpSnippet:LX,dtype:"bool"}),BD={kernelName:oo,backendName:"webgl",kernelFunc:zX};function BX(r){let{inputs:e,backend:t}=r,{input:n}=e;return ax(n,!0,t)}var VD={kernelName:ru,backendName:"webgl",kernelFunc:BX};var VX="return float(!isnan(x) && !isinf(x));",GX=ve({opSnippet:VX,dtype:"bool"}),GD={kernelName:mi,backendName:"webgl",kernelFunc:GX};var jX="return float(isinf(x));",WX=ve({opSnippet:jX,dtype:"bool"}),jD={kernelName:fi,backendName:"webgl",kernelFunc:WX};var UX="return float(isnan(x));",qX=ve({opSnippet:UX,dtype:"bool"}),WD={kernelName:di,backendName:"webgl",kernelFunc:qX};var HX="return float(a < b);",KX=`
return vec4(lessThan(a, b));
`,XX=it({opSnippet:HX,packedOpSnippet:KX,cpuKernelImpl:NA,dtype:"bool"}),UD={kernelName:hi,backendName:"webgl",kernelFunc:XX};var YX="return float(a <= b);",ZX=`
return vec4(lessThanEqual(a, b));
`,JX=it({opSnippet:YX,packedOpSnippet:ZX,dtype:"bool"}),qD={kernelName:gi,backendName:"webgl",kernelFunc:JX};function QX(r){let{backend:e,attrs:t}=r,{start:n,stop:o,num:s}=t,a=SA(n,o,s);return e.makeTensorInfo([a.length],"float32",a)}var HD={kernelName:ou,backendName:"webgl",kernelFunc:QX};var e7=`if (x < 0.0) return NAN;
return log(x);`,t7=`
vec4 result = log(x);
vec4 isNaN = vec4(lessThan(x, vec4(0.0)));
result.r = isNaN.r == 1.0 ? NAN : result.r;
result.g = isNaN.g == 1.0 ? NAN : result.g;
result.b = isNaN.b == 1.0 ? NAN : result.b;
result.a = isNaN.a == 1.0 ? NAN : result.a;
return result;
`,r7=ve({opSnippet:e7,packedOpSnippet:t7,cpuKernelImpl:TA}),KD={kernelName:io,backendName:"webgl",kernelFunc:r7};var n7="return log(1.0 + x);",o7=ve({opSnippet:n7}),XD={kernelName:xi,backendName:"webgl",kernelFunc:o7};var s7="return float(a >= 1.0 && b >= 1.0);",i7=`
return vec4(
vec4(greaterThanEqual(a, vec4(1.0))) *
vec4(greaterThanEqual(b, vec4(1.0))));
`,a7=it({opSnippet:s7,packedOpSnippet:i7,dtype:"bool"}),YD={kernelName:yi,backendName:"webgl",kernelFunc:a7};var l7="return float(!(x >= 1.0));",u7=ve({opSnippet:l7}),ZD={kernelName:Qa,backendName:"webgl",kernelFunc:u7};var c7="return float(a >= 1.0 || b >= 1.0);",p7=`
return min(
vec4(greaterThanEqual(a, vec4(1.0))) +
vec4(greaterThanEqual(b, vec4(1.0))),
vec4(1.0));
`,m7=it({opSnippet:c7,packedOpSnippet:p7,dtype:"bool"}),JD={kernelName:el,backendName:"webgl",kernelFunc:m7};var $v=class{constructor(e,t,n,o,s){this.variableNames=["x"],this.outputShape=[];let a=t,i=e[3]-1;this.outputShape=e;let l,u=`float(${n}) + float(${o}) * sum`;s===.5?l=`inversesqrt(${u})`:s===1?l=`1.0/(${u})`:l=`exp(log(${u}) * float(-${s}));`,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int r = coords[1];
int c = coords[2];
int d = coords[3];
float x = getX(b, r, c, d);
float sum = 0.0;
for (int j = -${a}; j <= ${a}; j++) {
int idx = d + j;
if (idx >= 0 && idx <= ${i}) {
float z = getX(b, r, c, idx);
sum += z * z;
}
}
float val = x * ${l};
setOutput(val);
}
`}};var Rv=class{constructor(e,t,n,o,s){this.variableNames=["x"],this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0;let a=t,i=e[3]-1;this.outputShape=e;let l,u=`float(${n}) + float(${o}) * sum`;s===.5?l=`inversesqrt(${u})`:s===1?l=`1.0/(${u})`:l=`exp(log(${u}) * float(-${s}));`,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords.x;
int r = coords.y;
int c = coords.z;
int d = coords.w;
bool hasNextCol = d < ${this.outputShape[3]};
bool hasNextRow = c < ${this.outputShape[2]};
vec4 sum = vec4(0.);
vec4 xFragAtOutputCoords = getX(b, r, c, d);
vec4 xAtOutputCoords = vec4(
getChannel(xFragAtOutputCoords, vec2(c, d)),
hasNextCol ?
getChannel(xFragAtOutputCoords, vec2(c, d + 1)) : 0.0,
hasNextRow ?
getChannel(xFragAtOutputCoords , vec2(c + 1, d)) : 0.0,
(hasNextRow && hasNextCol) ?
getChannel(xFragAtOutputCoords, vec2(c + 1, d + 1)) : 0.0
);
int firstChannel = d - ${a};
vec2 cache = vec2(0.);
if(firstChannel >= 0){
vec4 firstChannelFrag = getX(b, r, c, firstChannel);
cache.x = getChannel(firstChannelFrag, vec2(c, firstChannel));
if(hasNextRow){
cache.y = getChannel(firstChannelFrag, vec2(c + 1, firstChannel));
}
}
ivec2 depth = ivec2(d, d + 1);
for (int j = - ${a}; j <= ${a}; j++) {
ivec2 idx = depth + j;
bvec2 aboveLowerBound = greaterThanEqual(idx, ivec2(0));
bvec2 belowUpperBound = lessThanEqual(idx, ivec2(${i}));
bool depthInRange = aboveLowerBound.x && belowUpperBound.x;
bool depthPlusOneInRange = aboveLowerBound.y && belowUpperBound.y;
if(depthInRange || depthPlusOneInRange){
vec4 z = vec4(0.);
vec4 xFragAtCurrentDepth;
z.xz = cache.xy;
if(depthPlusOneInRange && hasNextCol){
xFragAtCurrentDepth = idx.y != d ?
getX(b, r, c, idx.y) : xFragAtOutputCoords;
z.y = getChannel(xFragAtCurrentDepth, vec2(c, idx.y));
if(hasNextRow){
z.w = getChannel(xFragAtCurrentDepth, vec2(c + 1, idx.y));
}
}
cache.xy = z.yw;
sum += z * z;
}
}
vec4 result = xAtOutputCoords * ${l};
setOutput(result);
}
`}};var f7=r=>{let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{depthRadius:s,bias:a,alpha:i,beta:l}=n,u=W().getBool("WEBGL_PACK_NORMALIZATION")?new Rv(o.shape,s,a,i,l):new $v(o.shape,s,a,i,l);return t.runWebGLProgram(u,[o],o.dtype)},QD={kernelName:ca,backendName:"webgl",kernelFunc:f7};var Fv=class{constructor(e,t,n,o,s){this.variableNames=["inputImage","outputImage","dy"],this.outputShape=[],this.outputShape=e,this.depth=e[3],this.depthRadius=t,this.bias=n,this.alpha=o,this.beta=s,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int r = coords[1];
int c = coords[2];
float result = 0.0;
for (int d = 0; d < ${this.depth}; ++d) {
int depthBegin = int(max(0.0, float(d - ${t})));
int depthEnd = int(min(float(${this.depth}),
float(d + ${t} + 1)));
const int MIN_DEPTH_BEGIN = 0;
const int MAX_DEPTH_END = ${this.depth};
float norm = 0.0;
for (int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k) {
if (k < depthBegin){
continue;
}
else if (k >= depthBegin && k < depthEnd) {
norm += getInputImage(b, r, c, k) * getInputImage(b, r, c, k);
}
else {
break;
}
}
norm = float(${o}) * norm + float(${n});
for(int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k){
if (k < depthBegin){
continue;
}
else if (k >= depthBegin && k < depthEnd){
float dyi = -2.0 * float(${o})
* float(${s})
* getInputImage(b ,r ,c, k) * getOutputImage(b, r, c, d)
/ norm;
if (k == d) {
dyi += pow(norm, -1.0 * ${s});
}
if (k == coords[3]) {
dyi *= getDy(b, r, c, d);
result += dyi;
}
}
else {
break;
}
}
}
setOutput(result);
}
`}};var d7=r=>{let{inputs:e,backend:t,attrs:n}=r,{x:o,y:s,dy:a}=e,{depthRadius:i,bias:l,alpha:u,beta:c}=n,p=new Fv(o.shape,i,l,u,c);return t.runWebGLProgram(p,[o,s,a],o.dtype)},e$={kernelName:su,backendName:"webgl",kernelFunc:d7};function t$(r,e,t,n){let o=y.sizeFromShape(e),a=y.sizeFromShape(r.shape)/o,i=ce({inputs:{x:r},attrs:{shape:[a,o]},backend:n}),l=vn(i,r.dtype,"max",n),u=ce({inputs:{x:l},attrs:{shape:t},backend:n});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(l),u}function Ov(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{reductionIndices:s,keepDims:a}=n,i=o.shape.length,l=y.parseAxisParam(s,o.shape),u=l,c=N.getAxesPermutation(u,i),p=c!=null,m=t.shouldExecuteOnCPU([o]),f=o;if(p){if(m){let w=t.texData.get(f.dataId).values,_=new Array(i);for(let S=0;S<_.length;S++)_[S]=o.shape[c[S]];let k=wp(w,o.shape,o.dtype,c,_);f=t.makeTensorInfo(_,o.dtype);let E=t.texData.get(f.dataId);E.values=k}else f=yl(o,c,t);u=N.getInnerMostAxes(u.length,i)}N.assertAxesAreInnerMostDims("max",u,i);let[d,h]=N.computeOutAndReduceShapes(f.shape,u),g=d;a&&(g=N.expandShapeToKeepDim(d,l));let x;if(m){let w=t.texData.get(f.dataId).values,_=EA(w,y.sizeFromShape(h),g,o.dtype);x=t.makeTensorInfo(g,o.dtype);let k=t.texData.get(x.dataId);k.values=_}else x=t$(f,h,g,t);return p&&t.disposeIntermediateTensorInfo(f),x}var r$={kernelName:ao,backendName:"webgl",kernelFunc:Ov};var h7=Xg+`
return max(a, b);
`,g7=`
vec4 result = vec4(max(a, b));
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
`+gl+`
return result;
`,x7=it({opSnippet:h7,packedOpSnippet:g7,cpuKernelImpl:AA}),n$={kernelName:lo,backendName:"webgl",kernelFunc:x7};function y7(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e;$s(o,"maxPool");let{filterSize:s,strides:a,pad:i,dimRoundingMode:l}=n,u=1;y.assert(N.eitherStridesOrDilationsAreOne(a,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${a} and dilations '${u}'`);let c=N.computePool2DInfo(o.shape,s,a,u,i,l);if(c.filterWidth===1&&c.filterHeight===1&&y.arraysEqual(c.inShape,c.outShape))return Ut({inputs:{x:o},backend:t});let p=new Wi(c,"max",!1);return t.runWebGLProgram(p,[o],o.dtype)}var o$={kernelName:uo,backendName:"webgl",kernelFunc:y7};function b7(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{filterSize:s,strides:a,pad:i,dataFormat:l,dimRoundingMode:u}=n,c=[1,1,1],p=N.computePool3DInfo(o.shape,s,a,c,i,u,l),m=new Qu(p,"max",!1);return t.runWebGLProgram(m,[o],o.dtype)}var s$={kernelName:pa,backendName:"webgl",kernelFunc:b7};var Pv=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideHeight,n=e.strideWidth,o=e.dilationHeight,s=e.effectiveFilterHeight,a=e.effectiveFilterWidth,i=s-1-e.padInfo.top,l=a-1-e.padInfo.left,u=s*a-1;this.userCode=`
const ivec2 pads = ivec2(${i}, ${l});
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 dyRCCorner = coords.yz - pads;
int dyRCorner = dyRCCorner.x;
int dyCCorner = dyRCCorner.y;
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${s};
wR += ${o}) {
float dyR = float(dyRCorner + wR) / ${t}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${a}; wC++) {
float dyC = float(dyCCorner + wC) / ${n}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(b, idyR, idyC, d);
int maxPosValue = ${u} - int(getMaxPos(b, idyR, idyC, d));
// Get the current value, check it against the value from the
// position matrix.
int curPosValue = wR * ${a} + wC;
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
dotProd += dyValue * mask;
}
}
setOutput(dotProd);
}
`}},Mv=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideDepth,n=e.strideHeight,o=e.strideWidth,s=e.dilationDepth,a=e.dilationHeight,i=e.dilationWidth,l=e.effectiveFilterDepth,u=e.effectiveFilterHeight,c=e.effectiveFilterWidth,p=l-1-e.padInfo.front,m=u-1-e.padInfo.top,f=c-1-e.padInfo.left,d=l*u*c-1;this.userCode=`
const ivec3 pads = ivec3(${p}, ${m}, ${f});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
int dyDCorner = dyCorner.x;
int dyRCorner = dyCorner.y;
int dyCCorner = dyCorner.z;
// Convolve dy(?, ?, ?, ch) with pos mask(:, :, :, d) to get
// dx(xD, xR, xC, ch).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wD = 0; wD < ${l};
wD += ${s}) {
float dyD = float(dyDCorner + wD) / ${t}.0;
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
continue;
}
int idyD = int(dyD);
for (int wR = 0; wR < ${u};
wR += ${a}) {
float dyR = float(dyRCorner + wR) / ${n}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${c};
wC += ${i}) {
float dyC = float(dyCCorner + wC) / ${o}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
int maxPosValue = ${d} -
int(getMaxPos(batch, idyD, idyR, idyC, ch));
// Get the current value, check it against the value from the
// position matrix.
int curPosValue =
wD * ${u} * ${c} +
wR * ${c} + wC;
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
dotProd += dyValue * mask;
}
}
}
setOutput(dotProd);
}
`}};function w7(r){let{inputs:e,backend:t,attrs:n}=r,{dy:o,input:s}=e,a=s,{filterSize:i,strides:l,pad:u,dimRoundingMode:c}=n,p=[1,1,1],m=N.computePool3DInfo(a.shape,i,l,p,u,c),f=new Qu(m,"max",!0),d=t.runWebGLProgram(f,[a],a.dtype),h=new Mv(m),g=t.runWebGLProgram(h,[o,d],a.dtype);return t.disposeIntermediateTensorInfo(d),g}var i$={kernelName:au,backendName:"webgl",kernelFunc:w7};function _7(r){let{inputs:e,backend:t,attrs:n}=r,{dy:o,input:s,output:a}=e,i=s;$s([s,a],"maxPoolGrad");let{filterSize:l,strides:u,pad:c,dimRoundingMode:p}=n,m=N.computePool2DInfo(i.shape,l,u,1,c,p),f=!0,d=new Wi(m,"max",f),h=t.runWebGLProgram(d,[i],i.dtype),g=new Pv(m),x=t.runWebGLProgram(g,[o,h],i.dtype);return t.disposeIntermediateTensorInfo(h),x}var a$={kernelName:iu,backendName:"webgl",kernelFunc:_7};function l$(r,e,t,n){let o=new Wi(t,"max",!1),s=n.runWebGLProgram(o,[r],"float32");o=new Wi(t,"max",!0,!0,e);let a=n.runWebGLProgram(o,[r],"float32");return[s,a]}var u$={kernelName:lu,backendName:"webgl",kernelFunc:({inputs:r,attrs:e,backend:t})=>{let{x:n}=r,{filterSize:o,strides:s,pad:a,includeBatchInIndex:i}=e,l=t;y.assert(n.shape.length===4,()=>`Error in maxPool: input must be rank 4 but got rank ${n.shape.length}.`);let u=[1,1];y.assert(N.eitherStridesOrDilationsAreOne(s,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${s} and dilations '${u}'`);let c=N.computePool2DInfo(n.shape,o,s,u,a),[p,m]=l$(n,i,c,l);return[p,m]}};function c$(r,e,t,n){let o=y.sizeFromShape(e),a=y.sizeFromShape(r.shape)/o,i=ce({inputs:{x:r},attrs:{shape:[a,o]},backend:n}),l=vn(i,"float32","mean",n),u=ce({inputs:{x:l},attrs:{shape:t},backend:n});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(l),u}var p$={kernelName:co,backendName:"webgl",kernelFunc:({inputs:r,attrs:e,backend:t})=>{let{x:n}=r,{keepDims:o,axis:s}=e,a=t,i=n.shape.length,l=y.parseAxisParam(s,n.shape),u=l,c=N.getAxesPermutation(u,i),p=c!=null,m=a.shouldExecuteOnCPU([n]),f=[],d=n;if(p){if(m){let _=a.texData.get(d.dataId).values,k=new Array(i);for(let R=0;R<k.length;R++)k[R]=n.shape[c[R]];let E=wp(_,n.shape,n.dtype,c,k);d=a.makeTensorInfo(k,n.dtype);let S=a.texData.get(d.dataId);S.values=E}else d=yl(n,c,a);f.push(d),u=N.getInnerMostAxes(u.length,i)}N.assertAxesAreInnerMostDims("sum",u,i);let[h,g]=N.computeOutAndReduceShapes(d.shape,u),x=h;o&&(x=N.expandShapeToKeepDim(h,l));let b=c$(d,g,x,a);for(let w of f)a.disposeIntermediateTensorInfo(w);return b}};function k7(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{axis:s,keepDims:a}=n,i=o.shape.length,l=y.parseAxisParam(s,o.shape),u=l,c=N.getAxesPermutation(u,i),p=o;c!=null&&(p=zt({inputs:{x:o},backend:t,attrs:{perm:c}}),u=N.getInnerMostAxes(u.length,o.shape.length)),N.assertAxesAreInnerMostDims("min",u,i);let[m,f]=N.computeOutAndReduceShapes(p.shape,u),d=y.sizeFromShape(f),h=ce({inputs:{x:p},backend:t,attrs:{shape:[-1,d]}}),g=vn(h,h.dtype,"min",t),x;if(a){let b=N.expandShapeToKeepDim(m,l);x=ce({inputs:{x:g},backend:t,attrs:{shape:b}})}else x=ce({inputs:{x:g},backend:t,attrs:{shape:m}});return t.disposeIntermediateTensorInfo(h),t.disposeIntermediateTensorInfo(g),c!=null&&t.disposeIntermediateTensorInfo(p),x}var m$={kernelName:po,backendName:"webgl",kernelFunc:k7};var v7=Xg+`
return min(a, b);
`,C7=`
vec4 result = vec4(min(a, b));
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
`+gl+`
return result;
`,I7=it({opSnippet:v7,packedOpSnippet:C7,cpuKernelImpl:DA}),f$={kernelName:mo,backendName:"webgl",kernelFunc:I7};var Lv=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=t.map((c,p)=>c[0]+e[p]+c[1]);let o=e.length,s=Le(o),a=t.map(c=>c[0]).join(","),i=t.map((c,p)=>c[0]+e[p]).join(","),l=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,o),u=n==="reflect"?0:1;if(o===1){this.userCode=`
int start = ${a};
int end = ${i};
void main() {
int outC = getOutputCoords();
if (outC < start) {
outC = start * 2 - outC - ${u};
} else if(outC >= end) {
outC = (end - 1) * 2 - outC + ${u};
}
setOutput(getX(outC - start));
}
`;return}this.userCode=`
${s} start = ${s}(${a});
${s} end = ${s}(${i});
void main() {
${s} outC = getOutputCoords();
for (int i = 0; i < ${o}; i++) {
if (outC[i] < start[i]) {
outC[i] = start[i] * 2 - outC[i] - ${u};
} else if(outC[i] >= end[i]) {
outC[i] = (end[i] - 1) * 2 - outC[i] + ${u};
}
}
${s} coords = outC - start;
setOutput(getX(${l}));
}
`}};var zv=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((d,h)=>d[0]+e[h]+d[1]);let o=e.length,s=Le(o),a=t.map(d=>d[0]).join(","),i=t.map((d,h)=>d[0]+e[h]).join(","),l=Wt("rc",o),u=Wt("source",o),c=`${l[o-1]} < ${this.outputShape[o-1]}`,p=o===1?"source":`vec2(${u.slice(-2).join()})`,m=n==="reflect"?0:1,f="";if(o===1){let d=`
${s} source = rc;
if (source < start) {
source = start * 2 - source - ${m};
} else if (source >= end) {
source = (end - 1) * 2 - source + ${m};
}
source -= start;
`;f=`
${s} rc = outputLoc;
${d}
result[0] = getChannel(getX(${u.join()}), ${p});
${l[o-1]} += 1;
if(${c}) {
${d}
result[1] = getChannel(getX(${u.join()}), ${p});
}
`}else{let d=`
${s} source = rc;
${s} lt = ${s}(lessThan(source, start));
${s} gte = ${s}(greaterThanEqual(source, end));
${s} orig = 1 - (lt + gte);
source = orig * source +
lt * (start * 2 - source - ${m}) +
gte * ((end - 1) * 2 - source + ${m});
source -= start;
`;f=`
${s} rc = outputLoc;
${d}
result[0] = getChannel(getX(${u.join()}), ${p});
${l[o-1]} += 1;
if(${c}) {
${d}
result[1] = getChannel(getX(${u.join()}), ${p});
}
rc = outputLoc;
${l[o-2]} += 1;
if(${l[o-2]} < ${this.outputShape[o-2]}) {
${d}
result[2] = getChannel(getX(${u.join()}), ${p});
${l[o-1]} += 1;
if(${c}) {
${d}
result[3] = getChannel(getX(${u.join()}), ${p});
}
}
`}this.userCode=`
const ${s} start = ${s}(${a});
const ${s} end = ${s}(${i});
void main() {
${s} outputLoc = getOutputCoords();
vec4 result = vec4(0.);
${f}
setOutput(result);
}
`}};var N7=({inputs:r,backend:e,attrs:t})=>{let{x:n}=r,{paddings:o,mode:s}=t,a=W().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new zv(n.shape,o,s):new Lv(n.shape,o,s);return e.runWebGLProgram(a,[n],n.dtype)},d$={kernelName:ma,backendName:"webgl",kernelFunc:N7};var S7=`if (b == 0.0) return NAN;
return mod(a, b);`,T7=`
vec4 result = mod(a, b);
vec4 isNaN = vec4(equal(b, vec4(0.0)));
`+gl+`
return result;
`,E7=it({opSnippet:S7,packedOpSnippet:T7}),h$={kernelName:bi,backendName:"webgl",kernelFunc:E7};var Bv=class{constructor(e,t,n){this.variableNames=["probs"],this.outputShape=[e,n],this.userCode=`
uniform float seed;
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
float r = random(seed);
float cdf = 0.0;
for (int i = 0; i < ${t-1}; i++) {
cdf += getProbs(batch, i);
if (r < cdf) {
setOutput(float(i));
return;
}
}
// If no other event happened, last event happened.
setOutput(float(${t-1}));
}
`}getCustomSetupFunc(e){return(t,n)=>{this.seedLoc==null&&(this.seedLoc=t.getUniformLocation(n,"seed")),t.gl.uniform1f(this.seedLoc,e)}}};var A7=`
if (a == b) {
return 1.0;
};
return a / b;`,D7=`
// vec4 one = vec4(equal(a, b));
// return one + (vec4(1.0) - one) * a / b;
vec4 result = a / b;
if(a.x == b.x) {
result.x = 1.;
}
if(a.y == b.y) {
result.y = 1.;
}
if(a.z == b.z) {
result.z = 1.;
}
if(a.w == b.w) {
result.w = 1.;
}
return result;
`,Vv=it({opSnippet:A7,packedOpSnippet:D7,checkOutOfBounds:!0}),g$={kernelName:Qn,backendName:"webgl",kernelFunc:Vv};var x$="return a - b;",Gv=it({opSnippet:x$,packedOpSnippet:x$,supportsComplex:!0,cpuKernelImpl:zA}),y$={kernelName:Do,backendName:"webgl",kernelFunc:Gv};function jv(r){let{inputs:e,backend:t,attrs:n}=r,{logits:o}=e,{dim:s}=n,a=y.parseAxisParam([s],o.shape),i=Ov({inputs:{x:o},backend:t,attrs:{reductionIndices:a,keepDims:!1}}),l=N.expandShapeToKeepDim(i.shape,a),u=ce({inputs:{x:i},backend:t,attrs:{shape:l}}),c=Gv({inputs:{a:o,b:u},backend:t}),p=Iv({inputs:{x:c},backend:t}),m=Ef({inputs:{x:p},backend:t,attrs:{axis:a,keepDims:!1}}),f=ce({inputs:{x:m},backend:t,attrs:{shape:l}}),d=Vv({inputs:{a:p,b:f},backend:t});return t.disposeIntermediateTensorInfo(i),t.disposeIntermediateTensorInfo(u),t.disposeIntermediateTensorInfo(c),t.disposeIntermediateTensorInfo(p),t.disposeIntermediateTensorInfo(m),t.disposeIntermediateTensorInfo(f),d}var b$={kernelName:Eo,backendName:"webgl",kernelFunc:jv};function $7(r){let{inputs:e,backend:t,attrs:n}=r,{logits:o}=e,{numSamples:s,seed:a,normalized:i}=n,l=i?o:jv({inputs:{logits:o},backend:t,attrs:{dim:o.shape.length-1}}),u=l.shape[0],c=l.shape[1],p=new Bv(u,c,s),m=p.getCustomSetupFunc(a),f=t.runWebGLProgram(p,[l],"int32",m);return i||t.disposeIntermediateTensorInfo(l),f}var w$={kernelName:uu,backendName:"webgl",kernelFunc:$7};var _$="return -x;";function R7(r){let{inputs:e,backend:t}=r,{x:n}=e;if(t.shouldExecuteOnCPU([n])){let s=t.texData.get(n.dataId),[a,i]=RA(s.values,n.shape,n.dtype);return t.makeTensorInfo(i,n.dtype,a)}let o;return W().getBool("WEBGL_PACK_UNARY_OPERATIONS")?o=new Fs(n.shape,_$):o=new rn(n.shape,_$),t.runWebGLProgram(o,[n],n.dtype)}var k$={kernelName:cs,backendName:"webgl",kernelFunc:R7};var F7=Tr.nonMaxSuppressionV3Impl;function O7(r){N.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:e,backend:t,attrs:n}=r,{boxes:o,scores:s}=e,{maxOutputSize:a,iouThreshold:i,scoreThreshold:l}=n,u=t.readSync(o.dataId),c=t.readSync(s.dataId),{selectedIndices:p}=F7(u,c,a,i,l);return t.makeTensorInfo([p.length],"int32",new Int32Array(p))}var v$={kernelName:_i,backendName:"webgl",kernelFunc:O7};var P7=Tr.nonMaxSuppressionV4Impl;function M7(r){N.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:e,backend:t,attrs:n}=r,{boxes:o,scores:s}=e,{maxOutputSize:a,iouThreshold:i,scoreThreshold:l,padToMaxOutputSize:u}=n,c=t.readSync(o.dataId),p=t.readSync(s.dataId),{selectedIndices:m,validOutputs:f}=P7(c,p,a,i,l,u);return[t.makeTensorInfo([m.length],"int32",new Int32Array(m)),t.makeTensorInfo([],"int32",new Int32Array([f]))]}var C$={kernelName:ki,backendName:"webgl",kernelFunc:M7};var L7=Tr.nonMaxSuppressionV5Impl;function z7(r){N.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:e,backend:t,attrs:n}=r,{boxes:o,scores:s}=e,{maxOutputSize:a,iouThreshold:i,scoreThreshold:l,softNmsSigma:u}=n,c=t.readSync(o.dataId),p=t.readSync(s.dataId),m=a,f=i,d=l,h=u,{selectedIndices:g,selectedScores:x}=L7(c,p,m,f,d,h);return[t.makeTensorInfo([g.length],"int32",new Int32Array(g)),t.makeTensorInfo([x.length],"float32",new Float32Array(x))]}var I$={kernelName:vi,backendName:"webgl",kernelFunc:z7};var Wv=class{constructor(e,t,n,o){this.variableNames=["indices"],this.outputShape=[e,t],this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int index = round(getIndices(coords.x));
setOutput(mix(float(${o}), float(${n}),
float(index == coords.y)));
}
`}};var B7=r=>{let{inputs:e,backend:t,attrs:n}=r,{indices:o}=e,{depth:s,onValue:a,offValue:i}=n,l=y.sizeFromShape(o.shape),u=new Wv(l,s,a,i),c=ce({inputs:{x:o},backend:t,attrs:{shape:[l]}}),p=t.runWebGLProgram(u,[c],o.dtype);t.disposeIntermediateTensorInfo(c);let m=[...o.shape,s],f=ce({inputs:{x:p},backend:t,attrs:{shape:m}});return t.disposeIntermediateTensorInfo(p),f},N$={kernelName:ho,backendName:"webgl",kernelFunc:B7};function Ff(r){let{inputs:e,backend:t}=r,{x:n}=e;if(n.dtype==="complex64"){let o=Va({inputs:{input:n},backend:t}),s=Ff({inputs:{x:o},backend:t}),a=ec({inputs:{input:n},backend:t}),i=Ff({inputs:{x:a},backend:t}),l=nn({inputs:{real:s,imag:i},backend:t});return t.disposeIntermediateTensorInfo(o),t.disposeIntermediateTensorInfo(s),t.disposeIntermediateTensorInfo(a),t.disposeIntermediateTensorInfo(i),l}else return Rf({attrs:{shape:n.shape,dtype:n.dtype,value:n.dtype==="string"?"":0},backend:t})}var S$={kernelName:ys,backendName:"webgl",kernelFunc:Ff};function T$(r){let{inputs:e,backend:t}=r,{x:n}=e;if(n.dtype==="string")throw new Error("onesLike is not supported under string dtype");if(n.dtype==="complex64"){let o=Va({inputs:{input:n},backend:t}),s=T$({inputs:{x:o},backend:t}),a=ec({inputs:{input:n},backend:t}),i=Ff({inputs:{x:a},backend:t}),l=nn({inputs:{real:s,imag:i},backend:t});return t.disposeIntermediateTensorInfo(o),t.disposeIntermediateTensorInfo(s),t.disposeIntermediateTensorInfo(a),t.disposeIntermediateTensorInfo(i),l}else return Rf({attrs:{shape:n.shape,dtype:n.dtype,value:1},backend:t})}var E$={kernelName:ps,backendName:"webgl",kernelFunc:T$};function V7(r){let{inputs:e,backend:t,attrs:n}=r,{axis:o}=n;if(e.length===1)return sx({inputs:{input:e[0]},backend:t,attrs:{dim:o}});let s=e[0].shape,a=e[0].dtype;e.forEach(c=>{y.assertShapesMatch(s,c.shape,"All tensors passed to stack must have matching shapes"),y.assert(a===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],l=e.map(c=>{let p=sx({inputs:{input:c},backend:t,attrs:{dim:o}});return i.push(p),p}),u=mv({inputs:l,backend:t,attrs:{axis:o}});return i.forEach(c=>t.disposeIntermediateTensorInfo(c)),u}var A$={kernelName:ms,backendName:"webgl",kernelFunc:V7};var Uv=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=t.map((u,c)=>u[0]+e[c]+u[1]);let o=e.length,s=Le(o),a=t.map(u=>u[0]).join(","),i=t.map((u,c)=>u[0]+e[c]).join(","),l=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,o);if(o===1){this.userCode=`
int start = ${a};
int end = ${i};
void main() {
int outC = getOutputCoords();
if (outC < start || outC >= end) {
setOutput(float(${n}));
} else {
setOutput(getX(outC - start));
}
}
`;return}this.userCode=`
${s} start = ${s}(${a});
${s} end = ${s}(${i});
void main() {
${s} outC = getOutputCoords();
if (any(lessThan(outC, start)) || any(greaterThanEqual(outC, end))) {
setOutput(float(${n}));
} else {
${s} coords = outC - start;
setOutput(getX(${l}));
}
}
`}};var qv=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((h,g)=>h[0]+e[g]+h[1]);let o=e.length,s=Le(o),a=t.map(h=>h[0]).join(","),i=t.map((h,g)=>h[0]+e[g]).join(","),l=Wt("rc",o),u=Wt("source",o),c=`${l[o-1]} < ${this.outputShape[o-1]}`,p=o===1?"source":`vec2(${u.slice(-2).join()})`,m=[`${s} rc = outputLoc;`,`${l[o-1]} += 1;
if(${c}) {
`,o===1?"":`}
rc = outputLoc;
${l[o-2]} += 1;
if(${l[o-2]} < ${this.outputShape[o-2]}) {`,o===1?"":` ${l[o-1]} += 1;
if(${c}) {`],f=o===1?"rc < start || rc >= end":"any(lessThan(rc, start)) || any(greaterThanEqual(rc, end))",d="";for(let h=0,g=o===1?2:4;h<g;h++)d+=`
${m[h]}
if (${f}) {
result[${h}] = float(${n});
} else {
${s} source = rc - start;
result[${h}] = getChannel(getX(${u.join()}), ${p});
}
`;d+=o===1?"} ":"}}",this.userCode=`
const ${s} start = ${s}(${a});
const ${s} end = ${s}(${i});
void main() {
${s} outputLoc = getOutputCoords();
vec4 result = vec4(0.);
${d}
setOutput(result);
}
`}};var Hv=r=>{let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{paddings:s,constantValue:a}=n,i=W().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new qv(o.shape,s,a):new Uv(o.shape,s,a);return t.runWebGLProgram(i,[o],o.dtype)},D$={kernelName:go,backendName:"webgl",kernelFunc:Hv};var G7=`
if(a < 0.0 && floor(b) < b){
return NAN;
}
if (b == 0.0) {
return 1.0;
}
return (round(mod(b, 2.0)) != 1) ?
pow(abs(a), b) : sign(a) * pow(abs(a), b);
`,j7=`
// isModRound1 has 1 for components with round(mod(b, 2.0)) == 1, 0 otherwise.
vec4 isModRound1 = vec4(equal(round(mod(b, 2.0)), ivec4(1)));
vec4 multiplier = sign(a) * isModRound1 + (vec4(1.0) - isModRound1);
vec4 result = multiplier * pow(abs(a), b);
// Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS
bvec4 isExpZero = equal(b, vec4(0.0));
result.r = isExpZero.r ? 1.0 : result.r;
result.g = isExpZero.g ? 1.0 : result.g;
result.b = isExpZero.b ? 1.0 : result.b;
result.a = isExpZero.a ? 1.0 : result.a;
vec4 isNaN = vec4(lessThan(a, vec4(0.0))) * vec4(lessThan(floor(b), b));
`+gl+`
return result;
`,W7=it({opSnippet:G7,packedOpSnippet:j7}),$$={kernelName:xo,backendName:"webgl",kernelFunc:W7};function U7(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{axis:s,keepDims:a}=n,i=o.shape.length,l=[],u=y.parseAxisParam(s,o.shape),c=u,p=N.getAxesPermutation(c,i),m=o;p!=null&&(m=zt({inputs:{x:o},backend:t,attrs:{perm:p}}),c=N.getInnerMostAxes(c.length,i),l.push(m)),N.assertAxesAreInnerMostDims("prod",c,i);let f;if(t.shouldExecuteOnCPU([m])){let d=t.texData.get(m.dataId).values,{outVals:h,outShape:g,outDtype:x}=FA(m.shape,m.dtype,d,c);f=t.makeTensorInfo(g,x,h)}else{let[d,h]=N.computeOutAndReduceShapes(m.shape,c),g=y.sizeFromShape(h),x=ce({inputs:{x:m},backend:t,attrs:{shape:[-1,g]}}),b=hu(o.dtype),w=vn(x,b,"prod",t);f=ce({inputs:{x:w},backend:t,attrs:{shape:d}}),l.push(x),l.push(w)}if(a){l.push(f);let d=N.expandShapeToKeepDim(f.shape,u);f=ce({inputs:{x:f},backend:t,attrs:{shape:d}})}return l.forEach(d=>t.disposeIntermediateTensorInfo(d)),f}var R$={kernelName:Ci,backendName:"webgl",kernelFunc:U7};var Kv=r=>{let{backend:e,attrs:t}=r,{start:n,stop:o,step:s,dtype:a}=t,i=OA(n,o,s,a);return e.makeTensorInfo([i.length],a,i)},F$={kernelName:fa,backendName:"webgl",kernelFunc:Kv};var q7="return 1.0 / x;",H7=ve({opSnippet:q7}),O$={kernelName:Ii,backendName:"webgl",kernelFunc:H7};var K7=hr+`
return (x < 0.0) ? 0.0 : x;
`,X7=`
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,Y7=ve({opSnippet:K7,packedOpSnippet:X7}),P$={kernelName:bo,backendName:"webgl",kernelFunc:Y7};var Z7=hr+`
return (x < 0.0) ? 0.0 : min(6.0, x);
`,J7=`
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,Q7=ve({opSnippet:Z7,packedOpSnippet:J7}),M$={kernelName:_o,backendName:"webgl",kernelFunc:Q7};var Xv=class{constructor(e,t,n,o,s){this.variableNames=["A"],this.outputShape=[];let[a,i,l,u]=e;this.outputShape=[a,t,n,u];let c=[o&&t>1?i-1:i,o&&n>1?l-1:l],p=[o&&t>1?t-1:t,o&&n>1?n-1:n],m;s?m="(vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC - vec2(0.5)":m="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec2 effectiveInputOverOutputRatioRC = vec2(
${c[0]/p[0]},
${c[1]/p[1]});
const vec2 inputShapeRC = vec2(${i}.0, ${l}.0);
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 yRC = coords.yz;
// Fractional source index.
vec2 sourceFracIndexRC = ${m};
// Compute the four integer indices.
ivec2 sourceFloorRC = ivec2(max(sourceFracIndexRC, vec2(0.0)));
ivec2 sourceCeilRC = ivec2(
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
float topLeft = getA(b, sourceFloorRC.x, sourceFloorRC.y, d);
float bottomLeft = getA(b, sourceCeilRC.x, sourceFloorRC.y, d);
float topRight = getA(b, sourceFloorRC.x, sourceCeilRC.y, d);
float bottomRight = getA(b, sourceCeilRC.x, sourceCeilRC.y, d);
vec2 fracRC = sourceFracIndexRC - vec2(sourceFloorRC);
float top = topLeft + (topRight - topLeft) * fracRC.y;
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracRC.y;
float newValue = top + (bottom - top) * fracRC.x;
setOutput(newValue);
}
`}};var Yv=class{constructor(e,t,n,o,s){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[a,i,l,u]=e;this.outputShape=[a,t,n,u];let c=[o&&t>1?i-1:i,o&&n>1?l-1:l],p=[o&&t>1?t-1:t,o&&n>1?n-1:n],m;s?m="(vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC - vec3(0.5)":m="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec3 effectiveInputOverOutputRatioRC = vec3(
${c[0]/p[0]},
${c[1]/p[1]},
${c[1]/p[1]});
const vec3 inputShapeRC = vec3(${i}.0, ${l}.0,
${l}.0);
float getAValue(int b, int r, int c, int d) {
return getChannel(getA(b, r, c, d), vec2(c, d));
}
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
// Calculate values for next column in yRC.z.
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
// Fractional source index.
vec3 sourceFracIndexRC = ${m};
// Compute the four integer indices.
ivec3 sourceFloorRC = ivec3(max(sourceFracIndexRC, vec3(0.0)));
ivec3 sourceCeilRC = ivec3(
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
// Should we calculate next column and row elements in 2x2 packed cell.
bool hasNextCol = d < ${u-1};
bool hasNextRow = coords.z < ${n-1};
// In parallel, construct four corners for all four components in
// packed 2x2 cell.
vec4 topLeft = vec4(
getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d),
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d + 1) : 0.0);
vec4 bottomLeft = vec4(
getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d),
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d + 1) : 0.0);
vec4 topRight = vec4(
getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d),
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d + 1) : 0.0);
vec4 bottomRight = vec4(
getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d),
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d + 1) : 0.0);
vec3 fracRC = sourceFracIndexRC - vec3(sourceFloorRC);
vec4 top = mix(topLeft, topRight, fracRC.yyzz);
vec4 bottom = mix(bottomLeft, bottomRight, fracRC.yyzz);
vec4 newValue = mix(top, bottom, fracRC.x);
setOutput(newValue);
}
`}};function eY(r){let{inputs:e,backend:t,attrs:n}=r,{images:o}=e,{alignCorners:s,halfPixelCenters:a,size:i}=n,[l,u]=i,c=W().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new Yv(o.shape,l,u,s,a):new Xv(o.shape,l,u,s,a);return t.runWebGLProgram(c,[o],"float32")}var L$={kernelName:wo,backendName:"webgl",kernelFunc:eY};var Zv=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,o,s]=t,[,a,i]=e,l=[n&&a>1?o-1:o,n&&i>1?s-1:s],u=[n&&a>1?a-1:a,n&&i>1?i-1:i],c=l[0]/u[0],p=l[1]/u[1],m=1/c,f=1/p,d=Math.ceil(m)*2+2,h=Math.ceil(f)*2+2;this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
int r = coords[1];
int c = coords[2];
float accumulator = 0.0;
const float heightScale = float(${c});
const float widthScale = float(${p});
const float invHeightScale = float(${m});
const float invWidthScale = float(${f});
const int winHeight = int(${d});
const int winWidth = int(${h});
// Compute bounds for where in dy we will look
float startRLerp = floor(float(r) * invHeightScale);
int startDyR = int(startRLerp - float(winHeight / 2));
float startCLerp = floor(float(c) * invWidthScale);
int startDyC = int(startCLerp - float(winWidth / 2));
// Loop over dy
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
int dyR = dyROffset + startDyR;
// Guard against the window exceeding the bounds of dy
if (dyR < 0 || dyR >= ${a}) {
continue;
}
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
int dyC = dyCOffset + startDyC;
// Guard against the window exceeding the bounds of dy
if (dyC < 0 || dyC >= ${i}) {
continue;
}
float dxR = float(dyR) * heightScale;
int topDxRIndex = int(floor(dxR));
int bottomDxRIndex = int(min(ceil(dxR), ${o-1}.0));
float dxRLerp = dxR - float(topDxRIndex);
float inverseDxRLerp = 1.0 - dxRLerp;
float dxC = float(dyC) * widthScale;
int leftDxCIndex = int(floor(dxC));
int rightDxCIndex = int(min(ceil(dxC), ${s-1}.0));
float dxCLerp = dxC - float(leftDxCIndex);
float inverseDxCLerp = 1.0 - dxCLerp;
if (r == topDxRIndex && c == leftDxCIndex) {
// topLeft
accumulator +=
getDy(b, dyR, dyC, d) * inverseDxRLerp * inverseDxCLerp;
}
if (r == topDxRIndex && c == rightDxCIndex) {
// topRight
accumulator += getDy(b, dyR, dyC, d) * inverseDxRLerp * dxCLerp;
}
if (r == bottomDxRIndex && c == leftDxCIndex) {
// bottomLeft
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * inverseDxCLerp;
}
if (r == bottomDxRIndex && c == rightDxCIndex) {
// bottomRight
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * dxCLerp;
}
}
}
// End loop over dy
setOutput(accumulator);
}
`}};function tY(r){let{inputs:e,backend:t,attrs:n}=r,{images:o,dy:s}=e,{alignCorners:a}=n,i=new Zv(s.shape,o.shape,a);return t.runWebGLProgram(i,[s],s.dtype)}var z$={kernelName:mu,backendName:"webgl",kernelFunc:tY};var Jv=class{constructor(e,t,n,o,s){this.variableNames=["A"],this.outputShape=[];let[a,i,l,u]=e;this.outputShape=[a,t,n,u];let c=[o&&t>1?i-1:i,o&&n>1?l-1:l],p=[o&&t>1?t-1:t,o&&n>1?n-1:n],m=o?"0.5":"0.0",f;s?f="max((vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC, vec2(0.0))":f="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec2 effectiveInputOverOutputRatioRC = vec2(
${c[0]/p[0]},
${c[1]/p[1]});
const vec2 inputShapeRC = vec2(${i}.0, ${l}.0);
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 yRC = coords.yz;
// Fractional source index.
vec2 sourceFracIndexRC = ${f};
// Compute the coordinators of nearest neighbor point.
ivec2 sourceNearestRC = ivec2(
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${m})));
float newValue = getA(b, sourceNearestRC.x, sourceNearestRC.y, d);
setOutput(newValue);
}
`}};function rY(r){let{inputs:e,backend:t,attrs:n}=r,{images:o}=e,{alignCorners:s,halfPixelCenters:a,size:i}=n,[l,u]=i,c=new Jv(o.shape,l,u,s,a);return t.runWebGLProgram(c,[o],o.dtype)}var B$={kernelName:da,backendName:"webgl",kernelFunc:rY};var Qv=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,o,s]=t,[,a,i]=e,l=[n&&a>1?o-1:o,n&&i>1?s-1:s],u=[n&&a>1?a-1:a,n&&i>1?i-1:i],c=l[0]/u[0],p=l[1]/u[1],m=1/c,f=1/p,d=Math.ceil(m)*2+2,h=Math.ceil(f)*2+2;this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
int r = coords[1];
int c = coords[2];
float accumulator = 0.0;
const float heightScale = float(${c});
const float widthScale = float(${p});
const float invHeightScale = float(${m});
const float invWidthScale = float(${f});
const int winHeight = int(${d});
const int winWidth = int(${h});
// Compute bounds for where in dy we will look
float startRLerp = floor(float(r) * invHeightScale);
int startDyR = int(floor(startRLerp - float(winHeight / 2)));
float startCLerp = floor(float(c) * invWidthScale);
int startDyC = int(floor(startCLerp - float(winWidth / 2)));
// Loop over dy
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
int dyR = dyROffset + startDyR;
// Guard against the window exceeding the bounds of dy
if (dyR < 0 || dyR >= ${a}) {
continue;
}
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
int dyC = dyCOffset + startDyC;
// Guard against the window exceeding the bounds of dy
if (dyC < 0 || dyC >= ${i}) {
continue;
}
float sourceFracRow =
float(${l[0]}) *
(float(dyR) / float(${u[0]}));
float sourceFracCol =
float(${l[1]}) *
(float(dyC) / float(${u[1]}));
int sourceNearestRow = int(min(
float(int(${o}) - 1),
${n} ? float(round(sourceFracRow)) :
float(floor(sourceFracRow))));
int sourceNearestCol = int(min(
float(int(${s}) - 1),
${n} ? float(round(sourceFracCol)) :
float(floor(sourceFracCol))));
if (r == sourceNearestRow && c == sourceNearestCol) {
accumulator += getDy(b, dyR, dyC, d);
}
}
}
// End loop over dy
setOutput(accumulator);
}
`}};function nY(r){let{inputs:e,backend:t,attrs:n}=r,{images:o,dy:s}=e,{alignCorners:a}=n,i=new Qv(s.shape,o.shape,a);return t.runWebGLProgram(i,[s],s.dtype)}var V$={kernelName:pu,backendName:"webgl",kernelFunc:nY};var e0=class{constructor(e,t){this.variableNames=["x"];let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);if(this.outputShape=e,n===1){this.userCode=`
void main() {
int coord = getOutputCoords();
setOutput(getX(${e[0]} - coord - 1));
}
`;return}let o=i=>t.indexOf(i)!==-1&&e[i]!==1?`${e[i]} - coords[${i}] - 1`:`coords[${i}]`,s=e.map((i,l)=>o(l)).join(","),a=Le(n);this.userCode=`
void main() {
${a} coords = getOutputCoords();
setOutput(getX(${s}));
}
`}};var t0=class{constructor(e,t){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0;let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);this.outputShape=e;let o=Wt("rc",n),s=`${o[n-1]} + 1 < ${this.outputShape[n-1]}`,a=`${o[n-2]} + 1 < ${this.outputShape[n-2]}`,i=Le(n);n===1?this.userCode=`
void main(){
int rc = getOutputCoords();
vec4 result = vec4(0.);
result.r = getChannel(getX(${e[0]} - rc - 1),
${e[0]} - rc - 1);
if(${s}){
result.g = getChannel(getX(${e[0]} - (rc + 1) - 1),
${e[0]} - (rc + 1) - 1);
}
setOutput(result);
}
`:this.userCode=`
void main() {
${i} rc = getOutputCoords();
vec4 result = vec4(0.);
result.r = ${l(o.slice())};
if(${s}){
result.g = ${u(o.slice())};
}
if(${a}) {
result.b = ${c(o.slice())};
if(${s}) {
result.a = ${p(o.slice())};
}
}
setOutput(result);
}
`;function l(d){return m(d)}function u(d){return d[n-1]="("+d[n-1]+" + 1)",m(d)}function c(d){return d[n-2]="("+d[n-2]+" + 1)",m(d)}function p(d){return d[n-1]="("+d[n-1]+" + 1)",d[n-2]="("+d[n-2]+" + 1)",m(d)}function m(d){let h=e.map((b,w)=>f(w,d)),g=h.join(","),x=h.slice(-2).join(",");return`getChannel(getX(${g}), vec2(${x}))`}function f(d,h){return t.indexOf(d)!==-1&&e[d]!==1?`${e[d]} - ${h[d]} - 1`:`${h[d]}`}}};function oY(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{dims:s}=n,a=o.shape.length,i=y.parseAxisParam(s,o.shape);if(a===0)return Ut({inputs:{x:o},backend:t});let l=W().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new t0(o.shape,i):new e0(o.shape,i);return t.runWebGLProgram(l,[o],o.dtype)}var G$={kernelName:ko,backendName:"webgl",kernelFunc:oY};var r0=class{constructor(e,t,n,o){this.variableNames=["Image"],this.outputShape=[];let s=e[1],a=e[2],i=Math.sin(t).toFixed(3),l=Math.cos(t).toFixed(3);this.outputShape=e;let[u,c]=N.getImageCenter(o,s,a),p=u.toFixed(3),m=c.toFixed(3),f="";typeof n=="number"?f=`float outputValue = ${n.toFixed(2)};`:f=`
vec3 fill = vec3(${n.join(",")});
float outputValue = fill[coords[3]];`,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int x = coords[2];
int y = coords[1];
float coordXFloat = (float(x) - ${p}) * ${l} - (float(y) - ${m}) * ${i};
float coordYFloat = (float(x) - ${p}) * ${i} + (float(y) - ${m}) * ${l};
int coordX = int(round(coordXFloat + ${p}));
int coordY = int(round(coordYFloat + ${m}));
${f}
if(coordX >= 0 && coordX < ${a} && coordY >= 0 && coordY < ${s}) {
outputValue = getImage(coords[0], coordY, coordX, coords[3]);
}
setOutput(outputValue);
}
`}};var j$={kernelName:Fi,backendName:"webgl",kernelFunc:({inputs:r,attrs:e,backend:t})=>{let{image:n}=r,{radians:o,fillValue:s,center:a}=e,i=t,l=new r0(n.shape,o,s,a);return i.runWebGLProgram(l,[n],n.dtype)}};var sY=`
// OpenGL ES does not support round function.
// The algorithm is based on banker's rounding.
float base = floor(x);
if ((x - base) < 0.5) {
return floor(x);
} else if ((x - base) > 0.5) {
return ceil(x);
} else {
if (mod(base, 2.0) == 0.0) {
return base;
} else {
return base + 1.0;
}
}
`,iY=ve({opSnippet:sY}),W$={kernelName:vo,backendName:"webgl",kernelFunc:iY};var aY="return inversesqrt(x);",lY=ve({opSnippet:aY,cpuKernelImpl:PA}),U$={kernelName:Co,backendName:"webgl",kernelFunc:lY};var Of=class{constructor(e,t,n,o,s,a,i=!0){this.variableNames=["updates","indices","defaultValue"],this.outputShape=a;let l=Le(s.length),u=Le(a.length),c="";n===1?c="i":n===2&&(c="i, j");let p=`getIndices(${c})`,m="";o===1?m="i":o===2&&(m="i, coords[1]");let f=`getUpdates(${m})`,d=t>1?"strides[j]":"strides";this.userCode=`
${l} strides = ${l}(${s});
void main() {
${u} coords = getOutputCoords();
float sum = 0.0;
bool found = false;
for (int i = 0; i < ${e}; i++) {
int flattenedIndex = 0;
for (int j = 0; j < ${t}; j++) {
int index = round(${p});
flattenedIndex += index * ${d};
}
if (flattenedIndex == coords[0]) {
sum += ${f};
found = true;
}
}
setOutput(mix(getDefaultValue(), sum, float(found)));
}
`}};function uY(r){let{inputs:e,backend:t,attrs:n}=r,{indices:o,updates:s}=e,{shape:a}=n,{sliceRank:i,numUpdates:l,sliceSize:u,strides:c,outputSize:p}=N.calculateShapes(s,o,a),m=[p/u,u];if(p===0)return t.makeTensorInfo(a,o.dtype);let f=ce({inputs:{x:o},backend:t,attrs:{shape:[l,i]}}),d=ce({inputs:{x:s},backend:t,attrs:{shape:[l,u]}}),h=t.makeTensorInfo([],"float32",new Float32Array([0])),g=new Of(l,i,f.shape.length,d.shape.length,c,m),x=t.runWebGLProgram(g,[d,f,h],d.dtype),b=ce({inputs:{x},backend:t,attrs:{shape:a}});return t.disposeIntermediateTensorInfo(f),t.disposeIntermediateTensorInfo(d),t.disposeIntermediateTensorInfo(x),t.disposeIntermediateTensorInfo(h),b}var q$={kernelName:Ni,backendName:"webgl",kernelFunc:uY};var n0=class{constructor(e,t,n){this.variableNames=["c","a","b"],this.outputShape=t;let o,s;if(n>4)throw Error(`Where for rank ${n} is not yet supported`);if(n===1)s="resRC",o="resRC";else{let i=["resRC.x","resRC.y","resRC.z","resRC.w"],l=[],u=[];for(let c=0;c<t.length;c++)u.push(`${i[c]}`),c<e&&l.push(`${i[c]}`);o=l.join(),s=u.join()}let a=Le(n);this.userCode=`
void main() {
${a} resRC = getOutputCoords();
float cVal = getC(${o});
if (cVal >= 1.0) {
setOutput(getA(${s}));
} else {
setOutput(getB(${s}));
}
}
`}};function cY(r){let{inputs:e,backend:t}=r,{condition:n,t:o,e:s}=e,a=new n0(n.shape.length,o.shape,o.shape.length);return t.runWebGLProgram(a,[n,o,s],fr(o.dtype,s.dtype))}var H$={kernelName:ds,backendName:"webgl",kernelFunc:cY};var pY=`
// Stable and Attracting Fixed Point (0, 1) for Normalized Weights.
// see: https://arxiv.org/abs/1706.02515
float scaleAlpha = ${N.SELU_SCALEALPHA};
float scale = ${N.SELU_SCALE};
return (x >= 0.0) ? scale * x : scaleAlpha * (exp(x) - 1.0);
`,mY=ve({opSnippet:pY}),K$={kernelName:Si,backendName:"webgl",kernelFunc:mY};var fY="return 1.0 / (1.0 + exp(-1.0 * x));",dY=ve({opSnippet:fY}),X$={kernelName:No,backendName:"webgl",kernelFunc:dY};var hY=`
if (isnan(x)) { return 0.0; }
return sign(x);
`,gY=ve({opSnippet:hY}),Y$={kernelName:Ei,backendName:"webgl",kernelFunc:gY};var xY=Yg+`
return sin(x);
`,yY=ve({opSnippet:xY}),Z$={kernelName:Io,backendName:"webgl",kernelFunc:yY};var bY=`
float e2x = exp(x);
return (e2x - 1.0 / e2x) / 2.0;
`,wY=ve({opSnippet:bY}),J$={kernelName:Ti,backendName:"webgl",kernelFunc:wY};var _Y=`
float epsilon = 1.1920928955078125e-7;
float threshold = log(epsilon) + 2.0;
bool too_large = x > -threshold;
bool too_small = x < threshold;
float result;
float exp_x = exp(x);
if (too_large){
result = x;
}
else if (too_small){
result = exp_x;
}
else{
result = log(exp_x + 1.0);
}
return result;
`,kY=ve({opSnippet:_Y}),Q$={kernelName:Ai,backendName:"webgl",kernelFunc:kY};var vY=r=>{let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{blockShape:s,paddings:a}=n;y.assert(o.shape.length<=4,()=>"spaceToBatchND for rank > 4 with a WebGL backend not implemented yet");let i=s.reduce((x,b)=>x*b),l=[[0,0]];l.push(...a);for(let x=1+s.length;x<o.shape.length;++x)l.push([0,0]);let u=[],c=Hv({inputs:{x:o},backend:t,attrs:{paddings:l,constantValue:0}}),p=N.getReshaped(c.shape,s,i,!1),m=N.getPermuted(p.length,s.length,!1),f=N.getReshapedPermuted(c.shape,s,i,!1),d=ce({inputs:{x:c},backend:t,attrs:{shape:p}}),h=zt({inputs:{x:d},backend:t,attrs:{perm:m}}),g=ce({inputs:{x:h},backend:t,attrs:{shape:f}});return u.push(c),u.push(d),u.push(h),u.forEach(x=>t.disposeIntermediateTensorInfo(x)),g},eR={kernelName:ha,backendName:"webgl",kernelFunc:vY};function CY(r){let{inputs:e,backend:t,attrs:n}=r,{sparseIndices:o,sparseValues:s,defaultValue:a}=e,{outputShape:i}=n,{sliceRank:l,numUpdates:u,strides:c,outputSize:p}=N.calculateShapes(s,o,i),m=!1,f=new Of(u,l,o.shape.length,s.shape.length,c,[p,1],m),d=t.runWebGLProgram(f,[s,o,a],s.dtype),h=ce({inputs:{x:d},backend:t,attrs:{shape:i}});return t.disposeIntermediateTensorInfo(d),h}var tR={kernelName:fu,backendName:"webgl",kernelFunc:CY};function IY(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{numOrSizeSplits:s,axis:a}=n,i=y.parseAxisParam(a,o.shape)[0],l=N.prepareSplitSize(o,s,i),u=o.shape.length,c=new Array(u).fill(0),p=o.shape.slice();return l.map(m=>{let f=[...p];f[i]=m;let d=Ba({inputs:{x:o},backend:t,attrs:{begin:c,size:f}});return c[i]+=m,d})}var rR={kernelName:gs,backendName:"webgl",kernelFunc:IY};var NY="return sqrt(x);",SY=ve({opSnippet:NY}),nR={kernelName:So,backendName:"webgl",kernelFunc:SY};var TY="return x * x;",EY=ve({opSnippet:TY}),oR={kernelName:ga,backendName:"webgl",kernelFunc:EY};var sR="return (a - b) * (a - b);",AY=it({opSnippet:sR,packedOpSnippet:sR}),iR={kernelName:Ao,backendName:"webgl",kernelFunc:AY};function DY({inputs:r,attrs:e,backend:t}){let{x:n}=r,o=hr+`
return x > 0.0 ? 1.0 : float(${e.alpha});
`,s=new rn(n.shape,o);return t.runWebGLProgram(s,[n],n.dtype)}var aR={kernelName:$n,backendName:"webgl",kernelFunc:DY};var o0=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=n;let o=n.length,s=Le(n.length),a=Le(n.length),i="";if(o===1)i="coords * strides + begin";else{let l=0;i=n.map((u,c)=>(l++,n.length===1?`coords * strides[${c}] + begin[${c}]`:`coords[${l-1}] * strides[${c}] + begin[${c}]`)).join(",")}this.userCode=`
${s} begin = ${s}(${e});
${s} strides = ${s}(${t});
void main() {
${a} coords = getOutputCoords();
setOutput(getX(${i}));
}
`}};function $Y(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{begin:s,end:a,strides:i,beginMask:l,endMask:u,ellipsisMask:c,newAxisMask:p,shrinkAxisMask:m}=n,{nonStrided:f,$begin:d,$strides:h,size:g,newShape:x,outShape:b}=or.sliceInfo(o.shape,s,a,i,l,u,c,p,m),w=ce({inputs:{x:o},backend:t,attrs:{shape:x}}),_;if(f){let E=Ba({inputs:{x:w},backend:t,attrs:{begin:d,size:g}});_=ce({inputs:{x:E},backend:t,attrs:{shape:b}}),t.disposeIntermediateTensorInfo(E)}else if(b.some(E=>E===0))_=t.makeTensorInfo(b,o.dtype,[]);else if(t.shouldExecuteOnCPU([w])){let R=t.texData.get(w.dataId).values,F=Ce(w.shape,w.dtype,R),P=LA(b,F,h,d);_=t.makeTensorInfo(b,w.dtype,P.values)}else{let S=new o0(d,h,b);_=t.runWebGLProgram(S,[w],w.dtype)}let k=ce({inputs:{x:_},backend:t,attrs:{shape:b}});return t.disposeIntermediateTensorInfo(w),t.disposeIntermediateTensorInfo(_),k}var lR={kernelName:Di,backendName:"webgl",kernelFunc:$Y};var RY="return tan(x);",FY=ve({opSnippet:RY}),uR={kernelName:$i,backendName:"webgl",kernelFunc:FY};var OY=`
float e2x = exp(-2.0 * abs(x));
return sign(x) * (1.0 - e2x) / (1.0 + e2x);
`,PY=ve({opSnippet:OY}),cR={kernelName:$o,backendName:"webgl",kernelFunc:PY};var s0=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let a=0;a<n.length;a++)n[a]=e[a]*t[a];this.outputShape=n,this.rank=n.length;let o=Le(this.rank),s=MY(e);this.userCode=`
void main() {
${o} resRC = getOutputCoords();
setOutput(getA(${s}));
}
`}};function MY(r){let e=r.length;if(e>5)throw Error(`Tile for rank ${e} is not yet supported`);if(e===1)return`imod(resRC, ${r[0]})`;let t=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u"],n=[];for(let o=0;o<r.length;o++)n.push(`imod(${t[o]}, ${r[o]})`);return n.join()}function i0(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{reps:s}=n;if(o.dtype==="string"){let u=t.readSync(o.dataId).map(m=>y.decodeString(m)),c=Ce(o.shape,o.dtype,u),p=BA(c,s);return t.makeTensorInfo(p.shape,p.dtype,p.values)}let a=new s0(o.shape,s);return t.runWebGLProgram(a,[o],o.dtype)}var pR={kernelName:yn,backendName:"webgl",kernelFunc:i0};function LY(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{k:s,sorted:a}=n,i=t.readSync(o.dataId),[l,u]=VA(i,o.shape,o.dtype,s,a);return[t.makeTensorInfo(l.shape,l.dtype,l.values),t.makeTensorInfo(u.shape,u.dtype,u.values)]}var mR={kernelName:Ri,backendName:"webgl",kernelFunc:LY};function zY(r){let{inputs:e,attrs:t,backend:n}=r,{axis:o}=t,{x:s}=e;$s(s,"unique"),console.warn("WARNING: ","UI might be locked temporarily as data is being downloaded");let a=n.readSync(s.dataId),{outputValues:i,outputShape:l,indices:u}=GA(a,o,s.shape,s.dtype);return[n.makeTensorInfo(l,s.dtype,i),n.makeTensorInfo([u.length],"int32",u)]}var fR={kernelName:du,backendName:"webgl",kernelFunc:zY};function BY(r){let{inputs:e,backend:t,attrs:n}=r,{value:o}=e,{axis:s}=n;s<0&&(s+=o.shape.length);let a=o,i=a.shape.length,l=o.shape[s],u=new Array(i-1),c=0;for(let h=0;h<i;h++)h!==s&&(u[c++]=a.shape[h]);let p=[],m=new Array(i).fill(0),f=a.shape.slice();f[s]=1;let d=new Array(l);for(let h=0;h<d.length;h++){m[s]=h;let g=Ba({inputs:{x:a},backend:t,attrs:{begin:m,size:f}}),x=ce({inputs:{x:g},backend:t,attrs:{shape:u}});d[h]=x,p.push(g)}return p.forEach(h=>t.disposeIntermediateTensorInfo(h)),d}var dR={kernelName:xs,backendName:"webgl",kernelFunc:BY};var a0=class{constructor(e,t){this.variableNames=["x","segmentIds"];let n=e.windowSize,o=e.batchSize,s=e.inSize,a=e.numSegments,i=a*Math.ceil(s/n);this.outputShape=[o,i];let l="0.0",u="sumValue",c=Math.floor(n/4)*4,p=n%4,m=`
sumValue += dot(values, segFilter);
`,f="";s%n>0&&(f=`
if (inIdx < 0 || inIdx >= ${s}) {
return initializationValue;
}
`);let d="";s%n>0&&(d=`
if (inIdx < 0 || inIdx >= ${s}) {
return -1.0;
}
`),this.userCode=`
const float initializationValue = ${l};
float getValue(int batch, int inIdx) {
${f}
return getX(batch, inIdx);
}
float getSegmentIdAtIndex(int inIdx) {
${d}
return getSegmentIds(inIdx);
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = int(floor(float(outIdx) / float(
${a})) * float(${n}));
int currentSeg = int(mod(float(outIdx), float(${a})));
float sumValue = 0.0;
for (int i = 0; i < ${c}; i += 4) {
int inIdx = inOffset + i;
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
getValue(batch, inIdx + 3)
);
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 3)) == currentSeg ? 1 : 0
);
${m}
}
int inIdx = inOffset + ${c};
if (${p===1}) {
vec4 values = vec4(
getValue(batch, inIdx),
initializationValue,
initializationValue,
initializationValue
);
int inIdxSeg = int(getSegmentIdAtIndex(inIdx));
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
0,
0,
0
);
${m}
} else if (${p===2}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
initializationValue,
initializationValue
);
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
0,
0
);
${m}
} else if (${p===3}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
initializationValue
);
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
0
);
${m}
}
setOutput(${u});
}
`}};function VY(r){let{inputs:e,backend:t,attrs:n}=r,{x:o,segmentIds:s}=e,{numSegments:a}=n,i=o.shape.length,l=[],u=0,c=N.getAxesPermutation([u],i),p=o;c!=null&&(p=zt({inputs:{x:o},backend:t,attrs:{perm:c}}),l.push(p),u=N.getInnerMostAxes(1,i)[0]);let m=N.segment_util.computeOutShape(p.shape,u,a),f=y.sizeFromShape([p.shape[u]]),d=ce({inputs:{x:p},backend:t,attrs:{shape:[-1,f]}});l.push(d);let h=hu(o.dtype),g=(_,k,E,S,R)=>{let F=_.shape[0],P=_.shape[1],j=N.segment_util.segOpComputeOptimalWindowSize(P,R),G={windowSize:j,inSize:P,batchSize:F,numSegments:R},U=new a0(G,k),X=t.compileAndRun(U,[_,E],S);if(l.push(X),X.shape[1]===R)return X;let K=Kv({backend:t,attrs:{start:0,stop:R,step:1,dtype:"float32"}}),Z=i0({inputs:{x:K},backend:t,attrs:{reps:[P/j]}});return l.push(K),l.push(Z),g(X,k,Z,S,R)},x=g(d,"unsortedSegmentSum",s,h,a),b=ce({inputs:{x},backend:t,attrs:{shape:m}}),w=b;if(c!=null){l.push(b);let _=N.getUndoAxesPermutation(c);w=zt({inputs:{x:w},backend:t,attrs:{perm:_}})}return l.forEach(_=>t.disposeIntermediateTensorInfo(_)),w}var hR={kernelName:xa,backendName:"webgl",kernelFunc:VY};var GY=[QD,e$,d2,g2,x2,y2,w2,_2,k2,v2,N2,S2,T2,E2,D2,A2,$2,F2,R2,O2,P2,M2,L2,B2,V2,U2,H2,K2,Y2,r2,Q2,tD,rD,eD,oD,sD,nD,iD,aD,lD,pD,mD,fD,hD,gD,dD,xD,yD,bD,wD,_D,kD,CD,ID,SD,TD,ED,AD,$D,RD,FD,OD,PD,MD,LD,zD,BD,t2,VD,Z2,GD,jD,WD,n2,UD,qD,HD,XD,KD,YD,ZD,JD,r$,s$,o$,i$,a$,u$,n$,p$,m$,f$,d$,h$,w$,l2,k$,v$,C$,I$,G2,N$,E$,A$,D$,$$,o2,R$,F$,j2,g$,O$,M$,P$,c2,L$,z$,B$,V$,G$,j$,W$,U$,q$,H$,K$,X$,Y$,Z$,J$,z2,b$,Q$,eR,tR,rR,nR,oR,iR,aR,lR,y$,m2,uR,cR,pR,mR,f2,fR,dR,hR,S$];for(let r of GY)tl(r);var Bt;(function(r){r[r.float32=0]="float32",r[r.int32=1]="int32",r[r.bool=2]="bool",r[r.string=3]="string",r[r.complex64=4]="complex64"})(Bt||(Bt={}));var bl;(function(r){r[r.linear=0]="linear",r[r.relu=1]="relu",r[r.relu6=2]="relu6",r[r.prelu=3]="prelu",r[r.leakyrelu=4]="leakyrelu"})(bl||(bl={}));var gR;function jY(r){gR=r.wasm.cwrap(bs,null,["number","array","number","number","array","number","number","number","number","number","number","number","number"])}function WY(r){let{inputs:e,backend:t,attrs:n}=r,{a:o,b:s,bias:a,preluActivationWeights:i}=e;if(o.dtype!=="float32"||s.dtype!=="float32")throw new Error("_FusedMatMul for non non-float32 tensors not yet supported.");let{transposeA:l,transposeB:u,activation:c,leakyreluAlpha:p}=n,m=t.dataIdMap.get(o.dataId).id,f=t.dataIdMap.get(s.dataId).id,d=0;if(a!=null){let R=t.dataIdMap.get(a.dataId);if(R.shape.length!==1)throw new Error(`_FusedMatMul only supports rank-1 bias but got rank ${R.shape.length}.`);d=R.id}let h=i==null?0:t.dataIdMap.get(i.dataId).id,g=bl[c];if(g==null)throw new Error(`${c} activation not yet supported for FusedConv2D in the wasm backend.`);let x=l?o.shape[2]:o.shape[1],b=u?s.shape[1]:s.shape[2],w=o.shape[0],_=t.makeOutput([w,x,b],o.dtype),k=t.dataIdMap.get(_.dataId).id,E=new Uint8Array(new Int32Array(o.shape).buffer),S=new Uint8Array(new Int32Array(s.shape).buffer);return gR(m,E,o.shape.length,f,S,s.shape.length,l,u,g,d,h,p||0,k),_}var xR={kernelName:bs,backendName:"wasm",setupFunc:jY,kernelFunc:WY};function Rt(r){let e;function t(o){e=o.wasm.cwrap(r,null,["number","number"])}function n(o){let{backend:s,inputs:{x:a}}=o,i=s.dataIdMap.get(a.dataId).id,l=s.makeOutput(a.shape,a.dtype),u=s.dataIdMap.get(l.dataId).id;return y.sizeFromShape(l.shape)===0||e(i,u),l}return{kernelName:r,backendName:"wasm",setupFunc:t,kernelFunc:n}}var yR=Rt(ss);function bt(r,e,t){let n;function o(a){n=a.wasm.cwrap(r,null,["number","array","number","number","array","number","number","number"])}function s(a){let{backend:i,inputs:l}=a,{a:u,b:c}=l,p=i.dataIdMap.get(u.dataId).id,m=i.dataIdMap.get(c.dataId).id,f=t!=null?t:u.dtype,d=N.assertAndGetBroadcastShape(u.shape,c.shape),h=i.makeOutput(d,f);if(y.sizeFromShape(d)===0)return h;let g=new Uint8Array(new Int32Array(u.shape).buffer),x=new Uint8Array(new Int32Array(c.shape).buffer),b=i.dataIdMap.get(h.dataId).id,w=()=>n(p,g,u.shape.length,m,x,c.shape.length,Bt[u.dtype],b);if(e&&u.dtype==="float32")return w(),h;let _=N.getBroadcastDims(u.shape,d),k=N.getBroadcastDims(c.shape,d),E=_.every((R,F)=>R===F),S=k.every((R,F)=>R===F);if(E&&S)return w(),h;throw new Error(`Broadcasting along outer dims is not yet supported for ${u.dtype} ${r}.`)}return{kernelName:r,backendName:"wasm",setupFunc:o,kernelFunc:s}}var UY=!0,bR=bt(xn,UY);var wR;function qY(r){wR=r.wasm.cwrap(Wn,null,["array","number","number","number"])}function HY(r){let{inputs:e,backend:t}=r,n=t.makeOutput(e[0].shape,e[0].dtype);if(y.sizeFromShape(n.shape)===0)return n;let o=e.map(i=>t.dataIdMap.get(i.dataId).id),s=new Uint8Array(new Int32Array(o).buffer),a=t.dataIdMap.get(n.dataId).id;return wR(s,o.length,Bt[n.dtype],a),n}var _R={kernelName:Wn,backendName:"wasm",setupFunc:qY,kernelFunc:HY};function rc(r){let{inputs:{x:e},backend:t}=r,n=t.makeOutput(e.shape,e.dtype),o=t.typedArrayFromHeap(e);return t.typedArrayFromHeap(n).set(o),n}var kR={kernelName:us,backendName:"wasm",kernelFunc:rc};var vR;function KY(r){vR=r.wasm.cwrap(Ro,null,["number","array","number","number","number","array","number"])}function kp(r){let{inputs:e,backend:t,attrs:n}=r,[o,s]=YY(e.x.shape,n.perm),a=!0;for(let d=0;d<s.length;d++)s[d]!==d&&(a=!1);let i=XY(e.x.shape,n.perm),l={dataId:e.x.dataId,shape:o,dtype:e.x.dtype};if(a){let d=rc({inputs:e,backend:t});return d.shape=i,d}let u=t.makeOutput(i,l.dtype),c=t.dataIdMap.get(l.dataId).id,p=t.dataIdMap.get(u.dataId).id,m=new Uint8Array(new Int32Array(s).buffer),f=new Uint8Array(new Int32Array(l.shape).buffer);return vR(c,f,l.shape.length,Bt[l.dtype],p,m,s.length),u}function XY(r,e){let t=new Array(r.length);for(let n=0;n<t.length;n++)t[n]=r[e[n]];return t}function YY(r,e){let t=[],n=[];for(let o=0;o<r.length;++o)r[o]!==1&&t.push(r[o]),r[e[o]]!==1&&n.push(e[o]);for(let o=0;o<n.length;++o){let s=-1;for(let a=0;a<n.length;++a)n[a]>=o&&(s===-1||n[s]>n[a])&&(s=a);n[s]=o}return[t,n]}var CR={kernelName:Ro,backendName:"wasm",kernelFunc:kp,setupFunc:KY};function Ho(r,e,t){let n=r.shape,o=r.shape.length,s=y.parseAxisParam(e,n),a=s,i=N.getAxesPermutation(a,o),l=null,u=!1;if(i!=null){let c=new Array(o);for(let f=0;f<c.length;f++)c[f]=n[i[f]];a=N.getInnerMostAxes(a.length,o),l=kp({inputs:{x:r},attrs:{perm:i},backend:t});let p=t.dataIdMap.get(r.dataId).id;t.dataIdMap.get(l.dataId).id!==p&&(u=!0)}return{transposed:l,originalAxes:s,axes:a,inputWasTransposed:u}}var IR;function ZY(r){IR=r.wasm.cwrap(Un,null,["number","number","number","number","number"])}function JY(r){let{backend:e,inputs:t,attrs:n}=r,{axis:o}=n,{x:s}=t,a=e.dataIdMap.get(s.dataId).id,i=a,l=s,{transposed:u,axes:c,inputWasTransposed:p}=Ho(s,o,e);if(p){let x=e.dataIdMap.get(u.dataId).id;x!==a&&(l=u,i=x)}let m=l.shape.slice(0,-1),f=e.makeOutput(m,"int32"),d=e.dataIdMap.get(f.dataId).id,h=y.sizeFromShape(f.shape),g=l.shape[c[0]];return IR(i,Bt[l.dtype],h,g,d),p&&e.disposeData(u.dataId),f}var NR={kernelName:Un,backendName:"wasm",kernelFunc:JY,setupFunc:ZY};var SR;function QY(r){SR=r.wasm.cwrap(qn,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function e9(r){let{inputs:e,attrs:t,backend:n}=r,o=e.x,s=n.dataIdMap.get(o.dataId).id,{filterSize:a,strides:i,pad:l,dimRoundingMode:u}=t,c=N.computePool2DInfo(o.shape,a,i,1,l,u),p=c.filterHeight,m=c.filterWidth,f=c.padInfo.top,d=c.padInfo.right,h=c.padInfo.bottom,g=c.padInfo.left,x=c.strideHeight,b=c.strideWidth,w=c.inChannels;if(c.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${c.dataFormat}'. Please use 'channelsLast'.`);if(c.dilationWidth!==1||c.dilationHeight!==1)throw new Error(`was backend only supports average pooling with dilation = [1, 1], got [${c.dilationHeight}, ${c.dilationWidth}].`);let _=n.makeOutput(c.outShape,"float32"),k=n.dataIdMap.get(_.dataId).id;return SR(s,o.shape[0],o.shape[1],o.shape[2],p,m,f,d,h,g,x,b,w,k),_}var TR={kernelName:qn,backendName:"wasm",setupFunc:QY,kernelFunc:e9};function Pr(r){let{inputs:e,attrs:t}=r,{x:n}=e,{shape:o}=t,s=y.sizeFromShape(n.shape),a=y.inferFromImplicitShape(o,s);return y.assert(s===y.sizeFromShape(a),()=>`new shape: ${a}, old shape: ${n.shape}. New shape and old shape must have the same number of elements.`),{dataId:n.dataId,shape:a,dtype:n.dtype}}var ER={kernelName:fs,backendName:"wasm",kernelFunc:Pr};var AR;function t9(r){AR=r.wasm.cwrap(Hn,null,["number","array","number","number","array","number","number","number","number"])}function r9(r){let{inputs:e,backend:t,attrs:n}=r,{a:o,b:s}=e,{transposeA:a,transposeB:i}=n;if(o.dtype!=="float32"||s.dtype!=="float32")throw new Error("BatchMatMul for non non-float32 tensors not yet supported.");let l=o.shape.length,u=s.shape.length,c=a?o.shape[l-2]:o.shape[l-1],p=i?s.shape[u-1]:s.shape[u-2],m=a?o.shape[l-1]:o.shape[l-2],f=i?s.shape[u-2]:s.shape[u-1],d=o.shape.slice(0,-2),h=s.shape.slice(0,-2),g=y.sizeFromShape(d),x=y.sizeFromShape(h),b=g===x||g===1||x===1;y.assert(l>=2&&u>=2&&b,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${d}) and (${h}).`);let _=(g>x?o.shape.slice(0,-2):s.shape.slice(0,-2)).concat([m,f]);y.assert(c===p,()=>`Error in matMul: inner shapes (${c}) and (${p}) of Tensors with shapes ${o.shape} and ${s.shape} and transposeA=${a} and transposeB=${i} must match.`);let k=a?[g,c,m]:[g,m,c],E=i?[x,f,p]:[x,p,f],S=Pr({inputs:{x:o},backend:t,attrs:{shape:k}}),R=Pr({inputs:{x:s},backend:t,attrs:{shape:E}}),F=t.dataIdMap.get(S.dataId).id,P=t.dataIdMap.get(R.dataId).id,j=a?S.shape[2]:S.shape[1],G=i?R.shape[1]:R.shape[2],U=Math.max(g,x),X=t.makeOutput([U,j,G],S.dtype),K=t.dataIdMap.get(X.dataId).id,Z=new Uint8Array(new Int32Array(S.shape).buffer),te=new Uint8Array(new Int32Array(R.shape).buffer);return AR(F,Z,S.shape.length,P,te,R.shape.length,a,i,K),X.shape=_,X}var DR={kernelName:Hn,backendName:"wasm",setupFunc:t9,kernelFunc:r9};function nc(r){let{inputs:{x:e},attrs:{dtype:t},backend:n}=r,o=n.makeOutput(e.shape,t),s=n.typedArrayFromHeap(e);return n.typedArrayFromHeap(o).set(s),o}var $R={kernelName:An,backendName:"wasm",kernelFunc:nc};var RR;function n9(r){RR=r.wasm.cwrap(Dn,null,["number","number","number","number"])}function o9(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{clipValueMin:s,clipValueMax:a}=n,i=t.dataIdMap.get(o.dataId).id,l=t.makeOutput(o.shape,o.dtype),u=t.dataIdMap.get(l.dataId).id;return RR(i,s,a,u),l}var FR={kernelName:Dn,backendName:"wasm",setupFunc:n9,kernelFunc:o9};function l0(r){let{inputs:e,backend:t}=r,n=y.parseAxisParam(r.attrs.axis,e[0].shape)[0],o=N.computeOutShape(e.map(f=>f.shape),n),s=e.filter(f=>y.sizeFromShape(f.shape)>0);if(s.length===1)return rc({inputs:{x:s[0]},backend:t});let a=t.makeOutput(o,e[0].dtype);if(y.sizeFromShape(o)===0)return a;let i=s.map(f=>f.shape);if(N.assertParamsConsistent(i,n),s[0].dtype==="string"){let f=s.map(w=>{let _=y.sizeFromShape(w.shape.slice(n));return Pr({inputs:{x:w},backend:t,attrs:{shape:[-1,_]}})}),d=f.map(w=>({vals:t.readSync(w.dataId),shape:w.shape}));o=N.computeOutShape(f.map(w=>w.shape),1);let h=f[0].shape[0]===1,g=pf(d,o,e[0].dtype,h),x=N.computeOutShape(s.map(w=>w.shape),n);a.shape=x;let b=t.dataIdMap.get(a.dataId);return b.stringBytes=N.fromStringArrayToUint8(g),a}let l=y.sizeFromShape(s[0].shape.slice(0,n)),u=0,c=s.map(f=>{let d=y.sizeFromShape(f.shape.slice(n));return u+=d,d}),p=s.map(f=>t.typedArrayFromHeap(f)),m=t.typedArrayFromHeap(a);for(let f=0;f<l;f++){let d=f*u;for(let h=0;h<p.length;h++){let g=c[h],x=f*g,b=p[h].subarray(x,x+g);m.set(b,d),d+=g}}return a}var OR={kernelName:is,backendName:"wasm",kernelFunc:l0};var PR;function s9(r){PR=r.wasm.cwrap(Kn,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function i9(r){let{inputs:e,attrs:t,backend:n}=r,{x:o,filter:s}=e,a=n.dataIdMap.get(o.dataId).id,i=n.dataIdMap.get(s.dataId).id,{strides:l,dilations:u,pad:c,dimRoundingMode:p,dataFormat:m}=t,f=N.convertConv2DDataFormat(m),d=N.computeConv2DInfo(o.shape,s.shape,l,u,c,p,!1,f),h=d.filterHeight,g=d.filterWidth,x=d.padInfo.top,b=d.padInfo.right,w=d.padInfo.bottom,_=d.padInfo.left,k=d.dilationHeight,E=d.dilationWidth,S=d.strideHeight,R=d.strideWidth,F=d.inChannels,P=d.outChannels,j=d.padInfo.type==="SAME"?1:0;if(d.dataFormat!=="channelsLast")throw new Error(`wasm backend Conv2D does not support dataFormat:'${d.dataFormat}'. Please use 'channelsLast'.`);let G=n.makeOutput(d.outShape,"float32"),U=n.dataIdMap.get(G.dataId).id;return PR(a,o.shape[0],o.shape[1],o.shape[2],i,h,g,x,b,w,_,j,k,E,S,R,F,P,U),G}var MR={kernelName:Kn,backendName:"wasm",setupFunc:s9,kernelFunc:i9};var LR;function a9(r){LR=r.wasm.cwrap(Xn,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function l9(r){let{backend:e,inputs:t,attrs:n}=r,{dy:o,filter:s}=t,{strides:a,pad:i,dataFormat:l,dimRoundingMode:u,inputShape:c}=n,p=1,m=N.convertConv2DDataFormat(l),f=N.computeConv2DInfo(c,s.shape,a,p,i,u,!1,m),{batchSize:d,filterHeight:h,filterWidth:g,inChannels:x,inHeight:b,inWidth:w,outChannels:_,outHeight:k,outWidth:E,strideHeight:S,strideWidth:R}=f,F=h-1-f.padInfo.top,P=g-1-f.padInfo.left,j=f.dataFormat==="channelsLast",G=y.computeStrides(f.inShape),U=y.computeStrides(o.shape),[X,K,Z]=y.computeStrides(s.shape),te=G[0],Y=j?G[1]:G[2],re=j?G[2]:1,ie=j?1:G[1],se=U[0],pe=j?U[1]:U[2],ae=j?U[2]:1,xe=j?1:U[1],ge=e.makeOutput(f.inShape,"float32"),we=e.dataIdMap.get(ge.dataId).id,ke=e.dataIdMap.get(o.dataId).id,De=e.dataIdMap.get(s.dataId).id;return LR(ke,De,d,h,g,b,w,x,k,E,_,S,R,F,P,X,K,Z,te,Y,re,ie,se,pe,ae,xe,we),ge}var zR={kernelName:Xn,backendName:"wasm",setupFunc:a9,kernelFunc:l9};var BR=Rt(Yn);var u0;(function(r){r[r.bilinear=0]="bilinear",r[r.nearest=1]="nearest"})(u0||(u0={}));var VR;function u9(r){VR=r.wasm.cwrap(ni,null,["number","number","number","number","array","number","number","number","number","number"])}function c9(r){let{backend:e,inputs:t,attrs:n}=r,{method:o,extrapolationValue:s,cropSize:a}=n,{image:i,boxes:l,boxInd:u}=t,c=l.shape[0],[p,m]=a,f=[c,p,m,i.shape[3]],d=e.dataIdMap.get(i.dataId),h;i.dtype!=="float32"&&(h=nc({backend:e,inputs:{x:i},attrs:{dtype:"float32"}}),d=e.dataIdMap.get(h.dataId));let g=d.id,x=e.dataIdMap.get(l.dataId).id,b=e.dataIdMap.get(u.dataId).id,w=e.makeOutput(f,"float32"),_=e.dataIdMap.get(w.dataId).id,k=new Uint8Array(new Int32Array(i.shape).buffer);return VR(g,x,b,c,k,p,m,u0[o],s,_),h!=null&&e.disposeData(h.dataId),w}var GR={kernelName:ni,backendName:"wasm",setupFunc:u9,kernelFunc:c9};var jR;function p9(r){jR=r.wasm.cwrap(Zn,null,["number","number","number","number","number","number"])}function m9(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{axis:s,exclusive:a,reverse:i}=n,l=o.shape.length;y.assert(o.dtype==="float32"||o.dtype==="int32",()=>`cumsum does not support ${o.dtype} tensors in the WASM backend`);let u=N.getAxesPermutation([s],l),c=o;u!==null&&(c=kp({inputs:{x:o},attrs:{perm:u},backend:t}));let p=N.getInnerMostAxes(1,l)[0];N.assertAxesAreInnerMostDims("cumsum",[p],l);let m=t.makeOutput(c.shape,c.dtype),f=c.shape[p],d=t.dataIdMap.get(c.dataId).id,h=t.dataIdMap.get(m.dataId).id;jR(d,a?1:0,i?1:0,f,h,Bt[o.dtype]);let g=m;if(u!==null){let x=N.getUndoAxesPermutation(u);g=kp({inputs:{x:m},attrs:{perm:x},backend:t}),t.disposeData(c.dataId),t.disposeData(m.dataId)}return g}var WR={kernelName:Zn,backendName:"wasm",setupFunc:p9,kernelFunc:m9};var UR;function f9(r){UR=r.wasm.cwrap(oi,null,["number","number","number","array","number","array","array","number","number"])}function d9(r){let{backend:e,inputs:t,attrs:n}=r,{x:o}=t,{blockSize:s,dataFormat:a}=n;y.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let i=o.shape[0],l=a==="NHWC"?o.shape[1]:o.shape[2],u=a==="NHWC"?o.shape[2]:o.shape[3],c=a==="NHWC"?o.shape[3]:o.shape[1],p=l*s,m=u*s,f=c/(s*s),d=a==="NHWC"?[i,p,m,f]:[i,f,p,m],h=e.makeOutput(d,"float32"),x=e.dataIdMap.get(o.dataId).id,b=new Uint8Array(new Int32Array(y.computeStrides(o.shape)).buffer),w=new Uint8Array(new Int32Array(d).buffer),_=new Uint8Array(new Int32Array(y.computeStrides(d)).buffer),k=e.dataIdMap.get(h.dataId).id;return UR(x,s,a==="NHWC"?1:0,b,o.shape.length-1,w,_,d.length,k),h}var qR={kernelName:oi,backendName:"wasm",setupFunc:f9,kernelFunc:d9};var HR;function h9(r){HR=r.wasm.cwrap(Jn,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function g9(r){let{inputs:e,attrs:t,backend:n}=r,{x:o,filter:s}=e,a=n.dataIdMap.get(o.dataId).id,i=n.dataIdMap.get(s.dataId).id,{strides:l,dilations:u,pad:c,dimRoundingMode:p}=t,m=u==null?[1,1]:u,f=N.computeConv2DInfo(o.shape,s.shape,l,m,c,p,!0),d=f.filterHeight,h=f.filterWidth,g=f.padInfo.top,x=f.padInfo.right,b=f.padInfo.bottom,w=f.padInfo.left,_=f.dilationHeight,k=f.dilationWidth,E=f.strideHeight,S=f.strideWidth,R=f.inChannels,F=f.outChannels,P=f.padInfo.type==="SAME"?1:0;if(f.dataFormat!=="channelsLast")throw new Error(`wasm backend DepthwiseConv2dNative does not support dataFormat:'${f.dataFormat}'. Please use 'channelsLast'.`);let j=n.makeOutput(f.outShape,"float32"),G=n.dataIdMap.get(j.dataId).id;return HR(a,o.shape[0],o.shape[1],o.shape[2],i,d,h,g,x,b,w,P,_,k,E,S,R,F,G),j}var KR={kernelName:Jn,backendName:"wasm",setupFunc:h9,kernelFunc:g9};var x9=!1,XR=bt(ai,x9,"bool");var YR=Rt(eo);function lx(r){let{inputs:e,attrs:t,backend:n}=r,{input:o}=e,{dim:s}=t,a=o.shape.length,i=o.shape.slice(),l=s;return s<0&&(y.assert(-(a+1)<=s,()=>`Axis must be in the interval [${-(a+1)}, ${a}]`),l=a+s+1),i.splice(l,0,1),Pr({inputs:{x:o},backend:n,attrs:{shape:i}})}var ZR={kernelName:as,backendName:"wasm",kernelFunc:lx};function y9(r){let{attrs:{shape:e,value:t,dtype:n},backend:o}=r,s=o.makeOutput(e,n);return o.typedArrayFromHeap(s).fill(t),s}var JR={kernelName:ua,backendName:"wasm",kernelFunc:y9};var QR;function b9(r){QR=r.wasm.cwrap(ui,null,["number","number","number","number","number","number"])}function w9(r){let{inputs:e,backend:t}=r,{image:n}=e,o=t.makeOutput(n.shape,n.dtype),s=t.dataIdMap.get(n.dataId).id,a=t.dataIdMap.get(o.dataId).id,[i,l,u,c]=n.shape;return QR(s,i,l,u,c,a),o}var eF={kernelName:ui,backendName:"wasm",kernelFunc:w9,setupFunc:b9};var tF=Rt(to);var _9=!1,rF=bt(ro,_9);var nF;function k9(r){nF=r.wasm.cwrap(no,null,["number","number","number","number","number","number","number"])}function v9(r){let{backend:e,inputs:t,attrs:n}=r,{varianceEpsilon:o}=n,{x:s,mean:a,variance:i,offset:l,scale:u}=t,c=e.dataIdMap.get(s.dataId).id,p=e.dataIdMap.get(a.dataId).id,m=e.dataIdMap.get(i.dataId).id,f=l!=null?e.dataIdMap.get(l.dataId).id:0,d=u!=null?e.dataIdMap.get(u.dataId).id:0,h=e.makeOutput(s.shape,s.dtype);if(y.sizeFromShape(s.shape)===0)return h;let g=e.dataIdMap.get(h.dataId).id;return nF(c,p,m,f,d,o,g),h}var oF={kernelName:no,backendName:"wasm",setupFunc:k9,kernelFunc:v9};var sF;function C9(r){sF=r.wasm.cwrap(ws,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function I9(r){let{inputs:e,attrs:t,backend:n}=r,{x:o,filter:s,bias:a,preluActivationWeights:i}=e,{strides:l,pad:u,dilations:c,dataFormat:p,dimRoundingMode:m,activation:f,leakyreluAlpha:d}=t,h=N.computeConv2DInfo(o.shape,s.shape,l,c,u,m),g=bl[f];if(g==null)throw new Error(`${f} activation not yet supported for FusedConv2D in the wasm backend.`);let x=n.dataIdMap.get(o.dataId).id,b=n.dataIdMap.get(s.dataId).id,w=h.outChannels,_=0;if(a!=null){let ae=n.dataIdMap.get(a.dataId);if(ae.shape.length!==1)throw new Error(`FusedConv2D only supports rank-1 bias but got rank ${ae.shape.length}.`);if(ae.shape[0]!==w)throw new Error(`FusedConv2D bias shape (${ae.shape}) does not match the number of output channels (${w})`);_=ae.id}let k=h.filterHeight,E=h.filterWidth,S=h.padInfo.top,R=h.padInfo.right,F=h.padInfo.bottom,P=h.padInfo.left,j=h.dilationHeight,G=h.dilationWidth,U=h.strideHeight,X=h.strideWidth,K=h.inChannels,Z=h.padInfo.type==="SAME"?1:0,te=h.batchSize,Y=h.inHeight,re=h.inWidth;if(p!=="NHWC")throw new Error(`wasm backend FusedConv2D does not support dataFormat:'${p}'. Please use 'NHWC'.`);let ie=n.makeOutput(h.outShape,"float32"),se=n.dataIdMap.get(ie.dataId).id,pe=i==null?0:n.dataIdMap.get(i.dataId).id;return sF(x,te,Y,re,b,k,E,_,S,R,F,P,Z,j,G,U,X,K,w,g,pe,d||0,se),ie}var iF={kernelName:ws,backendName:"wasm",setupFunc:C9,kernelFunc:I9};var aF;function N9(r){aF=r.wasm.cwrap(_s,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function S9(r){let{inputs:e,attrs:t,backend:n}=r,{x:o,filter:s,bias:a,preluActivationWeights:i}=e,{strides:l,pad:u,dilations:c,dataFormat:p,dimRoundingMode:m,activation:f,leakyreluAlpha:d}=t,h=N.computeConv2DInfo(o.shape,s.shape,l,c,u,m,!0),g=bl[f];if(g==null)throw new Error(`${f} activation not yet supported for FusedDepthwiseConv2D in the wasm backend.`);let x=n.dataIdMap.get(o.dataId).id,b=n.dataIdMap.get(s.dataId).id,w=h.outChannels,_=0;if(a!=null){let ae=n.dataIdMap.get(a.dataId);if(ae.shape.length!==1)throw new Error(`FusedDepthwiseConv2D only supports rank-1 bias but got rank ${ae.shape.length}.`);if(ae.shape[0]!==w)throw new Error(`FusedDepthwiseConv2D bias shape (${ae.shape}) does not match the number of output channels (${w})`);_=ae.id}let k=h.filterHeight,E=h.filterWidth,S=h.padInfo.top,R=h.padInfo.right,F=h.padInfo.bottom,P=h.padInfo.left,j=h.dilationHeight,G=h.dilationWidth,U=h.strideHeight,X=h.strideWidth,K=h.inChannels,Z=h.padInfo.type==="SAME"?1:0,te=h.batchSize,Y=h.inHeight,re=h.inWidth;if(p!=="NHWC")throw new Error(`wasm backend FusedDepthwiseConv2D does not support dataFormat:'${p}'. Please use 'NHWC'.`);let ie=n.makeOutput(h.outShape,"float32"),se=n.dataIdMap.get(ie.dataId).id,pe=i==null?0:n.dataIdMap.get(i.dataId).id;return aF(x,te,Y,re,b,k,E,_,S,R,F,P,Z,j,G,U,X,K,w,g,pe,d||0,se),ie}var lF={kernelName:_s,backendName:"wasm",setupFunc:N9,kernelFunc:S9};var uF;function T9(r){uF=r.wasm.cwrap(ci,null,["number","number","number","number","number","number","array","number"])}function E9(r){let{backend:e,inputs:t}=r,{params:n,indices:o}=t,[s,a,i,l]=tg.prepareAndValidate(n,o),u=e.makeOutput(s,n.dtype);if(a===0)return u;let c=o.shape,p=c[c.length-1],f=e.dataIdMap.get(n.dataId).id,h=e.dataIdMap.get(o.dataId).id,g=new Uint8Array(new Int32Array(l).buffer),x=e.dataIdMap.get(u.dataId).id;return uF(f,Bt[n.dtype],h,a,p,i,g,x),u}var cF={kernelName:ci,backendName:"wasm",setupFunc:T9,kernelFunc:E9};var pF;function A9(r){pF=r.wasm.cwrap("Gather",null,["number","number","array","number","number","number","array","number"])}function D9(r){let{backend:e,inputs:t,attrs:n}=r,{x:o,indices:s}=t,{axis:a,batchDims:i}=n,l=y.parseAxisParam(a,o.shape)[0],u=N.segment_util.collectGatherOpShapeInfo(o,s,l,i),c=Pr({inputs:{x:o},attrs:{shape:[u.batchSize,u.outerSize,u.dimSize,u.sliceSize]},backend:e}),p=y.sizeFromShape(s.shape),m=Pr({inputs:{x:s},attrs:{shape:[u.batchSize,p/u.batchSize]},backend:e}),f=[u.batchSize,u.outerSize,p/u.batchSize,u.sliceSize],d=e.makeOutput(f,o.dtype);if(y.sizeFromShape(o.shape)===0)return d;let h=c.shape.length-1,x=e.dataIdMap.get(c.dataId).id,w=e.dataIdMap.get(m.dataId).id,_=e.dataIdMap.get(d.dataId).id,k=new Uint8Array(new Int32Array(y.computeStrides(c.shape)).buffer),E=new Uint8Array(new Int32Array(y.computeStrides(f)).buffer);return pF(x,Bt[o.dtype],k,h,w,u.batchSize,E,_),d.shape=u.outputShape,d}var mF={kernelName:ls,backendName:"wasm",setupFunc:A9,kernelFunc:D9};var $9=!1,fF=bt(pi,$9,"bool");var R9=!1,dF=bt(oo,R9,"bool");var hF;function F9(r){hF=r.wasm.cwrap(so,null,["number","number","number"])}function O9(r){let{inputs:{x:e},attrs:{alpha:t},backend:n}=r,o=n.dataIdMap.get(e.dataId).id,s=n.makeOutput(e.shape,e.dtype);if(y.sizeFromShape(e.shape)!==0){let a=n.dataIdMap.get(s.dataId).id;hF(o,t,a)}return s}var gF={kernelName:so,backendName:"wasm",setupFunc:F9,kernelFunc:O9};var P9=!1,xF=bt(hi,P9,"bool");var M9=!1,yF=bt(gi,M9,"bool");var bF=Rt(io);var L9=!1,wF=bt(yi,L9,"bool");var _F;function z9(r){_F=r.wasm.cwrap(ao,null,["number, number, number"])}function B9(r){let{backend:e,inputs:t,attrs:n}=r,{reductionIndices:o,keepDims:s}=n,{x:a}=t,l=e.dataIdMap.get(a.dataId).id,u=a,{transposed:c,axes:p,originalAxes:m,inputWasTransposed:f}=Ho(a,o,e);if(f){let w=e.dataIdMap.get(c.dataId).id;u=c,l=w}let d=u.shape.length;N.assertAxesAreInnerMostDims("max",p,d);let[h,g]=N.computeOutAndReduceShapes(u.shape,p),x=y.sizeFromShape(g),b=e.makeOutput(h,a.dtype);if(y.sizeFromShape(u.shape)!==0){let w=e.dataIdMap.get(b.dataId).id;_F(l,x,w)}if(f&&e.disposeData(c.dataId),s){let w=N.expandShapeToKeepDim(b.shape,m);b.shape=w}return b}var kF={kernelName:ao,backendName:"wasm",setupFunc:z9,kernelFunc:B9};var V9=!1,vF=bt(lo,V9);var CF;function G9(r){CF=r.wasm.cwrap(uo,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function j9(r){let{inputs:e,attrs:t,backend:n}=r,o=e.x,s=n.dataIdMap.get(o.dataId).id,{filterSize:a,strides:i,pad:l,dimRoundingMode:u}=t,c=N.computePool2DInfo(o.shape,a,i,1,l,u),p=c.filterHeight,m=c.filterWidth,f=c.padInfo.top,d=c.padInfo.right,h=c.padInfo.bottom,g=c.padInfo.left,x=c.dilationHeight,b=c.dilationWidth,w=c.strideHeight,_=c.strideWidth,k=c.inChannels,E=c.outChannels;if(c.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${c.dataFormat}'. Please use 'channelsLast'.`);let S=n.makeOutput(c.outShape,"float32"),R=n.dataIdMap.get(S.dataId).id;return CF(s,o.shape[0],o.shape[1],o.shape[2],p,m,f,d,h,g,x,b,w,_,k,E,R),S}var IF={kernelName:uo,backendName:"wasm",setupFunc:G9,kernelFunc:j9};var NF;function W9(r){NF=r.wasm.cwrap(co,null,["number, number, number"])}function U9(r){let{backend:e,inputs:t,attrs:n}=r,{axis:o,keepDims:s}=n,{x:a}=t,i=e.dataIdMap.get(a.dataId).id,l=i,u=a,{transposed:c,axes:p,originalAxes:m,inputWasTransposed:f}=Ho(a,o,e),d=p;if(f){let _=e.dataIdMap.get(c.dataId).id;_!==i&&(u=c,l=_,d=N.getInnerMostAxes(d.length,u.shape.length))}N.assertAxesAreInnerMostDims("mean",d,u.shape.length);let[h,g]=N.computeOutAndReduceShapes(u.shape,d),x=y.sizeFromShape(g),b=u;u.dtype!=="float32"&&(b=nc({backend:e,inputs:{x:u},attrs:{dtype:"float32"}}),l=e.dataIdMap.get(b.dataId).id);let w=e.makeOutput(h,"float32");if(y.sizeFromShape(u.shape)!==0){let _=e.dataIdMap.get(w.dataId).id;NF(l,x,_)}if(f&&e.disposeData(c.dataId),s){let _=N.expandShapeToKeepDim(w.shape,m);w.shape=_}return u.dtype!=="float32"&&e.disposeData(b.dataId),w}var SF={kernelName:co,backendName:"wasm",setupFunc:W9,kernelFunc:U9};var TF;function q9(r){TF=r.wasm.cwrap(po,null,["number, number, number"])}function H9(r){let{backend:e,inputs:t,attrs:n}=r,{axis:o,keepDims:s}=n,{x:a}=t,i=e.dataIdMap.get(a.dataId).id,l=i,u=a,{transposed:c,axes:p,originalAxes:m,inputWasTransposed:f}=Ho(a,o,e);if(f){let w=e.dataIdMap.get(c.dataId).id;w!==i&&(u=c,l=w)}let d=u.shape.length;N.assertAxesAreInnerMostDims("min",p,d);let[h,g]=N.computeOutAndReduceShapes(u.shape,p),x=y.sizeFromShape(g),b=e.makeOutput(h,u.dtype);if(y.sizeFromShape(u.shape)!==0){let w=e.dataIdMap.get(b.dataId).id;TF(l,x,w)}if(f&&e.disposeData(c.dataId),s){let w=N.expandShapeToKeepDim(b.shape,m);b.shape=w}return b}var EF={kernelName:po,backendName:"wasm",setupFunc:q9,kernelFunc:H9};var K9=!1,AF=bt(mo,K9);var X9=!0,DF=bt(fo,X9);var $F=Rt(cs);function vp(r,e){let t=new Int32Array(r.wasm.HEAPU8.buffer,e,4),n=t[0],o=t[1],s=t[2],a=t[3];return r.wasm._free(e),{pSelectedIndices:n,selectedSize:o,pSelectedScores:s,pValidOutputs:a}}var RF;function Y9(r){RF=r.wasm.cwrap(_i,"number",["number","number","number","number","number"])}function Z9(r){let{backend:e,inputs:t,attrs:n}=r,{iouThreshold:o,maxOutputSize:s,scoreThreshold:a}=n,{boxes:i,scores:l}=t,u=e.dataIdMap.get(i.dataId).id,c=e.dataIdMap.get(l.dataId).id,p=RF(u,c,s,o,a),{pSelectedIndices:m,selectedSize:f,pSelectedScores:d,pValidOutputs:h}=vp(e,p);return e.wasm._free(d),e.wasm._free(h),e.makeOutput([f],"int32",m)}var FF={kernelName:_i,backendName:"wasm",setupFunc:Y9,kernelFunc:Z9};var OF;function J9(r){OF=r.wasm.cwrap(ki,"number",["number","number","number","number","number","bool"])}function Q9(r){let{backend:e,inputs:t,attrs:n}=r,{iouThreshold:o,maxOutputSize:s,scoreThreshold:a,padToMaxOutputSize:i}=n,{boxes:l,scores:u}=t,c=e.dataIdMap.get(l.dataId).id,p=e.dataIdMap.get(u.dataId).id,m=OF(c,p,s,o,a,i),{pSelectedIndices:f,selectedSize:d,pSelectedScores:h,pValidOutputs:g}=vp(e,m);e.wasm._free(h);let x=e.makeOutput([d],"int32",f),b=e.makeOutput([],"int32",g);return[x,b]}var PF={kernelName:ki,backendName:"wasm",setupFunc:J9,kernelFunc:Q9};var MF;function eZ(r){MF=r.wasm.cwrap(vi,"number",["number","number","number","number","number","number"])}function tZ(r){let{backend:e,inputs:t,attrs:n}=r,{iouThreshold:o,maxOutputSize:s,scoreThreshold:a,softNmsSigma:i}=n,{boxes:l,scores:u}=t,c=e.dataIdMap.get(l.dataId).id,p=e.dataIdMap.get(u.dataId).id,m=MF(c,p,s,o,a,i),{pSelectedIndices:f,selectedSize:d,pSelectedScores:h,pValidOutputs:g}=vp(e,m);e.wasm._free(g);let x=e.makeOutput([d],"int32",f),b=e.makeOutput([d],"float32",h);return[x,b]}var LF={kernelName:vi,backendName:"wasm",setupFunc:eZ,kernelFunc:tZ};var rZ=!1,zF=bt(wi,rZ,"bool");var BF;function nZ(r){BF=r.wasm.cwrap(ho,null,["number","number","number","number","number"])}function oZ(r){let{inputs:e,backend:t,attrs:n}=r,{indices:o}=e,{depth:s,onValue:a,offValue:i}=n,l=t.makeOutput([...o.shape,s],"int32"),u=t.dataIdMap.get(l.dataId).id,p=t.dataIdMap.get(o.dataId).id;return BF(p,s,a,i,u),l}var VF={kernelName:ho,backendName:"wasm",setupFunc:nZ,kernelFunc:oZ};function sZ(r){let{inputs:{x:e},backend:t}=r,n=t.makeOutput(e.shape,e.dtype);return t.typedArrayFromHeap(n).fill(1),n}var GF={kernelName:ps,backendName:"wasm",kernelFunc:sZ};function iZ(r){let{inputs:e,backend:t,attrs:n}=r,{axis:o}=n;if(e.length===1)return lx({inputs:{input:e[0]},backend:t,attrs:{dim:o}});let s=e[0].shape,a=e[0].dtype;e.forEach(l=>{y.assertShapesMatch(s,l.shape,"All tensors passed to stack must have matching shapes"),y.assert(a===l.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=e.map(l=>lx({inputs:{input:l},backend:t,attrs:{dim:o}}));return l0({inputs:i,backend:t,attrs:{axis:o}})}var jF={kernelName:ms,backendName:"wasm",kernelFunc:iZ};var WF;function aZ(r){WF=r.wasm.cwrap(go,null,["number","array","number","number","array","array","number","number"])}function lZ(r){let{inputs:{x:e},backend:t,attrs:{paddings:n,constantValue:o}}=r,s=n.map((d,h)=>d[0]+e.shape[h]+d[1]),a=t.dataIdMap.get(e.dataId).id,i=t.makeOutput(s,e.dtype),l=t.dataIdMap.get(i.dataId).id,u=new Uint8Array(new Int32Array(e.shape).buffer),c=n.map(d=>d[0]),p=n.map(d=>d[1]),m=new Uint8Array(new Int32Array(c).buffer),f=new Uint8Array(new Int32Array(p).buffer);return WF(a,u,e.shape.length,Bt[e.dtype],m,f,o,l),i}var UF={kernelName:go,backendName:"wasm",kernelFunc:lZ,setupFunc:aZ};var uZ=!1,qF=bt(xo,uZ);var HF;function cZ(r){HF=r.wasm.cwrap(yo,null,["number","number","number"])}function pZ(r){let{inputs:e,backend:t}=r,{x:n,alpha:o}=e,s=t.dataIdMap.get(n.dataId).id,a=t.dataIdMap.get(o.dataId).id,i=t.makeOutput(n.shape,"float32"),l=t.dataIdMap.get(i.dataId).id;return HF(s,a,l),i}var KF={kernelName:yo,backendName:"wasm",setupFunc:cZ,kernelFunc:pZ};var XF;function mZ(r){XF=r.wasm.cwrap(Ci,null,["number","number","number","number"])}function fZ(r){let{backend:e,inputs:t,attrs:n}=r,{axis:o,keepDims:s}=n,{x:a}=t,i=e.dataIdMap.get(a.dataId).id,l=i,u=a,{transposed:c,axes:p,originalAxes:m,inputWasTransposed:f}=Ho(a,o,e),d=p;if(f){let w=e.dataIdMap.get(c.dataId).id;w!==i&&(u=c,l=w,d=N.getInnerMostAxes(d.length,u.shape.length))}N.assertAxesAreInnerMostDims("prod",d,u.shape.length);let[h,g]=N.computeOutAndReduceShapes(u.shape,d),x=y.sizeFromShape(g),b=e.makeOutput(h,u.dtype);if(y.sizeFromShape(u.shape)!==0){let w=e.dataIdMap.get(b.dataId).id;XF(l,x,Bt[b.dtype],w)}if(f&&e.disposeData(c.dataId),s){let w=N.expandShapeToKeepDim(b.shape,m);b.shape=w}return b}var YF={kernelName:Ci,backendName:"wasm",setupFunc:mZ,kernelFunc:fZ};var dZ=r=>{let{backend:e,attrs:t}=r,{start:n,stop:o,step:s,dtype:a}=t,i=df(n,o,s,a),l=e.makeOutput([i.length],a);return e.typedArrayFromHeap(l).set(i),l},ZF={kernelName:fa,backendName:"wasm",kernelFunc:dZ};var hZ=!0,JF=bt(Qn,hZ);var QF=Rt(bo);var eO=Rt(_o);var tO;function gZ(r){tO=r.wasm.cwrap(wo,null,["number","number","number","number","number","number","number","number","number","number"])}function xZ(r){let{backend:e,inputs:t,attrs:n}=r,{images:o}=t,{alignCorners:s,halfPixelCenters:a,size:i}=n,[l,u]=i,[c,p,m,f]=o.shape,d=[c,l,u,f],h=e.dataIdMap.get(o.dataId),g;h.dtype!=="float32"&&(g=nc({backend:e,inputs:{x:o},attrs:{dtype:"float32"}}),h=e.dataIdMap.get(g.dataId));let x=h.id,b=e.makeOutput(d,"float32");if(y.sizeFromShape(o.shape)===0)return b;let w=e.dataIdMap.get(b.dataId).id;return tO(x,c,p,m,f,l,u,s?1:0,a?1:0,w),g!=null&&e.disposeData(g.dataId),b}var rO={kernelName:wo,backendName:"wasm",setupFunc:gZ,kernelFunc:xZ};var nO;function yZ(r){nO=r.wasm.cwrap(ko,null,["number","array","number","array","number","number"])}function bZ(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{dims:s}=n,a=y.parseAxisParam(s,o.shape);if(o.shape.length===0)return rc({inputs:{x:o},backend:t});let i=t.makeOutput(o.shape,o.dtype),l=t.dataIdMap.get(o.dataId).id,u=t.dataIdMap.get(i.dataId).id,c=new Uint8Array(new Int32Array(a).buffer),p=new Uint8Array(new Int32Array(o.shape).buffer);return nO(l,c,a.length,p,o.shape.length,u),Pr({inputs:{x:i},attrs:{shape:o.shape},backend:t})}var oO={kernelName:ko,backendName:"wasm",kernelFunc:bZ,setupFunc:yZ};var sO;function wZ(r){sO=r.wasm.cwrap(Fi,null,["number","number","number","number","number","number","number","number","array","number","number"])}function _Z(r){let{inputs:e,backend:t,attrs:n}=r,{image:o}=e,{radians:s,fillValue:a,center:i}=n,l=t.makeOutput(o.shape,o.dtype),u=t.dataIdMap.get(o.dataId).id,c=t.dataIdMap.get(l.dataId).id,[p,m,f,d]=o.shape,[h,g]=N.getImageCenter(i,m,f),x=a===0,b=255,w=typeof a=="number"?[a,a,a,x?0:b]:[...a,b],_=new Uint8Array(new Int32Array(w).buffer);return sO(u,p,m,f,d,s,h,g,_,w.length,c),l}var iO={kernelName:Fi,backendName:"wasm",kernelFunc:_Z,setupFunc:wZ};var aO=Rt(vo);var lO=Rt(Co);var uO;function kZ(r){uO=r.wasm.cwrap(Ni,null,["number","number","number","number","number","number","array","number","number"])}function vZ(r){let{backend:e,inputs:t,attrs:n}=r,{indices:o,updates:s}=t,{shape:a}=n,i=e.makeOutput(a,s.dtype);if(y.sizeFromShape(a)===0)return i;let{sliceRank:l,numUpdates:u,sliceSize:c,strides:p,outputSize:m}=rg.calculateShapes(s,o,a),d=e.dataIdMap.get(o.dataId).id,g=e.dataIdMap.get(s.dataId).id,x=new Uint8Array(new Int32Array(p).buffer),b=e.dataIdMap.get(i.dataId).id;return uO(d,g,Bt[s.dtype],l,u,c,x,m,b),i}var cO={kernelName:Ni,backendName:"wasm",setupFunc:kZ,kernelFunc:vZ};var pO;function CZ(r){pO=r.wasm.cwrap("SelectV2",null,["number","number","number","number","number"])}function IZ(r){let{inputs:e,backend:t}=r,{condition:n,t:o,e:s}=e,a=t.dataIdMap.get(n.dataId).id,i=t.dataIdMap.get(o.dataId).id,l=t.dataIdMap.get(s.dataId).id,u=t.makeOutput(o.shape,o.dtype),c=t.dataIdMap.get(u.dataId).id,p=n.shape.length,m=o.shape.length,f=p===0||p>1||m===1?1:y.sizeFromShape(o.shape.slice(1));return pO(a,i,l,f,c),u}var mO={kernelName:ds,backendName:"wasm",kernelFunc:IZ,setupFunc:CZ};var fO;function NZ(r){fO=r.wasm.cwrap(No,null,["number","number"])}function SZ(r){let{backend:e,inputs:{x:t}}=r,n=e.dataIdMap.get(t.dataId).id,o=e.makeOutput(t.shape,t.dtype),s=e.dataIdMap.get(o.dataId).id;return y.sizeFromShape(o.shape)===0||fO(n,s),o}var dO={kernelName:"Sigmoid",backendName:"wasm",setupFunc:NZ,kernelFunc:SZ};var hO=Rt(Io);function oc(r){let{inputs:{x:e},attrs:{begin:t,size:n},backend:o}=r,[s,a]=or.parseSliceParams(e,t,n),i=or.isSliceContinous(e.shape,s,a),l=o.readSync(e.dataId),u=o.makeOutput(a,e.dtype),c=y.computeStrides(e.shape),p=o.dataIdMap.get(u.dataId);if(i){let d=or.computeFlatOffset(s,c);return e.dtype==="string"?p.stringBytes=l.slice(d,d+y.sizeFromShape(a)):o.typedArrayFromHeap(u).set(l.subarray(d,d+y.sizeFromShape(a))),u}if(e.dtype==="string"){let d=hf(l,s,a,e.shape,e.dtype);return p.stringBytes=d,u}let m=o.typedArrayFromHeap(u),f=e.shape.length;if(f===2)TZ(l,c[0],m,s,a);else if(f===3)EZ(l,c[0],c[1],m,s,a);else if(f===4)AZ(l,c[0],c[1],c[2],m,s,a);else{let d=hf(l,s,a,e.shape,e.dtype);m.set(d)}return u}function TZ(r,e,t,n,o){let s=0,a=n[0],i=n[1],l=a+o[0];for(let u=a;u<l;u++){let c=u*e+i;t.set(r.subarray(c,c+o[1]),s),s+=o[1]}}function EZ(r,e,t,n,o,s){let a=0,i=o[0],l=o[1],u=o[2],c=i+s[0],p=l+s[1];for(let m=i;m<c;m++)for(let f=l;f<p;f++){let d=m*e+f*t+u;n.set(r.subarray(d,d+s[2]),a),a+=s[2]}}function AZ(r,e,t,n,o,s,a){let i=0,l=s[0],u=s[1],c=s[2],p=l+a[0],m=u+a[1],f=c+a[2],d=s[3];for(let h=l;h<p;h++)for(let g=u;g<m;g++)for(let x=c;x<f;x++){let b=h*e+g*t+x*n+d;o.set(r.subarray(b,b+a[3]),i),i+=a[3]}}var gO={kernelName:hs,backendName:"wasm",kernelFunc:oc};var xO;function DZ(r){xO=r.wasm.cwrap(Eo,null,["number","number","number","number"])}function $Z(r){let{backend:e,inputs:{logits:t},attrs:{dim:n}}=r,o=e.dataIdMap.get(t.dataId).id,s=e.makeOutput(t.shape,t.dtype),a=e.dataIdMap.get(s.dataId).id,i=t.shape[n],l=y.sizeFromShape(t.shape)/i;return y.sizeFromShape(s.shape)===0||xO(o,a,i,l),s}var yO={kernelName:Eo,backendName:"wasm",setupFunc:DZ,kernelFunc:$Z};function RZ(r){let{inputs:e,attrs:t,backend:n}=r,{x:o}=e,{numOrSizeSplits:s,axis:a}=t,i=y.parseAxisParam(a,o.shape)[0],l=N.prepareSplitSize(o,s,i),u=new Array(o.shape.length).fill(0),c=o.shape.slice();return l.map(p=>{let m=[...c];m[i]=p;let f=oc({inputs:{x:o},attrs:{begin:u,size:m},backend:n});return u[i]+=p,f})}var bO={kernelName:gs,backendName:"wasm",kernelFunc:RZ};var wO=Rt(So);var _O=Rt(ga);var FZ=!0,kO=bt(Ao,FZ);var vO;function OZ(r){vO=r.wasm.cwrap($n,null,["number","number","number"])}function PZ(r){let{backend:e,inputs:t,attrs:n}=r,{alpha:o}=n,{x:s}=t,a=e.dataIdMap.get(s.dataId).id,i=e.makeOutput(s.shape,s.dtype),l=e.dataIdMap.get(i.dataId).id;return vO(a,o,l),i}var CO={kernelName:$n,backendName:"wasm",setupFunc:OZ,kernelFunc:PZ};var IO;function MZ(r){IO=r.wasm.cwrap(Di,null,["number","array","number","array","array","array","array","array","number","number"])}function LZ(r){let{backend:e,inputs:t,attrs:n}=r,{x:o}=t,{begin:s,end:a,strides:i}=n;i==null&&(i=new Array(s.length));let{beginMask:l,endMask:u,ellipsisMask:c,newAxisMask:p,shrinkAxisMask:m}=n,f=N.slice_util.maskToAxes(c);if(f.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(c!==0&&p!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(c!==0&&m!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let d=o.shape.length-s.length,h=N.slice_util.maskToAxes(p),g=o.shape.slice();h.forEach(P=>{s[P]=0,a[P]=1,g.splice(P,0,1)});let x=Pr({inputs:{x:o},attrs:{shape:g},backend:e}),{begin:b,end:w,strides:_}=N.slice_util.getNormalizedAxes(x.shape,f,d,s,a,i,l,u,c);s=b,a=w,i=_;let k=N.slice_util.maskToAxes(m);k.forEach(P=>{a[P]=s[P]+1,i[P]=1});let E=N.slice_util.computeOutShape(s,a,i),S=E.filter((P,j)=>k.indexOf(j)===-1);if(i.every(P=>P===1)){let P=oc({inputs:{x:o},attrs:{begin:s,size:E},backend:e});return Pr({inputs:{x:P},attrs:{shape:S},backend:e})}let F=e.makeOutput(S,"float32");if(!S.some(P=>P===0)){let P=e.dataIdMap.get(x.dataId).id,j=new Uint8Array(new Int32Array(y.computeStrides(x.shape)).buffer),G=new Uint8Array(new Int32Array(s).buffer),U=new Uint8Array(new Int32Array(a).buffer),X=new Uint8Array(new Int32Array(i).buffer),K=new Uint8Array(new Int32Array(S).buffer),Z=new Uint8Array(new Int32Array(y.computeStrides(S)).buffer),te=e.dataIdMap.get(F.dataId).id;IO(P,j,x.shape.length,G,U,X,K,Z,S.length,te)}return Pr({inputs:{x:F},attrs:{shape:S},backend:e})}var NO={kernelName:Di,backendName:"wasm",setupFunc:MZ,kernelFunc:LZ};var zZ=!0,SO=bt(Do,zZ);var TO;function BZ(r){TO=r.wasm.cwrap(To,null,["number, number, number"])}function VZ(r){let{backend:e,inputs:t,attrs:n}=r,{axis:o,keepDims:s}=n,{x:a}=t,i=e.dataIdMap.get(a.dataId).id,l=i,u=a,{transposed:c,axes:p,originalAxes:m,inputWasTransposed:f}=Ho(a,o,e),d=p;if(f){let w=e.dataIdMap.get(c.dataId).id;w!==i&&(u=c,l=w,d=N.getInnerMostAxes(d.length,u.shape.length))}N.assertAxesAreInnerMostDims("sum",d,u.shape.length);let[h,g]=N.computeOutAndReduceShapes(u.shape,d),x=y.sizeFromShape(g),b=e.makeOutput(h,u.dtype);if(y.sizeFromShape(u.shape)!==0){let w=e.dataIdMap.get(b.dataId).id;TO(l,x,w)}if(f&&e.disposeData(c.dataId),s){let w=N.expandShapeToKeepDim(b.shape,m);b.shape=w}return b}var EO={kernelName:To,backendName:"wasm",setupFunc:BZ,kernelFunc:VZ};var AO=Rt($o);var DO;function GZ(r){DO=r.wasm.cwrap(yn,null,["number","array","number","array","number","number"])}function jZ(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,s=t.dataIdMap.get(o.dataId).id,{reps:a}=n,i=new Array(o.shape.length);for(let m=0;m<i.length;m++)i[m]=o.shape[m]*a[m];let l=new Uint8Array(new Int32Array(o.shape).buffer),u=new Uint8Array(new Int32Array(i).buffer),c=t.makeOutput(i,o.dtype),p=t.dataIdMap.get(c.dataId).id;return DO(s,l,o.shape.length,u,i.length,Bt[c.dtype],p),c}var $O={kernelName:yn,backendName:"wasm",setupFunc:GZ,kernelFunc:jZ};var RO;function WZ(r){RO=r.wasm.cwrap(Ri,null,["number","array","number","number","number","bool","number","number"])}var UZ=({inputs:r,backend:e,attrs:t})=>{let{x:n}=r,{k:o,sorted:s}=t,a=e.dataIdMap.get(n.dataId).id,i=new Uint8Array(new Int32Array(n.shape).buffer),l=n.shape.slice();l[l.length-1]=o;let u=e.makeOutput(l,n.dtype),c=e.dataIdMap.get(u.dataId).id,p=e.makeOutput(l,"int32"),m=e.dataIdMap.get(p.dataId).id;return RO(a,i,n.shape.length,Bt[n.dtype],o,s,c,m),[u,p]},FO={kernelName:Ri,backendName:"wasm",setupFunc:WZ,kernelFunc:UZ};function qZ(r){let{inputs:e,backend:t,attrs:n}=r,{value:o}=e,{axis:s}=n;s<0&&(s+=o.shape.length);let a=o.shape[s],i=o.shape.length,l=new Array(i-1),u=0;for(let f=0;f<i;f++)f!==s&&(l[u++]=o.shape[f]);let c=new Array(a),p=new Array(i).fill(0),m=o.shape.slice();m[s]=1;for(let f=0;f<c.length;f++)p[s]=f,c[f]=oc({inputs:{x:o},attrs:{begin:p,size:m},backend:t});return c.map(({dataId:f,dtype:d})=>({dataId:f,dtype:d,shape:l}))}var OO={kernelName:xs,backendName:"wasm",kernelFunc:qZ};function HZ(r){let{inputs:{x:e},backend:t}=r,n=t.makeOutput(e.shape,e.dtype);return t.typedArrayFromHeap(n).fill(0),n}var PO={kernelName:ys,backendName:"wasm",kernelFunc:HZ};var KZ=[yR,bR,_R,NR,TR,DR,$R,FR,OR,MR,zR,BR,GR,WR,qR,KR,XR,YR,ZR,JR,eF,tF,rF,xR,oF,iF,lF,cF,mF,fF,dF,kR,gF,xF,yF,bF,wF,kF,vF,IF,SF,EF,AF,DF,$F,FF,PF,LF,zF,VF,GF,jF,UF,qF,KF,YF,ZF,JF,QF,eO,ER,rO,oO,iO,lO,aO,cO,mO,dO,hO,gO,yO,bO,wO,_O,kO,CO,NO,SO,EO,AO,$O,FO,CR,OO,PO];for(let r of KZ)tl(r);var c0=W();c0.registerFlag("WASM_HAS_SIMD_SUPPORT",async()=>WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,10,9,1,7,0,65,0,253,15,26,11])));c0.registerFlag("WASM_HAS_MULTITHREAD_SUPPORT",async()=>{if(c0.get("IS_NODE"))return!1;try{return new MessageChannel().port1.postMessage(new SharedArrayBuffer(1)),WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,5,4,1,3,1,1,10,11,1,9,0,65,0,254,16,2,0,26,11]))}catch(r){return!1}});var h0=Tc(zO());var BO='var threadInfoStruct=0;var selfThreadId=0;var parentThreadId=0;var Module={};function threadPrintErr(){var text=Array.prototype.slice.call(arguments).join(" ");console.error(text)}function threadAlert(){var text=Array.prototype.slice.call(arguments).join(" ");postMessage({cmd:"alert",text:text,threadId:selfThreadId})}var err=threadPrintErr;this.alert=threadAlert;Module["instantiateWasm"]=function(info,receiveInstance){var instance=new WebAssembly.Instance(Module["wasmModule"],info);Module["wasmModule"]=null;receiveInstance(instance);return instance.exports};this.onmessage=function(e){try{if(e.data.cmd==="load"){Module["DYNAMIC_BASE"]=e.data.DYNAMIC_BASE;Module["DYNAMICTOP_PTR"]=e.data.DYNAMICTOP_PTR;Module["wasmModule"]=e.data.wasmModule;Module["wasmMemory"]=e.data.wasmMemory;Module["buffer"]=Module["wasmMemory"].buffer;Module["ENVIRONMENT_IS_PTHREAD"]=true;if(typeof e.data.urlOrBlob==="string"){importScripts(e.data.urlOrBlob)}else{var objectUrl=URL.createObjectURL(e.data.urlOrBlob);importScripts(objectUrl);URL.revokeObjectURL(objectUrl)}Module=WasmBackendModuleThreadedSimd(Module);postMessage({"cmd":"loaded"})}else if(e.data.cmd==="objectTransfer"){Module["PThread"].receiveObjectTransfer(e.data)}else if(e.data.cmd==="run"){Module["__performance_now_clock_drift"]=performance.now()-e.data.time;threadInfoStruct=e.data.threadInfoStruct;Module["__register_pthread_ptr"](threadInfoStruct,0,0);selfThreadId=e.data.selfThreadId;parentThreadId=e.data.parentThreadId;var max=e.data.stackBase;var top=e.data.stackBase+e.data.stackSize;Module["establishStackSpace"](top,max);Module["_emscripten_tls_init"]();Module["PThread"].receiveObjectTransfer(e.data);Module["PThread"].setThreadStatus(Module["_pthread_self"](),1);try{var result=Module["dynCall_ii"](e.data.start_routine,e.data.arg);if(!Module["getNoExitRuntime"]())Module["PThread"].threadExit(result)}catch(ex){if(ex==="Canceled!"){Module["PThread"].threadCancel()}else if(ex!="unwind"){Atomics.store(Module["HEAPU32"],threadInfoStruct+4>>2,ex instanceof Module["ExitStatus"]?ex.status:-2);Atomics.store(Module["HEAPU32"],threadInfoStruct+0>>2,1);Module["_emscripten_futex_wake"](threadInfoStruct+0,2147483647);if(!(ex instanceof Module["ExitStatus"]))throw ex}}}else if(e.data.cmd==="cancel"){if(threadInfoStruct){Module["PThread"].threadCancel()}}else if(e.data.target==="setimmediate"){}else if(e.data.cmd==="processThreadQueue"){if(threadInfoStruct){Module["_emscripten_current_thread_process_queued_calls"]()}}else{err("worker.js received unknown command "+e.data.cmd);err(e.data)}}catch(ex){err("worker.js onmessage() captured an uncaught exception: "+ex);if(ex.stack)err(ex.stack);throw ex}};if(typeof process==="object"&&typeof process.versions==="object"&&typeof process.versions.node==="string"){self={location:{href:__filename}};var onmessage=this.onmessage;var nodeWorkerThreads=require("worker_threads");Worker=nodeWorkerThreads.Worker;var parentPort=nodeWorkerThreads.parentPort;parentPort.on("message",function(data){onmessage({data:data})});var nodeFS=require("fs");var nodeRead=function(filename){return nodeFS.readFileSync(filename,"utf8")};function globalEval(x){global.require=require;global.Module=Module;eval.call(null,x)}importScripts=function(f){globalEval(nodeRead(f))};postMessage=function(msg){parentPort.postMessage(msg)};if(typeof performance==="undefined"){performance={now:function(){return Date.now()}}}}';var GO=Tc(VO());var px=class extends Ws{constructor(e){super();this.wasm=e,this.dataIdNextNumber=1,this.wasm.tfjs.init(),this.dataIdMap=new Ja(this,vs())}write(e,t,n){let o={};return this.move(o,e,t,n),o}numDataIds(){return this.dataIdMap.numDataIds()}async time(e){let t=y.now();return e(),{kernelMs:y.now()-t}}move(e,t,n,o){let s=this.dataIdNextNumber++;if(o==="string"){let u=t;this.dataIdMap.set(e,{id:s,stringBytes:u,shape:n,dtype:o,memoryOffset:null});return}let a=y.sizeFromShape(n),i=a*y.bytesPerElement(o),l=this.wasm._malloc(i);this.dataIdMap.set(e,{id:s,memoryOffset:l,shape:n,dtype:o}),this.wasm.tfjs.registerTensor(s,a,l),t!=null&&this.wasm.HEAPU8.set(new Uint8Array(t.buffer,t.byteOffset,i),l)}async read(e){return this.readSync(e)}readSync(e){let{memoryOffset:t,dtype:n,shape:o,stringBytes:s}=this.dataIdMap.get(e);if(n==="string")return s;let a=this.wasm.HEAPU8.slice(t,t+y.sizeFromShape(o)*y.bytesPerElement(n));return XZ(a.buffer,n)}disposeData(e){let t=this.dataIdMap.get(e);this.wasm._free(t.memoryOffset),this.wasm.tfjs.disposeData(t.id),this.dataIdMap.delete(e)}floatPrecision(){return 32}getMemoryOffset(e){return this.dataIdMap.get(e).memoryOffset}dispose(){this.wasm.tfjs.dispose(),this.wasm=null}memory(){return{unreliable:!1}}makeOutput(e,t,n){let o;if(n==null)o=this.write(null,e,t);else{o={};let s=this.dataIdNextNumber++;this.dataIdMap.set(o,{id:s,memoryOffset:n,shape:e,dtype:t});let a=y.sizeFromShape(e);this.wasm.tfjs.registerTensor(s,a,n)}return{dataId:o,shape:e,dtype:t}}typedArrayFromHeap({shape:e,dtype:t,dataId:n}){let o=this.wasm.HEAPU8.buffer,{memoryOffset:s}=this.dataIdMap.get(n),a=y.sizeFromShape(e);switch(t){case"float32":return new Float32Array(o,s,a);case"int32":return new Int32Array(o,s,a);case"bool":return new Uint8Array(o,s,a);default:throw new Error(`Unknown dtype ${t}`)}}};function YZ(r){return(e,t)=>(y.fetch(r,{credentials:"same-origin"}).then(n=>{n.ok||e.env.a(`failed to load wasm binary file at '${r}'`),n.arrayBuffer().then(o=>{WebAssembly.instantiate(o,e).then(s=>{t(s.instance)})})}),{})}function jO(r,e,t){if(mx!=null)return mx;let n="tfjs-backend-wasm.wasm";return r&&e?n="tfjs-backend-wasm-threaded-simd.wasm":r&&(n="tfjs-backend-wasm-simd.wasm"),Pf!=null&&Pf[n]!=null?Pf[n]:t+n}async function WO(){let[r,e]=await Promise.all([W().getAsync("WASM_HAS_SIMD_SUPPORT"),W().getAsync("WASM_HAS_MULTITHREAD_SUPPORT")]);return new Promise((t,n)=>{let o={};o.locateFile=(l,u)=>{if(l.endsWith(".worker.js")){let c=BO,p=new Blob([c],{type:"application/javascript"});return URL.createObjectURL(p)}return l.endsWith(".wasm")?jO(r,e,Mf!=null?Mf:u):u+l},g0&&(o.instantiateWasm=YZ(jO(r,e,Mf!=null?Mf:"")));let s;e&&r&&mx==null?(s=h0.default(o),s.mainScriptUrlOrBlob=new Blob(["var WasmBackendModuleThreadedSimd = "+h0.default.toString()],{type:"text/javascript"})):s=GO.default(o);let a=null;s.tfjs={init:s.cwrap("init",null,[]),registerTensor:s.cwrap("register_tensor",null,["number","number","number"]),disposeData:s.cwrap("dispose_data",a,["number"]),dispose:s.cwrap("dispose",a,[])};let i=!1;s.onRuntimeInitialized=()=>{i=!0,Lf=!1,t({wasm:s})},s.onAbort=()=>{if(i||Lf)return;Lf=!0,n({message:"Make sure the server can serve the `.wasm` file relative to the bundled js file. For more details see https://github.com/tensorflow/tfjs/blob/master/tfjs-backend-wasm/README.md#using-bundlers"})}})}function XZ(r,e){switch(e){case"float32":return new Float32Array(r);case"int32":return new Int32Array(r);case"bool":return new Uint8Array(r);default:throw new Error(`Unknown dtype ${e}`)}}var ZZ=["tfjs-backend-wasm.wasm","tfjs-backend-wasm-simd.wasm","tfjs-backend-wasm-threaded-simd.wasm"],mx=null,Mf=null,Pf={},Lf=!1,g0=!1;function JZ(r,e=!1){if(ig("setWasmPath has been deprecated in favor of setWasmPaths and will be removed in a future release."),Lf)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPath()` before you call `tf.setBackend()` or `tf.ready()`");mx=r,g0=e}function QZ(r,e=!1){if(Lf)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPaths()` before you call `tf.setBackend()` or `tf.ready()`");if(typeof r=="string")Mf=r;else{Pf=r;let t=ZZ.filter(n=>Pf[n]==null);if(t.length>0)throw new Error(`There were no entries found for the following binaries: ${t.join(",")}. Please either call setWasmPaths with a map providing a path for each binary, or with a string indicating the directory where all the binaries can be found.`)}g0=e}var x0="3.0.0";var eJ=2;yu("wasm",async()=>{let{wasm:r}=await WO();return new px(r)},eJ);O().prototype.abs=function(){return this.throwIfDisposed(),Et(this)};O().prototype.acos=function(){return this.throwIfDisposed(),Sm(this)};O().prototype.acosh=function(){return this.throwIfDisposed(),Tm(this)};O().prototype.add=function(r){return this.throwIfDisposed(),Q(this,r)};O().prototype.all=function(r,e){return this.throwIfDisposed(),wu(this,r,e)};O().prototype.any=function(r,e){return this.throwIfDisposed(),il(this,r,e)};O().prototype.argMax=function(r){return this.throwIfDisposed(),al(this,r)};O().prototype.argMin=function(r){return this.throwIfDisposed(),Em(this,r)};O().prototype.asScalar=function(){return this.throwIfDisposed(),A(this.size===1,()=>"The array must have only 1 element."),z(this,[])};O().prototype.asType=function(r){return this.throwIfDisposed(),ne(this,r)};O().prototype.as1D=function(){return this.throwIfDisposed(),z(this,[this.size])};O().prototype.as2D=function(r,e){return this.throwIfDisposed(),z(this,[r,e])};O().prototype.as3D=function(r,e,t){return this.throwIfDisposed(),z(this,[r,e,t])};O().prototype.as4D=function(r,e,t,n){return this.throwIfDisposed(),z(this,[r,e,t,n])};O().prototype.as5D=function(r,e,t,n,o){return this.throwIfDisposed(),z(this,[r,e,t,n,o])};O().prototype.asin=function(){return this.throwIfDisposed(),Am(this)};O().prototype.asinh=function(){return this.throwIfDisposed(),Dm(this)};O().prototype.atan=function(){return this.throwIfDisposed(),$m(this)};O().prototype.atan2=function(r){return this.throwIfDisposed(),Rm(this,r)};O().prototype.atanh=function(){return this.throwIfDisposed(),Fm(this)};O().prototype.avgPool=function(r,e,t,n){return this.throwIfDisposed(),va(this,r,e,t,n)};O().prototype.batchToSpaceND=function(r,e){return this.throwIfDisposed(),Ca(this,r,e)};O().prototype.batchNorm=function(r,e,t,n,o){return this.throwIfDisposed(),Oo(this,r,e,t,n,o)};O().prototype.broadcastTo=function(r){return this.throwIfDisposed(),ll(this,r)};O().prototype.cast=function(r){return this.throwIfDisposed(),ne(this,r)};O().prototype.ceil=function(){return this.throwIfDisposed(),Pm(this)};O().prototype.clipByValue=function(r,e){return this.throwIfDisposed(),sr(this,r,e)};O().prototype.concat=function(r,e){return this.throwIfDisposed(),r instanceof Ve&&(r=[r]),Qe([this,...r],e)};O().prototype.conv1d=function(r,e,t,n,o,s){return this.throwIfDisposed(),vu(this,r,e,t,n,o,s)};O().prototype.conv2dTranspose=function(r,e,t,n,o){return this.throwIfDisposed(),Cu(this,r,e,t,n,o)};O().prototype.conv2d=function(r,e,t,n,o,s){return this.throwIfDisposed(),Ur(this,r,e,t,n,o,s)};O().prototype.cos=function(){return this.throwIfDisposed(),Ia(this)};O().prototype.cosh=function(){return this.throwIfDisposed(),Iu(this)};O().prototype.cumsum=function(r,e,t){return this.throwIfDisposed(),Nu(this,r,e,t)};O().prototype.depthToSpace=function(r,e){return this.throwIfDisposed(),Lm(this,r,e)};O().prototype.depthwiseConv2d=function(r,e,t,n,o,s){return this.throwIfDisposed(),Cs(this,r,e,t,n,o,s)};O().prototype.dilation2d=function(r,e,t,n,o){return this.throwIfDisposed(),zm(this,r,e,t,n,o)};O().prototype.divNoNan=function(r){return this.throwIfDisposed(),Bm(this,r)};O().prototype.div=function(r){return this.throwIfDisposed(),de(this,r)};O().prototype.dot=function(r){return this.throwIfDisposed(),Aw(this,r)};O().prototype.elu=function(){return this.throwIfDisposed(),Is(this)};O().prototype.equal=function(r){return this.throwIfDisposed(),wn(this,r)};O().prototype.erf=function(){return this.throwIfDisposed(),Vm(this)};O().prototype.exp=function(){return this.throwIfDisposed(),Yt(this)};O().prototype.expandDims=function(r){return this.throwIfDisposed(),ir(this,r)};O().prototype.expm1=function(){return this.throwIfDisposed(),Gm(this)};O().prototype.fft=function(){return this.throwIfDisposed(),Ra(this)};O().prototype.flatten=function(){return this.throwIfDisposed(),z(this,[this.size])};O().prototype.floor=function(){return this.throwIfDisposed(),Ns(this)};O().prototype.floorDiv=function(r){return this.throwIfDisposed(),bu(this,r)};O().prototype.gather=function(r,e){return this.throwIfDisposed(),Po(this,r,e)};O().prototype.greaterEqual=function(r){return this.throwIfDisposed(),tn(this,r)};O().prototype.greater=function(r){return this.throwIfDisposed(),er(this,r)};O().prototype.ifft=function(){return this.throwIfDisposed(),Bi(this)};O().prototype.irfft=function(){return this.throwIfDisposed(),zu(this)};O().prototype.isFinite=function(){return this.throwIfDisposed(),Dw(this)};O().prototype.isInf=function(){return this.throwIfDisposed(),$w(this)};O().prototype.isNaN=function(){return this.throwIfDisposed(),Rw(this)};O().prototype.leakyRelu=function(r){return this.throwIfDisposed(),Sa(this,r)};O().prototype.lessEqual=function(r){return this.throwIfDisposed(),Pn(this,r)};O().prototype.less=function(r){return this.throwIfDisposed(),Tu(this,r)};O().prototype.localResponseNormalization=function(r,e,t,n){return this.throwIfDisposed(),jm(this,r,e,t,n)};O().prototype.logSigmoid=function(){return this.throwIfDisposed(),Ow(this)};O().prototype.logSoftmax=function(r){return this.throwIfDisposed(),Au(this,r)};O().prototype.logSumExp=function(r,e){return this.throwIfDisposed(),Um(this,r,e)};O().prototype.log=function(){return this.throwIfDisposed(),ar(this)};O().prototype.log1p=function(){return this.throwIfDisposed(),Eu(this)};O().prototype.logicalAnd=function(r){return this.throwIfDisposed(),dr(this,r)};O().prototype.logicalNot=function(){return this.throwIfDisposed(),Ta(this)};O().prototype.logicalOr=function(r){return this.throwIfDisposed(),Du(this,r)};O().prototype.logicalXor=function(r){return this.throwIfDisposed(),zw(this,r)};O().prototype.matMul=function(r,e,t){return this.throwIfDisposed(),je(this,r,e,t)};O().prototype.maxPool=function(r,e,t,n){return this.throwIfDisposed(),Ea(this,r,e,t,n)};O().prototype.max=function(r,e){return this.throwIfDisposed(),lr(this,r,e)};O().prototype.maximum=function(r){return this.throwIfDisposed(),Hr(this,r)};O().prototype.mean=function(r,e){return this.throwIfDisposed(),gt(this,r,e)};O().prototype.min=function(r,e){return this.throwIfDisposed(),zi(this,r,e)};O().prototype.minimum=function(r){return this.throwIfDisposed(),Ts(this,r)};O().prototype.mirrorPad=function(r,e){return this.throwIfDisposed(),Hm(this,r,e)};O().prototype.mod=function(r){return this.throwIfDisposed(),Km(this,r)};O().prototype.mul=function(r){return this.throwIfDisposed(),M(this,r)};O().prototype.neg=function(){return this.throwIfDisposed(),Ue(this)};O().prototype.norm=function(r,e,t){return this.throwIfDisposed(),Gu(this,r,e,t)};O().prototype.notEqual=function(r){return this.throwIfDisposed(),Lo(this,r)};O().prototype.oneHot=function(r,e=1,t=0){return this.throwIfDisposed(),ks(this,r,e,t)};O().prototype.onesLike=function(){return this.throwIfDisposed(),tr(this)};O().prototype.pad=function(r,e){return this.throwIfDisposed(),Rr(this,r,e)};O().prototype.pool=function(r,e,t,n,o){return this.throwIfDisposed(),Gw(this,r,e,t,n,o)};O().prototype.pow=function(r){return this.throwIfDisposed(),Fr(this,r)};O().prototype.prelu=function(r){return this.throwIfDisposed(),Da(this,r)};O().prototype.prod=function(r,e){return this.throwIfDisposed(),$u(this,r,e)};O().prototype.reciprocal=function(){return this.throwIfDisposed(),Xm(this)};O().prototype.relu=function(){return this.throwIfDisposed(),Nr(this)};O().prototype.relu6=function(){return this.throwIfDisposed(),Fu(this)};O().prototype.reshapeAs=function(r){return this.throwIfDisposed(),z(this,r.shape)};O().prototype.reshape=function(r){return this.throwIfDisposed(),z(this,r)};O().prototype.resizeBilinear=function(r,e,t){return this.throwIfDisposed(),wg(this,r,e,t)};O().prototype.resizeNearestNeighbor=function(r,e,t){return this.throwIfDisposed(),_g(this,r,e,t)};O().prototype.reverse=function(r){return this.throwIfDisposed(),Kt(this,r)};O().prototype.rfft=function(){return this.throwIfDisposed(),Fa(this)};O().prototype.round=function(){return this.throwIfDisposed(),Ym(this)};O().prototype.rsqrt=function(){return this.throwIfDisposed(),Ou(this)};O().prototype.selu=function(){return this.throwIfDisposed(),Pu(this)};O().prototype.separableConv2d=function(r,e,t,n,o,s){return this.throwIfDisposed(),Zm(this,r,e,t,n,o,s)};O().prototype.sigmoid=function(){return this.throwIfDisposed(),Wr(this)};O().prototype.sign=function(){return this.throwIfDisposed(),Jm(this)};O().prototype.sin=function(){return this.throwIfDisposed(),Mu(this)};O().prototype.sinh=function(){return this.throwIfDisposed(),Lu(this)};O().prototype.slice=function(r,e){return this.throwIfDisposed(),Fe(this,r,e)};O().prototype.softmax=function(r){return this.throwIfDisposed(),$a(this,r)};O().prototype.softplus=function(){return this.throwIfDisposed(),Ss(this)};O().prototype.spaceToBatchND=function(r,e){return this.throwIfDisposed(),Aa(this,r,e)};O().prototype.split=function(r,e){return this.throwIfDisposed(),ur(this,r,e)};O().prototype.sqrt=function(){return this.throwIfDisposed(),yt(this)};O().prototype.square=function(){return this.throwIfDisposed(),Pe(this)};O().prototype.squaredDifference=function(r){return this.throwIfDisposed(),Bu(this,r)};O().prototype.squeeze=function(r){return this.throwIfDisposed(),_n(this,r)};O().prototype.stack=function(r,e){this.throwIfDisposed();let t=r instanceof Ve?[this,r]:[this,...r];return Vt(t,e)};O().prototype.step=function(r){return this.throwIfDisposed(),As(this,r)};O().prototype.stridedSlice=function(r,e,t,n,o,s,a,i){return this.throwIfDisposed(),tf(this,r,e,t,n,o,s,a,i)};O().prototype.sub=function(r){return this.throwIfDisposed(),ue(this,r)};O().prototype.sum=function(r,e){return this.throwIfDisposed(),ye(this,r,e)};O().prototype.tan=function(){return this.throwIfDisposed(),rf(this)};O().prototype.tanh=function(){return this.throwIfDisposed(),Li(this)};O().prototype.tile=function(r){return this.throwIfDisposed(),On(this,r)};O().prototype.toBool=function(){return this.throwIfDisposed(),ne(this,"bool")};O().prototype.toFloat=function(){return this.throwIfDisposed(),ne(this,"float32")};O().prototype.toInt=function(){return this.throwIfDisposed(),ne(this,"int32")};O().prototype.topk=function(r,e){return this.throwIfDisposed(),nf(this,r,e)};O().prototype.transpose=function(r){return this.throwIfDisposed(),We(this,r)};O().prototype.unique=function(r){return this.throwIfDisposed(),ep(this,r)};O().prototype.unsortedSegmentSum=function(r,e){return this.throwIfDisposed(),of(this,r,e)};O().prototype.unstack=function(r){return this.throwIfDisposed(),cr(this,r)};O().prototype.where=function(r,e){return this.throwIfDisposed(),$t(r,this,e)};O().prototype.zerosLike=function(){return this.throwIfDisposed(),Ie(this)};var fx={kernelName:ss,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>M(r,As(ne(t,"float32"),-1))}}};var UO={kernelName:Ks,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>{let n=Pe(ne(t,"float32")),o=yt(ue(le(1),n));return Ue(de(r,o))}}}};var qO={kernelName:Xs,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>{let n=yt(ue(Pe(ne(t,"float32")),1));return de(r,n)}}}};var HO={kernelName:xn,inputsToSave:["a","b"],gradFunc:(r,e)=>{let[t,n]=e,o=ze(t.shape,n.shape);return{a:()=>{let i=r,l=It(t.shape,o);return l.length>0&&(i=ye(i,l)),z(i,t.shape)},b:()=>{let i=r,l=It(n.shape,o);return l.length>0&&(i=ye(i,l)),z(i,n.shape)}}}};var KO={kernelName:Wn,saveAllInputs:!0,gradFunc:(r,e)=>{let t={};return e.forEach((n,o)=>{t[o]=()=>r.clone()}),t}};var XO={kernelName:Un,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>Ie(t)}}};var YO={kernelName:na,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>Ie(t)}}};var ZO={kernelName:Ys,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>de(r,yt(ue(le(1),Pe(ne(t,"float32")))))}}};var JO={kernelName:Zs,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>{let n=yt(Q(le(1),Pe(ne(t,"float32"))));return de(r,n)}}}};var QO={kernelName:ei,inputsToSave:["a","b"],gradFunc:(r,e)=>{let[t,n]=e,o=ze(t.shape,n.shape);return{a:()=>{let i=Q(Pe(t),Pe(n)),l=M(r,de(n,i)),u=It(t.shape,o);return u.length>0&&(l=ye(l,u)),z(l,t.shape)},b:()=>{let i=Q(Pe(t),Pe(n)),l=Ue(M(r,de(t,i))),u=It(n.shape,o);return u.length>0&&(l=ye(l,u)),z(l,n.shape)}}}};var eP={kernelName:Js,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>de(r,Q(Pe(ne(t,"float32")),1))}}};var tP={kernelName:Qs,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>de(r,ue(le(1),Pe(ne(t,"float32"))))}}};function tJ(r,e,t,n,o,s){let a=v(r,"dy","avgPool3dGrad"),i=v(e,"input","avgPool3dGrad"),l=a,u=i,c=!1;i.rank===4&&(c=!0,l=z(a,[1,a.shape[0],a.shape[1],a.shape[2],a.shape[3]]),u=z(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),A(l.rank===5,()=>`Error in avgPool3dGrad: dy must be rank 5 but got rank ${l.rank}.`),A(u.rank===5,()=>`Error in avgPool3dGrad: input must be rank 5 but got rank ${u.rank}.`),s!=null&&A(st(o),()=>`Error in avgPool3dGrad: pad must be an integer when using, dimRoundingMode ${s} but got pad ${o}.`);let p={dy:l,input:u},m={filterSize:t,strides:n,pad:o,dimRoundingMode:s},f=D.runKernel(Wl,p,m);return c?z(f,[f.shape[1],f.shape[2],f.shape[3],f.shape[4]]):f}var rP=T({avgPool3dGrad_:tJ});var nP={kernelName:oa,inputsToSave:["x"],gradFunc:(r,e,t)=>{let[n]=e,{filterSize:o,strides:s,pad:a,dimRoundingMode:i}=t;return{x:()=>rP(r,n,o,s,a,i)}}};function rJ(r,e,t,n,o){let s=v(r,"dy","avgPoolGrad"),a=v(e,"input","avgPoolGrad");A(a.rank===s.rank,()=>`Rank of input (${a.rank}) does not match rank of dy (${s.rank})`);let i=a,l=s,u=!1;a.rank===3&&(u=!0,i=z(a,[1,a.shape[0],a.shape[1],a.shape[2]]),l=z(s,[1,s.shape[0],s.shape[1],s.shape[2]])),A(l.rank===4,()=>`Error in avgPoolGrad: dy must be rank 4 but got rank ${l.rank}.`),A(i.rank===4,()=>`Error in avgPoolGrad: input must be rank 4 but got rank ${i.rank}.`);let c={dy:l,input:i},p={filterSize:t,strides:n,pad:o},m=D.runKernel(jl,c,p);return u?z(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var oP=T({avgPoolGrad_:rJ});var sP={kernelName:qn,inputsToSave:["x"],gradFunc:(r,e,t)=>{let[n]=e,{filterSize:o,strides:s,pad:a}=t;return{x:()=>oP(r,n,o,s,a)}}};var iP={kernelName:Hn,inputsToSave:["a","b"],gradFunc:(r,e,t)=>{let[n,o]=e,{transposeA:s,transposeB:a}=t;return!s&&!a?{a:()=>je(r,o,!1,!0),b:()=>je(n,r,!0,!1)}:!s&&a?{a:()=>je(r,o,!1,!1),b:()=>je(r,n,!0,!1)}:s&&!a?{a:()=>je(o,r,!1,!0),b:()=>je(n,r,!1,!1)}:{a:()=>je(o,r,!0,!0),b:()=>je(r,n,!0,!0)}}};var aP={kernelName:sa,gradFunc:(r,e,t)=>{let{blockShape:n,crops:o}=t;return{x:()=>Aa(r,n,o)}}};var lP={kernelName:Pb,gradFunc:(r,e,t)=>{let n=t,o=n.inputShape,s=n.shape,a=Array.from(s);for(let l=o.length-1;l>=0;l--)if(o[l]===s[l])a[l]=1;else if(o[l]!==1)throw new Error(`broadcastTo(): [${o}] cannot be broadcast to [${s}].`);let i=[];for(let l=0;l<a.length;l++)a[l]>1&&i.push(l);return{x:()=>ye(r,i,!0)}}};var uP={kernelName:An,gradFunc:r=>({x:()=>r.clone()})};var cP={kernelName:ti,gradFunc:r=>({x:()=>Ie(r)})};var pP={kernelName:Dn,inputsToSave:["x"],gradFunc:(r,e,t)=>{let[n]=e,{clipValueMin:o,clipValueMax:s}=t;return{x:()=>$t(dr(tn(n,o),Pn(n,s)),r,Ie(r))}}};var mP={kernelName:ia,inputsToSave:["x"],gradFunc:fx.gradFunc};var fP={kernelName:is,saveAllInputs:!0,gradFunc:(r,e,t)=>{let n=e.map(l=>l.shape),{axis:o}=t,s=Qt(o,e[0].shape)[0],a=n.map(l=>l[s]);return ur(r,a,s).map(l=>()=>l)}};var dP={kernelName:Kn,inputsToSave:["x","filter"],gradFunc:(r,e,t)=>{let[n,o]=e,{dilations:s,strides:a,pad:i,dataFormat:l}=t;return A(Fn(s),()=>`Error in gradient of conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`),{x:()=>Kc(n.shape,r,o,a,i,l),filter:()=>tp(n,r,o.shape,a,i,l)}}};var hP={kernelName:Xn,inputsToSave:["dy","filter"],gradFunc:(r,e,t)=>{let[n,o]=e,{strides:s,pad:a,dataFormat:i,dimRoundingMode:l}=t;return{dy:()=>Ur(r,o,s,a,i,1,l),filter:()=>tp(r,n,o.shape,s,a,i,l)}}};function nJ(r,e,t,n,o){let s=r;r.rank===4&&(s=z(r,[1,r.shape[0],r.shape[1],r.shape[2],r.shape[3]]));let a=e;a.rank===4&&(a=z(e,[1,e.shape[0],e.shape[1],e.shape[2],e.shape[3]])),A(s.rank===5,()=>`Error in conv3dDerFilter: input must be rank 5, but got shape ${s.shape}.`),A(a.rank===5,()=>`Error in conv3dDerFilter: dy must be rank 5, but got shape ${a.shape}.`),A(t.length===5,()=>`Error in conv3dDerFilter: filterShape must be length 5, but got ${t}.`),A(s.shape[4]===t[3],()=>`Error in conv3dDerFilter: depth of input ${s.shape[4]}) must match input depth in filter (${t[3]}.`),A(a.shape[4]===t[4],()=>`Error in conv3dDerFilter: depth of dy (${a.shape[4]}) must match output depth for filter (${t[4]}).`);let i={x:s,dy:a},l={strides:n,pad:o,filterShape:t};return D.runKernel(Kl,i,l)}var gP=T({conv3DBackpropFilter_:nJ});var xP={kernelName:aa,inputsToSave:["x","filter"],gradFunc:(r,e,t)=>{let{dilations:n,strides:o,pad:s}=t;A(Fn(n),()=>`Error in gradient of conv3D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${n}'`);let[a,i]=e;return{x:()=>lg(a.shape,r,i,o,s),filter:()=>gP(a,r,i.shape,o,s)}}};var yP={kernelName:Yn,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>M(Ue(Mu(ne(t,"float32"))),r)}}};var bP={kernelName:ri,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>M(Lu(ne(t,"float32")),r)}}};var wP={kernelName:Zn,inputsToSave:["x"],gradFunc:(r,e,t)=>{let[n]=e,{axis:o,exclusive:s,reverse:a}=t;return{x:()=>{let i=Lw([o],n.rank),l=Nu(r,o,s,!a);return i!=null&&(l=We(l,i)),l}}}};var _P={kernelName:Jn,inputsToSave:["x","filter"],gradFunc:(r,e,t)=>{let{dilations:n,strides:o,pad:s,dimRoundingMode:a}=t,i=n==null?[1,1]:n;A(Fn(i),()=>`Error in gradient of depthwiseConv2dNative: dilation rates greater than 1 are not yet supported. Got dilations '${i}'`);let[l,u]=e;return A(l.rank===4,()=>`Error in gradient of depthwiseConv2dNative: input must be rank 4, but got rank ${l.rank}.`),A(u.rank===4,()=>`Error in gradient of depthwiseConv2dNative: filter must be rank 4, but got rank ${u.rank}.`),A(l.shape[3]===u.shape[2],()=>`Error in gradient of depthwiseConv2d: number of input channels (${l.shape[3]}) must match the inChannels dimension in filter ${u.shape[2]}.`),A(br(o,i),()=>`Error in gradient of depthwiseConv2d: Either strides or dilations must be 1. Got strides ${o} and dilations '${i}'.`),a!=null&&A(st(s),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${a} but got pad ${s}.`),{x:()=>xg(l.shape,r,u,o,s,n,a),filter:()=>gg(l,r,u.shape,o,s,n,a)}}};var kP={kernelName:la,inputsToSave:["x","filter"],gradFunc:(r,e,t)=>{let[n,o]=e,s={x:n,filter:o,dy:r},a={x:n,filter:o,dy:r};return{x:()=>D.runKernel(Rc,s,t),filter:()=>D.runKernel(Fc,a,t)}}};var vP={kernelName:si,outputsToSave:[!0],gradFunc:(r,e)=>{let[t]=e,n={dy:r,y:t};return{x:()=>D.runKernel(eu,n)}}};var CP={kernelName:ii,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e,n=M(Yt(Ue(Pe(t))),2/Math.sqrt(Math.PI));return{x:()=>M(r,n)}}};var IP={kernelName:eo,outputsToSave:[!0],gradFunc:(r,e)=>{let[t]=e;return{x:()=>M(r,t)}}};var NP={kernelName:as,inputsToSave:["input"],gradFunc:(r,e)=>{let[t]=e;return{input:()=>z(r,t.shape)}}};var SP={kernelName:li,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>M(r,Yt(t))}}};var TP={kernelName:to,gradFunc:r=>({x:()=>Ie(r)})};var EP={kernelName:ro,inputsToSave:["a","b"],gradFunc:(r,e)=>{let[t,n]=e,o=ze(t.shape,n.shape);return{a:()=>{let i=de(r,ne(n,"float32")),l=It(t.shape,o);return l.length>0?z(ye(i,l),t.shape):i},b:()=>{let i=M(r,ne(t,"float32")),l=It(n.shape,o);l.length>0&&(i=z(ye(i,l),n.shape));let u=Pe(n);return Ue(de(i,ne(u,"float32")))}}}};var AP={kernelName:no,inputsToSave:["x","mean","variance","scale"],gradFunc:(r,e,t)=>{let{varianceEpsilon:n}=t,[o,s,a,i]=e,l=i==null?le(1):i,u=It(s.shape,o.shape),c=[];if(s.rank===1){for(let _=0;_<o.shape.length-1;++_)c.push(o.shape[_]);c.push(1)}let p=ue(o,s),m=M(r,l),f=Ou(Q(a,le(n))),d=M(M(M(f,f),f),le(-.5));return{x:()=>s.rank===1?z(M(M(r,On(z(f,[1,1,1,s.shape[0]]),c)),l),o.shape):z(M(M(r,f),l),o.shape),mean:()=>{let _=M(M(f,le(-1)),m);return s.rank===1&&(_=ye(_,u)),z(_,s.shape)},variance:()=>{let _=M(M(d,p),m);return s.rank===1&&(_=ye(_,u)),z(_,s.shape)},scale:()=>{let _=M(p,f),k=M(r,_);return s.rank===1&&(k=ye(k,u)),z(k,s.shape)},offset:()=>{let _=r;return s.rank===1&&(_=ye(_,u)),z(_,s.shape)}}}};var RP={kernelName:ls,inputsToSave:["x","indices"],gradFunc:(r,e,t)=>{let[n,o]=e,{axis:s}=t,a=Qt(s,n.shape)[0];return{x:()=>{let l=n.shape,u=o.size,c=l.slice(0,a),p=c.length,m=l.slice(s,l.length).slice(1),f=m.length,d=DP(0,p),h=DP(p+1,p+1+f),g=$P([c,[u],m]),x=z(r,g),b=z(o,[u]),w=$P([[p],d,h]),_=We(x,w),k=of(_,b,n.shape[a]),E=Wm(w);return k=We(k,E),k},indices:()=>o}}};function DP(r,e){let t=[];for(let n=r;n<e;++n)t.push(n);return t}function $P(r){let e=[];for(let t=0;t<r.length;++t)for(let n=0;n<r[t].length;++n)e.push(r[t][n]);return e}var FP={kernelName:oo,inputsToSave:["a","b"],gradFunc:(r,e)=>{let[t,n]=e;return{a:()=>Ie(t),b:()=>Ie(n)}}};var OP={kernelName:us,gradFunc:r=>({x:()=>ne(r,"float32")})};var PP={kernelName:mi,gradFunc:r=>({x:()=>Ie(r)})};var MP={kernelName:fi,gradFunc:r=>({x:()=>Ie(r)})};var LP={kernelName:di,gradFunc:r=>({x:()=>Ie(r)})};var zP={kernelName:so,inputsToSave:["x"],gradFunc:(r,e,t)=>{let[n]=e,{alpha:o}=t,s=er(n,0);return{x:()=>$t(s,r,M(r,o))}}};var BP={kernelName:xi,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>de(r,Q(t,1))}}};var VP={kernelName:io,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>de(r,ne(t,"float32"))}}};var GP={kernelName:Mb,inputsToSave:[],outputsToSave:[!0],gradFunc:(r,e,t)=>{let[n]=e,{axis:o}=t;return{logits:()=>{let s=!0,a=Yt(n);return ue(r,M(ye(r,o,s),a))}}}};function oJ(r,e,t,n=5,o=1,s=1,a=.5){let i={x:r,y:e,dy:t},l={depthRadius:n,bias:o,alpha:s,beta:a};return D.runKernel(su,i,l)}var jP=T({localResponseNormalizationBackprop_:oJ});var WP={kernelName:ca,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(r,e,t)=>{let[n,o]=e,{depthRadius:s,bias:a,alpha:i,beta:l}=t;return{x:()=>jP(n,o,r,s,a,i,l)}}};function dx(r,e,t,n){return e.rank<t.rank&&(e=z(e,Mo(e.shape,n))),r.rank<t.rank&&(r=z(r,Mo(r.shape,n))),{x:()=>M(r,ne(wn(t,e),r.dtype))}}var y0={kernelName:ao,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(r,e,t)=>{let n=t,{reductionIndices:o}=n,s=e[0],a=e[1],i=Qt(o,s.shape),l=dx(r,a,s,i);return{x:()=>l.x()}}};var UP={kernelName:lo,inputsToSave:["a","b"],gradFunc:(r,e)=>{let[t,n]=e;return{a:()=>M(r,ne(tn(t,n),"float32")),b:()=>M(r,ne(Tu(t,n),"float32"))}}};function sJ(r,e,t,n,o,s,a){let i=v(r,"dy","maxPool3dGrad"),l=v(e,"input","maxPool3dGrad"),u=v(t,"output","maxPool3dGrad"),c=i,p=l,m=u,f=!1;l.rank===4&&(f=!0,c=z(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]]),p=z(l,[1,l.shape[0],l.shape[1],l.shape[2],l.shape[3]]),m=z(u,[1,u.shape[0],u.shape[1],u.shape[2],u.shape[3]])),A(c.rank===5,()=>`Error in maxPool3dGrad: dy must be rank 5 but got rank ${c.rank}.`),A(p.rank===5,()=>`Error in maxPool3dGrad: input must be rank 5 but got rank ${p.rank}.`),A(m.rank===5,()=>`Error in maxPool3dGrad: output must be rank 5 but got rank ${m.rank}.`),a!=null&&A(st(s),()=>`Error in maxPool3dGrad: pad must be an integer when using, dimRoundingMode ${a} but got pad ${s}.`);let d={dy:c,input:p,output:m},h={filterSize:n,strides:o,pad:s,dimRoundingMode:a},g=D.runKernel(au,d,h);return f?z(g,[g.shape[1],g.shape[2],g.shape[3],g.shape[4]]):g}var qP=T({maxPool3dGrad_:sJ});var HP={kernelName:pa,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(r,e,t)=>{let[n,o]=e,{filterSize:s,strides:a,pad:i,dimRoundingMode:l}=t;return{x:()=>qP(r,n,o,s,a,i,l)}}};function iJ(r,e,t,n,o,s,a){let i=v(r,"dy","maxPoolGrad"),l=v(e,"input","maxPoolGrad"),u=v(t,"output","maxPoolGrad");A(l.rank===i.rank,()=>`Rank of input (${l.rank}) does not match rank of dy (${i.rank})`),A(i.rank===4,()=>`Error in maxPoolGrad: dy must be rank 4 but got rank ${i.rank}.`),A(l.rank===4,()=>`Error in maxPoolGrad: input must be rank 4 but got rank ${l.rank}.`),a!=null&&A(st(s),()=>`Error in maxPoolGrad: pad must be an integer when using, dimRoundingMode ${a} but got pad ${s}.`);let c={dy:i,input:l,output:u},p={filterSize:n,strides:o,pad:s,dimRoundingMode:a};return D.runKernel(iu,c,p)}var KP=T({maxPoolGrad_:iJ});var XP={kernelName:uo,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(r,e,t)=>{let[n,o]=e,{filterSize:s,strides:a,pad:i}=t;return{x:()=>KP(r,n,o,s,a,i)}}};var YP={kernelName:co,inputsToSave:["x"],gradFunc:(r,e,t)=>{let[n]=e,{axis:o}=t,s=Qt(o,n.shape),i=Mw(n.shape,s)[1],l=ft(i);return{x:()=>{let c=n.shape.slice();s.forEach(f=>{c[f]=1});let p=z(r,c);return de(M(p,Ir(n.shape,"float32")),l)}}}};var ZP={kernelName:po,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(r,e,t)=>{let n=t,{axis:o}=n,[s,a]=e,i=Qt(o,s.shape),l=dx(r,a,s,i);return{x:()=>l.x()}}};var JP={kernelName:mo,inputsToSave:["a","b"],gradFunc:(r,e)=>{let[t,n]=e;return{a:()=>M(r,ne(Pn(t,n),"float32")),b:()=>M(r,ne(er(t,n),"float32"))}}};var QP={kernelName:ma,inputsToSave:["x"],gradFunc:(r,e,t)=>{let n=e[0],{paddings:o}=t,s=o.map(a=>a[0]);return{x:()=>Fe(r,s,n.shape)}}};var eM={kernelName:bi,inputsToSave:["a","b"],gradFunc:(r,e)=>{let[t,n]=e,o=ze(t.shape,n.shape);return{a:()=>{let i=It(t.shape,o);return i.length>0?z(ye(r,i),t.shape):r},b:()=>{let i=M(r,Ue(Ns(de(t,n)))),l=It(n.shape,o);return l.length>0?z(ye(i,l),n.shape):i}}}};var tM={kernelName:fo,inputsToSave:["a","b"],gradFunc:(r,e)=>{let[t,n]=e,o=ze(t.shape,n.shape);return{a:()=>{let i=M(r,ne(n,"float32")),l=It(t.shape,o);return l.length>0?z(ye(i,l),t.shape):i},b:()=>{let i=M(r,ne(t,"float32")),l=It(n.shape,o);return l.length>0?z(ye(i,l),n.shape):i}}}};var rM={kernelName:cs,gradFunc:r=>({x:()=>Ue(r)})};var nM={kernelName:ho,inputsToSave:["indices"],gradFunc:(r,e)=>{let t=e[0];return{indices:()=>xt(t.shape,"float32")}}};var oM={kernelName:ps,gradFunc:r=>({x:()=>Ie(r)})};var sM={kernelName:ms,saveAllInputs:!0,gradFunc:(r,e,t)=>{let{axis:n}=t;return cr(r,n).map(s=>()=>s)}};var b0={kernelName:go,inputsToSave:["x"],gradFunc:(r,e,t)=>{let n=e[0],{paddings:o}=t,s=o.map(a=>a[0]);return{x:()=>Fe(r,s,n.shape)}}};var iM={kernelName:xo,inputsToSave:["a","b"],outputsToSave:[!0],gradFunc:(r,e)=>{let[t,n,o]=e,s=t,a=n,i=ze(s.shape,a.shape);return{a:()=>{let c=ne(a,"float32"),p=M(r,M(c,Fr(s,ue(c,le(1))))),m=It(s.shape,i);return m.length>0&&(p=ye(p,m)),z(p,s.shape)},b:()=>{let c=er(s,0),p=$t(c,ar(s),Ie(s)),m=M(r,M(o,p)),f=It(a.shape,i);return f.length>0&&(m=ye(m,f)),z(m,a.shape)}}}};var aM={kernelName:yo,inputsToSave:["x","alpha"],gradFunc:(r,e)=>{let[t,n]=e,o=er(t,0);return{x:()=>$t(o,r,M(r,n)),alpha:()=>{let s=$t(o,Ie(r),M(r,t)),a=It(n.shape,r.shape);return a.length>0&&(s=ye(s,a)),z(s,n.shape)}}}};var lM={kernelName:Qn,inputsToSave:["a","b"],gradFunc:(r,e)=>{let[t,n]=e,o=ze(t.shape,n.shape);return{a:()=>{let i=de(r,ne(n,"float32")),l=It(t.shape,o);return l.length>0?z(ye(i,l),t.shape):i},b:()=>{let i=M(r,ne(t,"float32")),l=It(n.shape,o);l.length>0&&(i=z(ye(i,l),n.shape));let u=Pe(n);return Ue(de(i,ne(u,"float32")))}}}};var uM={kernelName:Ii,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>de(r,Ue(Pe(t)))}}};var cM={kernelName:_o,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e,n=M(Pn(t,6),As(t));return{x:()=>M(r,ne(n,"float32"))}}};var pM={kernelName:bo,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>M(r,ne(As(t),"float32"))}}};var mM={kernelName:fs,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>z(r,t.shape)}}};var fM={kernelName:wo,inputsToSave:["images"],gradFunc:(r,e,t)=>{let[n]=e,o={dy:r,images:n};return{images:()=>D.runKernel(mu,o,t)}}};var dM={kernelName:da,inputsToSave:["images"],gradFunc:(r,e,t)=>{let[n]=e,o={dy:r,images:n};return{images:()=>D.runKernel(pu,o,t)}}};var hM={kernelName:ko,gradFunc:(r,e,t)=>{let{dims:n}=t,o=Qt(n,r.shape);return{x:()=>Kt(r,o)}}};var gM={kernelName:vo,gradFunc:r=>({x:()=>Ie(r)})};var xM={kernelName:Co,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>Ue(de(r,M(Fr(t,1.5),2)))}}};var yM={kernelName:ds,inputsToSave:["condition"],gradFunc:(r,e)=>{let[t]=e;return{condition:()=>ne(Ie(t),"float32"),t:()=>M(r,ne(t,r.dtype)),e:()=>M(r,ne(Ta(t),r.dtype))}}};var bM={kernelName:Si,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>{let n=er(t,le(0)),o=le(u_),s=le(c_),a=M(r,s),i=M(M(r,o),Yt(ne(t,"float32")));return $t(n,a,i)}}}};var wM={kernelName:No,outputsToSave:[!0],gradFunc:(r,e)=>{let[t]=e;return{x:()=>M(r,M(t,ue(le(1),t)))}}};var _M={kernelName:Ei,gradFunc:r=>({x:()=>Ie(r)})};var kM={kernelName:Io,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>M(Ia(ne(t,"float32")),r)}}};var vM={kernelName:Ti,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>M(Iu(ne(t,"float32")),r)}}};var CM={kernelName:hs,inputsToSave:["x"],gradFunc:(r,e,t)=>{let[n]=e,{begin:o,size:s}=t,a=n.shape,[i,l]=mw(n,o,s),u=[];for(let c=0;c<r.rank;c++)u.push([i[c],a[c]-i[c]-l[c]]);return{x:()=>Rr(r,u)}}};var IM={kernelName:Eo,outputsToSave:[!0],gradFunc:(r,e,t)=>{let[n]=e,{dim:o}=t,s=!0,a=M(r,n);return{logits:()=>ue(a,M(ye(a,[o],s),n))}}};var NM={kernelName:Ai,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>M(r,Wr(t))}}};var w0={kernelName:ha,gradFunc:(r,e,t)=>{let{blockShape:n,paddings:o}=t;return{x:()=>Ca(r,n,o)}}};var _0={kernelName:gs,gradFunc:(r,e,t)=>{let{axis:n}=t;return{x:()=>Qe(r,n)}}};var SM={kernelName:So,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>de(r,M(yt(ne(t,"float32")),2))}}};var TM={kernelName:ga,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>M(r,M(ne(t,"float32"),2))}}};var EM={kernelName:Ao,inputsToSave:["a","b"],gradFunc:(r,e)=>{let[t,n]=e,o=le(2);return{a:()=>M(r,M(o,ue(t,n))),b:()=>M(r,M(o,ue(n,t)))}}};var AM={kernelName:$n,gradFunc:r=>({x:()=>Ie(r)})};var DM={kernelName:Do,inputsToSave:["a","b"],gradFunc:(r,e)=>{let[t,n]=e,o=ze(t.shape,n.shape);return{a:()=>{let i=r,l=It(t.shape,o);return l.length>0&&(i=ye(i,l)),z(i,t.shape)},b:()=>{let i=r,l=It(n.shape,o);return l.length>0&&(i=ye(i,l)),z(Ue(i),n.shape)}}}};var $M={kernelName:To,inputsToSave:["x"],gradFunc:(r,e,t)=>{let[n]=e,o=n.shape.slice(),{axis:s}=t;Qt(s,n.shape).forEach(u=>{o[u]=1});let i=z(r,o),l=M(i,Ir(n.shape,"float32"));return{x:()=>l}}};var RM={kernelName:$i,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>de(r,Pe(Ia(t)))}}};var FM={kernelName:$o,outputsToSave:[!0],gradFunc:(r,e)=>{let[t]=e;return{x:()=>M(ue(le(1),Pe(t)),r)}}};var OM={kernelName:yn,inputsToSave:["x"],gradFunc:(r,e,t)=>{let[n]=e,{reps:o}=t;return{x:()=>{let a=Ie(n);if(n.rank===1)for(let i=0;i<o[0];++i)a=Q(a,Fe(r,[i*n.shape[0]],[n.shape[0]]));else if(n.rank===2)for(let i=0;i<o[0];++i)for(let l=0;l<o[1];++l)a=Q(a,Fe(r,[i*n.shape[0],l*n.shape[1]],[n.shape[0],n.shape[1]]));else if(n.rank===3)for(let i=0;i<o[0];++i)for(let l=0;l<o[1];++l)for(let u=0;u<o[2];++u)a=Q(a,Fe(r,[i*n.shape[0],l*n.shape[1],u*n.shape[2]],[n.shape[0],n.shape[1],n.shape[2]]));else if(n.rank===4)for(let i=0;i<o[0];++i)for(let l=0;l<o[1];++l)for(let u=0;u<o[2];++u)for(let c=0;c<o[3];++c)a=Q(a,Fe(r,[i*n.shape[0],l*n.shape[1],u*n.shape[2],c*n.shape[3]],[n.shape[0],n.shape[1],n.shape[2],n.shape[3]]));else throw new Error(`Gradient for tile operation is not implemented for rank-${n.rank} tensors yet.`);return a}}}};var PM={kernelName:Ro,gradFunc:(r,e,t)=>{let n=t,{perm:o}=n,s=Wm(o);return{x:()=>We(r,s)}}};var MM={kernelName:xs,gradFunc:(r,e,t)=>{let n=t,{axis:o}=n;return{value:()=>Vt(r,o)}}};var LM={kernelName:xa,inputsToSave:["segmentIds"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>aJ(r,t)}}};function aJ(r,e){let t=Hr(e,Ie(e)),n=Po(r,t),o=tn(e,le(0,"int32")),s=n.rank-o.rank;for(let i=0;i<s;++i)o=ir(o,i+1);o=dr(o,Ir(n.shape,"bool"));let a=Ie(n);return $t(o,n,a)}var zM={kernelName:ys,gradFunc:r=>({x:()=>Ie(r)})};var lJ=[fx,UO,qO,HO,KO,XO,YO,ZO,JO,QO,eP,tP,nP,sP,iP,aP,lP,uP,cP,pP,mP,fP,hP,dP,xP,yP,bP,wP,_P,kP,lM,vP,CP,IP,NP,SP,EP,TP,AP,RP,FP,OP,PP,MP,LP,zP,BP,VP,GP,WP,y0,y0,UP,HP,XP,YP,ZP,JP,QP,eM,tM,rM,nM,oM,sM,b0,b0,iM,aM,uM,cM,pM,mM,fM,dM,hM,gM,xM,yM,bM,wM,_M,kM,vM,CM,IM,NM,w0,w0,_0,_0,SM,EM,TM,AM,DM,$M,RM,FM,OM,PM,MM,LM,zM];for(let r of lJ)zb(r);var S0={};Ye(S0,{maxNorm:()=>cJ,minMaxNorm:()=>fJ,nonNeg:()=>mJ,unitNorm:()=>pJ});var k0;function Zt(){return k0==null&&(k0=gw().epsilon()),k0}function Kr(){return"channelsLast"}var Cn=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Cn.prototype)}},Mr=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Mr.prototype)}},B=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,B.prototype)}},Se=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Se.prototype)}},zf=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,zf.prototype)}},v0=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,v0.prototype)}};function Ko(r,e){if(Array.isArray(r)){let t=[];for(let n=0;n<e;n++)t=t.concat(r);return t}else{let t=new Array(e);return t.fill(r),t}}function Ln(r,e){if(!r)throw new zf(e)}function C0(r,e){let t=0;for(let n of r)n===e&&t++;return t}function gr(r){return r.length===1?r[0]:r}function wt(r){return Array.isArray(r)?r:[r]}function Xo(r){let t=r.replace(/(.)([A-Z][a-z0-9]+)/g,"$1_$2").replace(/([a-z])([A-Z])/g,"$1_$2").toLowerCase();return t[0]!=="_"?t:"private"+t}function Ga(r){return r.length<=1||r.indexOf("_")===-1?r:r.replace(/[_]+(\w|$)/g,(e,t)=>t.toUpperCase())}var Yo={};function Ip(r){if(r==null)return null;let e={};return e.className=r.getClassName(),e.config=r.getConfig(),e}function I0(r){if(!(r==null||typeof r!="object"))if(Array.isArray(r))r.forEach(e=>I0(e));else{let e=Object.keys(r);for(let t of e){let n=r[t];n!=null&&typeof n=="object"&&(!Array.isArray(n)&&n.type==="ndarray"&&typeof n.value=="number"?r[t]=n.value:I0(n))}}}function Ui(r,e={},t={},n="object",o=!1){if(typeof r=="string"){let s=r,a;if(s in t)a=t[s];else if(s in Yo)a=Yo[s];else if(a=e[s],a==null)throw new B(`Unknown ${n}: ${r}. This may be due to one of the following reasons:
1. The ${n} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
2. The custom ${n} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);return a}else{let s=r;if(s.className==null||s.config==null)throw new B(`${n}: Improper config format: ${JSON.stringify(s)}.
'className' and 'config' must set.`);let a=s.className,i,l;if(a in t?[i,l]=t[a]:a in Yo?[i,l]=Yo.className:a in e&&([i,l]=e[a]),i==null)throw new B(`Unknown ${n}: ${a}. This may be due to one of the following reasons:
1. The ${n} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
2. The custom ${n} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);if(l!=null){let u={};for(let f of Object.keys(Yo))u[f]=Yo[f];for(let f of Object.keys(t))u[f]=t[f];let c=s.config;c.customObjects=u;let p=Object.assign({},Yo);for(let f of Object.keys(t))Yo[f]=t[f];I0(s.config);let m=l(i,s.config,t,o);return Yo=Object.assign({},p),m}else{let u=Object.assign({},Yo);for(let p of Object.keys(t))Yo[p]=t[p];let c=new i(s.config);return Yo=Object.assign({},u),c}}}function uJ(r,e){return r<e?-1:r>e?1:0}function Bf(r,e){return-1*uJ(r,e)}function Zo(r){if(r==null)return r;let e=[];for(let t of r)e.indexOf(t)===-1&&e.push(t);return e}function BM(r){if(r==null)throw new B(`Invalid value in obj: ${JSON.stringify(r)}`);for(let e in r)if(r.hasOwnProperty(e))return!1;return!0}function qi(r,e,t){if(t!=null&&r.indexOf(t)<0)throw new B(`${t} is not a valid ${e}. Valid values are ${r} or null/undefined.`)}function hx(r,e,t=0,n=Infinity){return Ln(t>=0),Ln(n>=t),Array.isArray(r)&&r.length>=t&&r.length<=n&&r.every(o=>typeof o===e)}function qt(r,e){Array.isArray(r)?(y.assert(r.length>0,()=>`${e} is unexpectedly an empty array.`),r.forEach((t,n)=>qt(t,`element ${n+1} of ${e}`))):y.assert(Number.isInteger(r)&&r>0,()=>`Expected ${e} to be a positive integer, but got ${VM(r)}.`)}function VM(r){return r===null?"null":Array.isArray(r)?"["+r.map(e=>VM(e)).join(",")+"]":typeof r=="string"?`"${r}"`:`${r}`}function GM(r,e){let t=y.now(),n;return(...s)=>{let a=y.now();return a-t<e||(t=a,n=r(...s)),n}}function gx(r){return r==="relu"?"relu":r==="linear"?"linear":r==="elu"?"elu":null}function N0(r,e){return V(()=>yt(ye(M(r,r),e,!0)))}var Np=class extends J.Serializable{getConfig(){return{}}},Vf=class extends Np{constructor(e){super();this.defaultMaxValue=2,this.defaultAxis=0,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return V(()=>{let t=N0(e,this.axis),n=sr(t,0,this.maxValue);return M(e,de(n,Q(Zt(),t)))})}getConfig(){return{maxValue:this.maxValue,axis:this.axis}}};Vf.className="MaxNorm";J.registerClass(Vf);var Gf=class extends Np{constructor(e){super();this.defaultAxis=0,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return V(()=>de(e,Q(Zt(),N0(e,this.axis))))}getConfig(){return{axis:this.axis}}};Gf.className="UnitNorm";J.registerClass(Gf);var jf=class extends Np{apply(e){return Nr(e)}};jf.className="NonNeg";J.registerClass(jf);var Wf=class extends Np{constructor(e){super();this.defaultMinValue=0,this.defaultMaxValue=1,this.defaultRate=1,this.defaultAxis=0,this.minValue=e.minValue!=null?e.minValue:this.defaultMinValue,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.rate=e.rate!=null?e.rate:this.defaultRate,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return V(()=>{let t=N0(e,this.axis),n=Q(M(this.rate,sr(t,this.minValue,this.maxValue)),M(1-this.rate,t));return M(e,de(n,Q(Zt(),t)))})}getConfig(){return{minValue:this.minValue,maxValue:this.maxValue,rate:this.rate,axis:this.axis}}};Wf.className="MinMaxNorm";J.registerClass(Wf);var jM={maxNorm:"MaxNorm",minMaxNorm:"MinMaxNorm",nonNeg:"NonNeg",unitNorm:"UnitNorm"};function Mt(r){return Ip(r)}function WM(r,e={}){return Ui(r,J.SerializationMap.getMap().classNameMap,e,"constraint")}function Lt(r){if(r==null)return null;if(typeof r=="string"){let t={className:r in jM?jM[r]:r,config:{}};return WM(t)}else return r instanceof Np?r:WM(r)}function cJ(r){return new Vf(r)}function pJ(r){return new Gf(r)}function mJ(){return new jf}function fJ(r){return new Wf(r)}var $0={};Ye($0,{constant:()=>_J,glorotNormal:()=>TJ,glorotUniform:()=>SJ,heNormal:()=>EJ,heUniform:()=>AJ,identity:()=>IJ,leCunNormal:()=>DJ,leCunUniform:()=>$J,ones:()=>wJ,orthogonal:()=>RJ,randomNormal:()=>vJ,randomUniform:()=>kJ,truncatedNormal:()=>CJ,varianceScaling:()=>NJ,zeros:()=>bJ});var UM=["channelsFirst","channelsLast"],qM=["nearest","bilinear"],HM=["valid","same","causal"],KM=["max","avg"],XM=["sum","mul","concat","ave"];var Sp=new Map;function Ft(r){qi(UM,"DataFormat",r)}function YM(r){qi(qM,"InterpolationFormat",r)}function Xr(r){qi(HM,"PaddingMode",r)}function T0(r){qi(KM,"PoolMode",r)}var Uf=[],ZM="/";function Ps(r,e){Uf.push(r);try{let t=e();return Uf.pop(),t}catch(t){throw Uf.pop(),t}}function dJ(){return Uf.length===0?"":Uf.join(ZM)+ZM}function xx(r){if(!JM(r))throw new Error("Not a valid tensor name: '"+r+"'");return dJ()+r}function yx(r){if(!JM(r))throw new Error("Not a valid tensor name: '"+r+"'");Sp.has(r)||Sp.set(r,0);let e=Sp.get(r);if(Sp.set(r,Sp.get(r)+1),e>0){let t=`${r}_${e}`;return Sp.set(t,1),t}else return r}var hJ=new RegExp(/^[A-Za-z0-9][-A-Za-z0-9\._\/]*$/);function JM(r){return!!r.match(hJ)}function QM(r){return r===parseInt(r.toString(),10)}function Jo(r,e,t){e==null&&(e=0),t==null&&(t=r.length);let n=1;for(let o=e;o<t;++o)n*=r[o];return n}function eL(r){return r=Array.isArray(r)?new Float32Array(r):r,Gt(r)}function sc(r){return zi(eL(r)).dataSync()[0]}function Ms(r){return lr(eL(r)).dataSync()[0]}function Lr(r,e){if(e<r)throw new B(`end (${e}) < begin (${r}) is forbidden.`);let t=[];for(let n=r;n<e;++n)t.push(n);return t}function ja(r,e){return r.asType(e)}function Wa(r,e=-1){let t=r.shape.slice();return e<0&&(e=t.length+e+1),t.splice(e,0,1),r.reshape(t)}function tL(r,e){return V(()=>{if(r.shape.length!==2)throw new B(`repeat() expects a rank-2 tensor, but received a rank-${r.shape.length} tensor.`);let t=Wa(r,1);return bx(t,[1,e,1])})}function rL(r){let e=[Jo(r.shape)];return r.reshape(e)}function nL(r){if(r.rank<=1)throw new B(`batchFlatten requires a minimum rank of 2. Got rank: ${r.rank}.`);let e=[r.shape[0],Jo(r.shape,1)];return r.reshape(e)}function Ua(r,e,t){return V(()=>{switch(r.rank){case 1:return Qm(r,e,t);case 2:return hg(r,[e,0],[t,r.shape[1]]);case 3:return ef(r,[e,0,0],[t,r.shape[1],r.shape[2]]);case 4:return Qc(r,[e,0,0,0],[t,r.shape[1],r.shape[2],r.shape[3]]);case 5:return Fe(r,[e,0,0,0,0],[t,r.shape[1],r.shape[2],r.shape[3],r.shape[4]]);case 6:return Fe(r,[e,0,0,0,0,0],[t,r.shape[1],r.shape[2],r.shape[3],r.shape[4],r.shape[5]]);default:throw new B(`sliceAlongFirstAxis() received an unsupported tensor rank: ${r.rank}`)}})}function E0(r,e,t){return V(()=>{switch(r.rank){case 1:return Qm(r,e,t);case 2:return hg(r,[0,e],[r.shape[0],t]);case 3:return ef(r,[0,0,e],[r.shape[0],r.shape[1],t]);case 4:return Qc(r,[0,0,0,e],[r.shape[0],r.shape[1],r.shape[2],t]);default:throw new B(`sliceAlongLastAxis() received an unsupported tensor rank: ${r.rank}`)}})}function qf(r,e,t,n){return V(()=>{switch(r.rank){case 1:return Qm(r,e,t);case 2:switch(n){case 1:return Ua(r,e,t);case 2:return E0(r,e,t);default:throw new B(`The axis is not within the rank of the tensor ${n}`)}case 3:switch(n){case 1:return Ua(r,e,t);case 2:return ef(r,[0,e,0],[r.shape[0],t,r.shape[2]]);case 3:return E0(r,e,t);default:throw new B(`The axis is not within the rank of the tensor ${n}`)}case 4:switch(n){case 1:return Ua(r,e,t);case 2:return Qc(r,[0,e,0,0],[r.shape[0],t,r.shape[2],r.shape[3]]);case 3:return Qc(r,[0,0,e,0],[r.shape[0],r.shape[1],t,r.shape[3]]);case 4:return E0(r,e,t);default:throw new B(`The axis is not within the rank of the tensor ${n}`)}default:throw new B(`sliceAlongLastAxis() received an unsupported tensor rank: ${r.rank}`)}})}function Tp(r,e=-1){let t;return e<0&&(t=r[0].rank,t!==0?e=t:e=0),e===r[0].rank&&(e=-1),Qe(r,e)}function A0(r,e){switch(r.rank){case 1:return Iw([r,e]);case 2:return Nw([r,e],0);case 3:return Sw([r,e],0);case 4:return Tw([r,e],0);default:throw new B(`concatAlongFirstAxis() received an unsupported tensor rank: ${r.rank}`)}}function bx(r,e){if(Array.isArray(e)||(e=[e]),r.rank!==e.length)throw new B(`The length of input n (${e.length}) does not match the number of dimensions in input x (${r.rank})`);return On(r,e)}function Ep(r,e=0,t=1,n,o){return dg(r,e,t,n,o)}function Qo(r,e,t,n){if(r.rank<2||e.rank<2)throw new Se(`dot requires both inputs to be rank >= 2 but got x shape = ${r.shape} and y shape = ${e.shape}`);if(e.rank>=3){let o=r.shape.slice(-1)[0],s=e.shape.slice(-2)[0];if(o!==s)throw new Se(`If rank y >= 3, then the second last dim of y must equal the last dim of x but got x shape = ${r.shape} and y shape = ${e.shape}`)}if(r.rank===2&&e.rank===2){let o=!1,s=!1;return zo.matMul({a:r,b:e,transposeA:o,transposeB:s,bias:n?D0(r.rank,n,Kr()):null,activation:t})}else{let o=r.shape.slice(),s=o.pop();r=r.reshape([-1,s]);let a=e.shape.slice(),i=a.pop(),l=a.pop(),u=[...a,i],c=Array.from({length:e.rank},(d,h)=>h===0?e.rank-2:h<=e.rank-2?h-1:h);e=e.transpose(c).reshape([l,-1]);let p=[...o,...u],m=!1,f=!1;return zo.matMul({a:r,b:e,transposeA:m,transposeB:f,bias:n?D0(r.rank,n,Kr()):null,activation:t}).reshape(p)}}function wx(r,e,t){return V(()=>(Array.isArray(e)?e=Gt(e,"int32"):e=e.toInt(),Po(r,e,t)))}function ic(r){return M(r,r)}function D0(r,e,t){let n=e.shape;if(e.rank!==1&&e.rank!==r)throw new B(`Unexpected bias dimensions: ${e.rank}; expected it to be 1 or ${r}`);if(r===5){if(t==="channelsFirst")return n.length===1?e.reshape([1,n[0],1,1,1]):e.reshape([1,n[3],n[0],n[1],n[2]]);if(t==="channelsLast")return n.length===1?e.reshape([1,1,1,1,n[0]]):e.reshape([1].concat(n))}else if(r===4){if(t==="channelsFirst")return n.length===1?e.reshape([1,n[0],1,1]):e.reshape([1,n[2],n[0],n[1]]);if(t==="channelsLast")return n.length===1?e.reshape([1,1,1,n[0]]):e.reshape([1].concat(n))}else if(r===3){if(t==="channelsFirst")return n.length===1?e.reshape([1,n[0],1]):e.reshape([1,n[1],n[0]]);if(t==="channelsLast")return n.length===1?e.reshape([1,1,n[0]]):e.reshape([1].concat(n))}else if(r<3)return e;throw new B(`Unsupported input rank by biasAdd: ${e.rank}`)}function on(r,e,t){return V(()=>(t==null&&(t=Kr()),Ft(t),r.add(D0(r.rank,e,t))))}function oL(r,e=1){if(e!==1)throw new Se(`Support for alpha values other than 1 (${e}) is not implemented yet.`);return Is(r)}function sL(r){return V(()=>de(r,Et(r).add(1)))}function _x(r,e,t,n){return V(()=>r_(r,e,t,n))}function iL(r){return V(()=>{let e=Q(.5,M(.2,r));return sr(e,0,1)})}function wl(r,e,t=!1){return t?r():e()}var aL=["fanIn","fanOut","fanAvg"],lL=["normal","uniform","truncatedNormal"];function gJ(r){qi(aL,"FanMode",r)}function xJ(r){qi(lL,"Distribution",r)}var sn=class extends J.Serializable{fromConfigUsesCustomObjects(){return!1}getConfig(){return{}}},Hf=class extends sn{apply(e,t){return xt(e,t)}};Hf.className="Zeros";J.registerClass(Hf);var ac=class extends sn{apply(e,t){return Ir(e,t)}};ac.className="Ones";J.registerClass(ac);var Kf=class extends sn{constructor(e){super();if(typeof e!="object")throw new B(`Expected argument of type ConstantConfig but got ${e}`);if(e.value===void 0)throw new B(`config must have value set but got ${e}`);this.value=e.value}apply(e,t){return V(()=>M(le(this.value),Ir(e,t)))}getConfig(){return{value:this.value}}};Kf.className="Constant";J.registerClass(Kf);var Xf=class extends sn{constructor(e){super();this.DEFAULT_MINVAL=-.05,this.DEFAULT_MAXVAL=.05,this.minval=e.minval||this.DEFAULT_MINVAL,this.maxval=e.maxval||this.DEFAULT_MAXVAL,this.seed=e.seed}apply(e,t){return Es(e,this.minval,this.maxval,t)}getConfig(){return{minval:this.minval,maxval:this.maxval,seed:this.seed}}};Xf.className="RandomUniform";J.registerClass(Xf);var Yf=class extends sn{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Se(`randomNormal does not support dType ${t}.`);return Ep(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};Yf.className="RandomNormal";J.registerClass(Yf);var Zf=class extends sn{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Se(`truncatedNormal does not support dType ${t}.`);return Vu(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};Zf.className="TruncatedNormal";J.registerClass(Zf);var Jf=class extends sn{constructor(e){super();this.gain=e.gain!=null?e.gain:1}apply(e,t){return V(()=>{if(e.length!==2||e[0]!==e[1])throw new B("Identity matrix initializer can only be used for 2D square matrices.");return M(this.gain,Xc(e[0]))})}getConfig(){return{gain:this.gain}}};Jf.className="Identity";J.registerClass(Jf);function yJ(r,e="channelsLast"){let t,n;if(Ft(e),r.length===2)t=r[0],n=r[1];else if([3,4,5].indexOf(r.length)!==-1){if(e==="channelsFirst"){let o=Jo(r,2);t=r[1]*o,n=r[0]*o}else if(e==="channelsLast"){let o=Jo(r,0,r.length-2);t=r[r.length-2]*o,n=r[r.length-1]*o}}else{let o=Jo(r);t=Math.sqrt(o),n=Math.sqrt(o)}return[t,n]}var zr=class extends sn{constructor(e){super();if(e.scale<0)throw new B(`scale must be a positive float. Got: ${e.scale}`);this.scale=e.scale==null?1:e.scale,this.mode=e.mode==null?"fanIn":e.mode,gJ(this.mode),this.distribution=e.distribution==null?"normal":e.distribution,xJ(this.distribution),this.seed=e.seed}apply(e,t){let n=yJ(e),o=n[0],s=n[1],a=this.scale;if(this.mode==="fanIn"?a/=Math.max(1,o):this.mode==="fanOut"?a/=Math.max(1,s):a/=Math.max(1,(o+s)/2),this.distribution==="normal"){let i=Math.sqrt(a);if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Se(`${this.getClassName()} does not support dType ${t}.`);return Vu(e,0,i,t,this.seed)}else{let i=Math.sqrt(3*a);return Es(e,-i,i,t)}}getConfig(){return{scale:this.scale,mode:this.mode,distribution:this.distribution,seed:this.seed}}};zr.className="VarianceScaling";J.registerClass(zr);var Ap=class extends zr{constructor(e){super({scale:1,mode:"fanAvg",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return zr.className}};Ap.className="GlorotUniform";J.registerClass(Ap);var Dp=class extends zr{constructor(e){super({scale:1,mode:"fanAvg",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return zr.className}};Dp.className="GlorotNormal";J.registerClass(Dp);var $p=class extends zr{constructor(e){super({scale:2,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return zr.className}};$p.className="HeNormal";J.registerClass($p);var Rp=class extends zr{constructor(e){super({scale:2,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return zr.className}};Rp.className="HeUniform";J.registerClass(Rp);var Fp=class extends zr{constructor(e){super({scale:1,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return zr.className}};Fp.className="LeCunNormal";J.registerClass(Fp);var Op=class extends zr{constructor(e){super({scale:1,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return zr.className}};Op.className="LeCunNormal";J.registerClass(Op);var Qf=class extends sn{constructor(e){super();if(this.DEFAULT_GAIN=1,this.gain=e.gain==null?this.DEFAULT_GAIN:e.gain,this.seed=e.seed,this.seed!=null)throw new Se("Random seed is not implemented for Orthogonal Initializer yet.")}apply(e,t){return V(()=>{if(e.length<2)throw new Se("Shape must be at least 2D.");e[0]*e[1]>2e3&&console.warn(`Orthogonal initializer is being called on a matrix with more than 2000 (${e[0]*e[1]}) elements: Slowness may result.`);let n=e[0]>e[1]?[e[1],e[0]]:e,o=Ep(n,0,1,"float32"),s=l_.gramSchmidt(o);return e[0]>e[1]&&(s=s.transpose()),M(this.gain,s)})}getConfig(){return{gain:this.gain,seed:this.seed}}};Qf.className="Orthogonal";J.registerClass(Qf);var uL={constant:"Constant",glorotNormal:"GlorotNormal",glorotUniform:"GlorotUniform",heNormal:"HeNormal",heUniform:"HeUniform",identity:"Identity",leCunNormal:"LeCunNormal",leCunUniform:"LeCunUniform",ones:"Ones",orthogonal:"Orthogonal",randomNormal:"RandomNormal",randomUniform:"RandomUniform",truncatedNormal:"TruncatedNormal",varianceScaling:"VarianceScaling",zeros:"Zeros"};function cL(r,e={}){return Ui(r,J.SerializationMap.getMap().classNameMap,e,"initializer")}function Nt(r){return Ip(r)}function dt(r){if(typeof r=="string"){let e=r in uL?uL[r]:r;if(e==="GlorotNormal")return new Dp;if(e==="GlorotUniform")return new Ap;if(e==="HeNormal")return new $p;if(e==="HeUniform")return new Rp;if(e==="LeCunNormal")return new Fp;if(e==="LeCunUniform")return new Op;{let t={};return t.className=e,t.config={},cL(t)}}else return r instanceof sn?r:cL(r)}function bJ(){return new Hf}function wJ(){return new ac}function _J(r){return new Kf(r)}function kJ(r){return new Xf(r)}function vJ(r){return new Yf(r)}function CJ(r){return new Zf(r)}function IJ(r){return new Jf(r)}function NJ(r){return new zr(r)}function SJ(r){return new Ap(r)}function TJ(r){return new Dp(r)}function EJ(r){return new $p(r)}function AJ(r){return new Rp(r)}function DJ(r){return new Fp(r)}function $J(r){return new Op(r)}function RJ(r){return new Qf(r)}var dC={};Ye(dC,{Layer:()=>Me,RNN:()=>cn,RNNCell:()=>Tl,activation:()=>ZQ,add:()=>iee,alphaDropout:()=>jee,average:()=>aee,averagePooling1d:()=>hC,averagePooling2d:()=>gC,averagePooling3d:()=>xC,avgPool1d:()=>gee,avgPool2d:()=>yee,avgPool3d:()=>wee,avgPooling1d:()=>xee,avgPooling2d:()=>bee,avgPooling3d:()=>_ee,batchNormalization:()=>fee,bidirectional:()=>Oee,concatenate:()=>lee,conv1d:()=>jQ,conv2d:()=>WQ,conv2dTranspose:()=>UQ,conv3d:()=>qQ,convLstm2d:()=>Dee,convLstm2dCell:()=>$ee,cropping2D:()=>KQ,dense:()=>JQ,depthwiseConv2d:()=>YQ,dot:()=>mee,dropout:()=>QQ,elu:()=>MQ,embedding:()=>see,flatten:()=>tee,gaussianDropout:()=>Gee,gaussianNoise:()=>Vee,globalAveragePooling1d:()=>kee,globalAveragePooling2d:()=>vee,globalMaxPool1d:()=>Mee,globalMaxPool2d:()=>Lee,globalMaxPooling1d:()=>UL,globalMaxPooling2d:()=>qL,gru:()=>Iee,gruCell:()=>Nee,input:()=>jx,inputLayer:()=>PQ,layerNormalization:()=>dee,leakyReLU:()=>zQ,lstm:()=>See,lstmCell:()=>Tee,masking:()=>Wee,maxPool1d:()=>zee,maxPool2d:()=>Bee,maxPooling1d:()=>HL,maxPooling2d:()=>KL,maxPooling3d:()=>Cee,maximum:()=>uee,minimum:()=>cee,multiply:()=>pee,permute:()=>oee,prelu:()=>BQ,reLU:()=>LQ,repeatVector:()=>ree,reshape:()=>nee,rnn:()=>Ree,separableConv2d:()=>HQ,simpleRNN:()=>Eee,simpleRNNCell:()=>Aee,softmax:()=>VQ,spatialDropout1d:()=>eee,stackedRNNCells:()=>Fee,thresholdedReLU:()=>GQ,timeDistributed:()=>Pee,upSampling2d:()=>XQ,zeroPadding2d:()=>hee});var FJ=0;function kx(){return FJ++}var vx={};function _l(r=""){return r in vx||(vx[r]=0),vx[r]+=1,r+vx[r].toString()}function Cx(r){return Array.isArray(r)&&Array.isArray(r[0])}function Pp(r){return r.length===0?[]:Array.isArray(r[0])?r:[r]}function Oe(r){let e;if(Array.isArray(r)){if(r.length!==1)throw new B(`Expected Tensor length to be 1; got ${r.length}`);e=r[0]}else e=r;return e}function et(r){if(Array.isArray(r)&&Array.isArray(r[0])){if(r.length===1)return r=r,r[0];throw new B(`Expected exactly 1 Shape; got ${r.length}`)}else return r}function Mp(r){let e=0;for(let t of r)t.shape.length===0?e+=1:e+=t.shape.reduce((n,o)=>n*o);return e}var pL="Variable",ed=class{constructor(e,t="float32",n=pL,o=!0,s=null){this.dtype=t==null?"float32":t,this.shape=e.shape,this.id=kx(),n=n==null?pL:n,this.originalName=xx(n),this.name=yx(this.originalName),this.trainable_=o,this.constraint=s,this.val=Jw(e,this.trainable_,this.name,this.dtype)}read(){return this.assertNotDisposed(),this.val}write(e){return this.assertNotDisposed(),OJ(this.val,e),this.val.id!==e.id&&(this.val.assign(e),this.constraint!=null&&this.val.assign(this.constraint.apply(this.val))),this}dispose(){this.assertNotDisposed(),this.val.dispose()}assertNotDisposed(){if(this.val.isDisposed)throw new Error(`LayersVariable ${this.name} is already disposed.`)}get trainable(){return this.trainable_}set trainable(e){this.trainable_=e,this.val.trainable=e}};function OJ(r,e){if(r.shape.toString()!==e.shape.toString())throw new Error("Shape mismatch: "+JSON.stringify(r.shape)+" vs. "+JSON.stringify(e.shape))}function td(r){return r.map(e=>e.read())}function Lp(r){r.forEach(e=>{e[0].write(e[1])})}var At=class{constructor(e){this.dtype=e.dtype,this.shape=e.shape,e.shape!=null?this.ndim=e.shape.length:this.ndim=e.ndim,this.maxNDim=e.maxNDim,this.minNDim=e.minNDim,this.axes=e.axes||{}}},Br=class{constructor(e,t,n,o,s,a,i){this.dtype=e,this.shape=t,this.sourceLayer=n,this.inputs=o,this.callArgs=s,this.outputTensorIndex=i,this.id=kx(),a!=null&&(this.originalName=xx(a),this.name=yx(this.originalName)),this.rank=t.length}},PJ=0,kl=class{constructor(e,t){this.callArgs=t,this.id=PJ++,this.outboundLayer=e.outboundLayer,this.inboundLayers=e.inboundLayers,this.nodeIndices=e.nodeIndices,this.tensorIndices=e.tensorIndices,this.inputTensors=e.inputTensors,this.outputTensors=e.outputTensors,this.inputMasks=e.inputMasks,this.outputMasks=e.outputMasks,this.inputShapes=e.inputShapes,this.outputShapes=e.outputShapes;for(let n of e.inboundLayers)n!=null&&n.outboundNodes.push(this);e.outboundLayer.inboundNodes.push(this)}getConfig(){let e=[];for(let t of this.inboundLayers)t!=null?e.push(t.name):e.push(null);return{outboundLayer:this.outboundLayer?this.outboundLayer.name:null,inboundLayers:e,nodeIndices:this.nodeIndices,tensorIndices:this.tensorIndices}}},MJ=0,Me=class extends J.Serializable{constructor(e={}){super();this._callHook=null,this._addedWeightNames=[],this._stateful=!1,this.id=MJ++,this.activityRegularizer=null,this.inputSpec=null,this.supportsMasking=!1,this._trainableWeights=[],this._nonTrainableWeights=[],this._losses=[],this._updates=[],this._built=!1,this.inboundNodes=[],this.outboundNodes=[];let t=e.name;if(!t){let n=this.getClassName();t=Xo(n)+"_"+_l(n)}if(this.name=t,this.trainable_=e.trainable==null?!0:e.trainable,e.inputShape!=null||e.batchInputShape!=null){let n;if(e.batchInputShape!=null)n=e.batchInputShape;else if(e.inputShape!=null){let s=null;e.batchSize!=null&&(s=e.batchSize),n=[s].concat(e.inputShape)}this.batchInputShape=n;let o=e.dtype;o==null&&(o=e.inputDType),o==null&&(o="float32"),this.dtype=o}e.weights!=null?this.initialWeights=e.weights:this.initialWeights=null,this._refCount=null,this.fastWeightInitDuringBuild=!1}static nodeKey(e,t){return e.name+"_ib-"+t.toString()}getNodeAtIndex(e,t){if(this.inboundNodes.length===0)throw new Mr(`The layer has never been called and thus has no defined ${t}.`);if(this.inboundNodes.length<=e)throw new B(`Asked to get ${t} at node ${e}, but the layer has only ${this.inboundNodes.length} inbound nodes.`);return this.inboundNodes[e]}getInputAt(e){return gr(this.getNodeAtIndex(e,"input").inputTensors)}getOutputAt(e){return gr(this.getNodeAtIndex(e,"output").outputTensors)}get input(){if(this.inboundNodes.length>1)throw new Cn(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer input" is ill-defined. Use \`getInputAt(nodeIndex)\` instead.`);if(this.inboundNodes.length===0)throw new Cn(`Layer ${this.name} is not connected, no input to return.`);return gr(this.getNodeAtIndex(0,"input").inputTensors)}get output(){if(this.inboundNodes.length===0)throw new Cn(`Layer ${this.name} has no inbound nodes.`);if(this.inboundNodes.length>1)throw new Cn(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer output" is ill-defined. Use \`getOutputAt(nodeIndex)\` instead.`);return gr(this.getNodeAtIndex(0,"output").outputTensors)}get losses(){return this._losses}calculateLosses(){return this.losses.map(e=>e())}get updates(){return this._updates}get built(){return this._built}set built(e){this._built=e}get trainable(){return this.trainable_}set trainable(e){this._trainableWeights.forEach(t=>t.trainable=e),this.trainable_=e}get trainableWeights(){return this.trainable_?this._trainableWeights.filter(e=>e.trainable):[]}set trainableWeights(e){this._trainableWeights=e}get nonTrainableWeights(){return this.trainable?this._trainableWeights.filter(e=>!e.trainable).concat(this._nonTrainableWeights):this._trainableWeights.concat(this._nonTrainableWeights)}set nonTrainableWeights(e){this._nonTrainableWeights=e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}get stateful(){return this._stateful}resetStates(){if(!this.stateful)throw new Error("Cannot call the resetStates() method of a non-stateful Layer object.")}assertInputCompatibility(e){if(e=wt(e),this.inputSpec==null||this.inputSpec.length===0)return;let t=wt(this.inputSpec);if(e.length!==t.length)throw new B(`Layer ${this.name} expects ${t.length} inputs, but it received ${e.length} input tensors. Input received: ${e}`);for(let n=0;n<e.length;n++){let o=e[n],s=t[n];if(s==null)continue;let a=o.rank;if(s.ndim!=null&&a!==s.ndim)throw new B(`Input ${n} is incompatible with layer ${this.name}: expected ndim=${s.ndim}, found ndim=${a}`);if(s.maxNDim!=null&&a>s.maxNDim)throw new B(`Input ${n} is incompatible with layer ${this.name}: expected max_ndim=${s.maxNDim}, found ndim=${a}`);if(s.minNDim!=null&&a<s.minNDim)throw new B(`Input ${n} is incompatible with layer ${this.name}: expected min_ndim=${s.minNDim}, found ndim=${a}.`);if(s.dtype!=null&&o.dtype!==s.dtype)throw new B(`Input ${n} is incompatible with layer ${this.name} : expected dtype=${s.dtype}, found dtype=${o.dtype}.`);if(s.axes){let i=o.shape;for(let l in s.axes){let u=Number(l),c=s.axes[l],p=u>=0?i[u]:i[i.length+u];if(c!=null&&[c,null].indexOf(p)===-1)throw new B(`Input ${n} is incompatible with layer ${this.name}: expected axis ${u} of input shape to have value ${c} but got shape ${i}.`)}}if(s.shape!=null)for(let i=0;i<s.shape.length;++i){let l=s.shape[i],u=o.shape[i];if(l!=null&&u!=null&&l!==u)throw new B(`Input ${n} is incompatible with layer ${this.name}: expected shape=${s.shape}, found shape=${o.shape}.`)}}}call(e,t){return e}invokeCallHook(e,t){this._callHook!=null&&this._callHook(e,t)}setCallHook(e){this._callHook=e}clearCallHook(){this._callHook=null}apply(e,t){t=t||{},this.assertNotDisposed();let n=wt(e),o=!0;for(let a of n)if(!(a instanceof Br)){o=!1;break}let s=!0;for(let a of n)if(a instanceof Br){s=!1;break}if(o===s)throw new B("Arguments to apply() must be all SymbolicTensors or all Tensors");return Ps(this.name,()=>{if(!this.built){this.assertInputCompatibility(e);let a=[];for(let i of wt(e))a.push(i.shape);this.build(gr(a)),this.built=!0,this.initialWeights&&this.setWeights(this.initialWeights),this._refCount===null&&s&&(this._refCount=1)}if(this.assertInputCompatibility(e),s){let a=this.call(e,t),i=wt(a),l=[];for(let u of i)n.indexOf(u)!==-1&&(u=u.clone()),l.push(u);if(a=gr(l),this.activityRegularizer!=null)throw new Se("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return a}else{let a=LJ(e),i=this.computeOutputShape(a),l,u=zJ(e);if(this.warnOnIncompatibleInputShape(Array.isArray(e)?a[0]:a),i!=null&&i.length>0&&Array.isArray(i[0])?l=i.map((c,p)=>new Br(u,c,this,wt(e),t,this.name,p)):l=new Br(u,i,this,wt(e),t,this.name),this.addInboundNode(e,l,null,null,a,i,t),this._refCount++,this.activityRegularizer!=null)throw new Se("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return l}})}warnOnIncompatibleInputShape(e){if(this.batchInputShape!=null)if(e.length!==this.batchInputShape.length)console.warn(`The rank of the input tensor provided (shape: ${JSON.stringify(e)}) does not match that of the batchInputShape (${JSON.stringify(this.batchInputShape)}) of the layer ${this.name}`);else{let t=!1;this.batchInputShape.forEach((n,o)=>{n!=null&&e[o]!=null&&e[o]!==n&&(t=!0)}),t&&console.warn(`The shape of the input tensor (${JSON.stringify(e)}) does not match the expectation of layer ${this.name}: ${JSON.stringify(this.batchInputShape)}`)}}get outputShape(){if(this.inboundNodes==null||this.inboundNodes.length===0)throw new Cn(`The layer ${this.name} has never been called and thus has no defined output shape.`);let e=[];for(let t of this.inboundNodes){let n=JSON.stringify(t.outputShapes);e.indexOf(n)===-1&&e.push(n)}if(e.length===1){let t=this.inboundNodes[0].outputShapes;return Array.isArray(t)&&Array.isArray(t[0])&&t.length===1?t[0]:t}else throw new Cn(`The layer ${this.name} has multiple inbound nodes with different output shapes. Hence the notion of "output shape" is ill-defined for the layer.`)}countParams(){if(!this.built)throw new Mr(`You tried to call countParams() on ${this.name}, but the layer is not built yet. Build it first by calling build(batchInputShape).`);return Mp(this.weights)}build(e){this.built=!0}getWeights(e=!1){return td(e?this.trainableWeights:this.weights)}setWeights(e){V(()=>{let t=this.weights;if(t.length!==e.length)throw new B(`You called setWeights(weights) on layer "${this.name}" with a weight list of length ${e.length}, but the layer was expecting ${t.length} weights. Provided weights: ${e}...`);if(t.length===0)return;let n=[],o=td(t);for(let s=0;s<o.length;++s){let a=o[s],i=t[s],l=e[s];if(!y.arraysEqual(a.shape,l.shape))throw new B(`Layer weight shape ${a.shape} not compatible with provided weight shape ${l.shape}`);n.push([i,l])}Lp(n)})}addWeight(e,t,n,o,s,a,i){if(this._addedWeightNames.indexOf(e)!==-1)throw new B(`Duplicate weight name ${e} for layer ${this.name}`);this._addedWeightNames.push(e),n==null&&(n="float32"),this.fastWeightInitDuringBuild&&(o=dt("zeros"));let l=o.apply(t,n),u=new ed(l,n,e,a,i);return l.dispose(),s!=null&&this.addLoss(()=>s.apply(u.read())),a==null&&(a=!0),a?this._trainableWeights.push(u):this._nonTrainableWeights.push(u),u}setFastWeightInitDuringBuild(e){this.fastWeightInitDuringBuild=e}addLoss(e){e==null||Array.isArray(e)&&e.length===0||(e=wt(e),this._losses!==void 0&&this._losses!==null&&this.losses.push(...e))}computeOutputShape(e){return e}computeMask(e,t){if(!this.supportsMasking){if(t!=null)if(Array.isArray(t))t.forEach(n=>{if(n!=null)throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`)});else throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`);return null}return t}addInboundNode(e,t,n,o,s,a,i=null){let l=wt(e);t=wt(t),n=wt(n),o=wt(o),s=Pp(s),a=Pp(a);let u=[],c=[],p=[];for(let m of l)u.push(m.sourceLayer),c.push(m.nodeIndex),p.push(m.tensorIndex);new kl({outboundLayer:this,inboundLayers:u,nodeIndices:c,tensorIndices:p,inputTensors:l,outputTensors:t,inputMasks:n,outputMasks:o,inputShapes:s,outputShapes:a},i);for(let m=0;m<t.length;m++)t[m].sourceLayer=this,t[m].nodeIndex=this.inboundNodes.length-1,t[m].tensorIndex=m}getConfig(){let e={name:this.name,trainable:this.trainable};return this.batchInputShape!=null&&(e.batchInputShape=this.batchInputShape),this.dtype!=null&&(e.dtype=this.dtype),e}disposeWeights(){return this.weights.forEach(e=>e.dispose()),this.weights.length}assertNotDisposed(){if(this._refCount===0)throw new Error(`Layer '${this.name}' is already disposed.`)}dispose(){if(!this.built)throw new Error(`Cannot dispose Layer ${this.name} because it has not been built yet.`);if(this._refCount===null)throw new Error(`Cannot dispose Layer ${this.name} because it has not been used yet.`);this.assertNotDisposed();let e=0;return--this._refCount==0&&(e=this.disposeWeights()),{refCountAfterDispose:this._refCount,numDisposedVariables:e}}};function LJ(r){r=wt(r);let e=[];for(let t of r)e.push(t.shape);return gr(e)}function zJ(r){return"float32"}function R0(r,e,t){if((e==null||t!=null&&t>0)&&(e=r.sourceLayer,t=r.nodeIndex),e.inboundNodes.length===0)return[r];{let n=e.inboundNodes[t];if(n.inboundLayers.length===0)return n.inputTensors;{let o=[];for(let s=0;s<n.inboundLayers.length;s++){let a=n.inputTensors[s],i=n.inboundLayers[s],l=n.nodeIndices[s],u=R0(a,i,l);for(let c of u)o.indexOf(c)===-1&&o.push(c)}return o}}}var Hi=class extends Me{constructor(e){super({dtype:e.dtype,name:e.name!=null?e.name:_l("input").toString()});if(e.batchSize==null&&(e.batchSize=null),e.sparse==null&&(e.sparse=!1),this.trainable=!1,this.built=!0,this.sparse=e.sparse,e.inputShape!=null&&e.batchInputShape!=null)throw new B("Only provide the inputShape OR batchInputShape argument to inputLayer, not both at the same time.");let t=e.batchInputShape;if(t==null){if(e.inputShape==null)throw new B("An InputLayer should be passed either a `batchInputShape` or an `inputShape`.");t=[e.batchSize].concat(e.inputShape)}else if(e.batchSize!=null)throw new B("Cannot specify batchSize if batchInputShape is specified when creating an InputLayer.");let n=e.dtype||"float32";this.batchInputShape=t,this.dtype=n,this.inputSpec=[{shape:t}];let o=new Br(this.dtype,this.batchInputShape,this,[],{},this.name);o.nodeIndex=0,o.tensorIndex=0,new kl({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:[o],outputTensors:[o],inputMasks:[null],outputMasks:[null],inputShapes:[t],outputShapes:[t]})}apply(e,t){throw new B(`Cannot pass any input to an InputLayer's apply() method. InputLayer name: ${this.name}`)}dispose(){return{refCountAfterDispose:this._refCount,numDisposedVariables:0}}getConfig(){return{batchInputShape:this.batchInputShape,dtype:this.dtype,sparse:this.sparse,name:this.name}}};Hi.className="InputLayer";J.registerClass(Hi);function Ix(r){if(r.batchShape==null&&r.shape==null)throw new Error("Please provide to Input either a `shape` or a `batchShape` argument. Note that `shape` does not include the batch dimension.");if(r.batchShape!=null&&r.shape!=null)throw new B("Please provide either a `shape` or `batchShape` argument to Input, but not both.");let e=r.batchShape;r.shape!=null&&e==null&&(e=[null].concat(r.shape));let t=r.dtype;return t==null&&(t="float32"),new Hi({batchInputShape:e,name:r.name,dtype:t,sparse:r.sparse}).inboundNodes[0].outputTensors[0]}async function Ki(r){if(r==null)return;let e=[],t=[],n=[];for(let o in r){let s=r[o];if(typeof s!="number"){let a=s;e.push(a.data()),t.push(o),n.push(a)}}if(e.length>0){let o=await Promise.all(e);for(let s=0;s<o.length;++s)r[t[s]]=o[s][0];Ee(n)}}function Nx(r){if(r!=null)for(let e in r){let t=r[e];typeof t!="number"&&t.dispose()}}var mL;(function(r){r[r.SILENT=0]="SILENT",r[r.VERBOSE=1]="VERBOSE"})(mL||(mL={}));var BJ=125,vl=class{constructor(){this.validationData=null}setParams(e){this.params=e}async onEpochBegin(e,t){}async onEpochEnd(e,t){}async onBatchBegin(e,t){}async onBatchEnd(e,t){}async onTrainBegin(e){}async onTrainEnd(e){}setModel(e){}},Sx=class{constructor(e,t=10){e==null&&(e=[]),this.callbacks=e,this.queueLength=t}append(e){this.callbacks.push(e)}setParams(e){for(let t of this.callbacks)t.setParams(e)}setModel(e){for(let t of this.callbacks)t.setModel(e)}async onEpochBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochBegin(e,t)}async onEpochEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochEnd(e,t)}async onBatchBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchBegin(e,t)}async onBatchEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchEnd(e,t)}async onTrainBegin(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainBegin(e)}async onTrainEnd(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainEnd(e)}},fL=class extends vl{constructor(){super()}async onEpochBegin(e){this.seen=0,this.totals={}}async onBatchEnd(e,t){t==null&&(t={});let n=t.size==null?0:t.size;this.seen+=n;for(let o in t){let s=t[o];if(typeof s=="number")this.totals.hasOwnProperty(o)||(this.totals[o]=0),this.totals[o]=this.totals[o]+s*n;else{let a;o in this.totals?a=this.totals[o]:this.totals[o]=0;let i=V(()=>Q(this.totals[o],M(s,n)));this.totals[o]=i,a!=null&&a.dispose()}}}async onEpochEnd(e,t){if(t!=null)for(let n of this.params.metrics)this.totals[n]!=null&&(typeof this.totals[n]=="number"?t[n]=this.totals[n]/this.seen:V(()=>{let o=M(de(1,this.seen),this.totals[n]);t[n]=o,this.totals[n].dispose(),Dt(t[n])}))}},Tx=class extends vl{async onTrainBegin(e){this.epoch=[],this.history={}}async onEpochEnd(e,t){t==null&&(t={}),this.epoch.push(e);for(let n in t)this.history[n]==null&&(this.history[n]=[]),this.history[n].push(t[n])}async syncData(){let e=[],t=[],n=[];for(let s in this.history){let a=this.history[s];for(let i=0;i<a.length;++i)if(typeof a[i]!="number"){let l=a[i];e.push(l.data()),t.push(s),n.push(i)}}let o=await Promise.all(e);for(let s=0;s<o.length;++s)this.history[t[s]][n[s]].dispose(),this.history[t[s]][n[s]]=o[s][0]}},Ex=class extends vl{constructor(e,t){super();if(this.currentEpoch=0,this.yieldEvery=t||"auto",this.yieldEvery==="auto"&&(this.yieldEvery=BJ),this.yieldEvery==="never"&&e.onYield!=null)throw new Error("yieldEvery is `never` but you provided an `onYield` callback. Either change `yieldEvery` or remove the callback");y.isNumber(this.yieldEvery)&&(this.maybeWait=GM(this.maybeWait.bind(this),this.yieldEvery)),this.trainBegin=e.onTrainBegin,this.trainEnd=e.onTrainEnd,this.epochBegin=e.onEpochBegin,this.epochEnd=e.onEpochEnd,this.batchBegin=e.onBatchBegin,this.batchEnd=e.onBatchEnd,this.yield=e.onYield}async maybeWait(e,t,n){let o=[];this.yield!=null&&(await Ki(n),o.push(this.yield(e,t,n))),o.push(uf()),await Promise.all(o)}async onEpochBegin(e,t){this.currentEpoch=e,this.epochBegin!=null&&(await Ki(t),await this.epochBegin(e,t))}async onEpochEnd(e,t){let n=[];this.epochEnd!=null&&(await Ki(t),n.push(this.epochEnd(e,t))),this.yieldEvery==="epoch"&&n.push(uf()),await Promise.all(n)}async onBatchBegin(e,t){this.batchBegin!=null&&(await Ki(t),await this.batchBegin(e,t))}async onBatchEnd(e,t){let n=[];this.batchEnd!=null&&(await Ki(t),n.push(this.batchEnd(e,t))),this.yieldEvery==="batch"?n.push(uf()):y.isNumber(this.yieldEvery)&&n.push(this.maybeWait(this.currentEpoch,e,t)),await Promise.all(n)}async onTrainBegin(e){this.trainBegin!=null&&(await Ki(e),await this.trainBegin(e))}async onTrainEnd(e){this.trainEnd!=null&&(await Ki(e),await this.trainEnd(e))}};function Ax(r,e){return r==null&&(r={}),r instanceof vl?[r]:Array.isArray(r)&&r[0]instanceof vl?r:wt(r).map(n=>new Ex(n,e))}var an=class{constructor(){}static registerCallbackConstructor(e,t){y.assert(e>=0&&Number.isInteger(e),()=>`Verbosity level is expected to be an integer >= 0, but got ${e}`),an.checkForDuplicate(t),an.constructors[e]==null&&(an.constructors[e]=[]),an.constructors[e].push(t)}static checkForDuplicate(e){for(let t in an.constructors)an.constructors[+t].forEach(o=>{if(o===e)throw new B("Duplicate callback constructor.")})}static clear(){an.constructors={}}static createCallbacks(e){let t=[];for(let n in an.constructors){let o=+n;e>=o&&t.push(...an.constructors[o])}return t.map(n=>new n)}};an.constructors={};function Dx(r,e,t,n,o,s,a,i,l){let u=new Tx,c=[new fL,...an.createCallbacks(e)];r!=null&&c.push(...r),c.push(u);let p=new Sx(c);return p.setParams({epochs:t,initialEpoch:n,samples:o,steps:s,batchSize:a,verbose:e,doValidation:i,metrics:l}),{callbackList:p,history:u}}function Yr(r,e={},t=!1){return Ui(r,J.SerializationMap.getMap().classNameMap,e,"layer",t)}function rd(r,e){return V(()=>{r.dtype!=="float32"&&(r=r.asType("float32"));let t=ye(ic(r),e,!0),n=Na(t.shape,Zt()),o=yt(Hr(t,n));return de(r,o)})}function Xi(r,e){return V(()=>gt(ic(ue(e,r)),-1))}function zp(r,e){return V(()=>gt(Et(ue(e,r)),-1))}function Cl(r,e){return V(()=>{let t=ue(r,e),n=sr(Et(r),Zt(),Number.MAX_VALUE),o=Et(de(t,n));return M(100,gt(o,-1))})}function VJ(r,e){return V(()=>{let t=sr(e,Zt(),Number.MAX_VALUE),n=ar(Q(1,t)),o=sr(r,Zt(),Number.MAX_VALUE),s=ar(Q(1,o));return gt(ic(ue(n,s)),-1)})}function GJ(r,e){return V(()=>{let t=Hr(0,ue(1,M(r,e)));return gt(ic(t),-1)})}function jJ(r,e){return V(()=>{let t=Hr(0,ue(1,M(r,e)));return gt(t,-1)})}function WJ(r,e){return V(()=>{let t=ye(M(r,e),-1),n=lr(M(ue(1,r),e),-1);return Hr(0,Q(1,ue(n,t)))})}function UJ(r,e){return V(()=>{let t=Math.log(2),n=ue(e,r),o=ue(Q(n,Ss(M(-2,n))),t);return gt(o,-1)})}function lc(r,e,t=!1){return V(()=>{if(t)e=$a(e);else{let n=ye(e,e.shape.length-1,!0);e=de(e,n)}return e=sr(e,Zt(),1-Zt()),Ue(ye(M(r.toFloat(),ar(e)),e.shape.length-1))})}function Bp(r,e,t=!1){return V(()=>{let n=Ns(rL(r)).toInt();e=sr(e,Zt(),1-Zt());let o=e.shape,s=ks(n,o[o.length-1]).reshape(o);return lc(s,e,t)})}function qJ(r,e){if(!y.arraysEqual(r.shape,e.shape))throw new B(`logits and labels must have the same shape, but got shapes ${JSON.stringify(r.shape)} and ${JSON.stringify(e.shape)}`);return V(()=>{let t=e.relu(),n=e.abs().neg();return t.sub(e.mul(r)).add(n.exp().log1p())})}function Vp(r,e){return V(()=>{let t;return t=sr(e,Zt(),1-Zt()),t=ar(de(t,ue(1,t))),gt(qJ(r,t),-1)})}function HJ(r,e){return V(()=>{let t=sr(r,Zt(),1),n=sr(e,Zt(),1);return ye(M(r,ar(de(t,n))),-1)})}function KJ(r,e){return V(()=>{let t=ar(Q(Zt(),e));return gt(ue(e,M(r,t)),-1)})}function nd(r,e){return V(()=>{let t=rd(r,-1),n=rd(e,-1),o=M(t,n);return Ue(ye(o,-1))})}var od={meanSquaredError:Xi,meanAbsoluteError:zp,meanAbsolutePercentageError:Cl,meanSquaredLogarithmicError:VJ,squaredHinge:GJ,hinge:jJ,categoricalHinge:WJ,logcosh:UJ,categoricalCrossentropy:lc,sparseCategoricalCrossentropy:Bp,binaryCrossentropy:Vp,kullbackLeiblerDivergence:HJ,poisson:KJ,cosineProximity:nd};function $x(r){if(typeof r=="string"){if(r in od)return od[r];let e=`Unknown loss ${r}`;throw r.toLowerCase().includes("softmaxcrossentropy")&&(e=`Unknown loss ${r}. Use "categoricalCrossentropy" as the string name for tf.losses.softmaxCrossEntropy`),new B(e)}else return r}function sd(r,e){return V(()=>{let t=M(.5,tr(e)),n=ja(er(e,t),r.dtype);return gt(wn(r,n),-1)})}function id(r,e){return V(()=>ja(wn(al(r,-1),al(e,-1)),"float32"))}function dL(r,e){return V(()=>dr(r.equal(1),e.equal(1)).sum().cast("float32"))}function XJ(r,e){return V(()=>dr(r.equal(1),e.equal(0)).sum().cast("float32"))}function YJ(r,e){return V(()=>dr(r.equal(0),e.equal(1)).sum().cast("float32"))}function F0(r,e){return V(()=>{let t=dL(r,e),n=YJ(r,e),o=t.add(n);return $t(er(o,0),t.div(o),0).cast("float32")})}function hL(r,e){return V(()=>{let t=dL(r,e),n=XJ(r,e),o=t.add(n);return $t(er(o,0),t.div(o),0).cast("float32")})}function Rx(r,e){return Vp(r,e)}function Fx(r,e){return r.rank===e.rank&&(r=r.squeeze([r.rank-1])),e=e.argMax(-1),e.dtype!==r.dtype&&(e=e.asType(r.dtype)),wn(r,e).asType("float32")}var ZJ=Xi,JJ=Xi,QJ=zp,eQ=zp,tQ=Cl,rQ=Cl,ad=lc,nQ=nd,O0=Bp,Ox={binaryAccuracy:sd,categoricalAccuracy:id,precision:F0,categoricalCrossentropy:ad,sparseCategoricalCrossentropy:O0,mse:ZJ,MSE:JJ,mae:QJ,MAE:eQ,mape:tQ,MAPE:rQ,cosine:nQ};function gL(r){if(typeof r=="string"&&r in Ox)return Ox[r];if(typeof r!="string"&&r!=null)return r;throw new B(`Unknown metric ${r}`)}function ld(r){if(Ln(r!==null,`Unknown LossOrMetricFn ${r}`),typeof r=="string")return r;{let e;for(let t of Object.keys(od))if(od[t]===r){e=t;break}if(e!==void 0)return e;for(let t of Object.keys(Ox))if(Ox[t]===r){e=t;break}return e!==void 0?e:r.name}}function xL(r){let e={Adagrad:()=>pl.adagrad(.01),Adadelta:()=>pl.adadelta(1,.95,Zt()),Adam:()=>pl.adam(.001,.9,.999,Zt()),Adamax:()=>pl.adamax(.002,.9,.999,Zt(),0),RMSProp:()=>pl.rmsprop(.001,.9,0,Zt()),SGD:()=>pl.sgd(.01)};if(e.adagrad=e.Adagrad,e.adadelta=e.Adadelta,e.adam=e.Adam,e.adamax=e.Adamax,e.rmsprop=e.RMSProp,e.sgd=e.SGD,r in e)return e[r]();throw new B(`Unknown Optimizer ${r}`)}var yL=1*1024*1024;function M0(r,e,t=!1){if(r==null||typeof r!="object"||Object.getPrototypeOf(r)!==Object.prototype||!P0(r))throw new Error("User-defined metadata is expected to be a JSON object, but is not.");if(t){let n=JSON.stringify(r);n.length>yL&&console.warn(`User-defined metadata of model "${e}" is too large in size (length=${n.length} when serialized). It is not recommended to store such large objects in user-defined metadata. Please make sure its serialized length is <= ${yL}.`)}}function P0(r){if(r===null)return!0;if(typeof r=="object")if(Object.getPrototypeOf(r)===Object.prototype){let e=Object.keys(r);for(let t of e)if(typeof t!="string"||!P0(r[t]))return!1;return!0}else if(Array.isArray(r)){for(let e of r)if(!P0(e))return!1;return!0}else return!1;else{let e=typeof r;return e==="string"||e==="number"||e==="boolean"}}function bL(r,e,t,n=console.log){let o=sQ(r),s=["Layer (type)","Output shape","Param #"];o?(e=e||65,t=t||[.45,.85,1]):(e=e||98,t=t||[.33,.55,.67,1]),t[t.length-1]<=1&&(t=t.map(c=>Math.floor(e*c)));let a;if(!o){s.push("Receives inputs"),a=[];for(let c in r.nodesByDepth)a.push(...r.nodesByDepth[c])}n("_".repeat(e)),Px(s,t,n),n("=".repeat(e));let i=r.layers;for(let c=0;c<i.length;++c)o?iQ(i[c],t,n):aQ(i[c],t,a,n),n((c===i.length-1?"=":"_").repeat(e));r.checkTrainableWeightsConsistency();let l=oQ(r),u=Mp(r.nonTrainableWeights);n(`Total params: ${l+u}`),n(`Trainable params: ${l}`),n(`Non-trainable params: ${u}`),n("_".repeat(e))}function oQ(r){let e;return r.collectedTrainableWeights!=null?e=Mp(r.collectedTrainableWeights):e=Mp(r.trainableWeights),e}function sQ(r){let e=!0,t=[],n=[];for(let o in r.nodesByDepth)t.push(r.nodesByDepth[o]);for(let o of t){if(o.length>1||o.length===1&&o[0].inboundLayers.length>1){e=!1;break}n.push(...o)}if(e)for(let o of r.layers){let s=!1;for(let a of o.inboundNodes)if(n.indexOf(a)!==-1)if(s){e=!1;break}else s=!0;if(!e)break}return e}function Px(r,e,t=console.log){let n="";for(let o=0;o<r.length;++o)o>0&&(n=n.slice(0,n.length-1)+" "),n+=r[o],n=n.slice(0,e[o]),n+=" ".repeat(e[o]-n.length);t(n)}function iQ(r,e,t){let n;try{n=JSON.stringify(r.outputShape)}catch(i){n="multiple"}let o=r.name,s=r.getClassName(),a=[`${o} (${s})`,n,r.countParams().toString()];Px(a,e,t)}function aQ(r,e,t,n){let o;try{o=JSON.stringify(r.outputShape)}catch(c){o="multiple"}let s=[];for(let c of r.inboundNodes)if(!(t!=null&&t.length>0&&t.indexOf(c)===-1))for(let p=0;p<c.inboundLayers.length;++p){let m=c.inboundLayers[p].name,f=c.nodeIndices[p],d=c.tensorIndices[p];s.push(`${m}[${f}][${d}]`)}let a=r.name,i=r.getClassName(),l=s.length===0?"":s[0],u=[`${a} (${i})`,o,r.countParams().toString(),l];Px(u,e,n);for(let c=1;c<s.length;++c)Px(["","","",s[c]],e,n)}function wL(r,e,t){return(r==="inboundNodes"||r==="outputLayers"||r==="inputLayers")&&e===0&&typeof t=="string"}function uc(r,e){if(r===null)return null;if(typeof r=="string")return Ga(r);if(typeof r=="number"||typeof r=="boolean")return r;if(r instanceof Array){let t=[],n=r.length;for(let o=0;o<n;++o){let s=r[o];wL(e,o,s)?t.push(s):t.push(uc(s,e))}return t}else{let t={};for(let n of Object.keys(r)){let o=r[n];if(n==="name"&&typeof o=="string")t[n]=o;else{let s=Ga(n);t[s]=uc(o,s)}}return t}}function Mx(r,e){if(r==null)return null;if(typeof r=="string")return Xo(r);if(typeof r=="number"||typeof r=="boolean")return r;if(r instanceof Array){let t=[],n=r.length;for(let o=0;o<n;++o){let s=r[o];wL(e,o,s)?t.push(s):t.push(Mx(s,e))}return t}else{let t={};for(let n of Object.keys(r)){let o=r[n],s=Xo(n);(n==="name"||n==="className")&&typeof o=="string"?t[s]=o:t[s]=Mx(o,n)}return t}}var Gp="3.0.0";function lQ(r,e){if(r.dtype==null||r.dtype===e.dtype)return e;try{return ne(e,r.dtype)}catch(t){throw new B(`The dtype of the feed (${e.dtype}) can not be cast to the dtype of the key '${r.name}' (${r.dtype}).`)}}var Ls=class{constructor(e){if(this.id2Value={},this.id2Mask={},this.name2Id={},e instanceof Ls)for(let t in e.id2Value)this.id2Value[t]=e.id2Value[t],t in e.id2Mask&&(this.id2Mask[t]=e.id2Mask[t]);else{if(e==null)return;for(let t of e)this.add(t.key,t.value)}}add(e,t,n){if(this.id2Value[e.id]==null)this.id2Value[e.id]=lQ(e,t),this.name2Id[e.name]=e.id,n!=null&&(this.id2Mask[e.id]=n);else throw new B(`Duplicate key: name=${e.name}, id=${e.id}`);return this}addFeed(e){this.add(e.key,e.value)}hasKey(e){return this.id2Value[e.id]!=null}names(){return Object.keys(this.name2Id)}getValue(e){if(e instanceof Br){if(this.id2Value[e.id]==null)throw new B(`Nonexistent key: ${e.name}`);return this.id2Value[e.id]}else{let t=this.name2Id[e];if(t==null)throw new B(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Value[t]}}getMask(e){if(e instanceof Br){if(this.id2Value[e.id]==null)throw new B(`Nonexistent key: ${e.name}`);return this.id2Mask[e.id]}else{let t=this.name2Id[e];if(t==null)throw new B(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Mask[t]}}disposeMasks(){this.id2Mask!=null&&Ee(this.id2Mask)}},L0={},_L={};function cc(r,e,t,n){let o=t==null?!1:t.training,s=Array.isArray(r),a=s?r:[r],i=a.map(d=>d.name),l=[],u=e.names();for(let d of i)u.indexOf(d)!==-1?l.push(e.getValue(d)):l.push(null);n!=null&&(n.maxNumTensors=-Infinity,n.minNumTensors=Infinity);let c=i.join(",")+"|"+e.names().join(","),p,m;if(L0[c]==null){let d=uQ(a,e);p=d.sorted,m=d.recipientCounts,L0[c]=p,_L[c]=m}p=L0[c],m={},o||Object.assign(m,_L[c]);let f=new Ls(e);for(let d=0;d<p.length;++d){if(n!=null){let F=qc().numTensors;F>n.maxNumTensors&&(n.maxNumTensors=F),F<n.minNumTensors&&(n.minNumTensors=F)}let h=p[d],g=h.sourceLayer;if(g instanceof Hi)continue;let x=[],b=[],w=[],_=!1;for(let F of h.inputs){let P=f.getValue(F),j=f.getMask(F);x.push(P),b.push(j),j!=null&&(_=!0),o||(m[F.name]--,m[F.name]===0&&!e.hasKey(F)&&i.indexOf(F.name)===-1&&!P.isDisposed&&F.sourceLayer.stateful!==!0&&w.push(P))}_&&(t=t||{},t.mask=b[0]);let k=wt(g.apply(x,t)),E=null;g.supportsMasking&&(E=g.computeMask(x,b));let S=cQ(h),R=Array.isArray(S)?S:[S];for(let F=0;F<R.length;++F){f.hasKey(R[F])||f.add(R[F],k[F],Array.isArray(E)?E[0]:E);let P=i.indexOf(R[F].name);P!==-1&&(l[P]=k[F])}o||Ee(w)}return f.disposeMasks(),s?l:l[0]}function uQ(r,e){y.assert(r!=null&&r.length>0,()=>"Expected at least one fetch, got none");let t=[],n={};if(r.length===1){let o=kL(r[0],e);t=o.sorted,n=o.recipientMap}else{let o=new Set;for(let s of r){let{sorted:a,recipientMap:i}=kL(s,e);for(let l of a)o.has(l.name)||(t.push(l),o.add(l.name));for(let l in i)n[l]==null&&(n[l]=new Set),i[l].forEach(u=>n[l].add(u))}}return{sorted:t,recipientCounts:pQ(n)}}function pQ(r){let e={};for(let t in r)e[t]=r[t].size;return e}function kL(r,e){let t=new Set,n=[],o={};for(let i of e.names())t.add(i);let s=[],a=[];for(s.push(r);s.length>0;){let i=s[s.length-1];if(t.has(i.name)){s.pop();continue}let l=a[a.length-1]===s.length-1;if(i.inputs.length===0||l)s.pop(),n.push(i),t.add(i.name),l&&a.pop();else{a.push(s.length-1);for(let u of i.inputs)o[u.name]==null&&(o[u.name]=new Set),o[u.name].add(i.name),!t.has(u.name)&&s.push(u)}}return{sorted:n,recipientMap:o}}function cQ(r){let e;if(r.sourceLayer.inboundNodes.length===1)e=r.sourceLayer.output;else{let t=null;for(let n=0;n<r.sourceLayer.inboundNodes.length;++n)for(let o of r.sourceLayer.inboundNodes[n].outputTensors)if(o.id===r.id){t=n;break}e=r.sourceLayer.getOutputAt(t)}return e}var zn=class extends Me{constructor(e){super({});if(this.containerNodes=new Set,this.name=e.name,this.name==null){let b=this.getClassName().toLowerCase();this.name=_l(b)}if(this.supportsMasking=!1,this.trainable_=!0,Array.isArray(e.inputs)?this.inputs=e.inputs.slice():this.inputs=[e.inputs],Array.isArray(e.outputs)?this.outputs=e.outputs.slice():this.outputs=[e.outputs],Zo(this.inputs).length!==this.inputs.length)throw new B(`The list of inputs passed to the model is redundant. All inputs should only appear once. Found: ${this.inputs.map(b=>b.name)}`);Zo(this.outputs).length!==this.outputs.length&&console.warn(`The list of outputs passed to the model is redundant. All outputs should only appear once. Found: ${this.outputs.map(b=>b.name)}`),this.inputLayers=[],this.inputLayersNodeIndices=[],this.inputLayersTensorIndices=[],this.outputLayers=[],this.outputLayersNodeIndices=[],this.outputLayersTensorIndices=[],this.layers=[],this.internalContainerRefs=[];for(let b of this.outputs){let w=b.sourceLayer,_=b.nodeIndex,k=b.tensorIndex;this.outputLayers.push(w),this.outputLayersNodeIndices.push(_),this.outputLayersTensorIndices.push(k)}for(let b of this.inputs){let w=b.sourceLayer,_=b.nodeIndex,k=b.tensorIndex;Ln(_===0,"input layer has >1 nodes"),Ln(k===0,"input layer has >1 tensors"),this.inputLayers.push(w),this.inputLayersNodeIndices.push(_),this.inputLayersTensorIndices.push(k)}this.inputNames=[],this.outputNames=[],this.feedInputShapes=[],this.feedInputNames=[],this.feedOutputNames=[];for(let b=0;b<this.inputLayers.length;b++){let w=this.inputLayers[b];if(!(w instanceof Hi))throw new TypeError(`Input layers to a LayersModel must be InputLayer objects. Received inputs: ${e.inputs}. Input ${b} (0-based) originates from layer type ${w.getClassName()}.`);this.inputNames.push(w.name),this.feedInputShapes.push(w.batchInputShape),this.feedInputNames.push(w.name)}for(let b of this.outputLayers)this.outputNames.push(b.name);this.internalInputShapes=this.inputs.map(b=>b.shape),this.internalOutputShapes=this.outputs.map(b=>b.shape);let t={},n={},o={},s={},a={},i=[],l=(b,w,_,k,E,S)=>{(k==null||E==null||S==null)&&(k=b.sourceLayer,E=b.nodeIndex,S=b.tensorIndex);let R=k.inboundNodes[E];if(_.indexOf(R)!==-1)throw new Mr(`The tensor ${b.name} at layer "${k.name}" is part of a cycle.`);if(w.indexOf(R)!==-1)return;this.containerNodes.add(zn.nodeKey(k,E)),k.id in a||(a[k.id]=Object.keys(a).length),_.indexOf(R)===-1&&_.push(R);let F=R.inboundLayers.length;for(let P=0;P<F;P++){let j=R.inputTensors[P],G=R.inboundLayers[P],U=R.nodeIndices[P],X=R.tensorIndices[P];l(j,w,_,G,U,X)}for(w.push(R);_.indexOf(R)>=0;)_.splice(_.indexOf(R),1);i.push(R)},u=[],c=[];for(let b of this.outputs)l(b,u,c);let p=i.slice().reverse();for(let b of p){n[b.id]=b,b.id in t||(t[b.id]=0);let w=t[b.id],_=o[b.outboundLayer.id]==null?0:o[b.outboundLayer.id];w=Math.max(w,_),o[b.outboundLayer.id]=w,s[b.outboundLayer.id]=b.outboundLayer,t[b.id]=w;for(let k=0;k<b.inboundLayers.length;k++){let E=b.inboundLayers[k],S=b.nodeIndices[k],R=E.inboundNodes[S],F=t[R.id]==null?0:t[R.id];t[R.id]=Math.max(w+1,F),n[R.id]=R}}let m={};for(let b in t){let w=t[b];w in m||(m[w]=[]),m[w].push(n[b])}let f={};for(let b in o){let w=o[b];w in f||(f[w]=[]),f[w].push(s[b])}let d=Object.keys(f).map(b=>parseInt(b,10)).sort(Bf);this.layers=[];for(let b of d){let w=f[b];w.sort((_,k)=>{let E=a[_.id],S=a[k.id];return E<S?-1:E>S?1:0});for(let _ of w)_ instanceof zn&&this.internalContainerRefs.push(_),this.layers.push(_)}this.layersByDepth=f,d=Object.keys(m).map(b=>parseInt(b,10)).sort(Bf);let h=this.inputs.slice(),g=[];for(let b of d)for(let w of m[b]){let _=w.outboundLayer;if(_!=null){for(let k of w.inputTensors)if(h.indexOf(k)===-1)throw new Mr(`Graph disconnected: cannot obtain value for tensor ${k} at layer "${_.name}". The following previous layers were accessed without issue: ${g}`);for(let k of w.outputTensors)h.push(k);g.push(_.name)}}this.nodesByDepth=m;let x=this.layers.map(b=>b.name);for(let b of x){let w=x.filter(_=>_===b).length;if(w!==1)throw new Mr(`The name "${b}" is used ${w} times in the model. All layer names should be unique. Layer names: `+JSON.stringify(x))}this.outboundNodes=[],this.inboundNodes=[],new kl({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:this.inputs.map(b=>null),outputMasks:this.outputs.map(b=>null),inputShapes:this.inputs.map(b=>b.shape),outputShapes:this.outputs.map(b=>b.shape)}),this.built=!0,this._refCount=1}assertNotDisposed(){if(this._refCount===0)throw new Error(`Container '${this.name}' is already disposed.`)}dispose(){this.assertNotDisposed();let e={refCountAfterDispose:null,numDisposedVariables:0};if(--this._refCount==0){for(let t of this.layers)e.numDisposedVariables+=t.dispose().numDisposedVariables;for(let t of this.internalContainerRefs)e.numDisposedVariables+=t.dispose().numDisposedVariables}return e.refCountAfterDispose=this._refCount,e}get trainable(){return this.trainable_}set trainable(e){this.layers.forEach(t=>{t._trainableWeights.forEach(n=>n.trainable=e)}),this.trainable_=e}get trainableWeights(){if(this._trainableWeights.length>0)throw new B("Container instance unexpectedly contains _trainableWeights.The trainable weights of a Container are a union of the trainable weights of its consituent Layers. Its own _trainableWeights must remain an empty Array.");if(!this.trainable)return[];let e=[];for(let t of this.layers)e=e.concat(t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.layers)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.layers)t.push(...n.trainableWeights);return t.concat(e)}return e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}loadWeights(e,t=!0){let n={},o=0;for(let a of this.layers)for(let i of a.weights){if(n[i.originalName]!=null)throw new B(`Duplicate weight name: ${i.originalName}`);n[i.originalName]=i,o++}let s=[];for(let a in e){let i=a;if(n[a]==null){let l=a.split("/");i=l.slice(0,-2).concat([l[l.length-1]]).join("/")}if(n[i]!=null)s.push([n[i],e[a]]);else if(t)throw new B(`Provided weight data has no target variable: ${a}`);delete n[i]}if(t){let a=[];for(let i in n)a.push(i);if(a.length>0)throw new B(`${a.length} of ${o} weights are not set: ${a}`)}Lp(s)}updatedConfig(){let e=this.getConfig(),t={};return t.className=this.getClassName(),t.config=e,t.kerasVersion=`tfjs-layers ${Gp}`,t.backend="TensorFlow.js",t}toJSON(e,t=!0){let n=Mx(this.updatedConfig());return t?JSON.stringify(n):n}call(e,t){return V(()=>{e=wt(e);let n=new Ls;for(let o=0;o<this.inputs.length;++o)n.add(this.inputs[o],e[o]);return cc(this.outputs,n,t)})}computeMask(e,t){return V(()=>{e=wt(e);let n;return t==null?n=Ko(null,e.length):n=wt(t),this.runInternalGraph(e,n)[1]})}computeOutputShape(e){let t=Pp(e);if(t.length!==this.inputLayers.length)throw new B(`Invalid inputShape argument ${e}: model has ${this.inputLayers.length} tensor inputs.`);let n={};for(let i=0;i<t.length;i++){let l=this.inputLayers[i],u=t[i],c=l.name+"_0_0";n[c]=u}let o=Object.keys(this.nodesByDepth).map(i=>parseInt(i,10)).sort(Bf);if(o.length>1)for(let i of o){let l=this.nodesByDepth[i];for(let u of l){let c=u.outboundLayer;if(this.inputLayers.map(h=>h.id).indexOf(c.id)!==-1)continue;let p=[];for(let h=0;h<u.inboundLayers.length;h++){let g=u.inboundLayers[h],x=u.nodeIndices[h],b=u.tensorIndices[h],w=`${g.name}_${x}_${b}`,_=n[w];p.push(_)}let m=c.computeOutputShape(gr(p)),f=Pp(m),d=c.inboundNodes.indexOf(u);for(let h=0;h<f.length;h++){let g=`${c.name}_${d}_${h}`;n[g]=f[h]}}}let s=[],a=[];for(let i=0;i<this.outputLayers.length;i++){let l=this.outputLayers[i],u=this.outputLayersNodeIndices[i],c=this.outputLayersTensorIndices[i],p=`${l.name}_${u}_${c}`;a.push(p)}for(let i=0;i<a.length;i++){let l=a[i];Ln(l in n),s.push(n[l])}return gr(s)}runInternalGraph(e,t){t==null&&(t=Ko(null,e.length));let n={};for(let l=0;l<this.inputs.length;++l){let u=this.inputs[l],c=e[l],p=t[l];n[u.id]=[c,p]}let o=Object.keys(this.nodesByDepth).map(l=>parseInt(l,10)).sort(Bf);for(let l of o){let u=this.nodesByDepth[l];for(let c of u){let p=c.outboundLayer,m=c.inputTensors,f=c.outputTensors,d=new Array;for(let h of m)h.id in n&&d.push(n[h.id]);if(d.length===m.length){let h={},g,x,b,w;if(c.callArgs!=null&&(h=c.callArgs),d.length===1){let[_,k]=d[0];h.mask==null&&(h.mask=k),b=wt(p.call(_,h)),w=wt(p.computeMask(_,k)),g=[_],x=[k]}else g=d.map(_=>_[0]),x=d.map(_=>_[1]),h.mask==null&&(h.mask=x),b=wt(p.call(g,h)),w=wt(p.computeMask(g,x));if(p.activityRegularizer)throw new Se("LayersModel invocation with concrete Tensor value(s) in the presence of activity regularizer(s) is not supported yet.");for(let _=0;_<f.length;++_){let k=f[_],E=b[_],S=w[_];n[k.id]=[E,S]}}}}let s=[],a=[],i=[];for(let l of this.outputs){Ln(l.id in n,`Could not compute output ${l.name} : ${l.id}`);let[u,c]=n[l.id];i.push(u.shape),s.push(u),a.push(c)}return[s,a,i]}buildNodeConversionMap(e){let t={},n;for(let o of this.layers){n=o instanceof zn?1:0;for(let s=0;s<o.inboundNodes.length;s++){let a=zn.nodeKey(o,s);this.containerNodes.has(a)&&(t[a]=n,n+=1)}}return t}getLayer(e,t){if(t!=null){if(this.layers.length<=t)throw new B(`Was asked to retrieve layer at index ${t}, but model only has ${this.layers.length} layer(s).`);return this.layers[t]}else if(e==null)throw new B("Provide either a layer name or layer index");for(let n of this.layers)if(n.name===e)return n;throw new B(`No such layer: ${e}`)}calculateLosses(){return V(()=>{let e=[];for(let t of this.layers)for(let n=0;n<t.inboundNodes.length;++n){let o=zn.nodeKey(t,n);this.containerNodes.has(o)&&e.push(...t.calculateLosses())}return e})}getConfig(){let e={name:this.name},t=this.buildNodeConversionMap(this.layers),n=[];for(let a of this.layers){let i=a.getClassName(),l=a.getConfig(),u=[];for(let p=0;p<a.inboundNodes.length;p++){let m=a.inboundNodes[p],f=zn.nodeKey(a,p),d={};if(this.containerNodes.has(f)){if(m.callArgs)try{JSON.stringify(m.callArgs),d=m.callArgs}catch(h){console.warn(`Layer ${a.name} was passed non-serializable keyword arguments: ${m.callArgs}. They will not be included in the serialized model (and thus will be missing at deserialization time).`),d={}}if(m.inboundLayers.length>0){let h=[];for(let g=0;g<m.inboundLayers.length;g++){let x=m.inboundLayers[g],b=m.nodeIndices[g],w=m.tensorIndices[g],_=zn.nodeKey(x,b),k=t[_];k==null&&(k=0),h.push([x.name,k,w,d])}u.push(h)}}}let c={};c.name=a.name,c.className=i,c.config=l,c.inboundNodes=u,n.push(c)}e.layers=n;let o=[];for(let a=0;a<this.inputLayers.length;a++){let i=this.inputLayers[a],l=this.inputLayersNodeIndices[a],u=zn.nodeKey(i,l);if(!this.containerNodes.has(u))continue;let c=t[u];c==null&&(c=0);let p=this.inputLayersTensorIndices[a];o.push([i.name,c,p])}e.inputLayers=o;let s=[];for(let a=0;a<this.outputLayers.length;a++){let i=this.outputLayers[a],l=this.outputLayersNodeIndices[a],u=zn.nodeKey(i,l);if(!this.containerNodes.has(u))continue;let c=t[u];c==null&&(c=0);let p=this.outputLayersTensorIndices[a];s.push([i.name,c,p])}return e.outputLayers=s,e}static fromConfig(e,t,n={},o=!1){let s={},a={};function i(g,x){g.name in a?a[g.name].push(x):a[g.name]=[x]}function l(g,x){let b=[],w;for(let _ of x){let k=_[0],E=_[1],S=_[2];if(w=_[3]==null?{}:_[3],!(k in s)){i(g,x);return}let R=s[k];if(R.inboundNodes.length<=E){i(g,x);return}let F=R.inboundNodes[E];b.push(F.outputTensors[S])}b.length>0&&g.apply(gr(b),w)}function u(g){let x=g.name,b=Yr(g,t.customObjects!=null?t.customObjects:{});b.setFastWeightInitDuringBuild(o),s[x]=b,g.inboundNodes.forEach(_=>{if(!(_ instanceof Array))throw new B(`Corrupted configuration, expected array for nodeData: ${_}`);i(b,_)})}let c=t.name,p=t.layers;for(let g of p)u(g);for(;!BM(a);)for(let g of p){let x=s[g.name];if(x.name in a){let b=a[x.name];delete a[x.name];for(let w of b)l(x,w)}}let m=[],f=[],d=t.inputLayers;for(let g of d){let x=g[0],b=g[1],w=g[2];Ln(x in s);let k=s[x].inboundNodes[b].outputTensors;m.push(k[w])}let h=t.outputLayers;for(let g of h){let x=g[0],b=g[1],w=g[2];Ln(x in s);let k=s[x].inboundNodes[b].outputTensors;f.push(k[w])}return new e({inputs:m,outputs:f,name:c})}get stateful(){if(this._stateful)throw new B("Container instance unexpectedly has _stateful = true. The statefulness of a Container is determined by the Layers it contains. Its _stateful property must remain the default false.");for(let e of this.layers)if(e.stateful)return!0;return!1}resetStates(){V(()=>{this.layers.forEach(e=>{e.stateful&&e.resetStates()})})}};function mQ(r,e,t){let n=e.length;if(r==null||Array.isArray(r)&&r.length===0)return e.map(o=>null);if(n===1)return Array.isArray(r)&&r.length===1?r:typeof r=="object"&&e[0]in r?[r[e[0]]]:[r];if(Array.isArray(r)){if(r.length!==n)throw new Error(`Provided ${t} is an array of ${r.length} element(s), but the model has ${n} outputs. Make sure a set of weights is provided for each model output.`);return r}else if(typeof r=="object"&&Object.keys(r).length>0&&typeof r[Object.keys(r)[0]]=="object"){let o=[];return e.forEach(s=>{s in r?o.push(r[s]):o.push(null)}),o}else throw new Error(`The model has multiple (${n}) outputs, so ${t} must be either an array with ${n} elements or an object with ${e} keys. Provided ${t} not understood: ${JSON.stringify(r)}`)}function Lx(r,e){return mQ(r,e,"classWeight")}async function zx(r,e,t,n){if(e!=null||n!=null)throw new Error("Support sampleWeight is not implemented yet");if(t!=null){let o=V(()=>{if(r.shape.length===1)return r.clone();if(r.shape.length===2)if(r.shape[1]>1){let i=1;return r.argMax(i)}else{if(r.shape[1]===1)return r.reshape([r.shape[0]]);throw new Error(`Encountered unexpected last-dimension size (${r.shape[1]}) during handling of class weights. The size is expected to be >= 1.`)}else throw new Error(`Unexpected rank of target (y) tensor (${r.rank}) during handling of class weights. The rank is expected to be 1 or 2.`)}),s=Array.from(await o.data());Ee(o);let a=[];return s.forEach(i=>{if(t[i]==null)throw new Error(`classWeight must contain all classes in the training data. The class ${i} exists in the data but not in classWeight`);a.push(t[i])}),Gt(a,"float32")}else return null}function vL(r,e){return M(r,e)}var fQ=32;function IL(r,e){let t,n,o=e;t=o.xs,n=o.ys,y.assert(t!=null&&n!=null,()=>`A Dataset iterator for fitDataset() is expected to generate objects of the form \`{xs: xVal, ys: yVal}\`, where the two values may be \`tf.Tensor\`, an array of Tensors, or a map of string to Tensor. The provided Dataset instead generates ${e}`);let s=CL("input",r.inputNames,t),a=CL("output",r.outputNames,n),i=s[0].shape[0];y.assert(s.length===r.inputs.length,()=>`LayersModel has ${r.inputs.length} inputs, but the dataset provides ${s.length} inputs. (Expected input keys: ${JSON.stringify(r.inputNames)})`),y.assert(a.length===r.outputs.length,()=>`LayersModel has ${r.outputs.length} outputs, but the dataset provides ${a.length} outputs. (Expected output keys: ${JSON.stringify(r.outputNames)})`);for(let l=0;l<s.length;l++)y.assert(s[l].shape[0]===i,()=>`Batch size mismatch: input ${r.inputNames[l]} has ${s[l].shape[0]}; expected ${i} based on input ${r.inputNames[0]}.`);for(let l=0;l<a.length;l++)y.assert(a[l].shape[0]===i,()=>`Batch size mismatch: output ${r.outputNames[l]} has ${a[l].shape[0]}; expected ${i} based on input ${r.inputNames[0]}.`);return{xs:s,ys:a}}function CL(r,e,t){if(t instanceof Ve)return[t];if(Array.isArray(t))return y.assert(t.length===e.length,()=>`Received an array of ${t.length} Tensors, but expected ${e.length} to match the ${r} keys ${e}.`),t;{let n=[];for(let o of e){if(t[o]==null)throw new B(`The feature data generated by the dataset lacks the required ${r} key '${o}'.`);n.push(t[o])}return n}}function dQ(r){if(r.length===3)throw new Se("Validation with sample weights is not implemented yet.");return{xs:r[0],ys:r[1]}}async function SL(r,e,t){let n=t.batchesPerEpoch!=null;if(y.assert(r.optimizer!=null,()=>"You must compile a model before training/testing. Use LayersModel.compile(modelCompileConfig)."),y.assert(t!=null,()=>"For fitDataset(), the 2nd argument (config) is required, but it is not provided in this call."),y.assert(t.epochs!=null&&t.epochs>0&&Number.isInteger(t.epochs),()=>`For fitDataset(), config.epochs is expected to be a positive integer, but got ${t.epochs}`),y.assert(!n||t.batchesPerEpoch>0&&Number.isInteger(t.batchesPerEpoch),()=>`For fitDataset(), config.batchesPerEpoch is expected to be a positive integer if specified, but got ${t.batchesPerEpoch}`),y.assert(t.validationSplit==null,()=>"`validationSplit` is not supported by `fitDataset()`. Use validationData instead."),r.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");r.isTraining=!0;try{let o=t.validationData!=null,s,a;if(o)if(NL(t.validationData))y.assert(t.validationBatches==null||t.validationBatches>0&&Number.isInteger(t.validationBatches),()=>`For fitDataset() with dataset-based validation, config.validationBatches is expected not to be provided, or to be a positive integer, but got ${t.validationBatches}`);else{let g=dQ(t.validationData);s=g.xs,a=g.ys}let i=r.makeTrainFunction(),l=r.getDedupedMetricsNames(),u;o?u=l.slice().concat(l.map(g=>"val_"+g)):u=l.slice();let c=Ax(t.callbacks,t.yieldEvery),p=t.verbose==null?1:t.verbose,{callbackList:m,history:f}=Dx(c,p,t.epochs,null,null,hQ(e,t),null,o,u);m.setModel(r),r.history=f,await m.onTrainBegin(),r.stopTraining_=!1;let d=t.initialEpoch==null?0:t.initialEpoch,h=await e.iterator();for(;d<t.epochs;){let g={};await m.onEpochBegin(d);let x=0,b=0;for(n||(h=await e.iterator());n?x<t.batchesPerEpoch:!0;){let w=await h.next();if(n&&w.done){console.warn(`You provided \`batchesPerEpoch\` as ${t.batchesPerEpoch}, but your dataset iterator ran out of data after ${x} batches; interrupting training. Make sure that your dataset can generate at least \`batchesPerEpoch * epochs\` batches (in this case, ${t.batchesPerEpoch*t.epochs} batches). You may need to use the repeat() function when building your dataset.`);break}if(w.value!=null){let{xs:_,ys:k}=IL(r,w.value),E={};E.batch=b,E.size=_[0].shape[0],await m.onBatchBegin(b,E);let S=[];if(t.classWeight!=null){let P=Lx(t.classWeight,r.outputNames);for(let j=0;j<P.length;++j)S.push(await zx(k[j],null,P[j]))}let R=_.concat(k).concat(S),F=i(R);Ee(R);for(let P=0;P<l.length;++P){let j=l[P],G=F[P];E[j]=G,Dt(G)}await m.onBatchEnd(b,E),Nx(E),b++,x++}if(n?x>=t.batchesPerEpoch:w.done){if(o){let _;NL(t.validationData)?_=wt(await r.evaluateDataset(t.validationData,{batches:t.validationBatches})):_=wt(r.evaluate(s,a,{batchSize:t.validationBatchSize==null?fQ:t.validationBatchSize,verbose:0}));for(let k=0;k<r.metricsNames.length;++k)g[`val_${r.metricsNames[k]}`]=_[k]}break}if(r.stopTraining_)break}if(await m.onEpochEnd(d,g),d++,r.stopTraining_)break}return await m.onTrainEnd(),await r.history.syncData(),r.history}finally{r.isTraining=!1}}function hQ(r,e){let t=null;return e.batchesPerEpoch!=null?t=e.batchesPerEpoch:Number.isFinite(r.size)&&(t=r.size),t}function NL(r){return typeof r.iterator=="function"}function gQ(r){return typeof r.next=="function"}async function TL(r,e,t){t=t||{};let n=t.batches!=null,o=r.testFunction,s=[];if(t.verbose>0)throw new Se("Verbose mode is not implemented yet.");y.assert(!n||t.batches>0&&Number.isInteger(t.batches),()=>`Test loop expects \`batches\` to be a positive integer, but received ${JSON.stringify(t.batches)}`);let a=gQ(e)?e:await e.iterator(),i=0,l=0;for(;n?l<t.batches:!0;){let u=await a.next();if(s=V(()=>{if(u.value){let{xs:c,ys:p}=IL(r,u.value),m=c.concat(p),f=V(()=>o(m));if(Ee(m),l===0)for(let h=0;h<f.length;++h)s.push(le(0));let d=m[0].shape[0];for(let h=0;h<f.length;++h){let g=f[h],x=s[h];s[h]=V(()=>Q(s[h],M(d,g))),l>0&&Ee(x)}Ee(f),i+=d,++l}return s}),u.done){n&&console.warn(`Your dataset iterator ran out of data during evaluateDataset(). Interrupting evalution. Make sure that your dataset can generate at least \`batches\` batches (in this case, ${t.batches} batches). You may need to use the repeat() function when building your dataset.`);break}}for(let u=0;u<s.length;++u){let c=s[u];s[u]=de(s[u],i),Ee(c)}return gr(s)}function Bx(r){y.assert(r>0&&Number.isInteger(r),()=>`batchSize is required to be a positive integer, but got ${r}`)}function jp(r,e,t){return r==null?[null]:Array.isArray(r)?r.map(n=>Ua(n,e,t-e)):Ua(r,e,t-e)}function Vx(r,e){return V(()=>r==null?null:Array.isArray(r)?r.map(t=>Vx(t,e)):wx(r,e.dtype==="int32"?e:e.toInt()))}function Gx(r,e){let t=[],n=0,o=null;for(;n<r;)o=n+e,o>=r&&(o=r),t.push([n,o]),n=o;return t}async function xQ(r,e,t,n,o,s,a,i,l,u,c,p,m,f,d){o==null&&(o=32),s==null&&(s=1),c==null&&(c=!0),m==null&&(m=0);let h=!1;if(l!=null&&u!=null&&(h=!0),d!=null&&(h=!0,f==null))throw new B("Can only use `validationSteps` when doing step-wise training, i.e., `stepsPerEpoch` must be set.");let g=r.checkNumSamples(t,o,f,"steps_per_epoch"),x;g!=null&&(x=Lr(0,g)),a==null&&(a=1);let{callbackList:b,history:w}=Dx(i,a,s,m,g,f,o,h,p);b.setModel(r),r.history=w,await b.onTrainBegin(),r.stopTraining_=!1;for(let _=m;_<s;++_){await b.onEpochBegin(_);let k={};if(f!=null)throw new Se("stepsPerEpoch mode is not implemented yet.");{if(c==="batch")throw new Se("batch shuffling is not implemneted yet");c&&y.shuffle(x);let E=Gt(x),S=Gx(g,o);for(let R=0;R<S.length;++R){let F={};if(await b.onBatchBegin(R,F),V(()=>{let P=S[R][0],j=S[R][1],G=Ua(E,P,j-P);F.batch=R,F.size=j-P;let U=Vx(t,G),X=e(U);for(let K=0;K<n.length;++K){let Z=n[K],te=X[K];F[Z]=te,Dt(te)}if(R===S.length-1&&h){let K=r.testLoop(l,u,o);for(let Z=0;Z<n.length;++Z){let te=n[Z],Y=K[Z];Dt(Y),k["val_"+te]=Y}}}),await b.onBatchEnd(R,F),Nx(F),r.stopTraining_)break}E.dispose()}if(await b.onEpochEnd(_,k),r.stopTraining_)break}return await b.onTrainEnd(),await r.history.syncData(),r.history}async function EL(r,e,t,n={}){if(r.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");r.isTraining=!0;let o,s,a,i,l,u,c;try{let p=n.batchSize==null?32:n.batchSize;Bx(p);let m=!1,f=await r.standardizeUserData(e,t,n.sampleWeight,n.classWeight,m,p);o=f[0],s=f[1],c=f[2];let d=!1,h;if(n.validationData!=null&&n.validationData.length>0){if(d=!0,n.validationData.length===2)a=n.validationData[0],i=n.validationData[1];else throw n.validationData.length===3?new Se("validationData including sample weights is not supported yet."):new B(`When passing validation data, it must contain 2 (valX, valY) or 3 (valX, valY, valSampleWeight) items; ${n.validationData} is invalid.`);let S=!0,R=await r.standardizeUserData(a,i,null,null,S,p);l=R[0],u=R[1],h=l.concat(u)}else if(n.validationSplit!=null&&n.validationSplit>0&&n.validationSplit<1){d=!0;let S=Math.floor(o[0].shape[0]*(1-n.validationSplit)),R=o[0].shape[0];l=jp(o,S,R),o=jp(o,0,S),u=jp(s,S,R),s=jp(s,0,S),h=l.concat(u)}else n.validationSteps!=null&&(d=!0);let g=o.concat(s).concat(c);r.checkTrainableWeightsConsistency();let x=r.makeTrainFunction(),b=r.getDedupedMetricsNames(),w,_;d?(r.makeTestFunction(),w=r.testFunction,_=b.slice().concat(b.map(S=>"val_"+S))):(w=null,h=[],_=b.slice());let k=Ax(n.callbacks,n.yieldEvery);return await xQ(r,x,g,b,p,n.epochs,n.verbose,k,w,h,n.shuffle,_,n.initialEpoch,null,null)}finally{r.isTraining=!1,Il(o,e),Il(s,t),Il(l,a),Il(u,i),c!=null&&Ee(c)}}function z0(r){let e=[];r instanceof Ve&&(r=[r]);for(let t=0;t<r.length;++t){let n=r[t];if(n.rank===1)e.push(Wa(n,1));else{if(n.rank===0)throw new Error("Expected tensor to be at least 1D, but received a 0D tensor (scalar).");e.push(n)}}return e}function Il(r,e){if(r==null)return;let t=[];if(e instanceof Ve)t.push(e.id);else if(Array.isArray(e))e.forEach(o=>t.push(o.id));else if(e!=null)for(let o in e){let s=e[o];t.push(s.id)}let n=[];if(r instanceof Ve)t.indexOf(r.id)===-1&&n.push(r);else if(Array.isArray(r))r.forEach(o=>{t.indexOf(o.id)===-1&&n.push(o)});else if(r!=null)for(let o in r){let s=r[o];t.indexOf(s.id)===-1&&n.push(s)}n.forEach(o=>{o.isDisposed||o.dispose()})}function yQ(r){return r instanceof Ve}function B0(r){return Array.isArray(r)}function AL(r){return!yQ(r)&&!B0(r)}function DL(r,e,t,n=!0,o=""){if(e==null||e.length===0){if(r!=null){let a=!1;if(B0(r)&&r.length>0)a=!0;else if(AL(r)){for(let i in r)if(r.hasOwnProperty(i)){a=!0;break}}else a=!0;if(a)throw new B(`Error when checking model ${o} expected no data, but got ${r}`)}return[]}if(r==null)return e.map(a=>null);let s;if(AL(r)){r=r,s=[];for(let a of e){if(r[a]==null)throw new B(`No data provided for "${a}". Need data for each key in: ${e}`);s.push(r[a])}}else if(B0(r)){if(r=r,r.length!==e.length)throw new B(`Error when checking model ${o}: the Array of Tensors that you are passing to your model is not the size the model expected. Expected to see ${e.length} Tensor(s), but instead got the following list of Tensor(s): ${r}`);s=r}else{if(r=r,e.length>1)throw new B(`The model ${o} expects ${e.length} Tensor(s), but only received one Tensor. Found: Tensor with shape ${r.shape}`);s=[r]}if(s=z0(s),t!=null)for(let a=0;a<e.length;++a){if(t[a]==null)continue;let i=s[a];if(i.shape.length!==t[a].length)throw new B(`Error when checking ${o}: expected ${e[a]} to have ${t[a].length} dimension(s). but got array with shape ${i.shape}`);for(let l=0;l<t[a].length;++l){if(l===0&&!n)continue;let u=i.shape[l],c=t[a][l];if(c!=null&&c>=0&&u!==c)throw new B(`Error when checking ${o}: expected ${e[a]} to have shape [${t[a]}], but got array with shape [${i.shape}].`)}}return s}function bQ(r,e,t){let n=Zo(r.map(s=>s.shape[0]));n.sort();let o=Zo(e.map(s=>s.shape[0]));if(o.sort(),n.length>1)throw new B(`All input Tensors (x) should have the same number of samples. Got array shapes: ${JSON.stringify(r.map(s=>s.shape))}`);if(o.length>1)throw new B(`All target Tensors (y) should have the same number of samples. Got array shapes: ${JSON.stringify(e.map(s=>s.shape))}`);if(n.length>0&&o.length>0&&!y.arraysEqual(n,o))throw new B(`Input Tensors should have the same number of samples as target Tensors. Found ${n[0]} input sample(s) and ${o[0]} target sample(s).`)}function wQ(r,e,t){let n=[Xi,Vp,lc];for(let o=0;o<r.length;++o){let s=r[o],a=e[o],i=t[o];if(a!=null){if(a===lc&&s.shape[s.shape.length-1]===1)throw new B(`You are passing a target array of shape ${s.shape} while using a loss 'categorical_crossentropy'. 'categorical_crossentropy'expects targets to be binary matrices (1s and 0s) of shape [samples, classes].`);if(n.indexOf(a)!==-1){let l=s.shape.slice(1),u=i.slice(1);for(let c=0;c<l.length;++c){let p=l[c],m=u[c];if(m!=null&&p!==m)throw new B(`A target Tensor with shape ${s.shape} was passed for an output of shape ${i}, while using a loss function that expects targets to have the same shape as the output.`)}}}}}function $L(r,e,t,n=!0,o=""){let s;if(Array.isArray(r)){if(r.length!==e.length)throw new B(`Error when checking model ${o}: the Array of Tensors that you are passing to your model is not the size the the model expected. Expected to see ${e.length} Tensor(s), but instead got ${r.length} Tensors(s).`);s=r}else{if(e.length>1)throw new B(`The model expects ${e.length} ${o} Tensors, but only received one Tensor. Found: array with shape ${JSON.stringify(r.shape)}.`);s=[r]}if(t!=null)for(let a=0;a<e.length;++a){if(t[a]==null)continue;let i=s[a];if(i.shape.length!==t[a].length)throw new B(`Error when checking ${o}: expected ${e[a]} to have ${t[a].length} dimension(s), but got array with shape ${JSON.stringify(i.shape)}`);for(let l=0;l<t[a].length;++l){if(l===0&&!n)continue;let u=i.shape[l],c=t[a][l];if(c!=null&&c!==u)throw new B(`Error when checking ${o}: expected ${e[a]} to have shape ${JSON.stringify(t[a])} but got array with shape ${JSON.stringify(i.shape)}.`)}}}function _Q(r,e){if(r==null||Array.isArray(r)&&r.length===0)return e.map(n=>[]);let t;if(typeof r=="string"||typeof r=="function")t=[r];else if(Array.isArray(r)||typeof r=="object")t=r;else throw new TypeError(`Type of metrics argument not understood. Expected an string,function, Array, or Object, found: ${r}`);if(Array.isArray(t))return e.map(n=>t);{let n=[];for(let o of e){let s=t.hasOwnProperty(o)?t[o]:[];Array.isArray(s)||(s=[s]),n.push(s)}return n}}var kQ="layers-model",In=class extends zn{constructor(e){super(e);this.isTraining=!1}summary(e,t,n=console.log){if(!this.built)throw new B("This model has never been called, thus its weights have not been created yet. So no summary can be displayed. Build the model first (e.g., by calling it on some test data).");bL(this,e,t,n)}compile(e){if(e.loss==null&&(e.loss=[]),this.loss=e.loss,typeof e.optimizer=="string")this.optimizer_=xL(e.optimizer),this.isOptimizerOwned=!0;else{if(!(e.optimizer instanceof Or))throw new B("User-defined optimizer must be an instance of tf.Optimizer.");this.optimizer_=e.optimizer,this.isOptimizerOwned=!1}let t=[];if(!Array.isArray(e.loss)&&typeof e.loss!="string"&&typeof e.loss!="function"){e.loss=e.loss;for(let a in e.loss)if(this.outputNames.indexOf(a)===-1)throw new B(`Unknown entry in loss dictionary: "${a}". Only expected the following keys: ${this.outputNames}`);for(let a of this.outputNames)e.loss[a]==null&&console.warn(`Output "${a}" is missing from loss dictionary. We assume this was done on purpose, and we will not be expecting data to be passed to ${a} during training`),t.push($x(e.loss[a]))}else if(Array.isArray(e.loss)){if(e.loss.length!==this.outputs.length)throw new B(`When passing an Array as loss, it should have one entry per model output. The model has ${this.outputs.length} output(s), but you passed loss=${e.loss}.`);t=e.loss.map(i=>$x(i))}else{let a=$x(e.loss);this.outputs.forEach(i=>{t.push(a)})}this.lossFunctions=t,this.feedOutputNames=[],this.feedOutputShapes=[],this.feedLossFns=[];for(let a=0;a<this.outputs.length;++a){let i=this.internalOutputShapes[a],l=this.outputNames[a];this.feedOutputNames.push(l),this.feedOutputShapes.push(i),this.feedLossFns.push(this.lossFunctions[a])}let n=[];this.metrics=e.metrics,this.metricsNames=["loss"],this.metricsTensors=[],Ps("loss",()=>{for(let a=0;a<this.outputs.length;++a){if(n.indexOf(a)!==-1)continue;let i=this.lossFunctions[a];this.outputs.length>1&&(this.metricsTensors.push([i,a]),this.metricsNames.push(this.outputNames[a]+"_loss"))}});let o=_Q(e.metrics,this.outputNames),s=(a,i,l)=>{this.outputNames.length>1&&(i=this.outputNames[a]+"_"+i),this.metricsNames.push(i),this.metricsTensors.push([l,a])};Ps("metric",()=>{for(let a=0;a<this.outputs.length;++a){if(n.indexOf(a)!==-1)continue;let i=o[a];(u=>{let c="",p,m,f;for(let d of u){if(typeof d=="string"&&["accuracy","acc","crossentropy","ce"].indexOf(d)!==-1){let g=this.internalOutputShapes[a];g[g.length-1]===1||this.lossFunctions[a]===Vp?["accuracy","acc"].indexOf(d)!==-1?m=sd:["crossentropy","ce"].indexOf(d)!==-1&&(m=Rx):this.lossFunctions[a]===Bp?["accuracy","acc"].indexOf(d)!==-1?m=Fx:["crossentropy","ce"].indexOf(d)!==-1&&(m=O0):["accuracy","acc"].indexOf(d)!==-1?m=id:["crossentropy","ce"].indexOf(d)!==-1&&(m=ad);let x;["accuracy","acc"].indexOf(d)!==-1?x="acc":["crossentropy","ce"].indexOf(d)!==-1&&(x="ce"),f=m,p=c+x}else f=gL(d),p=c+ld(d);let h;Ps(p,()=>{h=f}),s(a,p,h)}})(i)}}),this.collectedTrainableWeights=this.trainableWeights}checkTrainableWeightsConsistency(){this.collectedTrainableWeights!=null&&this.trainableWeights.length!==this.collectedTrainableWeights.length&&console.warn("Discrepancy between trainableweights and collected trainable weights. Did you set `model.trainable` without calling `model.compile()` afterwards?")}evaluate(e,t,n={}){let o=n.batchSize==null?32:n.batchSize;Bx(o);let s=!0,a=this.standardizeUserDataXY(e,t,s,o);try{let i=a[0].concat(a[1]);this.makeTestFunction();let l=this.testFunction,u=this.testLoop(l,i,o,n.verbose,n.steps);return gr(u)}finally{Il(a[0],e),Il(a[1],t)}}async evaluateDataset(e,t){return this.makeTestFunction(),TL(this,e,t)}checkNumSamples(e,t,n,o="steps"){let s;if(n!=null){if(s=null,t!=null)throw new B(`If ${o} is set, batchSize must be null or undefined.Got batchSize = ${t}`)}else if(e!=null)Array.isArray(e)?s=e[0].shape[0]:s=e.shape[0];else throw new B(`Either the input data should have a defined shape, or ${o} shoud be specified.`);return s}execute(e,t){if(Array.isArray(t)&&t.length===0)throw new B("`outputs` is an empty Array, which is not allowed.");let n=Array.isArray(t),o=n?t:[t],s=this.retrieveSymbolicTensors(o),a=new Ls;if(e instanceof Ve&&(e=[e]),Array.isArray(e)){if(e.length!==this.inputs.length)throw new B(`The number of inputs provided (${e.length}) does not match the number of inputs of this model (${this.inputs.length}).`);for(let l=0;l<this.inputs.length;++l)a.add(this.inputs[l],e[l])}else for(let l of this.inputs){let u=e[l.name];if(u==null)throw new B(`No value is provided for the model's input ${l.name}`);a.add(l,u)}let i=cc(s,a);return n?i:i[0]}retrieveSymbolicTensors(e){let t=Ko(null,e.length),n=e.length;for(let o of this.layers){let s=Array.isArray(o.output)?o.output:[o.output],a=s.map(i=>i.name);for(let i=0;i<e.length;++i){let l=a.indexOf(e[i]);if(l!==-1&&(t[i]=s[l],n--),n===0)break}if(n===0)break}if(n>0){let o=[];throw t.forEach((s,a)=>{s==null&&o.push(e[a])}),new B(`Cannot find SymbolicTensors for output name(s): ${JSON.stringify(o)}`)}return t}predictLoop(e,t=32,n=!1){return V(()=>{let o=this.checkNumSamples(e);if(n)throw new Se("Verbose predictLoop() is not implemented yet.");let s=Gx(o,t),a=this.outputs.map(i=>[]);for(let i=0;i<s.length;++i)V(()=>{let u=s[i][0],c=s[i][1],p=jp(e,u,c),m=[];if(Array.isArray(p))for(let d=0;d<p.length;++d)m.push({key:this.inputs[d],value:p[d]});else m.push({key:this.inputs[0],value:p});let f=new Ls(m);return cc(this.outputs,f)}).forEach((u,c)=>a[c].push(u));return gr(a.map(i=>Qe(i,0)))})}predict(e,t={}){let n=z0(e);$L(n,this.inputNames,this.feedInputShapes,!1);try{let o=t.batchSize==null?32:t.batchSize;return Bx(o),this.predictLoop(n,o)}finally{Il(n,e)}}predictOnBatch(e){$L(e,this.inputNames,this.feedInputShapes,!0);let t=(Array.isArray(e)?e[0]:e).shape[0];return this.predictLoop(e,t)}standardizeUserDataXY(e,t,n=!0,o){if(this.optimizer_==null)throw new Mr("You must compile a model before training/testing. Use LayersModel.compile(modelCompileArgs).");let s=[];for(let a=0;a<this.feedOutputShapes.length;++a){let i=this.feedOutputShapes[a];this.feedLossFns[a]===Bp?s.push(i.slice(0,i.length-1).concat([1])):s.push(i)}if(e=DL(e,this.feedInputNames,this.feedInputShapes,!1,"input"),t=DL(t,this.feedOutputNames,s,!1,"target"),bQ(e,t,null),wQ(t,this.feedLossFns,this.feedOutputShapes),this.stateful&&o!=null&&o>0&&e[0].shape[0]%o!=0)throw new B(`In a stateful network, you should only pass inputs with a number of samples that is divisible by the batch size ${o}. Found: ${e[0].shape[0]} sample(s).`);return[e,t]}async standardizeUserData(e,t,n,o,s=!0,a){let[i,l]=this.standardizeUserDataXY(e,t,s,a);if(n!=null)throw new Error("sample weight is not supported yet.");let u=null;if(o!=null){let c=Lx(o,this.outputNames);u=[];for(let p=0;p<c.length;++p)u.push(await zx(l[p],null,c[p]))}return[i,l,u]}testLoop(e,t,n,o=0,s){return V(()=>{let a=this.checkNumSamples(t,n,s,"steps"),i=[];if(o>0)throw new Se("Verbose mode is not implemented yet.");if(s!=null)throw new Se("steps mode in testLoop() is not implemented yet");{let l=Gx(a,n),u=Gt(Lr(0,a));for(let c=0;c<l.length;++c){let p=l[c][0],m=l[c][1],f=Ua(u,p,m-p),d=Vx(t,f),h=e(d);if(c===0)for(let g=0;g<h.length;++g)i.push(le(0));for(let g=0;g<h.length;++g){let x=h[g];i[g]=Q(i[g],M(m-p,x))}}for(let c=0;c<i.length;++c)i[c]=de(i[c],a)}return i})}getDedupedMetricsNames(){let e=this.metricsNames,t=[];for(let n=0;n<e.length;++n){let o=e[n],s=o;C0(e,o)>1&&(s+=`_${C0(e.slice(0,n),o)}`),t.push(s)}return t}makeTrainFunction(){return e=>{let t=[],n=e.slice(0,this.inputs.length),o=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),s=e.slice(this.inputs.length+this.outputs.length,this.inputs.length+this.outputs.length*2),a=[],i=()=>{let p=[];for(let h=0;h<this.inputs.length;++h)p.push({key:this.inputs[h],value:n[h]});let m=new Ls(p),f=cc(this.outputs,m,{training:!0}),d;for(let h=0;h<this.lossFunctions.length;++h){let x=this.lossFunctions[h](o[h],f[h]);s[h]!=null&&(x=vL(x,s[h]));let b=gt(x);t.push(b),h===0?d=x:d=Q(d,x)}for(let h=0;h<this.metricsTensors.length;++h){let g;if(this.outputs.length>1&&h<this.outputs.length)g=t[h];else{let x=this.metricsTensors[h][0],b=this.metricsTensors[h][1];g=gt(x(o[b],f[b]))}Dt(g),a.push(g)}return d=gt(d),this.calculateLosses().forEach(h=>{d=Q(d,h)}),d},l=this.collectedTrainableWeights.map(p=>p.read()),u=!0;return[this.optimizer_.minimize(i,u,l)].concat(a)}}makeTestFunction(){this.testFunction=e=>V(()=>{let t=[],n,o=e.slice(0,this.inputs.length),s=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),a=[];for(let u=0;u<this.inputs.length;++u)a.push({key:this.inputs[u],value:o[u]});let i=new Ls(a),l=cc(this.outputs,i);for(let u=0;u<this.lossFunctions.length;++u){let c=this.lossFunctions[u],p=gt(c(s[u],l[u]));u===0?n=p:n=Q(n,p),t.push(n)}for(let u=0;u<this.metricsTensors.length;++u){let c=this.metricsTensors[u][0],p=this.metricsTensors[u][1],m=gt(c(s[p],l[p]));t.push(m)}return t})}async fit(e,t,n={}){return EL(this,e,t,n)}async fitDataset(e,t){return SL(this,e,t)}async trainOnBatch(e,t){let n=await this.standardizeUserData(e,t),o=n[0],s=n[1],i=this.makeTrainFunction()(o.concat(s)),l=[];for(let u of i){let c=await u.data();l.push(c[0])}return Ee(i),gr(l)}getNamedWeights(e){let t=[],n=e!=null&&e.trainableOnly,o=n?this.trainableWeights:this.weights,s=this.getWeights(n);for(let a=0;a<o.length;++a)n&&!o[a].trainable||t.push({name:o[a].originalName,tensor:s[a]});return t}set stopTraining(e){this.stopTraining_=e}get stopTraining(){return this.stopTraining_}get optimizer(){return this.optimizer_}set optimizer(e){this.optimizer_!==e&&(this.optimizer_=e,this.isOptimizerOwned=!1)}dispose(){let e=super.dispose();if(e.refCountAfterDispose===0&&this.optimizer!=null&&this.isOptimizerOwned){let t=qc().numTensors;this.optimizer_.dispose(),e.numDisposedVariables+=t-qc().numTensors}return e}getLossIdentifiers(){let e;if(typeof this.loss=="string")e=Xo(this.loss);else if(Array.isArray(this.loss)){for(let t of this.loss)if(typeof t!="string")throw new Error("Serialization of non-string loss is not supported.");e=this.loss.map(t=>Xo(t))}else{let t=Object.keys(this.loss);e={};let n=this.loss;for(let o of t)if(typeof n[o]=="string")e[o]=Xo(n[o]);else throw new Error("Serialization of non-string loss is not supported.")}return e}getMetricIdentifiers(){if(typeof this.metrics=="string"||typeof this.metrics=="function")return[Xo(ld(this.metrics))];if(Array.isArray(this.metrics))return this.metrics.map(e=>Xo(ld(e)));{let e={};for(let t in this.metrics)e[t]=Xo(ld(this.metrics[t]));return e}}getTrainingConfig(){return{loss:this.getLossIdentifiers(),metrics:this.getMetricIdentifiers(),optimizer_config:{class_name:this.optimizer.getClassName(),config:this.optimizer.getConfig()}}}loadTrainingConfig(e){if(e.weighted_metrics!=null)throw new Error("Loading weight_metrics is not supported yet.");if(e.loss_weights!=null)throw new Error("Loading loss_weights is not supported yet.");if(e.sample_weight_mode!=null)throw new Error("Loading sample_weight_mode is not supported yet.");let t=uc(e.optimizer_config),n=Yr(t),o;if(typeof e.loss=="string")o=Ga(e.loss);else if(Array.isArray(e.loss))o=e.loss.map(a=>Ga(a));else if(e.loss!=null){o={};for(let a in e.loss)o[a]=Ga(e.loss[a])}let s;if(Array.isArray(e.metrics))s=e.metrics.map(a=>Ga(a));else if(e.metrics!=null){s={};for(let a in e.metrics)s[a]=Ga(e.metrics[a])}this.compile({loss:o,metrics:s,optimizer:n})}async save(e,t){if(typeof e=="string"){let u=Cr.getSaveHandlers(e);if(u.length===0)throw new B(`Cannot find any save handlers for URL '${e}'`);if(u.length>1)throw new B(`Found more than one (${u.length}) save handlers for URL '${e}'`);e=u[0]}if(e.save==null)throw new B("LayersModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");let n=await Cr.encodeWeights(this.getNamedWeights(t)),o=!1,s=null,i={modelTopology:this.toJSON(s,o),format:kQ,generatedBy:`TensorFlow.js tfjs-layers v${Gp}`,convertedBy:null};if((t==null?!1:t.includeOptimizer)&&this.optimizer!=null){i.trainingConfig=this.getTrainingConfig();let u="optimizer",{data:c,specs:p}=await Cr.encodeWeights(await this.optimizer.getWeights(),u);n.specs.push(...p),n.data=Cr.concatenateArrayBuffers([n.data,c])}if(this.userDefinedMetadata!=null){let u=!0;M0(this.userDefinedMetadata,this.name,u),i.userDefinedMetadata=this.userDefinedMetadata}return i.weightData=n.data,i.weightSpecs=n.specs,e.save(i)}setUserDefinedMetadata(e){M0(e,this.name),this.userDefinedMetadata=e}getUserDefinedMetadata(){return this.userDefinedMetadata}};In.className="Model";J.registerClass(In);var V0=class extends In{};V0.className="Functional";J.registerClass(V0);async function RL(r,e){"modelTopology"in r||(r={modelTopology:r}),r=r;let t=r.modelTopology;t.model_config!=null&&(t=t.model_config);let n=uc(t),o=Yr(n,e);if(r.weightsManifest!=null){let s=await Cr.loadWeights(r.weightsManifest,r.pathPrefix,o.weights.map(i=>i.originalName)),a={};for(let i of o.weights)a[i.originalName]=s[i.originalName];o.loadWeights(a),Ee(s)}return o}async function FL(r,e){if(e==null&&(e={}),typeof r=="string"){let t=Cr.getLoadHandlers(r,e);if(t.length===0)t.push(Cr.browserHTTPRequest(r,e));else if(t.length>1)throw new B(`Found more than one (${t.length}) load handlers for URL '${r}'`);r=t[0]}return vQ(r,void 0,e)}async function vQ(r,e,t){if(t==null&&(t={}),r.load==null)throw new B("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let n=await r.load(),o=n.modelTopology;o.model_config!=null&&(o=o.model_config);let s=t.strict==null?!0:t.strict,a=n.weightData!=null&&n.weightSpecs!=null&&s,i=Yr(uc(o),e,a),l=n.trainingConfig;if(l!=null&&i.loadTrainingConfig(l),n.userDefinedMetadata!=null&&i.setUserDefinedMetadata(n.userDefinedMetadata),n.weightData!=null){if(n.weightSpecs==null)throw new B("LayersModel artifacts contains weight data, but not weight specs. Therefore loading of weights cannot proceed.");let{modelWeights:u,optimizerWeights:c}=CQ(n.weightData,n.weightSpecs);i.loadWeights(u,s),i.optimizer!=null&&c.length>0&&await i.optimizer.setWeights(c),Ee(u),Ee(c.map(p=>p.tensor))}return i}function CQ(r,e){let t=Cr.decodeWeights(r,e),n={},o=[];return e.forEach(s=>{s.group==="optimizer"?o.push({name:s.name,tensor:t[s.name]}):n[s.name]=t[s.name]}),{modelWeights:n,optimizerWeights:o}}var Yi=class extends In{constructor(e){super({inputs:[],outputs:[]});if(e=e||{},this.trainable=!0,this.built=!1,this.name=e.name!=null?e.name:_l("sequential_"),e.layers!=null)for(let t of e.layers)this.add(t)}checkShape(e){if(e.inboundNodes[0].outputTensors[0].shape.some(n=>n<0))throw new B(`Negative dimension size caused by adding layer ${e.name} with input shape [${e.inboundNodes[0].inputTensors[0].shape}]`)}add(e){let t=e instanceof Yi||e instanceof In,n;if(t){if(n=e,n.outputs.length!==1)throw new B("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");if(n.inputs.length!==1)throw new B("All layers in a Sequential model should have a single input tensor. For multi-input layers, use the functional API.")}if(this.outputs.length===0){if(e.inboundNodes.length===0){if(e.batchInputShape==null)throw new B("The first layer in a Sequential model must get an `inputShape` or `batchInputShape` argument.");let o=Ix({batchShape:e.batchInputShape,dtype:e.dtype,name:e.name+"_input"});e.apply(o)}if(t)this.outputs=n.outputs,this.inputs=n.inputs;else{if(e.inboundNodes.length!==1)throw new B(`A layer added to a Sequential model must not already be connected somewhere else. LayersModel received layer ${e.name} which has ${e.inboundNodes.length} pre-existing inbound connections.`);if(e.inboundNodes[0].outputTensors.length!==1)throw new B("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[e.inboundNodes[0].outputTensors[0]],this.inputs=R0(this.outputs[0])}this.inboundNodes=[],new kl({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:Ko(null,this.inputs.length),outputMasks:[null],inputShapes:this.inputs.map(o=>o.shape),outputShapes:this.outputs[0].shape})}else{let o=e.apply(this.outputs[0]);if(Array.isArray(o))throw new TypeError("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[o],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}this.layers.push(e),this.built=!1}pop(){if(this.layers.length===0)throw new TypeError("There are no layers in the model.");if(this.layers.pop(),this.layers.length===0)this.outputs=[],this.inboundNodes=[],this.outboundNodes=[];else{let e=this.layers.length-1;this.layers[e].outboundNodes=[],this.outputs=[this.layers[e].output],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}}call(e,t){return this.model==null&&this.build(),this.model.call(e,t)}build(e){if(et(e),this.inputs.length===0||this.outputs.length===0)throw new TypeError("Sequential model cannot be built: model is empty. Add some layers first.");this.model=new In({inputs:this.inputs,outputs:this.outputs[0],name:this.name+"_model"}),this.model.trainable=this.trainable,this.supportsMasking=this.model.supportsMasking,this.inputLayers=this.model.inputLayers,this.inputLayersNodeIndices=this.model.inputLayersNodeIndices,this.inputLayersTensorIndices=this.model.inputLayersTensorIndices,this.outputLayers=this.model.outputLayers,this.outputLayersNodeIndices=this.model.outputLayersNodeIndices,this.outputLayersTensorIndices=this.model.outputLayersTensorIndices,this.nodesByDepth=this.model.nodesByDepth,this.containerNodes=this.model.containerNodes,this.outputNames=this.model.outputNames,this.inputNames=this.model.inputNames,this.built=!0}countParams(){return this.built||this.build(),super.countParams()}summary(e,t,n=console.log){this.built||this.build(),super.summary(e,t,n)}setWeights(e){this.model==null&&this.build(),this.model.setWeights(e)}evaluate(e,t,n={}){if(!this.built)throw new Mr("The model needs to be compiled before being used.");return this.model.evaluate(e,t,n)}async evaluateDataset(e,t){if(!this.built)throw new Mr("The model needs to be compiled before being used.");return this.model.evaluateDataset(e,t)}predict(e,t={}){return this.model==null&&this.build(),this.model.predict(e,t)}predictOnBatch(e){return this.model==null&&this.build(),this.model.predictOnBatch(e)}compile(e){this.build(),this.model.compile(e),this.optimizer_=this.model.optimizer,this.isOptimizerOwned=this.model.isOptimizerOwned,this.loss=this.model.loss,this.metrics=this.model.metrics,this.metricsTensors=this.model.metricsTensors,this.metricsNames=this.model.metricsNames}get optimizer(){return this.model==null?void 0:this.model.optimizer}set optimizer(e){this.model.optimizer=e}async fit(e,t,n={}){if(!this.built)throw new Mr("The model needs to be compiled before being used.");return this.model.fit(e,t,n)}async fitDataset(e,t){if(!this.built)throw new Mr("The model needs to be compiled before being used.");return this.model.fitDataset(e,t)}async trainOnBatch(e,t){return this.model.trainOnBatch(e,t)}static fromConfig(e,t,n={},o=!1){let s,a={};if(t instanceof Array){if(t[0].className==null||t[0].className==="Merge")throw new B("Legacy serialization format not supported yet.");s=t}else y.assert(t.layers!=null,()=>"When the config data for a Sequential model is not an Array, it must be an Object that contains the 'layers' field."),s=t.layers,delete t.layers,a=t;let i=new e(a);if(!(i instanceof Yi))throw new Se(`Sequential.fromConfig called on non-Sequential input: ${i}`);for(let l of s){let c=Yr(l,void 0,o);o&&c.setFastWeightInitDuringBuild(!0),i.add(c)}return i}set stopTraining(e){if(this.model==null)throw new B("Cannot set the stopTraining property of a sequential model before it is compiled.");this.model.stopTraining=e}get stopTraining(){if(this.model==null)throw new B("Cannot get the stopTraining property of a sequential model before it is compiled.");return this.model.stopTraining}getConfig(){let e=[];for(let t of this.layers){let n={};n.className=t.getClassName(),n.config=t.getConfig(),e.push(n)}return{name:this.name,layers:e}}};Yi.className="Sequential";J.registerClass(Yi);function OL(r){return new In(r)}function PL(r){return new Yi(r)}function ML(r,e){return e==null&&(e={}),FL(r,e)}function jx(r){return Ix(r)}function LL(r,e){an.registerCallbackConstructor(r,e)}var ln=class extends J.Serializable{getConfig(){return{}}},G0=class extends ln{apply(e,t=1){return oL(e,t)}};G0.className="elu";J.registerClass(G0);var j0=class extends ln{apply(e){return Pu(e)}};j0.className="selu";J.registerClass(j0);var W0=class extends ln{apply(e){return Nr(e)}};W0.className="relu";J.registerClass(W0);var U0=class extends ln{apply(e){return V(()=>Ts(6,Nr(e)))}};U0.className="relu6";J.registerClass(U0);var q0=class extends ln{apply(e){return e}};q0.className="linear";J.registerClass(q0);var H0=class extends ln{apply(e){return Wr(e)}};H0.className="sigmoid";J.registerClass(H0);var K0=class extends ln{apply(e){return iL(e)}};K0.className="hardSigmoid";J.registerClass(K0);var X0=class extends ln{apply(e){return Ss(e)}};X0.className="softplus";J.registerClass(X0);var Y0=class extends ln{apply(e){return sL(e)}};Y0.className="softsign";J.registerClass(Y0);var Z0=class extends ln{apply(e){return Li(e)}};Z0.className="tanh";J.registerClass(Z0);var ud=class extends ln{apply(e,t=-1){return $a(e,t)}};ud.className="softmax";J.registerClass(ud);var J0=class extends ln{apply(e,t=-1){return Au(e,t)}};J0.className="logSoftmax";J.registerClass(J0);var Q0=class extends ln{apply(e,t=1){return V(()=>Wr(e.mul(t)).mul(e))}};Q0.className="swish";J.registerClass(Q0);function zs(r){return r.getClassName()}function eC(r,e={}){return Ui(r,J.SerializationMap.getMap().classNameMap,e,"activation")}function Bs(r){if(r==null){let e={};return e.className="linear",e.config={},eC(e)}if(typeof r=="string"){let e={};return e.className=r,e.config={},eC(e)}else return r instanceof ln?r:eC(r)}function tC(r){if(r!=null&&typeof r!="object")throw new Error(`Argument to L1L2 regularizer's constructor is expected to be an object, but received: ${r}`)}var rC=class extends J.Serializable{},pc=class extends rC{constructor(e){super();tC(e),this.l1=e==null||e.l1==null?.01:e.l1,this.l2=e==null||e.l2==null?.01:e.l2,this.hasL1=this.l1!==0,this.hasL2=this.l2!==0}apply(e){return V(()=>{let t=xt([1]);return this.hasL1&&(t=Q(t,ye(M(this.l1,Et(e))))),this.hasL2&&(t=Q(t,ye(M(this.l2,ic(e))))),t.asScalar()})}getConfig(){return{l1:this.l1,l2:this.l2}}static fromConfig(e,t){return new e({l1:t.l1,l2:t.l2})}};pc.className="L1L2";J.registerClass(pc);function zL(r){return tC(r),new pc({l1:r!=null?r.l1:null,l2:0})}function BL(r){return tC(r),new pc({l2:r!=null?r.l2:null,l1:0})}var VL={l1l2:"L1L2"};function lt(r){return Ip(r)}function GL(r,e={}){return Ui(r,J.SerializationMap.getMap().classNameMap,e,"regularizer")}function _t(r){if(r==null)return null;if(typeof r=="string"){let t={className:r in VL?VL[r]:r,config:{}};return GL(t)}else return r instanceof rC?r:GL(r)}var cd=class extends Me{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null&&(this.maxValue=e.maxValue)}call(e,t){e=Oe(e);let n=Nr(e);return this.maxValue!=null&&(n=sr(n,0,this.maxValue)),n}computeOutputShape(e){return e}getConfig(){let e={maxValue:this.maxValue},t=super.getConfig();return Object.assign(e,t),e}};cd.className="ReLU";J.registerClass(cd);var pd=class extends Me{constructor(e){super(e==null?{}:e);this.DEFAULT_ALPHA=.3,e==null&&(e={}),this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=Oe(e);return Sa(n,this.alpha)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};pd.className="LeakyReLU";J.registerClass(pd);var md=class extends Me{constructor(e){super(e==null?{}:e);if(this.DEFAULT_ALPHA_INITIALIZER="zeros",e==null&&(e={}),this.supportsMasking=!0,this.alphaInitializer=dt(e.alphaInitializer||this.DEFAULT_ALPHA_INITIALIZER),this.alphaRegularizer=_t(e.alphaRegularizer),this.alphaConstraint=Lt(e.alphaConstraint),e.sharedAxes==null)this.sharedAxes=null;else if(Array.isArray(e.sharedAxes))this.sharedAxes=e.sharedAxes;else if(typeof e.sharedAxes=="number")this.sharedAxes=[e.sharedAxes];else throw new B(`Expected sharedAxes to be a number or an array of numbers, but got ${e.sharedAxes}`)}build(e){e=et(e);let t=e.slice(1);if(this.sharedAxes!=null)for(let o of this.sharedAxes)t[o-1]=1;this.alpha=this.addWeight("alpha",t,"float32",this.alphaInitializer,this.alphaRegularizer,!0,this.alphaConstraint);let n={};if(this.sharedAxes!=null)for(let o=1;o<e.length;++o)n[o]=e[o];this.inputSpec=[new At({ndim:e.length,axes:n})],this.built=!0}call(e,t){return e=Oe(e),Da(e,this.alpha.read())}getConfig(){let e={alphaInitializer:Nt(this.alphaInitializer),alphaRegularizer:lt(this.alphaRegularizer),alphaConstraint:Mt(this.alphaConstraint),sharedAxes:this.sharedAxes},t=super.getConfig();return Object.assign(e,t),e}};md.className="PReLU";J.registerClass(md);var fd=class extends Me{constructor(e){super(e==null?{}:e);if(this.DEFAULT_ALPHA=1,e==null&&(e={}),e.alpha!=null&&e.alpha!==this.DEFAULT_ALPHA)throw new Se(`Non-default alpha value (${e.alpha}) is not supported by the ELU layer yet.`);this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=Oe(e);return Is(n)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};fd.className="ELU";J.registerClass(fd);var dd=class extends Me{constructor(e){super(e==null?{}:e);this.DEFAULT_THETA=1,e==null&&(e={}),this.theta=e.theta==null?this.DEFAULT_THETA:e.theta}call(e,t){let n=Oe(e);return n.mul(ja(n.greater(this.theta),"float32"))}computeOutputShape(e){return e}getConfig(){let e={theta:this.theta},t=super.getConfig();return Object.assign(e,t),e}};dd.className="ThresholdedReLU";J.registerClass(dd);var hd=class extends Me{constructor(e){super(e==null?{}:e);this.DEFAULT_AXIS=1,e==null&&(e={}),this.softmax=new ud().apply,this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis}call(e,t){let n=Oe(e);return this.softmax(n,this.axis)}computeOutputShape(e){return e}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};hd.className="Softmax";J.registerClass(hd);function Nl(r,e,t){if(typeof r=="number")return Ko(r,e);if(r.length!==e)throw new B(`The ${t} argument must be an integer or tuple of ${e} integers. Received: ${r.length} elements.`);for(let n=0;n<e;++n){let o=r[n];if(!QM(o))throw new B(`The ${t} argument must be an integer or tuple of ${e} integers. Received: ${JSON.stringify(r)} including a non-integer number ${o}`)}return r}function un(r,e,t,n,o=1){if(r==null)return r;let s=e+(e-1)*(o-1),a;return t==="same"?a=r:a=r-s+1,Math.floor((a+n-1)/n)}function gd(r,e,t,n){if(r==null)return null;if(n==="valid")r=r*e+Ms([t-e,0]);else if(n==="same")r=r*e;else throw new B(`Unsupport padding mode: ${n}.`);return r}function xd(r,e){return V(()=>(Ft(e),e==="channelsFirst"?We(r,[0,2,3,1]):r))}function nC(r,e){return V(()=>(Ft(e),e==="channelsFirst"?We(r,[0,2,3,4,1]):r))}function IQ(r,e,t,n=1,o="valid",s,a=1){return V(()=>{if(s==null&&(s=Kr()),Ft(s),r.shape.length!==3)throw new B(`The input of a conv1dWithBias operation should be 3, but is ${r.shape.length} instead.`);if(e.shape.length!==3)throw new B(`The kernel for a conv1dWithBias operation should be 3, but is ${e.shape.length} instead`);if(t!=null&&t.shape.length!==1)throw new B(`The bias for a conv1dWithBias operation should be 1, but is ${e.shape.length} instead`);if(s==="channelsFirst"&&(r=We(r,[0,2,1])),o==="causal")throw new Se("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");let i=vu(r,e,n,o==="same"?"same":"valid","NWC",a);return t!=null&&(i=on(i,t)),i})}function jL(r,e,t,n=[1,1],o="valid",s,a,i=null){return V(()=>{if(s==null&&(s=Kr()),Ft(s),r.rank!==3&&r.rank!==4)throw new B(`conv2dWithBiasActivation expects input to be of rank 3 or 4, but received ${r.rank}.`);if(e.rank!==3&&e.rank!==4)throw new B(`conv2dWithBiasActivation expects kernel to be of rank 3 or 4, but received ${r.rank}.`);let l=xd(r,s);if(o==="causal")throw new Se("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");return l=zo.conv2d({x:l,filter:e,strides:n,pad:o==="same"?"same":"valid",dilations:a,dataFormat:"NHWC",bias:t,activation:i}),s==="channelsFirst"&&(l=We(l,[0,3,1,2])),l})}function NQ(r,e,t,n=[1,1,1],o="valid",s,a){return V(()=>{if(s==null&&(s=Kr()),Ft(s),r.rank!==4&&r.rank!==5)throw new B(`conv3dWithBias expects input to be of rank 4 or 5, but received ${r.rank}.`);if(e.rank!==4&&e.rank!==5)throw new B(`conv3dWithBias expects kernel to be of rank 4 or 5, but received ${r.rank}.`);let i=nC(r,s);if(o==="causal")throw new Se("The support for CAUSAL padding mode in conv3dWithBias is not implemented yet.");return i=Mm(i,e,n,o==="same"?"same":"valid","NDHWC",a),t!=null&&(i=on(i,t)),s==="channelsFirst"&&(i=We(i,[0,4,1,2,3])),i})}var Wp=class extends Me{constructor(e,t){super(t);if(this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",Wp.verifyArgs(t),this.rank=e,qt(this.rank,"rank"),this.rank!==1&&this.rank!==2&&this.rank!==3)throw new Se(`Convolution layer for rank other than 1, 2, or 3 (${this.rank}) is not implemented yet.`);if(this.kernelSize=Nl(t.kernelSize,e,"kernelSize"),this.strides=Nl(t.strides==null?1:t.strides,e,"strides"),this.padding=t.padding==null?"valid":t.padding,Xr(this.padding),this.dataFormat=t.dataFormat==null?"channelsLast":t.dataFormat,Ft(this.dataFormat),this.activation=Bs(t.activation),this.useBias=t.useBias==null?!0:t.useBias,this.biasInitializer=dt(t.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.biasConstraint=Lt(t.biasConstraint),this.biasRegularizer=_t(t.biasRegularizer),this.activityRegularizer=_t(t.activityRegularizer),this.dilationRate=Nl(t.dilationRate==null?1:t.dilationRate,e,"dilationRate"),this.rank===1&&Array.isArray(this.dilationRate)&&this.dilationRate.length!==1)throw new B(`dilationRate must be a number or an array of a single number for 1D convolution, but received ${JSON.stringify(this.dilationRate)}`);if(this.rank===2){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==2)throw new B(`dilationRate must be a number or array of two numbers for 2D convolution, but received ${JSON.stringify(this.dilationRate)}`)}else if(this.rank===3){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==3)throw new B(`dilationRate must be a number or array of three numbers for 3D convolution, but received ${JSON.stringify(this.dilationRate)}`)}}static verifyArgs(e){if(Ln("kernelSize"in e,"required key 'kernelSize' not in config"),typeof e.kernelSize!="number"&&!hx(e.kernelSize,"number",1,3))throw new B(`BaseConv expects config.kernelSize to be number or number[] with length 1, 2, or 3, but received ${JSON.stringify(e.kernelSize)}.`)}getConfig(){let e={kernelSize:this.kernelSize,strides:this.strides,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,activation:zs(this.activation),useBias:this.useBias,biasInitializer:Nt(this.biasInitializer),biasRegularizer:lt(this.biasRegularizer),activityRegularizer:lt(this.activityRegularizer),biasConstraint:Mt(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}},mc=class extends Wp{constructor(e,t){super(e,t);this.kernel=null,mc.verifyArgs(t),this.filters=t.filters,qt(this.filters,"filters"),this.kernelInitializer=dt(t.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.kernelConstraint=Lt(t.kernelConstraint),this.kernelRegularizer=_t(t.kernelRegularizer)}build(e){e=et(e);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new B(`The channel dimension of the input should be defined. Found ${e[t]}`);let n=e[t],o=this.kernelSize.concat([n,this.filters]);this.kernel=this.addWeight("kernel",o,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[{ndim:this.rank+2,axes:{[t]:n}}],this.built=!0}call(e,t){return V(()=>{e=Oe(e);let n,o=this.bias==null?null:this.bias.read(),s=gx(this.activation.getClassName());if(s!=null&&this.rank===2)n=jL(e,this.kernel.read(),o,this.strides,this.padding,this.dataFormat,this.dilationRate,s);else{if(this.rank===1)n=IQ(e,this.kernel.read(),o,this.strides[0],this.padding,this.dataFormat,this.dilationRate[0]);else if(this.rank===2)n=jL(e,this.kernel.read(),o,this.strides,this.padding,this.dataFormat,this.dilationRate);else if(this.rank===3)n=NQ(e,this.kernel.read(),o,this.strides,this.padding,this.dataFormat,this.dilationRate);else throw new Se("convolutions greater than 3D are not implemented yet.");this.activation!=null&&(n=this.activation.apply(n))}return n})}computeOutputShape(e){e=et(e);let t=[],n=this.dataFormat==="channelsLast"?e.slice(1,e.length-1):e.slice(2);for(let s=0;s<n.length;++s){let a=un(n[s],this.kernelSize[s],this.padding,this.strides[s],typeof this.dilationRate=="number"?this.dilationRate:this.dilationRate[s]);t.push(a)}let o=[e[0]];return this.dataFormat==="channelsLast"?(o=o.concat(t),o.push(this.filters)):(o.push(this.filters),o=o.concat(t)),o}getConfig(){let e={filters:this.filters,kernelInitializer:Nt(this.kernelInitializer),kernelRegularizer:lt(this.kernelRegularizer),kernelConstraint:Mt(this.kernelConstraint)},t=super.getConfig();return Object.assign(e,t),e}static verifyArgs(e){if(!("filters"in e)||typeof e.filters!="number"||e.filters<1)throw new B(`Convolution layer expected config.filters to be a 'number' > 0 but got ${JSON.stringify(e.filters)}`)}},Sl=class extends mc{constructor(e){super(2,e);Sl.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!hx(e.kernelSize,"number",1,2))throw new B(`Conv2D expects config.kernelSize to be number or number[] with length 1 or 2, but received ${JSON.stringify(e.kernelSize)}.`)}};Sl.className="Conv2D";J.registerClass(Sl);var fc=class extends mc{constructor(e){super(3,e);fc.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!(Array.isArray(e.kernelSize)&&(e.kernelSize.length===1||e.kernelSize.length===3)))throw new B(`Conv3D expects config.kernelSize to be number or [number, number, number], but received ${JSON.stringify(e.kernelSize)}.`)}};fc.className="Conv3D";J.registerClass(fc);var yd=class extends Sl{constructor(e){super(e);if(this.inputSpec=[new At({ndim:4})],this.padding!=="same"&&this.padding!=="valid")throw new B(`Conv2DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=et(e),e.length!==4)throw new B("Input should have rank 4; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new B("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],o=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",o,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new At({ndim:4,axes:{[t]:n}})],this.built=!0}call(e,t){return V(()=>{let n=Oe(e);if(n.shape.length!==4)throw new B(`Conv2DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let o=n.shape,s=o[0],a,i;this.dataFormat==="channelsFirst"?(a=2,i=3):(a=1,i=2);let l=o[a],u=o[i],c=this.kernelSize[0],p=this.kernelSize[1],m=this.strides[0],f=this.strides[1],d=gd(l,m,c,this.padding),h=gd(u,f,p,this.padding),g=[s,d,h,this.filters];this.dataFormat!=="channelsLast"&&(n=We(n,[0,2,3,1]));let x=Cu(n,this.kernel.read(),g,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(x=We(x,[0,3,1,2])),this.bias!=null&&(x=on(x,this.bias.read(),this.dataFormat)),this.activation!=null&&(x=this.activation.apply(x)),x})}computeOutputShape(e){e=et(e);let t=e.slice(),n,o,s;this.dataFormat==="channelsFirst"?(n=1,o=2,s=3):(n=3,o=1,s=2);let a=this.kernelSize[0],i=this.kernelSize[1],l=this.strides[0],u=this.strides[1];return t[n]=this.filters,t[o]=gd(t[o],l,a,this.padding),t[s]=gd(t[s],u,i,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};yd.className="Conv2DTranspose";J.registerClass(yd);var oC=class extends mc{constructor(e,t){super(e,t);if(this.DEFAULT_DEPTHWISE_INITIALIZER="glorotUniform",this.DEFAULT_POINTWISE_INITIALIZER="glorotUniform",this.depthwiseKernel=null,this.pointwiseKernel=null,t.filters==null)throw new B("The `filters` configuration field is required by SeparableConv, but is unspecified.");if(t.kernelInitializer!=null||t.kernelRegularizer!=null||t.kernelConstraint!=null)throw new B("Fields kernelInitializer, kernelRegularizer and kernelConstraint are invalid for SeparableConv2D. Use depthwiseInitializer, depthwiseRegularizer, depthwiseConstraint, pointwiseInitializer, pointwiseRegularizer and pointwiseConstraint instead.");if(t.padding!=null&&t.padding!=="same"&&t.padding!=="valid")throw new B(`SeparableConv${this.rank}D supports only padding modes: 'same' and 'valid', but received ${JSON.stringify(t.padding)}`);this.depthMultiplier=t.depthMultiplier==null?1:t.depthMultiplier,this.depthwiseInitializer=dt(t.depthwiseInitializer||this.DEFAULT_DEPTHWISE_INITIALIZER),this.depthwiseRegularizer=_t(t.depthwiseRegularizer),this.depthwiseConstraint=Lt(t.depthwiseConstraint),this.pointwiseInitializer=dt(t.depthwiseInitializer||this.DEFAULT_POINTWISE_INITIALIZER),this.pointwiseRegularizer=_t(t.pointwiseRegularizer),this.pointwiseConstraint=Lt(t.pointwiseConstraint)}build(e){if(e=et(e),e.length<this.rank+2)throw new B(`Inputs to SeparableConv${this.rank}D should have rank ${this.rank+2}, but received input shape: ${JSON.stringify(e)}`);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null||e[t]<0)throw new B(`The channel dimension of the inputs should be defined, but found ${JSON.stringify(e[t])}`);let n=e[t],o=this.kernelSize.concat([n,this.depthMultiplier]),s=[];for(let i=0;i<this.rank;++i)s.push(1);s.push(n*this.depthMultiplier,this.filters);let a=!0;this.depthwiseKernel=this.addWeight("depthwise_kernel",o,"float32",this.depthwiseInitializer,this.depthwiseRegularizer,a,this.depthwiseConstraint),this.pointwiseKernel=this.addWeight("pointwise_kernel",s,"float32",this.pointwiseInitializer,this.pointwiseRegularizer,a,this.pointwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,a,this.biasConstraint):this.bias=null,this.inputSpec=[new At({ndim:this.rank+2,axes:{[t]:n}})],this.built=!0}call(e,t){return V(()=>{e=Oe(e);let n;if(this.rank===1)throw new Se("1D separable convolution is not implemented yet.");return this.rank===2&&(this.dataFormat==="channelsFirst"&&(e=We(e,[0,2,3,1])),n=Zm(e,this.depthwiseKernel.read(),this.pointwiseKernel.read(),this.strides,this.padding,this.dilationRate,"NHWC")),this.useBias&&(n=on(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),this.dataFormat==="channelsFirst"&&(n=We(n,[0,3,1,2])),n})}getConfig(){let e=super.getConfig();return delete e.rank,delete e.kernelInitializer,delete e.kernelRegularizer,delete e.kernelConstraint,e.depthwiseInitializer=Nt(this.depthwiseInitializer),e.pointwiseInitializer=Nt(this.pointwiseInitializer),e.depthwiseRegularizer=lt(this.depthwiseRegularizer),e.pointwiseRegularizer=lt(this.pointwiseRegularizer),e.depthwiseConstraint=Mt(this.depthwiseConstraint),e.pointwiseConstraint=Mt(this.pointwiseConstraint),e}};oC.className="SeparableConv";var bd=class extends oC{constructor(e){super(2,e)}};bd.className="SeparableConv2D";J.registerClass(bd);var dc=class extends mc{constructor(e){super(1,e);dc.verifyArgs(e),this.inputSpec=[{ndim:3}]}getConfig(){let e=super.getConfig();return delete e.rank,delete e.dataFormat,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!hx(e.kernelSize,"number",1,1))throw new B(`Conv1D expects config.kernelSize to be number or number[] with length 1, but received ${JSON.stringify(e.kernelSize)}.`)}};dc.className="Conv1D";J.registerClass(dc);var wd=class extends Me{constructor(e){super(e);typeof e.cropping=="number"?this.cropping=[[e.cropping,e.cropping],[e.cropping,e.cropping]]:typeof e.cropping[0]=="number"?this.cropping=[[e.cropping[0],e.cropping[0]],[e.cropping[1],e.cropping[1]]]:this.cropping=e.cropping,this.dataFormat=e.dataFormat===void 0?"channelsLast":e.dataFormat,this.inputSpec=[{ndim:4}]}computeOutputShape(e){return this.dataFormat==="channelsFirst"?[e[0],e[1],e[2]-this.cropping[0][0]-this.cropping[0][1],e[3]-this.cropping[1][0]-this.cropping[1][1]]:[e[0],e[1]-this.cropping[0][0]-this.cropping[0][1],e[2]-this.cropping[1][0]-this.cropping[1][1],e[3]]}call(e,t){return V(()=>{if(e=Oe(e),this.dataFormat==="channelsLast"){let n=qf(e,this.cropping[0][0],e.shape[1]-this.cropping[0][0]-this.cropping[0][1],2);return qf(n,this.cropping[1][0],e.shape[2]-this.cropping[1][1]-this.cropping[1][0],3)}else{let n=qf(e,this.cropping[0][0],e.shape[2]-this.cropping[0][0]-this.cropping[0][1],3);return qf(n,this.cropping[1][0],e.shape[3]-this.cropping[1][1]-this.cropping[1][0],4)}})}getConfig(){let e={cropping:this.cropping,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};wd.className="Cropping2D";J.registerClass(wd);var _d=class extends Me{constructor(e){super(e);this.DEFAULT_SIZE=[2,2],this.inputSpec=[{ndim:4}],this.size=e.size==null?this.DEFAULT_SIZE:e.size,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Ft(this.dataFormat),this.interpolation=e.interpolation==null?"nearest":e.interpolation,YM(this.interpolation)}computeOutputShape(e){if(this.dataFormat==="channelsFirst"){let t=e[2]==null?null:this.size[0]*e[2],n=e[3]==null?null:this.size[1]*e[3];return[e[0],e[1],t,n]}else{let t=e[1]==null?null:this.size[0]*e[1],n=e[2]==null?null:this.size[1]*e[2];return[e[0],t,n,e[3]]}}call(e,t){return V(()=>{let n=Oe(e),o=n.shape;if(this.dataFormat==="channelsFirst"){n=We(n,[0,2,3,1]);let s=this.size[0]*o[2],a=this.size[1]*o[3],i=this.interpolation==="nearest"?n.resizeNearestNeighbor([s,a]):n.resizeBilinear([s,a]);return We(i,[0,3,1,2])}else{let s=this.size[0]*o[1],a=this.size[1]*o[2];return this.interpolation==="nearest"?n.resizeNearestNeighbor([s,a]):n.resizeBilinear([s,a])}})}getConfig(){let e={size:this.size,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};_d.className="UpSampling2D";J.registerClass(_d);function SQ(r,e,t=[1,1],n="valid",o,s){return V(()=>{o==null&&(o=Kr()),Ft(o);let a=xd(r,o);if(r.rank!==4)throw new B(`Input for depthwiseConv2d is required to be 4-D, but is instead ${r.rank}-D`);if(e.rank!==4)throw new B(`depthwiseKernel is required to be 4-D, but is instead ${e.rank}-D`);return a=Cs(a,e,t,n==="same"?"same":"valid","NHWC",s),o==="channelsFirst"&&(a=We(a,[0,3,1,2])),a})}var kd=class extends Wp{constructor(e){super(2,e);this.depthwiseKernel=null,this.depthMultiplier=e.depthMultiplier==null?1:e.depthMultiplier,this.depthwiseInitializer=dt(e.depthwiseInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.depthwiseConstraint=Lt(e.depthwiseConstraint),this.depthwiseRegularizer=_t(e.depthwiseRegularizer)}build(e){if(e=et(e),e.length<4)throw new B(`Inputs to DepthwiseConv2D should have rank 4. Received input shape: ${JSON.stringify(e)}.`);let t=this.dataFormat==="channelsFirst"?1:3;if(e[t]==null||e[t]<0)throw new B(`The channel dimension of the inputs to DepthwiseConv2D should be defined, but is not (${e[t]}).`);let n=e[t],o=[this.kernelSize[0],this.kernelSize[1],n,this.depthMultiplier];this.depthwiseKernel=this.addWeight("depthwise_kernel",o,null,this.depthwiseInitializer,this.depthwiseRegularizer,!0,this.depthwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[n*this.depthMultiplier],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return V(()=>{e=Oe(e);let n=SQ(e,this.depthwiseKernel.read(),this.strides,this.padding,this.dataFormat,null);return this.useBias&&(n=on(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),n})}computeOutputShape(e){e=et(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],o=this.dataFormat==="channelsFirst"?e[1]*this.depthMultiplier:e[3]*this.depthMultiplier,s=un(t,this.kernelSize[0],this.padding,this.strides[0]),a=un(n,this.kernelSize[1],this.padding,this.strides[1]);return this.dataFormat==="channelsFirst"?[e[0],o,s,a]:[e[0],s,a,o]}getConfig(){let e=super.getConfig();return e.depthMultiplier=this.depthMultiplier,e.depthwiseInitializer=Nt(this.depthwiseInitializer),e.depthwiseRegularizer=lt(this.depthwiseRegularizer),e.depthwiseConstraint=Mt(this.depthwiseRegularizer),e}};kd.className="DepthwiseConv2D";J.registerClass(kd);function sC(r,e,t,n){if(Array.isArray(r)){if(e!=null||t!=null)throw new B("When inputs is an array, neither initialState or constants should be provided");n!=null&&(t=r.slice(r.length-n,r.length),r=r.slice(0,r.length-n)),r.length>1&&(e=r.slice(1,r.length)),r=r[0]}function o(s){return s==null||Array.isArray(s)?s:[s]}return e=o(e),t=o(t),{inputs:r,initialState:e,constants:t}}function iC(r,e,t,n=!1,o,s,a=!1,i=!1){return V(()=>{let l=e.shape.length;if(l<3)throw new B(`Input should be at least 3D, but is ${l}D.`);let u=[1,0].concat(Lr(2,l));if(e=We(e,u),s!=null)throw new Se("The rnn() functoin of the deeplearn.js backend does not support constants yet.");a&&console.warn("Backend rnn(): the unroll = true option is not applicable to the imperative deeplearn.js backend."),o!=null&&(o=o.asType("bool").asType("float32"),o.rank===l-1&&(o=ir(o,-1)),o=We(o,u)),n&&(e=Kt(e,0),o!=null&&(o=Kt(o,0)));let c=[],p,m=t,f=e.shape[0],d=cr(e),h;o!=null&&(h=cr(o));for(let x=0;x<f;++x){let b=d[x],w=V(()=>r(b,m));if(o==null)p=w[0],m=w[1];else{let _=V(()=>{let k=h[x],E=tr(k).sub(k),S=w[0].mul(k).add(m[0].mul(E)),R=m.map((F,P)=>w[1][P].mul(k).add(F.mul(E)));return{output:S,newStates:R}});p=_.output,m=_.newStates}i&&c.push(p)}let g;return i&&(g=Vt(c,1)),[p,g,m]})}var cn=class extends Me{constructor(e){super(e);let t;if(e.cell==null)throw new B("cell property is missing for the constructor of RNN.");if(Array.isArray(e.cell)?t=new Up({cells:e.cell}):t=e.cell,t.stateSize==null)throw new B("The RNN cell should have an attribute `stateSize` (tuple of integers, one integer per RNN state).");this.cell=t,this.returnSequences=e.returnSequences==null?!1:e.returnSequences,this.returnState=e.returnState==null?!1:e.returnState,this.goBackwards=e.goBackwards==null?!1:e.goBackwards,this._stateful=e.stateful==null?!1:e.stateful,this.unroll=e.unroll==null?!1:e.unroll,this.supportsMasking=!0,this.inputSpec=[new At({ndim:3})],this.stateSpec=null,this.states_=null,this.numConstants=null,this.keptStates=[]}getStates(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;return Lr(0,e).map(t=>null)}else return this.states_}setStates(e){this.states_=e}computeOutputShape(e){Cx(e)&&(e=e[0]),e=e;let t=this.cell.stateSize;Array.isArray(t)||(t=[t]);let n=t[0],o;if(this.returnSequences?o=[e[0],e[1],n]:o=[e[0],n],this.returnState){let s=[];for(let a of t)s.push([e[0],a]);return[o].concat(s)}else return o}computeMask(e,t){return V(()=>{Array.isArray(t)&&(t=t[0]);let n=this.returnSequences?t:null;if(this.returnState){let o=this.states.map(s=>null);return[n].concat(o)}else return n})}get states(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1,t=[];for(let n=0;n<e;++n)t.push(null);return t}else return this.states_}set states(e){this.states_=e}build(e){let t=null;if(this.numConstants!=null)throw new Se("Constants support is not implemented in RNN yet.");Cx(e)&&(e=e[0]),e=e;let n=this.stateful?e[0]:null,o=e.slice(2);this.inputSpec[0]=new At({shape:[n,null,...o]});let s=[e[0]].concat(e.slice(2));if(t!=null)throw new Se("Constants support is not implemented in RNN yet.");this.cell.build(s);let a;if(Array.isArray(this.cell.stateSize)?a=this.cell.stateSize:a=[this.cell.stateSize],this.stateSpec!=null){if(!y.arraysEqual(this.stateSpec.map(i=>i.shape[i.shape.length-1]),a))throw new B(`An initialState was passed that is not compatible with cell.stateSize. Received stateSpec=${this.stateSpec}; However cell.stateSize is ${this.cell.stateSize}`)}else this.stateSpec=a.map(i=>new At({shape:[null,i]}));this.stateful&&this.resetStates()}resetStates(e,t=!1){V(()=>{if(!this.stateful)throw new Cn("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape[0];if(n==null)throw new B("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.states_==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(o=>xt([n,o])):this.states_=[xt([n,this.cell.stateSize])];else if(e==null)Ee(this.states_),this.keptStates!=null&&(Ee(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(o=>xt([n,o])):this.states_[0]=xt([n,this.cell.stateSize]);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new B(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t===!0?this.keptStates.push(this.states_.slice()):Ee(this.states_);for(let o=0;o<this.states_.length;++o){let s=e[o],a=Array.isArray(this.cell.stateSize)?this.cell.stateSize[o]:this.cell.stateSize,i=[n,a];if(!y.arraysEqual(s.shape,i))throw new B(`State ${o} is incompatible with layer ${this.name}: expected shape=${i}, received shape=${s.shape}`);this.states_[o]=s}}this.states_=this.states_.map(o=>Dt(o.clone()))})}apply(e,t){let n=t==null?null:t.initialState,o=t==null?null:t.constants;t==null&&(t={});let s=sC(e,n,o,this.numConstants);e=s.inputs,n=s.initialState,o=s.constants;let a=[],i=[];if(n!=null){t.initialState=n,a=a.concat(n),this.stateSpec=[];for(let u of n)this.stateSpec.push(new At({shape:u.shape}));i=i.concat(this.stateSpec)}if(o!=null&&(t.constants=o,a=a.concat(o),this.numConstants=o.length),a[0]instanceof Br){let u=[e].concat(a),c=this.inputSpec.concat(i),p=this.inputSpec;this.inputSpec=c;let m=super.apply(u,t);return this.inputSpec=p,m}else return super.apply(e,t)}call(e,t){return V(()=>{let n=t==null?null:t.mask,o=t==null?null:t.training,s=t==null?null:t.initialState;e=Oe(e),s==null&&(this.stateful?s=this.states_:s=this.getInitialState(e));let a=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;if(s.length!==a)throw new B(`RNN Layer has ${a} state(s) but was passed ${s.length} initial state(s).`);this.unroll&&console.warn("Ignoring unroll = true for RNN layer, due to imperative backend.");let i={training:o},u=iC((d,h)=>{let g=this.cell.call([d].concat(h),i);return[g[0],g.slice(1)]},e,s,this.goBackwards,n,null,this.unroll,this.returnSequences),c=u[0],p=u[1],m=u[2];this.stateful&&this.resetStates(m,o);let f=this.returnSequences?p:c;return this.returnState?[f].concat(m):f})}getInitialState(e){return V(()=>{let t=xt(e.shape);return t=ye(t,[1,2]),t=Wa(t),Array.isArray(this.cell.stateSize)?this.cell.stateSize.map(n=>n>1?bx(t,[1,n]):t):this.cell.stateSize>1?[bx(t,[1,this.cell.stateSize])]:[t]})}get trainableWeights(){return this.trainable?this.cell.trainableWeights:[]}get nonTrainableWeights(){return this.trainable?this.cell.nonTrainableWeights:this.cell.weights}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.cell!=null&&this.cell.setFastWeightInitDuringBuild(e)}getConfig(){let e=super.getConfig(),t={returnSequences:this.returnSequences,returnState:this.returnState,goBackwards:this.goBackwards,stateful:this.stateful,unroll:this.unroll};this.numConstants!=null&&(t.numConstants=this.numConstants);let n=this.cell.getConfig();return this.getClassName()===cn.className&&(t.cell={className:this.cell.getClassName(),config:n}),Object.assign({},n,e,t)}static fromConfig(e,t,n={}){let o=t.cell,s=Yr(o,n);return new e(Object.assign(t,{cell:s}))}};cn.className="RNN";J.registerClass(cn);var Tl=class extends Me{},qp=class extends Tl{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,qt(this.units,"units"),this.activation=Bs(e.activation==null?this.DEFAULT_ACTIVATION:e.activation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=dt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=dt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=dt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=_t(e.kernelRegularizer),this.recurrentRegularizer=_t(e.recurrentRegularizer),this.biasRegularizer=_t(e.biasRegularizer),this.kernelConstraint=Lt(e.kernelConstraint),this.recurrentConstraint=Lt(e.recurrentConstraint),this.biasConstraint=Lt(e.biasConstraint),this.dropout=sc([1,Ms([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=sc([1,Ms([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=et(e),this.kernel=this.addWeight("kernel",[e[e.length-1],this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return V(()=>{if(e=e,e.length!==2)throw new B(`SimpleRNNCell expects 2 input Tensors, got ${e.length}.`);let n=e[1];e=e[0];let o=t.training==null?!1:t.training;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=qa({ones:()=>tr(e),rate:this.dropout,training:o})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=qa({ones:()=>tr(n),rate:this.recurrentDropout,training:o}));let s,a=this.dropoutMask,i=this.recurrentDropoutMask;a!=null?s=Qo(M(e,a),this.kernel.read()):s=Qo(e,this.kernel.read()),this.bias!=null&&(s=on(s,this.bias.read())),i!=null&&(n=M(n,i));let l=Q(s,Qo(n,this.recurrentKernel.read()));return this.activation!=null&&(l=this.activation.apply(l)),[l,l]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:zs(this.activation),useBias:this.useBias,kernelInitializer:Nt(this.kernelInitializer),recurrentInitializer:Nt(this.recurrentInitializer),biasInitializer:Nt(this.biasInitializer),kernelRegularizer:lt(this.kernelRegularizer),recurrentRegularizer:lt(this.recurrentRegularizer),biasRegularizer:lt(this.biasRegularizer),activityRegularizer:lt(this.activityRegularizer),kernelConstraint:Mt(this.kernelConstraint),recurrentConstraint:Mt(this.recurrentConstraint),biasConstraint:Mt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout};return Object.assign({},e,t)}};qp.className="SimpleRNNCell";J.registerClass(qp);var vd=class extends cn{constructor(e){e.cell=new qp(e),super(e)}call(e,t){return V(()=>{this.cell.dropoutMask!=null&&(Ee(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Ee(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,o=t==null?null:t.training,s=t==null?null:t.initialState;return super.call(e,{mask:n,training:o,initialState:s})})}static fromConfig(e,t){return new e(t)}};vd.className="SimpleRNN";J.registerClass(vd);var Hp=class extends Tl{constructor(e){super(e);if(this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.resetAfter)throw new B("GRUCell does not support reset_after parameter set to true.");this.units=e.units,qt(this.units,"units"),this.activation=Bs(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=Bs(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=dt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=dt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=dt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=_t(e.kernelRegularizer),this.recurrentRegularizer=_t(e.recurrentRegularizer),this.biasRegularizer=_t(e.biasRegularizer),this.kernelConstraint=Lt(e.kernelConstraint),this.recurrentConstraint=Lt(e.recurrentConstraint),this.biasConstraint=Lt(e.biasConstraint),this.dropout=sc([1,Ms([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=sc([1,Ms([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.implementation=e.implementation,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=et(e);let t=e[e.length-1];this.kernel=this.addWeight("kernel",[t,this.units*3],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*3],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units*3],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return V(()=>{if(e=e,e.length!==2)throw new B(`GRUCell expects 2 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training==null?!1:t.training,o=e[1];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=qa({ones:()=>tr(e),rate:this.dropout,training:n,count:3})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=qa({ones:()=>tr(o),rate:this.recurrentDropout,training:n,count:3}));let s=this.dropoutMask,a=this.recurrentDropoutMask,i,l,u;0<this.dropout&&this.dropout<1&&(e=M(e,s[0]));let c=Qo(e,this.kernel.read());this.useBias&&(c=on(c,this.bias.read())),0<this.recurrentDropout&&this.recurrentDropout<1&&(o=M(o,a[0]));let p=this.recurrentKernel.read(),[m,f]=ur(p,[2*this.units,this.units],p.rank-1),d=Qo(o,m),[h,g,x]=ur(c,3,c.rank-1),[b,w]=ur(d,2,d.rank-1);i=this.recurrentActivation.apply(Q(h,b)),l=this.recurrentActivation.apply(Q(g,w));let _=Qo(M(l,o),f);u=this.activation.apply(Q(x,_));let k=Q(M(i,o),M(Q(1,Ue(i)),u));return[k,k]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:zs(this.activation),recurrentActivation:zs(this.recurrentActivation),useBias:this.useBias,kernelInitializer:Nt(this.kernelInitializer),recurrentInitializer:Nt(this.recurrentInitializer),biasInitializer:Nt(this.biasInitializer),kernelRegularizer:lt(this.kernelRegularizer),recurrentRegularizer:lt(this.recurrentRegularizer),biasRegularizer:lt(this.biasRegularizer),activityRegularizer:lt(this.activityRegularizer),kernelConstraint:Mt(this.kernelConstraint),recurrentConstraint:Mt(this.recurrentConstraint),biasConstraint:Mt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation,resetAfter:!1};return Object.assign({},e,t)}};Hp.className="GRUCell";J.registerClass(Hp);var Cd=class extends cn{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new Hp(e),super(e)}call(e,t){return V(()=>{this.cell.dropoutMask!=null&&(Ee(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Ee(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,o=t==null?null:t.training,s=t==null?null:t.initialState;return super.call(e,{mask:n,training:o,initialState:s})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};Cd.className="GRU";J.registerClass(Cd);var El=class extends Tl{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,qt(this.units,"units"),this.activation=Bs(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=Bs(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=dt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=dt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=dt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.unitForgetBias=e.unitForgetBias,this.kernelRegularizer=_t(e.kernelRegularizer),this.recurrentRegularizer=_t(e.recurrentRegularizer),this.biasRegularizer=_t(e.biasRegularizer),this.kernelConstraint=Lt(e.kernelConstraint),this.recurrentConstraint=Lt(e.recurrentConstraint),this.biasConstraint=Lt(e.biasConstraint),this.dropout=sc([1,Ms([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=sc([1,Ms([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.implementation=e.implementation,this.stateSize=[this.units,this.units],this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){var t;e=et(e);let n=e[e.length-1];this.kernel=this.addWeight("kernel",[n,this.units*4],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*4],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint);let o;if(this.useBias){if(this.unitForgetBias){let s=this.biasInitializer,a=this.units;o=new(t=class extends sn{apply(l,u){let c=s.apply([a]),p=new ac().apply([a]),m=s.apply([a*2]);return A0(A0(c,p),m)}},t.className="CustomInit",t)}else o=this.biasInitializer;this.bias=this.addWeight("bias",[this.units*4],null,o,this.biasRegularizer,!0,this.biasConstraint)}else this.bias=null;this.built=!0}call(e,t){return V(()=>{let n=t.training==null?!1:t.training;if(e=e,e.length!==3)throw new B(`LSTMCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let o=e[1],s=e[2];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=qa({ones:()=>tr(e),rate:this.dropout,training:n,count:4})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=qa({ones:()=>tr(o),rate:this.recurrentDropout,training:n,count:4}));let a=this.dropoutMask,i=this.recurrentDropoutMask,l,u,c,p;0<this.dropout&&this.dropout<1&&(e=M(e,a[0]));let m=Qo(e,this.kernel.read());0<this.recurrentDropout&&this.recurrentDropout<1&&(o=M(o,i[0])),m=Q(m,Qo(o,this.recurrentKernel.read())),this.useBias&&(m=on(m,this.bias.read()));let[f,d,h,g]=ur(m,4,m.rank-1);l=this.recurrentActivation.apply(f),u=this.recurrentActivation.apply(d),c=Q(M(u,s),M(l,this.activation.apply(h))),p=this.recurrentActivation.apply(g);let x=M(p,this.activation.apply(c));return[x,x,c]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:zs(this.activation),recurrentActivation:zs(this.recurrentActivation),useBias:this.useBias,kernelInitializer:Nt(this.kernelInitializer),recurrentInitializer:Nt(this.recurrentInitializer),biasInitializer:Nt(this.biasInitializer),unitForgetBias:this.unitForgetBias,kernelRegularizer:lt(this.kernelRegularizer),recurrentRegularizer:lt(this.recurrentRegularizer),biasRegularizer:lt(this.biasRegularizer),activityRegularizer:lt(this.activityRegularizer),kernelConstraint:Mt(this.kernelConstraint),recurrentConstraint:Mt(this.recurrentConstraint),biasConstraint:Mt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation};return Object.assign({},e,t)}};El.className="LSTMCell";J.registerClass(El);var Id=class extends cn{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new El(e),super(e)}call(e,t){return V(()=>{this.cell.dropoutMask!=null&&(Ee(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Ee(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,o=t==null?null:t.training,s=t==null?null:t.initialState;return super.call(e,{mask:n,training:o,initialState:s})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};Id.className="LSTM";J.registerClass(Id);var Up=class extends Tl{constructor(e){super(e);this.cells=e.cells}get stateSize(){let e=[];for(let t of this.cells.slice().reverse())Array.isArray(t.stateSize)?e.push(...t.stateSize):e.push(t.stateSize);return e}call(e,t){return V(()=>{e=e;let n=e.slice(1),o=[];for(let i of this.cells.slice().reverse())Array.isArray(i.stateSize)?o.push(n.splice(0,i.stateSize.length)):o.push(n.splice(0,1));o.reverse();let s=[],a;for(let i=0;i<this.cells.length;++i){let l=this.cells[i];n=o[i],i===0?a=[e[0]].concat(n):a=[a[0]].concat(n),a=l.call(a,t),s.push(a.slice(1))}n=[];for(let i of s.slice().reverse())n.push(...i);return[a[0]].concat(n)})}build(e){Cx(e)&&(e=e[0]),e=e;let t;this.cells.forEach((n,o)=>{Ps(`RNNCell_${o}`,()=>{n.build(e),Array.isArray(n.stateSize)?t=n.stateSize[0]:t=n.stateSize,e=[e[0],t]})}),this.built=!0}getConfig(){let e=super.getConfig(),t=s=>({className:s.getClassName(),config:s.getConfig()}),o={cells:this.cells.map(t)};return Object.assign({},e,o)}static fromConfig(e,t,n={}){let o=[];for(let s of t.cells)o.push(Yr(s,n));return new e({cells:o})}get trainableWeights(){if(!this.trainable)return[];let e=[];for(let t of this.cells)e.push(...t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.cells)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.cells)t.push(...n.trainableWeights);return t.concat(e)}return e}getWeights(){let e=[];for(let t of this.cells)e.push(...t.weights);return td(e)}setWeights(e){let t=[];for(let n of this.cells){let o=n.weights.length,s=e.splice(o);for(let a=0;a<n.weights.length;++a)t.push([n.weights[a],s[a]])}Lp(t)}};Up.className="StackedRNNCells";J.registerClass(Up);function qa(r){let{ones:e,rate:t,training:n=!1,count:o=1}=r,s=()=>_x(e(),t),a=()=>wl(s,e,n);return!o||o<=1?Dt(a().clone()):Array(o).fill(void 0).map(a).map(l=>Dt(l.clone()))}var TQ=function(r,e){var t={};for(var n in r)Object.prototype.hasOwnProperty.call(r,n)&&e.indexOf(n)<0&&(t[n]=r[n]);if(r!=null&&typeof Object.getOwnPropertySymbols=="function")for(var o=0,n=Object.getOwnPropertySymbols(r);o<n.length;o++)e.indexOf(n[o])<0&&Object.prototype.propertyIsEnumerable.call(r,n[o])&&(t[n[o]]=r[n[o]]);return t};var aC=class extends cn{constructor(e){if(e.unroll)throw new Se("Unrolling is not possible with convolutional RNNs.");if(Array.isArray(e.cell))throw new Se("It is not possible at the moment to stack convolutional cells.");super(e);this.inputSpec=[new At({ndim:5})]}call(e,t){return V(()=>{if(this.cell.dropoutMask!=null&&(Ee(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Ee(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null),t&&t.constants)throw new B("ConvRNN2D cell does not support constants");let n=t==null?null:t.mask,o=t==null?null:t.training,s=t==null?null:t.initialState;return super.call(e,{mask:n,training:o,initialState:s})})}computeOutputShape(e){let t=this.computeSingleOutputShape(e);return this.returnSequences||(t=[t[0],...t.slice(2)]),this.returnState&&(t=[t,...Array(2).fill([e[0],...t.slice(-3)])]),t}getInitialState(e){return V(()=>{let{stateSize:t}=this.cell,n=e.shape,o=this.computeSingleOutputShape(n),s=[o[0],...o.slice(2)],a=xt(s);return Array.isArray(t)?Array(t.length).fill(a):[a]})}resetStates(e,t=!1){V(()=>{if(!this.stateful)throw new Cn("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape,o=this.computeSingleOutputShape(n),s=[o[0],...o.slice(2)];if(n[0]==null)throw new B("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.getStates()==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>xt(s)):this.states_=[xt(s)];else if(e==null)Ee(this.states_),this.keptStates!=null&&(Ee(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>xt(s)):this.states_[0]=xt(s);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new B(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t?this.keptStates.push(this.states_.slice()):Ee(this.states_);for(let i=0;i<this.states_.length;++i){let l=e[i],u=s;if(!y.arraysEqual(l.shape,u))throw new B(`State ${i} is incompatible with layer ${this.name}: expected shape=${u}, received shape=${l.shape}`);this.states_[i]=l}}this.states_=this.states_.map(i=>Dt(i.clone()))})}computeSingleOutputShape(e){let{dataFormat:t,filters:n,kernelSize:o,padding:s,strides:a,dilationRate:i}=this.cell,l=t==="channelsFirst",u=e[l?3:2],c=e[l?4:3],p=un(u,o[0],s,a[0],i[0]),m=un(c,o[1],s,a[1],i[1]);return[...e.slice(0,2),...l?[n,p,m]:[p,m,n]]}};aC.className="ConvRNN2D";var Kp=class extends El{constructor(e){let{filters:t,kernelSize:n,strides:o,padding:s,dataFormat:a,dilationRate:i}=e;super(Object.assign({},e,{units:t}));this.filters=t,qt(this.filters,"filters"),this.kernelSize=Nl(n,2,"kernelSize"),this.kernelSize.forEach(l=>qt(l,"kernelSize")),this.strides=Nl(o||1,2,"strides"),this.strides.forEach(l=>qt(l,"strides")),this.padding=s||"valid",Xr(this.padding),this.dataFormat=a||"channelsLast",Ft(this.dataFormat),this.dilationRate=Nl(i||1,2,"dilationRate"),this.dilationRate.forEach(l=>qt(l,"dilationRate"))}build(e){var t;e=et(e);let n=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[n]==null)throw new B(`The channel dimension of the input should be defined. Found ${e[n]}`);let o=e[n],s=4,a=this.kernelSize.concat([o,this.filters*s]);this.kernel=this.addWeight("kernel",a,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint);let i=this.kernelSize.concat([this.filters,this.filters*s]);if(this.recurrentKernel=this.addWeight("recurrent_kernel",i,null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias){let l;if(this.unitForgetBias){let u=this.biasInitializer,c=this.filters;l=new(t=class extends sn{apply(m,f){let d=u.apply([c]),h=Ir([c]),g=u.apply([c*2]);return Tp([d,h,g])}},t.className="CustomInit",t)}else l=this.biasInitializer;this.bias=this.addWeight("bias",[this.filters*s],null,l,this.biasRegularizer,!0,this.biasConstraint)}this.built=!0}call(e,t){return V(()=>{if(e.length!==3)throw new B(`ConvLSTM2DCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training||!1,o=e[0],s=e[1],a=e[2],i=4;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=qa({ones:()=>tr(o),rate:this.dropout,training:n,count:i}));let l=this.dropoutMask,u=(ie,se,pe)=>!se||!se[pe]?ie:M(se[pe],ie),c=u(o,l,0),p=u(o,l,1),m=u(o,l,2),f=u(o,l,3);0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=qa({ones:()=>tr(s),rate:this.recurrentDropout,training:n,count:i}));let d=this.recurrentDropoutMask,h=u(s,d,0),g=u(s,d,1),x=u(s,d,2),b=u(s,d,3),w=3,[_,k,E,S]=ur(this.kernel.read(),i,w),[R,F,P,j]=this.useBias?ur(this.bias.read(),i):[null,null,null,null];c=this.inputConv(c,_,R,this.padding),p=this.inputConv(p,k,F,this.padding),m=this.inputConv(m,E,P,this.padding),f=this.inputConv(f,S,j,this.padding);let[G,U,X,K]=ur(this.recurrentKernel.read(),i,w);h=this.recurrentConv(h,G),g=this.recurrentConv(g,U),x=this.recurrentConv(x,X),b=this.recurrentConv(b,K);let Z=this.recurrentActivation.apply(Q(c,h)),te=this.recurrentActivation.apply(Q(p,g)),Y=Q(M(te,a),M(Z,this.activation.apply(Q(m,x)))),re=M(this.recurrentActivation.apply(Q(f,b)),this.activation.apply(Y));return[re,re,Y]})}getConfig(){let e=super.getConfig(),{units:t}=e,n=TQ(e,["units"]),o={filters:this.filters,kernelSize:this.kernelSize,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,strides:this.strides};return Object.assign({},n,o)}inputConv(e,t,n,o){let s=Ur(e,t,this.strides,o||"valid",this.dataFormat==="channelsFirst"?"NCHW":"NHWC",this.dilationRate);return n?on(s,n,this.dataFormat):s}recurrentConv(e,t){return Ur(e,t,1,"same",this.dataFormat==="channelsFirst"?"NCHW":"NHWC")}};Kp.className="ConvLSTM2DCell";J.registerClass(Kp);var Nd=class extends aC{constructor(e){let t=new Kp(e);super(Object.assign({},e,{cell:t}))}static fromConfig(e,t){return new e(t)}};Nd.className="ConvLSTM2D";J.registerClass(Nd);var Xp=class extends Me{constructor(e){super(e);this.rate=Math.max(Math.min(e.rate,1),0),this.noiseShape=e.noiseShape,this.seed=e.seed,this.supportsMasking=!0}getNoiseShape(e){if(this.noiseShape==null)return this.noiseShape;let t=e.shape,n=[];for(let o=0;o<this.noiseShape.length;++o)n.push(this.noiseShape[o]==null?t[o]:this.noiseShape[o]);return n}call(e,t){return V(()=>{this.invokeCallHook(e,t);let n=Oe(e);if(0<this.rate&&this.rate<1){let o=t.training==null?!1:t.training,s=this.getNoiseShape(n);return wl(()=>_x(n,this.rate,s,this.seed),()=>n,o)}return e})}getConfig(){let e={rate:this.rate,noiseShape:this.noiseShape,seed:this.seed},t=super.getConfig();return Object.assign(e,t),e}dispose(){return super.dispose()}};Xp.className="Dropout";J.registerClass(Xp);var Sd=class extends Xp{constructor(e){super(e);this.inputSpec=[{ndim:3}]}getNoiseShape(e){let t=e.shape;return[t[0],1,t[2]]}};Sd.className="SpatialDropout1D";J.registerClass(Sd);var Td=class extends Me{constructor(e){super(e);if(this.activation=null,this.useBias=!0,this.kernel=null,this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.batchInputShape==null&&e.inputShape==null&&e.inputDim!=null){let t=null;e.batchSize!=null&&(t=e.batchSize),this.batchInputShape=[t,e.inputDim]}this.units=e.units,qt(this.units,"units"),this.activation=Bs(e.activation),e.useBias!=null&&(this.useBias=e.useBias),this.kernelInitializer=dt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.biasInitializer=dt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelConstraint=Lt(e.kernelConstraint),this.biasConstraint=Lt(e.biasConstraint),this.kernelRegularizer=_t(e.kernelRegularizer),this.biasRegularizer=_t(e.biasRegularizer),this.activityRegularizer=_t(e.activityRegularizer),this.supportsMasking=!0,this.inputSpec=[{minNDim:2}]}build(e){e=et(e);let t=e[e.length-1];this.kernel==null&&(this.kernel=this.addWeight("kernel",[t,this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint))),this.inputSpec=[{minNDim:2,axes:{[-1]:t}}],this.built=!0}computeOutputShape(e){e=et(e);let t=e.slice();return t[t.length-1]=this.units,t}call(e,t){return V(()=>{this.invokeCallHook(e,t);let n=Oe(e),o=gx(this.activation.getClassName()),s;return o!=null?s=Qo(n,this.kernel.read(),o,this.bias?this.bias.read():null):(s=Qo(n,this.kernel.read()),this.bias!=null&&(s=on(s,this.bias.read())),this.activation!=null&&(s=this.activation.apply(s))),s})}getConfig(){let e={units:this.units,activation:zs(this.activation),useBias:this.useBias,kernelInitializer:Nt(this.kernelInitializer),biasInitializer:Nt(this.biasInitializer),kernelRegularizer:lt(this.kernelRegularizer),biasRegularizer:lt(this.biasRegularizer),activityRegularizer:lt(this.activityRegularizer),kernelConstraint:Mt(this.kernelConstraint),biasConstraint:Mt(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}};Td.className="Dense";J.registerClass(Td);var Ed=class extends Me{constructor(e){e=e||{},super(e),this.inputSpec=[{minNDim:3}],this.dataFormat=e.dataFormat}computeOutputShape(e){e=et(e);for(let t of e.slice(1))if(t==null)throw new B(`The shape of the input to "Flatten" is not fully defined (got ${e.slice(1)}). Make sure to pass a complete "input_shape" or "batch_input_shape" argument to the first layer in your model.`);return[e[0],Jo(e,1)]}call(e,t){return V(()=>{this.invokeCallHook(e,t);let n=Oe(e);if(this.dataFormat==="channelsFirst"&&n.rank>1){let o=[0];for(let s=2;s<n.rank;++s)o.push(s);o.push(1),n=n.transpose(o)}return nL(n)})}getConfig(){let e={};this.dataFormat!=null&&(e.dataFormat=this.dataFormat);let t=super.getConfig();return Object.assign(e,t),e}};Ed.className="Flatten";J.registerClass(Ed);var Ad=class extends Me{constructor(e){super(e);this.supportsMasking=!0,this.activation=Bs(e.activation)}call(e,t){return V(()=>{this.invokeCallHook(e,t);let n=Oe(e);return this.activation.apply(n)})}getConfig(){let e={activation:zs(this.activation)},t=super.getConfig();return Object.assign(e,t),e}};Ad.className="Activation";J.registerClass(Ad);var Dd=class extends Me{constructor(e){super(e);this.n=e.n,this.inputSpec=[{ndim:2}]}computeOutputShape(e){return[e[0],this.n,e[1]]}call(e,t){return V(()=>(e=Oe(e),tL(e,this.n)))}getConfig(){let e={n:this.n},t=super.getConfig();return Object.assign(e,t),e}};Dd.className="RepeatVector";J.registerClass(Dd);var $d=class extends Me{constructor(e){super(e);this.targetShape=e.targetShape;for(let t=0;t<this.targetShape.length;++t)this.isUnknown(this.targetShape[t])&&(this.targetShape[t]=null)}isUnknown(e){return e<0||e==null}fixUnknownDimension(e,t){let n="Total size of new array must be unchanged.",o=t.slice(),s=1,a=null;for(let l=0;l<o.length;++l){let u=o[l];if(this.isUnknown(u))if(a===null)a=l;else throw new B("Can only specifiy one unknown dimension.");else s*=u}let i=Jo(e);if(a!==null){if(s===0||i%s!=0)throw new B(n);o[a]=i/s}else if(i!==s)throw new B(n);return o}computeOutputShape(e){let t=!1;for(let n=0;n<e.length;++n)if(this.isUnknown(e[n])){t=!0;break}return t?e.slice(0,1).concat(this.targetShape):e.slice(0,1).concat(this.fixUnknownDimension(e.slice(1),this.targetShape))}call(e,t){return V(()=>{this.invokeCallHook(e,t);let n=Oe(e),o=n.shape,s=o.slice(0,1).concat(this.fixUnknownDimension(o.slice(1),this.targetShape));return n.reshape(s)})}getConfig(){let e={targetShape:this.targetShape},t=super.getConfig();return Object.assign(e,t),e}};$d.className="Reshape";J.registerClass($d);var Rd=class extends Me{constructor(e){super(e);if(e.dims==null)throw new Error("Required configuration field `dims` is missing during Permute constructor call.");if(!Array.isArray(e.dims))throw new Error(`Permute constructor requires \`dims\` to be an Array, but received ${e.dims} instead.`);let t=Lr(1,e.dims.length+1);if(!y.arraysEqual(e.dims.slice().sort(),t))throw new Error("Invalid permutation `dims`: "+JSON.stringify(e.dims)+" `dims` must contain consecutive integers starting from 1.");this.dims=e.dims,this.dimsIncludingBatch=[0].concat(this.dims),this.inputSpec=[new At({ndim:this.dims.length+1})]}computeOutputShape(e){e=et(e);let t=e.slice();return this.dims.forEach((n,o)=>{t[o+1]=e[n]}),t}call(e,t){return We(Oe(e),this.dimsIncludingBatch)}getConfig(){let e={dims:this.dims},t=super.getConfig();return Object.assign(e,t),e}};Rd.className="Permute";J.registerClass(Rd);var Fd=class extends Me{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null?this.maskValue=e.maskValue==null?0:e.maskValue:this.maskValue=0}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={maskValue:this.maskValue};return Object.assign(t,e),t}computeMask(e,t){let n=Oe(e),o=-1;return il(Lo(n,this.maskValue),o)}call(e,t){return V(()=>{this.invokeCallHook(e,t);let n=Oe(e),o=-1,s=!0,a=il(Lo(n,this.maskValue),o,s);return n.mul(a.asType(n.dtype))})}};Fd.className="Masking";J.registerClass(Fd);var Od=class extends Me{constructor(e){super(e);if(this.embeddings=null,this.DEFAULT_EMBEDDINGS_INITIALIZER="randomUniform",e.batchInputShape==null&&e.inputShape==null){let t=null;e.batchSize!=null&&(t=e.batchSize),e.inputLength==null?this.batchInputShape=[t,null]:this.batchInputShape=[t].concat(wt(e.inputLength))}this.inputDim=e.inputDim,qt(this.inputDim,"inputDim"),this.outputDim=e.outputDim,qt(this.outputDim,"outputDim"),this.embeddingsInitializer=dt(e.embeddingsInitializer||this.DEFAULT_EMBEDDINGS_INITIALIZER),this.embeddingsRegularizer=_t(e.embeddingsRegularizer),this.activityRegularizer=_t(e.activityRegularizer),this.embeddingsConstraint=Lt(e.embeddingsConstraint),this.maskZero=e.maskZero,this.supportsMasking=e.maskZero,this.inputLength=e.inputLength}build(e){this.embeddings=this.addWeight("embeddings",[this.inputDim,this.outputDim],this.dtype,this.embeddingsInitializer,this.embeddingsRegularizer,!0,this.embeddingsConstraint),this.built=!0}warnOnIncompatibleInputShape(e){}computeMask(e,t){return V(()=>this.maskZero?(e=Oe(e),Lo(e,Ie(e))):null)}computeOutputShape(e){if(e=et(e),this.inputLength==null)return[...e,this.outputDim];let t=wt(this.inputLength);if(t.length!==e.length-1)throw new B(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);{let n=0;for(let o=0;o<t.length;++o){let s=t[o],a=e[o+1];if(s!=null&&a!=null&&s!==a)throw new B(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);s==null&&(t[n]=a),n++}}return[e[0],...t,this.outputDim]}call(e,t){return V(()=>{this.invokeCallHook(e,t);let n=Oe(e);return n.dtype!=="int32"&&(n=ja(n,"int32")),wx(this.embeddings.read(),n.as1D()).reshape(et(this.computeOutputShape(n.shape)))})}getConfig(){let e={inputDim:this.inputDim,outputDim:this.outputDim,embeddingsInitializer:Nt(this.embeddingsInitializer),embeddingsRegularizer:lt(this.embeddingsRegularizer),activityRegularizer:lt(this.activityRegularizer),embeddingsConstraint:Mt(this.embeddingsConstraint),maskZero:this.maskZero,inputLength:this.inputLength},t=super.getConfig();return Object.assign(e,t),e}};Od.className="Embedding";J.registerClass(Od);var Al=class extends Me{constructor(e){super(e||{});this.supportsMasking=!0}mergeFunction(e){throw new Se}computeElementwiseOpOutputShape(e,t){if(e==null||t==null)return null;if(e.length<t.length)return this.computeElementwiseOpOutputShape(t,e);if(t.length===0)return e;let n=e.slice(0,e.length-t.length);for(let o=0;o<t.length;++o){let s=e[e.length-t.length+o],a=t[o];if(s==null||a==null||s<0||a<0)n.push(null);else if(s===1)n.push(a);else if(a===1)n.push(s);else{if(s!==a)throw new B("Operands could not be broadcast together with shapes "+JSON.stringify(e)+" "+JSON.stringify(t));n.push(s)}}return n}build(e){if(Array.isArray(e)&&!Array.isArray(e[0])&&(e=[et(e)]),e=e,e.length<2)throw new B(`A merge layer should be called on an Array of at least 2 inputs. Got ${e.length} input(s).`);let t=[];for(let s of e)s!=null&&s[0]!==null&&t.push(s[0]);if(t=Zo(t),t.length>1)throw new B(`Can not merge tensors with different batch sizes. Got tensors with shapes: ${JSON.stringify(e)}.`);let n=e[0]==null?null:e[0].slice(1);for(let s=1;s<e.length;++s){let a=e[s]==null?null:e[s].slice(1);n=this.computeElementwiseOpOutputShape(n,a)}let o=e.map(s=>s.length);e.indexOf(null)===-1&&Zo(o).length===1?this.reshapeRequired=!1:this.reshapeRequired=!0}call(e,t){return V(()=>{if(e=e,this.reshapeRequired){let n=[],o=e.map(s=>s.rank);if(o.indexOf(null)===-1){let s=Ms(o);for(let a of e){let i=a.rank;for(let l=0;l<s-i;++l)a=Wa(a,1);n.push(a)}return this.mergeFunction(n)}else{let s=!1;for(let l of e){let u=l.rank;if(u==null){let c=l.shape,p=c[0],m=c.slice(1).concat([p]),f=l.reshape([p].concat(Jo(c.slice(1))));f=We(f,[1,0]),f=f.reshape(m),n.push(f),s=!0}else if(u>1){let c=Lr(1,u).concat([0]);n.push(We(l,c)),s=!0}else n.push(l)}let a=this.mergeFunction(n),i=a.rank;if(s){if(i==null){let l=a.shape,u=l.length,c=l[u-1],p=[c].concat(l.slice(0,l.length-1));a=We(a.reshape([-1,c]),[1,0]).reshape(p)}else if(i>1){let l=[i-1].concat(Lr(0,i-1));a=We(a,l)}}return a}}else return this.mergeFunction(e)})}computeOutputShape(e){e=e;let t;e[0]==null?t=null:t=e[0].slice(1);for(let o=1;o<e.length;++o){let s=e[o]==null?null:e[o].slice(1);t=this.computeElementwiseOpOutputShape(t,s)}let n=[];for(let o of e)o!=null&&o[0]!==null&&n.push(o[0]);return n=Zo(n),n.length===1?t=n.concat(t):t=[null].concat(t),t}computeMask(e,t){return V(()=>{if(t==null)return null;if(!Array.isArray(t))throw new B("`mask` should be an Array");if(!Array.isArray(e))throw new B("`inputs` should be an Array");if(t.length!==e.length)throw new B(`The Array 'inputs' and 'mask' are expected to have the same length, but have different lengths (${e.length} vs ${t.length})`);if(t.every(o=>o==null))return null;t=t.map(o=>o==null?o:ir(o,0));let n=t[0];for(let o=1;o<t.length-1;++o)n=dr(n,t[o]);return n})}},Pd=class extends Al{constructor(e){super(e)}mergeFunction(e){return V(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=Q(t,e[n]);return t})}};Pd.className="Add";J.registerClass(Pd);var Md=class extends Al{constructor(e){super(e)}mergeFunction(e){return V(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=M(t,e[n]);return t})}};Md.className="Multiply";J.registerClass(Md);var Ld=class extends Al{constructor(e){super(e)}mergeFunction(e){return V(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=Q(t,e[n]);return M(1/e.length,t)})}};Ld.className="Average";J.registerClass(Ld);var zd=class extends Al{constructor(e){super(e)}mergeFunction(e){return V(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=Hr(t,e[n]);return t})}};zd.className="Maximum";J.registerClass(zd);var Bd=class extends Al{constructor(e){super(e)}mergeFunction(e){return V(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=Ts(t,e[n]);return t})}};Bd.className="Minimum";J.registerClass(Bd);var Vd=class extends Al{constructor(e){super(e);this.DEFAULT_AXIS=-1,e==null&&(e={}),this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){if(!(Array.isArray(e)&&Array.isArray(e[0]))||e.length===1)throw new B("A `Concatenate` layer should be called on a list of at least 2 inputs");e=e;let t=!0;for(let o of e)if(o!=null){t=!1;break}if(t)return;let n=[];for(let o=0;o<e.length;++o){let s=e[o].slice();s.splice(this.axis,1);let a=!1;for(let i of n)if(y.arraysEqual(i,s)){a=!0;break}a||n.push(s)}if(n.length>1)throw new B("A `Concatenate` layer requires inputs with matching shapes except for the concat axis. Got input shapes: "+JSON.stringify(e))}mergeFunction(e){return V(()=>Tp(e,this.axis))}computeOutputShape(e){if(!(Array.isArray(e)&&Array.isArray(e[0])))throw new B("A `Concatenate` layer should be called on a list of inputs.");let t=e,n=t[0].slice(),o=this.axis<0?n.length+this.axis:this.axis;for(let s of t.slice(1)){if(n[o]==null||s[o]==null){n[o]=null;break}n[o]+=s[o]}return n}computeMask(e,t){if(t==null)return null;if(!Array.isArray(t))throw new B("`mask` should be an array for Concatenate");if(!Array.isArray(e))throw new B("`inputs` should be an array for Concatenate");if(t.length!==e.length)throw new B(`Mismatch in the length of mask (${t.length}) and the legnth of inputs (${e.length})`);return V(()=>{let n=!0;if(t.forEach(a=>{if(a!=null){n=!1;return}}),n)return null;let o=[];for(let a=0;a<e.length;++a)t[a]==null?o.push(tr(e[a]).asType("bool")):t[a].rank<e[a].rank?o.push(ir(t[a],-1)):o.push(t[a]);let s=Qe(o,this.axis);return wu(s,-1,!1)})}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};Vd.className="Concatenate";J.registerClass(Vd);function Gd(r,e){for(;r<0;)r+=e;return r}function EQ(r,e,t){if(r.shape.length>3||e.shape.length>3)throw new Se("batchDot is not implemented for tensors of 4D or higher rank yet");if(y.assert(r.shape.length>=2,()=>`batchDot requires the rank of x to be >= 2, but got ${r.shape.length}`),y.assert(r.shape.length>=2,()=>`batchDot requires the rank of y to be >= 2, but got ${e.shape.length}`),typeof t=="number"&&(t=[t,t]),r.dtype==="complex64"||e.dtype==="complex64")throw new Se("batchDot is not implemented for complex64-type Tensors yet.");let n=r.shape.length,o=e.shape.length;t==null&&(t=[n-1,o-2]);let s=t;return V(()=>{let a;if(n>o){a=n-o;let l=[];for(let u=0;u<a;++u)l.push(1);e=e.reshape(e.shape.concat(l))}else if(o>n){a=o-n;let l=[];for(let u=0;u<a;++u)l.push(1);r=r.reshape(r.shape.concat(l))}else a=0;let i;if(r.shape.length===2&&e.shape.length===2)s[0]===s[1]?i=r.mul(e).sum(s[0]):i=r.transpose([1,0]).mul(e).sum(s[1]);else{let l=s[0]!==r.shape.length-1,u=s[1]===e.shape.length-1;i=r.matMul(e,l,u)}if(a>0){let l;n>o?l=n+o-3:l=n-1;let u=[];for(let c=l;c<l+a;++c)u.push(c);i=i.squeeze(u)}return i.shape.length===1&&(i=i.expandDims(1)),i})}var jd=class extends Al{constructor(e){super(e);this.axes=e.axes,this.normalize=e.normalize==null?!1:e.normalize,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){y.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0],n=e[1];if(t.length>3||n.length>3)throw new Se("Dot layer does not support tensors of 4D or higher rank yet.");let o=this.interpretAxes(t,n);if(t[o[0]]!==n[o[1]])throw new B(`Dimension incompatibility: ${t[o[0]]} !== ${n[o[1]]}`)}mergeFunction(e){if(e.length!==2)throw new B(`A \`Dot\` layer must be called on exactly 2 inputs, but received ${e.length} input(s).`);let t=e[0],n=e[1],o;return Array.isArray(this.axes)?o=this.axes.map((s,a)=>Gd(s,e[a].shape.length)):o=[Gd(this.axes,t.shape.length),Gd(this.axes,n.shape.length)],this.normalize&&(t=rd(t,o[0]),n=rd(n,o[1])),EQ(t,n,o)}interpretAxes(e,t){let n;return Array.isArray(this.axes)?n=this.axes:n=[Gd(this.axes,e.length),Gd(this.axes,t.length)],n}computeOutputShape(e){y.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0].slice(),n=e[1].slice();if(t.length>3||n.length>3)throw new Se("Dot layer does not support tensors of 4D or higher rank yet.");let o=this.interpretAxes(t,n);t.splice(o[0],1),n.splice(o[1],1),n.splice(0,1);let s=t.concat(n);return s.length===1&&s.push(1),s}computeMask(e,t){return null}getConfig(){let e={axes:this.axes,normalize:this.normalize},t=super.getConfig();return Object.assign(e,t),e}};jd.className="Dot";J.registerClass(jd);var Wd=class extends Me{constructor(e){super(e);this.supportsMasking=!0,this.stddev=e.stddev}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={stddev:this.stddev};return Object.assign(t,e),t}call(e,t){return V(()=>{this.invokeCallHook(e,t);let n=Oe(e);return wl(()=>Ep(n.shape,0,this.stddev).add(n),()=>n,t.training||!1)})}};Wd.className="GaussianNoise";J.registerClass(Wd);var Ud=class extends Me{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return V(()=>{this.invokeCallHook(e,t);let n=Oe(e);return this.rate>0&&this.rate<1?wl(()=>{let s=Math.sqrt(this.rate/(1-this.rate));return n.mul(Ep(n.shape,1,s))},()=>n,t.training||!1):n})}};Ud.className="GaussianDropout";J.registerClass(Ud);var qd=class extends Me{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate,this.noiseShape=e.noiseShape}_getNoiseShape(e){return this.noiseShape||Oe(e).shape}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return V(()=>{if(this.rate<1&&this.rate>0){let n=this._getNoiseShape(e);return wl(()=>{let s=Oe(e),a=1.6732632423543772,i=1.0507009873554805,l=-a*i,u=tn(Es(n),this.rate);u=ja(u,"float32");let c=((1-this.rate)*(1+this.rate*l**2))**-.5,p=-c*l*this.rate;return s.mul(u).add(u.add(-1).mul(l)).mul(c).add(p)},()=>Oe(e),t.training||!1)}return e})}};qd.className="AlphaDropout";J.registerClass(qd);function Hd(r,e,t,n,o,s=.001){let a;if(r.rank===2)a=_w(r,e,t,n,o,s);else if(r.rank===3)a=kw(r,e,t,n,o,s);else if(r.rank===4)a=vw(r,e,t,n,o,s);else throw new Se(`batchNormalization is not implemented for array of rank ${r.rank} yet`);return a}function AQ(r,e,t,n,o=.001){return V(()=>{let s=Yc(r,n),a=s.mean,i=s.variance;return[Hd(r,a,i,t,e,o),a,i]})}function DQ(r,e,t,n,o=.001){return V(()=>{let s=Yc(r,n),a=s.mean,i=s.variance,l=[];for(let d of Lr(0,r.rank))n.indexOf(d)!==-1?l.push(1):l.push(r.shape[d]);let u=a.reshape(l),c=i.reshape(l),p=e==null?null:e.reshape(l),m=t==null?null:t.reshape(l);return[Hd(r,u,c,m,p,o),a,i]})}function $Q(r,e,t,n,o=.001){return y.arraysEqual(n.slice().sort(),Lr(0,r.rank-1))?AQ(r,e,t,n,o):DQ(r,e,t,n,o)}var Kd=class extends Me{constructor(e){e==null&&(e={}),super(e),this.supportsMasking=!0,this.axis=e.axis==null?-1:e.axis,this.momentum=e.momentum==null?.99:e.momentum,this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=dt(e.betaInitializer||"zeros"),this.gammaInitializer=dt(e.gammaInitializer||"ones"),this.movingMeanInitializer=dt(e.movingMeanInitializer||"zeros"),this.movingVarianceInitializer=dt(e.movingVarianceInitializer||"ones"),this.betaConstraint=Lt(e.betaConstraint),this.gammaConstraint=Lt(e.gammaConstraint),this.betaRegularizer=_t(e.betaRegularizer),this.gammaRegularizer=_t(e.gammaRegularizer)}build(e){e=et(e);let t=this.axis>=0?this.axis:this.axis+e.length,n=e[t];if(n==null)throw new B(`Axis ${t} of input tensor should have a defined dimension but the layer received an input with shape ${JSON.stringify(e)}.`);this.inputSpec=[new At({ndim:e.length,axes:{[t]:n}})];let o=[n];this.scale&&(this.gamma=this.addWeight("gamma",o,null,this.gammaInitializer,this.gammaRegularizer,!0,this.gammaConstraint)),this.center&&(this.beta=this.addWeight("beta",o,null,this.betaInitializer,this.betaRegularizer,!0,this.betaConstraint)),this.movingMean=this.addWeight("moving_mean",o,null,this.movingMeanInitializer,null,!1),this.movingVariance=this.addWeight("moving_variance",o,null,this.movingVarianceInitializer,null,!1),this.built=!0}call(e,t){return V(()=>{let n=t.training==null?!1:t.training,o=Oe(e),s=o.shape,a=s.length,i=Lr(0,a),l=this.axis>=0?this.axis:this.axis+a;i.splice(l,1);let u=Ko(1,a);u[l]=s[l];let c=i.slice();c.sort();let p=!y.arraysEqual(c,Lr(0,a).slice(0,a-1)),m=()=>{if(p){let b=this.movingMean.read().reshape(u),w=this.movingVariance.read().reshape(u),_=this.center?this.beta.read().reshape(u):null,k=this.scale?this.gamma.read().reshape(u):null;return Hd(o,b,w,_,k,this.epsilon)}else return Hd(o,this.movingMean.read(),this.movingVariance.read(),this.beta==null?null:this.beta.read(),this.gamma==null?null:this.gamma.read(),this.epsilon)};if(!n)return m();let[f,d,h]=$Q(o,this.gamma.read(),this.beta.read(),i,this.epsilon),g=(b,w,_)=>{V(()=>{let k=1-_,E=b.read(),S=E.sub(w).mul(k);b.write(E.sub(S))})};return(()=>{g(this.movingMean,d,this.momentum),g(this.movingVariance,h,this.momentum)})(),f})}getConfig(){let e={axis:this.axis,momentum:this.momentum,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:Nt(this.betaInitializer),gammaInitializer:Nt(this.gammaInitializer),movingMeanInitializer:Nt(this.movingMeanInitializer),movingVarianceInitializer:Nt(this.movingVarianceInitializer),betaRegularizer:lt(this.betaRegularizer),gammaRegularizer:lt(this.gammaRegularizer),betaConstraint:Mt(this.betaConstraint),gammaConstraint:Mt(this.gammaConstraint)},t=super.getConfig();return Object.assign(e,t),e}};Kd.className="BatchNormalization";J.registerClass(Kd);var Xd=class extends Me{constructor(e){if(e==null&&(e={}),super(e),this.axis=e.axis==null?-1:e.axis,typeof this.axis=="number"){if(!Number.isInteger(this.axis))throw new Error(`Expected axis to be an integer, but received ${this.axis}`)}else if(Array.isArray(this.axis)){for(let t of this.axis)if(!Number.isInteger(t))throw new Error(`Expected axis to be an array of integers, but received ${JSON.stringify(this.axis)}`)}else throw new Error(`Expected axis to be an integer or an array of integers, but received ${JSON.stringify(this.axis)}`);this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=dt(e.betaInitializer||"zeros"),this.gammaInitializer=dt(e.gammaInitializer||"ones"),this.betaRegularizer=_t(e.betaRegularizer),this.gammaRegularizer=_t(e.gammaRegularizer),this.supportsMasking=!0}build(e){e=et(e);let t=e.length;typeof this.axis=="number"&&(this.axis=[this.axis]);for(let s=0;s<this.axis.length;++s)this.axis[s]<0&&(this.axis[s]+=t);for(let s of this.axis)if(s<0||s>=t)throw new Error(`Invalid axis: ${s}`);if(this.axis.length!==Zo(this.axis).length)throw new Error(`Found duplicate axes in: ${this.axis}`);let n=this.axis.map(s=>e[s]),o=!0;this.scale?this.gamma=this.addWeight("gamma",n,"float32",this.gammaInitializer,this.gammaRegularizer,o):this.gamma=null,this.center?this.beta=this.addWeight("beta",n,"float32",this.betaInitializer,this.betaRegularizer,o):this.beta=null,this.built=!0}call(e,t){let n=Oe(e),o=n.shape,s=o.length;return V(()=>{let a=!0,{mean:i,variance:l}=Yc(n,this.axis,a),u=Ko(1,s);for(let h of this.axis)u[h]=o[h];let c=h=>h!=null&&h.shape.length!==s&&this.axis!==[s-1]?h.reshape(u):h,p=c(this.gamma.read()),m=c(this.beta.read()),f=[],d=[];for(let h=0;h<s;++h)this.axis.indexOf(h)!==-1?(f.push(o[h]),d.push(1)):(f.push(1),d.push(o[h]));return i=i.tile(f),l=l.tile(f),p=p.tile(d),m=m.tile(d),Hd(n,i,l,m,p,this.epsilon)})}getConfig(){let e={axis:this.axis,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:Nt(this.betaInitializer),gammaInitializer:Nt(this.gammaInitializer),betaRegularizer:lt(this.betaRegularizer),gammaRegularizer:lt(this.gammaRegularizer)},t=super.getConfig();return Object.assign(e,t),e}};Xd.className="LayerNormalization";J.registerClass(Xd);function RQ(r,e,t){return V(()=>{if(r.rank!==4)throw new B(`temporalPadding expects input tensor to be 4-D, but received a ${r.rank}-D tensor.`);if(e==null&&(e=[[1,1],[1,1]]),e.length!==2||e[0].length!==2||e[1].length!==2)throw new B("spatial2dPadding expects `padding` to be an Array of two Arrays, each of which is an Array of two integers.");if(t==null&&(t=Kr()),t!=="channelsLast"&&t!=="channelsFirst")throw new B(`Unknown data format: ${t}. Supported data formats are 'channelsLast' and 'channelsFirst.`);let n;return t==="channelsFirst"?n=[[0,0],[0,0],e[0],e[1]]:n=[[0,0],e[0],e[1],[0,0]],Rr(r,n)})}var Yd=class extends Me{constructor(e){if(e==null&&(e={}),super(e),this.dataFormat=e.dataFormat==null?Kr():e.dataFormat,e.padding==null)this.padding=[[1,1],[1,1]];else if(typeof e.padding=="number")this.padding=[[e.padding,e.padding],[e.padding,e.padding]];else{if(e.padding=e.padding,e.padding.length!==2)throw new B(`ZeroPadding2D expects padding to be a length-2 array, but received a length-${e.padding.length} array.`);let t,n;if(typeof e.padding[0]=="number")t=[e.padding[0],e.padding[0]],n=[e.padding[1],e.padding[1]];else{if(e.padding=e.padding,e.padding[0].length!==2)throw new B(`ZeroPadding2D expects height padding to be a length-2 array, but received a length-${e.padding[0].length} array.`);if(t=e.padding[0],e.padding[1].length!==2)throw new B(`ZeroPadding2D expects width padding to be a length-2 array, but received a length-${e.padding[1].length} array.`);n=e.padding[1]}this.padding=[t,n]}this.inputSpec=[new At({ndim:4})]}computeOutputShape(e){e=et(e);let t,n;return this.dataFormat==="channelsFirst"?(e[2]!=null&&e[2]>=0?t=e[2]+this.padding[0][0]+this.padding[0][1]:t=null,e[3]!=null&&e[3]>=0?n=e[3]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],e[1],t,n]):(e[1]!=null&&e[1]>=0?t=e[1]+this.padding[0][0]+this.padding[0][1]:t=null,e[2]!=null&&e[2]>=0?n=e[2]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],t,n,e[3]])}call(e,t){return V(()=>RQ(Oe(e),this.padding,this.dataFormat))}getConfig(){let e={padding:this.padding,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};Yd.className="ZeroPadding2D";J.registerClass(Yd);function Wx(r,e,t,n,o,s){return V(()=>{Ft(o),T0(s),Xr(n),t==null&&(t=[1,1]),n==null&&(n="valid"),o==null&&(o=Kr()),s==null&&(s="max"),r=xd(r,o);let a,i=n==="same"?"same":"valid";return s==="max"?a=Ea(r,e,t,i):a=va(r,e,t,i),o==="channelsFirst"&&(a=We(a,[0,3,1,2])),a})}function WL(r,e,t,n,o,s){return V(()=>{Ft(o),T0(s),Xr(n),t==null&&(t=[1,1,1]),n==null&&(n="valid"),o==null&&(o=Kr()),s==null&&(s="max"),r=nC(r,o);let a,i=n==="same"?"same":"valid";return s==="max"?a=qm(r,e,t,i):a=Om(r,e,t,i),o==="channelsFirst"&&(a=We(a,[0,4,1,2,3])),a})}var lC=class extends Me{constructor(e){if(e.poolSize==null&&(e.poolSize=2),super(e),typeof e.poolSize=="number")this.poolSize=[e.poolSize];else if(Array.isArray(e.poolSize)&&e.poolSize.length===1&&typeof e.poolSize[0]=="number")this.poolSize=e.poolSize;else throw new B(`poolSize for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.poolSize)}`);if(qt(this.poolSize,"poolSize"),e.strides==null)this.strides=this.poolSize;else if(typeof e.strides=="number")this.strides=[e.strides];else if(Array.isArray(e.strides)&&e.strides.length===1&&typeof e.strides[0]=="number")this.strides=e.strides;else throw new B(`strides for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.strides)}`);qt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,Xr(this.padding),this.inputSpec=[new At({ndim:3})]}computeOutputShape(e){e=et(e);let t=un(e[1],this.poolSize[0],this.padding,this.strides[0]);return[e[0],t,e[2]]}call(e,t){return V(()=>{this.invokeCallHook(e,t),e=Wa(Oe(e),2);let n=this.poolingFunction(Oe(e),[this.poolSize[0],1],[this.strides[0],1],this.padding,"channelsLast");return _n(n,[2])})}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides},t=super.getConfig();return Object.assign(e,t),e}},Zd=class extends lC{constructor(e){super(e)}poolingFunction(e,t,n,o,s){return Ft(s),Xr(o),Wx(e,t,n,o,s,"max")}};Zd.className="MaxPooling1D";J.registerClass(Zd);var Jd=class extends lC{constructor(e){super(e)}poolingFunction(e,t,n,o,s){return Ft(s),Xr(o),Wx(e,t,n,o,s,"avg")}};Jd.className="AveragePooling1D";J.registerClass(Jd);var uC=class extends Me{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==2)throw new B(`If the strides property of a 2D pooling layer is an Array, it is expected to have a length of 2, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides];qt(this.poolSize,"poolSize"),qt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Ft(this.dataFormat),Xr(this.padding),this.inputSpec=[new At({ndim:4})]}computeOutputShape(e){e=et(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2];return t=un(t,this.poolSize[0],this.padding,this.strides[0]),n=un(n,this.poolSize[1],this.padding,this.strides[1]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n]:[e[0],t,n,e[3]]}call(e,t){return V(()=>(this.invokeCallHook(e,t),this.poolingFunction(Oe(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},Qd=class extends uC{constructor(e){super(e)}poolingFunction(e,t,n,o,s){return Ft(s),Xr(o),Wx(e,t,n,o,s,"max")}};Qd.className="MaxPooling2D";J.registerClass(Qd);var eh=class extends uC{constructor(e){super(e)}poolingFunction(e,t,n,o,s){return Ft(s),Xr(o),Wx(e,t,n,o,s,"avg")}};eh.className="AveragePooling2D";J.registerClass(eh);var cC=class extends Me{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==3)throw new B(`If the strides property of a 3D pooling layer is an Array, it is expected to have a length of 3, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides,e.strides];qt(this.poolSize,"poolSize"),qt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Ft(this.dataFormat),Xr(this.padding),this.inputSpec=[new At({ndim:5})]}computeOutputShape(e){e=et(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],o=this.dataFormat==="channelsFirst"?e[4]:e[3];return t=un(t,this.poolSize[0],this.padding,this.strides[0]),n=un(n,this.poolSize[1],this.padding,this.strides[1]),o=un(o,this.poolSize[2],this.padding,this.strides[2]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n,o]:[e[0],t,n,o,e[4]]}call(e,t){return V(()=>(this.invokeCallHook(e,t),this.poolingFunction(Oe(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},th=class extends cC{constructor(e){super(e)}poolingFunction(e,t,n,o,s){return Ft(s),Xr(o),WL(e,t,n,o,s,"max")}};th.className="MaxPooling3D";J.registerClass(th);var rh=class extends cC{constructor(e){super(e)}poolingFunction(e,t,n,o,s){return Ft(s),Xr(o),WL(e,t,n,o,s,"avg")}};rh.className="AveragePooling3D";J.registerClass(rh);var pC=class extends Me{constructor(e){super(e);this.inputSpec=[new At({ndim:3})]}computeOutputShape(e){return[e[0],e[2]]}call(e,t){throw new Se}},nh=class extends pC{constructor(e){super(e||{})}call(e,t){return V(()=>{let n=Oe(e);return gt(n,1)})}};nh.className="GlobalAveragePooling1D";J.registerClass(nh);var oh=class extends pC{constructor(e){super(e||{})}call(e,t){return V(()=>{let n=Oe(e);return lr(n,1)})}};oh.className="GlobalMaxPooling1D";J.registerClass(oh);var mC=class extends Me{constructor(e){super(e);this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Ft(this.dataFormat),this.inputSpec=[new At({ndim:4})]}computeOutputShape(e){return e=e,this.dataFormat==="channelsLast"?[e[0],e[3]]:[e[0],e[1]]}call(e,t){throw new Se}getConfig(){let e={dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},sh=class extends mC{call(e,t){return V(()=>{let n=Oe(e);return this.dataFormat==="channelsLast"?gt(n,[1,2]):gt(n,[2,3])})}};sh.className="GlobalAveragePooling2D";J.registerClass(sh);var ih=class extends mC{call(e,t){return V(()=>{let n=Oe(e);return this.dataFormat==="channelsLast"?lr(n,[1,2]):lr(n,[2,3])})}};ih.className="GlobalMaxPooling2D";J.registerClass(ih);var fC=class extends Me{constructor(e){super(e);this.layer=e.layer}build(e){this.built=!0}get trainable(){return this.layer!=null?this.layer.trainable:!1}set trainable(e){this.layer!=null&&(this.layer.trainable=e)}get trainableWeights(){return this.layer.trainableWeights}get nonTrainableWeights(){return this.layer.nonTrainableWeights}get updates(){return this.layer._updates}get losses(){return this.layer.losses}getWeights(){return this.layer.getWeights()}setWeights(e){this.layer.setWeights(e)}getConfig(){let e={layer:{className:this.layer.getClassName(),config:this.layer.getConfig()}},t=super.getConfig();return Object.assign(e,t),e}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.layer!=null&&this.layer.setFastWeightInitDuringBuild(e)}static fromConfig(e,t,n={}){let o=t.layer,s=Yr(o,n);delete t.layer;let a={layer:s};return Object.assign(a,t),new e(a)}},ah=class extends fC{constructor(e){super(e);this.supportsMasking=!0}build(e){if(e=et(e),e.length<3)throw new B(`TimeDistributed layer expects an input shape >= 3D, but received input shape ${JSON.stringify(e)}`);this.inputSpec=[{shape:e}];let t=[e[0]].concat(e.slice(2));this.layer.built||(this.layer.build(t),this.layer.built=!0),super.build(e)}computeOutputShape(e){e=et(e);let t=[e[0]].concat(e.slice(2)),n=this.layer.computeOutputShape(t),o=e[1];return[n[0],o].concat(n.slice(1))}call(e,t){return V(()=>(e=Oe(e),iC((a,i)=>[Oe(this.layer.call(a,t)),[]],e,[],!1,null,null,!1,!0)[1]))}};ah.className="TimeDistributed";J.registerClass(ah);function FQ(r){qi(XM,"BidirectionalMergeMode",r)}var OQ="concat",lh=class extends fC{constructor(e){super(e);let t=e.layer.getConfig(),n={};n.className=e.layer.getClassName(),n.config=t,this.forwardLayer=Yr(n),t.goBackwards=t.goBackwards!==!0;let o={};if(o.className=e.layer.getClassName(),o.config=t,this.backwardLayer=Yr(o),this.forwardLayer.name="forward_"+this.forwardLayer.name,this.backwardLayer.name="backward_"+this.backwardLayer.name,this.mergeMode=e.mergeMode===void 0?OQ:e.mergeMode,FQ(this.mergeMode),e.weights)throw new Se("weights support is not implemented for Bidirectional layer yet.");this._stateful=e.layer.stateful,this.returnSequences=e.layer.returnSequences,this.returnState=e.layer.returnState,this.supportsMasking=!0,this._trainable=!0,this.inputSpec=e.layer.inputSpec,this.numConstants=null}get trainable(){return this._trainable}set trainable(e){this._trainable=e,this.forwardLayer!=null&&(this.forwardLayer.trainable=e),this.backwardLayer!=null&&(this.backwardLayer.trainable=e)}getWeights(){return this.forwardLayer.getWeights().concat(this.backwardLayer.getWeights())}setWeights(e){let t=e.length,n=Math.floor(t/2);this.forwardLayer.setWeights(e.slice(0,n)),this.backwardLayer.setWeights(e.slice(n))}computeOutputShape(e){let t=this.forwardLayer.computeOutputShape(e);Array.isArray(t)&&Array.isArray(t[0])||(t=[t]),t=t;let n,o,s;return this.returnState&&(s=t.slice(1)),n=t[0],n=n,this.mergeMode==="concat"?(n[n.length-1]*=2,o=[n]):this.mergeMode==null?o=[n,n.slice()]:o=[n],this.returnState?this.mergeMode==null?o.concat(s).concat(s.slice()):[n].concat(s).concat(s.slice()):gr(o)}apply(e,t){let n=t==null?null:t.initialState,o=t==null?null:t.constants;t==null&&(t={});let s=sC(e,n,o,this.numConstants);if(e=s.inputs,n=s.initialState,o=s.constants,Array.isArray(e)&&(n=e.slice(1),e=e[0]),(n==null||n.length===0)&&o==null)return super.apply(e,t);let a=[],i=[];if(n!=null){let u=n.length;if(u%2>0)throw new B("When passing `initialState` to a Bidrectional RNN, the state should be an Array containing the states of the underlying RNNs.");t.initialState=n,a.push(...n);let c=n.map(p=>new At({shape:p.shape}));this.forwardLayer.stateSpec=c.slice(0,u/2),this.backwardLayer.stateSpec=c.slice(u/2),i.push(...c)}if(o!=null)throw new Se("Support for constants in Bidirectional layers is not implemented yet.");let l=a[0]instanceof Br;for(let u of a)if(u instanceof Br!==l)throw new B("The initial state of a Bidirectional layer cannot be specified as a mix of symbolic and non-symbolic tensors");if(l){let u=[e].concat(a),c=this.inputSpec.concat(i),p=this.inputSpec;this.inputSpec=c;let m=super.apply(u,t);return this.inputSpec=p,m}else return super.apply(e,t)}call(e,t){return V(()=>{let n=t.initialState,o,s;if(n==null)o=this.forwardLayer.call(e,t),s=this.backwardLayer.call(e,t);else{let l=n.slice(0,n.length/2),u=n.slice(n.length/2);o=this.forwardLayer.call(e,Object.assign(t,{initialState:l})),s=this.backwardLayer.call(e,Object.assign(t,{initialState:u}))}let a;this.returnState&&(Array.isArray(o)&&(a=o.slice(1).concat(s.slice(1))),o=o[0],s=s[0]),this.returnSequences&&(s=Kt(s,1));let i;return this.mergeMode==="concat"?i=Tp([o,s]):this.mergeMode==="sum"?i=Q(o,s):this.mergeMode==="ave"?i=M(.5,Q(o,s)):this.mergeMode==="mul"?i=M(o,s):this.mergeMode==null&&(i=[o,s]),this.returnState?this.mergeMode==null?i.concat(a):[i].concat(a):i})}resetStates(e){this.forwardLayer.resetStates(),this.backwardLayer.resetStates()}build(e){Ps(this.forwardLayer.name,()=>{this.forwardLayer.build(e)}),Ps(this.backwardLayer.name,()=>{this.backwardLayer.build(e)}),this.built=!0}computeMask(e,t){Array.isArray(t)&&(t=t[0]);let n;if(this.returnSequences?this.mergeMode==null?n=[t,t]:n=t:this.mergeMode==null?n=[null,null]:n=null,this.returnState){let s=this.forwardLayer.states.map(a=>null);return Array.isArray(n)?n.concat(s).concat(s):[n].concat(s).concat(s)}else return n}get trainableWeights(){return this.forwardLayer.trainableWeights.concat(this.backwardLayer.trainableWeights)}get nonTrainableWeights(){return this.forwardLayer.nonTrainableWeights.concat(this.backwardLayer.nonTrainableWeights)}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.forwardLayer!=null&&this.forwardLayer.setFastWeightInitDuringBuild(e),this.backwardLayer!=null&&this.backwardLayer.setFastWeightInitDuringBuild(e)}getConfig(){let e={mergeMode:this.mergeMode},t=super.getConfig();return Object.assign(e,t),e}static fromConfig(e,t){let n=Yr(t.layer);if(delete t.layer,t.numConstants!=null)throw new Se("Deserialization of a Bidirectional layer with numConstants present is not supported yet.");let o=t;return o.layer=n,new e(o)}};lh.className="Bidirectional";J.registerClass(lh);function PQ(r){return new Hi(r)}function MQ(r){return new fd(r)}function LQ(r){return new cd(r)}function zQ(r){return new pd(r)}function BQ(r){return new md(r)}function VQ(r){return new hd(r)}function GQ(r){return new dd(r)}function jQ(r){return new dc(r)}function WQ(r){return new Sl(r)}function UQ(r){return new yd(r)}function qQ(r){return new fc(r)}function HQ(r){return new bd(r)}function KQ(r){return new wd(r)}function XQ(r){return new _d(r)}function YQ(r){return new kd(r)}function ZQ(r){return new Ad(r)}function JQ(r){return new Td(r)}function QQ(r){return new Xp(r)}function eee(r){return new Sd(r)}function tee(r){return new Ed(r)}function ree(r){return new Dd(r)}function nee(r){return new $d(r)}function oee(r){return new Rd(r)}function see(r){return new Od(r)}function iee(r){return new Pd(r)}function aee(r){return new Ld(r)}function lee(r){return new Vd(r)}function uee(r){return new zd(r)}function cee(r){return new Bd(r)}function pee(r){return new Md(r)}function mee(r){return new jd(r)}function fee(r){return new Kd(r)}function dee(r){return new Xd(r)}function hee(r){return new Yd(r)}function hC(r){return new Jd(r)}function gee(r){return hC(r)}function xee(r){return hC(r)}function gC(r){return new eh(r)}function yee(r){return gC(r)}function bee(r){return gC(r)}function xC(r){return new rh(r)}function wee(r){return xC(r)}function _ee(r){return xC(r)}function kee(r){return new nh(r)}function vee(r){return new sh(r)}function UL(r){return new oh(r)}function qL(r){return new ih(r)}function HL(r){return new Zd(r)}function KL(r){return new Qd(r)}function Cee(r){return new th(r)}function Iee(r){return new Cd(r)}function Nee(r){return new Hp(r)}function See(r){return new Id(r)}function Tee(r){return new El(r)}function Eee(r){return new vd(r)}function Aee(r){return new qp(r)}function Dee(r){return new Nd(r)}function $ee(r){return new Kp(r)}function Ree(r){return new cn(r)}function Fee(r){return new Up(r)}function Oee(r){return new lh(r)}function Pee(r){return new ah(r)}var Mee=UL,Lee=qL,zee=HL,Bee=KL;function Vee(r){return new Wd(r)}function Gee(r){return new Ud(r)}function jee(r){return new qd(r)}function Wee(r){return new Fd(r)}var yC={};Ye(yC,{MAPE:()=>tte,MSE:()=>ote,binaryAccuracy:()=>Uee,binaryCrossentropy:()=>qee,categoricalAccuracy:()=>Kee,categoricalCrossentropy:()=>Xee,cosineProximity:()=>Jee,mape:()=>rte,meanAbsoluteError:()=>Qee,meanAbsolutePercentageError:()=>ete,meanSquaredError:()=>nte,mse:()=>ste,precision:()=>Yee,recall:()=>Zee,sparseCategoricalAccuracy:()=>Hee});function Uee(r,e){return sd(r,e)}function qee(r,e){return Rx(r,e)}function Hee(r,e){return Fx(r,e)}function Kee(r,e){return id(r,e)}function Xee(r,e){return ad(r,e)}function Yee(r,e){return F0(r,e)}function Zee(r,e){return hL(r,e)}function Jee(r,e){return nd(r,e)}function Qee(r,e){return zp(r,e)}function ete(r,e){return Cl(r,e)}function tte(r,e){return Cl(r,e)}function rte(r,e){return Cl(r,e)}function nte(r,e){return Xi(r,e)}function ote(r,e){return Xi(r,e)}function ste(r,e){return Xi(r,e)}var bC={};Ye(bC,{modelFromJSON:()=>RL});var wC={};Ye(wC,{l1:()=>ate,l1l2:()=>ite,l2:()=>lte});function ite(r){return new pc(r)}function ate(r){return zL(r)}function lte(r){return BL(r)}var Ux=class extends vl{constructor(){super(...arguments);this.model=null}setModel(e){if(!(e instanceof In))throw new Error("model must be a LayersModel, not some other Container");this.model=e}};function qx(r,e){return r<e}function XL(r,e){return r>e}var Hx=class extends Ux{constructor(e){super();if(e==null&&(e={}),e.restoreBestWeights)throw new Se("restoreBestWeights = True is not implemented in EarlyStopping yet.");this.monitor=e.monitor||"val_loss",this.minDelta=Math.abs(e.minDelta||0),this.patience=e.patience||0,this.verbose=e.verbose||0,this.mode=e.mode||"auto",this.baseline=e.baseline,["auto","min","max"].indexOf(this.mode)===-1&&(console.warn(`EarlyStopping mode '${this.mode}' is invalid. Falling back to mode 'auto'.`),this.mode="auto"),this.mode==="min"?this.monitorFunc=qx:this.mode==="max"?this.monitorFunc=XL:this.monitor.indexOf("acc")!==-1?this.monitorFunc=XL:this.monitorFunc=qx,this.monitorFunc===qx&&(this.minDelta*=-1)}async onTrainBegin(e){this.wait=0,this.stoppedEpoch=0,this.baseline!=null?this.best=this.baseline:this.best=this.monitorFunc===qx?Infinity:-Infinity}async onEpochEnd(e,t){await Ki(t);let n=this.getMonitorValue(t);n!=null&&(this.monitorFunc(n-this.minDelta,this.best)?(this.best=n,this.wait=0):(this.wait++,this.wait>=this.patience&&(this.stoppedEpoch=e,this.model.stopTraining=!0)))}async onTrainEnd(e){this.stoppedEpoch>0&&this.verbose&&console.log(`Epoch ${this.stoppedEpoch}: early stopping.`)}getMonitorValue(e){e==null&&(e={});let t=e[this.monitor];return t==null&&console.warn(`Metric for EarlyStopping ${this.monitor} is not available. Available metrics are: ${Object.keys(e)}`),t}};function ute(r){return new Hx(r)}var YL={earlyStopping:ute};var es;(function(r){r[r.DT_INVALID=0]="DT_INVALID",r[r.DT_FLOAT=1]="DT_FLOAT",r[r.DT_DOUBLE=2]="DT_DOUBLE",r[r.DT_INT32=3]="DT_INT32",r[r.DT_UINT8=4]="DT_UINT8",r[r.DT_INT16=5]="DT_INT16",r[r.DT_INT8=6]="DT_INT8",r[r.DT_STRING=7]="DT_STRING",r[r.DT_COMPLEX64=8]="DT_COMPLEX64",r[r.DT_INT64=9]="DT_INT64",r[r.DT_BOOL=10]="DT_BOOL",r[r.DT_QINT8=11]="DT_QINT8",r[r.DT_QUINT8=12]="DT_QUINT8",r[r.DT_QINT32=13]="DT_QINT32",r[r.DT_BFLOAT16=14]="DT_BFLOAT16",r[r.DT_FLOAT_REF=101]="DT_FLOAT_REF",r[r.DT_DOUBLE_REF=102]="DT_DOUBLE_REF",r[r.DT_INT32_REF=103]="DT_INT32_REF",r[r.DT_UINT8_REF=104]="DT_UINT8_REF",r[r.DT_INT16_REF=105]="DT_INT16_REF",r[r.DT_INT8_REF=106]="DT_INT8_REF",r[r.DT_STRING_REF=107]="DT_STRING_REF",r[r.DT_COMPLEX64_REF=108]="DT_COMPLEX64_REF",r[r.DT_INT64_REF=109]="DT_INT64_REF",r[r.DT_BOOL_REF=110]="DT_BOOL_REF",r[r.DT_QINT8_REF=111]="DT_QINT8_REF",r[r.DT_QUINT8_REF=112]="DT_QUINT8_REF",r[r.DT_QINT32_REF=113]="DT_QINT32_REF",r[r.DT_BFLOAT16_REF=114]="DT_BFLOAT16_REF"})(es||(es={}));var ZL;(function(r){let e;(function(t){t[t.LEGACY=0]="LEGACY",t[t.V1=1]="V1",t[t.V2=2]="V2"})(e=r.CheckpointFormatVersion||(r.CheckpointFormatVersion={}))})(ZL||(ZL={}));var _C={};function JL(r,e){let t={tfOpName:r,category:"custom",inputs:[],attrs:[],customExecutor:e};_C[r]=t}function Kx(r){return _C[r]}function QL(r){delete _C[r]}function C(r,e,t,n,o){let s=e.inputParams[r];if(s&&s.inputIndexStart!==void 0){let i=s.inputIndexStart,l=s.inputIndexEnd===0?void 0:s.inputIndexEnd===void 0?i+1:s.inputIndexEnd;if(s.type==="tensor")return xr(e.inputNames[s.inputIndexStart],t,n,o);if(s.type==="tensors")return e.inputNames.slice(i,l).map(m=>xr(m,t,n,o));let u=xr(e.inputNames.slice(i)[0],t,n,o),c=u.dataSync();return s.type==="number"?c[0]:y.toNestedArray(u.shape,c)}let a=e.attrParams[r];return a&&a.value}function xr(r,e,t,n){let[o,s]=Zr(r);if(n!=null){let i=n.getHashTableHandleByName(o);if(i!=null)return i}let a=t.currentContextIds.find(i=>!!e[Xx(o,i)]);return a!==void 0?e[Xx(o,a)][s]:void 0}function ez(r,e,t){return e[Xx(r,t.currentContextId)]}function Vs(r,e){let[t,n]=Zr(r);return[Xx(t,e&&e.currentContextId),n]}function Xx(r,e){return e?`${r}-${e}`:r}function Zr(r){let e=r.split(":");return e.length===1?[r,0]:[e[0],Number(e[e.length-1])]}function uh(r,e,t){let n=C("pad",r,e,t);if(n==="explicit"){n=C("explicitPaddings",r,e,t);let o=[[0,0],[0,0],[0,0],[0,0]];for(let s=0;s<4;s++)o[s][0]=n[s*2],o[s][1]=n[s*2+1];return o}return n}function Gs(r){return r.kept?r:Rn(r)}var kC={};Ye(kC,{json:()=>cte});var cte=[{tfOpName:"Add",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddV2",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddN",category:"arithmetic",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"BiasAdd",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"Sub",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"RealDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Div",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"DivNoNan",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mul",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Maximum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Minimum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Pow",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SquaredDifference",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorMod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}];var vC={};Ye(vC,{json:()=>pte});var pte=[{tfOpName:"Abs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan2",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ceil",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ClipByValue",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"clipValueMin",type:"number"},{start:2,name:"clipValueMax",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Complex",category:"basic_math",inputs:[{start:0,name:"real",type:"tensor"},{start:1,name:"imag",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ComplexAbs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Elu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Exp",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Floor",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Imag",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Neg",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Real",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Prelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"alpha",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu6",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Selu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sigmoid",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Rsqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Square",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sign",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Round",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Expm1",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log1p",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Reciprocal",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Softplus",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Erf",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Prod",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axes",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LeakyRelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"alpha",name:"alpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}];var CC={};Ye(CC,{json:()=>mte});var mte=[{tfOpName:"EmptyTensorList",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"maxNumElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"LoopCond",category:"control",inputs:[{start:0,name:"pred",type:"tensor"}]},{tfOpName:"Switch",category:"control",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"pred",type:"tensor"}]},{tfOpName:"Merge",category:"control",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"Enter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"frame_name",name:"frameName",type:"string"},{tfName:"is_constant",name:"isConstant",type:"bool"}]},{tfOpName:"Exit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NextIteration",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayV3",category:"control",inputs:[{start:0,name:"size",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"dynamic_size",name:"dynamicSize",type:"bool"},{tfName:"clear_after_read",name:"clearAfterRead",type:"bool"},{tfName:"identical_element_shapes",name:"identicalElementShapes",type:"bool"},{tfName:"tensor_array_name",name:"name",type:"string"}]},{tfOpName:"TensorArrayWriteV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayReadV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayGatherV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"}]},{tfOpName:"TensorArrayScatterV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArrayConcatV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape_except0",name:"elementShapeExcept0",type:"shape",notSupported:!0}]},{tfOpName:"TensorArraySplitV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"tensor",type:"tensor"},{start:2,name:"lengths",type:"number[]"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArraySizeV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}]},{tfOpName:"TensorArrayCloseV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"}]},{tfOpName:"StatelessIf",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"If",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"StatelessWhile",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"While",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"TensorListScatter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListScatterV2",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"},{start:3,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGather",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListSetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListReserve",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListFromTensor",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListStack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"},{tfName:"num_elements",name:"numElements",type:"dtype"}]},{tfOpName:"TensorListSplit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"},{start:2,name:"lengths",type:"number[]"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcat",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPopBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPushBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]}];var IC={};Ye(IC,{json:()=>fte});var fte=[{tfOpName:"AvgPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[],notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPoolWithArgmax",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"include_batch_in_index",name:"includeBatchInIndex",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AvgPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Conv1D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"stride",name:"stride",type:"number"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NWC"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"dilation",name:"dilation",type:"number",defaultValue:1}]},{tfOpName:"Conv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"useCudnnOnGpu",name:"useCudnnOnGpu",type:"bool"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"_FusedConv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"use_cudnn_on_gpu",name:"useCudnnOnGpu",type:"bool",defaultValue:!0},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"leakyrelu_alpha",name:"leakyreluAlpha",type:"number"}]},{tfOpName:"Conv2DBackpropInput",category:"convolution",inputs:[{start:2,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:0,name:"outputShape",type:"number[]"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]",notSupported:!0}]},{tfOpName:"DepthwiseConv2d",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"DepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"FusedDepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]}]},{tfOpName:"Conv3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"Dilation2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"rates",name:"dilations",type:"number[]"},{tfName:"padding",name:"pad",type:"string"}]}];var NC={};Ye(NC,{json:()=>dte});var dte=[{tfOpName:"Fill",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"},{start:1,name:"value",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"LinSpace",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"num",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"OneHot",category:"creation",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"depth",type:"number"},{start:2,name:"onValue",type:"number",defaultValue:1},{start:3,name:"offValue",type:"number",defaultValue:0}],attrs:[{tfName:"axis",name:"axis",type:"number",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ones",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"OnesLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"RandomUniform",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"minval",name:"minval",type:"number",defaultValue:0},{tfName:"maxval",name:"maxval",type:"number",defaultValue:1},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Range",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"step",type:"number",defaultValue:0}],attrs:[{tfName:"Tidx",name:"dtype",type:"dtype"}]},{tfOpName:"TruncatedNormal",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"means",name:"mean",type:"number",defaultValue:0},{tfName:"stddev",name:"stdDev",type:"number",defaultValue:1},{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Zeros",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"ZerosLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"Multinomial",category:"creation",inputs:[{start:0,name:"logits",type:"tensor"},{start:1,name:"numSamples",type:"number"}],attrs:[{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number"},{tfName:"T",name:"dtype",type:"dtype"},{tfName:"output_dtype",name:"output_dtype",type:"dtype"}]}];var SC={};Ye(SC,{json:()=>hte});var hte=[{tfOpName:"NonMaxSuppressionV2",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV3",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV4",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"T_threshold",name:"threshold",type:"dtype",notSupported:!0},{tfName:"pad_to_max_output_size",name:"padToMaxOutputSize",type:"bool"}]},{tfOpName:"NonMaxSuppressionV5",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"},{start:5,name:"softNmsSigma",type:"number"}]},{tfOpName:"Where",category:"dynamic",inputs:[{start:0,name:"condition",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ListDiff",category:"dynamic",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}];var TC={};Ye(TC,{json:()=>gte});var gte=[{tfOpName:"TopKV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"k",type:"number"}],attrs:[{tfName:"sorted",name:"sorted",type:"bool"}]},{tfOpName:"Unique",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"UniqueV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]}];var EC={};Ye(EC,{json:()=>xte});var xte=[{tfOpName:"PlaceholderWithDefault",category:"graph",inputs:[{start:0,name:"default",type:"tensor"}],attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Placeholder",category:"graph",attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Const",category:"graph"},{tfOpName:"Identity",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IdentityN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Snapshot",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Rank",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Size",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Shape",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"ShapeN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Print",category:"graph",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"data",type:"tensors"}],attrs:[{tfName:"message",name:"message",type:"string"},{tfName:"first_n",name:"firstN",type:"number",notSupported:!0},{tfName:"summarize",name:"summarize",type:"number",defaultValue:3}]},{tfOpName:"NoOp",category:"graph",inputs:[]},{tfOpName:"StopGradient",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"FakeQuantWithMinMaxVars",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"min",name:"min",type:"number"},{tfName:"max",name:"max",type:"number"}]}];var AC={};Ye(AC,{json:()=>yte});var yte=[{tfOpName:"HashTable",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"HashTableV2",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"LookupTableImport",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableImportV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFind",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFindV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]}];var DC={};Ye(DC,{json:()=>bte});var bte=[{tfOpName:"ResizeBilinear",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ResizeNearestNeighbor",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"CropAndResize",category:"image",inputs:[{start:0,name:"image",type:"tensor"},{start:1,name:"boxes",type:"tensor"},{start:2,name:"boxInd",type:"tensor"},{start:3,name:"cropSize",type:"number[]"}],attrs:[{tfName:"method",name:"method",type:"string"},{tfName:"extrapolation_value",name:"extrapolationValue",type:"number"}]}];var $C={};Ye($C,{json:()=>wte});var wte=[{tfOpName:"Equal",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NotEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Greater",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"GreaterEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Less",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LessEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalAnd",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalNot",category:"logical",inputs:[{start:0,name:"a",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalOr",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Select",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SelectV2",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}];var RC={};Ye(RC,{json:()=>_te});var _te=[{tfOpName:"_FusedMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMulV2",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Transpose",category:"matrices",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"perm",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}];var FC={};Ye(FC,{json:()=>kte});var kte=[{tfOpName:"FusedBatchNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV2",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV3",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"LRN",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"depth_radius",name:"radius",type:"number",defaultValue:5},{tfName:"bias",name:"bias",type:"number",defaultValue:1},{tfName:"alpha",name:"alpha",type:"number",defaultValue:1},{tfName:"beta",name:"beta",type:"number",defaultValue:.5}]},{tfOpName:"Softmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"LogSoftmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"SparseToDense",category:"normalization",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!0,notSupported:!0}]}];var OC={};Ye(OC,{json:()=>vte});var vte=[{tfOpName:"Bincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}]},{tfOpName:"DenseBincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}],attrs:[{tfName:"binary_output",name:"binaryOutput",type:"bool"}]},{tfOpName:"Max",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Mean",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Min",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Sum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"All",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Any",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"ArgMax",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"ArgMin",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"Prod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Cumsum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]}];var PC={};Ye(PC,{json:()=>Cte});var Cte=[{tfOpName:"ConcatV2",category:"slice_join",inputs:[{start:0,end:-1,name:"tensors",type:"tensors"},{start:-1,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"Concat",category:"slice_join",inputs:[{start:1,end:0,name:"tensors",type:"tensors"},{start:0,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"GatherV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"axis",type:"number",defaultValue:0}],attrs:[{tfName:"batch_dims",name:"batchDims",type:"number",defaultValue:0}]},{tfOpName:"Gather",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",notSupported:!0}]},{tfOpName:"Reverse",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"dims",type:"bool[]"}]},{tfOpName:"ReverseV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}]},{tfOpName:"Slice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"size",type:"number[]"}]},{tfOpName:"StridedSlice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"end",type:"number[]"},{start:3,name:"strides",type:"number[]"}],attrs:[{tfName:"begin_mask",name:"beginMask",type:"number",defaultValue:0},{tfName:"end_mask",name:"endMask",type:"number",defaultValue:0},{tfName:"new_axis_mask",name:"newAxisMask",type:"number",defaultValue:0},{tfName:"ellipsis_mask",name:"ellipsisMask",type:"number",defaultValue:0},{tfName:"shrink_axis_mask",name:"shrinkAxisMask",type:"number",defaultValue:0}]},{tfOpName:"Pack",category:"slice_join",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0}]},{tfOpName:"Unpack",category:"slice_join",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0},{tfName:"num",name:"num",type:"number",defaultValue:0,notSupported:!0}]},{tfOpName:"Tile",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"reps",type:"number[]"}]},{tfOpName:"Split",category:"slice_join",inputs:[{start:0,name:"axis",type:"number",defaultValue:0},{start:1,name:"x",type:"tensor"}],attrs:[{tfName:"num_split",name:"numOrSizeSplits",type:"number",defaultValue:1}]},{tfOpName:"SplitV",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"numOrSizeSplits",type:"number[]"},{start:2,name:"axis",type:"number",defaultValue:0}]},{tfOpName:"ScatterNd",category:"slice_join",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"shape",type:"number[]"}]},{tfOpName:"GatherNd",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}]},{tfOpName:"SparseToDense",category:"slice_join",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!1,notSupported:!0}]}];var MC={};Ye(MC,{json:()=>Ite});var Ite=[{tfOpName:"FFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"RFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]},{tfOpName:"IRFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]}];var LC={};Ye(LC,{json:()=>Nte});var Nte=[{tfOpName:"Cast",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"SrcT",name:"sdtype",type:"dtype",notSupported:!0},{tfName:"DstT",name:"dtype",type:"dtype"}]},{tfOpName:"ExpandDims",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"MirrorPad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"mode",name:"mode",type:"string"}]},{tfOpName:"Pad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"constant_value",name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"PadV2",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"},{start:2,name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"Reshape",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}]},{tfOpName:"Squeeze",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"axis",tfDeprecatedName:"squeeze_dims",name:"axis",type:"number[]"}]},{tfOpName:"SpaceToBatchND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"paddings",type:"number[]"}]},{tfOpName:"BatchToSpaceND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"crops",type:"number[]"}]},{tfOpName:"DepthToSpace",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"block_size",name:"blockSize",type:"number"},{tfName:"data_format",name:"dataFormat",type:"string"}]},{tfOpName:"BroadcastTo",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}],attrs:[]}];var Yx=class{static get Instance(){return this._instance||(this._instance=new this)}constructor(){let e=[kC,vC,CC,IC,NC,SC,TC,$C,DC,EC,RC,FC,OC,PC,MC,LC,AC],t=[].concat(...e.map(n=>n.json));this.opMappers=t.reduce((n,o)=>(n[o.tfOpName]=o,n),{})}transformGraph(e,t={}){let n=e.node,o=[],s=[],a=[],i=n.reduce((h,g)=>(h[g.name]=this.mapNode(g),g.op.startsWith("Placeholder")?o.push(h[g.name]):g.op==="Const"?s.push(h[g.name]):(g.input==null||g.input.length===0)&&a.push(h[g.name]),h),{}),l=[],u=[],c={},p={};t!=null&&(c=this.mapSignatureEntries(t.inputs),p=this.mapSignatureEntries(t.outputs));let m=Object.keys(i);m.forEach(h=>{let g=i[h];g.inputNames.forEach(x=>{let[b]=Vs(x);g.inputs.push(i[b]),i[b].children.push(g)})}),Object.keys(p).length===0?m.forEach(h=>{let g=i[h];g.children.length===0&&u.push(g)}):Object.keys(p).forEach(h=>{let[g]=Vs(h),x=i[g];x!=null&&(x.signatureKey=p[h],u.push(x))}),Object.keys(c).length>0?Object.keys(c).forEach(h=>{let[g]=Vs(h),x=i[g];x&&(x.signatureKey=c[h],l.push(x))}):l=o;let f={};e.library!=null&&e.library.function!=null&&(f=e.library.function.reduce((h,g)=>(h[g.signature.name]=this.mapFunction(g),h),{}));let d={nodes:i,inputs:l,outputs:u,weights:s,placeholders:o,signature:t,functions:f};return a.length>0&&(d.initNodes=a),d}mapSignatureEntries(e){return Object.keys(e||{}).reduce((t,n)=>(t[e[n].name]=n,t),{})}mapNode(e){let t=Kx(e.op)||this.opMappers[e.op]||{};e.attr==null&&(e.attr={});let n={name:e.name,op:e.op,category:t.category,inputNames:(e.input||[]).map(o=>o.startsWith("^")?o.substr(1):o),inputs:[],children:[],inputParams:{},attrParams:{},rawAttrs:e.attr};return t.inputs!=null&&(n.inputParams=t.inputs.reduce((o,s)=>(o[s.name]={type:s.type,inputIndexStart:s.start,inputIndexEnd:s.end},o),{})),t.attrs!=null&&(n.attrParams=t.attrs.reduce((o,s)=>{let a=s.type,i;switch(s.type){case"string":i=Zx(e.attr,s.tfName,s.defaultValue),i===void 0&&!!s.tfDeprecatedName&&(i=Zx(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"string[]":i=oy(e.attr,s.tfName,s.defaultValue),i===void 0&&!!s.tfDeprecatedName&&(i=oy(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"number":i=Qx(e.attr,s.tfName,s.defaultValue||0),i===void 0&&!!s.tfDeprecatedName&&(i=Qx(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"number[]":i=ny(e.attr,s.tfName,s.defaultValue),i===void 0&&!!s.tfDeprecatedName&&(i=ny(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"bool":i=Jx(e.attr,s.tfName,s.defaultValue),i===void 0&&!!s.tfDeprecatedName&&(i=Jx(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"bool[]":i=iy(e.attr,s.tfName,s.defaultValue),i===void 0&&!!s.tfDeprecatedName&&(i=iy(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"shape":i=ry(e.attr,s.tfName,s.defaultValue),i===void 0&&!!s.tfDeprecatedName&&(i=ry(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"shape[]":i=sy(e.attr,s.tfName,s.defaultValue),i===void 0&&!!s.tfDeprecatedName&&(i=sy(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"dtype":i=ey(e.attr,s.tfName,s.defaultValue),i===void 0&&!!s.tfDeprecatedName&&(i=ey(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"dtype[]":i=ty(e.attr,s.tfName,s.defaultValue),i===void 0&&!!s.tfDeprecatedName&&(i=ty(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"func":i=tz(e.attr,s.tfName,s.defaultValue),i===void 0&&!!s.tfDeprecatedName&&(i=tz(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"tensor":case"tensors":break;default:throw new Error(`Unsupported param type: ${s.type} for op: ${e.op}`)}return o[s.name]={value:i,type:a},o},{})),n}mapFunction(e){let t=e.nodeDef,n=[],o=[],s={};t!=null&&(s=t.reduce((p,m)=>(p[m.name]=this.mapNode(m),m.op==="Const"&&o.push(p[m.name]),p),{}));let a=[],i=[];e.signature.inputArg.forEach(p=>{let[m]=Vs(p.name),f={name:m,op:"Placeholder",inputs:[],inputNames:[],category:"graph",inputParams:{},attrParams:{dtype:{value:zC(p.type),type:"dtype"}},children:[]};f.signatureKey=p.name,a.push(f),s[m]=f}),Object.keys(s).forEach(p=>{let m=s[p];m.inputNames.forEach(f=>{let[d]=Vs(f);m.inputs.push(s[d]),s[d].children.push(m)})});let u=e.ret;e.signature.outputArg.forEach(p=>{let[m,f]=Vs(u[p.name]),d=s[m];d!=null&&(d.defaultOutput=f,i.push(d))});let c=this.mapArgsToSignature(e);return{nodes:s,inputs:a,outputs:i,weights:o,placeholders:n,signature:c}}mapArgsToSignature(e){return{methodName:e.signature.name,inputs:e.signature.inputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n),t),{}),outputs:e.signature.outputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n,e.ret),t),{})}}mapArgToTensorInfo(e,t){let n=e.name;return t!=null&&(n=t[n]),{name:n,dtype:e.type}}};function Ste(r){let e=W().global;if(typeof e.atob!="undefined")return e.atob(r);if(typeof Buffer!="undefined")return new Buffer(r,"base64").toString();throw new Error("Unable to decode base64 in this environment. Missing built-in atob() or Buffer()")}function rz(r,e){let t=Array.isArray(r)?String.fromCharCode.apply(null,r):Ste(r);return e?t:t.toLowerCase()}function Zx(r,e,t,n=!1){let o=r[e];return o!=null?rz(o.s,n):t}function Jx(r,e,t){let n=r[e];return n?n.b:t}function Qx(r,e,t){let n=r[e]||{},o=n.i!=null?n.i:n.f!=null?n.f:t;return typeof o=="number"?o:parseInt(o,10)}function zC(r){switch(typeof r=="string"&&(r=es[r]),r){case es.DT_FLOAT:return"float32";case es.DT_INT32:case es.DT_INT64:case es.DT_INT8:case es.DT_UINT8:return"int32";case es.DT_BOOL:return"bool";case es.DT_DOUBLE:return"float32";case es.DT_STRING:return"string";default:return null}}function tz(r,e,t){let n=r[e];return n&&n.func?n.func.name:t}function ey(r,e,t){let n=r[e];return n&&n.type?zC(n.type):t}function ty(r,e,t){let n=r[e];return n&&n.list&&n.list.type?n.list.type.map(o=>zC(o)):t}function nz(r){if(!r.unknownRank)return r.dim!=null?r.dim.map(e=>typeof e.size=="number"?e.size:parseInt(e.size,10)):[]}function ry(r,e,t){let n=r[e];return n&&n.shape?nz(n.shape):t}function ny(r,e,t){let n=r[e];return n?((n.list.f&&n.list.f.length?n.list.f:n.list.i)||[]).map(o=>typeof o=="number"?o:parseInt(o,10)):t}function oy(r,e,t,n=!1){let o=r[e];return o&&o.list&&o.list.s?o.list.s.map(s=>rz(s,n)):t}function sy(r,e,t){let n=r[e];return n&&n.list&&n.list.shape?n.list.shape.map(o=>nz(o)):t}function iy(r,e,t){let n=r[e];return n&&n.list&&n.list.b?n.list.b:t}var BC=class{constructor(e,t,n){this.node=e,this.tensorMap=t,this.context=n,this.inputs=[],this.attrs={},this.inputs=e.inputNames.map(o=>this.getInput(o)),e.rawAttrs!=null&&(this.attrs=Object.keys(e.rawAttrs).reduce((o,s)=>(o[s]=this.getAttr(s),o),{}))}getInput(e){return xr(e,this.tensorMap,this.context)}getAttr(e,t){let n=this.node.rawAttrs[e];if(n.tensor!=null)return xr(e,this.tensorMap,this.context);if(n.i!=null||n.f!=null)return Qx(this.node.rawAttrs,e,t);if(n.s!=null)return Zx(this.node.rawAttrs,e,t);if(n.b!=null)return Jx(this.node.rawAttrs,e,t);if(n.shape!=null)return ry(this.node.rawAttrs,e,t);if(n.type!=null)return ey(this.node.rawAttrs,e,t);if(n.list!=null){if(n.list.i!=null||n.list.f!=null)return ny(this.node.rawAttrs,e,t);if(n.list.s!=null)return oy(this.node.rawAttrs,e,t);if(n.list.shape!=null)return sy(this.node.rawAttrs,e,t);if(n.list.b!=null)return iy(this.node.rawAttrs,e,t);if(n.list.type!=null)return ty(this.node.rawAttrs,e,t)}return t}};var oz=(r,e,t)=>{switch(r.op){case"BiasAdd":case"AddV2":case"Add":return[Q(C("a",r,e,t),C("b",r,e,t))];case"AddN":return[xw(C("tensors",r,e,t))];case"FloorMod":case"Mod":return[Km(C("a",r,e,t),C("b",r,e,t))];case"Mul":return[M(C("a",r,e,t),C("b",r,e,t))];case"RealDiv":case"Div":return[de(C("a",r,e,t),C("b",r,e,t))];case"DivNoNan":return[Bm(C("a",r,e,t),C("b",r,e,t))];case"FloorDiv":return[bu(C("a",r,e,t),C("b",r,e,t))];case"Sub":return[ue(C("a",r,e,t),C("b",r,e,t))];case"Minimum":return[Ts(C("a",r,e,t),C("b",r,e,t))];case"Maximum":return[Hr(C("a",r,e,t),C("b",r,e,t))];case"Pow":return[Fr(C("a",r,e,t),C("b",r,e,t))];case"SquaredDifference":return[Bu(C("a",r,e,t),C("b",r,e,t))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};var sz=(r,e,t)=>{switch(r.op){case"Abs":case"ComplexAbs":return[Et(C("x",r,e,t))];case"Acos":return[Sm(C("x",r,e,t))];case"Acosh":return[Tm(C("x",r,e,t))];case"Asin":return[Am(C("x",r,e,t))];case"Asinh":return[Dm(C("x",r,e,t))];case"Atan":return[$m(C("x",r,e,t))];case"Atan2":return[Rm(C("x",r,e,t),C("y",r,e,t))];case"Atanh":return[Fm(C("x",r,e,t))];case"Ceil":return[Pm(C("x",r,e,t))];case"Complex":return[bn(C("real",r,e,t),C("imag",r,e,t))];case"Cos":return[Ia(C("x",r,e,t))];case"Cosh":return[Iu(C("x",r,e,t))];case"Elu":return[Is(C("x",r,e,t))];case"Erf":return[Vm(C("x",r,e,t))];case"Exp":return[Yt(C("x",r,e,t))];case"Expm1":return[Gm(C("x",r,e,t))];case"Floor":return[Ns(C("x",r,e,t))];case"Log":return[ar(C("x",r,e,t))];case"Log1p":return[Eu(C("x",r,e,t))];case"Imag":return[Su(C("x",r,e,t))];case"Neg":return[Ue(C("x",r,e,t))];case"Reciprocal":return[Xm(C("x",r,e,t))];case"Real":return[ul(C("x",r,e,t))];case"Relu":return[Nr(C("x",r,e,t))];case"Round":return[Ym(C("x",r,e,t))];case"Selu":return[Pu(C("x",r,e,t))];case"Sigmoid":return[Wr(C("x",r,e,t))];case"Sin":return[Mu(C("x",r,e,t))];case"Sign":return[Jm(C("x",r,e,t))];case"Sinh":return[Lu(C("x",r,e,t))];case"Softplus":return[Ss(C("x",r,e,t))];case"Sqrt":return[yt(C("x",r,e,t))];case"Square":return[Pe(C("x",r,e,t))];case"Tanh":return[Li(C("x",r,e,t))];case"Tan":return[rf(C("x",r,e,t))];case"ClipByValue":return[sr(C("x",r,e,t),C("clipValueMin",r,e,t),C("clipValueMax",r,e,t))];case"Relu6":return[Fu(C("x",r,e,t))];case"Rsqrt":return[Ou(xr(r.inputNames[0],e,t))];case"Prod":return[$u(C("x",r,e,t),C("axes",r,e,t))];case"LeakyRelu":return[Sa(C("x",r,e,t),C("alpha",r,e,t))];case"Prelu":return[Da(C("x",r,e,t),C("alpha",r,e,t))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};function Nn(r,e,t=""){y.assert(Tte(r,e),()=>t+` Shapes ${r} and ${e} must match`)}function Tte(r,e){if(r.length!==e.length)return!1;for(let t=0;t<r.length;t++)if(r[t]!==-1&&e[t]!==-1&&r[t]!==e[t])return!1;return!0}var VC=class{constructor(e,t,n,o,s,a,i){this.name=e,this.dtype=t,this.maxSize=n,this.elementShape=o,this.identicalElementShapes=s,this.dynamicSize=a,this.clearAfterRead=i,this.tensors=[],this.closed_=!1,this.idTensor=le(0),Dt(this.idTensor)}get id(){return this.idTensor.id}get closed(){return this.closed_}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.tensor.id))&&t.tensor.dispose()}),this.tensors=[],this.closed_=!0,this.idTensor.dispose()}size(){return this.tensors.length}read(e){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||e>=this.size())throw new Error(`Tried to read from index ${e}, but array size is: ${this.size()}`);let t=this.tensors[e];if(t.cleared)throw new Error(`TensorArray ${this.name}: Could not read index ${e} twice because it was cleared after a previous read (perhaps try setting clear_after_read = false?).`);return this.clearAfterRead&&(t.cleared=!0),t.read=!0,t.tensor}readMany(e){return e.map(t=>this.read(t))}write(e,t){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||!this.dynamicSize&&e>=this.maxSize)throw new Error(`Tried to write to index ${e}, but array is not resizeable and size is: ${this.maxSize}`);let n=this.tensors[e]||{};if(t.dtype!==this.dtype)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e},
because the value dtype is ${t.dtype}, but TensorArray dtype is ${this.dtype}.`);if(this.size()===0&&(this.elementShape==null||this.elementShape.length===0)&&(this.elementShape=t.shape),Nn(this.elementShape,t.shape,`TensorArray ${this.name}: Could not write to TensorArray index ${e}.`),n.read)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been read.`);if(n.written)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been written.`);n.tensor=t,Dt(t),n.written=!0,this.tensors[e]=n}writeMany(e,t){if(e.length!==t.length)throw new Error(`TensorArray ${this.name}: could not write multiple tensors,because the index size: ${e.length} is not the same as tensors size: ${t.length}.`);e.forEach((n,o)=>this.write(n,t[o]))}gather(e,t){if(!!t&&t!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but gather requested dtype ${t}`);if(e)e=e.slice(0,this.size());else{e=[];for(let o=0;o<this.size();o++)e.push(o)}if(e.length===0)return $r([],[0].concat(this.elementShape));let n=this.readMany(e);return Nn(this.elementShape,n[0].shape,"TensorArray shape mismatch: "),Vt(n,0)}concat(e){if(!!e&&e!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but concat requested dtype ${e}`);if(this.size()===0)return $r([],[0].concat(this.elementShape));let t=[];for(let o=0;o<this.size();o++)t.push(o);let n=this.readMany(t);return Nn(this.elementShape,n[0].shape,`TensorArray shape mismatch: tensor array shape (${this.elementShape}) vs first tensor shape (${n[0].shape})`),Qe(n,0)}scatter(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);if(e.length!==t.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${e.length} vs. ${t.shape[0]}`);let n=Math.max(...e);if(!this.dynamicSize&&n>=this.maxSize)throw new Error(`Max index must be < array size (${n} vs. ${this.maxSize})`);this.writeMany(e,cr(t,0))}split(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);let n=0,o=e.map(l=>(n+=l,n));if(n!==t.shape[0])throw new Error(`Expected sum of lengths to be equal to
tensor.shape[0], but sum of lengths is
${n}, and tensor's shape is: ${t.shape}`);if(!this.dynamicSize&&e.length!==this.maxSize)throw new Error(`TensorArray's size is not equal to the size of lengths (${this.maxSize} vs. ${e.length}), and the TensorArray is not marked as dynamically resizeable`);let s=n===0?0:t.size/n,a=[];V(()=>{t=z(t,[1,n,s]);for(let l=0;l<e.length;++l){let u=l===0?0:o[l-1],c=[0,u,0],p=[1,e[l],s];a[l]=z(Fe(t,c,p),this.elementShape)}return a});let i=[];for(let l=0;l<e.length;l++)i[l]=l;this.writeMany(i,a)}};var hc=class{constructor(e,t,n,o=-1){this.tensors=e,this.elementShape=t,this.elementDtype=n,e!=null&&e.forEach(s=>{if(n!==s.dtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${s.dtype}`);Nn(t,s.shape,"TensorList shape mismatch: "),Dt(s)}),this.idTensor=le(0),this.maxNumElements=o,Dt(this.idTensor)}get id(){return this.idTensor.id}copy(){return new hc([...this.tensors],this.elementShape,this.elementDtype)}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.id))&&t.dispose()}),this.tensors.length=0,this.idTensor.dispose()}size(){return this.tensors.length}stack(e,t,n=-1){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(n!==-1&&this.tensors.length!==n)throw new Error(`Operation expected a list with ${n} elements but got a list with ${this.tensors.length} elements.`);return Nn(e,this.elementShape,"TensorList shape mismatch: "),V(()=>{let o=this.tensors.map(s=>z(s,e));return Vt(o,0)})}popBack(e,t){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(this.size()===0)throw new Error("Trying to pop from an empty list.");let n=this.tensors.pop();return Nn(n.shape,e,"TensorList shape mismatch: "),z(n,e)}pushBack(e){if(e.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${this.elementDtype}`);if(Nn(e.shape,this.elementShape,"TensorList shape mismatch: "),this.maxNumElements===this.size())throw new Error("Trying to push element into a full list.");Dt(e),this.tensors.push(e)}resize(e){if(e<0)throw new Error(`TensorListResize expects size to be non-negative. Got: ${e}`);if(this.maxNumElements!==-1&&e>this.maxNumElements)throw new Error(`TensorListResize input size ${e} is greater maxNumElement ${this.maxNumElements}.`);this.tensors.length=e}getItem(e,t,n){if(n!==this.elementDtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${this.elementDtype}`);if(e<0||e>this.tensors.length)throw new Error(`Trying to access element ${e} in a list with ${this.tensors.length} elements.`);if(this.tensors[e]==null)throw new Error(`element at index ${e} is null.`);return Nn(this.tensors[e].shape,t,"TensorList shape mismatch: "),this.tensors[e]}setItem(e,t){if(t.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t.dtype}, but list elements ${this.elementDtype}`);if(e<0||this.maxNumElements!==-1&&e>=this.maxNumElements)throw new Error(`Trying to set element ${e} in a list with max ${this.maxNumElements} elements.`);Nn(this.elementShape,t.shape,"TensorList shape mismatch: "),Dt(t),this.tensors[e]=t}gather(e,t,n){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);return Nn(this.elementShape,n,"TensorList shape mismatch: "),e=e.slice(0,this.size()),e.length===0?$r([],[0].concat(this.elementShape)):V(()=>{let o=e.map(s=>z(this.tensors[s],n));return Vt(o,0)})}concat(e,t){if(!!e&&e!==this.elementDtype)throw new Error(`TensorList dtype is ${this.elementDtype} but concat requested dtype ${e}`);return Nn(this.elementShape,t,"TensorList shape mismatch: "),this.size()===0?$r([],[0].concat(this.elementShape)):V(()=>{let n=this.tensors.map(o=>z(o,t));return Qe(n,0)})}};function iz(r,e,t){let n=r.dtype;if(r.shape.length<1)throw new Error(`Tensor must be at least a vector, but saw shape: ${r.shape}`);if(r.dtype!==t)throw new Error(`Invalid data types; op elements ${r.dtype}, but list elements ${t}`);let o=r.shape.slice(1);Nn(o,e,"TensorList shape mismatch: ");let s=cr(r);return new hc(s,e,n)}function az(r,e,t){return new hc([],r,e,t)}function lz(r,e,t,n){if(e.length!==r.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${e.length} vs. ${r.shape[0]}`);let o=Math.max(...e);if(n!=null&&n!==-1&&o>=n)throw new Error(`Max index must be < array size (${o} vs. ${n})`);let s=new hc([],t,r.dtype,n),a=cr(r,0);return e.forEach((i,l)=>{s.setItem(i,a[l])}),s}function uz(r,e,t){let n=0,o=e.map(l=>(n+=l,n));if(n!==r.shape[0])throw new Error(`Expected sum of lengths to be equal to
tensor.shape[0], but sum of lengths is
${n}, and tensor's shape is: ${r.shape}`);let s=n===0?0:r.size/n,a=V(()=>{let l=[];r=z(r,[1,n,s]);for(let u=0;u<e.length;++u){let c=u===0?0:o[u-1],p=[0,c,0],m=[1,e[u],s];l[u]=z(Fe(r,p,m),t)}return r.dispose(),l}),i=new hc([],t,r.dtype,e.length);for(let l=0;l<a.length;l++)i.setItem(l,a[l]);return i}var cz=async(r,e,t)=>{switch(r.op){case"If":case"StatelessIf":{let n=C("thenBranch",r,e,t),o=C("elseBranch",r,e,t),s=C("cond",r,e,t),a=C("args",r,e,t);return(await s.data())[0]?t.functionMap[n].executeFunctionAsync(a,t.tensorArrayMap,t.tensorListMap):t.functionMap[o].executeFunctionAsync(a,t.tensorArrayMap,t.tensorListMap)}case"While":case"StatelessWhile":{let n=C("body",r,e,t),o=C("cond",r,e,t),s=C("args",r,e,t),a=await t.functionMap[o].executeFunctionAsync(s,t.tensorArrayMap,t.tensorListMap),i=s.map(c=>c.id),l=await a[0].data();a.forEach(c=>{!c.kept&&i.indexOf(c.id)===-1&&c.dispose()});let u=s;for(;l[0];){let c=u;u=await t.functionMap[n].executeFunctionAsync(u,t.tensorArrayMap,t.tensorListMap);let p=u.map(f=>f.id);c.forEach(f=>{!f.kept&&i.indexOf(f.id)===-1&&p.indexOf(f.id)===-1&&f.dispose()});let m=await t.functionMap[o].executeFunctionAsync(u,t.tensorArrayMap,t.tensorListMap);l=await m[0].data(),m.forEach(f=>{!f.kept&&i.indexOf(f.id)===-1&&p.indexOf(f.id)===-1&&f.dispose()})}return u}case"LoopCond":{let n=C("pred",r,e,t);return[Gs(n)]}case"Switch":{let n=C("pred",r,e,t),o=C("data",r,e,t);return o.kept||(o=Gs(o)),(await n.data())[0]?[void 0,o]:[o,void 0]}case"Merge":{let n=r.inputNames.find(o=>xr(o,e,t)!==void 0);if(n){let o=xr(n,e,t);return[Gs(o)]}return}case"Enter":{let n=C("frameName",r,e,t),o=C("tensor",r,e,t);return t.enterFrame(n),[Gs(o)]}case"Exit":{let n=C("tensor",r,e,t);return t.exitFrame(),[Gs(n)]}case"NextIteration":{let n=C("tensor",r,e,t);return t.nextIteration(),[Gs(n)]}case"TensorArrayV3":{let n=C("size",r,e,t),o=C("dtype",r,e,t),s=C("elementShape",r,e,t),a=C("dynamicSize",r,e,t),i=C("clearAfterRead",r,e,t),l=C("identicalElementShapes",r,e,t),u=C("name",r,e,t),c=new VC(u,o,n,s,l,a,i);return t.addTensorArray(c),[c.idTensor,le(1)]}case"TensorArrayWriteV3":{let n=C("tensorArrayId",r,e,t),o=C("index",r,e,t),s=C("tensor",r,e,t),a=t.getTensorArray(n.id);return a.write(o,s),[a.idTensor]}case"TensorArrayReadV3":{let n=C("tensorArrayId",r,e,t),o=C("index",r,e,t);return[t.getTensorArray(n.id).read(o)]}case"TensorArrayGatherV3":{let n=C("tensorArrayId",r,e,t),o=C("indices",r,e,t),s=C("dtype",r,e,t);return[t.getTensorArray(n.id).gather(o,s)]}case"TensorArrayScatterV3":{let n=C("tensorArrayId",r,e,t),o=C("indices",r,e,t),s=C("tensor",r,e,t),a=t.getTensorArray(n.id);return a.scatter(o,s),[a.idTensor]}case"TensorArrayConcatV3":{let n=C("tensorArrayId",r,e,t),o=t.getTensorArray(n.id),s=C("dtype",r,e,t);return[o.concat(s)]}case"TensorArraySplitV3":{let n=C("tensorArrayId",r,e,t),o=C("tensor",r,e,t),s=C("lengths",r,e,t),a=t.getTensorArray(n.id);return a.split(s,o),[a.idTensor]}case"TensorArraySizeV3":{let n=C("tensorArrayId",r,e,t),o=t.getTensorArray(n.id);return[le(o.size(),"int32")]}case"TensorArrayCloseV3":{let n=C("tensorArrayId",r,e,t),o=t.getTensorArray(n.id);return o.clearAndClose(),[o.idTensor]}case"TensorListSetItem":{let n=C("tensorListId",r,e,t),o=C("index",r,e,t),s=C("tensor",r,e,t),a=t.getTensorList(n.id);return a.setItem(o,s),[a.idTensor]}case"TensorListGetItem":{let n=C("tensorListId",r,e,t),o=C("index",r,e,t),s=C("elementShape",r,e,t),a=C("elementDType",r,e,t);return[t.getTensorList(n.id).getItem(o,s,a)]}case"TensorListScatterV2":case"TensorListScatter":{let n=C("indices",r,e,t),o=C("tensor",r,e,t),s=C("elementShape",r,e,t),a=C("numElements",r,e,t),i=lz(o,n,s,a);return t.addTensorList(i),[i.idTensor]}case"TensorListReserve":case"EmptyTensorList":{let n=C("elementShape",r,e,t),o=C("elementDType",r,e,t),s;r.op==="TensorListReserve"?s="numElements":s="maxNumElements";let a=C(s,r,e,t),i=az(n,o,a);return t.addTensorList(i),[i.idTensor]}case"TensorListGather":{let n=C("tensorListId",r,e,t),o=C("indices",r,e,t),s=C("elementShape",r,e,t),a=C("elementDType",r,e,t);return[t.getTensorList(n.id).gather(o,a,s)]}case"TensorListStack":{let n=C("tensorListId",r,e,t),o=C("elementShape",r,e,t),s=C("elementDType",r,e,t),a=C("numElements",r,e,t);return[t.getTensorList(n.id).stack(o,s,a)]}case"TensorListFromTensor":{let n=C("tensor",r,e,t),o=C("elementShape",r,e,t),s=C("elementDType",r,e,t),a=iz(n,o,s);return t.addTensorList(a),[a.idTensor]}case"TensorListConcat":{let n=C("tensorListId",r,e,t),o=t.getTensorList(n.id),s=C("dtype",r,e,t),a=C("elementShape",r,e,t);return[o.concat(s,a)]}case"TensorListPushBack":{let n=C("tensorListId",r,e,t),o=C("tensor",r,e,t),s=t.getTensorList(n.id);return s.pushBack(o),[s.idTensor]}case"TensorListPopBack":{let n=C("tensorListId",r,e,t),o=C("elementShape",r,e,t),s=C("elementDType",r,e,t);return[t.getTensorList(n.id).popBack(o,s)]}case"TensorListSplit":{let n=C("tensor",r,e,t),o=C("elementShape",r,e,t),s=C("lengths",r,e,t),a=uz(n,s,o);return t.addTensorList(a),[a.idTensor]}default:throw TypeError(`Node type ${r.op} is not implemented`)}};function pz(r,e,t){let[n,o]=C("fusedOps",r,e,t),s=n==="biasadd",a=o==="prelu",i=n==="fusedbatchnorm",l=C("numArgs",r,e,t);if(s){if(a&&l!==2)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!a&&l!==1)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd must have one extra argument: bias.")}if(i)throw new Error("FusedConv2d and DepthwiseConv2d with FusedBatchNorm is not supported.");let u=C("strides",r,e,t),c=uh(r,e,t),p=C("dataFormat",r,e,t).toUpperCase(),m=C("dilations",r,e,t),[f,d]=C("args",r,e,t),h=C("leakyreluAlpha",r,e,t);return{stride:u,pad:c,dataFormat:p,dilations:m,biasArg:f,preluArg:d,activationFunc:o,leakyreluAlpha:h}}var mz=(r,e,t)=>{switch(r.op){case"Conv1D":{let n=C("stride",r,e,t),o=C("pad",r,e,t),s=C("dataFormat",r,e,t).toUpperCase(),a=C("dilation",r,e,t);return[vu(C("x",r,e,t),C("filter",r,e,t),n,o,s,a)]}case"Conv2D":{let n=C("strides",r,e,t),o=uh(r,e,t),s=C("dataFormat",r,e,t).toUpperCase(),a=C("dilations",r,e,t);return[Ur(C("x",r,e,t),C("filter",r,e,t),[n[1],n[2]],o,s,[a[1],a[2]])]}case"_FusedConv2D":{let{stride:n,pad:o,dataFormat:s,dilations:a,biasArg:i,preluArg:l,activationFunc:u,leakyreluAlpha:c}=pz(r,e,t);return[zo.conv2d({x:C("x",r,e,t),filter:C("filter",r,e,t),strides:[n[1],n[2]],pad:o,dataFormat:s,dilations:[a[1],a[2]],bias:i,activation:u,preluActivationWeights:l,leakyreluAlpha:c})]}case"FusedDepthwiseConv2dNative":{let{stride:n,pad:o,dataFormat:s,dilations:a,biasArg:i,preluArg:l,activationFunc:u,leakyreluAlpha:c}=pz(r,e,t);return[zo.depthwiseConv2d({x:C("x",r,e,t),filter:C("filter",r,e,t),strides:[n[1],n[2]],pad:o,dataFormat:s,dilations:[a[1],a[2]],bias:i,activation:u,preluActivationWeights:l,leakyreluAlpha:c})]}case"Conv2DBackpropInput":case"Conv2dTranspose":{let n=C("outputShape",r,e,t),o=C("strides",r,e,t),s=uh(r,e,t);return[Cu(C("x",r,e,t),C("filter",r,e,t),n,[o[1],o[2]],s)]}case"DepthwiseConv2dNative":case"DepthwiseConv2d":{let n=C("strides",r,e,t),o=uh(r,e,t),s=C("dilations",r,e,t),a=C("dataFormat",r,e,t).toUpperCase();return[Cs(C("input",r,e,t),C("filter",r,e,t),[n[1],n[2]],o,a,[s[1],s[2]])]}case"Conv3D":{let n=C("strides",r,e,t),o=C("pad",r,e,t),s=C("dataFormat",r,e,t).toUpperCase(),a=C("dilations",r,e,t);return[Mm(C("x",r,e,t),C("filter",r,e,t),[n[1],n[2],n[3]],o,s,[a[1],a[2],a[3]])]}case"AvgPool":{let n=C("strides",r,e,t),o=C("pad",r,e,t),s=C("kernelSize",r,e,t);return[va(C("x",r,e,t),[s[1],s[2]],[n[1],n[2]],o)]}case"MaxPool":{let n=C("strides",r,e,t),o=C("pad",r,e,t),s=C("kernelSize",r,e,t);return[Ea(C("x",r,e,t),[s[1],s[2]],[n[1],n[2]],o)]}case"MaxPoolWithArgmax":{let n=C("strides",r,e,t),o=C("pad",r,e,t),s=C("kernelSize",r,e,t),a=C("includeBatchInIndex",r,e,t),{result:i,indexes:l}=Bw(C("x",r,e,t),[s[1],s[2]],[n[1],n[2]],o,a);return[i,l]}case"AvgPool3D":{let n=C("strides",r,e,t),o=C("pad",r,e,t),s=C("kernelSize",r,e,t);return[Om(C("x",r,e,t),[s[1],s[2],s[3]],[n[1],n[2],n[3]],o)]}case"MaxPool3D":{let n=C("strides",r,e,t),o=C("pad",r,e,t),s=C("kernelSize",r,e,t);return[qm(C("x",r,e,t),[s[1],s[2],s[3]],[n[1],n[2],n[3]],o)]}case"Dilation2D":{let n=C("strides",r,e,t),o=C("pad",r,e,t),s=C("dilations",r,e,t),a=n[1],i=n[2],l=s[1],u=s[2];return[zm(C("x",r,e,t),C("filter",r,e,t),[a,i],o,[l,u],"NHWC")]}default:throw TypeError(`Node type ${r.op} is not implemented`)}};var fz=(r,e,t)=>{switch(r.op){case"Fill":{let n=C("shape",r,e,t),o=C("dtype",r,e,t),s=C("value",r,e,t);return[Na(n,s,o)]}case"LinSpace":{let n=C("start",r,e,t),o=C("stop",r,e,t),s=C("num",r,e,t);return[Fw(n,o,s)]}case"Multinomial":{let n=C("logits",r,e,t),o=C("numSamples",r,e,t),s=C("seed",r,e,t);return[Vw(n,o,s)]}case"OneHot":{let n=C("indices",r,e,t),o=C("depth",r,e,t),s=C("onValue",r,e,t),a=C("offValue",r,e,t);return[ks(n,o,s,a)]}case"Ones":return[Ir(C("shape",r,e,t),C("dtype",r,e,t))];case"OnesLike":return[tr(C("x",r,e,t))];case"RandomUniform":return[Es(C("shape",r,e,t),C("minval",r,e,t),C("maxval",r,e,t),C("dtype",r,e,t))];case"Range":{let n=C("start",r,e,t),o=C("stop",r,e,t),s=C("step",r,e,t);return[Jc(n,o,s,C("dtype",r,e,t))]}case"TruncatedNormal":{let n=C("shape",r,e,t),o=C("mean",r,e,t),s=C("stdDev",r,e,t),a=C("seed",r,e,t);return[Vu(n,o,s,C("dtype",r,e,t),a)]}case"Zeros":return[xt(C("shape",r,e,t),C("dtype",r,e,t))];case"ZerosLike":return[Ie(C("x",r,e,t))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};function GC(r,e,t){let n=C("boxes",r,e,t),o=C("scores",r,e,t),s=C("maxOutputSize",r,e,t),a=C("iouThreshold",r,e,t),i=C("scoreThreshold",r,e,t),l=C("softNmsSigma",r,e,t);return{boxes:n,scores:o,maxOutputSize:s,iouThreshold:a,scoreThreshold:i,softNmsSigma:l}}var dz=async(r,e,t)=>{switch(r.op){case"NonMaxSuppressionV5":{let{boxes:n,scores:o,maxOutputSize:s,iouThreshold:a,scoreThreshold:i,softNmsSigma:l}=GC(r,e,t),u=await Ds.nonMaxSuppressionWithScoreAsync(n,o,s,a,i,l);return[u.selectedIndices,u.selectedScores]}case"NonMaxSuppressionV4":{let{boxes:n,scores:o,maxOutputSize:s,iouThreshold:a,scoreThreshold:i}=GC(r,e,t),l=C("padToMaxOutputSize",r,e,t),u=await Ds.nonMaxSuppressionPaddedAsync(n,o,s,a,i,l);return[u.selectedIndices,u.validOutputs]}case"NonMaxSuppressionV3":case"NonMaxSuppressionV2":{let{boxes:n,scores:o,maxOutputSize:s,iouThreshold:a,scoreThreshold:i}=GC(r,e,t);return[await Ds.nonMaxSuppressionAsync(n,o,s,a,i)]}case"Where":{let n=ne(C("condition",r,e,t),"bool"),o=[await sf(n)];return n.dispose(),o}case"ListDiff":return Zw(C("x",r,e,t),C("y",r,e,t));default:throw TypeError(`Node type ${r.op} is not implemented`)}};var hz=(r,e,t)=>{switch(r.op){case"TopKV2":{let n=C("x",r,e,t),o=C("k",r,e,t),s=C("sorted",r,e,t),a=nf(n,o,s);return[a.values,a.indices]}case"Unique":{let n=C("x",r,e,t),o=ep(n);return[o.values,o.indices]}case"UniqueV2":{let n=C("x",r,e,t),o=C("axis",r,e,t),s=ep(n,o);return[s.values,s.indices]}default:throw TypeError(`Node type ${r.op} is not implemented`)}};var gz=(r,e,t)=>{switch(r.op){case"Const":return e[r.name];case"PlaceholderWithDefault":let n=C("default",r,e,t);return[xr(r.name,e,t)||n];case"Placeholder":return[xr(r.name,e,t)];case"Identity":case"StopGradient":case"FakeQuantWithMinMaxVars":{let u=C("x",r,e,t);return[Gs(u)]}case"IdentityN":return C("x",r,e,t).map(u=>Gs(u));case"Snapshot":let o=C("x",r,e,t);return[Gs(o)];case"Shape":return[Gt(C("x",r,e,t).shape,"int32")];case"ShapeN":return C("x",r,e,t).map(u=>Gt(u.shape));case"Size":return[le(C("x",r,e,t).size,"int32")];case"Rank":return[le(C("x",r,e,t).rank,"int32")];case"NoOp":return[le(1)];case"Print":let s=C("x",r,e,t),a=C("data",r,e,t),i=C("message",r,e,t),l=C("summarize",r,e,t);console.warn("The graph has a tf.print() operation,usually used for debugging, which slows down performance."),console.log(i);for(let u=0;u<a.length;u++)console.log(Array.prototype.slice.call(a[u].dataSync()).slice(0,l));return[s];default:throw TypeError(`Node type ${r.op} is not implemented`)}};var jC=class{constructor(e,t){this.keyDType=e,this.valueDType=t,this.handle=le(0),this.tensorMap=new Map,Dt(this.handle)}get id(){return this.handle.id}clearAndClose(){this.tensorMap.forEach(e=>e.dispose()),this.tensorMap.clear(),this.handle.dispose()}size(){return this.tensorMap.size}async import(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return this.tensorMap.forEach(o=>o.dispose()),this.tensorMap.clear(),V(()=>{let o=cr(t),s=n.length,a=o.length;y.assert(s===a,()=>`The number of elements doesn't match, keys has ${s} elements, the values has ${a} elements.`);for(let i=0;i<s;i++){let l=n[i],u=o[i];Dt(u),this.tensorMap.set(l,u)}return this.handle})}async find(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return V(()=>{let o=[];for(let s=0;s<n.length;s++){let a=n[s],i=this.findWithDefault(a,t);o.push(i)}return Vt(o)})}findWithDefault(e,t){let n=this.tensorMap.get(e);return n!=null?n:t}checkKeyAndValueTensor(e,t){if(e.dtype!==this.keyDType)throw new Error(`Expect key dtype ${this.keyDType}, but got ${e.dtype}`);if(t.dtype!==this.valueDType)throw new Error(`Expect value dtype ${this.valueDType}, but got ${t.dtype}`)}};var xz=async(r,e,t,n)=>{switch(r.op){case"HashTable":case"HashTableV2":{let o=C("keyDType",r,e,t),s=C("valueDType",r,e,t),a=new jC(o,s);return n.addHashTable(r.name,a),[a.handle]}case"LookupTableImport":case"LookupTableImportV2":{let o=C("tableHandle",r,e,t,n),s=C("keys",r,e,t),a=C("values",r,e,t);return[await n.getHashTableById(o.id).import(s,a)]}case"LookupTableFind":case"LookupTableFindV2":{let o=C("tableHandle",r,e,t,n),s=C("keys",r,e,t),a=C("defaultValue",r,e,t);return[await n.getHashTableById(o.id).find(s,a)]}default:throw TypeError(`Node type ${r.op} is not implemented`)}};var yz=(r,e,t)=>{switch(r.op){case"ResizeBilinear":{let n=C("images",r,e,t),o=C("size",r,e,t),s=C("alignCorners",r,e,t),a=C("halfPixelCenters",r,e,t);return[Ds.resizeBilinear(n,[o[0],o[1]],s,a)]}case"ResizeNearestNeighbor":{let n=C("images",r,e,t),o=C("size",r,e,t),s=C("alignCorners",r,e,t),a=C("halfPixelCenters",r,e,t);return[Ds.resizeNearestNeighbor(n,[o[0],o[1]],s,a)]}case"CropAndResize":{let n=C("image",r,e,t),o=C("boxes",r,e,t),s=C("boxInd",r,e,t),a=C("cropSize",r,e,t),i=C("method",r,e,t),l=C("extrapolationValue",r,e,t);return[Ds.cropAndResize(n,o,s,a,i,l)]}default:throw TypeError(`Node type ${r.op} is not implemented`)}};var bz=(r,e,t)=>{switch(r.op){case"Equal":return[wn(C("a",r,e,t),C("b",r,e,t))];case"NotEqual":return[Lo(C("a",r,e,t),C("b",r,e,t))];case"Greater":return[er(C("a",r,e,t),C("b",r,e,t))];case"GreaterEqual":return[tn(C("a",r,e,t),C("b",r,e,t))];case"Less":return[Tu(C("a",r,e,t),C("b",r,e,t))];case"LessEqual":return[Pn(C("a",r,e,t),C("b",r,e,t))];case"LogicalAnd":return[dr(C("a",r,e,t),C("b",r,e,t))];case"LogicalNot":return[Ta(C("a",r,e,t))];case"LogicalOr":return[Du(C("a",r,e,t),C("b",r,e,t))];case"Select":case"SelectV2":return[$t(C("condition",r,e,t),C("a",r,e,t),C("b",r,e,t))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};var wz=(r,e,t)=>{switch(r.op){case"BatchMatMul":case"BatchMatMulV2":case"MatMul":return[je(C("a",r,e,t),C("b",r,e,t),C("transposeA",r,e,t),C("transposeB",r,e,t))];case"Transpose":return[We(C("x",r,e,t),C("perm",r,e,t))];case"_FusedMatMul":let[n,o]=C("fusedOps",r,e,t),s=n==="biasadd",a=o==="prelu",i=C("numArgs",r,e,t),l=C("leakyreluAlpha",r,e,t);if(s){if(a&&i!==2)throw new Error("Fused MatMul with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!a&&i!==1)throw new Error("Fused MatMul with BiasAdd must have one extra argument: bias.")}let[u,c]=C("args",r,e,t);return[zo.matMul({a:C("a",r,e,t),b:C("b",r,e,t),transposeA:C("transposeA",r,e,t),transposeB:C("transposeB",r,e,t),bias:u,activation:o,preluActivationWeights:c,leakyreluAlpha:l})];default:throw TypeError(`Node type ${r.op} is not implemented`)}};var _z=(r,e,t)=>{switch(r.op){case"FusedBatchNorm":case"FusedBatchNormV2":return[Oo(C("x",r,e,t),C("mean",r,e,t),C("variance",r,e,t),C("offset",r,e,t),C("scale",r,e,t),C("epsilon",r,e,t))];case"FusedBatchNormV3":return[Oo(C("x",r,e,t),C("mean",r,e,t),C("variance",r,e,t),C("offset",r,e,t),C("scale",r,e,t),C("epsilon",r,e,t))];case"LRN":return[jm(C("x",r,e,t),C("radius",r,e,t),C("bias",r,e,t),C("alpha",r,e,t),C("beta",r,e,t))];case"Softmax":return[$a(C("x",r,e,t))];case"LogSoftmax":return[Au(C("x",r,e,t))];case"SparseToDense":return[af(C("sparseIndices",r,e,t),C("outputShape",r,e,t),C("sparseValues",r,e,t),C("defaultValue",r,e,t))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};var kz=(r,e,t)=>{switch(r.op){case"Max":{let a=C("axis",r,e,t),i=C("keepDims",r,e,t);return[lr(C("x",r,e,t),a,i)]}case"Mean":{let a=C("axis",r,e,t),i=C("keepDims",r,e,t);return[gt(C("x",r,e,t),a,i)]}case"Min":{let a=C("axis",r,e,t),i=C("keepDims",r,e,t);return[zi(C("x",r,e,t),a,i)]}case"Sum":{let a=C("axis",r,e,t),i=C("keepDims",r,e,t);return[ye(C("x",r,e,t),a,i)]}case"All":{let a=C("axis",r,e,t),i=C("keepDims",r,e,t);return[wu(C("x",r,e,t),a,i)]}case"Any":{let a=C("axis",r,e,t),i=C("keepDims",r,e,t);return[il(C("x",r,e,t),a,i)]}case"ArgMax":{let a=C("axis",r,e,t);return[al(C("x",r,e,t),a)]}case"ArgMin":{let a=C("axis",r,e,t);return[Em(C("x",r,e,t),a)]}case"Prod":{let a=C("axis",r,e,t),i=C("keepDims",r,e,t);return[$u(C("x",r,e,t),a,i)]}case"Cumsum":{let a=C("axis",r,e,t),i=C("exclusive",r,e,t),l=C("reverse",r,e,t);return[Nu(C("x",r,e,t),a,i,l)]}case"Bincount":let n=C("x",r,e,t),o=C("weights",r,e,t),s=C("size",r,e,t);return[Cw(n,o,s)];case"DenseBincount":{let a=C("x",r,e,t),i=C("weights",r,e,t),l=C("size",r,e,t),u=C("binaryOutput",r,e,t);return[Ew(a,i,l,u)]}default:throw TypeError(`Node type ${r.op} is not implemented`)}};var vz=(r,e,t)=>{switch(r.op){case"ConcatV2":case"Concat":{let n=C("n",r,e,t),o=C("axis",r,e,t),s=C("tensors",r,e,t);return s=s.slice(0,n),[Qe(s,o)]}case"Gather":{let n=C("x",r,e,t),o=C("indices",r,e,t);return[Po(n,ne(o,"int32"),0)]}case"GatherV2":{let n=C("axis",r,e,t),o=C("batchDims",r,e,t),s=C("x",r,e,t),a=C("indices",r,e,t);return[Po(s,ne(a,"int32"),n,o)]}case"Reverse":{let n=C("dims",r,e,t),o=[];for(let a=0;a<n.length;a++)n[a]&&o.push(a);let s=C("x",r,e,t);return[Kt(s,o)]}case"ReverseV2":{let n=C("axis",r,e,t),o=C("x",r,e,t);return[Kt(o,n)]}case"Slice":{let n=C("begin",r,e,t),o=C("size",r,e,t);return[Fe(C("x",r,e,t),n,o)]}case"StridedSlice":{let n=C("begin",r,e,t),o=C("end",r,e,t),s=C("strides",r,e,t),a=C("beginMask",r,e,t),i=C("endMask",r,e,t),l=C("ellipsisMask",r,e,t),u=C("newAxisMask",r,e,t),c=C("shrinkAxisMask",r,e,t),p=C("x",r,e,t);return[tf(p,n,o,s,a,i,l,u,c)]}case"Pack":return V(()=>{let n=C("axis",r,e,t),o=C("tensors",r,e,t),s=o[0].shape,a=_n(o[0]).shape,i=o.map(l=>{let u=y.arraysEqual(l.shape,s);if(!u&&!y.arraysEqual(_n(l).shape,a))throw new Error("the input tensors shape does not match");return u?l:z(l,s)});return[Vt(i,n)]});case"Unpack":{let n=C("axis",r,e,t),o=C("tensor",r,e,t);return cr(o,n)}case"Tile":{let n=C("reps",r,e,t);return[On(C("x",r,e,t),n)]}case"Split":case"SplitV":{let n=C("axis",r,e,t),o=C("numOrSizeSplits",r,e,t),s=C("x",r,e,t);return ur(s,o,n)}case"ScatterNd":{let n=C("indices",r,e,t),o=C("values",r,e,t),s=C("shape",r,e,t);return[e_(n,o,s)]}case"GatherNd":{let n=C("x",r,e,t),o=C("indices",r,e,t);return[t_(n,o)]}case"SparseToDense":{let n=C("sparseIndices",r,e,t),o=C("outputShape",r,e,t),s=C("sparseValues",r,e,t),a=C("defaultValue",r,e,t);return[af(n,s,o,s.dtype===a.dtype?a:ne(a,s.dtype))]}default:throw TypeError(`Node type ${r.op} is not implemented`)}};var Cz=(r,e,t)=>{switch(r.op){case"FFT":return[Ra(C("x",r,e,t))];case"IFFT":return[Bi(C("x",r,e,t))];case"RFFT":return[Fa(C("x",r,e,t))];case"IRFFT":return[zu(C("x",r,e,t))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};var Iz=(r,e,t)=>{switch(r.op){case"Cast":return[ne(C("x",r,e,t),C("dtype",r,e,t))];case"ExpandDims":{let n=C("axis",r,e,t);return[ir(C("x",r,e,t),n)]}case"Squeeze":{let n=C("axis",r,e,t);return[_n(C("x",r,e,t),n)]}case"Reshape":return[z(C("x",r,e,t),C("shape",r,e,t))];case"MirrorPad":return[Hm(C("x",r,e,t),C("padding",r,e,t),C("mode",r,e,t))];case"PadV2":case"Pad":return[Rr(C("x",r,e,t),C("padding",r,e,t),C("constantValue",r,e,t))];case"SpaceToBatchND":{let n=C("blockShape",r,e,t),o=C("paddings",r,e,t);return[Aa(C("x",r,e,t),n,o)]}case"BatchToSpaceND":{let n=C("blockShape",r,e,t),o=C("crops",r,e,t);return[Ca(C("x",r,e,t),n,o)]}case"DepthToSpace":{let n=C("blockSize",r,e,t),o=C("dataFormat",r,e,t).toUpperCase();return[Lm(C("x",r,e,t),n,o)]}case"BroadcastTo":return[ll(C("x",r,e,t),C("shape",r,e,t))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};function WC(r,e,t,n){let o=((s,a,i)=>{switch(s.category){case"arithmetic":return V(()=>oz(s,a,i));case"basic_math":return V(()=>sz(s,a,i));case"control":return cz(s,a,i);case"convolution":return V(()=>mz(s,a,i));case"creation":return V(()=>fz(s,a,i));case"dynamic":return dz(s,a,i);case"evaluation":return V(()=>hz(s,a,i));case"image":return V(()=>yz(s,a,i));case"graph":return V(()=>gz(s,a,i));case"logical":return V(()=>bz(s,a,i));case"matrices":return V(()=>wz(s,a,i));case"normalization":return V(()=>_z(s,a,i));case"reduction":return V(()=>kz(s,a,i));case"slice_join":return V(()=>vz(s,a,i));case"spectral":return V(()=>Cz(s,a,i));case"transformation":return V(()=>Iz(s,a,i));case"hash_table":return xz(s,a,i,n);case"custom":let l=Kx(s.op);if(l&&l.customExecutor)return l.customExecutor(new BC(s,a,i));throw TypeError(`Custom op ${s.op} is not registered.`);default:throw TypeError(`Unknown op '${s.op}'. File an issue at https://github.com/tensorflow/tfjs/issues so we can add it, or register a custom execution with tf.registerOp()`)}})(r,e,t);return y.isPromise(o)?o.then(s=>[].concat(s)):[].concat(o)}var ay=class{constructor(e={},t={},n={},o={}){this.weightMap=e,this.tensorArrayMap=t,this.tensorListMap=n,this.functionMap=o,this.rootContext={id:0,frameName:"",iterationId:0},this.contexts=[this.rootContext],this.lastId=0,this.generateCurrentContextIds()}newFrame(e,t){return{id:e,frameName:t,iterationId:0}}set currentContext(e){this.contexts!==e&&(this.contexts=e,this.generateCurrentContextIds())}get currentContext(){return this.contexts}get currentContextId(){return this._currentContextIds[0]}get currentContextIds(){return this._currentContextIds}generateCurrentContextIds(){let e=[];for(let t=0;t<this.contexts.length-1;t++){let n=this.contexts.slice(0,this.contexts.length-t);e.push(this.contextIdforContexts(n))}e.push(""),this._currentContextIds=e}contextIdforContexts(e){return e?e.map(t=>t.id===0&&t.iterationId===0?"":`${t.frameName}-${t.iterationId}`).join("/"):""}enterFrame(e){this.contexts&&(this.lastId++,this.contexts=this.contexts.slice(),this.contexts.push(this.newFrame(this.lastId,e)),this._currentContextIds.unshift(this.contextIdforContexts(this.contexts)))}exitFrame(){if(this.contexts&&this.contexts.length>1)this.contexts=this.contexts.slice(),this.contexts.splice(-1),this.currentContextIds.shift();else throw new Error("Cannot exit frame, the context is empty")}nextIteration(){if(this.contexts&&this.contexts.length>0){this.contexts=this.contexts.slice(),this.lastId++;let e=Object.assign({},this.contexts[this.contexts.length-1]);e.iterationId+=1,e.id=this.lastId,this.contexts.splice(-1,1,e),this._currentContextIds.splice(0,1,this.contextIdforContexts(this.contexts))}else throw new Error("Cannot increase frame iteration, the context is empty")}getWeight(e){return this.weightMap[e]}addTensorArray(e){this.tensorArrayMap[e.id]=e}getTensorArray(e){return this.tensorArrayMap[e]}addTensorList(e){this.tensorListMap[e.id]=e}getTensorList(e){return this.tensorListMap[e]}dispose(e){for(let t in this.tensorArrayMap)this.tensorArrayMap[t].clearAndClose(e);for(let t in this.tensorListMap)this.tensorListMap[t].clearAndClose(e)}};function qC(r,e,t,n){let o=new Set,s=[],a=null,i=null,l=new Set,u=Object.keys(r).map(m=>Zr(m)[0]),c=[];n!=null&&(c=n.map(m=>Zr(m.name)[0]));let p=[...e];for(;p.length>0;){let m=p.pop();if((UC(m)||Ete(m)||Ate(m))&&a==null&&(a=m,i=a.children.map(f=>f.name).filter(f=>o.has(f))),o.add(m.name),t[m.name]==null&&u.indexOf(m.name)===-1&&c.indexOf(m.name)===-1){if(m.inputs.length===0){s.push(m.name);continue}m.inputs.forEach(f=>{l.has(f.name)||(l.add(f.name),p.push(f))})}}return{inputs:r,outputs:e,usedNodes:o,missingInputs:s,dynamicNode:a,syncInputs:i}}function Nz(r,e,t){let{usedNodes:n,inputs:o}=t,s=[],a=Object.keys(o).map(c=>Zr(c)[0]).map(c=>r.nodes[c]),i=r.initNodes;a.forEach(c=>{n.has(c.name)&&s.push(c)}),r.weights.forEach(c=>{n.has(c.name)&&s.push(c)}),i!=null&&i.forEach(c=>{n.has(c.name)&&s.push(c)});let l=new Set,u=[];for(;s.length>0;){let c=s.pop();l.add(c.name),e[c.name]||u.push(c),c.children.forEach(p=>{!l.has(p.name)&&n.has(p.name)&&p.inputs.every(m=>l.has(m.name))&&s.push(p)})}return u}var Dte=["Switch","Merge","Enter","Exit","NextIteration","StatelessIf","StatelessWhile","if","While"],$te=["NonMaxSuppressionV2","NonMaxSuppressionV3","NonMaxSuppressionV5","Where"],Rte=["HashTable","HashTableV2","LookupTableImport","LookupTableImportV2","LookupTableFind","LookupTableFindV2"];function UC(r){return Dte.indexOf(r.op)>=0}function Ete(r){return $te.indexOf(r.op)>=0}function Ate(r){return Rte.indexOf(r.op)>=0}var Yp=class{constructor(e,t){this.graph=e,this.parent=t,this.compiledMap=new Map,this._weightMap={},this.SEPERATOR=",",this._functions={},this._functionExecutorMap={},this._outputs=e.outputs,this._inputs=e.inputs,this._initNodes=e.initNodes,this._signature=e.signature,this._functions=e.functions,e.functions!=null&&Object.keys(e.functions).forEach(n=>{this._functionExecutorMap[n]=new Yp(e.functions[n],this)})}get weightIds(){return this.parent?this.parent.weightIds:this._weightIds}get functionExecutorMap(){return this.parent?this.parent.functionExecutorMap:this._functionExecutorMap}get weightMap(){return this.parent?this.parent.weightMap:this._weightMap}set weightMap(e){let t=Object.keys(e).map(n=>e[n].map(o=>o.id));this._weightIds=[].concat(...t),this._weightMap=e}set resourceManager(e){this._resourceManager=e}get inputs(){return this._inputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get outputs(){return this._outputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get inputNodes(){return this._inputs.map(e=>e.signatureKey||e.name)}get outputNodes(){return this._outputs.map(e=>{let t=e.signatureKey||e.name;return e.defaultOutput?`${t}:${e.defaultOutput}`:t})}get functions(){return Object.keys(this._functions).reduce((e,t)=>(e[t]=this._functions[t].signature,e),{})}getCompilationKey(e,t){let n=e.map(s=>s.name).sort(),o=t.map(s=>s.name).sort();return n.join(this.SEPERATOR)+"--"+o.join(this.SEPERATOR)}compile(e,t){let n=qC(e,t,this.weightMap,this._initNodes),{missingInputs:o,dynamicNode:s,syncInputs:a}=n;if(s!=null)throw new Error(`This execution contains the node '${s.name}', which has the dynamic op '${s.op}'. Please use model.executeAsync() instead. Alternatively, to avoid the dynamic ops, specify the inputs [${a}]`);if(o.length>0){let i=t.map(u=>u.name),l=Object.keys(e);throw new Error(`Cannot compute the outputs [${i}] from the provided inputs [${l}]. Missing the following inputs: [${o}]`)}return Nz(this.graph,this.weightMap,n)}execute(e,t){e=this.mapInputs(e);let n=Object.keys(e).sort();this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t);let o=n.map(p=>this.graph.nodes[Zr(p)[0]]),s=t.map(p=>Zr(p)[0]),a=s.map(p=>this.graph.nodes[p]);a.length===0&&(a=this._outputs);let i=this.getCompilationKey(o,a),l=this.compiledMap.get(i);l==null&&(l=this.compile(e,a),this.compiledMap.set(i,l));let u={},c={};return V(()=>{let p=new ay(this.weightMap,u,c,this.functionExecutorMap),m=Object.assign({},this.weightMap);Object.keys(e).forEach(h=>{let[g,x]=Zr(h),b=[];b[x]=e[h],m[g]=b});let f=this.getFrozenTensorIds(m),d={};for(let h=0;h<l.length;h++){let g=l[h];if(!m[g.name]){let x=WC(g,m,p,this._resourceManager);if(y.isPromise(x))throw new Error(`The execution of the op '${g.op}' returned a promise. Please use model.executeAsync() instead.`);m[g.name]=x,this.checkTensorForDisposal(g.name,g,m,p,f,s,d)}}return this.parent==null&&p.dispose(f),t.map(h=>xr(h,m,p))})}getFrozenTensorIds(e){let t=[].concat.apply([],Object.keys(e).map(n=>e[n]).map(n=>n.map(o=>o.id)));return new Set(t)}checkTensorForDisposal(e,t,n,o,s,a,i){t.category==="control"||a.indexOf(e)!==-1||(n[e].forEach(l=>{l!=null&&(i[l.id]=(i[l.id]||0)+t.children.length)}),t.inputs.forEach(l=>{if(l.category!=="control"){let u=ez(l.name,n,o);u!=null&&u.forEach(c=>{if(c&&!s.has(c.id)){let p=i[c.id];p===1?(c.dispose(),delete i[c.id]):p!=null&&i[c.id]--}})}}))}async executeAsync(e,t){return this._executeAsync(e,t)}async _executeAsync(e,t,n=!1,o={},s={}){n||(e=this.mapInputs(e),this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t));let a=new ay(this.weightMap,o,s,this.functionExecutorMap),i=await this.executeWithControlFlow(e,a,t,n),l=t.map(m=>xr(m,i,a)),u=l.map(m=>m.id),c=Object.keys(e).map(m=>e[m].id),p=new Set([...u,...c,...this.weightIds]);return Object.keys(i).forEach(m=>{i[m].forEach(d=>{d&&!d.isDisposed&&!p.has(d.id)&&d.dispose()})}),this.parent==null&&a.dispose(p),l}async executeFunctionAsync(e,t,n){let o=e.reduce((s,a,i)=>(s[this.inputs[i].name]=a,s),{});return this._executeAsync(o,this.outputNodes,!0,t,n)}async executeWithControlFlow(e,t,n,o){let s=Object.keys(e),a=s.map(w=>this.graph.nodes[Zr(w)[0]]),i=n.map(w=>Zr(w)[0]),l=i.map(w=>this.graph.nodes[w]);l.length===0&&(l=this._outputs);let{usedNodes:u,missingInputs:c,dynamicNode:p,syncInputs:m}=qC(e,l,this.weightMap,this._initNodes),f=[...a,...this.graph.weights,...this._initNodes||[]].map(w=>({node:w,contexts:t.currentContext})),d=Object.assign({},this.weightMap);Object.keys(e).forEach(w=>{let[_,k]=Zr(w),E=[];E[k]=e[w],d[_]=E});let h={},g=this.getFrozenTensorIds(d),x={};for(;f.length>0;){let w=this.processStack(a,f,t,d,x,g,i,h,u);await Promise.all(w)}p==null&&!o&&console.warn("This model execution did not contain any nodes with control flow or dynamic output shapes. You can use model.execute() instead.");let b=l.filter(w=>!UC(w)&&!xr(w.name,d,t)).map(w=>w.name);if(b.length>0){let w="";throw p!=null&&(w=`Alternatively, to avoid the dynamic ops, use model.execute() and specify the inputs [${m}]`),new Error(`Cannot compute the outputs [${b}] from the provided inputs [${s}]. Consider providing the following inputs: [${c}]. ${w}`)}return d}processStack(e,t,n,o,s,a,i,l,u){let c=[];for(;t.length>0;){let p=t.pop();n.currentContext=p.contexts;let m="";if(p.node.op==="Enter"&&C("isConstant",p.node,o,n)&&([m]=Vs(p.node.name,n)),o[p.node.name]==null){let f=WC(p.node,o,n,this._resourceManager);m||([m]=Vs(p.node.name,n));let d=n.currentContext;y.isPromise(f)?c.push(f.then(h=>(o[m]=h,n.currentContext=d,this.checkTensorForDisposal(m,p.node,o,n,a,i,l),this.processChildNodes(p.node,t,n,o,s,u),h))):(o[m]=f,this.checkTensorForDisposal(m,p.node,o,n,a,i,l),this.processChildNodes(p.node,t,n,o,s,u))}else this.processChildNodes(p.node,t,n,o,s,u)}return c}processChildNodes(e,t,n,o,s,a){e.children.forEach(i=>{let[l]=Vs(i.name,n);s[l]||!a.has(i.name)||(i.op==="Merge"?i.inputNames.some(u=>!!xr(u,o,n))&&(s[l]=!0,t.push({contexts:n.currentContext,node:i})):i.inputNames.every(u=>!!xr(u,o,n))&&(s[l]=!0,t.push({contexts:n.currentContext,node:i})))})}dispose(){Object.keys(this.weightMap).forEach(e=>this.weightMap[e].forEach(t=>t.dispose()))}checkInputShapeAndType(e){Object.keys(e).forEach(t=>{let n=e[t],[o]=Zr(t),s=this.graph.nodes[o];if(s.attrParams.shape&&s.attrParams.shape.value){let a=s.attrParams.shape.value,i=a.length===n.shape.length&&n.shape.every((l,u)=>a[u]===-1||a[u]===l);y.assert(i,()=>`The shape of dict['${s.name}'] provided in model.execute(dict) must be [${a}], but was [${n.shape}]`)}s.attrParams.dtype&&s.attrParams.dtype.value&&y.assert(n.dtype===s.attrParams.dtype.value,()=>`The dtype of dict['${s.name}'] provided in model.execute(dict) must be ${s.attrParams.dtype.value}, but was ${n.dtype}`)})}mapInputs(e){let t={};for(let n in e)if(this._signature!=null&&this._signature.inputs!=null&&this._signature.inputs[n]!=null){let o=this._signature.inputs[n];t[o.name]=e[n]}else t[n]=e[n];return t}checkInputs(e){let t=Object.keys(e).filter(n=>{let[o]=Zr(n);return this.graph.nodes[o]==null});if(t.length>0)throw new Error(`The dict provided in model.execute(dict) has keys: [${t}] that are not part of graph`)}mapOutputs(e){return e.map(t=>this._signature!=null&&this._signature.outputs!=null&&this._signature.outputs[t]!=null?this._signature.outputs[t].name:t,{})}checkOutputs(e){e.forEach(t=>{let[n]=Zr(t);if(!this.graph.nodes[n])throw new Error(`The output '${t}' is not found in the graph`)})}};var HC=class{constructor(e={},t={}){this.hashTableNameToHandle=e,this.hashTableMap=t}addHashTable(e,t){this.hashTableNameToHandle[e]=t.handle,this.hashTableMap[t.id]=t}getHashTableHandleByName(e){return this.hashTableNameToHandle[e]}getHashTableById(e){return this.hashTableMap[e]}dispose(){for(let e in this.hashTableMap)this.hashTableMap[e].clearAndClose(),delete this.hashTableMap[e];for(let e in this.hashTableNameToHandle)this.hashTableNameToHandle[e].dispose(),delete this.hashTableNameToHandle[e]}};var Fte="?tfjs-format=file",Ote="model.json",ly=class{constructor(e,t={}){this.modelUrl=e,this.loadOptions=t,this.version="n/a",t==null&&(this.loadOptions={}),this.resourceManager=new HC}get modelVersion(){return this.version}get inputNodes(){return this.executor.inputNodes}get outputNodes(){return this.executor.outputNodes}get inputs(){return this.executor.inputs}get outputs(){return this.executor.outputs}get weights(){return this.executor.weightMap}get metadata(){return this.artifacts.userDefinedMetadata}get modelSignature(){return this.signature}findIOHandler(){let e=this.modelUrl;if(e.load!=null)this.handler=e;else if(this.loadOptions.requestInit!=null)this.handler=Cr.browserHTTPRequest(e,this.loadOptions);else{let t=Cr.getLoadHandlers(e,this.loadOptions);if(t.length===0)t.push(Cr.browserHTTPRequest(e,this.loadOptions));else if(t.length>1)throw new Error(`Found more than one (${t.length}) load handlers for URL '${[e]}'`);this.handler=t[0]}}async load(){if(this.findIOHandler(),this.handler.load==null)throw new Error("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let e=await this.handler.load();return this.loadSync(e)}loadSync(e){this.artifacts=e;let t=this.artifacts.modelTopology,n;this.artifacts.userDefinedMetadata!=null&&this.artifacts.userDefinedMetadata.signature!=null?n=this.artifacts.userDefinedMetadata.signature:n=this.artifacts.signature,this.signature=n,this.version=`${t.versions.producer}.${t.versions.minConsumer}`;let o=Cr.decodeWeights(this.artifacts.weightData,this.artifacts.weightSpecs);if(this.executor=new Yp(Yx.Instance.transformGraph(t,this.signature)),this.executor.weightMap=this.convertTensorMapToTensorsMap(o),this.executor.resourceManager=this.resourceManager,e.modelInitializer!=null&&e.modelInitializer.node!=null){let s=Yx.Instance.transformGraph(e.modelInitializer);this.initializer=new Yp(s),this.initializer.weightMap=this.executor.weightMap,this.initializer.resourceManager=this.resourceManager,this.initializer.executeAsync({},[])}return!0}async save(e,t){if(typeof e=="string"){let n=Cr.getSaveHandlers(e);if(n.length===0)throw new Error(`Cannot find any save handlers for URL '${e}'`);if(n.length>1)throw new Error(`Found more than one (${n.length}) save handlers for URL '${e}'`);e=n[0]}if(e.save==null)throw new Error("GraphModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");return e.save(this.artifacts)}predict(e,t){return this.execute(e,this.outputNodes)}normalizeInputs(e){if(!(e instanceof Ve)&&!Array.isArray(e))return e;if(e=Array.isArray(e)?e:[e],e.length!==this.inputNodes.length)throw new Error(`Input tensor count mismatch,the graph model has ${this.inputNodes.length} placeholders, while there are ${e.length} input tensors.`);return this.inputNodes.reduce((t,n,o)=>(t[n]=e[o],t),{})}normalizeOutputs(e){return e=e||this.outputNodes,Array.isArray(e)?e:[e]}execute(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=this.executor.execute(e,t);return n.length>1?n:n[0]}async executeAsync(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=await this.executor.executeAsync(e,t);return n.length>1?n:n[0]}convertTensorMapToTensorsMap(e){return Object.keys(e).reduce((t,n)=>(t[n]=[e[n]],t),{})}dispose(){this.executor.dispose(),this.initializer&&this.initializer.dispose(),this.resourceManager.dispose()}};async function Sz(r,e={}){if(r==null)throw new Error("modelUrl in loadGraphModel() cannot be null. Please provide a url or an IOHandler that loads the model");e==null&&(e={}),e.fromTFHub&&r.load==null&&(r.endsWith("/")||(r=r+"/"),r=`${r}${Ote}${Fte}`);let t=new ly(r,e);return await t.load(),t}var Tz="3.0.0";var gy={};Ye(gy,{CSVDataset:()=>dh,Dataset:()=>Zi,FileDataSource:()=>bh,TextLineDataset:()=>mh,URLDataSource:()=>wh,array:()=>p3,csv:()=>_3,func:()=>k3,generator:()=>v3,microphone:()=>I3,version_data:()=>N3,webcam:()=>C3,zip:()=>m3});var c3=Tc(eI());var Xz=Tc(eI());function Wz(r,e){return cy(r,e)}function cy(r,e,t=new Map,n=new Set){if(r==null)return null;if(n.has(r))throw new Error("Circular references are not supported.");if(t.has(r))return t.get(r);let o=e(r);if(o.recurse&&o.value!==null)throw new Error("A deep map function may not return both a value and recurse=true.");if(o.recurse)if(Dl(r)){let s=Array.isArray(r)?[]:{};n.add(r);for(let a in r){let i=r[a],l=cy(i,e,t,n);s[a]=l}return n.delete(r),s}else throw new Error(`Can't recurse into non-iterable type: ${r}`);else return t.set(r,o.value),o.value}function qz(r,e=tI){return Uz(r,e)}function Uz(r,e,t=new Set){let n=r[0];if(t.has(n))throw new Error("Circular references are not supported.");let o=e(r);if(o.recurse&&o.value!==null)throw new Error("A deep zip function may not return both a value and recurse=true.");if(o.recurse)if(Dl(n)){let s=Array.isArray(n)?[]:{};t.add(n);for(let a in n){let i=r.map(u=>u[a]),l=Uz(i,e,t);s[a]=l}return t.delete(n),s}else throw new Error(`Can't recurse into non-iterable type: ${n}`);else return o.value}function tI(r){return r===null?null:Dl(r[0])?{value:null,recurse:!0}:{value:r,recurse:!1}}async function py(r,e){let t=new Map;cy(r,e,t);for(let o of Array.from(t.keys())){let s=t.get(o);if(y.isPromise(s)){let a=await s;t.set(o,a)}}return cy(r,e,t)}function Dl(r){return r!=null&&!ArrayBuffer.isView(r)&&(Array.isArray(r)||typeof r=="object"&&!(r instanceof Ve))}function Hz(r){return r==null||Gte(r)||Array.isArray(r)||typeof r=="object"&&r instanceof Ve||y.isTypedArray(r)}function Gte(r){return r===null||typeof r!="object"&&typeof r!="function"}function Kz(r){return Wz(r,jte)}function jte(r){return r instanceof Ve?{value:r.clone(),recurse:!1}:Dl(r)?{value:null,recurse:!0}:{value:r,recurse:!1}}var ch=class{constructor(e){if(this.capacity=e,this.begin=0,this.end=0,e==null)throw new RangeError("Can't create a ring buffer of unknown capacity.");if(e<1)throw new RangeError("Can't create ring buffer of capacity < 1.");this.data=new Array(e),this.doubledCapacity=2*e}wrap(e){for(;e<0;)e+=this.doubledCapacity;return e%this.doubledCapacity}get(e){if(e<0)throw new RangeError("Can't get item at a negative index.");return this.data[e%this.capacity]}set(e,t){if(e<0)throw new RangeError("Can't set item at a negative index.");this.data[e%this.capacity]=t}length(){let e=this.end-this.begin;return e<0&&(e=this.doubledCapacity+e),e}isFull(){return this.length()===this.capacity}isEmpty(){return this.length()===0}push(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.set(this.end,e),this.end=this.wrap(this.end+1)}pushAll(e){for(let t of e)this.push(t)}pop(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");this.end=this.wrap(this.end-1);let e=this.get(this.end);return this.set(this.end,void 0),e}unshift(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.begin=this.wrap(this.begin-1),this.set(this.begin,e)}shift(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let e=this.get(this.begin);return this.set(this.begin,void 0),this.begin=this.wrap(this.begin+1),e}shuffleExcise(e){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let t=this.wrap(this.begin+e),n=this.get(t);return this.set(t,this.pop()),n}};var Zp=class extends ch{constructor(){super(Zp.INITIAL_CAPACITY)}isFull(){return!1}push(e){super.isFull()&&this.expand(),super.push(e)}unshift(e){super.isFull()&&this.expand(),super.unshift(e)}expand(){let e=this.capacity*2,t=new Array(e),n=this.length();for(let o=0;o<n;o++)t[o]=this.get(this.wrap(this.begin+o));this.data=t,this.capacity=e,this.doubledCapacity=2*this.capacity,this.begin=0,this.end=n}};Zp.INITIAL_CAPACITY=32;function rI(r){return new Yz(r)}function ph(r){return new Zz(r)}function Jz(r,e){return new nI(r,e)}function e3(r,e=Ha.FAIL){return new Qz(r,e)}var Xt=class{async toArray(){let e=[],t=await this.next();for(;!t.done;)e.push(t.value),t=await this.next();return e}async toArrayForTest(){let e=this.prefetch(100),t=[],n=await e.next();for(;!n.done;)t.push(n.value),n=await e.next();return t}async resolveFully(){let e=await this.next();for(;!e.done;)e=await this.next()}async resolveWhile(e){let t=await this.next(),n=e(t.value);for(;!t.done&&n;)t=await this.next(),n=e(t.value)}handleErrors(e){return new a3(this,e)}filter(e){return new s3(this,e)}map(e){return new i3(this,e)}mapAsync(e){return new oI(this,e)}serialMapAsync(e){return new oI(this,e).serial()}flatmap(e){return new l3(this,e)}async forEachAsync(e){return this.map(e).resolveFully()}async serialForEach(e){return this.serialMapAsync(e).resolveWhile(t=>t===!0)}rowMajorBatch(e,t=!0){return new o3(this,e,t)}columnMajorBatch(e,t=!0,n=tI){return this.rowMajorBatch(e,t).map(s=>qz(s,n))}concatenate(e,t){return new nI(rI([this,e]),t)}take(e){return e<0||e==null?this:new n3(this,e)}skip(e){return e<0||e==null?this:new r3(this,e)}prefetch(e){return new sI(this,e)}shuffle(e,t){return new u3(this,e,t)}serial(){return new t3(this)}},Yz=class extends Xt{constructor(e){super();this.items=e,this.trav=0}summary(){return`Array of ${this.items.length} items`}async next(){if(this.trav>=this.items.length)return{value:null,done:!0};let e=this.items[this.trav];return this.trav++,{value:Kz(e),done:!1}}},Zz=class extends Xt{constructor(e){super();this.nextFn=e}summary(){return"Function call"}async next(){try{return this.nextFn()}catch(e){throw e.message=`Error thrown while iterating through a dataset: ${e.message}`,e}}},t3=class extends Xt{constructor(e){super();this.upstream=e,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Serial`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){return this.upstream.next()}},r3=class extends Xt{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Skip`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.count++<this.maxCount;){let e=await this.upstream.next();if(e.done)return e;Ee(e.value)}return this.upstream.next()}},n3=class extends Xt{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0}summary(){return`${this.upstream.summary()} -> Take`}async next(){return this.count++>=this.maxCount?{value:null,done:!0}:this.upstream.next()}},o3=class extends Xt{constructor(e,t,n=!0){super();this.upstream=e,this.batchSize=t,this.enableSmallLastBatch=n,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> RowMajorBatch`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){let e=[];for(;e.length<this.batchSize;){let t=await this.upstream.next();if(t.done)return this.enableSmallLastBatch&&e.length>0?{value:e,done:!1}:{value:null,done:!0};e.push(t.value)}return{value:e,done:!1}}},s3=class extends Xt{constructor(e,t){super();this.upstream=e,this.predicate=t,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Filter`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;){let e=await this.upstream.next();if(e.done||this.predicate(e.value))return e;Ee(e.value)}}},i3=class extends Xt{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Map`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=Fo.getTensorsInContainer(e.value),n=this.transform(e.value),o=Fo.getTensorsInContainer(n);for(let s of t)Fo.isTensorInList(s,o)||s.dispose();return{value:n,done:!1}}},a3=class extends Xt{constructor(e,t){super();this.upstream=e,this.handler=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> handleErrors`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;)try{return await this.upstream.next()}catch(e){if(!this.handler(e))return{value:null,done:!0}}}},oI=class extends Xt{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> AsyncMap`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=Fo.getTensorsInContainer(e.value),n=await this.transform(e.value),o=Fo.getTensorsInContainer(n);for(let s of t)Fo.isTensorInList(s,o)||s.dispose();return{value:n,done:!1}}},Jp=class extends Xt{constructor(){super();this.outputQueue=new Zp,this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.outputQueue.length()===0;)if(!await this.pump())return{value:null,done:!0};return{value:this.outputQueue.shift(),done:!1}}},l3=class extends Jp{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Flatmap`}async pump(){let e=await this.upstream.next();if(e.done)return!1;let t=Fo.getTensorsInContainer(e.value),n=this.transform(e.value),o=Fo.getTensorsInContainer(n);this.outputQueue.pushAll(n);for(let s of t)Fo.isTensorInList(s,o)||s.dispose();return!0}},nI=class extends Xt{constructor(e,t){super();this.baseErrorHandler=t,this.lastRead=null,this.iterator=null,this.moreIterators=e}summary(){return"TODO: fill in upstream of chained summaries -> Chained"}async next(){return this.lastRead=this.readFromChain(this.lastRead),this.lastRead}async readFromChain(e){if(await e,this.iterator==null){let n=await this.moreIterators.next();if(n.done)return{value:null,done:!0};this.iterator=n.value,this.baseErrorHandler!=null&&(this.iterator=this.iterator.handleErrors(this.baseErrorHandler))}let t=await this.iterator.next();return t.done?(this.iterator=null,this.readFromChain(e)):t}},Ha;(function(r){r[r.FAIL=0]="FAIL",r[r.SHORTEST=1]="SHORTEST",r[r.LONGEST=2]="LONGEST"})(Ha||(Ha={}));var Qz=class extends Xt{constructor(e,t=Ha.FAIL){super();this.iterators=e,this.mismatchMode=t,this.count=0,this.currentPromise=null}summary(){return"{TODO: fill in upstream of zip summaries} -> Zip"}async nextState(e){await e;let t=0,n=0;function o(a){return a instanceof Xt?{value:a.next().then(l=>(t++,l.done&&n++,l.value)),recurse:!1}:{value:null,recurse:!0}}let s=await py(this.iterators,o);if(t===n)return{value:null,done:!0};if(n>0)switch(this.mismatchMode){case Ha.FAIL:throw new Error(`Zipped streams should have the same length. Mismatched at element ${this.count}.`);case Ha.SHORTEST:return{value:null,done:!0};case Ha.LONGEST:default:}return this.count++,{value:s,done:!1}}async next(){return this.currentPromise=this.nextState(this.currentPromise),this.currentPromise}},sI=class extends Xt{constructor(e,t){super();this.upstream=e,this.bufferSize=t,this.buffer=new ch(t)}summary(){return`${this.upstream.summary()} -> Prefetch`}refill(){for(;!this.buffer.isFull();){let e=this.upstream.next();this.buffer.push(e)}}next(){return this.refill(),this.buffer.shift()}},u3=class extends sI{constructor(e,t,n){super(e,t);this.upstream=e,this.windowSize=t,this.upstreamExhausted=!1,this.random=Xz.alea(n||y.now().toString()),this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}randomInt(e){return Math.floor(this.random()*e)}chooseIndex(){return this.randomInt(this.buffer.length())}async serialNext(){for(this.upstreamExhausted||this.refill();!this.buffer.isEmpty();){let e=this.chooseIndex(),t=await this.buffer.shuffleExcise(e);if(t.done)this.upstreamExhausted=!0;else return this.refill(),t}return{value:null,done:!0}}};var Zi=class{constructor(){this.size=null}batch(e,t=!0){let n=this;y.assert(e>0,()=>`batchSize needs to be positive, but it is
${e}`);let o;return this.size===Infinity||this.size==null?o=this.size:t?o=Math.ceil(this.size/e):o=Math.floor(this.size/e),pn(async()=>(await n.iterator()).columnMajorBatch(e,t,Wte),o)}concatenate(e){let t=this,n;return this.size===Infinity||e.size===Infinity?n=Infinity:this.size!=null&&e.size!=null?n=this.size+e.size:n=null,pn(async()=>(await t.iterator()).concatenate(await e.iterator()),n)}filter(e){let t=this,n;return this.size===Infinity?n=Infinity:n=null,pn(async()=>(await t.iterator()).filter(o=>V(()=>e(o))),n)}async forEachAsync(e){return(await this.iterator()).forEachAsync(e)}map(e){let t=this;return pn(async()=>(await t.iterator()).map(n=>V(()=>e(n))),this.size)}mapAsync(e){let t=this;return pn(async()=>(await t.iterator()).mapAsync(e),this.size)}prefetch(e){if(e==null)throw new RangeError("`Dataset.prefetch()` requires bufferSize to be specified.");let t=this;return pn(async()=>(await t.iterator()).prefetch(e),this.size)}repeat(e){let t=this,n;return this.size!=null&&e>0?n=this.size*e:e===0?n=0:this.size!=null&&(e===void 0||e<0)?n=Infinity:n=null,pn(async()=>{let o=ph(async()=>({value:await t.iterator(),done:!1}));return Jz(o.take(e))},n)}skip(e){let t=this,n;return this.size!=null&&e>=0&&this.size>=e?n=this.size-e:this.size!=null&&(this.size<e||e===void 0||e<0)?n=0:n=null,pn(async()=>(await t.iterator()).skip(e),n)}shuffle(e,t,n=!0){if(e==null||e<0)throw this.size==null?new RangeError("`Dataset.shuffle()` requires bufferSize to be specified."):new RangeError(`\`Dataset.shuffle()\` requires bufferSize to be specified. If your data fits in main memory (for regular JS objects), and/or GPU memory (for \`tf.Tensor\`s), consider setting bufferSize to the dataset size (${this.size} elements)`);let o=this,s=c3.alea(t||y.now().toString());return pn(async()=>{let a=s.int32();return n&&(a+=s.int32()),(await o.iterator()).shuffle(e,a.toString())},this.size)}take(e){let t=this,n;return this.size!=null&&this.size>e?n=e:this.size!=null&&this.size<=e?n=this.size:n=null,pn(async()=>(await t.iterator()).take(e),n)}async toArray(){if(this.size===Infinity)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArray()}async toArrayForTest(){if(this.size===Infinity)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArrayForTest()}};Zi.MAX_BUFFER_SIZE=1e4;function pn(r,e=null){return new class extends Zi{constructor(){super(...arguments);this.size=e}async iterator(){return r()}}}function p3(r){return pn(async()=>rI(r),r.length)}function m3(r){if(!Dl(r))throw new Error("The argument to zip() must be an object or array.");let e;if(Array.isArray(r))for(let t=0;t<r.length;t++)e=e==null?r[t].size:Math.min(e,r[t].size);else if(r instanceof Object)for(let t in r)e=e==null?r[t].size:Math.min(e,r[t].size);return pn(async()=>{let t=await py(r,n=>{if(n instanceof Zi)return{value:n.iterator(),recurse:!1};if(Dl(n))return{value:null,recurse:!0};throw new Error("Leaves of the structure passed to zip() must be Datasets, not primitives.")});return e3(t,Ha.SHORTEST)},e)}function Wte(r){if(r===null)return null;let e=r[0];return Hz(e)?{value:Ute(r),recurse:!1}:{value:null,recurse:!0}}function Ute(r){if(r.length===0)throw new Error("Can't make a batch of zero elements.");return r[0]instanceof Ve?Vt(r):$r(r)}var mh=class extends Zi{constructor(e){super();this.input=e}async iterator(){return(await this.input.iterator()).decodeUTF8().split(`
`).map(o=>(o.endsWith("\r")&&(o=o.slice(0,-1)),o))}};var my='"',fh=Symbol("out"),f3=Symbol("field"),fy=Symbol("quote"),iI=Symbol("quoteafterquote"),d3=Symbol("quoteinquote"),dh=class extends Zi{constructor(e,t){super();this.input=e,this.hasHeader=!0,this.fullColumnNames=null,this.columnNamesValidated=!1,this.columnConfigs=null,this.configuredColumnsOnly=!1,this.delimiter=",",this.delimWhitespace=!1,this.base=new mh(e),t||(t={}),this.hasHeader=t.hasHeader!==!1,this.fullColumnNames=t.columnNames,this.columnConfigs=t.columnConfigs,this.configuredColumnsOnly=t.configuredColumnsOnly,t.delimWhitespace?(y.assert(t.delimiter==null,()=>"Delimiter should not be provided when delimWhitespace is true."),this.delimWhitespace=!0,this.delimiter=" "):this.delimiter=t.delimiter?t.delimiter:","}async columnNames(){return this.columnNamesValidated||await this.setColumnNames(),this.configuredColumnsOnly?Object.keys(this.columnConfigs):this.fullColumnNames}async setColumnNames(){let e=await this.maybeReadHeaderLine();if(!this.fullColumnNames&&!e)throw new Error("Column names must be provided if there is no header line.");this.fullColumnNames&&e&&y.assert(e.length===this.fullColumnNames.length,()=>"The length of provided columnNames ("+this.fullColumnNames.length.toString()+") does not match the length of the header line read from file ("+e.length.toString()+")."),this.fullColumnNames||(this.fullColumnNames=e);let t=this.fullColumnNames.reduce((o,s)=>(o[s]=o[s]+1||1,o),{}),n=Object.keys(t).filter(o=>t[o]>1);if(y.assert(n.length===0,()=>"Duplicate column names found: "+n.toString()),this.columnConfigs){for(let o of Object.keys(this.columnConfigs))if(this.fullColumnNames.indexOf(o)===-1)throw new Error('The key "'+o+'" provided in columnConfigs does not match any of the column names ('+this.fullColumnNames.toString()+").")}this.columnNamesValidated=!0}async maybeReadHeaderLine(){if(this.hasHeader){let t=await(await this.base.iterator()).next();if(t.done)throw new Error("No data was found for CSV parsing.");let n=t.value;return this.parseRow(n,!1)}else return null}async iterator(){this.columnNamesValidated||await this.setColumnNames();let e=await this.base.iterator();return this.hasHeader&&(e=e.skip(1)),e.map(t=>this.makeDataElement(t))}makeDataElement(e){let t=this.parseRow(e),n={},o={};for(let s=0;s<this.fullColumnNames.length;s++){let a=this.fullColumnNames[s],i=this.columnConfigs?this.columnConfigs[a]:null;if(!(this.configuredColumnsOnly&&!i)){let l=t[s],u=null;if(l==="")if(i&&i.default!==void 0)u=i.default;else{if(i&&(i.required||i.isLabel))throw new Error(`Required column ${a} is empty in this line: ${e}`);u=void 0}else{let c=Number(l);if(isNaN(c))i&&i.dtype==="bool"?u=this.getBoolean(l):u=l;else if(!i||!i.dtype)u=c;else switch(i.dtype){case"float32":u=c;break;case"int32":u=Math.floor(c);break;case"bool":u=this.getBoolean(l);break;default:u=c}}i&&i.isLabel?o[a]=u:n[a]=u}}return Object.keys(o).length===0?n:{xs:n,ys:o}}getBoolean(e){return e==="1"||e.toLowerCase()==="true"?1:0}parseRow(e,t=!0){let n=[],o=0,s=e.length,a=fh;for(let i=0;i<s;i++)switch(a){case fh:switch(e.charAt(i)){case my:o=i+1,a=fy;break;case this.delimiter:if(o=i+1,this.delimiter===" "&&this.delimWhitespace)break;n.push(""),a=fh;break;default:a=f3,o=i;break}break;case f3:switch(e.charAt(i)){case this.delimiter:n.push(e.substring(o,i)),a=fh,o=i+1;break;default:}break;case fy:switch(e.charAt(i)){case my:a=iI;break;default:}break;case iI:switch(e.charAt(i)){case this.delimiter:n.push(e.substring(o,i-1)),a=fh,o=i+1;break;case my:a=fy;break;default:a=d3;break}break;case d3:switch(e.charAt(i)){case my:a=fy;break;default:}break;default:}if(a===iI?n.push(e.substring(o,s-1)):n.push(e.substring(o)),t&&n.length!==this.fullColumnNames.length)throw new Error(`Invalid row in csv file. Should have ${this.fullColumnNames.length} elements in a row, but got ${n}`);return n}};var hh=class extends Xt{constructor(e){super();this.microphoneConfig=e,this.isClosed=!1,this.fftSize=e.fftSize||1024;let t=Math.log2(this.fftSize);if(this.fftSize<0||t<4||t>14||!Number.isInteger(t))throw new Error(`Invalid fftSize: it must be a power of 2 between 2 to 4 and 2 to 14, but got ${this.fftSize}`);if(this.numFrames=e.numFramesPerSpectrogram||43,this.sampleRateHz=e.sampleRateHz,this.columnTruncateLength=e.columnTruncateLength||this.fftSize,this.audioTrackConstraints=e.audioTrackConstraints,this.smoothingTimeConstant=e.smoothingTimeConstant||0,this.includeSpectrogram=e.includeSpectrogram!==!1,this.includeWaveform=e.includeWaveform===!0,!this.includeSpectrogram&&!this.includeWaveform)throw new Error("Both includeSpectrogram and includeWaveform are false. At least one type of data should be returned.")}summary(){return"microphone"}static async create(e={}){if(W().get("IS_NODE"))throw new Error("microphone API is only supported in browser environment.");let t=new hh(e);return await t.start(),t}async start(){try{this.stream=await navigator.mediaDevices.getUserMedia({audio:this.audioTrackConstraints==null?!0:this.audioTrackConstraints,video:!1})}catch(n){throw new Error(`Error thrown while initializing video stream: ${n.message}`)}if(!this.stream)throw new Error("Could not obtain audio from microphone.");let e=window.AudioContext||window.webkitAudioContext;if(this.audioContext=new e,!this.sampleRateHz)this.sampleRateHz=this.audioContext.sampleRate;else if(this.audioContext.sampleRate!==this.sampleRateHz)throw new Error(`Mismatch in sampling rate: Expected: ${this.sampleRateHz}; Actual: ${this.audioContext.sampleRate}`);let t=this.audioContext.createMediaStreamSource(this.stream);this.analyser=this.audioContext.createAnalyser(),this.analyser.fftSize=this.fftSize*2,this.analyser.smoothingTimeConstant=this.smoothingTimeConstant,t.connect(this.analyser),this.freqData=new Float32Array(this.fftSize),this.timeData=new Float32Array(this.fftSize)}async next(){if(this.isClosed)return{value:null,done:!0};let e,t,n=await this.getAudioData();if(this.includeSpectrogram){let o=this.flattenQueue(n.freqDataQueue);e=this.getTensorFromAudioDataArray(o,[this.numFrames,this.columnTruncateLength,1])}if(this.includeWaveform){let o=this.flattenQueue(n.timeDataQueue);t=this.getTensorFromAudioDataArray(o,[this.numFrames*this.fftSize,1])}return{value:{spectrogram:e,waveform:t},done:!1}}async capture(){return(await this.next()).value}async getAudioData(){let e=[],t=[],n=0;return new Promise(o=>{let s=setInterval(()=>{this.includeSpectrogram&&(this.analyser.getFloatFrequencyData(this.freqData),this.freqData[0]===-Infinity&&o({freqDataQueue:e,timeDataQueue:t}),e.push(this.freqData.slice(0,this.columnTruncateLength))),this.includeWaveform&&(this.analyser.getFloatTimeDomainData(this.timeData),t.push(this.timeData.slice())),++n===this.numFrames&&(clearInterval(s),o({freqDataQueue:e,timeDataQueue:t}))},this.fftSize/this.sampleRateHz*1e3)})}stop(){this.isClosed||(this.isClosed=!0,this.analyser.disconnect(),this.audioContext.close(),this.stream!=null&&this.stream.getTracks().length>0&&this.stream.getTracks()[0].stop())}toArray(){throw new Error("Can not convert infinite audio stream to array.")}getSampleRate(){return this.sampleRateHz}flattenQueue(e){let t=e[0].length,n=new Float32Array(e.length*t);return e.forEach((o,s)=>n.set(o,s*t)),n}getTensorFromAudioDataArray(e,t){let n=new Float32Array(y.sizeFromShape(t));return n.set(e,n.length-e.length),$r(n,t)}};var gh=class extends Xt{constructor(e,t){super();if(this.webcamVideoElement=e,this.webcamConfig=t,this.isClosed=!0,this.resize=!1,this.needToResize())if(this.resize=!0,this.cropSize=[this.webcamConfig.resizeHeight,this.webcamConfig.resizeWidth],this.cropBoxInd=Gt([0],"int32"),this.webcamConfig.centerCrop){let n=this.webcamConfig.resizeWidth*1/this.webcamVideoElement.width,o=this.webcamConfig.resizeHeight*1/this.webcamVideoElement.height,s=(1-n)/2,a=(1-o)/2,i=s+n,l=o+a;this.cropBox=Vi([a,s,l,i],[1,4])}else this.cropBox=Vi([0,0,1,1],[1,4])}summary(){return"webcam"}static async create(e,t={}){if(W().get("IS_NODE"))throw new Error("tf.data.webcam is only supported in browser environment.");if(!e){if(e=document.createElement("video"),!t.resizeWidth||!t.resizeHeight)throw new Error("Please provide webcam video element, or resizeWidth and resizeHeight to create a hidden video element.");e.width=t.resizeWidth,e.height=t.resizeHeight}let n=new gh(e,t);return await n.start(),n}async start(){this.webcamConfig.facingMode&&y.assert(this.webcamConfig.facingMode==="user"||this.webcamConfig.facingMode==="environment",()=>`Invalid webcam facing mode: ${this.webcamConfig.facingMode}. Please provide 'user' or 'environment'`);try{this.stream=await navigator.mediaDevices.getUserMedia({video:{deviceId:this.webcamConfig.deviceId,facingMode:this.webcamConfig.facingMode?this.webcamConfig.facingMode:"user",width:this.webcamVideoElement.width,height:this.webcamVideoElement.height}})}catch(e){throw e.message=`Error thrown while initializing video stream: ${e.message}`,e}if(!this.stream)throw new Error("Could not obtain video from webcam.");try{this.webcamVideoElement.srcObject=this.stream}catch(e){console.log(e),this.webcamVideoElement.src=window.URL.createObjectURL(this.stream)}return this.webcamVideoElement.play(),this.isClosed=!1,new Promise(e=>{this.webcamVideoElement.onloadedmetadata=()=>{e()}})}async next(){if(this.isClosed)return{value:null,done:!0};let e;try{e=eg.fromPixels(this.webcamVideoElement)}catch(t){throw new Error(`Error thrown converting video to pixels: ${JSON.stringify(t)}`)}if(this.resize)try{return{value:this.cropAndResizeFrame(e),done:!1}}catch(t){throw new Error(`Error thrown cropping the video: ${t.message}`)}finally{e.dispose()}else return{value:e,done:!1}}needToResize(){return!!(this.webcamConfig.resizeWidth&&this.webcamConfig.resizeHeight&&(this.webcamVideoElement.width!==this.webcamConfig.resizeWidth||this.webcamVideoElement.height!==this.webcamConfig.resizeHeight))}cropAndResizeFrame(e){return V(()=>{let t=ir(ne(e,"float32"),0),n;n=Ds.cropAndResize(t,this.cropBox,this.cropBoxInd,this.cropSize,"bilinear");let o=n.shape;return z(n,o.slice(1))})}async capture(){return(await this.next()).value}stop(){this.stream.getTracks().forEach(t=>t.stop());try{this.webcamVideoElement.srcObject=null}catch(t){console.log(t),this.webcamVideoElement.src=null}this.isClosed=!0}toArray(){throw new Error("Can not convert infinite video stream to array.")}};var xh=class{};var dy=class extends Xt{split(e){return new h3(this,e)}},h3=class extends dy{constructor(e,t){super();this.upstream=e,this.impl=new g3(e,t)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},g3=class extends Jp{constructor(e,t){super();this.upstream=e,this.separator=t,this.carryover=""}summary(){return`${this.upstream.summary()} -> Split('${this.separator}')`}async pump(){let e=await this.upstream.next();if(e.done)return this.carryover===""?!1:(this.outputQueue.push(this.carryover),this.carryover="",!0);let t=e.value.split(this.separator);t[0]=this.carryover+t[0];for(let n of t.slice(0,-1))this.outputQueue.push(n);return this.carryover=t[t.length-1],!0}};var aI=class extends Xt{decodeUTF8(){return new y3(this)}},y3=class extends dy{constructor(e){super();this.upstream=e,this.impl=new b3(e)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},b3=class extends Jp{constructor(e){super();if(this.upstream=e,W().get("IS_BROWSER"))this.decoder=new TextDecoder("utf-8");else{let{StringDecoder:t}=x3();this.decoder=new t("utf8")}}summary(){return`${this.upstream.summary()} -> Utf8`}async pump(){let e=await this.upstream.next(),t;if(e.done)return!1;t=e.value;let n;return W().get("IS_BROWSER")?n=this.decoder.decode(t,{stream:!0}):n=this.decoder.write(Buffer.from(t.buffer)),this.outputQueue.push(n),!0}};var yh=class extends aI{constructor(e,t={}){super();this.file=e,this.options=t,y.assert(e instanceof Uint8Array||(W().get("IS_BROWSER")?e instanceof File||e instanceof Blob:!1),()=>"FileChunkIterator only supports File, Blob and Uint8Array right now."),this.offset=t.offset||0,this.chunkSize=t.chunkSize||1024*1024}summary(){return`FileChunks ${this.file}`}async next(){return this.offset>=(this.file instanceof Uint8Array?this.file.byteLength:this.file.size)?{value:null,done:!0}:{value:await new Promise((t,n)=>{let o=this.offset+this.chunkSize;if(this.file instanceof Uint8Array)t(new Uint8Array(this.file.slice(this.offset,o)));else{let s=new FileReader;s.onload=i=>{let l=s.result;if(l instanceof ArrayBuffer&&(l=new Uint8Array(l)),!(l instanceof Uint8Array))return n(new TypeError("FileReader returned unknown type."));t(l)},s.onabort=i=>n(new Error("Aborted")),s.onerror=i=>n(new Error(i.type));let a=this.file.slice(this.offset,o);s.readAsArrayBuffer(a)}this.offset=o}),done:!1}}};async function w3(r,e={}){let t,n;typeof r=="string"?t=r:(t=r.url,n=qte(r));let o=await y.fetch(t,n);if(o.ok){let s=new Uint8Array(await o.arrayBuffer());return new yh(s,e)}else throw new Error(o.statusText)}var qte=r=>({method:r.method,headers:r.headers,body:r.body,mode:r.mode,credentials:r.credentials,cache:r.cache,redirect:r.redirect,referrer:r.referrer,integrity:r.integrity});function hy(r){return typeof r=="string"&&r.substr(0,7)==="file://"}var bh=class extends xh{constructor(e,t={}){super();this.input=e,this.options=t}async iterator(){if(hy(this.input)&&W().get("IS_NODE")){let e=require("fs");this.input=e.readFileSync(this.input.substr(7))}return new yh(this.input,this.options)}};var wh=class extends xh{constructor(e,t={}){super();this.url=e,this.fileOptions=t}async iterator(){return hy(this.url)?new bh(this.url,this.fileOptions).iterator():w3(this.url,this.fileOptions)}};function _3(r,e={}){return new dh(new wh(r),e)}function k3(r){let e=ph(r);return pn(async()=>e)}function v3(r){return pn(async()=>{let e=await r();return ph(()=>e.next())})}async function C3(r,e){return gh.create(r,e)}async function I3(r){return hh.create(r)}var N3="3.0.0";var Hte={tfjs:yI,"tfjs-core":bI,"tfjs-data":wI,"tfjs-layers":_I,"tfjs-converter":kI,"tfjs-backend-cpu":w_,"tfjs-backend-webgl":Pk,"tfjs-backend-wasm":x0};export{ss as Abs,Ks as Acos,Xs as Acosh,rp as AdadeltaOptimizer,np as AdagradOptimizer,op as AdamOptimizer,sp as AdamaxOptimizer,xn as Add,Wn as AddN,Vl as All,Gl as Any,Un as ArgMax,na as ArgMin,Ys as Asin,Zs as Asinh,Js as Atan,ei as Atan2,Qs as Atanh,qn as AvgPool,oa as AvgPool3D,Wl as AvgPool3DGrad,jl as AvgPoolGrad,px as BackendWasm,Hn as BatchMatMul,sa as BatchToSpaceND,Ul as Bincount,Pb as BroadcastTo,Ux as Callback,Sx as CallbackList,An as Cast,ti as Ceil,Dn as ClipByValue,ql as Complex,ia as ComplexAbs,is as Concat,Kn as Conv2D,Hl as Conv2DBackpropFilter,Xn as Conv2DBackpropInput,aa as Conv3D,Kl as Conv3DBackpropFilterV2,Xl as Conv3DBackpropInputV2,Yn as Cos,ri as Cosh,ni as CropAndResize,Zn as Cumsum,Ex as CustomCallback,Ja as DataStorage,Yl as DenseBincount,oi as DepthToSpace,Jn as DepthwiseConv2dNative,Zl as DepthwiseConv2dNativeBackpropFilter,Jl as DepthwiseConv2dNativeBackpropInput,Ql as Diag,la as Dilation2D,Fc as Dilation2DBackpropFilter,Rc as Dilation2DBackpropInput,Rb as ENV,Hx as EarlyStopping,si as Elu,eu as EluGrad,jh as Environment,ai as Equal,ii as Erf,eo as Exp,as as ExpandDims,li as Expm1,tu as FFT,ua as Fill,ui as FlipLeftRight,to as Floor,ro as FloorDiv,Oc as FromPixels,no as FusedBatchNorm,ws as FusedConv2D,_s as FusedDepthwiseConv2D,Wg as GPGPUContext,ci as GatherNd,ls as GatherV2,ly as GraphModel,pi as Greater,oo as GreaterEqual,Tx as History,ru as IFFT,us as Identity,nu as Imag,At as InputSpec,mi as IsFinite,fi as IsInf,di as IsNan,Ws as KernelBackend,ca as LRN,su as LRNGrad,ed as LayerVariable,In as LayersModel,so as LeakyRelu,hi as Less,gi as LessEqual,ou as LinSpace,io as Log,xi as Log1p,Mb as LogSoftmax,yi as LogicalAnd,Qa as LogicalNot,el as LogicalOr,vg as MathBackendCPU,Kg as MathBackendWebGL,ao as Max,uo as MaxPool,pa as MaxPool3D,au as MaxPool3DGrad,iu as MaxPoolGrad,lu as MaxPoolWithArgmax,lo as Maximum,co as Mean,po as Min,mo as Minimum,ma as MirrorPad,bi as Mod,ip as MomentumOptimizer,uu as Multinomial,fo as Multiply,cs as Neg,_i as NonMaxSuppressionV3,ki as NonMaxSuppressionV4,vi as NonMaxSuppressionV5,wi as NotEqual,VI as OP_SCOPE_SUFFIX,ho as OneHot,ps as OnesLike,Or as Optimizer,ms as Pack,go as PadV2,hV as Pool,xo as Pow,yo as Prelu,Ci as Prod,ap as RMSPropOptimizer,cn as RNN,fa as Range,Gb as Rank,cu as Real,Qn as RealDiv,Ii as Reciprocal,jt as Reduction,bo as Relu,_o as Relu6,fs as Reshape,wo as ResizeBilinear,mu as ResizeBilinearGrad,da as ResizeNearestNeighbor,pu as ResizeNearestNeighborGrad,ko as Reverse,Fi as RotateWithOffset,vo as Round,Co as Rsqrt,cl as SGDOptimizer,Ni as ScatterNd,ds as Select,Si as Selu,Yi as Sequential,No as Sigmoid,Ei as Sign,Io as Sin,Ti as Sinh,hs as Slice,Eo as Softmax,Ai as Softplus,ha as SpaceToBatchND,fu as SparseToDense,gs as SplitV,So as Sqrt,ga as Square,Ao as SquaredDifference,$n as Step,Di as StridedSlice,Do as Sub,To as Sum,Br as SymbolicTensor,$i as Tan,$o as Tanh,Ve as Tensor,ct as TensorBuffer,yn as Tile,Ri as TopK,Ro as Transpose,du as Unique,xs as Unpack,xa as UnsortedSegmentSum,nl as Variable,ys as ZerosLike,bs as _FusedMatMul,Et as abs,Sm as acos,Tm as acosh,Q as add,xw as addN,wu as all,il as any,al as argMax,Em as argMin,Am as asin,Dm as asinh,$m as atan,Rm as atan2,Fm as atanh,va as avgPool,Om as avgPool3d,gw as backend,N as backend_util,dj as basicLSTMCell,Oo as batchNorm,_w as batchNorm2d,kw as batchNorm3d,vw as batchNorm4d,Ca as batchToSpaceND,Cw as bincount,kU as booleanMaskAsync,ll as broadcastTo,eg as browser,Ce as buffer,YL as callbacks,ne as cast,Pm as ceil,sr as clipByValue,Rn as clone,bn as complex,Qe as concat,Iw as concat1d,Nw as concat2d,Sw as concat3d,Tw as concat4d,S0 as constraints,vu as conv1d,Ur as conv2d,Cu as conv2dTranspose,Mm as conv3d,Oj as conv3dTranspose,yV as copyRegisteredKernels,Ia as cos,Iu as cosh,lf as cosineWindow,Nu as cumsum,qr as customGrad,gy as data,Ew as denseBincount,ig as deprecationWarn,Lm as depthToSpace,Cs as depthwiseConv2d,QL as deregisterOp,Vc as device_util,jj as diag,zm as dilation2d,SG as disableDeprecationWarnings,Ee as dispose,TG as disposeVariables,de as div,Bm as divNoNan,Aw as dot,r_ as dropout,Is as elu,NG as enableDebugMode,IG as enableProdMode,n_ as enclosingPowerOfTwo,vs as engine,W as env,wn as equal,Vm as erf,Yt as exp,ir as expandDims,Gm as expm1,Xc as eye,Ra as fft,Na as fill,FG as findBackend,OG as findBackendFactory,Ns as floor,bu as floorDiv,Mk as forceHalfFloat,zo as fused,Po as gather,t_ as gatherND,tg as gather_util,$G as getBackend,Wh as getGradient,Mc as getKernel,_m as getKernelsForBackend,lA as gpgpu_util,yW as grad,bW as grads,er as greater,tn as greaterEqual,Bi as ifft,Su as imag,Ds as image,DU as inTopKAsync,$0 as initializers,jx as input,Cr as io,zu as irfft,Dw as isFinite,$w as isInf,Rw as isNaN,Dt as keep,Tr as kernel_impls,dC as layers,Sa as leakyRelu,Tu as less,Pn as lessEqual,l_ as linalg,Fw as linspace,Sz as loadGraphModel,ML as loadLayersModel,jm as localResponseNormalization,ar as log,Eu as log1p,Ow as logSigmoid,Au as logSoftmax,Um as logSumExp,dr as logicalAnd,Ta as logicalNot,Du as logicalOr,zw as logicalXor,vq as losses,je as matMul,yN as math,lr as max,Ea as maxPool,qm as maxPool3d,Bw as maxPoolWithArgmax,Hr as maximum,gt as mean,qc as memory,yC as metrics,zi as min,Ts as minimum,Hm as mirrorPad,Km as mod,OL as model,bC as models,Yc as moments,IU as movingAverage,M as mul,KW as multiRNNCell,Vw as multinomial,Ue as neg,uf as nextFrame,Gu as norm,Lo as notEqual,ks as oneHot,Ir as ones,tr as onesLike,T as op,QW as outerProduct,Rr as pad,r4 as pad1d,o4 as pad2d,i4 as pad3d,l4 as pad4d,Gw as pool,Fr as pow,Da as prelu,iw as print,$u as prod,EG as profile,x4 as rand,I4 as randomGamma,dg as randomNormal,Es as randomUniform,Jc as range,DG as ready,ul as real,Xm as reciprocal,yu as registerBackend,LL as registerCallbackConstructor,zb as registerGradient,tl as registerKernel,JL as registerOp,wC as regularizers,Nr as relu,Fu as relu6,RG as removeBackend,z as reshape,Kt as reverse,F4 as reverse1d,P4 as reverse2d,L4 as reverse3d,B4 as reverse4d,Fa as rfft,Ym as round,Ou as rsqrt,le as scalar,e_ as scatterND,rg as scatter_util,Pu as selu,Zm as separableConv2d,PL as sequential,J as serialization,FN as setBackend,PG as setPlatform,JZ as setWasmPath,QZ as setWasmPaths,V_ as setWebGLContext,Zw as setdiff1dAsync,Ig as shared,Wr as sigmoid,Jm as sign,kq as signal,Mu as sin,Lu as sinh,Fe as slice,Qm as slice1d,hg as slice2d,ef as slice3d,Qc as slice4d,or as slice_util,$a as softmax,Ss as softplus,Aa as spaceToBatchND,af as sparseToDense,_q as spectral,ur as split,yt as sqrt,Pe as square,Bu as squaredDifference,_n as squeeze,Vt as stack,As as step,tf as stridedSlice,ue as sub,ye as sum,hu as sumOutType,rf as tan,Li as tanh,$r as tensor,Gt as tensor1d,Vi as tensor2d,cw as tensor3d,mU as tensor4d,fU as tensor5d,dU as tensor6d,Fo as tensor_util,DN as test_util,V as tidy,On as tile,AG as time,nf as topk,pl as train,We as transpose,Vu as truncatedNormal,ep as unique,xV as unregisterGradient,gV as unregisterKernel,of as unsortedSegmentSum,cr as unstack,fr as upcastType,y as util,wW as valueAndGrad,_W as valueAndGrads,Jw as variable,cg as variableGrads,Hte as version,Tz as version_converter,CG as version_core,w_ as version_cpu,Gp as version_layers,x0 as version_wasm,Pk as version_webgl,o8 as webgl,nA as webgl_util,$t as where,sf as whereAsync,xt as zeros,Ie as zerosLike};
/**
* @license
* Copyright 2017 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2018 Google LLC
*
* Use of this source code is governed by an MIT-style
* license that can be found in the LICENSE file or at
* https://opensource.org/licenses/MIT.
* =============================================================================
*/
/**
* @license
* Copyright 2018 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* =============================================================================
*/
/**
* @license
* Copyright 2018 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2019 Google LLC
*
* Use of this source code is governed by an MIT-style
* license that can be found in the LICENSE file or at
* https://opensource.org/licenses/MIT.
* =============================================================================
*/
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* =============================================================================
*/
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2020 Google Inc. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2020 Google LLC
*
* Use of this source code is governed by an MIT-style
* license that can be found in the LICENSE file or at
* https://opensource.org/licenses/MIT.
* =============================================================================
*/
/**
* @license
* Copyright 2020 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2020 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the License);
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2021 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/** @license See the LICENSE file. */
//# sourceMappingURL=tfjs.esm.js.map