human/dist/human.js

7832 lines
1.6 MiB

/*
Human
homepage: <https://github.com/vladmandic/human>
author: <https://github.com/vladmandic>'
*/
"use strict";var Human=(()=>{var Gf=Object.defineProperty;var h_=Object.getOwnPropertyDescriptor;var f_=Object.getOwnPropertyNames;var m_=Object.prototype.hasOwnProperty;var g_=(e,t,n)=>t in e?Gf(e,t,{enumerable:!0,configurable:!0,writable:!0,value:n}):e[t]=n;var fa=(e,t)=>{for(var n in t)Gf(e,n,{get:t[n],enumerable:!0})},y_=(e,t,n,s)=>{if(t&&typeof t=="object"||typeof t=="function")for(let r of f_(t))!m_.call(e,r)&&r!==n&&Gf(e,r,{get:()=>t[r],enumerable:!(s=h_(t,r))||s.enumerable});return e};var A_=e=>y_(Gf({},"__esModule",{value:!0}),e);var ge=(e,t,n)=>(g_(e,typeof t!="symbol"?t+"":t,n),n),vv=(e,t,n)=>{if(!t.has(e))throw TypeError("Cannot "+n)};var Jd=(e,t,n)=>(vv(e,t,"read from private field"),n?n.call(e):t.get(e)),Qd=(e,t,n)=>{if(t.has(e))throw TypeError("Cannot add the same private member more than once");t instanceof WeakSet?t.add(e):t.set(e,n)},ep=(e,t,n,s)=>(vv(e,t,"write to private field"),s?s.call(e,n):t.set(e,n),n);var Fbe={};fa(Fbe,{Human:()=>Q4,default:()=>Q4,defaults:()=>Ua,draw:()=>j4,env:()=>he,match:()=>J4,models:()=>p1});function re(...e){let t=new Date,n=`${t.getHours().toString().padStart(2,"0")}:${t.getMinutes().toString().padStart(2,"0")}:${t.getSeconds().toString().padStart(2,"0")}.${t.getMilliseconds().toString().padStart(3,"0")}`;e&&console.log(n,"Human:",...e)}function wv(e,t){let n=e.endsWith("/")?"":"/",r=t.startsWith(".")||t.startsWith("/")||t.startsWith("http:")||t.startsWith("https:")||t.startsWith("file:")?`${t}`:`${e}${n}${t}`;if(!r.toLocaleLowerCase().includes(".json"))throw new Error(`modelpath error: expecting json file: ${r}`);return r}var le=()=>typeof performance!="undefined"?performance.now():parseInt((Number(process.hrtime.bigint())/1e3/1e3).toString());function c3(e,t,n="config",s=[]){for(let r of Object.keys(t))if(typeof t[r]=="object")c3(e[r],t[r],r,s);else{let a=e&&typeof e[r]!="undefined";a||s.push({reason:"unknown property",where:`${n}.${r} = ${t[r]}`});let o=e&&typeof e[r]==typeof t[r];a&&!o&&s.push({reason:"property type mismatch",where:`${n}.${r} = ${t[r]}`,expected:typeof e[r]})}return t.debug&&n==="config"&&s.length>0&&re("invalid configuration",s),s}function Xt(...e){let t=n=>n&&typeof n=="object";return e.reduce((n,s)=>(Object.keys(s||{}).forEach(r=>{let a=n[r],o=s[r];Array.isArray(a)&&Array.isArray(o)?n[r]=a.concat(...o):t(a)&&t(o)?n[r]=Xt(a,o):n[r]=o}),n),{})}var Ua={backend:"",modelBasePath:"",cacheModels:!0,validateModels:!0,wasmPath:"",wasmPlatformFetch:!1,debug:!1,async:!0,warmup:"full",cacheSensitivity:.7,skipAllowed:!1,deallocate:!1,softwareKernels:!1,filter:{enabled:!0,equalization:!1,width:0,height:0,flip:!1,return:!0,brightness:0,contrast:0,sharpness:0,blur:0,saturation:0,hue:0,negative:!1,sepia:!1,vintage:!1,kodachrome:!1,technicolor:!1,polaroid:!1,pixelate:0},gesture:{enabled:!0},face:{enabled:!0,detector:{modelPath:"blazeface.json",rotation:!0,maxDetected:1,skipFrames:99,skipTime:2500,minConfidence:.2,iouThreshold:.1,mask:!1,return:!1},mesh:{enabled:!0,modelPath:"facemesh.json",keepInvalid:!1},attention:{enabled:!1,modelPath:"facemesh-attention.json"},iris:{enabled:!0,modelPath:"iris.json"},emotion:{enabled:!0,minConfidence:.1,skipFrames:99,skipTime:1500,modelPath:"emotion.json"},description:{enabled:!0,modelPath:"faceres.json",skipFrames:99,skipTime:3e3,minConfidence:.1},antispoof:{enabled:!1,skipFrames:99,skipTime:4e3,modelPath:"antispoof.json"},liveness:{enabled:!1,skipFrames:99,skipTime:4e3,modelPath:"liveness.json"}},body:{enabled:!0,modelPath:"movenet-lightning.json",maxDetected:-1,minConfidence:.3,skipFrames:1,skipTime:200},hand:{enabled:!0,rotation:!0,skipFrames:99,skipTime:1e3,minConfidence:.5,iouThreshold:.2,maxDetected:-1,landmarks:!0,detector:{modelPath:"handtrack.json"},skeleton:{modelPath:"handlandmark-full.json"}},object:{enabled:!1,modelPath:"mb3-centernet.json",minConfidence:.2,iouThreshold:.4,maxDetected:10,skipFrames:99,skipTime:2e3},segmentation:{enabled:!1,modelPath:"selfie.json",blur:8}};var Je={};fa(Je,{Abs:()=>pl,Acos:()=>bc,Acosh:()=>vc,AdadeltaOptimizer:()=>e2,AdagradOptimizer:()=>t2,AdamOptimizer:()=>n2,AdamaxOptimizer:()=>s2,Add:()=>Ta,AddN:()=>fo,All:()=>wc,Any:()=>kc,ArgMax:()=>mo,ArgMin:()=>Sc,Asin:()=>Ic,Asinh:()=>Cc,Atan:()=>Tc,Atan2:()=>hl,Atanh:()=>Nc,AvgPool:()=>go,AvgPool3D:()=>Vp,AvgPool3DGrad:()=>Jm,AvgPoolGrad:()=>Ym,BackendWasm:()=>oT,BatchMatMul:()=>yo,BatchToSpaceND:()=>fl,Bincount:()=>Qm,BroadcastArgs:()=>e0,BroadcastTo:()=>I6,Callback:()=>Lk,CallbackList:()=>U8,Cast:()=>Ao,Ceil:()=>xo,ClipByValue:()=>Na,Complex:()=>Up,ComplexAbs:()=>Gp,Concat:()=>ml,Conv2D:()=>bo,Conv2DBackpropFilter:()=>t0,Conv2DBackpropInput:()=>vo,Conv3D:()=>Hp,Conv3DBackpropFilterV2:()=>n0,Conv3DBackpropInputV2:()=>s0,Cos:()=>wo,Cosh:()=>ko,CropAndResize:()=>yl,Cumprod:()=>gl,Cumsum:()=>So,CustomCallback:()=>H8,DataStorage:()=>Wp,DenseBincount:()=>r0,DepthToSpace:()=>Al,DepthwiseConv2dNative:()=>Io,DepthwiseConv2dNativeBackpropFilter:()=>a0,DepthwiseConv2dNativeBackpropInput:()=>o0,Diag:()=>i0,Dilation2D:()=>jp,Dilation2DBackpropFilter:()=>bm,Dilation2DBackpropInput:()=>xm,ENV:()=>Fy,EarlyStopping:()=>Bk,Einsum:()=>qp,Elu:()=>To,EluGrad:()=>l0,Environment:()=>k6,Equal:()=>xl,Erf:()=>Ec,Exp:()=>No,ExpandDims:()=>bl,Expm1:()=>vl,FFT:()=>u0,Fill:()=>Rc,FlipLeftRight:()=>wl,Floor:()=>Eo,FloorDiv:()=>Ro,FromPixels:()=>wp,FusedBatchNorm:()=>_o,FusedConv2D:()=>to,FusedDepthwiseConv2D:()=>no,GPGPUContext:()=>ec,GatherNd:()=>Sl,GatherV2:()=>kl,GraphModel:()=>zh,Greater:()=>Il,GreaterEqual:()=>Do,History:()=>G8,IFFT:()=>c0,Identity:()=>$o,Imag:()=>Xp,InputSpec:()=>an,IsFinite:()=>_c,IsInf:()=>Dc,IsNan:()=>Cl,KernelBackend:()=>Ac,LRN:()=>Kp,LRNGrad:()=>p0,LayerVariable:()=>O8,LayersModel:()=>ba,LeakyRelu:()=>Po,Less:()=>Tl,LessEqual:()=>Nl,LinSpace:()=>d0,Log:()=>Fo,Log1p:()=>$c,LogSoftmax:()=>T6,LogicalAnd:()=>El,LogicalNot:()=>Rl,LogicalOr:()=>Pc,LogicalXor:()=>C6,LowerBound:()=>uD,MathBackendWebGL:()=>pd,Max:()=>Oo,MaxPool:()=>zo,MaxPool3D:()=>Zp,MaxPool3DGrad:()=>f0,MaxPoolGrad:()=>h0,MaxPoolWithArgmax:()=>m0,Maximum:()=>Mo,Mean:()=>Lo,Min:()=>Bo,Minimum:()=>Wo,MirrorPad:()=>Vo,Mod:()=>Fc,MomentumOptimizer:()=>r2,Multinomial:()=>g0,Multiply:()=>Uo,Neg:()=>_l,NonMaxSuppressionV3:()=>$l,NonMaxSuppressionV4:()=>Oc,NonMaxSuppressionV5:()=>Pl,NotEqual:()=>Dl,OP_SCOPE_SUFFIX:()=>Ly,OneHot:()=>Ol,OnesLike:()=>Fl,Optimizer:()=>_a,OptimizerConstructors:()=>Ga,Pack:()=>Ml,PadV2:()=>Go,Pool:()=>cD,Pow:()=>Ho,Prelu:()=>jo,Prod:()=>qo,RMSPropOptimizer:()=>a2,RNN:()=>ia,RaggedTensorToTensor:()=>y0,Range:()=>Mc,Rank:()=>E3,Real:()=>Yp,RealDiv:()=>Co,Reciprocal:()=>zl,Reduction:()=>ss,Relu:()=>Xo,Relu6:()=>Yo,Reshape:()=>Ll,ResizeBilinear:()=>Zo,ResizeBilinearGrad:()=>x0,ResizeNearestNeighbor:()=>Ko,ResizeNearestNeighborGrad:()=>A0,Reverse:()=>Bl,RotateWithOffset:()=>eu,Round:()=>Wl,Rsqrt:()=>Jo,SGDOptimizer:()=>Ch,ScatterNd:()=>Vl,SearchSorted:()=>b0,Select:()=>Ul,Selu:()=>zc,Sequential:()=>dc,Sigmoid:()=>ei,Sign:()=>Lc,Sin:()=>Qo,Sinh:()=>Hl,Slice:()=>Gl,Softmax:()=>si,Softplus:()=>Bc,SpaceToBatchND:()=>jl,SparseFillEmptyRows:()=>Jp,SparseReshape:()=>Wc,SparseSegmentMean:()=>Qp,SparseSegmentSum:()=>eh,SparseToDense:()=>th,SplitV:()=>ql,Sqrt:()=>ti,Square:()=>Vc,SquaredDifference:()=>ri,Step:()=>ii,StridedSlice:()=>Xl,StringNGrams:()=>Uc,StringSplit:()=>nh,StringToHashBucketFast:()=>sh,Sub:()=>ai,Sum:()=>ni,SymbolicTensor:()=>Pr,Tan:()=>Kl,Tanh:()=>oi,Tensor:()=>st,TensorBuffer:()=>mn,Tile:()=>Ea,TopK:()=>Zl,Transform:()=>Yl,Transpose:()=>Qr,Unique:()=>v0,Unpack:()=>Jl,UnsortedSegmentSum:()=>rh,UpperBound:()=>dD,Variable:()=>Ip,WebGPUBackend:()=>F2,ZerosLike:()=>Ql,_FusedMatMul:()=>eo,abs:()=>sn,acos:()=>sA,acosh:()=>rA,add:()=>ue,addN:()=>k0,all:()=>S0,any:()=>Np,argMax:()=>Ps,argMin:()=>aA,asin:()=>oA,asinh:()=>iA,atan:()=>lA,atan2:()=>uA,atanh:()=>cA,avgPool:()=>hh,avgPool3d:()=>pA,backend:()=>Hn,backend_util:()=>T,basicLSTMCell:()=>Aw,batchNorm:()=>jc,batchNorm2d:()=>hA,batchNorm3d:()=>fA,batchNorm4d:()=>mA,batchToSpaceND:()=>fh,bincount:()=>gA,booleanMaskAsync:()=>e8,broadcastArgs:()=>xw,broadcastTo:()=>Ki,broadcast_util:()=>nu,browser:()=>nr,buffer:()=>We,callbacks:()=>wj,cast:()=>ye,ceil:()=>yA,clipByValue:()=>xs,clone:()=>Vn,complex:()=>wa,concat:()=>It,concat1d:()=>AA,concat2d:()=>su,concat3d:()=>xA,concat4d:()=>bA,constraints:()=>L8,conv1d:()=>I0,conv2d:()=>ka,conv2dTranspose:()=>C0,conv3d:()=>wA,conv3dTranspose:()=>kA,copyRegisteredKernels:()=>mD,cos:()=>mh,cosh:()=>T0,cosineWindow:()=>K0,cumprod:()=>Ep,cumsum:()=>N0,customGrad:()=>sa,data:()=>cS,denseBincount:()=>vw,deprecationWarn:()=>qy,depthToSpace:()=>SA,depthwiseConv2d:()=>qc,deregisterOp:()=>Ij,device_util:()=>lh,diag:()=>ww,dilation2d:()=>IA,disableDeprecationWarnings:()=>V$,dispose:()=>J,disposeVariables:()=>U$,div:()=>fe,divNoNan:()=>CA,dot:()=>TA,dropout:()=>QA,einsum:()=>kw,elu:()=>Xc,enableDebugMode:()=>W$,enableProdMode:()=>jy,enclosingPowerOfTwo:()=>e5,engine:()=>rn,env:()=>H,equal:()=>Fs,erf:()=>NA,euclideanNorm:()=>_A,exp:()=>Os,expandDims:()=>Bt,expm1:()=>DA,eye:()=>E0,fft:()=>Sh,fill:()=>Zc,findBackend:()=>Xy,findBackendFactory:()=>q$,floor:()=>Yc,floorDiv:()=>Hc,forceHalfFloat:()=>I9,fused:()=>lc,gather:()=>Jc,gatherND:()=>r8,gather_util:()=>Zy,getBackend:()=>Cn,getGradient:()=>T3,getKernel:()=>vm,getKernelsForBackend:()=>ta,getThreadsCount:()=>s0e,gpgpu_util:()=>s9,grad:()=>gO,grads:()=>yO,greater:()=>ws,greaterEqual:()=>ci,ifft:()=>ic,imag:()=>dh,image:()=>Ie,inTopKAsync:()=>a8,initializers:()=>B8,input:()=>ak,io:()=>Ds,irfft:()=>H0,isFinite:()=>$A,isInf:()=>PA,isNaN:()=>FA,keep:()=>kn,kernel_impls:()=>yr,layers:()=>W8,leakyRelu:()=>gh,less:()=>R0,lessEqual:()=>di,linalg:()=>s5,linspace:()=>Nw,loadGraphModel:()=>Nq,loadGraphModelSync:()=>Eq,loadLayersModel:()=>DG,localResponseNormalization:()=>OA,log:()=>Ms,log1p:()=>yh,logSigmoid:()=>MA,logSoftmax:()=>D0,logSumExp:()=>$0,logicalAnd:()=>mr,logicalNot:()=>Ah,logicalOr:()=>P0,logicalXor:()=>zA,losses:()=>y8,lowerBound:()=>Rw,matMul:()=>et,math:()=>Y6,max:()=>gn,maxPool:()=>xh,maxPool3d:()=>LA,maxPoolWithArgmax:()=>_w,maximum:()=>oa,mean:()=>Wt,memory:()=>Sm,meshgrid:()=>Dw,metrics:()=>Ok,min:()=>Sa,minimum:()=>Qc,mirrorPad:()=>BA,mod:()=>au,model:()=>RG,models:()=>Mk,moments:()=>bh,movingAverage:()=>t8,mul:()=>z,multiRNNCell:()=>$w,multinomial:()=>Pw,neg:()=>$t,nextFrame:()=>r5,norm:()=>Kc,notEqual:()=>rl,oneHot:()=>rc,ones:()=>$s,onesLike:()=>zs,op:()=>W,outerProduct:()=>Fw,pad:()=>sr,pad1d:()=>Ow,pad2d:()=>Mw,pad3d:()=>zw,pad4d:()=>Lw,pool:()=>WA,pow:()=>Ia,prelu:()=>wh,print:()=>Uy,prod:()=>VA,profile:()=>G$,raggedTensorToTensor:()=>Bw,rand:()=>Ww,randomGamma:()=>Vw,randomNormal:()=>O0,randomStandardNormal:()=>Uw,randomUniform:()=>ed,range:()=>oc,ready:()=>Gc,real:()=>ac,reciprocal:()=>HA,registerBackend:()=>tu,registerCallbackConstructor:()=>$G,registerGradient:()=>N6,registerKernel:()=>tr,registerOp:()=>Sj,regularizers:()=>zk,relu:()=>Wr,relu6:()=>M0,removeBackend:()=>j$,reshape:()=>V,reverse:()=>Qs,reverse1d:()=>Gw,reverse2d:()=>Hw,reverse3d:()=>jw,reverse4d:()=>qw,rfft:()=>Ih,round:()=>z0,rsqrt:()=>L0,scalar:()=>Ce,scatterND:()=>n8,scatter_util:()=>Yy,searchSorted:()=>F0,selu:()=>B0,separableConv2d:()=>W0,sequential:()=>_G,serialization:()=>de,setBackend:()=>ch,setPlatform:()=>X$,setThreadsCount:()=>n0e,setWasmPath:()=>t0e,setWasmPaths:()=>P2,setWebGLContext:()=>T2,setdiff1dAsync:()=>Xw,sigmoid:()=>$n,sign:()=>jA,signal:()=>g8,sin:()=>V0,sinh:()=>U0,slice:()=>ze,slice1d:()=>kh,slice2d:()=>G0,slice3d:()=>pi,slice4d:()=>ro,slice_util:()=>Gt,softmax:()=>ou,softplus:()=>ru,spaceToBatchND:()=>vh,sparse:()=>A8,sparseToDense:()=>s8,spectral:()=>m8,split:()=>Yt,sqrt:()=>Fn,square:()=>bt,squaredDifference:()=>j0,squeeze:()=>rt,stack:()=>ln,step:()=>iu,stridedSlice:()=>qA,string:()=>x8,sub:()=>me,sum:()=>ke,sumOutType:()=>ih,tan:()=>XA,tanh:()=>nl,tensor:()=>ct,tensor1d:()=>Pt,tensor2d:()=>fr,tensor3d:()=>Ky,tensor4d:()=>Kw,tensor5d:()=>Zw,tensor6d:()=>Yw,tensor_util:()=>Fr,test_util:()=>pw,tidy:()=>Z,tile:()=>Ks,time:()=>H$,topk:()=>KA,train:()=>Li,transpose:()=>tt,truncatedNormal:()=>q0,unique:()=>ZA,unregisterGradient:()=>fD,unregisterKernel:()=>hD,unsortedSegmentSum:()=>X0,unstack:()=>On,upcastType:()=>Un,upperBound:()=>Jw,util:()=>v,valueAndGrad:()=>AO,valueAndGrads:()=>xO,variable:()=>YA,variableGrads:()=>Ew,version:()=>Xh,version_converter:()=>_q,version_core:()=>nA,version_layers:()=>C5,version_wasm:()=>r0e,version_webgl:()=>Zne,webgl:()=>Yne,webgl_util:()=>TI,webgpu_util:()=>uT,where:()=>Gn,whereAsync:()=>JA,zeros:()=>Vt,zerosLike:()=>lt});var x_=Object.create,Ry=Object.defineProperty,b_=Object.getOwnPropertyDescriptor,d6=Object.getOwnPropertyNames,v_=Object.getPrototypeOf,w_=Object.prototype.hasOwnProperty,un=(e,t)=>function(){return t||(0,e[d6(e)[0]])((t={exports:{}}).exports,t),t.exports},He=(e,t)=>{for(var n in t)Ry(e,n,{get:t[n],enumerable:!0})},k_=(e,t,n,s)=>{if(t&&typeof t=="object"||typeof t=="function")for(let r of d6(t))!w_.call(e,r)&&r!==n&&Ry(e,r,{get:()=>t[r],enumerable:!(s=b_(t,r))||s.enumerable});return e},po=(e,t,n)=>(n=e!=null?x_(v_(e)):{},k_(t||!e||!e.__esModule?Ry(n,"default",{value:e,enumerable:!0}):n,e)),S_=un({"node_modules/.pnpm/long@4.0.0/node_modules/long/src/long.js"(e,t){t.exports=s;var n=null;try{n=new WebAssembly.Instance(new WebAssembly.Module(new Uint8Array([0,97,115,109,1,0,0,0,1,13,2,96,0,1,127,96,4,127,127,127,127,1,127,3,7,6,0,1,1,1,1,1,6,6,1,127,1,65,0,11,7,50,6,3,109,117,108,0,1,5,100,105,118,95,115,0,2,5,100,105,118,95,117,0,3,5,114,101,109,95,115,0,4,5,114,101,109,95,117,0,5,8,103,101,116,95,104,105,103,104,0,0,10,191,1,6,4,0,35,0,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,126,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,127,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,128,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,129,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,130,34,4,66,32,135,167,36,0,32,4,167,11])),{}).exports}catch(P){}function s(P,C,M){this.low=P|0,this.high=C|0,this.unsigned=!!M}s.prototype.__isLong__,Object.defineProperty(s.prototype,"__isLong__",{value:!0});function r(P){return(P&&P.__isLong__)===!0}s.isLong=r;var a={},o={};function i(P,C){var M,L,G;return C?(P>>>=0,(G=0<=P&&P<256)&&(L=o[P],L)?L:(M=u(P,(P|0)<0?-1:0,!0),G&&(o[P]=M),M)):(P|=0,(G=-128<=P&&P<128)&&(L=a[P],L)?L:(M=u(P,P<0?-1:0,!1),G&&(a[P]=M),M))}s.fromInt=i;function l(P,C){if(isNaN(P))return C?b:A;if(C){if(P<0)return b;if(P>=g)return _}else{if(P<=-y)return D;if(P+1>=y)return E}return P<0?l(-P,C).neg():u(P%m|0,P/m|0,C)}s.fromNumber=l;function u(P,C,M){return new s(P,C,M)}s.fromBits=u;var c=Math.pow;function p(P,C,M){if(P.length===0)throw Error("empty string");if(P==="NaN"||P==="Infinity"||P==="+Infinity"||P==="-Infinity")return A;if(typeof C=="number"?(M=C,C=!1):C=!!C,M=M||10,M<2||36<M)throw RangeError("radix");var L;if((L=P.indexOf("-"))>0)throw Error("interior hyphen");if(L===0)return p(P.substring(1),C,M).neg();for(var G=l(c(M,8)),K=A,X=0;X<P.length;X+=8){var Y=Math.min(8,P.length-X),ne=parseInt(P.substring(X,X+Y),M);if(Y<8){var ee=l(c(M,Y));K=K.mul(ee).add(l(ne))}else K=K.mul(G),K=K.add(l(ne))}return K.unsigned=C,K}s.fromString=p;function d(P,C){return typeof P=="number"?l(P,C):typeof P=="string"?p(P,C):u(P.low,P.high,typeof C=="boolean"?C:P.unsigned)}s.fromValue=d;var h=1<<16,f=1<<24,m=h*h,g=m*m,y=g/2,x=i(f),A=i(0);s.ZERO=A;var b=i(0,!0);s.UZERO=b;var w=i(1);s.ONE=w;var S=i(1,!0);s.UONE=S;var k=i(-1);s.NEG_ONE=k;var E=u(-1,2147483647,!1);s.MAX_VALUE=E;var _=u(-1,-1,!0);s.MAX_UNSIGNED_VALUE=_;var D=u(0,-2147483648,!1);s.MIN_VALUE=D;var R=s.prototype;R.toInt=function(){return this.unsigned?this.low>>>0:this.low},R.toNumber=function(){return this.unsigned?(this.high>>>0)*m+(this.low>>>0):this.high*m+(this.low>>>0)},R.toString=function(C){if(C=C||10,C<2||36<C)throw RangeError("radix");if(this.isZero())return"0";if(this.isNegative())if(this.eq(D)){var M=l(C),L=this.div(M),G=L.mul(M).sub(this);return L.toString(C)+G.toInt().toString(C)}else return"-"+this.neg().toString(C);for(var K=l(c(C,6),this.unsigned),X=this,Y="";;){var ne=X.div(K),ee=X.sub(ne.mul(K)).toInt()>>>0,ie=ee.toString(C);if(X=ne,X.isZero())return ie+Y;for(;ie.length<6;)ie="0"+ie;Y=""+ie+Y}},R.getHighBits=function(){return this.high},R.getHighBitsUnsigned=function(){return this.high>>>0},R.getLowBits=function(){return this.low},R.getLowBitsUnsigned=function(){return this.low>>>0},R.getNumBitsAbs=function(){if(this.isNegative())return this.eq(D)?64:this.neg().getNumBitsAbs();for(var C=this.high!=0?this.high:this.low,M=31;M>0&&(C&1<<M)==0;M--);return this.high!=0?M+33:M+1},R.isZero=function(){return this.high===0&&this.low===0},R.eqz=R.isZero,R.isNegative=function(){return!this.unsigned&&this.high<0},R.isPositive=function(){return this.unsigned||this.high>=0},R.isOdd=function(){return(this.low&1)===1},R.isEven=function(){return(this.low&1)===0},R.equals=function(C){return r(C)||(C=d(C)),this.unsigned!==C.unsigned&&this.high>>>31===1&&C.high>>>31===1?!1:this.high===C.high&&this.low===C.low},R.eq=R.equals,R.notEquals=function(C){return!this.eq(C)},R.neq=R.notEquals,R.ne=R.notEquals,R.lessThan=function(C){return this.comp(C)<0},R.lt=R.lessThan,R.lessThanOrEqual=function(C){return this.comp(C)<=0},R.lte=R.lessThanOrEqual,R.le=R.lessThanOrEqual,R.greaterThan=function(C){return this.comp(C)>0},R.gt=R.greaterThan,R.greaterThanOrEqual=function(C){return this.comp(C)>=0},R.gte=R.greaterThanOrEqual,R.ge=R.greaterThanOrEqual,R.compare=function(C){if(r(C)||(C=d(C)),this.eq(C))return 0;var M=this.isNegative(),L=C.isNegative();return M&&!L?-1:!M&&L?1:this.unsigned?C.high>>>0>this.high>>>0||C.high===this.high&&C.low>>>0>this.low>>>0?-1:1:this.sub(C).isNegative()?-1:1},R.comp=R.compare,R.negate=function(){return!this.unsigned&&this.eq(D)?D:this.not().add(w)},R.neg=R.negate,R.add=function(C){r(C)||(C=d(C));var M=this.high>>>16,L=this.high&65535,G=this.low>>>16,K=this.low&65535,X=C.high>>>16,Y=C.high&65535,ne=C.low>>>16,ee=C.low&65535,ie=0,se=0,pe=0,ce=0;return ce+=K+ee,pe+=ce>>>16,ce&=65535,pe+=G+ne,se+=pe>>>16,pe&=65535,se+=L+Y,ie+=se>>>16,se&=65535,ie+=M+X,ie&=65535,u(pe<<16|ce,ie<<16|se,this.unsigned)},R.subtract=function(C){return r(C)||(C=d(C)),this.add(C.neg())},R.sub=R.subtract,R.multiply=function(C){if(this.isZero())return A;if(r(C)||(C=d(C)),n){var M=n.mul(this.low,this.high,C.low,C.high);return u(M,n.get_high(),this.unsigned)}if(C.isZero())return A;if(this.eq(D))return C.isOdd()?D:A;if(C.eq(D))return this.isOdd()?D:A;if(this.isNegative())return C.isNegative()?this.neg().mul(C.neg()):this.neg().mul(C).neg();if(C.isNegative())return this.mul(C.neg()).neg();if(this.lt(x)&&C.lt(x))return l(this.toNumber()*C.toNumber(),this.unsigned);var L=this.high>>>16,G=this.high&65535,K=this.low>>>16,X=this.low&65535,Y=C.high>>>16,ne=C.high&65535,ee=C.low>>>16,ie=C.low&65535,se=0,pe=0,ce=0,xe=0;return xe+=X*ie,ce+=xe>>>16,xe&=65535,ce+=K*ie,pe+=ce>>>16,ce&=65535,ce+=X*ee,pe+=ce>>>16,ce&=65535,pe+=G*ie,se+=pe>>>16,pe&=65535,pe+=K*ee,se+=pe>>>16,pe&=65535,pe+=X*ne,se+=pe>>>16,pe&=65535,se+=L*ie+G*ee+K*ne+X*Y,se&=65535,u(ce<<16|xe,se<<16|pe,this.unsigned)},R.mul=R.multiply,R.divide=function(C){if(r(C)||(C=d(C)),C.isZero())throw Error("division by zero");if(n){if(!this.unsigned&&this.high===-2147483648&&C.low===-1&&C.high===-1)return this;var M=(this.unsigned?n.div_u:n.div_s)(this.low,this.high,C.low,C.high);return u(M,n.get_high(),this.unsigned)}if(this.isZero())return this.unsigned?b:A;var L,G,K;if(this.unsigned){if(C.unsigned||(C=C.toUnsigned()),C.gt(this))return b;if(C.gt(this.shru(1)))return S;K=b}else{if(this.eq(D)){if(C.eq(w)||C.eq(k))return D;if(C.eq(D))return w;var X=this.shr(1);return L=X.div(C).shl(1),L.eq(A)?C.isNegative()?w:k:(G=this.sub(C.mul(L)),K=L.add(G.div(C)),K)}else if(C.eq(D))return this.unsigned?b:A;if(this.isNegative())return C.isNegative()?this.neg().div(C.neg()):this.neg().div(C).neg();if(C.isNegative())return this.div(C.neg()).neg();K=A}for(G=this;G.gte(C);){L=Math.max(1,Math.floor(G.toNumber()/C.toNumber()));for(var Y=Math.ceil(Math.log(L)/Math.LN2),ne=Y<=48?1:c(2,Y-48),ee=l(L),ie=ee.mul(C);ie.isNegative()||ie.gt(G);)L-=ne,ee=l(L,this.unsigned),ie=ee.mul(C);ee.isZero()&&(ee=w),K=K.add(ee),G=G.sub(ie)}return K},R.div=R.divide,R.modulo=function(C){if(r(C)||(C=d(C)),n){var M=(this.unsigned?n.rem_u:n.rem_s)(this.low,this.high,C.low,C.high);return u(M,n.get_high(),this.unsigned)}return this.sub(this.div(C).mul(C))},R.mod=R.modulo,R.rem=R.modulo,R.not=function(){return u(~this.low,~this.high,this.unsigned)},R.and=function(C){return r(C)||(C=d(C)),u(this.low&C.low,this.high&C.high,this.unsigned)},R.or=function(C){return r(C)||(C=d(C)),u(this.low|C.low,this.high|C.high,this.unsigned)},R.xor=function(C){return r(C)||(C=d(C)),u(this.low^C.low,this.high^C.high,this.unsigned)},R.shiftLeft=function(C){return r(C)&&(C=C.toInt()),(C&=63)===0?this:C<32?u(this.low<<C,this.high<<C|this.low>>>32-C,this.unsigned):u(0,this.low<<C-32,this.unsigned)},R.shl=R.shiftLeft,R.shiftRight=function(C){return r(C)&&(C=C.toInt()),(C&=63)===0?this:C<32?u(this.low>>>C|this.high<<32-C,this.high>>C,this.unsigned):u(this.high>>C-32,this.high>=0?0:-1,this.unsigned)},R.shr=R.shiftRight,R.shiftRightUnsigned=function(C){if(r(C)&&(C=C.toInt()),C&=63,C===0)return this;var M=this.high;if(C<32){var L=this.low;return u(L>>>C|M<<32-C,M>>>C,this.unsigned)}else return C===32?u(M,0,this.unsigned):u(M>>>C-32,0,this.unsigned)},R.shru=R.shiftRightUnsigned,R.shr_u=R.shiftRightUnsigned,R.toSigned=function(){return this.unsigned?u(this.low,this.high,!1):this},R.toUnsigned=function(){return this.unsigned?this:u(this.low,this.high,!0)},R.toBytes=function(C){return C?this.toBytesLE():this.toBytesBE()},R.toBytesLE=function(){var C=this.high,M=this.low;return[M&255,M>>>8&255,M>>>16&255,M>>>24,C&255,C>>>8&255,C>>>16&255,C>>>24]},R.toBytesBE=function(){var C=this.high,M=this.low;return[C>>>24,C>>>16&255,C>>>8&255,C&255,M>>>24,M>>>16&255,M>>>8&255,M&255]},s.fromBytes=function(C,M,L){return L?s.fromBytesLE(C,M):s.fromBytesBE(C,M)},s.fromBytesLE=function(C,M){return new s(C[0]|C[1]<<8|C[2]<<16|C[3]<<24,C[4]|C[5]<<8|C[6]<<16|C[7]<<24,M)},s.fromBytesBE=function(C,M){return new s(C[4]<<24|C[5]<<16|C[6]<<8|C[7],C[0]<<24|C[1]<<16|C[2]<<8|C[3],M)}}}),I_=un({"(disabled):node_modules/.pnpm/node-fetch@2.6.7/node_modules/node-fetch/browser.js"(){}}),C_=un({"(disabled):util"(){}}),T_=un({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/alea.js"(e,t){(function(n,s,r){function a(u){var c=this,p=l();c.next=function(){var d=2091639*c.s0+c.c*23283064365386963e-26;return c.s0=c.s1,c.s1=c.s2,c.s2=d-(c.c=d|0)},c.c=1,c.s0=p(" "),c.s1=p(" "),c.s2=p(" "),c.s0-=p(u),c.s0<0&&(c.s0+=1),c.s1-=p(u),c.s1<0&&(c.s1+=1),c.s2-=p(u),c.s2<0&&(c.s2+=1),p=null}function o(u,c){return c.c=u.c,c.s0=u.s0,c.s1=u.s1,c.s2=u.s2,c}function i(u,c){var p=new a(u),d=c&&c.state,h=p.next;return h.int32=function(){return p.next()*4294967296|0},h.double=function(){return h()+(h()*2097152|0)*11102230246251565e-32},h.quick=h,d&&(typeof d=="object"&&o(d,p),h.state=function(){return o(p,{})}),h}function l(){var u=4022871197,c=function(p){p=String(p);for(var d=0;d<p.length;d++){u+=p.charCodeAt(d);var h=.02519603282416938*u;u=h>>>0,h-=u,h*=u,u=h>>>0,h-=u,u+=h*4294967296}return(u>>>0)*23283064365386963e-26};return c}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.alea=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),N_=un({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xor128.js"(e,t){(function(n,s,r){function a(l){var u=this,c="";u.x=0,u.y=0,u.z=0,u.w=0,u.next=function(){var d=u.x^u.x<<11;return u.x=u.y,u.y=u.z,u.z=u.w,u.w^=u.w>>>19^d^d>>>8},l===(l|0)?u.x=l:c+=l;for(var p=0;p<c.length+64;p++)u.x^=c.charCodeAt(p)|0,u.next()}function o(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u}function i(l,u){var c=new a(l),p=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var h=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,p&&(typeof p=="object"&&o(p,c),d.state=function(){return o(c,{})}),d}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xor128=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),E_=un({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xorwow.js"(e,t){(function(n,s,r){function a(l){var u=this,c="";u.next=function(){var d=u.x^u.x>>>2;return u.x=u.y,u.y=u.z,u.z=u.w,u.w=u.v,(u.d=u.d+362437|0)+(u.v=u.v^u.v<<4^(d^d<<1))|0},u.x=0,u.y=0,u.z=0,u.w=0,u.v=0,l===(l|0)?u.x=l:c+=l;for(var p=0;p<c.length+64;p++)u.x^=c.charCodeAt(p)|0,p==c.length&&(u.d=u.x<<10^u.x>>>4),u.next()}function o(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u.v=l.v,u.d=l.d,u}function i(l,u){var c=new a(l),p=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var h=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,p&&(typeof p=="object"&&o(p,c),d.state=function(){return o(c,{})}),d}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xorwow=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),R_=un({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xorshift7.js"(e,t){(function(n,s,r){function a(l){var u=this;u.next=function(){var p=u.x,d=u.i,h,f,m;return h=p[d],h^=h>>>7,f=h^h<<24,h=p[d+1&7],f^=h^h>>>10,h=p[d+3&7],f^=h^h>>>3,h=p[d+4&7],f^=h^h<<7,h=p[d+7&7],h=h^h<<13,f^=h^h<<9,p[d]=f,u.i=d+1&7,f};function c(p,d){var h,f,m=[];if(d===(d|0))f=m[0]=d;else for(d=""+d,h=0;h<d.length;++h)m[h&7]=m[h&7]<<15^d.charCodeAt(h)+m[h+1&7]<<13;for(;m.length<8;)m.push(0);for(h=0;h<8&&m[h]===0;++h);for(h==8?f=m[7]=-1:f=m[h],p.x=m,p.i=0,h=256;h>0;--h)p.next()}c(u,l)}function o(l,u){return u.x=l.x.slice(),u.i=l.i,u}function i(l,u){l==null&&(l=+new Date);var c=new a(l),p=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var h=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,p&&(p.x&&o(p,c),d.state=function(){return o(c,{})}),d}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xorshift7=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),__=un({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xor4096.js"(e,t){(function(n,s,r){function a(l){var u=this;u.next=function(){var p=u.w,d=u.X,h=u.i,f,m;return u.w=p=p+1640531527|0,m=d[h+34&127],f=d[h=h+1&127],m^=m<<13,f^=f<<17,m^=m>>>15,f^=f>>>12,m=d[h]=m^f,u.i=h,m+(p^p>>>16)|0};function c(p,d){var h,f,m,g,y,x=[],A=128;for(d===(d|0)?(f=d,d=null):(d=d+"\0",f=0,A=Math.max(A,d.length)),m=0,g=-32;g<A;++g)d&&(f^=d.charCodeAt((g+32)%d.length)),g===0&&(y=f),f^=f<<10,f^=f>>>15,f^=f<<4,f^=f>>>13,g>=0&&(y=y+1640531527|0,h=x[g&127]^=f+y,m=h==0?m+1:0);for(m>=128&&(x[(d&&d.length||0)&127]=-1),m=127,g=4*128;g>0;--g)f=x[m+34&127],h=x[m=m+1&127],f^=f<<13,h^=h<<17,f^=f>>>15,h^=h>>>12,x[m]=f^h;p.w=y,p.X=x,p.i=m}c(u,l)}function o(l,u){return u.i=l.i,u.w=l.w,u.X=l.X.slice(),u}function i(l,u){l==null&&(l=+new Date);var c=new a(l),p=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var h=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,p&&(p.X&&o(p,c),d.state=function(){return o(c,{})}),d}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xor4096=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),D_=un({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/tychei.js"(e,t){(function(n,s,r){function a(l){var u=this,c="";u.next=function(){var d=u.b,h=u.c,f=u.d,m=u.a;return d=d<<25^d>>>7^h,h=h-f|0,f=f<<24^f>>>8^m,m=m-d|0,u.b=d=d<<20^d>>>12^h,u.c=h=h-f|0,u.d=f<<16^h>>>16^m,u.a=m-d|0},u.a=0,u.b=0,u.c=-1640531527,u.d=1367130551,l===Math.floor(l)?(u.a=l/4294967296|0,u.b=l|0):c+=l;for(var p=0;p<c.length+20;p++)u.b^=c.charCodeAt(p)|0,u.next()}function o(l,u){return u.a=l.a,u.b=l.b,u.c=l.c,u.d=l.d,u}function i(l,u){var c=new a(l),p=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var h=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,p&&(typeof p=="object"&&o(p,c),d.state=function(){return o(c,{})}),d}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.tychei=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),$_=un({"(disabled):crypto"(){}}),P_=un({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/seedrandom.js"(e,t){(function(n,s,r){var a=256,o=6,i=52,l="random",u=r.pow(a,o),c=r.pow(2,i),p=c*2,d=a-1,h;function f(w,S,k){var E=[];S=S==!0?{entropy:!0}:S||{};var _=x(y(S.entropy?[w,b(s)]:w==null?A():w,3),E),D=new m(E),R=function(){for(var P=D.g(o),C=u,M=0;P<c;)P=(P+M)*a,C*=a,M=D.g(1);for(;P>=p;)P/=2,C/=2,M>>>=1;return(P+M)/C};return R.int32=function(){return D.g(4)|0},R.quick=function(){return D.g(4)/4294967296},R.double=R,x(b(D.S),s),(S.pass||k||function(P,C,M,L){return L&&(L.S&&g(L,D),P.state=function(){return g(D,{})}),M?(r[l]=P,C):P})(R,_,"global"in S?S.global:this==r,S.state)}function m(w){var S,k=w.length,E=this,_=0,D=E.i=E.j=0,R=E.S=[];for(k||(w=[k++]);_<a;)R[_]=_++;for(_=0;_<a;_++)R[_]=R[D=d&D+w[_%k]+(S=R[_])],R[D]=S;(E.g=function(P){for(var C,M=0,L=E.i,G=E.j,K=E.S;P--;)C=K[L=d&L+1],M=M*a+K[d&(K[L]=K[G=d&G+C])+(K[G]=C)];return E.i=L,E.j=G,M})(a)}function g(w,S){return S.i=w.i,S.j=w.j,S.S=w.S.slice(),S}function y(w,S){var k=[],E=typeof w,_;if(S&&E=="object")for(_ in w)try{k.push(y(w[_],S-1))}catch(D){}return k.length?k:E=="string"?w:w+"\0"}function x(w,S){for(var k=w+"",E,_=0;_<k.length;)S[d&_]=d&(E^=S[d&_]*19)+k.charCodeAt(_++);return b(S)}function A(){try{var w;return h&&(w=h.randomBytes)?w=w(a):(w=new Uint8Array(a),(n.crypto||n.msCrypto).getRandomValues(w)),b(w)}catch(E){var S=n.navigator,k=S&&S.plugins;return[+new Date,n,k,n.screen,b(s)]}}function b(w){return String.fromCharCode.apply(0,w)}if(x(r.random(),s),typeof t=="object"&&t.exports){t.exports=f;try{h=$_()}catch(w){}}else typeof define=="function"&&define.amd?define(function(){return f}):r["seed"+l]=f})(typeof self!="undefined"?self:e,[],Math)}}),Xm=un({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/index.js"(e,t){var n=T_(),s=N_(),r=E_(),a=R_(),o=__(),i=D_(),l=P_();l.alea=n,l.xor128=s,l.xorwow=r,l.xorshift7=a,l.xor4096=o,l.tychei=i,t.exports=l}}),p6=un({"(disabled):node_modules/.pnpm/string_decoder@1.3.0/node_modules/string_decoder/lib/string_decoder.js"(){}}),_y=un({"(disabled):fs"(){}}),gm=un({"(disabled):path"(){}}),F_=un({"(disabled):worker_threads"(){}}),O_=un({"(disabled):perf_hooks"(){}}),M_=un({"(disabled):os"(){}}),z_=un({"node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/wasm-out/tfjs-backend-wasm-threaded-simd.js"(e,t){var n=(()=>{var s=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(s=s||__filename),function(r){r=r||{};function a(){return Oe.buffer!=Jn&&Sr(Oe.buffer),cf}function o(){return Oe.buffer!=Jn&&Sr(Oe.buffer),df}function i(){return Oe.buffer!=Jn&&Sr(Oe.buffer),Bd}function l(){return Oe.buffer!=Jn&&Sr(Oe.buffer),pf}function u(){return Oe.buffer!=Jn&&Sr(Oe.buffer),hf}function c(){return Oe.buffer!=Jn&&Sr(Oe.buffer),ff}function p(){return Oe.buffer!=Jn&&Sr(Oe.buffer),mf}var d=typeof r!="undefined"?r:{},h,f;d.ready=new Promise(function(N,F){h=N,f=F});var m;typeof process!="undefined"&&process.listeners&&(m={uncaughtException:process.listeners("uncaughtException"),unhandledRejection:process.listeners("unhandledRejection")});var g=Object.assign({},d),y=[],x="./this.program",A=(N,F)=>{throw F},b=typeof window=="object",w=typeof importScripts=="function",S=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",k=d.ENVIRONMENT_IS_PTHREAD||!1,E="";function _(N){return d.locateFile?d.locateFile(N,E):E+N}var D,R,P,C;function M(N){if(N instanceof Zd)return;ee("exiting due to exception: "+N)}var L,G,K;if(S){w?E=gm().dirname(E)+"/":E=__dirname+"/",K=()=>{G||(L=_y(),G=gm())},D=function(U,Q){return K(),U=G.normalize(U),L.readFileSync(U,Q?void 0:"utf8")},P=F=>{var U=D(F,!0);return U.buffer||(U=new Uint8Array(U)),U},R=(F,U,Q)=>{K(),F=G.normalize(F),L.readFile(F,function(Ae,we){Ae?Q(Ae):U(we.buffer)})},process.argv.length>1&&(x=process.argv[1].replace(/\\/g,"/")),y=process.argv.slice(2),process.on("uncaughtException",function(F){if(!(F instanceof Zd))throw F}),process.on("unhandledRejection",function(F){throw F}),A=(F,U)=>{if(_i())throw process.exitCode=F,U;M(U),process.exit(F)},d.inspect=function(){return"[Emscripten Module object]"};let N;try{N=F_()}catch(F){throw console.error('The "worker_threads" module is not supported in this node.js build - perhaps a newer version is needed?'),F}global.Worker=N.Worker}else(b||w)&&(w?E=self.location.href:typeof document!="undefined"&&document.currentScript&&(E=document.currentScript.src),typeof s!="undefined"&&s&&(E=s),E.indexOf("blob:")!==0?E=E.substr(0,E.replace(/[?#].*/,"").lastIndexOf("/")+1):E="",S||(D=N=>{var F=new XMLHttpRequest;return F.open("GET",N,!1),F.send(null),F.responseText},w&&(P=N=>{var F=new XMLHttpRequest;return F.open("GET",N,!1),F.responseType="arraybuffer",F.send(null),new Uint8Array(F.response)}),R=(N,F,U)=>{var Q=new XMLHttpRequest;Q.open("GET",N,!0),Q.responseType="arraybuffer",Q.onload=()=>{if(Q.status==200||Q.status==0&&Q.response){F(Q.response);return}U()},Q.onerror=U,Q.send(null)}),C=N=>document.title=N);S&&typeof performance=="undefined"&&(global.performance=O_().performance);var X=console.log.bind(console),Y=console.warn.bind(console);S&&(K(),X=N=>L.writeSync(1,N+`
`),Y=N=>L.writeSync(2,N+`
`));var ne=d.print||X,ee=d.printErr||Y;Object.assign(d,g),g=null,d.arguments&&(y=d.arguments),d.thisProgram&&(x=d.thisProgram),d.quit&&(A=d.quit);var ie=4;function se(N){se.shown||(se.shown={}),se.shown[N]||(se.shown[N]=1,ee(N))}function pe(N,F){if(typeof WebAssembly.Function=="function"){for(var U={i:"i32",j:"i64",f:"f32",d:"f64"},Q={parameters:[],results:F[0]=="v"?[]:[U[F[0]]]},Ae=1;Ae<F.length;++Ae)Q.parameters.push(U[F[Ae]]);return new WebAssembly.Function(Q,N)}var we=[1,0,1,96],Ne=F.slice(0,1),Le=F.slice(1),Lt={i:127,j:126,f:125,d:124};we.push(Le.length);for(var Ae=0;Ae<Le.length;++Ae)we.push(Lt[Le[Ae]]);Ne=="v"?we.push(0):we=we.concat([1,Lt[Ne]]),we[1]=we.length-2;var Nr=new Uint8Array([0,97,115,109,1,0,0,0].concat(we,[2,7,1,1,101,1,102,0,0,7,5,1,1,102,0,0])),Er=new WebAssembly.Module(Nr),Uf=new WebAssembly.Instance(Er,{e:{f:N}}),Yd=Uf.exports.f;return Yd}var ce=[],xe;function oe(){if(ce.length)return ce.pop();try{qs.grow(1)}catch(N){throw N instanceof RangeError?"Unable to grow wasm table. Set ALLOW_TABLE_GROWTH.":N}return qs.length-1}function Re(N,F){for(var U=N;U<N+F;U++){var Q=Pu(U);Q&&xe.set(Q,U)}}var _e=0,Ve=N=>{_e=N},Me=Atomics.load,it=Atomics.store,gt=Atomics.compareExchange,pt;d.wasmBinary&&(pt=d.wasmBinary);var yt=d.noExitRuntime||!0;typeof WebAssembly!="object"&&_u("no native wasm support detected");var Oe,Tt,kt=!1,Kn;function tn(N,F){N||_u(F)}function Is(N){var F=d["_"+N];return F}function hn(N,F,U,Q,Ae){var we={string:function(Ns){var Wu=0;if(Ns!=null&&Ns!==0){var bv=(Ns.length<<2)+1;Wu=Bu(bv),pa(Ns,Wu,bv)}return Wu},array:function(Ns){var Wu=Bu(Ns.length);return ha(Ns,Wu),Wu}};function Ne(Ns){return F==="string"?Yn(Ns):F==="boolean"?Boolean(Ns):Ns}var Le=Is(N),Lt=[],Nr=0;if(Q)for(var Er=0;Er<Q.length;Er++){var Uf=we[U[Er]];Uf?(Nr===0&&(Nr=l3()),Lt[Er]=Uf(Q[Er])):Lt[Er]=Q[Er]}var Yd=Le.apply(null,Lt);function p_(Ns){return Nr!==0&&Lf(Nr),Ne(Ns)}return Yd=p_(Yd),Yd}function Zn(N,F,U,Q){U=U||[];var Ae=U.every(function(Ne){return Ne==="number"}),we=F!=="string";return we&&Ae&&!Q?Is(N):function(){return hn(N,F,U,arguments,Q)}}var Cs=1;function Ts(N){var F=new TextDecoder(N);this.decode=U=>(U.buffer instanceof SharedArrayBuffer&&(U=new Uint8Array(U)),F.decode.call(F,U))}var Bn=typeof TextDecoder!="undefined"?new Ts("utf8"):void 0;function js(N,F,U){for(var Q=F+U,Ae=F;N[Ae]&&!(Ae>=Q);)++Ae;if(Ae-F>16&&N.subarray&&Bn)return Bn.decode(N.subarray(F,Ae));for(var we="";F<Ae;){var Ne=N[F++];if(!(Ne&128)){we+=String.fromCharCode(Ne);continue}var Le=N[F++]&63;if((Ne&224)==192){we+=String.fromCharCode((Ne&31)<<6|Le);continue}var Lt=N[F++]&63;if((Ne&240)==224?Ne=(Ne&15)<<12|Le<<6|Lt:Ne=(Ne&7)<<18|Le<<12|Lt<<6|N[F++]&63,Ne<65536)we+=String.fromCharCode(Ne);else{var Nr=Ne-65536;we+=String.fromCharCode(55296|Nr>>10,56320|Nr&1023)}}return we}function Yn(N,F){return N?js(o(),N,F):""}function da(N,F,U,Q){if(!(Q>0))return 0;for(var Ae=U,we=U+Q-1,Ne=0;Ne<N.length;++Ne){var Le=N.charCodeAt(Ne);if(Le>=55296&&Le<=57343){var Lt=N.charCodeAt(++Ne);Le=65536+((Le&1023)<<10)|Lt&1023}if(Le<=127){if(U>=we)break;F[U++]=Le}else if(Le<=2047){if(U+1>=we)break;F[U++]=192|Le>>6,F[U++]=128|Le&63}else if(Le<=65535){if(U+2>=we)break;F[U++]=224|Le>>12,F[U++]=128|Le>>6&63,F[U++]=128|Le&63}else{if(U+3>=we)break;F[U++]=240|Le>>18,F[U++]=128|Le>>12&63,F[U++]=128|Le>>6&63,F[U++]=128|Le&63}}return F[U]=0,U-Ae}function pa(N,F,U){return da(N,o(),F,U)}function Nu(N){for(var F=0,U=0;U<N.length;++U){var Q=N.charCodeAt(U);Q>=55296&&Q<=57343&&(Q=65536+((Q&1023)<<10)|N.charCodeAt(++U)&1023),Q<=127?++F:Q<=2047?F+=2:Q<=65535?F+=3:F+=4}return F}var La=typeof TextDecoder!="undefined"?new Ts("utf-16le"):void 0;function ha(N,F){a().set(N,F)}function Ld(N,F,U){for(var Q=0;Q<N.length;++Q)a()[F++>>0]=N.charCodeAt(Q);U||(a()[F>>0]=0)}function Eu(N,F){return N%F>0&&(N+=F-N%F),N}var Jn,cf,df,Bd,pf,hf,ev,ff,mf;k&&(Jn=d.buffer);function Sr(N){Jn=N,d.HEAP8=cf=new Int8Array(N),d.HEAP16=Bd=new Int16Array(N),d.HEAP32=hf=new Int32Array(N),d.HEAPU8=df=new Uint8Array(N),d.HEAPU16=pf=new Uint16Array(N),d.HEAPU32=ev=new Uint32Array(N),d.HEAPF32=ff=new Float32Array(N),d.HEAPF64=mf=new Float64Array(N)}var gf=d.INITIAL_MEMORY||16777216;if(k)Oe=d.wasmMemory,Jn=d.buffer;else if(d.wasmMemory)Oe=d.wasmMemory;else if(Oe=new WebAssembly.Memory({initial:gf/65536,maximum:32768,shared:!0}),!(Oe.buffer instanceof SharedArrayBuffer))throw ee("requested a shared WebAssembly.Memory but the returned buffer is not a SharedArrayBuffer, indicating that while the browser has SharedArrayBuffer it does not have WebAssembly threads support - you may need to set a flag"),S&&console.log("(on node you may need: --experimental-wasm-threads --experimental-wasm-bulk-memory and also use a recent version)"),Error("bad memory");Oe&&(Jn=Oe.buffer),gf=Jn.byteLength,Sr(Jn);var qs,Ru=[],Ba=[],E1=[],yf=[],Ri=!1,R1=!1,Af=0;function _i(){return yt||Af>0}function Qn(){if(d.preRun)for(typeof d.preRun=="function"&&(d.preRun=[d.preRun]);d.preRun.length;)tv(d.preRun.shift());wf(Ru)}function Wd(){Ri=!0,!k&&wf(Ba)}function _1(){k||(Be.terminateAllThreads(),R1=!0)}function D1(){if(!k){if(d.postRun)for(typeof d.postRun=="function"&&(d.postRun=[d.postRun]);d.postRun.length;)Vd(d.postRun.shift());wf(yf)}}function tv(N){Ru.unshift(N)}function nv(N){Ba.unshift(N)}function Vd(N){yf.unshift(N)}var Wa=0,xf=null,Ir=null;function Ud(N){Wa++,d.monitorRunDependencies&&d.monitorRunDependencies(Wa)}function sv(N){if(Wa--,d.monitorRunDependencies&&d.monitorRunDependencies(Wa),Wa==0&&(xf!==null&&(clearInterval(xf),xf=null),Ir)){var F=Ir;Ir=null,F()}}d.preloadedImages={},d.preloadedAudios={};function _u(N){k?postMessage({cmd:"onAbort",arg:N}):d.onAbort&&d.onAbort(N),N="Aborted("+N+")",ee(N),kt=!0,Kn=1,N+=". Build with -s ASSERTIONS=1 for more info.";var F=new WebAssembly.RuntimeError(N);throw f(F),F}var $1="data:application/octet-stream;base64,";function Gd(N){return N.startsWith($1)}function bf(N){return N.startsWith("file://")}var es;es="tfjs-backend-wasm-threaded-simd.wasm",Gd(es)||(es=_(es));function vf(N){try{if(N==es&&pt)return new Uint8Array(pt);if(P)return P(N);throw"both async and sync fetching of the wasm failed"}catch(F){_u(F)}}function Du(){if(!pt&&(b||w)){if(typeof fetch=="function"&&!bf(es))return fetch(es,{credentials:"same-origin"}).then(function(N){if(!N.ok)throw"failed to load wasm binary file at '"+es+"'";return N.arrayBuffer()}).catch(function(){return vf(es)});if(R)return new Promise(function(N,F){R(es,function(U){N(new Uint8Array(U))},F)})}return Promise.resolve().then(function(){return vf(es)})}function P1(){var N={env:Pf,wasi_snapshot_preview1:Pf};function F(Ne,Le){var Lt=Ne.exports;if(d.asm=Lt,W1(d.asm.emscripten_tls_init),qs=d.asm.__indirect_function_table,nv(d.asm.__wasm_call_ctors),Tt=Le,!k){var Nr=Be.unusedWorkers.length;Be.unusedWorkers.forEach(function(Er){Be.loadWasmModuleToWorker(Er,function(){--Nr||sv("wasm-instantiate")})})}}k||Ud("wasm-instantiate");function U(Ne){F(Ne.instance,Ne.module)}function Q(Ne){return Du().then(function(Le){return WebAssembly.instantiate(Le,N)}).then(function(Le){return Le}).then(Ne,function(Le){ee("failed to asynchronously prepare wasm: "+Le),_u(Le)})}function Ae(){return!pt&&typeof WebAssembly.instantiateStreaming=="function"&&!Gd(es)&&!bf(es)&&typeof fetch=="function"?fetch(es,{credentials:"same-origin"}).then(function(Ne){var Le=WebAssembly.instantiateStreaming(Ne,N);return Le.then(U,function(Lt){return ee("wasm streaming compile failed: "+Lt),ee("falling back to ArrayBuffer instantiation"),Q(U)})}):Q(U)}if(d.instantiateWasm)try{var we=d.instantiateWasm(N,F);return we}catch(Ne){return ee("Module.instantiateWasm callback failed with error: "+Ne),!1}return Ae().catch(f),{}}var rv,av,F1={};function wf(N){for(;N.length>0;){var F=N.shift();if(typeof F=="function"){F(d);continue}var U=F.func;typeof U=="number"?F.arg===void 0?Pu(U)():Pu(U)(F.arg):U(F.arg===void 0?null:F.arg)}}function $u(N){var F=l3(),U=N();return Lf(F),U}function bR(N){return N}function ov(N){var F=/\b_Z[\w\d_]+/g;return N.replace(F,function(U){var Q=U;return U===Q?U:Q+" ["+U+"]"})}function O1(N){u()[N>>2]=0;var F=Be.pthreads[N];delete Be.pthreads[N],F.worker.terminate(),i3(N),Be.runningWorkers.splice(Be.runningWorkers.indexOf(F.worker),1),F.worker.pthread=void 0}function M1(N){var F=Be.pthreads[N];F.worker.postMessage({cmd:"cancel"})}function kf(N){var F=Be.pthreads[N];if(F){u()[N>>2]=0;var U=F.worker;Be.returnWorkerToPool(U)}}function Sf(N){u_(N)}function z1(N){if(N instanceof Zd||N=="unwind")return Kn;A(1,N)}var Be={unusedWorkers:[],runningWorkers:[],tlsInitFunctions:[],init:function(){k?Be.initWorker():Be.initMainThread()},initMainThread:function(){for(var N=8,F=0;F<N;++F)Be.allocateUnusedWorker()},initWorker:function(){yt=!1},pthreads:{},setExitStatus:function(N){Kn=N},terminateAllThreads:function(){for(var N in Be.pthreads){var F=Be.pthreads[N];F&&F.worker&&Be.returnWorkerToPool(F.worker)}for(var U=0;U<Be.unusedWorkers.length;++U){var Q=Be.unusedWorkers[U];Q.terminate()}Be.unusedWorkers=[]},returnWorkerToPool:function(N){Be.runWithoutMainThreadQueuedCalls(function(){delete Be.pthreads[N.pthread.threadInfoStruct],Be.unusedWorkers.push(N),Be.runningWorkers.splice(Be.runningWorkers.indexOf(N),1),i3(N.pthread.threadInfoStruct),N.pthread=void 0})},runWithoutMainThreadQueuedCalls:function(N){u()[xv>>2]=0;try{N()}finally{u()[xv>>2]=1}},receiveObjectTransfer:function(N){},threadInit:function(){for(var N in Be.tlsInitFunctions)Be.tlsInitFunctions[N]()},loadWasmModuleToWorker:function(N,F){N.onmessage=U=>{var Q=U.data,Ae=Q.cmd;if(N.pthread&&(Be.currentProxiedOperationCallerThread=N.pthread.threadInfoStruct),Q.targetThread&&Q.targetThread!=zf()){var we=Be.pthreads[Q.targetThread];we?we.worker.postMessage(Q,Q.transferList):ee('Internal error! Worker sent a message "'+Ae+'" to target pthread '+Q.targetThread+", but that thread no longer exists!"),Be.currentProxiedOperationCallerThread=void 0;return}Ae==="processQueuedMainThreadWork"?fv():Ae==="spawnThread"?Cf(Q):Ae==="cleanupThread"?kf(Q.thread):Ae==="killThread"?O1(Q.thread):Ae==="cancelThread"?M1(Q.thread):Ae==="loaded"?(N.loaded=!0,F&&F(N),N.runPthread&&(N.runPthread(),delete N.runPthread)):Ae==="print"?ne("Thread "+Q.threadId+": "+Q.text):Ae==="printErr"?ee("Thread "+Q.threadId+": "+Q.text):Ae==="alert"?alert("Thread "+Q.threadId+": "+Q.text):Q.target==="setimmediate"?N.postMessage(Q):Ae==="onAbort"?d.onAbort&&d.onAbort(Q.arg):ee("worker sent an unknown command "+Ae),Be.currentProxiedOperationCallerThread=void 0},N.onerror=U=>{var Q="worker sent an error!";throw ee(Q+" "+U.filename+":"+U.lineno+": "+U.message),U},S&&(N.on("message",function(U){N.onmessage({data:U})}),N.on("error",function(U){N.onerror(U)}),N.on("detachedExit",function(){})),N.postMessage({cmd:"load",urlOrBlob:d.mainScriptUrlOrBlob||s,wasmMemory:Oe,wasmModule:Tt})},allocateUnusedWorker:function(){var N=_("tfjs-backend-wasm-threaded-simd.worker.js");Be.unusedWorkers.push(new Worker(N))},getNewWorker:function(){return Be.unusedWorkers.length==0&&(Be.allocateUnusedWorker(),Be.loadWasmModuleToWorker(Be.unusedWorkers[0])),Be.unusedWorkers.pop()}};function L1(){var N=zf(),F=u()[N+44>>2],U=u()[N+48>>2],Q=F-U;Av(F,Q),Lf(F)}d.establishStackSpace=L1;function If(N){if(k)return Pi(1,0,N);try{Sf(N)}catch(F){z1(F)}}var Di=[];function Pu(N){var F=Di[N];return F||(N>=Di.length&&(Di.length=N+1),Di[N]=F=qs.get(N)),F}function B1(N,F){return Pu(N)(F)}d.invokeEntryPoint=B1;function iv(){var N=new Error;if(!N.stack){try{throw new Error}catch(F){N=F}if(!N.stack)return"(no stack trace available)"}return N.stack.toString()}function W1(N,F,U){Be.tlsInitFunctions.push(N)}function lv(N,F){qs.set(N,F),Di[N]=F}var $i;S?$i=()=>{var N=process.hrtime();return N[0]*1e3+N[1]/1e6}:k?$i=()=>performance.now()-d.__performance_now_clock_drift:$i=()=>performance.now();var V1=!0;function U1(N){return u()[hv()>>2]=N,N}function G1(N,F){var U;if(N===0)U=Date.now();else if((N===1||N===4)&&V1)U=$i();else return U1(28),-1;return u()[F>>2]=U/1e3|0,u()[F+4>>2]=U%1e3*1e3*1e3|0,0}function H1(N,F){return G1(N,F)}function j1(N){mv(N,!w,1,!b),Be.threadInit()}function q1(N){k?postMessage({cmd:"cleanupThread",thread:N}):kf(N)}function Cf(N){var F=Be.getNewWorker();if(!F)return 6;Be.runningWorkers.push(F);var U=Be.pthreads[N.pthread_ptr]={worker:F,threadInfoStruct:N.pthread_ptr};F.pthread=U;var Q={cmd:"run",start_routine:N.startRoutine,arg:N.arg,threadInfoStruct:N.pthread_ptr};return F.runPthread=()=>{Q.time=performance.now(),F.postMessage(Q,N.transferList)},F.loaded&&(F.runPthread(),delete F.runPthread),0}function X1(N,F,U,Q){if(typeof SharedArrayBuffer=="undefined")return ee("Current environment does not support SharedArrayBuffer, pthreads are not available!"),6;var Ae=[],we=0;if(k&&(Ae.length===0||we))return gv(687865856,N,F,U,Q);if(we)return we;var Ne={startRoutine:U,pthread_ptr:N,arg:Q,transferList:Ae};return k?(Ne.cmd="spawnThread",postMessage(Ne,Ae),0):Cf(Ne)}function K1(){return 2097152}function Z1(N,F){if(N==F)postMessage({cmd:"processQueuedMainThreadWork"});else if(k)postMessage({targetThread:N,cmd:"processThreadQueue"});else{var U=Be.pthreads[N],Q=U&&U.worker;if(!Q)return;Q.postMessage({cmd:"processThreadQueue"})}return 1}function Y1(){_u("")}function J1(){S||w||se("Blocking on the main thread is very dangerous, see https://emscripten.org/docs/porting/pthreads.html#blocking-on-the-main-browser-thread")}function Tf(){return 2147483648}function Q1(N,F,U){o().copyWithin(N,F,F+U)}function eg(){return S?M_().cpus().length:navigator.hardwareConcurrency}function Pi(N,F){var U=arguments.length-2,Q=arguments;return $u(function(){for(var Ae=U,we=Bu(Ae*8),Ne=we>>3,Le=0;Le<U;Le++){var Lt=Q[2+Le];p()[Ne+Le]=Lt}return yv(N,Ae,we,F)})}var Hd=[];function tg(N,F,U){Hd.length=F;for(var Q=U>>3,Ae=0;Ae<F;Ae++)Hd[Ae]=p()[Q+Ae];var we=N<0,Ne=we?F1[-N-1]:bg[N];return Ne.apply(null,Hd)}function ng(N){try{return Oe.grow(N-Jn.byteLength+65535>>>16),Sr(Oe.buffer),1}catch(F){}}function sg(N){var F=o().length;if(N=N>>>0,N<=F)return!1;var U=Tf();if(N>U)return!1;for(var Q=1;Q<=4;Q*=2){var Ae=F*(1+.2/Q);Ae=Math.min(Ae,N+100663296);var we=Math.min(U,Eu(Math.max(N,Ae),65536)),Ne=ng(we);if(Ne)return!0}return!1}var Qe={inEventHandler:0,removeAllEventListeners:function(){for(var N=Qe.eventHandlers.length-1;N>=0;--N)Qe._removeHandler(N);Qe.eventHandlers=[],Qe.deferredCalls=[]},registerRemoveEventListeners:function(){Qe.removeEventListenersRegistered||(E1.push(Qe.removeAllEventListeners),Qe.removeEventListenersRegistered=!0)},deferredCalls:[],deferCall:function(N,F,U){function Q(Ne,Le){if(Ne.length!=Le.length)return!1;for(var Lt in Ne)if(Ne[Lt]!=Le[Lt])return!1;return!0}for(var Ae in Qe.deferredCalls){var we=Qe.deferredCalls[Ae];if(we.targetFunction==N&&Q(we.argsList,U))return}Qe.deferredCalls.push({targetFunction:N,precedence:F,argsList:U}),Qe.deferredCalls.sort(function(Ne,Le){return Ne.precedence<Le.precedence})},removeDeferredCalls:function(N){for(var F=0;F<Qe.deferredCalls.length;++F)Qe.deferredCalls[F].targetFunction==N&&(Qe.deferredCalls.splice(F,1),--F)},canPerformEventHandlerRequests:function(){return Qe.inEventHandler&&Qe.currentEventHandler.allowsDeferredCalls},runDeferredCalls:function(){if(!!Qe.canPerformEventHandlerRequests())for(var N=0;N<Qe.deferredCalls.length;++N){var F=Qe.deferredCalls[N];Qe.deferredCalls.splice(N,1),--N,F.targetFunction.apply(null,F.argsList)}},eventHandlers:[],removeAllHandlersOnTarget:function(N,F){for(var U=0;U<Qe.eventHandlers.length;++U)Qe.eventHandlers[U].target==N&&(!F||F==Qe.eventHandlers[U].eventTypeString)&&Qe._removeHandler(U--)},_removeHandler:function(N){var F=Qe.eventHandlers[N];F.target.removeEventListener(F.eventTypeString,F.eventListenerFunc,F.useCapture),Qe.eventHandlers.splice(N,1)},registerOrRemoveHandler:function(N){var F=function(Ae){++Qe.inEventHandler,Qe.currentEventHandler=N,Qe.runDeferredCalls(),N.handlerFunc(Ae),Qe.runDeferredCalls(),--Qe.inEventHandler};if(N.callbackfunc)N.eventListenerFunc=F,N.target.addEventListener(N.eventTypeString,F,N.useCapture),Qe.eventHandlers.push(N),Qe.registerRemoveEventListeners();else for(var U=0;U<Qe.eventHandlers.length;++U)Qe.eventHandlers[U].target==N.target&&Qe.eventHandlers[U].eventTypeString==N.eventTypeString&&Qe._removeHandler(U--)},queueEventHandlerOnThread_iiii:function(N,F,U,Q,Ae){$u(function(){var we=Bu(12);u()[we>>2]=U,u()[we+4>>2]=Q,u()[we+8>>2]=Ae,o3(N,637534208,F,Q,we)})},getTargetThreadForEventCallback:function(N){switch(N){case 1:return 0;case 2:return Be.currentProxiedOperationCallerThread;default:return N}},getNodeNameForTarget:function(N){return N?N==window?"#window":N==screen?"#screen":N&&N.nodeName?N.nodeName:"":""},fullscreenEnabled:function(){return document.fullscreenEnabled||document.webkitFullscreenEnabled}};function rg(N){var F=Nu(N)+1,U=a3(F);return pa(N,U,F),U}function ag(N,F,U,Q){$u(function(){var Ae=Bu(12),we=0;F&&(we=rg(F)),u()[Ae>>2]=we,u()[Ae+4>>2]=U,u()[Ae+8>>2]=Q,o3(N,657457152,0,we,Ae)})}function og(N,F,U,Q){F=F?Yn(F):"",ag(N,F,U,Q)}function ig(N){return N>2?Yn(N):N}var lg=[0,typeof document!="undefined"?document:0,typeof window!="undefined"?window:0];function ug(N){N=ig(N);var F=lg[N]||(typeof document!="undefined"?document.querySelector(N):void 0);return F}function jd(N){return ug(N)}function Nf(N,F,U){var Q=jd(N);if(!Q)return-4;if(Q.canvasSharedPtr&&(u()[Q.canvasSharedPtr>>2]=F,u()[Q.canvasSharedPtr+4>>2]=U),Q.offscreenCanvas||!Q.controlTransferredOffscreen){Q.offscreenCanvas&&(Q=Q.offscreenCanvas);var Ae=!1;if(Q.GLctxObject&&Q.GLctxObject.GLctx){var we=Q.GLctxObject.GLctx.getParameter(2978);Ae=we[0]===0&&we[1]===0&&we[2]===Q.width&&we[3]===Q.height}Q.width=F,Q.height=U,Ae&&Q.GLctxObject.GLctx.viewport(0,0,F,U)}else if(Q.canvasSharedPtr){var Ne=u()[Q.canvasSharedPtr+8>>2];return og(Ne,N,F,U),1}else return-4;return 0}function Ef(N,F,U){return k?Pi(2,1,N,F,U):Nf(N,F,U)}function cg(N,F,U){var Q=jd(N);return Q?Nf(N,F,U):Ef(N,F,U)}function dg(){throw"unwind"}function pg(N){var F=N.getExtension("ANGLE_instanced_arrays");if(F)return N.vertexAttribDivisor=function(U,Q){F.vertexAttribDivisorANGLE(U,Q)},N.drawArraysInstanced=function(U,Q,Ae,we){F.drawArraysInstancedANGLE(U,Q,Ae,we)},N.drawElementsInstanced=function(U,Q,Ae,we,Ne){F.drawElementsInstancedANGLE(U,Q,Ae,we,Ne)},1}function hg(N){var F=N.getExtension("OES_vertex_array_object");if(F)return N.createVertexArray=function(){return F.createVertexArrayOES()},N.deleteVertexArray=function(U){F.deleteVertexArrayOES(U)},N.bindVertexArray=function(U){F.bindVertexArrayOES(U)},N.isVertexArray=function(U){return F.isVertexArrayOES(U)},1}function fg(N){var F=N.getExtension("WEBGL_draw_buffers");if(F)return N.drawBuffers=function(U,Q){F.drawBuffersWEBGL(U,Q)},1}function mg(N){return!!(N.multiDrawWebgl=N.getExtension("WEBGL_multi_draw"))}var zt={counter:1,buffers:[],programs:[],framebuffers:[],renderbuffers:[],textures:[],shaders:[],vaos:[],contexts:{},offscreenCanvases:{},queries:[],stringCache:{},unpackAlignment:4,recordError:function(F){zt.lastError||(zt.lastError=F)},getNewId:function(N){for(var F=zt.counter++,U=N.length;U<F;U++)N[U]=null;return F},getSource:function(N,F,U,Q){for(var Ae="",we=0;we<F;++we){var Ne=Q?u()[Q+we*4>>2]:-1;Ae+=Yn(u()[U+we*4>>2],Ne<0?void 0:Ne)}return Ae},createContext:function(N,F){N.getContextSafariWebGL2Fixed||(N.getContextSafariWebGL2Fixed=N.getContext,N.getContext=function(Ae,we){var Ne=N.getContextSafariWebGL2Fixed(Ae,we);return Ae=="webgl"==Ne instanceof WebGLRenderingContext?Ne:null});var U=N.getContext("webgl",F);if(!U)return 0;var Q=zt.registerContext(U,F);return Q},registerContext:function(N,F){var U=a3(8);u()[U+4>>2]=zf();var Q={handle:U,attributes:F,version:F.majorVersion,GLctx:N};return N.canvas&&(N.canvas.GLctxObject=Q),zt.contexts[U]=Q,(typeof F.enableExtensionsByDefault=="undefined"||F.enableExtensionsByDefault)&&zt.initExtensions(Q),U},makeContextCurrent:function(N){return zt.currentContext=zt.contexts[N],d.ctx=$f=zt.currentContext&&zt.currentContext.GLctx,!(N&&!$f)},getContext:function(N){return zt.contexts[N]},deleteContext:function(N){zt.currentContext===zt.contexts[N]&&(zt.currentContext=null),typeof Qe=="object"&&Qe.removeAllHandlersOnTarget(zt.contexts[N].GLctx.canvas),zt.contexts[N]&&zt.contexts[N].GLctx.canvas&&(zt.contexts[N].GLctx.canvas.GLctxObject=void 0),pv(zt.contexts[N].handle),zt.contexts[N]=null},initExtensions:function(N){if(N||(N=zt.currentContext),!N.initExtensionsDone){N.initExtensionsDone=!0;var F=N.GLctx;pg(F),hg(F),fg(F),F.disjointTimerQueryExt=F.getExtension("EXT_disjoint_timer_query"),mg(F);var U=F.getSupportedExtensions()||[];U.forEach(function(Q){!Q.includes("lose_context")&&!Q.includes("debug")&&F.getExtension(Q)})}}},gg=["default","low-power","high-performance"];function yg(N,F){var U=F>>2,Q=u()[U+6],Ae={alpha:!!u()[U+0],depth:!!u()[U+1],stencil:!!u()[U+2],antialias:!!u()[U+3],premultipliedAlpha:!!u()[U+4],preserveDrawingBuffer:!!u()[U+5],powerPreference:gg[Q],failIfMajorPerformanceCaveat:!!u()[U+7],majorVersion:u()[U+8],minorVersion:u()[U+9],enableExtensionsByDefault:u()[U+10],explicitSwapControl:u()[U+11],proxyContextToMainThread:u()[U+12],renderViaOffscreenBackBuffer:u()[U+13]},we=jd(N);if(!we||Ae.explicitSwapControl)return 0;var Ne=zt.createContext(we,Ae);return Ne}function Ag(N,F){return yg(N,F)}var Fu={mappings:{},buffers:[null,[],[]],printChar:function(N,F){var U=Fu.buffers[N];F===0||F===10?((N===1?ne:ee)(js(U,0)),U.length=0):U.push(F)},varargs:void 0,get:function(){Fu.varargs+=4;var N=u()[Fu.varargs-4>>2];return N},getStr:function(N){var F=Yn(N);return F},get64:function(N,F){return N}};function Rf(N){return k?Pi(3,1,N):0}function _f(N,F,U,Q,Ae){if(k)return Pi(4,1,N,F,U,Q,Ae)}function Df(N,F,U,Q){if(k)return Pi(5,1,N,F,U,Q);for(var Ae=0,we=0;we<U;we++){var Ne=u()[F>>2],Le=u()[F+4>>2];F+=8;for(var Lt=0;Lt<Le;Lt++)Fu.printChar(N,o()[Ne+Lt]);Ae+=Le}return u()[Q>>2]=Ae,0}function xg(N){Ve(N)}Be.init();var $f,bg=[null,If,Ef,Rf,_f,Df],uv=!1,Pf={__clock_gettime:H1,__emscripten_init_main_thread_js:j1,__emscripten_thread_cleanup:q1,__pthread_create_js:X1,_emscripten_default_pthread_stack_size:K1,_emscripten_notify_thread_queue:Z1,abort:Y1,emscripten_check_blocking_allowed:J1,emscripten_get_heap_max:Tf,emscripten_get_now:$i,emscripten_memcpy_big:Q1,emscripten_num_logical_cores:eg,emscripten_receive_on_main_thread_js:tg,emscripten_resize_heap:sg,emscripten_set_canvas_element_size:cg,emscripten_unwind_to_js_event_loop:dg,emscripten_webgl_create_context:Ag,exit:Sf,fd_close:Rf,fd_seek:_f,fd_write:Df,memory:Oe||d.wasmMemory,setTempRet0:xg},cv=P1(),vg=d.___wasm_call_ctors=function(){return(vg=d.___wasm_call_ctors=d.asm.__wasm_call_ctors).apply(null,arguments)},wg=d._init=function(){return(wg=d._init=d.asm.init).apply(null,arguments)},kg=d._init_with_threads_count=function(){return(kg=d._init_with_threads_count=d.asm.init_with_threads_count).apply(null,arguments)},Sg=d._get_threads_count=function(){return(Sg=d._get_threads_count=d.asm.get_threads_count).apply(null,arguments)},Ig=d._register_tensor=function(){return(Ig=d._register_tensor=d.asm.register_tensor).apply(null,arguments)},Cg=d._dispose_data=function(){return(Cg=d._dispose_data=d.asm.dispose_data).apply(null,arguments)},Tg=d._dispose=function(){return(Tg=d._dispose=d.asm.dispose).apply(null,arguments)},Ng=d._Abs=function(){return(Ng=d._Abs=d.asm.Abs).apply(null,arguments)},Eg=d._Add=function(){return(Eg=d._Add=d.asm.Add).apply(null,arguments)},Rg=d._AddN=function(){return(Rg=d._AddN=d.asm.AddN).apply(null,arguments)},_g=d._All=function(){return(_g=d._All=d.asm.All).apply(null,arguments)},Dg=d._Any=function(){return(Dg=d._Any=d.asm.Any).apply(null,arguments)},$g=d._ArgMax=function(){return($g=d._ArgMax=d.asm.ArgMax).apply(null,arguments)},Pg=d._AvgPool=function(){return(Pg=d._AvgPool=d.asm.AvgPool).apply(null,arguments)},Fg=d._BatchMatMul=function(){return(Fg=d._BatchMatMul=d.asm.BatchMatMul).apply(null,arguments)},Og=d._Ceil=function(){return(Og=d._Ceil=d.asm.Ceil).apply(null,arguments)},Mg=d._ClipByValue=function(){return(Mg=d._ClipByValue=d.asm.ClipByValue).apply(null,arguments)},zg=d._Conv2D=function(){return(zg=d._Conv2D=d.asm.Conv2D).apply(null,arguments)},Lg=d._Conv2DBackpropInput=function(){return(Lg=d._Conv2DBackpropInput=d.asm.Conv2DBackpropInput).apply(null,arguments)},Bg=d._Cos=function(){return(Bg=d._Cos=d.asm.Cos).apply(null,arguments)},Wg=d._Cosh=function(){return(Wg=d._Cosh=d.asm.Cosh).apply(null,arguments)},Vg=d._CropAndResize=function(){return(Vg=d._CropAndResize=d.asm.CropAndResize).apply(null,arguments)},Ug=d._Cumprod=function(){return(Ug=d._Cumprod=d.asm.Cumprod).apply(null,arguments)},Gg=d._Cumsum=function(){return(Gg=d._Cumsum=d.asm.Cumsum).apply(null,arguments)},Hg=d._DepthToSpace=function(){return(Hg=d._DepthToSpace=d.asm.DepthToSpace).apply(null,arguments)},jg=d._DepthwiseConv2dNative=function(){return(jg=d._DepthwiseConv2dNative=d.asm.DepthwiseConv2dNative).apply(null,arguments)},qg=d._Elu=function(){return(qg=d._Elu=d.asm.Elu).apply(null,arguments)},Xg=d._Equal=function(){return(Xg=d._Equal=d.asm.Equal).apply(null,arguments)},Kg=d._Exp=function(){return(Kg=d._Exp=d.asm.Exp).apply(null,arguments)},Zg=d._FlipLeftRight=function(){return(Zg=d._FlipLeftRight=d.asm.FlipLeftRight).apply(null,arguments)},Yg=d._Floor=function(){return(Yg=d._Floor=d.asm.Floor).apply(null,arguments)},Jg=d._FloorDiv=function(){return(Jg=d._FloorDiv=d.asm.FloorDiv).apply(null,arguments)},Qg=d._FusedBatchNorm=function(){return(Qg=d._FusedBatchNorm=d.asm.FusedBatchNorm).apply(null,arguments)},e3=d._FusedConv2D=function(){return(e3=d._FusedConv2D=d.asm.FusedConv2D).apply(null,arguments)},Ff=d._FusedDepthwiseConv2D=function(){return(Ff=d._FusedDepthwiseConv2D=d.asm.FusedDepthwiseConv2D).apply(null,arguments)},Of=d._Gather=function(){return(Of=d._Gather=d.asm.Gather).apply(null,arguments)},qd=d._GatherNd=function(){return(qd=d._GatherNd=d.asm.GatherNd).apply(null,arguments)},t3=d._Greater=function(){return(t3=d._Greater=d.asm.Greater).apply(null,arguments)},n3=d._GreaterEqual=function(){return(n3=d._GreaterEqual=d.asm.GreaterEqual).apply(null,arguments)},Ou=d._LeakyRelu=function(){return(Ou=d._LeakyRelu=d.asm.LeakyRelu).apply(null,arguments)},Xd=d._Less=function(){return(Xd=d._Less=d.asm.Less).apply(null,arguments)},Kd=d._LessEqual=function(){return(Kd=d._LessEqual=d.asm.LessEqual).apply(null,arguments)},dv=d._Log=function(){return(dv=d._Log=d.asm.Log).apply(null,arguments)},Mu=d._LogicalAnd=function(){return(Mu=d._LogicalAnd=d.asm.LogicalAnd).apply(null,arguments)},zu=d._LogicalNot=function(){return(zu=d._LogicalNot=d.asm.LogicalNot).apply(null,arguments)},s3=d._LogicalOr=function(){return(s3=d._LogicalOr=d.asm.LogicalOr).apply(null,arguments)},q=d._LogicalXor=function(){return(q=d._LogicalXor=d.asm.LogicalXor).apply(null,arguments)},te=d._Max=function(){return(te=d._Max=d.asm.Max).apply(null,arguments)},be=d._MaxPool=function(){return(be=d._MaxPool=d.asm.MaxPool).apply(null,arguments)},De=d._Maximum=function(){return(De=d._Maximum=d.asm.Maximum).apply(null,arguments)},ht=d._Mean=function(){return(ht=d._Mean=d.asm.Mean).apply(null,arguments)},mt=d._Min=function(){return(mt=d._Min=d.asm.Min).apply(null,arguments)},nt=d._Minimum=function(){return(nt=d._Minimum=d.asm.Minimum).apply(null,arguments)},Ze=d._MirrorPad=function(){return(Ze=d._MirrorPad=d.asm.MirrorPad).apply(null,arguments)},nn=d._Multiply=function(){return(nn=d._Multiply=d.asm.Multiply).apply(null,arguments)},Cr=d._Neg=function(){return(Cr=d._Neg=d.asm.Neg).apply(null,arguments)},Tr=d._NonMaxSuppressionV3=function(){return(Tr=d._NonMaxSuppressionV3=d.asm.NonMaxSuppressionV3).apply(null,arguments)},Lu=d._NonMaxSuppressionV4=function(){return(Lu=d._NonMaxSuppressionV4=d.asm.NonMaxSuppressionV4).apply(null,arguments)},Fi=d._NonMaxSuppressionV5=function(){return(Fi=d._NonMaxSuppressionV5=d.asm.NonMaxSuppressionV5).apply(null,arguments)},r3=d._NotEqual=function(){return(r3=d._NotEqual=d.asm.NotEqual).apply(null,arguments)},ts=d._OneHot=function(){return(ts=d._OneHot=d.asm.OneHot).apply(null,arguments)},Va=d._PadV2=function(){return(Va=d._PadV2=d.asm.PadV2).apply(null,arguments)},Mf=d._Pow=function(){return(Mf=d._Pow=d.asm.Pow).apply(null,arguments)},vR=d._Prelu=function(){return(vR=d._Prelu=d.asm.Prelu).apply(null,arguments)},wR=d._Prod=function(){return(wR=d._Prod=d.asm.Prod).apply(null,arguments)},kR=d._RealDiv=function(){return(kR=d._RealDiv=d.asm.RealDiv).apply(null,arguments)},SR=d._Relu=function(){return(SR=d._Relu=d.asm.Relu).apply(null,arguments)},IR=d._Relu6=function(){return(IR=d._Relu6=d.asm.Relu6).apply(null,arguments)},CR=d._ResizeBilinear=function(){return(CR=d._ResizeBilinear=d.asm.ResizeBilinear).apply(null,arguments)},TR=d._ResizeNearestNeighbor=function(){return(TR=d._ResizeNearestNeighbor=d.asm.ResizeNearestNeighbor).apply(null,arguments)},NR=d._Reverse=function(){return(NR=d._Reverse=d.asm.Reverse).apply(null,arguments)},ER=d._RotateWithOffset=function(){return(ER=d._RotateWithOffset=d.asm.RotateWithOffset).apply(null,arguments)},RR=d._Round=function(){return(RR=d._Round=d.asm.Round).apply(null,arguments)},_R=d._Rsqrt=function(){return(_R=d._Rsqrt=d.asm.Rsqrt).apply(null,arguments)},DR=d._ScatterNd=function(){return(DR=d._ScatterNd=d.asm.ScatterNd).apply(null,arguments)},$R=d._SelectV2=function(){return($R=d._SelectV2=d.asm.SelectV2).apply(null,arguments)},PR=d._Sigmoid=function(){return(PR=d._Sigmoid=d.asm.Sigmoid).apply(null,arguments)},FR=d._Sin=function(){return(FR=d._Sin=d.asm.Sin).apply(null,arguments)},OR=d._Softmax=function(){return(OR=d._Softmax=d.asm.Softmax).apply(null,arguments)},MR=d._SparseFillEmptyRows=function(){return(MR=d._SparseFillEmptyRows=d.asm.SparseFillEmptyRows).apply(null,arguments)},zR=d._SparseReshape=function(){return(zR=d._SparseReshape=d.asm.SparseReshape).apply(null,arguments)},LR=d._SparseSegmentReduction=function(){return(LR=d._SparseSegmentReduction=d.asm.SparseSegmentReduction).apply(null,arguments)},BR=d._Sqrt=function(){return(BR=d._Sqrt=d.asm.Sqrt).apply(null,arguments)},WR=d._Square=function(){return(WR=d._Square=d.asm.Square).apply(null,arguments)},VR=d._SquaredDifference=function(){return(VR=d._SquaredDifference=d.asm.SquaredDifference).apply(null,arguments)},UR=d._Step=function(){return(UR=d._Step=d.asm.Step).apply(null,arguments)},GR=d._StridedSlice=function(){return(GR=d._StridedSlice=d.asm.StridedSlice).apply(null,arguments)},HR=d._Sub=function(){return(HR=d._Sub=d.asm.Sub).apply(null,arguments)},jR=d._Sum=function(){return(jR=d._Sum=d.asm.Sum).apply(null,arguments)},qR=d._Tan=function(){return(qR=d._Tan=d.asm.Tan).apply(null,arguments)},XR=d._Tanh=function(){return(XR=d._Tanh=d.asm.Tanh).apply(null,arguments)},KR=d._Tile=function(){return(KR=d._Tile=d.asm.Tile).apply(null,arguments)},ZR=d._TopK=function(){return(ZR=d._TopK=d.asm.TopK).apply(null,arguments)},YR=d._Transform=function(){return(YR=d._Transform=d.asm.Transform).apply(null,arguments)},JR=d._Transpose=function(){return(JR=d._Transpose=d.asm.Transpose).apply(null,arguments)},QR=d.__FusedMatMul=function(){return(QR=d.__FusedMatMul=d.asm._FusedMatMul).apply(null,arguments)},a3=d._malloc=function(){return(a3=d._malloc=d.asm.malloc).apply(null,arguments)},pv=d._free=function(){return(pv=d._free=d.asm.free).apply(null,arguments)},e_=d._emscripten_tls_init=function(){return(e_=d._emscripten_tls_init=d.asm.emscripten_tls_init).apply(null,arguments)},hv=d.___errno_location=function(){return(hv=d.___errno_location=d.asm.__errno_location).apply(null,arguments)},zf=d._pthread_self=function(){return(zf=d._pthread_self=d.asm.pthread_self).apply(null,arguments)},fv=d._emscripten_main_thread_process_queued_calls=function(){return(fv=d._emscripten_main_thread_process_queued_calls=d.asm.emscripten_main_thread_process_queued_calls).apply(null,arguments)},t_=d.__emscripten_thread_crashed=function(){return(t_=d.__emscripten_thread_crashed=d.asm._emscripten_thread_crashed).apply(null,arguments)},mv=d.__emscripten_thread_init=function(){return(mv=d.__emscripten_thread_init=d.asm._emscripten_thread_init).apply(null,arguments)},n_=d._emscripten_current_thread_process_queued_calls=function(){return(n_=d._emscripten_current_thread_process_queued_calls=d.asm.emscripten_current_thread_process_queued_calls).apply(null,arguments)},s_=d._emscripten_main_browser_thread_id=function(){return(s_=d._emscripten_main_browser_thread_id=d.asm.emscripten_main_browser_thread_id).apply(null,arguments)},r_=d._emscripten_sync_run_in_main_thread_2=function(){return(r_=d._emscripten_sync_run_in_main_thread_2=d.asm.emscripten_sync_run_in_main_thread_2).apply(null,arguments)},gv=d._emscripten_sync_run_in_main_thread_4=function(){return(gv=d._emscripten_sync_run_in_main_thread_4=d.asm.emscripten_sync_run_in_main_thread_4).apply(null,arguments)},yv=d._emscripten_run_in_main_runtime_thread_js=function(){return(yv=d._emscripten_run_in_main_runtime_thread_js=d.asm.emscripten_run_in_main_runtime_thread_js).apply(null,arguments)},o3=d._emscripten_dispatch_to_thread_=function(){return(o3=d._emscripten_dispatch_to_thread_=d.asm.emscripten_dispatch_to_thread_).apply(null,arguments)},i3=d.__emscripten_thread_free_data=function(){return(i3=d.__emscripten_thread_free_data=d.asm._emscripten_thread_free_data).apply(null,arguments)},a_=d.__emscripten_thread_exit=function(){return(a_=d.__emscripten_thread_exit=d.asm._emscripten_thread_exit).apply(null,arguments)},o_=d._memalign=function(){return(o_=d._memalign=d.asm.memalign).apply(null,arguments)},Av=d._emscripten_stack_set_limits=function(){return(Av=d._emscripten_stack_set_limits=d.asm.emscripten_stack_set_limits).apply(null,arguments)},l3=d.stackSave=function(){return(l3=d.stackSave=d.asm.stackSave).apply(null,arguments)},Lf=d.stackRestore=function(){return(Lf=d.stackRestore=d.asm.stackRestore).apply(null,arguments)},Bu=d.stackAlloc=function(){return(Bu=d.stackAlloc=d.asm.stackAlloc).apply(null,arguments)},i_=d.dynCall_iijjiiii=function(){return(i_=d.dynCall_iijjiiii=d.asm.dynCall_iijjiiii).apply(null,arguments)},l_=d.dynCall_jiji=function(){return(l_=d.dynCall_jiji=d.asm.dynCall_jiji).apply(null,arguments)},xv=d.__emscripten_allow_main_runtime_queued_calls=21672;d.cwrap=Zn,d.keepRuntimeAlive=_i,d.PThread=Be,d.PThread=Be,d.wasmMemory=Oe,d.ExitStatus=Zd;var Bf;function Zd(N){this.name="ExitStatus",this.message="Program terminated with exit("+N+")",this.status=N}Ir=function N(){Bf||u3(),Bf||(Ir=N)};function u3(N){if(N=N||y,Wa>0)return;if(k){h(d),Wd(),postMessage({cmd:"loaded"});return}if(Qn(),Wa>0)return;function F(){Bf||(Bf=!0,d.calledRun=!0,!kt&&(Wd(),h(d),d.onRuntimeInitialized&&d.onRuntimeInitialized(),D1()))}d.setStatus?(d.setStatus("Running..."),setTimeout(function(){setTimeout(function(){d.setStatus("")},1),F()},1)):F()}d.run=u3;function u_(N,F){if(Kn=N,!F&&k)throw If(N),"unwind";_i()||_1(),c_(N)}function c_(N){Kn=N,_i()||(Be.terminateAllThreads(),d.onExit&&d.onExit(N),kt=!0),A(N,new Zd(N))}if(d.preInit)for(typeof d.preInit=="function"&&(d.preInit=[d.preInit]);d.preInit.length>0;)d.preInit.pop()();u3();var Wf;m&&(Wf={uncaughtException:process.listeners("uncaughtException").filter(function(N){return!m.uncaughtException.indexOf(N)>-1}),unhandledRejection:process.listeners("unhandledRejection").filter(function(N){return!m.unhandledRejection.indexOf(N)>-1})});var Vf;if(typeof WasmBackendModule!="undefined")Vf=WasmBackendModule;else if(typeof r!="undefined")Vf=r;else throw new Error("Could not find wasm module in post.js");if(Wf){var d_=Vf._dispose;Vf._dispose=function(){d_(),Wf.uncaughtException.forEach(function(N){process.removeListener("uncaughtException",N)}),Wf.unhandledRejection.forEach(function(N){process.removeListener("unhandledRejection",N)})}}return r.ready}})();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModuleThreadedSimd=n)}}),L_=un({"node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/wasm-out/tfjs-backend-wasm-threaded-simd.worker.js"(e,t){t.exports.wasmWorkerContents=`"use strict";var Module={};var ENVIRONMENT_IS_NODE=typeof process==="object"&&typeof process.versions==="object"&&typeof process.versions.node==="string";if(ENVIRONMENT_IS_NODE){var nodeWorkerThreads=require("worker_threads");var parentPort=nodeWorkerThreads.parentPort;parentPort.on("message",function(data){onmessage({data:data})});var fs=require("fs");Object.assign(global,{self:global,require:require,Module:Module,location:{href:__filename},Worker:nodeWorkerThreads.Worker,importScripts:function(f){(0,eval)(fs.readFileSync(f,"utf8"))},postMessage:function(msg){parentPort.postMessage(msg)},performance:global.performance||{now:function(){return Date.now()}}})}function threadPrintErr(){var text=Array.prototype.slice.call(arguments).join(" ");if(ENVIRONMENT_IS_NODE){fs.writeSync(2,text+"
");return}console.error(text)}function threadAlert(){var text=Array.prototype.slice.call(arguments).join(" ");postMessage({cmd:"alert",text:text,threadId:Module["_pthread_self"]()})}var err=threadPrintErr;self.alert=threadAlert;Module["instantiateWasm"]=((info,receiveInstance)=>{var instance=new WebAssembly.Instance(Module["wasmModule"],info);receiveInstance(instance);Module["wasmModule"]=null;return instance.exports});self.onmessage=(e=>{try{if(e.data.cmd==="load"){Module["wasmModule"]=e.data.wasmModule;Module["wasmMemory"]=e.data.wasmMemory;Module["buffer"]=Module["wasmMemory"].buffer;Module["ENVIRONMENT_IS_PTHREAD"]=true;if(typeof e.data.urlOrBlob==="string"){importScripts(e.data.urlOrBlob)}else{var objectUrl=URL.createObjectURL(e.data.urlOrBlob);importScripts(objectUrl);URL.revokeObjectURL(objectUrl)}WasmBackendModuleThreadedSimd(Module).then(function(instance){Module=instance})}else if(e.data.cmd==="run"){Module["__performance_now_clock_drift"]=performance.now()-e.data.time;Module["__emscripten_thread_init"](e.data.threadInfoStruct,0,0,1);Module["establishStackSpace"]();Module["PThread"].receiveObjectTransfer(e.data);Module["PThread"].threadInit();try{var result=Module["invokeEntryPoint"](e.data.start_routine,e.data.arg);if(Module["keepRuntimeAlive"]()){Module["PThread"].setExitStatus(result)}else{Module["__emscripten_thread_exit"](result)}}catch(ex){if(ex!="unwind"){if(ex instanceof Module["ExitStatus"]){if(Module["keepRuntimeAlive"]()){}else{Module["__emscripten_thread_exit"](ex.status)}}else{throw ex}}}}else if(e.data.cmd==="cancel"){if(Module["_pthread_self"]()){Module["__emscripten_thread_exit"](-1)}}else if(e.data.target==="setimmediate"){}else if(e.data.cmd==="processThreadQueue"){if(Module["_pthread_self"]()){Module["_emscripten_current_thread_process_queued_calls"]()}}else if(e.data.cmd==="processProxyingQueue"){if(Module["_pthread_self"]()){Module["_emscripten_proxy_execute_queue"](e.data.queue)}}else{err("worker.js received unknown command "+e.data.cmd);err(e.data)}}catch(ex){err("worker.js onmessage() captured an uncaught exception: "+ex);if(ex&&ex.stack)err(ex.stack);if(Module["__emscripten_thread_crashed"]){Module["__emscripten_thread_crashed"]()}throw ex}});`}}),B_=un({"node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/wasm-out/tfjs-backend-wasm.js"(e,t){var n=(()=>{var s=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(s=s||__filename),function(r){r=r||{};var a=typeof r!="undefined"?r:{},o,i;a.ready=new Promise(function(q,te){o=q,i=te});var l;typeof process!="undefined"&&process.listeners&&(l={uncaughtException:process.listeners("uncaughtException"),unhandledRejection:process.listeners("unhandledRejection")});var u=Object.assign({},a),c=[],p="./this.program",d=(q,te)=>{throw te},h=typeof window=="object",f=typeof importScripts=="function",m=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",g="";function y(q){return a.locateFile?a.locateFile(q,g):g+q}var x,A,b,w;function S(q){if(q instanceof Xd)return;R("exiting due to exception: "+q)}var k,E,_;m?(f?g=gm().dirname(g)+"/":g=__dirname+"/",_=()=>{E||(k=_y(),E=gm())},x=function(te,be){return _(),te=E.normalize(te),k.readFileSync(te,be?void 0:"utf8")},b=q=>{var te=x(q,!0);return te.buffer||(te=new Uint8Array(te)),te},A=(q,te,be)=>{_(),q=E.normalize(q),k.readFile(q,function(De,ht){De?be(De):te(ht.buffer)})},process.argv.length>1&&(p=process.argv[1].replace(/\\/g,"/")),c=process.argv.slice(2),process.on("uncaughtException",function(q){if(!(q instanceof Xd))throw q}),process.on("unhandledRejection",function(q){throw q}),d=(q,te)=>{if(Bd())throw process.exitCode=q,te;S(te),process.exit(q)},a.inspect=function(){return"[Emscripten Module object]"}):(h||f)&&(f?g=self.location.href:typeof document!="undefined"&&document.currentScript&&(g=document.currentScript.src),s&&(g=s),g.indexOf("blob:")!==0?g=g.substr(0,g.replace(/[?#].*/,"").lastIndexOf("/")+1):g="",x=q=>{var te=new XMLHttpRequest;return te.open("GET",q,!1),te.send(null),te.responseText},f&&(b=q=>{var te=new XMLHttpRequest;return te.open("GET",q,!1),te.responseType="arraybuffer",te.send(null),new Uint8Array(te.response)}),A=(q,te,be)=>{var De=new XMLHttpRequest;De.open("GET",q,!0),De.responseType="arraybuffer",De.onload=()=>{if(De.status==200||De.status==0&&De.response){te(De.response);return}be()},De.onerror=be,De.send(null)},w=q=>document.title=q);var D=a.print||console.log.bind(console),R=a.printErr||console.warn.bind(console);Object.assign(a,u),u=null,a.arguments&&(c=a.arguments),a.thisProgram&&(p=a.thisProgram),a.quit&&(d=a.quit);var P=4;function C(q){C.shown||(C.shown={}),C.shown[q]||(C.shown[q]=1,R(q))}function M(q,te){if(typeof WebAssembly.Function=="function"){for(var be={i:"i32",j:"i64",f:"f32",d:"f64"},De={parameters:[],results:te[0]=="v"?[]:[be[te[0]]]},ht=1;ht<te.length;++ht)De.parameters.push(be[te[ht]]);return new WebAssembly.Function(De,q)}var mt=[1,0,1,96],nt=te.slice(0,1),Ze=te.slice(1),nn={i:127,j:126,f:125,d:124};mt.push(Ze.length);for(var ht=0;ht<Ze.length;++ht)mt.push(nn[Ze[ht]]);nt=="v"?mt.push(0):mt=mt.concat([1,nn[nt]]),mt[1]=mt.length-2;var Cr=new Uint8Array([0,97,115,109,1,0,0,0].concat(mt,[2,7,1,1,101,1,102,0,0,7,5,1,1,102,0,0])),Tr=new WebAssembly.Module(Cr),Lu=new WebAssembly.Instance(Tr,{e:{f:q}}),Fi=Lu.exports.f;return Fi}var L=[],G;function K(){if(L.length)return L.pop();try{La.grow(1)}catch(q){throw q instanceof RangeError?"Unable to grow wasm table. Set ALLOW_TABLE_GROWTH.":q}return La.length-1}function X(q,te){for(var be=q;be<q+te;be++){var De=Ud(be);De&&G.set(De,be)}}var Y=0,ne=q=>{Y=q},ee;a.wasmBinary&&(ee=a.wasmBinary);var ie=a.noExitRuntime||!0;typeof WebAssembly!="object"&&Ri("no native wasm support detected");var se,pe=!1,ce;function xe(q,te){q||Ri(te)}function oe(q){var te=a["_"+q];return te}function Re(q,te,be,De,ht){var mt={string:function(ts){var Va=0;if(ts!=null&&ts!==0){var Mf=(ts.length<<2)+1;Va=qd(Mf),yt(ts,Va,Mf)}return Va},array:function(ts){var Va=qd(ts.length);return kt(ts,Va),Va}};function nt(ts){return te==="string"?gt(ts):te==="boolean"?Boolean(ts):ts}var Ze=oe(q),nn=[],Cr=0;if(De)for(var Tr=0;Tr<De.length;Tr++){var Lu=mt[be[Tr]];Lu?(Cr===0&&(Cr=Ff()),nn[Tr]=Lu(De[Tr])):nn[Tr]=De[Tr]}var Fi=Ze.apply(null,nn);function r3(ts){return Cr!==0&&Of(Cr),nt(ts)}return Fi=r3(Fi),Fi}function _e(q,te,be,De){be=be||[];var ht=be.every(function(nt){return nt==="number"}),mt=te!=="string";return mt&&ht&&!De?oe(q):function(){return Re(q,te,be,arguments,De)}}var Ve=1,Me=typeof TextDecoder!="undefined"?new TextDecoder("utf8"):void 0;function it(q,te,be){for(var De=te+be,ht=te;q[ht]&&!(ht>=De);)++ht;if(ht-te>16&&q.subarray&&Me)return Me.decode(q.subarray(te,ht));for(var mt="";te<ht;){var nt=q[te++];if(!(nt&128)){mt+=String.fromCharCode(nt);continue}var Ze=q[te++]&63;if((nt&224)==192){mt+=String.fromCharCode((nt&31)<<6|Ze);continue}var nn=q[te++]&63;if((nt&240)==224?nt=(nt&15)<<12|Ze<<6|nn:nt=(nt&7)<<18|Ze<<12|nn<<6|q[te++]&63,nt<65536)mt+=String.fromCharCode(nt);else{var Cr=nt-65536;mt+=String.fromCharCode(55296|Cr>>10,56320|Cr&1023)}}return mt}function gt(q,te){return q?it(Zn,q,te):""}function pt(q,te,be,De){if(!(De>0))return 0;for(var ht=be,mt=be+De-1,nt=0;nt<q.length;++nt){var Ze=q.charCodeAt(nt);if(Ze>=55296&&Ze<=57343){var nn=q.charCodeAt(++nt);Ze=65536+((Ze&1023)<<10)|nn&1023}if(Ze<=127){if(be>=mt)break;te[be++]=Ze}else if(Ze<=2047){if(be+1>=mt)break;te[be++]=192|Ze>>6,te[be++]=128|Ze&63}else if(Ze<=65535){if(be+2>=mt)break;te[be++]=224|Ze>>12,te[be++]=128|Ze>>6&63,te[be++]=128|Ze&63}else{if(be+3>=mt)break;te[be++]=240|Ze>>18,te[be++]=128|Ze>>12&63,te[be++]=128|Ze>>6&63,te[be++]=128|Ze&63}}return te[be]=0,be-ht}function yt(q,te,be){return pt(q,Zn,te,be)}function Oe(q){for(var te=0,be=0;be<q.length;++be){var De=q.charCodeAt(be);De>=55296&&De<=57343&&(De=65536+((De&1023)<<10)|q.charCodeAt(++be)&1023),De<=127?++te:De<=2047?te+=2:De<=65535?te+=3:te+=4}return te}var Tt=typeof TextDecoder!="undefined"?new TextDecoder("utf-16le"):void 0;function kt(q,te){hn.set(q,te)}function Kn(q,te,be){for(var De=0;De<q.length;++De)hn[te++>>0]=q.charCodeAt(De);be||(hn[te>>0]=0)}function tn(q,te){return q%te>0&&(q+=te-q%te),q}var Is,hn,Zn,Cs,Ts,Bn,js,Yn,da;function pa(q){Is=q,a.HEAP8=hn=new Int8Array(q),a.HEAP16=Cs=new Int16Array(q),a.HEAP32=Bn=new Int32Array(q),a.HEAPU8=Zn=new Uint8Array(q),a.HEAPU16=Ts=new Uint16Array(q),a.HEAPU32=js=new Uint32Array(q),a.HEAPF32=Yn=new Float32Array(q),a.HEAPF64=da=new Float64Array(q)}var Nu=a.INITIAL_MEMORY||16777216,La,ha=[],Ld=[],Eu=[],Jn=!1,cf=!1,df=0;function Bd(){return ie||df>0}function pf(){if(a.preRun)for(typeof a.preRun=="function"&&(a.preRun=[a.preRun]);a.preRun.length;)mf(a.preRun.shift());Vd(ha)}function hf(){Jn=!0,Vd(Ld)}function ev(){cf=!0}function ff(){if(a.postRun)for(typeof a.postRun=="function"&&(a.postRun=[a.postRun]);a.postRun.length;)gf(a.postRun.shift());Vd(Eu)}function mf(q){ha.unshift(q)}function Sr(q){Ld.unshift(q)}function gf(q){Eu.unshift(q)}var qs=0,Ru=null,Ba=null;function E1(q){qs++,a.monitorRunDependencies&&a.monitorRunDependencies(qs)}function yf(q){if(qs--,a.monitorRunDependencies&&a.monitorRunDependencies(qs),qs==0&&(Ru!==null&&(clearInterval(Ru),Ru=null),Ba)){var te=Ba;Ba=null,te()}}a.preloadedImages={},a.preloadedAudios={};function Ri(q){a.onAbort&&a.onAbort(q),q="Aborted("+q+")",R(q),pe=!0,ce=1,q+=". Build with -s ASSERTIONS=1 for more info.";var te=new WebAssembly.RuntimeError(q);throw i(te),te}var R1="data:application/octet-stream;base64,";function Af(q){return q.startsWith(R1)}function _i(q){return q.startsWith("file://")}var Qn;Qn="tfjs-backend-wasm.wasm",Af(Qn)||(Qn=y(Qn));function Wd(q){try{if(q==Qn&&ee)return new Uint8Array(ee);if(b)return b(q);throw"both async and sync fetching of the wasm failed"}catch(te){Ri(te)}}function _1(){if(!ee&&(h||f)){if(typeof fetch=="function"&&!_i(Qn))return fetch(Qn,{credentials:"same-origin"}).then(function(q){if(!q.ok)throw"failed to load wasm binary file at '"+Qn+"'";return q.arrayBuffer()}).catch(function(){return Wd(Qn)});if(A)return new Promise(function(q,te){A(Qn,function(be){q(new Uint8Array(be))},te)})}return Promise.resolve().then(function(){return Wd(Qn)})}function D1(){var q={env:$u,wasi_snapshot_preview1:$u};function te(nt,Ze){var nn=nt.exports;a.asm=nn,se=a.asm.memory,pa(se.buffer),La=a.asm.__indirect_function_table,Sr(a.asm.__wasm_call_ctors),yf("wasm-instantiate")}E1("wasm-instantiate");function be(nt){te(nt.instance)}function De(nt){return _1().then(function(Ze){return WebAssembly.instantiate(Ze,q)}).then(function(Ze){return Ze}).then(nt,function(Ze){R("failed to asynchronously prepare wasm: "+Ze),Ri(Ze)})}function ht(){return!ee&&typeof WebAssembly.instantiateStreaming=="function"&&!Af(Qn)&&!_i(Qn)&&typeof fetch=="function"?fetch(Qn,{credentials:"same-origin"}).then(function(nt){var Ze=WebAssembly.instantiateStreaming(nt,q);return Ze.then(be,function(nn){return R("wasm streaming compile failed: "+nn),R("falling back to ArrayBuffer instantiation"),De(be)})}):De(be)}if(a.instantiateWasm)try{var mt=a.instantiateWasm(q,te);return mt}catch(nt){return R("Module.instantiateWasm callback failed with error: "+nt),!1}return ht().catch(i),{}}var tv,nv;function Vd(q){for(;q.length>0;){var te=q.shift();if(typeof te=="function"){te(a);continue}var be=te.func;typeof be=="number"?te.arg===void 0?Ud(be)():Ud(be)(te.arg):be(te.arg===void 0?null:te.arg)}}function Wa(q){return q}function xf(q){var te=/\b_Z[\w\d_]+/g;return q.replace(te,function(be){var De=be;return be===De?be:De+" ["+be+"]"})}var Ir=[];function Ud(q){var te=Ir[q];return te||(q>=Ir.length&&(Ir.length=q+1),Ir[q]=te=La.get(q)),te}function sv(){var q=new Error;if(!q.stack){try{throw new Error}catch(te){q=te}if(!q.stack)return"(no stack trace available)"}return q.stack.toString()}function _u(q,te){La.set(q,te),Ir[q]=te}function $1(){Ri("")}function Gd(){return 2147483648}function bf(q,te,be){Zn.copyWithin(q,te,te+be)}function es(q){try{return se.grow(q-Is.byteLength+65535>>>16),pa(se.buffer),1}catch(te){}}function vf(q){var te=Zn.length;q=q>>>0;var be=Gd();if(q>be)return!1;for(var De=1;De<=4;De*=2){var ht=te*(1+.2/De);ht=Math.min(ht,q+100663296);var mt=Math.min(be,tn(Math.max(q,ht),65536)),nt=es(mt);if(nt)return!0}return!1}var Du={mappings:{},buffers:[null,[],[]],printChar:function(q,te){var be=Du.buffers[q];te===0||te===10?((q===1?D:R)(it(be,0)),be.length=0):be.push(te)},varargs:void 0,get:function(){Du.varargs+=4;var q=Bn[Du.varargs-4>>2];return q},getStr:function(q){var te=gt(q);return te},get64:function(q,te){return q}};function P1(q){return 0}function rv(q,te,be,De,ht){}function av(q,te,be,De){for(var ht=0,mt=0;mt<be;mt++){var nt=Bn[te>>2],Ze=Bn[te+4>>2];te+=8;for(var nn=0;nn<Ze;nn++)Du.printChar(q,Zn[nt+nn]);ht+=Ze}return Bn[De>>2]=ht,0}function F1(q){ne(q)}var wf=!1,$u={abort:$1,emscripten_get_heap_max:Gd,emscripten_memcpy_big:bf,emscripten_resize_heap:vf,fd_close:P1,fd_seek:rv,fd_write:av,setTempRet0:F1},bR=D1(),ov=a.___wasm_call_ctors=function(){return(ov=a.___wasm_call_ctors=a.asm.__wasm_call_ctors).apply(null,arguments)},O1=a._init=function(){return(O1=a._init=a.asm.init).apply(null,arguments)},M1=a._init_with_threads_count=function(){return(M1=a._init_with_threads_count=a.asm.init_with_threads_count).apply(null,arguments)},kf=a._get_threads_count=function(){return(kf=a._get_threads_count=a.asm.get_threads_count).apply(null,arguments)},Sf=a._register_tensor=function(){return(Sf=a._register_tensor=a.asm.register_tensor).apply(null,arguments)},z1=a._dispose_data=function(){return(z1=a._dispose_data=a.asm.dispose_data).apply(null,arguments)},Be=a._dispose=function(){return(Be=a._dispose=a.asm.dispose).apply(null,arguments)},L1=a._Abs=function(){return(L1=a._Abs=a.asm.Abs).apply(null,arguments)},If=a._Add=function(){return(If=a._Add=a.asm.Add).apply(null,arguments)},Di=a._AddN=function(){return(Di=a._AddN=a.asm.AddN).apply(null,arguments)},Pu=a._All=function(){return(Pu=a._All=a.asm.All).apply(null,arguments)},B1=a._Any=function(){return(B1=a._Any=a.asm.Any).apply(null,arguments)},iv=a._ArgMax=function(){return(iv=a._ArgMax=a.asm.ArgMax).apply(null,arguments)},W1=a._AvgPool=function(){return(W1=a._AvgPool=a.asm.AvgPool).apply(null,arguments)},lv=a._BatchMatMul=function(){return(lv=a._BatchMatMul=a.asm.BatchMatMul).apply(null,arguments)},$i=a._Ceil=function(){return($i=a._Ceil=a.asm.Ceil).apply(null,arguments)},V1=a._ClipByValue=function(){return(V1=a._ClipByValue=a.asm.ClipByValue).apply(null,arguments)},U1=a._Conv2D=function(){return(U1=a._Conv2D=a.asm.Conv2D).apply(null,arguments)},G1=a._Conv2DBackpropInput=function(){return(G1=a._Conv2DBackpropInput=a.asm.Conv2DBackpropInput).apply(null,arguments)},H1=a._Cos=function(){return(H1=a._Cos=a.asm.Cos).apply(null,arguments)},j1=a._Cosh=function(){return(j1=a._Cosh=a.asm.Cosh).apply(null,arguments)},q1=a._CropAndResize=function(){return(q1=a._CropAndResize=a.asm.CropAndResize).apply(null,arguments)},Cf=a._Cumprod=function(){return(Cf=a._Cumprod=a.asm.Cumprod).apply(null,arguments)},X1=a._Cumsum=function(){return(X1=a._Cumsum=a.asm.Cumsum).apply(null,arguments)},K1=a._DepthToSpace=function(){return(K1=a._DepthToSpace=a.asm.DepthToSpace).apply(null,arguments)},Z1=a._DepthwiseConv2dNative=function(){return(Z1=a._DepthwiseConv2dNative=a.asm.DepthwiseConv2dNative).apply(null,arguments)},Y1=a._Elu=function(){return(Y1=a._Elu=a.asm.Elu).apply(null,arguments)},J1=a._Equal=function(){return(J1=a._Equal=a.asm.Equal).apply(null,arguments)},Tf=a._Exp=function(){return(Tf=a._Exp=a.asm.Exp).apply(null,arguments)},Q1=a._FlipLeftRight=function(){return(Q1=a._FlipLeftRight=a.asm.FlipLeftRight).apply(null,arguments)},eg=a._Floor=function(){return(eg=a._Floor=a.asm.Floor).apply(null,arguments)},Pi=a._FloorDiv=function(){return(Pi=a._FloorDiv=a.asm.FloorDiv).apply(null,arguments)},Hd=a._FusedBatchNorm=function(){return(Hd=a._FusedBatchNorm=a.asm.FusedBatchNorm).apply(null,arguments)},tg=a._FusedConv2D=function(){return(tg=a._FusedConv2D=a.asm.FusedConv2D).apply(null,arguments)},ng=a._FusedDepthwiseConv2D=function(){return(ng=a._FusedDepthwiseConv2D=a.asm.FusedDepthwiseConv2D).apply(null,arguments)},sg=a._Gather=function(){return(sg=a._Gather=a.asm.Gather).apply(null,arguments)},Qe=a._GatherNd=function(){return(Qe=a._GatherNd=a.asm.GatherNd).apply(null,arguments)},rg=a._Greater=function(){return(rg=a._Greater=a.asm.Greater).apply(null,arguments)},ag=a._GreaterEqual=function(){return(ag=a._GreaterEqual=a.asm.GreaterEqual).apply(null,arguments)},og=a._LeakyRelu=function(){return(og=a._LeakyRelu=a.asm.LeakyRelu).apply(null,arguments)},ig=a._Less=function(){return(ig=a._Less=a.asm.Less).apply(null,arguments)},lg=a._LessEqual=function(){return(lg=a._LessEqual=a.asm.LessEqual).apply(null,arguments)},ug=a._Log=function(){return(ug=a._Log=a.asm.Log).apply(null,arguments)},jd=a._LogicalAnd=function(){return(jd=a._LogicalAnd=a.asm.LogicalAnd).apply(null,arguments)},Nf=a._LogicalNot=function(){return(Nf=a._LogicalNot=a.asm.LogicalNot).apply(null,arguments)},Ef=a._LogicalOr=function(){return(Ef=a._LogicalOr=a.asm.LogicalOr).apply(null,arguments)},cg=a._LogicalXor=function(){return(cg=a._LogicalXor=a.asm.LogicalXor).apply(null,arguments)},dg=a._Max=function(){return(dg=a._Max=a.asm.Max).apply(null,arguments)},pg=a._MaxPool=function(){return(pg=a._MaxPool=a.asm.MaxPool).apply(null,arguments)},hg=a._Maximum=function(){return(hg=a._Maximum=a.asm.Maximum).apply(null,arguments)},fg=a._Mean=function(){return(fg=a._Mean=a.asm.Mean).apply(null,arguments)},mg=a._Min=function(){return(mg=a._Min=a.asm.Min).apply(null,arguments)},zt=a._Minimum=function(){return(zt=a._Minimum=a.asm.Minimum).apply(null,arguments)},gg=a._MirrorPad=function(){return(gg=a._MirrorPad=a.asm.MirrorPad).apply(null,arguments)},yg=a._Multiply=function(){return(yg=a._Multiply=a.asm.Multiply).apply(null,arguments)},Ag=a._Neg=function(){return(Ag=a._Neg=a.asm.Neg).apply(null,arguments)},Fu=a._NonMaxSuppressionV3=function(){return(Fu=a._NonMaxSuppressionV3=a.asm.NonMaxSuppressionV3).apply(null,arguments)},Rf=a._NonMaxSuppressionV4=function(){return(Rf=a._NonMaxSuppressionV4=a.asm.NonMaxSuppressionV4).apply(null,arguments)},_f=a._NonMaxSuppressionV5=function(){return(_f=a._NonMaxSuppressionV5=a.asm.NonMaxSuppressionV5).apply(null,arguments)},Df=a._NotEqual=function(){return(Df=a._NotEqual=a.asm.NotEqual).apply(null,arguments)},xg=a._OneHot=function(){return(xg=a._OneHot=a.asm.OneHot).apply(null,arguments)},$f=a._PadV2=function(){return($f=a._PadV2=a.asm.PadV2).apply(null,arguments)},bg=a._Pow=function(){return(bg=a._Pow=a.asm.Pow).apply(null,arguments)},uv=a._Prelu=function(){return(uv=a._Prelu=a.asm.Prelu).apply(null,arguments)},Pf=a._Prod=function(){return(Pf=a._Prod=a.asm.Prod).apply(null,arguments)},cv=a._RealDiv=function(){return(cv=a._RealDiv=a.asm.RealDiv).apply(null,arguments)},vg=a._Relu=function(){return(vg=a._Relu=a.asm.Relu).apply(null,arguments)},wg=a._Relu6=function(){return(wg=a._Relu6=a.asm.Relu6).apply(null,arguments)},kg=a._ResizeBilinear=function(){return(kg=a._ResizeBilinear=a.asm.ResizeBilinear).apply(null,arguments)},Sg=a._ResizeNearestNeighbor=function(){return(Sg=a._ResizeNearestNeighbor=a.asm.ResizeNearestNeighbor).apply(null,arguments)},Ig=a._Reverse=function(){return(Ig=a._Reverse=a.asm.Reverse).apply(null,arguments)},Cg=a._RotateWithOffset=function(){return(Cg=a._RotateWithOffset=a.asm.RotateWithOffset).apply(null,arguments)},Tg=a._Round=function(){return(Tg=a._Round=a.asm.Round).apply(null,arguments)},Ng=a._Rsqrt=function(){return(Ng=a._Rsqrt=a.asm.Rsqrt).apply(null,arguments)},Eg=a._ScatterNd=function(){return(Eg=a._ScatterNd=a.asm.ScatterNd).apply(null,arguments)},Rg=a._SelectV2=function(){return(Rg=a._SelectV2=a.asm.SelectV2).apply(null,arguments)},_g=a._Sigmoid=function(){return(_g=a._Sigmoid=a.asm.Sigmoid).apply(null,arguments)},Dg=a._Sin=function(){return(Dg=a._Sin=a.asm.Sin).apply(null,arguments)},$g=a._Softmax=function(){return($g=a._Softmax=a.asm.Softmax).apply(null,arguments)},Pg=a._SparseFillEmptyRows=function(){return(Pg=a._SparseFillEmptyRows=a.asm.SparseFillEmptyRows).apply(null,arguments)},Fg=a._SparseReshape=function(){return(Fg=a._SparseReshape=a.asm.SparseReshape).apply(null,arguments)},Og=a._SparseSegmentReduction=function(){return(Og=a._SparseSegmentReduction=a.asm.SparseSegmentReduction).apply(null,arguments)},Mg=a._Sqrt=function(){return(Mg=a._Sqrt=a.asm.Sqrt).apply(null,arguments)},zg=a._Square=function(){return(zg=a._Square=a.asm.Square).apply(null,arguments)},Lg=a._SquaredDifference=function(){return(Lg=a._SquaredDifference=a.asm.SquaredDifference).apply(null,arguments)},Bg=a._Step=function(){return(Bg=a._Step=a.asm.Step).apply(null,arguments)},Wg=a._StridedSlice=function(){return(Wg=a._StridedSlice=a.asm.StridedSlice).apply(null,arguments)},Vg=a._Sub=function(){return(Vg=a._Sub=a.asm.Sub).apply(null,arguments)},Ug=a._Sum=function(){return(Ug=a._Sum=a.asm.Sum).apply(null,arguments)},Gg=a._Tan=function(){return(Gg=a._Tan=a.asm.Tan).apply(null,arguments)},Hg=a._Tanh=function(){return(Hg=a._Tanh=a.asm.Tanh).apply(null,arguments)},jg=a._Tile=function(){return(jg=a._Tile=a.asm.Tile).apply(null,arguments)},qg=a._TopK=function(){return(qg=a._TopK=a.asm.TopK).apply(null,arguments)},Xg=a._Transform=function(){return(Xg=a._Transform=a.asm.Transform).apply(null,arguments)},Kg=a._Transpose=function(){return(Kg=a._Transpose=a.asm.Transpose).apply(null,arguments)},Zg=a.__FusedMatMul=function(){return(Zg=a.__FusedMatMul=a.asm._FusedMatMul).apply(null,arguments)},Yg=a._malloc=function(){return(Yg=a._malloc=a.asm.malloc).apply(null,arguments)},Jg=a._free=function(){return(Jg=a._free=a.asm.free).apply(null,arguments)},Qg=a.___errno_location=function(){return(Qg=a.___errno_location=a.asm.__errno_location).apply(null,arguments)},e3=a._emscripten_main_thread_process_queued_calls=function(){return(e3=a._emscripten_main_thread_process_queued_calls=a.asm.emscripten_main_thread_process_queued_calls).apply(null,arguments)},Ff=a.stackSave=function(){return(Ff=a.stackSave=a.asm.stackSave).apply(null,arguments)},Of=a.stackRestore=function(){return(Of=a.stackRestore=a.asm.stackRestore).apply(null,arguments)},qd=a.stackAlloc=function(){return(qd=a.stackAlloc=a.asm.stackAlloc).apply(null,arguments)},t3=a.dynCall_iijjiiii=function(){return(t3=a.dynCall_iijjiiii=a.asm.dynCall_iijjiiii).apply(null,arguments)},n3=a.dynCall_jiji=function(){return(n3=a.dynCall_jiji=a.asm.dynCall_jiji).apply(null,arguments)};a.cwrap=_e;var Ou;function Xd(q){this.name="ExitStatus",this.message="Program terminated with exit("+q+")",this.status=q}Ba=function q(){Ou||Kd(),Ou||(Ba=q)};function Kd(q){if(q=q||c,qs>0||(pf(),qs>0))return;function te(){Ou||(Ou=!0,a.calledRun=!0,!pe&&(hf(),o(a),a.onRuntimeInitialized&&a.onRuntimeInitialized(),ff()))}a.setStatus?(a.setStatus("Running..."),setTimeout(function(){setTimeout(function(){a.setStatus("")},1),te()},1)):te()}a.run=Kd;function dv(q){ce=q,Bd()||(a.onExit&&a.onExit(q),pe=!0),d(q,new Xd(q))}if(a.preInit)for(typeof a.preInit=="function"&&(a.preInit=[a.preInit]);a.preInit.length>0;)a.preInit.pop()();Kd();var Mu;l&&(Mu={uncaughtException:process.listeners("uncaughtException").filter(function(q){return!l.uncaughtException.indexOf(q)>-1}),unhandledRejection:process.listeners("unhandledRejection").filter(function(q){return!l.unhandledRejection.indexOf(q)>-1})});var zu;if(typeof r!="undefined")zu=r;else if(typeof WasmBackendModuleThreadedSimd!="undefined")zu=WasmBackendModuleThreadedSimd;else throw new Error("Could not find wasm module in post.js");if(Mu){var s3=zu._dispose;zu._dispose=function(){s3(),Mu.uncaughtException.forEach(function(q){process.removeListener("uncaughtException",q)}),Mu.unhandledRejection.forEach(function(q){process.removeListener("unhandledRejection",q)})}}return r.ready}})();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModule=n)}}),W_=1e-7,V_=1e-4,Wp=class{constructor(e,t){this.backend=e,this.dataMover=t,this.data=new WeakMap,this.dataIdsCount=0}get(e){return this.data.has(e)||this.dataMover.moveData(this.backend,e),this.data.get(e)}set(e,t){this.dataIdsCount++,this.data.set(e,t)}has(e){return this.data.has(e)}delete(e){return this.dataIdsCount--,this.data.delete(e)}numDataIds(){return this.dataIdsCount}},Ac=class{refCount(e){return Xs("refCount")}incRef(e){return Xs("incRef")}timerAvailable(){return!0}time(e){return Xs("time")}read(e){return Xs("read")}readSync(e){return Xs("readSync")}readToGPU(e,t){return Xs("readToGPU")}numDataIds(){return Xs("numDataIds")}disposeData(e,t){return Xs("disposeData")}write(e,t,n){return Xs("write")}move(e,t,n,s,r){return Xs("move")}memory(){return Xs("memory")}floatPrecision(){return Xs("floatPrecision")}epsilon(){return this.floatPrecision()===32?W_:V_}dispose(){return Xs("dispose")}};function Xs(e){throw new Error(`'${e}' not yet implemented or not found in the registry. This kernel may not be supported by the tfjs backend you have chosen`)}function h6(e){let t=e.length,n=0;for(;t>0;)n=Math.random()*t|0,t--,ym(e,t,n)}function U_(e,t){if(e.length!==t.length)throw new Error(`Array sizes must match to be shuffled together First array length was ${e.length}Second array length was ${t.length}`);let n=e.length,s=0;for(;n>0;)s=Math.random()*n|0,n--,ym(e,n,s),ym(t,n,s)}function vp(e,t,n){return Math.max(e,Math.min(t,n))}function G_(e){return e%2===0?e:e+1}function ym(e,t,n){let s=e[t];e[t]=e[n],e[n]=s}function H_(e){let t=0;for(let n=0;n<e.length;n++)t+=e[n];return t}function j_(e,t){let n=Math.random();return t*n+(1-n)*e}function q_(e,t){let n=0;for(let s=0;s<e.length;s++){let r=Number(e[s])-Number(t[s]);n+=r*r}return n}function O(e,t){if(!e)throw new Error(typeof t=="string"?t:t())}function is(e,t,n=""){O(ho(e,t),()=>n+` Shapes ${e} and ${t} must match`)}function dl(e){O(e!=null,()=>"The input to the tensor constructor must be a non-null value.")}function Qi(e,t=[],n=!1){if(t==null&&(t=[]),Array.isArray(e)||Wn(e)&&!n)for(let s=0;s<e.length;++s)Qi(e[s],t,n);else t.push(e);return t}function Et(e){if(e.length===0)return 1;let t=e[0];for(let n=1;n<e.length;n++)t*=e[n];return t}function X_(e){return e.length===0}function ho(e,t){if(e===t)return!0;if(e==null||t==null||e.length!==t.length)return!1;for(let n=0;n<e.length;n++)if(e[n]!==t[n])return!1;return!0}function tc(e){return e%1===0}function K_(e){if(Math.tanh!=null)return Math.tanh(e);if(e===1/0)return 1;if(e===-1/0)return-1;{let t=Math.exp(2*e);return(t-1)/(t+1)}}function Z_(e){let t=Math.ceil(Math.sqrt(e));return[t,Math.ceil(e/t)]}function Y_(e){let t=new Uint32Array(e);for(let n=0;n<e;++n)t[n]=n;return h6(t),t}function gp(e,t){return t<=e.length?e:e+" ".repeat(t-e.length)}function J_(e,t=s=>0,n){return new Promise((s,r)=>{let a=0,o=()=>{if(e()){s();return}a++;let i=t(a);if(n!=null&&a>=n){r();return}setTimeout(o,i)};o()})}function Q_(e,t){let n=1,s=-1;for(let a=0;a<e.length;++a)if(e[a]>=0)n*=e[a];else if(e[a]===-1){if(s!==-1)throw Error(`Shapes can only have 1 implicit size. Found -1 at dim ${s} and dim ${a}`);s=a}else if(e[a]<0)throw Error(`Shapes can not be < 0. Found ${e[a]} at dim ${a}`);if(s===-1){if(t>0&&t!==n)throw Error(`Size(${t}) must match the product of shape ${e}`);return e}if(n===0)throw Error(`Cannot infer the missing size in [${e}] when there are 0 elements`);if(t%n!==0)throw Error(`The implicit shape can't be a fractional number. Got ${t} / ${n}`);let r=e.slice();return r[s]=t/n,r}function gr(e,t){let n=t.length;return e=e==null?t.map((s,r)=>r):[].concat(e),O(e.every(s=>s>=-n&&s<n),()=>`All values in axis param must be in range [-${n}, ${n}) but got axis ${e}`),O(e.every(s=>tc(s)),()=>`All values in axis param must be integers but got axis ${e}`),e.map(s=>s<0?n+s:s)}function f6(e,t){let n=[],s=[],r=t!=null&&Array.isArray(t)&&t.length===0,a=t==null||r?null:gr(t,e).sort(),o=0;for(let i=0;i<e.length;++i){if(a!=null){if(a[o]===i&&e[i]!==1)throw new Error(`Can't squeeze axis ${i} since its dim '${e[i]}' is not 1`);(a[o]==null||a[o]>i)&&e[i]===1&&(n.push(e[i]),s.push(i)),a[o]<=i&&o++}e[i]!==1&&(n.push(e[i]),s.push(i))}return{newShape:n,keptDims:s}}function m6(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else throw new Error(`Unknown data type ${e}`);return n}function g6(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else if(e==="string")n=new Array(t);else throw new Error(`Unknown data type ${e}`);return n}function y6(e,t){for(let n=0;n<e.length;n++){let s=e[n];if(isNaN(s)||!isFinite(s))throw Error(`A tensor of type ${t} being uploaded contains ${s}.`)}}function A6(e){return e==="bool"||e==="complex64"||e==="float32"||e==="int32"||e==="string"}function eD(e,t){return!(t==="complex64"||t==="float32"&&e!=="complex64"||t==="int32"&&e!=="float32"&&e!=="complex64"||t==="bool"&&e==="bool")}function Wn(e){return e instanceof Float32Array||e instanceof Int32Array||e instanceof Uint8Array||e instanceof Uint8ClampedArray}function C3(e){if(e==="float32"||e==="int32")return 4;if(e==="complex64")return 8;if(e==="bool")return 1;throw new Error(`Unknown dtype ${e}`)}function x6(e){if(e==null)return 0;let t=0;return e.forEach(n=>t+=n.length),t}function qa(e){return typeof e=="string"||e instanceof String}function b6(e){return typeof e=="boolean"}function v6(e){return typeof e=="number"}function Km(e){return Array.isArray(e)?Km(e[0]):e instanceof Float32Array?"float32":e instanceof Int32Array||e instanceof Uint8Array||e instanceof Uint8ClampedArray?"int32":v6(e)?"float32":qa(e)?"string":b6(e)?"bool":"float32"}function Qa(e){return!!(e&&e.constructor&&e.call&&e.apply)}function Am(e,t){for(let n=t;n<e;++n)if(e%n===0)return n;return e}function xc(e){let t=e.length;if(t<2)return[];let n=new Array(t-1);n[t-2]=e[t-1];for(let s=t-3;s>=0;--s)n[s]=n[s+1]*e[s+1];return n}function w6(e,t,n,s=!1){let r=new Array;if(t.length===1){let a=t[0]*(s?2:1);for(let o=0;o<a;o++)r[o]=n[e+o]}else{let a=t[0],o=t.slice(1),i=o.reduce((l,u)=>l*u)*(s?2:1);for(let l=0;l<a;l++)r[l]=w6(e+l*i,o,n,s)}return r}function Zu(e,t,n=!1){if(e.length===0)return t[0];let s=e.reduce((r,a)=>r*a)*(n?2:1);if(s===0)return[];if(s!==t.length)throw new Error(`[${e}] does not match the input size ${t.length}${n?" for a complex tensor":""}.`);return w6(0,e,t,n)}function Dy(e,t){let n=Zm(e,t);for(let s=0;s<n.length;s++)n[s]=1;return n}function Zm(e,t){if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool")return new Uint8Array(e);throw new Error(`Unknown data type ${t}`)}function tD(e,t){let n=e.reduce((s,r)=>s*r,1);if(t==null||t==="float32")return Zu(e,new Float32Array(n));if(t==="int32")return Zu(e,new Int32Array(n));if(t==="bool")return Zu(e,new Uint8Array(n));throw new Error(`Unknown data type ${t}`)}function $y(e){e.forEach(t=>{O(Number.isInteger(t)&&t>=0,()=>`Tensor must have a shape comprised of positive integers but got shape [${e}].`)})}function nD(e,t,n){if(t===0)return 0;if(t===1)return e[0];let s=e[e.length-1];for(let r=0;r<e.length-1;++r)s+=n[r]*e[r];return s}function sD(e,t,n){if(t===0)return[];if(t===1)return[e];let s=new Array(t);for(let r=0;r<s.length-1;++r)s[r]=Math.floor(e/n[r]),e-=s[r]*n[r];return s[s.length-1]=e,s}function Py(e){return e&&e.then&&typeof e.then=="function"}var kv="tfjsflags",k6=class{constructor(e){this.global=e,this.flags={},this.flagRegistry={},this.urlFlags={},this.getQueryParams=rD,this.populateURLFlags()}setPlatform(e,t){this.platform!=null&&(H().getBool("IS_TEST")||H().getBool("PROD")||console.warn(`Platform ${this.platformName} has already been set. Overwriting the platform with ${e}.`)),this.platformName=e,this.platform=t}registerFlag(e,t,n){if(this.flagRegistry[e]={evaluationFn:t,setHook:n},this.urlFlags[e]!=null){let s=this.urlFlags[e];H().getBool("IS_TEST")||H().getBool("PROD")||console.warn(`Setting feature override from URL ${e}: ${s}.`),this.set(e,s)}}async getAsync(e){return e in this.flags?this.flags[e]:(this.flags[e]=await this.evaluateFlag(e),this.flags[e])}get(e){if(e in this.flags)return this.flags[e];let t=this.evaluateFlag(e);if(Py(t))throw new Error(`Flag ${e} cannot be synchronously evaluated. Please use getAsync() instead.`);return this.flags[e]=t,this.flags[e]}getNumber(e){return this.get(e)}getBool(e){return this.get(e)}getFlags(){return this.flags}get features(){return this.flags}set(e,t){if(this.flagRegistry[e]==null)throw new Error(`Cannot set flag ${e} as it has not been registered.`);this.flags[e]=t,this.flagRegistry[e].setHook!=null&&this.flagRegistry[e].setHook(t)}evaluateFlag(e){if(this.flagRegistry[e]==null)throw new Error(`Cannot evaluate flag '${e}': no evaluation function found.`);return this.flagRegistry[e].evaluationFn()}setFlags(e){this.flags=Object.assign({},e)}reset(){this.flags={},this.urlFlags={},this.populateURLFlags()}populateURLFlags(){if(typeof this.global=="undefined"||typeof this.global.location=="undefined"||typeof this.global.location.search=="undefined")return;let e=this.getQueryParams(this.global.location.search);kv in e&&e[kv].split(",").forEach(n=>{let[s,r]=n.split(":");this.urlFlags[s]=oD(s,r)})}};function rD(e){let t={};return e.replace(/[?&]([^=?&]+)(?:=([^&]*))?/g,(n,...s)=>(aD(t,s[0],s[1]),s.join("="))),t}function aD(e,t,n){e[decodeURIComponent(t)]=decodeURIComponent(n||"")}function oD(e,t){if(t=t.toLowerCase(),t==="true"||t==="false")return t==="true";if(`${+t}`===t)return+t;throw new Error(`Could not parse value flag value ${t} for flag ${e}.`)}function H(){return Fy}var Fy=null;function iD(e){Fy=e}var d3;function S6(){if(d3==null){let e;if(typeof window!="undefined")e=window;else if(typeof global!="undefined")e=global;else if(typeof process!="undefined")e=process;else if(typeof self!="undefined")e=self;else throw new Error("Could not find a global object");d3=e}return d3}function lD(){let e=S6();return e._tfGlobals==null&&(e._tfGlobals=new Map),e._tfGlobals}function Oy(e,t){let n=lD();if(n.has(e))return n.get(e);{let s=t();return n.set(e,s),n.get(e)}}var pl="Abs",bc="Acos",vc="Acosh",Ta="Add",fo="AddN",wc="All",kc="Any",mo="ArgMax",Sc="ArgMin",Ic="Asin",Cc="Asinh",Tc="Atan",Nc="Atanh",hl="Atan2",go="AvgPool",Ym="AvgPoolGrad",Vp="AvgPool3D",Jm="AvgPool3DGrad",yo="BatchMatMul",fl="BatchToSpaceND",Qm="Bincount",I6="BroadcastTo",e0="BroadcastArgs",Ao="Cast",xo="Ceil",Na="ClipByValue",Up="Complex",Gp="ComplexAbs",ml="Concat",bo="Conv2D",t0="Conv2DBackpropFilter",vo="Conv2DBackpropInput",Hp="Conv3D",n0="Conv3DBackpropFilterV2",s0="Conv3DBackpropInputV2",wo="Cos",ko="Cosh",gl="Cumprod",So="Cumsum",yl="CropAndResize",r0="DenseBincount",Al="DepthToSpace",Io="DepthwiseConv2dNative",a0="DepthwiseConv2dNativeBackpropFilter",o0="DepthwiseConv2dNativeBackpropInput",i0="Diag",jp="Dilation2D",xm="Dilation2DBackpropInput",bm="Dilation2DBackpropFilter",Co="RealDiv",qp="Einsum",To="Elu",l0="EluGrad",Ec="Erf",xl="Equal",No="Exp",bl="ExpandDims",vl="Expm1",u0="FFT",Rc="Fill",wl="FlipLeftRight",Eo="Floor",Ro="FloorDiv",_o="FusedBatchNorm",kl="GatherV2",Sl="GatherNd",Il="Greater",Do="GreaterEqual",$o="Identity",c0="IFFT",Xp="Imag",_c="IsFinite",Dc="IsInf",Cl="IsNan",Po="LeakyRelu",Tl="Less",Nl="LessEqual",d0="LinSpace",Fo="Log",$c="Log1p",El="LogicalAnd",Rl="LogicalNot",Pc="LogicalOr",C6="LogicalXor",T6="LogSoftmax",uD="LowerBound",Kp="LRN",p0="LRNGrad",Oo="Max",Mo="Maximum",zo="MaxPool",h0="MaxPoolGrad",Zp="MaxPool3D",f0="MaxPool3DGrad",m0="MaxPoolWithArgmax",Lo="Mean",Bo="Min",Wo="Minimum",Vo="MirrorPad",Fc="Mod",g0="Multinomial",Uo="Multiply",_l="Neg",Dl="NotEqual",$l="NonMaxSuppressionV3",Oc="NonMaxSuppressionV4",Pl="NonMaxSuppressionV5",Fl="OnesLike",Ol="OneHot",Ml="Pack",Go="PadV2",cD="Pool",Ho="Pow",jo="Prelu",qo="Prod",y0="RaggedTensorToTensor",Mc="Range",Yp="Real",zl="Reciprocal",Xo="Relu",Ll="Reshape",Ko="ResizeNearestNeighbor",A0="ResizeNearestNeighborGrad",Zo="ResizeBilinear",x0="ResizeBilinearGrad",Yo="Relu6",Bl="Reverse",Wl="Round",Jo="Rsqrt",Vl="ScatterNd",b0="SearchSorted",Ul="Select",zc="Selu",Gl="Slice",Qo="Sin",Hl="Sinh",Lc="Sign",ei="Sigmoid",Bc="Softplus",ti="Sqrt",ni="Sum",jl="SpaceToBatchND",ql="SplitV",si="Softmax",Jp="SparseFillEmptyRows",Wc="SparseReshape",Qp="SparseSegmentMean",eh="SparseSegmentSum",th="SparseToDense",ri="SquaredDifference",Vc="Square",Xl="StridedSlice",Uc="StringNGrams",nh="StringSplit",sh="StringToHashBucketFast",ai="Sub",Kl="Tan",oi="Tanh",Ea="Tile",Zl="TopK",Yl="Transform",Qr="Transpose",v0="Unique",Jl="Unpack",rh="UnsortedSegmentSum",dD="UpperBound",Ql="ZerosLike",ii="Step",wp="FromPixels",eu="RotateWithOffset",eo="_FusedMatMul",to="FusedConv2D",no="FusedDepthwiseConv2D";function ja(...e){H().getBool("IS_TEST")||H().getBool("PROD")||console.warn(...e)}function pD(...e){H().getBool("IS_TEST")||H().getBool("PROD")||console.log(...e)}var nc=Oy("kernelRegistry",()=>new Map),kp=Oy("gradRegistry",()=>new Map);function vm(e,t){let n=My(e,t);return nc.get(n)}function T3(e){return kp.get(e)}function ta(e){let t=nc.entries(),n=[];for(;;){let{done:s,value:r}=t.next();if(s)break;let[a,o]=r,[i]=a.split("_");i===e&&n.push(o)}return n}function tr(e){let{kernelName:t,backendName:n}=e,s=My(t,n);nc.has(s)&&ja(`The kernel '${t}' for backend '${n}' is already registered`),nc.set(s,e)}function N6(e){let{kernelName:t}=e;kp.has(t)&&H().getBool("DEBUG")&&ja(`Overriding the gradient for '${t}'`),kp.set(t,e)}function hD(e,t){let n=My(e,t);if(!nc.has(n))throw new Error(`The kernel '${e}' for backend '${t}' is not registered`);nc.delete(n)}function fD(e){if(!kp.has(e))throw new Error(`The gradient '${e}' for backend is not registered`);kp.delete(e)}function mD(e,t){ta(e).forEach(s=>{let r=Object.assign({},s,{backendName:t});tr(r)})}function My(e,t){return`${t}_${e}`}var v={};He(v,{arraysEqual:()=>ho,assert:()=>O,assertNonNegativeIntegerDimensions:()=>$y,assertNonNull:()=>dl,assertShapesMatch:()=>is,bytesFromStringArray:()=>x6,bytesPerElement:()=>C3,checkConversionForErrors:()=>y6,clamp:()=>vp,computeStrides:()=>xc,createScalarValue:()=>vD,createShuffledIndices:()=>Y_,decodeString:()=>wm,distSquared:()=>q_,encodeString:()=>oh,fetch:()=>kD,fingerPrint64:()=>bD,flatten:()=>Qi,getArrayFromDType:()=>g6,getTypedArrayFromDType:()=>m6,hasEncodingLoss:()=>eD,hexToLong:()=>ah,indexToLoc:()=>sD,inferDtype:()=>Km,inferFromImplicitShape:()=>Q_,isBoolean:()=>b6,isFunction:()=>Qa,isInt:()=>tc,isNumber:()=>v6,isPromise:()=>Py,isScalarShape:()=>X_,isString:()=>qa,isTypedArray:()=>Wn,isValidDtype:()=>A6,locToIndex:()=>nD,makeOnesTypedArray:()=>Dy,makeZerosNestedTypedArray:()=>tD,makeZerosTypedArray:()=>Zm,nearestDivisor:()=>Am,nearestLargerEven:()=>G_,now:()=>Sp,parseAxisParam:()=>gr,randUniform:()=>j_,repeatedTry:()=>J_,rightPad:()=>gp,shuffle:()=>h6,shuffleCombo:()=>U_,sizeFromShape:()=>Et,sizeToSquarishShape:()=>Z_,squeezeShape:()=>f6,sum:()=>H_,swap:()=>ym,tanh:()=>K_,toNestedArray:()=>Zu,toTypedArray:()=>w0});var Sv=po(S_()),Wi=Sv.default||Sv;function ah(e){return Wi.fromString(e,!0,16)}var E6=ah("c3a5c85c97cb3127"),zi=ah("b492b66fbe98f273"),ns=ah("9ae16a3b2f90404f");function N3(e){return e.xor(e.shru(47))}function R6(e,t,n){let s=e.slice(t,t+n);return Wi.fromBytes(Array.from(s),!0,!0)}function Nt(e,t){return R6(e,t,8)}function Iv(e,t){return R6(e,t,4)}function wn(e,t){return t===0?e:e.shru(t).or(e.shl(64-t))}function Za(e,t,n=ah("9ddfea08eb382d69")){let s=e.xor(t).mul(n);s=s.xor(s.shru(47));let r=t.xor(s).mul(n);return r=r.xor(r.shru(47)),r=r.mul(n),r}function gD(e,t,n,s,r,a){r=r.add(e),a=wn(a.add(r).add(s),21);let o=r;return r=r.add(t),r=r.add(n),a=a.add(wn(r,44)),[r.add(s),a.add(o)]}function Hf(e,t,n,s){return gD(Nt(e,t),Nt(e,t+8),Nt(e,t+16),Nt(e,t+24),n,s)}function yD(e,t=e.length){if(t>=8){let n=ns.add(t*2),s=Nt(e,0).add(ns),r=Nt(e,t-8),a=wn(r,37).mul(n).add(s),o=wn(s,25).add(r).mul(n);return Za(a,o,n)}if(t>=4){let n=ns.add(t*2),s=Iv(e,0);return Za(s.shl(3).add(t),Iv(e,t-4),n)}if(t>0){let n=e[0],s=e[t>>1],r=e[t-1],a=n+(s<<8),o=t+(r<<2);return N3(ns.mul(a).xor(E6.mul(o))).mul(ns)}return ns}function AD(e,t=e.length){let n=ns.add(t*2),s=Nt(e,0).mul(zi),r=Nt(e,8),a=Nt(e,t-8).mul(n),o=Nt(e,t-16).mul(ns);return Za(wn(s.add(r),43).add(wn(a,30)).add(o),s.add(wn(r.add(ns),18)).add(a),n)}function xD(e,t=e.length){let n=ns.add(t*2),s=Nt(e,0).mul(ns),r=Nt(e,8),a=Nt(e,t-8).mul(n),o=Nt(e,t-16).mul(ns),i=wn(s.add(r),43).add(wn(a,30)).add(o),l=Za(i,s.add(wn(r.add(ns),18)).add(a),n),u=Nt(e,16).mul(n),c=Nt(e,24),p=i.add(Nt(e,t-32)).mul(n),d=l.add(Nt(e,t-24)).mul(n);return Za(wn(u.add(c),43).add(wn(p,30)).add(d),u.add(wn(c.add(s),18)).add(p),n)}function bD(e,t=e.length){let n=Wi.fromNumber(81,!0);if(t<=32)return t<=16?yD(e,t):AD(e,t);if(t<=64)return xD(e,t);let s=n,r=n.mul(zi).add(113),a=N3(r.mul(ns).add(113)).mul(ns),o=[Wi.UZERO,Wi.UZERO],i=[Wi.UZERO,Wi.UZERO];s=s.mul(ns).add(Nt(e,0));let l=0,u=(t-1>>6)*64,c=u+(t-1&63)-63;do s=wn(s.add(r).add(o[0]).add(Nt(e,l+8)),37).mul(zi),r=wn(r.add(o[1]).add(Nt(e,l+48)),42).mul(zi),s=s.xor(i[1]),r=r.add(o[0]).add(Nt(e,l+40)),a=wn(a.add(i[0]),33).mul(zi),o=Hf(e,l,o[1].mul(zi),s.add(i[0])),i=Hf(e,l+32,a.add(i[1]),r.add(Nt(e,l+16))),[a,s]=[s,a],l+=64;while(l!==u);let p=zi.add(a.and(255).shl(1));return l=c,i[0]=i[0].add(t-1&63),o[0]=o[0].add(i[0]),i[0]=i[0].add(o[0]),s=wn(s.add(r).add(o[0]).add(Nt(e,l+8)),37).mul(p),r=wn(r.add(o[1]).add(Nt(e,l+48)),42).mul(p),s=s.xor(i[1].mul(9)),r=r.add(o[0].mul(9).add(Nt(e,l+40))),a=wn(a.add(i[0]),33).mul(p),o=Hf(e,l,o[1].mul(p),s.add(i[0])),i=Hf(e,l+32,a.add(i[1]),r.add(Nt(e,l+16))),[a,s]=[s,a],Za(Za(o[0],i[0],p).add(N3(r).mul(E6)).add(a),Za(o[1],i[1],p).add(s),p)}function vD(e,t){return t==="string"?oh(e):w0([e],t)}function wD(e,t){return e instanceof Float32Array&&t==="float32"||e instanceof Int32Array&&t==="int32"||e instanceof Uint8Array&&t==="bool"}function w0(e,t){if(t==="string")throw new Error("Cannot convert a string[] to a TypedArray");if(Array.isArray(e)&&(e=Qi(e)),H().getBool("DEBUG")&&y6(e,t),wD(e,t))return e;if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool"){let n=new Uint8Array(e.length);for(let s=0;s<n.length;++s)Math.round(e[s])!==0&&(n[s]=1);return n}else throw new Error(`Unknown data type ${t}`)}function Sp(){return H().platform.now()}function kD(e,t){return H().platform.fetch(e,t)}function oh(e,t="utf-8"){return t=t||"utf-8",H().platform.encode(e,t)}function wm(e,t="utf-8"){return t=t||"utf-8",H().platform.decode(e,t)}var SD=class{constructor(e,t){this.backendTimer=e,this.logger=t,t==null&&(this.logger=new CD)}profileKernel(e,t,n){let s,r=()=>{s=n()},a,o=Sp();if(this.backendTimer.timerAvailable())a=this.backendTimer.time(r);else{r();for(let l of s)l.dataSync();a=Promise.resolve({kernelMs:Sp()-o})}if(H().getBool("CHECK_COMPUTATION_FOR_ERRORS"))for(let l=0;l<s.length;l++){let u=s[l];u.data().then(c=>{ID(c,u.dtype,e)})}return{kernelName:e,outputs:s,inputs:t,timeMs:a.then(l=>l.kernelMs),extraInfo:a.then(l=>l.getExtraProfileInfo!=null?l.getExtraProfileInfo():"")}}logKernelProfile(e){let{kernelName:t,outputs:n,timeMs:s,inputs:r,extraInfo:a}=e;n.forEach(o=>{Promise.all([o.data(),s,a]).then(i=>{this.logger.logKernelProfile(t,o,i[0],i[1],r,i[2])})})}};function ID(e,t,n){if(t!=="float32")return!1;for(let s=0;s<e.length;s++){let r=e[s];if(isNaN(r)||!isFinite(r))return console.warn(`Found ${r} in the result of '${n}'`),!0}return!1}var CD=class{logKernelProfile(e,t,n,s,r,a){let o=typeof s=="number"?gp(`${s}ms`,9):s.error,i=gp(e,25),l=t.rank,u=t.size,c=gp(t.shape.toString(),14),p="";for(let d in r){let h=r[d];if(h!=null){let f=h.shape||t.shape,m=f.length;p+=`${d}: ${m}D ${m>0?f:""} `}}console.log(`%c${i} %c${o} %c${l}D ${c} %c${u} %c${p} %c${a}`,"font-weight:bold","color:red","color:blue","color: orange","color: green","color: steelblue")}};function TD(e,t,n){let s={},r={};for(let l=0;l<t.length;l++)s[t[l].id]=!0;for(let l=0;l<e.length;l++){let u=e[l],c=u.inputs;for(let p in c){let d=c[p],h=!1;for(let f=0;f<t.length;f++)if(s[d.id]){u.outputs.forEach(m=>s[m.id]=!0),h=!0,r[u.id]=!0;break}if(h)break}}let a={};a[n.id]=!0;let o={};for(let l=e.length-1;l>=0;l--){let u=e[l],c=u.inputs;for(let p=0;p<u.outputs.length;p++)if(a[u.outputs[p].id]){for(let d in c)a[c[d].id]=!0,o[u.id]=!0;break}}let i=[];for(let l=0;l<e.length;l++){let u=e[l];if(r[u.id]&&o[u.id]){let c={};for(let d in u.inputs){let h=u.inputs[d];s[h.id]&&(c[d]=h)}let p=Object.assign({},u);p.inputs=c,p.outputs=u.outputs,i.push(p)}}return i}function ND(e,t,n,s){for(let r=t.length-1;r>=0;r--){let a=t[r],o=[];if(a.outputs.forEach(l=>{let u=e[l.id];u!=null?o.push(u):o.push(null)}),a.gradient==null)throw new Error(`Cannot compute gradient: gradient function not found for ${a.kernelName}.`);let i=a.gradient(o);for(let l in a.inputs){if(!(l in i))throw new Error(`Cannot backprop through input ${l}. Available gradients found: ${Object.keys(i)}.`);let u=n(()=>i[l]());if(u.dtype!=="float32")throw new Error(`Error in gradient for op ${a.kernelName}. The gradient of input ${l} must have 'float32' dtype, but has '${u.dtype}'`);let c=a.inputs[l];if(!ho(u.shape,c.shape))throw new Error(`Error in gradient for op ${a.kernelName}. The gradient of input '${l}' has shape '${u.shape}', which does not match the shape of the input '${c.shape}'`);if(e[c.id]==null)e[c.id]=u;else{let p=e[c.id];e[c.id]=s(p,u),p.dispose()}}}}var Cv=20,tp=3,p3=7;function ED(e,t,n,s){let r=xc(t),a=RD(e,t,n,r),o=t.length,i=om(e,t,n,r,a),l=["Tensor"];return s&&(l.push(` dtype: ${n}`),l.push(` rank: ${o}`),l.push(` shape: [${t}]`),l.push(" values:")),l.push(i.map(u=>" "+u).join(`
`)),l.join(`
`)}function RD(e,t,n,s){let r=Et(t),a=s[s.length-1],o=new Array(a).fill(0),i=t.length,l=n==="complex64"?op(e):e;if(i>1)for(let u=0;u<r/a;u++){let c=u*a;for(let p=0;p<a;p++)o[p]=Math.max(o[p],ap(l[c+p],0,n).length)}return o}function ap(e,t,n){let s;return Array.isArray(e)?s=`${parseFloat(e[0].toFixed(p3))} + ${parseFloat(e[1].toFixed(p3))}j`:qa(e)?s=`'${e}'`:n==="bool"?s=_6(e):s=parseFloat(e.toFixed(p3)).toString(),gp(s,t)}function _6(e){return e===0?"false":"true"}function om(e,t,n,s,r,a=!0){let o=n==="complex64"?2:1,i=t[0],l=t.length;if(l===0){if(n==="complex64"){let m=op(e);return[ap(m[0],0,n)]}return n==="bool"?[_6(e[0])]:[e[0].toString()]}if(l===1){if(i>Cv){let g=tp*o,y=Array.from(e.slice(0,g)),x=Array.from(e.slice((i-tp)*o,i*o));return n==="complex64"&&(y=op(y),x=op(x)),["["+y.map((A,b)=>ap(A,r[b],n)).join(", ")+", ..., "+x.map((A,b)=>ap(A,r[i-tp+b],n)).join(", ")+"]"]}let m=n==="complex64"?op(e):Array.from(e);return["["+m.map((g,y)=>ap(g,r[y],n)).join(", ")+"]"]}let u=t.slice(1),c=s.slice(1),p=s[0]*o,d=[];if(i>Cv){for(let m=0;m<tp;m++){let g=m*p,y=g+p;d.push(...om(e.slice(g,y),u,n,c,r,!1))}d.push("...");for(let m=i-tp;m<i;m++){let g=m*p,y=g+p;d.push(...om(e.slice(g,y),u,n,c,r,m===i-1))}}else for(let m=0;m<i;m++){let g=m*p,y=g+p;d.push(...om(e.slice(g,y),u,n,c,r,m===i-1))}let h=l===2?",":"";d[0]="["+d[0]+h;for(let m=1;m<d.length-1;m++)d[m]=" "+d[m]+h;let f=`,
`;for(let m=2;m<l;m++)f+=`
`;return d[d.length-1]=" "+d[d.length-1]+"]"+(a?"":f),d}function op(e){let t=[];for(let n=0;n<e.length;n+=2)t.push([e[n],e[n+1]]);return t}var mn=class{constructor(e,t,n){if(this.dtype=t,this.shape=e.slice(),this.size=Et(e),n!=null){let s=n.length;O(s===this.size,()=>`Length of values '${s}' does not match the size inferred by the shape '${this.size}'.`)}if(t==="complex64")throw new Error("complex64 dtype TensorBuffers are not supported. Please create a TensorBuffer for the real and imaginary parts separately and call tf.complex(real, imag).");this.values=n||g6(t,this.size),this.strides=xc(e)}set(e,...t){t.length===0&&(t=[0]),O(t.length===this.rank,()=>`The number of provided coordinates (${t.length}) must match the rank (${this.rank})`);let n=this.locToIndex(t);this.values[n]=e}get(...e){e.length===0&&(e=[0]);let t=0;for(let s of e){if(s<0||s>=this.shape[t]){let r=`Requested out of range element at ${e}. Buffer shape=${this.shape}`;throw new Error(r)}t++}let n=e[e.length-1];for(let s=0;s<e.length-1;++s)n+=this.strides[s]*e[s];return this.values[n]}locToIndex(e){if(this.rank===0)return 0;if(this.rank===1)return e[0];let t=e[e.length-1];for(let n=0;n<e.length-1;++n)t+=this.strides[n]*e[n];return t}indexToLoc(e){if(this.rank===0)return[];if(this.rank===1)return[e];let t=new Array(this.shape.length);for(let n=0;n<t.length-1;++n)t[n]=Math.floor(e/this.strides[n]),e-=t[n]*this.strides[n];return t[t.length-1]=e,t}get rank(){return this.shape.length}toTensor(){return _r().makeTensor(this.values,this.shape,this.dtype)}},_r=null,qu=null,_D=null;function DD(e){_r=e}function $D(e){qu=e}function PD(e){_D=e}var st=class{constructor(e,t,n,s){this.kept=!1,this.isDisposedInternal=!1,this.shape=e.slice(),this.dtype=t||"float32",this.size=Et(e),this.strides=xc(e),this.dataId=n,this.id=s,this.rankType=this.rank<5?this.rank.toString():"higher"}get rank(){return this.shape.length}async buffer(){let e=await this.data();return qu.buffer(this.shape,this.dtype,e)}bufferSync(){return qu.buffer(this.shape,this.dtype,this.dataSync())}async array(){let e=await this.data();return Zu(this.shape,e,this.dtype==="complex64")}arraySync(){return Zu(this.shape,this.dataSync(),this.dtype==="complex64")}async data(){this.throwIfDisposed();let e=_r().read(this.dataId);if(this.dtype==="string"){let t=await e;try{return t.map(n=>wm(n))}catch(n){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}}return e}dataToGPU(e){return this.throwIfDisposed(),_r().readToGPU(this.dataId,e)}dataSync(){this.throwIfDisposed();let e=_r().readSync(this.dataId);if(this.dtype==="string")try{return e.map(t=>wm(t))}catch(t){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}return e}async bytes(){this.throwIfDisposed();let e=await _r().read(this.dataId);return this.dtype==="string"?e:new Uint8Array(e.buffer)}dispose(){this.isDisposed||(_r().disposeTensor(this),this.isDisposedInternal=!0)}get isDisposed(){return this.isDisposedInternal}throwIfDisposed(){if(this.isDisposed)throw new Error("Tensor is disposed.")}print(e=!1){return qu.print(this,e)}clone(){return this.throwIfDisposed(),qu.clone(this)}toString(e=!1){let t=this.dataSync();return ED(t,this.shape,this.dtype,e)}cast(e){return this.throwIfDisposed(),qu.cast(this,e)}variable(e=!0,t,n){return this.throwIfDisposed(),_r().makeVariable(this,e,t,n)}};Object.defineProperty(st,Symbol.hasInstance,{value:e=>!!e&&e.data!=null&&e.dataSync!=null&&e.throwIfDisposed!=null});function ae(){return Oy("Tensor",()=>st)}ae();var Ip=class extends st{constructor(e,t,n,s){super(e.shape,e.dtype,e.dataId,s),this.trainable=t,this.name=n}assign(e){if(e.dtype!==this.dtype)throw new Error(`dtype of the new value (${e.dtype}) and previous value (${this.dtype}) must match`);if(!ho(e.shape,this.shape))throw new Error(`shape of the new value (${e.shape}) and previous value (${this.shape}) must match`);_r().disposeTensor(this),this.dataId=e.dataId,_r().incRef(this,null)}dispose(){_r().disposeVariable(this),this.isDisposedInternal=!0}};Object.defineProperty(Ip,Symbol.hasInstance,{value:e=>e instanceof st&&e.assign!=null&&e.assign instanceof Function});var Fr={};He(Fr,{assertTypesMatch:()=>D6,getTensorsInContainer:()=>zy,isTensorInList:()=>OD,makeTypesMatch:()=>Ht});var E3;(function(e){e.R0="R0",e.R1="R1",e.R2="R2",e.R3="R3",e.R4="R4",e.R5="R5",e.R6="R6"})(E3||(E3={}));var R3;(function(e){e.float32="float32",e.int32="int32",e.bool="int32",e.complex64="complex64"})(R3||(R3={}));var _3;(function(e){e.float32="float32",e.int32="int32",e.bool="bool",e.complex64="complex64"})(_3||(_3={}));var D3;(function(e){e.float32="float32",e.int32="float32",e.bool="float32",e.complex64="complex64"})(D3||(D3={}));var $3;(function(e){e.float32="complex64",e.int32="complex64",e.bool="complex64",e.complex64="complex64"})($3||($3={}));var FD={float32:D3,int32:R3,bool:_3,complex64:$3};function Un(e,t){if(e==="string"||t==="string"){if(e==="string"&&t==="string")return"string";throw new Error(`Can not upcast ${e} with ${t}`)}return FD[e][t]}function ih(e){return Un(e,"int32")}function Ht(e,t){if(e.dtype===t.dtype)return[e,t];let n=Un(e.dtype,t.dtype);return[e.cast(n),t.cast(n)]}function D6(e,t){O(e.dtype===t.dtype,()=>`The dtypes of the first(${e.dtype}) and second(${t.dtype}) input must match`)}function OD(e,t){return t.some(n=>n.id===e.id)}function zy(e){let t=[];return $6(e,t,new Set),t}function $6(e,t,n){if(e==null)return;if(e instanceof st){t.push(e);return}if(!MD(e))return;let s=e;for(let r in s){let a=s[r];n.has(a)||(n.add(a),$6(a,t,n))}}function MD(e){return Array.isArray(e)||typeof e=="object"}function h3(e){return e.kernelName!=null}var Tv=class{constructor(){this.registeredVariables={},this.nextTapeNodeId=0,this.numBytes=0,this.numTensors=0,this.numStringTensors=0,this.numDataBuffers=0,this.gradientDepth=0,this.kernelDepth=0,this.scopeStack=[],this.numDataMovesStack=[],this.nextScopeId=0,this.tensorInfo=new WeakMap,this.profiling=!1,this.activeProfile={newBytes:0,newTensors:0,peakBytes:0,kernels:[],result:null,get kernelNames(){return Array.from(new Set(this.kernels.map(e=>e.name)))}}}dispose(){for(let e in this.registeredVariables)this.registeredVariables[e].dispose()}},Cp=class{constructor(e){this.ENV=e,this.registry={},this.registryFactory={},this.pendingBackendInitId=0,this.state=new Tv}async ready(){if(this.pendingBackendInit!=null)return this.pendingBackendInit.then(()=>{});if(this.backendInstance!=null)return;let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t];if(await this.initializeBackend(n).success){await this.setBackend(n);return}}throw new Error("Could not initialize any backends, all backend initializations failed.")}get backend(){if(this.pendingBackendInit!=null)throw new Error(`Backend '${this.backendName}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);if(this.backendInstance==null){let{name:e,asyncInit:t}=this.initializeBackendsAndReturnBest();if(t)throw new Error(`The highest priority backend '${e}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);this.setBackend(e)}return this.backendInstance}backendNames(){return Object.keys(this.registryFactory)}findBackend(e){if(!(e in this.registry))if(e in this.registryFactory){let{asyncInit:t}=this.initializeBackend(e);if(t)return null}else return null;return this.registry[e]}findBackendFactory(e){return e in this.registryFactory?this.registryFactory[e].factory:null}registerBackend(e,t,n=1){return e in this.registryFactory?(ja(`${e} backend was already registered. Reusing existing backend factory.`),!1):(this.registryFactory[e]={factory:t,priority:n},!0)}async setBackend(e){if(this.registryFactory[e]==null)throw new Error(`Backend name '${e}' not found in registry`);if(this.backendName=e,this.registry[e]==null){this.backendInstance=null;let{success:t,asyncInit:n}=this.initializeBackend(e);if(!(n?await t:t))return!1}return this.backendInstance=this.registry[e],this.setupRegisteredKernels(),this.profiler=new SD(this.backendInstance),!0}setupRegisteredKernels(){ta(this.backendName).forEach(t=>{t.setupFunc!=null&&t.setupFunc(this.backendInstance)})}disposeRegisteredKernels(e){ta(e).forEach(n=>{n.disposeFunc!=null&&n.disposeFunc(this.registry[e])})}initializeBackend(e){let t=this.registryFactory[e];if(t==null)throw new Error(`Cannot initialize backend ${e}, no registration found.`);try{let n=t.factory();if(n&&!(n instanceof Ac)&&typeof n.then=="function"){let s=++this.pendingBackendInitId,r=n.then(a=>s<this.pendingBackendInitId?!1:(this.registry[e]=a,this.pendingBackendInit=null,!0)).catch(a=>(s<this.pendingBackendInitId||(this.pendingBackendInit=null,ja(`Initialization of backend ${e} failed`),ja(a.stack||a.message)),!1));return this.pendingBackendInit=r,{success:r,asyncInit:!0}}else return this.registry[e]=n,{success:!0,asyncInit:!1}}catch(n){return ja(`Initialization of backend ${e} failed`),ja(n.stack||n.message),{success:!1,asyncInit:!1}}}removeBackend(e){if(!(e in this.registryFactory))throw new Error(`${e} backend not found in registry`);this.backendName===e&&this.pendingBackendInit!=null&&this.pendingBackendInitId++,e in this.registry&&(this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e]),delete this.registryFactory[e],this.backendName===e&&(this.pendingBackendInit=null,this.backendName=null,this.backendInstance=null)}getSortedBackends(){if(Object.keys(this.registryFactory).length===0)throw new Error("No backend found in registry.");return Object.keys(this.registryFactory).sort((e,t)=>this.registryFactory[t].priority-this.registryFactory[e].priority)}initializeBackendsAndReturnBest(){let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t],{success:s,asyncInit:r}=this.initializeBackend(n);if(r||s)return{name:n,asyncInit:r}}throw new Error("Could not initialize any backends, all backend initializations failed.")}moveData(e,t){let n=this.state.tensorInfo.get(t),s=n.backend,r=this.readSync(t),a=s.refCount(t);s.disposeData(t,!0),n.backend=e,e.move(t,r,n.shape,n.dtype,a),this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack[this.state.numDataMovesStack.length-1]++}tidy(e,t){let n=null;if(t==null){if(typeof e!="function")throw new Error("Please provide a function to tidy()");t=e}else{if(typeof e!="string"&&!(e instanceof String))throw new Error("When calling with two arguments, the first argument to tidy() must be a string");if(typeof t!="function")throw new Error("When calling with two arguments, the 2nd argument to tidy() must be a function");n=e}let s;return this.scopedRun(()=>this.startScope(n),()=>this.endScope(s),()=>(s=t(),s instanceof Promise&&console.error("Cannot return a Promise inside of tidy."),s))}scopedRun(e,t,n){e();try{let s=n();return t(),s}catch(s){throw t(),s}}nextTensorId(){return Cp.nextTensorId++}nextVariableId(){return Cp.nextVariableId++}clone(e){let t=B.runKernel($o,{x:e}),n={x:e},s=a=>({x:()=>{let o="float32",i={x:a},l={dtype:o};return B.runKernel(Ao,i,l)}}),r=[];return this.addTapeNode(this.state.activeScope.name,n,[t],s,r,{}),t}runKernel(e,t,n){if(this.backendName==null&&this.backend,!(vm(e,this.backendName)!=null))throw new Error(`Kernel '${e}' not registered for backend '${this.backendName}'`);return this.runKernelFunc({kernelName:e,inputs:t,attrs:n})}shouldCheckForMemLeaks(){return this.ENV.getBool("IS_TEST")}checkKernelForMemLeak(e,t,n){let s=this.backend.numDataIds(),r=0;n.forEach(i=>{r+=i.dtype==="complex64"?3:1});let a=this.state.numDataMovesStack[this.state.numDataMovesStack.length-1],o=s-t-r-a;if(o>0)throw new Error(`Backend '${this.backendName}' has an internal memory leak (${o} data ids) after running '${e}'`)}runKernelFunc(e){let t,n=[],s=this.isTapeOn(),r=this.state.numBytes,a=this.state.numTensors;this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack.push(0);let o;this.backendName==null&&this.backend;let i,l=h3(e)?e.kernelName:this.state.activeScope!=null?this.state.activeScope.name:"";if(h3(e)){let{kernelName:h,inputs:f,attrs:m}=e;this.backendName==null&&this.backend;let g=vm(h,this.backendName);O(g!=null,()=>`Cannot find registered kernel '${h}' for backend '${this.backendName}'`),o=()=>{let y=this.backend.numDataIds();i=g.kernelFunc({inputs:f,attrs:m,backend:this.backend});let x=Array.isArray(i)?i:[i];this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(h,y,x);let A=x.map(b=>b.rank!=null?b:this.makeTensorFromTensorInfo(b));if(s){let b=this.getTensorsForGradient(h,f,A);n=this.saveTensorsForBackwardMode(b)}return A}}else{let{forwardFunc:h}=e,f=m=>{!s||(n=m.map(g=>this.keep(this.clone(g))))};o=()=>{let m=this.backend.numDataIds();i=this.tidy(()=>h(this.backend,f));let g=Array.isArray(i)?i:[i];return this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(l,m,g),g}}let{inputs:u,attrs:c}=e,p=h3(e)?null:e.backwardsFunc,d;return this.scopedRun(()=>this.state.kernelDepth++,()=>this.state.kernelDepth--,()=>{!this.ENV.getBool("DEBUG")&&!this.state.profiling?t=o():(d=this.profiler.profileKernel(l,u,()=>o()),this.ENV.getBool("DEBUG")&&this.profiler.logKernelProfile(d),t=d.outputs)}),s&&this.addTapeNode(l,u,t,p,n,c),this.state.profiling&&this.state.activeProfile.kernels.push({name:l,bytesAdded:this.state.numBytes-r,totalBytesSnapshot:this.state.numBytes,tensorsAdded:this.state.numTensors-a,totalTensorsSnapshot:this.state.numTensors,inputShapes:Object.keys(u).map(h=>u[h]!=null?u[h].shape:null),outputShapes:t.map(h=>h.shape),kernelTimeMs:d.timeMs,extraInfo:d.extraInfo}),Array.isArray(i)?t:t[0]}saveTensorsForBackwardMode(e){return e.map(n=>this.keep(this.clone(n)))}getTensorsForGradient(e,t,n){let s=T3(e);if(s!=null){let r=s.inputsToSave||[],a=s.outputsToSave||[],o;s.saveAllInputs?(O(Array.isArray(t),()=>"saveAllInputs is true, expected inputs to be an array."),o=Object.keys(t).map(l=>t[l])):o=r.map(l=>t[l]);let i=n.filter((l,u)=>a[u]);return o.concat(i)}return[]}makeTensor(e,t,n,s){if(e==null)throw new Error("Values passed to engine.makeTensor() are null");n=n||"float32",s=s||this.backend;let r=e;n==="string"&&qa(e[0])&&(r=e.map(i=>oh(i)));let a=s.write(r,t,n),o=new st(t,n,a,this.nextTensorId());if(this.trackTensor(o,s),n==="string"){let i=this.state.tensorInfo.get(a),l=x6(r);this.state.numBytes+=l-i.bytes,i.bytes=l}return o}makeTensorFromDataId(e,t,n,s){n=n||"float32";let r={dataId:e,shape:t,dtype:n};return this.makeTensorFromTensorInfo(r,s)}makeTensorFromTensorInfo(e,t){let{dataId:n,shape:s,dtype:r}=e,a=new st(s,r,n,this.nextTensorId());return this.trackTensor(a,t),a}makeVariable(e,t=!0,n,s){n=n||this.nextVariableId().toString(),s!=null&&s!==e.dtype&&(e=e.cast(s));let r=new Ip(e,t,n,this.nextTensorId());if(this.state.registeredVariables[r.name]!=null)throw new Error(`Variable with name ${r.name} was already registered`);return this.state.registeredVariables[r.name]=r,this.incRef(r,this.backend),r}trackTensor(e,t){this.state.numTensors++,e.dtype==="string"&&this.state.numStringTensors++;let n=0;e.dtype!=="complex64"&&e.dtype!=="string"&&(n=e.size*C3(e.dtype)),this.state.numBytes+=n,this.state.tensorInfo.has(e.dataId)||(this.state.numDataBuffers++,this.state.tensorInfo.set(e.dataId,{backend:t||this.backend,dtype:e.dtype,shape:e.shape,bytes:n})),e instanceof Ip||this.track(e)}incRef(e,t){this.trackTensor(e,t),this.backend.incRef(e.dataId)}removeDataId(e,t){this.state.tensorInfo.has(e)&&this.state.tensorInfo.get(e).backend===t&&(this.state.tensorInfo.delete(e),this.state.numDataBuffers--)}disposeTensor(e){if(!this.state.tensorInfo.has(e.dataId))return;let t=this.state.tensorInfo.get(e.dataId);if(this.state.numTensors--,e.dtype==="string"&&(this.state.numStringTensors--,this.state.numBytes-=t.bytes),e.dtype!=="complex64"&&e.dtype!=="string"){let n=e.size*C3(e.dtype);this.state.numBytes-=n}t.backend.disposeData(e.dataId)&&this.removeDataId(e.dataId,t.backend)}disposeVariables(){for(let e in this.state.registeredVariables){let t=this.state.registeredVariables[e];this.disposeVariable(t)}}disposeVariable(e){this.disposeTensor(e),this.state.registeredVariables[e.name]!=null&&delete this.state.registeredVariables[e.name]}memory(){let e=this.backend.memory();return e.numTensors=this.state.numTensors,e.numDataBuffers=this.state.numDataBuffers,e.numBytes=this.state.numBytes,this.state.numStringTensors>0&&(e.unreliable=!0,e.reasons==null&&(e.reasons=[]),e.reasons.push("Memory usage by string tensors is approximate (2 bytes per character)")),e}async profile(e){this.state.profiling=!0;let t=this.state.numBytes,n=this.state.numTensors;this.state.activeProfile.kernels=[],this.state.activeProfile.result=await e(),this.state.profiling=!1,this.state.activeProfile.peakBytes=Math.max(...this.state.activeProfile.kernels.map(s=>s.totalBytesSnapshot)),this.state.activeProfile.newBytes=this.state.numBytes-t,this.state.activeProfile.newTensors=this.state.numTensors-n;for(let s of this.state.activeProfile.kernels)s.kernelTimeMs=await s.kernelTimeMs,s.extraInfo=await s.extraInfo;return this.state.activeProfile}isTapeOn(){return this.state.gradientDepth>0&&this.state.kernelDepth===0}addTapeNode(e,t,n,s,r,a){let o={id:this.state.nextTapeNodeId++,kernelName:e,inputs:t,outputs:n,saved:r},i=T3(e);i!=null&&(s=i.gradFunc),s!=null&&(o.gradient=l=>(l=l.map((u,c)=>{if(u==null){let p=n[c],d=Zm(p.size,p.dtype);return this.makeTensor(d,p.shape,p.dtype)}return u}),s(l.length>1?l:l[0],r,a))),this.state.activeTape.push(o)}keep(e){return e.kept=!0,e}startTape(){this.state.gradientDepth===0&&(this.state.activeTape=[]),this.state.gradientDepth++}endTape(){this.state.gradientDepth--}startScope(e){let t={track:[],name:"unnamed scope",id:this.state.nextScopeId++};e&&(t.name=e),this.state.scopeStack.push(t),this.state.activeScope=t}endScope(e){let t=zy(e),n=new Set(t.map(r=>r.id));for(let r=0;r<this.state.activeScope.track.length;r++){let a=this.state.activeScope.track[r];!a.kept&&!n.has(a.id)&&a.dispose()}let s=this.state.scopeStack.pop();this.state.activeScope=this.state.scopeStack.length===0?null:this.state.scopeStack[this.state.scopeStack.length-1],t.forEach(r=>{!r.kept&&r.scopeId===s.id&&this.track(r)})}gradients(e,t,n,s=!1){if(O(t.length>0,()=>"gradients() received an empty list of xs."),n!=null&&n.dtype!=="float32")throw new Error(`dy must have 'float32' dtype, but has '${n.dtype}'`);let r=this.scopedRun(()=>this.startTape(),()=>this.endTape(),()=>this.tidy("forward",e));O(r instanceof st,()=>"The result y returned by f() must be a tensor.");let a=TD(this.state.activeTape,t,r);if(!s&&a.length===0&&t.length>0)throw new Error("Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.");return this.tidy("backward",()=>{let o={};o[r.id]=n==null?zD(r.shape):n,ND(o,a,l=>this.tidy(l),LD);let i=t.map(l=>o[l.id]);return this.state.gradientDepth===0&&(this.state.activeTape.forEach(l=>{for(let u of l.saved)u.dispose()}),this.state.activeTape=null),{value:r,grads:i}})}customGrad(e){return O(Qa(e),()=>"The f passed in customGrad(f) must be a function."),(...t)=>{O(t.every(o=>o instanceof st),()=>"The args passed in customGrad(f)(x1, x2,...) must all be tensors");let n,s={};t.forEach((o,i)=>{s[i]=o});let r=(o,i)=>(n=e(...t,i),O(n.value instanceof st,()=>"The function f passed in customGrad(f) must return an object where `obj.value` is a tensor"),O(Qa(n.gradFunc),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function."),n.value),a=(o,i)=>{let l=n.gradFunc(o,i),u=Array.isArray(l)?l:[l];O(u.length===t.length,()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns the same number of tensors as inputs passed to f(...)."),O(u.every(p=>p instanceof st),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns a list of only tensors.");let c={};return u.forEach((p,d)=>{c[d]=()=>p}),c};return this.runKernelFunc({forwardFunc:r,backwardsFunc:a,inputs:s})}}readSync(e){return this.state.tensorInfo.get(e).backend.readSync(e)}read(e){return this.state.tensorInfo.get(e).backend.read(e)}readToGPU(e,t){return this.state.tensorInfo.get(e).backend.readToGPU(e,t)}async time(e){let t=Sp(),n=await this.backend.time(e);return n.wallMs=Sp()-t,n}track(e){return this.state.activeScope!=null&&(e.scopeId=this.state.activeScope.id,this.state.activeScope.track.push(e)),e}get registeredVariables(){return this.state.registeredVariables}reset(){this.pendingBackendInitId++,this.state.dispose(),this.ENV.reset(),this.state=new Tv;for(let e in this.registry)this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e];this.backendName=null,this.backendInstance=null,this.pendingBackendInit=null}};Cp.nextTensorId=0;Cp.nextVariableId=0;function zD(e){let t=Dy(Et(e),"float32");return B.makeTensor(t,e,"float32")}function P6(){let e=S6();if(e._tfengine==null){let t=new k6(e);e._tfengine=new Cp(t)}return iD(e._tfengine.ENV),DD(()=>e._tfengine),e._tfengine}var B=P6();function LD(e,t){let n={a:e,b:t};return B.runKernel(Ta,n)}var lh={};He(lh,{isBrowser:()=>F6,isMobile:()=>VD,mockIsMobile:()=>WD});function BD(){return typeof navigator!="undefined"&&navigator!=null}var P3;function WD(e){P3=e}function VD(e){if(P3!==void 0)return P3;if(e||BD()){if(e||(e=navigator),e.product==="ReactNative")return!0;let t=e.userAgent||e.vendor||(typeof window!="undefined"?window.opera:"");if(!t){let n=e;return n.userAgentData&&n.userAgentData.mobile}return/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i.test(t)||/1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(t.substr(0,4))}return!1}function F6(){return typeof window!="undefined"&&window.document!=null||typeof WorkerGlobalScope!="undefined"}var Js=H();Js.registerFlag("DEBUG",()=>!1,e=>{e&&console.warn("Debugging mode is ON. The output of every math call will be downloaded to CPU and checked for NaNs. This significantly impacts performance.")});Js.registerFlag("IS_BROWSER",()=>F6());Js.registerFlag("IS_NODE",()=>typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined");Js.registerFlag("IS_CHROME",()=>typeof navigator!="undefined"&&navigator!=null&&navigator.userAgent!=null&&/Chrome/.test(navigator.userAgent)&&/Google Inc/.test(navigator.vendor));Js.registerFlag("PROD",()=>!1);Js.registerFlag("TENSORLIKE_CHECK_SHAPE_CONSISTENCY",()=>Js.getBool("DEBUG"));Js.registerFlag("DEPRECATION_WARNINGS_ENABLED",()=>!0);Js.registerFlag("IS_TEST",()=>!1);Js.registerFlag("CHECK_COMPUTATION_FOR_ERRORS",()=>!0);Js.registerFlag("WRAP_TO_IMAGEBITMAP",()=>!1);Js.registerFlag("ENGINE_COMPILE_ONLY",()=>!1);Js.registerFlag("CANVAS2D_WILL_READ_FREQUENTLY_FOR_GPU",()=>!1);function na(e,t){let n=e;if(Wn(e))return t==="string"?[]:[e.length];if(!Array.isArray(e))return[];let s=[];for(;Array.isArray(n)||Wn(n)&&t!=="string";)s.push(n.length),n=n[0];return Array.isArray(e)&&H().getBool("TENSORLIKE_CHECK_SHAPE_CONSISTENCY")&&O6(e,s,[]),s}function O6(e,t,n){if(n=n||[],!Array.isArray(e)&&!Wn(e)){O(t.length===0,()=>`Element arr[${n.join("][")}] is a primitive, but should be an array/TypedArray of ${t[0]} elements`);return}O(t.length>0,()=>`Element arr[${n.join("][")}] should be a primitive, but is an array of ${e.length} elements`),O(e.length===t[0],()=>`Element arr[${n.join("][")}] should have ${t[0]} elements, but has ${e.length} elements`);let s=t.slice(1);for(let r=0;r<e.length;++r)O6(e[r],s,n.concat(r))}function Nv(e,t,n,s){if(e!=="string_or_numeric"){if(e==null)throw new Error("Expected dtype cannot be null.");if(e!=="numeric"&&e!==t||e==="numeric"&&t==="string")throw new Error(`Argument '${n}' passed to '${s}' must be ${e} tensor, but got ${t} tensor`)}}function $(e,t,n,s="numeric"){if(e instanceof st)return Nv(s,e.dtype,t,n),e;let r=Km(e);if(r!=="string"&&["bool","int32","float32"].indexOf(s)>=0&&(r=s),Nv(s,r,t,n),e==null||!Wn(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string"){let l=e==null?"null":e.constructor.name;throw new Error(`Argument '${t}' passed to '${n}' must be a Tensor or TensorLike, but got '${l}'`)}let a=na(e,r);!Wn(e)&&!Array.isArray(e)&&(e=[e]);let i=r!=="string"?w0(e,r):Qi(e,[],!0);return B.makeTensor(i,a,r)}function Tp(e,t,n,s="numeric"){if(!Array.isArray(e))throw new Error(`Argument ${t} passed to ${n} must be a \`Tensor[]\` or \`TensorLike[]\``);return e.map((a,o)=>$(a,`${t}[${o}]`,n,s))}var Ly="__op";function W(e){let t=Object.keys(e);if(t.length!==1)throw new Error(`Please provide an object with a single key (operation name) mapping to a function. Got an object with ${t.length} keys.`);let n=t[0],s=e[n];n.endsWith("_")&&(n=n.substring(0,n.length-1)),n=n+Ly;let r=(...a)=>{B.startScope(n);try{let o=s(...a);return Py(o)&&console.error("Cannot return a Promise inside of tidy."),B.endScope(o),o}catch(o){throw B.endScope(null),o}};return Object.defineProperty(r,"name",{value:n,configurable:!0}),r}function UD(e,t){let n=$(e,"real","complex"),s=$(t,"imag","complex");is(n.shape,s.shape,`real and imag shapes, ${n.shape} and ${s.shape}, must match in call to tf.complex().`);let r={real:n,imag:s};return B.runKernel(Up,r)}var wa=W({complex_:UD});function li(e,t,n,s){if(s==null&&(s=Km(e)),s==="complex64")throw new Error("Cannot construct a complex64 tensor directly. Please use tf.complex(real, imag).");if(!Wn(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string")throw new Error("values passed to tensor(values) must be a number/boolean/string or an array of numbers/booleans/strings, or a TypedArray");if(t!=null){$y(t);let r=Et(t),a=Et(n);O(r===a,()=>`Based on the provided shape, [${t}], the tensor should have ${r} values but has ${a}`);for(let o=0;o<n.length;++o){let i=n[o],l=o===n.length-1?i!==Et(t.slice(o)):!0;O(n[o]===t[o]||!l,()=>`Error creating a new Tensor. Inferred shape (${n}) does not match the provided shape (${t}). `)}}return!Wn(e)&&!Array.isArray(e)&&(e=[e]),t=t||n,e=s!=="string"?w0(e,s):Qi(e,[],!0),B.makeTensor(e,t,s)}function ct(e,t,n){let s=na(e,n);return li(e,t,s,n)}var F3={float32:4,float16:2,int32:4,uint16:2,uint8:1,bool:1,complex64:8},km=4;async function GD(e,t){let n=[],s=[],r=Array.isArray(e)?e.map(o=>o.name):Object.keys(e);for(let o=0;o<r.length;++o){let i=r[o],l=Array.isArray(e)?e[o].tensor:e[i];if(l.dtype!=="float32"&&l.dtype!=="int32"&&l.dtype!=="bool"&&l.dtype!=="string"&&l.dtype!=="complex64")throw new Error(`Unsupported dtype in weight '${i}': ${l.dtype}`);let u={name:i,shape:l.shape,dtype:l.dtype};if(l.dtype==="string"){let c=new Promise(async p=>{let d=await l.bytes(),h=d.reduce((g,y)=>g+y.length,0)+km*d.length,f=new Uint8Array(h),m=0;for(let g=0;g<d.length;g++){let y=d[g],x=new Uint8Array(new Uint32Array([y.length]).buffer);f.set(x,m),m+=km,f.set(y,m),m+=y.length}p(f)});s.push(c)}else s.push(l.data());t!=null&&(u.group=t),n.push(u)}let a=await Promise.all(s);return{data:HD(a),specs:n}}function M6(e,t){let n={},s,r=0;for(let a of t){let o=a.name,i=a.dtype,l=a.shape,u=Et(l),c;if("quantization"in a){let p=a.quantization;if(p.dtype==="uint8"||p.dtype==="uint16"){if(!("min"in p&&"scale"in p))throw new Error(`Weight ${a.name} with quantization ${p.dtype} doesn't have corresponding metadata min and scale.`)}else if(p.dtype==="float16"){if(i!=="float32")throw new Error(`Weight ${a.name} is quantized with ${p.dtype} which only supports weights of type float32 not ${i}.`)}else throw new Error(`Weight ${a.name} has unknown quantization dtype ${p.dtype}. Supported quantization dtypes are: 'uint8', 'uint16', and 'float16'.`);let d=F3[p.dtype],h=e.slice(r,r+u*d),f=p.dtype==="uint8"?new Uint8Array(h):new Uint16Array(h);if(i==="float32")if(p.dtype==="uint8"||p.dtype==="uint16"){c=new Float32Array(f.length);for(let m=0;m<f.length;m++){let g=f[m];c[m]=g*p.scale+p.min}}else if(p.dtype==="float16")s===void 0&&(s=YD()),c=s(f);else throw new Error(`Unsupported quantization type ${p.dtype} for weight type float32.`);else if(i==="int32"){if(p.dtype!=="uint8"&&p.dtype!=="uint16")throw new Error(`Unsupported quantization type ${p.dtype} for weight type int32.`);c=new Int32Array(f.length);for(let m=0;m<f.length;m++){let g=f[m];c[m]=Math.round(g*p.scale+p.min)}}else throw new Error(`Unsupported dtype in weight '${o}': ${i}`);r+=u*d}else if(i==="string"){let p=Et(a.shape);c=[];for(let d=0;d<p;d++){let h=new Uint32Array(e.slice(r,r+km))[0];r+=km;let f=new Uint8Array(e.slice(r,r+h));c.push(f),r+=h}}else{let p=F3[i],d=e.slice(r,r+u*p);if(i==="float32")c=new Float32Array(d);else if(i==="int32")c=new Int32Array(d);else if(i==="bool")c=new Uint8Array(d);else if(i==="complex64"){c=new Float32Array(d);let h=new Float32Array(c.length/2),f=new Float32Array(c.length/2);for(let y=0;y<h.length;y++)h[y]=c[y*2],f[y]=c[y*2+1];let m=ct(h,l,"float32"),g=ct(f,l,"float32");n[o]=wa(m,g),m.dispose(),g.dispose()}else throw new Error(`Unsupported dtype in weight '${o}': ${i}`);r+=u*p}i!=="complex64"&&(n[o]=ct(c,l,i))}return n}function HD(e){if(e===null)throw new Error(`Invalid input value: ${JSON.stringify(e)}`);let t=0,n=[];e.forEach(a=>{if(t+=a.byteLength,n.push(a.byteLength===a.buffer.byteLength?a:new a.constructor(a)),!(a instanceof Float32Array||a instanceof Int32Array||a instanceof Uint8Array))throw new Error(`Unsupported TypedArray subtype: ${a.constructor.name}`)});let s=new Uint8Array(t),r=0;return n.forEach(a=>{s.set(new Uint8Array(a.buffer),r),r+=a.byteLength}),s.buffer}var By=typeof Buffer!="undefined"&&(typeof Blob=="undefined"||typeof atob=="undefined"||typeof btoa=="undefined");function Ev(e){return By?Buffer.byteLength(e):new Blob([e]).size}function jD(e){if(By)return Buffer.from(e).toString("base64");let t=new Uint8Array(e),n="";for(let s=0,r=t.length;s<r;s++)n+=String.fromCharCode(t[s]);return btoa(n)}function qD(e){if(By){let s=Buffer.from(e,"base64");return s.buffer.slice(s.byteOffset,s.byteOffset+s.byteLength)}let t=atob(e),n=new Uint8Array(t.length);for(let s=0;s<t.length;++s)n.set([t.charCodeAt(s)],s);return n.buffer}function Wy(e){if(e.length===1)return e[0];let t=0;e.forEach(r=>{t+=r.byteLength});let n=new Uint8Array(t),s=0;return e.forEach(r=>{n.set(new Uint8Array(r),s),s+=r.byteLength}),n.buffer}function Rv(e){let t="/";for(e=e.trim();e.endsWith(t);)e=e.slice(0,e.length-1);let n=e.split(t);return n[n.length-1]}function z6(e,t){let n={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:t};return e.signature!=null&&(n.signature=e.signature),e.userDefinedMetadata!=null&&(n.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(n.modelInitializer=e.modelInitializer),e.trainingConfig!=null&&(n.trainingConfig=e.trainingConfig),n}async function Vy(e,t){let n={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy};if(e.trainingConfig!=null&&(n.trainingConfig=e.trainingConfig),e.weightsManifest!=null){let[s,r]=await t(e.weightsManifest);n.weightSpecs=s,n.weightData=r}return e.signature!=null&&(n.signature=e.signature),e.userDefinedMetadata!=null&&(n.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(n.modelInitializer=e.modelInitializer),n}function uh(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("Expected JSON model topology, received ArrayBuffer.");return{dateSaved:new Date,modelTopologyType:"JSON",modelTopologyBytes:e.modelTopology==null?0:Ev(JSON.stringify(e.modelTopology)),weightSpecsBytes:e.weightSpecs==null?0:Ev(JSON.stringify(e.weightSpecs)),weightDataBytes:e.weightData==null?0:e.weightData.byteLength}}function XD(){let e=n=>{let s=n<<13,r=0;for(;(s&8388608)===0;)r-=8388608,s<<=1;return s&=-8388609,r+=947912704,s|r},t=new Uint32Array(2048);t[0]=0;for(let n=1;n<1024;n++)t[n]=e(n);for(let n=1024;n<2048;n++)t[n]=939524096+(n-1024<<13);return t}function KD(){let e=new Uint32Array(64);e[0]=0,e[31]=1199570944,e[32]=2147483648,e[63]=3347054592;for(let t=1;t<31;t++)e[t]=t<<23;for(let t=33;t<63;t++)e[t]=2147483648+(t-32<<23);return e}function ZD(){let e=new Uint32Array(64);for(let t=0;t<64;t++)e[t]=1024;return e[0]=e[32]=0,e}function YD(){let e=XD(),t=KD(),n=ZD();return s=>{let r=new ArrayBuffer(4*s.length),a=new Uint32Array(r);for(let o=0;o<s.length;o++){let i=s[o],l=e[n[i>>10]+(i&1023)]+t[i>>10];a[o]=l}return new Float32Array(r)}}var Kt=class{constructor(){this.saveRouters=[],this.loadRouters=[]}static getInstance(){return Kt.instance==null&&(Kt.instance=new Kt),Kt.instance}static registerSaveRouter(e){Kt.getInstance().saveRouters.push(e)}static registerLoadRouter(e){Kt.getInstance().loadRouters.push(e)}static getSaveHandlers(e){return Kt.getHandlers(e,"save")}static getLoadHandlers(e,t){return Kt.getHandlers(e,"load",t)}static getHandlers(e,t,n){let s=[];return(t==="load"?Kt.getInstance().loadRouters:Kt.getInstance().saveRouters).forEach(a=>{let o=a(e,n);o!==null&&s.push(o)}),s}},JD=e=>Kt.registerSaveRouter(e),QD=e=>Kt.registerLoadRouter(e),e$=e=>Kt.getSaveHandlers(e),t$=(e,t)=>Kt.getLoadHandlers(e,t),O3="tensorflowjs",M3=1,Hi="models_store",Xa="model_info_store";function L6(){if(!H().getBool("IS_BROWSER"))throw new Error("Failed to obtain IndexedDB factory because the current environmentis not a web browser.");let e=typeof window=="undefined"?self:window,t=e.indexedDB||e.mozIndexedDB||e.webkitIndexedDB||e.msIndexedDB||e.shimIndexedDB;if(t==null)throw new Error("The current browser does not appear to support IndexedDB.");return t}function z3(e){let t=e.result;t.createObjectStore(Hi,{keyPath:"modelPath"}),t.createObjectStore(Xa,{keyPath:"modelPath"})}var el=class{constructor(e){if(this.indexedDB=L6(),e==null||!e)throw new Error("For IndexedDB, modelPath must not be null, undefined or empty.");this.modelPath=e}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");return this.databaseAction(this.modelPath,e)}async load(){return this.databaseAction(this.modelPath)}databaseAction(e,t){return new Promise((n,s)=>{let r=this.indexedDB.open(O3,M3);r.onupgradeneeded=()=>z3(r),r.onsuccess=()=>{let a=r.result;if(t==null){let o=a.transaction(Hi,"readonly"),l=o.objectStore(Hi).get(this.modelPath);l.onsuccess=()=>{if(l.result==null)return a.close(),s(new Error(`Cannot find model with path '${this.modelPath}' in IndexedDB.`));n(l.result.modelArtifacts)},l.onerror=u=>(a.close(),s(l.error)),o.oncomplete=()=>a.close()}else{let o=uh(t),i=a.transaction(Xa,"readwrite"),l=i.objectStore(Xa),u=l.put({modelPath:this.modelPath,modelArtifactsInfo:o}),c;u.onsuccess=()=>{c=a.transaction(Hi,"readwrite");let d=c.objectStore(Hi).put({modelPath:this.modelPath,modelArtifacts:t,modelArtifactsInfo:o});d.onsuccess=()=>n({modelArtifactsInfo:o}),d.onerror=h=>{l=i.objectStore(Xa);let f=l.delete(this.modelPath);f.onsuccess=()=>(a.close(),s(d.error)),f.onerror=m=>(a.close(),s(d.error))}},u.onerror=p=>(a.close(),s(u.error)),i.oncomplete=()=>{c==null?a.close():c.oncomplete=()=>a.close()}}},r.onerror=a=>s(r.error)})}};el.URL_SCHEME="indexeddb://";var B6=e=>H().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(el.URL_SCHEME)?n$(e.slice(el.URL_SCHEME.length)):null;Kt.registerSaveRouter(B6);Kt.registerLoadRouter(B6);function n$(e){return new el(e)}function s$(e){return e.startsWith(el.URL_SCHEME)?e.slice(el.URL_SCHEME.length):e}var r$=class{constructor(){this.indexedDB=L6()}async listModels(){return new Promise((e,t)=>{let n=this.indexedDB.open(O3,M3);n.onupgradeneeded=()=>z3(n),n.onsuccess=()=>{let s=n.result,r=s.transaction(Xa,"readonly"),o=r.objectStore(Xa).getAll();o.onsuccess=()=>{let i={};for(let l of o.result)i[l.modelPath]=l.modelArtifactsInfo;e(i)},o.onerror=i=>(s.close(),t(o.error)),r.oncomplete=()=>s.close()},n.onerror=s=>t(n.error)})}async removeModel(e){return e=s$(e),new Promise((t,n)=>{let s=this.indexedDB.open(O3,M3);s.onupgradeneeded=()=>z3(s),s.onsuccess=()=>{let r=s.result,a=r.transaction(Xa,"readwrite"),o=a.objectStore(Xa),i=o.get(e),l;i.onsuccess=()=>{if(i.result==null)return r.close(),n(new Error(`Cannot find model with path '${e}' in IndexedDB.`));{let u=o.delete(e),c=()=>{l=r.transaction(Hi,"readwrite");let d=l.objectStore(Hi).delete(e);d.onsuccess=()=>t(i.result.modelArtifactsInfo),d.onerror=h=>n(i.error)};u.onsuccess=c,u.onerror=p=>(c(),r.close(),n(i.error))}},i.onerror=u=>(r.close(),n(i.error)),a.oncomplete=()=>{l==null?r.close():l.oncomplete=()=>r.close()}},s.onerror=r=>n(s.error)})}},Aa="/",Xu="tensorflowjs_models",W6="info",a$="model_topology",o$="weight_specs",i$="weight_data",l$="model_metadata";function V6(e){return{info:[Xu,e,W6].join(Aa),topology:[Xu,e,a$].join(Aa),weightSpecs:[Xu,e,o$].join(Aa),weightData:[Xu,e,i$].join(Aa),modelMetadata:[Xu,e,l$].join(Aa)}}function U6(e){for(let t of Object.values(e))window.localStorage.removeItem(t)}function u$(e){let t=e.split(Aa);if(t.length<3)throw new Error(`Invalid key format: ${e}`);return t.slice(1,t.length-1).join(Aa)}function c$(e){return e.startsWith(tl.URL_SCHEME)?e.slice(tl.URL_SCHEME.length):e}var tl=class{constructor(e){if(!H().getBool("IS_BROWSER")||typeof window=="undefined"||typeof window.localStorage=="undefined")throw new Error("The current environment does not support local storage.");if(this.LS=window.localStorage,e==null||!e)throw new Error("For local storage, modelPath must not be null, undefined or empty.");this.modelPath=e,this.keys=V6(this.modelPath)}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");{let t=JSON.stringify(e.modelTopology),n=JSON.stringify(e.weightSpecs),s=uh(e);try{this.LS.setItem(this.keys.info,JSON.stringify(s)),this.LS.setItem(this.keys.topology,t),this.LS.setItem(this.keys.weightSpecs,n),this.LS.setItem(this.keys.weightData,jD(e.weightData));let r={format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,signature:e.signature!=null?e.signature:void 0,userDefinedMetadata:e.userDefinedMetadata!=null?e.userDefinedMetadata:void 0,modelInitializer:e.modelInitializer!=null?e.modelInitializer:void 0,trainingConfig:e.trainingConfig!=null?e.trainingConfig:void 0};return this.LS.setItem(this.keys.modelMetadata,JSON.stringify(r)),{modelArtifactsInfo:s}}catch(r){throw U6(this.keys),new Error(`Failed to save model '${this.modelPath}' to local storage: size quota being exceeded is a possible cause of this failure: modelTopologyBytes=${s.modelTopologyBytes}, weightSpecsBytes=${s.weightSpecsBytes}, weightDataBytes=${s.weightDataBytes}.`)}}}async load(){let e=JSON.parse(this.LS.getItem(this.keys.info));if(e==null)throw new Error(`In local storage, there is no model with name '${this.modelPath}'`);if(e.modelTopologyType!=="JSON")throw new Error("BrowserLocalStorage does not support loading non-JSON model topology yet.");let t={},n=JSON.parse(this.LS.getItem(this.keys.topology));if(n==null)throw new Error(`In local storage, the topology of model '${this.modelPath}' is missing.`);t.modelTopology=n;let s=JSON.parse(this.LS.getItem(this.keys.weightSpecs));if(s==null)throw new Error(`In local storage, the weight specs of model '${this.modelPath}' are missing.`);t.weightSpecs=s;let r=this.LS.getItem(this.keys.modelMetadata);if(r!=null){let o=JSON.parse(r);t.format=o.format,t.generatedBy=o.generatedBy,t.convertedBy=o.convertedBy,o.signature!=null&&(t.signature=o.signature),o.userDefinedMetadata!=null&&(t.userDefinedMetadata=o.userDefinedMetadata),o.modelInitializer!=null&&(t.modelInitializer=o.modelInitializer),o.trainingConfig!=null&&(t.trainingConfig=o.trainingConfig)}let a=this.LS.getItem(this.keys.weightData);if(a==null)throw new Error(`In local storage, the binary weight values of model '${this.modelPath}' are missing.`);return t.weightData=qD(a),t}};tl.URL_SCHEME="localstorage://";var G6=e=>H().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(tl.URL_SCHEME)?d$(e.slice(tl.URL_SCHEME.length)):null;Kt.registerSaveRouter(G6);Kt.registerLoadRouter(G6);function d$(e){return new tl(e)}var p$=class{constructor(){O(H().getBool("IS_BROWSER"),()=>"Current environment is not a web browser"),O(typeof window=="undefined"||typeof window.localStorage!="undefined",()=>"Current browser does not appear to support localStorage"),this.LS=window.localStorage}async listModels(){let e={},t=Xu+Aa,n=Aa+W6;for(let s=0;s<this.LS.length;++s){let r=this.LS.key(s);if(r.startsWith(t)&&r.endsWith(n)){let a=u$(r);e[a]=JSON.parse(this.LS.getItem(r))}}return e}async removeModel(e){e=c$(e);let t=V6(e);if(this.LS.getItem(t.info)==null)throw new Error(`Cannot find model at path '${e}'`);let n=JSON.parse(this.LS.getItem(t.info));return U6(t),n}},Yu="://",gs=class{constructor(){this.managers={}}static getInstance(){return gs.instance==null&&(gs.instance=new gs),gs.instance}static registerManager(e,t){O(e!=null,()=>"scheme must not be undefined or null."),e.endsWith(Yu)&&(e=e.slice(0,e.indexOf(Yu))),O(e.length>0,()=>"scheme must not be an empty string.");let n=gs.getInstance();O(n.managers[e]==null,()=>`A model store manager is already registered for scheme '${e}'.`),n.managers[e]=t}static getManager(e){let t=gs.getInstance().managers[e];if(t==null)throw new Error(`Cannot find model manager for scheme '${e}'`);return t}static getSchemes(){return Object.keys(gs.getInstance().managers)}};function im(e){if(e.indexOf(Yu)===-1)throw new Error(`The url string provided does not contain a scheme. Supported schemes are: ${gs.getSchemes().join(",")}`);return{scheme:e.split(Yu)[0],path:e.split(Yu)[1]}}async function H6(e,t,n=!1){O(e!==t,()=>`Old path and new path are the same: '${e}'`);let s=Kt.getLoadHandlers(e);O(s.length>0,()=>`Copying failed because no load handler is found for source URL ${e}.`),O(s.length<2,()=>`Copying failed because more than one (${s.length}) load handlers for source URL ${e}.`);let r=s[0],a=Kt.getSaveHandlers(t);O(a.length>0,()=>`Copying failed because no save handler is found for destination URL ${t}.`),O(a.length<2,()=>`Copying failed because more than one (${s.length}) save handlers for destination URL ${t}.`);let o=a[0],i=im(e).scheme,l=im(e).path,u=i===im(e).scheme,c=await r.load();n&&u&&await gs.getManager(i).removeModel(l);let p=await o.save(c);return n&&!u&&await gs.getManager(i).removeModel(l),p.modelArtifactsInfo}async function h$(){let e=gs.getSchemes(),t={};for(let n of e){let s=await gs.getManager(n).listModels();for(let r in s){let a=n+Yu+r;t[a]=s[r]}}return t}async function f$(e){let t=im(e);return gs.getManager(t.scheme).removeModel(t.path)}async function m$(e,t){return H6(e,t,!1)}async function g$(e,t){return H6(e,t,!0)}var y$=class{fetch(e,t){return fetch(e,t)}now(){return performance.now()}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Browser's encoder only supports utf-8, but got ${t}`);return this.textEncoder==null&&(this.textEncoder=new TextEncoder),this.textEncoder.encode(e)}decode(e,t){return new TextDecoder(t).decode(e)}};if(H().get("IS_BROWSER")){H().setPlatform("browser",new y$);try{gs.registerManager(tl.URL_SCHEME,new p$)}catch(e){}try{gs.registerManager(el.URL_SCHEME,new r$)}catch(e){}}var A$={importFetch:()=>I_()},f3,x$=class{constructor(){this.util=C_(),this.textEncoder=new this.util.TextEncoder}fetch(e,t){return H().global.fetch!=null?H().global.fetch(e,t):(f3==null&&(f3=A$.importFetch()),f3(e,t))}now(){let e=process.hrtime();return e[0]*1e3+e[1]/1e6}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Node built-in encoder only supports utf-8, but got ${t}`);return this.textEncoder.encode(e)}decode(e,t){return e.length===0?"":new this.util.TextDecoder(t).decode(e)}};H().get("IS_NODE")&&!H().get("IS_BROWSER")&&H().setPlatform("node",new x$);function We(e,t="float32",n){return t=t||"float32",$y(e),new mn(e,t,n)}function b$(e,t){let n=$(e,"x","cast");if(!A6(t))throw new Error(`Failed to cast to unknown dtype ${t}`);if(t==="string"&&n.dtype!=="string"||t!=="string"&&n.dtype==="string")throw new Error("Only strings can be casted to strings");let s={x:n},r={dtype:t};return B.runKernel(Ao,s,r)}var ye=W({cast_:b$});function v$(e){let n={x:$(e,"x","clone","string_or_numeric")};return B.runKernel($o,n)}var Vn=W({clone_:v$});function Uy(e,t=!1){console.log(e.toString(t))}P6();var w$={buffer:We,cast:ye,clone:Vn,print:Uy};$D(w$);var Ds={};He(Ds,{browserFiles:()=>E$,browserHTTPRequest:()=>P$,concatenateArrayBuffers:()=>Wy,copyModel:()=>m$,decodeWeights:()=>M6,encodeWeights:()=>GD,fromMemory:()=>O$,fromMemorySync:()=>Z6,getLoadHandlers:()=>t$,getModelArtifactsForJSON:()=>Vy,getModelArtifactsInfoForJSON:()=>uh,getSaveHandlers:()=>e$,http:()=>Hy,isHTTPScheme:()=>L3,listModels:()=>h$,loadWeights:()=>R$,moveModel:()=>g$,registerLoadRouter:()=>QD,registerSaveRouter:()=>JD,removeModel:()=>f$,weightsLoaderFactory:()=>q6,withSaveHandler:()=>M$,withSaveHandlerSync:()=>z$});var k$="model",S$=".json",I$=".weights.bin";function _v(e){return new Promise(t=>setTimeout(t)).then(e)}var sc=class{constructor(e){if(!H().getBool("IS_BROWSER"))throw new Error("browserDownloads() cannot proceed because the current environment is not a browser.");e.startsWith(sc.URL_SCHEME)&&(e=e.slice(sc.URL_SCHEME.length)),(e==null||e.length===0)&&(e=k$),this.modelJsonFileName=e+S$,this.weightDataFileName=e+I$}async save(e){if(typeof document=="undefined")throw new Error("Browser downloads are not supported in this environment since `document` is not present");let t=window.URL.createObjectURL(new Blob([e.weightData],{type:"application/octet-stream"}));if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserDownloads.save() does not support saving model topology in binary formats yet.");{let n=[{paths:["./"+this.weightDataFileName],weights:e.weightSpecs}],s=z6(e,n),r=window.URL.createObjectURL(new Blob([JSON.stringify(s)],{type:"application/json"})),a=this.modelJsonAnchor==null?document.createElement("a"):this.modelJsonAnchor;if(a.download=this.modelJsonFileName,a.href=r,await _v(()=>a.dispatchEvent(new MouseEvent("click"))),e.weightData!=null){let o=this.weightDataAnchor==null?document.createElement("a"):this.weightDataAnchor;o.download=this.weightDataFileName,o.href=t,await _v(()=>o.dispatchEvent(new MouseEvent("click")))}return{modelArtifactsInfo:uh(e)}}}};sc.URL_SCHEME="downloads://";var C$=class{constructor(e){if(e==null||e.length<1)throw new Error(`When calling browserFiles, at least 1 file is required, but received ${e}`);this.jsonFile=e[0],this.weightsFiles=e.slice(1)}async load(){return new Promise((e,t)=>{let n=new FileReader;n.onload=s=>{let r=JSON.parse(s.target.result),a=r.modelTopology;if(a==null){t(new Error(`modelTopology field is missing from file ${this.jsonFile.name}`));return}if(r.weightsManifest==null){t(new Error(`weightManifest field is missing from file ${this.jsonFile.name}`));return}if(this.weightsFiles.length===0){e({modelTopology:a});return}let i=Vy(r,l=>this.loadWeights(l));e(i)},n.onerror=s=>t(`Failed to read model topology and weights manifest JSON from file '${this.jsonFile.name}'. BrowserFiles supports loading Keras-style tf.Model artifacts only.`),n.readAsText(this.jsonFile)})}loadWeights(e){let t=[],n=[];for(let a of e)t.push(...a.weights),n.push(...a.paths);let s=this.checkManifestAndWeightFiles(e),r=n.map(a=>this.loadWeightsFile(a,s[a]));return Promise.all(r).then(a=>[t,Wy(a)])}loadWeightsFile(e,t){return new Promise((n,s)=>{let r=new FileReader;r.onload=a=>{let o=a.target.result;n(o)},r.onerror=a=>s(`Failed to weights data from file of path '${e}'.`),r.readAsArrayBuffer(t)})}checkManifestAndWeightFiles(e){let t=[],n=this.weightsFiles.map(r=>Rv(r.name)),s={};for(let r of e)r.paths.forEach(a=>{let o=Rv(a);if(t.indexOf(o)!==-1)throw new Error(`Duplicate file basename found in weights manifest: '${o}'`);if(t.push(o),n.indexOf(o)===-1)throw new Error(`Weight file with basename '${o}' is not provided.`);s[a]=this.weightsFiles[n.indexOf(o)]});if(t.length!==this.weightsFiles.length)throw new Error(`Mismatch in the number of files in weights manifest (${t.length}) and the number of weight files provided (${this.weightsFiles.length}).`);return s}},T$=e=>H().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(sc.URL_SCHEME)?N$(e.slice(sc.URL_SCHEME.length)):null;Kt.registerSaveRouter(T$);function N$(e="model"){return new sc(e)}function E$(e){return new C$(e)}function Dv(e,t,n,s){o(e),n=n==null?0:n,s=s==null?1:s,i(n,s);let r=0,a=l=>(l.then(u=>{let c=n+ ++r/e.length*(s-n);return t(c),u}),l);function o(l){O(l!=null&&Array.isArray(l)&&l.length>0,()=>"promises must be a none empty array")}function i(l,u){O(l>=0&&l<=1,()=>`Progress fraction must be in range [0, 1], but got startFraction ${l}`),O(u>=0&&u<=1,()=>`Progress fraction must be in range [0, 1], but got endFraction ${u}`),O(u>=l,()=>`startFraction must be no more than endFraction, but got startFraction ${l} and endFraction ${u}`)}return Promise.all(e.map(a))}async function j6(e,t){t==null&&(t={});let n=t.fetchFunc==null?H().platform.fetch:t.fetchFunc,s=e.map(p=>n(p,t.requestInit,{isBinary:!0})),r=0,a=.5,i=(t.onProgress==null?await Promise.all(s):await Dv(s,t.onProgress,r,a)).map(p=>p.arrayBuffer()),l=.5,u=1;return t.onProgress==null?await Promise.all(i):await Dv(i,t.onProgress,l,u)}async function R$(e,t="",n,s){return q6(o=>j6(o,{requestInit:s}))(e,t,n)}function q6(e){return async(t,n="",s)=>{let r=t.map(()=>!1),a={},o=s!=null?s.map(()=>!1):[],i=[];if(t.forEach((h,f)=>{let m=0;h.weights.forEach(g=>{let y="quantization"in g?g.quantization.dtype:g.dtype,x=F3[y]*Et(g.shape),A=()=>{r[f]=!0,a[f]==null&&(a[f]=[]),a[f].push({manifestEntry:g,groupOffset:m,sizeBytes:x})};s!=null?s.forEach((b,w)=>{b===g.name&&(A(),o[w]=!0)}):A(),i.push(g.name),m+=x})}),!o.every(h=>h)){let h=s.filter((f,m)=>!o[m]);throw new Error(`Could not find weights in manifest with names: ${h.join(", ")}.
Manifest JSON has weights with names: ${i.join(", ")}.`)}let l=r.reduce((h,f,m)=>(f&&h.push(m),h),[]),u=[];l.forEach(h=>{t[h].paths.forEach(f=>{let m=n+(n.endsWith("/")?"":"/")+f;u.push(m)})});let c=await e(u),p={},d=0;return l.forEach(h=>{let f=t[h].paths.length,m=0;for(let b=0;b<f;b++)m+=c[d+b].byteLength;let g=new ArrayBuffer(m),y=new Uint8Array(g),x=0;for(let b=0;b<f;b++){let w=new Uint8Array(c[d+b]);y.set(w,x),x+=w.byteLength}a[h].forEach(b=>{let w=g.slice(b.groupOffset,b.groupOffset+b.sizeBytes),S=M6(w,[b.manifestEntry]);for(let k in S)p[k]=S[k]}),d+=f}),p}}var _$="application/octet-stream",D$="application/json",Gy=class{constructor(e,t){if(this.DEFAULT_METHOD="POST",t==null&&(t={}),this.weightPathPrefix=t.weightPathPrefix,this.onProgress=t.onProgress,this.weightUrlConverter=t.weightUrlConverter,t.fetchFunc!=null?(O(typeof t.fetchFunc=="function",()=>"Must pass a function that matches the signature of `fetch` (see https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)"),this.fetch=t.fetchFunc):this.fetch=H().platform.fetch,O(e!=null&&e.length>0,()=>"URL path for http must not be null, undefined or empty."),Array.isArray(e)&&O(e.length===2,()=>`URL paths for http must have a length of 2, (actual length is ${e.length}).`),this.path=e,t.requestInit!=null&&t.requestInit.body!=null)throw new Error("requestInit is expected to have no pre-existing body, but has one.");this.requestInit=t.requestInit||{}}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserHTTPRequest.save() does not support saving model topology in binary formats yet.");let t=Object.assign({method:this.DEFAULT_METHOD},this.requestInit);t.body=new FormData;let n=[{paths:["./model.weights.bin"],weights:e.weightSpecs}],s=z6(e,n);t.body.append("model.json",new Blob([JSON.stringify(s)],{type:D$}),"model.json"),e.weightData!=null&&t.body.append("model.weights.bin",new Blob([e.weightData],{type:_$}),"model.weights.bin");let r=await this.fetch(this.path,t);if(r.ok)return{modelArtifactsInfo:uh(e),responses:[r]};throw new Error(`BrowserHTTPRequest.save() failed due to HTTP response status ${r.status}.`)}async load(){let e=await this.fetch(this.path,this.requestInit);if(!e.ok)throw new Error(`Request to ${this.path} failed with status code ${e.status}. Please verify this URL points to the model JSON of the model to load.`);let t;try{t=await e.json()}catch(r){let a=`Failed to parse model JSON of response from ${this.path}.`;throw this.path.endsWith(".pb")?a+=" Your path contains a .pb file extension. Support for .pb models have been removed in TensorFlow.js 1.0 in favor of .json models. You can re-convert your Python TensorFlow model using the TensorFlow.js 1.0 conversion scripts or you can convert your.pb models with the 'pb2json'NPM script in the tensorflow/tfjs-converter repository.":a+=" Please make sure the server is serving valid JSON for this request.",new Error(a)}let n=t.modelTopology,s=t.weightsManifest;if(n==null&&s==null)throw new Error(`The JSON from HTTP path ${this.path} contains neither model topology or manifest for weights.`);return Vy(t,r=>this.loadWeights(r))}async loadWeights(e){let t=Array.isArray(this.path)?this.path[1]:this.path,[n,s]=$$(t),r=this.weightPathPrefix||n,a=[];for(let u of e)a.push(...u.weights);let o=[],i=[];for(let u of e)for(let c of u.paths)this.weightUrlConverter!=null?i.push(this.weightUrlConverter(c)):o.push(r+c+s);this.weightUrlConverter&&o.push(...await Promise.all(i));let l=await j6(o,{requestInit:this.requestInit,fetchFunc:this.fetch,onProgress:this.onProgress});return[a,Wy(l)]}};Gy.URL_SCHEME_REGEX=/^https?:\/\//;function $$(e){let t=e.lastIndexOf("/"),n=e.lastIndexOf("?"),s=e.substring(0,t),r=n>t?e.substring(n):"";return[s+"/",r]}function L3(e){return e.match(Gy.URL_SCHEME_REGEX)!=null}var X6=(e,t)=>{if(typeof fetch=="undefined"&&(t==null||t.fetchFunc==null))return null;{let n=!0;if(Array.isArray(e)?n=e.every(s=>L3(s)):n=L3(e),n)return Hy(e,t)}return null};Kt.registerSaveRouter(X6);Kt.registerLoadRouter(X6);function Hy(e,t){return new Gy(e,t)}function P$(e,t){return Hy(e,t)}var m3=class{constructor(e){this.modelArtifacts=e}load(){return this.modelArtifacts}},K6=class{constructor(e){this.saveHandler=e}save(e){return this.saveHandler(e)}},F$=class{constructor(e){e.load&&(this.load=()=>Promise.resolve(e.load())),e.save&&(this.save=t=>Promise.resolve(e.save(t)))}};function O$(e,t,n,s){let r=arguments;return new F$(Z6(...r))}function Z6(e,t,n,s){return arguments.length===1?e.modelTopology!=null||e.weightSpecs!=null?new m3(e):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new m3({modelTopology:e})):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new m3({modelTopology:e,weightSpecs:t,weightData:n,trainingConfig:s}))}function M$(e){return new K6(e)}function z$(e){return new K6(e)}var Y6={};He(Y6,{confusionMatrix:()=>eP});function L$(e,t,n=!1,s=!1){let r=$(e,"a","matMul"),a=$(t,"b","matMul");[r,a]=Ht(r,a);let o={a:r,b:a},i={transposeA:n,transposeB:s};return B.runKernel(yo,o,i)}var et=W({matMul_:L$});function B$(e,t,n=1,s=0,r="int32"){if(t<2)throw new Error(`Error in oneHot: depth must be >=2, but it is ${t}`);let o={indices:$(e,"indices","oneHot","int32")},i={dtype:r,depth:t,onValue:n,offValue:s};return B.runKernel(Ol,o,i)}var rc=W({oneHot_:B$});function jy(){H().set("PROD",!0)}function W$(){H().set("DEBUG",!0)}function V$(){H().set("DEPRECATION_WARNINGS_ENABLED",!1),console.warn("TensorFlow.js deprecation warnings have been disabled.")}function qy(e){H().getBool("DEPRECATION_WARNINGS_ENABLED")&&console.warn(e+" You can disable deprecation warnings with tf.disableDeprecationWarnings().")}PD(qy);function U$(){B.disposeVariables()}function rn(){return B}function Sm(){return B.memory()}function G$(e){return B.profile(e)}function Z(e,t){return B.tidy(e,t)}function J(e){zy(e).forEach(n=>n.dispose())}function kn(e){return B.keep(e)}function H$(e){return B.time(e)}function ch(e){return B.setBackend(e)}function Gc(){return B.ready()}function Cn(){return B.backendName}function j$(e){B.removeBackend(e)}function Xy(e){return B.findBackend(e)}function q$(e){return B.findBackendFactory(e)}function tu(e,t,n=1){return B.registerBackend(e,t,n)}function Hn(){return B.backend}function X$(e,t){H().setPlatform(e,t)}function K$(e){let n={input:$(e,"input","imag")};return B.runKernel(Xp,n)}var dh=W({imag_:K$});function Z$(e){let n={x:$(e,"x","neg")};return B.runKernel(_l,n)}var $t=W({neg_:Z$});function Y$(e){let n={input:$(e,"input","real")};return B.runKernel(Yp,n)}var ac=W({real_:Y$});function J$(e,t,n){let s=$(e,"x","transpose");if(t==null&&(t=s.shape.map((o,i)=>i).reverse()),O(s.rank===t.length,()=>`Error in transpose: rank of input ${s.rank} must match length of perm ${t}.`),t.forEach(o=>{O(o>=0&&o<s.rank,()=>`All entries in 'perm' must be between 0 and ${s.rank-1} but got ${t}`)}),s.rank<=1)return s.clone();let r={x:s},a={perm:t};return s.dtype==="complex64"?Z(()=>{let o=ac(s),i=dh(s);return o=B.runKernel(Qr,{x:o},a),i=B.runKernel(Qr,{x:i},a),n&&(i=$t(i)),wa(o,i)}):B.runKernel(Qr,r,a)}var tt=W({transpose_:J$});function Q$(e,t,n){let s=$(e,"labels","confusionMatrix"),r=$(t,"predictions","confusionMatrix");O(n==null||n>0&&Number.isInteger(n),()=>`If provided, numClasses must be a positive integer, but got ${n}`),O(s.rank===1,()=>`Expected the rank of labels to be 1, but got ${s.rank}`),O(r.rank===1,()=>`Expected the rank of predictions to be 1, but got ${r.rank}`),O(s.shape[0]===r.shape[0],()=>`Mismatch in the number of examples: ${s.shape[0]} vs. ${r.shape[0]}. Labels and predictions should have the same number of elements.`),O(n>0&&Number.isInteger(n),()=>`numClasses is required to be a positive integer, but got ${n}`);let a=rc(ye(s,"int32"),n),o=rc(ye(r,"int32"),n),i=tt(a),l=et(i,o);return ye(l,"int32")}var eP=W({confusionMatrix_:Q$}),nu={};He(nu,{assertAndGetBroadcastShape:()=>wt,getBroadcastDims:()=>J6,getReductionAxes:()=>on});function J6(e,t){let n=e.length,s=[];for(let r=0;r<n;r++){let a=n-1-r,o=e[a]||1;(t[t.length-1-r]||1)>1&&o===1&&s.unshift(a)}return s}function on(e,t){let n=[];for(let s=0;s<t.length;s++){let r=e[e.length-s-1],a=t.length-s-1,o=t[a];(r==null||r===1&&o>1)&&n.unshift(a)}return n}function wt(e,t){let n=[],s=Math.max(e.length,t.length);for(let r=0;r<s;r++){let a=e[e.length-r-1];a==null&&(a=1);let o=t[t.length-r-1];if(o==null&&(o=1),a===1)n.unshift(o);else if(o===1)n.unshift(a);else if(a!==o){let i=`Operands could not be broadcast together with shapes ${e} and ${t}.`;throw Error(i)}else n.unshift(a)}return n}var nr={};He(nr,{fromPixels:()=>iP,fromPixelsAsync:()=>aP,toPixels:()=>oP});function Ky(e,t,n){if(dl(e),t!=null&&t.length!==3)throw new Error("tensor3d() requires shape to have three numbers");let s=na(e,n);if(s.length!==3&&s.length!==1)throw new Error("tensor3d() requires values to be number[][][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor3d() requires shape to be provided when `values` are a flat array");return li(e,t,s,n)}var Oi;function Q6(e,t=3){if(t>4)throw new Error("Cannot construct Tensor with more than 4 channels from pixels.");if(e==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let n=!1,s=!1,r=!1,a=!1,o=!1,i=!1;if(e.data instanceof Uint8Array)n=!0;else if(typeof ImageData!="undefined"&&e instanceof ImageData)s=!0;else if(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)r=!0;else if(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)a=!0;else if(e.getContext!=null)o=!0;else if(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)i=!0;else throw new Error(`pixels passed to tf.browser.fromPixels() must be either an HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData in browser, or OffscreenCanvas, ImageData in webworker or {data: Uint32Array, width: number, height: number}, but was ${e.constructor.name}`);if(vm(wp,B.backendName)!=null){let f={pixels:e},m={numChannels:t};return B.runKernel(wp,f,m)}let[u,c]=r?[e.videoWidth,e.videoHeight]:[e.width,e.height],p;if(o)p=e.getContext("2d").getImageData(0,0,u,c).data;else if(s||n)p=e.data;else if(a||r||i){if(Oi==null)if(typeof document=="undefined")if(typeof OffscreenCanvas!="undefined"&&typeof OffscreenCanvasRenderingContext2D!="undefined")Oi=new OffscreenCanvas(1,1).getContext("2d");else throw new Error("Cannot parse input in current context. Reason: OffscreenCanvas Context2D rendering is not supported.");else Oi=document.createElement("canvas").getContext("2d",{willReadFrequently:!0});Oi.canvas.width=u,Oi.canvas.height=c,Oi.drawImage(e,0,0,u,c),p=Oi.getImageData(0,0,u,c).data}let d;if(t===4)d=new Int32Array(p);else{let f=u*c;d=new Int32Array(f*t);for(let m=0;m<f;m++)for(let g=0;g<t;++g)d[m*t+g]=p[m*4+g]}return Ky(d,[c,u,t],"int32")}function tP(e){return e!=null&&e.data instanceof Uint8Array}function nP(){return typeof window!="undefined"&&typeof ImageBitmap!="undefined"&&window.hasOwnProperty("createImageBitmap")}function sP(e){return e!=null&&e.width!==0&&e.height!==0}function rP(e){return nP()&&!(e instanceof ImageBitmap)&&sP(e)&&!tP(e)}async function aP(e,t=3){let n=null;if(H().getBool("WRAP_TO_IMAGEBITMAP")&&rP(e)){let s;try{s=await createImageBitmap(e,{premultiplyAlpha:"none"})}catch(r){s=null}s!=null&&s.width===e.width&&s.height===e.height?n=s:n=e}else n=e;return Q6(n,t)}async function oP(e,t){let n=$(e,"img","toPixels");if(!(e instanceof st)){let u=n;n=ye(u,"int32"),u.dispose()}if(n.rank!==2&&n.rank!==3)throw new Error(`toPixels only supports rank 2 or 3 tensors, got rank ${n.rank}.`);let[s,r]=n.shape.slice(0,2),a=n.rank===2?1:n.shape[2];if(a>4||a===2)throw new Error(`toPixels only supports depth of size 1, 3 or 4 but got ${a}`);if(n.dtype!=="float32"&&n.dtype!=="int32")throw new Error(`Unsupported type for toPixels: ${n.dtype}. Please use float32 or int32 tensors.`);let o=await n.data(),i=n.dtype==="float32"?255:1,l=new Uint8ClampedArray(r*s*4);for(let u=0;u<s*r;++u){let c=[0,0,0,255];for(let d=0;d<a;d++){let h=o[u*a+d];if(n.dtype==="float32"){if(h<0||h>1)throw new Error(`Tensor values for a float32 Tensor must be in the range [0 - 1] but encountered ${h}.`)}else if(n.dtype==="int32"&&(h<0||h>255))throw new Error(`Tensor values for a int32 Tensor must be in the range [0 - 255] but encountered ${h}.`);a===1?(c[0]=h*i,c[1]=h*i,c[2]=h*i):c[d]=h*i}let p=u*4;l[p+0]=Math.round(c[0]),l[p+1]=Math.round(c[1]),l[p+2]=Math.round(c[2]),l[p+3]=Math.round(c[3])}if(t!=null){t.width=r,t.height=s;let u=t.getContext("2d"),c=new ImageData(l,r,s);u.putImageData(c,0,0)}return n!==e&&n.dispose(),l}var iP=W({fromPixels_:Q6}),Zy={};He(Zy,{prepareAndValidate:()=>ew});function ew(e,t){let n=e.shape.length,s=t.shape.length;if(n<1)throw new Error(`tf.gatherND() expects the input to be rank 1 or higher, but the rank was ${n}.`);if(s<1)throw new Error(`tf.gatherND() expects the indices to be rank 1 or higher, but the rank was ${s}.`);if(t.dtype!=="int32")throw new Error(`tf.gatherND() expects the indices to be int32 type, but the dtype was ${t.dtype}.`);if(t.shape[s-1]>n)throw new Error(`index innermost dimension length must be <= tensor rank; saw: ${t.shape[s-1]} vs. ${n}`);if(Et(e.shape)===0)throw new Error(`Requested more than 0 entries, but input is empty. Input shape: ${e.shape}.`);let r=t.shape,a=r[r.length-1],o=1;for(let p=0;p<r.length-1;++p)o*=r[p];let i=e.shape,l=r.slice();l.pop();let u=1;for(let p=a;p<n;++p)u*=i[p],l.push(i[p]);let c=[...xc(e.shape).map(p=>p/u),1].slice(0,a);return[l,o,u,c]}var Yy={};He(Yy,{calculateShapes:()=>tw,validateInput:()=>Qy,validateUpdateShape:()=>Jy});function Jy(e,t,n){let s=t.rank>1?t.shape[t.rank-1]:1,r=t.rank>1?t.rank-1:1,a=`Must have updates.shape = indices.shape[:batchDim] + shape[sliceDim:], got updates.shape: ${n.shape}, indices.shape: ${t.shape}, shape: ${e}, sliceDim: ${s}, and batchDim: ${r}.`;if(n.rank<r)throw new Error(a+` update.rank < ${r}. `);if(e.length<s+(n.rank-r))throw new Error(a+` Output shape length < ${s+(n.rank-r)}`);if(n.rank!==r+e.length-s)throw new Error(a+` update.rank != ${r+e.length-s}`);for(let o=0;o<r;++o)if(n.shape[o]!==t.shape[o])throw new Error(a+` updates.shape[${o}] (${n.shape[o]}) != indices.shape[${o}] (${t.shape[o]}).`);for(let o=0;o<n.rank-r;++o)if(n.shape[o+r]!==e[o+s])throw new Error(a+` updates.shape[${o+r}] (${n.shape[o+r]}) != shape[${o+r}] (${e[o+r]})`)}function Qy(e,t,n){if(t.rank<1)throw new Error(`tf.scatterND() expects the indices to be rank 1 or higher, but the rank was ${t.rank}.`);if(e.rank<1)throw new Error(`tf.scatterND() expects the updates to be rank 1 or higher, but the rank was ${e.rank}.`);if(t.dtype!=="int32")throw new Error(`The dtype of 'indices' should be int32, but got dtype: ${t.dtype}`);if(n.length<1)throw new Error(`Output rank must be greater or equal to 1, but got shape: ${n}`);if(n.length===0){if(t.size===0)throw new Error(`Indices specified for empty output. indices shape: ${t.shape}`);if(e.size===0)throw new Error(`Updates specified for empty output. updates shape: ${e.shape}`)}Jy(n,t,e)}function tw(e,t,n){let s=t.shape.length,r=s>1?t.shape[s-1]:1,a=n.length,o=1;for(let p=r;p<a;++p)o*=n[p];let i=r<1?1:r,l=Et(t.shape)/i,u=[...xc(n.slice(0,r)),1],c=Et(n);return{sliceRank:r,numUpdates:l,sliceSize:o,strides:u,outputSize:c}}var Gt={};He(Gt,{assertParamsValid:()=>uP,computeFlatOffset:()=>fP,computeOutShape:()=>dP,getNormalizedAxes:()=>pP,isSliceContinous:()=>hP,maskToAxes:()=>cP,parseSliceParams:()=>cw,sliceInfo:()=>mP,startForAxis:()=>lw,startIndicesWithElidedDims:()=>aw,stopForAxis:()=>uw,stopIndicesWithElidedDims:()=>ow,stridesForAxis:()=>iw,stridesWithElidedDims:()=>nw});var B3=-2,lP=-1;function uP(e,t,n){let s=e.shape.length;O(s===t.length,()=>`Error in slice${s}D: Length of begin ${t} must match the rank of the array (${s}).`),O(s===n.length,()=>`Error in slice${s}D: Length of size ${n} must match the rank of the array (${s}).`);for(let r=0;r<s;++r)O(t[r]+n[r]<=e.shape[r],()=>`Error in slice${s}D: begin[${r}] + size[${r}] (${t[r]+n[r]}) would overflow input.shape[${r}] (${e.shape[r]})`)}function cP(e){let t=[],n=0;for(;e>0;)e&1&&t.push(n),e/=2,n++;return t}function dP(e,t,n){let s=[];for(let r=0;r<e.length;r++)s[r]=Math.ceil((t[r]-e[r])/n[r]);return s}function nw(e,t,n,s){let r=[...e];for(let a=r.length;a<s.length;a++)r.push(1);for(let a=0;a<n;a++)a===0?r[t]=1:(r.splice(t,0,1),r.pop());return r}function sw(e,t,n){return n<=e?n:n-(t-1)}function rw(e,t){let n=[];for(let s=0;s<e;s++)n.push(t+s);return n}function pP(e,t,n,s,r,a,o,i,l){let u=e.length,c=new Array(u),p=new Array(u),d=new Array(u);if(t.length&&n>0){let h=t[0],f=n+1;c=aw(o,h,f,s,e),p=ow(i,h,f,r,e),d=nw(a,h,f,e)}else for(let h=0;h<u;h++)c[h]=lw(o,s,a,e,h,l),p[h]=uw(i,r,a,e,h,l),d[h]=iw(a,h,l);return{begin:c,end:p,strides:d}}function aw(e,t,n,s,r){let a=[...r],o=rw(n,t);for(let i=0;i<a.length;i++)if(o.indexOf(i)>-1)a[i]=0;else{let l=sw(t,n,i),u=s[l];e&1<<l&&(u=0),a[i]=u}return a}function ow(e,t,n,s,r){let a=[...r],o=rw(n,t);for(let i=0;i<a.length;i++)if(o.indexOf(i)>-1)a[i]=Number.MAX_SAFE_INTEGER;else{let l=sw(t,n,i),u=s[l];e&1<<l&&(u=Number.MAX_SAFE_INTEGER),a[i]=u}for(let i=0;i<a.length;i++){let l=r[i];a[i]<0&&(a[i]+=l),a[i]=vp(0,a[i],r[i])}return a}function iw(e,t,n){let s=e[t];return(n&1<<t||s==null)&&(s=1),s}function lw(e,t,n,s,r,a){let o=t[r],i=n[r]||1;(e&1<<r||a&1<<r||o==null)&&(i>0?o=Number.MIN_SAFE_INTEGER:o=Number.MAX_SAFE_INTEGER);let l=s[r];return o<0&&(o+=l),o=vp(0,o,l-1),o}function uw(e,t,n,s,r,a){let o=t[r],i=n[r]||1;(e&1<<r||a&1<<r||o==null)&&(i>0?o=Number.MAX_SAFE_INTEGER:o=Number.MIN_SAFE_INTEGER);let l=s[r];return o<0&&(o+=l),i>0?o=vp(0,o,l):o=vp(-1,o,l-1),o}function hP(e,t,n){let s=n.length;for(let r=0;r<n.length;r++)if(n[r]>1){s=r;break}for(let r=s+1;r<n.length;r++)if(t[r]>0||n[r]!==e[r])return!1;return!0}function fP(e,t){let n=e.length>0?e[e.length-1]:1;for(let s=0;s<e.length-1;s++)n+=e[s]*t[s];return n}function cw(e,t,n){let s,r=e.shape.length;typeof t=="number"?s=[t,...new Array(r-1).fill(0)]:t.length<r?s=t.concat(new Array(r-t.length).fill(0)):s=t.slice(),s.forEach(o=>{O(o!==-1,()=>"slice() does not support negative begin indexing.")});let a;return n==null?a=new Array(r).fill(-1):typeof n=="number"?a=[n,...new Array(r-1).fill(-1)]:n.length<r?a=n.concat(new Array(r-n.length).fill(-1)):a=n,a=a.map((o,i)=>o>=0?o:(O(o===-1,()=>`Negative size values should be exactly -1 but got ${o} for the slice() size at index ${i}.`),e.shape[i]-s[i])),[s,a]}function mP(e,t,n,s,r,a,o,i,l){let u;if(s==null?(u=new Array(t.length),u.fill(1)):u=s,o!=null&&(o&o-1)!==0)throw new Error("Multiple ellipses in slice is not allowed.");let c=!1,p={dims:u.length,numAddAxisAfterEllipsis:0,begin:t.slice(),end:n.slice(),strides:u.slice(),beginMask:r,endMask:a,ellipsisMask:o,newAxisMask:i,shrinkAxisMask:l};for(let A=0;A<p.dims;A++)c&&(1<<A&i)!==0&&p.numAddAxisAfterEllipsis++,1<<A&o&&(c=!0);c||(p.ellipsisMask|=1<<p.dims,p.dims++);let d={dims:e.length,beginMask:0,endMask:0,beginValid:!1,endValid:!1};gP(p,d);let h=!0,f=!0,m=!0,g=[],y=[];for(let A=0;A<e.length;++A){if(d.strides[A]===0)throw Error(`strides[${A}] must be non-zero`);let b=!!(d.shrinkAxisMask&1<<A),w=e[A];if(w===-1){g.push(b?1:-1);continue}let S=[d.beginMask&1<<A,d.endMask&1<<A],k=[d.strides[A]>0?0:-1,d.strides[A]>0?w:w-1];if(b&&d.strides[A]<=0)throw Error("only stride 1 allowed on non-range indexing.");m=m&&d.strides[A]===1;let E=!!(d.beginMask&1<<A&&d.endMask&1<<A);if(d.beginValid&&d.endValid){if(b){let P=d.begin[A]<0?w+d.begin[A]:d.begin[A];if(d.begin[A]=P,d.end[A]=d.begin[A]+1,P<0||P>=w)throw Error(`slice index ${d.begin[A]} of dimension ${A} out of bounds.`)}else d.begin[A]=$v(d.begin[A],0,d.strides[A],w,S,k),d.end[A]=$v(d.end[A],1,d.strides[A],w,S,k);let R=d.strides[A]===1&&d.begin[A]===0&&d.end[A]===w;h=h&&R,f=f&&(A===0&&d.strides[A]===1||R)}else h=h&&d.strides[A]===1&&E,f=f&&(A===0&&d.strides[A]===1||E);let _,D=!1;if(d.beginValid&&d.endValid?(_=d.end[A]-d.begin[A],D=!0):b?(_=1,D=!0):E&&w>=0&&(d.strides[A]<0?_=-w:_=w,D=!0),D){let R;_===0||_<0!=d.strides[A]<0?R=0:R=Math.trunc(_/d.strides[A])+(_%d.strides[A]!==0?1:0),g.push(R)}else g.push(-1)}for(let A=0;A<d.finalShapeGatherIndices.length;++A){let b=d.finalShapeGatherIndices[A];b>=0?y.push(g[b]):b===B3&&y.push(1)}return{finalShapeSparse:y.filter((A,b)=>d.finalShapeGatherIndices[b]!==B3),finalShape:y,isIdentity:h,sliceDim0:f,isSimpleSlice:m,begin:d.begin,end:d.end,strides:d.strides}}function gP(e,t){t.beginMask=0,t.endMask=0,t.shrinkAxisMask=0;let n=0;t.beginValid=e.begin!=null,t.endValid=e.end!=null,t.begin=new Array(t.dims),t.end=new Array(t.dims),t.strides=new Array(t.dims),t.finalShapeGatherIndices=[],t.finalShapeGatherIndicesSparse=[],t.inputShapeGatherIndicesSparse=new Array(t.dims);for(let s=0;s<e.dims;s++)if(1<<s&e.ellipsisMask){let r=Math.min(t.dims-(e.dims-s)+1+e.numAddAxisAfterEllipsis,t.dims);for(;n<r;n++)t.begin[n]=0,t.end[n]=0,t.strides[n]=1,t.beginMask|=1<<n,t.endMask|=1<<n,t.finalShapeGatherIndices.push(n),t.finalShapeGatherIndicesSparse.push(-1),t.inputShapeGatherIndicesSparse[n]=s}else if(1<<s&e.newAxisMask)t.finalShapeGatherIndices.push(B3),t.finalShapeGatherIndicesSparse.push(-1);else{if(n===t.begin.length)throw Error(`Index out of range using input dim ${n}; input has only ${t.dims} dims, ${t.begin.length}.`);e.begin!=null&&(t.begin[n]=e.begin[s]),e.end!=null&&(t.end[n]=e.end[s]),t.strides[n]=e.strides[s],e.beginMask&1<<s&&(t.beginMask|=1<<n),e.endMask&1<<s&&(t.endMask|=1<<n),e.shrinkAxisMask&1<<s?(t.finalShapeGatherIndices.push(lP),t.finalShapeGatherIndicesSparse.push(-1),t.shrinkAxisMask|=1<<n):(t.finalShapeGatherIndices.push(n),t.finalShapeGatherIndicesSparse.push(s)),t.inputShapeGatherIndicesSparse[n]=s,n++}}function $v(e,t,n,s,r,a){if(r[t])return n>0?a[t]:a[t+1&1];{let o=e<0?s+e:e;return o<a[0]?a[0]:o>a[1]?a[1]:o}}var de={};He(de,{Serializable:()=>dw,SerializationMap:()=>Vi,registerClass:()=>ui});var dw=class{getClassName(){return this.constructor.className}static fromConfig(e,t){return new e(t)}},Vi=class{constructor(){this.classNameMap={}}static getMap(){return Vi.instance==null&&(Vi.instance=new Vi),Vi.instance}static register(e){Vi.getMap().classNameMap[e.className]=[e,e.fromConfig]}};function ui(e){O(e.className!=null,()=>"Class being registered does not have the static className property defined."),O(typeof e.className=="string",()=>"className is required to be a string, but got type "+typeof e.className),O(e.className.length>0,()=>"Class being registered has an empty-string as its className, which is disallowed."),Vi.register(e)}var pw={};He(pw,{TEST_EPSILON_FLOAT16:()=>hw,createVideoElement:()=>SP,encodeStrings:()=>fw,expectArrayBuffersEqual:()=>kP,expectArraysClose:()=>AP,expectArraysEqual:()=>bP,expectNumbersClose:()=>vP,expectPromiseToFail:()=>xP,expectValuesInRange:()=>wP,play:()=>IP,testEpsilon:()=>eA});var yP=.001,hw=.1;function AP(e,t,n){return n==null&&(n=eA()),W3(e,t,(s,r)=>tA(s,r,n))}function eA(){return B.backend.floatPrecision()===32?yP:hw}function W3(e,t,n){let s=!0;if((Wn(e)||Wn(t))&&(s=!1),Wn(e)&&Wn(t)&&(s=!0),s){let o=e.constructor.name,i=t.constructor.name;if(o!==i)throw new Error(`Arrays are of different type. Actual: ${o}. Expected: ${i}`)}if(Array.isArray(e)&&Array.isArray(t)){let o=na(e),i=na(t);if(!ho(o,i))throw new Error(`Arrays have different shapes. Actual: [${o}]. Expected: [${i}]`)}let r=Wn(e)?e:Qi(e),a=Wn(t)?t:Qi(t);if(r.length!==a.length)throw new Error(`Arrays have different lengths actual: ${r.length} vs expected: ${a.length}.
Actual: ${r}.
Expected: ${a}.`);for(let o=0;o<a.length;++o){let i=r[o],l=a[o];if(!n(i,l))throw new Error(`Arrays differ: actual[${o}] = ${i}, expected[${o}] = ${l}.
Actual: ${r}.
Expected: ${a}.`)}typeof expect!="undefined"&&expect().nothing()}function xP(e,t){e().then(()=>t.fail(),()=>t()),typeof expect!="undefined"&&expect().nothing()}function bP(e,t){let n=typeof t=="string"||typeof t=="number"||typeof t=="boolean"?[t]:t;return qa(e)||qa(e[0])||qa(t)||qa(t[0])?W3(e,n,(s,r)=>s==r):W3(e,t,(s,r)=>tA(s,r,0))}function vP(e,t,n){if(n==null&&(n=eA()),!tA(e,t,n))throw new Error(`Numbers differ: actual === ${e}, expected === ${t}`);typeof expect!="undefined"&&expect().nothing()}function tA(e,t,n){return!isFinite(e)&&!isFinite(t)?!0:!(isNaN(e)||isNaN(t)||Math.abs(e-t)>n)}function wP(e,t,n){for(let s=0;s<e.length;s++)if(e[s]<t||e[s]>n)throw new Error(`Value out of range:${e[s]} low: ${t}, high: ${n}`)}function kP(e,t){let n=new Float32Array(e),s=new Float32Array(t);if(n.length!==s.length)throw new Error(`Expected ArrayBuffer to be of length ${s.length}, but it was ${n.length}`);for(let r=0;r<s.length;r++)if(n[r]!==s[r])throw new Error(`Expected ArrayBuffer value at ${r} to be ${s[r]} but got ${n[r]} instead`)}function fw(e){for(let t=0;t<e.length;t++){let n=e[t];Array.isArray(n)?fw(n):e[t]=oh(n)}return e}function SP(e){let t=document.createElement("video");return"playsInline"in t&&(t.playsInline=!0),t.muted=!0,t.loop=!0,t.style.position="fixed",t.style.left="0px",t.style.top="0px",t.preload="auto",t.appendChild(e),new Promise(n=>{t.addEventListener("loadeddata",s=>n(t)),t.load()})}async function IP(e){await e.play(),"requestVideoFrameCallback"in e&&await new Promise(t=>{e.requestVideoFrameCallback(t)})}var nA="3.20.0";function CP(e,t){let n=$(e,"a","add"),s=$(t,"b","add");[n,s]=Ht(n,s);let r={a:n,b:s};return B.runKernel(Ta,r)}var ue=W({add_:CP});function TP(e,t){let n=$(e,"a","floorDiv"),s=$(t,"b","floorDiv");[n,s]=Ht(n,s);let r={a:n,b:s};return B.runKernel(Ro,r)}var Hc=W({floorDiv_:TP});function NP(e,t){let n=$(e,"a","div"),s=$(t,"b","div");if([n,s]=Ht(n,s),n.dtype==="int32"&&s.dtype==="int32")return Hc(n,s);let r={a:n,b:s},a={};return B.runKernel(Co,r,a)}var fe=W({div_:NP});function EP(e,t){let n=$(e,"a","mul"),s=$(t,"b","mul");[n,s]=Ht(n,s);let r={a:n,b:s};return B.runKernel(Uo,r)}var z=W({mul_:EP});function RP(e){let t=$(e,"x","abs");if(t.dtype==="complex64"){let n={x:t};return B.runKernel(Gp,n)}else{let n={x:t};return B.runKernel(pl,n)}}var sn=W({abs_:RP});function _P(e){let n={x:$(e,"x","acos")};return B.runKernel(bc,n)}var sA=W({acos_:_P});function DP(e){let n={x:$(e,"x","acosh")};return B.runKernel(vc,n)}var rA=W({acosh_:DP});function $P(e){O(Array.isArray(e),()=>"The argument passed to tf.addN() must be a list of tensors"),O(e.length>=1,()=>`Must pass at least one tensor to tf.addN(), but got ${e.length}`);let t=e.map((r,a)=>$(r,`tensors${a}`,"addN")),n=t[0];t.forEach(r=>{if(r.dtype!==n.dtype)throw new Error("All tensors passed to tf.addN() must have the same dtype")}),t.forEach(r=>{if(!ho(r.shape,n.shape))throw new Error("All tensors passed to tf.addN() must have the same shape")});let s=t;return B.runKernel(fo,s)}var k0=W({addN_:$P});function PP(e,t=null,n=!1){let r={x:$(e,"x","all","bool")},a={axis:t,keepDims:n};return B.runKernel(wc,r,a)}var S0=W({all_:PP});function FP(e,t=null,n=!1){let r={x:$(e,"x","any","bool")},a={axis:t,keepDims:n};return B.runKernel(kc,r,a)}var Np=W({any_:FP});function OP(e,t=0){let s={x:$(e,"x","argMax")},r={axis:t};return B.runKernel(mo,s,r)}var Ps=W({argMax_:OP});function MP(e,t=0){let s={x:$(e,"x","argMin")},r={axis:t};return B.runKernel(Sc,s,r)}var aA=W({argMin_:MP});function zP(e){let n={x:$(e,"x","asin")};return B.runKernel(Ic,n)}var oA=W({asin_:zP});function LP(e){let n={x:$(e,"x","asinh")};return B.runKernel(Cc,n)}var iA=W({asinh_:LP});function BP(e){let n={x:$(e,"x","atan")};return B.runKernel(Tc,n)}var lA=W({atan_:BP});function WP(e,t){let n=$(e,"a","atan2"),s=$(t,"b","atan2");[n,s]=Ht(n,s);let r={a:n,b:s};return B.runKernel(hl,r)}var uA=W({atan2_:WP});function VP(e){let n={x:$(e,"x","atanh")};return B.runKernel(Nc,n)}var cA=W({atanh_:VP});function UP(e,t,n,s,r="NHWC",a){let o=e[3],i=[...t,o],l=yw(r);return ph(e,i,n,a,s,null,null,l)}function mw(e,t,n,s,r,a,o="channelsLast"){let[i,l]=Im(t),u;if(o==="channelsLast")u=[i,l,e[3],e[3]];else if(o==="channelsFirst")u=[i,l,e[1],e[1]];else throw new Error(`Unknown dataFormat ${o}`);return ph(e,u,n,s,r,a,!1,o)}function GP(e,t,n,s,r,a,o="NDHWC"){let[i,l,u]=V3(t),c,p;if(o==="NDHWC")p="channelsLast",c=[i,l,u,e[4],e[4]];else if(o==="NCDHW")p="channelsFirst",c=[i,l,u,e[1],e[1]];else throw new Error(`Unknown dataFormat ${o}`);return gw(e,c,n,s,r,!1,p,a)}function ph(e,t,n,s,r,a,o=!1,i="channelsLast"){let[l,u,c,p]=[-1,-1,-1,-1];if(i==="channelsLast")[l,u,c,p]=e;else if(i==="channelsFirst")[l,p,u,c]=e;else throw new Error(`Unknown dataFormat ${i}`);let[d,h,,f]=t,[m,g]=Im(n),[y,x]=Im(s),A=Ju(d,y),b=Ju(h,x),{padInfo:w,outHeight:S,outWidth:k}=qP(r,u,c,m,g,A,b,a,i),E=o?f*p:f,_;return i==="channelsFirst"?_=[l,E,S,k]:i==="channelsLast"&&(_=[l,S,k,E]),{batchSize:l,dataFormat:i,inHeight:u,inWidth:c,inChannels:p,outHeight:S,outWidth:k,outChannels:E,padInfo:w,strideHeight:m,strideWidth:g,filterHeight:d,filterWidth:h,effectiveFilterHeight:A,effectiveFilterWidth:b,dilationHeight:y,dilationWidth:x,inShape:e,outShape:_,filterShape:t}}function gw(e,t,n,s,r,a=!1,o="channelsLast",i){let[l,u,c,p,d]=[-1,-1,-1,-1,-1];if(o==="channelsLast")[l,u,c,p,d]=e;else if(o==="channelsFirst")[l,d,u,c,p]=e;else throw new Error(`Unknown dataFormat ${o}`);let[h,f,m,,g]=t,[y,x,A]=V3(n),[b,w,S]=V3(s),k=Ju(h,b),E=Ju(f,w),_=Ju(m,S),{padInfo:D,outDepth:R,outHeight:P,outWidth:C}=XP(r,u,c,p,y,x,A,k,E,_,i),M=a?g*d:g,L;return o==="channelsFirst"?L=[l,M,R,P,C]:o==="channelsLast"&&(L=[l,R,P,C,M]),{batchSize:l,dataFormat:o,inDepth:u,inHeight:c,inWidth:p,inChannels:d,outDepth:R,outHeight:P,outWidth:C,outChannels:M,padInfo:D,strideDepth:y,strideHeight:x,strideWidth:A,filterDepth:h,filterHeight:f,filterWidth:m,effectiveFilterDepth:k,effectiveFilterHeight:E,effectiveFilterWidth:_,dilationDepth:b,dilationHeight:w,dilationWidth:S,inShape:e,outShape:L,filterShape:t}}function HP(e,t,n,s,r){s==null&&(s=dA(e,t,n));let a=e[0],o=e[1],i=Xi((a-t+2*s)/n+1,r),l=Xi((o-t+2*s)/n+1,r);return[i,l]}function jP(e,t,n,s,r,a){r==null&&(r=dA(e,t,s));let o=e[0],i=e[1],l=e[2],u=Xi((o-t+2*r)/s+1,a),c=Xi((i-t+2*r)/s+1,a),p=Xi((l-t+2*r)/s+1,a);return[u,c,p,n]}function dA(e,t,n,s=1){let r=Ju(t,s);return Math.floor((e[0]*(n-1)-n+r)/2)}function Im(e){return typeof e=="number"?[e,e,e]:e.length===2?[e[0],e[1],1]:e}function V3(e){return typeof e=="number"?[e,e,e]:e}function Ju(e,t){return t<=1?e:e+(e-1)*(t-1)}function qP(e,t,n,s,r,a,o,i,l){let u,c,p;if(typeof e=="number"){u={top:e,bottom:e,left:e,right:e,type:e===0?"VALID":"NUMBER"};let h=HP([t,n],a,s,e,i);c=h[0],p=h[1]}else if(e==="same"){c=Math.ceil(t/s),p=Math.ceil(n/r);let d=Math.max(0,(c-1)*s+a-t),h=Math.max(0,(p-1)*r+o-n),f=Math.floor(d/2),m=d-f,g=Math.floor(h/2),y=h-g;u={top:f,bottom:m,left:g,right:y,type:"SAME"}}else if(e==="valid")u={top:0,bottom:0,left:0,right:0,type:"VALID"},c=Math.ceil((t-a+1)/s),p=Math.ceil((n-o+1)/r);else if(typeof e=="object"){let d=l==="channelsLast"?e[1][0]:e[2][0],h=l==="channelsLast"?e[1][1]:e[2][1],f=l==="channelsLast"?e[2][0]:e[3][0],m=l==="channelsLast"?e[2][1]:e[3][1];u={top:d,bottom:h,left:f,right:m,type:d===0&&h===0&&f===0&&m===0?"VALID":"EXPLICIT"},c=Xi((t-a+d+h)/s+1,i),p=Xi((n-o+f+m)/r+1,i)}else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:u,outHeight:c,outWidth:p}}function XP(e,t,n,s,r,a,o,i,l,u,c){let p,d,h,f;if(typeof e=="number"){p={top:e,bottom:e,left:e,right:e,front:e,back:e,type:e===0?"VALID":"NUMBER"};let g=jP([t,n,s,1],i,1,r,e,c);d=g[0],h=g[1],f=g[2]}else if(e==="same"){d=Math.ceil(t/r),h=Math.ceil(n/a),f=Math.ceil(s/o);let m=(d-1)*r+i-t,g=(h-1)*a+l-n,y=(f-1)*o+u-s,x=Math.floor(m/2),A=m-x,b=Math.floor(g/2),w=g-b,S=Math.floor(y/2),k=y-S;p={top:b,bottom:w,left:S,right:k,front:x,back:A,type:"SAME"}}else if(e==="valid")p={top:0,bottom:0,left:0,right:0,front:0,back:0,type:"VALID"},d=Math.ceil((t-i+1)/r),h=Math.ceil((n-l+1)/a),f=Math.ceil((s-u+1)/o);else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:p,outDepth:d,outHeight:h,outWidth:f}}function Xi(e,t){if(!t)return Math.trunc(e);switch(t){case"round":return Math.round(e);case"ceil":return Math.ceil(e);case"floor":return Math.floor(e);default:throw new Error(`Unknown roundingMode ${t}`)}}function so(e){let[t,n,s]=Im(e);return t===1&&n===1&&s===1}function aa(e,t){return so(e)||so(t)}function yw(e){if(e==="NHWC")return"channelsLast";if(e==="NCHW")return"channelsFirst";throw new Error(`Unknown dataFormat ${e}`)}function ls(e,t,n){if(n!=null){if(typeof t=="string")throw Error(`Error in ${e}: pad must be an integer when using dimRoundingMode ${n} but got pad ${t}.`);if(typeof t=="number")O(tc(t),()=>`Error in ${e}: pad must be an integer when using dimRoundingMode ${n} but got pad ${t}.`);else if(typeof t=="object")t.forEach(s=>{s.forEach(r=>{O(tc(r),()=>`Error in ${e}: pad must be an integer when using dimRoundingMode ${n} but got pad ${r}.`)})});else throw Error(`Error in ${e}: Unknown padding parameter: ${t}`)}}function KP(e,t){let s={x:$(e,"x","reshape","string_or_numeric")},r={shape:t};return B.runKernel(Ll,s,r)}var V=W({reshape_:KP});function ZP(e,t,n,s,r){let a=$(e,"x","avgPool","float32"),o=1;O(aa(n,o),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${o}'`);let i=a,l=!1;a.rank===3&&(l=!0,i=V(a,[1,a.shape[0],a.shape[1],a.shape[2]])),O(i.rank===4,()=>`Error in avgPool: x must be rank 4 but got rank ${i.rank}.`),ls("avgPool",s,r);let u={x:i},c={filterSize:t,strides:n,pad:s,dimRoundingMode:r},p=B.runKernel(go,u,c);return p=ye(p,a.dtype),l?V(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var hh=W({avgPool_:ZP});function YP(e,t,n,s,r,a="NDHWC"){let o=$(e,"x","avgPool3d","float32"),i=o,l=!1;o.rank===4&&(l=!0,i=V(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),O(i.rank===5,()=>`Error in avgPool3d: x must be rank 5 but got rank ${i.rank}.`),O(a==="NDHWC",()=>`Error in avgPool3d: Only NDHWC is currently supported, but got dataFormat of ${a}`),ls("avgPool3d",s,r);let u={x:i},c={filterSize:t,strides:n,pad:s,dimRoundingMode:r,dataFormat:a},p=B.runKernel(Vp,u,c);return p=ye(p,i.dtype),l?V(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var pA=W({avgPool3d_:YP});function JP(e,t=0){O(e.length>=1,()=>"Pass at least one tensor to concat");let n=Tp(e,"tensors","concat","string_or_numeric");if(n[0].dtype==="complex64"&&n.forEach(a=>{if(a.dtype!=="complex64")throw new Error(`Cannot concatenate complex64 tensors with a tensor
with dtype ${a.dtype}. `)}),n.length===1)return Vn(n[0]);let s=n,r={axis:t};return B.runKernel(ml,s,r)}var It=W({concat_:JP});function QP(e){let n={x:$(e,"x","sigmoid","float32")};return B.runKernel(ei,n)}var $n=W({sigmoid_:QP});function eF(e,t,n){let s=$(e,"x","slice","string_or_numeric");if(s.rank===0)throw new Error("Slicing scalar is not possible");let r={x:s},a={begin:t,size:n};return B.runKernel(Gl,r,a)}var ze=W({slice_:eF});function tF(e){let n={x:$(e,"x","tanh","float32")};return B.runKernel(oi,n)}var nl=W({tanh_:tF});function nF(e,t,n,s,r,a){let o=$(e,"forgetBias","basicLSTMCell"),i=$(t,"lstmKernel","basicLSTMCell"),l=$(n,"lstmBias","basicLSTMCell"),u=$(s,"data","basicLSTMCell"),c=$(r,"c","basicLSTMCell"),p=$(a,"h","basicLSTMCell"),d=It([u,p],1),h=et(d,i),f=ue(h,l),m=f.shape[0],g=f.shape[1]/4,y=[m,g],x=ze(f,[0,0],y),A=ze(f,[0,g],y),b=ze(f,[0,g*2],y),w=ze(f,[0,g*3],y),S=ue(z($n(x),nl(A)),z(c,$n(ue(o,b)))),k=z(nl(S),$n(w));return[S,k]}var Aw=W({basicLSTMCell_:nF});function sF(e,t,n){let s=$(e,"x","batchToSpaceND"),r=t.reduce((i,l)=>i*l);O(s.rank>=1+t.length,()=>`input rank is ${s.rank} but should be > than blockShape.length ${t.length}`),O(n.length===t.length,()=>`crops.length is ${n.length} but should be equal to blockShape.length ${t.length}`),O(s.shape[0]%r===0,()=>`input tensor batch is ${s.shape[0]} but is not divisible by the product of the elements of blockShape ${t.join(" * ")} === ${r}`);let a={x:s},o={blockShape:t,crops:n};return B.runKernel(fl,a,o)}var fh=W({batchToSpaceND_:sF});function rF(e){let t;return e.rank===0||e.rank===1?t=V(e,[1,1,1,e.size]):e.rank===2?t=V(e,[1,1,e.shape[0],e.shape[1]]):e.rank===3?t=V(e,[1,e.shape[0],e.shape[1],e.shape[2]]):t=e,t}function aF(e,t,n,s,r,a){a==null&&(a=.001);let o=$(e,"x","batchNorm"),i=$(t,"mean","batchNorm"),l=$(n,"variance","batchNorm"),u;r!=null&&(u=$(r,"scale","batchNorm"));let c;s!=null&&(c=$(s,"offset","batchNorm")),O(i.rank===l.rank,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),O(c==null||i.rank===c.rank,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),O(u==null||i.rank===u.rank,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let d={x:rF(o),scale:u,offset:c,mean:i,variance:l},h={varianceEpsilon:a},f=B.runKernel(_o,d,h);return V(f,o.shape)}var jc=W({batchNorm_:aF});function oF(e,t,n,s,r,a){let o=$(e,"x","batchNorm"),i=$(t,"mean","batchNorm"),l=$(n,"variance","batchNorm"),u;r!=null&&(u=$(r,"scale","batchNorm"));let c;return s!=null&&(c=$(s,"offset","batchNorm")),O(o.rank===2,()=>`Error in batchNorm2D: x must be rank 2 but got rank ${o.rank}.`),O(i.rank===2||i.rank===1,()=>`Error in batchNorm2D: mean must be rank 2 or rank 1 but got rank ${i.rank}.`),O(l.rank===2||l.rank===1,()=>`Error in batchNorm2D: variance must be rank 2 or rank 1 but got rank ${l.rank}.`),u!=null&&O(u.rank===2||u.rank===1,()=>`Error in batchNorm2D: scale must be rank 2 or rank 1 but got rank ${u.rank}.`),c!=null&&O(c.rank===2||c.rank===1,()=>`Error in batchNorm2D: offset must be rank 2 or rank 1 but got rank ${c.rank}.`),jc(o,i,l,c,u,a)}var hA=W({batchNorm2d_:oF});function iF(e,t,n,s,r,a){let o=$(e,"x","batchNorm"),i=$(t,"mean","batchNorm"),l=$(n,"variance","batchNorm"),u;r!=null&&(u=$(r,"scale","batchNorm"));let c;return s!=null&&(c=$(s,"offset","batchNorm")),O(o.rank===3,()=>`Error in batchNorm3D: x must be rank 3 but got rank ${o.rank}.`),O(i.rank===3||i.rank===1,()=>`Error in batchNorm3D: mean must be rank 3 or rank 1 but got rank ${i.rank}.`),O(l.rank===3||l.rank===1,()=>`Error in batchNorm3D: variance must be rank 3 or rank 1 but got rank ${l.rank}.`),u!=null&&O(u.rank===3||u.rank===1,()=>`Error in batchNorm3D: scale must be rank 3 or rank 1 but got rank ${u.rank}.`),c!=null&&O(c.rank===3||c.rank===1,()=>`Error in batchNorm3D: offset must be rank 3 or rank 1 but got rank ${c.rank}.`),jc(o,i,l,c,u,a)}var fA=W({batchNorm3d_:iF});function lF(e,t,n,s,r,a){let o=$(e,"x","batchNorm"),i=$(t,"mean","batchNorm"),l=$(n,"variance","batchNorm"),u;r!=null&&(u=$(r,"scale","batchNorm"));let c;return s!=null&&(c=$(s,"offset","batchNorm")),O(o.rank===4,()=>`Error in batchNorm4D: x must be rank 4 but got rank ${o.rank}.`),O(i.rank===4||i.rank===1,()=>`Error in batchNorm4D: mean must be rank 4 or rank 1 but got rank ${i.rank}.`),O(l.rank===4||l.rank===1,()=>`Error in batchNorm4D: variance must be rank 4 or rank 1 but got rank ${l.rank}.`),u!=null&&O(u.rank===4||u.rank===1,()=>`Error in batchNorm4D: scale must be rank 4 or rank 1 but got rank ${u.rank}.`),c!=null&&O(c.rank===4||c.rank===1,()=>`Error in batchNorm4D: offset must be rank 4 or rank 1 but got rank ${c.rank}.`),jc(o,i,l,c,u,a)}var mA=W({batchNorm4d_:lF});function uF(e,t,n){let s=$(e,"x","bincount"),r=$(t,"weights","bincount");O(s.dtype==="int32",()=>`Error in bincount: input dtype must be int32, but got ${s.dtype}`),O(n>=0,()=>`size must be non-negative, but got ${n}.`),O(r.size===s.size||r.size===0,()=>`Error in bincount: weights must have the same size as input or0-length, but got input shape: ${s.shape}, weights shape: ${r.shape}.`);let a={x:s,weights:r},o={size:n};return B.runKernel(Qm,a,o)}var gA=W({bincount_:uF});function cF(e,t){let n=$(e,"s0","broadcastArgs","int32"),s=$(t,"s1","broadcastArgs","int32");if(n.rank!==1)throw new Error(`broadcastArgs(): first input must be a vector (rank=1). Has rank ${n.rank}`);if(s.rank!==1)throw new Error(`broadcastArgs(): second input must be a vector (rank=1). Has rank ${s.rank}`);let r={s0:n,s1:s};return B.runKernel(e0,r)}var xw=W({broadcastArgs_:cF});function dF(e,t){let n=$(e,"broadcastTo","x"),s=n.shape;if(t.some(u=>!(u>0)||u%1!==0))throw new Error(`broadcastTo(): Invalid broadcast shape [${t}].`);if(t.length<n.rank)throw new Error(`broadcastTo(): shape.length=${t.length} < input.rank=${n.rank}.`);if(t.length>n.rank){let u=n.shape.slice();for(;u.length<t.length;)u.unshift(1);n=V(n,u)}let r=n.shape,a=Array.from(t);for(let u=t.length-1;u>=0;u--)if(r[u]===t[u])a[u]=1;else if(n.shape[u]!==1)throw new Error(`broadcastTo(): [${s}] cannot be broadcast to [${t}].`);if(a.map((u,c)=>u>1?c:-1).filter(u=>u>=0).length===0)return Vn(n);let i={x:n},l={reps:a};return B.runKernel(Ea,i,l)}var Ki=W({broadcastTo_:dF});function pF(e){let n={x:$(e,"x","ceil","float32")};return B.runKernel(xo,n)}var yA=W({ceil_:pF});function hF(e,t,n){let s=$(e,"x","clipByValue");O(t<=n,()=>`Error in clip: min (${t}) must be less than or equal to max (${n}).`);let r={x:s},a={clipValueMin:t,clipValueMax:n};return B.runKernel(Na,r,a)}var xs=W({clipByValue_:hF});function fF(e){return It(e,0)}var AA=W({concat1d_:fF});function mF(e,t){return It(e,t)}var su=W({concat2d_:mF});function gF(e,t){return It(e,t)}var xA=W({concat3d_:gF});function yF(e,t){return It(e,t)}var bA=W({concat4d_:yF});function AF(e,t,n,s,r="NHWC",a=[1,1],o){let i=$(e,"x","conv2d","float32"),l=$(t,"filter","conv2d","float32"),u=i,c=!1;i.rank===3&&(c=!0,u=V(i,[1,i.shape[0],i.shape[1],i.shape[2]])),O(u.rank===4,()=>`Error in conv2d: input must be rank 4, but got rank ${u.rank}.`),O(l.rank===4,()=>`Error in conv2d: filter must be rank 4, but got rank ${l.rank}.`),ls("conv2d",s,o);let p=r==="NHWC"?u.shape[3]:u.shape[1];O(p===l.shape[2],()=>`Error in conv2d: depth of input (${p}) must match input depth for filter ${l.shape[2]}.`),O(aa(n,a),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`);let d={x:u,filter:l},h={strides:n,pad:s,dataFormat:r,dilations:a,dimRoundingMode:o},f=B.runKernel(bo,d,h);return c?V(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var ka=W({conv2d_:AF});function xF(e,t,n,s,r="NWC",a=1,o){let i=$(e,"x","conv1d"),l=$(t,"filter","conv1d"),u=i,c=!1;i.rank===2&&(c=!0,u=V(i,[1,i.shape[0],i.shape[1]])),O(u.rank===3,()=>`Error in conv1d: input must be rank 3, but got rank ${u.rank}.`),O(l.rank===3,()=>`Error in conv1d: filter must be rank 3, but got rank ${l.rank}.`),ls("conv1d",s,o),O(u.shape[2]===l.shape[1],()=>`Error in conv1d: depth of input (${u.shape[2]}) must match input depth for filter ${l.shape[1]}.`),O(aa(n,a),()=>`Error in conv1D: Either stride or dilation must be 1. Got stride ${n} and dilation '${a}'`),O(r==="NWC",()=>`Error in conv1d: got dataFormat of ${r} but only NWC is currently supported.`);let p=V(l,[1,l.shape[0],l.shape[1],l.shape[2]]),d=V(u,[u.shape[0],1,u.shape[1],u.shape[2]]),g=ka(d,p,[1,n],s,"NHWC",[1,a],o);return c?V(g,[g.shape[2],g.shape[3]]):V(g,[g.shape[0],g.shape[2],g.shape[3]])}var I0=W({conv1d_:xF});function bF(e,t,n,s,r,a="NHWC",o){O(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let i=e,l=t,u=!1;t.rank===3&&(u=!0,l=V(t,[1,t.shape[0],t.shape[1],t.shape[2]]),i=[1,e[0],e[1],e[2]]),O(i.length===4,()=>`Error in conv2dDerInput: inShape must be length 4, but got length ${i.length}.`),O(l.rank===4,()=>`Error in conv2dDerInput: dy must be rank 4, but got rank ${l.rank}`),O(n.rank===4,()=>`Error in conv2dDerInput: filter must be rank 4, but got rank ${n.rank}`);let c=a==="NHWC"?i[3]:i[1],p=a==="NHWC"?l.shape[3]:l.shape[1];O(c===n.shape[2],()=>`Error in conv2dDerInput: depth of input (${c}) must match input depth for filter ${n.shape[2]}.`),O(p===n.shape[3],()=>`Error in conv2dDerInput: depth of output (${p}) must match output depth for filter ${n.shape[3]}.`),ls("conv2dDerInput",r,o);let d={dy:l,filter:n},h={strides:s,pad:r,dataFormat:a,dimRoundingMode:o,inputShape:i},f=B.runKernel(vo,d,h);return u?V(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var vA=W({conv2DBackpropInput_:bF});function vF(e,t,n,s,r,a){let o=$(e,"x","conv2dTranspose"),i=$(t,"filter","conv2dTranspose");return vA(n,o,i,s,r,"NHWC",a)}var C0=W({conv2dTranspose_:vF});function wF(e,t,n,s,r="NDHWC",a=[1,1,1]){let o=$(e,"x","conv3d"),i=$(t,"filter","conv3d"),l=o,u=!1;o.rank===4&&(u=!0,l=V(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),O(l.rank===5,()=>`Error in conv3d: input must be rank 5, but got rank ${l.rank}.`),O(i.rank===5,()=>`Error in conv3d: filter must be rank 5, but got rank ${i.rank}.`),O(l.shape[4]===i.shape[3],()=>`Error in conv3d: depth of input (${l.shape[4]}) must match input depth for filter ${i.shape[3]}.`),O(aa(n,a),()=>`Error in conv3D: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`),O(r==="NDHWC",()=>`Error in conv3d: got dataFormat of ${r} but only NDHWC is currently supported.`);let c={x:l,filter:i},p={strides:n,pad:s,dataFormat:r,dilations:a},d=B.runKernel(Hp,c,p);return u?V(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var wA=W({conv3d_:wF});function kF(e,t,n,s,r){O(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let a=e,o=t,i=!1;t.rank===4&&(i=!0,o=V(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]]),a=[1,e[0],e[1],e[2],e[3]]);let l=a[4],u=o.shape[4];O(a.length===5,()=>`Error in conv3dDerInput: inShape must be length 5, but got length ${a.length}.`),O(o.rank===5,()=>`Error in conv3dDerInput: dy must be rank 5, but got rank ${o.rank}`),O(n.rank===5,()=>`Error in conv3dDerInput: filter must be rank 5, but got rank ${n.rank}`),O(l===n.shape[3],()=>`Error in conv3dDerInput: depth of input (${l}) must match input depth for filter ${n.shape[3]}.`),O(u===n.shape[4],()=>`Error in conv3dDerInput: depth of output (${u}) must match output depth for filter ${n.shape[4]}.`);let c={dy:o,filter:n},p={pad:r,strides:s,inputShape:a},d=B.runKernel(s0,c,p);return i?V(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var bw=W({conv3DBackpropInput_:kF});function SF(e,t,n,s,r){let a=$(e,"x","conv3dTranspose"),o=$(t,"filter","conv3dTranspose");return bw(n,a,o,s,r)}var kA=W({conv3dTranspose_:SF});function IF(e){let n={x:$(e,"x","cos","float32")};return B.runKernel(wo,n)}var mh=W({cos_:IF});function CF(e){let n={x:$(e,"x","cosh","float32")};return B.runKernel(ko,n)}var T0=W({cosh_:CF});function TF(e,t=0,n=!1,s=!1){let a={x:$(e,"x","cumprod")},o={axis:t,exclusive:n,reverse:s};return B.runKernel(gl,a,o)}var Ep=W({cumprod_:TF});function NF(e,t=0,n=!1,s=!1){let a={x:$(e,"x","cumsum")},o={axis:t,exclusive:n,reverse:s};return B.runKernel(So,a,o)}var N0=W({cumsum_:NF});function EF(e,t,n,s=!1){let r=$(e,"x","denseBincount"),a=$(t,"weights","denseBincount");O(r.dtype==="int32",()=>`Error in denseBincount: input dtype must be int32, but got ${r.dtype}`),O(r.rank<=2,()=>`Error in denseBincount: input must be at most rank 2, but got rank ${r.rank}.`),O(n>=0,()=>`size must be non-negative, but got ${n}.`),O(a.size===r.size||a.size===0,()=>`Error in denseBincount: weights must have the same shape as x or 0-length, but got x shape: ${r.shape}, weights shape: ${a.shape}.`);let o={x:r,weights:a},i={size:n,binaryOutput:s};return B.runKernel(r0,o,i)}var vw=W({denseBincount_:EF});function RF(e,t,n="NHWC"){let s=$(e,"x","depthToSpace","float32"),r=n==="NHWC"?s.shape[1]:s.shape[2],a=n==="NHWC"?s.shape[2]:s.shape[3],o=n==="NHWC"?s.shape[3]:s.shape[1];O(t>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${t}`),O(r*t>=0,()=>`Negative dimension size caused by overflow when multiplying
${r} and ${t} for depthToSpace with input shape
${s.shape}`),O(a*t>=0,()=>`Negative dimension size caused by overflow when multiplying
${a} and ${t} for depthToSpace with input shape
${s.shape}`),O(o%(t*t)===0,()=>`Dimension size must be evenly divisible by ${t*t} but is ${o} for depthToSpace with input shape ${s.shape}`);let i={x:s},l={blockSize:t,dataFormat:n};return B.runKernel(Al,i,l)}var SA=W({depthToSpace_:RF});function _F(e,t,n,s,r="NHWC",a=[1,1],o){let i=$(e,"x","depthwiseConv2d","float32"),l=$(t,"filter","depthwiseConv2d","float32"),u=i,c=!1;i.rank===3&&(c=!0,u=V(i,[1,i.shape[0],i.shape[1],i.shape[2]])),O(u.rank===4,()=>`Error in depthwiseConv2d: input must be rank 4, but got rank ${u.rank}.`),O(l.rank===4,()=>`Error in depthwiseConv2d: filter must be rank 4, but got rank ${l.rank}.`);let p=r==="NHWC"?u.shape[3]:u.shape[1];O(p===l.shape[2],()=>`Error in depthwiseConv2d: number of input channels (${p}) must match the inChannels dimension in filter ${l.shape[2]}.`),ls("depthwiseConv2d",s,o);let d={x:u,filter:l},h={strides:n,pad:s,dataFormat:r,dilations:a,dimRoundingMode:o},f=B.runKernel(Io,d,h);return c?V(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var qc=W({depthwiseConv2d_:_F});function DF(e){let n={x:$(e,"x","diag")};return B.runKernel(i0,n)}var ww=W({diag_:DF});function $F(e,t,n,s,r=[1,1],a="NHWC"){let o=$(e,"x","dilation2d"),i=$(t,"filter","dilation2d");O(o.rank===3||o.rank===4,()=>`Error in dilation2d: input must be rank 3 or 4, but got rank ${o.rank}.`),O(i.rank===3,()=>`Error in dilation2d: filter must be rank 3, but got rank ${i.rank}.`),O(a==="NHWC",()=>`Error in dilation2d: Only NHWC is currently supported, but got dataFormat of ${a}`);let l=o,u=!1;o.rank===3&&(l=V(o,[1,o.shape[0],o.shape[1],o.shape[2]]),u=!0);let c={x:l,filter:i},p={strides:n,pad:s,dilations:r},d=B.runKernel(jp,c,p);return u?V(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var IA=W({dilation2d_:$F});function PF(e,t){let n=$(e,"a","equal","string_or_numeric"),s=$(t,"b","equal","string_or_numeric");[n,s]=Ht(n,s),wt(n.shape,s.shape);let r={a:n,b:s};return B.runKernel(xl,r)}var Fs=W({equal_:PF});function FF(e,t,n){let s=$(t,"a","where"),r=$(n,"b","where"),a=$(e,"condition","where","bool"),o=wt(wt(a.shape,s.shape),r.shape),i=Ki(a,o),l=Ki(s,o),u=Ki(r,o),c={condition:i,t:l,e:u};return B.runKernel(Ul,c)}var Gn=W({where_:FF});function OF(e){let n={x:$(e,"x","zerosLike")};return B.runKernel(Ql,n)}var lt=W({zerosLike_:OF});function MF(e,t){let n=$(e,"a","div"),s=$(t,"b","div");[n,s]=Ht(n,s);let r=fe(n,s),a=lt(r),o=Fs(s,a);return Gn(o,a,r)}var CA=W({divNoNan_:MF});function zF(e,t){let n=$(e,"t1","dot"),s=$(t,"t2","dot");O((n.rank===1||n.rank===2)&&(s.rank===1||s.rank===2),()=>`Error in dot: inputs must all be rank 1 or 2, but got ranks ${n.rank} and ${s.rank}.`);let r=n.rank===1?n.size:n.shape[1],a=s.rank===1?s.size:s.shape[0];if(O(r===a,()=>`Error in dot: inner dimensions of inputs must match, but got ${r} and ${a}.`),n.rank===1&&s.rank===1){let o=V(n,[1,-1]),i=V(s,[-1,1]),l=et(o,i);return V(l,[])}else if(n.rank===1&&s.rank===2){let o=V(n,[1,-1]),i=V(s,[s.shape[0],s.shape[1]]),l=et(o,i);return V(l,[l.size])}else if(n.rank===2&&s.rank===1){let o=V(s,[-1,1]),i=et(n,o);return V(i,[i.size])}else{let o=V(s,[s.shape[0],s.shape[1]]);return et(n,o)}}var TA=W({dot_:zF});function LF(e,...t){let n=t.map((r,a)=>$(r,`tensors${a}`,"einsum")),s={equation:e};return B.runKernel(qp,n,s)}var kw=W({einsum_:LF});function BF(e){let n={x:$(e,"x","elu","float32")};return B.runKernel(To,n)}var Xc=W({elu_:BF});function WF(e){let t=$(e,"x","erf");O(t.dtype==="int32"||t.dtype==="float32",()=>"Input dtype must be `int32` or `float32`."),t.dtype==="int32"&&(t=ye(t,"float32"));let n={x:t};return B.runKernel(Ec,n)}var NA=W({erf_:WF});function EA(e,t){for(let n=0;n<e.length;++n)if(e[e.length-n-1]!==t-1-n)return!1;return!0}function Sw(e,t,n){let s=e.length+t.length,r=[],a=0,o=0;for(let i=0;i<s;i++)n.indexOf(i)===-1?r.push(e[a++]):r.push(t[o++]);return r}function Iw(e,t){let n=[],s=e.length;for(let a=0;a<s;a++)t.indexOf(a)===-1&&n.push(e[a]);let r=t.map(a=>e[a]);return[n,r]}function sl(e,t){let n=t.map(s=>1);return Sw(e,n,t)}function VF(e,t,n){O(EA(t,n),()=>`${e} supports only inner-most axes for now. Got axes ${t} and rank-${n} input.`)}function Cw(e,t){if(EA(e,t))return null;let n=[];for(let s=0;s<t;++s)e.indexOf(s)===-1&&n.push(s);return e.forEach(s=>n.push(s)),n}function RA(e){return e.map((t,n)=>[n,t]).sort((t,n)=>t[1]-n[1]).map(t=>t[0])}function UF(e,t){let n=[];for(let s=t-e;s<t;++s)n.push(s);return n}function GF(e,t=null,n=!1){let r={x:$(e,"x","max")},a={reductionIndices:t,keepDims:n};return B.runKernel(Oo,r,a)}var gn=W({max_:GF});function HF(e,t=null,n=!1){let r={x:$(e,"x","min")},a={axis:t,keepDims:n};return B.runKernel(Bo,r,a)}var Sa=W({min_:HF});function jF(e,t){let n=$(e,"base","pow"),s=$(t,"exp","pow");[n,s]=Ht(n,s);let r={a:n,b:s};return B.runKernel(Ho,r)}var Ia=W({pow_:jF});function Ce(e,t){if((Wn(e)&&t!=="string"||Array.isArray(e))&&t!=="complex64")throw new Error("Error creating a new Scalar: value must be a primitive (number|boolean|string)");if(t==="string"&&Wn(e)&&!(e instanceof Uint8Array))throw new Error("When making a scalar from encoded string, the value must be `Uint8Array`.");return li(e,[],[],t)}function qF(e){let n={x:$(e,"x","sqrt","float32")};return B.runKernel(ti,n)}var Fn=W({sqrt_:qF});function XF(e){let t=$(e,"x","square"),n={};return B.runKernel("Square",{x:t},n)}var bt=W({square_:XF});function KF(e,t=null,n=!1){let s=$(e,"x","sum");s.dtype==="bool"&&(s=ye(s,"int32"));let r={x:s},a={axis:t,keepDims:n};return B.runKernel(ni,r,a)}var ke=W({sum_:KF});function ZF(e,t="euclidean",n=null,s=!1){e=$(e,"x","norm");let r=Tw(e,t,n),a=r.shape;if(s){let o=gr(n,e.shape);a=sl(r.shape,o)}return V(r,a)}function Tw(e,t,n=null){if(e.rank===0)return sn(e);if(e.rank!==1&&n===null)return Tw(V(e,[-1]),t,n);if(e.rank===1||typeof n=="number"||Array.isArray(n)&&n.length===1){if(t===1)return ke(sn(e),n);if(t===1/0)return gn(sn(e),n);if(t===-1/0)return Sa(sn(e),n);if(t==="euclidean"||t===2)return Fn(ke(Ia(sn(e),Ce(2,"int32")),n));throw new Error(`Error in norm: invalid ord value: ${t}`)}if(Array.isArray(n)&&n.length===2){if(t===1)return gn(ke(sn(e),n[0]),n[1]-1);if(t===1/0)return gn(ke(sn(e),n[1]),n[0]);if(t===-1/0)return Sa(ke(sn(e),n[1]),n[0]);if(t==="fro"||t==="euclidean")return Fn(ke(bt(e),n));throw new Error(`Error in norm: invalid ord value: ${t}`)}throw new Error(`Error in norm: invalid axis: ${n}`)}var Kc=W({norm_:ZF});function YF(e,t=null,n=!1){return Kc(e,"euclidean",t,n)}var _A=W({euclideanNorm_:YF});function JF(e){let n={x:$(e,"x","exp")};return B.runKernel(No,n)}var Os=W({exp_:JF});function QF(e,t=0){let n=$(e,"x","expandDims","string_or_numeric");O(t<=n.rank,()=>"Axis must be <= rank of the tensor");let s={input:n},r={dim:t};return B.runKernel(bl,s,r)}var Bt=W({expandDims_:QF});function eO(e){let n={x:$(e,"x","expm1")};return B.runKernel(vl,n)}var DA=W({expm1_:eO});function tO(e,t){let n=$(e,"x","tile","string_or_numeric");O(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of reps ${t}.`);let s={x:n},r={reps:t};return B.runKernel(Ea,s,r)}var Ks=W({tile_:tO});function nO(e,t,n,s="float32"){t==null&&(t=e);let r=We([e,t],s),a=e<=t?e:t;for(let i=0;i<a;++i)r.set(1,i,i);let o=V(r.toTensor(),[e,t]);if(n==null)return o;if(n.length===1)return Ks(Bt(o,0),[n[0],1,1]);if(n.length===2)return Ks(Bt(Bt(o,0),0),[n[0],n[1],1,1]);if(n.length===3)return Ks(Bt(Bt(Bt(o,0),0),0),[n[0],n[1],n[2],1,1]);throw new Error(`eye() currently supports only 1D and 2D batchShapes, but received ${n.length}D.`)}var E0=W({eye_:nO});function Zc(e,t,n){let s={shape:e,value:t,dtype:n};return B.runKernel(Rc,{},s)}function sO(e){let n={x:$(e,"x","floor","float32")};return B.runKernel(Eo,n)}var Yc=W({floor_:sO});function rO(e,t,n=0,s=0){let r=$(e,"x","gather"),a=$(t,"indices","gather","int32"),o={x:r,indices:a},i={axis:n,batchDims:s};return B.runKernel(kl,o,i)}var Jc=W({gather_:rO});function aO(e,t){let n=$(e,"a","greater","string_or_numeric"),s=$(t,"b","greater","string_or_numeric");[n,s]=Ht(n,s),wt(n.shape,s.shape);let r={a:n,b:s};return B.runKernel(Il,r)}var ws=W({greater_:aO});function oO(e,t){let n=$(e,"a","greaterEqual","string_or_numeric"),s=$(t,"b","greaterEqual","string_or_numeric");[n,s]=Ht(n,s),wt(n.shape,s.shape);let r={a:n,b:s};return B.runKernel(Do,r)}var ci=W({greaterEqual_:oO});function iO(e){let n={x:$(e,"x","isFinite")};return B.runKernel(_c,n)}var $A=W({isFinite_:iO});function lO(e){let n={x:$(e,"x","isInf")};return B.runKernel(Dc,n)}var PA=W({isInf_:lO});function uO(e){let n={x:$(e,"x","isNaN")};return B.runKernel(Cl,n)}var FA=W({isNaN_:uO});function cO(e,t=.2){let s={x:$(e,"x","leakyRelu")},r={alpha:t};return B.runKernel(Po,s,r)}var gh=W({leakyRelu_:cO});function dO(e,t){let n=$(e,"a","less","string_or_numeric"),s=$(t,"b","less","string_or_numeric");[n,s]=Ht(n,s),wt(n.shape,s.shape);let r={a:n,b:s};return B.runKernel(Tl,r)}var R0=W({less_:dO});function pO(e,t){let n=$(e,"a","lessEqual","string_or_numeric"),s=$(t,"b","lessEqual","string_or_numeric");[n,s]=Ht(n,s),wt(n.shape,s.shape);let r={a:n,b:s};return B.runKernel(Nl,r)}var di=W({lessEqual_:pO});function Nw(e,t,n){if(n<=0)throw new Error("The number of values should be positive.");let s={start:e,stop:t,num:n};return B.runKernel(d0,{},s)}function hO(e,t=5,n=1,s=1,r=.5){let a=$(e,"x","localResponseNormalization");O(a.rank===4||a.rank===3,()=>`Error in localResponseNormalization: x must be rank 3 or 4 but got
rank ${a.rank}.`),O(tc(t),()=>`Error in localResponseNormalization: depthRadius must be an integer but got depthRadius ${t}.`);let o=a,i=!1;a.rank===3&&(i=!0,o=V(a,[1,a.shape[0],a.shape[1],a.shape[2]]));let l={x:o},u={depthRadius:t,bias:n,alpha:s,beta:r},c=B.runKernel(Kp,l,u);return i?V(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var OA=W({localResponseNormalization_:hO});function fO(e){let n={x:$(e,"x","log","float32")};return B.runKernel(Fo,n)}var Ms=W({log_:fO});function mO(e){let n={x:$(e,"x","log1p")};return B.runKernel($c,n)}var yh=W({log1p_:mO});function gO(e){return O(Qa(e),()=>"The f passed in grad(f) must be a function"),(t,n)=>{let s=$(t,"x","tf.grad","string_or_numeric"),r=n!=null?$(n,"dy","tf.grad"):null;return B.tidy(()=>{let{value:a,grads:o}=B.gradients(()=>e(s),[s],r);return r!=null&&is(a.shape,r.shape,"The shape of dy passed in grad(f)(x, dy) must match the shape returned by f(x)"),_0(o),o[0]})}}function yO(e){return O(Qa(e),()=>"The f passed in grads(f) must be a function"),(t,n)=>{O(Array.isArray(t),()=>"The args passed in grads(f)(args) must be an array of `Tensor`s or `TensorLike`s");let s=Tp(t,"args","tf.grads","string_or_numeric"),r=n!=null?$(n,"dy","tf.grads"):null;return B.tidy(()=>{let{value:a,grads:o}=B.gradients(()=>e(...s),s,r);return r!=null&&is(a.shape,r.shape,"The shape of dy passed in grads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),_0(o),o})}}function AO(e){return O(Qa(e),()=>"The f passed in valueAndGrad(f) must be a function"),(t,n)=>{O(t instanceof st,()=>"The x passed in valueAndGrad(f)(x) must be a tensor"),O(n==null||n instanceof st,()=>"The dy passed in valueAndGrad(f)(x, dy) must be a tensor");let{grads:s,value:r}=B.gradients(()=>e(t),[t],n);return _0(s),{grad:s[0],value:r}}}function xO(e){return O(Qa(e),()=>"The f passed in valueAndGrads(f) must be a function"),(t,n)=>{O(Array.isArray(t)&&t.every(r=>r instanceof st),()=>"The args passed in valueAndGrads(f)(args) must be array of tensors"),O(n==null||n instanceof st,()=>"The dy passed in valueAndGrads(f)(args, dy) must be a tensor");let s=B.gradients(()=>e(...t),t,n);return n!=null&&is(s.value.shape,n.shape,"The shape of dy passed in valueAndGrads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),_0(s.grads),s}}function Ew(e,t){O(Qa(e),()=>"The f passed in variableGrads(f) must be a function"),O(t==null||Array.isArray(t)&&t.every(u=>u instanceof Ip),()=>"The varList passed in variableGrads(f, varList) must be an array of variables");let n=t!=null;if(!n){t=[];for(let u in B.registeredVariables)t.push(B.registeredVariables[u])}let s=n?t.filter(u=>!u.trainable):null,r=t.length;t=t.filter(u=>u.trainable),O(t.length>0,()=>`variableGrads() expects at least one of the input variables to be trainable, but none of the ${r} variables is trainable.`);let a=!0,{value:o,grads:i}=B.gradients(e,t,null,a);O(i.some(u=>u!=null),()=>"Cannot find a connection between any variable and the result of the loss function y=f(x). Please make sure the operations that use variables are inside the function f passed to minimize()."),O(o.rank===0,()=>`The f passed in variableGrads(f) must return a scalar, but it returned a rank-${o.rank} tensor`);let l={};return t.forEach((u,c)=>{i[c]!=null&&(l[u.name]=i[c])}),s!=null&&s.forEach(u=>l[u.name]=null),{value:o,grads:l}}function sa(e){return B.customGrad(e)}function _0(e){if(e.filter(n=>n==null).length>0)throw new Error(`Cannot compute gradient of y=f(x) with respect to x. Make sure that
the f you passed encloses all operations that lead from x to y.`)}function bO(e){let n={x:$(e,"x","softplus")};return B.runKernel(Bc,n)}var ru=W({softplus_:bO});function vO(e){let t=$(e,"x","logSigmoid");return sa(s=>({value:$t(ru($t(s))),gradFunc:o=>z(o,$n($t(s)))}))(t)}var MA=W({logSigmoid_:vO});function wO(e,t){let n=$(e,"a","sub"),s=$(t,"b","sub");[n,s]=Ht(n,s);let r={a:n,b:s};return B.runKernel(ai,r)}var me=W({sub_:wO});function kO(e,t=-1){let n=$(e,"logits","logSoftmax");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Log Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and axis was ${t}`);return sa((r,a)=>{let i=gn(r,t,!0),l=me(r,i),u=me(ye(l,"float32"),Ms(ke(Os(l),t,!0)));return a([u]),{value:u,gradFunc:(p,d)=>{let[h]=d,f=!0,m=Os(h);return me(p,z(ke(p,t,f),m))}}})(n)}var D0=W({logSoftmax_:kO});function SO(e,t=null,n=!1){let s=$(e,"x","logSumExp"),r=gr(t,s.shape),a=gn(s,r,!0),o=me(s,a),i=Os(o),l=ke(i,r),u=Ms(l),c=ue(V(a,u.shape),u);if(n){let p=sl(c.shape,r);return V(c,p)}return c}var $0=W({logSumExp_:SO});function IO(e,t){let n=$(e,"a","logicalAnd","bool"),s=$(t,"b","logicalAnd","bool");wt(n.shape,s.shape);let r={a:n,b:s};return B.runKernel(El,r)}var mr=W({logicalAnd_:IO});function CO(e){let n={x:$(e,"x","logicalNot","bool")};return B.runKernel(Rl,n)}var Ah=W({logicalNot_:CO});function TO(e,t){let n=$(e,"a","logicalOr","bool"),s=$(t,"b","logicalOr","bool");wt(n.shape,s.shape);let r={a:n,b:s};return B.runKernel(Pc,r)}var P0=W({logicalOr_:TO});function NO(e,t){let n=$(e,"a","logicalXor","bool"),s=$(t,"b","logicalXor","bool");return wt(n.shape,s.shape),mr(P0(e,t),Ah(mr(e,t)))}var zA=W({logicalXor_:NO}),jf=2147483648;function EO(e,t,n="left"){let s=$(e,"sortedSequence","searchSorted"),r=$(t,"values","searchSorted"),a=s.shape[s.shape.length-1],o=r.shape[r.shape.length-1],i=V(s,[-1,a]),l=V(r,[-1,o]);if(i.rank<2)throw new Error("Sorted input argument must be at least 2-dimensional");if(i.shape[0]!==l.shape[0])throw new Error("Leading dimension of 'sortedSequence' and 'values' must match.");if(Et(l.shape)>=jf)throw new Error(`values tensor size must less than ${jf}`);if(i.shape[1]>=jf)throw new Error(`trailing dim_size must less than ${jf} for int32 output type, was ${i.shape[1]}`);let u={sortedSequence:i,values:l},c={side:n};return B.runKernel(b0,u,c)}var F0=W({searchSorted_:EO});function Rw(e,t){return F0(e,t,"left")}function RO(e,t,n,s,r){let a=$(e,"x","maxPool"),o=1,i=a,l=!1;a.rank===3&&(l=!0,i=V(a,[1,a.shape[0],a.shape[1],a.shape[2]])),O(i.rank===4,()=>`Error in maxPool: input must be rank 4 but got rank ${i.rank}.`),O(aa(n,o),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${o}'`),ls("maxPool",s,r);let u={x:i},c={filterSize:t,strides:n,pad:s,dimRoundingMode:r},p=B.runKernel(zo,u,c);return l?V(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var xh=W({maxPool_:RO});function _O(e,t=[1,1,1],n,s,r,a="NDHWC"){let o=$(e,"x","maxPool3d"),i=o,l=!1;o.rank===4&&(l=!0,i=V(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),O(i.rank===5,()=>`Error in maxPool3d: x must be rank 5 but got rank ${i.rank}.`),O(a==="NDHWC",()=>`Error in maxPool3d: Only NDHWC is currently supported, but got dataFormat of ${a}`),ls("maxPool3d",s,r);let u={x:i},c={filterSize:t,strides:n,pad:s,dimRoundingMode:r,dataFormat:a},p=B.runKernel(Zp,u,c);return l?V(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var LA=W({maxPool3d_:_O});function DO(e,t,n,s,r=!1){let o={x:$(e,"x","maxPoolWithArgmax")},i={filterSize:t,strides:n,pad:s,includeBatchInIndex:r},l=B.runKernel(m0,o,i);return{result:l[0],indexes:l[1]}}var _w=W({maxPoolWithArgmax_:DO});function $O(e,t){let n=$(e,"a","maximum"),s=$(t,"b","maximum");[n,s]=Ht(n,s),n.dtype==="bool"&&(n=ye(n,"int32"),s=ye(s,"int32")),wt(n.shape,s.shape);let r={a:n,b:s};return B.runKernel(Mo,r)}var oa=W({maximum_:$O});function PO(e,t=null,n=!1){let r={x:$(e,"x","mean")},a={axis:t,keepDims:n};return B.runKernel(Lo,r,a)}var Wt=W({mean_:PO});function Vt(e,t="float32"){if(t==="complex64"){let s=Vt(e,"float32"),r=Vt(e,"float32");return wa(s,r)}let n=Zm(Et(e),t);return B.makeTensor(n,e,t)}function $s(e,t="float32"){if(t==="complex64"){let s=$s(e,"float32"),r=Vt(e,"float32");return wa(s,r)}let n=Dy(Et(e),t);return B.makeTensor(n,e,t)}function Dw(e,t,{indexing:n="xy"}={}){if(n!=="xy"&&n!=="ij")throw new TypeError(`${n} is not a valid third argument to meshgrid`);if(e===void 0)return[];let s=$(e,"x","meshgrid",e instanceof st?e.dtype:"float32");if(t===void 0)return[s];let r=$(t,"y","meshgrid",t instanceof st?t.dtype:"float32"),a=Et(s.shape),o=Et(r.shape);return n==="xy"?(s=V(s,[1,-1]),r=V(r,[-1,1]),[et($s([o,1],s.dtype),s),et(r,$s([1,a],r.dtype))]):(s=V(s,[-1,1]),r=V(r,[1,-1]),[et(s,$s([1,o],s.dtype)),et($s([a,1],r.dtype),r)])}function FO(e,t){let n=$(e,"a","minimum"),s=$(t,"b","minimum");[n,s]=Ht(n,s),n.dtype==="bool"&&(n=ye(n,"int32"),s=ye(s,"int32")),wt(n.shape,s.shape);let r={a:n,b:s};return B.runKernel(Wo,r)}var Qc=W({minimum_:FO});function OO(e,t,n){O(n==="reflect"||n==="symmetric",()=>`Invalid mode. Mode must be either reflect or symmetric. Got ${n}.`);let s=$(e,"x","mirrorPad");if(s.rank===0)throw new Error("mirrorPad(scalar) is not defined. Pass non-scalar to mirrorPad");O(t.length===s.rank,()=>`Padding doesn't match input. Must be ${s.rank}. Got ${t.length}.`);let r=n==="reflect"?1:0;for(let i=0;i<s.rank;i++)O(t[i].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),O(t[i][0]>=0&&t[i][0]<=s.shape[i]-r&&t[i][1]>=0&&t[i][1]<=s.shape[i]-r,()=>`Padding in dimension ${i} cannot be greater than or equal to ${s.shape[i]-r} or less than 0 for input of shape ${s.shape}`);let a={paddings:t,mode:n},o={x:s};return B.runKernel(Vo,o,a)}var BA=W({mirrorPad_:OO});function MO(e,t){let n=$(e,"a","mod"),s=$(t,"b","mod");[n,s]=Ht(n,s);let r={a:n,b:s};return B.runKernel(Fc,r)}var au=W({mod_:MO});function zO(e,t=null,n=!1){e=$(e,"x","moments");let s=gr(t,e.shape),r=Wt(e,s,n),a=r.shape;n||(a=sl(r.shape,s));let o=bt(me(ye(e,"float32"),V(r,a))),i=Wt(o,s,n);return{mean:r,variance:i}}var bh=W({moments_:zO});function LO(e,t,n,s){let r=$(t,"data","multiRNNCell"),a=Tp(n,"c","multiRNNCell"),o=Tp(s,"h","multiRNNCell"),i=r,l=[];for(let p=0;p<e.length;p++){let d=e[p](i,a[p],o[p]);l.push(d[0]),l.push(d[1]),i=d[1]}let u=[],c=[];for(let p=0;p<l.length;p+=2)u.push(l[p]),c.push(l[p+1]);return[u,c]}var $w=W({multiRNNCell_:LO});function BO(e,t,n,s=!1){let r=$(e,"logits","multinomial"),a=r.size,o=r.rank;if(a<2)throw new Error(`Error in multinomial: you need at least 2 outcomes, but got ${a}.`);if(o>2)throw new Error(`Rank of probabilities must be 1 or 2, but is ${o}`);n=n||Math.random();let l={logits:o===1?V(r,[1,-1]):r},u={numSamples:t,seed:n,normalized:s},c=B.runKernel(g0,l,u);return o===1?V(c,[c.size]):c}var Pw=W({multinomial_:BO});function WO(e,t){let n=$(e,"a","notEqual","string_or_numeric"),s=$(t,"b","notEqual","string_or_numeric");[n,s]=Ht(n,s),wt(n.shape,s.shape);let r={a:n,b:s};return B.runKernel(Dl,r)}var rl=W({notEqual_:WO});function VO(e){let n={x:$(e,"x","onesLike")};return B.runKernel(Fl,n)}var zs=W({onesLike_:VO});function UO(e,t){let n=$(e,"v1","outerProduct"),s=$(t,"v2","outerProduct");O(n.rank===1&&s.rank===1,()=>`Error in outerProduct: inputs must be rank 1, but got ranks ${n.rank} and ${s.rank}.`);let r=V(n,[-1,1]),a=V(s,[1,-1]);return et(r,a)}var Fw=W({outerProduct_:UO});function GO(e,t,n=0){let s=$(e,"x","pad");if(s.rank===0)throw new Error("pad(scalar) is not defined. Pass non-scalar to pad");let r={paddings:t,constantValue:n},a={x:s};return B.runKernel(Go,a,r)}var sr=W({pad_:GO});function HO(e,t,n=0){return O(t.length===2,()=>"Invalid number of paddings. Must be length of 2."),sr(e,[t],n)}var Ow=W({pad1d_:HO});function jO(e,t,n=0){return O(t.length===2&&t[0].length===2&&t[1].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),sr(e,t,n)}var Mw=W({pad2d_:jO});function qO(e,t,n=0){return O(t.length===3&&t[0].length===2&&t[1].length===2&&t[2].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),sr(e,t,n)}var zw=W({pad3d_:qO});function XO(e,t,n=0){return O(t.length===4&&t[0].length===2&&t[1].length===2&&t[2].length===2&&t[3].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),sr(e,t,n)}var Lw=W({pad4d_:XO});function KO(e,t,n){let s=$(e,"x","spaceToBatchND");O(s.rank>=1+t.length,()=>`input rank ${s.rank} should be > than [blockShape] ${t.length}`),O(n.length===t.length,()=>`paddings.shape[0] ${n.length} must be equal to [blockShape] ${t.length}`),O(s.shape.reduce((o,i,l)=>l>0&&l<=t.length?o&&(i+n[l-1][0]+n[l-1][1])%t[l-1]===0:o,!0),()=>`input spatial dimensions ${s.shape.slice(1)} with paddings ${n.toString()} must be divisible by blockShapes ${t.toString()}`);let r={x:s},a={blockShape:t,paddings:n};return B.runKernel(jl,r,a)}var vh=W({spaceToBatchND_:KO});function ZO(e,t,n,s,r,a,o){r==null&&(r=[1,1]),a==null&&(a=1),s===0&&(s="valid");let i=$(e,"x","maxPool"),l=i,u=!1;i.rank===3&&(u=!0,l=V(i,[1,i.shape[0],i.shape[1],i.shape[2]])),O(aa(a,r),()=>`Error in pool: Either strides or dilations must be 1. Got strides ${a} and dilations '${r}'`);let c=mw(l.shape,t,a,r,s),p=[c.dilationHeight,c.dilationWidth],d;s==="same"?d=JO([c.filterHeight,c.filterWidth],p):d=[[0,0],[0,0]];let h=p[0]===1&&p[1]===1,[f,m]=YO([c.inHeight,c.inWidth],p,d),g=h?s:"valid",y=h?l:vh(l,p,f),A=(n==="avg"?()=>hh(y,t,a,g,o):()=>xh(y,t,a,g,o))(),b=h?A:fh(A,p,m);return u?V(b,[b.shape[1],b.shape[2],b.shape[3]]):b}function YO(e,t,n){let s=n.map(c=>c[0]),r=n.map(c=>c[1]),a=e.concat(s,r),o=t.map((c,p)=>(c-a[p]%c)%c),i=r.map((c,p)=>c+o[p]),l=t.map((c,p)=>[s[p],i[p]]),u=t.map((c,p)=>[0,o[p]]);return[l,u]}function JO(e,t){let s=e.map((o,i)=>o+(o-1)*(t[i]-1)).map(o=>o-1),r=s.map(o=>Math.floor(o/2)),a=s.map((o,i)=>o-r[i]);return s.map((o,i)=>[r[i],a[i]])}var WA=W({pool_:ZO});function QO(e,t){let n=$(e,"x","prelu"),s=$(t,"alpha","prelu"),r={x:n,alpha:s};return B.runKernel(jo,r)}var wh=W({prelu_:QO});function eM(e,t=null,n=!1){let s=$(e,"x","prod");s.dtype==="bool"&&(s=ye(s,"int32"));let r={x:s},a={axis:t,keepDims:n};return B.runKernel(qo,r,a)}var VA=W({prod_:eM});function tM(e,t,n,s,r){let a=$(e,"shape","raggedTensorToTensor","int32"),o=$(t,"values","raggedTensorToTensor"),i=$(n,"defaultValue","raggedTensorToTensor",o.dtype),l=s.map((p,d)=>$(p,`tensors${d}`,"raggedTensorToTensor","int32")),u={shape:a,values:o,defaultValue:i,rowPartitionTensors:l},c={rowPartitionTypes:r};return B.runKernel(y0,u,c)}var Bw=W({raggedTensorToTensor_:tM});function nM(e,t,n){let s=Et(e),r=null;if(n==null||n==="float32")r=new Float32Array(s);else if(n==="int32")r=new Int32Array(s);else if(n==="bool")r=new Uint8Array(s);else throw new Error(`Unknown data type ${n}`);for(let a=0;a<s;a++)r[a]=t();return B.makeTensor(r,e,n)}var Ww=W({rand_:nM}),UA=po(Xm()),GA=class{constructor(e,t,n,s,r){this.mean=e,this.stdDev=t,this.dtype=n,this.nextVal=NaN,this.truncated=s,this.truncated&&(this.upper=this.mean+this.stdDev*2,this.lower=this.mean-this.stdDev*2);let a=r||Math.random();this.random=UA.alea(a.toString())}nextValue(){if(!isNaN(this.nextVal)){let s=this.nextVal;return this.nextVal=NaN,s}let e,t,n=!1;for(;!n;){let s,r,a;do s=2*this.random()-1,r=2*this.random()-1,a=s*s+r*r;while(a>=1||a===0);let o=Math.sqrt(-2*Math.log(a)/a);e=this.mean+this.stdDev*s*o,t=this.mean+this.stdDev*r*o,(!this.truncated||this.isValidTruncated(e))&&(n=!0)}return(!this.truncated||this.isValidTruncated(t))&&(this.nextVal=this.convertValue(t)),this.convertValue(e)}convertValue(e){return this.dtype==null||this.dtype==="float32"?e:Math.round(e)}isValidTruncated(e){return e<=this.upper&&e>=this.lower}},sM=class{constructor(e,t,n,s){this.alpha=e,this.beta=1/t,this.dtype=n;let r=s||Math.random();this.randu=UA.alea(r.toString()),this.randn=new GA(0,1,n,!1,this.randu()),e<1?this.d=e+2/3:this.d=e-1/3,this.c=1/Math.sqrt(9*this.d)}nextValue(){let e,t,n,s,r,a;for(;;){do s=this.randn.nextValue(),a=1+this.c*s;while(a<=0);if(a*=a*a,e=s*s,t=1-.331*e*e,n=.5*e+this.d*(1-a+Math.log(a)),r=this.randu(),r<t||Math.log(r)<n)break}return a=1/this.beta*this.d*a,this.alpha<1&&(a*=Math.pow(this.randu(),1/this.alpha)),this.convertValue(a)}convertValue(e){return this.dtype==="float32"?e:Math.round(e)}},rM=class{constructor(e=0,t=1,n,s){if(this.canReturnFloat=()=>this.dtype==null||this.dtype==="float32",this.min=e,this.range=t-e,this.dtype=n,s==null&&(s=Math.random()),typeof s=="number"&&(s=s.toString()),!this.canReturnFloat()&&this.range<=1)throw new Error(`The difference between ${e} - ${t} <= 1 and dtype is not float`);this.random=UA.alea(s)}convertValue(e){return this.canReturnFloat()?e:Math.round(e)}nextValue(){return this.convertValue(this.min+this.range*this.random())}};function aM(e,t,n=1,s="float32",r){if(n==null&&(n=1),s==null&&(s="float32"),s!=="float32"&&s!=="int32")throw new Error(`Unsupported data type ${s}`);let a=new sM(t,n,s,r),o=We(e,s);for(let i=0;i<o.values.length;i++)o.values[i]=a.nextValue();return o.toTensor()}var Vw=W({randomGamma_:aM});function oM(e,t=0,n=1,s,r){if(s!=null&&s==="bool")throw new Error(`Unsupported data type ${s}`);let a=new GA(t,n,s,!1,r),o=We(e,s);for(let i=0;i<o.values.length;i++)o.values[i]=a.nextValue();return o.toTensor()}var O0=W({randomNormal_:oM});function iM(e,t,n){if(t!=null&&t==="bool")throw new Error(`Unsupported data type ${t}`);return O0(e,0,1,t,n)}var Uw=W({randomStandardNormal_:iM});function lM(e,t=0,n=1,s="float32",r){let a=We(e,s),o=new rM(t,n,null,r);for(let i=0;i<a.values.length;i++)a.values[i]=o.nextValue();return a.toTensor()}var ed=W({randomUniform_:lM});function oc(e,t,n=1,s="float32"){if(n===0)throw new Error("Cannot have a step of zero");let r={start:e,stop:t,step:n,dtype:s};return B.runKernel(Mc,{},r)}function uM(e){let n={x:$(e,"x","reciprocal")};return B.runKernel(zl,n)}var HA=W({reciprocal_:uM});function cM(e){let n={x:$(e,"x","relu")};return B.runKernel(Xo,n)}var Wr=W({relu_:cM});function dM(e){let n={x:$(e,"x","relu6")};return B.runKernel(Yo,n)}var M0=W({relu6_:dM});function pM(e,t){let s={x:$(e,"x","reverse")},r={dims:t};return B.runKernel(Bl,s,r)}var Qs=W({reverse_:pM});function hM(e){let t=$(e,"x","reverse");return O(t.rank===1,()=>`Error in reverse1D: x must be rank 1 but got rank ${t.rank}.`),Qs(t,0)}var Gw=W({reverse1d_:hM});function fM(e,t){let n=$(e,"x","reverse");return O(n.rank===2,()=>`Error in reverse2D: x must be rank 2 but got rank ${n.rank}.`),Qs(n,t)}var Hw=W({reverse2d_:fM});function mM(e,t){let n=$(e,"x","reverse");return O(n.rank===3,()=>`Error in reverse3D: x must be rank 3 but got rank ${n.rank}.`),Qs(n,t)}var jw=W({reverse3d_:mM});function gM(e,t){let n=$(e,"x","reverse");return O(n.rank===4,()=>`Error in reverse4D: x must be rank 4 but got rank ${n.rank}.`),Qs(n,t)}var qw=W({reverse4d_:gM});function yM(e){let n={x:$(e,"x","round")};return B.runKernel(Wl,n)}var z0=W({round_:yM});function AM(e){let n={x:$(e,"x","rsqrt","float32")};return B.runKernel(Jo,n)}var L0=W({rsqrt_:AM});function xM(e){let n={x:$(e,"x","selu")};return B.runKernel(zc,n)}var B0=W({selu_:xM});function bM(e,t,n,s,r,a=[1,1],o="NHWC"){let i=$(e,"x","separableConv2d"),l=$(t,"depthwiseFilter","separableConv2d"),u=$(n,"pointwiseFilter","separableConv2d"),c=i,p=!1;if(i.rank===3&&(p=!0,c=V(i,[1,i.shape[0],i.shape[1],i.shape[2]])),o==="NCHW")throw new Error("separableConv2d currently does not support dataFormat NCHW; only NHWC is supported");O(c.rank===4,()=>`Error in separableConv2d: input must be rank 4, but got rank ${c.rank}.`),O(l.rank===4,()=>`Error in separableConv2d: depthwise filter must be rank 4, but got rank ${l.rank}.`),O(u.rank===4,()=>`Error in separableConv2d: pointwise filter must be rank 4, but got rank ${l.rank}.`),O(u.shape[0]===1,()=>`Error in separableConv2d: the first dimension of pointwise filter must be 1, but got ${u.shape[0]}.`),O(u.shape[1]===1,()=>`Error in separableConv2d: the second dimension of pointwise filter must be 1, but got ${u.shape[1]}.`);let d=l.shape[2],h=l.shape[3];O(u.shape[2]===d*h,()=>`Error in separableConv2d: the third dimension of pointwise filter must be ${d*h}, but got ${u.shape[2]}.`);let f=qc(c,l,s,r,o,a),g=ka(f,u,1,"valid",o);return p?V(g,[g.shape[1],g.shape[2],g.shape[3]]):g}var W0=W({separableConv2d_:bM});async function vM(e,t){let n=$(e,"x","setdiff1d"),s=$(t,"y","setdiff1d");O(n.dtype===s.dtype,()=>`x and y should have the same dtype, but got x (${n.dtype}) and y (${s.dtype}).`),O(n.rank===1,()=>`x should be 1D tensor, but got x (${n.shape}).`),O(s.rank===1,()=>`y should be 1D tensor, but got y (${s.shape}).`);let r=await n.data(),a=await s.data(),o=new Set(a),i=0;for(let c=0;c<r.length;c++)o.has(r[c])||i++;let l=new mn([i],n.dtype),u=new mn([i],"int32");for(let c=0,p=0;c<r.length;c++)o.has(r[c])||(l.values[p]=r[c],u.values[p]=c,p++);return[l.toTensor(),u.toTensor()]}var Xw=vM;function wM(e){let n={x:$(e,"x","sign")};return B.runKernel(Lc,n)}var jA=W({sign_:wM});function kM(e){let n={x:$(e,"x","sin","float32")};return B.runKernel(Qo,n)}var V0=W({sin_:kM});function SM(e){let n={x:$(e,"x","sinh")};return B.runKernel(Hl,n)}var U0=W({sinh_:SM});function IM(e,t,n){let s=$(e,"x","slice1d");return O(s.rank===1,()=>`slice1d expects a rank-1 tensor, but got a rank-${s.rank} tensor`),ze(s,[t],[n])}var kh=W({slice1d_:IM});function CM(e,t,n){let s=$(e,"x","slice2d");return O(s.rank===2,()=>`slice2d expects a rank-2 tensor, but got a rank-${s.rank} tensor`),ze(s,t,n)}var G0=W({slice2d_:CM});function TM(e,t,n){let s=$(e,"x","slice3d");return O(s.rank===3,()=>`slice3d expects a rank-3 tensor, but got a rank-${s.rank} tensor`),ze(s,t,n)}var pi=W({slice3d_:TM});function NM(e,t,n){let s=$(e,"x","slice4d");return O(s.rank===4,()=>`slice4d expects a rank-4 tensor, but got a rank-${s.rank} tensor`),ze(s,t,n)}var ro=W({slice4d_:NM});function EM(e,t=-1){let n=$(e,"logits","softmax","float32");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and dim was ${t}`);let s={logits:n},r={dim:t};return B.runKernel(si,s,r)}var ou=W({softmax_:EM});function RM(e){O(e.dtype==="complex64",()=>`The dtype for tf.spectral.fft() must be complex64 but got ${e.dtype}.`);let t={input:e};return B.runKernel(u0,t)}var Sh=W({fft_:RM});function _M(e){O(e.dtype==="complex64",()=>`The dtype for tf.spectral.ifft() must be complex64 but got ${e.dtype}.`);let t={input:e};return B.runKernel(c0,t)}var ic=W({ifft_:_M});function DM(e){let t=e.shape[e.shape.length-1],n=e.size/t,s;if(t<=2){let r=V(e,[n,t]);s=ic(r)}else{let r=[n,2*(t-1)],a=V(ac(e),[n,t]),o=V(dh(e),[n,t]),i=Qs(ze(a,[0,1],[n,t-2]),1),l=z(Qs(ze(o,[0,1],[n,t-2]),1),Ce(-1)),u=It([a,i],1),c=It([o,l],1),p=V(wa(u,c),[r[0],r[1]]);s=ic(p)}if(s=ac(s),e.rank===3&&e.shape[0]!==0){let r=s,a=e.shape[0];s=V(s,[a,s.shape[0]/a,s.shape[1]]),r.dispose()}return s}var H0=W({irfft_:DM});function $M(e,t,n=0){let r={x:$(e,"x","split")},a={numOrSizeSplits:t,axis:n};return B.runKernel(ql,r,a)}var Yt=W({split_:$M});function PM(e,t){O(e.dtype==="float32",()=>`The dtype for rfft() must be real value but got ${e.dtype}`);let n=e.shape[e.shape.length-1],s=e.size/n,r;if(t!=null&&t<n){let f=e.shape.map(g=>0),m=e.shape.map(g=>g);m[e.shape.length-1]=t,r=ze(e,f,m),n=t}else if(t!=null&&t>n){let f=e.shape.map(m=>m);f[e.shape.length-1]=t-n,r=It([e,Vt(f)],e.shape.length-1),n=t}else r=e;let a=lt(r),o=V(wa(r,a),[s,n]),i=Sh(o),l=Math.floor(n/2)+1,u=ac(i),c=dh(i),p=Yt(u,[l,n-l],u.shape.length-1),d=Yt(c,[l,n-l],c.shape.length-1),h=r.shape.slice();return h[r.shape.length-1]=l,V(wa(p[0],d[0]),h)}var Ih=W({rfft_:PM});function FM(e,t){let n=$(e,"a","squaredDifference"),s=$(t,"b","squaredDifference");[n,s]=Ht(n,s),wt(n.shape,s.shape);let r={a:n,b:s},a={};return B.runKernel(ri,r,a)}var j0=W({squaredDifference_:FM});function OM(e,t){let n=$(e,"x","squeeze","string_or_numeric");return V(n,f6(n.shape,t).newShape)}var rt=W({squeeze_:OM});function MM(e,t=0){let n=Tp(e,"tensors","stack","string_or_numeric");O(n.length>=1,()=>"Pass at least one tensor to tf.stack"),n.length>0&&O(t<=n[0].rank,()=>"Axis must be <= rank of the tensor");let s=n,r={axis:t};return B.runKernel(Ml,s,r)}var ln=W({stack_:MM});function zM(e,t=0){let s={x:$(e,"x","step")},r={alpha:t};return B.runKernel(ii,s,r)}var iu=W({step_:zM});function LM(e,t,n,s,r=0,a=0,o=0,i=0,l=0){let c={x:$(e,"x","stridedSlice","string_or_numeric")},p={begin:t,end:n,strides:s,beginMask:r,endMask:a,ellipsisMask:o,newAxisMask:i,shrinkAxisMask:l};return B.runKernel(Xl,c,p)}var qA=W({stridedSlice_:LM});function BM(e){let n={x:$(e,"x","tan","float32")};return B.runKernel(Kl,n)}var XA=W({tan_:BM});function Pt(e,t){dl(e);let n=na(e,t);if(n.length!==1)throw new Error("tensor1d() requires values to be a flat/TypedArray");return li(e,null,n,t)}function fr(e,t,n){if(dl(e),t!=null&&t.length!==2)throw new Error("tensor2d() requires shape to have two numbers");let s=na(e,n);if(s.length!==2&&s.length!==1)throw new Error("tensor2d() requires values to be number[][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor2d() requires shape to be provided when `values` are a flat/TypedArray");return li(e,t,s,n)}function Kw(e,t,n){if(dl(e),t!=null&&t.length!==4)throw new Error("tensor4d() requires shape to have four numbers");let s=na(e,n);if(s.length!==4&&s.length!==1)throw new Error("tensor4d() requires values to be number[][][][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor4d() requires shape to be provided when `values` are a flat array");return li(e,t,s,n)}function Zw(e,t,n){if(dl(e),t!=null&&t.length!==5)throw new Error("tensor5d() requires shape to have five numbers");let s=na(e,n);if(s.length!==5&&s.length!==1)throw new Error("tensor5d() requires values to be number[][][][][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor5d() requires shape to be provided when `values` are a flat array");return li(e,t,s,n)}function Yw(e,t,n){if(dl(e),t!=null&&t.length!==6)throw new Error("tensor6d() requires shape to have six numbers");let s=na(e,n);if(s.length!==6&&s.length!==1)throw new Error("tensor6d() requires values to be number[][][][][][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor6d() requires shape to be provided when `values` are a flat array");return t=t||s,li(e,t,s,n)}function WM(e,t=1,n=!0){let s=$(e,"x","topk");if(s.rank===0)throw new Error("topk() expects the input to be of rank 1 or higher");let r=s.shape[s.shape.length-1];if(t<0)throw new Error(`'k' passed to topk() must be >= 0 but got ${t}`);if(t>r)throw new Error(`'k' passed to topk() must be <= the last dimension (${r}) but got ${t}`);let a={x:s},o={k:t,sorted:n},[i,l]=B.runKernel(Zl,a,o);return{values:i,indices:l}}var KA=W({topk_:WM});function VM(e,t=0,n=1,s,r){if(s!=null&&s==="bool")throw new Error("Unsupported data type $ { dtype }");let a=new GA(t,n,s,!0,r),o=We(e,s);for(let i=0;i<o.values.length;i++)o.values[i]=a.nextValue();return o.toTensor()}var q0=W({truncatedNormal_:VM});function UM(e,t=0){let n=$(e,"x","unique","string_or_numeric");O(n.rank>0,()=>"The input tensor must be at least 1D");let s={x:n},r={axis:t},[a,o]=B.runKernel(v0,s,r);return{values:a,indices:o}}var ZA=W({unique_:UM});function GM(e,t,n){let s=$(e,"x","unsortedSegmentSum"),r=$(t,"segmentIds","unsortedSegmentSum","int32");O(tc(n),()=>"numSegments must be of dtype int");let a={x:s,segmentIds:r},o={numSegments:n};return B.runKernel(rh,a,o)}var X0=W({unsortedSegmentSum_:GM});function HM(e,t=0){let n=$(e,"x","unstack","string_or_numeric");O(t>=-n.shape.length&&t<n.shape.length,()=>`Axis = ${t} is not in [-${n.shape.length}, ${n.shape.length})`);let s={value:n},r={axis:t};return B.runKernel(Jl,s,r)}var On=W({unstack_:HM});function Jw(e,t){return F0(e,t,"right")}function YA(e,t=!0,n,s){return B.makeVariable(e,t,n,s)}function Qw(e,t){let n=[];for(let a=0;a<t.length;a++)t[a]&&n.push(a);let s=We(e,"int32"),r=We([n.length,e.length],"int32");for(let a=0;a<n.length;a++){let o=s.indexToLoc(n[a]),i=a*e.length;r.values.set(o,i)}return r.toTensor()}async function jM(e){let t=$(e,"condition","whereAsync","bool"),n=await t.data(),s=Qw(t.shape,n);return e!==t&&t.dispose(),s}var JA=jM;async function qM(e,t,n){let s=$(e,"tensor","boolMask"),r=$(t,"mask","boolMask","bool"),a=n==null?0:n,o=r.rank,i=s.shape;O(o>0,()=>"mask cannot be scalar"),is(i.slice(a,a+o),r.shape,"mask's shape must match the first K dimensions of tensor's shape,");let l=1;for(let m=a;m<a+o;m++)l*=i[m];let u=i.slice(0,a).concat([l],i.slice(a+o)),c=V(s,u),p=V(r,[-1]),d=await JA(p),h=rt(d,[1]),f=Jc(c,h,a);return e!==s&&s.dispose(),t!==r&&r.dispose(),h.dispose(),c.dispose(),p.dispose(),d.dispose(),f}var e8=qM;function XM(e,t,n,s,r=!0){let a=$(e,"v","movingAverage"),o=$(t,"x","movingAverage"),i=$(n,"decay","movingAverage");D6(a,o),O(ho(a.shape,o.shape),()=>"Shape mismatch in v and x");let l=Ce(1),u=me(l,i),c=z(me(o,a),u);if(r){O(s!=null,()=>"When using zeroDebias: true, step is required.");let p=$(s,"step","movingAverage");c=fe(c,me(l,Ia(i,p)))}return ue(a,c)}var t8=W({movingAverage_:XM});function KM(e,t,n){let s=$(e,"indices","scatterND","int32"),r=$(t,"updates","scatterND");Qy(r,s,n);let a={indices:s,updates:r},o={shape:n};return B.runKernel(Vl,a,o)}var n8=W({scatterND_:KM});function ZM(e,t,n,s){if(e.dtype!=="int32")throw new Error(`tf.sparseToDense() expects the indices to be int32 type, but the dtype was ${e.dtype}.`);if(e.rank>2)throw new Error(`sparseIndices should be a scalar, vector, or matrix, but got shape ${e.shape}.`);let r=e.rank>0?e.shape[0]:1,a=e.rank>1?e.shape[1]:1;if(n.length!==a)throw new Error(`outputShape has incorrect number of elements:, ${n.length}, should be: ${a}.`);let o=t.size;if(!(t.rank===0||t.rank===1&&o===r))throw new Error(`sparseValues has incorrect shape ${t.shape}, should be [] or [${r}]`);if(t.dtype!==s.dtype)throw new Error("sparseValues.dtype must match defaultValues.dtype")}function YM(e,t,n,s=0){let r=$(e,"sparseIndices","sparseToDense","int32"),a=$(t,"sparseValues","sparseToDense","string_or_numeric"),o=$(s,"defaultValue","sparseToDense",a.dtype);ZM(r,a,n,o);let i={sparseIndices:r,sparseValues:a,defaultValue:o},l={outputShape:n};return B.runKernel(th,i,l)}var s8=W({sparseToDense_:YM});function JM(e,t){let n=$(t,"indices","gatherND","int32"),r={params:$(e,"x","gatherND","string_or_numeric"),indices:n};return B.runKernel(Sl,r)}var r8=W({gatherND_:JM});function QM(e,t){if(t==null)return e.shape.slice();if(ho(e.shape,t))return t;if(e.shape.length===t.length){let n=[];for(let s=0;s<e.shape.length;s++)t[s]==null&&e.shape[s]!=null?n.push(e.shape[s]):n.push(t[s]);return n}return t}function ez(e,t,n,s){let r=$(e,"x","dropout");if(O(r.dtype==="float32",()=>`x has to be a floating point tensor since it's going to be scaled, but got a ${r.dtype} tensor instead.`),O(t>=0&&t<1,()=>`rate must be a float in the range [0, 1), but got ${t}.`),t===0)return e instanceof st?r.clone():r;let a=QM(r,n),o=1-t,i=fe(Yc(ue(ed(a,0,1,"float32",s),o)),o);return z(r,i)}var QA=W({dropout_:ez});function e5(e){return Math.floor(Math.pow(2,Math.ceil(Math.log(e)/Math.log(2))))}function K0(e,t,n){let s=1-e%2,r=new Float32Array(e);for(let a=0;a<e;++a){let o=2*Math.PI*a/(e+s-1);r[a]=t-n*Math.cos(o)}return Pt(r,"float32")}async function tz(e,t,n=1){let s=$(e,"predictions","inTopK"),r=$(t,"targets","inTopK");O(s.rank>1,()=>`inTopK() expects the predictions to be of rank 2 or higher, but got ${s.rank}`),O(s.rank-1===r.rank,()=>`predictions rank should be 1 larger than targets rank, but got predictions rank ${s.rank} and targets rank ${r.rank}`),is(s.shape.slice(0,s.shape.length-1),r.shape,"predictions's shape should be align with the targets' shape, except the last dimension.");let a=s.shape[s.shape.length-1];O(n>0&&n<=a,()=>`'k' passed to inTopK() must be > 0 && <= the predictions last dimension (${a}), but got ${n}`);let o=await s.data(),i=await r.data(),[l,u]=[o.length/a,a],c=m6("bool",l);for(let p=0;p<l;p++){let d=p*u,h=o.subarray(d,d+u),f=[];for(let m=0;m<h.length;m++)f.push({value:h[m],index:m});f.sort((m,g)=>g.value-m.value),c[p]=0;for(let m=0;m<n;m++)if(f[m].index===i[p]){c[p]=1;break}}return e!==s&&s.dispose(),t!==r&&r.dispose(),ct(c,r.shape,"bool")}var a8=tz,lc={};He(lc,{conv2d:()=>rz,depthwiseConv2d:()=>lz,matMul:()=>cz});function nz(e,t,n,s,r,a="NHWC",o){let i=e;e.rank===3&&(i=V(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=V(t,[1,t.shape[0],t.shape[1],t.shape[2]])),O(i.rank===4,()=>`Error in conv2dDerFilter: input must be rank 4, but got shape ${i.shape}.`),O(l.rank===4,()=>`Error in conv2dDerFilter: dy must be rank 4, but got shape ${l.shape}.`),O(n.length===4,()=>`Error in conv2dDerFilter: filterShape must be length 4, but got ${n}.`);let u=a==="NHWC"?i.shape[3]:i.shape[1],c=a==="NHWC"?l.shape[3]:l.shape[1];O(u===n[2],()=>`Error in conv2dDerFilter: depth of input ${u}) must match input depth in filter (${n[2]}.`),O(c===n[3],()=>`Error in conv2dDerFilter: depth of dy (${c}) must match output depth for filter (${n[3]}).`),ls("conv2dDerFilter",r,o);let p={x:i,dy:l},d={strides:s,pad:r,dataFormat:a,dimRoundingMode:o,filterShape:n};return B.runKernel(t0,p,d)}var t5=W({conv2DBackpropFilter_:nz});function Z0(e,t,n){if(n==null||n==="linear")return e;if(n==="relu")return z(e,iu(t));throw new Error(`Cannot compute gradient for fused activation ${n}.`)}function Y0(e,t){let n=t,s=on(e.shape,t.shape);return s.length>0&&(n=ke(n,s)),V(n,e.shape)}function J0(e,t,n,s){if(t==="linear")return e;if(t==="relu")return Wr(e);if(t==="elu")return Xc(e);if(t==="relu6")return M0(e);if(t==="prelu")return wh(e,n);if(t==="leakyrelu")return gh(e,s);if(t==="sigmoid")return $n(e);throw new Error(`Unknown fused activation ${t}.`)}var Q0=(e,t)=>!(e>0)||t==="linear";function sz({x:e,filter:t,strides:n,pad:s,dataFormat:r="NHWC",dilations:a=[1,1],dimRoundingMode:o,bias:i,activation:l="linear",preluActivationWeights:u,leakyreluAlpha:c}){if(l=l||"linear",Q0(B.state.gradientDepth,l)===!1){O(r==="NHWC",()=>`Error in fused conv2d: got dataFormat of ${r} but only NHWC is currently supported for the case of gradient depth is 0 and the activation is not linear.`);let S=ka(e,t,n,s,r,a,o);return i!=null&&(S=ue(S,i)),J0(S,l,u,c)}let p=$(e,"x","conv2d","float32"),d=$(t,"filter","conv2d","float32"),h=p,f=!1;p.rank===3&&(f=!0,h=V(p,[1,p.shape[0],p.shape[1],p.shape[2]])),O(h.rank===4,()=>`Error in fused conv2d: input must be rank 4, but got rank ${h.rank}.`),O(d.rank===4,()=>`Error in fused conv2d: filter must be rank 4, but got rank ${d.rank}.`),ls("fused conv2d",s,o);let m=r==="NHWC"?h.shape[3]:h.shape[1];O(d.shape[2]===m,()=>`Error in conv2d: depth of input (${m}) must match input depth for filter ${d.shape[2]}.`),O(aa(n,a),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`);let g=ph(h.shape,d.shape,n,a,s,o),y;i!=null&&(y=$(i,"bias","fused conv2d"),[y]=Ht(y,p),r==="NHWC"?wt(g.outShape,y.shape):(O(y.shape.length<=1,()=>`Error in fused conv2d: only supports scalar or 1-D Tensor bias for NCHW format but got the bias of rank-${y.shape.length}.`),O(y.shape.length===0||y.shape[0]===g.outChannels||y.shape[0]===1,()=>`Error in fused conv2d: bias shape (${y.shape}) is not compatible with the number of output channels (${g.outChannels})`)));let x;if(u!=null){let S=u.shape;if(O(S.length<=1||S.length===3,()=>`Error in fused conv2d: only supports scalar, 1-D Tensor or 3-D Tensor PReLU activation weights but got a tensor of rank-${S.length}.`),S.length===1)O(S[0]===1||S[0]===g.outChannels,()=>`Error in fused conv2d: PReLU activation weights (${S}) is not compatible with the number of output channels (${g.outChannels}).`);else if(S.length===3)try{wt(S,g.outShape)}catch(k){let E=`Error in fused conv2d: PReLU activation weights (${S}) is not compatible with the output shape of the conv2d (${g.outShape}).`;throw Error(E)}x=$(u,"prelu weights","fused conv2d")}let A=(S,k)=>{O(r==="NHWC",()=>`Error in gradient of fused conv2D: got dataFormat of ${r} but only NHWC is currently supported.`);let[E,_,D,R]=k,P=Z0(S,D,l);O(so(a),()=>`Error in gradient of fused conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${a}'`);let C=vA(_.shape,P,E,n,s),M=t5(_,P,E.shape,n,s),L=[C,M];if(R!=null){let G=Y0(R,P);L.push(G)}return L},b={x:h,filter:d,bias:y,preluActivationWeights:x},w={strides:n,pad:s,dataFormat:r,dilations:a,dimRoundingMode:o,activation:l,leakyreluAlpha:c};return i==null?sa((k,E,_)=>{let D=B.runKernel(to,b,w);return _([E,k,D]),f&&(D=V(D,[D.shape[1],D.shape[2],D.shape[3]])),{value:D,gradFunc:A}})(h,d):sa((k,E,_,D)=>{let R=B.runKernel(to,b,w);return D([E,k,R,_]),f&&(R=V(R,[R.shape[1],R.shape[2],R.shape[3]])),{value:R,gradFunc:A}})(h,d,y)}var rz=W({fusedConv2d_:sz});function az(e,t,n,s,r,a=[1,1],o){let i=e;e.rank===3&&(i=V(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=V(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let u={x:i,dy:l},c={strides:s,pad:r,dimRoundingMode:o,dilations:a,filterShape:n};return B.runKernel(a0,u,c)}var o8=W({depthwiseConv2dNativeBackpropFilter_:az});function oz(e,t,n,s,r,a=[1,1],o){let i=t,l=!1;t.rank===3&&(l=!0,i=V(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let u={dy:i,filter:n},c={strides:s,pad:r,dimRoundingMode:o,dilations:a,inputShape:e},p=B.runKernel(o0,u,c);return l?V(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var i8=W({depthwiseConv2dNativeBackpropInput_:oz});function iz({x:e,filter:t,strides:n,pad:s,dataFormat:r="NHWC",dilations:a=[1,1],dimRoundingMode:o,bias:i,activation:l="linear",preluActivationWeights:u,leakyreluAlpha:c}){if(Q0(B.state.gradientDepth,l)===!1){let w=qc(e,t,n,s,r,a,o);return i!=null&&(w=ue(w,i)),J0(w,l,u,c)}let p=$(e,"x","depthwiseConv2d","float32"),d=$(t,"filter","depthwiseConv2d","float32"),h=p,f=!1;p.rank===3&&(f=!0,h=V(p,[1,p.shape[0],p.shape[1],p.shape[2]])),O(h.rank===4,()=>`Error in fused depthwiseConv2d: input must be rank 4, but got rank ${h.rank}.`),O(d.rank===4,()=>`Error in fused depthwiseConv2d: filter must be rank 4, but got rank ${d.rank}.`),O(h.shape[3]===d.shape[2],()=>`Error in fused depthwiseConv2d: number of input channels (${h.shape[3]}) must match the inChannels dimension in filter ${d.shape[2]}.`),a==null&&(a=[1,1]),O(aa(n,a),()=>`Error in fused depthwiseConv2d: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`),ls("fused depthwiseConv2d",s,o);let m=ph(h.shape,d.shape,n,a,s,o,!0),g;i!=null&&(g=$(i,"bias","fused conv2d"),[g]=Ht(g,p),wt(m.outShape,g.shape));let y;u!=null&&(y=$(u,"prelu weights","fused depthwiseConv2d"));let x=(w,S)=>{O(so(a),()=>`Error in gradient of fused depthwiseConv2d: dilation rates greater than 1 are not yet supported. Got dilations '${a}'`);let[k,E,_,D]=S,R=Z0(w,_,l),P=i8(E.shape,R,k,n,s,a,o),C=o8(E,R,k.shape,n,s,a,o);if(D!=null){let M=Y0(g,R);return[P,C,M]}return[P,C]},A={x:h,filter:d,bias:g,preluActivationWeights:y},b={strides:n,pad:s,dataFormat:r,dilations:a,dimRoundingMode:o,activation:l,leakyreluAlpha:c};return i==null?sa((S,k,E)=>{let _=B.runKernel(no,A,b);return E([k,S,_]),f&&(_=V(_,[_.shape[1],_.shape[2],_.shape[3]])),{value:_,gradFunc:x}})(h,d):sa((S,k,E,_)=>{let D=B.runKernel(no,A,b);return _([k,S,D,E]),f&&(D=V(D,[D.shape[1],D.shape[2],D.shape[3]])),{value:D,gradFunc:x}})(h,d,g)}var lz=W({fusedDepthwiseConv2d_:iz});function uz({a:e,b:t,transposeA:n=!1,transposeB:s=!1,bias:r,activation:a="linear",preluActivationWeights:o,leakyreluAlpha:i=.2}){if(Q0(B.state.gradientDepth,a)===!1){let R=et(e,t,n,s);return r!=null&&(R=ue(R,r)),J0(R,a,o,i)}let l=$(e,"a","fused matMul"),u=$(t,"b","fused matMul");[l,u]=Ht(l,u);let c=n?l.shape[l.rank-2]:l.shape[l.rank-1],p=s?u.shape[u.rank-1]:u.shape[u.rank-2],d=n?l.shape[l.rank-1]:l.shape[l.rank-2],h=s?u.shape[u.rank-2]:u.shape[u.rank-1],f=l.shape.slice(0,-2),m=u.shape.slice(0,-2),g=Et(f),y=Et(m);O(c===p,()=>`Error in fused matMul: inner shapes (${c}) and (${p}) of Tensors with shapes ${l.shape} and ${u.shape} and transposeA=${n} and transposeB=${s} must match.`);let A=wt(l.shape.slice(0,-2),u.shape.slice(0,-2)).concat([d,h]),b=n?V(l,[g,c,d]):V(l,[g,d,c]),w=s?V(u,[y,h,p]):V(u,[y,p,h]),S;r!=null&&(S=$(r,"bias","fused matMul"),[S]=Ht(S,l),wt(A,S.shape));let k;o!=null&&(k=$(o,"prelu weights","fused matMul"));let E=(R,P)=>{let[C,M,L,G]=P,K=Z0(V(R,L.shape),L,a),X,Y;if(!n&&!s?(X=et(K,M,!1,!0),Y=et(C,K,!0,!1)):!n&&s?(X=et(K,M,!1,!1),Y=et(K,C,!0,!1)):n&&!s?(X=et(M,K,!1,!0),Y=et(C,K,!1,!1)):(X=et(M,K,!0,!0),Y=et(K,C,!0,!0)),r!=null){let ne=Y0(G,K);return[X,Y,ne]}else return[X,Y]},_={a:b,b:w,bias:S,preluActivationWeights:k},D={transposeA:n,transposeB:s,activation:a,leakyreluAlpha:i};return r==null?sa((P,C,M)=>{let L=B.runKernel(eo,_,D);return M([P,C,L]),{value:V(L,A),gradFunc:E}})(b,w):sa((P,C,M,L)=>{let G=B.runKernel(eo,_,D);return L([P,C,G,M]),{value:V(G,A),gradFunc:E}})(b,w,S)}var cz=W({fusedMatMul_:uz});function dz(e){return K0(e,.54,.46)}var pz=W({hammingWindow_:dz});function hz(e){return K0(e,.5,.5)}var l8=W({hannWindow_:hz});function fz(e,t,n,s=!1,r=0){let a=0,o=[];for(;a+t<=e.size;)o.push(ze(e,a,t)),a+=n;if(s)for(;a<e.size;){let i=a+t-e.size,l=It([ze(e,a,t-i),Zc([i],r)]);o.push(l),a+=n}return o.length===0?fr([],[0,t]):V(It(o),[o.length,t])}var u8=W({frame_:fz});function mz(e,t,n,s,r=l8){s==null&&(s=e5(t));let a=u8(e,t,n),o=z(a,r(t));return Ih(o,s)}var gz=W({stft_:mz});function yz(e,t,n,s,r="bilinear",a=0){let o=$(e,"image","cropAndResize"),i=$(t,"boxes","cropAndResize","float32"),l=$(n,"boxInd","cropAndResize","int32"),u=i.shape[0];O(o.rank===4,()=>`Error in cropAndResize: image must be rank 4,but got rank ${o.rank}.`),O(i.rank===2&&i.shape[1]===4,()=>`Error in cropAndResize: boxes must be have size [${u},4] but had shape ${i.shape}.`),O(l.rank===1&&l.shape[0]===u,()=>`Error in cropAndResize: boxInd must be have size [${u}] but had shape ${i.shape}.`),O(s.length===2,()=>`Error in cropAndResize: cropSize must be of length 2, but got length ${s.length}.`),O(s[0]>=1&&s[1]>=1,()=>`cropSize must be atleast [1,1], but was ${s}`),O(r==="bilinear"||r==="nearest",()=>`method must be bilinear or nearest, but was ${r}`);let c={image:o,boxes:i,boxInd:l},p={method:r,extrapolationValue:a,cropSize:s};return B.runKernel(yl,c,p)}var Az=W({cropAndResize_:yz});function xz(e){let t=$(e,"image","flipLeftRight","float32");O(t.rank===4,()=>`Error in flipLeftRight: image must be rank 4,but got rank ${t.rank}.`);let n={image:t};return B.runKernel(wl,n,{})}var bz=W({flipLeftRight_:xz});function vz(e){let t=$(e,"image","grayscaleToRGB"),n=t.rank-1,s=t.shape[n];O(t.rank>=2,()=>`Error in grayscaleToRGB: images must be at least rank 2, but got rank ${t.rank}.`),O(s===1,()=>`Error in grayscaleToRGB: last dimension of a grayscale image should be size 1, but got size ${s}.`);let r=new Array(t.rank);return r.fill(1,0,n),r[n]=3,Ks(t,r)}var wz=W({grayscaleToRGB_:vz});function kz(e,t,n=0,s=.5){let r=$(e,"image","rotateWithOffset","float32");O(r.rank===4,()=>`Error in rotateWithOffset: image must be rank 4,but got rank ${r.rank}.`);let a={image:r},o={radians:t,fillValue:n,center:s};return B.runKernel(eu,a,o)}var Sz=W({rotateWithOffset_:kz});function td(e,t,n,s,r,a){s==null&&(s=.5),r==null&&(r=Number.NEGATIVE_INFINITY),a==null&&(a=0);let o=e.shape[0];return n=Math.min(n,o),O(0<=s&&s<=1,()=>`iouThreshold must be in [0, 1], but was '${s}'`),O(e.rank===2,()=>`boxes must be a 2D tensor, but was of rank '${e.rank}'`),O(e.shape[1]===4,()=>`boxes must have 4 columns, but 2nd dimension was ${e.shape[1]}`),O(t.rank===1,()=>"scores must be a 1D tensor"),O(t.shape[0]===o,()=>`scores has incompatible shape with boxes. Expected ${o}, but was ${t.shape[0]}`),O(0<=a&&a<=1,()=>`softNmsSigma must be in [0, 1], but was '${a}'`),{maxOutputSize:n,iouThreshold:s,scoreThreshold:r,softNmsSigma:a}}function Iz(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY){let a=$(e,"boxes","nonMaxSuppression","float32"),o=$(t,"scores","nonMaxSuppression","float32"),i=td(a,o,n,s,r);n=i.maxOutputSize,s=i.iouThreshold,r=i.scoreThreshold;let l={maxOutputSize:n,iouThreshold:s,scoreThreshold:r};return B.runKernel($l,{boxes:a,scores:o},l)}var Cz=W({nonMaxSuppression_:Iz});function Tz(e,t,n){let s=Nz(e,t,n),r=s<0?-(s+1):s;e.splice(r,0,t)}function Nz(e,t,n){return Rz(e,t,n||Ez)}function Ez(e,t){return e>t?1:e<t?-1:0}function Rz(e,t,n){let s=0,r=e.length,a=0,o=!1;for(;s<r;){a=s+(r-s>>>1);let i=n(t,e[a]);i>0?s=a+1:(r=a,o=!i)}return o?s:-s-1}function c8(e,t,n,s,r){return n5(e,t,n,s,r,0)}function d8(e,t,n,s,r,a){return n5(e,t,n,s,r,0,!1,a,!0)}function p8(e,t,n,s,r,a){return n5(e,t,n,s,r,a,!0)}function n5(e,t,n,s,r,a,o=!1,i=!1,l=!1){let u=[];for(let g=0;g<t.length;g++)t[g]>r&&u.push({score:t[g],boxIndex:g,suppressBeginIndex:0});u.sort(Pv);let c=a>0?-.5/a:0,p=[],d=[];for(;p.length<n&&u.length>0;){let g=u.pop(),{score:y,boxIndex:x,suppressBeginIndex:A}=g;if(y<r)break;let b=!1;for(let w=p.length-1;w>=A;--w){let S=_z(e,x,p[w]);if(S>=s){b=!0;break}if(g.score=g.score*Dz(s,c,S),g.score<=r)break}g.suppressBeginIndex=p.length,b||(g.score===y?(p.push(x),d.push(g.score)):g.score>r&&Tz(u,g,Pv))}let h=p.length,f=n-h;i&&f>0&&(p.push(...new Array(f).fill(0)),d.push(...new Array(f).fill(0)));let m={selectedIndices:p};return o&&(m.selectedScores=d),l&&(m.validOutputs=h),m}function _z(e,t,n){let s=e.subarray(t*4,t*4+4),r=e.subarray(n*4,n*4+4),a=Math.min(s[0],s[2]),o=Math.min(s[1],s[3]),i=Math.max(s[0],s[2]),l=Math.max(s[1],s[3]),u=Math.min(r[0],r[2]),c=Math.min(r[1],r[3]),p=Math.max(r[0],r[2]),d=Math.max(r[1],r[3]),h=(i-a)*(l-o),f=(p-u)*(d-c);if(h<=0||f<=0)return 0;let m=Math.max(a,u),g=Math.max(o,c),y=Math.min(i,p),x=Math.min(l,d),A=Math.max(y-m,0)*Math.max(x-g,0);return A/(h+f-A)}function Dz(e,t,n){let s=Math.exp(t*n*n);return n<=e?s:0}function Pv(e,t){return e.score-t.score||e.score===t.score&&t.boxIndex-e.boxIndex}async function $z(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY){let a=$(e,"boxes","nonMaxSuppressionAsync"),o=$(t,"scores","nonMaxSuppressionAsync"),i=td(a,o,n,s,r);n=i.maxOutputSize,s=i.iouThreshold,r=i.scoreThreshold;let l=await Promise.all([a.data(),o.data()]),u=l[0],c=l[1],{selectedIndices:p}=c8(u,c,n,s,r);return a!==e&&a.dispose(),o!==t&&o.dispose(),Pt(p,"int32")}var Pz=$z;function Fz(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY,a=0){let o=$(e,"boxes","nonMaxSuppression"),i=$(t,"scores","nonMaxSuppression"),l=td(o,i,n,s,r,a);n=l.maxOutputSize,s=l.iouThreshold,r=l.scoreThreshold,a=l.softNmsSigma;let u={boxes:o,scores:i},c={maxOutputSize:n,iouThreshold:s,scoreThreshold:r,softNmsSigma:a},p=B.runKernel(Pl,u,c);return{selectedIndices:p[0],selectedScores:p[1]}}var Oz=W({nonMaxSuppressionWithScore_:Fz});async function Mz(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY,a=0){let o=$(e,"boxes","nonMaxSuppressionAsync"),i=$(t,"scores","nonMaxSuppressionAsync"),l=td(o,i,n,s,r,a);n=l.maxOutputSize,s=l.iouThreshold,r=l.scoreThreshold,a=l.softNmsSigma;let u=await Promise.all([o.data(),i.data()]),c=u[0],p=u[1],{selectedIndices:d,selectedScores:h}=p8(c,p,n,s,r,a);return o!==e&&o.dispose(),i!==t&&i.dispose(),{selectedIndices:Pt(d,"int32"),selectedScores:Pt(h)}}var zz=Mz;function Lz(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY,a=!1){let o=$(e,"boxes","nonMaxSuppression"),i=$(t,"scores","nonMaxSuppression"),l=td(o,i,n,s,r,null),u=l.maxOutputSize,c=l.iouThreshold,p=l.scoreThreshold,d={boxes:o,scores:i},h={maxOutputSize:u,iouThreshold:c,scoreThreshold:p,padToMaxOutputSize:a},f=B.runKernel(Oc,d,h);return{selectedIndices:f[0],validOutputs:f[1]}}var Bz=W({nonMaxSuppressionPadded_:Lz});async function Wz(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY,a=!1){let o=$(e,"boxes","nonMaxSuppressionAsync"),i=$(t,"scores","nonMaxSuppressionAsync"),l=td(o,i,n,s,r,null),u=l.maxOutputSize,c=l.iouThreshold,p=l.scoreThreshold,[d,h]=await Promise.all([o.data(),i.data()]),{selectedIndices:f,validOutputs:m}=d8(d,h,u,c,p,a);return o!==e&&o.dispose(),i!==t&&i.dispose(),{selectedIndices:Pt(f,"int32"),validOutputs:Ce(m,"int32")}}var Vz=Wz;function Uz(e,t,n=!1,s=!1){let r=$(e,"images","resizeBilinear");O(r.rank===3||r.rank===4,()=>`Error in resizeBilinear: x must be rank 3 or 4, but got rank ${r.rank}.`),O(t.length===2,()=>`Error in resizeBilinear: new shape must 2D, but got shape ${t}.`),O(s===!1||n===!1,()=>"Error in resizeBilinear: If halfPixelCenters is true, alignCorners must be false.");let a=r,o=!1;r.rank===3&&(o=!0,a=V(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let[]=t,i={images:a},l={alignCorners:n,halfPixelCenters:s,size:t},u=B.runKernel(Zo,i,l);return o?V(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var h8=W({resizeBilinear_:Uz});function Gz(e,t,n=!1,s=!1){let r=$(e,"images","resizeNearestNeighbor");O(r.rank===3||r.rank===4,()=>`Error in resizeNearestNeighbor: x must be rank 3 or 4, but got rank ${r.rank}.`),O(t.length===2,()=>`Error in resizeNearestNeighbor: new shape must 2D, but got shape ${t}.`),O(r.dtype==="float32"||r.dtype==="int32",()=>"`images` must have `int32` or `float32` as dtype"),O(s===!1||n===!1,()=>"Error in resizeNearestNeighbor: If halfPixelCenters is true, alignCorners must be false.");let a=r,o=!1;r.rank===3&&(o=!0,a=V(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let[]=t,i={images:a},l={alignCorners:n,halfPixelCenters:s,size:t},u=B.runKernel(Ko,i,l);return o?V(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var f8=W({resizeNearestNeighbor_:Gz});function Hz(e,t="binary",n=!1,s=.5){let r=$(e,"image","threshold"),a=.2989,o=.587,i=.114,l=r.shape[0]*r.shape[1],u=z(Pt([s]),255),c,p,d,h;if(O(r.rank===3,()=>`Error in threshold: image must be rank 3,but got rank ${r.rank}.`),O(r.shape[2]===3||r.shape[2]===1,()=>`Error in threshold: image color channel must be equal to 3 or 1but got ${r.shape[2]}.`),O(r.dtype==="int32"||r.dtype==="float32",()=>`Error in dtype: image dtype must be int32 or float32,but got dtype ${r.dtype}.`),O(t==="otsu"||t==="binary",()=>`Method must be binary or otsu, but was ${t}`),r.shape[2]===3){[c,p,d]=Yt(r,[1,1,1],-1);let g=z(c,a),y=z(p,o),x=z(d,i);h=ue(ue(g,y),x)}else h=e;if(t==="otsu"){let g=gA(ye(z0(h),"int32"),ct([]),256);u=jz(g,l)}let f=n?di(h,u):ws(h,u);return ye(z(f,255),"int32")}function jz(e,t){let n=Pt([-1]),s=Pt([0]),r=Pt([0]),a,o,i,l,u,c;for(let p=0;p<e.size-1;p++){a=ze(e,0,p+1),o=ze(e,p+1),u=fe(ke(a),t),c=fe(ke(o),t);let d=ke(z(a,oc(0,a.size)));i=fe(d,ke(a));let h=Zc(o.shape,a.size),f=ue(oc(0,o.size),h),m=z(o,f);l=fe(ke(m),ke(o));let g=me(i,l),y=me(i,l),x=z(u,c);r=z(z(x,g),y);let A=ws(r,s);s=Gn(A,r,s),n=Gn(A,Pt([p]),n)}return n}var qz=W({threshold_:Hz});function Xz(e,t,n="nearest",s="constant",r=0,a){let o=$(e,"image","transform","float32"),i=$(t,"transforms","transform","float32");O(o.rank===4,()=>`Error in transform: image must be rank 4,but got rank ${o.rank}.`),O(i.rank===2&&(i.shape[0]===o.shape[0]||i.shape[0]===1)&&i.shape[1]===8,()=>"Error in transform: Input transform should be batch x 8 or 1 x 8"),O(a==null||a.length===2,()=>`Error in transform: outputShape must be [height, width] or null, but got ${a}.`);let l={image:o,transforms:i},u={interpolation:n,fillMode:s,fillValue:r,outputShape:a};return B.runKernel(Yl,l,u)}var Kz=W({transform_:Xz});function Zz(e,t,n){O(t%1===0,()=>`bandPart(): numLower must be an integer, got ${t}.`),O(n%1===0,()=>`bandPart(): numUpper must be an integer, got ${n}.`);let s=$(e,"a","bandPart");O(s.rank>=2,()=>`bandPart(): Rank must be at least 2, got ${s.rank}.`);let r=s.shape,[a,o]=s.shape.slice(-2);if(!(t<=a))throw new Error(`bandPart(): numLower (${t}) must not be greater than the number of rows (${a}).`);if(!(n<=o))throw new Error(`bandPart(): numUpper (${n}) must not be greater than the number of columns (${o}).`);t<0&&(t=a),n<0&&(n=o);let i=V(oc(0,a,1,"int32"),[-1,1]),l=oc(0,o,1,"int32"),u=me(i,l),c=mr(di(u,Ce(+t,"int32")),ci(u,Ce(-n,"int32"))),p=Vt([a,o],s.dtype);return V(ln(On(V(s,[-1,a,o])).map(d=>Gn(c,d,p))),r)}var Yz=W({bandPart_:Zz});function Jz(e){let t;if(Array.isArray(e)){t=!1,O(e!=null&&e.length>0,()=>"Gram-Schmidt process: input must not be null, undefined, or empty");let r=e[0].shape[0];for(let a=1;a<e.length;++a)O(e[a].shape[0]===r,()=>`Gram-Schmidt: Non-unique lengths found in the input vectors: (${e[a].shape[0]} vs. ${r})`)}else t=!0,e=Yt(e,e.shape[0],0).map(r=>rt(r,[0]));O(e.length<=e[0].shape[0],()=>`Gram-Schmidt: Number of vectors (${e.length}) exceeds number of dimensions (${e[0].shape[0]}).`);let n=[],s=e;for(let r=0;r<e.length;++r)n.push(B.tidy(()=>{let a=s[r];if(r>0)for(let o=0;o<r;++o){let i=z(ke(z(n[o],a)),n[o]);a=me(a,i)}return fe(a,Kc(a,"euclidean"))}));return t?ln(n,0):n}var Qz=W({gramSchmidt_:Jz});function eL(e,t=!1){if(O(e.rank>=2,()=>`qr() requires input tensor to have a rank >= 2, but got rank ${e.rank}`),e.rank===2)return Fv(e,t);{let n=e.shape.slice(0,e.shape.length-2).reduce((l,u)=>l*u),s=On(V(e,[n,e.shape[e.shape.length-2],e.shape[e.shape.length-1]]),0),r=[],a=[];s.forEach(l=>{let[u,c]=Fv(l,t);r.push(u),a.push(c)});let o=V(ln(r,0),e.shape),i=V(ln(a,0),e.shape);return[o,i]}}function Fv(e,t=!1){return B.tidy(()=>{O(e.shape.length===2,()=>`qr2d() requires a 2D Tensor, but got a ${e.shape.length}D Tensor.`);let n=e.shape[0],s=e.shape[1],r=E0(n),a=Vn(e),o=fr([[1]],[1,1]),i=Vn(o),l=n>=s?s:n;for(let u=0;u<l;++u){let c=a,p=i,d=r;[i,a,r]=B.tidy(()=>{let h=ze(a,[u,u],[n-u,1]),f=Kc(h),m=ze(a,[u,u],[1,1]),g=Gn(ws(m,0),fr([[-1]]),fr([[1]])),y=me(m,z(g,f)),x=fe(h,y);x.shape[0]===1?i=Vn(o):i=It([o,ze(x,[1,0],[x.shape[0]-1,x.shape[1]])],0);let A=$t(fe(et(g,y),f)),b=ze(a,[u,0],[n-u,s]),w=z(A,i),S=tt(i);if(u===0)a=me(b,et(w,et(S,b)));else{let _=me(b,et(w,et(S,b)));a=It([ze(a,[0,0],[u,s]),_],0)}let k=tt(w),E=ze(r,[0,u],[n,r.shape[1]-u]);if(u===0)r=me(E,et(et(E,i),k));else{let _=me(E,et(et(E,i),k));r=It([ze(r,[0,0],[n,u]),_],1)}return[i,a,r]}),J([c,p,d])}return!t&&n>s&&(r=ze(r,[0,0],[n,s]),a=ze(a,[0,0],[s,s])),[r,a]})}var tL=W({qr_:eL}),ss;(function(e){e[e.NONE=0]="NONE",e[e.MEAN=1]="MEAN",e[e.SUM=2]="SUM",e[e.SUM_BY_NONZERO_WEIGHTS=3]="SUM_BY_NONZERO_WEIGHTS"})(ss||(ss={}));function nL(e,t,n=ss.SUM_BY_NONZERO_WEIGHTS){let s=$(e,"losses","computeWeightedLoss"),r=null;t!=null&&(r=$(t,"weights","computeWeightedLoss"));let a=r==null?s:z(s,r);if(n===ss.NONE)return a;if(n===ss.SUM)return ke(a);if(n===ss.MEAN){if(r==null)return Wt(a);{let o=s.size/r.size,i=fe(ke(a),ke(r));return o>1?fe(i,Ce(o)):i}}if(n===ss.SUM_BY_NONZERO_WEIGHTS){if(r==null)return fe(ke(a),Ce(s.size));{let o=z(r,$s(s.shape)),i=ye(ke(rl(o,Ce(0))),"float32");return fe(ke(a),i)}}throw Error(`Unknown reduction: ${n}`)}var Ra=W({computeWeightedLoss_:nL});function sL(e,t,n,s=ss.SUM_BY_NONZERO_WEIGHTS){let r=$(e,"labels","absoluteDifference"),a=$(t,"predictions","absoluteDifference"),o=null;n!=null&&(o=$(n,"weights","absoluteDifference")),is(r.shape,a.shape,"Error in absoluteDifference: ");let i=sn(me(r,a));return Ra(i,o,s)}var rL=W({absoluteDifference_:sL});function aL(e,t,n,s,r=ss.SUM_BY_NONZERO_WEIGHTS){let a=$(e,"labels","cosineDistance"),o=$(t,"predictions","cosineDistance"),i=null;s!=null&&(i=$(s,"weights","cosineDistance")),is(a.shape,o.shape,"Error in cosineDistance: ");let l=Ce(1),u=me(l,ke(z(a,o),n,!0));return Ra(u,i,r)}var oL=W({cosineDistance_:aL});function iL(e,t,n,s=ss.SUM_BY_NONZERO_WEIGHTS){let r=$(e,"labels","hingeLoss"),a=$(t,"predictions","hingeLoss"),o=null;n!=null&&(o=$(n,"weights","hingeLoss")),is(r.shape,a.shape,"Error in hingeLoss: ");let i=Ce(1);r=me(z(Ce(2),r),i);let l=Wr(me(i,z(r,a)));return Ra(l,o,s)}var lL=W({hingeLoss_:iL});function uL(e,t,n,s=1,r=ss.SUM_BY_NONZERO_WEIGHTS){let a=$(e,"labels","huberLoss"),o=$(t,"predictions","huberLoss"),i=null;n!=null&&(i=$(n,"weights","huberLoss")),is(a.shape,o.shape,"Error in huberLoss: ");let l=Ce(s),u=sn(me(o,a)),c=Qc(u,l),p=me(u,c),d=ue(z(Ce(.5),bt(c)),z(l,p));return Ra(d,i,r)}var cL=W({huberLoss_:uL});function dL(e,t,n,s=1e-7,r=ss.SUM_BY_NONZERO_WEIGHTS){let a=$(e,"labels","logLoss"),o=$(t,"predictions","logLoss"),i=null;n!=null&&(i=$(n,"weights","logLoss")),is(a.shape,o.shape,"Error in logLoss: ");let l=Ce(1),u=Ce(s),c=$t(z(a,Ms(ue(o,u)))),p=z(me(l,a),Ms(ue(me(l,o),u))),d=me(c,p);return Ra(d,i,r)}var pL=W({logLoss_:dL});function hL(e,t,n,s=ss.SUM_BY_NONZERO_WEIGHTS){let r=$(e,"labels","meanSquaredError"),a=$(t,"predictions","meanSquaredError"),o=null;n!=null&&(o=$(n,"weights","meanSquaredError")),is(r.shape,a.shape,"Error in meanSquaredError: ");let i=j0(r,a);return Ra(i,o,s)}var fL=W({meanSquaredError_:hL});function mL(e,t){let n=$(e,"labels","sigmoidCrossEntropyWithLogits"),s=$(t,"logits","sigmoidCrossEntropyWithLogits");is(n.shape,s.shape,"Error in sigmoidCrossEntropyWithLogits: ");let r=Wr(s),a=z(s,n),o=yh(Os($t(sn(s))));return ue(me(r,a),o)}function gL(e,t,n,s=0,r=ss.SUM_BY_NONZERO_WEIGHTS){let a=$(e,"multiClassLabels","sigmoidCrossEntropy"),o=$(t,"logits","sigmoidCrossEntropy"),i=null;if(n!=null&&(i=$(n,"weights","sigmoidCrossEntropy")),is(a.shape,o.shape,"Error in sigmoidCrossEntropy: "),s>0){let u=Ce(s),c=Ce(1),p=Ce(.5);a=ue(z(a,me(c,u)),z(p,u))}let l=mL(a,o);return Ra(l,i,r)}var yL=W({sigmoidCrossEntropy_:gL});function AL(e,t,n=-1){if(n===-1&&(n=t.rank-1),n!==t.rank-1)throw Error(`Softmax cross entropy along a non-last dimension is not yet supported. Labels / logits was rank ${t.rank} and dim was ${n}`);return sa((r,a,o)=>{let l=$0(a,[n],!0),u=me(ye(a,"float32"),l);o([r,u]);let c=$t(z(u,r));return{value:ke(c,[n]),gradFunc:(h,f)=>{let[m,g]=f,y=sl(h.shape,[n]);return[z(V(h,y),me(ye(m,"float32"),Os(g))),z(V(h,y),me(Os(g),ye(m,"float32")))]}}})(e,t)}function xL(e,t,n,s=0,r=ss.SUM_BY_NONZERO_WEIGHTS){let a=$(e,"onehotLabels","softmaxCrossEntropy"),o=$(t,"logits","softmaxCrossEntropy"),i=null;if(n!=null&&(i=$(n,"weights","softmaxCrossEntropy")),is(a.shape,o.shape,"Error in softmaxCrossEntropy: "),s>0){let u=Ce(s),c=Ce(1),p=Ce(a.shape[1]);a=ue(z(a,me(c,u)),fe(u,p))}let l=AL(a,o);return Ra(l,i,r)}var bL=W({softmaxCrossEntropy_:xL});function vL(e,t,n,s){let r=$(e,"indices","sparseFillEmptyRows","int32"),a=$(t,"values","sparseFillEmptyRows"),o=$(n,"denseShape","sparseFillEmptyRows","int32"),i=$(s,"defaultValue","sparseFillEmptyRows",a.dtype);if(r.rank!==2)throw new Error(`Indices should be Tensor2D but received shape
${r.shape}`);if(a.rank!==1)throw new Error(`Values should be Tensor1D but received shape ${a.shape}`);if(o.rank!==1)throw new Error(`Dense shape should be Tensor1D but received shape ${o.shape}`);if(i.rank!==0)throw new Error(`Default value should be a scalar but received shape ${i.shape}`);let l={indices:r,values:a,denseShape:o,defaultValue:i},u=B.runKernel(Jp,l);return{outputIndices:u[0],outputValues:u[1],emptyRowIndicator:u[2],reverseIndexMap:u[3]}}var wL=W({sparseFillEmptyRows_:vL});function kL(e,t,n){let s=$(e,"inputIndices","sparseReshape","int32"),r=$(t,"inputShape","sparseReshape","int32"),a=$(n,"newShape","sparseReshape","int32");if(s.rank!==2)throw new Error(`Input indices should be Tensor2D but received shape
${s.shape}`);if(r.rank!==1)throw new Error(`Input shape should be Tensor1D but received shape ${r.shape}`);if(a.rank!==1)throw new Error(`New shape should be Tensor1D but received shape ${a.shape}`);let o={inputIndices:s,inputShape:r,newShape:a},i=B.runKernel(Wc,o);return{outputIndices:i[0],outputShape:i[1]}}var SL=W({sparseReshape_:kL});function IL(e,t,n){let s=$(e,"data","sparseSegmentMean"),r=$(t,"indices","sparseSegmentMean","int32"),a=$(n,"segmentIds","sparseSegmentMean","int32");if(s.rank<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.rank!==1)throw new Error(`Indices should be Tensor1D but received shape
${r.shape}`);if(a.rank!==1)throw new Error(`Segment ids should be Tensor1D but received shape
${a.shape}`);let o={data:s,indices:r,segmentIds:a};return B.runKernel(Qp,o)}var CL=W({sparseSegmentMean_:IL});function TL(e,t,n){let s=$(e,"data","sparseSegmentSum"),r=$(t,"indices","sparseSegmentSum","int32"),a=$(n,"segmentIds","sparseSegmentSum","int32");if(s.rank<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.rank!==1)throw new Error(`Indices should be Tensor1D but received shape
${r.shape}`);if(a.rank!==1)throw new Error(`Segment ids should be Tensor1D but received shape
${a.shape}`);let o={data:s,indices:r,segmentIds:a};return B.runKernel(eh,o)}var NL=W({sparseSegmentSum_:TL});function EL(e,t,n,s,r,a,o,i){let l=$(e,"data","stringNGrams","string");if(l.dtype!=="string")throw new Error("Data must be of datatype string");if(l.shape.length!==1)throw new Error(`Data must be a vector, saw: ${l.shape}`);let u=$(t,"dataSplits","stringNGrams");if(u.dtype!=="int32")throw new Error("Data splits must be of datatype int32");let c={separator:n,nGramWidths:s,leftPad:r,rightPad:a,padWidth:o,preserveShortSequences:i},p={data:l,dataSplits:u},d=B.runKernel(Uc,p,c);return{nGrams:d[0],nGramsSplits:d[1]}}var RL=W({stringNGrams_:EL});function _L(e,t,n=!0){let s=$(e,"input","stringSplit","string"),r=$(t,"delimiter","stringSplit","string");if(s.rank!==1)throw new Error(`Input should be Tensor1D but received shape ${s.shape}`);if(r.rank!==0)throw new Error(`Delimiter should be a scalar but received shape ${r.shape}`);let a={skipEmpty:n},o={input:s,delimiter:r},i=B.runKernel(nh,o,a);return{indices:i[0],values:i[1],shape:i[2]}}var DL=W({stringSplit_:_L});function $L(e,t){let n=$(e,"input","stringToHashBucketFast","string"),s={numBuckets:t};if(t<=0)throw new Error("Number of buckets must be at least 1");let r={input:n};return B.runKernel(sh,r,s)}var PL=W({stringToHashBucketFast_:$L}),m8={fft:Sh,ifft:ic,rfft:Ih,irfft:H0},g8={hammingWindow:pz,hannWindow:l8,frame:u8,stft:gz},Ie={flipLeftRight:bz,grayscaleToRGB:wz,resizeNearestNeighbor:f8,resizeBilinear:h8,rotateWithOffset:Sz,cropAndResize:Az,nonMaxSuppression:Cz,nonMaxSuppressionAsync:Pz,nonMaxSuppressionWithScore:Oz,nonMaxSuppressionWithScoreAsync:zz,nonMaxSuppressionPadded:Bz,nonMaxSuppressionPaddedAsync:Vz,threshold:qz,transform:Kz},s5={bandPart:Yz,gramSchmidt:Qz,qr:tL},y8={absoluteDifference:rL,computeWeightedLoss:Ra,cosineDistance:oL,hingeLoss:lL,huberLoss:cL,logLoss:pL,meanSquaredError:fL,sigmoidCrossEntropy:yL,softmaxCrossEntropy:bL},A8={sparseFillEmptyRows:wL,sparseReshape:SL,sparseSegmentMean:CL,sparseSegmentSum:NL},x8={stringNGrams:RL,stringSplit:DL,stringToHashBucketFast:PL},_a=class extends dw{minimize(e,t=!1,n){let{value:s,grads:r}=this.computeGradients(e,n);if(n!=null){let a=n.map(o=>({name:o.name,tensor:r[o.name]}));this.applyGradients(a)}else this.applyGradients(r);return J(r),t?s:(s.dispose(),null)}get iterations(){return this.iterations_==null&&(this.iterations_=0),this.iterations_}incrementIterations(){this.iterations_=this.iterations+1}computeGradients(e,t){return Ew(e,t)}dispose(){this.iterations_!=null&&J(this.iterations_)}async saveIterations(){return this.iterations_==null&&(this.iterations_=0),{name:"iter",tensor:Ce(this.iterations_,"int32")}}async getWeights(){throw new Error("getWeights() is not implemented for this optimizer yet.")}async setWeights(e){throw new Error(`setWeights() is not implemented for this optimizer class ${this.getClassName()}`)}async extractIterations(e){return this.iterations_=(await e[0].tensor.data())[0],e.slice(1)}};Object.defineProperty(_a,Symbol.hasInstance,{value:e=>e.minimize!=null&&e.computeGradients!=null&&e.applyGradients!=null});var e2=class extends _a{constructor(e,t,n=null){super(),this.learningRate=e,this.rho=t,this.epsilon=n,this.accumulatedGrads=[],this.accumulatedUpdates=[],n==null&&(this.epsilon=B.backend.epsilon())}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=B.registeredVariables[n],a=!1;this.accumulatedGrads[s]==null&&(this.accumulatedGrads[s]={originalName:`${n}/accum_grad`,variable:Z(()=>lt(r).variable(a))}),this.accumulatedUpdates[s]==null&&(this.accumulatedUpdates[s]={originalName:`${n}/accum_var`,variable:Z(()=>lt(r).variable(a))});let o=Array.isArray(e)?e[s].tensor:e[n];if(o==null)return;let i=this.accumulatedGrads[s].variable,l=this.accumulatedUpdates[s].variable;Z(()=>{let u=ue(z(i,this.rho),z(bt(o),1-this.rho)),c=z(fe(Fn(ue(l,this.epsilon)),Fn(ue(i,this.epsilon))),o),p=ue(z(l,this.rho),z(bt(c),1-this.rho));i.assign(u),l.assign(p);let d=ue(z(c,-this.learningRate),r);r.assign(d)})}),this.incrementIterations()}dispose(){this.accumulatedUpdates!=null&&(J(this.accumulatedGrads.map(e=>e.variable)),J(this.accumulatedUpdates.map(e=>e.variable)))}async getWeights(){let e=[...this.accumulatedGrads,...this.accumulatedUpdates];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=e.length/2,n=!1;this.accumulatedGrads=e.slice(0,t).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})),this.accumulatedUpdates=e.slice(t,t*2).map(s=>({originalName:s.name,variable:s.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,rho:this.rho,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.rho,t.epsilon)}};e2.className="Adadelta";ui(e2);var t2=class extends _a{constructor(e,t=.1){super(),this.learningRate=e,this.initialAccumulatorValue=t,this.accumulatedGrads=[]}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=B.registeredVariables[n];this.accumulatedGrads[s]==null&&(this.accumulatedGrads[s]={originalName:`${n}/accumulator`,variable:Z(()=>Zc(r.shape,this.initialAccumulatorValue).variable(!1))});let a=Array.isArray(e)?e[s].tensor:e[n];if(a==null)return;let o=this.accumulatedGrads[s].variable;Z(()=>{let i=ue(o,bt(a));o.assign(i);let l=ue(z(fe(a,Fn(ue(i,B.backend.epsilon()))),-this.learningRate),r);r.assign(l)})}),this.incrementIterations()}dispose(){this.accumulatedGrads!=null&&J(this.accumulatedGrads.map(e=>e.variable))}async getWeights(){return[await this.saveIterations()].concat(this.accumulatedGrads.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulatedGrads=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,initialAccumulatorValue:this.initialAccumulatorValue}}static fromConfig(e,t){return new e(t.learningRate,t.initialAccumulatorValue)}};t2.className="Adagrad";ui(t2);var n2=class extends _a{constructor(e,t,n,s=null){super(),this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=s,this.accumulatedFirstMoment=[],this.accumulatedSecondMoment=[],Z(()=>{this.accBeta1=Ce(t).variable(),this.accBeta2=Ce(n).variable()}),s==null&&(this.epsilon=B.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);Z(()=>{let n=me(1,this.accBeta1),s=me(1,this.accBeta2);t.forEach((r,a)=>{let o=B.registeredVariables[r],i=!1;this.accumulatedFirstMoment[a]==null&&(this.accumulatedFirstMoment[a]={originalName:`${r}/m`,variable:Z(()=>lt(o).variable(i))}),this.accumulatedSecondMoment[a]==null&&(this.accumulatedSecondMoment[a]={originalName:`${r}/v`,variable:Z(()=>lt(o).variable(i))});let l=Array.isArray(e)?e[a].tensor:e[r];if(l==null)return;let u=this.accumulatedFirstMoment[a].variable,c=this.accumulatedSecondMoment[a].variable,p=ue(z(u,this.beta1),z(l,1-this.beta1)),d=ue(z(c,this.beta2),z(bt(l),1-this.beta2)),h=fe(p,n),f=fe(d,s);u.assign(p),c.assign(d);let m=ue(z(fe(h,ue(Fn(f),this.epsilon)),-this.learningRate),o);o.assign(m)}),this.accBeta1.assign(z(this.accBeta1,this.beta1)),this.accBeta2.assign(z(this.accBeta2,this.beta2))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.accBeta2.dispose(),this.accumulatedFirstMoment!=null&&J(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedSecondMoment!=null&&J(this.accumulatedSecondMoment.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedFirstMoment,...this.accumulatedSecondMoment];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e),Z(()=>{this.accBeta1.assign(Ia(this.beta1,this.iterations_+1)),this.accBeta2.assign(Ia(this.beta2,this.iterations_+1))});let t=e.length/2,n=!1;this.accumulatedFirstMoment=e.slice(0,t).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})),this.accumulatedSecondMoment=e.slice(t,t*2).map(s=>({originalName:s.name,variable:s.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon)}};n2.className="Adam";ui(n2);var s2=class extends _a{constructor(e,t,n,s=null,r=0){super(),this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=s,this.decay=r,this.accumulatedFirstMoment=[],this.accumulatedWeightedInfNorm=[],Z(()=>{this.iteration=Ce(0).variable(),this.accBeta1=Ce(t).variable()}),s==null&&(this.epsilon=B.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);Z(()=>{let n=me(1,this.accBeta1),s=fe(-this.learningRate,ue(z(this.iteration,this.decay),1));t.forEach((r,a)=>{let o=B.registeredVariables[r],i=!1;this.accumulatedFirstMoment[a]==null&&(this.accumulatedFirstMoment[a]={originalName:`${r}/m`,variable:lt(o).variable(i)}),this.accumulatedWeightedInfNorm[a]==null&&(this.accumulatedWeightedInfNorm[a]={originalName:`${r}/v`,variable:lt(o).variable(i)});let l=Array.isArray(e)?e[a].tensor:e[r];if(l==null)return;let u=this.accumulatedFirstMoment[a].variable,c=this.accumulatedWeightedInfNorm[a].variable,p=ue(z(u,this.beta1),z(l,1-this.beta1)),d=z(c,this.beta2),h=sn(l),f=oa(d,h);u.assign(p),c.assign(f);let m=ue(z(fe(s,n),fe(p,ue(f,this.epsilon))),o);o.assign(m)}),this.iteration.assign(ue(this.iteration,1)),this.accBeta1.assign(z(this.accBeta1,this.beta1))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.iteration.dispose(),this.accumulatedFirstMoment!=null&&J(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedWeightedInfNorm!=null&&J(this.accumulatedWeightedInfNorm.map(e=>e.variable))}async getWeights(){throw new Error("getWeights() is not implemented for Adamax yet.")}async setWeights(e){throw new Error("setWeights() is not implemented for Adamax yet.")}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon,decay:this.decay}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon,t.decay)}};s2.className="Adamax";ui(s2);var Ch=class extends _a{constructor(e){super(),this.learningRate=e,this.setLearningRate(e)}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=Array.isArray(e)?e[s].tensor:e[n];if(r==null)return;let a=B.registeredVariables[n];Z(()=>{let o=ue(z(this.c,r),a);a.assign(o)})}),this.incrementIterations()}setLearningRate(e){this.learningRate=e,this.c!=null&&this.c.dispose(),this.c=kn(Ce(-e))}dispose(){this.c.dispose()}async getWeights(){return[await this.saveIterations()]}async setWeights(e){if(e=await this.extractIterations(e),e.length!==0)throw new Error("SGD optimizer does not have settable weights.")}getConfig(){return{learningRate:this.learningRate}}static fromConfig(e,t){return new e(t.learningRate)}};Ch.className="SGD";ui(Ch);var r2=class extends Ch{constructor(e,t,n=!1){super(e),this.learningRate=e,this.momentum=t,this.useNesterov=n,this.accumulations=[],this.m=Ce(this.momentum)}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=B.registeredVariables[n];this.accumulations[s]==null&&(this.accumulations[s]={originalName:`${n}/momentum`,variable:Z(()=>lt(r).variable(!1))});let a=this.accumulations[s].variable,o=Array.isArray(e)?e[s].tensor:e[n];o!=null&&Z(()=>{let i,l=ue(z(this.m,a),o);this.useNesterov?i=ue(z(this.c,ue(o,z(l,this.m))),r):i=ue(z(this.c,l),r),a.assign(l),r.assign(i)})}),this.incrementIterations()}dispose(){this.m.dispose(),this.accumulations!=null&&J(this.accumulations.map(e=>e.variable))}setMomentum(e){this.momentum=e}async getWeights(){return[await this.saveIterations()].concat(this.accumulations.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulations=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,momentum:this.momentum,useNesterov:this.useNesterov}}static fromConfig(e,t){return new e(t.learningRate,t.momentum,t.useNesterov)}};r2.className="Momentum";ui(r2);var a2=class extends _a{constructor(e,t=.9,n=0,s=null,r=!1){if(super(),this.learningRate=e,this.decay=t,this.momentum=n,this.epsilon=s,this.accumulatedMeanSquares=[],this.accumulatedMoments=[],this.accumulatedMeanGrads=[],this.centered=r,s==null&&(this.epsilon=B.backend.epsilon()),e==null)throw new Error("learningRate for RMSPropOptimizer must be defined.")}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=B.registeredVariables[n],a=!1;this.accumulatedMeanSquares[s]==null&&(this.accumulatedMeanSquares[s]={originalName:`${n}/rms`,variable:Z(()=>lt(r).variable(a))}),this.accumulatedMoments[s]==null&&(this.accumulatedMoments[s]={originalName:`${n}/momentum`,variable:Z(()=>lt(r).variable(a))}),this.accumulatedMeanGrads[s]==null&&this.centered&&(this.accumulatedMeanGrads[s]={originalName:`${n}/mg`,variable:Z(()=>lt(r).variable(a))});let o=Array.isArray(e)?e[s].tensor:e[n];if(o==null)return;let i=this.accumulatedMeanSquares[s].variable,l=this.accumulatedMoments[s].variable;Z(()=>{let u=ue(z(i,this.decay),z(bt(o),1-this.decay));if(this.centered){let c=this.accumulatedMeanGrads[s].variable,p=ue(z(c,this.decay),z(o,1-this.decay)),d=fe(z(o,this.learningRate),Fn(me(u,ue(bt(p),this.epsilon)))),h=ue(z(l,this.momentum),d);i.assign(u),c.assign(p),l.assign(h);let f=me(r,h);r.assign(f)}else{let c=ue(z(i,this.decay),z(bt(o),1-this.decay)),p=ue(z(l,this.momentum),fe(z(o,this.learningRate),Fn(ue(c,this.epsilon))));i.assign(c),l.assign(p);let d=me(r,p);r.assign(d)}})}),this.incrementIterations()}dispose(){this.accumulatedMeanSquares!=null&&J(this.accumulatedMeanSquares.map(e=>e.variable)),this.accumulatedMeanGrads!=null&&this.centered&&J(this.accumulatedMeanGrads.map(e=>e.variable)),this.accumulatedMoments!=null&&J(this.accumulatedMoments.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedMeanSquares,...this.accumulatedMoments];return this.centered&&e.push(...this.accumulatedMeanGrads),[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=this.centered?e.length/3:e.length/2,n=!1;this.accumulatedMeanSquares=e.slice(0,t).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})),this.accumulatedMoments=e.slice(t,t*2).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})),this.centered&&(this.accumulatedMeanGrads=e.slice(t*2,t*3).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})))}getConfig(){return{learningRate:this.learningRate,decay:this.decay,momentum:this.momentum,epsilon:this.epsilon,centered:this.centered}}static fromConfig(e,t){return new e(t.learningRate,t.decay,t.momentum,t.epsilon,t.centered)}};a2.className="RMSProp";ui(a2);var Ga=class{static sgd(e){return new Ch(e)}static momentum(e,t,n=!1){return new r2(e,t,n)}static rmsprop(e,t=.9,n=0,s=null,r=!1){return new a2(e,t,n,s,r)}static adam(e=.001,t=.9,n=.999,s=null){return new n2(e,t,n,s)}static adadelta(e=.001,t=.95,n=null){return new e2(e,t,n)}static adamax(e=.002,t=.9,n=.999,s=null,r=0){return new s2(e,t,n,s,r)}static adagrad(e,t=.1){return new t2(e,t)}},Li={sgd:Ga.sgd,momentum:Ga.momentum,adadelta:Ga.adadelta,adagrad:Ga.adagrad,rmsprop:Ga.rmsprop,adamax:Ga.adamax,adam:Ga.adam},FL=(()=>typeof requestAnimationFrame!="undefined"?requestAnimationFrame:typeof setImmediate!="undefined"?setImmediate:e=>e())();function r5(){return new Promise(e=>FL(()=>e()))}var T={};He(T,{ERF_A1:()=>ZL,ERF_A2:()=>YL,ERF_A3:()=>JL,ERF_A4:()=>QL,ERF_A5:()=>eB,ERF_P:()=>KL,PARALLELIZE_THRESHOLD:()=>a5,RowPartitionType:()=>Kr,SELU_SCALE:()=>v8,SELU_SCALEALPHA:()=>b8,applyActivation:()=>J0,assertAndGetBroadcastShape:()=>wt,assertAxesAreInnerMostDims:()=>VF,assertParamsConsistent:()=>OL,assignToTypedArray:()=>oB,axesAreInnerMostDims:()=>EA,calculateShapes:()=>tw,checkEinsumDimSizes:()=>pB,checkPadOnDimRoundingMode:()=>ls,combineLocations:()=>Sw,combineRaggedTensorToTensorShapes:()=>zL,complexWithEvenIndex:()=>sB,complexWithOddIndex:()=>rB,computeConv2DInfo:()=>ph,computeConv3DInfo:()=>gw,computeDefaultPad:()=>dA,computeDilation2DInfo:()=>UP,computeOptimalWindowSize:()=>VL,computeOutAndReduceShapes:()=>Iw,computeOutShape:()=>ML,computePool2DInfo:()=>mw,computePool3DInfo:()=>GP,convertConv2DDataFormat:()=>yw,decodeEinsumEquation:()=>cB,eitherStridesOrDilationsAreOne:()=>aa,expandShapeToKeepDim:()=>sl,exponent:()=>lB,exponents:()=>iB,fromStringArrayToUint8:()=>$B,fromUint8ToStringArray:()=>DB,getAxesPermutation:()=>Cw,getBroadcastDims:()=>J6,getComplexWithIndex:()=>aB,getEinsumComputePath:()=>hB,getEinsumPermutation:()=>dB,getFusedBiasGradient:()=>Y0,getFusedDyActivation:()=>Z0,getImageCenter:()=>UL,getInnerMostAxes:()=>UF,getPermuted:()=>HL,getRaggedRank:()=>BL,getReductionAxes:()=>on,getReshaped:()=>GL,getReshapedPermuted:()=>jL,getRowPartitionTypesHelper:()=>LL,getSliceBeginCoords:()=>qL,getSliceSize:()=>XL,getSparseFillEmptyRowsIndicesDenseShapeMismatch:()=>yB,getSparseFillEmptyRowsNegativeIndexErrorMessage:()=>AB,getSparseFillEmptyRowsOutOfRangeIndexErrorMessage:()=>xB,getSparseReshapeEmptyTensorZeroOutputDimErrorMessage:()=>wB,getSparseReshapeInputOutputMismatchErrorMessage:()=>SB,getSparseReshapeInputOutputMultipleErrorMessage:()=>kB,getSparseReshapeMultipleNegativeOneOutputDimErrorMessage:()=>bB,getSparseReshapeNegativeOutputDimErrorMessage:()=>vB,getSparseSegmentReductionIndicesOutOfRangeErrorMessage:()=>NB,getSparseSegmentReductionNegativeSegmentIdsErrorMessage:()=>IB,getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage:()=>CB,getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage:()=>TB,getUndoAxesPermutation:()=>RA,isIdentityPermutation:()=>fB,log:()=>pD,mergeRealAndImagArrays:()=>tB,prepareAndValidate:()=>ew,prepareSplitSize:()=>gB,segment_util:()=>w8,shouldFuse:()=>Q0,slice_util:()=>Gt,splitRealAndImagArrays:()=>nB,tupleValuesAreOne:()=>so,upcastType:()=>Un,validateDefaultValueShape:()=>WL,validateInput:()=>Qy,validateUpdateShape:()=>Jy,warn:()=>ja});function OL(e,t){let n=e[0].length;e.forEach((r,a)=>{O(r.length===n,()=>`Error in concat${n}D: rank of tensors[${a}] must be the same as the rank of the rest (${n})`)}),O(t>=0&&t<n,()=>`Error in concat${n}D: axis must be between 0 and ${n-1}.`);let s=e[0];e.forEach((r,a)=>{for(let o=0;o<n;o++)O(o===t||r[o]===s[o],()=>`Error in concat${n}D: Shape of tensors[${a}] (${r}) does not match the shape of the rest (${s}) along the non-concatenated axis ${a}.`)})}function ML(e,t){let n=e[0].slice();for(let s=1;s<e.length;s++)n[t]+=e[s][t];return n}var Kr;(function(e){e[e.FIRST_DIM_SIZE=0]="FIRST_DIM_SIZE",e[e.VALUE_ROWIDS=1]="VALUE_ROWIDS",e[e.ROW_LENGTHS=2]="ROW_LENGTHS",e[e.ROW_SPLITS=3]="ROW_SPLITS",e[e.ROW_LIMITS=4]="ROW_LIMITS",e[e.ROW_STARTS=5]="ROW_STARTS"})(Kr||(Kr={}));function zL(e,t,n){let s=new Array;if(n==null&&t==null)return s;if(t==null)for(;s.length<e+n.length;)s.push(-1);else s=t.slice();if(n==null)return s;if(e+n.length!==s.length)throw new Error(`rt input.shape and shape=${t} are incompatible: rt input.rank = ${e+n.length}, but shape.rank = ${s.length}`);for(let r=1;r<n.length;++r){let a=n[r],o=s[s.length-n.length+r],i=s[o];if(a>=0)if(i>=0){if(i!==a)throw new Error(`rt input.shape and shape=${t} are incompatible: rt input.shape[${r+e}] = ${a} but shape[${r+e}] = ${i}`)}else s[o]=a}return s}function LL(e){let t={FIRST_DIM_SIZE:Kr.FIRST_DIM_SIZE,VALUE_ROWIDS:Kr.VALUE_ROWIDS,ROW_LENGTHS:Kr.ROW_LENGTHS,ROW_SPLITS:Kr.ROW_SPLITS,ROW_LIMITS:Kr.ROW_LIMITS,ROW_STARTS:Kr.ROW_STARTS},n=[];for(let s of e)if(s in t)n.push(t[s]);else break;return n}function BL(e){return e.length===0?0:e[0]===Kr.FIRST_DIM_SIZE?e.length-1:e.length}function WL(e,t){if(e==null||t==null)return;let n=e.length,s=t.length;if(n>=s)throw new Error(`defaultValue.shape=${e} and ragged tensor flatValues.shape=${t}, are incompatible: defaultValue.rank = ${n} must be less than ragged tensor input flatValues.rank = ${s})`);for(let r=0;r<Math.min(n,s-1);++r){let a=e[r],o=t[r+1];if(a>=0&&o>=0&&a!==1&&a!==o)throw new Error(`defaultValue.shape=${e}, and ragged tensor input flatValues.shape=${t} are incompatible: defaultValue.shape[${r-e.length}] = ${a} but ragged tensor input.flatValues.shape[${r-e.length}] = ${o}`)}}var a5=30;function VL(e){return e<=a5?e:Am(e,Math.floor(Math.sqrt(e)))}function UL(e,t,n){let s=n*(typeof e=="number"?e:e[0]),r=t*(typeof e=="number"?e:e[1]);return[s,r]}function GL(e,t,n,s=!0){let r=[];if(s)r=r.concat(t.slice(0)),r.push(e[0]/n),r=r.concat(e.slice(1));else{r=r.concat(e[0]);let a=t.length;for(let o=0;o<a;++o)r=r.concat([e[o+1]/t[o],t[o]]);r=r.concat(e.slice(a+1))}return r}function HL(e,t,n=!0){let s=[];if(n){s.push(t);for(let r=t+1;r<e;++r)r<=2*t?(s.push(r),s.push(r-(t+1))):s.push(r)}else{let r=[],a=[];for(let o=1;o<e;++o)o>=t*2+1||o%2===1?a.push(o):r.push(o);s.push(...r),s.push(0),s.push(...a)}return s}function jL(e,t,n,s=!0){let r=[];s?r.push(e[0]/n):r.push(e[0]*n);for(let a=1;a<e.length;++a)a<=t.length?s?r.push(t[a-1]*e[a]):r.push(e[a]/t[a-1]):r.push(e[a]);return r}function qL(e,t){let n=[0];for(let s=0;s<t;++s)n.push(e[s][0]);return n}function XL(e,t,n){let s=e.slice(0,1);for(let r=0;r<n;++r)s.push(e[r+1]-t[r][0]-t[r][1]);return s}var b8=1.7580993408473768,v8=1.0507009873554805,KL=.3275911,ZL=.254829592,YL=-.284496736,JL=1.421413741,QL=-1.453152027,eB=1.061405429;function tB(e,t){if(e.length!==t.length)throw new Error(`Cannot merge real and imag arrays of different lengths. real:${e.length}, imag: ${t.length}.`);let n=new Float32Array(e.length*2);for(let s=0;s<n.length;s+=2)n[s]=e[s/2],n[s+1]=t[s/2];return n}function nB(e){let t=new Float32Array(e.length/2),n=new Float32Array(e.length/2);for(let s=0;s<e.length;s+=2)t[s/2]=e[s],n[s/2]=e[s+1];return{real:t,imag:n}}function sB(e){let t=Math.ceil(e.length/4),n=new Float32Array(t),s=new Float32Array(t);for(let r=0;r<e.length;r+=4)n[Math.floor(r/4)]=e[r],s[Math.floor(r/4)]=e[r+1];return{real:n,imag:s}}function rB(e){let t=Math.floor(e.length/4),n=new Float32Array(t),s=new Float32Array(t);for(let r=2;r<e.length;r+=4)n[Math.floor(r/4)]=e[r],s[Math.floor(r/4)]=e[r+1];return{real:n,imag:s}}function aB(e,t){let n=e[t*2],s=e[t*2+1];return{real:n,imag:s}}function oB(e,t,n,s){e[s*2]=t,e[s*2+1]=n}function iB(e,t){let n=new Float32Array(e/2),s=new Float32Array(e/2);for(let r=0;r<Math.ceil(e/2);r++){let a=(t?2:-2)*Math.PI*(r/e);n[r]=Math.cos(a),s[r]=Math.sin(a)}return{real:n,imag:s}}function lB(e,t,n){let s=(n?2:-2)*Math.PI*(e/t),r=Math.cos(s),a=Math.sin(s);return{real:r,imag:a}}var g3="->",uB=/->/g,Ov=",",Mv="...";function cB(e,t){e=e.replace(/\s/g,"");let n=(e.length-e.replace(uB,"").length)/g3.length;if(n<1)throw new Error("Equations without an arrow are not supported.");if(n>1)throw new Error(`Equation must contain exactly one arrow ("${g3}").`);let[s,r]=e.split(g3);O(s.indexOf(Mv)===-1,()=>`The ellipsis notation ("${Mv}") is not supported yet.`);let a=s.split(Ov),o=a.length;if(t!==o)throw new Error(`Expected ${o} input tensors, received ${t}`);if(o>2)throw new Error("Support for more than 2 input tensors is not implemented yet.");let i=[];for(let d=0;d<r.length;++d){let h=r[d];if(!a.some(f=>f.indexOf(h)!==-1))throw new Error(`Output subscripts contain the label ${h} not present in the input subscripts.`);i.indexOf(h)===-1&&i.push(h)}for(let d=0;d<s.length;++d){let h=s[d];i.indexOf(h)===-1&&h!==Ov&&i.push(h)}let l=new Array(a.length);for(let d=0;d<o;++d){if(new Set(a[d].split("")).size!==a[d].length)throw new Error(`Found duplicate axes in input component ${a[d]}. Support for duplicate axes in input is not implemented yet.`);l[d]=[];for(let h=0;h<a[d].length;++h)l[d].push(i.indexOf(a[d][h]))}let u=i.length,c=r.length,p=[];for(let d=c;d<u;++d)p.push(d);return{allDims:i,summedDims:p,idDims:l}}function dB(e,t){let n=new Array(e);n.fill(-1);for(let r=0;r<t.length;++r)n[t[r]]=r;let s=[];for(let r=0;r<e;++r)n[r]===-1&&s.push(r);return n=n.filter(r=>r!==-1),{permutationIndices:n,expandDims:s}}function pB(e,t,n){let s=new Array(e);for(let r=0;r<n.length;++r){let a=n[r].shape;for(let o=0;o<t[r].length;++o)s[t[r][o]]===void 0?s[t[r][o]]=a[o]:O(s[t[r][o]]===a[o],()=>`Expected dimension ${s[t[r][o]]} at axis ${o} of input shaped ${JSON.stringify(a)}, but got dimension ${a[o]}`)}}function hB(e,t){let n=e,s=[],r=0;e.length===0&&n.push(-1),r=e.length+1;for(let o=0;o<r;++o)s.push([]);let a=[];for(let o=0;o<n.length;++o){let i=n[o],l=mB(t,i);for(let u of l)a.indexOf(u)===-1&&(s[o].push(u),a.push(u))}return{path:n,steps:s}}function fB(e){return e.every((t,n)=>t===n)}function mB(e,t){let n=[];for(let s=0;s<e.length;++s)(e[s].length===0||e[s].indexOf(t)!==-1||t===-1)&&n.push(s);return n}function gB(e,t,n=0){let s=[];if(typeof t=="number")O(e.shape[n]%t===0,()=>"Number of splits must evenly divide the axis."),s=new Array(t).fill(e.shape[n]/t);else{let r=t.reduce((o,i)=>(i===-1&&(o+=1),o),0);O(r<=1,()=>"There should be only one negative value in split array.");let a=t.indexOf(-1);if(a!==-1){let o=t.reduce((i,l)=>l>0?i+l:i);t[a]=e.shape[n]-o}O(e.shape[n]===t.reduce((o,i)=>o+i),()=>"The sum of sizes must match the size of the axis dimension."),s=t}return s}function yB(e){return`Received SparseTensor with denseShape[0] = 0 but
indices.shape[0] = ${e}`}function AB(e,t){return`indices(${e}, 0) is invalid: ${t} < 0`}function xB(e,t,n){return`indices(${e}, 0) is invalid: ${t} >= ${n}`}function bB(e,t){return`only one output dimension may be -1, not both ${e} and ${t}`}function vB(e,t){return`size ${e} must be non-negative, not ${t}`}function wB(){return"reshape cannot infer the missing input size for an empty tensor unless all specified input sizes are non-zero"}function kB(e,t){let n=Et(e),s=Et(t);return`Input to reshape is a SparseTensor with ${n}
dense values, but the requested shape requires a multiple of ${s}. inputShape=${e} outputShape= ${t}`}function SB(e,t){let n=Et(e),s=Et(t);return`Input to reshape is a tensor with ${n} dense values, but the requested shape has ${s}. inputShape=${e} outputShape=${t}`}function IB(){return"segment ids must be >= 0"}function CB(){return"segment ids are not increasing"}function TB(e,t){return`Segment id ${e} out of range [0, ${t}), possibly because segmentIds input is not sorted.`}function NB(e,t,n){return`Bad: indices[${e}] == ${t} out of range [0, ${n})`}var w8={};He(w8,{collectGatherOpShapeInfo:()=>_B,computeOutShape:()=>RB,segOpComputeOptimalWindowSize:()=>EB});function EB(e,t){let n=!1,s;for(e<=a5?(s=e,n=!0):s=Am(e,Math.floor(Math.sqrt(e)));!n;)s>t||s===e?n=!0:s=Am(e,s+1);return s}function RB(e,t,n){let s=[],r=e.length;for(let a=0;a<r;a++)a!==t?s.push(e[a]):s.push(n);return s}function _B(e,t,n,s){let r=t.shape.length,a=e.shape.length;if(s!==0&&(s<-r||s>r))throw new Error(`Expect batchDims in the range of [-${r}, ${r}], but got ${s}`);if(s<0&&(s+=r),s>a)throw new Error(`batchDims (${s}) must be less than rank(x) (
${a}).`);if(n<s)throw new Error(`batchDims (${s}) must be less than or equal to axis (${n}).`);for(let p=0;p<s;++p)if(e.shape[p]!==t.shape[p])throw new Error(`x.shape[${p}]: ${e.shape[p]} should be equal to indices.shape[${p}]: ${t.shape[p]}.`);let o=e.shape[n],i=[],l=1,u=1,c=1;for(let p=0;p<s;++p)i.push(e.shape[p]),l*=e.shape[p];for(let p=s;p<n;p++)i.push(e.shape[p]),u*=e.shape[p];for(let p=s;p<r;p++)i.push(t.shape[p]);for(let p=n+1;p<a;p++)i.push(e.shape[p]),c*=e.shape[p];return{batchSize:l,sliceSize:c,outerSize:u,dimSize:o,outputShape:i}}function DB(e){try{return e.map(t=>wm(t))}catch(t){throw new Error(`Failed to decode encoded string bytes into utf-8, error: ${t}`)}}function $B(e){return e.map(t=>oh(t))}var yr={};He(yr,{nonMaxSuppressionV3Impl:()=>c8,nonMaxSuppressionV4Impl:()=>d8,nonMaxSuppressionV5Impl:()=>p8,whereImpl:()=>Qw});var k8={kernelName:pl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,iu(ye(n,"float32"),-1))}}},PB={kernelName:bc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let s=bt(ye(n,"float32")),r=Fn(me(Ce(1),s));return $t(fe(e,r))}}}},FB={kernelName:vc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let s=Fn(me(bt(ye(n,"float32")),1));return fe(e,s)}}}},OB={kernelName:Ta,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=wt(n.shape,s.shape);return{a:()=>{let i=e,l=on(n.shape,r);return l.length>0&&(i=ke(i,l)),V(i,n.shape)},b:()=>{let i=e,l=on(s.shape,r);return l.length>0&&(i=ke(i,l)),V(i,s.shape)}}}},MB={kernelName:fo,saveAllInputs:!0,gradFunc:(e,t)=>{let n={};return t.forEach((s,r)=>{n[r]=()=>e.clone()}),n}},zB={kernelName:mo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>lt(n)}}},LB={kernelName:Sc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>lt(n)}}},BB={kernelName:Ic,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>fe(e,Fn(me(Ce(1),bt(ye(n,"float32")))))}}},WB={kernelName:Cc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let s=Fn(ue(Ce(1),bt(ye(n,"float32"))));return fe(e,s)}}}},VB={kernelName:hl,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=wt(n.shape,s.shape);return{a:()=>{let i=ue(bt(n),bt(s)),l=z(e,fe(s,i)),u=on(n.shape,r);return u.length>0&&(l=ke(l,u)),V(l,n.shape)},b:()=>{let i=ue(bt(n),bt(s)),l=$t(z(e,fe(n,i))),u=on(s.shape,r);return u.length>0&&(l=ke(l,u)),V(l,s.shape)}}}},UB={kernelName:Tc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>fe(e,ue(bt(ye(n,"float32")),1))}}},GB={kernelName:Nc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>fe(e,me(Ce(1),bt(ye(n,"float32"))))}}};function HB(e,t,n,s,r,a){let o=$(e,"dy","avgPool3dGrad"),i=$(t,"input","avgPool3dGrad"),l=o,u=i,c=!1;i.rank===4&&(c=!0,l=V(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]]),u=V(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),O(l.rank===5,()=>`Error in avgPool3dGrad: dy must be rank 5 but got rank ${l.rank}.`),O(u.rank===5,()=>`Error in avgPool3dGrad: input must be rank 5 but got rank ${u.rank}.`),ls("avgPool3dGrad",r,a);let p={dy:l,input:u},d={filterSize:n,strides:s,pad:r,dimRoundingMode:a},h=B.runKernel(Jm,p,d);return c?V(h,[h.shape[1],h.shape[2],h.shape[3],h.shape[4]]):h}var jB=W({avgPool3dGrad_:HB}),qB={kernelName:Vp,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{filterSize:r,strides:a,pad:o,dimRoundingMode:i}=n;return{x:()=>jB(e,s,r,a,o,i)}}};function XB(e,t,n,s,r){let a=$(e,"dy","avgPoolGrad"),o=$(t,"input","avgPoolGrad");O(o.rank===a.rank,()=>`Rank of input (${o.rank}) does not match rank of dy (${a.rank})`);let i=o,l=a,u=!1;o.rank===3&&(u=!0,i=V(o,[1,o.shape[0],o.shape[1],o.shape[2]]),l=V(a,[1,a.shape[0],a.shape[1],a.shape[2]])),O(l.rank===4,()=>`Error in avgPoolGrad: dy must be rank 4 but got rank ${l.rank}.`),O(i.rank===4,()=>`Error in avgPoolGrad: input must be rank 4 but got rank ${i.rank}.`);let c={dy:l,input:i},p={filterSize:n,strides:s,pad:r},d=B.runKernel(Ym,c,p);return u?V(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var KB=W({avgPoolGrad_:XB}),ZB={kernelName:go,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{filterSize:r,strides:a,pad:o}=n;return{x:()=>KB(e,s,r,a,o)}}},YB={kernelName:yo,inputsToSave:["a","b"],gradFunc:(e,t,n)=>{let[s,r]=t,{transposeA:a,transposeB:o}=n;return!a&&!o?{a:()=>et(e,r,!1,!0),b:()=>et(s,e,!0,!1)}:!a&&o?{a:()=>et(e,r,!1,!1),b:()=>et(e,s,!0,!1)}:a&&!o?{a:()=>et(r,e,!1,!0),b:()=>et(s,e,!1,!1)}:{a:()=>et(r,e,!0,!0),b:()=>et(e,s,!0,!0)}}},JB={kernelName:fl,gradFunc:(e,t,n)=>{let{blockShape:s,crops:r}=n;return{x:()=>vh(e,s,r)}}},QB={kernelName:I6,gradFunc:(e,t,n)=>{let s=n,r=s.inputShape,a=s.shape,o=Array.from(a);for(let l=r.length-1;l>=0;l--)if(r[l]===a[l])o[l]=1;else if(r[l]!==1)throw new Error(`broadcastTo(): [${r}] cannot be broadcast to [${a}].`);let i=[];for(let l=0;l<o.length;l++)o[l]>1&&i.push(l);return{x:()=>ke(e,i,!0)}}},eW={kernelName:Ao,gradFunc:e=>({x:()=>e.clone()})},tW={kernelName:xo,gradFunc:e=>({x:()=>lt(e)})},nW={kernelName:Na,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{clipValueMin:r,clipValueMax:a}=n;return{x:()=>Gn(mr(ci(s,r),di(s,a)),e,lt(e))}}},sW={kernelName:Gp,inputsToSave:["x"],gradFunc:k8.gradFunc},rW={kernelName:ml,saveAllInputs:!0,gradFunc:(e,t,n)=>{let s=t.map(l=>l.shape),{axis:r}=n,a=gr(r,t[0].shape)[0],o=s.map(l=>l[a]);return Yt(e,o,a).map(l=>()=>l)}},aW={kernelName:bo,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[s,r]=t,{dilations:a,strides:o,pad:i,dataFormat:l}=n;return O(so(a),()=>`Error in gradient of conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${a}'`),{x:()=>vA(s.shape,e,r,o,i,l),filter:()=>t5(s,e,r.shape,o,i,l)}}},oW={kernelName:vo,inputsToSave:["dy","filter"],gradFunc:(e,t,n)=>{let[s,r]=t,{strides:a,pad:o,dataFormat:i,dimRoundingMode:l}=n;return{dy:()=>ka(e,r,a,o,i,1,l),filter:()=>t5(e,s,r.shape,a,o,i,l)}}};function iW(e,t,n,s,r){let a=e;e.rank===4&&(a=V(e,[1,e.shape[0],e.shape[1],e.shape[2],e.shape[3]]));let o=t;o.rank===4&&(o=V(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]])),O(a.rank===5,()=>`Error in conv3dDerFilter: input must be rank 5, but got shape ${a.shape}.`),O(o.rank===5,()=>`Error in conv3dDerFilter: dy must be rank 5, but got shape ${o.shape}.`),O(n.length===5,()=>`Error in conv3dDerFilter: filterShape must be length 5, but got ${n}.`),O(a.shape[4]===n[3],()=>`Error in conv3dDerFilter: depth of input ${a.shape[4]}) must match input depth in filter (${n[3]}.`),O(o.shape[4]===n[4],()=>`Error in conv3dDerFilter: depth of dy (${o.shape[4]}) must match output depth for filter (${n[4]}).`);let i={x:a,dy:o},l={strides:s,pad:r,filterShape:n};return B.runKernel(n0,i,l)}var lW=W({conv3DBackpropFilter_:iW}),uW={kernelName:Hp,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:s,strides:r,pad:a}=n;O(so(s),()=>`Error in gradient of conv3D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`);let[o,i]=t;return{x:()=>bw(o.shape,e,i,r,a),filter:()=>lW(o,e,i.shape,r,a)}}},cW={kernelName:wo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z($t(V0(ye(n,"float32"))),e)}}},dW={kernelName:ko,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(U0(ye(n,"float32")),e)}}},pW={kernelName:So,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{axis:r,exclusive:a,reverse:o}=n;return{x:()=>{let i=Cw([r],s.rank),l=N0(e,r,a,!o);return i!=null&&(l=tt(l,i)),l}}}},hW={kernelName:Io,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:s,strides:r,pad:a,dimRoundingMode:o}=n,i=s==null?[1,1]:s;O(so(i),()=>`Error in gradient of depthwiseConv2dNative: dilation rates greater than 1 are not yet supported. Got dilations '${i}'`);let[l,u]=t;return O(l.rank===4,()=>`Error in gradient of depthwiseConv2dNative: input must be rank 4, but got rank ${l.rank}.`),O(u.rank===4,()=>`Error in gradient of depthwiseConv2dNative: filter must be rank 4, but got rank ${u.rank}.`),O(l.shape[3]===u.shape[2],()=>`Error in gradient of depthwiseConv2d: number of input channels (${l.shape[3]}) must match the inChannels dimension in filter ${u.shape[2]}.`),O(aa(r,i),()=>`Error in gradient of depthwiseConv2d: Either strides or dilations must be 1. Got strides ${r} and dilations '${i}'.`),ls("depthwiseConv2d",a,o),{x:()=>i8(l.shape,e,u,r,a,i,o),filter:()=>o8(l,e,u.shape,r,a,i,o)}}},fW={kernelName:jp,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[s,r]=t,a={x:s,filter:r,dy:e},o={x:s,filter:r,dy:e};return{x:()=>B.runKernel(xm,a,n),filter:()=>B.runKernel(bm,o,n)}}},mW={kernelName:To,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t,s={dy:e,y:n};return{x:()=>B.runKernel(l0,s)}}},gW={kernelName:Ec,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,s=z(Os($t(bt(n))),2/Math.sqrt(Math.PI));return{x:()=>z(e,s)}}},yW={kernelName:No,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,n)}}},AW={kernelName:bl,inputsToSave:["input"],gradFunc:(e,t)=>{let[n]=t;return{input:()=>V(e,n.shape)}}},xW={kernelName:vl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,Os(n))}}},bW={kernelName:Eo,gradFunc:e=>({x:()=>lt(e)})},vW={kernelName:Ro,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=wt(n.shape,s.shape);return{a:()=>{let i=fe(e,ye(s,"float32")),l=on(n.shape,r);return l.length>0?V(ke(i,l),n.shape):i},b:()=>{let i=z(e,ye(n,"float32")),l=on(s.shape,r);l.length>0&&(i=V(ke(i,l),s.shape));let u=bt(s);return $t(fe(i,ye(u,"float32")))}}}},wW={kernelName:_o,inputsToSave:["x","mean","variance","scale"],gradFunc:(e,t,n)=>{let{varianceEpsilon:s}=n,[r,a,o,i]=t,l=i==null?Ce(1):i,u=on(a.shape,r.shape),c=[];if(a.rank===1){for(let b=0;b<r.shape.length-1;++b)c.push(r.shape[b]);c.push(1)}let p=me(r,a),d=z(e,l),h=L0(ue(o,Ce(s))),f=z(z(z(h,h),h),Ce(-.5));return{x:()=>a.rank===1?V(z(z(e,Ks(V(h,[1,1,1,a.shape[0]]),c)),l),r.shape):V(z(z(e,h),l),r.shape),mean:()=>{let b=z(z(h,Ce(-1)),d);return a.rank===1&&(b=ke(b,u)),V(b,a.shape)},variance:()=>{let b=z(z(f,p),d);return a.rank===1&&(b=ke(b,u)),V(b,a.shape)},scale:()=>{let b=z(p,h),w=z(e,b);return a.rank===1&&(w=ke(w,u)),V(w,a.shape)},offset:()=>{let b=e;return a.rank===1&&(b=ke(b,u)),V(b,a.shape)}}}},kW={kernelName:kl,inputsToSave:["x","indices"],gradFunc:(e,t,n)=>{let[s,r]=t,{axis:a}=n,o=gr(a,s.shape)[0];return{x:()=>{let l=s.shape,u=r.size,c=l.slice(0,o),p=c.length,d=l.slice(a,l.length).slice(1),h=d.length,f=zv(0,p),m=zv(p+1,p+1+h),g=Lv([c,[u],d]),y=V(e,g),x=V(r,[u]),A=Lv([[p],f,m]),b=tt(y,A),w=X0(b,x,s.shape[o]),S=RA(A);return w=tt(w,S),w},indices:()=>r}}};function zv(e,t){let n=[];for(let s=e;s<t;++s)n.push(s);return n}function Lv(e){let t=[];for(let n=0;n<e.length;++n)for(let s=0;s<e[n].length;++s)t.push(e[n][s]);return t}var SW={kernelName:Do,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t;return{a:()=>lt(n),b:()=>lt(s)}}},IW={kernelName:$o,gradFunc:e=>({x:()=>ye(e,"float32")})},CW={kernelName:_c,gradFunc:e=>({x:()=>lt(e)})},TW={kernelName:Dc,gradFunc:e=>({x:()=>lt(e)})},NW={kernelName:Cl,gradFunc:e=>({x:()=>lt(e)})},EW={kernelName:Po,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{alpha:r}=n,a=ws(s,0);return{x:()=>Gn(a,e,z(e,r))}}},RW={kernelName:$c,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>fe(e,ue(n,1))}}},_W={kernelName:Fo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>fe(e,ye(n,"float32"))}}},DW={kernelName:T6,inputsToSave:[],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s]=t,{axis:r}=n;return{logits:()=>{let o=Os(s);return me(e,z(ke(e,r,!0),o))}}}};function $W(e,t,n,s=5,r=1,a=1,o=.5){let i={x:e,y:t,dy:n},l={depthRadius:s,bias:r,alpha:a,beta:o};return B.runKernel(p0,i,l)}var PW=W({localResponseNormalizationBackprop_:$W}),FW={kernelName:Kp,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s,r]=t,{depthRadius:a,bias:o,alpha:i,beta:l}=n;return{x:()=>PW(s,r,e,a,o,i,l)}}};function S8(e,t,n,s){return t.rank<n.rank&&(t=V(t,sl(t.shape,s))),e.rank<n.rank&&(e=V(e,sl(e.shape,s))),{x:()=>z(e,ye(Fs(n,t),e.dtype))}}var Bv={kernelName:Oo,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let s=n,{reductionIndices:r}=s,a=t[0],o=t[1],i=gr(r,a.shape),l=S8(e,o,a,i);return{x:()=>l.x()}}},OW={kernelName:Mo,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t;return{a:()=>z(e,ye(ci(n,s),"float32")),b:()=>z(e,ye(R0(n,s),"float32"))}}};function MW(e,t,n,s,r,a,o){let i=$(e,"dy","maxPool3dGrad"),l=$(t,"input","maxPool3dGrad"),u=$(n,"output","maxPool3dGrad"),c=i,p=l,d=u,h=!1;l.rank===4&&(h=!0,c=V(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]]),p=V(l,[1,l.shape[0],l.shape[1],l.shape[2],l.shape[3]]),d=V(u,[1,u.shape[0],u.shape[1],u.shape[2],u.shape[3]])),O(c.rank===5,()=>`Error in maxPool3dGrad: dy must be rank 5 but got rank ${c.rank}.`),O(p.rank===5,()=>`Error in maxPool3dGrad: input must be rank 5 but got rank ${p.rank}.`),O(d.rank===5,()=>`Error in maxPool3dGrad: output must be rank 5 but got rank ${d.rank}.`),ls("maxPool3dGrad",a,o);let f={dy:c,input:p,output:d},m={filterSize:s,strides:r,pad:a,dimRoundingMode:o},g=B.runKernel(f0,f,m);return h?V(g,[g.shape[1],g.shape[2],g.shape[3],g.shape[4]]):g}var zW=W({maxPool3dGrad_:MW}),LW={kernelName:Zp,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s,r]=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=n;return{x:()=>zW(e,s,r,a,o,i,l)}}};function BW(e,t,n,s,r,a,o){let i=$(e,"dy","maxPoolGrad"),l=$(t,"input","maxPoolGrad"),u=$(n,"output","maxPoolGrad");O(l.rank===i.rank,()=>`Rank of input (${l.rank}) does not match rank of dy (${i.rank})`),O(i.rank===4,()=>`Error in maxPoolGrad: dy must be rank 4 but got rank ${i.rank}.`),O(l.rank===4,()=>`Error in maxPoolGrad: input must be rank 4 but got rank ${l.rank}.`),ls("maxPoolGrad",a,o);let c={dy:i,input:l,output:u},p={filterSize:s,strides:r,pad:a,dimRoundingMode:o};return B.runKernel(h0,c,p)}var WW=W({maxPoolGrad_:BW}),VW={kernelName:zo,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s,r]=t,{filterSize:a,strides:o,pad:i}=n;return{x:()=>WW(e,s,r,a,o,i)}}},UW={kernelName:Lo,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{axis:r}=n,a=gr(r,s.shape),i=Iw(s.shape,a)[1],l=Et(i);return{x:()=>{let c=s.shape.slice();a.forEach(h=>{c[h]=1});let p=V(e,c);return fe(z(p,$s(s.shape,"float32")),l)}}}},GW={kernelName:Bo,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let s=n,{axis:r}=s,[a,o]=t,i=gr(r,a.shape),l=S8(e,o,a,i);return{x:()=>l.x()}}},HW={kernelName:Wo,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t;return{a:()=>z(e,ye(di(n,s),"float32")),b:()=>z(e,ye(ws(n,s),"float32"))}}},jW={kernelName:Vo,inputsToSave:["x"],gradFunc:(e,t,n)=>{let s=t[0],{paddings:r}=n,a=r.map(o=>o[0]);return{x:()=>ze(e,a,s.shape)}}},qW={kernelName:Fc,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=wt(n.shape,s.shape);return{a:()=>{let i=on(n.shape,r);return i.length>0?V(ke(e,i),n.shape):e},b:()=>{let i=z(e,$t(Yc(fe(n,s)))),l=on(s.shape,r);return l.length>0?V(ke(i,l),s.shape):i}}}},XW={kernelName:Uo,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=wt(n.shape,s.shape);return{a:()=>{let i=z(e,ye(s,"float32")),l=on(n.shape,r);return l.length>0?V(ke(i,l),n.shape):i},b:()=>{let i=z(e,ye(n,"float32")),l=on(s.shape,r);return l.length>0?V(ke(i,l),s.shape):i}}}},KW={kernelName:_l,gradFunc:e=>({x:()=>$t(e)})},ZW={kernelName:Ol,inputsToSave:["indices"],gradFunc:(e,t)=>{let n=t[0];return{indices:()=>Vt(n.shape,"float32")}}},YW={kernelName:Fl,gradFunc:e=>({x:()=>lt(e)})},JW={kernelName:Ml,saveAllInputs:!0,gradFunc:(e,t,n)=>{let{axis:s}=n;return On(e,s).map(a=>()=>a)}},Wv={kernelName:Go,inputsToSave:["x"],gradFunc:(e,t,n)=>{let s=t[0],{paddings:r}=n,a=r.map(o=>o[0]);return{x:()=>ze(e,a,s.shape)}}},QW={kernelName:Ho,inputsToSave:["a","b"],outputsToSave:[!0],gradFunc:(e,t)=>{let[n,s,r]=t,a=n,o=s,i=wt(a.shape,o.shape);return{a:()=>{let c=ye(o,"float32"),p=z(e,z(c,Ia(a,me(c,Ce(1))))),d=on(a.shape,i);return d.length>0&&(p=ke(p,d)),V(p,a.shape)},b:()=>{let c=ws(a,0),p=Gn(c,Ms(a),lt(a)),d=z(e,z(r,p)),h=on(o.shape,i);return h.length>0&&(d=ke(d,h)),V(d,o.shape)}}}},eV={kernelName:jo,inputsToSave:["x","alpha"],gradFunc:(e,t)=>{let[n,s]=t,r=ws(n,0);return{x:()=>Gn(r,e,z(e,s)),alpha:()=>{let a=Gn(r,lt(e),z(e,n)),o=on(s.shape,e.shape);return o.length>0&&(a=ke(a,o)),V(a,s.shape)}}}};function tV(e,t,n){let s=e.shape.slice();s[n]=1;let r=V(t,s),a=Ep(e,n,!0,!1),o=Ep(e,n,!0,!0),i=z(a,o);return z(r,i)}function nV(e,t,n){let s=e.shape.length,r=s-n.length,a=T.getAxesPermutation(n,s),o=e;a!=null&&(o=tt(e,a));let i=o.shape.slice(),u=i.splice(s-n.length,n.length).reduce((d,h)=>d*h,1);i.push(u);let c=o.reshape(i),p=tV(c,t,r);if(p=p.reshape(o.shape),a!=null){let d=T.getUndoAxesPermutation(a);p=tt(p,d)}return p}var sV={kernelName:qo,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{axis:r}=n,a=[];return r==null?a=s.shape.map((o,i)=>i):typeof r=="number"?a=[r]:a=r,{x:()=>nV(s,e,a)}}},rV={kernelName:Co,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=wt(n.shape,s.shape);return{a:()=>{let i=fe(e,ye(s,"float32")),l=on(n.shape,r);return l.length>0?V(ke(i,l),n.shape):i},b:()=>{let i=z(e,ye(n,"float32")),l=on(s.shape,r);l.length>0&&(i=V(ke(i,l),s.shape));let u=bt(s);return $t(fe(i,ye(u,"float32")))}}}},aV={kernelName:zl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>fe(e,$t(bt(n)))}}},oV={kernelName:Yo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,s=z(di(n,6),iu(n));return{x:()=>z(e,ye(s,"float32"))}}},iV={kernelName:Xo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,ye(iu(n),"float32"))}}},lV={kernelName:Ll,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>V(e,n.shape)}}},uV={kernelName:Zo,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[s]=t,r={dy:e,images:s};return{images:()=>B.runKernel(x0,r,n)}}},cV={kernelName:Ko,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[s]=t,r={dy:e,images:s};return{images:()=>B.runKernel(A0,r,n)}}},dV={kernelName:Bl,gradFunc:(e,t,n)=>{let{dims:s}=n,r=gr(s,e.shape);return{x:()=>Qs(e,r)}}},pV={kernelName:Wl,gradFunc:e=>({x:()=>lt(e)})},hV={kernelName:Jo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>$t(fe(e,z(Ia(n,1.5),2)))}}},fV={kernelName:Ul,inputsToSave:["condition"],gradFunc:(e,t)=>{let[n]=t;return{condition:()=>ye(lt(n),"float32"),t:()=>z(e,ye(n,e.dtype)),e:()=>z(e,ye(Ah(n),e.dtype))}}},mV={kernelName:zc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let s=ws(n,Ce(0)),r=Ce(b8),a=Ce(v8),o=z(e,a),i=z(z(e,r),Os(ye(n,"float32")));return Gn(s,o,i)}}}},gV={kernelName:ei,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,z(n,me(Ce(1),n)))}}},yV={kernelName:Lc,gradFunc:e=>({x:()=>lt(e)})},AV={kernelName:Qo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(mh(ye(n,"float32")),e)}}},xV={kernelName:Hl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(T0(ye(n,"float32")),e)}}},bV={kernelName:Gl,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{begin:r,size:a}=n,o=s.shape,[i,l]=cw(s,r,a),u=[];for(let c=0;c<e.rank;c++)u.push([i[c],o[c]-i[c]-l[c]]);return{x:()=>sr(e,u)}}},vV={kernelName:si,outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s]=t,{dim:r}=n,a=!0,o=z(e,s);return{logits:()=>me(o,z(ke(o,[r],a),s))}}},wV={kernelName:Bc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,$n(n))}}},Vv={kernelName:jl,gradFunc:(e,t,n)=>{let{blockShape:s,paddings:r}=n;return{x:()=>fh(e,s,r)}}},Uv={kernelName:ql,gradFunc:(e,t,n)=>{let{axis:s}=n;return{x:()=>It(e,s)}}},kV={kernelName:ti,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>fe(e,z(Fn(ye(n,"float32")),2))}}},SV={kernelName:Vc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,z(ye(n,"float32"),2))}}},IV={kernelName:ri,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=Ce(2);return{a:()=>z(e,z(r,me(n,s))),b:()=>z(e,z(r,me(s,n)))}}},CV={kernelName:ii,gradFunc:e=>({x:()=>lt(e)})},TV={kernelName:ai,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=wt(n.shape,s.shape);return{a:()=>{let i=e,l=on(n.shape,r);return l.length>0&&(i=ke(i,l)),V(i,n.shape)},b:()=>{let i=e,l=on(s.shape,r);return l.length>0&&(i=ke(i,l)),V($t(i),s.shape)}}}},NV={kernelName:ni,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,r=s.shape.slice(),{axis:a}=n;gr(a,s.shape).forEach(u=>{r[u]=1});let i=V(e,r),l=z(i,$s(s.shape,"float32"));return{x:()=>l}}},EV={kernelName:Kl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>fe(e,bt(mh(n)))}}},RV={kernelName:oi,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(me(Ce(1),bt(n)),e)}}},_V={kernelName:Ea,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{reps:r}=n;return{x:()=>{let o=lt(s);if(s.rank===1)for(let i=0;i<r[0];++i)o=ue(o,ze(e,[i*s.shape[0]],[s.shape[0]]));else if(s.rank===2)for(let i=0;i<r[0];++i)for(let l=0;l<r[1];++l)o=ue(o,ze(e,[i*s.shape[0],l*s.shape[1]],[s.shape[0],s.shape[1]]));else if(s.rank===3)for(let i=0;i<r[0];++i)for(let l=0;l<r[1];++l)for(let u=0;u<r[2];++u)o=ue(o,ze(e,[i*s.shape[0],l*s.shape[1],u*s.shape[2]],[s.shape[0],s.shape[1],s.shape[2]]));else if(s.rank===4)for(let i=0;i<r[0];++i)for(let l=0;l<r[1];++l)for(let u=0;u<r[2];++u)for(let c=0;c<r[3];++c)o=ue(o,ze(e,[i*s.shape[0],l*s.shape[1],u*s.shape[2],c*s.shape[3]],[s.shape[0],s.shape[1],s.shape[2],s.shape[3]]));else throw new Error(`Gradient for tile operation is not implemented for rank-${s.rank} tensors yet.`);return o}}}},DV={kernelName:Qr,gradFunc:(e,t,n)=>{let s=n,{perm:r}=s,a=RA(r);return{x:()=>tt(e,a)}}},$V={kernelName:Jl,gradFunc:(e,t,n)=>{let s=n,{axis:r}=s;return{value:()=>ln(e,r)}}},PV={kernelName:rh,inputsToSave:["segmentIds"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>FV(e,n)}}};function FV(e,t){let n=oa(t,lt(t)),s=Jc(e,n),r=ci(t,Ce(0,"int32")),a=s.rank-r.rank;for(let i=0;i<a;++i)r=Bt(r,i+1);r=mr(r,$s(s.shape,"bool"));let o=lt(s);return Gn(r,s,o)}var OV={kernelName:Ql,gradFunc:e=>({x:()=>lt(e)})},MV=[k8,PB,FB,OB,MB,zB,LB,BB,WB,VB,UB,GB,qB,ZB,YB,JB,QB,eW,tW,nW,sW,rW,oW,aW,uW,cW,dW,pW,hW,fW,rV,mW,gW,yW,AW,xW,vW,bW,wW,kW,SW,IW,CW,TW,NW,EW,RW,_W,DW,FW,Bv,Bv,OW,LW,VW,UW,GW,HW,jW,qW,XW,KW,ZW,YW,JW,Wv,Wv,QW,eV,sV,aV,oV,iV,lV,uV,cV,dV,pV,hV,fV,mV,gV,yV,AV,xV,bV,vV,wV,Vv,Vv,Uv,Uv,kV,IV,SV,CV,TV,NV,EV,RV,_V,DV,$V,PV,OV];for(let e of MV)N6(e);ae().prototype.abs=function(){return this.throwIfDisposed(),sn(this)};ae().prototype.acos=function(){return this.throwIfDisposed(),sA(this)};ae().prototype.acosh=function(){return this.throwIfDisposed(),rA(this)};ae().prototype.add=function(e){return this.throwIfDisposed(),ue(this,e)};ae().prototype.all=function(e,t){return this.throwIfDisposed(),S0(this,e,t)};ae().prototype.any=function(e,t){return this.throwIfDisposed(),Np(this,e,t)};ae().prototype.argMax=function(e){return this.throwIfDisposed(),Ps(this,e)};ae().prototype.argMin=function(e){return this.throwIfDisposed(),aA(this,e)};ae().prototype.asScalar=function(){return this.throwIfDisposed(),O(this.size===1,()=>"The array must have only 1 element."),V(this,[])};ae().prototype.asType=function(e){return this.throwIfDisposed(),ye(this,e)};ae().prototype.as1D=function(){return this.throwIfDisposed(),V(this,[this.size])};ae().prototype.as2D=function(e,t){return this.throwIfDisposed(),V(this,[e,t])};ae().prototype.as3D=function(e,t,n){return this.throwIfDisposed(),V(this,[e,t,n])};ae().prototype.as4D=function(e,t,n,s){return this.throwIfDisposed(),V(this,[e,t,n,s])};ae().prototype.as5D=function(e,t,n,s,r){return this.throwIfDisposed(),V(this,[e,t,n,s,r])};ae().prototype.asin=function(){return this.throwIfDisposed(),oA(this)};ae().prototype.asinh=function(){return this.throwIfDisposed(),iA(this)};ae().prototype.atan=function(){return this.throwIfDisposed(),lA(this)};ae().prototype.atan2=function(e){return this.throwIfDisposed(),uA(this,e)};ae().prototype.atanh=function(){return this.throwIfDisposed(),cA(this)};ae().prototype.avgPool=function(e,t,n,s){return this.throwIfDisposed(),hh(this,e,t,n,s)};ae().prototype.batchToSpaceND=function(e,t){return this.throwIfDisposed(),fh(this,e,t)};ae().prototype.batchNorm=function(e,t,n,s,r){return this.throwIfDisposed(),jc(this,e,t,n,s,r)};ae().prototype.broadcastTo=function(e){return this.throwIfDisposed(),Ki(this,e)};ae().prototype.cast=function(e){return this.throwIfDisposed(),ye(this,e)};ae().prototype.ceil=function(){return this.throwIfDisposed(),yA(this)};ae().prototype.clipByValue=function(e,t){return this.throwIfDisposed(),xs(this,e,t)};ae().prototype.concat=function(e,t){return this.throwIfDisposed(),e instanceof st&&(e=[e]),It([this,...e],t)};ae().prototype.conv1d=function(e,t,n,s,r,a){return this.throwIfDisposed(),I0(this,e,t,n,s,r,a)};ae().prototype.conv2dTranspose=function(e,t,n,s,r){return this.throwIfDisposed(),C0(this,e,t,n,s,r)};ae().prototype.conv2d=function(e,t,n,s,r,a){return this.throwIfDisposed(),ka(this,e,t,n,s,r,a)};ae().prototype.cos=function(){return this.throwIfDisposed(),mh(this)};ae().prototype.cosh=function(){return this.throwIfDisposed(),T0(this)};ae().prototype.cumprod=function(e,t,n){return this.throwIfDisposed(),Ep(this,e,t,n)};ae().prototype.cumsum=function(e,t,n){return this.throwIfDisposed(),N0(this,e,t,n)};ae().prototype.depthToSpace=function(e,t){return this.throwIfDisposed(),SA(this,e,t)};ae().prototype.depthwiseConv2d=function(e,t,n,s,r,a){return this.throwIfDisposed(),qc(this,e,t,n,s,r,a)};ae().prototype.dilation2d=function(e,t,n,s,r){return this.throwIfDisposed(),IA(this,e,t,n,s,r)};ae().prototype.divNoNan=function(e){return this.throwIfDisposed(),CA(this,e)};ae().prototype.div=function(e){return this.throwIfDisposed(),fe(this,e)};ae().prototype.dot=function(e){return this.throwIfDisposed(),TA(this,e)};ae().prototype.elu=function(){return this.throwIfDisposed(),Xc(this)};ae().prototype.equal=function(e){return this.throwIfDisposed(),Fs(this,e)};ae().prototype.erf=function(){return this.throwIfDisposed(),NA(this)};ae().prototype.euclideanNorm=function(e,t){return this.throwIfDisposed(),_A(this,e,t)};ae().prototype.exp=function(){return this.throwIfDisposed(),Os(this)};ae().prototype.expandDims=function(e){return this.throwIfDisposed(),Bt(this,e)};ae().prototype.expm1=function(){return this.throwIfDisposed(),DA(this)};ae().prototype.fft=function(){return this.throwIfDisposed(),Sh(this)};ae().prototype.flatten=function(){return this.throwIfDisposed(),V(this,[this.size])};ae().prototype.floor=function(){return this.throwIfDisposed(),Yc(this)};ae().prototype.floorDiv=function(e){return this.throwIfDisposed(),Hc(this,e)};ae().prototype.gather=function(e,t){return this.throwIfDisposed(),Jc(this,e,t)};ae().prototype.greaterEqual=function(e){return this.throwIfDisposed(),ci(this,e)};ae().prototype.greater=function(e){return this.throwIfDisposed(),ws(this,e)};ae().prototype.ifft=function(){return this.throwIfDisposed(),ic(this)};ae().prototype.irfft=function(){return this.throwIfDisposed(),H0(this)};ae().prototype.isFinite=function(){return this.throwIfDisposed(),$A(this)};ae().prototype.isInf=function(){return this.throwIfDisposed(),PA(this)};ae().prototype.isNaN=function(){return this.throwIfDisposed(),FA(this)};ae().prototype.leakyRelu=function(e){return this.throwIfDisposed(),gh(this,e)};ae().prototype.lessEqual=function(e){return this.throwIfDisposed(),di(this,e)};ae().prototype.less=function(e){return this.throwIfDisposed(),R0(this,e)};ae().prototype.localResponseNormalization=function(e,t,n,s){return this.throwIfDisposed(),OA(this,e,t,n,s)};ae().prototype.logSigmoid=function(){return this.throwIfDisposed(),MA(this)};ae().prototype.logSoftmax=function(e){return this.throwIfDisposed(),D0(this,e)};ae().prototype.logSumExp=function(e,t){return this.throwIfDisposed(),$0(this,e,t)};ae().prototype.log=function(){return this.throwIfDisposed(),Ms(this)};ae().prototype.log1p=function(){return this.throwIfDisposed(),yh(this)};ae().prototype.logicalAnd=function(e){return this.throwIfDisposed(),mr(this,e)};ae().prototype.logicalNot=function(){return this.throwIfDisposed(),Ah(this)};ae().prototype.logicalOr=function(e){return this.throwIfDisposed(),P0(this,e)};ae().prototype.logicalXor=function(e){return this.throwIfDisposed(),zA(this,e)};ae().prototype.matMul=function(e,t,n){return this.throwIfDisposed(),et(this,e,t,n)};ae().prototype.maxPool=function(e,t,n,s){return this.throwIfDisposed(),xh(this,e,t,n,s)};ae().prototype.max=function(e,t){return this.throwIfDisposed(),gn(this,e,t)};ae().prototype.maximum=function(e){return this.throwIfDisposed(),oa(this,e)};ae().prototype.mean=function(e,t){return this.throwIfDisposed(),Wt(this,e,t)};ae().prototype.min=function(e,t){return this.throwIfDisposed(),Sa(this,e,t)};ae().prototype.minimum=function(e){return this.throwIfDisposed(),Qc(this,e)};ae().prototype.mirrorPad=function(e,t){return this.throwIfDisposed(),BA(this,e,t)};ae().prototype.mod=function(e){return this.throwIfDisposed(),au(this,e)};ae().prototype.mul=function(e){return this.throwIfDisposed(),z(this,e)};ae().prototype.neg=function(){return this.throwIfDisposed(),$t(this)};ae().prototype.norm=function(e,t,n){return this.throwIfDisposed(),Kc(this,e,t,n)};ae().prototype.notEqual=function(e){return this.throwIfDisposed(),rl(this,e)};ae().prototype.oneHot=function(e,t=1,n=0){return this.throwIfDisposed(),rc(this,e,t,n)};ae().prototype.onesLike=function(){return this.throwIfDisposed(),zs(this)};ae().prototype.pad=function(e,t){return this.throwIfDisposed(),sr(this,e,t)};ae().prototype.pool=function(e,t,n,s,r,a){return this.throwIfDisposed(),WA(this,e,t,n,s,r,a)};ae().prototype.pow=function(e){return this.throwIfDisposed(),Ia(this,e)};ae().prototype.prelu=function(e){return this.throwIfDisposed(),wh(this,e)};ae().prototype.prod=function(e,t){return this.throwIfDisposed(),VA(this,e,t)};ae().prototype.reciprocal=function(){return this.throwIfDisposed(),HA(this)};ae().prototype.relu=function(){return this.throwIfDisposed(),Wr(this)};ae().prototype.relu6=function(){return this.throwIfDisposed(),M0(this)};ae().prototype.reshapeAs=function(e){return this.throwIfDisposed(),V(this,e.shape)};ae().prototype.reshape=function(e){return this.throwIfDisposed(),V(this,e)};ae().prototype.resizeBilinear=function(e,t,n){return this.throwIfDisposed(),h8(this,e,t,n)};ae().prototype.resizeNearestNeighbor=function(e,t,n){return this.throwIfDisposed(),f8(this,e,t,n)};ae().prototype.reverse=function(e){return this.throwIfDisposed(),Qs(this,e)};ae().prototype.rfft=function(){return this.throwIfDisposed(),Ih(this)};ae().prototype.round=function(){return this.throwIfDisposed(),z0(this)};ae().prototype.rsqrt=function(){return this.throwIfDisposed(),L0(this)};ae().prototype.selu=function(){return this.throwIfDisposed(),B0(this)};ae().prototype.separableConv2d=function(e,t,n,s,r,a){return this.throwIfDisposed(),W0(this,e,t,n,s,r,a)};ae().prototype.sigmoid=function(){return this.throwIfDisposed(),$n(this)};ae().prototype.sign=function(){return this.throwIfDisposed(),jA(this)};ae().prototype.sin=function(){return this.throwIfDisposed(),V0(this)};ae().prototype.sinh=function(){return this.throwIfDisposed(),U0(this)};ae().prototype.slice=function(e,t){return this.throwIfDisposed(),ze(this,e,t)};ae().prototype.softmax=function(e){return this.throwIfDisposed(),ou(this,e)};ae().prototype.softplus=function(){return this.throwIfDisposed(),ru(this)};ae().prototype.spaceToBatchND=function(e,t){return this.throwIfDisposed(),vh(this,e,t)};ae().prototype.split=function(e,t){return this.throwIfDisposed(),Yt(this,e,t)};ae().prototype.sqrt=function(){return this.throwIfDisposed(),Fn(this)};ae().prototype.square=function(){return this.throwIfDisposed(),bt(this)};ae().prototype.squaredDifference=function(e){return this.throwIfDisposed(),j0(this,e)};ae().prototype.squeeze=function(e){return this.throwIfDisposed(),rt(this,e)};ae().prototype.stack=function(e,t){this.throwIfDisposed();let n=e instanceof st?[this,e]:[this,...e];return ln(n,t)};ae().prototype.step=function(e){return this.throwIfDisposed(),iu(this,e)};ae().prototype.stridedSlice=function(e,t,n,s,r,a,o,i){return this.throwIfDisposed(),qA(this,e,t,n,s,r,a,o,i)};ae().prototype.sub=function(e){return this.throwIfDisposed(),me(this,e)};ae().prototype.sum=function(e,t){return this.throwIfDisposed(),ke(this,e,t)};ae().prototype.tan=function(){return this.throwIfDisposed(),XA(this)};ae().prototype.tanh=function(){return this.throwIfDisposed(),nl(this)};ae().prototype.tile=function(e){return this.throwIfDisposed(),Ks(this,e)};ae().prototype.toBool=function(){return this.throwIfDisposed(),ye(this,"bool")};ae().prototype.toFloat=function(){return this.throwIfDisposed(),ye(this,"float32")};ae().prototype.toInt=function(){return this.throwIfDisposed(),ye(this,"int32")};ae().prototype.topk=function(e,t){return this.throwIfDisposed(),KA(this,e,t)};ae().prototype.transpose=function(e){return this.throwIfDisposed(),tt(this,e)};ae().prototype.unique=function(e){return this.throwIfDisposed(),ZA(this,e)};ae().prototype.unsortedSegmentSum=function(e,t){return this.throwIfDisposed(),X0(this,e,t)};ae().prototype.unstack=function(e){return this.throwIfDisposed(),On(this,e)};ae().prototype.where=function(e,t){return this.throwIfDisposed(),Gn(e,this,t)};ae().prototype.zerosLike=function(){return this.throwIfDisposed(),lt(this)};var ma=class extends Error{constructor(e){super(e),Object.setPrototypeOf(this,ma.prototype)}},$r=class extends Error{constructor(e){super(e),Object.setPrototypeOf(this,$r.prototype)}},j=class extends Error{constructor(e){super(e),Object.setPrototypeOf(this,j.prototype)}},Xe=class extends Error{constructor(e){super(e),Object.setPrototypeOf(this,Xe.prototype)}},I8=class extends Error{constructor(e){super(e),Object.setPrototypeOf(this,I8.prototype)}},C8=class{constructor(e){this.maxEntries=e||100,this.cache=new Map}get(e){let t;return this.cache.has(e)&&(t=this.cache.get(e),this.cache.delete(e),this.cache.set(e,t)),t}put(e,t){if(this.cache.has(e))this.cache.delete(e);else if(this.cache.size>=this.maxEntries){let n=this.cache.keys().next().value;this.cache.delete(n)}this.cache.set(e,t)}getMaxEntries(){return this.maxEntries}setMaxEntries(e){if(e<0)throw new Error(`The maxEntries of LRU caches must be at least 0, but got ${e}.`);if(this.maxEntries>e)for(let t=0;t<this.maxEntries-e;t++){let n=this.cache.keys().next().value;this.cache.delete(n)}this.maxEntries=e}};function al(e,t){if(Array.isArray(e)){let n=[];for(let s=0;s<t;s++)n=n.concat(e);return n}else{let n=new Array(t);return n.fill(e),n}}function Zr(e,t){if(!e)throw new I8(t)}function Gv(e,t){let n=0;for(let s of e)s===t&&n++;return n}function ys(e){return e.length===1?e[0]:e}function Dt(e){return Array.isArray(e)?e:[e]}function ga(e){let n=e.replace(/(.)([A-Z][a-z0-9]+)/g,"$1_$2").replace(/([a-z])([A-Z])/g,"$1_$2").toLowerCase();return n[0]!=="_"?n:"private"+n}function Ui(e){return e.length<=1||e.indexOf("_")===-1?e:e.replace(/[_]+(\w|$)/g,(t,n)=>n.toUpperCase())}var ur={};function o5(e){if(e==null)return null;let t={};return t.className=e.getClassName(),t.config=e.getConfig(),t}function U3(e){if(!(e==null||typeof e!="object"))if(Array.isArray(e))e.forEach(t=>U3(t));else{let t=Object.keys(e);for(let n of t){let s=e[n];s!=null&&typeof s=="object"&&(!Array.isArray(s)&&s.type==="ndarray"&&typeof s.value=="number"?e[n]=s.value:U3(s))}}}function Th(e,t={},n={},s="object",r=!1){if(typeof e=="string"){let a=e,o;if(a in n)o=n[a];else if(a in ur)o=ur[a];else if(o=t[a],o==null)throw new j(`Unknown ${s}: ${e}. This may be due to one of the following reasons:
1. The ${s} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
2. The custom ${s} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);return o}else{let a=e;if(a.className==null||a.config==null)throw new j(`${s}: Improper config format: ${JSON.stringify(a)}.
'className' and 'config' must set.`);let o=a.className,i,l;if(o in n?[i,l]=n[o]:o in ur?[i,l]=ur.className:o in t&&([i,l]=t[o]),i==null)throw new j(`Unknown ${s}: ${o}. This may be due to one of the following reasons:
1. The ${s} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
2. The custom ${s} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);if(l!=null){let u={};for(let h of Object.keys(ur))u[h]=ur[h];for(let h of Object.keys(n))u[h]=n[h];let c=a.config;c.customObjects=u;let p=Object.assign({},ur);for(let h of Object.keys(n))ur[h]=n[h];U3(a.config);let d=l(i,a.config,n,r);return ur=Object.assign({},p),d}else{let u=Object.assign({},ur);for(let p of Object.keys(n))ur[p]=n[p];let c=new i(a.config);return ur=Object.assign({},u),c}}}function zV(e,t){return e<t?-1:e>t?1:0}function qf(e,t){return-1*zV(e,t)}function Ya(e){if(e==null)return e;let t=[];for(let n of e)t.indexOf(n)===-1&&t.push(n);return t}function LV(e){if(e==null)throw new j(`Invalid value in obj: ${JSON.stringify(e)}`);for(let t in e)if(e.hasOwnProperty(t))return!1;return!0}function lu(e,t,n){if(n!=null&&e.indexOf(n)<0)throw new j(`${n} is not a valid ${t}. Valid values are ${e} or null/undefined.`)}function i5(e,t,n=0,s=1/0){return Zr(n>=0),Zr(s>=n),Array.isArray(e)&&e.length>=n&&e.length<=s&&e.every(r=>typeof r===t)}function Sn(e,t){Array.isArray(e)?(v.assert(e.length>0,()=>`${t} is unexpectedly an empty array.`),e.forEach((n,s)=>Sn(n,`element ${s+1} of ${t}`))):v.assert(Number.isInteger(e)&&e>0,()=>`Expected ${t} to be a positive integer, but got ${T8(e)}.`)}function T8(e){return e===null?"null":Array.isArray(e)?"["+e.map(t=>T8(t)).join(",")+"]":typeof e=="string"?`"${e}"`:`${e}`}function BV(e,t,n){let s=n!=null?n():v.now(),r;return(...o)=>{let i=n!=null?n():v.now();return i-s<t||(s=i,r=e(...o)),r}}function N8(e){return e==="relu"?"relu":e==="linear"?"linear":e==="elu"?"elu":null}var WV=0;function E8(){return WV++}var Xf={};function o2(e=""){return e in Xf||(Xf[e]=0),Xf[e]+=1,e+Xf[e].toString()}var VV=["channelsFirst","channelsLast"],UV=["nearest","bilinear"],GV=["valid","same","causal"],HV=["max","avg"],jV=["sum","mul","concat","ave"],Vu=new Map;function Jt(e){lu(VV,"DataFormat",e)}function qV(e){lu(UV,"InterpolationFormat",e)}function rr(e){lu(GV,"PaddingMode",e)}function R8(e){lu(HV,"PoolMode",e)}var yp=[],Hv="/";function Zi(e,t){yp.push(e);try{let n=t();return yp.pop(),n}catch(n){throw yp.pop(),n}}function XV(){return yp.length===0?"":yp.join(Hv)+Hv}function _8(e){if(!$8(e))throw new Error("Not a valid tensor name: '"+e+"'");return XV()+e}function D8(e){if(!$8(e))throw new Error("Not a valid tensor name: '"+e+"'");Vu.has(e)||Vu.set(e,0);let t=Vu.get(e);if(Vu.set(e,Vu.get(e)+1),t>0){let n=`${e}_${t}`;return Vu.set(n,1),n}else return e}var KV=new RegExp(/^[A-Za-z0-9][-A-Za-z0-9\._\/]*$/);function $8(e){return!!e.match(KV)}function ZV(e){return e===parseInt(e.toString(),10)}function Ja(e,t,n){t==null&&(t=0),n==null&&(n=e.length);let s=1;for(let r=t;r<n;++r)s*=e[r];return s}function uc(e){if(e.length===0)return Number.NaN;let t=Number.POSITIVE_INFINITY;for(let n=0;n<e.length;n++){let s=e[n];s<t&&(t=s)}return t}function ao(e){if(e.length===0)return Number.NaN;let t=Number.NEGATIVE_INFINITY;for(let n=0;n<e.length;n++){let s=e[n];s>t&&(t=s)}return t}function zr(e,t){if(t<e)throw new j(`end (${t}) < begin (${e}) is forbidden.`);let n=[];for(let s=e;s<t;++s)n.push(s);return n}var y3;function fn(){return y3==null&&(y3=Hn().epsilon()),y3}function Lr(){return"channelsLast"}function i2(e,t){return ye(e,t)}function Nh(e,t=-1){let n=e.shape.slice();return t<0&&(t=n.length+t+1),n.splice(t,0,1),V(e,n)}function YV(e,t){return Z(()=>{if(e.shape.length!==2)throw new j(`repeat() expects a rank-2 tensor, but received a rank-${e.shape.length} tensor.`);let n=Nh(e,1);return G3(n,[1,t,1])})}function JV(e){let t=[Ja(e.shape)];return V(e,t)}function QV(e){if(e.rank<=1)throw new j(`batchFlatten requires a minimum rank of 2. Got rank: ${e.rank}.`);let t=[e.shape[0],Ja(e.shape,1)];return V(e,t)}function Yi(e,t,n){return Z(()=>{switch(e.rank){case 1:return kh(e,t,n);case 2:return G0(e,[t,0],[n,e.shape[1]]);case 3:return pi(e,[t,0,0],[n,e.shape[1],e.shape[2]]);case 4:return ro(e,[t,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3]]);case 5:return ze(e,[t,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4]]);case 6:return ze(e,[t,0,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4],e.shape[5]]);default:throw new j(`sliceAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}})}function A3(e,t,n){return Z(()=>{switch(e.rank){case 1:return kh(e,t,n);case 2:return G0(e,[0,t],[e.shape[0],n]);case 3:return pi(e,[0,0,t],[e.shape[0],e.shape[1],n]);case 4:return ro(e,[0,0,0,t],[e.shape[0],e.shape[1],e.shape[2],n]);default:throw new j(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function Kf(e,t,n,s){return Z(()=>{switch(e.rank){case 1:return kh(e,t,n);case 2:switch(s){case 1:return Yi(e,t,n);case 2:return A3(e,t,n);default:throw new j(`The axis is not within the rank of the tensor ${s}`)}case 3:switch(s){case 1:return Yi(e,t,n);case 2:return pi(e,[0,t,0],[e.shape[0],n,e.shape[2]]);case 3:return A3(e,t,n);default:throw new j(`The axis is not within the rank of the tensor ${s}`)}case 4:switch(s){case 1:return Yi(e,t,n);case 2:return ro(e,[0,t,0,0],[e.shape[0],n,e.shape[2],e.shape[3]]);case 3:return ro(e,[0,0,t,0],[e.shape[0],e.shape[1],n,e.shape[3]]);case 4:return A3(e,t,n);default:throw new j(`The axis is not within the rank of the tensor ${s}`)}default:throw new j(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function l5(e,t=-1){let n;return t<0&&(n=e[0].rank,n!==0?t=n:t=0),t===e[0].rank&&(t=-1),It(e,t)}function jv(e,t){switch(e.rank){case 1:return AA([e,t]);case 2:return su([e,t],0);case 3:return xA([e,t],0);case 4:return bA([e,t],0);default:throw new j(`concatAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}}function G3(e,t){if(Array.isArray(t)||(t=[t]),e.rank!==t.length)throw new j(`The length of input n (${t.length}) does not match the number of dimensions in input x (${e.rank})`);return Ks(e,t)}function l2(e,t=0,n=1,s,r){return O0(e,t,n,s,r)}function ea(e,t,n,s){if(e.rank<2||t.rank<2)throw new Xe(`dot requires both inputs to be rank >= 2 but got x shape = ${e.shape} and y shape = ${t.shape}`);if(t.rank>=3){let r=e.shape.slice(-1)[0],a=t.shape.slice(-2)[0];if(r!==a)throw new Xe(`If rank y >= 3, then the second last dim of y must equal the last dim of x but got x shape = ${e.shape} and y shape = ${t.shape}`)}if(e.rank===2&&t.rank===2)return lc.matMul({a:e,b:t,transposeA:!1,transposeB:!1,bias:s?H3(e.rank,s,Lr()):null,activation:n});{let r=e.shape.slice(),a=r.pop();e=V(e,[-1,a]);let o=t.shape.slice(),i=o.pop(),l=o.pop(),u=[...o,i],c=Array.from({length:t.rank},(f,m)=>m===0?t.rank-2:m<=t.rank-2?m-1:m);t=V(tt(t,c),[l,-1]);let p=[...r,...u],d=!1,h=!1;return V(lc.matMul({a:e,b:t,transposeA:d,transposeB:h,bias:s?H3(e.rank,s,Lr()):null,activation:n}),p)}}function P8(e,t,n){return Z(()=>(Array.isArray(t)?t=Pt(t,"int32"):t=ye(t,"int32"),Jc(e,t,n)))}function Eh(e){return z(e,e)}function H3(e,t,n){let s=t.shape;if(t.rank!==1&&t.rank!==e)throw new j(`Unexpected bias dimensions: ${t.rank}; expected it to be 1 or ${e}`);if(e===5){if(n==="channelsFirst")return s.length===1?V(t,[1,s[0],1,1,1]):V(t,[1,s[3],s[0],s[1],s[2]]);if(n==="channelsLast")return s.length===1?V(t,[1,1,1,1,s[0]]):V(t,[1].concat(s))}else if(e===4){if(n==="channelsFirst")return s.length===1?V(t,[1,s[0],1,1]):V(t,[1,s[2],s[0],s[1]]);if(n==="channelsLast")return s.length===1?V(t,[1,1,1,s[0]]):V(t,[1].concat(s))}else if(e===3){if(n==="channelsFirst")return s.length===1?V(t,[1,s[0],1]):V(t,[1,s[1],s[0]]);if(n==="channelsLast")return s.length===1?V(t,[1,1,s[0]]):V(t,[1].concat(s))}else if(e<3)return t;throw new j(`Unsupported input rank by biasAdd: ${t.rank}`)}function Vr(e,t,n){return Z(()=>(n==null&&(n=Lr()),Jt(n),ue(e,H3(e.rank,t,n))))}function eU(e,t=1){if(t!==1)throw new Xe(`Support for alpha values other than 1 (${t}) is not implemented yet.`);return Xc(e)}function tU(e){return Z(()=>fe(e,ue(sn(e),1)))}function F8(e,t,n,s){return Z(()=>QA(e,t,n,s))}function nU(e){return Z(()=>{let t=ue(.5,z(.2,e));return xs(t,0,1)})}function Rh(e,t,n=!1){return n?e():t()}var sU=["fanIn","fanOut","fanAvg"],rU=["normal","uniform","truncatedNormal"];function aU(e){lu(sU,"FanMode",e)}function oU(e){lu(rU,"Distribution",e)}var Ar=class extends de.Serializable{fromConfigUsesCustomObjects(){return!1}getConfig(){return{}}},u5=class extends Ar{apply(e,t){return Vt(e,t)}};u5.className="Zeros";de.registerClass(u5);var u2=class extends Ar{apply(e,t){return $s(e,t)}};u2.className="Ones";de.registerClass(u2);var c5=class extends Ar{constructor(e){if(super(),typeof e!="object")throw new j(`Expected argument of type ConstantConfig but got ${e}`);if(e.value===void 0)throw new j(`config must have value set but got ${e}`);this.value=e.value}apply(e,t){return Z(()=>z(Ce(this.value),$s(e,t)))}getConfig(){return{value:this.value}}};c5.className="Constant";de.registerClass(c5);var d5=class extends Ar{constructor(e){super(),this.DEFAULT_MINVAL=-.05,this.DEFAULT_MAXVAL=.05,this.minval=e.minval||this.DEFAULT_MINVAL,this.maxval=e.maxval||this.DEFAULT_MAXVAL,this.seed=e.seed}apply(e,t){return ed(e,this.minval,this.maxval,t)}getConfig(){return{minval:this.minval,maxval:this.maxval,seed:this.seed}}};d5.className="RandomUniform";de.registerClass(d5);var p5=class extends Ar{constructor(e){super(),this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Xe(`randomNormal does not support dType ${t}.`);return l2(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};p5.className="RandomNormal";de.registerClass(p5);var h5=class extends Ar{constructor(e){super(),this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Xe(`truncatedNormal does not support dType ${t}.`);return q0(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};h5.className="TruncatedNormal";de.registerClass(h5);var f5=class extends Ar{constructor(e){super(),this.gain=e.gain!=null?e.gain:1}apply(e,t){return Z(()=>{if(e.length!==2||e[0]!==e[1])throw new j("Identity matrix initializer can only be used for 2D square matrices.");return z(this.gain,E0(e[0]))})}getConfig(){return{gain:this.gain}}};f5.className="Identity";de.registerClass(f5);function iU(e,t="channelsLast"){let n,s;if(Jt(t),e.length===2)n=e[0],s=e[1];else if([3,4,5].indexOf(e.length)!==-1){if(t==="channelsFirst"){let r=Ja(e,2);n=e[1]*r,s=e[0]*r}else if(t==="channelsLast"){let r=Ja(e,0,e.length-2);n=e[e.length-2]*r,s=e[e.length-1]*r}}else{let r=Ja(e);n=Math.sqrt(r),s=Math.sqrt(r)}return[n,s]}var bs=class extends Ar{constructor(e){if(super(),e.scale<0)throw new j(`scale must be a positive float. Got: ${e.scale}`);this.scale=e.scale==null?1:e.scale,this.mode=e.mode==null?"fanIn":e.mode,aU(this.mode),this.distribution=e.distribution==null?"normal":e.distribution,oU(this.distribution),this.seed=e.seed}apply(e,t){let n=iU(e),s=n[0],r=n[1],a=this.scale;if(this.mode==="fanIn"?a/=Math.max(1,s):this.mode==="fanOut"?a/=Math.max(1,r):a/=Math.max(1,(s+r)/2),this.distribution==="normal"){let o=Math.sqrt(a);if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Xe(`${this.getClassName()} does not support dType ${t}.`);return q0(e,0,o,t,this.seed)}else{let o=Math.sqrt(3*a);return ed(e,-o,o,t)}}getConfig(){return{scale:this.scale,mode:this.mode,distribution:this.distribution,seed:this.seed}}};bs.className="VarianceScaling";de.registerClass(bs);var c2=class extends bs{constructor(e){super({scale:1,mode:"fanAvg",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return bs.className}};c2.className="GlorotUniform";de.registerClass(c2);var d2=class extends bs{constructor(e){super({scale:1,mode:"fanAvg",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return bs.className}};d2.className="GlorotNormal";de.registerClass(d2);var p2=class extends bs{constructor(e){super({scale:2,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return bs.className}};p2.className="HeNormal";de.registerClass(p2);var h2=class extends bs{constructor(e){super({scale:2,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return bs.className}};h2.className="HeUniform";de.registerClass(h2);var f2=class extends bs{constructor(e){super({scale:1,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return bs.className}};f2.className="LeCunNormal";de.registerClass(f2);var m2=class extends bs{constructor(e){super({scale:1,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return bs.className}};m2.className="LeCunNormal";de.registerClass(m2);var m5=class extends Ar{constructor(e){if(super(),this.DEFAULT_GAIN=1,this.gain=e.gain==null?this.DEFAULT_GAIN:e.gain,this.seed=e.seed,this.seed!=null)throw new Xe("Random seed is not implemented for Orthogonal Initializer yet.")}apply(e,t){return Z(()=>{if(e.length<2)throw new Xe("Shape must be at least 2D.");e[0]*e[1]>2e3&&console.warn(`Orthogonal initializer is being called on a matrix with more than 2000 (${e[0]*e[1]}) elements: Slowness may result.`);let n=e[0]>e[1]?[e[1],e[0]]:e,s=l2(n,0,1,"float32"),r=s5.gramSchmidt(s);return e[0]>e[1]&&(r=tt(r)),z(this.gain,r)})}getConfig(){return{gain:this.gain,seed:this.seed}}};m5.className="Orthogonal";de.registerClass(m5);var qv={constant:"Constant",glorotNormal:"GlorotNormal",glorotUniform:"GlorotUniform",heNormal:"HeNormal",heUniform:"HeUniform",identity:"Identity",leCunNormal:"LeCunNormal",leCunUniform:"LeCunUniform",ones:"Ones",orthogonal:"Orthogonal",randomNormal:"RandomNormal",randomUniform:"RandomUniform",truncatedNormal:"TruncatedNormal",varianceScaling:"VarianceScaling",zeros:"Zeros"};function Xv(e,t={}){return Th(e,de.SerializationMap.getMap().classNameMap,t,"initializer")}function Ut(e){return o5(e)}function Ft(e){if(typeof e=="string"){let t=e in qv?qv[e]:e;if(t==="GlorotNormal")return new d2;if(t==="GlorotUniform")return new c2;if(t==="HeNormal")return new p2;if(t==="HeUniform")return new h2;if(t==="LeCunNormal")return new f2;if(t==="LeCunUniform")return new m2;{let n={};return n.className=t,n.config={},Xv(n)}}else return e instanceof Ar?e:Xv(e)}function j3(e){return Array.isArray(e)&&Array.isArray(e[0])}function Cm(e){return e.length===0?[]:Array.isArray(e[0])?e:[e]}function Ke(e){let t;if(Array.isArray(e)){if(e.length!==1)throw new j(`Expected Tensor length to be 1; got ${e.length}`);t=e[0]}else t=e;return t}function At(e){if(Array.isArray(e)&&Array.isArray(e[0])){if(e.length===1)return e=e,e[0];throw new j(`Expected exactly 1 Shape; got ${e.length}`)}else return e}function Tm(e){let t=0;for(let n of e)n.shape.length===0?t+=1:t+=n.shape.reduce((s,r)=>s*r);return t}var Kv="Variable",O8=class{constructor(e,t="float32",n=Kv,s=!0,r=null){this.dtype=t==null?"float32":t,this.shape=e.shape,this.id=E8(),n=n==null?Kv:n,this.originalName=_8(n),this.name=D8(this.originalName),this.trainable_=s,this.constraint=r,this.val=YA(e,this.trainable_,this.name,this.dtype)}read(){return this.assertNotDisposed(),this.val}write(e){return this.assertNotDisposed(),lU(this.val,e),this.val.id!==e.id&&(this.val.assign(e),this.constraint!=null&&this.val.assign(this.constraint.apply(this.val))),this}dispose(){this.assertNotDisposed(),this.val.dispose()}assertNotDisposed(){if(this.val.isDisposed)throw new Error(`LayersVariable ${this.name} is already disposed.`)}get trainable(){return this.trainable_}set trainable(e){this.trainable_=e,this.val.trainable=e}};function lU(e,t){if(e.shape.toString()!==t.shape.toString())throw new Error("Shape mismatch: "+JSON.stringify(e.shape)+" vs. "+JSON.stringify(t.shape))}function q3(e){return e.map(t=>t.read())}function g5(e){e.forEach(t=>{t[0].write(t[1])})}var an=class{constructor(e){this.dtype=e.dtype,this.shape=e.shape,e.shape!=null?this.ndim=e.shape.length:this.ndim=e.ndim,this.maxNDim=e.maxNDim,this.minNDim=e.minNDim,this.axes=e.axes||{}}},Pr=class{constructor(e,t,n,s,r,a,o){this.dtype=e,this.shape=t,this.sourceLayer=n,this.inputs=s,this.callArgs=r,this.outputTensorIndex=o,this.id=E8(),a!=null&&(this.originalName=_8(a),this.name=D8(this.originalName)),this.rank=t.length}},uU=0,g2=class{constructor(e,t){this.callArgs=t,this.id=uU++,this.outboundLayer=e.outboundLayer,this.inboundLayers=e.inboundLayers,this.nodeIndices=e.nodeIndices,this.tensorIndices=e.tensorIndices,this.inputTensors=e.inputTensors,this.outputTensors=e.outputTensors,this.inputMasks=e.inputMasks,this.outputMasks=e.outputMasks,this.inputShapes=e.inputShapes,this.outputShapes=e.outputShapes;for(let n of e.inboundLayers)n!=null&&n.outboundNodes.push(this);e.outboundLayer.inboundNodes.push(this)}getConfig(){let e=[];for(let t of this.inboundLayers)t!=null?e.push(t.name):e.push(null);return{outboundLayer:this.outboundLayer?this.outboundLayer.name:null,inboundLayers:e,nodeIndices:this.nodeIndices,tensorIndices:this.tensorIndices}}},cU=0,ut=class extends de.Serializable{constructor(e={}){super(),this._callHook=null,this._addedWeightNames=[],this._stateful=!1,this.id=cU++,this.activityRegularizer=null,this.inputSpec=null,this.supportsMasking=!1,this._trainableWeights=[],this._nonTrainableWeights=[],this._losses=[],this._updates=[],this._built=!1,this.inboundNodes=[],this.outboundNodes=[];let t=e.name;if(!t){let n=this.getClassName();t=ga(n)+"_"+o2(n)}if(this.name=t,this.trainable_=e.trainable==null?!0:e.trainable,e.inputShape!=null||e.batchInputShape!=null){let n;if(e.batchInputShape!=null)n=e.batchInputShape;else if(e.inputShape!=null){let r=null;e.batchSize!=null&&(r=e.batchSize),n=[r].concat(e.inputShape)}this.batchInputShape=n;let s=e.dtype;s==null&&(s=e.inputDType),s==null&&(s="float32"),this.dtype=s}e.weights!=null?this.initialWeights=e.weights:this.initialWeights=null,this._refCount=null,this.fastWeightInitDuringBuild=!1}static nodeKey(e,t){return e.name+"_ib-"+t.toString()}getNodeAtIndex(e,t){if(this.inboundNodes.length===0)throw new $r(`The layer has never been called and thus has no defined ${t}.`);if(this.inboundNodes.length<=e)throw new j(`Asked to get ${t} at node ${e}, but the layer has only ${this.inboundNodes.length} inbound nodes.`);return this.inboundNodes[e]}getInputAt(e){return ys(this.getNodeAtIndex(e,"input").inputTensors)}getOutputAt(e){return ys(this.getNodeAtIndex(e,"output").outputTensors)}get input(){if(this.inboundNodes.length>1)throw new ma(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer input" is ill-defined. Use \`getInputAt(nodeIndex)\` instead.`);if(this.inboundNodes.length===0)throw new ma(`Layer ${this.name} is not connected, no input to return.`);return ys(this.getNodeAtIndex(0,"input").inputTensors)}get output(){if(this.inboundNodes.length===0)throw new ma(`Layer ${this.name} has no inbound nodes.`);if(this.inboundNodes.length>1)throw new ma(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer output" is ill-defined. Use \`getOutputAt(nodeIndex)\` instead.`);return ys(this.getNodeAtIndex(0,"output").outputTensors)}get losses(){return this._losses}calculateLosses(){return this.losses.map(e=>e())}get updates(){return this._updates}get built(){return this._built}set built(e){this._built=e}get trainable(){return this.trainable_}set trainable(e){this._trainableWeights.forEach(t=>t.trainable=e),this.trainable_=e}get trainableWeights(){return this.trainable_?this._trainableWeights.filter(e=>e.trainable):[]}set trainableWeights(e){this._trainableWeights=e}get nonTrainableWeights(){return this.trainable?this._trainableWeights.filter(e=>!e.trainable).concat(this._nonTrainableWeights):this._trainableWeights.concat(this._nonTrainableWeights)}set nonTrainableWeights(e){this._nonTrainableWeights=e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}get stateful(){return this._stateful}resetStates(){if(!this.stateful)throw new Error("Cannot call the resetStates() method of a non-stateful Layer object.")}assertInputCompatibility(e){if(e=Dt(e),this.inputSpec==null||this.inputSpec.length===0)return;let t=Dt(this.inputSpec);if(e.length!==t.length)throw new j(`Layer ${this.name} expects ${t.length} inputs, but it received ${e.length} input tensors. Input received: ${e}`);for(let n=0;n<e.length;n++){let s=e[n],r=t[n];if(r==null)continue;let a=s.rank;if(r.ndim!=null&&a!==r.ndim)throw new j(`Input ${n} is incompatible with layer ${this.name}: expected ndim=${r.ndim}, found ndim=${a}`);if(r.maxNDim!=null&&a>r.maxNDim)throw new j(`Input ${n} is incompatible with layer ${this.name}: expected max_ndim=${r.maxNDim}, found ndim=${a}`);if(r.minNDim!=null&&a<r.minNDim)throw new j(`Input ${n} is incompatible with layer ${this.name}: expected min_ndim=${r.minNDim}, found ndim=${a}.`);if(r.dtype!=null&&s.dtype!==r.dtype)throw new j(`Input ${n} is incompatible with layer ${this.name} : expected dtype=${r.dtype}, found dtype=${s.dtype}.`);if(r.axes){let o=s.shape;for(let i in r.axes){let l=Number(i),u=r.axes[i],c=l>=0?o[l]:o[o.length+l];if(u!=null&&[u,null].indexOf(c)===-1)throw new j(`Input ${n} is incompatible with layer ${this.name}: expected axis ${l} of input shape to have value ${u} but got shape ${o}.`)}}if(r.shape!=null)for(let o=0;o<r.shape.length;++o){let i=r.shape[o],l=s.shape[o];if(i!=null&&l!=null&&i!==l)throw new j(`Input ${n} is incompatible with layer ${this.name}: expected shape=${r.shape}, found shape=${s.shape}.`)}}}call(e,t){return e}invokeCallHook(e,t){this._callHook!=null&&this._callHook(e,t)}setCallHook(e){this._callHook=e}clearCallHook(){this._callHook=null}apply(e,t){t=t||{},this.assertNotDisposed();let n=Dt(e),s=!0;for(let a of n)if(!(a instanceof Pr)){s=!1;break}let r=!0;for(let a of n)if(a instanceof Pr){r=!1;break}if(s===r)throw new j("Arguments to apply() must be all SymbolicTensors or all Tensors");return Zi(this.name,()=>{if(!this.built){this.assertInputCompatibility(e);let a=[];for(let o of Dt(e))a.push(o.shape);this.build(ys(a)),this.built=!0,this.initialWeights&&this.setWeights(this.initialWeights),this._refCount===null&&r&&(this._refCount=1)}if(this.assertInputCompatibility(e),r){let a=this.call(e,t),o=Dt(a),i=[];for(let l of o)n.indexOf(l)!==-1&&(l=l.clone()),i.push(l);if(a=ys(i),this.activityRegularizer!=null)throw new Xe("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return a}else{let a=dU(e),o=this.computeOutputShape(a),i,l=pU(e);if(this.warnOnIncompatibleInputShape(Array.isArray(e)?a[0]:a),o!=null&&o.length>0&&Array.isArray(o[0])?i=o.map((u,c)=>new Pr(l,u,this,Dt(e),t,this.name,c)):i=new Pr(l,o,this,Dt(e),t,this.name),this.addInboundNode(e,i,null,null,a,o,t),this._refCount++,this.activityRegularizer!=null)throw new Xe("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return i}})}warnOnIncompatibleInputShape(e){if(this.batchInputShape!=null)if(e.length!==this.batchInputShape.length)console.warn(`The rank of the input tensor provided (shape: ${JSON.stringify(e)}) does not match that of the batchInputShape (${JSON.stringify(this.batchInputShape)}) of the layer ${this.name}`);else{let t=!1;this.batchInputShape.forEach((n,s)=>{n!=null&&e[s]!=null&&e[s]!==n&&(t=!0)}),t&&console.warn(`The shape of the input tensor (${JSON.stringify(e)}) does not match the expectation of layer ${this.name}: ${JSON.stringify(this.batchInputShape)}`)}}get outputShape(){if(this.inboundNodes==null||this.inboundNodes.length===0)throw new ma(`The layer ${this.name} has never been called and thus has no defined output shape.`);let e=[];for(let t of this.inboundNodes){let n=JSON.stringify(t.outputShapes);e.indexOf(n)===-1&&e.push(n)}if(e.length===1){let t=this.inboundNodes[0].outputShapes;return Array.isArray(t)&&Array.isArray(t[0])&&t.length===1?t[0]:t}else throw new ma(`The layer ${this.name} has multiple inbound nodes with different output shapes. Hence the notion of "output shape" is ill-defined for the layer.`)}countParams(){if(!this.built)throw new $r(`You tried to call countParams() on ${this.name}, but the layer is not built yet. Build it first by calling build(batchInputShape).`);return Tm(this.weights)}build(e){this.built=!0}getWeights(e=!1){return q3(e?this.trainableWeights:this.weights)}setWeights(e){Z(()=>{let t=this.weights;if(t.length!==e.length)throw new j(`You called setWeights(weights) on layer "${this.name}" with a weight list of length ${e.length}, but the layer was expecting ${t.length} weights. Provided weights: ${e}...`);if(t.length===0)return;let n=[],s=q3(t);for(let r=0;r<s.length;++r){let a=s[r],o=t[r],i=e[r];if(!v.arraysEqual(a.shape,i.shape))throw new j(`Layer weight shape ${a.shape} not compatible with provided weight shape ${i.shape}`);n.push([o,i])}g5(n)})}addWeight(e,t,n,s,r,a,o,i){if(this._addedWeightNames.indexOf(e)!==-1)throw new j(`Duplicate weight name ${e} for layer ${this.name}`);this._addedWeightNames.push(e),n==null&&(n="float32"),this.fastWeightInitDuringBuild&&(s=i!=null?i():Ft("zeros"));let l=s.apply(t,n),u=new O8(l,n,e,a,o);return l.dispose(),r!=null&&this.addLoss(()=>r.apply(u.read())),a==null&&(a=!0),a?this._trainableWeights.push(u):this._nonTrainableWeights.push(u),u}setFastWeightInitDuringBuild(e){this.fastWeightInitDuringBuild=e}addLoss(e){e==null||Array.isArray(e)&&e.length===0||(e=Dt(e),this._losses!==void 0&&this._losses!==null&&this.losses.push(...e))}computeOutputShape(e){return e}computeMask(e,t){if(!this.supportsMasking){if(t!=null)if(Array.isArray(t))t.forEach(n=>{if(n!=null)throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`)});else throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`);return null}return t}addInboundNode(e,t,n,s,r,a,o=null){let i=Dt(e);t=Dt(t),n=Dt(n),s=Dt(s),r=Cm(r),a=Cm(a);let l=[],u=[],c=[];for(let p of i)l.push(p.sourceLayer),u.push(p.nodeIndex),c.push(p.tensorIndex);new g2({outboundLayer:this,inboundLayers:l,nodeIndices:u,tensorIndices:c,inputTensors:i,outputTensors:t,inputMasks:n,outputMasks:s,inputShapes:r,outputShapes:a},o);for(let p=0;p<t.length;p++)t[p].sourceLayer=this,t[p].nodeIndex=this.inboundNodes.length-1,t[p].tensorIndex=p}getConfig(){let e={name:this.name,trainable:this.trainable};return this.batchInputShape!=null&&(e.batchInputShape=this.batchInputShape),this.dtype!=null&&(e.dtype=this.dtype),e}disposeWeights(){return this.weights.forEach(e=>e.dispose()),this.weights.length}assertNotDisposed(){if(this._refCount===0)throw new Error(`Layer '${this.name}' is already disposed.`)}dispose(){if(!this.built)throw new Error(`Cannot dispose Layer ${this.name} because it has not been built yet.`);if(this._refCount===null)throw new Error(`Cannot dispose Layer ${this.name} because it has not been used yet.`);this.assertNotDisposed();let e=0;return--this._refCount===0&&(e=this.disposeWeights()),{refCountAfterDispose:this._refCount,numDisposedVariables:e}}};function dU(e){e=Dt(e);let t=[];for(let n of e)t.push(n.shape);return ys(t)}function pU(e){return"float32"}function M8(e,t,n){if((t==null||n!=null&&n>0)&&(t=e.sourceLayer,n=e.nodeIndex),t.inboundNodes.length===0)return[e];{let s=t.inboundNodes[n];if(s.inboundLayers.length===0)return s.inputTensors;{let r=[];for(let a=0;a<s.inboundLayers.length;a++){let o=s.inputTensors[a],i=s.inboundLayers[a],l=s.nodeIndices[a],u=M8(o,i,l);for(let c of u)r.indexOf(c)===-1&&r.push(c)}return r}}}var nd=class extends ut{constructor(e){if(super({dtype:e.dtype,name:e.name!=null?e.name:o2("input").toString()}),e.batchSize==null&&(e.batchSize=null),e.sparse==null&&(e.sparse=!1),this.trainable=!1,this.built=!0,this.sparse=e.sparse,e.inputShape!=null&&e.batchInputShape!=null)throw new j("Only provide the inputShape OR batchInputShape argument to inputLayer, not both at the same time.");let t=e.batchInputShape;if(t==null){if(e.inputShape==null)throw new j("An InputLayer should be passed either a `batchInputShape` or an `inputShape`.");t=[e.batchSize].concat(e.inputShape)}else if(e.batchSize!=null)throw new j("Cannot specify batchSize if batchInputShape is specified when creating an InputLayer.");let n=e.dtype||"float32";this.batchInputShape=t,this.dtype=n,this.inputSpec=[{shape:t}];let s=new Pr(this.dtype,this.batchInputShape,this,[],{},this.name);s.nodeIndex=0,s.tensorIndex=0,new g2({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:[s],outputTensors:[s],inputMasks:[null],outputMasks:[null],inputShapes:[t],outputShapes:[t]})}apply(e,t){throw new j(`Cannot pass any input to an InputLayer's apply() method. InputLayer name: ${this.name}`)}dispose(){return{refCountAfterDispose:this._refCount,numDisposedVariables:0}}getConfig(){return{batchInputShape:this.batchInputShape,dtype:this.dtype,sparse:this.sparse,name:this.name}}};nd.className="InputLayer";de.registerClass(nd);function z8(e){if(e.batchShape==null&&e.shape==null)throw new Error("Please provide to Input either a `shape` or a `batchShape` argument. Note that `shape` does not include the batch dimension.");if(e.batchShape!=null&&e.shape!=null)throw new j("Please provide either a `shape` or `batchShape` argument to Input, but not both.");let t=e.batchShape;e.shape!=null&&t==null&&(t=[null].concat(e.shape));let n=e.dtype;return n==null&&(n="float32"),new nd({batchInputShape:t,name:e.name,dtype:n,sparse:e.sparse}).inboundNodes[0].outputTensors[0]}function hU(e,t){if(e.dtype==null||e.dtype===t.dtype)return t;try{return ye(t,e.dtype)}catch(n){throw new j(`The dtype of the feed (${t.dtype}) can not be cast to the dtype of the key '${e.name}' (${e.dtype}).`)}}var ji=class{constructor(e){if(this.id2Value={},this.id2Mask={},this.name2Id={},e instanceof ji)for(let t in e.id2Value)this.id2Value[t]=e.id2Value[t],t in e.id2Mask&&(this.id2Mask[t]=e.id2Mask[t]);else{if(e==null)return;for(let t of e)this.add(t.key,t.value)}}add(e,t,n){if(this.id2Value[e.id]==null)this.id2Value[e.id]=hU(e,t),this.name2Id[e.name]=e.id,n!=null&&(this.id2Mask[e.id]=n);else throw new j(`Duplicate key: name=${e.name}, id=${e.id}`);return this}addFeed(e){this.add(e.key,e.value)}hasKey(e){return this.id2Value[e.id]!=null}names(){return Object.keys(this.name2Id)}getValue(e){if(e instanceof Pr){if(this.id2Value[e.id]==null)throw new j(`Nonexistent key: ${e.name}`);return this.id2Value[e.id]}else{let t=this.name2Id[e];if(t==null)throw new j(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Value[t]}}getMask(e){if(e instanceof Pr){if(this.id2Value[e.id]==null)throw new j(`Nonexistent key: ${e.name}`);return this.id2Mask[e.id]}else{let t=this.name2Id[e];if(t==null)throw new j(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Mask[t]}}disposeMasks(){this.id2Mask!=null&&J(this.id2Mask)}},Nm=new C8,Em=new C8;function fU(e){Nm!=null&&Nm.setMaxEntries(e),Em!=null&&Em.setMaxEntries(e)}function ip(e,t,n,s){let r=n==null?!1:n.training,a=Array.isArray(e),o=a?e:[e],i=o.map(f=>f.name),l=[],u=t.names();for(let f of i)u.indexOf(f)!==-1?l.push(t.getValue(f)):l.push(null);s!=null&&(s.maxNumTensors=-1/0,s.minNumTensors=1/0);let c=i.join(",")+"|"+t.names().sort().join(","),p=Nm.get(c),d;if(p==null){let f=mU(o,t);p=f.sorted,d=f.recipientCounts,Nm.put(c,p),Em.put(c,d)}d={},r||Object.assign(d,Em.get(c));let h=new ji(t);for(let f=0;f<p.length;++f){if(s!=null){let _=Sm().numTensors;_>s.maxNumTensors&&(s.maxNumTensors=_),_<s.minNumTensors&&(s.minNumTensors=_)}let m=p[f],g=m.sourceLayer;if(g instanceof nd)continue;let y=[],x=[],A=[],b=!1;for(let _ of m.inputs){let D=h.getValue(_),R=h.getMask(_);y.push(D),x.push(R),R!=null&&(b=!0),r||(d[_.name]--,d[_.name]===0&&!t.hasKey(_)&&i.indexOf(_.name)===-1&&!D.isDisposed&&_.sourceLayer.stateful!==!0&&A.push(D))}b&&(n=n||{},n.mask=x[0]);let w=Dt(g.apply(y,n)),S=null;g.supportsMasking&&(S=g.computeMask(y,x));let k=yU(m),E=Array.isArray(k)?k:[k];for(let _=0;_<E.length;++_){h.hasKey(E[_])||h.add(E[_],w[_],Array.isArray(S)?S[0]:S);let D=i.indexOf(E[_].name);D!==-1&&(l[D]=w[_])}r||J(A)}return h.disposeMasks(),a?l:l[0]}function mU(e,t){v.assert(e!=null&&e.length>0,()=>"Expected at least one fetch, got none");let n=[],s={};if(e.length===1){let r=Zv(e[0],t);n=r.sorted,s=r.recipientMap}else{let r=new Set;for(let a of e){let{sorted:o,recipientMap:i}=Zv(a,t);for(let l of o)r.has(l.name)||(n.push(l),r.add(l.name));for(let l in i)s[l]==null&&(s[l]=new Set),i[l].forEach(u=>s[l].add(u))}}return{sorted:n,recipientCounts:gU(s)}}function gU(e){let t={};for(let n in e)t[n]=e[n].size;return t}function Zv(e,t){let n=new Set,s=[],r={};for(let i of t.names())n.add(i);let a=[],o=[];for(a.push(e);a.length>0;){let i=a[a.length-1];if(n.has(i.name)){a.pop();continue}let l=o[o.length-1]===a.length-1;if(i.inputs.length===0||l)a.pop(),s.push(i),n.add(i.name),l&&o.pop();else{o.push(a.length-1);for(let u of i.inputs)r[u.name]==null&&(r[u.name]=new Set),r[u.name].add(i.name),!n.has(u.name)&&a.push(u)}}return{sorted:s,recipientMap:r}}function yU(e){let t;if(e.sourceLayer.inboundNodes.length===1)t=e.sourceLayer.output;else{let n=null;for(let s=0;s<e.sourceLayer.inboundNodes.length;++s)for(let r of e.sourceLayer.inboundNodes[s].outputTensors)if(r.id===e.id){n=s;break}t=e.sourceLayer.getOutputAt(n)}return t}var AU=H();AU.registerFlag("TOPOLOGICAL_SORT_CACHE_MAX_ENTRIES",()=>100,fU);var L8={};He(L8,{maxNorm:()=>xU,minMaxNorm:()=>wU,nonNeg:()=>vU,unitNorm:()=>bU});function y5(e,t){return Z(()=>Fn(ke(z(e,e),t,!0)))}var _h=class extends de.Serializable{getConfig(){return{}}},A5=class extends _h{constructor(e){super(),this.defaultMaxValue=2,this.defaultAxis=0,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return Z(()=>{let t=y5(e,this.axis),n=xs(t,0,this.maxValue);return z(e,fe(n,ue(fn(),t)))})}getConfig(){return{maxValue:this.maxValue,axis:this.axis}}};A5.className="MaxNorm";de.registerClass(A5);var x5=class extends _h{constructor(e){super(),this.defaultAxis=0,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return Z(()=>fe(e,ue(fn(),y5(e,this.axis))))}getConfig(){return{axis:this.axis}}};x5.className="UnitNorm";de.registerClass(x5);var b5=class extends _h{apply(e){return Wr(e)}};b5.className="NonNeg";de.registerClass(b5);var v5=class extends _h{constructor(e){super(),this.defaultMinValue=0,this.defaultMaxValue=1,this.defaultRate=1,this.defaultAxis=0,this.minValue=e.minValue!=null?e.minValue:this.defaultMinValue,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.rate=e.rate!=null?e.rate:this.defaultRate,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return Z(()=>{let t=y5(e,this.axis),n=ue(z(this.rate,xs(t,this.minValue,this.maxValue)),z(1-this.rate,t));return z(e,fe(n,ue(fn(),t)))})}getConfig(){return{minValue:this.minValue,maxValue:this.maxValue,rate:this.rate,axis:this.axis}}};v5.className="MinMaxNorm";de.registerClass(v5);var Yv={maxNorm:"MaxNorm",minMaxNorm:"MinMaxNorm",nonNeg:"NonNeg",unitNorm:"UnitNorm"};function yn(e){return o5(e)}function Jv(e,t={}){return Th(e,de.SerializationMap.getMap().classNameMap,t,"constraint")}function An(e){if(e==null)return null;if(typeof e=="string"){let n={className:e in Yv?Yv[e]:e,config:{}};return Jv(n)}else return e instanceof _h?e:Jv(e)}function xU(e){return new A5(e)}function bU(e){return new x5(e)}function vU(){return new b5}function wU(e){return new v5(e)}var B8={};He(B8,{constant:()=>IU,glorotNormal:()=>DU,glorotUniform:()=>_U,heNormal:()=>$U,heUniform:()=>PU,identity:()=>EU,leCunNormal:()=>FU,leCunUniform:()=>OU,ones:()=>SU,orthogonal:()=>MU,randomNormal:()=>TU,randomUniform:()=>CU,truncatedNormal:()=>NU,varianceScaling:()=>RU,zeros:()=>kU});function kU(){return new u5}function SU(){return new u2}function IU(e){return new c5(e)}function CU(e){return new d5(e)}function TU(e){return new p5(e)}function NU(e){return new h5(e)}function EU(e){return new f5(e)}function RU(e){return new bs(e)}function _U(e){return new c2(e)}function DU(e){return new d2(e)}function $U(e){return new p2(e)}function PU(e){return new h2(e)}function FU(e){return new f2(e)}function OU(e){return new m2(e)}function MU(e){return new m5(e)}var W8={};He(W8,{Layer:()=>ut,RNN:()=>ia,RNNCell:()=>Oh,activation:()=>uH,add:()=>AH,alphaDropout:()=>tj,average:()=>xH,averagePooling1d:()=>Nx,averagePooling2d:()=>Ex,averagePooling3d:()=>Rx,avgPool1d:()=>NH,avgPool2d:()=>RH,avgPool3d:()=>DH,avgPooling1d:()=>EH,avgPooling2d:()=>_H,avgPooling3d:()=>$H,batchNormalization:()=>IH,bidirectional:()=>qH,concatenate:()=>bH,conv1d:()=>eH,conv2d:()=>tH,conv2dTranspose:()=>nH,conv3d:()=>sH,conv3dTranspose:()=>rH,convLstm2d:()=>UH,convLstm2dCell:()=>GH,cropping2D:()=>oH,dense:()=>cH,depthwiseConv2d:()=>lH,dot:()=>SH,dropout:()=>dH,elu:()=>XG,embedding:()=>yH,flatten:()=>hH,gaussianDropout:()=>ej,gaussianNoise:()=>QH,globalAveragePooling1d:()=>PH,globalAveragePooling2d:()=>FH,globalMaxPool1d:()=>KH,globalMaxPool2d:()=>ZH,globalMaxPooling1d:()=>Dk,globalMaxPooling2d:()=>$k,gru:()=>MH,gruCell:()=>zH,input:()=>ak,inputLayer:()=>qG,layerNormalization:()=>CH,leakyReLU:()=>ZG,lstm:()=>LH,lstmCell:()=>BH,masking:()=>nj,maxPool1d:()=>YH,maxPool2d:()=>JH,maxPooling1d:()=>Pk,maxPooling2d:()=>Fk,maxPooling3d:()=>OH,maximum:()=>vH,minimum:()=>wH,multiply:()=>kH,permute:()=>gH,prelu:()=>YG,reLU:()=>KG,repeatVector:()=>fH,reshape:()=>mH,rnn:()=>HH,separableConv2d:()=>aH,simpleRNN:()=>WH,simpleRNNCell:()=>VH,softmax:()=>JG,spatialDropout1d:()=>pH,stackedRNNCells:()=>jH,thresholdedReLU:()=>QG,timeDistributed:()=>XH,upSampling2d:()=>iH,zeroPadding2d:()=>TH});async function Ha(e){if(e==null)return;let t=[],n=[],s=[];for(let r in e){let a=e[r];if(typeof a!="number"){let o=a;t.push(o.data()),n.push(r),s.push(o)}}if(t.length>0){let r=await Promise.all(t);for(let a=0;a<r.length;++a)e[n[a]]=r[a][0];J(s)}}function V8(e){if(e!=null)for(let t in e){let n=e[t];typeof n!="number"&&n.dispose()}}var Qv;(function(e){e[e.SILENT=0]="SILENT",e[e.VERBOSE=1]="VERBOSE"})(Qv||(Qv={}));var zU=125,cc=class{constructor(){this.validationData=null}setParams(e){this.params=e}async onEpochBegin(e,t){}async onEpochEnd(e,t){}async onBatchBegin(e,t){}async onBatchEnd(e,t){}async onTrainBegin(e){}async onTrainEnd(e){}setModel(e){}},U8=class{constructor(e,t=10){e==null&&(e=[]),this.callbacks=e,this.queueLength=t}append(e){this.callbacks.push(e)}setParams(e){for(let t of this.callbacks)t.setParams(e)}setModel(e){for(let t of this.callbacks)t.setModel(e)}async onEpochBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochBegin(e,t)}async onEpochEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochEnd(e,t)}async onBatchBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchBegin(e,t)}async onBatchEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchEnd(e,t)}async onTrainBegin(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainBegin(e)}async onTrainEnd(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainEnd(e)}},LU=class extends cc{constructor(){super()}async onEpochBegin(e){this.seen=0,this.totals={}}async onBatchEnd(e,t){t==null&&(t={});let n=t.size==null?0:t.size;this.seen+=n;for(let s in t){let r=t[s];if(typeof r=="number")this.totals.hasOwnProperty(s)||(this.totals[s]=0),this.totals[s]=this.totals[s]+r*n;else{let a;s in this.totals?a=this.totals[s]:this.totals[s]=0;let o=Z(()=>ue(this.totals[s],z(r,n)));this.totals[s]=o,a!=null&&a.dispose()}}}async onEpochEnd(e,t){if(t!=null)for(let n of this.params.metrics)this.totals[n]!=null&&(typeof this.totals[n]=="number"?t[n]=this.totals[n]/this.seen:Z(()=>{let s=z(fe(1,this.seen),this.totals[n]);t[n]=s,this.totals[n].dispose(),kn(t[n])}))}},G8=class extends cc{async onTrainBegin(e){this.epoch=[],this.history={}}async onEpochEnd(e,t){t==null&&(t={}),this.epoch.push(e);for(let n in t)this.history[n]==null&&(this.history[n]=[]),this.history[n].push(t[n])}async syncData(){let e=[],t=[],n=[];for(let r in this.history){let a=this.history[r];for(let o=0;o<a.length;++o)if(typeof a[o]!="number"){let i=a[o];e.push(i.data()),t.push(r),n.push(o)}}let s=await Promise.all(e);for(let r=0;r<s.length;++r)this.history[t[r]][n[r]].dispose(),this.history[t[r]][n[r]]=s[r][0]}},H8=class extends cc{constructor(e,t){if(super(),this.currentEpoch=0,this.nowFunc=e.nowFunc,this.nextFrameFunc=e.nextFrameFunc||r5,this.yieldEvery=t||"auto",this.yieldEvery==="auto"&&(this.yieldEvery=zU),this.yieldEvery==="never"&&e.onYield!=null)throw new Error("yieldEvery is `never` but you provided an `onYield` callback. Either change `yieldEvery` or remove the callback");v.isNumber(this.yieldEvery)&&(this.maybeWait=BV(this.maybeWait.bind(this),this.yieldEvery,this.nowFunc)),this.trainBegin=e.onTrainBegin,this.trainEnd=e.onTrainEnd,this.epochBegin=e.onEpochBegin,this.epochEnd=e.onEpochEnd,this.batchBegin=e.onBatchBegin,this.batchEnd=e.onBatchEnd,this.yield=e.onYield}async maybeWait(e,t,n){let s=[];this.yield!=null&&(await Ha(n),s.push(this.yield(e,t,n))),s.push(this.nextFrameFunc()),await Promise.all(s)}async onEpochBegin(e,t){this.currentEpoch=e,this.epochBegin!=null&&(await Ha(t),await this.epochBegin(e,t))}async onEpochEnd(e,t){let n=[];this.epochEnd!=null&&(await Ha(t),n.push(this.epochEnd(e,t))),this.yieldEvery==="epoch"&&n.push(this.nextFrameFunc()),await Promise.all(n)}async onBatchBegin(e,t){this.batchBegin!=null&&(await Ha(t),await this.batchBegin(e,t))}async onBatchEnd(e,t){let n=[];this.batchEnd!=null&&(await Ha(t),n.push(this.batchEnd(e,t))),this.yieldEvery==="batch"?n.push(this.nextFrameFunc()):v.isNumber(this.yieldEvery)&&n.push(this.maybeWait(this.currentEpoch,e,t)),await Promise.all(n)}async onTrainBegin(e){this.trainBegin!=null&&(await Ha(e),await this.trainBegin(e))}async onTrainEnd(e){this.trainEnd!=null&&(await Ha(e),await this.trainEnd(e))}};function j8(e,t){return e==null&&(e={}),e instanceof cc?[e]:Array.isArray(e)&&e[0]instanceof cc?e:Dt(e).map(s=>new H8(s,t))}var pr=class{constructor(){}static registerCallbackConstructor(e,t){v.assert(e>=0&&Number.isInteger(e),()=>`Verbosity level is expected to be an integer >= 0, but got ${e}`),pr.checkForDuplicate(t),pr.constructors[e]==null&&(pr.constructors[e]=[]),pr.constructors[e].push(t)}static checkForDuplicate(e){for(let t in pr.constructors)pr.constructors[+t].forEach(s=>{if(s===e)throw new j("Duplicate callback constructor.")})}static clear(){pr.constructors={}}static createCallbacks(e){let t=[];for(let n in pr.constructors){let s=+n;e>=s&&t.push(...pr.constructors[s])}return t.map(n=>new n)}};pr.constructors={};function q8(e,t,n,s,r,a,o,i,l){let u=new G8,c=[new LU,...pr.createCallbacks(t)];e!=null&&c.push(...e),c.push(u);let p=new U8(c);return p.setParams({epochs:n,initialEpoch:s,samples:r,steps:a,batchSize:o,verbose:t,doValidation:i,metrics:l}),{callbackList:p,history:u}}function Or(e,t={},n=!1){return Th(e,de.SerializationMap.getMap().classNameMap,t,"layer",n)}function Rm(e,t){return Z(()=>{e.dtype!=="float32"&&(e=ye(e,"float32"));let n=ke(Eh(e),t,!0),s=Zc(n.shape,fn()),r=Fn(oa(n,s));return fe(e,r)})}function uu(e,t){return Z(()=>Wt(Eh(me(t,e)),-1))}function y2(e,t){return Z(()=>Wt(sn(me(t,e)),-1))}function sd(e,t){return Z(()=>{let n=me(e,t),s=xs(sn(e),fn(),Number.MAX_VALUE),r=sn(fe(n,s));return z(100,Wt(r,-1))})}function BU(e,t){return Z(()=>{let n=xs(t,fn(),Number.MAX_VALUE),s=Ms(ue(1,n)),r=xs(e,fn(),Number.MAX_VALUE),a=Ms(ue(1,r));return Wt(Eh(me(s,a)),-1)})}function WU(e,t){return Z(()=>{let n=oa(0,me(1,z(e,t)));return Wt(Eh(n),-1)})}function VU(e,t){return Z(()=>{let n=oa(0,me(1,z(e,t)));return Wt(n,-1)})}function UU(e,t){return Z(()=>{let n=ke(z(e,t),-1),s=gn(z(me(1,e),t),-1);return oa(0,ue(1,me(s,n)))})}function GU(e,t){return Z(()=>{let n=Math.log(2),s=me(t,e),r=me(ue(s,ru(z(-2,s))),n);return Wt(r,-1)})}function Rp(e,t,n=!1){return Z(()=>{if(n)t=ou(t);else{let s=ke(t,t.shape.length-1,!0);t=fe(t,s)}return t=xs(t,fn(),1-fn()),$t(ke(z(ye(e,"float32"),Ms(t)),t.shape.length-1))})}function _m(e,t,n=!1){return Z(()=>{let s=ye(Yc(JV(e)),"int32");t=xs(t,fn(),1-fn());let r=t.shape,a=V(rc(s,r[r.length-1]),r);return Rp(a,t,n)})}function HU(e,t){if(!v.arraysEqual(e.shape,t.shape))throw new j(`logits and labels must have the same shape, but got shapes ${JSON.stringify(e.shape)} and ${JSON.stringify(t.shape)}`);return Z(()=>{let n=Wr(t),s=$t(sn(t));return ue(me(n,z(t,e)),yh(Os(s)))})}function A2(e,t){return Z(()=>{let n;return n=xs(t,fn(),1-fn()),n=Ms(fe(n,me(1,n))),Wt(HU(e,n),-1)})}function jU(e,t){return Z(()=>{let n=xs(e,fn(),1),s=xs(t,fn(),1);return ke(z(e,Ms(fe(n,s))),-1)})}function qU(e,t){return Z(()=>{let n=Ms(ue(fn(),t));return Wt(me(t,z(e,n)),-1)})}function w5(e,t){return Z(()=>{let n=Rm(e,-1),s=Rm(t,-1),r=z(n,s);return $t(ke(r,-1))})}var Dm={meanSquaredError:uu,meanAbsoluteError:y2,meanAbsolutePercentageError:sd,meanSquaredLogarithmicError:BU,squaredHinge:WU,hinge:VU,categoricalHinge:UU,logcosh:GU,categoricalCrossentropy:Rp,sparseCategoricalCrossentropy:_m,binaryCrossentropy:A2,kullbackLeiblerDivergence:jU,poisson:qU,cosineProximity:w5};function x3(e){if(typeof e=="string"){if(e in Dm)return Dm[e];let t=`Unknown loss ${e}`;throw e.toLowerCase().includes("softmaxcrossentropy")&&(t=`Unknown loss ${e}. Use "categoricalCrossentropy" as the string name for tf.losses.softmaxCrossEntropy`),new j(t)}else return e}function k5(e,t){return Z(()=>{let n=z(.5,zs(t)),s=i2(ws(t,n),e.dtype);return Wt(Fs(e,s),-1)})}function S5(e,t){return Z(()=>i2(Fs(Ps(e,-1),Ps(t,-1)),"float32"))}function X8(e,t){return Z(()=>ye(ke(mr(Fs(e,1),Fs(t,1))),"float32"))}function XU(e,t){return Z(()=>ye(ke(mr(Fs(e,1),Fs(t,0))),"float32"))}function KU(e,t){return Z(()=>ye(ke(mr(Fs(e,0),Fs(t,1))),"float32"))}function K8(e,t){return Z(()=>{let n=X8(e,t),s=KU(e,t),r=ue(n,s);return ye(Gn(ws(r,0),fe(n,r),0),"float32")})}function ZU(e,t){return Z(()=>{let n=X8(e,t),s=XU(e,t),r=ue(n,s);return ye(Gn(ws(r,0),fe(n,r),0),"float32")})}function Z8(e,t){return A2(e,t)}function Y8(e,t){return e.rank===t.rank&&(e=rt(e,[e.rank-1])),t=Ps(t,-1),t.dtype!==e.dtype&&(t=ye(t,e.dtype)),ye(Fs(e,t),"float32")}var YU=uu,JU=uu,QU=y2,eG=y2,tG=sd,nG=sd,I5=Rp,sG=w5,J8=_m,$m={binaryAccuracy:k5,categoricalAccuracy:S5,precision:K8,categoricalCrossentropy:I5,sparseCategoricalCrossentropy:J8,mse:YU,MSE:JU,mae:QU,MAE:eG,mape:tG,MAPE:nG,cosine:sG};function rG(e){if(typeof e=="string"&&e in $m)return $m[e];if(typeof e!="string"&&e!=null)return e;throw new j(`Unknown metric ${e}`)}function Zf(e){if(Zr(e!==null,`Unknown LossOrMetricFn ${e}`),typeof e=="string")return e;{let t;for(let n of Object.keys(Dm))if(Dm[n]===e){t=n;break}if(t!==void 0)return t;for(let n of Object.keys($m))if($m[n]===e){t=n;break}return t!==void 0?t:e.name}}function aG(e){let t={Adagrad:()=>Li.adagrad(.01),Adadelta:()=>Li.adadelta(1,.95,fn()),Adam:()=>Li.adam(.001,.9,.999,fn()),Adamax:()=>Li.adamax(.002,.9,.999,fn(),0),RMSProp:()=>Li.rmsprop(.001,.9,0,fn()),SGD:()=>Li.sgd(.01)};if(t.adagrad=t.Adagrad,t.adadelta=t.Adadelta,t.adam=t.Adam,t.adamax=t.Adamax,t.rmsprop=t.RMSProp,t.sgd=t.SGD,e in t)return t[e]();throw new j(`Unknown Optimizer ${e}`)}var e7=1*1024*1024;function t7(e,t,n=!1){if(e==null||typeof e!="object"||Object.getPrototypeOf(e)!==Object.prototype||!X3(e))throw new Error("User-defined metadata is expected to be a JSON object, but is not.");if(n){let s=JSON.stringify(e);s.length>e7&&console.warn(`User-defined metadata of model "${t}" is too large in size (length=${s.length} when serialized). It is not recommended to store such large objects in user-defined metadata. Please make sure its serialized length is <= ${e7}.`)}}function X3(e){if(e===null)return!0;if(typeof e=="object")if(Object.getPrototypeOf(e)===Object.prototype){let t=Object.keys(e);for(let n of t)if(typeof n!="string"||!X3(e[n]))return!1;return!0}else if(Array.isArray(e)){for(let t of e)if(!X3(t))return!1;return!0}else return!1;else{let t=typeof e;return t==="string"||t==="number"||t==="boolean"}}function oG(e,t,n,s=console.log){let r=lG(e),a=["Layer (type)","Input Shape","Output shape","Param #"];r?(t=t||90,n=n||[.32,.61,.89,1]):(t=t||115,n=n||[.24,.48,.7,.8,1]),n[n.length-1]<=1&&(n=n.map(c=>Math.floor(t*c)));let o;if(!r){a.push("Receives inputs"),o=[];for(let c in e.nodesByDepth)o.push(...e.nodesByDepth[c])}s("_".repeat(t)),Pm(a,n,s),s("=".repeat(t));let i=e.layers;for(let c=0;c<i.length;++c)r?uG(i[c],n,s):cG(i[c],n,o,s),s((c===i.length-1?"=":"_").repeat(t));e.checkTrainableWeightsConsistency();let l=iG(e),u=Tm(e.nonTrainableWeights);s(`Total params: ${l+u}`),s(`Trainable params: ${l}`),s(`Non-trainable params: ${u}`),s("_".repeat(t))}function iG(e){let t;return e.collectedTrainableWeights!=null?t=Tm(e.collectedTrainableWeights):t=Tm(e.trainableWeights),t}function lG(e){let t=!0,n=[],s=[];for(let r in e.nodesByDepth)n.push(e.nodesByDepth[r]);for(let r of n){if(r.length>1||r.length===1&&r[0].inboundLayers.length>1){t=!1;break}s.push(...r)}if(t)for(let r of e.layers){let a=!1;for(let o of r.inboundNodes)if(s.indexOf(o)!==-1)if(a){t=!1;break}else a=!0;if(!t)break}return t}function Pm(e,t,n=console.log){let s="";for(let r=0;r<e.length;++r)r>0&&(s=s.slice(0,s.length-1)+" "),s+=e[r],s=s.slice(0,t[r]),s+=" ".repeat(t[r]-s.length);n(s)}function uG(e,t,n){let s,r;try{r=e.inboundNodes.map(l=>JSON.stringify(l.inputShapes)).join(",")}catch(l){r="multiple"}try{s=JSON.stringify(e.outputShape)}catch(l){s="multiple"}let a=e.name,o=e.getClassName(),i=[`${a} (${o})`,r,s,e.countParams().toString()];Pm(i,t,n)}function cG(e,t,n,s){let r,a;try{a=e.inboundNodes.map(p=>JSON.stringify(p.inputShapes)).join(",")}catch(p){a="multiple"}try{r=JSON.stringify(e.outputShape)}catch(p){r="multiple"}let o=[];for(let p of e.inboundNodes)if(!(n!=null&&n.length>0&&n.indexOf(p)===-1))for(let d=0;d<p.inboundLayers.length;++d){let h=p.inboundLayers[d].name,f=p.nodeIndices[d],m=p.tensorIndices[d];o.push(`${h}[${f}][${m}]`)}let i=e.name,l=e.getClassName(),u=o.length===0?"":o[0],c=[`${i} (${l})`,a,r,e.countParams().toString(),u];Pm(c,t,s);for(let p=1;p<o.length;++p)Pm(["","","","",o[p]],t,s)}function Q8(e,t,n){return(e==="inboundNodes"||e==="outputLayers"||e==="inputLayers")&&t===0&&typeof n=="string"}function _p(e,t){if(e===null)return null;if(typeof e=="string")return Ui(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let n=[],s=e.length;for(let r=0;r<s;++r){let a=e[r];Q8(t,r,a)?n.push(a):n.push(_p(a,t))}return n}else{let n={};for(let s of Object.keys(e)){let r=e[s];if(s==="name"&&typeof r=="string")n[s]=r;else{let a=Ui(s);n[a]=_p(r,a)}}return n}}function K3(e,t){if(e==null)return null;if(typeof e=="string")return ga(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let n=[],s=e.length;for(let r=0;r<s;++r){let a=e[r];Q8(t,r,a)?n.push(a):n.push(K3(a,t))}return n}else{let n={};for(let s of Object.keys(e)){let r=e[s],a=ga(s);(s==="name"||s==="className")&&typeof r=="string"?n[a]=r:n[a]=K3(r,s)}return n}}var C5="3.20.0",Xr=class extends ut{constructor(e){if(super({}),this.containerNodes=new Set,this.name=e.name,this.name==null){let y=this.getClassName().toLowerCase();this.name=o2(y)}if(this.supportsMasking=!1,this.trainable_=!0,Array.isArray(e.inputs)?this.inputs=e.inputs.slice():this.inputs=[e.inputs],Array.isArray(e.outputs)?this.outputs=e.outputs.slice():this.outputs=[e.outputs],Ya(this.inputs).length!==this.inputs.length)throw new j(`The list of inputs passed to the model is redundant. All inputs should only appear once. Found: ${this.inputs.map(y=>y.name)}`);Ya(this.outputs).length!==this.outputs.length&&console.warn(`The list of outputs passed to the model is redundant. All outputs should only appear once. Found: ${this.outputs.map(y=>y.name)}`),this.inputLayers=[],this.inputLayersNodeIndices=[],this.inputLayersTensorIndices=[],this.outputLayers=[],this.outputLayersNodeIndices=[],this.outputLayersTensorIndices=[],this.layers=[],this.internalContainerRefs=[];for(let y of this.outputs){let x=y.sourceLayer,A=y.nodeIndex,b=y.tensorIndex;this.outputLayers.push(x),this.outputLayersNodeIndices.push(A),this.outputLayersTensorIndices.push(b)}for(let y of this.inputs){let x=y.sourceLayer,A=y.nodeIndex,b=y.tensorIndex;Zr(A===0,"input layer has >1 nodes"),Zr(b===0,"input layer has >1 tensors"),this.inputLayers.push(x),this.inputLayersNodeIndices.push(A),this.inputLayersTensorIndices.push(b)}this.inputNames=[],this.outputNames=[],this.feedInputShapes=[],this.feedInputNames=[],this.feedOutputNames=[];for(let y=0;y<this.inputLayers.length;y++){let x=this.inputLayers[y];if(!(x instanceof nd))throw new TypeError(`Input layers to a LayersModel must be InputLayer objects. Received inputs: ${e.inputs}. Input ${y} (0-based) originates from layer type ${x.getClassName()}.`);this.inputNames.push(x.name),this.feedInputShapes.push(x.batchInputShape),this.feedInputNames.push(x.name)}for(let y of this.outputLayers)this.outputNames.push(y.name);this.internalInputShapes=this.inputs.map(y=>y.shape),this.internalOutputShapes=this.outputs.map(y=>y.shape);let t={},n={},s={},r={},a={},o=[],i=(y,x,A,b,w,S)=>{(b==null||w==null||S==null)&&(b=y.sourceLayer,w=y.nodeIndex,S=y.tensorIndex);let k=b.inboundNodes[w];if(A.indexOf(k)!==-1)throw new $r(`The tensor ${y.name} at layer "${b.name}" is part of a cycle.`);if(x.indexOf(k)!==-1)return;this.containerNodes.add(Xr.nodeKey(b,w)),b.id in a||(a[b.id]=Object.keys(a).length),A.indexOf(k)===-1&&A.push(k);let E=k.inboundLayers.length;for(let _=0;_<E;_++){let D=k.inputTensors[_],R=k.inboundLayers[_],P=k.nodeIndices[_],C=k.tensorIndices[_];i(D,x,A,R,P,C)}for(x.push(k);A.indexOf(k)>=0;)A.splice(A.indexOf(k),1);o.push(k)},l=[],u=[];for(let y of this.outputs)i(y,l,u);let c=o.slice().reverse();for(let y of c){n[y.id]=y,y.id in t||(t[y.id]=0);let x=t[y.id],A=s[y.outboundLayer.id]==null?0:s[y.outboundLayer.id];x=Math.max(x,A),s[y.outboundLayer.id]=x,r[y.outboundLayer.id]=y.outboundLayer,t[y.id]=x;for(let b=0;b<y.inboundLayers.length;b++){let w=y.inboundLayers[b],S=y.nodeIndices[b],k=w.inboundNodes[S],E=t[k.id]==null?0:t[k.id];t[k.id]=Math.max(x+1,E),n[k.id]=k}}let p={};for(let y in t){let x=t[y];x in p||(p[x]=[]),p[x].push(n[y])}let d={};for(let y in s){let x=s[y];x in d||(d[x]=[]),d[x].push(r[y])}let h=Object.keys(d).map(y=>parseInt(y,10)).sort(qf);this.layers=[];for(let y of h){let x=d[y];x.sort((A,b)=>{let w=a[A.id],S=a[b.id];return w<S?-1:w>S?1:0});for(let A of x)A instanceof Xr&&this.internalContainerRefs.push(A),this.layers.push(A)}this.layersByDepth=d,h=Object.keys(p).map(y=>parseInt(y,10)).sort(qf);let f=this.inputs.slice(),m=[];for(let y of h)for(let x of p[y]){let A=x.outboundLayer;if(A!=null){for(let b of x.inputTensors)if(f.indexOf(b)===-1)throw new $r(`Graph disconnected: cannot obtain value for tensor ${b} at layer "${A.name}". The following previous layers were accessed without issue: ${m}`);for(let b of x.outputTensors)f.push(b);m.push(A.name)}}this.nodesByDepth=p;let g=this.layers.map(y=>y.name);for(let y of g){let x=g.filter(A=>A===y).length;if(x!==1)throw new $r(`The name "${y}" is used ${x} times in the model. All layer names should be unique. Layer names: `+JSON.stringify(g))}this.outboundNodes=[],this.inboundNodes=[],new g2({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:this.inputs.map(y=>null),outputMasks:this.outputs.map(y=>null),inputShapes:this.inputs.map(y=>y.shape),outputShapes:this.outputs.map(y=>y.shape)}),this.built=!0,this._refCount=1}assertNotDisposed(){if(this._refCount===0)throw new Error(`Container '${this.name}' is already disposed.`)}dispose(){this.assertNotDisposed();let e={refCountAfterDispose:null,numDisposedVariables:0};if(--this._refCount===0){for(let t of this.layers)e.numDisposedVariables+=t.dispose().numDisposedVariables;for(let t of this.internalContainerRefs)e.numDisposedVariables+=t.dispose().numDisposedVariables}return e.refCountAfterDispose=this._refCount,e}get trainable(){return this.trainable_}set trainable(e){this.layers.forEach(t=>{t._trainableWeights.forEach(n=>n.trainable=e)}),this.trainable_=e}get trainableWeights(){if(this._trainableWeights.length>0)throw new j("Container instance unexpectedly contains _trainableWeights.The trainable weights of a Container are a union of the trainable weights of its consituent Layers. Its own _trainableWeights must remain an empty Array.");if(!this.trainable)return[];let e=[];for(let t of this.layers)e=e.concat(t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.layers)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.layers)t.push(...n.trainableWeights);return t.concat(e)}return e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}loadWeights(e,t=!0){let n={},s=0;for(let a of this.layers)for(let o of a.weights){if(n[o.originalName]!=null)throw new j(`Duplicate weight name: ${o.originalName}`);n[o.originalName]=o,s++}let r=[];for(let a in e){let o=a;if(n[a]==null){let i=a.split("/");o=i.slice(0,-2).concat([i[i.length-1]]).join("/")}if(n[o]!=null)r.push([n[o],e[a]]);else if(t)throw new j(`Provided weight data has no target variable: ${a}`);delete n[o]}if(t){let a=[];for(let o in n)a.push(o);if(a.length>0)throw new j(`${a.length} of ${s} weights are not set: ${a}`)}g5(r)}updatedConfig(){let e=this.getConfig(),t={};return t.className=this.getClassName(),t.config=e,t.kerasVersion=`tfjs-layers ${C5}`,t.backend="TensorFlow.js",t}toJSON(e,t=!0){let n=K3(this.updatedConfig());return t?JSON.stringify(n):n}call(e,t){return Z(()=>{e=Dt(e);let n=new ji;for(let s=0;s<this.inputs.length;++s)n.add(this.inputs[s],e[s]);return ip(this.outputs,n,t)})}computeMask(e,t){return Z(()=>{e=Dt(e);let n;return t==null?n=al(null,e.length):n=Dt(t),this.runInternalGraph(e,n)[1]})}computeOutputShape(e){let t=Cm(e);if(t.length!==this.inputLayers.length)throw new j(`Invalid inputShape argument ${e}: model has ${this.inputLayers.length} tensor inputs.`);let n={};for(let o=0;o<t.length;o++){let i=this.inputLayers[o],l=t[o],u=i.name+"_0_0";n[u]=l}let s=Object.keys(this.nodesByDepth).map(o=>parseInt(o,10)).sort(qf);if(s.length>1)for(let o of s){let i=this.nodesByDepth[o];for(let l of i){let u=l.outboundLayer;if(this.inputLayers.map(f=>f.id).indexOf(u.id)!==-1)continue;let c=[];for(let f=0;f<l.inboundLayers.length;f++){let m=l.inboundLayers[f],g=l.nodeIndices[f],y=l.tensorIndices[f],x=`${m.name}_${g}_${y}`,A=n[x];c.push(A)}let p=u.computeOutputShape(ys(c)),d=Cm(p),h=u.inboundNodes.indexOf(l);for(let f=0;f<d.length;f++){let m=`${u.name}_${h}_${f}`;n[m]=d[f]}}}let r=[],a=[];for(let o=0;o<this.outputLayers.length;o++){let i=this.outputLayers[o],l=this.outputLayersNodeIndices[o],u=this.outputLayersTensorIndices[o],c=`${i.name}_${l}_${u}`;a.push(c)}for(let o=0;o<a.length;o++){let i=a[o];Zr(i in n),r.push(n[i])}return ys(r)}runInternalGraph(e,t){t==null&&(t=al(null,e.length));let n={};for(let i=0;i<this.inputs.length;++i){let l=this.inputs[i],u=e[i],c=t[i];n[l.id]=[u,c]}let s=Object.keys(this.nodesByDepth).map(i=>parseInt(i,10)).sort(qf);for(let i of s){let l=this.nodesByDepth[i];for(let u of l){let c=u.outboundLayer,p=u.inputTensors,d=u.outputTensors,h=new Array;for(let f of p)f.id in n&&h.push(n[f.id]);if(h.length===p.length){let f={},m,g,y,x;if(u.callArgs!=null&&(f=u.callArgs),h.length===1){let[A,b]=h[0];f.mask==null&&(f.mask=b),y=Dt(c.call(A,f)),x=Dt(c.computeMask(A,b)),m=[A],g=[b]}else m=h.map(A=>A[0]),g=h.map(A=>A[1]),f.mask==null&&(f.mask=g),y=Dt(c.call(m,f)),x=Dt(c.computeMask(m,g));if(c.activityRegularizer)throw new Xe("LayersModel invocation with concrete Tensor value(s) in the presence of activity regularizer(s) is not supported yet.");for(let A=0;A<d.length;++A){let b=d[A],w=y[A],S=x[A];n[b.id]=[w,S]}}}}let r=[],a=[],o=[];for(let i of this.outputs){Zr(i.id in n,`Could not compute output ${i.name} : ${i.id}`);let[l,u]=n[i.id];o.push(l.shape),r.push(l),a.push(u)}return[r,a,o]}buildNodeConversionMap(e){let t={},n;for(let s of this.layers){n=s instanceof Xr?1:0;for(let r=0;r<s.inboundNodes.length;r++){let a=Xr.nodeKey(s,r);this.containerNodes.has(a)&&(t[a]=n,n+=1)}}return t}getLayer(e,t){if(t!=null){if(this.layers.length<=t)throw new j(`Was asked to retrieve layer at index ${t}, but model only has ${this.layers.length} layer(s).`);return this.layers[t]}else if(e==null)throw new j("Provide either a layer name or layer index");for(let n of this.layers)if(n.name===e)return n;throw new j(`No such layer: ${e}`)}calculateLosses(){return Z(()=>{let e=[];for(let t of this.layers)for(let n=0;n<t.inboundNodes.length;++n){let s=Xr.nodeKey(t,n);this.containerNodes.has(s)&&e.push(...t.calculateLosses())}return e})}getConfig(){let e={name:this.name},t=this.buildNodeConversionMap(this.layers),n=[];for(let a of this.layers){let o=a.getClassName(),i=a.getConfig(),l=[];for(let c=0;c<a.inboundNodes.length;c++){let p=a.inboundNodes[c],d=Xr.nodeKey(a,c),h={};if(this.containerNodes.has(d)){if(p.callArgs)try{JSON.stringify(p.callArgs),h=p.callArgs}catch(f){console.warn(`Layer ${a.name} was passed non-serializable keyword arguments: ${p.callArgs}. They will not be included in the serialized model (and thus will be missing at deserialization time).`),h={}}if(p.inboundLayers.length>0){let f=[];for(let m=0;m<p.inboundLayers.length;m++){let g=p.inboundLayers[m],y=p.nodeIndices[m],x=p.tensorIndices[m],A=Xr.nodeKey(g,y),b=t[A];b==null&&(b=0),f.push([g.name,b,x,h])}l.push(f)}}}let u={};u.name=a.name,u.className=o,u.config=i,u.inboundNodes=l,n.push(u)}e.layers=n;let s=[];for(let a=0;a<this.inputLayers.length;a++){let o=this.inputLayers[a],i=this.inputLayersNodeIndices[a],l=Xr.nodeKey(o,i);if(!this.containerNodes.has(l))continue;let u=t[l];u==null&&(u=0);let c=this.inputLayersTensorIndices[a];s.push([o.name,u,c])}e.inputLayers=s;let r=[];for(let a=0;a<this.outputLayers.length;a++){let o=this.outputLayers[a],i=this.outputLayersNodeIndices[a],l=Xr.nodeKey(o,i);if(!this.containerNodes.has(l))continue;let u=t[l];u==null&&(u=0);let c=this.outputLayersTensorIndices[a];r.push([o.name,u,c])}return e.outputLayers=r,e}static fromConfig(e,t,n={},s=!1){let r={},a={};function o(m,g){m.name in a?a[m.name].push(g):a[m.name]=[g]}function i(m,g){let y=[],x;for(let A of g){let b=A[0],w=A[1],S=A[2];if(x=A[3]==null?{}:A[3],!(b in r)){o(m,g);return}let k=r[b];if(k.inboundNodes.length<=w){o(m,g);return}let E=k.inboundNodes[w];y.push(E.outputTensors[S])}y.length>0&&m.apply(ys(y),x)}function l(m){let g=m.name,y=Or(m,t.customObjects!=null?t.customObjects:{});y.setFastWeightInitDuringBuild(s),r[g]=y,m.inboundNodes.forEach(A=>{if(!(A instanceof Array))throw new j(`Corrupted configuration, expected array for nodeData: ${A}`);o(y,A)})}let u=t.name,c=t.layers;for(let m of c)l(m);for(;!LV(a);)for(let m of c){let g=r[m.name];if(g.name in a){let y=a[g.name];delete a[g.name];for(let x of y)i(g,x)}}let p=[],d=[],h=t.inputLayers;for(let m of h){let g=m[0],y=m[1],x=m[2];Zr(g in r);let b=r[g].inboundNodes[y].outputTensors;p.push(b[x])}let f=t.outputLayers;for(let m of f){let g=m[0],y=m[1],x=m[2];Zr(g in r);let b=r[g].inboundNodes[y].outputTensors;d.push(b[x])}return new e({inputs:p,outputs:d,name:u})}get stateful(){if(this._stateful)throw new j("Container instance unexpectedly has _stateful = true. The statefulness of a Container is determined by the Layers it contains. Its _stateful property must remain the default false.");for(let e of this.layers)if(e.stateful)return!0;return!1}resetStates(){Z(()=>{this.layers.forEach(e=>{e.stateful&&e.resetStates()})})}};function dG(e,t,n){let s=t.length;if(e==null||Array.isArray(e)&&e.length===0)return t.map(r=>null);if(s===1)return Array.isArray(e)&&e.length===1?e:typeof e=="object"&&t[0]in e?[e[t[0]]]:[e];if(Array.isArray(e)){if(e.length!==s)throw new Error(`Provided ${n} is an array of ${e.length} element(s), but the model has ${s} outputs. Make sure a set of weights is provided for each model output.`);return e}else if(typeof e=="object"&&Object.keys(e).length>0&&typeof e[Object.keys(e)[0]]=="object"){let r=[];return t.forEach(a=>{a in e?r.push(e[a]):r.push(null)}),r}else throw new Error(`The model has multiple (${s}) outputs, so ${n} must be either an array with ${s} elements or an object with ${t} keys. Provided ${n} not understood: ${JSON.stringify(e)}`)}function ek(e,t){return dG(e,t,"classWeight")}async function tk(e,t,n,s){if(t!=null||s!=null)throw new Error("Support sampleWeight is not implemented yet");if(n!=null){let r=Z(()=>{if(e.shape.length===1)return Vn(e);if(e.shape.length===2){if(e.shape[1]>1)return Ps(e,1);if(e.shape[1]===1)return V(e,[e.shape[0]]);throw new Error(`Encountered unexpected last-dimension size (${e.shape[1]}) during handling of class weights. The size is expected to be >= 1.`)}else throw new Error(`Unexpected rank of target (y) tensor (${e.rank}) during handling of class weights. The rank is expected to be 1 or 2.`)}),a=Array.from(await r.data());J(r);let o=[];return a.forEach(i=>{if(n[i]==null)throw new Error(`classWeight must contain all classes in the training data. The class ${i} exists in the data but not in classWeight`);o.push(n[i])}),Pt(o,"float32")}else return null}function pG(e,t){return z(e,t)}var hG=32;function nk(e,t){let n,s,r=t;n=r.xs,s=r.ys,v.assert(n!=null&&s!=null,()=>`A Dataset iterator for fitDataset() is expected to generate objects of the form \`{xs: xVal, ys: yVal}\`, where the two values may be \`tf.Tensor\`, an array of Tensors, or a map of string to Tensor. The provided Dataset instead generates ${t}`);let a=n7("input",e.inputNames,n),o=n7("output",e.outputNames,s),i=a[0].shape[0];v.assert(a.length===e.inputs.length,()=>`LayersModel has ${e.inputs.length} inputs, but the dataset provides ${a.length} inputs. (Expected input keys: ${JSON.stringify(e.inputNames)})`),v.assert(o.length===e.outputs.length,()=>`LayersModel has ${e.outputs.length} outputs, but the dataset provides ${o.length} outputs. (Expected output keys: ${JSON.stringify(e.outputNames)})`);for(let l=0;l<a.length;l++)v.assert(a[l].shape[0]===i,()=>`Batch size mismatch: input ${e.inputNames[l]} has ${a[l].shape[0]}; expected ${i} based on input ${e.inputNames[0]}.`);for(let l=0;l<o.length;l++)v.assert(o[l].shape[0]===i,()=>`Batch size mismatch: output ${e.outputNames[l]} has ${o[l].shape[0]}; expected ${i} based on input ${e.inputNames[0]}.`);return{xs:a,ys:o}}function n7(e,t,n){if(n instanceof st)return[n];if(Array.isArray(n))return v.assert(n.length===t.length,()=>`Received an array of ${n.length} Tensors, but expected ${t.length} to match the ${e} keys ${t}.`),n;{let s=[];for(let r of t){if(n[r]==null)throw new j(`The feature data generated by the dataset lacks the required ${e} key '${r}'.`);s.push(n[r])}return s}}function fG(e){if(e.length===3)throw new Xe("Validation with sample weights is not implemented yet.");return{xs:e[0],ys:e[1]}}async function mG(e,t,n){let s=n.batchesPerEpoch!=null;if(v.assert(e.optimizer!=null,()=>"You must compile a model before training/testing. Use LayersModel.compile(modelCompileConfig)."),v.assert(n!=null,()=>"For fitDataset(), the 2nd argument (config) is required, but it is not provided in this call."),v.assert(n.epochs!=null&&n.epochs>0&&Number.isInteger(n.epochs),()=>`For fitDataset(), config.epochs is expected to be a positive integer, but got ${n.epochs}`),v.assert(!s||n.batchesPerEpoch>0&&Number.isInteger(n.batchesPerEpoch),()=>`For fitDataset(), config.batchesPerEpoch is expected to be a positive integer if specified, but got ${n.batchesPerEpoch}`),v.assert(n.validationSplit==null,()=>"`validationSplit` is not supported by `fitDataset()`. Use validationData instead."),e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;try{let r=n.validationData!=null,a,o;if(r)if(s7(n.validationData))v.assert(n.validationBatches==null||n.validationBatches>0&&Number.isInteger(n.validationBatches),()=>`For fitDataset() with dataset-based validation, config.validationBatches is expected not to be provided, or to be a positive integer, but got ${n.validationBatches}`);else{let g=fG(n.validationData);a=g.xs,o=g.ys}let i=e.makeTrainFunction(),l=e.getDedupedMetricsNames(),u;r?u=l.slice().concat(l.map(g=>"val_"+g)):u=l.slice();let c=j8(n.callbacks,n.yieldEvery),p=n.verbose==null?1:n.verbose,{callbackList:d,history:h}=q8(c,p,n.epochs,null,null,gG(t,n),null,r,u);d.setModel(e),e.history=h,await d.onTrainBegin(),e.stopTraining_=!1;let f=n.initialEpoch==null?0:n.initialEpoch,m=await t.iterator();for(;f<n.epochs;){let g={};await d.onEpochBegin(f);let y=0,x=0;for(s||(m=await t.iterator());!s||y<n.batchesPerEpoch;){let A=await m.next();if(s&&A.done){console.warn(`You provided \`batchesPerEpoch\` as ${n.batchesPerEpoch}, but your dataset iterator ran out of data after ${y} batches; interrupting training. Make sure that your dataset can generate at least \`batchesPerEpoch * epochs\` batches (in this case, ${n.batchesPerEpoch*n.epochs} batches). You may need to use the repeat() function when building your dataset.`);break}if(A.value!=null){let{xs:b,ys:w}=nk(e,A.value),S={};S.batch=x,S.size=b[0].shape[0],await d.onBatchBegin(x,S);let k=[];if(n.classWeight!=null){let D=ek(n.classWeight,e.outputNames);for(let R=0;R<D.length;++R)k.push(await tk(w[R],null,D[R]))}let E=b.concat(w).concat(k),_=i(E);J(E);for(let D=0;D<l.length;++D){let R=l[D],P=_[D];S[R]=P,kn(P)}await d.onBatchEnd(x,S),V8(S),x++,y++}if(s?y>=n.batchesPerEpoch:A.done){if(r){let b;s7(n.validationData)?b=Dt(await e.evaluateDataset(n.validationData,{batches:n.validationBatches})):b=Dt(e.evaluate(a,o,{batchSize:n.validationBatchSize==null?hG:n.validationBatchSize,verbose:0}));for(let w=0;w<e.metricsNames.length;++w)g[`val_${e.metricsNames[w]}`]=b[w]}break}if(e.stopTraining_)break}if(await d.onEpochEnd(f,g),f++,e.stopTraining_)break}return await d.onTrainEnd(),await e.history.syncData(),e.history}finally{e.isTraining=!1}}function gG(e,t){let n=null;return t.batchesPerEpoch!=null?n=t.batchesPerEpoch:Number.isFinite(e.size)&&(n=e.size),n}function s7(e){return typeof e.iterator=="function"}function yG(e){return typeof e.next=="function"}async function AG(e,t,n){n=n||{};let s=n.batches!=null,r=e.testFunction,a=[];if(n.verbose>0)throw new Xe("Verbose mode is not implemented yet.");v.assert(!s||n.batches>0&&Number.isInteger(n.batches),()=>`Test loop expects \`batches\` to be a positive integer, but received ${JSON.stringify(n.batches)}`);let o=yG(t)?t:await t.iterator(),i=0,l=0;for(;!s||l<n.batches;){let u=await o.next();if(a=Z(()=>{if(u.value){let{xs:c,ys:p}=nk(e,u.value),d=c.concat(p),h=Z(()=>r(d));if(J(d),l===0)for(let m=0;m<h.length;++m)a.push(Ce(0));let f=d[0].shape[0];for(let m=0;m<h.length;++m){let g=h[m],y=a[m];a[m]=Z(()=>ue(a[m],z(f,g))),l>0&&J(y)}J(h),i+=f,++l}return a}),u.done){s&&console.warn(`Your dataset iterator ran out of data during evaluateDataset(). Interrupting evalution. Make sure that your dataset can generate at least \`batches\` batches (in this case, ${n.batches} batches). You may need to use the repeat() function when building your dataset.`);break}}for(let u=0;u<a.length;++u){let c=a[u];a[u]=fe(a[u],i),J(c)}return ys(a)}function Z3(e){v.assert(e>0&&Number.isInteger(e),()=>`batchSize is required to be a positive integer, but got ${e}`)}function lp(e,t,n){return e==null?[null]:Array.isArray(e)?e.map(s=>Yi(s,t,n-t)):Yi(e,t,n-t)}function T5(e,t){return Z(()=>e==null?null:Array.isArray(e)?e.map(n=>T5(n,t)):P8(e,t.dtype==="int32"?t:ye(t,"int32")))}function Y3(e,t){let n=[],s=0,r=null;for(;s<e;)r=s+t,r>=e&&(r=e),n.push([s,r]),s=r;return n}async function xG(e,t,n,s,r,a,o,i,l,u,c,p,d,h,f){r==null&&(r=32),a==null&&(a=1),c==null&&(c=!0),d==null&&(d=0);let m=!1;if(l!=null&&u!=null&&(m=!0),f!=null&&(m=!0,h==null))throw new j("Can only use `validationSteps` when doing step-wise training, i.e., `stepsPerEpoch` must be set.");let g=e.checkNumSamples(n,r,h,"steps_per_epoch"),y;g!=null&&(y=zr(0,g)),o==null&&(o=1);let{callbackList:x,history:A}=q8(i,o,a,d,g,h,r,m,p);x.setModel(e),e.history=A,await x.onTrainBegin(),e.stopTraining_=!1;for(let b=d;b<a;++b){await x.onEpochBegin(b);let w={};if(h!=null)throw new Xe("stepsPerEpoch mode is not implemented yet.");{if(c==="batch")throw new Xe("batch shuffling is not implemneted yet");c&&v.shuffle(y);let S=Pt(y),k=Y3(g,r);for(let E=0;E<k.length;++E){let _={};if(await x.onBatchBegin(E,_),Z(()=>{let D=k[E][0],R=k[E][1],P=Yi(S,D,R-D);_.batch=E,_.size=R-D;let C=T5(n,P),M=t(C);for(let L=0;L<s.length;++L){let G=s[L],K=M[L];_[G]=K,kn(K)}if(E===k.length-1&&m){let L=e.testLoop(l,u,r);for(let G=0;G<s.length;++G){let K=s[G],X=L[G];kn(X),w["val_"+K]=X}}}),await x.onBatchEnd(E,_),V8(_),e.stopTraining_)break}S.dispose()}if(await x.onEpochEnd(b,w),e.stopTraining_)break}return await x.onTrainEnd(),await e.history.syncData(),e.history}async function bG(e,t,n,s={}){if(e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;let r,a,o,i,l,u,c,p,d;try{let h=s.batchSize==null?32:s.batchSize;Z3(h);let f=!1,m=await e.standardizeUserData(t,n,s.sampleWeight,s.classWeight,f,h);r=m[0],a=m[1],d=m[2];let g=!1,y;if(s.validationData!=null&&s.validationData.length>0){if(g=!0,s.validationData.length===2)l=s.validationData[0],u=s.validationData[1];else throw s.validationData.length===3?new Xe("validationData including sample weights is not supported yet."):new j(`When passing validation data, it must contain 2 (valX, valY) or 3 (valX, valY, valSampleWeight) items; ${s.validationData} is invalid.`);let _=!0,D=await e.standardizeUserData(l,u,null,null,_,h);c=D[0],p=D[1],y=c.concat(p)}else if(s.validationSplit!=null&&s.validationSplit>0&&s.validationSplit<1){g=!0;let _=Math.floor(r[0].shape[0]*(1-s.validationSplit)),D=r[0].shape[0];c=lp(r,_,D),o=r,r=lp(r,0,_),p=lp(a,_,D),i=a,a=lp(a,0,_),y=c.concat(p)}else s.validationSteps!=null&&(g=!0);let x=r.concat(a).concat(d);e.checkTrainableWeightsConsistency();let A=e.makeTrainFunction(),b=e.getDedupedMetricsNames(),w,S;g?(e.makeTestFunction(),w=e.testFunction,S=b.slice().concat(b.map(_=>"val_"+_))):(w=null,y=[],S=b.slice());let k=j8(s.callbacks,s.yieldEvery);return await xG(e,A,x,b,h,s.epochs,s.verbose,k,w,y,s.shuffle,S,s.initialEpoch,null,null)}finally{e.isTraining=!1,Dr(r,t),Dr(a,n),Dr(o,t),Dr(i,n),Dr(c,l),Dr(p,u),d!=null&&J(d)}}function sk(e){let t=[];e instanceof st&&(e=[e]);for(let n=0;n<e.length;++n){let s=e[n];if(s.rank===1)t.push(Nh(s,1));else{if(s.rank===0)throw new Error("Expected tensor to be at least 1D, but received a 0D tensor (scalar).");t.push(s)}}return t}function Dr(e,t){if(e==null)return;let n=[];if(t instanceof st)n.push(t.id);else if(Array.isArray(t))t.forEach(r=>n.push(r.id));else if(t!=null)for(let r in t){let a=t[r];n.push(a.id)}let s=[];if(e instanceof st)n.indexOf(e.id)===-1&&s.push(e);else if(Array.isArray(e))e.forEach(r=>{n.indexOf(r.id)===-1&&s.push(r)});else if(e!=null)for(let r in e){let a=e[r];n.indexOf(a.id)===-1&&s.push(a)}s.forEach(r=>{r.isDisposed||r.dispose()})}function vG(e){return e instanceof st}function J3(e){return Array.isArray(e)}function r7(e){return!vG(e)&&!J3(e)}function a7(e,t,n,s=!0,r=""){if(t==null||t.length===0){if(e!=null){let o=!1;if(J3(e)&&e.length>0)o=!0;else if(r7(e)){for(let i in e)if(e.hasOwnProperty(i)){o=!0;break}}else o=!0;if(o)throw new j(`Error when checking model ${r} expected no data, but got ${e}`)}return[]}if(e==null)return t.map(o=>null);let a;if(r7(e)){e=e,a=[];for(let o of t){if(e[o]==null)throw new j(`No data provided for "${o}". Need data for each key in: ${t}`);a.push(e[o])}}else if(J3(e)){if(e=e,e.length!==t.length)throw new j(`Error when checking model ${r}: the Array of Tensors that you are passing to your model is not the size the model expected. Expected to see ${t.length} Tensor(s), but instead got the following list of Tensor(s): ${e}`);a=e}else{if(e=e,t.length>1)throw new j(`The model ${r} expects ${t.length} Tensor(s), but only received one Tensor. Found: Tensor with shape ${e.shape}`);a=[e]}if(a=sk(a),n!=null)for(let o=0;o<t.length;++o){if(n[o]==null)continue;let i=a[o];if(i.shape.length!==n[o].length)throw new j(`Error when checking ${r}: expected ${t[o]} to have ${n[o].length} dimension(s). but got array with shape ${i.shape}`);for(let l=0;l<n[o].length;++l){if(l===0&&!s)continue;let u=i.shape[l],c=n[o][l];if(c!=null&&c>=0&&u!==c)throw new j(`${r} expected a batch of elements where each example has shape [${n[o].slice(1,n[o].length)}] (i.e.,tensor shape [*,${n[o].slice(1,n[o].length)}]) but the ${r} received an input with ${i.shape[0]} examples, each with shape [${i.shape.slice(1,i.shape.length)}] (tensor shape [${i.shape}])`)}}return a}function wG(e,t,n){let s=Ya(e.map(a=>a.shape[0]));s.sort();let r=Ya(t.map(a=>a.shape[0]));if(r.sort(),s.length>1)throw new j(`All input Tensors (x) should have the same number of samples. Got array shapes: ${JSON.stringify(e.map(a=>a.shape))}`);if(r.length>1)throw new j(`All target Tensors (y) should have the same number of samples. Got array shapes: ${JSON.stringify(t.map(a=>a.shape))}`);if(s.length>0&&r.length>0&&!v.arraysEqual(s,r))throw new j(`Input Tensors should have the same number of samples as target Tensors. Found ${s[0]} input sample(s) and ${r[0]} target sample(s).`)}function kG(e,t,n){let s=[uu,A2,Rp];for(let r=0;r<e.length;++r){let a=e[r],o=t[r],i=n[r];if(o!=null){if(o===Rp&&a.shape[a.shape.length-1]===1)throw new j(`You are passing a target array of shape ${a.shape} while using a loss 'categorical_crossentropy'. 'categorical_crossentropy'expects targets to be binary matrices (1s and 0s) of shape [samples, classes].`);if(s.indexOf(o)!==-1){let l=a.shape.slice(1),u=i.slice(1);for(let c=0;c<l.length;++c){let p=l[c],d=u[c];if(d!=null&&p!==d)throw new j(`A target Tensor with shape ${a.shape} was passed for an output of shape ${i}, while using a loss function that expects targets to have the same shape as the output.`)}}}}}function o7(e,t,n,s=!0,r=""){let a;if(Array.isArray(e)){if(e.length!==t.length)throw new j(`Error when checking model ${r}: the Array of Tensors that you are passing to your model is not the size the the model expected. Expected to see ${t.length} Tensor(s), but instead got ${e.length} Tensors(s).`);a=e}else{if(t.length>1)throw new j(`The model expects ${t.length} ${r} Tensors, but only received one Tensor. Found: array with shape ${JSON.stringify(e.shape)}.`);a=[e]}if(n!=null)for(let o=0;o<t.length;++o){if(n[o]==null)continue;let i=a[o];if(i.shape.length!==n[o].length)throw new j(`Error when checking ${r}: expected ${t[o]} to have ${n[o].length} dimension(s), but got array with shape ${JSON.stringify(i.shape)}`);for(let l=0;l<n[o].length;++l){if(l===0&&!s)continue;let u=i.shape[l],c=n[o][l];if(c!=null&&c!==u)throw new j(`Error when checking ${r}: expected ${t[o]} to have shape ${JSON.stringify(n[o])} but got array with shape ${JSON.stringify(i.shape)}.`)}}}function SG(e,t){if(e==null||Array.isArray(e)&&e.length===0)return t.map(s=>[]);let n;if(typeof e=="string"||typeof e=="function")n=[e];else if(Array.isArray(e)||typeof e=="object")n=e;else throw new TypeError(`Type of metrics argument not understood. Expected an string,function, Array, or Object, found: ${e}`);if(Array.isArray(n))return t.map(s=>n);{let s=[];for(let r of t){let a=n.hasOwnProperty(r)?n[r]:[];Array.isArray(a)||(a=[a]),s.push(a)}return s}}var IG="layers-model",ba=class extends Xr{constructor(e){super(e),this.isTraining=!1}summary(e,t,n=console.log){if(!this.built)throw new j("This model has never been called, thus its weights have not been created yet. So no summary can be displayed. Build the model first (e.g., by calling it on some test data).");oG(this,e,t,n)}compile(e){if(e.loss==null&&(e.loss=[]),this.loss=e.loss,typeof e.optimizer=="string")this.optimizer_=aG(e.optimizer),this.isOptimizerOwned=!0;else{if(!(e.optimizer instanceof _a))throw new j("User-defined optimizer must be an instance of tf.Optimizer.");this.optimizer_=e.optimizer,this.isOptimizerOwned=!1}let t=[];if(!Array.isArray(e.loss)&&typeof e.loss!="string"&&typeof e.loss!="function"){e.loss=e.loss;for(let a in e.loss)if(this.outputNames.indexOf(a)===-1)throw new j(`Unknown entry in loss dictionary: "${a}". Only expected the following keys: ${this.outputNames}`);for(let a of this.outputNames)e.loss[a]==null&&console.warn(`Output "${a}" is missing from loss dictionary. We assume this was done on purpose, and we will not be expecting data to be passed to ${a} during training`),t.push(x3(e.loss[a]))}else if(Array.isArray(e.loss)){if(e.loss.length!==this.outputs.length)throw new j(`When passing an Array as loss, it should have one entry per model output. The model has ${this.outputs.length} output(s), but you passed loss=${e.loss}.`);t=e.loss.map(o=>x3(o))}else{let a=x3(e.loss);this.outputs.forEach(o=>{t.push(a)})}this.lossFunctions=t,this.feedOutputNames=[],this.feedOutputShapes=[],this.feedLossFns=[];for(let a=0;a<this.outputs.length;++a){let o=this.internalOutputShapes[a],i=this.outputNames[a];this.feedOutputNames.push(i),this.feedOutputShapes.push(o),this.feedLossFns.push(this.lossFunctions[a])}let n=[];this.metrics=e.metrics,this.metricsNames=["loss"],this.metricsTensors=[],Zi("loss",()=>{for(let a=0;a<this.outputs.length;++a){if(n.indexOf(a)!==-1)continue;let o=this.lossFunctions[a];this.outputs.length>1&&(this.metricsTensors.push([o,a]),this.metricsNames.push(this.outputNames[a]+"_loss"))}});let s=SG(e.metrics,this.outputNames),r=(a,o,i)=>{this.outputNames.length>1&&(o=this.outputNames[a]+"_"+o),this.metricsNames.push(o),this.metricsTensors.push([i,a])};Zi("metric",()=>{for(let a=0;a<this.outputs.length;++a){if(n.indexOf(a)!==-1)continue;let o=s[a];(l=>{let u="",c,p,d;for(let h of l){if(typeof h=="string"&&["accuracy","acc","crossentropy","ce"].indexOf(h)!==-1){let m=this.internalOutputShapes[a];m[m.length-1]===1||this.lossFunctions[a]===A2?["accuracy","acc"].indexOf(h)!==-1?p=k5:["crossentropy","ce"].indexOf(h)!==-1&&(p=Z8):this.lossFunctions[a]===_m?["accuracy","acc"].indexOf(h)!==-1?p=Y8:["crossentropy","ce"].indexOf(h)!==-1&&(p=J8):["accuracy","acc"].indexOf(h)!==-1?p=S5:["crossentropy","ce"].indexOf(h)!==-1&&(p=I5);let g;["accuracy","acc"].indexOf(h)!==-1?g="acc":["crossentropy","ce"].indexOf(h)!==-1&&(g="ce"),d=p,c=u+g}else d=rG(h),c=u+Zf(h);let f;Zi(c,()=>{f=d}),r(a,c,f)}})(o)}}),this.collectedTrainableWeights=this.trainableWeights}checkTrainableWeightsConsistency(){this.collectedTrainableWeights!=null&&this.trainableWeights.length!==this.collectedTrainableWeights.length&&console.warn("Discrepancy between trainableweights and collected trainable weights. Did you set `model.trainable` without calling `model.compile()` afterwards?")}evaluate(e,t,n={}){let s=n.batchSize==null?32:n.batchSize;Z3(s);let r=!0,a=this.standardizeUserDataXY(e,t,r,s);try{let o=a[0].concat(a[1]);this.makeTestFunction();let i=this.testFunction,l=this.testLoop(i,o,s,n.verbose,n.steps);return ys(l)}finally{Dr(a[0],e),Dr(a[1],t)}}async evaluateDataset(e,t){return this.makeTestFunction(),AG(this,e,t)}checkNumSamples(e,t,n,s="steps"){let r;if(n!=null){if(r=null,t!=null)throw new j(`If ${s} is set, batchSize must be null or undefined.Got batchSize = ${t}`)}else if(e!=null)Array.isArray(e)?r=e[0].shape[0]:r=e.shape[0];else throw new j(`Either the input data should have a defined shape, or ${s} shoud be specified.`);return r}execute(e,t){if(Array.isArray(t)&&t.length===0)throw new j("`outputs` is an empty Array, which is not allowed.");let n=Array.isArray(t),s=n?t:[t],r=this.retrieveSymbolicTensors(s),a=new ji;if(e instanceof st&&(e=[e]),Array.isArray(e)){if(e.length!==this.inputs.length)throw new j(`The number of inputs provided (${e.length}) does not match the number of inputs of this model (${this.inputs.length}).`);for(let i=0;i<this.inputs.length;++i)a.add(this.inputs[i],e[i])}else for(let i of this.inputs){let l=e[i.name];if(l==null)throw new j(`No value is provided for the model's input ${i.name}`);a.add(i,l)}let o=ip(r,a);return n?o:o[0]}retrieveSymbolicTensors(e){let t=al(null,e.length),n=e.length;for(let s of this.layers){let r=Array.isArray(s.output)?s.output:[s.output],a=r.map(o=>o.name);for(let o=0;o<e.length;++o){let i=a.indexOf(e[o]);if(i!==-1&&(t[o]=r[i],n--),n===0)break}if(n===0)break}if(n>0){let s=[];throw t.forEach((r,a)=>{r==null&&s.push(e[a])}),new j(`Cannot find SymbolicTensors for output name(s): ${JSON.stringify(s)}`)}return t}predictLoop(e,t=32,n=!1){return Z(()=>{let s=this.checkNumSamples(e);if(n)throw new Xe("Verbose predictLoop() is not implemented yet.");let r=Y3(s,t),a=this.outputs.map(o=>[]);for(let o=0;o<r.length;++o)Z(()=>{let l=r[o][0],u=r[o][1],c=lp(e,l,u),p=[];if(Array.isArray(c))for(let h=0;h<c.length;++h)p.push({key:this.inputs[h],value:c[h]});else p.push({key:this.inputs[0],value:c});let d=new ji(p);return ip(this.outputs,d)}).forEach((l,u)=>a[u].push(l));return ys(a.map(o=>It(o,0)))})}predict(e,t={}){let n=sk(e);o7(n,this.inputNames,this.feedInputShapes,!1);try{let s=t.batchSize==null?32:t.batchSize;return Z3(s),this.predictLoop(n,s)}finally{Dr(n,e)}}predictOnBatch(e){o7(e,this.inputNames,this.feedInputShapes,!0);let t=(Array.isArray(e)?e[0]:e).shape[0];return this.predictLoop(e,t)}standardizeUserDataXY(e,t,n=!0,s){if(this.optimizer_==null)throw new $r("You must compile a model before training/testing. Use LayersModel.compile(modelCompileArgs).");let r=[];for(let a=0;a<this.feedOutputShapes.length;++a){let o=this.feedOutputShapes[a];this.feedLossFns[a]===_m?r.push(o.slice(0,o.length-1).concat([1])):r.push(o)}if(e=a7(e,this.feedInputNames,this.feedInputShapes,!1,"input"),t=a7(t,this.feedOutputNames,r,!1,"target"),wG(e,t,null),kG(t,this.feedLossFns,this.feedOutputShapes),this.stateful&&s!=null&&s>0&&e[0].shape[0]%s!==0)throw new j(`In a stateful network, you should only pass inputs with a number of samples that is divisible by the batch size ${s}. Found: ${e[0].shape[0]} sample(s).`);return[e,t]}async standardizeUserData(e,t,n,s,r=!0,a){let[o,i]=this.standardizeUserDataXY(e,t,r,a);if(n!=null)throw new Error("sample weight is not supported yet.");let l=null;if(s!=null){let u=ek(s,this.outputNames);l=[];for(let c=0;c<u.length;++c)l.push(await tk(i[c],null,u[c]))}return[o,i,l]}testLoop(e,t,n,s=0,r){return Z(()=>{let a=this.checkNumSamples(t,n,r,"steps"),o=[];if(s>0)throw new Xe("Verbose mode is not implemented yet.");if(r!=null)throw new Xe("steps mode in testLoop() is not implemented yet");{let i=Y3(a,n),l=Pt(zr(0,a));for(let u=0;u<i.length;++u){let c=i[u][0],p=i[u][1],d=Yi(l,c,p-c),h=T5(t,d),f=e(h);if(u===0)for(let m=0;m<f.length;++m)o.push(Ce(0));for(let m=0;m<f.length;++m){let g=f[m];o[m]=ue(o[m],z(p-c,g))}}for(let u=0;u<o.length;++u)o[u]=fe(o[u],a)}return o})}getDedupedMetricsNames(){let e=this.metricsNames,t=[];for(let n=0;n<e.length;++n){let s=e[n],r=s;Gv(e,s)>1&&(r+=`_${Gv(e.slice(0,n),s)}`),t.push(r)}return t}makeTrainFunction(){return e=>{let t=[],n=e.slice(0,this.inputs.length),s=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),r=e.slice(this.inputs.length+this.outputs.length,this.inputs.length+this.outputs.length*2),a=[],o=()=>{let c=[];for(let f=0;f<this.inputs.length;++f)c.push({key:this.inputs[f],value:n[f]});let p=new ji(c),d=ip(this.outputs,p,{training:!0}),h;for(let f=0;f<this.lossFunctions.length;++f){let m=this.lossFunctions[f],g=m(s[f],d[f]);r[f]!=null&&(g=pG(g,r[f]));let y=Wt(g);t.push(y),f===0?h=g:h=ue(h,g)}for(let f=0;f<this.metricsTensors.length;++f){let m;if(this.outputs.length>1&&f<this.outputs.length)m=t[f];else{let g=this.metricsTensors[f][0],y=this.metricsTensors[f][1];m=Wt(g(s[y],d[y]))}kn(m),a.push(m)}return h=Wt(h),this.calculateLosses().forEach(f=>{h=ue(h,f)}),h},i=this.collectedTrainableWeights.map(c=>c.read()),l=!0;return[this.optimizer_.minimize(o,l,i)].concat(a)}}makeTestFunction(){this.testFunction=e=>Z(()=>{let t=[],n,s=e.slice(0,this.inputs.length),r=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),a=[];for(let l=0;l<this.inputs.length;++l)a.push({key:this.inputs[l],value:s[l]});let o=new ji(a),i=ip(this.outputs,o);for(let l=0;l<this.lossFunctions.length;++l){let u=this.lossFunctions[l],c=Wt(u(r[l],i[l]));l===0?n=c:n=ue(n,c),t.push(n)}for(let l=0;l<this.metricsTensors.length;++l){let u=this.metricsTensors[l][0],c=this.metricsTensors[l][1],p=Wt(u(r[c],i[c]));t.push(p)}return t})}async fit(e,t,n={}){return bG(this,e,t,n)}async fitDataset(e,t){return mG(this,e,t)}async trainOnBatch(e,t){let n=await this.standardizeUserData(e,t),s=n[0],r=n[1],o=this.makeTrainFunction()(s.concat(r)),i=[];for(let l of o){let u=await l.data();i.push(u[0])}return J(o),Dr(n[0],e),Dr(n[1],t),ys(i)}getNamedWeights(e){let t=[],n=e!=null&&e.trainableOnly,s=n?this.trainableWeights:this.weights,r=this.getWeights(n);for(let a=0;a<s.length;++a)n&&!s[a].trainable||t.push({name:s[a].originalName,tensor:r[a]});return t}set stopTraining(e){this.stopTraining_=e}get stopTraining(){return this.stopTraining_}get optimizer(){return this.optimizer_}set optimizer(e){this.optimizer_!==e&&(this.optimizer_=e,this.isOptimizerOwned=!1)}dispose(){let e=super.dispose();if(e.refCountAfterDispose===0&&this.optimizer!=null&&this.isOptimizerOwned){let t=Sm().numTensors;this.optimizer_.dispose(),e.numDisposedVariables+=t-Sm().numTensors}return e}getLossIdentifiers(){let e;if(typeof this.loss=="string")e=ga(this.loss);else if(Array.isArray(this.loss)){for(let t of this.loss)if(typeof t!="string")throw new Error("Serialization of non-string loss is not supported.");e=this.loss.map(t=>ga(t))}else{let t=Object.keys(this.loss);e={};let n=this.loss;for(let s of t)if(typeof n[s]=="string")e[s]=ga(n[s]);else throw new Error("Serialization of non-string loss is not supported.")}return e}getMetricIdentifiers(){if(typeof this.metrics=="string"||typeof this.metrics=="function")return[ga(Zf(this.metrics))];if(Array.isArray(this.metrics))return this.metrics.map(e=>ga(Zf(e)));{let e={};for(let t in this.metrics)e[t]=ga(Zf(this.metrics[t]));return e}}getTrainingConfig(){return{loss:this.getLossIdentifiers(),metrics:this.getMetricIdentifiers(),optimizer_config:{class_name:this.optimizer.getClassName(),config:this.optimizer.getConfig()}}}loadTrainingConfig(e){if(e.weighted_metrics!=null)throw new Error("Loading weight_metrics is not supported yet.");if(e.loss_weights!=null)throw new Error("Loading loss_weights is not supported yet.");if(e.sample_weight_mode!=null)throw new Error("Loading sample_weight_mode is not supported yet.");let t=_p(e.optimizer_config),n=Or(t),s;if(typeof e.loss=="string")s=Ui(e.loss);else if(Array.isArray(e.loss))s=e.loss.map(a=>Ui(a));else if(e.loss!=null){s={};for(let a in e.loss)s[a]=Ui(e.loss[a])}let r;if(Array.isArray(e.metrics))r=e.metrics.map(a=>Ui(a));else if(e.metrics!=null){r={};for(let a in e.metrics)r[a]=Ui(e.metrics[a])}this.compile({loss:s,metrics:r,optimizer:n})}async save(e,t){if(typeof e=="string"){let l=Ds.getSaveHandlers(e);if(l.length===0)throw new j(`Cannot find any save handlers for URL '${e}'`);if(l.length>1)throw new j(`Found more than one (${l.length}) save handlers for URL '${e}'`);e=l[0]}if(e.save==null)throw new j("LayersModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");let n=await Ds.encodeWeights(this.getNamedWeights(t)),s=!1,r=null,o={modelTopology:this.toJSON(r,s),format:IG,generatedBy:`TensorFlow.js tfjs-layers v${C5}`,convertedBy:null};if((t==null?!1:t.includeOptimizer)&&this.optimizer!=null){o.trainingConfig=this.getTrainingConfig();let l="optimizer",{data:u,specs:c}=await Ds.encodeWeights(await this.optimizer.getWeights(),l);n.specs.push(...c),n.data=Ds.concatenateArrayBuffers([n.data,u])}return this.userDefinedMetadata!=null&&(t7(this.userDefinedMetadata,this.name,!0),o.userDefinedMetadata=this.userDefinedMetadata),o.weightData=n.data,o.weightSpecs=n.specs,e.save(o)}setUserDefinedMetadata(e){t7(e,this.name),this.userDefinedMetadata=e}getUserDefinedMetadata(){return this.userDefinedMetadata}};ba.className="Model";de.registerClass(ba);var rk=class extends ba{};rk.className="Functional";de.registerClass(rk);async function CG(e,t){"modelTopology"in e||(e={modelTopology:e}),e=e;let n=e.modelTopology;n.model_config!=null&&(n=n.model_config);let s=_p(n),r=Or(s,t);if(e.weightsManifest!=null){let a=await Ds.loadWeights(e.weightsManifest,e.pathPrefix,r.weights.map(i=>i.originalName)),o={};for(let i of r.weights)o[i.originalName]=a[i.originalName];r.loadWeights(o),J(a)}return r}async function TG(e,t){if(t==null&&(t={}),typeof e=="string"){let n=Ds.getLoadHandlers(e,t);if(n.length===0)n.push(Ds.browserHTTPRequest(e,t));else if(n.length>1)throw new j(`Found more than one (${n.length}) load handlers for URL '${e}'`);e=n[0]}return NG(e,void 0,t)}async function NG(e,t,n){if(n==null&&(n={}),e.load==null)throw new j("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let s=await e.load(),r=s.modelTopology;r.model_config!=null&&(r=r.model_config);let a=n.strict==null?!0:n.strict,o=s.weightData!=null&&s.weightSpecs!=null&&a,i=Or(_p(r),t,o),l=s.trainingConfig;if(l!=null&&i.loadTrainingConfig(l),s.userDefinedMetadata!=null&&i.setUserDefinedMetadata(s.userDefinedMetadata),s.weightData!=null){if(s.weightSpecs==null)throw new j("LayersModel artifacts contains weight data, but not weight specs. Therefore loading of weights cannot proceed.");let{modelWeights:u,optimizerWeights:c}=EG(s.weightData,s.weightSpecs);i.loadWeights(u,a),i.optimizer!=null&&c.length>0&&await i.optimizer.setWeights(c),J(u),J(c.map(p=>p.tensor))}return i}function EG(e,t){let n=Ds.decodeWeights(e,t),s={},r=[];return t.forEach(a=>{a.group==="optimizer"?r.push({name:a.name,tensor:n[a.name]}):s[a.name]=n[a.name]}),{modelWeights:s,optimizerWeights:r}}var dc=class extends ba{constructor(e){if(super({inputs:[],outputs:[]}),e=e||{},this.trainable=!0,this.built=!1,this.name=e.name!=null?e.name:o2("sequential_"),e.layers!=null)for(let t of e.layers)this.add(t)}checkShape(e){if(e.inboundNodes[0].outputTensors[0].shape.some(n=>n<0))throw new j(`Negative dimension size caused by adding layer ${e.name} with input shape [${e.inboundNodes[0].inputTensors[0].shape}]`)}add(e){let t=e instanceof dc||e instanceof ba,n;if(t){if(n=e,n.outputs.length!==1)throw new j("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");if(n.inputs.length!==1)throw new j("All layers in a Sequential model should have a single input tensor. For multi-input layers, use the functional API.")}if(this.outputs.length===0){if(e.inboundNodes.length===0){if(e.batchInputShape==null)throw new j("The first layer in a Sequential model must get an `inputShape` or `batchInputShape` argument.");let s=z8({batchShape:e.batchInputShape,dtype:e.dtype,name:e.name+"_input"});e.apply(s)}if(t)this.outputs=n.outputs,this.inputs=n.inputs;else{if(e.inboundNodes.length!==1)throw new j(`A layer added to a Sequential model must not already be connected somewhere else. LayersModel received layer ${e.name} which has ${e.inboundNodes.length} pre-existing inbound connections.`);if(e.inboundNodes[0].outputTensors.length!==1)throw new j("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[e.inboundNodes[0].outputTensors[0]],this.inputs=M8(this.outputs[0])}this.inboundNodes=[],new g2({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:al(null,this.inputs.length),outputMasks:[null],inputShapes:this.inputs.map(s=>s.shape),outputShapes:this.outputs[0].shape})}else{let s=e.apply(this.outputs[0]);if(Array.isArray(s))throw new TypeError("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[s],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}this.layers.push(e),this.built=!1}pop(){if(this.layers.length===0)throw new TypeError("There are no layers in the model.");if(this.layers.pop(),this.layers.length===0)this.outputs=[],this.inboundNodes=[],this.outboundNodes=[];else{let e=this.layers.length-1;this.layers[e].outboundNodes=[],this.outputs=[this.layers[e].output],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}}call(e,t){return this.model==null&&this.build(),this.model.call(e,t)}build(e){if(At(e),this.inputs.length===0||this.outputs.length===0)throw new TypeError("Sequential model cannot be built: model is empty. Add some layers first.");this.model=new ba({inputs:this.inputs,outputs:this.outputs[0],name:this.name+"_model"}),this.model.trainable=this.trainable,this.supportsMasking=this.model.supportsMasking,this.inputLayers=this.model.inputLayers,this.inputLayersNodeIndices=this.model.inputLayersNodeIndices,this.inputLayersTensorIndices=this.model.inputLayersTensorIndices,this.outputLayers=this.model.outputLayers,this.outputLayersNodeIndices=this.model.outputLayersNodeIndices,this.outputLayersTensorIndices=this.model.outputLayersTensorIndices,this.nodesByDepth=this.model.nodesByDepth,this.containerNodes=this.model.containerNodes,this.outputNames=this.model.outputNames,this.inputNames=this.model.inputNames,this.built=!0}countParams(){return this.built||this.build(),super.countParams()}summary(e,t,n=console.log){this.built||this.build(),super.summary(e,t,n)}setWeights(e){this.model==null&&this.build(),this.model.setWeights(e)}evaluate(e,t,n={}){if(!this.built)throw new $r("The model needs to be compiled before being used.");return this.model.evaluate(e,t,n)}async evaluateDataset(e,t){if(!this.built)throw new $r("The model needs to be compiled before being used.");return this.model.evaluateDataset(e,t)}predict(e,t={}){return this.model==null&&this.build(),this.model.predict(e,t)}predictOnBatch(e){return this.model==null&&this.build(),this.model.predictOnBatch(e)}compile(e){this.build(),this.model.compile(e),this.optimizer_=this.model.optimizer,this.isOptimizerOwned=this.model.isOptimizerOwned,this.loss=this.model.loss,this.metrics=this.model.metrics,this.metricsTensors=this.model.metricsTensors,this.metricsNames=this.model.metricsNames}get optimizer(){return this.model==null?void 0:this.model.optimizer}set optimizer(e){this.model.optimizer=e}async fit(e,t,n={}){if(!this.built)throw new $r("The model needs to be compiled before being used.");return this.model.fit(e,t,n)}async fitDataset(e,t){if(!this.built)throw new $r("The model needs to be compiled before being used.");return this.model.fitDataset(e,t)}async trainOnBatch(e,t){return this.model.trainOnBatch(e,t)}static fromConfig(e,t,n={},s=!1){let r,a={};if(t instanceof Array){if(t[0].className==null||t[0].className==="Merge")throw new j("Legacy serialization format not supported yet.");r=t}else v.assert(t.layers!=null,()=>"When the config data for a Sequential model is not an Array, it must be an Object that contains the 'layers' field."),r=t.layers,delete t.layers,a=t;let o=new e(a);if(!(o instanceof dc))throw new Xe(`Sequential.fromConfig called on non-Sequential input: ${o}`);for(let i of r){let u=Or(i,void 0,s);s&&u.setFastWeightInitDuringBuild(!0),o.add(u)}return o}set stopTraining(e){if(this.model==null)throw new j("Cannot set the stopTraining property of a sequential model before it is compiled.");this.model.stopTraining=e}get stopTraining(){if(this.model==null)throw new j("Cannot get the stopTraining property of a sequential model before it is compiled.");return this.model.stopTraining}getConfig(){let e=[];for(let t of this.layers){let n={};n.className=t.getClassName(),n.config=t.getConfig(),e.push(n)}return{name:this.name,layers:e}}};dc.className="Sequential";de.registerClass(dc);function RG(e){return new ba(e)}function _G(e){return new dc(e)}function DG(e,t){return t==null&&(t={}),TG(e,t)}function ak(e){return z8(e)}function $G(e,t){pr.registerCallbackConstructor(e,t)}var ks=class extends de.Serializable{getConfig(){return{}}},ok=class extends ks{apply(e,t=1){return eU(e,t)}};ok.className="elu";de.registerClass(ok);var ik=class extends ks{apply(e){return B0(e)}};ik.className="selu";de.registerClass(ik);var lk=class extends ks{apply(e){return Wr(e)}};lk.className="relu";de.registerClass(lk);var uk=class extends ks{apply(e){return Z(()=>Qc(6,Wr(e)))}};uk.className="relu6";de.registerClass(uk);var ck=class extends ks{apply(e){return e}};ck.className="linear";de.registerClass(ck);var dk=class extends ks{apply(e){return $n(e)}};dk.className="sigmoid";de.registerClass(dk);var pk=class extends ks{apply(e){return nU(e)}};pk.className="hardSigmoid";de.registerClass(pk);var hk=class extends ks{apply(e){return ru(e)}};hk.className="softplus";de.registerClass(hk);var fk=class extends ks{apply(e){return tU(e)}};fk.className="softsign";de.registerClass(fk);var mk=class extends ks{apply(e){return nl(e)}};mk.className="tanh";de.registerClass(mk);var N5=class extends ks{apply(e,t=-1){return ou(e,t)}};N5.className="softmax";de.registerClass(N5);var gk=class extends ks{apply(e,t=-1){return D0(e,t)}};gk.className="logSoftmax";de.registerClass(gk);var yk=class extends ks{apply(e,t=1){return Z(()=>z($n(z(e,t)),e))}};yk.className="swish";de.registerClass(yk);var Ak=class extends ks{apply(e){return Z(()=>z(e,nl(ru(e))))}};Ak.className="mish";de.registerClass(Ak);function oo(e){return e.getClassName()}function b3(e,t={}){return Th(e,de.SerializationMap.getMap().classNameMap,t,"activation")}function io(e){if(e==null){let t={};return t.className="linear",t.config={},b3(t)}if(typeof e=="string"){let t={};return t.className=e,t.config={},b3(t)}else return e instanceof ks?e:b3(e)}function E5(e){if(e!=null&&typeof e!="object")throw new Error(`Argument to L1L2 regularizer's constructor is expected to be an object, but received: ${e}`)}var xk=class extends de.Serializable{},Dh=class extends xk{constructor(e){super(),E5(e),this.l1=e==null||e.l1==null?.01:e.l1,this.l2=e==null||e.l2==null?.01:e.l2,this.hasL1=this.l1!==0,this.hasL2=this.l2!==0}apply(e){return Z(()=>{let t=Vt([1]);return this.hasL1&&(t=ue(t,ke(z(this.l1,sn(e))))),this.hasL2&&(t=ue(t,ke(z(this.l2,Eh(e))))),V(t,[])})}getConfig(){return{l1:this.l1,l2:this.l2}}static fromConfig(e,t){return new e({l1:t.l1,l2:t.l2})}};Dh.className="L1L2";de.registerClass(Dh);function PG(e){return E5(e),new Dh({l1:e!=null?e.l1:null,l2:0})}function FG(e){return E5(e),new Dh({l2:e!=null?e.l2:null,l1:0})}var i7={l1l2:"L1L2"};function St(e){return o5(e)}function l7(e,t={}){return Th(e,de.SerializationMap.getMap().classNameMap,t,"regularizer")}function Ot(e){if(e==null)return null;if(typeof e=="string"){let n={className:e in i7?i7[e]:e,config:{}};return l7(n)}else return e instanceof xk?e:l7(e)}var R5=class extends ut{constructor(e){super(e==null?{}:e),this.supportsMasking=!0,e!=null&&(this.maxValue=e.maxValue)}call(e,t){e=Ke(e);let n=Wr(e);return this.maxValue!=null&&(n=xs(n,0,this.maxValue)),n}computeOutputShape(e){return e}getConfig(){let e={maxValue:this.maxValue},t=super.getConfig();return Object.assign(e,t),e}};R5.className="ReLU";de.registerClass(R5);var _5=class extends ut{constructor(e){super(e==null?{}:e),this.DEFAULT_ALPHA=.3,e==null&&(e={}),this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=Ke(e);return gh(n,this.alpha)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};_5.className="LeakyReLU";de.registerClass(_5);var D5=class extends ut{constructor(e){if(super(e==null?{}:e),this.DEFAULT_ALPHA_INITIALIZER="zeros",e==null&&(e={}),this.supportsMasking=!0,this.alphaInitializer=Ft(e.alphaInitializer||this.DEFAULT_ALPHA_INITIALIZER),this.alphaRegularizer=Ot(e.alphaRegularizer),this.alphaConstraint=An(e.alphaConstraint),e.sharedAxes==null)this.sharedAxes=null;else if(Array.isArray(e.sharedAxes))this.sharedAxes=e.sharedAxes;else if(typeof e.sharedAxes=="number")this.sharedAxes=[e.sharedAxes];else throw new j(`Expected sharedAxes to be a number or an array of numbers, but got ${e.sharedAxes}`)}build(e){e=At(e);let t=e.slice(1);if(this.sharedAxes!=null)for(let s of this.sharedAxes)t[s-1]=1;this.alpha=this.addWeight("alpha",t,"float32",this.alphaInitializer,this.alphaRegularizer,!0,this.alphaConstraint);let n={};if(this.sharedAxes!=null)for(let s=1;s<e.length;++s)n[s]=e[s];this.inputSpec=[new an({ndim:e.length,axes:n})],this.built=!0}call(e,t){return e=Ke(e),wh(e,this.alpha.read())}getConfig(){let e={alphaInitializer:Ut(this.alphaInitializer),alphaRegularizer:St(this.alphaRegularizer),alphaConstraint:yn(this.alphaConstraint),sharedAxes:this.sharedAxes},t=super.getConfig();return Object.assign(e,t),e}};D5.className="PReLU";de.registerClass(D5);var $5=class extends ut{constructor(e){if(super(e==null?{}:e),this.DEFAULT_ALPHA=1,e==null&&(e={}),e.alpha!=null&&e.alpha!==this.DEFAULT_ALPHA)throw new Xe(`Non-default alpha value (${e.alpha}) is not supported by the ELU layer yet.`);this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=Ke(e);return Xc(n)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};$5.className="ELU";de.registerClass($5);var P5=class extends ut{constructor(e){super(e==null?{}:e),this.DEFAULT_THETA=1,e==null&&(e={}),this.theta=e.theta==null?this.DEFAULT_THETA:e.theta}call(e,t){let n=Ke(e);return z(n,ye(ws(n,this.theta),"float32"))}computeOutputShape(e){return e}getConfig(){let e={theta:this.theta},t=super.getConfig();return Object.assign(e,t),e}};P5.className="ThresholdedReLU";de.registerClass(P5);var F5=class extends ut{constructor(e){super(e==null?{}:e),this.DEFAULT_AXIS=1,e==null&&(e={}),this.softmax=new N5().apply,this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis}call(e,t){let n=Ke(e);return this.softmax(n,this.axis)}computeOutputShape(e){return e}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};F5.className="Softmax";de.registerClass(F5);function Qu(e,t,n){if(typeof e=="number")return al(e,t);if(e.length!==t)throw new j(`The ${n} argument must be an integer or tuple of ${t} integers. Received: ${e.length} elements.`);for(let s=0;s<t;++s){let r=e[s];if(!ZV(r))throw new j(`The ${n} argument must be an integer or tuple of ${t} integers. Received: ${JSON.stringify(e)} including a non-integer number ${r}`)}return e}function Mr(e,t,n,s,r=1){if(e==null)return e;let a=t+(t-1)*(r-1),o;return n==="same"?o=e:o=e-a+1,Math.floor((o+s-1)/s)}function Yr(e,t,n,s){if(e==null)return null;if(s==="valid")e=e*t+ao([n-t,0]);else if(s==="same")e=e*t;else throw new j(`Unsupport padding mode: ${s}.`);return e}function O5(e,t){return Z(()=>(Jt(t),t==="channelsFirst"?tt(e,[0,2,3,1]):e))}function bk(e,t){return Z(()=>(Jt(t),t==="channelsFirst"?tt(e,[0,2,3,4,1]):e))}function OG(e,t,n,s=1,r="valid",a,o=1){return Z(()=>{if(a==null&&(a=Lr()),Jt(a),e.shape.length!==3)throw new j(`The input of a conv1dWithBias operation should be 3, but is ${e.shape.length} instead.`);if(t.shape.length!==3)throw new j(`The kernel for a conv1dWithBias operation should be 3, but is ${t.shape.length} instead`);if(n!=null&&n.shape.length!==1)throw new j(`The bias for a conv1dWithBias operation should be 1, but is ${t.shape.length} instead`);if(a==="channelsFirst"&&(e=tt(e,[0,2,1])),r==="causal")throw new Xe("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");let i=I0(e,t,s,r==="same"?"same":"valid","NWC",o);return n!=null&&(i=Vr(i,n)),i})}function u7(e,t,n,s=[1,1],r="valid",a,o,i=null){return Z(()=>{if(a==null&&(a=Lr()),Jt(a),e.rank!==3&&e.rank!==4)throw new j(`conv2dWithBiasActivation expects input to be of rank 3 or 4, but received ${e.rank}.`);if(t.rank!==3&&t.rank!==4)throw new j(`conv2dWithBiasActivation expects kernel to be of rank 3 or 4, but received ${e.rank}.`);let l=O5(e,a);if(r==="causal")throw new Xe("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");return l=lc.conv2d({x:l,filter:t,strides:s,pad:r==="same"?"same":"valid",dilations:o,dataFormat:"NHWC",bias:n,activation:i}),a==="channelsFirst"&&(l=tt(l,[0,3,1,2])),l})}function MG(e,t,n,s=[1,1,1],r="valid",a,o){return Z(()=>{if(a==null&&(a=Lr()),Jt(a),e.rank!==4&&e.rank!==5)throw new j(`conv3dWithBias expects input to be of rank 4 or 5, but received ${e.rank}.`);if(t.rank!==4&&t.rank!==5)throw new j(`conv3dWithBias expects kernel to be of rank 4 or 5, but received ${e.rank}.`);let i=bk(e,a);if(r==="causal")throw new Xe("The support for CAUSAL padding mode in conv3dWithBias is not implemented yet.");return i=wA(i,t,s,r==="same"?"same":"valid","NDHWC",o),n!=null&&(i=Vr(i,n)),a==="channelsFirst"&&(i=tt(i,[0,4,1,2,3])),i})}var M5=class extends ut{constructor(e,t){if(super(t),this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",M5.verifyArgs(t),this.rank=e,Sn(this.rank,"rank"),this.rank!==1&&this.rank!==2&&this.rank!==3)throw new Xe(`Convolution layer for rank other than 1, 2, or 3 (${this.rank}) is not implemented yet.`);if(this.kernelSize=Qu(t.kernelSize,e,"kernelSize"),this.strides=Qu(t.strides==null?1:t.strides,e,"strides"),this.padding=t.padding==null?"valid":t.padding,rr(this.padding),this.dataFormat=t.dataFormat==null?"channelsLast":t.dataFormat,Jt(this.dataFormat),this.activation=io(t.activation),this.useBias=t.useBias==null?!0:t.useBias,this.biasInitializer=Ft(t.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.biasConstraint=An(t.biasConstraint),this.biasRegularizer=Ot(t.biasRegularizer),this.activityRegularizer=Ot(t.activityRegularizer),this.dilationRate=Qu(t.dilationRate==null?1:t.dilationRate,e,"dilationRate"),this.rank===1&&Array.isArray(this.dilationRate)&&this.dilationRate.length!==1)throw new j(`dilationRate must be a number or an array of a single number for 1D convolution, but received ${JSON.stringify(this.dilationRate)}`);if(this.rank===2){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==2)throw new j(`dilationRate must be a number or array of two numbers for 2D convolution, but received ${JSON.stringify(this.dilationRate)}`)}else if(this.rank===3){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==3)throw new j(`dilationRate must be a number or array of three numbers for 3D convolution, but received ${JSON.stringify(this.dilationRate)}`)}}static verifyArgs(e){if(Zr("kernelSize"in e,"required key 'kernelSize' not in config"),typeof e.kernelSize!="number"&&!i5(e.kernelSize,"number",1,3))throw new j(`BaseConv expects config.kernelSize to be number or number[] with length 1, 2, or 3, but received ${JSON.stringify(e.kernelSize)}.`)}getConfig(){let e={kernelSize:this.kernelSize,strides:this.strides,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,activation:oo(this.activation),useBias:this.useBias,biasInitializer:Ut(this.biasInitializer),biasRegularizer:St(this.biasRegularizer),activityRegularizer:St(this.activityRegularizer),biasConstraint:yn(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}},$h=class extends M5{constructor(e,t){super(e,t),this.kernel=null,$h.verifyArgs(t),this.filters=t.filters,Sn(this.filters,"filters"),this.kernelInitializer=Ft(t.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.kernelConstraint=An(t.kernelConstraint),this.kernelRegularizer=Ot(t.kernelRegularizer)}build(e){e=At(e);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new j(`The channel dimension of the input should be defined. Found ${e[t]}`);let n=e[t],s=this.kernelSize.concat([n,this.filters]);this.kernel=this.addWeight("kernel",s,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[{ndim:this.rank+2,axes:{[t]:n}}],this.built=!0}call(e,t){return Z(()=>{e=Ke(e);let n,s=this.bias==null?null:this.bias.read(),r=N8(this.activation.getClassName());if(r!=null&&this.rank===2)n=u7(e,this.kernel.read(),s,this.strides,this.padding,this.dataFormat,this.dilationRate,r);else{if(this.rank===1)n=OG(e,this.kernel.read(),s,this.strides[0],this.padding,this.dataFormat,this.dilationRate[0]);else if(this.rank===2)n=u7(e,this.kernel.read(),s,this.strides,this.padding,this.dataFormat,this.dilationRate);else if(this.rank===3)n=MG(e,this.kernel.read(),s,this.strides,this.padding,this.dataFormat,this.dilationRate);else throw new Xe("convolutions greater than 3D are not implemented yet.");this.activation!=null&&(n=this.activation.apply(n))}return n})}computeOutputShape(e){e=At(e);let t=[],n=this.dataFormat==="channelsLast"?e.slice(1,e.length-1):e.slice(2);for(let r=0;r<n.length;++r){let a=Mr(n[r],this.kernelSize[r],this.padding,this.strides[r],typeof this.dilationRate=="number"?this.dilationRate:this.dilationRate[r]);t.push(a)}let s=[e[0]];return this.dataFormat==="channelsLast"?(s=s.concat(t),s.push(this.filters)):(s.push(this.filters),s=s.concat(t)),s}getConfig(){let e={filters:this.filters,kernelInitializer:Ut(this.kernelInitializer),kernelRegularizer:St(this.kernelRegularizer),kernelConstraint:yn(this.kernelConstraint)},t=super.getConfig();return Object.assign(e,t),e}static verifyArgs(e){if(!("filters"in e)||typeof e.filters!="number"||e.filters<1)throw new j(`Convolution layer expected config.filters to be a 'number' > 0 but got ${JSON.stringify(e.filters)}`)}},Ph=class extends $h{constructor(e){super(2,e),Ph.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!i5(e.kernelSize,"number",1,2))throw new j(`Conv2D expects config.kernelSize to be number or number[] with length 1 or 2, but received ${JSON.stringify(e.kernelSize)}.`)}};Ph.className="Conv2D";de.registerClass(Ph);var Fh=class extends $h{constructor(e){super(3,e),Fh.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!(Array.isArray(e.kernelSize)&&(e.kernelSize.length===1||e.kernelSize.length===3)))throw new j(`Conv3D expects config.kernelSize to be number or [number, number, number], but received ${JSON.stringify(e.kernelSize)}.`)}};Fh.className="Conv3D";de.registerClass(Fh);var z5=class extends Ph{constructor(e){if(super(e),this.inputSpec=[new an({ndim:4})],this.padding!=="same"&&this.padding!=="valid")throw new j(`Conv2DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=At(e),e.length!==4)throw new j("Input should have rank 4; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new j("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],s=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",s,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new an({ndim:4,axes:{[t]:n}})],this.built=!0}call(e,t){return Z(()=>{let n=Ke(e);if(n.shape.length!==4)throw new j(`Conv2DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let s=n.shape,r=s[0],a,o;this.dataFormat==="channelsFirst"?(a=2,o=3):(a=1,o=2);let i=s[a],l=s[o],u=this.kernelSize[0],c=this.kernelSize[1],p=this.strides[0],d=this.strides[1],h=Yr(i,p,u,this.padding),f=Yr(l,d,c,this.padding),m=[r,h,f,this.filters];this.dataFormat!=="channelsLast"&&(n=tt(n,[0,2,3,1]));let g=C0(n,this.kernel.read(),m,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(g=tt(g,[0,3,1,2])),this.bias!=null&&(g=Vr(g,this.bias.read(),this.dataFormat)),this.activation!=null&&(g=this.activation.apply(g)),g})}computeOutputShape(e){e=At(e);let t=e.slice(),n,s,r;this.dataFormat==="channelsFirst"?(n=1,s=2,r=3):(n=3,s=1,r=2);let a=this.kernelSize[0],o=this.kernelSize[1],i=this.strides[0],l=this.strides[1];return t[n]=this.filters,t[s]=Yr(t[s],i,a,this.padding),t[r]=Yr(t[r],l,o,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};z5.className="Conv2DTranspose";de.registerClass(z5);var L5=class extends Fh{constructor(e){if(super(e),this.inputSpec=[new an({ndim:5})],this.padding!=="same"&&this.padding!=="valid")throw new j(`Conv3DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=At(e),e.length!==5)throw new j("Input should have rank 5; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new j("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],s=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",s,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new an({ndim:5,axes:{[t]:n}})],this.built=!0}call(e,t){return Z(()=>{let n=Ke(e);if(n.shape.length!==5)throw new j(`Conv3DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let s=n.shape,r=s[0],a,o,i;this.dataFormat==="channelsFirst"?(i=2,a=3,o=4):(i=1,a=2,o=3);let l=s[i],u=s[a],c=s[o],p=this.kernelSize[0],d=this.kernelSize[1],h=this.kernelSize[2],f=this.strides[0],m=this.strides[1],g=this.strides[2],y=Yr(l,f,p,this.padding),x=Yr(u,m,d,this.padding),A=Yr(c,g,h,this.padding),b=[r,y,x,A,this.filters];this.dataFormat!=="channelsLast"&&(n=tt(n,[0,2,3,4,1]));let w=kA(n,this.kernel.read(),b,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(w=tt(w,[0,4,1,2,3])),this.bias!==null&&(w=Vr(w,this.bias.read(),this.dataFormat)),this.activation!==null&&(w=this.activation.apply(w)),w})}computeOutputShape(e){e=At(e);let t=e.slice(),n,s,r,a;this.dataFormat==="channelsFirst"?(n=1,s=2,r=3,a=4):(n=4,s=1,r=2,a=3);let o=this.kernelSize[0],i=this.kernelSize[1],l=this.kernelSize[2],u=this.strides[0],c=this.strides[1],p=this.strides[2];return t[n]=this.filters,t[s]=Yr(t[s],u,o,this.padding),t[r]=Yr(t[r],c,i,this.padding),t[a]=Yr(t[a],p,l,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};L5.className="Conv3DTranspose";de.registerClass(L5);var vk=class extends $h{constructor(e,t){if(super(e,t),this.DEFAULT_DEPTHWISE_INITIALIZER="glorotUniform",this.DEFAULT_POINTWISE_INITIALIZER="glorotUniform",this.depthwiseKernel=null,this.pointwiseKernel=null,t.filters==null)throw new j("The `filters` configuration field is required by SeparableConv, but is unspecified.");if(t.kernelInitializer!=null||t.kernelRegularizer!=null||t.kernelConstraint!=null)throw new j("Fields kernelInitializer, kernelRegularizer and kernelConstraint are invalid for SeparableConv2D. Use depthwiseInitializer, depthwiseRegularizer, depthwiseConstraint, pointwiseInitializer, pointwiseRegularizer and pointwiseConstraint instead.");if(t.padding!=null&&t.padding!=="same"&&t.padding!=="valid")throw new j(`SeparableConv${this.rank}D supports only padding modes: 'same' and 'valid', but received ${JSON.stringify(t.padding)}`);this.depthMultiplier=t.depthMultiplier==null?1:t.depthMultiplier,this.depthwiseInitializer=Ft(t.depthwiseInitializer||this.DEFAULT_DEPTHWISE_INITIALIZER),this.depthwiseRegularizer=Ot(t.depthwiseRegularizer),this.depthwiseConstraint=An(t.depthwiseConstraint),this.pointwiseInitializer=Ft(t.depthwiseInitializer||this.DEFAULT_POINTWISE_INITIALIZER),this.pointwiseRegularizer=Ot(t.pointwiseRegularizer),this.pointwiseConstraint=An(t.pointwiseConstraint)}build(e){if(e=At(e),e.length<this.rank+2)throw new j(`Inputs to SeparableConv${this.rank}D should have rank ${this.rank+2}, but received input shape: ${JSON.stringify(e)}`);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null||e[t]<0)throw new j(`The channel dimension of the inputs should be defined, but found ${JSON.stringify(e[t])}`);let n=e[t],s=this.kernelSize.concat([n,this.depthMultiplier]),r=[];for(let o=0;o<this.rank;++o)r.push(1);r.push(n*this.depthMultiplier,this.filters);let a=!0;this.depthwiseKernel=this.addWeight("depthwise_kernel",s,"float32",this.depthwiseInitializer,this.depthwiseRegularizer,a,this.depthwiseConstraint),this.pointwiseKernel=this.addWeight("pointwise_kernel",r,"float32",this.pointwiseInitializer,this.pointwiseRegularizer,a,this.pointwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,a,this.biasConstraint):this.bias=null,this.inputSpec=[new an({ndim:this.rank+2,axes:{[t]:n}})],this.built=!0}call(e,t){return Z(()=>{e=Ke(e);let n;if(this.rank===1)throw new Xe("1D separable convolution is not implemented yet.");return this.rank===2&&(this.dataFormat==="channelsFirst"&&(e=tt(e,[0,2,3,1])),n=W0(e,this.depthwiseKernel.read(),this.pointwiseKernel.read(),this.strides,this.padding,this.dilationRate,"NHWC")),this.useBias&&(n=Vr(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),this.dataFormat==="channelsFirst"&&(n=tt(n,[0,3,1,2])),n})}getConfig(){let e=super.getConfig();return delete e.rank,delete e.kernelInitializer,delete e.kernelRegularizer,delete e.kernelConstraint,e.depthwiseInitializer=Ut(this.depthwiseInitializer),e.pointwiseInitializer=Ut(this.pointwiseInitializer),e.depthwiseRegularizer=St(this.depthwiseRegularizer),e.pointwiseRegularizer=St(this.pointwiseRegularizer),e.depthwiseConstraint=yn(this.depthwiseConstraint),e.pointwiseConstraint=yn(this.pointwiseConstraint),e}};vk.className="SeparableConv";var B5=class extends vk{constructor(e){super(2,e)}};B5.className="SeparableConv2D";de.registerClass(B5);var x2=class extends $h{constructor(e){super(1,e),x2.verifyArgs(e),this.inputSpec=[{ndim:3}]}getConfig(){let e=super.getConfig();return delete e.rank,delete e.dataFormat,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!i5(e.kernelSize,"number",1,1))throw new j(`Conv1D expects config.kernelSize to be number or number[] with length 1, but received ${JSON.stringify(e.kernelSize)}.`)}};x2.className="Conv1D";de.registerClass(x2);var W5=class extends ut{constructor(e){super(e),typeof e.cropping=="number"?this.cropping=[[e.cropping,e.cropping],[e.cropping,e.cropping]]:typeof e.cropping[0]=="number"?this.cropping=[[e.cropping[0],e.cropping[0]],[e.cropping[1],e.cropping[1]]]:this.cropping=e.cropping,this.dataFormat=e.dataFormat===void 0?"channelsLast":e.dataFormat,this.inputSpec=[{ndim:4}]}computeOutputShape(e){return this.dataFormat==="channelsFirst"?[e[0],e[1],e[2]-this.cropping[0][0]-this.cropping[0][1],e[3]-this.cropping[1][0]-this.cropping[1][1]]:[e[0],e[1]-this.cropping[0][0]-this.cropping[0][1],e[2]-this.cropping[1][0]-this.cropping[1][1],e[3]]}call(e,t){return Z(()=>{if(e=Ke(e),this.dataFormat==="channelsLast"){let n=Kf(e,this.cropping[0][0],e.shape[1]-this.cropping[0][0]-this.cropping[0][1],2);return Kf(n,this.cropping[1][0],e.shape[2]-this.cropping[1][1]-this.cropping[1][0],3)}else{let n=Kf(e,this.cropping[0][0],e.shape[2]-this.cropping[0][0]-this.cropping[0][1],3);return Kf(n,this.cropping[1][0],e.shape[3]-this.cropping[1][1]-this.cropping[1][0],4)}})}getConfig(){let e={cropping:this.cropping,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};W5.className="Cropping2D";de.registerClass(W5);var V5=class extends ut{constructor(e){super(e),this.DEFAULT_SIZE=[2,2],this.inputSpec=[{ndim:4}],this.size=e.size==null?this.DEFAULT_SIZE:e.size,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Jt(this.dataFormat),this.interpolation=e.interpolation==null?"nearest":e.interpolation,qV(this.interpolation)}computeOutputShape(e){if(this.dataFormat==="channelsFirst"){let t=e[2]==null?null:this.size[0]*e[2],n=e[3]==null?null:this.size[1]*e[3];return[e[0],e[1],t,n]}else{let t=e[1]==null?null:this.size[0]*e[1],n=e[2]==null?null:this.size[1]*e[2];return[e[0],t,n,e[3]]}}call(e,t){return Z(()=>{let n=Ke(e),s=n.shape;if(this.dataFormat==="channelsFirst"){n=tt(n,[0,2,3,1]);let r=this.size[0]*s[2],a=this.size[1]*s[3],o=this.interpolation==="nearest"?Ie.resizeNearestNeighbor(n,[r,a]):Ie.resizeBilinear(n,[r,a]);return tt(o,[0,3,1,2])}else{let r=this.size[0]*s[1],a=this.size[1]*s[2];return this.interpolation==="nearest"?Ie.resizeNearestNeighbor(n,[r,a]):Ie.resizeBilinear(n,[r,a])}})}getConfig(){let e={size:this.size,dataFormat:this.dataFormat,interpolation:this.interpolation},t=super.getConfig();return Object.assign(e,t),e}};V5.className="UpSampling2D";de.registerClass(V5);function zG(e,t,n=[1,1],s="valid",r,a){return Z(()=>{r==null&&(r=Lr()),Jt(r);let o=O5(e,r);if(e.rank!==4)throw new j(`Input for depthwiseConv2d is required to be 4-D, but is instead ${e.rank}-D`);if(t.rank!==4)throw new j(`depthwiseKernel is required to be 4-D, but is instead ${t.rank}-D`);return o=qc(o,t,n,s==="same"?"same":"valid","NHWC",a),r==="channelsFirst"&&(o=tt(o,[0,3,1,2])),o})}var U5=class extends M5{constructor(e){super(2,e),this.depthwiseKernel=null,this.depthMultiplier=e.depthMultiplier==null?1:e.depthMultiplier,this.depthwiseInitializer=Ft(e.depthwiseInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.depthwiseConstraint=An(e.depthwiseConstraint),this.depthwiseRegularizer=Ot(e.depthwiseRegularizer)}build(e){if(e=At(e),e.length<4)throw new j(`Inputs to DepthwiseConv2D should have rank 4. Received input shape: ${JSON.stringify(e)}.`);let t=this.dataFormat==="channelsFirst"?1:3;if(e[t]==null||e[t]<0)throw new j(`The channel dimension of the inputs to DepthwiseConv2D should be defined, but is not (${e[t]}).`);let n=e[t],s=[this.kernelSize[0],this.kernelSize[1],n,this.depthMultiplier];this.depthwiseKernel=this.addWeight("depthwise_kernel",s,null,this.depthwiseInitializer,this.depthwiseRegularizer,!0,this.depthwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[n*this.depthMultiplier],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return Z(()=>{e=Ke(e);let n=zG(e,this.depthwiseKernel.read(),this.strides,this.padding,this.dataFormat,null);return this.useBias&&(n=Vr(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),n})}computeOutputShape(e){e=At(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],s=this.dataFormat==="channelsFirst"?e[1]*this.depthMultiplier:e[3]*this.depthMultiplier,r=Mr(t,this.kernelSize[0],this.padding,this.strides[0]),a=Mr(n,this.kernelSize[1],this.padding,this.strides[1]);return this.dataFormat==="channelsFirst"?[e[0],s,r,a]:[e[0],r,a,s]}getConfig(){let e=super.getConfig();return e.depthMultiplier=this.depthMultiplier,e.depthwiseInitializer=Ut(this.depthwiseInitializer),e.depthwiseRegularizer=St(this.depthwiseRegularizer),e.depthwiseConstraint=yn(this.depthwiseRegularizer),e}};U5.className="DepthwiseConv2D";de.registerClass(U5);function wk(e,t,n,s){if(Array.isArray(e)){if(t!=null||n!=null)throw new j("When inputs is an array, neither initialState or constants should be provided");s!=null&&(n=e.slice(e.length-s,e.length),e=e.slice(0,e.length-s)),e.length>1&&(t=e.slice(1,e.length)),e=e[0]}function r(a){return a==null||Array.isArray(a)?a:[a]}return t=r(t),n=r(n),{inputs:e,initialState:t,constants:n}}function kk(e,t,n,s=!1,r,a,o=!1,i=!1){return Z(()=>{let l=t.shape.length;if(l<3)throw new j(`Input should be at least 3D, but is ${l}D.`);let u=[1,0].concat(zr(2,l));if(t=tt(t,u),a!=null)throw new Xe("The rnn() functoin of the deeplearn.js backend does not support constants yet.");o&&console.warn("Backend rnn(): the unroll = true option is not applicable to the imperative deeplearn.js backend."),r!=null&&(r=ye(ye(r,"bool"),"float32"),r.rank===l-1&&(r=Bt(r,-1)),r=tt(r,u)),s&&(t=Qs(t,0),r!=null&&(r=Qs(r,0)));let c=[],p,d=n,h=t.shape[0],f=On(t),m;r!=null&&(m=On(r));for(let y=0;y<h;++y){let x=f[y],A=Z(()=>e(x,d));if(r==null)p=A[0],d=A[1];else{let b=Z(()=>{let w=m[y],S=me(zs(w),w),k=ue(z(A[0],w),z(d[0],S)),E=d.map((_,D)=>ue(z(A[1][D],w),z(_,S)));return{output:k,newStates:E}});p=b.output,d=b.newStates}i&&c.push(p)}let g;return i&&(g=ln(c,1)),[p,g,d]})}var ia=class extends ut{constructor(e){super(e);let t;if(e.cell==null)throw new j("cell property is missing for the constructor of RNN.");if(Array.isArray(e.cell)?t=new w2({cells:e.cell}):t=e.cell,t.stateSize==null)throw new j("The RNN cell should have an attribute `stateSize` (tuple of integers, one integer per RNN state).");this.cell=t,this.returnSequences=e.returnSequences==null?!1:e.returnSequences,this.returnState=e.returnState==null?!1:e.returnState,this.goBackwards=e.goBackwards==null?!1:e.goBackwards,this._stateful=e.stateful==null?!1:e.stateful,this.unroll=e.unroll==null?!1:e.unroll,this.supportsMasking=!0,this.inputSpec=[new an({ndim:3})],this.stateSpec=null,this.states_=null,this.numConstants=null,this.keptStates=[]}getStates(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;return zr(0,e).map(t=>null)}else return this.states_}setStates(e){this.states_=e}computeOutputShape(e){j3(e)&&(e=e[0]),e=e;let t=this.cell.stateSize;Array.isArray(t)||(t=[t]);let n=t[0],s;if(this.returnSequences?s=[e[0],e[1],n]:s=[e[0],n],this.returnState){let r=[];for(let a of t)r.push([e[0],a]);return[s].concat(r)}else return s}computeMask(e,t){return Z(()=>{Array.isArray(t)&&(t=t[0]);let n=this.returnSequences?t:null;if(this.returnState){let s=this.states.map(r=>null);return[n].concat(s)}else return n})}get states(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1,t=[];for(let n=0;n<e;++n)t.push(null);return t}else return this.states_}set states(e){this.states_=e}build(e){if(this.numConstants!=null)throw new Xe("Constants support is not implemented in RNN yet.");j3(e)&&(e=e[0]),e=e;let n=this.stateful?e[0]:null,s=e.slice(2);this.inputSpec[0]=new an({shape:[n,null,...s]});let r=[e[0]].concat(e.slice(2));this.cell.build(r);let a;if(Array.isArray(this.cell.stateSize)?a=this.cell.stateSize:a=[this.cell.stateSize],this.stateSpec!=null){if(!v.arraysEqual(this.stateSpec.map(o=>o.shape[o.shape.length-1]),a))throw new j(`An initialState was passed that is not compatible with cell.stateSize. Received stateSpec=${this.stateSpec}; However cell.stateSize is ${this.cell.stateSize}`)}else this.stateSpec=a.map(o=>new an({shape:[null,o]}));this.stateful&&this.resetStates()}resetStates(e,t=!1){Z(()=>{if(!this.stateful)throw new ma("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape[0];if(n==null)throw new j("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.states_==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(s=>Vt([n,s])):this.states_=[Vt([n,this.cell.stateSize])];else if(e==null)J(this.states_),this.keptStates!=null&&(J(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(s=>Vt([n,s])):this.states_[0]=Vt([n,this.cell.stateSize]);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new j(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t===!0?this.keptStates.push(this.states_.slice()):J(this.states_);for(let s=0;s<this.states_.length;++s){let r=e[s],a=Array.isArray(this.cell.stateSize)?this.cell.stateSize[s]:this.cell.stateSize,o=[n,a];if(!v.arraysEqual(r.shape,o))throw new j(`State ${s} is incompatible with layer ${this.name}: expected shape=${o}, received shape=${r.shape}`);this.states_[s]=r}}this.states_=this.states_.map(s=>kn(s.clone()))})}apply(e,t){let n=t==null?null:t.initialState,s=t==null?null:t.constants;t==null&&(t={});let r=wk(e,n,s,this.numConstants);e=r.inputs,n=r.initialState,s=r.constants;let a=[],o=[];if(n!=null){t.initialState=n,a=a.concat(n),this.stateSpec=[];for(let l of n)this.stateSpec.push(new an({shape:l.shape}));o=o.concat(this.stateSpec)}if(s!=null&&(t.constants=s,a=a.concat(s),this.numConstants=s.length),a[0]instanceof Pr){let l=[e].concat(a),u=this.inputSpec.concat(o),c=this.inputSpec;this.inputSpec=u;let p=super.apply(l,t);return this.inputSpec=c,p}else return super.apply(e,t)}call(e,t){return Z(()=>{let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;e=Ke(e),r==null&&(this.stateful?r=this.states_:r=this.getInitialState(e));let a=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;if(r.length!==a)throw new j(`RNN Layer has ${a} state(s) but was passed ${r.length} initial state(s).`);this.unroll&&console.warn("Ignoring unroll = true for RNN layer, due to imperative backend.");let o={training:s},l=kk((h,f)=>{let m=this.cell.call([h].concat(f),o);return[m[0],m.slice(1)]},e,r,this.goBackwards,n,null,this.unroll,this.returnSequences),u=l[0],c=l[1],p=l[2];this.stateful&&this.resetStates(p,s);let d=this.returnSequences?c:u;return this.returnState?[d].concat(p):d})}getInitialState(e){return Z(()=>{let t=Vt(e.shape);return t=ke(t,[1,2]),t=Nh(t),Array.isArray(this.cell.stateSize)?this.cell.stateSize.map(n=>n>1?G3(t,[1,n]):t):this.cell.stateSize>1?[G3(t,[1,this.cell.stateSize])]:[t]})}get trainableWeights(){return this.trainable?this.cell.trainableWeights:[]}get nonTrainableWeights(){return this.trainable?this.cell.nonTrainableWeights:this.cell.weights}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.cell!=null&&this.cell.setFastWeightInitDuringBuild(e)}getConfig(){let e=super.getConfig(),t={returnSequences:this.returnSequences,returnState:this.returnState,goBackwards:this.goBackwards,stateful:this.stateful,unroll:this.unroll};this.numConstants!=null&&(t.numConstants=this.numConstants);let n=this.cell.getConfig();return this.getClassName()===ia.className&&(t.cell={className:this.cell.getClassName(),config:n}),Object.assign({},n,e,t)}static fromConfig(e,t,n={}){let s=t.cell,r=Or(s,n);return new e(Object.assign(t,{cell:r}))}};ia.className="RNN";de.registerClass(ia);var Oh=class extends ut{},b2=class extends Oh{constructor(e){super(e),this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,Sn(this.units,"units"),this.activation=io(e.activation==null?this.DEFAULT_ACTIVATION:e.activation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=Ft(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=Ft(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=Ft(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=Ot(e.kernelRegularizer),this.recurrentRegularizer=Ot(e.recurrentRegularizer),this.biasRegularizer=Ot(e.biasRegularizer),this.kernelConstraint=An(e.kernelConstraint),this.recurrentConstraint=An(e.recurrentConstraint),this.biasConstraint=An(e.biasConstraint),this.dropout=uc([1,ao([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=uc([1,ao([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.dropoutFunc=e.dropoutFunc,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=At(e),this.kernel=this.addWeight("kernel",[e[e.length-1],this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return Z(()=>{if(e=e,e.length!==2)throw new j(`SimpleRNNCell expects 2 input Tensors, got ${e.length}.`);let n=e[1];e=e[0];let s=t.training==null?!1:t.training;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=lo({ones:()=>zs(e),rate:this.dropout,training:s,dropoutFunc:this.dropoutFunc})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=lo({ones:()=>zs(n),rate:this.recurrentDropout,training:s,dropoutFunc:this.dropoutFunc}));let r,a=this.dropoutMask,o=this.recurrentDropoutMask;a!=null?r=ea(z(e,a),this.kernel.read()):r=ea(e,this.kernel.read()),this.bias!=null&&(r=Vr(r,this.bias.read())),o!=null&&(n=z(n,o));let i=ue(r,ea(n,this.recurrentKernel.read()));return this.activation!=null&&(i=this.activation.apply(i)),[i,i]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:oo(this.activation),useBias:this.useBias,kernelInitializer:Ut(this.kernelInitializer),recurrentInitializer:Ut(this.recurrentInitializer),biasInitializer:Ut(this.biasInitializer),kernelRegularizer:St(this.kernelRegularizer),recurrentRegularizer:St(this.recurrentRegularizer),biasRegularizer:St(this.biasRegularizer),activityRegularizer:St(this.activityRegularizer),kernelConstraint:yn(this.kernelConstraint),recurrentConstraint:yn(this.recurrentConstraint),biasConstraint:yn(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout};return Object.assign({},e,t)}};b2.className="SimpleRNNCell";de.registerClass(b2);var G5=class extends ia{constructor(e){e.cell=new b2(e),super(e)}call(e,t){return Z(()=>{this.cell.dropoutMask!=null&&(J(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(J(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:s,initialState:r})})}static fromConfig(e,t){return new e(t)}};G5.className="SimpleRNN";de.registerClass(G5);var v2=class extends Oh{constructor(e){if(super(e),this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.resetAfter)throw new j("GRUCell does not support reset_after parameter set to true.");this.units=e.units,Sn(this.units,"units"),this.activation=io(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=io(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=Ft(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=Ft(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=Ft(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=Ot(e.kernelRegularizer),this.recurrentRegularizer=Ot(e.recurrentRegularizer),this.biasRegularizer=Ot(e.biasRegularizer),this.kernelConstraint=An(e.kernelConstraint),this.recurrentConstraint=An(e.recurrentConstraint),this.biasConstraint=An(e.biasConstraint),this.dropout=uc([1,ao([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=uc([1,ao([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.dropoutFunc=e.dropoutFunc,this.implementation=e.implementation,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=At(e);let t=e[e.length-1];this.kernel=this.addWeight("kernel",[t,this.units*3],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*3],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units*3],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return Z(()=>{if(e=e,e.length!==2)throw new j(`GRUCell expects 2 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training==null?!1:t.training,s=e[1];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=lo({ones:()=>zs(e),rate:this.dropout,training:n,count:3,dropoutFunc:this.dropoutFunc})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=lo({ones:()=>zs(s),rate:this.recurrentDropout,training:n,count:3,dropoutFunc:this.dropoutFunc}));let r=this.dropoutMask,a=this.recurrentDropoutMask,o,i,l;0<this.dropout&&this.dropout<1&&(e=z(e,r[0]));let u=ea(e,this.kernel.read());this.useBias&&(u=Vr(u,this.bias.read())),0<this.recurrentDropout&&this.recurrentDropout<1&&(s=z(s,a[0]));let c=this.recurrentKernel.read(),[p,d]=Yt(c,[2*this.units,this.units],c.rank-1),h=ea(s,p),[f,m,g]=Yt(u,3,u.rank-1),[y,x]=Yt(h,2,h.rank-1);o=this.recurrentActivation.apply(ue(f,y)),i=this.recurrentActivation.apply(ue(m,x));let A=ea(z(i,s),d);l=this.activation.apply(ue(g,A));let b=ue(z(o,s),z(ue(1,$t(o)),l));return[b,b]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:oo(this.activation),recurrentActivation:oo(this.recurrentActivation),useBias:this.useBias,kernelInitializer:Ut(this.kernelInitializer),recurrentInitializer:Ut(this.recurrentInitializer),biasInitializer:Ut(this.biasInitializer),kernelRegularizer:St(this.kernelRegularizer),recurrentRegularizer:St(this.recurrentRegularizer),biasRegularizer:St(this.biasRegularizer),activityRegularizer:St(this.activityRegularizer),kernelConstraint:yn(this.kernelConstraint),recurrentConstraint:yn(this.recurrentConstraint),biasConstraint:yn(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation,resetAfter:!1};return Object.assign({},e,t)}};v2.className="GRUCell";de.registerClass(v2);var H5=class extends ia{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new v2(e),super(e)}call(e,t){return Z(()=>{this.cell.dropoutMask!=null&&(J(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(J(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:s,initialState:r})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};H5.className="GRU";de.registerClass(H5);var Mh=class extends Oh{constructor(e){super(e),this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,Sn(this.units,"units"),this.activation=io(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=io(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=Ft(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=Ft(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=Ft(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.unitForgetBias=e.unitForgetBias,this.kernelRegularizer=Ot(e.kernelRegularizer),this.recurrentRegularizer=Ot(e.recurrentRegularizer),this.biasRegularizer=Ot(e.biasRegularizer),this.kernelConstraint=An(e.kernelConstraint),this.recurrentConstraint=An(e.recurrentConstraint),this.biasConstraint=An(e.biasConstraint),this.dropout=uc([1,ao([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=uc([1,ao([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.dropoutFunc=e.dropoutFunc,this.implementation=e.implementation,this.stateSize=[this.units,this.units],this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){var t;e=At(e);let n=e[e.length-1];this.kernel=this.addWeight("kernel",[n,this.units*4],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*4],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint);let s;if(this.useBias){if(this.unitForgetBias){let r=this.biasInitializer,a=this.units;s=new(t=class extends Ar{apply(i,l){let u=r.apply([a]),c=new u2().apply([a]),p=r.apply([a*2]);return jv(jv(u,c),p)}},t.className="CustomInit",t)}else s=this.biasInitializer;this.bias=this.addWeight("bias",[this.units*4],null,s,this.biasRegularizer,!0,this.biasConstraint)}else this.bias=null;this.built=!0}call(e,t){return Z(()=>{let n=t.training==null?!1:t.training;if(e=e,e.length!==3)throw new j(`LSTMCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let s=e[1],r=e[2];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=lo({ones:()=>zs(e),rate:this.dropout,training:n,count:4,dropoutFunc:this.dropoutFunc})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=lo({ones:()=>zs(s),rate:this.recurrentDropout,training:n,count:4,dropoutFunc:this.dropoutFunc}));let a=this.dropoutMask,o=this.recurrentDropoutMask,i,l,u,c;0<this.dropout&&this.dropout<1&&(e=z(e,a[0]));let p=ea(e,this.kernel.read());0<this.recurrentDropout&&this.recurrentDropout<1&&(s=z(s,o[0])),p=ue(p,ea(s,this.recurrentKernel.read())),this.useBias&&(p=Vr(p,this.bias.read()));let[d,h,f,m]=Yt(p,4,p.rank-1);i=this.recurrentActivation.apply(d),l=this.recurrentActivation.apply(h),u=ue(z(l,r),z(i,this.activation.apply(f))),c=this.recurrentActivation.apply(m);let g=z(c,this.activation.apply(u));return[g,g,u]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:oo(this.activation),recurrentActivation:oo(this.recurrentActivation),useBias:this.useBias,kernelInitializer:Ut(this.kernelInitializer),recurrentInitializer:Ut(this.recurrentInitializer),biasInitializer:Ut(this.biasInitializer),unitForgetBias:this.unitForgetBias,kernelRegularizer:St(this.kernelRegularizer),recurrentRegularizer:St(this.recurrentRegularizer),biasRegularizer:St(this.biasRegularizer),activityRegularizer:St(this.activityRegularizer),kernelConstraint:yn(this.kernelConstraint),recurrentConstraint:yn(this.recurrentConstraint),biasConstraint:yn(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation};return Object.assign({},e,t)}};Mh.className="LSTMCell";de.registerClass(Mh);var j5=class extends ia{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new Mh(e),super(e)}call(e,t){return Z(()=>{this.cell.dropoutMask!=null&&(J(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(J(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:s,initialState:r})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};j5.className="LSTM";de.registerClass(j5);var w2=class extends Oh{constructor(e){super(e),this.cells=e.cells}get stateSize(){let e=[];for(let t of this.cells.slice().reverse())Array.isArray(t.stateSize)?e.push(...t.stateSize):e.push(t.stateSize);return e}call(e,t){return Z(()=>{e=e;let n=e.slice(1),s=[];for(let o of this.cells.slice().reverse())Array.isArray(o.stateSize)?s.push(n.splice(0,o.stateSize.length)):s.push(n.splice(0,1));s.reverse();let r=[],a;for(let o=0;o<this.cells.length;++o){let i=this.cells[o];n=s[o],o===0?a=[e[0]].concat(n):a=[a[0]].concat(n),a=i.call(a,t),r.push(a.slice(1))}n=[];for(let o of r.slice().reverse())n.push(...o);return[a[0]].concat(n)})}build(e){j3(e)&&(e=e[0]),e=e;let t;this.cells.forEach((n,s)=>{Zi(`RNNCell_${s}`,()=>{n.build(e),Array.isArray(n.stateSize)?t=n.stateSize[0]:t=n.stateSize,e=[e[0],t]})}),this.built=!0}getConfig(){let e=super.getConfig(),t=r=>({className:r.getClassName(),config:r.getConfig()}),s={cells:this.cells.map(t)};return Object.assign({},e,s)}static fromConfig(e,t,n={}){let s=[];for(let r of t.cells)s.push(Or(r,n));return new e({cells:s})}get trainableWeights(){if(!this.trainable)return[];let e=[];for(let t of this.cells)e.push(...t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.cells)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.cells)t.push(...n.trainableWeights);return t.concat(e)}return e}getWeights(){let e=[];for(let t of this.cells)e.push(...t.weights);return q3(e)}setWeights(e){let t=[];for(let n of this.cells){let s=n.weights.length,r=e.splice(s);for(let a=0;a<n.weights.length;++a)t.push([n.weights[a],r[a]])}g5(t)}};w2.className="StackedRNNCells";de.registerClass(w2);function lo(e){let{ones:t,rate:n,training:s=!1,count:r=1,dropoutFunc:a}=e,o=()=>a!=null?a(t(),n):F8(t(),n),i=()=>Rh(o,t,s);return!r||r<=1?kn(i().clone()):Array(r).fill(void 0).map(i).map(u=>kn(u.clone()))}var LG=function(e,t){var n={};for(var s in e)Object.prototype.hasOwnProperty.call(e,s)&&t.indexOf(s)<0&&(n[s]=e[s]);if(e!=null&&typeof Object.getOwnPropertySymbols=="function")for(var r=0,s=Object.getOwnPropertySymbols(e);r<s.length;r++)t.indexOf(s[r])<0&&Object.prototype.propertyIsEnumerable.call(e,s[r])&&(n[s[r]]=e[s[r]]);return n},Sk=class extends ia{constructor(e){if(e.unroll)throw new Xe("Unrolling is not possible with convolutional RNNs.");if(Array.isArray(e.cell))throw new Xe("It is not possible at the moment to stack convolutional cells.");super(e),this.inputSpec=[new an({ndim:5})]}call(e,t){return Z(()=>{if(this.cell.dropoutMask!=null&&(J(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(J(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null),t&&t.constants)throw new j("ConvRNN2D cell does not support constants");let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:s,initialState:r})})}computeOutputShape(e){let t=this.computeSingleOutputShape(e);return this.returnSequences||(t=[t[0],...t.slice(2)]),this.returnState&&(t=[t,...Array(2).fill([e[0],...t.slice(-3)])]),t}getInitialState(e){return Z(()=>{let{stateSize:t}=this.cell,n=e.shape,s=this.computeSingleOutputShape(n),r=[s[0],...s.slice(2)],a=Vt(r);return Array.isArray(t)?Array(t.length).fill(a):[a]})}resetStates(e,t=!1){Z(()=>{if(!this.stateful)throw new ma("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape,s=this.computeSingleOutputShape(n),r=[s[0],...s.slice(2)];if(n[0]==null)throw new j("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.getStates()==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>Vt(r)):this.states_=[Vt(r)];else if(e==null)J(this.states_),this.keptStates!=null&&(J(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>Vt(r)):this.states_[0]=Vt(r);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new j(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t?this.keptStates.push(this.states_.slice()):J(this.states_);for(let o=0;o<this.states_.length;++o){let i=e[o],l=r;if(!v.arraysEqual(i.shape,l))throw new j(`State ${o} is incompatible with layer ${this.name}: expected shape=${l}, received shape=${i.shape}`);this.states_[o]=i}}this.states_=this.states_.map(o=>kn(o.clone()))})}computeSingleOutputShape(e){let{dataFormat:t,filters:n,kernelSize:s,padding:r,strides:a,dilationRate:o}=this.cell,i=t==="channelsFirst",l=e[i?3:2],u=e[i?4:3],c=Mr(l,s[0],r,a[0],o[0]),p=Mr(u,s[1],r,a[1],o[1]);return[...e.slice(0,2),...i?[n,c,p]:[c,p,n]]}};Sk.className="ConvRNN2D";var k2=class extends Mh{constructor(e){let{filters:t,kernelSize:n,strides:s,padding:r,dataFormat:a,dilationRate:o}=e;super(Object.assign({},e,{units:t})),this.filters=t,Sn(this.filters,"filters"),this.kernelSize=Qu(n,2,"kernelSize"),this.kernelSize.forEach(i=>Sn(i,"kernelSize")),this.strides=Qu(s||1,2,"strides"),this.strides.forEach(i=>Sn(i,"strides")),this.padding=r||"valid",rr(this.padding),this.dataFormat=a||"channelsLast",Jt(this.dataFormat),this.dilationRate=Qu(o||1,2,"dilationRate"),this.dilationRate.forEach(i=>Sn(i,"dilationRate"))}build(e){var t;e=At(e);let n=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[n]==null)throw new j(`The channel dimension of the input should be defined. Found ${e[n]}`);let s=e[n],r=4,a=this.kernelSize.concat([s,this.filters*r]);this.kernel=this.addWeight("kernel",a,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint);let o=this.kernelSize.concat([this.filters,this.filters*r]);if(this.recurrentKernel=this.addWeight("recurrent_kernel",o,null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias){let i;if(this.unitForgetBias){let l=this.biasInitializer,u=this.filters;i=new(t=class extends Ar{apply(p,d){let h=l.apply([u]),f=$s([u]),m=l.apply([u*2]);return l5([h,f,m])}},t.className="CustomInit",t)}else i=this.biasInitializer;this.bias=this.addWeight("bias",[this.filters*r],null,i,this.biasRegularizer,!0,this.biasConstraint)}this.built=!0}call(e,t){return Z(()=>{if(e.length!==3)throw new j(`ConvLSTM2DCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training||!1,s=e[0],r=e[1],a=e[2],o=4;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=lo({ones:()=>zs(s),rate:this.dropout,training:n,count:o,dropoutFunc:this.dropoutFunc}));let i=this.dropoutMask,l=(Y,ne,ee)=>!ne||!ne[ee]?Y:z(ne[ee],Y),u=l(s,i,0),c=l(s,i,1),p=l(s,i,2),d=l(s,i,3);0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=lo({ones:()=>zs(r),rate:this.recurrentDropout,training:n,count:o,dropoutFunc:this.dropoutFunc}));let h=this.recurrentDropoutMask,f=l(r,h,0),m=l(r,h,1),g=l(r,h,2),y=l(r,h,3),x=3,[A,b,w,S]=Yt(this.kernel.read(),o,x),[k,E,_,D]=this.useBias?Yt(this.bias.read(),o):[null,null,null,null];u=this.inputConv(u,A,k,this.padding),c=this.inputConv(c,b,E,this.padding),p=this.inputConv(p,w,_,this.padding),d=this.inputConv(d,S,D,this.padding);let[R,P,C,M]=Yt(this.recurrentKernel.read(),o,x);f=this.recurrentConv(f,R),m=this.recurrentConv(m,P),g=this.recurrentConv(g,C),y=this.recurrentConv(y,M);let L=this.recurrentActivation.apply(ue(u,f)),G=this.recurrentActivation.apply(ue(c,m)),K=ue(z(G,a),z(L,this.activation.apply(ue(p,g)))),X=z(this.recurrentActivation.apply(ue(d,y)),this.activation.apply(K));return[X,X,K]})}getConfig(){let e=super.getConfig(),{units:t}=e,n=LG(e,["units"]),s={filters:this.filters,kernelSize:this.kernelSize,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,strides:this.strides};return Object.assign({},n,s)}inputConv(e,t,n,s){let r=ka(e,t,this.strides,s||"valid",this.dataFormat==="channelsFirst"?"NCHW":"NHWC",this.dilationRate);return n?Vr(r,n,this.dataFormat):r}recurrentConv(e,t){return ka(e,t,1,"same",this.dataFormat==="channelsFirst"?"NCHW":"NHWC")}};k2.className="ConvLSTM2DCell";de.registerClass(k2);var q5=class extends Sk{constructor(e){let t=new k2(e);super(Object.assign({},e,{cell:t}))}static fromConfig(e,t){return new e(t)}};q5.className="ConvLSTM2D";de.registerClass(q5);var S2=class extends ut{constructor(e){super(e),this.rate=Math.max(Math.min(e.rate,1),0),this.noiseShape=e.noiseShape,this.seed=e.seed,this.supportsMasking=!0}getNoiseShape(e){if(this.noiseShape==null)return this.noiseShape;let t=e.shape,n=[];for(let s=0;s<this.noiseShape.length;++s)n.push(this.noiseShape[s]==null?t[s]:this.noiseShape[s]);return n}call(e,t){return Z(()=>{this.invokeCallHook(e,t);let n=Ke(e);if(0<this.rate&&this.rate<1){let s=t.training==null?!1:t.training,r=this.getNoiseShape(n);return Rh(()=>F8(n,this.rate,r,this.seed),()=>n,s)}return e})}getConfig(){let e={rate:this.rate,noiseShape:this.noiseShape,seed:this.seed},t=super.getConfig();return Object.assign(e,t),e}dispose(){return super.dispose()}};S2.className="Dropout";de.registerClass(S2);var X5=class extends S2{constructor(e){super(e),this.inputSpec=[{ndim:3}]}getNoiseShape(e){let t=e.shape;return[t[0],1,t[2]]}};X5.className="SpatialDropout1D";de.registerClass(X5);var K5=class extends ut{constructor(e){if(super(e),this.activation=null,this.useBias=!0,this.kernel=null,this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.batchInputShape==null&&e.inputShape==null&&e.inputDim!=null){let t=null;e.batchSize!=null&&(t=e.batchSize),this.batchInputShape=[t,e.inputDim]}this.units=e.units,Sn(this.units,"units"),this.activation=io(e.activation),e.useBias!=null&&(this.useBias=e.useBias),this.kernelInitializer=Ft(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.biasInitializer=Ft(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelConstraint=An(e.kernelConstraint),this.biasConstraint=An(e.biasConstraint),this.kernelRegularizer=Ot(e.kernelRegularizer),this.biasRegularizer=Ot(e.biasRegularizer),this.activityRegularizer=Ot(e.activityRegularizer),this.supportsMasking=!0,this.inputSpec=[{minNDim:2}]}build(e){e=At(e);let t=e[e.length-1];this.kernel==null&&(this.kernel=this.addWeight("kernel",[t,this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint))),this.inputSpec=[{minNDim:2,axes:{[-1]:t}}],this.built=!0}computeOutputShape(e){e=At(e);let t=e.slice();return t[t.length-1]=this.units,t}call(e,t){return Z(()=>{this.invokeCallHook(e,t);let n=Ke(e),s=N8(this.activation.getClassName()),r;return s!=null?r=ea(n,this.kernel.read(),s,this.bias?this.bias.read():null):(r=ea(n,this.kernel.read()),this.bias!=null&&(r=Vr(r,this.bias.read())),this.activation!=null&&(r=this.activation.apply(r))),r})}getConfig(){let e={units:this.units,activation:oo(this.activation),useBias:this.useBias,kernelInitializer:Ut(this.kernelInitializer),biasInitializer:Ut(this.biasInitializer),kernelRegularizer:St(this.kernelRegularizer),biasRegularizer:St(this.biasRegularizer),activityRegularizer:St(this.activityRegularizer),kernelConstraint:yn(this.kernelConstraint),biasConstraint:yn(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}};K5.className="Dense";de.registerClass(K5);var Z5=class extends ut{constructor(e){e=e||{},super(e),this.inputSpec=[{minNDim:3}],this.dataFormat=e.dataFormat}computeOutputShape(e){e=At(e);for(let t of e.slice(1))if(t==null)throw new j(`The shape of the input to "Flatten" is not fully defined (got ${e.slice(1)}). Make sure to pass a complete "input_shape" or "batch_input_shape" argument to the first layer in your model.`);return[e[0],Ja(e,1)]}call(e,t){return Z(()=>{this.invokeCallHook(e,t);let n=Ke(e);if(this.dataFormat==="channelsFirst"&&n.rank>1){let s=[0];for(let r=2;r<n.rank;++r)s.push(r);s.push(1),n=tt(n,s)}return QV(n)})}getConfig(){let e={};this.dataFormat!=null&&(e.dataFormat=this.dataFormat);let t=super.getConfig();return Object.assign(e,t),e}};Z5.className="Flatten";de.registerClass(Z5);var Y5=class extends ut{constructor(e){super(e),this.supportsMasking=!0,this.activation=io(e.activation)}call(e,t){return Z(()=>{this.invokeCallHook(e,t);let n=Ke(e);return this.activation.apply(n)})}getConfig(){let e={activation:oo(this.activation)},t=super.getConfig();return Object.assign(e,t),e}};Y5.className="Activation";de.registerClass(Y5);var J5=class extends ut{constructor(e){super(e),this.n=e.n,this.inputSpec=[{ndim:2}]}computeOutputShape(e){return[e[0],this.n,e[1]]}call(e,t){return Z(()=>(e=Ke(e),YV(e,this.n)))}getConfig(){let e={n:this.n},t=super.getConfig();return Object.assign(e,t),e}};J5.className="RepeatVector";de.registerClass(J5);var Q5=class extends ut{constructor(e){super(e),this.targetShape=e.targetShape;for(let t=0;t<this.targetShape.length;++t)this.isUnknown(this.targetShape[t])&&(this.targetShape[t]=null)}isUnknown(e){return e<0||e==null}fixUnknownDimension(e,t){let n="Total size of new array must be unchanged.",s=t.slice(),r=1,a=null;for(let i=0;i<s.length;++i){let l=s[i];if(this.isUnknown(l))if(a===null)a=i;else throw new j("Can only specifiy one unknown dimension.");else r*=l}let o=Ja(e);if(a!==null){if(r===0||o%r!==0)throw new j(n);s[a]=o/r}else if(o!==r)throw new j(n);return s}computeOutputShape(e){let t=!1;for(let n=0;n<e.length;++n)if(this.isUnknown(e[n])){t=!0;break}return t?e.slice(0,1).concat(this.targetShape):e.slice(0,1).concat(this.fixUnknownDimension(e.slice(1),this.targetShape))}call(e,t){return Z(()=>{this.invokeCallHook(e,t);let n=Ke(e),s=n.shape,r=s.slice(0,1).concat(this.fixUnknownDimension(s.slice(1),this.targetShape));return V(n,r)})}getConfig(){let e={targetShape:this.targetShape},t=super.getConfig();return Object.assign(e,t),e}};Q5.className="Reshape";de.registerClass(Q5);var ex=class extends ut{constructor(e){if(super(e),e.dims==null)throw new Error("Required configuration field `dims` is missing during Permute constructor call.");if(!Array.isArray(e.dims))throw new Error(`Permute constructor requires \`dims\` to be an Array, but received ${e.dims} instead.`);let t=zr(1,e.dims.length+1);if(!v.arraysEqual(e.dims.slice().sort(),t))throw new Error("Invalid permutation `dims`: "+JSON.stringify(e.dims)+" `dims` must contain consecutive integers starting from 1.");this.dims=e.dims,this.dimsIncludingBatch=[0].concat(this.dims),this.inputSpec=[new an({ndim:this.dims.length+1})]}computeOutputShape(e){e=At(e);let t=e.slice();return this.dims.forEach((n,s)=>{t[s+1]=e[n]}),t}call(e,t){return tt(Ke(e),this.dimsIncludingBatch)}getConfig(){let e={dims:this.dims},t=super.getConfig();return Object.assign(e,t),e}};ex.className="Permute";de.registerClass(ex);var tx=class extends ut{constructor(e){super(e==null?{}:e),this.supportsMasking=!0,e!=null?this.maskValue=e.maskValue==null?0:e.maskValue:this.maskValue=0}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={maskValue:this.maskValue};return Object.assign(t,e),t}computeMask(e,t){let n=Ke(e),s=-1;return Np(rl(n,this.maskValue),s)}call(e,t){return Z(()=>{this.invokeCallHook(e,t);let n=Ke(e),s=-1,r=!0,a=Np(rl(n,this.maskValue),s,r);return z(n,ye(a,n.dtype))})}};tx.className="Masking";de.registerClass(tx);var nx=class extends ut{constructor(e){if(super(e),this.embeddings=null,this.DEFAULT_EMBEDDINGS_INITIALIZER="randomUniform",e.batchInputShape==null&&e.inputShape==null){let t=null;e.batchSize!=null&&(t=e.batchSize),e.inputLength==null?this.batchInputShape=[t,null]:this.batchInputShape=[t].concat(Dt(e.inputLength))}this.inputDim=e.inputDim,Sn(this.inputDim,"inputDim"),this.outputDim=e.outputDim,Sn(this.outputDim,"outputDim"),this.embeddingsInitializer=Ft(e.embeddingsInitializer||this.DEFAULT_EMBEDDINGS_INITIALIZER),this.embeddingsRegularizer=Ot(e.embeddingsRegularizer),this.activityRegularizer=Ot(e.activityRegularizer),this.embeddingsConstraint=An(e.embeddingsConstraint),this.maskZero=e.maskZero,this.supportsMasking=e.maskZero,this.inputLength=e.inputLength}build(e){this.embeddings=this.addWeight("embeddings",[this.inputDim,this.outputDim],this.dtype,this.embeddingsInitializer,this.embeddingsRegularizer,!0,this.embeddingsConstraint),this.built=!0}warnOnIncompatibleInputShape(e){}computeMask(e,t){return Z(()=>this.maskZero?(e=Ke(e),rl(e,lt(e))):null)}computeOutputShape(e){if(e=At(e),this.inputLength==null)return[...e,this.outputDim];let t=Dt(this.inputLength);if(t.length!==e.length-1)throw new j(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);{let n=0;for(let s=0;s<t.length;++s){let r=t[s],a=e[s+1];if(r!=null&&a!=null&&r!==a)throw new j(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);r==null&&(t[n]=a),n++}}return[e[0],...t,this.outputDim]}call(e,t){return Z(()=>{this.invokeCallHook(e,t);let n=Ke(e);n.dtype!=="int32"&&(n=i2(n,"int32"));let s=P8(this.embeddings.read(),V(n,[n.size]));return V(s,At(this.computeOutputShape(n.shape)))})}getConfig(){let e={inputDim:this.inputDim,outputDim:this.outputDim,embeddingsInitializer:Ut(this.embeddingsInitializer),embeddingsRegularizer:St(this.embeddingsRegularizer),activityRegularizer:St(this.activityRegularizer),embeddingsConstraint:yn(this.embeddingsConstraint),maskZero:this.maskZero,inputLength:this.inputLength},t=super.getConfig();return Object.assign(e,t),e}};nx.className="Embedding";de.registerClass(nx);var cu=class extends ut{constructor(e){super(e||{}),this.supportsMasking=!0}mergeFunction(e){throw new Xe}computeElementwiseOpOutputShape(e,t){if(e==null||t==null)return null;if(e.length<t.length)return this.computeElementwiseOpOutputShape(t,e);if(t.length===0)return e;let n=e.slice(0,e.length-t.length);for(let s=0;s<t.length;++s){let r=e[e.length-t.length+s],a=t[s];if(r==null||a==null||r<0||a<0)n.push(null);else if(r===1)n.push(a);else if(a===1)n.push(r);else{if(r!==a)throw new j("Operands could not be broadcast together with shapes "+JSON.stringify(e)+" "+JSON.stringify(t));n.push(r)}}return n}build(e){if(Array.isArray(e)&&!Array.isArray(e[0])&&(e=[At(e)]),e=e,e.length<2)throw new j(`A merge layer should be called on an Array of at least 2 inputs. Got ${e.length} input(s).`);let t=[];for(let r of e)r!=null&&r[0]!==null&&t.push(r[0]);if(t=Ya(t),t.length>1)throw new j(`Can not merge tensors with different batch sizes. Got tensors with shapes: ${JSON.stringify(e)}.`);let n=e[0]==null?null:e[0].slice(1);for(let r=1;r<e.length;++r){let a=e[r]==null?null:e[r].slice(1);n=this.computeElementwiseOpOutputShape(n,a)}let s=e.map(r=>r.length);e.indexOf(null)===-1&&Ya(s).length===1?this.reshapeRequired=!1:this.reshapeRequired=!0}call(e,t){return Z(()=>{if(e=e,this.reshapeRequired){let n=[],s=e.map(r=>r.rank);if(s.indexOf(null)===-1){let r=ao(s);for(let a of e){let o=a.rank;for(let i=0;i<r-o;++i)a=Nh(a,1);n.push(a)}return this.mergeFunction(n)}else{let r=!1;for(let i of e){let l=i.rank;if(l==null){let u=i.shape,c=u[0],p=u.slice(1).concat([c]),d=V(i,[c].concat(Ja(u.slice(1))));d=tt(d,[1,0]),d=V(d,p),n.push(d),r=!0}else if(l>1){let u=zr(1,l).concat([0]);n.push(tt(i,u)),r=!0}else n.push(i)}let a=this.mergeFunction(n),o=a.rank;if(r){if(o==null){let i=a.shape,l=i.length,u=i[l-1],c=[u].concat(i.slice(0,i.length-1));a=V(tt(V(a,[-1,u]),[1,0]),c)}else if(o>1){let i=[o-1].concat(zr(0,o-1));a=tt(a,i)}}return a}}else return this.mergeFunction(e)})}computeOutputShape(e){e=e;let t;e[0]==null?t=null:t=e[0].slice(1);for(let s=1;s<e.length;++s){let r=e[s]==null?null:e[s].slice(1);t=this.computeElementwiseOpOutputShape(t,r)}let n=[];for(let s of e)s!=null&&s[0]!==null&&n.push(s[0]);return n=Ya(n),n.length===1?t=n.concat(t):t=[null].concat(t),t}computeMask(e,t){return Z(()=>{if(t==null)return null;if(!Array.isArray(t))throw new j("`mask` should be an Array");if(!Array.isArray(e))throw new j("`inputs` should be an Array");if(t.length!==e.length)throw new j(`The Array 'inputs' and 'mask' are expected to have the same length, but have different lengths (${e.length} vs ${t.length})`);if(t.every(s=>s==null))return null;t=t.map(s=>s==null?s:Bt(s,0));let n=t[0];for(let s=1;s<t.length-1;++s)n=mr(n,t[s]);return n})}},sx=class extends cu{constructor(e){super(e)}mergeFunction(e){return Z(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=ue(t,e[n]);return t})}};sx.className="Add";de.registerClass(sx);var rx=class extends cu{constructor(e){super(e)}mergeFunction(e){return Z(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=z(t,e[n]);return t})}};rx.className="Multiply";de.registerClass(rx);var ax=class extends cu{constructor(e){super(e)}mergeFunction(e){return Z(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=ue(t,e[n]);return z(1/e.length,t)})}};ax.className="Average";de.registerClass(ax);var ox=class extends cu{constructor(e){super(e)}mergeFunction(e){return Z(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=oa(t,e[n]);return t})}};ox.className="Maximum";de.registerClass(ox);var ix=class extends cu{constructor(e){super(e)}mergeFunction(e){return Z(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=Qc(t,e[n]);return t})}};ix.className="Minimum";de.registerClass(ix);var lx=class extends cu{constructor(e){super(e),this.DEFAULT_AXIS=-1,e==null&&(e={}),this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){if(!(Array.isArray(e)&&Array.isArray(e[0]))||e.length===1)throw new j("A `Concatenate` layer should be called on a list of at least 2 inputs");e=e;let t=!0;for(let s of e)if(s!=null){t=!1;break}if(t)return;let n=[];for(let s=0;s<e.length;++s){let r=e[s].slice();r.splice(this.axis,1);let a=!1;for(let o of n)if(v.arraysEqual(o,r)){a=!0;break}a||n.push(r)}if(n.length>1)throw new j("A `Concatenate` layer requires inputs with matching shapes except for the concat axis. Got input shapes: "+JSON.stringify(e))}mergeFunction(e){return Z(()=>l5(e,this.axis))}computeOutputShape(e){if(!(Array.isArray(e)&&Array.isArray(e[0])))throw new j("A `Concatenate` layer should be called on a list of inputs.");let t=e,n=t[0].slice(),s=this.axis<0?n.length+this.axis:this.axis;for(let r of t.slice(1)){if(n[s]==null||r[s]==null){n[s]=null;break}n[s]+=r[s]}return n}computeMask(e,t){if(t==null)return null;if(!Array.isArray(t))throw new j("`mask` should be an array for Concatenate");if(!Array.isArray(e))throw new j("`inputs` should be an array for Concatenate");if(t.length!==e.length)throw new j(`Mismatch in the length of mask (${t.length}) and the legnth of inputs (${e.length})`);return Z(()=>{let n=!0;if(t.forEach(a=>{if(a!=null){n=!1;return}}),n)return null;let s=[];for(let a=0;a<e.length;++a)t[a]==null?s.push(ye(zs(e[a]),"bool")):t[a].rank<e[a].rank?s.push(Bt(t[a],-1)):s.push(t[a]);let r=It(s,this.axis);return S0(r,-1,!1)})}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};lx.className="Concatenate";de.registerClass(lx);function np(e,t){for(;e<0;)e+=t;return e}function BG(e,t,n){if(e.shape.length>3||t.shape.length>3)throw new Xe("batchDot is not implemented for tensors of 4D or higher rank yet");if(v.assert(e.shape.length>=2,()=>`batchDot requires the rank of x to be >= 2, but got ${e.shape.length}`),v.assert(e.shape.length>=2,()=>`batchDot requires the rank of y to be >= 2, but got ${t.shape.length}`),typeof n=="number"&&(n=[n,n]),e.dtype==="complex64"||t.dtype==="complex64")throw new Xe("batchDot is not implemented for complex64-type Tensors yet.");let s=e.shape.length,r=t.shape.length;n==null&&(n=[s-1,r-2]);let a=n;return Z(()=>{let o;if(s>r){o=s-r;let l=[];for(let u=0;u<o;++u)l.push(1);t=V(t,t.shape.concat(l))}else if(r>s){o=r-s;let l=[];for(let u=0;u<o;++u)l.push(1);e=V(e,e.shape.concat(l))}else o=0;let i;if(e.shape.length===2&&t.shape.length===2)a[0]===a[1]?i=ke(z(e,t),a[0]):i=ke(z(tt(e,[1,0]),t),a[1]);else{let l=a[0]!==e.shape.length-1,u=a[1]===t.shape.length-1;i=et(e,t,l,u)}if(o>0){let l;s>r?l=s+r-3:l=s-1;let u=[];for(let c=l;c<l+o;++c)u.push(c);i=rt(i,u)}return i.shape.length===1&&(i=Bt(i,1)),i})}var ux=class extends cu{constructor(e){super(e),this.axes=e.axes,this.normalize=e.normalize==null?!1:e.normalize,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){v.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0],n=e[1];if(t.length>3||n.length>3)throw new Xe("Dot layer does not support tensors of 4D or higher rank yet.");let s=this.interpretAxes(t,n);if(t[s[0]]!==n[s[1]])throw new j(`Dimension incompatibility: ${t[s[0]]} !== ${n[s[1]]}`)}mergeFunction(e){if(e.length!==2)throw new j(`A \`Dot\` layer must be called on exactly 2 inputs, but received ${e.length} input(s).`);let t=e[0],n=e[1],s;return Array.isArray(this.axes)?s=this.axes.map((r,a)=>np(r,e[a].shape.length)):s=[np(this.axes,t.shape.length),np(this.axes,n.shape.length)],this.normalize&&(t=Rm(t,s[0]),n=Rm(n,s[1])),BG(t,n,s)}interpretAxes(e,t){let n;return Array.isArray(this.axes)?n=this.axes:n=[np(this.axes,e.length),np(this.axes,t.length)],n}computeOutputShape(e){v.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0].slice(),n=e[1].slice();if(t.length>3||n.length>3)throw new Xe("Dot layer does not support tensors of 4D or higher rank yet.");let s=this.interpretAxes(t,n);t.splice(s[0],1),n.splice(s[1],1),n.splice(0,1);let r=t.concat(n);return r.length===1&&r.push(1),r}computeMask(e,t){return null}getConfig(){let e={axes:this.axes,normalize:this.normalize},t=super.getConfig();return Object.assign(e,t),e}};ux.className="Dot";de.registerClass(ux);var cx=class extends ut{constructor(e){super(e),this.supportsMasking=!0,this.stddev=e.stddev}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={stddev:this.stddev};return Object.assign(t,e),t}call(e,t){return Z(()=>{this.invokeCallHook(e,t);let n=Ke(e);return Rh(()=>ue(l2(n.shape,0,this.stddev),n),()=>n,t.training||!1)})}};cx.className="GaussianNoise";de.registerClass(cx);var dx=class extends ut{constructor(e){super(e),this.supportsMasking=!0,this.rate=e.rate}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return Z(()=>{this.invokeCallHook(e,t);let n=Ke(e);return this.rate>0&&this.rate<1?Rh(()=>{let r=Math.sqrt(this.rate/(1-this.rate));return z(n,l2(n.shape,1,r))},()=>n,t.training||!1):n})}};dx.className="GaussianDropout";de.registerClass(dx);var px=class extends ut{constructor(e){super(e),this.supportsMasking=!0,this.rate=e.rate,this.noiseShape=e.noiseShape}_getNoiseShape(e){return this.noiseShape||Ke(e).shape}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return Z(()=>{if(this.rate<1&&this.rate>0){let n=this._getNoiseShape(e);return Rh(()=>{let r=Ke(e),a=1.6732632423543772,o=1.0507009873554805,i=-a*o,l=ci(ed(n),this.rate);l=i2(l,"float32");let u=((1-this.rate)*(1+this.rate*i**2))**-.5,c=-u*i*this.rate,p=ue(z(r,l),z(ue(l,-1),i));return ue(z(p,u),c)},()=>Ke(e),t.training||!1)}return e})}};px.className="AlphaDropout";de.registerClass(px);function Dp(e,t,n,s,r,a=.001){let o;if(e.rank===2)o=hA(e,t,n,s,r,a);else if(e.rank===3)o=fA(e,t,n,s,r,a);else if(e.rank===4)o=mA(e,t,n,s,r,a);else throw new Xe(`batchNormalization is not implemented for array of rank ${e.rank} yet`);return o}function WG(e,t,n,s,r=.001){return Z(()=>{let a=bh(e,s),o=a.mean,i=a.variance;return[Dp(e,o,i,n,t,r),o,i]})}function VG(e,t,n,s,r=.001){return Z(()=>{let a=bh(e,s),o=a.mean,i=a.variance,l=[];for(let f of zr(0,e.rank))s.indexOf(f)!==-1?l.push(1):l.push(e.shape[f]);let u=V(o,l),c=V(i,l),p=t==null?null:V(t,l),d=n==null?null:V(n,l);return[Dp(e,u,c,d,p,r),o,i]})}function UG(e,t,n,s,r=.001){return v.arraysEqual(s.slice().sort(),zr(0,e.rank-1))?WG(e,t,n,s,r):VG(e,t,n,s,r)}var hx=class extends ut{constructor(e){e==null&&(e={}),super(e),this.supportsMasking=!0,this.axis=e.axis==null?-1:e.axis,this.momentum=e.momentum==null?.99:e.momentum,this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=Ft(e.betaInitializer||"zeros"),this.gammaInitializer=Ft(e.gammaInitializer||"ones"),this.movingMeanInitializer=Ft(e.movingMeanInitializer||"zeros"),this.movingVarianceInitializer=Ft(e.movingVarianceInitializer||"ones"),this.betaConstraint=An(e.betaConstraint),this.gammaConstraint=An(e.gammaConstraint),this.betaRegularizer=Ot(e.betaRegularizer),this.gammaRegularizer=Ot(e.gammaRegularizer)}build(e){e=At(e);let t=this.axis>=0?this.axis:this.axis+e.length,n=e[t];if(n==null)throw new j(`Axis ${t} of input tensor should have a defined dimension but the layer received an input with shape ${JSON.stringify(e)}.`);this.inputSpec=[new an({ndim:e.length,axes:{[t]:n}})];let s=[n];this.scale&&(this.gamma=this.addWeight("gamma",s,null,this.gammaInitializer,this.gammaRegularizer,!0,this.gammaConstraint)),this.center&&(this.beta=this.addWeight("beta",s,null,this.betaInitializer,this.betaRegularizer,!0,this.betaConstraint)),this.movingMean=this.addWeight("moving_mean",s,null,this.movingMeanInitializer,null,!1),this.movingVariance=this.addWeight("moving_variance",s,null,this.movingVarianceInitializer,null,!1),this.built=!0}call(e,t){return Z(()=>{let n=t.training==null?!1:t.training,s=Ke(e),r=s.shape,a=r.length,o=zr(0,a),i=this.axis>=0?this.axis:this.axis+a;o.splice(i,1);let l=al(1,a);l[i]=r[i];let u=o.slice();u.sort();let c=!v.arraysEqual(u,zr(0,a).slice(0,a-1)),p=()=>{if(c){let y=V(this.movingMean.read(),l),x=V(this.movingVariance.read(),l),A=this.center?V(this.beta.read(),l):null,b=this.scale?V(this.gamma.read(),l):null;return Dp(s,y,x,A,b,this.epsilon)}else return Dp(s,this.movingMean.read(),this.movingVariance.read(),this.beta==null?null:this.beta.read(),this.gamma==null?null:this.gamma.read(),this.epsilon)};if(!n)return p();let[d,h,f]=UG(s,this.gamma.read(),this.beta.read(),o,this.epsilon),m=(y,x,A)=>{Z(()=>{let b=1-A,w=y.read(),S=z(me(w,x),b);y.write(me(w,S))})};return(()=>{m(this.movingMean,h,this.momentum),m(this.movingVariance,f,this.momentum)})(),d})}getConfig(){let e={axis:this.axis,momentum:this.momentum,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:Ut(this.betaInitializer),gammaInitializer:Ut(this.gammaInitializer),movingMeanInitializer:Ut(this.movingMeanInitializer),movingVarianceInitializer:Ut(this.movingVarianceInitializer),betaRegularizer:St(this.betaRegularizer),gammaRegularizer:St(this.gammaRegularizer),betaConstraint:yn(this.betaConstraint),gammaConstraint:yn(this.gammaConstraint)},t=super.getConfig();return Object.assign(e,t),e}};hx.className="BatchNormalization";de.registerClass(hx);var fx=class extends ut{constructor(e){if(e==null&&(e={}),super(e),this.axis=e.axis==null?-1:e.axis,typeof this.axis=="number"){if(!Number.isInteger(this.axis))throw new Error(`Expected axis to be an integer, but received ${this.axis}`)}else if(Array.isArray(this.axis)){for(let t of this.axis)if(!Number.isInteger(t))throw new Error(`Expected axis to be an array of integers, but received ${JSON.stringify(this.axis)}`)}else throw new Error(`Expected axis to be an integer or an array of integers, but received ${JSON.stringify(this.axis)}`);this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=Ft(e.betaInitializer||"zeros"),this.gammaInitializer=Ft(e.gammaInitializer||"ones"),this.betaRegularizer=Ot(e.betaRegularizer),this.gammaRegularizer=Ot(e.gammaRegularizer),this.supportsMasking=!0}build(e){e=At(e);let t=e.length;typeof this.axis=="number"&&(this.axis=[this.axis]);for(let r=0;r<this.axis.length;++r)this.axis[r]<0&&(this.axis[r]+=t);for(let r of this.axis)if(r<0||r>=t)throw new Error(`Invalid axis: ${r}`);if(this.axis.length!==Ya(this.axis).length)throw new Error(`Found duplicate axes in: ${this.axis}`);let n=this.axis.map(r=>e[r]),s=!0;this.scale?this.gamma=this.addWeight("gamma",n,"float32",this.gammaInitializer,this.gammaRegularizer,s):this.gamma=null,this.center?this.beta=this.addWeight("beta",n,"float32",this.betaInitializer,this.betaRegularizer,s):this.beta=null,this.built=!0}call(e,t){let n=Ke(e),s=n.shape,r=s.length;return Z(()=>{let{mean:o,variance:i}=bh(n,this.axis,!0),l=al(1,r);for(let f of this.axis)l[f]=s[f];let u=f=>f!=null&&f.shape.length!==r?V(f,l):f,c=this.scale?u(this.gamma.read()):null,p=this.center?u(this.beta.read()):null,d=[],h=[];for(let f=0;f<r;++f)this.axis.indexOf(f)!==-1?(d.push(s[f]),h.push(1)):(d.push(1),h.push(s[f]));return o=Ks(o,d),i=Ks(i,d),c!=null&&(c=Ks(c,h)),p!=null&&(p=Ks(p,h)),Dp(n,o,i,p,c,this.epsilon)})}getConfig(){let e={axis:this.axis,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:Ut(this.betaInitializer),gammaInitializer:Ut(this.gammaInitializer),betaRegularizer:St(this.betaRegularizer),gammaRegularizer:St(this.gammaRegularizer)},t=super.getConfig();return Object.assign(e,t),e}};fx.className="LayerNormalization";de.registerClass(fx);function GG(e,t,n){return Z(()=>{if(e.rank!==4)throw new j(`temporalPadding expects input tensor to be 4-D, but received a ${e.rank}-D tensor.`);if(t==null&&(t=[[1,1],[1,1]]),t.length!==2||t[0].length!==2||t[1].length!==2)throw new j("spatial2dPadding expects `padding` to be an Array of two Arrays, each of which is an Array of two integers.");if(n==null&&(n=Lr()),n!=="channelsLast"&&n!=="channelsFirst")throw new j(`Unknown data format: ${n}. Supported data formats are 'channelsLast' and 'channelsFirst.`);let s;return n==="channelsFirst"?s=[[0,0],[0,0],t[0],t[1]]:s=[[0,0],t[0],t[1],[0,0]],sr(e,s)})}var mx=class extends ut{constructor(e){if(e==null&&(e={}),super(e),this.dataFormat=e.dataFormat==null?Lr():e.dataFormat,e.padding==null)this.padding=[[1,1],[1,1]];else if(typeof e.padding=="number")this.padding=[[e.padding,e.padding],[e.padding,e.padding]];else{if(e.padding=e.padding,e.padding.length!==2)throw new j(`ZeroPadding2D expects padding to be a length-2 array, but received a length-${e.padding.length} array.`);let t,n;if(typeof e.padding[0]=="number")t=[e.padding[0],e.padding[0]],n=[e.padding[1],e.padding[1]];else{if(e.padding=e.padding,e.padding[0].length!==2)throw new j(`ZeroPadding2D expects height padding to be a length-2 array, but received a length-${e.padding[0].length} array.`);if(t=e.padding[0],e.padding[1].length!==2)throw new j(`ZeroPadding2D expects width padding to be a length-2 array, but received a length-${e.padding[1].length} array.`);n=e.padding[1]}this.padding=[t,n]}this.inputSpec=[new an({ndim:4})]}computeOutputShape(e){e=At(e);let t,n;return this.dataFormat==="channelsFirst"?(e[2]!=null&&e[2]>=0?t=e[2]+this.padding[0][0]+this.padding[0][1]:t=null,e[3]!=null&&e[3]>=0?n=e[3]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],e[1],t,n]):(e[1]!=null&&e[1]>=0?t=e[1]+this.padding[0][0]+this.padding[0][1]:t=null,e[2]!=null&&e[2]>=0?n=e[2]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],t,n,e[3]])}call(e,t){return Z(()=>GG(Ke(e),this.padding,this.dataFormat))}getConfig(){let e={padding:this.padding,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};mx.className="ZeroPadding2D";de.registerClass(mx);function I2(e,t,n,s,r,a){return Z(()=>{Jt(r),R8(a),rr(s),n==null&&(n=[1,1]),s==null&&(s="valid"),r==null&&(r=Lr()),a==null&&(a="max"),e=O5(e,r);let o,i=s==="same"?"same":"valid";return a==="max"?o=xh(e,t,n,i):o=hh(e,t,n,i),r==="channelsFirst"&&(o=tt(o,[0,3,1,2])),o})}function Ik(e,t,n,s,r,a){return Z(()=>{Jt(r),R8(a),rr(s),n==null&&(n=[1,1,1]),s==null&&(s="valid"),r==null&&(r=Lr()),a==null&&(a="max"),e=bk(e,r);let o,i=s==="same"?"same":"valid";return a==="max"?o=LA(e,t,n,i):o=pA(e,t,n,i),r==="channelsFirst"&&(o=tt(o,[0,4,1,2,3])),o})}var Ck=class extends ut{constructor(e){if(e.poolSize==null&&(e.poolSize=2),super(e),typeof e.poolSize=="number")this.poolSize=[e.poolSize];else if(Array.isArray(e.poolSize)&&e.poolSize.length===1&&typeof e.poolSize[0]=="number")this.poolSize=e.poolSize;else throw new j(`poolSize for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.poolSize)}`);if(Sn(this.poolSize,"poolSize"),e.strides==null)this.strides=this.poolSize;else if(typeof e.strides=="number")this.strides=[e.strides];else if(Array.isArray(e.strides)&&e.strides.length===1&&typeof e.strides[0]=="number")this.strides=e.strides;else throw new j(`strides for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.strides)}`);Sn(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,rr(this.padding),this.inputSpec=[new an({ndim:3})]}computeOutputShape(e){e=At(e);let t=Mr(e[1],this.poolSize[0],this.padding,this.strides[0]);return[e[0],t,e[2]]}call(e,t){return Z(()=>{this.invokeCallHook(e,t),e=Nh(Ke(e),2);let n=this.poolingFunction(Ke(e),[this.poolSize[0],1],[this.strides[0],1],this.padding,"channelsLast");return rt(n,[2])})}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides},t=super.getConfig();return Object.assign(e,t),e}},gx=class extends Ck{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Jt(r),rr(s),I2(e,t,n,s,r,"max")}};gx.className="MaxPooling1D";de.registerClass(gx);var yx=class extends Ck{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Jt(r),rr(s),I2(e,t,n,s,r,"avg")}};yx.className="AveragePooling1D";de.registerClass(yx);var Tk=class extends ut{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==2)throw new j(`If the strides property of a 2D pooling layer is an Array, it is expected to have a length of 2, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides];Sn(this.poolSize,"poolSize"),Sn(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Jt(this.dataFormat),rr(this.padding),this.inputSpec=[new an({ndim:4})]}computeOutputShape(e){e=At(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2];return t=Mr(t,this.poolSize[0],this.padding,this.strides[0]),n=Mr(n,this.poolSize[1],this.padding,this.strides[1]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n]:[e[0],t,n,e[3]]}call(e,t){return Z(()=>(this.invokeCallHook(e,t),this.poolingFunction(Ke(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},Ax=class extends Tk{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Jt(r),rr(s),I2(e,t,n,s,r,"max")}};Ax.className="MaxPooling2D";de.registerClass(Ax);var xx=class extends Tk{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Jt(r),rr(s),I2(e,t,n,s,r,"avg")}};xx.className="AveragePooling2D";de.registerClass(xx);var Nk=class extends ut{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==3)throw new j(`If the strides property of a 3D pooling layer is an Array, it is expected to have a length of 3, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides,e.strides];Sn(this.poolSize,"poolSize"),Sn(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Jt(this.dataFormat),rr(this.padding),this.inputSpec=[new an({ndim:5})]}computeOutputShape(e){e=At(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],s=this.dataFormat==="channelsFirst"?e[4]:e[3];return t=Mr(t,this.poolSize[0],this.padding,this.strides[0]),n=Mr(n,this.poolSize[1],this.padding,this.strides[1]),s=Mr(s,this.poolSize[2],this.padding,this.strides[2]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n,s]:[e[0],t,n,s,e[4]]}call(e,t){return Z(()=>(this.invokeCallHook(e,t),this.poolingFunction(Ke(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},bx=class extends Nk{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Jt(r),rr(s),Ik(e,t,n,s,r,"max")}};bx.className="MaxPooling3D";de.registerClass(bx);var vx=class extends Nk{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Jt(r),rr(s),Ik(e,t,n,s,r,"avg")}};vx.className="AveragePooling3D";de.registerClass(vx);var Ek=class extends ut{constructor(e){super(e),this.inputSpec=[new an({ndim:3})]}computeOutputShape(e){return[e[0],e[2]]}call(e,t){throw new Xe}},wx=class extends Ek{constructor(e){super(e||{})}call(e,t){return Z(()=>{let n=Ke(e);return Wt(n,1)})}};wx.className="GlobalAveragePooling1D";de.registerClass(wx);var kx=class extends Ek{constructor(e){super(e||{})}call(e,t){return Z(()=>{let n=Ke(e);return gn(n,1)})}};kx.className="GlobalMaxPooling1D";de.registerClass(kx);var Rk=class extends ut{constructor(e){super(e),this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Jt(this.dataFormat),this.inputSpec=[new an({ndim:4})]}computeOutputShape(e){return e=e,this.dataFormat==="channelsLast"?[e[0],e[3]]:[e[0],e[1]]}call(e,t){throw new Xe}getConfig(){let e={dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},Sx=class extends Rk{call(e,t){return Z(()=>{let n=Ke(e);return this.dataFormat==="channelsLast"?Wt(n,[1,2]):Wt(n,[2,3])})}};Sx.className="GlobalAveragePooling2D";de.registerClass(Sx);var Ix=class extends Rk{call(e,t){return Z(()=>{let n=Ke(e);return this.dataFormat==="channelsLast"?gn(n,[1,2]):gn(n,[2,3])})}};Ix.className="GlobalMaxPooling2D";de.registerClass(Ix);var _k=class extends ut{constructor(e){super(e),this.layer=e.layer}build(e){this.built=!0}get trainable(){return this.layer!=null?this.layer.trainable:!1}set trainable(e){this.layer!=null&&(this.layer.trainable=e)}get trainableWeights(){return this.layer.trainableWeights}get nonTrainableWeights(){return this.layer.nonTrainableWeights}get updates(){return this.layer._updates}get losses(){return this.layer.losses}getWeights(){return this.layer.getWeights()}setWeights(e){this.layer.setWeights(e)}getConfig(){let e={layer:{className:this.layer.getClassName(),config:this.layer.getConfig()}},t=super.getConfig();return Object.assign(e,t),e}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.layer!=null&&this.layer.setFastWeightInitDuringBuild(e)}static fromConfig(e,t,n={}){let s=t.layer,r=Or(s,n);delete t.layer;let a={layer:r};return Object.assign(a,t),new e(a)}},Cx=class extends _k{constructor(e){super(e),this.supportsMasking=!0}build(e){if(e=At(e),e.length<3)throw new j(`TimeDistributed layer expects an input shape >= 3D, but received input shape ${JSON.stringify(e)}`);this.inputSpec=[{shape:e}];let t=[e[0]].concat(e.slice(2));this.layer.built||(this.layer.build(t),this.layer.built=!0),super.build(e)}computeOutputShape(e){e=At(e);let t=[e[0]].concat(e.slice(2)),n=this.layer.computeOutputShape(t),s=e[1];return[n[0],s].concat(n.slice(1))}call(e,t){return Z(()=>(e=Ke(e),kk((a,o)=>[Ke(this.layer.call(a,t)),[]],e,[],!1,null,null,!1,!0)[1]))}};Cx.className="TimeDistributed";de.registerClass(Cx);function HG(e){lu(jV,"BidirectionalMergeMode",e)}var jG="concat",Tx=class extends _k{constructor(e){super(e);let t=e.layer.getConfig(),n={};n.className=e.layer.getClassName(),n.config=t,this.forwardLayer=Or(n),t.goBackwards=t.goBackwards!==!0;let s={};if(s.className=e.layer.getClassName(),s.config=t,this.backwardLayer=Or(s),this.forwardLayer.name="forward_"+this.forwardLayer.name,this.backwardLayer.name="backward_"+this.backwardLayer.name,this.mergeMode=e.mergeMode===void 0?jG:e.mergeMode,HG(this.mergeMode),e.weights)throw new Xe("weights support is not implemented for Bidirectional layer yet.");this._stateful=e.layer.stateful,this.returnSequences=e.layer.returnSequences,this.returnState=e.layer.returnState,this.supportsMasking=!0,this._trainable=!0,this.inputSpec=e.layer.inputSpec,this.numConstants=null}get trainable(){return this._trainable}set trainable(e){this._trainable=e,this.forwardLayer!=null&&(this.forwardLayer.trainable=e),this.backwardLayer!=null&&(this.backwardLayer.trainable=e)}getWeights(){return this.forwardLayer.getWeights().concat(this.backwardLayer.getWeights())}setWeights(e){let t=e.length,n=Math.floor(t/2);this.forwardLayer.setWeights(e.slice(0,n)),this.backwardLayer.setWeights(e.slice(n))}computeOutputShape(e){let t=this.forwardLayer.computeOutputShape(e);Array.isArray(t)&&Array.isArray(t[0])||(t=[t]),t=t;let n,s,r;return this.returnState&&(r=t.slice(1)),n=t[0],n=n,this.mergeMode==="concat"?(n[n.length-1]*=2,s=[n]):this.mergeMode==null?s=[n,n.slice()]:s=[n],this.returnState?this.mergeMode==null?s.concat(r).concat(r.slice()):[n].concat(r).concat(r.slice()):ys(s)}apply(e,t){let n=t==null?null:t.initialState,s=t==null?null:t.constants;t==null&&(t={});let r=wk(e,n,s,this.numConstants);if(e=r.inputs,n=r.initialState,s=r.constants,Array.isArray(e)&&(n=e.slice(1),e=e[0]),(n==null||n.length===0)&&s==null)return super.apply(e,t);let a=[],o=[];if(n!=null){let l=n.length;if(l%2>0)throw new j("When passing `initialState` to a Bidrectional RNN, the state should be an Array containing the states of the underlying RNNs.");t.initialState=n,a.push(...n);let u=n.map(c=>new an({shape:c.shape}));this.forwardLayer.stateSpec=u.slice(0,l/2),this.backwardLayer.stateSpec=u.slice(l/2),o.push(...u)}if(s!=null)throw new Xe("Support for constants in Bidirectional layers is not implemented yet.");let i=a[0]instanceof Pr;for(let l of a)if(l instanceof Pr!==i)throw new j("The initial state of a Bidirectional layer cannot be specified as a mix of symbolic and non-symbolic tensors");if(i){let l=[e].concat(a),u=this.inputSpec.concat(o),c=this.inputSpec;this.inputSpec=u;let p=super.apply(l,t);return this.inputSpec=c,p}else return super.apply(e,t)}call(e,t){return Z(()=>{let n=t.initialState,s,r;if(n==null)s=this.forwardLayer.call(e,t),r=this.backwardLayer.call(e,t);else{let i=n.slice(0,n.length/2),l=n.slice(n.length/2);s=this.forwardLayer.call(e,Object.assign(t,{initialState:i})),r=this.backwardLayer.call(e,Object.assign(t,{initialState:l}))}let a;this.returnState&&(Array.isArray(s)&&(a=s.slice(1).concat(r.slice(1))),s=s[0],r=r[0]),this.returnSequences&&(r=Qs(r,1));let o;return this.mergeMode==="concat"?o=l5([s,r]):this.mergeMode==="sum"?o=ue(s,r):this.mergeMode==="ave"?o=z(.5,ue(s,r)):this.mergeMode==="mul"?o=z(s,r):this.mergeMode==null&&(o=[s,r]),this.returnState?this.mergeMode==null?o.concat(a):[o].concat(a):o})}resetStates(e){this.forwardLayer.resetStates(),this.backwardLayer.resetStates()}build(e){Zi(this.forwardLayer.name,()=>{this.forwardLayer.build(e)}),Zi(this.backwardLayer.name,()=>{this.backwardLayer.build(e)}),this.built=!0}computeMask(e,t){Array.isArray(t)&&(t=t[0]);let n;if(this.returnSequences?this.mergeMode==null?n=[t,t]:n=t:this.mergeMode==null?n=[null,null]:n=null,this.returnState){let r=this.forwardLayer.states.map(a=>null);return Array.isArray(n)?n.concat(r).concat(r):[n].concat(r).concat(r)}else return n}get trainableWeights(){return this.forwardLayer.trainableWeights.concat(this.backwardLayer.trainableWeights)}get nonTrainableWeights(){return this.forwardLayer.nonTrainableWeights.concat(this.backwardLayer.nonTrainableWeights)}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.forwardLayer!=null&&this.forwardLayer.setFastWeightInitDuringBuild(e),this.backwardLayer!=null&&this.backwardLayer.setFastWeightInitDuringBuild(e)}getConfig(){let e={mergeMode:this.mergeMode},t=super.getConfig();return Object.assign(e,t),e}static fromConfig(e,t){let n=Or(t.layer);if(delete t.layer,t.numConstants!=null)throw new Xe("Deserialization of a Bidirectional layer with numConstants present is not supported yet.");let s=t;return s.layer=n,new e(s)}};Tx.className="Bidirectional";de.registerClass(Tx);function qG(e){return new nd(e)}function XG(e){return new $5(e)}function KG(e){return new R5(e)}function ZG(e){return new _5(e)}function YG(e){return new D5(e)}function JG(e){return new F5(e)}function QG(e){return new P5(e)}function eH(e){return new x2(e)}function tH(e){return new Ph(e)}function nH(e){return new z5(e)}function sH(e){return new Fh(e)}function rH(e){return new L5(e)}function aH(e){return new B5(e)}function oH(e){return new W5(e)}function iH(e){return new V5(e)}function lH(e){return new U5(e)}function uH(e){return new Y5(e)}function cH(e){return new K5(e)}function dH(e){return new S2(e)}function pH(e){return new X5(e)}function hH(e){return new Z5(e)}function fH(e){return new J5(e)}function mH(e){return new Q5(e)}function gH(e){return new ex(e)}function yH(e){return new nx(e)}function AH(e){return new sx(e)}function xH(e){return new ax(e)}function bH(e){return new lx(e)}function vH(e){return new ox(e)}function wH(e){return new ix(e)}function kH(e){return new rx(e)}function SH(e){return new ux(e)}function IH(e){return new hx(e)}function CH(e){return new fx(e)}function TH(e){return new mx(e)}function Nx(e){return new yx(e)}function NH(e){return Nx(e)}function EH(e){return Nx(e)}function Ex(e){return new xx(e)}function RH(e){return Ex(e)}function _H(e){return Ex(e)}function Rx(e){return new vx(e)}function DH(e){return Rx(e)}function $H(e){return Rx(e)}function PH(e){return new wx(e)}function FH(e){return new Sx(e)}function Dk(e){return new kx(e)}function $k(e){return new Ix(e)}function Pk(e){return new gx(e)}function Fk(e){return new Ax(e)}function OH(e){return new bx(e)}function MH(e){return new H5(e)}function zH(e){return new v2(e)}function LH(e){return new j5(e)}function BH(e){return new Mh(e)}function WH(e){return new G5(e)}function VH(e){return new b2(e)}function UH(e){return new q5(e)}function GH(e){return new k2(e)}function HH(e){return new ia(e)}function jH(e){return new w2(e)}function qH(e){return new Tx(e)}function XH(e){return new Cx(e)}var KH=Dk,ZH=$k,YH=Pk,JH=Fk;function QH(e){return new cx(e)}function ej(e){return new dx(e)}function tj(e){return new px(e)}function nj(e){return new tx(e)}var Ok={};He(Ok,{MAPE:()=>hj,MSE:()=>gj,binaryAccuracy:()=>sj,binaryCrossentropy:()=>rj,categoricalAccuracy:()=>oj,categoricalCrossentropy:()=>ij,cosineProximity:()=>cj,mape:()=>fj,meanAbsoluteError:()=>dj,meanAbsolutePercentageError:()=>pj,meanSquaredError:()=>mj,mse:()=>yj,precision:()=>lj,recall:()=>uj,sparseCategoricalAccuracy:()=>aj});function sj(e,t){return k5(e,t)}function rj(e,t){return Z8(e,t)}function aj(e,t){return Y8(e,t)}function oj(e,t){return S5(e,t)}function ij(e,t){return I5(e,t)}function lj(e,t){return K8(e,t)}function uj(e,t){return ZU(e,t)}function cj(e,t){return w5(e,t)}function dj(e,t){return y2(e,t)}function pj(e,t){return sd(e,t)}function hj(e,t){return sd(e,t)}function fj(e,t){return sd(e,t)}function mj(e,t){return uu(e,t)}function gj(e,t){return uu(e,t)}function yj(e,t){return uu(e,t)}var Mk={};He(Mk,{modelFromJSON:()=>CG});var zk={};He(zk,{l1:()=>xj,l1l2:()=>Aj,l2:()=>bj});function Aj(e){return new Dh(e)}function xj(e){return PG(e)}function bj(e){return FG(e)}var Lk=class extends cc{constructor(){super(...arguments),this.model=null}setModel(e){if(!(e instanceof ba))throw new Error("model must be a LayersModel, not some other Container");this.model=e}};function Yf(e,t){return e<t}function c7(e,t){return e>t}var Bk=class extends Lk{constructor(e){if(super(),e==null&&(e={}),e.restoreBestWeights)throw new Xe("restoreBestWeights = True is not implemented in EarlyStopping yet.");this.monitor=e.monitor||"val_loss",this.minDelta=Math.abs(e.minDelta||0),this.patience=e.patience||0,this.verbose=e.verbose||0,this.mode=e.mode||"auto",this.baseline=e.baseline,["auto","min","max"].indexOf(this.mode)===-1&&(console.warn(`EarlyStopping mode '${this.mode}' is invalid. Falling back to mode 'auto'.`),this.mode="auto"),this.mode==="min"?this.monitorFunc=Yf:this.mode==="max"?this.monitorFunc=c7:this.monitor.indexOf("acc")!==-1?this.monitorFunc=c7:this.monitorFunc=Yf,this.monitorFunc===Yf&&(this.minDelta*=-1)}async onTrainBegin(e){this.wait=0,this.stoppedEpoch=0,this.baseline!=null?this.best=this.baseline:this.best=this.monitorFunc===Yf?1/0:-1/0}async onEpochEnd(e,t){await Ha(t);let n=this.getMonitorValue(t);n!=null&&(this.monitorFunc(n-this.minDelta,this.best)?(this.best=n,this.wait=0):(this.wait++,this.wait>=this.patience&&(this.stoppedEpoch=e,this.model.stopTraining=!0)))}async onTrainEnd(e){this.stoppedEpoch>0&&this.verbose&&console.log(`Epoch ${this.stoppedEpoch}: early stopping.`)}getMonitorValue(e){e==null&&(e={});let t=e[this.monitor];return t==null&&console.warn(`Metric for EarlyStopping ${this.monitor} is not available. Available metrics are: ${Object.keys(e)}`),t}};function vj(e){return new Bk(e)}var wj={earlyStopping:vj},kj=H();kj.registerFlag("KEEP_INTERMEDIATE_TENSORS",()=>!1,e=>{e&&console.warn("Keep intermediate tensors is ON. This will print the values of all intermediate tensors during model inference. Not all models support this mode. For details, check e2e/benchmarks/ model_config.js. This significantly impacts performance.")});var dr;(function(e){e[e.DT_INVALID=0]="DT_INVALID",e[e.DT_FLOAT=1]="DT_FLOAT",e[e.DT_DOUBLE=2]="DT_DOUBLE",e[e.DT_INT32=3]="DT_INT32",e[e.DT_UINT8=4]="DT_UINT8",e[e.DT_INT16=5]="DT_INT16",e[e.DT_INT8=6]="DT_INT8",e[e.DT_STRING=7]="DT_STRING",e[e.DT_COMPLEX64=8]="DT_COMPLEX64",e[e.DT_INT64=9]="DT_INT64",e[e.DT_BOOL=10]="DT_BOOL",e[e.DT_QINT8=11]="DT_QINT8",e[e.DT_QUINT8=12]="DT_QUINT8",e[e.DT_QINT32=13]="DT_QINT32",e[e.DT_BFLOAT16=14]="DT_BFLOAT16",e[e.DT_QINT16=15]="DT_QINT16",e[e.DT_QUINT16=16]="DT_QUINT16",e[e.DT_UINT16=17]="DT_UINT16",e[e.DT_COMPLEX128=18]="DT_COMPLEX128",e[e.DT_HALF=19]="DT_HALF",e[e.DT_RESOURCE=20]="DT_RESOURCE",e[e.DT_VARIANT=21]="DT_VARIANT",e[e.DT_UINT32=22]="DT_UINT32",e[e.DT_UINT64=23]="DT_UINT64",e[e.DT_FLOAT_REF=101]="DT_FLOAT_REF",e[e.DT_DOUBLE_REF=102]="DT_DOUBLE_REF",e[e.DT_INT32_REF=103]="DT_INT32_REF",e[e.DT_UINT8_REF=104]="DT_UINT8_REF",e[e.DT_INT16_REF=105]="DT_INT16_REF",e[e.DT_INT8_REF=106]="DT_INT8_REF",e[e.DT_STRING_REF=107]="DT_STRING_REF",e[e.DT_COMPLEX64_REF=108]="DT_COMPLEX64_REF",e[e.DT_INT64_REF=109]="DT_INT64_REF",e[e.DT_BOOL_REF=110]="DT_BOOL_REF",e[e.DT_QINT8_REF=111]="DT_QINT8_REF",e[e.DT_QUINT8_REF=112]="DT_QUINT8_REF",e[e.DT_QINT32_REF=113]="DT_QINT32_REF",e[e.DT_BFLOAT16_REF=114]="DT_BFLOAT16_REF",e[e.DT_QINT16_REF=115]="DT_QINT16_REF",e[e.DT_QUINT16_REF=116]="DT_QUINT16_REF",e[e.DT_UINT16_REF=117]="DT_UINT16_REF",e[e.DT_COMPLEX128_REF=118]="DT_COMPLEX128_REF",e[e.DT_HALF_REF=119]="DT_HALF_REF",e[e.DT_RESOURCE_REF=120]="DT_RESOURCE_REF",e[e.DT_VARIANT_REF=121]="DT_VARIANT_REF",e[e.DT_UINT32_REF=122]="DT_UINT32_REF",e[e.DT_UINT64_REF=123]="DT_UINT64_REF"})(dr||(dr={}));var d7;(function(e){let t;(function(n){n[n.LEGACY=0]="LEGACY",n[n.V1=1]="V1",n[n.V2=2]="V2"})(t=e.CheckpointFormatVersion||(e.CheckpointFormatVersion={}))})(d7||(d7={}));var _x={};function Sj(e,t){let n={tfOpName:e,category:"custom",inputs:[],attrs:[],customExecutor:t};_x[e]=n}function Wk(e){return _x[e]}function Ij(e){delete _x[e]}function I(e,t,n,s,r){let a=t.inputParams[e];if(a&&a.inputIndexStart!==void 0){let i=a.inputIndexStart,l=a.inputIndexEnd===0?void 0:a.inputIndexEnd===void 0?i+1:a.inputIndexEnd;if(a.type==="tensor")return rs(t.inputNames[a.inputIndexStart],n,s,r);if(a.type==="tensors")return t.inputNames.slice(i,l).map(d=>rs(d,n,s,r));let u=rs(t.inputNames.slice(i)[0],n,s,r),c=u.dataSync();return a.type==="number"?c[0]:v.toNestedArray(u.shape,c)}let o=t.attrParams[e];return o&&o.value}function rs(e,t,n,s){let[r,a]=Rs(e);if(s!=null){let i=s.getHashTableHandleByName(r);if(i!=null)return i}let o=n.currentContextIds.find(i=>!!t[Fm(r,i)]);return o!==void 0?t[Fm(r,o)][a]:void 0}function Cj(e,t,n){return t[Fm(e,n.currentContextId)]}function Jr(e,t){let[n,s,r]=Rs(e);return[Fm(n,t&&t.currentContextId),s,r]}function Fm(e,t){return t?`${e}-${t}`:e}function Rs(e){let t=e.split(":");if(t.length===1)return[e,0,void 0];let n=t[0],s=t.length===3?t[1]:void 0,r=Number(t[t.length-1]);return[n,r,s]}function lm(e,t,n){let s=I("pad",e,t,n);if(s==="explicit"){s=I("explicitPaddings",e,t,n);let r=[[0,0],[0,0],[0,0],[0,0]];for(let a=0;a<4;a++)r[a][0]=s[a*2],r[a][1]=s[a*2+1];return r}return s}function ya(e){return e.kept?e:Vn(e)}var Vk={};He(Vk,{json:()=>Tj});var Tj=[{tfOpName:"Add",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddV2",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddN",category:"arithmetic",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"BiasAdd",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"Sub",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"RealDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Div",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"DivNoNan",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mul",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Maximum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Minimum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Pow",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SquaredDifference",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorMod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],Uk={};He(Uk,{json:()=>Nj});var Nj=[{tfOpName:"Abs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan2",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ceil",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ClipByValue",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"clipValueMin",type:"number"},{start:2,name:"clipValueMax",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Complex",category:"basic_math",inputs:[{start:0,name:"real",type:"tensor"},{start:1,name:"imag",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ComplexAbs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Elu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Exp",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Floor",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Imag",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Neg",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Real",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Prelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"alpha",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu6",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Selu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sigmoid",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Rsqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Square",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sign",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Round",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Expm1",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log1p",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Reciprocal",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Softplus",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Erf",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Prod",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axes",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LeakyRelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"alpha",name:"alpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"IsNan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],Gk={};He(Gk,{json:()=>Ej});var Ej=[{tfOpName:"EmptyTensorList",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"maxNumElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"LoopCond",category:"control",inputs:[{start:0,name:"pred",type:"tensor"}]},{tfOpName:"Switch",category:"control",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"pred",type:"tensor"}]},{tfOpName:"Merge",category:"control",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"Enter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"frame_name",name:"frameName",type:"string"},{tfName:"is_constant",name:"isConstant",type:"bool"}]},{tfOpName:"Exit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NextIteration",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayV3",category:"control",inputs:[{start:0,name:"size",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"dynamic_size",name:"dynamicSize",type:"bool"},{tfName:"clear_after_read",name:"clearAfterRead",type:"bool"},{tfName:"identical_element_shapes",name:"identicalElementShapes",type:"bool"},{tfName:"tensor_array_name",name:"name",type:"string"}]},{tfOpName:"TensorArrayWriteV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayReadV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayGatherV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"}]},{tfOpName:"TensorArrayScatterV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArrayConcatV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape_except0",name:"elementShapeExcept0",type:"shape",notSupported:!0}]},{tfOpName:"TensorArraySplitV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"tensor",type:"tensor"},{start:2,name:"lengths",type:"number[]"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArraySizeV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}]},{tfOpName:"TensorArrayCloseV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"}]},{tfOpName:"StatelessIf",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"If",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"StatelessWhile",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"While",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"TensorListScatter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListScatterV2",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"},{start:3,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGather",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListSetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListReserve",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListFromTensor",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListStack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"},{tfName:"num_elements",name:"numElements",type:"dtype"}]},{tfOpName:"TensorListSplit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"},{start:2,name:"lengths",type:"number[]"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcat",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcatV2",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPopBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPushBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListLength",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}]},{tfOpName:"TensorListResize",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"size",type:"number"}]}],Hk={};He(Hk,{json:()=>Rj});var Rj=[{tfOpName:"AvgPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[],notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPoolWithArgmax",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"include_batch_in_index",name:"includeBatchInIndex",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AvgPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Conv1D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"stride",name:"stride",type:"number"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NWC"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"dilation",name:"dilation",type:"number",defaultValue:1}]},{tfOpName:"Conv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"useCudnnOnGpu",name:"useCudnnOnGpu",type:"bool"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"_FusedConv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"use_cudnn_on_gpu",name:"useCudnnOnGpu",type:"bool",defaultValue:!0},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"leakyrelu_alpha",name:"leakyreluAlpha",type:"number",defaultValue:.2}]},{tfOpName:"Conv2DBackpropInput",category:"convolution",inputs:[{start:2,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:0,name:"outputShape",type:"number[]"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]",notSupported:!0}]},{tfOpName:"DepthwiseConv2d",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"DepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"FusedDepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]}]},{tfOpName:"Conv3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"Dilation2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"rates",name:"dilations",type:"number[]"},{tfName:"padding",name:"pad",type:"string"}]}],jk={};He(jk,{json:()=>_j});var _j=[{tfOpName:"Fill",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"},{start:1,name:"value",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"LinSpace",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"num",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"OneHot",category:"creation",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"depth",type:"number"},{start:2,name:"onValue",type:"number",defaultValue:1},{start:3,name:"offValue",type:"number",defaultValue:0}],attrs:[{tfName:"axis",name:"axis",type:"number",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"Ones",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"OnesLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"RandomStandardNormal",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"RandomUniform",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"minval",name:"minval",type:"number",defaultValue:0},{tfName:"maxval",name:"maxval",type:"number",defaultValue:1},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Range",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"step",type:"number",defaultValue:0}],attrs:[{tfName:"Tidx",name:"dtype",type:"dtype"}]},{tfOpName:"TruncatedNormal",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"means",name:"mean",type:"number",defaultValue:0},{tfName:"stddev",name:"stdDev",type:"number",defaultValue:1},{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Zeros",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"ZerosLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"Multinomial",category:"creation",inputs:[{start:0,name:"logits",type:"tensor"},{start:1,name:"numSamples",type:"number"}],attrs:[{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number"},{tfName:"T",name:"dtype",type:"dtype"},{tfName:"output_dtype",name:"output_dtype",type:"dtype"}]}],qk={};He(qk,{json:()=>Dj});var Dj=[{tfOpName:"NonMaxSuppressionV2",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV3",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV4",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"T_threshold",name:"threshold",type:"dtype",notSupported:!0},{tfName:"pad_to_max_output_size",name:"padToMaxOutputSize",type:"bool"}]},{tfOpName:"NonMaxSuppressionV5",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"},{start:5,name:"softNmsSigma",type:"number"}]},{tfOpName:"Where",category:"dynamic",inputs:[{start:0,name:"condition",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ListDiff",category:"dynamic",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],Xk={};He(Xk,{json:()=>$j});var $j=[{tfOpName:"LowerBound",category:"evaluation",inputs:[{start:0,name:"sortedSequence",type:"tensor"},{start:1,name:"values",type:"tensor"}]},{tfOpName:"TopKV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"k",type:"number"}],attrs:[{tfName:"sorted",name:"sorted",type:"bool"}]},{tfOpName:"UpperBound",category:"evaluation",inputs:[{start:0,name:"sortedSequence",type:"tensor"},{start:1,name:"values",type:"tensor"}]},{tfOpName:"Unique",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"UniqueV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]}],Kk={};He(Kk,{json:()=>Pj});var Pj=[{tfOpName:"PlaceholderWithDefault",category:"graph",inputs:[{start:0,name:"default",type:"tensor"}],attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Placeholder",category:"graph",attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Const",category:"graph"},{tfOpName:"Identity",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IdentityN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Snapshot",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Rank",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Size",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Shape",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"ShapeN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Print",category:"graph",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"data",type:"tensors"}],attrs:[{tfName:"message",name:"message",type:"string"},{tfName:"first_n",name:"firstN",type:"number",notSupported:!0},{tfName:"summarize",name:"summarize",type:"number",defaultValue:3}]},{tfOpName:"NoOp",category:"graph",inputs:[]},{tfOpName:"StopGradient",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"FakeQuantWithMinMaxVars",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"min",name:"min",type:"number"},{tfName:"max",name:"max",type:"number"}]}],Zk={};He(Zk,{json:()=>Fj});var Fj=[{tfOpName:"HashTable",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"HashTableV2",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"LookupTableImport",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableImportV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFind",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFindV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableSize",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]},{tfOpName:"LookupTableSizeV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]}],Yk={};He(Yk,{json:()=>Oj});var Oj=[{tfOpName:"ResizeBilinear",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ResizeNearestNeighbor",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"CropAndResize",category:"image",inputs:[{start:0,name:"image",type:"tensor"},{start:1,name:"boxes",type:"tensor"},{start:2,name:"boxInd",type:"tensor"},{start:3,name:"cropSize",type:"number[]"}],attrs:[{tfName:"method",name:"method",type:"string"},{tfName:"extrapolation_value",name:"extrapolationValue",type:"number"}]},{tfOpName:"ImageProjectiveTransformV3",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"transforms",type:"tensor"},{start:2,name:"outputShape",type:"number[]"},{start:3,name:"fillValue",type:"number"}],attrs:[{tfName:"interpolation",name:"interpolation",type:"string"},{tfName:"fill_mode",name:"fillMode",type:"string"}]}],Jk={};He(Jk,{json:()=>Mj});var Mj=[{tfOpName:"Equal",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NotEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Greater",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"GreaterEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Less",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LessEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalAnd",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalNot",category:"logical",inputs:[{start:0,name:"a",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalOr",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Select",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SelectV2",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],Qk={};He(Qk,{json:()=>zj});var zj=[{tfOpName:"_FusedMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"leakyrelu_alpha",name:"leakyreluAlpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMulV2",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Transpose",category:"matrices",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"perm",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Einsum",category:"matrices",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"equation",name:"equation",type:"string"},{tfName:"N",name:"n",type:"number",defaultValue:2},{tfName:"T",name:"dtype",type:"dtype"}]}],eS={};He(eS,{json:()=>Lj});var Lj=[{tfOpName:"EuclideanNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",defaultValue:!1}]},{tfOpName:"FusedBatchNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV2",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV3",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"LRN",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"depth_radius",name:"radius",type:"number",defaultValue:5},{tfName:"bias",name:"bias",type:"number",defaultValue:1},{tfName:"alpha",name:"alpha",type:"number",defaultValue:1},{tfName:"beta",name:"beta",type:"number",defaultValue:.5}]},{tfOpName:"Softmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"LogSoftmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"SparseToDense",category:"normalization",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!0,notSupported:!0}]}],tS={};He(tS,{json:()=>Bj});var Bj=[{tfOpName:"Bincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}]},{tfOpName:"DenseBincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}],attrs:[{tfName:"binary_output",name:"binaryOutput",type:"bool"}]},{tfOpName:"Max",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Mean",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Min",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Sum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"All",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Any",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"ArgMax",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"ArgMin",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"Prod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Cumprod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]},{tfOpName:"Cumsum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]}],nS={};He(nS,{json:()=>Wj});var Wj=[{tfOpName:"ConcatV2",category:"slice_join",inputs:[{start:0,end:-1,name:"tensors",type:"tensors"},{start:-1,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"Concat",category:"slice_join",inputs:[{start:1,end:0,name:"tensors",type:"tensors"},{start:0,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"GatherV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"axis",type:"number",defaultValue:0}],attrs:[{tfName:"batch_dims",name:"batchDims",type:"number",defaultValue:0}]},{tfOpName:"Gather",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",notSupported:!0}]},{tfOpName:"Reverse",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"dims",type:"bool[]"}]},{tfOpName:"ReverseV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}]},{tfOpName:"Slice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"size",type:"number[]"}]},{tfOpName:"StridedSlice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"end",type:"number[]"},{start:3,name:"strides",type:"number[]"}],attrs:[{tfName:"begin_mask",name:"beginMask",type:"number",defaultValue:0},{tfName:"end_mask",name:"endMask",type:"number",defaultValue:0},{tfName:"new_axis_mask",name:"newAxisMask",type:"number",defaultValue:0},{tfName:"ellipsis_mask",name:"ellipsisMask",type:"number",defaultValue:0},{tfName:"shrink_axis_mask",name:"shrinkAxisMask",type:"number",defaultValue:0}]},{tfOpName:"Pack",category:"slice_join",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0}]},{tfOpName:"Unpack",category:"slice_join",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0},{tfName:"num",name:"num",type:"number",defaultValue:0,notSupported:!0}]},{tfOpName:"Tile",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"reps",type:"number[]"}]},{tfOpName:"Split",category:"slice_join",inputs:[{start:0,name:"axis",type:"number",defaultValue:0},{start:1,name:"x",type:"tensor"}],attrs:[{tfName:"num_split",name:"numOrSizeSplits",type:"number",defaultValue:1}]},{tfOpName:"SplitV",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"numOrSizeSplits",type:"number[]"},{start:2,name:"axis",type:"number",defaultValue:0}]},{tfOpName:"ScatterNd",category:"slice_join",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"shape",type:"number[]"}]},{tfOpName:"GatherNd",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}]},{tfOpName:"SparseToDense",category:"slice_join",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!1,notSupported:!0}]}],sS={};He(sS,{json:()=>Vj});var Vj=[{tfOpName:"SparseFillEmptyRows",category:"sparse",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"denseShape",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}]},{tfOpName:"SparseReshape",category:"sparse",inputs:[{start:0,name:"inputIndices",type:"tensor"},{start:1,name:"inputShape",type:"tensor"},{start:2,name:"newShape",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SparseSegmentMean",category:"sparse",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"segmentIds",type:"tensor"}]},{tfOpName:"SparseSegmentSum",category:"sparse",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"segmentIds",type:"tensor"}]}],rS={};He(rS,{json:()=>Uj});var Uj=[{tfOpName:"FFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"RFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]},{tfOpName:"IRFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]}],aS={};He(aS,{json:()=>Gj});var Gj=[{tfOpName:"StringNGrams",category:"string",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"dataSplits",type:"tensor"}],attrs:[{tfName:"separator",name:"separator",type:"string"},{tfName:"ngram_widths",name:"nGramWidths",type:"number[]"},{tfName:"left_pad",name:"leftPad",type:"string"},{tfName:"right_pad",name:"rightPad",type:"string"},{tfName:"pad_width",name:"padWidth",type:"number"},{tfName:"preserve_short_sequences",name:"preserveShortSequences",type:"bool"}],outputs:["ngrams","ngrams_splits"]},{tfOpName:"StringSplit",category:"string",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"delimiter",type:"tensor"}],attrs:[{tfName:"skip_empty",name:"skipEmpty",type:"bool"}],outputs:["indices","values","shape"]},{tfOpName:"StringToHashBucketFast",category:"string",inputs:[{start:0,name:"input",type:"tensor"}],attrs:[{tfName:"num_buckets",name:"numBuckets",type:"number"}]}],oS={};He(oS,{json:()=>Hj});var Hj=[{tfOpName:"Cast",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"SrcT",name:"sdtype",type:"dtype",notSupported:!0},{tfName:"DstT",name:"dtype",type:"dtype"}]},{tfOpName:"ExpandDims",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"MirrorPad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"mode",name:"mode",type:"string"}]},{tfOpName:"Pad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"constant_value",name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"PadV2",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"},{start:2,name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"Reshape",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}]},{tfOpName:"Squeeze",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"axis",tfDeprecatedName:"squeeze_dims",name:"axis",type:"number[]"}]},{tfOpName:"SpaceToBatchND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"paddings",type:"number[]"}]},{tfOpName:"BatchToSpaceND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"crops",type:"number[]"}]},{tfOpName:"DepthToSpace",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"block_size",name:"blockSize",type:"number"},{tfName:"data_format",name:"dataFormat",type:"string"}]},{tfOpName:"BroadcastTo",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}],attrs:[]},{tfOpName:"BroadcastArgs",category:"transformation",inputs:[{start:0,name:"s0",type:"tensor"},{start:1,name:"s1",type:"tensor"}],attrs:[]}],p7=class{static get Instance(){return this._instance||(this._instance=new this)}constructor(){let e=[Vk,Uk,Gk,Hk,jk,qk,Xk,Kk,Zk,Yk,Jk,Qk,eS,tS,nS,sS,rS,aS,oS],t=[].concat(...e.map(n=>n.json));this.opMappers=t.reduce((n,s)=>(n[s.tfOpName]=s,n),{})}transformGraph(e,t={}){let n=e.node,s=[],r=[],a=[],o=n.reduce((f,m)=>(f[m.name]=this.mapNode(m),m.op.startsWith("Placeholder")?s.push(f[m.name]):m.op==="Const"?r.push(f[m.name]):(m.input==null||m.input.length===0)&&a.push(f[m.name]),f),{}),i=[],l=[],u={},c={};t!=null&&(u=this.mapSignatureEntries(t.inputs),c=this.mapSignatureEntries(t.outputs));let p=Object.keys(o);p.forEach(f=>{let m=o[f];m.inputNames.forEach((g,y)=>{let[x,,A]=Jr(g),b=o[x];if(b.outputs!=null){let w=b.outputs.indexOf(A);if(w!==-1){let S=`${x}:${w}`;m.inputNames[y]=S}}m.inputs.push(b),b.children.push(m)})}),Object.keys(c).length===0?p.forEach(f=>{let m=o[f];m.children.length===0&&l.push(m)}):Object.keys(c).forEach(f=>{let[m]=Jr(f),g=o[m];g!=null&&(g.signatureKey=c[f],l.push(g))}),Object.keys(u).length>0?Object.keys(u).forEach(f=>{let[m]=Jr(f),g=o[m];g&&(g.signatureKey=u[f],i.push(g))}):i=s;let d={};e.library!=null&&e.library.function!=null&&(d=e.library.function.reduce((f,m)=>(f[m.signature.name]=this.mapFunction(m),f),{}));let h={nodes:o,inputs:i,outputs:l,weights:r,placeholders:s,signature:t,functions:d};return a.length>0&&(h.initNodes=a),h}mapSignatureEntries(e){return Object.keys(e||{}).reduce((t,n)=>(t[e[n].name]=n,t),{})}mapNode(e){let t=Wk(e.op)||this.opMappers[e.op]||{};e.attr==null&&(e.attr={});let n={name:e.name,op:e.op,category:t.category,inputNames:(e.input||[]).map(s=>s.startsWith("^")?s.slice(1):s),inputs:[],children:[],inputParams:{},attrParams:{},rawAttrs:e.attr,outputs:t.outputs};return t.inputs!=null&&(n.inputParams=t.inputs.reduce((s,r)=>(s[r.name]={type:r.type,inputIndexStart:r.start,inputIndexEnd:r.end},s),{})),t.attrs!=null&&(n.attrParams=t.attrs.reduce((s,r)=>{let a=r.type,o;switch(r.type){case"string":o=Q3(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=Q3(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"string[]":o=oy(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=oy(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"number":o=ty(e.attr,r.tfName,r.defaultValue||0),o===void 0&&!!r.tfDeprecatedName&&(o=ty(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"number[]":o=ay(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=ay(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"bool":o=ey(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=ey(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"bool[]":o=ly(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=ly(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"shape":o=ry(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=ry(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"shape[]":o=iy(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=iy(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"dtype":o=ny(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=ny(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"dtype[]":o=sy(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=sy(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"func":o=h7(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=h7(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"tensor":case"tensors":break;default:throw new Error(`Unsupported param type: ${r.type} for op: ${e.op}`)}return s[r.name]={value:o,type:a},s},{})),n}mapFunction(e){let t=e.nodeDef,n=[],s=[],r={};t!=null&&(r=t.reduce((c,p)=>(c[p.name]=this.mapNode(p),p.op==="Const"&&s.push(c[p.name]),c),{}));let a=[],o=[];e.signature.inputArg.forEach(c=>{let[p]=Jr(c.name),d={name:p,op:"Placeholder",inputs:[],inputNames:[],category:"graph",inputParams:{},attrParams:{dtype:{value:Dx(c.type),type:"dtype"}},children:[]};d.signatureKey=c.name,a.push(d),r[p]=d}),Object.keys(r).forEach(c=>{let p=r[c];p.inputNames.forEach((d,h)=>{let[f,,m]=Jr(d),g=r[f];if(g.outputs!=null){let y=g.outputs.indexOf(m);if(y!==-1){let x=`${f}:${y}`;p.inputNames[h]=x}}p.inputs.push(g),g.children.push(p)})});let l=e.ret;e.signature.outputArg.forEach(c=>{let[p,d]=Jr(l[c.name]),h=r[p];h!=null&&(h.defaultOutput=d,o.push(h))});let u=this.mapArgsToSignature(e);return{nodes:r,inputs:a,outputs:o,weights:s,placeholders:n,signature:u}}mapArgsToSignature(e){return{methodName:e.signature.name,inputs:e.signature.inputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n),t),{}),outputs:e.signature.outputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n,e.ret),t),{})}}mapArgToTensorInfo(e,t){let n=e.name;return t!=null&&(n=t[n]),{name:n,dtype:e.type}}};function jj(e){let t=H().global;if(typeof t.atob!="undefined")return t.atob(e);if(typeof Buffer!="undefined")return new Buffer(e,"base64").toString();throw new Error("Unable to decode base64 in this environment. Missing built-in atob() or Buffer()")}function iS(e,t){let n=Array.isArray(e)?String.fromCharCode.apply(null,e):jj(e);return t?n:n.toLowerCase()}function Q3(e,t,n,s=!1){let r=e[t];return r!=null?iS(r.s,s):n}function ey(e,t,n){let s=e[t];return s?s.b:n}function ty(e,t,n){let s=e[t]||{},r=s.i!=null?s.i:s.f!=null?s.f:n;return typeof r=="number"?r:parseInt(r,10)}function Dx(e){switch(typeof e=="string"&&(e=dr[e]),e){case dr.DT_FLOAT:case dr.DT_HALF:return"float32";case dr.DT_INT32:case dr.DT_INT64:case dr.DT_INT8:case dr.DT_UINT8:return"int32";case dr.DT_BOOL:return"bool";case dr.DT_DOUBLE:return"float32";case dr.DT_STRING:return"string";default:return null}}function h7(e,t,n){let s=e[t];return s&&s.func?s.func.name:n}function ny(e,t,n){let s=e[t];return s&&s.type?Dx(s.type):n}function sy(e,t,n){let s=e[t];return s&&s.list&&s.list.type?s.list.type.map(r=>Dx(r)):n}function lS(e){if(!e.unknownRank)return e.dim!=null?e.dim.map(t=>typeof t.size=="number"?t.size:parseInt(t.size,10)):[]}function ry(e,t,n){let s=e[t];return s&&s.shape?lS(s.shape):n}function ay(e,t,n){let s=e[t];return s?((s.list.f&&s.list.f.length?s.list.f:s.list.i)||[]).map(r=>typeof r=="number"?r:parseInt(r,10)):n}function oy(e,t,n,s=!1){let r=e[t];return r&&r.list&&r.list.s?r.list.s.map(a=>iS(a,s)):n}function iy(e,t,n){let s=e[t];return s&&s.list&&s.list.shape?s.list.shape.map(r=>lS(r)):n}function ly(e,t,n){let s=e[t];return s&&s.list&&s.list.b?s.list.b:n}var qj=class{constructor(e,t,n){this.node=e,this.tensorMap=t,this.context=n,this.inputs=[],this.attrs={},this.inputs=e.inputNames.map(s=>this.getInput(s)),e.rawAttrs!=null&&(this.attrs=Object.keys(e.rawAttrs).reduce((s,r)=>(s[r]=this.getAttr(r),s),{}))}getInput(e){return rs(e,this.tensorMap,this.context)}getAttr(e,t){let n=this.node.rawAttrs[e];if(n.tensor!=null)return rs(e,this.tensorMap,this.context);if(n.i!=null||n.f!=null)return ty(this.node.rawAttrs,e,t);if(n.s!=null)return Q3(this.node.rawAttrs,e,t);if(n.b!=null)return ey(this.node.rawAttrs,e,t);if(n.shape!=null)return ry(this.node.rawAttrs,e,t);if(n.type!=null)return ny(this.node.rawAttrs,e,t);if(n.list!=null){if(n.list.i!=null||n.list.f!=null)return ay(this.node.rawAttrs,e,t);if(n.list.s!=null)return oy(this.node.rawAttrs,e,t);if(n.list.shape!=null)return iy(this.node.rawAttrs,e,t);if(n.list.b!=null)return ly(this.node.rawAttrs,e,t);if(n.list.type!=null)return sy(this.node.rawAttrs,e,t)}return t}},Mn={};He(Mn,{OP_SCOPE_SUFFIX:()=>Ly,abs:()=>sn,acos:()=>sA,acosh:()=>rA,add:()=>ue,addN:()=>k0,all:()=>S0,any:()=>Np,argMax:()=>Ps,argMin:()=>aA,asin:()=>oA,asinh:()=>iA,atan:()=>lA,atan2:()=>uA,atanh:()=>cA,avgPool:()=>hh,avgPool3d:()=>pA,basicLSTMCell:()=>Aw,batchNorm:()=>jc,batchNorm2d:()=>hA,batchNorm3d:()=>fA,batchNorm4d:()=>mA,batchToSpaceND:()=>fh,bincount:()=>gA,booleanMaskAsync:()=>e8,broadcastArgs:()=>xw,broadcastTo:()=>Ki,buffer:()=>We,cast:()=>ye,ceil:()=>yA,clipByValue:()=>xs,clone:()=>Vn,complex:()=>wa,concat:()=>It,concat1d:()=>AA,concat2d:()=>su,concat3d:()=>xA,concat4d:()=>bA,conv1d:()=>I0,conv2d:()=>ka,conv2dTranspose:()=>C0,conv3d:()=>wA,conv3dTranspose:()=>kA,cos:()=>mh,cosh:()=>T0,cosineWindow:()=>K0,cumprod:()=>Ep,cumsum:()=>N0,denseBincount:()=>vw,depthToSpace:()=>SA,depthwiseConv2d:()=>qc,diag:()=>ww,dilation2d:()=>IA,div:()=>fe,divNoNan:()=>CA,dot:()=>TA,dropout:()=>QA,einsum:()=>kw,elu:()=>Xc,enclosingPowerOfTwo:()=>e5,equal:()=>Fs,erf:()=>NA,euclideanNorm:()=>_A,exp:()=>Os,expandDims:()=>Bt,expm1:()=>DA,eye:()=>E0,fft:()=>Sh,fill:()=>Zc,floor:()=>Yc,floorDiv:()=>Hc,fused:()=>lc,gather:()=>Jc,gatherND:()=>r8,greater:()=>ws,greaterEqual:()=>ci,ifft:()=>ic,imag:()=>dh,image:()=>Ie,inTopKAsync:()=>a8,irfft:()=>H0,isFinite:()=>$A,isInf:()=>PA,isNaN:()=>FA,leakyRelu:()=>gh,less:()=>R0,lessEqual:()=>di,linalg:()=>s5,linspace:()=>Nw,localResponseNormalization:()=>OA,log:()=>Ms,log1p:()=>yh,logSigmoid:()=>MA,logSoftmax:()=>D0,logSumExp:()=>$0,logicalAnd:()=>mr,logicalNot:()=>Ah,logicalOr:()=>P0,logicalXor:()=>zA,losses:()=>y8,lowerBound:()=>Rw,matMul:()=>et,max:()=>gn,maxPool:()=>xh,maxPool3d:()=>LA,maxPoolWithArgmax:()=>_w,maximum:()=>oa,mean:()=>Wt,meshgrid:()=>Dw,min:()=>Sa,minimum:()=>Qc,mirrorPad:()=>BA,mod:()=>au,moments:()=>bh,movingAverage:()=>t8,mul:()=>z,multiRNNCell:()=>$w,multinomial:()=>Pw,neg:()=>$t,norm:()=>Kc,notEqual:()=>rl,oneHot:()=>rc,ones:()=>$s,onesLike:()=>zs,op:()=>W,outerProduct:()=>Fw,pad:()=>sr,pad1d:()=>Ow,pad2d:()=>Mw,pad3d:()=>zw,pad4d:()=>Lw,pool:()=>WA,pow:()=>Ia,prelu:()=>wh,print:()=>Uy,prod:()=>VA,raggedTensorToTensor:()=>Bw,rand:()=>Ww,randomGamma:()=>Vw,randomNormal:()=>O0,randomStandardNormal:()=>Uw,randomUniform:()=>ed,range:()=>oc,real:()=>ac,reciprocal:()=>HA,relu:()=>Wr,relu6:()=>M0,reshape:()=>V,reverse:()=>Qs,reverse1d:()=>Gw,reverse2d:()=>Hw,reverse3d:()=>jw,reverse4d:()=>qw,rfft:()=>Ih,round:()=>z0,rsqrt:()=>L0,scalar:()=>Ce,scatterND:()=>n8,searchSorted:()=>F0,selu:()=>B0,separableConv2d:()=>W0,setdiff1dAsync:()=>Xw,sigmoid:()=>$n,sign:()=>jA,signal:()=>g8,sin:()=>V0,sinh:()=>U0,slice:()=>ze,slice1d:()=>kh,slice2d:()=>G0,slice3d:()=>pi,slice4d:()=>ro,softmax:()=>ou,softplus:()=>ru,spaceToBatchND:()=>vh,sparse:()=>A8,sparseToDense:()=>s8,spectral:()=>m8,split:()=>Yt,sqrt:()=>Fn,square:()=>bt,squaredDifference:()=>j0,squeeze:()=>rt,stack:()=>ln,step:()=>iu,stridedSlice:()=>qA,string:()=>x8,sub:()=>me,sum:()=>ke,tan:()=>XA,tanh:()=>nl,tensor:()=>ct,tensor1d:()=>Pt,tensor2d:()=>fr,tensor3d:()=>Ky,tensor4d:()=>Kw,tensor5d:()=>Zw,tensor6d:()=>Yw,tile:()=>Ks,topk:()=>KA,transpose:()=>tt,truncatedNormal:()=>q0,unique:()=>ZA,unsortedSegmentSum:()=>X0,unstack:()=>On,upperBound:()=>Jw,variable:()=>YA,where:()=>Gn,whereAsync:()=>JA,zeros:()=>Vt,zerosLike:()=>lt});var Xj=(e,t,n,s=Mn)=>{switch(e.op){case"BiasAdd":case"AddV2":case"Add":return[s.add(I("a",e,t,n),I("b",e,t,n))];case"AddN":return[s.addN(I("tensors",e,t,n))];case"FloorMod":case"Mod":return[s.mod(I("a",e,t,n),I("b",e,t,n))];case"Mul":return[s.mul(I("a",e,t,n),I("b",e,t,n))];case"RealDiv":case"Div":return[s.div(I("a",e,t,n),I("b",e,t,n))];case"DivNoNan":return[s.divNoNan(I("a",e,t,n),I("b",e,t,n))];case"FloorDiv":return[s.floorDiv(I("a",e,t,n),I("b",e,t,n))];case"Sub":return[s.sub(I("a",e,t,n),I("b",e,t,n))];case"Minimum":return[s.minimum(I("a",e,t,n),I("b",e,t,n))];case"Maximum":return[s.maximum(I("a",e,t,n),I("b",e,t,n))];case"Pow":return[s.pow(I("a",e,t,n),I("b",e,t,n))];case"SquaredDifference":return[s.squaredDifference(I("a",e,t,n),I("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Kj=(e,t,n,s=Mn)=>{switch(e.op){case"Abs":case"ComplexAbs":return[s.abs(I("x",e,t,n))];case"Acos":return[s.acos(I("x",e,t,n))];case"Acosh":return[s.acosh(I("x",e,t,n))];case"Asin":return[s.asin(I("x",e,t,n))];case"Asinh":return[s.asinh(I("x",e,t,n))];case"Atan":return[s.atan(I("x",e,t,n))];case"Atan2":return[s.atan2(I("x",e,t,n),I("y",e,t,n))];case"Atanh":return[s.atanh(I("x",e,t,n))];case"Ceil":return[s.ceil(I("x",e,t,n))];case"Complex":return[s.complex(I("real",e,t,n),I("imag",e,t,n))];case"Cos":return[s.cos(I("x",e,t,n))];case"Cosh":return[s.cosh(I("x",e,t,n))];case"Elu":return[s.elu(I("x",e,t,n))];case"Erf":return[s.erf(I("x",e,t,n))];case"Exp":return[s.exp(I("x",e,t,n))];case"Expm1":return[s.expm1(I("x",e,t,n))];case"Floor":return[s.floor(I("x",e,t,n))];case"Log":return[s.log(I("x",e,t,n))];case"Log1p":return[s.log1p(I("x",e,t,n))];case"Imag":return[s.imag(I("x",e,t,n))];case"Neg":return[s.neg(I("x",e,t,n))];case"Reciprocal":return[s.reciprocal(I("x",e,t,n))];case"Real":return[s.real(I("x",e,t,n))];case"Relu":return[s.relu(I("x",e,t,n))];case"Round":return[s.round(I("x",e,t,n))];case"Selu":return[s.selu(I("x",e,t,n))];case"Sigmoid":return[s.sigmoid(I("x",e,t,n))];case"Sin":return[s.sin(I("x",e,t,n))];case"Sign":return[s.sign(I("x",e,t,n))];case"Sinh":return[s.sinh(I("x",e,t,n))];case"Softplus":return[s.softplus(I("x",e,t,n))];case"Sqrt":return[s.sqrt(I("x",e,t,n))];case"Square":return[s.square(I("x",e,t,n))];case"Tanh":return[s.tanh(I("x",e,t,n))];case"Tan":return[s.tan(I("x",e,t,n))];case"ClipByValue":return[s.clipByValue(I("x",e,t,n),I("clipValueMin",e,t,n),I("clipValueMax",e,t,n))];case"Relu6":return[s.relu6(I("x",e,t,n))];case"Rsqrt":return[s.rsqrt(rs(e.inputNames[0],t,n))];case"Prod":return[s.prod(I("x",e,t,n),I("axes",e,t,n))];case"LeakyRelu":return[s.leakyRelu(I("x",e,t,n),I("alpha",e,t,n))];case"Prelu":return[s.prelu(I("x",e,t,n),I("alpha",e,t,n))];case"IsNan":return[s.isNaN(rs(e.inputNames[0],t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function hr(e,t,n=""){if(!(typeof e=="number"||typeof t=="number")){v.assert(e.length===t.length,()=>n+` Shapes ${e} and ${t} must match`);for(let s=0;s<e.length;s++){let r=e[s],a=t[s];v.assert(r<0||a<0||r===a,()=>n+` Shapes ${e} and ${t} must match`)}}}function f7(e){return!(typeof e=="number"||e.some(t=>t<0))}function sp(e,t,n){let s=uy(e,n),r=!f7(s);if(r&&t.length===0)throw new Error(`Tried to calculate elements of an empty list with non-fully-defined elementShape: ${s}`);if(r&&t.forEach(a=>{s=uy(a.shape,s)}),!f7(s))throw new Error(`Non-fully-defined elementShape: ${s}`);return s}function uy(e,t){if(typeof e=="number")return t;if(typeof t=="number")return e;if(e.length!==t.length)throw new Error(`Incompatible ranks during merge: ${e} vs. ${t}`);let n=[];for(let s=0;s<e.length;++s){let r=e[s],a=t[s];if(r>=0&&a>=0&&r!==a)throw new Error(`Incompatible shape during merge: ${e} vs. ${t}`);n[s]=r>=0?r:a}return n}var Zj=class{constructor(e,t,n,s,r,a,o){this.name=e,this.dtype=t,this.maxSize=n,this.elementShape=s,this.identicalElementShapes=r,this.dynamicSize=a,this.clearAfterRead=o,this.tensors=[],this.closed_=!1,this.idTensor=Ce(0),kn(this.idTensor)}get id(){return this.idTensor.id}get closed(){return this.closed_}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.tensor.id))&&t.tensor.dispose()}),this.tensors=[],this.closed_=!0,this.idTensor.dispose()}size(){return this.tensors.length}read(e){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||e>=this.size())throw new Error(`Tried to read from index ${e}, but array size is: ${this.size()}`);let t=this.tensors[e];if(t.cleared)throw new Error(`TensorArray ${this.name}: Could not read index ${e} twice because it was cleared after a previous read (perhaps try setting clear_after_read = false?).`);return this.clearAfterRead&&(t.cleared=!0),t.read=!0,t.tensor}readMany(e){return e.map(t=>this.read(t))}write(e,t){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||!this.dynamicSize&&e>=this.maxSize)throw new Error(`Tried to write to index ${e}, but array is not resizeable and size is: ${this.maxSize}`);let n=this.tensors[e]||{};if(t.dtype!==this.dtype)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e},
because the value dtype is ${t.dtype}, but TensorArray dtype is ${this.dtype}.`);if(this.size()===0&&(this.elementShape==null||this.elementShape.length===0)&&(this.elementShape=t.shape),hr(this.elementShape,t.shape,`TensorArray ${this.name}: Could not write to TensorArray index ${e}.`),n.read)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been read.`);if(n.written)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been written.`);n.tensor=t,kn(t),n.written=!0,this.tensors[e]=n}writeMany(e,t){if(e.length!==t.length)throw new Error(`TensorArray ${this.name}: could not write multiple tensors,because the index size: ${e.length} is not the same as tensors size: ${t.length}.`);e.forEach((n,s)=>this.write(n,t[s]))}gather(e,t){if(!!t&&t!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but gather requested dtype ${t}`);if(e)e=e.slice(0,this.size());else{e=[];for(let s=0;s<this.size();s++)e.push(s)}if(e.length===0)return ct([],[0].concat(this.elementShape));let n=this.readMany(e);return hr(this.elementShape,n[0].shape,"TensorArray shape mismatch: "),ln(n,0)}concat(e){if(!!e&&e!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but concat requested dtype ${e}`);if(this.size()===0)return ct([],[0].concat(this.elementShape));let t=[];for(let s=0;s<this.size();s++)t.push(s);let n=this.readMany(t);return hr(this.elementShape,n[0].shape,`TensorArray shape mismatch: tensor array shape (${this.elementShape}) vs first tensor shape (${n[0].shape})`),It(n,0)}scatter(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);if(e.length!==t.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${e.length} vs. ${t.shape[0]}`);let n=Math.max(...e);if(!this.dynamicSize&&n>=this.maxSize)throw new Error(`Max index must be < array size (${n} vs. ${this.maxSize})`);this.writeMany(e,On(t,0))}split(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);let n=0,s=e.map(i=>(n+=i,n));if(n!==t.shape[0])throw new Error(`Expected sum of lengths to be equal to
tensor.shape[0], but sum of lengths is
${n}, and tensor's shape is: ${t.shape}`);if(!this.dynamicSize&&e.length!==this.maxSize)throw new Error(`TensorArray's size is not equal to the size of lengths (${this.maxSize} vs. ${e.length}), and the TensorArray is not marked as dynamically resizeable`);let r=n===0?0:t.size/n,a=[];Z(()=>{t=V(t,[1,n,r]);for(let i=0;i<e.length;++i){let l=i===0?0:s[i-1],u=[0,l,0],c=[1,e[i],r];a[i]=V(ze(t,u,c),this.elementShape)}return a});let o=[];for(let i=0;i<e.length;i++)o[i]=i;this.writeMany(o,a)}},pc=class{constructor(e,t,n,s=-1){this.tensors=e,this.elementShape=t,this.elementDtype=n,e!=null&&e.forEach(r=>{if(n!==r.dtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${r.dtype}`);hr(t,r.shape,"TensorList shape mismatch: "),kn(r)}),this.idTensor=Ce(0),this.maxNumElements=s,kn(this.idTensor)}get id(){return this.idTensor.id}copy(){return new pc([...this.tensors],this.elementShape,this.elementDtype)}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.id))&&t.dispose()}),this.tensors.length=0,this.idTensor.dispose()}size(){return this.tensors.length}stack(e,t,n=-1){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(n!==-1&&this.tensors.length!==n)throw new Error(`Operation expected a list with ${n} elements but got a list with ${this.tensors.length} elements.`);hr(e,this.elementShape,"TensorList shape mismatch: ");let s=sp(this.elementShape,this.tensors,e);return Z(()=>{let r=this.tensors.map(a=>V(a,s));return ln(r,0)})}popBack(e,t){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(this.size()===0)throw new Error("Trying to pop from an empty list.");let n=sp(this.elementShape,this.tensors,e),s=this.tensors.pop();return s.kept=!1,hr(s.shape,e,"TensorList shape mismatch: "),V(s,n)}pushBack(e){if(e.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${this.elementDtype}`);if(hr(e.shape,this.elementShape,"TensorList shape mismatch: "),this.maxNumElements===this.size())throw new Error("Trying to push element into a full list.");kn(e),this.tensors.push(e)}resize(e){if(e<0)throw new Error(`TensorListResize expects size to be non-negative. Got: ${e}`);if(this.maxNumElements!==-1&&e>this.maxNumElements)throw new Error(`TensorListResize input size ${e} is greater maxNumElement ${this.maxNumElements}.`);let t=new pc([],this.elementShape,this.elementDtype,this.maxNumElements);t.tensors.length=e;for(let n=0;n<Math.min(this.tensors.length,e);++n)t.tensors[n]=this.tensors[n];return t}getItem(e,t,n){if(n!==this.elementDtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${this.elementDtype}`);if(e<0||e>this.tensors.length)throw new Error(`Trying to access element ${e} in a list with ${this.tensors.length} elements.`);if(this.tensors[e]==null)throw new Error(`element at index ${e} is null.`);hr(this.tensors[e].shape,t,"TensorList shape mismatch: ");let s=sp(this.elementShape,this.tensors,t);return V(this.tensors[e],s)}setItem(e,t){if(t.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t.dtype}, but list elements ${this.elementDtype}`);if(e<0||this.maxNumElements!==-1&&e>=this.maxNumElements)throw new Error(`Trying to set element ${e} in a list with max ${this.maxNumElements} elements.`);hr(this.elementShape,t.shape,"TensorList shape mismatch: "),kn(t),this.tensors[e]!=null&&(this.tensors[e].kept=!1),this.tensors[e]=t}gather(e,t,n){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);hr(this.elementShape,n,"TensorList shape mismatch: "),e=e.slice(0,this.size());let s=sp(this.elementShape,this.tensors,n);return e.length===0?ct([],[0].concat(s)):Z(()=>{let r=e.map(a=>V(this.tensors[a],s));return ln(r,0)})}concat(e,t){if(!!e&&e!==this.elementDtype)throw new Error(`TensorList dtype is ${this.elementDtype} but concat requested dtype ${e}`);hr(this.elementShape,t,"TensorList shape mismatch: ");let n=sp(this.elementShape,this.tensors,t);return this.size()===0?ct([],[0].concat(n)):Z(()=>{let s=this.tensors.map(r=>V(r,n));return It(s,0)})}};function Yj(e,t,n){let s=e.dtype;if(e.shape.length<1)throw new Error(`Tensor must be at least a vector, but saw shape: ${e.shape}`);if(e.dtype!==n)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${n}`);let r=e.shape.slice(1);hr(r,t,"TensorList shape mismatch: ");let a=On(e);return new pc(a,t,s)}function Jj(e,t,n,s){return new pc([],e,t,s)}function Qj(e,t,n,s){if(t.length!==e.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${t.length} vs. ${e.shape[0]}`);let r=Math.max(...t);if(s!=null&&s!==-1&&r>=s)throw new Error(`Max index must be < array size (${r} vs. ${s})`);let a=new pc([],n,e.dtype,s),o=On(e,0);return t.forEach((i,l)=>{a.setItem(i,o[l])}),a}function eq(e,t,n){let s=0,r=t.map(c=>(s+=c,s));if(s!==e.shape[0])throw new Error(`Expected sum of lengths to be equal to
tensor.shape[0], but sum of lengths is
${s}, and tensor's shape is: ${e.shape}`);let a=e.shape.slice(1),o=uy(a,n),i=s===0?0:e.size/s,l=Z(()=>{let c=[];e=V(e,[1,s,i]);for(let p=0;p<t.length;++p){let d=p===0?0:r[p-1],h=[0,d,0],f=[1,t[p],i];c[p]=V(ze(e,h,f),o)}return e.dispose(),c}),u=new pc([],n,e.dtype,t.length);for(let c=0;c<l.length;c++)u.setItem(c,l[c]);return u}var tq=async(e,t,n)=>{switch(e.op){case"If":case"StatelessIf":{let s=I("thenBranch",e,t,n),r=I("elseBranch",e,t,n),a=I("cond",e,t,n),o=I("args",e,t,n);return(await a.data())[0]?n.functionMap[s].executeFunctionAsync(o,n.tensorArrayMap,n.tensorListMap):n.functionMap[r].executeFunctionAsync(o,n.tensorArrayMap,n.tensorListMap)}case"While":case"StatelessWhile":{let s=I("body",e,t,n),r=I("cond",e,t,n),a=I("args",e,t,n),o=await n.functionMap[r].executeFunctionAsync(a,n.tensorArrayMap,n.tensorListMap),i=a.map(c=>c.id),l=await o[0].data();o.forEach(c=>{!c.kept&&i.indexOf(c.id)===-1&&c.dispose()});let u=a;for(;l[0];){let c=u;u=await n.functionMap[s].executeFunctionAsync(u,n.tensorArrayMap,n.tensorListMap);let p=u.map(h=>h.id);c.forEach(h=>{!h.kept&&i.indexOf(h.id)===-1&&p.indexOf(h.id)===-1&&h.dispose()});let d=await n.functionMap[r].executeFunctionAsync(u,n.tensorArrayMap,n.tensorListMap);l=await d[0].data(),d.forEach(h=>{!h.kept&&i.indexOf(h.id)===-1&&p.indexOf(h.id)===-1&&h.dispose()})}return u}case"LoopCond":{let s=I("pred",e,t,n);return[ya(s)]}case"Switch":{let s=I("pred",e,t,n),r=I("data",e,t,n);return r.kept||(r=ya(r)),(await s.data())[0]?[void 0,r]:[r,void 0]}case"Merge":{let s=e.inputNames.find(r=>rs(r,t,n)!==void 0);if(s){let r=rs(s,t,n);return[ya(r)]}return}case"Enter":{let s=I("frameName",e,t,n),r=I("tensor",e,t,n);return n.enterFrame(s),[ya(r)]}case"Exit":{let s=I("tensor",e,t,n);return n.exitFrame(),[ya(s)]}case"NextIteration":{let s=I("tensor",e,t,n);return n.nextIteration(),[ya(s)]}case"TensorArrayV3":{let s=I("size",e,t,n),r=I("dtype",e,t,n),a=I("elementShape",e,t,n),o=I("dynamicSize",e,t,n),i=I("clearAfterRead",e,t,n),l=I("identicalElementShapes",e,t,n),u=I("name",e,t,n),c=new Zj(u,r,s,a,l,o,i);return n.addTensorArray(c),[c.idTensor,Ce(1)]}case"TensorArrayWriteV3":{let s=I("tensorArrayId",e,t,n),r=I("index",e,t,n),a=I("tensor",e,t,n),o=n.getTensorArray(s.id);return o.write(r,a),[o.idTensor]}case"TensorArrayReadV3":{let s=I("tensorArrayId",e,t,n),r=I("index",e,t,n);return[n.getTensorArray(s.id).read(r)]}case"TensorArrayGatherV3":{let s=I("tensorArrayId",e,t,n),r=I("indices",e,t,n),a=I("dtype",e,t,n);return[n.getTensorArray(s.id).gather(r,a)]}case"TensorArrayScatterV3":{let s=I("tensorArrayId",e,t,n),r=I("indices",e,t,n),a=I("tensor",e,t,n),o=n.getTensorArray(s.id);return o.scatter(r,a),[o.idTensor]}case"TensorArrayConcatV3":{let s=I("tensorArrayId",e,t,n),r=n.getTensorArray(s.id),a=I("dtype",e,t,n);return[r.concat(a)]}case"TensorArraySplitV3":{let s=I("tensorArrayId",e,t,n),r=I("tensor",e,t,n),a=I("lengths",e,t,n),o=n.getTensorArray(s.id);return o.split(a,r),[o.idTensor]}case"TensorArraySizeV3":{let s=I("tensorArrayId",e,t,n),r=n.getTensorArray(s.id);return[Ce(r.size(),"int32")]}case"TensorArrayCloseV3":{let s=I("tensorArrayId",e,t,n),r=n.getTensorArray(s.id);return r.clearAndClose(),[r.idTensor]}case"TensorListSetItem":{let s=I("tensorListId",e,t,n),r=I("index",e,t,n),a=I("tensor",e,t,n),o=n.getTensorList(s.id);return o.setItem(r,a),[o.idTensor]}case"TensorListGetItem":{let s=I("tensorListId",e,t,n),r=I("index",e,t,n),a=I("elementShape",e,t,n),o=I("elementDType",e,t,n);return[n.getTensorList(s.id).getItem(r,a,o)]}case"TensorListScatterV2":case"TensorListScatter":{let s=I("indices",e,t,n),r=I("tensor",e,t,n),a=I("elementShape",e,t,n),o=I("numElements",e,t,n),i=Qj(r,s,a,o);return n.addTensorList(i),[i.idTensor]}case"TensorListReserve":case"EmptyTensorList":{let s=I("elementShape",e,t,n),r=I("elementDType",e,t,n),a;e.op==="TensorListReserve"?a="numElements":a="maxNumElements";let o=I(a,e,t,n),i=e.op==="TensorListReserve"?-1:o,l=Jj(s,r,o,i);return n.addTensorList(l),[l.idTensor]}case"TensorListGather":{let s=I("tensorListId",e,t,n),r=I("indices",e,t,n),a=I("elementShape",e,t,n),o=I("elementDType",e,t,n);return[n.getTensorList(s.id).gather(r,o,a)]}case"TensorListStack":{let s=I("tensorListId",e,t,n),r=I("elementShape",e,t,n),a=I("elementDType",e,t,n),o=I("numElements",e,t,n);return[n.getTensorList(s.id).stack(r,a,o)]}case"TensorListFromTensor":{let s=I("tensor",e,t,n),r=I("elementShape",e,t,n),a=I("elementDType",e,t,n),o=Yj(s,r,a);return n.addTensorList(o),[o.idTensor]}case"TensorListConcat":case"TensorListConcatV2":{let s=I("tensorListId",e,t,n),r=n.getTensorList(s.id),a=I("dtype",e,t,n),o=I("elementShape",e,t,n);return[r.concat(a,o)]}case"TensorListPushBack":{let s=I("tensorListId",e,t,n),r=I("tensor",e,t,n),a=n.getTensorList(s.id);return a.pushBack(r),[a.idTensor]}case"TensorListPopBack":{let s=I("tensorListId",e,t,n),r=I("elementShape",e,t,n),a=I("elementDType",e,t,n);return[n.getTensorList(s.id).popBack(r,a)]}case"TensorListSplit":{let s=I("tensor",e,t,n),r=I("elementShape",e,t,n),a=I("lengths",e,t,n),o=eq(s,a,r);return n.addTensorList(o),[o.idTensor]}case"TensorListLength":{let s=I("tensorListId",e,t,n),r=n.getTensorList(s.id);return[Ce(r.size(),"int32")]}case"TensorListResize":{let s=I("tensorListId",e,t,n),r=I("size",e,t,n),o=n.getTensorList(s.id).resize(r);return n.addTensorList(o),[o.idTensor]}default:throw TypeError(`Node type ${e.op} is not implemented`)}};function m7(e,t,n){let[s,r]=I("fusedOps",e,t,n),a=s==="biasadd",o=!a,i=r==="prelu",l=s==="fusedbatchnorm",u=I("numArgs",e,t,n);if(a){if(i&&u!==2)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!i&&a&&u!==1)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd must have one extra argument: bias.")}if(l)throw new Error("FusedConv2d and DepthwiseConv2d with FusedBatchNorm is not supported");let c=I("strides",e,t,n),p=lm(e,t,n),d=I("dataFormat",e,t,n).toUpperCase(),h=I("dilations",e,t,n),[f,m]=I("args",e,t,n);o&&(m=f,f=void 0);let g=I("leakyreluAlpha",e,t,n);return{stride:c,pad:p,dataFormat:d,dilations:h,biasArg:f,preluArg:m,activationFunc:r,leakyreluAlpha:g}}var nq=(e,t,n,s=Mn)=>{switch(e.op){case"Conv1D":{let r=I("stride",e,t,n),a=I("pad",e,t,n),o=I("dataFormat",e,t,n).toUpperCase(),i=I("dilation",e,t,n);return[s.conv1d(I("x",e,t,n),I("filter",e,t,n),r,a,o,i)]}case"Conv2D":{let r=I("strides",e,t,n),a=lm(e,t,n),o=I("dataFormat",e,t,n).toUpperCase(),i=I("dilations",e,t,n);return[s.conv2d(I("x",e,t,n),I("filter",e,t,n),[r[1],r[2]],a,o,[i[1],i[2]])]}case"_FusedConv2D":{let{stride:r,pad:a,dataFormat:o,dilations:i,biasArg:l,preluArg:u,activationFunc:c,leakyreluAlpha:p}=m7(e,t,n);return[s.fused.conv2d({x:I("x",e,t,n),filter:I("filter",e,t,n),strides:[r[1],r[2]],pad:a,dataFormat:o,dilations:[i[1],i[2]],bias:l,activation:c,preluActivationWeights:u,leakyreluAlpha:p})]}case"FusedDepthwiseConv2dNative":{let{stride:r,pad:a,dataFormat:o,dilations:i,biasArg:l,preluArg:u,activationFunc:c,leakyreluAlpha:p}=m7(e,t,n);return[s.fused.depthwiseConv2d({x:I("x",e,t,n),filter:I("filter",e,t,n),strides:[r[1],r[2]],pad:a,dataFormat:o,dilations:[i[1],i[2]],bias:l,activation:c,preluActivationWeights:u,leakyreluAlpha:p})]}case"Conv2DBackpropInput":case"Conv2dTranspose":{let r=I("outputShape",e,t,n),a=I("strides",e,t,n),o=lm(e,t,n);return[s.conv2dTranspose(I("x",e,t,n),I("filter",e,t,n),r,[a[1],a[2]],o)]}case"DepthwiseConv2dNative":case"DepthwiseConv2d":{let r=I("strides",e,t,n),a=lm(e,t,n),o=I("dilations",e,t,n),i=I("dataFormat",e,t,n).toUpperCase();return[s.depthwiseConv2d(I("input",e,t,n),I("filter",e,t,n),[r[1],r[2]],a,i,[o[1],o[2]])]}case"Conv3D":{let r=I("strides",e,t,n),a=I("pad",e,t,n),o=I("dataFormat",e,t,n).toUpperCase(),i=I("dilations",e,t,n);return[s.conv3d(I("x",e,t,n),I("filter",e,t,n),[r[1],r[2],r[3]],a,o,[i[1],i[2],i[3]])]}case"AvgPool":{let r=I("strides",e,t,n),a=I("pad",e,t,n),o=I("kernelSize",e,t,n);return[s.avgPool(I("x",e,t,n),[o[1],o[2]],[r[1],r[2]],a)]}case"MaxPool":{let r=I("strides",e,t,n),a=I("pad",e,t,n),o=I("kernelSize",e,t,n);return[s.maxPool(I("x",e,t,n),[o[1],o[2]],[r[1],r[2]],a)]}case"MaxPoolWithArgmax":{let r=I("strides",e,t,n),a=I("pad",e,t,n),o=I("kernelSize",e,t,n),i=I("includeBatchInIndex",e,t,n),{result:l,indexes:u}=s.maxPoolWithArgmax(I("x",e,t,n),[o[1],o[2]],[r[1],r[2]],a,i);return[l,u]}case"AvgPool3D":{let r=I("strides",e,t,n),a=I("pad",e,t,n),o=I("kernelSize",e,t,n);return[s.avgPool3d(I("x",e,t,n),[o[1],o[2],o[3]],[r[1],r[2],r[3]],a)]}case"MaxPool3D":{let r=I("strides",e,t,n),a=I("pad",e,t,n),o=I("kernelSize",e,t,n);return[s.maxPool3d(I("x",e,t,n),[o[1],o[2],o[3]],[r[1],r[2],r[3]],a)]}case"Dilation2D":{let r=I("strides",e,t,n),a=I("pad",e,t,n),o=I("dilations",e,t,n),i=r[1],l=r[2],u=o[1],c=o[2];return[s.dilation2d(I("x",e,t,n),I("filter",e,t,n),[i,l],a,[u,c],"NHWC")]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},sq=(e,t,n,s=Mn)=>{switch(e.op){case"Fill":{let r=I("shape",e,t,n),a=I("dtype",e,t,n),o=I("value",e,t,n);return[s.fill(r,o,a)]}case"LinSpace":{let r=I("start",e,t,n),a=I("stop",e,t,n),o=I("num",e,t,n);return[s.linspace(r,a,o)]}case"Multinomial":{let r=I("logits",e,t,n),a=I("numSamples",e,t,n),o=I("seed",e,t,n);return[s.multinomial(r,a,o)]}case"OneHot":{let r=I("indices",e,t,n),a=I("depth",e,t,n),o=I("onValue",e,t,n),i=I("offValue",e,t,n),l=I("dtype",e,t,n);return[s.oneHot(r,a,o,i,l)]}case"Ones":return[s.ones(I("shape",e,t,n),I("dtype",e,t,n))];case"OnesLike":return[s.onesLike(I("x",e,t,n))];case"RandomStandardNormal":return[s.randomStandardNormal(I("shape",e,t,n),I("dtype",e,t,n),I("seed",e,t,n))];case"RandomUniform":return[s.randomUniform(I("shape",e,t,n),I("minval",e,t,n),I("maxval",e,t,n),I("dtype",e,t,n))];case"Range":{let r=I("start",e,t,n),a=I("stop",e,t,n),o=I("step",e,t,n);return[s.range(r,a,o,I("dtype",e,t,n))]}case"TruncatedNormal":{let r=I("shape",e,t,n),a=I("mean",e,t,n),o=I("stdDev",e,t,n),i=I("seed",e,t,n);return[s.truncatedNormal(r,a,o,I("dtype",e,t,n),i)]}case"Zeros":return[s.zeros(I("shape",e,t,n),I("dtype",e,t,n))];case"ZerosLike":return[s.zerosLike(I("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function v3(e,t,n){let s=I("boxes",e,t,n),r=I("scores",e,t,n),a=I("maxOutputSize",e,t,n),o=I("iouThreshold",e,t,n),i=I("scoreThreshold",e,t,n),l=I("softNmsSigma",e,t,n);return{boxes:s,scores:r,maxOutputSize:a,iouThreshold:o,scoreThreshold:i,softNmsSigma:l}}var rq=async(e,t,n,s,r=Mn)=>{switch(e.op){case"NonMaxSuppressionV5":{let{boxes:a,scores:o,maxOutputSize:i,iouThreshold:l,scoreThreshold:u,softNmsSigma:c}=v3(e,t,n),p=await r.image.nonMaxSuppressionWithScoreAsync(a,o,i,l,u,c);return[p.selectedIndices,p.selectedScores]}case"NonMaxSuppressionV4":{let{boxes:a,scores:o,maxOutputSize:i,iouThreshold:l,scoreThreshold:u}=v3(e,t,n),c=I("padToMaxOutputSize",e,t,n),p=await r.image.nonMaxSuppressionPaddedAsync(a,o,i,l,u,c);return[p.selectedIndices,p.validOutputs]}case"NonMaxSuppressionV3":case"NonMaxSuppressionV2":{let{boxes:a,scores:o,maxOutputSize:i,iouThreshold:l,scoreThreshold:u}=v3(e,t,n);return[await r.image.nonMaxSuppressionAsync(a,o,i,l,u)]}case"Where":{let a=r.cast(I("condition",e,t,n),"bool"),o=[await r.whereAsync(a)];return a.dispose(),o}case"ListDiff":return r.setdiff1dAsync(I("x",e,t,n),I("y",e,t,n));default:throw TypeError(`Node type ${e.op} is not implemented`)}},aq=(e,t,n,s=Mn)=>{switch(e.op){case"LowerBound":{let r=I("sortedSequence",e,t,n),a=I("values",e,t,n);return[s.lowerBound(r,a)]}case"TopKV2":{let r=I("x",e,t,n),a=I("k",e,t,n),o=I("sorted",e,t,n),i=s.topk(r,a,o);return[i.values,i.indices]}case"UpperBound":{let r=I("sortedSequence",e,t,n),a=I("values",e,t,n);return[s.upperBound(r,a)]}case"Unique":{let r=I("x",e,t,n),a=s.unique(r);return[a.values,a.indices]}case"UniqueV2":{let r=I("x",e,t,n),a=I("axis",e,t,n),o=s.unique(r,a);return[o.values,o.indices]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},oq=(e,t,n,s=Mn)=>{switch(e.op){case"Const":return t[e.name];case"PlaceholderWithDefault":let r=I("default",e,t,n);return[rs(e.name,t,n)||r];case"Placeholder":return[rs(e.name,t,n)];case"Identity":case"StopGradient":case"FakeQuantWithMinMaxVars":{let c=I("x",e,t,n);return[ya(c)]}case"IdentityN":return I("x",e,t,n).map(c=>ya(c));case"Snapshot":let a=I("x",e,t,n);return[ya(a)];case"Shape":return[s.tensor1d(I("x",e,t,n).shape,"int32")];case"ShapeN":return I("x",e,t,n).map(c=>s.tensor1d(c.shape));case"Size":return[s.scalar(I("x",e,t,n).size,"int32")];case"Rank":return[s.scalar(I("x",e,t,n).rank,"int32")];case"NoOp":return[s.scalar(1)];case"Print":let o=I("x",e,t,n),i=I("data",e,t,n),l=I("message",e,t,n),u=I("summarize",e,t,n);console.warn("The graph has a tf.print() operation,usually used for debugging, which slows down performance."),console.log(l);for(let c=0;c<i.length;c++)console.log(Array.prototype.slice.call(i[c].dataSync()).slice(0,u));return[o];default:throw TypeError(`Node type ${e.op} is not implemented`)}},iq=class{constructor(e,t){this.keyDType=e,this.valueDType=t,this.handle=Ce(0),this.tensorMap=new Map,kn(this.handle)}get id(){return this.handle.id}clearAndClose(){this.tensorMap.forEach(e=>e.dispose()),this.tensorMap.clear(),this.handle.dispose()}size(){return this.tensorMap.size}tensorSize(){return Ce(this.size(),"int32")}async import(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return this.tensorMap.forEach(s=>s.dispose()),this.tensorMap.clear(),Z(()=>{let s=On(t),r=n.length,a=s.length;v.assert(r===a,()=>`The number of elements doesn't match, keys has ${r} elements, the values has ${a} elements.`);for(let o=0;o<r;o++){let i=n[o],l=s[o];kn(l),this.tensorMap.set(i,l)}return this.handle})}async find(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return Z(()=>{let s=[];for(let r=0;r<n.length;r++){let a=n[r],o=this.findWithDefault(a,t);s.push(o)}return ln(s)})}findWithDefault(e,t){let n=this.tensorMap.get(e);return n!=null?n:t}checkKeyAndValueTensor(e,t){if(e.dtype!==this.keyDType)throw new Error(`Expect key dtype ${this.keyDType}, but got ${e.dtype}`);if(t.dtype!==this.valueDType)throw new Error(`Expect value dtype ${this.valueDType}, but got ${t.dtype}`)}},lq=async(e,t,n,s)=>{switch(e.op){case"HashTable":case"HashTableV2":{let r=I("keyDType",e,t,n),a=I("valueDType",e,t,n),o=new iq(r,a);return s.addHashTable(e.name,o),[o.handle]}case"LookupTableImport":case"LookupTableImportV2":{let r=I("tableHandle",e,t,n,s),a=I("keys",e,t,n),o=I("values",e,t,n);return[await s.getHashTableById(r.id).import(a,o)]}case"LookupTableFind":case"LookupTableFindV2":{let r=I("tableHandle",e,t,n,s),a=I("keys",e,t,n),o=I("defaultValue",e,t,n);return[await s.getHashTableById(r.id).find(a,o)]}case"LookupTableSize":case"LookupTableSizeV2":{let r=I("tableHandle",e,t,n,s);return[s.getHashTableById(r.id).tensorSize()]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},uq=(e,t,n,s=Mn)=>{switch(e.op){case"ResizeBilinear":{let r=I("images",e,t,n),a=I("size",e,t,n),o=I("alignCorners",e,t,n),i=I("halfPixelCenters",e,t,n);return[s.image.resizeBilinear(r,[a[0],a[1]],o,i)]}case"ResizeNearestNeighbor":{let r=I("images",e,t,n),a=I("size",e,t,n),o=I("alignCorners",e,t,n),i=I("halfPixelCenters",e,t,n);return[s.image.resizeNearestNeighbor(r,[a[0],a[1]],o,i)]}case"CropAndResize":{let r=I("image",e,t,n),a=I("boxes",e,t,n),o=I("boxInd",e,t,n),i=I("cropSize",e,t,n),l=I("method",e,t,n),u=I("extrapolationValue",e,t,n);return[s.image.cropAndResize(r,a,o,i,l,u)]}case"ImageProjectiveTransformV3":{let r=I("images",e,t,n),a=I("transforms",e,t,n),o=I("outputShape",e,t,n),i=I("fillValue",e,t,n),l=I("interpolation",e,t,n),u=I("fillMode",e,t,n);return[s.image.transform(r,a,l.toLowerCase(),u.toLowerCase(),i,o)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},cq=(e,t,n,s=Mn)=>{switch(e.op){case"Equal":return[s.equal(I("a",e,t,n),I("b",e,t,n))];case"NotEqual":return[s.notEqual(I("a",e,t,n),I("b",e,t,n))];case"Greater":return[s.greater(I("a",e,t,n),I("b",e,t,n))];case"GreaterEqual":return[s.greaterEqual(I("a",e,t,n),I("b",e,t,n))];case"Less":return[s.less(I("a",e,t,n),I("b",e,t,n))];case"LessEqual":return[s.lessEqual(I("a",e,t,n),I("b",e,t,n))];case"LogicalAnd":return[s.logicalAnd(I("a",e,t,n),I("b",e,t,n))];case"LogicalNot":return[s.logicalNot(I("a",e,t,n))];case"LogicalOr":return[s.logicalOr(I("a",e,t,n),I("b",e,t,n))];case"Select":case"SelectV2":return[s.where(I("condition",e,t,n),I("a",e,t,n),I("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},dq=(e,t,n,s=Mn)=>{switch(e.op){case"BatchMatMul":case"BatchMatMulV2":case"MatMul":return[s.matMul(I("a",e,t,n),I("b",e,t,n),I("transposeA",e,t,n),I("transposeB",e,t,n))];case"Einsum":return[s.einsum(I("equation",e,t,n),...I("tensors",e,t,n))];case"Transpose":return[s.transpose(I("x",e,t,n),I("perm",e,t,n))];case"_FusedMatMul":let[r,a]=I("fusedOps",e,t,n),o=r==="biasadd",i=a==="prelu",l=I("numArgs",e,t,n),u=I("leakyreluAlpha",e,t,n);if(o){if(i&&l!==2)throw new Error("Fused MatMul with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!i&&l!==1)throw new Error("Fused MatMul with BiasAdd must have one extra argument: bias.")}let[c,p]=I("args",e,t,n);return[s.fused.matMul({a:I("a",e,t,n),b:I("b",e,t,n),transposeA:I("transposeA",e,t,n),transposeB:I("transposeB",e,t,n),bias:c,activation:a,preluActivationWeights:p,leakyreluAlpha:u})];default:throw TypeError(`Node type ${e.op} is not implemented`)}},pq=(e,t,n,s=Mn)=>{switch(e.op){case"EuclideanNorm":return[s.euclideanNorm(I("x",e,t,n),I("axis",e,t,n),I("keepDims",e,t,n))];case"FusedBatchNorm":case"FusedBatchNormV2":return[s.batchNorm(I("x",e,t,n),I("mean",e,t,n),I("variance",e,t,n),I("offset",e,t,n),I("scale",e,t,n),I("epsilon",e,t,n))];case"FusedBatchNormV3":return[s.batchNorm(I("x",e,t,n),I("mean",e,t,n),I("variance",e,t,n),I("offset",e,t,n),I("scale",e,t,n),I("epsilon",e,t,n))];case"LRN":return[s.localResponseNormalization(I("x",e,t,n),I("radius",e,t,n),I("bias",e,t,n),I("alpha",e,t,n),I("beta",e,t,n))];case"Softmax":return[s.softmax(I("x",e,t,n))];case"LogSoftmax":return[s.logSoftmax(I("x",e,t,n))];case"SparseToDense":return[s.sparseToDense(I("sparseIndices",e,t,n),I("outputShape",e,t,n),I("sparseValues",e,t,n),I("defaultValue",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},hq=(e,t,n,s=Mn)=>{switch(e.op){case"Max":{let i=I("axis",e,t,n),l=I("keepDims",e,t,n);return[s.max(I("x",e,t,n),i,l)]}case"Mean":{let i=I("axis",e,t,n),l=I("keepDims",e,t,n);return[s.mean(I("x",e,t,n),i,l)]}case"Min":{let i=I("axis",e,t,n),l=I("keepDims",e,t,n);return[s.min(I("x",e,t,n),i,l)]}case"Sum":{let i=I("axis",e,t,n),l=I("keepDims",e,t,n);return[s.sum(I("x",e,t,n),i,l)]}case"All":{let i=I("axis",e,t,n),l=I("keepDims",e,t,n);return[s.all(I("x",e,t,n),i,l)]}case"Any":{let i=I("axis",e,t,n),l=I("keepDims",e,t,n);return[s.any(I("x",e,t,n),i,l)]}case"ArgMax":{let i=I("axis",e,t,n);return[s.argMax(I("x",e,t,n),i)]}case"ArgMin":{let i=I("axis",e,t,n);return[s.argMin(I("x",e,t,n),i)]}case"Prod":{let i=I("axis",e,t,n),l=I("keepDims",e,t,n);return[s.prod(I("x",e,t,n),i,l)]}case"Cumprod":{let i=I("axis",e,t,n),l=I("exclusive",e,t,n),u=I("reverse",e,t,n);return[s.cumprod(I("x",e,t,n),i,l,u)]}case"Cumsum":{let i=I("axis",e,t,n),l=I("exclusive",e,t,n),u=I("reverse",e,t,n);return[s.cumsum(I("x",e,t,n),i,l,u)]}case"Bincount":let r=I("x",e,t,n),a=I("weights",e,t,n),o=I("size",e,t,n);return[s.bincount(r,a,o)];case"DenseBincount":{let i=I("x",e,t,n),l=I("weights",e,t,n),u=I("size",e,t,n),c=I("binaryOutput",e,t,n);return[s.denseBincount(i,l,u,c)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},fq=(e,t,n,s=Mn)=>{switch(e.op){case"ConcatV2":case"Concat":{let r=I("n",e,t,n),a=I("axis",e,t,n),o=I("tensors",e,t,n);return o=o.slice(0,r),[s.concat(o,a)]}case"Gather":{let r=I("x",e,t,n),a=I("indices",e,t,n);return[s.gather(r,s.cast(a,"int32"),0)]}case"GatherV2":{let r=I("axis",e,t,n),a=I("batchDims",e,t,n),o=I("x",e,t,n),i=I("indices",e,t,n);return[s.gather(o,s.cast(i,"int32"),r,a)]}case"Reverse":{let r=I("dims",e,t,n),a=[];for(let i=0;i<r.length;i++)r[i]&&a.push(i);let o=I("x",e,t,n);return[s.reverse(o,a)]}case"ReverseV2":{let r=I("axis",e,t,n),a=I("x",e,t,n);return[s.reverse(a,r)]}case"Slice":{let r=I("begin",e,t,n),a=I("size",e,t,n);return[s.slice(I("x",e,t,n),r,a)]}case"StridedSlice":{let r=I("begin",e,t,n),a=I("end",e,t,n),o=I("strides",e,t,n),i=I("beginMask",e,t,n),l=I("endMask",e,t,n),u=I("ellipsisMask",e,t,n),c=I("newAxisMask",e,t,n),p=I("shrinkAxisMask",e,t,n),d=I("x",e,t,n);return[s.stridedSlice(d,r,a,o,i,l,u,c,p)]}case"Pack":return Z(()=>{let r=I("axis",e,t,n),a=I("tensors",e,t,n),o=a[0].shape,i=s.squeeze(a[0]).shape,l=a.map(u=>{let c=v.arraysEqual(u.shape,o);if(!c&&!v.arraysEqual(s.squeeze(u).shape,i))throw new Error("the input tensors shape does not match");return c?u:s.reshape(u,o)});return[s.stack(l,r)]});case"Unpack":{let r=I("axis",e,t,n),a=I("tensor",e,t,n);return s.unstack(a,r)}case"Tile":{let r=I("reps",e,t,n);return[s.tile(I("x",e,t,n),r)]}case"Split":case"SplitV":{let r=I("axis",e,t,n),a=I("numOrSizeSplits",e,t,n),o=I("x",e,t,n);return s.split(o,a,r)}case"ScatterNd":{let r=I("indices",e,t,n),a=I("values",e,t,n),o=I("shape",e,t,n);return[s.scatterND(r,a,o)]}case"GatherNd":{let r=I("x",e,t,n),a=I("indices",e,t,n);return[s.gatherND(r,a)]}case"SparseToDense":{let r=I("sparseIndices",e,t,n),a=I("outputShape",e,t,n),o=I("sparseValues",e,t,n),i=I("defaultValue",e,t,n);return[s.sparseToDense(r,o,a,o.dtype===i.dtype?i:s.cast(i,o.dtype))]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},mq=(e,t,n,s=Mn)=>{switch(e.op){case"SparseFillEmptyRows":{let{outputIndices:r,outputValues:a,emptyRowIndicator:o,reverseIndexMap:i}=s.sparse.sparseFillEmptyRows(I("indices",e,t,n),I("values",e,t,n),I("denseShape",e,t,n),I("defaultValue",e,t,n));return[r,a,o,i]}case"SparseReshape":{let{outputIndices:r,outputShape:a}=s.sparse.sparseReshape(I("inputIndices",e,t,n),I("inputShape",e,t,n),I("newShape",e,t,n));return[r,a]}case"SparseSegmentMean":return[s.sparse.sparseSegmentMean(I("data",e,t,n),I("indices",e,t,n),I("segmentIds",e,t,n))];case"SparseSegmentSum":return[s.sparse.sparseSegmentSum(I("data",e,t,n),I("indices",e,t,n),I("segmentIds",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},gq=(e,t,n,s=Mn)=>{switch(e.op){case"FFT":return[s.fft(I("x",e,t,n))];case"IFFT":return[s.ifft(I("x",e,t,n))];case"RFFT":return[s.rfft(I("x",e,t,n))];case"IRFFT":return[s.irfft(I("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},yq=(e,t,n,s=Mn)=>{switch(e.op){case"StringNGrams":{let{nGrams:r,nGramsSplits:a}=s.string.stringNGrams(I("data",e,t,n),I("dataSplits",e,t,n),I("separator",e,t,n),I("nGramWidths",e,t,n),I("leftPad",e,t,n),I("rightPad",e,t,n),I("padWidth",e,t,n),I("preserveShortSequences",e,t,n));return[r,a]}case"StringSplit":{let{indices:r,values:a,shape:o}=s.string.stringSplit(I("input",e,t,n),I("delimiter",e,t,n),I("skipEmpty",e,t,n));return[r,a,o]}case"StringToHashBucketFast":return[s.string.stringToHashBucketFast(I("input",e,t,n),I("numBuckets",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Aq=(e,t,n,s=Mn)=>{switch(e.op){case"Cast":return[s.cast(I("x",e,t,n),I("dtype",e,t,n))];case"ExpandDims":{let r=I("axis",e,t,n);return[s.expandDims(I("x",e,t,n),r)]}case"Squeeze":{let r=I("axis",e,t,n);return[s.squeeze(I("x",e,t,n),r)]}case"Reshape":return[s.reshape(I("x",e,t,n),I("shape",e,t,n))];case"MirrorPad":return[s.mirrorPad(I("x",e,t,n),I("padding",e,t,n),I("mode",e,t,n))];case"PadV2":case"Pad":return[s.pad(I("x",e,t,n),I("padding",e,t,n),I("constantValue",e,t,n))];case"SpaceToBatchND":{let r=I("blockShape",e,t,n),a=I("paddings",e,t,n);return[s.spaceToBatchND(I("x",e,t,n),r,a)]}case"BatchToSpaceND":{let r=I("blockShape",e,t,n),a=I("crops",e,t,n);return[s.batchToSpaceND(I("x",e,t,n),r,a)]}case"DepthToSpace":{let r=I("blockSize",e,t,n),a=I("dataFormat",e,t,n).toUpperCase();return[s.depthToSpace(I("x",e,t,n),r,a)]}case"BroadcastTo":return[s.broadcastTo(I("x",e,t,n),I("shape",e,t,n))];case"BroadcastArgs":return[s.broadcastArgs(I("s0",e,t,n),I("s1",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function g7(e,t,n,s,r=Z){let a=((o,i,l)=>{switch(o.category){case"arithmetic":return r(()=>Xj(o,i,l));case"basic_math":return r(()=>Kj(o,i,l));case"control":return tq(o,i,l);case"convolution":return r(()=>nq(o,i,l));case"creation":return r(()=>sq(o,i,l));case"dynamic":return rq(o,i,l);case"evaluation":return r(()=>aq(o,i,l));case"image":return r(()=>uq(o,i,l));case"graph":return r(()=>oq(o,i,l));case"logical":return r(()=>cq(o,i,l));case"matrices":return r(()=>dq(o,i,l));case"normalization":return r(()=>pq(o,i,l));case"reduction":return r(()=>hq(o,i,l));case"slice_join":return r(()=>fq(o,i,l));case"sparse":return r(()=>mq(o,i,l));case"spectral":return r(()=>gq(o,i,l));case"string":return r(()=>yq(o,i,l));case"transformation":return r(()=>Aq(o,i,l));case"hash_table":return lq(o,i,l,s);case"custom":let u=Wk(o.op);if(u&&u.customExecutor)return u.customExecutor(new qj(o,i,l));throw TypeError(`Custom op ${o.op} is not registered.`);default:throw TypeError(`Unknown op '${o.op}'. File an issue at https://github.com/tensorflow/tfjs/issues so we can add it, or register a custom execution with tf.registerOp()`)}})(e,t,n);return v.isPromise(a)?a.then(o=>[].concat(o)):[].concat(a)}var y7=class{constructor(e={},t={},n={},s={}){this.weightMap=e,this.tensorArrayMap=t,this.tensorListMap=n,this.functionMap=s,this.rootContext={id:0,frameName:"",iterationId:0},this.contexts=[this.rootContext],this.lastId=0,this.generateCurrentContextIds()}newFrame(e,t){return{id:e,frameName:t,iterationId:0}}set currentContext(e){this.contexts!==e&&(this.contexts=e,this.generateCurrentContextIds())}get currentContext(){return this.contexts}get currentContextId(){return this._currentContextIds[0]}get currentContextIds(){return this._currentContextIds}generateCurrentContextIds(){let e=[];for(let t=0;t<this.contexts.length-1;t++){let n=this.contexts.slice(0,this.contexts.length-t);e.push(this.contextIdforContexts(n))}e.push(""),this._currentContextIds=e}contextIdforContexts(e){return e?e.map(t=>t.id===0&&t.iterationId===0?"":`${t.frameName}-${t.iterationId}`).join("/"):""}enterFrame(e){this.contexts&&(this.lastId++,this.contexts=this.contexts.slice(),this.contexts.push(this.newFrame(this.lastId,e)),this._currentContextIds.unshift(this.contextIdforContexts(this.contexts)))}exitFrame(){if(this.contexts&&this.contexts.length>1)this.contexts=this.contexts.slice(),this.contexts.splice(-1),this.currentContextIds.shift();else throw new Error("Cannot exit frame, the context is empty")}nextIteration(){if(this.contexts&&this.contexts.length>0){this.contexts=this.contexts.slice(),this.lastId++;let e=Object.assign({},this.contexts[this.contexts.length-1]);e.iterationId+=1,e.id=this.lastId,this.contexts.splice(-1,1,e),this._currentContextIds.splice(0,1,this.contextIdforContexts(this.contexts))}else throw new Error("Cannot increase frame iteration, the context is empty")}getWeight(e){return this.weightMap[e]}addTensorArray(e){this.tensorArrayMap[e.id]=e}getTensorArray(e){return this.tensorArrayMap[e]}addTensorList(e){this.tensorListMap[e.id]=e}getTensorList(e){return this.tensorListMap[e]}dispose(e){for(let t in this.tensorArrayMap)this.tensorArrayMap[t].clearAndClose(e);for(let t in this.tensorListMap)this.tensorListMap[t].clearAndClose(e)}};function A7(e,t,n,s){let r=new Set,a=[],o=null,i=null,l=new Set,u=Object.keys(e).map(d=>Rs(d)[0]),c=[];s!=null&&(c=s.map(d=>Rs(d.name)[0]));let p=[...t];for(;p.length>0;){let d=p.pop();if((uS(d)||kq(d)||Sq(d))&&o==null&&(o=d,i=o.children.map(h=>h.name).filter(h=>r.has(h))),r.add(d.name),n[d.name]==null&&u.indexOf(d.name)===-1&&c.indexOf(d.name)===-1){if(d.inputs.length===0){a.push(d.name);continue}d.inputs.forEach(h=>{l.has(h.name)||(l.add(h.name),p.push(h))})}}return{inputs:e,outputs:t,usedNodes:r,missingInputs:a,dynamicNode:o,syncInputs:i}}function xq(e,t,n){let{usedNodes:s,inputs:r}=n,a=[],o=Object.keys(r).map(c=>Rs(c)[0]).map(c=>e.nodes[c]),i=e.initNodes;o.forEach(c=>{s.has(c.name)&&a.push(c)}),e.weights.forEach(c=>{s.has(c.name)&&a.push(c)}),i!=null&&i.forEach(c=>{s.has(c.name)&&a.push(c)});let l=new Set,u=[];for(;a.length>0;){let c=a.pop();l.add(c.name),t[c.name]||u.push(c),c.children.forEach(p=>{!l.has(p.name)&&s.has(p.name)&&p.inputs.every(d=>l.has(d.name))&&a.push(p)})}return u}var bq=["Switch","Merge","Enter","Exit","NextIteration","StatelessIf","StatelessWhile","if","While"],vq=["NonMaxSuppressionV2","NonMaxSuppressionV3","NonMaxSuppressionV5","Where"],wq=["HashTable","HashTableV2","LookupTableImport","LookupTableImportV2","LookupTableFind","LookupTableFindV2","LookupTableSize","LookupTableSizeV2"];function uS(e){return bq.indexOf(e.op)>=0}function kq(e){return vq.indexOf(e.op)>=0}function Sq(e){return wq.indexOf(e.op)>=0}var cy=class{constructor(e,t){this.graph=e,this.parent=t,this.compiledMap=new Map,this._weightMap={},this.SEPERATOR=",",this._functions={},this._functionExecutorMap={},this.intermediateTensors={},this.keepTensorForDebug=!1,this._outputs=e.outputs,this._inputs=e.inputs,this._initNodes=e.initNodes,this._signature=e.signature,this._functions=e.functions,e.functions!=null&&Object.keys(e.functions).forEach(n=>{this._functionExecutorMap[n]=new cy(e.functions[n],this)})}get weightIds(){return this.parent?this.parent.weightIds:this._weightIds}get functionExecutorMap(){return this.parent?this.parent.functionExecutorMap:this._functionExecutorMap}get weightMap(){return this.parent?this.parent.weightMap:this._weightMap}set weightMap(e){let t=Object.keys(e).map(n=>e[n].map(s=>s.id));this._weightIds=[].concat(...t),this._weightMap=e}set resourceManager(e){this._resourceManager=e}get inputs(){return this._inputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get outputs(){return this._outputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get inputNodes(){return this._inputs.map(e=>e.signatureKey||e.name)}get outputNodes(){return this._outputs.map(e=>{let t=e.signatureKey||e.name;return e.defaultOutput?`${t}:${e.defaultOutput}`:t})}get functions(){return Object.keys(this._functions).reduce((e,t)=>(e[t]=this._functions[t].signature,e),{})}getCompilationKey(e,t){let n=e.map(r=>r.name).sort(),s=t.map(r=>r.name).sort();return n.join(this.SEPERATOR)+"--"+s.join(this.SEPERATOR)}compile(e,t){let n=A7(e,t,this.weightMap,this._initNodes),{missingInputs:s,dynamicNode:r,syncInputs:a}=n;if(r!=null)throw new Error(`This execution contains the node '${r.name}', which has the dynamic op '${r.op}'. Please use model.executeAsync() instead. Alternatively, to avoid the dynamic ops, specify the inputs [${a}]`);if(s.length>0){let o=t.map(l=>l.name),i=Object.keys(e);throw new Error(`Cannot compute the outputs [${o}] from the provided inputs [${i}]. Missing the following inputs: [${s}]`)}return xq(this.graph,this.weightMap,n)}execute(e,t){e=this.mapInputs(e);let n=Object.keys(e).sort();this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t);let s=n.map(c=>this.graph.nodes[Rs(c)[0]]),r=t.map(c=>Rs(c)[0]),a=r.map(c=>this.graph.nodes[c]);this.resetIntermediateTensors(),a.length===0&&(a=this._outputs);let o=this.getCompilationKey(s,a),i=this.compiledMap.get(o);i==null&&(i=this.compile(e,a),this.compiledMap.set(o,i));let l={},u={};return Z(()=>{let c=new y7(this.weightMap,l,u,this.functionExecutorMap),p=Object.assign({},this.weightMap);Object.keys(e).forEach(f=>{let[m,g]=Rs(f),y=[];y[g]=e[f],p[m]=y});let d=this.getFrozenTensorIds(p),h={};for(let f=0;f<i.length;f++){let m=i[f];if(!p[m.name]){let g=g7(m,p,c,this._resourceManager);if(v.isPromise(g))throw new Error(`The execution of the op '${m.op}' returned a promise. Please use model.executeAsync() instead.`);p[m.name]=g,this.checkTensorForDisposal(m.name,m,p,c,d,r,h)}}return this.parent==null&&c.dispose(d),t.map(f=>rs(f,p,c))})}getFrozenTensorIds(e){let t=[].concat.apply([],Object.keys(e).map(n=>e[n]).map(n=>n.map(s=>s.id)));return new Set(t)}checkTensorForDisposal(e,t,n,s,r,a,o){t.category==="control"||a.indexOf(e)!==-1||(n[e].forEach(i=>{i!=null&&(o[i.id]=(o[i.id]||0)+t.children.length)}),t.inputs.forEach(i=>{if(i.category!=="control"){let l=Cj(i.name,n,s);l!=null&&l.forEach(u=>{if(u&&!u.kept&&!r.has(u.id)){let c=o[u.id];if(c===1){if(!this.keepTensorForDebug)u.dispose();else{let[p,d]=Jr(t.name,s);this.intermediateTensors[p]?this.intermediateTensors[p][d]=u:(this.intermediateTensors[p]=[],this.intermediateTensors[p][d]=u)}delete o[u.id]}else c!=null&&o[u.id]--}})}}))}async executeAsync(e,t){return this._executeAsync(e,t)}disposeIntermediateTensors(){!this.intermediateTensors||(Object.keys(this.intermediateTensors).forEach(e=>this.intermediateTensors[e].forEach(t=>t.dispose())),this.disposeTensorsMap())}disposeTensorsMap(){!this.tensorsMap||Object.keys(this.tensorsMap).forEach(e=>{this.tensorsMap[e].forEach(n=>{n&&!n.kept&&!n.isDisposed&&!this.keepIds.has(n.id)&&n.dispose()})})}getIntermediateTensors(){return this.tensorsMap}resetIntermediateTensors(){for(let e in this.intermediateTensors)this.intermediateTensors[e].forEach(t=>t.dispose()),delete this.intermediateTensors[e]}async _executeAsync(e,t,n=!1,s={},r={}){n||(e=this.mapInputs(e),this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t));try{this.keepTensorForDebug=H().getBool("KEEP_INTERMEDIATE_TENSORS")}catch(u){console.warn(u.message)}this.resetIntermediateTensors();let a=new y7(this.weightMap,s,r,this.functionExecutorMap);this.tensorsMap=await this.executeWithControlFlow(e,a,t,n);let o=t.map(u=>rs(u,this.tensorsMap,a)),i=o.map(u=>u.id),l=Object.keys(e).map(u=>e[u].id);return this.keepIds=new Set([...i,...l,...this.weightIds]),this.keepTensorForDebug||this.disposeTensorsMap(),this.parent==null&&a.dispose(this.keepIds),o}async executeFunctionAsync(e,t,n){let s=e.reduce((r,a,o)=>(r[this.inputs[o].name]=a,r),{});return this._executeAsync(s,this.outputNodes,!0,t,n)}async executeWithControlFlow(e,t,n,s){let r=Object.keys(e),a=r.map(x=>this.graph.nodes[Rs(x)[0]]),o=n.map(x=>Rs(x)[0]),i=o.map(x=>this.graph.nodes[x]);i.length===0&&(i=this._outputs);let{usedNodes:l,missingInputs:u,dynamicNode:c,syncInputs:p}=A7(e,i,this.weightMap,this._initNodes),d=[...a,...this.graph.weights,...this._initNodes||[]].map(x=>({node:x,contexts:t.currentContext})),h=Object.assign({},this.weightMap);Object.keys(e).forEach(x=>{let[A,b]=Rs(x),w=[];w[b]=e[x],h[A]=w});let f={},m=this.getFrozenTensorIds(h),g={};for(;d.length>0;){let x=this.processStack(a,d,t,h,g,m,o,f,l);await Promise.all(x)}c==null&&!s&&console.warn("This model execution did not contain any nodes with control flow or dynamic output shapes. You can use model.execute() instead.");let y=i.filter(x=>!uS(x)&&!rs(x.name,h,t)).map(x=>x.name);if(y.length>0){let x="";throw c!=null&&(x=`Alternatively, to avoid the dynamic ops, use model.execute() and specify the inputs [${p}]`),new Error(`Cannot compute the outputs [${y}] from the provided inputs [${r}]. Consider providing the following inputs: [${u}]. ${x}`)}return h}processStack(e,t,n,s,r,a,o,i,l){let u=[];for(;t.length>0;){let c=t.pop();n.currentContext=c.contexts;let p="";if(c.node.op==="Enter"&&I("isConstant",c.node,s,n)&&([p]=Jr(c.node.name,n)),s[c.node.name]==null){let d=g7(c.node,s,n,this._resourceManager);p||([p]=Jr(c.node.name,n));let h=n.currentContext;v.isPromise(d)?u.push(d.then(f=>(s[p]=f,n.currentContext=h,this.checkTensorForDisposal(p,c.node,s,n,a,o,i),this.processChildNodes(c.node,t,n,s,r,l),f))):(s[p]=d,this.checkTensorForDisposal(p,c.node,s,n,a,o,i),this.processChildNodes(c.node,t,n,s,r,l))}else this.processChildNodes(c.node,t,n,s,r,l)}return u}processChildNodes(e,t,n,s,r,a){e.children.forEach(o=>{let[i]=Jr(o.name,n);r[i]||!a.has(o.name)||(o.op==="Merge"?o.inputNames.some(l=>!!rs(l,s,n))&&(r[i]=!0,t.push({contexts:n.currentContext,node:o})):o.inputNames.every(l=>!!rs(l,s,n))&&(r[i]=!0,t.push({contexts:n.currentContext,node:o})))})}dispose(){Object.keys(this.weightMap).forEach(e=>this.weightMap[e].forEach(t=>t.dispose()))}checkInputShapeAndType(e){Object.keys(e).forEach(t=>{let n=e[t],[s]=Rs(t),r=this.graph.nodes[s];if(r.attrParams.shape&&r.attrParams.shape.value){let a=r.attrParams.shape.value,o=a.length===n.shape.length&&n.shape.every((i,l)=>a[l]===-1||a[l]===i);v.assert(o,()=>`The shape of dict['${r.name}'] provided in model.execute(dict) must be [${a}], but was [${n.shape}]`)}r.attrParams.dtype&&r.attrParams.dtype.value&&v.assert(n.dtype===r.attrParams.dtype.value,()=>`The dtype of dict['${r.name}'] provided in model.execute(dict) must be ${r.attrParams.dtype.value}, but was ${n.dtype}`)})}mapInputs(e){let t={};for(let n in e)if(this._signature!=null&&this._signature.inputs!=null&&this._signature.inputs[n]!=null){let s=this._signature.inputs[n];t[s.name]=e[n]}else t[n]=e[n];return t}checkInputs(e){let t=Object.keys(e).filter(n=>{let[s]=Rs(n);return this.graph.nodes[s]==null});if(t.length>0)throw new Error(`The dict provided in model.execute(dict) has keys: [${t}] that are not part of graph`)}mapOutputs(e){return e.map(t=>this._signature!=null&&this._signature.outputs!=null&&this._signature.outputs[t]!=null?this._signature.outputs[t].name:t,{})}checkOutputs(e){e.forEach(t=>{let[n]=Rs(t);if(!this.graph.nodes[n])throw new Error(`The output '${t}' is not found in the graph`)})}},Iq=class{constructor(e={},t={}){this.hashTableNameToHandle=e,this.hashTableMap=t}addHashTable(e,t){this.hashTableNameToHandle[e]=t.handle,this.hashTableMap[t.id]=t}getHashTableHandleByName(e){return this.hashTableNameToHandle[e]}getHashTableById(e){return this.hashTableMap[e]}dispose(){for(let e in this.hashTableMap)this.hashTableMap[e].clearAndClose(),delete this.hashTableMap[e];for(let e in this.hashTableNameToHandle)this.hashTableNameToHandle[e].dispose(),delete this.hashTableNameToHandle[e]}},Cq="?tfjs-format=file",Tq="model.json",zh=class{constructor(e,t={},n=Ds){this.modelUrl=e,this.loadOptions=t,this.version="n/a",this.io=n,t==null&&(this.loadOptions={}),this.resourceManager=new Iq}get modelVersion(){return this.version}get inputNodes(){return this.executor.inputNodes}get outputNodes(){return this.executor.outputNodes}get inputs(){return this.executor.inputs}get outputs(){return this.executor.outputs}get weights(){return this.executor.weightMap}get metadata(){return this.artifacts.userDefinedMetadata}get modelSignature(){return this.signature}get modelStructuredOutputKeys(){return this.structuredOutputKeys}findIOHandler(){let e=this.modelUrl;if(e.load!=null)this.handler=e;else if(this.loadOptions.requestInit!=null)this.handler=this.io.browserHTTPRequest(e,this.loadOptions);else{let t=this.io.getLoadHandlers(e,this.loadOptions);if(t.length===0)t.push(this.io.browserHTTPRequest(e,this.loadOptions));else if(t.length>1)throw new Error(`Found more than one (${t.length}) load handlers for URL '${[e]}'`);this.handler=t[0]}}load(){if(this.findIOHandler(),this.handler.load==null)throw new Error("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let e=this.handler.load();return v.isPromise(e)?e.then(t=>this.loadSync(t)):this.loadSync(e)}loadSync(e){this.artifacts=e;let t=this.artifacts.modelTopology,n=this.artifacts.signature;if(this.artifacts.userDefinedMetadata!=null){let r=this.artifacts.userDefinedMetadata;r.signature!=null&&(n=r.signature),r.structuredOutputKeys!=null&&(this.structuredOutputKeys=r.structuredOutputKeys)}this.signature=n,this.version=`${t.versions.producer}.${t.versions.minConsumer}`;let s=this.io.decodeWeights(this.artifacts.weightData,this.artifacts.weightSpecs);if(this.executor=new cy(p7.Instance.transformGraph(t,this.signature)),this.executor.weightMap=this.convertTensorMapToTensorsMap(s),this.executor.resourceManager=this.resourceManager,e.modelInitializer!=null&&e.modelInitializer.node!=null){let r=p7.Instance.transformGraph(e.modelInitializer);this.initializer=new cy(r),this.initializer.weightMap=this.executor.weightMap,this.initializer.resourceManager=this.resourceManager,this.initializer.executeAsync({},[])}return!0}async save(e,t){if(typeof e=="string"){let n=this.io.getSaveHandlers(e);if(n.length===0)throw new Error(`Cannot find any save handlers for URL '${e}'`);if(n.length>1)throw new Error(`Found more than one (${n.length}) save handlers for URL '${e}'`);e=n[0]}if(e.save==null)throw new Error("GraphModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");return e.save(this.artifacts)}predict(e,t){let n=this.execute(e,this.outputNodes);if(this.structuredOutputKeys){let s=n instanceof st?[n]:n,r={};return s.forEach((a,o)=>r[this.structuredOutputKeys[o]]=a),r}return n}normalizeInputs(e){if(!(e instanceof st)&&!Array.isArray(e))return e;if(e=Array.isArray(e)?e:[e],e.length!==this.inputNodes.length)throw new Error(`Input tensor count mismatch,the graph model has ${this.inputNodes.length} placeholders, while there are ${e.length} input tensors.`);return this.inputNodes.reduce((t,n,s)=>(t[n]=e[s],t),{})}normalizeOutputs(e){return e=e||this.outputNodes,Array.isArray(e)?e:[e]}execute(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=this.executor.execute(e,t);return n.length>1?n:n[0]}async executeAsync(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=await this.executor.executeAsync(e,t);return n.length>1?n:n[0]}getIntermediateTensors(){return this.executor.getIntermediateTensors()}disposeIntermediateTensors(){this.executor.disposeIntermediateTensors()}convertTensorMapToTensorsMap(e){return Object.keys(e).reduce((t,n)=>(t[n]=[e[n]],t),{})}dispose(){this.executor.dispose(),this.initializer&&this.initializer.dispose(),this.resourceManager.dispose()}};async function Nq(e,t={},n=Ds){if(e==null)throw new Error("modelUrl in loadGraphModel() cannot be null. Please provide a url or an IOHandler that loads the model");t==null&&(t={}),t.fromTFHub&&typeof e=="string"&&(e=Rq(e));let s=new zh(e,t,n);return await s.load(),s}function Eq(e){if(e==null)throw new Error("modelUrl in loadGraphModelSync() cannot be null. Please provide a url or an IOHandler that loads the model");if(!e.load)throw new Error(`modelUrl IO Handler ${e} has no load function`);let t=new zh(e);return t.load(),t}function Rq(e){return e.endsWith("/")||(e=e+"/"),`${e}${Tq}${Cq}`}var _q="3.20.0",cS={};He(cS,{CSVDataset:()=>xS,Dataset:()=>rd,FileDataSource:()=>CS,TextLineDataset:()=>AS,URLDataSource:()=>TS,array:()=>eX,csv:()=>dX,func:()=>pX,generator:()=>hX,microphone:()=>mX,version_data:()=>gX,webcam:()=>fX,zip:()=>tX});var Dq=po(Xm()),$q=po(Xm());function Pq(e,t){return Om(e,t)}function Om(e,t,n=new Map,s=new Set){if(e==null)return null;if(typeof Blob=="function"&&e instanceof Blob)return e.slice();if(s.has(e))throw new Error("Circular references are not supported.");if(n.has(e))return n.get(e);let r=t(e);if(r.recurse&&r.value!==null)throw new Error("A deep map function may not return both a value and recurse=true.");if(r.recurse)if(hc(e)){let a=Array.isArray(e)?[]:{};s.add(e);for(let o in e){let i=e[o],l=Om(i,t,n,s);a[o]=l}return s.delete(e),e.__proto__&&(a.__proto__=e.__proto__),a}else throw new Error(`Can't recurse into non-iterable type: ${e}`);else return n.set(e,r.value),r.value}function Fq(e,t=pS){return dS(e,t)}function dS(e,t,n=new Set){let s=e[0];if(n.has(s))throw new Error("Circular references are not supported.");let r=t(e);if(r.recurse&&r.value!==null)throw new Error("A deep zip function may not return both a value and recurse=true.");if(r.recurse)if(hc(s)){let a=Array.isArray(s)?[]:{};n.add(s);for(let o in s){let i=e.map(u=>u[o]),l=dS(i,t,n);a[o]=l}return n.delete(s),a}else throw new Error(`Can't recurse into non-iterable type: ${s}`);else return r.value}function pS(e){return e===null?null:hc(e[0])?{value:null,recurse:!0}:{value:e,recurse:!1}}async function hS(e,t){let n=new Map;Om(e,t,n);for(let r of Array.from(n.keys())){let a=n.get(r);if(v.isPromise(a)){let o=await a;n.set(r,o)}}return Om(e,t,n)}function hc(e){let t=!1;if(H().get("IS_BROWSER"))t=e instanceof TextDecoder;else{let{StringDecoder:n}=p6();t=e instanceof n}return e!=null&&!ArrayBuffer.isView(e)&&(Array.isArray(e)||typeof e=="object"&&!(e instanceof st)&&!(e instanceof Promise)&&!t)}function Oq(e){return e==null||Mq(e)||Array.isArray(e)||typeof e=="object"&&e instanceof st||v.isTypedArray(e)}function Mq(e){return e===null||typeof e!="object"&&typeof e!="function"}function zq(e){return Pq(e,Lq)}function Lq(e){return e instanceof st?{value:e.clone(),recurse:!1}:hc(e)?{value:null,recurse:!0}:{value:e,recurse:!1}}var fS=class{constructor(e){if(this.capacity=e,this.begin=0,this.end=0,e==null)throw new RangeError("Can't create a ring buffer of unknown capacity.");if(e<1)throw new RangeError("Can't create ring buffer of capacity < 1.");this.data=new Array(e),this.doubledCapacity=2*e}wrap(e){for(;e<0;)e+=this.doubledCapacity;return e%this.doubledCapacity}get(e){if(e<0)throw new RangeError("Can't get item at a negative index.");return this.data[e%this.capacity]}set(e,t){if(e<0)throw new RangeError("Can't set item at a negative index.");this.data[e%this.capacity]=t}length(){let e=this.end-this.begin;return e<0&&(e=this.doubledCapacity+e),e}isFull(){return this.length()===this.capacity}isEmpty(){return this.length()===0}push(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.set(this.end,e),this.end=this.wrap(this.end+1)}pushAll(e){for(let t of e)this.push(t)}pop(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");this.end=this.wrap(this.end-1);let e=this.get(this.end);return this.set(this.end,void 0),e}unshift(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.begin=this.wrap(this.begin-1),this.set(this.begin,e)}shift(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let e=this.get(this.begin);return this.set(this.begin,void 0),this.begin=this.wrap(this.begin+1),e}shuffleExcise(e){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let t=this.wrap(this.begin+e),n=this.get(t);return this.set(t,this.pop()),n}},$x=class extends fS{constructor(){super($x.INITIAL_CAPACITY)}isFull(){return!1}push(e){super.isFull()&&this.expand(),super.push(e)}unshift(e){super.isFull()&&this.expand(),super.unshift(e)}expand(){let e=this.capacity*2,t=new Array(e),n=this.length();for(let s=0;s<n;s++)t[s]=this.get(this.wrap(this.begin+s));this.data=t,this.capacity=e,this.doubledCapacity=2*this.capacity,this.begin=0,this.end=n}};$x.INITIAL_CAPACITY=32;function mS(e){return new Vq(e)}function Px(e){return new Uq(e)}function Bq(e,t){return new gS(e,t)}function Wq(e,t=Ka.FAIL){return new Jq(e,t)}var In=class{async toArray(){let e=[],t=await this.next();for(;!t.done;)e.push(t.value),t=await this.next();return e}async toArrayForTest(){let e=this.prefetch(100),t=[],n=await e.next();for(;!n.done;)t.push(n.value),n=await e.next();return t}async resolveFully(){let e=await this.next();for(;!e.done;)e=await this.next()}async resolveWhile(e){let t=await this.next(),n=e(t.value);for(;!t.done&&n;)t=await this.next(),n=e(t.value)}handleErrors(e){return new Zq(this,e)}filter(e){return new Xq(this,e)}map(e){return new Kq(this,e)}mapAsync(e){return new x7(this,e)}serialMapAsync(e){return new x7(this,e).serial()}flatmap(e){return new Yq(this,e)}async forEachAsync(e){return this.map(e).resolveFully()}async serialForEach(e){return this.serialMapAsync(e).resolveWhile(t=>t===!0)}rowMajorBatch(e,t=!0){return new qq(this,e,t)}columnMajorBatch(e,t=!0,n=pS){return this.rowMajorBatch(e,t).map(r=>Fq(r,n))}concatenate(e,t){return new gS(mS([this,e]),t)}take(e){return e<0||e==null?this:new jq(this,e)}skip(e){return e<0||e==null?this:new Hq(this,e)}prefetch(e){return new yS(this,e)}shuffle(e,t){return new Qq(this,e,t)}serial(){return new Gq(this)}},Vq=class extends In{constructor(e){super(),this.items=e,this.trav=0}summary(){return`Array of ${this.items.length} items`}async next(){if(this.trav>=this.items.length)return{value:null,done:!0};let e=this.items[this.trav];return this.trav++,{value:zq(e),done:!1}}},Uq=class extends In{constructor(e){super(),this.nextFn=e}summary(){return"Function call"}async next(){try{return this.nextFn()}catch(e){throw e.message=`Error thrown while iterating through a dataset: ${e.message}`,e}}},Gq=class extends In{constructor(e){super(),this.upstream=e,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Serial`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){return this.upstream.next()}},Hq=class extends In{constructor(e,t){super(),this.upstream=e,this.maxCount=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Skip`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.count++<this.maxCount;){let e=await this.upstream.next();if(e.done)return e;J(e.value)}return this.upstream.next()}},jq=class extends In{constructor(e,t){super(),this.upstream=e,this.maxCount=t,this.count=0}summary(){return`${this.upstream.summary()} -> Take`}async next(){return this.count++>=this.maxCount?{value:null,done:!0}:this.upstream.next()}},qq=class extends In{constructor(e,t,n=!0){super(),this.upstream=e,this.batchSize=t,this.enableSmallLastBatch=n,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> RowMajorBatch`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){let e=[];for(;e.length<this.batchSize;){let t=await this.upstream.next();if(t.done)return this.enableSmallLastBatch&&e.length>0?{value:e,done:!1}:{value:null,done:!0};e.push(t.value)}return{value:e,done:!1}}},Xq=class extends In{constructor(e,t){super(),this.upstream=e,this.predicate=t,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Filter`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;){let e=await this.upstream.next();if(e.done||this.predicate(e.value))return e;J(e.value)}}},Kq=class extends In{constructor(e,t){super(),this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Map`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=Fr.getTensorsInContainer(e.value),n=this.transform(e.value),s=Fr.getTensorsInContainer(n);for(let r of t)Fr.isTensorInList(r,s)||r.dispose();return{value:n,done:!1}}},Zq=class extends In{constructor(e,t){super(),this.upstream=e,this.handler=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> handleErrors`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;)try{return await this.upstream.next()}catch(e){if(!this.handler(e))return{value:null,done:!0}}}},x7=class extends In{constructor(e,t){super(),this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> AsyncMap`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=Fr.getTensorsInContainer(e.value),n=await this.transform(e.value),s=Fr.getTensorsInContainer(n);for(let r of t)Fr.isTensorInList(r,s)||r.dispose();return{value:n,done:!1}}},Fx=class extends In{constructor(){super(),this.outputQueue=new $x,this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.outputQueue.length()===0;)if(!await this.pump())return{value:null,done:!0};return{value:this.outputQueue.shift(),done:!1}}},Yq=class extends Fx{constructor(e,t){super(),this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Flatmap`}async pump(){let e=await this.upstream.next();if(e.done)return!1;let t=Fr.getTensorsInContainer(e.value),n=this.transform(e.value),s=Fr.getTensorsInContainer(n);this.outputQueue.pushAll(n);for(let r of t)Fr.isTensorInList(r,s)||r.dispose();return!0}},gS=class extends In{constructor(e,t){super(),this.baseErrorHandler=t,this.lastRead=null,this.iterator=null,this.moreIterators=e}summary(){return"TODO: fill in upstream of chained summaries -> Chained"}async next(){return this.lastRead=this.readFromChain(this.lastRead),this.lastRead}async readFromChain(e){if(await e,this.iterator==null){let n=await this.moreIterators.next();if(n.done)return{value:null,done:!0};this.iterator=n.value,this.baseErrorHandler!=null&&(this.iterator=this.iterator.handleErrors(this.baseErrorHandler))}let t=await this.iterator.next();return t.done?(this.iterator=null,this.readFromChain(e)):t}},Ka;(function(e){e[e.FAIL=0]="FAIL",e[e.SHORTEST=1]="SHORTEST",e[e.LONGEST=2]="LONGEST"})(Ka||(Ka={}));var Jq=class extends In{constructor(e,t=Ka.FAIL){super(),this.iterators=e,this.mismatchMode=t,this.count=0,this.currentPromise=null}summary(){return"{TODO: fill in upstream of zip summaries} -> Zip"}async nextState(e){await e;let t=0,n=0;function s(a){return a instanceof In?{value:a.next().then(i=>(t++,i.done&&n++,i.value)),recurse:!1}:{value:null,recurse:!0}}let r=await hS(this.iterators,s);if(t===n)return{value:null,done:!0};if(n>0)switch(this.mismatchMode){case Ka.FAIL:throw new Error(`Zipped streams should have the same length. Mismatched at element ${this.count}.`);case Ka.SHORTEST:return{value:null,done:!0};case Ka.LONGEST:default:}return this.count++,{value:r,done:!1}}async next(){return this.currentPromise=this.nextState(this.currentPromise),this.currentPromise}},yS=class extends In{constructor(e,t){super(),this.upstream=e,this.bufferSize=t,this.buffer=new fS(t)}summary(){return`${this.upstream.summary()} -> Prefetch`}refill(){for(;!this.buffer.isFull();){let e=this.upstream.next();this.buffer.push(e)}}next(){return this.refill(),this.buffer.shift()}},Qq=class extends yS{constructor(e,t,n){super(e,t),this.upstream=e,this.windowSize=t,this.upstreamExhausted=!1,this.random=$q.alea(n||v.now().toString()),this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}randomInt(e){return Math.floor(this.random()*e)}chooseIndex(){return this.randomInt(this.buffer.length())}async serialNext(){for(this.upstreamExhausted||this.refill();!this.buffer.isEmpty();){let e=this.chooseIndex(),t=await this.buffer.shuffleExcise(e);if(t.done)this.upstreamExhausted=!0;else return this.refill(),t}return{value:null,done:!0}}},rd=class{constructor(){this.size=null}batch(e,t=!0){let n=this;v.assert(e>0,()=>`batchSize needs to be positive, but it is
${e}`);let s;return this.size===1/0||this.size==null?s=this.size:t?s=Math.ceil(this.size/e):s=Math.floor(this.size/e),Es(async()=>(await n.iterator()).columnMajorBatch(e,t,nX),s)}concatenate(e){let t=this,n;return this.size===1/0||e.size===1/0?n=1/0:this.size!=null&&e.size!=null?n=this.size+e.size:n=null,Es(async()=>(await t.iterator()).concatenate(await e.iterator()),n)}filter(e){let t=this,n;return this.size===1/0?n=1/0:n=null,Es(async()=>(await t.iterator()).filter(s=>Z(()=>e(s))),n)}async forEachAsync(e){return(await this.iterator()).forEachAsync(e)}map(e){let t=this;return Es(async()=>(await t.iterator()).map(n=>Z(()=>e(n))),this.size)}mapAsync(e){let t=this;return Es(async()=>(await t.iterator()).mapAsync(e),this.size)}prefetch(e){if(e==null)throw new RangeError("`Dataset.prefetch()` requires bufferSize to be specified.");let t=this;return Es(async()=>(await t.iterator()).prefetch(e),this.size)}repeat(e){let t=this,n;return this.size!=null&&e>0?n=this.size*e:e===0?n=0:this.size!=null&&(e===void 0||e<0)?n=1/0:n=null,Es(async()=>{let s=Px(async()=>({value:await t.iterator(),done:!1}));return Bq(s.take(e))},n)}skip(e){let t=this,n;return this.size!=null&&e>=0&&this.size>=e?n=this.size-e:this.size!=null&&(this.size<e||e===void 0||e<0)?n=0:n=null,Es(async()=>(await t.iterator()).skip(e),n)}shuffle(e,t,n=!0){if(e==null||e<0)throw this.size==null?new RangeError("`Dataset.shuffle()` requires bufferSize to be specified."):new RangeError(`\`Dataset.shuffle()\` requires bufferSize to be specified. If your data fits in main memory (for regular JS objects), and/or GPU memory (for \`tf.Tensor\`s), consider setting bufferSize to the dataset size (${this.size} elements)`);let s=this,r=Dq.alea(t||v.now().toString());return Es(async()=>{let a=r.int32();return n&&(a+=r.int32()),(await s.iterator()).shuffle(e,a.toString())},this.size)}take(e){let t=this,n;return this.size!=null&&this.size>e?n=e:this.size!=null&&this.size<=e?n=this.size:n=null,Es(async()=>(await t.iterator()).take(e),n)}async toArray(){if(this.size===1/0)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArray()}async toArrayForTest(){if(this.size===1/0)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArrayForTest()}};rd.MAX_BUFFER_SIZE=1e4;function Es(e,t=null){return new class extends rd{constructor(){super(...arguments),this.size=t}async iterator(){return e()}}}function eX(e){return Es(async()=>mS(e),e.length)}function tX(e){if(!hc(e))throw new Error("The argument to zip() must be an object or array.");let t;if(Array.isArray(e))for(let n=0;n<e.length;n++)t=t==null?e[n].size:Math.min(t,e[n].size);else if(e instanceof Object)for(let n in e)t=t==null?e[n].size:Math.min(t,e[n].size);return Es(async()=>{let n=await hS(e,s=>{if(s instanceof rd)return{value:s.iterator(),recurse:!1};if(hc(s))return{value:null,recurse:!0};throw new Error("Leaves of the structure passed to zip() must be Datasets, not primitives.")});return Wq(n,Ka.SHORTEST)},t)}function nX(e){if(e===null)return null;let t=e[0];return Oq(t)?{value:sX(e),recurse:!1}:{value:null,recurse:!0}}function sX(e){if(e.length===0)throw new Error("Can't make a batch of zero elements.");return e[0]instanceof st?ln(e):ct(e)}var AS=class extends rd{constructor(e){super(),this.input=e}async iterator(){return(await this.input.iterator()).decodeUTF8().split(`
`).map(s=>(s.endsWith("\r")&&(s=s.slice(0,-1)),s))}},Jf='"',rp=Symbol("out"),b7=Symbol("field"),Qf=Symbol("quote"),w3=Symbol("quoteafterquote"),v7=Symbol("quoteinquote"),xS=class extends rd{constructor(e,t){super(),this.input=e,this.hasHeader=!0,this.fullColumnNames=null,this.columnNamesValidated=!1,this.columnConfigs=null,this.configuredColumnsOnly=!1,this.delimiter=",",this.delimWhitespace=!1,this.base=new AS(e),t||(t={}),this.hasHeader=t.hasHeader!==!1,this.fullColumnNames=t.columnNames,this.columnConfigs=t.columnConfigs,this.configuredColumnsOnly=t.configuredColumnsOnly,t.delimWhitespace?(v.assert(t.delimiter==null,()=>"Delimiter should not be provided when delimWhitespace is true."),this.delimWhitespace=!0,this.delimiter=" "):this.delimiter=t.delimiter?t.delimiter:","}async columnNames(){return this.columnNamesValidated||await this.setColumnNames(),this.configuredColumnsOnly?Object.keys(this.columnConfigs):this.fullColumnNames}async setColumnNames(){let e=await this.maybeReadHeaderLine();if(!this.fullColumnNames&&!e)throw new Error("Column names must be provided if there is no header line.");this.fullColumnNames&&e&&v.assert(e.length===this.fullColumnNames.length,()=>"The length of provided columnNames ("+this.fullColumnNames.length.toString()+") does not match the length of the header line read from file ("+e.length.toString()+")."),this.fullColumnNames||(this.fullColumnNames=e);let t=this.fullColumnNames.reduce((s,r)=>(s[r]=s[r]+1||1,s),{}),n=Object.keys(t).filter(s=>t[s]>1);if(v.assert(n.length===0,()=>"Duplicate column names found: "+n.toString()),this.columnConfigs){for(let s of Object.keys(this.columnConfigs))if(this.fullColumnNames.indexOf(s)===-1)throw new Error('The key "'+s+'" provided in columnConfigs does not match any of the column names ('+this.fullColumnNames.toString()+").")}this.columnNamesValidated=!0}async maybeReadHeaderLine(){if(this.hasHeader){let t=await(await this.base.iterator()).next();if(t.done)throw new Error("No data was found for CSV parsing.");let n=t.value;return this.parseRow(n,!1)}else return null}async iterator(){this.columnNamesValidated||await this.setColumnNames();let e=await this.base.iterator();return this.hasHeader&&(e=e.skip(1)),e.map(t=>this.makeDataElement(t))}makeDataElement(e){let t=this.parseRow(e),n={},s={};for(let r=0;r<this.fullColumnNames.length;r++){let a=this.fullColumnNames[r],o=this.columnConfigs?this.columnConfigs[a]:null;if(!(this.configuredColumnsOnly&&!o)){let i=t[r],l=null;if(i==="")if(o&&o.default!==void 0)l=o.default;else{if(o&&(o.required||o.isLabel))throw new Error(`Required column ${a} is empty in this line: ${e}`);l=void 0}else{let u=Number(i);if(isNaN(u))o&&o.dtype==="bool"?l=this.getBoolean(i):l=i;else if(!o||!o.dtype)l=u;else switch(o.dtype){case"float32":l=u;break;case"int32":l=Math.floor(u);break;case"bool":l=this.getBoolean(i);break;default:l=u}}o&&o.isLabel?s[a]=l:n[a]=l}}return Object.keys(s).length===0?n:{xs:n,ys:s}}getBoolean(e){return e==="1"||e.toLowerCase()==="true"?1:0}parseRow(e,t=!0){let n=[],s=0,r=e.length,a=rp;for(let o=0;o<r;o++)switch(a){case rp:switch(e.charAt(o)){case Jf:s=o+1,a=Qf;break;case this.delimiter:if(s=o+1,this.delimiter===" "&&this.delimWhitespace)break;n.push(""),a=rp;break;default:a=b7,s=o;break}break;case b7:switch(e.charAt(o)){case this.delimiter:n.push(e.substring(s,o)),a=rp,s=o+1;break;default:}break;case Qf:switch(e.charAt(o)){case Jf:a=w3;break;default:}break;case w3:switch(e.charAt(o)){case this.delimiter:n.push(e.substring(s,o-1)),a=rp,s=o+1;break;case Jf:a=Qf;break;default:a=v7;break}break;case v7:switch(e.charAt(o)){case Jf:a=Qf;break;default:}break;default:}if(a===w3?n.push(e.substring(s,r-1)):n.push(e.substring(s)),t&&n.length!==this.fullColumnNames.length)throw new Error(`Invalid row in csv file. Should have ${this.fullColumnNames.length} elements in a row, but got ${n}`);return n}},bS=class extends In{constructor(e){super(),this.microphoneConfig=e,this.isClosed=!1,this.fftSize=e.fftSize||1024;let t=Math.log2(this.fftSize);if(this.fftSize<0||t<4||t>14||!Number.isInteger(t))throw new Error(`Invalid fftSize: it must be a power of 2 between 2 to 4 and 2 to 14, but got ${this.fftSize}`);if(this.numFrames=e.numFramesPerSpectrogram||43,this.sampleRateHz=e.sampleRateHz,this.columnTruncateLength=e.columnTruncateLength||this.fftSize,this.audioTrackConstraints=e.audioTrackConstraints,this.smoothingTimeConstant=e.smoothingTimeConstant||0,this.includeSpectrogram=e.includeSpectrogram!==!1,this.includeWaveform=e.includeWaveform===!0,!this.includeSpectrogram&&!this.includeWaveform)throw new Error("Both includeSpectrogram and includeWaveform are false. At least one type of data should be returned.")}summary(){return"microphone"}static async create(e={}){if(!H().get("IS_BROWSER"))throw new Error("microphone API is only supported in browser environment.");let t=new bS(e);return await t.start(),t}async start(){try{this.stream=await navigator.mediaDevices.getUserMedia({audio:this.audioTrackConstraints==null?!0:this.audioTrackConstraints,video:!1})}catch(n){throw new Error(`Error thrown while initializing video stream: ${n.message}`)}if(!this.stream)throw new Error("Could not obtain audio from microphone.");let e=window.AudioContext||window.webkitAudioContext;if(this.audioContext=new e,!this.sampleRateHz)this.sampleRateHz=this.audioContext.sampleRate;else if(this.audioContext.sampleRate!==this.sampleRateHz)throw new Error(`Mismatch in sampling rate: Expected: ${this.sampleRateHz}; Actual: ${this.audioContext.sampleRate}`);let t=this.audioContext.createMediaStreamSource(this.stream);this.analyser=this.audioContext.createAnalyser(),this.analyser.fftSize=this.fftSize*2,this.analyser.smoothingTimeConstant=this.smoothingTimeConstant,t.connect(this.analyser),this.freqData=new Float32Array(this.fftSize),this.timeData=new Float32Array(this.fftSize)}async next(){if(this.isClosed)return{value:null,done:!0};let e,t,n=await this.getAudioData();if(this.includeSpectrogram){let s=this.flattenQueue(n.freqDataQueue);e=this.getTensorFromAudioDataArray(s,[this.numFrames,this.columnTruncateLength,1])}if(this.includeWaveform){let s=this.flattenQueue(n.timeDataQueue);t=this.getTensorFromAudioDataArray(s,[this.numFrames*this.fftSize,1])}return{value:{spectrogram:e,waveform:t},done:!1}}async capture(){return(await this.next()).value}async getAudioData(){let e=[],t=[],n=0;return new Promise(s=>{let r=setInterval(()=>{this.includeSpectrogram&&(this.analyser.getFloatFrequencyData(this.freqData),this.freqData[0]===-1/0&&s({freqDataQueue:e,timeDataQueue:t}),e.push(this.freqData.slice(0,this.columnTruncateLength))),this.includeWaveform&&(this.analyser.getFloatTimeDomainData(this.timeData),t.push(this.timeData.slice())),++n===this.numFrames&&(clearInterval(r),s({freqDataQueue:e,timeDataQueue:t}))},this.fftSize/this.sampleRateHz*1e3)})}stop(){this.isClosed||(this.isClosed=!0,this.analyser.disconnect(),this.audioContext.close(),this.stream!=null&&this.stream.getTracks().length>0&&this.stream.getTracks()[0].stop())}toArray(){throw new Error("Can not convert infinite audio stream to array.")}getSampleRate(){return this.sampleRateHz}flattenQueue(e){let t=e[0].length,n=new Float32Array(e.length*t);return e.forEach((s,r)=>n.set(s,r*t)),n}getTensorFromAudioDataArray(e,t){let n=new Float32Array(v.sizeFromShape(t));return n.set(e,n.length-e.length),ct(n,t)}},vS=class extends In{constructor(e,t){if(super(),this.webcamVideoElement=e,this.webcamConfig=t,this.isClosed=!0,this.resize=!1,this.needToResize())if(this.resize=!0,this.cropSize=[this.webcamConfig.resizeHeight,this.webcamConfig.resizeWidth],this.cropBoxInd=Pt([0],"int32"),this.webcamConfig.centerCrop){let n=this.webcamConfig.resizeWidth*1/this.webcamVideoElement.width,s=this.webcamConfig.resizeHeight*1/this.webcamVideoElement.height,r=(1-n)/2,a=(1-s)/2,o=r+n,i=s+a;this.cropBox=fr([a,r,i,o],[1,4])}else this.cropBox=fr([0,0,1,1],[1,4])}summary(){return"webcam"}static async create(e,t={}){if(!H().get("IS_BROWSER"))throw new Error("tf.data.webcam is only supported in browser environment.");if(!e){if(e=document.createElement("video"),!t.resizeWidth||!t.resizeHeight)throw new Error("Please provide webcam video element, or resizeWidth and resizeHeight to create a hidden video element.");e.width=t.resizeWidth,e.height=t.resizeHeight}let n=new vS(e,t);return await n.start(),n}async start(){this.webcamConfig.facingMode&&v.assert(this.webcamConfig.facingMode==="user"||this.webcamConfig.facingMode==="environment",()=>`Invalid webcam facing mode: ${this.webcamConfig.facingMode}. Please provide 'user' or 'environment'`);try{this.stream=await navigator.mediaDevices.getUserMedia({video:{deviceId:this.webcamConfig.deviceId,facingMode:this.webcamConfig.facingMode?this.webcamConfig.facingMode:"user",width:this.webcamVideoElement.width,height:this.webcamVideoElement.height}})}catch(e){throw e.message=`Error thrown while initializing video stream: ${e.message}`,e}if(!this.stream)throw new Error("Could not obtain video from webcam.");try{this.webcamVideoElement.srcObject=this.stream}catch(e){console.log(e),this.webcamVideoElement.src=window.URL.createObjectURL(this.stream)}return this.webcamVideoElement.play(),this.isClosed=!1,new Promise(e=>{this.webcamVideoElement.onloadedmetadata=()=>{e()}})}async next(){if(this.isClosed)return{value:null,done:!0};let e;try{e=nr.fromPixels(this.webcamVideoElement)}catch(t){throw new Error(`Error thrown converting video to pixels: ${JSON.stringify(t)}`)}if(this.resize)try{return{value:this.cropAndResizeFrame(e),done:!1}}catch(t){throw new Error(`Error thrown cropping the video: ${t.message}`)}finally{e.dispose()}else return{value:e,done:!1}}needToResize(){return!!(this.webcamConfig.resizeWidth&&this.webcamConfig.resizeHeight&&(this.webcamVideoElement.width!==this.webcamConfig.resizeWidth||this.webcamVideoElement.height!==this.webcamConfig.resizeHeight))}cropAndResizeFrame(e){return Z(()=>{let t=Bt(ye(e,"float32"),0),n;n=Ie.cropAndResize(t,this.cropBox,this.cropBoxInd,this.cropSize,"bilinear");let s=n.shape;return V(n,s.slice(1))})}async capture(){return(await this.next()).value}stop(){this.stream.getTracks().forEach(t=>t.stop());try{this.webcamVideoElement.srcObject=null}catch(t){console.log(t),this.webcamVideoElement.src=null}this.isClosed=!0}toArray(){throw new Error("Can not convert infinite video stream to array.")}},wS=class{},kS=class extends In{split(e){return new rX(this,e)}},rX=class extends kS{constructor(e,t){super(),this.upstream=e,this.impl=new aX(e,t)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},aX=class extends Fx{constructor(e,t){super(),this.upstream=e,this.separator=t,this.carryover=""}summary(){return`${this.upstream.summary()} -> Split('${this.separator}')`}async pump(){let e=await this.upstream.next();if(e.done)return this.carryover===""?!1:(this.outputQueue.push(this.carryover),this.carryover="",!0);let t=e.value.split(this.separator);t[0]=this.carryover+t[0];for(let n of t.slice(0,-1))this.outputQueue.push(n);return this.carryover=t[t.length-1],!0}},oX=class extends In{decodeUTF8(){return new iX(this)}},iX=class extends kS{constructor(e){super(),this.upstream=e,this.impl=new lX(e)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},lX=class extends Fx{constructor(e){if(super(),this.upstream=e,H().get("IS_BROWSER"))this.decoder=new TextDecoder("utf-8");else{let{StringDecoder:t}=p6();this.decoder=new t("utf8")}}summary(){return`${this.upstream.summary()} -> Utf8`}async pump(){let e=await this.upstream.next(),t;if(e.done)return!1;t=e.value;let n;return H().get("IS_BROWSER")?n=this.decoder.decode(t,{stream:!0}):n=this.decoder.write(Buffer.from(t.buffer)),this.outputQueue.push(n),!0}},SS=class extends oX{constructor(e,t={}){super(),this.file=e,this.options=t,v.assert(e instanceof Uint8Array||(H().get("IS_BROWSER")?e instanceof File||e instanceof Blob:!1),()=>"FileChunkIterator only supports File, Blob and Uint8Array right now."),this.offset=t.offset||0,this.chunkSize=t.chunkSize||1024*1024}summary(){return`FileChunks ${this.file}`}async next(){return this.offset>=(this.file instanceof Uint8Array?this.file.byteLength:this.file.size)?{value:null,done:!0}:{value:await new Promise((t,n)=>{let s=this.offset+this.chunkSize;if(this.file instanceof Uint8Array)t(new Uint8Array(this.file.slice(this.offset,s)));else{let r=new FileReader;r.onload=o=>{let i=r.result;if(i instanceof ArrayBuffer&&(i=new Uint8Array(i)),!(i instanceof Uint8Array))return n(new TypeError("FileReader returned unknown type."));t(i)},r.onabort=o=>n(new Error("Aborted")),r.onerror=o=>n(new Error(o.type));let a=this.file.slice(this.offset,s);r.readAsArrayBuffer(a)}this.offset=s}),done:!1}}};async function uX(e,t={},n){let s,r;typeof e=="string"?s=e:(s=e.url,r=cX(e));let a=await(n||v.fetch)(s,r);if(a.ok){let o=new Uint8Array(await a.arrayBuffer());return new SS(o,t)}else throw new Error(a.statusText)}var cX=e=>({method:e.method,headers:e.headers,body:e.body,mode:e.mode,credentials:e.credentials,cache:e.cache,redirect:e.redirect,referrer:e.referrer,integrity:e.integrity});function IS(e){return typeof e=="string"&&e.slice(0,7)==="file://"}var CS=class extends wS{constructor(e,t={}){super(),this.input=e,this.options=t}async iterator(){if(IS(this.input)&&H().get("IS_NODE")){let e=_y();this.input=e.readFileSync(this.input.slice(7))}return new SS(this.input,this.options)}},TS=class extends wS{constructor(e,t={}){super(),this.url=e,this.fileOptions=t}async iterator(){return IS(this.url)?new CS(this.url,this.fileOptions).iterator():uX(this.url,this.fileOptions)}};function dX(e,t={}){return new xS(new TS(e),t)}function pX(e){let t=Px(e);return Es(async()=>t)}function hX(e){return Es(async()=>{let t=await e();return Px(()=>t.next())})}async function fX(e,t){return vS.create(e,t)}async function mX(e){return bS.create(e)}var gX="3.20.0";function Te(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&v.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the CPU backend.`)})}var yX=yr.whereImpl,Ox=class extends Ac{constructor(){super(),this.blockSize=48,this.firstUse=!0,this.data=new Wp(this,rn())}nextDataId(){return Ox.nextDataId++}write(e,t,n){this.firstUse&&(this.firstUse=!1,H().get("IS_NODE")&&T.warn(`
============================
Hi, looks like you are running TensorFlow.js in Node.js. To speed things up dramatically, install our node backend, visit https://github.com/tensorflow/tfjs-node for more details.
============================`));let s={id:this.nextDataId()};return this.data.set(s,{values:e,dtype:n,refCount:1}),s}makeTensorInfo(e,t,n){let s;if(t==="string"&&n!=null&&n.length>0&&v.isString(n[0])){let r=n.map(a=>v.encodeString(a));s=this.write(r,e,t)}else s=this.write(n,e,t);return{dataId:s,shape:e,dtype:t}}refCount(e){return this.data.has(e)?this.data.get(e).refCount:0}incRef(e){let t=this.data.get(e);t.refCount++}decRef(e){if(this.data.has(e)){let t=this.data.get(e);t.refCount--}}move(e,t,n,s,r){this.data.set(e,{values:t,dtype:s,refCount:r})}numDataIds(){return this.data.numDataIds()}async read(e){return this.readSync(e)}readSync(e){let{dtype:t,complexTensorInfos:n}=this.data.get(e);if(t==="complex64"){let s=this.readSync(n.real.dataId),r=this.readSync(n.imag.dataId);return T.mergeRealAndImagArrays(s,r)}return this.data.get(e).values}bufferSync(e){let t=this.readSync(e.dataId);if(e.dtype==="string")try{let n=t.map(s=>v.decodeString(s));return We(e.shape,e.dtype,n)}catch(n){throw new Error("Failed to decode encoded string bytes into utf-8")}return We(e.shape,e.dtype,t)}makeOutput(e,t,n){return rn().makeTensorFromTensorInfo(this.makeTensorInfo(t,n,e),this)}disposeData(e,t=!1){if(this.data.has(e)){if(this.data.get(e).refCount--,!t&&this.data.get(e).refCount>0)return!1;let{complexTensorInfos:n}=this.data.get(e);n!=null&&(this.disposeData(n.real.dataId,!0),this.disposeData(n.imag.dataId,!0)),this.data.delete(e)}return!0}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}async time(e){let t=v.now();return e(),{kernelMs:v.now()-t}}memory(){return{unreliable:!0,reasons:["The reported memory is an upper bound. Due to automatic garbage collection, the true allocated memory may be less."]}}where(e){Te([e],"where");let t=this.readSync(e.dataId);return yX(e.shape,t)}dispose(){}floatPrecision(){return 32}epsilon(){return super.epsilon()}};Ox.nextDataId=0;var Mx={};He(Mx,{addImpl:()=>RS,bincountImpl:()=>Lx,bincountReduceImpl:()=>_S,castImpl:()=>ES,ceilImpl:()=>DS,concatImpl:()=>Bx,equalImpl:()=>$S,expImpl:()=>FS,expm1Impl:()=>MS,floorImpl:()=>zS,gatherNdImpl:()=>LS,gatherV2Impl:()=>BS,greaterEqualImpl:()=>VS,greaterImpl:()=>WS,lessEqualImpl:()=>GS,lessImpl:()=>US,linSpaceImpl:()=>HS,logImpl:()=>jS,maxImpl:()=>qS,maximumImpl:()=>XS,minimumImpl:()=>KS,multiplyImpl:()=>Wx,negImpl:()=>ZS,notEqualImpl:()=>YS,prodImpl:()=>JS,raggedTensorToTensorImpl:()=>QS,rangeImpl:()=>Ux,rsqrtImpl:()=>eI,scatterImpl:()=>Ku,sigmoidImpl:()=>aK,simpleAbsImpl:()=>NS,sliceImpl:()=>zm,sparseFillEmptyRowsImpl:()=>nI,sparseReshapeImpl:()=>sI,sparseSegmentReductionImpl:()=>Gx,sqrtImpl:()=>lK,squaredDifferenceImpl:()=>rI,stridedSliceImpl:()=>aI,stringNGramsImpl:()=>Hx,stringSplitImpl:()=>jx,stringToHashBucketFastImpl:()=>qx,subImpl:()=>oI,tileImpl:()=>iI,topKImpl:()=>uI,transposeImpl:()=>Vx,uniqueImpl:()=>cI});function NS(e){let t=new Float32Array(e.length);for(let n=0;n<e.length;++n)t[n]=Math.abs(e[n]);return t}var AX=e=>{let{x:t}=e.inputs,n=e.backend;Te(t,"abs");let s=new Float32Array(v.sizeFromShape(t.shape)),r=n.data.get(t.dataId).values;return s=NS(r),n.makeOutput(s,t.shape,t.dtype)},xX={kernelName:pl,backendName:"cpu",kernelFunc:AX};function cn(e){return(t,n,s,r,a)=>{let o=T.assertAndGetBroadcastShape(t,n),i=o.length,l=v.computeStrides(o),u=v.sizeFromShape(o),c=v.getTypedArrayFromDType(a,u),p=t.length,d=n.length,h=v.computeStrides(t),f=v.computeStrides(n),m=T.getBroadcastDims(t,o),g=T.getBroadcastDims(n,o);if(m.length+g.length===0)for(let y=0;y<c.length;++y)c[y]=e(s[y%s.length],r[y%r.length]);else for(let y=0;y<c.length;++y){let x=v.indexToLoc(y,i,l),A=x.slice(-p);m.forEach(k=>A[k]=0);let b=v.locToIndex(A,p,h),w=x.slice(-d);g.forEach(k=>w[k]=0);let S=v.locToIndex(w,d,f);c[y]=e(s[b],r[S])}return[c,o]}}function _s(e){let{inputs:t,backend:n}=e,{real:s,imag:r}=t,a=n.data.get(s.dataId).values,o=n.data.get(r.dataId).values,i=n.makeTensorInfo(s.shape,"complex64"),l=n.data.get(i.dataId);return l.complexTensorInfos={real:n.makeTensorInfo(s.shape,"float32",a),imag:n.makeTensorInfo(r.shape,"float32",o)},i}var bX={kernelName:Up,backendName:"cpu",kernelFunc:_s};function Mm(e,t,n="float32"){if(n==="complex64"){let r=Mm(e,t,"float32"),a=Mm(e,t,"float32");return _s({inputs:{real:r,imag:a},backend:e})}let s=v.makeZerosTypedArray(v.sizeFromShape(t),n);return e.makeTensorInfo(t,n,s)}function ra(e){let{inputs:t,backend:n}=e,{x:s}=t;return n.incRef(s.dataId),{dataId:s.dataId,shape:s.shape,dtype:s.dtype}}var vX={kernelName:$o,backendName:"cpu",kernelFunc:ra};function ol(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.data.get(s.dataId).complexTensorInfos.real,a=n.data.get(r.dataId).values;return n.makeTensorInfo(r.shape,r.dtype,a)}var wX={kernelName:Yp,backendName:"cpu",kernelFunc:ol};function ES(e,t,n,s){if(s==="int32"){let r=Int32Array.from(e);return[t,"int32",r]}if(s==="bool"){let r=v.toTypedArray([0],n),[a,o]=cn((i,l)=>i!==l?1:0)(t,[],e,r,"bool");return[o,"bool",a]}throw new Error(`Error in Cast: failed to cast ${n} to ${s}`)}function uo(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dtype:a}=s;if(a==="complex64"){if(r.dtype==="complex64")return ra({inputs:{x:r},backend:n});let c=Mm(n,r.shape,r.dtype),p=uo({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),d=_s({inputs:{real:p,imag:c},backend:n});return n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(p),d}if(r.dtype==="complex64"){let c=ol({inputs:{input:r},backend:n}),p=uo({inputs:{x:c},backend:n,attrs:{dtype:a}});return n.disposeIntermediateTensorInfo(c),p}if(!v.hasEncodingLoss(r.dtype,a)){let c=ra({inputs:{x:r},backend:n});return{dataId:c.dataId,shape:c.shape,dtype:a}}let o=n.data.get(r.dataId).values,[i,l,u]=ES(o,r.shape,r.dtype,a);return n.makeTensorInfo(i,l,u)}var kX={kernelName:Ao,backendName:"cpu",kernelFunc:uo};function Tn(e,t,n,s){return n==null?({inputs:r,backend:a})=>{let{a:o,b:i}=r,l=a;Te([o,i],e);let u=l.data.get(o.dataId).values,c=l.data.get(i.dataId).values,p=o.dtype==="string"?T.fromUint8ToStringArray(u):u,d=o.dtype==="string"?T.fromUint8ToStringArray(c):c,h=s||o.dtype,[f,m]=t(o.shape,i.shape,p,d,h);return l.makeTensorInfo(m,h,f)}:({inputs:r,backend:a})=>{let{a:o,b:i}=r,l=a;if(o.dtype==="complex64"||i.dtype==="complex64"){let u=uo({inputs:{x:o},backend:l,attrs:{dtype:"complex64"}}),c=l.data.get(u.dataId),p=c.complexTensorInfos.real,d=c.complexTensorInfos.imag,h=l.data.get(p.dataId).values,f=l.data.get(d.dataId).values,m=uo({inputs:{x:i},backend:l,attrs:{dtype:"complex64"}}),g=l.data.get(m.dataId),y=g.complexTensorInfos.real,x=g.complexTensorInfos.imag,A=l.data.get(y.dataId).values,b=l.data.get(x.dataId).values,[w,S,k]=n(o.shape,i.shape,h,f,A,b),E=l.makeTensorInfo(k,"float32",w),_=l.makeTensorInfo(k,"float32",S),D=_s({inputs:{real:E,imag:_},backend:l});return l.disposeIntermediateTensorInfo(u),l.disposeIntermediateTensorInfo(m),l.disposeIntermediateTensorInfo(E),l.disposeIntermediateTensorInfo(_),D}else{let u=l.data.get(o.dataId).values,c=l.data.get(i.dataId).values,p=s||o.dtype,[d,h]=t(o.shape,i.shape,u,c,p);return l.makeTensorInfo(h,p,d)}}}function zx(e){return(t,n,s,r,a,o)=>{let i=T.assertAndGetBroadcastShape(t,n),l=v.sizeFromShape(i),u=i.length,c=v.computeStrides(i),p=v.getTypedArrayFromDType("float32",l),d=v.getTypedArrayFromDType("float32",l),h=T.getBroadcastDims(t,i),f=T.getBroadcastDims(n,i),m=T.mergeRealAndImagArrays(s,r),g=T.mergeRealAndImagArrays(a,o),y=t.length,x=v.computeStrides(t),A=n.length,b=v.computeStrides(n);if(h.length+f.length===0)for(let w=0;w<p.length;w++){let S=w%m.length,k=w%g.length,E=e(m[S*2],m[S*2+1],g[k*2],g[k*2+1]);p[w]=E.real,d[w]=E.imag}else for(let w=0;w<p.length;w++){let S=v.indexToLoc(w,u,c),k=S.slice(-y);h.forEach(P=>k[P]=0);let E=v.locToIndex(k,y,x),_=S.slice(-A);f.forEach(P=>_[P]=0);let D=v.locToIndex(_,A,b),R=e(m[E*2],m[E*2+1],g[D*2],g[D*2+1]);p[w]=R.real,d[w]=R.imag}return[p,d,i]}}var RS=cn((e,t)=>e+t),SX=zx((e,t,n,s)=>({real:e+n,imag:t+s})),fc=Tn(Ta,RS,SX),IX={kernelName:Ta,backendName:"cpu",kernelFunc:fc};function Lx(e,t,n,s,r){let a=v.sizeFromShape(s),o=v.makeZerosTypedArray(r,n);for(let i=0;i<e.length;i++){let l=e[i];if(l<0)throw new Error("Input x must be non-negative!");l>=r||(a>0?o[l]+=t[i]:o[l]+=1)}return o}function _S(e,t,n,s=!1){let r=e.shape[0],a=e.shape[1],o=We([r,n],t.dtype);for(let i=0;i<r;i++)for(let l=0;l<a;l++){let u=e.get(i,l);if(u<0)throw new Error("Input x must be non-negative!");u>=n||(s?o.set(1,i,u):t.size>0?o.set(o.get(i,u)+t.get(i,l),i,u):o.set(o.get(i,u)+1,i,u))}return o}function hi(e){return(t,n,s)=>{let r=v.getTypedArrayFromDType(n,t.length);for(let a=0;a<t.length;++a)r[a]=e(t[a],s);return r}}function xt(e,t,n){return({inputs:s,attrs:r,backend:a})=>{let{x:o}=s;if(Te(o,e),o.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let i=a,l=i.data.get(o.dataId).values,u=v.sizeFromShape(o.shape),c=n||o.dtype,p=v.getArrayFromDType(c,u);for(let d=0;d<u;++d)p[d]=t(l[d],r);return i.makeTensorInfo(o.shape,c,p)}}function ad(e,t,n){return({inputs:s,attrs:r,backend:a})=>{let{x:o}=s;if(Te(o,e),o.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let i=a,l=i.data.get(o.dataId).values,u=n||o.dtype,c=t(l,u,r);return i.makeTensorInfo(o.shape,u,c)}}var DS=hi(e=>Math.ceil(e)),CX=ad(xo,DS),TX={kernelName:xo,backendName:"cpu",kernelFunc:CX};function Bx(e,t,n,s){let r=v.getArrayFromDType(n,v.sizeFromShape(t));if(s&&n!=="string"){let a=0;e.forEach(o=>{let i=v.sizeFromShape(o.shape);r.set(o.vals,a),a+=i})}else{let a=0;e.forEach(o=>{let i=n==="string"?T.fromUint8ToStringArray(o.vals):o.vals,l=0;for(let u=0;u<o.shape[0];++u){let c=u*t[1]+a;for(let p=0;p<o.shape[1];++p)r[c+p]=i[l++]}a+=o.shape[1]})}return r}var $S=cn((e,t)=>e===t?1:0),PS=Tn(xl,$S,null,"bool"),NX={kernelName:xl,backendName:"cpu",kernelFunc:PS},FS=hi(e=>Math.exp(e)),OS=ad(No,FS,"float32"),EX={kernelName:No,backendName:"cpu",kernelFunc:OS},MS=hi(e=>Math.expm1(e)),RX=ad(vl,MS),_X={kernelName:vl,backendName:"cpu",kernelFunc:RX},zS=hi(e=>Math.floor(e)),DX=ad(Eo,zS),$X={kernelName:Eo,backendName:"cpu",kernelFunc:DX};function LS(e,t,n,s,r,a,o,i,l){let u=We([s,a],n);for(let c=0;c<s;c++){let p=[],d=0;for(let h=0;h<r;h++){let f=e[c*r+h];d+=f*o[h],p.push(f)}if(d<0||d>=l/a)throw new Error(`Invalid indices: ${p} does not index into ${i}`);for(let h=0;h<a;h++)u.values[c*a+h]=t.get(...t.indexToLoc(d*a+h))}return u}function BS(e,t,n){let s=We(n,e.dtype);for(let r=0;r<s.size;++r){let o=s.indexToLoc(r).slice(),i=o[0],l=o[2],u=t.locToIndex([i,l]);o[2]=t.values[u];let c=e.locToIndex(o);0<=c&&c<e.values.length&&(s.values[r]=e.values[c])}return s}var WS=cn((e,t)=>e>t?1:0),PX=Tn(Il,WS,null,"bool"),FX={kernelName:Il,backendName:"cpu",kernelFunc:PX},VS=cn((e,t)=>e>=t?1:0),OX=Tn(Do,VS,null,"bool"),MX={kernelName:Do,backendName:"cpu",kernelFunc:OX},US=cn((e,t)=>e<t?1:0),zX=Tn(Tl,US,null,"bool"),LX={kernelName:Tl,backendName:"cpu",kernelFunc:zX},GS=cn((e,t)=>e<=t?1:0),BX=Tn(Nl,GS,null,"bool"),WX={kernelName:Nl,backendName:"cpu",kernelFunc:BX};function HS(e,t,n){let s=(t-e)/(n-1),r=v.makeZerosTypedArray(n,"float32");r[0]=e;for(let a=1;a<r.length;a++)r[a]=r[a-1]+s;return r}var jS=hi(e=>Math.log(e)),VX=ad(Fo,jS),UX={kernelName:Fo,backendName:"cpu",kernelFunc:VX};function qS(e,t,n,s){let r=v.getTypedArrayFromDType(s,v.sizeFromShape(n));for(let a=0;a<r.length;++a){let o=a*t,i=e[o];for(let l=0;l<t;++l){let u=e[o+l];(Number.isNaN(u)||u>i)&&(i=u)}r[a]=i}return r}var XS=cn((e,t)=>Math.max(e,t)),GX=Tn(Mo,XS),HX={kernelName:Mo,backendName:"cpu",kernelFunc:GX},KS=cn((e,t)=>Math.min(e,t)),jX=Tn(Wo,KS),qX={kernelName:Wo,backendName:"cpu",kernelFunc:jX},Wx=cn((e,t)=>e*t),XX=zx((e,t,n,s)=>({real:e*n-t*s,imag:e*s+t*n})),C2=Tn(Uo,Wx,XX),KX={kernelName:Uo,backendName:"cpu",kernelFunc:C2};function ZS(e,t,n){let s=v.createScalarValue(-1,n);return Wx([],t,s,e,n)}function ZX(e){let{inputs:t,backend:n}=e,{x:s}=t;Te(s,"neg");let r=n.data.get(s.dataId).values,[a,o]=ZS(r,s.shape,s.dtype);return n.makeTensorInfo(o,s.dtype,a)}var YX={kernelName:_l,backendName:"cpu",kernelFunc:ZX},YS=cn((e,t)=>e!==t?1:0),JX=Tn(Dl,YS,null,"bool"),QX={kernelName:Dl,backendName:"cpu",kernelFunc:JX};function Vx(e,t,n,s,r){let a=t.length,o=v.sizeFromShape(t),i=v.computeStrides(t),l=v.computeStrides(r),u=v.getTypedArrayFromDType(n,v.sizeFromShape(r));for(let c=0;c<o;++c){let p=v.indexToLoc(c,a,i),d=new Array(p.length);for(let f=0;f<d.length;f++)d[f]=p[s[f]];let h=v.locToIndex(d,a,l);u[h]=e[c]}return u}function vs(e){let{inputs:t,attrs:n,backend:s}=e,{x:r}=t,{perm:a}=n;Te(r,"transpose");let o=r.shape.length,i=new Array(o);for(let p=0;p<i.length;p++)i[p]=r.shape[a[p]];let l=s.data.get(r.dataId).values,u=Vx(l,r.shape,r.dtype,a,i);return{dataId:s.write(u,i,r.dtype),shape:i,dtype:r.dtype}}var eK={kernelName:Qr,backendName:"cpu",kernelFunc:vs};function JS(e,t,n,s){let[r,a]=T.computeOutAndReduceShapes(e,s),o=Un(t,"int32"),i=v.makeZerosTypedArray(v.sizeFromShape(r),o),l=v.sizeFromShape(a);for(let u=0;u<i.length;++u){let c=u*l,p=1;for(let d=0;d<l;++d)p*=n[c+d];i[u]=p}return{outVals:i,outShape:r,outDtype:o}}function tK(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;Te(r,"prod");let i=r.shape.length,l=v.parseAxisParam(a,r.shape),u=T.getAxesPermutation(l,i),c=l,p=r,d=[];u!=null&&(p=vs({inputs:{x:r},backend:n,attrs:{perm:u}}),d.push(p),c=T.getInnerMostAxes(c.length,i));let h=n.data.get(p.dataId).values,{outVals:f,outShape:m,outDtype:g}=JS(p.shape,p.dtype,h,c),y=m;return o&&(y=T.expandShapeToKeepDim(m,l)),d.forEach(x=>n.disposeIntermediateTensorInfo(x)),n.makeTensorInfo(y,g,f)}var nK={kernelName:qo,backendName:"cpu",kernelFunc:tK},cr=T.RowPartitionType,dy=class{constructor(e,t,n,s,r,a,o,i,l,u){this.shape=e,this.shapeShape=t,this.values=n,this.valuesShape=s,this.valuesDType=r,this.defaultValue=a,this.defaultValueShape=o,this.rowPartitionValues=i,this.rowPartitionValuesShapes=l,this.rowPartitionTypes=T.getRowPartitionTypesHelper(u),this.raggedRank=T.getRaggedRank(this.rowPartitionTypes)}getRowPartitionTypeByDimension(e){return this.rowPartitionTypes[0]===cr.FIRST_DIM_SIZE?this.rowPartitionTypes[e+1]:this.rowPartitionTypes[e]}getRowPartitionTensor(e){return this.rowPartitionTypes[0]===cr.FIRST_DIM_SIZE?this.rowPartitionValues[e+1]:this.rowPartitionValues[e]}getMaxWidth(e){let t=this.getRowPartitionTensor(e-1);switch(this.getRowPartitionTypeByDimension(e-1)){case cr.VALUE_ROWIDS:return dy.getMaxWidthValueRowID(t);case cr.ROW_SPLITS:return dy.getMaxWidthRowSplit(t);default:throw new Error(`Cannot handle partition type ${cr[this.getRowPartitionTypeByDimension(e-1)]}`)}}static getMaxWidthRowSplit(e){let t=e.length;if(t===0||t===1)return 0;let n=0;for(let s=0;s<t-1;++s){let r=e[s+1]-e[s];r>n&&(n=r)}return n}static getMaxWidthValueRowID(e){let t=e.length;if(t===0)return 0;let n=0,s=e[0],r=0;for(let a=1;a<t;++a){let o=e[a];o!==s&&(s=o,r=Math.max(a-n,r),n=a)}return Math.max(t-n,r)}tensorShapeFromTensor(e,t,n=!0){if(t.length===0){if(e[0]===-1)return[];throw new Error("The only valid scalar shape tensor is the fully unknown shape specified as -1.")}return k7(e,n)}calculateOutputSize(e){let t=this.valuesShape,n=this.defaultValueShape;T.validateDefaultValueShape(n,t);let s=this.tensorShapeFromTensor(this.shape,this.shapeShape),a=T.combineRaggedTensorToTensorShapes(this.raggedRank,s,t);a[0]<0&&(a[0]=e);for(let o=1;o<=this.raggedRank;++o)a[o]<0&&(a[o]=this.getMaxWidth(o));return a}calculateFirstParentOutputIndex(e,t,n){let s=Math.min(e,n),r=[],a=0;for(let o=0;o<s;++o,a+=t)r.push(a);for(let o=s;o<e;++o)r.push(-1);return v.assert(r.length===e,()=>"Final length of result must be equal to firstDimension."),r}calculateOutputIndexRowSplit(e,t,n,s){let r=e.length,a=[];for(let o=0;o<r-1;++o){let i=e[o+1]-e[o],l=Math.min(s,i),u=t[o];u===-1&&(l=0);for(let c=0;c<l;++c)a.push(u),u+=n;for(let c=0;c<i-l;++c)a.push(-1)}if(r>0&&a.length!==e[r-1])throw new Error("Invalid row split size.");return a}calculateOutputIndexValueRowID(e,t,n,s){let r=e.length,a=[];if(r===0)return[];let o=0,i=e[0];if(i>=t.length)throw new Error(`Got currentValueRowId=${i}, which is not less than ${t.length}`);let l=t[i];a.push(l);for(let u=1;u<r;++u){let c=e[u];if(c===i)l>=0&&(++o,o<s?l+=n:l=-1);else{if(o=0,i=c,c>=t.length)throw new Error(`Got nextValueRowId=${c} which is not less than ${t.length}`);l=t[c]}a.push(l)}if(a.length!==e.length)throw new Error("Invalid row ids.");return a}calculateOutputIndex(e,t,n,s){let r=this.getRowPartitionTensor(e),a=this.getRowPartitionTypeByDimension(e);switch(a){case cr.VALUE_ROWIDS:return this.calculateOutputIndexValueRowID(r,t,n,s);case cr.ROW_SPLITS:if(r.length-1>t.length)throw new Error(`Row partition size is greater than output size: ${r.length-1} > ${t.length}`);return this.calculateOutputIndexRowSplit(r,t,n,s);default:throw new Error(`Unsupported partition type: ${cr[a]}`)}}getFirstDimensionSize(){let e=this.rowPartitionValues[0];if(this.rowPartitionTypes.length===0)throw new Error("No row_partition_types given.");let t=this.rowPartitionTypes[0];switch(t){case cr.FIRST_DIM_SIZE:return e[0];case cr.VALUE_ROWIDS:throw new Error("Cannot handle VALUE_ROWIDS in first dimension.");case cr.ROW_SPLITS:return this.rowPartitionValuesShapes[0][0]-1;default:throw new Error(`Cannot handle type ${cr[t]}`)}}compute(){if(this.rowPartitionValues[0].length<=0)throw new Error("Invalid first partition input. Tensor requires at least one element.");let t=this.getFirstDimensionSize(),n=this.calculateOutputSize(t),s=new Array(this.raggedRank+1);s[s.length-1]=1;for(let i=s.length-2;i>=0;--i)s[i]=s[i+1]*n[i+1];let r=k7(n,!1),a=v.getArrayFromDType(this.valuesDType,v.sizeFromShape(r));if(s[0]*n[0]>0){let i=this.calculateFirstParentOutputIndex(t,s[0],n[0]);for(let l=1;l<=this.raggedRank;++l)i=this.calculateOutputIndex(l-1,i,s[l],n[l]);this.setOutput(this.raggedRank,i,a,r)}return[r,a]}setOutput(e,t,n,s){if(n.length===0)return;let r=this.values,a=n,o=s.slice();o=o.slice(e+1);let i=v.sizeFromShape(o),l=t.length,u=this.defaultValue;if(u.length!==i&&u.length!==1){let h=this.defaultValueShape;Z(()=>{let f=V(u,h);u=Ki(f,o).dataSync()})}let c=0,p=0,d=0;for(let h=0;h<=l;++h){let f=h<l?t[h]:-1;if(f===d){++d;continue}if(p<d){let m=r.subarray(c*i),g=a.subarray(p*i),y=(d-p)*i;w7(g,m,y)}if(h>=l){let m=n.length;f=Math.floor(m/i)}if(f>d)if(this.defaultValue.length===1)a.subarray(d*i,f*i).fill(this.defaultValue[0]),d=f;else for(;f>d;){let m=a.slice(d*i);w7(m,u,i),++d}f<0?(c=h+1,p=d):(c=h,p=d,d=p+1)}}};function w7(e,t,n){for(let s=0;s<n;s++)e[s]=t[s]}function k7(e,t){let n=[];for(let s of e){if(s<0){if(!t)throw new Error(`Dimension ${s} must be >= 0`);if(s<-1)throw new Error(`Dimension ${s} must be >= -1`);s=-1}n.push(s)}return n}function QS(e,t,n,s,r,a,o,i,l,u){return new dy(e,t,n,s,r,a,o,i,l,u).compute()}function Ux(e,t,n,s){let r=e===t,a=e<t&&n<0,o=t<e&&n>1;if(r||a||o)return v.makeZerosTypedArray(0,s);let i=Math.abs(Math.ceil((t-e)/n)),l=v.makeZerosTypedArray(i,s);t<e&&n===1&&(n=-1),l[0]=e;for(let u=1;u<l.length;u++)l[u]=l[u-1]+n;return l}var eI=hi(e=>1/Math.sqrt(e)),sK=ad(Jo,eI),rK={kernelName:Jo,backendName:"cpu",kernelFunc:sK};function Ku(e,t,n,s,r,a,o,i,l,u){let c=[s/r,r],p=e.values,d=t.values;if(s===0)return We(n,t.dtype);let h=We(c,t.dtype);typeof l=="string"||typeof l=="number"?h.values.fill(l):typeof l=="boolean"&&h.values.fill(+l);for(let f=0;f<a;f++){let m=[],g=0;for(let y=0;y<o;y++){let x=p[f*o+y];m.push(x),g+=x*i[y]}if(g<0||g>=s/r)throw new Error(`Invalid indices: ${m} does not index into ${n}`);for(let y=0;y<r;y++)u?h.values[g*r+y]+=d[f*r+y]:h.values[g*r+y]=t.rank===0?d[0]:d[f*r+y]}return h}var aK=hi(e=>1/(1+Math.exp(-e))),tI=xt(ei,e=>1/(1+Math.exp(-e))),oK={kernelName:ei,backendName:"cpu",kernelFunc:tI};function zm(e,t,n,s,r){let a=Gt.isSliceContinous(s,t,n),o=v.sizeFromShape(n),i=v.computeStrides(s);if(a){let p=Gt.computeFlatOffset(t,i);return r==="string"?e.slice(p,p+o):e.subarray(p,p+o)}let l=r==="string"?T.fromUint8ToStringArray(e):e,u=We(s,r,l),c=We(n,r);for(let p=0;p<c.size;++p){let d=c.indexToLoc(p),h=d.map((f,m)=>f+t[m]);c.set(u.get(...h),...d)}return r==="string"?T.fromStringArrayToUint8(c.values):c.values}function il(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,size:o}=s;Te(r,"slice");let[i,l]=Gt.parseSliceParams(r,a,o);Gt.assertParamsValid(r,i,l);let u=n.data.get(r.dataId).values,c=zm(u,i,l,r.shape,r.dtype);return n.makeTensorInfo(l,r.dtype,c)}var iK={kernelName:Gl,backendName:"cpu",kernelFunc:il};function nI(e,t,n,s,r,a,o){let i=t[0],l=a[0],u=new Array(l),c=new Array(i),p=t[1];if(l===0){if(i!==0)throw new Error(T.getSparseFillEmptyRowsIndicesDenseShapeMismatch(i));let g=v.getArrayFromDType(n,0),y=v.getArrayFromDType(r,0);return[g,[0,p],y,u,c]}let d=!0,h=0,f=new Array(l).fill(0);for(let g=0;g<i;++g){let y=e[g*p];if(y<0)throw new Error(T.getSparseFillEmptyRowsNegativeIndexErrorMessage(g,y));if(y>=l)throw new Error(T.getSparseFillEmptyRowsOutOfRangeIndexErrorMessage(g,y,l));++f[y],d=d&&y>=h,h=y}let m=!0;for(let g=0;g<l;++g){let y=f[g]===0;u[g]=y,m=m&&!y,f[g]=Math.max(f[g],1),g>0&&(f[g]+=f[g-1])}if(m&&d){let g=e,y=s;for(let x=0;x<i;++x)c[x]=x;return[g,[i,p],y,u,c]}else{let g=f[l-1],y=v.getArrayFromDType(n,g*p),x=v.getArrayFromDType(r,g),A=new Array(l).fill(0);for(let b=0;b<i;++b){let w=e[b*p],S=A[w],k=(w===0?0:f[w-1])+S;A[w]++;for(let E=0;E<p;++E)y[k*p+E]=e[b*p+E];x[k]=s[b],c[b]=k}for(let b=0;b<l;++b)if(A[b]===0){let S=b===0?0:f[b-1];y[S*p+0]=b;for(let k=1;k<p;++k)y[S*p+k]=0;x[S]=o}return[y,[g,p],x,u,c]}}function sI(e,t,n,s,r){let a=v.sizeFromShape(s),o=t[0],i=r.length,l=[],u=1,c=-1;for(let g=0;g<i;++g){let y=r[g];if(y===-1){if(c!==-1)throw new Error(T.getSparseReshapeMultipleNegativeOneOutputDimErrorMessage(c,g));c=g,l.push(1)}else{if(y<0)throw new Error(T.getSparseReshapeNegativeOutputDimErrorMessage(g,y));u*=y,l.push(y)}}if(c!==-1){if(u<=0)throw new Error(T.getSparseReshapeEmptyTensorZeroOutputDimErrorMessage());let g=Math.trunc(a/u);if(u*g!==a)throw new Error(T.getSparseReshapeInputOutputMultipleErrorMessage(s,l));l[c]=g}if(v.sizeFromShape(l)!==a)throw new Error(T.getSparseReshapeInputOutputMismatchErrorMessage(s,l));let d=s.length,h=[];if(d>0){h[d-1]=1;for(let g=d-2;g>=0;--g)h[g]=h[g+1]*s[g+1]}let f=[];if(i>0){f[i-1]=1;for(let g=i-2;g>=0;--g)f[g]=f[g+1]*l[g+1]}let m=v.getArrayFromDType(n,o*i);for(let g=0;g<o;++g){let y=0;for(let x=0;x<d;++x)y+=e[g*d+x]*h[x];for(let x=0;x<i;++x)m[g*i+x]=Math.trunc(y/f[x]),y%=f[x]}return[m,[o,i],l]}function Gx(e,t,n,s,r,a=!1,o=0){let i=s.length,l=[t[0],e.length/t[0]],u=l[1],p=i>0?r[i-1]+1:0;if(p<0)throw new Error(T.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());let d=t.slice();d[0]=p;let h=d.reduce((A,b)=>A*b,1),f=v.getArrayFromDType(n,h);if(i===0)return p>0&&f.fill(o),[f,d];if(p<=0)throw new Error(T.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());let m=0,g=1,y=0,x=r[m];for(;;){let A=0;if(g<i){if(A=r[g],x===A){++g;continue}if(x>=A)throw new Error(T.getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage())}if(x<0||x>=p)throw new Error(T.getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage(x,p));x>y&&f.fill(o,y*u,x*u);for(let b=m;b<g;++b){let w=s[b];if(w<0||w>=l[0])throw new Error(T.getSparseSegmentReductionIndicesOutOfRangeErrorMessage(b,s[b],l[0]));for(let S=0;S<u;S++)f[x*u+S]+=e[w*u+S]}if(a)for(let b=0;b<u;b++)f[x*u+b]/=g-m;if(m=g,++g,y=x+1,x=A,g>i)break}return y<p&&f.fill(o,y*u,p*u),[f,d]}var lK=hi(e=>Math.sqrt(e)),uK=xt(ti,e=>Math.sqrt(e)),cK={kernelName:ti,backendName:"cpu",kernelFunc:uK},rI=cn((e,t)=>{let n=e-t;return n*n}),dK=Tn(ri,rI),pK={kernelName:ri,backendName:"cpu",kernelFunc:dK};function aI(e,t,n,s){let r=We(e,t.dtype);for(let a=0;a<r.size;a++){let o=r.indexToLoc(a),i=new Array(o.length);for(let l=0;l<i.length;l++)i[l]=o[l]*n[l]+s[l];r.set(t.get(...i),...o)}return r}var hK=class{constructor(e,t,n,s,r,a){this.separator=v.encodeString(e),this.nGramWidths=t,this.leftPad=v.encodeString(n),this.rightPad=v.encodeString(s),this.padWidth=r,this.preserveShort=a}getPadWidth(e){return Math.min(this.padWidth<0?e-1:this.padWidth,e-1)}getNumNGrams(e,t){let n=this.getPadWidth(t);return Math.max(0,e+2*n-t+1)}createNGrams(e,t,n,s,r,a){for(let o=0;o<r;++o){let i=this.getPadWidth(a),l=Math.max(0,i-o),u=Math.max(0,i-(r-(o+1))),c=a-(l+u),p=t+(l>0?0:o-i),d=0;d+=l*this.leftPad.length;for(let y=0;y<c;++y)d+=e[p+y].length;d+=u*this.rightPad.length,d+=(l+u+c-1)*this.separator.length,n[s+o]=new Uint8Array(d);let f=n[s+o],m=0,g=y=>y.forEach(x=>f[m++]=x);for(let y=0;y<l;++y)g(this.leftPad),g(this.separator);for(let y=0;y<c-1;++y)g(e[p+y]),g(this.separator);if(c>0){g(e[p+c-1]);for(let y=0;y<u;++y)g(this.separator),g(this.rightPad)}else{for(let y=0;y<u-1;++y)g(this.rightPad),g(this.separator);g(this.rightPad)}}}compute(e,t){let n=e.length,s=t.length;if(s>0){let i=t[0];if(i!==0)throw new Error(`First split value must be 0, got ${i}`);for(let l=1;l<s;++l){let u=t[l]>=i;if(u=u&&t[l]<=n,!u)throw new Error(`Invalid split value ${t[l]}, must be in [${i}, ${n}]`);i=t[l]}if(i!==n)throw new Error(`Last split value must be data size. Expected ${n}, got ${i}`)}let r=s-1,a=v.getArrayFromDType("int32",s);if(n===0||s===0){let i=new Array(n);for(let l=0;l<=r;++l)a[l]=0;return[i,a]}a[0]=0;for(let i=1;i<=r;++i){let l=t[i]-t[i-1],u=0;this.nGramWidths.forEach(c=>{u+=this.getNumNGrams(l,c)}),this.preserveShort&&l>0&&u===0&&(u=1),a[i]=a[i-1]+u}let o=new Array(a[r]);for(let i=0;i<r;++i){let l=t[i],u=a[i];if(this.nGramWidths.forEach(c=>{let p=t[i+1]-t[i],d=this.getNumNGrams(p,c);this.createNGrams(e,l,o,u,d,c),u+=d}),this.preserveShort&&u===a[i]){let c=t[i+1]-t[i];if(c===0)continue;let p=c+2*this.padWidth,d=1;this.createNGrams(e,l,o,u,d,p)}}return[o,a]}};function Hx(e,t,n,s,r,a,o,i){return new hK(n,s,r,a,o,i).compute(e,t)}function fK(e,t,n,s){if(!e.length)return;if(t.length===0){for(let a=0;a<e.length;++a)s.push(e.subarray(a,a+1));return}if(t.length===1){let a=t[0],o=e.indexOf(a);for(;o!==-1;){let i=e.subarray(0,o);(!n||i.length!==0)&&s.push(i),e=e.subarray(o+1),o=e.indexOf(a)}(!n||e.length!==0)&&s.push(e);return}let r=0;for(let a=0;a<e.length+1;a++)if(a===e.length||t.indexOf(e[a])!==-1){let o=e.subarray(r,a);(!n||o.length!==0)&&s.push(o),r=a+1}}function jx(e,t,n){let s=e.length,r=[],a=0,o=0,i=new Array(s);for(let d=0;d<s;++d){let h=r.length;fK(e[d],t,n,r);let f=r.length-h;i[d]=f,a+=f,o=Math.max(o,f)}let l=v.getArrayFromDType("int32",a*2),u=new Array(a),c=[s,o],p=0;for(let d=0;d<s;++d)for(let h=0;h<i[d];++h)l[p*2]=d,l[p*2+1]=h,u[p]=r[p],++p;return[l,u,c]}function qx(e,t){let n=v.getArrayFromDType("int32",e.length);for(let s=0;s<e.length;++s)n[s]=v.fingerPrint64(e[s]).modulo(t).getLowBitsUnsigned();return n}var oI=cn((e,t)=>e-t),mK=zx((e,t,n,s)=>({real:e-n,imag:t-s})),Xx=Tn(ai,oI,mK),gK={kernelName:ai,backendName:"cpu",kernelFunc:Xx};function iI(e,t){let n=new Array(e.rank);for(let r=0;r<n.length;r++)n[r]=e.shape[r]*t[r];let s=We(n,e.dtype);for(let r=0;r<s.values.length;++r){let a=s.indexToLoc(r),o=new Array(e.rank);for(let l=0;l<o.length;l++)o[l]=a[l]%e.shape[l];let i=e.locToIndex(o);s.values[r]=e.values[i]}return s}var up=(e,t)=>{let n=t.value-e.value;return n===0?e.index-t.index:n};function lI(e,t,n=0,s=e.length-1){for(;s>n;){if(s-n>600){let i=s-n+1,l=t-n+1,u=Math.log(i),c=.5*Math.exp(2*u/3),p=.5*Math.sqrt(u*c*(i-c)/i)*Math.sign(l-i/2),d=Math.max(n,Math.floor(t-l*c/i+p)),h=Math.min(s,Math.floor(t+(i-l)*c/i+p));lI(e,t,d,h)}let r=e[t],a=n,o=s;for(v.swap(e,n,t),up(e[s],r)>0&&v.swap(e,n,s);a<o;){for(v.swap(e,a,o),a++,o--;up(e[a],r)<0;)a=a+1;for(;up(e[o],r)>0;)o=o-1}up(e[n],r)===0?v.swap(e,n,o):(o=o+1,v.swap(e,o,s)),o<=t&&(n=o+1),t<=o&&(s=o-1)}}function uI(e,t,n,s,r){let a=t[t.length-1],[o,i]=[e.length/a,a],l=v.getTypedArrayFromDType(n,o*s),u=v.getTypedArrayFromDType("int32",o*s);for(let p=0;p<o;p++){let d=p*i,h=e.subarray(d,d+i),f=new Array(h.length);h.forEach((x,A)=>f[A]={value:x,index:A}),s<f.length&&(lI(f,s),f=f.slice(0,s)),r&&f.sort(up);let m=p*s,g=l.subarray(m,m+s),y=u.subarray(m,m+s);for(let x=0;x<s;x++)g[x]=f[x].value,y[x]=f[x].index}let c=t.slice();return c[c.length-1]=s,[We(c,n,l),We(c,"int32",u)]}function cI(e,t,n,s){let r=v.parseAxisParam(t,n)[0],a=[1,n[0],1];for(let f=0;f<r;f++)a[0]*=n[f];a[1]=n[r];for(let f=r+1;f<n.length;f++)a[2]*=n[f];let o={},i=new Int32Array(n[r]),l=new mn(a,s,e),u=[],c=a[0]===1&&a[2]===1;for(let f=0;f<n[r];f++){let m;if(c)m=e[f].toString();else{let g=[];for(let y=0;y<a[0];y++)for(let x=0;x<a[2];x++)g.push(l.get(y,f,x));m=g.join(",")}if(o[m]!==void 0)i[f]=o[m];else{let g=Object.keys(o).length;o[m]=g,i[f]=g,u.push(f)}}let p=a.slice();p[1]=Object.keys(o).length;let d=new mn(p,s);u.forEach((f,m)=>{for(let g=0;g<a[0];g++)for(let y=0;y<a[2];y++)d.set(l.get(g,f,y),g,m,y)});let h=n.slice();return h[r]=p[1],{outputValues:d.values,outputShape:h,indices:i}}tu("cpu",()=>new Ox,1);var dI=xt(To,e=>e>=0?e:Math.exp(e)-1),yK={kernelName:To,backendName:"cpu",kernelFunc:dI};function pI(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{alpha:a}=s;Te([r],"leakyRelu");let o=v.sizeFromShape(r.shape),i=n.data.get(r.dataId).values,l=v.getTypedArrayFromDType("float32",o);for(let u=0;u<i.length;u++)l[u]=i[u]<0?a*i[u]:i[u];return n.makeTensorInfo(r.shape,"float32",l)}var AK={kernelName:Po,backendName:"cpu",kernelFunc:pI},xK=cn((e,t)=>e<0?t*e:e);function hI(e){let{inputs:t,backend:n}=e,{x:s,alpha:r}=t;Te([s,r],"prelu");let a=n.data.get(s.dataId).values,o=n.data.get(r.dataId).values,[i,l]=xK(s.shape,r.shape,a,o,"float32");return n.makeTensorInfo(l,"float32",i)}var bK={kernelName:jo,backendName:"cpu",kernelFunc:hI},fI=xt(Xo,e=>Math.max(0,e)),vK={kernelName:Xo,backendName:"cpu",kernelFunc:fI},mI=xt(Yo,e=>Math.min(Math.max(0,e),6)),wK={kernelName:Yo,backendName:"cpu",kernelFunc:mI};function Lm(e,t,n,s,r){if(n==="linear")return ra({inputs:{x:t},backend:e});if(n==="relu")return fI({inputs:{x:t},backend:e});if(n==="elu")return dI({inputs:{x:t},backend:e});if(n==="relu6")return mI({inputs:{x:t},backend:e});if(n==="prelu")return hI({inputs:{x:t,alpha:s},backend:e});if(n==="leakyrelu")return pI({inputs:{x:t},backend:e,attrs:{alpha:r}});if(n==="sigmoid")return tI({inputs:{x:t},backend:e});throw new Error(`Activation ${n} has not been implemented for the CPU backend.`)}function Rt(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{shape:a}=s,o=v.sizeFromShape(r.shape),i=v.inferFromImplicitShape(a,o),l=v.sizeFromShape(i);v.assert(o===l,()=>`The new shape (${i}) has ${l} elements and the old shape (${r.shape}) has ${o} elements. The new shape and old shape must have the same number of elements.`),n.incRef(r.dataId);let u=n.data.get(r.dataId);if(u.complexTensorInfos!=null){let c=u.complexTensorInfos.real,p=u.complexTensorInfos.imag;c.shape=i,p.shape=i}return{dataId:r.dataId,shape:i,dtype:r.dtype}}var kK={kernelName:Ll,backendName:"cpu",kernelFunc:Rt};function gI(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a}=t,{transposeA:o,transposeB:i}=s;Te([r,a],"matMul");let l=r.shape.length,u=a.shape.length,c=o?r.shape[l-2]:r.shape[l-1],p=i?a.shape[u-1]:a.shape[u-2],d=o?r.shape[l-1]:r.shape[l-2],h=i?a.shape[u-2]:a.shape[u-1],f=r.shape.slice(0,-2),m=a.shape.slice(0,-2),g=v.sizeFromShape(f),y=v.sizeFromShape(m),A=nu.assertAndGetBroadcastShape(r.shape.slice(0,-2),a.shape.slice(0,-2)).concat([d,h]);v.assert(c===p,()=>`Error in matMul: inner shapes (${c}) and (${p}) of Tensors with shapes ${r.shape} and ${a.shape} and transposeA=${o} and transposeB=${i} must match.`);let b=o?[g,c,d]:[g,d,c],w=i?[y,h,p]:[y,p,h],S=Rt({inputs:{x:r},backend:n,attrs:{shape:b}}),k=Rt({inputs:{x:a},backend:n,attrs:{shape:w}}),E=o?S.shape[1]:S.shape[2],_=o?S.shape[2]:S.shape[1],D=i?k.shape[1]:k.shape[2],R=Math.max(g,y),P=n.data.get(S.dataId).values,C=n.data.get(k.dataId).values,M=v.computeStrides(S.shape),L=v.computeStrides(k.shape),[G,K,X]=o?[M[0],1,M[1]]:[M[0],M[1],1],[Y,ne,ee]=i?[1,L[1],L[0]]:[L[1],1,L[0]],ie=_*D,se=We([R,_,D],S.dtype),pe=se.values,ce=n.blockSize;for(let xe=0;xe<R;xe++)for(let oe=0;oe<_;oe+=ce)for(let Re=0;Re<D;Re+=ce)for(let _e=0;_e<E;_e+=ce){let Ve=Math.min(oe+ce,_),Me=Math.min(Re+ce,D),it=Math.min(_e+ce,E);for(let gt=oe;gt<Ve;gt++)for(let pt=Re;pt<Me;pt++){let yt=0;for(let Oe=_e;Oe<it;Oe++){let Tt=Math.min(xe,g-1)*G,kt=Math.min(xe,y-1)*ee,Kn=P[Tt+gt*K+Oe*X],tn=C[Oe*Y+pt*ne+kt];yt+=Kn*tn}pe[xe*ie+(gt*D+pt)]+=yt}}return n.disposeIntermediateTensorInfo(S),n.disposeIntermediateTensorInfo(k),n.makeTensorInfo(A,se.dtype,se.values)}var SK={kernelName:yo,backendName:"cpu",kernelFunc:gI};function IK(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a,bias:o,preluActivationWeights:i}=t,{transposeA:l,transposeB:u,activation:c,leakyreluAlpha:p}=s,d,h,f,m=[];d=gI({inputs:{a:r,b:a},attrs:{transposeA:l,transposeB:u},backend:n}),o&&(h=fc({inputs:{a:d,b:o},backend:n}),m.push(d),d=h),c&&(f=Lm(n,d,c,i,p),m.push(d),d=f);for(let y of m)n.disposeIntermediateTensorInfo(y);return d}var CK={kernelName:eo,backendName:"cpu",kernelFunc:IK},TK=xt(bc,e=>Math.acos(e)),NK={kernelName:bc,backendName:"cpu",kernelFunc:TK},EK=xt(vc,e=>Math.acosh(e)),RK={kernelName:vc,backendName:"cpu",kernelFunc:EK};function _K(e){let{inputs:t,backend:n}=e,s=t;Te(t,"addN");let r=s.map(i=>n.data.get(i.dataId).values),a=We(s[0].shape,s[0].dtype),o=a.values;for(let i=0;i<s.length;i++){let l=r[i];for(let u=0;u<o.length;u++)o[u]+=l[u]}return n.makeTensorInfo(a.shape,a.dtype,a.values)}var DK={kernelName:fo,backendName:"cpu",kernelFunc:_K};function $K(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;Te(r,"all");let i=v.parseAxisParam(a,r.shape),l=i,u=T.getAxesPermutation(l,r.shape.length),c=r;u!=null&&(c=vs({inputs:{x:r},backend:n,attrs:{perm:u}}),l=T.getInnerMostAxes(l.length,r.shape.length)),T.assertAxesAreInnerMostDims("all",l,c.shape.length);let[p,d]=T.computeOutAndReduceShapes(c.shape,l),h=v.sizeFromShape(d),f=v.makeZerosTypedArray(v.sizeFromShape(p),c.dtype),m=n.data.get(c.dataId).values;for(let y=0;y<f.length;++y){let x=y*h,A=m[x];for(let b=0;b<h;++b){let w=m[x+b];A=A&&w}f[y]=A}u!=null&&n.disposeIntermediateTensorInfo(c);let g=n.makeTensorInfo(p,c.dtype,f);if(o){let y=T.expandShapeToKeepDim(p,i),x=Rt({inputs:{x:g},backend:n,attrs:{shape:y}});return n.disposeIntermediateTensorInfo(g),x}return g}var PK={kernelName:wc,backendName:"cpu",kernelFunc:$K};function FK(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;Te(r,"any");let i=v.parseAxisParam(a,r.shape),l=i,u=T.getAxesPermutation(l,r.shape.length),c=r;u!=null&&(c=vs({inputs:{x:r},backend:n,attrs:{perm:u}}),l=T.getInnerMostAxes(l.length,r.shape.length)),T.assertAxesAreInnerMostDims("any",l,c.shape.length);let[p,d]=T.computeOutAndReduceShapes(c.shape,l),h=v.sizeFromShape(d),f=v.makeZerosTypedArray(v.sizeFromShape(p),c.dtype),m=n.data.get(c.dataId).values;for(let y=0;y<f.length;++y){let x=y*h,A=m[x];for(let b=0;b<h;++b){let w=m[x+b];A=A||w}f[y]=A}u!=null&&n.disposeIntermediateTensorInfo(c);let g=n.makeTensorInfo(p,c.dtype,f);if(o){let y=T.expandShapeToKeepDim(p,i),x=Rt({inputs:{x:g},backend:n,attrs:{shape:y}});return n.disposeIntermediateTensorInfo(g),x}return g}var OK={kernelName:kc,backendName:"cpu",kernelFunc:FK};function MK(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s;Te(r,"argMax");let o=v.parseAxisParam(a,r.shape),i=T.getAxesPermutation(o,r.shape.length),l=r,u=[];i!=null&&(l=vs({inputs:{x:r},backend:n,attrs:{perm:i}}),u.push(l),o=T.getInnerMostAxes(o.length,l.shape.length)),o=[o[0]],T.assertAxesAreInnerMostDims("argMax",o,l.shape.length);let[c,p]=T.computeOutAndReduceShapes(l.shape,o),d=v.sizeFromShape(c),h=v.makeZerosTypedArray(d,"int32"),f=v.sizeFromShape(p),m=n.data.get(l.dataId).values;for(let g=0;g<h.length;++g){let y=g*f,x=m[y],A=0;for(let b=0;b<f;++b){let w=m[y+b];w>x&&(x=w,A=b)}h[g]=A}return u.forEach(g=>n.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(c,"int32",h)}var zK={kernelName:mo,backendName:"cpu",kernelFunc:MK};function LK(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s;Te(r,"argMin");let o=v.parseAxisParam(a,r.shape),i=T.getAxesPermutation(o,r.shape.length),l=r,u=[];i!=null&&(l=vs({inputs:{x:r},backend:n,attrs:{perm:i}}),u.push(l),o=T.getInnerMostAxes(o.length,l.shape.length)),o=[o[0]],T.assertAxesAreInnerMostDims("argMin",o,l.shape.length);let[c,p]=T.computeOutAndReduceShapes(l.shape,o),d=v.sizeFromShape(c),h=v.makeZerosTypedArray(d,"int32"),f=v.sizeFromShape(p),m=n.data.get(l.dataId).values;for(let g=0;g<h.length;++g){let y=g*f,x=m[y],A=0;for(let b=0;b<f;++b){let w=m[y+b];w<x&&(x=w,A=b)}h[g]=A}return u.forEach(g=>n.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(c,"int32",h)}var BK={kernelName:Sc,backendName:"cpu",kernelFunc:LK},WK=xt(Ic,e=>Math.asin(e)),VK={kernelName:Ic,backendName:"cpu",kernelFunc:WK},UK=xt(Cc,e=>Math.asinh(e)),GK={kernelName:Cc,backendName:"cpu",kernelFunc:UK},HK=xt(Tc,e=>Math.atan(e)),jK={kernelName:Tc,backendName:"cpu",kernelFunc:HK},qK=cn((e,t)=>Math.atan2(e,t)),XK=Tn(hl,qK),KK={kernelName:hl,backendName:"cpu",kernelFunc:XK},ZK=xt(Nc,e=>Math.atanh(e)),YK={kernelName:Nc,backendName:"cpu",kernelFunc:ZK};function Kx(e,t,n,s,r,a){let o=r.strideHeight,i=r.strideWidth,l=r.dilationHeight,u=r.dilationWidth,c=r.effectiveFilterHeight,p=r.effectiveFilterWidth,d=r.padInfo.top,h=r.padInfo.left,f=a==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,m=We(r.outShape,n),g=m.values,y=r.outShape[1]*r.outShape[2]*r.outShape[3],x=r.outShape[2]*r.outShape[3],A=r.outShape[3];for(let b=0;b<r.batchSize;++b){let w=b*y,S=b*s[0];for(let k=0;k<r.inChannels;++k)for(let E=0;E<r.outHeight;++E){let _=E*o-d,D=Math.max(0,_),R=Math.min(r.inHeight,c+_),P=w+E*x;for(let C=0;C<r.outWidth;++C){let M=C*i-h,L=Math.max(0,M),G=Math.min(r.inWidth,p+M),K=f,X=0,Y=0;for(let ee=D;ee<R;ee+=l){let ie=S+ee*s[1];for(let se=L;se<G;se+=u){let pe=ie+se*s[2],ce=e[pe+k];a==="max"&&ce>K?K=ce:a==="avg"&&(X+=ce,Y++)}if(isNaN(K))break}let ne=P+C*A+k;g[ne]=a==="avg"?X/Y:K}}}return m}function yI(e,t,n,s,r=!1,a=!1){let o=We(s.outShape,"int32"),i=s.strideHeight,l=s.strideWidth,u=s.dilationHeight,c=s.dilationWidth,p=s.effectiveFilterHeight,d=s.effectiveFilterWidth,h=s.padInfo.top,f=s.padInfo.left,m=We(t,n,e);for(let g=0;g<s.batchSize;++g)for(let y=0;y<s.inChannels;++y)for(let x=0;x<s.outHeight;++x){let A=x*i-h,b=A;for(;b<0;)b+=u;let w=Math.min(s.inHeight,p+A);for(let S=0;S<s.outWidth;++S){let k=S*l-f,E=k;for(;E<0;)E+=c;let _=Math.min(s.inWidth,d+k),D=Number.NEGATIVE_INFINITY,R=-1;for(let P=b;P<w;P+=u){let C=P-A;for(let M=E;M<_;M+=c){let L=M-k,G=m.get(g,P,M,y);G>D&&(D=G,r?R=a?((g*s.inHeight+P)*s.inWidth+M)*s.inChannels+y:(P*s.inWidth+M)*s.inChannels+y:R=C*d+L)}}o.set(R,g,x,S,y)}}return o}function AI(e,t,n,s,r,a){let o=r.strideDepth,i=r.strideHeight,l=r.strideWidth,u=r.dilationDepth,c=r.dilationHeight,p=r.dilationWidth,d=r.effectiveFilterDepth,h=r.effectiveFilterHeight,f=r.effectiveFilterWidth,m=r.padInfo.front,g=r.padInfo.top,y=r.padInfo.left,x=a==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,A=We(r.outShape,n),b=A.values,w=r.outShape[1]*r.outShape[2]*r.outShape[3]*r.outShape[4],S=r.outShape[2]*r.outShape[3]*r.outShape[4],k=r.outShape[3]*r.outShape[4],E=r.outShape[4];for(let _=0;_<r.batchSize;++_){let D=_*w,R=_*s[0];for(let P=0;P<r.inChannels;++P)for(let C=0;C<r.outDepth;++C){let M=C*o-m,L=M;for(;L<0;)L+=u;let G=Math.min(r.inDepth,d+M),K=D+C*S;for(let X=0;X<r.outHeight;++X){let Y=X*i-g,ne=Y;for(;ne<0;)ne+=c;let ee=Math.min(r.inHeight,h+Y),ie=K+X*k;for(let se=0;se<r.outWidth;++se){let pe=se*l-y,ce=pe;for(;ce<0;)ce+=p;let xe=Math.min(r.inWidth,f+pe),oe=ie+se*E,Re=x,_e=0,Ve=0;for(let it=L;it<G;it+=u){let gt=R+it*s[1];for(let pt=ne;pt<ee;pt+=c){let yt=gt+pt*s[2];for(let Oe=ce;Oe<xe;Oe+=p){let Tt=yt+Oe*s[3],kt=e[Tt+P];if(a==="max"&&kt>Re?Re=kt:a==="avg"&&(_e+=kt,Ve++),isNaN(Re))break}if(isNaN(Re))break}if(isNaN(Re))break}let Me=oe+P;b[Me]=a==="avg"?_e/Ve:Re}}}}return A}function JK(e,t){let n=We(t.outShape,"int32"),s=t.strideDepth,r=t.strideHeight,a=t.strideWidth,o=t.dilationDepth,i=t.dilationHeight,l=t.dilationWidth,u=t.effectiveFilterDepth,c=t.effectiveFilterHeight,p=t.effectiveFilterWidth,d=t.padInfo.front,h=t.padInfo.top,f=t.padInfo.left;for(let m=0;m<t.batchSize;++m)for(let g=0;g<t.inChannels;++g)for(let y=0;y<t.outDepth;++y){let x=y*s-d,A=x;for(;A<0;)A+=o;let b=Math.min(t.inDepth,u+x);for(let w=0;w<t.outHeight;++w){let S=w*r-h,k=S;for(;k<0;)k+=i;let E=Math.min(t.inHeight,c+S);for(let _=0;_<t.outWidth;++_){let D=_*a-f,R=D;for(;R<0;)R+=l;let P=Math.min(t.inWidth,p+D),C=Number.NEGATIVE_INFINITY,M=-1;for(let L=A;L<b;L+=o){let G=L-x;for(let K=k;K<E;K+=i){let X=K-S;for(let Y=R;Y<P;Y+=l){let ne=Y-D,ee=e.get(m,L,K,Y,g);ee>=C&&(C=ee,M=G*c*p+X*c+ne)}}}n.set(M,m,y,w,_,g)}}}return n}function QK(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t;Te(r,"avgPool");let{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=s,u=1;v.assert(T.eitherStridesOrDilationsAreOne(o,u),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${o} and dilations '${u}'`);let c=T.computePool2DInfo(r.shape,a,o,u,i,l),p;if(c.filterWidth===1&&c.filterHeight===1&&v.arraysEqual(c.inShape,c.outShape))p=ra({inputs:{x:r},backend:n});else{let d=n.data.get(r.dataId).values,h=v.computeStrides(r.shape),f=Kx(d,r.shape,r.dtype,h,c,"avg");p=n.makeTensorInfo(c.outShape,r.dtype,f.values)}return p}var eZ={kernelName:go,backendName:"cpu",kernelFunc:QK};function tZ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l,dataFormat:u}=s;Te(r,"avgPool3d");let c=T.computePool3DInfo(r.shape,a,o,1,i,l,u),p=n.data.get(r.dataId).values,d=AI(p,r.shape,r.dtype,v.computeStrides(r.shape),c,"avg");return n.makeTensorInfo(d.shape,"float32",d.values)}var nZ={kernelName:Vp,backendName:"cpu",kernelFunc:tZ};function sZ(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,{filterSize:o,strides:i,pad:l,dimRoundingMode:u}=s;Te([r,a],"avgPool3DGrad");let c=T.computePool3DInfo(a.shape,o,i,1,l,u),p=c.strideDepth,d=c.strideHeight,h=c.strideWidth,f=c.filterDepth,m=c.filterHeight,g=c.filterWidth,y=c.dilationDepth,x=c.dilationHeight,A=c.dilationWidth,b=c.effectiveFilterDepth,w=c.effectiveFilterHeight,S=c.effectiveFilterWidth,k=b-1-c.padInfo.front,E=S-1-c.padInfo.left,_=w-1-c.padInfo.top,D=We(a.shape,"float32"),R=1/(f*m*g),P=n.bufferSync(r);for(let C=0;C<c.batchSize;++C)for(let M=0;M<c.inChannels;++M)for(let L=0;L<c.inDepth;++L)for(let G=0;G<c.inHeight;++G)for(let K=0;K<c.inWidth;++K){let X=L-k,Y=G-_,ne=K-E,ee=0;for(let ie=0;ie<b;ie+=y){let se=(X+ie)/p;if(!(se<0||se>=c.outDepth||Math.floor(se)!==se))for(let pe=0;pe<w;pe+=x){let ce=(Y+pe)/d;if(!(ce<0||ce>=c.outHeight||Math.floor(ce)!==ce))for(let xe=0;xe<S;xe+=A){let oe=(ne+xe)/h;if(oe<0||oe>=c.outWidth||Math.floor(oe)!==oe)continue;ee+=P.get(C,se,ce,oe,M)}}}D.set(ee*R,C,L,G,K,M)}return n.makeTensorInfo(D.shape,D.dtype,D.values)}var rZ={kernelName:Jm,backendName:"cpu",kernelFunc:sZ};function aZ(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,o=a;Te([r,a],"avgPoolGrad");let{filterSize:i,strides:l,pad:u}=s,c=T.computePool2DInfo(o.shape,i,l,1,u),p=c.strideHeight,d=c.strideWidth,h=c.filterHeight,f=c.filterWidth,m=c.dilationHeight,g=c.dilationWidth,y=c.effectiveFilterHeight,x=c.effectiveFilterWidth,A=x-1-c.padInfo.left,b=y-1-c.padInfo.top,w=We(o.shape,"float32"),S=1/(h*f),k=n.data.get(r.dataId).values,E=We(r.shape,"float32",k);for(let _=0;_<c.batchSize;++_)for(let D=0;D<c.inChannels;++D)for(let R=0;R<c.inHeight;++R)for(let P=0;P<c.inWidth;++P){let C=R-b,M=P-A,L=0;for(let G=0;G<y;G+=m){let K=(C+G)/p;if(!(K<0||K>=c.outHeight||Math.floor(K)!==K))for(let X=0;X<x;X+=g){let Y=(M+X)/d;if(Y<0||Y>=c.outWidth||Math.floor(Y)!==Y)continue;L+=E.get(_,K,Y,D)}}w.set(L*S,_,R,P,D)}return n.makeTensorInfo(w.shape,w.dtype,w.values)}var oZ={kernelName:Ym,backendName:"cpu",kernelFunc:aZ};function iZ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,scale:a,offset:o,mean:i,variance:l}=t;v.assert(i.shape.length===l.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),v.assert(o==null||i.shape.length===o.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),v.assert(a==null||i.shape.length===a.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks."),Te([r,i,l,a,o],"batchNorm");let{varianceEpsilon:u}=s;u==null&&(u=.001);let c=n.data.get(r.dataId).values,p=n.data.get(i.dataId).values,d=n.data.get(l.dataId).values,h=a?n.data.get(a.dataId).values:new Float32Array([1]),f=o?n.data.get(o.dataId).values:new Float32Array([0]),m=new Float32Array(c.length),g=f.length,y=h.length,x=d.length,A=p.length,b=0,w=0,S=0,k=0;for(let E=0;E<c.length;++E)m[E]=f[b++]+(c[E]-p[w++])*h[S++]/Math.sqrt(d[k++]+u),b>=g&&(b=0),w>=A&&(w=0),S>=y&&(S=0),k>=x&&(k=0);return n.makeTensorInfo(r.shape,r.dtype,m)}var lZ={kernelName:_o,backendName:"cpu",kernelFunc:iZ};function uZ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,crops:o}=s;Te([r],"batchToSpaceND");let i=a.reduce((y,x)=>y*x),l=T.getReshaped(r.shape,a,i),u=T.getPermuted(l.length,a.length),c=T.getReshapedPermuted(r.shape,a,i),p=T.getSliceBeginCoords(o,a.length),d=T.getSliceSize(c,o,a.length),h=Rt({inputs:{x:r},backend:n,attrs:{shape:l}}),f=vs({inputs:{x:h},backend:n,attrs:{perm:u}}),m=Rt({inputs:{x:f},backend:n,attrs:{shape:c}}),g=il({inputs:{x:m},backend:n,attrs:{begin:p,size:d}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(m),g}var cZ={kernelName:fl,backendName:"cpu",kernelFunc:uZ};function dZ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,weights:a}=t,{size:o}=s,i=n.data.get(r.dataId).values,l=n.data.get(a.dataId).values,u=Lx(i,l,a.dtype,a.shape,o);return n.makeTensorInfo([o],a.dtype,u)}var pZ={kernelName:Qm,backendName:"cpu",kernelFunc:dZ};function hZ(e){let{inputs:t,backend:n}=e,{s0:s,s1:r}=t,a=n.data.get(s.dataId).values,o=n.data.get(r.dataId).values,i=T.assertAndGetBroadcastShape(Array.from(a),Array.from(o));return n.makeTensorInfo([i.length],"int32",Int32Array.from(i))}var fZ={kernelName:e0,backendName:"cpu",kernelFunc:hZ},mZ=xt(Na,(e,t)=>{let n=t;return e>n.clipValueMax?n.clipValueMax:e<n.clipValueMin?n.clipValueMin:e}),gZ={kernelName:Na,backendName:"cpu",kernelFunc:mZ},yZ=e=>{let{x:t}=e.inputs,n=e.backend,s=new Float32Array(v.sizeFromShape(t.shape)),r=n.data.get(t.dataId),a=r.complexTensorInfos.real,o=r.complexTensorInfos.imag,i=n.data.get(a.dataId).values,l=n.data.get(o.dataId).values;for(let u=0;u<i.length;u++){let c=i[u],p=l[u];s[u]=Math.hypot(c,p)}return n.makeOutput(s,t.shape,"float32")},AZ={kernelName:Gp,backendName:"cpu",kernelFunc:yZ};function mc(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.data.get(s.dataId).complexTensorInfos.imag,a=n.data.get(r.dataId).values;return n.makeTensorInfo(r.shape,r.dtype,a)}var xZ={kernelName:Xp,backendName:"cpu",kernelFunc:mc};function gc(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s,a=v.parseAxisParam(r,t[0].shape)[0],o=T.computeOutShape(t.map(m=>m.shape),a);if(v.sizeFromShape(o)===0)return n.makeTensorInfo(o,t[0].dtype,[]);let i=t.filter(m=>v.sizeFromShape(m.shape)>0);if(i.length===1)return ra({inputs:{x:i[0]},backend:n});let l=i.map(m=>m.shape);if(T.assertParamsConsistent(l,a),i[0].dtype==="complex64"){let m=i.map(b=>ol({inputs:{input:b},backend:n})),g=i.map(b=>mc({inputs:{input:b},backend:n})),y=gc({inputs:m,backend:n,attrs:{axis:a}}),x=gc({inputs:g,backend:n,attrs:{axis:a}}),A=_s({inputs:{real:y,imag:x},backend:n});return m.forEach(b=>n.disposeIntermediateTensorInfo(b)),g.forEach(b=>n.disposeIntermediateTensorInfo(b)),n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(x),A}let u=i.map(m=>{let g=v.sizeFromShape(m.shape.slice(a));return Rt({inputs:{x:m},backend:n,attrs:{shape:[-1,g]}})}),c=u.map(m=>({vals:n.data.get(m.dataId).values,shape:m.shape}));o=T.computeOutShape(u.map(m=>m.shape),1);let p=u[0].shape[0]===1,d=Bx(c,o,t[0].dtype,p),h=T.computeOutShape(i.map(m=>m.shape),a),f=n.makeTensorInfo(h,t[0].dtype,d);return u.forEach(m=>n.disposeIntermediateTensorInfo(m)),f}var bZ={kernelName:ml,backendName:"cpu",kernelFunc:gc};function xI(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dataFormat:l,dilations:u,dimRoundingMode:c}=s;Te([r,a],"conv2d");let p=T.convertConv2DDataFormat(l),d=T.computeConv2DInfo(r.shape,a.shape,o,u,i,c,!1,p),h=d.filterHeight,f=d.filterWidth,m=d.dilationHeight,g=d.dilationWidth,y=d.padInfo.left,x=d.padInfo.top,A=d.dataFormat==="channelsLast",b=new mn(d.outShape,r.dtype),w=v.computeStrides(r.shape),S=v.computeStrides(a.shape),k=w[0],E=A?w[1]:w[2],_=A?w[2]:1,D=A?1:w[1],R=b.strides[0],P=A?b.strides[1]:b.strides[2],C=A?b.strides[2]:1,M=A?1:b.strides[1],L=n.data.get(r.dataId).values,G=n.data.get(a.dataId).values,K=b.values;for(let X=0;X<d.batchSize;++X){let Y=X*k,ne=X*R;for(let ee=0;ee<d.outHeight;++ee){let ie=ne+ee*P,se=ee*d.strideHeight-x;for(let pe=0;pe<h;++pe){let ce=se+pe*m;if(ce<0||ce>=d.inHeight)continue;let xe=pe*S[0],oe=Y+ce*E;for(let Re=0;Re<d.outWidth;++Re){let _e=ie+Re*C,Ve=Re*d.strideWidth-y;for(let Me=0;Me<f;++Me){let it=Ve+Me*g;if(it<0||it>=d.inWidth)continue;let gt=xe+Me*S[1],pt=oe+it*_,yt=gt;for(let Oe=0;Oe<d.inChannels;++Oe){let Tt=L[pt+Oe*D];for(let kt=0;kt<d.outChannels;++kt)K[_e+kt*M]+=Tt*G[yt+kt];yt+=d.outChannels}}}}}}return n.makeTensorInfo(b.shape,b.dtype,K)}var vZ={kernelName:bo,backendName:"cpu",kernelFunc:xI};function wZ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,pad:i,dataFormat:l,dimRoundingMode:u,filterShape:c}=s;Te([r,a],"conv2dBackpropFilter");let p=T.convertConv2DDataFormat(l),d=T.computeConv2DInfo(r.shape,c,o,1,i,u,!1,p),{strideHeight:h,strideWidth:f,filterHeight:m,filterWidth:g}=d,y=d.dataFormat==="channelsLast",x=new mn(d.filterShape,"float32"),A=d.padInfo.left,b=d.padInfo.top,w=n.data.get(r.dataId).values,S=n.data.get(a.dataId).values,k=new mn(r.shape,r.dtype,w),E=new mn(a.shape,a.dtype,S);for(let _=0;_<m;++_){let D=Math.max(0,Math.ceil((b-_)/h)),R=Math.min(d.outHeight,(d.inHeight+b-_)/h);for(let P=0;P<g;++P){let C=Math.max(0,Math.ceil((A-P)/f)),M=Math.min(d.outWidth,(d.inWidth+A-P)/f);for(let L=0;L<d.inChannels;++L)for(let G=0;G<d.outChannels;++G){let K=0;for(let X=0;X<d.batchSize;++X)for(let Y=D;Y<R;++Y){let ne=_+Y*h-b;for(let ee=C;ee<M;++ee){let ie=P+ee*f-A;y?K+=k.get(X,ne,ie,L)*E.get(X,Y,ee,G):K+=k.get(X,L,ne,ie)*E.get(X,G,Y,ee)}}x.set(K,_,P,L,G)}}}return n.makeTensorInfo(x.shape,x.dtype,x.values)}var kZ={kernelName:t0,backendName:"cpu",kernelFunc:wZ};function SZ(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{inputShape:o,strides:i,pad:l,dataFormat:u,dimRoundingMode:c}=s;Te([r,a],"conv2dBackpropInput");let p=v.computeStrides(a.shape),d=v.computeStrides(r.shape),h=T.convertConv2DDataFormat(u),f=T.computeConv2DInfo(o,a.shape,i,1,l,c,!1,h),m=new mn(f.inShape,"float32"),g=m.values,y=n.data.get(r.dataId).values,x=n.data.get(a.dataId).values,[A,b,w]=p,{batchSize:S,filterHeight:k,filterWidth:E,inChannels:_,inHeight:D,inWidth:R,outChannels:P,outHeight:C,outWidth:M,strideHeight:L,strideWidth:G}=f;h=f.dataFormat;let K=k-1-f.padInfo.top,X=E-1-f.padInfo.left,Y=h==="channelsLast",ne=m.strides[0],ee=Y?m.strides[1]:m.strides[2],ie=Y?m.strides[2]:1,se=Y?1:m.strides[1],pe=d[0],ce=Y?d[1]:d[2],xe=Y?d[2]:1,oe=Y?1:d[1];for(let Re=0;Re<S;++Re)for(let _e=0;_e<_;++_e)for(let Ve=0;Ve<D;++Ve){let Me=Ve-K,it=Math.max(0,Math.ceil(Me/L)),gt=Math.min(C,(k+Me)/L);for(let pt=0;pt<R;++pt){let yt=pt-X,Oe=Math.max(0,Math.ceil(yt/G)),Tt=Math.min(M,(E+yt)/G),kt=0;for(let tn=it;tn<gt;++tn){let Is=tn*L-Me;for(let hn=Oe;hn<Tt;++hn){let Zn=hn*G-yt,Cs=pe*Re+ce*tn+xe*hn,Ts=A*(k-1-Is)+b*(E-1-Zn)+w*_e;for(let Bn=0;Bn<P;++Bn){let js=y[Cs+oe*Bn],Yn=x[Ts+Bn];kt+=js*Yn}}}let Kn=ne*Re+ee*Ve+ie*pt+se*_e;g[Kn]=kt}}return n.makeTensorInfo(m.shape,m.dtype,m.values)}var IZ={kernelName:vo,backendName:"cpu",kernelFunc:SZ};function CZ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dilations:l}=s;Te([r,a],"conv3d");let u=T.computeConv3DInfo(r.shape,a.shape,o,l,i),{filterDepth:c,filterHeight:p,filterWidth:d,dilationDepth:h,dilationHeight:f,dilationWidth:m,padInfo:g}=u,y=g.front,x=g.left,A=g.top,b=new mn(u.outShape,r.dtype),w=n.data.get(r.dataId).values,S=n.data.get(a.dataId).values,k=b.values,E=v.computeStrides(r.shape),_=v.computeStrides(a.shape);for(let D=0;D<u.batchSize;++D){let R=D*E[0],P=D*b.strides[0];for(let C=0;C<u.outDepth;++C){let M=P+C*b.strides[1],L=C*u.strideDepth-y;for(let G=0;G<c;++G){let K=L+G*h;if(K<0||K>=u.inDepth)continue;let X=G*_[0],Y=R+K*E[1];for(let ne=0;ne<u.outHeight;++ne){let ee=M+ne*b.strides[2],ie=ne*u.strideHeight-A;for(let se=0;se<p;++se){let pe=ie+se*f;if(pe<0||pe>=u.inHeight)continue;let ce=X+se*_[1],xe=Y+pe*E[2];for(let oe=0;oe<u.outWidth;++oe){let Re=ee+oe*u.outChannels,_e=oe*u.strideWidth-x;for(let Ve=0;Ve<d;++Ve){let Me=_e+Ve*m;if(Me<0||Me>=u.inWidth)continue;let it=ce+Ve*_[2],gt=xe+Me*u.inChannels,pt=it;for(let yt=0;yt<u.inChannels;++yt){let Oe=w[gt+yt];for(let Tt=0;Tt<u.outChannels;++Tt)k[Re+Tt]+=Oe*S[pt+Tt];pt+=u.outChannels}}}}}}}}return n.makeTensorInfo(b.shape,b.dtype,b.values)}var TZ={kernelName:Hp,backendName:"cpu",kernelFunc:CZ};function NZ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,pad:i,filterShape:l}=s;Te([r,a],"conv3dBackpropFilterV2");let u=v.computeStrides(r.shape),c=v.computeStrides(a.shape),p=T.computeConv3DInfo(r.shape,l,o,1,i),d=p.strideDepth,h=p.strideHeight,f=p.strideWidth,m=p.filterDepth,g=p.filterHeight,y=p.filterWidth,x=new mn(p.filterShape,"float32"),A=x.values,[b,w,S,k]=x.strides,E=n.data.get(a.dataId).values,[_,D,R,P]=c,C=n.data.get(r.dataId).values,[M,L,G,K]=u,X=p.padInfo.front,Y=p.padInfo.left,ne=p.padInfo.top;for(let ee=0;ee<m;++ee){let ie=Math.max(0,Math.ceil((X-ee)/d)),se=Math.min(p.outDepth,(p.inDepth+X-ee)/d),pe=ee*b;for(let ce=0;ce<g;++ce){let xe=Math.max(0,Math.ceil((ne-ce)/h)),oe=Math.min(p.outHeight,(p.inHeight+ne-ce)/h),Re=ce*w+pe;for(let _e=0;_e<y;++_e){let Ve=Math.max(0,Math.ceil((Y-_e)/f)),Me=Math.min(p.outWidth,(p.inWidth+Y-_e)/f),it=_e*S+Re;for(let gt=0;gt<p.inChannels;++gt){let pt=gt*k+it;for(let yt=0;yt<p.outChannels;++yt){let Oe=0;for(let Tt=0;Tt<p.batchSize;++Tt){let kt=Tt*M,Kn=Tt*_;for(let tn=ie;tn<se;++tn){let hn=(ee+tn*d-X)*L+kt,Zn=tn*D+Kn;for(let Cs=xe;Cs<oe;++Cs){let Bn=(ce+Cs*h-ne)*G+hn,js=Cs*R+Zn;for(let Yn=Ve;Yn<Me;++Yn){let pa=(_e+Yn*f-Y)*K+Bn,Nu=Yn*P+js;Oe+=C[pa+gt]*E[Nu+yt]}}}}A[pt+yt]=Oe}}}}}return n.makeTensorInfo(x.shape,x.dtype,x.values)}var EZ={kernelName:n0,backendName:"cpu",kernelFunc:NZ};function RZ(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{pad:o,strides:i,inputShape:l}=s;Te([r],"conv3dBackpropInputV2");let u=v.computeStrides(r.shape),c=v.computeStrides(a.shape),p=T.computeConv3DInfo(l,a.shape,i,1,o),d=new mn(p.inShape,"float32"),h=d.values,[f,m,g,y]=d.strides,x=n.data.get(r.dataId).values,[A,b,w,S]=u,k=n.data.get(a.dataId).values,[E,_,D,R]=c,{batchSize:P,filterDepth:C,filterHeight:M,filterWidth:L,inChannels:G,inDepth:K,inHeight:X,inWidth:Y,outChannels:ne,outDepth:ee,outHeight:ie,outWidth:se,strideDepth:pe,strideHeight:ce,strideWidth:xe}=p,oe=C-1-p.padInfo.front,Re=M-1-p.padInfo.top,_e=L-1-p.padInfo.left;for(let Ve=0;Ve<P;++Ve)for(let Me=0;Me<G;++Me)for(let it=0;it<K;++it){let gt=it-oe,pt=Math.max(0,Math.ceil(gt/pe)),yt=Math.min(ee,(C+gt)/pe);for(let Oe=0;Oe<X;++Oe){let Tt=Oe-Re,kt=Math.max(0,Math.ceil(Tt/ce)),Kn=Math.min(ie,(M+Tt)/ce);for(let tn=0;tn<Y;++tn){let Is=tn-_e,hn=Math.max(0,Math.ceil(Is/xe)),Zn=Math.min(se,(L+Is)/xe),Cs=0;for(let Ts=pt;Ts<yt;++Ts){let Bn=Ts*pe-gt;for(let js=kt;js<Kn;++js){let Yn=js*ce-Tt;for(let da=hn;da<Zn;++da){let pa=da*xe-Is,Nu=A*Ve+b*Ts+w*js+S*da,La=E*(C-1-Bn)+_*(M-1-Yn)+D*(L-1-pa)+R*Me;for(let ha=0;ha<ne;++ha){let Ld=x[Nu+ha],Eu=k[La+ha];Cs+=Ld*Eu}}}}h[f*Ve+m*it+g*Oe+y*tn+Me]=Cs}}}return n.makeTensorInfo(d.shape,d.dtype,d.values)}var _Z={kernelName:s0,backendName:"cpu",kernelFunc:RZ},DZ=xt(wo,e=>Math.cos(e)),$Z={kernelName:wo,backendName:"cpu",kernelFunc:DZ},PZ=xt(ko,e=>Math.cosh(e)),FZ={kernelName:ko,backendName:"cpu",kernelFunc:PZ};function OZ(e){let{inputs:t,backend:n,attrs:s}=e,{image:r,boxes:a,boxInd:o}=t,{cropSize:i,method:l,extrapolationValue:u}=s,[c,p,d,h]=r.shape,f=a.shape[0],[m,g]=i,y=We([f,m,g,h],"float32"),x=n.data.get(a.dataId).values,A=n.data.get(o.dataId).values,b=n.data.get(r.dataId).values,w=v.computeStrides(r.shape),S=v.computeStrides(y.shape);for(let k=0;k<f;k++){let E=k*4,_=x[E],D=x[E+1],R=x[E+2],P=x[E+3],C=A[k];if(C>=c)continue;let M=m>1?(R-_)*(p-1)/(m-1):0,L=g>1?(P-D)*(d-1)/(g-1):0;for(let G=0;G<m;G++){let K=m>1?_*(p-1)+G*M:.5*(_+R)*(p-1);if(K<0||K>p-1){for(let X=0;X<g;X++)for(let Y=0;Y<h;Y++){let ne=Y+X*S[2]+G*S[1]+k*S[0];y.values[ne]=u}continue}if(l==="bilinear"){let X=Math.floor(K),Y=Math.ceil(K),ne=K-X;for(let ee=0;ee<g;ee++){let ie=g>1?D*(d-1)+ee*L:.5*(D+P)*(d-1);if(ie<0||ie>d-1){for(let xe=0;xe<h;xe++){let oe=xe+ee*S[2]+G*S[1]+k*S[0];y.values[oe]=u}continue}let se=Math.floor(ie),pe=Math.ceil(ie),ce=ie-se;for(let xe=0;xe<h;xe++){let oe=xe+se*w[2]+X*w[1]+C*w[0],Re=b[oe];oe=xe+pe*w[2]+X*w[1]+C*w[0];let _e=b[oe];oe=xe+se*w[2]+Y*w[1]+C*w[0];let Ve=b[oe];oe=xe+pe*w[2]+Y*w[1]+C*w[0];let Me=b[oe],it=Re+(_e-Re)*ce,gt=Ve+(Me-Ve)*ce;oe=xe+ee*S[2]+G*S[1]+k*S[0],y.values[oe]=it+(gt-it)*ne}}}else for(let X=0;X<g;++X){let Y=g>1?D*(d-1)+X*L:.5*(D+P)*(d-1);if(Y<0||Y>d-1){for(let ie=0;ie<h;ie++){let se=ie+X*S[2]+G*S[1]+k*S[0];y.values[se]=u}continue}let ne=Math.round(Y),ee=Math.round(K);for(let ie=0;ie<h;ie++){let se=ie+ne*w[2]+ee*w[1]+C*w[0],pe=ie+X*S[2]+G*S[1]+k*S[0];y.values[pe]=b[se]}}}}return n.makeTensorInfo(y.shape,y.dtype,y.values)}var MZ={kernelName:yl,backendName:"cpu",kernelFunc:OZ};function zZ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,exclusive:o,reverse:i}=s;Te(r,"cumprod");let l=T.getAxesPermutation([a],r.shape.length),u=r;l!=null&&(u=vs({inputs:{x:r},backend:n,attrs:{perm:l}}));let c=T.getInnerMostAxes(1,r.shape.length)[0];if(c!==u.shape.length-1)throw new Error(`backend.cumprod in CPU expects an inner-most axis=${u.shape.length-1} but got axis=${c}`);let p=Un(u.dtype,"int32"),d=v.makeOnesTypedArray(v.sizeFromShape(u.shape),p),h=n.data.get(u.dataId).values,f=u.shape[u.shape.length-1],m=i?(y,x)=>y+f-x-1:(y,x)=>y+x;for(let y=0;y<h.length;y+=f)for(let x=0;x<f;x++){let A=m(y,x);if(x===0)d[A]=o?1:h[A];else{let b=m(y,x-1);d[A]=o?h[b]*d[b]:h[A]*d[b]}}let g=n.makeTensorInfo(u.shape,p,d);if(l!=null){let y=T.getUndoAxesPermutation(l),x=vs({inputs:{x:g},backend:n,attrs:{perm:y}});return n.disposeIntermediateTensorInfo(g),n.disposeIntermediateTensorInfo(u),x}return g}var LZ={kernelName:gl,backendName:"cpu",kernelFunc:zZ};function BZ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,exclusive:o,reverse:i}=s;Te(r,"cumsum");let l=T.getAxesPermutation([a],r.shape.length),u=r;l!=null&&(u=vs({inputs:{x:r},backend:n,attrs:{perm:l}}));let c=T.getInnerMostAxes(1,r.shape.length)[0];if(c!==u.shape.length-1)throw new Error(`backend.cumsum in CPU expects an inner-most axis=${u.shape.length-1} but got axis=${c}`);let p=Un(u.dtype,"int32"),d=v.makeZerosTypedArray(v.sizeFromShape(u.shape),p),h=n.data.get(u.dataId).values,f=u.shape[u.shape.length-1],m=i?(y,x)=>y+f-x-1:(y,x)=>y+x;for(let y=0;y<h.length;y+=f)for(let x=0;x<f;x++){let A=m(y,x);if(x===0)d[A]=o?0:h[A];else{let b=m(y,x-1);d[A]=o?h[b]+d[b]:h[A]+d[b]}}let g=n.makeTensorInfo(u.shape,p,d);if(l!=null){let y=T.getUndoAxesPermutation(l),x=vs({inputs:{x:g},backend:n,attrs:{perm:y}});return n.disposeIntermediateTensorInfo(g),n.disposeIntermediateTensorInfo(u),x}return g}var WZ={kernelName:So,backendName:"cpu",kernelFunc:BZ};function VZ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,weights:a}=t,{size:o,binaryOutput:i}=s;if(r.shape.length===1){let l=n.data.get(r.dataId).values,u=n.data.get(a.dataId).values,c=Lx(l,u,a.dtype,a.shape,o);return n.makeTensorInfo([o],a.dtype,c)}else if(r.shape.length===2){let l=n.bufferSync(r),u=n.bufferSync(a),c=_S(l,u,o,i);return n.makeTensorInfo(c.shape,a.dtype,c.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${r.shape.length}.`)}var UZ={kernelName:r0,backendName:"cpu",kernelFunc:VZ};function GZ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockSize:a,dataFormat:o}=s;v.assert(o==="NHWC",()=>`Only NHWC dataFormat supported on CPU for depthToSpace. Got ${o}`);let i=r.shape[0],l=r.shape[1],u=r.shape[2],c=r.shape[3],p=l*a,d=u*a,h=c/(a*a),f=n.data.get(r.dataId).values,m=new Float32Array(i*p*d*h),g=0;for(let y=0;y<i;++y)for(let x=0;x<p;++x){let A=Math.floor(x/a),b=x%a;for(let w=0;w<d;++w){let S=Math.floor(w/a),k=w%a,E=(b*a+k)*h;for(let _=0;_<h;++_){let R=_+E+c*(S+u*(A+l*y));m[g++]=f[R]}}}return n.makeTensorInfo([i,p,d,h],r.dtype,m)}var HZ={kernelName:Al,backendName:"cpu",kernelFunc:GZ};function bI(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dilations:l,dimRoundingMode:u}=s;Te([r,a],"depthwiseConv2DNative");let c=v.computeStrides(r.shape),p=v.computeStrides(a.shape),d=l;d==null&&(d=[1,1]),v.assert(T.eitherStridesOrDilationsAreOne(o,d),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${o} and dilations '${d}'`);let h=T.computeConv2DInfo(r.shape,a.shape,o,d,i,u,!0),{filterHeight:f,filterWidth:m,dilationHeight:g,dilationWidth:y,padInfo:x}=h,A=x.left,b=x.top,w=h.outChannels/h.inChannels,S=new mn(h.outShape,r.dtype),k=n.data.get(r.dataId).values,E=n.data.get(a.dataId).values,_=S.values;for(let D=0;D<h.batchSize;++D){let R=D*c[0],P=D*S.strides[0];for(let C=0;C<h.outHeight;++C){let M=P+C*S.strides[1],L=C*h.strideHeight-b;for(let G=0;G<f;++G){let K=L+G*g;if(K<0||K>=h.inHeight)continue;let X=G*p[0],Y=R+K*c[1];for(let ne=0;ne<h.outWidth;++ne){let ee=M+ne*S.strides[2],ie=ne*h.strideWidth-A;for(let se=0;se<m;++se){let pe=ie+se*y;if(pe<0||pe>=h.inWidth)continue;let ce=X+se*p[1],xe=Y+pe*h.inChannels,oe=ee,Re=ce;for(let _e=0;_e<h.inChannels;++_e){let Ve=k[xe+_e];for(let Me=0;Me<w;++Me)_[oe+Me]+=Ve*E[Re+Me];oe+=w,Re+=w}}}}}}return n.makeTensorInfo(S.shape,S.dtype,S.values)}var jZ={kernelName:Io,backendName:"cpu",kernelFunc:bI};function qZ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,dilations:i,pad:l,dimRoundingMode:u,filterShape:c}=s;Te([r,a],"depthwiseConv2dNativeBackpropFilter");let p=T.computeConv2DInfo(r.shape,c,o,i,l,u,!0),{strideHeight:d,strideWidth:h,filterHeight:f,filterWidth:m}=p,g=new mn(p.filterShape,"float32"),y=p.padInfo.left,x=p.padInfo.top,A=p.outChannels/p.inChannels,b=n.data.get(r.dataId).values,w=new mn(r.shape,r.dtype,b),S=n.data.get(a.dataId).values,k=new mn(a.shape,a.dtype,S);for(let E=0;E<f;++E){let _=Math.max(0,Math.ceil((x-E)/d)),D=Math.min(p.outHeight,(p.inHeight+x-E)/d);for(let R=0;R<m;++R){let P=Math.max(0,Math.ceil((y-R)/h)),C=Math.min(p.outWidth,(p.inWidth+y-R)/h);for(let M=0;M<p.outChannels;++M){let L=Math.trunc(M/A),G=M%A,K=0;for(let X=0;X<p.batchSize;++X)for(let Y=_;Y<D;++Y){let ne=E+Y*d-x;for(let ee=P;ee<C;++ee){let ie=R+ee*h-y;K+=w.get(X,ne,ie,L)*k.get(X,Y,ee,M)}}g.set(K,E,R,L,G)}}}return n.makeTensorInfo(g.shape,g.dtype,g.values)}var XZ={kernelName:a0,backendName:"cpu",kernelFunc:qZ};function KZ(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{strides:o,dilations:i,pad:l,dimRoundingMode:u,inputShape:c}=s;Te([r,a],"depthwiseConv2DNativeBackpropInput");let p=v.computeStrides(r.shape),d=v.computeStrides(a.shape),h=T.computeConv2DInfo(c,a.shape,o,i,l,u,!0),f=new mn(h.inShape,"float32"),m=f.values,[g,y,x]=f.strides,A=n.data.get(r.dataId).values,[b,w,S]=p,k=n.data.get(a.dataId).values,[E,_,D]=d,{batchSize:R,filterHeight:P,filterWidth:C,inChannels:M,inHeight:L,inWidth:G,outChannels:K,outHeight:X,outWidth:Y,strideHeight:ne,strideWidth:ee}=h,ie=P-1-h.padInfo.top,se=C-1-h.padInfo.left,pe=K/M;for(let ce=0;ce<R;++ce)for(let xe=0;xe<M;++xe)for(let oe=0;oe<L;++oe){let Re=oe-ie,_e=Math.max(0,Math.ceil(Re/ne)),Ve=Math.min(X,(P+Re)/ne);for(let Me=0;Me<G;++Me){let it=Me-se,gt=Math.max(0,Math.ceil(it/ee)),pt=Math.min(Y,(C+it)/ee),yt=0;for(let Oe=_e;Oe<Ve;++Oe){let Tt=Oe*ne-Re;for(let kt=gt;kt<pt;++kt){let Kn=kt*ee-it,tn=b*ce+w*Oe+S*kt,Is=E*(P-1-Tt)+_*(C-1-Kn)+D*xe;for(let hn=0;hn<pe;++hn){let Zn=xe*pe+hn,Cs=A[tn+Zn],Ts=k[Is+hn];yt+=Cs*Ts}}}m[g*ce+y*oe+x*Me+xe]=yt}}return n.makeTensorInfo(f.shape,f.dtype,f.values)}var ZZ={kernelName:o0,backendName:"cpu",kernelFunc:KZ};function YZ(e){let{inputs:t,backend:n}=e,{x:s}=t,r=v.sizeFromShape(s.shape),a=n.data.get(s.dataId).values,o=We([r,r],s.dtype),i=o.values;for(let u=0;u<a.length;u++)i[u*r+u]=a[u];let l=[...s.shape,...s.shape];return n.makeTensorInfo(l,o.dtype,o.values)}var JZ={kernelName:i0,backendName:"cpu",kernelFunc:YZ},QZ={kernelName:jp,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:s,filter:r}=e,{strides:a,pad:o,dilations:i}=n,l=t,u=l.data.get(s.dataId).values,c=s.shape.length,p=l.data.get(r.dataId).values,d=r.shape.length,{batchSize:h,inHeight:f,inWidth:m,inChannels:g,outHeight:y,outWidth:x,padInfo:A,strideHeight:b,strideWidth:w,filterHeight:S,filterWidth:k,dilationHeight:E,dilationWidth:_,outShape:D}=T.computeDilation2DInfo(s.shape,r.shape,a,o,"NHWC",i),R=v.sizeFromShape(D),P=D.length,C=v.getArrayFromDType(s.dtype,R);for(let L=0;L<h;++L)for(let G=0;G<y;++G){let K=G*b-A.top;for(let X=0;X<x;++X){let Y=X*w-A.left;for(let ne=0;ne<g;++ne){let ee=Number.MIN_SAFE_INTEGER;for(let se=0;se<S;++se){let pe=K+se*E;if(pe>=0&&pe<f)for(let ce=0;ce<k;++ce){let xe=Y+ce*_;if(xe>=0&&xe<m){let oe=v.locToIndex([L,pe,xe,ne],c,v.computeStrides(s.shape)),Re=v.locToIndex([se,ce,ne],d,v.computeStrides(r.shape)),_e=u[oe]+p[Re];_e>ee&&(ee=_e)}}}let ie=v.locToIndex([L,G,X,ne],P,v.computeStrides(D));C[ie]=ee}}}return{dataId:l.write(v.toTypedArray(C,s.dtype),D,s.dtype),shape:D,dtype:s.dtype}}},eY={kernelName:bm,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:s,filter:r,dy:a}=e,{strides:o,pad:i,dilations:l}=n,u=t,c=v.toNestedArray(s.shape,u.data.get(s.dataId).values),p=v.toNestedArray(r.shape,u.data.get(r.dataId).values),{batchSize:d,inHeight:h,inWidth:f,inChannels:m,outHeight:g,outWidth:y,padInfo:x,strideHeight:A,strideWidth:b,filterHeight:w,filterWidth:S,dilationHeight:k,dilationWidth:E,outShape:_}=T.computeDilation2DInfo(s.shape,r.shape,o,i,"NHWC",l);v.assert(a.rank===_.length,()=>`Error in ${bm}, dy must have the same rank as output ${_.length}, but got ${a.rank}`);let D=v.toNestedArray(_,u.data.get(a.dataId).values),R=v.makeZerosNestedTypedArray(r.shape,r.dtype);for(let C=0;C<d;++C)for(let M=0;M<g;++M){let L=M*A-x.top;for(let G=0;G<y;++G){let K=G*b-x.left;for(let X=0;X<m;++X){let Y=Number.MIN_SAFE_INTEGER,ne=0,ee=0;for(let ie=0;ie<w;++ie){let se=L+ie*k;if(se>=0&&se<h)for(let pe=0;pe<S;++pe){let ce=K+pe*E;if(ce>=0&&ce<f){let xe=c[C][se][ce][X]+p[ie][pe][X];xe>Y&&(Y=xe,ne=ie,ee=pe)}}}R[ne][ee][X]+=D[C][M][G][X]}}}return{dataId:u.write(v.toTypedArray(R,s.dtype),r.shape,r.dtype),shape:r.shape,dtype:r.dtype}}},tY={kernelName:xm,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:s,filter:r,dy:a}=e,{strides:o,pad:i,dilations:l}=n,u=t,c=v.toNestedArray(s.shape,u.data.get(s.dataId).values),p=v.toNestedArray(r.shape,u.data.get(r.dataId).values),{batchSize:d,inHeight:h,inWidth:f,inChannels:m,outHeight:g,outWidth:y,padInfo:x,strideHeight:A,strideWidth:b,filterHeight:w,filterWidth:S,dilationHeight:k,dilationWidth:E,outShape:_}=T.computeDilation2DInfo(s.shape,r.shape,o,i,"NHWC",l);v.assert(a.rank===_.length,()=>`Error in ${xm}, dy must have the same rank as output ${_.length}, but got ${a.rank}`);let D=v.toNestedArray(_,u.data.get(a.dataId).values),R=v.makeZerosNestedTypedArray(s.shape,s.dtype);for(let C=0;C<d;++C)for(let M=0;M<g;++M){let L=M*A-x.top;for(let G=0;G<y;++G){let K=G*b-x.left;for(let X=0;X<m;++X){let Y=Number.MIN_SAFE_INTEGER,ne=L<0?0:L,ee=K<0?0:K;for(let ie=0;ie<w;++ie){let se=L+ie*k;if(se>=0&&se<h)for(let pe=0;pe<S;++pe){let ce=K+pe*E;if(ce>=0&&ce<f){let xe=c[C][se][ce][X]+p[ie][pe][X];xe>Y&&(Y=xe,ne=se,ee=ce)}}}R[C][ne][ee][X]+=D[C][M][G][X]}}}return{dataId:u.write(v.toTypedArray(R,s.dtype),s.shape,s.dtype),shape:s.shape,dtype:s.dtype}}};function Lh(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;Te(r,"sum");let i;r.dtype==="bool"?i=uo({inputs:{x:r},backend:n,attrs:{dtype:"int32"}}):i=ra({inputs:{x:r},backend:n});let l=i.shape.length,u=v.parseAxisParam(a,i.shape),c=T.getAxesPermutation(u,l),p=u,d=i;c!=null&&(d=vs({inputs:{x:i},backend:n,attrs:{perm:c}}),p=T.getInnerMostAxes(p.length,l)),T.assertAxesAreInnerMostDims("sum",p,d.shape.length);let[h,f]=T.computeOutAndReduceShapes(d.shape,p),m=T.upcastType(d.dtype,"int32"),g=Mm(n,h,m),y=v.sizeFromShape(f),x=n.data.get(g.dataId).values,A=n.data.get(d.dataId).values;for(let b=0;b<x.length;++b){let w=b*y,S=0;for(let k=0;k<y;++k)S+=A[w+k];x[b]=S}if(o){let b=T.expandShapeToKeepDim(g.shape,u),w=g;g=Rt({inputs:{x:g},backend:n,attrs:{shape:b}}),n.disposeIntermediateTensorInfo(w)}return n.disposeIntermediateTensorInfo(i),c!=null&&n.disposeIntermediateTensorInfo(d),g}var nY={kernelName:ni,backendName:"cpu",kernelFunc:Lh};function sY(e){let{inputs:t,backend:n,attrs:s}=e,{equation:r}=s,a=t,{allDims:o,summedDims:i,idDims:l}=T.decodeEinsumEquation(r,a.length);T.checkEinsumDimSizes(o.length,l,a);let{path:u,steps:c}=T.getEinsumComputePath(i,l),p=c.length,d=null,h=o.length,f=[];for(let m=0;m<p;++m){for(let g of c[m]){let{permutationIndices:y,expandDims:x}=T.getEinsumPermutation(h,l[g]),A;T.isIdentityPermutation(y)?A=a[g]:(A=vs({inputs:{x:a[g]},backend:n,attrs:{perm:y}}),f.push(A));let b=A.shape.slice();for(let w=0;w<x.length;++w)b.splice(x[w],0,1);v.arraysEqual(A.shape,b)||(A=Rt({inputs:{x:A},backend:n,attrs:{shape:b}}),f.push(A)),d===null?d=A:(d=C2({inputs:{a:A,b:d},backend:n}),f.push(d))}m<p-1&&(u[m]>=0&&(d=Lh({inputs:{x:d},backend:n,attrs:{axis:u[m]-(o.length-h),keepDims:!1}}),f.push(d)),h--)}for(let m of f)m!==d&&n.disposeIntermediateTensorInfo(m);return d}var rY={kernelName:qp,backendName:"cpu",kernelFunc:sY};function aY(e){let{inputs:t,backend:n}=e,{dy:s,y:r}=t;Te([s,r],"eluGrad");let a=new Float32Array(v.sizeFromShape(r.shape)),o=n.data.get(r.dataId).values,i=n.data.get(s.dataId).values;for(let l=0;l<o.length;++l){let u=o[l];u>=1?a[l]=i[l]:a[l]=i[l]*(u+1)}return n.makeTensorInfo(r.shape,"float32",a)}var oY={kernelName:l0,backendName:"cpu",kernelFunc:aY},iY=T.ERF_P,lY=T.ERF_A1,uY=T.ERF_A2,cY=T.ERF_A3,dY=T.ERF_A4,pY=T.ERF_A5,hY=xt(Ec,e=>{let t=Math.sign(e),n=Math.abs(e),s=1/(1+iY*n);return t*(1-((((pY*s+dY)*s+cY)*s+uY)*s+lY)*s*Math.exp(-n*n))}),fY={kernelName:Ec,backendName:"cpu",kernelFunc:hY};function Bm(e){let{inputs:t,backend:n,attrs:s}=e,{input:r}=t,{dim:a}=s,o=r.shape.length,i=r.shape.slice(),l=a;return a<0&&(v.assert(-(o+1)<=a,()=>`Axis must be in the interval [${-(o+1)}, ${o}]`),l=o+a+1),i.splice(l,0,1),Rt({inputs:{x:r},backend:n,attrs:{shape:i}})}var mY={kernelName:bl,backendName:"cpu",kernelFunc:Bm},gY=cn((e,t)=>e/t),Zx=Tn(Co,gY),py={kernelName:Co,backendName:"cpu",kernelFunc:Zx};function vI(e,t,n){let s=e.shape,r=s[0],a=s[1],o=n.data.get(e.dataId),i=o.complexTensorInfos.real,l=o.complexTensorInfos.imag,u=[r,a],c=v.sizeFromShape(u),p=v.getTypedArrayFromDType("float32",c),d=v.getTypedArrayFromDType("float32",c);for(let g=0;g<r;g++){let y=il({inputs:{x:i},backend:n,attrs:{begin:[g,0],size:[1,a]}}),x=il({inputs:{x:l},backend:n,attrs:{begin:[g,0],size:[1,a]}}),A=_s({inputs:{real:y,imag:x},backend:n}),{real:b,imag:w}=yY(A,t,n),S=T.mergeRealAndImagArrays(b,w);for(let k=0;k<a;k++){let E=T.getComplexWithIndex(S,k);p[g*a+k]=E.real,d[g*a+k]=E.imag}n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(x),n.disposeIntermediateTensorInfo(A)}let h=n.makeTensorInfo(u,"float32",p),f=n.makeTensorInfo(u,"float32",d),m=_s({inputs:{real:h,imag:f},backend:n});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),m}function yY(e,t,n){let s=v.sizeFromShape(e.shape),r=n.data.get(e.dataId),a=n.data.get(r.complexTensorInfos.real.dataId).values,o=n.data.get(r.complexTensorInfos.imag.dataId).values;if(AY(s)){let i=hy(a,o,s,t,n),l=[e.shape[0],e.shape[1]];if(t){let u=n.makeTensorInfo(l,"float32",i.real),c=n.makeTensorInfo(l,"float32",i.imag),p=n.makeTensorInfo([],"float32",v.createScalarValue(s,"float32")),d=ra({inputs:{x:p},backend:n}),h=py.kernelFunc({inputs:{a:u,b:p},backend:n}),f=py.kernelFunc({inputs:{a:c,b:d},backend:n}),m=n.data.get(h.dataId).values,g=n.data.get(f.dataId).values;return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),{real:m,imag:g}}return i}else{let i=T.mergeRealAndImagArrays(a,o),l=xY(i,s,t);return T.splitRealAndImagArrays(l)}}function AY(e){return(e&e-1)===0}function hy(e,t,n,s,r){if(n===1)return{real:e,imag:t};let a=T.mergeRealAndImagArrays(e,t),o=n/2,i=T.complexWithEvenIndex(a),l=i.real,u=i.imag,c=[l.length],p=r.makeTensorInfo(c,"float32",l),d=r.makeTensorInfo(c,"float32",u),h=_s({inputs:{real:p,imag:d},backend:r}),f=T.complexWithOddIndex(a),m=f.real,g=f.imag,y=[m.length],x=r.makeTensorInfo(y,"float32",m),A=r.makeTensorInfo(y,"float32",g),b=_s({inputs:{real:x,imag:A},backend:r}),w=hy(l,u,o,s,r),S=w.real,k=w.imag,E=[S.length],_=r.makeTensorInfo(E,"float32",S),D=r.makeTensorInfo(E,"float32",k),R=_s({inputs:{real:_,imag:D},backend:r}),P=hy(m,g,o,s,r),C=P.real,M=P.imag,L=[C.length],G=r.makeTensorInfo(L,"float32",C),K=r.makeTensorInfo(L,"float32",M),X=_s({inputs:{real:G,imag:K},backend:r}),Y=T.exponents(n,s),ne=[Y.real.length],ee=r.makeTensorInfo(ne,"float32",Y.real),ie=r.makeTensorInfo(ne,"float32",Y.imag),se=_s({inputs:{real:ee,imag:ie},backend:r}),pe=C2({inputs:{a:se,b:X},backend:r}),ce=fc({inputs:{a:R,b:pe},backend:r}),xe=Xx({inputs:{a:R,b:pe},backend:r}),oe=ol({inputs:{input:ce},backend:r}),Re=ol({inputs:{input:xe},backend:r}),_e=mc({inputs:{input:ce},backend:r}),Ve=mc({inputs:{input:xe},backend:r}),Me=gc({inputs:[oe,Re],backend:r,attrs:{axis:0}}),it=gc({inputs:[_e,Ve],backend:r,attrs:{axis:0}}),gt=r.data.get(Me.dataId).values,pt=r.data.get(it.dataId).values;return r.disposeIntermediateTensorInfo(p),r.disposeIntermediateTensorInfo(d),r.disposeIntermediateTensorInfo(h),r.disposeIntermediateTensorInfo(x),r.disposeIntermediateTensorInfo(A),r.disposeIntermediateTensorInfo(b),r.disposeIntermediateTensorInfo(_),r.disposeIntermediateTensorInfo(D),r.disposeIntermediateTensorInfo(R),r.disposeIntermediateTensorInfo(G),r.disposeIntermediateTensorInfo(K),r.disposeIntermediateTensorInfo(X),r.disposeIntermediateTensorInfo(ee),r.disposeIntermediateTensorInfo(ie),r.disposeIntermediateTensorInfo(se),r.disposeIntermediateTensorInfo(pe),r.disposeIntermediateTensorInfo(ce),r.disposeIntermediateTensorInfo(xe),r.disposeIntermediateTensorInfo(oe),r.disposeIntermediateTensorInfo(_e),r.disposeIntermediateTensorInfo(Re),r.disposeIntermediateTensorInfo(Ve),r.disposeIntermediateTensorInfo(Me),r.disposeIntermediateTensorInfo(it),{real:gt,imag:pt}}function xY(e,t,n){let s=new Float32Array(t*2);for(let r=0;r<t;r++){let a=0,o=0;for(let i=0;i<t;i++){let l=T.exponent(r*i,t,n),u=T.getComplexWithIndex(e,i);a+=u.real*l.real-u.imag*l.imag,o+=u.real*l.imag+u.imag*l.real}n&&(a/=t,o/=t),T.assignToTypedArray(s,a,o,r)}return s}function bY(e){let{inputs:t,backend:n}=e,{input:s}=t,r=v.sizeFromShape(s.shape),a=s.shape[s.shape.length-1],o=r/a,i=Rt({inputs:{x:s},backend:n,attrs:{shape:[o,a]}}),l=vI(i,!1,n),u=Rt({inputs:{x:l},backend:n,attrs:{shape:s.shape}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(l),u}var vY={kernelName:u0,backendName:"cpu",kernelFunc:bY};function Yx(e){let{backend:t,attrs:n}=e,{shape:s,value:r,dtype:a}=n,o=a||v.inferDtype(r),i=v.getArrayFromDType(o,v.sizeFromShape(s));return kY(i,r,o),t.makeTensorInfo(s,o,i)}var wY={kernelName:Rc,backendName:"cpu",kernelFunc:Yx};function kY(e,t,n){e.fill(t)}var SY={kernelName:wl,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:s}=e,r=n,a=v.getTypedArrayFromDType(s.dtype,v.sizeFromShape(s.shape)),[o,i,l,u]=s.shape,c=r.data.get(s.dataId).values;for(let d=0;d<o;d++){let h=d*l*i*u;for(let f=0;f<i;f++){let m=f*(l*u);for(let g=0;g<l;g++){let y=g*u;for(let x=0;x<u;x++){let A=Math.round(l-g-1),b=h+m+y+x,w=c[b];if(A>=0&&A<l){let S=A*u,k=h+m+S+x;w=c[k]}a[b]=w}}}}return{dataId:r.write(a,s.shape,s.dtype),shape:s.shape,dtype:s.dtype}}},IY=cn((e,t)=>Math.floor(e/t)),CY=Tn(Ro,IY,null,"int32"),TY={kernelName:Ro,backendName:"cpu",kernelFunc:CY};function NY(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:u,dataFormat:c,dilations:p,dimRoundingMode:d,activation:h,leakyreluAlpha:f}=s,m=xI({inputs:{x:r,filter:a},backend:n,attrs:{strides:l,pad:u,dataFormat:c,dilations:p,dimRoundingMode:d}});if(o){let g=m;if(c==="NCHW"&&o.shape.length===1&&o.shape[0]!==1){let y=Rt({inputs:{x:o},backend:n,attrs:{shape:[o.shape[0],1,1]}});m=fc({inputs:{a:m,b:y},backend:n}),n.disposeIntermediateTensorInfo(y)}else m=fc({inputs:{a:m,b:o},backend:n});n.disposeIntermediateTensorInfo(g)}if(h){let g=m;if(c==="NCHW"&&h==="prelu"&&i.shape.length===1&&i.shape[0]!==1){let y=Rt({inputs:{x:i},backend:n,attrs:{shape:[i.shape[0],1,1]}});m=Lm(n,m,h,y,f),n.disposeIntermediateTensorInfo(y)}else m=Lm(n,m,h,i,f);n.disposeIntermediateTensorInfo(g)}return m}var EY={kernelName:to,backendName:"cpu",kernelFunc:NY};function RY(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:u,dataFormat:c,dilations:p,dimRoundingMode:d,activation:h,leakyreluAlpha:f}=s,m=bI({inputs:{x:r,filter:a},backend:n,attrs:{strides:l,pad:u,dataFormat:c,dilations:p,dimRoundingMode:d}});if(o){let g=m;m=fc({inputs:{a:m,b:o},backend:n}),n.disposeIntermediateTensorInfo(g)}if(h){let g=m;m=Lm(n,m,h,i,f),n.disposeIntermediateTensorInfo(g)}return m}var _Y={kernelName:no,backendName:"cpu",kernelFunc:RY};function DY(e){let{inputs:t,backend:n}=e,{params:s,indices:r}=t,a=v.sizeFromShape(s.shape),o=r.shape,i=o[o.length-1],[l,u,c,p]=T.prepareAndValidate(s,r);if(u===0)return n.makeTensorInfo(l,s.dtype,[]);let d=n.data.get(r.dataId).values,h=n.bufferSync(s),f=LS(d,h,s.dtype,u,i,c,p,s.shape,a);return n.makeTensorInfo(l,s.dtype,f.values)}var $Y={kernelName:Sl,backendName:"cpu",kernelFunc:DY};function PY(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,indices:a}=t,{axis:o,batchDims:i}=s;Te([r,a],"gatherV2");let l=v.parseAxisParam(o,r.shape)[0],u=n.data.get(a.dataId).values,c=r.shape[l];for(let b=0;b<u.length;++b){let w=u[b];v.assert(w<=c-1&&w>=0,()=>`GatherV2: the index value ${w} is not in [0, ${c-1}]`)}let p=i;i==null&&(p=0);let d=v.sizeFromShape(a.shape),h=T.segment_util.collectGatherOpShapeInfo(r,a,l,p),f=Rt({inputs:{x:r},backend:n,attrs:{shape:[h.batchSize,h.outerSize,h.dimSize,h.sliceSize]}}),m=Rt({inputs:{x:a},backend:n,attrs:{shape:[h.batchSize,d/h.batchSize]}}),g=[h.batchSize,h.outerSize,d/h.batchSize,h.sliceSize],y=n.bufferSync(m),x=n.bufferSync(f),A=BS(x,y,g);return n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(m),n.makeTensorInfo(h.outputShape,A.dtype,A.values)}var FY={kernelName:kl,backendName:"cpu",kernelFunc:PY};function OY(e){let{inputs:t,backend:n}=e,{input:s}=t,r=v.sizeFromShape(s.shape),a=s.shape[s.shape.length-1],o=r/a,i=Rt({inputs:{x:s},backend:n,attrs:{shape:[o,a]}}),l=vI(i,!0,n),u=Rt({inputs:{x:l},backend:n,attrs:{shape:s.shape}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(l),u}var MY={kernelName:c0,backendName:"cpu",kernelFunc:OY},zY=xt(_c,e=>Number.isFinite(e)?1:0,"bool"),LY={kernelName:_c,backendName:"cpu",kernelFunc:zY},BY=xt(Dc,e=>Math.abs(e)===1/0?1:0,"bool"),WY={kernelName:Dc,backendName:"cpu",kernelFunc:BY},VY=xt(Cl,e=>Number.isNaN(e)?1:0,"bool"),UY={kernelName:Cl,backendName:"cpu",kernelFunc:VY};function GY(e){let{backend:t,attrs:n}=e,{start:s,stop:r,num:a}=n,o=HS(s,r,a);return t.makeTensorInfo([o.length],"float32",o)}var HY={kernelName:d0,backendName:"cpu",kernelFunc:GY},jY=xt($c,e=>Math.log1p(e)),qY={kernelName:$c,backendName:"cpu",kernelFunc:jY},XY=cn((e,t)=>e&&t),KY=Tn(El,XY,null,"bool"),ZY={kernelName:El,backendName:"cpu",kernelFunc:KY},YY=xt(Rl,e=>e?0:1,"bool"),JY={kernelName:Rl,backendName:"cpu",kernelFunc:YY},QY=cn((e,t)=>e||t),eJ=Tn(Pc,QY,null,"bool"),tJ={kernelName:Pc,backendName:"cpu",kernelFunc:eJ};function nJ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{depthRadius:a,bias:o,alpha:i,beta:l}=s;Te(r,"LRN");let u=r.shape[3],c=u-1,p=n.data.get(r.dataId).values,d=v.sizeFromShape(r.shape),h=new Float32Array(d);function f(m){let g=m%u,y=m-g+Math.max(0,g-a),x=m-g+Math.min(g+a,c),A=0;for(;y<=x;y++){let b=p[y];A+=b*b}return A}for(let m=0;m<d;m++){let g=f(m),y=p[m]*Math.pow(o+i*g,-l);h[m]=y}return n.makeTensorInfo(r.shape,r.dtype,h)}var sJ={kernelName:Kp,backendName:"cpu",kernelFunc:nJ};function rJ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,y:a,dy:o}=t,{depthRadius:i,bias:l,alpha:u,beta:c}=s;Te(o,"LRNGrad");let p=v.sizeFromShape(o.shape),d=o.shape[3],h=n.data.get(o.dataId).values,f=n.data.get(r.dataId).values,m=n.data.get(a.dataId).values,g=new Float32Array(p),y=p;for(let x=0;x<y;x++){let A=x%d,b=x-A+Math.max(0,A-i),w=x-A+Math.min(d,A+i+1),S=0;for(let k=b;k<w;k++)S+=Math.pow(f[k],2);S=u*S+l;for(let k=b;k<w;k++){let E=-2*u*c*f[k]*m[x]/S;x===k&&(E+=Math.pow(S,-c)),E*=h[x],g[k]+=E}}return n.makeTensorInfo(o.shape,r.dtype,g)}var aJ={kernelName:p0,backendName:"cpu",kernelFunc:rJ};function wI(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reductionIndices:a,keepDims:o}=s,i=n,l=r.shape,u=l.length,c=v.parseAxisParam(a,l),p=c,d=T.getAxesPermutation(p,u),h=i.data.get(r.dataId).values;if(d!=null){let b=new Array(u);for(let w=0;w<b.length;w++)b[w]=l[d[w]];h=Vx(h,l,r.dtype,d,b),p=T.getInnerMostAxes(p.length,u),l=b}Te(r,"max"),T.assertAxesAreInnerMostDims("max",p,u);let[f,m]=T.computeOutAndReduceShapes(l,p),g=v.sizeFromShape(m),y=qS(h,g,f,r.dtype),x=i.write(y,f,r.dtype),A=f;return o&&(A=T.expandShapeToKeepDim(f,c)),{dataId:x,shape:A,dtype:r.dtype}}var oJ={kernelName:Oo,backendName:"cpu",kernelFunc:wI};function iJ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t;Te(r,"maxPool");let{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=s,u=1;v.assert(T.eitherStridesOrDilationsAreOne(o,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${o} and dilations '${u}'`);let c=T.computePool2DInfo(r.shape,a,o,u,i,l),p;if(c.filterWidth===1&&c.filterHeight===1&&v.arraysEqual(c.inShape,c.outShape))p=ra({inputs:{x:r},backend:n});else{let d=n.data.get(r.dataId).values,h=v.computeStrides(r.shape),f=Kx(d,r.shape,r.dtype,h,c,"max");p=n.makeTensorInfo(c.outShape,r.dtype,f.values)}return p}var lJ={kernelName:zo,backendName:"cpu",kernelFunc:iJ};function uJ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l,dataFormat:u}=s;Te(r,"maxPool3d");let c=T.computePool3DInfo(r.shape,a,o,1,i,l,u),p=n.data.get(r.dataId).values,d=AI(p,r.shape,r.dtype,v.computeStrides(r.shape),c,"max");return n.makeTensorInfo(d.shape,"float32",d.values)}var cJ={kernelName:Zp,backendName:"cpu",kernelFunc:uJ};function dJ(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,{filterSize:o,strides:i,pad:l,dimRoundingMode:u}=s;Te([r,a],"maxPool3DGrad");let c=T.computePool3DInfo(a.shape,o,i,1,l,u),p=n.bufferSync(a),d=JK(p,c),h=c.strideDepth,f=c.strideHeight,m=c.strideWidth,g=c.dilationDepth,y=c.dilationHeight,x=c.dilationWidth,A=c.effectiveFilterDepth,b=c.effectiveFilterHeight,w=c.effectiveFilterWidth,S=A-1-c.padInfo.front,k=w-1-c.padInfo.left,E=b-1-c.padInfo.top,_=We(a.shape,"float32"),D=n.bufferSync(r);for(let R=0;R<c.batchSize;++R)for(let P=0;P<c.inChannels;++P)for(let C=0;C<c.inDepth;++C)for(let M=0;M<c.inHeight;++M)for(let L=0;L<c.inWidth;++L){let G=C-S,K=M-E,X=L-k,Y=0;for(let ne=0;ne<A;ne+=g){let ee=(G+ne)/h;if(!(ee<0||ee>=c.outDepth||Math.floor(ee)!==ee))for(let ie=0;ie<b;ie+=y){let se=(K+ie)/f;if(!(se<0||se>=c.outHeight||Math.floor(se)!==se))for(let pe=0;pe<w;pe+=x){let ce=(X+pe)/m;if(ce<0||ce>=c.outWidth||Math.floor(ce)!==ce)continue;let xe=A*b*w-1-d.get(R,ee,se,ce,P),oe=ne*b*w+ie*w+pe,Re=xe===oe?1:0;if(Re===0)continue;Y+=D.get(R,ee,se,ce,P)*Re}}}_.set(Y,R,C,M,L,P)}return n.makeTensorInfo(_.shape,_.dtype,_.values)}var pJ={kernelName:f0,backendName:"cpu",kernelFunc:dJ};function hJ(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a,output:o}=t,i=a;Te([a,o],"maxPoolGrad");let{filterSize:l,strides:u,pad:c,dimRoundingMode:p}=s,d=T.computePool2DInfo(i.shape,l,u,1,c,p),h=n.data.get(i.dataId).values,f=We(d.outShape,i.dtype,yI(h,i.shape,i.dtype,d).values),m=d.strideHeight,g=d.strideWidth,y=d.dilationHeight,x=d.dilationWidth,A=d.effectiveFilterHeight,b=d.effectiveFilterWidth,w=b-1-d.padInfo.left,S=A-1-d.padInfo.top,k=We(i.shape,"float32"),E=n.data.get(r.dataId).values,_=We(r.shape,"float32",E);for(let D=0;D<d.batchSize;++D)for(let R=0;R<d.inChannels;++R)for(let P=0;P<d.inHeight;++P)for(let C=0;C<d.inWidth;++C){let M=P-S,L=C-w,G=0;for(let K=0;K<A;K+=y){let X=(M+K)/m;if(!(X<0||X>=d.outHeight||Math.floor(X)!==X))for(let Y=0;Y<b;Y+=x){let ne=(L+Y)/g;if(ne<0||ne>=d.outWidth||Math.floor(ne)!==ne)continue;let ee=A*b-1-f.get(D,X,ne,R),ie=K*b+Y,se=ee===ie?1:0;if(se===0)continue;G+=_.get(D,X,ne,R)*se}}k.set(G,D,P,C,R)}return n.makeTensorInfo(k.shape,k.dtype,k.values)}var fJ={kernelName:h0,backendName:"cpu",kernelFunc:hJ};function mJ(e,t,n,s,r){let a=v.computeStrides(t),o=Kx(e,t,n,a,r,"max"),i=yI(e,t,n,r,!0,s);return[o.values,i.values]}var gJ={kernelName:m0,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:s}=e,{filterSize:r,strides:a,pad:o,includeBatchInIndex:i}=t,l=n;Te(s,"MaxPoolWithArgmax");let u=l.data.get(s.dataId).values,c=T.computePool2DInfo(s.shape,r,a,[1,1],o),[p,d]=mJ(u,s.shape,s.dtype,i,c),h=l.write(p,c.outShape,s.dtype),f=l.write(d,c.outShape,s.dtype);return[{dataId:h,shape:c.outShape,dtype:s.dtype},{dataId:f,shape:c.outShape,dtype:"int32"}]}};function yJ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s,i=v.parseAxisParam(a,r.shape),u=T.computeOutAndReduceShapes(r.shape,i)[1],c=v.sizeFromShape(u),p=[],d=n.makeTensorInfo([],"float32",new Float32Array([c]));p.push(d);let h=uo({inputs:{x:r},backend:n,attrs:{dtype:"float32"}});p.push(h);let f=Zx({inputs:{a:h,b:d},backend:n});p.push(f);let m=Lh({inputs:{x:f},backend:n,attrs:{axis:a,keepDims:o}});return p.forEach(g=>n.disposeIntermediateTensorInfo(g)),m}var AJ={kernelName:Lo,backendName:"cpu",kernelFunc:yJ};function xJ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;Te(r,"min");let i=v.parseAxisParam(a,r.shape),l=i,u=T.getAxesPermutation(l,r.shape.length),c=r;u!=null&&(c=vs({inputs:{x:r},backend:n,attrs:{perm:u}}),l=T.getInnerMostAxes(l.length,r.shape.length)),T.assertAxesAreInnerMostDims("min",l,c.shape.length);let[p,d]=T.computeOutAndReduceShapes(c.shape,l),h=v.sizeFromShape(d),f=v.makeZerosTypedArray(v.sizeFromShape(p),c.dtype),m=n.data.get(c.dataId).values;for(let y=0;y<f.length;++y){let x=y*h,A=m[x];for(let b=0;b<h;++b){let w=m[x+b];(Number.isNaN(w)||w<A)&&(A=w)}f[y]=A}u!=null&&n.disposeIntermediateTensorInfo(c);let g=n.makeTensorInfo(p,c.dtype,f);if(o){let y=T.expandShapeToKeepDim(p,i),x=Rt({inputs:{x:g},backend:n,attrs:{shape:y}});return n.disposeIntermediateTensorInfo(g),x}return g}var bJ={kernelName:Bo,backendName:"cpu",kernelFunc:xJ};function vJ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{paddings:a,mode:o}=s;Te(r,"mirrorPad");let i=a.map((A,b)=>A[0]+r.shape[b]+A[1]),l=a.map(A=>A[0]),u=a.map((A,b)=>A[0]+r.shape[b]),c=o==="reflect"?0:1,p=n.data.get(r.dataId).values,d=r.shape.length,h=v.computeStrides(r.shape),f=v.sizeFromShape(i),m=i.length,g=v.computeStrides(i),y=v.getTypedArrayFromDType(r.dtype,f);for(let A=0;A<f;A++){let b=v.indexToLoc(A,m,g);for(let S=0;S<m;S++)b[S]<l[S]?b[S]=l[S]*2-b[S]-c:b[S]>=u[S]&&(b[S]=(u[S]-1)*2-b[S]+c);b=b.map((S,k)=>S-l[k]);let w=v.locToIndex(b,d,h);y[A]=p[w]}return{dataId:n.write(y,i,r.dtype),shape:i,dtype:r.dtype}}var wJ={kernelName:Vo,backendName:"cpu",kernelFunc:vJ},kJ=cn((e,t)=>{let n=e%t;return e<0&&t<0||e>=0&&t>=0?n:(n+t)%t}),SJ=Tn(Fc,kJ),IJ={kernelName:Fc,backendName:"cpu",kernelFunc:SJ},CJ=po(Xm());function kI(e){let{inputs:t,backend:n,attrs:s}=e,{logits:r}=t,{dim:a}=s,o=r.shape.length,i=a;if(i===-1&&(i=o-1),i!==o-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${o} and dim was ${i}`);let l=v.parseAxisParam([i],r.shape),u=wI({inputs:{x:r},backend:n,attrs:{reductionIndices:l,keepDims:!1}}),c=T.expandShapeToKeepDim(u.shape,l),p=Rt({inputs:{x:u},backend:n,attrs:{shape:c}}),d=Xx({inputs:{a:r,b:p},backend:n}),h=OS({inputs:{x:d},backend:n}),f=Lh({inputs:{x:h},backend:n,attrs:{axis:l,keepDims:!1}}),m=Rt({inputs:{x:f},backend:n,attrs:{shape:c}}),g=Zx({inputs:{a:h,b:m},backend:n});return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(m),g}var TJ={kernelName:si,backendName:"cpu",kernelFunc:kI};function NJ(e){let{inputs:t,backend:n,attrs:s}=e,{logits:r}=t,{numSamples:a,seed:o,normalized:i}=s;Te(r,"multinomial");let l=i?r:kI({inputs:{logits:r},backend:n,attrs:{dim:-1}}),u=l.shape[0],c=l.shape[1],p=n.data.get(l.dataId).values,d=[u,a],h=v.makeZerosTypedArray(v.sizeFromShape(d),"int32");for(let f=0;f<u;++f){let m=f*c,g=new Float32Array(c-1);g[0]=p[m];for(let A=1;A<g.length;++A)g[A]=g[A-1]+p[m+A];let y=CJ.alea(o.toString()),x=f*a;for(let A=0;A<a;++A){let b=y();h[x+A]=g.length;for(let w=0;w<g.length;w++)if(b<g[w]){h[x+A]=w;break}}}return i||n.disposeIntermediateTensorInfo(l),n.makeTensorInfo(d,"int32",h)}var EJ={kernelName:g0,backendName:"cpu",kernelFunc:NJ},RJ=yr.nonMaxSuppressionV3Impl;function _J(e){let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l}=s;Te(r,"NonMaxSuppression");let u=n.data.get(r.dataId).values,c=n.data.get(a.dataId).values,{selectedIndices:p}=RJ(u,c,o,i,l);return n.makeTensorInfo([p.length],"int32",new Int32Array(p))}var DJ={kernelName:$l,backendName:"cpu",kernelFunc:_J},$J=yr.nonMaxSuppressionV4Impl;function PJ(e){let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l,padToMaxOutputSize:u}=s;Te(r,"NonMaxSuppressionPadded");let c=n.data.get(r.dataId).values,p=n.data.get(a.dataId).values,{selectedIndices:d,validOutputs:h}=$J(c,p,o,i,l,u);return[n.makeTensorInfo([d.length],"int32",new Int32Array(d)),n.makeTensorInfo([],"int32",new Int32Array([h]))]}var FJ={kernelName:Oc,backendName:"cpu",kernelFunc:PJ},OJ=yr.nonMaxSuppressionV5Impl;function MJ(e){let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l,softNmsSigma:u}=s;Te(r,"NonMaxSuppressionWithScore");let c=n.data.get(r.dataId).values,p=n.data.get(a.dataId).values,d=o,h=i,f=l,m=u,{selectedIndices:g,selectedScores:y}=OJ(c,p,d,h,f,m);return[n.makeTensorInfo([g.length],"int32",new Int32Array(g)),n.makeTensorInfo([y.length],"float32",new Float32Array(y))]}var zJ={kernelName:Pl,backendName:"cpu",kernelFunc:MJ};function LJ(e){let{inputs:t,backend:n,attrs:s}=e,{indices:r}=t,{dtype:a,depth:o,onValue:i,offValue:l}=s;Te(r,"oneHot");let u=v.sizeFromShape(r.shape),c=new Float32Array(u*o);c.fill(l);let p=n.data.get(r.dataId).values;for(let d=0;d<u;++d)p[d]>=0&&p[d]<o&&(c[d*o+p[d]]=i);return n.makeTensorInfo([...r.shape,o],a,c)}var BJ={kernelName:Ol,backendName:"cpu",kernelFunc:LJ};function Wm(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="string")throw new Error("zerosLike is not supported for string tensors");if(s.dtype==="complex64"){let r=ol({inputs:{input:s},backend:n}),a=Wm({inputs:{x:r},backend:n}),o=mc({inputs:{input:s},backend:n}),i=Wm({inputs:{x:o},backend:n}),l=_s({inputs:{real:a,imag:i},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),l}else return Yx({backend:n,attrs:{shape:s.shape,value:0,dtype:s.dtype}})}var WJ={kernelName:Ql,backendName:"cpu",kernelFunc:Wm};function SI(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="string")throw new Error("onesLike is not supported for string tensors");if(s.dtype==="complex64"){let r=ol({inputs:{input:s},backend:n}),a=SI({inputs:{x:r},backend:n}),o=mc({inputs:{input:s},backend:n}),i=Wm({inputs:{x:o},backend:n}),l=_s({inputs:{real:a,imag:i},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),l}else return Yx({backend:n,attrs:{shape:s.shape,value:1,dtype:s.dtype}})}var VJ={kernelName:Fl,backendName:"cpu",kernelFunc:SI};function II(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s;if(t.length===1)return Bm({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let a=t[0].shape,o=t[0].dtype;t.forEach(c=>{v.assertShapesMatch(a,c.shape,"All tensors passed to stack must have matching shapes"),v.assert(o===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],l=t.map(c=>{let p=Bm({inputs:{input:c},backend:n,attrs:{dim:r}});return i.push(p),p}),u=gc({inputs:l,backend:n,attrs:{axis:r}});return i.forEach(c=>n.disposeIntermediateTensorInfo(c)),u}var UJ={kernelName:Ml,backendName:"cpu",kernelFunc:II};function GJ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{paddings:a,constantValue:o}=s;Te(r,"pad");let i=a.map((x,A)=>x[0]+r.shape[A]+x[1]),l=a.map(x=>x[0]),u=n.data.get(r.dataId).values,c=v.sizeFromShape(r.shape),p=r.shape.length,d=v.computeStrides(r.shape),h=v.sizeFromShape(i),f=i.length,m=v.computeStrides(i),g=v.getTypedArrayFromDType(r.dtype,h);o!==0&&g.fill(o);for(let x=0;x<c;x++){let b=v.indexToLoc(x,p,d).map((S,k)=>S+l[k]),w=v.locToIndex(b,f,m);g[w]=u[x]}return{dataId:n.write(g,i,r.dtype),shape:i,dtype:r.dtype}}var CI={kernelName:Go,backendName:"cpu",kernelFunc:GJ},HJ=cn((e,t)=>Math.pow(e,t)),jJ=Tn(Ho,HJ),qJ={kernelName:Ho,backendName:"cpu",kernelFunc:jJ};function XJ(e){let{inputs:t,backend:n,attrs:s}=e,{shape:r,values:a,defaultValue:o,rowPartitionTensors:i}=t,{rowPartitionTypes:l}=s,u=n.data.get(r.dataId).values,c=n.data.get(a.dataId).values,p=n.data.get(o.dataId).values,d=i.map(g=>n.data.get(g.dataId).values),h=i.map(g=>g.shape),[f,m]=QS(u,r.shape,c,a.shape,a.dtype,p,o.shape,d,h,l);return n.makeTensorInfo(f,a.dtype,m)}var KJ={kernelName:y0,backendName:"cpu",kernelFunc:XJ};function ZJ(e){let{backend:t,attrs:n}=e,{start:s,stop:r,dtype:a,step:o}=n,i=Ux(s,r,o,a);return t.makeTensorInfo([i.length],a,i)}var YJ={kernelName:Mc,backendName:"cpu",kernelFunc:ZJ},JJ=xt(zl,e=>1/e),QJ={kernelName:zl,backendName:"cpu",kernelFunc:JJ};function eQ(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,halfPixelCenters:o,size:i}=s;Te(r,"resizeBilinear");let l=v.computeStrides(r.shape),[u,c]=i,[p,d,h,f]=r.shape,m=n.data.get(r.dataId).values,g=new Float32Array(v.sizeFromShape([p,u,c,f])),y=[a&&u>1?d-1:d,a&&c>1?h-1:h],x=[a&&u>1?u-1:u,a&&c>1?c-1:c],A=0,b=y[0]/x[0],w=y[1]/x[1];for(let S=0;S<p;S++)for(let k=0;k<u;k++){let E;o?E=b*(k+.5)-.5:E=b*k;let _=Math.max(0,Math.floor(E)),D=E-_,R=Math.min(d-1,Math.ceil(E)),P=S*l[0]+_*l[1],C=S*l[0]+R*l[1];for(let M=0;M<c;M++){let L;o?L=w*(M+.5)-.5:L=w*M;let G=Math.max(0,Math.floor(L)),K=L-G,X=Math.min(h-1,Math.ceil(L)),Y=P+G*l[2],ne=C+G*l[2],ee=P+X*l[2],ie=C+X*l[2];for(let se=0;se<f;se++){let pe=m[Y+se],ce=m[ne+se],xe=m[ee+se],oe=m[ie+se],Re=pe+(xe-pe)*K,_e=ce+(oe-ce)*K,Ve=Re+(_e-Re)*D;g[A++]=Ve}}}return n.makeTensorInfo([p,u,c,f],"float32",g)}var tQ={kernelName:Zo,backendName:"cpu",kernelFunc:eQ};function nQ(e){let{inputs:t,backend:n,attrs:s}=e,{images:r,dy:a}=t,{alignCorners:o}=s;Te([a,r],"resizeBilinearGrad");let i=v.computeStrides(r.shape),[l,u,c,p]=r.shape,[,d,h]=a.shape,f=new Float32Array(l*u*c*p),m=[o&&d>1?u-1:u,o&&h>1?c-1:c],g=[o&&d>1?d-1:d,o&&h>1?h-1:h],y=m[0]/g[0],x=m[1]/g[1],A=n.data.get(a.dataId).values,b=0;for(let w=0;w<l;w++){let S=w*i[0];for(let k=0;k<d;k++){let E=k*y,_=Math.floor(E),D=Math.min(Math.ceil(E),u-1),R=S+_*i[1],P=S+D*i[1],C=E-_,M=1-C;for(let L=0;L<h;L++){let G=L*x,K=Math.floor(G),X=Math.min(Math.ceil(G),c-1),Y=G-K,ne=1-Y,ee=R+K*i[2],ie=R+X*i[2],se=P+K*i[2],pe=P+X*i[2],ce=M*ne,xe=M*Y,oe=C*ne,Re=C*Y;for(let _e=0;_e<p;_e++){let Ve=A[b++];f[ee+_e]+=Ve*ce,f[ie+_e]+=Ve*xe,f[se+_e]+=Ve*oe,f[pe+_e]+=Ve*Re}}}}return n.makeTensorInfo([l,c,u,p],"float32",f)}var sQ={kernelName:x0,backendName:"cpu",kernelFunc:nQ};function rQ(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,halfPixelCenters:o,size:i}=s;Te(r,"resizeNearestNeighbor");let l=v.computeStrides(r.shape),[u,c]=i,[p,d,h,f]=r.shape,m=n.data.get(r.dataId).values,g=new Float32Array(p*u*c*f),y=[a&&u>1?d-1:d,a&&c>1?h-1:h],x=[a&&u>1?u-1:u,a&&c>1?c-1:c],A=y[0]/x[0],b=y[1]/x[1],w=0;for(let S=0;S<p;S++){let k=S*l[0];for(let E=0;E<u;E++){let _=o?A*(E+.5):A*E,D=Math.min(d-1,a?Math.round(_):Math.floor(_));o&&(D=Math.max(0,D));let R=k+D*l[1];for(let P=0;P<c;P++){let C=o?b*(P+.5):b*P,M=Math.min(h-1,a?Math.round(C):Math.floor(C));o&&(M=Math.max(0,M));let L=R+M*l[2];for(let G=0;G<f;G++){let K=m[L+G];g[w++]=K}}}}return n.makeTensorInfo([p,u,c,f],r.dtype,g)}var aQ={kernelName:Ko,backendName:"cpu",kernelFunc:rQ};function oQ(e){let{inputs:t,backend:n,attrs:s}=e,{images:r,dy:a}=t,{alignCorners:o}=s;Te([a,r],"resizeNearestNeighborGrad");let i=v.computeStrides(r.shape),l=v.computeStrides(a.shape),[u,c,p,d]=r.shape,[,h,f]=a.shape,m=new Float32Array(u*c*p*d),g=n.data.get(a.dataId).values,y=[o&&h>1?c-1:c,o&&f>1?p-1:p],x=[o&&h>1?h-1:h,o&&f>1?f-1:f],A=y[0]/x[0],b=y[1]/x[1],w=1/A,S=1/b,k=Math.ceil(w)*2+2,E=Math.ceil(S)*2+2;for(let _=0;_<u;_++){let D=_*i[0];for(let R=0;R<c;R++){let P=D+R*i[1],C=Math.floor(R*w),M=Math.floor(C-k/2);for(let L=0;L<p;L++){let G=P+L*i[2],K=Math.floor(L*S),X=Math.floor(K-E/2);for(let Y=0;Y<d;Y++){let ne=0;for(let ee=0;ee<k;ee++){let ie=ee+M;if(ie<0||ie>=h)continue;let se=D+ie*l[1],pe=ie*A,ce=Math.min(c-1,o?Math.round(pe):Math.floor(pe));if(R===ce)for(let xe=0;xe<E;xe++){let oe=xe+X;if(oe<0||oe>=f)continue;let Re=se+oe*l[2],_e=oe*b,Ve=Math.min(p-1,o?Math.round(_e):Math.floor(_e));L===Ve&&(ne+=g[Re+Y])}}m[G+Y]=ne}}}}return n.makeTensorInfo(r.shape,r.dtype,m)}var iQ={kernelName:A0,backendName:"cpu",kernelFunc:oQ};function lQ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dims:a}=s;Te(r,"reverse");let o=r.shape.length,i=v.parseAxisParam(a,r.shape);if(o===0)return ra({inputs:{x:r},backend:n});let l=new mn(r.shape,r.dtype),u=n.bufferSync(r);for(let c=0;c<l.size;c++){let p=l.indexToLoc(c),d=p.slice();i.forEach(h=>d[h]=r.shape[h]-1-d[h]),l.set(u.get(...d),...p)}return n.makeTensorInfo(l.shape,l.dtype,l.values)}var uQ={kernelName:Bl,backendName:"cpu",kernelFunc:lQ},cQ={kernelName:eu,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:s}=e,{radians:r,fillValue:a,center:o}=t,i=n,l=v.getTypedArrayFromDType(s.dtype,v.sizeFromShape(s.shape)),[u,c,p,d]=s.shape,[h,f]=T.getImageCenter(o,c,p),m=255,g=Math.sin(r),y=Math.cos(r),x=i.data.get(s.dataId).values;for(let b=0;b<u;b++){let w=b*p*c*d;for(let S=0;S<c;S++){let k=S*(p*d);for(let E=0;E<p;E++){let _=E*d;for(let D=0;D<d;D++){let R=[u,S,E,D],P=R[2],C=R[1],M=(P-h)*y-(C-f)*g,L=(P-h)*g+(C-f)*y;M=Math.round(M+h),L=Math.round(L+f);let G=a;if(typeof a!="number"&&(D===3?G=m:G=a[D]),M>=0&&M<p&&L>=0&&L<c){let X=L*(p*d),Y=M*d,ne=w+X+Y+D;G=x[ne]}let K=w+k+_+D;l[K]=G}}}}return{dataId:i.write(l,s.shape,s.dtype),shape:s.shape,dtype:s.dtype}}},dQ=xt(Wl,e=>{let t=Math.floor(e);return e-t<.5?Math.floor(e):e-t>.5?Math.ceil(e):t%2===0?t:t+1}),pQ={kernelName:Wl,backendName:"cpu",kernelFunc:dQ};function hQ(e){let{inputs:t,backend:n,attrs:s}=e,{indices:r,updates:a}=t,{shape:o}=s,{sliceRank:i,numUpdates:l,sliceSize:u,strides:c,outputSize:p}=T.calculateShapes(a,r,o),d=!0,h=n.bufferSync(r),f=n.bufferSync(a),m=Ku(h,f,o,p,u,l,i,c,0,d);return n.makeTensorInfo(o,m.dtype,m.values)}var fQ={kernelName:Vl,backendName:"cpu",kernelFunc:hQ};function mQ(e,t){let n=0,s=e.length,r=0;for(;n<s;)r=Math.floor((n+s)/2),e[r]<t?n=r+1:s=r;return s}function gQ(e,t){let n=0,s=e.length,r=0;for(;n<s;)r=Math.floor((n+s)/2),e[r]<=t?n=r+1:s=r;return s}function yQ(e,t,n,s,r,a){let o=v.getArrayFromDType("int32",n*r);for(let i=0;i<n;++i){let l=e.slice(i*s,(i+1)*s),u=i*r;for(let c=0;c<r;++c)o[u+c]=a==="left"?mQ(l,t[c+u]):gQ(l,t[c+u])}return o}function AQ(e){let{inputs:t,backend:n,attrs:s}=e,{sortedSequence:r,values:a}=t,{side:o}=s,i=n.data.get(r.dataId).values,l=n.data.get(a.dataId).values,u=yQ(i,l,r.shape[0],r.shape[1],a.shape[1],o);return n.makeTensorInfo(a.shape,"int32",u)}var xQ={kernelName:b0,backendName:"cpu",kernelFunc:AQ};function bQ(e){let{inputs:t,backend:n}=e,{condition:s,t:r,e:a}=t;Te([s,r,a],"select");let o=s.shape.length,i=n.data.get(s.dataId).values,l=n.data.get(r.dataId).values,u=n.data.get(a.dataId).values,c=Un(r.dtype,a.dtype),p=v.makeZerosTypedArray(v.sizeFromShape(r.shape),c),d=0,h=o===0||o>1||r.shape.length===1?1:v.sizeFromShape(r.shape.slice(1));for(let f=0;f<i.length;f++)for(let m=0;m<h;m++)i[f]===1?p[d++]=l[f]:p[d++]=u[f];return n.makeTensorInfo(r.shape,c,p)}var vQ={kernelName:Ul,backendName:"cpu",kernelFunc:bQ},wQ=T.SELU_SCALEALPHA,kQ=T.SELU_SCALE,SQ=xt(zc,e=>e>=0?kQ*e:wQ*(Math.exp(e)-1)),IQ={kernelName:zc,backendName:"cpu",kernelFunc:SQ},CQ=xt(Lc,e=>e<0?-1:e>0?1:0),TQ={kernelName:Lc,backendName:"cpu",kernelFunc:CQ},NQ=xt(Qo,e=>Math.sin(e)),EQ={kernelName:Qo,backendName:"cpu",kernelFunc:NQ},RQ=xt(Hl,e=>Math.sinh(e)),_Q={kernelName:Hl,backendName:"cpu",kernelFunc:RQ},DQ=11920928955078125e-23,S7=Math.log(DQ)+2,$Q=xt(Bc,e=>{let t=e>-S7,n=e<S7,s=Math.exp(e),r;return n?r=s:t?r=e:r=Math.log(1+s),r}),PQ={kernelName:Bc,backendName:"cpu",kernelFunc:$Q};function FQ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,paddings:o}=s;Te([r],"spaceToBatchND");let i=v.sizeFromShape(a),l=[[0,0]];l.push(...o);for(let S=1+a.length;S<r.shape.length;++S)l.push([0,0]);let u=CI.kernelFunc({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),c=T.getReshaped(u.shape,a,i,!1),p=T.getPermuted(c.length,a.length,!1),d=T.getReshapedPermuted(u.shape,a,i,!1),m=Rt({inputs:{x:u},backend:n,attrs:{shape:c}}),x=vs({inputs:{x:m},backend:n,attrs:{perm:p}}),w=Rt({inputs:{x},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(x),w}var OQ={kernelName:jl,backendName:"cpu",kernelFunc:FQ};function MQ(e){let{inputs:t,backend:n}=e,{indices:s,values:r,denseShape:a,defaultValue:o}=t;if(a.shape.length!==1)throw new Error(`Dense shape must be a vector, saw:
${a.shape}`);if(s.shape.length!==2)throw new Error(`Indices must be a matrix, saw:
${s.shape}`);if(r.shape.length!==1)throw new Error(`Values must be a vector, saw:
${r.shape}`);if(o.shape.length!==0)throw new Error(`Default value must be a scalar, saw:
${o.shape}`);let i=n.data.get(s.dataId).values,l=n.data.get(r.dataId).values,u=n.data.get(a.dataId).values,c=n.data.get(o.dataId).values[0],[p,d,h,f,m]=nI(i,s.shape,s.dtype,l,r.dtype,u,c);return[n.makeTensorInfo(d,s.dtype,p),n.makeTensorInfo([d[0]],r.dtype,h),n.makeTensorInfo([f.length],"bool",new Uint8Array(f.map(g=>Number(g)))),n.makeTensorInfo([m.length],s.dtype,new Int32Array(m))]}var zQ={kernelName:Jp,backendName:"cpu",kernelFunc:MQ};function LQ(e){let{inputs:t,backend:n}=e,{inputIndices:s,inputShape:r,newShape:a}=t;if(s.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape
${s.shape}`);if(r.shape.length!==1)throw new Error(`Input shape should be a vector but received shape
${r.shape}`);if(a.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${a.shape}`);let o=Array.from(n.data.get(r.dataId).values),i=n.data.get(s.dataId).values,l=Array.from(n.data.get(a.dataId).values),[u,c,p]=sI(i,s.shape,s.dtype,o,l);return[n.makeTensorInfo(c,s.dtype,u),n.makeTensorInfo([p.length],a.dtype,new Int32Array(p))]}var BQ={kernelName:Wc,backendName:"cpu",kernelFunc:LQ};function WQ(e){let{inputs:t,backend:n}=e,{data:s,indices:r,segmentIds:a}=t;if(s.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
${r.shape}`);if(a.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
${a.shape}`);if(r.shape[0]!==a.shape[0])throw new Error("segmentIds and indices should have same size.");let o=n.data.get(s.dataId).values,i=n.data.get(r.dataId).values,l=n.data.get(a.dataId).values,[u,c]=Gx(o,s.shape,s.dtype,i,l,!0);return n.makeTensorInfo(c,s.dtype,u)}var VQ={kernelName:Qp,backendName:"cpu",kernelFunc:WQ};function UQ(e){let{inputs:t,backend:n}=e,{data:s,indices:r,segmentIds:a}=t;if(s.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
${r.shape}`);if(a.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
${a.shape}`);if(r.shape[0]!==a.shape[0])throw new Error("segmentIds and indices should have same size.");let o=n.data.get(s.dataId).values,i=n.data.get(r.dataId).values,l=n.data.get(a.dataId).values,[u,c]=Gx(o,s.shape,s.dtype,i,l);return n.makeTensorInfo(c,s.dtype,u)}var GQ={kernelName:eh,backendName:"cpu",kernelFunc:UQ};function HQ(e){let{inputs:t,backend:n,attrs:s}=e,{sparseIndices:r,sparseValues:a,defaultValue:o}=t,{outputShape:i}=s,{sliceRank:l,numUpdates:u,sliceSize:c,strides:p,outputSize:d}=T.calculateShapes(a,r,i),h=!1,f=n.bufferSync(r),m;switch(a.dtype){case"bool":{let g=n.bufferSync(a),y=Boolean(n.data.get(o.dataId).values[0]);m=Ku(f,g,i,d,c,u,l,p,y,h);break}case"float32":{let g=n.bufferSync(a),y=n.data.get(o.dataId).values[0];m=Ku(f,g,i,d,c,u,l,p,y,h);break}case"int32":{let g=n.bufferSync(a),y=n.data.get(o.dataId).values[0];m=Ku(f,g,i,d,c,u,l,p,y,h);break}case"string":{let g=n.bufferSync(a),y=v.decodeString(n.data.get(o.dataId).values[0]);m=Ku(f,g,i,d,c,u,l,p,y,h);break}default:throw new Error(`Unsupported type ${a.dtype}`)}return n.makeTensorInfo(i,m.dtype,m.values)}var jQ={kernelName:th,backendName:"cpu",kernelFunc:HQ};function qQ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{numOrSizeSplits:a,axis:o}=s,i=v.parseAxisParam(o,r.shape)[0],l=T.prepareSplitSize(r,a,i),u=new Array(r.shape.length).fill(0),c=r.shape.slice();return l.map(p=>{let d=[...c];d[i]=p;let h=il({inputs:{x:r},backend:n,attrs:{begin:u,size:d}});return u[i]+=p,h})}var XQ={kernelName:ql,backendName:"cpu",kernelFunc:qQ},KQ={kernelName:Vc,backendName:"cpu",kernelFunc:({inputs:e,backend:t})=>{let{x:n}=e,s=t;Te(n,"square");let r=s.data.get(n.dataId).values,a=new Float32Array(r.length);for(let i=0;i<r.length;++i){let l=r[i];a[i]=l*l}return{dataId:s.write(a,n.shape,n.dtype),shape:n.shape,dtype:n.dtype}}},ZQ=xt(ii,(e,t)=>{let n=t;return isNaN(e)?NaN:e>0?1:n.alpha}),YQ={kernelName:ii,backendName:"cpu",kernelFunc:ZQ};function JQ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,end:o,strides:i,beginMask:l,endMask:u,ellipsisMask:c,newAxisMask:p,shrinkAxisMask:d}=s;Te(r,"stridedSlice");let{finalShapeSparse:h,finalShape:f,isIdentity:m,sliceDim0:g,isSimpleSlice:y,begin:x,end:A,strides:b}=Gt.sliceInfo(r.shape,a,o,i,l,u,c,p,d),w;if(m)w=Rt({inputs:{x:r},backend:n,attrs:{shape:f}});else if(g||y){v.assert(r.shape.length>=1,()=>`Input must have rank at least 1, got: ${r.shape.length}`);let S=Gt.computeOutShape(x,A,b),k=il({inputs:{x:r},backend:n,attrs:{begin:x,size:S}});w=Rt({inputs:{x:k},backend:n,attrs:{shape:f}}),n.disposeIntermediateTensorInfo(k)}else{let S=n.bufferSync(r),k=aI(h,S,b,x);w=n.makeTensorInfo(f,k.dtype,k.values)}return w}var QQ={kernelName:Xl,backendName:"cpu",kernelFunc:JQ};function eee(e){let{inputs:t,backend:n,attrs:s}=e,{separator:r,nGramWidths:a,leftPad:o,rightPad:i,padWidth:l,preserveShortSequences:u}=s,{data:c,dataSplits:p}=t,d=n.data.get(c.dataId).values,h=n.data.get(p.dataId).values,[f,m]=Hx(d,h,r,a,o,i,l,u);return[n.makeTensorInfo([f.length],"string",f),n.makeTensorInfo(p.shape,"int32",m)]}var tee={kernelName:Uc,backendName:"cpu",kernelFunc:eee};function nee(e){let{inputs:t,backend:n,attrs:s}=e,{skipEmpty:r}=s,{input:a,delimiter:o}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(a.shape.length!==1)throw new Error(`Input must be a vector, got shape: ${a.shape}`);if(o.shape.length!==0)throw new Error(`Delimiter must be a scalar, got shape: ${o.shape}`);let i=n.data.get(a.dataId).values,l=n.data.get(o.dataId).values[0],[u,c,p]=jx(i,l,r),d=c.length;return[n.makeTensorInfo([d,2],"int32",u),n.makeTensorInfo([d],"string",c),n.makeTensorInfo([2],"int32",new Int32Array(p))]}var see={kernelName:nh,backendName:"cpu",kernelFunc:nee};function ree(e){let{inputs:t,backend:n,attrs:s}=e,{numBuckets:r}=s,{input:a}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(r<=0)throw new Error("Number of buckets must be at least 1");let o=n.data.get(a.dataId).values,i=qx(o,r);return n.makeTensorInfo(a.shape,"int32",i)}var aee={kernelName:sh,backendName:"cpu",kernelFunc:ree},oee=xt(Kl,e=>Math.tan(e)),iee={kernelName:Kl,backendName:"cpu",kernelFunc:oee},lee=xt(oi,e=>Math.tanh(e)),uee={kernelName:oi,backendName:"cpu",kernelFunc:lee};function cee(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reps:a}=s;Te(r,"tile");let o=iI(n.bufferSync(r),a);return n.makeTensorInfo(o.shape,o.dtype,o.values)}var dee={kernelName:Ea,backendName:"cpu",kernelFunc:cee};function pee(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{k:a,sorted:o}=s;Te(r,"topk");let i=n.data.get(r.dataId).values,[l,u]=uI(i,r.shape,r.dtype,a,o);return[n.makeTensorInfo(l.shape,l.dtype,l.values),n.makeTensorInfo(u.shape,u.dtype,u.values)]}var hee={kernelName:Zl,backendName:"cpu",kernelFunc:pee};function fee(e){let{inputs:t,attrs:n,backend:s}=e,{image:r,transforms:a}=t,{interpolation:o,fillMode:i,fillValue:l,outputShape:u}=n,[c,p,d,h]=r.shape,[f,m]=u!=null?u:[p,d],g=[c,f,m,h],y=v.computeStrides(r.shape),x=y[0],A=y[1],b=y[2],w=v.computeStrides(g),S=w[0],k=w[1],E=w[2],_=v.getTypedArrayFromDType(r.dtype,v.sizeFromShape(g));_.fill(l);let D=s.data.get(r.dataId).values,R=s.data.get(a.dataId).values;for(let C=0;C<c;++C){let M=a.shape[0]===1?R:R.subarray(C*8,C*8+8);for(let L=0;L<f;++L)for(let G=0;G<m;++G)for(let K=0;K<h;++K){let X,Y=M[6]*G+M[7]*L+1;if(Y===0)continue;let ne=(M[0]*G+M[1]*L+M[2])/Y,ee=(M[3]*G+M[4]*L+M[5])/Y,ie=I7(ne,d,i),se=I7(ee,p,i);switch(o){case"nearest":X=bee(D,p,d,x,A,b,C,se,ie,K,l);break;case"bilinear":X=vee(D,p,d,x,A,b,C,se,ie,K,l);break;default:throw new Error(`Error in Transform: Expect 'nearest' or 'bilinear', but got ${o}`)}let pe=C*S+L*k+G*E+K;_[pe]=X}return s.makeTensorInfo(g,r.dtype,_)}return{dataId:s.write(_,g,r.dtype),shape:r.shape,dtype:r.dtype}}var mee={kernelName:Yl,backendName:"cpu",kernelFunc:fee};function I7(e,t,n){switch(n){case"reflect":return gee(e,t);case"wrap":return yee(e,t);case"nearest":return xee(e,t);case"constant":default:return Aee(e,t)}}function gee(e,t){let n=e;if(n<0)if(t<=1)n=0;else{let s=2*t;n<s&&(n=s*Math.trunc(-n/s)+n),n=n<-t?n+s:-n-1}else if(n>t-1)if(t<=1)n=0;else{let s=2*t;n-=s*Math.trunc(n/s),n>=t&&(n=s-n-1)}return v.clamp(0,n,t-1)}function yee(e,t){let n=e;if(n<0)if(t<=1)n=0;else{let s=t-1;n+=t*(Math.trunc(-n/s)+1)}else if(n>t-1)if(t<=1)n=0;else{let s=t-1;n-=t*Math.trunc(n/s)}return v.clamp(0,n,t-1)}function Aee(e,t){return e}function xee(e,t){return v.clamp(0,e,t-1)}function cp(e,t,n,s,r,a,o,i,l,u,c){let p=o*s+i*r+l*a+u;return 0<=i&&i<t&&0<=l&&l<n?e[p]:c}function bee(e,t,n,s,r,a,o,i,l,u,c){let p=Math.round(i),d=Math.round(l);return cp(e,t,n,s,r,a,o,p,d,u,c)}function vee(e,t,n,s,r,a,o,i,l,u,c){let p=Math.floor(i),d=Math.floor(l),h=p+1,f=d+1,m=(f-l)*cp(e,t,n,s,r,a,o,p,d,u,c)+(l-d)*cp(e,t,n,s,r,a,o,p,f,u,c),g=(f-l)*cp(e,t,n,s,r,a,o,h,d,u,c)+(l-d)*cp(e,t,n,s,r,a,o,h,f,u,c);return(h-i)*m+(i-p)*g}function wee(e){let{inputs:t,attrs:n,backend:s}=e,{axis:r}=n,{x:a}=t;Te(a,"unique");let o=s.data.get(a.dataId).values,{outputValues:i,outputShape:l,indices:u}=cI(o,r,a.shape,a.dtype);return[s.makeTensorInfo(l,a.dtype,i),s.makeTensorInfo([u.length],"int32",u)]}var kee={kernelName:v0,backendName:"cpu",kernelFunc:wee};function See(e){let{inputs:t,backend:n,attrs:s}=e,{value:r}=t,{axis:a}=s;a<0&&(a+=r.shape.length);let o=r.shape.length,i=r.shape[a],l=new Array(o-1),u=0;for(let h=0;h<o;h++)h!==a&&(l[u++]=r.shape[h]);let c=new Array(o).fill(0),p=r.shape.slice();p[a]=1;let d=new Array(i);for(let h=0;h<d.length;h++){c[a]=h;let f=il({inputs:{x:r},backend:n,attrs:{begin:c,size:p}});d[h]=Rt({inputs:{x:f},backend:n,attrs:{shape:l}}),n.disposeIntermediateTensorInfo(f)}return d}var Iee={kernelName:Jl,backendName:"cpu",kernelFunc:See};function Cee(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,segmentIds:a}=t,{numSegments:o}=s;Te(r,"unsortedSegmentSum");let i=r.shape.length,l=a.shape.length,u=[],c=[],p=i-l,d=a;for(let f=0;f<p;++f){let m=Bm({inputs:{input:d},backend:n,attrs:{dim:f+1}});d=m,c.push(m)}for(let f=0;f<o;++f){let m=v.createScalarValue(f,"int32"),g=n.makeTensorInfo([],"int32",m),y=PS({inputs:{a:g,b:d},backend:n}),x=uo({inputs:{x:y},backend:n,attrs:{dtype:"float32"}}),A=C2({inputs:{a:x,b:r},backend:n}),b=Lh({inputs:{x:A},backend:n,attrs:{axis:0,keepDims:!1}});u.push(b),c.push(g),c.push(y),c.push(x),c.push(A),c.push(b)}let h=II({inputs:u,backend:n,attrs:{axis:0}});return c.forEach(f=>n.disposeIntermediateTensorInfo(f)),h}var Tee={kernelName:rh,backendName:"cpu",kernelFunc:Cee},Nee=[CK,xX,NK,RK,IX,DK,PK,OK,zK,BK,VK,GK,jK,KK,YK,eZ,nZ,rZ,oZ,SK,lZ,cZ,pZ,fZ,kX,TX,gZ,bX,AZ,bZ,vZ,kZ,IZ,TZ,EZ,_Z,$Z,FZ,MZ,LZ,WZ,UZ,HZ,jZ,XZ,ZZ,JZ,QZ,eY,tY,rY,yK,oY,NX,fY,EX,mY,_X,vY,wY,SY,$X,TY,EY,_Y,$Y,FY,FX,MX,vX,MY,xZ,LY,WY,UY,AK,LX,WX,HY,UX,qY,ZY,JY,tJ,sJ,aJ,oJ,HX,lJ,cJ,pJ,fJ,gJ,AJ,bJ,qX,wJ,IJ,EJ,KX,YX,DJ,FJ,zJ,QX,BJ,VJ,UJ,CI,qJ,bK,nK,KJ,YJ,wX,py,QJ,vK,wK,kK,tQ,sQ,aQ,iQ,uQ,cQ,pQ,rK,fQ,xQ,vQ,IQ,oK,TQ,EQ,_Q,iK,TJ,PQ,OQ,zQ,BQ,VQ,GQ,jQ,XQ,cK,KQ,pK,YQ,QQ,tee,see,aee,gK,nY,iee,uee,dee,hee,mee,eK,kee,Iee,Tee,WJ];for(let e of Nee)tr(e);var TI={};He(TI,{assertNotComplex:()=>id,bindCanvasToFramebuffer:()=>Lee,bindColorTextureToFramebuffer:()=>cm,bindTextureToProgramUniformSampler:()=>VI,bindTextureUnit:()=>LI,bindVertexBufferToProgramAttribute:()=>fy,callAndCheck:()=>Se,canBeRepresented:()=>NI,createFragmentShader:()=>_I,createFramebuffer:()=>zI,createProgram:()=>DI,createStaticIndexBuffer:()=>FI,createStaticVertexBuffer:()=>PI,createTexture:()=>OI,createVertexShader:()=>RI,getBatchDim:()=>ll,getExtensionOrThrow:()=>dp,getFramebufferErrorMessage:()=>UI,getMaxTexturesInShader:()=>qI,getNumChannels:()=>Mee,getProgramUniformLocation:()=>WI,getProgramUniformLocationOrThrow:()=>BI,getRowsCols:()=>ul,getShapeAs3D:()=>dm,getTextureShapeFromLogicalShape:()=>HI,getWebGLDisjointQueryTimerVersion:()=>XI,getWebGLErrorMessage:()=>EI,getWebGLMaxTextureSize:()=>jI,hasExtension:()=>Ys,isCapableOfRenderingToFloatTexture:()=>KI,isDownloadFloatTextureEnabled:()=>ZI,isReshapeFree:()=>Pp,isWebGLFenceEnabled:()=>YI,isWebGLVersionEnabled:()=>gy,linkProgram:()=>$I,logShaderSourceAndInfoLog:()=>Qx,resetMaxTextureSize:()=>Bee,resetMaxTexturesInShader:()=>Wee,unbindColorTextureFromFramebuffer:()=>my,unbindTextureUnit:()=>zee,validateFramebuffer:()=>pp,validateProgram:()=>um,validateTextureSize:()=>MI});var Gi={},em={alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!0};function T2(e,t){Gi[e]=t}function Br(e,t){if(!(e in Gi)||t!=null){let s=Ree(e,t);if(s!==null)Gi[e]=s;else return console.log("Could not get context for WebGL version",e),null}let n=Gi[e];return n==null||n.isContextLost()?(delete Gi[e],Br(e)):(n.disable(n.DEPTH_TEST),n.disable(n.STENCIL_TEST),n.disable(n.BLEND),n.disable(n.DITHER),n.disable(n.POLYGON_OFFSET_FILL),n.disable(n.SAMPLE_COVERAGE),n.enable(n.SCISSOR_TEST),n.enable(n.CULL_FACE),n.cullFace(n.BACK),Gi[e])}function Eee(e){if(typeof OffscreenCanvas!="undefined"&&e===2)return new OffscreenCanvas(300,150);if(typeof document!="undefined")return document.createElement("canvas");throw new Error("Cannot create a canvas in this context")}function Ree(e,t){if(e!==1&&e!==2)throw new Error("Cannot get WebGL rendering context, WebGL is disabled.");let n=t==null?Eee(e):t;return n.addEventListener("webglcontextlost",s=>{s.preventDefault(),delete Gi[e]},!1),H().getBool("SOFTWARE_WEBGL_ENABLED")&&(em.failIfMajorPerformanceCaveat=!1),e===1?n.getContext("webgl",em)||n.getContext("experimental-webgl",em):n.getContext("webgl2",em)}var $p;(function(e){e[e.DENSE=0]="DENSE",e[e.SHARED_BATCH=1]="SHARED_BATCH"})($p||($p={}));var Zs;(function(e){e[e.RENDER=0]="RENDER",e[e.UPLOAD=1]="UPLOAD",e[e.PIXELS=2]="PIXELS",e[e.DOWNLOAD=3]="DOWNLOAD"})(Zs||(Zs={}));var Dn;(function(e){e[e.UNPACKED_FLOAT16=0]="UNPACKED_FLOAT16",e[e.UNPACKED_FLOAT32=1]="UNPACKED_FLOAT32",e[e.PACKED_4X1_UNSIGNED_BYTE=2]="PACKED_4X1_UNSIGNED_BYTE",e[e.PACKED_2X2_FLOAT32=3]="PACKED_2X2_FLOAT32",e[e.PACKED_2X2_FLOAT16=4]="PACKED_2X2_FLOAT16"})(Dn||(Dn={}));function Bh(e,t){return[t,e]}function _ee(e,t){return e*t}function tm(e){let t=v.sizeFromShape(e),n=Math.ceil(t/4);return v.sizeToSquarishShape(n)}function od(e,t){return[Math.max(1,Math.ceil(t/2)),Math.max(1,Math.ceil(e/2))]}function Dee(e,t){let[n,s]=od(e,t);return n*s*4}function Jx(e,t){let n=e,s,r,a,o,i,l,u,c,p,d;return H().getNumber("WEBGL_VERSION")===2?(s=n.R32F,r=n.R16F,a=n.RGBA16F,o=n.RGBA32F,i=n.RED,u=4,c=1,p=n.HALF_FLOAT,d=n.FLOAT,l=n.RGBA8):(s=e.RGBA,r=e.RGBA,a=e.RGBA,o=n.RGBA,i=e.RGBA,u=4,c=4,p=t!=null?t.HALF_FLOAT_OES:null,d=e.FLOAT,l=e.RGBA),{internalFormatFloat:s,internalFormatHalfFloat:r,internalFormatPackedHalfFloat:a,internalFormatPackedFloat:o,textureFormatFloat:i,downloadTextureFormat:l,downloadUnpackNumChannels:u,defaultNumChannels:c,textureTypeHalfFloat:p,textureTypeFloat:d}}function Se(e,t){let n=t();return H().getBool("DEBUG")&&$ee(e),n}function $ee(e){let t=e.getError();if(t!==e.NO_ERROR)throw new Error("WebGL Error: "+EI(e,t))}var Pee=596e-10,Fee=65504;function NI(e){return!!(H().getBool("WEBGL_RENDER_FLOAT32_ENABLED")||e===0||Pee<Math.abs(e)&&Math.abs(e)<Fee)}function EI(e,t){switch(t){case e.NO_ERROR:return"NO_ERROR";case e.INVALID_ENUM:return"INVALID_ENUM";case e.INVALID_VALUE:return"INVALID_VALUE";case e.INVALID_OPERATION:return"INVALID_OPERATION";case e.INVALID_FRAMEBUFFER_OPERATION:return"INVALID_FRAMEBUFFER_OPERATION";case e.OUT_OF_MEMORY:return"OUT_OF_MEMORY";case e.CONTEXT_LOST_WEBGL:return"CONTEXT_LOST_WEBGL";default:return`Unknown error code ${t}`}}function dp(e,t){return Da(e,()=>e.getExtension(t),'Extension "'+t+'" not supported on this browser.')}function RI(e,t){let n=Da(e,()=>e.createShader(e.VERTEX_SHADER),"Unable to create vertex WebGLShader.");if(Se(e,()=>e.shaderSource(n,t)),Se(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw console.log(e.getShaderInfoLog(n)),new Error("Failed to compile vertex shader.");return n}function _I(e,t){let n=Da(e,()=>e.createShader(e.FRAGMENT_SHADER),"Unable to create fragment WebGLShader.");if(Se(e,()=>e.shaderSource(n,t)),Se(e,()=>e.compileShader(n)),H().get("ENGINE_COMPILE_ONLY"))return n;if(e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw Qx(t,e.getShaderInfoLog(n)),new Error("Failed to compile fragment shader.");return n}var Oee=/ERROR: [0-9]+:([0-9]+):/g;function Qx(e,t){let n=Oee.exec(t);if(n==null){console.log(`Couldn't parse line number in error: ${t}`),console.log(e);return}let s=+n[1],r=e.split(`
`),a=r.length.toString().length+2,o=r.map((p,d)=>v.rightPad((d+1).toString(),a)+p),i=0;for(let p=0;p<o.length;p++)i=Math.max(o[p].length,i);let l=o.slice(0,s-1),u=o.slice(s-1,s),c=o.slice(s);console.log(l.join(`
`)),console.log(t.split(`
`)[0]),console.log(`%c ${v.rightPad(u[0],i)}`,"border:1px solid red; background-color:#e3d2d2; color:#a61717"),console.log(c.join(`
`))}function DI(e){return Da(e,()=>e.createProgram(),"Unable to create WebGLProgram.")}function $I(e,t){if(Se(e,()=>e.linkProgram(t)),!H().get("ENGINE_COMPILE_ONLY")&&e.getProgramParameter(t,e.LINK_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Failed to link vertex and fragment shaders.")}function um(e,t){if(Se(e,()=>e.validateProgram(t)),e.getProgramParameter(t,e.VALIDATE_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Shader program validation failed.")}function PI(e,t){let n=Da(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return Se(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),Se(e,()=>e.bufferData(e.ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function FI(e,t){let n=Da(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return Se(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,n)),Se(e,()=>e.bufferData(e.ELEMENT_ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function Mee(){return H().getNumber("WEBGL_VERSION")===2?1:4}function OI(e){return Da(e,()=>e.createTexture(),"Unable to create WebGLTexture.")}function MI(e,t){let n=H().getNumber("WEBGL_MAX_TEXTURE_SIZE");if(e<=0||t<=0){let s=`[${e}x${t}]`;throw new Error("Requested texture size "+s+" is invalid.")}if(e>n||t>n){let s=`[${e}x${t}]`,r=`[${n}x${n}]`;throw new Error("Requested texture size "+s+" greater than WebGL maximum on this browser / GPU "+r+".")}}function zI(e){return Da(e,()=>e.createFramebuffer(),"Unable to create WebGLFramebuffer.")}function fy(e,t,n,s,r,a,o){let i=e.getAttribLocation(t,n);return i===-1?!1:(Se(e,()=>e.bindBuffer(e.ARRAY_BUFFER,s)),Se(e,()=>e.vertexAttribPointer(i,r,e.FLOAT,!1,a,o)),Se(e,()=>e.enableVertexAttribArray(i)),!0)}function LI(e,t,n){GI(e,n),Se(e,()=>e.activeTexture(e.TEXTURE0+n)),Se(e,()=>e.bindTexture(e.TEXTURE_2D,t))}function zee(e,t){GI(e,t),Se(e,()=>e.activeTexture(e.TEXTURE0+t)),Se(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function BI(e,t,n){return Da(e,()=>e.getUniformLocation(t,n),'uniform "'+n+'" not present in program.')}function WI(e,t,n){return e.getUniformLocation(t,n)}function VI(e,t,n,s){Se(e,()=>LI(e,t,s)),Se(e,()=>e.uniform1i(n,s))}function Lee(e){Se(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),Se(e,()=>e.viewport(0,0,e.canvas.width,e.canvas.height)),Se(e,()=>e.scissor(0,0,e.canvas.width,e.canvas.height))}function cm(e,t,n){Se(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,n)),Se(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,t,0))}function my(e,t){Se(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,t)),Se(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,null,0))}function pp(e){let t=e.checkFramebufferStatus(e.FRAMEBUFFER);if(t!==e.FRAMEBUFFER_COMPLETE)throw new Error("Error binding framebuffer: "+UI(e,t))}function UI(e,t){switch(t){case e.FRAMEBUFFER_INCOMPLETE_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_DIMENSIONS:return"FRAMEBUFFER_INCOMPLETE_DIMENSIONS";case e.FRAMEBUFFER_UNSUPPORTED:return"FRAMEBUFFER_UNSUPPORTED";default:return`unknown error ${t}`}}function Da(e,t,n){let s=Se(e,()=>t());if(s==null)throw new Error(n);return s}function GI(e,t){let n=e.MAX_COMBINED_TEXTURE_IMAGE_UNITS-1,s=t+e.TEXTURE0;if(s<e.TEXTURE0||s>n){let r=`[gl.TEXTURE0, gl.TEXTURE${n}]`;throw new Error(`textureUnit must be in ${r}.`)}}function ll(e,t=2){return v.sizeFromShape(e.slice(0,e.length-t))}function ul(e){if(e.length===0)throw Error("Cannot get rows and columns of an empty shape array.");return[e.length>1?e[e.length-2]:1,e[e.length-1]]}function dm(e){let t=[1,1,1];return e.length===0||e.length===1&&e[0]===1||(t=[ll(e),...ul(e)]),t}function HI(e,t=!1){let n=H().getNumber("WEBGL_MAX_TEXTURE_SIZE");t&&(n=n*2,e=e.map((r,a)=>a>=e.length-2?v.nearestLargerEven(e[a]):e[a]),e.length===1&&(e=[2,e[0]])),e.length!==2&&(e=v.squeezeShape(e).newShape);let s=v.sizeFromShape(e);if(e.length<=1&&s<=n)return[1,s];if(e.length===2&&e[0]<=n&&e[1]<=n)return e;if(e.length===3&&e[0]*e[1]<=n&&e[2]<=n)return[e[0]*e[1],e[2]];if(e.length===3&&e[0]<=n&&e[1]*e[2]<=n)return[e[0],e[1]*e[2]];if(e.length===4&&e[0]*e[1]*e[2]<=n&&e[3]<=n)return[e[0]*e[1]*e[2],e[3]];if(e.length===4&&e[0]<=n&&e[1]*e[2]*e[3]<=n)return[e[0],e[1]*e[2]*e[3]];if(t){let r=ll(e),a=2,o=2;return e.length&&([a,o]=ul(e)),s=r*(a/2)*(o/2),v.sizeToSquarishShape(s).map(i=>i*2)}return v.sizeToSquarishShape(s)}function nm(e){return e%2===0}function Pp(e,t){if(e=e.slice(-2),t=t.slice(-2),v.arraysEqual(e,t)||!e.length||!t.length||e[0]===0||e[1]===0||t[0]===0||t[1]===0)return!0;if(e.length!==t.length){let n=e.slice(-1)[0],s=t.slice(-1)[0];if(n===s||nm(n)&&nm(s)&&(e[0]===1||t[0]===1))return!0}return e[1]===t[1]&&nm(e[0])&&nm(t[0])}var pm,hm;function jI(e){if(pm==null){let t=Br(e);pm=t.getParameter(t.MAX_TEXTURE_SIZE)}return pm}function Bee(){pm=null}function Wee(){hm=null}function qI(e){if(hm==null){let t=Br(e);hm=t.getParameter(t.MAX_TEXTURE_IMAGE_UNITS)}return Math.min(16,hm)}function XI(e){if(e===0)return 0;let t,n=Br(e);return Ys(n,"EXT_disjoint_timer_query_webgl2")&&e===2?t=2:Ys(n,"EXT_disjoint_timer_query")?t=1:t=0,t}function Ys(e,t){return e.getExtension(t)!=null}function gy(e){try{if(Br(e)!=null)return!0}catch(t){return console.log("Error when getting WebGL context: ",t),!1}return!1}function KI(e){if(e===0)return!1;let t=Br(e);if(e===1){if(!Ys(t,"OES_texture_float"))return!1}else if(!Ys(t,"EXT_color_buffer_float"))return!1;return yy(t)}function ZI(e){if(e===0)return!1;let t=Br(e);if(e===1){if(!Ys(t,"OES_texture_float")||!Ys(t,"WEBGL_color_buffer_float"))return!1}else{if(Ys(t,"EXT_color_buffer_float"))return yy(t);let s="EXT_color_buffer_half_float";if(Ys(t,s)){let r=t.getExtension(s);return Vee(t,r)}return!1}return yy(t)}function yy(e){let t=Jx(e),n=e.createTexture();e.bindTexture(e.TEXTURE_2D,n);let s=1,r=1;e.texImage2D(e.TEXTURE_2D,0,t.internalFormatFloat,s,r,0,t.textureFormatFloat,t.textureTypeFloat,null);let a=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,a),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,n,0);let o=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(n),e.deleteFramebuffer(a),o}function Vee(e,t){let n=Jx(e,t),s=e.createTexture();e.bindTexture(e.TEXTURE_2D,s);let r=1,a=1;e.texImage2D(e.TEXTURE_2D,0,n.internalFormatHalfFloat,r,a,0,n.textureFormatFloat,n.textureTypeHalfFloat,null);let o=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,o),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,s,0);let i=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(s),e.deleteFramebuffer(o),i}function YI(e){return e!==2?!1:Br(e).fenceSync!=null}function id(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&v.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the WebGL backend.`)})}var $e=H();$e.registerFlag("HAS_WEBGL",()=>$e.getNumber("WEBGL_VERSION")>0);$e.registerFlag("WEBGL_VERSION",()=>gy(2)?2:gy(1)?1:0);$e.registerFlag("WEBGL_CHECK_NUMERICAL_PROBLEMS",()=>!1);$e.registerFlag("WEBGL_BUFFER_SUPPORTED",()=>$e.get("WEBGL_VERSION")===2);$e.registerFlag("WEBGL_CPU_FORWARD",()=>!0);$e.registerFlag("WEBGL_FORCE_F16_TEXTURES",()=>!1);$e.registerFlag("WEBGL_PACK",()=>$e.getBool("HAS_WEBGL"));$e.registerFlag("WEBGL_PACK_NORMALIZATION",()=>$e.getBool("WEBGL_PACK"));$e.registerFlag("WEBGL_PACK_CLIP",()=>$e.getBool("WEBGL_PACK"));$e.registerFlag("WEBGL_PACK_DEPTHWISECONV",()=>$e.getBool("WEBGL_PACK"));$e.registerFlag("WEBGL_PACK_BINARY_OPERATIONS",()=>$e.getBool("WEBGL_PACK"));$e.registerFlag("WEBGL_PACK_UNARY_OPERATIONS",()=>$e.getBool("WEBGL_PACK"));$e.registerFlag("WEBGL_PACK_ARRAY_OPERATIONS",()=>$e.getBool("WEBGL_PACK"));$e.registerFlag("WEBGL_PACK_IMAGE_OPERATIONS",()=>$e.getBool("WEBGL_PACK"));$e.registerFlag("WEBGL_PACK_REDUCE",()=>$e.getBool("WEBGL_PACK"));$e.registerFlag("WEBGL_LAZILY_UNPACK",()=>$e.getBool("WEBGL_PACK"));$e.registerFlag("WEBGL_CONV_IM2COL",()=>$e.getBool("WEBGL_PACK"));$e.registerFlag("WEBGL_MAX_TEXTURE_SIZE",()=>jI($e.getNumber("WEBGL_VERSION")));$e.registerFlag("WEBGL_MAX_TEXTURES_IN_SHADER",()=>qI($e.getNumber("WEBGL_VERSION")));$e.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION",()=>{let e=$e.getNumber("WEBGL_VERSION");return e===0?0:XI(e)});$e.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE",()=>$e.getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0&&!lh.isMobile());$e.registerFlag("WEBGL_RENDER_FLOAT32_CAPABLE",()=>KI($e.getNumber("WEBGL_VERSION")));$e.registerFlag("WEBGL_RENDER_FLOAT32_ENABLED",()=>$e.getBool("WEBGL_FORCE_F16_TEXTURES")?!1:$e.getBool("WEBGL_RENDER_FLOAT32_CAPABLE"));$e.registerFlag("WEBGL_DOWNLOAD_FLOAT_ENABLED",()=>ZI($e.getNumber("WEBGL_VERSION")));$e.registerFlag("WEBGL_FENCE_API_ENABLED",()=>YI($e.getNumber("WEBGL_VERSION")));$e.registerFlag("WEBGL_SIZE_UPLOAD_UNIFORM",()=>$e.getBool("WEBGL_RENDER_FLOAT32_ENABLED")?4:0);$e.registerFlag("WEBGL_DELETE_TEXTURE_THRESHOLD",()=>-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_DELETE_TEXTURE_THRESHOLD must be -1 (indicating never delete) or at least 0, but got ${e}.`)});$e.registerFlag("WEBGL_FLUSH_THRESHOLD",()=>lh.isMobile()?1:-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_FLUSH_THRESHOLD must be -1 (indicating never manual flush) or at least 0, but got ${e}.`)});$e.registerFlag("CPU_HANDOFF_SIZE_THRESHOLD",()=>128);$e.registerFlag("WEBGL_USE_SHAPES_UNIFORMS",()=>!1);$e.registerFlag("TOPK_LAST_DIM_CPU_HANDOFF_SIZE_THRESHOLD",()=>1e5);$e.registerFlag("TOPK_K_CPU_HANDOFF_THRESHOLD",()=>128);$e.registerFlag("WEBGL_EXP_CONV",()=>!1);$e.registerFlag("SOFTWARE_WEBGL_ENABLED",()=>$e.getBool("IS_TEST"));function us(){let e,t,n,s,r,a,o,i,l,u;return H().getNumber("WEBGL_VERSION")===2?(e="#version 300 es",t="in",n="out",s="in",r="texture",a="outputColor",o="out vec4 outputColor;",i=`
bool isnan_custom(float val) {
uint floatToUint = floatBitsToUint(val);
return (floatToUint & 0x7fffffffu) > 0x7f800000u;
}
bvec4 isnan_custom(vec4 val) {
return bvec4(isnan_custom(val.x),
isnan_custom(val.y), isnan_custom(val.z), isnan_custom(val.w));
}
#define isnan(value) isnan_custom(value)
`,l="",u=`
#define round(value) newRound(value)
int newRound(float value) {
return int(floor(value + 0.5));
}
ivec4 newRound(vec4 value) {
return ivec4(floor(value + vec4(0.5)));
}
`):(e="",t="attribute",n="varying",s="varying",r="texture2D",a="gl_FragColor",o="",i=`
#define isnan(value) isnan_custom(value)
bool isnan_custom(float val) {
return (val > 0. || val < 1. || val == 0.) ? false : true;
}
bvec4 isnan_custom(vec4 val) {
return bvec4(isnan(val.x), isnan(val.y), isnan(val.z), isnan(val.w));
}
`,l=`
uniform float INFINITY;
bool isinf(float val) {
return abs(val) == INFINITY;
}
bvec4 isinf(vec4 val) {
return equal(abs(val), vec4(INFINITY));
}
`,u=`
int round(float value) {
return int(floor(value + 0.5));
}
ivec4 round(vec4 value) {
return ivec4(floor(value + vec4(0.5)));
}
`),{version:e,attribute:t,varyingVs:n,varyingFs:s,texture2D:r,output:a,defineOutput:o,defineSpecialNaN:i,defineSpecialInf:l,defineRound:u}}function du(e,t,n="index"){let s=v.computeStrides(t);return s.map((r,a)=>{let o=`int ${e[a]} = ${n} / ${r}`,i=a===s.length-1?`int ${e[a+1]} = ${n} - ${e[a]} * ${r}`:`index -= ${e[a]} * ${r}`;return`${o}; ${i};`}).join("")}function N2(e,t,n="index"){let s=v.computeStrides(t);return s.map((r,a)=>{let o=`int ${e[a]} = ${n} / outShapeStrides[${a}]`,i=a===s.length-1?`int ${e[a+1]} = ${n} - ${e[a]} * outShapeStrides[${a}]`:`index -= ${e[a]} * outShapeStrides[${a}]`;return`${o}; ${i};`}).join("")}function Uee(e,t){let n=e.length,s=e.map(a=>`${t}[${a}]`),r=new Array(n-1);r[n-2]=s[n-1];for(let a=n-3;a>=0;--a)r[a]=`(${r[a+1]} * ${s[a+1]})`;return r}function Gee(e,t,n="index"){let s=e.map((a,o)=>o),r=Uee(s,t);return r.map((a,o)=>{let i=`int ${e[o]} = ${n} / ${r[o]}`,l=o===r.length-1?`int ${e[o+1]} = ${n} - ${e[o]} * ${r[o]}`:`index -= ${e[o]} * ${r[o]}`;return`${i}; ${l};`}).join("")}function eb(e){let t=v.computeStrides(e).map(n=>n.toString());return`
int getFlatIndex(ivec3 coords) {
return coords.x * ${t[0]} + coords.y * ${t[1]} + coords.z;
}
`}function tb(){return`
int getFlatIndex(ivec3 coords) {
return coords.x * outShapeStrides[0] + coords.y * outShapeStrides[1] + coords.z;
}
`}var JI=`
const float FLOAT_MAX = 1.70141184e38;
const float FLOAT_MIN = 1.17549435e-38;
lowp vec4 encode_float(highp float v) {
if (isnan(v)) {
return vec4(255, 255, 255, 255);
}
highp float av = abs(v);
if(av < FLOAT_MIN) {
return vec4(0.0, 0.0, 0.0, 0.0);
} else if(v > FLOAT_MAX) {
return vec4(0.0, 0.0, 128.0, 127.0) / 255.0;
} else if(v < -FLOAT_MAX) {
return vec4(0.0, 0.0, 128.0, 255.0) / 255.0;
}
highp vec4 c = vec4(0,0,0,0);
highp float e = floor(log2(av));
highp float m = exp2(fract(log2(av))) - 1.0;
c[2] = floor(128.0 * m);
m -= c[2] / 128.0;
c[1] = floor(32768.0 * m);
m -= c[1] / 32768.0;
c[0] = floor(8388608.0 * m);
highp float ebias = e + 127.0;
c[3] = floor(ebias / 2.0);
ebias -= c[3] * 2.0;
c[2] += floor(ebias) * 128.0;
c[3] += 128.0 * step(0.0, -v);
return c / 255.0;
}
`,{getBroadcastDims:QI}=T;function Hee(e,t,n){let s=[];if(e.forEach(h=>{let f=v.sizeFromShape(h.shapeInfo.logicalShape);if(h.shapeInfo.isUniform?s.push(`uniform float ${h.name}${f>1?`[${f}]`:""};`):(s.push(`uniform sampler2D ${h.name};`),s.push(`uniform int offset${h.name};`)),n.enableShapeUniforms){let{uniformShape:m}=nb(n.packedInputs,h.shapeInfo.logicalShape,h.shapeInfo.texShape);switch(m.length){case 1:s.push(`uniform int ${h.name}Shape;`);break;case 2:s.push(`uniform ivec2 ${h.name}Shape;`);break;case 3:s.push(`uniform ivec3 ${h.name}Shape;`);break;case 4:s.push(`uniform ivec4 ${h.name}Shape;`);break;default:break}s.push(`uniform ivec2 ${h.name}TexShape;`)}}),n.enableShapeUniforms){switch(t.logicalShape.length){case 1:s.push("uniform int outShape;");break;case 2:s.push("uniform ivec2 outShape;"),s.push("uniform int outShapeStrides;");break;case 3:s.push("uniform ivec3 outShape;"),s.push("uniform ivec2 outShapeStrides;");break;case 4:s.push("uniform ivec4 outShape;"),s.push("uniform ivec3 outShapeStrides;");break;default:break}s.push("uniform ivec2 outTexShape;")}n.customUniforms&&n.customUniforms.forEach(h=>{s.push(`uniform ${h.type} ${h.name}${h.arrayIndex?`[${h.arrayIndex}]`:""};`)});let r=s.join(`
`),a=e.map(h=>jee(h,t,n.packedInputs,n.enableShapeUniforms)).join(`
`),o=t.texShape,i=us(),l=Kee(i),u,c,p=Jee(i);return t.isPacked?(u=qee(t.logicalShape,o,n.enableShapeUniforms),c=Yee(i)):(u=Xee(t.logicalShape,o,n.enableShapeUniforms),c=Zee(i)),n.packedInputs&&(p+=nte),[p,l,c,r,u,a,n.userCode].join(`
`)}function ld(e,t=!1){let n=e.shapeInfo.logicalShape;switch(n.length){case 0:return fte(e,t);case 1:return gte(e,t);case 2:return Ate(e,t);case 3:return bte(e,t);case 4:return wte(e,t);case 5:return kte(e);case 6:return Ste(e);default:throw new Error(`${n.length}-D input sampling is not yet supported`)}}function e9(e,t){switch(e.shapeInfo.logicalShape.length){case 0:return hte(e);case 1:return mte(e,t);case 2:return yte(e,t);case 3:return xte(e,t);default:return vte(e,t)}}function jee(e,t,n=!1,s){let r="";n?r+=e9(e,s):r+=ld(e,s);let a=e.shapeInfo.logicalShape,o=t.logicalShape;return a.length<=o.length&&(n?r+=Ite(e,t):r+=Cte(e,t)),r}function qee(e,t,n){switch(e.length){case 0:return t9();case 1:return ste(e,t,n);case 2:return dte(e,t,n);case 3:return ate(e,t,n);default:return ite(e,t,n)}}function Xee(e,t,n){switch(e.length){case 0:return t9();case 1:return rte(e,t,n);case 2:return pte(e,t,n);case 3:return ote(e,t,n);case 4:return lte(e,t,n);case 5:return ute(e,t);case 6:return cte(e,t);default:throw new Error(`${e.length}-D output sampling is not yet supported`)}}function Kee(e){return`
float sampleTexture(sampler2D textureSampler, vec2 uv) {
return ${e.texture2D}(textureSampler, uv).r;
}
`}function Zee(e){return`
void setOutput(float val) {
${e.output} = vec4(val, 0, 0, 0);
}
`}function Yee(e){return`
void setOutput(vec4 val) {
${e.output} = val;
}
`}function Jee(e){return`${e.version}
precision highp float;
precision highp int;
precision highp sampler2D;
${e.varyingFs} vec2 resultUV;
${e.defineOutput}
const vec2 halfCR = vec2(0.5, 0.5);
struct ivec5
{
int x;
int y;
int z;
int w;
int u;
};
struct ivec6
{
int x;
int y;
int z;
int w;
int u;
int v;
};
uniform float NAN;
${e.defineSpecialNaN}
${e.defineSpecialInf}
${e.defineRound}
int imod(int x, int y) {
return x - y * (x / y);
}
int idiv(int a, int b, float sign) {
int res = a / b;
int mod = imod(a, b);
if (sign < 0. && mod != 0) {
res -= 1;
}
return res;
}
//Based on the work of Dave Hoskins
//https://www.shadertoy.com/view/4djSRW
#define HASHSCALE1 443.8975
float random(float seed){
vec2 p = resultUV * seed;
vec3 p3 = fract(vec3(p.xyx) * HASHSCALE1);
p3 += dot(p3, p3.yzx + 19.19);
return fract((p3.x + p3.y) * p3.z);
}
${Qee}
${ete}
${tte}
`}var Qee=`
vec2 uvFromFlat(int texNumR, int texNumC, int index) {
int texR = index / texNumC;
int texC = index - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
vec2 packedUVfrom1D(int texNumR, int texNumC, int index) {
int texelIndex = index / 2;
int texR = texelIndex / texNumC;
int texC = texelIndex - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
`,ete=`
vec2 packedUVfrom2D(int texelsInLogicalRow, int texNumR,
int texNumC, int row, int col) {
int texelIndex = (row / 2) * texelsInLogicalRow + (col / 2);
int texR = texelIndex / texNumC;
int texC = texelIndex - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
`,tte=`
vec2 packedUVfrom3D(int texNumR, int texNumC,
int texelsInBatch, int texelsInLogicalRow, int b,
int row, int col) {
int index = b * texelsInBatch + (row / 2) * texelsInLogicalRow + (col / 2);
int texR = index / texNumC;
int texC = index - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
`,nte=`
float getChannel(vec4 frag, vec2 innerDims) {
vec2 modCoord = mod(innerDims, 2.);
return modCoord.x == 0. ?
(modCoord.y == 0. ? frag.r : frag.g) :
(modCoord.y == 0. ? frag.b : frag.a);
}
float getChannel(vec4 frag, int dim) {
float modCoord = mod(float(dim), 2.);
return modCoord == 0. ? frag.r : frag.g;
}
`;function t9(){return`
int getOutputCoords() {
return 0;
}
`}function ste(e,t,n){let s=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];return s[0]===1?n?`
int getOutputCoords() {
return 2 * int(resultUV.x * ceil(float(outTexShape[1]) / 2.0));
}
`:`
int getOutputCoords() {
return 2 * int(resultUV.x * ${s[1]}.0);
}
`:s[1]===1?n?`
int getOutputCoords() {
return 2 * int(resultUV.y * ceil(float(outTexShape[0]) / 2.0));
}
`:`
int getOutputCoords() {
return 2 * int(resultUV.y * ${s[0]}.0);
}
`:n?`
int getOutputCoords() {
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(packedTexShape[0], packedTexShape[1]));
return 2 * (resTexRC.x * packedTexShape[1] + resTexRC.y);
}
`:`
int getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${s[0]}, ${s[1]}));
return 2 * (resTexRC.x * ${s[1]} + resTexRC.y);
}
`}function rte(e,t,n){return t[0]===1?n?`
int getOutputCoords() {
return int(resultUV.x * float(outTexShape[1]));
}
`:`
int getOutputCoords() {
return int(resultUV.x * ${t[1]}.0);
}
`:t[1]===1?n?`
int getOutputCoords() {
return int(resultUV.y * float(outTexShape[0]));
}
`:`
int getOutputCoords() {
return int(resultUV.y * ${t[0]}.0);
}
`:n?`
int getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(outTexShape[0], outTexShape[1]));
return resTexRC.x * outTexShape[1] + resTexRC.y;
}
`:`
int getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
return resTexRC.x * ${t[1]} + resTexRC.y;
}
`}function ate(e,t,n){if(n)return`
ivec3 getOutputCoords() {
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
int texelsInLogicalRow = int(ceil(float(outShape[2]) / 2.0));
int texelsInBatch = texelsInLogicalRow * int(ceil(float(outShape[1]) / 2.0));
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(packedTexShape[0], packedTexShape[1]));
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
int b = index / texelsInBatch;
index -= b * texelsInBatch;
int r = 2 * (index / texelsInLogicalRow);
int c = imod(index, texelsInLogicalRow) * 2;
return ivec3(b, r, c);
}
`;let s=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],r=Math.ceil(e[2]/2),a=r*Math.ceil(e[1]/2);return`
ivec3 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${s[0]}, ${s[1]}));
int index = resTexRC.x * ${s[1]} + resTexRC.y;
int b = index / ${a};
index -= b * ${a};
int r = 2 * (index / ${r});
int c = imod(index, ${r}) * 2;
return ivec3(b, r, c);
}
`}function ote(e,t,n){if(n)return`
ivec3 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(outTexShape[0], outTexShape[1]));
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
${N2(["r","c","d"],e)}
return ivec3(r, c, d);
}
`;let s=du(["r","c","d"],e);return`
ivec3 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${s}
return ivec3(r, c, d);
}
`}function ite(e,t,n){if(n)return`
ivec4 getOutputCoords() {
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(packedTexShape[0], packedTexShape[1]));
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
int texelsInLogicalRow = int(ceil(float(outShape[3]) / 2.0));
int texelsInBatch = texelsInLogicalRow * int(ceil(float(outShape[2]) / 2.0));
int texelsInBatchN = texelsInBatch * outShape[1];
int b2 = index / texelsInBatchN;
index -= b2 * texelsInBatchN;
int b = index / texelsInBatch;
index -= b * texelsInBatch;
int r = 2 * (index / texelsInLogicalRow);
int c = imod(index, texelsInLogicalRow) * 2;
return ivec4(b2, b, r, c);
}
`;let s=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],r=Math.ceil(e[e.length-1]/2),a=r*Math.ceil(e[e.length-2]/2),o=a,i="",l="b, r, c";for(let u=2;u<e.length-1;u++)o*=e[e.length-u-1],i=`
int b${u} = index / ${o};
index -= b${u} * ${o};
`+i,l=`b${u}, `+l;return`
ivec${e.length} getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${s[0]}, ${s[1]}));
int index = resTexRC.x * ${s[1]} + resTexRC.y;
${i}
int b = index / ${a};
index -= b * ${a};
int r = 2 * (index / ${r});
int c = imod(index, ${r}) * 2;
return ivec${e.length}(${l});
}
`}function lte(e,t,n){if(n)return`
ivec4 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(outTexShape[0], outTexShape[1]));
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
${N2(["r","c","d","d2"],e)}
return ivec4(r, c, d, d2);
}
`;let s=du(["r","c","d","d2"],e);return`
ivec4 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${s}
return ivec4(r, c, d, d2);
}
`}function ute(e,t){let n=du(["r","c","d","d2","d3"],e);return`
ivec5 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx * vec2(${t[0]},
${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${n}
ivec5 outShape = ivec5(r, c, d, d2, d3);
return outShape;
}
`}function cte(e,t){let n=du(["r","c","d","d2","d3","d4"],e);return`
ivec6 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${n}
ivec6 result = ivec6(r, c, d, d2, d3, d4);
return result;
}
`}function dte(e,t,n){let s=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];if(v.arraysEqual(e,t))return n?`
ivec2 getOutputCoords() {
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
return 2 * ivec2(resultUV.yx * vec2(packedTexShape[0], packedTexShape[1]));
}
`:`
ivec2 getOutputCoords() {
return 2 * ivec2(resultUV.yx * vec2(${s[0]}, ${s[1]}));
}
`;let r=Math.ceil(e[1]/2);return n?`
ivec2 getOutputCoords() {
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
int texelsInLogicalRow = int(ceil(float(outShape[1]) / 2.0));
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(packedTexShape[0], packedTexShape[1]));
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
int r = 2 * (index / texelsInLogicalRow);
int c = imod(index, texelsInLogicalRow) * 2;
return ivec2(r, c);
}
`:`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${s[0]}, ${s[1]}));
int index = resTexRC.x * ${s[1]} + resTexRC.y;
int r = 2 * (index / ${r});
int c = imod(index, ${r}) * 2;
return ivec2(r, c);
}
`}function pte(e,t,n){return v.arraysEqual(e,t)?n?`
ivec2 getOutputCoords() {
return ivec2(resultUV.yx * vec2(outTexShape[0], outTexShape[1]));
}
`:`
ivec2 getOutputCoords() {
return ivec2(resultUV.yx * vec2(${t[0]}, ${t[1]}));
}
`:e[1]===1?n?`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(outTexShape[0], outTexShape[1]));
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
return ivec2(index, 0);
}
`:`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
return ivec2(index, 0);
}
`:e[0]===1?n?`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(outTexShape[0], outTexShape[1]));
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
return ivec2(0, index);
}
`:`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
return ivec2(0, index);
}
`:n?`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(outTexShape[0], outTexShape[1]));
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
int r = index / outShape[1];
int c = index - r * outShape[1];
return ivec2(r, c);
}
`:`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
int r = index / ${e[1]};
int c = index - r * ${e[1]};
return ivec2(r, c);
}
`}function pu(e){return`offset${e}`}function hte(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1),s=us();return`
vec4 ${n}() {
return ${s.texture2D}(${t}, halfCR);
}
`}function fte(e,t){let n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1);if(e.shapeInfo.isUniform)return`float ${s}() {return ${n};}`;let[r,a]=e.shapeInfo.texShape;if(r===1&&a===1)return`
float ${s}() {
return sampleTexture(${n}, halfCR);
}
`;let o=pu(n);if(t)return`
float ${s}() {
vec2 uv = uvFromFlat(${n}TexShape[0], ${n}TexShape[1], ${o});
return sampleTexture(${n}, uv);
}
`;let[i,l]=e.shapeInfo.texShape;return`
float ${s}() {
vec2 uv = uvFromFlat(${i}, ${l}, ${o});
return sampleTexture(${n}, uv);
}
`}function mte(e,t){let n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1),r=e.shapeInfo.texShape,a=us();if(t)return`
vec4 ${s}(int index) {
ivec2 packedTexShape = ivec2(ceil(float(${n}TexShape[0]) / 2.0), ceil(float(${n}TexShape[1]) / 2.0));
vec2 uv = packedUVfrom1D(
packedTexShape[0], packedTexShape[1], index);
return ${a.texture2D}(${n}, uv);
}
`;let o=[Math.ceil(r[0]/2),Math.ceil(r[1]/2)];return`
vec4 ${s}(int index) {
vec2 uv = packedUVfrom1D(
${o[0]}, ${o[1]}, index);
return ${a.texture2D}(${n}, uv);
}
`}function gte(e,t){let n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1);if(e.shapeInfo.isUniform)return`
float ${s}(int index) {
${ud(e)}
}
`;let r=e.shapeInfo.texShape,a=r[0],o=r[1];if(o===1&&a===1)return`
float ${s}(int index) {
return sampleTexture(${n}, halfCR);
}
`;let i=pu(n);return o===1?t?`
float ${s}(int index) {
vec2 uv = vec2(0.5, (float(index + ${i}) + 0.5) / float(${n}TexShape[0]));
return sampleTexture(${n}, uv);
}
`:`
float ${s}(int index) {
vec2 uv = vec2(0.5, (float(index + ${i}) + 0.5) / ${a}.0);
return sampleTexture(${n}, uv);
}
`:a===1?t?`
float ${s}(int index) {
vec2 uv = vec2((float(index + ${i}) + 0.5) / float(${n}TexShape[1]), 0.5);
return sampleTexture(${n}, uv);
}
`:`
float ${s}(int index) {
vec2 uv = vec2((float(index + ${i}) + 0.5) / ${o}.0, 0.5);
return sampleTexture(${n}, uv);
}
`:t?`
float ${s}(int index) {
vec2 uv = uvFromFlat(${n}TexShape[0], ${n}TexShape[1], index + ${i});
return sampleTexture(${n}, uv);
}
`:`
float ${s}(int index) {
vec2 uv = uvFromFlat(${a}, ${o}, index + ${i});
return sampleTexture(${n}, uv);
}
`}function yte(e,t){let n=e.shapeInfo.logicalShape,s=e.name,r="get"+s.charAt(0).toUpperCase()+s.slice(1),a=e.shapeInfo.texShape,o=a[0],i=a[1],l=us();if(a!=null&&v.arraysEqual(n,a))return t?`
vec4 ${r}(int row, int col) {
vec2 uv = (vec2(col, row) + halfCR) / vec2(${s}TexShape[1], ${s}TexShape[0]);
return ${l.texture2D}(${s}, uv);
}
`:`
vec4 ${r}(int row, int col) {
vec2 uv = (vec2(col, row) + halfCR) / vec2(${i}.0, ${o}.0);
return ${l.texture2D}(${s}, uv);
}
`;if(t)return`
vec4 ${r}(int row, int col) {
ivec2 packedTexShape = ivec2(ceil(float(${s}TexShape[0]) / 2.0), ceil(float(${s}TexShape[1]) / 2.0));
int valuesPerRow = int(ceil(float(${s}Shape[1]) / 2.0));
vec2 uv = packedUVfrom2D(valuesPerRow, packedTexShape[0], packedTexShape[1], row, col);
return ${l.texture2D}(${s}, uv);
}
`;let u=[Math.ceil(a[0]/2),Math.ceil(a[1]/2)],c=Math.ceil(n[1]/2);return`
vec4 ${r}(int row, int col) {
vec2 uv = packedUVfrom2D(${c}, ${u[0]}, ${u[1]}, row, col);
return ${l.texture2D}(${s}, uv);
}
`}function Ate(e,t){let n=e.shapeInfo.logicalShape,s=e.name,r="get"+s.charAt(0).toUpperCase()+s.slice(1),a=e.shapeInfo.texShape;if(a!=null&&v.arraysEqual(n,a)){if(t)return`
float ${r}(int row, int col) {
vec2 uv = (vec2(col, row) + halfCR) / vec2(${s}TexShape[1], ${s}TexShape[0]);
return sampleTexture(${s}, uv);
}
`;let d=a[0],h=a[1];return`
float ${r}(int row, int col) {
vec2 uv = (vec2(col, row) + halfCR) / vec2(${h}.0, ${d}.0);
return sampleTexture(${s}, uv);
}
`}let{newShape:o,keptDims:i}=v.squeezeShape(n),l=o;if(l.length<n.length){let d=cd(e,l),h=["row","col"];return`
${ld(d,t)}
float ${r}(int row, int col) {
return ${r}(${dd(h,i)});
}
`}if(e.shapeInfo.isUniform)return`
float ${r}(int row, int col) {
int index = round(dot(vec2(row, col), vec2(${n[1]}, 1)));
${ud(e)}
}
`;let u=a[0],c=a[1],p=pu(s);return c===1?t?`
float ${r}(int row, int col) {
float index = dot(vec3(row, col, ${p}), vec3(${s}Shape[1], 1, 1));
vec2 uv = vec2(0.5, (index + 0.5) / float(${s}TexShape[0]));
return sampleTexture(${s}, uv);
}
`:`
float ${r}(int row, int col) {
float index = dot(vec3(row, col, ${p}), vec3(${n[1]}, 1, 1));
vec2 uv = vec2(0.5, (index + 0.5) / ${u}.0);
return sampleTexture(${s}, uv);
}
`:u===1?t?`
float ${r}(int row, int col) {
float index = dot(vec3(row, col, ${p}), vec3(${s}Shape[1], 1, 1));
vec2 uv = vec2((index + 0.5) / float(${s}TexShape[1]), 0.5);
return sampleTexture(${s}, uv);
}
`:`
float ${r}(int row, int col) {
float index = dot(vec3(row, col, ${p}), vec3(${n[1]}, 1, 1));
vec2 uv = vec2((index + 0.5) / ${c}.0, 0.5);
return sampleTexture(${s}, uv);
}
`:t?`
float ${r}(int row, int col) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${s}Shape[1] + col + ${p};
vec2 uv = uvFromFlat(${s}TexShape[0], ${s}TexShape[1], index);
return sampleTexture(${s}, uv);
}
`:`
float ${r}(int row, int col) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${n[1]} + col + ${p};
vec2 uv = uvFromFlat(${u}, ${c}, index);
return sampleTexture(${s}, uv);
}
`}function xte(e,t){let n=e.shapeInfo.logicalShape,s=e.name,r="get"+s.charAt(0).toUpperCase()+s.slice(1),a=e.shapeInfo.texShape,o=[Math.ceil(a[0]/2),Math.ceil(a[1]/2)];if(n[0]===1){let d=n.slice(1),h=[1,2],f=cd(e,d),m=["b","row","col"];return`
${e9(f,t)}
vec4 ${r}(int b, int row, int col) {
return ${r}(${dd(m,h)});
}
`}let i=us();if(t)return`
vec4 ${r}(int b, int row, int col) {
ivec2 packedTexShape = ivec2(ceil(float(${s}TexShape[0]) / 2.0), ceil(float(${s}TexShape[1]) / 2.0));
int valuesPerRow = int(ceil(float(${s}Shape[2]) / 2.0));
int texelsInBatch = valuesPerRow * int(ceil(float(${s}Shape[1]) / 2.0));
vec2 uv = packedUVfrom3D(
packedTexShape[0], packedTexShape[1], texelsInBatch, valuesPerRow, b, row, col);
return ${i.texture2D}(${s}, uv);
}
`;let l=o[0],u=o[1],c=Math.ceil(n[2]/2),p=c*Math.ceil(n[1]/2);return`
vec4 ${r}(int b, int row, int col) {
vec2 uv = packedUVfrom3D(
${l}, ${u}, ${p}, ${c}, b, row, col);
return ${i.texture2D}(${s}, uv);
}
`}function bte(e,t){let n=e.shapeInfo.logicalShape,s=e.name,r="get"+s.charAt(0).toUpperCase()+s.slice(1),a=n[1]*n[2],o=n[2],{newShape:i,keptDims:l}=v.squeezeShape(n),u=i;if(u.length<n.length){let m=cd(e,u),g=["row","col","depth"];return`
${ld(m,t)}
float ${r}(int row, int col, int depth) {
return ${r}(${dd(g,l)});
}
`}if(e.shapeInfo.isUniform)return`
float ${r}(int row, int col, int depth) {
int index = round(dot(vec3(row, col, depth),
vec3(${a}, ${o}, 1)));
${ud(e)}
}
`;let c=e.shapeInfo.texShape,p=c[0],d=c[1],h=e.shapeInfo.flatOffset;if(d===a&&h==null)return t?`
float ${r}(int row, int col, int depth) {
int stride1 = ${s}Shape[2];
float texR = float(row);
float texC = dot(vec2(col, depth), vec2(stride1, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${s}TexShape[1], ${s}TexShape[0]);
return sampleTexture(${s}, uv);
}
`:`
float ${r}(int row, int col, int depth) {
float texR = float(row);
float texC = dot(vec2(col, depth), vec2(${o}, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${d}.0, ${p}.0);
return sampleTexture(${s}, uv);
}
`;if(d===o&&h==null)return t?`
float ${r}(int row, int col, int depth) {
float texR = dot(vec2(row, col), vec2(${s}Shape[1], 1));
float texC = float(depth);
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${s}TexShape[1], ${s}TexShape[0]);
return sampleTexture(${s}, uv);
}
`:`
float ${r}(int row, int col, int depth) {
float texR = dot(vec2(row, col), vec2(${n[1]}, 1));
float texC = float(depth);
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${d}.0, ${p}.0);
return sampleTexture(${s}, uv);
}
`;let f=pu(s);return t?`
float ${r}(int row, int col, int depth) {
// Explicitly use integer operations as dot() only works on floats.
int stride0 = ${s}Shape[1] * ${s}Shape[2];
int stride1 = ${s}Shape[2];
int index = row * ${a} + col * ${o} + depth + ${f};
vec2 uv = uvFromFlat(${s}TexShape[0], ${s}TexShape[1], index);
return sampleTexture(${s}, uv);
}
`:`
float ${r}(int row, int col, int depth) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${a} + col * ${o} + depth + ${f};
vec2 uv = uvFromFlat(${p}, ${d}, index);
return sampleTexture(${s}, uv);
}
`}function vte(e,t){let n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1),r=us();if(t)return`
vec4 ${s}(int b2, int b, int row, int col) {
int valuesPerRow = int(ceil(float(${n}Shape[3]) / 2.0));
int texelsInBatch = valuesPerRow * int(ceil(float(${n}Shape[2]) / 2.0));
int index = b * texelsInBatch + (row / 2) * valuesPerRow + (col / 2);
texelsInBatch *= ${n}Shape[1];
index = b2 * texelsInBatch + index;
ivec2 packedTexShape = ivec2(ceil(float(${n}TexShape[0]) / 2.0), ceil(float(${n}TexShape[1]) / 2.0));
int texR = index / packedTexShape[1];
int texC = index - texR * packedTexShape[1];
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(packedTexShape[1], packedTexShape[0]); return ${r.texture2D}(${n}, uv);
}
`;let a=e.shapeInfo.logicalShape,o=a.length,i=e.shapeInfo.texShape,l=[Math.ceil(i[0]/2),Math.ceil(i[1]/2)],u=l[0],c=l[1],p=Math.ceil(a[o-1]/2),d=p*Math.ceil(a[o-2]/2),h="int b, int row, int col",f=`b * ${d} + (row / 2) * ${p} + (col / 2)`;for(let m=2;m<o-1;m++)h=`int b${m}, `+h,d*=a[o-m-1],f=`b${m} * ${d} + `+f;return`
vec4 ${s}(${h}) {
int index = ${f};
int texR = index / ${c};
int texC = index - texR * ${c};
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${c}, ${u});
return ${r.texture2D}(${n}, uv);
}
`}function wte(e,t){let n=e.shapeInfo.logicalShape,s=e.name,r="get"+s.charAt(0).toUpperCase()+s.slice(1),a=n[3],o=n[2]*a,i=n[1]*o,{newShape:l,keptDims:u}=v.squeezeShape(n);if(l.length<n.length){let x=cd(e,l),A=["row","col","depth","depth2"];return`
${ld(x,t)}
float ${r}(int row, int col, int depth, int depth2) {
return ${r}(${dd(A,u)});
}
`}if(e.shapeInfo.isUniform)return`
float ${r}(int row, int col, int depth, int depth2) {
int index = round(dot(vec4(row, col, depth, depth2),
vec4(${i}, ${o}, ${a}, 1)));
${ud(e)}
}
`;let c=e.shapeInfo.flatOffset,p=e.shapeInfo.texShape,d=p[0],h=p[1],f=`int stride2 = ${s}Shape[3];`,m=`int stride1 = ${s}Shape[2] * stride2;`,g=`int stride0 = ${s}Shape[1] * stride1;`;if(h===i&&c==null)return t?`
float ${r}(int row, int col, int depth, int depth2) {
${f}
${m}
float texR = float(row);
float texC =
dot(vec3(col, depth, depth2),
vec3(stride1, stride2, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${s}TexShape[1], ${s}TexShape[0]);
return sampleTexture(${s}, uv);
}
`:`
float ${r}(int row, int col, int depth, int depth2) {
float texR = float(row);
float texC =
dot(vec3(col, depth, depth2),
vec3(${o}, ${a}, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${h}.0, ${d}.0);
return sampleTexture(${s}, uv);
}
`;if(h===a&&c==null)return t?`
float ${r}(int row, int col, int depth, int depth2) {
float texR = dot(vec3(row, col, depth),
vec3(${s}Shape[1] * ${s}Shape[2], ${s}Shape[2], 1));
float texC = float(depth2);
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${s}TexShape[1], ${s}TexShape[0]);
return sampleTexture(${s}, uv);
}
`:`
float ${r}(int row, int col, int depth, int depth2) {
float texR = dot(vec3(row, col, depth),
vec3(${n[1]*n[2]}, ${n[2]}, 1));
float texC = float(depth2);
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${h}.0, ${d}.0);
return sampleTexture(${s}, uv);
}
`;let y=pu(s);return t?`
float ${r}(int row, int col, int depth, int depth2) {
// Explicitly use integer operations as dot() only works on floats.
${f}
${m}
${g}
int index = row * stride0 + col * stride1 +
depth * stride2 + depth2;
vec2 uv = uvFromFlat(${s}TexShape[0], ${s}TexShape[1], index + ${y});
return sampleTexture(${s}, uv);
}
`:`
float ${r}(int row, int col, int depth, int depth2) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${i} + col * ${o} +
depth * ${a} + depth2;
vec2 uv = uvFromFlat(${d}, ${h}, index + ${y});
return sampleTexture(${s}, uv);
}
`}function kte(e){let t=e.shapeInfo.logicalShape,n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1),r=t[4],a=t[3]*r,o=t[2]*a,i=t[1]*o,{newShape:l,keptDims:u}=v.squeezeShape(t);if(l.length<t.length){let m=cd(e,l),g=["row","col","depth","depth2","depth3"];return`
${ld(m)}
float ${s}(int row, int col, int depth, int depth2, int depth3) {
return ${s}(${dd(g,u)});
}
`}if(e.shapeInfo.isUniform)return`
float ${s}(int row, int col, int depth, int depth2, int depth3) {
float index = dot(
vec4(row, col, depth, depth2),
vec4(${i}, ${o}, ${a}, ${r})) +
depth3;
${ud(e)}
}
`;let c=e.shapeInfo.flatOffset,p=e.shapeInfo.texShape,d=p[0],h=p[1];if(h===i&&c==null)return`
float ${s}(int row, int col, int depth, int depth2, int depth3) {
int texR = row;
float texC = dot(vec4(col, depth, depth2, depth3),
vec4(${o}, ${a}, ${r}, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${h}.0, ${d}.0);
return sampleTexture(${n}, uv);
}
`;if(h===r&&c==null)return`
float ${s}(int row, int col, int depth, int depth2, int depth3) {
float texR = dot(
vec4(row, col, depth, depth2),
vec4(${t[1]*t[2]*t[3]},
${t[2]*t[3]}, ${t[3]}, 1));
int texC = depth3;
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${h}.0, ${d}.0);
return sampleTexture(${n}, uv);
}
`;let f=pu(n);return`
float ${s}(int row, int col, int depth, int depth2, int depth3) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${i} + col * ${o} + depth * ${a} +
depth2 * ${r} + depth3 + ${f};
vec2 uv = uvFromFlat(${d}, ${h}, index);
return sampleTexture(${n}, uv);
}
`}function Ste(e){let t=e.shapeInfo.logicalShape,n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1),{newShape:r,keptDims:a}=v.squeezeShape(t);if(r.length<t.length){let g=cd(e,r),y=["row","col","depth","depth2","depth3","depth4"];return`
${ld(g)}
float ${s}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
return ${s}(${dd(y,a)});
}
`}let o=t[5],i=t[4]*o,l=t[3]*i,u=t[2]*l,c=t[1]*u;if(e.shapeInfo.isUniform)return`
float ${s}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
int index = round(dot(
vec4(row, col, depth, depth2),
vec4(${c}, ${u}, ${l}, ${i})) +
dot(
vec2(depth3, depth4),
vec2(${o}, 1)));
${ud(e)}
}
`;let p=e.shapeInfo.flatOffset,d=e.shapeInfo.texShape,h=d[0],f=d[1];if(f===c&&p==null)return`
float ${s}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
int texR = row;
float texC = dot(vec4(col, depth, depth2, depth3),
vec4(${u}, ${l}, ${i}, ${o})) +
float(depth4);
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${f}.0, ${h}.0);
return sampleTexture(${n}, uv);
}
`;if(f===o&&p==null)return`
float ${s}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
float texR = dot(vec4(row, col, depth, depth2),
vec4(${t[1]*t[2]*t[3]*t[4]},
${t[2]*t[3]*t[4]},
${t[3]*t[4]},
${t[4]})) + float(depth3);
int texC = depth4;
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${f}.0, ${h}.0);
return sampleTexture(${n}, uv);
}
`;let m=pu(n);return`
float ${s}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${c} + col * ${u} + depth * ${l} +
depth2 * ${i} + depth3 * ${o} + depth4 + ${m};
vec2 uv = uvFromFlat(${h}, ${f}, index);
return sampleTexture(${n}, uv);
}
`}function ud(e){let t=e.name,n=v.sizeFromShape(e.shapeInfo.logicalShape);return n<2?`return ${t};`:`
for (int i = 0; i < ${n}; i++) {
if (i == index) {
return ${t}[i];
}
}
`}function Ite(e,t){let n=e.name,s=n.charAt(0).toUpperCase()+n.slice(1),r="get"+s+"AtOutCoords",a=e.shapeInfo.logicalShape.length,o=t.logicalShape.length,i=QI(e.shapeInfo.logicalShape,t.logicalShape),l=vt(o),u=o-a,c,p=["x","y","z","w","u","v"];a===0?c="":o<2&&i.length>=1?c="coords = 0;":c=i.map(x=>`coords.${p[x+u]} = 0;`).join(`
`);let d="";o<2&&a>0?d="coords":d=e.shapeInfo.logicalShape.map((x,A)=>`coords.${p[A+u]}`).join(", ");let h="return outputValue;",m=v.sizeFromShape(e.shapeInfo.logicalShape)===1,y=v.sizeFromShape(t.logicalShape)===1;if(a===1&&!m&&!y)h=`
return vec4(outputValue.xy, outputValue.xy);
`;else if(m&&!y)o===1?h=`
return vec4(outputValue.x, outputValue.x, 0., 0.);
`:h=`
return vec4(outputValue.x);
`;else if(i.length){let x=a-2,A=a-1;i.indexOf(x)>-1&&i.indexOf(A)>-1?h="return vec4(outputValue.x);":i.indexOf(x)>-1?h="return vec4(outputValue.x, outputValue.y, outputValue.x, outputValue.y);":i.indexOf(A)>-1&&(h="return vec4(outputValue.xx, outputValue.zz);")}return`
vec4 ${r}() {
${l} coords = getOutputCoords();
${c}
vec4 outputValue = get${s}(${d});
${h}
}
`}function Cte(e,t){let n=e.name,s=n.charAt(0).toUpperCase()+n.slice(1),r="get"+s+"AtOutCoords",a=t.texShape,o=e.shapeInfo.texShape,i=e.shapeInfo.logicalShape.length,l=t.logicalShape.length;if(!e.shapeInfo.isUniform&&i===l&&e.shapeInfo.flatOffset==null&&v.arraysEqual(o,a))return`
float ${r}() {
return sampleTexture(${n}, resultUV);
}
`;let u=vt(l),c=QI(e.shapeInfo.logicalShape,t.logicalShape),p=l-i,d,h=["x","y","z","w","u","v"];i===0?d="":l<2&&c.length>=1?d="coords = 0;":d=c.map(m=>`coords.${h[m+p]} = 0;`).join(`
`);let f="";return l<2&&i>0?f="coords":f=e.shapeInfo.logicalShape.map((m,g)=>`coords.${h[g+p]}`).join(", "),`
float ${r}() {
${u} coords = getOutputCoords();
${d}
return get${s}(${f});
}
`}function vt(e){if(e<=1)return"int";if(e===2)return"ivec2";if(e===3)return"ivec3";if(e===4)return"ivec4";if(e===5)return"ivec5";if(e===6)return"ivec6";throw Error(`GPU for rank ${e} is not yet supported`)}function nb(e,t,n){let{newShape:s,keptDims:r}=v.squeezeShape(t),a=t.length,o=e&&a===3&&t[0]===1,i=o?t.slice(1):s,l=!e&&a>1&&!v.arraysEqual(t,n)&&s.length<a||o;return{useSqueezeShape:l,uniformShape:l?i:t,keptDims:r}}function cd(e,t){let n=JSON.parse(JSON.stringify(e));return n.shapeInfo.logicalShape=t,n}function dd(e,t){return t.map(n=>e[n]).join(", ")}function Tte(e,t,n,s){let r=n.map((c,p)=>{let d={logicalShape:c.shape,texShape:c.isUniform?null:c.texData.texShape,isUniform:c.isUniform,isPacked:c.isUniform?!1:c.texData.isPacked,flatOffset:null};return c.texData!=null&&c.texData.slice!=null&&c.texData.slice.flatOffset>0&&(d.flatOffset=c.texData.slice.flatOffset),{name:t.variableNames[p],shapeInfo:d}}),a=r.map(c=>c.shapeInfo),o={logicalShape:s.shape,texShape:s.texData.texShape,isUniform:!1,isPacked:s.texData.isPacked,flatOffset:null},i=Hee(r,o,t),l=_I(e.gl,i),u=e.createProgram(l);return H().get("ENGINE_COMPILE_ONLY")?{program:t,fragmentShader:l,source:i,webGLProgram:u,inShapeInfos:a,outShapeInfo:o,uniformLocations:null,customUniformLocations:null,infLoc:null,nanLoc:null,inShapesLocations:null,inTexShapesLocations:null,outShapeLocation:null,outShapeStridesLocation:null,outTexShapeLocation:null}:Object.assign({program:t,fragmentShader:l,source:i,webGLProgram:u,inShapeInfos:a,outShapeInfo:o},n9(e,t,u))}function n9(e,t,n){let s={},r={},a={},o=[],i,l,u,c=null,p=null;p=e.getUniformLocation(n,"NAN",!1),H().getNumber("WEBGL_VERSION")===1&&(c=e.getUniformLocation(n,"INFINITY",!1));let d=!1;for(let h=0;h<t.variableNames.length;h++){let f=t.variableNames[h];s[f]=e.getUniformLocation(n,f,d),s[`offset${f}`]=e.getUniformLocation(n,`offset${f}`,d),t.enableShapeUniforms&&(r[`${f}Shape`]=e.getUniformLocation(n,`${f}Shape`,d),a[`${f}TexShape`]=e.getUniformLocation(n,`${f}TexShape`,d))}return t.enableShapeUniforms&&(i=e.getUniformLocation(n,"outShape",d),u=e.getUniformLocation(n,"outShapeStrides",d),l=e.getUniformLocation(n,"outTexShape",d)),t.customUniforms&&t.customUniforms.forEach((h,f)=>{o[f]=e.getUniformLocation(n,h.name,d)}),{uniformLocations:s,customUniformLocations:o,infLoc:c,nanLoc:p,inShapesLocations:r,inTexShapesLocations:a,outShapeLocation:i,outShapeStridesLocation:u,outTexShapeLocation:l}}function C7(e,t){if(e.length!==t.length)throw Error(`Binary was compiled with ${e.length} inputs, but was executed with ${t.length} inputs`);e.forEach((n,s)=>{let r=n.logicalShape,a=t[s],o=a.shape;if(!v.arraysEqual(r,o))throw Error(`Binary was compiled with different shapes than the current args. Shapes ${r} and ${o} must match`);if(n.isUniform&&a.isUniform)return;let i=n.texShape,l=a.isUniform?null:a.texData.texShape;if(!v.arraysEqual(i,l))throw Error(`Binary was compiled with different texture shapes than the current args. Shape ${i} and ${l} must match`)})}function Nte(e,t,n,s,r){t.program.enableShapeUniforms||(C7(t.inShapeInfos,n),C7([t.outShapeInfo],[s]));let a=s.texData.texture,o=s.texData.texShape;s.texData.isPacked?e.setOutputPackedMatrixTexture(a.texture,o[0],o[1]):e.setOutputMatrixTexture(a.texture,o[0],o[1]),e.setProgram(t.webGLProgram),H().getNumber("WEBGL_VERSION")===1&&t.infLoc!==null&&e.gl.uniform1f(t.infLoc,1/0),t.nanLoc!==null&&e.gl.uniform1f(t.nanLoc,NaN),n.forEach((l,u)=>{let c=t.program.variableNames[u],p=t.uniformLocations[c],d=t.uniformLocations[`offset${c}`],h=t.inShapesLocations[`${c}Shape`],f=t.inTexShapesLocations[`${c}TexShape`];if(h){let{uniformShape:m}=nb(t.program.packedInputs,l.shape,l.texData.texShape);switch(m.length){case 1:e.gl.uniform1iv(h,new Int32Array(m));break;case 2:e.gl.uniform2iv(h,new Int32Array(m));break;case 3:e.gl.uniform3iv(h,new Int32Array(m));break;case 4:e.gl.uniform4iv(h,new Int32Array(m));break;default:break}}if(f&&e.gl.uniform2i(f,l.texData.texShape[0],l.texData.texShape[1]),p!=null){if(l.isUniform){if(v.sizeFromShape(l.shape)<2)e.gl.uniform1f(p,l.uniformValues[0]);else{let m=l.uniformValues;m instanceof Float32Array||(m=new Float32Array(m)),e.gl.uniform1fv(p,m)}return}l.texData.slice!=null&&d!=null&&e.gl.uniform1i(d,l.texData.slice.flatOffset),e.setInputMatrixTexture(l.texData.texture.texture,p,u)}});let i=t.outShapeLocation;if(i)switch(s.shape.length){case 1:e.gl.uniform1iv(i,new Int32Array(s.shape));break;case 2:e.gl.uniform2iv(i,new Int32Array(s.shape));break;case 3:e.gl.uniform3iv(i,new Int32Array(s.shape));break;case 4:e.gl.uniform4iv(i,new Int32Array(s.shape));break;default:break}if(t.outShapeStridesLocation){let l=v.computeStrides(s.shape);switch(s.shape.length){case 2:e.gl.uniform1iv(t.outShapeStridesLocation,new Int32Array(l));break;case 3:e.gl.uniform2iv(t.outShapeStridesLocation,new Int32Array(l));break;case 4:e.gl.uniform3iv(t.outShapeStridesLocation,new Int32Array(l));break;default:break}}t.outTexShapeLocation&&e.gl.uniform2i(t.outTexShapeLocation,s.texData.texShape[0],s.texData.texShape[1]),t.program.customUniforms&&r&&t.program.customUniforms.forEach((l,u)=>{let c=t.customUniformLocations[u],p=r[u];if(l.type==="float")e.gl.uniform1fv(c,p);else if(l.type==="vec2")e.gl.uniform2fv(c,p);else if(l.type==="vec3")e.gl.uniform3fv(c,p);else if(l.type==="vec4")e.gl.uniform4fv(c,p);else if(l.type==="int")e.gl.uniform1iv(c,p);else if(l.type==="ivec2")e.gl.uniform2iv(c,p);else if(l.type==="ivec3")e.gl.uniform3iv(c,p);else if(l.type==="ivec4")e.gl.uniform4iv(c,p);else throw Error(`uniform type ${l.type} is not supported yet.`)}),e.executeProgram()}function Ete(e,t,n){let s="";t.concat(n).forEach(o=>{let i=o.texData!=null&&o.texData.slice!=null&&o.texData.slice.flatOffset>0;if(e.enableShapeUniforms&&!o.isUniform){let l=o.texData.texShape,{useSqueezeShape:u,uniformShape:c,keptDims:p}=nb(e.packedInputs,o.shape,l),d="",h="",f="";if(c.length===1&&e.packedInputs){let w=[Math.ceil(l[0]/2),Math.ceil(l[1]/2)];d=`${w[0]>1}_${w[1]>1}`}else if(c.length===2&&!e.packedInputs)h=`${c[0]>1}_${c[1]>1}`;else if(c.length>2&&!e.packedInputs){let w=v.computeStrides(c);f=`${w[0]===l[1]}_${w[w.length-1]===l[1]}`}let m=o.shape.length,g=c.length===2&&v.arraysEqual(o.shape,l),y=v.sizeFromShape(o.shape)===1,x=T.getBroadcastDims(o.shape,n.shape),A=!e.packedInputs&&m===n.shape.length&&v.arraysEqual(l,n.texData.texShape),b=e.packedInputs||c.length>2?"":`${l[0]>1}_${l[1]>1}`;s+=`${m}_${A}_${u?p:""}_${c.length}_${y}_${x}_${g}_${d}_${h}_${f}_${b}_${i}`}else{let l=o.isUniform?"uniform":o.texData.texShape;s+=`${o.shape}_${l}_${i}`}});let r=e.userCode,a=e.constructor.name;return a+="_"+s+"_"+r+`${H().getNumber("WEBGL_VERSION")}`,a}function cs(e){return H().getBool("WEBGL_USE_SHAPES_UNIFORMS")&&e<=4}var Rte=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outPackingScheme=$p.DENSE,this.customUniforms=[{name:"texShape",type:"ivec2"}];let t=us();this.outputShape=e,this.enableShapeUniforms=cs(this.outputShape.length),this.userCode=`
ivec3 outCoordsFromFlatIndex(int index) {
${this.enableShapeUniforms?N2(["r","c","d"],e):du(["r","c","d"],e)}
return ivec3(r, c, d);
}
void main() {
ivec2 resTexRC = ivec2(resultUV.yx * vec2(texShape[0], texShape[1]));
int index = 4 * (resTexRC.x * texShape[1] + resTexRC.y);
vec4 result = vec4(0.);
for (int i=0; i<4; i++) {
int flatIndex = index + i;
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
result[i] = getA(rc.x, rc.y, rc.z);
}
${t.output} = result;
}
`}},_te=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outPackingScheme=$p.DENSE,this.customUniforms=[{name:"texShape",type:"ivec2"}];let t=us();this.outputShape=e,this.enableShapeUniforms=cs(this.outputShape.length),this.userCode=`
ivec3 outCoordsFromFlatIndex(int index) {
${this.enableShapeUniforms?N2(["r","c","d"],e):du(["r","c","d"],e)}
return ivec3(r, c, d);
}
void main() {
ivec2 resTexRC = ivec2(resultUV.yx * vec2(texShape[0], texShape[1]));
int index = 4 * (resTexRC.x * texShape[1] + resTexRC.y);
vec4 result = vec4(0.);
for (int i=0; i<4; i++) {
int flatIndex = index + i;
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
result[i] = getChannel(getA(rc.x, rc.y, rc.z), vec2(rc.y, rc.z));
}
${t.output} = result;
}
`}},Dte=class{constructor(e){this.variableNames=["A"],this.outTexUsage=Zs.DOWNLOAD;let t=us();this.outputShape=e,this.userCode=`
${JI}
void main() {
float x = getAAtOutCoords();
${t.output} = encode_float(x);
}
`}},$te=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outTexUsage=Zs.DOWNLOAD;let t=us();this.outputShape=e,this.userCode=`
${JI}
void main() {
ivec3 coords = getOutputCoords();
float x = getChannel(getAAtOutCoords(), vec2(coords.y, coords.z));
${t.output} = encode_float(x);
}
`}},Pte=class{constructor(e,t=!1){this.variableNames=["A"],this.customUniforms=[{name:"texShape",type:"ivec2"}];let n=us();this.outputShape=e,this.enableShapeUniforms=cs(this.outputShape.length);let s="result";t&&(s="floor(result * 255. + 0.5)"),this.userCode=`
${this.enableShapeUniforms?tb():eb(e)}
void main() {
ivec3 coords = getOutputCoords();
int flatIndex = getFlatIndex(coords);
int offset = imod(flatIndex, 4);
flatIndex = idiv(flatIndex, 4, 1.);
int r = flatIndex / texShape[1];
int c = imod(flatIndex, texShape[1]);
vec2 uv = (vec2(c, r) + halfCR) / vec2(texShape[1], texShape[0]);
vec4 values = ${n.texture2D}(A, uv);
float result;
if(offset == 0) {
result = values[0];
} else if(offset == 1) {
result = values[1];
} else if(offset == 2) {
result = values[2];
} else {
result = values[3];
}
${n.output} = vec4(${s}, 0., 0., 0.);
}
`}},Fte=class{constructor(e,t=!1){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.customUniforms=[{name:"texShape",type:"ivec2"}];let n=us();this.outputShape=e,this.enableShapeUniforms=cs(this.outputShape.length);let s="",r="result";t&&(r="floor(result * 255. + 0.5)");for(let a=0;a<=1;a++)for(let o=0;o<=1;o++){let i=a*2+o;s+=`
localCoords = coords;
if(localCoords[2] + ${o} < ${this.enableShapeUniforms?"outShape[2]":`${e[2]}`}) {
localCoords[2] += ${o};
if (localCoords[1] + ${a} < ${this.enableShapeUniforms?"outShape[1]":`${e[1]}`}) {
localCoords[1] += ${a};
flatIndex = getFlatIndex(localCoords);
offset = imod(flatIndex, 4);
flatIndex = idiv(flatIndex, 4, 1.);
int r = flatIndex / texShape[1];
int c = imod(flatIndex, texShape[1]);
vec2 uv = (vec2(c, r) + halfCR) / vec2(texShape[1], texShape[0]);
values = ${n.texture2D}(A, uv);
if (offset == 0) {
result[${i}] = values[0];
} else if (offset == 1) {
result[${i}] = values[1];
} else if (offset == 2) {
result[${i}] = values[2];
} else {
result[${i}] = values[3];
}
}
}
`}this.userCode=`
${this.enableShapeUniforms?tb():eb(e)}
void main() {
ivec3 coords = getOutputCoords();
vec4 result = vec4(0.);
int flatIndex, r, c, offset;
ivec3 localCoords;
vec2 uv;
vec4 values;
${s}
${n.output} = ${r};
}
`}},s9={};He(s9,{bindVertexProgramAttributeStreams:()=>p9,createBufferFromOutputTexture:()=>m9,createFloat16MatrixTexture:()=>l9,createFloat16PackedMatrixTexture:()=>d9,createFloat32MatrixTexture:()=>i9,createIndexBuffer:()=>o9,createPackedMatrixTexture:()=>c9,createUnsignedBytesMatrixTexture:()=>u9,createVertexBuffer:()=>a9,createVertexShader:()=>r9,downloadByteEncodedFloatMatrixFromOutputTexture:()=>y9,downloadFloat32MatrixFromBuffer:()=>g9,downloadMatrixFromPackedOutputTexture:()=>x9,downloadPackedMatrixFromBuffer:()=>A9,getInternalFormatForFloat16MatrixTexture:()=>rb,getInternalFormatForFloat16PackedMatrixTexture:()=>ib,getInternalFormatForFloat32MatrixTexture:()=>sb,getInternalFormatForPackedMatrixTexture:()=>ob,getInternalFormatForUnsignedBytesMatrixTexture:()=>ab,uploadDenseMatrixToTexture:()=>h9,uploadPixelDataToTexture:()=>f9});function r9(e){let t=us(),n=`${t.version}
precision highp float;
${t.attribute} vec3 clipSpacePos;
${t.attribute} vec2 uv;
${t.varyingVs} vec2 resultUV;
void main() {
gl_Position = vec4(clipSpacePos, 1);
resultUV = uv;
}`;return RI(e,n)}function a9(e){let t=new Float32Array([-1,1,0,0,1,-1,-1,0,0,0,1,1,0,1,1,1,-1,0,1,0]);return PI(e,t)}function o9(e){let t=new Uint16Array([0,1,2,2,1,3]);return FI(e,t)}function Wh(e,t,n,s,r,a){MI(t,n);let o=OI(e),i=e.TEXTURE_2D;return Se(e,()=>e.bindTexture(i,o)),Se(e,()=>e.texParameteri(i,e.TEXTURE_WRAP_S,e.CLAMP_TO_EDGE)),Se(e,()=>e.texParameteri(i,e.TEXTURE_WRAP_T,e.CLAMP_TO_EDGE)),Se(e,()=>e.texParameteri(i,e.TEXTURE_MIN_FILTER,e.NEAREST)),Se(e,()=>e.texParameteri(i,e.TEXTURE_MAG_FILTER,e.NEAREST)),H().getNumber("WEBGL_VERSION")===1?Se(e,()=>e.texImage2D(i,0,s,t,n,0,r,a,null)):Se(e,()=>e.texStorage2D(i,1,s,t,n)),Se(e,()=>e.bindTexture(e.TEXTURE_2D,null)),{texture:o,texShape:[n,t]}}function sb(e){return e.internalFormatFloat}function i9(e,t,n,s){let[r,a]=Bh(t,n);return Wh(e,r,a,sb(s),s.textureFormatFloat,e.FLOAT)}function rb(e){return e.internalFormatHalfFloat}function l9(e,t,n,s){let[r,a]=Bh(t,n);return Wh(e,r,a,rb(s),s.textureFormatFloat,s.textureTypeHalfFloat)}function ab(e){return e.downloadTextureFormat}function u9(e,t,n,s){let[r,a]=Bh(t,n);return Wh(e,r,a,ab(s),e.RGBA,e.UNSIGNED_BYTE)}function ob(e){return e.internalFormatPackedFloat}function c9(e,t,n,s){let[r,a]=od(t,n);return Wh(e,r,a,ob(s),e.RGBA,e.FLOAT)}function ib(e){return e.internalFormatPackedHalfFloat}function d9(e,t,n,s){let[r,a]=od(t,n);return Wh(e,r,a,ib(s),e.RGBA,s.textureTypeHalfFloat)}function p9(e,t,n){return Se(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),fy(e,t,"clipSpacePos",n,3,20,0)&&fy(e,t,"uv",n,2,20,12)}function h9(e,t,n,s,r,a){Se(e,()=>e.bindTexture(e.TEXTURE_2D,t));let o,i,l;r instanceof Uint8Array?(o=new Uint8Array(n*s*4),i=e.UNSIGNED_BYTE,l=e.RGBA):(o=new Float32Array(n*s*4),i=e.FLOAT,l=a.internalFormatPackedFloat),o.set(r),H().getNumber("WEBGL_VERSION")===2?Se(e,()=>e.texSubImage2D(e.TEXTURE_2D,0,0,0,n,s,e.RGBA,i,o)):Se(e,()=>e.texImage2D(e.TEXTURE_2D,0,l,n,s,0,e.RGBA,i,o)),Se(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function f9(e,t,n){Se(e,()=>e.bindTexture(e.TEXTURE_2D,t)),n.data instanceof Uint8Array?H().getNumber("WEBGL_VERSION")===2?Se(e,()=>e.texSubImage2D(e.TEXTURE_2D,0,0,0,n.width,n.height,e.RGBA,e.UNSIGNED_BYTE,n.data)):Se(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,n.width,n.height,0,e.RGBA,e.UNSIGNED_BYTE,n.data)):H().getNumber("WEBGL_VERSION")===2?Se(e,()=>e.texSubImage2D(e.TEXTURE_2D,0,0,0,e.RGBA,e.UNSIGNED_BYTE,n)):Se(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,e.RGBA,e.UNSIGNED_BYTE,n)),Se(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function m9(e,t,n,s){let r=e.createBuffer();Se(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,r));let i=4*4*t*n;return Se(e,()=>e.bufferData(e.PIXEL_PACK_BUFFER,i,e.STREAM_READ)),Se(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,0)),Se(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,null)),r}function g9(e,t,n){let s=e,r=new Float32Array(n);return s.bindBuffer(s.PIXEL_PACK_BUFFER,t),s.getBufferSubData(s.PIXEL_PACK_BUFFER,0,r),s.bindBuffer(s.PIXEL_PACK_BUFFER,null),r}function y9(e,t,n,s){let[r,a]=Bh(t,n),o=4,i=new Uint8Array(_ee(t*n,o));return Se(e,()=>e.readPixels(0,0,r,a,s.downloadTextureFormat,e.UNSIGNED_BYTE,i)),new Float32Array(i.buffer)}function A9(e,t,n,s,r,a,o,i){let l=e,u=new Float32Array(Dee(a,o));return l.bindBuffer(l.PIXEL_PACK_BUFFER,t),l.getBufferSubData(l.PIXEL_PACK_BUFFER,0,u),l.bindBuffer(l.PIXEL_PACK_BUFFER,null),u}function x9(e,t,n){let s=new Float32Array(t*n*4);return Se(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,s)),s}var ec=class{constructor(e){this.outputTexture=null,this.program=null,this.disposed=!1,this.vertexAttrsAreBound=!1,this.itemsToPoll=[];let t=H().getNumber("WEBGL_VERSION");e!=null?(this.gl=e,T2(t,e)):this.gl=Br(t);let n="WEBGL_color_buffer_float",s="EXT_color_buffer_half_float";if(this.parallelCompilationExtension=this.gl.getExtension("KHR_parallel_shader_compile"),H().getNumber("WEBGL_VERSION")===1){let r="OES_texture_float",a="OES_texture_half_float";if(this.textureFloatExtension=dp(this.gl,r),Ys(this.gl,a))this.textureHalfFloatExtension=dp(this.gl,a);else if(H().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support half float textures, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.");if(this.colorBufferFloatExtension=this.gl.getExtension(n),Ys(this.gl,s))this.colorBufferHalfFloatExtension=dp(this.gl,s);else if(H().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support color renderable half floats, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.")}else if(n="EXT_color_buffer_float",Ys(this.gl,n))this.colorBufferFloatExtension=this.gl.getExtension(n);else if(Ys(this.gl,s))this.colorBufferHalfFloatExtension=this.gl.getExtension(s);else throw new Error("GL context does not support color renderable floats");this.vertexBuffer=a9(this.gl),this.indexBuffer=o9(this.gl),this.framebuffer=zI(this.gl),this.textureConfig=Jx(this.gl,this.textureHalfFloatExtension)}get debug(){return H().getBool("DEBUG")}dispose(){if(this.disposed)return;this.program!=null&&console.warn("Disposing a GPGPUContext that still has a bound WebGLProgram. This is probably a resource leak, delete the program with GPGPUContext.deleteProgram before disposing."),this.outputTexture!=null&&console.warn("Disposing a GPGPUContext that still has a bound output matrix texture. This is probably a resource leak, delete the output matrix texture with GPGPUContext.deleteMatrixTexture before disposing.");let e=this.gl;Se(e,()=>e.finish()),Se(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),Se(e,()=>e.deleteFramebuffer(this.framebuffer)),Se(e,()=>e.bindBuffer(e.ARRAY_BUFFER,null)),Se(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,null)),Se(e,()=>e.deleteBuffer(this.indexBuffer)),this.disposed=!0}createFloat32MatrixTexture(e,t){return this.throwIfDisposed(),i9(this.gl,e,t,this.textureConfig)}createFloat16MatrixTexture(e,t){return this.throwIfDisposed(),l9(this.gl,e,t,this.textureConfig)}createUnsignedBytesMatrixTexture(e,t){return this.throwIfDisposed(),u9(this.gl,e,t,this.textureConfig)}uploadPixelDataToTexture(e,t){this.throwIfDisposed(),f9(this.gl,e,t)}uploadDenseMatrixToTexture(e,t,n,s){this.throwIfDisposed(),h9(this.gl,e,t,n,s,this.textureConfig)}createFloat16PackedMatrixTexture(e,t){return this.throwIfDisposed(),d9(this.gl,e,t,this.textureConfig)}createPackedMatrixTexture(e,t){return this.throwIfDisposed(),c9(this.gl,e,t,this.textureConfig)}deleteMatrixTexture(e){this.throwIfDisposed(),this.outputTexture===e&&(my(this.gl,this.framebuffer),this.outputTexture=null),Se(this.gl,()=>this.gl.deleteTexture(e))}downloadByteEncodedFloatMatrixFromOutputTexture(e,t,n){return this.downloadMatrixDriver(e,()=>y9(this.gl,t,n,this.textureConfig))}downloadPackedMatrixFromBuffer(e,t,n,s,r,a){return A9(this.gl,e,t,n,s,r,a,this.textureConfig)}downloadFloat32MatrixFromBuffer(e,t){return g9(this.gl,e,t)}createBufferFromTexture(e,t,n){this.bindTextureToFrameBuffer(e);let s=m9(this.gl,t,n,this.textureConfig);return this.unbindTextureToFrameBuffer(),s}createAndWaitForFence(){let e=this.createFence(this.gl);return this.pollFence(e)}createFence(e){let t,n;if(H().getBool("WEBGL_FENCE_API_ENABLED")){let s=e,r=s.fenceSync(s.SYNC_GPU_COMMANDS_COMPLETE,0);e.flush(),n=()=>{let a=s.clientWaitSync(r,0,0);return a===s.ALREADY_SIGNALED||a===s.CONDITION_SATISFIED},t=r}else H().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0?(t=this.beginQuery(),this.endQuery(),n=()=>this.isQueryAvailable(t,H().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))):n=()=>!0;return{query:t,isFencePassed:n}}downloadMatrixFromPackedTexture(e,t,n){return this.downloadMatrixDriver(e,()=>x9(this.gl,t,n))}createProgram(e){this.throwIfDisposed();let t=this.gl;this.vertexShader==null&&(this.vertexShader=r9(t));let n=DI(t);return Se(t,()=>t.attachShader(n,this.vertexShader)),Se(t,()=>t.attachShader(n,e)),$I(t,n),this.debug&&um(t,n),this.vertexAttrsAreBound||(this.setProgram(n),this.vertexAttrsAreBound=p9(t,this.program,this.vertexBuffer)),n}deleteProgram(e){this.throwIfDisposed(),e===this.program&&(this.program=null),e!=null&&Se(this.gl,()=>this.gl.deleteProgram(e))}setProgram(e){this.throwIfDisposed(),this.program=e,this.program!=null&&this.debug&&um(this.gl,this.program),Se(this.gl,()=>this.gl.useProgram(e))}getUniformLocation(e,t,n=!0){return this.throwIfDisposed(),n?BI(this.gl,e,t):WI(this.gl,e,t)}getAttributeLocation(e,t){return this.throwIfDisposed(),Se(this.gl,()=>this.gl.getAttribLocation(e,t))}getUniformLocationNoThrow(e,t){return this.throwIfDisposed(),this.gl.getUniformLocation(e,t)}setInputMatrixTexture(e,t,n){this.throwIfDisposed(),this.throwIfNoProgram(),VI(this.gl,e,t,n)}setOutputMatrixTexture(e,t,n){this.setOutputMatrixTextureDriver(e,n,t)}setOutputPackedMatrixTexture(e,t,n){this.throwIfDisposed();let[s,r]=od(t,n);this.setOutputMatrixTextureDriver(e,s,r)}setOutputMatrixWriteRegion(e,t,n,s){this.setOutputMatrixWriteRegionDriver(n,e,s,t)}setOutputPackedMatrixWriteRegion(e,t,n,s){throw new Error("setOutputPackedMatrixWriteRegion not implemented.")}debugValidate(){this.program!=null&&um(this.gl,this.program),pp(this.gl)}executeProgram(){this.throwIfDisposed(),this.throwIfNoProgram();let e=this.gl;this.debug&&this.debugValidate(),Se(e,()=>e.drawElements(e.TRIANGLES,6,e.UNSIGNED_SHORT,0))}blockUntilAllProgramsCompleted(){this.throwIfDisposed(),Se(this.gl,()=>this.gl.finish())}getQueryTimerExtension(){return this.disjointQueryTimerExtension==null&&(this.disjointQueryTimerExtension=dp(this.gl,H().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2?"EXT_disjoint_timer_query_webgl2":"EXT_disjoint_timer_query")),this.disjointQueryTimerExtension}getQueryTimerExtensionWebGL2(){return this.getQueryTimerExtension()}getQueryTimerExtensionWebGL1(){return this.getQueryTimerExtension()}beginQuery(){if(H().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let n=this.gl,s=this.getQueryTimerExtensionWebGL2(),r=n.createQuery();return n.beginQuery(s.TIME_ELAPSED_EXT,r),r}let e=this.getQueryTimerExtensionWebGL1(),t=e.createQueryEXT();return e.beginQueryEXT(e.TIME_ELAPSED_EXT,t),t}endQuery(){if(H().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let t=this.gl,n=this.getQueryTimerExtensionWebGL2();t.endQuery(n.TIME_ELAPSED_EXT);return}let e=this.getQueryTimerExtensionWebGL1();e.endQueryEXT(e.TIME_ELAPSED_EXT)}async waitForQueryAndGetTime(e){return await v.repeatedTry(()=>this.disposed||this.isQueryAvailable(e,H().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))),this.getQueryTime(e,H().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))}getQueryTime(e,t){if(t===0)return null;if(t===2){let n=this.gl;return n.getQueryParameter(e,n.QUERY_RESULT)/1e6}else{let n=this.getQueryTimerExtensionWebGL1();return n.getQueryObjectEXT(e,n.QUERY_RESULT_EXT)/1e6}}isQueryAvailable(e,t){if(t===0)return!0;if(t===2){let n=this.gl,s=this.getQueryTimerExtensionWebGL2(),r=n.getQueryParameter(e,n.QUERY_RESULT_AVAILABLE);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(s.GPU_DISJOINT_EXT)),r&&!this.disjoint}else{let n=this.getQueryTimerExtensionWebGL1(),s=n.getQueryObjectEXT(e,n.QUERY_RESULT_AVAILABLE_EXT);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(n.GPU_DISJOINT_EXT)),s&&!this.disjoint}}pollFence(e){return new Promise(t=>{this.addItemToPoll(()=>e.isFencePassed(),()=>t())})}pollItems(){let e=Ote(this.itemsToPoll.map(t=>t.isDoneFn));for(let t=0;t<=e;++t){let{resolveFn:n}=this.itemsToPoll[t];n()}this.itemsToPoll=this.itemsToPoll.slice(e+1)}addItemToPoll(e,t){this.itemsToPoll.push({isDoneFn:e,resolveFn:t}),!(this.itemsToPoll.length>1)&&v.repeatedTry(()=>(this.pollItems(),this.itemsToPoll.length===0))}bindTextureToFrameBuffer(e){this.throwIfDisposed(),cm(this.gl,e,this.framebuffer),this.debug&&pp(this.gl)}unbindTextureToFrameBuffer(){this.outputTexture!=null?(cm(this.gl,this.outputTexture,this.framebuffer),this.debug&&pp(this.gl)):my(this.gl,this.framebuffer)}downloadMatrixDriver(e,t){this.bindTextureToFrameBuffer(e);let n=t();return this.unbindTextureToFrameBuffer(),n}setOutputMatrixTextureDriver(e,t,n){this.throwIfDisposed();let s=this.gl;cm(s,e,this.framebuffer),this.debug&&pp(s),this.outputTexture=e,Se(s,()=>s.viewport(0,0,t,n)),Se(s,()=>s.scissor(0,0,t,n))}setOutputMatrixWriteRegionDriver(e,t,n,s){this.throwIfDisposed(),Se(this.gl,()=>this.gl.scissor(e,t,n,s))}throwIfDisposed(){if(this.disposed)throw new Error("Attempted to use disposed GPGPUContext.")}throwIfNoProgram(){if(this.program==null)throw new Error("No GPU program is currently set.")}};function Ote(e){let t=0;for(;t<e.length&&e[t]();++t);return t-1}var{addImpl:Mte,bincountImpl:b9,bincountReduceImpl:zte,castImpl:Lte,ceilImpl:Bte,concatImpl:Wte,equalImpl:Vte,expImpl:Ute,expm1Impl:Gte,floorImpl:Hte,gatherNdImpl:jte,gatherV2Impl:qte,greaterImpl:Xte,greaterEqualImpl:Kte,lessImpl:Zte,lessEqualImpl:Yte,linSpaceImpl:Jte,logImpl:Qte,maxImpl:ene,maximumImpl:tne,minimumImpl:nne,multiplyImpl:sne,negImpl:rne,notEqualImpl:ane,prodImpl:one,raggedTensorToTensorImpl:ine,rangeImpl:lne,rsqrtImpl:une,scatterImpl:cne,sigmoidImpl:dne,simpleAbsImpl:v9,sliceImpl:pne,sparseFillEmptyRowsImpl:hne,sparseReshapeImpl:fne,sparseSegmentReductionImpl:w9,sqrtImpl:mne,stridedSliceImpl:gne,stringNGramsImpl:yne,stringSplitImpl:Ane,stringToHashBucketFastImpl:xne,subImpl:bne,tileImpl:vne,topKImpl:wne,transposeImpl:lb,uniqueImpl:kne}=Mx;function k9(e,t){return["x","y","z","w","u","v"].slice(0,t).map(n=>`${e}.${n}`)}function as(e,t){return t===1?[e]:k9(e,t)}function Sne(e,t){if(e===1)return"rc";let n="";for(let s=0;s<e;s++)n+=t[s],s<e-1&&(n+=",");return n}var Ine=class{constructor(e){if(this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outputShape=e,this.rank=e.length,this.enableShapeUniforms=cs(this.outputShape.length),this.rank===0)this.userCode=`
void main() {
setOutput(vec4(getA(), 0., 0., 0.));
}
`;else{let t=as("rc",this.rank),n=vt(this.rank),s=this.getOutOfBoundsCondition(t),r=this.getSetup(t),a=this.getOutput(t);this.userCode=`
void main() {
${n} rc = getOutputCoords();
if(${s}) {
setOutput(vec4(0));
} else {
${r}
setOutput(vec4(${a}));
}
}
`}}getSourceCoordsArr(e){let t=[];for(let n=0;n<=1;n++)for(let s=0;s<=1;s++){let r=`${n===0?"r":"rp1"}, ${s===0?"c":"cp1"}`;for(let a=2;a<this.rank;a++)r=`${e[e.length-1-a]},`+r;t.push(r)}return t}getOutOfBoundsCondition(e){if(this.rank===1)return`rc > ${this.enableShapeUniforms?"outShape":this.outputShape[0]}`;let t="";for(let n=this.rank-2;n<this.rank;n++)t+=`${e[n]} >= ${this.enableShapeUniforms?`outShape[${n}]`:this.outputShape[n]}`,n<this.rank-1&&(t+="||");return t}getSetup(e){if(this.rank===1)return"";let t=e.slice(-2),n=this.enableShapeUniforms?`outShape[${this.rank} - 1]`:this.outputShape[this.rank-1],s=this.enableShapeUniforms?`outShape[${this.rank} - 2]`:this.outputShape[this.rank-2];return`
int r = ${t[0]};
int c = ${t[1]};
int rp1 = r + 1;
int cp1 = c + 1;
bool cEdge = cp1 >= ${n};
bool rEdge = rp1 >= ${s};
`}getOutput(e){let t=this.getSourceCoordsArr(e);return this.rank===1?`getA(rc), (rc + 1 >= ${this.enableShapeUniforms?"outShape":this.outputShape[0]} ? 0. : getA(rc + 1)), 0, 0`:`getA(${t[0]}),
cEdge ? 0. : getA(${t[1]}),
rEdge ? 0. : getA(${t[2]}),
rEdge || cEdge ? 0. : getA(${t[3]})`}},S9=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"inputShape",type:"ivec3"}],this.outputShape=e,this.enableShapeUniforms=cs(this.outputShape.length);let n="";for(let s=0;s<4;s++){let r="thisRC = rc;";s%2===1&&(r+="thisRC.z += 1;"),s>1&&(r+="thisRC.y += 1;"),n+=`
${r}
${s>0?"if(thisRC.y < rows && thisRC.z < cols){":""}
int flatIndex = getFlatIndex(thisRC);
ivec3 inputRC = inputCoordsFromReshapedOutCoords(flatIndex);
vec2 inputRCInnerDims = vec2(float(inputRC.y),float(inputRC.z));
result[${s}] =
getChannel(getA(inputRC.x, inputRC.y, inputRC.z), inputRCInnerDims);
${s>0?"}":""}
`}this.userCode=`
${Cne(t,this.enableShapeUniforms)}
${this.enableShapeUniforms?tb():eb(e)}
void main() {
ivec3 rc = getOutputCoords();
vec4 result = vec4(0.);
ivec3 thisRC;
int rows = ${this.enableShapeUniforms?"outShape[1]":e[1]};
int cols = ${this.enableShapeUniforms?"outShape[2]":e[2]};
${n}
setOutput(result);
}
`}};function Cne(e,t){return`
ivec3 inputCoordsFromReshapedOutCoords(int index) {
${t?Gee(["r","c","d"],"inputShape"):du(["r","c","d"],e)}
return ivec3(r, c, d);
}
`}var Tne=class{constructor(e){this.gpgpu=e,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0,this.freeTextures={},this.logEnabled=!1,this.usedTextures={}}acquireTexture(e,t,n){let s=N7(t,n),r=E7(e,s,n);r in this.freeTextures||(this.freeTextures[r]=[]),r in this.usedTextures||(this.usedTextures[r]=[]);let a=T7(e,s,this.gpgpu.gl,this.gpgpu.textureConfig,n);if(this.freeTextures[r].length>0){this.numFreeTextures--,this.numUsedTextures++,this._numBytesFree-=a,this.log();let i=this.freeTextures[r].shift();return this.usedTextures[r].push(i),i}let o;return s===Dn.PACKED_2X2_FLOAT32?o=this.gpgpu.createPackedMatrixTexture(e[0],e[1]):s===Dn.PACKED_2X2_FLOAT16?o=this.gpgpu.createFloat16PackedMatrixTexture(e[0],e[1]):s===Dn.UNPACKED_FLOAT32?o=this.gpgpu.createFloat32MatrixTexture(e[0],e[1]):s===Dn.UNPACKED_FLOAT16?o=this.gpgpu.createFloat16MatrixTexture(e[0],e[1]):s===Dn.PACKED_4X1_UNSIGNED_BYTE&&(o=this.gpgpu.createUnsignedBytesMatrixTexture(e[0],e[1])),this.usedTextures[r].push(o),this.numUsedTextures++,this._numBytesAllocated+=a,this.log(),o}releaseTexture(e,t,n,s){if(this.freeTextures==null)return;let r=N7(n,s),a=E7(t,r,s);a in this.freeTextures||(this.freeTextures[a]=[]);let o=T7(t,r,this.gpgpu.gl,this.gpgpu.textureConfig,s),i=H().get("WEBGL_DELETE_TEXTURE_THRESHOLD");i!==-1&&this._numBytesAllocated>i?(this.gpgpu.deleteMatrixTexture(e.texture),this._numBytesAllocated-=o):(this.freeTextures[a].push(e),this.numFreeTextures++,this._numBytesFree+=o),this.numUsedTextures--;let l=this.usedTextures[a],u=l.indexOf(e);if(u<0)throw new Error("Cannot release a texture that was never provided by this texture manager");l.splice(u,1),this.log()}log(){if(!this.logEnabled)return;let e=this.numFreeTextures+this.numUsedTextures;console.log("Free/Used",`${this.numFreeTextures} / ${this.numUsedTextures}`,`(${e})`);let t=this._numBytesFree/this._numBytesAllocated;console.log(`Bytes allocated: ${this._numBytesAllocated}`),console.log(`Bytes unused: ${this._numBytesFree} (${Math.round(100*t)}%)`)}get numBytesAllocated(){return this._numBytesAllocated}get numBytesFree(){return this._numBytesFree}getNumUsedTextures(){return this.numUsedTextures}getNumFreeTextures(){return this.numFreeTextures}dispose(){if(this.freeTextures!=null){for(let e in this.freeTextures)this.freeTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t.texture)});for(let e in this.usedTextures)this.usedTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t.texture)});this.freeTextures=null,this.usedTextures=null,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0}}};function Nne(e,t){let n=e;if(t===n.R32F)return 4;if(t===n.R16F)return 2;if(t===n.RGBA32F)return 16;if(t===e.RGBA)return 16;if(t===n.RGBA16F)return 8;if(t===n.RGBA8)return 4;throw new Error(`Unknown internal format ${t}`)}function T7(e,t,n,s,r){let a=Ene(t,s),o;if(r){let[l,u]=od(e[0],e[1]);o=l*u}else{let[l,u]=Bh(e[0],e[1]);o=l*u}let i=Nne(n,a);return o*i}function Ene(e,t){switch(e){case Dn.PACKED_2X2_FLOAT32:return ob(t);case Dn.PACKED_2X2_FLOAT16:return ib(t);case Dn.UNPACKED_FLOAT32:return sb(t);case Dn.UNPACKED_FLOAT16:return rb(t);case Dn.PACKED_4X1_UNSIGNED_BYTE:return ab(t);default:throw new Error(`Unknown physical texture type ${e}`)}}function Rne(e){return H().getBool("WEBGL_RENDER_FLOAT32_ENABLED")?e?Dn.PACKED_2X2_FLOAT32:Dn.UNPACKED_FLOAT32:e?Dn.PACKED_2X2_FLOAT16:Dn.UNPACKED_FLOAT16}function N7(e,t){if(e===Zs.UPLOAD)return Dn.PACKED_2X2_FLOAT32;if(e===Zs.RENDER||e==null)return Rne(t);if(e===Zs.DOWNLOAD||e===Zs.PIXELS)return Dn.PACKED_4X1_UNSIGNED_BYTE;throw new Error(`Unknown logical texture type ${e}`)}function E7(e,t,n){return`${e[0]}_${e[1]}_${t}_${n}`}var xa=class{constructor(e,t){this.variableNames=["A"],this.outputShape=e,this.enableShapeUniforms=cs(this.outputShape.length),this.userCode=`
float unaryOperation(float x) {
${t}
}
void main() {
float x = getAAtOutCoords();
float y = unaryOperation(x);
setOutput(y);
}
`}},xr="if (isnan(x)) return x;",_ne="return x;",R7="return abs(x);",Dne="return (x >= 0.0) ? x : (exp(x) - 1.0);",$ne=xr+`
return (x < 0.0) ? 0.0 : x;
`,Pne=xr+`
return (x < 0.0) ? 0.0 : min(6.0, x);
`,Uu="return x;",Fne="return 1.0 / (1.0 + exp(-1.0 * x));",One="return x;",Mne=`
vec4 result;
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
return result;
`,zne=`
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,Lne=`
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,Bne="return 1.0 / (1.0 + exp(-1.0 * x));",qi=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.enableShapeUniforms=cs(this.outputShape.length),this.userCode=`
vec4 unaryOperation(vec4 x) {
${t}
}
void main() {
vec4 x = getAAtOutCoords();
vec4 y = unaryOperation(x);
setOutput(y);
}
`}},Wne=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outputShape=e,this.enableShapeUniforms=cs(this.outputShape.length);let t=e.length,n=as("rc",t),s=vt(t),r=Sne(t,n),a=n.slice(-2),o=t<=1?"rc":`vec2(${a.join(",")})`;this.userCode=`
void main() {
${s} rc = getOutputCoords();
vec4 packedInput = getA(${r});
setOutput(getChannel(packedInput, ${o}));
}
`}},Vne=yr.whereImpl,Une=1e-7,Gne=1e-4,sm={};function Hne(e){return e in sm||(sm[e]={}),sm[e]}var jne=H().getNumber("CPU_HANDOFF_SIZE_THRESHOLD"),qne=600;function Xne(){return H().global.screen==null?1024:H().global.screen.height*H().global.screen.width*window.devicePixelRatio*qne/1024/1024}var pd=class extends Ac{constructor(e){if(super(),this.pendingRead=new WeakMap,this.pendingDisposal=new WeakSet,this.dataRefCount=new WeakMap,this.numBytesInGPU=0,this.uploadWaitMs=0,this.downloadWaitMs=0,this.lastGlFlushTime=0,this.warnedAboutMemory=!1,this.pendingDeletes=0,this.disposed=!1,!H().getBool("HAS_WEBGL"))throw new Error("WebGL is not supported on this device");let t;if(e!=null){if(e instanceof ec)t=e;else{let n=Br(H().getNumber("WEBGL_VERSION"),e);t=new ec(n)}this.binaryCache={},this.gpgpuCreatedLocally=!1}else{let n=Br(H().getNumber("WEBGL_VERSION"));t=new ec(n),this.binaryCache=Hne(H().getNumber("WEBGL_VERSION")),this.gpgpuCreatedLocally=!0}this.gpgpu=t,this.canvas=this.gpgpu.gl.canvas,this.textureManager=new Tne(this.gpgpu),this.numMBBeforeWarning=Xne(),this.texData=new Wp(this,rn())}nextDataId(){return pd.nextDataId++}numDataIds(){return this.texData.numDataIds()-this.pendingDeletes}write(e,t,n){if((H().getBool("WEBGL_CHECK_NUMERICAL_PROBLEMS")||H().getBool("DEBUG"))&&this.checkNumericalProblems(e),n==="complex64"&&e!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let s={id:this.nextDataId()};return this.texData.set(s,{shape:t,dtype:n,values:e,usage:Zs.UPLOAD,refCount:1}),s}refCount(e){return this.texData.has(e)?this.texData.get(e).refCount:0}incRef(e){let t=this.texData.get(e);t.refCount++}decRef(e){if(this.texData.has(e)){let t=this.texData.get(e);t.refCount--}}move(e,t,n,s,r){if(H().getBool("DEBUG")&&this.checkNumericalProblems(t),s==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");this.texData.set(e,{shape:n,dtype:s,values:t,usage:Zs.UPLOAD,refCount:r})}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}readSync(e){let t=this.texData.get(e),{values:n,dtype:s,complexTensorInfos:r,slice:a,shape:o,isPacked:i}=t;if(a!=null){let p;i?p=new qi(o,Uu):p=new xa(o,Uu);let d=this.runWebGLProgram(p,[{dataId:e,shape:o,dtype:s}],s),h=this.readSync(d.dataId);return this.disposeIntermediateTensorInfo(d),h}if(n!=null)return this.convertAndCacheOnCPU(e);if(s==="string")return n;let l=this.activeTimers!=null,u;l&&(u=v.now());let c;if(s==="complex64"){let p=this.readSync(r.real.dataId),d=this.readSync(r.imag.dataId);c=T.mergeRealAndImagArrays(p,d)}else c=this.getValuesFromTexture(e);return l&&(this.downloadWaitMs+=v.now()-u),this.convertAndCacheOnCPU(e,c)}async read(e){if(this.pendingRead.has(e)){let h=this.pendingRead.get(e);return new Promise(f=>h.push(f))}let t=this.texData.get(e),{values:n,shape:s,slice:r,dtype:a,complexTensorInfos:o,isPacked:i}=t;if(r!=null){let h;i?h=new qi(s,Uu):h=new xa(s,Uu);let f=this.runWebGLProgram(h,[{dataId:e,shape:s,dtype:a}],a),m=this.read(f.dataId);return this.disposeIntermediateTensorInfo(f),m}if(n!=null)return this.convertAndCacheOnCPU(e);if(H().getBool("DEBUG")&&!H().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")&&H().getNumber("WEBGL_VERSION")===2)throw new Error("tensor.data() with WEBGL_DOWNLOAD_FLOAT_ENABLED=false and WEBGL_VERSION=2 not yet supported.");let l=null,u;if(a!=="complex64"&&H().get("WEBGL_BUFFER_SUPPORTED")){u=this.decode(e);let h=this.texData.get(u.dataId);l=this.gpgpu.createBufferFromTexture(h.texture.texture,...tm(s))}this.pendingRead.set(e,[]),a!=="complex64"&&await this.gpgpu.createAndWaitForFence();let c;if(a==="complex64"){let h=await Promise.all([this.read(o.real.dataId),this.read(o.imag.dataId)]),f=h[0],m=h[1];c=T.mergeRealAndImagArrays(f,m)}else if(l==null)c=this.getValuesFromTexture(e);else{let h=v.sizeFromShape(s);c=this.gpgpu.downloadFloat32MatrixFromBuffer(l,h)}if(u!=null&&this.disposeIntermediateTensorInfo(u),l!=null){let h=this.gpgpu.gl;Se(h,()=>h.deleteBuffer(l))}let p=this.convertAndCacheOnCPU(e,c),d=this.pendingRead.get(e);return this.pendingRead.delete(e),d.forEach(h=>h(p)),this.pendingDisposal.has(e)&&(this.pendingDisposal.delete(e),this.disposeData(e)&&rn().removeDataId(e,this),this.pendingDeletes--),p}readToGPU(e,t={}){let n=this.texData.get(e),{values:s,shape:r,slice:a,dtype:o,isPacked:i,texture:l}=n;if(o==="complex64")throw new Error("Does not support reading texture for complex64 dtype.");if(a!=null){let d;i?d=new qi(r,Uu):d=new xa(r,Uu);let h=this.runWebGLProgram(d,[{dataId:e,shape:r,dtype:o}],o),f=this.readToGPU(h,t);return this.disposeIntermediateTensorInfo(h),f}if(l==null)throw s!=null?new Error("Data is not on GPU but on CPU."):new Error("There is no data on GPU or CPU.");let u=this.decode(e,t.customTexShape),c=rn().makeTensorFromTensorInfo(u),p=this.texData.get(u.dataId);return Object.assign({tensorRef:c},p.texture)}bufferSync(e){let t=this.readSync(e.dataId);if(e.dtype==="string")try{let n=t.map(s=>v.decodeString(s));return We(e.shape,e.dtype,n)}catch(n){throw new Error("Failed to decode encoded string bytes into utf-8")}return We(e.shape,e.dtype,t)}checkNumericalProblems(e){if(e!=null)for(let t=0;t<e.length;t++){let n=e[t];if(!NI(n))throw H().getBool("WEBGL_RENDER_FLOAT32_CAPABLE")?Error(`The value ${n} cannot be represented with your current settings. Consider enabling float32 rendering: 'tf.env().set('WEBGL_RENDER_FLOAT32_ENABLED', true);'`):Error(`The value ${n} cannot be represented on this device.`)}}getValuesFromTexture(e){let{shape:t,dtype:n,isPacked:s}=this.texData.get(e),r=v.sizeFromShape(t);if(H().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")){let p=this.decode(e),d=this.texData.get(p.dataId),h=this.gpgpu.downloadMatrixFromPackedTexture(d.texture.texture,...tm(t)).subarray(0,r);return this.disposeIntermediateTensorInfo(p),h}let a=H().getBool("WEBGL_PACK")&&s===!0,o=a?dm(t):t,i=a?new $te(o):new Dte(o),l=this.runWebGLProgram(i,[{shape:o,dtype:n,dataId:e}],"float32"),u=this.texData.get(l.dataId),c=this.gpgpu.downloadByteEncodedFloatMatrixFromOutputTexture(u.texture.texture,u.texShape[0],u.texShape[1]).subarray(0,r);return this.disposeIntermediateTensorInfo(l),c}timerAvailable(){return H().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0}time(e){let t=this.activeTimers,n=[],s=!1;this.programTimersStack==null?(this.programTimersStack=n,s=!0):this.activeTimers.push(n),this.activeTimers=n,e();let r=v.flatten(this.activeTimers.map(i=>i.query)).filter(i=>i!=null),a=v.flatten(this.activeTimers.map(i=>i.name)).filter(i=>i!=null);this.activeTimers=t,s&&(this.programTimersStack=null);let o={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null};return(async()=>{if(H().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0){let i=await Promise.all(r);o.kernelMs=v.sum(i),o.getExtraProfileInfo=()=>i.map((l,u)=>({name:a[u],ms:l})).map(l=>`${l.name}: ${l.ms}`).join(", ")}else o.kernelMs={error:"WebGL query timers are not supported in this environment."};return this.uploadWaitMs=0,this.downloadWaitMs=0,o})()}memory(){return{unreliable:!1,numBytesInGPU:this.numBytesInGPU,numBytesInGPUAllocated:this.textureManager.numBytesAllocated,numBytesInGPUFree:this.textureManager.numBytesFree}}startTimer(){return H().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?this.gpgpu.beginQuery():{startMs:v.now(),endMs:null}}endTimer(e){return H().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?(this.gpgpu.endQuery(),e):(e.endMs=v.now(),e)}async getQueryTime(e){if(H().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0)return this.gpgpu.waitForQueryAndGetTime(e);let t=e;return t.endMs-t.startMs}disposeData(e,t=!1){if(this.pendingDisposal.has(e))return!1;if(!this.texData.has(e))return!0;if(t?this.texData.get(e).refCount=0:this.texData.get(e).refCount--,!t&&this.texData.get(e).refCount>0)return!1;if(this.pendingRead.has(e))return this.pendingDisposal.add(e),this.pendingDeletes++,!1;this.releaseGPUData(e);let{complexTensorInfos:n}=this.texData.get(e);return n!=null&&(this.disposeData(n.real.dataId,t),this.disposeData(n.imag.dataId,t)),this.texData.delete(e),!0}releaseGPUData(e){let{texture:t,dtype:n,texShape:s,usage:r,isPacked:a,slice:o}=this.texData.get(e),i=o&&o.origDataId||e,l=this.dataRefCount.get(i);l>1?this.dataRefCount.set(i,l-1):(this.dataRefCount.delete(i),t!=null&&(this.numBytesInGPU-=this.computeBytes(s,n),this.textureManager.releaseTexture(t,s,r,a)));let u=this.texData.get(e);u.texture=null,u.texShape=null,u.isPacked=!1,u.slice=null}getTexture(e){return this.uploadToGPU(e),this.texData.get(e).texture.texture}getDataInfo(e){return this.texData.get(e)}shouldExecuteOnCPU(e,t=jne){return H().getBool("WEBGL_CPU_FORWARD")&&e.every(n=>this.texData.get(n.dataId).texture==null&&v.sizeFromShape(n.shape)<t)}getGPGPUContext(){return this.gpgpu}where(e){T.warn("tf.where() in webgl locks the UI thread. Call tf.whereAsync() instead");let t=e.dataSync();return Vne(e.shape,t)}packedUnaryOp(e,t,n){let s=new qi(e.shape,t),r=this.compileAndRun(s,[e],n);return rn().makeTensorFromTensorInfo(r)}abs(e){if(this.shouldExecuteOnCPU([e])&&e.dtype!=="complex64"){let s=v9(this.texData.get(e.dataId).values);return this.makeOutput(e.shape,e.dtype,s)}if(H().getBool("WEBGL_PACK_UNARY_OPERATIONS"))return this.packedUnaryOp(e,R7,e.dtype);let t=new xa(e.shape,R7),n=this.compileAndRun(t,[e]);return rn().makeTensorFromTensorInfo(n)}makeTensorInfo(e,t,n){let s;if(t==="string"&&n!=null&&n.length>0&&v.isString(n[0])){let r=n.map(a=>v.encodeString(a));s=this.write(r,e,t)}else s=this.write(n,e,t);return this.texData.get(s).usage=null,{dataId:s,shape:e,dtype:t}}makeOutput(e,t,n){return rn().makeTensorFromTensorInfo(this.makeTensorInfo(e,t,n),this)}unpackTensor(e){let t=new Wne(e.shape);return this.runWebGLProgram(t,[e],e.dtype)}packTensor(e){let t=new Ine(e.shape),n=!0;return this.runWebGLProgram(t,[e],e.dtype,null,n)}packedReshape(e,t){let n=[ll(e.shape),...ul(e.shape)],s={dtype:e.dtype,shape:n,dataId:e.dataId},r=[ll(t),...ul(t)],a=new S9(r,n),o=!0,i=[n],l=this.runWebGLProgram(a,[s],e.dtype,i,o);return{dataId:l.dataId,shape:t,dtype:l.dtype}}decode(e,t){let n=this.texData.get(e),{isPacked:s,shape:r,dtype:a}=n;if(t!=null){let p=v.sizeFromShape(r),d=t[0]*t[1]*4;v.assert(p<=d,()=>"customTexShape is too small. Row * Column * 4 should be equal or larger than the size of the tensor data.")}let o=dm(r),i;s?i=new _te(o):i=new Rte(o);let l=!0,u=[t!=null?t:tm(o)],c=this.runWebGLProgram(i,[{shape:o,dtype:a,dataId:e}],a,u,l,t);return{dtype:a,shape:r,dataId:c.dataId}}runWebGLProgram(e,t,n,s,r=!1,a){let o=this.makeTensorInfo(e.outputShape,n),i=this.texData.get(o.dataId);if(e.packedOutput&&(i.isPacked=!0),e.outPackingScheme===$p.DENSE){let g=a!=null?a:tm(e.outputShape);i.texShape=g.map(y=>y*2)}if(e.outTexUsage!=null&&(i.usage=e.outTexUsage),v.sizeFromShape(o.shape)===0)return i.values=v.getTypedArrayFromDType(o.dtype,0),o;let l=[],u=t.map(g=>{if(g.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");let y=this.texData.get(g.dataId);if(y.texture==null){if(!e.packedInputs&&v.sizeFromShape(g.shape)<=H().getNumber("WEBGL_SIZE_UPLOAD_UNIFORM"))return{shape:g.shape,texData:null,isUniform:!0,uniformValues:y.values};e.packedInputs&&(y.isPacked=!0,y.shape=g.shape)}if(this.uploadToGPU(g.dataId),!!y.isPacked!=!!e.packedInputs)g=y.isPacked?this.unpackTensor(g):this.packTensor(g),l.push(g),y=this.texData.get(g.dataId);else if(y.isPacked&&!Pp(y.shape,g.shape)){let x=g,A=g.shape;g.shape=y.shape,g=this.packedReshape(g,A),l.push(g),y=this.texData.get(g.dataId),x.shape=A}return{shape:g.shape,texData:y,isUniform:!1}});this.uploadToGPU(o.dataId);let c={shape:o.shape,texData:i,isUniform:!1},p=Ete(e,u,c),d=this.getAndSaveBinary(p,()=>Tte(this.gpgpu,e,u,c)),h=this.activeTimers!=null,f;h&&(f=this.startTimer()),H().get("ENGINE_COMPILE_ONLY")||Nte(this.gpgpu,d,u,c,s),l.forEach(g=>this.disposeIntermediateTensorInfo(g)),h&&(f=this.endTimer(f),this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(f)}));let m=H().get("WEBGL_FLUSH_THRESHOLD");if(m>0){let g=v.now();g-this.lastGlFlushTime>m&&(this.gpgpu.gl.flush(),this.lastGlFlushTime=g)}if(!H().getBool("WEBGL_LAZILY_UNPACK")&&i.isPacked&&r===!1){let g=this.unpackTensor(o);return this.disposeIntermediateTensorInfo(o),g}return o}compileAndRun(e,t,n,s,r=!1){return n=n||t[0].dtype,this.runWebGLProgram(e,t,n,s,r)}getAndSaveBinary(e,t){return e in this.binaryCache||(this.binaryCache[e]=t()),this.binaryCache[e]}getTextureManager(){return this.textureManager}dispose(){this.disposed||(H().getBool("IS_TEST")||Object.keys(this.binaryCache).forEach(t=>{this.gpgpu.deleteProgram(this.binaryCache[t].webGLProgram),delete this.binaryCache[t]}),this.textureManager.dispose(),this.canvas!=null&&typeof HTMLCanvasElement!="undefined"&&this.canvas instanceof HTMLCanvasElement?this.canvas.remove():this.canvas=null,this.gpgpuCreatedLocally&&(this.gpgpu.program=null,this.gpgpu.dispose()),this.disposed=!0)}floatPrecision(){return this.floatPrecisionValue==null&&(this.floatPrecisionValue=Z(()=>{if(!H().get("WEBGL_RENDER_FLOAT32_ENABLED")){let e=H().getBool("DEBUG");H().set("DEBUG",!1);let t=this.abs(Ce(1e-8)).dataSync()[0];if(H().set("DEBUG",e),t>0)return 32}return 16})),this.floatPrecisionValue}epsilon(){return this.floatPrecision()===32?Une:Gne}uploadToGPU(e){let t=this.texData.get(e),{shape:n,dtype:s,values:r,texture:a,usage:o,isPacked:i}=t;if(a!=null)return;let l=this.activeTimers!=null,u;l&&(u=v.now());let c=t.texShape;if(c==null&&(c=HI(n,i),t.texShape=c),r!=null){let p=dm(n),d,h=c[1],f=c[0],m=r instanceof Uint8Array||r instanceof Uint8ClampedArray;(i||!m)&&([h,f]=od(c[0],c[1])),i?d=new Fte(p,m):d=new Pte(p,m);let g=m?[f,h]:c,y=this.makeTensorInfo(g,s),x=this.texData.get(y.dataId);m?x.usage=Zs.PIXELS:x.usage=Zs.UPLOAD,x.texShape=g,this.gpgpu.uploadDenseMatrixToTexture(this.getTexture(y.dataId),h,f,r);let A=[[f,h]],b=!0,w=this.runWebGLProgram(d,[y],s,A,b),S=this.texData.get(w.dataId);t.texShape=S.texShape,t.isPacked=S.isPacked,t.usage=S.usage,H().get("ENGINE_COMPILE_ONLY")?this.disposeData(w.dataId):(t.texture=S.texture,t.values=null,this.texData.delete(w.dataId)),this.disposeIntermediateTensorInfo(y),l&&(this.uploadWaitMs+=v.now()-u)}else{let p=this.acquireTexture(c,o,s,i);t.texture=p}}convertAndCacheOnCPU(e,t){let n=this.texData.get(e),{dtype:s}=n;return this.releaseGPUData(e),t!=null&&(n.values=Kne(t,s)),n.values}acquireTexture(e,t,n,s){if(this.numBytesInGPU+=this.computeBytes(e,n),!this.warnedAboutMemory&&this.numBytesInGPU>this.numMBBeforeWarning*1024*1024){let r=(this.numBytesInGPU/1024/1024).toFixed(2);this.warnedAboutMemory=!0,console.warn(`High memory usage in GPU: ${r} MB, most likely due to a memory leak`)}return this.textureManager.acquireTexture(e,t,s)}computeBytes(e,t){return e[0]*e[1]*v.bytesPerElement(t)}checkCompileCompletion(){for(let[,e]of Object.entries(this.binaryCache))this.checkCompletion_(e)}async checkCompileCompletionAsync(){let e=[];if(this.gpgpu.parallelCompilationExtension){for(let[,t]of Object.entries(this.binaryCache))e.push(this.checkCompletionAsync_(t));return Promise.all(e)}else{for(let[,t]of Object.entries(this.binaryCache)){let n=new Promise(s=>{try{this.checkCompletion_(t),s(!0)}catch(r){throw r}});e.push(n)}return Promise.all(e)}}async checkCompletionAsync_(e){return this.gpgpu.gl.getProgramParameter(e.webGLProgram,this.gpgpu.parallelCompilationExtension.COMPLETION_STATUS_KHR)?this.checkCompletion_(e):(await r5(),this.checkCompletionAsync_(e))}checkCompletion_(e){if(this.gpgpu.gl.getProgramParameter(e.webGLProgram,this.gpgpu.gl.LINK_STATUS)===!1)throw console.log(this.gpgpu.gl.getProgramInfoLog(e.webGLProgram)),this.gpgpu.gl.getShaderParameter(e.fragmentShader,this.gpgpu.gl.COMPILE_STATUS)===!1?(Qx(e.source,this.gpgpu.gl.getShaderInfoLog(e.fragmentShader)),new Error("Failed to compile fragment shader.")):new Error("Failed to link vertex and fragment shaders.");return!0}getUniformLocations(){for(let[,e]of Object.entries(this.binaryCache)){let{uniformLocations:t,customUniformLocations:n,infLoc:s,nanLoc:r,inShapesLocations:a,inTexShapesLocations:o,outShapeLocation:i,outShapeStridesLocation:l,outTexShapeLocation:u}=n9(this.gpgpu,e.program,e.webGLProgram);e.uniformLocations=t,e.customUniformLocations=n,e.infLoc=s,e.nanLoc=r,e.inShapesLocations=a,e.inTexShapesLocations=o,e.outShapeLocation=i,e.outShapeStridesLocation=l,e.outTexShapeLocation=u}}};pd.nextDataId=0;function Kne(e,t){if(t==="float32"||t==="complex64")return e;if(t==="int32"||t==="bool"){let n=t==="int32"?new Int32Array(e.length):new Uint8Array(e.length);for(let s=0;s<n.length;++s)n[s]=Math.round(e[s]);return n}else throw new Error(`Unknown dtype ${t}`)}var Zne="3.20.0";function I9(){H().set("WEBGL_FORCE_F16_TEXTURES",!0)}lh.isBrowser()&&tu("webgl",()=>new pd,2);var Yne={forceHalfFloat:I9},C9=`
if (isnan(a)) return a;
if (isnan(b)) return b;
`,yc=class{constructor(e,t,n){this.variableNames=["A","B"],this.outputShape=T.assertAndGetBroadcastShape(t,n),this.enableShapeUniforms=cs(this.outputShape.length),this.userCode=`
float binaryOperation(float a, float b) {
${e}
}
void main() {
float a = getAAtOutCoords();
float b = getBAtOutCoords();
setOutput(binaryOperation(a, b));
}
`}},E2=`
result.r = isNaN.r > 0. ? NAN : result.r;
result.g = isNaN.g > 0. ? NAN : result.g;
result.b = isNaN.b > 0. ? NAN : result.b;
result.a = isNaN.a > 0. ? NAN : result.a;
`,Vh=class{constructor(e,t,n,s=!1){this.variableNames=["A","B"],this.supportsBroadcasting=!0,this.packedInputs=!0,this.packedOutput=!0,this.outputShape=T.assertAndGetBroadcastShape(t,n);let r=this.outputShape.length;this.enableShapeUniforms=cs(r);let a="";if(s)if(r===0||v.sizeFromShape(this.outputShape)===1)a=`
result.y = 0.;
result.z = 0.;
result.w = 0.;
`;else if(a=`
${vt(r)} coords = getOutputCoords();
`,r===1)this.enableShapeUniforms?a+=`
result.y = (coords + 1) >= outShape ? 0. : result.y;
result.z = 0.;
result.w = 0.;
`:a+=`
result.y = (coords + 1) >= ${this.outputShape[0]} ? 0. : result.y;
result.z = 0.;
result.w = 0.;
`;else{let i=as("coords",r);this.enableShapeUniforms?a+=`
bool nextRowOutOfBounds =
(${i[r-2]} + 1) >= outShape[${r} - 2];
bool nextColOutOfBounds =
(${i[r-1]} + 1) >= outShape[${r} - 1];
result.y = nextColOutOfBounds ? 0. : result.y;
result.z = nextRowOutOfBounds ? 0. : result.z;
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
`:a+=`
bool nextRowOutOfBounds =
(${i[r-2]} + 1) >= ${this.outputShape[r-2]};
bool nextColOutOfBounds =
(${i[r-1]} + 1) >= ${this.outputShape[r-1]};
result.y = nextColOutOfBounds ? 0. : result.y;
result.z = nextRowOutOfBounds ? 0. : result.z;
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
`}this.userCode=`
vec4 binaryOperation(vec4 a, vec4 b) {
${e}
}
void main() {
vec4 a = getAAtOutCoords();
vec4 b = getBAtOutCoords();
vec4 result = binaryOperation(a, b);
${a}
setOutput(result);
}
`}};function Ls(e){let{inputs:t,backend:n}=e,{x:s}=t;return n.incRef(s.dataId),{dataId:s.dataId,shape:s.shape,dtype:s.dtype}}var Jne={kernelName:$o,backendName:"webgl",kernelFunc:Ls};function fi(e){let{inputs:t,backend:n}=e,{real:s,imag:r}=t,a=n.makeTensorInfo(s.shape,"complex64"),o=n.texData.get(a.dataId),i=Ls({inputs:{x:s},backend:n}),l=Ls({inputs:{x:r},backend:n});return o.complexTensorInfos={real:i,imag:l},a}var Qne={kernelName:Up,backendName:"webgl",kernelFunc:fi},T9="return (a < 0.) ? b * a : a;",N9=`
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
`;function ese(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{alpha:a}=s,o=n.makeTensorInfo([],"float32",v.createScalarValue(a,"float32")),i=H().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Vh(N9,r.shape,o.shape):new yc(T9,r.shape,o.shape),l=n.runWebGLProgram(i,[r,o],"float32");return n.disposeIntermediateTensorInfo(o),l}var tse={kernelName:Po,backendName:"webgl",kernelFunc:ese},E9="return (a < 0.) ? b * a : a;",R9=`
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
`;function nse(e){let{inputs:t,backend:n}=e,{x:s,alpha:r}=t,a=H().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Vh(R9,s.shape,r.shape):new yc(E9,s.shape,r.shape);return n.runWebGLProgram(a,[s,r],"float32")}var sse={kernelName:jo,backendName:"webgl",kernelFunc:nse},hd="if (isnan(x)) return x;",rse=`
if (isnan(a)) return a;
if (isnan(b)) return b;
`,ase=`
result.r = isNaN.r > 0. ? NAN : result.r;
result.g = isNaN.g > 0. ? NAN : result.g;
result.b = isNaN.b > 0. ? NAN : result.b;
result.a = isNaN.a > 0. ? NAN : result.a;
`;function dt({opSnippet:e,packedOpSnippet:t,cpuKernelImpl:n,dtype:s}){return({inputs:r,backend:a})=>{let{x:o}=r,i=a,l=s||o.dtype;if(i.shouldExecuteOnCPU([o])&&n!=null){let p=i.texData.get(o.dataId),d=n(p.values,l);return i.makeTensorInfo(o.shape,l,d)}let u=H().getBool("WEBGL_PACK_UNARY_OPERATIONS")&&t!=null,c;return u?c=new qi(o.shape,t):c=new xa(o.shape,e),i.runWebGLProgram(c,[o],l)}}function zn({opSnippet:e,packedOpSnippet:t,checkOutOfBounds:n=!1,supportsComplex:s=!1,cpuKernelImpl:r,dtype:a}){return({inputs:o,backend:i})=>{let{a:l,b:u}=o,c=i;if(s&&l.dtype==="complex64"){let f=c.texData.get(l.dataId),m=c.texData.get(u.dataId),[g,y]=[[f.complexTensorInfos.real,m.complexTensorInfos.real],[f.complexTensorInfos.imag,m.complexTensorInfos.imag]].map(A=>{let[b,w]=A,S={dataId:b.dataId,dtype:b.dtype,shape:l.shape},k={dataId:w.dataId,dtype:w.dtype,shape:u.shape},E=new yc(e,l.shape,u.shape);return c.runWebGLProgram(E,[S,k],Un(b.dtype,w.dtype))}),x=fi({inputs:{real:g,imag:y},backend:c});return c.disposeIntermediateTensorInfo(g),c.disposeIntermediateTensorInfo(y),x}let p=a||Un(l.dtype,u.dtype);if((l.dtype==="string"||u.dtype==="string"||c.shouldExecuteOnCPU([l,u]))&&r!=null){let f=c.texData.get(l.dataId).values,m=c.texData.get(u.dataId).values,g=l.dtype==="string"?T.fromUint8ToStringArray(f):f,y=l.dtype==="string"?T.fromUint8ToStringArray(m):m,[x,A]=r(l.shape,u.shape,g,y,p),b=c.makeTensorInfo(A,p),w=c.texData.get(b.dataId);return w.values=x,b}let d=H().getBool("WEBGL_PACK_BINARY_OPERATIONS")&&t!=null,h;return d?h=new Vh(t,l.shape,u.shape,n):h=new yc(e,l.shape,u.shape),c.runWebGLProgram(h,[l,u],p)}}function Fp(e,t=!1){if(e==="linear")return t?One:_ne;if(e==="relu")return t?zne:$ne;if(e==="elu")return t?Mne:Dne;if(e==="relu6")return t?Lne:Pne;if(e==="prelu")return t?R9:E9;if(e==="leakyrelu")return t?N9:T9;if(e==="sigmoid")return t?Bne:Fne;throw new Error(`Activation ${e} has not been implemented for the WebGL backend.`)}var _9=class{constructor(e,t,n,s=!1,r=!1,a=!1,o=null,i=!1,l=!1){this.variableNames=["matrixA","matrixB"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=n,this.enableShapeUniforms=cs(this.outputShape.length);let u=s?e[1]:e[2],c=Math.ceil(u/2),p=s?"i * 2, rc.y":"rc.y, i * 2",d=r?"rc.z, i * 2":"i * 2, rc.z",h=s?["a.xxyy","a.zzww"]:["a.xxzz","a.yyww"],f=r?["b.xzxz","b.ywyw"]:["b.xyxy","b.zwzw"],m="",g="";o&&(i?m=`vec4 activation(vec4 a) {
vec4 b = getPreluActivationWeightsAtOutCoords();
${o}
}`:l?m=`vec4 activation(vec4 a) {
vec4 b = getLeakyreluAlphaAtOutCoords();
${o}
}`:m=`vec4 activation(vec4 x) {
${o}
}`,g="result = activation(result);");let y=a?"result += getBiasAtOutCoords();":"";a&&this.variableNames.push("bias"),i&&this.variableNames.push("preluActivationWeights"),l&&this.variableNames.push("leakyreluAlpha");let x="rc.x",A="rc.x";e[0]<t[0]?x=`int(min(float(rc.x), ${e[0]-1}.))`:t[0]<e[0]&&(A=`int(min(float(rc.x), ${t[0]-1}.))`),this.userCode=`
${m}
// Don't use uniform for sharedDimensionPacked for performance.
const float sharedDimension = ${c}.0;
vec4 dot2x2ARowBCol(ivec3 rc) {
vec4 result = vec4(0);
for (int i = 0; i < ${c}; i++) {
int batchA = ${x};
int batchB = ${A};
vec4 a = getMatrixA(batchA, ${p});
vec4 b = getMatrixB(batchB, ${d});
// These swizzled products need to be separately added.
// See: https://github.com/tensorflow/tfjs/issues/1735
result += (${h[0]} * ${f[0]});
result += (${h[1]} * ${f[1]});
}
return result;
}
void main() {
ivec3 rc = getOutputCoords();
vec4 result = dot2x2ARowBCol(rc);
${y}
${g}
setOutput(result);
}
`}},_7={REAL:"return areal * breal - aimag * bimag;",IMAG:"return areal * bimag + aimag * breal;"},D7=class{constructor(e,t,n){this.variableNames=["AReal","AImag","BReal","BImag"],this.outputShape=T.assertAndGetBroadcastShape(t,n),this.userCode=`
float binaryOpComplex(
float areal, float aimag, float breal, float bimag) {
${e}
}
void main() {
float areal = getARealAtOutCoords();
float aimag = getAImagAtOutCoords();
float breal = getBRealAtOutCoords();
float bimag = getBImagAtOutCoords();
setOutput(binaryOpComplex(areal, aimag, breal, bimag));
}
`}},$7="return a * b;";function ub(e){let{inputs:t,backend:n}=e,{a:s,b:r}=t,a=T.upcastType(s.dtype,r.dtype);if(s.dtype==="complex64"){let i=n.texData.get(s.dataId),l=n.texData.get(r.dataId),u=new D7(_7.REAL,s.shape,r.shape),c=new D7(_7.IMAG,s.shape,r.shape),p=[{dataId:i.complexTensorInfos.real.dataId,dtype:i.complexTensorInfos.real.dtype,shape:s.shape},{dataId:i.complexTensorInfos.imag.dataId,dtype:i.complexTensorInfos.imag.dtype,shape:s.shape},{dataId:l.complexTensorInfos.real.dataId,dtype:l.complexTensorInfos.real.dtype,shape:r.shape},{dataId:l.complexTensorInfos.imag.dataId,dtype:l.complexTensorInfos.imag.dtype,shape:r.shape}],d=n.runWebGLProgram(u,p,"float32"),h=n.runWebGLProgram(c,p,"float32"),f=fi({inputs:{real:d,imag:h},backend:n});return n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(h),f}if(n.shouldExecuteOnCPU([s,r])){let i=n.texData.get(s.dataId),l=n.texData.get(r.dataId),[u,c]=sne(s.shape,r.shape,i.values,l.values,a),p=n.makeTensorInfo(c,a),d=n.texData.get(p.dataId);return d.values=u,p}let o;return H().getBool("WEBGL_PACK_BINARY_OPERATIONS")?o=new Vh($7,s.shape,r.shape):o=new yc($7,s.shape,r.shape),n.runWebGLProgram(o,[s,r],a)}var ose={kernelName:Uo,backendName:"webgl",kernelFunc:ub};function ise(e,t,n){let s=[ll(e.shape),...ul(e.shape)],r={dtype:e.dtype,shape:s,dataId:e.dataId},a=[ll(t),...ul(t)],o=new S9(a,s),i=!0,l=[s],u=n.runWebGLProgram(o,[r],e.dtype,l,i);return{dataId:u.dataId,shape:t,dtype:u.dtype}}function ve(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{shape:a}=s,o=n,i=v.sizeFromShape(r.shape),l=v.inferFromImplicitShape(a,i),u=v.sizeFromShape(l);v.assert(i===u,()=>`The new shape (${l}) has ${u} elements and the old shape (${r.shape}) has ${i} elements. The new shape and old shape must have the same number of elements.`);let c=o.texData.get(r.dataId);return c.isPacked&&!Pp(r.shape,l)&&!(c.texture!==null&&Pp(c.shape,l))?ise(r,l,o):(o.incRef(r.dataId),{dataId:r.dataId,shape:l,dtype:r.dtype})}var lse={kernelName:Ll,backendName:"webgl",kernelFunc:ve},P7=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:s,inSize:r,outSize:a}=e;this.outputShape=[s,a];let o=Math.floor(n/4)*4,i=n%4,l="sumValue += dot(values, ones);";if(t!=null){let c=1/t;l=`sumValue += dot(values * ${v.isInt(c)?c.toPrecision(2):c}, ones);`}let u="";r%n>0&&(u=`
if (inIdx < 0 || inIdx >= ${r}) {
return 0.0;
}
`),this.userCode=`
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float getValue(int batch, int inIdx) {
${u}
return getX(batch, inIdx);
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = outIdx * ${n};
float sumValue = 0.0;
for (int i = 0; i < ${o}; i += 4) {
int inIdx = inOffset + i;
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
getValue(batch, inIdx + 3)
);
${l}
}
int inIdx = inOffset + ${o};
if (${i===1}) {
vec4 values = vec4(getValue(batch, inIdx), 0.0, 0.0, 0.0);
${l}
} else if (${i===2}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1), 0.0, 0.0);
${l}
} else if (${i===3}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2), 0.0);
${l}
}
setOutput(sumValue);
}
`}},use=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:s,inSize:r,outSize:a}=e;this.outputShape=[s,a];let o="0.0",i="";t==="prod"?o="1.0":t==="min"?(o="1.0 / 1e-20",i="min"):t==="max"&&(o="-1.0 / 1e-20",i="max");let l=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="sum"?l="sumValue":t==="prod"?l="prodValue":t==="all"?l="allValue":t==="any"&&(l="anyValue");let u=Math.floor(n/4)*4,c=n%4,p=`
if (${t==="sum"}) {
sumValue += dot(values, ones);
} else if (${t==="prod"}) {
vec2 tmp = vec2(values[0], values[1]) * vec2(values[2], values[3]);
prodValue *= tmp[0] * tmp[1];
} else {
minMaxValue = ${i}(values, minMaxValue);
if (${t==="min"} || ${t==="max"}) {
minMaxValue = ${i}(values, minMaxValue);
bvec4 isNaN = isnan(values);
if (isNaN.r || isNaN.g || isNaN.b || isNaN.a) {
minMaxValue = vec4(NAN);
}
}
}
`,d="vec4";t==="all"?(o="1.0",p=`
bool reducedAllValue = all(values);
float floatedReducedAllValue = float(reducedAllValue);
allValue = float(allValue >= 1.0 && floatedReducedAllValue >= 1.0);
`,d="bvec4"):t==="any"&&(o="0.0",p=`
bool reducedAnyValue = any(values);
float floatedReducedAnyValue = float(reducedAnyValue);
anyValue = float(anyValue >= 1.0 || floatedReducedAnyValue >= 1.0);
`,d="bvec4");let h="";r%n>0&&(h=`
if (inIdx < 0 || inIdx >= ${r}) {
return initializationValue;
}
`),this.userCode=`
const float initializationValue = ${o};
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float getValue(int batch, int inIdx) {
${h}
return getX(batch, inIdx);
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = outIdx * ${n};
vec4 minMaxValue = vec4(${o});
float prodValue = 1.0;
float sumValue = 0.0;
float allValue = 1.0;
float anyValue = 0.0;
for (int i = 0; i < ${u}; i += 4) {
int inIdx = inOffset + i;
${d} values = ${d}(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
getValue(batch, inIdx + 3)
);
${p}
}
int inIdx = inOffset + ${u};
if (${c===1}) {
${d} values = ${d}(
getValue(batch, inIdx),
initializationValue,
initializationValue,
initializationValue
);
${p}
} else if (${c===2}) {
${d} values = ${d}(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
initializationValue,
initializationValue
);
${p}
} else if (${c===3}) {
${d} values = ${d}(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
initializationValue
);
${p}
}
setOutput(${l});
}
`}};function cse(e){let t=[];for(;t.length===0||t[t.length-1].outSize!==1;){let n=t.length?t[t.length-1].outSize:e[1],s=T.computeOptimalWindowSize(n);t.push({inSize:n,windowSize:s,outSize:Math.ceil(n/s)})}return t}function hu(e,t,n,s){let r=cse(e.shape),a=e;for(let o=0;o<r.length;o++){let{inSize:i,windowSize:l,outSize:u}=r[o],c,p;n==="mean"?c=o===0?new P7({windowSize:l,inSize:i,batchSize:e.shape[0],outSize:u},i):new P7({windowSize:l,inSize:i,batchSize:e.shape[0],outSize:u}):c=new use({windowSize:l,inSize:i,batchSize:e.shape[0],outSize:u},n),p=a,a=s.runWebGLProgram(c,[a],t),p.dataId!==e.dataId&&s.disposeIntermediateTensorInfo(p)}return a}var dse=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let a=0;a<n.length;a++)n[a]=e[t[a]];this.outputShape=n,this.rank=n.length;let s=vt(this.rank),r=pse(t);this.userCode=`
void main() {
${s} resRC = getOutputCoords();
setOutput(getA(${r}));
}
`}};function pse(e){let t=e.length;if(t>6)throw Error(`Transpose for rank ${t} is not yet supported`);let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u","resRC.v"],s=new Array(t);for(let r=0;r<e.length;r++)s[e[r]]=n[r];return s.join()}var hse=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0;let n=new Array(e.length);for(let u=0;u<n.length;u++)n[u]=e[t[u]];if(this.outputShape=n,this.rank=n.length,this.rank>6)throw Error(`Packed transpose for rank ${this.rank} is not yet supported.`);let s=vt(this.rank),r=k9("rc",this.rank),a=new Array(this.rank);for(let u=0;u<t.length;u++)a[t[u]]=r[u];let o=`vec2(${a.slice(-2).join()})`,i=`++${r[this.rank-1]} < ${n[this.rank-1]}`,l=`getChannel(getA(${a.join()}), ${o})`;this.userCode=`
void main() {
${s} rc = getOutputCoords();
vec4 result = vec4(0.);
result[0] = ${l};
if(${i}) {
result[1] = ${l};
}
--${r[this.rank-1]};
if(++${r[this.rank-2]} < ${n[this.rank-2]}) {
result[2] = ${l};
if(${i}) {
result[3] = ${l};
}
}
setOutput(result);
}
`}};function R2(e,t,n){let s=H().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new hse(e.shape,t):new dse(e.shape,t);return n.runWebGLProgram(s,[e],e.dtype)}function fse(e,t,n,s){let r=t,a=e.shape.length,o=v.parseAxisParam(r,e.shape),i=o,l=T.getAxesPermutation(i,a),u=l!=null,c=e;u&&(c=R2(e,l,s),i=T.getInnerMostAxes(i.length,a)),T.assertAxesAreInnerMostDims("sum",i,a);let[p,d]=T.computeOutAndReduceShapes(c.shape,i),h=p;n&&(h=T.expandShapeToKeepDim(p,o));let f=v.sizeFromShape(d),g=v.sizeFromShape(e.shape)/f,y=ve({inputs:{x:c},attrs:{shape:[g,f]},backend:s}),x=ih(e.dtype),A=hu(y,x,"sum",s),b=ve({inputs:{x:A},attrs:{shape:h},backend:s});return s.disposeIntermediateTensorInfo(y),s.disposeIntermediateTensorInfo(A),u&&s.disposeIntermediateTensorInfo(c),b}function _2(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;return fse(r,a,o,n)}var mse={kernelName:ni,backendName:"webgl",kernelFunc:_2};function os(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{perm:a}=s,o=n,i=r.shape.length,l=new Array(i);for(let c=0;c<l.length;c++)l[c]=r.shape[a[c]];let u;if(o.shouldExecuteOnCPU([r])){let p=o.texData.get(r.dataId).values,d=lb(p,r.shape,r.dtype,a,l);u=o.makeTensorInfo(l,r.dtype);let h=o.texData.get(u.dataId);h.values=d}else u=R2(r,a,o);return u}var gse={kernelName:Qr,backendName:"webgl",kernelFunc:os},D9=1e3;function Vm({a:e,b:t,transposeA:n,transposeB:s,backend:r,bias:a=null,preluActivationWeights:o=null,leakyreluAlpha:i=0,activation:l=null}){let u=e.shape.length,c=t.shape.length,p=n?e.shape[u-2]:e.shape[u-1],d=s?t.shape[c-1]:t.shape[c-2],h=n?e.shape[u-1]:e.shape[u-2],f=s?t.shape[c-2]:t.shape[c-1],m=e.shape.slice(0,-2),g=t.shape.slice(0,-2),y=v.sizeFromShape(m),x=v.sizeFromShape(g),b=nu.assertAndGetBroadcastShape(e.shape.slice(0,-2),t.shape.slice(0,-2)).concat([h,f]);v.assert(p===d,()=>`Error in matMul: inner shapes (${p}) and (${d}) of Tensors with shapes ${e.shape} and ${t.shape} and transposeA=${n} and transposeB=${s} must match.`);let w=n?[y,p,h]:[y,h,p],S=s?[x,f,d]:[x,d,f],k=ve({inputs:{x:e},backend:r,attrs:{shape:w}}),E=ve({inputs:{x:t},backend:r,attrs:{shape:S}}),_=[k,E],D=Math.max(y,x),R=n?k.shape[1]:k.shape[2],P=a!=null,C=o!=null,M=l==="leakyrelu",L=l!=null?Fp(l,!0):null,G=P||C||M||L!=null,K;if((h===1||f===1)&&R>D9&&G===!1){let Y=k,ne=E;n&&(Y=os({inputs:{x:k},backend:r,attrs:{perm:[0,2,1]}}),_.push(Y)),s&&(ne=os({inputs:{x:E},backend:r,attrs:{perm:[0,2,1]}}),_.push(ne));let ee=f!==1,ie=f===1,se=Y;ee&&(se=ve({inputs:{x:Y},backend:r,attrs:{shape:[D,R,1]}}),_.push(se));let pe=f===1?2:1,ce=ne;ie&&(ce=ve({inputs:{x:ne},backend:r,attrs:{shape:[D,1,R]}}),_.push(ce));let xe=ub({inputs:{a:se,b:ce},backend:r});K=_2({inputs:{x:xe},backend:r,attrs:{axis:pe,keepDims:!0}}),_.push(xe)}else{let Y=Un(e.dtype,t.dtype),ne=new _9(w,S,[D,h,f],n,s,P,L,C,M),ee=[k,E];if(a!=null&&ee.push(a),C&&ee.push(o),M){let ie=r.makeTensorInfo([],"float32",v.createScalarValue(i,"float32"));ee.push(ie),_.push(ie)}K=r.runWebGLProgram(ne,ee,Y)}let X=ve({inputs:{x:K},backend:r,attrs:{shape:b}});_.push(K);for(let Y of _)r.disposeIntermediateTensorInfo(Y);return X}function yse(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a,bias:o,preluActivationWeights:i}=t,{transposeA:l,transposeB:u,activation:c,leakyreluAlpha:p}=s;return Vm({a:r,b:a,transposeA:l,transposeB:u,backend:n,bias:o,preluActivationWeights:i,leakyreluAlpha:p,activation:c})}var Ase={kernelName:eo,backendName:"webgl",kernelFunc:yse},F7="return abs(x);";function xse(e){let{inputs:t,backend:n}=e,{x:s}=t;if(n.shouldExecuteOnCPU([s])&&s.dtype!=="complex64"){let a=n.texData.get(s.dataId),o=v9(a.values);return n.makeTensorInfo(s.shape,s.dtype,o)}let r;return H().getBool("WEBGL_PACK_UNARY_OPERATIONS")?r=new qi(s.shape,F7):r=new xa(s.shape,F7),n.runWebGLProgram(r,[s],s.dtype)}var bse={kernelName:pl,backendName:"webgl",kernelFunc:xse},vse=xr+`
if (abs(x) > 1.) {
return NAN;
}
return acos(x);
`,wse=dt({opSnippet:vse}),kse={kernelName:bc,backendName:"webgl",kernelFunc:wse},Sse=xr+`
if (x < 1.0) return NAN;
return log(x + sqrt(x * x - 1.0));`,Ise=dt({opSnippet:Sse}),Cse={kernelName:vc,backendName:"webgl",kernelFunc:Ise},O7="return a + b;",Tse=zn({opSnippet:O7,packedOpSnippet:O7,supportsComplex:!0,cpuKernelImpl:Mte}),Nse={kernelName:Ta,backendName:"webgl",kernelFunc:Tse},Ese=class{constructor(e,t){this.outputShape=[],this.outputShape=e,this.variableNames=t.map((r,a)=>`T${a}`);let n=[];this.variableNames.forEach(r=>{n.push(`float v${r} = get${r}AtOutCoords();`)});let s=this.variableNames.map(r=>`v${r}`).join(" + ");this.userCode=`
void main() {
${n.join(`
`)}
float result = ${s};
setOutput(result);
}
`}},Rse=class{constructor(e,t){this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.variableNames=t.map((r,a)=>`T${a}`);let n=[];this.variableNames.forEach(r=>{n.push(`vec4 v${r} = get${r}AtOutCoords();`)});let s=this.variableNames.map(r=>`v${r}`).join(" + ");this.userCode=`
void main() {
${n.join(`
`)}
vec4 result = ${s};
setOutput(result);
}
`}};function fm(e){let{inputs:t,backend:n}=e,s=t;if(s.length===1)return Ls({inputs:{x:s[0]},backend:n});if(s.length>H().get("WEBGL_MAX_TEXTURES_IN_SHADER")){let l=Math.floor(s.length/2),u=fm({inputs:s.slice(0,l),backend:n}),c=fm({inputs:s.slice(l),backend:n});return fm({inputs:[u,c],backend:n})}let r=s.map(l=>l.dtype).reduce((l,u)=>Un(l,u)),a=s.map(l=>l.shape),i=H().getBool("WEBGL_PACK")?new Rse(s[0].shape,a):new Ese(s[0].shape,a);return n.runWebGLProgram(i,s,r)}var _se={kernelName:fo,backendName:"webgl",kernelFunc:fm};function Dse(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s,i=r.shape.length,l=v.parseAxisParam(a,r.shape),u=l,c=T.getAxesPermutation(u,i),p=r;c!=null&&(p=os({inputs:{x:r},backend:n,attrs:{perm:c}}),u=T.getInnerMostAxes(u.length,i)),T.assertAxesAreInnerMostDims("all",u,i);let[d,h]=T.computeOutAndReduceShapes(p.shape,u),f=v.sizeFromShape(h),m=ve({inputs:{x:p},backend:n,attrs:{shape:[-1,f]}}),g=hu(m,m.dtype,"all",n),y;if(o){let x=T.expandShapeToKeepDim(d,l);y=ve({inputs:{x:g},backend:n,attrs:{shape:x}})}else y=ve({inputs:{x:g},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(g),c!=null&&n.disposeIntermediateTensorInfo(p),y}var $se={kernelName:wc,backendName:"webgl",kernelFunc:Dse};function Pse(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s,i=r.shape.length,l=v.parseAxisParam(a,r.shape),u=l,c=T.getAxesPermutation(u,i),p=r;c!=null&&(p=os({inputs:{x:r},backend:n,attrs:{perm:c}}),u=T.getInnerMostAxes(u.length,i)),T.assertAxesAreInnerMostDims("any",u,i);let[d,h]=T.computeOutAndReduceShapes(p.shape,u),f=v.sizeFromShape(h),m=ve({inputs:{x:p},backend:n,attrs:{shape:[-1,f]}}),g=hu(m,m.dtype,"any",n),y;if(o){let x=T.expandShapeToKeepDim(d,l);y=ve({inputs:{x:g},backend:n,attrs:{shape:x}})}else y=ve({inputs:{x:g},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(g),c!=null&&n.disposeIntermediateTensorInfo(p),y}var Fse={kernelName:kc,backendName:"webgl",kernelFunc:Pse},Ose=class{constructor(e,t,n){this.variableNames=["A"];let{windowSize:s,batchSize:r,outSize:a}=e;n||this.variableNames.push("bestIndicesA"),this.outputShape=[r,a];let o=t==="max"?">":"<",i=n?"inOffset + i;":"round(getBestIndicesA(batch, inOffset + i));";this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = outIdx * ${s};
int bestIndex = inOffset;
float bestValue = getA(batch, bestIndex);
for (int i = 0; i < ${s}; i++) {
int inIdx = ${i};
float candidate = getA(batch, inIdx);
if (candidate ${o} bestValue) {
bestValue = candidate;
bestIndex = inIdx;
}
}
setOutput(float(bestIndex));
}
`}},Mse=class{constructor(e,t,n,s){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,v.assert(e.length>2,()=>`Packed arg${n.charAt(0).toUpperCase()+n.slice(1)} supports only inputs with rank above 2.`);let r=e[e.length-1],a=Math.ceil(r/t);this.outputShape=e.slice(0,-1),a>1&&this.outputShape.push(a),s||this.variableNames.push("bestIndicesA");let o=this.outputShape,i=o.length,l=vt(i),u=as("coords",i),c,p;if(a===1){p=i+1;let k=vt(p);c=`
${k} sourceLocR = ${k}(${u.join()}, 0);
++${u[i-1]};
${k} sourceLocG = ${k}(${u.join()}, 0);
++${u[i-2]};
${k} sourceLocA = ${k}(${u.join()}, 0);
--${u[i-1]};
${k} sourceLocB = ${k}(${u.join()}, 0);
--${u[i-2]};`}else p=i,c=`
${l} sourceLocR = coords;
++${u[i-1]};
${l} sourceLocG = coords;
++${u[i-2]};
${l} sourceLocA = coords;
--${u[i-1]};
${l} sourceLocB = coords;
--${u[i-2]};`;let d=["x","y","z","w","u","v"].slice(0,p),h="."+d[p-1],f=d.map(k=>"int "+k),m=as("sourceLocR",p-1).concat("inIdx.r"),g=as("sourceLocG",p-1).concat("inIdx.g"),y=as("sourceLocB",p-1).concat("inIdx.b"),x=as("sourceLocA",p-1).concat("inIdx.a"),A=n==="max"?"greaterThan":"lessThan",b=s?"":`
inIdx = round(vec4(getBestIndicesAChannel(${m.join()}),
getBestIndicesAChannel(${g.join()}),
getBestIndicesAChannel(${y.join()}),
getBestIndicesAChannel(${x.join()})));`,w=`vec4(
getAChannel(${m.join()}),
hasNextCol ? getAChannel(${g.join()}) : 0.,
hasNextRow ? getAChannel(${y.join()}) : 0.,
hasNextRow && hasNextCol ? getAChannel(${x.join()}) : 0.)`,S=s?"":`
float getBestIndicesAChannel(${f.join()}) {
return getChannel(getBestIndicesA(${d.join()}),
vec2(${d.slice(-2).join()}));
}`;this.userCode=`
float getAChannel(${f.join()}) {
return getChannel(getA(${d.join()}),
vec2(${d.slice(-2).join()}));
}
${S}
void main() {
${l} coords = getOutputCoords();
bool hasNextCol = ${u[i-1]} < ${o[i-1]-1};
bool hasNextRow = ${u[i-2]} < ${o[i-2]-1};
${c}
ivec4 srcIdx = ivec4(sourceLocR${h}, sourceLocG${h},
sourceLocB${h}, sourceLocA${h}) * ${t};
ivec4 inIdx = srcIdx;
vec4 bestIndex = vec4(inIdx);
vec4 bestValue = ${w};
for (int i = 0; i < ${t}; i++) {
inIdx = srcIdx;
${b}
vec4 candidate = ${w};
bvec4 nan = isnan(candidate);
bvec4 replace = bvec4(
vec4(${A}(candidate, bestValue)) * (vec4(1.0) - vec4(nan)));
bestValue = vec4(replace.x ? candidate.x : bestValue.x,
replace.y ? candidate.y : bestValue.y,
replace.z ? candidate.z : bestValue.z,
replace.w ? candidate.w : bestValue.w);
bestIndex = mix(bestIndex, vec4(inIdx), vec4(replace));
srcIdx++;
}
setOutput(bestIndex);
}
`}};function $9(e,t,n,s=null){let r=t.shape[0],a=t.shape[1];s!=null&&(r=s.shape[0],a=s.shape[1]);let o=T.computeOptimalWindowSize(a),i={windowSize:o,inSize:a,batchSize:r,outSize:Math.ceil(a/o)},l=new Ose(i,n,s==null),u=[t];s!=null&&u.push(s);let c=e.runWebGLProgram(l,u,"int32");if(c.shape[1]===1)return c;let p=$9(e,t,n,c);return e.disposeIntermediateTensorInfo(c),p}function P9(e,t,n,s=null){let r=s!=null?s.shape:t.shape,a=r[r.length-1],o=T.computeOptimalWindowSize(a),i=new Mse(r,o,n,s==null),l=s==null?[t]:[t,s],u=e.runWebGLProgram(i,l,"int32");if(u.shape.length===t.shape.length){let c=P9(e,t,n,u);return e.disposeIntermediateTensorInfo(u),c}return u}function F9(e,t,n,s){let r=[n];if(T.assertAxesAreInnerMostDims("arg"+s.charAt(0).toUpperCase()+s.slice(1),r,t.shape.length),!H().getBool("WEBGL_PACK_REDUCE")||t.shape.length<=2){let a=[],o=e.texData.get(t.dataId),i=o!==null&&o.isPacked,l=t;i&&(l=e.unpackTensor(t),a.push(l));let[u,c]=T.computeOutAndReduceShapes(l.shape,r),p=v.sizeFromShape(c),d=ve({inputs:{x:l},backend:e,attrs:{shape:[-1,p]}});a.push(d);let h=$9(e,d,s);a.push(h);let f=ve({inputs:{x:h},backend:e,attrs:{shape:u}});return a.forEach(m=>e.disposeIntermediateTensorInfo(m)),f}return P9(e,t,s)}function zse(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s,o=v.parseAxisParam(a,r.shape),i=T.getAxesPermutation(o,r.shape.length),l=r,u=[];i!=null&&(l=os({inputs:{x:r},backend:n,attrs:{perm:i}}),u.push(l),o=T.getInnerMostAxes(o.length,l.shape.length)),T.assertAxesAreInnerMostDims("argMax",[o[0]],l.shape.length);let c=F9(n,l,o[0],"max");return u.forEach(p=>n.disposeIntermediateTensorInfo(p)),c}var Lse={kernelName:mo,backendName:"webgl",kernelFunc:zse};function Bse(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s,o=v.parseAxisParam(a,r.shape),i=T.getAxesPermutation(o,r.shape.length),l=r,u=[];i!=null&&(l=os({inputs:{x:r},backend:n,attrs:{perm:i}}),u.push(l),o=T.getInnerMostAxes(o.length,l.shape.length)),T.assertAxesAreInnerMostDims("argMin",[o[0]],l.shape.length);let c=F9(n,l,o[0],"min");return u.forEach(p=>n.disposeIntermediateTensorInfo(p)),c}var Wse={kernelName:Sc,backendName:"webgl",kernelFunc:Bse},Vse=xr+`
if (abs(x) > 1.) {
return NAN;
}
return asin(x);
`,Use=dt({opSnippet:Vse}),Gse={kernelName:Ic,backendName:"webgl",kernelFunc:Use},Hse=xr+"return log(x + sqrt(x * x + 1.0));",jse=dt({opSnippet:Hse}),qse={kernelName:Cc,backendName:"webgl",kernelFunc:jse},Xse=xr+`
return atan(x);
`,Kse=dt({opSnippet:Xse}),Zse={kernelName:Tc,backendName:"webgl",kernelFunc:Kse},Yse=rse+`
return atan(a, b);
`,Jse=`
vec4 result = atan(a, b);
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
`+ase+`
return result;
`,Qse=zn({opSnippet:Yse,packedOpSnippet:Jse}),ere={kernelName:hl,backendName:"webgl",kernelFunc:Qse},tre=xr+`
if ((x < -1.0) || (x > 1.0)) return NAN;
return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,nre=dt({opSnippet:tre}),sre={kernelName:Nc,backendName:"webgl",kernelFunc:nre},Op=class{constructor(e,t,n,s=!1,r=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let a=e.filterWidth,o=e.strideHeight,i=e.strideWidth,l=e.dilationHeight,u=e.dilationWidth,c=e.effectiveFilterHeight,p=e.effectiveFilterWidth,d=e.padInfo.top,h=e.padInfo.left;this.outputShape=e.outShape;let f=t==="avg",m=`((batch * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + d`,g=`(xR * ${e.inWidth} + xC) * ${e.inChannels} + d`,y="0.0";if(f||(y="-1.0 / 1e-20"),n){let k=">=";this.userCode=`
const ivec2 strides = ivec2(${o}, ${i});
const ivec2 pads = ivec2(${d}, ${h});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d = coords[3];
ivec2 xRCCorner = coords.yz * strides - pads;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// max/min x(?, ?, d) to get y(yR, yC, d).
// ? = to be determined
float minMaxValue = 0.0;
float minMaxValueFound = 0.0;
int minMaxPosition = 0;
float avgValue = 0.0;
for (int wR = 0; wR < ${c};
wR += ${l}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${p};
wC += ${u}) {
int xC = xCCorner + wC;
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float value = getX(batch, xR, xC, d);
// If a min / max value has already been found, use it. If not,
// use the current value.
float currMinMaxValue = mix(
value, minMaxValue, minMaxValueFound);
if (value ${k} currMinMaxValue) {
minMaxValue = value;
minMaxValueFound = 1.0;
minMaxPosition = ${s?r?m:g:`wR * ${p} + wC`};
}
}
}
setOutput(float(minMaxPosition));
}
`;return}let x="max",A=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(A="avgValue / count");let b=Math.floor(a/4)*4,w=a%4,S=`
if (${f}) {
avgValue += dot(values, ones);
} else {
minMaxValue = ${x}(values, minMaxValue);
}
`;this.userCode=`
const ivec2 strides = ivec2(${o}, ${i});
const ivec2 pads = ivec2(${d}, ${h});
const float initializationValue = ${y};
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float count = 0.0;
float getValue(int batch, int xR, int xC, int d) {
if (xC < 0 || xC >= ${e.inWidth}) {
return initializationValue;
}
count += 1.0;
return getX(batch, xR, xC, d);
}
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d = coords[3];
ivec2 xRCCorner = coords.yz * strides - pads;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// max/min x(?, ?, d) to get y(yR, yC, d).
// ? = to be determined
vec4 minMaxValue = vec4(${y});
float avgValue = 0.0;
count = 0.0;
for (int wR = 0; wR < ${c};
wR += ${l}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${b}; wC += 4) {
int xC = xCCorner + wC * ${u};
vec4 values = vec4(
getValue(batch, xR, xC, d),
getValue(batch, xR, xC + ${u}, d),
getValue(batch, xR, xC + 2 * ${u}, d),
getValue(batch, xR, xC + 3 * ${u}, d)
);
${S}
}
int xC = xCCorner + ${b};
if (${w===1}) {
vec4 values = vec4(
getValue(batch, xR, xC, d),
initializationValue,
initializationValue,
initializationValue
);
${S}
} else if (${w===2}) {
vec4 values = vec4(
getValue(batch, xR, xC, d),
getValue(batch, xR, xC + ${u}, d),
initializationValue,
initializationValue
);
${S}
} else if (${w===3}) {
vec4 values = vec4(
getValue(batch, xR, xC, d),
getValue(batch, xR, xC + ${u}, d),
getValue(batch, xR, xC + 2 * ${u}, d),
initializationValue
);
${S}
}
}
setOutput(${A});
}
`}},cb=class{constructor(e,t,n,s=!1,r=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let a=e.filterWidth,o=e.strideDepth,i=e.strideHeight,l=e.strideWidth,u=e.dilationDepth,c=e.dilationHeight,p=e.dilationWidth,d=e.effectiveFilterDepth,h=e.effectiveFilterHeight,f=e.effectiveFilterWidth,m=e.padInfo.front,g=e.padInfo.top,y=e.padInfo.left;this.outputShape=e.outShape;let x=t==="avg",A="0.0";if(x||(A="-1.0 / 1e-20"),n){let _=">=";this.userCode=`
const ivec3 strides =
ivec3(${o}, ${i}, ${l});
const ivec3 pads = ivec3(${m}, ${g}, ${y});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
int xDCorner = xCorner.x;
int xRCorner = xCorner.y;
int xCCorner = xCorner.z;
// max/min x(?, ?, ?, ch) to get y(yD, yR, yC, ch).
// ? = to be determined
float minMaxValue = 0.0;
float minMaxValueFound = 0.0;
int minMaxPosition = 0;
for (int wD = 0; wD < ${d};
wD += ${u}) {
int xD = xDCorner + wD;
if (xD < 0 || xD >= ${e.inDepth}) {
continue;
}
for (int wR = 0; wR < ${h};
wR += ${c}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${f};
wC += ${p}) {
int xC = xCCorner + wC;
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float value = getX(batch, xD, xR, xC, ch);
// If a min / max value has already been found, use it. If not,
// use the current value.
float currMinMaxValue = mix(
value, minMaxValue, minMaxValueFound);
if (value ${_} currMinMaxValue) {
minMaxValue = value;
minMaxValueFound = 1.0;
minMaxPosition = ${s?r?`(((batch * ${e.inDepth} + xD) * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`((xD * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`wD * ${h} * ${f} +
wR * ${f} + wC`};
}
}
}
}
setOutput(float(minMaxPosition));
}
`;return}let b="max",w=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(w="avgValue / count");let S=Math.floor(a/4)*4,k=a%4,E=`
if (${x}) {
avgValue += dot(values, ones);
} else {
minMaxValue = ${b}(values, minMaxValue);
}
`;this.userCode=`
const ivec3 strides =
ivec3(${o}, ${i}, ${l});
const ivec3 pads = ivec3(${m}, ${g}, ${y});
const float initializationValue = ${A};
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float count = 0.0;
float getValue(int batch, int xD, int xR, int xC, int ch) {
if (xC < 0 || xC >= ${e.inWidth}) {
return initializationValue;
}
count += 1.0;
return getX(batch, xD, xR, xC, ch);
}
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
int xDCorner = xCorner.x;
int xRCorner = xCorner.y;
int xCCorner = xCorner.z;
// max/min x(?, ?, ?, d) to get y(yD, yR, yC, ch).
// ? = to be determined
vec4 minMaxValue = vec4(${A});
float avgValue = 0.0;
count = 0.0;
for (int wD = 0; wD < ${d};
wD += ${u}) {
int xD = xDCorner + wD;
if (xD < 0 || xD >= ${e.inDepth}) {
continue;
}
for (int wR = 0; wR < ${h};
wR += ${c}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${S}; wC += 4) {
int xC = xCCorner + wC * ${p};
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
getValue(batch, xD, xR, xC + ${p}, ch),
getValue(batch, xD, xR, xC + 2 * ${p}, ch),
getValue(batch, xD, xR, xC + 3 * ${p}, ch)
);
${E}
}
int xC = xCCorner + ${S};
if (${k===1}) {
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
initializationValue,
initializationValue,
initializationValue
);
${E}
} else if (${k===2}) {
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
getValue(batch, xD, xR, xC + ${p}, ch),
initializationValue,
initializationValue
);
${E}
} else if (${k===3}) {
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
getValue(batch, xD, xR, xC + ${p}, ch),
getValue(batch, xD, xR, xC + 2 * ${p}, ch),
initializationValue
);
${E}
}
}
setOutput(${w});
}
}
`}};function rre(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t;id(r,"avgPool");let{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=s,u=1;v.assert(T.eitherStridesOrDilationsAreOne(o,u),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${o} and dilations '${u}'`);let c=T.computePool2DInfo(r.shape,a,o,u,i,l);if(c.filterWidth===1&&c.filterHeight===1&&v.arraysEqual(c.inShape,c.outShape))return Ls({inputs:{x:r},backend:n});let p=new Op(c,"avg",!1);return n.runWebGLProgram(p,[r],"float32")}var are={kernelName:go,backendName:"webgl",kernelFunc:rre};function ore(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l,dataFormat:u}=s,c=[1,1,1],p=T.computePool3DInfo(r.shape,a,o,c,i,l,u),d=new cb(p,"avg",!1);return n.runWebGLProgram(d,[r],"float32")}var ire={kernelName:Vp,backendName:"webgl",kernelFunc:ore},lre=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,s=e.strideHeight,r=e.strideWidth,a=e.dilationHeight,o=e.dilationWidth,i=e.effectiveFilterHeight,l=e.effectiveFilterWidth,u=i-1-e.padInfo.top,c=l-1-e.padInfo.left,p=1/(t*n);this.userCode=`
const ivec2 pads = ivec2(${u}, ${c});
const float avgMultiplier = float(${p});
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 dyRCCorner = coords.yz - pads;
int dyRCorner = dyRCCorner.x;
int dyCCorner = dyRCCorner.y;
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${i};
wR += ${a}) {
float dyR = float(dyRCorner + wR) / ${s}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${l};
wC+= ${o}) {
float dyC = float(dyCCorner + wC) / ${r}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(b, idyR, idyC, d);
dotProd += dyValue * avgMultiplier;
}
}
setOutput(dotProd);
}
`}},ure=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,s=e.filterWidth,r=e.strideDepth,a=e.strideHeight,o=e.strideWidth,i=e.dilationDepth,l=e.dilationHeight,u=e.dilationWidth,c=e.effectiveFilterDepth,p=e.effectiveFilterHeight,d=e.effectiveFilterWidth,h=c-1-e.padInfo.front,f=p-1-e.padInfo.top,m=d-1-e.padInfo.left,g=1/(t*n*s);this.userCode=`
const ivec3 pads = ivec3(${h}, ${f}, ${m});
const float avgMultiplier = float(${g});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
int dyDCorner = dyCorner.x;
int dyRCorner = dyCorner.y;
int dyCCorner = dyCorner.z;
// Convolve dy(?, ?, ?, d) with pos mask(:, :, :, ch) to get
// dx(xD, xR, xC, ch).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wD = 0; wD < ${c};
wD += ${i}) {
float dyD = float(dyDCorner + wD) / ${r}.0;
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
continue;
}
int idyD = int(dyD);
for (int wR = 0; wR < ${p};
wR += ${l}) {
float dyR = float(dyRCorner + wR) / ${a}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${d};
wC += ${u}) {
float dyC = float(dyCCorner + wC) / ${o}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
dotProd += dyValue * avgMultiplier;
}
}
}
setOutput(dotProd);
}
`}};function cre(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,o=a,{filterSize:i,strides:l,pad:u,dimRoundingMode:c}=s,p=[1,1,1],d=T.computePool3DInfo(o.shape,i,l,p,u,c),h=new ure(d);return n.runWebGLProgram(h,[r],o.dtype)}var dre={kernelName:Jm,backendName:"webgl",kernelFunc:cre};function pre(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,o=a;id([r,a],"avgPoolGrad");let{filterSize:i,strides:l,pad:u}=s,c=T.computePool2DInfo(o.shape,i,l,1,u),p=new lre(c);return n.runWebGLProgram(p,[r],o.dtype)}var hre={kernelName:Ym,backendName:"webgl",kernelFunc:pre};function fre(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a}=t,{transposeA:o,transposeB:i}=s;return Vm({a:r,b:a,transposeA:o,transposeB:i,backend:n})}var mre={kernelName:yo,backendName:"webgl",kernelFunc:fre},gre=class{constructor(e,t,n,s,r,a){this.outputShape=[],this.variableNames=["x","mean","variance"],T.assertAndGetBroadcastShape(e,t),T.assertAndGetBroadcastShape(e,n);let o="0.0";s!=null&&(T.assertAndGetBroadcastShape(e,s),this.variableNames.push("offset"),o="getOffsetAtOutCoords()");let i="1.0";r!=null&&(T.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale"),i="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
void main() {
float x = getXAtOutCoords();
float mean = getMeanAtOutCoords();
float variance = getVarianceAtOutCoords();
float offset = ${o};
float scale = ${i};
float inv = scale * inversesqrt(variance + float(${a}));
setOutput(dot(vec3(x, -mean, offset), vec3(inv, inv, 1)));
}
`}},yre=class{constructor(e,t,n,s,r,a){this.packedInputs=!0,this.packedOutput=!0,this.variableNames=["x","mean","variance"],T.assertAndGetBroadcastShape(e,t),T.assertAndGetBroadcastShape(e,n);let o="vec4(0.0)";s!=null&&(T.assertAndGetBroadcastShape(e,s),this.variableNames.push("offset"),o="getOffsetAtOutCoords()");let i="vec4(1.0)";r!=null&&(T.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale"),i="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
void main() {
vec4 offset = ${o};
vec4 scale = ${i};
vec4 x = getXAtOutCoords();
vec4 mean = getMeanAtOutCoords();
vec4 variance = getVarianceAtOutCoords();
vec4 inv = scale * inversesqrt(variance + vec4(${a}));
setOutput((x - mean) * inv + offset);
}
`}},Are=({inputs:e,backend:t,attrs:n})=>{let{x:s,mean:r,variance:a,offset:o,scale:i}=e;v.assert(r.shape.length===a.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),v.assert(o==null||r.shape.length===o.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),v.assert(i==null||r.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let{varianceEpsilon:l}=n;l==null&&(l=.001);let u=[s,r,a],c=null;o!=null&&(c=o.shape,u.push(o));let p=null;i!=null&&(p=i.shape,u.push(i));let d=H().getBool("WEBGL_PACK_NORMALIZATION")?new yre(s.shape,r.shape,a.shape,c,p,l):new gre(s.shape,r.shape,a.shape,c,p,l);return t.runWebGLProgram(d,u,u[0].dtype)},xre={kernelName:_o,backendName:"webgl",kernelFunc:Are},bre=class{constructor(e){this.variableNames=["source"],this.outputShape=e,this.rank=e.length;let t=vt(this.rank);this.customUniforms=[{name:"start",arrayIndex:this.rank,type:"int"}];let n=vre(this.rank),s,r=e.map((a,o)=>`sourceLoc.${Ay[o]} = start[${o}] + coords.${Ay[o]};`);s=`
${t} sourceLoc;
${t} coords = getOutputCoords();
${r.join(`
`)}
`,this.userCode=`
void main() {
${s}
setOutput(getSource(${n}));
}
`}},Ay=["x","y","z","w","u","v"];function vre(e){if(e===1)return"sourceLoc";if(e<=6)return Ay.slice(0,e).map(t=>"sourceLoc."+t).join(",");throw Error(`Slicing for rank ${e} is not yet supported`)}var wre=class{constructor(e){this.variableNames=["source"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.rank=e.length,this.customUniforms=[{name:"start",arrayIndex:this.rank,type:"int"}];let t=vt(this.rank),n=as("coords",this.rank),s=as("sourceLoc",this.rank),r=this.rank===1?"sourceLoc":`vec2(${s.slice(-2).join()})`,a=`getChannel(getSource(${s.join()}), ${r})`,o=`
result.x = ${a};
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
++${s[this.rank-1]};
result.y = ${a};
--${s[this.rank-1]};
}
`,i=this.rank===1?"":`
--${n[this.rank-1]};
if (++${n[this.rank-2]} < ${e[this.rank-2]}) {
++${s[this.rank-2]};
result.z = ${a};
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
++${s[this.rank-1]};
result.w = ${a};
}
}
`,l=this.rank<=4?`sourceLoc = coords +
${t}(${e.map((u,c)=>`start[${c}]`).join()});`:e.map((u,c)=>`${s[c]} = ${n[c]} + start[${c}];`).join(`
`);this.userCode=`
void main() {
${t} coords = getOutputCoords();
${t} sourceLoc;
${l}
vec4 result = vec4(0.);
${o}
${i}
setOutput(result);
}
`}};function kre(e,t,n,s){let r=s.texData.get(e.dataId),a=s.makeTensorInfo(n,e.dtype),o=s.texData.get(a.dataId);Object.assign(o,r),o.refCount=1,o.shape=n,o.dtype=e.dtype;let i=Gt.computeFlatOffset(t,v.computeStrides(e.shape));r.slice&&(i+=r.slice.flatOffset),o.slice={flatOffset:i,origDataId:r.slice&&r.slice.origDataId||e.dataId};let l=s.dataRefCount.get(o.slice.origDataId)||1;return s.dataRefCount.set(o.slice.origDataId,l+1),a}function fd(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,size:o}=s,[i,l]=Gt.parseSliceParams(r,a,o);if(Gt.assertParamsValid(r,i,l),v.sizeFromShape(l)===0)return n.makeTensorInfo(l,r.dtype,[]);if(n.shouldExecuteOnCPU([r])||r.dtype==="string"){let p=n.texData.get(r.dataId),d=pne(p.values,i,l,r.shape,r.dtype);return n.makeTensorInfo(l,r.dtype,d)}let{isPacked:u}=n.texData.get(r.dataId),c=Gt.isSliceContinous(r.shape,i,l);if(u||!c){let p=H().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new wre(l):new bre(l),d=[i];return n.runWebGLProgram(p,[r],r.dtype,d)}return n.uploadToGPU(r.dataId),kre(r,i,l,n)}var Sre={kernelName:Gl,backendName:"webgl",kernelFunc:fd},Ire=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,crops:o}=s;v.assert(r.shape.length<=4,()=>"batchToSpaceND for rank > 4 with a WebGL backend not implemented yet");let i=a.reduce((x,A)=>x*A),l=T.getReshaped(r.shape,a,i),u=T.getPermuted(l.length,a.length),c=T.getReshapedPermuted(r.shape,a,i),p=T.getSliceBeginCoords(o,a.length),d=T.getSliceSize(c,o,a.length),h=[],f=ve({inputs:{x:r},backend:n,attrs:{shape:l}}),m=os({inputs:{x:f},backend:n,attrs:{perm:u}}),g=ve({inputs:{x:m},backend:n,attrs:{shape:c}}),y=fd({inputs:{x:g},backend:n,attrs:{begin:p,size:d}});return h.push(f),h.push(m),h.push(g),h.forEach(x=>n.disposeIntermediateTensorInfo(x)),y},Cre={kernelName:fl,backendName:"webgl",kernelFunc:Ire};function Tre(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,weights:a}=t,{size:o}=s,i=n.readSync(r.dataId),l=n.readSync(a.dataId),u=b9(i,l,a.dtype,a.shape,o);return n.makeTensorInfo([o],a.dtype,u)}var Nre={kernelName:Qm,backendName:"webgl",kernelFunc:Tre};function Ere(e){let{inputs:t,backend:n}=e,{s0:s,s1:r}=t,a=n.readSync(s.dataId),o=n.readSync(r.dataId),i=T.assertAndGetBroadcastShape(Array.from(a),Array.from(o));return n.makeTensorInfo([i.length],"int32",Int32Array.from(i))}var Rre={kernelName:e0,backendName:"webgl",kernelFunc:Ere},_re="return float(a != b);",O9=zn({opSnippet:_re,cpuKernelImpl:ane,dtype:"bool"}),Dre={kernelName:Dl,backendName:"webgl",kernelFunc:O9};function Uh(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.texData.get(s.dataId);return Ls({inputs:{x:r.complexTensorInfos.real},backend:n})}var $re={kernelName:Yp,backendName:"webgl",kernelFunc:Uh},Pre="return float(int(x));";function Fre(e,t){let n=new xa(e.shape,Pre),s=t.runWebGLProgram(n,[e],"int32");return{dataId:s.dataId,shape:s.shape,dtype:s.dtype}}function xy(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dtype:a}=s;if(a==="complex64"){if(r.dtype==="complex64")return Ls({inputs:{x:r},backend:n});let o=Vt(r.shape),i=xy({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),l=fi({inputs:{real:i,imag:o},backend:n});return o.dispose(),n.disposeIntermediateTensorInfo(i),l}if(r.dtype==="complex64"){let o=Uh({inputs:{input:r},backend:n}),i=xy({inputs:{x:o},backend:n,attrs:{dtype:a}});return n.disposeIntermediateTensorInfo(o),i}if(!v.hasEncodingLoss(r.dtype,a)){let o=Ls({inputs:{x:r},backend:n});return{dataId:o.dataId,shape:o.shape,dtype:a}}if(n.shouldExecuteOnCPU([r])){let o=n.texData.get(r.dataId).values,[i,l,u]=Lte(o,r.shape,r.dtype,a);return n.makeTensorInfo(i,l,u)}if(a==="int32")return Fre(r,n);if(a==="bool"){let o=n.makeTensorInfo([],"bool",v.getTypedArrayFromDType("bool",1)),l=O9({inputs:{a:r,b:o},backend:n});return n.disposeIntermediateTensorInfo(o),l}throw new Error(`Error in Cast: failed to cast ${r.dtype} to ${a}`)}var Ore={kernelName:Ao,backendName:"webgl",kernelFunc:xy},M7="return ceil(x);",Mre=dt({opSnippet:M7,packedOpSnippet:M7,cpuKernelImpl:Bte}),zre={kernelName:xo,backendName:"webgl",kernelFunc:Mre},Lre=class{constructor(e){this.variableNames=["A"],this.customUniforms=[{name:"minVal",type:"float"},{name:"maxVal",type:"float"}],this.outputShape=e,this.userCode=`
void main() {
float value = getAAtOutCoords();
if (isnan(value)) {
setOutput(value);
return;
}
setOutput(clamp(value, minVal, maxVal));
}
`}},Bre=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"minVal",type:"float"},{name:"maxVal",type:"float"}],this.outputShape=e,this.userCode=`
void main() {
vec4 value = getAAtOutCoords();
if (any(isnan(value))) {
setOutput(value);
return;
}
setOutput(clamp(value, vec4(minVal), vec4(maxVal)));
}
`}};function Wre(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{clipValueMin:a,clipValueMax:o}=s,i;H().getBool("WEBGL_PACK_CLIP")?i=new Bre(r.shape):i=new Lre(r.shape);let l=[[a],[o]];return n.runWebGLProgram(i,[r],r.dtype,l)}var Vre={kernelName:Na,backendName:"webgl",kernelFunc:Wre},Ure=class{constructor(e){this.variableNames=["real","imag"],this.outputShape=e,this.userCode=`
void main() {
float re = abs(getRealAtOutCoords());
float im = abs(getImagAtOutCoords());
float mx = max(re, im);
// sadly the length function in glsl is not underflow-safe
// (at least not on Intel GPUs). So the safe solution is
// to ensure underflow-safety in all cases.
setOutput(
mx == 0.0 ? 0.0 : mx * length(vec2(1, min(re, im)/mx))
);
}
`}};function z7(e,t){return{dataId:t.dataId,dtype:t.dtype,shape:e.shape}}function Gre(e){let{inputs:t,backend:n}=e,{x:s}=t,r=n.texData.get(s.dataId),a=new Ure(s.shape),o=[z7(s,r.complexTensorInfos.real),z7(s,r.complexTensorInfos.imag)];return n.runWebGLProgram(a,o,o[0].dtype)}var Hre={kernelName:Gp,backendName:"webgl",kernelFunc:Gre},jre=class{constructor(e){this.outputShape=[],this.outputShape=T.computeOutShape(e,1),this.variableNames=e.map((a,o)=>`T${o}`);let t=new Array(e.length-1);t[0]=e[0][1];for(let a=1;a<t.length;a++)t[a]=t[a-1]+e[a][1];let n=[`if (yC < ${t[0]}) setOutput(getT0(yR, yC));`];for(let a=1;a<t.length;a++){let o=t[a-1];n.push(`else if (yC < ${t[a]}) setOutput(getT${a}(yR, yC-${o}));`)}let s=t.length,r=t[t.length-1];n.push(`else setOutput(getT${s}(yR, yC-${r}));`),this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int yR = coords.x;
int yC = coords.y;
${n.join(`
`)}
}
`}},qre=class{constructor(e,t){this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[],this.outputShape=T.computeOutShape(e,t);let n=this.outputShape,s=n.length,r=vt(s),a=as("coords",s),o=["x","y","z","w","u","v"].slice(0,s);this.variableNames=e.map((f,m)=>`T${m}`);let i=new Array(e.length-1);i[0]=e[0][t];for(let f=1;f<i.length;f++)i[f]=i[f-1]+e[f][t];let l=o[t],u=o.slice(-2),c=o.join(),p=`if (${l} < ${i[0]}) {
return getChannel(
getT0(${c}), vec2(${u.join()}));
}`;for(let f=1;f<i.length;f++){let m=i[f-1];p+=`
if (${l} < ${i[f]} && ${l} >= ${i[f-1]}) {
return getChannel(
getT${f}(${rm(o,l,m)}),
vec2(${rm(u,l,m)}));
}`}let d=i.length,h=i[i.length-1];p+=`
return getChannel(
getT${d}(${rm(o,l,h)}),
vec2(${rm(u,l,h)}));`,this.userCode=`
float getValue(${o.map(f=>"int "+f)}) {
${p}
}
void main() {
${r} coords = getOutputCoords();
vec4 result = vec4(getValue(${a}), 0., 0., 0.);
${a[s-1]} = ${a[s-1]} + 1;
if (${a[s-1]} < ${n[s-1]}) {
result.g = getValue(${a});
}
${a[s-2]} = ${a[s-2]} + 1;
if (${a[s-2]} < ${n[s-2]}) {
result.a = getValue(${a});
}
${a[s-1]} = ${a[s-1]} - 1;
if (${a[s-2]} < ${n[s-2]} &&
${a[s-1]} < ${n[s-1]}) {
result.b = getValue(${a});
}
setOutput(result);
}
`}};function rm(e,t,n){let s=e.indexOf(t);return e.map((a,o)=>o===s?`${a} - ${n}`:a).join()}function D2(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.texData.get(s.dataId);return Ls({inputs:{x:r.complexTensorInfos.imag},backend:n})}var Xre={kernelName:Xp,backendName:"webgl",kernelFunc:D2};function hp(e,t,n){let s=e[0].dtype;if(s==="complex64"){let p=e.map(g=>Uh({inputs:{input:g},backend:n})),d=e.map(g=>D2({inputs:{input:g},backend:n})),h=hp(p,t,n),f=hp(d,t,n),m=fi({inputs:{real:h,imag:f},backend:n});return p.forEach(g=>n.disposeIntermediateTensorInfo(g)),d.forEach(g=>n.disposeIntermediateTensorInfo(g)),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),m}let r=n.shouldExecuteOnCPU(e);if(s==="string"&&(r=!0),r){let p=e.map(x=>{let A=v.sizeFromShape(x.shape.slice(t));return ve({inputs:{x},backend:n,attrs:{shape:[-1,A]}})}),d=p.map(x=>({vals:n.readSync(x.dataId),shape:x.shape})),h=T.computeOutShape(p.map(x=>x.shape),1),f=p[0].shape[0]===1,m=Wte(d,h,s,f),g=T.computeOutShape(e.map(x=>x.shape),t),y=n.makeTensorInfo(g,s,m);return p.forEach(x=>n.disposeIntermediateTensorInfo(x)),y}let a=H().getNumber("WEBGL_MAX_TEXTURES_IN_SHADER");if(e.length>a){let p=[];for(let h=0;h<e.length;h+=a){let f=e.slice(h,h+a);p.push(hp(f,t,n))}let d=hp(p,t,n);for(let h of p)n.disposeIntermediateTensorInfo(h);return d}if(H().getBool("WEBGL_PACK_ARRAY_OPERATIONS")&&e[0].shape.length>1){let p=new qre(e.map(d=>d.shape),t);return n.runWebGLProgram(p,e,s)}let{tensors2D:o,outShape:i}=Kre(e,t,n),l=new jre(o.map(p=>p.shape)),u=n.runWebGLProgram(l,o,s);o.forEach(p=>n.disposeIntermediateTensorInfo(p));let c=ve({inputs:{x:u},attrs:{shape:i},backend:n});return n.disposeIntermediateTensorInfo(u),c}function Kre(e,t,n){let s=T.computeOutShape(e.map(a=>a.shape),t);return{tensors2D:e.map(a=>ve({inputs:{x:a},attrs:{shape:[-1,v.sizeFromShape(a.shape.slice(t))]},backend:n})),outShape:s}}function M9(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s,a=v.parseAxisParam(r,t[0].shape)[0],o=T.computeOutShape(t.map(u=>u.shape),a);if(v.sizeFromShape(o)===0)return n.makeTensorInfo(o,t[0].dtype,[]);let i=t.filter(u=>v.sizeFromShape(u.shape)>0);if(i.length===1)return Ls({inputs:{x:i[0]},backend:n});let l=i.map(u=>u.shape);return T.assertParamsConsistent(l,a),hp(i,a,n)}var Zre={kernelName:ml,backendName:"webgl",kernelFunc:M9},z9=class{constructor(e,t=!1,n=null,s=!1,r=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let a=e.padInfo.top,o=e.padInfo.left,i=e.strideHeight,l=e.strideWidth,u=e.dilationHeight,c=e.dilationWidth,p=e.filterHeight,d=e.filterWidth,h=Math.floor(e.inChannels/4)*4,f=e.inChannels%4,m=e.dataFormat==="channelsLast",g=m?1:2,y=m?2:3,x=m?3:1,A="",b="";n&&(s?A=`float activation(float a) {
float b = getPreluActivationWeightsAtOutCoords();
${n}
}`:r?A=`float activation(float a) {
float b = getLeakyreluAlphaAtOutCoords();
${n}
}`:A=`
float activation(float x) {
${n}
}
`,b="result = activation(result);");let w=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
${A}
const ivec2 strides = ivec2(${i}, ${l});
const ivec2 pads = ivec2(${a}, ${o});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d2 = coords[${x}];
ivec2 xRCCorner =
ivec2(coords[${g}], coords[${y}]) * strides - pads;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// Convolve x(?, ?, d1) with w(:, :, d1, d2) to get y(yR, yC, d2).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${p}; wR++) {
int xR = xRCorner + wR * ${u};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${d}; wC++) {
int xC = xCCorner + wC * ${c};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
for (int d1 = 0; d1 < ${h}; d1 += 4) {
vec4 wValues = vec4(
getW(wR, wC, d1, d2),
getW(wR, wC, d1 + 1, d2),
getW(wR, wC, d1 + 2, d2),
getW(wR, wC, d1 + 3, d2)
);
if (${m}) {
vec4 xValues = vec4(
getX(batch, xR, xC, d1),
getX(batch, xR, xC, d1 + 1),
getX(batch, xR, xC, d1 + 2),
getX(batch, xR, xC, d1 + 3)
);
dotProd += dot(xValues, wValues);
} else {
vec4 xValues = vec4(
getX(batch, d1, xR, xC),
getX(batch, d1 + 1, xR, xC),
getX(batch, d1 + 2, xR, xC),
getX(batch, d1 + 3, xR, xC)
);
dotProd += dot(xValues, wValues);
}
}
if (${f===1}) {
if (${m}) {
dotProd +=
getX(batch, xR, xC, ${h}) *
getW(wR, wC, ${h}, d2);
} else {
dotProd +=
getX(batch, ${h}, xR, xC) *
getW(wR, wC, ${h}, d2);
}
} else if (${f===2}) {
vec2 wValues = vec2(
getW(wR, wC, ${h}, d2),
getW(wR, wC, ${h} + 1, d2)
);
if (${m}) {
vec2 xValues = vec2(
getX(batch, xR, xC, ${h}),
getX(batch, xR, xC, ${h} + 1)
);
dotProd += dot(xValues, wValues);
} else {
vec2 xValues = vec2(
getX(batch, ${h}, xR, xC),
getX(batch, ${h} + 1, xR, xC)
);
dotProd += dot(xValues, wValues);
}
} else if (${f===3}) {
vec3 wValues = vec3(
getW(wR, wC, ${h}, d2),
getW(wR, wC, ${h} + 1, d2),
getW(wR, wC, ${h} + 2, d2)
);
if (${m}) {
vec3 xValues = vec3(
getX(batch, xR, xC, ${h}),
getX(batch, xR, xC, ${h} + 1),
getX(batch, xR, xC, ${h} + 2)
);
dotProd += dot(xValues, wValues);
} else {
vec3 xValues = vec3(
getX(batch, ${h}, xR, xC),
getX(batch, ${h} + 1, xR, xC),
getX(batch, ${h} + 2, xR, xC)
);
dotProd += dot(xValues, wValues);
}
}
}
}
float result = dotProd;
${w}
${b}
setOutput(result);
}
`}},Yre=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let t=e.padInfo.front,n=e.padInfo.top,s=e.padInfo.left,r=e.strideDepth,a=e.strideHeight,o=e.strideWidth,i=e.dilationDepth,l=e.dilationHeight,u=e.dilationWidth,c=e.filterDepth,p=e.filterHeight,d=e.filterWidth,h=Math.floor(e.inChannels/4)*4,f=e.inChannels%4;this.userCode=`
const ivec3 strides = ivec3(${r}, ${a}, ${o});
const ivec3 pads = ivec3(${t}, ${n}, ${s});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int d2 = coords.u;
ivec3 xFRCCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
int xFCorner = xFRCCorner.x;
int xRCorner = xFRCCorner.y;
int xCCorner = xFRCCorner.z;
// Convolve x(?, ?, ?, d1) with w(:, :, :, d1, d2) to get
// y(yF, yR, yC, d2). ? = to be determined. : = across all
// values in that axis.
float dotProd = 0.0;
for (int wF = 0; wF < ${c}; wF++) {
int xF = xFCorner + wF * ${i};
if (xF < 0 || xF >= ${e.inDepth}) {
continue;
}
for (int wR = 0; wR < ${p}; wR++) {
int xR = xRCorner + wR * ${l};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${d}; wC++) {
int xC = xCCorner + wC * ${u};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
for (int d1 = 0; d1 < ${h}; d1 += 4) {
vec4 xValues = vec4(
getX(batch, xF, xR, xC, d1),
getX(batch, xF, xR, xC, d1 + 1),
getX(batch, xF, xR, xC, d1 + 2),
getX(batch, xF, xR, xC, d1 + 3)
);
vec4 wValues = vec4(
getW(wF, wR, wC, d1, d2),
getW(wF, wR, wC, d1 + 1, d2),
getW(wF, wR, wC, d1 + 2, d2),
getW(wF, wR, wC, d1 + 3, d2)
);
dotProd += dot(xValues, wValues);
}
if (${f===1}) {
dotProd +=
getX(batch, xF, xR, xC, ${h}) *
getW(wF, wR, wC, ${h}, d2);
} else if (${f===2}) {
vec2 xValues = vec2(
getX(batch, xF, xR, xC, ${h}),
getX(batch, xF, xR, xC, ${h} + 1)
);
vec2 wValues = vec2(
getW(wF, wR, wC, ${h}, d2),
getW(wF, wR, wC, ${h} + 1, d2)
);
dotProd += dot(xValues, wValues);
} else if (${f===3}) {
vec3 xValues = vec3(
getX(batch, xF, xR, xC, ${h}),
getX(batch, xF, xR, xC, ${h} + 1),
getX(batch, xF, xR, xC, ${h} + 2)
);
vec3 wValues = vec3(
getW(wF, wR, wC, ${h}, d2),
getW(wF, wR, wC, ${h} + 1, d2),
getW(wF, wR, wC, ${h} + 2, d2)
);
dotProd += dot(xValues, wValues);
}
}
}
}
setOutput(dotProd);
}
`}},L9=class{constructor(e,t=!1,n=null,s=!1,r=!1){this.variableNames=["x","W"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"pads",type:"ivec2"},{name:"strides",type:"ivec2"},{name:"dilations",type:"ivec2"},{name:"inDims",type:"ivec2"}],this.outputShape=e.outShape,this.enableShapeUniforms=cs(this.outputShape.length);let a=e.padInfo.left,o=e.strideWidth,i=e.dilationWidth,l=e.filterHeight,u=e.filterWidth,c=u,p=`
int xR; int xC; int xCOffset;
vec4 wTexel; vec4 previous; vec4 final;`;for(let m=0;m<u;m++)p+=`
vec4 xTexelC${m*2};
int xTexelC${m*2}Ready;
vec4 xTexelC${m*2+1};
int xTexelC${m*2+1}Ready;
vec4 xC${m};`;p+=`
for (int r = 0; r < ${l}; r++) {
for (int d1 = 0; d1 < ${e.inChannels}; d1 += 2) {
`;for(let m=0;m<u;m++)p+=`
xTexelC${m*2} = vec4(0.0);
xTexelC${m*2}Ready = 0;
xTexelC${m*2+1} = vec4(0.0);
xTexelC${m*2+1}Ready = 0;
xC${m} = vec4(0.0);`;p+=`
xR = xRCorner + r * dilations[0];
if (xR >=0 && xR < inDims[0]) {
`;for(let m=0;m<(c+1)/2;m++){let g=m*2;if(p+=`
xC = xCCorner + ${g*i};
`,o===1){if(g<u&&(a%2===1?(p+=`
xCOffset = xC + 1;
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${g}Ready == 0) {
xTexelC${g} = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= inDims[1]) {
xTexelC${g}.zw = vec2(0.0);
}
xTexelC${g}Ready = 1;
}
`,i===1&&g>0?p+=`
xC${g} = vec4(xTexelC${g-2}.zw, xTexelC${g}.xy);
`:p+=`
xCOffset = xC + 1 - 2;
if (xCOffset >= 0 && xCOffset < inDims[1]) {
previous = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= inDims[1]) {
previous.zw = vec2(0.0);
}
xC${g} = vec4(previous.zw, xTexelC${g}.xy);
} else {
xC${g} = vec4(0.0, 0.0, xTexelC${g}.xy);
}
`):p+=`
if (xC >= 0 && xC < inDims[1] && xTexelC${g}Ready == 0) {
xTexelC${g} = getX(batch, xR, xC, d1);
if (xC + 1 >= inDims[1]) {
xTexelC${g}.zw = vec2(0.0);
}
xTexelC${g}Ready = 1;
}
xC${g} = xTexelC${g};
`,g+1<u)){let y=a%2===0?v.nearestLargerEven(i):i;i%2===0&&a%2===1||i%2!==0&&a%2!==1?(p+=`
xCOffset = xC + imod(pads[1], 2) + ${y};
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${g+1}Ready == 0) {
xTexelC${g+1} = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= inDims[1]) {
xTexelC${g+1}.zw = vec2(0.0);
}
xTexelC${g+1}Ready = 1;
}
`,i>1?p+=`
xCOffset -= 2;
if (xCOffset >= 0 && xCOffset < inDims[1]) {
previous = getX(batch, xR, xCOffset, d1);
xC${g+1} = vec4(previous.zw, xTexelC${g+1}.xy);
} else {
xC${g+1} = vec4(0.0, 0.0, xTexelC${g+1}.xy);
}
`:p+=`
xC${g+1} = vec4(xTexelC${g}.zw, xTexelC${g+1}.xy);
`):y===1?p+=`
xC${g+1} = xTexelC${g};
`:p+=`
xCOffset = xC + ${y};
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${g+1}Ready == 0) {
xTexelC${g+1} = getX(batch, xR, xCOffset, d1);
if (xCOffset + 1 >= inDims[1]) {
xTexelC${g+1}.zw = vec2(0.0);
}
xTexelC${g+1}Ready = 1;
}
xC${g+1} = xTexelC${g+1};
`}}else g<u&&(a%2===1?(p+=`
xCOffset = xC + 1 - strides[1];
if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${g}Ready == 0) {
xTexelC${g} = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= inDims[1]) {
xTexelC${g}.zw = vec2(0.0);
}
xTexelC${g}Ready = 1;
}
if(xC + 1 >= 0 && xC + 1 < inDims[1] && xTexelC${g+1}Ready == 0) {
xTexelC${g+1} = getX(batch, xR, xC + 1, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xC + 2 >= inDims[1]) {
xTexelC${g+1}.zw = vec2(0.0);
}
xTexelC${g+1}Ready = 1;
}
xC${g} = vec4(xTexelC${g}.zw, xTexelC${g+1}.zw);
`,g+1<u&&(p+=`
final = vec4(0.0);
xCOffset = xC + 1 + strides[1];
if(xCOffset >= 0 && xCOffset < inDims[1]) {
final = getX(batch, xR, xCOffset, d1);
}
xC${g+1} = vec4(xTexelC${g+1}.xy, final.xy);
`)):(p+=`
if(xC >= 0 && xC < inDims[1] && xTexelC${g}Ready == 0) {
xTexelC${g} = getX(batch, xR, xC, d1);
if (xC + 1 >= inDims[1]) {
xTexelC${g}.zw = vec2(0.0);
}
xTexelC${g}Ready = 1;
}
xCOffset = xC + strides[1];
if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${g+1}Ready == 0) {
xTexelC${g+1} = getX(batch, xR, xCOffset, d1);
if (xCOffset + 1 >= inDims[1]) {
xTexelC${g+1}.zw = vec2(0.);
}
xTexelC${g+1}Ready = 1;
}
xC${g} = vec4(
xTexelC${g}.xy, xTexelC${g+1}.xy);
`,g+1<u&&(p+=`
xC${g+1} = vec4(xTexelC${g}.zw, xTexelC${g+1}.zw);
`)));g<u&&(p+=`
wTexel = getW(r, ${g}, d1, d2);
dotProd += xC${g}.xxzz * vec4(wTexel.xy, wTexel.xy);
if(d1 + 1 < ${e.inChannels}) {
dotProd += xC${g}.yyww * vec4(wTexel.zw, wTexel.zw);
}
`,g+1<u&&(p+=`
wTexel = getW(r, ${g+1}, d1, d2);
dotProd += xC${g+1}.xxzz * vec4(wTexel.xy, wTexel.xy);
if(d1 + 1 < ${e.inChannels}) {
dotProd += xC${g+1}.yyww * vec4(wTexel.zw, wTexel.zw);
}
`))}p+=`
}
`,p+=`
}
`,p+=`
}
`;let d="",h="";n&&(s?d=`vec4 activation(vec4 a) {
vec4 b = getPreluActivationWeightsAtOutCoords();
${n}
}`:r?d=`vec4 activation(vec4 a) {
vec4 b = getLeakyreluAlphaAtOutCoords();
${n}
}`:d=`vec4 activation(vec4 x) {
${n}
}`,h="result = activation(result);");let f=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
${d}
void main() {
ivec4 coords = getOutputCoords();
int batch = coords.x;
ivec2 xRCCorner = coords.yz * strides - pads;
int d2 = coords.w;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
//intialize dotProd with a small epsilon seems to reduce GPU accuracy loss.
vec4 dotProd = vec4(0.000000000000001);
${p}
vec4 result = dotProd - vec4(0.000000000000001);
${f}
${h}
setOutput(result);
}
`}},Jre=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"inputShape",type:"ivec4"},{name:"pad",type:"ivec2"},{name:"stride",type:"ivec2"},{name:"dilation",type:"ivec2"},{name:"inChannels",type:"int"},{name:"itemsPerBlockRow",type:"int"},{name:"outWidth",type:"int"}],this.outputShape=e,this.enableShapeUniforms=cs(this.outputShape.length);let{dataFormat:n}=t,s=us(),r=n==="channelsLast",a=r?1:2,o=r?2:3,i=this.enableShapeUniforms?"if(blockIndex < outShape[2] && pos < outShape[1]) {":`if(blockIndex < ${e[2]} && pos < ${e[1]}) {`,l="";for(let u=0;u<=1;u++)for(let c=0;c<=1;c++)l+=`
blockIndex = rc.z + ${c};
pos = rc.y + ${u};
${i}
offsetY = int(blockIndex / outWidth) * stride[0] - pad[0];
d0 = offsetY + dilation[0] * (pos / itemsPerBlockRow);
if(d0 < inputShape[${a}] && d0 >= 0) {
// Use custom imod instead mod. On Intel GPU, mod may generate
// unexpected value.
// https://github.com/tensorflow/tfjs/issues/5447
offsetX = imod(blockIndex, outWidth) * stride[1] - pad[1];
d1 = offsetX + dilation[1] * (imod(pos, itemsPerBlockRow) /
inChannels);
if(d1 < inputShape[${o}] && d1 >= 0) {
ch = imod(pos, inChannels);
if (${r}) {
innerDims = vec2(d1, ch);
result[${u*2+c}] = getChannel(
getA(rc.x, d0, int(innerDims.x),
int(innerDims.y)), innerDims);
} else {
innerDims = vec2(d0, d1);
result[${u*2+c}] = getChannel(
getA(rc.x, ch, int(innerDims.x),
int(innerDims.y)), innerDims);
}
}
}
}
`;this.userCode=`
void main() {
ivec3 rc = getOutputCoords();
vec4 result = vec4(0);
int blockIndex, pos, offsetY, d0, offsetX, d1, ch;
vec2 innerDims;
${l}
${s.output} = result;
}
`}};function Um(e,t){let n=e.length;return n>=3?t?[...e.slice(0,-3),e[n-3]*e[n-2],e[n-1]]:[...e.slice(0,-3),e[n-3],e[n-2]*e[n-1]]:!t&&n===1&&e[0]>1?[e[0],1]:null}function B9({x:e,filter:t,convInfo:n,backend:s,bias:r=null,preluActivationWeights:a=null,leakyreluAlpha:o=0,activation:i=null}){let l=e.shape,u=s.texData.get(e.dataId),c=n.inChannels,p=l[0]*l[1]*l[2],d=n.outChannels,h=n.dataFormat==="channelsLast",f=!1,m=!1,g,y=[];if(a!=null){let b=Um(a.shape,h);b!=null&&(a=ve({inputs:{x:a},backend:s,attrs:{shape:b}}),y.push(a))}if(r!=null){let b=Um(r.shape,h);b!=null&&(r=ve({inputs:{x:r},backend:s,attrs:{shape:b}}),y.push(r))}if(!((p===1||d===1)&&c>D9)&&u.isPacked&&h&&u.texture!=null&&l[2]%2!==0&&v.arraysEqual(u.shape.slice(-3),l.slice(-3))){let b=l[0]*l[1]*(l[2]+1),w={dataId:e.dataId,shape:[1,b,n.inChannels],dtype:e.dtype},S=u.shape;u.shape=u.shape.slice(),u.shape[u.shape.length-2]++,v.assert(Pp(u.shape,w.shape),()=>`packed reshape ${u.shape} to ${w.shape} isn't free`);let k=ve({inputs:{x:t},backend:s,attrs:{shape:[1,n.inChannels,n.outChannels]}});y.push(k);let E=Vm({a:w,b:k,backend:s,transposeA:f,transposeB:m,bias:r,activation:i,preluActivationWeights:a,leakyreluAlpha:o}),_=s.texData.get(E.dataId);v.assert(_.isPacked,()=>"batchMatMul result is expected to be packed"),u.shape=S,_.shape=n.outShape,g=Ls({inputs:{x:E},backend:s}),g.shape=n.outShape,y.push(E)}else{let b=n.outHeight*n.outWidth,w=ve({inputs:{x:e},backend:s,attrs:{shape:h?[n.batchSize,b,n.inChannels]:[n.batchSize,n.inChannels,b]}}),S=ve({inputs:{x:t},backend:s,attrs:{shape:[1,n.inChannels,n.outChannels]}}),k=Vm({a:h?w:S,b:h?S:w,transposeA:!h,transposeB:m,backend:s,bias:r,activation:i,preluActivationWeights:a,leakyreluAlpha:o});g=ve({inputs:{x:k},backend:s,attrs:{shape:n.outShape}}),y.push(w),y.push(S),y.push(k)}for(let b of y)s.disposeIntermediateTensorInfo(b);return g}function W9({x:e,filter:t,convInfo:n,backend:s,bias:r=null,preluActivationWeights:a=null,leakyreluAlpha:o=0,activation:i=null}){let{filterWidth:l,filterHeight:u,inChannels:c,outWidth:p,outHeight:d,dataFormat:h}=n,f=h==="channelsLast",m=l*u*c,g=d*p,y=[n.batchSize,m,g],x=!0,A=!1,b=[];if(a!=null){let X=Um(a.shape,f);X!=null&&(a=ve({inputs:{x:a},backend:s,attrs:{shape:X}}),b.push(a))}if(r!=null){let X=Um(r.shape,f);X!=null&&(r=ve({inputs:{x:r},backend:s,attrs:{shape:X}}),b.push(r))}let w=ve({inputs:{x:t},backend:s,attrs:{shape:[1,m,v.sizeFromShape(t.shape)/m]}});b.push(w);let S=new Jre(y,n),k=[e.shape,[n.padInfo.top,n.padInfo.left],[n.strideHeight,n.strideWidth],[n.dilationHeight,n.dilationWidth],[n.inChannels],[n.filterWidth*n.inChannels],[n.outWidth]],E=s.runWebGLProgram(S,[e],"float32",k),_=ve({inputs:{x:E},backend:s,attrs:{shape:y}});b.push(E),b.push(_);let D=r!=null,R=a!=null,P=i==="leakyrelu",C=i?Fp(i,!0):null,M=new _9(f?_.shape:w.shape,f?w.shape:_.shape,f?[n.batchSize,g,n.outChannels]:[n.batchSize,n.outChannels,g],x,A,D,C,R,P),L=f?[_,w]:[w,_];if(r&&L.push(r),R&&L.push(a),P){let X=s.makeTensorInfo([],"float32",v.createScalarValue(o,"float32"));L.push(X),b.push(X)}let G=s.runWebGLProgram(M,L,"float32"),K=ve({inputs:{x:G},backend:s,attrs:{shape:n.outShape}});b.push(G);for(let X of b)s.disposeIntermediateTensorInfo(X);return K}function Qre(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dataFormat:l,dilations:u,dimRoundingMode:c}=s,p=T.convertConv2DDataFormat(l),d=T.computeConv2DInfo(r.shape,a.shape,o,u,i,c,!1,p),h;if(d.filterHeight===1&&d.filterWidth===1&&d.dilationHeight===1&&d.dilationWidth===1&&d.strideHeight===1&&d.strideWidth===1&&(d.padInfo.type==="SAME"||d.padInfo.type==="VALID"))h=B9({x:r,filter:a,convInfo:d,backend:n});else if(d.strideWidth<=2&&p==="channelsLast"&&H().getBool("WEBGL_EXP_CONV")){let m=new L9(d),g=[[d.padInfo.top,d.padInfo.left],[d.strideHeight,d.strideWidth],[d.dilationHeight,d.dilationWidth],[d.inHeight,d.inWidth]];h=n.runWebGLProgram(m,[r,a],"float32",g)}else if(H().getBool("WEBGL_CONV_IM2COL"))h=W9({x:r,filter:a,convInfo:d,backend:n});else{let m=new z9(d);h=n.runWebGLProgram(m,[r,a],"float32")}let f=ve({inputs:{x:h},backend:n,attrs:{shape:d.outShape}});return n.disposeIntermediateTensorInfo(h),f}var eae={kernelName:bo,backendName:"webgl",kernelFunc:Qre},tae=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,s=e.padInfo.top,r=e.padInfo.left,a=e.dataFormat==="channelsLast";this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int wR = coords.x;
int wC = coords.y;
int d1 = coords.z;
int d2 = coords.w;
// Convolve x(?, ?, d1) with dy(:, :, d2) to get dw(wR, wC, d1, d2).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int b = 0; b < ${e.batchSize}; b++) {
for (int yR = 0; yR < ${e.outHeight}; yR++) {
int xR = wR + yR * ${t} - ${s};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int yC = 0; yC < ${e.outWidth}; yC++) {
int xC = wC + yC * ${n} - ${r};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
if (${a}) {
float dyValue = getDy(b, yR, yC, d2);
float xValue = getX(b, xR, xC, d1);
dotProd += (xValue * dyValue);
} else {
float dyValue = getDy(b, d2, yR, yC);
float xValue = getX(b, d1, xR, xC);
dotProd += (xValue * dyValue);
}
}
}
}
setOutput(dotProd);
}
`}},nae=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,s=e.strideHeight,r=e.strideWidth,a=e.dataFormat==="channelsLast",o=t-1-e.padInfo.top,i=n-1-e.padInfo.left,l=a?1:2,u=a?2:3,c=a?3:1;this.userCode=`
const ivec2 pads = ivec2(${o}, ${i});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d1 = coords[${c}];
ivec2 dyCorner = ivec2(coords[${l}], coords[${u}]) - pads;
int dyRCorner = dyCorner.x;
int dyCCorner = dyCorner.y;
// Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${t}; wR++) {
float dyR = float(dyRCorner + wR) / ${s}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
int wRPerm = ${t} - 1 - wR;
for (int wC = 0; wC < ${n}; wC++) {
float dyC = float(dyCCorner + wC) / ${r}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
int wCPerm = ${n} - 1 - wC;
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
if (${a}) {
float xValue = getDy(batch, idyR, idyC, d2);
float wValue = getW(wRPerm, wCPerm, d1, d2);
dotProd += xValue * wValue;
} else {
float xValue = getDy(batch, d2, idyR, idyC);
float wValue = getW(wRPerm, wCPerm, d1, d2);
dotProd += xValue * wValue;
}
}
}
}
setOutput(dotProd);
}
`}},sae=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideDepth,n=e.strideHeight,s=e.strideWidth,r=e.padInfo.front,a=e.padInfo.top,o=e.padInfo.left;this.userCode=`
void main() {
ivec5 coords = getOutputCoords();
int wF = coords.x;
int wR = coords.y;
int wC = coords.z;
int d1 = coords.w;
int d2 = coords.u;
float dotProd = 0.0;
for (int b = 0; b < ${e.batchSize}; b++) {
for (int yF = 0; yF < ${e.outDepth}; yF++) {
int xF = wF + yF * ${t} - ${r};
if (xF < 0 || xF >= ${e.inDepth}) {
continue;
}
for (int yR = 0; yR < ${e.outHeight}; yR++) {
int xR = wR + yR * ${n} - ${a};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int yC = 0; yC < ${e.outWidth}; yC++) {
int xC = wC + yC * ${s} - ${o};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float dyValue = getDy(b, yF, yR, yC, d2);
float xValue = getX(b, xF, xR, xC, d1);
dotProd += (xValue * dyValue);
}
}
}
}
setOutput(dotProd);
}
`}},rae=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,s=e.filterWidth,r=e.strideDepth,a=e.strideHeight,o=e.strideWidth,i=t-1-e.padInfo.front,l=n-1-e.padInfo.top,u=s-1-e.padInfo.left;this.userCode=`
const ivec3 pads = ivec3(${i}, ${l}, ${u});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int d1 = coords.u;
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
int dyFCorner = dyCorner.x;
int dyRCorner = dyCorner.y;
int dyCCorner = dyCorner.z;
float dotProd = 0.0;
for (int wF = 0; wF < ${t}; wF++) {
float dyF = float(dyFCorner + wF) / ${r}.0;
if (dyF < 0.0 || dyF >= ${e.outDepth}.0 || fract(dyF) > 0.0) {
continue;
}
int idyF = int(dyF);
int wFPerm = ${t} - 1 - wF;
for (int wR = 0; wR < ${n}; wR++) {
float dyR = float(dyRCorner + wR) / ${a}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
int wRPerm = ${n} - 1 - wR;
for (int wC = 0; wC < ${s}; wC++) {
float dyC = float(dyCCorner + wC) / ${o}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
int wCPerm = ${s} - 1 - wC;
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
float xValue = getDy(batch, idyF, idyR, idyC, d2);
float wValue = getW(wFPerm, wRPerm, wCPerm, d1, d2);
dotProd += xValue * wValue;
}
}
}
}
setOutput(dotProd);
}
`}};function aae(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,pad:i,dataFormat:l,dimRoundingMode:u,filterShape:c}=s,p=T.convertConv2DDataFormat(l),d=T.computeConv2DInfo(r.shape,c,o,1,i,u,!1,p),h=new tae(d);return n.runWebGLProgram(h,[r,a],"float32")}var oae={kernelName:t0,backendName:"webgl",kernelFunc:aae};function iae(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{inputShape:o,strides:i,pad:l,dataFormat:u,dimRoundingMode:c}=s,p=T.convertConv2DDataFormat(u),d=T.computeConv2DInfo(o,a.shape,i,1,l,c,!1,p),h=new nae(d);return n.runWebGLProgram(h,[r,a],"float32")}var lae={kernelName:vo,backendName:"webgl",kernelFunc:iae};function uae(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dilations:l}=s,u=T.computeConv3DInfo(r.shape,a.shape,o,l,i),c=new Yre(u);return n.runWebGLProgram(c,[r,a],"float32")}var cae={kernelName:Hp,backendName:"webgl",kernelFunc:uae};function dae(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,pad:i,filterShape:l}=s,u=T.computeConv3DInfo(r.shape,l,o,1,i),c=new sae(u);return n.runWebGLProgram(c,[r,a],"float32")}var pae={kernelName:n0,backendName:"webgl",kernelFunc:dae};function hae(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{pad:o,strides:i,inputShape:l}=s,u=T.computeConv3DInfo(l,a.shape,i,1,o),c=new rae(u);return n.runWebGLProgram(c,[r,a],"float32")}var fae={kernelName:s0,backendName:"webgl",kernelFunc:hae},mae=hd+`
return cos(x);
`,gae=dt({opSnippet:mae}),yae={kernelName:wo,backendName:"webgl",kernelFunc:gae},Aae=`
float e2x = exp(-x);
return (e2x + 1.0 / e2x) / 2.0;
`,xae=dt({opSnippet:Aae}),bae={kernelName:ko,backendName:"webgl",kernelFunc:xae},vae=class{constructor(e,t,n,s,r){this.variableNames=["Image","Boxes","BoxInd"],this.outputShape=[];let[a,o,i,l]=e,[u]=t,[c,p]=n;this.outputShape=[u,c,p,l];let d=s==="bilinear"?1:0,[h,f]=[`${o-1}.0`,`${i-1}.0`],[m,g,y]=c>1?[`${(o-1)/(c-1)}`,"(y2-y1) * height_ratio",`y1*${h} + float(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${h}`],[x,A,b]=p>1?[`${(i-1)/(p-1)}`,"(x2-x1) * width_ratio",`x1*${f} + float(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${f}`];this.userCode=`
const float height_ratio = float(${m});
const float width_ratio = float(${x});
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int y = coords[1];
int x = coords[2];
int d = coords[3];
// get box vals
float y1 = getBoxes(b,0);
float x1 = getBoxes(b,1);
float y2 = getBoxes(b,2);
float x2 = getBoxes(b,3);
// get image in batch index
int bInd = round(getBoxInd(b));
if(bInd < 0 || bInd >= ${a}) {
return;
}
float height_scale = ${g};
float width_scale = ${A};
float in_y = ${y};
if( in_y < 0.0 || in_y > ${h} ) {
setOutput(float(${r}));
return;
}
float in_x = ${b};
if( in_x < 0.0 || in_x > ${f} ) {
setOutput(float(${r}));
return;
}
vec2 sourceFracIndexCR = vec2(in_x,in_y);
if(${d} == 1) {
// Compute the four integer indices.
ivec2 sourceFloorCR = ivec2(sourceFracIndexCR);
ivec2 sourceCeilCR = ivec2(ceil(sourceFracIndexCR));
float topLeft = getImage(b, sourceFloorCR.y, sourceFloorCR.x, d);
float bottomLeft = getImage(b, sourceCeilCR.y, sourceFloorCR.x, d);
float topRight = getImage(b, sourceFloorCR.y, sourceCeilCR.x, d);
float bottomRight = getImage(b, sourceCeilCR.y, sourceCeilCR.x, d);
vec2 fracCR = sourceFracIndexCR - vec2(sourceFloorCR);
float top = topLeft + (topRight - topLeft) * fracCR.x;
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracCR.x;
float newValue = top + (bottom - top) * fracCR.y;
setOutput(newValue);
} else {
// Compute the coordinators of nearest neighbor point.
ivec2 sourceNearestCR = ivec2(floor(
sourceFracIndexCR + vec2(0.5,0.5)));
float newValue = getImage(b, sourceNearestCR.y, sourceNearestCR.x, d);
setOutput(newValue);
}
}
`}},wae=e=>{let{inputs:t,backend:n,attrs:s}=e,{image:r,boxes:a,boxInd:o}=t,{cropSize:i,method:l,extrapolationValue:u}=s,c=new vae(r.shape,a.shape,i,l,u);return n.runWebGLProgram(c,[r,a,o],"float32")},kae={kernelName:yl,backendName:"webgl",kernelFunc:wae},Mp;(function(e){e.Prod="*",e.Sum="+"})(Mp||(Mp={}));var L7=class{constructor(e,t,n,s){this.op=e,this.outputShape=t,this.variableNames=["x"],this.customUniforms=[{name:"index",type:"float"}];let r=this.outputShape.length,a=this.op===Mp.Prod?"1.0":"0.0",o=n?a:`getX(${B7(r,"coords",this.op)})`,i=this.outputShape[this.outputShape.length-1],l="",u="";n?(l=s?`end != ${i-1}`:"end != 0",u=s?"end + 1":"end - 1"):(l=s?`end + pow2 < ${i}`:"end >= pow2",u=s?"end + pow2":"end - pow2"),this.userCode=`
void main() {
${vt(r)} coords = getOutputCoords();
int end = ${W7(r,"coords",this.op)};
float val = ${o};
int pow2 = int(pow(2.0, index));
if (${l}) {
int idx = ${u};
${W7(r,"coords",this.op)} = idx;
val ${this.op}= getX(${B7(r,"coords",this.op)});
}
setOutput(val);
}
`}};function B7(e,t,n){if(e===1)return`${t}`;if(e===2)return`${t}.x, ${t}.y`;if(e===3)return`${t}.x, ${t}.y, ${t}.z`;if(e===4)return`${t}.x, ${t}.y, ${t}.z, ${t}.w`;throw new Error(`Cumulative ${n} for rank ${e} is not yet supported`)}function W7(e,t,n){if(e===1)return`${t}`;if(e===2)return`${t}.y`;if(e===3)return`${t}.z`;if(e===4)return`${t}.w`;throw new Error(`Cumulative ${n} for rank ${e} is not yet supported`)}function V9(e,t,n,s,r,a){let o=t.shape.length,i=T.getAxesPermutation([s],o),l=t;i!=null&&(l=os({inputs:{x:t},backend:n,attrs:{perm:i}}));let u=T.getInnerMostAxes(1,o)[0];if(u!==o-1)throw new Error(`WebGL cumprod shader expects an inner-most axis=${t.shape.length-1} but got axis=${s}`);let c=l.shape[u],p=Ls({inputs:{x:l},backend:n});for(let d=0;d<=Math.ceil(Math.log2(c))-1;d++){let h=new L7(e,l.shape,!1,a),f=[[d]],m=p;p=n.runWebGLProgram(h,[p],p.dtype,f),n.disposeIntermediateTensorInfo(m)}if(r){let d=new L7(e,l.shape,r,a),h=p;p=n.runWebGLProgram(d,[p],p.dtype),n.disposeIntermediateTensorInfo(h)}if(i!=null){let d=T.getUndoAxesPermutation(i),h=os({inputs:{x:p},backend:n,attrs:{perm:d}});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(l),h}return p}function Sae(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,exclusive:o,reverse:i}=s;return V9(Mp.Prod,r,n,a,o,i)}var Iae={kernelName:gl,backendName:"webgl",kernelFunc:Sae};function Cae(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,exclusive:o,reverse:i}=s;return V9(Mp.Sum,r,n,a,o,i)}var Tae={kernelName:So,backendName:"webgl",kernelFunc:Cae};function Nae(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,weights:a}=t,{size:o,binaryOutput:i}=s;if(r.shape.length===1){let l=n.readSync(r.dataId),u=n.readSync(a.dataId),c=b9(l,u,a.dtype,a.shape,o);return n.makeTensorInfo([o],a.dtype,c)}else if(r.shape.length===2){let l=n.bufferSync(r),u=n.bufferSync(a),c=zte(l,u,o,i);return n.makeTensorInfo(c.shape,a.dtype,c.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${r.shape.length}.`)}var Eae={kernelName:r0,backendName:"webgl",kernelFunc:Nae},Rae=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=[],this.outputShape=e,this.blockSize=t,this.dataFormat=n,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int h = ${this.getHeightCoordString()};
int w = ${this.getWidthCoordString()};
int d = ${this.getDepthCoordString()};
int in_h = h / ${t};
int offset_h = imod(h, ${t});
int in_w = w / ${t};
int offset_w = imod(w, ${t});
int offset_d = (offset_h * ${t} + offset_w) *
${this.getOutputDepthSize()};
int in_d = d + offset_d;
float result = ${this.getInputSamplingString()};
setOutput(result);
}
`}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?this.outputShape[3]:this.outputShape[1]}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}};function _ae(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockSize:a,dataFormat:o}=s,i=r.shape[0],l=o==="NHWC"?r.shape[1]:r.shape[2],u=o==="NHWC"?r.shape[2]:r.shape[3],c=o==="NHWC"?r.shape[3]:r.shape[1],p=l*a,d=u*a,h=c/(a*a),f=o==="NHWC"?[i,p,d,h]:[i,h,p,d],m=new Rae(f,a,o);return n.runWebGLProgram(m,[r],r.dtype)}var Dae={kernelName:Al,backendName:"webgl",kernelFunc:_ae},U9=class{constructor(e,t=!1,n=null,s=!1,r=!1){this.variableNames=["x","W"],this.customUniforms=[{name:"pads",type:"ivec2"},{name:"strides",type:"ivec2"},{name:"dilations",type:"ivec2"},{name:"inDims",type:"ivec2"}],this.outputShape=e.outShape,this.enableShapeUniforms=cs(this.outputShape.length);let a=e.filterHeight,o=e.filterWidth,i=e.outChannels/e.inChannels,l="",u="";n&&(s?l=`float activation(float a) {
float b = getPreluActivationWeightsAtOutCoords();
${n}
}`:r?l=`float activation(float a) {
float b = getLeakyreluAlphaAtOutCoords();
${n}
}`:l=`
float activation(float x) {
${n}
}
`,u="result = activation(result);");let c=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
${l}
void main() {
ivec4 coords = getOutputCoords();
int batch = coords.x;
ivec2 xRCCorner = coords.yz * strides - pads;
int d2 = coords.w;
int d1 = d2 / ${i};
int q = d2 - d1 * ${i};
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// Convolve x(?, ?, d1) with w(:, :, d1, q) to get y(yR, yC, d2).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
// TO DO(dsmilkov): Flatten the two for loops and vec4 the operations.
for (int wR = 0; wR < ${a}; wR++) {
int xR = xRCorner + wR * dilations[0];
if (xR < 0 || xR >= inDims[0]) {
continue;
}
for (int wC = 0; wC < ${o}; wC++) {
int xC = xCCorner + wC * dilations[1];
if (xC < 0 || xC >= inDims[1]) {
continue;
}
float xVal = getX(batch, xR, xC, d1);
float wVal = getW(wR, wC, d1, q);
dotProd += xVal * wVal;
}
}
float result = dotProd;
${c}
${u}
setOutput(result);
}
`}},G9=class{constructor(e,t=!1,n=null,s=!1,r=!1){this.variableNames=["x","W"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"pads",type:"ivec2"},{name:"strides",type:"ivec2"},{name:"dilations",type:"ivec2"},{name:"inDims",type:"ivec2"}],this.outputShape=e.outShape,this.enableShapeUniforms=cs(this.outputShape.length);let a=e.outChannels/e.inChannels,o=e.padInfo.left,i=e.strideWidth,l=e.dilationWidth,u=e.filterHeight,c=e.filterWidth,p=c,d=`
int xR; int xC; int xCOffset;
vec4 wTexel; vec4 previous; vec4 final;`;for(let g=0;g<c;g++)d+=`
vec4 xTexelC${g*2};
int xTexelC${g*2}Ready;
vec4 xTexelC${g*2+1};
int xTexelC${g*2+1}Ready;
vec4 xC${g};`;d+=`
for (int r = 0; r < ${u}; r++) {
`;for(let g=0;g<c;g++)d+=`
xTexelC${g*2} = vec4(0.0);
xTexelC${g*2}Ready = 0;
xTexelC${g*2+1} = vec4(0.0);
xTexelC${g*2+1}Ready = 0;
xC${g} = vec4(0.0);`;d+=`
xR = xRCorner + r * dilations[0];
if (xR >=0 && xR < inDims[0]) {
`;for(let g=0;g<(p+1)/2;g++){let y=g*2;if(d+=`
xC = xCCorner + ${y*l};
`,i===1){if(y<c&&(o%2===1?(d+=`
xCOffset = xC + 1;
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${y}Ready == 0) {
xTexelC${y} = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= inDims[1]) {
xTexelC${y}.zw = vec2(0.0);
}
xTexelC${y}Ready = 1;
}
`,l===1&&y>0?d+=`
xC${y} = vec4(xTexelC${y-2}.zw, xTexelC${y}.xy);
`:d+=`
xCOffset = xC + 1 - 2;
if (xCOffset >= 0 && xCOffset < inDims[1]) {
previous = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= inDims[1]) {
previous.zw = vec2(0.0);
}
xC${y} = vec4(previous.zw, xTexelC${y}.xy);
} else {
xC${y} = vec4(0.0, 0.0, xTexelC${y}.xy);
}
`):d+=`
if (xC >= 0 && xC < inDims[1] && xTexelC${y}Ready == 0) {
xTexelC${y} = getX(batch, xR, xC, d1);
if (xC + 1 >= inDims[1]) {
xTexelC${y}.zw = vec2(0.0);
}
xTexelC${y}Ready = 1;
}
xC${y} = xTexelC${y};
`,y+1<c)){let x=o%2===0?v.nearestLargerEven(l):l;l%2===0&&o%2===1||l%2!==0&&o%2!==1?(d+=`
xCOffset = xC + imod(pads[1], 2) + ${x};
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${y+1}Ready == 0) {
xTexelC${y+1} = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= inDims[1]) {
xTexelC${y+1}.zw = vec2(0.0);
}
xTexelC${y+1}Ready = 1;
}
`,l>1?d+=`
xCOffset -= 2;
if (xCOffset >= 0 && xCOffset < inDims[1]) {
previous = getX(batch, xR, xCOffset, d1);
xC${y+1} = vec4(previous.zw, xTexelC${y+1}.xy);
} else {
xC${y+1} = vec4(0.0, 0.0, xTexelC${y+1}.xy);
}
`:d+=`
xC${y+1} = vec4(xTexelC${y}.zw, xTexelC${y+1}.xy);
`):x===1?d+=`
xC${y+1} = xTexelC${y};
`:d+=`
xCOffset = xC + ${x};
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${y+1}Ready == 0) {
xTexelC${y+1} = getX(batch, xR, xCOffset, d1);
if (xCOffset + 1 >= inDims[1]) {
xTexelC${y+1}.zw = vec2(0.0);
}
xTexelC${y+1}Ready = 1;
}
xC${y+1} = xTexelC${y+1};
`}}else y<c&&(o%2===1?(d+=`
xCOffset = xC + 1 - strides[1];
if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${y}Ready == 0) {
xTexelC${y} = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= inDims[1]) {
xTexelC${y}.zw = vec2(0.0);
}
xTexelC${y}Ready = 1;
}
if(xC + 1 >= 0 && xC + 1 < inDims[1] && xTexelC${y+1}Ready == 0) {
xTexelC${y+1} = getX(batch, xR, xC + 1, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xC + 2 >= inDims[1]) {
xTexelC${y+1}.zw = vec2(0.0);
}
xTexelC${y+1}Ready = 1;
}
xC${y} = vec4(xTexelC${y}.zw, xTexelC${y+1}.zw);
`,y+1<c&&(d+=`
final = vec4(0.0);
xCOffset = xC + 1 + strides[1];
if(xCOffset >= 0 && xCOffset < inDims[1]) {
final = getX(batch, xR, xCOffset, d1);
}
xC${y+1} = vec4(xTexelC${y+1}.xy, final.xy);
`)):(d+=`
if(xC >= 0 && xC < inDims[1] && xTexelC${y}Ready == 0) {
xTexelC${y} = getX(batch, xR, xC, d1);
if (xC + 1 >= inDims[1]) {
xTexelC${y}.zw = vec2(0.0);
}
xTexelC${y}Ready = 1;
}
xCOffset = xC + strides[1];
if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${y+1}Ready == 0) {
xTexelC${y+1} = getX(batch, xR, xCOffset, d1);
if (xCOffset + 1 >= inDims[1]) {
xTexelC${y+1}.zw = vec2(0.);
}
xTexelC${y+1}Ready = 1;
}
xC${y} = vec4(
xTexelC${y}.xy, xTexelC${y+1}.xy);
`,y+1<c&&(d+=`
xC${y+1} = vec4(xTexelC${y}.zw, xTexelC${y+1}.zw);
`)));y<c&&(d+=`
wTexel = getW(r, ${y}, d1, q);
dotProd += xC${y} * vec4(wTexel.xz, wTexel.xz);
`,y+1<c&&(d+=`
wTexel = getW(r, ${y+1}, d1, q);
dotProd += xC${y+1} * vec4(wTexel.xz, wTexel.xz);
`))}d+=`
}
`,d+=`
}
`;let h="",f="";n&&(s?h=`vec4 activation(vec4 a) {
vec4 b = getPreluActivationWeightsAtOutCoords();
${n}
}`:r?h=`vec4 activation(vec4 a) {
vec4 b = getLeakyreluAlphaAtOutCoords();
${n}
}`:h=`vec4 activation(vec4 x) {
${n}
}`,f="result = activation(result);");let m=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
${h}
void main() {
ivec4 coords = getOutputCoords();
int batch = coords.x;
ivec2 xRCCorner = coords.yz * strides - pads;
int d2 = coords.w;
int d1 = d2 / ${a};
int q = d2 - d1 * ${a};
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
//intialize dotProd with a small epsilon seems to reduce GPU accuracy loss.
vec4 dotProd = vec4(0.000000000000001);
${d}
vec4 result = dotProd - vec4(0.000000000000001);
${m}
${f}
setOutput(result);
}
`}};function $ae(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dilations:l,dimRoundingMode:u}=s,c=l;c==null&&(c=[1,1]),v.assert(T.eitherStridesOrDilationsAreOne(o,c),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${o} and dilations '${c}'`);let p=T.computeConv2DInfo(r.shape,a.shape,o,c,i,u,!0),d;H().getBool("WEBGL_PACK_DEPTHWISECONV")&&p.strideWidth<=2&&p.outChannels/p.inChannels===1?d=new G9(p):d=new U9(p);let h=[[p.padInfo.top,p.padInfo.left],[p.strideHeight,p.strideWidth],[p.dilationHeight,p.dilationWidth],[p.inHeight,p.inWidth]];return n.runWebGLProgram(d,[r,a],"float32",h)}var Pae={kernelName:Io,backendName:"webgl",kernelFunc:$ae},Fae=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,s=e.padInfo.top,r=e.padInfo.left,a=e.outChannels/e.inChannels;this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int wR = coords.x;
int wC = coords.y;
int d1 = coords.z;
int dm = coords.w;
int d2 = d1 * ${a} + dm;
float dotProd = 0.0;
// TO DO: Vec4 over the batch size
for (int b = 0; b < ${e.batchSize}; b++) {
for (int yR = 0; yR < ${e.outHeight}; yR++) {
int xR = wR + yR * ${t} - ${s};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int yC = 0; yC < ${e.outWidth}; yC++) {
int xC = wC + yC * ${n} - ${r};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float dyValue = getDy(b, yR, yC, d2);
float xValue = getX(b, xR, xC, d1);
dotProd += (xValue * dyValue);
}
}
}
setOutput(dotProd);
}
`}},Oae=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,s=e.strideHeight,r=e.strideWidth,a=t-1-e.padInfo.top,o=n-1-e.padInfo.left,i=e.outChannels/e.inChannels;this.userCode=`
const ivec2 pads = ivec2(${a}, ${o});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d1 = coords[3];
ivec2 dyCorner = coords.yz - pads;
int dyRCorner = dyCorner.x;
int dyCCorner = dyCorner.y;
float dotProd = 0.0;
for (int wR = 0; wR < ${t}; wR++) {
float dyR = float(dyRCorner + wR) / ${s}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
int wRPerm = ${t} - 1 - wR;
for (int wC = 0; wC < ${n}; wC++) {
float dyC = float(dyCCorner + wC) / ${r}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
int wCPerm = ${n} - 1 - wC;
// TO DO: Vec4 over the channelMul
for (int dm = 0; dm < ${i}; dm++) {
int d2 = d1 * ${i} + dm;
float xValue = getDy(batch, idyR, idyC, d2);
float wValue = getW(wRPerm, wCPerm, d1, dm);
dotProd += xValue * wValue;
}
}
}
setOutput(dotProd);
}
`}};function Mae(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,dilations:i,pad:l,dimRoundingMode:u,filterShape:c}=s,p=T.computeConv2DInfo(r.shape,c,o,i,l,u,!0),d=new Fae(p);return n.runWebGLProgram(d,[r,a],"float32")}var zae={kernelName:a0,backendName:"webgl",kernelFunc:Mae};function Lae(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{strides:o,dilations:i,pad:l,dimRoundingMode:u,inputShape:c}=s,p=T.computeConv2DInfo(c,a.shape,o,i,l,u,!0),d=new Oae(p);return n.runWebGLProgram(d,[r,a],"float32")}var Bae={kernelName:o0,backendName:"webgl",kernelFunc:Lae},Wae=class{constructor(e){this.variableNames=["X"],this.outputShape=[e,e],this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
float val = coords[0] == coords[1] ? getX(coords[0]) : 0.0;
setOutput(val);
}
`}};function Vae(e){let{inputs:t,backend:n}=e,{x:s}=t,r=[...s.shape,...s.shape],a=v.sizeFromShape(s.shape),o=ve({inputs:{x:s},backend:n,attrs:{shape:[a]}}),i=new Wae(a),l=n.runWebGLProgram(i,[o],o.dtype),u=ve({inputs:{x:l},backend:n,attrs:{shape:r}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(l),u}var Uae={kernelName:i0,backendName:"webgl",kernelFunc:Vae},Gae=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let{inHeight:t,inWidth:n,padInfo:s,strideHeight:r,strideWidth:a,filterHeight:o,filterWidth:i,dilationHeight:l,dilationWidth:u}=e,{top:c,left:p}=s;this.userCode=`
const ivec2 strides = ivec2(${r}, ${a});
const ivec2 pads = ivec2(${c}, ${p});
const float neg_infinity = -3.4e38;
void main() {
ivec4 coords = getOutputCoords();
int batch = coords.x;
int d1 = coords.w;
ivec2 outTopLeftCorner =
coords.yz * strides - pads;
int hBeg = outTopLeftCorner.x;
int wBeg = outTopLeftCorner.y;
float curVal = neg_infinity;
for (int h = 0; h < ${o}; h++) {
int hIn = hBeg + h * ${l};
if (hIn >= 0 && hIn < ${t}) {
for (int w = 0; w < ${i}; w++) {
int wIn = wBeg + w * ${u};
if (wIn >= 0 && wIn < ${n}) {
float xVal = getX(batch, hIn, wIn, d1);
float wVal = getW(h, w, d1);
float val = xVal + wVal;
if (val > curVal) {
curVal = val;
}
}
}
}
}
float result = curVal;
setOutput(result);
}
`}};function Hae(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dilations:l}=s,u=T.computeDilation2DInfo(r.shape,a.shape,o,i,"NHWC",l),c,p=new Gae(u);c=n.runWebGLProgram(p,[r,a],"float32");let d=ve({inputs:{x:c},backend:n,attrs:{shape:u.outShape}});return n.disposeIntermediateTensorInfo(c),d}var jae={kernelName:jp,backendName:"webgl",kernelFunc:Hae};function qae(e){let{inputs:t,backend:n,attrs:s}=e,{equation:r}=s,a=t,{allDims:o,summedDims:i,idDims:l}=T.decodeEinsumEquation(r,a.length);T.checkEinsumDimSizes(o.length,l,a);let{path:u,steps:c}=T.getEinsumComputePath(i,l),p=c.length,d=null,h=o.length,f=[];for(let m=0;m<p;++m){for(let g of c[m]){let{permutationIndices:y,expandDims:x}=T.getEinsumPermutation(h,l[g]),A;T.isIdentityPermutation(y)?A=a[g]:(A=os({inputs:{x:a[g]},backend:n,attrs:{perm:y}}),f.push(A));let b=A.shape.slice();for(let w=0;w<x.length;++w)b.splice(x[w],0,1);v.arraysEqual(A.shape,b)||(A=ve({inputs:{x:A},backend:n,attrs:{shape:b}}),f.push(A)),d===null?d=A:(d=ub({inputs:{a:A,b:d},backend:n}),f.push(d))}m<p-1&&(u[m]>=0&&(d=_2({inputs:{x:d},backend:n,attrs:{axis:u[m]-(o.length-h),keepDims:!1}}),f.push(d)),h--)}for(let m of f)m!==d&&n.disposeIntermediateTensorInfo(m);return d}var Xae={kernelName:qp,backendName:"webgl",kernelFunc:qae},Kae="return (x >= 0.0) ? x : (exp(x) - 1.0);",Zae=`
vec4 result;
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
return result;
`,Yae=dt({opSnippet:Kae,packedOpSnippet:Zae}),Jae={kernelName:To,backendName:"webgl",kernelFunc:Yae},Qae="return (b >= 1.0) ? a : a * (b + 1.0);",eoe=`
vec4 bGTEZero = vec4(greaterThanEqual(b, vec4(0.)));
return (bGTEZero * a) + ((vec4(1.0) - bGTEZero) * (a * (b + vec4(1.0))));
`,toe=e=>{let{inputs:t,backend:n}=e,{dy:s,y:r}=t,a=H().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Vh(eoe,s.shape,r.shape):new yc(Qae,s.shape,r.shape);return n.runWebGLProgram(a,[s,r],s.dtype)},noe={kernelName:l0,backendName:"webgl",kernelFunc:toe},soe=`
return vec4(equal(a, b));
`,roe="return float(a == b);",aoe=zn({opSnippet:roe,packedOpSnippet:soe,dtype:"bool",cpuKernelImpl:Vte}),ooe={kernelName:xl,backendName:"webgl",kernelFunc:aoe},ioe=`
// Error function is calculated approximately with elementary function.
// See "Handbook of Mathematical Functions with Formulas,
// Graphs, and Mathematical Tables", Abramowitz and Stegun.
float p = ${T.ERF_P};
float a1 = ${T.ERF_A1};
float a2 = ${T.ERF_A2};
float a3 = ${T.ERF_A3};
float a4 = ${T.ERF_A4};
float a5 = ${T.ERF_A5};
float sign = sign(x);
x = abs(x);
float t = 1.0 / (1.0 + p * x);
return sign * (1.0 - (((((a5*t + a4)*t) + a3)*t + a2)*t + a1)*t*exp(-x*x));
`,loe=dt({opSnippet:ioe}),uoe={kernelName:Ec,backendName:"webgl",kernelFunc:loe},coe=hd+`
return exp(x);
`,doe=`
vec4 result = exp(x);
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,H9=dt({opSnippet:coe,packedOpSnippet:doe,cpuKernelImpl:Ute,dtype:"float32"}),poe={kernelName:No,backendName:"webgl",kernelFunc:H9};function by(e){let{inputs:t,attrs:n,backend:s}=e,{dim:r}=n,{input:a}=t,o=a.shape.length,i=a.shape.slice(),l=r;return r<0&&(v.assert(-(o+1)<=r,()=>`Axis must be in the interval [${-(o+1)}, ${o}]`),l=o+r+1),i.splice(l,0,1),ve({inputs:{x:a},backend:s,attrs:{shape:i}})}var hoe={kernelName:bl,backendName:"webgl",kernelFunc:by},V7="return exp(x) - 1.0;",foe=dt({opSnippet:V7,packedOpSnippet:V7,cpuKernelImpl:Gte}),moe={kernelName:vl,backendName:"webgl",kernelFunc:foe},U7=class{constructor(e,t,n){this.variableNames=["real","imag"];let s=t[1];this.outputShape=t;let r=n?`2.0 * ${Math.PI}`:`-2.0 * ${Math.PI}`,a=n?`${s}.0`:"1.0",o;if(e==="real")o="return real * expR - imag * expI;";else if(e==="imag")o="return real * expI + imag * expR;";else throw new Error(`FFT component must be either "real" or "imag", got ${e}.`);this.userCode=`
const float exponentMultiplier = ${r};
float unaryOpComplex(float real, float expR, float imag, float expI) {
${o}
}
float mulMatDFT(int batch, int index) {
float indexRatio = float(index) / float(${s});
float exponentMultiplierTimesIndexRatio =
exponentMultiplier * indexRatio;
float result = 0.0;
for (int i = 0; i < ${s}; i++) {
// x = (-2|2 * PI / N) * index * i;
float x = exponentMultiplierTimesIndexRatio * float(i);
float expR = cos(x);
float expI = sin(x);
float real = getReal(batch, i);
float imag = getImag(batch, i);
result +=
unaryOpComplex(real, expR, imag, expI) / ${a};
}
return result;
}
void main() {
ivec2 coords = getOutputCoords();
setOutput(mulMatDFT(coords[0], coords[1]));
}
`}};function j9(e,t,n){let s=n.texData.get(e.dataId),r=v.sizeFromShape(e.shape),a=e.shape[e.shape.length-1],o=r/a,i=ve({inputs:{x:e},backend:n,attrs:{shape:[o,a]}}),l=i.shape,u=new U7("real",l,t),c=new U7("imag",l,t),p=[{dataId:s.complexTensorInfos.real.dataId,dtype:s.complexTensorInfos.real.dtype,shape:l},{dataId:s.complexTensorInfos.imag.dataId,dtype:s.complexTensorInfos.imag.dtype,shape:l}],d=n.runWebGLProgram(u,p,"float32"),h=n.runWebGLProgram(c,p,"float32"),f=fi({inputs:{real:d,imag:h},backend:n});n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(h);let m=ve({inputs:{x:f},backend:n,attrs:{shape:e.shape}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(f),m}function goe(e){let{inputs:t,backend:n}=e,{input:s}=t;return j9(s,!1,n)}var yoe={kernelName:u0,backendName:"webgl",kernelFunc:goe},Aoe=class{constructor(e,t){this.outputShape=[],this.customUniforms=[{name:"value",type:"float"}],this.variableNames=["x"],this.outputShape=e,this.userCode=`
void main() {
// Input can be obtained from uniform value.
setOutput(value);
}
`}};function Gh(e){let{backend:t,attrs:n}=e,{shape:s,value:r}=n,{dtype:a}=n;if(a=a||v.inferDtype(r),a==="string"){let o=v.getArrayFromDType(a,v.sizeFromShape(s));return o.fill(r),t.makeTensorInfo(s,a,o)}else{let o=new Aoe(s,r),i=[[r]];return t.runWebGLProgram(o,[],a,i)}}var xoe={kernelName:Rc,backendName:"webgl",kernelFunc:Gh},boe=class{constructor(e){this.variableNames=["Image"],this.outputShape=[];let t=e[2];this.outputShape=e,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int x = coords[2];
int coordX = ${t} - x - 1;
float outputValue;
if(coordX >= 0 && coordX < ${t}) {
outputValue = getImage(coords[0], coords[1], coordX, coords[3]);
} else {
outputValue = getImage(coords[0], coords[1], coords[2], coords[3]);
}
setOutput(outputValue);
}
`}},voe={kernelName:wl,backendName:"webgl",kernelFunc:({inputs:e,backend:t})=>{let{image:n}=e,s=t,r=new boe(n.shape);return s.runWebGLProgram(r,[n],n.dtype)}},G7="return floor(x);",woe=dt({opSnippet:G7,packedOpSnippet:G7,cpuKernelImpl:Hte}),koe={kernelName:Eo,backendName:"webgl",kernelFunc:woe},Soe=`
float s = sign(a) * sign(b);
int ia = round(a);
int ib = round(b);
if (ib != 0) {
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
return float(idiv(ia, ib, s));
} else {
return NAN;
}
`,Ioe=`
ivec4 ia = round(a);
ivec4 ib = round(b);
bvec4 cond = notEqual(ib, ivec4(0));
ivec4 result = ivec4(0);
vec4 s = sign(a) * sign(b);
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
if (cond[0]) {
result[0] = idiv(ia[0], ib[0], s[0]);
}
if (cond[1]) {
result[1] = idiv(ia[1], ib[1], s[1]);
}
if (cond[2]) {
result[2] = idiv(ia[2], ib[2], s[2]);
}
if (cond[3]) {
result[3] = idiv(ia[3], ib[3], s[3]);
}
return vec4(result);
`,Coe=zn({opSnippet:Soe,packedOpSnippet:Ioe,dtype:"int32"}),Toe={kernelName:Ro,backendName:"webgl",kernelFunc:Coe},Noe=class{constructor(e){this.variableNames=["A"];let t=us(),[n,s]=e;this.outputShape=e,this.userCode=`
void main() {
ivec3 coords = getOutputCoords();
int texR = coords[0];
int texC = coords[1];
int depth = coords[2];
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${s}.0, ${n}.0);
vec4 values = ${t.texture2D}(A, uv);
float value;
if (depth == 0) {
value = values.r;
} else if (depth == 1) {
value = values.g;
} else if (depth == 2) {
value = values.b;
} else if (depth == 3) {
value = values.a;
}
setOutput(floor(value * 255.0 + 0.5));
}
`}},Eoe=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let t=us(),[n,s]=e;this.outputShape=e,this.userCode=`
void main() {
ivec3 coords = getOutputCoords();
int texR = coords[0];
int texC = coords[1];
int depth = coords[2];
vec4 result = vec4(0.);
for(int row=0; row<=1; row++) {
for(int col=0; col<=1; col++) {
texC = coords[1] + row;
depth = coords[2] + col;
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${s}.0, ${n}.0);
vec4 values = ${t.texture2D}(A, uv);
float value;
if (depth == 0) {
value = values.r;
} else if (depth == 1) {
value = values.g;
} else if (depth == 2) {
value = values.b;
} else if (depth == 3) {
value = values.a;
}
result[row * 2 + col] = floor(value * 255.0 + 0.5);
}
}
${t.output} = result;
}
`}},Roe={kernelName:wp,backendName:"webgl",kernelFunc:_oe},Gu,k3=H().getBool("CANVAS2D_WILL_READ_FREQUENTLY_FOR_GPU");function _oe(e){let{inputs:t,backend:n,attrs:s}=e,{pixels:r}=t,{numChannels:a}=s,o=typeof HTMLVideoElement!="undefined"&&r instanceof HTMLVideoElement,i=typeof HTMLImageElement!="undefined"&&r instanceof HTMLImageElement,[l,u]=o?[r.videoWidth,r.videoHeight]:[r.width,r.height],c=[u,l],p=[u,l,a];if(i||o){let m=H().getBool("CANVAS2D_WILL_READ_FREQUENTLY_FOR_GPU");(Gu==null||m!==k3)&&(k3=m,Gu=document.createElement("canvas").getContext("2d",{willReadFrequently:k3})),Gu.canvas.width=l,Gu.canvas.height=u,Gu.drawImage(r,0,0,l,u),r=Gu.canvas}let d=n.makeTensorInfo(c,"int32");n.texData.get(d.dataId).usage=Zs.PIXELS,n.gpgpu.uploadPixelDataToTexture(n.getTexture(d.dataId),r);let h=H().getBool("WEBGL_PACK")?new Eoe(p):new Noe(p),f=n.runWebGLProgram(h,[d],"int32");return n.disposeData(d.dataId),f}function Doe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:u,dataFormat:c,dilations:p,dimRoundingMode:d,activation:h,leakyreluAlpha:f}=s,m=T.convertConv2DDataFormat(c),g=T.computeConv2DInfo(r.shape,a.shape,l,p,u,d,!1,m),y,x=[],A=o!=null,b=i!=null,w=h==="leakyrelu",S=()=>{let E=[r,a],_=(D,R)=>{if(R==="NCHW"&&D.shape.length===1&&D.shape[0]!==1){let P=ve({inputs:{x:D},backend:n,attrs:{shape:[D.shape[0],1,1]}});return x.push(P),P}return D};if(A&&E.push(_(o,c)),b&&E.push(_(i,c)),w){let D=n.makeTensorInfo([],"float32",v.createScalarValue(f,"float32"));E.push(D),x.push(D)}return E};if(g.filterHeight===1&&g.filterWidth===1&&g.dilationHeight===1&&g.dilationWidth===1&&g.strideHeight===1&&g.strideWidth===1&&(g.padInfo.type==="SAME"||g.padInfo.type==="VALID"))y=B9({x:r,filter:a,convInfo:g,backend:n,bias:o,activation:h,preluActivationWeights:i,leakyreluAlpha:f});else if(g.strideWidth<=2&&m==="channelsLast"&&H().getBool("WEBGL_EXP_CONV")){let E=h?Fp(h,!0):null,_=new L9(g,A,E,b,w),D=[[g.padInfo.top,g.padInfo.left],[g.strideHeight,g.strideWidth],[g.dilationHeight,g.dilationWidth],[g.inHeight,g.inWidth]],R=S();y=n.runWebGLProgram(_,R,"float32",D)}else if(H().getBool("WEBGL_CONV_IM2COL"))y=W9({x:r,filter:a,convInfo:g,backend:n,bias:o,activation:h,preluActivationWeights:i,leakyreluAlpha:f});else{let E=h?Fp(h,!1):null,_=new z9(g,A,E,b,w),D=S();y=n.runWebGLProgram(_,D,"float32")}let k=ve({inputs:{x:y},backend:n,attrs:{shape:g.outShape}});return x.push(y),x.forEach(E=>n.disposeIntermediateTensorInfo(E)),k}var $oe={kernelName:to,backendName:"webgl",kernelFunc:Doe};function Poe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:u,dilations:c,dimRoundingMode:p,activation:d,leakyreluAlpha:h}=s,f=[],m=c;m==null&&(m=[1,1]),v.assert(T.eitherStridesOrDilationsAreOne(l,m),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${l} and dilations '${m}'`);let g=T.computeConv2DInfo(r.shape,a.shape,l,m,u,p,!0),y=H().getBool("WEBGL_PACK_DEPTHWISECONV")&&g.strideWidth<=2&&g.outChannels/g.inChannels===1,x=d?Fp(d,y):null,A=[r,a],b=o!=null,w=i!=null,S=d==="leakyrelu";if(b&&A.push(o),w&&A.push(i),S){let D=n.makeTensorInfo([],"float32",v.createScalarValue(h,"float32"));A.push(D),f.push(D)}let k;y?k=new G9(g,b,x,w,S):k=new U9(g,b,x,w,S);let E=[[g.padInfo.top,g.padInfo.left],[g.strideHeight,g.strideWidth],[g.dilationHeight,g.dilationWidth],[g.inHeight,g.inWidth]],_=n.runWebGLProgram(k,A,"float32",E);return f.forEach(D=>n.disposeIntermediateTensorInfo(D)),_}var Foe={kernelName:no,backendName:"webgl",kernelFunc:Poe},Ooe=class{constructor(e,t,n,s){this.sliceDim=e,this.strides=t,this.paramsShape=s,this.variableNames=["x","indices"],this.outputShape=n;let r=vt(t.length),a=vt(n.length),o=this.sliceDim>1?"strides[j]":"strides",i=vt(s.length),l=s.length>1?"paramsShape[j]":"paramsShape";this.userCode=`
${r} strides = ${r}(${this.strides});
${i} paramsShape = ${i}(${this.paramsShape});
void main() {
${a} coords = getOutputCoords();
int flattenIndex = 0;
bool out_of_bounds = false;
for (int j = 0; j < ${this.sliceDim}; j++) {
int index = round(getIndices(coords[0], j));
out_of_bounds = out_of_bounds || index < 0;
out_of_bounds = out_of_bounds || index >= ${l};
flattenIndex += index * ${o};
}
setOutput(out_of_bounds ? 0.0 : getX(flattenIndex, coords[1]));
}
`}};function Moe(e){let{inputs:t,backend:n}=e,{params:s,indices:r}=t,a=r.shape,o=a[a.length-1],i=v.sizeFromShape(s.shape),[l,u,c,p]=T.prepareAndValidate(s,r),d=ve({inputs:{x:r},backend:n,attrs:{shape:[u,o]}}),h=ve({inputs:{x:s},backend:n,attrs:{shape:[v.sizeFromShape(s.shape)/c,c]}});if(n.shouldExecuteOnCPU([s,r])||s.dtype==="string"){let y=n.readSync(r.dataId),x=n.bufferSync(s),A=jte(y,x,s.dtype,u,o,c,p,s.shape,i);return n.makeTensorInfo(l,s.dtype,A.values)}let f=new Ooe(o,p,[u,c],s.shape),m=n.runWebGLProgram(f,[h,d],h.dtype),g=ve({inputs:{x:m},backend:n,attrs:{shape:l}});return n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),g}var zoe={kernelName:Sl,backendName:"webgl",kernelFunc:Moe},Loe=class{constructor(e,t){this.variableNames=["A","indices"],this.outputShape=t,this.rank=t.length;let n=vt(this.rank),s=Boe(e,2);this.userCode=`
void main() {
${n} resRC = getOutputCoords();
int index = int(getIndices(resRC.x, resRC.z));
float inBounds = (index >= 0) && (index < ${e[2]}) ? 1.0 : 0.0;
setOutput(inBounds * getA(${s}));
}
`}};function Boe(e,t){let n=["resRC.x","resRC.y","resRC.z","resRC.w"],s=[];for(let r=0;r<e.length;r++)r===2?s.push("index"):s.push(`${n[r]}`);return s.join()}function q9(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,indices:a}=t,{axis:o,batchDims:i}=s,l=v.parseAxisParam(o,r.shape)[0];if(H().get("DEBUG")){let x=n.readSync(a.dataId),A=r.shape[l];for(let b=0;b<x.length;++b){let w=x[b];v.assert(w<=A-1&&w>=0,()=>`GatherV2: the index value ${w} is not in [0, ${A-1}]`)}}let u=T.segment_util.collectGatherOpShapeInfo(r,a,l,i),c=v.sizeFromShape(a.shape),p=[],d=ve({inputs:{x:r},backend:n,attrs:{shape:[u.batchSize,u.outerSize,u.dimSize,u.sliceSize]}}),h=ve({inputs:{x:a},backend:n,attrs:{shape:[u.batchSize,c/u.batchSize]}});p.push(d),p.push(h);let f=[u.batchSize,u.outerSize,c/u.batchSize,u.sliceSize];if(n.shouldExecuteOnCPU([r,a])||r.dtype==="string"){let x=n.bufferSync(h),A=n.bufferSync(d),b=qte(A,x,f);return p.forEach(w=>n.disposeIntermediateTensorInfo(w)),n.makeTensorInfo(u.outputShape,b.dtype,b.values)}let m=new Loe(d.shape,f),g=n.runWebGLProgram(m,[d,h],d.dtype);p.push(g);let y=ve({inputs:{x:g},backend:n,attrs:{shape:u.outputShape}});return p.forEach(x=>n.disposeIntermediateTensorInfo(x)),y}var Woe={kernelName:kl,backendName:"webgl",kernelFunc:q9},Voe="return float(a > b);",Uoe=`
return vec4(greaterThan(a, b));
`,Goe=zn({opSnippet:Voe,packedOpSnippet:Uoe,cpuKernelImpl:Xte,dtype:"bool"}),Hoe={kernelName:Il,backendName:"webgl",kernelFunc:Goe},joe="return float(a >= b);",qoe=`
return vec4(greaterThanEqual(a, b));
`,Xoe=zn({opSnippet:joe,packedOpSnippet:qoe,dtype:"bool",cpuKernelImpl:Kte}),Koe={kernelName:Do,backendName:"webgl",kernelFunc:Xoe};function Zoe(e){let{inputs:t,backend:n}=e,{input:s}=t;return j9(s,!0,n)}var Yoe={kernelName:c0,backendName:"webgl",kernelFunc:Zoe},Joe="return float(!isnan(x) && !isinf(x));",Qoe=dt({opSnippet:Joe,dtype:"bool"}),eie={kernelName:_c,backendName:"webgl",kernelFunc:Qoe},tie="return float(isinf(x));",nie=dt({opSnippet:tie,dtype:"bool"}),sie={kernelName:Dc,backendName:"webgl",kernelFunc:nie},rie="return float(isnan(x));",aie=dt({opSnippet:rie,dtype:"bool"}),oie={kernelName:Cl,backendName:"webgl",kernelFunc:aie},iie="return float(a < b);",lie=`
return vec4(lessThan(a, b));
`,uie=zn({opSnippet:iie,packedOpSnippet:lie,cpuKernelImpl:Zte,dtype:"bool"}),cie={kernelName:Tl,backendName:"webgl",kernelFunc:uie},die="return float(a <= b);",pie=`
return vec4(lessThanEqual(a, b));
`,hie=zn({opSnippet:die,packedOpSnippet:pie,cpuKernelImpl:Yte,dtype:"bool"}),fie={kernelName:Nl,backendName:"webgl",kernelFunc:hie};function mie(e){let{backend:t,attrs:n}=e,{start:s,stop:r,num:a}=n,o=Jte(s,r,a);return t.makeTensorInfo([o.length],"float32",o)}var gie={kernelName:d0,backendName:"webgl",kernelFunc:mie},yie=hd+`
return x < 0.0 ? 0./0. : log(x);
`,Aie=`
vec4 result = log(x);
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : (x.r < 0.0 ? 0./0. : result.r);
result.g = isNaN.g ? x.g : (x.g < 0.0 ? 0./0. : result.g);
result.b = isNaN.b ? x.b : (x.b < 0.0 ? 0./0. : result.b);
result.a = isNaN.a ? x.a : (x.a < 0.0 ? 0./0. : result.a);
return result;
`,xie=dt({opSnippet:yie,packedOpSnippet:Aie,cpuKernelImpl:Qte}),bie={kernelName:Fo,backendName:"webgl",kernelFunc:xie},vie=hd+`
return log(1.0 + x);
`,wie=dt({opSnippet:vie}),kie={kernelName:$c,backendName:"webgl",kernelFunc:wie},Sie="return float(a >= 1.0 && b >= 1.0);",Iie=`
return vec4(
vec4(greaterThanEqual(a, vec4(1.0))) *
vec4(greaterThanEqual(b, vec4(1.0))));
`,Cie=zn({opSnippet:Sie,packedOpSnippet:Iie,dtype:"bool"}),Tie={kernelName:El,backendName:"webgl",kernelFunc:Cie},Nie="return float(!(x >= 1.0));",Eie=dt({opSnippet:Nie}),Rie={kernelName:Rl,backendName:"webgl",kernelFunc:Eie},_ie="return float(a >= 1.0 || b >= 1.0);",Die=`
return min(
vec4(greaterThanEqual(a, vec4(1.0))) +
vec4(greaterThanEqual(b, vec4(1.0))),
vec4(1.0));
`,$ie=zn({opSnippet:_ie,packedOpSnippet:Die,dtype:"bool"}),Pie={kernelName:Pc,backendName:"webgl",kernelFunc:$ie},Fie=class{constructor(e,t,n,s,r){this.variableNames=["x"],this.outputShape=[];let a=t,o=e[3]-1;this.outputShape=e;let i,l=`float(${n}) + float(${s}) * sum`;r===.5?i=`inversesqrt(${l})`:r===1?i=`1.0/(${l})`:i=`exp(log(${l}) * float(-${r}));`,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int r = coords[1];
int c = coords[2];
int d = coords[3];
float x = getX(b, r, c, d);
float sum = 0.0;
for (int j = -${a}; j <= ${a}; j++) {
int idx = d + j;
if (idx >= 0 && idx <= ${o}) {
float z = getX(b, r, c, idx);
sum += z * z;
}
}
float val = x * ${i};
setOutput(val);
}
`}},Oie=class{constructor(e,t,n,s,r){this.variableNames=["x"],this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0;let a=t,o=e[3]-1;this.outputShape=e;let i,l=`float(${n}) + float(${s}) * sum`;r===.5?i=`inversesqrt(${l})`:r===1?i=`1.0/(${l})`:i=`exp(log(${l}) * float(-${r}));`,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords.x;
int r = coords.y;
int c = coords.z;
int d = coords.w;
bool hasNextCol = d < ${this.outputShape[3]};
bool hasNextRow = c < ${this.outputShape[2]};
vec4 sum = vec4(0.);
vec4 xFragAtOutputCoords = getX(b, r, c, d);
vec4 xAtOutputCoords = vec4(
getChannel(xFragAtOutputCoords, vec2(c, d)),
hasNextCol ?
getChannel(xFragAtOutputCoords, vec2(c, d + 1)) : 0.0,
hasNextRow ?
getChannel(xFragAtOutputCoords , vec2(c + 1, d)) : 0.0,
(hasNextRow && hasNextCol) ?
getChannel(xFragAtOutputCoords, vec2(c + 1, d + 1)) : 0.0
);
int firstChannel = d - ${a};
vec2 cache = vec2(0.);
if(firstChannel >= 0){
vec4 firstChannelFrag = getX(b, r, c, firstChannel);
cache.x = getChannel(firstChannelFrag, vec2(c, firstChannel));
if(hasNextRow){
cache.y = getChannel(firstChannelFrag, vec2(c + 1, firstChannel));
}
}
ivec2 depth = ivec2(d, d + 1);
for (int j = - ${a}; j <= ${a}; j++) {
ivec2 idx = depth + j;
bvec2 aboveLowerBound = greaterThanEqual(idx, ivec2(0));
bvec2 belowUpperBound = lessThanEqual(idx, ivec2(${o}));
bool depthInRange = aboveLowerBound.x && belowUpperBound.x;
bool depthPlusOneInRange = aboveLowerBound.y && belowUpperBound.y;
if(depthInRange || depthPlusOneInRange){
vec4 z = vec4(0.);
vec4 xFragAtCurrentDepth;
z.xz = cache.xy;
if(depthPlusOneInRange && hasNextCol){
xFragAtCurrentDepth = idx.y != d ?
getX(b, r, c, idx.y) : xFragAtOutputCoords;
z.y = getChannel(xFragAtCurrentDepth, vec2(c, idx.y));
if(hasNextRow){
z.w = getChannel(xFragAtCurrentDepth, vec2(c + 1, idx.y));
}
}
cache.xy = z.yw;
sum += z * z;
}
}
vec4 result = xAtOutputCoords * ${i};
setOutput(result);
}
`}},Mie=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{depthRadius:a,bias:o,alpha:i,beta:l}=s,u=H().getBool("WEBGL_PACK_NORMALIZATION")?new Oie(r.shape,a,o,i,l):new Fie(r.shape,a,o,i,l);return n.runWebGLProgram(u,[r],r.dtype)},zie={kernelName:Kp,backendName:"webgl",kernelFunc:Mie},Lie=class{constructor(e,t,n,s,r){this.variableNames=["inputImage","outputImage","dy"],this.outputShape=[],this.outputShape=e,this.depth=e[3],this.depthRadius=t,this.bias=n,this.alpha=s,this.beta=r,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int r = coords[1];
int c = coords[2];
float result = 0.0;
for (int d = 0; d < ${this.depth}; ++d) {
int depthBegin = int(max(0.0, float(d - ${t})));
int depthEnd = int(min(float(${this.depth}),
float(d + ${t} + 1)));
const int MIN_DEPTH_BEGIN = 0;
const int MAX_DEPTH_END = ${this.depth};
float norm = 0.0;
for (int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k) {
if (k < depthBegin){
continue;
}
else if (k >= depthBegin && k < depthEnd) {
norm += getInputImage(b, r, c, k) * getInputImage(b, r, c, k);
}
else {
break;
}
}
norm = float(${s}) * norm + float(${n});
for(int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k){
if (k < depthBegin){
continue;
}
else if (k >= depthBegin && k < depthEnd){
float dyi = -2.0 * float(${s})
* float(${r})
* getInputImage(b ,r ,c, k) * getOutputImage(b, r, c, d)
/ norm;
if (k == d) {
dyi += pow(norm, -1.0 * ${r});
}
if (k == coords[3]) {
dyi *= getDy(b, r, c, d);
result += dyi;
}
}
else {
break;
}
}
}
setOutput(result);
}
`}},Bie=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r,y:a,dy:o}=t,{depthRadius:i,bias:l,alpha:u,beta:c}=s,p=new Lie(r.shape,i,l,u,c);return n.runWebGLProgram(p,[r,a,o],r.dtype)},Wie={kernelName:p0,backendName:"webgl",kernelFunc:Bie};function Vie(e,t,n,s){let r=v.sizeFromShape(t),o=v.sizeFromShape(e.shape)/r,i=ve({inputs:{x:e},attrs:{shape:[o,r]},backend:s}),l=hu(i,e.dtype,"max",s),u=ve({inputs:{x:l},attrs:{shape:n},backend:s});return s.disposeIntermediateTensorInfo(i),s.disposeIntermediateTensorInfo(l),u}function X9(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reductionIndices:a,keepDims:o}=s,i=r.shape.length,l=v.parseAxisParam(a,r.shape),u=l,c=T.getAxesPermutation(u,i),p=c!=null,d=n.shouldExecuteOnCPU([r]),h=r;if(p){if(d){let A=n.texData.get(h.dataId).values,b=new Array(i);for(let k=0;k<b.length;k++)b[k]=r.shape[c[k]];let w=lb(A,r.shape,r.dtype,c,b);h=n.makeTensorInfo(b,r.dtype);let S=n.texData.get(h.dataId);S.values=w}else h=R2(r,c,n);u=T.getInnerMostAxes(u.length,i)}T.assertAxesAreInnerMostDims("max",u,i);let[f,m]=T.computeOutAndReduceShapes(h.shape,u),g=f;o&&(g=T.expandShapeToKeepDim(f,l));let y;if(d){let A=n.texData.get(h.dataId).values,b=ene(A,v.sizeFromShape(m),g,r.dtype);y=n.makeTensorInfo(g,r.dtype);let w=n.texData.get(y.dataId);w.values=b}else y=Vie(h,m,g,n);return p&&n.disposeIntermediateTensorInfo(h),y}var Uie={kernelName:Oo,backendName:"webgl",kernelFunc:X9},Gie=C9+`
return max(a, b);
`,Hie=`
vec4 result = vec4(max(a, b));
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
`+E2+`
return result;
`,jie=zn({opSnippet:Gie,packedOpSnippet:Hie,cpuKernelImpl:tne}),qie={kernelName:Mo,backendName:"webgl",kernelFunc:jie};function Xie(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t;id(r,"maxPool");let{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=s,u=1;v.assert(T.eitherStridesOrDilationsAreOne(o,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${o} and dilations '${u}'`);let c=T.computePool2DInfo(r.shape,a,o,u,i,l);if(c.filterWidth===1&&c.filterHeight===1&&v.arraysEqual(c.inShape,c.outShape))return Ls({inputs:{x:r},backend:n});let p=new Op(c,"max",!1);return n.runWebGLProgram(p,[r],r.dtype)}var Kie={kernelName:zo,backendName:"webgl",kernelFunc:Xie};function Zie(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:o,pad:i,dataFormat:l,dimRoundingMode:u}=s,c=[1,1,1],p=T.computePool3DInfo(r.shape,a,o,c,i,u,l),d=new cb(p,"max",!1);return n.runWebGLProgram(d,[r],r.dtype)}var Yie={kernelName:Zp,backendName:"webgl",kernelFunc:Zie},Jie=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideHeight,n=e.strideWidth,s=e.dilationHeight,r=e.effectiveFilterHeight,a=e.effectiveFilterWidth,o=r-1-e.padInfo.top,i=a-1-e.padInfo.left,l=r*a-1;this.userCode=`
const ivec2 pads = ivec2(${o}, ${i});
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 dyRCCorner = coords.yz - pads;
int dyRCorner = dyRCCorner.x;
int dyCCorner = dyRCCorner.y;
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${r};
wR += ${s}) {
float dyR = float(dyRCorner + wR) / ${t}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${a}; wC++) {
float dyC = float(dyCCorner + wC) / ${n}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(b, idyR, idyC, d);
int maxPosValue = ${l} - int(getMaxPos(b, idyR, idyC, d));
// Get the current value, check it against the value from the
// position matrix.
int curPosValue = wR * ${a} + wC;
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
dotProd += dyValue * mask;
}
}
setOutput(dotProd);
}
`}},Qie=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideDepth,n=e.strideHeight,s=e.strideWidth,r=e.dilationDepth,a=e.dilationHeight,o=e.dilationWidth,i=e.effectiveFilterDepth,l=e.effectiveFilterHeight,u=e.effectiveFilterWidth,c=i-1-e.padInfo.front,p=l-1-e.padInfo.top,d=u-1-e.padInfo.left,h=i*l*u-1;this.userCode=`
const ivec3 pads = ivec3(${c}, ${p}, ${d});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
int dyDCorner = dyCorner.x;
int dyRCorner = dyCorner.y;
int dyCCorner = dyCorner.z;
// Convolve dy(?, ?, ?, ch) with pos mask(:, :, :, d) to get
// dx(xD, xR, xC, ch).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wD = 0; wD < ${i};
wD += ${r}) {
float dyD = float(dyDCorner + wD) / ${t}.0;
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
continue;
}
int idyD = int(dyD);
for (int wR = 0; wR < ${l};
wR += ${a}) {
float dyR = float(dyRCorner + wR) / ${n}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${u};
wC += ${o}) {
float dyC = float(dyCCorner + wC) / ${s}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
int maxPosValue = ${h} -
int(getMaxPos(batch, idyD, idyR, idyC, ch));
// Get the current value, check it against the value from the
// position matrix.
int curPosValue =
wD * ${l} * ${u} +
wR * ${u} + wC;
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
dotProd += dyValue * mask;
}
}
}
setOutput(dotProd);
}
`}};function ele(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,o=a,{filterSize:i,strides:l,pad:u,dimRoundingMode:c}=s,p=[1,1,1],d=T.computePool3DInfo(o.shape,i,l,p,u,c),h=new cb(d,"max",!0),f=n.runWebGLProgram(h,[o],o.dtype),m=new Qie(d),g=n.runWebGLProgram(m,[r,f],o.dtype);return n.disposeIntermediateTensorInfo(f),g}var tle={kernelName:f0,backendName:"webgl",kernelFunc:ele};function nle(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a,output:o}=t,i=a;id([a,o],"maxPoolGrad");let{filterSize:l,strides:u,pad:c,dimRoundingMode:p}=s,d=T.computePool2DInfo(i.shape,l,u,1,c,p),h=!0,f=new Op(d,"max",h),m=n.runWebGLProgram(f,[i],i.dtype),g=new Jie(d),y=n.runWebGLProgram(g,[r,m],i.dtype);return n.disposeIntermediateTensorInfo(m),y}var sle={kernelName:h0,backendName:"webgl",kernelFunc:nle};function rle(e,t,n,s){let r=new Op(n,"max",!1),a=s.runWebGLProgram(r,[e],"float32");r=new Op(n,"max",!0,!0,t);let o=s.runWebGLProgram(r,[e],"float32");return[a,o]}var ale={kernelName:m0,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:s}=e,{filterSize:r,strides:a,pad:o,includeBatchInIndex:i}=t,l=n;v.assert(s.shape.length===4,()=>`Error in maxPool: input must be rank 4 but got rank ${s.shape.length}.`);let u=[1,1];v.assert(T.eitherStridesOrDilationsAreOne(a,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${a} and dilations '${u}'`);let c=T.computePool2DInfo(s.shape,r,a,u,o),[p,d]=rle(s,i,c,l);return[p,d]}};function ole(e,t,n,s){let r=v.sizeFromShape(t),o=v.sizeFromShape(e.shape)/r,i=ve({inputs:{x:e},attrs:{shape:[o,r]},backend:s}),l=hu(i,"float32","mean",s),u=ve({inputs:{x:l},attrs:{shape:n},backend:s});return s.disposeIntermediateTensorInfo(i),s.disposeIntermediateTensorInfo(l),u}var ile={kernelName:Lo,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:s}=e,{keepDims:r,axis:a}=t,o=n,i=s.shape.length,l=v.parseAxisParam(a,s.shape),u=l,c=T.getAxesPermutation(u,i),p=c!=null,d=o.shouldExecuteOnCPU([s]),h=[],f=s;if(p){if(d){let b=o.texData.get(f.dataId).values,w=new Array(i);for(let E=0;E<w.length;E++)w[E]=s.shape[c[E]];let S=lb(b,s.shape,s.dtype,c,w);f=o.makeTensorInfo(w,s.dtype);let k=o.texData.get(f.dataId);k.values=S}else f=R2(s,c,o);h.push(f),u=T.getInnerMostAxes(u.length,i)}T.assertAxesAreInnerMostDims("sum",u,i);let[m,g]=T.computeOutAndReduceShapes(f.shape,u),y=m;r&&(y=T.expandShapeToKeepDim(m,l));let x=ole(f,g,y,o);for(let A of h)o.disposeIntermediateTensorInfo(A);return x}};function lle(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s,i=r.shape.length,l=v.parseAxisParam(a,r.shape),u=l,c=T.getAxesPermutation(u,i),p=r;c!=null&&(p=os({inputs:{x:r},backend:n,attrs:{perm:c}}),u=T.getInnerMostAxes(u.length,r.shape.length)),T.assertAxesAreInnerMostDims("min",u,i);let[d,h]=T.computeOutAndReduceShapes(p.shape,u),f=v.sizeFromShape(h),m=ve({inputs:{x:p},backend:n,attrs:{shape:[-1,f]}}),g=hu(m,m.dtype,"min",n),y;if(o){let x=T.expandShapeToKeepDim(d,l);y=ve({inputs:{x:g},backend:n,attrs:{shape:x}})}else y=ve({inputs:{x:g},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(g),c!=null&&n.disposeIntermediateTensorInfo(p),y}var ule={kernelName:Bo,backendName:"webgl",kernelFunc:lle},cle=C9+`
return min(a, b);
`,dle=`
vec4 result = vec4(min(a, b));
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
`+E2+`
return result;
`,ple=zn({opSnippet:cle,packedOpSnippet:dle,cpuKernelImpl:nne}),hle={kernelName:Wo,backendName:"webgl",kernelFunc:ple},fle=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=t.map((u,c)=>u[0]+e[c]+u[1]);let s=e.length,r=vt(s),a=t.map(u=>u[0]).join(","),o=t.map((u,c)=>u[0]+e[c]).join(","),i=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,s),l=n==="reflect"?0:1;if(s===1){this.userCode=`
int start = ${a};
int end = ${o};
void main() {
int outC = getOutputCoords();
if (outC < start) {
outC = start * 2 - outC - ${l};
} else if(outC >= end) {
outC = (end - 1) * 2 - outC + ${l};
}
setOutput(getX(outC - start));
}
`;return}this.userCode=`
${r} start = ${r}(${a});
${r} end = ${r}(${o});
void main() {
${r} outC = getOutputCoords();
for (int i = 0; i < ${s}; i++) {
if (outC[i] < start[i]) {
outC[i] = start[i] * 2 - outC[i] - ${l};
} else if(outC[i] >= end[i]) {
outC[i] = (end[i] - 1) * 2 - outC[i] + ${l};
}
}
${r} coords = outC - start;
setOutput(getX(${i}));
}
`}},mle=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((h,f)=>h[0]+e[f]+h[1]);let s=e.length,r=vt(s),a=t.map(h=>h[0]).join(","),o=t.map((h,f)=>h[0]+e[f]).join(","),i=as("rc",s),l=as("source",s),u=`${i[s-1]} < ${this.outputShape[s-1]}`,c=s===1?"source":`vec2(${l.slice(-2).join()})`,p=n==="reflect"?0:1,d="";if(s===1){let h=`
${r} source = rc;
if (source < start) {
source = start * 2 - source - ${p};
} else if (source >= end) {
source = (end - 1) * 2 - source + ${p};
}
source -= start;
`;d=`
${r} rc = outputLoc;
${h}
result[0] = getChannel(getX(${l.join()}), ${c});
${i[s-1]} += 1;
if(${u}) {
${h}
result[1] = getChannel(getX(${l.join()}), ${c});
}
`}else{let h=`
${r} source = rc;
${r} lt = ${r}(lessThan(source, start));
${r} gte = ${r}(greaterThanEqual(source, end));
${r} orig = 1 - (lt + gte);
source = orig * source +
lt * (start * 2 - source - ${p}) +
gte * ((end - 1) * 2 - source + ${p});
source -= start;
`;d=`
${r} rc = outputLoc;
${h}
result[0] = getChannel(getX(${l.join()}), ${c});
${i[s-1]} += 1;
if(${u}) {
${h}
result[1] = getChannel(getX(${l.join()}), ${c});
}
rc = outputLoc;
${i[s-2]} += 1;
if(${i[s-2]} < ${this.outputShape[s-2]}) {
${h}
result[2] = getChannel(getX(${l.join()}), ${c});
${i[s-1]} += 1;
if(${u}) {
${h}
result[3] = getChannel(getX(${l.join()}), ${c});
}
}
`}this.userCode=`
const ${r} start = ${r}(${a});
const ${r} end = ${r}(${o});
void main() {
${r} outputLoc = getOutputCoords();
vec4 result = vec4(0.);
${d}
setOutput(result);
}
`}},gle=({inputs:e,backend:t,attrs:n})=>{let{x:s}=e,{paddings:r,mode:a}=n,o=H().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new mle(s.shape,r,a):new fle(s.shape,r,a);return t.runWebGLProgram(o,[s],s.dtype)},yle={kernelName:Vo,backendName:"webgl",kernelFunc:gle},Ale=`if (b == 0.0) return NAN;
return mod(a, b);`,xle=`
vec4 result = mod(a, b);
vec4 isNaN = vec4(equal(b, vec4(0.0)));
`+E2+`
return result;
`,ble=zn({opSnippet:Ale,packedOpSnippet:xle}),vle={kernelName:Fc,backendName:"webgl",kernelFunc:ble},wle=class{constructor(e,t,n){this.variableNames=["probs"],this.customUniforms=[{name:"seed",type:"float"}],this.outputShape=[e,n],this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
float r = random(seed);
float cdf = 0.0;
for (int i = 0; i < ${t-1}; i++) {
cdf += getProbs(batch, i);
if (r < cdf) {
setOutput(float(i));
return;
}
}
// If no other event happened, last event happened.
setOutput(float(${t-1}));
}
`}},kle=`
if (a == b) {
return 1.0;
};
return a / b;`,Sle=`
// vec4 one = vec4(equal(a, b));
// return one + (vec4(1.0) - one) * a / b;
vec4 result = a / b;
if(a.x == b.x) {
result.x = 1.;
}
if(a.y == b.y) {
result.y = 1.;
}
if(a.z == b.z) {
result.z = 1.;
}
if(a.w == b.w) {
result.w = 1.;
}
return result;
`,K9=zn({opSnippet:kle,packedOpSnippet:Sle,checkOutOfBounds:!0}),Ile={kernelName:Co,backendName:"webgl",kernelFunc:K9},H7="return a - b;",Z9=zn({opSnippet:H7,packedOpSnippet:H7,supportsComplex:!0,cpuKernelImpl:bne}),Cle={kernelName:ai,backendName:"webgl",kernelFunc:Z9};function Y9(e){let{inputs:t,backend:n,attrs:s}=e,{logits:r}=t,{dim:a}=s,o=v.parseAxisParam([a],r.shape),i=X9({inputs:{x:r},backend:n,attrs:{reductionIndices:o,keepDims:!1}}),l=T.expandShapeToKeepDim(i.shape,o),u=ve({inputs:{x:i},backend:n,attrs:{shape:l}}),c=Z9({inputs:{a:r,b:u},backend:n}),p=H9({inputs:{x:c},backend:n}),d=_2({inputs:{x:p},backend:n,attrs:{axis:o,keepDims:!1}}),h=ve({inputs:{x:d},backend:n,attrs:{shape:l}}),f=K9({inputs:{a:p,b:h},backend:n});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(h),f}var Tle={kernelName:si,backendName:"webgl",kernelFunc:Y9};function Nle(e){let{inputs:t,backend:n,attrs:s}=e,{logits:r}=t,{numSamples:a,seed:o,normalized:i}=s,l=i?r:Y9({inputs:{logits:r},backend:n,attrs:{dim:r.shape.length-1}}),u=l.shape[0],c=l.shape[1],p=new wle(u,c,a),d=[[o]],h=n.runWebGLProgram(p,[l],"int32",d);return i||n.disposeIntermediateTensorInfo(l),h}var Ele={kernelName:g0,backendName:"webgl",kernelFunc:Nle},Rle=xr+`
return -x;
`,_le=`
vec4 result = -x;
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`;function Dle(e){let{inputs:t,backend:n}=e,{x:s}=t;if(n.shouldExecuteOnCPU([s])){let a=n.texData.get(s.dataId),[o,i]=rne(a.values,s.shape,s.dtype);return n.makeTensorInfo(i,s.dtype,o)}let r;return H().getBool("WEBGL_PACK_UNARY_OPERATIONS")?r=new qi(s.shape,_le):r=new xa(s.shape,Rle),n.runWebGLProgram(r,[s],s.dtype)}var $le={kernelName:_l,backendName:"webgl",kernelFunc:Dle},Ple=yr.nonMaxSuppressionV3Impl;function Fle(e){T.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l}=s,u=n.readSync(r.dataId),c=n.readSync(a.dataId),{selectedIndices:p}=Ple(u,c,o,i,l);return n.makeTensorInfo([p.length],"int32",new Int32Array(p))}var Ole={kernelName:$l,backendName:"webgl",kernelFunc:Fle},Mle=yr.nonMaxSuppressionV4Impl;function zle(e){T.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l,padToMaxOutputSize:u}=s,c=n.readSync(r.dataId),p=n.readSync(a.dataId),{selectedIndices:d,validOutputs:h}=Mle(c,p,o,i,l,u);return[n.makeTensorInfo([d.length],"int32",new Int32Array(d)),n.makeTensorInfo([],"int32",new Int32Array([h]))]}var Lle={kernelName:Oc,backendName:"webgl",kernelFunc:zle},Ble=yr.nonMaxSuppressionV5Impl;function Wle(e){T.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l,softNmsSigma:u}=s,c=n.readSync(r.dataId),p=n.readSync(a.dataId),d=o,h=i,f=l,m=u,{selectedIndices:g,selectedScores:y}=Ble(c,p,d,h,f,m);return[n.makeTensorInfo([g.length],"int32",new Int32Array(g)),n.makeTensorInfo([y.length],"float32",new Float32Array(y))]}var Vle={kernelName:Pl,backendName:"webgl",kernelFunc:Wle},Ule=class{constructor(e,t,n,s){this.variableNames=["indices"],this.outputShape=[e,t],this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int index = round(getIndices(coords.x));
setOutput(mix(float(${s}), float(${n}),
float(index == coords.y)));
}
`}},Gle=e=>{let{inputs:t,backend:n,attrs:s}=e,{indices:r}=t,{dtype:a,depth:o,onValue:i,offValue:l}=s,u=v.sizeFromShape(r.shape),c=new Ule(u,o,i,l),p=ve({inputs:{x:r},backend:n,attrs:{shape:[u]}}),d=n.runWebGLProgram(c,[p],a);n.disposeIntermediateTensorInfo(p);let h=[...r.shape,o],f=ve({inputs:{x:d},backend:n,attrs:{shape:h}});return n.disposeIntermediateTensorInfo(d),f},Hle={kernelName:Ol,backendName:"webgl",kernelFunc:Gle};function Gm(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="complex64"){let r=Uh({inputs:{input:s},backend:n}),a=Gm({inputs:{x:r},backend:n}),o=D2({inputs:{input:s},backend:n}),i=Gm({inputs:{x:o},backend:n}),l=fi({inputs:{real:a,imag:i},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),l}else return Gh({attrs:{shape:s.shape,dtype:s.dtype,value:s.dtype==="string"?"":0},backend:n})}var jle={kernelName:Ql,backendName:"webgl",kernelFunc:Gm};function J9(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="string")throw new Error("onesLike is not supported under string dtype");if(s.dtype==="complex64"){let r=Uh({inputs:{input:s},backend:n}),a=J9({inputs:{x:r},backend:n}),o=D2({inputs:{input:s},backend:n}),i=Gm({inputs:{x:o},backend:n}),l=fi({inputs:{real:a,imag:i},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),l}else return Gh({attrs:{shape:s.shape,dtype:s.dtype,value:1},backend:n})}var qle={kernelName:Fl,backendName:"webgl",kernelFunc:J9};function Xle(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s;if(t.length===1)return by({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let a=t[0].shape,o=t[0].dtype;t.forEach(c=>{v.assertShapesMatch(a,c.shape,"All tensors passed to stack must have matching shapes"),v.assert(o===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],l=t.map(c=>{let p=by({inputs:{input:c},backend:n,attrs:{dim:r}});return i.push(p),p}),u=M9({inputs:l,backend:n,attrs:{axis:r}});return i.forEach(c=>n.disposeIntermediateTensorInfo(c)),u}var Kle={kernelName:Ml,backendName:"webgl",kernelFunc:Xle},Zle=class{constructor(e,t,n){this.variableNames=["x"],this.customUniforms=[{name:"value",type:"float"}],this.outputShape=t.map((l,u)=>l[0]+e[u]+l[1]);let s=e.length,r=vt(s),a=t.map(l=>l[0]).join(","),o=t.map((l,u)=>l[0]+e[u]).join(","),i=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,s);if(s===1){this.userCode=`
int start = ${a};
int end = ${o};
void main() {
int outC = getOutputCoords();
if (outC < start || outC >= end) {
setOutput(value);
} else {
setOutput(getX(outC - start));
}
}
`;return}this.userCode=`
${r} start = ${r}(${a});
${r} end = ${r}(${o});
void main() {
${r} outC = getOutputCoords();
if (any(lessThan(outC, start)) || any(greaterThanEqual(outC, end))) {
setOutput(value);
} else {
${r} coords = outC - start;
setOutput(getX(${i}));
}
}
`}},Yle=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"value",type:"float"}],this.outputShape=t.map((f,m)=>f[0]+e[m]+f[1]);let s=e.length,r=vt(s),a=t.map(f=>f[0]).join(","),o=t.map((f,m)=>f[0]+e[m]).join(","),i=as("rc",s),l=as("source",s),u=`${i[s-1]} < ${this.outputShape[s-1]}`,c=s===1?"source":`vec2(${l.slice(-2).join()})`,p=[`${r} rc = outputLoc;`,`${i[s-1]} += 1;
if(${u}) {
`,s===1?"":`}
rc = outputLoc;
${i[s-2]} += 1;
if(${i[s-2]} < ${this.outputShape[s-2]}) {`,s===1?"":` ${i[s-1]} += 1;
if(${u}) {`],d=s===1?"rc < start || rc >= end":"any(lessThan(rc, start)) || any(greaterThanEqual(rc, end))",h="";for(let f=0,m=s===1?2:4;f<m;f++)h+=`
${p[f]}
if (${d}) {
result[${f}] = float(value);
} else {
${r} source = rc - start;
result[${f}] = getChannel(getX(${l.join()}), ${c});
}
`;h+=s===1?"} ":"}}",this.userCode=`
const ${r} start = ${r}(${a});
const ${r} end = ${r}(${o});
void main() {
${r} outputLoc = getOutputCoords();
vec4 result = vec4(0.);
${h}
setOutput(result);
}
`}},Q9=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{paddings:a,constantValue:o}=s;if(v.sizeFromShape(r.shape)===0){let u=a.map((c,p)=>c[0]+r.shape[p]+c[1]);return Gh({backend:n,attrs:{shape:u,value:o,dtype:r.dtype}})}let i=H().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new Yle(r.shape,a,o):new Zle(r.shape,a,o),l=[[o]];return n.runWebGLProgram(i,[r],r.dtype,l)},Jle={kernelName:Go,backendName:"webgl",kernelFunc:Q9},Qle=`
if(a < 0.0 && floor(b) < b){
return NAN;
}
if (b == 0.0) {
return 1.0;
}
return (round(mod(b, 2.0)) != 1) ?
pow(abs(a), b) : sign(a) * pow(abs(a), b);
`,eue=`
// isModRound1 has 1 for components with round(mod(b, 2.0)) == 1, 0 otherwise.
vec4 isModRound1 = vec4(equal(round(mod(b, 2.0)), ivec4(1)));
vec4 multiplier = sign(a) * isModRound1 + (vec4(1.0) - isModRound1);
vec4 result = multiplier * pow(abs(a), b);
// Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS
bvec4 isExpZero = equal(b, vec4(0.0));
result.r = isExpZero.r ? 1.0 : result.r;
result.g = isExpZero.g ? 1.0 : result.g;
result.b = isExpZero.b ? 1.0 : result.b;
result.a = isExpZero.a ? 1.0 : result.a;
vec4 isNaN = vec4(lessThan(a, vec4(0.0))) * vec4(lessThan(floor(b), b));
`+E2+`
return result;
`,tue=zn({opSnippet:Qle,packedOpSnippet:eue}),nue={kernelName:Ho,backendName:"webgl",kernelFunc:tue};function sue(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s,i=r.shape.length,l=[],u=v.parseAxisParam(a,r.shape),c=u,p=T.getAxesPermutation(c,i),d=r;p!=null&&(d=os({inputs:{x:r},backend:n,attrs:{perm:p}}),c=T.getInnerMostAxes(c.length,i),l.push(d)),T.assertAxesAreInnerMostDims("prod",c,i);let h;if(n.shouldExecuteOnCPU([d])){let f=n.texData.get(d.dataId).values,{outVals:m,outShape:g,outDtype:y}=one(d.shape,d.dtype,f,c);h=n.makeTensorInfo(g,y,m)}else{let[f,m]=T.computeOutAndReduceShapes(d.shape,c),g=v.sizeFromShape(m),y=ve({inputs:{x:d},backend:n,attrs:{shape:[-1,g]}}),x=ih(r.dtype),A=hu(y,x,"prod",n);h=ve({inputs:{x:A},backend:n,attrs:{shape:f}}),l.push(y),l.push(A)}if(o){l.push(h);let f=T.expandShapeToKeepDim(h.shape,u);h=ve({inputs:{x:h},backend:n,attrs:{shape:f}})}return l.forEach(f=>n.disposeIntermediateTensorInfo(f)),h}var rue={kernelName:qo,backendName:"webgl",kernelFunc:sue};function aue(e){let{inputs:t,backend:n,attrs:s}=e,{shape:r,values:a,defaultValue:o,rowPartitionTensors:i}=t,{rowPartitionTypes:l}=s,u=n.readSync(r.dataId),c=n.readSync(a.dataId),p=n.readSync(o.dataId),d=i.map(g=>n.readSync(g.dataId)),h=i.map(g=>g.shape),[f,m]=ine(u,r.shape,c,a.shape,a.dtype,p,o.shape,d,h,l);return n.makeTensorInfo(f,a.dtype,m)}var oue={kernelName:y0,backendName:"webgl",kernelFunc:aue},eC=e=>{let{backend:t,attrs:n}=e,{start:s,stop:r,step:a,dtype:o}=n,i=lne(s,r,a,o);return t.makeTensorInfo([i.length],o,i)},iue={kernelName:Mc,backendName:"webgl",kernelFunc:eC},lue="return 1.0 / x;",uue=dt({opSnippet:lue}),cue={kernelName:zl,backendName:"webgl",kernelFunc:uue},due=xr+`
return (x < 0.0) ? 0.0 : x;
`,pue=`
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,hue=dt({opSnippet:due,packedOpSnippet:pue}),fue={kernelName:Xo,backendName:"webgl",kernelFunc:hue},mue=xr+`
return (x < 0.0) ? 0.0 : min(6.0, x);
`,gue=`
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,yue=dt({opSnippet:mue,packedOpSnippet:gue}),Aue={kernelName:Yo,backendName:"webgl",kernelFunc:yue},xue=class{constructor(e,t,n,s,r){this.variableNames=["A"],this.outputShape=[];let[a,o,i,l]=e;this.outputShape=[a,t,n,l];let u=[s&&t>1?o-1:o,s&&n>1?i-1:i],c=[s&&t>1?t-1:t,s&&n>1?n-1:n],p;r?p="(vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC - vec2(0.5)":p="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec2 effectiveInputOverOutputRatioRC = vec2(
${u[0]/c[0]},
${u[1]/c[1]});
const vec2 inputShapeRC = vec2(${o}.0, ${i}.0);
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 yRC = coords.yz;
// Fractional source index.
vec2 sourceFracIndexRC = ${p};
// Compute the four integer indices.
ivec2 sourceFloorRC = ivec2(max(sourceFracIndexRC, vec2(0.0)));
ivec2 sourceCeilRC = ivec2(
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
float topLeft = getA(b, sourceFloorRC.x, sourceFloorRC.y, d);
float bottomLeft = getA(b, sourceCeilRC.x, sourceFloorRC.y, d);
float topRight = getA(b, sourceFloorRC.x, sourceCeilRC.y, d);
float bottomRight = getA(b, sourceCeilRC.x, sourceCeilRC.y, d);
vec2 fracRC = sourceFracIndexRC - vec2(sourceFloorRC);
float top = topLeft + (topRight - topLeft) * fracRC.y;
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracRC.y;
float newValue = top + (bottom - top) * fracRC.x;
setOutput(newValue);
}
`}},bue=class{constructor(e,t,n,s,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[a,o,i,l]=e;this.outputShape=[a,t,n,l];let u=[s&&t>1?o-1:o,s&&n>1?i-1:i],c=[s&&t>1?t-1:t,s&&n>1?n-1:n],p;r?p="(vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC - vec3(0.5)":p="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec3 effectiveInputOverOutputRatioRC = vec3(
${u[0]/c[0]},
${u[1]/c[1]},
${u[1]/c[1]});
const vec3 inputShapeRC = vec3(${o}.0, ${i}.0,
${i}.0);
float getAValue(int b, int r, int c, int d) {
return getChannel(getA(b, r, c, d), vec2(c, d));
}
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
// Calculate values for next column in yRC.z.
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
// Fractional source index.
vec3 sourceFracIndexRC = ${p};
// Compute the four integer indices.
ivec3 sourceFloorRC = ivec3(max(sourceFracIndexRC, vec3(0.0)));
ivec3 sourceCeilRC = ivec3(
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
// Should we calculate next column and row elements in 2x2 packed cell.
bool hasNextCol = d < ${l-1};
bool hasNextRow = coords.z < ${n-1};
// In parallel, construct four corners for all four components in
// packed 2x2 cell.
vec4 topLeft = vec4(
getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d),
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d + 1) : 0.0);
vec4 bottomLeft = vec4(
getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d),
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d + 1) : 0.0);
vec4 topRight = vec4(
getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d),
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d + 1) : 0.0);
vec4 bottomRight = vec4(
getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d),
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d + 1) : 0.0);
vec3 fracRC = sourceFracIndexRC - vec3(sourceFloorRC);
vec4 top = mix(topLeft, topRight, fracRC.yyzz);
vec4 bottom = mix(bottomLeft, bottomRight, fracRC.yyzz);
vec4 newValue = mix(top, bottom, fracRC.x);
setOutput(newValue);
}
`}};function vue(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,halfPixelCenters:o,size:i}=s,[l,u]=i,c=H().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new bue(r.shape,l,u,a,o):new xue(r.shape,l,u,a,o);return n.runWebGLProgram(c,[r],"float32")}var wue={kernelName:Zo,backendName:"webgl",kernelFunc:vue},kue=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,s,r]=t,[,a,o]=e,i=[n&&a>1?s-1:s,n&&o>1?r-1:r],l=[n&&a>1?a-1:a,n&&o>1?o-1:o],u=i[0]/l[0],c=i[1]/l[1],p=1/u,d=1/c,h=Math.ceil(p)*2+2,f=Math.ceil(d)*2+2;this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
int r = coords[1];
int c = coords[2];
float accumulator = 0.0;
const float heightScale = float(${u});
const float widthScale = float(${c});
const float invHeightScale = float(${p});
const float invWidthScale = float(${d});
const int winHeight = int(${h});
const int winWidth = int(${f});
// Compute bounds for where in dy we will look
float startRLerp = floor(float(r) * invHeightScale);
int startDyR = int(startRLerp - float(winHeight / 2));
float startCLerp = floor(float(c) * invWidthScale);
int startDyC = int(startCLerp - float(winWidth / 2));
// Loop over dy
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
int dyR = dyROffset + startDyR;
// Guard against the window exceeding the bounds of dy
if (dyR < 0 || dyR >= ${a}) {
continue;
}
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
int dyC = dyCOffset + startDyC;
// Guard against the window exceeding the bounds of dy
if (dyC < 0 || dyC >= ${o}) {
continue;
}
float dxR = float(dyR) * heightScale;
int topDxRIndex = int(floor(dxR));
int bottomDxRIndex = int(min(ceil(dxR), ${s-1}.0));
float dxRLerp = dxR - float(topDxRIndex);
float inverseDxRLerp = 1.0 - dxRLerp;
float dxC = float(dyC) * widthScale;
int leftDxCIndex = int(floor(dxC));
int rightDxCIndex = int(min(ceil(dxC), ${r-1}.0));
float dxCLerp = dxC - float(leftDxCIndex);
float inverseDxCLerp = 1.0 - dxCLerp;
if (r == topDxRIndex && c == leftDxCIndex) {
// topLeft
accumulator +=
getDy(b, dyR, dyC, d) * inverseDxRLerp * inverseDxCLerp;
}
if (r == topDxRIndex && c == rightDxCIndex) {
// topRight
accumulator += getDy(b, dyR, dyC, d) * inverseDxRLerp * dxCLerp;
}
if (r == bottomDxRIndex && c == leftDxCIndex) {
// bottomLeft
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * inverseDxCLerp;
}
if (r == bottomDxRIndex && c == rightDxCIndex) {
// bottomRight
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * dxCLerp;
}
}
}
// End loop over dy
setOutput(accumulator);
}
`}};function Sue(e){let{inputs:t,backend:n,attrs:s}=e,{images:r,dy:a}=t,{alignCorners:o}=s,i=new kue(a.shape,r.shape,o);return n.runWebGLProgram(i,[a],a.dtype)}var Iue={kernelName:x0,backendName:"webgl",kernelFunc:Sue},Cue=class{constructor(e,t,n,s,r){this.variableNames=["A"],this.outputShape=[];let[a,o,i,l]=e;this.outputShape=[a,t,n,l];let u=[s&&t>1?o-1:o,s&&n>1?i-1:i],c=[s&&t>1?t-1:t,s&&n>1?n-1:n],p=s?"0.5":"0.0",d;r?d="max((vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC, vec2(0.0))":d="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec2 effectiveInputOverOutputRatioRC = vec2(
${u[0]/c[0]},
${u[1]/c[1]});
const vec2 inputShapeRC = vec2(${o}.0, ${i}.0);
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 yRC = coords.yz;
// Fractional source index.
vec2 sourceFracIndexRC = ${d};
// Compute the coordinators of nearest neighbor point.
ivec2 sourceNearestRC = ivec2(
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${p})));
float newValue = getA(b, sourceNearestRC.x, sourceNearestRC.y, d);
setOutput(newValue);
}
`}},Tue=class{constructor(e,t,n,s,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[a,o,i,l]=e;this.outputShape=[a,t,n,l];let u=[s&&t>1?o-1:o,s&&n>1?i-1:i],c=[s&&t>1?t-1:t,s&&n>1?n-1:n],p=s?"0.5":"0.0",d;r?d="max((vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC, vec3(0.0))":d="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec3 effectiveInputOverOutputRatioRC = vec3(
${u[0]/c[0]},
${u[1]/c[1]},
${u[1]/c[1]});
const vec3 inputShapeRC = vec3(${o}.0, ${i}.0,
${i}.0);
float getAValue(int b, int r, int c, int d) {
return getChannel(getA(b, r, c, d), vec2(c, d));
}
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
// Calculate values for next column in yRC.z.
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
// Fractional source index.
vec3 sourceFracIndexRC = ${d};
// Compute the coordinators of nearest neighbor point.
ivec3 sourceNearestRC = ivec3(
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${p})));
// Should we calculate next column and row elements in 2x2 packed cell.
bool hasNextCol = d < ${l-1};
bool hasNextRow = coords.z < ${n-1};
vec4 newValue = vec4(
getAValue(b, sourceNearestRC.x, sourceNearestRC.y, d),
hasNextCol ? getAValue(b, sourceNearestRC.x, sourceNearestRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceNearestRC.x, sourceNearestRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceNearestRC.x, sourceNearestRC.z, d + 1) : 0.0);
setOutput(newValue);
}
`}};function Nue(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,halfPixelCenters:o,size:i}=s,[l,u]=i,c=H().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new Tue(r.shape,l,u,a,o):new Cue(r.shape,l,u,a,o);return n.runWebGLProgram(c,[r],r.dtype)}var Eue={kernelName:Ko,backendName:"webgl",kernelFunc:Nue},Rue=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,s,r]=t,[,a,o]=e,i=[n&&a>1?s-1:s,n&&o>1?r-1:r],l=[n&&a>1?a-1:a,n&&o>1?o-1:o],u=i[0]/l[0],c=i[1]/l[1],p=1/u,d=1/c,h=Math.ceil(p)*2+2,f=Math.ceil(d)*2+2;this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
int r = coords[1];
int c = coords[2];
float accumulator = 0.0;
const float heightScale = float(${u});
const float widthScale = float(${c});
const float invHeightScale = float(${p});
const float invWidthScale = float(${d});
const int winHeight = int(${h});
const int winWidth = int(${f});
// Compute bounds for where in dy we will look
float startRLerp = floor(float(r) * invHeightScale);
int startDyR = int(floor(startRLerp - float(winHeight / 2)));
float startCLerp = floor(float(c) * invWidthScale);
int startDyC = int(floor(startCLerp - float(winWidth / 2)));
// Loop over dy
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
int dyR = dyROffset + startDyR;
// Guard against the window exceeding the bounds of dy
if (dyR < 0 || dyR >= ${a}) {
continue;
}
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
int dyC = dyCOffset + startDyC;
// Guard against the window exceeding the bounds of dy
if (dyC < 0 || dyC >= ${o}) {
continue;
}
float sourceFracRow =
float(${i[0]}) *
(float(dyR) / float(${l[0]}));
float sourceFracCol =
float(${i[1]}) *
(float(dyC) / float(${l[1]}));
int sourceNearestRow = int(min(
float(int(${s}) - 1),
${n} ? float(round(sourceFracRow)) :
float(floor(sourceFracRow))));
int sourceNearestCol = int(min(
float(int(${r}) - 1),
${n} ? float(round(sourceFracCol)) :
float(floor(sourceFracCol))));
if (r == sourceNearestRow && c == sourceNearestCol) {
accumulator += getDy(b, dyR, dyC, d);
}
}
}
// End loop over dy
setOutput(accumulator);
}
`}};function _ue(e){let{inputs:t,backend:n,attrs:s}=e,{images:r,dy:a}=t,{alignCorners:o}=s,i=new Rue(a.shape,r.shape,o);return n.runWebGLProgram(i,[a],a.dtype)}var Due={kernelName:A0,backendName:"webgl",kernelFunc:_ue},$ue=class{constructor(e,t){this.variableNames=["x"];let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);if(this.outputShape=e,n===1){this.userCode=`
void main() {
int coord = getOutputCoords();
setOutput(getX(${e[0]} - coord - 1));
}
`;return}let s=o=>t.indexOf(o)!==-1&&e[o]!==1?`${e[o]} - coords[${o}] - 1`:`coords[${o}]`,r=e.map((o,i)=>s(i)).join(","),a=vt(n);this.userCode=`
void main() {
${a} coords = getOutputCoords();
setOutput(getX(${r}));
}
`}},Pue=class{constructor(e,t){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0;let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);this.outputShape=e;let s=as("rc",n),r=`${s[n-1]} + 1 < ${this.outputShape[n-1]}`,a=`${s[n-2]} + 1 < ${this.outputShape[n-2]}`,o=vt(n);n===1?this.userCode=`
void main(){
int rc = getOutputCoords();
vec4 result = vec4(0.);
result.r = getChannel(getX(${e[0]} - rc - 1),
${e[0]} - rc - 1);
if(${r}){
result.g = getChannel(getX(${e[0]} - (rc + 1) - 1),
${e[0]} - (rc + 1) - 1);
}
setOutput(result);
}
`:this.userCode=`
void main() {
${o} rc = getOutputCoords();
vec4 result = vec4(0.);
result.r = ${i(s.slice())};
if(${r}){
result.g = ${l(s.slice())};
}
if(${a}) {
result.b = ${u(s.slice())};
if(${r}) {
result.a = ${c(s.slice())};
}
}
setOutput(result);
}
`;function i(h){return p(h)}function l(h){return h[n-1]="("+h[n-1]+" + 1)",p(h)}function u(h){return h[n-2]="("+h[n-2]+" + 1)",p(h)}function c(h){return h[n-1]="("+h[n-1]+" + 1)",h[n-2]="("+h[n-2]+" + 1)",p(h)}function p(h){let f=e.map((y,x)=>d(x,h)),m=f.join(","),g=f.slice(-2).join(",");return`getChannel(getX(${m}), vec2(${g}))`}function d(h,f){return t.indexOf(h)!==-1&&e[h]!==1?`${e[h]} - ${f[h]} - 1`:`${f[h]}`}}};function Fue(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dims:a}=s,o=r.shape.length,i=v.parseAxisParam(a,r.shape);if(o===0)return Ls({inputs:{x:r},backend:n});let l=H().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new Pue(r.shape,i):new $ue(r.shape,i);return n.runWebGLProgram(l,[r],r.dtype)}var Oue={kernelName:Bl,backendName:"webgl",kernelFunc:Fue},Mue=class{constructor(e,t){this.variableNames=["Image"],this.outputShape=[],this.customUniforms=[{name:"params",type:"vec4"}];let n=e[1],s=e[2];this.outputShape=e;let r="";typeof t=="number"?r=`float outputValue = ${t.toFixed(2)};`:r=`
vec3 fill = vec3(${t.join(",")});
float outputValue = fill[coords[3]];`,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int x = coords[2];
int y = coords[1];
float coordXFloat = (float(x) - params[0]) * params[3] -
(float(y) - params[1]) * params[2];
float coordYFloat = (float(x) - params[0]) * params[2] +
(float(y) - params[1]) * params[3];
int coordX = int(round(coordXFloat + params[0]));
int coordY = int(round(coordYFloat + params[1]));
${r}
if(coordX >= 0 && coordX < ${s} && coordY >= 0 && coordY < ${n}) {
outputValue = getImage(coords[0], coordY, coordX, coords[3]);
}
setOutput(outputValue);
}
`}},zue={kernelName:eu,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:s}=e,{radians:r,fillValue:a,center:o}=t,i=n,l=new Mue(s.shape,a),[u,c]=T.getImageCenter(o,s.shape[1],s.shape[2]),p=[[u,c,Math.sin(r),Math.cos(r)]];return i.runWebGLProgram(l,[s],s.dtype,p)}},Lue=`
// OpenGL ES does not support round function.
// The algorithm is based on banker's rounding.
float base = floor(x);
if ((x - base) < 0.5) {
return floor(x);
} else if ((x - base) > 0.5) {
return ceil(x);
} else {
if (mod(base, 2.0) == 0.0) {
return base;
} else {
return base + 1.0;
}
}
`,Bue=dt({opSnippet:Lue}),Wue={kernelName:Wl,backendName:"webgl",kernelFunc:Bue},Vue="return inversesqrt(x);",Uue=dt({opSnippet:Vue,cpuKernelImpl:une}),Gue={kernelName:Jo,backendName:"webgl",kernelFunc:Uue},tC=class{constructor(e,t,n,s,r,a,o=!0){this.variableNames=["updates","indices","defaultValue"],this.outputShape=a;let i=vt(r.length),l=vt(a.length),u="";n===1?u="i":n===2&&(u="i, j");let c=`getIndices(${u})`,p="";s===1?p="i":s===2&&(p="i, coords[1]");let d=`getUpdates(${p})`,h=t>1?"strides[j]":"strides";this.userCode=`
${i} strides = ${i}(${r});
void main() {
${l} coords = getOutputCoords();
float sum = 0.0;
bool found = false;
for (int i = 0; i < ${e}; i++) {
int flattenedIndex = 0;
for (int j = 0; j < ${t}; j++) {
int index = round(${c});
flattenedIndex += index * ${h};
}
if (flattenedIndex == coords[0]) {
sum += ${d};
found = true;
}
}
setOutput(mix(getDefaultValue(), sum, float(found)));
}
`}};function Hue(e){let{inputs:t,backend:n,attrs:s}=e,{indices:r,updates:a}=t,{shape:o}=s,{sliceRank:i,numUpdates:l,sliceSize:u,strides:c,outputSize:p}=T.calculateShapes(a,r,o),d=[p/u,u];if(p===0)return n.makeTensorInfo(o,r.dtype);let h=ve({inputs:{x:r},backend:n,attrs:{shape:[l,i]}}),f=ve({inputs:{x:a},backend:n,attrs:{shape:[l,u]}}),m=n.makeTensorInfo([],"float32",new Float32Array([0])),g=new tC(l,i,h.shape.length,f.shape.length,c,d),y=n.runWebGLProgram(g,[f,h,m],f.dtype),x=ve({inputs:{x:y},backend:n,attrs:{shape:o}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(m),x}var jue={kernelName:Vl,backendName:"webgl",kernelFunc:Hue},que=class{constructor(e,t,n,s){this.variableNames=["sortedSequence","values"],this.customUniforms=[{name:"numInputs",type:"int"}],this.outputShape=[e,n];let r="while (left < right) {",a=`for (int i = 0; i < ${Math.ceil(Math.log2(t+1))}; ++i) { if (left >= right) break;`,o=H().getNumber("WEBGL_VERSION")===2?r:a,i=s==="left"?"<":"<=";this.userCode=`
int findBound(int batch, float value) {
int left = 0;
int right = numInputs;
int mid;
${o}
mid = (left + right) / 2;
if (getSortedSequence(batch, mid) ${i} value) {
left = mid + 1;
} else {
right = mid;
}
}
return right;
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int valueIndex = coords[1];
float value = getValues(batch, valueIndex);
setOutput(float(findBound(batch, value)));
}
`}};function Xue(e){let{inputs:t,backend:n,attrs:s}=e,{sortedSequence:r,values:a}=t,{side:o}=s,i=new que(r.shape[0],r.shape[1],a.shape[1],o),l=[[r.shape[1]]];return n.runWebGLProgram(i,[r,a],"int32",l)}var Kue={kernelName:b0,backendName:"webgl",kernelFunc:Xue},Zue=class{constructor(e,t,n){this.variableNames=["c","a","b"],this.outputShape=t;let s,r;if(n>4)throw Error(`Where for rank ${n} is not yet supported`);if(n===1)r="resRC",s="resRC";else{let o=["resRC.x","resRC.y","resRC.z","resRC.w"],i=[],l=[];for(let u=0;u<t.length;u++)l.push(`${o[u]}`),u<e&&i.push(`${o[u]}`);s=i.join(),r=l.join()}let a=vt(n);this.userCode=`
void main() {
${a} resRC = getOutputCoords();
float cVal = getC(${s});
if (cVal >= 1.0) {
setOutput(getA(${r}));
} else {
setOutput(getB(${r}));
}
}
`}};function Yue(e){let{inputs:t,backend:n}=e,{condition:s,t:r,e:a}=t,o=new Zue(s.shape.length,r.shape,r.shape.length);return n.runWebGLProgram(o,[s,r,a],Un(r.dtype,a.dtype))}var Jue={kernelName:Ul,backendName:"webgl",kernelFunc:Yue},Que=`
// Stable and Attracting Fixed Point (0, 1) for Normalized Weights.
// see: https://arxiv.org/abs/1706.02515
float scaleAlpha = ${T.SELU_SCALEALPHA};
float scale = ${T.SELU_SCALE};
return (x >= 0.0) ? scale * x : scaleAlpha * (exp(x) - 1.0);
`,ece=dt({opSnippet:Que}),tce={kernelName:zc,backendName:"webgl",kernelFunc:ece},nce=hd+`
return 1.0 / (1.0 + exp(-1.0 * x));
`,sce=`
vec4 result = 1.0 / (1.0 + exp(-1.0 * x));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,rce=dt({opSnippet:nce,packedOpSnippet:sce,cpuKernelImpl:dne}),ace={kernelName:ei,backendName:"webgl",kernelFunc:rce},oce=`
if (isnan(x)) { return 0.0; }
return sign(x);
`,ice=dt({opSnippet:oce}),lce={kernelName:Lc,backendName:"webgl",kernelFunc:ice},uce=hd+`
return sin(x);
`,cce=dt({opSnippet:uce}),dce={kernelName:Qo,backendName:"webgl",kernelFunc:cce},pce=`
float e2x = exp(x);
return (e2x - 1.0 / e2x) / 2.0;
`,hce=dt({opSnippet:pce}),fce={kernelName:Hl,backendName:"webgl",kernelFunc:hce},mce=`
float epsilon = 1.1920928955078125e-7;
float threshold = log(epsilon) + 2.0;
bool too_large = x > -threshold;
bool too_small = x < threshold;
float result;
float exp_x = exp(x);
if (too_large){
result = x;
}
else if (too_small){
result = exp_x;
}
else{
result = log(exp_x + 1.0);
}
return result;
`,gce=dt({opSnippet:mce}),yce={kernelName:Bc,backendName:"webgl",kernelFunc:gce},Ace=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,paddings:o}=s;v.assert(r.shape.length<=4,()=>"spaceToBatchND for rank > 4 with a WebGL backend not implemented yet");let i=a.reduce((y,x)=>y*x),l=[[0,0]];l.push(...o);for(let y=1+a.length;y<r.shape.length;++y)l.push([0,0]);let u=[],c=Q9({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),p=T.getReshaped(c.shape,a,i,!1),d=T.getPermuted(p.length,a.length,!1),h=T.getReshapedPermuted(c.shape,a,i,!1),f=ve({inputs:{x:c},backend:n,attrs:{shape:p}}),m=os({inputs:{x:f},backend:n,attrs:{perm:d}}),g=ve({inputs:{x:m},backend:n,attrs:{shape:h}});return u.push(c),u.push(f),u.push(m),u.forEach(y=>n.disposeIntermediateTensorInfo(y)),g},xce={kernelName:jl,backendName:"webgl",kernelFunc:Ace};function bce(e){let{inputs:t,backend:n}=e,{indices:s,values:r,denseShape:a,defaultValue:o}=t;if(a.shape.length!==1)throw new Error(`Dense shape must be a vector, saw:
${a.shape}`);if(s.shape.length!==2)throw new Error(`Indices must be a matrix, saw:
${s.shape}`);if(r.shape.length!==1)throw new Error(`Values must be a vector, saw:
${r.shape}`);if(o.shape.length!==0)throw new Error(`Default value must be a scalar, saw:
${o.shape}`);let i=n.readSync(s.dataId),l=n.readSync(r.dataId),u=n.readSync(a.dataId),c=n.readSync(o.dataId)[0],[p,d,h,f,m]=hne(i,s.shape,s.dtype,l,r.dtype,u,c);return[n.makeTensorInfo(d,s.dtype,p),n.makeTensorInfo([d[0]],r.dtype,h),n.makeTensorInfo([f.length],"bool",new Uint8Array(f.map(g=>Number(g)))),n.makeTensorInfo([m.length],s.dtype,new Int32Array(m))]}var vce={kernelName:Jp,backendName:"webgl",kernelFunc:bce};function wce(e){let{inputs:t,backend:n}=e,{inputIndices:s,inputShape:r,newShape:a}=t;if(s.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape ${s.shape}`);if(r.shape.length!==1)throw new Error(`Input shape should be a vector but received shape ${r.shape}`);if(a.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${a.shape}`);let o=Array.from(n.readSync(r.dataId)),i=n.readSync(s.dataId),l=Array.from(n.readSync(a.dataId)),[u,c,p]=fne(i,s.shape,s.dtype,o,l);return[n.makeTensorInfo(c,s.dtype,u),n.makeTensorInfo([p.length],a.dtype,new Int32Array(p))]}var kce={kernelName:Wc,backendName:"webgl",kernelFunc:wce};function Sce(e){let{inputs:t,backend:n}=e,{data:s,indices:r,segmentIds:a}=t;if(s.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
${r.shape}`);if(a.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
${a.shape}`);let o=n.readSync(s.dataId),i=n.readSync(r.dataId),l=n.readSync(a.dataId),[u,c]=w9(o,s.shape,s.dtype,i,l,!0);return n.makeTensorInfo(c,s.dtype,u)}var Ice={kernelName:Qp,backendName:"webgl",kernelFunc:Sce};function Cce(e){let{inputs:t,backend:n}=e,{data:s,indices:r,segmentIds:a}=t;if(s.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
${r.shape}`);if(a.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
${a.shape}`);let o=n.readSync(s.dataId),i=n.readSync(r.dataId),l=n.readSync(a.dataId),[u,c]=w9(o,s.shape,s.dtype,i,l);return n.makeTensorInfo(c,s.dtype,u)}var Tce={kernelName:eh,backendName:"webgl",kernelFunc:Cce};function Nce(e){let{inputs:t,backend:n,attrs:s}=e,{sparseIndices:r,sparseValues:a,defaultValue:o}=t,{outputShape:i}=s,{sliceRank:l,numUpdates:u,sliceSize:c,strides:p,outputSize:d}=T.calculateShapes(a,r,i),h=!1;if(a.dtype==="string"){let y=n.bufferSync(r),x=n.bufferSync(a),A=v.decodeString(n.readSync(o.dataId)[0]),b=cne(y,x,i,d,c,u,l,p,A,h);return n.makeTensorInfo(i,b.dtype,b.values)}let f=new tC(u,l,r.shape.length,a.shape.length,p,[d,1],h),m=n.runWebGLProgram(f,[a,r,o],a.dtype),g=ve({inputs:{x:m},backend:n,attrs:{shape:i}});return n.disposeIntermediateTensorInfo(m),g}var Ece={kernelName:th,backendName:"webgl",kernelFunc:Nce};function Rce(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{numOrSizeSplits:a,axis:o}=s,i=v.parseAxisParam(o,r.shape)[0],l=T.prepareSplitSize(r,a,i),u=r.shape.length,c=new Array(u).fill(0),p=r.shape.slice();return l.map(d=>{let h=[...p];h[i]=d;let f=fd({inputs:{x:r},backend:n,attrs:{begin:c,size:h}});return c[i]+=d,f})}var _ce={kernelName:ql,backendName:"webgl",kernelFunc:Rce},j7="return sqrt(x);",Dce=dt({opSnippet:j7,packedOpSnippet:j7,cpuKernelImpl:mne}),$ce={kernelName:ti,backendName:"webgl",kernelFunc:Dce},Pce="return x * x;",Fce=dt({opSnippet:Pce}),Oce={kernelName:Vc,backendName:"webgl",kernelFunc:Fce},q7="return (a - b) * (a - b);",Mce=zn({opSnippet:q7,packedOpSnippet:q7}),zce={kernelName:ri,backendName:"webgl",kernelFunc:Mce};function Lce({inputs:e,attrs:t,backend:n}){let{x:s}=e,r=xr+`
return x > 0.0 ? 1.0 : float(${t.alpha});
`,a=new xa(s.shape,r);return n.runWebGLProgram(a,[s],s.dtype)}var Bce={kernelName:ii,backendName:"webgl",kernelFunc:Lce},Wce=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=n;let s=n.length,r=vt(n.length),a=vt(n.length),o="";if(s===1)o="coords * strides + begin";else{let i=0;o=n.map((l,u)=>(i++,n.length===1?`coords * strides[${u}] + begin[${u}]`:`coords[${i-1}] * strides[${u}] + begin[${u}]`)).join(",")}this.userCode=`
${r} begin = ${r}(${e});
${r} strides = ${r}(${t});
void main() {
${a} coords = getOutputCoords();
setOutput(getX(${o}));
}
`}};function Vce(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,end:o,strides:i,beginMask:l,endMask:u,ellipsisMask:c,newAxisMask:p,shrinkAxisMask:d}=s,{finalShapeSparse:h,finalShape:f,isIdentity:m,sliceDim0:g,isSimpleSlice:y,begin:x,end:A,strides:b}=Gt.sliceInfo(r.shape,a,o,i,l,u,c,p,d),w;if(m)w=ve({inputs:{x:r},backend:n,attrs:{shape:f}});else if(g||y){v.assert(r.shape.length>=1,()=>`Input must have rank at least 1, got: ${r.shape.length}`);let k=Gt.computeOutShape(x,A,b),E=fd({inputs:{x:r},backend:n,attrs:{begin:x,size:k}});w=ve({inputs:{x:E},backend:n,attrs:{shape:f}}),n.disposeIntermediateTensorInfo(E)}else if(n.shouldExecuteOnCPU([r])){let E=n.readSync(r.dataId),_=We(r.shape,r.dtype,E),D=gne(h,_,b,x);w=n.makeTensorInfo(f,r.dtype,D.values)}else{let E=new Wce(x,b,h);w=n.runWebGLProgram(E,[r],r.dtype)}let S=ve({inputs:{x:w},backend:n,attrs:{shape:f}});return n.disposeIntermediateTensorInfo(w),S}var Uce={kernelName:Xl,backendName:"webgl",kernelFunc:Vce};function Gce(e){let{inputs:t,backend:n,attrs:s}=e,{separator:r,nGramWidths:a,leftPad:o,rightPad:i,padWidth:l,preserveShortSequences:u}=s,{data:c,dataSplits:p}=t,d=n.readSync(c.dataId),h=n.readSync(p.dataId),[f,m]=yne(d,h,r,a,o,i,l,u);return[n.makeTensorInfo([f.length],"string",f),n.makeTensorInfo(p.shape,"int32",m)]}var Hce={kernelName:Uc,backendName:"webgl",kernelFunc:Gce};function jce(e){let{inputs:t,backend:n,attrs:s}=e,{skipEmpty:r}=s,{input:a,delimiter:o}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(a.shape.length!==1)throw new Error(`Input must be a vector, got shape: ${a.shape}`);if(o.shape.length!==0)throw new Error(`Delimiter must be a scalar, got shape: ${o.shape}`);let i=n.readSync(a.dataId),l=n.readSync(o.dataId)[0],[u,c,p]=Ane(i,l,r),d=c.length;return[n.makeTensorInfo([d,2],"int32",u),n.makeTensorInfo([d],"string",c),n.makeTensorInfo([2],"int32",new Int32Array(p))]}var qce={kernelName:nh,backendName:"webgl",kernelFunc:jce};function Xce(e){let{inputs:t,backend:n,attrs:s}=e,{numBuckets:r}=s,{input:a}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(r<=0)throw new Error("Number of buckets must be at least 1");let o=n.readSync(a.dataId),i=xne(o,r);return n.makeTensorInfo(a.shape,"int32",i)}var Kce={kernelName:sh,backendName:"webgl",kernelFunc:Xce},Zce="return tan(x);",Yce=dt({opSnippet:Zce}),Jce={kernelName:Kl,backendName:"webgl",kernelFunc:Yce},Qce=`
float e2x = exp(-2.0 * abs(x));
return sign(x) * (1.0 - e2x) / (1.0 + e2x);
`,ede=dt({opSnippet:Qce}),tde={kernelName:oi,backendName:"webgl",kernelFunc:ede},nde=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let a=0;a<n.length;a++)n[a]=e[a]*t[a];this.outputShape=n,this.rank=n.length;let s=vt(this.rank),r=sde(e);this.userCode=`
void main() {
${s} resRC = getOutputCoords();
setOutput(getA(${r}));
}
`}};function sde(e){let t=e.length;if(t>5)throw Error(`Tile for rank ${t} is not yet supported`);if(t===1)return`imod(resRC, ${e[0]})`;let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u"],s=[];for(let r=0;r<e.length;r++)s.push(`imod(${n[r]}, ${e[r]})`);return s.join()}function nC(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reps:a}=s;if(r.dtype==="string"||r.shape.length>5){let l=n.readSync(r.dataId),u=r.dtype==="string"?l.map(d=>v.decodeString(d)):l,c=We(r.shape,r.dtype,u),p=vne(c,a);return n.makeTensorInfo(p.shape,p.dtype,p.values)}let o=new nde(r.shape,a);return n.runWebGLProgram(o,[r],r.dtype)}var rde={kernelName:Ea,backendName:"webgl",kernelFunc:nC},ade=class{constructor(e){this.variableNames=["x","indices"],this.customUniforms=[{name:"n",type:"int"},{name:"firstPass",type:"int"},{name:"negativeInf",type:"float"},{name:"dir",type:"int"},{name:"inc",type:"int"}],this.outputShape=e,this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int elemIdx = coords[1];
// We compare elements pair-wise within a group of size 2 * inc.
// The comparing rule for each group alternates between ascending
// and descending. Within each group, we compare each pair at
// positions i and i+inc. To decide whether an element at position i
// is x0 or x1, we mod it by 2 * inc, if the result is smaller than
// inc, it is in the first half of the group, we denote it as x0,
// otherwise we denote it as x1.
// For example, as shown in the Bitonic top K paper referenced above,
// Figure5(a) shows that element[1] is in the
// second half of the group when group size is 2, but it is in the
// first half of the group when group size is 4.
bool isFirstInPair = imod(elemIdx, 2 * inc) < inc;
int i = isFirstInPair ? elemIdx : elemIdx - inc;
int i0 = firstPass == 1 ? i : int(getIndices(batch, i));
int i1 = firstPass == 1 ? i + inc : int(getIndices(batch, i + inc));
float x0 = i0 < n ? getX(batch, i0) : negativeInf;
float x1 = i1 < n ? getX(batch, i1) : negativeInf;
// Denotes which direction indices are in (ascending or descending).
bool reverse = imod(elemIdx, 2 * dir) >= dir;
bool isGreater = x0 > x1 || (x0 == x1 && i1 > i0);
if (reverse == isGreater) { // Elements in opposite order of direction
int iTemp = i0;
i0 = i1;
i1 = iTemp;
}
if (isFirstInPair) {
setOutput(float(i0));
} else {
setOutput(float(i1));
}
}
`}},ode=class{constructor(e){this.variableNames=["x","indices"],this.customUniforms=[{name:"n",type:"int"},{name:"firstPass",type:"int"},{name:"k",type:"int"}],this.outputShape=e,this.userCode=`
void main() {
// Takes max of indices (0, k), (1, k + 1), (2, k + 2) ...
ivec2 coords = getOutputCoords();
int batch = coords[0];
int elemIdx = coords[1];
// The output size is half of the previous size.
// If the previous sequence is | | | | _ _ _ _ | | | | _ _ _ _ (k=4),
// we only need to output the indices at positions |, the indices at
// positions _ can be thrown away, see Figure5(b) After Phase 2
// (Merge phase) in the Bitonic Top K paper referenced above.
// For example, the paper shows we only need to output the orange bars.
// The output sequence should look like this | | | | | | | |.
// Because the sequence is halved, to map the output index back
// to the previous sequence to find the corresponding value,
// we need to double the index. When we double the index,
// we basically interpolate a position, so 2i looks like
// | _ | _ | _ | _ | _ | _ | _. We move the | to the first k position
// of each 2k positions by - elemIdx % k. E.g. for output at
// index 4,5,6,7, we want to get the corresponding element at
// original index 8,9,10,11, for output at index 8,9,10,11,
// we want to get the corresponding element at original index
// 16,17,18,19, so on and so forth.
int i = elemIdx < k ? elemIdx : (elemIdx * 2 - imod(elemIdx, k));
int i0 = firstPass == 1 ? i : int(getIndices(batch, i));
int i1 = firstPass == 1 ? i + k : int(getIndices(batch, i + k));
float x0 = getX(batch, i0);
float x1 = i1 < n ? getX(batch, i1) : x0;
setOutput(x0 >= x1 ? float(i0) : float(i1));
}
`}};function Mi(e,t){t!==null&&e.disposeIntermediateTensorInfo(t)}function X7(e){let t=1;for(;t<e;)t*=2;return t}function ide(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{k:a,sorted:o}=s,i=H().getNumber("TOPK_LAST_DIM_CPU_HANDOFF_SIZE_THRESHOLD"),l=H().getNumber("TOPK_K_CPU_HANDOFF_THRESHOLD"),u=r.shape,c=u[u.length-1];if(n.shouldExecuteOnCPU([r])||c<i||a>l){let D=n.readSync(r.dataId),[R,P]=wne(D,u,r.dtype,a,o);return[n.makeTensorInfo(R.shape,R.dtype,R.values),n.makeTensorInfo(P.shape,P.dtype,P.values)]}if(a===0)return u[u.length-1]=0,[n.makeTensorInfo(u,r.dtype,[]),n.makeTensorInfo(u,"int32",[])];if(c===1)return[r,Gh({attrs:{shape:u,dtype:"int32",value:0},backend:n})];let p=n.texData.get(r.dataId),d=p!==null&&p.isPacked,h=d?n.unpackTensor(r):r,m=v.sizeFromShape(u)/c,g=ve({inputs:{x:h},attrs:{shape:[m,c]},backend:n});d&&Mi(n,h);let y=X7(a),x=X7(c),A=null,b=()=>A===null?[g,g]:[g,A],w=(D,R,P)=>{let C=b(),M=new ade(P),G=[[c],[A===null?1:0],[Number.NEGATIVE_INFINITY],[D],[R]],K=A;A=n.runWebGLProgram(M,C,"int32",G),Mi(n,K)};for(let D=1;D<y;D*=2){let R=D*2;for(let P=D;P>=1;P/=2)w(R,P,[m,x])}for(let D=x;D>y;D/=2){let R=b(),P=new ode([m,D/2]),M=[[c],[A===null?1:0],[y]],L=A;A=n.runWebGLProgram(P,R,"int32",M),Mi(n,L);let G=y/2,K=G*2;for(let X=G;X>=1;X/=2)w(K,X,A.shape)}let S=A;A=fd({inputs:{x:A},backend:n,attrs:{begin:0,size:[m,a]}}),Mi(n,S);let k=q9({inputs:{x:g,indices:A},backend:n,attrs:{axis:1,batchDims:1}});Mi(n,g);let E=u.slice(0,-1);E.push(a),S=A,A=ve({inputs:{x:A},attrs:{shape:E},backend:n}),Mi(n,S);let _=k;return k=ve({inputs:{x:k},attrs:{shape:E},backend:n}),Mi(n,_),[k,A]}var lde={kernelName:Zl,backendName:"webgl",kernelFunc:ide},ude=class{constructor(e,t,n,s,r,a){this.variableNames=["Image","Transforms"],this.outputShape=a;let o=n==="nearest"?1:2,i;switch(s){case"constant":i=1;break;case"reflect":i=2;break;case"wrap":i=3;break;case"nearest":i=4;break;default:i=1;break}this.userCode=`
float mapCoord(float outCoord, float len) {
float inCoord = outCoord;
if(${i} == 2) {
if (inCoord < 0.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
float sz2 = 2.0 * len;
if (inCoord < sz2) {
inCoord = sz2 * float(int(float(-inCoord / sz2))) +
inCoord;
}
inCoord = inCoord < -len ? inCoord + sz2 : -inCoord - 1.0;
}
} else if (inCoord > len - 1.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
float sz2 = 2.0 * len;
inCoord -= sz2 * float(int(float(inCoord / sz2)));
if (inCoord >= len) {
inCoord = sz2 - inCoord - 1.0;
}
}
}
return clamp(inCoord, 0.0, len - 1.0);
} else if (${i} == 3) {
if (inCoord < 0.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
float sz = len - 1.0;
inCoord += len * (float(int(float(-inCoord / sz))) + 1.0);
}
} else if (inCoord > len - 1.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
float sz = len - 1.0;
inCoord -= len * float(int(float(inCoord / sz)));
}
}
return clamp(inCoord, 0.0, len - 1.0);
} else if (${i} == 4) {
return clamp(outCoord, 0.0, len - 1.0);
} else {
return outCoord;
}
}
float readWithFillValue(int batch, int coordY, int coordX,
int channel) {
float outputValue;
if (0 <= coordY && coordY < ${e} && 0 <= coordX && coordX < ${t}) {
outputValue = getImage(batch, coordY, coordX, channel);
} else {
outputValue = float(${r});
}
return outputValue;
}
void main() {
ivec4 coords = getOutputCoords();
float outputValue;
int batch = coords[0];
int x = coords[2];
int y = coords[1];
int channel = coords[3];
float xf = float(x);
float yf = float(y);
float a1 = getTransforms(batch, 0);
float a2 = getTransforms(batch, 1);
float a3 = getTransforms(batch, 2);
float b1 = getTransforms(batch, 3);
float b2 = getTransforms(batch, 4);
float b3 = getTransforms(batch, 5);
float c1 = getTransforms(batch, 6);
float c2 = getTransforms(batch, 7);
float projection = c1 * xf + c2 * yf + 1.0;
if (projection == 0.0) {
outputValue = float(${r});
} else {
float inX = (a1 * xf + a2 * yf + a3) / projection;
float inY = (b1 * xf + b2 * yf + b3) / projection;
float mapX = mapCoord(inX, float(${t}));
float mapY = mapCoord(inY, float(${e}));
if (${o} == 1) {
int coordY = int(round(mapY));
int coordX = int(round(mapX));
outputValue = readWithFillValue(batch, coordY, coordX,
channel);
} else {
float yFloor = floor(mapY);
float xFloor = floor(mapX);
float yCeil = yFloor + 1.0;
float xCeil = xFloor + 1.0;
float valueYFloor = (xCeil - mapX) *
readWithFillValue(batch, int(yFloor), int(xFloor), channel) +
(mapX - xFloor) *
readWithFillValue(batch, int(yFloor), int(xCeil), channel);
float valueYCeil = (xCeil - mapX) *
readWithFillValue(batch, int(yCeil), int(xFloor), channel) +
(mapX - xFloor) *
readWithFillValue(batch, int(yCeil), int(xCeil), channel);
outputValue = (yCeil - mapY) * valueYFloor +
(mapY - yFloor) * valueYCeil;
}
}
setOutput(outputValue);
}
`}};function cde(e){let{inputs:t,backend:n,attrs:s}=e,{image:r,transforms:a}=t,{interpolation:o,fillMode:i,fillValue:l,outputShape:u}=s,[c,p,d,h]=r.shape,[f,m]=u!=null?u:[p,d],g=[c,f,m,h],y=new ude(p,d,o,i,l,g);return n.runWebGLProgram(y,[r,a],"float32")}var dde={kernelName:Yl,backendName:"webgl",kernelFunc:cde};function pde(e){let{inputs:t,attrs:n,backend:s}=e,{axis:r}=n,{x:a}=t;id(a,"unique"),console.warn("WARNING: ","UI might be locked temporarily as data is being downloaded");let o=s.readSync(a.dataId),{outputValues:i,outputShape:l,indices:u}=kne(o,r,a.shape,a.dtype);return[s.makeTensorInfo(l,a.dtype,i),s.makeTensorInfo([u.length],"int32",u)]}var hde={kernelName:v0,backendName:"webgl",kernelFunc:pde};function fde(e){let{inputs:t,backend:n,attrs:s}=e,{value:r}=t,{axis:a}=s;a<0&&(a+=r.shape.length);let o=r,i=o.shape.length,l=r.shape[a],u=new Array(i-1),c=0;for(let m=0;m<i;m++)m!==a&&(u[c++]=o.shape[m]);let p=[],d=new Array(i).fill(0),h=o.shape.slice();h[a]=1;let f=new Array(l);for(let m=0;m<f.length;m++){d[a]=m;let g=fd({inputs:{x:o},backend:n,attrs:{begin:d,size:h}}),y=ve({inputs:{x:g},backend:n,attrs:{shape:u}});f[m]=y,p.push(g)}return p.forEach(m=>n.disposeIntermediateTensorInfo(m)),f}var mde={kernelName:Jl,backendName:"webgl",kernelFunc:fde},gde=class{constructor(e,t){this.variableNames=["x","segmentIds"];let n=e.windowSize,s=e.batchSize,r=e.inSize,a=e.numSegments,o=a*Math.ceil(r/n);this.outputShape=[s,o];let i="0.0",l="sumValue",u=Math.floor(n/4)*4,c=n%4,p=`
sumValue += dot(values, segFilter);
`,d="";r%n>0&&(d=`
if (inIdx < 0 || inIdx >= ${r}) {
return initializationValue;
}
`);let h="";r%n>0&&(h=`
if (inIdx < 0 || inIdx >= ${r}) {
return -1.0;
}
`),this.userCode=`
const float initializationValue = ${i};
float getValue(int batch, int inIdx) {
${d}
return getX(batch, inIdx);
}
float getSegmentIdAtIndex(int inIdx) {
${h}
return getSegmentIds(inIdx);
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = int(floor(float(outIdx) / float(
${a})) * float(${n}));
int currentSeg = int(mod(float(outIdx), float(${a})));
float sumValue = 0.0;
for (int i = 0; i < ${u}; i += 4) {
int inIdx = inOffset + i;
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
getValue(batch, inIdx + 3)
);
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 3)) == currentSeg ? 1 : 0
);
${p}
}
int inIdx = inOffset + ${u};
if (${c===1}) {
vec4 values = vec4(
getValue(batch, inIdx),
initializationValue,
initializationValue,
initializationValue
);
int inIdxSeg = int(getSegmentIdAtIndex(inIdx));
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
0,
0,
0
);
${p}
} else if (${c===2}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
initializationValue,
initializationValue
);
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
0,
0
);
${p}
} else if (${c===3}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
initializationValue
);
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
0
);
${p}
}
setOutput(${l});
}
`}};function yde(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,segmentIds:a}=t,{numSegments:o}=s,i=r.shape.length,l=[],u=0,c=T.getAxesPermutation([u],i),p=r;c!=null&&(p=os({inputs:{x:r},backend:n,attrs:{perm:c}}),l.push(p),u=T.getInnerMostAxes(1,i)[0]);let d=T.segment_util.computeOutShape(p.shape,u,o),h=v.sizeFromShape([p.shape[u]]),f=ve({inputs:{x:p},backend:n,attrs:{shape:[-1,h]}});l.push(f);let m=ih(r.dtype),g=(b,w,S,k,E)=>{let _=b.shape[0],D=b.shape[1],R=T.segment_util.segOpComputeOptimalWindowSize(D,E),P={windowSize:R,inSize:D,batchSize:_,numSegments:E},C=new gde(P,w),M=n.compileAndRun(C,[b,S],k);if(l.push(M),M.shape[1]===E)return M;let L=eC({backend:n,attrs:{start:0,stop:E,step:1,dtype:"float32"}}),G=nC({inputs:{x:L},backend:n,attrs:{reps:[D/R]}});return l.push(L),l.push(G),g(M,w,G,k,E)},y=g(f,"unsortedSegmentSum",a,m,o),x=ve({inputs:{x:y},backend:n,attrs:{shape:d}}),A=x;if(c!=null){l.push(x);let b=T.getUndoAxesPermutation(c);A=os({inputs:{x:A},backend:n,attrs:{perm:b}})}return l.forEach(b=>n.disposeIntermediateTensorInfo(b)),A}var Ade={kernelName:rh,backendName:"webgl",kernelFunc:yde},xde=[Ase,bse,kse,Cse,Nse,_se,$se,Fse,Lse,Wse,Gse,qse,Zse,ere,sre,are,ire,dre,hre,mre,xre,Cre,Nre,Rre,Ore,zre,Vre,Qne,Hre,Zre,eae,oae,lae,cae,pae,fae,yae,bae,kae,Iae,Tae,Eae,Dae,Pae,zae,Bae,Uae,jae,Xae,Jae,noe,ooe,uoe,poe,hoe,moe,yoe,xoe,voe,koe,Toe,Roe,$oe,Foe,zoe,Woe,Hoe,Koe,Jne,Yoe,Xre,eie,sie,oie,tse,cie,fie,gie,bie,kie,Tie,Rie,Pie,zie,Wie,Uie,qie,Kie,Yie,tle,sle,ale,ile,ule,hle,yle,vle,Ele,ose,$le,Ole,Lle,Vle,Dre,Hle,qle,Kle,Jle,nue,sse,rue,oue,iue,$re,Ile,cue,fue,Aue,lse,wue,Iue,Eue,Due,Oue,zue,Wue,Gue,jue,Kue,Jue,tce,ace,lce,dce,fce,Sre,Tle,yce,xce,vce,kce,Ice,Tce,Ece,_ce,$ce,Oce,zce,Bce,Uce,Hce,qce,Kce,Cle,mse,Jce,tde,rde,lde,dde,gse,hde,mde,Ade,jle];for(let e of xde)tr(e);var jt;(function(e){e[e.float32=0]="float32",e[e.int32=1]="int32",e[e.bool=2]="bool",e[e.string=3]="string",e[e.complex64=4]="complex64"})(jt||(jt={}));var zp;(function(e){e[e.linear=0]="linear",e[e.relu=1]="relu",e[e.relu6=2]="relu6",e[e.prelu=3]="prelu",e[e.leakyrelu=4]="leakyrelu",e[e.sigmoid=5]="sigmoid",e[e.elu=6]="elu"})(zp||(zp={}));var sC;function bde(e){sC=e.wasm.cwrap(eo,null,["number","array","number","number","array","number","number","number","number","number","number","number","number"])}function vde(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a,bias:o,preluActivationWeights:i}=t;if(r.dtype!=="float32"||a.dtype!=="float32")throw new Error("_FusedMatMul for non non-float32 tensors not yet supported.");let{transposeA:l,transposeB:u,activation:c,leakyreluAlpha:p}=s,d=n.dataIdMap.get(r.dataId).id,h=n.dataIdMap.get(a.dataId).id,f=0;if(o!=null){let E=n.dataIdMap.get(o.dataId);if(E.shape.length!==1)throw new Error(`_FusedMatMul only supports rank-1 bias but got rank ${E.shape.length}.`);f=E.id}let m=i==null?0:n.dataIdMap.get(i.dataId).id,g=zp[c];if(g==null)throw new Error(`${c} activation not yet supported for FusedConv2D in the wasm backend.`);let y=l?r.shape[2]:r.shape[1],x=u?a.shape[1]:a.shape[2],A=nu.assertAndGetBroadcastShape(r.shape.slice(0,-2),a.shape.slice(0,-2)),b=n.makeOutput([...A,y,x],r.dtype),w=n.dataIdMap.get(b.dataId).id,S=new Uint8Array(new Int32Array(r.shape).buffer),k=new Uint8Array(new Int32Array(a.shape).buffer);return sC(d,S,r.shape.length,h,k,a.shape.length,l,u,g,f,m,p||0,w),b}var wde={kernelName:eo,backendName:"wasm",setupFunc:bde,kernelFunc:vde};function Nn(e,t){let n;function s(a){n=a.wasm.cwrap(e,null,["number","number","number"])}function r(a){let{backend:o,inputs:{x:i}}=a,l=o.dataIdMap.get(i.dataId).id,u=o.makeOutput(i.shape,t||i.dtype),c=o.dataIdMap.get(u.dataId).id;return v.sizeFromShape(u.shape)===0||n(l,jt[i.dtype],c),u}return{kernelName:e,backendName:"wasm",setupFunc:s,kernelFunc:r}}var kde=Nn(pl);function Ln(e,t,n){let s;function r(o){s=o.wasm.cwrap(e,null,["number","array","number","number","array","number","number","number"])}function a(o){let{backend:i,inputs:l}=o,{a:u,b:c}=l,p=i.dataIdMap.get(u.dataId).id,d=i.dataIdMap.get(c.dataId).id,h=n!=null?n:u.dtype,f=T.assertAndGetBroadcastShape(u.shape,c.shape),m=i.makeOutput(f,h);if(v.sizeFromShape(f)===0)return m;let g=new Uint8Array(new Int32Array(u.shape).buffer),y=new Uint8Array(new Int32Array(c.shape).buffer),x=i.dataIdMap.get(m.dataId).id;return(()=>s(p,g,u.shape.length,d,y,c.shape.length,jt[u.dtype],x))(),m}return{kernelName:e,backendName:"wasm",setupFunc:r,kernelFunc:a}}var Sde=!0,Ide=Ln(Ta,Sde),rC;function Cde(e){rC=e.wasm.cwrap(fo,null,["array","number","number","number"])}function Tde(e){let{inputs:t,backend:n}=e,s=n.makeOutput(t[0].shape,t[0].dtype);if(v.sizeFromShape(s.shape)===0)return s;let r=t.map(i=>n.dataIdMap.get(i.dataId).id),a=new Uint8Array(new Int32Array(r).buffer),o=n.dataIdMap.get(s.dataId).id;return rC(a,r.length,jt[s.dtype],o),s}var Nde={kernelName:fo,backendName:"wasm",setupFunc:Cde,kernelFunc:Tde};function $2(e){let{inputs:{x:t},backend:n}=e,s=n.makeOutput(t.shape,t.dtype),r=n.typedArrayFromHeap(t);return n.typedArrayFromHeap(s).set(r),s}var Ede={kernelName:$o,backendName:"wasm",kernelFunc:$2},aC;function Rde(e){aC=e.wasm.cwrap(Qr,null,["number","array","number","number","number","array","number"])}function co(e){let{inputs:t,backend:n,attrs:s}=e,[r,a]=Dde(t.x.shape,s.perm),o=!0;for(let f=0;f<a.length;f++)a[f]!==f&&(o=!1);let i=_de(t.x.shape,s.perm),l={dataId:t.x.dataId,shape:r,dtype:t.x.dtype};if(o){let f=$2({inputs:t,backend:n});return f.shape=i,f}let u=n.makeOutput(i,l.dtype),c=n.dataIdMap.get(l.dataId).id,p=n.dataIdMap.get(u.dataId).id,d=new Uint8Array(new Int32Array(a).buffer),h=new Uint8Array(new Int32Array(l.shape).buffer);return aC(c,h,l.shape.length,jt[l.dtype],p,d,a.length),u}function _de(e,t){let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[t[s]];return n}function Dde(e,t){let n=[],s=[];for(let r=0;r<e.length;++r)e[r]!==1&&n.push(e[r]),e[t[r]]!==1&&s.push(t[r]);for(let r=0;r<s.length;++r){let a=-1;for(let o=0;o<s.length;++o)s[o]>=r&&(a===-1||s[a]>s[o])&&(a=o);s[a]=r}return[n,s]}var $de={kernelName:Qr,backendName:"wasm",kernelFunc:co,setupFunc:Rde};function mi(e,t,n){let s=e.shape,r=e.shape.length,a=v.parseAxisParam(t,s),o=a,i=T.getAxesPermutation(o,r),l=null,u=!1;if(i!=null){let c=new Array(r);for(let h=0;h<c.length;h++)c[h]=s[i[h]];o=T.getInnerMostAxes(o.length,r),l=co({inputs:{x:e},attrs:{perm:i},backend:n});let p=n.dataIdMap.get(e.dataId).id;n.dataIdMap.get(l.dataId).id!==p&&(u=!0)}return{transposed:l,originalAxes:a,axes:o,inputWasTransposed:u}}var oC;function Pde(e){oC=e.wasm.cwrap(wc,null,["number, number, number"])}function Fde(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,l=t.dataIdMap.get(o.dataId).id,u=o,{transposed:c,axes:p,originalAxes:d,inputWasTransposed:h}=mi(o,r,t);if(h){let A=t.dataIdMap.get(c.dataId).id;u=c,l=A}let f=u.shape.length;T.assertAxesAreInnerMostDims("all",p,f);let[m,g]=T.computeOutAndReduceShapes(u.shape,p),y=v.sizeFromShape(g),x=t.makeOutput(m,o.dtype);if(v.sizeFromShape(u.shape)!==0){let A=t.dataIdMap.get(x.dataId).id;oC(l,y,A)}if(h&&t.disposeData(c.dataId),a){let A=T.expandShapeToKeepDim(x.shape,d);x.shape=A}return x}var Ode={kernelName:wc,backendName:"wasm",setupFunc:Pde,kernelFunc:Fde},iC;function Mde(e){iC=e.wasm.cwrap(kc,null,["number, number, number"])}function zde(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,l=t.dataIdMap.get(o.dataId).id,u=o,{transposed:c,axes:p,originalAxes:d,inputWasTransposed:h}=mi(o,r,t);if(h){let A=t.dataIdMap.get(c.dataId).id;u=c,l=A}let f=u.shape.length;T.assertAxesAreInnerMostDims("any",p,f);let[m,g]=T.computeOutAndReduceShapes(u.shape,p),y=v.sizeFromShape(g),x=t.makeOutput(m,o.dtype);if(v.sizeFromShape(u.shape)!==0){let A=t.dataIdMap.get(x.dataId).id;iC(l,y,A)}if(h&&t.disposeData(c.dataId),a){let A=T.expandShapeToKeepDim(x.shape,d);x.shape=A}return x}var Lde={kernelName:kc,backendName:"wasm",setupFunc:Mde,kernelFunc:zde},lC;function Bde(e){lC=e.wasm.cwrap(mo,null,["number","number","number","number","number"])}function Wde(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r}=s,{x:a}=n,o=t.dataIdMap.get(a.dataId).id,i=o,l=a,{transposed:u,axes:c,inputWasTransposed:p}=mi(a,r,t);if(p){let y=t.dataIdMap.get(u.dataId).id;y!==o&&(l=u,i=y)}let d=l.shape.slice(0,-1),h=t.makeOutput(d,"int32"),f=t.dataIdMap.get(h.dataId).id,m=v.sizeFromShape(h.shape),g=l.shape[c[0]];return lC(i,jt[l.dtype],m,g,f),p&&t.disposeData(u.dataId),h}var Vde={kernelName:mo,backendName:"wasm",kernelFunc:Wde,setupFunc:Bde},uC;function Ude(e){uC=e.wasm.cwrap(go,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Gde(e){let{inputs:t,attrs:n,backend:s}=e,r=t.x,a=s.dataIdMap.get(r.dataId).id,{filterSize:o,strides:i,pad:l,dimRoundingMode:u}=n,c=T.computePool2DInfo(r.shape,o,i,1,l,u),p=c.filterHeight,d=c.filterWidth,h=c.padInfo.top,f=c.padInfo.right,m=c.padInfo.bottom,g=c.padInfo.left,y=c.strideHeight,x=c.strideWidth,A=c.inChannels;if(c.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${c.dataFormat}'. Please use 'channelsLast'.`);if(c.dilationWidth!==1||c.dilationHeight!==1)throw new Error(`was backend only supports average pooling with dilation = [1, 1], got [${c.dilationHeight}, ${c.dilationWidth}].`);let b=s.makeOutput(c.outShape,"float32"),w=s.dataIdMap.get(b.dataId).id;return uC(a,r.shape[0],r.shape[1],r.shape[2],p,d,h,f,m,g,y,x,A,w),b}var Hde={kernelName:go,backendName:"wasm",setupFunc:Ude,kernelFunc:Gde};function As(e){let{inputs:t,attrs:n}=e,{x:s}=t,{shape:r}=n,a=v.sizeFromShape(s.shape),o=v.inferFromImplicitShape(r,a);return v.assert(a===v.sizeFromShape(o),()=>`new shape: ${o}, old shape: ${s.shape}. New shape and old shape must have the same number of elements.`),e.backend.incRef(s.dataId),{dataId:s.dataId,shape:o,dtype:s.dtype}}var jde={kernelName:Ll,backendName:"wasm",kernelFunc:As},cC;function qde(e){cC=e.wasm.cwrap(yo,null,["number","array","number","number","array","number","number","number","number"])}function Xde(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a}=t,{transposeA:o,transposeB:i}=s;if(r.dtype!=="float32"||a.dtype!=="float32")throw new Error("BatchMatMul for non non-float32 tensors not yet supported.");let l=r.shape.length,u=a.shape.length,c=o?r.shape[l-2]:r.shape[l-1],p=i?a.shape[u-1]:a.shape[u-2],d=o?r.shape[l-1]:r.shape[l-2],h=i?a.shape[u-2]:a.shape[u-1],f=r.shape.slice(0,-2),m=a.shape.slice(0,-2),g=v.sizeFromShape(f),y=v.sizeFromShape(m),A=nu.assertAndGetBroadcastShape(r.shape.slice(0,-2),a.shape.slice(0,-2)).concat([d,h]);v.assert(c===p,()=>`Error in matMul: inner shapes (${c}) and (${p}) of Tensors with shapes ${r.shape} and ${a.shape} and transposeA=${o} and transposeB=${i} must match.`);let b=o?[g,c,d]:[g,d,c],w=i?[y,h,p]:[y,p,h],S=As({inputs:{x:r},backend:n,attrs:{shape:b}}),k=As({inputs:{x:a},backend:n,attrs:{shape:w}}),E=n.dataIdMap.get(S.dataId).id,_=n.dataIdMap.get(k.dataId).id,D=o?S.shape[2]:S.shape[1],R=i?k.shape[1]:k.shape[2],P=Math.max(g,y),C=n.makeOutput([P,D,R],S.dtype),M=n.dataIdMap.get(C.dataId).id,L=new Uint8Array(new Int32Array(S.shape).buffer),G=new Uint8Array(new Int32Array(k.shape).buffer);return cC(E,L,S.shape.length,_,G,k.shape.length,o,i,M),n.disposeData(S.dataId),n.disposeData(k.dataId),C.shape=A,C}var Kde={kernelName:yo,backendName:"wasm",setupFunc:qde,kernelFunc:Xde};function cl(e){let{inputs:{x:t},attrs:{begin:n,size:s},backend:r}=e,[a,o]=Gt.parseSliceParams(t,n,s),i=Gt.isSliceContinous(t.shape,a,o),l=r.readSync(t.dataId),u=r.makeOutput(o,t.dtype),c=v.computeStrides(t.shape),p=r.dataIdMap.get(u.dataId);if(i){let f=Gt.computeFlatOffset(a,c);return t.dtype==="string"?p.stringBytes=l.slice(f,f+v.sizeFromShape(o)):r.typedArrayFromHeap(u).set(l.subarray(f,f+v.sizeFromShape(o))),u}if(t.dtype==="string"){let f=zm(l,a,o,t.shape,t.dtype);return p.stringBytes=f,u}let d=r.typedArrayFromHeap(u),h=t.shape.length;if(h===2)Zde(l,c[0],d,a,o);else if(h===3)Yde(l,c[0],c[1],d,a,o);else if(h===4)Jde(l,c[0],c[1],c[2],d,a,o);else{let f=zm(l,a,o,t.shape,t.dtype);d.set(f)}return u}function Zde(e,t,n,s,r){let a=0,o=s[0],i=s[1],l=o+r[0];for(let u=o;u<l;u++){let c=u*t+i;n.set(e.subarray(c,c+r[1]),a),a+=r[1]}}function Yde(e,t,n,s,r,a){let o=0,i=r[0],l=r[1],u=r[2],c=i+a[0],p=l+a[1];for(let d=i;d<c;d++)for(let h=l;h<p;h++){let f=d*t+h*n+u;s.set(e.subarray(f,f+a[2]),o),o+=a[2]}}function Jde(e,t,n,s,r,a,o){let i=0,l=a[0],u=a[1],c=a[2],p=l+o[0],d=u+o[1],h=c+o[2],f=a[3];for(let m=l;m<p;m++)for(let g=u;g<d;g++)for(let y=c;y<h;y++){let x=m*t+g*n+y*s+f;r.set(e.subarray(x,x+o[3]),i),i+=o[3]}}var Qde={kernelName:Gl,backendName:"wasm",kernelFunc:cl};function epe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,crops:o}=s,i=a.reduce((y,x)=>y*x),l=T.getReshaped(r.shape,a,i),u=T.getPermuted(l.length,a.length),c=T.getReshapedPermuted(r.shape,a,i),p=T.getSliceBeginCoords(o,a.length),d=T.getSliceSize(c,o,a.length),h=As({inputs:{x:r},backend:n,attrs:{shape:l}}),f=co({inputs:{x:h},backend:n,attrs:{perm:u}}),m=As({inputs:{x:f},backend:n,attrs:{shape:c}}),g=cl({inputs:{x:m},backend:n,attrs:{begin:p,size:d}});return n.disposeData(h.dataId),n.disposeData(f.dataId),n.disposeData(h.dataId),g}var tpe={kernelName:fl,backendName:"wasm",kernelFunc:epe};function md(e){let{inputs:{x:t},attrs:{dtype:n},backend:s}=e,r=s.makeOutput(t.shape,n),a=s.typedArrayFromHeap(t);return s.typedArrayFromHeap(r).set(a),r}var npe={kernelName:Ao,backendName:"wasm",kernelFunc:md},spe=Nn(xo),dC;function rpe(e){dC=e.wasm.cwrap(Na,null,["number","number","number","number"])}function ape(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{clipValueMin:a,clipValueMax:o}=s,i=n.dataIdMap.get(r.dataId).id,l=n.makeOutput(r.shape,r.dtype),u=n.dataIdMap.get(l.dataId).id;return dC(i,a,o,u),l}var ope={kernelName:Na,backendName:"wasm",setupFunc:rpe,kernelFunc:ape};function pC(e){let{inputs:t,backend:n}=e,s=v.parseAxisParam(e.attrs.axis,t[0].shape)[0],r=T.computeOutShape(t.map(h=>h.shape),s),a=t.filter(h=>v.sizeFromShape(h.shape)>0);if(a.length===1)return $2({inputs:{x:a[0]},backend:n});let o=n.makeOutput(r,t[0].dtype);if(v.sizeFromShape(r)===0)return o;let i=a.map(h=>h.shape);if(T.assertParamsConsistent(i,s),a[0].dtype==="string"){let h=a.map(A=>{let b=v.sizeFromShape(A.shape.slice(s));return As({inputs:{x:A},backend:n,attrs:{shape:[-1,b]}})}),f=h.map(A=>({vals:n.readSync(A.dataId),shape:A.shape}));r=T.computeOutShape(h.map(A=>A.shape),1);let m=h[0].shape[0]===1,g=Bx(f,r,t[0].dtype,m),y=T.computeOutShape(a.map(A=>A.shape),s);o.shape=y;let x=n.dataIdMap.get(o.dataId);return x.stringBytes=T.fromStringArrayToUint8(g),h.forEach(A=>n.disposeData(A.dataId)),o}let l=v.sizeFromShape(a[0].shape.slice(0,s)),u=0,c=a.map(h=>{let f=v.sizeFromShape(h.shape.slice(s));return u+=f,f}),p=a.map(h=>n.typedArrayFromHeap(h)),d=n.typedArrayFromHeap(o);for(let h=0;h<l;h++){let f=h*u;for(let m=0;m<p.length;m++){let g=c[m],y=h*g,x=p[m].subarray(y,y+g);d.set(x,f),f+=g}}return o}var ipe={kernelName:ml,backendName:"wasm",kernelFunc:pC},hC;function lpe(e){hC=e.wasm.cwrap(bo,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function upe(e){let{inputs:t,attrs:n,backend:s}=e,{x:r,filter:a}=t,o=s.dataIdMap.get(r.dataId).id,i=s.dataIdMap.get(a.dataId).id,{strides:l,dilations:u,pad:c,dimRoundingMode:p,dataFormat:d}=n,h=T.convertConv2DDataFormat(d),f=T.computeConv2DInfo(r.shape,a.shape,l,u,c,p,!1,h),m=f.filterHeight,g=f.filterWidth,y=f.padInfo.top,x=f.padInfo.right,A=f.padInfo.bottom,b=f.padInfo.left,w=f.dilationHeight,S=f.dilationWidth,k=f.strideHeight,E=f.strideWidth,_=f.inChannels,D=f.outChannels,R=f.padInfo.type==="SAME"?1:0;if(f.dataFormat!=="channelsLast")throw new Error(`wasm backend Conv2D does not support dataFormat:'${f.dataFormat}'. Please use 'channelsLast'.`);let P=s.makeOutput(f.outShape,"float32"),C=s.dataIdMap.get(P.dataId).id;return hC(o,r.shape[0],r.shape[1],r.shape[2],i,m,g,y,x,A,b,R,w,S,k,E,_,D,C),P}var cpe={kernelName:bo,backendName:"wasm",setupFunc:lpe,kernelFunc:upe},fC;function dpe(e){fC=e.wasm.cwrap(vo,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function ppe(e){let{backend:t,inputs:n,attrs:s}=e,{dy:r,filter:a}=n,{strides:o,pad:i,dataFormat:l,dimRoundingMode:u,inputShape:c}=s,p=1,d=T.convertConv2DDataFormat(l),h=T.computeConv2DInfo(c,a.shape,o,p,i,u,!1,d),{batchSize:f,filterHeight:m,filterWidth:g,inChannels:y,inHeight:x,inWidth:A,outChannels:b,outHeight:w,outWidth:S,strideHeight:k,strideWidth:E}=h,_=m-1-h.padInfo.top,D=g-1-h.padInfo.left,R=h.dataFormat==="channelsLast",P=v.computeStrides(h.inShape),C=v.computeStrides(r.shape),[M,L,G]=v.computeStrides(a.shape),K=P[0],X=R?P[1]:P[2],Y=R?P[2]:1,ne=R?1:P[1],ee=C[0],ie=R?C[1]:C[2],se=R?C[2]:1,pe=R?1:C[1],ce=t.makeOutput(h.inShape,"float32"),xe=t.dataIdMap.get(ce.dataId).id,oe=t.dataIdMap.get(r.dataId).id,Re=t.dataIdMap.get(a.dataId).id;return fC(oe,Re,f,m,g,x,A,y,w,S,b,k,E,_,D,M,L,G,K,X,Y,ne,ee,ie,se,pe,xe),ce}var hpe={kernelName:vo,backendName:"wasm",setupFunc:dpe,kernelFunc:ppe},fpe=Nn(wo),mpe=Nn(ko),vy;(function(e){e[e.bilinear=0]="bilinear",e[e.nearest=1]="nearest"})(vy||(vy={}));var mC;function gpe(e){mC=e.wasm.cwrap(yl,null,["number","number","number","number","array","number","number","number","number","number"])}function ype(e){let{backend:t,inputs:n,attrs:s}=e,{method:r,extrapolationValue:a,cropSize:o}=s,{image:i,boxes:l,boxInd:u}=n,c=l.shape[0],[p,d]=o,h=[c,p,d,i.shape[3]],f=t.dataIdMap.get(i.dataId),m;i.dtype!=="float32"&&(m=md({backend:t,inputs:{x:i},attrs:{dtype:"float32"}}),f=t.dataIdMap.get(m.dataId));let g=f.id,y=t.dataIdMap.get(l.dataId).id,x=t.dataIdMap.get(u.dataId).id,A=t.makeOutput(h,"float32"),b=t.dataIdMap.get(A.dataId).id,w=new Uint8Array(new Int32Array(i.shape).buffer);return mC(g,y,x,c,w,p,d,vy[r],a,b),m!=null&&t.disposeData(m.dataId),A}var Ape={kernelName:yl,backendName:"wasm",setupFunc:gpe,kernelFunc:ype},gC;function xpe(e){gC=e.wasm.cwrap(gl,null,["number","number","number","number","number","number"])}function bpe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,exclusive:o,reverse:i}=s,l=r.shape.length;v.assert(r.dtype==="float32"||r.dtype==="int32",()=>`cumprod does not support ${r.dtype} tensors in the WASM backend`);let u=T.getAxesPermutation([a],l),c=r;u!==null&&(c=co({inputs:{x:r},attrs:{perm:u},backend:n}));let p=T.getInnerMostAxes(1,l)[0];T.assertAxesAreInnerMostDims("cumprod",[p],l);let d=n.makeOutput(c.shape,c.dtype),h=c.shape[p],f=n.dataIdMap.get(c.dataId).id,m=n.dataIdMap.get(d.dataId).id;gC(f,o?1:0,i?1:0,h,m,jt[r.dtype]);let g=d;if(u!==null){let y=T.getUndoAxesPermutation(u);g=co({inputs:{x:d},attrs:{perm:y},backend:n}),n.disposeData(c.dataId),n.disposeData(d.dataId)}return g}var vpe={kernelName:gl,backendName:"wasm",setupFunc:xpe,kernelFunc:bpe},yC;function wpe(e){yC=e.wasm.cwrap(So,null,["number","number","number","number","number","number"])}function kpe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,exclusive:o,reverse:i}=s,l=r.shape.length;v.assert(r.dtype==="float32"||r.dtype==="int32",()=>`cumsum does not support ${r.dtype} tensors in the WASM backend`);let u=T.getAxesPermutation([a],l),c=r;u!==null&&(c=co({inputs:{x:r},attrs:{perm:u},backend:n}));let p=T.getInnerMostAxes(1,l)[0];T.assertAxesAreInnerMostDims("cumsum",[p],l);let d=n.makeOutput(c.shape,c.dtype),h=c.shape[p],f=n.dataIdMap.get(c.dataId).id,m=n.dataIdMap.get(d.dataId).id;yC(f,o?1:0,i?1:0,h,m,jt[r.dtype]);let g=d;if(u!==null){let y=T.getUndoAxesPermutation(u);g=co({inputs:{x:d},attrs:{perm:y},backend:n}),n.disposeData(c.dataId),n.disposeData(d.dataId)}return g}var Spe={kernelName:So,backendName:"wasm",setupFunc:wpe,kernelFunc:kpe},AC;function Ipe(e){AC=e.wasm.cwrap(Al,null,["number","number","number","array","number","array","array","number","number"])}function Cpe(e){let{backend:t,inputs:n,attrs:s}=e,{x:r}=n,{blockSize:a,dataFormat:o}=s,i=r.shape[0],l=o==="NHWC"?r.shape[1]:r.shape[2],u=o==="NHWC"?r.shape[2]:r.shape[3],c=o==="NHWC"?r.shape[3]:r.shape[1],p=l*a,d=u*a,h=c/(a*a),f=o==="NHWC"?[i,p,d,h]:[i,h,p,d],m=t.makeOutput(f,"float32"),y=t.dataIdMap.get(r.dataId).id,x=new Uint8Array(new Int32Array(v.computeStrides(r.shape)).buffer),A=new Uint8Array(new Int32Array(f).buffer),b=new Uint8Array(new Int32Array(v.computeStrides(f)).buffer),w=t.dataIdMap.get(m.dataId).id;return AC(y,a,o==="NHWC"?1:0,x,r.shape.length-1,A,b,f.length,w),m}var Tpe={kernelName:Al,backendName:"wasm",setupFunc:Ipe,kernelFunc:Cpe},xC;function Npe(e){xC=e.wasm.cwrap(Io,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Epe(e){let{inputs:t,attrs:n,backend:s}=e,{x:r,filter:a}=t,o=s.dataIdMap.get(r.dataId).id,i=s.dataIdMap.get(a.dataId).id,{strides:l,dilations:u,pad:c,dimRoundingMode:p}=n,d=u==null?[1,1]:u,h=T.computeConv2DInfo(r.shape,a.shape,l,d,c,p,!0),f=h.filterHeight,m=h.filterWidth,g=h.padInfo.top,y=h.padInfo.right,x=h.padInfo.bottom,A=h.padInfo.left,b=h.dilationHeight,w=h.dilationWidth,S=h.strideHeight,k=h.strideWidth,E=h.inChannels,_=h.outChannels,D=h.padInfo.type==="SAME"?1:0;if(h.dataFormat!=="channelsLast")throw new Error(`wasm backend DepthwiseConv2dNative does not support dataFormat:'${h.dataFormat}'. Please use 'channelsLast'.`);let R=s.makeOutput(h.outShape,"float32"),P=s.dataIdMap.get(R.dataId).id;return xC(o,r.shape[0],r.shape[1],r.shape[2],i,f,m,g,y,x,A,D,b,w,S,k,E,_,P),R}var Rpe={kernelName:Io,backendName:"wasm",setupFunc:Npe,kernelFunc:Epe},_pe=Nn(To),Dpe=!1,$pe=Ln(xl,Dpe,"bool"),Ppe=Nn(No,"float32");function wy(e){let{inputs:t,attrs:n,backend:s}=e,{input:r}=t,{dim:a}=n,o=r.shape.length,i=r.shape.slice(),l=a;return a<0&&(v.assert(-(o+1)<=a,()=>`Axis must be in the interval [${-(o+1)}, ${o}]`),l=o+a+1),i.splice(l,0,1),As({inputs:{x:r},backend:s,attrs:{shape:i}})}var Fpe={kernelName:bl,backendName:"wasm",kernelFunc:wy};function bC(e){let{attrs:{shape:t,value:n,dtype:s},backend:r}=e,a=r.makeOutput(t,s);return r.typedArrayFromHeap(a).fill(n),a}var Ope={kernelName:Rc,backendName:"wasm",kernelFunc:bC},vC;function Mpe(e){vC=e.wasm.cwrap(wl,null,["number","number","number","number","number","number"])}function zpe(e){let{inputs:t,backend:n}=e,{image:s}=t,r=n.makeOutput(s.shape,s.dtype),a=n.dataIdMap.get(s.dataId).id,o=n.dataIdMap.get(r.dataId).id,[i,l,u,c]=s.shape;return vC(a,i,l,u,c,o),r}var Lpe={kernelName:wl,backendName:"wasm",kernelFunc:zpe,setupFunc:Mpe},Bpe=Nn(Eo),Wpe=!1,Vpe=Ln(Ro,Wpe),wC;function Upe(e){wC=e.wasm.cwrap(_o,null,["number","number","number","number","number","number","number"])}function Gpe(e){let{backend:t,inputs:n,attrs:s}=e,{varianceEpsilon:r}=s,{x:a,mean:o,variance:i,offset:l,scale:u}=n,c=t.dataIdMap.get(a.dataId).id,p=t.dataIdMap.get(o.dataId).id,d=t.dataIdMap.get(i.dataId).id,h=l!=null?t.dataIdMap.get(l.dataId).id:0,f=u!=null?t.dataIdMap.get(u.dataId).id:0,m=t.makeOutput(a.shape,a.dtype);if(v.sizeFromShape(a.shape)===0)return m;let g=t.dataIdMap.get(m.dataId).id;return wC(c,p,d,h,f,r,g),m}var Hpe={kernelName:_o,backendName:"wasm",setupFunc:Upe,kernelFunc:Gpe},kC;function jpe(e){kC=e.wasm.cwrap(to,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function qpe(e){let{inputs:t,attrs:n,backend:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:u,dilations:c,dataFormat:p,dimRoundingMode:d,activation:h,leakyreluAlpha:f}=n,m=T.computeConv2DInfo(r.shape,a.shape,l,c,u,d),g=zp[h];if(g==null)throw new Error(`${h} activation not yet supported for FusedConv2D in the wasm backend.`);let y=s.dataIdMap.get(r.dataId).id,x=s.dataIdMap.get(a.dataId).id,A=m.outChannels,b=0;if(o!=null){let se=s.dataIdMap.get(o.dataId);if(se.shape.length!==1)throw new Error(`FusedConv2D only supports rank-1 bias but got rank ${se.shape.length}.`);if(se.shape[0]!==A)throw new Error(`FusedConv2D bias shape (${se.shape}) does not match the number of output channels (${A})`);b=se.id}let w=m.filterHeight,S=m.filterWidth,k=m.padInfo.top,E=m.padInfo.right,_=m.padInfo.bottom,D=m.padInfo.left,R=m.dilationHeight,P=m.dilationWidth,C=m.strideHeight,M=m.strideWidth,L=m.inChannels,G=m.padInfo.type==="SAME"?1:0,K=m.batchSize,X=m.inHeight,Y=m.inWidth;if(p!=="NHWC")throw new Error(`wasm backend FusedConv2D does not support dataFormat:'${p}'. Please use 'NHWC'.`);let ne=s.makeOutput(m.outShape,"float32"),ee=s.dataIdMap.get(ne.dataId).id,ie=i==null?0:s.dataIdMap.get(i.dataId).id;return kC(y,K,X,Y,x,w,S,b,k,E,_,D,G,R,P,C,M,L,A,g,ie,f||0,ee),ne}var Xpe={kernelName:to,backendName:"wasm",setupFunc:jpe,kernelFunc:qpe},SC;function Kpe(e){SC=e.wasm.cwrap(no,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Zpe(e){let{inputs:t,attrs:n,backend:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:u,dilations:c,dataFormat:p,dimRoundingMode:d,activation:h,leakyreluAlpha:f}=n,m=T.computeConv2DInfo(r.shape,a.shape,l,c,u,d,!0),g=zp[h];if(g==null)throw new Error(`${h} activation not yet supported for FusedDepthwiseConv2D in the wasm backend.`);let y=s.dataIdMap.get(r.dataId).id,x=s.dataIdMap.get(a.dataId).id,A=m.outChannels,b=0;if(o!=null){let se=s.dataIdMap.get(o.dataId);if(se.shape.length!==1)throw new Error(`FusedDepthwiseConv2D only supports rank-1 bias but got rank ${se.shape.length}.`);if(se.shape[0]!==A)throw new Error(`FusedDepthwiseConv2D bias shape (${se.shape}) does not match the number of output channels (${A})`);b=se.id}let w=m.filterHeight,S=m.filterWidth,k=m.padInfo.top,E=m.padInfo.right,_=m.padInfo.bottom,D=m.padInfo.left,R=m.dilationHeight,P=m.dilationWidth,C=m.strideHeight,M=m.strideWidth,L=m.inChannels,G=m.padInfo.type==="SAME"?1:0,K=m.batchSize,X=m.inHeight,Y=m.inWidth;if(p!=="NHWC")throw new Error(`wasm backend FusedDepthwiseConv2D does not support dataFormat:'${p}'. Please use 'NHWC'.`);let ne=s.makeOutput(m.outShape,"float32"),ee=s.dataIdMap.get(ne.dataId).id,ie=i==null?0:s.dataIdMap.get(i.dataId).id;return SC(y,K,X,Y,x,w,S,b,k,E,_,D,G,R,P,C,M,L,A,g,ie,f||0,ee),ne}var Ype={kernelName:no,backendName:"wasm",setupFunc:Kpe,kernelFunc:Zpe},IC;function Jpe(e){IC=e.wasm.cwrap(Sl,null,["number","number","number","number","number","number","array","number"])}function Qpe(e){let{backend:t,inputs:n}=e,{params:s,indices:r}=n,[a,o,i,l]=Zy.prepareAndValidate(s,r),u=t.makeOutput(a,s.dtype);if(o===0)return u;let c=r.shape,p=c[c.length-1],h=t.dataIdMap.get(s.dataId).id,m=t.dataIdMap.get(r.dataId).id,g=new Uint8Array(new Int32Array(l).buffer),y=t.dataIdMap.get(u.dataId).id;return IC(h,jt[s.dtype],m,o,p,i,g,y),u}var ehe={kernelName:Sl,backendName:"wasm",setupFunc:Jpe,kernelFunc:Qpe},CC;function the(e){CC=e.wasm.cwrap("Gather",null,["number","number","array","number","number","number","array","number"])}function nhe(e){let{backend:t,inputs:n,attrs:s}=e,{x:r,indices:a}=n,{axis:o,batchDims:i}=s,l=v.parseAxisParam(o,r.shape)[0],u=t.readSync(a.dataId),c=r.shape[l];for(let _=0;_<u.length;++_){let D=u[_];v.assert(D<=c-1&&D>=0,()=>`GatherV2: the index value ${D} is not in [0, ${c-1}]`)}let p=T.segment_util.collectGatherOpShapeInfo(r,a,l,i),d=As({inputs:{x:r},attrs:{shape:[p.batchSize,p.outerSize,p.dimSize,p.sliceSize]},backend:t}),h=v.sizeFromShape(a.shape),f=As({inputs:{x:a},attrs:{shape:[p.batchSize,h/p.batchSize]},backend:t}),m=[p.batchSize,p.outerSize,h/p.batchSize,p.sliceSize],g=t.makeOutput(m,r.dtype);if(v.sizeFromShape(r.shape)===0)return g;let y=d.shape.length-1,A=t.dataIdMap.get(d.dataId).id,w=t.dataIdMap.get(f.dataId).id,S=t.dataIdMap.get(g.dataId).id,k=new Uint8Array(new Int32Array(v.computeStrides(d.shape)).buffer),E=new Uint8Array(new Int32Array(v.computeStrides(m)).buffer);return CC(A,jt[r.dtype],k,y,w,p.batchSize,E,S),t.disposeData(d.dataId),t.disposeData(f.dataId),g.shape=p.outputShape,g}var she={kernelName:kl,backendName:"wasm",setupFunc:the,kernelFunc:nhe},rhe=!1,ahe=Ln(Il,rhe,"bool"),ohe=!1,ihe=Ln(Do,ohe,"bool"),TC;function lhe(e){TC=e.wasm.cwrap(Po,null,["number","number","number","number"])}function uhe(e){let{inputs:{x:t},attrs:{alpha:n},backend:s}=e,r=s.dataIdMap.get(t.dataId).id,a=s.makeOutput(t.shape,"float32");if(v.sizeFromShape(t.shape)!==0){let o=s.dataIdMap.get(a.dataId).id;TC(r,jt[t.dtype],n,o)}return a}var che={kernelName:Po,backendName:"wasm",setupFunc:lhe,kernelFunc:uhe},dhe=!1,phe=Ln(Tl,dhe,"bool"),hhe=!1,fhe=Ln(Nl,hhe,"bool"),mhe=Nn(Fo),ghe=!1,yhe=Ln(El,ghe,"bool"),Ahe=Nn(Rl),xhe=!1,bhe=Ln(Pc,xhe,"bool"),vhe=!1,whe=Ln(C6,vhe,"bool"),NC;function khe(e){NC=e.wasm.cwrap(Oo,null,["number","number","number","number"])}function She(e){let{backend:t,inputs:n,attrs:s}=e,{reductionIndices:r,keepDims:a}=s,{x:o}=n,l=t.dataIdMap.get(o.dataId).id,u=o,{transposed:c,axes:p,originalAxes:d,inputWasTransposed:h}=mi(o,r,t);if(h){let A=t.dataIdMap.get(c.dataId).id;u=c,l=A}let f=u.shape.length;T.assertAxesAreInnerMostDims("max",p,f);let[m,g]=T.computeOutAndReduceShapes(u.shape,p),y=v.sizeFromShape(g),x=t.makeOutput(m,o.dtype);if(v.sizeFromShape(u.shape)!==0){let A=t.dataIdMap.get(x.dataId).id;NC(l,jt[o.dtype],y,A)}if(h&&t.disposeData(c.dataId),a){let A=T.expandShapeToKeepDim(x.shape,d);x.shape=A}return x}var Ihe={kernelName:Oo,backendName:"wasm",setupFunc:khe,kernelFunc:She},Che=!1,The=Ln(Mo,Che),EC;function Nhe(e){EC=e.wasm.cwrap(zo,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Ehe(e){let{inputs:t,attrs:n,backend:s}=e,r=t.x,a=s.dataIdMap.get(r.dataId).id;v.assert(r.dtype==="float32",()=>`Error in MaxPool: only float32 input is supported. Got ${r.dtype}.`);let{filterSize:o,strides:i,pad:l,dimRoundingMode:u}=n,c=T.computePool2DInfo(r.shape,o,i,1,l,u),p=c.filterHeight,d=c.filterWidth,h=c.padInfo.top,f=c.padInfo.right,m=c.padInfo.bottom,g=c.padInfo.left,y=c.dilationHeight,x=c.dilationWidth,A=c.strideHeight,b=c.strideWidth,w=c.inChannels,S=c.outChannels;if(c.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${c.dataFormat}'. Please use 'channelsLast'.`);let k=s.makeOutput(c.outShape,"float32"),E=s.dataIdMap.get(k.dataId).id;return EC(a,r.shape[0],r.shape[1],r.shape[2],p,d,h,f,m,g,y,x,A,b,w,S,E),k}var Rhe={kernelName:zo,backendName:"wasm",setupFunc:Nhe,kernelFunc:Ehe},RC;function _he(e){RC=e.wasm.cwrap(Lo,null,["number, number, number"])}function Dhe(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,i=t.dataIdMap.get(o.dataId).id,l=i,u=o,{transposed:c,axes:p,originalAxes:d,inputWasTransposed:h}=mi(o,r,t),f=p;if(h){let b=t.dataIdMap.get(c.dataId).id;b!==i&&(u=c,l=b,f=T.getInnerMostAxes(f.length,u.shape.length))}T.assertAxesAreInnerMostDims("mean",f,u.shape.length);let[m,g]=T.computeOutAndReduceShapes(u.shape,f),y=v.sizeFromShape(g),x=u;u.dtype!=="float32"&&(x=md({backend:t,inputs:{x:u},attrs:{dtype:"float32"}}),l=t.dataIdMap.get(x.dataId).id);let A=t.makeOutput(m,"float32");if(v.sizeFromShape(u.shape)!==0){let b=t.dataIdMap.get(A.dataId).id;RC(l,y,b)}if(h&&t.disposeData(c.dataId),a){let b=T.expandShapeToKeepDim(A.shape,d);A.shape=b}return u.dtype!=="float32"&&t.disposeData(x.dataId),A}var $he={kernelName:Lo,backendName:"wasm",setupFunc:_he,kernelFunc:Dhe},_C;function Phe(e){_C=e.wasm.cwrap(Bo,null,["number","number","number","number"])}function Fhe(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,i=t.dataIdMap.get(o.dataId).id,l=i,u=o,{transposed:c,axes:p,originalAxes:d,inputWasTransposed:h}=mi(o,r,t);if(h){let A=t.dataIdMap.get(c.dataId).id;A!==i&&(u=c,l=A)}let f=u.shape.length;T.assertAxesAreInnerMostDims("min",p,f);let[m,g]=T.computeOutAndReduceShapes(u.shape,p),y=v.sizeFromShape(g),x=t.makeOutput(m,u.dtype);if(v.sizeFromShape(u.shape)!==0){let A=t.dataIdMap.get(x.dataId).id;_C(l,jt[o.dtype],y,A)}if(h&&t.disposeData(c.dataId),a){let A=T.expandShapeToKeepDim(x.shape,d);x.shape=A}return x}var Ohe={kernelName:Bo,backendName:"wasm",setupFunc:Phe,kernelFunc:Fhe},Mhe=!1,zhe=Ln(Wo,Mhe),ky;(function(e){e[e.reflect=0]="reflect",e[e.symmetric=1]="symmetric"})(ky||(ky={}));var DC;function Lhe(e){DC=e.wasm.cwrap(Vo,null,["number","array","number","number","array","array","number","number"])}function Bhe(e){let{inputs:{x:t},backend:n,attrs:{paddings:s,mode:r}}=e,a=s.map((f,m)=>f[0]+t.shape[m]+f[1]),o=n.dataIdMap.get(t.dataId).id,i=n.makeOutput(a,t.dtype),l=n.dataIdMap.get(i.dataId).id,u=new Uint8Array(new Int32Array(t.shape).buffer),c=s.map(f=>f[0]),p=s.map(f=>f[1]),d=new Uint8Array(new Int32Array(c).buffer),h=new Uint8Array(new Int32Array(p).buffer);return DC(o,u,t.shape.length,jt[t.dtype],d,h,ky[r],l),i}var Whe={kernelName:Vo,backendName:"wasm",kernelFunc:Bhe,setupFunc:Lhe},Vhe=!0,Uhe=Ln(Uo,Vhe),Ghe=Nn(_l);function db(e,t){let n=new Int32Array(e.wasm.HEAPU8.buffer,t,4),s=n[0],r=n[1],a=n[2],o=n[3];return e.wasm._free(t),{pSelectedIndices:s,selectedSize:r,pSelectedScores:a,pValidOutputs:o}}var $C;function Hhe(e){$C=e.wasm.cwrap($l,"number",["number","number","number","number","number"])}function jhe(e){let{backend:t,inputs:n,attrs:s}=e,{iouThreshold:r,maxOutputSize:a,scoreThreshold:o}=s,{boxes:i,scores:l}=n,u=t.dataIdMap.get(i.dataId).id,c=t.dataIdMap.get(l.dataId).id,p=$C(u,c,a,r,o),{pSelectedIndices:d,selectedSize:h,pSelectedScores:f,pValidOutputs:m}=db(t,p);return t.wasm._free(f),t.wasm._free(m),t.makeOutput([h],"int32",d)}var qhe={kernelName:$l,backendName:"wasm",setupFunc:Hhe,kernelFunc:jhe},PC;function Xhe(e){PC=e.wasm.cwrap(Oc,"number",["number","number","number","number","number","bool"])}function Khe(e){let{backend:t,inputs:n,attrs:s}=e,{iouThreshold:r,maxOutputSize:a,scoreThreshold:o,padToMaxOutputSize:i}=s,{boxes:l,scores:u}=n,c=t.dataIdMap.get(l.dataId).id,p=t.dataIdMap.get(u.dataId).id,d=PC(c,p,a,r,o,i),{pSelectedIndices:h,selectedSize:f,pSelectedScores:m,pValidOutputs:g}=db(t,d);t.wasm._free(m);let y=t.makeOutput([f],"int32",h),x=t.makeOutput([],"int32",g);return[y,x]}var Zhe={kernelName:Oc,backendName:"wasm",setupFunc:Xhe,kernelFunc:Khe},FC;function Yhe(e){FC=e.wasm.cwrap(Pl,"number",["number","number","number","number","number","number"])}function Jhe(e){let{backend:t,inputs:n,attrs:s}=e,{iouThreshold:r,maxOutputSize:a,scoreThreshold:o,softNmsSigma:i}=s,{boxes:l,scores:u}=n,c=t.dataIdMap.get(l.dataId).id,p=t.dataIdMap.get(u.dataId).id,d=FC(c,p,a,r,o,i),{pSelectedIndices:h,selectedSize:f,pSelectedScores:m,pValidOutputs:g}=db(t,d);t.wasm._free(g);let y=t.makeOutput([f],"int32",h),x=t.makeOutput([f],"float32",m);return[y,x]}var Qhe={kernelName:Pl,backendName:"wasm",setupFunc:Yhe,kernelFunc:Jhe},efe=!1,tfe=Ln(Dl,efe,"bool"),OC;function nfe(e){OC=e.wasm.cwrap(Ol,null,["number","number","number","number","number"])}function sfe(e){let{inputs:t,backend:n,attrs:s}=e,{indices:r}=t,{dtype:a,depth:o,onValue:i,offValue:l}=s,u=n.makeOutput([...r.shape,o],a),c=n.dataIdMap.get(u.dataId).id,d=n.dataIdMap.get(r.dataId).id;return OC(d,o,i,l,c),u}var rfe={kernelName:Ol,backendName:"wasm",setupFunc:nfe,kernelFunc:sfe};function afe(e){let{inputs:{x:t},backend:n}=e,s=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(s).fill(1),s}var ofe={kernelName:Fl,backendName:"wasm",kernelFunc:afe};function ife(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s;if(t.length===1)return wy({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let a=t[0].shape,o=t[0].dtype;t.forEach(c=>{v.assertShapesMatch(a,c.shape,"All tensors passed to stack must have matching shapes"),v.assert(o===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],l=t.map(c=>{let p=wy({inputs:{input:c},backend:n,attrs:{dim:r}});return i.push(p),p}),u=pC({inputs:l,backend:n,attrs:{axis:r}});return i.forEach(c=>n.disposeData(c.dataId)),u}var lfe={kernelName:Ml,backendName:"wasm",kernelFunc:ife},MC;function ufe(e){MC=e.wasm.cwrap(Go,null,["number","array","number","number","array","array","number","number"])}function cfe(e){let{inputs:{x:t},backend:n,attrs:{paddings:s,constantValue:r}}=e,a=s.map((m,g)=>m[0]+t.shape[g]+m[1]);if(v.sizeFromShape(t.shape)===0)return bC({backend:n,attrs:{shape:a,value:r,dtype:t.dtype}});let o=n.dataIdMap.get(t.dataId).id,i=n.makeOutput(a,t.dtype),u=n.dataIdMap.get(i.dataId).id,c=new Uint8Array(new Int32Array(t.shape).buffer),p=s.map(m=>m[0]),d=s.map(m=>m[1]),h=new Uint8Array(new Int32Array(p).buffer),f=new Uint8Array(new Int32Array(d).buffer);return MC(o,c,t.shape.length,jt[t.dtype],h,f,r,u),i}var zC={kernelName:Go,backendName:"wasm",kernelFunc:cfe,setupFunc:ufe},dfe=!1,pfe=Ln(Ho,dfe),LC;function hfe(e){LC=e.wasm.cwrap(jo,null,["number","number","number"])}function ffe(e){let{inputs:t,backend:n}=e,{x:s,alpha:r}=t,a=n.dataIdMap.get(s.dataId).id,o=n.dataIdMap.get(r.dataId).id,i=a,l=s,u=l;l.dtype!=="float32"&&(u=md({backend:n,inputs:{x:s},attrs:{dtype:"float32"}}),i=n.dataIdMap.get(u.dataId).id);let c=n.makeOutput(s.shape,"float32"),p=n.dataIdMap.get(c.dataId).id;return LC(i,o,p),l.dtype!=="float32"&&n.disposeData(u.dataId),c}var mfe={kernelName:jo,backendName:"wasm",setupFunc:hfe,kernelFunc:ffe},BC;function gfe(e){BC=e.wasm.cwrap(qo,null,["number","number","number","number"])}function yfe(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,i=t.dataIdMap.get(o.dataId).id,l=i,u=o,{transposed:c,axes:p,originalAxes:d,inputWasTransposed:h}=mi(o,r,t),f=p;if(h){let A=t.dataIdMap.get(c.dataId).id;A!==i&&(u=c,l=A,f=T.getInnerMostAxes(f.length,u.shape.length))}T.assertAxesAreInnerMostDims("prod",f,u.shape.length);let[m,g]=T.computeOutAndReduceShapes(u.shape,f),y=v.sizeFromShape(g),x=t.makeOutput(m,u.dtype);if(v.sizeFromShape(u.shape)!==0){let A=t.dataIdMap.get(x.dataId).id;BC(l,y,jt[x.dtype],A)}if(h&&t.disposeData(c.dataId),a){let A=T.expandShapeToKeepDim(x.shape,d);x.shape=A}return x}var Afe={kernelName:qo,backendName:"wasm",setupFunc:gfe,kernelFunc:yfe},xfe=e=>{let{backend:t,attrs:n}=e,{start:s,stop:r,step:a,dtype:o}=n,i=Ux(s,r,a,o),l=t.makeOutput([i.length],o);return t.typedArrayFromHeap(l).set(i),l},bfe={kernelName:Mc,backendName:"wasm",kernelFunc:xfe},vfe=!0,wfe=Ln(Co,vfe),kfe=Nn(Xo),Sfe=Nn(Yo),WC;function Ife(e){WC=e.wasm.cwrap(Zo,null,["number","number","number","number","number","number","number","number","number","number"])}function Cfe(e){let{backend:t,inputs:n,attrs:s}=e,{images:r}=n,{alignCorners:a,halfPixelCenters:o,size:i}=s,[l,u]=i,[c,p,d,h]=r.shape,f=[c,l,u,h],m=t.dataIdMap.get(r.dataId),g;m.dtype!=="float32"&&(g=md({backend:t,inputs:{x:r},attrs:{dtype:"float32"}}),m=t.dataIdMap.get(g.dataId));let y=m.id,x=t.makeOutput(f,"float32");if(v.sizeFromShape(r.shape)===0)return x;let A=t.dataIdMap.get(x.dataId).id;return WC(y,c,p,d,h,l,u,a?1:0,o?1:0,A),g!=null&&t.disposeData(g.dataId),x}var Tfe={kernelName:Zo,backendName:"wasm",setupFunc:Ife,kernelFunc:Cfe},VC;function Nfe(e){VC=e.wasm.cwrap(Ko,null,["number","number","number","number","number","number","number","number","number","number"])}function Efe(e){let{backend:t,inputs:n,attrs:s}=e,{images:r}=n,{alignCorners:a,halfPixelCenters:o,size:i}=s,[l,u]=i,[c,p,d,h]=r.shape,f=[c,l,u,h],m=t.makeOutput(f,"float32");if(v.sizeFromShape(r.shape)===0)return m;let g=t.dataIdMap.get(r.dataId),y;g.dtype!=="float32"&&(y=md({backend:t,inputs:{x:r},attrs:{dtype:"float32"}}),g=t.dataIdMap.get(y.dataId));let x=g.id,A=t.dataIdMap.get(m.dataId).id;return VC(x,c,p,d,h,l,u,a?1:0,o?1:0,A),y!=null&&t.disposeData(y.dataId),m}var Rfe={kernelName:Ko,backendName:"wasm",setupFunc:Nfe,kernelFunc:Efe},UC;function _fe(e){UC=e.wasm.cwrap(Bl,null,["number","array","number","array","number","number"])}function Dfe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dims:a}=s,o=v.parseAxisParam(a,r.shape);if(r.shape.length===0)return $2({inputs:{x:r},backend:n});let i=n.makeOutput(r.shape,r.dtype),l=n.dataIdMap.get(r.dataId).id,u=n.dataIdMap.get(i.dataId).id,c=new Uint8Array(new Int32Array(o).buffer),p=new Uint8Array(new Int32Array(r.shape).buffer);UC(l,c,o.length,p,r.shape.length,u);let d=As({inputs:{x:i},attrs:{shape:r.shape},backend:n});return n.disposeData(i.dataId),d}var $fe={kernelName:Bl,backendName:"wasm",kernelFunc:Dfe,setupFunc:_fe},GC;function Pfe(e){GC=e.wasm.cwrap(eu,null,["number","number","number","number","number","number","number","number","array","number","number"])}function Ffe(e){let{inputs:t,backend:n,attrs:s}=e,{image:r}=t,{radians:a,fillValue:o,center:i}=s,l=n.makeOutput(r.shape,r.dtype),u=n.dataIdMap.get(r.dataId).id,c=n.dataIdMap.get(l.dataId).id,[p,d,h,f]=r.shape,[m,g]=T.getImageCenter(i,d,h),y=o===0,x=255,A=typeof o=="number"?[o,o,o,y?0:x]:[...o,x],b=new Uint8Array(new Int32Array(A).buffer);return GC(u,p,d,h,f,a,m,g,b,A.length,c),l}var Ofe={kernelName:eu,backendName:"wasm",kernelFunc:Ffe,setupFunc:Pfe},Mfe=Nn(Wl),zfe=Nn(Jo),HC;function Lfe(e){HC=e.wasm.cwrap(Vl,null,["number","number","number","number","number","number","array","number","number"])}function Bfe(e){let{backend:t,inputs:n,attrs:s}=e,{indices:r,updates:a}=n,{shape:o}=s,i=t.makeOutput(o,a.dtype);if(v.sizeFromShape(o)===0)return i;let{sliceRank:l,numUpdates:u,sliceSize:c,strides:p,outputSize:d}=Yy.calculateShapes(a,r,o),f=t.dataIdMap.get(r.dataId).id,g=t.dataIdMap.get(a.dataId).id,y=new Uint8Array(new Int32Array(p).buffer),x=t.dataIdMap.get(i.dataId).id;return HC(f,g,jt[a.dtype],l,u,c,y,d,x),i}var Wfe={kernelName:Vl,backendName:"wasm",setupFunc:Lfe,kernelFunc:Bfe},jC;function Vfe(e){jC=e.wasm.cwrap("SelectV2",null,["number","number","number","number","number"])}function Ufe(e){let{inputs:t,backend:n}=e,{condition:s,t:r,e:a}=t,o=n.dataIdMap.get(s.dataId).id,i=n.dataIdMap.get(r.dataId).id,l=n.dataIdMap.get(a.dataId).id,u=n.makeOutput(r.shape,r.dtype),c=n.dataIdMap.get(u.dataId).id,p=s.shape.length,d=r.shape.length,h=p===0||p>1||d===1?1:v.sizeFromShape(r.shape.slice(1));return jC(o,i,l,h,c),u}var Gfe={kernelName:Ul,backendName:"wasm",kernelFunc:Ufe,setupFunc:Vfe},qC;function Hfe(e){qC=e.wasm.cwrap(ei,null,["number","number"])}function jfe(e){let{backend:t,inputs:{x:n}}=e,s=t.dataIdMap.get(n.dataId).id,r=t.makeOutput(n.shape,n.dtype),a=t.dataIdMap.get(r.dataId).id;return v.sizeFromShape(r.shape)===0||qC(s,a),r}var qfe={kernelName:"Sigmoid",backendName:"wasm",setupFunc:Hfe,kernelFunc:jfe},Xfe=Nn(Qo),XC;function Kfe(e){XC=e.wasm.cwrap(si,null,["number","number","number","number"])}function Zfe(e){let{backend:t,inputs:{logits:n},attrs:{dim:s}}=e,r=t.dataIdMap.get(n.dataId).id,a=t.makeOutput(n.shape,n.dtype),o=t.dataIdMap.get(a.dataId).id,i=n.shape[s],l=v.sizeFromShape(n.shape)/i;return v.sizeFromShape(a.shape)===0||XC(r,o,i,l),a}var Yfe={kernelName:si,backendName:"wasm",setupFunc:Kfe,kernelFunc:Zfe};function Jfe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,paddings:o}=s,i=v.sizeFromShape(a),l=[[0,0]];l.push(...o);for(let S=1+a.length;S<r.shape.length;++S)l.push([0,0]);let u=zC.kernelFunc({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),c=T.getReshaped(u.shape,a,i,!1),p=T.getPermuted(c.length,a.length,!1),d=T.getReshapedPermuted(u.shape,a,i,!1),m=As({inputs:{x:u},backend:n,attrs:{shape:c}}),x=co({inputs:{x:m},backend:n,attrs:{perm:p}}),w=As({inputs:{x},backend:n,attrs:{shape:d}});return n.disposeData(u.dataId),n.disposeData(m.dataId),n.disposeData(x.dataId),w}var Qfe={kernelName:jl,backendName:"wasm",kernelFunc:Jfe},KC;function eme(e){KC=e.wasm.cwrap("SparseFillEmptyRows","number",["number","number","number","number","number","number","number","number","number","number","number","number"])}function tme(e){let{backend:t,inputs:n}=e,{indices:s,values:r,denseShape:a,defaultValue:o}=n,i=s.shape[0],l=s.shape[1],u=t.readSync(a.dataId)[0],c=[i+u,l],p=t.dataIdMap.get(s.dataId).id,d=t.dataIdMap.get(r.dataId).id,h=t.dataIdMap.get(o.dataId).id,f=t.makeOutput(c,s.dtype),m=t.dataIdMap.get(f.dataId).id,g=t.makeOutput(c.slice(0,1),r.dtype),y=t.dataIdMap.get(g.dataId).id,x=t.makeOutput([u],"bool"),A=t.dataIdMap.get(x.dataId).id,b=t.makeOutput([i],s.dtype),w=t.dataIdMap.get(b.dataId).id,S=t.makeOutput([4],"int32"),k=t.dataIdMap.get(S.dataId).id,E=KC(p,d,jt[r.dtype],i,u,l,h,m,y,A,w,k),_=t.readSync(S.dataId),D;switch(_[0]){case 1:{D=T.getSparseFillEmptyRowsIndicesDenseShapeMismatch(_[1]);break}case 2:{D=T.getSparseFillEmptyRowsNegativeIndexErrorMessage(_[1],_[2]);break}case 3:D=T.getSparseFillEmptyRowsOutOfRangeIndexErrorMessage(_[1],_[2],_[3]);break;default:D=""}if(t.disposeData(S.dataId),D)throw t.disposeData(f.dataId),t.disposeData(g.dataId),t.disposeData(x.dataId),t.disposeData(b.dataId),new Error(D);let R=f,P=g;return E!==c[0]&&(R=cl({inputs:{x:f},attrs:{begin:0,size:[E,l]},backend:t}),P=cl({inputs:{x:g},attrs:{begin:0,size:E},backend:t}),t.disposeData(f.dataId),t.disposeData(g.dataId)),[R,P,x,b]}var nme={kernelName:Jp,backendName:"wasm",setupFunc:eme,kernelFunc:tme},ZC;function sme(e){ZC=e.wasm.cwrap(Wc,null,["number","number","number","number","number","number","number"])}function rme(e){let{backend:t,inputs:n}=e,{inputIndices:s,inputShape:r,newShape:a}=n;if(s.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape
${s.shape}`);if(r.shape.length!==1)throw new Error(`Input shape should be a vector but received shape
${r.shape}`);if(a.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${a.shape}`);let o=t.dataIdMap.get(s.dataId).id,i=t.dataIdMap.get(r.dataId).id,l=t.dataIdMap.get(a.dataId).id,u=s.shape[0],c=v.sizeFromShape(a.shape),p=t.makeOutput([u,c],s.dtype),d=t.dataIdMap.get(p.dataId).id,h=t.makeOutput([c],a.dtype),f=t.dataIdMap.get(h.dataId).id,m=t.makeOutput([3],"int32"),g=t.dataIdMap.get(m.dataId).id;ZC(o,i,l,u,d,f,g);let y=t.readSync(m.dataId),x;switch(y[0]){case 0:{x=T.getSparseReshapeMultipleNegativeOneOutputDimErrorMessage(y[1],y[2]);break}case 1:{x=T.getSparseReshapeNegativeOutputDimErrorMessage(y[1],y[2]);break}case 2:x=T.getSparseReshapeEmptyTensorZeroOutputDimErrorMessage();break;case 3:{let A=Array.from(t.readSync(r.dataId)),b=Array.from(t.readSync(h.dataId));x=T.getSparseReshapeInputOutputMultipleErrorMessage(A,b);break}case 4:{let A=Array.from(t.readSync(r.dataId)),b=Array.from(t.readSync(h.dataId));x=T.getSparseReshapeInputOutputMismatchErrorMessage(A,b);break}default:x=""}if(t.disposeData(m.dataId),x)throw t.disposeData(p.dataId),t.disposeData(h.dataId),new Error(x);return[p,h]}var ame={kernelName:Wc,backendName:"wasm",setupFunc:sme,kernelFunc:rme},YC;function JC(e){YC=e.wasm.cwrap("SparseSegmentReduction",null,["number","number","number","number","number","number","number","number","number"])}function QC(e,t){let{backend:n,inputs:s}=e,{data:r,indices:a,segmentIds:o}=s,i=a.shape[0],l=n.readSync(o.dataId,i-1,i)[0],c=i>0?l+1:0;if(c<0)throw new Error(T.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());let p=r.shape.slice();p[0]=c;let d=n.dataIdMap.get(r.dataId).id,h=n.dataIdMap.get(a.dataId).id,f=n.dataIdMap.get(o.dataId).id,m=n.makeOutput(p,r.dtype),g=n.dataIdMap.get(m.dataId).id,y=n.makeOutput([4],"int32"),x=n.dataIdMap.get(y.dataId).id;YC(d,jt[r.dtype],r.shape[0],h,f,g,x,t,0);let A=n.readSync(y.dataId),b;switch(A[0]){case 0:{b=T.getSparseSegmentReductionNegativeSegmentIdsErrorMessage();break}case 1:{b=T.getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage();break}case 2:b=T.getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage(A[1],A[2]);break;case 3:b=T.getSparseSegmentReductionIndicesOutOfRangeErrorMessage(A[1],A[2],A[3]);break;default:b=""}if(n.disposeData(y.dataId),b)throw n.disposeData(m.dataId),new Error(b);return m}function ome(e){return QC(e,!0)}var ime={kernelName:Qp,backendName:"wasm",setupFunc:JC,kernelFunc:ome};function lme(e){return QC(e,!1)}var ume={kernelName:eh,backendName:"wasm",setupFunc:JC,kernelFunc:lme};function cme(e){let{inputs:t,attrs:n,backend:s}=e,{x:r}=t,{numOrSizeSplits:a,axis:o}=n,i=v.parseAxisParam(o,r.shape)[0],l=T.prepareSplitSize(r,a,i),u=new Array(r.shape.length).fill(0),c=r.shape.slice();return l.map(p=>{let d=[...c];d[i]=p;let h=cl({inputs:{x:r},attrs:{begin:u,size:d},backend:s});return u[i]+=p,h})}var dme={kernelName:ql,backendName:"wasm",kernelFunc:cme},pme=Nn(ti),hme=Nn(Vc),fme=!0,mme=Ln(ri,fme),eT;function gme(e){eT=e.wasm.cwrap(ii,null,["number","number","number","number"])}function yme(e){let{backend:t,inputs:n,attrs:s}=e,{alpha:r}=s,{x:a}=n,o=t.dataIdMap.get(a.dataId).id,i=t.makeOutput(a.shape,a.dtype),l=t.dataIdMap.get(i.dataId).id;return eT(o,r,jt[a.dtype],l),i}var Ame={kernelName:ii,backendName:"wasm",setupFunc:gme,kernelFunc:yme},tT;function xme(e){tT=e.wasm.cwrap(Xl,null,["number","array","number","array","array","array","array","array","number","number"])}function bme(e){let{backend:t,inputs:n,attrs:s}=e,{x:r}=n,{begin:a,end:o,strides:i,beginMask:l,endMask:u,ellipsisMask:c,newAxisMask:p,shrinkAxisMask:d}=s,{finalShapeSparse:h,finalShape:f,isIdentity:m,sliceDim0:g,isSimpleSlice:y,begin:x,end:A,strides:b}=Gt.sliceInfo(r.shape,a,o,i,l,u,c,p,d),w;if(m)w=As({inputs:{x:r},backend:t,attrs:{shape:f}});else if(g||y){v.assert(r.shape.length>=1,()=>`Input must have rank at least 1, got: ${r.shape.length}`);let S=Gt.computeOutShape(x,A,b),k=cl({inputs:{x:r},backend:t,attrs:{begin:x,size:S}});w=As({inputs:{x:k},backend:t,attrs:{shape:f}}),t.disposeData(k.dataId)}else{let S=t.makeOutput(h,"float32"),k=t.dataIdMap.get(r.dataId).id,E=new Uint8Array(new Int32Array(v.computeStrides(r.shape)).buffer),_=new Uint8Array(new Int32Array(x).buffer),D=new Uint8Array(new Int32Array(A).buffer),R=new Uint8Array(new Int32Array(b).buffer),P=new Uint8Array(new Int32Array(h).buffer),C=new Uint8Array(new Int32Array(v.computeStrides(h)).buffer),M=t.dataIdMap.get(S.dataId).id;tT(k,E,r.shape.length,_,D,R,P,C,h.length,M),w=As({inputs:{x:S},backend:t,attrs:{shape:f}}),t.disposeData(S.dataId)}return w}var vme={kernelName:Xl,backendName:"wasm",setupFunc:xme,kernelFunc:bme};function wme(e){let{backend:t,inputs:n,attrs:s}=e,{data:r,dataSplits:a}=n,{separator:o,nGramWidths:i,leftPad:l,rightPad:u,padWidth:c,preserveShortSequences:p}=s,d=t.readSync(r.dataId),h=t.readSync(a.dataId),[f,m]=Hx(d,h,o,i,l,u,c,p),g=t.makeOutput([f.length],"string"),y=t.dataIdMap.get(g.dataId);y.stringBytes=f;let x=t.makeOutput(a.shape,"int32");return t.typedArrayFromHeap(x).set(m),[g,x]}var kme={kernelName:Uc,backendName:"wasm",kernelFunc:wme};function Sme(e){let{backend:t,inputs:n,attrs:s}=e,{input:r,delimiter:a}=n,{skipEmpty:o}=s,i=t.readSync(r.dataId),l=t.readSync(a.dataId),[u,c,p]=jx(i,l[0],o),d=c.length,h=t.makeOutput([d,2],"int32");t.typedArrayFromHeap(h).set(u);let m=t.makeOutput([d],"string"),g=t.dataIdMap.get(m.dataId);g.stringBytes=c;let y=t.makeOutput([2],"int32");return t.typedArrayFromHeap(y).set(p),[h,m,y]}var Ime={kernelName:nh,backendName:"wasm",kernelFunc:Sme};function Cme(e){let{backend:t,inputs:n,attrs:s}=e,{input:r}=n,{numBuckets:a}=s,o=t.readSync(r.dataId),i=qx(o,a),l=t.makeOutput(r.shape,"int32");return t.typedArrayFromHeap(l).set(i),l}var Tme={kernelName:sh,backendName:"wasm",kernelFunc:Cme},Nme=!0,Eme=Ln(ai,Nme),nT;function Rme(e){nT=e.wasm.cwrap(ni,null,["number","number","number","number"])}function _me(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,i=t.dataIdMap.get(o.dataId).id,l=i,u=o,{transposed:c,axes:p,originalAxes:d,inputWasTransposed:h}=mi(o,r,t),f=p;if(h){let A=t.dataIdMap.get(c.dataId).id;A!==i&&(u=c,l=A,f=T.getInnerMostAxes(f.length,u.shape.length))}T.assertAxesAreInnerMostDims("sum",f,u.shape.length);let[m,g]=T.computeOutAndReduceShapes(u.shape,f),y=v.sizeFromShape(g),x=t.makeOutput(m,u.dtype);if(v.sizeFromShape(u.shape)!==0){let A=t.dataIdMap.get(x.dataId).id;nT(l,y,jt[x.dtype],A)}if(h&&t.disposeData(c.dataId),a){let A=T.expandShapeToKeepDim(x.shape,d);x.shape=A}return x}var Dme={kernelName:ni,backendName:"wasm",setupFunc:Rme,kernelFunc:_me},$me=Nn(Kl),Pme=Nn(oi),sT;function Fme(e){sT=e.wasm.cwrap(Ea,null,["number","array","number","array","number","number"])}function Ome(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,a=n.dataIdMap.get(r.dataId).id,{reps:o}=s,i=new Array(r.shape.length);for(let d=0;d<i.length;d++)i[d]=r.shape[d]*o[d];let l=new Uint8Array(new Int32Array(r.shape).buffer),u=new Uint8Array(new Int32Array(i).buffer),c=n.makeOutput(i,r.dtype),p=n.dataIdMap.get(c.dataId).id;return sT(a,l,r.shape.length,u,i.length,jt[c.dtype],p),c}var Mme={kernelName:Ea,backendName:"wasm",setupFunc:Fme,kernelFunc:Ome},rT;function zme(e){rT=e.wasm.cwrap(Zl,null,["number","array","number","number","number","bool","number","number"])}var Lme=({inputs:e,backend:t,attrs:n})=>{let{x:s}=e,{k:r,sorted:a}=n,o=t.dataIdMap.get(s.dataId).id,i=new Uint8Array(new Int32Array(s.shape).buffer),l=s.shape.slice();l[l.length-1]=r;let u=t.makeOutput(l,s.dtype),c=t.dataIdMap.get(u.dataId).id,p=t.makeOutput(l,"int32"),d=t.dataIdMap.get(p.dataId).id;return rT(o,i,s.shape.length,jt[s.dtype],r,a,c,d),[u,p]},Bme={kernelName:Zl,backendName:"wasm",setupFunc:zme,kernelFunc:Lme},aT;function Wme(e){aT=e.wasm.cwrap(Yl,null,["number","number","bool","number","number","number","number","number","number","array","number","array","number","number","number","number","number"])}function Vme(e){let{backend:t,inputs:n,attrs:s}=e,{image:r,transforms:a}=n,{interpolation:o,fillMode:i,fillValue:l,outputShape:u}=s,[c,p,d,h]=r.shape,[f,m]=u!=null?u:[p,d],g=[c,f,m,h],y=new Uint8Array(new Int32Array(v.computeStrides(r.shape)).buffer),x=new Uint8Array(new Int32Array(v.computeStrides(g)).buffer),A=t.makeOutput(g,r.dtype),b=t.dataIdMap.get(A.dataId).id,S=t.dataIdMap.get(r.dataId).id,E=t.dataIdMap.get(a.dataId).id,_=o==="nearest"?1:2,D;switch(i){case"constant":D=1;break;case"reflect":D=2;break;case"wrap":D=3;break;case"nearest":D=4;break;default:D=1;break}return aT(S,E,a.shape[0]>1,c,f,m,h,d,p,y,r.shape.length-1,x,g.length-1,_,D,l,b),A}var Ume={kernelName:Yl,backendName:"wasm",setupFunc:Wme,kernelFunc:Vme};function Gme(e){let{inputs:t,backend:n,attrs:s}=e,{value:r}=t,{axis:a}=s;a<0&&(a+=r.shape.length);let o=r.shape[a],i=r.shape.length,l=new Array(i-1),u=0;for(let h=0;h<i;h++)h!==a&&(l[u++]=r.shape[h]);let c=new Array(o),p=new Array(i).fill(0),d=r.shape.slice();d[a]=1;for(let h=0;h<c.length;h++)p[a]=h,c[h]=cl({inputs:{x:r},attrs:{begin:p,size:d},backend:n});return c.map(({dataId:h,dtype:f})=>({dataId:h,dtype:f,shape:l}))}var Hme={kernelName:Jl,backendName:"wasm",kernelFunc:Gme};function jme(e){let{inputs:{x:t},backend:n}=e,s=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(s).fill(0),s}var qme={kernelName:Ql,backendName:"wasm",kernelFunc:jme},Xme=[wde,kde,Ide,Nde,Ode,Lde,Vde,Hde,Kde,tpe,npe,spe,ope,ipe,cpe,hpe,fpe,mpe,Ape,vpe,Spe,Tpe,Rpe,_pe,$pe,Ppe,Fpe,Ope,Lpe,Bpe,Vpe,Hpe,Xpe,Ype,ehe,she,ahe,ihe,Ede,che,phe,fhe,mhe,yhe,Ahe,bhe,whe,Ihe,The,Rhe,$he,Ohe,zhe,Whe,Uhe,Ghe,qhe,Zhe,Qhe,tfe,rfe,ofe,lfe,zC,pfe,mfe,Afe,bfe,wfe,kfe,Sfe,jde,Tfe,Rfe,$fe,Ofe,Mfe,zfe,Wfe,Gfe,qfe,Xfe,Qde,Yfe,Qfe,nme,ame,ime,ume,dme,pme,hme,mme,Ame,vme,kme,Ime,Tme,Eme,Dme,$me,Pme,Mme,Bme,Ume,$de,Hme,qme];for(let e of Xme)tr(e);var Sy=H();Sy.registerFlag("WASM_HAS_SIMD_SUPPORT",async()=>WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,10,9,1,7,0,65,0,253,15,26,11])));Sy.registerFlag("WASM_HAS_MULTITHREAD_SUPPORT",async()=>{if(Sy.get("IS_NODE"))return!1;try{return new MessageChannel().port1.postMessage(new SharedArrayBuffer(1)),WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,5,4,1,3,1,1,10,11,1,9,0,65,0,254,16,2,0,26,11]))}catch(e){return!1}});var K7=po(z_()),Kme=po(L_()),Z7=po(B_()),Y7=K7.default||K7,Zme=Z7.default||Z7,oT=class extends Ac{constructor(e){super(),this.wasm=e,this.dataIdNextNumber=1,this.wasm.tfjs.initWithThreadsCount(iT),Iy=this.wasm.tfjs.getThreadsCount(),this.dataIdMap=new Wp(this,rn())}write(e,t,n){let s={id:this.dataIdNextNumber++};return this.move(s,e,t,n,1),s}numDataIds(){return this.dataIdMap.numDataIds()}async time(e){let t=v.now();return e(),{kernelMs:v.now()-t}}move(e,t,n,s,r){let a=this.dataIdNextNumber++;if(s==="string"){let u=t;this.dataIdMap.set(e,{id:a,stringBytes:u,shape:n,dtype:s,memoryOffset:null,refCount:r});return}let o=v.sizeFromShape(n),i=o*v.bytesPerElement(s),l=this.wasm._malloc(i);this.dataIdMap.set(e,{id:a,memoryOffset:l,shape:n,dtype:s,refCount:r}),this.wasm.tfjs.registerTensor(a,o,l),t!=null&&this.wasm.HEAPU8.set(new Uint8Array(t.buffer,t.byteOffset,i),l)}async read(e){return this.readSync(e)}readSync(e,t,n){let{memoryOffset:s,dtype:r,shape:a,stringBytes:o}=this.dataIdMap.get(e);if(r==="string")return(t==null||t===0)&&(n==null||n>=o.length)?o:o.slice(t,n);t=t||0,n=n||v.sizeFromShape(a);let i=v.bytesPerElement(r),l=this.wasm.HEAPU8.slice(s+t*i,s+n*i);return Qme(l.buffer,r)}disposeData(e,t=!1){if(this.dataIdMap.has(e)){let n=this.dataIdMap.get(e);if(n.refCount--,!t&&n.refCount>0)return!1;this.wasm._free(n.memoryOffset),this.wasm.tfjs.disposeData(n.id),this.dataIdMap.delete(e)}return!0}refCount(e){return this.dataIdMap.has(e)?this.dataIdMap.get(e).refCount:0}incRef(e){let t=this.dataIdMap.get(e);t!=null&&t.refCount++}floatPrecision(){return 32}getMemoryOffset(e){return this.dataIdMap.get(e).memoryOffset}dispose(){this.wasm.tfjs.dispose(),"PThread"in this.wasm&&this.wasm.PThread.terminateAllThreads(),this.wasm=null}memory(){return{unreliable:!1}}makeOutput(e,t,n){let s;if(n==null)s=this.write(null,e,t);else{let r=this.dataIdNextNumber++;s={id:r},this.dataIdMap.set(s,{id:r,memoryOffset:n,shape:e,dtype:t,refCount:1});let a=v.sizeFromShape(e);this.wasm.tfjs.registerTensor(r,a,n)}return{dataId:s,shape:e,dtype:t}}typedArrayFromHeap({shape:e,dtype:t,dataId:n}){let s=this.wasm.HEAPU8.buffer,{memoryOffset:r}=this.dataIdMap.get(n),a=v.sizeFromShape(e);switch(t){case"float32":return new Float32Array(s,r,a);case"int32":return new Int32Array(s,r,a);case"bool":return new Uint8Array(s,r,a);default:throw new Error(`Unknown dtype ${t}`)}}};function Yme(e){return(t,n)=>(v.fetch(e,{credentials:"same-origin"}).then(s=>{s.ok||t.env.a(`failed to load wasm binary file at '${e}'`),s.arrayBuffer().then(r=>{WebAssembly.instantiate(r,t).then(a=>{n(a.instance,a.module)})})}),{})}function J7(e,t,n){if(Hm!=null)return Hm;let s="tfjs-backend-wasm.wasm";return e&&t?s="tfjs-backend-wasm-threaded-simd.wasm":e&&(s="tfjs-backend-wasm-simd.wasm"),Ap!=null&&Ap[s]!=null?Ap[s]:n+s}async function Jme(){let[e,t]=await Promise.all([H().getAsync("WASM_HAS_SIMD_SUPPORT"),H().getAsync("WASM_HAS_MULTITHREAD_SUPPORT")]);return new Promise((n,s)=>{let r={};r.locateFile=(i,l)=>{if(i.endsWith(".worker.js")){let u=Kme.wasmWorkerContents.replace(/\n/g,"\\n"),c=new Blob([u],{type:"application/javascript"});return URL.createObjectURL(c)}return i.endsWith(".wasm")?J7(e,t,fp!=null?fp:l):l+i},pb&&(r.instantiateWasm=Yme(J7(e,t,fp!=null?fp:"")));let a=!1;r.onAbort=()=>{if(a||xp)return;xp=!0,s({message:"Make sure the server can serve the `.wasm` file relative to the bundled js file. For more details see https://github.com/tensorflow/tfjs/blob/master/tfjs-backend-wasm/README.md#using-bundlers"})};let o;t&&e&&Hm==null?(r.mainScriptUrlOrBlob=new Blob(["var WasmBackendModuleThreadedSimd = "+Y7.toString()],{type:"text/javascript"}),o=Y7(r)):o=Zme(r),o.then(i=>{a=!0,xp=!1;let l=null;i.tfjs={init:i.cwrap("init",null,[]),initWithThreadsCount:i.cwrap("init_with_threads_count",null,["number"]),getThreadsCount:i.cwrap("get_threads_count","number",[]),registerTensor:i.cwrap("register_tensor",null,["number","number","number"]),disposeData:i.cwrap("dispose_data",l,["number"]),dispose:i.cwrap("dispose",l,[])},n({wasm:i})}).catch(s)})}function Qme(e,t){switch(t){case"float32":return new Float32Array(e);case"int32":return new Int32Array(e);case"bool":return new Uint8Array(e);default:throw new Error(`Unknown dtype ${t}`)}}var e0e=["tfjs-backend-wasm.wasm","tfjs-backend-wasm-simd.wasm","tfjs-backend-wasm-threaded-simd.wasm"],Hm=null,fp=null,Ap={},xp=!1,pb=!1;function t0e(e,t=!1){if(qy("setWasmPath has been deprecated in favor of setWasmPaths and will be removed in a future release."),xp)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPath()` before you call `tf.setBackend()` or `tf.ready()`");Hm=e,pb=t}function P2(e,t=!1){if(xp)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPaths()` before you call `tf.setBackend()` or `tf.ready()`");if(typeof e=="string")fp=e;else{Ap=e;let n=e0e.filter(s=>Ap[s]==null);if(n.length>0)throw new Error(`There were no entries found for the following binaries: ${n.join(",")}. Please either call setWasmPaths with a map providing a path for each binary, or with a string indicating the directory where all the binaries can be found.`)}pb=t}var iT=-1,Iy=-1;function n0e(e){iT=e}function s0e(){if(Iy===-1)throw new Error("WASM backend not initialized.");return Iy}var r0e="3.20.0",a0e=2;tu("wasm",async()=>{let{wasm:e}=await Jme();return new oT(e)},a0e);var gi=H();gi.registerFlag("WEBGPU_DEFERRED_SUBMIT_BATCH_SIZE",()=>15);gi.registerFlag("WEBGPU_CPU_FORWARD",()=>!0);gi.registerFlag("WEBGPU_MATMUL_PROGRAM_TYPE",()=>-1);gi.registerFlag("WEBGPU_USE_NAIVE_CONV2D_TRANSPOSE",()=>!1);gi.registerFlag("WEBGPU_USE_LOW_POWER_GPU",()=>!1);gi.registerFlag("WEBGPU_CPU_HANDOFF_SIZE_THRESHOLD",()=>1e3);gi.registerFlag("WEBGPU_USE_PROFILE_TOOL",()=>!1);gi.registerFlag("WEBGPU_IMPORT_EXTERNAL_TEXTURE",()=>!0);var o0e=class{constructor(e){this.device=e,this.numUsedBuffers=0,this.numFreeBuffers=0,this.freeBuffers=new Map,this.usedBuffers=new Map,this.numBytesUsed=0,this.numBytesAllocated=0}acquireUploadBuffer(e,t){return this.acquireBuffer(e,t,!0)}acquireBuffer(e,t,n=!1){let s=Q7(e,t);if(this.freeBuffers.has(s)||this.freeBuffers.set(s,[]),this.usedBuffers.has(s)||this.usedBuffers.set(s,[]),this.numBytesUsed+=e,this.numUsedBuffers++,this.freeBuffers.get(s).length>0){this.numFreeBuffers--;let a=this.freeBuffers.get(s).shift();return this.usedBuffers.get(s).push(a),a}this.numBytesAllocated+=e;let r=this.device.createBuffer({size:e,usage:t,mappedAtCreation:n});return this.usedBuffers.get(s).push(r),r}releaseBuffer(e,t,n){if(this.freeBuffers.size===0)return;let s=Q7(t,n);this.freeBuffers.has(s)||this.freeBuffers.set(s,[]),this.freeBuffers.get(s).push(e),this.numFreeBuffers++,this.numUsedBuffers--;let r=this.usedBuffers.get(s),a=r.indexOf(e);if(a<0)throw new Error("Cannot release a buffer that was never provided by this buffer manager");r.splice(a,1),this.numBytesUsed-=t}releaseUploadBuffer(e,t,n){e.mapAsync(GPUMapMode.WRITE).then(()=>{this.releaseBuffer(e,t,n)},s=>{})}getNumUsedBuffers(){return this.numUsedBuffers}getNumFreeBuffers(){return this.numFreeBuffers}dispose(){this.freeBuffers.forEach((e,t)=>{e.forEach(n=>{n.destroy()})}),this.usedBuffers.forEach((e,t)=>{e.forEach(n=>{n.destroy()})}),this.freeBuffers=new Map,this.usedBuffers=new Map,this.numUsedBuffers=0,this.numFreeBuffers=0,this.numBytesUsed=0,this.numBytesAllocated=0}};function Q7(e,t){return`${e}_${t}`}var i0e=class{constructor(e){this.device=e,this.numUsedTextures=0,this.numFreeTextures=0,this.freeTextures=new Map,this.usedTextures=new Map,this.numBytesUsed=0,this.numBytesAllocated=0}acquireTexture(e,t,n,s){let r=t6(n),a=e*t*r,o=e6(e,t,n,s);if(this.freeTextures.has(o)||this.freeTextures.set(o,[]),this.usedTextures.has(o)||this.usedTextures.set(o,[]),this.numBytesUsed+=a,this.numUsedTextures++,this.freeTextures.get(o).length>0){this.numFreeTextures--;let l=this.freeTextures.get(o).shift();return this.usedTextures.get(o).push(l),l}this.numBytesAllocated+=a;let i=this.device.createTexture({size:[e,t],format:n,usage:s});return this.usedTextures.get(o).push(i),i}releaseTexture(e,t,n,s,r){if(this.freeTextures.size===0)return;let a=e6(t,n,s,r);this.freeTextures.has(a)||this.freeTextures.set(a,[]),this.freeTextures.get(a).push(e),this.numFreeTextures++,this.numUsedTextures--;let o=this.usedTextures.get(a),i=o.indexOf(e);if(i<0)throw new Error("Cannot release a texture that was never provided by this texture manager");o.splice(i,1);let l=t6(s),u=t*n*l;this.numBytesUsed-=u}getNumUsedTextures(){return this.numUsedTextures}getNumFreeTextures(){return this.numFreeTextures}dispose(){this.freeTextures.forEach((e,t)=>{e.forEach(n=>{n.destroy()})}),this.usedTextures.forEach((e,t)=>{e.forEach(n=>{n.destroy()})}),this.freeTextures=new Map,this.usedTextures=new Map,this.numUsedTextures=0,this.numFreeTextures=0,this.numBytesUsed=0,this.numBytesAllocated=0}};function e6(e,t,n,s){return`${e}_${t}_${n}_${s}`}function t6(e){if(e==="rgba8unorm")return 16;throw new Error(`${e} is not supported!`)}function l0e(e,t){if(Math.max(...e)>3)throw new Error("Cannot symbolically compute strides for rank > 4 tensor.");let n=e.length,s=e.map(a=>`${t}[${a}]`),r=new Array(n-1);r[n-2]=s[n-1];for(let a=n-3;a>=0;--a)r[a]=`(${r[a+1]} * ${s[a+1]})`;return r}var u0e=(e,t,n,s)=>{let r={dtype:s.dtype,shape:s.shape},a=c0e(n,r,t),o=e.createShaderModule({code:a,label:t.constructor.name});return e.createComputePipeline({compute:{module:o,entryPoint:"_start"},label:t.constructor.name,layout:"auto"})};function Pn(e){if(e<=1)return"i32";if(e===2)return"vec2<i32>";if(e===3)return"vec3<i32>";if(e===4)return"vec4<i32>";if(e===5)return"vec5";if(e===6)return"vec6";throw Error(`GPU for rank ${e} is not yet supported`)}function va(e){if(e===0)return"x";if(e===1)return"y";if(e===2)return"z";if(e===3)return"w";if(e===4)return"u";if(e===5)return"v";throw Error(`Index ${e} is not yet supported`)}function Ye(...e){let t;switch(e.length){case 0:t=`
${Lp()}
fn _start(@builtin(local_invocation_id) LocalId : vec3<u32>,
@builtin(global_invocation_id) GlobalId : vec3<u32>,
@builtin(num_workgroups) NumWorkgroups : vec3<u32>) {
localId = LocalId;
globalId = GlobalId;
numWorkgroups = NumWorkgroups;
main();
}
fn main()
`;break;case 1:t=`
${Lp()}
fn _start(@builtin(local_invocation_id) LocalId : vec3<u32>,
@builtin(global_invocation_id) GlobalId : vec3<u32>,
@builtin(num_workgroups) NumWorkgroups : vec3<u32>) {
localId = LocalId;
globalId = GlobalId;
numWorkgroups = NumWorkgroups;
main(getGlobalIndex());
}
fn main(${e[0]} : i32)
`;break;default:throw Error("Unreachable")}return t}function Lp(){return`
@compute @workgroup_size(workGroupSizeX, workGroupSizeY, workGroupSizeZ)
`}function c0e(e,t,n){let s=[];if(s.push(`
const workGroupSizeX = ${n.workGroupSize[0]}u;
const workGroupSizeY = ${n.workGroupSize[1]}u;
const workGroupSizeZ = ${n.workGroupSize[2]}u;
var<private> localId: vec3<u32>;
var<private> globalId: vec3<u32>;
var<private> numWorkgroups: vec3<u32>;
// Only used when the y/z dimension of workgroup size is 1.
fn getGlobalIndex() -> i32 {
${lT(n)?" return i32(globalId.x);":` let localInvocationIndex = localId.z * workGroupSizeX * workGroupSizeY +
localId.y * workGroupSizeX + localId.x;
let workGroupID = (globalId - localId)/vec3<u32>(
workGroupSizeX, workGroupSizeY, workGroupSizeZ);
return i32((workGroupID.z * numWorkgroups.x * numWorkgroups.y +
workGroupID.y * numWorkgroups.x + workGroupID.x) *
(workGroupSizeX * workGroupSizeY * workGroupSizeZ) +
localInvocationIndex);
`}
}
`),n.isFromPixels)return s.push(`
struct Uniform {
size : i32,
numChannels : i32,
outShapeStrides : vec2<i32>,
};
@group(0) @binding(0) var<storage, read_write> result: array<${bp(t.dtype,n.isVec4)}>;
@group(0) @binding(2) var<uniform> uniforms: Uniform;
`),[n6,s.join(`
`),s6(t.shape),n.getUserCode()].join(`
`);let r="struct Uniforms { NAN : f32, ";n.variableNames.forEach((d,h)=>{let f=Pn(e[h].shape.length);r+=`${d.charAt(0).toLowerCase()+d.slice(1)}Shape : ${f}, `}),r+=`outShape : ${Pn(t.shape.length)}, `;let o=t.shape.length-1;r+=`
outShapeStrides: ${Pn(o)}, `,n.size&&(r+="size : i32, "),n.uniforms&&(r+=n.uniforms),r+="};",r=A0e(r),s.push(r),n.atomic?s.push(`
@group(0) @binding(0) var<storage, read_write> result: array<atomic<i32>>;
`):s.push(`
@group(0) @binding(0) var<storage, read_write> result: array<${bp(t.dtype,n.isVec4)}>;
`),n.variableNames.forEach((d,h)=>{s.push(`
@group(0) @binding(${1+h}) var<storage, read> ${d}: array<${n.variableTypes?n.variableTypes[h]:bp(e[h].dtype,n.isVec4)}>;
`)}),r!==""&&s.push(`
@group(0) @binding(${1+n.variableNames.length}) var<uniform> uniforms: Uniforms;
`);let l=m0e(t.shape,n.dispatchLayout),u=[n6,s.join(`
`),s6(t.shape),l,g0e(t.shape.length)];n.atomic||u.push(y0e(t.shape,t.dtype,n.isVec4));let c=e.map((d,h)=>f0e(d,t.shape,n.variableTypes?n.variableTypes[h]==="vec4<f32>":n.isVec4,n.dispatchLayout.x.length===t.shape.length)).join(`
`);return u.push(c),u.push(n.getUserCode()),u.join(`
`)}function d0e(e,t,n,s){let r=e.shaderKey;if(e.isFromPixels)return r;let a=n.map(c=>c.dtype).concat(s.dtype),o=n.map(c=>T.getBroadcastDims(c.shape,s.shape)),i=n.map(c=>v.arraysEqual(c.shape,s.shape)).join("_"),l=o.map(c=>c.join("_")).join(";"),u=lT(e)?"flatDispatch":"";return r+="_"+(e.workGroupSize?e.workGroupSize.join(","):"")+t.map(c=>c.length).join(",")+a.join(",")+e.variableNames.join(",")+l+i+u,r}var n6=`
struct vec5 {x: i32, y: i32, z: i32, w: i32, u: i32};
struct vec6 {x: i32, y: i32, z: i32, w: i32, u: i32, v: i32};
// Checks whether coordinates lie within the bounds of the shape.
fn coordsInBounds2D(coord : vec2<i32>, shape : vec2<i32>) -> bool {
return all(coord >= vec2<i32>(0)) && all(coord < shape);
}
fn coordsInBounds3D(coord : vec3<i32>, shape : vec3<i32>) -> bool {
return all(coord >= vec3<i32>(0)) && all(coord < shape);
}
fn coordsInBounds4D(coord : vec4<i32>, shape : vec4<i32>) -> bool {
return all(coord >= vec4<i32>(0)) && all(coord < shape);
}
fn getIndexFromCoords1D(coord : i32, shape : i32) -> i32 {
return coord;
}
fn getIndexFromCoords2D(coords : vec2<i32>, shape : vec2<i32>) -> i32 {
return dot(coords, vec2<i32>(shape.y, 1));
}
fn getIndexFromCoords3D(coords : vec3<i32>, shape : vec3<i32>) -> i32 {
return dot(coords, vec3<i32>(shape.y * shape.z, shape.z, 1));
}
fn getIndexFromCoords4D(coords : vec4<i32>, shape : vec4<i32>) -> i32 {
return dot(coords, vec4<i32>(
shape.y * shape.z * shape.w, shape.z * shape.w, shape.w, 1));
}
fn getIndexFromCoords5D(coords : vec5, shape : vec5) -> i32 {
let shapeStrides: vec5 = vec5(shape.y * shape.z * shape.w * shape.u, shape.z * shape.w * shape.u, shape.w * shape.u, shape.u, 1);
return coords.x*shapeStrides.x + coords.y*shapeStrides.y + coords.z*shapeStrides.z + coords.w*shapeStrides.w + coords.u*shapeStrides.u;
}
fn getIndexFromCoords6D(coords : vec6, shape : vec6) -> i32 {
let shapeStrides: vec6 = vec6(shape.y * shape.z * shape.w * shape.u * shape.v, shape.z * shape.w * shape.u * shape.v, shape.w * shape.u * shape.v, shape.u * shape.v, shape.v, 1);
return coords.x*shapeStrides.x + coords.y*shapeStrides.y + coords.z*shapeStrides.z + coords.w*shapeStrides.w + coords.u*shapeStrides.u + coords.v*shapeStrides.v;
}
fn idiv(a: i32, b: i32, sign: f32) -> i32 {
var res: i32 = a / b;
let modulo: i32 = a % b;
if (sign < 0. && modulo != 0) {
res = res - 1;
}
return res;
}
// NaN defination in IEEE 754-1985 is :
// - sign = either 0 or 1.
// - biased exponent = all 1 bits.
// - fraction = anything except all 0 bits (since all 0 bits represents infinity).
// https://en.wikipedia.org/wiki/IEEE_754-1985#Representation_of_non-numbers
fn isnan(val: f32) -> bool {
let floatToUint: u32 = bitcast<u32>(val);
return (floatToUint & 0x7fffffffu) > 0x7f800000u;
}
fn isnanVec4(val : vec4<f32>) -> vec4<bool> {
return vec4<bool>(isnan(val[0]), isnan(val[1]), isnan(val[2]), isnan(val[3]));
}
`;function s6(e){let t=e.length;if(t<=1)return"fn getCoordsFromIndex(index : i32) -> i32 { return index; }";let n=v.computeStrides(e),s=Pn(t),r=[];for(let o=0;o<t;o++)r.push(`d${o}`);if(n.length===1)return` fn getCoordsFromIndex(index : i32) -> vec2<i32> {
let d0 = index / uniforms.outShapeStrides; let d1 = index - d0 * uniforms.outShapeStrides;
return vec2<i32>(d0, d1);
}`;let a;return a="var index2 = index;"+n.map((o,i)=>{let l=`let ${r[i]} = index2 / uniforms.outShapeStrides.${va(i)}`,u=i===n.length-1?`let ${r[i+1]} = index2 - ${r[i]} * uniforms.outShapeStrides.${va(i)}`:`index2 = index2 - ${r[i]} * uniforms.outShapeStrides.${va(i)}`;return`${l}; ${u};`}).join(""),`
fn getCoordsFromIndex(index : i32) -> ${s} {
${a}
return ${s}(${r.join(",")});
}
`}function p0e(e,t){let n=e.name,s=e.shape.length,r=Pn(s),a="get"+n.charAt(0).toUpperCase()+n.slice(1),o=["d0","d1","d2","d3","d4","d5"].slice(0,s),i=o.map(c=>`${c} : i32`).join(", ");if(s<1)return t?`
fn ${a}() -> vec4<f32> {
return vec4<f32>(${n}[0]);
}
`:`
fn ${a}() ->f32 {
return f32(${n}[0]);
}
`;let l=`uniforms.${n.charAt(0).toLowerCase()+n.slice(1)}Shape`,u=`${s}D`;return s===0&&(u="1D"),t?`
fn ${a}(${i}) -> vec4<f32> {
return vec4<f32>(${n}[getIndexFromCoords${u}(${r}(${o.join(",")}),
${l}) / 4]);
}
`:`
fn ${a}(${i}) -> f32 {
return f32(${n}[getIndexFromCoords${u}(${r}(${o.join(",")}),
${l})]);
}
`}function h0e(e,t,n,s){let r=e.name,a=r.charAt(0).toUpperCase()+r.slice(1),o="get"+a+"ByOutput",i=e.shape.length,l=t.length,u=Pn(l);if(v.arraysEqual(e.shape,t)&&s)return n?`
fn ${o}Index(globalIndex : i32) -> vec4<f32> {
return vec4<f32>(${r}[globalIndex]);
}
fn ${o}Coords(coords : ${u}) -> vec4<f32> {
return vec4<f32>(${r}[${l>1?"getOutputIndexFromCoords(coords)":"coords"} / 4]);
}
`:`
fn ${o}Index(globalIndex : i32) -> f32 {
return f32(${r}[globalIndex]);
}
fn ${o}Coords(coords : ${u}) -> f32 {
return f32(${r}[${l>1?"getOutputIndexFromCoords(coords)":"coords"}]);
}
`;let c=T.getBroadcastDims(e.shape,t),p=l-i,d="";if(i===0)return n?`
fn ${o}Index(globalIndex : i32) -> vec4<f32> {
return get${a}();
}
fn ${o}Coords(coords : ${u}) -> vec4<f32> {
return get${a}();
}
`:`
fn ${o}Index(globalIndex : i32) -> f32{
return get${a}();
}
fn ${o}Coords(coords : ${u}) -> f32{
return get${a}();
}
`;l<2&&c.length>=1?d="coords = 0;":d=c.map(g=>`coords.${va(g+p)} = 0;`).join(`
`);let h="";if(l<2&&i>0)h="coords";else if(l>1){let g=Pn(i),y=e.shape.map((x,A)=>`coords.${va(A+p)}`).join(", ");h=`${g}(${y})`}else h="coords";let f=`uniforms.${r.charAt(0).toLowerCase()+r.slice(1)}Shape`,m=`${i}D`;return n?`
fn ${o}Index(globalIndex : i32) -> vec4<f32> {
var coords = getCoordsFromIndex(globalIndex);
${d}
return ${r}[getIndexFromCoords${m}(${h}, ${f}) / 4];
}
fn ${o}Coords(coordsIn : ${u}) -> vec4<f32> {
var coords = coordsIn;
${d}
return ${r}[getIndexFromCoords${m}(${h}, ${f}) / 4];
}
`:`
fn ${o}Index(globalIndex : i32) -> f32 {
var coords = getCoordsFromIndex(globalIndex);
${d}
return f32(${r}[getIndexFromCoords${m}(${h}, ${f})]);
}
fn ${o}Coords(coordsIn : ${u}) -> f32 {
var coords = coordsIn;
${d}
return f32(${r}[getIndexFromCoords${m}(${h}, ${f})]);
}
`}function f0e(e,t,n,s){let r=p0e(e,n);return e.shape.length<=t.length&&(r+=h0e(e,t,n,s)),r}function m0e(e,t){let{x:n,y:s=[],z:r=[]}=t,a=e.length;if(n.length===a)return`fn getOutputCoords() -> ${Pn(a)}{
let globalIndex = getGlobalIndex();
return getCoordsFromIndex(globalIndex);
}
`;let o="",i=[n,s,r],l=0;for(let d=0;d<i.length;d++){let h=i[d];if(h.length!==0)if(l+=h.length,h.length===1)o+=`let d${h[0]} = i32(globalId[${d}]);`;else{let f=l0e(h,"uniforms.outShape");o+=`var index${d} = i32(globalId[${d}]);`;for(let m=0;m<f.length;m++)o+=`let d${h[m]} = index${d} / ${f[m]};`,m===f.length-1?o+=`let d${h[m+1]} = index${d} - d${h[m]} * ${f[m]};`:o+=`index${d} = index${d} - d${h[m]} * ${f[m]};`}}let u=[];for(let d=0;d<l;d++)u.push(`d${d}`);let c=Pn(l),p=`fn getOutputCoords() -> ${c} {
${o}
`;return u.length===0?p+=`return ${c}(0); }`:p+=`return ${c}(${u.join(",")}); }`,p}function g0e(e){let t="";switch(e){case 0:case 1:t+=`
fn getOutputIndexFromCoords(coords : i32) -> i32 {
return coords;
}
`;break;case 2:t+=`
fn getOutputIndexFromCoords(coords : vec2<i32>) -> i32 {
return dot(coords, vec2<i32>(uniforms.outShapeStrides, 1));
}
`;break;case 3:t+=`
fn getOutputIndexFromCoords(coords : vec3<i32>) -> i32 {
return dot(coords, vec3<i32>(uniforms.outShapeStrides.x, uniforms.outShapeStrides.y, 1));
}
`;break;case 4:t+=`
fn getOutputIndexFromCoords(coords : vec4<i32>) -> i32 {
return dot(coords, vec4<i32>(
uniforms.outShapeStrides.x, uniforms.outShapeStrides.y, uniforms.outShapeStrides.z, 1));
}
`;break;case 5:t+=`
fn getOutputIndexFromCoords(coords : vec5) -> i32 {
return coords.x * uniforms.outShapeStrides.x +
coords.y * uniforms.outShapeStrides.y +
coords.z * uniforms.outShapeStrides.z +
coords.w * uniforms.outShapeStrides.w +
coords.u;
}
`;break;case 6:t+=`
fn getOutputIndexFromCoords(coords : vec6) -> i32 {
return coords.x * uniforms.outShapeStrides.x +
coords.y * uniforms.outShapeStrides.y +
coords.z * uniforms.outShapeStrides.z +
coords.w * uniforms.outShapeStrides.w +
coords.u * uniforms.outShapeStrides.u +
coords.v;
}
`;break;default:v.assert(!1,()=>`Unsupported ${e}D shape`);break}return t}function lT(e){return e.dispatch[1]===1&&e.dispatch[2]===1}function bp(e,t){return e==="float32"?t?"vec4<f32>":"f32":e==="int32"||e==="bool"?t?"vec4<i32>":"i32":e}function y0e(e,t,n){let s=e.length,r=bp(t,n),a;if(n?a=`fn setOutputAtIndex(flatIndex : i32, value : vec4<f32>) {
result[flatIndex] = ${r}(value);
}
fn setOutputAtIndexI32(flatIndex : i32, value : vec4<i32>) {
result[flatIndex] = ${r}(value);
}`:a=`fn setOutputAtIndex(flatIndex : i32, value : f32) {
result[flatIndex] = ${r}(value);
}
fn setOutputAtIndexI32(flatIndex : i32, value : i32) {
result[flatIndex] = ${r}(value);
}`,s>=2){let o=["d0","d1","d2","d3","d4","d5"].slice(0,s),i=Pn(s);n?a+=`
fn setOutputAtCoords(${o.map(l=>`${l} : i32`).join(", ")}, value : vec4<f32>) {
let flatIndex = getOutputIndexFromCoords(${i}(${o.join(", ")}));
setOutputAtIndex(flatIndex / 4, value);
}
fn setOutputAtCoordsI32(${o.map(l=>`${l} : i32`).join(", ")}, value : vec4<i32>) {
let flatIndex = getOutputIndexFromCoords(${i}(${o.join(", ")}));
setOutputAtIndexI32(flatIndex / 4, value);
}
`:a+=`
fn setOutputAtCoords(${o.map(l=>`${l} : i32`).join(", ")}, value : f32) {
let flatIndex = getOutputIndexFromCoords(${i}(${o.join(", ")}));
setOutputAtIndex(flatIndex, value);
}
fn setOutputAtCoordsI32(${o.map(l=>`${l} : i32`).join(", ")}, value : i32) {
let flatIndex = getOutputIndexFromCoords(${i}(${o.join(", ")}));
setOutputAtIndexI32(flatIndex, value);
}
`}return a}function A0e(e){let t=/(\w+)\s*:\s*vec(5|6)/g;e=e.replace(t,s=>"@align(16) "+s);let n=/vec(5|6)\s*,\s*(\w+)/g;return e=e.replace(n,(s,r,a)=>`vec${r}, @align(16) ${a}`),e}var uT={};He(uT,{ArrayBufferToTypedArray:()=>pT,GPUBytesPerElement:()=>dT,MatMulProgramType:()=>Rr,computeDispatch:()=>Ge,computeWorkGroupInfoForMatMul:()=>cT,computeWorkGroupSizeForConv2d:()=>hb,computeWorkPerThreadForConv2d:()=>fb,flatDispatchLayout:()=>ot,isWebGPUSupported:()=>mb,tilesFitEvenlyIntoShape:()=>x0e});var Ji=e=>{let t=1;for(let n=0;n<e.length;n++)t*=e[n];return t};function x0e(e,t){if(e.length!==t.length)throw new Error(`Cannot compute whether rank ${e.length} tiles fit evenly into rank ${t.length} shape - ranks must match.`);return t.every((n,s)=>n%e[s]===0)}function Ge(e,t,n=[1,1,1],s=[1,1,1]){let[r,a,o]=[Math.ceil(Ji(e.x.map(i=>t[i]))/(n[0]*s[0])),e.y?Math.ceil(Ji(e.y.map(i=>t[i]))/(n[1]*s[1])):1,e.z?Math.ceil(Ji(e.z.map(i=>t[i]))/(n[2]*s[2])):1];return[r,a,o]}function cT(e,t,n,s=!1){let r=[8,8,1],a=[4,4,1];return s||(e<=8&&(a[1]=1),t<=16&&n<=16&&(r[0]=4)),{workGroupSize:r,elementsPerThread:a}}function hb(e,t,n=!1){if(n)return[8,8,1];let s=Ji(e.x.map(a=>t[a])),r=Ji(e.y.map(a=>t[a]));return s<=4?[4,16,1]:r<=4?[16,4,1]:[16,16,1]}function fb(e,t,n=!1){if(n)return[4,4,1];let s=Ji(e.x.map(a=>t[a])),r=Ji(e.y.map(a=>t[a]));return s<=4?[1,2,1]:r<=4?[2,1,1]:[2,2,1]}function ot(e){return{x:e.map((t,n)=>n)}}function dT(e){if(e==="float32"||e==="int32"||e==="bool"||e==="string")return 4;if(e==="complex64")return 8;throw new Error(`Unknown dtype ${e}`)}function pT(e,t){if(t==="float32")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool"||t==="string")return Uint8Array.from(new Int32Array(e));throw new Error(`Unknown dtype ${t}`)}function mb(){return(typeof window!="undefined"||typeof WorkerGlobalScope!="undefined")&&!!navigator.gpu}var Rr;(function(e){e[e.MatMulReduceProgram=0]="MatMulReduceProgram",e[e.MatMulSplitKProgram=1]="MatMulSplitKProgram",e[e.MatMulSmallOutputSizeProgram=2]="MatMulSmallOutputSizeProgram",e[e.MatMulPackedProgram=3]="MatMulPackedProgram",e[e.MatMulMax=4]="MatMulMax"})(Rr||(Rr={}));var b0e=H().getNumber("WEBGPU_CPU_HANDOFF_SIZE_THRESHOLD"),v0e=(e,t)=>{let n=e.limits.maxComputeWorkgroupsPerDimension,s=t.dispatchLayout,r=t.dispatch;if(r.every(o=>o<=n))return r;v.assert(r[0]>n&&s.y===void 0&&s.z===void 0,()=>"Dispatch size exceeds WebGPU limits in Y or Z dimension.");let a=Math.ceil(Math.sqrt(r[0]));return a>n?(a=Math.ceil(Math.cbrt(r[0])),v.assert(a<=n,()=>"Total dispatch size exceeds WebGPU maximum."),[a,a,a]):[a,a,1]},F2=class extends Ac{constructor(e){if(super(),this.commandQueueOwnedIds=new WeakSet,this.dispatchNumberInEncoder=0,this.disposed=!1,this.downloadWaitMs=0,this.tensorDataPendingDisposal=[],this.stagingPendingDisposal=[],this.uniformPendingDisposal=[],this.uploadWaitMs=0,!mb())throw new Error("WebGPU is not supported on this device");this.pipelineCache={},this.device=e,this.queue=e.queue,this.currentCommandEncoder=null,this.currentComputePass=null,this.supportTimeQuery=e.features.has("timestamp-query"),this.bufferManager=new o0e(this.device),this.textureManager=new i0e(this.device),this.tensorMap=new Wp(this,rn()),this.supportTimeQuery&&(this.querySet=this.device.createQuerySet({type:"timestamp",count:2})),H().getBool("WEBGPU_USE_PROFILE_TOOL")&&(this.dummyCanvas=document.createElement("canvas"),this.dummyCanvas.width=1,this.dummyCanvas.height=1,this.dummyContext=this.dummyCanvas.getContext("webgpu"),this.dummyContext.configure({device:e,format:"bgra8unorm"}),document.body.appendChild(this.dummyCanvas))}nextDataId(){return F2.nextDataId++}floatPrecision(){return 32}defaultGpuBufferUsage(){return GPUBufferUsage.STORAGE|GPUBufferUsage.COPY_SRC|GPUBufferUsage.COPY_DST}disposeData(e,t=!1){if(this.tensorDataPendingDisposal.indexOf(e)>=0)return!1;if(!this.tensorMap.has(e))return!0;let n=this.tensorMap.get(e);if(this.decRef(e),!t&&n.refCount>0)return!1;if(this.commandQueueOwnedIds.has(e))return this.tensorDataPendingDisposal.push(e),!1;let{complexTensorInfos:s}=this.tensorMap.get(e);return s!=null&&(this.disposeData(s.real.dataId,t),this.disposeData(s.imag.dataId,t)),this.releaseResource(e),this.tensorMap.delete(e),!0}memory(){return{numBytesInGPU:this.bufferManager.numBytesUsed,numBytesAllocatedInGPU:this.bufferManager.numBytesAllocated,unreliable:!1}}releaseResource(e){let t=this.tensorMap.get(e);if(!(!t||!t.resourceInfo)){if("texture"in t.resourceInfo){let n=t.resourceInfo;n.texture instanceof GPUTexture&&this.textureManager.releaseTexture(n.texture,n.width,n.height,n.format,n.usage),n.texture=null}else{let n=t.resourceInfo;this.bufferManager.releaseBuffer(n.buffer,n.size,n.usage),n.buffer=null}t.resourceInfo=null}}refCount(e){return this.tensorMap.has(e)?this.tensorMap.get(e).refCount:0}incRef(e){let t=this.tensorMap.get(e);t.refCount++}decRef(e){if(this.tensorMap.has(e)){let t=this.tensorMap.get(e);t.refCount--}}write(e,t,n){if(n==="complex64"&&e!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let s={id:this.nextDataId()};return this.tensorMap.set(s,{dtype:n,shape:t,values:e,refCount:1}),s}move(e,t,n,s,r){if(s==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");this.tensorMap.set(e,{dtype:s,shape:n,values:t,refCount:r})}submitQueue(){this.ensureComputePassEnded(),this.queue.submit([this.currentCommandEncoder.finish()]),this.currentCommandEncoder=null,this.dispatchNumberInEncoder=0,this.commandQueueOwnedIds=new WeakSet,this.tensorDataPendingDisposal.forEach(e=>{this.releaseResource(e),this.tensorMap.delete(e)}),this.uniformPendingDisposal.forEach(e=>this.bufferManager.releaseBuffer(e.buffer,e.size,e.usage)),this.stagingPendingDisposal.forEach(e=>this.bufferManager.releaseUploadBuffer(e.buffer,e.size,e.usage)),this.tensorDataPendingDisposal=[],this.uniformPendingDisposal=[],this.stagingPendingDisposal=[]}ensureCommandEncoderReady(){this.currentCommandEncoder||(this.currentCommandEncoder=this.device.createCommandEncoder())}ensureComputePassEnded(){this.currentComputePass&&(this.currentComputePass.end(),this.currentComputePass=null)}getComputePass(){return this.currentComputePass||(this.currentComputePass=this.currentCommandEncoder.beginComputePass()),this.currentComputePass}async getBufferData(e,t){let n=this.bufferManager.acquireBuffer(t,GPUBufferUsage.COPY_DST|GPUBufferUsage.MAP_READ);this.ensureCommandEncoderReady(),this.ensureComputePassEnded(),this.currentCommandEncoder.copyBufferToBuffer(e,0,n,0,t),this.submitQueue(),await n.mapAsync(GPUMapMode.READ);let s=n.getMappedRange().slice(0);return n.unmap(),n!=null&&this.bufferManager.releaseBuffer(n,t,GPUBufferUsage.COPY_DST|GPUBufferUsage.MAP_READ),H().getBool("WEBGPU_USE_PROFILE_TOOL")&&(v.assert(this.dummyContext!==void 0,()=>"Fail to get context for profiling tool"),this.dummyContext.getCurrentTexture()),s}convertAndCacheOnCPU(e,t){let n=this.tensorMap.get(e);return this.releaseResource(e),n.values=t,n.values}readSync(e){let t=this.tensorMap.get(e),{values:n}=t;if(n==null)throw new Error("WebGPU readSync is only available for CPU-resident tensors.");return n}async read(e){if(!this.tensorMap.has(e))throw new Error(`Tensor ${e} was not registered!`);let t=this.tensorMap.get(e),{values:n}=t;if(n!=null)return this.convertAndCacheOnCPU(e,n);let s;if(t.dtype==="complex64"){let r=await Promise.all([this.read(t.complexTensorInfos.real.dataId),this.read(t.complexTensorInfos.imag.dataId)]),a=r[0],o=r[1];s=T.mergeRealAndImagArrays(a,o)}else{let r=t.resourceInfo,a=await this.getBufferData(r.buffer,r.size);s=pT(a,t.dtype)}return this.convertAndCacheOnCPU(e,s),s}readToGPU(e){let t=this.tensorMap.get(e),{values:n,dtype:s,shape:r,resourceInfo:a}=t;if(s==="complex64")throw new Error("Does not support reading buffer for complex64 dtype.");if(a==null)throw n!=null?new Error("Data is not on GPU but on CPU."):new Error("There is no data on GPU or CPU.");let o=a.size,i=this.bufferManager.acquireBuffer(o,a.usage);this.ensureCommandEncoderReady(),this.ensureComputePassEnded(),this.currentCommandEncoder.copyBufferToBuffer(a.buffer,0,i,0,o),this.submitQueue();let l=this.makeTensorInfo(r,s),u=rn().makeTensorFromTensorInfo(l),c=this.tensorMap.get(l.dataId);return c.resourceInfo={size:o,usage:this.defaultGpuBufferUsage(),buffer:i},{tensorRef:u,buffer:i,bufSize:o}}bufferSync(e){let t=this.readSync(e.dataId);if(e.dtype==="string")try{let n=t.map(s=>v.decodeString(s));return We(e.shape,e.dtype,n)}catch(n){throw new Error("Failed to decode encoded string bytes into utf-8")}return We(e.shape,e.dtype,t)}async time(e){this.supportTimeQuery||console.warn("This device doesn't support timestamp-query extension. Start Chrome browser with flag --disable-dawn-features=disallow_unsafe_apis then try again. Otherwise, zero will be shown for the kernel time when profiling mode is enabled. Using performance.now is not workable for webgpu since it doesn't support synchronous data read from GPU.");let t=this.activeTimers,n=[],s=!1;this.programTimersStack==null?(this.programTimersStack=n,s=!0):this.activeTimers.push(n),this.activeTimers=n,e();let r=v.flatten(this.activeTimers.map(l=>l.query)).filter(l=>l!=null),a=v.flatten(this.activeTimers.map(l=>l.name)).filter(l=>l!=null);this.activeTimers=t,s&&(this.programTimersStack=null);let o={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null},i=await Promise.all(r);return o.kernelMs=v.sum(i),o.getExtraProfileInfo=()=>i.map((l,u)=>({name:a[u],ms:l})).map(l=>`${l.name}: ${l.ms}`).join(", "),this.uploadWaitMs=0,this.downloadWaitMs=0,o}makeTensorInfo(e,t,n){return t==="string"&&n!=null&&n.length>0&&v.isString(n[0])&&(n=n.map(r=>v.encodeString(r))),{dataId:this.write(n,e,t),shape:e,dtype:t}}tensorToBinding(e){if(!e)return null;let t=this.tensorMap.get(e.dataId);if("texture"in t.resourceInfo){let s=t.resourceInfo;return s.texture instanceof GPUExternalTexture?s.texture:s.texture.createView()}let n=t.resourceInfo;return{offset:0,size:n.size,buffer:n.buffer}}async getQueryTime(e){return this.supportTimeQuery?this.getTimeFromQuerySet(e):0}uploadToGPU(e){let t=this.tensorMap.get(e);if(t.resourceInfo)return;let n=dT(t.dtype)*v.sizeFromShape(t.shape),s=this.bufferManager.acquireBuffer(n,this.defaultGpuBufferUsage());if(t.resourceInfo={size:n,usage:this.defaultGpuBufferUsage(),buffer:s},t.values){let r=this.bufferManager.acquireUploadBuffer(n,GPUBufferUsage.MAP_WRITE|GPUBufferUsage.COPY_SRC),a=r.getMappedRange();t.dtype==="int32"||t.dtype==="bool"?new Int32Array(a).set(t.values):new Float32Array(a).set(t.values),r.unmap(),this.ensureCommandEncoderReady(),this.ensureComputePassEnded(),this.currentCommandEncoder.copyBufferToBuffer(r,0,s,0,n);let o={size:n,usage:GPUBufferUsage.MAP_WRITE|GPUBufferUsage.COPY_SRC,buffer:r};this.stagingPendingDisposal.push(o)}}makeUniforms(e){let t=0,n=0,s=[];e.forEach(i=>{i.data.length===0&&(i.data=[1]);let l;switch(i.data.length){case 1:l=4;break;case 2:l=8;break;case 3:l=16;break;case 4:l=16;break;case 5:l=16;break;case 6:l=16;break;default:v.assert(!1,()=>`Unsupported ${i.data.length}D shape`)}(n===5||n===6)&&(l=16),t=Math.ceil(t/l)*l,n=i.data.length,s.push(t),t+=i.data.length*4});let r=new ArrayBuffer(t);e.forEach((i,l)=>{let u=s[l];i.type==="int32"?new Int32Array(r,u,i.data.length).set(i.data):i.type==="uint32"?new Uint32Array(r,u,i.data.length).set(i.data):new Float32Array(r,u,i.data.length).set(i.data)});let a=this.bufferManager.acquireBuffer(t,GPUBufferUsage.COPY_DST|GPUBufferUsage.UNIFORM);this.queue.writeBuffer(a,0,r,0,t);let o={size:t,usage:GPUBufferUsage.COPY_DST|GPUBufferUsage.UNIFORM,buffer:a};return this.uniformPendingDisposal.push(o),{offset:0,size:t,buffer:a}}runWebGPUProgram(e,t,n,s,r){if(r||(r=this.makeTensorInfo(e.outputShape,n)),v.sizeFromShape(r.shape)===0)return this.tensorMap.get(r.dataId).values=v.getTypedArrayFromDType(r.dtype,0),r;this.uploadToGPU(r.dataId),e.dispatch=v0e(this.device,e);let a=[],o=[];if(!e.isFromPixels){a.push({type:"float32",data:[NaN]}),o=t.concat(r).map(g=>g.shape);let f="int32";o.map(g=>{a.push({type:f,data:g})});let m=v.computeStrides(r.shape);if(a.push({type:f,data:m}),e.size){let g=v.sizeFromShape(e.outputShape);a.push({type:f,data:[e.isVec4?g/4:g]})}}let i=t.map((f,m)=>{if(f.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");return this.uploadToGPU(f.dataId),{dtype:this.tensorMap.get(f.dataId).dtype,shape:f.shape,name:e.variableNames[m]}}),l=d0e(e,o,i,r),u;l in this.pipelineCache?u=this.pipelineCache[l]:(u=u0e(this.device,e,i,r),this.pipelineCache[l]=u),s&&(a=[...a,...s]);let c=[this.tensorToBinding(r),...t.map(f=>this.tensorToBinding(f)),this.makeUniforms(a)],p=this.device.createBindGroup({layout:u.getBindGroupLayout(0),entries:c.map((f,m)=>({binding:m,resource:f}))});this.ensureCommandEncoderReady();let d=this.getComputePass(),h=this.activeTimers!=null;return h&&this.supportTimeQuery&&d.writeTimestamp(this.querySet,0),d.setPipeline(u),d.setBindGroup(0,p),d.dispatchWorkgroups(e.dispatch[0],e.dispatch[1],e.dispatch[2]),h&&this.supportTimeQuery&&d.writeTimestamp(this.querySet,1),this.dispatchNumberInEncoder++,t.forEach(f=>{this.commandQueueOwnedIds.add(f.dataId)}),this.commandQueueOwnedIds.add(r.dataId),H().get("WEBGPU_DEFERRED_SUBMIT_BATCH_SIZE")<=this.dispatchNumberInEncoder&&this.submitQueue(),h&&this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(this.querySet)}),r}async getTimeFromQuerySet(e){let t=this.bufferManager.acquireBuffer(16,GPUBufferUsage.COPY_SRC|GPUBufferUsage.QUERY_RESOLVE),n=this.bufferManager.acquireBuffer(16,GPUBufferUsage.MAP_READ|GPUBufferUsage.COPY_DST);this.ensureCommandEncoderReady(),this.ensureComputePassEnded(),this.currentCommandEncoder.resolveQuerySet(e,0,2,t,0),this.currentCommandEncoder.copyBufferToBuffer(t,0,n,0,16),this.submitQueue(),await n.mapAsync(GPUMapMode.READ);let s=new BigUint64Array(n.getMappedRange()),r=Number(s[1]-s[0]);return n.unmap(),this.bufferManager.releaseBuffer(n,16,GPUBufferUsage.MAP_READ|GPUBufferUsage.COPY_DST),this.bufferManager.releaseBuffer(t,16,GPUBufferUsage.COPY_SRC|GPUBufferUsage.QUERY_RESOLVE),r/1e6}shouldExecuteOnCPU(e,t=b0e){return H().getBool("WEBGPU_CPU_FORWARD")&&e.every(n=>this.tensorMap.get(n.dataId).resourceInfo==null&&v.sizeFromShape(n.shape)<t)}numDataIds(){return this.tensorMap.numDataIds()-this.tensorDataPendingDisposal.length}dispose(){this.disposed||(this.bufferManager.dispose(),this.textureManager.dispose(),this.disposed=!0)}};F2.nextDataId=0;mb()&&tu("webgpu",async()=>{H().set("CHECK_COMPUTATION_FOR_ERRORS",!1);let e={powerPreference:H().get("WEBGPU_USE_LOW_POWER_GPU")?"low-power":"high-performance"},t=await navigator.gpu.requestAdapter(e),n=t.limits,s={},r=t.features.has("timestamp-query");s.requiredLimits={maxComputeWorkgroupStorageSize:n.maxComputeWorkgroupStorageSize,maxComputeWorkgroupsPerDimension:n.maxComputeWorkgroupsPerDimension,maxStorageBufferBindingSize:n.maxStorageBufferBindingSize},r&&(s.requiredFeatures=["timestamp-query"]);let a=await t.requestDevice(s);return new F2(a)},3);var qe;(function(e){e[e.MUL=0]="MUL",e[e.ADD=1]="ADD",e[e.ATAN2=2]="ATAN2",e[e.SUB=3]="SUB",e[e.DIV=4]="DIV",e[e.EQUAL=5]="EQUAL",e[e.GREATER=6]="GREATER",e[e.GREATER_EQUAL=7]="GREATER_EQUAL",e[e.LESS=8]="LESS",e[e.LESS_EQUAL=9]="LESS_EQUAL",e[e.LOGICAL_AND=10]="LOGICAL_AND",e[e.NOT_EQUAL=11]="NOT_EQUAL",e[e.SQUARED_DIFFERENCE=12]="SQUARED_DIFFERENCE",e[e.INT_DIV=13]="INT_DIV",e[e.POW=14]="POW",e[e.PRELU=15]="PRELU",e[e.MAX=16]="MAX",e[e.MIN=17]="MIN",e[e.COMPLEX_MULTIPLY_REAL=18]="COMPLEX_MULTIPLY_REAL",e[e.COMPLEX_MULTIPLY_IMAG=19]="COMPLEX_MULTIPLY_IMAG"})(qe||(qe={}));var w0e=`
if (isnan(a)) { return a; }
if (isnan(b)) { return b; }
`,hT=`
if (isNaN.r) {
resultTemp.r = valueForNaN;
}
if (isNaN.g) {
resultTemp.g = valueForNaN;
}
if (isNaN.b) {
resultTemp.b = valueForNaN;
}
if (isNaN.a) {
resultTemp.a = valueForNaN;
}
`,fT=`
let isNaN = isnanVec4(a) | isnanVec4(b);
${hT}
`,k0e="return a + b;",S0e="return areal * breal - aimag * bimag;",I0e="return areal * bimag + aimag * breal;",C0e="return a / b;",T0e="return a * b;",N0e="return (a - b) * (a - b);",E0e="return a - b;",R0e="return f32(a == b);",_0e="return vec4<f32>(a == b);",D0e="return f32(a > b);",$0e="return vec4<f32>(a > b);",P0e="return f32(a >= b);",F0e="return vec4<f32>(a >= b);",O0e="return f32(a < b);",M0e="return vec4<f32>(a < b);",z0e="return f32(a <= b);",L0e="return vec4<f32>(a <= b);",B0e="return f32(f32(a) >= 1.0 && f32(b) >= 1.0);",W0e=`return (vec4<f32>(a >= vec4<f32>(1.0)) *
vec4<f32>(b >= vec4<f32>(1.0)));`,V0e=`
let s = sign(a) * sign(b);
let ia = i32(round(a));
let ib = i32(round(b));
return f32(idiv(ia, ib, s));
`,U0e=`
let ia = vec4<i32>(round(a));
let ib = vec4<i32>(round(b));
let cond = ib != vec4<i32>(0);
var resultTemp = vec4<i32>(0);
let s = sign(a) * sign(b);
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
if (cond[0]) {
resultTemp[0] = idiv(ia[0], ib[0], s[0]);
}
if (cond[1]) {
resultTemp[1] = idiv(ia[1], ib[1], s[1]);
}
if (cond[2]) {
resultTemp[2] = idiv(ia[2], ib[2], s[2]);
}
if (cond[3]) {
resultTemp[3] = idiv(ia[3], ib[3], s[3]);
}
return vec4<f32>(resultTemp);
`,G0e=`
if (isnan(a) || isnan(b)) {
return 1.0;
}
return f32(a != b);
`,H0e=`
var resultTemp = vec4<f32>(a != b);
let valueForNaN = 1.0;
${fT}
return resultTemp;
`,j0e=`
if(a < 0.0 && floor(b) < b) {
return uniforms.NAN;
}
if (b == 0.0) {
return 1.0;
}
if (round(abs(b) % 2.0) != 1.0) {
return pow(abs(a), b);
}
return sign(a) * pow(abs(a), b);
`,q0e=`
let isModRound1Bool = vec4<i32>(round(abs(b) % vec4<f32>(2.0))) == vec4<i32>(1);
let isModRound1 = vec4<f32>(isModRound1Bool);
let multiplier = sign(a) * isModRound1 + (vec4<f32>(1.0) - isModRound1);
var resultTemp = multiplier * pow(abs(a), b);
// Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS
let isExpZero = b == vec4<f32>(0.0);
if (isExpZero.r) {
resultTemp.r = 1.0;
}
if (isExpZero.g) {
resultTemp.g = 1.0;
}
if (isExpZero.b) {
resultTemp.b = 1.0;
}
if (isExpZero.a) {
resultTemp.a = 1.0;
}
let isNaN = a < vec4<f32>(0.0) & floor(b) < b;
let valueForNaN = uniforms.NAN;
${hT}
return resultTemp;
`,X0e="if (a < 0.0) { return b * a; } return a;",K0e=`
let aLessThanZero = vec4<f32>(a < vec4<f32>(0.0));
return (aLessThanZero * (b * a)) + ((vec4<f32>(1.0) - aLessThanZero) * a);
`;function S3(e,t,n="uniforms.NAN"){let s=t?fT:w0e;return t?`
let valueForNaN = ${n};
var resultTemp = vec4<f32>(${e}(a, b));
`+s+`
return resultTemp;
`:s+`
return ${e}(a, b);
`}function jm(e,t){switch(e){case qe.MUL:return T0e;case qe.ADD:return k0e;case qe.ATAN2:return S3("atan2",t);case qe.SUB:return E0e;case qe.DIV:return C0e;case qe.EQUAL:return t?_0e:R0e;case qe.GREATER:return t?$0e:D0e;case qe.GREATER_EQUAL:return t?F0e:P0e;case qe.LESS:return t?M0e:O0e;case qe.LESS_EQUAL:return t?L0e:z0e;case qe.LOGICAL_AND:return t?W0e:B0e;case qe.NOT_EQUAL:return t?H0e:G0e;case qe.SQUARED_DIFFERENCE:return N0e;case qe.INT_DIV:return t?U0e:V0e;case qe.PRELU:return t?K0e:X0e;case qe.MAX:return S3("max",t);case qe.MIN:return S3("min",t);case qe.POW:return t?q0e:j0e;case qe.COMPLEX_MULTIPLY_REAL:return S0e;case qe.COMPLEX_MULTIPLY_IMAG:return I0e;default:throw new Error(`BinaryType ${e} is not implemented!`)}}var Fe;(function(e){e[e.ABS=0]="ABS",e[e.CEIL=1]="CEIL",e[e.COS=2]="COS",e[e.COSH=3]="COSH",e[e.ELU=4]="ELU",e[e.EXP=5]="EXP",e[e.EXPM1=6]="EXPM1",e[e.FLOOR=7]="FLOOR",e[e.IS_NAN=8]="IS_NAN",e[e.LINEAR=9]="LINEAR",e[e.LOG=10]="LOG",e[e.LOGICAL_NOT=11]="LOGICAL_NOT",e[e.NEG=12]="NEG",e[e.RELU=13]="RELU",e[e.RELU6=14]="RELU6",e[e.LEAKYRELU=15]="LEAKYRELU",e[e.RECIPROCAL=16]="RECIPROCAL",e[e.RSQRT=17]="RSQRT",e[e.SIN=18]="SIN",e[e.SINH=19]="SINH",e[e.SIGMOID=20]="SIGMOID",e[e.SQRT=21]="SQRT",e[e.SQUARE=22]="SQUARE",e[e.TANH=23]="TANH",e[e.TO_INT=24]="TO_INT"})(Fe||(Fe={}));var Z0e="return abs(a);",Y0e="return ceil(a);",J0e="return cos(a);",Q0e=`
let e2x = exp(-a);
return (e2x + 1.0 / e2x) / 2.0;
`,e2e="return exp(a) - 1.0;",t2e="if (a >= 0.0) { return a; } return (exp(a) - 1.0);",n2e=`
var resFloat = exp(a) - vec4<f32>(1.0);
if (a.r >= 0.0) {
resFloat.r = a.r;
}
if (a.g >= 0.0) {
resFloat.g = a.g;
}
if (a.b >= 0.0) {
resFloat.b = a.b;
}
if (a.a >= 0.0) {
resFloat.a = a.a;
}
return resFloat;
`,s2e="return exp(a);",r2e="return floor(a);",a2e="return f32(isnan(a));",o2e="return a;",i2e=`if (a < 0.0) { return 1.0/0.0; }
return log(a);`,l2e="return f32(!(a >= 1.0));",u2e="return -a;",c2e="if (a < 0.0) { return uniforms.alpha * a; } return a;",d2e=`
let aLessThanZero = vec4<f32>(a < vec4<f32>(0.0));
return (aLessThanZero * (uniforms.alpha * a)) + ((vec4<f32>(1.0) - aLessThanZero) * a);
`,p2e="return 1.0 / a;",h2e="return select(a, 0.0, a < 0.0);",f2e="return clamp(a, 0.0, 6.0);",m2e="return clamp(a, vec4<f32>(0.0, 0.0, 0.0, 0.0), vec4<f32>(6.0, 6.0, 6.0, 6.0));",g2e=`
return select(a, vec4<f32>(0.0), a < vec4<f32>(0.0));
`,y2e="return 1.0/sqrt(a);",A2e="return 1.0 / (1.0 + exp(-1.0 * a));",x2e="return sin(a);",b2e=`
let e2x = exp(a);
return (e2x - 1.0 / e2x) / 2.0;
`,v2e="return sqrt(a);",w2e="return a * a;",k2e=`
let e2x = exp(-2.0 * abs(a));
return sign(a) * (1.0 - e2x) / (1.0 + e2x);
`,S2e="return f32(i32((a)));";function Bi(e,t){switch(e){case Fe.ABS:return Z0e;case Fe.COS:return J0e;case Fe.COSH:return Q0e;case Fe.CEIL:return Y0e;case Fe.ELU:return t?n2e:t2e;case Fe.EXP:return s2e;case Fe.EXPM1:return e2e;case Fe.FLOOR:return r2e;case Fe.IS_NAN:return a2e;case Fe.LINEAR:return o2e;case Fe.LOG:return i2e;case Fe.LOGICAL_NOT:return l2e;case Fe.NEG:return u2e;case Fe.LEAKYRELU:return t?d2e:c2e;case Fe.RECIPROCAL:return p2e;case Fe.RELU:return t?g2e:h2e;case Fe.RELU6:return t?m2e:f2e;case Fe.RSQRT:return y2e;case Fe.SIGMOID:return A2e;case Fe.SIN:return x2e;case Fe.SINH:return b2e;case Fe.SQRT:return v2e;case Fe.SQUARE:return w2e;case Fe.TANH:return k2e;case Fe.TO_INT:return S2e;default:throw new Error(`BinaryType ${e} is not implemented!`)}}var Zt=e=>{switch(e){case 1:return"f32";case 2:return"vec2<f32>";case 3:return"vec3<f32>";case 4:return"vec4<f32>";default:throw new Error(`${e}-component is not supported.`)}};function yi(e,t=!1,n=!1,s=3){if(e===null)return"";let r="";if(e==="linear")r=Bi(Fe.LINEAR);else if(e==="relu")r=Bi(Fe.RELU,n);else if(e==="elu")r=Bi(Fe.ELU,n);else if(e==="relu6")r=Bi(Fe.RELU6,n);else if(e==="prelu")r=jm(qe.PRELU,n);else if(e==="sigmoid")r=Bi(Fe.SIGMOID,n);else if(e==="leakyrelu")r=Bi(Fe.LEAKYRELU,n);else throw new Error(`Activation ${e} has not been implemented for the WebGPU backend.`);let o=Zt(n?4:1),i="";return t?i=`
fn activation(a : ${o}, coords : vec${s}<i32>) -> ${o} {
let b = getPreluActivationWeightsByOutputCoords(coords);
${r}
}`:i=`
fn activation(a : ${o}, coords : vec${s}<i32>) -> ${o} {
${r}
}`,i}function gd(e,t){return`
${e?"value = value + getBiasByOutputCoords(coords);":""}
${t?"value = activation(value, coords);":""}
`}function mT(e,t,n,s,r=!1,a=!1,o=!1,i=1){v.assert(n&&i===1||!n,()=>`transposeA ${n} is not compatible with component size ${i}`);let l=`
let batch = ${e?"0":"batchIn"};
let batchASize = uniforms.aShape[1] * uniforms.aShape[2];
${n?`value = A[(batch * batchASize + col * uniforms.aShape[2] + row) / ${i}];`:`value = A[(batch * batchASize + row * uniforms.aShape[2] + col) / ${i}];`}
`,u;return s===!1?u=`value = B[(batch * batchBSize + row * uniforms.bShape[2] + col) / ${i}];`:u=`value = B[(batch * batchBSize + col * uniforms.bShape[2] + row) / ${i}];`,`
fn mm_readA(batchIn: i32, row: i32, colIn: i32) -> ${Zt(i)} {
var value = ${Zt(i)}(0.0);
let col = colIn * ${i};
${r&&o?l:`
${n?"if(row < uniforms.dimAOuter && col < uniforms.dimInner)":"if(row < uniforms.aShape[1] && col < uniforms.aShape[2])"}
{
${l}
}
`}
return value;
}
fn mm_readB(batchIn: i32, row: i32, colIn: i32) -> ${Zt(i)} {
let col = colIn * ${i};
let batch = ${t?"0":"batchIn"};
let batchBSize = uniforms.bShape[1] * uniforms.bShape[2];
var value = ${Zt(i)}(0.0);
${u}
return value;
}
`}function gb(e,t,n,s,r,a,o=!1,i=!1,l=!1,u=1){return`
${mT(n,s,r,a,o,i,l,u)}
fn mm_write(batch: i32, row: i32, colIn: i32, valueIn: ${Zt(u)}) {
let col = colIn * ${u};
${o&&i?"":"if (row < uniforms.dimAOuter && col < uniforms.dimBOuter)"}
{
var value = valueIn;
let coords = vec3<i32>(batch, row, col);
${gd(e,t)}
setOutputAtCoords(coords[0], coords[1], coords[2], value);
}
}
`}var I2e=e=>e?`
mm_Asub[inputRow][inputCol] = mm_readA(batch,
kStart + inputRow,
globalRowStart / InnerElementSize + inputCol);
`:`
mm_Asub[inputRow][inputCol] = mm_readA(batch,
globalRow + innerRow,
kStart / InnerElementSize + inputCol);
`,C2e=(e,t)=>e?`
let ACached0 = mm_Asub[k * InnerElementSize][localRow];
let ACached1 = mm_Asub[k * InnerElementSize + 1][localRow];
let ACached2 = mm_Asub[k * InnerElementSize + 2][localRow];
${t===3?"":"let ACached3 = mm_Asub[k * InnerElementSize + 3][localRow];"}
for (var i = 0; i < RowPerThread; i = i + 1) {
acc[i] = BCached0 * ACached0[i] + acc[i];
acc[i] = BCached1 * ACached1[i] + acc[i];
acc[i] = BCached2 * ACached2[i] + acc[i];
${t===3?"":"acc[i] = BCached3 * ACached3[i] + acc[i];"}
}`:`
for (var i = 0; i < RowPerThread; i = i + 1) {
let ACached = mm_Asub[tileRow + i][k];
acc[i] = BCached0 * ACached.x + acc[i];
acc[i] = BCached1 * ACached.y + acc[i];
acc[i] = BCached2 * ACached.z + acc[i];
${t===3?"":"acc[i] = BCached3 * ACached.w + acc[i];"}
}`;function O2(e,t,n=!1,s=32,r=!1,a=32,o=!1){let i=t[1]*e[1],l=t[0]*e[0],u=n?i:s,c=n?s:i,p=u/t[0],d=s/t[1];return v.assert((n&&p===4&&e[1]===4||!n&&(p===3||p===4))&&u%t[0]===0&&s%t[1]===0&&e[0]===4,()=>`If transposeA ${n} is true, innerElementSize ${p} and workPerThread[1] ${e[1]} must be 4.
Otherwise, innerElementSize ${p} must be 3 or 4.
tileAWidth ${u} must be divisible by workGroupSize[0]${t[0]}. tileInner ${s} must be divisible by workGroupSize[1] ${t[1]}. ColPerThread ${e[0]} must be 4.`),`
var<workgroup> mm_Asub : array<array<vec${p}<f32>, ${u/p}>, ${c}>;
var<workgroup> mm_Bsub : array<array<vec4<f32>, ${l/e[0]}>, ${s}>;
const RowPerThread = ${e[1]};
const ColPerThread = ${e[0]};
const InnerElementSize = ${p};
const TileInner = ${s};
@compute @workgroup_size(workGroupSizeX, workGroupSizeY, workGroupSizeZ)
fn _start(@builtin(local_invocation_id) LocalId : vec3<u32>,
@builtin(global_invocation_id) GlobalId : vec3<u32>,
@builtin(num_workgroups) NumWorkgroups: vec3<u32>,
@builtin(workgroup_id) workgroupId: vec3<u32>) {
localId = LocalId;
globalId = GlobalId;
numWorkgroups = NumWorkgroups;
let localRow = i32(localId.y);
let tileRow = ${o?"0":"localRow * RowPerThread"};
let tileCol = i32(localId.x);
let globalRow = ${o?"0":"i32(globalId.y) * RowPerThread"};
let globalCol = i32(globalId.x);
let batch = ${r?"0":"i32(globalId.z)"};
let globalRowStart = i32(workgroupId.y) * ${i};
let numTiles = ${r?`${Math.ceil(a/s)}`:"(uniforms.dimInner - 1) / TileInner + 1"};
var kStart = ${r?`i32(globalId.z) * ${a}`:"0"};
var acc: array<vec4<f32>, RowPerThread>;
// Loop over shared dimension.
let tileRowB = localRow * ${d};
for (var t = 0; t < numTiles; t = t + 1) {
// Load one tile of A into local memory.
for (var innerRow = 0; innerRow < RowPerThread; innerRow = innerRow + 1) {
let inputRow = tileRow + innerRow;
let inputCol = tileCol;
${I2e(n)}
}
// Load one tile of B into local memory.
for (var innerRow = 0; innerRow < ${d}; innerRow = innerRow + 1) {
let inputRow = tileRowB + innerRow;
let inputCol = tileCol;
mm_Bsub[inputRow][inputCol] = mm_readB(batch, kStart + inputRow, globalCol);
}
kStart = kStart + TileInner;
workgroupBarrier();
// Compute acc values for a single thread.
for (var k = 0; k < TileInner / InnerElementSize; k = k + 1) {
let BCached0 = mm_Bsub[k * InnerElementSize][tileCol];
let BCached1 = mm_Bsub[k * InnerElementSize + 1][tileCol];
let BCached2 = mm_Bsub[k * InnerElementSize + 2][tileCol];
${p===3?"":"let BCached3 = mm_Bsub[k * InnerElementSize + 3][tileCol];"}
${C2e(n,p)}
}
workgroupBarrier();
}
for (var innerRow = 0; innerRow < RowPerThread; innerRow = innerRow + 1) {
mm_write(batch, globalRow + innerRow, globalCol, acc[innerRow]);
}
}`}var T2e=e=>e?`
mm_Asub[inputRow][inputCol] = mm_readA(batch,
kStart + inputRow,
globalRowStart + inputCol);
`:`
mm_Asub[inputRow][inputCol] = mm_readA(batch,
globalRowStart + inputRow,
kStart + inputCol);
`,N2e=e=>e?"let ACached = mm_Asub[k][tileRow + innerRow];":"let ACached = mm_Asub[tileRow + innerRow][k];";function M2(e,t,n=!1,s=32,r=!1,a=32){let o=e[1]*t[1],i=e[0]*t[0],l=n?o:s,u=n?s:o;v.assert(u%t[1]===0&&l%t[0]===0&&s%t[1]===0,()=>`tileAHight ${u} must be divisible by workGroupSize[1]${t[1]}, tileAWidth ${l} must be divisible by workGroupSize[0]${t[0]}, tileInner ${s} must be divisible by workGroupSize[1]${t[1]}`);let c=u/t[1],p=l/t[0],d=s/t[1];return`
var<workgroup> mm_Asub : array<array<f32, ${l}>, ${u}>;
var<workgroup> mm_Bsub : array<array<f32, ${i}>, ${s}>;
const RowPerThread = ${e[1]};
const ColPerThread = ${e[0]};
const TileInner = ${s};
@compute @workgroup_size(workGroupSizeX, workGroupSizeY, workGroupSizeZ)
fn _start(@builtin(local_invocation_id) LocalId : vec3<u32>,
@builtin(global_invocation_id) GlobalId : vec3<u32>,
@builtin(num_workgroups) NumWorkgroups: vec3<u32>,
@builtin(workgroup_id) workgroupId: vec3<u32>) {
localId = LocalId;
globalId = GlobalId;
numWorkgroups = NumWorkgroups;
let tileRow = i32(localId.y) * RowPerThread;
let tileCol = i32(localId.x) * ColPerThread;
let globalRow = i32(globalId.y) * RowPerThread;
let globalCol = i32(globalId.x) * ColPerThread;
let batch = ${r?"0":"i32(globalId.z)"};
let globalRowStart = i32(workgroupId.y) * ${o};
let numTiles = ${r?`${Math.ceil(a/s)}`:"(uniforms.dimInner - 1) / TileInner + 1"};
var kStart = ${r?`i32(globalId.z) * ${a}`:"0"};
var acc : array<array<f32, ColPerThread>, RowPerThread>;
// Without this initialization strange values show up in acc.
for (var innerRow = 0; innerRow < RowPerThread; innerRow = innerRow + 1) {
for (var innerCol = 0; innerCol < ColPerThread; innerCol = innerCol + 1) {
acc[innerRow][innerCol] = 0.0;
}
}
let tileRowA = i32(localId.y) * ${c};
let tileColA = i32(localId.x) * ${p};
let tileRowB = i32(localId.y) * ${d};
// Loop over shared dimension.
for (var t = 0; t < numTiles; t = t + 1) {
// Load one tile of A into local memory.
for (var innerRow = 0; innerRow < ${c}; innerRow = innerRow + 1) {
for (var innerCol = 0; innerCol < ${p}; innerCol = innerCol + 1) {
let inputRow = tileRowA + innerRow;
let inputCol = tileColA + innerCol;
${T2e(n)}
}
}
// Load one tile of B into local memory.
for (var innerRow = 0; innerRow < ${d}; innerRow = innerRow + 1) {
for (var innerCol = 0; innerCol < ColPerThread; innerCol = innerCol + 1) {
let inputRow = tileRowB + innerRow;
let inputCol = tileCol + innerCol;
mm_Bsub[inputRow][inputCol] = mm_readB(batch,
kStart + inputRow,
globalCol + innerCol);
}
}
kStart = kStart + TileInner;
workgroupBarrier();
// Compute acc values for a single thread.
var BCached : array<f32, ColPerThread>;
for (var k = 0; k < TileInner; k = k + 1) {
for (var inner = 0; inner < ColPerThread; inner = inner + 1) {
BCached[inner] = mm_Bsub[k][tileCol + inner];
}
for (var innerRow = 0; innerRow < RowPerThread; innerRow = innerRow + 1) {
${N2e(n)}
for (var innerCol = 0; innerCol < ColPerThread; innerCol = innerCol + 1) {
acc[innerRow][innerCol] = acc[innerRow][innerCol] + ACached * BCached[innerCol];
}
}
}
workgroupBarrier();
}
for (var innerRow = 0; innerRow < RowPerThread; innerRow = innerRow + 1) {
for (var innerCol = 0; innerCol < ColPerThread; innerCol = innerCol + 1) {
mm_write(batch, globalRow + innerRow, globalCol + innerCol,
acc[innerRow][innerCol]);
}
}
}
`}var E2e=e=>e?`
mm_readA(batch, colA, globalRow),
mm_readA(batch, colA + 1, globalRow),
mm_readA(batch, colA + 2, globalRow),
mm_readA(batch, colA + 3, globalRow)
`:`
mm_readA(batch, globalRow, colA),
mm_readA(batch, globalRow, colA + 1),
mm_readA(batch, globalRow, colA + 2),
mm_readA(batch, globalRow, colA + 3)
`;function R2e(e,t=!1){return v.assert(e[1]===1&&e[2]===1,()=>`A linear work group size is required. But got ${e}.`),`
const TileSize = ${e[0]*4};
var<workgroup> mm_Asub : array<vec4<f32>, ${e[0]}>;
${Ye()} {
let tileCol = i32(localId.x);
let globalCol = i32(globalId.x);
let globalRow = i32(globalId.y);
let numTiles = (uniforms.dimInner - 1) / TileSize + 1;
let batch = i32(globalId.z);
// Without this initialization strange values show up in acc.
var acc = 0.0;
// Loop over shared dimension.
for (var t = 0; t < numTiles; t = t + 1) {
// Load one tile of A into local memory.
let colA = t * TileSize + tileCol * 4;
mm_Asub[tileCol] = vec4<f32>(${E2e(t)});
workgroupBarrier();
// Compute acc values for a single thread.
for (var k = 0; k < TileSize / 4; k = k + 1) {
let rowB = t * TileSize + k * 4;
let BCached = vec4<f32>(mm_readB(batch, rowB, globalCol),
mm_readB(batch, rowB + 1, globalCol),
mm_readB(batch, rowB + 2, globalCol),
mm_readB(batch, rowB + 3, globalCol));
let ACached = mm_Asub[k];
acc = acc + dot(ACached, BCached);
}
workgroupBarrier();
}
mm_write(batch, globalRow, globalCol, acc);
}
`}var _2e=class{constructor(e,t,n,s,r=!1,a=!1,o=null,i=null,l=null){this.variableNames=["A","B"],this.uniforms="dimAOuter : i32, dimBOuter : i32, dimInner : i32,",this.outputShape=t,this.dispatchLayout={x:[2],y:[1],z:[0]};let u=r?e[1]:e[2];if(this.isVec4=(u%4===0&&!r||t[1]%4===0&&r)&&t[2]%4===0&&!a,this.isVectorA=t[1]===1&&!r,!this.isVec4&&this.isVectorA)this.elementsPerThread=[1,1,1],this.workGroupSize=[32,1,1];else{let d=cT(t[1],u,t[2],r);this.workGroupSize=d.workGroupSize,this.elementsPerThread=d.elementsPerThread}this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize,this.elementsPerThread);let c=o!=null,p=l!=null;c&&this.variableNames.push("bias"),p&&this.variableNames.push("preluActivationWeights"),this.transposeA=r,this.transposeB=a,this.addBias=c,this.activation=i,this.hasPreluActivationWeights=p,this.batchAEqualOne=n,this.batchBEqualOne=s,[this.fitAOuter,this.fitBOuter,this.fitInner]=this.getShapeFit(t[1],t[2],u),this.shaderKey=`matMulPacked_${this.elementsPerThread}_${r}_${a}_${this.activation}_${this.fitAOuter}_${this.fitBOuter}_${this.fitInner}_${this.isVec4}_${this.isVectorA}_${this.batchAEqualOne}_${this.batchBEqualOne}`}getShapeFit(e,t,n){let s=this.workGroupSize[1]*this.elementsPerThread[1],r=this.workGroupSize[0]*this.elementsPerThread[0];!this.isVec4&&this.isVectorA?this.tileInner=this.workGroupSize[0]*4:this.tileInner=r;let a=e%s===0,o=t%r===0,i=n%this.tileInner===0;return[a,o,i]}getUserCode(){return`
${yi(this.activation,this.hasPreluActivationWeights,this.isVec4)}
${gb(this.addBias,this.activation,this.batchAEqualOne,this.batchBEqualOne,!1,this.transposeB,this.fitAOuter,this.fitBOuter,this.fitInner,this.isVec4?4:1)}
${this.isVec4?O2(this.elementsPerThread,this.workGroupSize,this.transposeA,this.tileInner,!1,null,this.isVectorA):this.isVectorA?R2e(this.workGroupSize,this.transposeA):M2(this.elementsPerThread,this.workGroupSize,this.transposeA,this.tileInner)}
`}};function D2e(){return`
var<workgroup> sumValues : array<f32, workGroupSizeX>;
${Ye()} {
let coords = getOutputCoords();
let batch = coords[0];
let row = coords[1];
let col = coords[2];
var sum = 0.0;
let Length = uniforms.dimInner;
for (var k = i32(localId.x); k < Length; k = k + i32(workGroupSizeX)) {
let dataA = mm_readA(batch, row, k);
let dataB = mm_readB(batch, k, col);
sum = sum + dataA * dataB;
}
sumValues[localId.x] = sum;
workgroupBarrier();
for(var currentSize = workGroupSizeX / 2u; currentSize > 1u;
currentSize = currentSize / 2u) {
if (localId.x < currentSize)
{
sumValues[localId.x] = sumValues[localId.x] + sumValues[localId.x + currentSize];
}
workgroupBarrier();
}
if (localId.x == 0u) {
sum = sumValues[0] + sumValues[1];
mm_write(batch, row, col, sum);
}
}
`}var $2e=class{constructor(e,t,n,s=!1,r=!1,a=null,o=null,i=null){this.variableNames=["A","B"],this.uniforms="dimAOuter : i32, dimBOuter : i32, dimInner : i32,",this.workGroupSize=[256,1,1],this.outputShape=e,this.dispatchLayout={x:[],y:[1,2],z:[0]},this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize);let l=a!=null,u=i!=null;l&&this.variableNames.push("bias"),u&&this.variableNames.push("preluActivationWeights"),this.transposeA=s,this.transposeB=r,this.addBias=l,this.activation=o,this.hasPreluActivationWeights=u,this.batchAEqualOne=t,this.batchBEqualOne=n,this.shaderKey=`matMulReduce_${this.activation}_${s}_${r}_${this.batchAEqualOne}_${this.batchBEqualOne}`}getUserCode(){return`
${yi(this.activation,this.hasPreluActivationWeights)}
${gb(this.addBias,this.activation,this.batchAEqualOne,this.batchBEqualOne,this.transposeA,this.transposeB)}
${D2e()}
`}};function P2e(e){let t=e[1],n=e[0],s=t>n?t:n;return`
var<workgroup> mm_Asub : array<array<f32, ${s}>, ${t}>;
var<workgroup> mm_Bsub : array<array<f32, ${n}>, ${s}>;
// If the output size is small for matrix multiplication, avoid to use vec4
// and handle some elements per thread to optimally utilize the ALU.
// Read data from global memory to registers firstly, then store them into
// shared memory, so it is instruction-Level parallelism for arithmetic
// operations and others handle IO operations between barrier api, makes ALU
// and load/store units work simultaneously, could improves the performance.
${Ye()} {
let tileRow = i32(localId.y);
let tileCol = i32(localId.x);
let globalRow = i32(globalId.y);
let globalCol = i32(globalId.x);
let batch = i32(globalId.z);
// uniforms.dimInner should be greater than 0.
let numTiles = (uniforms.dimInner - 1) / ${s} + 1;
var acc = 0.0;
var globalColA = tileCol;
var globalRowB = 0;
var regA = mm_readA(batch, globalRow, globalColA);
var regB0 = mm_readB(batch, globalRowB + 2 * tileRow, globalCol);
var regB1 = mm_readB(batch, globalRowB + 2 * tileRow + 1, globalCol);
globalColA = globalColA + ${s};
globalRowB = globalRowB + ${s};
for (var t = 0; t < numTiles; t = t + 1) {
mm_Asub[tileRow][tileCol] = regA;
mm_Bsub[2 * tileRow][tileCol] = regB0;
mm_Bsub[2 * tileRow + 1][tileCol] = regB1;
workgroupBarrier();
regA = mm_readA(batch, globalRow, globalColA);
regB0 = mm_readB(batch, globalRowB + 2 * tileRow, globalCol);
regB1 = mm_readB(batch, globalRowB + 2 * tileRow + 1, globalCol);
globalColA = globalColA + ${s};
globalRowB = globalRowB + ${s};
for (var k = 0; k < ${s}; k = k + 1) {
acc = acc + mm_Asub[tileRow][k] * mm_Bsub[k][tileCol];
}
workgroupBarrier();
}
mm_write(batch, globalRow, globalCol, acc);
}
`}var F2e=class{constructor(e,t,n,s=!1,r=!1,a=null,o=null,i=null){this.variableNames=["A","B"],this.uniforms="dimAOuter : i32, dimBOuter : i32, dimInner : i32,",this.workGroupSize=[16,8,1],this.outputShape=n,this.dispatchLayout={x:[2],y:[1],z:[0]},this.dispatch=[Math.ceil(n[2]/this.workGroupSize[0]),Math.ceil(n[1]/this.workGroupSize[1]),n[0]];let l=a!=null;l&&this.variableNames.push("bias");let u=i!=null;u&&this.variableNames.push("preluActivationWeights"),this.transposeA=s,this.transposeB=r,this.addBias=l,this.activation=o,this.hasPreluActivationWeights=u,this.batchAEqualOne=e[0]===1,this.batchBEqualOne=t[0]===1,this.shaderKey=`matMulSmallOutputSize_${this.activation}_${s}_${r}_${this.batchAEqualOne}_${this.batchBEqualOne}`}getUserCode(){return`
${yi(this.activation,this.hasPreluActivationWeights)}
${gb(this.addBias,this.activation,this.batchAEqualOne,this.batchBEqualOne,this.transposeA,this.transposeB)}
${P2e(this.workGroupSize)}
`}},O2e=class{constructor(e,t,n,s,r=!1,a=!1){this.variableNames=["A","B"],this.uniforms="dimAOuter : i32, dimBOuter : i32, dimInner : i32,",this.workGroupSize=[8,8,1],this.atomic=!0,this.isVec4=!1,this.splitedDimInner=128,v.assert(e[0]===1,()=>"MatMulSplitKProgram only supports batch = 1."),this.outputShape=e,this.dispatchLayout={x:[2],y:[1],z:[0,3]},this.isVec4=(r&&this.outputShape[1]%4===0||!r&&t%4===0)&&this.outputShape[2]%4===0,this.elementsPerThread=[4,4,this.splitedDimInner],this.isVec4||(this.outputShape[1]<16&&(this.elementsPerThread[1]=1),this.outputShape[2]<16&&(this.elementsPerThread[0]=1)),this.dispatch=Ge(this.dispatchLayout,[this.outputShape[0],this.outputShape[1],this.outputShape[2],t],this.workGroupSize,this.elementsPerThread),this.transposeA=r,this.transposeB=a,this.batchAEqualOne=n,this.batchBEqualOne=s,this.shaderKey=`matMulSplitK_${r}_${a}_${n}_${s}_${this.elementsPerThread}_${this.isVec4}`}getUserCode(){let e=s=>`
for (var i = 0; i < ${s}; i = i + 1)
{
var oldValue = atomicLoad(&(result[flatIndex + i]));
var exchanged = false;
for (; !exchanged;) {
let newValueF32 = bitcast<f32>(oldValue) + ${s>1?"value[i]":"value"};
let newValue = bitcast<i32>(newValueF32);
let res = atomicCompareExchangeWeak(&(result[flatIndex + i]), oldValue, newValue);
oldValue = res.old_value;
exchanged = res.exchanged;
}
}
`,t=this.isVec4?4:1;return`
${mT(this.batchAEqualOne,this.batchBEqualOne,!1,this.transposeB,!1,!1,!1,t)}
fn mm_write(batch: i32, row : i32, colIn : i32, value : ${Zt(t)}) {
let col = colIn * ${t};
if (row < uniforms.dimAOuter && col < uniforms.dimBOuter) {
let coords = vec3<i32>(batch, row, col);
let flatIndex = getOutputIndexFromCoords(coords);
// The problem is that we should initialize output to zero before using.
// Otherwise, the original value will be added to the result.
${e(t)}
}
}
${this.isVec4?O2(this.elementsPerThread,this.workGroupSize,this.transposeA,32,!0,this.splitedDimInner):M2(this.elementsPerThread,this.workGroupSize,this.transposeA,32,!0,this.splitedDimInner)}
`}},M2e=class{constructor(e,t=null,n=null,s=null){this.uniforms="",this.variableNames=["x"],this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=ot(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize),this.addBias=t!=null,this.hasPreluActivationWeights=s!=null,this.activation=n,this.addBias&&this.variableNames.push("bias"),this.hasPreluActivationWeights&&this.variableNames.push("preluActivationWeights"),this.shaderKey=`biasActivation_${n}`}getUserCode(){return`
${yi(this.activation,this.hasPreluActivationWeights)}
${Ye("index")} {
if (index < uniforms.size) {
let coords = getCoordsFromIndex(index);
var value = getXByOutputIndex(index);
${gd(this.addBias,this.activation)}
setOutputAtIndex(index, value);
}
}
`}},z2e=class{constructor(e){this.variableNames=[],this.outputShape=[],this.uniforms="value : f32,",this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=ot(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="fill"}getUserCode(){return`
${Ye("index")} {
if (index < uniforms.size) {
setOutputAtIndex(index, uniforms.value);
}
}
`}};function fu(e){let{backend:t,attrs:n}=e,{shape:s,value:r}=n,{dtype:a}=n;if(a=a||v.inferDtype(r),a==="string"){let o=v.getArrayFromDType(a,v.sizeFromShape(s));return o.fill(r),t.makeTensorInfo(s,a,o)}else{let o=new z2e(s),i=[{type:"float32",data:[r]}];return t.runWebGPUProgram(o,[],a,i)}}var L2e={kernelName:Rc,backendName:"webgpu",kernelFunc:fu};function Ue(e){let{inputs:t,attrs:n}=e,{x:s}=t,{shape:r}=n,a=v.sizeFromShape(s.shape),o=v.inferFromImplicitShape(r,a),i=v.sizeFromShape(o);return v.assert(a===i,()=>`The new shape (${o}) has ${i} elements and the old shape (${s.shape}) has ${a} elements. The new shape and old shape must have the same number of elements.`),e.backend.incRef(s.dataId),{dataId:s.dataId,shape:o,dtype:s.dtype}}var B2e={kernelName:Ll,backendName:"webgpu",kernelFunc:Ue};function yb({a:e,b:t,transposeA:n,transposeB:s,backend:r,bias:a=null,preluActivationWeights:o=null,leakyreluAlpha:i=0,activation:l=null}){let u=e.shape.length,c=t.shape.length,p=n?e.shape[u-2]:e.shape[u-1],d=s?t.shape[c-1]:t.shape[c-2],h=n?e.shape[u-1]:e.shape[u-2],f=s?t.shape[c-2]:t.shape[c-1],m=e.shape.slice(0,-2),g=t.shape.slice(0,-2),y=v.sizeFromShape(m),x=v.sizeFromShape(g),b=nu.assertAndGetBroadcastShape(e.shape.slice(0,-2),t.shape.slice(0,-2)).concat([h,f]);v.assert(p===d,()=>`Error in matMul: inner shapes (${p}) and (${d}) of Tensors with shapes ${e.shape} and ${t.shape} and transposeA=${n} and transposeB=${s} must match.`);let w=n?[y,p,h]:[y,h,p],S=s?[x,f,d]:[x,d,f],k=Ue({inputs:{x:e},backend:r,attrs:{shape:w}}),E=Ue({inputs:{x:t},backend:r,attrs:{shape:S}}),_=[k,E],D=Math.max(y,x),R=y===1,P=x===1,C=[k,E],M=[{type:"int32",data:[h]},{type:"int32",data:[f]},{type:"int32",data:[p]}],L,G,K=[D,h,f],X=H().get("WEBGPU_MATMUL_PROGRAM_TYPE");switch(X<0&&(h*f<=128?X=Rr.MatMulReduceProgram:D===1&&h<=128&&f<=48&&d>=2e3?X=Rr.MatMulSplitKProgram:h<=16&&(f<=512||d>=2*f)||f<=16&&(h<=512||p>=2*h)?X=Rr.MatMulSmallOutputSizeProgram:X=Rr.MatMulPackedProgram),X){case Rr.MatMulReduceProgram:L=new $2e(K,R,P,n,s,a,l,o);break;case Rr.MatMulSplitKProgram:{if(G=fu({backend:r,attrs:{shape:K,value:0,dtype:e.dtype}}),L=new O2e(K,d,R,P,n,s),a||l){G=r.runWebGPUProgram(L,C,e.dtype,M,G);let ne=new M2e(G.shape,a,l,o),ee=null,ie=[G];a&&ie.push(a),o&&ie.push(o),l==="leakyrelu"&&(ee=[{type:"float32",data:[i]}],ne.uniforms+=" alpha : f32,");let se=r.runWebGPUProgram(ne,ie,G.dtype,ee);_.push(G);let pe=Ue({inputs:{x:se},backend:r,attrs:{shape:b}});_.push(se);for(let ce of _)r.disposeData(ce.dataId);return pe}break}case Rr.MatMulSmallOutputSizeProgram:L=new F2e(w,S,K,n,s,a,l,o);break;case Rr.MatMulPackedProgram:L=new _2e(w,K,R,P,n,s,a,l,o);break;default:throw new Error(`Unsupported MatMulProgramType ${X}.`)}a&&C.push(a),o&&C.push(o),l==="leakyrelu"&&(M.push({type:"float32",data:[i]}),L.uniforms+=" alpha : f32,"),G=r.runWebGPUProgram(L,C,e.dtype,M,G);let Y=Ue({inputs:{x:G},backend:r,attrs:{shape:b}});_.push(G);for(let ne of _)r.disposeData(ne.dataId);return Y}function W2e(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a,bias:o,preluActivationWeights:i}=t,{transposeA:l,transposeB:u,activation:c,leakyreluAlpha:p}=s;return yb({a:r,b:a,transposeA:l,transposeB:u,backend:n,bias:o,preluActivationWeights:i,leakyreluAlpha:p,activation:c})}var V2e={kernelName:eo,backendName:"webgpu",kernelFunc:W2e},r6=class{constructor(e,t,n){this.variableNames=["AReal","AImag","BReal","BImag"],this.workGroupSize=[128,1,1],this.size=!0,this.outputShape=T.assertAndGetBroadcastShape(t,n),this.dispatchLayout=ot(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey=`binaryOpComplex_${e}`,this.op=e}getUserCode(){return`
fn binaryOpComplex(
areal : f32, aimag : f32, breal : f32, bimag : f32) -> f32 {
${jm(this.op,!1)}
}
${Ye("index")} {
if(index < uniforms.size) {
let areal = getARealByOutputIndex(index);
let aimag = getAImagByOutputIndex(index);
let breal = getBRealByOutputIndex(index);
let bimag = getBImagByOutputIndex(index);
setOutputAtIndex(index, binaryOpComplex(areal, aimag, breal, bimag));
}
}
`}},Cy=class{constructor(e,t,n){this.size=!0,this.variableNames=["A","B"],this.outputShape=T.assertAndGetBroadcastShape(t,n),this.dispatchLayout=ot(this.outputShape),this.op=e,this.useSharedMemoryWithA=t.length===1&&n.length>1&&t[0]<1024,this.useSharedMemoryWithB=n.length===1&&t.length>1&&n[0]<1024,this.useSharedMemoryWithA||this.useSharedMemoryWithB?(this.isVec4=!1,this.lastDimensionSize=this.useSharedMemoryWithB?n[0]:t[0],this.shaderKey=`binary_${this.type}_${e}_${this.lastDimensionSize}_${this.useSharedMemoryWithB}`,this.type="shared",this.workGroupSize=[256,1,1],this.lastDimensionSize<256?this.workPerThread=1:this.lastDimensionSize<512?this.workPerThread=2:this.workPerThread=4):(v.arraysEqual(t,n)&&v.sizeFromShape(t)%4===0?(this.isVec4=!0,this.type="vec4",this.workPerThread=4):(this.isVec4=!1,this.type="plain",this.workPerThread=1),this.shaderKey=`binary_${this.type}_${e}`,this.workGroupSize=[128,1,1]),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1])}getUserCode(){let e;if(this.type==="shared"){let t=this.lastDimensionSize>1?`coords[${this.outputShape.length-1}]`:"0",n=this.useSharedMemoryWithB?`let a = getAByOutputCoords(coords);
let b = sharedBuf[${t}];`:`let a = sharedBuf[${t}];
let b = getBByOutputCoords(coords);`;e=`
fn binaryOperation(a : f32, b : f32) -> f32 {
${jm(this.op,this.isVec4)}
}
var<workgroup> sharedBuf : array<f32, ${this.lastDimensionSize}>;
${Ye("index")} {
// Fill in the shared memory buffer. Here we need a loop to make sure
// that all data in A|B are uploaded when |sharedMemorySize| is larger
// than work group size.
for(var localIndex = i32(localId.x); localIndex < ${this.lastDimensionSize}; localIndex = localIndex + ${this.workGroupSize[0]}) {
sharedBuf[localIndex] = f32(${this.useSharedMemoryWithB?"B":"A"}[localIndex]);
}
workgroupBarrier();
for(var i = 0; i < ${this.workPerThread}; i = i + 1) {
let flatIndex = index * ${this.workPerThread} + i;
if(flatIndex < uniforms.size) {
let coords = getCoordsFromIndex(flatIndex);
${n}
setOutputAtIndex(flatIndex, binaryOperation(a, b));
}
}
}
`}else{let t=this.type==="vec4"?"vec4<f32>":"f32",n=jm(this.op,this.isVec4);e=`
fn binaryOperation(a : ${t}, b : ${t}) -> ${t} {
${n}
}
${Ye("index")} {
if (index < uniforms.size) {
let a = getAByOutputIndex(index);
let b = getBByOutputIndex(index);
setOutputAtIndex(index, binaryOperation(a, b));
}
}
`}return e}};function er(e){let{inputs:t}=e,{x:n}=t;return e.backend.incRef(n.dataId),{dataId:n.dataId,shape:n.shape,dtype:n.dtype}}var U2e={kernelName:$o,backendName:"webgpu",kernelFunc:er};function yd(e){let{inputs:t,backend:n}=e,{real:s,imag:r}=t,a=n.makeTensorInfo(s.shape,"complex64"),o=n.tensorMap.get(a.dataId),i=er({inputs:{x:s},backend:n}),l=er({inputs:{x:r},backend:n});return o.complexTensorInfos={real:i,imag:l},a}var G2e={kernelName:Up,backendName:"webgpu",kernelFunc:yd},Hh=class{constructor(e,t){this.variableNames=["A"],this.size=!0;let n=128;this.workGroupSize=[n,1,1],this.outputShape=e,this.dispatchLayout=ot(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize),this.op=t,this.shaderKey=`unary_${t}`}getUserCode(){return`
fn unaryOperation(a : f32) -> f32 {
${Bi(this.op,!1)}
}
${Ye("index")} {
if (index < uniforms.size) {
let a = getAByOutputIndex(index);
setOutputAtIndex(index, unaryOperation(a));
}
}
`}};function xn({opType:e,cpuKernelImpl:t,dtype:n}){return({inputs:s,backend:r})=>{let{x:a}=s,o=r,i=n||a.dtype;if(o.shouldExecuteOnCPU([a])&&t!=null){let u=o.tensorMap.get(a.dataId),c=t(u.values,i);return o.makeTensorInfo(a.shape,i,c)}let l=new Hh(a.shape,e);return o.runWebGPUProgram(l,[a],i)}}function jn({opType:e,cpuKernelImpl:t,supportsComplex:n=!1,dtype:s}){return({inputs:r,backend:a})=>{let{a:o,b:i}=r,l=a;if(n&&o.dtype==="complex64"){let p=l.tensorMap.get(o.dataId),d=l.tensorMap.get(i.dataId),h,f;if(e!==qe.MUL)[h,f]=[[p.complexTensorInfos.real,d.complexTensorInfos.real],[p.complexTensorInfos.imag,d.complexTensorInfos.imag]].map(g=>{let[y,x]=g,A={dataId:y.dataId,dtype:y.dtype,shape:o.shape},b={dataId:x.dataId,dtype:x.dtype,shape:i.shape},w=new Cy(e,o.shape,i.shape);return l.runWebGPUProgram(w,[A,b],Un(y.dtype,x.dtype))});else{let g=new r6(qe.COMPLEX_MULTIPLY_REAL,o.shape,i.shape),y=new r6(qe.COMPLEX_MULTIPLY_IMAG,o.shape,i.shape),x=[{dataId:p.complexTensorInfos.real.dataId,dtype:p.complexTensorInfos.real.dtype,shape:o.shape},{dataId:p.complexTensorInfos.imag.dataId,dtype:p.complexTensorInfos.imag.dtype,shape:o.shape},{dataId:d.complexTensorInfos.real.dataId,dtype:d.complexTensorInfos.real.dtype,shape:i.shape},{dataId:d.complexTensorInfos.imag.dataId,dtype:d.complexTensorInfos.imag.dtype,shape:i.shape}];h=l.runWebGPUProgram(g,x,"float32"),f=l.runWebGPUProgram(y,x,"float32")}let m=yd({inputs:{real:h,imag:f},backend:l});return l.disposeData(h.dataId),l.disposeData(f.dataId),m}let u=s||Un(o.dtype,i.dtype);if((o.dtype==="string"||i.dtype==="string"||l.shouldExecuteOnCPU([o,i]))&&t!=null){let p=l.tensorMap.get(o.dataId).values,d=l.tensorMap.get(i.dataId).values,h=o.dtype==="string"?T.fromUint8ToStringArray(p):p,f=o.dtype==="string"?T.fromUint8ToStringArray(d):d,[m,g]=t(o.shape,i.shape,h,f,u);return l.makeTensorInfo(g,u,m)}let c=new Cy(e,o.shape,i.shape);return l.runWebGPUProgram(c,[o,i],u)}}var{addImpl:H2e,castImpl:j2e,ceilImpl:q2e,concatImpl:X2e,equalImpl:K2e,expImpl:Z2e,expm1Impl:Y2e,floorImpl:J2e,gatherNdImpl:Q2e,gatherV2Impl:e1e,greaterEqualImpl:t1e,greaterImpl:n1e,lessEqualImpl:s1e,lessImpl:r1e,logImpl:a1e,maxImpl:o1e,maximumImpl:i1e,minimumImpl:l1e,multiplyImpl:u1e,negImpl:c1e,notEqualImpl:d1e,prodImpl:p1e,rangeImpl:h1e,rsqrtImpl:f1e,scatterImpl:m1e,simpleAbsImpl:g1e,sliceImpl:y1e,stridedSliceImpl:A1e,stringNGramsImpl:x1e,subImpl:b1e,tileImpl:v1e,topKImpl:w1e,transposeImpl:k1e,uniqueImpl:Wbe}=Mx,S1e=xn({opType:Fe.ABS,cpuKernelImpl:g1e}),I1e={kernelName:pl,backendName:"webgpu",kernelFunc:S1e},C1e=jn({opType:qe.ADD,cpuKernelImpl:H2e,supportsComplex:!0}),T1e={kernelName:Ta,backendName:"webgpu",kernelFunc:C1e},N1e=class{constructor(e){this.workPerThread=4,this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e[0],this.variableNames=e.map((t,n)=>`T${n}`),this.dispatchLayout=ot(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.shaderKey="addN"}getUserCode(){let e=[];this.variableNames.forEach(s=>{e.push(`let v${s} = get${s}ByOutputCoords(coords);`)});let t=this.variableNames.map(s=>`v${s}`).join(" + ");return`
${Ye("index")} {
for (var i = 0; i < ${this.workPerThread}; i = i + 1) {
let flatIndex = index * ${this.workPerThread} + i;
if (flatIndex < uniforms.size) {
let coords = getCoordsFromIndex(flatIndex);
${e.join(`
`)}
setOutputAtIndex(flatIndex, ${t});
}
}
}
`}};function E1e(e){let{inputs:t,backend:n}=e,s=t;if(s.length===1)return er({inputs:{x:s[0]},backend:n});let r=s.map(i=>i.dtype).reduce((i,l)=>Un(i,l)),a=s.map(i=>i.shape),o=new N1e(a);return n.runWebGPUProgram(o,s,r)}var R1e={kernelName:fo,backendName:"webgpu",kernelFunc:E1e},gT=class{constructor(e,t,n){this.workGroupSize=[64,1,1],this.variableNames=["x"],this.uniforms="infinityValue : f32,",this.size=!0;let s=[t];this.op=n==="min"?"<":">";let[r,a]=T.computeOutAndReduceShapes(e,s);this.outputShape=r.length===0?[1]:r,this.dispatchLayout=ot(this.outputShape),v.sizeFromShape(a)<32||v.sizeFromShape(r)>1e3?(this.type="plain",this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize)):(this.type="shared",this.dispatch=Ge(this.dispatchLayout,this.outputShape,[1,1,1])),this.inputShape=e,this.shaderKey=`argMinMax_${this.op}_${this.type}`}getUserCode(){let e=()=>this.inputShape.length===1?"uniforms.xShape":`uniforms.xShape.${va(this.inputShape.length-1)}`,t=()=>{let n="";if(this.outputShape.length===1)this.inputShape.length!==1&&(n+="outputCoords,");else for(let s=0;s<this.outputShape.length;s++)n+=`outputCoords.${va(s)},`;return n};return this.type==="shared"?`
fn DIV_CEIL(a : u32, b : u32) -> u32 {
return ((a - 1u) / b + 1u);
}
${`
var<workgroup> xBestIndices : array<i32, ${this.workGroupSize[0]}>;
var<workgroup> xBestValues : array<f32, ${this.workGroupSize[0]}>;
`}
${Ye("index")} {
let outputIndex = index / i32(workGroupSizeX);
let reduceLength = ${e()};
var bestIndex = i32(localId.x);
var bestValue = uniforms.infinityValue;
let outputCoords = getCoordsFromIndex(outputIndex);
for (var k = i32(localId.x); k < reduceLength && outputIndex < uniforms.size;
k = k + i32(workGroupSizeX)) {
let candidate = getX(${t()} k);
if (!isnan(candidate) && candidate ${this.op} bestValue) {
bestValue = candidate;
bestIndex = k;
}
}
xBestValues[localId.x] = bestValue;
xBestIndices[localId.x] = bestIndex;
workgroupBarrier();
var reduceSize = min(u32(reduceLength), workGroupSizeX);
for (var currentSize = reduceSize / 2u; reduceSize > 1u;
currentSize = reduceSize / 2u) {
let interval = DIV_CEIL(reduceSize, 2u);
if (localId.x < currentSize) {
let candidate = xBestValues[localId.x + interval];
if (candidate ${this.op} bestValue) {
bestValue = candidate;
xBestValues[localId.x] = bestValue;
xBestIndices[localId.x] = xBestIndices[localId.x + interval];
}
}
reduceSize = interval;
workgroupBarrier();
}
if (localId.x == 0u && outputIndex < uniforms.size) {
setOutputAtIndexI32(outputIndex, xBestIndices[localId.x]);
}
}
`:`
${Ye("index")} {
if (index < uniforms.size) {
let outputCoords = getCoordsFromIndex(index);
var bestIndex = 0;
var bestValue = getX(${t()} 0);
let reduceLength = ${e()};
for (var i = 1; i < reduceLength; i++) {
let candidate = getX(${t()} i);
if (candidate ${this.op} bestValue) {
bestValue = candidate;
bestIndex = i;
}
}
setOutputAtIndexI32(index, bestIndex);
}
}
`}},_1e=class{constructor(e,t){this.variableNames=["A"],this.workGroupSize=[16,16,1];let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[t[s]];this.outputShape=n,this.dispatchLayout={x:[0],y:[1]},this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize,[1,1,1]),this.shaderKey="transposeShared"}getUserCode(){return`
const TILE_DIM = ${this.workGroupSize[0]};
var<workgroup> tile : array<array<f32, ${this.workGroupSize[0]+1}>, ${this.workGroupSize[0]}>;
${Lp()}
fn _start(@builtin(local_invocation_id) localId : vec3<u32>,
@builtin(workgroup_id) workgroupId : vec3<u32>) {
var x = i32(workgroupId.x) * TILE_DIM + i32(localId.x);
var y = i32(workgroupId.y) * TILE_DIM + i32(localId.y);
let width = uniforms.outShape[0];
let height = uniforms.outShape[1];
if (x < width && y < height) {
tile[localId.y][localId.x] = A[y * width + x];
}
workgroupBarrier();
x = i32(workgroupId.y) * TILE_DIM + i32(localId.x);
y = i32(workgroupId.x) * TILE_DIM + i32(localId.y);
if (x < height && y < width) {
setOutputAtIndex((y * height + x), tile[localId.x]
[localId.y]);
}
}
`}},D1e=class{constructor(e,t){this.variableNames=["A"],this.workPerThread=4,this.workGroupSize=[64,1,1],this.size=!0;let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[t[s]];this.outputShape=n,this.dispatchLayout=ot(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.newDim=t,this.shaderKey=`transpose_${t}`}getUserCode(){let e=Pn(this.outputShape.length),t=$1e(this.newDim);return`
${Ye("index")} {
for(var i = 0; i < ${this.workPerThread}; i = i + 1) {
let flatIndex = index * ${this.workPerThread} + i;
if(flatIndex < uniforms.size) {
let resRC = getCoordsFromIndex(flatIndex);
setOutputAtIndex(flatIndex, A[getIndexFromCoords${this.outputShape.length}D(
${e}(${t}), uniforms.aShape)]);
}
}
}
`}};function $1e(e){let t=e.length;if(t>6)throw Error(`Transpose for rank ${t} is not yet supported`);let n=new Array(t);for(let s=0;s<e.length;s++)n[e[s]]=`resRC.${va(s)}`;return n.join()}function Ca(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{perm:a}=s,o=n,i=r.shape.length,l=new Array(i);for(let c=0;c<l.length;c++)l[c]=r.shape[a[c]];if(n.shouldExecuteOnCPU([r])){let p=o.tensorMap.get(r.dataId).values,d=k1e(p,r.shape,r.dtype,a,l);return n.makeTensorInfo(l,r.dtype,d)}if(r.shape.length===2&&v.arraysEqual(a,[1,0])){let c=new _1e(r.shape,a);return o.runWebGPUProgram(c,[r],r.dtype)}let u=new D1e(r.shape,a);return o.runWebGPUProgram(u,[r],r.dtype)}var P1e={kernelName:Qr,backendName:"webgpu",kernelFunc:Ca};function F1e(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s,o=v.parseAxisParam(a,r.shape),i=T.getAxesPermutation(o,r.shape.length),l=r,u=[];i!=null&&(l=Ca({inputs:{x:r},backend:n,attrs:{perm:i}}),u.push(l),o=T.getInnerMostAxes(o.length,l.shape.length)),T.assertAxesAreInnerMostDims("argMax",[o[0]],l.shape.length);let c=new gT(l.shape,o[0],"max"),p=[{type:"float32",data:[Number.NEGATIVE_INFINITY]}],d=n.runWebGPUProgram(c,[l],"int32",p);return u.forEach(h=>n.disposeData(h.dataId)),d}var O1e={kernelName:mo,backendName:"webgpu",kernelFunc:F1e};function M1e(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s,o=v.parseAxisParam(a,r.shape),i=T.getAxesPermutation(o,r.shape.length),l=r,u=[];i!=null&&(l=Ca({inputs:{x:r},backend:n,attrs:{perm:i}}),u.push(l),o=T.getInnerMostAxes(o.length,l.shape.length)),T.assertAxesAreInnerMostDims("argMin",[o[0]],l.shape.length);let c=new gT(l.shape,o[0],"min"),p=[{type:"float32",data:[Number.POSITIVE_INFINITY]}],d=n.runWebGPUProgram(c,[l],"int32",p);return u.forEach(h=>n.disposeData(h.dataId)),d}var z1e={kernelName:Sc,backendName:"webgpu",kernelFunc:M1e},L1e=jn({opType:qe.ATAN2}),B1e={kernelName:hl,backendName:"webgpu",kernelFunc:L1e},a6=class{constructor(e,t){this.variableNames=["x"],this.uniforms="stride : vec2<i32>, pad : vec2<i32>, dilation : vec2<i32>, convDims : vec2<i32>, filterDims : vec2<i32>,",this.workGroupSize=[128,1,1],this.size=!0,this.outputShape=e.outShape,this.dispatchLayout=ot(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey=`pool2D_${t}`,this.poolType=t}getUserCode(){let e="resultValue = max(value, resultValue);";this.poolType==="avg"&&(e="resultValue = resultValue + value; count = count + 1.0;");let t="resultValue";return this.poolType==="avg"&&(t="resultValue / count"),`
${Ye("index")} {
if (index < uniforms.size) {
let coords = getCoordsFromIndex(index);
let batch = coords[0];
let xRCCorner = vec2<i32>(coords.yz) * uniforms.stride - uniforms.pad;
let xRCorner = xRCCorner.x;
let xCCorner = xRCCorner.y;
var resultValue = ${this.poolType==="avg"?"0.0":"-1.0 / pow(10.0, -20.0)"};
var count = 0.0;
for (var wR = 0; wR < uniforms.filterDims.x; wR = wR + uniforms.dilation.x) {
let xR = xRCorner + wR;
if (xR < 0 || xR >= uniforms.convDims.x) {
continue;
}
for (var wC = 0; wC < uniforms.filterDims.y; wC = wC + uniforms.dilation.y) {
let xC = xCCorner + wC;
if (xC < 0 || xC >= uniforms.convDims.y) {
continue;
}
let value = getX(batch, xR, xC, coords[3]);
${e}
}
}
setOutputAtIndex(index, ${t});
}
}
`}},W1e=class{constructor(e){this.variableNames=["x"],this.uniforms="stride : vec2<i32>,",this.workGroupSize=[256,1,1],this.size=!0,this.outputShape=e.outShape,this.dispatchLayout=ot(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="poolWithFilterSizeEqualsOne"}getUserCode(){return`
${Ye("index")} {
if (index < uniforms.size) {
let coords = getCoordsFromIndex(index);
let batch = coords[0];
let d = coords[3];
let xRCCorner = coords.yz * uniforms.stride;
let xRCorner = xRCCorner.x;
let xCCorner = xRCCorner.y;
let value = getX(batch, xRCorner, xCCorner, d);
setOutputAtIndex(index, value);
}
}
`}},V1e=class{constructor(e,t){this.workGroupSize=[64,1,1],this.variableNames=["x"],this.uniforms="reduceSize : i32,",this.size=!0,this.inputShape=[e.batchSize,e.inSize];let[n]=T.computeOutAndReduceShapes(this.inputShape,[1]);this.outputShape=n.length===0?[1]:n,this.dispatchLayout=ot(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,[1,1,1]),this.reduceType=t,this.shaderKey=`reduce_${t}`}getUserCode(){let e="",t="0.0";this.reduceType==="min"||this.reduceType==="max"?(e=`
if (isnan(candidate)) {
bestValue = uniforms.NAN;
} else if (!isnan(bestValue) && candidate ${this.reduceType==="min"?"<":">"} bestValue)
{ bestValue = candidate; }`,t="f32(x[offset])"):this.reduceType==="sum"||this.reduceType==="mean"?e=" bestValue = bestValue + candidate; ":this.reduceType==="prod"&&(e=" bestValue = bestValue * candidate; ",t="1.0");let n=this.reduceType==="mean"?"setOutputAtIndex(outputIndex, bestValue / f32(uniforms.reduceSize));":"setOutputAtIndex(outputIndex, bestValue);";return`
fn DIV_CEIL(a : u32, b : u32) -> u32 {
return ((a - 1u) / b + 1u);
}
${`
var<workgroup> xBestValues : array<f32, ${this.workGroupSize[0]}>;
`}
fn getOffset(outputIndex : i32) -> i32 {
let outputCoords = getCoordsFromIndex(outputIndex);
let offset = ${this.outputShape.length===1?"outputCoords":"outputCoords[0]"} * uniforms.reduceSize;
return offset;
}
${Ye("index")} {
let outputIndex = index / i32(workGroupSizeX);
let offset = getOffset(outputIndex);
var bestValue = ${t};
let Length = uniforms.reduceSize;
let WorkPerThread = DIV_CEIL(u32(Length), workGroupSizeX);
for (var k = i32(localId.x); k < Length && outputIndex < uniforms.size;
k = k + i32(workGroupSizeX)) {
let candidate = f32(x[offset + k]);
${e}
}
xBestValues[localId.x] = bestValue;
workgroupBarrier();
var reduceSize = min(u32(Length), workGroupSizeX);
for (var currentSize = reduceSize / 2u; reduceSize > 1u;
currentSize = reduceSize / 2u) {
let interval = DIV_CEIL(reduceSize, 2u);
if (localId.x < currentSize) {
let candidate = xBestValues[localId.x + interval];
${e}
xBestValues[localId.x] = bestValue;
}
reduceSize = interval;
workgroupBarrier();
}
if (localId.x == 0u && outputIndex < uniforms.size) {
${n}
}
}
`}};function jh(e,t,n,s,r){let a=e.shape.length,o=[],i=v.parseAxisParam(t,e.shape),l=i,u=T.getAxesPermutation(l,a),c=e;u!=null&&(c=Ca({inputs:{x:e},attrs:{perm:u},backend:r}),l=T.getInnerMostAxes(l.length,a),o.push(c)),T.assertAxesAreInnerMostDims(s,l,a);let[p,d]=T.computeOutAndReduceShapes(c.shape,l),h=p;n&&(h=T.expandShapeToKeepDim(p,i));let f;if((s==="max"||s==="prod")&&r.shouldExecuteOnCPU([c])){let m=r.tensorMap.get(c.dataId).values;switch(s){case"max":let g=o1e(m,v.sizeFromShape(d),h,e.dtype);f=r.makeTensorInfo(h,e.dtype,g);break;case"prod":let{outVals:y,outShape:x,outDtype:A}=p1e(c.shape,c.dtype,m,l);f=r.makeTensorInfo(x,A,y);break;default:throw new Error(`${s} CPU implementation is not yet supported.`)}}else{let m=v.sizeFromShape(d),y=v.sizeFromShape(c.shape)/m,x={windowSize:m,inSize:m,batchSize:y,outSize:1},A=s==="mean"?"float32":ih(e.dtype),b=[{type:"int32",data:[m]}],w=new V1e(x,s),S=r.runWebGPUProgram(w,[c],A,b);o.push(S),f=Ue({inputs:{x:S},attrs:{shape:h},backend:r})}return o.forEach(m=>r.disposeData(m.dataId)),f}function Ab(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reductionIndices:a,keepDims:o}=s;return jh(r,a,o,"max",n)}var U1e={kernelName:Oo,backendName:"webgpu",kernelFunc:Ab};function yT(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{keepDims:a,axis:o}=s;return jh(r,o,a,"mean",n)}var G1e={kernelName:Lo,backendName:"webgpu",kernelFunc:yT};function AT(e,t,n,s){if(t.filterWidth===1&&t.filterHeight===1&&v.arraysEqual(t.inShape,t.outShape))return er({inputs:{x:e},backend:s});if(t.filterWidth===t.inWidth&&t.filterHeight===t.inHeight&&t.batchSize===1&&t.padInfo.type==="VALID"){let o=e.shape.length,i=Ue({inputs:{x:e},backend:s,attrs:{shape:[e.shape[o-3]*e.shape[o-2],e.shape[o-1]]}}),l;n==="avg"?l=yT({inputs:{x:i},backend:s,attrs:{axis:0,keepDims:!1}}):(v.assert(n==="max",()=>`Invalid pool type ${n}`),l=Ab({inputs:{x:i},backend:s,attrs:{reductionIndices:0,keepDims:!1}}));let u=Ue({inputs:{x:l},backend:s,attrs:{shape:t.outShape}});return s.disposeData(i.dataId),s.disposeData(l.dataId),u}let r,a=[{type:"int32",data:[t.strideHeight,t.strideWidth]}];return t.filterHeight===1&&t.filterWidth===1?r=new W1e(t):(n==="avg"?r=new a6(t,"avg"):(v.assert(n==="max",()=>`Invalid pool type ${n}`),r=new a6(t,"max")),a.push({type:"int32",data:[t.padInfo.top,t.padInfo.left]},{type:"int32",data:[t.dilationHeight,t.dilationWidth]},{type:"int32",data:[t.inHeight,t.inWidth]},{type:"int32",data:[t.effectiveFilterHeight,t.effectiveFilterWidth]})),s.runWebGPUProgram(r,[e],e.dtype,a)}function H1e(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=s,u=1,c=T.computePool2DInfo(r.shape,a,o,u,i,l);return AT(r,c,"avg",n)}var j1e={kernelName:go,backendName:"webgpu",kernelFunc:H1e};function q1e(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a}=t,{transposeA:o,transposeB:i}=s;return yb({a:r,b:a,transposeA:o,transposeB:i,backend:n})}var X1e={kernelName:yo,backendName:"webgpu",kernelFunc:q1e},K1e=class{constructor(e,t){this.variableNames=["source"],this.workPerThread=1,this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=t,this.rank=t.length,this.dispatchLayout=ot(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.start=e,this.uniforms=`start : ${Pn(e.length)}, `,this.shaderKey="slice"}getUserCode(){let e=Pn(this.rank),t=Z1e(this.rank),n;return this.start.length===1?n=this.outputShape.map((r,a)=>"sourceLoc = uniforms.start + coords;"):n=this.outputShape.map((r,a)=>`sourceLoc.${Ty[a]} = uniforms.start.${va(a)} + coords.${Ty[a]};`),`
${Ye("index")} {
if (index < uniforms.size) {
var sourceLoc : ${e};
let coords = getCoordsFromIndex(index);
${n.join(`
`)}
setOutputAtIndex(index, getSource(${t}));
}
}
`}},Ty=["x","y","z","w","u","v"];function Z1e(e){if(e===1)return"sourceLoc";if(e<=6)return Ty.slice(0,e).map(t=>`sourceLoc.${t}`).join(",");throw Error(`Slicing for rank ${e} is not yet supported`)}function Ad(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,size:o}=s,[i,l]=Gt.parseSliceParams(r,a,o);if(Gt.assertParamsValid(r,i,l),n.shouldExecuteOnCPU([r])||r.dtype==="string"){let p=n.tensorMap.get(r.dataId),d=y1e(p.values,i,l,r.shape,r.dtype);return n.makeTensorInfo(l,r.dtype,d)}if(v.sizeFromShape(l)===0)return n.makeTensorInfo(l,r.dtype,[]);let u=new K1e(i,l),c=[{type:"int32",data:i}];return n.runWebGPUProgram(u,[r],r.dtype,c)}var Y1e={kernelName:Gl,backendName:"webgpu",kernelFunc:Ad},J1e=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,crops:o}=s;v.assert(r.shape.length<=4,()=>"batchToSpaceND for rank > 4 with a WebGPU backend not implemented yet");let i=a.reduce((x,A)=>x*A),l=T.getReshaped(r.shape,a,i),u=T.getPermuted(l.length,a.length),c=T.getReshapedPermuted(r.shape,a,i),p=T.getSliceBeginCoords(o,a.length),d=T.getSliceSize(c,o,a.length),h=[],f=Ue({inputs:{x:r},backend:n,attrs:{shape:l}}),m=Ca({inputs:{x:f},backend:n,attrs:{perm:u}}),g=Ue({inputs:{x:m},backend:n,attrs:{shape:c}}),y=Ad({inputs:{x:g},backend:n,attrs:{begin:p,size:d}});return h.push(f),h.push(m),h.push(g),h.forEach(x=>n.disposeData(x.dataId)),y},Q1e={kernelName:fl,backendName:"webgpu",kernelFunc:J1e},xT=jn({opType:qe.NOT_EQUAL,dtype:"bool",cpuKernelImpl:d1e}),ege={kernelName:Dl,backendName:"webgpu",kernelFunc:xT};function qh(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.tensorMap.get(s.dataId);return er({inputs:{x:r.complexTensorInfos.real},backend:n})}var tge={kernelName:Yp,backendName:"webgpu",kernelFunc:qh};function nge(e,t){let n=new Hh(e.shape,Fe.TO_INT),s=t.runWebGPUProgram(n,[e],"int32");return{dataId:s.dataId,shape:s.shape,dtype:s.dtype}}function Ny(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dtype:a}=s;if(a==="complex64"){if(r.dtype==="complex64")return er({inputs:{x:r},backend:n});let o=Vt(r.shape),i=Ny({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),l=yd({inputs:{real:i,imag:o},backend:n});return o.dispose(),n.disposeData(i.dataId),l}if(r.dtype==="complex64"){let o=qh({inputs:{input:r},backend:n}),i=Ny({inputs:{x:o},backend:n,attrs:{dtype:a}});return n.disposeData(o.dataId),i}if(!v.hasEncodingLoss(r.dtype,a)){let o=er({inputs:{x:r},backend:n});return{dataId:o.dataId,shape:o.shape,dtype:a}}if(n.shouldExecuteOnCPU([r])){let o=n.tensorMap.get(r.dataId).values,[i,l,u]=j2e(o,r.shape,r.dtype,a);return n.makeTensorInfo(i,l,u)}if(a==="int32")return nge(r,n);if(a==="bool"){let o=n.makeTensorInfo([],"bool",v.getTypedArrayFromDType("bool",1)),l=xT({inputs:{a:r,b:o},backend:n});return n.disposeData(o.dataId),l}throw new Error(`Error in Cast: failed to cast ${r.dtype} to ${a}`)}var sge={kernelName:Ao,backendName:"webgpu",kernelFunc:Ny},rge=xn({opType:Fe.CEIL,cpuKernelImpl:q2e}),age={kernelName:xo,backendName:"webgpu",kernelFunc:rge},oge=class{constructor(e){this.variableNames=["A"],this.uniforms="minVal : f32, maxVal : f32,",this.workPerThread=4,this.workGroupSize=[64,1,1],this.isVec4=!0,this.size=!0,this.outputShape=e,this.dispatchLayout=ot(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.shaderKey="clipVec4"}getUserCode(){return`
${Ye("index")} {
if(index < uniforms.size) {
let value = getAByOutputIndex(index);
var clampedValue : vec4<f32>;
for (var i = 0; i < 4; i = i + 1) {
if (isnan(value[i])) {
clampedValue[i] = value[i];
} else {
clampedValue[i] = clamp(value[i], uniforms.minVal, uniforms.maxVal);
}
}
setOutputAtIndex(index, clampedValue);
}
}
`}},ige=class{constructor(e){this.variableNames=["A"],this.uniforms="minVal : f32, maxVal : f32,",this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=ot(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="clip"}getUserCode(){return`
${Ye("index")} {
if(index < uniforms.size) {
let value = getAByOutputIndex(index);
if (isnan(value)) {
setOutputAtIndex(index, value);
return;
}
setOutputAtIndex(index, clamp(value, uniforms.minVal, uniforms.maxVal));
}
}
`}};function lge(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{clipValueMin:a,clipValueMax:o}=s,i,l=[{type:"float32",data:[a]},{type:"float32",data:[o]}];return v.sizeFromShape(r.shape)%4===0?i=new oge(r.shape):i=new ige(r.shape),n.runWebGPUProgram(i,[r],r.dtype,l)}var uge={kernelName:Na,backendName:"webgpu",kernelFunc:lge},cge=class{constructor(e){this.uniforms="",this.workPerThread=4,this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=T.computeOutShape(e,1),this.variableNames=e.map((t,n)=>`T${n}`),this.dispatchLayout=ot(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.offsetLength=e.length-1;for(let t=0;t<this.offsetLength;t++)this.uniforms+=`offset${t} : i32,`;this.shaderKey="concat"}getUserCode(){let e=[];if(this.offsetLength>0){e.push("if (yC < uniforms.offset0){ setOutputAtCoords(coords.x, coords.y, getT0(yR, yC)); }");for(let r=1;r<this.offsetLength;r++)e.push(`else if (yC < uniforms.offset${[r]}){ setOutputAtCoords(coords.x, coords.y, getT${r}(yR, yC - uniforms.offset${r-1})); }`);let n=this.offsetLength,s=this.offsetLength-1;e.push(`else { setOutputAtCoords(coords.x, coords.y, getT${n}(yR, yC - uniforms.offset${s})); }`)}else e.push("setOutputAtCoords(coords.x, coords.y, getT0(yR, yC));");return`
${Ye("index")} {
for(var i = 0; i < ${this.workPerThread}; i = i + 1) {
let flatIndex = index * ${this.workPerThread} + i;
if(flatIndex < uniforms.size) {
let coords = getCoordsFromIndex(flatIndex);
let yR = coords.x;
let yC = coords.y;
${e.join(`
`)}
}
}
}
`}};function z2(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.tensorMap.get(s.dataId);return er({inputs:{x:r.complexTensorInfos.imag},backend:n})}var dge={kernelName:Xp,backendName:"webgpu",kernelFunc:z2};function mp(e,t,n){let s=e[0].dtype;if(s==="complex64"){let f=e.map(A=>qh({inputs:{input:A},backend:n})),m=e.map(A=>z2({inputs:{input:A},backend:n})),g=mp(f,t,n),y=mp(m,t,n),x=yd({inputs:{real:g,imag:y},backend:n});return f.forEach(A=>n.disposeData(A.dataId)),m.forEach(A=>n.disposeData(A.dataId)),n.disposeData(g.dataId),n.disposeData(y.dataId),x}let r=n.shouldExecuteOnCPU(e);if(s==="string"&&(r=!0),r){let f=e.map(w=>{let S=v.sizeFromShape(w.shape.slice(t));return Ue({inputs:{x:w},backend:n,attrs:{shape:[-1,S]}})}),m=f.map(w=>({vals:n.readSync(w.dataId),shape:w.shape})),g=T.computeOutShape(f.map(w=>w.shape),1),y=f[0].shape[0]===1,x=X2e(m,g,s,y),A=T.computeOutShape(e.map(w=>w.shape),t),b=n.makeTensorInfo(A,s,x);return f.forEach(w=>n.disposeData(w.dataId)),b}let a=n.device.limits.maxStorageBuffersPerShaderStage-1;if(e.length>a){let f=[];for(let g=0;g<e.length;g+=a){let y=e.slice(g,g+a);f.push(mp(y,t,n))}let m=mp(f,t,n);for(let g of f)n.disposeData(g.dataId);return m}let{tensors2D:o,outShape:i}=pge(e,t,n),l=o.map(f=>f.shape),u=new cge(l),c=[],p=new Array(l.length-1);if(p.length>0){p[0]=l[0][1],c.push({type:"int32",data:[p[0]]});for(let f=1;f<p.length;f++)p[f]=p[f-1]+l[f][1],c.push({type:"int32",data:[p[f]]})}let d=n.runWebGPUProgram(u,o,o[0].dtype,c);o.forEach(f=>n.disposeData(f.dataId));let h=Ue({inputs:{x:d},backend:n,attrs:{shape:i}});return n.disposeData(d.dataId),h}function pge(e,t,n){let s=T.computeOutShape(e.map(a=>a.shape),t);return{tensors2D:e.map(a=>Ue({inputs:{x:a},backend:n,attrs:{shape:[v.sizeFromShape(a.shape.slice(0,t)),v.sizeFromShape(a.shape.slice(t))]}})),outShape:s}}function bT(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s,a=v.parseAxisParam(r,t[0].shape)[0],o=T.computeOutShape(t.map(u=>u.shape),a);if(v.sizeFromShape(o)===0)return n.makeTensorInfo(o,t[0].dtype,[]);let i=t.filter(u=>v.sizeFromShape(u.shape)>0);if(i.length===1)return er({inputs:{x:i[0]},backend:n});let l=i.map(u=>u.shape);return T.assertParamsConsistent(l,a),mp(i,a,n)}var hge={kernelName:ml,backendName:"webgpu",kernelFunc:bT};function fge(e,t,n,s,r=!1,a=null,o=!1,i=4,l=4,u=4){let c=_=>{switch(_){case 1:return"resData = x[xIndex];";case 3:return"resData = vec3<f32>(x[xIndex], x[xIndex + 1], x[xIndex + 2]);";case 4:return"resData = x[xIndex / 4];";default:throw new Error(`innerElementSize ${_} is not supported.`)}},p=_=>{switch(_){case 1:return"return W[row * uniforms.wShape[3] + colIn];";case 4:return"return W[row * uniforms.wShape[3] / 4 + colIn];";default:throw new Error(`innerElementSize ${_} is not supported.`)}},d=e?`
let coord = vec4<i32>(batch, xRow, xCol, xCh);
`:`
let coord = vec4<i32>(batch, xCh, xRow, xCol);
`,h=e?`
let coords = vec4<i32>(
batch,
row / outWidth,
row % outWidth,
col);
`:`
let coords = vec4<i32>(
batch,
row,
col / outWidth,
col % outWidth);
`,f=e?"uniforms.xShape[1]":"uniforms.xShape[2]",m=e?"uniforms.xShape[2]":"uniforms.xShape[3]",g=e?"row":"col",y=e?"col":"row",x=`
let inChannels = uniforms.wShape[2];
let outWidth = ${e?"uniforms.outShape[2]":"uniforms.outShape[3]"};
let outRow = ${g} / outWidth;
let outCol = ${g} % outWidth;
let WRow = ${y} / (uniforms.filterDims[1] * inChannels);
let WCol = ${y} / inChannels % uniforms.filterDims[1];
let xRow = outRow * uniforms.stride[0] + uniforms.dilation[0] * WRow - uniforms.pad[0];
let xCol = outCol * uniforms.stride[1] + uniforms.dilation[1] * WCol - uniforms.pad[1];
let xCh = ${y} % inChannels;
var resData = ${Zt(i)}(0.0);
// The bounds checking is always needed since we use it to pad zero for
// the 'same' padding type.
if (xRow >= 0 && xRow < ${f} && xCol >= 0 && xCol < ${m}) {
${d}
let xIndex = getIndexFromCoords4D(coord, uniforms.xShape);
${c(i)}
}
return resData;`,A=e?t&&s?`
let col = colIn * ${i};
${x}`:`
let col = colIn * ${i};
if (row < uniforms.dimAOuter && col < uniforms.dimInner) {
${x}
}
return ${Zt(i)}(0.0);`:s&&n?`
let col = colIn * ${i};
${x}`:`
let col = colIn * ${i};
if (row < uniforms.dimInner && col < uniforms.dimBOuter) {
${x}
}
return ${Zt(i)}(0.0);`,b=`${p(l)}`,w=Zt(u),S=Zt(e?i:l),k=Zt(e?l:i);return`
${yi(a,o,u===4,4)}
fn mm_readA(batch: i32, row : i32, colIn : i32) -> ${S} {
${e?A:b}
}
fn mm_readB(batch: i32, row : i32, colIn : i32) -> ${k} {
${e?b:A}
}
fn mm_write(batch: i32, row : i32, colIn : i32, valueIn : ${w}) {
let col = colIn * ${u};
if (row < uniforms.dimAOuter && col < uniforms.dimBOuter)
{
var value = valueIn;
let outWidth = ${e?"uniforms.outShape[2]":"uniforms.outShape[3]"};
${h}
${gd(r,a)}
setOutputAtCoords(coords[0], coords[1], coords[2], coords[3], value);
}
}`}var mge=class{constructor(e,t,n,s,r=!1,a=null,o=!1){this.variableNames=["x","W"],this.uniforms="filterDims : vec2<i32>, pad : vec2<i32>, stride : vec2<i32>, dilation : vec2<i32>, dimAOuter : i32, dimBOuter : i32, dimInner : i32,",this.outputShape=e.outShape,this.isChannelsLast=e.dataFormat==="channelsLast",this.isVec4=((e.inChannels%4===0||e.inChannels%3===0)&&this.isChannelsLast||e.outWidth%4===0&&!this.isChannelsLast)&&e.outChannels%4===0,this.dispatchLayout=this.isChannelsLast?{x:[3],y:[1,2],z:[0]}:{x:[2,3],y:[1],z:[0]},this.workGroupSize=hb(this.dispatchLayout,this.outputShape,this.isVec4),this.elementsPerThread=fb(this.dispatchLayout,this.outputShape,this.isVec4),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize,this.elementsPerThread),this.isVec4?(this.isChannelsLast&&e.inChannels%4!==0?(this.innerElementSize=3,this.variableTypes=["f32","vec4<f32>"]):(this.innerElementSize=4,this.variableTypes=["vec4<f32>","vec4<f32>"]),r&&(this.variableNames.push("bias"),this.variableTypes.push("vec4<f32>")),o&&(this.variableNames.push("preluActivationWeights"),this.variableTypes.push("vec4<f32>"))):(this.innerElementSize=this.elementsPerThread[0],r&&this.variableNames.push("bias"),o&&this.variableNames.push("preluActivationWeights")),this.addBias=r,this.activation=a,this.hasPreluActivationWeights=o,this.tileAOuter=this.workGroupSize[1]*this.elementsPerThread[1],this.tileBOuter=this.workGroupSize[0]*this.elementsPerThread[0],this.tileInner=Math.max(this.workGroupSize[0]*this.innerElementSize,this.workGroupSize[1]),this.fitAOuter=t%this.tileAOuter===0,this.fitBOuter=n%this.tileBOuter===0,this.fitInner=s%this.tileInner===0,this.shaderKey=`conv2DMM_${this.elementsPerThread}_${this.activation}}_${this.fitAOuter}_${this.fitBOuter}_${this.fitInner}_${this.isVec4}_${this.innerElementSize}_${this.isChannelsLast}`}getUserCode(){let e=this.isVec4?O2(this.elementsPerThread,this.workGroupSize,!this.isChannelsLast,this.tileInner):M2(this.elementsPerThread,this.workGroupSize,!this.isChannelsLast,this.tileInner),t=this.isVec4?[this.innerElementSize,4,4]:[1,1,1];return`
${fge(this.isChannelsLast,this.fitAOuter,this.fitBOuter,this.fitInner,this.addBias,this.activation,this.hasPreluActivationWeights,t[0],t[1],t[2])}
${e}
`}};function o6(e,t){let n=e.length;return n>=3?t?[...e.slice(0,-3),e[n-3]*e[n-2],e[n-1]]:[...e.slice(0,-3),e[n-3],e[n-2]*e[n-1]]:!t&&n===1&&e[0]>1?[e[0],1]:null}function gge({x:e,filter:t,convInfo:n,backend:s,bias:r=null,preluActivationWeights:a=null,leakyreluAlpha:o=0,activation:i=null}){let l=n.dataFormat==="channelsLast",u=!l,c=!1,p=l&&n.filterHeight===n.inHeight&&n.filterWidth===n.inWidth&&n.padInfo.type==="VALID",d=[],h,f;if(p){let y=n.inHeight*n.inWidth*n.inChannels;h=Ue({inputs:{x:e},backend:s,attrs:{shape:[1,n.batchSize,y]}}),f=Ue({inputs:{x:t},backend:s,attrs:{shape:[1,y,n.outChannels]}})}else h=Ue({inputs:{x:e},backend:s,attrs:{shape:l?[n.batchSize,n.inHeight*n.inWidth,n.inChannels]:[n.batchSize,n.inChannels,n.inHeight*n.inWidth]}}),f=Ue({inputs:{x:t},backend:s,attrs:{shape:[1,n.inChannels,n.outChannels]}});if(d.push(h),d.push(f),a!=null){let y=o6(a.shape,l);y!=null&&(a=Ue({inputs:{x:a},backend:s,attrs:{shape:y}}),d.push(a))}if(r!=null){let y=o6(r.shape,l);y!=null&&(r=Ue({inputs:{x:r},backend:s,attrs:{shape:y}}),d.push(r))}let m=yb({a:l?h:f,b:l?f:h,transposeA:u,transposeB:c,backend:s,bias:r,activation:i,preluActivationWeights:a,leakyreluAlpha:o}),g=Ue({inputs:{x:m},backend:s,attrs:{shape:n.outShape}});d.push(m);for(let y of d)s.disposeData(y.dataId);return g}function vT({x:e,filter:t,convInfo:n,backend:s,bias:r=null,preluActivationWeights:a=null,leakyreluAlpha:o=0,activation:i=null}){let l=r!=null,u=a!=null,c=n.dataFormat==="channelsLast";if(c&&n.filterHeight===n.inHeight&&n.filterWidth===n.inWidth&&n.padInfo.type==="VALID"||n.filterHeight===1&&n.filterWidth===1&&n.dilationHeight===1&&n.dilationWidth===1&&n.strideHeight===1&&n.strideWidth===1&&(n.padInfo.type==="SAME"||n.padInfo.type==="VALID"))return gge({x:e,filter:t,convInfo:n,backend:s,bias:r,activation:i,preluActivationWeights:a,leakyreluAlpha:o});let d=c?n.outHeight*n.outWidth:n.outChannels,h=c?n.outChannels:n.outHeight*n.outWidth,f=n.filterHeight*n.filterWidth*n.inChannels,m=[n.padInfo.top,n.padInfo.left],g=[{type:"int32",data:[n.filterHeight,n.filterWidth]},{type:"int32",data:[...m]},{type:"int32",data:[n.strideHeight,n.strideWidth]},{type:"int32",data:[n.dilationHeight,n.dilationWidth]},{type:"int32",data:[d]},{type:"int32",data:[h]},{type:"int32",data:[f]}],y=new mge(n,d,h,f,l,i,u),x=[],A=[e,t];l&&(!c&&r.shape.length===1&&(r=Ue({inputs:{x:r},backend:s,attrs:{shape:[r.shape[0],1,1]}}),x.push(r)),A.push(r)),u&&(!c&&a.shape.length===1&&(a=Ue({inputs:{x:a},backend:s,attrs:{shape:[a.shape[0],1,1]}}),x.push(a)),A.push(a)),i==="leakyrelu"&&(g.push({type:"float32",data:[o]}),y.uniforms+=" alpha : f32,");let b=s.runWebGPUProgram(y,A,e.dtype,g);for(let w of x)s.disposeData(w.dataId);return b}function yge(e){let{inputs:t,attrs:n,backend:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dataFormat:l,dilations:u,dimRoundingMode:c}=n,p=T.convertConv2DDataFormat(l),d=T.computeConv2DInfo(r.shape,a.shape,o,u,i,c,!1,p);return vT({x:r,filter:a,convInfo:d,backend:s})}var Age={kernelName:bo,backendName:"webgpu",kernelFunc:yge};function xge(e=4){let t=a=>{switch(a){case 1:return"return W[getIndexFromCoords4D(coord, uniforms.wShape)];";case 4:return`
let coord1 = vec4<i32>(coordX, coordY, col + 1, rowInner);
let coord2 = vec4<i32>(coordX, coordY, col + 2, rowInner);
let coord3 = vec4<i32>(coordX, coordY, col + 3, rowInner);
let v0 = W[getIndexFromCoords4D(coord, uniforms.wShape)];
let v1 = W[getIndexFromCoords4D(coord1, uniforms.wShape)];
let v2 = W[getIndexFromCoords4D(coord2, uniforms.wShape)];
let v3 = W[getIndexFromCoords4D(coord3, uniforms.wShape)];
return vec4<f32>(v0, v1, v2, v3);
`;default:throw new Error(`innerElementSize ${a} is not supported.`)}},s=`if (row < uniforms.dimAOuter && col < uniforms.dimInner) {
${`
let outRow = row / uniforms.outShape[2];
let outCol = row % uniforms.outShape[2];
let WRow = col / (uniforms.filterDims[1] * uniforms.outBackprop[3]);
let WCol = col / uniforms.outBackprop[3] % uniforms.filterDims[1];
let xR = f32(outRow - uniforms.pads[0] + WRow) / f32(uniforms.stride[0]);
let xC = f32(outCol - uniforms.pads[1] + WCol) / f32(uniforms.stride[1]);
if (xR < 0.0 || xR >= f32(uniforms.outBackprop[1]) || fract(xR) > 0.0) {
return ${Zt(e)}(0.0);
}
if (xC < 0.0 || xC >= f32(uniforms.outBackprop[2]) || fract(xC) > 0.0) {
return ${Zt(e)}(0.0);
}
let coord = vec4<i32>(
batch,
i32(xR),
i32(xC),
col % uniforms.outBackprop[3]);
return x[getIndexFromCoords4D(coord, uniforms.xShape)/${e}];`}
}
return ${Zt(e)}(0.0);`;return`
fn mm_readA(batch: i32, row : i32, colIn : i32) -> ${Zt(e)} {
let col = colIn * ${e};
${s}
}
fn mm_readB(batch: i32, row : i32, colIn : i32) -> ${Zt(e)} {
let col = colIn * ${e};
let coordX = uniforms.filterDims.x - 1 -
row / (uniforms.filterDims[1] * uniforms.outBackprop[3]);
let coordY = uniforms.filterDims.y - 1 -
(row / uniforms.outBackprop[3]) % uniforms.filterDims[1];
if (row < uniforms.dimInner && col < uniforms.dimBOuter &&
coordX >= 0 && coordY >= 0) {
let rowInner = row % uniforms.outBackprop[3];
let coord = vec4<i32>(coordX, coordY, col, rowInner);
${t(e)}
}
return ${Zt(e)}(0.0);
}
fn mm_write(batch: i32, row : i32, colIn : i32, valueInput : ${Zt(e)}) {
let col = colIn * ${e};
if (row < uniforms.dimAOuter && (col + ${e-1}) < uniforms.dimBOuter) {
var value = valueInput;
let outCoord = vec4<i32>(
batch,
row / uniforms.outShape[2],
row % uniforms.outShape[2],
col);
result[getIndexFromCoords4D(outCoord, uniforms.outShape)/${e}] = value;
}
}`}var bge=class{constructor(e){this.variableNames=["x","W"],this.uniforms="filterDims : vec2<i32>, pads : vec2<i32>, stride : vec2<i32>, outBackprop : vec4<i32>, dimAOuter : i32, dimBOuter : i32, dimInner : i32,",this.outputShape=e.inShape,v.assert(e.dataFormat==="channelsLast",()=>"TODO: NCHW is unimplemented"),this.isVec4=e.inChannels%4===0&&e.outChannels%4===0,this.dispatchLayout={x:[3],y:[1,2],z:[0]},this.workGroupSize=hb(this.dispatchLayout,this.outputShape,this.isVec4),this.elementsPerThread=fb(this.dispatchLayout,this.outputShape,this.isVec4),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize,this.elementsPerThread),this.isVec4&&(this.variableTypes=["vec4<f32>","f32"]),this.shaderKey=`conv2DDerInputMM_${this.isVec4}_${this.elementsPerThread}`}getUserCode(){let e=this.isVec4?O2(this.elementsPerThread,this.workGroupSize):M2(this.elementsPerThread,this.workGroupSize);return`
${xge(this.isVec4?4:1)}
${e}
`}},vge=class{constructor(e){this.variableNames=["dy","W"],this.uniforms="filterDims : vec2<i32>, pads : vec2<i32>, stride : vec2<i32>, outBackprop : vec4<i32>,",this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e.inShape,this.dispatchLayout=ot(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize),this.isChannelsLast=e.dataFormat==="channelsLast",this.shaderKey=`conv2DDerInput_${this.isChannelsLast}`}getUserCode(){let e=this.isChannelsLast?1:2,t=this.isChannelsLast?2:3,n=this.isChannelsLast?3:1;return`
${Ye("index")} {
if(index < uniforms.size) {
let coords = getCoordsFromIndex(index);
let batch = coords[0];
let d1 = coords[${n}];
let dyCorner = vec2<i32>(coords[${e}]), coords[${t}]) - uniforms.pads;
let dyRCorner = dyCorner.x;
let dyCCorner = dyCorner.y;
// Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1).
// ? = to be determined. : = across all values in that axis.
var dotProd = 0.0;
for (var wR = 0; wR < uniforms.filterDims.x; wR = wR + 1) {
let dyR = (f32(dyRCorner) + f32(wR)) / f32(uniforms.stride.x);
let wRPerm = uniforms.filterDims.x - 1 - wR;
if (dyR < 0.0 || dyR >= f32(uniforms.outBackprop[1]) || fract(dyR) > 0.0 ||
wRPerm < 0) {
continue;
}
let idyR = dyR;
for (var wC = 0; wC < uniforms.filterDims.y; wC = wC + 1) {
let dyC = (f32(dyCCorner) + f32(wC)) / f32(uniforms.stride.y);
let wCPerm = uniforms.filterDims.y - 1 - wC;
if (dyC < 0.0 || dyC >= f32(uniforms.outBackprop[2]) ||
fract(dyC) > 0.0 || wCPerm < 0) {
continue;
}
let idyC = dyC;
for (var d2 = 0; d2 < uniforms.outBackprop[3]; d2 = d2 + 1) {
if (${this.isChannelsLast}) {
let xValue = getDy(batch, idyR, idyC, d2);
let wValue = getW(wRPerm, wCPerm, d1, d2);
dotProd = dotProd + xValue * wValue;
} else {
let xValue = getDy(batch, d2, idyR, idyC);
let wValue = getW(wRPerm, wCPerm, d1, d2);
dotProd = dotProd + xValue * wValue;
}
}
}
}
setOutputAtIndex(index, dotProd);
}
}
`}};function wge(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{inputShape:o,strides:i,pad:l,dataFormat:u,dimRoundingMode:c}=s,p=T.convertConv2DDataFormat(u),d=T.computeConv2DInfo(o,a.shape,i,1,l,c,!1,p),h=[{type:"int32",data:[d.filterHeight,d.filterWidth]},{type:"int32",data:[d.filterHeight-1-d.padInfo.top,d.filterWidth-1-d.padInfo.left]},{type:"int32",data:[d.strideHeight,d.strideWidth]},{type:"int32",data:[d.batchSize,d.outHeight,d.outWidth,d.outChannels]}],f;if(H().getBool("WEBGPU_USE_NAIVE_CONV2D_TRANSPOSE"))f=new vge(d);else{f=new bge(d);let m=d.inShape[1]*d.inShape[2],g=d.inShape[3],y=d.filterHeight*d.filterWidth*d.outChannels;h.push({type:"uint32",data:[m]},{type:"uint32",data:[g]},{type:"uint32",data:[y]})}return n.runWebGPUProgram(f,[r,a],"float32",h)}var kge={kernelName:vo,backendName:"webgpu",kernelFunc:wge},Sge=xn({opType:Fe.COS}),Ige={kernelName:wo,backendName:"webgpu",kernelFunc:Sge},Cge=xn({opType:Fe.COSH}),Tge={kernelName:ko,backendName:"webgpu",kernelFunc:Cge},Nge=class{constructor(e,t,n,s){this.variableNames=["Image","Boxes","BoxInd"],this.uniforms="extrapolationValue : f32,",this.workGroupSize=[64,1,1],this.size=!0;let[r]=t;this.outputShape=[r,n[0],n[1],e],this.dispatchLayout=ot(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize),this.methodId=s==="bilinear"?1:0,this.cropHeightBiggerThan1=this.outputShape[1]>1,this.cropWidthBiggerThan1=this.outputShape[2]>1,this.shaderKey=`cropAndResize_${this.methodId}_${this.cropHeightBiggerThan1}_${this.cropWidthBiggerThan1}`}getUserCode(){let[e,t]=["f32(uniforms.imageShape[1] - 1)","f32(uniforms.imageShape[2] - 1)"],[n,s,r]=this.cropHeightBiggerThan1?[`(${e} / f32(uniforms.outShape[1] - 1))`,"(y2-y1) * height_ratio",`y1*${e} + f32(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${e}`],[a,o,i]=this.cropWidthBiggerThan1?[`(${t} / f32(uniforms.outShape[2] - 1))`,"(x2-x1) * width_ratio",`x1*${t} + f32(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${t}`];return`
${Ye("index")} {
if (index < uniforms.size) {
let coords = getCoordsFromIndex(index);
let height_ratio = f32(${n});
let width_ratio = f32(${a});
let b = coords[0];
let y = coords[1];
let x = coords[2];
let d = coords[3];
// get box vals
let y1 = getBoxes(b, 0);
let x1 = getBoxes(b, 1);
let y2 = getBoxes(b, 2);
let x2 = getBoxes(b, 3);
// get image in batch index
let bInd = i32(round(getBoxInd(b)));
if(bInd < 0 || bInd >= uniforms.outShape[0]) {
return;
}
let height_scale = ${s};
let width_scale = ${o};
let in_y = ${r};
if( in_y < 0.0 || in_y > ${e} ) {
setOutputAtIndex(index, uniforms.extrapolationValue);
return;
}
let in_x = ${i};
if( in_x < 0.0 || in_x > ${t} ) {
setOutputAtIndex(index, uniforms.extrapolationValue);
return;
}
let sourceFracIndexCR = vec2<f32>(in_x,in_y);
if(${this.methodId} == 1) {
// Compute the four integer indices.
let sourceFloorCR = vec2<i32>(sourceFracIndexCR);
let sourceCeilCR = vec2<i32>(ceil(sourceFracIndexCR));
let topLeft = getImage(bInd, sourceFloorCR.y, sourceFloorCR.x, d);
let bottomLeft = getImage(bInd, sourceCeilCR.y, sourceFloorCR.x, d);
let topRight = getImage(bInd, sourceFloorCR.y, sourceCeilCR.x, d);
let bottomRight = getImage(bInd, sourceCeilCR.y, sourceCeilCR.x, d);
let fracCR = sourceFracIndexCR - vec2<f32>(sourceFloorCR);
let top = topLeft + (topRight - topLeft) * fracCR.x;
let bottom = bottomLeft + (bottomRight - bottomLeft) * fracCR.x;
let newValue = top + (bottom - top) * fracCR.y;
setOutputAtIndex(index, newValue);
} else {
// Compute the coordinators of nearest neighbor point.
let sourceNearestCR = vec2<i32>(floor(
sourceFracIndexCR + vec2<f32>(0.5,0.5)));
let newValue = getImage(
bInd, sourceNearestCR.y, sourceNearestCR.x, d);
setOutputAtIndex(index, newValue);
}
}
}
`}},Ege=e=>{let{inputs:t,backend:n,attrs:s}=e,{image:r,boxes:a,boxInd:o}=t,{cropSize:i,method:l,extrapolationValue:u}=s,c=new Nge(r.shape[3],a.shape,i,l),p=[{type:"float32",data:[u]}];return n.runWebGPUProgram(c,[r,a,o],"float32",p)},Rge={kernelName:yl,backendName:"webgpu",kernelFunc:Ege},Bp;(function(e){e.Prod="*",e.Sum="+"})(Bp||(Bp={}));var i6=class{constructor(e,t,n,s){this.variableNames=["x"],this.uniforms="index : f32,",this.size=!0;let r=128;this.workGroupSize=[r,1,1],this.outputShape=t,this.dispatchLayout=ot(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize),this.exclusive=n,this.reverse=s,this.op=e,this.shaderKey=`cum_${this.op}_${this.exclusive}_${this.reverse}`}getUserCode(){let e=this.outputShape.length,t=this.op===Bp.Prod?"1.0":"0.0",n=this.exclusive?t:`getX(${l6(e,"coords",this.op)})`,s=this.outputShape[this.outputShape.length-1],r="",a="";return this.exclusive?(r=this.reverse?`end != ${s-1}`:"end != 0",a=this.reverse?"end + 1":"end - 1"):(r=this.reverse?`end + pow2 < ${s}`:"end >= pow2",a=this.reverse?"end + pow2":"end - pow2"),`
${Ye("index")} {
if (index < uniforms.size) {
var coords = getCoordsFromIndex(index);
let end = ${u6(e,"coords",this.op)};
var val = ${n};
let pow2 = i32(pow(2.0, uniforms.index));
if (${r}) {
let idx = ${a};
${u6(e,"coords",this.op)} = idx;
val ${this.op}= getX(${l6(e,"coords",this.op)});
}
setOutputAtIndex(index, val);
}
}
`}};function l6(e,t,n){if(e===1)return`${t}`;if(e===2)return`${t}.x, ${t}.y`;if(e===3)return`${t}.x, ${t}.y, ${t}.z`;if(e===4)return`${t}.x, ${t}.y, ${t}.z, ${t}.w`;throw Error(`Cumulative ${n} for rank ${e} is not yet supported`)}function u6(e,t,n){if(e===1)return`${t}`;if(e===2)return`${t}.y`;if(e===3)return`${t}.z`;if(e===4)return`${t}.w`;throw Error(`Cumulative ${n} for rank ${e} is not yet supported`)}function wT(e,t,n,s,r,a){let o=t.shape.length,i=T.getAxesPermutation([s],o),l=t;i!=null&&(l=Ca({inputs:{x:t},backend:n,attrs:{perm:i}}));let u=T.getInnerMostAxes(1,o)[0];if(u!==o-1)throw new Error(`WebGPU cumprod shader expects an inner-most axis=${t.shape.length-1} but got axis=${s}`);let c=l.shape[u],p=er({inputs:{x:l},backend:n});for(let d=0;d<=Math.ceil(Math.log2(c))-1;d++){let h=new i6(e,l.shape,!1,a),f=p,m=[{type:"float32",data:[d]}];p=n.runWebGPUProgram(h,[p],p.dtype,m),n.disposeData(f.dataId)}if(r){let d=new i6(e,l.shape,r,a),h=p,f=[{type:"float32",data:[0]}];p=n.runWebGPUProgram(d,[p],p.dtype,f),n.disposeData(h.dataId)}if(i!=null){let d=T.getUndoAxesPermutation(i),h=Ca({inputs:{x:p},backend:n,attrs:{perm:d}});return n.disposeData(p.dataId),n.disposeData(l.dataId),h}return p}function _ge(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,exclusive:o,reverse:i}=s;return wT(Bp.Prod,r,n,a,o,i)}var Dge={kernelName:gl,backendName:"webgpu",kernelFunc:_ge};function $ge(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,exclusive:o,reverse:i}=s;return wT(Bp.Sum,r,n,a,o,i)}var Pge={kernelName:So,backendName:"webgpu",kernelFunc:$ge},Fge=class{constructor(e,t){this.variableNames=["x"],this.workGroupSize=[64,1,1],this.size=!0,this.uniforms="blockSize : i32,",this.outputShape=e,this.dispatchLayout=ot(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey=`depthToSpace_${t}`,this.dataFormat=t}getUserCode(){return`
${Ye("index")} {
if (index < uniforms.size) {
let coords = getCoordsFromIndex(index);
let b = coords[0];
let h = ${this.getHeightCoordString()};
let w = ${this.getWidthCoordString()};
let d = ${this.getDepthCoordString()};
let in_h = h / uniforms.blockSize;
let offset_h = h % uniforms.blockSize;
let in_w = w / uniforms.blockSize;
let offset_w = w % uniforms.blockSize;
let offset_d = (offset_h * uniforms.blockSize + offset_w) *
${this.getOutputDepthSize()};
let in_d = d + offset_d;
let rlt = ${this.getInputSamplingString()};
setOutputAtIndex(index, rlt);
}
}`}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?"uniforms.outShape[3]":"uniforms.outShape[1]"}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}};function Oge(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockSize:a,dataFormat:o}=s,i=r.shape[0],l=o==="NHWC"?r.shape[1]:r.shape[2],u=o==="NHWC"?r.shape[2]:r.shape[3],c=o==="NHWC"?r.shape[3]:r.shape[1],p=l*a,d=u*a,h=c/(a*a),f=o==="NHWC"?[i,p,d,h]:[i,h,p,d],m=[{type:"int32",data:[a]}],g=new Fge(f,o);return n.runWebGPUProgram(g,[r],r.dtype,m)}var Mge={kernelName:Al,backendName:"webgpu",kernelFunc:Oge},zge=class{constructor(e,t,n,s=!1,r=null,a=!1){this.variableNames=["x","W"],this.uniforms="pad : vec2<i32>, inDims : vec2<i32>,",this.workGroupSize=[16,16,1],this.outputShape=e,this.dispatchLayout={x:[3],y:[2],z:[0,1]},this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize),s&&this.variableNames.push("bias"),a&&this.variableNames.push("preluActivationWeights"),this.addBias=s,this.activation=r,this.hasPreluActivation=a,this.filterHeight=t,this.filterWidth=n,this.shaderKey=`depthwiseNCHW_${this.activation}_${this.filterHeight}_${this.filterWidth}`}getUserCode(){let e=this.filterWidth*this.filterHeight,t=this.workGroupSize[0]*this.workGroupSize[1]*this.workGroupSize[2],n=this.workGroupSize[1]+this.filterHeight-1,s=this.workGroupSize[0]+this.filterWidth-1;return`
${yi(this.activation,this.hasPreluActivation,!1,4)}
var<workgroup> mm_Asub : array<array<f32, ${s}>, ${n}>;
var<workgroup> mm_Bsub : array<array<f32, ${this.filterWidth}>, ${this.filterHeight}>;
fn readX(batch : i32, channel : i32, row : i32, col : i32) -> f32 {
var value = 0.0;
if (row >=0 && row < uniforms.inDims[0] && col >=0 && col < uniforms.inDims[1])
{
value = getX(batch, channel, row, col);
}
return value;
}
${Lp()}
fn _start(@builtin(local_invocation_id) LocalId : vec3<u32>,
@builtin(global_invocation_id) GlobalId : vec3<u32>,
@builtin(local_invocation_index) LocalIndex: u32,
@builtin(num_workgroups) NumWorkgroups: vec3<u32>) {
localId = LocalId;
globalId = GlobalId;
let localIndex = i32(LocalIndex);
numWorkgroups = NumWorkgroups;
let coords = getOutputCoords();
let batch = coords[0];
let xRCCorner = vec2<i32>(coords.zw) - uniforms.pad;
let channelMul = uniforms.wShape[3];
let d1 = coords[1] / channelMul;
let q = coords[1] % channelMul;
let inputRowStart = xRCCorner.x;
let inputColStart = xRCCorner.y;
let localRow = i32(localId.y);
let localCol = i32(localId.x);
// Load one tile of X into local memory.
for (var inputRow = localRow; inputRow < ${n}; inputRow = inputRow + ${this.workGroupSize[1]}) {
for (var inputCol = localCol; inputCol < ${s}; inputCol = inputCol + ${this.workGroupSize[0]}) {
let rowOffset = inputRow - localRow;
let colOffset = inputCol - localCol;
mm_Asub[inputRow][inputCol] = readX(batch, d1, inputRowStart + rowOffset, inputColStart + colOffset);
}
}
// Load one tile of W into local memory.
var wIndex = localIndex;
${e<t?`if (wIndex < ${e})`:`for(; wIndex < ${e}; wIndex = wIndex + ${t})`}
{
let wRow = wIndex / ${this.filterWidth};
let wCol = wIndex % ${this.filterWidth};
mm_Bsub[wRow][wCol] = getW(wRow, wCol, d1, q);
}
workgroupBarrier();
var value = 0.0;
for (var wR = 0; wR < ${this.filterHeight}; wR = wR + 1) {
for (var wC = 0; wC < ${this.filterWidth}; wC = wC + 1) {
let xVal = mm_Asub[localRow + wR][localCol + wC];
let wVal = mm_Bsub[wR][wC];
value = fma(xVal, wVal, value);
}
}
${gd(this.addBias,this.activation)}
if (coordsInBounds4D(coords, uniforms.outShape)) {
setOutputAtCoords(coords[0], coords[1], coords[2], coords[3], value);
}
}
`}},kT=class{constructor(e,t=!1,n=null,s=!1){this.variableNames=["x","W"],this.uniforms="pad : vec2<i32>, inDims : vec2<i32>,",this.workGroupSize=[4,4,4],this.isVec4=!0,this.outputShape=e.outShape,this.dispatchLayout={x:[3],y:[2],z:[0,1]},this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize,[4,4,1]),v.assert(e.dataFormat==="channelsLast",()=>"TODO: NCHW is unimplemented"),t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),this.convInfo=e,this.addBias=t,this.activation=n,this.hasPreluActivation=s,this.shaderKey=`depthwiseVec4_${n}_${this.convInfo.filterHeight}_${this.convInfo.filterWidth}`}getUserCode(){let e=4+this.convInfo.filterWidth-1;return`
${yi(this.activation,this.hasPreluActivation,!0,4)}
fn readX(batch : i32, row : i32, col : i32, channel : i32) -> vec4<f32> {
var value = vec4<f32>(0.0);
if (row >=0 && row < uniforms.inDims[0] && col >=0 && col < uniforms.inDims[1])
{
value = getX(batch, row, col, channel);
}
return value;
}
${Lp()}
fn _start(@builtin(global_invocation_id) globalId: vec3<u32>) {
let batch = i32(globalId.z) / uniforms.outShape[1];
let r = i32(globalId.z) % uniforms.outShape[1];
let c = i32(globalId.y) * 4;
let d1 = i32(globalId.x) * 4;
let xRCCorner = vec2<i32>(r, c) - uniforms.pad;
let xRCorner = xRCCorner.x;
let xCCorner = xRCCorner.y;
var xVals : array<vec4<f32>, ${e}>;
var dotProd : array<vec4<f32>, 4>;
dotProd[0] = vec4<f32>(0.0);
dotProd[1] = vec4<f32>(0.0);
dotProd[2] = vec4<f32>(0.0);
dotProd[3] = vec4<f32>(0.0);
// Use constant instead of uniform can give better performance.
for (var wR = 0; wR < ${this.convInfo.filterHeight}; wR = wR + 1) {
let xR = xRCorner + wR;
for (var i = 0; i < ${e}; i++)
{
xVals[i] = readX(batch, xR, xCCorner + i, d1);
}
for (var wC = 0; wC < ${this.convInfo.filterWidth}; wC = wC + 1) {
let wValue = getW(wR, wC, d1, 0);
dotProd[0] = dotProd[0] + xVals[0 + wC] * wValue;
dotProd[1] = dotProd[1] + xVals[1 + wC] * wValue;
dotProd[2] = dotProd[2] + xVals[2 + wC] * wValue;
dotProd[3] = dotProd[3] + xVals[3 + wC] * wValue;
}
}
for (var i = 0; i < 4; i = i + 1) {
let coords = vec4<i32>(batch, r, c + i, d1);
if (coordsInBounds4D(coords, uniforms.outShape)) {
var value = dotProd[i];
${gd(this.addBias,this.activation)}
setOutputAtCoords(coords[0], coords[1], coords[2], coords[3], value);
}
}
}
`}},ST=class{constructor(e,t=!1,n=null,s=!1){this.variableNames=["x","W"],this.uniforms=`pad : vec2<i32>, inDims : vec2<i32>, filterHeight : i32,
filterWidth : i32, stride : vec2<i32>, dilation : vec2<i32>,`,this.workGroupSize=[256,1,1],this.outputShape=e.outShape,this.dispatchLayout=ot(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize),this.isChannelsLast=e.dataFormat==="channelsLast",t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),this.convInfo=e,this.addBias=t,this.activation=n,this.hasPreluActivation=s,this.shaderKey=`depthwise_${this.activation}_${this.isChannelsLast}`}getUserCode(){let e=this.isChannelsLast?"getX(batch, xR, xC, d1);":"getX(batch, d1, xR, xC);";return`
${yi(this.activation,this.hasPreluActivation,!1,4)}
${Ye()} {
let coords = getOutputCoords();
let batch = coords[0];
let xRCCorner = vec2<i32>(coords.${this.isChannelsLast?"yz":"zw"}) * uniforms.stride - uniforms.pad;
let d2 = coords[${this.isChannelsLast?3:1}];
let channelMul = uniforms.wShape[3];
let d1 = d2 / channelMul;
let q = d2 % channelMul;
let inputRowStart = xRCCorner.x;
let inputColStart = xRCCorner.y;
let inputRowEnd = inputRowStart + uniforms.filterHeight *
uniforms.dilation[0];
let inputColEnd = inputColStart + uniforms.filterWidth *
uniforms.dilation[1];
// Convolve x(?, ?, d1)|x(d1, ?, ?) with w(:, :, d1, q) to get
// y(yR, yC, d2)|y(d2, yR, yC). ? = to be determined. : = across all
// values in that axis. x(?, ?, d1) and y(yR, yC, d2) is for NHWC.
// x(d1, ?, ?) and y(d2, yR, yC) is for NCHW.
var value = 0.0;
// Extract if checking out of for loop for performance.
if (inputRowStart >= 0 && inputColStart >= 0 &&
inputRowEnd < uniforms.inDims[0] &&
inputColEnd < uniforms.inDims[1]) {
for (var wR = 0; wR < uniforms.filterHeight; wR = wR + 1) {
let xR = inputRowStart + wR * uniforms.dilation[0];
for (var wC = 0; wC < uniforms.filterWidth; wC = wC + 1) {
let xC = inputColStart + wC * uniforms.dilation[1];
let xVal = ${e};
let wVal = getW(wR, wC, d1, q);
value = value + xVal * wVal;
}
}
} else {
for (var wR = 0; wR < uniforms.filterHeight; wR = wR + 1) {
let xR = inputRowStart + wR * uniforms.dilation[0];
if (xR < 0 || xR >= uniforms.inDims[0]) {
continue;
}
for (var wC = 0; wC < uniforms.filterWidth; wC = wC + 1) {
let xC = inputColStart + wC * uniforms.dilation[1];
if (xC < 0 || xC >= uniforms.inDims[1]) {
continue;
}
let xVal = ${e};
let wVal = getW(wR, wC, d1, q);
value = value + xVal * wVal;
}
}
}
${gd(this.addBias,this.activation)}
if (coordsInBounds4D(coords, uniforms.outShape)) {
setOutputAtCoords(coords[0], coords[1], coords[2], coords[3], value);
}
}
`}};function Lge(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dataFormat:l,dilations:u,dimRoundingMode:c}=s,p=T.convertConv2DDataFormat(l),d=u;d==null&&(d=[1,1]);let h=T.computeConv2DInfo(r.shape,a.shape,o,d,i,c,!0,p),f=[{type:"int32",data:[h.padInfo.top,h.padInfo.left]},{type:"int32",data:[h.inHeight,h.inWidth]}],m=h.dataFormat==="channelsLast",g;return!m&&h.inHeight>16&&h.inWidth>16&&h.strideHeight===1&&h.strideWidth===1&&h.dilationWidth===1&&h.dilationHeight===1&&h.inChannels===h.outChannels?g=new zge(h.outShape,h.filterHeight,h.filterWidth):m&&h.inHeight>4&&h.inWidth>4&&h.strideHeight===1&&h.strideWidth===1&&h.inChannels===h.outChannels&&h.dilationHeight===1&&h.dilationWidth===1&&h.inChannels%4===0?g=new kT(h):(g=new ST(h),f.push({type:"int32",data:[h.filterHeight]},{type:"int32",data:[h.filterWidth]},{type:"int32",data:[h.strideHeight,h.strideWidth]},{type:"int32",data:[h.dilationHeight,h.dilationWidth]})),n.runWebGPUProgram(g,[r,a],r.dtype,f)}var Bge={kernelName:Io,backendName:"webgpu",kernelFunc:Lge},IT=jn({opType:qe.MUL,cpuKernelImpl:u1e,supportsComplex:!0}),Wge={kernelName:Uo,backendName:"webgpu",kernelFunc:IT};function xb(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;return jh(r,a,o,"sum",n)}var Vge={kernelName:ni,backendName:"webgpu",kernelFunc:xb};function Uge(e){let{inputs:t,backend:n,attrs:s}=e,{equation:r}=s,a=t,{allDims:o,summedDims:i,idDims:l}=T.decodeEinsumEquation(r,a.length);T.checkEinsumDimSizes(o.length,l,a);let{path:u,steps:c}=T.getEinsumComputePath(i,l),p=c.length,d=null,h=o.length,f=[];for(let m=0;m<p;++m){for(let g of c[m]){let{permutationIndices:y,expandDims:x}=T.getEinsumPermutation(h,l[g]),A;T.isIdentityPermutation(y)?A=a[g]:(A=Ca({inputs:{x:a[g]},backend:n,attrs:{perm:y}}),f.push(A));let b=A.shape.slice();for(let w=0;w<x.length;++w)b.splice(x[w],0,1);v.arraysEqual(A.shape,b)||(A=Ue({inputs:{x:A},backend:n,attrs:{shape:b}}),f.push(A)),d===null?d=A:(d=IT({inputs:{a:A,b:d},backend:n}),f.push(d))}m<p-1&&(u[m]>=0&&(d=xb({inputs:{x:d},backend:n,attrs:{axis:u[m]-(o.length-h),keepDims:!1}}),f.push(d)),h--)}for(let m of f)m!==d&&n.disposeData(m.dataId);return d}var Gge={kernelName:qp,backendName:"webgpu",kernelFunc:Uge},Hge=xn({opType:Fe.ELU}),jge={kernelName:To,backendName:"webgpu",kernelFunc:Hge},qge=jn({opType:qe.EQUAL,dtype:"bool",cpuKernelImpl:K2e}),Xge={kernelName:xl,backendName:"webgpu",kernelFunc:qge},CT=xn({opType:Fe.EXP,cpuKernelImpl:Z2e,dtype:"float32"}),Kge={kernelName:No,backendName:"webgpu",kernelFunc:CT};function Ey(e){let{inputs:t,attrs:n,backend:s}=e,{dim:r}=n,{input:a}=t,o=a.shape.length,i=a.shape.slice(),l=r;return r<0&&(v.assert(-(o+1)<=r,()=>`Axis must be in the interval [${-(o+1)}, ${o}]`),l=o+r+1),i.splice(l,0,1),Ue({inputs:{x:a},backend:s,attrs:{shape:i}})}var Zge={kernelName:bl,backendName:"webgpu",kernelFunc:Ey},Yge=xn({opType:Fe.EXPM1,cpuKernelImpl:Y2e}),Jge={kernelName:vl,backendName:"webgpu",kernelFunc:Yge},Qge=class{constructor(e){this.outputShape=[],this.variableNames=["x"],this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=ot(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="flipLeftRight"}getUserCode(){return`
${Ye("index")} {
if (index < uniforms.size) {
let coords = getCoordsFromIndex(index);
let coordX = uniforms.xShape[2] - coords[2] - 1;
let outputValue = getX(coords[0], coords[1], coordX, coords[3]);
setOutputAtIndex(index, outputValue);
}
}
`}},e3e={kernelName:wl,backendName:"webgpu",kernelFunc:({inputs:e,backend:t})=>{let{image:n}=e,s=t,r=new Qge(n.shape);return s.runWebGPUProgram(r,[n],n.dtype)}},t3e=xn({opType:Fe.FLOOR,cpuKernelImpl:J2e}),n3e={kernelName:Eo,backendName:"webgpu",kernelFunc:t3e},s3e=jn({opType:qe.INT_DIV,dtype:"int32"}),r3e={kernelName:Ro,backendName:"webgpu",kernelFunc:s3e},a3e=class{constructor(e,t,n=!1){this.isFromPixels=!0,this.outputShape=[0],this.variableNames=[],this.workGroupSize=[256,1,1],this.outputShape=e,this.dispatchLayout=ot(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize,[t,1,1]),this.importVideo=n,this.shaderKey=`fromPixels_${this.importVideo}`}getUserCode(){let e=this.importVideo?"textureLoad(src, vec2<i32>(coords.yx));":"textureLoad(src, vec2<i32>(coords.yx), 0)";return`
@binding(1) @group(0) var src: ${this.importVideo?"texture_external":"texture_2d<f32>"};
${Ye("index")} {
let flatIndex = index * uniforms.numChannels;
if (flatIndex < uniforms.size) {
let coords = getCoordsFromIndex(flatIndex);
let values = ${e};
for (var i = 0; i < uniforms.numChannels; i = i + 1) {
result[flatIndex + i] = i32(floor(255.0 * values[i]));
}
}
}
`}},o3e={kernelName:wp,backendName:"webgpu",kernelFunc:i3e},Hu,I3=H().getBool("CANVAS2D_WILL_READ_FREQUENTLY_FOR_GPU"),am=new Map;function i3e(e){let{inputs:t,backend:n,attrs:s}=e,{pixels:r}=t,{numChannels:a}=s;if(r==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let o=typeof HTMLVideoElement!="undefined"&&r instanceof HTMLVideoElement,i=typeof HTMLImageElement!="undefined"&&r instanceof HTMLImageElement,l=typeof HTMLCanvasElement!="undefined"&&r instanceof HTMLCanvasElement||typeof OffscreenCanvas!="undefined"&&r instanceof OffscreenCanvas,u=typeof ImageBitmap!="undefined"&&r instanceof ImageBitmap,[c,p]=o?[r.videoWidth,r.videoHeight]:[r.width,r.height],d=[p,c,a],h=H().getBool("WEBGPU_IMPORT_EXTERNAL_TEXTURE")&&o,f=o||i;if(u||l||f){let x;if(h){let D=r;if(!am.has(D)||am.get(D).expired){let R={source:D};am.set(D,n.device.importExternalTexture(R))}x={width:c,height:p,format:null,usage:null,texture:am.get(D)}}else{if(f){let C=H().getBool("CANVAS2D_WILL_READ_FREQUENTLY_FOR_GPU");(Hu==null||C!==I3)&&(I3=C,Hu=document.createElement("canvas").getContext("2d",{willReadFrequently:I3})),Hu.canvas.width=c,Hu.canvas.height=p,Hu.drawImage(r,0,0,c,p),r=Hu.canvas}let D=GPUTextureUsage.COPY_DST|GPUTextureUsage.RENDER_ATTACHMENT|GPUTextureUsage.TEXTURE_BINDING,R="rgba8unorm",P=n.textureManager.acquireTexture(d[1],d[0],R,D);n.queue.copyExternalImageToTexture({source:r},{texture:P},[d[1],d[0]]),x={width:c,height:p,format:R,usage:D,texture:P}}let A=v.sizeFromShape(d),b=v.computeStrides(d),w=new a3e(d,a,h),S=[{type:"uint32",data:[A]},{type:"uint32",data:[a]},{type:"uint32",data:[...b]}],k=n.makeTensorInfo([p,c],"int32"),E=n.tensorMap.get(k.dataId);E.resourceInfo=x;let _=n.runWebGPUProgram(w,[k],"int32",S);return n.disposeData(k.dataId),_}let m=r.data,g=m;if(a!=null&&a!==4){g=new Uint8Array(r.width*r.height*a);let x=m.length,A=0;for(let b=0;b<x;b++)b%4<a&&(g[A++]=m[b])}let y=n.makeTensorInfo(d,"int32",new Int32Array(g));return n.uploadToGPU(y.dataId),y}var l3e=class{constructor(e,t,n,s,r){this.uniforms="varianceEpsilon : f32,",this.workGroupSize=[128,1,1],this.size=!0,this.variableNames=["x","mean","variance"],T.assertAndGetBroadcastShape(e,t),T.assertAndGetBroadcastShape(e,n),this.outputShape=e,this.dispatchLayout=ot(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize),s!=null&&(T.assertAndGetBroadcastShape(e,s),this.variableNames.push("offset")),r!=null&&(T.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale")),this.offsetShape=s,this.scaleShape=r,this.shaderKey="batchNorm"}getUserCode(){let e="0.0";this.offsetShape!=null&&(e="getOffsetByOutputIndex(index)");let t="1.0";return this.scaleShape!=null&&(t="getScaleByOutputIndex(index)"),`
${Ye("index")} {
if (index < uniforms.size)
{
let xValue = getXByOutputIndex(index);
let meanValue = getMeanByOutputIndex(index);
let varianValue = getVarianceByOutputIndex(index);
let offsetValue = ${e};
let scaleValue = ${t};
let inv = scaleValue * inverseSqrt(varianValue + f32(uniforms.varianceEpsilon));
setOutputAtIndex(index,dot(vec3<f32>(xValue, -meanValue, offsetValue), vec3<f32>(inv, inv, 1.0)));
}
}
`}},u3e={kernelName:_o,backendName:"webgpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:s,scale:r,offset:a,mean:o,variance:i}=e,{varianceEpsilon:l}=t,u=n,c=[s,o,i],p=null;a!=null&&(p=a.shape,c.push(a));let d=null;r!=null&&(d=r.shape,c.push(r));let h=new l3e(s.shape,o.shape,i.shape,p,d),f=[{type:"float32",data:[l]}];return u.runWebGPUProgram(h,c,s.dtype,f)}};function c3e(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:u,dataFormat:c,dilations:p,dimRoundingMode:d,activation:h,leakyreluAlpha:f}=s,m=T.convertConv2DDataFormat(c),g=T.computeConv2DInfo(r.shape,a.shape,l,p,u,d,!1,m);return vT({x:r,filter:a,convInfo:g,backend:n,bias:o,preluActivationWeights:i,leakyreluAlpha:f,activation:h})}var d3e={kernelName:to,backendName:"webgpu",kernelFunc:c3e};function p3e(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:u,dilations:c,dimRoundingMode:p,activation:d,leakyreluAlpha:h}=s,f=c;f==null&&(f=[1,1]),v.assert(T.eitherStridesOrDilationsAreOne(l,f),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${l} and dilations '${f}'`);let m=T.computeConv2DInfo(r.shape,a.shape,l,f,u,p,!0),g=[r,a],y=o!=null,x=i!=null;y&&g.push(o),x&&g.push(i);let A=[{type:"int32",data:[m.padInfo.top,m.padInfo.left]},{type:"int32",data:[m.inHeight,m.inWidth]}],b;return m.inHeight>4&&m.inWidth>4&&m.strideHeight===1&&m.strideWidth===1&&m.inChannels===m.outChannels&&m.dilationHeight===1&&m.dilationWidth===1&&m.inChannels%4===0?b=new kT(m,y,d,x):(b=new ST(m,y,d,x),A.push({type:"int32",data:[m.filterHeight]},{type:"int32",data:[m.filterWidth]},{type:"int32",data:[m.strideHeight,m.strideWidth]},{type:"int32",data:[m.dilationHeight,m.dilationWidth]})),d==="leakyrelu"&&(A.push({type:"float32",data:[h]}),b.uniforms+=" alpha : f32,"),n.runWebGPUProgram(b,g,"float32",A)}var h3e={kernelName:no,backendName:"webgpu",kernelFunc:p3e},f3e=class{constructor(e,t){this.variableNames=["A","indices"],this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=t,this.dispatchLayout=ot(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey=`gathernd_${e}`,this.sliceDim=e,this.uniforms=`sliceDim : i32, strides : ${Pn(e)},`}getUserCode(){let e;return this.sliceDim>1?e="uniforms.strides[j]":e="uniforms.strides",`
${Ye("index")} {
if (index < uniforms.size) {
let coords = getCoordsFromIndex(index);
var flattenIndex = 0;
for (var j = 0; j < uniforms.sliceDim; j = j + 1) {
let indexTemp = i32(round(getIndices(coords[0], j)));
let strideNum = ${e};
flattenIndex = flattenIndex + indexTemp * strideNum;
}
setOutputAtIndex(index, getA(flattenIndex, coords[1]));
}
}
`}};function m3e(e){let{inputs:t,backend:n}=e,{params:s,indices:r}=t,a=r.shape,o=a[a.length-1],i=v.sizeFromShape(s.shape),[l,u,c,p]=T.prepareAndValidate(s,r),d=Ue({inputs:{x:r},backend:n,attrs:{shape:[u,o]}}),h=Ue({inputs:{x:s},backend:n,attrs:{shape:[v.sizeFromShape(s.shape)/c,c]}});if(n.shouldExecuteOnCPU([s,r])||s.dtype==="string"){let x=n.readSync(r.dataId),A=n.bufferSync(s),b=Q2e(x,A,s.dtype,u,o,c,p,s.shape,i);return n.makeTensorInfo(l,s.dtype,b.values)}let f=new f3e(o,[u,c]),m=[{type:"int32",data:[o]},{type:"int32",data:p}],g=n.runWebGPUProgram(f,[h,d],h.dtype,m),y=Ue({inputs:{x:g},backend:n,attrs:{shape:l}});return n.disposeData(d.dataId),n.disposeData(h.dataId),n.disposeData(g.dataId),y}var g3e={kernelName:Sl,backendName:"webgpu",kernelFunc:m3e},y3e=class{constructor(e,t){this.variableNames=["A","indices"],this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e.slice(),this.aShape=e,this.outputShape=t,this.dispatchLayout=ot(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="gather"}getUserCode(){let e=A3e(this.aShape);return`
${Ye("index")} {
if (index < uniforms.size) {
let resRC = getCoordsFromIndex(index);
let indexZ = i32(getIndices(resRC.x, resRC.z));
let inBounds = select(0.0, 1.0, indexZ >= 0 && indexZ < uniforms.aShape[2]);
setOutputAtIndex(index, inBounds * getA(${e}));
}
}
`}};function A3e(e){let t=["resRC.x","resRC.y","resRC.z","resRC.w"],n=[];for(let s=0;s<e.length;s++)s===2?n.push("indexZ"):n.push(`${t[s]}`);return n.join()}function TT(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,indices:a}=t,{axis:o,batchDims:i}=s,l=v.parseAxisParam(o,r.shape)[0],u=T.segment_util.collectGatherOpShapeInfo(r,a,l,i),c=v.sizeFromShape(a.shape),p=[],d=Ue({inputs:{x:r},backend:n,attrs:{shape:[u.batchSize,u.outerSize,u.dimSize,u.sliceSize]}}),h=Ue({inputs:{x:a},backend:n,attrs:{shape:[u.batchSize,c/u.batchSize]}});p.push(d),p.push(h);let f=[u.batchSize,u.outerSize,c/u.batchSize,u.sliceSize];if(n.shouldExecuteOnCPU([r,a])){let A=n.tensorMap.get(h.dataId).values,b=We(h.shape,h.dtype,A),S=n.tensorMap.get(d.dataId).values,k=We(d.shape,d.dtype,S),E=e1e(k,b,f);return p.forEach(_=>n.disposeData(_.dataId)),n.makeTensorInfo(u.outputShape,E.dtype,E.values)}let m=new y3e(d.shape,f),g=n.runWebGPUProgram(m,[d,h],d.dtype);p.push(g);let y=Ue({inputs:{x:g},backend:n,attrs:{shape:u.outputShape}});return p.forEach(x=>n.disposeData(x.dataId)),y}var x3e={kernelName:kl,backendName:"webgpu",kernelFunc:TT},b3e=jn({opType:qe.GREATER,cpuKernelImpl:n1e,dtype:"bool"}),v3e={kernelName:Il,backendName:"webgpu",kernelFunc:b3e},w3e=jn({opType:qe.GREATER_EQUAL,dtype:"bool",cpuKernelImpl:t1e}),k3e={kernelName:Do,backendName:"webgpu",kernelFunc:w3e},S3e=xn({opType:Fe.IS_NAN,dtype:"bool"}),I3e={kernelName:Cl,backendName:"webgpu",kernelFunc:S3e};function C3e(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{alpha:a}=s,o=[{type:"float32",data:[a]}],i=new Hh(r.shape,Fe.LEAKYRELU);return i.uniforms="alpha : f32,",n.runWebGPUProgram(i,[r],"float32",o)}var T3e={kernelName:Po,backendName:"webgpu",kernelFunc:C3e},N3e=jn({opType:qe.LESS,dtype:"bool",cpuKernelImpl:r1e}),E3e={kernelName:Tl,backendName:"webgpu",kernelFunc:N3e},R3e=jn({opType:qe.LESS_EQUAL,dtype:"bool",cpuKernelImpl:s1e}),_3e={kernelName:Nl,backendName:"webgpu",kernelFunc:R3e},D3e=xn({opType:Fe.LOG,cpuKernelImpl:a1e}),$3e={kernelName:Fo,backendName:"webgpu",kernelFunc:D3e},P3e=jn({opType:qe.LOGICAL_AND,dtype:"bool"}),F3e={kernelName:El,backendName:"webgpu",kernelFunc:P3e},O3e=xn({opType:Fe.LOGICAL_NOT}),M3e={kernelName:Rl,backendName:"webgpu",kernelFunc:O3e},z3e=jn({opType:qe.MAX,cpuKernelImpl:i1e}),L3e={kernelName:Mo,backendName:"webgpu",kernelFunc:z3e};function B3e(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=s,u=1,c=T.computePool2DInfo(r.shape,a,o,u,i,l);return AT(r,c,"max",n)}var W3e={kernelName:zo,backendName:"webgpu",kernelFunc:B3e};function V3e(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;return jh(r,a,o,"min",n)}var U3e={kernelName:Bo,backendName:"webgpu",kernelFunc:V3e},G3e=jn({opType:qe.MIN,cpuKernelImpl:l1e}),H3e={kernelName:Wo,backendName:"webgpu",kernelFunc:G3e},j3e=class{constructor(e,t,n){this.uniforms="",this.variableNames=["x"],this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=t.map((s,r)=>s[0]+e[r]+s[1]),this.dispatchLayout=ot(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize),this.xShape=e,t.map((s,r)=>{this.uniforms+=` pad${r} : vec2<i32>,`}),this.offset=n==="reflect"?0:1,this.shaderKey=`mirrorPad_${n}`}getUserCode(){let e=this.xShape.length,t=this.xShape.map((l,u)=>`uniforms.pad${u}[0]`).join(","),n=this.xShape.map((l,u)=>`uniforms.pad${u}[0] + uniforms.xShape${e>1?`[${u}]`:""}`).join(","),s=e===1?"start":"start[i]",r=e===1?"end":"end[i]",a=e===1?"outC":"outC[i]",o=Pn(e),i=e>1?["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,e):"coords";return`
${Ye("index")} {
if (index < uniforms.size) {
let start = ${o}(${t});
let end = ${o}(${n});
var outC = getCoordsFromIndex(index);
for (var i = 0; i < ${e}; i = i + 1) {
if (${a} < ${s}) {
${a} = ${s} * 2 - ${a} - ${this.offset};
} else if(${a} >= ${r}) {
${a} = (${r} - 1) * 2 - ${a} + ${this.offset};
}
}
let coords = outC - start;
setOutputAtIndex(index, getX(${i}));
}
}
`}},q3e={kernelName:Vo,backendName:"webgpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:s}=e,{paddings:r,mode:a}=t,o=n,i=r.map(c=>({type:"int32",data:[c[0],c[1]]})),l=new j3e(s.shape,r,a);return o.runWebGPUProgram(l,[s],s.dtype,i)}};function X3e(e){let{inputs:t,backend:n}=e,{x:s}=t;if(n.shouldExecuteOnCPU([s])){let a=n.tensorMap.get(s.dataId),[o,i]=c1e(a.values,s.shape,s.dtype);return n.makeTensorInfo(i,s.dtype,o)}let r=new Hh(s.shape,Fe.NEG);return n.runWebGPUProgram(r,[s],s.dtype)}var K3e={kernelName:_l,backendName:"webgpu",kernelFunc:X3e};function Z3e(e){console.warn("tf.nonMaxSuppression() in webgpu locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l}=s,u=n.readSync(r.dataId),c=n.readSync(a.dataId),{selectedIndices:p}=yr.nonMaxSuppressionV3Impl(u,c,o,i,l);return n.makeTensorInfo([p.length],"int32",new Int32Array(p))}var Y3e={kernelName:$l,backendName:"webgpu",kernelFunc:Z3e};function J3e(e){console.warn("tf.nonMaxSuppression() in webgpu locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l,softNmsSigma:u}=s,c=n.readSync(r.dataId),p=n.readSync(a.dataId),d=o,h=i,f=l,m=u,{selectedIndices:g,selectedScores:y}=yr.nonMaxSuppressionV5Impl(c,p,d,h,f,m);return[n.makeTensorInfo([g.length],"int32",new Int32Array(g)),n.makeTensorInfo([y.length],"float32",new Float32Array(y))]}var Q3e={kernelName:Pl,backendName:"webgpu",kernelFunc:J3e};function qm(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="complex64"){let r=qh({inputs:{input:s},backend:n}),a=qm({inputs:{x:r},backend:n}),o=z2({inputs:{input:s},backend:n}),i=qm({inputs:{x:o},backend:n}),l=yd({inputs:{real:a,imag:i},backend:n});return n.disposeData(r.dataId),n.disposeData(a.dataId),n.disposeData(o.dataId),n.disposeData(i.dataId),l}else return fu({attrs:{shape:s.shape,dtype:s.dtype,value:s.dtype==="string"?"":0},backend:n})}var eye={kernelName:Ql,backendName:"webgpu",kernelFunc:qm};function NT(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="string")throw new Error("onesLike is not supported under string dtype");if(s.dtype==="complex64"){let r=qh({inputs:{input:s},backend:n}),a=NT({inputs:{x:r},backend:n}),o=z2({inputs:{input:s},backend:n}),i=qm({inputs:{x:o},backend:n}),l=yd({inputs:{real:a,imag:i},backend:n});return n.disposeData(r.dataId),n.disposeData(a.dataId),n.disposeData(o.dataId),n.disposeData(i.dataId),l}else return fu({attrs:{shape:s.shape,dtype:s.dtype,value:1},backend:n})}var tye={kernelName:Fl,backendName:"webgpu",kernelFunc:NT};function nye(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s;if(t.length===1)return Ey({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let a=t[0].shape,o=t[0].dtype;t.forEach(c=>{v.assertShapesMatch(a,c.shape,"All tensors passed to stack must have matching shapes"),v.assert(o===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],l=t.map(c=>{let p=Ey({inputs:{input:c},backend:n,attrs:{dim:r}});return i.push(p),p}),u=bT({inputs:l,backend:n,attrs:{axis:r}});return i.forEach(c=>n.disposeData(c.dataId)),u}var sye={kernelName:Ml,backendName:"webgpu",kernelFunc:nye},rye=class{constructor(e,t){this.variableNames=["x"],this.uniforms="constantValue : f32,",this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=t.map((n,s)=>n[0]+e[s]+n[1]),this.dispatchLayout=ot(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize),t.map((n,s)=>{this.uniforms+=` pad${s} : vec2<i32>,`}),this.xShape=e,this.shaderKey="pad"}getUserCode(){let e=this.xShape.length,t=Pn(e),n=this.xShape.map((c,p)=>`uniforms.pad${p}[0]`).join(","),s=this.xShape.map((c,p)=>`uniforms.pad${p}[0] + uniforms.xShape${e>1?`[${p}]`:""}`).join(","),r=e>1?`${t}(${n})`:`${n}`,a=e>1?`${t}(${s})`:`${s}`,o=e>1?"any(outC < start)":"outC < start",i=e>1?"any(outC >= end)":"outC >= end",l=e>1?["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,e):"coords";return`
${Ye("index")} {
if (index < uniforms.size) {
let start = ${r};
let end = ${a};
let outC = getCoordsFromIndex(index);
if (${o} || ${i}) {
setOutputAtIndex(index, uniforms.constantValue);
} else {
let coords = outC - start;
setOutputAtIndex(index, getX(${l}));
}
}
}
`}},ET=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{paddings:a,constantValue:o}=s;if(a.every(u=>v.arraysEqual(u,[0,0])))return er({inputs:{x:r},backend:n});if(v.sizeFromShape(r.shape)===0){let u=a.map((c,p)=>c[0]+r.shape[p]+c[1]);return fu({backend:n,attrs:{shape:u,value:o,dtype:r.dtype}})}let i=[{type:"float32",data:[o]}];a.map(u=>i.push({type:"int32",data:[u[0],u[1]]}));let l=new rye(r.shape,a);return n.runWebGPUProgram(l,[r],r.dtype,i)},aye={kernelName:Go,backendName:"webgpu",kernelFunc:ET},oye=jn({opType:qe.POW}),iye={kernelName:Ho,backendName:"webgpu",kernelFunc:oye};function lye(e){let{inputs:t,backend:n}=e,{x:s,alpha:r}=t,a=new Cy(qe.PRELU,s.shape,r.shape);return n.runWebGPUProgram(a,[s,r],"float32")}var uye={kernelName:jo,backendName:"webgpu",kernelFunc:lye};function cye(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;return jh(r,a,o,"prod",n)}var dye={kernelName:qo,backendName:"webgpu",kernelFunc:cye},pye=e=>{let{backend:t,attrs:n}=e,{start:s,stop:r,step:a,dtype:o}=n,i=h1e(s,r,a,o);return t.makeTensorInfo([i.length],o,i)},hye={kernelName:Mc,backendName:"webgpu",kernelFunc:pye},RT=jn({opType:qe.DIV}),fye={kernelName:Co,backendName:"webgpu",kernelFunc:RT},mye=xn({opType:Fe.RECIPROCAL}),gye={kernelName:zl,backendName:"webgpu",kernelFunc:mye},yye=xn({opType:Fe.RELU}),Aye={kernelName:Xo,backendName:"webgpu",kernelFunc:yye},xye=xn({opType:Fe.RELU6}),bye={kernelName:Yo,backendName:"webgpu",kernelFunc:xye},vye=class{constructor(e,t,n){this.variableNames=["x"],this.uniforms="adjustHeightWidth : vec2<f32>, halfPixelCenters : f32,",this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=[e[0],t,n,e[3]],this.dispatchLayout=ot(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="resizeBilinear"}getUserCode(){return`
${Ye("index")} {
if (index < uniforms.size) {
let coords = getCoordsFromIndex(index);
let b = coords[0];
let d = coords[3];
let rc = coords.yz;
let effectiveInSize = vec2<f32>(
f32(uniforms.xShape.y) - uniforms.adjustHeightWidth[0],
f32(uniforms.xShape.z) - uniforms.adjustHeightWidth[1]);
let effectiveOutSize = vec2<f32>(
f32(uniforms.outShape.y) - uniforms.adjustHeightWidth[0],
f32(uniforms.outShape.z) - uniforms.adjustHeightWidth[1]);
let effectiveInputOverOutputRatioRC =
effectiveInSize / effectiveOutSize;
// Fractional source index
let sourceFracIndexRC =
(vec2<f32>(rc) + vec2<f32>(uniforms.halfPixelCenters)) *
effectiveInputOverOutputRatioRC - vec2<f32>(uniforms.halfPixelCenters);
// Compute the four integer indices.
let sourceFloorRC = vec2<i32>(sourceFracIndexRC);
let sourceCeilRC = vec2<i32>(
min(vec2<f32>(uniforms.xShape.yz) - vec2<f32>(1.0), ceil(sourceFracIndexRC)));
let topLeft = getX(b, sourceFloorRC.x, sourceFloorRC.y, d);
let bottomLeft = getX(b, sourceCeilRC.x, sourceFloorRC.y, d);
let topRight = getX(b, sourceFloorRC.x, sourceCeilRC.y, d);
let bottomRight = getX(b, sourceCeilRC.x, sourceCeilRC.y, d);
let fracRC = sourceFracIndexRC - vec2<f32>(sourceFloorRC);
let top = topLeft + (topRight - topLeft) * fracRC.y;
let bottom = bottomLeft + (bottomRight - bottomLeft) * fracRC.y;
let newValue = top + (bottom - top) * fracRC.x;
setOutputAtIndex(index, newValue);
}
}
`}};function wye(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,size:o,halfPixelCenters:i}=s,[l,u]=o,c=a&&l>1?1:0,p=a&&u>1?1:0,h=[{type:"float32",data:[c,p]},{type:"float32",data:[i?.5:0]}],f=new vye(r.shape,l,u);return n.runWebGPUProgram(f,[r],"float32",h)}var kye={kernelName:Zo,backendName:"webgpu",kernelFunc:wye},Sye=class{constructor(e,t,n,s){this.variableNames=["x"],this.uniforms="adjustHeightWidth : vec2<f32>, roundBase : f32,",this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=[e[0],t,n,e[3]],this.dispatchLayout=ot(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize),this.halfPixelCenters=s,this.shaderKey=`resizeNearest_${s}`}getUserCode(){let e;return this.halfPixelCenters?e="max((vec2<f32>(rc) + vec2<f32>(0.5)) * effectiveInputOverOutputRatioRC, vec2<f32>(0.0))":e="vec2<f32>(rc) * effectiveInputOverOutputRatioRC",`
${Ye("index")} {
if (index < uniforms.size) {
let coords = getCoordsFromIndex(index);
let b = coords[0];
let d = coords[3];
let rc = coords.yz;
let effectiveInSize = vec2<f32>(
f32(uniforms.xShape.y) - uniforms.adjustHeightWidth[0],
f32(uniforms.xShape.z) - uniforms.adjustHeightWidth[1]);
let effectiveOutSize = vec2<f32>(
f32(uniforms.outShape.y) - uniforms.adjustHeightWidth[0],
f32(uniforms.outShape.z) - uniforms.adjustHeightWidth[1]);
let effectiveInputOverOutputRatioRC =
effectiveInSize / effectiveOutSize;
// Fractional source index
let sourceFracIndexRC = ${e};
// Compute the coordinators of nearest neighbor point.
let inputShapeRC = vec2<f32>(f32(uniforms.xShape.y), f32(uniforms.xShape.z));
let sourceNearestRC = vec2<i32>(
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + uniforms.roundBase)));
let newValue = getX(b, sourceNearestRC.x, sourceNearestRC.y, d);
setOutputAtIndex(index, newValue);
}
}
`}};function Iye(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,halfPixelCenters:o,size:i}=s,[l,u]=i,c=a&&l>1?1:0,p=a&&u>1?1:0,h=[{type:"float32",data:[c,p]},{type:"float32",data:[a?.5:0]}],f=new Sye(r.shape,l,u,o);return n.runWebGPUProgram(f,[r],r.dtype,h)}var Cye={kernelName:Ko,backendName:"webgpu",kernelFunc:Iye},Tye=class{constructor(e,t){this.outputShape=[],this.variableNames=["x"],this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=ot(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize),this.uniforms=`centerX : f32, centerY : f32, sinRadians : f32,
cosRadians : f32,`,this.shaderKey="rotate",this.outputShape=e,typeof t=="number"?(this.uniforms+=" fillValue : f32,",this.fillSnippet="var outputValue = uniforms.fillValue;",this.shaderKey+="_float"):(this.uniforms+=" fillValue : vec3<f32>,",this.fillSnippet="var outputValue = uniforms.fillValue[coords[3]];",this.shaderKey+="_vec3")}getUserCode(){return`
${Ye("index")} {
if (index < uniforms.size) {
let coords = getCoordsFromIndex(index);
let coordXFloat = (f32(coords[2]) - uniforms.centerX) *
uniforms.cosRadians - (f32(coords[1]) - uniforms.centerY) *
uniforms.sinRadians;
let coordYFloat = (f32(coords[2]) - uniforms.centerX) *
uniforms.sinRadians + (f32(coords[1]) - uniforms.centerY) *
uniforms.cosRadians;
let coordX = i32(round(coordXFloat + uniforms.centerX));
let coordY = i32(round(coordYFloat + uniforms.centerY));
${this.fillSnippet}
if(coordX >= 0 && coordX < uniforms.xShape[2] && coordY >= 0 &&
coordY < uniforms.xShape[1]) {
outputValue = getX(coords[0], coordY, coordX, coords[3]);
}
setOutputAtIndex(index, outputValue);
}
}
`}},Nye={kernelName:eu,backendName:"webgpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:s}=e,{radians:r,fillValue:a,center:o}=t,i=n,l=new Tye(s.shape,a),[u,c]=T.getImageCenter(o,s.shape[1],s.shape[2]),p=[{type:"float32",data:[u]},{type:"float32",data:[c]},{type:"float32",data:[Math.sin(r)]},{type:"float32",data:[Math.cos(r)]}];return typeof a=="number"?p.push({type:"float32",data:[Number.parseFloat(a.toFixed(2))]}):p.push({type:"float32",data:a}),i.runWebGPUProgram(l,[s],s.dtype,p)}},Eye=xn({opType:Fe.RSQRT,cpuKernelImpl:f1e}),Rye={kernelName:Jo,backendName:"webgpu",kernelFunc:Eye},mm=class{constructor(e,t,n,s,r,a,o,i=!0){this.variableNames=["updates","indices"],this.workGroupSize=[64,1,1],this.atomic=!0,this.outputShape=a,this.type=o,this.sumDupeIndices=i,this.dispatchLayout=ot(e),this.dispatch=Ge(this.dispatchLayout,e,this.workGroupSize),this.sliceDimGreaterThanOne=t>1,this.shaderKey=`scatter_${n}_${s}_${this.sliceDimGreaterThanOne}_${o}_${i}`;let l=Pn(r.length);this.uniforms=`sliceDim : i32, strides: ${l}, size: i32,`,this.updatesRank=s,this.indicesRank=n}getUserCode(){let e="";this.indicesRank===1?e="coords[0]":this.indicesRank===2&&(e="coords[0], j");let t=`getIndices(${e})`,n=this.sliceDimGreaterThanOne?"uniforms.strides[j]":"uniforms.strides",s="",r="";this.dispatchLayout.x.length===1?(s="flattenedIndex",r=`
fn getUpdatesCoordsFromFlatIndex(index : i32) -> i32 {
return index;
}
`):this.dispatchLayout.x.length===2&&(s="vec2<i32>(flattenedIndex, coords[1])",r=`
fn getUpdatesCoordsFromFlatIndex(index : i32) -> vec2<i32> {
// N.B. |updates| could be a scalar tensor, conceptually representing a
// 2D tensor with all values equal to that. By design, its size must be
// the same as |outShape[1]| in one dimension, and |indicesShape[0]|
// gives the other.
let sliceSize = uniforms.outShape[1];
let d0 = index / sliceSize;
let d1 = index - d0 * sliceSize;
return vec2<i32>(d0, d1);
}
`);let o=`getUpdates(${Array.from({length:this.updatesRank},(u,c)=>`coords[${c}]`).join(", ")})`,i=(u,c)=>{let p=`atomicAdd(${u}, bitcast<i32>(${c}))`;this.type==="float32"&&(p=`
{
var oldBits = 0;
var newBits = bitcast<i32>(${c});
loop {
let info = atomicCompareExchangeWeak(${u}, oldBits, newBits);
if (info.exchanged) {
break;
}
oldBits = info.old_value;
let oldValue = bitcast<f32>(oldBits);
let newValue = oldValue + (${c});
newBits = bitcast<i32>(newValue);
}
}
`);let d=`atomicStore(${u}, bitcast<i32>(${c}));`;return this.sumDupeIndices?p:d};return`
${r}
${Ye("index")} {
if (index < uniforms.size) {
let coords = getUpdatesCoordsFromFlatIndex(index);
var flattenedIndex = 0;
for (var j = 0; j < uniforms.sliceDim; j = j + 1) {
let indexInside = i32(round(${t}));
flattenedIndex = flattenedIndex + indexInside * ${n};
}
let updateValue =
${bp(this.type,!1)}(${o});
let flatIndex = getOutputIndexFromCoords(${s});
${i("&result[flatIndex]","updateValue")};
}
}`}};function _ye(e){let{inputs:t,backend:n,attrs:s}=e,{indices:r,updates:a}=t,{shape:o}=s,{sliceRank:i,numUpdates:l,sliceSize:u,strides:c,outputSize:p}=T.calculateShapes(a,r,o),d=[p/u,u];if(p===0)return n.makeTensorInfo(o,r.dtype);let h=Ue({inputs:{x:r},backend:n,attrs:{shape:[l,i]}}),f=Ue({inputs:{x:a},backend:n,attrs:{shape:[l,u]}}),m=f.dtype,g=fu({backend:n,attrs:{shape:d,value:0,dtype:m}}),y=v.sizeFromShape(f.shape),x=[{type:"int32",data:[i]},{type:"int32",data:c},{type:"int32",data:[y]}],A=new mm(f.shape,i,h.shape.length,f.shape.length,c,d,m),b=n.runWebGPUProgram(A,[f,h],m,x,g),w=Ue({inputs:{x:b},backend:n,attrs:{shape:o}});return n.disposeData(h.dataId),n.disposeData(f.dataId),n.disposeData(b.dataId),w}var Dye={kernelName:Vl,backendName:"webgpu",kernelFunc:_ye},$ye=class{constructor(e,t,n){this.variableNames=["c","a","b"],this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=t,this.dispatchLayout=ot(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize),this.cRank=e,this.rank=n,this.shaderKey="select"}getUserCode(){let e,t;if(this.rank>4)throw Error(`Where for rank ${this.rank} is not yet supported`);if(this.rank===1)t="resRC",e="resRC";else{let s=["resRC.x","resRC.y","resRC.z","resRC.w"],r=[],a=[];for(let o=0;o<this.outputShape.length;o++)a.push(`${s[o]}`),o<this.cRank&&r.push(`${s[o]}`);e=r.join(),t=a.join()}return`
${Ye("index")} {
if (index < uniforms.size) {
let resRC = getCoordsFromIndex(index);
let cVal = getC(${e});
if (cVal >= 1.0) {
setOutputAtIndex(index, getA(${t}));
} else {
setOutputAtIndex(index, getB(${t}));
}
}
}
`}};function Pye(e){let{inputs:t,backend:n}=e,{condition:s,t:r,e:a}=t,o=new $ye(s.shape.length,r.shape,r.shape.length);return n.runWebGPUProgram(o,[s,r,a],Un(r.dtype,a.dtype))}var Fye={kernelName:Ul,backendName:"webgpu",kernelFunc:Pye},Oye=xn({opType:Fe.SIGMOID}),Mye={kernelName:ei,backendName:"webgpu",kernelFunc:Oye},zye=xn({opType:Fe.SIN}),Lye={kernelName:Qo,backendName:"webgpu",kernelFunc:zye},Bye=xn({opType:Fe.SINH}),Wye={kernelName:Hl,backendName:"webgpu",kernelFunc:Bye},_T=jn({opType:qe.SUB,cpuKernelImpl:b1e,supportsComplex:!0}),Vye={kernelName:ai,backendName:"webgpu",kernelFunc:_T};function Uye(e){let{inputs:t,backend:n,attrs:s}=e,{logits:r}=t,{dim:a}=s,o=v.parseAxisParam([a],r.shape),i=Ab({inputs:{x:r},backend:n,attrs:{reductionIndices:o,keepDims:!1}}),l=T.expandShapeToKeepDim(i.shape,o),u=Ue({inputs:{x:i},backend:n,attrs:{shape:l}}),c=_T({inputs:{a:r,b:u},backend:n}),p=CT({inputs:{x:c},backend:n}),d=xb({inputs:{x:p},backend:n,attrs:{axis:o,keepDims:!1}}),h=Ue({inputs:{x:d},backend:n,attrs:{shape:l}}),f=RT({inputs:{a:p,b:h},backend:n});return n.disposeData(i.dataId),n.disposeData(u.dataId),n.disposeData(c.dataId),n.disposeData(p.dataId),n.disposeData(d.dataId),n.disposeData(h.dataId),f}var Gye={kernelName:si,backendName:"webgpu",kernelFunc:Uye},Hye=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,paddings:o}=s;v.assert(r.shape.length<=4,()=>"spaceToBatchND for rank > 4 with a WebGPU backend not implemented yet");let i=a.reduce((y,x)=>y*x),l=[[0,0]];l.push(...o);for(let y=1+a.length;y<r.shape.length;++y)l.push([0,0]);let u=[],c=ET({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),p=T.getReshaped(c.shape,a,i,!1),d=T.getPermuted(p.length,a.length,!1),h=T.getReshapedPermuted(c.shape,a,i,!1),f=Ue({inputs:{x:c},backend:n,attrs:{shape:p}}),m=Ca({inputs:{x:f},backend:n,attrs:{perm:d}}),g=Ue({inputs:{x:m},backend:n,attrs:{shape:h}});return u.push(c),u.push(f),u.push(m),u.forEach(y=>n.disposeData(y.dataId)),g},jye={kernelName:jl,backendName:"webgpu",kernelFunc:Hye},qye=class{constructor(e,t){this.variableNames=["A"],this.workGroupSize=[64,1,1],this.size=!0;let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[s]*t[s];this.outputShape=n,this.dispatchLayout=ot(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize),this.rank=this.outputShape.length,this.shaderKey="tile"}getUserCode(){let e=Xye(this.rank,"uniforms.");return`
${Ye("index")} {
if (index < uniforms.size) {
let resRC = getCoordsFromIndex(index);
setOutputAtIndex(index, getA(${e}));
}
}
`}};function Xye(e,t=""){if(e>=5)throw Error(`Tile for rank ${e} is not yet supported`);if(e===1)return`(resRC % ${t}aShape)`;let n=["resRC.x","resRC.y","resRC.z","resRC.w"],s=[];for(let r=0;r<e;r++)s.push(`(${n[r]} % ${t}aShape[${r}])`);return s.join()}function DT(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reps:a}=s;if(n.shouldExecuteOnCPU([r])||r.dtype==="string"||r.shape.length>=5){let l=n.readSync(r.dataId),u=r.dtype==="string"?l.map(d=>v.decodeString(d)):l,c=We(r.shape,r.dtype,u),p=v1e(c,a);return n.makeTensorInfo(p.shape,p.dtype,p.values)}let o=new qye(r.shape,a);return n.runWebGPUProgram(o,[r],r.dtype)}var Kye={kernelName:Ea,backendName:"webgpu",kernelFunc:DT};function Zye(e){let{inputs:t,backend:n,attrs:s}=e,{sparseIndices:r,sparseValues:a,defaultValue:o}=t,{outputShape:i}=s,{sliceRank:l,numUpdates:u,sliceSize:c,strides:p,outputSize:d}=T.calculateShapes(a,r,i),h=!1;if(a.dtype==="string"){let E=n.bufferSync(r),_=n.bufferSync(a),D=v.decodeString(n.readSync(o.dataId)[0]),R=m1e(E,_,i,d,c,u,l,p,D,h);return n.makeTensorInfo(i,R.dtype,R.values)}let f=[d/c,c],m=Ue({inputs:{x:r},backend:n,attrs:{shape:[u,l]}}),g=a.shape.length?Ue({inputs:{x:a},backend:n,attrs:{shape:[u,c]}}):er({inputs:{x:a},backend:n}),y=g.dtype,x=n.makeTensorInfo([],y,v.makeZerosTypedArray(1,y)),A=Ue({inputs:{x:o},backend:n,attrs:{shape:Array(f.length).fill(1)}}),b=DT({inputs:{x:A},backend:n,attrs:{reps:f}}),w=v.sizeFromShape([u,c]),S=[{type:"int32",data:[l]},{type:"int32",data:p},{type:"int32",data:[w]}];switch(u){case 0:break;case 1:{let E=new mm([u,c],l,m.shape.length,g.shape.length,p,f,y,h);n.runWebGPUProgram(E,[g,m],y,S,b)}break;default:{let E=new mm([u,c],l,m.shape.length,x.shape.length,p,f,y,h);n.runWebGPUProgram(E,[x,m],y,S,b)}{let E=new mm([u,c],l,m.shape.length,g.shape.length,p,f,y);n.runWebGPUProgram(E,[g,m],y,S,b)}}let k=Ue({inputs:{x:b},backend:n,attrs:{shape:i}});return n.disposeData(m.dataId),n.disposeData(g.dataId),n.disposeData(A.dataId),n.disposeData(x.dataId),n.disposeData(b.dataId),k}var Yye={kernelName:th,backendName:"webgpu",kernelFunc:Zye};function Jye(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{numOrSizeSplits:a,axis:o}=s,i=v.parseAxisParam(o,r.shape)[0],l=T.prepareSplitSize(r,a,i),u=r.shape.length,c=new Array(u).fill(0),p=r.shape.slice();return l.map(d=>{let h=[...p];h[i]=d;let f=Ad({inputs:{x:r},backend:n,attrs:{begin:c,size:h}});return c[i]+=d,f})}var Qye={kernelName:ql,backendName:"webgpu",kernelFunc:Jye},eAe=xn({opType:Fe.SQRT}),tAe={kernelName:ti,backendName:"webgpu",kernelFunc:eAe},nAe={kernelName:Vc,backendName:"webgpu",kernelFunc:({inputs:e,backend:t})=>{let{x:n}=e,s=t,r=new Hh(n.shape,Fe.SQUARE);return s.runWebGPUProgram(r,[n],n.dtype)}},sAe=jn({opType:qe.SQUARED_DIFFERENCE}),rAe={kernelName:ri,backendName:"webgpu",kernelFunc:sAe},aAe=class{constructor(e){this.variableNames=["x"],this.workPerThread=1,this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=ot(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]);let t=Pn(this.outputShape.length);this.uniforms=`begin : ${t}, strides : ${t}, `,this.shaderKey="stridedSlice"}getUserCode(){let e=this.outputShape.length,t="";if(e===1)t="coords * uniforms.strides + uniforms.begin";else{let s=0;t=this.outputShape.map((r,a)=>(s++,this.outputShape.length===1?`coords * uniforms.strides[${a}] + uniforms.begin[${a}]`:`coords[${s-1}] * uniforms.strides[${a}] + uniforms.begin[${a}]`)).join(",")}return`
${Ye("index")} {
if (index < uniforms.size) {
let coords = getCoordsFromIndex(index);
setOutputAtIndex(index, getX(${t}));
}
}
`}};function oAe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,end:o,strides:i,beginMask:l,endMask:u,ellipsisMask:c,newAxisMask:p,shrinkAxisMask:d}=s,{finalShapeSparse:h,finalShape:f,isIdentity:m,sliceDim0:g,isSimpleSlice:y,begin:x,end:A,strides:b}=Gt.sliceInfo(r.shape,a,o,i,l,u,c,p,d),w;if(m)w=Ue({inputs:{x:r},backend:n,attrs:{shape:f}});else if(g||y){v.assert(r.shape.length>=1,()=>`Input must have rank at least 1, got: ${r.shape.length}`);let S=Gt.computeOutShape(x,A,b),k=Ad({inputs:{x:r},backend:n,attrs:{begin:x,size:S}});w=Ue({inputs:{x:k},backend:n,attrs:{shape:f}}),n.disposeData(k.dataId)}else if(n.shouldExecuteOnCPU([r])){let k=n.readSync(r.dataId),E=We(r.shape,r.dtype,k),_=A1e(h,E,b,x);w=n.makeTensorInfo(f,r.dtype,_.values)}else{let k=new aAe(h),E=[{type:"int32",data:x},{type:"int32",data:b}],_=n.runWebGPUProgram(k,[r],r.dtype,E);w=Ue({inputs:{x:_},backend:n,attrs:{shape:f}}),n.disposeData(_.dataId)}return w}var iAe={kernelName:Xl,backendName:"webgpu",kernelFunc:oAe};function lAe(e){let{inputs:t,backend:n,attrs:s}=e,{separator:r,nGramWidths:a,leftPad:o,rightPad:i,padWidth:l,preserveShortSequences:u}=s,{data:c,dataSplits:p}=t,d=n.readSync(c.dataId),h=n.readSync(p.dataId),[f,m]=x1e(d,h,r,a,o,i,l,u);return[n.makeTensorInfo([f.length],"string",f),n.makeTensorInfo(p.shape,"int32",m)]}var uAe={kernelName:Uc,backendName:"webgpu",kernelFunc:lAe},cAe=xn({opType:Fe.TANH}),dAe={kernelName:oi,backendName:"webgpu",kernelFunc:cAe},pAe=class{constructor(e){this.variableNames=["x","indices"],this.workGroupSize=[256,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=ot(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize),this.uniforms=`inputSize : i32, firstPass : i32, negativeInf : f32,
dir : i32, inc : i32,`,this.shaderKey="swap"}getUserCode(){return`
${Ye("index")} {
if (index < uniforms.size) {
let outC = getCoordsFromIndex(index);
let batch = outC[0];
let elemIdx = outC[1];
// We compare elements pair-wise within a group of size 2 * inc.
// The comparing rule for each group alternates between ascending
// and descending. Within each group, we compare each pair at
// positions i and i+inc. To decide whether an element at position i
// is x0 or x1, we mod it by 2 * inc, if the result is smaller than
// inc, it is in the first half of the group, we denote it as x0,
// otherwise we denote it as x1.
// For example, as shown in the Bitonic top K paper referenced
// above, Figure5(a) shows that element[1] is in the second half of
// the group when group size is 2, but it is in the first half of
// the group when group size is 4.
let isFirstInPair = elemIdx % (2 * uniforms.inc) < uniforms.inc;
var i = 0;
if (isFirstInPair) {
i = elemIdx;
} else {
i = elemIdx - uniforms.inc;
}
var i0 = 0;
if (uniforms.firstPass == 1) {
i0 = i;
} else {
i0 = i32(getIndices(batch, i));
}
var i1 = 0;
if (uniforms.firstPass == 1) {
i1 = i + uniforms.inc;
} else {
i1 = i32(getIndices(batch, i + uniforms.inc));
}
var x0 = f32(0.0);
var x1 = f32(0.0);
if (i0 < uniforms.inputSize) {
x0 = getX(batch, i0);
} else {
x0 = uniforms.negativeInf;
}
if (i1 < uniforms.inputSize) {
x1 = getX(batch, i1);
} else {
x1 = uniforms.negativeInf;
}
let reverse = elemIdx % (2 * uniforms.dir) >= uniforms.dir;
let isGreater = x0 > x1 || (x0 == x1 && i1 > i0);
if (reverse == isGreater) {
// Elements in opposite order of direction
let iTemp = i0;
i0 = i1;
i1 = iTemp;
}
if (isFirstInPair) {
setOutputAtIndex(index, f32(i0));
} else {
setOutputAtIndex(index, f32(i1));
}
}
}
`}},hAe=class{constructor(e){this.variableNames=["x","indices"],this.workGroupSize=[256,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=ot(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize),this.uniforms="inputSize : i32, firstPass : i32, k : i32,",this.shaderKey="merge"}getUserCode(){return`
${Ye("index")} {
if (index < uniforms.size) {
let outC = getCoordsFromIndex(index);
let batch = outC[0];
let elemIdx = outC[1];
// The output size is half of the previous size.
// If the previous sequence is | | | | _ _ _ _ | | | | _ _ _ _
// (k=4), we only need to output the indices at positions |, the
// indices at positions _ can be thrown away, see Figure5(b) After
// Phase 2 (Merge phase) in the Bitonic Top K paper referenced
// above.
// For example, the paper shows we only need to output the orange
// bars. The output sequence should look like this | | | | | | | |.
// Because the sequence is halved, to map the output index back to
// the previous sequence to find the corresponding value, we need
// to double the index. When we double the index, we basically
// interpolate a position, so 2i looks like
// | _ | _ | _ | _ | _ | _ | _. We move the | to the first k
// position of each 2k positions by - elemIdx % k. E.g. for output
// at index 4,5,6,7, we want to get the corresponding element at
// original index 8,9,10,11, for output at index 8,9,10,11,
// we want to get the corresponding element at original index
// 16,17,18,19, so on and so forth.
var i = 0;
if (elemIdx < uniforms.k) {
i = elemIdx;
} else {
i = elemIdx * 2 - elemIdx % uniforms.k;
}
var i0 = 0;
if (uniforms.firstPass == 1) {
i0 = i;
} else {
i0 = i32(getIndices(batch, i));
}
var i1 = 0;
if (uniforms.firstPass == 1) {
i1 = i + uniforms.k;
} else {
i1 = i32(getIndices(batch, i + uniforms.k));
}
let x0 = getX(batch, i0);
var x1 = f32(0.0);
if (i1 < uniforms.inputSize) {
x1 = getX(batch, i1);
} else {
x1 = x0;
}
if (x0 >= x1) {
setOutputAtIndex(index, f32(i0));
} else {
setOutputAtIndex(index, f32(i1));
}
}
}
`}};function ju(e,t){t!==null&&e.disposeData(t.dataId)}function c6(e){let t=1;for(;t<e;)t*=2;return t}function fAe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{k:a,sorted:o}=s,i=r.shape,l=i[i.length-1];if(n.shouldExecuteOnCPU([r])){let w=n.readSync(r.dataId),[S,k]=w1e(w,i,r.dtype,a,o);return[n.makeTensorInfo(S.shape,S.dtype,S.values),n.makeTensorInfo(k.shape,k.dtype,k.values)]}if(a===0)return i[i.length-1]=0,[n.makeTensorInfo(i,r.dtype,[]),n.makeTensorInfo(i,"int32",[])];if(l===1)return[r,fu({attrs:{shape:i,dtype:"int32",value:0},backend:n})];let c=v.sizeFromShape(i)/l,p=Ue({inputs:{x:r},attrs:{shape:[c,l]},backend:n}),d=c6(a),h=c6(l),f=null,m=()=>f===null?[p,p]:[p,f],g=(w,S,k)=>{let E=m(),_=new pAe(k),R=[{type:"int32",data:[l]},{type:"int32",data:[f===null?1:0]},{type:"float32",data:[Number.NEGATIVE_INFINITY]},{type:"int32",data:[w]},{type:"int32",data:[S]}],P=f;f=n.runWebGPUProgram(_,E,"int32",R),ju(n,P)};for(let w=1;w<d;w*=2){let S=w*2;for(let k=w;k>=1;k/=2)g(S,k,[c,h])}for(let w=h;w>d;w/=2){let S=m(),k=new hAe([c,w/2]),_=[{type:"int32",data:[l]},{type:"int32",data:[f===null?1:0]},{type:"int32",data:[d]}],D=f;f=n.runWebGPUProgram(k,S,"int32",_),ju(n,D);let R=d/2,P=R*2;for(let C=R;C>=1;C/=2)g(P,C,f.shape)}let y=f;f=Ad({inputs:{x:f},backend:n,attrs:{begin:0,size:[c,a]}}),ju(n,y);let x=TT({inputs:{x:p,indices:f},backend:n,attrs:{axis:1,batchDims:1}});ju(n,p);let A=i.slice(0,-1);A.push(a),y=f,f=Ue({inputs:{x:f},attrs:{shape:A},backend:n}),ju(n,y);let b=x;return x=Ue({inputs:{x},attrs:{shape:A},backend:n}),ju(n,b),[x,f]}var mAe={kernelName:Zl,backendName:"webgpu",kernelFunc:fAe},gAe=class{constructor(e){this.variableNames=["Image","Transforms"],this.uniforms="interpolationModeId : i32, fillModeId : i32, fillValue : f32,",this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=ot(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="transform"}getUserCode(){return`
fn mapCoord(outCoord : f32, len : f32) -> f32{
var inCoord = outCoord;
if(uniforms.fillModeId == 2) {
if (inCoord < 0.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
let sz2 = 2.0 * len;
if (inCoord < sz2) {
inCoord = sz2 * f32(i32(f32(-inCoord / sz2))) +
inCoord;
}
if (inCoord < -len) {
inCoord = inCoord + sz2;
} else {
inCoord = -inCoord - 1.0;
}
}
} else if (inCoord > len - 1.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
let sz2 = 2.0 * len;
inCoord = inCoord - sz2 * f32(i32(f32(inCoord / sz2)));
if (inCoord >= len) {
inCoord = sz2 - inCoord - 1.0;
}
}
}
return clamp(inCoord, 0.0, len - 1.0);
} else if (uniforms.fillModeId == 3) {
if (inCoord < 0.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
let sz = len - 1.0;
inCoord = inCoord + len * (f32(i32(f32(-inCoord / sz))) + 1.0);
}
} else if (inCoord > len - 1.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
let sz = len - 1.0;
inCoord = inCoord - len * f32(i32(f32(inCoord / sz)));
}
}
return clamp(inCoord, 0.0, len - 1.0);
} else if (uniforms.fillModeId == 4) {
return clamp(outCoord, 0.0, len - 1.0);
}
return outCoord;
}
fn readWithFillValue(batch : i32, coordY : i32, coordX : i32,
channel : i32) -> f32 {
var outputValue : f32;
if (0 <= coordY && coordY < uniforms.imageShape[1] && 0 <= coordX && coordX < uniforms.imageShape[2]) {
outputValue = getImage(batch, coordY, coordX, channel);
} else {
outputValue = uniforms.fillValue;
}
return outputValue;
}
${Ye("index")} {
if (index < uniforms.size) {
let coords = getCoordsFromIndex(index);
var outputValue : f32;
let batch = coords[0];
let x = coords[2];
let y = coords[1];
let channel = coords[3];
let xf = f32(x);
let yf = f32(y);
let a1 = getTransforms(batch, 0);
let a2 = getTransforms(batch, 1);
let a3 = getTransforms(batch, 2);
let b1 = getTransforms(batch, 3);
let b2 = getTransforms(batch, 4);
let b3 = getTransforms(batch, 5);
let c1 = getTransforms(batch, 6);
let c2 = getTransforms(batch, 7);
let projection = c1 * xf + c2 * yf + 1.0;
if (projection == 0.0) {
outputValue = uniforms.fillValue;
} else {
let inX = (a1 * xf + a2 * yf + a3) / projection;
let inY = (b1 * xf + b2 * yf + b3) / projection;
let mapX = mapCoord(inX, f32(uniforms.imageShape[2]));
let mapY = mapCoord(inY, f32(uniforms.imageShape[1]));
if (uniforms.interpolationModeId == 1) {
let coordY = i32(round(mapY));
let coordX = i32(round(mapX));
outputValue = readWithFillValue(batch, coordY, coordX,
channel);
} else {
let yFloor = floor(mapY);
let xFloor = floor(mapX);
let yCeil = yFloor + 1.0;
let xCeil = xFloor + 1.0;
let valueYFloor = (xCeil - mapX) *
readWithFillValue(batch, i32(yFloor), i32(xFloor), channel) +
(mapX - xFloor) *
readWithFillValue(batch, i32(yFloor), i32(xCeil), channel);
let valueYCeil = (xCeil - mapX) *
readWithFillValue(batch, i32(yCeil), i32(xFloor), channel) +
(mapX - xFloor) *
readWithFillValue(batch, i32(yCeil), i32(xCeil), channel);
outputValue = (yCeil - mapY) * valueYFloor +
(mapY - yFloor) * valueYCeil;
}
}
setOutputAtIndex(index, outputValue);
}
}
`}};function yAe(e){let{inputs:t,backend:n,attrs:s}=e,{image:r,transforms:a}=t,{interpolation:o,fillMode:i,fillValue:l,outputShape:u}=s,[c,p,d,h]=r.shape,[f,m]=u!=null?u:[p,d],g=[c,f,m,h],y=new gAe(g),x=o==="nearest"?1:2,A;switch(i){case"constant":A=1;break;case"reflect":A=2;break;case"wrap":A=3;break;case"nearest":A=4;break;default:A=1;break}let b=[{type:"int32",data:[x]},{type:"int32",data:[A]},{type:"float32",data:[l]}];return n.runWebGPUProgram(y,[r,a],"float32",b)}var AAe={kernelName:Yl,backendName:"webgpu",kernelFunc:yAe};function xAe(e){let{inputs:t,backend:n,attrs:s}=e,{value:r}=t,{axis:a}=s;a<0&&(a+=r.shape.length);let o=r,i=o.shape.length,l=r.shape[a],u=new Array(i-1),c=0;for(let m=0;m<i;m++)m!==a&&(u[c++]=o.shape[m]);let p=[],d=new Array(i).fill(0),h=o.shape.slice();h[a]=1;let f=new Array(l);for(let m=0;m<f.length;m++){d[a]=m;let g=Ad({inputs:{x:o},backend:n,attrs:{begin:d,size:h}}),y=Ue({inputs:{x:g},backend:n,attrs:{shape:u}});f[m]=y,p.push(g)}return p.forEach(m=>n.disposeData(m.dataId)),f}var bAe={kernelName:Jl,backendName:"webgpu",kernelFunc:xAe},vAe=[V2e,I1e,T1e,R1e,O1e,z1e,B1e,j1e,X1e,Q1e,sge,age,uge,G2e,hge,Age,kge,Ige,Tge,Rge,Dge,Pge,Mge,Bge,Gge,jge,Xge,Kge,Zge,Jge,L2e,e3e,o3e,n3e,r3e,u3e,d3e,h3e,g3e,x3e,v3e,k3e,U2e,dge,I3e,T3e,E3e,_3e,$3e,F3e,M3e,U1e,L3e,W3e,G1e,U3e,H3e,q3e,Wge,K3e,Y3e,Q3e,ege,tye,sye,aye,iye,uye,dye,hye,tge,fye,gye,Aye,bye,B2e,kye,Cye,Nye,Rye,Dye,Fye,Mye,Lye,Wye,Y1e,iAe,uAe,Gye,jye,Yye,Qye,tAe,nAe,rAe,Vye,Vge,dAe,Kye,mAe,AAe,P1e,bAe,eye];for(let e of vAe)tr(e);var wAe="3.20.0",kAe="3.20.0",SAe="3.20.0",IAe="3.20.0",CAe="3.20.0",TAe="3.20.0",NAe="3.20.0",Xh={tfjs:wAe,"tfjs-core":kAe,"tfjs-data":SAe,"tfjs-layers":IAe,"tfjs-converter":CAe,"tfjs-backend-webgl":TAe,"tfjs-backend-wasm":NAe};var $T=`
precision highp float;
attribute vec2 pos;
attribute vec2 uv;
varying vec2 vUv;
uniform float flipY;
void main(void) {
vUv = uv;
gl_Position = vec4(pos.x, pos.y*flipY, 0.0, 1.);
}
`;var PT=`
precision highp float;
varying vec2 vUv;
uniform sampler2D texture;
uniform float m[20];
void main(void) {
vec4 c = texture2D(texture, vUv);
gl_FragColor.r = m[0] * c.r + m[1] * c.g + m[2] * c.b + m[3] * c.a + m[4];
gl_FragColor.g = m[5] * c.r + m[6] * c.g + m[7] * c.b + m[8] * c.a + m[9];
gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[13] * c.a + m[14];
gl_FragColor.a = m[15] * c.r + m[16] * c.g + m[17] * c.b + m[18] * c.a + m[19];
}
`,FT=`
precision highp float;
varying vec2 vUv;
uniform sampler2D texture;
uniform float m[20];
void main(void) {
vec4 c = texture2D(texture, vUv);
gl_FragColor.r = m[0] * c.r + m[1] * c.g + m[2] * c.b + m[4];
gl_FragColor.g = m[5] * c.r + m[6] * c.g + m[7] * c.b + m[9];
gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[14];
gl_FragColor.a = c.a;
}
`,OT=`
precision highp float;
varying vec2 vUv;
uniform vec2 size;
uniform sampler2D texture;
vec2 pixelate(vec2 coord, vec2 size) {
return floor( coord / size ) * size;
}
void main(void) {
gl_FragColor = vec4(0.0);
vec2 coord = pixelate(vUv, size);
gl_FragColor += texture2D(texture, coord);
}
`,MT=`
precision highp float;
varying vec2 vUv;
uniform sampler2D texture;
uniform vec2 px;
void main(void) {
gl_FragColor = vec4(0.0);
gl_FragColor += texture2D(texture, vUv + vec2(-7.0*px.x, -7.0*px.y))*0.0044299121055113265;
gl_FragColor += texture2D(texture, vUv + vec2(-6.0*px.x, -6.0*px.y))*0.00895781211794;
gl_FragColor += texture2D(texture, vUv + vec2(-5.0*px.x, -5.0*px.y))*0.0215963866053;
gl_FragColor += texture2D(texture, vUv + vec2(-4.0*px.x, -4.0*px.y))*0.0443683338718;
gl_FragColor += texture2D(texture, vUv + vec2(-3.0*px.x, -3.0*px.y))*0.0776744219933;
gl_FragColor += texture2D(texture, vUv + vec2(-2.0*px.x, -2.0*px.y))*0.115876621105;
gl_FragColor += texture2D(texture, vUv + vec2(-1.0*px.x, -1.0*px.y))*0.147308056121;
gl_FragColor += texture2D(texture, vUv )*0.159576912161;
gl_FragColor += texture2D(texture, vUv + vec2( 1.0*px.x, 1.0*px.y))*0.147308056121;
gl_FragColor += texture2D(texture, vUv + vec2( 2.0*px.x, 2.0*px.y))*0.115876621105;
gl_FragColor += texture2D(texture, vUv + vec2( 3.0*px.x, 3.0*px.y))*0.0776744219933;
gl_FragColor += texture2D(texture, vUv + vec2( 4.0*px.x, 4.0*px.y))*0.0443683338718;
gl_FragColor += texture2D(texture, vUv + vec2( 5.0*px.x, 5.0*px.y))*0.0215963866053;
gl_FragColor += texture2D(texture, vUv + vec2( 6.0*px.x, 6.0*px.y))*0.00895781211794;
gl_FragColor += texture2D(texture, vUv + vec2( 7.0*px.x, 7.0*px.y))*0.0044299121055113265;
}
`,zT=`
precision highp float;
varying vec2 vUv;
uniform sampler2D texture;
uniform vec2 px;
uniform float m[9];
void main(void) {
vec4 c11 = texture2D(texture, vUv - px); // top left
vec4 c12 = texture2D(texture, vec2(vUv.x, vUv.y - px.y)); // top center
vec4 c13 = texture2D(texture, vec2(vUv.x + px.x, vUv.y - px.y)); // top right
vec4 c21 = texture2D(texture, vec2(vUv.x - px.x, vUv.y) ); // mid left
vec4 c22 = texture2D(texture, vUv); // mid center
vec4 c23 = texture2D(texture, vec2(vUv.x + px.x, vUv.y) ); // mid right
vec4 c31 = texture2D(texture, vec2(vUv.x - px.x, vUv.y + px.y) ); // bottom left
vec4 c32 = texture2D(texture, vec2(vUv.x, vUv.y + px.y) ); // bottom center
vec4 c33 = texture2D(texture, vUv + px ); // bottom right
gl_FragColor =
c11 * m[0] + c12 * m[1] + c22 * m[2] +
c21 * m[3] + c22 * m[4] + c23 * m[5] +
c31 * m[6] + c32 * m[7] + c33 * m[8];
gl_FragColor.a = c22.a;
}
`;var bb=(e,t,n)=>{let s=new RegExp("\\b"+t+" \\w+ (\\w+)","ig");e.replace(s,(r,a)=>(n[a]=0,r))},vb=class{constructor(t,n,s){ge(this,"uniform",{});ge(this,"attribute",{});ge(this,"gl");ge(this,"id");ge(this,"compile",(t,n)=>{let s=this.gl.createShader(n);return s?(this.gl.shaderSource(s,t),this.gl.compileShader(s),this.gl.getShaderParameter(s,this.gl.COMPILE_STATUS)?s:(re(`filter: gl compile failed: ${this.gl.getShaderInfoLog(s)||"unknown"}`),null)):(re("filter: could not create shader"),null)});this.gl=t;let r=this.compile(n,this.gl.VERTEX_SHADER),a=this.compile(s,this.gl.FRAGMENT_SHADER);if(this.id=this.gl.createProgram(),!(!r||!a)){if(!this.id){re("filter: could not create webgl program");return}if(this.gl.attachShader(this.id,r),this.gl.attachShader(this.id,a),this.gl.linkProgram(this.id),!this.gl.getProgramParameter(this.id,this.gl.LINK_STATUS)){re(`filter: gl link failed: ${this.gl.getProgramInfoLog(this.id)||"unknown"}`);return}this.gl.useProgram(this.id),bb(n,"attribute",this.attribute);for(let o in this.attribute)this.attribute[o]=this.gl.getAttribLocation(this.id,o);bb(n,"uniform",this.uniform),bb(s,"uniform",this.uniform);for(let o in this.uniform)this.uniform[o]=this.gl.getUniformLocation(this.id,o)}}};function LT(){let e=0,t=null,n=!1,s=-1,r=[null,null],a=[],o=null,i=null,l=ds(100,100),u={},c={INTERMEDIATE:1},p=l.getContext("webgl");if(!p){re("filter: cannot get webgl context");return}this.gl=p;function d(x,A){if(!(x===l.width&&A===l.height)){if(l.width=x,l.height=A,!o){let b=new Float32Array([-1,-1,0,1,1,-1,1,1,-1,1,0,0,-1,1,0,0,1,-1,1,1,1,1,1,0]);o=p.createBuffer(),p.bindBuffer(p.ARRAY_BUFFER,o),p.bufferData(p.ARRAY_BUFFER,b,p.STATIC_DRAW),p.pixelStorei(p.UNPACK_PREMULTIPLY_ALPHA_WEBGL,!0)}p.viewport(0,0,l.width,l.height),r=[null,null]}}function h(x,A){let b=p.createFramebuffer();p.bindFramebuffer(p.FRAMEBUFFER,b);let w=p.createRenderbuffer();p.bindRenderbuffer(p.RENDERBUFFER,w);let S=p.createTexture();return p.bindTexture(p.TEXTURE_2D,S),p.texImage2D(p.TEXTURE_2D,0,p.RGBA,x,A,0,p.RGBA,p.UNSIGNED_BYTE,null),p.texParameteri(p.TEXTURE_2D,p.TEXTURE_MAG_FILTER,p.LINEAR),p.texParameteri(p.TEXTURE_2D,p.TEXTURE_MIN_FILTER,p.LINEAR),p.texParameteri(p.TEXTURE_2D,p.TEXTURE_WRAP_S,p.CLAMP_TO_EDGE),p.texParameteri(p.TEXTURE_2D,p.TEXTURE_WRAP_T,p.CLAMP_TO_EDGE),p.framebufferTexture2D(p.FRAMEBUFFER,p.COLOR_ATTACHMENT0,p.TEXTURE_2D,S,0),p.bindTexture(p.TEXTURE_2D,null),p.bindFramebuffer(p.FRAMEBUFFER,null),{fbo:b,texture:S}}function f(x){return r[x]=r[x]||h(l.width,l.height),r[x]}function m(x=0){if(!i)return;let A=null,b=null,w=!1;e===0?A=t:A=f(s).texture||null,e++,n&&!(x&c.INTERMEDIATE)?(b=null,w=e%2===0):(s=(s+1)%2,b=f(s).fbo||null),p.bindTexture(p.TEXTURE_2D,A),p.bindFramebuffer(p.FRAMEBUFFER,b),p.uniform1f(i.uniform.flipY,w?-1:1),p.drawArrays(p.TRIANGLES,0,6)}function g(x){if(u[x])return i=u[x],p.useProgram((i?i.id:null)||null),i;if(i=new vb(p,$T,x),!i)return re("filter: could not get webgl program"),null;let A=Float32Array.BYTES_PER_ELEMENT,b=4*A;return p.enableVertexAttribArray(i.attribute.pos),p.vertexAttribPointer(i.attribute.pos,2,p.FLOAT,!1,b,0*A),p.enableVertexAttribArray(i.attribute.uv),p.vertexAttribPointer(i.attribute.uv,2,p.FLOAT,!1,b,2*A),u[x]=i,i}let y={colorMatrix:x=>{let A=new Float32Array(x);A[4]/=255,A[9]/=255,A[14]/=255,A[19]/=255;let b=A[18]===1&&A[3]===0&&A[8]===0&&A[13]===0&&A[15]===0&&A[16]===0&&A[17]===0&&A[19]===0?FT:PT,w=g(b);!w||(p.uniform1fv(w.uniform.m,A),m())},brightness:x=>{let A=(x||0)+1;y.colorMatrix([A,0,0,0,0,0,A,0,0,0,0,0,A,0,0,0,0,0,1,0])},saturation:x=>{let A=(x||0)*2/3+1,b=(A-1)*-.5;y.colorMatrix([A,b,b,0,0,b,A,b,0,0,b,b,A,0,0,0,0,0,1,0])},desaturate:()=>{y.saturation(-1)},contrast:x=>{let A=(x||0)+1,b=-128*(A-1);y.colorMatrix([A,0,0,0,b,0,A,0,0,b,0,0,A,0,b,0,0,0,1,0])},negative:()=>{y.contrast(-2)},hue:x=>{x=(x||0)/180*Math.PI;let A=Math.cos(x),b=Math.sin(x),w=.213,S=.715,k=.072;y.colorMatrix([w+A*(1-w)+b*-w,S+A*-S+b*-S,k+A*-k+b*(1-k),0,0,w+A*-w+b*.143,S+A*(1-S)+b*.14,k+A*-k+b*-.283,0,0,w+A*-w+b*-(1-w),S+A*-S+b*S,k+A*(1-k)+b*k,0,0,0,0,0,1,0])},desaturateLuminance:()=>{y.colorMatrix([.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,0,0,0,1,0])},sepia:()=>{y.colorMatrix([.393,.7689999,.18899999,0,0,.349,.6859999,.16799999,0,0,.272,.5339999,.13099999,0,0,0,0,0,1,0])},brownie:()=>{y.colorMatrix([.5997023498159715,.34553243048391263,-.2708298674538042,0,47.43192855600873,-.037703249837783157,.8609577587992641,.15059552388459913,0,-36.96841498319127,.24113635128153335,-.07441037908422492,.44972182064877153,0,-7.562075277591283,0,0,0,1,0])},vintagePinhole:()=>{y.colorMatrix([.6279345635605994,.3202183420819367,-.03965408211312453,0,9.651285835294123,.02578397704808868,.6441188644374771,.03259127616149294,0,7.462829176470591,.0466055556782719,-.0851232987247891,.5241648018700465,0,5.159190588235296,0,0,0,1,0])},kodachrome:()=>{y.colorMatrix([1.1285582396593525,-.3967382283601348,-.03992559172921793,0,63.72958762196502,-.16404339962244616,1.0835251566291304,-.05498805115633132,0,24.732407896706203,-.16786010706155763,-.5603416277695248,1.6014850761964943,0,35.62982807460946,0,0,0,1,0])},technicolor:()=>{y.colorMatrix([1.9125277891456083,-.8545344976951645,-.09155508482755585,0,11.793603434377337,-.3087833385928097,1.7658908555458428,-.10601743074722245,0,-70.35205161461398,-.231103377548616,-.7501899197440212,1.847597816108189,0,30.950940869491138,0,0,0,1,0])},polaroid:()=>{y.colorMatrix([1.438,-.062,-.062,0,0,-.122,1.378,-.122,0,0,-.016,-.016,1.483,0,0,0,0,0,1,0])},shiftToBGR:()=>{y.colorMatrix([0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,1,0])},convolution:x=>{let A=new Float32Array(x),b=1/l.width,w=1/l.height,S=g(zT);!S||(p.uniform1fv(S.uniform.m,A),p.uniform2f(S.uniform.px,b,w),m())},detectEdges:()=>{y.convolution.call(this,[0,1,0,1,-4,1,0,1,0])},sobelX:()=>{y.convolution.call(this,[-1,0,1,-2,0,2,-1,0,1])},sobelY:()=>{y.convolution.call(this,[-1,-2,-1,0,0,0,1,2,1])},sharpen:x=>{let A=x||1;y.convolution.call(this,[0,-1*A,0,-1*A,1+4*A,-1*A,0,-1*A,0])},emboss:x=>{let A=x||1;y.convolution.call(this,[-2*A,-1*A,0,-1*A,1,1*A,0,1*A,2*A])},blur:x=>{let A=x/7/l.width,b=x/7/l.height,w=g(MT);!w||(p.uniform2f(w.uniform.px,0,b),m(c.INTERMEDIATE),p.uniform2f(w.uniform.px,A,0),m())},pixelate:x=>{let A=x/l.width,b=x/l.height,w=g(OT);!w||(p.uniform2f(w.uniform.size,A,b),m())}};this.add=function(x){let A=Array.prototype.slice.call(arguments,1),b=y[x];a.push({func:b,args:A})},this.reset=function(){a=[]},this.get=function(){return a},this.apply=function(x){d(x.width,x.height),e=0,t||(t=p.createTexture()),p.bindTexture(p.TEXTURE_2D,t),p.texParameteri(p.TEXTURE_2D,p.TEXTURE_WRAP_S,p.CLAMP_TO_EDGE),p.texParameteri(p.TEXTURE_2D,p.TEXTURE_WRAP_T,p.CLAMP_TO_EDGE),p.texParameteri(p.TEXTURE_2D,p.TEXTURE_MIN_FILTER,p.NEAREST),p.texParameteri(p.TEXTURE_2D,p.TEXTURE_MAG_FILTER,p.NEAREST),p.texImage2D(p.TEXTURE_2D,0,p.RGBA,p.RGBA,p.UNSIGNED_BYTE,x);for(let A=0;A<a.length;A++){n=A===a.length-1;let b=a[A];b.func.apply(this,b.args||[])}return l},this.draw=function(x){return this.add("brightness",0),this.apply(x)}}async function L2(e){let t=e.shape.length===4?rt(e):e,n=Yt(t,3,2),s=[Sa(n[0]),Sa(n[1]),Sa(n[2])],r=[gn(n[0]),gn(n[1]),gn(n[2])],a=await Promise.all(r.map(h=>h.data())),o=.99*Math.max(a[0][0],a[1][0],a[2][0]),i=[me(n[0],s[0]),me(n[1],s[1]),me(n[2],s[2])],l=[me(r[0],s[0]),me(r[1],s[1]),me(r[2],s[2])],u=[fe(o,l[0]),fe(o,l[1]),fe(o,l[2])],c=[z(i[0],u[0]),z(i[1],u[1]),z(i[2],u[2])],p=ln([c[0],c[1],c[2]],2),d=V(p,[1,t.shape[0],t.shape[1],3]);return J([...n,...s,...r,...i,...l,...u,...c,p,t]),d}var B2=3840,En=null,Rn=null,xd=null,_t,ar={inputSum:0,cacheDiff:1,sumMethod:0,inputTensor:void 0};function wb(){ar.inputSum=0,ar.cacheDiff=1,ar.sumMethod=0,ar.inputTensor=void 0}function ds(e,t){let n;if(he.browser)if(he.worker){if(typeof OffscreenCanvas=="undefined")throw new Error("canvas error: attempted to run in web worker but OffscreenCanvas is not supported");n=new OffscreenCanvas(e,t)}else{if(typeof document=="undefined")throw new Error("canvas error: attempted to run in browser but DOM is not defined");n=document.createElement("canvas"),n.width=e,n.height=t}else typeof he.Canvas!="undefined"?n=new he.Canvas(e,t):typeof globalThis.Canvas!="undefined"&&(n=new globalThis.Canvas(e,t));return n}function W2(e,t){let n=t||ds(e.width,e.height);return n.getContext("2d").drawImage(e,0,0),n}async function bd(e,t,n=!0){var d,h;if(!e)return t.debug&&re("input error: input is missing"),{tensor:null,canvas:null};if(!(e instanceof st)&&!(typeof Image!="undefined"&&e instanceof Image)&&!(typeof he.Canvas!="undefined"&&e instanceof he.Canvas)&&!(typeof globalThis.Canvas!="undefined"&&e instanceof globalThis.Canvas)&&!(typeof ImageData!="undefined"&&e instanceof ImageData)&&!(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)&&!(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)&&!(typeof HTMLMediaElement!="undefined"&&e instanceof HTMLMediaElement)&&!(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)&&!(typeof HTMLCanvasElement!="undefined"&&e instanceof HTMLCanvasElement)&&!(typeof OffscreenCanvas!="undefined"&&e instanceof OffscreenCanvas))throw new Error("input error: type is not recognized");if(e instanceof st){let f=null;if(e.isDisposedInternal)throw new Error("input error: attempted to use tensor but it is disposed");if(!e.shape)throw new Error("input error: attempted to use tensor without a shape");if(e.shape.length===3){if(e.shape[2]===3)f=Bt(e,0);else if(e.shape[2]===4){let m=pi(e,[0,0,0],[-1,-1,3]);f=Bt(m,0),J(m)}}else e.shape.length===4&&(e.shape[3]===3?f=Vn(e):e.shape[3]===4&&(f=ro(e,[0,0,0,0],[-1,-1,-1,3])));if(f==null||f.shape.length!==4||f.shape[0]!==1||f.shape[3]!==3)throw new Error(`input error: attempted to use tensor with unrecognized shape: ${e.shape.toString()}`);if(f.dtype==="int32"){let m=ye(f,"float32");J(f),f=m}return{tensor:f,canvas:t.filter.return?Rn:null}}if(typeof e.readyState!="undefined"&&e.readyState<=2)return t.debug&&re("input stream is not ready"),{tensor:null,canvas:En};let s=e.naturalWidth||e.videoWidth||e.width||e.shape&&e.shape[1]>0,r=e.naturalHeight||e.videoHeight||e.height||e.shape&&e.shape[2]>0;if(!s||!r)return t.debug&&re("cannot determine input dimensions"),{tensor:null,canvas:En};let a=s,o=r;if(a>B2&&(a=B2,o=Math.trunc(a*r/s)),o>B2&&(o=B2,a=Math.trunc(o*s/r)),(((d=t.filter)==null?void 0:d.width)||0)>0?a=t.filter.width:(((h=t.filter)==null?void 0:h.height)||0)>0&&(a=s*((t.filter.height||0)/r)),(t.filter.height||0)>0?o=t.filter.height:(t.filter.width||0)>0&&(o=r*((t.filter.width||0)/s)),!a||!o)throw new Error("input error: cannot determine dimension");(!En||En.width!==a||En.height!==o)&&(En=ds(a,o));let i=En.getContext("2d");if(typeof ImageData!="undefined"&&e instanceof ImageData?i.putImageData(e,0,0):t.filter.flip&&typeof i.translate!="undefined"?(i.translate(s,0),i.scale(-1,1),i.drawImage(e,0,0,s,r,0,0,En.width,En.height),i.setTransform(1,0,0,1,0,0)):i.drawImage(e,0,0,s,r,0,0,En.width,En.height),(!Rn||En.width!==Rn.width||En.height!==Rn.height)&&(Rn=ds(En.width,En.height)),t.filter.enabled&&he.webgl.supported?(_t||(_t=he.browser?new LT:null),he.filter=!!_t,_t!=null&&_t.add?(_t.reset(),t.filter.brightness!==0&&_t.add("brightness",t.filter.brightness),t.filter.contrast!==0&&_t.add("contrast",t.filter.contrast),t.filter.sharpness!==0&&_t.add("sharpen",t.filter.sharpness),t.filter.blur!==0&&_t.add("blur",t.filter.blur),t.filter.saturation!==0&&_t.add("saturation",t.filter.saturation),t.filter.hue!==0&&_t.add("hue",t.filter.hue),t.filter.negative&&_t.add("negative"),t.filter.sepia&&_t.add("sepia"),t.filter.vintage&&_t.add("brownie"),t.filter.sepia&&_t.add("sepia"),t.filter.kodachrome&&_t.add("kodachrome"),t.filter.technicolor&&_t.add("technicolor"),t.filter.polaroid&&_t.add("polaroid"),t.filter.pixelate!==0&&_t.add("pixelate",t.filter.pixelate),_t.get()>0?Rn=_t.apply(En):Rn=_t.draw(En)):(t.debug&&re("input process error: cannot initialize filters"),he.webgl.supported=!1,t.filter.enabled=!1,W2(En,Rn))):(W2(En,Rn),_t&&(_t=null),he.filter=!!_t),!n)return{tensor:null,canvas:Rn};if(!Rn)throw new Error("canvas error: cannot create output");let l,u=3;if(typeof ImageData!="undefined"&&e instanceof ImageData||e.data&&e.width&&e.height)if(he.browser&&nr)l=nr?nr.fromPixels(e):null;else{u=e.data.length/e.height/e.width;let f=new Uint8Array(e.data.buffer);l=ct(f,[e.height,e.width,u],"int32")}else if((!xd||Rn.width!==xd.width||Rn.height!==xd.height)&&(xd=ds(Rn.width,Rn.height)),nr&&he.browser)t.backend==="webgl"||t.backend==="humangl"||t.backend==="webgpu"?l=nr.fromPixels(Rn):(xd=W2(Rn),l=nr.fromPixels(xd));else{let g=W2(Rn).getContext("2d").getImageData(0,0,a,o);u=g.data.length/a/o;let y=new Uint8Array(g.data.buffer);l=ct(y,[a,o,u])}if(u===4){let f=pi(l,[0,0,0],[-1,-1,3]);J(l),l=f}if(!l)throw new Error("input error: cannot create tensor");let c=ye(l,"float32"),p=t.filter.equalization?await L2(c):Bt(c,0);return J([l,c]),{tensor:p,canvas:t.filter.return?Rn:null}}async function BT(e,t){let n=!1;if(e.cacheSensitivity===0||!t.shape||t.shape.length!==4||t.shape[1]>2048||t.shape[2]>2048)return n;if(!ar.inputTensor)ar.inputTensor=Vn(t);else if(ar.inputTensor.shape[1]!==t.shape[1]||ar.inputTensor.shape[2]!==t.shape[2])J(ar.inputTensor),ar.inputTensor=Vn(t);else{let s={};s.diff=me(t,ar.inputTensor),s.squared=z(s.diff,s.diff),s.sum=ke(s.squared);let a=(await s.sum.data())[0]/(t.shape[1]||1)/(t.shape[2]||1)/255/3;J([ar.inputTensor,s.diff,s.squared,s.sum]),ar.inputTensor=Vn(t),n=a<=(e.cacheSensitivity||0)}return n}async function WT(e,t,n){let s={};if(!t||!n||t.shape.length!==4||t.shape.length!==n.shape.length)return e.debug||re("invalid input tensor or tensor shapes do not match:",t.shape,n.shape),0;if(t.shape[0]!==1||n.shape[0]!==1||t.shape[3]!==3||n.shape[3]!==3)return e.debug||re("input tensors must be of shape [1, height, width, 3]:",t.shape,n.shape),0;s.input1=Vn(t),s.input2=t.shape[1]!==n.shape[1]||t.shape[2]!==n.shape[2]?Ie.resizeBilinear(n,[t.shape[1],t.shape[2]]):Vn(n),s.diff=me(s.input1,s.input2),s.squared=z(s.diff,s.diff),s.sum=ke(s.squared);let a=(await s.sum.data())[0]/(t.shape[1]||1)/(t.shape[2]||1)/255/3;return J([s.input1,s.input2,s.diff,s.squared,s.sum]),a}var kb=class{constructor(){ge(this,"browser");ge(this,"node");ge(this,"worker");ge(this,"platform","");ge(this,"agent","");ge(this,"backends",[]);ge(this,"initial");ge(this,"filter");ge(this,"tfjs");ge(this,"offscreen");ge(this,"perfadd",!1);ge(this,"tensorflow",{version:void 0,gpu:void 0});ge(this,"wasm",{supported:void 0,backend:void 0,simd:void 0,multithread:void 0});ge(this,"webgl",{supported:void 0,backend:void 0,version:void 0,renderer:void 0});ge(this,"webgpu",{supported:void 0,backend:void 0,adapter:void 0});ge(this,"cpu",{model:void 0,flags:[]});ge(this,"kernels",[]);ge(this,"Canvas");ge(this,"Image");ge(this,"ImageData");if(this.browser=typeof navigator!="undefined",this.node=typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined",this.tfjs={version:Xh["tfjs-core"]},this.offscreen=typeof OffscreenCanvas!="undefined",this.initial=!0,this.worker=this.browser&&this.offscreen?typeof WorkerGlobalScope!="undefined":void 0,typeof navigator!="undefined"){let t=navigator.userAgent.match(/\(([^()]+)\)/g);if(t!=null&&t[0]){let n=t[0].match(/\(([^()]+)\)/g);this.platform=n!=null&&n[0]?n[0].replace(/\(|\)/g,""):"",this.agent=navigator.userAgent.replace(t[0],""),this.platform[1]&&(this.agent=this.agent.replace(t[1],"")),this.agent=this.agent.replace(/ /g," ")}}else typeof process!="undefined"&&(this.platform=`${process.platform} ${process.arch}`,this.agent=`NodeJS ${process.version}`)}async updateBackend(){this.backends=Object.keys(rn().registryFactory),this.tensorflow={version:Hn().binding?Hn().binding.TF_Version:void 0,gpu:Hn().binding?Hn().binding.isUsingGpuDevice():void 0},this.wasm.supported=typeof WebAssembly!="undefined",this.wasm.backend=this.backends.includes("wasm"),this.wasm.supported&&this.wasm.backend&&Cn()==="wasm"&&(this.wasm.simd=H().get("WASM_HAS_SIMD_SUPPORT"),this.wasm.multithread=H().get("WASM_HAS_MULTITHREAD_SUPPORT"));let t=ds(100,100),n=t?t.getContext("webgl2"):void 0;if(this.webgl.supported=typeof n!="undefined",this.webgl.backend=this.backends.includes("webgl"),this.webgl.supported&&this.webgl.backend&&(Cn()==="webgl"||Cn()==="humangl")){let s=Hn().gpgpu!=="undefined"?await Hn().getGPGPUContext().gl:null;s&&(this.webgl.version=s.getParameter(s.VERSION),this.webgl.renderer=s.getParameter(s.RENDERER))}this.webgpu.supported=this.browser&&typeof navigator.gpu!="undefined",this.webgpu.backend=this.backends.includes("webgpu");try{if(this.webgpu.supported){let s=await navigator.gpu.requestAdapter();this.webgpu.adapter=s?s.name:void 0}}catch(s){this.webgpu.supported=!1}try{this.kernels=ta(Cn()).map(s=>s.kernelName.toLowerCase())}catch(s){}}updateCPU(){let t={model:"",flags:[]};this.node&&this.platform.startsWith("linux"),this.cpu?this.cpu=t:Object.defineProperty(this,"cpu",{value:t})}},he=new kb;var Sb={};fa(Sb,{age:()=>HAe,"anti-spoofing":()=>w5e,antispoof:()=>DAe,blazeface:()=>$Ae,"blazeface-back":()=>jAe,"blazeface-front":()=>qAe,"blazepose-detect":()=>v5e,"blazepose-detector2d":()=>XAe,"blazepose-detector3d":()=>KAe,"blazepose-full":()=>ZAe,"blazepose-heavy":()=>YAe,"blazepose-lite":()=>JAe,default:()=>F5e,efficientpose:()=>QAe,"efficientpose-i-lite":()=>k5e,"efficientpose-ii-lite":()=>S5e,"efficientpose-iv":()=>I5e,emotion:()=>PAe,faceboxes:()=>e5e,facemesh:()=>FAe,"facemesh-attention":()=>n5e,"facemesh-attention-alt":()=>t5e,"facemesh-detection-full":()=>s5e,"facemesh-detection-short":()=>r5e,"facemesh-orig":()=>a5e,faceres:()=>OAe,"faceres-deep":()=>o5e,gear:()=>i5e,gender:()=>u5e,"gender-ssrnet-imdb":()=>l5e,handdetect:()=>c5e,"handlandmark-full":()=>MAe,"handlandmark-lite":()=>d5e,"handlandmark-sparse":()=>p5e,handskeleton:()=>h5e,handtrack:()=>zAe,"insightface-efficientnet-b0":()=>C5e,"insightface-ghostnet-strides1":()=>T5e,"insightface-ghostnet-strides2":()=>N5e,"insightface-mobilenet-emore":()=>E5e,"insightface-mobilenet-swish":()=>R5e,iris:()=>LAe,liveness:()=>BAe,"mb3-centernet":()=>WAe,meet:()=>f5e,mobileface:()=>m5e,mobilefacenet:()=>g5e,models:()=>VAe,"movenet-lightning":()=>UAe,"movenet-multipose":()=>y5e,"movenet-thunder":()=>A5e,nanodet:()=>x5e,"nanodet-e":()=>_5e,"nanodet-g":()=>D5e,"nanodet-m":()=>$5e,"nanodet-t":()=>P5e,posenet:()=>b5e,selfie:()=>GAe});var DAe=853098,$Ae=538928,PAe=820516,FAe=1477958,OAe=6978814,MAe=5431368,zAe=2964837,LAe=2599092,BAe=592976,WAe=4030290,VAe=0,UAe=4650216,GAe=212886,HAe=161240,jAe=538928,qAe=402048,XAe=7499400,KAe=5928856,ZAe=6338290,YAe=27501554,JAe=2725490,QAe=5651240,e5e=2013002,t5e=2387598,n5e=2382414,s5e=1026192,r5e=201268,a5e=2955780,o5e=13957620,i5e=1498916,l5e=161236,u5e=201808,c5e=3515612,d5e=2023432,p5e=5286322,h5e=5502280,f5e=372228,m5e=2183192,g5e=5171976,y5e=9448838,A5e=12477112,x5e=7574558,b5e=5032780,v5e=5928804,w5e=853098,k5e=2269064,S5e=5651240,I5e=25643252,C5e=13013224,T5e=8093408,N5e=8049584,E5e=6938536,R5e=12168584,_5e=12319156,D5e=7574558,$5e=1887474,P5e=5294216,F5e={antispoof:DAe,blazeface:$Ae,emotion:PAe,facemesh:FAe,faceres:OAe,"handlandmark-full":MAe,handtrack:zAe,iris:LAe,liveness:BAe,"mb3-centernet":WAe,models:VAe,"movenet-lightning":UAe,selfie:GAe,age:HAe,"blazeface-back":jAe,"blazeface-front":qAe,"blazepose-detector2d":XAe,"blazepose-detector3d":KAe,"blazepose-full":ZAe,"blazepose-heavy":YAe,"blazepose-lite":JAe,efficientpose:QAe,faceboxes:e5e,"facemesh-attention-alt":t5e,"facemesh-attention":n5e,"facemesh-detection-full":s5e,"facemesh-detection-short":r5e,"facemesh-orig":a5e,"faceres-deep":o5e,gear:i5e,"gender-ssrnet-imdb":l5e,gender:u5e,handdetect:c5e,"handlandmark-lite":d5e,"handlandmark-sparse":p5e,handskeleton:h5e,meet:f5e,mobileface:m5e,mobilefacenet:g5e,"movenet-multipose":y5e,"movenet-thunder":A5e,nanodet:x5e,posenet:b5e,"blazepose-detect":v5e,"anti-spoofing":w5e,"efficientpose-i-lite":k5e,"efficientpose-ii-lite":S5e,"efficientpose-iv":I5e,"insightface-efficientnet-b0":C5e,"insightface-ghostnet-strides1":T5e,"insightface-ghostnet-strides2":N5e,"insightface-mobilenet-emore":E5e,"insightface-mobilenet-swish":R5e,"nanodet-e":_5e,"nanodet-g":D5e,"nanodet-m":$5e,"nanodet-t":P5e};var p1={};fa(p1,{Models:()=>af,getModelStats:()=>M4,load:()=>z4,reset:()=>d1,validate:()=>I1,validateModel:()=>_d});var br,Ib=[],O5e=["white","black","asian","indian","other"],M5e=[15,23,28,35.5,45.5,55.5,65],VT=0,UT=0,Cb=Number.MAX_SAFE_INTEGER;async function GT(e){var t;return he.initial&&(br=null),br?e.debug&&re("cached model:",br.modelUrl):br=await je((t=e.face.gear)==null?void 0:t.modelPath),br}async function Tb(e,t,n,s){var o,i;if(!br)return{age:0,gender:"unknown",genderScore:0,race:[]};let r=Cb<(((o=t.face.gear)==null?void 0:o.skipFrames)||0),a=(((i=t.face.gear)==null?void 0:i.skipTime)||0)>le()-UT;return t.skipAllowed&&a&&r&&VT===s&&Ib[n]?(Cb++,Ib[n]):(Cb=0,new Promise(async l=>{var y,x;if(!(br!=null&&br.inputs[0].shape))return;let u={},c=[[0,.1,.9,.9]];u.resize=Ie.cropAndResize(e,c,[0],[br.inputs[0].shape[2],br.inputs[0].shape[1]]);let p={age:0,gender:"unknown",genderScore:0,race:[]};(y=t.face.gear)!=null&&y.enabled&&([u.age,u.gender,u.race]=br.execute(u.resize,["age_output","gender_output","race_output"]));let d=await u.gender.data();p.gender=d[0]>d[1]?"male":"female",p.genderScore=Math.round(100*(d[0]>d[1]?d[0]:d[1]))/100;let h=await u.race.data();for(let A=0;A<h.length;A++)h[A]>(((x=t.face.gear)==null?void 0:x.minConfidence)||.2)&&p.race.push({score:Math.round(100*h[A])/100,race:O5e[A]});p.race.sort((A,b)=>b.score-A.score);let m=Array.from(await u.age.data()).map((A,b)=>[M5e[b],A]).sort((A,b)=>b[1]-A[1]),g=m[0][0];for(let A=1;A<m.length;A++)g+=m[A][1]*(m[A][0]-g);p.age=Math.round(10*g)/10,Object.keys(u).forEach(A=>J(u[A])),Ib[n]=p,VT=s,UT=le(),l(p)}))}var at={tf255:255,tf1:1,tf2:2,tf05:.5,tf127:127.5,rgb:[.2989,.587,.114]};function jT(){at.tf255=Ce(255,"float32"),at.tf1=Ce(1,"float32"),at.tf2=Ce(2,"float32"),at.tf05=Ce(.5,"float32"),at.tf127=Ce(127.5,"float32"),at.rgb=Pt([.2989,.587,.114],"float32")}var Bs,V2=[],qT=0,XT=0,Nb=Number.MAX_SAFE_INTEGER;async function KT(e){return he.initial&&(Bs=null),Bs?e.debug&&re("cached model:",Bs.modelUrl):Bs=await je(e.face.ssrnet.modelPathAge),Bs}async function Eb(e,t,n,s){var o,i,l,u;if(!Bs)return{age:0};let r=Nb<(((o=t.face.ssrnet)==null?void 0:o.skipFrames)||0),a=(((i=t.face.ssrnet)==null?void 0:i.skipTime)||0)>le()-XT;return t.skipAllowed&&r&&a&&qT===s&&((l=V2[n])==null?void 0:l.age)&&((u=V2[n])==null?void 0:u.age)>0?(Nb++,V2[n]):(Nb=0,new Promise(async c=>{var h;if(!(Bs!=null&&Bs.inputs)||!Bs.inputs[0]||!Bs.inputs[0].shape)return;let p={};p.resize=Ie.resizeBilinear(e,[Bs.inputs[0].shape[2],Bs.inputs[0].shape[1]],!1),p.enhance=z(p.resize,at.tf255);let d={age:0};if((h=t.face.ssrnet)!=null&&h.enabled&&(p.age=Bs.execute(p.enhance)),p.age){let f=await p.age.data();d.age=Math.trunc(10*f[0])/10}Object.keys(p).forEach(f=>J(p[f])),V2[n]=d,qT=s,XT=le(),c(d)}))}var vr,U2=[],YT=0,JT=0,Rb=Number.MAX_SAFE_INTEGER,_b=[.2989,.587,.114];async function QT(e){var t;return he.initial&&(vr=null),vr?e.debug&&re("cached model:",vr.modelUrl):vr=await je((t=e.face.ssrnet)==null?void 0:t.modelPathGender),vr}async function Db(e,t,n,s){var o,i,l,u;if(!vr)return{gender:"unknown",genderScore:0};let r=Rb<(((o=t.face.ssrnet)==null?void 0:o.skipFrames)||0),a=(((i=t.face.ssrnet)==null?void 0:i.skipTime)||0)>le()-JT;return t.skipAllowed&&r&&a&&YT===s&&((l=U2[n])==null?void 0:l.gender)&&((u=U2[n])==null?void 0:u.genderScore)>0?(Rb++,U2[n]):(Rb=0,new Promise(async c=>{var f;if(!(vr!=null&&vr.inputs[0].shape))return;let p={};p.resize=Ie.resizeBilinear(e,[vr.inputs[0].shape[2],vr.inputs[0].shape[1]],!1),p.enhance=Z(()=>{let[m,g,y]=Yt(p.resize,3,3),x=z(m,_b[0]),A=z(g,_b[1]),b=z(y,_b[2]),w=k0([x,A,b]);return z(me(w,at.tf05),2)});let d={gender:"unknown",genderScore:0};(f=t.face.ssrnet)!=null&&f.enabled&&(p.gender=vr.execute(p.enhance));let h=await p.gender.data();d.gender=h[0]>h[1]?"female":"male",d.genderScore=h[0]>h[1]?Math.trunc(100*h[0])/100:Math.trunc(100*h[1])/100,Object.keys(p).forEach(m=>J(p[m])),U2[n]=d,YT=s,JT=le(),c(d)}))}var bn,G2=[],$b=Number.MAX_SAFE_INTEGER,tN=0,nN=0;async function sN(e){var t;return he.initial&&(bn=null),bn?e.debug&&re("cached model:",bn.modelUrl):bn=await je((t=e.face.antispoof)==null?void 0:t.modelPath),bn}async function Pb(e,t,n,s){var o,i;if(!bn||!(bn!=null&&bn.executor))return 0;let r=(((o=t.face.antispoof)==null?void 0:o.skipTime)||0)>le()-nN,a=$b<(((i=t.face.antispoof)==null?void 0:i.skipFrames)||0);return t.skipAllowed&&r&&a&&tN===s&&G2[n]?($b++,G2[n]):($b=0,new Promise(async l=>{let u=Ie.resizeBilinear(e,[bn!=null&&bn.inputs[0].shape?bn.inputs[0].shape[2]:0,bn!=null&&bn.inputs[0].shape?bn.inputs[0].shape[1]:0],!1),c=bn==null?void 0:bn.execute(u),p=(await c.data())[0];G2[n]=Math.round(100*p)/100,tN=s,nN=le(),J([u,c]),l(G2[n])}))}var wr={silhouette:[10,338,297,332,284,251,389,356,454,323,361,288,397,365,379,378,400,377,152,148,176,149,150,136,172,58,132,93,234,127,162,21,54,103,67,109],lipsUpperOuter:[185,40,39,37,0,267,269,270,409],lipsLowerOuter:[61,146,91,181,84,17,314,405,321,375,291],lipsUpperInner:[191,80,81,82,13,312,311,310,415],lipsLowerInner:[78,95,88,178,87,14,317,402,318,324,308],lipsLowerSemiOuter:[76,77,90,180,85,16,315,404,320,307,306],lipsUpperSemiOuter:[184,74,73,72,11,302,303,304,408],lipsLowerSemiInner:[62,96,89,179,86,15,316,403,319,325,292],lipsUpperSemiInner:[183,42,41,38,12,268,271,272,407],rightEyeUpper0:[246,161,160,159,158,157,173],rightEyeLower0:[33,7,163,144,145,153,154,155,133],rightEyeUpper1:[247,30,29,27,28,56,190],rightEyeLower1:[130,25,110,24,23,22,26,112,243],rightEyeUpper2:[113,225,224,223,222,221,189],rightEyeLower2:[226,31,228,229,230,231,232,233,244],rightEyeLower3:[143,111,117,118,119,120,121,128,245],rightEyebrowUpper:[156,70,63,105,66,107,55,193],rightEyebrowLower:[35,124,46,53,52,65],rightEyeIris:[473,474,475,476,477],leftEyeUpper0:[466,388,387,386,385,384,398],leftEyeLower0:[263,249,390,373,374,380,381,382,362],leftEyeUpper1:[467,260,259,257,258,286,414],leftEyeLower1:[359,255,339,254,253,252,256,341,463],leftEyeUpper2:[342,445,444,443,442,441,413],leftEyeLower2:[446,261,448,449,450,451,452,453,464],leftEyeLower3:[372,340,346,347,348,349,350,357,465],leftEyebrowUpper:[383,300,293,334,296,336,285,417],leftEyebrowLower:[265,353,276,283,282,295],leftEyeIris:[468,469,470,471,472],midwayBetweenEyes:[168],noseTip:[1],noseBottom:[2],noseRightCorner:[98],noseLeftCorner:[327],rightCheek:[205],leftCheek:[425]},Fb={count:468,mouth:13,symmetryLine:[13,wr.midwayBetweenEyes[0]]},mu={leftEye:0,rightEye:1,nose:2,mouth:3,leftEar:4,rightEar:5,symmetryLine:[3,2]},Ob=[{key:"EyeUpper0",indices:[9,10,11,12,13,14,15]},{key:"EyeUpper1",indices:[25,26,27,28,29,30,31]},{key:"EyeUpper2",indices:[41,42,43,44,45,46,47]},{key:"EyeLower0",indices:[0,1,2,3,4,5,6,7,8]},{key:"EyeLower1",indices:[16,17,18,19,20,21,22,23,24]},{key:"EyeLower2",indices:[32,33,34,35,36,37,38,39,40]},{key:"EyeLower3",indices:[54,55,56,57,58,59,60,61,62]},{key:"EyebrowUpper",indices:[63,64,65,66,67,68,69,70]},{key:"EyebrowLower",indices:[48,49,50,51,52,53]}],Zh=[[.499976992607117,.652534008026123],[.500025987625122,.547487020492554],[.499974012374878,.602371990680695],[.482113003730774,.471979022026062],[.500150978565216,.527155995368958],[.499909996986389,.498252987861633],[.499523013830185,.40106201171875],[.289712011814117,.380764007568359],[.499954998493195,.312398016452789],[.499987006187439,.269918978214264],[.500023007392883,.107050001621246],[.500023007392883,.666234016418457],[.5000159740448,.679224014282227],[.500023007392883,.692348003387451],[.499976992607117,.695277988910675],[.499976992607117,.70593398809433],[.499976992607117,.719385027885437],[.499976992607117,.737019002437592],[.499967992305756,.781370997428894],[.499816000461578,.562981009483337],[.473773002624512,.573909997940063],[.104906998574734,.254140973091125],[.365929991006851,.409575998783112],[.338757991790771,.41302502155304],[.311120003461838,.409460008144379],[.274657994508743,.389131009578705],[.393361985683441,.403706014156342],[.345234006643295,.344011008739471],[.370094001293182,.346076011657715],[.319321990013123,.347265005111694],[.297903001308441,.353591024875641],[.24779200553894,.410809993743896],[.396889001131058,.842755019664764],[.280097991228104,.375599980354309],[.106310002505779,.399955987930298],[.2099249958992,.391353011131287],[.355807989835739,.534406006336212],[.471751004457474,.65040397644043],[.474155008792877,.680191993713379],[.439785003662109,.657229006290436],[.414617002010345,.66654098033905],[.450374007225037,.680860996246338],[.428770989179611,.682690978050232],[.374971002340317,.727805018424988],[.486716985702515,.547628998756409],[.485300987958908,.527395009994507],[.257764995098114,.314490020275116],[.401223003864288,.455172002315521],[.429818987846375,.548614978790283],[.421351999044418,.533740997314453],[.276895999908447,.532056987285614],[.483370006084442,.499586999416351],[.33721199631691,.282882988452911],[.296391993761063,.293242990970612],[.169294998049736,.193813979625702],[.447580009698868,.302609980106354],[.392390012741089,.353887975215912],[.354490011930466,.696784019470215],[.067304998636246,.730105042457581],[.442739009857178,.572826027870178],[.457098007202148,.584792017936707],[.381974011659622,.694710969924927],[.392388999462128,.694203019142151],[.277076005935669,.271932005882263],[.422551989555359,.563233017921448],[.385919004678726,.281364023685455],[.383103013038635,.255840003490448],[.331431001424789,.119714021682739],[.229923993349075,.232002973556519],[.364500999450684,.189113974571228],[.229622006416321,.299540996551514],[.173287004232407,.278747975826263],[.472878992557526,.666198015213013],[.446828007698059,.668527007102966],[.422762006521225,.673889994621277],[.445307999849319,.580065965652466],[.388103008270264,.693961024284363],[.403039008378983,.706539988517761],[.403629004955292,.693953037261963],[.460041999816895,.557139039039612],[.431158006191254,.692366003990173],[.452181994915009,.692366003990173],[.475387006998062,.692366003990173],[.465828001499176,.779190003871918],[.472328990697861,.736225962638855],[.473087012767792,.717857003211975],[.473122000694275,.704625964164734],[.473033010959625,.695277988910675],[.427942007780075,.695277988910675],[.426479011774063,.703539967536926],[.423162013292313,.711845993995667],[.4183090031147,.720062971115112],[.390094995498657,.639572978019714],[.013953999616206,.560034036636353],[.499913990497589,.58014702796936],[.413199990987778,.69539999961853],[.409626007080078,.701822996139526],[.468080013990402,.601534962654114],[.422728985548019,.585985004901886],[.463079988956451,.593783974647522],[.37211999297142,.47341400384903],[.334562003612518,.496073007583618],[.411671012639999,.546965003013611],[.242175996303558,.14767599105835],[.290776997804642,.201445996761322],[.327338010072708,.256527006626129],[.399509996175766,.748921036720276],[.441727995872498,.261676013469696],[.429764986038208,.187834024429321],[.412198007106781,.108901023864746],[.288955003023148,.398952007293701],[.218936994671822,.435410976409912],[.41278201341629,.398970007896423],[.257135003805161,.355440020561218],[.427684992551804,.437960982322693],[.448339998722076,.536936044692993],[.178560003638268,.45755398273468],[.247308000922203,.457193970680237],[.286267012357712,.467674970626831],[.332827985286713,.460712015628815],[.368755996227264,.447206974029541],[.398963987827301,.432654976844788],[.476410001516342,.405806005001068],[.189241006970406,.523923993110657],[.228962004184723,.348950982093811],[.490725994110107,.562400996685028],[.404670000076294,.485132992267609],[.019469000399113,.401564002037048],[.426243007183075,.420431017875671],[.396993011236191,.548797011375427],[.266469985246658,.376977026462555],[.439121007919312,.51895797252655],[.032313998788595,.644356966018677],[.419054001569748,.387154996395111],[.462783008813858,.505746960639954],[.238978996872902,.779744982719421],[.198220998048782,.831938028335571],[.107550002634525,.540755033493042],[.183610007166862,.740257024765015],[.134409993886948,.333683013916016],[.385764002799988,.883153975009918],[.490967005491257,.579378008842468],[.382384985685349,.508572995662689],[.174399003386497,.397670984268188],[.318785011768341,.39623498916626],[.343364000320435,.400596976280212],[.396100014448166,.710216999053955],[.187885001301765,.588537991046906],[.430987000465393,.944064974784851],[.318993002176285,.898285031318665],[.266247987747192,.869701027870178],[.500023007392883,.190576016902924],[.499976992607117,.954452991485596],[.366169989109039,.398822009563446],[.393207013607025,.39553701877594],[.410373002290726,.391080021858215],[.194993004202843,.342101991176605],[.388664990663528,.362284004688263],[.365961998701096,.355970978736877],[.343364000320435,.355356991291046],[.318785011768341,.35834002494812],[.301414996385574,.363156020641327],[.058132998645306,.319076001644135],[.301414996385574,.387449026107788],[.499987989664078,.618434011936188],[.415838003158569,.624195992946625],[.445681989192963,.566076993942261],[.465844005346298,.620640993118286],[.49992299079895,.351523995399475],[.288718998432159,.819945991039276],[.335278987884521,.852819979190826],[.440512001514435,.902418971061707],[.128294005990028,.791940987110138],[.408771991729736,.373893976211548],[.455606997013092,.451801002025604],[.499877005815506,.908990025520325],[.375436991453171,.924192011356354],[.11421000212431,.615022003650665],[.448662012815475,.695277988910675],[.4480200111866,.704632043838501],[.447111994028091,.715808033943176],[.444831997156143,.730794012546539],[.430011987686157,.766808986663818],[.406787008047104,.685672998428345],[.400738000869751,.681069016456604],[.392399996519089,.677703022956848],[.367855995893478,.663918972015381],[.247923001646996,.601333022117615],[.452769994735718,.420849978923798],[.43639200925827,.359887003898621],[.416164010763168,.368713974952698],[.413385987281799,.692366003990173],[.228018000721931,.683571994304657],[.468268007040024,.352671027183533],[.411361992359161,.804327011108398],[.499989002943039,.469825029373169],[.479153990745544,.442654013633728],[.499974012374878,.439637005329132],[.432112008333206,.493588984012604],[.499886006116867,.866917014122009],[.49991300702095,.821729004383087],[.456548988819122,.819200992584229],[.344549000263214,.745438992977142],[.37890899181366,.574010014533997],[.374292999505997,.780184984207153],[.319687992334366,.570737957954407],[.357154995203018,.604269981384277],[.295284003019333,.621580958366394],[.447750002145767,.862477004528046],[.410986006259918,.508723020553589],[.31395098567009,.775308012962341],[.354128003120422,.812552988529205],[.324548006057739,.703992962837219],[.189096003770828,.646299958229065],[.279776990413666,.71465802192688],[.1338230073452,.682700991630554],[.336768001317978,.644733011722565],[.429883986711502,.466521978378296],[.455527991056442,.548622965812683],[.437114000320435,.558896005153656],[.467287987470627,.529924988746643],[.414712011814117,.335219979286194],[.37704598903656,.322777986526489],[.344107985496521,.320150971412659],[.312875986099243,.32233202457428],[.283526003360748,.333190023899078],[.241245999932289,.382785975933075],[.102986000478268,.468762993812561],[.267612010240555,.424560010433197],[.297879010438919,.433175981044769],[.333433985710144,.433878004550934],[.366427004337311,.426115989685059],[.396012008190155,.416696012020111],[.420121014118195,.41022801399231],[.007561000064015,.480777025222778],[.432949006557465,.569517970085144],[.458638995885849,.479089021682739],[.473466008901596,.545744001865387],[.476087987422943,.563830018043518],[.468472003936768,.555056989192963],[.433990985155106,.582361996173859],[.483518004417419,.562983989715576],[.482482999563217,.57784903049469],[.42645001411438,.389798998832703],[.438998997211456,.39649498462677],[.450067013502121,.400434017181396],[.289712011814117,.368252992630005],[.276670008897781,.363372981548309],[.517862021923065,.471948027610779],[.710287988185883,.380764007568359],[.526226997375488,.573909997940063],[.895093023777008,.254140973091125],[.634069979190826,.409575998783112],[.661242008209229,.41302502155304],[.688880026340485,.409460008144379],[.725341975688934,.389131009578705],[.606630027294159,.40370500087738],[.654766023159027,.344011008739471],[.629905998706818,.346076011657715],[.680678009986877,.347265005111694],[.702096998691559,.353591024875641],[.75221198797226,.410804986953735],[.602918028831482,.842862963676453],[.719901978969574,.375599980354309],[.893692970275879,.399959981441498],[.790081977844238,.391354024410248],[.643998026847839,.534487962722778],[.528249025344849,.65040397644043],[.525849997997284,.680191040039062],[.560214996337891,.657229006290436],[.585384011268616,.66654098033905],[.549625992774963,.680860996246338],[.57122802734375,.682691991329193],[.624852001667023,.72809898853302],[.513050019741058,.547281980514526],[.51509702205658,.527251958847046],[.742246985435486,.314507007598877],[.598631024360657,.454979002475739],[.570338010787964,.548575043678284],[.578631997108459,.533622980117798],[.723087012767792,.532054007053375],[.516445994377136,.499638974666595],[.662801027297974,.282917976379395],[.70362401008606,.293271005153656],[.830704987049103,.193813979625702],[.552385985851288,.302568018436432],[.607609987258911,.353887975215912],[.645429015159607,.696707010269165],[.932694971561432,.730105042457581],[.557260990142822,.572826027870178],[.542901992797852,.584792017936707],[.6180260181427,.694710969924927],[.607590973377228,.694203019142151],[.722943007946014,.271963000297546],[.577413976192474,.563166975975037],[.614082992076874,.281386971473694],[.616907000541687,.255886018276215],[.668509006500244,.119913995265961],[.770092010498047,.232020974159241],[.635536015033722,.189248979091644],[.77039098739624,.299556016921997],[.826722025871277,.278755009174347],[.527121007442474,.666198015213013],[.553171992301941,.668527007102966],[.577238023281097,.673889994621277],[.554691970348358,.580065965652466],[.611896991729736,.693961024284363],[.59696102142334,.706539988517761],[.596370995044708,.693953037261963],[.539958000183105,.557139039039612],[.568841993808746,.692366003990173],[.547818005084991,.692366003990173],[.52461302280426,.692366003990173],[.534089982509613,.779141008853912],[.527670979499817,.736225962638855],[.526912987232208,.717857003211975],[.526877999305725,.704625964164734],[.526966989040375,.695277988910675],[.572058022022247,.695277988910675],[.573521018028259,.703539967536926],[.57683801651001,.711845993995667],[.581691026687622,.720062971115112],[.609944999217987,.639909982681274],[.986046016216278,.560034036636353],[.5867999792099,.69539999961853],[.590372025966644,.701822996139526],[.531915009021759,.601536989212036],[.577268004417419,.585934996604919],[.536915004253387,.593786001205444],[.627542972564697,.473352015018463],[.665585994720459,.495950996875763],[.588353991508484,.546862006187439],[.757824003696442,.14767599105835],[.709249973297119,.201507985591888],[.672684013843536,.256581008434296],[.600408971309662,.74900496006012],[.55826598405838,.261672019958496],[.570303976535797,.187870979309082],[.588165998458862,.109044015407562],[.711045026779175,.398952007293701],[.781069993972778,.435405015945435],[.587247014045715,.398931980133057],[.742869973182678,.355445981025696],[.572156012058258,.437651991844177],[.55186802148819,.536570012569427],[.821442008018494,.457556009292603],[.752701997756958,.457181990146637],[.71375697851181,.467626988887787],[.66711300611496,.460672974586487],[.631101012229919,.447153985500336],[.6008620262146,.432473003864288],[.523481011390686,.405627012252808],[.810747981071472,.523926019668579],[.771045982837677,.348959028720856],[.509127020835876,.562718033790588],[.595292985439301,.485023975372314],[.980530977249146,.401564002037048],[.573499977588654,.420000016689301],[.602994978427887,.548687994480133],[.733529984951019,.376977026462555],[.560611009597778,.519016981124878],[.967685997486115,.644356966018677],[.580985009670258,.387160003185272],[.537728011608124,.505385041236877],[.760966002941132,.779752969741821],[.801778972148895,.831938028335571],[.892440974712372,.54076099395752],[.816350996494293,.740260004997253],[.865594983100891,.333687007427216],[.614073991775513,.883246004581451],[.508952975273132,.579437971115112],[.617941975593567,.508316040039062],[.825608015060425,.397674977779388],[.681214988231659,.39623498916626],[.656635999679565,.400596976280212],[.603900015354156,.710216999053955],[.81208598613739,.588539004325867],[.56801301240921,.944564998149872],[.681007981300354,.898285031318665],[.733752012252808,.869701027870178],[.633830010890961,.398822009563446],[.606792986392975,.39553701877594],[.589659988880157,.391062021255493],[.805015981197357,.342108011245728],[.611334979534149,.362284004688263],[.634037971496582,.355970978736877],[.656635999679565,.355356991291046],[.681214988231659,.35834002494812],[.698584973812103,.363156020641327],[.941866993904114,.319076001644135],[.698584973812103,.387449026107788],[.584177017211914,.624107003211975],[.554318010807037,.566076993942261],[.534153997898102,.62064003944397],[.711217999458313,.819975018501282],[.664629995822906,.852871000766754],[.559099972248077,.902631998062134],[.871706008911133,.791940987110138],[.591234028339386,.373893976211548],[.544341027736664,.451583981513977],[.624562978744507,.924192011356354],[.88577002286911,.615028977394104],[.551338016986847,.695277988910675],[.551980018615723,.704632043838501],[.552887976169586,.715808033943176],[.555167973041534,.730794012546539],[.569944024085999,.767035007476807],[.593203008174896,.685675978660583],[.599261999130249,.681069016456604],[.607599973678589,.677703022956848],[.631937980651855,.663500010967255],[.752032995223999,.601315021514893],[.547226011753082,.420395016670227],[.563543975353241,.359827995300293],[.583841025829315,.368713974952698],[.586614012718201,.692366003990173],[.771915018558502,.683578014373779],[.531597018241882,.352482974529266],[.588370978832245,.804440975189209],[.52079701423645,.442565023899078],[.567984998226166,.493479013442993],[.543282985687256,.819254994392395],[.655317008495331,.745514988899231],[.621008992195129,.574018001556396],[.625559985637665,.78031200170517],[.680198013782501,.570719003677368],[.64276397228241,.604337990283966],[.704662978649139,.621529996395111],[.552012026309967,.862591981887817],[.589071989059448,.508637011051178],[.685944974422455,.775357007980347],[.645735025405884,.812640011310577],[.675342977046967,.703978002071381],[.810858011245728,.646304965019226],[.72012197971344,.714666962623596],[.866151988506317,.682704985141754],[.663187026977539,.644596993923187],[.570082008838654,.466325998306274],[.544561982154846,.548375964164734],[.562758982181549,.558784961700439],[.531987011432648,.530140042304993],[.585271000862122,.335177004337311],[.622952997684479,.32277899980545],[.655896008014679,.320163011550903],[.687132000923157,.322345972061157],[.716481983661652,.333200991153717],[.758756995201111,.382786989212036],[.897013008594513,.468769013881683],[.732392013072968,.424547016620636],[.70211398601532,.433162987232208],[.66652500629425,.433866024017334],[.633504986763,.426087975502014],[.603875994682312,.416586995124817],[.579657971858978,.409945011138916],[.992439985275269,.480777025222778],[.567192018032074,.569419980049133],[.54136598110199,.478899002075195],[.526564002037048,.546118021011353],[.523913025856018,.563830018043518],[.531529009342194,.555056989192963],[.566035985946655,.582329034805298],[.51631098985672,.563053965568542],[.5174720287323,.577877044677734],[.573594987392426,.389806985855103],[.560697972774506,.395331978797913],[.549755990505219,.399751007556915],[.710287988185883,.368252992630005],[.723330020904541,.363372981548309]],gu=[127,34,139,11,0,37,232,231,120,72,37,39,128,121,47,232,121,128,104,69,67,175,171,148,157,154,155,118,50,101,73,39,40,9,151,108,48,115,131,194,204,211,74,40,185,80,42,183,40,92,186,230,229,118,202,212,214,83,18,17,76,61,146,160,29,30,56,157,173,106,204,194,135,214,192,203,165,98,21,71,68,51,45,4,144,24,23,77,146,91,205,50,187,201,200,18,91,106,182,90,91,181,85,84,17,206,203,36,148,171,140,92,40,39,193,189,244,159,158,28,247,246,161,236,3,196,54,68,104,193,168,8,117,228,31,189,193,55,98,97,99,126,47,100,166,79,218,155,154,26,209,49,131,135,136,150,47,126,217,223,52,53,45,51,134,211,170,140,67,69,108,43,106,91,230,119,120,226,130,247,63,53,52,238,20,242,46,70,156,78,62,96,46,53,63,143,34,227,173,155,133,123,117,111,44,125,19,236,134,51,216,206,205,154,153,22,39,37,167,200,201,208,36,142,100,57,212,202,20,60,99,28,158,157,35,226,113,160,159,27,204,202,210,113,225,46,43,202,204,62,76,77,137,123,116,41,38,72,203,129,142,64,98,240,49,102,64,41,73,74,212,216,207,42,74,184,169,170,211,170,149,176,105,66,69,122,6,168,123,147,187,96,77,90,65,55,107,89,90,180,101,100,120,63,105,104,93,137,227,15,86,85,129,102,49,14,87,86,55,8,9,100,47,121,145,23,22,88,89,179,6,122,196,88,95,96,138,172,136,215,58,172,115,48,219,42,80,81,195,3,51,43,146,61,171,175,199,81,82,38,53,46,225,144,163,110,246,33,7,52,65,66,229,228,117,34,127,234,107,108,69,109,108,151,48,64,235,62,78,191,129,209,126,111,35,143,163,161,246,117,123,50,222,65,52,19,125,141,221,55,65,3,195,197,25,7,33,220,237,44,70,71,139,122,193,245,247,130,33,71,21,162,153,158,159,170,169,150,188,174,196,216,186,92,144,160,161,2,97,167,141,125,241,164,167,37,72,38,12,145,159,160,38,82,13,63,68,71,226,35,111,158,153,154,101,50,205,206,92,165,209,198,217,165,167,97,220,115,218,133,112,243,239,238,241,214,135,169,190,173,133,171,208,32,125,44,237,86,87,178,85,86,179,84,85,180,83,84,181,201,83,182,137,93,132,76,62,183,61,76,184,57,61,185,212,57,186,214,207,187,34,143,156,79,239,237,123,137,177,44,1,4,201,194,32,64,102,129,213,215,138,59,166,219,242,99,97,2,94,141,75,59,235,24,110,228,25,130,226,23,24,229,22,23,230,26,22,231,112,26,232,189,190,243,221,56,190,28,56,221,27,28,222,29,27,223,30,29,224,247,30,225,238,79,20,166,59,75,60,75,240,147,177,215,20,79,166,187,147,213,112,233,244,233,128,245,128,114,188,114,217,174,131,115,220,217,198,236,198,131,134,177,132,58,143,35,124,110,163,7,228,110,25,356,389,368,11,302,267,452,350,349,302,303,269,357,343,277,452,453,357,333,332,297,175,152,377,384,398,382,347,348,330,303,304,270,9,336,337,278,279,360,418,262,431,304,408,409,310,415,407,270,409,410,450,348,347,422,430,434,313,314,17,306,307,375,387,388,260,286,414,398,335,406,418,364,367,416,423,358,327,251,284,298,281,5,4,373,374,253,307,320,321,425,427,411,421,313,18,321,405,406,320,404,405,315,16,17,426,425,266,377,400,369,322,391,269,417,465,464,386,257,258,466,260,388,456,399,419,284,332,333,417,285,8,346,340,261,413,441,285,327,460,328,355,371,329,392,439,438,382,341,256,429,420,360,364,394,379,277,343,437,443,444,283,275,440,363,431,262,369,297,338,337,273,375,321,450,451,349,446,342,467,293,334,282,458,461,462,276,353,383,308,324,325,276,300,293,372,345,447,382,398,362,352,345,340,274,1,19,456,248,281,436,427,425,381,256,252,269,391,393,200,199,428,266,330,329,287,273,422,250,462,328,258,286,384,265,353,342,387,259,257,424,431,430,342,353,276,273,335,424,292,325,307,366,447,345,271,303,302,423,266,371,294,455,460,279,278,294,271,272,304,432,434,427,272,407,408,394,430,431,395,369,400,334,333,299,351,417,168,352,280,411,325,319,320,295,296,336,319,403,404,330,348,349,293,298,333,323,454,447,15,16,315,358,429,279,14,15,316,285,336,9,329,349,350,374,380,252,318,402,403,6,197,419,318,319,325,367,364,365,435,367,397,344,438,439,272,271,311,195,5,281,273,287,291,396,428,199,311,271,268,283,444,445,373,254,339,263,466,249,282,334,296,449,347,346,264,447,454,336,296,299,338,10,151,278,439,455,292,407,415,358,371,355,340,345,372,390,249,466,346,347,280,442,443,282,19,94,370,441,442,295,248,419,197,263,255,359,440,275,274,300,383,368,351,412,465,263,467,466,301,368,389,380,374,386,395,378,379,412,351,419,436,426,322,373,390,388,2,164,393,370,462,461,164,0,267,302,11,12,374,373,387,268,12,13,293,300,301,446,261,340,385,384,381,330,266,425,426,423,391,429,355,437,391,327,326,440,457,438,341,382,362,459,457,461,434,430,394,414,463,362,396,369,262,354,461,457,316,403,402,315,404,403,314,405,404,313,406,405,421,418,406,366,401,361,306,408,407,291,409,408,287,410,409,432,436,410,434,416,411,264,368,383,309,438,457,352,376,401,274,275,4,421,428,262,294,327,358,433,416,367,289,455,439,462,370,326,2,326,370,305,460,455,254,449,448,255,261,446,253,450,449,252,451,450,256,452,451,341,453,452,413,464,463,441,413,414,258,442,441,257,443,442,259,444,443,260,445,444,467,342,445,459,458,250,289,392,290,290,328,460,376,433,435,250,290,392,411,416,433,341,463,464,453,464,465,357,465,412,343,412,399,360,363,440,437,399,456,420,456,363,401,435,288,372,383,353,339,255,249,448,261,255,133,243,190,133,155,112,33,246,247,33,130,25,398,384,286,362,398,414,362,463,341,263,359,467,263,249,255,466,467,260,75,60,166,238,239,79,162,127,139,72,11,37,121,232,120,73,72,39,114,128,47,233,232,128,103,104,67,152,175,148,173,157,155,119,118,101,74,73,40,107,9,108,49,48,131,32,194,211,184,74,185,191,80,183,185,40,186,119,230,118,210,202,214,84,83,17,77,76,146,161,160,30,190,56,173,182,106,194,138,135,192,129,203,98,54,21,68,5,51,4,145,144,23,90,77,91,207,205,187,83,201,18,181,91,182,180,90,181,16,85,17,205,206,36,176,148,140,165,92,39,245,193,244,27,159,28,30,247,161,174,236,196,103,54,104,55,193,8,111,117,31,221,189,55,240,98,99,142,126,100,219,166,218,112,155,26,198,209,131,169,135,150,114,47,217,224,223,53,220,45,134,32,211,140,109,67,108,146,43,91,231,230,120,113,226,247,105,63,52,241,238,242,124,46,156,95,78,96,70,46,63,116,143,227,116,123,111,1,44,19,3,236,51,207,216,205,26,154,22,165,39,167,199,200,208,101,36,100,43,57,202,242,20,99,56,28,157,124,35,113,29,160,27,211,204,210,124,113,46,106,43,204,96,62,77,227,137,116,73,41,72,36,203,142,235,64,240,48,49,64,42,41,74,214,212,207,183,42,184,210,169,211,140,170,176,104,105,69,193,122,168,50,123,187,89,96,90,66,65,107,179,89,180,119,101,120,68,63,104,234,93,227,16,15,85,209,129,49,15,14,86,107,55,9,120,100,121,153,145,22,178,88,179,197,6,196,89,88,96,135,138,136,138,215,172,218,115,219,41,42,81,5,195,51,57,43,61,208,171,199,41,81,38,224,53,225,24,144,110,105,52,66,118,229,117,227,34,234,66,107,69,10,109,151,219,48,235,183,62,191,142,129,126,116,111,143,7,163,246,118,117,50,223,222,52,94,19,141,222,221,65,196,3,197,45,220,44,156,70,139,188,122,245,139,71,162,145,153,159,149,170,150,122,188,196,206,216,92,163,144,161,164,2,167,242,141,241,0,164,37,11,72,12,144,145,160,12,38,13,70,63,71,31,226,111,157,158,154,36,101,205,203,206,165,126,209,217,98,165,97,237,220,218,237,239,241,210,214,169,140,171,32,241,125,237,179,86,178,180,85,179,181,84,180,182,83,181,194,201,182,177,137,132,184,76,183,185,61,184,186,57,185,216,212,186,192,214,187,139,34,156,218,79,237,147,123,177,45,44,4,208,201,32,98,64,129,192,213,138,235,59,219,141,242,97,97,2,141,240,75,235,229,24,228,31,25,226,230,23,229,231,22,230,232,26,231,233,112,232,244,189,243,189,221,190,222,28,221,223,27,222,224,29,223,225,30,224,113,247,225,99,60,240,213,147,215,60,20,166,192,187,213,243,112,244,244,233,245,245,128,188,188,114,174,134,131,220,174,217,236,236,198,134,215,177,58,156,143,124,25,110,7,31,228,25,264,356,368,0,11,267,451,452,349,267,302,269,350,357,277,350,452,357,299,333,297,396,175,377,381,384,382,280,347,330,269,303,270,151,9,337,344,278,360,424,418,431,270,304,409,272,310,407,322,270,410,449,450,347,432,422,434,18,313,17,291,306,375,259,387,260,424,335,418,434,364,416,391,423,327,301,251,298,275,281,4,254,373,253,375,307,321,280,425,411,200,421,18,335,321,406,321,320,405,314,315,17,423,426,266,396,377,369,270,322,269,413,417,464,385,386,258,248,456,419,298,284,333,168,417,8,448,346,261,417,413,285,326,327,328,277,355,329,309,392,438,381,382,256,279,429,360,365,364,379,355,277,437,282,443,283,281,275,363,395,431,369,299,297,337,335,273,321,348,450,349,359,446,467,283,293,282,250,458,462,300,276,383,292,308,325,283,276,293,264,372,447,346,352,340,354,274,19,363,456,281,426,436,425,380,381,252,267,269,393,421,200,428,371,266,329,432,287,422,290,250,328,385,258,384,446,265,342,386,387,257,422,424,430,445,342,276,422,273,424,306,292,307,352,366,345,268,271,302,358,423,371,327,294,460,331,279,294,303,271,304,436,432,427,304,272,408,395,394,431,378,395,400,296,334,299,6,351,168,376,352,411,307,325,320,285,295,336,320,319,404,329,330,349,334,293,333,366,323,447,316,15,315,331,358,279,317,14,316,8,285,9,277,329,350,253,374,252,319,318,403,351,6,419,324,318,325,397,367,365,288,435,397,278,344,439,310,272,311,248,195,281,375,273,291,175,396,199,312,311,268,276,283,445,390,373,339,295,282,296,448,449,346,356,264,454,337,336,299,337,338,151,294,278,455,308,292,415,429,358,355,265,340,372,388,390,466,352,346,280,295,442,282,354,19,370,285,441,295,195,248,197,457,440,274,301,300,368,417,351,465,251,301,389,385,380,386,394,395,379,399,412,419,410,436,322,387,373,388,326,2,393,354,370,461,393,164,267,268,302,12,386,374,387,312,268,13,298,293,301,265,446,340,380,385,381,280,330,425,322,426,391,420,429,437,393,391,326,344,440,438,458,459,461,364,434,394,428,396,262,274,354,457,317,316,402,316,315,403,315,314,404,314,313,405,313,421,406,323,366,361,292,306,407,306,291,408,291,287,409,287,432,410,427,434,411,372,264,383,459,309,457,366,352,401,1,274,4,418,421,262,331,294,358,435,433,367,392,289,439,328,462,326,94,2,370,289,305,455,339,254,448,359,255,446,254,253,449,253,252,450,252,256,451,256,341,452,414,413,463,286,441,414,286,258,441,258,257,442,257,259,443,259,260,444,260,467,445,309,459,250,305,289,290,305,290,460,401,376,435,309,250,392,376,411,433,453,341,464,357,453,465,343,357,412,437,343,399,344,360,440,420,437,456,360,420,363,361,401,288,265,372,353,390,339,249,339,448,255];var L5e=[127,234,132,58,172,150,149,148,152,377,378,379,397,288,361,454,356,70,63,105,66,107,336,296,334,293,300,168,6,195,4,98,97,2,326,327,33,160,158,133,153,144,362,385,387,263,373,380,57,40,37,0,267,270,287,321,314,17,84,91,78,81,13,311,308,402,14,178],B5e=[33,133,362,263,1,62,308,159,145,386,374,6,102,331,2,13,14,70,105,107,336,334,300,54,10,284,50,280,234,454,58,288,152],W5e=[33,133,362,263,1,78,308],Hke=L5e.map(e=>Zh[e]),jke=B5e.map(e=>Zh[e]),qke=W5e.map(e=>Zh[e]);function Ai(e){let t=e.map(n=>n[0]);return t.push(e[e.length-1][1]),t}var V5e=[[61,146],[146,91],[91,181],[181,84],[84,17],[17,314],[314,405],[405,321],[321,375],[375,291],[61,185],[185,40],[40,39],[39,37],[37,0],[0,267],[267,269],[269,270],[270,409],[409,291],[78,95],[95,88],[88,178],[178,87],[87,14],[14,317],[317,402],[402,318],[318,324],[324,308],[78,191],[191,80],[80,81],[81,82],[82,13],[13,312],[312,311],[311,310],[310,415],[415,308]],U5e=[[263,249],[249,390],[390,373],[373,374],[374,380],[380,381],[381,382],[382,362],[263,466],[466,388],[388,387],[387,386],[386,385],[385,384],[384,398],[398,362]],G5e=[[276,283],[283,282],[282,295],[295,285],[300,293],[293,334],[334,296],[296,336]],H5e=[[474,475],[475,476],[476,477],[477,474]],j5e=[[33,7],[7,163],[163,144],[144,145],[145,153],[153,154],[154,155],[155,133],[33,246],[246,161],[161,160],[160,159],[159,158],[158,157],[157,173],[173,133]],q5e=[[46,53],[53,52],[52,65],[65,55],[70,63],[63,105],[105,66],[66,107]],X5e=[[469,470],[470,471],[471,472],[472,469]],K5e=[[10,338],[338,297],[297,332],[332,284],[284,251],[251,389],[389,356],[356,454],[454,323],[323,361],[361,288],[288,397],[397,365],[365,379],[379,378],[378,400],[400,377],[377,152],[152,148],[148,176],[176,149],[149,150],[150,136],[136,172],[172,58],[58,132],[132,93],[93,234],[234,127],[127,162],[162,21],[21,54],[54,103],[103,67],[67,109],[109,10]],Xke={lips:Ai(V5e),leftEye:Ai(U5e),leftEyebrow:Ai(G5e),leftIris:Ai(H5e),rightEye:Ai(j5e),rightEyebrow:Ai(q5e),rightIris:Ai(X5e),faceOval:Ai(K5e)};var vd=e=>[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])],H2=e=>[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2,1],j2=(e,t)=>e?[Math.trunc(Math.max(0,e.startPoint[0])),Math.trunc(Math.max(0,e.startPoint[1])),Math.trunc(Math.min(t.shape[2]||0,e.endPoint[0])-Math.max(0,e.startPoint[0])),Math.trunc(Math.min(t.shape[1]||0,e.endPoint[1])-Math.max(0,e.startPoint[1]))]:[0,0,0,0],q2=(e,t)=>e?[e.startPoint[0]/(t.shape[2]||0),e.startPoint[1]/(t.shape[1]||0),(e.endPoint[0]-e.startPoint[0])/(t.shape[2]||0),(e.endPoint[1]-e.startPoint[1])/(t.shape[1]||0)]:[0,0,0,0],iN=(e,t)=>{let n=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],s=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]];return{startPoint:n,endPoint:s,landmarks:e.landmarks,confidence:e.confidence}},zb=(e,t,n)=>{let s=t.shape[1],r=t.shape[2],a=[e.startPoint[1]/s,e.startPoint[0]/r,e.endPoint[1]/s,e.endPoint[0]/r],o=Ie.cropAndResize(t,[a],[0],n),i=fe(o,at.tf255);return J(o),i},X2=(e,t)=>{let n=H2(e),s=vd(e),r=[t*s[0]/2,t*s[1]/2];return{startPoint:[n[0]-r[0],n[1]-r[1]],endPoint:[n[0]+r[0],n[1]+r[1]],landmarks:e.landmarks,confidence:e.confidence}},K2=e=>{let t=H2(e),n=vd(e),s=Math.max(...n)/2;return{startPoint:[Math.round(t[0]-s),Math.round(t[1]-s)],endPoint:[Math.round(t[0]+s),Math.round(t[1]+s)],landmarks:e.landmarks,confidence:e.confidence}},lN=e=>{let t=e.map(s=>s[0]),n=e.map(s=>s[1]);return{startPoint:[Math.min(...t),Math.min(...n)],endPoint:[Math.max(...t),Math.max(...n)],landmarks:e}},Lb=[[1,0,0],[0,1,0],[0,0,1]],Z5e=e=>e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI)),Y5e=(e,t)=>Z5e(Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]));var aN=(e,t)=>[[1,0,e],[0,1,t],[0,0,1]],yu=(e,t)=>{let n=0;for(let s=0;s<e.length;s++)n+=e[s]*t[s];return n},J5e=(e,t)=>{let n=[];for(let s=0;s<e.length;s++)n.push(e[s][t]);return n},oN=(e,t)=>{let n=[],s=e.length;for(let r=0;r<s;r++){n.push([]);for(let a=0;a<s;a++)n[r].push(yu(e[r],J5e(t,a)))}return n},uN=(e,t)=>{let n=Math.cos(e),s=Math.sin(e),r=[[n,-s,0],[s,n,0],[0,0,1]],a=aN(t[0],t[1]),o=oN(a,r),i=aN(-t[0],-t[1]);return oN(o,i)},Q5e=e=>{let t=[[e[0][0],e[1][0]],[e[0][1],e[1][1]]],n=[e[0][2],e[1][2]],s=[-yu(t[0],n),-yu(t[1],n)];return[t[0].concat(s[0]),t[1].concat(s[1]),[0,0,1]]},exe=(e,t)=>[yu(e,t[0]),yu(e,t[1])];function cN(e){let t=e===192?{strides:[4],anchors:[1]}:{strides:[e/16,e/8],anchors:[2,6]},n=[];for(let s=0;s<t.strides.length;s++){let r=t.strides[s],a=Math.floor((e+r-1)/r),o=Math.floor((e+r-1)/r),i=t.anchors[s];for(let l=0;l<a;l++){let u=r*(l+.5);for(let c=0;c<o;c++){let p=r*(c+.5);for(let d=0;d<i;d++)n.push([p,u])}}}return n}function dN(e,t,n,s,r){let a=vd(t),o=e.map(h=>[a[0]/r*(h[0]-r/2),a[1]/r*(h[1]-r/2),h[2]||0]),i=n&&n!==0&&Math.abs(n)>.2,l=i?uN(n,[0,0]):Lb,u=i?o.map(h=>[...exe(h,l),h[2]]):o,c=i?Q5e(s):Lb,p=H2(t),d=[yu(p,c[0]),yu(p,c[1])];return u.map(h=>[Math.trunc(h[0]+d[0]),Math.trunc(h[1]+d[1]),Math.trunc(h[2]||0)])}function pN(e,t,n,s){let r=t.landmarks.length>=Fb.count?Fb.symmetryLine:mu.symmetryLine,a=0,o=Lb,i;if(e&&he.kernels.includes("rotatewithoffset"))if(a=Y5e(t.landmarks[r[0]],t.landmarks[r[1]]),a&&a!==0&&Math.abs(a)>.2){let u=H2(t),c=[u[0]/n.shape[2],u[1]/n.shape[1]],p=Ie.rotateWithOffset(n,a,0,c);o=uN(-a,u),i=zb(t,p,[s,s]),J(p)}else i=zb(t,n,[s,s]);else i=zb(t,n,[s,s]);return[a,o,i]}var txe=e=>{let t=e.map(s=>s[0]),n=e.map(s=>s[1]);return[Math.min(...t)+(Math.max(...t)-Math.min(...t))/2,Math.min(...n)+(Math.max(...n)-Math.min(...n))/2]},hN=(e,t)=>{let n=txe(e),s=vd(t);return{startPoint:[n[0]-s[0]/2,n[1]-s[1]/2],endPoint:[n[0]+s[0]/2,n[1]+s[1]/2]}};var fN=6,nxe=1.4,Ur,mN=null,xi=0,Yh=null,wd=()=>xi;async function gN(e){var t;return he.initial&&(Ur=null),Ur?e.debug&&re("cached model:",Ur.modelUrl):Ur=await je((t=e.face.detector)==null?void 0:t.modelPath),xi=Ur.executor&&Ur.inputs[0].shape?Ur.inputs[0].shape[2]:256,Yh=Ce(xi,"int32"),mN=fr(cN(xi)),Ur}function sxe(e){let t={};t.boxStarts=ze(e,[0,1],[-1,2]),t.centers=ue(t.boxStarts,mN),t.boxSizes=ze(e,[0,3],[-1,2]),t.boxSizesNormalized=fe(t.boxSizes,Yh),t.centersNormalized=fe(t.centers,Yh),t.halfBoxSize=fe(t.boxSizesNormalized,at.tf2),t.starts=me(t.centersNormalized,t.halfBoxSize),t.ends=ue(t.centersNormalized,t.halfBoxSize),t.startNormalized=z(t.starts,Yh),t.endNormalized=z(t.ends,Yh);let n=su([t.startNormalized,t.endNormalized],1);return Object.keys(t).forEach(s=>J(t[s])),n}async function yN(e,t){var i,l,u,c;if(!e||e.isDisposedInternal||e.shape.length!==4||e.shape[1]<1||e.shape[2]<1)return[];let n={};n.resized=Ie.resizeBilinear(e,[xi,xi]),n.div=fe(n.resized,at.tf127),n.normalized=me(n.div,at.tf05);let s=Ur==null?void 0:Ur.execute(n.normalized);if(Array.isArray(s)&&s.length>2){let p=s.sort((d,h)=>d.size-h.size);n.concat384=It([p[0],p[2]],2),n.concat512=It([p[1],p[3]],2),n.concat=It([n.concat512,n.concat384],1),n.batch=rt(n.concat,0)}else Array.isArray(s)?n.batch=rt(s[0]):n.batch=rt(s);J(s),n.boxes=sxe(n.batch),n.logits=ze(n.batch,[0,0],[-1,1]),n.sigmoid=$n(n.logits),n.scores=rt(n.sigmoid),n.nms=await Ie.nonMaxSuppressionAsync(n.boxes,n.scores,((i=t.face.detector)==null?void 0:i.maxDetected)||0,((l=t.face.detector)==null?void 0:l.iouThreshold)||0,((u=t.face.detector)==null?void 0:u.minConfidence)||0);let r=await n.nms.array(),a=[],o=await n.scores.data();for(let p=0;p<r.length;p++){let d=o[r[p]];if(d>(((c=t.face.detector)==null?void 0:c.minConfidence)||0)){let h={};h.bbox=ze(n.boxes,[r[p],0],[1,-1]),h.slice=ze(n.batch,[r[p],fN-1],[1,-1]),h.squeeze=rt(h.slice),h.landmarks=V(h.squeeze,[fN,-1]);let f=await h.bbox.data(),m={startPoint:[f[0],f[1]],endPoint:[f[2],f[3]],landmarks:await h.landmarks.array(),confidence:d},g=iN(m,[(e.shape[2]||0)/xi,(e.shape[1]||0)/xi]),y=X2(g,t.face.scale||nxe),x=K2(y);a.push(x),Object.keys(h).forEach(A=>J(h[A]))}}return Object.keys(n).forEach(p=>J(n[p])),a}var Z2={};fa(Z2,{connected:()=>Vb,kpt:()=>Wb});var Wb=["nose","leftEyeInside","leftEye","leftEyeOutside","rightEyeInside","rightEye","rightEyeOutside","leftEar","rightEar","leftMouth","rightMouth","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftPinky","rightPinky","leftIndex","rightIndex","leftThumb","rightThumb","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle","leftHeel","rightHeel","leftFoot","rightFoot","bodyCenter","bodyTop","leftPalm","leftHand","rightPalm","rightHand"],Vb={shoulders:["leftShoulder","rightShoulder"],hips:["rightHip","leftHip"],mouth:["leftMouth","rightMouth"],leftLegUpper:["leftHip","leftKnee"],leftLegLower:["leftKnee","leftAnkle"],leftFoot:["leftAnkle","leftHeel","leftFoot"],leftTorso:["leftShoulder","leftHip"],leftArmUpper:["leftShoulder","leftElbow"],leftArmLower:["leftElbow","leftWrist"],leftHand:["leftWrist","leftPalm"],leftHandPinky:["leftPalm","leftPinky"],leftHandIndex:["leftPalm","leftIndex"],leftHandThumb:["leftPalm","leftThumb"],leftEyeOutline:["leftEyeInside","leftEyeOutside"],rightLegUpper:["rightHip","rightKnee"],rightLegLower:["rightKnee","rightAnkle"],rightFoot:["rightAnkle","rightHeel","rightFoot"],rightTorso:["rightShoulder","rightHip"],rightArmUpper:["rightShoulder","rightElbow"],rightArmLower:["rightElbow","rightWrist"],rightHand:["rightWrist","rightPalm"],rightHandPinky:["rightPalm","rightPinky"],rightHandIndex:["rightPalm","rightIndex"],rightHandThumb:["rightPalm","rightThumb"],rightEyeOutline:["rightEyeInside","rightEyeOutside"]};var xN=224,rxe,axe=5,Y2=[8,16,32,32,32];function bN(){let e=[],t=0;for(;t<axe;){let n=0,s=t;for(;s<Y2.length&&Y2[s]===Y2[t];)n+=2,s++;let r=Y2[t],a=Math.ceil(xN/r),o=Math.ceil(xN/r);for(let i=0;i<a;++i)for(let l=0;l<o;++l)for(let u=0;u<n;++u)e.push({x:(l+.5)/o,y:(i+.5)/a});t=s}rxe={x:Pt(e.map(n=>n.x)),y:Pt(e.map(n=>n.y))}}function $a(e,t=[1,1]){let n=[e.map(i=>i[0]),e.map(i=>i[1])],s=[Math.min(...n[0]),Math.min(...n[1])],r=[Math.max(...n[0]),Math.max(...n[1])],a=[s[0],s[1],r[0]-s[0],r[1]-s[1]],o=[a[0]/t[0],a[1]/t[1],a[2]/t[0],a[3]/t[1]];return{box:a,boxRaw:o}}function vN(e,t=[1,1]){let n=[e.map(u=>u[0]),e.map(u=>u[1])],s=[Math.min(...n[0]),Math.min(...n[1])],r=[Math.max(...n[0]),Math.max(...n[1])],a=[(s[0]+r[0])/2,(s[1]+r[1])/2],o=Math.max(a[0]-s[0],a[1]-s[1],-a[0]+r[0],-a[1]+r[1]),i=[Math.trunc(a[0]-o),Math.trunc(a[1]-o),Math.trunc(2*o),Math.trunc(2*o)],l=[i[0]/t[0],i[1]/t[1],i[2]/t[0],i[3]/t[1]];return{box:i,boxRaw:l}}function J2(e,t){let n=[e[2]*t,e[3]*t];return[e[0]-(n[0]-e[2])/2,e[1]-(n[1]-e[3])/2,n[0],n[1]]}var SN={initial:!0},qn={detector:null,landmarks:null},kd={detector:[224,224],landmarks:[256,256]},Ub=Number.MAX_SAFE_INTEGER,ixe={landmarks:["ld_3d","activation_segmentation","activation_heatmap","world_3d","output_poseflag"],detector:[]},e1=null,Jh,bi=[[0,0],[0,0],[0,0],[0,0]],wN=0,kN=e=>1-1/(1+Math.exp(e));async function IN(e){var t;if(SN.initial&&(qn.detector=null),!qn.detector&&e.body.detector&&e.body.detector.modelPath){qn.detector=await je(e.body.detector.modelPath);let n=(t=qn.detector)!=null&&t.executor?Object.values(qn.detector.modelSignature.inputs):void 0;kd.detector[0]=Array.isArray(n)?parseInt(n[0].tensorShape.dim[1].size):0,kd.detector[1]=Array.isArray(n)?parseInt(n[0].tensorShape.dim[2].size):0}else e.debug&&qn.detector&&re("cached model:",qn.detector.modelUrl);return bN(),qn.detector}async function CN(e){var t;if(SN.initial&&(qn.landmarks=null),qn.landmarks)e.debug&&re("cached model:",qn.landmarks.modelUrl);else{qn.landmarks=await je(e.body.modelPath);let n=(t=qn.landmarks)!=null&&t.executor?Object.values(qn.landmarks.modelSignature.inputs):void 0;kd.landmarks[0]=Array.isArray(n)?parseInt(n[0].tensorShape.dim[1].size):0,kd.landmarks[1]=Array.isArray(n)?parseInt(n[0].tensorShape.dim[2].size):0}return qn.landmarks}function lxe(e,t){var r,a;let n={};if(!((r=e==null?void 0:e.shape)!=null&&r[1])||!((a=e==null?void 0:e.shape)!=null&&a[2]))return e;let s;if(Jh&&(n.cropped=Ie.cropAndResize(e,[Jh],[0],[e.shape[1],e.shape[2]])),e.shape[1]!==e.shape[2]){let o=[e.shape[2]>e.shape[1]?Math.trunc((e.shape[2]-e.shape[1])/2):0,e.shape[2]>e.shape[1]?Math.trunc((e.shape[2]-e.shape[1])/2):0],i=[e.shape[1]>e.shape[2]?Math.trunc((e.shape[1]-e.shape[2])/2):0,e.shape[1]>e.shape[2]?Math.trunc((e.shape[1]-e.shape[2])/2):0];bi=[[0,0],o,i,[0,0]],n.pad=sr(n.cropped||e,bi),n.resize=Ie.resizeBilinear(n.pad,[t,t]),s=fe(n.resize,at.tf255)}else e.shape[1]!==t?(n.resize=Ie.resizeBilinear(n.cropped||e,[t,t]),s=fe(n.resize,at.tf255)):s=fe(n.cropped||e,at.tf255);return Object.keys(n).forEach(o=>J(n[o])),s}function uxe(e,t){for(let n of e)n.position=[Math.trunc(n.position[0]*(t[0]+bi[2][0]+bi[2][1])/t[0]-bi[2][0]),Math.trunc(n.position[1]*(t[1]+bi[1][0]+bi[1][1])/t[1]-bi[1][0]),n.position[2]],n.positionRaw=[n.position[0]/t[0],n.position[1]/t[1],2*n.position[2]/(t[0]+t[1])];if(Jh)for(let n of e)n.positionRaw=[n.positionRaw[0]+Jh[1],n.positionRaw[1]+Jh[0],n.positionRaw[2]],n.position=[Math.trunc(n.positionRaw[0]*t[0]),Math.trunc(n.positionRaw[1]*t[1]),n.positionRaw[2]];return e}function cxe(e){let t=e.find(i=>i.part==="leftPalm"),n=e.find(i=>i.part==="leftWrist"),s=e.find(i=>i.part==="leftIndex");t.position[2]=((n.position[2]||0)+(s.position[2]||0))/2;let r=e.find(i=>i.part==="rightPalm"),a=e.find(i=>i.part==="rightWrist"),o=e.find(i=>i.part==="rightIndex");r.position[2]=((a.position[2]||0)+(o.position[2]||0))/2}async function dxe(e,t,n){var f,m;if(!((f=qn.landmarks)!=null&&f.executor))return null;let s={};[s.ld,s.segmentation,s.heatmap,s.world,s.poseflag]=(m=qn.landmarks)==null?void 0:m.execute(e,ixe.landmarks);let r=(await s.poseflag.data())[0],a=await s.ld.data(),o=await s.world.data();Object.keys(s).forEach(g=>J(s[g]));let i=[],l=5;for(let g=0;g<a.length/l;g++){let y=kN(a[l*g+3]),x=kN(a[l*g+4]),A=Math.trunc(100*y*x*r)/100,b=[a[l*g+0]/kd.landmarks[0],a[l*g+1]/kd.landmarks[1],a[l*g+2]+0],w=[Math.trunc(n[0]*b[0]),Math.trunc(n[1]*b[1]),b[2]],S=[o[l*g+0],o[l*g+1],o[l*g+2]+0];i.push({part:Wb[g],positionRaw:b,position:w,distance:S,score:A})}if(r<(t.body.minConfidence||0))return null;cxe(i);let u=uxe(i,n),c=u.map(g=>g.position),p=$a(c,[n[0],n[1]]),d={};for(let[g,y]of Object.entries(Vb)){let x=[];for(let A=0;A<y.length-1;A++){let b=u.find(S=>S.part===y[A]),w=u.find(S=>S.part===y[A+1]);b&&w&&x.push([b.position,w.position])}d[g]=x}return{id:0,score:Math.trunc(100*r)/100,box:p.box,boxRaw:p.boxRaw,keypoints:u,annotations:d}}async function Gb(e,t){let n=[e.shape[2]||0,e.shape[1]||0],s=(t.body.skipTime||0)>le()-wN,r=Ub<(t.body.skipFrames||0);if(t.skipAllowed&&s&&r&&e1!==null)Ub++;else{let a={};a.landmarks=lxe(e,256),e1=await dxe(a.landmarks,t,n),Object.keys(a).forEach(o=>J(a[o])),wN=le(),Ub=0}return e1?[e1]:[]}var Sd=[{class:1,label:"person"},{class:2,label:"bicycle"},{class:3,label:"car"},{class:4,label:"motorcycle"},{class:5,label:"airplane"},{class:6,label:"bus"},{class:7,label:"train"},{class:8,label:"truck"},{class:9,label:"boat"},{class:10,label:"traffic light"},{class:11,label:"fire hydrant"},{class:12,label:"stop sign"},{class:13,label:"parking meter"},{class:14,label:"bench"},{class:15,label:"bird"},{class:16,label:"cat"},{class:17,label:"dog"},{class:18,label:"horse"},{class:19,label:"sheep"},{class:20,label:"cow"},{class:21,label:"elephant"},{class:22,label:"bear"},{class:23,label:"zebra"},{class:24,label:"giraffe"},{class:25,label:"backpack"},{class:26,label:"umbrella"},{class:27,label:"handbag"},{class:28,label:"tie"},{class:29,label:"suitcase"},{class:30,label:"frisbee"},{class:31,label:"skis"},{class:32,label:"snowboard"},{class:33,label:"sports ball"},{class:34,label:"kite"},{class:35,label:"baseball bat"},{class:36,label:"baseball glove"},{class:37,label:"skateboard"},{class:38,label:"surfboard"},{class:39,label:"tennis racket"},{class:40,label:"bottle"},{class:41,label:"wine glass"},{class:42,label:"cup"},{class:43,label:"fork"},{class:44,label:"knife"},{class:45,label:"spoon"},{class:46,label:"bowl"},{class:47,label:"banana"},{class:48,label:"apple"},{class:49,label:"sandwich"},{class:50,label:"orange"},{class:51,label:"broccoli"},{class:52,label:"carrot"},{class:53,label:"hot dog"},{class:54,label:"pizza"},{class:55,label:"donut"},{class:56,label:"cake"},{class:57,label:"chair"},{class:58,label:"couch"},{class:59,label:"potted plant"},{class:60,label:"bed"},{class:61,label:"dining table"},{class:62,label:"toilet"},{class:63,label:"tv"},{class:64,label:"laptop"},{class:65,label:"mouse"},{class:66,label:"remote"},{class:67,label:"keyboard"},{class:68,label:"cell phone"},{class:69,label:"microwave"},{class:70,label:"oven"},{class:71,label:"toaster"},{class:72,label:"sink"},{class:73,label:"refrigerator"},{class:74,label:"book"},{class:75,label:"clock"},{class:76,label:"vase"},{class:77,label:"scissors"},{class:78,label:"teddy bear"},{class:79,label:"hair drier"},{class:80,label:"toothbrush"}];var Ss,Au=0,Hb=[],NN=0,jb=Number.MAX_SAFE_INTEGER;async function EN(e){if(he.initial&&(Ss=null),Ss)e.debug&&re("cached model:",Ss.modelUrl);else{Ss=await je(e.object.modelPath);let t=Ss!=null&&Ss.executor?Object.values(Ss.modelSignature.inputs):void 0;Au=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):0}return Ss}async function pxe(e,t,n){if(!e)return[];let s={},r=[],a=await e.array();s.squeeze=rt(e);let o=Yt(s.squeeze,6,1);s.stack=ln([o[1],o[0],o[3],o[2]],1),s.boxes=rt(s.stack),s.scores=rt(o[4]),s.classes=rt(o[5]),J([e,...o]),s.nms=await Ie.nonMaxSuppressionAsync(s.boxes,s.scores,n.object.maxDetected,n.object.iouThreshold,n.object.minConfidence||0);let i=await s.nms.data(),l=0;for(let u of Array.from(i)){let c=Math.trunc(100*a[0][u][4])/100,p=a[0][u][5];if(Number.isNaN(p))continue;let d=Sd[p].label,[h,f]=[a[0][u][0]/Au,a[0][u][1]/Au],m=[h,f,a[0][u][2]/Au-h,a[0][u][3]/Au-f],g=[Math.trunc(m[0]*t[0]),Math.trunc(m[1]*t[1]),Math.trunc(m[2]*t[0]),Math.trunc(m[3]*t[1])];r.push({id:l++,score:c,class:p,label:d,box:g,boxRaw:m})}return Object.keys(s).forEach(u=>J(s[u])),r}async function qb(e,t){if(!(Ss!=null&&Ss.executor))return[];let n=(t.object.skipTime||0)>le()-NN,s=jb<(t.object.skipFrames||0);return t.skipAllowed&&n&&s&&Hb.length>0?(jb++,Hb):(jb=0,new Promise(async r=>{let a=[e.shape[2]||0,e.shape[1]||0],o=Ie.resizeBilinear(e,[Au,Au]),i=t.object.enabled?Ss==null?void 0:Ss.execute(o,["tower_0/detections"]):null;NN=le(),J(o);let l=await pxe(i,a,t);Hb=l,r(l)}))}var t1={};fa(t1,{connected:()=>Kb,kpt:()=>Xb});var Xb=["head","neck","rightShoulder","rightElbow","rightWrist","chest","leftShoulder","leftElbow","leftWrist","bodyCenter","rightHip","rightKnee","rightAnkle","leftHip","leftKnee","leftAnkle"],Kb={leftLeg:["leftHip","leftKnee","leftAnkle"],rightLeg:["rightHip","rightKnee","rightAnkle"],torso:["leftShoulder","rightShoulder","rightHip","leftHip","leftShoulder"],leftArm:["leftShoulder","leftElbow","leftWrist"],rightArm:["rightShoulder","rightElbow","rightWrist"],head:[]};var vn,_N=0,ps={id:0,keypoints:[],box:[0,0,0,0],boxRaw:[0,0,0,0],score:0,annotations:{}},Zb=Number.MAX_SAFE_INTEGER;async function DN(e){return he.initial&&(vn=null),vn?e.debug&&re("cached model:",vn.modelUrl):vn=await je(e.body.modelPath),vn}async function hxe(e,t){let[n,s]=e.shape,r=V(e,[s*n]),a=gn(r,0),o=(await a.data())[0];if(o>t){let i=Ps(r,0),l=au(i,n),u=(await l.data())[0],c=fe(i,n),p=(await c.data())[0];return J([r,a,i,l,c]),[u,p,o]}return J([r,a]),[0,0,o]}async function Yb(e,t){if(!(vn!=null&&vn.executor))return[];let n=(t.body.skipTime||0)>le()-_N,s=Zb<(t.body.skipFrames||0);return t.skipAllowed&&n&&s&&Object.keys(ps.keypoints).length>0?(Zb++,[ps]):(Zb=0,new Promise(async r=>{let a=Z(()=>{if(!(vn!=null&&vn.inputs[0].shape))return null;let p=Ie.resizeBilinear(e,[vn.inputs[0].shape[2],vn.inputs[0].shape[1]],!1),d=z(p,at.tf2);return me(d,at.tf1)}),o;if(t.body.enabled&&(o=vn==null?void 0:vn.execute(a)),_N=le(),J(a),o){ps.keypoints.length=0;let p=rt(o);J(o);let d=On(p,2);J(p);for(let h=0;h<d.length;h++){let[f,m,g]=await hxe(d[h],t.body.minConfidence);g>(t.body.minConfidence||0)&&ps.keypoints.push({score:Math.round(100*g)/100,part:Xb[h],positionRaw:[f/vn.inputs[0].shape[2],m/vn.inputs[0].shape[1]],position:[Math.round(e.shape[2]*f/vn.inputs[0].shape[2]),Math.round(e.shape[1]*m/vn.inputs[0].shape[1])]})}d.forEach(h=>J(h))}ps.score=ps.keypoints.reduce((p,d)=>d.score>p?d.score:p,0);let i=ps.keypoints.map(p=>p.position[0]),l=ps.keypoints.map(p=>p.position[1]);ps.box=[Math.min(...i),Math.min(...l),Math.max(...i)-Math.min(...i),Math.max(...l)-Math.min(...l)];let u=ps.keypoints.map(p=>p.positionRaw[0]),c=ps.keypoints.map(p=>p.positionRaw[1]);ps.boxRaw=[Math.min(...u),Math.min(...c),Math.max(...u)-Math.min(...u),Math.max(...c)-Math.min(...c)];for(let[p,d]of Object.entries(Kb)){let h=[];for(let f=0;f<d.length-1;f++){let m=ps.keypoints.find(y=>y.part===d[f]),g=ps.keypoints.find(y=>y.part===d[f+1]);m&&g&&m.score>(t.body.minConfidence||0)&&g.score>(t.body.minConfidence||0)&&h.push([m.position,g.position])}ps.annotations[p]=h}r([ps])}))}var fxe=["angry","disgust","fear","happy","sad","surprise","neutral"],or,n1=[],PN=0,FN=0,Jb=Number.MAX_SAFE_INTEGER;async function ON(e){var t;return he.initial&&(or=null),or?e.debug&&re("cached model:",or.modelUrl):or=await je((t=e.face.emotion)==null?void 0:t.modelPath),or}async function Qb(e,t,n,s){var o,i;if(!or)return[];let r=Jb<(((o=t.face.emotion)==null?void 0:o.skipFrames)||0),a=(((i=t.face.emotion)==null?void 0:i.skipTime)||0)>le()-FN;return t.skipAllowed&&a&&r&&PN===s&&n1[n]&&n1[n].length>0?(Jb++,n1[n]):(Jb=0,new Promise(async l=>{var c;let u=[];if((c=t.face.emotion)!=null&&c.enabled){let p={},d=or!=null&&or.inputs[0].shape?or.inputs[0].shape[2]:0;p.resize=Ie.resizeBilinear(e,[d,d],!1),p.channels=z(p.resize,at.rgb),p.grayscale=ke(p.channels,3,!0),p.grayscaleSub=me(p.grayscale,at.tf05),p.grayscaleMul=z(p.grayscaleSub,at.tf2),p.emotion=or==null?void 0:or.execute(p.grayscaleMul),FN=le();let h=await p.emotion.data();for(let f=0;f<h.length;f++)h[f]>(t.face.emotion.minConfidence||0)&&u.push({score:Math.min(.99,Math.trunc(100*h[f])/100),emotion:fxe[f]});u.sort((f,m)=>m.score-f.score),Object.keys(p).forEach(f=>J(p[f]))}n1[n]=u,PN=s,l(u)}))}var Ws,e4=[],zN=0,LN=0,BN=Number.MAX_SAFE_INTEGER;async function WN(e){var t;return he.initial&&(Ws=null),Ws?e.debug&&re("cached model:",Ws.modelUrl):Ws=await je((t=e.face.mobilefacenet)==null?void 0:t.modelPath),Ws}async function t4(e,t,n,s){var o,i;if(!(Ws!=null&&Ws.executor))return[];let r=BN<(((o=t.face.mobilefacenet)==null?void 0:o.skipFrames)||0),a=(((i=t.face.mobilefacenet)==null?void 0:i.skipTime)||0)>le()-LN;return t.skipAllowed&&a&&r&&zN===s&&e4[n]?(BN++,e4[n]):new Promise(async l=>{var c;let u=[];if(((c=t.face.mobilefacenet)==null?void 0:c.enabled)&&(Ws==null?void 0:Ws.inputs[0].shape)){let p={};p.crop=Ie.resizeBilinear(e,[Ws.inputs[0].shape[2],Ws.inputs[0].shape[1]],!1),p.data=Ws.execute(p.crop);let d=await p.data.data();u=Array.from(d),Object.keys(p).forEach(h=>J(p[h]))}e4[n]=u,zN=s,LN=le(),l(u)})}var Vs,n4=[],UN=0,GN=0,HN=Number.MAX_SAFE_INTEGER;async function jN(e){return he.initial&&(Vs=null),Vs?e.debug&&re("cached model:",Vs.modelUrl):Vs=await je(e.face.insightface.modelPath),Vs}async function s4(e,t,n,s){var o,i;if(!(Vs!=null&&Vs.executor))return[];let r=HN<(((o=t.face.insightface)==null?void 0:o.skipFrames)||0),a=(((i=t.face.insightface)==null?void 0:i.skipTime)||0)>le()-GN;return t.skipAllowed&&a&&r&&UN===s&&n4[n]?(HN++,n4[n]):new Promise(async l=>{var c;let u=[];if(((c=t.face.insightface)==null?void 0:c.enabled)&&(Vs==null?void 0:Vs.inputs[0].shape)){let p={};p.crop=Ie.resizeBilinear(e,[Vs.inputs[0].shape[2],Vs.inputs[0].shape[1]],!1),p.data=Vs.execute(p.crop);let d=await p.data.data();u=Array.from(d),Object.keys(p).forEach(h=>J(p[h]))}n4[n]=u,UN=s,GN=le(),l(u)})}var Us,vi=0,mxe=2.3,r4=wr.leftEyeLower0,a4=wr.rightEyeLower0,Id={leftBounds:[r4[0],r4[r4.length-1]],rightBounds:[a4[0],a4[a4.length-1]]},Cd={upperCenter:3,lowerCenter:4,index:71,numCoordinates:76};async function YN(e){var t,n;return he.initial&&(Us=null),Us?e.debug&&re("cached model:",Us.modelUrl):Us=await je((t=e.face.iris)==null?void 0:t.modelPath),vi=(Us==null?void 0:Us.executor)&&((n=Us.inputs)==null?void 0:n[0].shape)?Us.inputs[0].shape[2]:0,vi===-1&&(vi=64),Us}function s1(e,t,n,s){for(let r=0;r<Ob.length;r++){let{key:a,indices:o}=Ob[r],i=wr[`${n}${a}`];if(!s||s.includes(a))for(let l=0;l<o.length;l++){let u=o[l];e[i[l]]=[t[u][0],t[u][1],(t[u][2]+e[i[l]][2])/2]}}}var gxe=e=>{let t=e[Id.leftBounds[0]][2],n=e[Id.rightBounds[0]][2];return t-n},XN=(e,t,n,s,r,a=!1)=>{let o=K2(X2(lN([e[n],e[s]]),mxe)),i=vd(o),l=Ie.cropAndResize(t,[[o.startPoint[1]/r,o.startPoint[0]/r,o.endPoint[1]/r,o.endPoint[0]/r]],[0],[vi,vi]);if(a&&he.kernels.includes("flipleftright")){let u=Ie.flipLeftRight(l);J(l),l=u}return{box:o,boxSize:i,crop:l}},KN=(e,t,n,s=!1)=>{let r=[];for(let a=0;a<Cd.numCoordinates;a++){let o=e[a*3],i=e[a*3+1],l=e[a*3+2];r.push([(s?1-o/vi:o/vi)*n[0]+t.startPoint[0],i/vi*n[1]+t.startPoint[1],l])}return{rawCoords:r,iris:r.slice(Cd.index)}},ZN=(e,t,n)=>{let s=e[wr[`${n}EyeUpper0`][Cd.upperCenter]][2],r=e[wr[`${n}EyeLower0`][Cd.lowerCenter]][2],a=(s+r)/2;return t.map((o,i)=>{let l=a;return i===2?l=s:i===4&&(l=r),[o[0],o[1],l]})};async function JN(e,t,n){if(!(Us!=null&&Us.executor))return e;let{box:s,boxSize:r,crop:a}=XN(e,t,Id.leftBounds[0],Id.leftBounds[1],n,!0),{box:o,boxSize:i,crop:l}=XN(e,t,Id.rightBounds[0],Id.rightBounds[1],n,!0),u=It([a,l]);J(a),J(l);let c=Us.execute(u);J(u);let p=await c.data();J(c);let d=p.slice(0,Cd.numCoordinates*3),{rawCoords:h,iris:f}=KN(d,s,r,!0),m=p.slice(Cd.numCoordinates*3),{rawCoords:g,iris:y}=KN(m,o,i,!1),x=gxe(e);Math.abs(x)<30?(s1(e,h,"left",null),s1(e,g,"right",null)):x<1?s1(e,h,"left",["EyeUpper0","EyeLower0"]):s1(e,g,"right",["EyeUpper0","EyeLower0"]);let A=ZN(e,f,"left"),b=ZN(e,y,"right");return e.concat(A).concat(b)}var yxe=[[61,146],[146,91],[91,181],[181,84],[84,17],[17,314],[314,405],[405,321],[321,375],[375,291],[61,185],[185,40],[40,39],[39,37],[37,0],[0,267],[267,269],[269,270],[270,409],[409,291],[78,95],[95,88],[88,178],[178,87],[87,14],[14,317],[317,402],[402,318],[318,324],[324,308],[78,191],[191,80],[80,81],[81,82],[82,13],[13,312],[312,311],[311,310],[310,415],[415,308]],Axe=[[263,249],[249,390],[390,373],[373,374],[374,380],[380,381],[381,382],[382,362],[263,466],[466,388],[388,387],[387,386],[386,385],[385,384],[384,398],[398,362]],xxe=[[276,283],[283,282],[282,295],[295,285],[300,293],[293,334],[334,296],[296,336]],bxe=[[474,475],[475,476],[476,477],[477,474]],vxe=[[33,7],[7,163],[163,144],[144,145],[145,153],[153,154],[154,155],[155,133],[33,246],[246,161],[161,160],[160,159],[159,158],[158,157],[157,173],[173,133]],wxe=[[46,53],[53,52],[52,65],[65,55],[70,63],[63,105],[105,66],[66,107]],kxe=[[469,470],[470,471],[471,472],[472,469]],Sxe=[[10,338],[338,297],[297,332],[332,284],[284,251],[251,389],[389,356],[356,454],[454,323],[323,361],[361,288],[288,397],[397,365],[365,379],[379,378],[378,400],[400,377],[377,152],[152,148],[148,176],[176,149],[149,150],[150,136],[136,172],[172,58],[58,132],[132,93],[93,234],[234,127],[127,162],[162,21],[21,54],[54,103],[103,67],[67,109],[109,10]];function wi(e){let t=e.map(n=>n[0]);return t.push(e[e.length-1][1]),t}var Ixe={lips:wi(yxe),leftEye:wi(Axe),leftEyebrow:wi(xxe),leftIris:wi(bxe),rightEye:wi(vxe),rightEyebrow:wi(wxe),rightIris:wi(kxe),faceOval:wi(Sxe)},Cxe=Object.entries(Ixe).map(([e,t])=>t.map(n=>[n,e])).flat(),CSe=new Map(Cxe),Qh=[61,146,91,181,84,17,314,405,321,375,291,185,40,39,37,0,267,269,270,409,78,95,88,178,87,14,317,402,318,324,308,191,80,81,82,13,312,311,310,415,76,77,90,180,85,16,315,404,320,307,306,184,74,73,72,11,302,303,304,408,62,96,89,179,86,15,316,403,319,325,292,183,42,41,38,12,268,271,272,407],xu=[33,7,163,144,145,153,154,155,133,246,161,160,159,158,157,173,130,25,110,24,23,22,26,112,243,247,30,29,27,28,56,190,226,31,228,229,230,231,232,233,244,113,225,224,223,222,221,189,35,124,46,53,52,65,143,111,117,118,119,120,121,128,245,156,70,63,105,66,107,55,193],bu=[263,249,390,373,374,380,381,382,362,466,388,387,386,385,384,398,359,255,339,254,253,252,256,341,463,467,260,259,257,258,286,414,446,261,448,449,450,451,452,453,464,342,445,444,443,442,441,413,265,353,276,283,282,295,372,340,346,347,348,349,350,357,465,383,300,293,334,296,336,285,417];async function tE(e,t){var a,o,i,l,u,c,p,d,h,f;let n={lips:await((o=(a=t.filter(m=>m.size===160))==null?void 0:a[0])==null?void 0:o.data()),irisL:await((l=(i=t.filter(m=>m.size===10))==null?void 0:i[0])==null?void 0:l.data()),eyeL:await((c=(u=t.filter(m=>m.size===142))==null?void 0:u[0])==null?void 0:c.data()),irisR:await((d=(p=t.filter(m=>m.size===10))==null?void 0:p[1])==null?void 0:d.data()),eyeR:await((f=(h=t.filter(m=>m.size===142))==null?void 0:h[1])==null?void 0:f.data())};for(let m of Object.values(n))if(!m)return e;let s=xu.reduce((m,g)=>m+=e[g][2],0)/xu.length;for(let m=0;m<n.irisL.length/2;m++)e.push([n.irisL[2*m+0],n.irisL[2*m+1],s]);let r=bu.reduce((m,g)=>m+=e[g][2],0)/bu.length;for(let m=0;m<n.irisR.length/2;m++)e.push([n.irisR[2*m+0],n.irisR[2*m+1],r]);for(let m=0;m<n.eyeL.length/2;m++)e[xu[m]]=[n.eyeL[2*m+0],n.eyeL[2*m+1],e[xu[m]][2]];for(let m=0;m<n.eyeR.length/2;m++)e[bu[m]]=[n.eyeR[2*m+0],n.eyeR[2*m+1],e[bu[m]][2]];for(let m=0;m<n.lips.length/2;m++)e[Qh[m]]=[n.lips[2*m+0],n.lips[2*m+1],e[Qh[m]][2]];return e}var la={boxes:[],skipped:Number.MAX_SAFE_INTEGER,timestamp:0},Mt=null,ef=0;async function nE(e,t){var l,u,c,p,d,h,f,m,g,y;if(!(Mt!=null&&Mt.executor))return[];let n=(((l=t.face.detector)==null?void 0:l.skipTime)||0)>le()-la.timestamp,s=la.skipped<(((u=t.face.detector)==null?void 0:u.skipFrames)||0);!t.skipAllowed||!n||!s||la.boxes.length===0?(la.boxes=await yN(e,t),la.timestamp=le(),la.skipped=0):la.skipped++;let r=[],a=[],o=0,i=ef;for(let x=0;x<la.boxes.length;x++){let A=la.boxes[x],b=0,w,S={id:o++,mesh:[],meshRaw:[],box:[0,0,0,0],boxRaw:[0,0,0,0],score:0,boxScore:0,faceScore:0,annotations:{}};if([b,w,S.tensor]=pN((c=t.face.detector)==null?void 0:c.rotation,A,e,(p=t.face.mesh)!=null&&p.enabled?ef:wd()),t.filter.equalization){let k=S.tensor?await L2(S.tensor):void 0;J(S.tensor),k&&(S.tensor=k)}if(S.boxScore=Math.round(100*A.confidence)/100,(d=t.face.mesh)!=null&&d.enabled)if(!Mt)t.debug&&re("face mesh detection requested, but model is not loaded");else{if(((h=t.face.attention)==null?void 0:h.enabled)&&!he.kernels.includes("atan2"))return t.face.attention.enabled=!1,J(S.tensor),r;let k=Mt.execute(S.tensor),_=await k.find(D=>D.shape[D.shape.length-1]===1).data();if(S.faceScore=Math.round(100*_[0])/100,S.faceScore<(((f=t.face.detector)==null?void 0:f.minConfidence)||1)){if(A.confidence=S.faceScore,t.face.mesh.keepInvalid){S.box=j2(A,e),S.boxRaw=q2(A,e),S.score=S.boxScore,S.mesh=A.landmarks.map(D=>[(A.startPoint[0]+A.endPoint[0])/2+(A.endPoint[0]+A.startPoint[0])*D[0]/wd(),(A.startPoint[1]+A.endPoint[1])/2+(A.endPoint[1]+A.startPoint[1])*D[1]/wd()]),S.meshRaw=S.mesh.map(D=>[D[0]/(e.shape[2]||1),D[1]/(e.shape[1]||1),(D[2]||0)/i]);for(let D of Object.keys(mu))S.annotations[D]=[S.mesh[mu[D]]]}}else{let D=k.find(M=>M.shape[M.shape.length-1]===1404),R=V(D,[-1,3]),P=await R.array();J(R),(m=t.face.attention)!=null&&m.enabled?P=await tE(P,k):(g=t.face.iris)!=null&&g.enabled&&(P=await JN(P,S.tensor,ef)),S.mesh=dN(P,A,b,w,ef),S.meshRaw=S.mesh.map(M=>[M[0]/(e.shape[2]||0),M[1]/(e.shape[1]||0),(M[2]||0)/i]);for(let M of Object.keys(wr))S.annotations[M]=wr[M].map(L=>S.mesh[L]);S.score=S.faceScore;let C={...hN(S.mesh,A),confidence:A.confidence,landmarks:A.landmarks};S.box=j2(C,e),S.boxRaw=q2(C,e),a.push(C)}J(k)}else{S.box=j2(A,e),S.boxRaw=q2(A,e),S.score=S.boxScore,S.mesh=A.landmarks.map(k=>[(A.startPoint[0]+A.endPoint[0])/2+(A.endPoint[0]+A.startPoint[0])*k[0]/wd(),(A.startPoint[1]+A.endPoint[1])/2+(A.endPoint[1]+A.startPoint[1])*k[1]/wd()]),S.meshRaw=S.mesh.map(k=>[k[0]/(e.shape[2]||0),k[1]/(e.shape[1]||0),(k[2]||0)/i]);for(let k of Object.keys(mu))S.annotations[k]=[S.mesh[mu[k]]]}S.score>(((y=t.face.detector)==null?void 0:y.minConfidence)||1)?r.push(S):J(S.tensor)}return la.boxes=a,r}async function sE(e){var t,n,s,r,a,o;return he.initial&&(Mt=null),((t=e.face.attention)==null?void 0:t.enabled)&&(Mt==null?void 0:Mt.signature)&&Object.keys(((n=Mt==null?void 0:Mt.signature)==null?void 0:n.outputs)||{}).length<6&&(Mt=null),Mt?e.debug&&re("cached model:",Mt.modelUrl):(s=e.face.attention)!=null&&s.enabled?Mt=await je(e.face.attention.modelPath):Mt=await je((r=e.face.mesh)==null?void 0:r.modelPath),ef=Mt.executor&&((a=Mt==null?void 0:Mt.inputs)==null?void 0:a[0].shape)?(o=Mt==null?void 0:Mt.inputs)==null?void 0:o[0].shape[2]:256,Mt}var rE=gu,aE=Zh;var hs,r1=[],oE=0,iE=0,i4=Number.MAX_SAFE_INTEGER;async function lE(e){var t;return he.initial&&(hs=null),hs?e.debug&&re("cached model:",hs.modelUrl):hs=await je((t=e.face.description)==null?void 0:t.modelPath),hs}function l4(e){let t=e.image||e.tensor||e;if(!(hs!=null&&hs.inputs[0].shape))return t;let n=Ie.resizeBilinear(t,[hs.inputs[0].shape[2],hs.inputs[0].shape[1]],!1),s=z(n,at.tf255);return J(n),s}async function u4(e,t,n,s){var o,i,l,u;if(!(hs!=null&&hs.executor))return{age:0,gender:"unknown",genderScore:0,descriptor:[]};let r=i4<(((o=t.face.description)==null?void 0:o.skipFrames)||0),a=(((i=t.face.description)==null?void 0:i.skipTime)||0)>le()-oE;return t.skipAllowed&&r&&a&&iE===s&&((l=r1[n])==null?void 0:l.age)&&((u=r1[n])==null?void 0:u.age)>0?(i4++,r1[n]):(i4=0,new Promise(async c=>{var d;let p={age:0,gender:"unknown",genderScore:0,descriptor:[]};if((d=t.face.description)!=null&&d.enabled){let h=l4(e),f=hs==null?void 0:hs.execute(h);oE=le(),J(h);let g=await f.find(E=>E.shape[1]===1).data(),y=Math.trunc(200*Math.abs(g[0]-.5))/100;y>(t.face.description.minConfidence||0)&&(p.gender=g[0]<=.5?"female":"male",p.genderScore=Math.min(.99,y));let x=Ps(f.find(E=>E.shape[1]===100),1),A=(await x.data())[0];J(x);let w=await f.find(E=>E.shape[1]===100).data();p.age=Math.round(w[A-1]>w[A+1]?10*A-100*w[A-1]:10*A+100*w[A+1])/10;let S=f.find(E=>E.shape[1]===1024),k=S?await S.data():[];p.descriptor=Array.from(k),f.forEach(E=>J(E))}r1[n]=p,iE=s,c(p)}))}function a1(e){return[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])]}function tf(e){return[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2]}function dE(e,t,n){let s=t.shape[1],r=t.shape[2],a=[[e.startPoint[1]/s,e.startPoint[0]/r,e.endPoint[1]/s,e.endPoint[0]/r]];return Ie.cropAndResize(t,a,[0],n)}function pE(e,t){let n=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],s=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]],r=e.palmLandmarks.map(a=>[a[0]*t[0],a[1]*t[1]]);return{startPoint:n,endPoint:s,palmLandmarks:r,confidence:e.confidence}}function o1(e,t=1.5){let n=tf(e),s=a1(e),r=[t*s[0]/2,t*s[1]/2],a=[n[0]-r[0],n[1]-r[1]],o=[n[0]+r[0],n[1]+r[1]];return{startPoint:a,endPoint:o,palmLandmarks:e.palmLandmarks}}function i1(e){let t=tf(e),n=a1(e),r=Math.max(...n)/2,a=[t[0]-r,t[1]-r],o=[t[0]+r,t[1]+r];return{startPoint:a,endPoint:o,palmLandmarks:e.palmLandmarks}}function Nxe(e){return e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI))}function hE(e,t){let n=Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]);return Nxe(n)}var uE=(e,t)=>[[1,0,e],[0,1,t],[0,0,1]];function ki(e,t){let n=0;for(let s=0;s<e.length;s++)n+=e[s]*t[s];return n}function Exe(e,t){let n=[];for(let s=0;s<e.length;s++)n.push(e[s][t]);return n}function cE(e,t){let n=[],s=e.length;for(let r=0;r<s;r++){n.push([]);for(let a=0;a<s;a++)n[r].push(ki(e[r],Exe(t,a)))}return n}function d4(e,t){let n=Math.cos(e),s=Math.sin(e),r=[[n,-s,0],[s,n,0],[0,0,1]],a=uE(t[0],t[1]),o=cE(a,r),i=uE(-t[0],-t[1]);return cE(o,i)}function fE(e){let t=[[e[0][0],e[1][0]],[e[0][1],e[1][1]]],n=[e[0][2],e[1][2]],s=[-ki(t[0],n),-ki(t[1],n)];return[t[0].concat(s[0]),t[1].concat(s[1]),[0,0,1]]}function p4(e,t){return[ki(e,t[0]),ki(e,t[1])]}var gE=[{x:.015625,y:.015625},{x:.015625,y:.015625},{x:.046875,y:.015625},{x:.046875,y:.015625},{x:.078125,y:.015625},{x:.078125,y:.015625},{x:.109375,y:.015625},{x:.109375,y:.015625},{x:.140625,y:.015625},{x:.140625,y:.015625},{x:.171875,y:.015625},{x:.171875,y:.015625},{x:.203125,y:.015625},{x:.203125,y:.015625},{x:.234375,y:.015625},{x:.234375,y:.015625},{x:.265625,y:.015625},{x:.265625,y:.015625},{x:.296875,y:.015625},{x:.296875,y:.015625},{x:.328125,y:.015625},{x:.328125,y:.015625},{x:.359375,y:.015625},{x:.359375,y:.015625},{x:.390625,y:.015625},{x:.390625,y:.015625},{x:.421875,y:.015625},{x:.421875,y:.015625},{x:.453125,y:.015625},{x:.453125,y:.015625},{x:.484375,y:.015625},{x:.484375,y:.015625},{x:.515625,y:.015625},{x:.515625,y:.015625},{x:.546875,y:.015625},{x:.546875,y:.015625},{x:.578125,y:.015625},{x:.578125,y:.015625},{x:.609375,y:.015625},{x:.609375,y:.015625},{x:.640625,y:.015625},{x:.640625,y:.015625},{x:.671875,y:.015625},{x:.671875,y:.015625},{x:.703125,y:.015625},{x:.703125,y:.015625},{x:.734375,y:.015625},{x:.734375,y:.015625},{x:.765625,y:.015625},{x:.765625,y:.015625},{x:.796875,y:.015625},{x:.796875,y:.015625},{x:.828125,y:.015625},{x:.828125,y:.015625},{x:.859375,y:.015625},{x:.859375,y:.015625},{x:.890625,y:.015625},{x:.890625,y:.015625},{x:.921875,y:.015625},{x:.921875,y:.015625},{x:.953125,y:.015625},{x:.953125,y:.015625},{x:.984375,y:.015625},{x:.984375,y:.015625},{x:.015625,y:.046875},{x:.015625,y:.046875},{x:.046875,y:.046875},{x:.046875,y:.046875},{x:.078125,y:.046875},{x:.078125,y:.046875},{x:.109375,y:.046875},{x:.109375,y:.046875},{x:.140625,y:.046875},{x:.140625,y:.046875},{x:.171875,y:.046875},{x:.171875,y:.046875},{x:.203125,y:.046875},{x:.203125,y:.046875},{x:.234375,y:.046875},{x:.234375,y:.046875},{x:.265625,y:.046875},{x:.265625,y:.046875},{x:.296875,y:.046875},{x:.296875,y:.046875},{x:.328125,y:.046875},{x:.328125,y:.046875},{x:.359375,y:.046875},{x:.359375,y:.046875},{x:.390625,y:.046875},{x:.390625,y:.046875},{x:.421875,y:.046875},{x:.421875,y:.046875},{x:.453125,y:.046875},{x:.453125,y:.046875},{x:.484375,y:.046875},{x:.484375,y:.046875},{x:.515625,y:.046875},{x:.515625,y:.046875},{x:.546875,y:.046875},{x:.546875,y:.046875},{x:.578125,y:.046875},{x:.578125,y:.046875},{x:.609375,y:.046875},{x:.609375,y:.046875},{x:.640625,y:.046875},{x:.640625,y:.046875},{x:.671875,y:.046875},{x:.671875,y:.046875},{x:.703125,y:.046875},{x:.703125,y:.046875},{x:.734375,y:.046875},{x:.734375,y:.046875},{x:.765625,y:.046875},{x:.765625,y:.046875},{x:.796875,y:.046875},{x:.796875,y:.046875},{x:.828125,y:.046875},{x:.828125,y:.046875},{x:.859375,y:.046875},{x:.859375,y:.046875},{x:.890625,y:.046875},{x:.890625,y:.046875},{x:.921875,y:.046875},{x:.921875,y:.046875},{x:.953125,y:.046875},{x:.953125,y:.046875},{x:.984375,y:.046875},{x:.984375,y:.046875},{x:.015625,y:.078125},{x:.015625,y:.078125},{x:.046875,y:.078125},{x:.046875,y:.078125},{x:.078125,y:.078125},{x:.078125,y:.078125},{x:.109375,y:.078125},{x:.109375,y:.078125},{x:.140625,y:.078125},{x:.140625,y:.078125},{x:.171875,y:.078125},{x:.171875,y:.078125},{x:.203125,y:.078125},{x:.203125,y:.078125},{x:.234375,y:.078125},{x:.234375,y:.078125},{x:.265625,y:.078125},{x:.265625,y:.078125},{x:.296875,y:.078125},{x:.296875,y:.078125},{x:.328125,y:.078125},{x:.328125,y:.078125},{x:.359375,y:.078125},{x:.359375,y:.078125},{x:.390625,y:.078125},{x:.390625,y:.078125},{x:.421875,y:.078125},{x:.421875,y:.078125},{x:.453125,y:.078125},{x:.453125,y:.078125},{x:.484375,y:.078125},{x:.484375,y:.078125},{x:.515625,y:.078125},{x:.515625,y:.078125},{x:.546875,y:.078125},{x:.546875,y:.078125},{x:.578125,y:.078125},{x:.578125,y:.078125},{x:.609375,y:.078125},{x:.609375,y:.078125},{x:.640625,y:.078125},{x:.640625,y:.078125},{x:.671875,y:.078125},{x:.671875,y:.078125},{x:.703125,y:.078125},{x:.703125,y:.078125},{x:.734375,y:.078125},{x:.734375,y:.078125},{x:.765625,y:.078125},{x:.765625,y:.078125},{x:.796875,y:.078125},{x:.796875,y:.078125},{x:.828125,y:.078125},{x:.828125,y:.078125},{x:.859375,y:.078125},{x:.859375,y:.078125},{x:.890625,y:.078125},{x:.890625,y:.078125},{x:.921875,y:.078125},{x:.921875,y:.078125},{x:.953125,y:.078125},{x:.953125,y:.078125},{x:.984375,y:.078125},{x:.984375,y:.078125},{x:.015625,y:.109375},{x:.015625,y:.109375},{x:.046875,y:.109375},{x:.046875,y:.109375},{x:.078125,y:.109375},{x:.078125,y:.109375},{x:.109375,y:.109375},{x:.109375,y:.109375},{x:.140625,y:.109375},{x:.140625,y:.109375},{x:.171875,y:.109375},{x:.171875,y:.109375},{x:.203125,y:.109375},{x:.203125,y:.109375},{x:.234375,y:.109375},{x:.234375,y:.109375},{x:.265625,y:.109375},{x:.265625,y:.109375},{x:.296875,y:.109375},{x:.296875,y:.109375},{x:.328125,y:.109375},{x:.328125,y:.109375},{x:.359375,y:.109375},{x:.359375,y:.109375},{x:.390625,y:.109375},{x:.390625,y:.109375},{x:.421875,y:.109375},{x:.421875,y:.109375},{x:.453125,y:.109375},{x:.453125,y:.109375},{x:.484375,y:.109375},{x:.484375,y:.109375},{x:.515625,y:.109375},{x:.515625,y:.109375},{x:.546875,y:.109375},{x:.546875,y:.109375},{x:.578125,y:.109375},{x:.578125,y:.109375},{x:.609375,y:.109375},{x:.609375,y:.109375},{x:.640625,y:.109375},{x:.640625,y:.109375},{x:.671875,y:.109375},{x:.671875,y:.109375},{x:.703125,y:.109375},{x:.703125,y:.109375},{x:.734375,y:.109375},{x:.734375,y:.109375},{x:.765625,y:.109375},{x:.765625,y:.109375},{x:.796875,y:.109375},{x:.796875,y:.109375},{x:.828125,y:.109375},{x:.828125,y:.109375},{x:.859375,y:.109375},{x:.859375,y:.109375},{x:.890625,y:.109375},{x:.890625,y:.109375},{x:.921875,y:.109375},{x:.921875,y:.109375},{x:.953125,y:.109375},{x:.953125,y:.109375},{x:.984375,y:.109375},{x:.984375,y:.109375},{x:.015625,y:.140625},{x:.015625,y:.140625},{x:.046875,y:.140625},{x:.046875,y:.140625},{x:.078125,y:.140625},{x:.078125,y:.140625},{x:.109375,y:.140625},{x:.109375,y:.140625},{x:.140625,y:.140625},{x:.140625,y:.140625},{x:.171875,y:.140625},{x:.171875,y:.140625},{x:.203125,y:.140625},{x:.203125,y:.140625},{x:.234375,y:.140625},{x:.234375,y:.140625},{x:.265625,y:.140625},{x:.265625,y:.140625},{x:.296875,y:.140625},{x:.296875,y:.140625},{x:.328125,y:.140625},{x:.328125,y:.140625},{x:.359375,y:.140625},{x:.359375,y:.140625},{x:.390625,y:.140625},{x:.390625,y:.140625},{x:.421875,y:.140625},{x:.421875,y:.140625},{x:.453125,y:.140625},{x:.453125,y:.140625},{x:.484375,y:.140625},{x:.484375,y:.140625},{x:.515625,y:.140625},{x:.515625,y:.140625},{x:.546875,y:.140625},{x:.546875,y:.140625},{x:.578125,y:.140625},{x:.578125,y:.140625},{x:.609375,y:.140625},{x:.609375,y:.140625},{x:.640625,y:.140625},{x:.640625,y:.140625},{x:.671875,y:.140625},{x:.671875,y:.140625},{x:.703125,y:.140625},{x:.703125,y:.140625},{x:.734375,y:.140625},{x:.734375,y:.140625},{x:.765625,y:.140625},{x:.765625,y:.140625},{x:.796875,y:.140625},{x:.796875,y:.140625},{x:.828125,y:.140625},{x:.828125,y:.140625},{x:.859375,y:.140625},{x:.859375,y:.140625},{x:.890625,y:.140625},{x:.890625,y:.140625},{x:.921875,y:.140625},{x:.921875,y:.140625},{x:.953125,y:.140625},{x:.953125,y:.140625},{x:.984375,y:.140625},{x:.984375,y:.140625},{x:.015625,y:.171875},{x:.015625,y:.171875},{x:.046875,y:.171875},{x:.046875,y:.171875},{x:.078125,y:.171875},{x:.078125,y:.171875},{x:.109375,y:.171875},{x:.109375,y:.171875},{x:.140625,y:.171875},{x:.140625,y:.171875},{x:.171875,y:.171875},{x:.171875,y:.171875},{x:.203125,y:.171875},{x:.203125,y:.171875},{x:.234375,y:.171875},{x:.234375,y:.171875},{x:.265625,y:.171875},{x:.265625,y:.171875},{x:.296875,y:.171875},{x:.296875,y:.171875},{x:.328125,y:.171875},{x:.328125,y:.171875},{x:.359375,y:.171875},{x:.359375,y:.171875},{x:.390625,y:.171875},{x:.390625,y:.171875},{x:.421875,y:.171875},{x:.421875,y:.171875},{x:.453125,y:.171875},{x:.453125,y:.171875},{x:.484375,y:.171875},{x:.484375,y:.171875},{x:.515625,y:.171875},{x:.515625,y:.171875},{x:.546875,y:.171875},{x:.546875,y:.171875},{x:.578125,y:.171875},{x:.578125,y:.171875},{x:.609375,y:.171875},{x:.609375,y:.171875},{x:.640625,y:.171875},{x:.640625,y:.171875},{x:.671875,y:.171875},{x:.671875,y:.171875},{x:.703125,y:.171875},{x:.703125,y:.171875},{x:.734375,y:.171875},{x:.734375,y:.171875},{x:.765625,y:.171875},{x:.765625,y:.171875},{x:.796875,y:.171875},{x:.796875,y:.171875},{x:.828125,y:.171875},{x:.828125,y:.171875},{x:.859375,y:.171875},{x:.859375,y:.171875},{x:.890625,y:.171875},{x:.890625,y:.171875},{x:.921875,y:.171875},{x:.921875,y:.171875},{x:.953125,y:.171875},{x:.953125,y:.171875},{x:.984375,y:.171875},{x:.984375,y:.171875},{x:.015625,y:.203125},{x:.015625,y:.203125},{x:.046875,y:.203125},{x:.046875,y:.203125},{x:.078125,y:.203125},{x:.078125,y:.203125},{x:.109375,y:.203125},{x:.109375,y:.203125},{x:.140625,y:.203125},{x:.140625,y:.203125},{x:.171875,y:.203125},{x:.171875,y:.203125},{x:.203125,y:.203125},{x:.203125,y:.203125},{x:.234375,y:.203125},{x:.234375,y:.203125},{x:.265625,y:.203125},{x:.265625,y:.203125},{x:.296875,y:.203125},{x:.296875,y:.203125},{x:.328125,y:.203125},{x:.328125,y:.203125},{x:.359375,y:.203125},{x:.359375,y:.203125},{x:.390625,y:.203125},{x:.390625,y:.203125},{x:.421875,y:.203125},{x:.421875,y:.203125},{x:.453125,y:.203125},{x:.453125,y:.203125},{x:.484375,y:.203125},{x:.484375,y:.203125},{x:.515625,y:.203125},{x:.515625,y:.203125},{x:.546875,y:.203125},{x:.546875,y:.203125},{x:.578125,y:.203125},{x:.578125,y:.203125},{x:.609375,y:.203125},{x:.609375,y:.203125},{x:.640625,y:.203125},{x:.640625,y:.203125},{x:.671875,y:.203125},{x:.671875,y:.203125},{x:.703125,y:.203125},{x:.703125,y:.203125},{x:.734375,y:.203125},{x:.734375,y:.203125},{x:.765625,y:.203125},{x:.765625,y:.203125},{x:.796875,y:.203125},{x:.796875,y:.203125},{x:.828125,y:.203125},{x:.828125,y:.203125},{x:.859375,y:.203125},{x:.859375,y:.203125},{x:.890625,y:.203125},{x:.890625,y:.203125},{x:.921875,y:.203125},{x:.921875,y:.203125},{x:.953125,y:.203125},{x:.953125,y:.203125},{x:.984375,y:.203125},{x:.984375,y:.203125},{x:.015625,y:.234375},{x:.015625,y:.234375},{x:.046875,y:.234375},{x:.046875,y:.234375},{x:.078125,y:.234375},{x:.078125,y:.234375},{x:.109375,y:.234375},{x:.109375,y:.234375},{x:.140625,y:.234375},{x:.140625,y:.234375},{x:.171875,y:.234375},{x:.171875,y:.234375},{x:.203125,y:.234375},{x:.203125,y:.234375},{x:.234375,y:.234375},{x:.234375,y:.234375},{x:.265625,y:.234375},{x:.265625,y:.234375},{x:.296875,y:.234375},{x:.296875,y:.234375},{x:.328125,y:.234375},{x:.328125,y:.234375},{x:.359375,y:.234375},{x:.359375,y:.234375},{x:.390625,y:.234375},{x:.390625,y:.234375},{x:.421875,y:.234375},{x:.421875,y:.234375},{x:.453125,y:.234375},{x:.453125,y:.234375},{x:.484375,y:.234375},{x:.484375,y:.234375},{x:.515625,y:.234375},{x:.515625,y:.234375},{x:.546875,y:.234375},{x:.546875,y:.234375},{x:.578125,y:.234375},{x:.578125,y:.234375},{x:.609375,y:.234375},{x:.609375,y:.234375},{x:.640625,y:.234375},{x:.640625,y:.234375},{x:.671875,y:.234375},{x:.671875,y:.234375},{x:.703125,y:.234375},{x:.703125,y:.234375},{x:.734375,y:.234375},{x:.734375,y:.234375},{x:.765625,y:.234375},{x:.765625,y:.234375},{x:.796875,y:.234375},{x:.796875,y:.234375},{x:.828125,y:.234375},{x:.828125,y:.234375},{x:.859375,y:.234375},{x:.859375,y:.234375},{x:.890625,y:.234375},{x:.890625,y:.234375},{x:.921875,y:.234375},{x:.921875,y:.234375},{x:.953125,y:.234375},{x:.953125,y:.234375},{x:.984375,y:.234375},{x:.984375,y:.234375},{x:.015625,y:.265625},{x:.015625,y:.265625},{x:.046875,y:.265625},{x:.046875,y:.265625},{x:.078125,y:.265625},{x:.078125,y:.265625},{x:.109375,y:.265625},{x:.109375,y:.265625},{x:.140625,y:.265625},{x:.140625,y:.265625},{x:.171875,y:.265625},{x:.171875,y:.265625},{x:.203125,y:.265625},{x:.203125,y:.265625},{x:.234375,y:.265625},{x:.234375,y:.265625},{x:.265625,y:.265625},{x:.265625,y:.265625},{x:.296875,y:.265625},{x:.296875,y:.265625},{x:.328125,y:.265625},{x:.328125,y:.265625},{x:.359375,y:.265625},{x:.359375,y:.265625},{x:.390625,y:.265625},{x:.390625,y:.265625},{x:.421875,y:.265625},{x:.421875,y:.265625},{x:.453125,y:.265625},{x:.453125,y:.265625},{x:.484375,y:.265625},{x:.484375,y:.265625},{x:.515625,y:.265625},{x:.515625,y:.265625},{x:.546875,y:.265625},{x:.546875,y:.265625},{x:.578125,y:.265625},{x:.578125,y:.265625},{x:.609375,y:.265625},{x:.609375,y:.265625},{x:.640625,y:.265625},{x:.640625,y:.265625},{x:.671875,y:.265625},{x:.671875,y:.265625},{x:.703125,y:.265625},{x:.703125,y:.265625},{x:.734375,y:.265625},{x:.734375,y:.265625},{x:.765625,y:.265625},{x:.765625,y:.265625},{x:.796875,y:.265625},{x:.796875,y:.265625},{x:.828125,y:.265625},{x:.828125,y:.265625},{x:.859375,y:.265625},{x:.859375,y:.265625},{x:.890625,y:.265625},{x:.890625,y:.265625},{x:.921875,y:.265625},{x:.921875,y:.265625},{x:.953125,y:.265625},{x:.953125,y:.265625},{x:.984375,y:.265625},{x:.984375,y:.265625},{x:.015625,y:.296875},{x:.015625,y:.296875},{x:.046875,y:.296875},{x:.046875,y:.296875},{x:.078125,y:.296875},{x:.078125,y:.296875},{x:.109375,y:.296875},{x:.109375,y:.296875},{x:.140625,y:.296875},{x:.140625,y:.296875},{x:.171875,y:.296875},{x:.171875,y:.296875},{x:.203125,y:.296875},{x:.203125,y:.296875},{x:.234375,y:.296875},{x:.234375,y:.296875},{x:.265625,y:.296875},{x:.265625,y:.296875},{x:.296875,y:.296875},{x:.296875,y:.296875},{x:.328125,y:.296875},{x:.328125,y:.296875},{x:.359375,y:.296875},{x:.359375,y:.296875},{x:.390625,y:.296875},{x:.390625,y:.296875},{x:.421875,y:.296875},{x:.421875,y:.296875},{x:.453125,y:.296875},{x:.453125,y:.296875},{x:.484375,y:.296875},{x:.484375,y:.296875},{x:.515625,y:.296875},{x:.515625,y:.296875},{x:.546875,y:.296875},{x:.546875,y:.296875},{x:.578125,y:.296875},{x:.578125,y:.296875},{x:.609375,y:.296875},{x:.609375,y:.296875},{x:.640625,y:.296875},{x:.640625,y:.296875},{x:.671875,y:.296875},{x:.671875,y:.296875},{x:.703125,y:.296875},{x:.703125,y:.296875},{x:.734375,y:.296875},{x:.734375,y:.296875},{x:.765625,y:.296875},{x:.765625,y:.296875},{x:.796875,y:.296875},{x:.796875,y:.296875},{x:.828125,y:.296875},{x:.828125,y:.296875},{x:.859375,y:.296875},{x:.859375,y:.296875},{x:.890625,y:.296875},{x:.890625,y:.296875},{x:.921875,y:.296875},{x:.921875,y:.296875},{x:.953125,y:.296875},{x:.953125,y:.296875},{x:.984375,y:.296875},{x:.984375,y:.296875},{x:.015625,y:.328125},{x:.015625,y:.328125},{x:.046875,y:.328125},{x:.046875,y:.328125},{x:.078125,y:.328125},{x:.078125,y:.328125},{x:.109375,y:.328125},{x:.109375,y:.328125},{x:.140625,y:.328125},{x:.140625,y:.328125},{x:.171875,y:.328125},{x:.171875,y:.328125},{x:.203125,y:.328125},{x:.203125,y:.328125},{x:.234375,y:.328125},{x:.234375,y:.328125},{x:.265625,y:.328125},{x:.265625,y:.328125},{x:.296875,y:.328125},{x:.296875,y:.328125},{x:.328125,y:.328125},{x:.328125,y:.328125},{x:.359375,y:.328125},{x:.359375,y:.328125},{x:.390625,y:.328125},{x:.390625,y:.328125},{x:.421875,y:.328125},{x:.421875,y:.328125},{x:.453125,y:.328125},{x:.453125,y:.328125},{x:.484375,y:.328125},{x:.484375,y:.328125},{x:.515625,y:.328125},{x:.515625,y:.328125},{x:.546875,y:.328125},{x:.546875,y:.328125},{x:.578125,y:.328125},{x:.578125,y:.328125},{x:.609375,y:.328125},{x:.609375,y:.328125},{x:.640625,y:.328125},{x:.640625,y:.328125},{x:.671875,y:.328125},{x:.671875,y:.328125},{x:.703125,y:.328125},{x:.703125,y:.328125},{x:.734375,y:.328125},{x:.734375,y:.328125},{x:.765625,y:.328125},{x:.765625,y:.328125},{x:.796875,y:.328125},{x:.796875,y:.328125},{x:.828125,y:.328125},{x:.828125,y:.328125},{x:.859375,y:.328125},{x:.859375,y:.328125},{x:.890625,y:.328125},{x:.890625,y:.328125},{x:.921875,y:.328125},{x:.921875,y:.328125},{x:.953125,y:.328125},{x:.953125,y:.328125},{x:.984375,y:.328125},{x:.984375,y:.328125},{x:.015625,y:.359375},{x:.015625,y:.359375},{x:.046875,y:.359375},{x:.046875,y:.359375},{x:.078125,y:.359375},{x:.078125,y:.359375},{x:.109375,y:.359375},{x:.109375,y:.359375},{x:.140625,y:.359375},{x:.140625,y:.359375},{x:.171875,y:.359375},{x:.171875,y:.359375},{x:.203125,y:.359375},{x:.203125,y:.359375},{x:.234375,y:.359375},{x:.234375,y:.359375},{x:.265625,y:.359375},{x:.265625,y:.359375},{x:.296875,y:.359375},{x:.296875,y:.359375},{x:.328125,y:.359375},{x:.328125,y:.359375},{x:.359375,y:.359375},{x:.359375,y:.359375},{x:.390625,y:.359375},{x:.390625,y:.359375},{x:.421875,y:.359375},{x:.421875,y:.359375},{x:.453125,y:.359375},{x:.453125,y:.359375},{x:.484375,y:.359375},{x:.484375,y:.359375},{x:.515625,y:.359375},{x:.515625,y:.359375},{x:.546875,y:.359375},{x:.546875,y:.359375},{x:.578125,y:.359375},{x:.578125,y:.359375},{x:.609375,y:.359375},{x:.609375,y:.359375},{x:.640625,y:.359375},{x:.640625,y:.359375},{x:.671875,y:.359375},{x:.671875,y:.359375},{x:.703125,y:.359375},{x:.703125,y:.359375},{x:.734375,y:.359375},{x:.734375,y:.359375},{x:.765625,y:.359375},{x:.765625,y:.359375},{x:.796875,y:.359375},{x:.796875,y:.359375},{x:.828125,y:.359375},{x:.828125,y:.359375},{x:.859375,y:.359375},{x:.859375,y:.359375},{x:.890625,y:.359375},{x:.890625,y:.359375},{x:.921875,y:.359375},{x:.921875,y:.359375},{x:.953125,y:.359375},{x:.953125,y:.359375},{x:.984375,y:.359375},{x:.984375,y:.359375},{x:.015625,y:.390625},{x:.015625,y:.390625},{x:.046875,y:.390625},{x:.046875,y:.390625},{x:.078125,y:.390625},{x:.078125,y:.390625},{x:.109375,y:.390625},{x:.109375,y:.390625},{x:.140625,y:.390625},{x:.140625,y:.390625},{x:.171875,y:.390625},{x:.171875,y:.390625},{x:.203125,y:.390625},{x:.203125,y:.390625},{x:.234375,y:.390625},{x:.234375,y:.390625},{x:.265625,y:.390625},{x:.265625,y:.390625},{x:.296875,y:.390625},{x:.296875,y:.390625},{x:.328125,y:.390625},{x:.328125,y:.390625},{x:.359375,y:.390625},{x:.359375,y:.390625},{x:.390625,y:.390625},{x:.390625,y:.390625},{x:.421875,y:.390625},{x:.421875,y:.390625},{x:.453125,y:.390625},{x:.453125,y:.390625},{x:.484375,y:.390625},{x:.484375,y:.390625},{x:.515625,y:.390625},{x:.515625,y:.390625},{x:.546875,y:.390625},{x:.546875,y:.390625},{x:.578125,y:.390625},{x:.578125,y:.390625},{x:.609375,y:.390625},{x:.609375,y:.390625},{x:.640625,y:.390625},{x:.640625,y:.390625},{x:.671875,y:.390625},{x:.671875,y:.390625},{x:.703125,y:.390625},{x:.703125,y:.390625},{x:.734375,y:.390625},{x:.734375,y:.390625},{x:.765625,y:.390625},{x:.765625,y:.390625},{x:.796875,y:.390625},{x:.796875,y:.390625},{x:.828125,y:.390625},{x:.828125,y:.390625},{x:.859375,y:.390625},{x:.859375,y:.390625},{x:.890625,y:.390625},{x:.890625,y:.390625},{x:.921875,y:.390625},{x:.921875,y:.390625},{x:.953125,y:.390625},{x:.953125,y:.390625},{x:.984375,y:.390625},{x:.984375,y:.390625},{x:.015625,y:.421875},{x:.015625,y:.421875},{x:.046875,y:.421875},{x:.046875,y:.421875},{x:.078125,y:.421875},{x:.078125,y:.421875},{x:.109375,y:.421875},{x:.109375,y:.421875},{x:.140625,y:.421875},{x:.140625,y:.421875},{x:.171875,y:.421875},{x:.171875,y:.421875},{x:.203125,y:.421875},{x:.203125,y:.421875},{x:.234375,y:.421875},{x:.234375,y:.421875},{x:.265625,y:.421875},{x:.265625,y:.421875},{x:.296875,y:.421875},{x:.296875,y:.421875},{x:.328125,y:.421875},{x:.328125,y:.421875},{x:.359375,y:.421875},{x:.359375,y:.421875},{x:.390625,y:.421875},{x:.390625,y:.421875},{x:.421875,y:.421875},{x:.421875,y:.421875},{x:.453125,y:.421875},{x:.453125,y:.421875},{x:.484375,y:.421875},{x:.484375,y:.421875},{x:.515625,y:.421875},{x:.515625,y:.421875},{x:.546875,y:.421875},{x:.546875,y:.421875},{x:.578125,y:.421875},{x:.578125,y:.421875},{x:.609375,y:.421875},{x:.609375,y:.421875},{x:.640625,y:.421875},{x:.640625,y:.421875},{x:.671875,y:.421875},{x:.671875,y:.421875},{x:.703125,y:.421875},{x:.703125,y:.421875},{x:.734375,y:.421875},{x:.734375,y:.421875},{x:.765625,y:.421875},{x:.765625,y:.421875},{x:.796875,y:.421875},{x:.796875,y:.421875},{x:.828125,y:.421875},{x:.828125,y:.421875},{x:.859375,y:.421875},{x:.859375,y:.421875},{x:.890625,y:.421875},{x:.890625,y:.421875},{x:.921875,y:.421875},{x:.921875,y:.421875},{x:.953125,y:.421875},{x:.953125,y:.421875},{x:.984375,y:.421875},{x:.984375,y:.421875},{x:.015625,y:.453125},{x:.015625,y:.453125},{x:.046875,y:.453125},{x:.046875,y:.453125},{x:.078125,y:.453125},{x:.078125,y:.453125},{x:.109375,y:.453125},{x:.109375,y:.453125},{x:.140625,y:.453125},{x:.140625,y:.453125},{x:.171875,y:.453125},{x:.171875,y:.453125},{x:.203125,y:.453125},{x:.203125,y:.453125},{x:.234375,y:.453125},{x:.234375,y:.453125},{x:.265625,y:.453125},{x:.265625,y:.453125},{x:.296875,y:.453125},{x:.296875,y:.453125},{x:.328125,y:.453125},{x:.328125,y:.453125},{x:.359375,y:.453125},{x:.359375,y:.453125},{x:.390625,y:.453125},{x:.390625,y:.453125},{x:.421875,y:.453125},{x:.421875,y:.453125},{x:.453125,y:.453125},{x:.453125,y:.453125},{x:.484375,y:.453125},{x:.484375,y:.453125},{x:.515625,y:.453125},{x:.515625,y:.453125},{x:.546875,y:.453125},{x:.546875,y:.453125},{x:.578125,y:.453125},{x:.578125,y:.453125},{x:.609375,y:.453125},{x:.609375,y:.453125},{x:.640625,y:.453125},{x:.640625,y:.453125},{x:.671875,y:.453125},{x:.671875,y:.453125},{x:.703125,y:.453125},{x:.703125,y:.453125},{x:.734375,y:.453125},{x:.734375,y:.453125},{x:.765625,y:.453125},{x:.765625,y:.453125},{x:.796875,y:.453125},{x:.796875,y:.453125},{x:.828125,y:.453125},{x:.828125,y:.453125},{x:.859375,y:.453125},{x:.859375,y:.453125},{x:.890625,y:.453125},{x:.890625,y:.453125},{x:.921875,y:.453125},{x:.921875,y:.453125},{x:.953125,y:.453125},{x:.953125,y:.453125},{x:.984375,y:.453125},{x:.984375,y:.453125},{x:.015625,y:.484375},{x:.015625,y:.484375},{x:.046875,y:.484375},{x:.046875,y:.484375},{x:.078125,y:.484375},{x:.078125,y:.484375},{x:.109375,y:.484375},{x:.109375,y:.484375},{x:.140625,y:.484375},{x:.140625,y:.484375},{x:.171875,y:.484375},{x:.171875,y:.484375},{x:.203125,y:.484375},{x:.203125,y:.484375},{x:.234375,y:.484375},{x:.234375,y:.484375},{x:.265625,y:.484375},{x:.265625,y:.484375},{x:.296875,y:.484375},{x:.296875,y:.484375},{x:.328125,y:.484375},{x:.328125,y:.484375},{x:.359375,y:.484375},{x:.359375,y:.484375},{x:.390625,y:.484375},{x:.390625,y:.484375},{x:.421875,y:.484375},{x:.421875,y:.484375},{x:.453125,y:.484375},{x:.453125,y:.484375},{x:.484375,y:.484375},{x:.484375,y:.484375},{x:.515625,y:.484375},{x:.515625,y:.484375},{x:.546875,y:.484375},{x:.546875,y:.484375},{x:.578125,y:.484375},{x:.578125,y:.484375},{x:.609375,y:.484375},{x:.609375,y:.484375},{x:.640625,y:.484375},{x:.640625,y:.484375},{x:.671875,y:.484375},{x:.671875,y:.484375},{x:.703125,y:.484375},{x:.703125,y:.484375},{x:.734375,y:.484375},{x:.734375,y:.484375},{x:.765625,y:.484375},{x:.765625,y:.484375},{x:.796875,y:.484375},{x:.796875,y:.484375},{x:.828125,y:.484375},{x:.828125,y:.484375},{x:.859375,y:.484375},{x:.859375,y:.484375},{x:.890625,y:.484375},{x:.890625,y:.484375},{x:.921875,y:.484375},{x:.921875,y:.484375},{x:.953125,y:.484375},{x:.953125,y:.484375},{x:.984375,y:.484375},{x:.984375,y:.484375},{x:.015625,y:.515625},{x:.015625,y:.515625},{x:.046875,y:.515625},{x:.046875,y:.515625},{x:.078125,y:.515625},{x:.078125,y:.515625},{x:.109375,y:.515625},{x:.109375,y:.515625},{x:.140625,y:.515625},{x:.140625,y:.515625},{x:.171875,y:.515625},{x:.171875,y:.515625},{x:.203125,y:.515625},{x:.203125,y:.515625},{x:.234375,y:.515625},{x:.234375,y:.515625},{x:.265625,y:.515625},{x:.265625,y:.515625},{x:.296875,y:.515625},{x:.296875,y:.515625},{x:.328125,y:.515625},{x:.328125,y:.515625},{x:.359375,y:.515625},{x:.359375,y:.515625},{x:.390625,y:.515625},{x:.390625,y:.515625},{x:.421875,y:.515625},{x:.421875,y:.515625},{x:.453125,y:.515625},{x:.453125,y:.515625},{x:.484375,y:.515625},{x:.484375,y:.515625},{x:.515625,y:.515625},{x:.515625,y:.515625},{x:.546875,y:.515625},{x:.546875,y:.515625},{x:.578125,y:.515625},{x:.578125,y:.515625},{x:.609375,y:.515625},{x:.609375,y:.515625},{x:.640625,y:.515625},{x:.640625,y:.515625},{x:.671875,y:.515625},{x:.671875,y:.515625},{x:.703125,y:.515625},{x:.703125,y:.515625},{x:.734375,y:.515625},{x:.734375,y:.515625},{x:.765625,y:.515625},{x:.765625,y:.515625},{x:.796875,y:.515625},{x:.796875,y:.515625},{x:.828125,y:.515625},{x:.828125,y:.515625},{x:.859375,y:.515625},{x:.859375,y:.515625},{x:.890625,y:.515625},{x:.890625,y:.515625},{x:.921875,y:.515625},{x:.921875,y:.515625},{x:.953125,y:.515625},{x:.953125,y:.515625},{x:.984375,y:.515625},{x:.984375,y:.515625},{x:.015625,y:.546875},{x:.015625,y:.546875},{x:.046875,y:.546875},{x:.046875,y:.546875},{x:.078125,y:.546875},{x:.078125,y:.546875},{x:.109375,y:.546875},{x:.109375,y:.546875},{x:.140625,y:.546875},{x:.140625,y:.546875},{x:.171875,y:.546875},{x:.171875,y:.546875},{x:.203125,y:.546875},{x:.203125,y:.546875},{x:.234375,y:.546875},{x:.234375,y:.546875},{x:.265625,y:.546875},{x:.265625,y:.546875},{x:.296875,y:.546875},{x:.296875,y:.546875},{x:.328125,y:.546875},{x:.328125,y:.546875},{x:.359375,y:.546875},{x:.359375,y:.546875},{x:.390625,y:.546875},{x:.390625,y:.546875},{x:.421875,y:.546875},{x:.421875,y:.546875},{x:.453125,y:.546875},{x:.453125,y:.546875},{x:.484375,y:.546875},{x:.484375,y:.546875},{x:.515625,y:.546875},{x:.515625,y:.546875},{x:.546875,y:.546875},{x:.546875,y:.546875},{x:.578125,y:.546875},{x:.578125,y:.546875},{x:.609375,y:.546875},{x:.609375,y:.546875},{x:.640625,y:.546875},{x:.640625,y:.546875},{x:.671875,y:.546875},{x:.671875,y:.546875},{x:.703125,y:.546875},{x:.703125,y:.546875},{x:.734375,y:.546875},{x:.734375,y:.546875},{x:.765625,y:.546875},{x:.765625,y:.546875},{x:.796875,y:.546875},{x:.796875,y:.546875},{x:.828125,y:.546875},{x:.828125,y:.546875},{x:.859375,y:.546875},{x:.859375,y:.546875},{x:.890625,y:.546875},{x:.890625,y:.546875},{x:.921875,y:.546875},{x:.921875,y:.546875},{x:.953125,y:.546875},{x:.953125,y:.546875},{x:.984375,y:.546875},{x:.984375,y:.546875},{x:.015625,y:.578125},{x:.015625,y:.578125},{x:.046875,y:.578125},{x:.046875,y:.578125},{x:.078125,y:.578125},{x:.078125,y:.578125},{x:.109375,y:.578125},{x:.109375,y:.578125},{x:.140625,y:.578125},{x:.140625,y:.578125},{x:.171875,y:.578125},{x:.171875,y:.578125},{x:.203125,y:.578125},{x:.203125,y:.578125},{x:.234375,y:.578125},{x:.234375,y:.578125},{x:.265625,y:.578125},{x:.265625,y:.578125},{x:.296875,y:.578125},{x:.296875,y:.578125},{x:.328125,y:.578125},{x:.328125,y:.578125},{x:.359375,y:.578125},{x:.359375,y:.578125},{x:.390625,y:.578125},{x:.390625,y:.578125},{x:.421875,y:.578125},{x:.421875,y:.578125},{x:.453125,y:.578125},{x:.453125,y:.578125},{x:.484375,y:.578125},{x:.484375,y:.578125},{x:.515625,y:.578125},{x:.515625,y:.578125},{x:.546875,y:.578125},{x:.546875,y:.578125},{x:.578125,y:.578125},{x:.578125,y:.578125},{x:.609375,y:.578125},{x:.609375,y:.578125},{x:.640625,y:.578125},{x:.640625,y:.578125},{x:.671875,y:.578125},{x:.671875,y:.578125},{x:.703125,y:.578125},{x:.703125,y:.578125},{x:.734375,y:.578125},{x:.734375,y:.578125},{x:.765625,y:.578125},{x:.765625,y:.578125},{x:.796875,y:.578125},{x:.796875,y:.578125},{x:.828125,y:.578125},{x:.828125,y:.578125},{x:.859375,y:.578125},{x:.859375,y:.578125},{x:.890625,y:.578125},{x:.890625,y:.578125},{x:.921875,y:.578125},{x:.921875,y:.578125},{x:.953125,y:.578125},{x:.953125,y:.578125},{x:.984375,y:.578125},{x:.984375,y:.578125},{x:.015625,y:.609375},{x:.015625,y:.609375},{x:.046875,y:.609375},{x:.046875,y:.609375},{x:.078125,y:.609375},{x:.078125,y:.609375},{x:.109375,y:.609375},{x:.109375,y:.609375},{x:.140625,y:.609375},{x:.140625,y:.609375},{x:.171875,y:.609375},{x:.171875,y:.609375},{x:.203125,y:.609375},{x:.203125,y:.609375},{x:.234375,y:.609375},{x:.234375,y:.609375},{x:.265625,y:.609375},{x:.265625,y:.609375},{x:.296875,y:.609375},{x:.296875,y:.609375},{x:.328125,y:.609375},{x:.328125,y:.609375},{x:.359375,y:.609375},{x:.359375,y:.609375},{x:.390625,y:.609375},{x:.390625,y:.609375},{x:.421875,y:.609375},{x:.421875,y:.609375},{x:.453125,y:.609375},{x:.453125,y:.609375},{x:.484375,y:.609375},{x:.484375,y:.609375},{x:.515625,y:.609375},{x:.515625,y:.609375},{x:.546875,y:.609375},{x:.546875,y:.609375},{x:.578125,y:.609375},{x:.578125,y:.609375},{x:.609375,y:.609375},{x:.609375,y:.609375},{x:.640625,y:.609375},{x:.640625,y:.609375},{x:.671875,y:.609375},{x:.671875,y:.609375},{x:.703125,y:.609375},{x:.703125,y:.609375},{x:.734375,y:.609375},{x:.734375,y:.609375},{x:.765625,y:.609375},{x:.765625,y:.609375},{x:.796875,y:.609375},{x:.796875,y:.609375},{x:.828125,y:.609375},{x:.828125,y:.609375},{x:.859375,y:.609375},{x:.859375,y:.609375},{x:.890625,y:.609375},{x:.890625,y:.609375},{x:.921875,y:.609375},{x:.921875,y:.609375},{x:.953125,y:.609375},{x:.953125,y:.609375},{x:.984375,y:.609375},{x:.984375,y:.609375},{x:.015625,y:.640625},{x:.015625,y:.640625},{x:.046875,y:.640625},{x:.046875,y:.640625},{x:.078125,y:.640625},{x:.078125,y:.640625},{x:.109375,y:.640625},{x:.109375,y:.640625},{x:.140625,y:.640625},{x:.140625,y:.640625},{x:.171875,y:.640625},{x:.171875,y:.640625},{x:.203125,y:.640625},{x:.203125,y:.640625},{x:.234375,y:.640625},{x:.234375,y:.640625},{x:.265625,y:.640625},{x:.265625,y:.640625},{x:.296875,y:.640625},{x:.296875,y:.640625},{x:.328125,y:.640625},{x:.328125,y:.640625},{x:.359375,y:.640625},{x:.359375,y:.640625},{x:.390625,y:.640625},{x:.390625,y:.640625},{x:.421875,y:.640625},{x:.421875,y:.640625},{x:.453125,y:.640625},{x:.453125,y:.640625},{x:.484375,y:.640625},{x:.484375,y:.640625},{x:.515625,y:.640625},{x:.515625,y:.640625},{x:.546875,y:.640625},{x:.546875,y:.640625},{x:.578125,y:.640625},{x:.578125,y:.640625},{x:.609375,y:.640625},{x:.609375,y:.640625},{x:.640625,y:.640625},{x:.640625,y:.640625},{x:.671875,y:.640625},{x:.671875,y:.640625},{x:.703125,y:.640625},{x:.703125,y:.640625},{x:.734375,y:.640625},{x:.734375,y:.640625},{x:.765625,y:.640625},{x:.765625,y:.640625},{x:.796875,y:.640625},{x:.796875,y:.640625},{x:.828125,y:.640625},{x:.828125,y:.640625},{x:.859375,y:.640625},{x:.859375,y:.640625},{x:.890625,y:.640625},{x:.890625,y:.640625},{x:.921875,y:.640625},{x:.921875,y:.640625},{x:.953125,y:.640625},{x:.953125,y:.640625},{x:.984375,y:.640625},{x:.984375,y:.640625},{x:.015625,y:.671875},{x:.015625,y:.671875},{x:.046875,y:.671875},{x:.046875,y:.671875},{x:.078125,y:.671875},{x:.078125,y:.671875},{x:.109375,y:.671875},{x:.109375,y:.671875},{x:.140625,y:.671875},{x:.140625,y:.671875},{x:.171875,y:.671875},{x:.171875,y:.671875},{x:.203125,y:.671875},{x:.203125,y:.671875},{x:.234375,y:.671875},{x:.234375,y:.671875},{x:.265625,y:.671875},{x:.265625,y:.671875},{x:.296875,y:.671875},{x:.296875,y:.671875},{x:.328125,y:.671875},{x:.328125,y:.671875},{x:.359375,y:.671875},{x:.359375,y:.671875},{x:.390625,y:.671875},{x:.390625,y:.671875},{x:.421875,y:.671875},{x:.421875,y:.671875},{x:.453125,y:.671875},{x:.453125,y:.671875},{x:.484375,y:.671875},{x:.484375,y:.671875},{x:.515625,y:.671875},{x:.515625,y:.671875},{x:.546875,y:.671875},{x:.546875,y:.671875},{x:.578125,y:.671875},{x:.578125,y:.671875},{x:.609375,y:.671875},{x:.609375,y:.671875},{x:.640625,y:.671875},{x:.640625,y:.671875},{x:.671875,y:.671875},{x:.671875,y:.671875},{x:.703125,y:.671875},{x:.703125,y:.671875},{x:.734375,y:.671875},{x:.734375,y:.671875},{x:.765625,y:.671875},{x:.765625,y:.671875},{x:.796875,y:.671875},{x:.796875,y:.671875},{x:.828125,y:.671875},{x:.828125,y:.671875},{x:.859375,y:.671875},{x:.859375,y:.671875},{x:.890625,y:.671875},{x:.890625,y:.671875},{x:.921875,y:.671875},{x:.921875,y:.671875},{x:.953125,y:.671875},{x:.953125,y:.671875},{x:.984375,y:.671875},{x:.984375,y:.671875},{x:.015625,y:.703125},{x:.015625,y:.703125},{x:.046875,y:.703125},{x:.046875,y:.703125},{x:.078125,y:.703125},{x:.078125,y:.703125},{x:.109375,y:.703125},{x:.109375,y:.703125},{x:.140625,y:.703125},{x:.140625,y:.703125},{x:.171875,y:.703125},{x:.171875,y:.703125},{x:.203125,y:.703125},{x:.203125,y:.703125},{x:.234375,y:.703125},{x:.234375,y:.703125},{x:.265625,y:.703125},{x:.265625,y:.703125},{x:.296875,y:.703125},{x:.296875,y:.703125},{x:.328125,y:.703125},{x:.328125,y:.703125},{x:.359375,y:.703125},{x:.359375,y:.703125},{x:.390625,y:.703125},{x:.390625,y:.703125},{x:.421875,y:.703125},{x:.421875,y:.703125},{x:.453125,y:.703125},{x:.453125,y:.703125},{x:.484375,y:.703125},{x:.484375,y:.703125},{x:.515625,y:.703125},{x:.515625,y:.703125},{x:.546875,y:.703125},{x:.546875,y:.703125},{x:.578125,y:.703125},{x:.578125,y:.703125},{x:.609375,y:.703125},{x:.609375,y:.703125},{x:.640625,y:.703125},{x:.640625,y:.703125},{x:.671875,y:.703125},{x:.671875,y:.703125},{x:.703125,y:.703125},{x:.703125,y:.703125},{x:.734375,y:.703125},{x:.734375,y:.703125},{x:.765625,y:.703125},{x:.765625,y:.703125},{x:.796875,y:.703125},{x:.796875,y:.703125},{x:.828125,y:.703125},{x:.828125,y:.703125},{x:.859375,y:.703125},{x:.859375,y:.703125},{x:.890625,y:.703125},{x:.890625,y:.703125},{x:.921875,y:.703125},{x:.921875,y:.703125},{x:.953125,y:.703125},{x:.953125,y:.703125},{x:.984375,y:.703125},{x:.984375,y:.703125},{x:.015625,y:.734375},{x:.015625,y:.734375},{x:.046875,y:.734375},{x:.046875,y:.734375},{x:.078125,y:.734375},{x:.078125,y:.734375},{x:.109375,y:.734375},{x:.109375,y:.734375},{x:.140625,y:.734375},{x:.140625,y:.734375},{x:.171875,y:.734375},{x:.171875,y:.734375},{x:.203125,y:.734375},{x:.203125,y:.734375},{x:.234375,y:.734375},{x:.234375,y:.734375},{x:.265625,y:.734375},{x:.265625,y:.734375},{x:.296875,y:.734375},{x:.296875,y:.734375},{x:.328125,y:.734375},{x:.328125,y:.734375},{x:.359375,y:.734375},{x:.359375,y:.734375},{x:.390625,y:.734375},{x:.390625,y:.734375},{x:.421875,y:.734375},{x:.421875,y:.734375},{x:.453125,y:.734375},{x:.453125,y:.734375},{x:.484375,y:.734375},{x:.484375,y:.734375},{x:.515625,y:.734375},{x:.515625,y:.734375},{x:.546875,y:.734375},{x:.546875,y:.734375},{x:.578125,y:.734375},{x:.578125,y:.734375},{x:.609375,y:.734375},{x:.609375,y:.734375},{x:.640625,y:.734375},{x:.640625,y:.734375},{x:.671875,y:.734375},{x:.671875,y:.734375},{x:.703125,y:.734375},{x:.703125,y:.734375},{x:.734375,y:.734375},{x:.734375,y:.734375},{x:.765625,y:.734375},{x:.765625,y:.734375},{x:.796875,y:.734375},{x:.796875,y:.734375},{x:.828125,y:.734375},{x:.828125,y:.734375},{x:.859375,y:.734375},{x:.859375,y:.734375},{x:.890625,y:.734375},{x:.890625,y:.734375},{x:.921875,y:.734375},{x:.921875,y:.734375},{x:.953125,y:.734375},{x:.953125,y:.734375},{x:.984375,y:.734375},{x:.984375,y:.734375},{x:.015625,y:.765625},{x:.015625,y:.765625},{x:.046875,y:.765625},{x:.046875,y:.765625},{x:.078125,y:.765625},{x:.078125,y:.765625},{x:.109375,y:.765625},{x:.109375,y:.765625},{x:.140625,y:.765625},{x:.140625,y:.765625},{x:.171875,y:.765625},{x:.171875,y:.765625},{x:.203125,y:.765625},{x:.203125,y:.765625},{x:.234375,y:.765625},{x:.234375,y:.765625},{x:.265625,y:.765625},{x:.265625,y:.765625},{x:.296875,y:.765625},{x:.296875,y:.765625},{x:.328125,y:.765625},{x:.328125,y:.765625},{x:.359375,y:.765625},{x:.359375,y:.765625},{x:.390625,y:.765625},{x:.390625,y:.765625},{x:.421875,y:.765625},{x:.421875,y:.765625},{x:.453125,y:.765625},{x:.453125,y:.765625},{x:.484375,y:.765625},{x:.484375,y:.765625},{x:.515625,y:.765625},{x:.515625,y:.765625},{x:.546875,y:.765625},{x:.546875,y:.765625},{x:.578125,y:.765625},{x:.578125,y:.765625},{x:.609375,y:.765625},{x:.609375,y:.765625},{x:.640625,y:.765625},{x:.640625,y:.765625},{x:.671875,y:.765625},{x:.671875,y:.765625},{x:.703125,y:.765625},{x:.703125,y:.765625},{x:.734375,y:.765625},{x:.734375,y:.765625},{x:.765625,y:.765625},{x:.765625,y:.765625},{x:.796875,y:.765625},{x:.796875,y:.765625},{x:.828125,y:.765625},{x:.828125,y:.765625},{x:.859375,y:.765625},{x:.859375,y:.765625},{x:.890625,y:.765625},{x:.890625,y:.765625},{x:.921875,y:.765625},{x:.921875,y:.765625},{x:.953125,y:.765625},{x:.953125,y:.765625},{x:.984375,y:.765625},{x:.984375,y:.765625},{x:.015625,y:.796875},{x:.015625,y:.796875},{x:.046875,y:.796875},{x:.046875,y:.796875},{x:.078125,y:.796875},{x:.078125,y:.796875},{x:.109375,y:.796875},{x:.109375,y:.796875},{x:.140625,y:.796875},{x:.140625,y:.796875},{x:.171875,y:.796875},{x:.171875,y:.796875},{x:.203125,y:.796875},{x:.203125,y:.796875},{x:.234375,y:.796875},{x:.234375,y:.796875},{x:.265625,y:.796875},{x:.265625,y:.796875},{x:.296875,y:.796875},{x:.296875,y:.796875},{x:.328125,y:.796875},{x:.328125,y:.796875},{x:.359375,y:.796875},{x:.359375,y:.796875},{x:.390625,y:.796875},{x:.390625,y:.796875},{x:.421875,y:.796875},{x:.421875,y:.796875},{x:.453125,y:.796875},{x:.453125,y:.796875},{x:.484375,y:.796875},{x:.484375,y:.796875},{x:.515625,y:.796875},{x:.515625,y:.796875},{x:.546875,y:.796875},{x:.546875,y:.796875},{x:.578125,y:.796875},{x:.578125,y:.796875},{x:.609375,y:.796875},{x:.609375,y:.796875},{x:.640625,y:.796875},{x:.640625,y:.796875},{x:.671875,y:.796875},{x:.671875,y:.796875},{x:.703125,y:.796875},{x:.703125,y:.796875},{x:.734375,y:.796875},{x:.734375,y:.796875},{x:.765625,y:.796875},{x:.765625,y:.796875},{x:.796875,y:.796875},{x:.796875,y:.796875},{x:.828125,y:.796875},{x:.828125,y:.796875},{x:.859375,y:.796875},{x:.859375,y:.796875},{x:.890625,y:.796875},{x:.890625,y:.796875},{x:.921875,y:.796875},{x:.921875,y:.796875},{x:.953125,y:.796875},{x:.953125,y:.796875},{x:.984375,y:.796875},{x:.984375,y:.796875},{x:.015625,y:.828125},{x:.015625,y:.828125},{x:.046875,y:.828125},{x:.046875,y:.828125},{x:.078125,y:.828125},{x:.078125,y:.828125},{x:.109375,y:.828125},{x:.109375,y:.828125},{x:.140625,y:.828125},{x:.140625,y:.828125},{x:.171875,y:.828125},{x:.171875,y:.828125},{x:.203125,y:.828125},{x:.203125,y:.828125},{x:.234375,y:.828125},{x:.234375,y:.828125},{x:.265625,y:.828125},{x:.265625,y:.828125},{x:.296875,y:.828125},{x:.296875,y:.828125},{x:.328125,y:.828125},{x:.328125,y:.828125},{x:.359375,y:.828125},{x:.359375,y:.828125},{x:.390625,y:.828125},{x:.390625,y:.828125},{x:.421875,y:.828125},{x:.421875,y:.828125},{x:.453125,y:.828125},{x:.453125,y:.828125},{x:.484375,y:.828125},{x:.484375,y:.828125},{x:.515625,y:.828125},{x:.515625,y:.828125},{x:.546875,y:.828125},{x:.546875,y:.828125},{x:.578125,y:.828125},{x:.578125,y:.828125},{x:.609375,y:.828125},{x:.609375,y:.828125},{x:.640625,y:.828125},{x:.640625,y:.828125},{x:.671875,y:.828125},{x:.671875,y:.828125},{x:.703125,y:.828125},{x:.703125,y:.828125},{x:.734375,y:.828125},{x:.734375,y:.828125},{x:.765625,y:.828125},{x:.765625,y:.828125},{x:.796875,y:.828125},{x:.796875,y:.828125},{x:.828125,y:.828125},{x:.828125,y:.828125},{x:.859375,y:.828125},{x:.859375,y:.828125},{x:.890625,y:.828125},{x:.890625,y:.828125},{x:.921875,y:.828125},{x:.921875,y:.828125},{x:.953125,y:.828125},{x:.953125,y:.828125},{x:.984375,y:.828125},{x:.984375,y:.828125},{x:.015625,y:.859375},{x:.015625,y:.859375},{x:.046875,y:.859375},{x:.046875,y:.859375},{x:.078125,y:.859375},{x:.078125,y:.859375},{x:.109375,y:.859375},{x:.109375,y:.859375},{x:.140625,y:.859375},{x:.140625,y:.859375},{x:.171875,y:.859375},{x:.171875,y:.859375},{x:.203125,y:.859375},{x:.203125,y:.859375},{x:.234375,y:.859375},{x:.234375,y:.859375},{x:.265625,y:.859375},{x:.265625,y:.859375},{x:.296875,y:.859375},{x:.296875,y:.859375},{x:.328125,y:.859375},{x:.328125,y:.859375},{x:.359375,y:.859375},{x:.359375,y:.859375},{x:.390625,y:.859375},{x:.390625,y:.859375},{x:.421875,y:.859375},{x:.421875,y:.859375},{x:.453125,y:.859375},{x:.453125,y:.859375},{x:.484375,y:.859375},{x:.484375,y:.859375},{x:.515625,y:.859375},{x:.515625,y:.859375},{x:.546875,y:.859375},{x:.546875,y:.859375},{x:.578125,y:.859375},{x:.578125,y:.859375},{x:.609375,y:.859375},{x:.609375,y:.859375},{x:.640625,y:.859375},{x:.640625,y:.859375},{x:.671875,y:.859375},{x:.671875,y:.859375},{x:.703125,y:.859375},{x:.703125,y:.859375},{x:.734375,y:.859375},{x:.734375,y:.859375},{x:.765625,y:.859375},{x:.765625,y:.859375},{x:.796875,y:.859375},{x:.796875,y:.859375},{x:.828125,y:.859375},{x:.828125,y:.859375},{x:.859375,y:.859375},{x:.859375,y:.859375},{x:.890625,y:.859375},{x:.890625,y:.859375},{x:.921875,y:.859375},{x:.921875,y:.859375},{x:.953125,y:.859375},{x:.953125,y:.859375},{x:.984375,y:.859375},{x:.984375,y:.859375},{x:.015625,y:.890625},{x:.015625,y:.890625},{x:.046875,y:.890625},{x:.046875,y:.890625},{x:.078125,y:.890625},{x:.078125,y:.890625},{x:.109375,y:.890625},{x:.109375,y:.890625},{x:.140625,y:.890625},{x:.140625,y:.890625},{x:.171875,y:.890625},{x:.171875,y:.890625},{x:.203125,y:.890625},{x:.203125,y:.890625},{x:.234375,y:.890625},{x:.234375,y:.890625},{x:.265625,y:.890625},{x:.265625,y:.890625},{x:.296875,y:.890625},{x:.296875,y:.890625},{x:.328125,y:.890625},{x:.328125,y:.890625},{x:.359375,y:.890625},{x:.359375,y:.890625},{x:.390625,y:.890625},{x:.390625,y:.890625},{x:.421875,y:.890625},{x:.421875,y:.890625},{x:.453125,y:.890625},{x:.453125,y:.890625},{x:.484375,y:.890625},{x:.484375,y:.890625},{x:.515625,y:.890625},{x:.515625,y:.890625},{x:.546875,y:.890625},{x:.546875,y:.890625},{x:.578125,y:.890625},{x:.578125,y:.890625},{x:.609375,y:.890625},{x:.609375,y:.890625},{x:.640625,y:.890625},{x:.640625,y:.890625},{x:.671875,y:.890625},{x:.671875,y:.890625},{x:.703125,y:.890625},{x:.703125,y:.890625},{x:.734375,y:.890625},{x:.734375,y:.890625},{x:.765625,y:.890625},{x:.765625,y:.890625},{x:.796875,y:.890625},{x:.796875,y:.890625},{x:.828125,y:.890625},{x:.828125,y:.890625},{x:.859375,y:.890625},{x:.859375,y:.890625},{x:.890625,y:.890625},{x:.890625,y:.890625},{x:.921875,y:.890625},{x:.921875,y:.890625},{x:.953125,y:.890625},{x:.953125,y:.890625},{x:.984375,y:.890625},{x:.984375,y:.890625},{x:.015625,y:.921875},{x:.015625,y:.921875},{x:.046875,y:.921875},{x:.046875,y:.921875},{x:.078125,y:.921875},{x:.078125,y:.921875},{x:.109375,y:.921875},{x:.109375,y:.921875},{x:.140625,y:.921875},{x:.140625,y:.921875},{x:.171875,y:.921875},{x:.171875,y:.921875},{x:.203125,y:.921875},{x:.203125,y:.921875},{x:.234375,y:.921875},{x:.234375,y:.921875},{x:.265625,y:.921875},{x:.265625,y:.921875},{x:.296875,y:.921875},{x:.296875,y:.921875},{x:.328125,y:.921875},{x:.328125,y:.921875},{x:.359375,y:.921875},{x:.359375,y:.921875},{x:.390625,y:.921875},{x:.390625,y:.921875},{x:.421875,y:.921875},{x:.421875,y:.921875},{x:.453125,y:.921875},{x:.453125,y:.921875},{x:.484375,y:.921875},{x:.484375,y:.921875},{x:.515625,y:.921875},{x:.515625,y:.921875},{x:.546875,y:.921875},{x:.546875,y:.921875},{x:.578125,y:.921875},{x:.578125,y:.921875},{x:.609375,y:.921875},{x:.609375,y:.921875},{x:.640625,y:.921875},{x:.640625,y:.921875},{x:.671875,y:.921875},{x:.671875,y:.921875},{x:.703125,y:.921875},{x:.703125,y:.921875},{x:.734375,y:.921875},{x:.734375,y:.921875},{x:.765625,y:.921875},{x:.765625,y:.921875},{x:.796875,y:.921875},{x:.796875,y:.921875},{x:.828125,y:.921875},{x:.828125,y:.921875},{x:.859375,y:.921875},{x:.859375,y:.921875},{x:.890625,y:.921875},{x:.890625,y:.921875},{x:.921875,y:.921875},{x:.921875,y:.921875},{x:.953125,y:.921875},{x:.953125,y:.921875},{x:.984375,y:.921875},{x:.984375,y:.921875},{x:.015625,y:.953125},{x:.015625,y:.953125},{x:.046875,y:.953125},{x:.046875,y:.953125},{x:.078125,y:.953125},{x:.078125,y:.953125},{x:.109375,y:.953125},{x:.109375,y:.953125},{x:.140625,y:.953125},{x:.140625,y:.953125},{x:.171875,y:.953125},{x:.171875,y:.953125},{x:.203125,y:.953125},{x:.203125,y:.953125},{x:.234375,y:.953125},{x:.234375,y:.953125},{x:.265625,y:.953125},{x:.265625,y:.953125},{x:.296875,y:.953125},{x:.296875,y:.953125},{x:.328125,y:.953125},{x:.328125,y:.953125},{x:.359375,y:.953125},{x:.359375,y:.953125},{x:.390625,y:.953125},{x:.390625,y:.953125},{x:.421875,y:.953125},{x:.421875,y:.953125},{x:.453125,y:.953125},{x:.453125,y:.953125},{x:.484375,y:.953125},{x:.484375,y:.953125},{x:.515625,y:.953125},{x:.515625,y:.953125},{x:.546875,y:.953125},{x:.546875,y:.953125},{x:.578125,y:.953125},{x:.578125,y:.953125},{x:.609375,y:.953125},{x:.609375,y:.953125},{x:.640625,y:.953125},{x:.640625,y:.953125},{x:.671875,y:.953125},{x:.671875,y:.953125},{x:.703125,y:.953125},{x:.703125,y:.953125},{x:.734375,y:.953125},{x:.734375,y:.953125},{x:.765625,y:.953125},{x:.765625,y:.953125},{x:.796875,y:.953125},{x:.796875,y:.953125},{x:.828125,y:.953125},{x:.828125,y:.953125},{x:.859375,y:.953125},{x:.859375,y:.953125},{x:.890625,y:.953125},{x:.890625,y:.953125},{x:.921875,y:.953125},{x:.921875,y:.953125},{x:.953125,y:.953125},{x:.953125,y:.953125},{x:.984375,y:.953125},{x:.984375,y:.953125},{x:.015625,y:.984375},{x:.015625,y:.984375},{x:.046875,y:.984375},{x:.046875,y:.984375},{x:.078125,y:.984375},{x:.078125,y:.984375},{x:.109375,y:.984375},{x:.109375,y:.984375},{x:.140625,y:.984375},{x:.140625,y:.984375},{x:.171875,y:.984375},{x:.171875,y:.984375},{x:.203125,y:.984375},{x:.203125,y:.984375},{x:.234375,y:.984375},{x:.234375,y:.984375},{x:.265625,y:.984375},{x:.265625,y:.984375},{x:.296875,y:.984375},{x:.296875,y:.984375},{x:.328125,y:.984375},{x:.328125,y:.984375},{x:.359375,y:.984375},{x:.359375,y:.984375},{x:.390625,y:.984375},{x:.390625,y:.984375},{x:.421875,y:.984375},{x:.421875,y:.984375},{x:.453125,y:.984375},{x:.453125,y:.984375},{x:.484375,y:.984375},{x:.484375,y:.984375},{x:.515625,y:.984375},{x:.515625,y:.984375},{x:.546875,y:.984375},{x:.546875,y:.984375},{x:.578125,y:.984375},{x:.578125,y:.984375},{x:.609375,y:.984375},{x:.609375,y:.984375},{x:.640625,y:.984375},{x:.640625,y:.984375},{x:.671875,y:.984375},{x:.671875,y:.984375},{x:.703125,y:.984375},{x:.703125,y:.984375},{x:.734375,y:.984375},{x:.734375,y:.984375},{x:.765625,y:.984375},{x:.765625,y:.984375},{x:.796875,y:.984375},{x:.796875,y:.984375},{x:.828125,y:.984375},{x:.828125,y:.984375},{x:.859375,y:.984375},{x:.859375,y:.984375},{x:.890625,y:.984375},{x:.890625,y:.984375},{x:.921875,y:.984375},{x:.921875,y:.984375},{x:.953125,y:.984375},{x:.953125,y:.984375},{x:.984375,y:.984375},{x:.984375,y:.984375},{x:.03125,y:.03125},{x:.03125,y:.03125},{x:.09375,y:.03125},{x:.09375,y:.03125},{x:.15625,y:.03125},{x:.15625,y:.03125},{x:.21875,y:.03125},{x:.21875,y:.03125},{x:.28125,y:.03125},{x:.28125,y:.03125},{x:.34375,y:.03125},{x:.34375,y:.03125},{x:.40625,y:.03125},{x:.40625,y:.03125},{x:.46875,y:.03125},{x:.46875,y:.03125},{x:.53125,y:.03125},{x:.53125,y:.03125},{x:.59375,y:.03125},{x:.59375,y:.03125},{x:.65625,y:.03125},{x:.65625,y:.03125},{x:.71875,y:.03125},{x:.71875,y:.03125},{x:.78125,y:.03125},{x:.78125,y:.03125},{x:.84375,y:.03125},{x:.84375,y:.03125},{x:.90625,y:.03125},{x:.90625,y:.03125},{x:.96875,y:.03125},{x:.96875,y:.03125},{x:.03125,y:.09375},{x:.03125,y:.09375},{x:.09375,y:.09375},{x:.09375,y:.09375},{x:.15625,y:.09375},{x:.15625,y:.09375},{x:.21875,y:.09375},{x:.21875,y:.09375},{x:.28125,y:.09375},{x:.28125,y:.09375},{x:.34375,y:.09375},{x:.34375,y:.09375},{x:.40625,y:.09375},{x:.40625,y:.09375},{x:.46875,y:.09375},{x:.46875,y:.09375},{x:.53125,y:.09375},{x:.53125,y:.09375},{x:.59375,y:.09375},{x:.59375,y:.09375},{x:.65625,y:.09375},{x:.65625,y:.09375},{x:.71875,y:.09375},{x:.71875,y:.09375},{x:.78125,y:.09375},{x:.78125,y:.09375},{x:.84375,y:.09375},{x:.84375,y:.09375},{x:.90625,y:.09375},{x:.90625,y:.09375},{x:.96875,y:.09375},{x:.96875,y:.09375},{x:.03125,y:.15625},{x:.03125,y:.15625},{x:.09375,y:.15625},{x:.09375,y:.15625},{x:.15625,y:.15625},{x:.15625,y:.15625},{x:.21875,y:.15625},{x:.21875,y:.15625},{x:.28125,y:.15625},{x:.28125,y:.15625},{x:.34375,y:.15625},{x:.34375,y:.15625},{x:.40625,y:.15625},{x:.40625,y:.15625},{x:.46875,y:.15625},{x:.46875,y:.15625},{x:.53125,y:.15625},{x:.53125,y:.15625},{x:.59375,y:.15625},{x:.59375,y:.15625},{x:.65625,y:.15625},{x:.65625,y:.15625},{x:.71875,y:.15625},{x:.71875,y:.15625},{x:.78125,y:.15625},{x:.78125,y:.15625},{x:.84375,y:.15625},{x:.84375,y:.15625},{x:.90625,y:.15625},{x:.90625,y:.15625},{x:.96875,y:.15625},{x:.96875,y:.15625},{x:.03125,y:.21875},{x:.03125,y:.21875},{x:.09375,y:.21875},{x:.09375,y:.21875},{x:.15625,y:.21875},{x:.15625,y:.21875},{x:.21875,y:.21875},{x:.21875,y:.21875},{x:.28125,y:.21875},{x:.28125,y:.21875},{x:.34375,y:.21875},{x:.34375,y:.21875},{x:.40625,y:.21875},{x:.40625,y:.21875},{x:.46875,y:.21875},{x:.46875,y:.21875},{x:.53125,y:.21875},{x:.53125,y:.21875},{x:.59375,y:.21875},{x:.59375,y:.21875},{x:.65625,y:.21875},{x:.65625,y:.21875},{x:.71875,y:.21875},{x:.71875,y:.21875},{x:.78125,y:.21875},{x:.78125,y:.21875},{x:.84375,y:.21875},{x:.84375,y:.21875},{x:.90625,y:.21875},{x:.90625,y:.21875},{x:.96875,y:.21875},{x:.96875,y:.21875},{x:.03125,y:.28125},{x:.03125,y:.28125},{x:.09375,y:.28125},{x:.09375,y:.28125},{x:.15625,y:.28125},{x:.15625,y:.28125},{x:.21875,y:.28125},{x:.21875,y:.28125},{x:.28125,y:.28125},{x:.28125,y:.28125},{x:.34375,y:.28125},{x:.34375,y:.28125},{x:.40625,y:.28125},{x:.40625,y:.28125},{x:.46875,y:.28125},{x:.46875,y:.28125},{x:.53125,y:.28125},{x:.53125,y:.28125},{x:.59375,y:.28125},{x:.59375,y:.28125},{x:.65625,y:.28125},{x:.65625,y:.28125},{x:.71875,y:.28125},{x:.71875,y:.28125},{x:.78125,y:.28125},{x:.78125,y:.28125},{x:.84375,y:.28125},{x:.84375,y:.28125},{x:.90625,y:.28125},{x:.90625,y:.28125},{x:.96875,y:.28125},{x:.96875,y:.28125},{x:.03125,y:.34375},{x:.03125,y:.34375},{x:.09375,y:.34375},{x:.09375,y:.34375},{x:.15625,y:.34375},{x:.15625,y:.34375},{x:.21875,y:.34375},{x:.21875,y:.34375},{x:.28125,y:.34375},{x:.28125,y:.34375},{x:.34375,y:.34375},{x:.34375,y:.34375},{x:.40625,y:.34375},{x:.40625,y:.34375},{x:.46875,y:.34375},{x:.46875,y:.34375},{x:.53125,y:.34375},{x:.53125,y:.34375},{x:.59375,y:.34375},{x:.59375,y:.34375},{x:.65625,y:.34375},{x:.65625,y:.34375},{x:.71875,y:.34375},{x:.71875,y:.34375},{x:.78125,y:.34375},{x:.78125,y:.34375},{x:.84375,y:.34375},{x:.84375,y:.34375},{x:.90625,y:.34375},{x:.90625,y:.34375},{x:.96875,y:.34375},{x:.96875,y:.34375},{x:.03125,y:.40625},{x:.03125,y:.40625},{x:.09375,y:.40625},{x:.09375,y:.40625},{x:.15625,y:.40625},{x:.15625,y:.40625},{x:.21875,y:.40625},{x:.21875,y:.40625},{x:.28125,y:.40625},{x:.28125,y:.40625},{x:.34375,y:.40625},{x:.34375,y:.40625},{x:.40625,y:.40625},{x:.40625,y:.40625},{x:.46875,y:.40625},{x:.46875,y:.40625},{x:.53125,y:.40625},{x:.53125,y:.40625},{x:.59375,y:.40625},{x:.59375,y:.40625},{x:.65625,y:.40625},{x:.65625,y:.40625},{x:.71875,y:.40625},{x:.71875,y:.40625},{x:.78125,y:.40625},{x:.78125,y:.40625},{x:.84375,y:.40625},{x:.84375,y:.40625},{x:.90625,y:.40625},{x:.90625,y:.40625},{x:.96875,y:.40625},{x:.96875,y:.40625},{x:.03125,y:.46875},{x:.03125,y:.46875},{x:.09375,y:.46875},{x:.09375,y:.46875},{x:.15625,y:.46875},{x:.15625,y:.46875},{x:.21875,y:.46875},{x:.21875,y:.46875},{x:.28125,y:.46875},{x:.28125,y:.46875},{x:.34375,y:.46875},{x:.34375,y:.46875},{x:.40625,y:.46875},{x:.40625,y:.46875},{x:.46875,y:.46875},{x:.46875,y:.46875},{x:.53125,y:.46875},{x:.53125,y:.46875},{x:.59375,y:.46875},{x:.59375,y:.46875},{x:.65625,y:.46875},{x:.65625,y:.46875},{x:.71875,y:.46875},{x:.71875,y:.46875},{x:.78125,y:.46875},{x:.78125,y:.46875},{x:.84375,y:.46875},{x:.84375,y:.46875},{x:.90625,y:.46875},{x:.90625,y:.46875},{x:.96875,y:.46875},{x:.96875,y:.46875},{x:.03125,y:.53125},{x:.03125,y:.53125},{x:.09375,y:.53125},{x:.09375,y:.53125},{x:.15625,y:.53125},{x:.15625,y:.53125},{x:.21875,y:.53125},{x:.21875,y:.53125},{x:.28125,y:.53125},{x:.28125,y:.53125},{x:.34375,y:.53125},{x:.34375,y:.53125},{x:.40625,y:.53125},{x:.40625,y:.53125},{x:.46875,y:.53125},{x:.46875,y:.53125},{x:.53125,y:.53125},{x:.53125,y:.53125},{x:.59375,y:.53125},{x:.59375,y:.53125},{x:.65625,y:.53125},{x:.65625,y:.53125},{x:.71875,y:.53125},{x:.71875,y:.53125},{x:.78125,y:.53125},{x:.78125,y:.53125},{x:.84375,y:.53125},{x:.84375,y:.53125},{x:.90625,y:.53125},{x:.90625,y:.53125},{x:.96875,y:.53125},{x:.96875,y:.53125},{x:.03125,y:.59375},{x:.03125,y:.59375},{x:.09375,y:.59375},{x:.09375,y:.59375},{x:.15625,y:.59375},{x:.15625,y:.59375},{x:.21875,y:.59375},{x:.21875,y:.59375},{x:.28125,y:.59375},{x:.28125,y:.59375},{x:.34375,y:.59375},{x:.34375,y:.59375},{x:.40625,y:.59375},{x:.40625,y:.59375},{x:.46875,y:.59375},{x:.46875,y:.59375},{x:.53125,y:.59375},{x:.53125,y:.59375},{x:.59375,y:.59375},{x:.59375,y:.59375},{x:.65625,y:.59375},{x:.65625,y:.59375},{x:.71875,y:.59375},{x:.71875,y:.59375},{x:.78125,y:.59375},{x:.78125,y:.59375},{x:.84375,y:.59375},{x:.84375,y:.59375},{x:.90625,y:.59375},{x:.90625,y:.59375},{x:.96875,y:.59375},{x:.96875,y:.59375},{x:.03125,y:.65625},{x:.03125,y:.65625},{x:.09375,y:.65625},{x:.09375,y:.65625},{x:.15625,y:.65625},{x:.15625,y:.65625},{x:.21875,y:.65625},{x:.21875,y:.65625},{x:.28125,y:.65625},{x:.28125,y:.65625},{x:.34375,y:.65625},{x:.34375,y:.65625},{x:.40625,y:.65625},{x:.40625,y:.65625},{x:.46875,y:.65625},{x:.46875,y:.65625},{x:.53125,y:.65625},{x:.53125,y:.65625},{x:.59375,y:.65625},{x:.59375,y:.65625},{x:.65625,y:.65625},{x:.65625,y:.65625},{x:.71875,y:.65625},{x:.71875,y:.65625},{x:.78125,y:.65625},{x:.78125,y:.65625},{x:.84375,y:.65625},{x:.84375,y:.65625},{x:.90625,y:.65625},{x:.90625,y:.65625},{x:.96875,y:.65625},{x:.96875,y:.65625},{x:.03125,y:.71875},{x:.03125,y:.71875},{x:.09375,y:.71875},{x:.09375,y:.71875},{x:.15625,y:.71875},{x:.15625,y:.71875},{x:.21875,y:.71875},{x:.21875,y:.71875},{x:.28125,y:.71875},{x:.28125,y:.71875},{x:.34375,y:.71875},{x:.34375,y:.71875},{x:.40625,y:.71875},{x:.40625,y:.71875},{x:.46875,y:.71875},{x:.46875,y:.71875},{x:.53125,y:.71875},{x:.53125,y:.71875},{x:.59375,y:.71875},{x:.59375,y:.71875},{x:.65625,y:.71875},{x:.65625,y:.71875},{x:.71875,y:.71875},{x:.71875,y:.71875},{x:.78125,y:.71875},{x:.78125,y:.71875},{x:.84375,y:.71875},{x:.84375,y:.71875},{x:.90625,y:.71875},{x:.90625,y:.71875},{x:.96875,y:.71875},{x:.96875,y:.71875},{x:.03125,y:.78125},{x:.03125,y:.78125},{x:.09375,y:.78125},{x:.09375,y:.78125},{x:.15625,y:.78125},{x:.15625,y:.78125},{x:.21875,y:.78125},{x:.21875,y:.78125},{x:.28125,y:.78125},{x:.28125,y:.78125},{x:.34375,y:.78125},{x:.34375,y:.78125},{x:.40625,y:.78125},{x:.40625,y:.78125},{x:.46875,y:.78125},{x:.46875,y:.78125},{x:.53125,y:.78125},{x:.53125,y:.78125},{x:.59375,y:.78125},{x:.59375,y:.78125},{x:.65625,y:.78125},{x:.65625,y:.78125},{x:.71875,y:.78125},{x:.71875,y:.78125},{x:.78125,y:.78125},{x:.78125,y:.78125},{x:.84375,y:.78125},{x:.84375,y:.78125},{x:.90625,y:.78125},{x:.90625,y:.78125},{x:.96875,y:.78125},{x:.96875,y:.78125},{x:.03125,y:.84375},{x:.03125,y:.84375},{x:.09375,y:.84375},{x:.09375,y:.84375},{x:.15625,y:.84375},{x:.15625,y:.84375},{x:.21875,y:.84375},{x:.21875,y:.84375},{x:.28125,y:.84375},{x:.28125,y:.84375},{x:.34375,y:.84375},{x:.34375,y:.84375},{x:.40625,y:.84375},{x:.40625,y:.84375},{x:.46875,y:.84375},{x:.46875,y:.84375},{x:.53125,y:.84375},{x:.53125,y:.84375},{x:.59375,y:.84375},{x:.59375,y:.84375},{x:.65625,y:.84375},{x:.65625,y:.84375},{x:.71875,y:.84375},{x:.71875,y:.84375},{x:.78125,y:.84375},{x:.78125,y:.84375},{x:.84375,y:.84375},{x:.84375,y:.84375},{x:.90625,y:.84375},{x:.90625,y:.84375},{x:.96875,y:.84375},{x:.96875,y:.84375},{x:.03125,y:.90625},{x:.03125,y:.90625},{x:.09375,y:.90625},{x:.09375,y:.90625},{x:.15625,y:.90625},{x:.15625,y:.90625},{x:.21875,y:.90625},{x:.21875,y:.90625},{x:.28125,y:.90625},{x:.28125,y:.90625},{x:.34375,y:.90625},{x:.34375,y:.90625},{x:.40625,y:.90625},{x:.40625,y:.90625},{x:.46875,y:.90625},{x:.46875,y:.90625},{x:.53125,y:.90625},{x:.53125,y:.90625},{x:.59375,y:.90625},{x:.59375,y:.90625},{x:.65625,y:.90625},{x:.65625,y:.90625},{x:.71875,y:.90625},{x:.71875,y:.90625},{x:.78125,y:.90625},{x:.78125,y:.90625},{x:.84375,y:.90625},{x:.84375,y:.90625},{x:.90625,y:.90625},{x:.90625,y:.90625},{x:.96875,y:.90625},{x:.96875,y:.90625},{x:.03125,y:.96875},{x:.03125,y:.96875},{x:.09375,y:.96875},{x:.09375,y:.96875},{x:.15625,y:.96875},{x:.15625,y:.96875},{x:.21875,y:.96875},{x:.21875,y:.96875},{x:.28125,y:.96875},{x:.28125,y:.96875},{x:.34375,y:.96875},{x:.34375,y:.96875},{x:.40625,y:.96875},{x:.40625,y:.96875},{x:.46875,y:.96875},{x:.46875,y:.96875},{x:.53125,y:.96875},{x:.53125,y:.96875},{x:.59375,y:.96875},{x:.59375,y:.96875},{x:.65625,y:.96875},{x:.65625,y:.96875},{x:.71875,y:.96875},{x:.71875,y:.96875},{x:.78125,y:.96875},{x:.78125,y:.96875},{x:.84375,y:.96875},{x:.84375,y:.96875},{x:.90625,y:.96875},{x:.90625,y:.96875},{x:.96875,y:.96875},{x:.96875,y:.96875},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375}];var l1=class{constructor(t){ge(this,"model");ge(this,"anchors");ge(this,"anchorsTensor");ge(this,"inputSize");ge(this,"inputSizeTensor");ge(this,"doubleInputSizeTensor");var n,s,r,a;this.model=t,this.anchors=gE.map(o=>[o.x,o.y]),this.anchorsTensor=fr(this.anchors),this.inputSize=((a=(r=(s=(n=this==null?void 0:this.model)==null?void 0:n.inputs)==null?void 0:s[0])==null?void 0:r.shape)==null?void 0:a[2])||0,this.inputSizeTensor=Pt([this.inputSize,this.inputSize]),this.doubleInputSizeTensor=Pt([this.inputSize*2,this.inputSize*2])}normalizeBoxes(t){let n={};n.boxOffsets=ze(t,[0,0],[-1,2]),n.boxSizes=ze(t,[0,2],[-1,2]),n.div=fe(n.boxOffsets,this.inputSizeTensor),n.boxCenterPoints=ue(n.div,this.anchorsTensor),n.halfBoxSizes=fe(n.boxSizes,this.doubleInputSizeTensor),n.sub=me(n.boxCenterPoints,n.halfBoxSizes),n.startPoints=z(n.sub,this.inputSizeTensor),n.add=ue(n.boxCenterPoints,n.halfBoxSizes),n.endPoints=z(n.add,this.inputSizeTensor);let s=su([n.startPoints,n.endPoints],1);return Object.keys(n).forEach(r=>J(n[r])),s}normalizeLandmarks(t,n){let s={};s.reshape=V(t,[-1,7,2]),s.div=fe(s.reshape,this.inputSizeTensor),s.landmarks=ue(s.div,this.anchors[n]?this.anchors[n]:0);let r=z(s.landmarks,this.inputSizeTensor);return Object.keys(s).forEach(a=>J(s[a])),r}async predict(t,n){var i;let s={};s.resize=Ie.resizeBilinear(t,[this.inputSize,this.inputSize]),s.div=fe(s.resize,at.tf127),s.image=me(s.div,at.tf1),s.batched=this.model.execute(s.image),s.predictions=rt(s.batched),s.slice=ze(s.predictions,[0,0],[-1,1]),s.sigmoid=$n(s.slice),s.scores=rt(s.sigmoid);let r=await s.scores.data();s.boxes=ze(s.predictions,[0,1],[-1,4]),s.norm=this.normalizeBoxes(s.boxes),s.nms=await Ie.nonMaxSuppressionAsync(s.norm,s.scores,3*(((i=n.hand)==null?void 0:i.maxDetected)||1),n.hand.iouThreshold,n.hand.minConfidence);let a=await s.nms.array(),o=[];for(let l of a){let u={};u.box=ze(s.norm,[l,0],[1,-1]),u.slice=ze(s.predictions,[l,5],[1,14]),u.norm=this.normalizeLandmarks(u.slice,l),u.palmLandmarks=V(u.norm,[-1,2]);let c=await u.box.data(),p=c.slice(0,2),d=c.slice(2,4),h=await u.palmLandmarks.array(),f={startPoint:p,endPoint:d,palmLandmarks:h,confidence:r[l]},m=pE(f,[(t.shape[2]||1)/this.inputSize,(t.shape[1]||0)/this.inputSize]);o.push(m),Object.keys(u).forEach(g=>J(u[g]))}return Object.keys(s).forEach(l=>J(s[l])),o}};var Dxe=5,yE=1.65,AE=[0,5,9,13,17,1,2],$xe=0,Pxe=2,xE=0,u1=class{constructor(t,n){ge(this,"handDetector");ge(this,"handPoseModel");ge(this,"inputSize");ge(this,"storedBoxes");ge(this,"skipped");ge(this,"detectedHands");var s,r,a;this.handDetector=t,this.handPoseModel=n,this.inputSize=((a=(r=(s=this.handPoseModel)==null?void 0:s.inputs)==null?void 0:r[0].shape)==null?void 0:a[2])||0,this.storedBoxes=[],this.skipped=Number.MAX_SAFE_INTEGER,this.detectedHands=0}calculateLandmarksBoundingBox(t){let n=t.map(o=>o[0]),s=t.map(o=>o[1]),r=[Math.min(...n),Math.min(...s)],a=[Math.max(...n),Math.max(...s)];return{startPoint:r,endPoint:a}}getBoxForPalmLandmarks(t,n){let s=t.map(a=>p4([...a,1],n)),r=this.calculateLandmarksBoundingBox(s);return o1(i1(r),Dxe)}getBoxForHandLandmarks(t){let n=this.calculateLandmarksBoundingBox(t),s=o1(i1(n),yE);s.palmLandmarks=[];for(let r=0;r<AE.length;r++)s.palmLandmarks.push(t[AE[r]].slice(0,2));return s}transformRawCoords(t,n,s,r){let a=a1(n),o=[a[0]/this.inputSize,a[1]/this.inputSize,(a[0]+a[1])/this.inputSize/2],i=t.map(h=>[o[0]*(h[0]-this.inputSize/2),o[1]*(h[1]-this.inputSize/2),o[2]*h[2]]),l=d4(s,[0,0]),u=i.map(h=>[...p4(h,l),h[2]]),c=fE(r),p=[...tf(n),1],d=[ki(p,c[0]),ki(p,c[1])];return u.map(h=>[Math.trunc(h[0]+d[0]),Math.trunc(h[1]+d[1]),Math.trunc(h[2])])}async estimateHands(t,n){let s=!1,r,a=(n.hand.skipTime||0)>le()-xE,o=this.skipped<(n.hand.skipFrames||0);n.skipAllowed&&a&&o&&(r=await this.handDetector.predict(t,n),this.skipped=0),n.skipAllowed&&this.skipped++,r&&r.length>0&&(r.length!==this.detectedHands&&this.detectedHands!==n.hand.maxDetected||!n.hand.landmarks)&&(this.detectedHands=0,this.storedBoxes=[...r],this.storedBoxes.length>0&&(s=!0));let i=[];for(let l=0;l<this.storedBoxes.length;l++){let u=this.storedBoxes[l];if(!!u)if(n.hand.landmarks){let c=n.hand.rotation?hE(u.palmLandmarks[$xe],u.palmLandmarks[Pxe]):0,p=tf(u),d=[p[0]/t.shape[2],p[1]/t.shape[1]],h=n.hand.rotation&&he.kernels.includes("rotatewithoffset")?Ie.rotateWithOffset(t,c,0,d):t.clone(),f=d4(-c,p),m=s?this.getBoxForPalmLandmarks(u.palmLandmarks,f):u,g=dE(m,h,[this.inputSize,this.inputSize]),y=fe(g,at.tf255);J(g),J(h);let[x,A]=this.handPoseModel.execute(y);xE=le(),J(y);let b=(await x.data())[0];if(J(x),b>=n.hand.minConfidence/4){let w=V(A,[-1,3]),S=await w.array();J(A),J(w);let k=this.transformRawCoords(S,m,c,f),E=this.getBoxForHandLandmarks(k);this.storedBoxes[l]={...E,confidence:b};let _={landmarks:k,confidence:b,boxConfidence:u.confidence,fingerConfidence:b,box:{topLeft:E.startPoint,bottomRight:E.endPoint}};i.push(_)}else this.storedBoxes[l]=null;J(A)}else{let c=o1(i1(u),yE),p={confidence:u.confidence,boxConfidence:u.confidence,fingerConfidence:0,box:{topLeft:c.startPoint,bottomRight:c.endPoint},landmarks:[]};i.push(p)}}return this.storedBoxes=this.storedBoxes.filter(l=>l!==null),this.detectedHands=i.length,i.length>n.hand.maxDetected&&(i.length=n.hand.maxDetected),i}};var fs={thumb:0,index:1,middle:2,ring:3,pinky:4,all:[0,1,2,3,4],nameMapping:{0:"thumb",1:"index",2:"middle",3:"ring",4:"pinky"},pointsMapping:{0:[[0,1],[1,2],[2,3],[3,4]],1:[[0,5],[5,6],[6,7],[7,8]],2:[[0,9],[9,10],[10,11],[11,12]],3:[[0,13],[13,14],[14,15],[15,16]],4:[[0,17],[17,18],[18,19],[19,20]]},getName:e=>fs.nameMapping[e],getPoints:e=>fs.pointsMapping[e]},Ii={none:0,half:1,full:2,nameMapping:{0:"none",1:"half",2:"full"},getName:e=>Ii.nameMapping[e]},qt={verticalUp:0,verticalDown:1,horizontalLeft:2,horizontalRight:3,diagonalUpRight:4,diagonalUpLeft:5,diagonalDownRight:6,diagonalDownLeft:7,nameMapping:{0:"verticalUp",1:"verticalDown",2:"horizontalLeft",3:"horizontalRight",4:"diagonalUpRight",5:"diagonalUpLeft",6:"diagonalDownRight",7:"diagonalDownLeft"},getName:e=>qt.nameMapping[e]},Si=class{constructor(t){ge(this,"name");ge(this,"curls");ge(this,"directions");ge(this,"weights");ge(this,"weightsRelative");this.name=t,this.curls={},this.directions={},this.weights=[1,1,1,1,1],this.weightsRelative=[1,1,1,1,1]}curl(t,n,s){typeof this.curls[t]=="undefined"&&(this.curls[t]=[]),this.curls[t].push([n,s])}direction(t,n,s){this.directions[t]||(this.directions[t]=[]),this.directions[t].push([n,s])}weight(t,n){this.weights[t]=n;let s=this.weights.reduce((r,a)=>r+a,0);this.weightsRelative=this.weights.map(r=>r*5/s)}matchAgainst(t,n){let s=0;for(let r in t){let a=t[r],o=this.curls[r];if(typeof o=="undefined"){s+=this.weightsRelative[r];continue}for(let[i,l]of o)if(a===i){s+=l*this.weightsRelative[r];break}}for(let r in n){let a=n[r],o=this.directions[r];if(typeof o=="undefined"){s+=this.weightsRelative[r];continue}for(let[i,l]of o)if(a===i){s+=l*this.weightsRelative[r];break}}return s/10}};var{thumb:Gr,index:Pa,middle:Fa,ring:vu,pinky:wu}=fs,{none:Hr,half:Oxe,full:jr}=Ii,{verticalUp:Td,verticalDown:WSe,horizontalLeft:h4,horizontalRight:Mxe,diagonalUpRight:zxe,diagonalUpLeft:Nd,diagonalDownRight:VSe,diagonalDownLeft:USe}=qt,Ci=new Si("thumbs up");Ci.curl(Gr,Hr,1);Ci.direction(Gr,Td,1);Ci.direction(Gr,Nd,.25);Ci.direction(Gr,zxe,.25);for(let e of[fs.index,fs.middle,fs.ring,fs.pinky])Ci.curl(e,jr,1),Ci.direction(e,h4,1),Ci.direction(e,Mxe,1);var dn=new Si("victory");dn.curl(Gr,Oxe,.5);dn.curl(Gr,Hr,.5);dn.direction(Gr,Td,1);dn.direction(Gr,Nd,1);dn.curl(Pa,Hr,1);dn.direction(Pa,Td,.75);dn.direction(Pa,Nd,1);dn.curl(Fa,Hr,1);dn.direction(Fa,Td,1);dn.direction(Fa,Nd,.75);dn.curl(vu,jr,1);dn.direction(vu,Td,.2);dn.direction(vu,Nd,1);dn.direction(vu,h4,.2);dn.curl(wu,jr,1);dn.direction(wu,Td,.2);dn.direction(wu,Nd,1);dn.direction(wu,h4,.2);dn.weight(Pa,2);dn.weight(Fa,2);var Ti=new Si("point");Ti.curl(Gr,jr,1);Ti.curl(Pa,Hr,.5);Ti.curl(Fa,jr,.5);Ti.curl(vu,jr,.5);Ti.curl(wu,jr,.5);Ti.weight(Pa,2);Ti.weight(Fa,2);var Ni=new Si("middle finger");Ni.curl(Gr,Hr,1);Ni.curl(Pa,jr,.5);Ni.curl(Fa,jr,.5);Ni.curl(vu,jr,.5);Ni.curl(wu,jr,.5);Ni.weight(Pa,2);Ni.weight(Fa,2);var Ed=new Si("open palm");Ed.curl(Gr,Hr,.75);Ed.curl(Pa,Hr,.75);Ed.curl(Fa,Hr,.75);Ed.curl(vu,Hr,.75);Ed.curl(wu,Hr,.75);var bE=[Ci,dn,Ti,Ni,Ed];var Lxe=.7,ku={HALF_CURL_START_LIMIT:60,NO_CURL_START_LIMIT:130,DISTANCE_VOTE_POWER:1.1,SINGLE_ANGLE_VOTE_POWER:.9,TOTAL_ANGLE_VOTE_POWER:1.6};function vE(e,t,n,s){let r=(t-s)/(e-n),a=Math.atan(r)*180/Math.PI;return a<=0?a=-a:a>0&&(a=180-a),a}function kE(e,t){if(!e||!t)return[0,0];let n=vE(e[0],e[1],t[0],t[1]);if(e.length===2)return n;let s=vE(e[1],e[2],t[1],t[2]);return[n,s]}function wE(e,t=1){let n=0,s=0,r=0;return e>=75&&e<=105?n=1*t:e>=25&&e<=155?s=1*t:r=1*t,[n,s,r]}function Bxe(e,t,n){let s=e[0]-t[0],r=e[0]-n[0],a=t[0]-n[0],o=e[1]-t[1],i=e[1]-n[1],l=t[1]-n[1],u=e[2]-t[2],c=e[2]-n[2],p=t[2]-n[2],d=Math.sqrt(s*s+o*o+u*u),h=Math.sqrt(r*r+i*i+c*c),f=Math.sqrt(a*a+l*l+p*p),m=(f*f+d*d-h*h)/(2*f*d);m>1?m=1:m<-1&&(m=-1);let g=Math.acos(m);g=57.2958*g%180;let y;return g>ku.NO_CURL_START_LIMIT?y=Ii.none:g>ku.HALF_CURL_START_LIMIT?y=Ii.half:y=Ii.full,y}function SE(e,t,n,s){let r;return s===Math.abs(e)?e>0?r=qt.horizontalLeft:r=qt.horizontalRight:s===Math.abs(t)?t>0?r=qt.horizontalLeft:r=qt.horizontalRight:n>0?r=qt.horizontalLeft:r=qt.horizontalRight,r}function IE(e,t,n,s){let r;return s===Math.abs(e)?e<0?r=qt.verticalDown:r=qt.verticalUp:s===Math.abs(t)?t<0?r=qt.verticalDown:r=qt.verticalUp:n<0?r=qt.verticalDown:r=qt.verticalUp,r}function Wxe(e,t,n,s,r,a,o,i){let l,u=IE(e,t,n,s),c=SE(r,a,o,i);return u===qt.verticalUp?c===qt.horizontalLeft?l=qt.diagonalUpLeft:l=qt.diagonalUpRight:c===qt.horizontalLeft?l=qt.diagonalDownLeft:l=qt.diagonalDownRight,l}function Vxe(e,t,n,s){let r=e[0]-t[0],a=e[0]-n[0],o=t[0]-n[0],i=e[1]-t[1],l=e[1]-n[1],u=t[1]-n[1],c=Math.max(Math.abs(r),Math.abs(a),Math.abs(o)),p=Math.max(Math.abs(i),Math.abs(l),Math.abs(u)),d=0,h=0,f=0,m=p/(c+1e-5);m>1.5?d+=ku.DISTANCE_VOTE_POWER:m>.66?h+=ku.DISTANCE_VOTE_POWER:f+=ku.DISTANCE_VOTE_POWER;let g=Math.sqrt(r*r+i*i),y=Math.sqrt(a*a+l*l),x=Math.sqrt(o*o+u*u),A=Math.max(g,y,x),b=e[0],w=e[1],S=n[0],k=n[1];A===g?(S=n[0],k=n[1]):A===x&&(b=t[0],w=t[1]);let D=kE([b,w],[S,k]),R=wE(D,ku.TOTAL_ANGLE_VOTE_POWER);d+=R[0],h+=R[1],f+=R[2];for(let C of s){let M=wE(C,ku.SINGLE_ANGLE_VOTE_POWER);d+=M[0],h+=M[1],f+=M[2]}let P;return d===Math.max(d,h,f)?P=IE(l,i,u,p):f===Math.max(h,f)?P=SE(a,r,o,c):P=Wxe(l,i,u,p,a,r,o,c),P}function CE(e){let t=[],n=[],s=[],r=[];if(!e)return{curls:s,directions:r};for(let a of fs.all){let o=fs.getPoints(a),i=[],l=[];for(let u of o){let c=e[u[0]],p=e[u[1]],d=kE(c,p),h=d[0],f=d[1];i.push(h),l.push(f)}t.push(i),n.push(l)}for(let a of fs.all){let o=a===fs.thumb?1:0,i=fs.getPoints(a),l=e[i[o][0]],u=e[i[o+1][1]],c=e[i[3][1]],p=Bxe(l,u,c),d=Vxe(l,u,c,t[a].slice(o));s[a]=p,r[a]=d}return{curls:s,directions:r}}function c1(e){if(!e||e.length===0)return null;let t=CE(e),n={};for(let s of fs.all)n[fs.getName(s)]={curl:Ii.getName(t.curls[s]),direction:qt.getName(t.directions[s])};return n}function TE(e){let t=[];if(!e||e.length===0)return t;let n=CE(e);for(let s of bE){let r=s.matchAgainst(n.curls,n.directions);r>=Lxe&&t.push({name:s.name,confidence:r})}return t}var NE={thumb:[1,2,3,4],index:[5,6,7,8],middle:[9,10,11,12],ring:[13,14,15,16],pinky:[17,18,19,20],palm:[0]},Su,Iu,EE;async function m4(e,t){let n=await EE.estimateHands(e,t);if(!n)return[];let s=[];for(let r=0;r<n.length;r++){let a={};if(n[r].landmarks)for(let c of Object.keys(NE))a[c]=NE[c].map(p=>n[r].landmarks[p]);let o=n[r].landmarks,i=[Number.MAX_SAFE_INTEGER,Number.MAX_SAFE_INTEGER,0,0],l=[0,0,0,0];if(o&&o.length>0){for(let c of o)c[0]<i[0]&&(i[0]=c[0]),c[1]<i[1]&&(i[1]=c[1]),c[0]>i[2]&&(i[2]=c[0]),c[1]>i[3]&&(i[3]=c[1]);i[2]-=i[0],i[3]-=i[1],l=[i[0]/(e.shape[2]||0),i[1]/(e.shape[1]||0),i[2]/(e.shape[2]||0),i[3]/(e.shape[1]||0)]}else i=n[r].box?[Math.trunc(Math.max(0,n[r].box.topLeft[0])),Math.trunc(Math.max(0,n[r].box.topLeft[1])),Math.trunc(Math.min(e.shape[2]||0,n[r].box.bottomRight[0])-Math.max(0,n[r].box.topLeft[0])),Math.trunc(Math.min(e.shape[1]||0,n[r].box.bottomRight[1])-Math.max(0,n[r].box.topLeft[1]))]:[0,0,0,0],l=[n[r].box.topLeft[0]/(e.shape[2]||0),n[r].box.topLeft[1]/(e.shape[1]||0),(n[r].box.bottomRight[0]-n[r].box.topLeft[0])/(e.shape[2]||0),(n[r].box.bottomRight[1]-n[r].box.topLeft[1])/(e.shape[1]||0)];let u=c1(o);s.push({id:r,score:Math.round(100*n[r].confidence)/100,boxScore:Math.round(100*n[r].boxConfidence)/100,fingerScore:Math.round(100*n[r].fingerConfidence)/100,label:"hand",box:i,boxRaw:l,keypoints:o,annotations:a,landmarks:u})}return s}async function g4(e){var n,s;he.initial&&(Su=null,Iu=null),!Su||!Iu?[Su,Iu]=await Promise.all([e.hand.enabled?je((n=e.hand.detector)==null?void 0:n.modelPath):null,e.hand.landmarks?je((s=e.hand.skeleton)==null?void 0:s.modelPath):null]):(e.debug&&re("cached model:",Su.modelUrl),e.debug&&re("cached model:",Iu.modelUrl));let t=Su?new l1(Su):void 0;return t&&Iu&&(EE=new u1(t,Iu)),[Su,Iu]}var Ct={name:"humangl",priority:999,canvas:null,gl:null,extensions:[],webGLattr:{alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!1,desynchronized:!0}};function Uxe(){let e=Ct.gl;!e||(Ct.extensions=e.getSupportedExtensions())}function _E(e){var t;if(e.config.backend==="humangl"&&(Ct.name in rn().registry&&!((t=Ct==null?void 0:Ct.gl)!=null&&t.getParameter(Ct.gl.VERSION))&&(re("error: humangl backend invalid context"),d1(e)),!Xy(Ct.name))){try{Ct.canvas=ds(100,100)}catch(s){re("error: cannot create canvas:",s);return}try{if(Ct.gl=Ct.canvas.getContext("webgl2",Ct.webGLattr),!Ct.gl){re("error: cannot get WebGL context");return}if(!Ct.gl.getParameter(Ct.gl.VERSION).includes("2.0")){re("override: using fallback webgl backend as webgl 2.0 is not detected"),e.config.backend="webgl";return}Ct.canvas&&(Ct.canvas.addEventListener("webglcontextlost",r=>{throw re("error: humangl:",r.type),re("possible browser memory leak using webgl or conflict with multiple backend registrations"),e.emit("error"),new Error("backend error: webgl context lost")}),Ct.canvas.addEventListener("webglcontextrestored",r=>{re("error: humangl context restored:",r)}),Ct.canvas.addEventListener("webglcontextcreationerror",r=>{re("error: humangl context create:",r)}))}catch(s){re("error: cannot get WebGL context:",s);return}try{T2(2,Ct.gl)}catch(s){re("error: cannot set WebGL context:",s);return}try{let s=new ec(Ct.gl);tu(Ct.name,()=>new pd(s),Ct.priority)}catch(s){re("error: cannot register WebGL backend:",s);return}try{ta("webgl").forEach(r=>{let a={...r,backendName:Ct.name};tr(a)})}catch(s){re("error: cannot update WebGL backend registration:",s);return}let n=Hn().getGPGPUContext?Hn().getGPGPUContext().gl:null;if(n)re(`humangl webgl version:${n.getParameter(n.VERSION)} renderer:${n.getParameter(n.RENDERER)}`);else{re("error: no current gl context:",n,Ct.gl);return}try{H().flagRegistry.WEBGL_VERSION&&H().set("WEBGL_VERSION",2)}catch(s){re("error: cannot set WebGL backend flags:",s);return}Uxe(),re("backend registered:",Ct.name)}}function Gxe(e){if(!he.kernels.includes("mod")){let t={kernelName:"Mod",backendName:Cn(),kernelFunc:n=>Z(()=>me(n.inputs.a,z(fe(n.inputs.a,n.inputs.b),n.inputs.b)))};e.debug&&re("registered kernel:","Mod"),tr(t),he.kernels.push("mod")}if(!he.kernels.includes("floormod")){let t={kernelName:"FloorMod",backendName:Cn(),kernelFunc:n=>Z(()=>ue(z(Hc(n.inputs.a/n.inputs.b),n.inputs.b),au(n.inputs.a,n.inputs.b)))};e.debug&&re("registered kernel:","FloorMod"),tr(t),he.kernels.push("floormod")}if(!he.kernels.includes("rotatewithoffset")&&e.softwareKernels){let t={kernelName:"RotateWithOffset",backendName:Cn(),kernelFunc:n=>Z(()=>{let s=Cn();ch("cpu");let r=Ie.rotateWithOffset(n.inputs.image,n.attrs.radians,n.attrs.fillValue,n.attrs.center);return ch(s),r})};e.debug&&re("registered kernel:","RotateWithOffset"),tr(t),he.kernels.push("rotatewithoffset")}}async function h1(e,t=!1){if(e.state="backend",t||he.initial||e.config.backend&&e.config.backend.length>0&&Cn()!==e.config.backend){let n=le();if(e.config.backend&&e.config.backend.length>0){if(typeof window=="undefined"&&typeof WorkerGlobalScope!="undefined"&&e.config.debug&&e.config.debug&&re("running inside web worker"),he.browser&&e.config.backend==="tensorflow"&&(e.config.debug&&re("override: backend set to tensorflow while running in browser"),e.config.backend="humangl"),he.node&&(e.config.backend==="webgl"||e.config.backend==="humangl")&&(e.config.debug&&re(`override: backend set to ${e.config.backend} while running in nodejs`),e.config.backend="tensorflow"),he.browser&&e.config.backend==="webgpu")if(typeof navigator=="undefined"||typeof navigator.gpu=="undefined")re("override: backend set to webgpu but browser does not support webgpu"),e.config.backend="humangl";else{let r=await navigator.gpu.requestAdapter();if(e.config.debug&&re("enumerated webgpu adapter:",r),!r)re("override: backend set to webgpu but browser reports no available gpu"),e.config.backend="humangl";else{let a="requestAdapterInfo"in r?await r.requestAdapterInfo():void 0;re("webgpu adapter info:",a)}}e.config.backend==="humangl"&&_E(e);let s=Object.keys(rn().registryFactory);if(e.config.debug&&re("available backends:",s),s.includes(e.config.backend)||(re(`error: backend ${e.config.backend} not found in registry`),e.config.backend=he.node?"tensorflow":"webgl",e.config.debug&&re(`override: setting backend ${e.config.backend}`)),e.config.debug&&re("setting backend:",e.config.backend),e.config.backend==="wasm"){if(H().flagRegistry.CANVAS2D_WILL_READ_FREQUENTLY&&H().set("CANVAS2D_WILL_READ_FREQUENTLY",!0),e.config.debug&&re("wasm path:",e.config.wasmPath),typeof P2!="undefined")P2(e.config.wasmPath,e.config.wasmPlatformFetch);else throw new Error("backend error: attempting to use wasm backend but wasm path is not set");let r=!1,a=!1;try{r=await H().getAsync("WASM_HAS_MULTITHREAD_SUPPORT"),a=await H().getAsync("WASM_HAS_SIMD_SUPPORT"),e.config.debug&&re(`wasm execution: ${a?"simd":"no simd"} ${r?"multithreaded":"singlethreaded"}`),e.config.debug&&!a&&re("warning: wasm simd support is not enabled")}catch(o){re("wasm detection failed")}}try{await ch(e.config.backend),await Gc(),jT()}catch(r){return re("error: cannot set backend:",e.config.backend,r),!1}}if(Cn()==="humangl"&&(H().flagRegistry.CHECK_COMPUTATION_FOR_ERRORS&&H().set("CHECK_COMPUTATION_FOR_ERRORS",!1),H().flagRegistry.WEBGL_CPU_FORWARD&&H().set("WEBGL_CPU_FORWARD",!0),H().flagRegistry.WEBGL_USE_SHAPES_UNIFORMS&&H().set("WEBGL_USE_SHAPES_UNIFORMS",!0),H().flagRegistry.CPU_HANDOFF_SIZE_THRESHOLD&&H().set("CPU_HANDOFF_SIZE_THRESHOLD",256),H().flagRegistry.WEBGL_EXP_CONV&&H().set("WEBGL_EXP_CONV",!0),H().flagRegistry.USE_SETTIMEOUTCUSTOM&&H().set("USE_SETTIMEOUTCUSTOM",!0),typeof e.config.deallocate!="undefined"&&e.config.deallocate&&(re("changing webgl: WEBGL_DELETE_TEXTURE_THRESHOLD:",!0),H().set("WEBGL_DELETE_TEXTURE_THRESHOLD",0)),Hn().getGPGPUContext)){let s=await Hn().getGPGPUContext().gl;e.config.debug&&re(`gl version:${s.getParameter(s.VERSION)} renderer:${s.getParameter(s.RENDERER)}`)}Cn(),jy(),await Gc(),e.performance.initBackend=Math.trunc(le()-n),e.config.backend=Cn(),await he.updateBackend(),Gxe(e.config)}return!0}function f1(e,t){for(let n of e){let s={kernelName:n,backendName:t.backend,kernelFunc:()=>{t.debug&&re("kernelFunc",n,t.backend)}};tr(s)}he.kernels=ta(Cn()).map(n=>n.kernelName.toLowerCase())}var en=[null,null],jxe=["StatefulPartitionedCall/Postprocessor/Slice","StatefulPartitionedCall/Postprocessor/ExpandDims_1"],Ei=[[0,0],[0,0]],qxe=["hand","fist","pinch","point","face","tip","pinchtip"],$E=4,PE=1.6,Xxe=512,Kxe=1.4,m1=Number.MAX_SAFE_INTEGER,y4=0,Oa=[0,0],Qt={boxes:[],hands:[]},FE={thumb:[1,2,3,4],index:[5,6,7,8],middle:[9,10,11,12],ring:[13,14,15,16],pinky:[17,18,19,20],base:[0],palm:[0,17,13,9,5,1,0]};async function OE(e){var t;if(he.initial&&(en[0]=null),en[0])e.debug&&re("cached model:",en[0].modelUrl);else{f1(["tensorlistreserve","enter","tensorlistfromtensor","merge","loopcond","switch","exit","tensorliststack","nextiteration","tensorlistsetitem","tensorlistgetitem","reciprocal","shape","split","where"],e),en[0]=await je((t=e.hand.detector)==null?void 0:t.modelPath);let n=en[0].executor?Object.values(en[0].modelSignature.inputs):void 0;Ei[0][0]=Array.isArray(n)?parseInt(n[0].tensorShape.dim[1].size):0,Ei[0][1]=Array.isArray(n)?parseInt(n[0].tensorShape.dim[2].size):0}return en[0]}async function ME(e){var t;if(he.initial&&(en[1]=null),en[1])e.debug&&re("cached model:",en[1].modelUrl);else{en[1]=await je((t=e.hand.skeleton)==null?void 0:t.modelPath);let n=en[1].executor?Object.values(en[1].modelSignature.inputs):void 0;Ei[1][0]=Array.isArray(n)?parseInt(n[0].tensorShape.dim[1].size):0,Ei[1][1]=Array.isArray(n)?parseInt(n[0].tensorShape.dim[2].size):0}return en[1]}async function Zxe(e,t){let n=[];if(!e||!en[0])return n;let s={},r=(e.shape[2]||1)/(e.shape[1]||1),a=Math.min(Math.round((e.shape[1]||0)/8)*8,Xxe),o=Math.round(a*r/8)*8;s.resize=Ie.resizeBilinear(e,[a,o]),s.cast=ye(s.resize,"int32"),[s.rawScores,s.rawBoxes]=await en[0].executeAsync(s.cast,jxe),s.boxes=rt(s.rawBoxes,[0,2]),s.scores=rt(s.rawScores,[0]);let i=On(s.scores,1);J(i[$E]),i.splice($E,1),s.filtered=ln(i,1),J(i),s.max=gn(s.filtered,1),s.argmax=Ps(s.filtered,1);let l=0;s.nms=await Ie.nonMaxSuppressionAsync(s.boxes,s.max,(t.hand.maxDetected||0)+1,t.hand.iouThreshold||0,t.hand.minConfidence||1);let u=await s.nms.data(),c=await s.max.data(),p=await s.argmax.data();for(let d of Array.from(u)){let h=ze(s.boxes,d,1),f=await h.data();J(h);let m=[f[1],f[0],f[3]-f[1],f[2]-f[0]],g=J2(m,Kxe),y=[Math.trunc(m[0]*Oa[0]),Math.trunc(m[1]*Oa[1]),Math.trunc(m[2]*Oa[0]),Math.trunc(m[3]*Oa[1])],x=c[d],A=qxe[p[d]],b={id:l++,score:x,box:y,boxRaw:g,label:A};n.push(b)}return Object.keys(s).forEach(d=>J(s[d])),n.sort((d,h)=>h.score-d.score),n.length>(t.hand.maxDetected||1)&&(n.length=t.hand.maxDetected||1),n}async function A4(e,t,n){let s={id:t.id,score:Math.round(100*t.score)/100,boxScore:Math.round(100*t.score)/100,fingerScore:0,box:t.box,boxRaw:t.boxRaw,label:t.label,keypoints:[],landmarks:{},annotations:{}};if(e&&en[1]&&n.hand.landmarks&&t.score>(n.hand.minConfidence||0)){let r={},a=[t.boxRaw[1],t.boxRaw[0],t.boxRaw[3]+t.boxRaw[1],t.boxRaw[2]+t.boxRaw[0]];r.crop=Ie.cropAndResize(e,[a],[0],[Ei[1][0],Ei[1][1]],"bilinear"),r.div=fe(r.crop,at.tf255),[r.score,r.keypoints]=en[1].execute(r.div,["Identity_1","Identity"]);let o=(await r.score.data())[0],i=(100-Math.trunc(100/(1+Math.exp(o))))/100;if(i>=(n.hand.minConfidence||0)){s.fingerScore=i,r.reshaped=V(r.keypoints,[-1,3]);let c=(await r.reshaped.array()).map(p=>[p[0]/Ei[1][1],p[1]/Ei[1][0],p[2]||0]).map(p=>[p[0]*t.boxRaw[2],p[1]*t.boxRaw[3],p[2]||0]);s.keypoints=c.map(p=>[Oa[0]*(p[0]+t.boxRaw[0]),Oa[1]*(p[1]+t.boxRaw[1]),p[2]||0]),s.landmarks=c1(s.keypoints);for(let p of Object.keys(FE))s.annotations[p]=FE[p].map(d=>s.landmarks&&s.keypoints[d]?s.keypoints[d]:null)}Object.keys(r).forEach(l=>J(r[l]))}return s}async function x4(e,t){var r,a;if(!((r=en[0])!=null&&r.executor)||!((a=en[1])!=null&&a.executor)||!en[0].inputs[0].shape||!en[1].inputs[0].shape)return[];Oa=[e.shape[2]||0,e.shape[1]||0],m1++;let n=(t.hand.skipTime||0)>le()-y4,s=m1<(t.hand.skipFrames||0);return t.skipAllowed&&n&&s?Qt.hands:new Promise(async o=>{let i=3*(t.hand.skipTime||0)>le()-y4,l=m1<3*(t.hand.skipFrames||0);t.skipAllowed&&Qt.hands.length===t.hand.maxDetected?Qt.hands=await Promise.all(Qt.boxes.map(c=>A4(e,c,t))):t.skipAllowed&&i&&l&&Qt.hands.length>0?Qt.hands=await Promise.all(Qt.boxes.map(c=>A4(e,c,t))):(Qt.boxes=await Zxe(e,t),y4=le(),Qt.hands=await Promise.all(Qt.boxes.map(c=>A4(e,c,t))),m1=0);let u=[...Qt.boxes];if(Qt.boxes.length=0,t.cacheSensitivity>0)for(let c=0;c<Qt.hands.length;c++){let p=vN(Qt.hands[c].keypoints,Oa);if(p.box[2]/(e.shape[2]||1)>.05&&p.box[3]/(e.shape[1]||1)>.05&&Qt.hands[c].fingerScore&&Qt.hands[c].fingerScore>(t.hand.minConfidence||0)){let d=J2(p.box,PE),h=J2(p.boxRaw,PE);Qt.boxes.push({...u[c],box:d,boxRaw:h})}}for(let c=0;c<Qt.hands.length;c++){let p=$a(Qt.hands[c].keypoints,Oa);Qt.hands[c].box=p.box,Qt.hands[c].boxRaw=p.boxRaw}o(Qt.hands)})}var _n,g1=[],b4=Number.MAX_SAFE_INTEGER,LE=0,BE=0;async function WE(e){var t;return he.initial&&(_n=null),_n?e.debug&&re("cached model:",_n.modelUrl):_n=await je((t=e.face.liveness)==null?void 0:t.modelPath),_n}async function v4(e,t,n,s){var o,i;if(!(_n!=null&&_n.executor))return 0;let r=(((o=t.face.liveness)==null?void 0:o.skipTime)||0)>le()-BE,a=b4<(((i=t.face.liveness)==null?void 0:i.skipFrames)||0);return t.skipAllowed&&r&&a&&LE===s&&g1[n]?(b4++,g1[n]):(b4=0,new Promise(async l=>{let u=Ie.resizeBilinear(e,[_n!=null&&_n.inputs[0].shape?_n.inputs[0].shape[2]:0,_n!=null&&_n.inputs[0].shape?_n.inputs[0].shape[1]:0],!1),c=_n==null?void 0:_n.execute(u),p=(await c.data())[0];g1[n]=Math.round(100*p)/100,LE=s,BE=le(),J([u,c]),l(g1[n])}))}var nf={};fa(nf,{connected:()=>A1,horizontal:()=>w4,kpt:()=>y1,relative:()=>S4,vertical:()=>k4});var y1=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"],w4=[["leftEye","rightEye"],["leftEar","rightEar"],["leftShoulder","rightShoulder"],["leftElbow","rightElbow"],["leftWrist","rightWrist"],["leftHip","rightHip"],["leftKnee","rightKnee"],["leftAnkle","rightAnkle"]],k4=[["leftKnee","leftShoulder"],["rightKnee","rightShoulder"],["leftAnkle","leftKnee"],["rightAnkle","rightKnee"]],S4=[[["leftHip","rightHip"],["leftShoulder","rightShoulder"]],[["leftElbow","rightElbow"],["leftShoulder","rightShoulder"]]],A1={leftLeg:["leftHip","leftKnee","leftAnkle"],rightLeg:["rightHip","rightKnee","rightAnkle"],torso:["leftShoulder","rightShoulder","rightHip","leftHip","leftShoulder"],leftArm:["leftShoulder","leftElbow","leftWrist"],rightArm:["rightShoulder","rightElbow","rightWrist"],head:[]};var UE=.005,Gs={keypoints:[],padding:[[0,0],[0,0],[0,0],[0,0]]};function I4(e){for(let t of w4){let n=e.keypoints.findIndex(r=>r.part===t[0]),s=e.keypoints.findIndex(r=>r.part===t[1]);if(e.keypoints[n]&&e.keypoints[s]&&e.keypoints[n].position[0]<e.keypoints[s].position[0]){let r=e.keypoints[n];e.keypoints[n]=e.keypoints[s],e.keypoints[s]=r}}for(let t of k4){let n=e.keypoints.findIndex(r=>r&&r.part===t[0]),s=e.keypoints.findIndex(r=>r&&r.part===t[1]);e.keypoints[n]&&e.keypoints[s]&&e.keypoints[n].position[1]<e.keypoints[s].position[1]&&e.keypoints.splice(n,1)}for(let[t,n]of S4){let s=e.keypoints.findIndex(u=>u&&u.part===t[0]),r=e.keypoints.findIndex(u=>u&&u.part===t[1]),a=e.keypoints.findIndex(u=>u&&u.part===n[0]),o=e.keypoints.findIndex(u=>u&&u.part===n[1]);if(!e.keypoints[a]||!e.keypoints[o])continue;let i=e.keypoints[s]?[Math.abs(e.keypoints[a].position[0]-e.keypoints[s].position[0]),Math.abs(e.keypoints[o].position[0]-e.keypoints[s].position[0])]:[0,0],l=e.keypoints[r]?[Math.abs(e.keypoints[o].position[0]-e.keypoints[r].position[0]),Math.abs(e.keypoints[a].position[0]-e.keypoints[r].position[0])]:[0,0];if(i[0]>i[1]||l[0]>l[1]){let u=e.keypoints[s];e.keypoints[s]=e.keypoints[r],e.keypoints[r]=u}}}function GE(e){for(let t=0;t<e.length;t++)if(e[t]&&Gs.keypoints[t]){let n=[Math.abs(e[t].positionRaw[0]-Gs.keypoints[t].positionRaw[0]),Math.abs(e[t].positionRaw[1]-Gs.keypoints[t].positionRaw[1])];n[0]<UE&&n[1]<UE?e[t]=Gs.keypoints[t]:Gs.keypoints[t]=e[t]}else Gs.keypoints[t]=e[t];return e}function HE(e,t){var r,a;let n={};if(!((r=e==null?void 0:e.shape)!=null&&r[1])||!((a=e==null?void 0:e.shape)!=null&&a[2]))return e;Gs.padding=[[0,0],[e.shape[2]>e.shape[1]?Math.trunc((e.shape[2]-e.shape[1])/2):0,e.shape[2]>e.shape[1]?Math.trunc((e.shape[2]-e.shape[1])/2):0],[e.shape[1]>e.shape[2]?Math.trunc((e.shape[1]-e.shape[2])/2):0,e.shape[1]>e.shape[2]?Math.trunc((e.shape[1]-e.shape[2])/2):0],[0,0]],n.pad=sr(e,Gs.padding),n.resize=Ie.resizeBilinear(n.pad,[t,t]);let s=ye(n.resize,"int32");return Object.keys(n).forEach(o=>J(n[o])),s}function jE(e,t){e.keypoints=e.keypoints.filter(s=>s==null?void 0:s.position);for(let s of e.keypoints)s.position=[s.position[0]*(t[0]+Gs.padding[2][0]+Gs.padding[2][1])/t[0]-Gs.padding[2][0],s.position[1]*(t[1]+Gs.padding[1][0]+Gs.padding[1][1])/t[1]-Gs.padding[1][0]],s.positionRaw=[s.position[0]/t[0],s.position[1]/t[1]];let n=$a(e.keypoints.map(s=>s.position),t);return e.box=n.box,e.boxRaw=n.boxRaw,e}var pn,x1=0,C4=Number.MAX_SAFE_INTEGER,Cu={boxes:[],bodies:[],last:0};async function qE(e){var t;return he.initial&&(pn=null),pn?e.debug&&re("cached model:",pn.modelUrl):(f1(["size"],e),pn=await je(e.body.modelPath)),x1=(pn==null?void 0:pn.executor)&&((t=pn==null?void 0:pn.inputs)==null?void 0:t[0].shape)?pn.inputs[0].shape[2]:0,x1<64&&(x1=256),pn}function Jxe(e,t,n){let s=e[0][0],r=[],a=0;for(let c=0;c<s.length;c++)if(a=s[c][2],a>t.body.minConfidence){let p=[s[c][1],s[c][0]];r.push({score:Math.round(100*a)/100,part:y1[c],positionRaw:p,position:[Math.round((n.shape[2]||0)*p[0]),Math.round((n.shape[1]||0)*p[1])]})}a=r.reduce((c,p)=>p.score>c?p.score:c,0);let o=[],i=$a(r.map(c=>c.position),[n.shape[2],n.shape[1]]),l={};for(let[c,p]of Object.entries(A1)){let d=[];for(let h=0;h<p.length-1;h++){let f=r.find(g=>g.part===p[h]),m=r.find(g=>g.part===p[h+1]);f&&m&&f.score>(t.body.minConfidence||0)&&m.score>(t.body.minConfidence||0)&&d.push([f.position,m.position])}l[c]=d}let u={id:0,score:a,box:i.box,boxRaw:i.boxRaw,keypoints:r,annotations:l};return I4(u),o.push(u),o}function Qxe(e,t,n){let s=[];for(let r=0;r<e[0].length;r++){let a=e[0][r],o=Math.round(100*a[51+4])/100;if(o>t.body.minConfidence){let i=[];for(let p=0;p<17;p++){let d=a[3*p+2];if(d>t.body.minConfidence){let h=[a[3*p+1],a[3*p+0]];i.push({part:y1[p],score:Math.round(100*d)/100,positionRaw:h,position:[Math.round((n.shape[2]||0)*h[0]),Math.round((n.shape[1]||0)*h[1])]})}}let l=$a(i.map(p=>p.position),[n.shape[2],n.shape[1]]),u={};for(let[p,d]of Object.entries(A1)){let h=[];for(let f=0;f<d.length-1;f++){let m=i.find(y=>y.part===d[f]),g=i.find(y=>y.part===d[f+1]);m&&g&&m.score>(t.body.minConfidence||0)&&g.score>(t.body.minConfidence||0)&&h.push([m.position,g.position])}u[p]=h}let c={id:r,score:o,box:l.box,boxRaw:l.boxRaw,keypoints:[...i],annotations:u};I4(c),s.push(c)}}return s.sort((r,a)=>a.score-r.score),s.length>t.body.maxDetected&&(s.length=t.body.maxDetected),s}async function T4(e,t){var r;if(!(pn!=null&&pn.executor)||!((r=pn==null?void 0:pn.inputs)!=null&&r[0].shape))return[];t.skipAllowed||(Cu.boxes.length=0),C4++;let n=(t.body.skipTime||0)>le()-Cu.last,s=C4<(t.body.skipFrames||0);return t.skipAllowed&&n&&s?Cu.bodies:new Promise(async a=>{let o={};C4=0,o.input=HE(e,x1),o.res=pn==null?void 0:pn.execute(o.input),Cu.last=le();let i=await o.res.array();Cu.bodies=o.res.shape[2]===17?Jxe(i,t,e):Qxe(i,t,e);for(let l of Cu.bodies)jE(l,[e.shape[2]||1,e.shape[1]||1]),GE(l.keypoints);Object.keys(o).forEach(l=>J(o[l])),a(Cu.bodies)})}var kr,b1=[],KE=0,N4=Number.MAX_SAFE_INTEGER,w1=0,v1=2.5;async function ZE(e){if(!kr||he.initial){kr=await je(e.object.modelPath);let t=kr!=null&&kr.executor?Object.values(kr.modelSignature.inputs):void 0;w1=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):416}else e.debug&&re("cached model:",kr.modelUrl);return kr}async function ebe(e,t,n){let s=0,r=[],a=w1;for(let u of[1,2,4]){let c=u*13,p=rt(e.find(y=>y.shape[1]===c**2&&(y.shape[2]||0)===Sd.length)),d=await p.array(),h=rt(e.find(y=>y.shape[1]===c**2&&(y.shape[2]||0)<Sd.length)),f=h.reshape([-1,4,h.shape[1]/4]),m=f.argMax(2),g=await m.array();for(let y=0;y<p.shape[0];y++)for(let x=0;x<p.shape[1];x++){let A=d[y][x];if(A>(n.object.minConfidence||0)&&x!==61){let b=(.5+Math.trunc(y%c))/c,w=(.5+Math.trunc(y/c))/c,S=g[y].map(M=>M*(c/u/a)),[k,E]=[b-v1/u*S[0],w-v1/u*S[1]],[_,D]=[b+v1/u*S[2]-k,w+v1/u*S[3]-E],R=[k,E,_,D];R=R.map(M=>Math.max(0,Math.min(M,1)));let P=[R[0]*t[0],R[1]*t[1],R[2]*t[0],R[3]*t[1]],C={id:s++,score:Math.round(100*A)/100,class:x+1,label:Sd[x].label,box:P.map(M=>Math.trunc(M)),boxRaw:R};r.push(C)}}J([p,h,f,m])}let o=r.map(u=>[u.boxRaw[1],u.boxRaw[0],u.boxRaw[3],u.boxRaw[2]]),i=r.map(u=>u.score),l=[];if(o&&o.length>0){let u=await Ie.nonMaxSuppressionAsync(o,i,n.object.maxDetected,n.object.iouThreshold,n.object.minConfidence);l=await u.data(),J(u)}return r=r.filter((u,c)=>l.includes(c)).sort((u,c)=>c.score-u.score),r}async function E4(e,t){if(!(kr!=null&&kr.executor))return[];let n=(t.object.skipTime||0)>le()-KE,s=N4<(t.object.skipFrames||0);return t.skipAllowed&&n&&s&&b1.length>0?(N4++,b1):(N4=0,!he.kernels.includes("mod")||!he.kernels.includes("sparsetodense")?b1:new Promise(async r=>{let a=[e.shape[2]||0,e.shape[1]||0],o=Ie.resizeBilinear(e,[w1,w1],!1),i=fe(o,at.tf255),l=tt(i,[0,3,1,2]),u;t.object.enabled&&(u=kr.execute(l)),KE=le();let c=await ebe(u,a,t);b1=c,J([o,i,l,...u]),r(c)}))}var rf=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"],tbe=rf.length,sf=rf.reduce((e,t,n)=>(e[t]=n,e),{}),nbe=[["leftHip","leftShoulder"],["leftElbow","leftShoulder"],["leftElbow","leftWrist"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["rightHip","rightShoulder"],["rightElbow","rightShoulder"],["rightElbow","rightWrist"],["rightHip","rightKnee"],["rightKnee","rightAnkle"],["leftShoulder","rightShoulder"],["leftHip","rightHip"]],gIe=nbe.map(([e,t])=>[sf[e],sf[t]]),JE=[["nose","leftEye"],["leftEye","leftEar"],["nose","rightEye"],["rightEye","rightEar"],["nose","leftShoulder"],["leftShoulder","leftElbow"],["leftElbow","leftWrist"],["leftShoulder","leftHip"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["nose","rightShoulder"],["rightShoulder","rightElbow"],["rightElbow","rightWrist"],["rightShoulder","rightHip"],["rightHip","rightKnee"],["rightKnee","rightAnkle"]];function QE(e){let t=e.reduce(({maxX:n,maxY:s,minX:r,minY:a},{position:{x:o,y:i}})=>({maxX:Math.max(n,o),maxY:Math.max(s,i),minX:Math.min(r,o),minY:Math.min(a,i)}),{maxX:Number.NEGATIVE_INFINITY,maxY:Number.NEGATIVE_INFINITY,minX:Number.POSITIVE_INFINITY,minY:Number.POSITIVE_INFINITY});return[t.minX,t.minY,t.maxX-t.minX,t.maxY-t.minY]}function eR(e,[t,n],[s,r]){let a=t/s,o=n/r,i=(u,c)=>({id:c,score:u.score,boxRaw:[u.box[0]/r,u.box[1]/s,u.box[2]/r,u.box[3]/s],box:[Math.trunc(u.box[0]*o),Math.trunc(u.box[1]*a),Math.trunc(u.box[2]*o),Math.trunc(u.box[3]*a)],keypoints:u.keypoints.map(({score:p,part:d,position:h})=>({score:p,part:d,position:[Math.trunc(h.x*o),Math.trunc(h.y*a)],positionRaw:[h.x/s,h.y/s]})),annotations:{}});return e.map((u,c)=>i(u,c))}var k1=class{constructor(t,n){ge(this,"priorityQueue");ge(this,"numberOfElements");ge(this,"getElementValue");this.priorityQueue=new Array(t),this.numberOfElements=-1,this.getElementValue=n}enqueue(t){this.priorityQueue[++this.numberOfElements]=t,this.swim(this.numberOfElements)}dequeue(){let t=this.priorityQueue[0];return this.exchange(0,this.numberOfElements--),this.sink(0),this.priorityQueue[this.numberOfElements+1]=null,t}empty(){return this.numberOfElements===-1}size(){return this.numberOfElements+1}all(){return this.priorityQueue.slice(0,this.numberOfElements+1)}max(){return this.priorityQueue[0]}swim(t){for(;t>0&&this.less(Math.floor(t/2),t);)this.exchange(t,Math.floor(t/2)),t=Math.floor(t/2)}sink(t){for(;2*t<=this.numberOfElements;){let n=2*t;if(n<this.numberOfElements&&this.less(n,n+1)&&n++,!this.less(t,n))break;this.exchange(t,n),t=n}}getValueAt(t){return this.getElementValue(this.priorityQueue[t])}less(t,n){return this.getValueAt(t)<this.getValueAt(n)}exchange(t,n){let s=this.priorityQueue[t];this.priorityQueue[t]=this.priorityQueue[n],this.priorityQueue[n]=s}};function R4(e,t,n,s){return{y:s.get(e,t,n),x:s.get(e,t,n+tbe)}}function _4(e,t,n){let{heatmapY:s,heatmapX:r,id:a}=e,{y:o,x:i}=R4(s,r,a,n);return{x:e.heatmapX*t+i,y:e.heatmapY*t+o}}function D4(e,t,n){return e<t?t:e>n?n:e}function tR(e,t,n,s){let r=n-e,a=s-t;return r*r+a*a}function $4(e,t){return{x:e.x+t.x,y:e.y+t.y}}var Hs,rbe=["MobilenetV1/offset_2/BiasAdd","MobilenetV1/heatmap_2/BiasAdd","MobilenetV1/displacement_fwd_2/BiasAdd","MobilenetV1/displacement_bwd_2/BiasAdd"],S1=1,Rd=16,abe=50**2;function nR(e,t,n,s,r,a,o=2){let i=y=>({y:a.get(y.y,y.x,e),x:a.get(y.y,y.x,a.shape[2]/2+e)}),l=(y,x,A)=>({y:D4(Math.round(y.y/Rd),0,x-1),x:D4(Math.round(y.x/Rd),0,A-1)}),[u,c]=s.shape,p=l(t.position,u,c),d=i(p),f=$4(t.position,d);for(let y=0;y<o;y++){let x=l(f,u,c),A=R4(x.y,x.x,n,r);f=$4({x:x.x*Rd,y:x.y*Rd},{x:A.x,y:A.y})}let m=l(f,u,c),g=s.get(m.y,m.x,n);return{position:f,part:rf[n],score:g}}function obe(e,t,n,s,r){let a=JE.map(([d,h])=>[sf[d],sf[h]]),o=a.map(([,d])=>d),i=a.map(([d])=>d),l=t.shape[2],u=o.length,c=new Array(l),p=_4(e.part,Rd,n);c[e.part.id]={score:e.score,part:rf[e.part.id],position:p};for(let d=u-1;d>=0;--d){let h=o[d],f=i[d];c[h]&&!c[f]&&(c[f]=nR(d,c[h],f,t,n,r))}for(let d=0;d<u;++d){let h=i[d],f=o[d];c[h]&&!c[f]&&(c[f]=nR(d,c[h],f,t,n,s))}return c}function ibe(e,t,n,s,r){let[a,o]=r.shape,i=!0,l=Math.max(n-S1,0),u=Math.min(n+S1+1,a);for(let c=l;c<u;++c){let p=Math.max(s-S1,0),d=Math.min(s+S1+1,o);for(let h=p;h<d;++h)if(r.get(c,h,e)>t){i=!1;break}if(!i)break}return i}function lbe(e,t){let[n,s,r]=t.shape,a=new k1(n*s*r,({score:o})=>o);for(let o=0;o<n;++o)for(let i=0;i<s;++i)for(let l=0;l<r;++l){let u=t.get(o,i,l);u<e||ibe(l,u,o,i,t)&&a.enqueue({score:u,part:{heatmapY:o,heatmapX:i,id:l}})}return a}function sR(e,{x:t,y:n},s){return e.some(({keypoints:r})=>{var o;let a=(o=r[s])==null?void 0:o.position;return a?tR(n,t,a.y,a.x)<=abe:!1})}function ube(e,t){return t.reduce((s,{position:r,score:a},o)=>(sR(e,r,o)||(s+=a),s),0)/t.length}function cbe(e,t,n,s,r,a){let o=[],i=lbe(a,t);for(;o.length<r&&!i.empty();){let l=i.dequeue(),u=_4(l.part,Rd,e);if(sR(o,u,l.part.id))continue;let c=obe(l,t,e,n,s);c=c.filter(h=>h.score>a);let p=ube(o,c),d=QE(c);p>a&&o.push({keypoints:c,box:d,score:Math.round(100*p)/100})}return o}async function P4(e,t){if(!(Hs!=null&&Hs.executor))return[];let n=Z(()=>{if(!Hs.inputs[0].shape)return[];let o=Ie.resizeBilinear(e,[Hs.inputs[0].shape[2],Hs.inputs[0].shape[1]]),i=me(fe(ye(o,"float32"),127.5),1),u=Hs.execute(i,rbe).map(c=>rt(c,[0]));return u[1]=$n(u[1]),u}),s=await Promise.all(n.map(o=>o.buffer()));for(let o of n)J(o);let r=cbe(s[0],s[1],s[2],s[3],t.body.maxDetected,t.body.minConfidence);return Hs.inputs[0].shape?eR(r,[e.shape[1],e.shape[2]],[Hs.inputs[0].shape[2],Hs.inputs[0].shape[1]]):[]}async function rR(e){return!Hs||he.initial?Hs=await je(e.body.modelPath):e.debug&&re("cached model:",Hs.modelUrl),Hs}var ua,F4=!1;async function O4(e){return!ua||he.initial?ua=await je(e.segmentation.modelPath):e.debug&&re("cached model:",ua.modelUrl),ua}async function oR(e,t,n){var m,g;if(F4)return{data:[],canvas:null,alpha:null};F4=!0,ua||await O4(n);let s=await bd(e,n),r=((m=s.tensor)==null?void 0:m.shape[2])||0,a=((g=s.tensor)==null?void 0:g.shape[1])||0;if(!s.tensor)return{data:[],canvas:null,alpha:null};let o={};o.resize=Ie.resizeBilinear(s.tensor,[ua.inputs[0].shape?ua.inputs[0].shape[1]:0,ua.inputs[0].shape?ua.inputs[0].shape[2]:0],!1),J(s.tensor),o.norm=fe(o.resize,at.tf255),o.res=ua.execute(o.norm),o.squeeze=rt(o.res,0),o.squeeze.shape[2]===2?(o.softmax=ou(o.squeeze),[o.bg,o.fg]=On(o.softmax,2),o.expand=Bt(o.fg,2),o.pad=Bt(o.expand,0),o.crop=Ie.cropAndResize(o.pad,[[0,0,.5,.5]],[0],[r,a]),o.data=rt(o.crop,0)):o.data=Ie.resizeBilinear(o.squeeze,[a,r]);let i=Array.from(await o.data.data());if(he.node&&!he.Canvas&&typeof ImageData=="undefined")return n.debug&&re("canvas support missing"),Object.keys(o).forEach(y=>J(o[y])),{data:i,canvas:null,alpha:null};let l=ds(r,a);nr&&await nr.toPixels(o.data,l);let u=l.getContext("2d");n.segmentation.blur&&n.segmentation.blur>0&&(u.filter=`blur(${n.segmentation.blur}px)`);let c=u.getImageData(0,0,r,a),p=ds(r,a),d=p.getContext("2d");s.canvas&&d.drawImage(s.canvas,0,0),d.globalCompositeOperation="darken",n.segmentation.blur&&n.segmentation.blur>0&&(d.filter=`blur(${n.segmentation.blur}px)`),d.drawImage(l,0,0),d.globalCompositeOperation="source-over",d.filter="none";let h=d.getImageData(0,0,r,a);for(let y=0;y<r*a;y++)h.data[4*y+3]=c.data[4*y+0];d.putImageData(h,0,0);let f=null;if(t&&p){f=ds(r,a);let y=await bd(t,n);J(y.tensor);let x=f.getContext("2d");x.drawImage(y.canvas,0,0,f.width,f.height),x.drawImage(p,0,0)}return Object.keys(o).forEach(y=>J(o[y])),F4=!1,{data:i,canvas:p,alpha:l}}var af=class{constructor(){ge(this,"ssrnetage",null);ge(this,"gear",null);ge(this,"blazeposedetect",null);ge(this,"blazepose",null);ge(this,"centernet",null);ge(this,"efficientpose",null);ge(this,"mobilefacenet",null);ge(this,"insightface",null);ge(this,"emotion",null);ge(this,"facedetect",null);ge(this,"faceiris",null);ge(this,"facemesh",null);ge(this,"faceres",null);ge(this,"ssrnetgender",null);ge(this,"handpose",null);ge(this,"handskeleton",null);ge(this,"handtrack",null);ge(this,"liveness",null);ge(this,"movenet",null);ge(this,"nanodet",null);ge(this,"posenet",null);ge(this,"segmentation",null);ge(this,"antispoof",null)}},M4=e=>{let t=0,n=0,s=0;for(let a of Object.values(qr))t+=a.sizeFromManifest,n+=a.sizeLoadedWeights,s+=a.sizeDesired;let r=s>0?n/s:0;return{numLoadedModels:Object.values(qr).length,numEnabledModels:void 0,numDefinedModels:Object.keys(e.models).length,percentageLoaded:r,totalSizeFromManifest:t,totalSizeWeights:n,totalSizeLoading:s,totalSizeEnabled:void 0,modelStats:Object.values(qr)}};function d1(e){for(let t of Object.keys(e.models))e.models[t]=null}async function z4(e){var t,n,s,r,a,o,i,l,u,c,p,d,h,f,m,g,y,x,A,b,w,S,k,E,_,D;he.initial&&d1(e),e.config.hand.enabled&&(!e.models.handpose&&((n=(t=e.config.hand.detector)==null?void 0:t.modelPath)==null?void 0:n.includes("handdetect"))&&([e.models.handpose,e.models.handskeleton]=await g4(e.config)),!e.models.handskeleton&&e.config.hand.landmarks&&((r=(s=e.config.hand.detector)==null?void 0:s.modelPath)==null?void 0:r.includes("handdetect"))&&([e.models.handpose,e.models.handskeleton]=await g4(e.config))),e.config.body.enabled&&!e.models.blazepose&&((a=e.config.body.modelPath)==null?void 0:a.includes("blazepose"))&&(e.models.blazepose=CN(e.config)),e.config.body.enabled&&!e.models.blazeposedetect&&e.config.body.detector&&e.config.body.detector.modelPath&&(e.models.blazeposedetect=IN(e.config)),e.config.body.enabled&&!e.models.efficientpose&&((o=e.config.body.modelPath)==null?void 0:o.includes("efficientpose"))&&(e.models.efficientpose=DN(e.config)),e.config.body.enabled&&!e.models.movenet&&((i=e.config.body.modelPath)==null?void 0:i.includes("movenet"))&&(e.models.movenet=qE(e.config)),e.config.body.enabled&&!e.models.posenet&&((l=e.config.body.modelPath)==null?void 0:l.includes("posenet"))&&(e.models.posenet=rR(e.config)),e.config.face.enabled&&!e.models.facedetect&&(e.models.facedetect=gN(e.config)),e.config.face.enabled&&((u=e.config.face.antispoof)==null?void 0:u.enabled)&&!e.models.antispoof&&(e.models.antispoof=sN(e.config)),e.config.face.enabled&&((c=e.config.face.liveness)==null?void 0:c.enabled)&&!e.models.liveness&&(e.models.liveness=WE(e.config)),e.config.face.enabled&&((p=e.config.face.description)==null?void 0:p.enabled)&&!e.models.faceres&&(e.models.faceres=lE(e.config)),e.config.face.enabled&&((d=e.config.face.emotion)==null?void 0:d.enabled)&&!e.models.emotion&&(e.models.emotion=ON(e.config)),e.config.face.enabled&&((h=e.config.face.iris)==null?void 0:h.enabled)&&!((f=e.config.face.attention)!=null&&f.enabled)&&!e.models.faceiris&&(e.models.faceiris=YN(e.config)),e.config.face.enabled&&((m=e.config.face.mesh)==null?void 0:m.enabled)&&!e.models.facemesh&&(e.models.facemesh=sE(e.config)),e.config.face.enabled&&((g=e.config.face.gear)==null?void 0:g.enabled)&&!e.models.gear&&(e.models.gear=GT(e.config)),e.config.face.enabled&&((y=e.config.face.ssrnet)==null?void 0:y.enabled)&&!e.models.ssrnetage&&(e.models.ssrnetage=KT(e.config)),e.config.face.enabled&&((x=e.config.face.ssrnet)==null?void 0:x.enabled)&&!e.models.ssrnetgender&&(e.models.ssrnetgender=QT(e.config)),e.config.face.enabled&&((A=e.config.face.mobilefacenet)==null?void 0:A.enabled)&&!e.models.mobilefacenet&&(e.models.mobilefacenet=WN(e.config)),e.config.face.enabled&&((b=e.config.face.insightface)==null?void 0:b.enabled)&&!e.models.insightface&&(e.models.insightface=jN(e.config)),e.config.hand.enabled&&!e.models.handtrack&&((S=(w=e.config.hand.detector)==null?void 0:w.modelPath)==null?void 0:S.includes("handtrack"))&&(e.models.handtrack=OE(e.config)),e.config.hand.enabled&&e.config.hand.landmarks&&!e.models.handskeleton&&((E=(k=e.config.hand.detector)==null?void 0:k.modelPath)==null?void 0:E.includes("handtrack"))&&(e.models.handskeleton=ME(e.config)),e.config.object.enabled&&!e.models.centernet&&((_=e.config.object.modelPath)==null?void 0:_.includes("centernet"))&&(e.models.centernet=EN(e.config)),e.config.object.enabled&&!e.models.nanodet&&((D=e.config.object.modelPath)==null?void 0:D.includes("nanodet"))&&(e.models.nanodet=ZE(e.config)),e.config.segmentation.enabled&&!e.models.segmentation&&(e.models.segmentation=O4(e.config));for await(let R of Object.keys(e.models))e.models[R]&&typeof e.models[R]!="undefined"&&(e.models[R]=await e.models[R])}var ir;function _d(e,t,n){var u;if(e&&(ir=e),!t||(ir||re("instance not registred"),!ir.config.validateModels))return null;let s=["const","placeholder","noop","pad","squeeze","add","sub","mul","div"],r=["biasadd","fusedbatchnormv3","matmul"],a=[],o=[],i=t.modelUrl,l=t.executor;if((u=l==null?void 0:l.graph)!=null&&u.nodes)for(let c of Object.values(l.graph.nodes)){let p=c.op.toLowerCase();a.includes(p)||a.push(p)}else!l&&ir.config.debug&&re("model not loaded",n);for(let c of a)!s.includes(c)&&!r.includes(c)&&!ir.env.kernels.includes(c)&&!ir.env.kernels.includes(c.replace("_",""))&&!ir.env.kernels.includes(c.replace("native",""))&&!ir.env.kernels.includes(c.replace("v2",""))&&o.push(c);return ir.config.debug&&o.length>0&&re("model validation failed:",n,o),o.length>0?{name:n,missing:o,ops:a,url:i}:null}function I1(e){ir=e;let t=[];for(let n of Object.keys(ir.models)){let s=ir.models[n];if(!s)continue;let r=_d(ir,s,n);r&&t.push(r)}return t}var ms={cacheModels:!0,cacheSupported:!0,verbose:!0,debug:!1,modelBasePath:""},qr={};async function dbe(e,t){return ms.debug&&re("load model fetch:",e,t),fetch(e,t)}function lR(e){ms.cacheModels=e.cacheModels,ms.verbose=e.debug,ms.modelBasePath=e.modelBasePath}async function je(e){var u,c,p;let t=wv(ms.modelBasePath,e||"");t.toLowerCase().endsWith(".json")||(t+=".json");let n=t.includes("/")?t.split("/"):t.split("\\"),s=n[n.length-1].replace(".json",""),r="indexeddb://"+s;qr[s]={name:s,sizeFromManifest:0,sizeLoadedWeights:0,sizeDesired:Sb[s],inCache:!1},ms.cacheSupported=typeof window!="undefined"&&typeof window.localStorage!="undefined"&&typeof window.indexedDB!="undefined";let a={};try{a=ms.cacheSupported&&ms.cacheModels?await Ds.listModels():{}}catch(d){ms.cacheSupported=!1}qr[s].inCache=ms.cacheSupported&&ms.cacheModels&&Object.keys(a).includes(r);let o=typeof fetch=="undefined"?{}:{fetchFunc:(d,h)=>dbe(d,h)},i=new zh(qr[s].inCache?r:t,o),l=!1;try{i.findIOHandler(),ms.debug&&re("model load handler:",i.handler);let d=await i.handler.load();qr[s].sizeFromManifest=((u=d==null?void 0:d.weightData)==null?void 0:u.byteLength)||0,i.loadSync(d),qr[s].sizeLoadedWeights=((p=(c=i.artifacts)==null?void 0:c.weightData)==null?void 0:p.byteLength)||0,ms.verbose&&re("load model:",i.modelUrl,{bytes:qr[s].sizeLoadedWeights},ms),l=!0}catch(d){re("error loading model:",t,d)}if(l&&ms.cacheModels&&ms.cacheSupported&&!qr[s].inCache)try{let d=await i.save(r);re("model saved:",r,d)}catch(d){re("error saving model:",t,d)}return _d(null,i,`${e||""}`),i}var L4="2.9.4";var j4={};fa(j4,{all:()=>H4,body:()=>$d,canvas:()=>G4,face:()=>Dd,gesture:()=>Od,hand:()=>Pd,object:()=>Fd,options:()=>Xn,person:()=>U4});var lr=e=>{if(!e)re("draw error: invalid canvas");else if(!e.getContext)re("draw error: canvas context not defined");else{let t=e.getContext("2d");if(!t)re("draw error: cannot get canvas context");else return t}return null},Tu=e=>Math.round(e*180/Math.PI),Ma=(e,t)=>{if(!t.useDepth||typeof e=="undefined")return t.color;let n=Uint8ClampedArray.from([127+2*e,127-2*e,255]);return`rgba(${n[0]}, ${n[1]}, ${n[2]}, ${t.alpha})`};function za(e,t,n,s,r){e.fillStyle=Ma(s,r),e.beginPath(),e.arc(t,n,r.pointSize,0,2*Math.PI),e.fill()}function ca(e,t,n,s,r,a){if(e.beginPath(),e.lineWidth=a.lineWidth,a.useCurves){let o=(t+t+s)/2,i=(n+n+r)/2;e.ellipse(o,i,s/2,r/2,0,0,2*Math.PI)}else e.moveTo(t+a.roundRect,n),e.lineTo(t+s-a.roundRect,n),e.quadraticCurveTo(t+s,n,t+s,n+a.roundRect),e.lineTo(t+s,n+r-a.roundRect),e.quadraticCurveTo(t+s,n+r,t+s-a.roundRect,n+r),e.lineTo(t+a.roundRect,n+r),e.quadraticCurveTo(t,n+r,t,n+r-a.roundRect),e.lineTo(t,n+a.roundRect),e.quadraticCurveTo(t,n,t+a.roundRect,n),e.closePath();e.stroke()}function B4(e,t,n){if(!(t.length<2)){e.beginPath(),e.moveTo(t[0][0],t[0][1]);for(let s of t)e.strokeStyle=Ma(s[2]||0,n),e.lineTo(Math.trunc(s[0]),Math.trunc(s[1]));e.stroke(),n.fillPolygons&&(e.closePath(),e.fill())}}function uR(e,t,n){if(!(t.length<2)){if(e.lineWidth=n.lineWidth,!n.useCurves||t.length<=2){B4(e,t,n);return}e.moveTo(t[0][0],t[0][1]);for(let s=0;s<t.length-2;s++){let r=(t[s][0]+t[s+1][0])/2,a=(t[s][1]+t[s+1][1])/2;e.quadraticCurveTo(t[s][0],t[s][1],r,a)}e.quadraticCurveTo(t[t.length-2][0],t[t.length-2][1],t[t.length-1][0],t[t.length-1][1]),e.stroke(),n.fillPolygons&&(e.closePath(),e.fill())}}function W4(e,t,n,s=5){let r,a,o;e.beginPath(),e.moveTo(t[0],t[1]),e.lineTo(n[0],n[1]),r=Math.atan2(n[1]-t[1],n[0]-t[0]),a=s*Math.cos(r)+n[0],o=s*Math.sin(r)+n[1],e.moveTo(a,o),r+=1/3*(2*Math.PI),a=s*Math.cos(r)+n[0],o=s*Math.sin(r)+n[1],e.lineTo(a,o),r+=1/3*(2*Math.PI),a=s*Math.cos(r)+n[0],o=s*Math.sin(r)+n[1],e.lineTo(a,o),e.closePath(),e.stroke(),e.fill()}var Xn={color:"rgba(173, 216, 230, 0.6)",labelColor:"rgba(173, 216, 230, 1)",shadowColor:"black",alpha:.5,font:'small-caps 16px "Segoe UI"',lineHeight:18,lineWidth:4,pointSize:2,roundRect:8,drawPoints:!1,drawLabels:!0,drawBoxes:!0,drawAttention:!0,drawGestures:!0,drawPolygons:!0,drawGaze:!0,fillPolygons:!1,useDepth:!0,useCurves:!1};var ft;function fbe(e,t){var n,s;if(ft.drawLabels){let r=[];if(r.push(`face: ${Math.trunc(100*e.score)}%`),e.genderScore&&r.push(`${e.gender||""} ${Math.trunc(100*e.genderScore)}%`),e.age&&r.push(`age: ${e.age||""}`),e.iris&&r.push(`distance: ${e.iris}`),e.real&&r.push(`real: ${Math.trunc(100*e.real)}%`),e.live&&r.push(`live: ${Math.trunc(100*e.live)}%`),e.emotion&&e.emotion.length>0){let a=e.emotion.map(o=>`${Math.trunc(100*o.score)}% ${o.emotion}`);a.length>3&&(a.length=3),r.push(a.join(" "))}((n=e.rotation)==null?void 0:n.angle)&&((s=e.rotation)==null?void 0:s.gaze)&&(e.rotation.angle.roll&&r.push(`roll: ${Tu(e.rotation.angle.roll)}\xB0 yaw:${Tu(e.rotation.angle.yaw)}\xB0 pitch:${Tu(e.rotation.angle.pitch)}\xB0`),e.rotation.gaze.bearing&&r.push(`gaze: ${Tu(e.rotation.gaze.bearing)}\xB0`)),r.length===0&&r.push("face"),t.fillStyle=ft.color;for(let a=r.length-1;a>=0;a--){let o=Math.max(e.box[0],0),i=a*ft.lineHeight+e.box[1];ft.shadowColor&&ft.shadowColor!==""&&(t.fillStyle=ft.shadowColor,t.fillText(r[a],o+5,i+16)),t.fillStyle=ft.labelColor,t.fillText(r[a],o+4,i+15)}}}function mbe(e,t){var n,s,r,a;if(((n=e.annotations)==null?void 0:n.leftEyeIris)&&((s=e.annotations)==null?void 0:s.leftEyeIris[0])){t.strokeStyle=ft.useDepth?"rgba(255, 200, 255, 0.3)":ft.color,t.beginPath();let o=Math.abs(e.annotations.leftEyeIris[3][0]-e.annotations.leftEyeIris[1][0])/2,i=Math.abs(e.annotations.leftEyeIris[4][1]-e.annotations.leftEyeIris[2][1])/2;t.ellipse(e.annotations.leftEyeIris[0][0],e.annotations.leftEyeIris[0][1],o,i,0,0,2*Math.PI),t.stroke(),ft.fillPolygons&&(t.fillStyle=ft.useDepth?"rgba(255, 255, 200, 0.3)":ft.color,t.fill())}if(((r=e.annotations)==null?void 0:r.rightEyeIris)&&((a=e.annotations)==null?void 0:a.rightEyeIris[0])){t.strokeStyle=ft.useDepth?"rgba(255, 200, 255, 0.3)":ft.color,t.beginPath();let o=Math.abs(e.annotations.rightEyeIris[3][0]-e.annotations.rightEyeIris[1][0])/2,i=Math.abs(e.annotations.rightEyeIris[4][1]-e.annotations.rightEyeIris[2][1])/2;t.ellipse(e.annotations.rightEyeIris[0][0],e.annotations.rightEyeIris[0][1],o,i,0,0,2*Math.PI),t.stroke(),ft.fillPolygons&&(t.fillStyle=ft.useDepth?"rgba(255, 255, 200, 0.3)":ft.color,t.fill())}}function gbe(e,t){var n;if(ft.drawGaze&&((n=e.rotation)==null?void 0:n.angle)&&typeof Path2D!="undefined"){t.strokeStyle="pink";let s=e.box[0]+e.box[2]/2-e.box[3]*Tu(e.rotation.angle.yaw)/90,r=e.box[1]+e.box[3]/2+e.box[2]*Tu(e.rotation.angle.pitch)/90,a=new Path2D(`
M ${e.box[0]+e.box[2]/2} ${e.box[1]}
C
${s} ${e.box[1]},
${s} ${e.box[1]+e.box[3]},
${e.box[0]+e.box[2]/2} ${e.box[1]+e.box[3]}
`),o=new Path2D(`
M ${e.box[0]} ${e.box[1]+e.box[3]/2}
C
${e.box[0]} ${r},
${e.box[0]+e.box[2]} ${r},
${e.box[0]+e.box[2]} ${e.box[1]+e.box[3]/2}
`);t.stroke(o),t.stroke(a)}}function ybe(e,t){var n;if(ft.drawGaze&&((n=e.rotation)==null?void 0:n.gaze.strength)&&e.rotation.gaze.bearing&&e.annotations.leftEyeIris&&e.annotations.rightEyeIris&&e.annotations.leftEyeIris[0]&&e.annotations.rightEyeIris[0]){t.strokeStyle="pink",t.fillStyle="pink";let s=[e.annotations.leftEyeIris[0][0]+Math.sin(e.rotation.gaze.bearing)*e.rotation.gaze.strength*e.box[3],e.annotations.leftEyeIris[0][1]+Math.cos(e.rotation.gaze.bearing)*e.rotation.gaze.strength*e.box[2]];W4(t,[e.annotations.leftEyeIris[0][0],e.annotations.leftEyeIris[0][1]],[s[0],s[1]],4);let r=[e.annotations.rightEyeIris[0][0]+Math.sin(e.rotation.gaze.bearing)*e.rotation.gaze.strength*e.box[3],e.annotations.rightEyeIris[0][1]+Math.cos(e.rotation.gaze.bearing)*e.rotation.gaze.strength*e.box[2]];W4(t,[e.annotations.rightEyeIris[0][0],e.annotations.rightEyeIris[0][1]],[r[0],r[1]],4)}}function Abe(e,t){if(ft.drawPolygons&&e.mesh.length>=468){t.lineWidth=1;for(let n=0;n<gu.length/3;n++){let s=[gu[n*3+0],gu[n*3+1],gu[n*3+2]].map(r=>e.mesh[r]);B4(t,s,ft)}mbe(e,t)}}function xbe(e,t){if(ft.drawPoints&&e.mesh.length>=468)for(let n=0;n<e.mesh.length;n++)za(t,e.mesh[n][0],e.mesh[n][1],e.mesh[n][2],ft),ft.drawAttention&&(Qh.includes(n)&&za(t,e.mesh[n][0],e.mesh[n][1],e.mesh[n][2]+127,ft),xu.includes(n)&&za(t,e.mesh[n][0],e.mesh[n][1],e.mesh[n][2]-127,ft),bu.includes(n)&&za(t,e.mesh[n][0],e.mesh[n][1],e.mesh[n][2]-127,ft))}function bbe(e,t){ft.drawBoxes&&ca(t,e.box[0],e.box[1],e.box[2],e.box[3],ft)}function Dd(e,t,n){if(ft=Xt(Xn,n),!t||!e)return;let s=lr(e);if(!!s){s.font=ft.font,s.strokeStyle=ft.color,s.fillStyle=ft.color;for(let r of t)bbe(r,s),fbe(r,s),r.mesh&&r.mesh.length>0&&(xbe(r,s),Abe(r,s),gbe(r,s),ybe(r,s))}}function $d(e,t,n){let s=Xt(Xn,n);if(!t||!e)return;let r=lr(e);if(!!r){r.lineJoin="round";for(let a=0;a<t.length;a++){if(r.strokeStyle=s.color,r.fillStyle=s.color,r.lineWidth=s.lineWidth,r.font=s.font,s.drawBoxes&&t[a].box&&t[a].box.length===4&&(ca(r,t[a].box[0],t[a].box[1],t[a].box[2],t[a].box[3],s),s.drawLabels&&(s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText(`body ${100*t[a].score}%`,t[a].box[0]+3,1+t[a].box[1]+s.lineHeight,t[a].box[2])),r.fillStyle=s.labelColor,r.fillText(`body ${100*t[a].score}%`,t[a].box[0]+2,0+t[a].box[1]+s.lineHeight,t[a].box[2]))),s.drawPoints&&t[a].keypoints)for(let o=0;o<t[a].keypoints.length;o++)!t[a].keypoints[o].score||t[a].keypoints[o].score===0||(r.fillStyle=Ma(t[a].keypoints[o].position[2],s),za(r,t[a].keypoints[o].position[0],t[a].keypoints[o].position[1],0,s));if(s.drawLabels&&t[a].keypoints){r.font=s.font;for(let o of t[a].keypoints)!o.score||o.score===0||(r.fillStyle=Ma(o.position[2],s),r.fillText(`${o.part} ${Math.trunc(100*o.score)}%`,o.position[0]+4,o.position[1]+4))}if(s.drawPolygons&&t[a].keypoints&&t[a].annotations)for(let o of Object.values(t[a].annotations))for(let i of o)uR(r,i,s)}}}function Pd(e,t,n){let s=Xt(Xn,n);if(!t||!e)return;let r=lr(e);if(!!r){r.lineJoin="round",r.font=s.font;for(let a of t){if(s.drawBoxes&&(r.strokeStyle=s.color,r.fillStyle=s.color,ca(r,a.box[0],a.box[1],a.box[2],a.box[3],s),s.drawLabels&&(s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText(`hand:${Math.trunc(100*a.score)}%`,a.box[0]+3,1+a.box[1]+s.lineHeight,a.box[2])),r.fillStyle=s.labelColor,r.fillText(`hand:${Math.trunc(100*a.score)}%`,a.box[0]+2,0+a.box[1]+s.lineHeight,a.box[2])),r.stroke()),s.drawPoints&&a.keypoints&&a.keypoints.length>0)for(let o of a.keypoints)r.fillStyle=Ma(o[2],s),za(r,o[0],o[1],0,s);if(s.drawLabels&&a.annotations){let o=(i,l)=>{if(!i||i.length===0||!i[0])return;let u=i[i.length-1][2]||-256;r.fillStyle=Ma(u,s),r.fillText(l,i[i.length-1][0]+4,i[i.length-1][1]+4)};r.font=s.font,o(a.annotations.index,"index"),o(a.annotations.middle,"middle"),o(a.annotations.ring,"ring"),o(a.annotations.pinky,"pinky"),o(a.annotations.thumb,"thumb"),o(a.annotations.palm,"palm")}if(s.drawPolygons&&a.annotations){let o=i=>{if(!(!i||i.length===0||!i[0]))for(let l=0;l<i.length;l++){r.beginPath();let u=i[l][2]||0;r.strokeStyle=Ma(l*u,s),r.moveTo(i[l>0?l-1:0][0],i[l>0?l-1:0][1]),r.lineTo(i[l][0],i[l][1]),r.stroke()}};r.lineWidth=s.lineWidth,o(a.annotations.index),o(a.annotations.middle),o(a.annotations.ring),o(a.annotations.pinky),o(a.annotations.thumb)}}}}function Fd(e,t,n){let s=Xt(Xn,n);if(!t||!e)return;let r=lr(e);if(!!r){r.lineJoin="round",r.font=s.font;for(let a of t)if(s.drawBoxes){if(r.strokeStyle=s.color,r.fillStyle=s.color,ca(r,a.box[0],a.box[1],a.box[2],a.box[3],s),s.drawLabels){let o=`${a.label} ${Math.round(100*a.score)}%`;s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText(o,a.box[0]+3,1+a.box[1]+s.lineHeight,a.box[2])),r.fillStyle=s.labelColor,r.fillText(o,a.box[0]+2,0+a.box[1]+s.lineHeight,a.box[2])}r.stroke()}}}function Od(e,t,n){let s=Xt(Xn,n);if(!(!t||!e)&&s.drawGestures){let r=lr(e);if(!r)return;r.font=s.font,r.fillStyle=s.color;let a=1;for(let o=0;o<t.length;o++){let i=[],l=[];if([i,l]=Object.entries(t[o]),l.length>1&&l[1].length>0){let u=i[1]>0?`#${i[1]}`:"",c=`${i[0]} ${u}: ${l[1]}`;s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText(c,8,2+a*s.lineHeight)),r.fillStyle=s.labelColor,r.fillText(c,6,0+a*s.lineHeight),a+=1}}}}var V4=0;function U4(e,t,n){let s=Xt(Xn,n);if(!t||!e)return;let r=lr(e);if(!!r){r.lineJoin="round",r.font=s.font;for(let a=0;a<t.length;a++)if(s.drawBoxes){if(r.strokeStyle=s.color,r.fillStyle=s.color,ca(r,t[a].box[0],t[a].box[1],t[a].box[2],t[a].box[3],s),s.drawLabels){let o=`person #${a}`;s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText(o,t[a].box[0]+3,1+t[a].box[1]+s.lineHeight,t[a].box[2])),r.fillStyle=s.labelColor,r.fillText(o,t[a].box[0]+2,0+t[a].box[1]+s.lineHeight,t[a].box[2])}r.stroke()}}}function G4(e,t){if(!e||!t)return;let n=lr(t);!n||n.drawImage(e,0,0)}async function H4(e,t,n){if(!(t!=null&&t.performance)||!e)return null;let s=le(),r=Xt(Xn,n),a=Promise.all([Dd(e,t.face,r),$d(e,t.body,r),Pd(e,t.hand,r),Fd(e,t.object,r),Od(e,t.gesture,r)]);return V4=he.perfadd?V4+Math.round(le()-s):Math.round(le()-s),t.performance.draw=V4,a}var Md=.1,q4=.5;function vbe(e,t,n){let s=!1,r=n.length-1;for(let a=0;a<n.length;r=a++)n[a].y>t!=n[r].y>t&&e<(n[r].x-n[a].x)*(t-n[a].y)/(n[r].y-n[a].y)+n[a].x&&(s=!s);return s}async function cR(e){if(!e.tensor||!e.mesh||e.mesh.length<100)return e.tensor;let t=e.tensor.shape[2]||0,n=e.tensor.shape[1]||0,s=await e.tensor.buffer(),r=[];for(let o of wr.silhouette)r.push({x:(e.mesh[o][0]-e.box[0])/e.box[2],y:(e.mesh[o][1]-e.box[1])/e.box[3]});Md&&Md>0&&(r=r.map(o=>({x:o.x>.5?o.x+Md:o.x-Md,y:o.y>.5?o.y+Md:o.y-Md})));for(let o=0;o<t;o++)for(let i=0;i<n;i++)vbe(o/t,i/t,r)||(s.set(q4*s.get(0,i,o,0),0,i,o,0),s.set(q4*s.get(0,i,o,1),0,i,o,1),s.set(q4*s.get(0,i,o,2),0,i,o,2));let a=s.toTensor();return J(s),a}var kbe=e=>{let t=(p,d)=>Math.atan2(p[1]-d[1],p[0]-d[0]);if(!e.annotations.rightEyeIris||!e.annotations.leftEyeIris)return{bearing:0,strength:0};let n=[0,-.1],s=1,r=(e.mesh[33][2]||0)>(e.mesh[263][2]||0),a=r?e.mesh[473]:e.mesh[468],o=r?[(e.mesh[133][0]+e.mesh[33][0])/2,(e.mesh[133][1]+e.mesh[33][1])/2]:[(e.mesh[263][0]+e.mesh[362][0])/2,(e.mesh[263][1]+e.mesh[362][1])/2],i=r?[e.mesh[133][0]-e.mesh[33][0],e.mesh[23][1]-e.mesh[27][1]]:[e.mesh[263][0]-e.mesh[362][0],e.mesh[253][1]-e.mesh[257][1]],l=[(o[0]-a[0])/i[0]-n[0],s*(a[1]-o[1])/i[1]-n[1]],u=Math.sqrt(l[0]*l[0]+l[1]*l[1]);return u=Math.min(u,e.boxRaw[2]/2,e.boxRaw[3]/2),{bearing:(t([0,0],l)+Math.PI/2)%Math.PI,strength:u}},dR=(e,t)=>{let n=m=>{let g=Math.sqrt(m[0]*m[0]+m[1]*m[1]+m[2]*m[2]);return m[0]/=g,m[1]/=g,m[2]/=g,m},s=(m,g)=>{let y=m[0]-g[0],x=m[1]-g[1],A=m[2]-g[2];return[y,x,A]},r=(m,g)=>{let y=m[1]*g[2]-m[2]*g[1],x=m[2]*g[0]-m[0]*g[2],A=m[0]*g[1]-m[1]*g[0];return[y,x,A]},a=m=>{let[g,y,x,A,b,w,S,k,E]=m,_,D,R;return A<1?A>-1?(R=Math.asin(A),D=Math.atan2(-S,g),_=Math.atan2(-w,b)):(R=-Math.PI/2,D=-Math.atan2(k,E),_=0):(R=Math.PI/2,D=Math.atan2(k,E),_=0),Number.isNaN(_)&&(_=0),Number.isNaN(D)&&(D=0),Number.isNaN(R)&&(R=0),{pitch:2*-_,yaw:2*-D,roll:2*-R}},o=e.meshRaw;if(!o||o.length<300)return{angle:{pitch:0,yaw:0,roll:0},matrix:[1,0,0,0,1,0,0,0,1],gaze:{bearing:0,strength:0}};let i=Math.max(e.boxRaw[2]*t[0],e.boxRaw[3]*t[1])/1.5,l=[o[10],o[152],o[234],o[454]].map(m=>[m[0]*t[0]/i,m[1]*t[1]/i,m[2]]),u=n(s(l[1],l[0])),c=n(s(l[3],l[2])),p=n(r(c,u));c=r(u,p);let d=[c[0],c[1],c[2],u[0],u[1],u[2],p[0],p[1],p[2]],h=a(d),f=o.length===478?kbe(e):{bearing:0,strength:0};return{angle:h,matrix:d,gaze:f}};var X4=async(e,t)=>{var f,m,g,y,x,A,b,w,S,k,E,_,D,R,P,C,M,L,G,K,X,Y,ne,ee,ie,se,pe,ce,xe;let n=le(),s,r,a,o,i,l,u,c,p,d=[];e.state="run:face";let h=await nE(t,e.config);if(e.performance.face=he.perfadd?(e.performance.face||0)+Math.trunc(le()-n):Math.trunc(le()-n),!t.shape||t.shape.length!==4)return[];if(!h)return[];for(let oe=0;oe<h.length;oe++){if(e.analyze("Get Face"),!h[oe].tensor||h[oe].tensor.isDisposedInternal){re("Face object is disposed:",h[oe].tensor);continue}if((f=e.config.face.detector)!=null&&f.mask){let it=await cR(h[oe]);J(h[oe].tensor),it&&(h[oe].tensor=it)}let Re=h[oe].mesh&&h[oe].mesh.length>200?dR(h[oe],[t.shape[2],t.shape[1]]):null;e.analyze("Start Emotion:"),e.config.async?o=(m=e.config.face.emotion)!=null&&m.enabled?Qb(h[oe].tensor||ct([]),e.config,oe,h.length):[]:(e.state="run:emotion",n=le(),o=(g=e.config.face.emotion)!=null&&g.enabled?await Qb(h[oe].tensor||ct([]),e.config,oe,h.length):[],e.performance.emotion=he.perfadd?(e.performance.emotion||0)+Math.trunc(le()-n):Math.trunc(le()-n)),e.analyze("End Emotion:"),e.analyze("Start AntiSpoof:"),e.config.async?u=(y=e.config.face.antispoof)!=null&&y.enabled?Pb(h[oe].tensor||ct([]),e.config,oe,h.length):0:(e.state="run:antispoof",n=le(),u=(x=e.config.face.antispoof)!=null&&x.enabled?await Pb(h[oe].tensor||ct([]),e.config,oe,h.length):0,e.performance.antispoof=he.perfadd?(e.performance.antispoof||0)+Math.trunc(le()-n):Math.trunc(le()-n)),e.analyze("End AntiSpoof:"),e.analyze("Start Liveness:"),e.config.async?c=(A=e.config.face.liveness)!=null&&A.enabled?v4(h[oe].tensor||ct([]),e.config,oe,h.length):0:(e.state="run:liveness",n=le(),c=(b=e.config.face.liveness)!=null&&b.enabled?await v4(h[oe].tensor||ct([]),e.config,oe,h.length):0,e.performance.liveness=he.perfadd?(e.performance.antispoof||0)+Math.trunc(le()-n):Math.trunc(le()-n)),e.analyze("End Liveness:"),e.analyze("Start GEAR:"),e.config.async?r=(w=e.config.face.gear)!=null&&w.enabled?Tb(h[oe].tensor||ct([]),e.config,oe,h.length):null:(e.state="run:gear",n=le(),r=(S=e.config.face.gear)!=null&&S.enabled?await Tb(h[oe].tensor||ct([]),e.config,oe,h.length):null,e.performance.gear=Math.trunc(le()-n)),e.analyze("End GEAR:"),e.analyze("Start SSRNet:"),e.config.async?(s=(k=e.config.face.ssrnet)!=null&&k.enabled?Eb(h[oe].tensor||ct([]),e.config,oe,h.length):null,a=(E=e.config.face.ssrnet)!=null&&E.enabled?Db(h[oe].tensor||ct([]),e.config,oe,h.length):null):(e.state="run:ssrnet",n=le(),s=(_=e.config.face.ssrnet)!=null&&_.enabled?await Eb(h[oe].tensor||ct([]),e.config,oe,h.length):null,a=(D=e.config.face.ssrnet)!=null&&D.enabled?await Db(h[oe].tensor||ct([]),e.config,oe,h.length):null,e.performance.ssrnet=Math.trunc(le()-n)),e.analyze("End SSRNet:"),e.analyze("Start MobileFaceNet:"),e.config.async?i=(R=e.config.face.mobilefacenet)!=null&&R.enabled?t4(h[oe].tensor||ct([]),e.config,oe,h.length):null:(e.state="run:mobilefacenet",n=le(),i=(P=e.config.face.mobilefacenet)!=null&&P.enabled?await t4(h[oe].tensor||ct([]),e.config,oe,h.length):null,e.performance.mobilefacenet=Math.trunc(le()-n)),e.analyze("End MobileFaceNet:"),e.analyze("Start InsightFace:"),e.config.async?l=(C=e.config.face.insightface)!=null&&C.enabled?s4(h[oe].tensor||ct([]),e.config,oe,h.length):null:(e.state="run:mobilefacenet",n=le(),l=(M=e.config.face.insightface)!=null&&M.enabled?await s4(h[oe].tensor||ct([]),e.config,oe,h.length):null,e.performance.mobilefacenet=Math.trunc(le()-n)),e.analyze("End InsightFace:"),e.analyze("Start Description:"),e.config.async?p=u4(h[oe].tensor||ct([]),e.config,oe,h.length):(e.state="run:description",n=le(),p=await u4(h[oe].tensor||ct([]),e.config,oe,h.length),e.performance.description=he.perfadd?(e.performance.description||0)+Math.trunc(le()-n):Math.trunc(le()-n)),e.analyze("End Description:"),e.config.async&&([s,a,o,i,l,p,r,u,c]=await Promise.all([s,a,o,i,l,p,r,u,c])),e.analyze("Finish Face:"),((L=e.config.face.ssrnet)==null?void 0:L.enabled)&&s&&a&&(p={...p,age:s.age,gender:a.gender,genderScore:a.genderScore}),((G=e.config.face.gear)==null?void 0:G.enabled)&&r&&(p={...p,age:r.age,gender:r.gender,genderScore:r.genderScore,race:r.race}),((K=e.config.face.mobilefacenet)==null?void 0:K.enabled)&&i&&(p.descriptor=i),((X=e.config.face.insightface)==null?void 0:X.enabled)&&l&&(p.descriptor=l),(Y=e.config.face.iris)!=null&&Y.enabled;let _e=((ie=(ee=(ne=h[oe])==null?void 0:ne.annotations)==null?void 0:ee.leftEyeIris)==null?void 0:ie[0])&&((ce=(pe=(se=h[oe])==null?void 0:se.annotations)==null?void 0:pe.rightEyeIris)==null?void 0:ce[0])&&h[oe].annotations.leftEyeIris.length>0&&h[oe].annotations.rightEyeIris.length>0&&h[oe].annotations.leftEyeIris[0]!==null&&h[oe].annotations.rightEyeIris[0]!==null?Math.max(Math.abs(h[oe].annotations.leftEyeIris[3][0]-h[oe].annotations.leftEyeIris[1][0]),Math.abs(h[oe].annotations.rightEyeIris[4][1]-h[oe].annotations.rightEyeIris[2][1]))/t.shape[2]:0,Ve=(xe=e.config.face.detector)!=null&&xe.return?rt(h[oe].tensor):null;J(h[oe].tensor),h[oe].tensor&&delete h[oe].tensor;let Me={...h[oe],id:oe};p.age&&(Me.age=p.age),p.gender&&(Me.gender=p.gender),p.genderScore&&(Me.genderScore=p.genderScore),p.descriptor&&(Me.embedding=p.descriptor),p.race&&(Me.race=p.race),o&&(Me.emotion=o),u&&(Me.real=u),c&&(Me.live=c),_e&&_e!==0&&(Me.iris=Math.trunc(500/_e/11.7)/100),Re&&(Me.rotation=Re),Ve&&(Me.tensor=Ve),d.push(Me),e.analyze("End Face")}return e.analyze("End FaceMesh:"),e.config.async&&(e.performance.face&&delete e.performance.face,e.performance.age&&delete e.performance.age,e.performance.gender&&delete e.performance.gender,e.performance.emotion&&delete e.performance.emotion),d};var pR=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++){let s=e[n].keypoints.find(l=>l.part==="leftWrist"),r=e[n].keypoints.find(l=>l.part==="rightWrist"),a=e[n].keypoints.find(l=>l.part==="nose");a&&s&&r&&s.position[1]<a.position[1]&&r.position[1]<a.position[1]?t.push({body:n,gesture:"i give up"}):a&&s&&s.position[1]<a.position[1]?t.push({body:n,gesture:"raise left hand"}):a&&r&&r.position[1]<a.position[1]&&t.push({body:n,gesture:"raise right hand"});let o=e[n].keypoints.find(l=>l.part==="leftShoulder"),i=e[n].keypoints.find(l=>l.part==="rightShoulder");o&&i&&Math.abs(o.positionRaw[1]-i.positionRaw[1])>.1&&t.push({body:n,gesture:`leaning ${o.position[1]>i.position[1]?"left":"right"}`})}return t},hR=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++)if(e[n].mesh&&e[n].mesh.length>450){let s=(e[n].mesh[33][2]||0)-(e[n].mesh[263][2]||0),r=e[n].mesh[33][0]-e[n].mesh[263][0];Math.abs(s/r)<=.15?t.push({face:n,gesture:"facing center"}):t.push({face:n,gesture:`facing ${s<0?"left":"right"}`}),Math.abs(e[n].mesh[374][1]-e[n].mesh[386][1])/Math.abs(e[n].mesh[443][1]-e[n].mesh[450][1])<.2&&t.push({face:n,gesture:"blink left eye"}),Math.abs(e[n].mesh[145][1]-e[n].mesh[159][1])/Math.abs(e[n].mesh[223][1]-e[n].mesh[230][1])<.2&&t.push({face:n,gesture:"blink right eye"});let i=Math.min(100,500*Math.abs(e[n].mesh[13][1]-e[n].mesh[14][1])/Math.abs(e[n].mesh[10][1]-e[n].mesh[152][1]));i>10&&t.push({face:n,gesture:`mouth ${Math.trunc(i)}% open`});let l=e[n].mesh[152][2]||0;Math.abs(l)>10&&t.push({face:n,gesture:`head ${l<0?"up":"down"}`})}return t},fR=e=>{var n,s,r,a;if(!e)return[];let t=[];for(let o=0;o<e.length;o++){if(!((s=(n=e[o].annotations)==null?void 0:n.leftEyeIris)!=null&&s[0])||!((a=(r=e[o].annotations)==null?void 0:r.rightEyeIris)!=null&&a[0]))continue;let i=e[o].annotations.leftEyeIris[3][0]-e[o].annotations.leftEyeIris[1][0],l=e[o].annotations.leftEyeIris[4][1]-e[o].annotations.leftEyeIris[2][1],u=Math.abs(i*l),c=e[o].annotations.rightEyeIris[3][0]-e[o].annotations.rightEyeIris[1][0],p=e[o].annotations.rightEyeIris[4][1]-e[o].annotations.rightEyeIris[2][1],d=Math.abs(c*p),h=!1;Math.abs(u-d)/Math.max(u,d)<.25&&(h=!0,t.push({iris:o,gesture:"facing center"}));let m=Math.abs(e[o].mesh[263][0]-e[o].annotations.leftEyeIris[0][0])/e[o].box[2],g=Math.abs(e[o].mesh[33][0]-e[o].annotations.rightEyeIris[0][0])/e[o].box[2];(m>.06||g>.06)&&(h=!1),m>g?m>.05&&t.push({iris:o,gesture:"looking right"}):g>.05&&t.push({iris:o,gesture:"looking left"});let y=Math.abs(e[o].mesh[145][1]-e[o].annotations.rightEyeIris[0][1])/e[o].box[3],x=Math.abs(e[o].mesh[374][1]-e[o].annotations.leftEyeIris[0][1])/e[o].box[3];(x<.01||y<.01||x>.022||y>.022)&&(h=!1),(x<.01||y<.01)&&t.push({iris:o,gesture:"looking down"}),(x>.022||y>.022)&&t.push({iris:o,gesture:"looking up"}),h&&t.push({iris:o,gesture:"looking center"})}return t},mR=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++){let s=[];if(e[n].annotations)for(let[r,a]of Object.entries(e[n].annotations))r!=="palmBase"&&Array.isArray(a)&&a[0]&&s.push({name:r.toLowerCase(),position:a[0]});if(s&&s.length>0){let r=s.reduce((o,i)=>(o.position[2]||0)<(i.position[2]||0)?o:i);t.push({hand:n,gesture:`${r.name} forward`});let a=s.reduce((o,i)=>o.position[1]<i.position[1]?o:i);t.push({hand:n,gesture:`${a.name} up`})}if(e[n].keypoints){let r=TE(e[n].keypoints);for(let a of r)t.push({hand:n,gesture:a.name})}}return t};var Ee={face:[],body:[],hand:[],gesture:[],object:[],persons:[],performance:{},timestamp:0,error:null},K4=0;function gR(e,t){var o,i,l,u,c,p,d,h,f,m,g,y,x,A,b,w,S;let n=le();if(!e)return{face:[],body:[],hand:[],gesture:[],object:[],persons:[],performance:{},timestamp:0,error:null};let s=Date.now()-e.timestamp,r=s<1e3?8-Math.log(s+1):1;if(e.canvas&&(Ee.canvas=e.canvas),e.error&&(Ee.error=e.error),!Ee.body||e.body.length!==Ee.body.length)Ee.body=JSON.parse(JSON.stringify(e.body));else for(let k=0;k<e.body.length;k++){let E=e.body[k].box.map((C,M)=>((r-1)*Ee.body[k].box[M]+C)/r),_=e.body[k].boxRaw.map((C,M)=>((r-1)*Ee.body[k].boxRaw[M]+C)/r),D=e.body[k].keypoints.map((C,M)=>{var L,G,K,X,Y,ne,ee,ie,se;return{score:C.score,part:C.part,position:[Ee.body[k].keypoints[M]?((r-1)*(Ee.body[k].keypoints[M].position[0]||0)+(C.position[0]||0))/r:C.position[0],Ee.body[k].keypoints[M]?((r-1)*(Ee.body[k].keypoints[M].position[1]||0)+(C.position[1]||0))/r:C.position[1],Ee.body[k].keypoints[M]?((r-1)*(Ee.body[k].keypoints[M].position[2]||0)+(C.position[2]||0))/r:C.position[2]],positionRaw:[Ee.body[k].keypoints[M]?((r-1)*(Ee.body[k].keypoints[M].positionRaw[0]||0)+(C.positionRaw[0]||0))/r:C.positionRaw[0],Ee.body[k].keypoints[M]?((r-1)*(Ee.body[k].keypoints[M].positionRaw[1]||0)+(C.positionRaw[1]||0))/r:C.positionRaw[1],Ee.body[k].keypoints[M]?((r-1)*(Ee.body[k].keypoints[M].positionRaw[2]||0)+(C.positionRaw[2]||0))/r:C.positionRaw[2]],distance:[Ee.body[k].keypoints[M]?((r-1)*(((L=Ee.body[k].keypoints[M].distance)==null?void 0:L[0])||0)+(((G=C.distance)==null?void 0:G[0])||0))/r:(K=C.distance)==null?void 0:K[0],Ee.body[k].keypoints[M]?((r-1)*(((X=Ee.body[k].keypoints[M].distance)==null?void 0:X[1])||0)+(((Y=C.distance)==null?void 0:Y[1])||0))/r:(ne=C.distance)==null?void 0:ne[1],Ee.body[k].keypoints[M]?((r-1)*(((ee=Ee.body[k].keypoints[M].distance)==null?void 0:ee[2])||0)+(((ie=C.distance)==null?void 0:ie[2])||0))/r:(se=C.distance)==null?void 0:se[2]]}}),R={},P={connected:{}};(o=t.body.modelPath)!=null&&o.includes("efficientpose")?P=t1:(i=t.body.modelPath)!=null&&i.includes("blazepose")?P=Z2:(l=t.body.modelPath)!=null&&l.includes("movenet")&&(P=nf);for(let[C,M]of Object.entries(P.connected)){let L=[];for(let G=0;G<M.length-1;G++){let K=D.find(Y=>Y.part===M[G]),X=D.find(Y=>Y.part===M[G+1]);K&&X&&L.push([K.position,X.position])}R[C]=L}Ee.body[k]={...e.body[k],box:E,boxRaw:_,keypoints:D,annotations:R}}if(!Ee.hand||e.hand.length!==Ee.hand.length)Ee.hand=JSON.parse(JSON.stringify(e.hand));else for(let k=0;k<e.hand.length;k++){let E=e.hand[k].box.map((P,C)=>((r-1)*Ee.hand[k].box[C]+P)/r),_=e.hand[k].boxRaw.map((P,C)=>((r-1)*Ee.hand[k].boxRaw[C]+P)/r);Ee.hand[k].keypoints.length!==e.hand[k].keypoints.length&&(Ee.hand[k].keypoints=e.hand[k].keypoints);let D=e.hand[k].keypoints&&e.hand[k].keypoints.length>0?e.hand[k].keypoints.map((P,C)=>P.map((M,L)=>((r-1)*(Ee.hand[k].keypoints[C][L]||1)+(M||0))/r)):[],R={};if(Object.keys(Ee.hand[k].annotations).length!==Object.keys(e.hand[k].annotations).length)Ee.hand[k].annotations=e.hand[k].annotations,R=Ee.hand[k].annotations;else if(e.hand[k].annotations)for(let P of Object.keys(e.hand[k].annotations))R[P]=(p=(c=(u=e.hand[k])==null?void 0:u.annotations)==null?void 0:c[P])!=null&&p[0]?e.hand[k].annotations[P].map((C,M)=>C.map((L,G)=>((r-1)*Ee.hand[k].annotations[P][M][G]+L)/r)):null;Ee.hand[k]={...e.hand[k],box:E,boxRaw:_,keypoints:D,annotations:R}}if(!Ee.face||e.face.length!==Ee.face.length)Ee.face=JSON.parse(JSON.stringify(e.face));else for(let k=0;k<e.face.length;k++){let E=e.face[k].box.map((D,R)=>((r-1)*Ee.face[k].box[R]+D)/r),_=e.face[k].boxRaw.map((D,R)=>((r-1)*Ee.face[k].boxRaw[R]+D)/r);if(e.face[k].rotation){let D={matrix:[0,0,0,0,0,0,0,0,0],angle:{roll:0,yaw:0,pitch:0},gaze:{bearing:0,strength:0}};D.matrix=(d=e.face[k].rotation)==null?void 0:d.matrix,D.angle={roll:((r-1)*(((h=Ee.face[k].rotation)==null?void 0:h.angle.roll)||0)+(((f=e.face[k].rotation)==null?void 0:f.angle.roll)||0))/r,yaw:((r-1)*(((m=Ee.face[k].rotation)==null?void 0:m.angle.yaw)||0)+(((g=e.face[k].rotation)==null?void 0:g.angle.yaw)||0))/r,pitch:((r-1)*(((y=Ee.face[k].rotation)==null?void 0:y.angle.pitch)||0)+(((x=e.face[k].rotation)==null?void 0:x.angle.pitch)||0))/r},D.gaze={bearing:((r-1)*(((A=Ee.face[k].rotation)==null?void 0:A.gaze.bearing)||0)+(((b=e.face[k].rotation)==null?void 0:b.gaze.bearing)||0))/r,strength:((r-1)*(((w=Ee.face[k].rotation)==null?void 0:w.gaze.strength)||0)+(((S=e.face[k].rotation)==null?void 0:S.gaze.strength)||0))/r},Ee.face[k]={...e.face[k],rotation:D,box:E,boxRaw:_}}Ee.face[k]={...e.face[k],box:E,boxRaw:_}}if(!Ee.object||e.object.length!==Ee.object.length)Ee.object=JSON.parse(JSON.stringify(e.object));else for(let k=0;k<e.object.length;k++){let E=e.object[k].box.map((D,R)=>((r-1)*Ee.object[k].box[R]+D)/r),_=e.object[k].boxRaw.map((D,R)=>((r-1)*Ee.object[k].boxRaw[R]+D)/r);Ee.object[k]={...e.object[k],box:E,boxRaw:_}}if(e.persons){let k=e.persons;if(!Ee.persons||k.length!==Ee.persons.length)Ee.persons=JSON.parse(JSON.stringify(k));else for(let E=0;E<k.length;E++)Ee.persons[E].box=k[E].box.map((_,D)=>((r-1)*Ee.persons[E].box[D]+_)/r)}e.gesture&&(Ee.gesture=e.gesture);let a=le();return K4=he.perfadd?K4+Math.round(a-n):Math.round(a-n),e.performance&&(Ee.performance={...e.performance,interpolate:K4}),Ee}var J4={};fa(J4,{distance:()=>of,match:()=>Y4,similarity:()=>Z4});function of(e,t,n={order:2,multiplier:25}){if(!e||!e)return Number.MAX_SAFE_INTEGER;let s=0;for(let r=0;r<e.length;r++){let a=!n.order||n.order===2?e[r]-t[r]:Math.abs(e[r]-t[r]);s+=!n.order||n.order===2?a*a:a**n.order}return(n.multiplier||20)*s}var yR=(e,t,n,s)=>{if(e===0)return 1;let r=t===2?Math.sqrt(e):e**(1/t),a=(1-r/100-n)/(s-n);return Math.max(Math.min(a,1),0)};function Z4(e,t,n={order:2,multiplier:25,min:.2,max:.8}){let s=of(e,t,n);return yR(s,n.order||2,n.min||0,n.max||1)}function Y4(e,t,n={order:2,multiplier:25,threshold:0,min:.2,max:.8}){if(!Array.isArray(e)||!Array.isArray(t)||e.length<64||t.length===0)return{index:-1,distance:Number.POSITIVE_INFINITY,similarity:0};let s=Number.MAX_SAFE_INTEGER,r=-1;for(let o=0;o<t.length;o++){let i=t[o].length===e.length?of(e,t[o],n):Number.MAX_SAFE_INTEGER;if(i<s&&(s=i,r=o),s<(n.threshold||0))break}let a=yR(s,n.order||2,n.min||0,n.max||1);return{index:r,distance:s,similarity:a}}function AR(e,t,n,s,r){var i,l,u,c,p,d;let a=0,o=[];for(let h of e){let f={id:a++,face:h,body:null,hands:{left:null,right:null},gestures:[],box:[0,0,0,0]};for(let b of t)h.box[0]>b.box[0]&&h.box[0]<b.box[0]+b.box[2]&&h.box[1]+h.box[3]>b.box[1]&&h.box[1]+h.box[3]<b.box[1]+b.box[3]&&(f.body=b);if(f.body)for(let b of n)b.box[0]+b.box[2]>f.body.box[0]&&b.box[0]+b.box[2]<f.body.box[0]+f.body.box[2]&&b.box[1]+b.box[3]>f.body.box[1]&&b.box[1]+b.box[3]<f.body.box[1]+f.body.box[3]&&f.hands&&(f.hands.left=b),b.box[0]<f.body.box[0]+f.body.box[2]&&b.box[0]>f.body.box[0]&&b.box[1]+b.box[3]>f.body.box[1]&&b.box[1]+b.box[3]<f.body.box[1]+f.body.box[3]&&f.hands&&(f.hands.right=b);for(let b of s)(b.face!==void 0&&b.face===h.id||b.iris!==void 0&&b.iris===h.id||b.body!==void 0&&b.body===((i=f.body)==null?void 0:i.id)||b.hand!==void 0&&b.hand===((l=f.hands.left)==null?void 0:l.id)||b.hand!==void 0&&b.hand===((u=f.hands.right)==null?void 0:u.id))&&f.gestures.push(b);let m=[],g=[],y=b=>{b&&b.length===4&&(m.push(b[0],b[0]+b[2]),g.push(b[1],b[1]+b[3]))};y(f.face.box),y((c=f.body)==null?void 0:c.box),y((p=f.hands.left)==null?void 0:p.box),y((d=f.hands.right)==null?void 0:d.box);let x=Math.min(...m),A=Math.min(...g);f.box=[x,A,Math.max(...m)-x,Math.max(...g)-A],(r==null?void 0:r[1])&&(r==null?void 0:r[2])&&(f.boxRaw=[f.box[0]/r[2],f.box[1]/r[1],f.box[2]/r[2],f.box[3]/r[1]]),o.push(f)}return o}var C1=`
/9j/4AAQSkZJRgABAQEAYABgAAD/4QBoRXhpZgAATU0AKgAAAAgABAEaAAUAAAABAAAAPgEbAAUA
AAABAAAARgEoAAMAAAABAAIAAAExAAIAAAARAAAATgAAAAAAAABgAAAAAQAAAGAAAAABcGFpbnQu
bmV0IDQuMi4xMwAA/9sAQwAGBAUGBQQGBgUGBwcGCAoQCgoJCQoUDg8MEBcUGBgXFBYWGh0lHxob
IxwWFiAsICMmJykqKRkfLTAtKDAlKCko/9sAQwEHBwcKCAoTCgoTKBoWGigoKCgoKCgoKCgoKCgo
KCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgo/8AAEQgBAAEAAwEhAAIRAQMRAf/E
AB8AAAEFAQEBAQEBAAAAAAAAAAABAgMEBQYHCAkKC//EALUQAAIBAwMCBAMFBQQEAAABfQECAwAE
EQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZH
SElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1
tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+v/EAB8BAAMBAQEBAQEB
AQEAAAAAAAABAgMEBQYHCAkKC//EALURAAIBAgQEAwQHBQQEAAECdwABAgMRBAUhMQYSQVEHYXET
IjKBCBRCkaGxwQkjM1LwFWJy0QoWJDThJfEXGBkaJicoKSo1Njc4OTpDREVGR0hJSlNUVVZXWFla
Y2RlZmdoaWpzdHV2d3h5eoKDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXG
x8jJytLT1NXW19jZ2uLj5OXm5+jp6vLz9PX29/j5+v/aAAwDAQACEQMRAD8A+qaKACigApGOKAML
Xp8xlF5A7V4X8RtYs7PzfNImnx8sa8Kp9z3q2tEgp6angWs62ZZ5CTGoJ6DArGNz5p+UrID6EUrF
PUlW1EuN0XNW7PQ2L5j3JnoKXN0KijqNP0eYoqXBdgPuuo+ZPeupisWn2Jd4+0r924XgsQOCff3/
AJ1FzRKxDqGii6m3siiQ8F1XGfXI6YNWLfRbiRQMkcZI9fpTDluT2/h6Qy8gDPbtmtG38JeY480Z
5zSLUTZg8M28YwYxjAArXtdPt402qgHbpSaLWhma3o0Uqk7Nx9DWLaaVblgPs6qRyds2M/gRSQp9
zZOni2iWS2hlQ+kjYz9OMGrdjq89vIPPVhj+8M/lQyDq9P1WOYBlMZz1AOD+VdDaTiReOKulK0jO
tHmi0WDTlr0TyxRVhT8tJjIX+9SUxHXUV553BRQAVBcPhSBTSuxPY86+IGti0s5I7dsORy9fM3i6
8e8mfDO5P90ZrWWiJicNPpZZtxV/xrW0jQt4DOv6Vk2dEEdTY6BHuB25rpbPSo0QARjP0qTRI17W
wA/hFaMWmoQMgflQXYsDS142rU9tpqqenfNA7GgtihxkdKuRW6qMY/GkDZY8sY4Ap4hXbyB+VArk
EtuH4wPyrk/EGkOm+a3jw3suRQLc5i38SX9hJ9nnY+XnBUdPyNdFY6pa3KkkAE9l6f8AfJ/pSJT6
GhDmI+Zb4ZRycdv6ium0nUhKFydrelTsNnS2829RnrVgV6NKXNG55lWPLIM81Op+WrZkRMfmNNzT
A7GivPO4KKAEY4XNYWt3vkwPg4OK0giJdjw/xrqhm87Zs8tc7pX5A+leSajf6aHYJ50kn4AZpTep
rBWRm2Vobm4BXfyehPFdnpmnBFUY5rI2SN63tlToK0YI+KZpFF+3QdavwoKTLtoW0Toaswpk5pCb
LCxipAhoIuP2dKevHXoaYDylRyxhlwRQI4nxVoCXWZI1GfpXGtbSWjYPGP73+NIGupt6TqMsLruZ
ih4xnP5V09mQ+JLd8gn0xSYJnVaVdkook69K34zuUGunDS3Rx4qOzHVIp4rrOMY3NJQI7GivPO8K
KAILt9kZrz3xlebYiu8KCCWb0XvW0NFch6ysfO3jLVjfXLIn+pQkKorl7WxNxIPl71g2dUUdpo+l
pBGvHPet23iC8ihFosrxirkHQUFo0IF4FXI1O726CpKLacCrMJoJLYHAPpTwucHpSRJJ5e4AZI9x
UqpxzVpCuOC8cUpQUMRnXttuB4rjNdsYyeVwfXpmpGmcvcQyafMCFJjPY10eg34BUg4DcZP8jUO4
HaRq3lLNF+IHet7R7jz7c56rwa2wz9+xhiVeFy/T1PFegeaNPWigDsc0ZrzzvDNIaAM7VpNqdegr
xL4l6kywyRhseZ19lrdfAZL4jxYg3Fw20d63tJsdrDI5rm3Z3R0R0Mce1eKnQYAplIkWrMJ45oZS
NO3PHbNXIyfpSGWowSOasxLUiZdjFSqtNEMkUemKlAGKsRJjAppFAiORMjmsTVrNZEO4cfSoZSOD
1eJ7WXBUzQZ+7nkfSo7e2Ei+ZaMzxntjBX2NSU1Y6/wxqojiEFzkA8KTXYaUoWRyv3W5rSjpNHPX
+BmpSg8V6J5gUUAdhRXnneFFAGHrTfu5PpXzj8S70/aZtxzztXFbv4DKHxHI+H4GZiz9zxXXW8G3
GBXMjvLRXAx0oPGPSmMVeOnWrMTYpFI0bcg1fh54xmgovRcD3qxETSIZcRvzp+/BpEkqsBUqsM9K
q4Em4Gkxk0yRGXrVW6i8yFhkg+tJjRxGsWrxllkUMh9eK5uMz6bcebbnfG33kPcVkay2OntPKuo0
nhXI67c8qa7Lw3c+adjcEDGK1paSRhVV4s6A0or0jyRRQ1AHX0V553hRQBz+vNtt5z3xXzX8Qbdm
uic5YnOMdK3l8JnTXvlbwpYl+WySOgrp5YfLOOB9O1c62O7qQkc+9RsKChFPWp4DluOlSykaNruH
ArUgHShFNF2NT1qxGO3NBmyxGcE1N2560CFzjrUysO9JAPDDjFOVuKoQuSRTWouBkazbCa3cd8cV
wF7IISQccHBzUSWpV9C3o1x5b5GAjdQD1rs9DjC3kckbEhqKfxIzn8LOupRXqnkPccBSkUAzraK8
87wooA5rxMSI3HqK8B8bQl9Q8sffY5b/AAraXwkUviNrw9pH2W1ViMMRTdRjw4HpWNtDti9TPc4P
FQs2M5qdyyMHLcfjV63HTAoBGtap0wK0YxigpsuRDtVhVYd6GQydVwwIqdRnqKCR23I5pCMUW6gD
YNKuetAEise9KTxQBWuFyhrznxNZkXjFeN3I+tTIZg2OqmzmxNF0PO3vXp/g2+hukVl4zyPanTXv
JmVR+60dpThXpnlPceopWFAbnV0V553hSGgRynjC5FujOey14Ssp1HxNmTnc+a3kvcIpv37HoEYQ
QmMdVHSsnVbYJF5jVk0dsNzlruVIsl2wKxbjWrVHILjg1CRbZJb+ILHPzyhfStODWLQgFJFYd+el
UJM27HUIXxhga1Y5lLVLKLkMnoauxnPPrSEx7ShF+Y/n2qrc6xBbhizDAqkK1zJuvG9nbg8ZA681
ly/Ei052RO3uKAsZlx8QGd8xxvt9Aa1NH8dK7AXMcip64zigdkdrZX8F7EJLdwwNXMkrz1qRMRly
CK4TxmpidWI49felPYSOMmi80NIoOV6qRzXYeA5SskYPfirpfEjGr8LPWVHyD6U4CvQPL3ZItOYc
UDOoNFeed4Uhpks4H4iE/Z5MeleMeGULeLgjds10S+BGdL+Jc9OSBU2Huc5Nc74yvUtrcDBrJnZF
63PJdXvLy/lKWw46bvQVz82jXhkLO5Y+9ZlsYthcRnbIjY9R3q3awTRkEM3WmJI6C0ea3dGRsr1x
XY6TqW9FLHnjrUs0izpLK5DDjofSta3ckH09KRUkZuuTvFGdvPauE1Y3U6Mqbssf/rUxHPTaJPK2
ZmJPbBqzY6DCZh5xJC9s9aBJHU6dpemJjfEmfetJtI0+VPkUr/unFOxdiextHs33W07YHQHk11mk
Xb3KbZ1xIvcd6LEyWho4Nct41sTPYb16ipexCPPZN+wYGCvH1rrPAEJmvkPoc1VL4kZVvgZ6yFwK
cBXoHkkqinFaVyzo80GuE7WJRQSziPiGdthK5HQV4x4J/wBI8WPIewNdEvgRNL42emO/yj1UHNef
eNpRczbC+I17DvWT2OqJxc0sMK4TCisy41q0hfEkqj8aixdwTXNOlwvmqD9anS9tXH7uVG+hosO4
/wC0oOhrR0+6G4YNIEzsNEuCxAPNdjZruA4xxUmjINSjURksOlcbqFykbnjFA1sYGoassaknCqO5
rl7rxhGm7yBnBxuJq0rkSlYpw+NLlsfd5P8AerVsvHEqSBHwPVgcgVpyMyVXU3rXxcHYETAk+hru
/DWti6ZSTyOKzZqndHaxvvUGq2rQ+dYyqR24qWI8dvbr7LqDxyDAzXpvw6FvIxePGSM06Xxoyr/A
zviKFHNegeX1J41zUhXioGbuaSuM6wpCaBHG/EcA6HN/exxXjXw2jL67cv8A3Qa6H8CFR+NnoWpO
I4XI44rxLxrqjQzSEsQM1gdSPM9U1uR1YbmWIdXHf2rmpIb67YS28UrRlsLI3c/jW0VZGUpO5pW1
jfLNOjahawzwReYI5cjzMkDavHJ5/SrVv9uhtPtVxCPLBwzxnlT9KGghLU3tKvvPjHzbl7EGuisJ
GRxWLOg7nRXJEbDjmvSNK+aFSfSoZr0KutRkphc4NcRrdkVjL9aVio7Hk3iqS8ubhrWzUlsZY9kG
cZNc5D4aee5MclzJIFTzHAO0MfatqSOWu7bFS1srDUZEis0vIZoUxPvfcC+4/dx2xjr712XiTwXb
WmlQ6hol3cRhoFd4rlg3zY5wR0GelavQwjq7GD4etdVvSnk2wAB+9v8A8mvcfA2kXiRo0/UdcDis
ZnTTulqeoWqbUAJqWUb42X1FZlnjfjSwlGrr5S/eNdD4RkvLAAQ4yRyaUZcruVKl7TQ9I0G+mnzH
ckFwM8VuIK7ac3KF2eXiKapz5UWYxipNtMyNejNch0jSar3cjR27uoyQCRVRWom9DxTx54gu5fMi
lbKdMVjfCZPNlv5v9rFbVHpYqjGzbOn8SzFI9o715L4u0r7arYzk+lYdTqSujy7U/C0u4vHk+WwO
xuh9q3J9dgvbdVukMV1EwbDDgn04rZMwlHoZ+orZ6hfQ3RWVnQYCgZAq+8U0ln5NtBsV2yxYcfgK
JtW0CnB31LlroVwJ1nQLGDjeP7w+lb0dsFxjrWB0tHS6NuWPJ6A16ToUm63T3Gallr4S7cxiTjrX
PaxaF7dlVeSMUhxZ5jd+H7qCa4eF3DSE5x3zXN3Wk6jbyeaiFWUY6ZyPStYS5SalPmVipFbX0E4c
W0alvmPHJrag0rVvEE6LdljGpG2NRtQD+tW5XMI0uU9M8NeFo9PiQhecDIIrtrOMIoG3H4VlJm9t
C6CB06VPGM1IHLeItGS6uw+ORT7e3jsbQvj7gzUNam0JaWE+HN7NqOqX80n3FO1RXo8YzXdS+BHk
4z+KyzGPapcU2YIv7qQtiuaxvcaWqG4O6FwfSrS1JbPnrxoxkv7qIfejcitj4V2f2exumI+8+aKn
xHTT+G5d8Txlm4rjLxMsQwzWT3OiK0Mm6sEkVsAcjFc1d+FEmlGwEDPQVopaEuOpr6f4ZWNAu3tW
vHpAj5ZQcUFIWaDjGMVUMQ3cVDBmvbhY7QAV2nh+T/R1yeKhlrY31+b61FcQK6nIoJMi401WblRi
qr6PCw5UYq9y+YgOgWzNkRrx3xWjp+nx2v3FQcelAbmko9anQ4GBUNisPHWr1qMrQhS2K11HvmYV
hamcxSRZ5xRIqluS/DKAQQXZxyXrvo2FdlL4EeZjH+/ZbjNSZpswLNBrE1Gt7VE4ODVIlnh/j61F
j4lmeTGyUbq6LwdEqWbeX0YbhSqfEddP4Bddj4JIrhL5d8h7VjI6oLQqKNzelWre3yc4/ClFjaL6
wqBxxUUxwCKu5BmXRA6c+9ZjP83FSBoQuPs4BrsNBlUW659KmRrDY6G1lyQtW3Hy0lqQ1qVJnAbm
oy3b9KYJCqRj3o4zRctIlhjLHmpSuOBRbQOpLGpPFaES7UqkZzKN1KsEc87/AHUUmvPLTVGv72aQ
k7WJwKmRrQ3ud74Ltilgz4++2a6iNDXdS0gjyMU71my7GpqTbxSbMki3SViajTTHqkSeR/GeyZmg
nQHkEE1S+F+oPPavBL96I4/Cia1udVF+4dVrkW+Fq8+v4tjMDWUkdVJ6WM0cNV+F+MVmjUcZgqnP
1qpNNnkcVRLiZtxIS1UzzIF7mghlxUZpVQdq6nTVdAoAOKzkbQWhvwM6gMM1twOJYx3NOJE11Kt1
H1/pVVlwBkk+9NocXoOQ45FPj+fkUJFF2NSB700v/hTEty5ZpkjvVyUgcCq6GM9zC14/8Se6GcZQ
1574Xs5WkI2HBPHFQ1dm1KSSZ7Rotn9l0+KPHIHNacae1dy0Vjxaj5ptlhVp+2s2CJ9ppCKzuWNx
zSFc1SYrHNeNdIGpaYw25ZeRXmvheyk0jVpEdcLJ0q3ZxNKTa0O3vQHg/DNcHrsJDmsmjspnNzNt
fFIJ24GazOhC+azDmgZIOOKBsp3J2qSaZodubq58yQ4QAnmhGT3NO18pb7BORmu205LfYpyKVkWp
Oxr5gKYWoIZWgfGfloFq1qTPLubnGO1RPtxg4P0oBAkY/hBz6VNDDkZ6AU0W2WSdqkdKr9ZOaGSj
VtcLHmnOcgmmYvcz7mBLy3MbdD1q9ouiRK6bUAVeelOC1InPlidSsWMDFOCEdq3uefykqrinYqGy
rFvApMVka2DAowKAsMkRXQqwyDXn/iWyitNQ3qPl6itIvRoF8RXinW4tQ6HI6GuW8SIVBPalc6qe
5x9x97r3qruwTjrWZ0ksZ9TUmcDNAmZ9/wAoao63rR0+w22MLPtAzt6mghmfofiB76LdJBJBIp5D
d/oa7bSdWLIPnpDi9TM8TeKdas51XTbIyxd3J/pXS+E/EFxqNoFu7do5OmD60maHWrnZyDRkn/69
MlEyOR0xntVoNx+FUgYjPxg4FLCuWDZyKQr2RoRnP0qO+nEFpJITgAUzLqZnhu6+0rknOTXpOmwJ
Fbrt5yMmnHYyr6Oxb2ijaKLnPYMClwKQWK3n0hn+lachHOJ9pNNN0apQFzsY10a4v4hXQh0xpieQ
MA1XLZNjhK80cT8OdV+3Wl3A7ZZJCw+hrR1qLcjZ/CsbnfHRnFXseHJArOYYbrUs1uPhYbuatqFP
ByfSkMq3UIINYkto+87Tx6GkSxfsDbflGD7CtTw/pk4nzITtPIFMFudsukh4Rxz71paTpKwP5jcn
0qTRy0NORMDgVCqewoJTJgAoxjntTiTu7fWmFxAcnn1q3EPl+X8KZMi4gKqB1Peob/Tv7Us5bfeU
yOoq4R5nYxqT5I8xieH9J1DTbvyJELRg8ODwa9Ms5mSFV9BWiptbnNVrKdmif7Q1KLg96XIZc5Is
pNL5pqeUrmMtZs0jzV08phchaY00zH1p2ZNxjS1g+LdJOt6U9ssmxjyGp2urDjLlaZzng/wUPDqz
TSTmWeTrjpVjVk3Rvjr2rnqQ5dDvo1XUd2cTqSNk9OKxXGCeKxZ1DAxHTr2q5C/y8GokUhsz54qu
uCxzSQjQ0+FZblR2ro4bZYiMVQ0dBb7Qi5x0qzuG5QOh71LYErDufpSeWrHnimIXbjkUjLkH1Hem
gGxryc+tXI19KYmWegq9YLiLJ7mtqS945cS7QsWehqxA9dEjz4krPSxyZqbFFhGxUm6smjRM55Lk
HvSvNxXTY57kLT+9MNwKdhXGm5FIbkU7Bca1wMEVhaiuQcVhXWiZ14R6tHGanGBI2OtYkqEHjgVy
s9ErEeo6UBsHipKEZs5qpPdRxcbhx70NCSuybTNWihc5brW9Fq6vjMnFSdEIdDRi8RRKygZbHFbu
m6nb3RA3gMegNJhOm0jbXGOoxTuCc1Rz3FyoGKawz9KaAVcZqeMgCmIkB4FaUTbYwB6V00Fuzixb
0SFMuDU8Mlbs4UPeXHeiOXkUrDuXYnyKk3cVk0ap6HMxxketSMhrcwRC0dMMZFMQ3yzSeVQAeUaz
9Vj8uPd271nVV4m+GdpnHX67pCeKyLtBtNcR6xlk9RVeWTb3qRnO6trgttyIfm71z7ai8j7/AJmN
DNqUVa5Yi1AnjynHuBV+11YJhWWXcP8AZNSzqgmaEerSsf3NtIQP4mGKtRavdRgMIpVI9KjU0a7n
R6T43uYQI7qN2Tpkqciu503VVuQGAYZHQjFVc4alPlZrpKGAznpTwxOc9+lWjIlUACnM4XApiLNk
nmvnsK0NvpXZRVonmYqV52GsmanhXitTmFkSiJTSAvwrxUxXIrJ7miOfjf1pzNWxkRlqYWpgJupu
6gQbuahvIxPA6eo4pNXVioS5WmefakGhndH4INZs5DJXA10PaTurmLO21uKpSZqGMoXGnRzBiyjd
9Kx5rcQS428fSkjanLoaOliHGZFB56VswW+mtPufcBsGOAfmxz+tFkd8HpoaUx09FAtFY8DO71qb
Sms/Nb7RbecG6AEjFLS5c78t+p0djpVs9wsyQiJAdyr1rW+zqjErzSe559Sbk9S3C+MA1bjbgE1S
MSXzMVG0vNUI2tPKrAuCMnrVzNd0PhR49W/O2xrHmp4TxVMzQshpIzzQBehqesnuaI5VGzT2bitz
FEbNTC1ADS1JupgG6l3UAc14s04yR/aYRll+8BXCtLncDXFWjys9TCz5oW7GddH5qqNzWDOgQnC8
VSuo1kHzAGkPYopEY2+RWxV23Vzj5G/Kg3jWaNazhZuqNXS6TaKhB2c0jR1nJWOlhOxRxU4YkCgx
Y0OQatQyDbyaaFYe8uF4NY3iC9ltbVGj43NTIL3h7WzMihjzXVQXYYDdW9Cf2WcOJpfaRZ3g9KsQ
mupnCLIabGeaAL0LcVY3cVmzRHIxtUhetzEjZqjLUAIWpN1ArhupwagAfDKQ3Q1594v0c2bm6tx+
5Y8j+6ayrR5onThp8s7dzkZjuqAAmuBnqC7c0iwgtzSA0rWzjfGRW3ZadDu4AoNYo2rfS4v7orSh
05UA2r0pDbsTm29KRottBNyJ0wpJ9KhD7f6U0ikNWffIFBz60zVUW52ow4UcUN6EPcx44WsbgOmd
ua7TT5Bd24KHnFKnLlZFSN4koluLdueRWvp14swweG9DXoxldHlTjYtzGoo25qzEvwtUxas2jRPQ
5CNqkLVsYoYzUzdQA3dSFqBBmnqaBhuqhriCXTpVIzxUz+Fl03aSPI9QTypW2/dz0qKNw3SvOPZR
Mqin8VLKRcs3O4Cuk0w/MDjt1NBtHY6O2IIHY1pxgFaETIRwMkjtVSUEk4570MlFW5bap6dKzWm8
1tqH8aY+hp2FvGoGayNevVt7/ap4xzUvYjqTLtvLPcvJxSaVcyWsxTnFZlnT2t15xHmCtOBYwQy4
B9q7cPO+jPPxFO2qLEj5HWo42+aus4HpoX4W4FTF+KlotbHII9SFuK0MUNZqiLUDE3UbqBBupwag
Bc1DefPbyD/ZND2KjujyPWlKzuPesRZjHJXms9lMuw3StjnmphKDSLTJ7OfE3JrpbO4GQc9qlnRA
3LO82k5NbFvdADkjBoCSHyXIIIzgVQvdRigT7wzjgUzO1jHknlvG7qnp61etYFQDIpCZoqVijzXn
3iC8EmsOuaCGb/heR/s0ijkVv6fbxy3QMg5xmsnuX0Ldzut3+UYTPWk+2GJSe+M1pFtamcldalmx
1eO4XaThhWnC+TXqR2PHqL3maUJ4qRjxSEjj42qXdxVmaGs1MJoATfSbqBAG5p6mgAzTJTmNvpQU
tzzHXY83D/U1zF5FhjgV5r3Pa6FMsV5HWnLe7RhqBRdmTwagN2d2K2rPU1C5LAnPrUs6Iysbdrq6
f3gK0BrUKj/WClY05iM6xLOcQAj3NT29uznfKSzHuadzNu7NSBFjHNSm5VO9IRnajqoWMhTzXFtA
bvUfMduSeg702Qz0rS7FbTToQFwzjJqaGTFyfK5PQViyzUuFmuIdgGABya5u/vTaN5cnUHFUmLoZ
zyskwlgJweSK6zQdUEwVJeGr0aUrxPLxEfe0OrhPAqVjxWhznGRtUwatDK4jNxURbmkAm6jNABup
6tQAFqhupNtu59qUnZFwV5JHnWsHdIx96w5lz15rzT2uhRmt85xWbcxMnUGmZlB0bdxmrNvFIcfM
350mWjbs7YkDJY/jW5ZWW4jikWkdNp9mqYJFaJdEHHakUULu/VB1rLn1Ld/FgetMGYd/qWSQmSa0
/AemS32pfa7piLeLkg9z6UmQtz0W7uQ2cZx0A9BVzR7cAea6j2rPqX0L99KRat5A6Dk1wOoKZ52a
YfMORTYRLujiGWEq6/NWza2yKQVHNdOHerRy4laJo6TTnbbtb8KuM3Fdh5z3OJjbmpt3FaMxAtUZ
agBN1GaQBzTwaAAms3VbjERUGsa07RsdeFpuUuY4jUjljWTKK4j02RE4IpJYFk6imQkVl0xWarsO
mAEcUi0bNnZBR0rWtoguMCkUi21wI161mXuocEKaYXMS4u+pY/hVCSWSY4HT0pEmlouiSahdpEBl
mOceleiwWcNjClvHgJH97Hc1EmVFFi3Czy7mwIl/WtJbjP7uLgd/apQ2VNVvtsBhiPzdK5S4nAuR
nqOCaTGi9pcytPlU+XpmumtWII44rah8ZjiNIXRuWeNvvViQ/LXpJWPJbu7nCRvVkNxVsxBmqJmo
EPiXca0YLMuOlJsuKuPlsSi5IrNuG8s4HWs5VEkbwoOTKsk+FJY4rC1K53k1xTk5O7PSpwVNWRzt
4cms+WpKICtSLTETQj5q0YeBSGiys23pUguGxQMq3E59ayrm4x3yaAKiRtO2WPHcmhruKFxFajzZ
ScA44qRHoXhuMaLpxaUg6hcDLMf4F9KlhuDeXGASIl+8azZslYma68y48m1+7nFW5rtbRNhb5z1p
iMKbUg0zuW4A4rPgb7VdKXOMmpA7HRbMS7nUYiUda0lkQOBngVrS+JGdbWLRt2bAx5BqeQ/LXpnj
PQ4GJ+ashuK0MhWaoWcA0AaOmASMK7jRNPWYBmHyiuepO2x10qfcv6vYxCzYqoGK4HVYVTJrmb5l
c6oaM5TUJ8EgGsG4kLNUHT0M64OaqMMikSRsuKbnFMRLG3zVehOaGNE445NNlnVFpDMu6uie9Vo1
8z5mOAOST2pDK91cNN+5tsrH3PrW54a06KxT7fdrlh/q1Pc+tJ6IUdZGvHPLezMcnBOWbsPap5r3
ylFtbdT1xUWNWzU0/Zbwlgfmx8zGsHWtRHmMqE59aAMyNifvHPc1f0gtPdqkY5JosJHeNci2tktY
euPnNY+oXWZEVJNrZ9aun8SIq/CzodHuriIokhDIR1ronbKZr0o6o8ipoz//2Q==`,T1=`
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAsICAoIBwsKCQoNDAsNERwSEQ8PESIZGhQcKSQrKigk
JyctMkA3LTA9MCcnOEw5PUNFSElIKzZPVU5GVEBHSEX/2wBDAQwNDREPESESEiFFLicuRUVFRUVF
RUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUX/wAARCASwBLADASIA
AhEBAxEB/8QAGwABAAIDAQEAAAAAAAAAAAAAAAEDAgQFBgf/xABDEAEAAgECBAMECQIDBgUFAQAA
AQIDBBEFEiExE0FRBiJhcRQjMkJSgZGhsWLBJDNyFSVTY3OSNEPR4fAHFjWCokT/xAAYAQEAAwEA
AAAAAAAAAAAAAAAAAQIDBP/EACARAQEBAQADAQEBAQEBAAAAAAABAhEDITFBEjJRIhP/2gAMAwEA
AhEDEQA/APqYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAKNTq8OkxzfNkisQC8eb1XtRNbzXT4q7eU2nu0MntRq/D8StMccvW29ZmdvgjsTyvZjxOLj
+s8WLxn8TFPXs6Oj9oct7c14rkxz22nrB2I49KOdTjelmszfmpMeUxv/AA28OqwZ4icWWtt/SUi4
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmdo3nsPNe0Pt
Fh09Z0+DNWL7+9O/7A3eJcZppsV5raI27esvH6jX5ddM25p79Ilo59VbUZOe2Tm/PeGvfPfT2iKR
PLv1+DO678XmW/a97U6TtOyzTbTF538/T9WjTNecm9a7126tqk3rSYxY5ta1plRZqZNXGjyZcPXl
mZmsx+qjBrsuO16xM7eXRt04JrdTltk5OWJnfaWf0a2lty5MdZnfzSn+WOHiOutFpjHa9e8bQ2fp
+alYy462pk7zXbuxjPesbRS0f6ZZV1ET1tErzXFLHo+A+1ddZf6NrI8PJHa1vN6iJi0bxMTHwfOa
zhzd61v1846utwniM6DUdb3nBaNrVmd9vjC/ZVePYirBqMWppz4rxaPgtEAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAItaK1m09ojcHnvarjM8P0vh49+a/eY8ng9D
h1fGM1rxjtGPfvbzdbjuTJxHX48cTPNltM/KsS9Dw7S49Jp6UpHaGe2vjz1y9J7LYK13vHWe7bj2
ex1tvM80ekuxW3RnW3Vm6P5jRx8H0+OYmMcb+bapo8GKPdpC6bQwtdHU8JpWkdJ/JweL6e23iU67
d4dubSqyVi9Zi0bwIs68XGp36TtEq7ZJmZmevzdbifCKWtbJinkt6eTgZPFw32t+sRurbWVzxs1y
Rv6T8V1NZNPtfq0seTm+Kevr+SZuxXjvaPiV8N4viycto9HseG6+uu08W6Rkj7UPmFck1tE1nlmP
Ld3eA8V8HVVi1pjq6Ma/pnqce/ERMTETHaUrKgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAADW19+TQ5p/p2bLS4v04Zmt5VjeQeJ4bjnLqsupv+Ka1+ERLv4reTmcNxcuC
vy3l0qdI2hlr66sT02ot0ZV7qqrInruzrVZLGSZ37JjqgYTG0K5lbaFVhDT1Ub456RPweY4hixWi
eSdpjvD1eWejz3FNHWYtkpvFo9EIseb3tS3SerOms22rfpPqZKzvvHSYUz70TExG6Gdbs2rljeJ/
Mx5L0vEzPaelnOi98c9J2bFNTFpit47+a+PVUvx9T9nOIfT+GV5p3yY/ds67wvsXqpxau+G09Lx+
r3TqrEAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADV4ljnLw3U0jvO
O0fs2lWqyUw6XLkyfYrWZkHldBEV09eveG3Fq1mI3jd4vPrOIaid8G9MP3Y38k6fNrt/rMk9Ou8s
tfXXn49rGWInuy8SO/k5Gl1E3rG/fzbOe94wTy99mbRvTrMOOvNfJWsesywniukrG/jU6fF43WYN
TmtEeJtEQ06aSmK2+bNtEd+qfSO17unF9Hmvy1y13XWyVmN4tExLxVK8PmNq5NrT58zawam+m/yc
0Xj8NpRYSvQZ7xEOdqI3rPozxayNRXe0ct/ON03jmrKB5nV4q1yTO20Obmv4c+cx8HoeI6WZpNoj
q83niYmYscU0r8aJ6T1n49zeJ+Meqm1drb9J+Kd5p136StGVem9l9TbHxLDFp7W7+sS+q1nesT6w
+PcAzVjiGHftzQ+v4f8AJpv6On8jH9ZgIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAABp8VrW/C9TW0ztOO3b5Nxp8VmI4bn37TWYB8f1HFtTfUfR9FWJmsdZ9I7MtJxDX5s
d8ta1y0xzteaR2277rcuhycP12SceLxMeWNpjttHwlu8I0mfQ1y+D7k5YmJmY36T36Ka43z/AF1t
cI1ds+qxVj7/AEej19PCw9HJ4NoK4OIU5Y35YmZdzVTGebVZabx5jJS+Tmns81rNLm1Wrzc9rVw4
Yibbem72mXTTS0w0M3BvEta1bWrM95ie5EanY87wXgNOL6XPfxraXLhra/W28bR/dzYzarBqJxRe
bzE7Rt5vWU9n8mPHOGmS0Ypnea1naJb+k9ncNLR7u2y/WcxXO4TOoyUrN6zD0FaW5Y3hu49FiwUi
KxCvLMR0hlW0jn6ukWw3iXjOJzbDlneOj3GaN6zDzfFOH+LE7SRGo83XNSZ2lbG2/WfdlvaT2cy6
rNFInlrv1mfJ37cK4PwTTxOoidRm2+/2/KFuyMp47XB4LivXiunrH2b2iH2qn2K/J8x4fGDNxTSZ
9Nh8OviRvTyfT6xtWI+DeXs9MNZubypASqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAOZx6/LoOWPvWiHTcf2hiZ0e8fc2mf1E5+vP/AEeuSd7RC2uKtI6QjHfeINTfwtPf
Jvty9WPfbt/lucP03gxfJf7d/wBoReYpm97zaNeLb4Ims9Nt94auDjem1Wo5PFi1onylS+1o7l8V
bxvtupjDMdNkYtXS1+Stt+m63xImEJ4xjHER2ZxMUjeUTO3VRmydBbjLJqPi08mbeVOXJPq1sl5Q
Vbkz9+rRy35rxHqzmZlVEe/Ez5LRlW5iyfR6zffaIjq1OSNZps2a21rZInafSPJhxGMl9LStLRWM
lorM/A4dkrWbYfLZC2W/7K6eubX6b4RzT+W76K8b7G6X62cu3Sten59nsm3j+OXz3/0ANGIAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0OIYfpOHPijvNNo+fdvtXJO18k/
/OwPFYbz2ls3jx8VqW6xMdWPEdP9D4lkx/dt79flLLHbkxTPwY6nt2512ORTRzE2x4/dpE7cvkme
E4IrW3hRMxO8THRtU1FKWtvtvK2upx22rzRCtXkqzh2jtF7ZbT122b01ndnpuWuP3Z3+Ky20qDVv
fauzVy3mejZzNK8dVjqi87KLRLYtXruqvXzkQp7Qoid88R6rcl+WGlW0/Sa22mfhCZOq2x082ix6
jkm822pO8VrPdr4dNObVeDo8XW3uzMbzK+mvxT7szE27cvnu9j7PcNjSaXx8mOIzZevbrEeic5tN
+SZnpt8J4fHD9HXHO3PPW0x/DeBtJxx29vaAJQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAKNRim9Z5e89Nl4DzXtVh5babURHrSf7f3ec1+qnDorWrvvt5Pccb0n0zhmWk
Rvevv1+cPE2rGTFNZU26PFfxwa5dVkjelI2772nZnX6bbrEUq3o0d678u8wmuDL2ittvVjXdneeK
cGv4jpJ6U56+kS7+j118+GLXpakzHaWlp9NNY3tv+bbiYiNoQy1y30uyZJlrWmZnuym6q1iIJnop
yW2Te8bdWnnypQqzZOadokiIpSZntWN5lrxki19vNRxrUeBwnNNd+fJEY6/OejXLn3Xe/wDp9wyn
E8uo4lqqxblv7lJ26T6vpD5X7G8QycKzeBMbzMRM1/FH/wA/h9QwZ6ajDXLitvWzRgsAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeL45w+dDrZvWv1OWd4+E+j2jX
12jx67TWw5Y6T2nzifU+rZ1y9eHwzDYxxEy18+DJodXfT5o96vafWPVbjyxDn1OOzHudbM0rt2UW
iI69mVtRXZq5tREb9VUoy2iIlRbJ0UX1VZ6btTLrI7V6yk62M2oisT1c7JmtkttVMUyZp6x0beDS
RWOvdKijDimvWd3G9pNRMfRcNfvZOb9Hpb0itJeP47k/3hgjaZnbaP1XxWW3T0movbNS0W645nbf
0nrMPpXs3xamoxdJiLbe/X1n8Uf3fKsOTw4jbaXo+EarJhtGTHMxeJ6xH7Sti9Zaj6x3HM4NxXFx
DS1mtoi8dJrv2l011QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AGjxLhODieOIye7kr9m8d4eM4to9RwjPXFa0ZIvG9bR0fQXmPbDFvTTZPOJmEWS/V8bs9R43NxLL
G8eFbePg1bajU5/s0l1ceKLx1hbjwRE9mOpx0y2uRTSZsm3PMw2aaKtIjo6kYo9EXpET0hVLXxYK
xC6MZvyx1lFs0RHfaPiCnU12pLyHGNDbUajBekWma2npWN3p8+opa20e9LSyZLxExTlpM+vdOdcZ
a9tPS8MyUvFrzWlI6727u1pYxYrbVmb7x+TQx6au3Nqcl7/0rcmW9axGnwZJj1novmxnZXV0fFp4
ZxLBPgTGK8xzXr5fOH0bFlpmxVyY7Rato3iYfNuG2x56Wrqa8s2jz+7Lu8O12bS6jkwzN6THNNI6
tvrN68Y4rxlx1vHa0bskAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAA4XtTTm0OKfTJ/aXdcL2pyRGjwU362yb7fkJz9eTxxyZJjyltRXzUZK7TFtl9Lbwy06YzrHwa+
fJFd/wCVt8m0bQ0eS2qzcm+1K/an+zNZFL5M1pjFXeI72ky48eGnPkvNp27+TPU6nHpMfLXaIjpE
erk5dRMxOfN1mPeisfshW1ne1a1577Y6x5R3U0zze31FOWI6ze0byU098kRlzbxM9qrMlPDpyRMR
Md5Vt/Ihp5898mWZm1pjftE91uCt7fCI7dWeHDEW3t723l6rslqxWZnasR+SYhFbzhnfxJ2jyeq9
lcGXWZcmW0zWKxHLaI7794eJx5fpfEKabT8t8l5isddo3l9S4VjrwrRUwzSJt3tav3pdOL6Y6dXD
j8HFWm+/KsU4NRXPvtWazHquWVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAa+fXYNP9u8b+kdZBsDkZOO135cWOZn4y5Wu4xqctbe9y19Kp4njt6vi+PDm8DFMWybbzPlV
5PiGtz67UxbNbeKTtWIjaIXYpnwuaftT5tXJT3vmi1pMsrU5qIrG1V1a+5DCa7b9GFbRr5J6Wnbt
Cu+Wmk0m8956z8ZWZNorbfzcbX5rZslazPux3hUt41NTntktObJ13+zX1bek01r4/HzVm0bxPXy/
+bNfDgjVa2uOY92kdfg6ufJOKvLXtttVVSqbcta2vM7zXtHpLQy5ZtMd+vWd+7Zy3mdJHXra3f0c
vUarw7zFY5rT2hH1Lavnrgx81p3U49Pk4nE5L35MO/StfNRXR5tXnrS8W67WvfyiPSPi7uLHFK1p
jrtSsbR5Lc4RzsXBaYreP4l45esRD2HD9fnw6evvWvO3Tfr0aGk0U55ra0TFInv6uzgrXFXlx0i0
77RPlC83Yj+JW7oddqr6vHzTTw9/f6dod+L1t9m0T8pcbFSmPHER3892W0zPuz+jSbVvidkcqmfP
Sel7bekrI4n4dZnPWIrHeYnZee2Wpy8dEaml4npNZblw5qzb8M9JbYgAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAABEzFYmZnaI7yCXL1XGa0jJXT0571nbee27DiXEprp8nhbxG20W8
5cbD0ikfnKO+urTPvjoZdXqctdsmTaPSvRpWmsdZ6yztfaGplvv3lWW1tyRlz1x0vkn7Vo5atTNe
Y0+1o79V2KsZsvX7Ne5mwxnyTNvsx2iGneM/rCdRSuOsTasTt5kRFtpjqmOH4t4nk7estiMNa97R
Hwhna0iuKTEdmGWa4672nZtRele1N59Zlq6vLOSsYorEc07qcW65euzRvtXvPZy52naZ7ujr6fXV
rWdukREK8+njHgmZmPc67bq6ivVWhxxgxZLztNrT1mZ/SP4VZs0zaOvfp84WUtNsXLvtv3699+rU
z7+Jtt5qURqMnPpctaR1rMSw4ZoK57eNk6xHaJRh97Ltt7lo5Z+L1HAPZvVauZ2nFTSzMTzeJEz8
to6xPfvsZntPZ9rXxabmxzefdrv0j1dXh/BcmstW1qxTHHasR3+b0GPhGl+kWmd64dNEVjf73T7X
y8vy+Ddx6O3iRakxTH5RXrMw1/lX+3Itw2MFIraN48qRHdZi0cUjmmPen9noox1iO0fNzdXEYrTt
stcmd9aX0bJ+HePmiKTitO8TMLZ1cVjrMfqpz6ys4pjfrPRWZ9rXXptUit6zO+23VyaRHEc05L1/
w9J9ys/en1ljqdVbwYw452tlnl3jyjzbmmiMeKtYjpEbLeTXPUU8ee/+qjJpsV5rbkrFqzE1tEbT
DpYNbW21Mnu29fKWna0KbqTdjXXjld0cvQ63ltGHNPSfs2n+HUbS9c2s2UASqAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAOVxPWe99HpP8ArmP4b+r1EabT3yT3iOkesvMVtN7za07zad5l
XV5GmM9vVfEstvDx0jtaVVMlq+UJ18b5cMRvPeSuK87bUt+i2Z3PtG7zXpjkzXt6R+TXyTMzvM7t
ydHqZ+zhv1+Cv/ZuqvPTHMfOYaTMil1a1K2vHSLTELq2v+KWzThGo84rH5rq8JzedqR+ZeI7WnOS
34pYTafWXR/2Pln/AMyrKOCWnvmiPyR6O1y9585lhWJvl557Q6eo4T4dYiMvW3b3UanhldHpJtGX
e09unmjsT7eb1l4trI2t0hsZfrdNO0bzy+nzU20/+NmkzO9esz+TZxWis9dttvPv+Tn21jjaW8zn
26bTG3mp1M/Wzv3t0jyWXiKZJmsTERaZhXXDbNl8WaztWenxZLstPp5pau8frDtVrNMM5cfTfpMf
3aunxxbes9d/R09Dp8ebJi09ptFr3jtt2WyrW9wy1Jx132mK+Xq9PotT0iIU19ntLtExa3T47T+q
6nBaYvsZstZ+cT/LeMnUi0TXffo1s2m8Ws2/OIMWk5Jib5L328rS2t94Sh5TV4ppklpW6PT6rh+P
NbebTHyas8E081mZy5P2W6OFhjxNTE/hr/LoRO0Kvo9dPqctKzMxEx1la5t3tdnjnMs4noievcrO
yZjeFF1OSnNV0OG62cn1GWffj7Mz5w05joovzY7xes7TE7w0xrjPeex6Ua+j1UarBFu1o6Wj0lsN
3JfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrU5o0+nvlt92P3BxuM6nxNRGCs+7Tv8
2hToxm1r3m9utrTvMsonqyt7XTmcja0u3O6FMfi5t/u0/lzdJM81p9O3zdvHTwsUR5+bfPqOfX1h
dqV+3O7bs1+T31oqmI3TEM4rvCdkDGIIhlFd2daboS0NXG2bD6bufxXU1vlmu/u4us/N0+L1tTSx
kr9qk7w89j1FNZMV3jxLzvaJ8mer+LSOZqK2xZotbvljfr/89U453rXt9lse081xZtNjx7TGKu0t
DHlrevSevaN5Y6+tJ8c7VRNMt63n3ub+6/R54rERMztDYy4a5omclYmfxKcenrjtHLvtPrCnVmdb
eFe3JXmjy6eS/DrMuLVYsta9Mdt++6qLxO+0dEc8UmInr18iUfReHcXrqccb9Z27Q61Lb13eJ9nc
1Z35rTvE9avY4bTkpG8xEfB05vYxqybc07R281naGMREdoT5JQqy9mply7Q3bV3iXG1eXw7TWSka
c258t7+tpT5/BjT7MfHqndz12Z+M4lMMKyziUJJiN1WSu9fku23RaOgKNJqbaTU1t9yelo+D0cTE
xEx1iXmM1Nt3W4PqvFweDaffx9vjDbGvxz+TP66QDRiAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAOJxzU73rp6z296zsZMkYsdr2naKxvLyObNOfNfJbvad1dXkaeOdpvsc2yuZVzfbfqybutwu
s5s8R92J3dvJb3tnO4HSMegtmt3nfZvYp8SZl0z45NfSK7onH1bNcfRFqnUKJr0Y7dVtq7prjEsK
0XVpEM6028mW20IHK41aPo3J6zs4ODhdcvPnvExFevNXpMOrxi/PlrTee7PLX6Pwa09uaNlKtHg9
dM3z5d7ReOu02nu0JzZMfblrv5R5uvrcdImZ26T1mYhxs1Os7RH93PZ7axuafNfLitvbaYU3yZYt
PXs9NwHhui1HBa5LVicsb81onrEuVqNNSuS8Y67dZ6xPZa59Il9uX41vEitImZme3q2Kxbxora0T
Md/ROSa4Ztkj7c9OafL5LuGYubmyX3iu/TfbdSfVnpvZLT/XZK233+Mbbva1xRXyiPk8pwbH4N6T
adq5a71n0tD1WDL4tPe6Xr0tDpz8YVnJHWEXYxbqlBedoef4tW0XraO09HdyztSZcbUz43C+ee9b
SVMaeOfqq7+jGckQ1Yz7+7v2RN/WXPXZPjci2+2yyJaVMuy+uSJlA2d+pNoVRbeDcSxyTE+TDDlt
pdRXLTynrHrDOyiyZeVFnY9TjvXJjres71tG8MnJ4Nqt4tp7T1jrV1nRL1x2cvABKAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAHJ49qfD09cNZ97JPX5PPw2uI6j6Vrsl/ux7tfk1mWr7dOM8iLdm
vfebREefRsWldw7SxqNbWbR7lPesrn3Vteo7dYjDpMGCvfbeXQ0uLlxRLRxROfUc34p6fCHYrXlr
EejqrjY8uzCYW7MZjdVKqK9VlaxCYrsnYExBMRMJRPZA8/xPHtmpP9W2xx76vhWOInvt/C7ike7N
vwzE9kcapGfhlevTaFbFo8RqJ5vy8/RoW09ek0msxHfp3dzNoLzp4zUmZpMbT8HJyYJi20X2n0lh
ZY1li/RaidBF4w2mK3jrHaFGp1lN+tptPp5IjBkid5mIp16TKu0abBPv33vPlM7z+iPdFNcWXU5I
tkrNce/b1W5db1nTaf3ax9q0fxDW1ebNk2phty1mOu09VOm8W19orEz23j1TwfSeERFuEYMddptW
d43dvBn21eKJ75KbW+cf/JcTgMxXTb3nbljz+TpcPmc2uyZO1KRtVtGVdi0bx07qJnllsRO6rNTe
N4XVamsy8mnvPwc3R2jPwe8TPbdlxXNOPSZfhWWpwO85OFzv57qrODkzeHntSe8Sn6Rv0a3EZ218
8nXekfr1a0ZLVnqx19dWb6demXybOO7lYMvNMdW9S/VVLo0us7tPHdtUtEwJiZU3jq2Jhham8CVG
PNODNTJXvWd3qcWSubFXJWd4tG8PK3pPd1OB6veLaa89Y61/u2xfxh5c/rsgNHOAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAANLimq+i6O0xPv392rdeZ4rq/pOqnlnelOkIt5F8Z7Wj27I2I6sb25YY
V1ImY3dbQ08LRc23vZp2j5OJG+XJWle9p2h6HHtbJXFT7OOIpX+7TxT31j5rycdTh+Dpz+XaG/sw
w18PHWseULN2trBE9UcrJKBhFU7JAQi0dEomegNDUYovM7x3jb5tO1ZvpbaTLtzRExWfWPJ08kbT
Ex5NXWYYyV5omYtHWJieyeDzuizfRs19Jn6TM7Ru1uMcJxZqTkw+5f4ebqa7SV1MR4tdrx2vEfy1
axqsNOTLjnLXytVXi3Xj8+nmsxTLM16d5npPyUzpekTtSK+U7vS6vQ/SYmK1vWPS1HOn2dvvvvE/
tDO5XlcO+LbfHSd/W3o6/BdDOXPTnj3Kz38rS6Wm4FNrRyRzTH3p6RH/AKvR8L4dXSzE3jmtHn5I
mbfqLV+m4dbLSsZInHjr3iI6zLpYaxS01rHuxHRHiT9mv6s67Vj1aqL6326MrWiYa+/Q54BxPaGe
XRZpj8MquB4+Xg8zPnB7SX30to379GxpK1xcHiKz5IS8xr8PLPixH2bftLTy05o6dHYyVjLhy0t1
izjZa3pMVv3iO/qz1G2L+NbSajbNyW7xLsY8kTDz+fJXFqKZN4iZnafi6WHL0iYlStI7OO+7axW2
crFl7dW9jvE9ULN+J3ZbdFGOy+AYWpEqN7afNXLj+1Wd23KrJVMvCzseh0+auow1yU7WhY4fCdV4
OadPefcvPuz6S7jol649Tl4AJVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAV581NPhtkvO0R+4NPi2
r8DB4dJ9+/7Q83Po2NTqLanNbLfvPaPSFDHV66sZ5ET0hRknyW2lTtMyouz0c8usx2n7s7vScKwx
zc1vu/y85p+maJh6Th+SOWeveXR4/wDLm8v+nX5mUWa9bbrInolmu5jdTNkxYFk2Isr3TuCzeGMz
+THdEyDDJO9Ja823rt2XWnya946pGvktDXta0ztWu/ybvLE9dkcoOf4GbJPWK1j49VmLh9JtE33v
Mevb9G7WsW8l1ccREISophiJ2jpDYpijbaOjOuOJ8ujOdqxsgVcsUjaETYvbaFFrgu5lVsm0yUtu
ryg43H5m+GIj1XcJzePoL4pnrWGtxmfchr8JvfHS1622if3QljzTTLes+qrNjrkiYtCzPMxnm095
YZJ6boS5teB49Tqscza97VtvWvlv8V/FOF34RrIxTM2xXjelp/eHoeA6XnzReY3ivX/0dfivDcfE
9HbDbaLx1pb0lOs+jO7K8Lis3cN+0NKcd9PmthzV5clJ2mF9J9GHHVL108dm1SznYr/Ft0tuhLb8
mNohFbMhLWy0mJ3rPXvDvcO1karBG8/WV6Wj+7kWrvDDBlvpdRGSnbzj1hpjX4z8mOx6UYYstc2O
uSk71tG7Ns5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZ2jeXneJ62dVl5KT9VTt8Z9W9xbWclPo+O
fft9qfSHEU1pv48ftYST23ZTDC/p0YtlVuvVjMbM5+LCZjYGWGdrTPxiHY4ffaf3cjTxz1v6xMS6
Olty2iXVj/Dk8n+ndrkhnGRo1v8AFdW3RCrZ5uiYsqrboncSu508yjmZRYQt50TfowYTbYGVrKrT
uTZjvukQnYhMIGVY2ZxPVWyrHVCWzXpVXkt3TE7Va+W4K7X3jv1auTNy3jdba0RZpamfroQN7Hk3
6wr1GTaN2OOJiu6Mu98NvgDi8Wy74d/yZ8PiPAiO2zU4nb6qIn1bugjfFE/ASp1ke9u15mbbRDZ1
Mb823kx0Ontn1OOkedoJCvT8I03gaKsz9q/WW+isRWsVjtHRKyrhe0XCfpWL6Vgr9fjjrEfeh5fF
feH0V5Dj3DPoOo+k4a/U5J6xH3ZZ7z3228evytOk7NvFbo0cdols47bSybt7HbddHVqUs2aW3Qnq
xVeu8LILR3SlZw3V/R8nhXn6u0/pLuPMXjeHT4Zruf6jLPvR9mZ8/g1xrvpz+TH7HUAaMAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAABRq9VXSYJyW79qx6yvmdo3l5viGs+maqYrO+OnSvx+KLeLZz2te1rZL2v
ed7WneZYWnZl5K72YV1xEyxmeqJljzIEWlVkszvbZp5soN3h2SJz3pP3odCnuWmPRxuERfJrZmtZ
mtY96fR28kbX3dXj/wAuTyf6bmK+9YX1s0cNtm3Sd4LFY2K23W1s16StiUJW7bp22RW3RluBuruz
mWEgrmCGWyNkoExKE1QlPmsqRDKeyBjaejWy2W3ttDUyz1QKslvehVqKTNosyyTvELabXptIJpaP
B39Ia2mz+JGpr51jdZefDx2hzuHZObNq58poJaGtjxJ2+LoaKP8ADRPo5+T3skx5OhpOmC0fBNQ0
5yTbn+bt8A0u9raiY6RHLVwY62mI6zMvaaHBGn0mPHt1iN5+aYVsACBXqMFNTgviyxvW0bSsAeE1
mkvw7V2w5Ote9besJx2er4rw2nEdNNekZa9aW9JeQjnxZLYskTW9Z2mJY7zz26fHrrdpbZsY7NGt
mxjvso1b9NmUwpx33XRO4K7VUTE1nmrvEx1bVo2VWiJE/XY4frY1WPlt0y17x6/FuPM0m+HJGTHO
1qu9pNVXVYt46Xj7VfRtnXXL5MfzexsALsgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHM4jxOMFJphmJv529Dq
ZLfjDjPEIx450+K3v2+1MeUOHSOWFc3nJkmZnf4yujpVlqunOeFpV2nctLCZUXRM7MJtsWlRkv3Q
ky5NmpWt9RnrixVm17TtEQnJabXisRMzPSIew9n+CRoccajURvqLx5/chfOest642OGcIpoOG2w7
ROW9d72+LQvXevyejcPUU5M+SvpLeOataraw2a0dLbLqTtK1G3Es4lVWWUSoldFtmcXUbpidgXzK
GEW3TuCUSncnsDFMMLSms9EC6J6FpVzbZE5ALy0809ZbFr9GtfrEoFMzuuwz0Ueey3HbaBLDXe7i
tMOfwWnP9I+NZbuttvhs1uBRtXPb4SDm3iIvf57N7Dbl0VrS5+XrltEd+Z1Jx7cNms9N4TURRw3T
+PrcO3WszEvZOD7P6aYiMlvu16S7y1QAIAABxOPcLnUY/pWCv1tI96I+9DtgmXl68Biy7/NtUu3+
O8HnFa2s0tfd75KR5fFyMWTdhrPHVnX9R0cd21S3Rzsdm1iuqs256wrmGcT0RYSx5d047X02SMmO
esd49YRE9WcdSXhZ2O1p89NRji9J+cei1xMc3wXi+KZj1j1dTTaqmor06WjvWW+ddcu8XK8BZmAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAMMmWmKu952UZ9XFZmuP3revlDTtzWnmvO8q3XGmfHb9ZanV3yxtWeWn7y4es
vPNtDqZJ6Ts5mppvdl/XXRMyfGvSNlu/RVvtOzLfoipLT1VTKbSpvfogRkvtDVyZOhkyvQcA4Dzz
XV6yvTvTHMfvK+c9U3rkW+zvA/D21urr789cdZ8vi9KDb45rejl8Rry6iJ/FV1HP4vXbBTJEfYt1
+UpiHM295bXsqrO9l8QkZ0lZEqqLeyBZHZLGvZkhIndADKJ3TMoqWQMZ6pjsxll2jsCLSrmU2lFY
36gieyu0LJk3jbsga0wdqzK20QpyztQGprL/AFMrOE05NLkt6qdVWZxNrSe5o9vWBLiUjnzXn0vL
q555dHt8HOwV928/1z/LpzXxbYccRvzTB+jucOwxh0dI22mY3ltIrHLWIjyjZKyoAAAAACJiJjaY
3iXleM8InR5J1GniZw2n3oj7s/8Ao9Wi9a3rNbRE1mNpifNFnVs65XhcWTdt47bnFuF24dm8TFEz
p7T0/pn0a+HJux1OOrOux08d1ndqY7tillVkzExLOk7yd4YxGwluViJhE45raL0na0dtlWO0+bZr
1TKi+2zptZGTamT3b/tLacvJjiY3XaTWdYxZZ6/dtPm1zrv1z78fPcbwC7EAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABhkyV
xUm152iAZWtFazNp2iGhm1Vss8uP3aevnKrNntqLdelI7VRHRnrX/HRjx/tZREVjZXeybW6KbWZt
pCZ6S08tN7Nmbb7zCrJtyoS5145bSx5mWafelr3tsKmS/o08uXyhlly7RPV2+AcBnPNdZrK+53pS
fP4ytnPVda4y4BwHxOXV6uvu96Unz+MvVxG0bQRG0bR2G0nHLb2gCUDX12LxtFmpHeazt82wT1gH
mMN4tWs+rcr2aEV8DU5sM/cvO3yb+O0csLUTSdrLphRE8tlkZI7Atr2ZMazDJVKTYSCawi7Ksq7z
1QERvLK3ZGPrKbyCrbdnMcsbeaa18/RhvvM7oGEwTG0JmYYTIML22a2e28xELM19oURPNO4lOem+
n3ZY5+prVnMc2GYU4/L4A0a15cNf6rz/AC6fC6+NxCPOuOu/5tHJTbHj+F5/l1+BYumXJMd9o3/d
MRXYASgAAAAAAABhlxUz4rY8lYtS0bTEvH8R4ffhmo6bzhtPu29Pg9mq1Gnx6rDbFmrzVsizq2df
zXkMWTeIbNL7tbXaHLwzUctvexWn3bmPL8WFnHVL326VZ91MfFVjvvVlz79kLrcf2m7j7bNHH3bl
J2SirLQoy4t1++7G0dBC/RanxI8PJPv18/WG241+alovSdrV6w6mDNGfFF4/OPSW2b1zeTPL1aAs
zAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAVZ9RXBTe3WZ7R6iZOpzZq4ac1p+UermZMl89+a/byj0Ra9815ted59PQ32hlrXXRjH
DpCLX6ML5NlNsm/ZRqstfdXzbsZt06sLZNvNB1Za8RDWyZdo7q8udq5Mu/mIMt4md2lmy7JzZuWJ
dHgfBL8RvGo1MTXTxPSPx/8AstJ1XWpIs4BwSdbeNVqq/URPu0n73/s9hEREbRG0QUpWlYrWIisR
tER5JbSccur2gCUAAAAPM8Sry8Uyz67fwuxbzVPGsE49XGbvF42V4M0TEL33ERnktsxpk3sumK2j
admFdPFZ33VS2Mdui2J3UU6LYlFSsN2O5NkCyJ6K7T1TEsbAsxdpReerKkTFGMxvYEz0rsqtbbpC
b2VT1QEzuwtbaGUxspuJU3neWdKoiu8rq12gCI92YatLcublnzbEz1aOptyZqTuDHLfxN6R0+t5X
qdJhjBp6UiPLeXl9NSMnEKxHa1+bb8nrlvxUAAAAAAAAAAABTqtNj1eC2LLXeto/R43VabJw/VTh
ydY+7b1h7ho8V4dXiGlmvbJXrS3xRZ1fGv5rzeHN02bEW3cys3xZJx5ImtqztMS3MeTeGFjqlb2O
8btql3NpbZtYsnSBLeiWfdTjtutid+ghherHS5p0+f3vsX6T8Fkw181d4lMvEWdnHaGnw/UeNh5L
T7+PpPxbjdyWcvAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAo1Oprgr63ntAmTqdRqK4K9etp7Q5d7Wy2m953lNrWyWm953mVd77R0
Za1104xxlN9lV8qnJl2a9s3xUXX2ybsJyRDWtl3YWydEC+2VRkzeW6q+T4tbJm+KRdfK1cmWZnlr
vNp7RC/R6HU8SycmCk7ed57Q9ZwvgOn4fEXtHi5/O9o7fJaZ6z1uRyOEezVstq6jiEbV71xevzer
rWtKxWsRFY6REeSRrJxz22gCUAAAAAANbX6aNVpL0npMRvWfSXlKamsRMVvXm+EvZXjmpaPWHzfL
oNRjzXicfWJ8phfPxFejx72x7xMzK+sXiNoiXlq+Pi6fWV/VfTNqfLJl/WTg9Pji8R70LqvMV1Gq
j/zcv6yz+lanzzZP1lWpelTET6S81Gp1P/Gyf90s412rjtnyfqql6asREdWM9+jz9eJ6yP8Az7uh
odZqMt458tpB1JvEViI3/RhzRt13/R1MNaziiZiJn5K9ZNceKZiIiQcu/WekT+iYrWI3lzdTrs+8
8uW0fJzcur1Np/zsn6g79phVaIeetqNR/wAXJ/3SwnUaj/i5P+6UD0ldonum161h5mNRqP8Ai5P1
lNtRqJjacuT9Qd22WN5aGeZyZd/KHJy59RHbLf8AVq31Gp/4uT9ZEvS8Lr/vSs2npzRtL1z53wK+
oza/HW2XJNd99pmX0Rb8VAAAAAAAAAAAAAAcHj/C5yV+l4I9+v24jzj1cLFk8nu5jeNpeW41wmdL
knU6ev1Vp96sfdn/ANFdTrXG+eq1q5F2LLtbZoY8m8d11bbSydErsYsm+zZrO/zcnBm226uhiyRK
EtrvCrJDOJTeu8A1MWX6Lqq5N/dnpb5O5ExMbx2cPNTeJb/DM/iYPDtPvY+nzhri/jDy5/W6AuwA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAa2p1UYo5adbz+xbxMlvqJ1OqjDHLXree0ejmzNrWm953tPmTPWbWneZ7yoy5YhjrXXTjH8s75N
mtkyxt0VZM2/m175N1V03yTKubMLXVXybeYLLX2VXy7eam+b0bOg4VquJW+rry4/O9uyZOq3UjVm
9r25axMzPaIdvhns1kzbZddM0p5Y47z8/R2+HcF03Doi1a8+Xzvbv+TotJnjDXkt+K8ODHp8cY8N
IpSO0RCwF2YAAAAAAAAACvUZYw6fJkntWN3k8dfHz2vLucdz8mkjFE9bz1+UOZosX1UzPm0nqI/W
MYo9FlcPNklfFGeH/NshLGun+Cz6PtHZtVZWlRLS+jxPkRpIn7rdoupHTdA5s6SI+7H6Mfo+32Y2
+To3neSIiZ7A0IjPXpXLePlMotGW3272t85datKzHZjbTVnsDj+FG/2Y/RlGP4R+jo20u7H6N1Ql
o+H8I/REY957R+jpfReiK6eOYHLtj2tttH6KrY/6Y/R2c+kjeJiFVtLG24hxpw7/AHY/RRkw9O37
O99Hrt1YX0tfOBLjcGp4XF8c+u8fs9c4dcVcGemSI61nd3IneN1orQAAAAAAAAAAAAABFqxes1tE
TE9JiUgPKcX4RbRXnNgiZwWnrH4XPi28PdXpW9JraImsxtMS8pxXhF9DecuGJtgmf+1TWW2N/la1
L7N7T5e3Vy6W3hsYcvLbqzbO9jvvCzvDR0+XeO7crO6FmGSvRThy/RtVXJ92elvk2rRvDUzU7pl4
izsd2J3jeBpcNz+Lg5LT7+Pp+Xk3W7js5eAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADs0NTrN96Yp6edkW8Wzm6+LNTq4pvTHO9vOfRoWtt
1mes95YWvs1s2fZldddOczLPLn2ju0MmebT3YZc2/mpm3qqllN1drsbZIhr3yzvtHf4AsvlYYseb
V5Yx4KTe0+UQ6nDvZ3UazbJqd8OKeu33peq0eh0+hxcmnxxWPOfOfm0mP+steT/ji8N9mKY9suum
L37+HHaPm9DSlaVitKxWsdohI0Y22gAgAAAAAAAAAABXnyRhw3yT92Nwef4xm8bVzET0rPJH5d12
CvLhho3rN9RWs9Z23n5y6O21YhrVYbdGOCfrrLPJRpv863zVS6FS09SvZj3lVZZRdPSqmnSWdrIE
ebOkK4ldTsgW1WKqd1oMZhEVZyRAImOjGI6rJ7IiATNd46qL02bHkiaxaoNGY2n4ImPgtyV2n0Vo
Gvlx7x2beiyTk08RPevSVUxux00+Fn2n7N+n5rRFb4AAAAAAAAAAAAAAACLVres1tETWekxKQHlu
L8InR2nPp43wz3j8P/s5dLveWrFqzW0bxPeJeV4xwmdFec+CJnDM9Y/CrY1xv8qvTZ+WYdbDk5oh
5zHk283U0eo3jaZZ2N5XYjrCnLSJhOK+8d1kxvCqzSwZvousrb7k9LfJ3nB1OLeJdLhufx9LEWn3
6e7LXN9Ofy5/W4AuxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAETaKxMzO0Qi9646Ta07RDmZ9VbPbaOlI7Qi3i+c3TPUaqcu9adKfy0722ZXvFa9
XO1OrjrESxt66ZJmcjPUanlidmhkzTZVfLN5VWvsC2b7R3U3yqrZZtO1esz2h2+F+zWTUcuXXTNM
feKR3n5+iZLVbqRzNJo9TxHLyaekz62ntD1fDOA6fQbZL7Zc/wCKY6R8odLBgxabFGPDSKUjyiFj
SZkYa3aALKAAAAAAAAAAAAAADQ4pl2pTFH3p3n5Q33E12Tn1eSfKscsLZ+orS00eJqbW+Lfnu1tF
XaJnZsz3WpCfsyp00fWSvmPdVYOmSUDd8kR3InoQosy7JmUX7MdwZ17ro7KKT1XRPRAsrO0rYndr
79V1ZBaQiJ6JgCSIJASwrO07MpV2nqBlrv1a1o2bf2qtfLXaQUTO0sb05o3jv3ZXhjS20xEphW5h
yeJjjf7UdJWNKLziyRePsz0lux1SgAQAAAAAAAAAAAAAADG9K5KTS8Rato2mJZAPIcU4ZbQZuekT
OC3afT4NXFkmlntc2GmoxWx5K71tG0vHa/RX0GpmlutJ61t6wrY2xr8dXS5uesN+tt4ef0eaa223
2dnHk3juyreM81OaFGiy/RtZET9jJ7s/2bdutd2jqKeic3iNTsd8a2h1H0jTVtP2o6W+bZbOO+gA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABje9cdJt
adohGTLXFTmvO0fy52bJfU23t0pHaqLeL5xdK9Rnvqb+cUjtCi94xxvK3JetKuHrdZvaa1ljb10y
cnIs1Wt3naJc++TmVWvMz1YWybfMGdsm3eWek0mo4jm8PT0mfW3lDf4V7P5tdMZdRviwfvZ6/TaX
DpMMYsFIpWPTzXmf+steT8jn8L4Dp+HxF77Zc/4pjpHydYGjC3oAAAAAAAAAAAAAAAAADG9opS1p
7RG7zszN6WtPe0zLua+3Joss/wBOzhzG2OsL5+IrY09dsSyYRijbHEMvOChb7KjF0yS2LQ169Mso
S24noyrPVXWejNVKbTuw3T3REdQWU6LYlVvsyiUDPfqupPRr79VuOQX1lZEqoZxIMksd0gT2VT0l
bPZVbuCaW8i8bwr32WxbcGnkjaZa9p2ndv5qbw5+aNugLItF6TEtvTX5sMb969HMpfazc0d9stqe
vVZDdAQAAAAAAAAAAAAAAAADV1+iprtPOO/2u9bektoB4TJTJpNRbHkja1Z6uto8viVht+0HDvpG
H6Tjj6zHHvbecONw7Ltfkmeqmo6Ma69DXbbZTkr1mGWO3RneOaGbZRoM30fVzSelMnT83aef1FZ7
x3h1tBqfpGnjmn369LNc3sc3kzy9bQCzIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAa+q1dNNXr7157VhGp1Xh70x+9f9ocy283m1p5rz3mVbrjXHjt91lz
5c9+fJ1nyjyhdM8lZlOOIiqrUXikd+kMreunnI5XEdX4dZiZcG+XmtNl/F83PeeWWHDOGanieSKY
q+5H2rz2hMzWd1Iqx1yajJXHhrNrW6REeb1nCPZumn2z62Ivl7xTyr/6uhwzhGn4Zj2xxzZJ+1kn
vLoNJnjHW7TbbsAszAAAAAAAAAAAAAAAAAAAAaPFrbaSK/itEOXt0rDf4xb/ACa/GZacRvaF58Q2
IjasQnzPIhCU92tMbZGzHmotG10C6nZkwpPRmipIllEbMIZIE7solgmJBnCyk9VMM6z1BtVllEqK
z0WRILYlluriWcSDJVbusV27gwInaSWM9ECyZ3hqamnSWxFmOSOaqRx725bNnSZNs9J+OynVY+WZ
YYr7TE+nVaIr0Ais81Yn1hKAAAAAAAAAAAAAAAAAABExvG09peU4nov9n66L0j6q/WPg9Y1OJaON
ZpL0+9HWs/EWzeVz9PbmrEtnyc3h9reHy26TWdnSr2YX6657ijLXpLX0+onSamL/AHJ6W+Tbv2aW
ekTv16JzeI1Ox6KJiYiY7Slz+E6jxdN4dp3vj6fl5Og2clnKACAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZ2jeQRMxEbzO0Q08uqtkma4ulfO3r8lefUePMxWf
cjy9WvlzVxV6T1Z61/x0Y8f7Wc7Ur1lqVy+LqOWJ2hp6rXddon5rOF1tfmz5OkT0qzb8dWbxjp1c
biuuilJ5Z6r+IcQrixzEy8zl1E6rNt1tMztFY81sztU1eRucN4ffi2p5esRM72n0h7rS6XFo8FcO
CkVpX082nwXh3+z9FWLxHi36328vg6TZyW9ABAAAAAAAAAAAAAAAAAAAAAADj8Unm1tK/hqppHvw
y1k8/EMk+m0GOPeafiFpCZYwolnXspvHvLa9mF46gmnZmwozRUiUCBKYYsoBLOFbKAX0llEqqyzi
QXRLOJVRLOOwLIljZMEgrlhKyYYTAK5nZPN0RZjugUanHzVlz6xtLq361c+9eXItPpXX0dubTU+E
bL2lw2++O1fSW6m/VYAISAAAAAAAAAAAAAAAAAp1GbwcfTreelYEydcuMcRrM/L9nnlsV6wqpi2r
tv133mfWVkRyRtEdGFva7MzkYZNoamWN4bV4mYa9qztKIujhVppxGI8r1mJegeZpknBqKZY+7L0t
LRekWrO8TG8Ns/HJ5ZypAWZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAADS12fp4VJ6z9qVuq1HgUiI+3bpDl589cOKZmevqprXPTbx477rDJlrhr1nq4+s182tMRP
RqaziXiZJrWekNG17ZbxWJ336M5LXRbI3dLTJrs07RMY6fan1dHLrowY+X7MVjt6N3R6Kul0EbWm
s7bz8Z+LnabQX43r7Y53php/mXj+Dnv0f1JO1x/8ZxbUzj02O15mfLtD13AvZqnDds+pmMmo26el
XX0Wh0/D8EYtNjilY7+s/NstpOOTW7QBKgAAAAAAAAAAAAAAAAAAAAAADG88tLW9I3BwJtz6nNf1
vK/DHVqYJ3pzT5y3MPZeojOWMQylEKpTVjZnDCwkqzYQyRRICATCITAJZQxhMAshnEq4ZQC2srKq
qrIBZCWNZZgwswmFloVyCu0dFcx1WyrtCBhv5NTPHXds2U5o3hIz4ffbPt+KHUcTSW5c9Jme0u2v
VYAKpAAAAAAAAAAAAAAAAYZctcVOa35R6tLrltN795/YvknNqrfhpPLH92V5isd9mWq6fHjk6rn0
ZxG8KK5Jm/wbVZiYZtqrmkqL023bkxvCiY3lJHNyRG81mHS4Rn5sNsNp64+3yaWaNrzOzHBl+i6q
mT7s9J+S+ay8mex6EIneN47SNXKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAImYiJme0JafEs3h6fkidrZOn5eaLeJk7eOdm1Hi2vmtPTry/CHmOJcUvmvOPF1n09Pm
6HF9ZGm01qxO3R5vSY7XwzmzTy47zzTEd7en5Mfvt2/PURWdo3tvPrPlKymbktFqTtMTvHzbOLDG
f63JXbFX7FdnoODcDprZpq9TjiMMTvSn4vj8l5fxnrk91saPSa7i2hpOfbTVt5x1m0fLydzR6PDo
dPGHBXasd585n1lsRERG0dIF5OOe6tAEqgAAAAAAAAAAAAAAAAAAAAAAADX11+TRZrf0y2Gjxe22
gtH4piP3TPpXKwxtjhuYo9xq442iIblI2pC1RET2ILd9kxCqRjZmwlCSEohIJAQAAJZISDKGUd2M
MoBnVbVVCyAWVWeSuqyOwIlXZZKue4MJV2WWYT2QKbKL9YlfdRdIo35b7/Hd3KTzUrPrDh27uxpb
c2mpPwX/ABX9XAKpAAAAAAAAAAAAAACekTIp1eTwtJmv+GkyJn1oafeazbfpMzLR4jq/o8b823zX
6XNF8ERCvTcNpxLV5LauvPhx9Irv3lhztdtv8TtaWLicXrt03jzjzb2k1nid56ty3s/w+a7Uwzjn
1raejlarhmbhl/FpbxMO/fzj5p/ixSeXOvTtRfeI280ZI26tfDm3pWe63LaZx7qtGvniJ6tPLvOK
fOa9WzbJvTbza02jl3n5SSljscK1MajSxWZ96nSW88xw/VfQ9XMT9nfa3yemid43jtLeXsce88qQ
EqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADia3UTm1l4j7OP3Y/u
7Vp2rM+kPJW1PhYcmS0+9MzKm/jbwz31weMzbV8UppazPL9q0/BF4rk1GLDSNqxPWPhCnHmnNrtT
qPKteWPm6U6OdHaZvO+SaRNvhv12Ub/q3FhtrNVj0uKOt56z6R5y9zix1w4qY6RtWsREOJ7L6OKa
S2rvX6zNM7T6Vh3mmZyOfya7eACzIAAAAAAAAAAAAAAAAAAAAAAAAAAczjVvqMVfW/8AZ03I41bf
Lp6/OVs/UVrY47NyOzUxd4bUJpEbb3Z7IiOrKIVSjZhMLJYyhKIgmGUQSDESIEbJEgQmCITEAmGU
IiGUAyhZVhDOoM4Wx2VQtqBKuyyWEgqlhKyyuyBVaGtkbNmvk7A15l1eH2300R6TMORPSXT4ZO+O
8fFefEX63gEAAAAAAAAAAAAAAAq1WPxdLlp+Kkx+y1Fvsz8gjhaDauGK8sx07y3OE3m1tT6RaP4c
vU6yMNKUx73zT0ilY3l2eF6a+m0kRl/zbzz3+Ez5M8z26fJruW6wzYq5sV8d43raNpZjRzPPaTmx
5b6bJ9rHO3zb2WJ8GWPEscY9bgzxH2t62n19GWW0eHOzHU5XbjXZ1x8WTnz2iZ7S2M1IjH2+LX0V
KTqs8zO9ot0j8nUthi1J3UaOFMTfLFo6xMbS9BwHWTqdHOO8+/hnln5eTjYMFo1WTH5VnePzXcIm
2k4zlpPSmXy/hfF5eMfJns69OA2cgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAADG/2LfJ874rW845mubliY7bPoto5qzHrDz0+yePNF41OotaJ7RWNtpV1OtfHqZ715fhu
j8adNpcVfeyzE2/vLuanhOu1nEctIxTTFa/+ZPbZ3eHcF0vDbTfFE2yzG03t32+DokynXl9+leDB
TTYKYccbUpWIhYCzEAAAAAAAAAAAAAAAAAAAAAAAAAAAAcXjE/4zDH9M/wAu04XF5/3jj/0f3Wz9
RUYmzDWxS2I7FSyjuzY1ZKpRKEygEwiWUIkGIk2QJNhKQhMIhkCYZQxhlAMoZwwZwgWQshVCyATL
CWc9ldpBhZXLOVdpQK7NfJPRdaWvknoDVvPvOnwuel4+TlXn3nS4VPvXj4QtEV0wAAAAAAAAAAAA
AAAAAVV02CmTxK4qRf8AFFeq0AAAanEsfPpZmO9Ji0NDLfkwdOsulrumiyzHlVzJrz4Ovoy26vB8
cTBa9NffLtMY77Rv8Yegx5ImkKdJoY1HC81Y+3OSbVn0mGGkmbY45u6tnrrTOu2xGO0RxCd+nNVj
qKxTV1vH2pjaGtnyzXXYdo96ZmGXEMk15b7/AGZiVerWPTYckZcNbx5wzc7hGbnxXxzPWk7x8pdF
0S9jh1OXgAlUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAcPjEf4/FP9H93ccXjMf4vDP9Mx+62fqKrx+S+GvibEFSsqyYwlVK
ZYsmIMoRKYJQIPIEiQ2ATCUQygCGUIhMAyhnDCGUIFkLIV1ZxIMpVWWSrsCuyqyyyq09ECq8tfJK
66jJ2Bp5J6upwn7dv9Lk5J951uE/av8AJaIrqAAAAAAAAAAAAAAAAAAAAAAq1Mc2myxPnWf4cmtu
XT9fR0tffk0WSe28bfq5Wbamm3326MtunwfK6PCv/AxPraZ/dz9PO97/AOqf5dHhdZrw7Dv3mOb9
XOxRFM+avpe38mvkPHf/AFWlrKba7Tzt99ZxKkfR7euyNXMTrtPHfa0z+zPiM/UR8Zj+Wbdu8HpN
M2bfzrV13M4dO2pyR61dNvj44/J/oAWZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADj8bj63BPzdhyeNx0wz8ZWz9RWri7Nmv
VrYu0NmqaRZHZlDGGSiwxZSgCEkCBCQSCQBMJRCYgEsoYx3Z17AlMIhlCBnDOGEM4AlhZZKq4KrK
7LLKrIFN2vdfZReAaObu6/CO9vk5OePR1uEd7fJeIrqAIAAAAAAAAAAAAAAAAAAAAGtxCk5NFliI
3mI32+XVyNTyZOHTee946PQKPoeDffw4777eW/yVs60xv+ZxOnr4Okx1t05KRv8Ao41Z5q3yed5m
XY1szXRZ5jvFJ/hxItP0aOSN9q7yrtr4f2tHFM5+KT16Yq/vK/iGSbXw4vO14UcPx5MGfNbPG18m
1oj4THRsTw7VanPXVYpi3gzMcnrvCnG11JOupwuN8+a3pEQ6jT4divjxWnJExa09pbjbM5HHu90A
JUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAHM41H1GOf6nTc/jEf4Ws+lls/UX45uGekNujTwdm5RNIthKIZKLDFlsiQIShIC
EgCUJ7AmGTGO7IDzZQhMSDJMMYZQgZwzhhDOATuqssmVdgVWVWWyqtCBTeVF19lF+wNLNG7q8I+9
8nLyupwnt+S8RXUAQAAAAAAAAAAAAAAAAAAAAAAItWL1mto3iY2lyrcLyUxzix2ia2nvPeK+jrCL
OrTVnxpanhuPPemSs8l6RtE7dJj0ldpNP9GwRSZ3neZmV4cR/Vs4AJQAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANHi1d9H
M+kt5ra+vPoskfDdOfqK4mn7Q3aNHBPZu0W0RdDOGFWcKLCJZeTGQQlCQSgASBsCYZQxhlAJTAmA
TsmAgGcM4YQyjsgRLC3VnaVcgwsrt3Z2V2QK7tbJ1bN5a9waeWO7p8Knt8nNyebpcK8vkvlFdQBA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAK9RXmwZI+ErEWjesx6wQeZwejeo0cccuW8
elpblJaaRGxVnCuss4ZrMvJEgCAASISCQIBlCYYpieoM0wx8k7gzIRueYM4Z79FcSy3QEsLJmWFp
BjaVVpZWlXMoGNmvkXXlr3kGtknu6XCf7OXkl1OEdl8orqgIAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAHmskcmtzV/rls0U62OXiWX4zErcc9GmkRfWVkSqqziWayxCPIANwBIhIJSxS
CRG6dwZwlhEs4BluMdzfqgZxLLdXuy3AmVdpZTKuZBjaVVpWWV2QlhZRdfZRcGpl7urwfrzfJy8r
rcH61vPyWitdMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHA4nHLxKZ9awnH2ZcY
jbW459aq8fZpfiI2IZwrqzhmsz3Ebm4JN0AMhCQSIASndiAziWUSriWcAyRujc80DM3RCfIETLCW
UsZEsJYSslXZAwlTddPZTkBp5e7r8Gj6rJPxhx8k9Xa4PG2C8/FaK10QAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAcfjcbZMFvnDWx9m5x2PqcNvS+zSxT7sNPxH62YZQwqzhRZO6UCB
KUAJTux3SDIRuAncQAmJZRLBMSgZ7iIAZRKd2DICUSlAljLCYWMLIFVukNfI2bNbIDTyT7zu8Ijb
Sz/qcG/2nf4T/wCE/wD2WnxWt4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHL9oL
+Hw2cm28VvEuPptfgyVj6yIn0no7/FtJfW8NzYMe3PaPd39d3iMug1WktNc2C9dvPbeP1aZ9xF+v
T471tHu2iflK2HkqWmvaZj5Surqc9Ps5bx+alTHqYHm68S1Vf/NmfnC2vGNTXvyT84Ql6A3cSvHM
sfaxVn5Ssrxyv3sM/lKB1xza8bwT3pePyWV4tpZ+/MfOEjfGrXiGlt2zV/PotrqcN/s5aT/+wLRj
FontMSlAlKEgndO6IAZQljDIEgeQljLCzOVdkCu/SGrkbF56NPNeKxMzMRHxENe0+89DwuNtHHzl
5PJr8NcnLW3Pbf7r1nCZm2gpae8zMrz4i/W6AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAETETG0xukB4HVaeMHEtRi26RedvkyjBSfX9W77QYvC4xz7dMlYlrU7M929dWJLFc6aPK0q
7YLxPS0S22FlP6q38Zac0yR92s/KVc3tHfFf8tpbcsLRvB/dR/8ALLVnU0r9uL1+dZI1mnmdvGpv
6TOy6ym+Oto2tWJ+cJ/tW+KLK5KW+zes/KU7tG+h01p64qx8Y6NXNo6Y+uPJlp8rLf0rfG7MXtHa
0x8pZxqs9e2a8f8A7Oj7HaTHn0+f6RWM23LETfr6vRW4PoL99NT8ui7F4+vEdXXtnt+fVbXjGsr/
AOZE/OsPS29nuH27YrV+VpeV9pdPXhOtw49NG9Mld55+vXcTPd42I47qo7xSfyWV9oM8d8VJ/VxM
d8l46xWF9cV7en6o/qLfxp2I9ob+eCv/AHMo9op89P8A/wBORGmyT5R+qfo2X8P7n9Q/jTsx7RR5
6ef+4/8AuHftg/8A6cWcOSO9J/WEbWr3pY7Efzp2Lcfv5YK/9zWy8d1E/ZpSv5Oba1/+Hb9lc+LP
bFt87I7E/wAabWbiurvEx4nL/pjZzc2bJkn372t85ZXx55/BX85lucC0vPxnTxlnnjm32mOiZqUu
LJ2p4TwnVavNWaYbRTfre0bQ99pcH0bT0xb78vmtiIiNojaErMwAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAHnfarF7umzRHaZrLjYrdIen9ocPi8JyTt1xzF4eUw23rCm3R4r6bMy
wt6kdTaWLdjswmNoZontsCm0K5XWjopnuDC0dGpqG5bs08/daKV672MjbSaif6oh6Z5f2LtvptRX
0tEvUN3Jfo8f7cYve0eX4zV7B5z20xc/C8eSPuZIRficfXlcPaG7ino08HWIbePpLF2NuiyOyrHK
3fZFSwuovHVfaVF4QK5YWTM9UT0EKry6Ps1Tn4zjn8NZn9nOtLseydObiWW34cf918fWfk+PYANn
KAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAq1WKM+ly4p+/WYeBxTNd6zG0xO0
vobw3FcP0bi2em20Tbmj5Srr418V9sa2Z7qKyzi07MXUylhaU7yjqhLCeiq3ddaFNxFYW7NLNG8t
zya+WO6Va9J7FW66mvwidnrXiPY3Ny8RyUn71Jj9Ht3RPjk19HK9pMHj8D1ER3rHN+jqqtTjjNps
uOe16zAifXzfTz7kNyndpYazS9qT0mszDdoxrsi6m8LazMq6zDOsq1ZEyrt1WWlXaUCqyq0rbKbi
Fdp6PReyFd8uqv8ACsfy83aXrPZHHto89/xX2/SP/dpj6y8vx6EBq5gAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAB5n2q03LfDqqx39y39npmlxbS/TOG5se29tuavzgWzeV4mtui2
O3RRSY2hdVhqO2MvI36iu9lUsrSrvDHn6spnmSiq5jooyV6tq1VV69RC32byTh43h8otMx+r6I+Z
aK/g8TwX7bXh9Mid4iW+fjl8n1ICWb57xLBOm4zqse20Tbmj8+qKdnS9q8PhcTw5tumSm0/OHMxz
0Za+uzx3sX1t0Zxurr1ZxvspWiZYWZbsbT0QK7KLrZVZJFaqt5vbezNOTg9J/FaZeJns93wCvLwb
T/GJn92uGHldIBowAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADuAPA67F9H4l
qMW20VvO3yRWW97T4fC4rXJHSMtI/WGhVlue3b473K2KzMML4+62tujG9pnozXaOSOVFMnVbmq1t
trJRW5E7wwvUxTvCyY6CHOt7moxz6Wh9PxTzYaT61h8x1MbZK/OH0zTf+Fxf6I/htj45vL9WgLMn
mvbPFvocGWO9L7fq85p5maw9d7VYvE4JkmPu2if3eW0+PasdFNOnxfF1Y2hlykRsmY+LJ0MZjZXa
eq2eyi8oQTO0KLdZWzPRjWu6VaqtHR73g0bcI0sf0Q8Nkq93wqNuFaWP+XDTDDytwBowAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAef9q8HNpcGaI60vtPyl56k9Iew49j8ThGe
PwxFv0l4zH2U26fDfTYiyJljvsjf4sm6vJ1hrXjq2MkqLdZEVbgbMx0auGdmzNt6iHN1Ub5af6of
TdPG2nxx6Vj+HzaaTm1+nx/iyVj930ysbViPRrj45vL9SAuyc7j1efguqj+jd4/T33rD3HEcPj8O
1GP8WOY/Z4TTT7sKadHhbcsZnaCJ3TPZk6VdrKbTutmP0U2nqgrGOsr8deiuI2X09EqKM1dt3uuG
f/jdN/06/wAPE546S9rwud+Gaaf+XH8NMMPK2wGjAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAABrcRp4nDtRWPPHP8PCYusPoWSvNjtX1iYfPuWaXtX8MzCuvjfw32siu8ptXoxi
0wy5t4YulReqmazu2skbquURWFInddM7VYRGyL291KFnCcfj8e0le/Lbmn8n0N4b2Ur4nHLWmPsY
5e5a5+OXyXugBZmiY3iY9Xz7NjnTa3Ph/BeYj5PoTxftFg8Hjk2iOmWkW/Psrr418V5WrWd2faFc
V2jdnEMXWxntupmN7NiYU27iWML6dVMVnddjgVqMsdHr+CW5uE6f4Rt+7yuSsTDv+zWXn0WTHP3L
/tK+GHl+O0A1c4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8Dn93W56/wDM
t/L3z59qp24jn+OS38lnpr4r7ZxHQ2TEstt3PXUrt27K57rr1VT0BjKnJPRbMqMs7QlV2fYvHvrd
VknyrEfu9m8f7FZI8fVU85iJewbT45NfQBKo817W4eulzxHaZrL0rje09ItwqbfhtBVs3leai8RD
KLw1sduesL606dWFdsZT1jdhNeq6K9DlhCVUU6s4jZnt1YzAhnM71dH2bycmszY/K1d/0c6OzY4R
fwuK4p8rTstn6z8k7HrwGzkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHz3
Vxvr80/8y38voTwGpj/F5/8AqT/JfjTx/WVeyY6FPspc9dZPVXaOq2WEwIUTVRmjo2rNfLHRI3vZ
DJycXtX8dZh7t879nsnhcbwz23tt+r6I2nxyb+gCVBzuPY/E4PqI9K7ui19fTxNBnp60n+Aj5/pJ
3jZu1aOnnltMNussdfXbm+l3ZM9URHREdZVXTuT1Nk7boQiOkJw28PU47/htEp5eivJPLMTCZ9Vv
x7mJ3iJ9UqNHk8XR4b+tIXuhxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD
weqjbWZ4/wCZP8vePCaz/wDIaiP+Zb+UX408f0r9lOxWOifJhXWjfyYWllPRXYQxnrCrJHRd3YZI
6A1NJecHEsN/S0T+76bE7xE+r5dk93LW3pL6ZpMni6PDf8VIn9m2fjm8s9rgFmQxvHNS0esbMiew
PnHLyai9fS0w2aNfUTtrs3+uf5bGPqy068fF227KtSsdFlKqNGMV6myyY6sbdIQI8tlOWOi6Jhhk
j3RD0vA8nicMx9etZmHRcT2Zyb6XNT8N9/2dt0T449T2AJVAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAHhdfG3E9TH9cvdPEcXjk4zqI/q3L8aeP6xr2TsxpLOekMK6mFo6qpXSrm
OqBixvHSVmzC4OfqK7S9/wAByeLwbTW9K7fo8Fqo6Paeyl+fglI/Da0NcMPK7QC7AAB8313TiOf/
AKk/y2MHWrX4jG3E9R/1Lfyv0/aFNOrHxuU7LI7MMayGTVlHWUXhNe6Z6wIUsb9d1m20q7dkDpez
N9tRqKT5xEvRvKez9+Xis1/FSYerb5+OTyf6AFlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAB43j9eXjN/jWJ/Z7J5L2mry8Upb8VIF8f6aGOey2eynHvOy7bowrrYSxZSwQJ2YXZ
92N4BoanrEvVexmTm4blr+HJ/aHltRHSXofYm/1Wrp5RaJaYY+X49WA0c4AD51xONuKan/qW/lbp
+0MOLRtxbU/9SU4J7KadWPjep2WQrr2WRPRk1TvsndXMpiRCb9FNu0rbTuqvKBscCjfi9PhWZeue
V9n434rafTHL1TfPxy+T/QAszAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHmv
avHtfTZfnV6VxPajHzcNrf8ABeJFs/XnMcr4no18c+6vr2YadkY2YM57sEDLyY37Mo7MMnYGlqO0
vQ+xNfqNVb1tEfs87qZ2rL0/sVX/AHdnt65P7Q0wx8vx6UBo5wAHz/jUbcX1PT78qtO2vaCnJxjP
8Zif2amnnspp04+OjWejKJ6MKdmcMmyJn4m5ZHzEVPMwtJv0VZLbQDqezcb8RzT6Y/7vUPM+ytZt
n1OTyiIh6Ztn45N/6AFlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABocbxeLw
nUR5xXm/Rvq8+OMuDJjntaswEeBxT0bNZ6NatZpNqz3rO0rqsdO3PxlaWEMpY+aqWXkryT0ZT2V3
7A0dVPuy9f7G124NM/iyT/Z4zWT7sw957MYfB4Fp4/FE2/WWmGHldcBowAAeM9qKcvFeb8VIly9P
0nq7ntbTbVYL+tJj93CwT76unR4/jo0nozhhTsy3Y1sWljM9Ce7HyQIm3RRlttVbaWrnt0Sh6n2U
x8vD8mSfv3/h3XN4Bi8Lg2nj8Uc36y6TeOPXugCUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAPD8RxeBxXUU26Tbmj8+quro+02Lw+I4ssdslNvzhzazvDPbq8d7GW7Dfqz2VzG
0s2qd+iu/Zn5Ksk9BVztX1mI8930zh2LwOHabH+HHWP2fNYp4+vwYvxXiP3fUqxtWIjyjZtj45/L
faQFmQADzftfj3w6fJ6WmHmsP23rvaqnNwqLfhvEvIYZ+sV038bo0noy36MK9oZQxrdMyrlnMbMZ
QKrS1M07zEestq/RRjr4utwY/wAV4j91p9V18fQdJj8LR4ccfdpEfsuREbREJbuMAAAAAAAAAAAA
BAJAAAAEAJEAJQAJQAJEAJQAJQAJEACUJAQlAJEAJQAJQJAAAEAJEAJBAAAJAABAJEJAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABwvanDzaPFmjvjv8A
tLztJ3h7HjGHx+FainnFeaPnHV4vFbeIU038VbHeGF+kso7Mb9mTdhKnLK3dRm7SIrHhGPxeP6Sv
9cT/AHfSnz72Zx+J7Q45/BWZ/Z9BbZ+OXyfQBZQABzeP4/E4NqI9Ii36S8Ng/wAx9C4jTxOH6ivr
jn+Hz3B/mQi/GvjdCnWNlsdI2V07LIlg6USrt2ZzZXMoFV+zPhGLxeOaavpbm/RVltEN72Yx+Jxm
b7dKUmf7L5+s9/HtRA2cqRACRACRACRACUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAACQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQCQQCRACRACRCQBCQBCQB
ACRACRACRACRACL1i9LVntMbPATTwdRkxT3pea/u+gPE8Xx+DxrPHlaYt+qNfGvjvtXXsi0dOrKk
dEXjZg6VMtbP2bMtXUdpEV0/Y2nNxbNf8OP+727xvsXH+N1U/wBEfy9k3nxyb+gCVQAGOWvNivX1
rMPnGGOXNNfOJ2fSZ6w+dZKeHxDPX8N7R+6L8a+L63KdoZ7q6zvEMpnowdKJ6ywmWUyqvIKM0vQ+
x+D6rU55+9aKx+TzWa36vbezmDwODYenW+95/Nphj5L6dQBo5wAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAEiAAAEoA
AAAAAAAAAAAAAEAkEAkRuAkQbgkQAkQAkQAkQAl5T2nx8nEMOT8dNv0l6pwfarHvpcGWPu32/WCr
YvK4mOem6b9mGKd4Z3idmFdka0y1c892zfpMtLPaNpEV6D2Kj/Eauf6YeweQ9ieuTVz8K/3evbT4
5NfQBKoAA8FxCvJxrUx/XMvevD8Zry8fz/Haf2RfjTx/6RSOnRMyypHu9kXjowrqVSrvPRnZVl6V
kK0775MsUjvadn0nT4ow6bFijtSsVfPuFYvpPGtNTy54mfy6vorXDm8l9pEC7JIgBIgBIgBIgBIg
BIgBIhIAgBIhIAgBIgBIIBIAAhIAhIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJAAAAAAAAAAAAAAA
AAAAAAAAABAJQkAEAAAAAAAAAAjc3BIjdG4Mkbo5kcwMjdhzHMDPc3V8xzAs3N1fMjmBZubq+Y5g
Wbm6vmOYFm5ur5jmBZubq+Y5gWbm6vmOYFm5ur5jmBZubq+Y5gWbm6vmTzAz3N2HMnmBlu5ftFTx
OEZJ/DMW/d0t2rxKni8N1FPWkiZ9eS08e7Cy8dGGn6UhZaJljXZGnmc3UT3dPP2cnUT78xCIV6j2
H/8A9c/6f7vXPI+w8bU1U+vL/d63du5NfUiDcVSIAS8b7RV5eOb/AIqRL2TyXtNX/e2KfXH/AHlF
+NPH/pr4+2xcxx0hFpY11K7R16KM32ZWz3UaidqSgrc9kcPicWyZJjfw6T+727y3sXh2xarN+K0V
h6lvPjj3e0ASqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJQAAAAAkQAkQAkAAAAAAAAAAAAAAA
EgAAAAAAAAAAAAAAAAAAAAAgAAABKDcAN0bgkY8xzAyRux5kcwM9zdXNkTcFm6OZXzMeYFvMibKu
ZHMC2bo51U2RuC2bom6rc3BZzom6sBZzI52ADPnOdggFnMc6skFnMc6rc3BbznOp3RzAv50c6nml
HMC/nOf4qOY5wX85zqOc5wbHOc7X5znBsc6edr85zg2ec52vzpi4NjmY5bROG+/bllVzsNTk5dLl
n0pP8BHmMHWNmzt0aum8obm08vVjfrtnxztR0mXHzTvaZdjVRMTLkZo6yiFen9iZ2pqY/wBP93rN
3kPY+/LfPX1rE/u9XzN3HfqzdO6vmTuIZ7m7Hc3Bnu8t7TR/vHBP9E/y9Pu837SV31umn+if5Rfi
/j/01MMb1hjkrtKzBG0bMsmOZY11tOYamr6Und0LUc7XT7u3rJPqL8er9lcPhcFpbzyWm39v7O00
+FYvA4Zpsc94xxu227jv1IAgAAAAAAAAABKAAAASgASgBIgBIgBIgBIhIAAAAAAAAAAAAAAAAAAC
UACUJAAAAAAAAAAAABIAAAAAAAAAAAAAAAAAAAAg3AEbomQZbo3YzLGbAz3RNlc3YzcFs2YzdVN2
M2Bdzom6nmNwW86JurTAMuY3REJ2BB1ZRVMVBhsbSsiqeUFXLucq3lTygp5TlXcpygp5TlXcpygp
5TlXcqOUFXKjlXcrGYBXysdlswiYBVMdUTCyY6sZBWxlnMMZgGLGZZSwkDdHMiWO4MuY5mEyjcFn
N1OdVzHMC3nTzqeY5gX85zqOZPMC+Lqdbk20eb/RKOZr8QybaK/XvtH7iZ9aGlp2luzT3fg19NHS
OjbmPcYX67XH1XSZ9XIzRvMuzrK7zLkZYmYnciunb9lZ5dTk+OP+71cXeP8AZnJ/ip2nf3J/l6iL
/Fu5L9bMWZczXi6YuIbEWTzKIuyiwLt3nuO25uI4a/hx7/rLuczg8TicvFLbfdpEK6+NPH/phhjo
stLGkctUWnoxrrU3j1cnWTzZq1jzl1clo5Zcu8c+txR63iP3Tn6pv4+g4o5cVI9IiGe7CJ2iE7t3
GyN2O6dwSINwSISAlAAlACRAAlAAlACRACRCQAAAAAAAAAASgASISAAAAAAAAAAAAACQAAAAAAAA
AAAAAASAAAAAAAAAAAAAAAAIAAAQCAJljuljsCJlhMs9mOwMJYys5TkBVsjZdyHICrZPKt5E8oK4
qmKrOVOwMIqyirPY2Bjyp2ZbAI2NmSARsbMgEbI2ZAMdjZICNkbMkSCNmOzJEgx2YyzljMAwlhKy
WEwCuWErJhhMArlhLOWEgxljMpljIImWMyTKJA3N0IBO5vux3NwZbnMx3NwZczT4jf3MdPW27a3a
fJOq1XNP2KdIRfi+J2trSYfcjeF+Wm1OicVeWIiN9kai8xjY12ORqultnI1Ecsujq79XP1FovWYI
rTgeq+j8QrWZ+3Mx+r2UXeC0WG2Ti2kiN5mL807eUREvbzbaejefHJv62Iv8WUXa0WTFhVtRdlF2
rz9WUXBtc7jR9dqc2T1ttHyhvZMvJitb0jdq6XHNcNenWVN3028U99WRj6Kb02be3Tq18/SN2Lpc
3UdN9nOmZrqKX/DaJ/d0svvTLRzV3jomK6+Pd1vvWJj0ZczT0mXxNJht60hfFnQ4qu3N1cWTEgs3
Tur5k7gz3N2O5uDM3Y7m4MtxBuCQASIASIASAAAAAAACRCQAAAAAAAAEoSAAAAAAAAAAAlAAlCQA
AAAAAAAAAAASAAAAAAAAAAAAIASgAAAEJAQJQCNkbMgGOyOVnsAw5TlZ7GwMOVPKy2NgY7GzIBGx
skA2AAAAAAAAAAQkBAEghEskAxYzDPZGwK5hjMLJhjMAqmGEwumrCagomFcw2JqqtUFEsLLrV82F
o7gqljKyYYTGwMZRKUSCAQAboJnaN5Bjkneu0d5W4ccViIiOzHFWbTzNumP1Zarr8eeRMbxDW1Mx
NO67NbkhzNVnmInqzaOZrL93JyZeV0M1++7S02jvxDWxhxx033tPpC8Z6rrezWjmZyazJG2/u03h
2vFibTHoqvamiwVwY+nLGzV0+SZ1Mx8G0/45tOhzJ5lXMc3UVXRdlF1HP+iYsDPLPPy49/tz1+Te
pSIr0ho6ak5Ms5J8o2q6NImOrHV7XX488ypzTtHXo0s9t6zG7c1G1qz6ubeZiZ3UatXJG3yauSO7
cvMTEx5tPLb3prPRMVr0HB8vicNxf0+7+kt+LOJwTJyY/Bnz3tH93X36N58cWvq6LSyiyndMSlC7
mZcymLJiwLosmJVRLKLAtiU7q4lMSCzc3YxJuDMRuAlKAEgAAAlAkAAAAAABKAEgAAAAAJAAAAAA
AAAAAAAEgAAAAAAAAAAAAAkAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAhIAAACAAAASgAAAAAAEAAAA
hGzJAImGMwzQDDZjNVuyNgUTVhNGxysZqDVmiu1G5NN2M4waM0+DCaN2cbGcQNGaMZq3JxMJxA1J
qx2bU4kU09slorWNwa20z02RXHbJbl26QvtFovbHWkxEdJt5y2MOHlr2U1W3jx+1hiw8vSO63lmI
XRTaEWmtY6snRHO1VpmJ+DjavpSZl2s8b7y4HFcnh0n0gha5ebJN55KRM2mdoiPN6fh+kpwXh0Wy
RHj5Otp/s5Ps1p62y31+em9aTMYt/OfVfxTiPjZ52naI7fBrI5t66xz5+a1rW7yx0eSL6iZjtEOX
qNbSletom3lENjh2fbHzbbWt3iVozruc+5ztWubf4M4ybpQ2Oboyrva0Vjza8WdDR4OkXt3n9ldX
kaePP9VtYqctYhdvt5oivTeCZ2YOxXk6ubqMfV0b9mrljfqlFcq88k7z2U5axeItDa1OPessuC8P
ya7XRWYnwqdbT/ZMilvIu4dpslNdixXja8Y5tt85djZdbDWnGOesRtXFtuw6T27No5Kx2OrKYQlC
ExKJgBnEpiyvdlEgsizKLKollFgWxLKJVRLKJBbEp3VxLKJBnuMWQJEbpBIAAAJAAAABIAAAAAAA
lAJAAAAAAAAAAAAAASAAAAAAAAAAAAAJAAAABAJABAlAAAAAAAAAAAAAAAAAAAAAAAAIAAAAAAAA
AAABAJQAAAAgAABAAI2EoBGyJhkgGPKxmqxAKpownHC+YRMdN5BrTj67R3bOn01o7p01Iv71u89o
b9a7LfBTfS1vWI2jf12VfQPSW8KX2mas+NC2iv6xMNfJpMnLtEbuuxtMRCtzF55NR5rPps1N/ctP
y6uHreE6nXZ4pak48X3rT06fB7fNeI33cbX6mI32R/MWu7XF116aDSRhxbRERs8f499bkyZeeKae
kzE2mdon81/tfxDLGOunwbzlzbx08oaHBvZHJlx48mrvaa94pu04y617576rNGLRRM0397JEd/lu
9Dw/S3x4qxffo6mm4NjwUiKY4iI9Ib1dHFY6QIaNabbrYrLfrpJtaK1rMzPZb/s+05IpP59OyLeJ
k7eNfRaOc1ue32I7fGXYpi5Y77M8OGMeOKxHSFsU3Y29deZMzirl6dlVvhLatCjJHeYQv1rXnps1
8k9/VsW6qLVmZIi1rzitlvFKRvaZ2h6TSaenC9FFY+3brM+sqeG8Prp4+kZ+lvuxPkr1mqm95nfp
DXM459676a2q1dsV7XietvNno78+CJn1cjX6mOeIm0bR33dfRU5NJjidt9t5afjG/V6JZ7I2QMNh
nyo2BhsMuVG3wAhMSbbQRAMolnE+iuGUSCyJZRKuGUSCyJZK4llEgyZMYTuCUsYSCQASISAAAlCQ
AAAAAAEoASCASAAAAAAAAAAAAlACRACQAAAAAAAAAEgCEoASCAAAAAAAAAAAAAAAAAAAAAAABAAA
AAAAAAAISAIAAAAAAQAAACASgAAAQJAQAAhIDHZhln3do7z0WS18mWsajHjmes7pg3dNi5aRMNqO
yvDHTpPRaigHZhN4hHRlaVN59JY3zRENLUavaO+yq0iNVlitJ6vNcR1MVi0zO0era1/Ea0rPvbz5
PM5MWp45qvo2GZrhmfrsnpHpHzTCseEcM/2vrr8Q1Eb4qzy44nziPN63HpYiIiI7LNHoqabBTFii
IpSNohuVxrKtWMEejPwY9G1FFmHB4mWJn7MdfnIM9JpIx15to5pbUaas/a6rqViI7MxPxqX0UT1r
O3wVzpbR2hviP5i03Y5s6a879FNtHljydhExCv8AMTPJXBnRZbz0iG5ptFjwe/l96zctMVamTJtE
yTMibu1VrdTzRMR0j0ed4lr64MVpm0RERvMz5NvX62uOJ69XhOKX1HH9bHDtFvNYnfJeOy0Z2ojX
6jjnEq6fRUmccTvN/J9H0eKcOnx45neaxEbubwHgOHg+milI3vP2resu3Wu0JQmITsmISDHZHKz2
JgFc1RMLJhGwK9iIZ7MZgEdgmAEwyiWCdwWRLKJVxKYsC2JTuriWUSDNlEsIlMAySx3SCRCQSIAS
AAACRACQAAAAAAASIASAAAAAAAAAAAAAAACRACRACQASIAAAAAAAAAAAAAAAAAAAAAAAAQCUAAAA
AAAAAAIAAAAAAAAQAAAAAACBICBICAAEJAQJQCJcLjuS2ny6fPG/LWdpd1o8T0X07SXx/e7wCdJx
Wa0jmneHQpxPDMdZmJfNtZm49weZrh0/j4o7VtSZ2+Uw0/8A7o49k92vBLc/ntFohFW9PqGXimOI
6Tu1L8T3eCx6r2t1O3JwvHjifO99v7t/Bwf2l1PXU6rS6eJ8qUm8x+so5TsekzcSjbvs4mt4rzW5
K2mbT0itesy2cHsvbvqtbmyz5xERWP2jd1tJwrTaONsOKtZ8585+cnDrzmn4Rq+IZObUROHD32n7
Vv8A0ej0uhxaXFGPFSK1j0bkY4jyZRVZVXFGUVWbGwKsk8mObekNrSW3pWf1a2aYjHbm7bNnQ1id
PW0TvuDdhJEbQABMsLW2R0ZTMQrvfbz2YWzVhpanUxEd0dWkW5c8R5uXxDX1w4pnfr5Q19XxKuOJ
2neXltVqtVxbV/RdJ715+1bypANfiOu1HENV9C0MTfNeesx2rD1PAeBYuE6aKx72W3W9/WVnBuB4
eF4dqRzZbdb5J72l160WVK02ZxCYhOwI23TsnY2BGxsnYBjsiYZsZBjMMZZSgGEolMsQDdG6NwZ7
piVe6YkFsSziVMWZRILolMSriWUSCyJTuwhMSDMRCQSI3SAlACRCQAAEoAEoASAAAAAAAAACUACR
ACQAAAAAAAAAAAAASAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAABAAAAAAAAAAAAACBKAAAAAAAQ
JQAAAhICEbJAYTWJ7wx8KvpC0BV4ceieWGewDHlNmWwCNjZICNhIDmcZredBecdpiY69FXCOLW+i
UiZidukulmxxlx2paN4mNng+K4+I8Hy2yaTfl37TXetoCPfRxfp1qi3F48ofKMvtvxak8s6LDv61
rZji9rPaLUf5PC+bfttS0q8q3p9W/wBrRMdpUZuKdN99nzvFqPbTVz7nD8OKs+do2/mW3h4D7Xaq
ZnPrtNpqz35aRaYOHY9Zk4pNt9rR+rl6zi+OnS+WN57Rv1lXp/YrNaYtruL6zNPnGO3hxP6O5w/2
f0HDuun09Yv55Le9afznqcOvO4tBreMTHu30unnva0bWt8on+70nDuE4OHYYx4Kbesz3tPrMuhGO
IjpDOKrK9YVpsyiGUQnYGOyUgI2SlAIEmwMWMs9kTAMJYzDOYRMArmGErZhhMArlHmzmGMwDE3Ts
bAbs4swj5pgFkSziVcM4BZEsolXDKAZwyhjCYBkACQhIAAAAAAAJAAAAAAAAAAAAAAAAAAAShIAA
AAAAAAJAAAAAAAAAAAAAABAJEAAAAAAAAAAAAAAAIEoBKAAAAAAAAAAAAAAABAlAAAAAAAIAAAAA
BAkBAkBAkBAlACEgMZjdjbFW8bWrEx8YWANb6Fp+bfwab+vLDKMFK9qxH5L0bAr8OPRPKz2AY7J2
SbAjYZAI2E7AIEgIEgIEgMdkSy2NgY7MdlmyNoBXsxmFuyNgVTVjNV3KjlBRNTlXTVHKCrlIqt5T
lBhEMohlFerLlBjEMohMVTEARDKCITsAk2AEgAAAkAAAAAAAAAAAAAAAAAAAAAAAASAAAAAAAAD/
2Q==`;async function Ebe(e){let t=(r,a="application/octet-stream")=>fetch(`data:${a};base64,${r}`).then(o=>o.blob()),n,s;switch(e.config.warmup){case"face":n=await t(C1);break;case"body":case"full":n=await t(T1);break;default:n=null}if(n){let r=await createImageBitmap(n);s=await e.detect(r,e.config),r.close()}return s}async function Rbe(e){return new Promise(t=>{let n;switch(e.config.warmup){case"face":n="data:image/jpeg;base64,"+C1;break;case"full":case"body":n="data:image/jpeg;base64,"+T1;break;default:n=""}let s;if(typeof Image!="undefined")s=new Image;else if(he.Image)s=new he.Image;else return;s.onload=async()=>{let r=ds(s.naturalWidth,s.naturalHeight);if(!r)re("Warmup: Canvas not found"),t(void 0);else{let a=r.getContext("2d");a&&a.drawImage(s,0,0);let o=await e.image(r),i=o.tensor?await e.detect(o.tensor,e.config):void 0;t(i)}},n?s.src=n:t(void 0)})}async function _be(e){let t=r=>Buffer.from(r,"base64"),n;e.config.warmup==="face"?n=t(C1):n=t(T1);let s;if("node"in Je&&Cn()==="tensorflow"){let r=(void 0).decodeJpeg(n),a=Bt(r,0);e.tf.dispose(r),s=await e.detect(a,e.config),e.tf.dispose(a)}else e.config.debug&&re("Warmup tfjs-node not loaded");return s}async function Dbe(e){let t;return typeof createImageBitmap=="function"?t=await Ebe(e):typeof Image!="undefined"||he.Canvas!==void 0?t=await Rbe(e):t=await _be(e),t}async function $be(e){var i,l,u,c;if(!H().flagRegistry.ENGINE_COMPILE_ONLY)return;let t=Cn(),n=Hn();if(t!=="webgl"&&t!=="humangl"||!(n!=null&&n.checkCompileCompletion))return;H().set("ENGINE_COMPILE_ONLY",!0);let s=rn().state.numTensors,r=[];for(let[p,d]of Object.entries(e).filter(([h,f])=>h!==null&&f!==null)){let h=(l=(i=d.inputs)==null?void 0:i[0])!=null&&l.shape?[...d.inputs[0].shape]:[1,64,64,3],f=(c=(u=d.inputs)==null?void 0:u[0])!=null&&c.dtype?d.inputs[0].dtype:"float32";for(let g=0;g<h.length;g++)h[g]===-1&&(h[g]=g===0?1:64);let m=Vt(h,f);try{let g=d.execute(m);r.push(p),Array.isArray(g)?g.forEach(y=>J(y)):J(g)}catch(g){re("compile fail model:",p)}J(m)}let a=await n.checkCompileCompletionAsync();n.getUniformLocations(),re("compile pass models:",r),re("compile pass kernels:",a.length),H().set("ENGINE_COMPILE_ONLY",!1);let o=rn().state.numTensors;o-s>0&&re("tensor leak:",o-s)}async function xR(e,t){let n=le();return e.state="warmup",t&&(e.config=Xt(e.config,t)),!e.config.warmup||e.config.warmup.length===0||e.config.warmup==="none"?{face:[],body:[],hand:[],gesture:[],object:[],performance:e.performance,timestamp:le(),persons:[],error:null}:new Promise(async s=>{await $be(e.models);let r=await Dbe(e),a=le();e.config.debug&&re("warmup",e.config.warmup,Math.round(a-n),"ms"),e.emit("warmup"),s(r)})}var zd,lf,uf,N1,Q4=class{constructor(t){ge(this,"version");ge(this,"config");ge(this,"result");ge(this,"state");ge(this,"process");ge(this,"tf");ge(this,"env");ge(this,"draw");ge(this,"models");ge(this,"events");ge(this,"faceTriangulation");ge(this,"faceUVMap");ge(this,"performance");Qd(this,zd,void 0);Qd(this,lf,void 0);Qd(this,uf,void 0);ge(this,"gl");ge(this,"analyze",(...t)=>{if(!Jd(this,lf))return;let n=this.tf.engine().state.numTensors,s=Jd(this,zd);ep(this,zd,n);let r=n-s;r!==0&&re(...t,r)});Qd(this,N1,t=>{if(!Jd(this,uf))return null;if(!t)return"input is not defined";if(this.env.node&&!(t instanceof st))return"input must be a tensor";try{this.tf.getBackend()}catch(n){return"backend not loaded"}return null});ge(this,"similarity",Z4);ge(this,"distance",of);ge(this,"match",Y4);ge(this,"emit",t=>{var n;(n=this.events)!=null&&n.dispatchEvent&&this.events.dispatchEvent(new Event(t))});this.env=he;let n=(Xh.tfjs||nA).replace(/-(.*)/,"");Ua.wasmPath=`https://cdn.jsdelivr.net/npm/@tensorflow/tfjs-backend-wasm@${n}/dist/`,Ua.modelBasePath=he.browser?"../models/":"file://models/",Ua.backend=he.browser?"humangl":"tensorflow",this.version=L4,Object.defineProperty(this,"version",{value:L4}),this.config=JSON.parse(JSON.stringify(Ua)),Object.seal(this.config),this.config.cacheModels=typeof indexedDB!="undefined",t&&(this.config=Xt(this.config,t)),lR(this.config),this.tf=Je,this.state="idle",ep(this,zd,0),ep(this,lf,!1),ep(this,uf,!1),this.performance={},this.events=typeof EventTarget!="undefined"?new EventTarget:void 0,this.models=new af,this.draw={options:Xn,canvas:(s,r)=>G4(s,r),face:(s,r,a)=>Dd(s,r,a),body:(s,r,a)=>$d(s,r,a),hand:(s,r,a)=>Pd(s,r,a),gesture:(s,r,a)=>Od(s,r,a),object:(s,r,a)=>Fd(s,r,a),person:(s,r,a)=>U4(s,r,a),all:(s,r,a)=>H4(s,r,a)},this.result={face:[],body:[],hand:[],gesture:[],object:[],performance:{},timestamp:0,persons:[],error:null},this.process={tensor:null,canvas:null},this.faceTriangulation=rE,this.faceUVMap=aE,this.gl=Ct,_d(this,null,""),this.emit("create")}reset(){let t=this.config.backend;this.config=JSON.parse(JSON.stringify(Ua)),this.config.backend=t,wb(),he.initial=!0}validate(t){let n=c3(Ua,t||this.config);return n.length===0&&(this.config=Xt(this.config,t)),n}check(){return I1(this)}now(){return le()}image(t,n=!0){return bd(t,this.config,n)}async segmentation(t,n){return oR(t,n,this.config)}enhance(t){return l4(t)}compare(t,n){return WT(this.config,t,n)}async init(){await h1(this,!0),await this.tf.ready(),wb()}async load(t){this.state="load";let n=le(),s=Object.values(this.models).filter(o=>o).length;t&&(this.config=Xt(this.config,t)),this.env.initial&&(this.config.debug&&re(`version: ${this.version}`),this.config.debug&&re(`tfjs version: ${this.tf.version["tfjs-core"]}`),await h1(this)||re("error: backend check failed"),await Gc(),this.env.browser&&(this.config.debug&&re("configuration:",this.config),this.config.debug&&re("environment:",this.env),this.config.debug&&re("tf flags:",this.tf.ENV.flags))),await z4(this),this.env.initial&&this.config.debug&&re("tf engine state:",this.tf.engine().state.numBytes,"bytes",this.tf.engine().state.numTensors,"tensors"),this.env.initial=!1,Object.values(this.models).filter(o=>o).length!==s&&(I1(this),this.emit("load"));let a=Math.trunc(le()-n);a>(this.performance.loadModels||0)&&(this.performance.loadModels=this.env.perfadd?(this.performance.loadModels||0)+a:a)}next(t=this.result){return gR(t,this.config)}getModelStats(){return M4(this)}async warmup(t){let n=le(),s=await xR(this,t),r=le();return this.performance.warmup=Math.trunc(r-n),s}async profile(t,n){let s=await this.tf.profile(()=>this.detect(t,n)),r={},a=0;for(let i of s.kernels)r[i.name]?r[i.name]+=i.kernelTimeMs:r[i.name]=i.kernelTimeMs,a+=i.kernelTimeMs;let o=[];Object.entries(r).forEach(i=>o.push({kernel:i[0],time:i[1],perc:0}));for(let i of o)i.perc=Math.round(1e3*i.time/a)/1e3,i.time=Math.round(1e3*i.time)/1e3;return o.sort((i,l)=>l.time-i.time),o.length=20,o}async detect(t,n){return this.state="detect",new Promise(async s=>{var g,y,x,A,b,w,S,k,E,_,D,R,P,C,M,L,G,K,X,Y,ne;this.state="config";let r;this.config=Xt(this.config,n),this.state="check";let a=Jd(this,N1).call(this,t);a&&(re(a,t),this.emit("error"),s({face:[],body:[],hand:[],gesture:[],object:[],performance:this.performance,timestamp:le(),persons:[],error:a}));let o=le();await h1(this),await this.load(),r=le(),this.state="image";let i=await bd(t,this.config);if(this.process=i,this.performance.inputProcess=this.env.perfadd?(this.performance.inputProcess||0)+Math.trunc(le()-r):Math.trunc(le()-r),this.analyze("Get Image:"),!i.tensor){this.config.debug&&re("could not convert input to tensor"),this.emit("error"),s({face:[],body:[],hand:[],gesture:[],object:[],performance:this.performance,timestamp:le(),persons:[],error:"could not convert input to tensor"});return}this.emit("image"),r=le(),this.config.skipAllowed=await BT(this.config,i.tensor),this.performance.totalFrames||(this.performance.totalFrames=0),this.performance.cachedFrames||(this.performance.cachedFrames=0),this.performance.totalFrames++,this.config.skipAllowed&&this.performance.cachedFrames++,this.performance.cacheCheck=this.env.perfadd?(this.performance.cacheCheck||0)+Math.trunc(le()-r):Math.trunc(le()-r),this.analyze("Check Changed:");let l=[],u=[],c=[],p=[];this.state="detect:face",this.config.async?(l=this.config.face.enabled?X4(this,i.tensor):[],this.performance.face&&delete this.performance.face):(r=le(),l=this.config.face.enabled?await X4(this,i.tensor):[],this.performance.face=this.env.perfadd?(this.performance.face||0)+Math.trunc(le()-r):Math.trunc(le()-r)),this.config.async&&(this.config.body.maxDetected===-1||this.config.hand.maxDetected===-1)&&(l=await l),this.analyze("Start Body:"),this.state="detect:body";let d=this.config.body.maxDetected===-1?Xt(this.config,{body:{maxDetected:this.config.face.enabled?1*l.length:1}}):this.config;this.config.async?((g=this.config.body.modelPath)!=null&&g.includes("posenet")?u=this.config.body.enabled?P4(i.tensor,d):[]:(y=this.config.body.modelPath)!=null&&y.includes("blazepose")?u=this.config.body.enabled?Gb(i.tensor,d):[]:(x=this.config.body.modelPath)!=null&&x.includes("efficientpose")?u=this.config.body.enabled?Yb(i.tensor,d):[]:(A=this.config.body.modelPath)!=null&&A.includes("movenet")&&(u=this.config.body.enabled?T4(i.tensor,d):[]),this.performance.body&&delete this.performance.body):(r=le(),(b=this.config.body.modelPath)!=null&&b.includes("posenet")?u=this.config.body.enabled?await P4(i.tensor,d):[]:(w=this.config.body.modelPath)!=null&&w.includes("blazepose")?u=this.config.body.enabled?await Gb(i.tensor,d):[]:(S=this.config.body.modelPath)!=null&&S.includes("efficientpose")?u=this.config.body.enabled?await Yb(i.tensor,d):[]:(k=this.config.body.modelPath)!=null&&k.includes("movenet")&&(u=this.config.body.enabled?await T4(i.tensor,d):[]),this.performance.body=this.env.perfadd?(this.performance.body||0)+Math.trunc(le()-r):Math.trunc(le()-r)),this.analyze("End Body:"),this.analyze("Start Hand:"),this.state="detect:hand";let h=this.config.hand.maxDetected===-1?Xt(this.config,{hand:{maxDetected:this.config.face.enabled?2*l.length:1}}):this.config;this.config.async?((_=(E=this.config.hand.detector)==null?void 0:E.modelPath)!=null&&_.includes("handdetect")?c=this.config.hand.enabled?m4(i.tensor,h):[]:(R=(D=this.config.hand.detector)==null?void 0:D.modelPath)!=null&&R.includes("handtrack")&&(c=this.config.hand.enabled?x4(i.tensor,h):[]),this.performance.hand&&delete this.performance.hand):(r=le(),(C=(P=this.config.hand.detector)==null?void 0:P.modelPath)!=null&&C.includes("handdetect")?c=this.config.hand.enabled?await m4(i.tensor,h):[]:(L=(M=this.config.hand.detector)==null?void 0:M.modelPath)!=null&&L.includes("handtrack")&&(c=this.config.hand.enabled?await x4(i.tensor,h):[]),this.performance.hand=this.env.perfadd?(this.performance.hand||0)+Math.trunc(le()-r):Math.trunc(le()-r)),this.analyze("End Hand:"),this.analyze("Start Object:"),this.state="detect:object",this.config.async?((G=this.config.object.modelPath)!=null&&G.includes("nanodet")?p=this.config.object.enabled?E4(i.tensor,this.config):[]:(K=this.config.object.modelPath)!=null&&K.includes("centernet")&&(p=this.config.object.enabled?qb(i.tensor,this.config):[]),this.performance.object&&delete this.performance.object):(r=le(),(X=this.config.object.modelPath)!=null&&X.includes("nanodet")?p=this.config.object.enabled?await E4(i.tensor,this.config):[]:(Y=this.config.object.modelPath)!=null&&Y.includes("centernet")&&(p=this.config.object.enabled?await qb(i.tensor,this.config):[]),this.performance.object=this.env.perfadd?(this.performance.object||0)+Math.trunc(le()-r):Math.trunc(le()-r)),this.analyze("End Object:"),this.state="detect:await",this.config.async&&([l,u,c,p]=await Promise.all([l,u,c,p])),this.state="detect:gesture";let f=[];this.config.gesture.enabled&&(r=le(),f=[...hR(l),...pR(u),...mR(c),...fR(l)],this.config.async?this.performance.gesture&&delete this.performance.gesture:this.performance.gesture=this.env.perfadd?(this.performance.gesture||0)+Math.trunc(le()-r):Math.trunc(le()-r)),this.performance.total=this.env.perfadd?(this.performance.total||0)+Math.trunc(le()-o):Math.trunc(le()-o);let m=((ne=this.process.tensor)==null?void 0:ne.shape)||[];this.result={face:l,body:u,hand:c,gesture:f,object:p,performance:this.performance,canvas:this.process.canvas,timestamp:Date.now(),error:null,get persons(){return AR(l,u,c,f,m)}},J(i.tensor),this.emit("detect"),this.state="idle",s(this.result)})}};zd=new WeakMap,lf=new WeakMap,uf=new WeakMap,N1=new WeakMap;return A_(Fbe);})();