mirror of https://github.com/vladmandic/human
5223 lines
1.5 MiB
5223 lines
1.5 MiB
|
|
/*
|
|
Human library
|
|
homepage: <https://github.com/vladmandic/human>
|
|
author: <https://github.com/vladmandic>'
|
|
*/
|
|
var Q$=Object.defineProperty;var Jg=e=>{if(typeof require!="undefined")return require(e);throw new Error('Dynamic require of "'+e+'" is not supported')};var $3=(e,t)=>{for(var n in t)Q$(e,n,{get:t[n],enumerable:!0})};var R3=(e,t,n)=>{if(!t.has(e))throw TypeError("Cannot "+n)};var Fn=(e,t,n)=>(R3(e,t,"read from private field"),n?n.call(e):t.get(e)),wa=(e,t,n)=>{if(t.has(e))throw TypeError("Cannot add the same private member more than once");t instanceof WeakSet?t.add(e):t.set(e,n)},Ja=(e,t,n,a)=>(R3(e,t,"write to private field"),a?a.call(e,n):t.set(e,n),n);function Mt(e,t){let n=e.endsWith("/")?"":"/",r=t.startsWith(".")||t.startsWith("/")||t.startsWith("http:")||t.startsWith("https:")||t.startsWith("file:")?`${t}`:`${e}${n}${t}`;if(!r.toLocaleLowerCase().includes(".json"))throw new Error(`Human: ModelPath Error: ${r} Expecting JSON file`);return r}function ge(...e){let t=new Date,n=`${t.getHours().toString().padStart(2,"0")}:${t.getMinutes().toString().padStart(2,"0")}:${t.getSeconds().toString().padStart(2,"0")}.${t.getMilliseconds().toString().padStart(3,"0")}`;e&&console.log(n,"Human:",...e)}var st=()=>typeof performance!="undefined"?performance.now():parseInt((Number(process.hrtime.bigint())/1e3/1e3).toString());function ia(...e){let t=n=>n&&typeof n=="object";return e.reduce((n,a)=>(Object.keys(a||{}).forEach(r=>{let s=n[r],i=a[r];Array.isArray(s)&&Array.isArray(i)?n[r]=s.concat(...i):t(s)&&t(i)?n[r]=ia(s,i):n[r]=i}),n),{})}var F3={backend:"webgl",modelBasePath:"../models/",wasmPath:"../node_modules/@tensorflow/tfjs-backend-wasm/dist/",debug:!0,async:!0,warmup:"full",cacheSensitivity:.75,skipFrame:!1,filter:{enabled:!0,width:0,height:0,flip:!1,return:!0,brightness:0,contrast:0,sharpness:0,blur:0,saturation:0,hue:0,negative:!1,sepia:!1,vintage:!1,kodachrome:!1,technicolor:!1,polaroid:!1,pixelate:0},gesture:{enabled:!0},face:{enabled:!0,detector:{modelPath:"blazeface.json",rotation:!0,maxDetected:15,skipFrames:15,minConfidence:.2,iouThreshold:.1,return:!1},mesh:{enabled:!0,modelPath:"facemesh.json"},iris:{enabled:!0,modelPath:"iris.json"},description:{enabled:!0,modelPath:"faceres.json",skipFrames:11,minConfidence:.1},emotion:{enabled:!0,minConfidence:.1,skipFrames:17,modelPath:"emotion.json"}},body:{enabled:!0,modelPath:"movenet-lightning.json",maxDetected:1,minConfidence:.2,skipFrames:1},hand:{enabled:!0,rotation:!0,skipFrames:18,minConfidence:.1,iouThreshold:.1,maxDetected:2,landmarks:!0,detector:{modelPath:"handdetect.json"},skeleton:{modelPath:"handskeleton.json"}},object:{enabled:!1,modelPath:"mb3-centernet.json",minConfidence:.2,iouThreshold:.4,maxDetected:10,skipFrames:19},segmentation:{enabled:!1,modelPath:"selfie.json"}};function O3(){let e,t;if(typeof navigator!="undefined"){let n=navigator.userAgent.match(/\(([^()]+)\)/g);if(n&&n[0]){let a=n[0].match(/\(([^()]+)\)/g);e=a?a[0].replace(/\(|\)/g,""):"",t=navigator.userAgent.replace(n[0],""),e[1]&&(t=t.replace(n[1],"")),t=t.replace(/ /g," ")}}else typeof process!="undefined"&&(e=`${process.platform} ${process.arch}`,t=`NodeJS ${process.version}`);return{platform:e,agent:t}}var bp={};$3(bp,{Abs:()=>Q3,Acos:()=>ev,Acosh:()=>tv,AdadeltaOptimizer:()=>Oc,AdagradOptimizer:()=>Dc,AdamOptimizer:()=>_c,AdamaxOptimizer:()=>zc,Add:()=>iy,AddN:()=>nv,All:()=>av,Any:()=>rv,ArgMax:()=>sv,ArgMin:()=>iv,Asin:()=>ov,Asinh:()=>lv,Atan:()=>uv,Atan2:()=>hv,Atanh:()=>dv,AvgPool:()=>pv,AvgPool3D:()=>cv,AvgPool3DGrad:()=>rF,AvgPoolGrad:()=>aF,BackendWasm:()=>uM,BatchMatMul:()=>fv,BatchToSpaceND:()=>mv,Bincount:()=>gv,BroadcastTo:()=>sF,Callback:()=>PS,CallbackList:()=>NI,Cast:()=>oy,Ceil:()=>yv,ClipByValue:()=>Av,Complex:()=>xv,ComplexAbs:()=>bv,Concat:()=>vv,Conv2D:()=>wv,Conv2DBackpropFilter:()=>kv,Conv2DBackpropInput:()=>Iv,Conv3D:()=>Sv,Conv3DBackpropFilterV2:()=>iF,Conv3DBackpropInputV2:()=>Nv,Cos:()=>Tv,Cosh:()=>Ev,CropAndResize:()=>Mv,Cumsum:()=>Cv,CustomCallback:()=>EI,DataStorage:()=>_R,DenseBincount:()=>$v,DepthToSpace:()=>Rv,DepthwiseConv2dNative:()=>Fv,DepthwiseConv2dNativeBackpropFilter:()=>Ov,DepthwiseConv2dNativeBackpropInput:()=>Dv,Diag:()=>_v,Dilation2D:()=>zv,Dilation2DBackpropFilter:()=>lF,Dilation2DBackpropInput:()=>oF,ENV:()=>ka,EarlyStopping:()=>WS,Einsum:()=>Lv,Elu:()=>Wv,EluGrad:()=>uF,Environment:()=>Y3,Equal:()=>Vv,Erf:()=>Bv,Exp:()=>Uv,ExpandDims:()=>jv,Expm1:()=>Hv,FFT:()=>Gv,Fill:()=>qv,FlipLeftRight:()=>Kv,Floor:()=>Xv,FloorDiv:()=>Zv,FromPixels:()=>dy,FusedBatchNorm:()=>Yv,FusedConv2D:()=>py,FusedDepthwiseConv2D:()=>cy,GPGPUContext:()=>W0,GatherNd:()=>Qv,GatherV2:()=>Jv,GraphModel:()=>A9,Greater:()=>ew,GreaterEqual:()=>tw,History:()=>TI,IFFT:()=>nw,Identity:()=>ly,Imag:()=>aw,InputSpec:()=>tn,IsFinite:()=>rw,IsInf:()=>sw,IsNan:()=>iw,KernelBackend:()=>L3,LRN:()=>gw,LRNGrad:()=>hF,LayerVariable:()=>vI,LayersModel:()=>ps,LeakyRelu:()=>ow,Less:()=>lw,LessEqual:()=>uw,LinSpace:()=>dw,Log:()=>hw,Log1p:()=>pw,LogSoftmax:()=>dF,LogicalAnd:()=>cw,LogicalNot:()=>fw,LogicalOr:()=>mw,MathBackendCPU:()=>C5,MathBackendWebGL:()=>hp,Max:()=>yw,MaxPool:()=>xw,MaxPool3D:()=>bw,MaxPool3DGrad:()=>cF,MaxPoolGrad:()=>pF,MaxPoolWithArgmax:()=>vw,Maximum:()=>Aw,Mean:()=>ww,Min:()=>kw,Minimum:()=>Iw,MirrorPad:()=>Sw,Mod:()=>Nw,MomentumOptimizer:()=>Pc,Multinomial:()=>Tw,Multiply:()=>Ew,Neg:()=>Cw,NonMaxSuppressionV3:()=>$w,NonMaxSuppressionV4:()=>Rw,NonMaxSuppressionV5:()=>Fw,NotEqual:()=>Mw,OP_SCOPE_SUFFIX:()=>Z7,OneHot:()=>Dw,OnesLike:()=>Ow,Optimizer:()=>Rs,Pack:()=>_w,PadV2:()=>zw,Pool:()=>fF,Pow:()=>Pw,Prelu:()=>Lw,Prod:()=>Ww,RMSPropOptimizer:()=>Lc,RNN:()=>cs,Range:()=>Bw,Rank:()=>Ay,Real:()=>Vw,RealDiv:()=>Pv,Reciprocal:()=>Uw,Reduction:()=>_n,Relu:()=>jw,Relu6:()=>Kw,Reshape:()=>Hw,ResizeBilinear:()=>qw,ResizeBilinearGrad:()=>gF,ResizeNearestNeighbor:()=>Gw,ResizeNearestNeighborGrad:()=>mF,Reverse:()=>Xw,RotateWithOffset:()=>F7,Round:()=>Zw,Rsqrt:()=>Yw,SGDOptimizer:()=>md,ScatterNd:()=>Jw,Select:()=>Qw,Selu:()=>e7,Sequential:()=>c0,Sigmoid:()=>s7,Sign:()=>r7,Sin:()=>n7,Sinh:()=>a7,Slice:()=>t7,Softmax:()=>h7,Softplus:()=>i7,SpaceToBatchND:()=>u7,SparseFillEmptyRows:()=>p7,SparseReshape:()=>c7,SparseSegmentMean:()=>f7,SparseSegmentSum:()=>m7,SparseToDense:()=>g7,SplitV:()=>d7,Sqrt:()=>o7,Square:()=>yF,SquaredDifference:()=>y7,Step:()=>R7,StridedSlice:()=>A7,StringNGrams:()=>x7,StringSplit:()=>b7,StringToHashBucketFast:()=>v7,Sub:()=>w7,Sum:()=>l7,SymbolicTensor:()=>pr,Tan:()=>k7,Tanh:()=>I7,Tensor:()=>St,TensorBuffer:()=>uc,Tile:()=>uy,TopK:()=>S7,Transform:()=>N7,Transpose:()=>T7,Unique:()=>E7,Unpack:()=>C7,UnsortedSegmentSum:()=>M7,Variable:()=>ad,ZerosLike:()=>$7,_FusedMatMul:()=>hy,abs:()=>Sa,acos:()=>zD,acosh:()=>LD,add:()=>De,addN:()=>Ky,all:()=>VD,any:()=>jD,argMax:()=>Xy,argMin:()=>qD,asin:()=>XD,asinh:()=>YD,atan:()=>QD,atan2:()=>t_,atanh:()=>a_,avgPool:()=>Wk,avgPool3d:()=>c_,backend:()=>CD,backend_util:()=>C6,basicLSTMCell:()=>x_,batchNorm:()=>Ac,batchNorm2d:()=>I_,batchNorm3d:()=>N_,batchNorm4d:()=>E_,batchToSpaceND:()=>Bk,bincount:()=>Vk,booleanMaskAsync:()=>zW,broadcastTo:()=>xc,browser:()=>Ua,buffer:()=>Zr,callbacks:()=>$ae,cast:()=>zt,ceil:()=>R_,clipByValue:()=>O_,clone:()=>Yr,complex:()=>mi,concat:()=>sn,concat1d:()=>__,concat2d:()=>ld,concat3d:()=>L_,concat4d:()=>B_,constraints:()=>eI,conv1d:()=>j_,conv2d:()=>bc,conv2dTranspose:()=>q_,conv3d:()=>X_,conv3dTranspose:()=>Q_,copyRegisteredKernels:()=>vF,cos:()=>tz,cosh:()=>az,cosineWindow:()=>u1,cumsum:()=>sz,customGrad:()=>Nr,data:()=>x9,denseBincount:()=>oz,deprecationWarn:()=>Ok,depthToSpace:()=>uz,depthwiseConv2d:()=>Qy,deregisterOp:()=>Fae,device_util:()=>G7,diag:()=>pz,dilation2d:()=>fz,disableDeprecationWarnings:()=>AD,dispose:()=>Ve,disposeVariables:()=>xD,div:()=>Qe,divNoNan:()=>bz,dot:()=>wz,dropout:()=>ZW,einsum:()=>Iz,elu:()=>Gk,enableDebugMode:()=>yD,enableProdMode:()=>gD,enclosingPowerOfTwo:()=>b6,engine:()=>bD,env:()=>ht,equal:()=>Hk,erf:()=>Tz,exp:()=>vi,expandDims:()=>Qr,expm1:()=>$z,eye:()=>qk,fft:()=>i1,fill:()=>wc,findBackend:()=>Gy,findBackendFactory:()=>ED,floor:()=>Kk,floorDiv:()=>_k,forceHalfFloat:()=>bE,fused:()=>v6,gather:()=>Xk,gatherND:()=>qW,gather_util:()=>mk,getBackend:()=>ND,getGradient:()=>fy,getKernel:()=>ac,getKernelsForBackend:()=>Lo,gpgpu_util:()=>vT,grad:()=>eP,grads:()=>tP,greater:()=>kc,greaterEqual:()=>Zk,ifft:()=>Cc,imag:()=>e1,image:()=>Ye,inTopKAsync:()=>JW,initializers:()=>oI,input:()=>YI,io:()=>ok,irfft:()=>f6,isFinite:()=>Wz,isInf:()=>Vz,isNaN:()=>jz,keep:()=>Dk,kernel_impls:()=>F6,layers:()=>AI,leakyRelu:()=>Yk,less:()=>qz,lessEqual:()=>t1,linalg:()=>zV,linspace:()=>Xz,loadGraphModel:()=>Et,loadLayersModel:()=>Vte,localResponseNormalization:()=>Yz,log:()=>ud,log1p:()=>Jk,logSigmoid:()=>oP,logSoftmax:()=>pP,logSumExp:()=>n6,logicalAnd:()=>Sc,logicalNot:()=>a6,logicalOr:()=>r6,logicalXor:()=>kP,losses:()=>PV,matMul:()=>yt,math:()=>ck,max:()=>$s,maxPool:()=>s6,maxPool3d:()=>NP,maxPoolWithArgmax:()=>EP,maximum:()=>i6,mean:()=>Nc,memory:()=>vD,meshgrid:()=>$P,metrics:()=>DS,min:()=>a1,minimum:()=>o6,mirrorPad:()=>DP,mod:()=>zP,model:()=>Wte,models:()=>_S,moments:()=>WP,movingAverage:()=>WW,mul:()=>fe,multiRNNCell:()=>VP,multinomial:()=>jP,neg:()=>Ms,nextFrame:()=>UV,norm:()=>l1,notEqual:()=>l6,oneHot:()=>Ly,ones:()=>wi,onesLike:()=>qP,op:()=>U,outerProduct:()=>XP,pad:()=>hd,pad1d:()=>JP,pad2d:()=>eL,pad3d:()=>nL,pad4d:()=>rL,pool:()=>uL,pow:()=>pd,prelu:()=>d6,print:()=>ik,prod:()=>cL,profile:()=>wD,rand:()=>mL,randomGamma:()=>xL,randomNormal:()=>vL,randomUniform:()=>h6,range:()=>cd,ready:()=>SD,real:()=>Tc,reciprocal:()=>SL,registerBackend:()=>qy,registerCallbackConstructor:()=>Ute,registerGradient:()=>AF,registerKernel:()=>rc,registerOp:()=>Rae,regularizers:()=>zS,relu:()=>Ec,relu6:()=>p6,removeBackend:()=>TD,reshape:()=>le,reverse:()=>ki,reverse1d:()=>ML,reverse2d:()=>RL,reverse3d:()=>OL,reverse4d:()=>_L,rfft:()=>o1,round:()=>c6,rsqrt:()=>LL,scalar:()=>dt,scatterND:()=>VW,scatter_util:()=>yk,selu:()=>BL,separableConv2d:()=>UL,sequential:()=>Bte,serialization:()=>Ck,setBackend:()=>ID,setPlatform:()=>MD,setWasmPath:()=>Tve,setWasmPaths:()=>Eve,setWebGLContext:()=>F0,setdiff1dAsync:()=>HL,shared:()=>U9,sigmoid:()=>Sr,sign:()=>qL,signal:()=>_V,sin:()=>XL,sinh:()=>YL,slice:()=>Ze,slice1d:()=>QL,slice2d:()=>tW,slice3d:()=>aW,slice4d:()=>sW,slice_util:()=>Vy,softmax:()=>oW,softplus:()=>e6,spaceToBatchND:()=>u6,sparse:()=>LV,sparseToDense:()=>HW,spectral:()=>DV,split:()=>es,sqrt:()=>ts,square:()=>tr,squaredDifference:()=>m6,squeeze:()=>Yn,stack:()=>Ii,step:()=>g6,stridedSlice:()=>xW,string:()=>WV,sub:()=>je,sum:()=>$t,sumOutType:()=>UF,tan:()=>vW,tanh:()=>Jy,tensor:()=>er,tensor1d:()=>oa,tensor2d:()=>ns,tensor3d:()=>mc,tensor4d:()=>wW,tensor5d:()=>kW,tensor6d:()=>IW,tensor_util:()=>B7,test_util:()=>$k,tidy:()=>Ue,tile:()=>vc,time:()=>kD,topk:()=>NW,train:()=>BV,transpose:()=>fc,truncatedNormal:()=>EW,unique:()=>MW,unregisterGradient:()=>bF,unregisterKernel:()=>xF,unsortedSegmentSum:()=>RW,unstack:()=>fd,upcastType:()=>dc,util:()=>O7,valueAndGrad:()=>nP,valueAndGrads:()=>aP,variable:()=>OW,variableGrads:()=>Qk,version:()=>$ve,version_converter:()=>_re,version_core:()=>mD,version_cpu:()=>yie,version_layers:()=>Q2,version_wasm:()=>Cve,version_webgl:()=>cfe,webgl:()=>ffe,webgl_util:()=>XN,where:()=>Ho,whereAsync:()=>A6,zeros:()=>Go,zerosLike:()=>Na});var eR=Object.create,Qp=Object.defineProperty,tR=Object.getOwnPropertyDescriptor,nR=Object.getOwnPropertyNames,aR=Object.getPrototypeOf,rR=Object.prototype.hasOwnProperty,sR=e=>Qp(e,"__esModule",{value:!0}),di=e=>{if(typeof Jg!="undefined")return Jg(e);throw new Error('Dynamic require of "'+e+'" is not supported')},_t=(e,t)=>()=>(t||e((t={exports:{}}).exports,t),t.exports),$e=(e,t)=>{for(var n in t)Qp(e,n,{get:t[n],enumerable:!0})},iR=(e,t,n)=>{if(t&&typeof t=="object"||typeof t=="function")for(let a of nR(t))!rR.call(e,a)&&a!=="default"&&Qp(e,a,{get:()=>t[a],enumerable:!(n=tR(t,a))||n.enumerable});return e},qr=e=>iR(sR(Qp(e!=null?eR(aR(e)):{},"default",e&&e.__esModule&&"default"in e?{get:()=>e.default,enumerable:!0}:{value:e,enumerable:!0})),e),D3=_t((e,t)=>{t.exports=a;var n=null;try{n=new WebAssembly.Instance(new WebAssembly.Module(new Uint8Array([0,97,115,109,1,0,0,0,1,13,2,96,0,1,127,96,4,127,127,127,127,1,127,3,7,6,0,1,1,1,1,1,6,6,1,127,1,65,0,11,7,50,6,3,109,117,108,0,1,5,100,105,118,95,115,0,2,5,100,105,118,95,117,0,3,5,114,101,109,95,115,0,4,5,114,101,109,95,117,0,5,8,103,101,116,95,104,105,103,104,0,0,10,191,1,6,4,0,35,0,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,126,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,127,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,128,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,129,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,130,34,4,66,32,135,167,36,0,32,4,167,11])),{}).exports}catch(S){}function a(S,D,_){this.low=S|0,this.high=D|0,this.unsigned=!!_}a.prototype.__isLong__,Object.defineProperty(a.prototype,"__isLong__",{value:!0});function r(S){return(S&&S.__isLong__)===!0}a.isLong=r;var s={},i={};function o(S,D){var _,W,X;return D?(S>>>=0,(X=0<=S&&S<256)&&(W=i[S],W)?W:(_=u(S,(S|0)<0?-1:0,!0),X&&(i[S]=_),_)):(S|=0,(X=-128<=S&&S<128)&&(W=s[S],W)?W:(_=u(S,S<0?-1:0,!1),X&&(s[S]=_),_))}a.fromInt=o;function l(S,D){if(isNaN(S))return D?v:x;if(D){if(S<0)return v;if(S>=g)return C}else{if(S<=-y)return z;if(S+1>=y)return T}return S<0?l(-S,D).neg():u(S%f|0,S/f|0,D)}a.fromNumber=l;function u(S,D,_){return new a(S,D,_)}a.fromBits=u;var d=Math.pow;function h(S,D,_){if(S.length===0)throw Error("empty string");if(S==="NaN"||S==="Infinity"||S==="+Infinity"||S==="-Infinity")return x;if(typeof D=="number"?(_=D,D=!1):D=!!D,_=_||10,_<2||36<_)throw RangeError("radix");var W;if((W=S.indexOf("-"))>0)throw Error("interior hyphen");if(W===0)return h(S.substring(1),D,_).neg();for(var X=l(d(_,8)),q=x,Q=0;Q<S.length;Q+=8){var ee=Math.min(8,S.length-Q),ie=parseInt(S.substring(Q,Q+ee),_);if(ee<8){var ae=l(d(_,ee));q=q.mul(ae).add(l(ie))}else q=q.mul(X),q=q.add(l(ie))}return q.unsigned=D,q}a.fromString=h;function p(S,D){return typeof S=="number"?l(S,D):typeof S=="string"?h(S,D):u(S.low,S.high,typeof D=="boolean"?D:S.unsigned)}a.fromValue=p;var c=1<<16,m=1<<24,f=c*c,g=f*f,y=g/2,A=o(m),x=o(0);a.ZERO=x;var v=o(0,!0);a.UZERO=v;var b=o(1);a.ONE=b;var w=o(1,!0);a.UONE=w;var I=o(-1);a.NEG_ONE=I;var T=u(4294967295|0,2147483647|0,!1);a.MAX_VALUE=T;var C=u(4294967295|0,4294967295|0,!0);a.MAX_UNSIGNED_VALUE=C;var z=u(0,2147483648|0,!1);a.MIN_VALUE=z;var $=a.prototype;$.toInt=function(){return this.unsigned?this.low>>>0:this.low},$.toNumber=function(){return this.unsigned?(this.high>>>0)*f+(this.low>>>0):this.high*f+(this.low>>>0)},$.toString=function(S){if(S=S||10,S<2||36<S)throw RangeError("radix");if(this.isZero())return"0";if(this.isNegative())if(this.eq(z)){var D=l(S),_=this.div(D),W=_.mul(D).sub(this);return _.toString(S)+W.toInt().toString(S)}else return"-"+this.neg().toString(S);for(var X=l(d(S,6),this.unsigned),q=this,Q="";;){var ee=q.div(X),ie=q.sub(ee.mul(X)).toInt()>>>0,ae=ie.toString(S);if(q=ee,q.isZero())return ae+Q;for(;ae.length<6;)ae="0"+ae;Q=""+ae+Q}},$.getHighBits=function(){return this.high},$.getHighBitsUnsigned=function(){return this.high>>>0},$.getLowBits=function(){return this.low},$.getLowBitsUnsigned=function(){return this.low>>>0},$.getNumBitsAbs=function(){if(this.isNegative())return this.eq(z)?64:this.neg().getNumBitsAbs();for(var S=this.high!=0?this.high:this.low,D=31;D>0&&(S&1<<D)==0;D--);return this.high!=0?D+33:D+1},$.isZero=function(){return this.high===0&&this.low===0},$.eqz=$.isZero,$.isNegative=function(){return!this.unsigned&&this.high<0},$.isPositive=function(){return this.unsigned||this.high>=0},$.isOdd=function(){return(this.low&1)==1},$.isEven=function(){return(this.low&1)==0},$.equals=function(S){return r(S)||(S=p(S)),this.unsigned!==S.unsigned&&this.high>>>31==1&&S.high>>>31==1?!1:this.high===S.high&&this.low===S.low},$.eq=$.equals,$.notEquals=function(S){return!this.eq(S)},$.neq=$.notEquals,$.ne=$.notEquals,$.lessThan=function(S){return this.comp(S)<0},$.lt=$.lessThan,$.lessThanOrEqual=function(S){return this.comp(S)<=0},$.lte=$.lessThanOrEqual,$.le=$.lessThanOrEqual,$.greaterThan=function(S){return this.comp(S)>0},$.gt=$.greaterThan,$.greaterThanOrEqual=function(S){return this.comp(S)>=0},$.gte=$.greaterThanOrEqual,$.ge=$.greaterThanOrEqual,$.compare=function(S){if(r(S)||(S=p(S)),this.eq(S))return 0;var D=this.isNegative(),_=S.isNegative();return D&&!_?-1:!D&&_?1:this.unsigned?S.high>>>0>this.high>>>0||S.high===this.high&&S.low>>>0>this.low>>>0?-1:1:this.sub(S).isNegative()?-1:1},$.comp=$.compare,$.negate=function(){return!this.unsigned&&this.eq(z)?z:this.not().add(b)},$.neg=$.negate,$.add=function(S){r(S)||(S=p(S));var D=this.high>>>16,_=this.high&65535,W=this.low>>>16,X=this.low&65535,q=S.high>>>16,Q=S.high&65535,ee=S.low>>>16,ie=S.low&65535,ae=0,de=0,te=0,ce=0;return ce+=X+ie,te+=ce>>>16,ce&=65535,te+=W+ee,de+=te>>>16,te&=65535,de+=_+Q,ae+=de>>>16,de&=65535,ae+=D+q,ae&=65535,u(te<<16|ce,ae<<16|de,this.unsigned)},$.subtract=function(S){return r(S)||(S=p(S)),this.add(S.neg())},$.sub=$.subtract,$.multiply=function(S){if(this.isZero())return x;if(r(S)||(S=p(S)),n){var D=n.mul(this.low,this.high,S.low,S.high);return u(D,n.get_high(),this.unsigned)}if(S.isZero())return x;if(this.eq(z))return S.isOdd()?z:x;if(S.eq(z))return this.isOdd()?z:x;if(this.isNegative())return S.isNegative()?this.neg().mul(S.neg()):this.neg().mul(S).neg();if(S.isNegative())return this.mul(S.neg()).neg();if(this.lt(A)&&S.lt(A))return l(this.toNumber()*S.toNumber(),this.unsigned);var _=this.high>>>16,W=this.high&65535,X=this.low>>>16,q=this.low&65535,Q=S.high>>>16,ee=S.high&65535,ie=S.low>>>16,ae=S.low&65535,de=0,te=0,ce=0,he=0;return he+=q*ae,ce+=he>>>16,he&=65535,ce+=X*ae,te+=ce>>>16,ce&=65535,ce+=q*ie,te+=ce>>>16,ce&=65535,te+=W*ae,de+=te>>>16,te&=65535,te+=X*ie,de+=te>>>16,te&=65535,te+=q*ee,de+=te>>>16,te&=65535,de+=_*ae+W*ie+X*ee+q*Q,de&=65535,u(ce<<16|he,de<<16|te,this.unsigned)},$.mul=$.multiply,$.divide=function(S){if(r(S)||(S=p(S)),S.isZero())throw Error("division by zero");if(n){if(!this.unsigned&&this.high===-2147483648&&S.low===-1&&S.high===-1)return this;var D=(this.unsigned?n.div_u:n.div_s)(this.low,this.high,S.low,S.high);return u(D,n.get_high(),this.unsigned)}if(this.isZero())return this.unsigned?v:x;var _,W,X;if(this.unsigned){if(S.unsigned||(S=S.toUnsigned()),S.gt(this))return v;if(S.gt(this.shru(1)))return w;X=v}else{if(this.eq(z)){if(S.eq(b)||S.eq(I))return z;if(S.eq(z))return b;var q=this.shr(1);return _=q.div(S).shl(1),_.eq(x)?S.isNegative()?b:I:(W=this.sub(S.mul(_)),X=_.add(W.div(S)),X)}else if(S.eq(z))return this.unsigned?v:x;if(this.isNegative())return S.isNegative()?this.neg().div(S.neg()):this.neg().div(S).neg();if(S.isNegative())return this.div(S.neg()).neg();X=x}for(W=this;W.gte(S);){_=Math.max(1,Math.floor(W.toNumber()/S.toNumber()));for(var Q=Math.ceil(Math.log(_)/Math.LN2),ee=Q<=48?1:d(2,Q-48),ie=l(_),ae=ie.mul(S);ae.isNegative()||ae.gt(W);)_-=ee,ie=l(_,this.unsigned),ae=ie.mul(S);ie.isZero()&&(ie=b),X=X.add(ie),W=W.sub(ae)}return X},$.div=$.divide,$.modulo=function(S){if(r(S)||(S=p(S)),n){var D=(this.unsigned?n.rem_u:n.rem_s)(this.low,this.high,S.low,S.high);return u(D,n.get_high(),this.unsigned)}return this.sub(this.div(S).mul(S))},$.mod=$.modulo,$.rem=$.modulo,$.not=function(){return u(~this.low,~this.high,this.unsigned)},$.and=function(S){return r(S)||(S=p(S)),u(this.low&S.low,this.high&S.high,this.unsigned)},$.or=function(S){return r(S)||(S=p(S)),u(this.low|S.low,this.high|S.high,this.unsigned)},$.xor=function(S){return r(S)||(S=p(S)),u(this.low^S.low,this.high^S.high,this.unsigned)},$.shiftLeft=function(S){return r(S)&&(S=S.toInt()),(S&=63)===0?this:S<32?u(this.low<<S,this.high<<S|this.low>>>32-S,this.unsigned):u(0,this.low<<S-32,this.unsigned)},$.shl=$.shiftLeft,$.shiftRight=function(S){return r(S)&&(S=S.toInt()),(S&=63)===0?this:S<32?u(this.low>>>S|this.high<<32-S,this.high>>S,this.unsigned):u(this.high>>S-32,this.high>=0?0:-1,this.unsigned)},$.shr=$.shiftRight,$.shiftRightUnsigned=function(S){if(r(S)&&(S=S.toInt()),S&=63,S===0)return this;var D=this.high;if(S<32){var _=this.low;return u(_>>>S|D<<32-S,D>>>S,this.unsigned)}else return S===32?u(D,0,this.unsigned):u(D>>>S-32,0,this.unsigned)},$.shru=$.shiftRightUnsigned,$.shr_u=$.shiftRightUnsigned,$.toSigned=function(){return this.unsigned?u(this.low,this.high,!1):this},$.toUnsigned=function(){return this.unsigned?this:u(this.low,this.high,!0)},$.toBytes=function(S){return S?this.toBytesLE():this.toBytesBE()},$.toBytesLE=function(){var S=this.high,D=this.low;return[D&255,D>>>8&255,D>>>16&255,D>>>24,S&255,S>>>8&255,S>>>16&255,S>>>24]},$.toBytesBE=function(){var S=this.high,D=this.low;return[S>>>24,S>>>16&255,S>>>8&255,S&255,D>>>24,D>>>16&255,D>>>8&255,D&255]},a.fromBytes=function(S,D,_){return _?a.fromBytesLE(S,D):a.fromBytesBE(S,D)},a.fromBytesLE=function(S,D){return new a(S[0]|S[1]<<8|S[2]<<16|S[3]<<24,S[4]|S[5]<<8|S[6]<<16|S[7]<<24,D)},a.fromBytesBE=function(S,D){return new a(S[4]<<24|S[5]<<16|S[6]<<8|S[7],S[0]<<24|S[1]<<16|S[2]<<8|S[3],D)}}),_3=_t(()=>{}),oR=_t((e,t)=>{(function(n,a,r){function s(u){var d=this,h=l();d.next=function(){var p=2091639*d.s0+d.c*23283064365386963e-26;return d.s0=d.s1,d.s1=d.s2,d.s2=p-(d.c=p|0)},d.c=1,d.s0=h(" "),d.s1=h(" "),d.s2=h(" "),d.s0-=h(u),d.s0<0&&(d.s0+=1),d.s1-=h(u),d.s1<0&&(d.s1+=1),d.s2-=h(u),d.s2<0&&(d.s2+=1),h=null}function i(u,d){return d.c=u.c,d.s0=u.s0,d.s1=u.s1,d.s2=u.s2,d}function o(u,d){var h=new s(u),p=d&&d.state,c=h.next;return c.int32=function(){return h.next()*4294967296|0},c.double=function(){return c()+(c()*2097152|0)*11102230246251565e-32},c.quick=c,p&&(typeof p=="object"&&i(p,h),c.state=function(){return i(h,{})}),c}function l(){var u=4022871197,d=function(h){h=h.toString();for(var p=0;p<h.length;p++){u+=h.charCodeAt(p);var c=.02519603282416938*u;u=c>>>0,c-=u,c*=u,u=c>>>0,c-=u,u+=c*4294967296}return(u>>>0)*23283064365386963e-26};return d}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.alea=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),lR=_t((e,t)=>{(function(n,a,r){function s(l){var u=this,d="";u.x=0,u.y=0,u.z=0,u.w=0,u.next=function(){var p=u.x^u.x<<11;return u.x=u.y,u.y=u.z,u.z=u.w,u.w^=u.w>>>19^p^p>>>8},l===(l|0)?u.x=l:d+=l;for(var h=0;h<d.length+64;h++)u.x^=d.charCodeAt(h)|0,u.next()}function i(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u}function o(l,u){var d=new s(l),h=u&&u.state,p=function(){return(d.next()>>>0)/4294967296};return p.double=function(){do var c=d.next()>>>11,m=(d.next()>>>0)/4294967296,f=(c+m)/(1<<21);while(f===0);return f},p.int32=d.next,p.quick=p,h&&(typeof h=="object"&&i(h,d),p.state=function(){return i(d,{})}),p}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xor128=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),uR=_t((e,t)=>{(function(n,a,r){function s(l){var u=this,d="";u.next=function(){var p=u.x^u.x>>>2;return u.x=u.y,u.y=u.z,u.z=u.w,u.w=u.v,(u.d=u.d+362437|0)+(u.v=u.v^u.v<<4^(p^p<<1))|0},u.x=0,u.y=0,u.z=0,u.w=0,u.v=0,l===(l|0)?u.x=l:d+=l;for(var h=0;h<d.length+64;h++)u.x^=d.charCodeAt(h)|0,h==d.length&&(u.d=u.x<<10^u.x>>>4),u.next()}function i(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u.v=l.v,u.d=l.d,u}function o(l,u){var d=new s(l),h=u&&u.state,p=function(){return(d.next()>>>0)/4294967296};return p.double=function(){do var c=d.next()>>>11,m=(d.next()>>>0)/4294967296,f=(c+m)/(1<<21);while(f===0);return f},p.int32=d.next,p.quick=p,h&&(typeof h=="object"&&i(h,d),p.state=function(){return i(d,{})}),p}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xorwow=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),dR=_t((e,t)=>{(function(n,a,r){function s(l){var u=this;u.next=function(){var h=u.x,p=u.i,c,m,f;return c=h[p],c^=c>>>7,m=c^c<<24,c=h[p+1&7],m^=c^c>>>10,c=h[p+3&7],m^=c^c>>>3,c=h[p+4&7],m^=c^c<<7,c=h[p+7&7],c=c^c<<13,m^=c^c<<9,h[p]=m,u.i=p+1&7,m};function d(h,p){var c,m,f=[];if(p===(p|0))m=f[0]=p;else for(p=""+p,c=0;c<p.length;++c)f[c&7]=f[c&7]<<15^p.charCodeAt(c)+f[c+1&7]<<13;for(;f.length<8;)f.push(0);for(c=0;c<8&&f[c]===0;++c);for(c==8?m=f[7]=-1:m=f[c],h.x=f,h.i=0,c=256;c>0;--c)h.next()}d(u,l)}function i(l,u){return u.x=l.x.slice(),u.i=l.i,u}function o(l,u){l==null&&(l=+new Date);var d=new s(l),h=u&&u.state,p=function(){return(d.next()>>>0)/4294967296};return p.double=function(){do var c=d.next()>>>11,m=(d.next()>>>0)/4294967296,f=(c+m)/(1<<21);while(f===0);return f},p.int32=d.next,p.quick=p,h&&(h.x&&i(h,d),p.state=function(){return i(d,{})}),p}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xorshift7=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),hR=_t((e,t)=>{(function(n,a,r){function s(l){var u=this;u.next=function(){var h=u.w,p=u.X,c=u.i,m,f;return u.w=h=h+1640531527|0,f=p[c+34&127],m=p[c=c+1&127],f^=f<<13,m^=m<<17,f^=f>>>15,m^=m>>>12,f=p[c]=f^m,u.i=c,f+(h^h>>>16)|0};function d(h,p){var c,m,f,g,y,A=[],x=128;for(p===(p|0)?(m=p,p=null):(p=p+"\0",m=0,x=Math.max(x,p.length)),f=0,g=-32;g<x;++g)p&&(m^=p.charCodeAt((g+32)%p.length)),g===0&&(y=m),m^=m<<10,m^=m>>>15,m^=m<<4,m^=m>>>13,g>=0&&(y=y+1640531527|0,c=A[g&127]^=m+y,f=c==0?f+1:0);for(f>=128&&(A[(p&&p.length||0)&127]=-1),f=127,g=4*128;g>0;--g)m=A[f+34&127],c=A[f=f+1&127],m^=m<<13,c^=c<<17,m^=m>>>15,c^=c>>>12,A[f]=m^c;h.w=y,h.X=A,h.i=f}d(u,l)}function i(l,u){return u.i=l.i,u.w=l.w,u.X=l.X.slice(),u}function o(l,u){l==null&&(l=+new Date);var d=new s(l),h=u&&u.state,p=function(){return(d.next()>>>0)/4294967296};return p.double=function(){do var c=d.next()>>>11,m=(d.next()>>>0)/4294967296,f=(c+m)/(1<<21);while(f===0);return f},p.int32=d.next,p.quick=p,h&&(h.X&&i(h,d),p.state=function(){return i(d,{})}),p}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xor4096=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),pR=_t((e,t)=>{(function(n,a,r){function s(l){var u=this,d="";u.next=function(){var p=u.b,c=u.c,m=u.d,f=u.a;return p=p<<25^p>>>7^c,c=c-m|0,m=m<<24^m>>>8^f,f=f-p|0,u.b=p=p<<20^p>>>12^c,u.c=c=c-m|0,u.d=m<<16^c>>>16^f,u.a=f-p|0},u.a=0,u.b=0,u.c=2654435769|0,u.d=1367130551,l===Math.floor(l)?(u.a=l/4294967296|0,u.b=l|0):d+=l;for(var h=0;h<d.length+20;h++)u.b^=d.charCodeAt(h)|0,u.next()}function i(l,u){return u.a=l.a,u.b=l.b,u.c=l.c,u.d=l.d,u}function o(l,u){var d=new s(l),h=u&&u.state,p=function(){return(d.next()>>>0)/4294967296};return p.double=function(){do var c=d.next()>>>11,m=(d.next()>>>0)/4294967296,f=(c+m)/(1<<21);while(f===0);return f},p.int32=d.next,p.quick=p,h&&(typeof h=="object"&&i(h,d),p.state=function(){return i(d,{})}),p}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.tychei=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),z3=_t(()=>{}),cR=_t((e,t)=>{(function(n,a){var r=this,s=256,i=6,o=52,l="random",u=a.pow(s,i),d=a.pow(2,o),h=d*2,p=s-1,c;function m(b,w,I){var T=[];w=w==!0?{entropy:!0}:w||{};var C=A(y(w.entropy?[b,v(n)]:b==null?x():b,3),T),z=new f(T),$=function(){for(var S=z.g(i),D=u,_=0;S<d;)S=(S+_)*s,D*=s,_=z.g(1);for(;S>=h;)S/=2,D/=2,_>>>=1;return(S+_)/D};return $.int32=function(){return z.g(4)|0},$.quick=function(){return z.g(4)/4294967296},$.double=$,A(v(z.S),n),(w.pass||I||function(S,D,_,W){return W&&(W.S&&g(W,z),S.state=function(){return g(z,{})}),_?(a[l]=S,D):S})($,C,"global"in w?w.global:this==a,w.state)}a["seed"+l]=m;function f(b){var w,I=b.length,T=this,C=0,z=T.i=T.j=0,$=T.S=[];for(I||(b=[I++]);C<s;)$[C]=C++;for(C=0;C<s;C++)$[C]=$[z=p&z+b[C%I]+(w=$[C])],$[z]=w;(T.g=function(S){for(var D,_=0,W=T.i,X=T.j,q=T.S;S--;)D=q[W=p&W+1],_=_*s+q[p&(q[W]=q[X=p&X+D])+(q[X]=D)];return T.i=W,T.j=X,_})(s)}function g(b,w){return w.i=b.i,w.j=b.j,w.S=b.S.slice(),w}function y(b,w){var I=[],T=typeof b,C;if(w&&T=="object")for(C in b)try{I.push(y(b[C],w-1))}catch(z){}return I.length?I:T=="string"?b:b+"\0"}function A(b,w){for(var I=b+"",T,C=0;C<I.length;)w[p&C]=p&(T^=w[p&C]*19)+I.charCodeAt(C++);return v(w)}function x(){try{var b;return c&&(b=c.randomBytes)?b=b(s):(b=new Uint8Array(s),(r.crypto||r.msCrypto).getRandomValues(b)),v(b)}catch(T){var w=r.navigator,I=w&&w.plugins;return[+new Date,r,I,r.screen,v(n)]}}function v(b){return String.fromCharCode.apply(0,b)}if(A(a.random(),n),typeof t=="object"&&t.exports){t.exports=m;try{c=z3()}catch(b){}}else typeof define=="function"&&define.amd&&define(function(){return m})})([],Math)}),Qg=_t((e,t)=>{var n=oR(),a=lR(),r=uR(),s=dR(),i=hR(),o=pR(),l=cR();l.alea=n,l.xor128=a,l.xorwow=r,l.xorshift7=s,l.xor4096=i,l.tychei=o,t.exports=l}),fR=_t((e,t)=>{(function(n,a,r){function s(u){var d=this,h=l();d.next=function(){var p=2091639*d.s0+d.c*23283064365386963e-26;return d.s0=d.s1,d.s1=d.s2,d.s2=p-(d.c=p|0)},d.c=1,d.s0=h(" "),d.s1=h(" "),d.s2=h(" "),d.s0-=h(u),d.s0<0&&(d.s0+=1),d.s1-=h(u),d.s1<0&&(d.s1+=1),d.s2-=h(u),d.s2<0&&(d.s2+=1),h=null}function i(u,d){return d.c=u.c,d.s0=u.s0,d.s1=u.s1,d.s2=u.s2,d}function o(u,d){var h=new s(u),p=d&&d.state,c=h.next;return c.int32=function(){return h.next()*4294967296|0},c.double=function(){return c()+(c()*2097152|0)*11102230246251565e-32},c.quick=c,p&&(typeof p=="object"&&i(p,h),c.state=function(){return i(h,{})}),c}function l(){var u=4022871197,d=function(h){h=String(h);for(var p=0;p<h.length;p++){u+=h.charCodeAt(p);var c=.02519603282416938*u;u=c>>>0,c-=u,c*=u,u=c>>>0,c-=u,u+=c*4294967296}return(u>>>0)*23283064365386963e-26};return d}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.alea=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),mR=_t((e,t)=>{(function(n,a,r){function s(l){var u=this,d="";u.x=0,u.y=0,u.z=0,u.w=0,u.next=function(){var p=u.x^u.x<<11;return u.x=u.y,u.y=u.z,u.z=u.w,u.w^=u.w>>>19^p^p>>>8},l===(l|0)?u.x=l:d+=l;for(var h=0;h<d.length+64;h++)u.x^=d.charCodeAt(h)|0,u.next()}function i(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u}function o(l,u){var d=new s(l),h=u&&u.state,p=function(){return(d.next()>>>0)/4294967296};return p.double=function(){do var c=d.next()>>>11,m=(d.next()>>>0)/4294967296,f=(c+m)/(1<<21);while(f===0);return f},p.int32=d.next,p.quick=p,h&&(typeof h=="object"&&i(h,d),p.state=function(){return i(d,{})}),p}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xor128=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),gR=_t((e,t)=>{(function(n,a,r){function s(l){var u=this,d="";u.next=function(){var p=u.x^u.x>>>2;return u.x=u.y,u.y=u.z,u.z=u.w,u.w=u.v,(u.d=u.d+362437|0)+(u.v=u.v^u.v<<4^(p^p<<1))|0},u.x=0,u.y=0,u.z=0,u.w=0,u.v=0,l===(l|0)?u.x=l:d+=l;for(var h=0;h<d.length+64;h++)u.x^=d.charCodeAt(h)|0,h==d.length&&(u.d=u.x<<10^u.x>>>4),u.next()}function i(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u.v=l.v,u.d=l.d,u}function o(l,u){var d=new s(l),h=u&&u.state,p=function(){return(d.next()>>>0)/4294967296};return p.double=function(){do var c=d.next()>>>11,m=(d.next()>>>0)/4294967296,f=(c+m)/(1<<21);while(f===0);return f},p.int32=d.next,p.quick=p,h&&(typeof h=="object"&&i(h,d),p.state=function(){return i(d,{})}),p}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xorwow=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),yR=_t((e,t)=>{(function(n,a,r){function s(l){var u=this;u.next=function(){var h=u.x,p=u.i,c,m,f;return c=h[p],c^=c>>>7,m=c^c<<24,c=h[p+1&7],m^=c^c>>>10,c=h[p+3&7],m^=c^c>>>3,c=h[p+4&7],m^=c^c<<7,c=h[p+7&7],c=c^c<<13,m^=c^c<<9,h[p]=m,u.i=p+1&7,m};function d(h,p){var c,m,f=[];if(p===(p|0))m=f[0]=p;else for(p=""+p,c=0;c<p.length;++c)f[c&7]=f[c&7]<<15^p.charCodeAt(c)+f[c+1&7]<<13;for(;f.length<8;)f.push(0);for(c=0;c<8&&f[c]===0;++c);for(c==8?m=f[7]=-1:m=f[c],h.x=f,h.i=0,c=256;c>0;--c)h.next()}d(u,l)}function i(l,u){return u.x=l.x.slice(),u.i=l.i,u}function o(l,u){l==null&&(l=+new Date);var d=new s(l),h=u&&u.state,p=function(){return(d.next()>>>0)/4294967296};return p.double=function(){do var c=d.next()>>>11,m=(d.next()>>>0)/4294967296,f=(c+m)/(1<<21);while(f===0);return f},p.int32=d.next,p.quick=p,h&&(h.x&&i(h,d),p.state=function(){return i(d,{})}),p}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xorshift7=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),AR=_t((e,t)=>{(function(n,a,r){function s(l){var u=this;u.next=function(){var h=u.w,p=u.X,c=u.i,m,f;return u.w=h=h+1640531527|0,f=p[c+34&127],m=p[c=c+1&127],f^=f<<13,m^=m<<17,f^=f>>>15,m^=m>>>12,f=p[c]=f^m,u.i=c,f+(h^h>>>16)|0};function d(h,p){var c,m,f,g,y,A=[],x=128;for(p===(p|0)?(m=p,p=null):(p=p+"\0",m=0,x=Math.max(x,p.length)),f=0,g=-32;g<x;++g)p&&(m^=p.charCodeAt((g+32)%p.length)),g===0&&(y=m),m^=m<<10,m^=m>>>15,m^=m<<4,m^=m>>>13,g>=0&&(y=y+1640531527|0,c=A[g&127]^=m+y,f=c==0?f+1:0);for(f>=128&&(A[(p&&p.length||0)&127]=-1),f=127,g=4*128;g>0;--g)m=A[f+34&127],c=A[f=f+1&127],m^=m<<13,c^=c<<17,m^=m>>>15,c^=c>>>12,A[f]=m^c;h.w=y,h.X=A,h.i=f}d(u,l)}function i(l,u){return u.i=l.i,u.w=l.w,u.X=l.X.slice(),u}function o(l,u){l==null&&(l=+new Date);var d=new s(l),h=u&&u.state,p=function(){return(d.next()>>>0)/4294967296};return p.double=function(){do var c=d.next()>>>11,m=(d.next()>>>0)/4294967296,f=(c+m)/(1<<21);while(f===0);return f},p.int32=d.next,p.quick=p,h&&(h.X&&i(h,d),p.state=function(){return i(d,{})}),p}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xor4096=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),xR=_t((e,t)=>{(function(n,a,r){function s(l){var u=this,d="";u.next=function(){var p=u.b,c=u.c,m=u.d,f=u.a;return p=p<<25^p>>>7^c,c=c-m|0,m=m<<24^m>>>8^f,f=f-p|0,u.b=p=p<<20^p>>>12^c,u.c=c=c-m|0,u.d=m<<16^c>>>16^f,u.a=f-p|0},u.a=0,u.b=0,u.c=2654435769|0,u.d=1367130551,l===Math.floor(l)?(u.a=l/4294967296|0,u.b=l|0):d+=l;for(var h=0;h<d.length+20;h++)u.b^=d.charCodeAt(h)|0,u.next()}function i(l,u){return u.a=l.a,u.b=l.b,u.c=l.c,u.d=l.d,u}function o(l,u){var d=new s(l),h=u&&u.state,p=function(){return(d.next()>>>0)/4294967296};return p.double=function(){do var c=d.next()>>>11,m=(d.next()>>>0)/4294967296,f=(c+m)/(1<<21);while(f===0);return f},p.int32=d.next,p.quick=p,h&&(typeof h=="object"&&i(h,d),p.state=function(){return i(d,{})}),p}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.tychei=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),bR=_t((e,t)=>{(function(n,a,r){var s=256,i=6,o=52,l="random",u=r.pow(s,i),d=r.pow(2,o),h=d*2,p=s-1,c;function m(b,w,I){var T=[];w=w==!0?{entropy:!0}:w||{};var C=A(y(w.entropy?[b,v(a)]:b==null?x():b,3),T),z=new f(T),$=function(){for(var S=z.g(i),D=u,_=0;S<d;)S=(S+_)*s,D*=s,_=z.g(1);for(;S>=h;)S/=2,D/=2,_>>>=1;return(S+_)/D};return $.int32=function(){return z.g(4)|0},$.quick=function(){return z.g(4)/4294967296},$.double=$,A(v(z.S),a),(w.pass||I||function(S,D,_,W){return W&&(W.S&&g(W,z),S.state=function(){return g(z,{})}),_?(r[l]=S,D):S})($,C,"global"in w?w.global:this==r,w.state)}function f(b){var w,I=b.length,T=this,C=0,z=T.i=T.j=0,$=T.S=[];for(I||(b=[I++]);C<s;)$[C]=C++;for(C=0;C<s;C++)$[C]=$[z=p&z+b[C%I]+(w=$[C])],$[z]=w;(T.g=function(S){for(var D,_=0,W=T.i,X=T.j,q=T.S;S--;)D=q[W=p&W+1],_=_*s+q[p&(q[W]=q[X=p&X+D])+(q[X]=D)];return T.i=W,T.j=X,_})(s)}function g(b,w){return w.i=b.i,w.j=b.j,w.S=b.S.slice(),w}function y(b,w){var I=[],T=typeof b,C;if(w&&T=="object")for(C in b)try{I.push(y(b[C],w-1))}catch(z){}return I.length?I:T=="string"?b:b+"\0"}function A(b,w){for(var I=b+"",T,C=0;C<I.length;)w[p&C]=p&(T^=w[p&C]*19)+I.charCodeAt(C++);return v(w)}function x(){try{var b;return c&&(b=c.randomBytes)?b=b(s):(b=new Uint8Array(s),(n.crypto||n.msCrypto).getRandomValues(b)),v(b)}catch(T){var w=n.navigator,I=w&&w.plugins;return[+new Date,n,I,n.screen,v(a)]}}function v(b){return String.fromCharCode.apply(0,b)}if(A(r.random(),a),typeof t=="object"&&t.exports){t.exports=m;try{c=z3()}catch(b){}}else typeof define=="function"&&define.amd?define(function(){return m}):r["seed"+l]=m})(typeof self!="undefined"?self:e,[],Math)}),P3=_t((e,t)=>{var n=fR(),a=mR(),r=gR(),s=yR(),i=AR(),o=xR(),l=bR();l.alea=n,l.xor128=a,l.xorwow=r,l.xorshift7=s,l.xor4096=i,l.tychei=o,t.exports=l}),vR=_t(()=>{}),Gu=_t(()=>{}),wR=_t(()=>{}),kR=_t(()=>{}),IR=_t((e,t)=>{var n=function(){var a=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(a=a||__filename),function(r){r=r||{};function s(){return te.buffer!=Je&&wn(te.buffer),Hn}function i(){return te.buffer!=Je&&wn(te.buffer),Bt}function o(){return te.buffer!=Je&&wn(te.buffer),Gn}function l(){return te.buffer!=Je&&wn(te.buffer),ba}function u(){return te.buffer!=Je&&wn(te.buffer),Rn}var d=typeof r!="undefined"?r:{},h,p;d.ready=new Promise(function(E,R){h=E,p=R});var c={},m;for(m in d)d.hasOwnProperty(m)&&(c[m]=d[m]);var f=[],g="./this.program",y=function(E,R){throw R},A=!1,x=!1,v=!1,b=!1;A=typeof window=="object",x=typeof importScripts=="function",v=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",b=!A&&!v&&!x;var w=d.ENVIRONMENT_IS_PTHREAD||!1;w&&(Je=d.buffer);var I="";function T(E){return d.locateFile?d.locateFile(E,I):I+E}var C,z,$,S,D,_;if(v){x?I=Gu().dirname(I)+"/":I=__dirname+"/",C=function(E,R){return D||(D=di("fs")),_||(_=Gu()),E=_.normalize(E),D.readFileSync(E,R?null:"utf8")},$=function(E){var R=C(E,!0);return R.buffer||(R=new Uint8Array(R)),xe(R.buffer),R},process.argv.length>1&&(g=process.argv[1].replace(/\\/g,"/")),f=process.argv.slice(2),process.on("uncaughtException",function(E){if(!(E instanceof Hu))throw E}),process.on("unhandledRejection",jr),y=function(E){process.exit(E)},d.inspect=function(){return"[Emscripten Module object]"};var W;try{W=wR()}catch(E){throw console.error('The "worker_threads" module is not supported in this node.js build - perhaps a newer version is needed?'),E}global.Worker=W.Worker}else b?(typeof read!="undefined"&&(C=function(E){return read(E)}),$=function(E){var R;return typeof readbuffer=="function"?new Uint8Array(readbuffer(E)):(R=read(E,"binary"),xe(typeof R=="object"),R)},typeof scriptArgs!="undefined"?f=scriptArgs:typeof arguments!="undefined"&&(f=arguments),typeof quit=="function"&&(y=function(E){quit(E)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(A||x)&&(x?I=self.location.href:typeof document!="undefined"&&document.currentScript&&(I=document.currentScript.src),typeof a!="undefined"&&a&&(I=a),I.indexOf("blob:")!==0?I=I.substr(0,I.lastIndexOf("/")+1):I="",v?(C=function(E,R){return D||(D=di("fs")),_||(_=Gu()),E=_.normalize(E),D.readFileSync(E,R?null:"utf8")},$=function(E){var R=C(E,!0);return R.buffer||(R=new Uint8Array(R)),xe(R.buffer),R}):(C=function(E){var R=new XMLHttpRequest;return R.open("GET",E,!1),R.send(null),R.responseText},x&&($=function(E){var R=new XMLHttpRequest;return R.open("GET",E,!1),R.responseType="arraybuffer",R.send(null),new Uint8Array(R.response)}),z=function(E,R,H){var J=new XMLHttpRequest;J.open("GET",E,!0),J.responseType="arraybuffer",J.onload=function(){if(J.status==200||J.status==0&&J.response){R(J.response);return}H()},J.onerror=H,J.send(null)}),S=function(E){document.title=E});v&&typeof performance=="undefined"&&(global.performance=kR().performance);var X=d.print||console.log.bind(console),q=d.printErr||console.warn.bind(console);for(m in c)c.hasOwnProperty(m)&&(d[m]=c[m]);c=null,d.arguments&&(f=d.arguments),d.thisProgram&&(g=d.thisProgram),d.quit&&(y=d.quit);var Q=Atomics.load,ee=Atomics.store,ie=Atomics.compareExchange,ae;d.wasmBinary&&(ae=d.wasmBinary);var de=d.noExitRuntime||!0;typeof WebAssembly!="object"&&jr("no native wasm support detected");var te,ce,he=!1,ve;function xe(E,R){E||jr("Assertion failed: "+R)}function Ee(E){var R=d["_"+E];return xe(R,"Cannot call unknown function "+E+", make sure it is exported"),R}function Fe(E,R,H,J,Ae){var me={string:function(Xn){var Do=0;if(Xn!=null&&Xn!==0){var M3=(Xn.length<<2)+1;Do=Ro(M3),mt(Xn,Do,M3)}return Do},array:function(Xn){var Do=Ro(Xn.length);return lt(Xn,Do),Do}};function ye(Xn){return R==="string"?Be(Xn):R==="boolean"?Boolean(Xn):Xn}var Ie=Ee(E),gt=[],cn=0;if(J)for(var rn=0;rn<J.length;rn++){var ks=me[H[rn]];ks?(cn===0&&(cn=ju()),gt[rn]=ks(J[rn])):gt[rn]=J[rn]}var Oo=Ie.apply(null,gt);return Oo=ye(Oo),cn!==0&&$o(cn),Oo}function We(E,R,H,J){H=H||[];var Ae=H.every(function(ye){return ye==="number"}),me=R!=="string";return me&&Ae&&!J?Ee(E):function(){return Fe(E,R,H,arguments,J)}}function qe(E,R,H){for(var J=R+H,Ae="";!(R>=J);){var me=E[R++];if(!me)return Ae;if(!(me&128)){Ae+=String.fromCharCode(me);continue}var ye=E[R++]&63;if((me&224)==192){Ae+=String.fromCharCode((me&31)<<6|ye);continue}var Ie=E[R++]&63;if((me&240)==224?me=(me&15)<<12|ye<<6|Ie:me=(me&7)<<18|ye<<12|Ie<<6|E[R++]&63,me<65536)Ae+=String.fromCharCode(me);else{var gt=me-65536;Ae+=String.fromCharCode(55296|gt>>10,56320|gt&1023)}}return Ae}function Be(E,R){return E?qe(i(),E,R):""}function ft(E,R,H,J){if(!(J>0))return 0;for(var Ae=H,me=H+J-1,ye=0;ye<E.length;++ye){var Ie=E.charCodeAt(ye);if(Ie>=55296&&Ie<=57343){var gt=E.charCodeAt(++ye);Ie=65536+((Ie&1023)<<10)|gt&1023}if(Ie<=127){if(H>=me)break;R[H++]=Ie}else if(Ie<=2047){if(H+1>=me)break;R[H++]=192|Ie>>6,R[H++]=128|Ie&63}else if(Ie<=65535){if(H+2>=me)break;R[H++]=224|Ie>>12,R[H++]=128|Ie>>6&63,R[H++]=128|Ie&63}else{if(H+3>=me)break;R[H++]=240|Ie>>18,R[H++]=128|Ie>>12&63,R[H++]=128|Ie>>6&63,R[H++]=128|Ie&63}}return R[H]=0,H-Ae}function mt(E,R,H){return ft(E,i(),R,H)}function bt(E){for(var R=0,H=0;H<E.length;++H){var J=E.charCodeAt(H);J>=55296&&J<=57343&&(J=65536+((J&1023)<<10)|E.charCodeAt(++H)&1023),J<=127?++R:J<=2047?R+=2:J<=65535?R+=3:R+=4}return R}function lt(E,R){s().set(E,R)}function Ct(E,R){return E%R>0&&(E+=R-E%R),E}var Je,Hn,Bt,xa,vn,Gn,ba,sa,Rn;function wn(E){Je=E,d.HEAP8=Hn=new Int8Array(E),d.HEAP16=xa=new Int16Array(E),d.HEAP32=Gn=new Int32Array(E),d.HEAPU8=Bt=new Uint8Array(E),d.HEAPU16=vn=new Uint16Array(E),d.HEAPU32=ba=new Uint32Array(E),d.HEAPF32=sa=new Float32Array(E),d.HEAPF64=Rn=new Float64Array(E)}var vr=d.INITIAL_MEMORY||16777216;if(w)te=d.wasmMemory,Je=d.buffer;else if(d.wasmMemory)te=d.wasmMemory;else if(te=new WebAssembly.Memory({initial:vr/65536,maximum:2147483648/65536,shared:!0}),!(te.buffer instanceof SharedArrayBuffer))throw q("requested a shared WebAssembly.Memory but the returned buffer is not a SharedArrayBuffer, indicating that while the browser has SharedArrayBuffer it does not have WebAssembly threads support - you may need to set a flag"),v&&console.log("(on node you may need: --experimental-wasm-threads --experimental-wasm-bulk-memory and also use a recent version)"),Error("bad memory");te&&(Je=te.buffer),vr=Je.byteLength,wn(Je);var Wa,Ba=[],ys=[],Vr=[],As=[],So=[],wr=!1,$p=!1;w||ys.push({func:function(){Gp()}});function Em(){if(!w){if(d.preRun)for(typeof d.preRun=="function"&&(d.preRun=[d.preRun]);d.preRun.length;)Fp(d.preRun.shift());To(Ba)}}function Du(){wr=!0,!w&&To(ys)}function Cm(){w||To(Vr)}function Rp(){w||($p=!0)}function qn(){if(!w){if(d.postRun)for(typeof d.postRun=="function"&&(d.postRun=[d.postRun]);d.postRun.length;)Mm(d.postRun.shift());To(So)}}function Fp(E){Ba.unshift(E)}function Mm(E){So.unshift(E)}var Ur=0,xs=null,oi=null;function $m(E){xe(!w,"addRunDependency cannot be used in a pthread worker"),Ur++,d.monitorRunDependencies&&d.monitorRunDependencies(Ur)}function Rm(E){if(Ur--,d.monitorRunDependencies&&d.monitorRunDependencies(Ur),Ur==0&&(xs!==null&&(clearInterval(xs),xs=null),oi)){var R=oi;oi=null,R()}}d.preloadedImages={},d.preloadedAudios={};function jr(E){d.onAbort&&d.onAbort(E),w&&console.error("Pthread aborting at "+new Error().stack),E+="",q(E),he=!0,ve=1,E="abort("+E+"). Build with -s ASSERTIONS=1 for more info.";var R=new WebAssembly.RuntimeError(E);throw p(R),R}function Op(E,R){return String.prototype.startsWith?E.startsWith(R):E.indexOf(R)===0}var No="data:application/octet-stream;base64,";function Dp(E){return Op(E,No)}var Fm="file://";function _p(E){return Op(E,Fm)}var Kn="tfjs-backend-wasm-threaded-simd.wasm";Dp(Kn)||(Kn=T(Kn));function zp(E){try{if(E==Kn&&ae)return new Uint8Array(ae);if($)return $(E);throw"both async and sync fetching of the wasm failed"}catch(R){jr(R)}}function Om(){if(!ae&&(A||x)){if(typeof fetch=="function"&&!_p(Kn))return fetch(Kn,{credentials:"same-origin"}).then(function(E){if(!E.ok)throw"failed to load wasm binary file at '"+Kn+"'";return E.arrayBuffer()}).catch(function(){return zp(Kn)});if(z)return new Promise(function(E,R){z(Kn,function(H){E(new Uint8Array(H))},R)})}return Promise.resolve().then(function(){return zp(Kn)})}function Dm(){var E={a:Sg};function R(ye,Ie){var gt=ye.exports;if(d.asm=gt,Wa=d.asm.F,ce=Ie,!w){var cn=Te.unusedWorkers.length;Te.unusedWorkers.forEach(function(rn){Te.loadWasmModuleToWorker(rn,function(){--cn||Rm("wasm-instantiate")})})}}w||$m("wasm-instantiate");function H(ye){R(ye.instance,ye.module)}function J(ye){return Om().then(function(Ie){return WebAssembly.instantiate(Ie,E)}).then(ye,function(Ie){q("failed to asynchronously prepare wasm: "+Ie),jr(Ie)})}function Ae(){return!ae&&typeof WebAssembly.instantiateStreaming=="function"&&!Dp(Kn)&&!_p(Kn)&&typeof fetch=="function"?fetch(Kn,{credentials:"same-origin"}).then(function(ye){var Ie=WebAssembly.instantiateStreaming(ye,E);return Ie.then(H,function(gt){return q("wasm streaming compile failed: "+gt),q("falling back to ArrayBuffer instantiation"),J(H)})}):J(H)}if(d.instantiateWasm)try{var me=d.instantiateWasm(E,R);return me}catch(ye){return q("Module.instantiateWasm callback failed with error: "+ye),!1}return Ae().catch(p),{}}var _m={9816:function(){throw"Canceled!"},9834:function(E,R){setTimeout(function(){I3(E,R)},0)}};function Pp(){Te.initRuntime()}function To(E){for(;E.length>0;){var R=E.shift();if(typeof R=="function"){R(d);continue}var H=R.func;typeof H=="number"?R.arg===void 0?Wa.get(H)():Wa.get(H)(R.arg):H(R.arg===void 0?null:R.arg)}}function _u(E,R){if(E<=0||E>s().length||E&!0||R<0)return-28;if(R==0)return 0;R>=2147483647&&(R=Infinity);var H=Atomics.load(o(),Fo>>2),J=0;if(H==E){var Ae=Atomics.compareExchange(o(),Fo>>2,H,0);if(Ae==H&&(--R,J=1,R<=0))return 1}var me=Atomics.notify(o(),E>>2,R);if(me>=0)return me+J;throw"Atomics.notify returned an unexpected value "+me}d._emscripten_futex_wake=_u;function zm(E){if(w)throw"Internal Error! killThread() can only ever be called from main application thread!";if(!E)throw"Internal Error! Null pthread_ptr in killThread!";o()[E+12>>2]=0;var R=Te.pthreads[E];R.worker.terminate(),Te.freeThreadData(R),Te.runningWorkers.splice(Te.runningWorkers.indexOf(R.worker),1),R.worker.pthread=void 0}function Pm(E){if(w)throw"Internal Error! cancelThread() can only ever be called from main application thread!";if(!E)throw"Internal Error! Null pthread_ptr in cancelThread!";var R=Te.pthreads[E];R.worker.postMessage({cmd:"cancel"})}function Lm(E){if(w)throw"Internal Error! cleanupThread() can only ever be called from main application thread!";if(!E)throw"Internal Error! Null pthread_ptr in cleanupThread!";var R=Te.pthreads[E];if(R){o()[E+12>>2]=0;var H=R.worker;Te.returnWorkerToPool(H)}}var Te={unusedWorkers:[],runningWorkers:[],initMainThreadBlock:function(){for(var E=Math.min(4,Math.max(1,(navigator.hardwareConcurrency||1)/2)),R=0;R<E;++R)Te.allocateUnusedWorker()},initRuntime:function(){for(var E=ui(228),R=0;R<228/4;++R)l()[E/4+R]=0;o()[E+12>>2]=E;var H=E+152;o()[H>>2]=H;for(var J=ui(512),R=0;R<128;++R)l()[J/4+R]=0;Atomics.store(l(),E+100>>2,J),Atomics.store(l(),E+40>>2,E),Zg(E,!x,1),k3(E)},initWorker:function(){},pthreads:{},threadExitHandlers:[],setThreadStatus:function(){},runExitHandlers:function(){for(;Te.threadExitHandlers.length>0;)Te.threadExitHandlers.pop()();w&&Mo()&&w3()},runExitHandlersAndDeinitThread:function(E,R){Atomics.store(l(),E+56>>2,1),Atomics.store(l(),E+60>>2,0),Te.runExitHandlers(),Atomics.store(l(),E+4>>2,R),Atomics.store(l(),E+0>>2,1),_u(E+0,2147483647),Zg(0,0,0)},threadExit:function(E){var R=Mo();R&&(Te.runExitHandlersAndDeinitThread(R,E),w&&postMessage({cmd:"exit"}))},threadCancel:function(){Te.runExitHandlersAndDeinitThread(Mo(),-1),postMessage({cmd:"cancelDone"})},terminateAllThreads:function(){for(var E in Te.pthreads){var R=Te.pthreads[E];R&&R.worker&&Te.returnWorkerToPool(R.worker)}Te.pthreads={};for(var H=0;H<Te.unusedWorkers.length;++H){var J=Te.unusedWorkers[H];J.terminate()}Te.unusedWorkers=[];for(var H=0;H<Te.runningWorkers.length;++H){var J=Te.runningWorkers[H],R=J.pthread;Te.freeThreadData(R),J.terminate()}Te.runningWorkers=[]},freeThreadData:function(E){if(E){if(E.threadInfoStruct){var R=o()[E.threadInfoStruct+100>>2];o()[E.threadInfoStruct+100>>2]=0,Uu(R),Uu(E.threadInfoStruct)}E.threadInfoStruct=0,E.allocatedOwnStack&&E.stackBase&&Uu(E.stackBase),E.stackBase=0,E.worker&&(E.worker.pthread=null)}},returnWorkerToPool:function(E){Te.runWithoutMainThreadQueuedCalls(function(){delete Te.pthreads[E.pthread.threadInfoStruct],Te.unusedWorkers.push(E),Te.runningWorkers.splice(Te.runningWorkers.indexOf(E),1),Te.freeThreadData(E.pthread),E.pthread=void 0})},runWithoutMainThreadQueuedCalls:function(E){o()[C3>>2]=0;try{E()}finally{o()[C3>>2]=1}},receiveObjectTransfer:function(E){},loadWasmModuleToWorker:function(E,R){E.onmessage=function(H){var J=H.data,Ae=J.cmd;if(E.pthread&&(Te.currentProxiedOperationCallerThread=E.pthread.threadInfoStruct),J.targetThread&&J.targetThread!=Mo()){var me=Te.pthreads[J.targetThread];me?me.worker.postMessage(H.data,J.transferList):console.error('Internal error! Worker sent a message "'+Ae+'" to target pthread '+J.targetThread+", but that thread no longer exists!"),Te.currentProxiedOperationCallerThread=void 0;return}if(Ae==="processQueuedMainThreadWork")Kg();else if(Ae==="spawnThread")jp(H.data);else if(Ae==="cleanupThread")Lm(J.thread);else if(Ae==="killThread")zm(J.thread);else if(Ae==="cancelThread")Pm(J.thread);else if(Ae==="loaded")E.loaded=!0,R&&R(E),E.runPthread&&(E.runPthread(),delete E.runPthread);else if(Ae==="print")X("Thread "+J.threadId+": "+J.text);else if(Ae==="printErr")q("Thread "+J.threadId+": "+J.text);else if(Ae==="alert")alert("Thread "+J.threadId+": "+J.text);else if(Ae==="exit"){var ye=E.pthread&&Atomics.load(l(),E.pthread.threadInfoStruct+64>>2);ye&&Te.returnWorkerToPool(E)}else if(Ae==="exitProcess")try{J$(J.returnCode)}catch(Ie){if(Ie instanceof Hu)return;throw Ie}else Ae==="cancelDone"?Te.returnWorkerToPool(E):Ae==="objectTransfer"?Te.receiveObjectTransfer(H.data):H.data.target==="setimmediate"?E.postMessage(H.data):q("worker sent an unknown command "+Ae);Te.currentProxiedOperationCallerThread=void 0},E.onerror=function(H){q("pthread sent an error! "+H.filename+":"+H.lineno+": "+H.message)},v&&(E.on("message",function(H){E.onmessage({data:H})}),E.on("error",function(H){E.onerror(H)}),E.on("exit",function(H){})),E.postMessage({cmd:"load",urlOrBlob:d.mainScriptUrlOrBlob||a,wasmMemory:te,wasmModule:ce})},allocateUnusedWorker:function(){var E=T("tfjs-backend-wasm-threaded-simd.worker.js");Te.unusedWorkers.push(new Worker(E))},getNewWorker:function(){return Te.unusedWorkers.length==0&&(Te.allocateUnusedWorker(),Te.loadWasmModuleToWorker(Te.unusedWorkers[0])),Te.unusedWorkers.length>0?Te.unusedWorkers.pop():null},busySpinWait:function(E){for(var R=performance.now()+E;performance.now()<R;);}};function Wm(E,R){T3(E,R),$o(E)}d.establishStackSpace=Wm;function Bm(){return de}d.getNoExitRuntime=Bm;function Vm(E,R){return Wa.get(E)(R)}d.invokeEntryPoint=Vm;function Um(E,R,H,J){jr("Assertion failed: "+Be(E)+", at: "+[R?Be(R):"unknown filename",H,J?Be(J):"unknown function"])}function jm(E,R){var H=_main(E,R)}var li;v?li=function(){var E=process.hrtime();return E[0]*1e3+E[1]/1e6}:w?li=function(){return performance.now()-d.__performance_now_clock_drift}:typeof dateNow!="undefined"?li=dateNow:li=function(){return performance.now()};function Hm(E){return o()[b3()>>2]=E,E}function Gm(E,R){if(w)return bs(1,1,E,R)}function qm(E,R){if(E==R)postMessage({cmd:"processQueuedMainThreadWork"});else if(w)postMessage({targetThread:E,cmd:"processThreadQueue"});else{var H=Te.pthreads[E],J=H&&H.worker;if(!J)return;J.postMessage({cmd:"processThreadQueue"})}return 1}function Km(){jr()}function Xm(E,R,H){var J=eg(R,H);return _m[E].apply(null,J)}function Zm(E,R){}function Ym(E,R,H){if(E<=0||E>s().length||E&!0)return-28;if(A){if(Atomics.load(o(),E>>2)!=R)return-6;for(var J=performance.now(),Ae=J+H,me=Atomics.exchange(o(),Fo>>2,E);;){if(J=performance.now(),J>Ae)return me=Atomics.exchange(o(),Fo>>2,0),-73;if(me=Atomics.exchange(o(),Fo>>2,0),me==0)break;if(Kg(),Atomics.load(o(),E>>2)!=R)return-6;me=Atomics.exchange(o(),Fo>>2,E)}return 0}else{var ye=Atomics.wait(o(),E>>2,R,H);if(ye==="timed-out")return-73;if(ye==="not-equal")return-6;if(ye==="ok")return 0;throw"Atomics.wait returned an unexpected value "+ye}}function Jm(E,R,H){i().copyWithin(E,R,R+H)}function Qm(){return v?di("os").cpus().length:navigator.hardwareConcurrency}function bs(E,R){for(var H=arguments.length-2,J=ju(),Ae=H,me=Ro(Ae*8),ye=me>>3,Ie=0;Ie<H;Ie++){var gt=arguments[2+Ie];u()[ye+Ie]=gt}var cn=N3(E,Ae,me,R);return $o(J),cn}var zu=[],Pu=[];function eg(E,R){Pu.length=0;var H;for(R>>=2;H=i()[E++];){var J=H<105;J&&R&1&&R++,Pu.push(J?u()[R++>>1]:o()[R]),++R}return Pu}function tg(E,R,H){zu.length=R;for(var J=H>>3,Ae=0;Ae<R;Ae++)zu[Ae]=u()[J+Ae];var me=E<0,ye=me?_m[-E-1]:Ig[E];return ye.apply(null,zu)}function ng(){return i().length}function ag(E){try{return te.grow(E-Je.byteLength+65535>>>16),wn(te.buffer),1}catch(R){}}function rg(E){var R=ng();if(E<=R)return!1;var H=2147483648;if(E>H)return!1;for(var J=1;J<=4;J*=2){var Ae=R*(1+.2/J);Ae=Math.min(Ae,E+100663296);var me=Math.min(H,Ct(Math.max(E,Ae),65536)),ye=ag(me);if(ye)return!0}return!1}var Xe={inEventHandler:0,removeAllEventListeners:function(){for(var E=Xe.eventHandlers.length-1;E>=0;--E)Xe._removeHandler(E);Xe.eventHandlers=[],Xe.deferredCalls=[]},registerRemoveEventListeners:function(){Xe.removeEventListenersRegistered||(As.push(Xe.removeAllEventListeners),Xe.removeEventListenersRegistered=!0)},deferredCalls:[],deferCall:function(E,R,H){function J(ye,Ie){if(ye.length!=Ie.length)return!1;for(var gt in ye)if(ye[gt]!=Ie[gt])return!1;return!0}for(var Ae in Xe.deferredCalls){var me=Xe.deferredCalls[Ae];if(me.targetFunction==E&&J(me.argsList,H))return}Xe.deferredCalls.push({targetFunction:E,precedence:R,argsList:H}),Xe.deferredCalls.sort(function(ye,Ie){return ye.precedence<Ie.precedence})},removeDeferredCalls:function(E){for(var R=0;R<Xe.deferredCalls.length;++R)Xe.deferredCalls[R].targetFunction==E&&(Xe.deferredCalls.splice(R,1),--R)},canPerformEventHandlerRequests:function(){return Xe.inEventHandler&&Xe.currentEventHandler.allowsDeferredCalls},runDeferredCalls:function(){if(Xe.canPerformEventHandlerRequests())for(var E=0;E<Xe.deferredCalls.length;++E){var R=Xe.deferredCalls[E];Xe.deferredCalls.splice(E,1),--E,R.targetFunction.apply(null,R.argsList)}},eventHandlers:[],removeAllHandlersOnTarget:function(E,R){for(var H=0;H<Xe.eventHandlers.length;++H)Xe.eventHandlers[H].target==E&&(!R||R==Xe.eventHandlers[H].eventTypeString)&&Xe._removeHandler(H--)},_removeHandler:function(E){var R=Xe.eventHandlers[E];R.target.removeEventListener(R.eventTypeString,R.eventListenerFunc,R.useCapture),Xe.eventHandlers.splice(E,1)},registerOrRemoveHandler:function(E){var R=function(J){++Xe.inEventHandler,Xe.currentEventHandler=E,Xe.runDeferredCalls(),E.handlerFunc(J),Xe.runDeferredCalls(),--Xe.inEventHandler};if(E.callbackfunc)E.eventListenerFunc=R,E.target.addEventListener(E.eventTypeString,R,E.useCapture),Xe.eventHandlers.push(E),Xe.registerRemoveEventListeners();else for(var H=0;H<Xe.eventHandlers.length;++H)Xe.eventHandlers[H].target==E.target&&Xe.eventHandlers[H].eventTypeString==E.eventTypeString&&Xe._removeHandler(H--)},queueEventHandlerOnThread_iiii:function(E,R,H,J,Ae){var me=ju(),ye=Ro(12);o()[ye>>2]=H,o()[ye+4>>2]=J,o()[ye+8>>2]=Ae,Xg(0,E,637534208,R,J,ye),$o(me)},getTargetThreadForEventCallback:function(E){switch(E){case 1:return 0;case 2:return Te.currentProxiedOperationCallerThread;default:return E}},getNodeNameForTarget:function(E){return E?E==window?"#window":E==screen?"#screen":E&&E.nodeName?E.nodeName:"":""},fullscreenEnabled:function(){return document.fullscreenEnabled||document.webkitFullscreenEnabled}};function sg(E){var R=bt(E)+1,H=ui(R);return mt(E,H,R),H}function ig(E,R,H,J){var Ae=ju(),me=Ro(12),ye=0;R&&(ye=sg(R)),o()[me>>2]=ye,o()[me+4>>2]=H,o()[me+8>>2]=J,Xg(0,E,657457152,0,ye,me),$o(Ae)}function og(E,R,H,J){R=R?Be(R):"",ig(E,R,H,J)}function lg(E){return E>2?Be(E):E}var ug=[0,typeof document!="undefined"?document:0,typeof window!="undefined"?window:0];function dg(E){E=lg(E);var R=ug[E]||(typeof document!="undefined"?document.querySelector(E):void 0);return R}function Lu(E){return dg(E)}function Lp(E,R,H){var J=Lu(E);if(!J)return-4;if(J.canvasSharedPtr&&(o()[J.canvasSharedPtr>>2]=R,o()[J.canvasSharedPtr+4>>2]=H),J.offscreenCanvas||!J.controlTransferredOffscreen){J.offscreenCanvas&&(J=J.offscreenCanvas);var Ae=!1;if(J.GLctxObject&&J.GLctxObject.GLctx){var me=J.GLctxObject.GLctx.getParameter(2978);Ae=me[0]===0&&me[1]===0&&me[2]===J.width&&me[3]===J.height}J.width=R,J.height=H,Ae&&J.GLctxObject.GLctx.viewport(0,0,R,H)}else if(J.canvasSharedPtr){var ye=o()[J.canvasSharedPtr+8>>2];return og(ye,E,R,H),1}else return-4;return 0}function Wp(E,R,H){return w?bs(2,1,E,R,H):Lp(E,R,H)}function hg(E,R,H){var J=Lu(E);return J?Lp(E,R,H):Wp(E,R,H)}function pg(E){}function cg(E,R){}function fg(E){var R=E.getExtension("ANGLE_instanced_arrays");if(R)return E.vertexAttribDivisor=function(H,J){R.vertexAttribDivisorANGLE(H,J)},E.drawArraysInstanced=function(H,J,Ae,me){R.drawArraysInstancedANGLE(H,J,Ae,me)},E.drawElementsInstanced=function(H,J,Ae,me,ye){R.drawElementsInstancedANGLE(H,J,Ae,me,ye)},1}function mg(E){var R=E.getExtension("OES_vertex_array_object");if(R)return E.createVertexArray=function(){return R.createVertexArrayOES()},E.deleteVertexArray=function(H){R.deleteVertexArrayOES(H)},E.bindVertexArray=function(H){R.bindVertexArrayOES(H)},E.isVertexArray=function(H){return R.isVertexArrayOES(H)},1}function gg(E){var R=E.getExtension("WEBGL_draw_buffers");if(R)return E.drawBuffers=function(H,J){R.drawBuffersWEBGL(H,J)},1}function yg(E){return!!(E.multiDrawWebgl=E.getExtension("WEBGL_multi_draw"))}var pt={counter:1,buffers:[],programs:[],framebuffers:[],renderbuffers:[],textures:[],uniforms:[],shaders:[],vaos:[],contexts:{},offscreenCanvases:{},timerQueriesEXT:[],programInfos:{},stringCache:{},unpackAlignment:4,recordError:function(E){pt.lastError||(pt.lastError=E)},getNewId:function(E){for(var R=pt.counter++,H=E.length;H<R;H++)E[H]=null;return R},getSource:function(E,R,H,J){for(var Ae="",me=0;me<R;++me){var ye=J?o()[J+me*4>>2]:-1;Ae+=Be(o()[H+me*4>>2],ye<0?void 0:ye)}return Ae},createContext:function(E,R){var H=E.getContext("webgl",R);if(!H)return 0;var J=pt.registerContext(H,R);return J},registerContext:function(E,R){var H=ui(8);o()[H+4>>2]=Mo();var J={handle:H,attributes:R,version:R.majorVersion,GLctx:E};return E.canvas&&(E.canvas.GLctxObject=J),pt.contexts[H]=J,(typeof R.enableExtensionsByDefault=="undefined"||R.enableExtensionsByDefault)&&pt.initExtensions(J),H},makeContextCurrent:function(E){return pt.currentContext=pt.contexts[E],d.ctx=vs=pt.currentContext&&pt.currentContext.GLctx,!(E&&!vs)},getContext:function(E){return pt.contexts[E]},deleteContext:function(E){pt.currentContext===pt.contexts[E]&&(pt.currentContext=null),typeof Xe=="object"&&Xe.removeAllHandlersOnTarget(pt.contexts[E].GLctx.canvas),pt.contexts[E]&&pt.contexts[E].GLctx.canvas&&(pt.contexts[E].GLctx.canvas.GLctxObject=void 0),Uu(pt.contexts[E].handle),pt.contexts[E]=null},initExtensions:function(E){if(E||(E=pt.currentContext),!E.initExtensionsDone){E.initExtensionsDone=!0;var R=E.GLctx;fg(R),mg(R),gg(R),R.disjointTimerQueryExt=R.getExtension("EXT_disjoint_timer_query"),yg(R);var H=R.getSupportedExtensions()||[];H.forEach(function(J){J.indexOf("lose_context")<0&&J.indexOf("debug")<0&&R.getExtension(J)})}},populateUniformTable:function(E){for(var R=pt.programs[E],H=pt.programInfos[E]={uniforms:{},maxUniformLength:0,maxAttributeLength:-1,maxUniformBlockNameLength:-1},J=H.uniforms,Ae=vs.getProgramParameter(R,35718),me=0;me<Ae;++me){var ye=vs.getActiveUniform(R,me),Ie=ye.name;H.maxUniformLength=Math.max(H.maxUniformLength,Ie.length+1),Ie.slice(-1)=="]"&&(Ie=Ie.slice(0,Ie.lastIndexOf("[")));var gt=vs.getUniformLocation(R,Ie);if(gt){var cn=pt.getNewId(pt.uniforms);J[Ie]=[ye.size,cn],pt.uniforms[cn]=gt;for(var rn=1;rn<ye.size;++rn){var ks=Ie+"["+rn+"]";gt=vs.getUniformLocation(R,ks),cn=pt.getNewId(pt.uniforms),pt.uniforms[cn]=gt}}}}},Ag=["default","low-power","high-performance"];function xg(E,R){var H=R>>2,J=o()[H+(24>>2)],Ae={alpha:!!o()[H+(0>>2)],depth:!!o()[H+(4>>2)],stencil:!!o()[H+(8>>2)],antialias:!!o()[H+(12>>2)],premultipliedAlpha:!!o()[H+(16>>2)],preserveDrawingBuffer:!!o()[H+(20>>2)],powerPreference:Ag[J],failIfMajorPerformanceCaveat:!!o()[H+(28>>2)],majorVersion:o()[H+(32>>2)],minorVersion:o()[H+(36>>2)],enableExtensionsByDefault:o()[H+(40>>2)],explicitSwapControl:o()[H+(44>>2)],proxyContextToMainThread:o()[H+(48>>2)],renderViaOffscreenBackBuffer:o()[H+(52>>2)]},me=Lu(E);if(!me||Ae.explicitSwapControl)return 0;var ye=pt.createContext(me,Ae);return ye}function bg(E,R){return xg(E,R)}var Eo={mappings:{},buffers:[null,[],[]],printChar:function(E,R){var H=Eo.buffers[E];R===0||R===10?((E===1?X:q)(qe(H,0)),H.length=0):H.push(R)},varargs:void 0,get:function(){Eo.varargs+=4;var E=o()[Eo.varargs-4>>2];return E},getStr:function(E){var R=Be(E);return R},get64:function(E,R){return E}};function Bp(E){return w?bs(3,1,E):0}function Vp(E,R,H,J,Ae){if(w)return bs(4,1,E,R,H,J,Ae)}function Up(E,R,H,J){if(w)return bs(5,1,E,R,H,J);for(var Ae=0,me=0;me<H;me++){for(var ye=o()[R+me*8>>2],Ie=o()[R+(me*8+4)>>2],gt=0;gt<Ie;gt++)Eo.printChar(E,i()[ye+gt]);Ae+=Ie}return o()[J>>2]=Ae,0}function vg(E){var R=Te.threadExitHandlers.pop();E&&R()}function wg(E,R){Te.threadExitHandlers.push(function(){Wa.get(E)(R)})}function jp(E){if(w)throw"Internal Error! spawnThread() can only ever be called from main application thread!";var R=Te.getNewWorker();if(R.pthread!==void 0)throw"Internal error!";if(!E.pthread_ptr)throw"Internal error, no pthread ptr!";Te.runningWorkers.push(R);for(var H=ui(128*4),J=0;J<128;++J)o()[H+J*4>>2]=0;var Ae=E.stackBase+E.stackSize,me=Te.pthreads[E.pthread_ptr]={worker:R,stackBase:E.stackBase,stackSize:E.stackSize,allocatedOwnStack:E.allocatedOwnStack,threadInfoStruct:E.pthread_ptr},ye=me.threadInfoStruct>>2;Atomics.store(l(),ye+(64>>2),E.detached),Atomics.store(l(),ye+(100>>2),H),Atomics.store(l(),ye+(40>>2),me.threadInfoStruct),Atomics.store(l(),ye+(80>>2),E.stackSize),Atomics.store(l(),ye+(76>>2),Ae),Atomics.store(l(),ye+(104>>2),E.stackSize),Atomics.store(l(),ye+(104+8>>2),Ae),Atomics.store(l(),ye+(104+12>>2),E.detached);var Ie=v3(),gt=Ie+40;Atomics.store(l(),ye+(172>>2),gt),R.pthread=me;var cn={cmd:"run",start_routine:E.startRoutine,arg:E.arg,threadInfoStruct:E.pthread_ptr,stackBase:E.stackBase,stackSize:E.stackSize};R.runPthread=function(){cn.time=performance.now(),R.postMessage(cn,E.transferList)},R.loaded&&(R.runPthread(),delete R.runPthread)}function kg(E,R,H,J){if(typeof SharedArrayBuffer=="undefined")return q("Current environment does not support SharedArrayBuffer, pthreads are not available!"),6;if(!E)return q("pthread_create called with a null thread pointer!"),28;var Ae=[],me=0;if(w&&(Ae.length===0||me))return S3(687865856,E,R,H,J);if(me)return me;var ye=0,Ie=0,gt=0;R&&R!=-1?(ye=o()[R>>2],ye+=81920,Ie=o()[R+8>>2],gt=o()[R+12>>2]!==0):ye=2097152;var cn=Ie==0;cn?Ie=E3(16,ye):(Ie-=ye,xe(Ie>0));for(var rn=ui(228),ks=0;ks<228>>2;++ks)l()[(rn>>2)+ks]=0;o()[E>>2]=rn,o()[rn+12>>2]=rn;var Oo=rn+152;o()[Oo>>2]=Oo;var Xn={stackBase:Ie,stackSize:ye,allocatedOwnStack:cn,detached:gt,startRoutine:H,pthread_ptr:rn,arg:J,transferList:Ae};return w?(Xn.cmd="spawnThread",postMessage(Xn,Ae)):jp(Xn),0}function Hp(E){if(w)return bs(6,1,E);switch(E){case 30:return 16384;case 85:var R=2147483648;return R/16384;case 132:case 133:case 12:case 137:case 138:case 15:case 235:case 16:case 17:case 18:case 19:case 20:case 149:case 13:case 10:case 236:case 153:case 9:case 21:case 22:case 159:case 154:case 14:case 77:case 78:case 139:case 82:case 68:case 67:case 164:case 11:case 29:case 47:case 48:case 95:case 52:case 51:case 46:return 200809;case 27:case 246:case 127:case 128:case 23:case 24:case 160:case 161:case 181:case 182:case 242:case 183:case 184:case 243:case 244:case 245:case 165:case 178:case 179:case 49:case 50:case 168:case 169:case 175:case 170:case 171:case 172:case 97:case 76:case 32:case 173:case 35:case 80:case 81:case 79:return-1;case 176:case 177:case 7:case 155:case 8:case 157:case 125:case 126:case 92:case 93:case 129:case 130:case 131:case 94:case 91:return 1;case 74:case 60:case 69:case 70:case 4:return 1024;case 31:case 42:case 72:return 32;case 87:case 26:case 33:return 2147483647;case 34:case 1:return 47839;case 38:case 36:return 99;case 43:case 37:return 2048;case 0:return 2097152;case 3:return 65536;case 28:return 32768;case 44:return 32767;case 75:return 16384;case 39:return 1e3;case 89:return 700;case 71:return 256;case 40:return 255;case 2:return 100;case 180:return 64;case 25:return 20;case 5:return 16;case 6:return 6;case 73:return 4;case 84:return typeof navigator=="object"&&navigator.hardwareConcurrency||1}return Hm(28),-1}w||Te.initMainThreadBlock();var vs,Ig=[null,Gm,Wp,Bp,Vp,Up,Hp],Sg={e:Um,r:jm,x:qm,b:Km,y:Xm,j:Zm,c:Ym,d:_u,f:li,p:Jm,z:Qm,u:tg,q:rg,v:hg,i:pg,t:cg,w:bg,m:Bp,n:Vp,g:Up,o:Pp,a:te||d.wasmMemory,k:vg,l:wg,h:kg,s:Hp},x3=Dm(),Gp=d.___wasm_call_ctors=function(){return(Gp=d.___wasm_call_ctors=d.asm.A).apply(null,arguments)},Ng=d._init=function(){return(Ng=d._init=d.asm.B).apply(null,arguments)},Tg=d._register_tensor=function(){return(Tg=d._register_tensor=d.asm.C).apply(null,arguments)},Eg=d._dispose_data=function(){return(Eg=d._dispose_data=d.asm.D).apply(null,arguments)},Cg=d._dispose=function(){return(Cg=d._dispose=d.asm.E).apply(null,arguments)},Mg=d._Abs=function(){return(Mg=d._Abs=d.asm.G).apply(null,arguments)},$g=d._Add=function(){return($g=d._Add=d.asm.H).apply(null,arguments)},Rg=d._AddN=function(){return(Rg=d._AddN=d.asm.I).apply(null,arguments)},Fg=d._All=function(){return(Fg=d._All=d.asm.J).apply(null,arguments)},Og=d._Any=function(){return(Og=d._Any=d.asm.K).apply(null,arguments)},Dg=d._ArgMax=function(){return(Dg=d._ArgMax=d.asm.L).apply(null,arguments)},_g=d._AvgPool=function(){return(_g=d._AvgPool=d.asm.M).apply(null,arguments)},zg=d._BatchMatMul=function(){return(zg=d._BatchMatMul=d.asm.N).apply(null,arguments)},Pg=d._Ceil=function(){return(Pg=d._Ceil=d.asm.O).apply(null,arguments)},Lg=d._ClipByValue=function(){return(Lg=d._ClipByValue=d.asm.P).apply(null,arguments)},Wg=d._Conv2D=function(){return(Wg=d._Conv2D=d.asm.Q).apply(null,arguments)},Bg=d._Conv2DBackpropInput=function(){return(Bg=d._Conv2DBackpropInput=d.asm.R).apply(null,arguments)},Vg=d._Cos=function(){return(Vg=d._Cos=d.asm.S).apply(null,arguments)},Ug=d._CropAndResize=function(){return(Ug=d._CropAndResize=d.asm.T).apply(null,arguments)},jg=d._Cumsum=function(){return(jg=d._Cumsum=d.asm.U).apply(null,arguments)},Hg=d._DepthToSpace=function(){return(Hg=d._DepthToSpace=d.asm.V).apply(null,arguments)},Gg=d._DepthwiseConv2dNative=function(){return(Gg=d._DepthwiseConv2dNative=d.asm.W).apply(null,arguments)},qp=d._Equal=function(){return(qp=d._Equal=d.asm.X).apply(null,arguments)},Kp=d._Exp=function(){return(Kp=d._Exp=d.asm.Y).apply(null,arguments)},Xp=d._FlipLeftRight=function(){return(Xp=d._FlipLeftRight=d.asm.Z).apply(null,arguments)},Wu=d._Floor=function(){return(Wu=d._Floor=d.asm._).apply(null,arguments)},Co=d._FloorDiv=function(){return(Co=d._FloorDiv=d.asm.$).apply(null,arguments)},qg=d._FusedBatchNorm=function(){return(qg=d._FusedBatchNorm=d.asm.aa).apply(null,arguments)},Bu=d._FusedConv2D=function(){return(Bu=d._FusedConv2D=d.asm.ba).apply(null,arguments)},ne=d._FusedDepthwiseConv2D=function(){return(ne=d._FusedDepthwiseConv2D=d.asm.ca).apply(null,arguments)},oe=d._Gather=function(){return(oe=d._Gather=d.asm.da).apply(null,arguments)},Oe=d._GatherNd=function(){return(Oe=d._GatherNd=d.asm.ea).apply(null,arguments)},ut=d._Greater=function(){return(ut=d._Greater=d.asm.fa).apply(null,arguments)},Ht=d._GreaterEqual=function(){return(Ht=d._GreaterEqual=d.asm.ga).apply(null,arguments)},Dt=d._LeakyRelu=function(){return(Dt=d._LeakyRelu=d.asm.ha).apply(null,arguments)},et=d._Less=function(){return(et=d._Less=d.asm.ia).apply(null,arguments)},tt=d._LessEqual=function(){return(tt=d._LessEqual=d.asm.ja).apply(null,arguments)},kn=d._Log=function(){return(kn=d._Log=d.asm.ka).apply(null,arguments)},Hr=d._LogicalAnd=function(){return(Hr=d._LogicalAnd=d.asm.la).apply(null,arguments)},Gr=d._Max=function(){return(Gr=d._Max=d.asm.ma).apply(null,arguments)},Zp=d._MaxPool=function(){return(Zp=d._MaxPool=d.asm.na).apply(null,arguments)},Vu=d._Maximum=function(){return(Vu=d._Maximum=d.asm.oa).apply(null,arguments)},va=d._Mean=function(){return(va=d._Mean=d.asm.pa).apply(null,arguments)},ws=d._Min=function(){return(ws=d._Min=d.asm.qa).apply(null,arguments)},Yp=d._Minimum=function(){return(Yp=d._Minimum=d.asm.ra).apply(null,arguments)},h$=d._MirrorPad=function(){return(h$=d._MirrorPad=d.asm.sa).apply(null,arguments)},p$=d._Multiply=function(){return(p$=d._Multiply=d.asm.ta).apply(null,arguments)},c$=d._Neg=function(){return(c$=d._Neg=d.asm.ua).apply(null,arguments)},f$=d._NonMaxSuppressionV3=function(){return(f$=d._NonMaxSuppressionV3=d.asm.va).apply(null,arguments)},m$=d._NonMaxSuppressionV4=function(){return(m$=d._NonMaxSuppressionV4=d.asm.wa).apply(null,arguments)},g$=d._NonMaxSuppressionV5=function(){return(g$=d._NonMaxSuppressionV5=d.asm.xa).apply(null,arguments)},y$=d._NotEqual=function(){return(y$=d._NotEqual=d.asm.ya).apply(null,arguments)},A$=d._OneHot=function(){return(A$=d._OneHot=d.asm.za).apply(null,arguments)},x$=d._PadV2=function(){return(x$=d._PadV2=d.asm.Aa).apply(null,arguments)},b$=d._Pow=function(){return(b$=d._Pow=d.asm.Ba).apply(null,arguments)},v$=d._Prelu=function(){return(v$=d._Prelu=d.asm.Ca).apply(null,arguments)},w$=d._Prod=function(){return(w$=d._Prod=d.asm.Da).apply(null,arguments)},k$=d._RealDiv=function(){return(k$=d._RealDiv=d.asm.Ea).apply(null,arguments)},I$=d._Relu=function(){return(I$=d._Relu=d.asm.Fa).apply(null,arguments)},S$=d._Relu6=function(){return(S$=d._Relu6=d.asm.Ga).apply(null,arguments)},N$=d._ResizeBilinear=function(){return(N$=d._ResizeBilinear=d.asm.Ha).apply(null,arguments)},T$=d._Reverse=function(){return(T$=d._Reverse=d.asm.Ia).apply(null,arguments)},E$=d._RotateWithOffset=function(){return(E$=d._RotateWithOffset=d.asm.Ja).apply(null,arguments)},C$=d._Round=function(){return(C$=d._Round=d.asm.Ka).apply(null,arguments)},M$=d._Rsqrt=function(){return(M$=d._Rsqrt=d.asm.La).apply(null,arguments)},$$=d._ScatterNd=function(){return($$=d._ScatterNd=d.asm.Ma).apply(null,arguments)},R$=d._SelectV2=function(){return(R$=d._SelectV2=d.asm.Na).apply(null,arguments)},F$=d._Sigmoid=function(){return(F$=d._Sigmoid=d.asm.Oa).apply(null,arguments)},O$=d._Sin=function(){return(O$=d._Sin=d.asm.Pa).apply(null,arguments)},D$=d._Softmax=function(){return(D$=d._Softmax=d.asm.Qa).apply(null,arguments)},_$=d._Sqrt=function(){return(_$=d._Sqrt=d.asm.Ra).apply(null,arguments)},z$=d._Square=function(){return(z$=d._Square=d.asm.Sa).apply(null,arguments)},P$=d._SquaredDifference=function(){return(P$=d._SquaredDifference=d.asm.Ta).apply(null,arguments)},L$=d._Step=function(){return(L$=d._Step=d.asm.Ua).apply(null,arguments)},W$=d._StridedSlice=function(){return(W$=d._StridedSlice=d.asm.Va).apply(null,arguments)},B$=d._Sub=function(){return(B$=d._Sub=d.asm.Wa).apply(null,arguments)},V$=d._Sum=function(){return(V$=d._Sum=d.asm.Xa).apply(null,arguments)},U$=d._Tan=function(){return(U$=d._Tan=d.asm.Ya).apply(null,arguments)},j$=d._Tanh=function(){return(j$=d._Tanh=d.asm.Za).apply(null,arguments)},H$=d._Tile=function(){return(H$=d._Tile=d.asm._a).apply(null,arguments)},G$=d._TopK=function(){return(G$=d._TopK=d.asm.$a).apply(null,arguments)},q$=d._Transform=function(){return(q$=d._Transform=d.asm.ab).apply(null,arguments)},K$=d._Transpose=function(){return(K$=d._Transpose=d.asm.bb).apply(null,arguments)},X$=d.__FusedMatMul=function(){return(X$=d.__FusedMatMul=d.asm.cb).apply(null,arguments)},ui=d._malloc=function(){return(ui=d._malloc=d.asm.db).apply(null,arguments)},Uu=d._free=function(){return(Uu=d._free=d.asm.eb).apply(null,arguments)},b3=d.___errno_location=function(){return(b3=d.___errno_location=d.asm.fb).apply(null,arguments)},v3=d._emscripten_get_global_libc=function(){return(v3=d._emscripten_get_global_libc=d.asm.gb).apply(null,arguments)},Mo=d._pthread_self=function(){return(Mo=d._pthread_self=d.asm.hb).apply(null,arguments)},w3=d.___pthread_tsd_run_dtors=function(){return(w3=d.___pthread_tsd_run_dtors=d.asm.ib).apply(null,arguments)},Kg=d._emscripten_main_thread_process_queued_calls=function(){return(Kg=d._emscripten_main_thread_process_queued_calls=d.asm.jb).apply(null,arguments)},Z$=d._emscripten_current_thread_process_queued_calls=function(){return(Z$=d._emscripten_current_thread_process_queued_calls=d.asm.kb).apply(null,arguments)},k3=d._emscripten_register_main_browser_thread_id=function(){return(k3=d._emscripten_register_main_browser_thread_id=d.asm.lb).apply(null,arguments)},I3=d.__emscripten_do_dispatch_to_thread=function(){return(I3=d.__emscripten_do_dispatch_to_thread=d.asm.mb).apply(null,arguments)},S3=d._emscripten_sync_run_in_main_thread_4=function(){return(S3=d._emscripten_sync_run_in_main_thread_4=d.asm.nb).apply(null,arguments)},N3=d._emscripten_run_in_main_runtime_thread_js=function(){return(N3=d._emscripten_run_in_main_runtime_thread_js=d.asm.ob).apply(null,arguments)},Xg=d.__emscripten_call_on_thread=function(){return(Xg=d.__emscripten_call_on_thread=d.asm.pb).apply(null,arguments)},Y$=d._emscripten_tls_init=function(){return(Y$=d._emscripten_tls_init=d.asm.qb).apply(null,arguments)},Zg=d.__emscripten_thread_init=function(){return(Zg=d.__emscripten_thread_init=d.asm.rb).apply(null,arguments)},ju=d.stackSave=function(){return(ju=d.stackSave=d.asm.sb).apply(null,arguments)},$o=d.stackRestore=function(){return($o=d.stackRestore=d.asm.tb).apply(null,arguments)},Ro=d.stackAlloc=function(){return(Ro=d.stackAlloc=d.asm.ub).apply(null,arguments)},T3=d._emscripten_stack_set_limits=function(){return(T3=d._emscripten_stack_set_limits=d.asm.vb).apply(null,arguments)},E3=d._memalign=function(){return(E3=d._memalign=d.asm.wb).apply(null,arguments)},C3=d.__emscripten_allow_main_runtime_queued_calls=9808,Fo=d.__emscripten_main_thread_futex=11432;d.cwrap=We,d.PThread=Te,d.PThread=Te,d.wasmMemory=te,d.ExitStatus=Hu;var Jp;function Hu(E){this.name="ExitStatus",this.message="Program terminated with exit("+E+")",this.status=E}oi=function E(){Jp||Yg(),Jp||(oi=E)};function Yg(E){if(E=E||f,Ur>0)return;if(w){h(d),Du(),postMessage({cmd:"loaded"});return}if(Em(),Ur>0)return;function R(){Jp||(Jp=!0,d.calledRun=!0,!he&&(Du(),Cm(),h(d),d.onRuntimeInitialized&&d.onRuntimeInitialized(),qn()))}d.setStatus?(d.setStatus("Running..."),setTimeout(function(){setTimeout(function(){d.setStatus("")},1),R()},1)):R()}d.run=Yg;function J$(E,R){if(!(R&&de&&E===0)){if(!R&&w)throw postMessage({cmd:"exitProcess",returnCode:E}),new Hu(E);de||(Te.terminateAllThreads(),ve=E,Rp(),d.onExit&&d.onExit(E),he=!0),y(E,new Hu(E))}}if(d.preInit)for(typeof d.preInit=="function"&&(d.preInit=[d.preInit]);d.preInit.length>0;)d.preInit.pop()();return w&&(de=!1,Te.initWorker()),Yg(),r.ready}}();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModuleThreadedSimd=n)}),SR=_t((e,t)=>{var n=function(){var a=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(a=a||__filename),function(r){r=r||{};var s=typeof r!="undefined"?r:{},i,o;s.ready=new Promise(function(ne,oe){i=ne,o=oe});var l={},u;for(u in s)s.hasOwnProperty(u)&&(l[u]=s[u]);var d=[],h="./this.program",p=function(ne,oe){throw oe},c=!1,m=!1,f=!1,g=!1;c=typeof window=="object",m=typeof importScripts=="function",f=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",g=!c&&!f&&!m;var y="";function A(ne){return s.locateFile?s.locateFile(ne,y):y+ne}var x,v,b,w,I,T;f?(m?y=Gu().dirname(y)+"/":y=__dirname+"/",x=function(ne,oe){return I||(I=di("fs")),T||(T=Gu()),ne=T.normalize(ne),I.readFileSync(ne,oe?null:"utf8")},b=function(ne){var oe=x(ne,!0);return oe.buffer||(oe=new Uint8Array(oe)),X(oe.buffer),oe},process.argv.length>1&&(h=process.argv[1].replace(/\\/g,"/")),d=process.argv.slice(2),process.on("uncaughtException",function(ne){if(!(ne instanceof qg))throw ne}),process.on("unhandledRejection",wr),p=function(ne){process.exit(ne)},s.inspect=function(){return"[Emscripten Module object]"}):g?(typeof read!="undefined"&&(x=function(ne){return read(ne)}),b=function(ne){var oe;return typeof readbuffer=="function"?new Uint8Array(readbuffer(ne)):(oe=read(ne,"binary"),X(typeof oe=="object"),oe)},typeof scriptArgs!="undefined"?d=scriptArgs:typeof arguments!="undefined"&&(d=arguments),typeof quit=="function"&&(p=function(ne){quit(ne)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(c||m)&&(m?y=self.location.href:typeof document!="undefined"&&document.currentScript&&(y=document.currentScript.src),a&&(y=a),y.indexOf("blob:")!==0?y=y.substr(0,y.lastIndexOf("/")+1):y="",x=function(ne){var oe=new XMLHttpRequest;return oe.open("GET",ne,!1),oe.send(null),oe.responseText},m&&(b=function(ne){var oe=new XMLHttpRequest;return oe.open("GET",ne,!1),oe.responseType="arraybuffer",oe.send(null),new Uint8Array(oe.response)}),v=function(ne,oe,Oe){var ut=new XMLHttpRequest;ut.open("GET",ne,!0),ut.responseType="arraybuffer",ut.onload=function(){if(ut.status==200||ut.status==0&&ut.response){oe(ut.response);return}Oe()},ut.onerror=Oe,ut.send(null)},w=function(ne){document.title=ne});var C=s.print||console.log.bind(console),z=s.printErr||console.warn.bind(console);for(u in l)l.hasOwnProperty(u)&&(s[u]=l[u]);l=null,s.arguments&&(d=s.arguments),s.thisProgram&&(h=s.thisProgram),s.quit&&(p=s.quit);var $;s.wasmBinary&&($=s.wasmBinary);var S=s.noExitRuntime||!0;typeof WebAssembly!="object"&&wr("no native wasm support detected");var D,_=!1,W;function X(ne,oe){ne||wr("Assertion failed: "+oe)}function q(ne){var oe=s["_"+ne];return X(oe,"Cannot call unknown function "+ne+", make sure it is exported"),oe}function Q(ne,oe,Oe,ut,Ht){var Dt={string:function(va){var ws=0;if(va!=null&&va!==0){var Yp=(va.length<<2)+1;ws=Wu(Yp),ce(va,ws,Yp)}return ws},array:function(va){var ws=Wu(va.length);return he(va,ws),ws}};function et(va){return oe==="string"?de(va):oe==="boolean"?Boolean(va):va}var tt=q(ne),kn=[],Hr=0;if(ut)for(var Gr=0;Gr<ut.length;Gr++){var Zp=Dt[Oe[Gr]];Zp?(Hr===0&&(Hr=Kp()),kn[Gr]=Zp(ut[Gr])):kn[Gr]=ut[Gr]}var Vu=tt.apply(null,kn);return Vu=et(Vu),Hr!==0&&Xp(Hr),Vu}function ee(ne,oe,Oe,ut){Oe=Oe||[];var Ht=Oe.every(function(et){return et==="number"}),Dt=oe!=="string";return Dt&&Ht&&!ut?q(ne):function(){return Q(ne,oe,Oe,arguments,ut)}}var ie=typeof TextDecoder!="undefined"?new TextDecoder("utf8"):void 0;function ae(ne,oe,Oe){for(var ut=oe+Oe,Ht=oe;ne[Ht]&&!(Ht>=ut);)++Ht;if(Ht-oe>16&&ne.subarray&&ie)return ie.decode(ne.subarray(oe,Ht));for(var Dt="";oe<Ht;){var et=ne[oe++];if(!(et&128)){Dt+=String.fromCharCode(et);continue}var tt=ne[oe++]&63;if((et&224)==192){Dt+=String.fromCharCode((et&31)<<6|tt);continue}var kn=ne[oe++]&63;if((et&240)==224?et=(et&15)<<12|tt<<6|kn:et=(et&7)<<18|tt<<12|kn<<6|ne[oe++]&63,et<65536)Dt+=String.fromCharCode(et);else{var Hr=et-65536;Dt+=String.fromCharCode(55296|Hr>>10,56320|Hr&1023)}}return Dt}function de(ne,oe){return ne?ae(Fe,ne,oe):""}function te(ne,oe,Oe,ut){if(!(ut>0))return 0;for(var Ht=Oe,Dt=Oe+ut-1,et=0;et<ne.length;++et){var tt=ne.charCodeAt(et);if(tt>=55296&&tt<=57343){var kn=ne.charCodeAt(++et);tt=65536+((tt&1023)<<10)|kn&1023}if(tt<=127){if(Oe>=Dt)break;oe[Oe++]=tt}else if(tt<=2047){if(Oe+1>=Dt)break;oe[Oe++]=192|tt>>6,oe[Oe++]=128|tt&63}else if(tt<=65535){if(Oe+2>=Dt)break;oe[Oe++]=224|tt>>12,oe[Oe++]=128|tt>>6&63,oe[Oe++]=128|tt&63}else{if(Oe+3>=Dt)break;oe[Oe++]=240|tt>>18,oe[Oe++]=128|tt>>12&63,oe[Oe++]=128|tt>>6&63,oe[Oe++]=128|tt&63}}return oe[Oe]=0,Oe-Ht}function ce(ne,oe,Oe){return te(ne,Fe,oe,Oe)}function he(ne,oe){Ee.set(ne,oe)}function ve(ne,oe){return ne%oe>0&&(ne+=oe-ne%oe),ne}var xe,Ee,Fe,We,qe,Be,ft,mt,bt;function lt(ne){xe=ne,s.HEAP8=Ee=new Int8Array(ne),s.HEAP16=We=new Int16Array(ne),s.HEAP32=Be=new Int32Array(ne),s.HEAPU8=Fe=new Uint8Array(ne),s.HEAPU16=qe=new Uint16Array(ne),s.HEAPU32=ft=new Uint32Array(ne),s.HEAPF32=mt=new Float32Array(ne),s.HEAPF64=bt=new Float64Array(ne)}var Ct=s.INITIAL_MEMORY||16777216,Je,Hn=[],Bt=[],xa=[],vn=[],Gn=!1;Bt.push({func:function(){Pp()}});function ba(){if(s.preRun)for(typeof s.preRun=="function"&&(s.preRun=[s.preRun]);s.preRun.length;)vr(s.preRun.shift());xs(Hn)}function sa(){Gn=!0,xs(Bt)}function Rn(){xs(xa)}function wn(){if(s.postRun)for(typeof s.postRun=="function"&&(s.postRun=[s.postRun]);s.postRun.length;)Wa(s.postRun.shift());xs(vn)}function vr(ne){Hn.unshift(ne)}function Wa(ne){vn.unshift(ne)}var Ba=0,ys=null,Vr=null;function As(ne){Ba++,s.monitorRunDependencies&&s.monitorRunDependencies(Ba)}function So(ne){if(Ba--,s.monitorRunDependencies&&s.monitorRunDependencies(Ba),Ba==0&&(ys!==null&&(clearInterval(ys),ys=null),Vr)){var oe=Vr;Vr=null,oe()}}s.preloadedImages={},s.preloadedAudios={};function wr(ne){s.onAbort&&s.onAbort(ne),ne+="",z(ne),_=!0,W=1,ne="abort("+ne+"). Build with -s ASSERTIONS=1 for more info.";var oe=new WebAssembly.RuntimeError(ne);throw o(oe),oe}function $p(ne,oe){return String.prototype.startsWith?ne.startsWith(oe):ne.indexOf(oe)===0}var Em="data:application/octet-stream;base64,";function Du(ne){return $p(ne,Em)}var Cm="file://";function Rp(ne){return $p(ne,Cm)}var qn="tfjs-backend-wasm.wasm";Du(qn)||(qn=A(qn));function Fp(ne){try{if(ne==qn&&$)return new Uint8Array($);if(b)return b(ne);throw"both async and sync fetching of the wasm failed"}catch(oe){wr(oe)}}function Mm(){if(!$&&(c||m)){if(typeof fetch=="function"&&!Rp(qn))return fetch(qn,{credentials:"same-origin"}).then(function(ne){if(!ne.ok)throw"failed to load wasm binary file at '"+qn+"'";return ne.arrayBuffer()}).catch(function(){return Fp(qn)});if(v)return new Promise(function(ne,oe){v(qn,function(Oe){ne(new Uint8Array(Oe))},oe)})}return Promise.resolve().then(function(){return Fp(qn)})}function Ur(){var ne={a:Dm};function oe(et,tt){var kn=et.exports;s.asm=kn,D=s.asm.i,lt(D.buffer),Je=s.asm.o,So("wasm-instantiate")}As("wasm-instantiate");function Oe(et){oe(et.instance)}function ut(et){return Mm().then(function(tt){return WebAssembly.instantiate(tt,ne)}).then(et,function(tt){z("failed to asynchronously prepare wasm: "+tt),wr(tt)})}function Ht(){return!$&&typeof WebAssembly.instantiateStreaming=="function"&&!Du(qn)&&!Rp(qn)&&typeof fetch=="function"?fetch(qn,{credentials:"same-origin"}).then(function(et){var tt=WebAssembly.instantiateStreaming(et,ne);return tt.then(Oe,function(kn){return z("wasm streaming compile failed: "+kn),z("falling back to ArrayBuffer instantiation"),ut(Oe)})}):ut(Oe)}if(s.instantiateWasm)try{var Dt=s.instantiateWasm(ne,oe);return Dt}catch(et){return z("Module.instantiateWasm callback failed with error: "+et),!1}return Ht().catch(o),{}}function xs(ne){for(;ne.length>0;){var oe=ne.shift();if(typeof oe=="function"){oe(s);continue}var Oe=oe.func;typeof Oe=="number"?oe.arg===void 0?Je.get(Oe)():Je.get(Oe)(oe.arg):Oe(oe.arg===void 0?null:oe.arg)}}function oi(){wr()}function $m(ne,oe,Oe){Fe.copyWithin(ne,oe,oe+Oe)}function Rm(){return Fe.length}function jr(ne){try{return D.grow(ne-xe.byteLength+65535>>>16),lt(D.buffer),1}catch(oe){}}function Op(ne){var oe=Rm(),Oe=2147483648;if(ne>Oe)return!1;for(var ut=1;ut<=4;ut*=2){var Ht=oe*(1+.2/ut);Ht=Math.min(Ht,ne+100663296);var Dt=Math.min(Oe,ve(Math.max(ne,Ht),65536)),et=jr(Dt);if(et)return!0}return!1}var No={mappings:{},buffers:[null,[],[]],printChar:function(ne,oe){var Oe=No.buffers[ne];oe===0||oe===10?((ne===1?C:z)(ae(Oe,0)),Oe.length=0):Oe.push(oe)},varargs:void 0,get:function(){No.varargs+=4;var ne=Be[No.varargs-4>>2];return ne},getStr:function(ne){var oe=de(ne);return oe},get64:function(ne,oe){return ne}};function Dp(ne){return 0}function Fm(ne,oe,Oe,ut,Ht){}function _p(ne,oe,Oe,ut){for(var Ht=0,Dt=0;Dt<Oe;Dt++){for(var et=Be[oe+Dt*8>>2],tt=Be[oe+(Dt*8+4)>>2],kn=0;kn<tt;kn++)No.printChar(ne,Fe[et+kn]);Ht+=tt}return Be[ut>>2]=Ht,0}function Kn(){return 6}function zp(ne){return Be[qp()>>2]=ne,ne}function Om(ne){switch(ne){case 30:return 16384;case 85:var oe=2147483648;return oe/16384;case 132:case 133:case 12:case 137:case 138:case 15:case 235:case 16:case 17:case 18:case 19:case 20:case 149:case 13:case 10:case 236:case 153:case 9:case 21:case 22:case 159:case 154:case 14:case 77:case 78:case 139:case 82:case 68:case 67:case 164:case 11:case 29:case 47:case 48:case 95:case 52:case 51:case 46:return 200809;case 27:case 246:case 127:case 128:case 23:case 24:case 160:case 161:case 181:case 182:case 242:case 183:case 184:case 243:case 244:case 245:case 165:case 178:case 179:case 49:case 50:case 168:case 169:case 175:case 170:case 171:case 172:case 97:case 76:case 32:case 173:case 35:case 80:case 81:case 79:return-1;case 176:case 177:case 7:case 155:case 8:case 157:case 125:case 126:case 92:case 93:case 129:case 130:case 131:case 94:case 91:return 1;case 74:case 60:case 69:case 70:case 4:return 1024;case 31:case 42:case 72:return 32;case 87:case 26:case 33:return 2147483647;case 34:case 1:return 47839;case 38:case 36:return 99;case 43:case 37:return 2048;case 0:return 2097152;case 3:return 65536;case 28:return 32768;case 44:return 32767;case 75:return 16384;case 39:return 1e3;case 89:return 700;case 71:return 256;case 40:return 255;case 2:return 100;case 180:return 64;case 25:return 20;case 5:return 16;case 6:return 6;case 73:return 4;case 84:return typeof navigator=="object"&&navigator.hardwareConcurrency||1}return zp(28),-1}var Dm={a:oi,d:$m,e:Op,f:Dp,c:Fm,b:_p,g:Kn,h:Om},_m=Ur(),Pp=s.___wasm_call_ctors=function(){return(Pp=s.___wasm_call_ctors=s.asm.j).apply(null,arguments)},To=s._init=function(){return(To=s._init=s.asm.k).apply(null,arguments)},_u=s._register_tensor=function(){return(_u=s._register_tensor=s.asm.l).apply(null,arguments)},zm=s._dispose_data=function(){return(zm=s._dispose_data=s.asm.m).apply(null,arguments)},Pm=s._dispose=function(){return(Pm=s._dispose=s.asm.n).apply(null,arguments)},Lm=s._Abs=function(){return(Lm=s._Abs=s.asm.p).apply(null,arguments)},Te=s._Add=function(){return(Te=s._Add=s.asm.q).apply(null,arguments)},Wm=s._AddN=function(){return(Wm=s._AddN=s.asm.r).apply(null,arguments)},Bm=s._All=function(){return(Bm=s._All=s.asm.s).apply(null,arguments)},Vm=s._Any=function(){return(Vm=s._Any=s.asm.t).apply(null,arguments)},Um=s._ArgMax=function(){return(Um=s._ArgMax=s.asm.u).apply(null,arguments)},jm=s._AvgPool=function(){return(jm=s._AvgPool=s.asm.v).apply(null,arguments)},li=s._BatchMatMul=function(){return(li=s._BatchMatMul=s.asm.w).apply(null,arguments)},Hm=s._Ceil=function(){return(Hm=s._Ceil=s.asm.x).apply(null,arguments)},Gm=s._ClipByValue=function(){return(Gm=s._ClipByValue=s.asm.y).apply(null,arguments)},qm=s._Conv2D=function(){return(qm=s._Conv2D=s.asm.z).apply(null,arguments)},Km=s._Conv2DBackpropInput=function(){return(Km=s._Conv2DBackpropInput=s.asm.A).apply(null,arguments)},Xm=s._Cos=function(){return(Xm=s._Cos=s.asm.B).apply(null,arguments)},Zm=s._CropAndResize=function(){return(Zm=s._CropAndResize=s.asm.C).apply(null,arguments)},Ym=s._Cumsum=function(){return(Ym=s._Cumsum=s.asm.D).apply(null,arguments)},Jm=s._DepthToSpace=function(){return(Jm=s._DepthToSpace=s.asm.E).apply(null,arguments)},Qm=s._DepthwiseConv2dNative=function(){return(Qm=s._DepthwiseConv2dNative=s.asm.F).apply(null,arguments)},bs=s._Equal=function(){return(bs=s._Equal=s.asm.G).apply(null,arguments)},zu=s._Exp=function(){return(zu=s._Exp=s.asm.H).apply(null,arguments)},Pu=s._FlipLeftRight=function(){return(Pu=s._FlipLeftRight=s.asm.I).apply(null,arguments)},eg=s._Floor=function(){return(eg=s._Floor=s.asm.J).apply(null,arguments)},tg=s._FloorDiv=function(){return(tg=s._FloorDiv=s.asm.K).apply(null,arguments)},ng=s._FusedBatchNorm=function(){return(ng=s._FusedBatchNorm=s.asm.L).apply(null,arguments)},ag=s._FusedConv2D=function(){return(ag=s._FusedConv2D=s.asm.M).apply(null,arguments)},rg=s._FusedDepthwiseConv2D=function(){return(rg=s._FusedDepthwiseConv2D=s.asm.N).apply(null,arguments)},Xe=s._Gather=function(){return(Xe=s._Gather=s.asm.O).apply(null,arguments)},sg=s._GatherNd=function(){return(sg=s._GatherNd=s.asm.P).apply(null,arguments)},ig=s._Greater=function(){return(ig=s._Greater=s.asm.Q).apply(null,arguments)},og=s._GreaterEqual=function(){return(og=s._GreaterEqual=s.asm.R).apply(null,arguments)},lg=s._LeakyRelu=function(){return(lg=s._LeakyRelu=s.asm.S).apply(null,arguments)},ug=s._Less=function(){return(ug=s._Less=s.asm.T).apply(null,arguments)},dg=s._LessEqual=function(){return(dg=s._LessEqual=s.asm.U).apply(null,arguments)},Lu=s._Log=function(){return(Lu=s._Log=s.asm.V).apply(null,arguments)},Lp=s._LogicalAnd=function(){return(Lp=s._LogicalAnd=s.asm.W).apply(null,arguments)},Wp=s._Max=function(){return(Wp=s._Max=s.asm.X).apply(null,arguments)},hg=s._MaxPool=function(){return(hg=s._MaxPool=s.asm.Y).apply(null,arguments)},pg=s._Maximum=function(){return(pg=s._Maximum=s.asm.Z).apply(null,arguments)},cg=s._Mean=function(){return(cg=s._Mean=s.asm._).apply(null,arguments)},fg=s._Min=function(){return(fg=s._Min=s.asm.$).apply(null,arguments)},mg=s._Minimum=function(){return(mg=s._Minimum=s.asm.aa).apply(null,arguments)},gg=s._MirrorPad=function(){return(gg=s._MirrorPad=s.asm.ba).apply(null,arguments)},yg=s._Multiply=function(){return(yg=s._Multiply=s.asm.ca).apply(null,arguments)},pt=s._Neg=function(){return(pt=s._Neg=s.asm.da).apply(null,arguments)},Ag=s._NonMaxSuppressionV3=function(){return(Ag=s._NonMaxSuppressionV3=s.asm.ea).apply(null,arguments)},xg=s._NonMaxSuppressionV4=function(){return(xg=s._NonMaxSuppressionV4=s.asm.fa).apply(null,arguments)},bg=s._NonMaxSuppressionV5=function(){return(bg=s._NonMaxSuppressionV5=s.asm.ga).apply(null,arguments)},Eo=s._NotEqual=function(){return(Eo=s._NotEqual=s.asm.ha).apply(null,arguments)},Bp=s._OneHot=function(){return(Bp=s._OneHot=s.asm.ia).apply(null,arguments)},Vp=s._PadV2=function(){return(Vp=s._PadV2=s.asm.ja).apply(null,arguments)},Up=s._Pow=function(){return(Up=s._Pow=s.asm.ka).apply(null,arguments)},vg=s._Prelu=function(){return(vg=s._Prelu=s.asm.la).apply(null,arguments)},wg=s._Prod=function(){return(wg=s._Prod=s.asm.ma).apply(null,arguments)},jp=s._RealDiv=function(){return(jp=s._RealDiv=s.asm.na).apply(null,arguments)},kg=s._Relu=function(){return(kg=s._Relu=s.asm.oa).apply(null,arguments)},Hp=s._Relu6=function(){return(Hp=s._Relu6=s.asm.pa).apply(null,arguments)},vs=s._ResizeBilinear=function(){return(vs=s._ResizeBilinear=s.asm.qa).apply(null,arguments)},Ig=s._Reverse=function(){return(Ig=s._Reverse=s.asm.ra).apply(null,arguments)},Sg=s._RotateWithOffset=function(){return(Sg=s._RotateWithOffset=s.asm.sa).apply(null,arguments)},x3=s._Round=function(){return(x3=s._Round=s.asm.ta).apply(null,arguments)},Gp=s._Rsqrt=function(){return(Gp=s._Rsqrt=s.asm.ua).apply(null,arguments)},Ng=s._ScatterNd=function(){return(Ng=s._ScatterNd=s.asm.va).apply(null,arguments)},Tg=s._SelectV2=function(){return(Tg=s._SelectV2=s.asm.wa).apply(null,arguments)},Eg=s._Sigmoid=function(){return(Eg=s._Sigmoid=s.asm.xa).apply(null,arguments)},Cg=s._Sin=function(){return(Cg=s._Sin=s.asm.ya).apply(null,arguments)},Mg=s._Softmax=function(){return(Mg=s._Softmax=s.asm.za).apply(null,arguments)},$g=s._Sqrt=function(){return($g=s._Sqrt=s.asm.Aa).apply(null,arguments)},Rg=s._Square=function(){return(Rg=s._Square=s.asm.Ba).apply(null,arguments)},Fg=s._SquaredDifference=function(){return(Fg=s._SquaredDifference=s.asm.Ca).apply(null,arguments)},Og=s._Step=function(){return(Og=s._Step=s.asm.Da).apply(null,arguments)},Dg=s._StridedSlice=function(){return(Dg=s._StridedSlice=s.asm.Ea).apply(null,arguments)},_g=s._Sub=function(){return(_g=s._Sub=s.asm.Fa).apply(null,arguments)},zg=s._Sum=function(){return(zg=s._Sum=s.asm.Ga).apply(null,arguments)},Pg=s._Tan=function(){return(Pg=s._Tan=s.asm.Ha).apply(null,arguments)},Lg=s._Tanh=function(){return(Lg=s._Tanh=s.asm.Ia).apply(null,arguments)},Wg=s._Tile=function(){return(Wg=s._Tile=s.asm.Ja).apply(null,arguments)},Bg=s._TopK=function(){return(Bg=s._TopK=s.asm.Ka).apply(null,arguments)},Vg=s._Transform=function(){return(Vg=s._Transform=s.asm.La).apply(null,arguments)},Ug=s._Transpose=function(){return(Ug=s._Transpose=s.asm.Ma).apply(null,arguments)},jg=s.__FusedMatMul=function(){return(jg=s.__FusedMatMul=s.asm.Na).apply(null,arguments)},Hg=s._malloc=function(){return(Hg=s._malloc=s.asm.Oa).apply(null,arguments)},Gg=s._free=function(){return(Gg=s._free=s.asm.Pa).apply(null,arguments)},qp=s.___errno_location=function(){return(qp=s.___errno_location=s.asm.Qa).apply(null,arguments)},Kp=s.stackSave=function(){return(Kp=s.stackSave=s.asm.Ra).apply(null,arguments)},Xp=s.stackRestore=function(){return(Xp=s.stackRestore=s.asm.Sa).apply(null,arguments)},Wu=s.stackAlloc=function(){return(Wu=s.stackAlloc=s.asm.Ta).apply(null,arguments)};s.cwrap=ee;var Co;function qg(ne){this.name="ExitStatus",this.message="Program terminated with exit("+ne+")",this.status=ne}Vr=function ne(){Co||Bu(),Co||(Vr=ne)};function Bu(ne){if(ne=ne||d,Ba>0||(ba(),Ba>0))return;function oe(){Co||(Co=!0,s.calledRun=!0,!_&&(sa(),Rn(),i(s),s.onRuntimeInitialized&&s.onRuntimeInitialized(),wn()))}s.setStatus?(s.setStatus("Running..."),setTimeout(function(){setTimeout(function(){s.setStatus("")},1),oe()},1)):oe()}if(s.run=Bu,s.preInit)for(typeof s.preInit=="function"&&(s.preInit=[s.preInit]);s.preInit.length>0;)s.preInit.pop()();return Bu(),r.ready}}();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModule=n)}),NR="3.7.0",TR="3.7.0",ER="3.7.0",CR="3.7.0",MR="3.7.0",$R="3.7.0",RR="3.7.0",FR="3.7.0",OR=1e-7,DR=1e-4,_R=class{constructor(e,t){this.backend=e,this.dataMover=t,this.data=new WeakMap,this.dataIdsCount=0}get(e){return this.data.has(e)||this.dataMover.moveData(this.backend,e),this.data.get(e)}set(e,t){this.dataIdsCount++,this.data.set(e,t)}has(e){return this.data.has(e)}delete(e){return this.dataIdsCount--,this.data.delete(e)}numDataIds(){return this.dataIdsCount}},L3=class{refCount(e){return Va("refCount")}incRef(e){return Va("incRef")}timerAvailable(){return!0}time(e){return Va("time")}read(e){return Va("read")}readSync(e){return Va("readSync")}numDataIds(){return Va("numDataIds")}disposeData(e,t){return Va("disposeData")}write(e,t,n){return Va("write")}move(e,t,n,a,r){return Va("move")}memory(){return Va("memory")}floatPrecision(){return Va("floatPrecision")}epsilon(){return this.floatPrecision()===32?OR:DR}dispose(){return Va("dispose")}};function Va(e){throw new Error(`'${e}' not yet implemented or not found in the registry. This kernel may not be supported by the tfjs backend you have chosen`)}function W3(e){let t=e.length,n=0,a=0;for(;t>0;)a=Math.random()*t|0,t--,n=e[t],e[t]=e[a],e[a]=n}function zR(e,t){if(e.length!==t.length)throw new Error(`Array sizes must match to be shuffled together First array length was ${e.length}Second array length was ${t.length}`);let n=e.length,a,r,s=0;for(;n>0;)s=Math.random()*n|0,n--,a=e[n],r=t[n],e[n]=e[s],t[n]=t[s],e[s]=a,t[s]=r}function qu(e,t,n){return Math.max(e,Math.min(t,n))}function PR(e){return e%2==0?e:e+1}function LR(e){let t=0;for(let n=0;n<e.length;n++)t+=e[n];return t}function WR(e,t){let n=Math.random();return t*n+(1-n)*e}function BR(e,t){let n=0;for(let a=0;a<e.length;a++){let r=Number(e[a])-Number(t[a]);n+=r*r}return n}function L(e,t){if(!e)throw new Error(typeof t=="string"?t:t())}function On(e,t,n=""){L(Kr(e,t),()=>n+` Shapes ${e} and ${t} must match`)}function hi(e){L(e!=null,()=>"The input to the tensor constructor must be a non-null value.")}function pi(e,t=[],n=!1){if(t==null&&(t=[]),Array.isArray(e)||En(e)&&!n)for(let a=0;a<e.length;++a)pi(e[a],t,n);else t.push(e);return t}function Jt(e){if(e.length===0)return 1;let t=e[0];for(let n=1;n<e.length;n++)t*=e[n];return t}function VR(e){return e.length===0}function Kr(e,t){if(e===t)return!0;if(e==null||t==null||e.length!==t.length)return!1;for(let n=0;n<e.length;n++)if(e[n]!==t[n])return!1;return!0}function Zn(e){return e%1==0}function UR(e){if(Math.tanh!=null)return Math.tanh(e);if(e===Infinity)return 1;if(e===-Infinity)return-1;{let t=Math.exp(2*e);return(t-1)/(t+1)}}function jR(e){let t=Math.ceil(Math.sqrt(e));return[t,Math.ceil(e/t)]}function HR(e){let t=new Uint32Array(e);for(let n=0;n<e;++n)t[n]=n;return W3(t),t}function Ku(e,t){return t<=e.length?e:e+" ".repeat(t-e.length)}function GR(e,t=a=>0,n){return new Promise((a,r)=>{let s=0,i=()=>{if(e()){a();return}s++;let o=t(s);if(n!=null&&s>=n){r();return}setTimeout(i,o)};i()})}function qR(e,t){let n=1,a=-1;for(let s=0;s<e.length;++s)if(e[s]>=0)n*=e[s];else if(e[s]===-1){if(a!==-1)throw Error(`Shapes can only have 1 implicit size. Found -1 at dim ${a} and dim ${s}`);a=s}else if(e[s]<0)throw Error(`Shapes can not be < 0. Found ${e[s]} at dim ${s}`);if(a===-1){if(t>0&&t!==n)throw Error(`Size(${t}) must match the product of shape ${e}`);return e}if(n===0)throw Error(`Cannot infer the missing size in [${e}] when there are 0 elements`);if(t%n!=0)throw Error(`The implicit shape can't be a fractional number. Got ${t} / ${n}`);let r=e.slice();return r[a]=t/n,r}function Xu(e,t){let n=t.length;return e=e==null?t.map((a,r)=>r):[].concat(e),L(e.every(a=>a>=-n&&a<n),()=>`All values in axis param must be in range [-${n}, ${n}) but got axis ${e}`),L(e.every(a=>Zn(a)),()=>`All values in axis param must be integers but got axis ${e}`),e.map(a=>a<0?n+a:a)}function B3(e,t){let n=[],a=[],r=t!=null&&Array.isArray(t)&&t.length===0,s=t==null||r?null:Xu(t,e).sort(),i=0;for(let o=0;o<e.length;++o){if(s!=null){if(s[i]===o&&e[o]!==1)throw new Error(`Can't squeeze axis ${o} since its dim '${e[o]}' is not 1`);(s[i]==null||s[i]>o)&&e[o]===1&&(n.push(e[o]),a.push(o)),s[i]<=o&&i++}e[o]!==1&&(n.push(e[o]),a.push(o))}return{newShape:n,keptDims:a}}function V3(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else throw new Error(`Unknown data type ${e}`);return n}function U3(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else if(e==="string")n=new Array(t);else throw new Error(`Unknown data type ${e}`);return n}function j3(e,t){for(let n=0;n<e.length;n++){let a=e[n];if(isNaN(a)||!isFinite(a))throw Error(`A tensor of type ${t} being uploaded contains ${a}.`)}}function H3(e){return e==="bool"||e==="complex64"||e==="float32"||e==="int32"||e==="string"}function KR(e,t){return!(t==="complex64"||t==="float32"&&e!=="complex64"||t==="int32"&&e!=="float32"&&e!=="complex64"||t==="bool"&&e==="bool")}function En(e){return e instanceof Float32Array||e instanceof Int32Array||e instanceof Uint8Array}function ey(e){if(e==="float32"||e==="int32")return 4;if(e==="complex64")return 8;if(e==="bool")return 1;throw new Error(`Unknown dtype ${e}`)}function G3(e){if(e==null)return 0;let t=0;return e.forEach(n=>t+=n.length),t}function Is(e){return typeof e=="string"||e instanceof String}function q3(e){return typeof e=="boolean"}function K3(e){return typeof e=="number"}function ec(e){return Array.isArray(e)?ec(e[0]):e instanceof Float32Array?"float32":e instanceof Int32Array||e instanceof Uint8Array?"int32":K3(e)?"float32":Is(e)?"string":q3(e)?"bool":"float32"}function Ss(e){return!!(e&&e.constructor&&e.call&&e.apply)}function tc(e,t){for(let n=t;n<e;++n)if(e%n==0)return n;return e}function _o(e){let t=e.length;if(t<2)return[];let n=new Array(t-1);n[t-2]=e[t-1];for(let a=t-3;a>=0;--a)n[a]=n[a+1]*e[a+1];return n}function X3(e,t,n,a=!1){let r=new Array;if(t.length===1){let s=t[0]*(a?2:1);for(let i=0;i<s;i++)r[i]=n[e+i]}else{let s=t[0],i=t.slice(1),o=i.reduce((l,u)=>l*u)*(a?2:1);for(let l=0;l<s;l++)r[l]=X3(e+l*o,i,n,a)}return r}function zo(e,t,n=!1){if(e.length===0)return t[0];let a=e.reduce((r,s)=>r*s)*(n?2:1);if(a===0)return[];if(a!==t.length)throw new Error(`[${e}] does not match the input size ${t.length}${n?" for a complex tensor":""}.`);return X3(0,e,t,n)}function ty(e,t){let n=nc(e,t);for(let a=0;a<n.length;a++)n[a]=1;return n}function nc(e,t){if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool")return new Uint8Array(e);throw new Error(`Unknown data type ${t}`)}function XR(e,t){let n=e.reduce((a,r)=>a*r,1);if(t==null||t==="float32")return zo(e,new Float32Array(n));if(t==="int32")return zo(e,new Int32Array(n));if(t==="bool")return zo(e,new Uint8Array(n));throw new Error(`Unknown data type ${t}`)}function ny(e){e.forEach(t=>{L(Number.isInteger(t)&&t>=0,()=>`Tensor must have a shape comprised of positive integers but got shape [${e}].`)})}function ZR(e,t,n){if(t===0)return 0;if(t===1)return e[0];let a=e[e.length-1];for(let r=0;r<e.length-1;++r)a+=n[r]*e[r];return a}function YR(e,t,n){if(t===0)return[];if(t===1)return[e];let a=new Array(t);for(let r=0;r<a.length-1;++r)a[r]=Math.floor(e/n[r]),e-=a[r]*n[r];return a[a.length-1]=e,a}function ay(e){return e&&e.then&&typeof e.then=="function"}var Z3="tfjsflags",Y3=class{constructor(e){this.global=e,this.flags={},this.flagRegistry={},this.urlFlags={},this.getQueryParams=JR,this.populateURLFlags()}setPlatform(e,t){this.platform!=null&&console.warn(`Platform ${this.platformName} has already been set. Overwriting the platform with ${t}.`),this.platformName=e,this.platform=t}registerFlag(e,t,n){if(this.flagRegistry[e]={evaluationFn:t,setHook:n},this.urlFlags[e]!=null){let a=this.urlFlags[e];console.warn(`Setting feature override from URL ${e}: ${a}.`),this.set(e,a)}}async getAsync(e){return e in this.flags?this.flags[e]:(this.flags[e]=await this.evaluateFlag(e),this.flags[e])}get(e){if(e in this.flags)return this.flags[e];let t=this.evaluateFlag(e);if(ay(t))throw new Error(`Flag ${e} cannot be synchronously evaluated. Please use getAsync() instead.`);return this.flags[e]=t,this.flags[e]}getNumber(e){return this.get(e)}getBool(e){return this.get(e)}getFlags(){return this.flags}get features(){return this.flags}set(e,t){if(this.flagRegistry[e]==null)throw new Error(`Cannot set flag ${e} as it has not been registered.`);this.flags[e]=t,this.flagRegistry[e].setHook!=null&&this.flagRegistry[e].setHook(t)}evaluateFlag(e){if(this.flagRegistry[e]==null)throw new Error(`Cannot evaluate flag '${e}': no evaluation function found.`);return this.flagRegistry[e].evaluationFn()}setFlags(e){this.flags=Object.assign({},e)}reset(){this.flags={},this.urlFlags={},this.populateURLFlags()}populateURLFlags(){if(typeof this.global=="undefined"||typeof this.global.location=="undefined"||typeof this.global.location.search=="undefined")return;let e=this.getQueryParams(this.global.location.search);Z3 in e&&e[Z3].split(",").forEach(t=>{let[n,a]=t.split(":");this.urlFlags[n]=eF(n,a)})}};function JR(e){let t={};return e.replace(/[?&]([^=?&]+)(?:=([^&]*))?/g,(n,...a)=>(QR(t,a[0],a[1]),a.join("="))),t}function QR(e,t,n){e[decodeURIComponent(t)]=decodeURIComponent(n||"")}function eF(e,t){if(t=t.toLowerCase(),t==="true"||t==="false")return t==="true";if(`${+t}`===t)return+t;throw new Error(`Could not parse value flag value ${t} for flag ${e}.`)}function ht(){return ka}var ka=null;function tF(e){ka=e}var ry;function J3(){if(ry==null){let e;if(typeof window!="undefined")e=window;else if(typeof global!="undefined")e=global;else if(typeof process!="undefined")e=process;else if(typeof self!="undefined")e=self;else throw new Error("Could not find a global object");ry=e}return ry}function nF(){let e=J3();return e._tfGlobals==null&&(e._tfGlobals=new Map),e._tfGlobals}function sy(e,t){let n=nF();if(n.has(e))return n.get(e);{let a=t();return n.set(e,a),n.get(e)}}var Q3="Abs",ev="Acos",tv="Acosh",iy="Add",nv="AddN",av="All",rv="Any",sv="ArgMax",iv="ArgMin",ov="Asin",lv="Asinh",uv="Atan",dv="Atanh",hv="Atan2",pv="AvgPool",aF="AvgPoolGrad",cv="AvgPool3D",rF="AvgPool3DGrad",fv="BatchMatMul",mv="BatchToSpaceND",gv="Bincount",sF="BroadcastTo",oy="Cast",yv="Ceil",Av="ClipByValue",xv="Complex",bv="ComplexAbs",vv="Concat",wv="Conv2D",kv="Conv2DBackpropFilter",Iv="Conv2DBackpropInput",Sv="Conv3D",iF="Conv3DBackpropFilterV2",Nv="Conv3DBackpropInputV2",Tv="Cos",Ev="Cosh",Cv="Cumsum",Mv="CropAndResize",$v="DenseBincount",Rv="DepthToSpace",Fv="DepthwiseConv2dNative",Ov="DepthwiseConv2dNativeBackpropFilter",Dv="DepthwiseConv2dNativeBackpropInput",_v="Diag",zv="Dilation2D",oF="Dilation2DBackpropInput",lF="Dilation2DBackpropFilter",Pv="RealDiv",Lv="Einsum",Wv="Elu",uF="EluGrad",Bv="Erf",Vv="Equal",Uv="Exp",jv="ExpandDims",Hv="Expm1",Gv="FFT",qv="Fill",Kv="FlipLeftRight",Xv="Floor",Zv="FloorDiv",Yv="FusedBatchNorm",Jv="GatherV2",Qv="GatherNd",ew="Greater",tw="GreaterEqual",ly="Identity",nw="IFFT",aw="Imag",rw="IsFinite",sw="IsInf",iw="IsNan",ow="LeakyRelu",lw="Less",uw="LessEqual",dw="LinSpace",hw="Log",pw="Log1p",cw="LogicalAnd",fw="LogicalNot",mw="LogicalOr",dF="LogSoftmax",gw="LRN",hF="LRNGrad",yw="Max",Aw="Maximum",xw="MaxPool",pF="MaxPoolGrad",bw="MaxPool3D",cF="MaxPool3DGrad",vw="MaxPoolWithArgmax",ww="Mean",kw="Min",Iw="Minimum",Sw="MirrorPad",Nw="Mod",Tw="Multinomial",Ew="Multiply",Cw="Neg",Mw="NotEqual",$w="NonMaxSuppressionV3",Rw="NonMaxSuppressionV4",Fw="NonMaxSuppressionV5",Ow="OnesLike",Dw="OneHot",_w="Pack",zw="PadV2",fF="Pool",Pw="Pow",Lw="Prelu",Ww="Prod",Bw="Range",Vw="Real",Uw="Reciprocal",jw="Relu",Hw="Reshape",Gw="ResizeNearestNeighbor",mF="ResizeNearestNeighborGrad",qw="ResizeBilinear",gF="ResizeBilinearGrad",Kw="Relu6",Xw="Reverse",Zw="Round",Yw="Rsqrt",Jw="ScatterNd",Qw="Select",e7="Selu",t7="Slice",n7="Sin",a7="Sinh",r7="Sign",s7="Sigmoid",i7="Softplus",o7="Sqrt",l7="Sum",u7="SpaceToBatchND",d7="SplitV",h7="Softmax",p7="SparseFillEmptyRows",c7="SparseReshape",f7="SparseSegmentMean",m7="SparseSegmentSum",g7="SparseToDense",y7="SquaredDifference",yF="Square",A7="StridedSlice",x7="StringNGrams",b7="StringSplit",v7="StringToHashBucketFast",w7="Sub",k7="Tan",I7="Tanh",uy="Tile",S7="TopK",N7="Transform",T7="Transpose",E7="Unique",C7="Unpack",M7="UnsortedSegmentSum",$7="ZerosLike",R7="Step",dy="FromPixels",F7="RotateWithOffset",hy="_FusedMatMul",py="FusedConv2D",cy="FusedDepthwiseConv2D",Po=sy("kernelRegistry",()=>new Map),Zu=sy("gradRegistry",()=>new Map);function ac(e,t){let n=my(e,t);return Po.get(n)}function fy(e){return Zu.get(e)}function Lo(e){let t=Po.entries(),n=[];for(;;){let{done:a,value:r}=t.next();if(a)break;let[s,i]=r,[o]=s.split("_");o===e&&n.push(i)}return n}function rc(e){let{kernelName:t,backendName:n}=e,a=my(t,n);Po.has(a)&&console.warn(`The kernel '${t}' for backend '${n}' is already registered`),Po.set(a,e)}function AF(e){let{kernelName:t}=e;Zu.has(t)&&ht().getBool("DEBUG")&&console.warn(`Overriding the gradient for '${t}'`),Zu.set(t,e)}function xF(e,t){let n=my(e,t);if(!Po.has(n))throw new Error(`The kernel '${e}' for backend '${t}' is not registered`);Po.delete(n)}function bF(e){if(!Zu.has(e))throw new Error(`The gradient '${e}' for backend is not registered`);Zu.delete(e)}function vF(e,t){Lo(e).forEach(n=>{let a=Object.assign({},n,{backendName:t});rc(a)})}function my(e,t){return`${t}_${e}`}var O7={};$e(O7,{arraysEqual:()=>Kr,assert:()=>L,assertNonNegativeIntegerDimensions:()=>ny,assertNonNull:()=>hi,assertShapesMatch:()=>On,bytesFromStringArray:()=>G3,bytesPerElement:()=>ey,checkConversionForErrors:()=>j3,clamp:()=>qu,computeStrides:()=>_o,createScalarValue:()=>TF,createShuffledIndices:()=>HR,decodeString:()=>oc,distSquared:()=>BR,encodeString:()=>Qu,fetch:()=>CF,fingerPrint64:()=>NF,flatten:()=>pi,getArrayFromDType:()=>U3,getTypedArrayFromDType:()=>V3,hasEncodingLoss:()=>KR,hexToLong:()=>Yu,indexToLoc:()=>YR,inferDtype:()=>ec,inferFromImplicitShape:()=>qR,isBoolean:()=>q3,isFunction:()=>Ss,isInt:()=>Zn,isNumber:()=>K3,isPromise:()=>ay,isScalarShape:()=>VR,isString:()=>Is,isTypedArray:()=>En,isValidDtype:()=>H3,locToIndex:()=>ZR,makeOnesTypedArray:()=>ty,makeZerosNestedTypedArray:()=>XR,makeZerosTypedArray:()=>nc,nearestDivisor:()=>tc,nearestLargerEven:()=>PR,now:()=>Ju,parseAxisParam:()=>Xu,randUniform:()=>WR,repeatedTry:()=>GR,rightPad:()=>Ku,shuffle:()=>W3,shuffleCombo:()=>zR,sizeFromShape:()=>Jt,sizeToSquarishShape:()=>jR,squeezeShape:()=>B3,sum:()=>LR,tanh:()=>UR,toNestedArray:()=>zo,toTypedArray:()=>ic});var D7=qr(D3()),ci=D7.default||D7;function Yu(e){return ci.fromString(e,!0,16)}var _7=Yu("c3a5c85c97cb3127"),fi=Yu("b492b66fbe98f273"),Dn=Yu("9ae16a3b2f90404f");function gy(e){return e.xor(e.shru(47))}function z7(e,t,n){let a=e.slice(t,t+n);return ci.fromBytes(Array.from(a),!0,!0)}function It(e,t){return z7(e,t,8)}function P7(e,t){return z7(e,t,4)}function fn(e,t){return t===0?e:e.shru(t).or(e.shl(64-t))}function Ns(e,t,n=Yu("9ddfea08eb382d69")){let a=e.xor(t).mul(n);a=a.xor(a.shru(47));let r=t.xor(a).mul(n);return r=r.xor(r.shru(47)),r=r.mul(n),r}function wF(e,t,n,a,r,s){r=r.add(e),s=fn(s.add(r).add(a),21);let i=r;return r=r.add(t),r=r.add(n),s=s.add(fn(r,44)),[r.add(a),s.add(i)]}function sc(e,t,n,a){return wF(It(e,t),It(e,t+8),It(e,t+16),It(e,t+24),n,a)}function kF(e,t=e.length){if(t>=8){let n=Dn.add(t*2),a=It(e,0).add(Dn),r=It(e,t-8),s=fn(r,37).mul(n).add(a),i=fn(a,25).add(r).mul(n);return Ns(s,i,n)}if(t>=4){let n=Dn.add(t*2),a=P7(e,0);return Ns(a.shl(3).add(t),P7(e,t-4),n)}if(t>0){let n=e[0],a=e[t>>1],r=e[t-1],s=n+(a<<8),i=t+(r<<2);return gy(Dn.mul(s).xor(_7.mul(i))).mul(Dn)}return Dn}function IF(e,t=e.length){let n=Dn.add(t*2),a=It(e,0).mul(fi),r=It(e,8),s=It(e,t-8).mul(n),i=It(e,t-16).mul(Dn);return Ns(fn(a.add(r),43).add(fn(s,30)).add(i),a.add(fn(r.add(Dn),18)).add(s),n)}function SF(e,t=e.length){let n=Dn.add(t*2),a=It(e,0).mul(Dn),r=It(e,8),s=It(e,t-8).mul(n),i=It(e,t-16).mul(Dn),o=fn(a.add(r),43).add(fn(s,30)).add(i),l=Ns(o,a.add(fn(r.add(Dn),18)).add(s),n),u=It(e,16).mul(n),d=It(e,24),h=o.add(It(e,t-32)).mul(n),p=l.add(It(e,t-24)).mul(n);return Ns(fn(u.add(d),43).add(fn(h,30)).add(p),u.add(fn(d.add(a),18)).add(h),n)}function NF(e,t=e.length){let n=ci.fromNumber(81,!0);if(t<=32)return t<=16?kF(e,t):IF(e,t);if(t<=64)return SF(e,t);let a=n,r=n.mul(fi).add(113),s=gy(r.mul(Dn).add(113)).mul(Dn),i=[ci.UZERO,ci.UZERO],o=[ci.UZERO,ci.UZERO];a=a.mul(Dn).add(It(e,0));let l=0,u=(t-1>>6)*64,d=u+(t-1&63)-63;do a=fn(a.add(r).add(i[0]).add(It(e,l+8)),37).mul(fi),r=fn(r.add(i[1]).add(It(e,l+48)),42).mul(fi),a=a.xor(o[1]),r=r.add(i[0]).add(It(e,l+40)),s=fn(s.add(o[0]),33).mul(fi),i=sc(e,l,i[1].mul(fi),a.add(o[0])),o=sc(e,l+32,s.add(o[1]),r.add(It(e,l+16))),[s,a]=[a,s],l+=64;while(l!==u);let h=fi.add(s.and(255).shl(1));return l=d,o[0]=o[0].add(t-1&63),i[0]=i[0].add(o[0]),o[0]=o[0].add(i[0]),a=fn(a.add(r).add(i[0]).add(It(e,l+8)),37).mul(h),r=fn(r.add(i[1]).add(It(e,l+48)),42).mul(h),a=a.xor(o[1].mul(9)),r=r.add(i[0].mul(9).add(It(e,l+40))),s=fn(s.add(o[0]),33).mul(h),i=sc(e,l,i[1].mul(h),a.add(o[0])),o=sc(e,l+32,s.add(o[1]),r.add(It(e,l+16))),[s,a]=[a,s],Ns(Ns(i[0],o[0],h).add(gy(r).mul(_7)).add(s),Ns(i[1],o[1],h).add(a),h)}function TF(e,t){return t==="string"?Qu(e):ic([e],t)}function EF(e,t){return e instanceof Float32Array&&t==="float32"||e instanceof Int32Array&&t==="int32"||e instanceof Uint8Array&&t==="bool"}function ic(e,t){if(t==="string")throw new Error("Cannot convert a string[] to a TypedArray");if(Array.isArray(e)&&(e=pi(e)),ht().getBool("DEBUG")&&j3(e,t),EF(e,t))return e;if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool"){let n=new Uint8Array(e.length);for(let a=0;a<n.length;++a)Math.round(e[a])!==0&&(n[a]=1);return n}else throw new Error(`Unknown data type ${t}`)}function Ju(){return ht().platform.now()}function CF(e,t){return ht().platform.fetch(e,t)}function Qu(e,t="utf-8"){return t=t||"utf-8",ht().platform.encode(e,t)}function oc(e,t="utf-8"){return t=t||"utf-8",ht().platform.decode(e,t)}var MF=class{constructor(e,t){this.backendTimer=e,this.logger=t,t==null&&(this.logger=new RF)}profileKernel(e,t,n){let a,r=()=>{a=n()},s,i=Ju();if(this.backendTimer.timerAvailable())s=this.backendTimer.time(r);else{r();for(let o of a)o.dataSync();s=Promise.resolve({kernelMs:Ju()-i})}if(ht().getBool("CHECK_COMPUTATION_FOR_ERRORS"))for(let o=0;o<a.length;o++){let l=a[o];l.data().then(u=>{$F(u,l.dtype,e)})}return{kernelName:e,outputs:a,inputs:t,timeMs:s.then(o=>o.kernelMs),extraInfo:s.then(o=>o.getExtraProfileInfo!=null?o.getExtraProfileInfo():"")}}logKernelProfile(e){let{kernelName:t,outputs:n,timeMs:a,inputs:r,extraInfo:s}=e;n.forEach(i=>{Promise.all([i.data(),a,s]).then(o=>{this.logger.logKernelProfile(t,i,o[0],o[1],r,o[2])})})}};function $F(e,t,n){if(t!=="float32")return!1;for(let a=0;a<e.length;a++){let r=e[a];if(isNaN(r)||!isFinite(r))return console.warn(`Found ${r} in the result of '${n}'`),!0}return!1}var RF=class{logKernelProfile(e,t,n,a,r,s){let i=typeof a=="number"?Ku(`${a}ms`,9):a.error,o=Ku(e,25),l=t.rank,u=t.size,d=Ku(t.shape.toString(),14),h="";for(let p in r){let c=r[p];if(c!=null){let m=c.shape||t.shape,f=m.length;h+=`${p}: ${f}D ${f>0?m:""} `}}console.log(`%c${o} %c${i} %c${l}D ${d} %c${u} %c${h} %c${s}`,"font-weight:bold","color:red","color:blue","color: orange","color: green","color: steelblue")}};function FF(e,t,n){let a={},r={};for(let l=0;l<t.length;l++)a[t[l].id]=!0;for(let l=0;l<e.length;l++){let u=e[l],d=u.inputs;for(let h in d){let p=d[h],c=!1;for(let m=0;m<t.length;m++)if(a[p.id]){u.outputs.forEach(f=>a[f.id]=!0),c=!0,r[u.id]=!0;break}if(c)break}}let s={};s[n.id]=!0;let i={};for(let l=e.length-1;l>=0;l--){let u=e[l],d=u.inputs;for(let h=0;h<u.outputs.length;h++)if(s[u.outputs[h].id]){for(let p in d)s[d[p].id]=!0,i[u.id]=!0;break}}let o=[];for(let l=0;l<e.length;l++){let u=e[l];if(r[u.id]&&i[u.id]){let d={};for(let p in u.inputs){let c=u.inputs[p];a[c.id]&&(d[p]=c)}let h=Object.assign({},u);h.inputs=d,h.outputs=u.outputs,o.push(h)}}return o}function OF(e,t,n,a){for(let r=t.length-1;r>=0;r--){let s=t[r],i=[];if(s.outputs.forEach(l=>{let u=e[l.id];u!=null?i.push(u):i.push(null)}),s.gradient==null)throw new Error(`Cannot compute gradient: gradient function not found for ${s.kernelName}.`);let o=s.gradient(i);for(let l in s.inputs){if(!(l in o))throw new Error(`Cannot backprop through input ${l}. Available gradients found: ${Object.keys(o)}.`);let u=n(()=>o[l]());if(u.dtype!=="float32")throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input ${l} must have 'float32' dtype, but has '${u.dtype}'`);let d=s.inputs[l];if(!Kr(u.shape,d.shape))throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input '${l}' has shape '${u.shape}', which does not match the shape of the input '${d.shape}'`);if(e[d.id]==null)e[d.id]=u;else{let h=e[d.id];e[d.id]=a(h,u),h.dispose()}}}}var L7=20,ed=3,yy=7;function DF(e,t,n,a){let r=_o(t),s=_F(e,t,n,r),i=t.length,o=lc(e,t,n,r,s),l=["Tensor"];return a&&(l.push(` dtype: ${n}`),l.push(` rank: ${i}`),l.push(` shape: [${t}]`),l.push(" values:")),l.push(o.map(u=>" "+u).join(`
|
|
`)),l.join(`
|
|
`)}function _F(e,t,n,a){let r=Jt(t),s=a[a.length-1],i=new Array(s).fill(0),o=t.length,l=n==="complex64"?nd(e):e;if(o>1)for(let u=0;u<r/s;u++){let d=u*s;for(let h=0;h<s;h++)i[h]=Math.max(i[h],td(l[d+h],0,n).length)}return i}function td(e,t,n){let a;return Array.isArray(e)?a=`${parseFloat(e[0].toFixed(yy))} + ${parseFloat(e[1].toFixed(yy))}j`:Is(e)?a=`'${e}'`:n==="bool"?a=W7(e):a=parseFloat(e.toFixed(yy)).toString(),Ku(a,t)}function W7(e){return e===0?"false":"true"}function lc(e,t,n,a,r,s=!0){let i=n==="complex64"?2:1,o=t[0],l=t.length;if(l===0){if(n==="complex64"){let f=nd(e);return[td(f[0],0,n)]}return n==="bool"?[W7(e[0])]:[e[0].toString()]}if(l===1){if(o>L7){let g=ed*i,y=Array.from(e.slice(0,g)),A=Array.from(e.slice((o-ed)*i,o*i));return n==="complex64"&&(y=nd(y),A=nd(A)),["["+y.map((x,v)=>td(x,r[v],n)).join(", ")+", ..., "+A.map((x,v)=>td(x,r[o-ed+v],n)).join(", ")+"]"]}let f=n==="complex64"?nd(e):Array.from(e);return["["+f.map((g,y)=>td(g,r[y],n)).join(", ")+"]"]}let u=t.slice(1),d=a.slice(1),h=a[0]*i,p=[];if(o>L7){for(let f=0;f<ed;f++){let g=f*h,y=g+h;p.push(...lc(e.slice(g,y),u,n,d,r,!1))}p.push("...");for(let f=o-ed;f<o;f++){let g=f*h,y=g+h;p.push(...lc(e.slice(g,y),u,n,d,r,f===o-1))}}else for(let f=0;f<o;f++){let g=f*h,y=g+h;p.push(...lc(e.slice(g,y),u,n,d,r,f===o-1))}let c=l===2?",":"";p[0]="["+p[0]+c;for(let f=1;f<p.length-1;f++)p[f]=" "+p[f]+c;let m=`,
|
|
`;for(let f=2;f<l;f++)m+=`
|
|
`;return p[p.length-1]=" "+p[p.length-1]+"]"+(s?"":m),p}function nd(e){let t=[];for(let n=0;n<e.length;n+=2)t.push([e[n],e[n+1]]);return t}var uc=class{constructor(e,t,n){if(this.dtype=t,this.shape=e.slice(),this.size=Jt(e),n!=null){let a=n.length;L(a===this.size,()=>`Length of values '${a}' does not match the size inferred by the shape '${this.size}'.`)}if(t==="complex64")throw new Error("complex64 dtype TensorBuffers are not supported. Please create a TensorBuffer for the real and imaginary parts separately and call tf.complex(real, imag).");this.values=n||U3(t,this.size),this.strides=_o(e)}set(e,...t){t.length===0&&(t=[0]),L(t.length===this.rank,()=>`The number of provided coordinates (${t.length}) must match the rank (${this.rank})`);let n=this.locToIndex(t);this.values[n]=e}get(...e){e.length===0&&(e=[0]);let t=0;for(let a of e){if(a<0||a>=this.shape[t]){let r=`Requested out of range element at ${e}. Buffer shape=${this.shape}`;throw new Error(r)}t++}let n=e[e.length-1];for(let a=0;a<e.length-1;++a)n+=this.strides[a]*e[a];return this.values[n]}locToIndex(e){if(this.rank===0)return 0;if(this.rank===1)return e[0];let t=e[e.length-1];for(let n=0;n<e.length-1;++n)t+=this.strides[n]*e[n];return t}indexToLoc(e){if(this.rank===0)return[];if(this.rank===1)return[e];let t=new Array(this.shape.length);for(let n=0;n<t.length-1;++n)t[n]=Math.floor(e/this.strides[n]),e-=t[n]*this.strides[n];return t[t.length-1]=e,t}get rank(){return this.shape.length}toTensor(){return kr().makeTensor(this.values,this.shape,this.dtype)}},kr=null,Wo=null,zF=null;function PF(e){kr=e}function LF(e){Wo=e}function WF(e){zF=e}var St=class{constructor(e,t,n,a){this.kept=!1,this.isDisposedInternal=!1,this.shape=e.slice(),this.dtype=t||"float32",this.size=Jt(e),this.strides=_o(e),this.dataId=n,this.id=a,this.rankType=this.rank<5?this.rank.toString():"higher"}get rank(){return this.shape.length}async buffer(){let e=await this.data();return Wo.buffer(this.shape,this.dtype,e)}bufferSync(){return Wo.buffer(this.shape,this.dtype,this.dataSync())}async array(){let e=await this.data();return zo(this.shape,e,this.dtype==="complex64")}arraySync(){return zo(this.shape,this.dataSync(),this.dtype==="complex64")}async data(){this.throwIfDisposed();let e=kr().read(this.dataId);if(this.dtype==="string"){let t=await e;try{return t.map(n=>oc(n))}catch(n){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}}return e}dataSync(){this.throwIfDisposed();let e=kr().readSync(this.dataId);if(this.dtype==="string")try{return e.map(t=>oc(t))}catch(t){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}return e}async bytes(){this.throwIfDisposed();let e=await kr().read(this.dataId);return this.dtype==="string"?e:new Uint8Array(e.buffer)}dispose(){this.isDisposed||(kr().disposeTensor(this),this.isDisposedInternal=!0)}get isDisposed(){return this.isDisposedInternal}throwIfDisposed(){if(this.isDisposed)throw new Error("Tensor is disposed.")}print(e=!1){return Wo.print(this,e)}clone(){return this.throwIfDisposed(),Wo.clone(this)}toString(e=!1){let t=this.dataSync();return DF(t,this.shape,this.dtype,e)}cast(e){return this.throwIfDisposed(),Wo.cast(this,e)}variable(e=!0,t,n){return this.throwIfDisposed(),kr().makeVariable(this,e,t,n)}};Object.defineProperty(St,Symbol.hasInstance,{value:e=>!!e&&e.data!=null&&e.dataSync!=null&&e.throwIfDisposed!=null});function BF(){return sy("Tensor",()=>St)}BF();var ad=class extends St{constructor(e,t,n,a){super(e.shape,e.dtype,e.dataId,a);this.trainable=t,this.name=n}assign(e){if(e.dtype!==this.dtype)throw new Error(`dtype of the new value (${e.dtype}) and previous value (${this.dtype}) must match`);if(!Kr(e.shape,this.shape))throw new Error(`shape of the new value (${e.shape}) and previous value (${this.shape}) must match`);kr().disposeTensor(this),this.dataId=e.dataId,kr().incRef(this,null)}dispose(){kr().disposeVariable(this),this.isDisposedInternal=!0}};Object.defineProperty(ad,Symbol.hasInstance,{value:e=>e instanceof St&&e.assign!=null&&e.assign instanceof Function});var B7={};$e(B7,{assertTypesMatch:()=>V7,getTensorsInContainer:()=>ky,isTensorInList:()=>jF,makeTypesMatch:()=>Vt});var Ay;(function(e){e.R0="R0",e.R1="R1",e.R2="R2",e.R3="R3",e.R4="R4",e.R5="R5",e.R6="R6"})(Ay||(Ay={}));var xy;(function(e){e.float32="float32",e.int32="int32",e.bool="int32",e.complex64="complex64"})(xy||(xy={}));var by;(function(e){e.float32="float32",e.int32="int32",e.bool="bool",e.complex64="complex64"})(by||(by={}));var vy;(function(e){e.float32="float32",e.int32="float32",e.bool="float32",e.complex64="complex64"})(vy||(vy={}));var wy;(function(e){e.float32="complex64",e.int32="complex64",e.bool="complex64",e.complex64="complex64"})(wy||(wy={}));var VF={float32:vy,int32:xy,bool:by,complex64:wy};function dc(e,t){if(e==="string"||t==="string"){if(e==="string"&&t==="string")return"string";throw new Error(`Can not upcast ${e} with ${t}`)}return VF[e][t]}function UF(e){return dc(e,"int32")}function Vt(e,t){if(e.dtype===t.dtype)return[e,t];let n=dc(e.dtype,t.dtype);return[e.cast(n),t.cast(n)]}function V7(e,t){L(e.dtype===t.dtype,()=>`The dtypes of the first(${e.dtype}) and second(${t.dtype}) input must match`)}function jF(e,t){return t.some(n=>n.id===e.id)}function ky(e){let t=[],n=new Set;return U7(e,t,n),t}function U7(e,t,n){if(e==null)return;if(e instanceof St){t.push(e);return}if(!HF(e))return;let a=e;for(let r in a){let s=a[r];n.has(s)||(n.add(s),U7(s,t,n))}}function HF(e){return Array.isArray(e)||typeof e=="object"}function Iy(e){return e.kernelName!=null}var j7=class{constructor(){this.registeredVariables={},this.nextTapeNodeId=0,this.numBytes=0,this.numTensors=0,this.numStringTensors=0,this.numDataBuffers=0,this.gradientDepth=0,this.kernelDepth=0,this.scopeStack=[],this.numDataMovesStack=[],this.nextScopeId=0,this.tensorInfo=new WeakMap,this.profiling=!1,this.activeProfile={newBytes:0,newTensors:0,peakBytes:0,kernels:[],result:null,get kernelNames(){return Array.from(new Set(this.kernels.map(e=>e.name)))}}}dispose(){for(let e in this.registeredVariables)this.registeredVariables[e].dispose()}},Sy=class{constructor(e){this.ENV=e,this.registry={},this.registryFactory={},this.pendingBackendInitId=0,this.state=new j7}async ready(){if(this.pendingBackendInit!=null)return this.pendingBackendInit.then(()=>{});if(this.backendInstance!=null)return;let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t];if(await this.initializeBackend(n).success){await this.setBackend(n);return}}throw new Error("Could not initialize any backends, all backend initializations failed.")}get backend(){if(this.pendingBackendInit!=null)throw new Error(`Backend '${this.backendName}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);if(this.backendInstance==null){let{name:e,asyncInit:t}=this.initializeBackendsAndReturnBest();if(t)throw new Error(`The highest priority backend '${e}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);this.setBackend(e)}return this.backendInstance}backendNames(){return Object.keys(this.registryFactory)}findBackend(e){if(!(e in this.registry))if(e in this.registryFactory){let{asyncInit:t}=this.initializeBackend(e);if(t)return null}else return null;return this.registry[e]}findBackendFactory(e){return e in this.registryFactory?this.registryFactory[e].factory:null}registerBackend(e,t,n=1){return e in this.registryFactory?(console.warn(`${e} backend was already registered. Reusing existing backend factory.`),!1):(this.registryFactory[e]={factory:t,priority:n},!0)}async setBackend(e){if(this.registryFactory[e]==null)throw new Error(`Backend name '${e}' not found in registry`);if(this.backendName=e,this.registry[e]==null){this.backendInstance=null;let{success:t,asyncInit:n}=this.initializeBackend(e);if(!(n?await t:t))return!1}return this.backendInstance=this.registry[e],this.setupRegisteredKernels(),this.profiler=new MF(this.backendInstance),!0}setupRegisteredKernels(){Lo(this.backendName).forEach(e=>{e.setupFunc!=null&&e.setupFunc(this.backendInstance)})}disposeRegisteredKernels(e){Lo(e).forEach(t=>{t.disposeFunc!=null&&t.disposeFunc(this.registry[e])})}initializeBackend(e){let t=this.registryFactory[e];if(t==null)throw new Error(`Cannot initialize backend ${e}, no registration found.`);try{let n=t.factory();if(n&&!(n instanceof L3)&&typeof n.then=="function"){let a=++this.pendingBackendInitId,r=n.then(s=>a<this.pendingBackendInitId?!1:(this.registry[e]=s,this.pendingBackendInit=null,!0)).catch(s=>(a<this.pendingBackendInitId||(this.pendingBackendInit=null,console.warn(`Initialization of backend ${e} failed`),console.warn(s.stack||s.message)),!1));return this.pendingBackendInit=r,{success:r,asyncInit:!0}}else return this.registry[e]=n,{success:!0,asyncInit:!1}}catch(n){return console.warn(`Initialization of backend ${e} failed`),console.warn(n.stack||n.message),{success:!1,asyncInit:!1}}}removeBackend(e){if(!(e in this.registryFactory))throw new Error(`${e} backend not found in registry`);this.backendName===e&&this.pendingBackendInit!=null&&this.pendingBackendInitId++,e in this.registry&&(this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e]),delete this.registryFactory[e],this.backendName===e&&(this.pendingBackendInit=null,this.backendName=null,this.backendInstance=null)}getSortedBackends(){if(Object.keys(this.registryFactory).length===0)throw new Error("No backend found in registry.");return Object.keys(this.registryFactory).sort((e,t)=>this.registryFactory[t].priority-this.registryFactory[e].priority)}initializeBackendsAndReturnBest(){let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t],{success:a,asyncInit:r}=this.initializeBackend(n);if(r||a)return{name:n,asyncInit:r}}throw new Error("Could not initialize any backends, all backend initializations failed.")}moveData(e,t){let n=this.state.tensorInfo.get(t),a=n.backend,r=this.readSync(t),s=a.refCount(t);a.disposeData(t,!0),n.backend=e,e.move(t,r,n.shape,n.dtype,s),this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack[this.state.numDataMovesStack.length-1]++}tidy(e,t){let n=null;if(t==null){if(typeof e!="function")throw new Error("Please provide a function to tidy()");t=e}else{if(typeof e!="string"&&!(e instanceof String))throw new Error("When calling with two arguments, the first argument to tidy() must be a string");if(typeof t!="function")throw new Error("When calling with two arguments, the 2nd argument to tidy() must be a function");n=e}let a;return this.scopedRun(()=>this.startScope(n),()=>this.endScope(a),()=>(a=t(),a instanceof Promise&&console.error("Cannot return a Promise inside of tidy."),a))}scopedRun(e,t,n){e();try{let a=n();return t(),a}catch(a){throw t(),a}}nextTensorId(){return Sy.nextTensorId++}nextVariableId(){return Sy.nextVariableId++}clone(e){let t=V.runKernel(ly,{x:e}),n={x:e},a=s=>({x:()=>{let i="float32",o={x:s},l={dtype:i};return V.runKernel(oy,o,l)}}),r=[];return this.addTapeNode(this.state.activeScope.name,n,[t],a,r,{}),t}runKernel(e,t,n){if(ac(e,this.backendName)==null)throw new Error(`Kernel '${e}' not registered for backend '${this.backendName}'`);return this.runKernelFunc({kernelName:e,inputs:t,attrs:n})}shouldCheckForMemLeaks(){return this.ENV.getBool("IS_TEST")}checkKernelForMemLeak(e,t,n){let a=this.backend.numDataIds(),r=0;n.forEach(o=>{r+=o.dtype==="complex64"?3:1});let s=this.state.numDataMovesStack[this.state.numDataMovesStack.length-1],i=a-t-r-s;if(i>0)throw new Error(`Backend '${this.backendName}' has an internal memory leak (${i} data ids) after running '${e}'`)}runKernelFunc(e){let t,n=[],a=this.isTapeOn(),r=this.state.numBytes,s=this.state.numTensors;this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack.push(0);let i;this.backendName==null&&this.backend;let o,l=Iy(e)?e.kernelName:this.state.activeScope!=null?this.state.activeScope.name:"";if(Iy(e)){let{kernelName:c,inputs:m,attrs:f}=e;this.backendName==null&&this.backend;let g=ac(c,this.backendName);L(g!=null,()=>`Cannot find registered kernel '${c}' for backend '${this.backendName}'`),i=()=>{let y=this.backend.numDataIds();o=g.kernelFunc({inputs:m,attrs:f,backend:this.backend});let A=Array.isArray(o)?o:[o];this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(c,y,A);let x=A.map(v=>{if(v.rank!=null)return v;let{dataId:b,shape:w,dtype:I}=v;return this.makeTensorFromDataId(b,w,I)});if(a){let v=this.getTensorsForGradient(c,m,x);n=this.saveTensorsForBackwardMode(v)}return x}}else{let{forwardFunc:c}=e,m=f=>{!a||(n=f.map(g=>this.keep(this.clone(g))))};i=()=>{let f=this.backend.numDataIds();o=this.tidy(()=>c(this.backend,m));let g=Array.isArray(o)?o:[o];return this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(l,f,g),g}}let{inputs:u,attrs:d}=e,h=Iy(e)?null:e.backwardsFunc,p;return this.scopedRun(()=>this.state.kernelDepth++,()=>this.state.kernelDepth--,()=>{!this.ENV.getBool("DEBUG")&&!this.state.profiling?t=i():(p=this.profiler.profileKernel(l,u,()=>i()),this.ENV.getBool("DEBUG")&&this.profiler.logKernelProfile(p),t=p.outputs)}),a&&this.addTapeNode(l,u,t,h,n,d),this.state.profiling&&this.state.activeProfile.kernels.push({name:l,bytesAdded:this.state.numBytes-r,totalBytesSnapshot:this.state.numBytes,tensorsAdded:this.state.numTensors-s,totalTensorsSnapshot:this.state.numTensors,inputShapes:Object.keys(u).map(c=>u[c]!=null?u[c].shape:null),outputShapes:t.map(c=>c.shape),kernelTimeMs:p.timeMs,extraInfo:p.extraInfo}),Array.isArray(o)?t:t[0]}saveTensorsForBackwardMode(e){return e.map(t=>this.keep(this.clone(t)))}getTensorsForGradient(e,t,n){let a=fy(e);if(a!=null){let r=a.inputsToSave||[],s=a.outputsToSave||[],i;a.saveAllInputs?(L(Array.isArray(t),()=>"saveAllInputs is true, expected inputs to be an array."),i=Object.keys(t).map(l=>t[l])):i=r.map(l=>t[l]);let o=n.filter((l,u)=>s[u]);return i.concat(o)}return[]}makeTensor(e,t,n,a){if(e==null)throw new Error("Values passed to engine.makeTensor() are null");n=n||"float32",a=a||this.backend;let r=e;n==="string"&&Is(e[0])&&(r=e.map(o=>Qu(o)));let s=a.write(r,t,n),i=new St(t,n,s,this.nextTensorId());if(this.trackTensor(i,a),n==="string"){let o=this.state.tensorInfo.get(s),l=G3(r);this.state.numBytes+=l-o.bytes,o.bytes=l}return i}makeTensorFromDataId(e,t,n,a){n=n||"float32";let r=new St(t,n,e,this.nextTensorId());return this.trackTensor(r,a),r}makeVariable(e,t=!0,n,a){n=n||this.nextVariableId().toString(),a!=null&&a!==e.dtype&&(e=e.cast(a));let r=new ad(e,t,n,this.nextTensorId());if(this.state.registeredVariables[r.name]!=null)throw new Error(`Variable with name ${r.name} was already registered`);return this.state.registeredVariables[r.name]=r,this.incRef(r,this.backend),r}trackTensor(e,t){this.state.numTensors++,e.dtype==="string"&&this.state.numStringTensors++;let n=0;e.dtype!=="complex64"&&e.dtype!=="string"&&(n=e.size*ey(e.dtype)),this.state.numBytes+=n,this.state.tensorInfo.has(e.dataId)||(this.state.numDataBuffers++,this.state.tensorInfo.set(e.dataId,{backend:t||this.backend,dtype:e.dtype,shape:e.shape,bytes:n})),e instanceof ad||this.track(e)}incRef(e,t){this.trackTensor(e,t),this.backend.incRef(e.dataId)}removeDataId(e,t){this.state.tensorInfo.has(e)&&this.state.tensorInfo.get(e).backend===t&&(this.state.tensorInfo.delete(e),this.state.numDataBuffers--)}disposeTensor(e){if(!this.state.tensorInfo.has(e.dataId))return;let t=this.state.tensorInfo.get(e.dataId);if(this.state.numTensors--,e.dtype==="string"&&(this.state.numStringTensors--,this.state.numBytes-=t.bytes),e.dtype!=="complex64"&&e.dtype!=="string"){let n=e.size*ey(e.dtype);this.state.numBytes-=n}t.backend.disposeData(e.dataId)&&this.removeDataId(e.dataId,t.backend)}disposeVariables(){for(let e in this.state.registeredVariables){let t=this.state.registeredVariables[e];this.disposeVariable(t)}}disposeVariable(e){this.disposeTensor(e),this.state.registeredVariables[e.name]!=null&&delete this.state.registeredVariables[e.name]}memory(){let e=this.backend.memory();return e.numTensors=this.state.numTensors,e.numDataBuffers=this.state.numDataBuffers,e.numBytes=this.state.numBytes,this.state.numStringTensors>0&&(e.unreliable=!0,e.reasons==null&&(e.reasons=[]),e.reasons.push("Memory usage by string tensors is approximate (2 bytes per character)")),e}async profile(e){this.state.profiling=!0;let t=this.state.numBytes,n=this.state.numTensors;this.state.activeProfile.kernels=[],this.state.activeProfile.result=await e(),this.state.profiling=!1,this.state.activeProfile.peakBytes=Math.max(...this.state.activeProfile.kernels.map(a=>a.totalBytesSnapshot)),this.state.activeProfile.newBytes=this.state.numBytes-t,this.state.activeProfile.newTensors=this.state.numTensors-n;for(let a of this.state.activeProfile.kernels)a.kernelTimeMs=await a.kernelTimeMs,a.extraInfo=await a.extraInfo;return this.state.activeProfile}isTapeOn(){return this.state.gradientDepth>0&&this.state.kernelDepth===0}addTapeNode(e,t,n,a,r,s){let i={id:this.state.nextTapeNodeId++,kernelName:e,inputs:t,outputs:n,saved:r},o=fy(e);o!=null&&(a=o.gradFunc),a!=null&&(i.gradient=l=>(l=l.map((u,d)=>{if(u==null){let h=n[d],p=nc(h.size,h.dtype);return this.makeTensor(p,h.shape,h.dtype)}return u}),a(l.length>1?l:l[0],r,s))),this.state.activeTape.push(i)}keep(e){return e.kept=!0,e}startTape(){this.state.gradientDepth===0&&(this.state.activeTape=[]),this.state.gradientDepth++}endTape(){this.state.gradientDepth--}startScope(e){let t={track:[],name:"unnamed scope",id:this.state.nextScopeId++};e&&(t.name=e),this.state.scopeStack.push(t),this.state.activeScope=t}endScope(e){let t=ky(e),n=new Set(t.map(r=>r.id));for(let r=0;r<this.state.activeScope.track.length;r++){let s=this.state.activeScope.track[r];!s.kept&&!n.has(s.id)&&s.dispose()}let a=this.state.scopeStack.pop();this.state.activeScope=this.state.scopeStack.length===0?null:this.state.scopeStack[this.state.scopeStack.length-1],t.forEach(r=>{!r.kept&&r.scopeId===a.id&&this.track(r)})}gradients(e,t,n,a=!1){if(L(t.length>0,()=>"gradients() received an empty list of xs."),n!=null&&n.dtype!=="float32")throw new Error(`dy must have 'float32' dtype, but has '${n.dtype}'`);let r=this.scopedRun(()=>this.startTape(),()=>this.endTape(),()=>this.tidy("forward",e));L(r instanceof St,()=>"The result y returned by f() must be a tensor.");let s=FF(this.state.activeTape,t,r);if(!a&&s.length===0&&t.length>0)throw new Error("Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.");return this.tidy("backward",()=>{let i={};i[r.id]=n==null?GF(r.shape):n,OF(i,s,l=>this.tidy(l),qF);let o=t.map(l=>i[l.id]);return this.state.gradientDepth===0&&(this.state.activeTape.forEach(l=>{for(let u of l.saved)u.dispose()}),this.state.activeTape=null),{value:r,grads:o}})}customGrad(e){return L(Ss(e),()=>"The f passed in customGrad(f) must be a function."),(...t)=>{L(t.every(i=>i instanceof St),()=>"The args passed in customGrad(f)(x1, x2,...) must all be tensors");let n,a={};t.forEach((i,o)=>{a[o]=i});let r=(i,o)=>(n=e(...t,o),L(n.value instanceof St,()=>"The function f passed in customGrad(f) must return an object where `obj.value` is a tensor"),L(Ss(n.gradFunc),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function."),n.value),s=(i,o)=>{let l=n.gradFunc(i,o),u=Array.isArray(l)?l:[l];L(u.length===t.length,()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns the same number of tensors as inputs passed to f(...)."),L(u.every(h=>h instanceof St),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns a list of only tensors.");let d={};return u.forEach((h,p)=>{d[p]=()=>h}),d};return this.runKernelFunc({forwardFunc:r,backwardsFunc:s,inputs:a})}}readSync(e){return this.state.tensorInfo.get(e).backend.readSync(e)}read(e){return this.state.tensorInfo.get(e).backend.read(e)}async time(e){let t=Ju(),n=await this.backend.time(e);return n.wallMs=Ju()-t,n}track(e){return this.state.activeScope!=null&&(e.scopeId=this.state.activeScope.id,this.state.activeScope.track.push(e)),e}get registeredVariables(){return this.state.registeredVariables}reset(){this.pendingBackendInitId++,this.state.dispose(),this.ENV.reset(),this.state=new j7;for(let e in this.registry)this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e];this.backendName=null,this.backendInstance=null,this.pendingBackendInit=null}},Ny=Sy;Ny.nextTensorId=0,Ny.nextVariableId=0;function GF(e){let t=ty(Jt(e),"float32");return V.makeTensor(t,e,"float32")}function H7(){let e=J3();if(e._tfengine==null){let t=new Y3(e);e._tfengine=new Ny(t)}return tF(e._tfengine.ENV),PF(()=>e._tfengine),e._tfengine}var V=H7();function qF(e,t){let n={a:e,b:t};return V.runKernel(iy,n)}var G7={};$e(G7,{isBrowser:()=>q7,isMobile:()=>XF});function KF(){return typeof navigator!="undefined"&&navigator!=null}function XF(e){if(e||KF()){if(e||(e=navigator),e.product==="ReactNative")return!0;let t=e.userAgent||e.vendor||window.opera;return/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i.test(t)||/1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(t.substr(0,4))}return!1}function q7(){return typeof window!="undefined"&&window.document!=null||typeof WorkerGlobalScope!="undefined"}var Qa=ht();Qa.registerFlag("DEBUG",()=>!1,e=>{e&&console.warn("Debugging mode is ON. The output of every math call will be downloaded to CPU and checked for NaNs. This significantly impacts performance.")});Qa.registerFlag("IS_BROWSER",()=>q7());Qa.registerFlag("IS_NODE",()=>typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined");Qa.registerFlag("IS_CHROME",()=>typeof navigator!="undefined"&&navigator!=null&&navigator.userAgent!=null&&/Chrome/.test(navigator.userAgent)&&/Google Inc/.test(navigator.vendor));Qa.registerFlag("PROD",()=>!1);Qa.registerFlag("TENSORLIKE_CHECK_SHAPE_CONSISTENCY",()=>Qa.getBool("DEBUG"));Qa.registerFlag("DEPRECATION_WARNINGS_ENABLED",()=>!0);Qa.registerFlag("IS_TEST",()=>!1);Qa.registerFlag("CHECK_COMPUTATION_FOR_ERRORS",()=>!0);Qa.registerFlag("WRAP_TO_IMAGEBITMAP",()=>!1);function Ir(e,t){let n=e;if(En(e))return t==="string"?[]:[e.length];if(!Array.isArray(e))return[];let a=[];for(;Array.isArray(n)||En(n)&&t!=="string";)a.push(n.length),n=n[0];return Array.isArray(e)&&ht().getBool("TENSORLIKE_CHECK_SHAPE_CONSISTENCY")&&K7(e,a,[]),a}function K7(e,t,n){if(n=n||[],!Array.isArray(e)&&!En(e)){L(t.length===0,()=>`Element arr[${n.join("][")}] is a primitive, but should be an array/TypedArray of ${t[0]} elements`);return}L(t.length>0,()=>`Element arr[${n.join("][")}] should be a primitive, but is an array of ${e.length} elements`),L(e.length===t[0],()=>`Element arr[${n.join("][")}] should have ${t[0]} elements, but has ${e.length} elements`);let a=t.slice(1);for(let r=0;r<e.length;++r)K7(e[r],a,n.concat(r))}function X7(e,t,n,a){if(e!=="string_or_numeric"){if(e==null)throw new Error("Expected dtype cannot be null.");if(e!=="numeric"&&e!==t||e==="numeric"&&t==="string")throw new Error(`Argument '${n}' passed to '${a}' must be ${e} tensor, but got ${t} tensor`)}}function O(e,t,n,a="numeric"){if(e instanceof St)return X7(a,e.dtype,t,n),e;let r=ec(e);if(r!=="string"&&["bool","int32","float32"].indexOf(a)>=0&&(r=a),X7(a,r,t,n),e==null||!En(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string"){let o=e==null?"null":e.constructor.name;throw new Error(`Argument '${t}' passed to '${n}' must be a Tensor or TensorLike, but got '${o}'`)}let s=Ir(e,r);!En(e)&&!Array.isArray(e)&&(e=[e]);let i=r!=="string"?ic(e,r):pi(e,[],!0);return V.makeTensor(i,s,r)}function rd(e,t,n,a="numeric"){if(!Array.isArray(e))throw new Error(`Argument ${t} passed to ${n} must be a \`Tensor[]\` or \`TensorLike[]\``);return e.map((r,s)=>O(r,`${t}[${s}]`,n,a))}var Z7="__op";function U(e){let t=Object.keys(e);if(t.length!==1)throw new Error(`Please provide an object with a single key (operation name) mapping to a function. Got an object with ${t.length} keys.`);let n=t[0],a=e[n];n.endsWith("_")&&(n=n.substring(0,n.length-1)),n=n+Z7;let r=(...s)=>{V.startScope(n);try{let i=a(...s);return ay(i)&&console.error("Cannot return a Promise inside of tidy."),V.endScope(i),i}catch(i){throw V.endScope(null),i}};return Object.defineProperty(r,"name",{value:n,configurable:!0}),r}function ZF(e,t){let n=O(e,"real","complex"),a=O(t,"imag","complex");On(n.shape,a.shape,`real and imag shapes, ${n.shape} and ${a.shape}, must match in call to tf.complex().`);let r={real:n,imag:a};return V.runKernel(xv,r)}var mi=U({complex_:ZF});function Ts(e,t,n,a){if(a==null&&(a=ec(e)),a==="complex64")throw new Error("Cannot construct a complex64 tensor directly. Please use tf.complex(real, imag).");if(!En(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string")throw new Error("values passed to tensor(values) must be a number/boolean/string or an array of numbers/booleans/strings, or a TypedArray");if(t!=null){ny(t);let r=Jt(t),s=Jt(n);L(r===s,()=>`Based on the provided shape, [${t}], the tensor should have ${r} values but has ${s}`);for(let i=0;i<n.length;++i){let o=n[i],l=i===n.length-1?o!==Jt(t.slice(i)):!0;L(n[i]===t[i]||!l,()=>`Error creating a new Tensor. Inferred shape (${n}) does not match the provided shape (${t}). `)}}return!En(e)&&!Array.isArray(e)&&(e=[e]),t=t||n,e=a!=="string"?ic(e,a):pi(e,[],!0),V.makeTensor(e,t,a)}function er(e,t,n){let a=Ir(e,n);return Ts(e,t,a,n)}var Ty={float32:4,float16:2,int32:4,uint16:2,uint8:1,bool:1,complex64:8},hc=4;async function YF(e,t){let n=[],a=[],r=Array.isArray(e)?e.map(i=>i.name):Object.keys(e);for(let i=0;i<r.length;++i){let o=r[i],l=Array.isArray(e)?e[i].tensor:e[o];if(l.dtype!=="float32"&&l.dtype!=="int32"&&l.dtype!=="bool"&&l.dtype!=="string"&&l.dtype!=="complex64")throw new Error(`Unsupported dtype in weight '${o}': ${l.dtype}`);let u={name:o,shape:l.shape,dtype:l.dtype};if(l.dtype==="string"){let d=new Promise(async h=>{let p=await l.bytes(),c=p.reduce((g,y)=>g+y.length,0)+hc*p.length,m=new Uint8Array(c),f=0;for(let g=0;g<p.length;g++){let y=p[g],A=new Uint8Array(new Uint32Array([y.length]).buffer);m.set(A,f),f+=hc,m.set(y,f),f+=y.length}h(m)});a.push(d)}else a.push(l.data());t!=null&&(u.group=t),n.push(u)}let s=await Promise.all(a);return{data:JF(s),specs:n}}function Y7(e,t){let n={},a,r=0;for(let s of t){let i=s.name,o=s.dtype,l=s.shape,u=Jt(l),d;if("quantization"in s){let h=s.quantization;if(h.dtype==="uint8"||h.dtype==="uint16"){if(!("min"in h&&"scale"in h))throw new Error(`Weight ${s.name} with quantization ${h.dtype} doesn't have corresponding metadata min and scale.`)}else if(h.dtype==="float16"){if(o!=="float32")throw new Error(`Weight ${s.name} is quantized with ${h.dtype} which only supports weights of type float32 not ${o}.`)}else throw new Error(`Weight ${s.name} has unknown quantization dtype ${h.dtype}. Supported quantization dtypes are: 'uint8', 'uint16', and 'float16'.`);let p=Ty[h.dtype],c=e.slice(r,r+u*p),m=h.dtype==="uint8"?new Uint8Array(c):new Uint16Array(c);if(o==="float32")if(h.dtype==="uint8"||h.dtype==="uint16"){d=new Float32Array(m.length);for(let f=0;f<m.length;f++){let g=m[f];d[f]=g*h.scale+h.min}}else if(h.dtype==="float16")a===void 0&&(a=rO()),d=a(m);else throw new Error(`Unsupported quantization type ${h.dtype} for weight type float32.`);else if(o==="int32"){if(h.dtype!=="uint8"&&h.dtype!=="uint16")throw new Error(`Unsupported quantization type ${h.dtype} for weight type int32.`);d=new Int32Array(m.length);for(let f=0;f<m.length;f++){let g=m[f];d[f]=Math.round(g*h.scale+h.min)}}else throw new Error(`Unsupported dtype in weight '${i}': ${o}`);r+=u*p}else if(o==="string"){let h=Jt(s.shape);d=[];for(let p=0;p<h;p++){let c=new Uint32Array(e.slice(r,r+hc))[0];r+=hc;let m=new Uint8Array(e.slice(r,r+c));d.push(m),r+=c}}else{let h=Ty[o],p=e.slice(r,r+u*h);if(o==="float32")d=new Float32Array(p);else if(o==="int32")d=new Int32Array(p);else if(o==="bool")d=new Uint8Array(p);else if(o==="complex64"){d=new Float32Array(p);let c=new Float32Array(d.length/2),m=new Float32Array(d.length/2);for(let y=0;y<c.length;y++)c[y]=d[y*2],m[y]=d[y*2+1];let f=er(c,l,"float32"),g=er(m,l,"float32");n[i]=mi(f,g),f.dispose(),g.dispose()}else throw new Error(`Unsupported dtype in weight '${i}': ${o}`);r+=u*h}o!=="complex64"&&(n[i]=er(d,l,o))}return n}function JF(e){if(e===null)throw new Error(`Invalid input value: ${JSON.stringify(e)}`);let t=0,n=[];e.forEach(s=>{if(t+=s.byteLength,n.push(s.byteLength===s.buffer.byteLength?s:new s.constructor(s)),!(s instanceof Float32Array||s instanceof Int32Array||s instanceof Uint8Array))throw new Error(`Unsupported TypedArray subtype: ${s.constructor.name}`)});let a=new Uint8Array(t),r=0;return n.forEach(s=>{a.set(new Uint8Array(s.buffer),r),r+=s.byteLength}),a.buffer}var Ey=typeof Buffer!="undefined"&&(typeof Blob=="undefined"||typeof atob=="undefined"||typeof btoa=="undefined");function J7(e){return Ey?Buffer.byteLength(e):new Blob([e]).size}function QF(e){if(Ey)return Buffer.from(e).toString("base64");let t=new Uint8Array(e),n="";for(let a=0,r=t.length;a<r;a++)n+=String.fromCharCode(t[a]);return btoa(n)}function eO(e){if(Ey){let a=Buffer.from(e,"base64");return a.buffer.slice(a.byteOffset,a.byteOffset+a.byteLength)}let t=atob(e),n=new Uint8Array(t.length);for(let a=0;a<t.length;++a)n.set([t.charCodeAt(a)],a);return n.buffer}function Cy(e){if(e.length===1)return e[0];let t=0;e.forEach(r=>{t+=r.byteLength});let n=new Uint8Array(t),a=0;return e.forEach(r=>{n.set(new Uint8Array(r),a),a+=r.byteLength}),n.buffer}function Q7(e){let t="/";for(e=e.trim();e.endsWith(t);)e=e.slice(0,e.length-1);let n=e.split(t);return n[n.length-1]}function sd(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("Expected JSON model topology, received ArrayBuffer.");return{dateSaved:new Date,modelTopologyType:"JSON",modelTopologyBytes:e.modelTopology==null?0:J7(JSON.stringify(e.modelTopology)),weightSpecsBytes:e.weightSpecs==null?0:J7(JSON.stringify(e.weightSpecs)),weightDataBytes:e.weightData==null?0:e.weightData.byteLength}}function tO(){let e=n=>{let a=n<<13,r=0;for(;(a&8388608)==0;)r-=8388608,a<<=1;return a&=~8388608,r+=947912704,a|r},t=new Uint32Array(2048);t[0]=0;for(let n=1;n<1024;n++)t[n]=e(n);for(let n=1024;n<2048;n++)t[n]=939524096+(n-1024<<13);return t}function nO(){let e=new Uint32Array(64);e[0]=0,e[31]=1199570944,e[32]=2147483648,e[63]=3347054592;for(let t=1;t<31;t++)e[t]=t<<23;for(let t=33;t<63;t++)e[t]=2147483648+(t-32<<23);return e}function aO(){let e=new Uint32Array(64);for(let t=0;t<64;t++)e[t]=1024;return e[0]=e[32]=0,e}function rO(){let e=tO(),t=nO(),n=aO();return a=>{let r=new ArrayBuffer(4*a.length),s=new Uint32Array(r);for(let i=0;i<a.length;i++){let o=a[i],l=e[n[o>>10]+(o&1023)]+t[o>>10];s[i]=l}return new Float32Array(r)}}var Gt=class{constructor(){this.saveRouters=[],this.loadRouters=[]}static getInstance(){return Gt.instance==null&&(Gt.instance=new Gt),Gt.instance}static registerSaveRouter(e){Gt.getInstance().saveRouters.push(e)}static registerLoadRouter(e){Gt.getInstance().loadRouters.push(e)}static getSaveHandlers(e){return Gt.getHandlers(e,"save")}static getLoadHandlers(e,t){return Gt.getHandlers(e,"load",t)}static getHandlers(e,t,n){let a=[];return(t==="load"?Gt.getInstance().loadRouters:Gt.getInstance().saveRouters).forEach(r=>{let s=r(e,n);s!==null&&a.push(s)}),a}},sO=e=>Gt.registerSaveRouter(e),iO=e=>Gt.registerLoadRouter(e),oO=e=>Gt.getSaveHandlers(e),lO=(e,t)=>Gt.getLoadHandlers(e,t),My="tensorflowjs",$y=1,gi="models_store",Es="model_info_store";function ek(){if(!ht().getBool("IS_BROWSER"))throw new Error("Failed to obtain IndexedDB factory because the current environmentis not a web browser.");let e=typeof window=="undefined"?self:window,t=e.indexedDB||e.mozIndexedDB||e.webkitIndexedDB||e.msIndexedDB||e.shimIndexedDB;if(t==null)throw new Error("The current browser does not appear to support IndexedDB.");return t}function Ry(e){let t=e.result;t.createObjectStore(gi,{keyPath:"modelPath"}),t.createObjectStore(Es,{keyPath:"modelPath"})}var yi=class{constructor(e){if(this.indexedDB=ek(),e==null||!e)throw new Error("For IndexedDB, modelPath must not be null, undefined or empty.");this.modelPath=e}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");return this.databaseAction(this.modelPath,e)}async load(){return this.databaseAction(this.modelPath)}databaseAction(e,t){return new Promise((n,a)=>{let r=this.indexedDB.open(My,$y);r.onupgradeneeded=()=>Ry(r),r.onsuccess=()=>{let s=r.result;if(t==null){let i=s.transaction(gi,"readonly"),o=i.objectStore(gi).get(this.modelPath);o.onsuccess=()=>{if(o.result==null)return s.close(),a(new Error(`Cannot find model with path '${this.modelPath}' in IndexedDB.`));n(o.result.modelArtifacts)},o.onerror=l=>(s.close(),a(o.error)),i.oncomplete=()=>s.close()}else{let i=sd(t),o=s.transaction(Es,"readwrite"),l=o.objectStore(Es),u=l.put({modelPath:this.modelPath,modelArtifactsInfo:i}),d;u.onsuccess=()=>{d=s.transaction(gi,"readwrite");let h=d.objectStore(gi).put({modelPath:this.modelPath,modelArtifacts:t,modelArtifactsInfo:i});h.onsuccess=()=>n({modelArtifactsInfo:i}),h.onerror=p=>{l=o.objectStore(Es);let c=l.delete(this.modelPath);c.onsuccess=()=>(s.close(),a(h.error)),c.onerror=m=>(s.close(),a(h.error))}},u.onerror=h=>(s.close(),a(u.error)),o.oncomplete=()=>{d==null?s.close():d.oncomplete=()=>s.close()}}},r.onerror=s=>a(r.error)})}};yi.URL_SCHEME="indexeddb://";var tk=e=>ht().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(yi.URL_SCHEME)?uO(e.slice(yi.URL_SCHEME.length)):null;Gt.registerSaveRouter(tk);Gt.registerLoadRouter(tk);function uO(e){return new yi(e)}function dO(e){return e.startsWith(yi.URL_SCHEME)?e.slice(yi.URL_SCHEME.length):e}var hO=class{constructor(){this.indexedDB=ek()}async listModels(){return new Promise((e,t)=>{let n=this.indexedDB.open(My,$y);n.onupgradeneeded=()=>Ry(n),n.onsuccess=()=>{let a=n.result,r=a.transaction(Es,"readonly"),s=r.objectStore(Es).getAll();s.onsuccess=()=>{let i={};for(let o of s.result)i[o.modelPath]=o.modelArtifactsInfo;e(i)},s.onerror=i=>(a.close(),t(s.error)),r.oncomplete=()=>a.close()},n.onerror=a=>t(n.error)})}async removeModel(e){return e=dO(e),new Promise((t,n)=>{let a=this.indexedDB.open(My,$y);a.onupgradeneeded=()=>Ry(a),a.onsuccess=()=>{let r=a.result,s=r.transaction(Es,"readwrite"),i=s.objectStore(Es),o=i.get(e),l;o.onsuccess=()=>{if(o.result==null)return r.close(),n(new Error(`Cannot find model with path '${e}' in IndexedDB.`));{let u=i.delete(e),d=()=>{l=r.transaction(gi,"readwrite");let h=l.objectStore(gi).delete(e);h.onsuccess=()=>t(o.result.modelArtifactsInfo),h.onerror=p=>n(o.error)};u.onsuccess=d,u.onerror=h=>(d(),r.close(),n(o.error))}},o.onerror=u=>(r.close(),n(o.error)),s.oncomplete=()=>{l==null?r.close():l.oncomplete=()=>r.close()}},a.onerror=r=>n(a.error)})}},Xr="/",Bo="tensorflowjs_models",nk="info",pO="model_topology",cO="weight_specs",fO="weight_data",mO="model_metadata";function ak(e){return{info:[Bo,e,nk].join(Xr),topology:[Bo,e,pO].join(Xr),weightSpecs:[Bo,e,cO].join(Xr),weightData:[Bo,e,fO].join(Xr),modelMetadata:[Bo,e,mO].join(Xr)}}function gO(e){let t=e.split(Xr);if(t.length<3)throw new Error(`Invalid key format: ${e}`);return t.slice(1,t.length-1).join(Xr)}function yO(e){return e.startsWith(Ai.URL_SCHEME)?e.slice(Ai.URL_SCHEME.length):e}var Ai=class{constructor(e){if(!ht().getBool("IS_BROWSER")||typeof window=="undefined"||typeof window.localStorage=="undefined")throw new Error("The current environment does not support local storage.");if(this.LS=window.localStorage,e==null||!e)throw new Error("For local storage, modelPath must not be null, undefined or empty.");this.modelPath=e,this.keys=ak(this.modelPath)}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");{let t=JSON.stringify(e.modelTopology),n=JSON.stringify(e.weightSpecs),a=sd(e);try{this.LS.setItem(this.keys.info,JSON.stringify(a)),this.LS.setItem(this.keys.topology,t),this.LS.setItem(this.keys.weightSpecs,n),this.LS.setItem(this.keys.weightData,QF(e.weightData));let r={format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy};return e.signature!=null&&(r.signature=e.signature),e.userDefinedMetadata!=null&&(r.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(r.modelInitializer=e.modelInitializer),this.LS.setItem(this.keys.modelMetadata,JSON.stringify(r)),{modelArtifactsInfo:a}}catch(r){throw this.LS.removeItem(this.keys.info),this.LS.removeItem(this.keys.topology),this.LS.removeItem(this.keys.weightSpecs),this.LS.removeItem(this.keys.weightData),this.LS.removeItem(this.keys.modelMetadata),new Error(`Failed to save model '${this.modelPath}' to local storage: size quota being exceeded is a possible cause of this failure: modelTopologyBytes=${a.modelTopologyBytes}, weightSpecsBytes=${a.weightSpecsBytes}, weightDataBytes=${a.weightDataBytes}.`)}}}async load(){let e=JSON.parse(this.LS.getItem(this.keys.info));if(e==null)throw new Error(`In local storage, there is no model with name '${this.modelPath}'`);if(e.modelTopologyType!=="JSON")throw new Error("BrowserLocalStorage does not support loading non-JSON model topology yet.");let t={},n=JSON.parse(this.LS.getItem(this.keys.topology));if(n==null)throw new Error(`In local storage, the topology of model '${this.modelPath}' is missing.`);t.modelTopology=n;let a=JSON.parse(this.LS.getItem(this.keys.weightSpecs));if(a==null)throw new Error(`In local storage, the weight specs of model '${this.modelPath}' are missing.`);t.weightSpecs=a;let r=this.LS.getItem(this.keys.modelMetadata);if(r!=null){let i=JSON.parse(r);t.format=i.format,t.generatedBy=i.generatedBy,t.convertedBy=i.convertedBy,i.signature!=null&&(t.signature=i.signature),i.userDefinedMetadata!=null&&(t.userDefinedMetadata=i.userDefinedMetadata),i.modelInitializer!=null&&(t.modelInitializer=i.modelInitializer)}let s=this.LS.getItem(this.keys.weightData);if(s==null)throw new Error(`In local storage, the binary weight values of model '${this.modelPath}' are missing.`);return t.weightData=eO(s),t}};Ai.URL_SCHEME="localstorage://";var rk=e=>ht().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(Ai.URL_SCHEME)?AO(e.slice(Ai.URL_SCHEME.length)):null;Gt.registerSaveRouter(rk);Gt.registerLoadRouter(rk);function AO(e){return new Ai(e)}var xO=class{constructor(){L(ht().getBool("IS_BROWSER"),()=>"Current environment is not a web browser"),L(typeof window=="undefined"||typeof window.localStorage!="undefined",()=>"Current browser does not appear to support localStorage"),this.LS=window.localStorage}async listModels(){let e={},t=Bo+Xr,n=Xr+nk;for(let a=0;a<this.LS.length;++a){let r=this.LS.key(a);if(r.startsWith(t)&&r.endsWith(n)){let s=gO(r);e[s]=JSON.parse(this.LS.getItem(r))}}return e}async removeModel(e){e=yO(e);let t=ak(e);if(this.LS.getItem(t.info)==null)throw new Error(`Cannot find model at path '${e}'`);let n=JSON.parse(this.LS.getItem(t.info));return this.LS.removeItem(t.info),this.LS.removeItem(t.topology),this.LS.removeItem(t.weightSpecs),this.LS.removeItem(t.weightData),n}},Vo="://",Ia=class{constructor(){this.managers={}}static getInstance(){return Ia.instance==null&&(Ia.instance=new Ia),Ia.instance}static registerManager(e,t){L(e!=null,()=>"scheme must not be undefined or null."),e.endsWith(Vo)&&(e=e.slice(0,e.indexOf(Vo))),L(e.length>0,()=>"scheme must not be an empty string.");let n=Ia.getInstance();L(n.managers[e]==null,()=>`A model store manager is already registered for scheme '${e}'.`),n.managers[e]=t}static getManager(e){let t=this.getInstance().managers[e];if(t==null)throw new Error(`Cannot find model manager for scheme '${e}'`);return t}static getSchemes(){return Object.keys(this.getInstance().managers)}};function pc(e){if(e.indexOf(Vo)===-1)throw new Error(`The url string provided does not contain a scheme. Supported schemes are: ${Ia.getSchemes().join(",")}`);return{scheme:e.split(Vo)[0],path:e.split(Vo)[1]}}async function sk(e,t,n=!1){L(e!==t,()=>`Old path and new path are the same: '${e}'`);let a=Gt.getLoadHandlers(e);L(a.length>0,()=>`Copying failed because no load handler is found for source URL ${e}.`),L(a.length<2,()=>`Copying failed because more than one (${a.length}) load handlers for source URL ${e}.`);let r=a[0],s=Gt.getSaveHandlers(t);L(s.length>0,()=>`Copying failed because no save handler is found for destination URL ${t}.`),L(s.length<2,()=>`Copying failed because more than one (${a.length}) save handlers for destination URL ${t}.`);let i=s[0],o=pc(e).scheme,l=pc(e).path,u=o===pc(e).scheme,d=await r.load();n&&u&&await Ia.getManager(o).removeModel(l);let h=await i.save(d);return n&&!u&&await Ia.getManager(o).removeModel(l),h.modelArtifactsInfo}async function bO(){let e=Ia.getSchemes(),t={};for(let n of e){let a=await Ia.getManager(n).listModels();for(let r in a){let s=n+Vo+r;t[s]=a[r]}}return t}async function vO(e){let t=pc(e);return Ia.getManager(t.scheme).removeModel(t.path)}async function wO(e,t){return sk(e,t,!1)}async function kO(e,t){return sk(e,t,!0)}var IO=class{fetch(e,t){return fetch(e,t)}now(){return performance.now()}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Browser's encoder only supports utf-8, but got ${t}`);return this.textEncoder==null&&(this.textEncoder=new TextEncoder),this.textEncoder.encode(e)}decode(e,t){return new TextDecoder(t).decode(e)}};if(ht().get("IS_BROWSER")){ht().setPlatform("browser",new IO);try{Ia.registerManager(Ai.URL_SCHEME,new xO)}catch(e){}try{Ia.registerManager(yi.URL_SCHEME,new hO)}catch(e){}}var SO={importFetch:()=>_3()},Fy,NO=class{constructor(){this.util=di("util"),this.textEncoder=new this.util.TextEncoder}fetch(e,t){return ht().global.fetch!=null?ht().global.fetch(e,t):(Fy==null&&(Fy=SO.importFetch()),Fy(e,t))}now(){let e=process.hrtime();return e[0]*1e3+e[1]/1e6}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Node built-in encoder only supports utf-8, but got ${t}`);return this.textEncoder.encode(e)}decode(e,t){return e.length===0?"":new this.util.TextDecoder(t).decode(e)}};ht().get("IS_NODE")&&ht().setPlatform("node",new NO);function Zr(e,t="float32",n){return t=t||"float32",ny(e),new uc(e,t,n)}function TO(e,t){let n=O(e,"x","cast");if(!H3(t))throw new Error(`Failed to cast to unknown dtype ${t}`);if(t==="string"&&n.dtype!=="string"||t!=="string"&&n.dtype==="string")throw new Error("Only strings can be casted to strings");let a={x:n},r={dtype:t};return V.runKernel(oy,a,r)}var zt=U({cast_:TO});function EO(e){let t={x:O(e,"x","clone","string_or_numeric")};return V.runKernel(ly,t)}var Yr=U({clone_:EO});function ik(e,t=!1){console.log(e.toString(t))}H7();var CO={buffer:Zr,cast:zt,clone:Yr,print:ik};LF(CO);var ok={};$e(ok,{browserFiles:()=>_O,browserHTTPRequest:()=>BO,concatenateArrayBuffers:()=>Cy,copyModel:()=>wO,decodeWeights:()=>Y7,encodeWeights:()=>YF,fromMemory:()=>UO,getLoadHandlers:()=>lO,getModelArtifactsInfoForJSON:()=>sd,getSaveHandlers:()=>oO,http:()=>zy,isHTTPScheme:()=>_y,listModels:()=>bO,loadWeights:()=>zO,moveModel:()=>kO,registerLoadRouter:()=>iO,registerSaveRouter:()=>sO,removeModel:()=>vO,weightsLoaderFactory:()=>hk,withSaveHandler:()=>jO});var MO="model",$O=".json",RO=".weights.bin";function lk(e){return new Promise(t=>setTimeout(t)).then(e)}var Oy=class{constructor(e){if(!ht().getBool("IS_BROWSER"))throw new Error("browserDownloads() cannot proceed because the current environment is not a browser.");e.startsWith(Oy.URL_SCHEME)&&(e=e.slice(Oy.URL_SCHEME.length)),(e==null||e.length===0)&&(e=MO),this.modelTopologyFileName=e+$O,this.weightDataFileName=e+RO}async save(e){if(typeof document=="undefined")throw new Error("Browser downloads are not supported in this environment since `document` is not present");let t=window.URL.createObjectURL(new Blob([e.weightData],{type:"application/octet-stream"}));if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserDownloads.save() does not support saving model topology in binary formats yet.");{let n=[{paths:["./"+this.weightDataFileName],weights:e.weightSpecs}],a={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:n};e.signature!=null&&(a.signature=e.signature),e.userDefinedMetadata!=null&&(a.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(a.modelInitializer=e.modelInitializer);let r=window.URL.createObjectURL(new Blob([JSON.stringify(a)],{type:"application/json"})),s=this.jsonAnchor==null?document.createElement("a"):this.jsonAnchor;if(s.download=this.modelTopologyFileName,s.href=r,await lk(()=>s.dispatchEvent(new MouseEvent("click"))),e.weightData!=null){let i=this.weightDataAnchor==null?document.createElement("a"):this.weightDataAnchor;i.download=this.weightDataFileName,i.href=t,await lk(()=>i.dispatchEvent(new MouseEvent("click")))}return{modelArtifactsInfo:sd(e)}}}},cc=Oy;cc.URL_SCHEME="downloads://";var FO=class{constructor(e){if(e==null||e.length<1)throw new Error(`When calling browserFiles, at least 1 file is required, but received ${e}`);this.files=e}async load(){let e=this.files[0],t=this.files.slice(1);return new Promise((n,a)=>{let r=new FileReader;r.onload=s=>{let i=JSON.parse(s.target.result),o=i.modelTopology;if(o==null){a(new Error(`modelTopology field is missing from file ${e.name}`));return}t.length===0&&n({modelTopology:o});let l=i.weightsManifest;if(l==null){a(new Error(`weightManifest field is missing from file ${e.name}`));return}let u;try{u=this.checkManifestAndWeightFiles(l,t)}catch(c){a(c);return}let d=[],h=[],p=[];l.forEach(c=>{c.paths.forEach(m=>{h.push(m),p.push(null)}),d.push(...c.weights)}),l.forEach(c=>{c.paths.forEach(m=>{let f=new FileReader;f.onload=g=>{let y=g.target.result,A=h.indexOf(m);if(p[A]=y,p.indexOf(null)===-1){let x={modelTopology:o,weightSpecs:d,weightData:Cy(p),format:i.format,generatedBy:i.generatedBy,convertedBy:i.convertedBy};i.signature!=null&&(x.signature=i.signature),i.userDefinedMetadata!=null&&(x.userDefinedMetadata=i.userDefinedMetadata),i.modelInitializer!=null&&(x.modelInitializer=i.modelInitializer),n(x)}},f.onerror=g=>a(`Failed to weights data from file of path '${m}'.`),f.readAsArrayBuffer(u[m])})})},r.onerror=s=>a(`Failed to read model topology and weights manifest JSON from file '${e.name}'. BrowserFiles supports loading Keras-style tf.Model artifacts only.`),r.readAsText(e)})}checkManifestAndWeightFiles(e,t){let n=[],a=t.map(s=>Q7(s.name)),r={};for(let s of e)s.paths.forEach(i=>{let o=Q7(i);if(n.indexOf(o)!==-1)throw new Error(`Duplicate file basename found in weights manifest: '${o}'`);if(n.push(o),a.indexOf(o)===-1)throw new Error(`Weight file with basename '${o}' is not provided.`);r[i]=t[a.indexOf(o)]});if(n.length!==t.length)throw new Error(`Mismatch in the number of files in weights manifest (${n.length}) and the number of weight files provided (${t.length}).`);return r}},OO=e=>ht().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(cc.URL_SCHEME)?DO(e.slice(cc.URL_SCHEME.length)):null;Gt.registerSaveRouter(OO);function DO(e="model"){return new cc(e)}function _O(e){return new FO(e)}function uk(e,t,n,a){i(e),n=n==null?0:n,a=a==null?1:a,o(n,a);let r=0,s=l=>(l.then(u=>{let d=n+ ++r/e.length*(a-n);return t(d),u}),l);function i(l){L(l!=null&&Array.isArray(l)&&l.length>0,()=>"promises must be a none empty array")}function o(l,u){L(l>=0&&l<=1,()=>`Progress fraction must be in range [0, 1], but got startFraction ${l}`),L(u>=0&&u<=1,()=>`Progress fraction must be in range [0, 1], but got endFraction ${u}`),L(u>=l,()=>`startFraction must be no more than endFraction, but got startFraction ${l} and endFraction ${u}`)}return Promise.all(e.map(s))}async function dk(e,t){t==null&&(t={});let n=t.fetchFunc==null?ht().platform.fetch:t.fetchFunc,a=e.map(u=>n(u,t.requestInit,{isBinary:!0})),r=0,s=.5,i=(t.onProgress==null?await Promise.all(a):await uk(a,t.onProgress,r,s)).map(u=>u.arrayBuffer()),o=.5,l=1;return t.onProgress==null?await Promise.all(i):await uk(i,t.onProgress,o,l)}async function zO(e,t="",n,a){return hk(r=>dk(r,{requestInit:a}))(e,t,n)}function hk(e){return async(t,n="",a)=>{let r=t.map(()=>!1),s={},i=a!=null?a.map(()=>!1):[],o=[];if(t.forEach((c,m)=>{let f=0;c.weights.forEach(g=>{let y="quantization"in g?g.quantization.dtype:g.dtype,A=Ty[y]*Jt(g.shape),x=()=>{r[m]=!0,s[m]==null&&(s[m]=[]),s[m].push({manifestEntry:g,groupOffset:f,sizeBytes:A})};a!=null?a.forEach((v,b)=>{v===g.name&&(x(),i[b]=!0)}):x(),o.push(g.name),f+=A})}),!i.every(c=>c)){let c=a.filter((m,f)=>!i[f]);throw new Error(`Could not find weights in manifest with names: ${c.join(", ")}.
|
|
Manifest JSON has weights with names: ${o.join(", ")}.`)}let l=r.reduce((c,m,f)=>(m&&c.push(f),c),[]),u=[];l.forEach(c=>{t[c].paths.forEach(m=>{let f=n+(n.endsWith("/")?"":"/")+m;u.push(f)})});let d=await e(u),h={},p=0;return l.forEach(c=>{let m=t[c].paths.length,f=0;for(let x=0;x<m;x++)f+=d[p+x].byteLength;let g=new ArrayBuffer(f),y=new Uint8Array(g),A=0;for(let x=0;x<m;x++){let v=new Uint8Array(d[p+x]);y.set(v,A),A+=v.byteLength}s[c].forEach(x=>{let v=g.slice(x.groupOffset,x.groupOffset+x.sizeBytes),b=Y7(v,[x.manifestEntry]);for(let w in b)h[w]=b[w]}),p+=m}),h}}var PO="application/octet-stream",LO="application/json",Dy=class{constructor(e,t){if(this.DEFAULT_METHOD="POST",t==null&&(t={}),this.weightPathPrefix=t.weightPathPrefix,this.onProgress=t.onProgress,this.weightUrlConverter=t.weightUrlConverter,t.fetchFunc!=null?(L(typeof t.fetchFunc=="function",()=>"Must pass a function that matches the signature of `fetch` (see https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)"),this.fetch=t.fetchFunc):this.fetch=ht().platform.fetch,L(e!=null&&e.length>0,()=>"URL path for http must not be null, undefined or empty."),Array.isArray(e)&&L(e.length===2,()=>`URL paths for http must have a length of 2, (actual length is ${e.length}).`),this.path=e,t.requestInit!=null&&t.requestInit.body!=null)throw new Error("requestInit is expected to have no pre-existing body, but has one.");this.requestInit=t.requestInit||{}}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserHTTPRequest.save() does not support saving model topology in binary formats yet.");let t=Object.assign({method:this.DEFAULT_METHOD},this.requestInit);t.body=new FormData;let n=[{paths:["./model.weights.bin"],weights:e.weightSpecs}],a={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:n};e.signature!=null&&(a.signature=e.signature),e.userDefinedMetadata!=null&&(a.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(a.modelInitializer=e.modelInitializer),t.body.append("model.json",new Blob([JSON.stringify(a)],{type:LO}),"model.json"),e.weightData!=null&&t.body.append("model.weights.bin",new Blob([e.weightData],{type:PO}),"model.weights.bin");let r=await this.fetch(this.path,t);if(r.ok)return{modelArtifactsInfo:sd(e),responses:[r]};throw new Error(`BrowserHTTPRequest.save() failed due to HTTP response status ${r.status}.`)}async load(){let e=await this.fetch(this.path,this.requestInit);if(!e.ok)throw new Error(`Request to ${this.path} failed with status code ${e.status}. Please verify this URL points to the model JSON of the model to load.`);let t;try{t=await e.json()}catch(c){let m=`Failed to parse model JSON of response from ${this.path}.`;throw this.path.endsWith(".pb")?m+=" Your path contains a .pb file extension. Support for .pb models have been removed in TensorFlow.js 1.0 in favor of .json models. You can re-convert your Python TensorFlow model using the TensorFlow.js 1.0 conversion scripts or you can convert your.pb models with the 'pb2json'NPM script in the tensorflow/tfjs-converter repository.":m+=" Please make sure the server is serving valid JSON for this request.",new Error(m)}let n=t.modelTopology,a=t.weightsManifest,r=t.generatedBy,s=t.convertedBy,i=t.format,o=t.signature,l=t.userDefinedMetadata;if(n==null&&a==null)throw new Error(`The JSON from HTTP path ${this.path} contains neither model topology or manifest for weights.`);let u,d;a!=null&&([u,d]=await this.loadWeights(a));let h={modelTopology:n,weightSpecs:u,weightData:d,generatedBy:r,convertedBy:s,format:i};o!=null&&(h.signature=o),l!=null&&(h.userDefinedMetadata=l);let p=t.modelInitializer;return p&&(h.modelInitializer=p),h}async loadWeights(e){let t=Array.isArray(this.path)?this.path[1]:this.path,[n,a]=WO(t),r=this.weightPathPrefix||n,s=[];for(let u of e)s.push(...u.weights);let i=[],o=[];for(let u of e)for(let d of u.paths)this.weightUrlConverter!=null?o.push(this.weightUrlConverter(d)):i.push(r+d+a);this.weightUrlConverter&&i.push(...await Promise.all(o));let l=await dk(i,{requestInit:this.requestInit,fetchFunc:this.fetch,onProgress:this.onProgress});return[s,Cy(l)]}};Dy.URL_SCHEME_REGEX=/^https?:\/\//;function WO(e){let t=e.lastIndexOf("/"),n=e.lastIndexOf("?"),a=e.substring(0,t),r=n>t?e.substring(n):"";return[a+"/",r]}function _y(e){return e.match(Dy.URL_SCHEME_REGEX)!=null}var pk=(e,t)=>{if(typeof fetch=="undefined"&&(t==null||t.fetchFunc==null))return null;{let n=!0;if(Array.isArray(e)?n=e.every(a=>_y(a)):n=_y(e),n)return zy(e,t)}return null};Gt.registerSaveRouter(pk);Gt.registerLoadRouter(pk);function zy(e,t){return new Dy(e,t)}function BO(e,t){return zy(e,t)}var Py=class{constructor(e){this.modelArtifacts=e}async load(){return this.modelArtifacts}},VO=class{constructor(e){this.saveHandler=e}async save(e){return this.saveHandler(e)}};function UO(e,t,n,a){return arguments.length===1?e.modelTopology!=null||e.weightSpecs!=null?new Py(e):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new Py({modelTopology:e})):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new Py({modelTopology:e,weightSpecs:t,weightData:n,trainingConfig:a}))}function jO(e){return new VO(e)}var ck={};$e(ck,{confusionMatrix:()=>XO});function HO(e,t,n=!1,a=!1){let r=O(e,"a","matMul"),s=O(t,"b","matMul");[r,s]=Vt(r,s);let i={a:r,b:s},o={transposeA:n,transposeB:a};return V.runKernel(fv,i,o)}var yt=U({matMul_:HO});function GO(e,t,n=1,a=0){if(t<2)throw new Error(`Error in oneHot: depth must be >=2, but it is ${t}`);let r={indices:O(e,"indices","oneHot","int32")},s={depth:t,onValue:n,offValue:a};return V.runKernel(Dw,r,s)}var Ly=U({oneHot_:GO});function qO(e,t){let n=O(e,"x","transpose");if(t==null&&(t=n.shape.map((s,i)=>i).reverse()),L(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of perm ${t}.`),t.forEach(s=>{L(s>=0&&s<n.rank,()=>`All entries in 'perm' must be between 0 and ${n.rank-1} but got ${t}`)}),n.rank<=1)return n.clone();let a={x:n},r={perm:t};return V.runKernel(T7,a,r)}var fc=U({transpose_:qO});function KO(e,t,n){let a=O(e,"labels","confusionMatrix"),r=O(t,"predictions","confusionMatrix");L(n==null||n>0&&Number.isInteger(n),()=>`If provided, numClasses must be a positive integer, but got ${n}`),L(a.rank===1,()=>`Expected the rank of labels to be 1, but got ${a.rank}`),L(r.rank===1,()=>`Expected the rank of predictions to be 1, but got ${r.rank}`),L(a.shape[0]===r.shape[0],()=>`Mismatch in the number of examples: ${a.shape[0]} vs. ${r.shape[0]}. Labels and predictions should have the same number of elements.`),L(n>0&&Number.isInteger(n),()=>`numClasses is required to be a positive integer, but got ${n}`);let s=Ly(zt(a,"int32"),n),i=Ly(zt(r,"int32"),n),o=fc(s),l=yt(o,i);return zt(l,"int32")}var XO=U({confusionMatrix_:KO}),Ua={};$e(Ua,{fromPixels:()=>nD,fromPixelsAsync:()=>eD,toPixels:()=>tD});function mc(e,t,n){if(hi(e),t!=null&&t.length!==3)throw new Error("tensor3d() requires shape to have three numbers");let a=Ir(e,n);if(a.length!==3&&a.length!==1)throw new Error("tensor3d() requires values to be number[][][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor3d() requires shape to be provided when `values` are a flat array");return Ts(e,t,a,n)}var Uo;function fk(e,t=3){if(t>4)throw new Error("Cannot construct Tensor with more than 4 channels from pixels.");if(e==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let n=!1,a=!1,r=!1,s=!1,i=!1,o=!1;if(e.data instanceof Uint8Array)n=!0;else if(typeof ImageData!="undefined"&&e instanceof ImageData)a=!0;else if(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)r=!0;else if(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)s=!0;else if(e.getContext!=null)i=!0;else if(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)o=!0;else throw new Error(`pixels passed to tf.browser.fromPixels() must be either an HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData in browser, or OffscreenCanvas, ImageData in webworker or {data: Uint32Array, width: number, height: number}, but was ${e.constructor.name}`);if(r){let p=2;if(r&&e.readyState<p)throw new Error("The video element has not loaded data yet. Please wait for `loadeddata` event on the <video> element.")}if(ac(dy,V.backendName)!=null){let p={pixels:e},c={numChannels:t};return V.runKernel(dy,p,c)}let[l,u]=r?[e.videoWidth,e.videoHeight]:[e.width,e.height],d;i?d=e.getContext("2d").getImageData(0,0,l,u).data:a||n?d=e.data:(s||r||o)&&(Uo==null&&(Uo=document.createElement("canvas").getContext("2d")),Uo.canvas.width=l,Uo.canvas.height=u,Uo.drawImage(e,0,0,l,u),d=Uo.getImageData(0,0,l,u).data);let h;if(t===4)h=new Int32Array(d);else{let p=l*u;h=new Int32Array(p*t);for(let c=0;c<p;c++)for(let m=0;m<t;++m)h[c*t+m]=d[c*4+m]}return mc(h,[u,l,t],"int32")}function ZO(e){return e!=null&&e.data instanceof Uint8Array}function YO(){return typeof window!="undefined"&&typeof ImageBitmap!="undefined"&&window.hasOwnProperty("createImageBitmap")}function JO(e){return e!=null&&e.width!==0&&e.height!==0}function QO(e){return YO()&&!(e instanceof ImageBitmap)&&JO(e)&&!ZO(e)}async function eD(e,t=3){let n=null;if(ht().getBool("WRAP_TO_IMAGEBITMAP")&&QO(e)){let a;try{a=await createImageBitmap(e,{premultiplyAlpha:"none"})}catch(r){a=null}a!=null&&a.width===e.width&&a.height===e.height?n=a:n=e}else n=e;return fk(n,t)}async function tD(e,t){let n=O(e,"img","toPixels");if(!(e instanceof St)){let u=n;n=zt(u,"int32"),u.dispose()}if(n.rank!==2&&n.rank!==3)throw new Error(`toPixels only supports rank 2 or 3 tensors, got rank ${n.rank}.`);let[a,r]=n.shape.slice(0,2),s=n.rank===2?1:n.shape[2];if(s>4||s===2)throw new Error(`toPixels only supports depth of size 1, 3 or 4 but got ${s}`);if(n.dtype!=="float32"&&n.dtype!=="int32")throw new Error(`Unsupported type for toPixels: ${n.dtype}. Please use float32 or int32 tensors.`);let i=await n.data(),o=n.dtype==="float32"?255:1,l=new Uint8ClampedArray(r*a*4);for(let u=0;u<a*r;++u){let d=[0,0,0,255];for(let p=0;p<s;p++){let c=i[u*s+p];if(n.dtype==="float32"){if(c<0||c>1)throw new Error(`Tensor values for a float32 Tensor must be in the range [0 - 1] but encountered ${c}.`)}else if(n.dtype==="int32"&&(c<0||c>255))throw new Error(`Tensor values for a int32 Tensor must be in the range [0 - 255] but encountered ${c}.`);s===1?(d[0]=c*o,d[1]=c*o,d[2]=c*o):d[p]=c*o}let h=u*4;l[h+0]=Math.round(d[0]),l[h+1]=Math.round(d[1]),l[h+2]=Math.round(d[2]),l[h+3]=Math.round(d[3])}if(t!=null){t.width=r,t.height=a;let u=t.getContext("2d"),d=new ImageData(l,r,a);u.putImageData(d,0,0)}return n!==e&&n.dispose(),l}var nD=U({fromPixels_:fk}),mk={};$e(mk,{prepareAndValidate:()=>gk});function gk(e,t){let n=e.shape.length,a=t.shape.length;if(n<1)throw new Error(`tf.gatherND() expects the input to be rank 1 or higher, but the rank was ${n}.`);if(a<1)throw new Error(`tf.gatherND() expects the indices to be rank 1 or higher, but the rank was ${a}.`);if(t.dtype!=="int32")throw new Error(`tf.gatherND() expects the indices to be int32 type, but the dtype was ${t.dtype}.`);if(t.shape[a-1]>n)throw new Error(`index innermost dimension length must be <= tensor rank; saw: ${t.shape[a-1]} vs. ${n}`);if(Jt(e.shape)===0)throw new Error(`Requested more than 0 entries, but input is empty. Input shape: ${e.shape}.`);let r=t.shape,s=r[r.length-1],i=1;for(let h=0;h<r.length-1;++h)i*=r[h];let o=e.shape,l=r.slice();l.pop();let u=1;for(let h=s;h<n;++h)u*=o[h],l.push(o[h]);let d=[..._o(e.shape).map(h=>h/u),1].slice(0,s);return[l,i,u,d]}var yk={};$e(yk,{calculateShapes:()=>Ak,validateInput:()=>By,validateUpdateShape:()=>Wy});function Wy(e,t,n){let a=t.rank>1?t.shape[t.rank-1]:1,r=t.rank>1?t.rank-1:1,s=`Must have updates.shape = indices.shape[:batchDim] + shape[sliceDim:], got updates.shape: ${n.shape}, indices.shape: ${t.shape}, shape: ${e}, sliceDim: ${a}, and batchDim: ${r}.`;if(n.rank<r)throw new Error(s+` update.rank < ${r}. `);if(e.length<a+(n.rank-r))throw new Error(s+` Output shape length < ${a+(n.rank-r)}`);if(n.rank!==r+e.length-a)throw new Error(s+` update.rank != ${r+e.length-a}`);for(let i=0;i<r;++i)if(n.shape[i]!==t.shape[i])throw new Error(s+` updates.shape[${i}] (${n.shape[i]}) != indices.shape[${i}] (${t.shape[i]}).`);for(let i=0;i<n.rank-r;++i)if(n.shape[i+r]!==e[i+a])throw new Error(s+` updates.shape[${i+r}] (${n.shape[i+r]}) != shape[${i+r}] (${e[i+r]})`)}function By(e,t,n){if(t.rank<1)throw new Error(`tf.scatterND() expects the indices to be rank 1 or higher, but the rank was ${t.rank}.`);if(e.rank<1)throw new Error(`tf.scatterND() expects the updates to be rank 1 or higher, but the rank was ${e.rank}.`);if(t.dtype!=="int32")throw new Error(`The dtype of 'indices' should be int32, but got dtype: ${t.dtype}`);if(n.length<1)throw new Error(`Output rank must be greater or equal to 1, but got shape: ${n}`);if(n.length===0){if(t.size===0)throw new Error(`Indices specified for empty output. indices shape: ${t.shape}`);if(e.size===0)throw new Error(`Updates specified for empty output. updates shape: ${e.shape}`)}Wy(n,t,e)}function Ak(e,t,n){let a=t.shape.length,r=a>1?t.shape[a-1]:1,s=n.length,i=1;for(let h=r;h<s;++h)i*=n[h];let o=r<1?1:r,l=Jt(t.shape)/o,u=[..._o(n.slice(0,r)),1],d=Jt(n);return{sliceRank:r,numUpdates:l,sliceSize:i,strides:u,outputSize:d}}var Vy={};$e(Vy,{assertParamsValid:()=>aD,computeFlatOffset:()=>sD,computeOutShape:()=>xk,getNormalizedAxes:()=>kk,isSliceContinous:()=>rD,maskToAxes:()=>gc,parseSliceParams:()=>iD,sliceInfo:()=>oD,startForAxis:()=>Tk,startIndicesWithElidedDims:()=>Ik,stopForAxis:()=>Ek,stopIndicesWithElidedDims:()=>Sk,stridesForAxis:()=>Nk,stridesWithElidedDims:()=>bk});function aD(e,t,n){let a=e.shape.length;L(a===t.length,()=>`Error in slice${a}D: Length of begin ${t} must match the rank of the array (${a}).`),L(a===n.length,()=>`Error in slice${a}D: Length of size ${n} must match the rank of the array (${a}).`);for(let r=0;r<a;++r)L(t[r]+n[r]<=e.shape[r],()=>`Error in slice${a}D: begin[${r}] + size[${r}] (${t[r]+n[r]}) would overflow input.shape[${r}] (${e.shape[r]})`)}function gc(e){let t=[],n=0;for(;e>0;)e&1&&t.push(n),e/=2,n++;return t}function xk(e,t,n){let a=[];for(let r=0;r<e.length;r++)a[r]=Math.ceil((t[r]-e[r])/n[r]);return a}function bk(e,t,n,a){let r=[...e];for(let s=r.length;s<a.length;s++)r.push(1);for(let s=0;s<n;s++)s===0?r[t]=1:(r.splice(t,0,1),r.pop());return r}function vk(e,t,n){return n<=e?n:n-(t-1)}function wk(e,t){let n=[];for(let a=0;a<e;a++)n.push(t+a);return n}function kk(e,t,n,a,r,s,i,o,l){let u=e.length,d=new Array(u),h=new Array(u),p=new Array(u);if(t.length&&n>0){let c=t[0],m=n+1;d=Ik(i,c,m,a,e),h=Sk(o,c,m,r,e),p=bk(s,c,m,e)}else for(let c=0;c<u;c++)d[c]=Tk(i,a,s,e,c,l),h[c]=Ek(o,r,s,e,c,l),p[c]=Nk(s,c,l);return{begin:d,end:h,strides:p}}function Ik(e,t,n,a,r){let s=[...r],i=wk(n,t);for(let o=0;o<s.length;o++)if(i.indexOf(o)>-1)s[o]=0;else{let l=vk(t,n,o),u=a[l];e&1<<l&&(u=0),s[o]=u}return s}function Sk(e,t,n,a,r){let s=[...r],i=wk(n,t);for(let o=0;o<s.length;o++)if(i.indexOf(o)>-1)s[o]=Number.MAX_SAFE_INTEGER;else{let l=vk(t,n,o),u=a[l];e&1<<l&&(u=Number.MAX_SAFE_INTEGER),s[o]=u}for(let o=0;o<s.length;o++){let l=r[o];s[o]<0&&(s[o]+=l),s[o]=qu(0,s[o],r[o])}return s}function Nk(e,t,n){let a=e[t];return(n&1<<t||a==null)&&(a=1),a}function Tk(e,t,n,a,r,s){let i=t[r],o=n[r]||1;(e&1<<r||s&1<<r||i==null)&&(o>0?i=Number.MIN_SAFE_INTEGER:i=Number.MAX_SAFE_INTEGER);let l=a[r];return i<0&&(i+=l),i=qu(0,i,l-1),i}function Ek(e,t,n,a,r,s){let i=t[r],o=n[r]||1;(e&1<<r||s&1<<r||i==null)&&(o>0?i=Number.MAX_SAFE_INTEGER:i=Number.MIN_SAFE_INTEGER);let l=a[r];return i<0&&(i+=l),o>0?i=qu(0,i,l):i=qu(-1,i,l-1),i}function rD(e,t,n){let a=n.length;for(let r=0;r<n.length;r++)if(n[r]>1){a=r;break}for(let r=a+1;r<n.length;r++)if(t[r]>0||n[r]!==e[r])return!1;return!0}function sD(e,t){let n=e.length>0?e[e.length-1]:1;for(let a=0;a<e.length-1;a++)n+=e[a]*t[a];return n}function iD(e,t,n){let a,r=e.shape.length;typeof t=="number"?a=[t,...new Array(r-1).fill(0)]:t.length<r?a=t.concat(new Array(r-t.length).fill(0)):a=t.slice(),a.forEach(i=>{L(i!==-1,()=>"slice() does not support negative begin indexing.")});let s;return n==null?s=new Array(r).fill(-1):typeof n=="number"?s=[n,...new Array(r-1).fill(-1)]:n.length<r?s=n.concat(new Array(r-n.length).fill(-1)):s=n,s=s.map((i,o)=>i>=0?i:(L(i===-1,()=>`Negative size values should be exactly -1 but got ${i} for the slice() size at index ${o}.`),e.shape[o]-a[o])),[a,s]}function oD(e,t,n,a,r,s,i,o,l){let u=t.slice(),d=n.slice(),h=a;a==null&&(h=new Array(u.length));let p=gc(i);if(p.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(i!==0&&o!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(i!==0&&l!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let c=e.length-u.length,m=gc(o),f=e.slice();m.forEach(w=>{u[w]=0,d[w]=1,f.splice(w,0,1)});let{begin:g,end:y,strides:A}=kk(f,p,c,u,d,h,r,s,i);u=g,d=y,h=A;let x=gc(l);x.forEach(w=>{d[w]=u[w]+1,h[w]=1});let v=xk(u,d,h),b=v.filter((w,I)=>x.indexOf(I)===-1);return{nonStrided:h.every(w=>w===1),$begin:u,$end:d,$strides:h,size:v,newShape:f,outShape:b}}var Ck={};$e(Ck,{Serializable:()=>Mk,SerializationMap:()=>xi,registerClass:()=>Cs});var Mk=class{getClassName(){return this.constructor.className}static fromConfig(e,t){return new e(t)}},xi=class{constructor(){this.classNameMap={}}static getMap(){return xi.instance==null&&(xi.instance=new xi),xi.instance}static register(e){xi.getMap().classNameMap[e.className]=[e,e.fromConfig]}};function Cs(e){L(e.className!=null,()=>"Class being registered does not have the static className property defined."),L(typeof e.className=="string",()=>"className is required to be a string, but got type "+typeof e.className),L(e.className.length>0,()=>"Class being registered has an empty-string as its className, which is disallowed."),xi.register(e)}var $k={};$e($k,{TEST_EPSILON_FLOAT16:()=>Rk,encodeStrings:()=>Fk,expectArrayBuffersEqual:()=>fD,expectArraysClose:()=>uD,expectArraysEqual:()=>hD,expectNumbersClose:()=>pD,expectPromiseToFail:()=>dD,expectValuesInRange:()=>cD,testEpsilon:()=>Uy});var lD=.001,Rk=.1;function uD(e,t,n){return n==null&&(n=Uy()),jy(e,t,(a,r)=>Hy(a,r,n))}function Uy(){return V.backend.floatPrecision()===32?lD:Rk}function jy(e,t,n){let a=!0;if((En(e)||En(t))&&(a=!1),En(e)&&En(t)&&(a=!0),a){let i=e.constructor.name,o=t.constructor.name;if(i!==o)throw new Error(`Arrays are of different type. Actual: ${i}. Expected: ${o}`)}if(Array.isArray(e)&&Array.isArray(t)){let i=Ir(e),o=Ir(t);if(!Kr(i,o))throw new Error(`Arrays have different shapes. Actual: [${i}]. Expected: [${o}]`)}let r=En(e)?e:pi(e),s=En(t)?t:pi(t);if(r.length!==s.length)throw new Error(`Arrays have different lengths actual: ${r.length} vs expected: ${s.length}.
|
|
Actual: ${r}.
|
|
Expected: ${s}.`);for(let i=0;i<s.length;++i){let o=r[i],l=s[i];if(!n(o,l))throw new Error(`Arrays differ: actual[${i}] = ${o}, expected[${i}] = ${l}.
|
|
Actual: ${r}.
|
|
Expected: ${s}.`)}}function dD(e,t){e().then(()=>t.fail(),()=>t())}function hD(e,t){let n=typeof t=="string"||typeof t=="number"||typeof t=="boolean"?[t]:t;return Is(e)||Is(e[0])||Is(t)||Is(t[0])?jy(e,n,(a,r)=>a==r):jy(e,t,(a,r)=>Hy(a,r,0))}function pD(e,t,n){if(n==null&&(n=Uy()),!Hy(e,t,n))throw new Error(`Numbers differ: actual === ${e}, expected === ${t}`)}function Hy(e,t,n){return!isFinite(e)&&!isFinite(t)?!0:!(isNaN(e)||isNaN(t)||Math.abs(e-t)>n)}function cD(e,t,n){for(let a=0;a<e.length;a++)if(e[a]<t||e[a]>n)throw new Error(`Value out of range:${e[a]} low: ${t}, high: ${n}`)}function fD(e,t){expect(new Float32Array(e)).toEqual(new Float32Array(t))}function Fk(e){for(let t=0;t<e.length;t++){let n=e[t];Array.isArray(n)?Fk(n):e[t]=Qu(n)}return e}var mD="3.7.0";function gD(){ht().set("PROD",!0)}function yD(){ht().set("DEBUG",!0)}function AD(){ht().set("DEPRECATION_WARNINGS_ENABLED",!1),console.warn("TensorFlow.js deprecation warnings have been disabled.")}function Ok(e){ht().getBool("DEPRECATION_WARNINGS_ENABLED")&&console.warn(e+" You can disable deprecation warnings with tf.disableDeprecationWarnings().")}WF(Ok);function xD(){V.disposeVariables()}function bD(){return V}function vD(){return V.memory()}function wD(e){return V.profile(e)}function Ue(e,t){return V.tidy(e,t)}function Ve(e){ky(e).forEach(t=>t.dispose())}function Dk(e){return V.keep(e)}function kD(e){return V.time(e)}function ID(e){return V.setBackend(e)}function SD(){return V.ready()}function ND(){return V.backendName}function TD(e){V.removeBackend(e)}function Gy(e){return V.findBackend(e)}function ED(e){return V.findBackendFactory(e)}function qy(e,t,n=1){return V.registerBackend(e,t,n)}function CD(){return V.backend}function MD(e,t){ht().setPlatform(e,t)}function $D(e,t){let n=O(e,"a","add"),a=O(t,"b","add");[n,a]=Vt(n,a);let r={a:n,b:a};return V.runKernel(iy,r)}var De=U({add_:$D});function RD(e,t){let n=O(e,"a","floorDiv"),a=O(t,"b","floorDiv");[n,a]=Vt(n,a);let r={a:n,b:a};return V.runKernel(Zv,r)}var _k=U({floorDiv_:RD});function FD(e,t){let n=O(e,"a","div"),a=O(t,"b","div");if([n,a]=Vt(n,a),n.dtype==="int32"&&a.dtype==="int32")return _k(n,a);let r={a:n,b:a},s={};return V.runKernel(Pv,r,s)}var Qe=U({div_:FD});function OD(e,t){let n=O(e,"a","mul"),a=O(t,"b","mul");[n,a]=Vt(n,a);let r={a:n,b:a};return V.runKernel(Ew,r)}var fe=U({mul_:OD});function DD(e){let t=O(e,"x","abs");if(t.dtype==="complex64"){let n={x:t};return V.runKernel(bv,n)}else{let n={x:t};return V.runKernel(Q3,n)}}var Sa=U({abs_:DD});function _D(e){let t={x:O(e,"x","acos")};return V.runKernel(ev,t)}var zD=U({acos_:_D});function PD(e){let t={x:O(e,"x","acosh")};return V.runKernel(tv,t)}var LD=U({acosh_:PD});function WD(e){L(Array.isArray(e),()=>"The argument passed to tf.addN() must be a list of tensors"),L(e.length>=1,()=>`Must pass at least one tensor to tf.addN(), but got ${e.length}`);let t=e.map((r,s)=>O(r,`tensors${s}`,"addN")),n=t[0];t.forEach(r=>{if(r.dtype!==n.dtype)throw new Error("All tensors passed to tf.addN() must have the same dtype")}),t.forEach(r=>{if(!Kr(r.shape,n.shape))throw new Error("All tensors passed to tf.addN() must have the same shape")});let a=t;return V.runKernel(nv,a)}var Ky=U({addN_:WD});function BD(e,t=null,n=!1){let a={x:O(e,"x","all","bool")},r={axis:t,keepDims:n};return V.runKernel(av,a,r)}var VD=U({all_:BD});function UD(e,t=null,n=!1){let a={x:O(e,"x","any","bool")},r={axis:t,keepDims:n};return V.runKernel(rv,a,r)}var jD=U({any_:UD});function HD(e,t=0){let n={x:O(e,"x","argMax")},a={axis:t};return V.runKernel(sv,n,a)}var Xy=U({argMax_:HD});function GD(e,t=0){let n={x:O(e,"x","argMin")},a={axis:t};return V.runKernel(iv,n,a)}var qD=U({argMin_:GD});function KD(e){let t={x:O(e,"x","asin")};return V.runKernel(ov,t)}var XD=U({asin_:KD});function ZD(e){let t={x:O(e,"x","asinh")};return V.runKernel(lv,t)}var YD=U({asinh_:ZD});function JD(e){let t={x:O(e,"x","atan")};return V.runKernel(uv,t)}var QD=U({atan_:JD});function e_(e,t){let n=O(e,"a","atan2"),a=O(t,"b","atan2");[n,a]=Vt(n,a);let r={a:n,b:a};return V.runKernel(hv,r)}var t_=U({atan2_:e_});function n_(e){let t={x:O(e,"x","atanh")};return V.runKernel(dv,t)}var a_=U({atanh_:n_});function r_(e,t,n,a,r="NHWC",s){let i=e[3],o=[...t,i],l=Lk(r);return id(e,o,n,s,a,null,null,l)}function zk(e,t,n,a,r,s,i="channelsLast"){let[o,l]=yc(t),u;if(i==="channelsLast")u=[o,l,e[3],e[3]];else if(i==="channelsFirst")u=[o,l,e[1],e[1]];else throw new Error(`Unknown dataFormat ${i}`);return id(e,u,n,a,r,s,!1,i)}function s_(e,t,n,a,r,s,i="NDHWC"){let[o,l,u]=Yy(t),d,h;if(i==="NDHWC")h="channelsLast",d=[o,l,u,e[4],e[4]];else if(i==="NCDHW")h="channelsFirst",d=[o,l,u,e[1],e[1]];else throw new Error(`Unknown dataFormat ${i}`);return Pk(e,d,n,a,r,!1,h,s)}function id(e,t,n,a,r,s,i=!1,o="channelsLast"){let[l,u,d,h]=[-1,-1,-1,-1];if(o==="channelsLast")[l,u,d,h]=e;else if(o==="channelsFirst")[l,h,u,d]=e;else throw new Error(`Unknown dataFormat ${o}`);let[p,c,,m]=t,[f,g]=yc(n),[y,A]=yc(a),x=jo(p,y),v=jo(c,A),{padInfo:b,outHeight:w,outWidth:I}=l_(r,u,d,f,g,x,v,s,o),T=i?m*h:m,C;return o==="channelsFirst"?C=[l,T,w,I]:o==="channelsLast"&&(C=[l,w,I,T]),{batchSize:l,dataFormat:o,inHeight:u,inWidth:d,inChannels:h,outHeight:w,outWidth:I,outChannels:T,padInfo:b,strideHeight:f,strideWidth:g,filterHeight:p,filterWidth:c,effectiveFilterHeight:x,effectiveFilterWidth:v,dilationHeight:y,dilationWidth:A,inShape:e,outShape:C,filterShape:t}}function Pk(e,t,n,a,r,s=!1,i="channelsLast",o){let[l,u,d,h,p]=[-1,-1,-1,-1,-1];if(i==="channelsLast")[l,u,d,h,p]=e;else if(i==="channelsFirst")[l,p,u,d,h]=e;else throw new Error(`Unknown dataFormat ${i}`);let[c,m,f,,g]=t,[y,A,x]=Yy(n),[v,b,w]=Yy(a),I=jo(c,v),T=jo(m,b),C=jo(f,w),{padInfo:z,outDepth:$,outHeight:S,outWidth:D}=u_(r,u,d,h,y,A,x,I,T,C,o),_=s?g*p:g,W;return i==="channelsFirst"?W=[l,_,$,S,D]:i==="channelsLast"&&(W=[l,$,S,D,_]),{batchSize:l,dataFormat:i,inDepth:u,inHeight:d,inWidth:h,inChannels:p,outDepth:$,outHeight:S,outWidth:D,outChannels:_,padInfo:z,strideDepth:y,strideHeight:A,strideWidth:x,filterDepth:c,filterHeight:m,filterWidth:f,effectiveFilterDepth:I,effectiveFilterHeight:T,effectiveFilterWidth:C,dilationDepth:v,dilationHeight:b,dilationWidth:w,inShape:e,outShape:W,filterShape:t}}function i_(e,t,n,a,r){a==null&&(a=Zy(e,t,n));let s=e[0],i=e[1],o=bi((s-t+2*a)/n+1,r),l=bi((i-t+2*a)/n+1,r);return[o,l]}function o_(e,t,n,a,r,s){r==null&&(r=Zy(e,t,a));let i=e[0],o=e[1],l=e[2],u=bi((i-t+2*r)/a+1,s),d=bi((o-t+2*r)/a+1,s),h=bi((l-t+2*r)/a+1,s);return[u,d,h,n]}function Zy(e,t,n,a=1){let r=jo(t,a);return Math.floor((e[0]*(n-1)-n+r)/2)}function yc(e){return typeof e=="number"?[e,e,e]:e.length===2?[e[0],e[1],1]:e}function Yy(e){return typeof e=="number"?[e,e,e]:e}function jo(e,t){return t<=1?e:e+(e-1)*(t-1)}function l_(e,t,n,a,r,s,i,o,l){let u,d,h;if(typeof e=="number"){u={top:e,bottom:e,left:e,right:e,type:e===0?"VALID":"NUMBER"};let p=i_([t,n],s,a,e,o);d=p[0],h=p[1]}else if(e==="same"){d=Math.ceil(t/a),h=Math.ceil(n/r);let p=Math.max(0,(d-1)*a+s-t),c=Math.max(0,(h-1)*r+i-n),m=Math.floor(p/2),f=p-m,g=Math.floor(c/2),y=c-g;u={top:m,bottom:f,left:g,right:y,type:"SAME"}}else if(e==="valid")u={top:0,bottom:0,left:0,right:0,type:"VALID"},d=Math.ceil((t-s+1)/a),h=Math.ceil((n-i+1)/r);else if(typeof e=="object"){let p=l==="channelsLast"?e[1][0]:e[2][0],c=l==="channelsLast"?e[1][1]:e[2][1],m=l==="channelsLast"?e[2][0]:e[3][0],f=l==="channelsLast"?e[2][1]:e[3][1];u={top:p,bottom:c,left:m,right:f,type:p===0&&c===0&&m===0&&f===0?"VALID":"EXPLICIT"},d=bi((t-s+p+c)/a+1,o),h=bi((n-i+m+f)/r+1,o)}else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:u,outHeight:d,outWidth:h}}function u_(e,t,n,a,r,s,i,o,l,u,d){let h,p,c,m;if(typeof e=="number"){h={top:e,bottom:e,left:e,right:e,front:e,back:e,type:e===0?"VALID":"NUMBER"};let f=o_([t,n,a,1],o,1,r,e,d);p=f[0],c=f[1],m=f[2]}else if(e==="same"){p=Math.ceil(t/r),c=Math.ceil(n/s),m=Math.ceil(a/i);let f=(p-1)*r+o-t,g=(c-1)*s+l-n,y=(m-1)*i+u-a,A=Math.floor(f/2),x=f-A,v=Math.floor(g/2),b=g-v,w=Math.floor(y/2),I=y-w;h={top:v,bottom:b,left:w,right:I,front:A,back:x,type:"SAME"}}else if(e==="valid")h={top:0,bottom:0,left:0,right:0,front:0,back:0,type:"VALID"},p=Math.ceil((t-o+1)/r),c=Math.ceil((n-l+1)/s),m=Math.ceil((a-u+1)/i);else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:h,outDepth:p,outHeight:c,outWidth:m}}function bi(e,t){if(!t)return Math.trunc(e);switch(t){case"round":return Math.round(e);case"ceil":return Math.ceil(e);case"floor":return Math.floor(e);default:throw new Error(`Unknown roundingMode ${t}`)}}function od(e){let[t,n,a]=yc(e);return t===1&&n===1&&a===1}function Jr(e,t){return od(e)||od(t)}function Lk(e){if(e==="NHWC")return"channelsLast";if(e==="NCHW")return"channelsFirst";throw new Error(`Unknown dataFormat ${e}`)}function d_(e,t){let n={x:O(e,"x","reshape","string_or_numeric")},a={shape:t};return V.runKernel(Hw,n,a)}var le=U({reshape_:d_});function h_(e,t,n,a,r){let s=O(e,"x","avgPool","float32"),i=1;L(Jr(n,i),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${i}'`);let o=s,l=!1;s.rank===3&&(l=!0,o=le(s,[1,s.shape[0],s.shape[1],s.shape[2]])),L(o.rank===4,()=>`Error in avgPool: x must be rank 4 but got rank ${o.rank}.`),r!=null&&L(Zn(a),()=>`Error in avgPool: pad must be an integer when using, dimRoundingMode ${r} but got pad ${a}.`);let u={x:o},d={filterSize:t,strides:n,pad:a,dimRoundingMode:r},h=V.runKernel(pv,u,d);return h=zt(h,s.dtype),l?le(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var Wk=U({avgPool_:h_});function p_(e,t,n,a,r,s="NDHWC"){let i=O(e,"x","avgPool3d","float32"),o=i,l=!1;i.rank===4&&(l=!0,o=le(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),L(o.rank===5,()=>`Error in avgPool3d: x must be rank 5 but got rank ${o.rank}.`),L(s==="NDHWC",()=>`Error in avgPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),r!=null&&L(Zn(a),()=>`Error in avgPool3d: pad must be an integer when using, dimRoundingMode ${r} but got pad ${a}.`);let u={x:o},d={filterSize:t,strides:n,pad:a,dimRoundingMode:r,dataFormat:s},h=V.runKernel(cv,u,d);return h=zt(h,o.dtype),l?le(h,[h.shape[1],h.shape[2],h.shape[3],h.shape[4]]):h}var c_=U({avgPool3d_:p_});function f_(e,t=0){L(e.length>=1,()=>"Pass at least one tensor to concat");let n=rd(e,"tensors","concat","string_or_numeric");if(n[0].dtype==="complex64"&&n.forEach(s=>{if(s.dtype!=="complex64")throw new Error(`Cannot concatenate complex64 tensors with a tensor
|
|
with dtype ${s.dtype}. `)}),n.length===1)return Yr(n[0]);let a=n,r={axis:t};return V.runKernel(vv,a,r)}var sn=U({concat_:f_});function m_(e){let t={x:O(e,"x","sigmoid")};return V.runKernel(s7,t)}var Sr=U({sigmoid_:m_});function g_(e,t,n){let a=O(e,"x","slice","string_or_numeric");if(a.rank===0)throw new Error("Slicing scalar is not possible");let r={x:a},s={begin:t,size:n};return V.runKernel(t7,r,s)}var Ze=U({slice_:g_});function y_(e){let t={x:O(e,"x","tanh")};return V.runKernel(I7,t)}var Jy=U({tanh_:y_});function A_(e,t,n,a,r,s){let i=O(e,"forgetBias","basicLSTMCell"),o=O(t,"lstmKernel","basicLSTMCell"),l=O(n,"lstmBias","basicLSTMCell"),u=O(a,"data","basicLSTMCell"),d=O(r,"c","basicLSTMCell"),h=O(s,"h","basicLSTMCell"),p=sn([u,h],1),c=yt(p,o),m=De(c,l),f=m.shape[0],g=m.shape[1]/4,y=[f,g],A=Ze(m,[0,0],y),x=Ze(m,[0,g],y),v=Ze(m,[0,g*2],y),b=Ze(m,[0,g*3],y),w=De(fe(Sr(A),Jy(x)),fe(d,Sr(De(i,v)))),I=fe(Jy(w),Sr(b));return[w,I]}var x_=U({basicLSTMCell_:A_});function b_(e,t,n){let a=O(e,"x","batchToSpaceND"),r=t.reduce((o,l)=>o*l);L(a.rank>=1+t.length,()=>`input rank is ${a.rank} but should be > than blockShape.length ${t.length}`),L(n.length===t.length,()=>`crops.length is ${n.length} but should be equal to blockShape.length ${t.length}`),L(a.shape[0]%r==0,()=>`input tensor batch is ${a.shape[0]} but is not divisible by the product of the elements of blockShape ${t.join(" * ")} === ${r}`);let s={x:a},i={blockShape:t,crops:n};return V.runKernel(mv,s,i)}var Bk=U({batchToSpaceND_:b_});function v_(e){let t;return e.rank===0||e.rank===1?t=le(e,[1,1,1,e.size]):e.rank===2?t=le(e,[1,1,e.shape[0],e.shape[1]]):e.rank===3?t=le(e,[1,e.shape[0],e.shape[1],e.shape[2]]):t=e,t}function w_(e,t,n,a,r,s){s==null&&(s=.001);let i=O(e,"x","batchNorm"),o=O(t,"mean","batchNorm"),l=O(n,"variance","batchNorm"),u;r!=null&&(u=O(r,"scale","batchNorm"));let d;a!=null&&(d=O(a,"offset","batchNorm")),L(o.rank===l.rank,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),L(d==null||o.rank===d.rank,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),L(u==null||o.rank===u.rank,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let h={x:v_(i),scale:u,offset:d,mean:o,variance:l},p={varianceEpsilon:s},c=V.runKernel(Yv,h,p);return le(c,i.shape)}var Ac=U({batchNorm_:w_});function k_(e,t,n,a,r,s){let i=O(e,"x","batchNorm"),o=O(t,"mean","batchNorm"),l=O(n,"variance","batchNorm"),u;r!=null&&(u=O(r,"scale","batchNorm"));let d;return a!=null&&(d=O(a,"offset","batchNorm")),L(i.rank===2,()=>`Error in batchNorm2D: x must be rank 2 but got rank ${i.rank}.`),L(o.rank===2||o.rank===1,()=>`Error in batchNorm2D: mean must be rank 2 or rank 1 but got rank ${o.rank}.`),L(l.rank===2||l.rank===1,()=>`Error in batchNorm2D: variance must be rank 2 or rank 1 but got rank ${l.rank}.`),u!=null&&L(u.rank===2||u.rank===1,()=>`Error in batchNorm2D: scale must be rank 2 or rank 1 but got rank ${u.rank}.`),d!=null&&L(d.rank===2||d.rank===1,()=>`Error in batchNorm2D: offset must be rank 2 or rank 1 but got rank ${d.rank}.`),Ac(i,o,l,d,u,s)}var I_=U({batchNorm2d_:k_});function S_(e,t,n,a,r,s){let i=O(e,"x","batchNorm"),o=O(t,"mean","batchNorm"),l=O(n,"variance","batchNorm"),u;r!=null&&(u=O(r,"scale","batchNorm"));let d;return a!=null&&(d=O(a,"offset","batchNorm")),L(i.rank===3,()=>`Error in batchNorm3D: x must be rank 3 but got rank ${i.rank}.`),L(o.rank===3||o.rank===1,()=>`Error in batchNorm3D: mean must be rank 3 or rank 1 but got rank ${o.rank}.`),L(l.rank===3||l.rank===1,()=>`Error in batchNorm3D: variance must be rank 3 or rank 1 but got rank ${l.rank}.`),u!=null&&L(u.rank===3||u.rank===1,()=>`Error in batchNorm3D: scale must be rank 3 or rank 1 but got rank ${u.rank}.`),d!=null&&L(d.rank===3||d.rank===1,()=>`Error in batchNorm3D: offset must be rank 3 or rank 1 but got rank ${d.rank}.`),Ac(i,o,l,d,u,s)}var N_=U({batchNorm3d_:S_});function T_(e,t,n,a,r,s){let i=O(e,"x","batchNorm"),o=O(t,"mean","batchNorm"),l=O(n,"variance","batchNorm"),u;r!=null&&(u=O(r,"scale","batchNorm"));let d;return a!=null&&(d=O(a,"offset","batchNorm")),L(i.rank===4,()=>`Error in batchNorm4D: x must be rank 4 but got rank ${i.rank}.`),L(o.rank===4||o.rank===1,()=>`Error in batchNorm4D: mean must be rank 4 or rank 1 but got rank ${o.rank}.`),L(l.rank===4||l.rank===1,()=>`Error in batchNorm4D: variance must be rank 4 or rank 1 but got rank ${l.rank}.`),u!=null&&L(u.rank===4||u.rank===1,()=>`Error in batchNorm4D: scale must be rank 4 or rank 1 but got rank ${u.rank}.`),d!=null&&L(d.rank===4||d.rank===1,()=>`Error in batchNorm4D: offset must be rank 4 or rank 1 but got rank ${d.rank}.`),Ac(i,o,l,d,u,s)}var E_=U({batchNorm4d_:T_});function C_(e,t,n){let a=O(e,"x","bincount"),r=O(t,"weights","bincount");L(a.dtype==="int32",()=>`Error in bincount: input dtype must be int32, but got ${a.dtype}`),L(n>=0,()=>`size must be non-negative, but got ${n}.`),L(r.size===a.size||r.size===0,()=>`Error in bincount: weights must have the same size as input or0-length, but got input shape: ${a.shape}, weights shape: ${r.shape}.`);let s={x:a,weights:r},i={size:n};return V.runKernel(gv,s,i)}var Vk=U({bincount_:C_});function M_(e,t){let n=O(e,"broadcastTo","x"),a=n.shape;if(t.some(l=>!(l>0)||l%1!=0))throw new Error(`broadcastTo(): Invalid broadcast shape [${t}].`);if(t.length<n.rank)throw new Error(`broadcastTo(): shape.length=${t.length} < input.rank=${n.rank}.`);if(t.length>n.rank){let l=n.shape.slice();for(;l.length<t.length;)l.unshift(1);n=le(n,l)}let r=n.shape,s=Array.from(t);for(let l=t.length-1;l>=0;l--)if(r[l]===t[l])s[l]=1;else if(n.shape[l]!==1)throw new Error(`broadcastTo(): [${a}] cannot be broadcast to [${t}].`);if(s.map((l,u)=>l>1?u:-1).filter(l=>l>=0).length===0)return Yr(n);let i={x:n},o={reps:s};return V.runKernel(uy,i,o)}var xc=U({broadcastTo_:M_});function $_(e){let t={x:O(e,"x","ceil")};return V.runKernel(yv,t)}var R_=U({ceil_:$_});function F_(e,t,n){let a=O(e,"x","clipByValue");L(t<=n,()=>`Error in clip: min (${t}) must be less than or equal to max (${n}).`);let r={x:a},s={clipValueMin:t,clipValueMax:n};return V.runKernel(Av,r,s)}var O_=U({clipByValue_:F_});function D_(e){return sn(e,0)}var __=U({concat1d_:D_});function z_(e,t){return sn(e,t)}var ld=U({concat2d_:z_});function P_(e,t){return sn(e,t)}var L_=U({concat3d_:P_});function W_(e,t){return sn(e,t)}var B_=U({concat4d_:W_});function V_(e,t,n,a,r="NHWC",s=[1,1],i){let o=O(e,"x","conv2d"),l=O(t,"filter","conv2d"),u=o,d=!1;o.rank===3&&(d=!0,u=le(o,[1,o.shape[0],o.shape[1],o.shape[2]])),L(u.rank===4,()=>`Error in conv2d: input must be rank 4, but got rank ${u.rank}.`),L(l.rank===4,()=>`Error in conv2d: filter must be rank 4, but got rank ${l.rank}.`),i!=null&&L(Zn(a),()=>`Error in conv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${a}.`);let h=r==="NHWC"?u.shape[3]:u.shape[1];L(h===l.shape[2],()=>`Error in conv2d: depth of input (${h}) must match input depth for filter ${l.shape[2]}.`),L(Jr(n,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`);let p={x:u,filter:l},c={strides:n,pad:a,dataFormat:r,dilations:s,dimRoundingMode:i},m=V.runKernel(wv,p,c);return d?le(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var bc=U({conv2d_:V_});function U_(e,t,n,a,r="NWC",s=1,i){let o=O(e,"x","conv1d"),l=O(t,"filter","conv1d"),u=o,d=!1;o.rank===2&&(d=!0,u=le(o,[1,o.shape[0],o.shape[1]])),L(u.rank===3,()=>`Error in conv1d: input must be rank 3, but got rank ${u.rank}.`),L(l.rank===3,()=>`Error in conv1d: filter must be rank 3, but got rank ${l.rank}.`),i!=null&&L(Zn(a),()=>`Error in conv1d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${a}.`),L(u.shape[2]===l.shape[1],()=>`Error in conv1d: depth of input (${u.shape[2]}) must match input depth for filter ${l.shape[1]}.`),L(Jr(n,s),()=>`Error in conv1D: Either stride or dilation must be 1. Got stride ${n} and dilation '${s}'`),L(r==="NWC",()=>`Error in conv1d: got dataFormat of ${r} but only NWC is currently supported.`);let h=le(l,[1,l.shape[0],l.shape[1],l.shape[2]]),p=le(u,[u.shape[0],1,u.shape[1],u.shape[2]]),c=bc(p,h,[1,n],a,"NHWC",[1,s],i);return d?le(c,[c.shape[2],c.shape[3]]):le(c,[c.shape[0],c.shape[2],c.shape[3]])}var j_=U({conv1d_:U_});function H_(e,t,n,a,r,s="NHWC",i){L(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let o=e,l=t,u=!1;t.rank===3&&(u=!0,l=le(t,[1,t.shape[0],t.shape[1],t.shape[2]]),o=[1,e[0],e[1],e[2]]),L(o.length===4,()=>`Error in conv2dDerInput: inShape must be length 4, but got length ${o.length}.`),L(l.rank===4,()=>`Error in conv2dDerInput: dy must be rank 4, but got rank ${l.rank}`),L(n.rank===4,()=>`Error in conv2dDerInput: filter must be rank 4, but got rank ${n.rank}`);let d=s==="NHWC"?o[3]:o[1],h=s==="NHWC"?l.shape[3]:l.shape[1];L(d===n.shape[2],()=>`Error in conv2dDerInput: depth of input (${d}) must match input depth for filter ${n.shape[2]}.`),L(h===n.shape[3],()=>`Error in conv2dDerInput: depth of output (${h}) must match output depth for filter ${n.shape[3]}.`),i!=null&&L(Zn(r),()=>`Error in conv2dDerInput: pad must be an integer when using, dimRoundingMode ${i} but got pad ${r}.`);let p={dy:l,filter:n},c={strides:a,pad:r,dataFormat:s,dimRoundingMode:i,inputShape:o},m=V.runKernel(Iv,p,c);return u?le(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var Uk=U({conv2DBackpropInput_:H_});function G_(e,t,n,a,r,s){let i=O(e,"x","conv2dTranspose"),o=O(t,"filter","conv2dTranspose");return Uk(n,i,o,a,r,"NHWC",s)}var q_=U({conv2dTranspose_:G_});function K_(e,t,n,a,r="NDHWC",s=[1,1,1]){let i=O(e,"x","conv3d"),o=O(t,"filter","conv3d"),l=i,u=!1;i.rank===4&&(u=!0,l=le(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),L(l.rank===5,()=>`Error in conv3d: input must be rank 5, but got rank ${l.rank}.`),L(o.rank===5,()=>`Error in conv3d: filter must be rank 5, but got rank ${o.rank}.`),L(l.shape[4]===o.shape[3],()=>`Error in conv3d: depth of input (${l.shape[4]}) must match input depth for filter ${o.shape[3]}.`),L(Jr(n,s),()=>`Error in conv3D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),L(r==="NDHWC",()=>`Error in conv3d: got dataFormat of ${r} but only NDHWC is currently supported.`);let d={x:l,filter:o},h={strides:n,pad:a,dataFormat:r,dilations:s},p=V.runKernel(Sv,d,h);return u?le(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var X_=U({conv3d_:K_});function Z_(e,t,n,a,r){L(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let s=e,i=t,o=!1;t.rank===4&&(o=!0,i=le(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]]),s=[1,e[0],e[1],e[2],e[3]]);let l=s[4],u=i.shape[4];L(s.length===5,()=>`Error in conv3dDerInput: inShape must be length 5, but got length ${s.length}.`),L(i.rank===5,()=>`Error in conv3dDerInput: dy must be rank 5, but got rank ${i.rank}`),L(n.rank===5,()=>`Error in conv3dDerInput: filter must be rank 5, but got rank ${n.rank}`),L(l===n.shape[3],()=>`Error in conv3dDerInput: depth of input (${l}) must match input depth for filter ${n.shape[3]}.`),L(u===n.shape[4],()=>`Error in conv3dDerInput: depth of output (${u}) must match output depth for filter ${n.shape[4]}.`);let d={dy:i,filter:n},h={pad:r,strides:a,inputShape:s},p=V.runKernel(Nv,d,h);return o?le(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var Y_=U({conv3DBackpropInput_:Z_});function J_(e,t,n,a,r){let s=O(e,"x","conv3dTranspose"),i=O(t,"filter","conv3dTranspose");return Y_(n,s,i,a,r)}var Q_=U({conv3dTranspose_:J_});function ez(e){let t={x:O(e,"x","cos")};return V.runKernel(Tv,t)}var tz=U({cos_:ez});function nz(e){let t={x:O(e,"x","cosh")};return V.runKernel(Ev,t)}var az=U({cosh_:nz});function rz(e,t=0,n=!1,a=!1){let r={x:O(e,"x","cumsum")},s={axis:t,exclusive:n,reverse:a};return V.runKernel(Cv,r,s)}var sz=U({cumsum_:rz});function iz(e,t,n,a=!1){let r=O(e,"x","denseBincount"),s=O(t,"weights","denseBincount");L(r.dtype==="int32",()=>`Error in denseBincount: input dtype must be int32, but got ${r.dtype}`),L(r.rank<=2,()=>`Error in denseBincount: input must be at most rank 2, but got rank ${r.rank}.`),L(n>=0,()=>`size must be non-negative, but got ${n}.`),L(s.size===r.size||s.size===0,()=>`Error in denseBincount: weights must have the same shape as x or 0-length, but got x shape: ${r.shape}, weights shape: ${s.shape}.`);let i={x:r,weights:s},o={size:n,binaryOutput:a};return V.runKernel($v,i,o)}var oz=U({denseBincount_:iz});function lz(e,t,n="NHWC"){let a=O(e,"x","depthToSpace"),r=n==="NHWC"?a.shape[1]:a.shape[2],s=n==="NHWC"?a.shape[2]:a.shape[3],i=n==="NHWC"?a.shape[3]:a.shape[1];L(r*t>=0,()=>`Negative dimension size caused by overflow when multiplying
|
|
${r} and ${t} for depthToSpace with input shape
|
|
${a.shape}`),L(s*t>=0,()=>`Negative dimension size caused by overflow when multiplying
|
|
${s} and ${t} for depthToSpace with input shape
|
|
${a.shape}`),L(i%(t*t)==0,()=>`Dimension size must be evenly divisible by ${t*t} but is ${i} for depthToSpace with input shape ${a.shape}`);let o={x:a},l={blockSize:t,dataFormat:n};return V.runKernel(Rv,o,l)}var uz=U({depthToSpace_:lz});function dz(e,t,n,a,r="NHWC",s=[1,1],i){let o=O(e,"x","depthwiseConv2d"),l=O(t,"filter","depthwiseConv2d"),u=o,d=!1;o.rank===3&&(d=!0,u=le(o,[1,o.shape[0],o.shape[1],o.shape[2]])),L(u.rank===4,()=>`Error in depthwiseConv2d: input must be rank 4, but got rank ${u.rank}.`),L(l.rank===4,()=>`Error in depthwiseConv2d: filter must be rank 4, but got rank ${l.rank}.`),L(u.shape[3]===l.shape[2],()=>`Error in depthwiseConv2d: number of input channels (${u.shape[3]}) must match the inChannels dimension in filter ${l.shape[2]}.`),i!=null&&L(Zn(a),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${a}.`);let h={x:u,filter:l},p={strides:n,pad:a,dataFormat:r,dilations:s,dimRoundingMode:i},c=V.runKernel(Fv,h,p);return d?le(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var Qy=U({depthwiseConv2d_:dz});function hz(e){let t={x:O(e,"x","diag")};return V.runKernel(_v,t)}var pz=U({diag_:hz});function cz(e,t,n,a,r=[1,1],s="NHWC"){let i=O(e,"x","dilation2d"),o=O(t,"filter","dilation2d");L(i.rank===3||i.rank===4,()=>`Error in dilation2d: input must be rank 3 or 4, but got rank ${i.rank}.`),L(o.rank===3,()=>`Error in dilation2d: filter must be rank 3, but got rank ${o.rank}.`),L(s==="NHWC",()=>`Error in dilation2d: Only NHWC is currently supported, but got dataFormat of ${s}`);let l=i,u=!1;i.rank===3&&(l=le(i,[1,i.shape[0],i.shape[1],i.shape[2]]),u=!0);let d={x:l,filter:o},h={strides:n,pad:a,dilations:r},p=V.runKernel(zv,d,h);return u?le(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var fz=U({dilation2d_:cz});function mz(e,t){let n=e.length,a=[];for(let r=0;r<n;r++){let s=n-1-r,i=e[s]||1;(t[t.length-1-r]||1)>1&&i===1&&a.unshift(s)}return a}function jk(e,t){let n=[];for(let a=0;a<t.length;a++){let r=e[e.length-a-1],s=t.length-a-1,i=t[s];(r==null||r===1&&i>1)&&n.unshift(s)}return n}function In(e,t){let n=[],a=Math.max(e.length,t.length);for(let r=0;r<a;r++){let s=e[e.length-r-1];s==null&&(s=1);let i=t[t.length-r-1];if(i==null&&(i=1),s===1)n.unshift(i);else if(i===1)n.unshift(s);else if(s!==i){let o=`Operands could not be broadcast together with shapes ${e} and ${t}.`;throw Error(o)}else n.unshift(s)}return n}function gz(e,t){let n=O(e,"a","equal","string_or_numeric"),a=O(t,"b","equal","string_or_numeric");[n,a]=Vt(n,a),In(n.shape,a.shape);let r={a:n,b:a};return V.runKernel(Vv,r)}var Hk=U({equal_:gz});function yz(e,t,n){let a=O(t,"a","where"),r=O(n,"b","where"),s=O(e,"condition","where","bool"),i=In(In(s.shape,a.shape),r.shape),o=xc(s,i),l=xc(a,i),u=xc(r,i),d={condition:o,t:l,e:u};return V.runKernel(Qw,d)}var Ho=U({where_:yz});function Az(e){let t={x:O(e,"x","zerosLike")};return V.runKernel($7,t)}var Na=U({zerosLike_:Az});function xz(e,t){let n=O(e,"a","div"),a=O(t,"b","div");[n,a]=Vt(n,a);let r=Qe(n,a),s=Na(r),i=Hk(a,s);return Ho(i,s,r)}var bz=U({divNoNan_:xz});function vz(e,t){let n=O(e,"t1","dot"),a=O(t,"t2","dot");L((n.rank===1||n.rank===2)&&(a.rank===1||a.rank===2),()=>`Error in dot: inputs must all be rank 1 or 2, but got ranks ${n.rank} and ${a.rank}.`);let r=n.rank===1?n.size:n.shape[1],s=a.rank===1?a.size:a.shape[0];if(L(r===s,()=>`Error in dot: inner dimensions of inputs must match, but got ${r} and ${s}.`),n.rank===1&&a.rank===1){let i=le(n,[1,-1]),o=le(a,[-1,1]),l=yt(i,o);return le(l,[])}else if(n.rank===1&&a.rank===2){let i=le(n,[1,-1]),o=le(a,[a.shape[0],a.shape[1]]),l=yt(i,o);return le(l,[l.size])}else if(n.rank===2&&a.rank===1){let i=le(a,[-1,1]),o=yt(n,i);return le(o,[o.size])}else{let i=le(a,[a.shape[0],a.shape[1]]);return yt(n,i)}}var wz=U({dot_:vz});function kz(e,...t){let n=t.map((r,s)=>O(r,`tensors${s}`,"einsum")),a={equation:e};return V.runKernel(Lv,n,a)}var Iz=U({einsum_:kz});function Sz(e){let t={x:O(e,"x","elu")};return V.runKernel(Wv,t)}var Gk=U({elu_:Sz});function Nz(e){let t=O(e,"x","erf");L(t.dtype==="int32"||t.dtype==="float32",()=>"Input dtype must be `int32` or `float32`."),t.dtype==="int32"&&(t=zt(t,"float32"));let n={x:t};return V.runKernel(Bv,n)}var Tz=U({erf_:Nz});function Ez(e){let t={x:O(e,"x","exp")};return V.runKernel(Uv,t)}var vi=U({exp_:Ez});function Cz(e,t=0){let n=O(e,"x","expandDims","string_or_numeric");L(t<=n.rank,()=>"Axis must be <= rank of the tensor");let a={input:n},r={dim:t};return V.runKernel(jv,a,r)}var Qr=U({expandDims_:Cz});function Mz(e){let t={x:O(e,"x","expm1")};return V.runKernel(Hv,t)}var $z=U({expm1_:Mz});function Rz(e,t){let n=O(e,"x","tile","string_or_numeric");L(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of reps ${t}.`);let a={x:n},r={reps:t};return V.runKernel(uy,a,r)}var vc=U({tile_:Rz});function Fz(e,t,n,a="float32"){t==null&&(t=e);let r=Zr([e,t],a),s=e<=t?e:t;for(let o=0;o<s;++o)r.set(1,o,o);let i=le(r.toTensor(),[e,t]);if(n==null)return i;if(n.length===1)return vc(Qr(i,0),[n[0],1,1]);if(n.length===2)return vc(Qr(Qr(i,0),0),[n[0],n[1],1,1]);if(n.length===3)return vc(Qr(Qr(Qr(i,0),0),0),[n[0],n[1],n[2],1,1]);throw new Error(`eye() currently supports only 1D and 2D batchShapes, but received ${n.length}D.`)}var qk=U({eye_:Fz});function wc(e,t,n){let a={shape:e,value:t,dtype:n};return V.runKernel(qv,{},a)}function Oz(e){let t={x:O(e,"x","floor")};return V.runKernel(Xv,t)}var Kk=U({floor_:Oz});function Dz(e,t,n=0,a=0){let r=O(e,"x","gather"),s=O(t,"indices","gather","int32"),i={x:r,indices:s},o={axis:n,batchDims:a};return V.runKernel(Jv,i,o)}var Xk=U({gather_:Dz});function _z(e,t){let n=O(e,"a","greater","string_or_numeric"),a=O(t,"b","greater","string_or_numeric");[n,a]=Vt(n,a),In(n.shape,a.shape);let r={a:n,b:a};return V.runKernel(ew,r)}var kc=U({greater_:_z});function zz(e,t){let n=O(e,"a","greaterEqual","string_or_numeric"),a=O(t,"b","greaterEqual","string_or_numeric");[n,a]=Vt(n,a),In(n.shape,a.shape);let r={a:n,b:a};return V.runKernel(tw,r)}var Zk=U({greaterEqual_:zz});function Pz(e){let t={input:O(e,"input","imag")};return V.runKernel(aw,t)}var e1=U({imag_:Pz});function Lz(e){let t={x:O(e,"x","isFinite")};return V.runKernel(rw,t)}var Wz=U({isFinite_:Lz});function Bz(e){let t={x:O(e,"x","isInf")};return V.runKernel(sw,t)}var Vz=U({isInf_:Bz});function Uz(e){let t={x:O(e,"x","isNaN")};return V.runKernel(iw,t)}var jz=U({isNaN_:Uz});function Hz(e,t=.2){let n={x:O(e,"x","leakyRelu")},a={alpha:t};return V.runKernel(ow,n,a)}var Yk=U({leakyRelu_:Hz});function Gz(e,t){let n=O(e,"a","less","string_or_numeric"),a=O(t,"b","less","string_or_numeric");[n,a]=Vt(n,a),In(n.shape,a.shape);let r={a:n,b:a};return V.runKernel(lw,r)}var qz=U({less_:Gz});function Kz(e,t){let n=O(e,"a","lessEqual","string_or_numeric"),a=O(t,"b","lessEqual","string_or_numeric");[n,a]=Vt(n,a),In(n.shape,a.shape);let r={a:n,b:a};return V.runKernel(uw,r)}var t1=U({lessEqual_:Kz});function Xz(e,t,n){if(n<=0)throw new Error("The number of values should be positive.");let a={start:e,stop:t,num:n};return V.runKernel(dw,{},a)}function Zz(e,t=5,n=1,a=1,r=.5){let s=O(e,"x","localResponseNormalization");L(s.rank===4||s.rank===3,()=>`Error in localResponseNormalization: x must be rank 3 or 4 but got
|
|
rank ${s.rank}.`),L(Zn(t),()=>`Error in localResponseNormalization: depthRadius must be an integer but got depthRadius ${t}.`);let i=s,o=!1;s.rank===3&&(o=!0,i=le(s,[1,s.shape[0],s.shape[1],s.shape[2]]));let l={x:i},u={depthRadius:t,bias:n,alpha:a,beta:r},d=V.runKernel(gw,l,u);return o?le(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var Yz=U({localResponseNormalization_:Zz});function Jz(e){let t={x:O(e,"x","log")};return V.runKernel(hw,t)}var ud=U({log_:Jz});function Qz(e){let t={x:O(e,"x","log1p")};return V.runKernel(pw,t)}var Jk=U({log1p_:Qz});function eP(e){return L(Ss(e),()=>"The f passed in grad(f) must be a function"),(t,n)=>{let a=O(t,"x","tf.grad","string_or_numeric"),r=n!=null?O(n,"dy","tf.grad"):null;return V.tidy(()=>{let{value:s,grads:i}=V.gradients(()=>e(a),[a],r);return r!=null&&On(s.shape,r.shape,"The shape of dy passed in grad(f)(x, dy) must match the shape returned by f(x)"),Ic(i),i[0]})}}function tP(e){return L(Ss(e),()=>"The f passed in grads(f) must be a function"),(t,n)=>{L(Array.isArray(t),()=>"The args passed in grads(f)(args) must be an array of `Tensor`s or `TensorLike`s");let a=rd(t,"args","tf.grads","string_or_numeric"),r=n!=null?O(n,"dy","tf.grads"):null;return V.tidy(()=>{let{value:s,grads:i}=V.gradients(()=>e(...a),a,r);return r!=null&&On(s.shape,r.shape,"The shape of dy passed in grads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),Ic(i),i})}}function nP(e){return L(Ss(e),()=>"The f passed in valueAndGrad(f) must be a function"),(t,n)=>{L(t instanceof St,()=>"The x passed in valueAndGrad(f)(x) must be a tensor"),L(n==null||n instanceof St,()=>"The dy passed in valueAndGrad(f)(x, dy) must be a tensor");let{grads:a,value:r}=V.gradients(()=>e(t),[t],n);return Ic(a),{grad:a[0],value:r}}}function aP(e){return L(Ss(e),()=>"The f passed in valueAndGrads(f) must be a function"),(t,n)=>{L(Array.isArray(t)&&t.every(r=>r instanceof St),()=>"The args passed in valueAndGrads(f)(args) must be array of tensors"),L(n==null||n instanceof St,()=>"The dy passed in valueAndGrads(f)(args, dy) must be a tensor");let a=V.gradients(()=>e(...t),t,n);return n!=null&&On(a.value.shape,n.shape,"The shape of dy passed in valueAndGrads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),Ic(a.grads),a}}function Qk(e,t){L(Ss(e),()=>"The f passed in variableGrads(f) must be a function"),L(t==null||Array.isArray(t)&&t.every(u=>u instanceof ad),()=>"The varList passed in variableGrads(f, varList) must be an array of variables");let n=t!=null;if(!n){t=[];for(let u in V.registeredVariables)t.push(V.registeredVariables[u])}let a=n?t.filter(u=>!u.trainable):null,r=t.length;t=t.filter(u=>u.trainable),L(t.length>0,()=>`variableGrads() expects at least one of the input variables to be trainable, but none of the ${r} variables is trainable.`);let s=!0,{value:i,grads:o}=V.gradients(e,t,null,s);L(o.some(u=>u!=null),()=>"Cannot find a connection between any variable and the result of the loss function y=f(x). Please make sure the operations that use variables are inside the function f passed to minimize()."),L(i.rank===0,()=>`The f passed in variableGrads(f) must return a scalar, but it returned a rank-${i.rank} tensor`);let l={};return t.forEach((u,d)=>{o[d]!=null&&(l[u.name]=o[d])}),a!=null&&a.forEach(u=>l[u.name]=null),{value:i,grads:l}}function Nr(e){return V.customGrad(e)}function Ic(e){if(e.filter(t=>t==null).length>0)throw new Error(`Cannot compute gradient of y=f(x) with respect to x. Make sure that
|
|
the f you passed encloses all operations that lead from x to y.`)}function rP(e){let t={x:O(e,"x","neg")};return V.runKernel(Cw,t)}var Ms=U({neg_:rP});function sP(e){let t={x:O(e,"x","softplus")};return V.runKernel(i7,t)}var e6=U({softplus_:sP});function iP(e){let t=O(e,"x","logSigmoid");return Nr(n=>({value:Ms(e6(Ms(n))),gradFunc:a=>fe(a,Sr(Ms(n)))}))(t)}var oP=U({logSigmoid_:iP});function lP(e,t=null,n=!1){let a={x:O(e,"x","max")},r={reductionIndices:t,keepDims:n};return V.runKernel(yw,a,r)}var $s=U({max_:lP});function uP(e,t){let n=O(e,"a","sub"),a=O(t,"b","sub");[n,a]=Vt(n,a);let r={a:n,b:a};return V.runKernel(w7,r)}var je=U({sub_:uP});function dP(e,t=null,n=!1){let a=O(e,"x","sum");a.dtype==="bool"&&(a=zt(a,"int32"));let r={x:a},s={axis:t,keepDims:n};return V.runKernel(l7,r,s)}var $t=U({sum_:dP});function hP(e,t=-1){let n=O(e,"logits","logSoftmax");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Log Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and axis was ${t}`);return Nr((a,r)=>{let s=!0,i=$s(a,t,!0),o=je(a,i),l=je(zt(o,"float32"),ud($t(vi(o),t,s)));return r([l]),{value:l,gradFunc:(u,d)=>{let[h]=d,p=!0,c=vi(h);return je(u,fe($t(u,t,p),c))}}})(n)}var pP=U({logSoftmax_:hP});function n1(e,t){for(let n=0;n<e.length;++n)if(e[e.length-n-1]!==t-1-n)return!1;return!0}function t6(e,t,n){let a=e.length+t.length,r=[],s=0,i=0;for(let o=0;o<a;o++)n.indexOf(o)===-1?r.push(e[s++]):r.push(t[i++]);return r}function cP(e,t){let n=[],a=e.length;for(let s=0;s<a;s++)t.indexOf(s)===-1&&n.push(e[s]);let r=t.map(s=>e[s]);return[n,r]}function dd(e,t){let n=t.map(a=>1);return t6(e,n,t)}function fP(e,t,n){L(n1(t,n),()=>`${e} supports only inner-most axes for now. Got axes ${t} and rank-${n} input.`)}function mP(e,t){if(n1(e,t))return null;let n=[];for(let a=0;a<t;++a)e.indexOf(a)===-1&&n.push(a);return e.forEach(a=>n.push(a)),n}function gP(e){return e.map((t,n)=>[n,t]).sort((t,n)=>t[1]-n[1]).map(t=>t[0])}function yP(e,t){let n=[];for(let a=t-e;a<t;++a)n.push(a);return n}function AP(e,t=null,n=!1){let a=O(e,"x","logSumExp"),r=Xu(t,a.shape),s=$s(a,r,!0),i=je(a,s),o=vi(i),l=$t(o,r),u=ud(l),d=De(le(s,u.shape),u);if(n){let h=dd(d.shape,r);return le(d,h)}return d}var n6=U({logSumExp_:AP});function xP(e,t){let n=O(e,"a","logicalAnd","bool"),a=O(t,"b","logicalAnd","bool");In(n.shape,a.shape);let r={a:n,b:a};return V.runKernel(cw,r)}var Sc=U({logicalAnd_:xP});function bP(e){let t={x:O(e,"x","logicalNot","bool")};return V.runKernel(fw,t)}var a6=U({logicalNot_:bP});function vP(e,t){let n=O(e,"a","logicalOr","bool"),a=O(t,"b","logicalOr","bool");In(n.shape,a.shape);let r={a:n,b:a};return V.runKernel(mw,r)}var r6=U({logicalOr_:vP});function wP(e,t){let n=O(e,"a","logicalXor","bool"),a=O(t,"b","logicalXor","bool");return In(n.shape,a.shape),Sc(r6(e,t),a6(Sc(e,t)))}var kP=U({logicalXor_:wP});function IP(e,t,n,a,r){let s=O(e,"x","maxPool"),i=1,o=s,l=!1;s.rank===3&&(l=!0,o=le(s,[1,s.shape[0],s.shape[1],s.shape[2]])),L(o.rank===4,()=>`Error in maxPool: input must be rank 4 but got rank ${o.rank}.`),L(Jr(n,i),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${i}'`),r!=null&&L(Zn(a),()=>`Error in maxPool: pad must be an integer when using, dimRoundingMode ${r} but got pad ${a}.`);let u={x:o},d={filterSize:t,strides:n,pad:a,dimRoundingMode:r},h=V.runKernel(xw,u,d);return l?le(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var s6=U({maxPool_:IP});function SP(e,t=[1,1,1],n,a,r,s="NDHWC"){let i=O(e,"x","maxPool3d"),o=i,l=!1;i.rank===4&&(l=!0,o=le(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),L(o.rank===5,()=>`Error in maxPool3d: x must be rank 5 but got rank ${o.rank}.`),L(s==="NDHWC",()=>`Error in maxPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),r!=null&&L(Zn(a),()=>`Error in maxPool3d: pad must be an integer when using, dimRoundingMode ${r} but got pad ${a}.`);let u={x:o},d={filterSize:t,strides:n,pad:a,dimRoundingMode:r,dataFormat:s},h=V.runKernel(bw,u,d);return l?le(h,[h.shape[1],h.shape[2],h.shape[3],h.shape[4]]):h}var NP=U({maxPool3d_:SP});function TP(e,t,n,a,r=!1){let s={x:O(e,"x","maxPoolWithArgmax")},i={filterSize:t,strides:n,pad:a,includeBatchInIndex:r},o=V.runKernel(vw,s,i);return{result:o[0],indexes:o[1]}}var EP=U({maxPoolWithArgmax_:TP});function CP(e,t){let n=O(e,"a","maximum"),a=O(t,"b","maximum");[n,a]=Vt(n,a),n.dtype==="bool"&&(n=zt(n,"int32"),a=zt(a,"int32")),In(n.shape,a.shape);let r={a:n,b:a};return V.runKernel(Aw,r)}var i6=U({maximum_:CP});function MP(e,t=null,n=!1){let a={x:O(e,"x","mean")},r={axis:t,keepDims:n};return V.runKernel(ww,a,r)}var Nc=U({mean_:MP});function Go(e,t="float32"){if(t==="complex64"){let a=Go(e,"float32"),r=Go(e,"float32");return mi(a,r)}let n=nc(Jt(e),t);return V.makeTensor(n,e,t)}function wi(e,t="float32"){if(t==="complex64"){let a=wi(e,"float32"),r=Go(e,"float32");return mi(a,r)}let n=ty(Jt(e),t);return V.makeTensor(n,e,t)}function $P(e,t,{indexing:n="xy"}={}){if(n!=="xy"&&n!=="ij")throw new TypeError(`${n} is not a valid third argument to meshgrid`);if(e===void 0)return[];let a=O(e,"x","meshgrid",e instanceof St?e.dtype:"float32");if(t===void 0)return[a];let r=O(t,"y","meshgrid",t instanceof St?t.dtype:"float32"),s=Jt(a.shape),i=Jt(r.shape);return n==="xy"?(a=le(a,[1,-1]),r=le(r,[-1,1]),[yt(wi([i,1],a.dtype),a),yt(r,wi([1,s],r.dtype))]):(a=le(a,[-1,1]),r=le(r,[1,-1]),[yt(a,wi([1,i],a.dtype)),yt(wi([s,1],r.dtype),r)])}function RP(e,t=null,n=!1){let a={x:O(e,"x","min")},r={axis:t,keepDims:n};return V.runKernel(kw,a,r)}var a1=U({min_:RP});function FP(e,t){let n=O(e,"a","minimum"),a=O(t,"b","minimum");[n,a]=Vt(n,a),n.dtype==="bool"&&(n=zt(n,"int32"),a=zt(a,"int32")),In(n.shape,a.shape);let r={a:n,b:a};return V.runKernel(Iw,r)}var o6=U({minimum_:FP});function OP(e,t,n){L(n==="reflect"||n==="symmetric",()=>`Invalid mode. Mode must be either reflect or symmetric. Got ${n}.`);let a=O(e,"x","mirrorPad");if(a.rank===0)throw new Error("mirrorPad(scalar) is not defined. Pass non-scalar to mirrorPad");L(t.length===a.rank,()=>`Padding doesn't match input. Must be ${a.rank}. Got ${t.length}.`);let r=n==="reflect"?1:0;for(let o=0;o<a.rank;o++)L(t[o].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),L(t[o][0]>=0&&t[o][0]<=a.shape[o]-r&&t[o][1]>=0&&t[o][1]<=a.shape[o]-r,()=>`Padding in dimension ${o} cannot be greater than or equal to ${a.shape[o]-r} or less than 0 for input of shape ${a.shape}`);let s={paddings:t,mode:n},i={x:a};return V.runKernel(Sw,i,s)}var DP=U({mirrorPad_:OP});function _P(e,t){let n=O(e,"a","mod"),a=O(t,"b","mod");[n,a]=Vt(n,a);let r={a:n,b:a};return V.runKernel(Nw,r)}var zP=U({mod_:_P});function PP(e){let t=O(e,"x","square"),n={};return V.runKernel("Square",{x:t},n)}var tr=U({square_:PP});function LP(e,t=null,n=!1){e=O(e,"x","moments");let a=Xu(t,e.shape),r=Nc(e,a,n),s=r.shape;n||(s=dd(r.shape,a));let i=tr(je(zt(e,"float32"),le(r,s))),o=Nc(i,a,n);return{mean:r,variance:o}}var WP=U({moments_:LP});function BP(e,t,n,a){let r=O(t,"data","multiRNNCell"),s=rd(n,"c","multiRNNCell"),i=rd(a,"h","multiRNNCell"),o=r,l=[];for(let h=0;h<e.length;h++){let p=e[h](o,s[h],i[h]);l.push(p[0]),l.push(p[1]),o=p[1]}let u=[],d=[];for(let h=0;h<l.length;h+=2)u.push(l[h]),d.push(l[h+1]);return[u,d]}var VP=U({multiRNNCell_:BP});function UP(e,t,n,a=!1){let r=O(e,"logits","multinomial"),s=r.size,i=r.rank;if(s<2)throw new Error(`Error in multinomial: you need at least 2 outcomes, but got ${s}.`);if(i>2)throw new Error(`Rank of probabilities must be 1 or 2, but is ${i}`);n=n||Math.random();let o={logits:i===1?le(r,[1,-1]):r},l={numSamples:t,seed:n,normalized:a},u=V.runKernel(Tw,o,l);return i===1?le(u,[u.size]):u}var jP=U({multinomial_:UP});function HP(e,t){let n=O(e,"a","notEqual","string_or_numeric"),a=O(t,"b","notEqual","string_or_numeric");[n,a]=Vt(n,a),In(n.shape,a.shape);let r={a:n,b:a};return V.runKernel(Mw,r)}var l6=U({notEqual_:HP});function GP(e){let t={x:O(e,"x","onesLike")};return V.runKernel(Ow,t)}var qP=U({onesLike_:GP});function KP(e,t){let n=O(e,"v1","outerProduct"),a=O(t,"v2","outerProduct");L(n.rank===1&&a.rank===1,()=>`Error in outerProduct: inputs must be rank 1, but got ranks ${n.rank} and ${a.rank}.`);let r=le(n,[-1,1]),s=le(a,[1,-1]);return yt(r,s)}var XP=U({outerProduct_:KP});function ZP(e,t,n=0){let a=O(e,"x","pad");if(a.rank===0)throw new Error("pad(scalar) is not defined. Pass non-scalar to pad");let r={paddings:t,constantValue:n},s={x:a};return V.runKernel(zw,s,r)}var hd=U({pad_:ZP});function YP(e,t,n=0){return L(t.length===2,()=>"Invalid number of paddings. Must be length of 2."),hd(e,[t],n)}var JP=U({pad1d_:YP});function QP(e,t,n=0){return L(t.length===2&&t[0].length===2&&t[1].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),hd(e,t,n)}var eL=U({pad2d_:QP});function tL(e,t,n=0){return L(t.length===3&&t[0].length===2&&t[1].length===2&&t[2].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),hd(e,t,n)}var nL=U({pad3d_:tL});function aL(e,t,n=0){return L(t.length===4&&t[0].length===2&&t[1].length===2&&t[2].length===2&&t[3].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),hd(e,t,n)}var rL=U({pad4d_:aL});function sL(e,t,n){let a=O(e,"x","spaceToBatchND");L(a.rank>=1+t.length,()=>`input rank ${a.rank} should be > than [blockShape] ${t.length}`),L(n.length===t.length,()=>`paddings.shape[0] ${n.length} must be equal to [blockShape] ${t.length}`),L(a.shape.reduce((i,o,l)=>l>0&&l<=t.length?i&&(o+n[l-1][0]+n[l-1][1])%t[l-1]==0:i,!0),()=>`input spatial dimensions ${a.shape.slice(1)} with paddings ${n.toString()} must be divisible by blockShapes ${t.toString()}`);let r={x:a},s={blockShape:t,paddings:n};return V.runKernel(u7,r,s)}var u6=U({spaceToBatchND_:sL});function iL(e,t,n,a,r,s){r==null&&(r=[1,1]),s==null&&(s=1),a===0&&(a="valid");let i=O(e,"x","maxPool"),o=i,l=!1;i.rank===3&&(l=!0,o=le(i,[1,i.shape[0],i.shape[1],i.shape[2]])),L(Jr(s,r),()=>`Error in pool: Either strides or dilations must be 1. Got strides ${s} and dilations '${r}'`);let u=zk(o.shape,t,s,r,a),d=[u.dilationHeight,u.dilationWidth],h;a==="same"?h=lL([u.filterHeight,u.filterWidth],d):h=[[0,0],[0,0]];let p=d[0]===1&&d[1]===1,[c,m]=oL([u.inHeight,u.inWidth],d,h),f=p?a:"valid",g=p?o:u6(o,d,c),y=(n==="avg"?()=>Wk(g,t,s,f):()=>s6(g,t,s,f))(),A=p?y:Bk(y,d,m);return l?le(A,[A.shape[1],A.shape[2],A.shape[3]]):A}function oL(e,t,n){let a=n.map(d=>d[0]),r=n.map(d=>d[1]),s=e.concat(a,r),i=t.map((d,h)=>(d-s[h]%d)%d),o=r.map((d,h)=>d+i[h]),l=t.map((d,h)=>[a[h],o[h]]),u=t.map((d,h)=>[0,i[h]]);return[l,u]}function lL(e,t){let n=e.map((s,i)=>s+(s-1)*(t[i]-1)).map(s=>s-1),a=n.map(s=>Math.floor(s/2)),r=n.map((s,i)=>s-a[i]);return n.map((s,i)=>[a[i],r[i]])}var uL=U({pool_:iL});function dL(e,t){let n=O(e,"base","pow"),a=O(t,"exp","pow");[n,a]=Vt(n,a);let r={a:n,b:a};return V.runKernel(Pw,r)}var pd=U({pow_:dL});function hL(e,t){let n=O(e,"x","prelu"),a=O(t,"alpha","prelu"),r={x:n,alpha:a};return V.runKernel(Lw,r)}var d6=U({prelu_:hL});function pL(e,t=null,n=!1){let a=O(e,"x","prod");a.dtype==="bool"&&(a=zt(a,"int32"));let r={x:a},s={axis:t,keepDims:n};return V.runKernel(Ww,r,s)}var cL=U({prod_:pL});function fL(e,t,n){let a=Jt(e),r=null;if(n==null||n==="float32")r=new Float32Array(a);else if(n==="int32")r=new Int32Array(a);else if(n==="bool")r=new Uint8Array(a);else throw new Error(`Unknown data type ${n}`);for(let s=0;s<a;s++)r[s]=t();return V.makeTensor(r,e,n)}var mL=U({rand_:fL}),r1=qr(Qg()),s1=class{constructor(e,t,n,a,r){this.mean=e,this.stdDev=t,this.dtype=n,this.nextVal=NaN,this.truncated=a,this.truncated&&(this.upper=this.mean+this.stdDev*2,this.lower=this.mean-this.stdDev*2);let s=r||Math.random();this.random=r1.alea(s.toString())}nextValue(){if(!isNaN(this.nextVal)){let a=this.nextVal;return this.nextVal=NaN,a}let e,t,n=!1;for(;!n;){let a,r,s;do a=2*this.random()-1,r=2*this.random()-1,s=a*a+r*r;while(s>=1||s===0);let i=Math.sqrt(-2*Math.log(s)/s);e=this.mean+this.stdDev*a*i,t=this.mean+this.stdDev*r*i,(!this.truncated||this.isValidTruncated(e))&&(n=!0)}return(!this.truncated||this.isValidTruncated(t))&&(this.nextVal=this.convertValue(t)),this.convertValue(e)}convertValue(e){return this.dtype==null||this.dtype==="float32"?e:Math.round(e)}isValidTruncated(e){return e<=this.upper&&e>=this.lower}},gL=class{constructor(e,t,n,a){this.alpha=e,this.beta=1/t,this.dtype=n;let r=a||Math.random();this.randu=r1.alea(r.toString()),this.randn=new s1(0,1,n,!1,this.randu()),e<1?this.d=e+2/3:this.d=e-1/3,this.c=1/Math.sqrt(9*this.d)}nextValue(){let e,t,n,a,r,s;for(;;){do a=this.randn.nextValue(),s=1+this.c*a;while(s<=0);if(s*=s*s,e=a*a,t=1-.331*e*e,n=.5*e+this.d*(1-s+Math.log(s)),r=this.randu(),r<t||Math.log(r)<n)break}return s=1/this.beta*this.d*s,this.alpha<1&&(s*=Math.pow(this.randu(),1/this.alpha)),this.convertValue(s)}convertValue(e){return this.dtype==="float32"?e:Math.round(e)}},yL=class{constructor(e=0,t=1,n,a){if(this.canReturnFloat=()=>this.dtype==null||this.dtype==="float32",this.min=e,this.range=t-e,this.dtype=n,a==null&&(a=Math.random()),typeof a=="number"&&(a=a.toString()),!this.canReturnFloat()&&this.range<=1)throw new Error(`The difference between ${e} - ${t} <= 1 and dtype is not float`);this.random=r1.alea(a)}convertValue(e){return this.canReturnFloat()?e:Math.round(e)}nextValue(){return this.convertValue(this.min+this.range*this.random())}};function AL(e,t,n=1,a="float32",r){if(n==null&&(n=1),a==null&&(a="float32"),a!=="float32"&&a!=="int32")throw new Error(`Unsupported data type ${a}`);let s=new gL(t,n,a,r),i=Zr(e,a);for(let o=0;o<i.values.length;o++)i.values[o]=s.nextValue();return i.toTensor()}var xL=U({randomGamma_:AL});function bL(e,t=0,n=1,a,r){if(a!=null&&a==="bool")throw new Error(`Unsupported data type ${a}`);let s=new s1(t,n,a,!1,r),i=Zr(e,a);for(let o=0;o<i.values.length;o++)i.values[o]=s.nextValue();return i.toTensor()}var vL=U({randomNormal_:bL});function wL(e,t=0,n=1,a="float32",r){let s=Zr(e,a),i=new yL(t,n,null,r);for(let o=0;o<s.values.length;o++)s.values[o]=i.nextValue();return s.toTensor()}var h6=U({randomUniform_:wL});function cd(e,t,n=1,a="float32"){if(n===0)throw new Error("Cannot have a step of zero");let r={start:e,stop:t,step:n,dtype:a};return V.runKernel(Bw,{},r)}function kL(e){let t={input:O(e,"input","real")};return V.runKernel(Vw,t)}var Tc=U({real_:kL});function IL(e){let t={x:O(e,"x","reciprocal")};return V.runKernel(Uw,t)}var SL=U({reciprocal_:IL});function NL(e){let t={x:O(e,"x","relu")};return V.runKernel(jw,t)}var Ec=U({relu_:NL});function TL(e){let t={x:O(e,"x","relu6")};return V.runKernel(Kw,t)}var p6=U({relu6_:TL});function EL(e,t){let n={x:O(e,"x","reverse")},a={dims:t};return V.runKernel(Xw,n,a)}var ki=U({reverse_:EL});function CL(e){let t=O(e,"x","reverse");return L(t.rank===1,()=>`Error in reverse1D: x must be rank 1 but got rank ${t.rank}.`),ki(t,0)}var ML=U({reverse1d_:CL});function $L(e,t){let n=O(e,"x","reverse");return L(n.rank===2,()=>`Error in reverse2D: x must be rank 2 but got rank ${n.rank}.`),ki(n,t)}var RL=U({reverse2d_:$L});function FL(e,t){let n=O(e,"x","reverse");return L(n.rank===3,()=>`Error in reverse3D: x must be rank 3 but got rank ${n.rank}.`),ki(n,t)}var OL=U({reverse3d_:FL});function DL(e,t){let n=O(e,"x","reverse");return L(n.rank===4,()=>`Error in reverse4D: x must be rank 4 but got rank ${n.rank}.`),ki(n,t)}var _L=U({reverse4d_:DL});function zL(e){let t={x:O(e,"x","round")};return V.runKernel(Zw,t)}var c6=U({round_:zL});function PL(e){let t={x:O(e,"x","rsqrt")};return V.runKernel(Yw,t)}var LL=U({rsqrt_:PL});function dt(e,t){if((En(e)&&t!=="string"||Array.isArray(e))&&t!=="complex64")throw new Error("Error creating a new Scalar: value must be a primitive (number|boolean|string)");if(t==="string"&&En(e)&&!(e instanceof Uint8Array))throw new Error("When making a scalar from encoded string, the value must be `Uint8Array`.");return Ts(e,[],[],t)}function WL(e){let t={x:O(e,"x","selu")};return V.runKernel(e7,t)}var BL=U({selu_:WL});function VL(e,t,n,a,r,s=[1,1],i="NHWC"){let o=O(e,"x","separableConv2d"),l=O(t,"depthwiseFilter","separableConv2d"),u=O(n,"pointwiseFilter","separableConv2d"),d=o,h=!1;if(o.rank===3&&(h=!0,d=le(o,[1,o.shape[0],o.shape[1],o.shape[2]])),i==="NCHW")throw new Error("separableConv2d currently does not support dataFormat NCHW; only NHWC is supported");L(d.rank===4,()=>`Error in separableConv2d: input must be rank 4, but got rank ${d.rank}.`),L(l.rank===4,()=>`Error in separableConv2d: depthwise filter must be rank 4, but got rank ${l.rank}.`),L(u.rank===4,()=>`Error in separableConv2d: pointwise filter must be rank 4, but got rank ${l.rank}.`),L(u.shape[0]===1,()=>`Error in separableConv2d: the first dimension of pointwise filter must be 1, but got ${u.shape[0]}.`),L(u.shape[1]===1,()=>`Error in separableConv2d: the second dimension of pointwise filter must be 1, but got ${u.shape[1]}.`);let p=l.shape[2],c=l.shape[3];L(u.shape[2]===p*c,()=>`Error in separableConv2d: the third dimension of pointwise filter must be ${p*c}, but got ${u.shape[2]}.`);let m=Qy(d,l,a,r,i,s),f=bc(m,u,1,"valid",i);return h?le(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var UL=U({separableConv2d_:VL});async function jL(e,t){let n=O(e,"x","setdiff1d"),a=O(t,"y","setdiff1d");L(n.dtype===a.dtype,()=>`x and y should have the same dtype, but got x (${n.dtype}) and y (${a.dtype}).`),L(n.rank===1,()=>`x should be 1D tensor, but got x (${n.shape}).`),L(a.rank===1,()=>`y should be 1D tensor, but got y (${a.shape}).`);let r=await n.data(),s=await a.data(),i=new Set(s),o=0;for(let d=0;d<r.length;d++)i.has(r[d])||o++;let l=new uc([o],n.dtype),u=new uc([o],"int32");for(let d=0,h=0;d<r.length;d++)i.has(r[d])||(l.values[h]=r[d],u.values[h]=d,h++);return[l.toTensor(),u.toTensor()]}var HL=jL;function GL(e){let t={x:O(e,"x","sign")};return V.runKernel(r7,t)}var qL=U({sign_:GL});function KL(e){let t={x:O(e,"x","sin")};return V.runKernel(n7,t)}var XL=U({sin_:KL});function ZL(e){let t={x:O(e,"x","sinh")};return V.runKernel(a7,t)}var YL=U({sinh_:ZL});function JL(e,t,n){let a=O(e,"x","slice1d");return L(a.rank===1,()=>`slice1d expects a rank-1 tensor, but got a rank-${a.rank} tensor`),Ze(a,[t],[n])}var QL=U({slice1d_:JL});function eW(e,t,n){let a=O(e,"x","slice2d");return L(a.rank===2,()=>`slice2d expects a rank-2 tensor, but got a rank-${a.rank} tensor`),Ze(a,t,n)}var tW=U({slice2d_:eW});function nW(e,t,n){let a=O(e,"x","slice3d");return L(a.rank===3,()=>`slice3d expects a rank-3 tensor, but got a rank-${a.rank} tensor`),Ze(a,t,n)}var aW=U({slice3d_:nW});function rW(e,t,n){let a=O(e,"x","slice4d");return L(a.rank===4,()=>`slice4d expects a rank-4 tensor, but got a rank-${a.rank} tensor`),Ze(a,t,n)}var sW=U({slice4d_:rW});function iW(e,t=-1){let n=O(e,"logits","softmax","float32");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and dim was ${t}`);let a={logits:n},r={dim:t};return V.runKernel(h7,a,r)}var oW=U({softmax_:iW});function lW(e){L(e.dtype==="complex64",()=>`The dtype for tf.spectral.fft() must be complex64 but got ${e.dtype}.`);let t={input:e};return V.runKernel(Gv,t)}var i1=U({fft_:lW});function uW(e){L(e.dtype==="complex64",()=>`The dtype for tf.spectral.ifft() must be complex64 but got ${e.dtype}.`);let t={input:e};return V.runKernel(nw,t)}var Cc=U({ifft_:uW});function dW(e){let t=e.shape[e.shape.length-1],n=e.size/t,a;if(t<=2){let r=le(e,[n,t]);a=Cc(r)}else{let r=[n,2*(t-1)],s=le(Tc(e),[n,t]),i=le(e1(e),[n,t]),o=ki(Ze(s,[0,1],[n,t-2]),1),l=fe(ki(Ze(i,[0,1],[n,t-2]),1),dt(-1)),u=sn([s,o],1),d=sn([i,l],1),h=le(mi(u,d),[r[0],r[1]]);a=Cc(h)}if(a=Tc(a),e.rank===3&&e.shape[0]!==0){let r=a,s=e.shape[0];a=le(a,[s,a.shape[0]/s,a.shape[1]]),r.dispose()}return a}var f6=U({irfft_:dW});function hW(e,t,n=0){let a={x:O(e,"x","split")},r={numOrSizeSplits:t,axis:n};return V.runKernel(d7,a,r)}var es=U({split_:hW});function pW(e,t){L(e.dtype==="float32",()=>`The dtype for rfft() must be real value but got ${e.dtype}`);let n=e.shape[e.shape.length-1],a=e.size/n,r;if(t!=null&&t<n){let m=e.shape.map(g=>0),f=e.shape.map(g=>g);f[e.shape.length-1]=t,r=Ze(e,m,f),n=t}else if(t!=null&&t>n){let m=e.shape.map(f=>f);m[e.shape.length-1]=t-n,r=sn([e,Go(m)],e.shape.length-1),n=t}else r=e;let s=Na(r),i=le(mi(r,s),[a,n]),o=i1(i),l=Math.floor(n/2)+1,u=Tc(o),d=e1(o),h=es(u,[l,n-l],u.shape.length-1),p=es(d,[l,n-l],d.shape.length-1),c=r.shape.slice();return c[r.shape.length-1]=l,le(mi(h[0],p[0]),c)}var o1=U({rfft_:pW});function cW(e){let t={x:O(e,"x","sqrt")};return V.runKernel(o7,t)}var ts=U({sqrt_:cW});function fW(e,t){let n=O(e,"a","squaredDifference"),a=O(t,"b","squaredDifference");[n,a]=Vt(n,a),In(n.shape,a.shape);let r={a:n,b:a},s={};return V.runKernel(y7,r,s)}var m6=U({squaredDifference_:fW});function mW(e,t){let n=O(e,"x","squeeze");return le(n,B3(n.shape,t).newShape)}var Yn=U({squeeze_:mW});function gW(e,t=0){let n=rd(e,"tensors","stack","string_or_numeric");L(n.length>=1,()=>"Pass at least one tensor to tf.stack"),n.length>0&&L(t<=n[0].rank,()=>"Axis must be <= rank of the tensor");let a=n,r={axis:t};return V.runKernel(_w,a,r)}var Ii=U({stack_:gW});function yW(e,t=0){let n={x:O(e,"x","step")},a={alpha:t};return V.runKernel(R7,n,a)}var g6=U({step_:yW});function AW(e,t,n,a,r=0,s=0,i=0,o=0,l=0){let u={x:O(e,"x","stridedSlice","string_or_numeric")},d={begin:t,end:n,strides:a,beginMask:r,endMask:s,ellipsisMask:i,newAxisMask:o,shrinkAxisMask:l};return V.runKernel(A7,u,d)}var xW=U({stridedSlice_:AW});function bW(e){let t={x:O(e,"x","tan")};return V.runKernel(k7,t)}var vW=U({tan_:bW});function oa(e,t){hi(e);let n=Ir(e,t);if(n.length!==1)throw new Error("tensor1d() requires values to be a flat/TypedArray");return Ts(e,null,n,t)}function ns(e,t,n){if(hi(e),t!=null&&t.length!==2)throw new Error("tensor2d() requires shape to have two numbers");let a=Ir(e,n);if(a.length!==2&&a.length!==1)throw new Error("tensor2d() requires values to be number[][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor2d() requires shape to be provided when `values` are a flat/TypedArray");return Ts(e,t,a,n)}function wW(e,t,n){if(hi(e),t!=null&&t.length!==4)throw new Error("tensor4d() requires shape to have four numbers");let a=Ir(e,n);if(a.length!==4&&a.length!==1)throw new Error("tensor4d() requires values to be number[][][][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor4d() requires shape to be provided when `values` are a flat array");return Ts(e,t,a,n)}function kW(e,t,n){if(hi(e),t!=null&&t.length!==5)throw new Error("tensor5d() requires shape to have five numbers");let a=Ir(e,n);if(a.length!==5&&a.length!==1)throw new Error("tensor5d() requires values to be number[][][][][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor5d() requires shape to be provided when `values` are a flat array");return Ts(e,t,a,n)}function IW(e,t,n){if(hi(e),t!=null&&t.length!==6)throw new Error("tensor6d() requires shape to have six numbers");let a=Ir(e,n);if(a.length!==6&&a.length!==1)throw new Error("tensor6d() requires values to be number[][][][][][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor6d() requires shape to be provided when `values` are a flat array");return t=t||a,Ts(e,t,a,n)}function SW(e,t=1,n=!0){let a=O(e,"x","topk");if(a.rank===0)throw new Error("topk() expects the input to be of rank 1 or higher");let r=a.shape[a.shape.length-1];if(t>r)throw new Error(`'k' passed to topk() must be <= the last dimension (${r}) but got ${t}`);let s={x:a},i={k:t,sorted:n},[o,l]=V.runKernel(S7,s,i);return{values:o,indices:l}}var NW=U({topk_:SW});function TW(e,t=0,n=1,a,r){if(a!=null&&a==="bool")throw new Error("Unsupported data type $ { dtype }");let s=new s1(t,n,a,!0,r),i=Zr(e,a);for(let o=0;o<i.values.length;o++)i.values[o]=s.nextValue();return i.toTensor()}var EW=U({truncatedNormal_:TW});function CW(e,t=0){let n=O(e,"x","unique","string_or_numeric");L(n.rank>0,()=>"The input tensor must be at least 1D");let a={x:n},r={axis:t},[s,i]=V.runKernel(E7,a,r);return{values:s,indices:i}}var MW=U({unique_:CW});function $W(e,t,n){let a=O(e,"x","unsortedSegmentSum"),r=O(t,"segmentIds","unsortedSegmentSum","int32");L(Zn(n),()=>"numSegments must be of dtype int");let s={x:a,segmentIds:r},i={numSegments:n};return V.runKernel(M7,s,i)}var RW=U({unsortedSegmentSum_:$W});function FW(e,t=0){let n=O(e,"x","unstack","string_or_numeric");L(t>=-n.shape.length&&t<n.shape.length,()=>`Axis = ${t} is not in [-${n.shape.length}, ${n.shape.length})`);let a={value:n},r={axis:t};return V.runKernel(C7,a,r)}var fd=U({unstack_:FW});function OW(e,t=!0,n,a){return V.makeVariable(e,t,n,a)}function y6(e,t){let n=[];for(let s=0;s<t.length;s++)t[s]&&n.push(s);let a=Zr(e,"int32"),r=Zr([n.length,e.length],"int32");for(let s=0;s<n.length;s++){let i=a.indexToLoc(n[s]),o=s*e.length;r.values.set(i,o)}return r.toTensor()}async function DW(e){let t=O(e,"condition","whereAsync","bool"),n=await t.data(),a=y6(t.shape,n);return e!==t&&t.dispose(),a}var A6=DW;async function _W(e,t,n){let a=O(e,"tensor","boolMask"),r=O(t,"mask","boolMask","bool"),s=n==null?0:n,i=r.rank,o=a.shape;L(i>0,()=>"mask cannot be scalar"),On(o.slice(s,s+i),r.shape,"mask's shape must match the first K dimensions of tensor's shape,");let l=1;for(let f=s;f<s+i;f++)l*=o[f];let u=o.slice(0,s).concat([l],o.slice(s+i)),d=le(a,u),h=le(r,[-1]),p=await A6(h),c=Yn(p,[1]),m=Xk(d,c,s);return e!==a&&a.dispose(),t!==r&&r.dispose(),c.dispose(),d.dispose(),h.dispose(),p.dispose(),m}var zW=_W;function PW(e,t="euclidean",n=null,a=!1){e=O(e,"x","norm");let r=x6(e,t,n),s=r.shape;if(a){let i=Xu(n,e.shape);s=dd(r.shape,i)}return le(r,s)}function x6(e,t,n=null){if(e.rank===0)return Sa(e);if(e.rank!==1&&n===null)return x6(le(e,[-1]),t,n);if(e.rank===1||typeof n=="number"||Array.isArray(n)&&n.length===1){if(t===1)return $t(Sa(e),n);if(t===Infinity)return $s(Sa(e),n);if(t===-Infinity)return a1(Sa(e),n);if(t==="euclidean"||t===2)return ts($t(pd(Sa(e),dt(2,"int32")),n));throw new Error(`Error in norm: invalid ord value: ${t}`)}if(Array.isArray(n)&&n.length===2){if(t===1)return $s($t(Sa(e),n[0]),n[1]-1);if(t===Infinity)return $s($t(Sa(e),n[1]),n[0]);if(t===-Infinity)return a1($t(Sa(e),n[1]),n[0]);if(t==="fro"||t==="euclidean")return ts($t(tr(e),n));throw new Error(`Error in norm: invalid ord value: ${t}`)}throw new Error(`Error in norm: invalid axis: ${n}`)}var l1=U({norm_:PW});function LW(e,t,n,a,r=!0){let s=O(e,"v","movingAverage"),i=O(t,"x","movingAverage"),o=O(n,"decay","movingAverage");V7(s,i),L(Kr(s.shape,i.shape),()=>"Shape mismatch in v and x");let l=dt(1),u=je(l,o),d=fe(je(i,s),u);if(r){L(a!=null,()=>"When using zeroDebias: true, step is required.");let h=O(a,"step","movingAverage");d=Qe(d,je(l,pd(o,h)))}return De(s,d)}var WW=U({movingAverage_:LW});function BW(e,t,n){let a=O(e,"indices","scatterND","int32"),r=O(t,"updates","scatterND");By(r,a,n);let s={indices:a,updates:r},i={shape:n};return V.runKernel(Jw,s,i)}var VW=U({scatterND_:BW});function UW(e,t,n,a){if(e.dtype!=="int32")throw new Error(`tf.sparseToDense() expects the indices to be int32 type, but the dtype was ${e.dtype}.`);if(e.rank>2)throw new Error(`sparseIndices should be a scalar, vector, or matrix, but got shape ${e.shape}.`);let r=e.rank>0?e.shape[0]:1,s=e.rank>1?e.shape[1]:1;if(n.length!==s)throw new Error(`outputShape has incorrect number of elements:, ${n.length}, should be: ${s}.`);let i=t.size;if(!(t.rank===0||t.rank===1&&i===r))throw new Error(`sparseValues has incorrect shape ${t.shape}, should be [] or [${r}]`);if(t.dtype!==a.dtype)throw new Error("sparseValues.dtype must match defaultValues.dtype")}function jW(e,t,n,a=0){let r=O(e,"sparseIndices","sparseToDense","int32"),s=O(t,"sparseValues","sparseToDense"),i=O(a,"defaultValue","sparseToDense",s.dtype);UW(r,s,n,i);let o={sparseIndices:r,sparseValues:s,defaultValue:i},l={outputShape:n};return V.runKernel(g7,o,l)}var HW=U({sparseToDense_:jW});function GW(e,t){let n=O(t,"indices","gatherND","int32"),a={params:O(e,"x","gatherND","string_or_numeric"),indices:n};return V.runKernel(Qv,a)}var qW=U({gatherND_:GW});function KW(e,t){if(t==null)return e.shape.slice();if(Kr(e.shape,t))return t;if(e.shape.length===t.length){let n=[];for(let a=0;a<e.shape.length;a++)t[a]==null&&e.shape[a]!=null?n.push(e.shape[a]):n.push(t[a]);return n}return t}function XW(e,t,n,a){let r=O(e,"x","dropout");if(L(r.dtype==="float32",()=>`x has to be a floating point tensor since it's going to be scaled, but got a ${r.dtype} tensor instead.`),L(t>=0&&t<1,()=>`rate must be a float in the range [0, 1), but got ${t}.`),t===0)return e instanceof St?r.clone():r;let s=KW(r,n),i=1-t,o=Qe(Kk(De(h6(s,0,1,"float32",a),i)),i);return fe(r,o)}var ZW=U({dropout_:XW});function b6(e){return Math.floor(Math.pow(2,Math.ceil(Math.log(e)/Math.log(2))))}function u1(e,t,n){let a=1-e%2,r=new Float32Array(e);for(let s=0;s<e;++s){let i=2*Math.PI*s/(e+a-1);r[s]=t-n*Math.cos(i)}return oa(r,"float32")}async function YW(e,t,n=1){let a=O(e,"predictions","inTopK"),r=O(t,"targets","inTopK");L(a.rank>1,()=>`inTopK() expects the predictions to be of rank 2 or higher, but got ${a.rank}`),L(a.rank-1===r.rank,()=>`predictions rank should be 1 larger than targets rank, but got predictions rank ${a.rank} and targets rank ${r.rank}`),On(a.shape.slice(0,a.shape.length-1),r.shape,"predictions's shape should be align with the targets' shape, except the last dimension.");let s=a.shape[a.shape.length-1];L(n>0&&n<=s,()=>`'k' passed to inTopK() must be > 0 && <= the predictions last dimension (${s}), but got ${n}`);let i=await a.data(),o=await r.data(),[l,u]=[i.length/s,s],d=V3("bool",l);for(let h=0;h<l;h++){let p=h*u,c=i.subarray(p,p+u),m=[];for(let f=0;f<c.length;f++)m.push({value:c[f],index:f});m.sort((f,g)=>g.value-f.value),d[h]=0;for(let f=0;f<n;f++)if(m[f].index===o[h]){d[h]=1;break}}return e!==a&&a.dispose(),t!==r&&r.dispose(),er(d,r.shape,"bool")}var JW=YW,v6={};$e(v6,{conv2d:()=>nB,depthwiseConv2d:()=>lB,matMul:()=>dB});function QW(e,t,n,a,r,s="NHWC",i){let o=e;e.rank===3&&(o=le(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=le(t,[1,t.shape[0],t.shape[1],t.shape[2]])),L(o.rank===4,()=>`Error in conv2dDerFilter: input must be rank 4, but got shape ${o.shape}.`),L(l.rank===4,()=>`Error in conv2dDerFilter: dy must be rank 4, but got shape ${l.shape}.`),L(n.length===4,()=>`Error in conv2dDerFilter: filterShape must be length 4, but got ${n}.`);let u=s==="NHWC"?o.shape[3]:o.shape[1],d=s==="NHWC"?l.shape[3]:l.shape[1];L(u===n[2],()=>`Error in conv2dDerFilter: depth of input ${u}) must match input depth in filter (${n[2]}.`),L(d===n[3],()=>`Error in conv2dDerFilter: depth of dy (${d}) must match output depth for filter (${n[3]}).`),i!=null&&L(Zn(r),()=>`Error in conv2dDerFilter: pad must be an integer when using, dimRoundingMode ${i} but got pad ${r}.`);let h={x:o,dy:l},p={strides:a,pad:r,dataFormat:s,dimRoundingMode:i,filterShape:n};return V.runKernel(kv,h,p)}var eB=U({conv2DBackpropFilter_:QW});function Mc(e,t,n){if(n==null||n==="linear")return e;if(n==="relu")return fe(e,g6(t));throw new Error(`Cannot compute gradient for fused activation ${n}.`)}function $c(e,t){let n=t,a=jk(e.shape,t.shape);return a.length>0&&(n=$t(n,a)),le(n,e.shape)}function Rc(e,t,n,a){if(t==="linear")return e;if(t==="relu")return Ec(e);if(t==="elu")return Gk(e);if(t==="relu6")return p6(e);if(t==="prelu")return d6(e,n);if(t==="leakyrelu")return Yk(e,a);if(t==="sigmoid")return Sr(e);throw new Error(`Unknown fused activation ${t}.`)}var Fc=(e,t)=>!(e>0)||t==="linear";function tB({x:e,filter:t,strides:n,pad:a,dataFormat:r="NHWC",dilations:s=[1,1],dimRoundingMode:i,bias:o,activation:l="linear",preluActivationWeights:u,leakyreluAlpha:d}){if(l=l||"linear",Fc(V.state.gradientDepth,l)===!1){let b=bc(e,t,n,a,r,s,i);return o!=null&&(b=De(b,o)),Rc(b,l,u,d)}let h=O(e,"x","conv2d"),p=O(t,"filter","conv2d"),c=h,m=!1;h.rank===3&&(m=!0,c=le(h,[1,h.shape[0],h.shape[1],h.shape[2]])),L(c.rank===4,()=>`Error in fused conv2d: input must be rank 4, but got rank ${c.rank}.`),L(p.rank===4,()=>`Error in fused conv2d: filter must be rank 4, but got rank ${p.rank}.`),i!=null&&L(Zn(a),()=>`Error in fused conv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${a}.`),L(c.shape[3]===p.shape[2],()=>`Error in conv2d: depth of input (${c.shape[3]}) must match input depth for filter ${p.shape[2]}.`),L(Jr(n,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),L(r==="NHWC",()=>`Error in conv2d: got dataFormat of ${r} but only NHWC is currently supported.`);let f=id(c.shape,p.shape,n,s,a,i),g;o!=null&&(g=O(o,"bias","fused conv2d"),[g]=Vt(g,h),In(f.outShape,g.shape));let y;u!=null&&(y=O(u,"prelu weights","fused conv2d"));let A=(b,w)=>{let[I,T,C,z]=w,$=Mc(b,C,l);L(od(s),()=>`Error in gradient of fused conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`);let S=Uk(T.shape,$,I,n,a),D=eB(T,$,I.shape,n,a),_=[S,D];if(z!=null){let W=$c(z,$);_.push(W)}return _},x={x:c,filter:p,bias:g,preluActivationWeights:y},v={strides:n,pad:a,dataFormat:r,dilations:s,dimRoundingMode:i,activation:l,leakyreluAlpha:d};return o==null?Nr((b,w,I)=>{let T=V.runKernel(py,x,v);return I([w,b,T]),m&&(T=le(T,[T.shape[1],T.shape[2],T.shape[3]])),{value:T,gradFunc:A}})(c,p):Nr((b,w,I,T)=>{let C=V.runKernel(py,x,v);return T([w,b,C,I]),m&&(C=le(C,[C.shape[1],C.shape[2],C.shape[3]])),{value:C,gradFunc:A}})(c,p,g)}var nB=U({fusedConv2d_:tB});function aB(e,t,n,a,r,s=[1,1],i){let o=e;e.rank===3&&(o=le(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=le(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let u={x:o,dy:l},d={strides:a,pad:r,dimRoundingMode:i,dilations:s,filterShape:n};return V.runKernel(Ov,u,d)}var rB=U({depthwiseConv2dNativeBackpropFilter_:aB});function sB(e,t,n,a,r,s=[1,1],i){let o=t,l=!1;t.rank===3&&(l=!0,o=le(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let u={dy:o,filter:n},d={strides:a,pad:r,dimRoundingMode:i,dilations:s,inputShape:e},h=V.runKernel(Dv,u,d);return l?le(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var iB=U({depthwiseConv2dNativeBackpropInput_:sB});function oB({x:e,filter:t,strides:n,pad:a,dataFormat:r="NHWC",dilations:s=[1,1],dimRoundingMode:i,bias:o,activation:l="linear",preluActivationWeights:u,leakyreluAlpha:d}){if(Fc(V.state.gradientDepth,l)===!1){let b=Qy(e,t,n,a,r,s,i);return o!=null&&(b=De(b,o)),Rc(b,l,u,d)}let h=O(e,"x","depthwiseConv2d"),p=O(t,"filter","depthwiseConv2d"),c=h,m=!1;h.rank===3&&(m=!0,c=le(h,[1,h.shape[0],h.shape[1],h.shape[2]])),L(c.rank===4,()=>`Error in fused depthwiseConv2d: input must be rank 4, but got rank ${c.rank}.`),L(p.rank===4,()=>`Error in fused depthwiseConv2d: filter must be rank 4, but got rank ${p.rank}.`),L(c.shape[3]===p.shape[2],()=>`Error in fused depthwiseConv2d: number of input channels (${c.shape[3]}) must match the inChannels dimension in filter ${p.shape[2]}.`),s==null&&(s=[1,1]),L(Jr(n,s),()=>`Error in fused depthwiseConv2d: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),i!=null&&L(Zn(a),()=>`Error in fused depthwiseConv2d: pad must be an integer when using dimRoundingMode ${i} but got pad ${a}.`);let f=id(c.shape,p.shape,n,s,a,i,!0),g;o!=null&&(g=O(o,"bias","fused conv2d"),[g]=Vt(g,h),In(f.outShape,g.shape));let y;u!=null&&(y=O(u,"prelu weights","fused depthwiseConv2d"));let A=(b,w)=>{L(od(s),()=>`Error in gradient of fused depthwiseConv2d: dilation rates greater than 1 are not yet supported. Got dilations '${s}'`);let[I,T,C,z]=w,$=Mc(b,C,l),S=iB(T.shape,$,I,n,a,s,i),D=rB(T,$,I.shape,n,a,s,i);if(z!=null){let _=$c(g,$);return[S,D,_]}return[S,D]},x={x:c,filter:p,bias:g,preluActivationWeights:y},v={strides:n,pad:a,dataFormat:r,dilations:s,dimRoundingMode:i,activation:l,leakyreluAlpha:d};return o==null?Nr((b,w,I)=>{let T=V.runKernel(cy,x,v);return I([w,b,T]),m&&(T=le(T,[T.shape[1],T.shape[2],T.shape[3]])),{value:T,gradFunc:A}})(c,p):Nr((b,w,I,T)=>{let C=V.runKernel(cy,x,v);return T([w,b,C,I]),m&&(C=le(C,[C.shape[1],C.shape[2],C.shape[3]])),{value:C,gradFunc:A}})(c,p,g)}var lB=U({fusedDepthwiseConv2d_:oB});function uB({a:e,b:t,transposeA:n=!1,transposeB:a=!1,bias:r,activation:s="linear",preluActivationWeights:i,leakyreluAlpha:o}){if(Fc(V.state.gradientDepth,s)===!1){let z=yt(e,t,n,a);return r!=null&&(z=De(z,r)),Rc(z,s,i,o)}let l=O(e,"a","fused matMul"),u=O(t,"b","fused matMul");[l,u]=Vt(l,u);let d=n?l.shape[l.rank-2]:l.shape[l.rank-1],h=a?u.shape[u.rank-1]:u.shape[u.rank-2],p=n?l.shape[l.rank-1]:l.shape[l.rank-2],c=a?u.shape[u.rank-2]:u.shape[u.rank-1],m=l.shape.slice(0,-2),f=u.shape.slice(0,-2),g=Jt(m),y=Jt(f);L(l.rank>=2&&u.rank>=2&&l.rank===u.rank,()=>`Error in fused matMul: inputs must have the same rank of at least 2, got ranks ${l.rank} and ${u.rank}.`),L(Kr(m,f),()=>`Error in fused matMul: outer dimensions (${m}) and (${f}) of Tensors with shapes ${l.shape} and ${u.shape} must match.`),L(d===h,()=>`Error in fused matMul: inner shapes (${d}) and (${h}) of Tensors with shapes ${l.shape} and ${u.shape} and transposeA=${n} and transposeB=${a} must match.`);let A=l.shape.slice(0,-2).concat([p,c]),x=n?le(l,[g,d,p]):le(l,[g,p,d]),v=a?le(u,[y,c,h]):le(u,[y,h,c]),b;r!=null&&(b=O(r,"bias","fused matMul"),[b]=Vt(b,l),In(A,b.shape));let w;i!=null&&(w=O(i,"prelu weights","fused matMul"));let I=(z,$)=>{let[S,D,_,W]=$,X=Mc(le(z,_.shape),_,s),q,Q;if(!n&&!a?(q=yt(X,D,!1,!0),Q=yt(S,X,!0,!1)):!n&&a?(q=yt(X,D,!1,!1),Q=yt(X,S,!0,!1)):n&&!a?(q=yt(D,X,!1,!0),Q=yt(S,X,!1,!1)):(q=yt(D,X,!0,!0),Q=yt(X,S,!0,!0)),r!=null){let ee=$c(W,X);return[q,Q,ee]}else return[q,Q]},T={a:x,b:v,bias:b,preluActivationWeights:w},C={transposeA:n,transposeB:a,activation:s,leakyreluAlpha:o};return r==null?Nr((z,$,S)=>{let D=V.runKernel(hy,T,C);return S([z,$,D]),{value:le(D,A),gradFunc:I}})(x,v):Nr((z,$,S,D)=>{let _=V.runKernel(hy,T,C);return D([z,$,_,S]),{value:le(_,A),gradFunc:I}})(x,v,b)}var dB=U({fusedMatMul_:uB});function hB(e){return u1(e,.54,.46)}var pB=U({hammingWindow_:hB});function cB(e){return u1(e,.5,.5)}var w6=U({hannWindow_:cB});function fB(e,t,n,a=!1,r=0){let s=0,i=[];for(;s+t<=e.size;)i.push(Ze(e,s,t)),s+=n;if(a)for(;s<e.size;){let o=s+t-e.size,l=sn([Ze(e,s,t-o),wc([o],r)]);i.push(l),s+=n}return i.length===0?ns([],[0,t]):le(sn(i),[i.length,t])}var k6=U({frame_:fB});function mB(e,t,n,a,r=w6){a==null&&(a=b6(t));let s=k6(e,t,n),i=fe(s,r(t));return o1(i,a)}var gB=U({stft_:mB});function yB(e,t,n,a,r="bilinear",s=0){let i=O(e,"image","cropAndResize"),o=O(t,"boxes","cropAndResize","float32"),l=O(n,"boxInd","cropAndResize","int32"),u=o.shape[0];L(i.rank===4,()=>`Error in cropAndResize: image must be rank 4,but got rank ${i.rank}.`),L(o.rank===2&&o.shape[1]===4,()=>`Error in cropAndResize: boxes must be have size [${u},4] but had shape ${o.shape}.`),L(l.rank===1&&l.shape[0]===u,()=>`Error in cropAndResize: boxInd must be have size [${u}] but had shape ${o.shape}.`),L(a.length===2,()=>`Error in cropAndResize: cropSize must be of length 2, but got length ${a.length}.`),L(a[0]>=1&&a[1]>=1,()=>`cropSize must be atleast [1,1], but was ${a}`),L(r==="bilinear"||r==="nearest",()=>`method must be bilinear or nearest, but was ${r}`);let d={image:i,boxes:o,boxInd:l},h={method:r,extrapolationValue:s,cropSize:a};return V.runKernel(Mv,d,h)}var AB=U({cropAndResize_:yB});function xB(e){let t=O(e,"image","flipLeftRight","float32");L(t.rank===4,()=>`Error in flipLeftRight: image must be rank 4,but got rank ${t.rank}.`);let n={image:t};return V.runKernel(Kv,n,{})}var bB=U({flipLeftRight_:xB});function vB(e,t,n=0,a=.5){let r=O(e,"image","rotateWithOffset","float32");L(r.rank===4,()=>`Error in rotateWithOffset: image must be rank 4,but got rank ${r.rank}.`);let s={image:r},i={radians:t,fillValue:n,center:a};return V.runKernel(F7,s,i)}var wB=U({rotateWithOffset_:vB});function qo(e,t,n,a,r,s){a==null&&(a=.5),r==null&&(r=Number.NEGATIVE_INFINITY),s==null&&(s=0);let i=e.shape[0];return n=Math.min(n,i),L(0<=a&&a<=1,()=>`iouThreshold must be in [0, 1], but was '${a}'`),L(e.rank===2,()=>`boxes must be a 2D tensor, but was of rank '${e.rank}'`),L(e.shape[1]===4,()=>`boxes must have 4 columns, but 2nd dimension was ${e.shape[1]}`),L(t.rank===1,()=>"scores must be a 1D tensor"),L(t.shape[0]===i,()=>`scores has incompatible shape with boxes. Expected ${i}, but was ${t.shape[0]}`),L(0<=s&&s<=1,()=>`softNmsSigma must be in [0, 1], but was '${s}'`),{maxOutputSize:n,iouThreshold:a,scoreThreshold:r,softNmsSigma:s}}function kB(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY){let s=O(e,"boxes","nonMaxSuppression"),i=O(t,"scores","nonMaxSuppression"),o=qo(s,i,n,a,r);n=o.maxOutputSize,a=o.iouThreshold,r=o.scoreThreshold;let l={maxOutputSize:n,iouThreshold:a,scoreThreshold:r};return V.runKernel($w,{boxes:s,scores:i},l)}var IB=U({nonMaxSuppression_:kB});function SB(e,t,n){let a=NB(e,t,n),r=a<0?-(a+1):a;e.splice(r,0,t)}function NB(e,t,n){return EB(e,t,n||TB)}function TB(e,t){return e>t?1:e<t?-1:0}function EB(e,t,n){let a=0,r=e.length,s=0,i=!1;for(;a<r;){s=a+(r-a>>>1);let o=n(t,e[s]);o>0?a=s+1:(r=s,i=!o)}return i?a:-a-1}function I6(e,t,n,a,r){return d1(e,t,n,a,r,0)}function S6(e,t,n,a,r,s){return d1(e,t,n,a,r,0,!1,s,!0)}function N6(e,t,n,a,r,s){return d1(e,t,n,a,r,s,!0)}function d1(e,t,n,a,r,s,i=!1,o=!1,l=!1){let u=[];for(let g=0;g<t.length;g++)t[g]>r&&u.push({score:t[g],boxIndex:g,suppressBeginIndex:0});u.sort(T6);let d=s>0?-.5/s:0,h=[],p=[];for(;h.length<n&&u.length>0;){let g=u.pop(),{score:y,boxIndex:A,suppressBeginIndex:x}=g;if(y<r)break;let v=!1;for(let b=h.length-1;b>=x;--b){let w=CB(e,A,h[b]);if(w>=a){v=!0;break}if(g.score=g.score*MB(a,d,w),g.score<=r)break}g.suppressBeginIndex=h.length,v||(g.score===y?(h.push(A),p.push(g.score)):g.score>r&&SB(u,g,T6))}let c=h.length,m=n-c;o&&m>0&&(h.push(...new Array(m).fill(0)),p.push(...new Array(m).fill(0)));let f={selectedIndices:h};return i&&(f.selectedScores=p),l&&(f.validOutputs=c),f}function CB(e,t,n){let a=e.subarray(t*4,t*4+4),r=e.subarray(n*4,n*4+4),s=Math.min(a[0],a[2]),i=Math.min(a[1],a[3]),o=Math.max(a[0],a[2]),l=Math.max(a[1],a[3]),u=Math.min(r[0],r[2]),d=Math.min(r[1],r[3]),h=Math.max(r[0],r[2]),p=Math.max(r[1],r[3]),c=(o-s)*(l-i),m=(h-u)*(p-d);if(c<=0||m<=0)return 0;let f=Math.max(s,u),g=Math.max(i,d),y=Math.min(o,h),A=Math.min(l,p),x=Math.max(y-f,0)*Math.max(A-g,0);return x/(c+m-x)}function MB(e,t,n){let a=Math.exp(t*n*n);return n<=e?a:0}function T6(e,t){return e.score-t.score||e.score===t.score&&t.boxIndex-e.boxIndex}async function $B(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY){let s=O(e,"boxes","nonMaxSuppressionAsync"),i=O(t,"scores","nonMaxSuppressionAsync"),o=qo(s,i,n,a,r);n=o.maxOutputSize,a=o.iouThreshold,r=o.scoreThreshold;let l=await Promise.all([s.data(),i.data()]),u=l[0],d=l[1],{selectedIndices:h}=I6(u,d,n,a,r);return s!==e&&s.dispose(),i!==t&&i.dispose(),oa(h,"int32")}var RB=$B;function FB(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY,s=0){let i=O(e,"boxes","nonMaxSuppression"),o=O(t,"scores","nonMaxSuppression"),l=qo(i,o,n,a,r,s);n=l.maxOutputSize,a=l.iouThreshold,r=l.scoreThreshold,s=l.softNmsSigma;let u={boxes:i,scores:o},d={maxOutputSize:n,iouThreshold:a,scoreThreshold:r,softNmsSigma:s},h=V.runKernel(Fw,u,d);return{selectedIndices:h[0],selectedScores:h[1]}}var OB=U({nonMaxSuppressionWithScore_:FB});async function DB(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY,s=0){let i=O(e,"boxes","nonMaxSuppressionAsync"),o=O(t,"scores","nonMaxSuppressionAsync"),l=qo(i,o,n,a,r,s);n=l.maxOutputSize,a=l.iouThreshold,r=l.scoreThreshold,s=l.softNmsSigma;let u=await Promise.all([i.data(),o.data()]),d=u[0],h=u[1],{selectedIndices:p,selectedScores:c}=N6(d,h,n,a,r,s);return i!==e&&i.dispose(),o!==t&&o.dispose(),{selectedIndices:oa(p,"int32"),selectedScores:oa(c)}}var _B=DB;function zB(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY,s=!1){let i=O(e,"boxes","nonMaxSuppression"),o=O(t,"scores","nonMaxSuppression"),l=qo(i,o,n,a,r,null),u=l.maxOutputSize,d=l.iouThreshold,h=l.scoreThreshold,p={boxes:i,scores:o},c={maxOutputSize:u,iouThreshold:d,scoreThreshold:h,padToMaxOutputSize:s},m=V.runKernel(Rw,p,c);return{selectedIndices:m[0],validOutputs:m[1]}}var PB=U({nonMaxSuppressionPadded_:zB});async function LB(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY,s=!1){let i=O(e,"boxes","nonMaxSuppressionAsync"),o=O(t,"scores","nonMaxSuppressionAsync"),l=qo(i,o,n,a,r,null),u=l.maxOutputSize,d=l.iouThreshold,h=l.scoreThreshold,[p,c]=await Promise.all([i.data(),o.data()]),{selectedIndices:m,validOutputs:f}=S6(p,c,u,d,h,s);return i!==e&&i.dispose(),o!==t&&o.dispose(),{selectedIndices:oa(m,"int32"),validOutputs:dt(f,"int32")}}var WB=LB;function BB(e,t,n=!1,a=!1){let r=O(e,"images","resizeBilinear");L(r.rank===3||r.rank===4,()=>`Error in resizeBilinear: x must be rank 3 or 4, but got rank ${r.rank}.`),L(t.length===2,()=>`Error in resizeBilinear: new shape must 2D, but got shape ${t}.`),L(a===!1||n===!1,()=>"Error in resizeBilinear: If halfPixelCenters is true, alignCorners must be false.");let s=r,i=!1;r.rank===3&&(i=!0,s=le(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let[]=t,o={images:s},l={alignCorners:n,halfPixelCenters:a,size:t},u=V.runKernel(qw,o,l);return i?le(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var VB=U({resizeBilinear_:BB});function UB(e,t,n=!1,a=!1){let r=O(e,"images","resizeNearestNeighbor");L(r.rank===3||r.rank===4,()=>`Error in resizeNearestNeighbor: x must be rank 3 or 4, but got rank ${r.rank}.`),L(t.length===2,()=>`Error in resizeNearestNeighbor: new shape must 2D, but got shape ${t}.`),L(r.dtype==="float32"||r.dtype==="int32",()=>"`images` must have `int32` or `float32` as dtype"),L(a===!1||n===!1,()=>"Error in resizeNearestNeighbor: If halfPixelCenters is true, alignCorners must be false.");let s=r,i=!1;r.rank===3&&(i=!0,s=le(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let[]=t,o={images:s},l={alignCorners:n,halfPixelCenters:a,size:t},u=V.runKernel(Gw,o,l);return i?le(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var jB=U({resizeNearestNeighbor_:UB});function HB(e,t="binary",n=!1,a=.5){let r=O(e,"image","threshold"),s=.2989,i=.587,o=.114,l=r.shape[0]*r.shape[1],u=fe(oa([a]),255),d,h,p,c;if(L(r.rank===3,()=>`Error in threshold: image must be rank 3,but got rank ${r.rank}.`),L(r.shape[2]===3||r.shape[2]===1,()=>`Error in threshold: image color channel must be equal to 3 or 1but got ${r.shape[2]}.`),L(r.dtype==="int32"||r.dtype==="float32",()=>`Error in dtype: image dtype must be int32 or float32,but got dtype ${r.dtype}.`),L(t==="otsu"||t==="binary",()=>`Method must be binary or otsu, but was ${t}`),r.shape[2]===3){[d,h,p]=es(r,[1,1,1],-1);let f=fe(d,s),g=fe(h,i),y=fe(p,o);c=De(De(f,g),y)}else c=e;if(t==="otsu"){let f=Vk(zt(c6(c),"int32"),er([]),256);u=GB(f,l)}let m=n?t1(c,u):kc(c,u);return zt(fe(m,255),"int32")}function GB(e,t){let n=oa([-1]),a=oa([0]),r=oa([0]),s,i,o,l,u,d;for(let h=0;h<e.size-1;h++){s=Ze(e,0,h+1),i=Ze(e,h+1),u=Qe($t(s),t),d=Qe($t(i),t);let p=$t(fe(s,cd(0,s.size)));o=Qe(p,$t(s));let c=wc(i.shape,s.size),m=De(cd(0,i.size),c),f=fe(i,m);l=Qe($t(f),$t(i));let g=je(o,l),y=je(o,l),A=fe(u,d);r=fe(fe(A,g),y);let x=kc(r,a);a=Ho(x,r,a),n=Ho(x,oa([h]),n)}return n}var qB=U({threshold_:HB});function KB(e,t,n="nearest",a="constant",r=0,s){let i=O(e,"image","transform","float32"),o=O(t,"transforms","transform","float32");L(i.rank===4,()=>`Error in transform: image must be rank 4,but got rank ${i.rank}.`),L(o.rank===2&&(o.shape[0]===i.shape[0]||o.shape[0]===1)&&o.shape[1]===8,()=>"Error in transform: Input transform should be batch x 8 or 1 x 8"),L(s==null||s.length===2,()=>`Error in transform: outputShape must be [height, width] or null, but got ${s}.`);let l={image:i,transforms:o},u={interpolation:n,fillMode:a,fillValue:r,outputShape:s};return V.runKernel(N7,l,u)}var XB=U({transform_:KB});function ZB(e,t,n){L(t%1==0,()=>`bandPart(): numLower must be an integer, got ${t}.`),L(n%1==0,()=>`bandPart(): numUpper must be an integer, got ${n}.`);let a=O(e,"a","bandPart");L(a.rank>=2,()=>`bandPart(): Rank must be at least 2, got ${a.rank}.`);let r=a.shape,[s,i]=a.shape.slice(-2);if(!(t<=s))throw new Error(`bandPart(): numLower (${t}) must not be greater than the number of rows (${s}).`);if(!(n<=i))throw new Error(`bandPart(): numUpper (${n}) must not be greater than the number of columns (${i}).`);t<0&&(t=s),n<0&&(n=i);let o=le(cd(0,s,1,"int32"),[-1,1]),l=cd(0,i,1,"int32"),u=je(o,l),d=Sc(t1(u,dt(+t,"int32")),Zk(u,dt(-n,"int32"))),h=Go([s,i],a.dtype);return le(Ii(fd(le(a,[-1,s,i])).map(p=>Ho(d,p,h))),r)}var YB=U({bandPart_:ZB});function JB(e){let t;if(Array.isArray(e)){t=!1,L(e!=null&&e.length>0,()=>"Gram-Schmidt process: input must not be null, undefined, or empty");let r=e[0].shape[0];for(let s=1;s<e.length;++s)L(e[s].shape[0]===r,()=>`Gram-Schmidt: Non-unique lengths found in the input vectors: (${e[s].shape[0]} vs. ${r})`)}else t=!0,e=es(e,e.shape[0],0).map(r=>Yn(r,[0]));L(e.length<=e[0].shape[0],()=>`Gram-Schmidt: Number of vectors (${e.length}) exceeds number of dimensions (${e[0].shape[0]}).`);let n=[],a=e;for(let r=0;r<e.length;++r)n.push(V.tidy(()=>{let s=a[r];if(r>0)for(let i=0;i<r;++i){let o=fe($t(fe(n[i],s)),n[i]);s=je(s,o)}return Qe(s,l1(s,"euclidean"))}));return t?Ii(n,0):n}var QB=U({gramSchmidt_:JB});function eV(e,t=!1){if(L(e.rank>=2,()=>`qr() requires input tensor to have a rank >= 2, but got rank ${e.rank}`),e.rank===2)return E6(e,t);{let n=e.shape.slice(0,e.shape.length-2).reduce((l,u)=>l*u),a=fd(le(e,[n,e.shape[e.shape.length-2],e.shape[e.shape.length-1]]),0),r=[],s=[];a.forEach(l=>{let[u,d]=E6(l,t);r.push(u),s.push(d)});let i=le(Ii(r,0),e.shape),o=le(Ii(s,0),e.shape);return[i,o]}}function E6(e,t=!1){return V.tidy(()=>{L(e.shape.length===2,()=>`qr2d() requires a 2D Tensor, but got a ${e.shape.length}D Tensor.`);let n=e.shape[0],a=e.shape[1],r=qk(n),s=Yr(e),i=ns([[1]],[1,1]),o=Yr(i),l=n>=a?a:n;for(let u=0;u<l;++u){let d=s,h=o,p=r;[o,s,r]=V.tidy(()=>{let c=Ze(s,[u,u],[n-u,1]),m=l1(c),f=Ze(s,[u,u],[1,1]),g=Ho(kc(f,0),ns([[-1]]),ns([[1]])),y=je(f,fe(g,m)),A=Qe(c,y);A.shape[0]===1?o=Yr(i):o=sn([i,Ze(A,[1,0],[A.shape[0]-1,A.shape[1]])],0);let x=Ms(Qe(yt(g,y),m)),v=Ze(s,[u,0],[n-u,a]),b=fe(x,o),w=fc(o);if(u===0)s=je(v,yt(b,yt(w,v)));else{let C=je(v,yt(b,yt(w,v)));s=sn([Ze(s,[0,0],[u,a]),C],0)}let I=fc(b),T=Ze(r,[0,u],[n,r.shape[1]-u]);if(u===0)r=je(T,yt(yt(T,o),I));else{let C=je(T,yt(yt(T,o),I));r=sn([Ze(r,[0,0],[n,u]),C],1)}return[o,s,r]}),Ve([d,h,p])}return!t&&n>a&&(r=Ze(r,[0,0],[n,a]),s=Ze(s,[0,0],[a,a])),[r,s]})}var tV=U({qr_:eV}),_n;(function(e){e[e.NONE=0]="NONE",e[e.MEAN=1]="MEAN",e[e.SUM=2]="SUM",e[e.SUM_BY_NONZERO_WEIGHTS=3]="SUM_BY_NONZERO_WEIGHTS"})(_n||(_n={}));function nV(e,t,n=_n.SUM_BY_NONZERO_WEIGHTS){let a=O(e,"losses","computeWeightedLoss"),r=null;t!=null&&(r=O(t,"weights","computeWeightedLoss"));let s=r==null?a:fe(a,r);if(n===_n.NONE)return s;if(n===_n.SUM)return $t(s);if(n===_n.MEAN){if(r==null)return Nc(s);{let i=a.size/r.size,o=Qe($t(s),$t(r));return i>1?Qe(o,dt(i)):o}}if(n===_n.SUM_BY_NONZERO_WEIGHTS){if(r==null)return Qe($t(s),dt(a.size));{let i=fe(r,wi(a.shape)),o=zt($t(l6(i,dt(0))),"float32");return Qe($t(s),o)}}throw Error(`Unknown reduction: ${n}`)}var as=U({computeWeightedLoss_:nV});function aV(e,t,n,a=_n.SUM_BY_NONZERO_WEIGHTS){let r=O(e,"labels","absoluteDifference"),s=O(t,"predictions","absoluteDifference"),i=null;n!=null&&(i=O(n,"weights","absoluteDifference")),On(r.shape,s.shape,"Error in absoluteDifference: ");let o=Sa(je(r,s));return as(o,i,a)}var rV=U({absoluteDifference_:aV});function sV(e,t,n,a,r=_n.SUM_BY_NONZERO_WEIGHTS){let s=O(e,"labels","cosineDistance"),i=O(t,"predictions","cosineDistance"),o=null;a!=null&&(o=O(a,"weights","cosineDistance")),On(s.shape,i.shape,"Error in cosineDistance: ");let l=dt(1),u=je(l,$t(fe(s,i),n,!0));return as(u,o,r)}var iV=U({cosineDistance_:sV});function oV(e,t,n,a=_n.SUM_BY_NONZERO_WEIGHTS){let r=O(e,"labels","hingeLoss"),s=O(t,"predictions","hingeLoss"),i=null;n!=null&&(i=O(n,"weights","hingeLoss")),On(r.shape,s.shape,"Error in hingeLoss: ");let o=dt(1);r=je(fe(dt(2),r),o);let l=Ec(je(o,fe(r,s)));return as(l,i,a)}var lV=U({hingeLoss_:oV});function uV(e,t,n,a=1,r=_n.SUM_BY_NONZERO_WEIGHTS){let s=O(e,"labels","huberLoss"),i=O(t,"predictions","huberLoss"),o=null;n!=null&&(o=O(n,"weights","huberLoss")),On(s.shape,i.shape,"Error in huberLoss: ");let l=dt(a),u=Sa(je(i,s)),d=o6(u,l),h=je(u,d),p=De(fe(dt(.5),tr(d)),fe(l,h));return as(p,o,r)}var dV=U({huberLoss_:uV});function hV(e,t,n,a=1e-7,r=_n.SUM_BY_NONZERO_WEIGHTS){let s=O(e,"labels","logLoss"),i=O(t,"predictions","logLoss"),o=null;n!=null&&(o=O(n,"weights","logLoss")),On(s.shape,i.shape,"Error in logLoss: ");let l=dt(1),u=dt(a),d=Ms(fe(s,ud(De(i,u)))),h=fe(je(l,s),ud(De(je(l,i),u))),p=je(d,h);return as(p,o,r)}var pV=U({logLoss_:hV});function cV(e,t,n,a=_n.SUM_BY_NONZERO_WEIGHTS){let r=O(e,"labels","meanSquaredError"),s=O(t,"predictions","meanSquaredError"),i=null;n!=null&&(i=O(n,"weights","meanSquaredError")),On(r.shape,s.shape,"Error in meanSquaredError: ");let o=m6(r,s);return as(o,i,a)}var fV=U({meanSquaredError_:cV});function mV(e,t){let n=O(e,"labels","sigmoidCrossEntropyWithLogits"),a=O(t,"logits","sigmoidCrossEntropyWithLogits");On(n.shape,a.shape,"Error in sigmoidCrossEntropyWithLogits: ");let r=Ec(a),s=fe(a,n),i=Jk(vi(Ms(Sa(a))));return De(je(r,s),i)}function gV(e,t,n,a=0,r=_n.SUM_BY_NONZERO_WEIGHTS){let s=O(e,"multiClassLabels","sigmoidCrossEntropy"),i=O(t,"logits","sigmoidCrossEntropy"),o=null;if(n!=null&&(o=O(n,"weights","sigmoidCrossEntropy")),On(s.shape,i.shape,"Error in sigmoidCrossEntropy: "),a>0){let u=dt(a),d=dt(1),h=dt(.5);s=De(fe(s,je(d,u)),fe(h,u))}let l=mV(s,i);return as(l,o,r)}var yV=U({sigmoidCrossEntropy_:gV});function AV(e,t,n=-1){if(n===-1&&(n=t.rank-1),n!==t.rank-1)throw Error(`Softmax cross entropy along a non-last dimension is not yet supported. Labels / logits was rank ${t.rank} and dim was ${n}`);return Nr((a,r,s)=>{let i=n6(r,[n],!0),o=je(zt(r,"float32"),i);s([a,o]);let l=Ms(fe(o,a));return{value:$t(l,[n]),gradFunc:(u,d)=>{let[h,p]=d,c=dd(u.shape,[n]);return[fe(le(u,c),je(zt(h,"float32"),vi(p))),fe(le(u,c),je(vi(p),zt(h,"float32")))]}}})(e,t)}function xV(e,t,n,a=0,r=_n.SUM_BY_NONZERO_WEIGHTS){let s=O(e,"onehotLabels","softmaxCrossEntropy"),i=O(t,"logits","softmaxCrossEntropy"),o=null;if(n!=null&&(o=O(n,"weights","softmaxCrossEntropy")),On(s.shape,i.shape,"Error in softmaxCrossEntropy: "),a>0){let u=dt(a),d=dt(1),h=dt(s.shape[1]);s=De(fe(s,je(d,u)),Qe(u,h))}let l=AV(s,i);return as(l,o,r)}var bV=U({softmaxCrossEntropy_:xV});function vV(e,t,n,a){let r=O(e,"indices","sparseFillEmptyRows"),s=O(t,"values","sparseFillEmptyRows"),i=O(n,"denseShape","sparseFillEmptyRows"),o=O(a,"defaultValue","sparseFillEmptyRows",s.dtype);if(r.rank!==2)throw new Error(`Indices should be Tensor2D but received shape
|
|
${r.shape}`);if(s.rank!==1)throw new Error(`Values should be Tensor1D but received shape ${s.shape}`);if(i.rank!==1)throw new Error(`Dense shape should be Tensor1D but received shape ${i.shape}`);if(o.rank!==0)throw new Error(`Default value should be a scalar but received shape ${o.shape}`);let l={indices:r,values:s,denseShape:i,defaultValue:o},u=V.runKernel(p7,l);return{outputIndices:u[0],outputValues:u[1],emptyRowIndicator:u[2],reverseIndexMap:u[3]}}var wV=U({sparseFillEmptyRows_:vV});function kV(e,t,n){let a=O(e,"inputIndices","sparseReshape"),r=O(t,"inputShape","sparseReshape"),s=O(n,"newShape","sparseReshape");if(a.rank!==2)throw new Error(`Input indices should be Tensor2D but received shape
|
|
${a.shape}`);if(r.rank!==1)throw new Error(`Input shape should be Tensor1D but received shape ${r.shape}`);if(s.rank!==1)throw new Error(`New shape should be Tensor1D but received shape ${s.shape}`);let i={inputIndices:a,inputShape:r,newShape:s},o=V.runKernel(c7,i);return{outputIndices:o[0],outputShape:o[1]}}var IV=U({sparseReshape_:kV});function SV(e,t,n){let a=O(e,"data","sparseSegmentMean"),r=O(t,"indices","sparseSegmentMean"),s=O(n,"segmentIds","sparseSegmentMean");if(a.rank<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.rank!==1)throw new Error(`Indices should be Tensor1D but received shape
|
|
${r.shape}`);if(s.rank!==1)throw new Error(`Segment ids should be Tensor1D but received shape
|
|
${s.shape}`);let i={data:a,indices:r,segmentIds:s};return V.runKernel(f7,i)}var NV=U({sparseSegmentMean_:SV});function TV(e,t,n){let a=O(e,"data","sparseSegmentSum"),r=O(t,"indices","sparseSegmentSum"),s=O(n,"segmentIds","sparseSegmentSum");if(a.rank<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.rank!==1)throw new Error(`Indices should be Tensor1D but received shape
|
|
${r.shape}`);if(s.rank!==1)throw new Error(`Segment ids should be Tensor1D but received shape
|
|
${s.shape}`);let i={data:a,indices:r,segmentIds:s};return V.runKernel(m7,i)}var EV=U({sparseSegmentSum_:TV});function CV(e,t,n,a,r,s,i,o){let l=O(e,"data","stringNGrams","string");if(l.dtype!=="string")throw new Error("Data must be of datatype string");if(l.shape.length!==1)throw new Error(`Data must be a vector, saw: ${l.shape}`);let u=O(t,"dataSplits","stringNGrams");if(u.dtype!=="int32")throw new Error("Data splits must be of datatype int32");let d={separator:n,nGramWidths:a,leftPad:r,rightPad:s,padWidth:i,preserveShortSequences:o},h={data:l,dataSplits:u},p=V.runKernel(x7,h,d);return{nGrams:p[0],nGramsSplits:p[1]}}var MV=U({stringNGrams_:CV});function $V(e,t,n=!0){let a=O(e,"input","stringSplit","string"),r=O(t,"delimiter","stringSplit","string");if(a.rank!==1)throw new Error(`Input should be Tensor1D but received shape ${a.shape}`);if(r.rank!==0)throw new Error(`Delimiter should be a scalar but received shape ${r.shape}`);let s={skipEmpty:n},i={input:a,delimiter:r},o=V.runKernel(b7,i,s);return{indices:o[0],values:o[1],shape:o[2]}}var RV=U({stringSplit_:$V});function FV(e,t){let n=O(e,"input","stringToHashBucketFast","string"),a={numBuckets:t};if(t<=0)throw new Error("Number of buckets must be at least 1");let r={input:n};return V.runKernel(v7,r,a)}var OV=U({stringToHashBucketFast_:FV}),DV={fft:i1,ifft:Cc,rfft:o1,irfft:f6},_V={hammingWindow:pB,hannWindow:w6,frame:k6,stft:gB},Ye={flipLeftRight:bB,resizeNearestNeighbor:jB,resizeBilinear:VB,rotateWithOffset:wB,cropAndResize:AB,nonMaxSuppression:IB,nonMaxSuppressionAsync:RB,nonMaxSuppressionWithScore:OB,nonMaxSuppressionWithScoreAsync:_B,nonMaxSuppressionPadded:PB,nonMaxSuppressionPaddedAsync:WB,threshold:qB,transform:XB},zV={bandPart:YB,gramSchmidt:QB,qr:tV},PV={absoluteDifference:rV,computeWeightedLoss:as,cosineDistance:iV,hingeLoss:lV,huberLoss:dV,logLoss:pV,meanSquaredError:fV,sigmoidCrossEntropy:yV,softmaxCrossEntropy:bV},LV={sparseFillEmptyRows:wV,sparseReshape:IV,sparseSegmentMean:NV,sparseSegmentSum:EV},WV={stringNGrams:MV,stringSplit:RV,stringToHashBucketFast:OV},Rs=class extends Mk{minimize(e,t=!1,n){let{value:a,grads:r}=this.computeGradients(e,n);if(n!=null){let s=n.map(i=>({name:i.name,tensor:r[i.name]}));this.applyGradients(s)}else this.applyGradients(r);return Ve(r),t?a:(a.dispose(),null)}get iterations(){return this.iterations_==null&&(this.iterations_=0),this.iterations_}incrementIterations(){this.iterations_=this.iterations+1}computeGradients(e,t){return Qk(e,t)}dispose(){this.iterations_!=null&&Ve(this.iterations_)}async saveIterations(){return this.iterations_==null&&(this.iterations_=0),{name:"iter",tensor:dt(this.iterations_,"int32")}}async getWeights(){throw new Error("getWeights() is not implemented for this optimizer yet.")}async setWeights(e){throw new Error(`setWeights() is not implemented for this optimizer class ${this.getClassName()}`)}async extractIterations(e){return this.iterations_=(await e[0].tensor.data())[0],e.slice(1)}};Object.defineProperty(Rs,Symbol.hasInstance,{value:e=>e.minimize!=null&&e.computeGradients!=null&&e.applyGradients!=null});var Oc=class extends Rs{constructor(e,t,n=null){super();this.learningRate=e,this.rho=t,this.epsilon=n,this.accumulatedGrads=[],this.accumulatedUpdates=[],n==null&&(this.epsilon=V.backend.epsilon())}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=V.registeredVariables[t],r=!1;this.accumulatedGrads[n]==null&&(this.accumulatedGrads[n]={originalName:`${t}/accum_grad`,variable:Ue(()=>Na(a).variable(r))}),this.accumulatedUpdates[n]==null&&(this.accumulatedUpdates[n]={originalName:`${t}/accum_var`,variable:Ue(()=>Na(a).variable(r))});let s=Array.isArray(e)?e[n].tensor:e[t];if(s==null)return;let i=this.accumulatedGrads[n].variable,o=this.accumulatedUpdates[n].variable;Ue(()=>{let l=De(fe(i,this.rho),fe(tr(s),1-this.rho)),u=fe(Qe(ts(De(o,this.epsilon)),ts(De(i,this.epsilon))),s),d=De(fe(o,this.rho),fe(tr(u),1-this.rho));i.assign(l),o.assign(d);let h=De(fe(u,-this.learningRate),a);a.assign(h)})}),this.incrementIterations()}dispose(){this.accumulatedUpdates!=null&&(Ve(this.accumulatedGrads.map(e=>e.variable)),Ve(this.accumulatedUpdates.map(e=>e.variable)))}async getWeights(){let e=[...this.accumulatedGrads,...this.accumulatedUpdates];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=e.length/2,n=!1;this.accumulatedGrads=e.slice(0,t).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})),this.accumulatedUpdates=e.slice(t,t*2).map(a=>({originalName:a.name,variable:a.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,rho:this.rho,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.rho,t.epsilon)}};Oc.className="Adadelta";Cs(Oc);var Dc=class extends Rs{constructor(e,t=.1){super();this.learningRate=e,this.initialAccumulatorValue=t,this.accumulatedGrads=[]}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=V.registeredVariables[t];if(this.accumulatedGrads[n]==null){let i=!1;this.accumulatedGrads[n]={originalName:`${t}/accumulator`,variable:Ue(()=>wc(a.shape,this.initialAccumulatorValue).variable(i))}}let r=Array.isArray(e)?e[n].tensor:e[t];if(r==null)return;let s=this.accumulatedGrads[n].variable;Ue(()=>{let i=De(s,tr(r));s.assign(i);let o=De(fe(Qe(r,ts(De(i,V.backend.epsilon()))),-this.learningRate),a);a.assign(o)})}),this.incrementIterations()}dispose(){this.accumulatedGrads!=null&&Ve(this.accumulatedGrads.map(e=>e.variable))}async getWeights(){return[await this.saveIterations()].concat(this.accumulatedGrads.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulatedGrads=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,initialAccumulatorValue:this.initialAccumulatorValue}}static fromConfig(e,t){return new e(t.learningRate,t.initialAccumulatorValue)}};Dc.className="Adagrad";Cs(Dc);var _c=class extends Rs{constructor(e,t,n,a=null){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=a,this.accumulatedFirstMoment=[],this.accumulatedSecondMoment=[],Ue(()=>{this.accBeta1=dt(t).variable(),this.accBeta2=dt(n).variable()}),a==null&&(this.epsilon=V.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);Ue(()=>{let n=je(1,this.accBeta1),a=je(1,this.accBeta2);t.forEach((r,s)=>{let i=V.registeredVariables[r],o=!1;this.accumulatedFirstMoment[s]==null&&(this.accumulatedFirstMoment[s]={originalName:`${r}/m`,variable:Ue(()=>Na(i).variable(o))}),this.accumulatedSecondMoment[s]==null&&(this.accumulatedSecondMoment[s]={originalName:`${r}/v`,variable:Ue(()=>Na(i).variable(o))});let l=Array.isArray(e)?e[s].tensor:e[r];if(l==null)return;let u=this.accumulatedFirstMoment[s].variable,d=this.accumulatedSecondMoment[s].variable,h=De(fe(u,this.beta1),fe(l,1-this.beta1)),p=De(fe(d,this.beta2),fe(tr(l),1-this.beta2)),c=Qe(h,n),m=Qe(p,a);u.assign(h),d.assign(p);let f=De(fe(Qe(c,De(ts(m),this.epsilon)),-this.learningRate),i);i.assign(f)}),this.accBeta1.assign(fe(this.accBeta1,this.beta1)),this.accBeta2.assign(fe(this.accBeta2,this.beta2))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.accBeta2.dispose(),this.accumulatedFirstMoment!=null&&Ve(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedSecondMoment!=null&&Ve(this.accumulatedSecondMoment.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedFirstMoment,...this.accumulatedSecondMoment];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e),Ue(()=>{this.accBeta1.assign(pd(this.beta1,this.iterations_+1)),this.accBeta2.assign(pd(this.beta2,this.iterations_+1))});let t=e.length/2,n=!1;this.accumulatedFirstMoment=e.slice(0,t).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})),this.accumulatedSecondMoment=e.slice(t,t*2).map(a=>({originalName:a.name,variable:a.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon)}};_c.className="Adam";Cs(_c);var zc=class extends Rs{constructor(e,t,n,a=null,r=0){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=a,this.decay=r,this.accumulatedFirstMoment=[],this.accumulatedWeightedInfNorm=[],Ue(()=>{this.iteration=dt(0).variable(),this.accBeta1=dt(t).variable()}),a==null&&(this.epsilon=V.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);Ue(()=>{let n=je(1,this.accBeta1),a=Qe(-this.learningRate,De(fe(this.iteration,this.decay),1));t.forEach((r,s)=>{let i=V.registeredVariables[r],o=!1;this.accumulatedFirstMoment[s]==null&&(this.accumulatedFirstMoment[s]={originalName:`${r}/m`,variable:Na(i).variable(o)}),this.accumulatedWeightedInfNorm[s]==null&&(this.accumulatedWeightedInfNorm[s]={originalName:`${r}/v`,variable:Na(i).variable(o)});let l=Array.isArray(e)?e[s].tensor:e[r];if(l==null)return;let u=this.accumulatedFirstMoment[s].variable,d=this.accumulatedWeightedInfNorm[s].variable,h=De(fe(u,this.beta1),fe(l,1-this.beta1)),p=fe(d,this.beta2),c=Sa(l),m=i6(p,c);u.assign(h),d.assign(m);let f=De(fe(Qe(a,n),Qe(h,De(m,this.epsilon))),i);i.assign(f)}),this.iteration.assign(De(this.iteration,1)),this.accBeta1.assign(fe(this.accBeta1,this.beta1))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.iteration.dispose(),this.accumulatedFirstMoment!=null&&Ve(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedWeightedInfNorm!=null&&Ve(this.accumulatedWeightedInfNorm.map(e=>e.variable))}async getWeights(){throw new Error("getWeights() is not implemented for Adamax yet.")}async setWeights(e){throw new Error("setWeights() is not implemented for Adamax yet.")}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon,decay:this.decay}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon,t.decay)}};zc.className="Adamax";Cs(zc);var md=class extends Rs{constructor(e){super();this.learningRate=e,this.setLearningRate(e)}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=Array.isArray(e)?e[n].tensor:e[t];if(a==null)return;let r=V.registeredVariables[t];Ue(()=>{let s=De(fe(this.c,a),r);r.assign(s)})}),this.incrementIterations()}setLearningRate(e){this.learningRate=e,this.c!=null&&this.c.dispose(),this.c=Dk(dt(-e))}dispose(){this.c.dispose()}async getWeights(){return[await this.saveIterations()]}async setWeights(e){if(e=await this.extractIterations(e),e.length!==0)throw new Error("SGD optimizer does not have settable weights.")}getConfig(){return{learningRate:this.learningRate}}static fromConfig(e,t){return new e(t.learningRate)}};md.className="SGD";Cs(md);var Pc=class extends md{constructor(e,t,n=!1){super(e);this.learningRate=e,this.momentum=t,this.useNesterov=n,this.accumulations=[],this.m=dt(this.momentum)}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=V.registeredVariables[t];if(this.accumulations[n]==null){let i=!1;this.accumulations[n]={originalName:`${t}/momentum`,variable:Ue(()=>Na(a).variable(i))}}let r=this.accumulations[n].variable,s=Array.isArray(e)?e[n].tensor:e[t];s!=null&&Ue(()=>{let i,o=De(fe(this.m,r),s);this.useNesterov?i=De(fe(this.c,De(s,fe(o,this.m))),a):i=De(fe(this.c,o),a),r.assign(o),a.assign(i)})}),this.incrementIterations()}dispose(){this.m.dispose(),this.accumulations!=null&&Ve(this.accumulations.map(e=>e.variable))}setMomentum(e){this.momentum=e}async getWeights(){return[await this.saveIterations()].concat(this.accumulations.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulations=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,momentum:this.momentum,useNesterov:this.useNesterov}}static fromConfig(e,t){return new e(t.learningRate,t.momentum,t.useNesterov)}};Pc.className="Momentum";Cs(Pc);var Lc=class extends Rs{constructor(e,t=.9,n=0,a=null,r=!1){super();if(this.learningRate=e,this.decay=t,this.momentum=n,this.epsilon=a,this.accumulatedMeanSquares=[],this.accumulatedMoments=[],this.accumulatedMeanGrads=[],this.centered=r,a==null&&(this.epsilon=V.backend.epsilon()),e==null)throw new Error("learningRate for RMSPropOptimizer must be defined.")}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=V.registeredVariables[t],r=!1;this.accumulatedMeanSquares[n]==null&&(this.accumulatedMeanSquares[n]={originalName:`${t}/rms`,variable:Ue(()=>Na(a).variable(r))}),this.accumulatedMoments[n]==null&&(this.accumulatedMoments[n]={originalName:`${t}/momentum`,variable:Ue(()=>Na(a).variable(r))}),this.accumulatedMeanGrads[n]==null&&this.centered&&(this.accumulatedMeanGrads[n]={originalName:`${t}/mg`,variable:Ue(()=>Na(a).variable(r))});let s=Array.isArray(e)?e[n].tensor:e[t];if(s==null)return;let i=this.accumulatedMeanSquares[n].variable,o=this.accumulatedMoments[n].variable;Ue(()=>{let l=De(fe(i,this.decay),fe(tr(s),1-this.decay));if(this.centered){let u=this.accumulatedMeanGrads[n].variable,d=De(fe(u,this.decay),fe(s,1-this.decay)),h=Qe(fe(s,this.learningRate),ts(je(l,De(tr(d),this.epsilon)))),p=De(fe(o,this.momentum),h);i.assign(l),u.assign(d),o.assign(p);let c=je(a,p);a.assign(c)}else{let u=De(fe(i,this.decay),fe(tr(s),1-this.decay)),d=De(fe(o,this.momentum),Qe(fe(s,this.learningRate),ts(De(u,this.epsilon))));i.assign(u),o.assign(d);let h=je(a,d);a.assign(h)}})}),this.incrementIterations()}dispose(){this.accumulatedMeanSquares!=null&&Ve(this.accumulatedMeanSquares.map(e=>e.variable)),this.accumulatedMeanGrads!=null&&this.centered&&Ve(this.accumulatedMeanGrads.map(e=>e.variable)),this.accumulatedMoments!=null&&Ve(this.accumulatedMoments.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedMeanSquares,...this.accumulatedMoments];return this.centered&&e.push(...this.accumulatedMeanGrads),[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=this.centered?e.length/3:e.length/2,n=!1;this.accumulatedMeanSquares=e.slice(0,t).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})),this.accumulatedMoments=e.slice(t,t*2).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})),this.centered&&(this.accumulatedMeanGrads=e.slice(t*2,t*3).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})))}getConfig(){return{learningRate:this.learningRate,decay:this.decay,momentum:this.momentum,epsilon:this.epsilon,centered:this.centered}}static fromConfig(e,t){return new e(t.learningRate,t.decay,t.momentum,t.epsilon,t.centered)}};Lc.className="RMSProp";Cs(Lc);var Si=class{static sgd(e){return new md(e)}static momentum(e,t,n=!1){return new Pc(e,t,n)}static rmsprop(e,t=.9,n=0,a=null,r=!1){return new Lc(e,t,n,a,r)}static adam(e=.001,t=.9,n=.999,a=null){return new _c(e,t,n,a)}static adadelta(e=.001,t=.95,n=null){return new Oc(e,t,n)}static adamax(e=.002,t=.9,n=.999,a=null,r=0){return new zc(e,t,n,a,r)}static adagrad(e,t=.1){return new Dc(e,t)}},BV={sgd:Si.sgd,momentum:Si.momentum,adadelta:Si.adadelta,adagrad:Si.adagrad,rmsprop:Si.rmsprop,adamax:Si.adamax,adam:Si.adam},VV=(()=>typeof requestAnimationFrame!="undefined"?requestAnimationFrame:typeof setImmediate!="undefined"?setImmediate:e=>e())();function UV(){return new Promise(e=>VV(()=>e()))}var C6={};$e(C6,{ERF_A1:()=>nU,ERF_A2:()=>aU,ERF_A3:()=>rU,ERF_A4:()=>sU,ERF_A5:()=>iU,ERF_P:()=>tU,PARALLELIZE_THRESHOLD:()=>h1,SELU_SCALE:()=>eU,SELU_SCALEALPHA:()=>QV,applyActivation:()=>Rc,assertAndGetBroadcastShape:()=>In,assertAxesAreInnerMostDims:()=>fP,assertParamsConsistent:()=>jV,assignToTypedArray:()=>fU,axesAreInnerMostDims:()=>n1,calculateShapes:()=>Ak,checkEinsumDimSizes:()=>bU,combineLocations:()=>t6,complexWithEvenIndex:()=>hU,complexWithOddIndex:()=>pU,computeConv2DInfo:()=>id,computeConv3DInfo:()=>Pk,computeDefaultPad:()=>Zy,computeDilation2DInfo:()=>r_,computeOptimalWindowSize:()=>GV,computeOutAndReduceShapes:()=>cP,computeOutShape:()=>HV,computePool2DInfo:()=>zk,computePool3DInfo:()=>s_,convertConv2DDataFormat:()=>Lk,decodeEinsumEquation:()=>AU,eitherStridesOrDilationsAreOne:()=>Jr,expandShapeToKeepDim:()=>dd,exponent:()=>gU,exponents:()=>mU,fromStringArrayToUint8:()=>CU,fromUint8ToStringArray:()=>EU,getAxesPermutation:()=>mP,getBroadcastDims:()=>mz,getComplexWithIndex:()=>cU,getEinsumComputePath:()=>vU,getEinsumPermutation:()=>xU,getFusedBiasGradient:()=>$c,getFusedDyActivation:()=>Mc,getImageCenter:()=>qV,getInnerMostAxes:()=>yP,getPermuted:()=>XV,getReductionAxes:()=>jk,getReshaped:()=>KV,getReshapedPermuted:()=>ZV,getSliceBeginCoords:()=>YV,getSliceSize:()=>JV,getUndoAxesPermutation:()=>gP,isIdentityPermutation:()=>wU,log:()=>lU,mergeRealAndImagArrays:()=>uU,prepareAndValidate:()=>gk,prepareSplitSize:()=>IU,segment_util:()=>R6,shouldFuse:()=>Fc,slice_util:()=>Vy,splitRealAndImagArrays:()=>dU,tupleValuesAreOne:()=>od,upcastType:()=>dc,validateInput:()=>By,validateUpdateShape:()=>Wy,warn:()=>oU});function jV(e,t){let n=e[0].length;e.forEach((r,s)=>{L(r.length===n,()=>`Error in concat${n}D: rank of tensors[${s}] must be the same as the rank of the rest (${n})`)}),L(t>=0&&t<n,()=>`Error in concat${n}D: axis must be between 0 and ${n-1}.`);let a=e[0];e.forEach((r,s)=>{for(let i=0;i<n;i++)L(i===t||r[i]===a[i],()=>`Error in concat${n}D: Shape of tensors[${s}] (${r}) does not match the shape of the rest (${a}) along the non-concatenated axis ${s}.`)})}function HV(e,t){let n=e[0].slice();for(let a=1;a<e.length;a++)n[t]+=e[a][t];return n}var h1=30;function GV(e){return e<=h1?e:tc(e,Math.floor(Math.sqrt(e)))}function qV(e,t,n){let a=n*(typeof e=="number"?e:e[0]),r=t*(typeof e=="number"?e:e[1]);return[a,r]}function KV(e,t,n,a=!0){let r=[];if(a)r=r.concat(t.slice(0)),r.push(e[0]/n),r=r.concat(e.slice(1));else{r=r.concat(e[0]);let s=t.length;for(let i=0;i<s;++i)r=r.concat([e[i+1]/t[i],t[i]]);r=r.concat(e.slice(s+1))}return r}function XV(e,t,n=!0){let a=[];if(n){a.push(t);for(let r=t+1;r<e;++r)r<=2*t?(a.push(r),a.push(r-(t+1))):a.push(r)}else{let r=[],s=[];for(let i=1;i<e;++i)i>=t*2+1||i%2==1?s.push(i):r.push(i);a.push(...r),a.push(0),a.push(...s)}return a}function ZV(e,t,n,a=!0){let r=[];a?r.push(e[0]/n):r.push(e[0]*n);for(let s=1;s<e.length;++s)s<=t.length?a?r.push(t[s-1]*e[s]):r.push(e[s]/t[s-1]):r.push(e[s]);return r}function YV(e,t){let n=[0];for(let a=0;a<t;++a)n.push(e[a][0]);return n}function JV(e,t,n){let a=e.slice(0,1);for(let r=0;r<n;++r)a.push(e[r+1]-t[r][0]-t[r][1]);return a}var QV=1.7580993408473768,eU=1.0507009873554805,tU=.3275911,nU=.254829592,aU=-.284496736,rU=1.421413741,sU=-1.453152027,iU=1.061405429;function oU(...e){ht().getBool("IS_TEST")||console.warn(...e)}function lU(...e){ht().getBool("IS_TEST")||console.log(...e)}function uU(e,t){if(e.length!==t.length)throw new Error(`Cannot merge real and imag arrays of different lengths. real:${e.length}, imag: ${t.length}.`);let n=new Float32Array(e.length*2);for(let a=0;a<n.length;a+=2)n[a]=e[a/2],n[a+1]=t[a/2];return n}function dU(e){let t=new Float32Array(e.length/2),n=new Float32Array(e.length/2);for(let a=0;a<e.length;a+=2)t[a/2]=e[a],n[a/2]=e[a+1];return{real:t,imag:n}}function hU(e){let t=Math.ceil(e.length/4),n=new Float32Array(t),a=new Float32Array(t);for(let r=0;r<e.length;r+=4)n[Math.floor(r/4)]=e[r],a[Math.floor(r/4)]=e[r+1];return{real:n,imag:a}}function pU(e){let t=Math.floor(e.length/4),n=new Float32Array(t),a=new Float32Array(t);for(let r=2;r<e.length;r+=4)n[Math.floor(r/4)]=e[r],a[Math.floor(r/4)]=e[r+1];return{real:n,imag:a}}function cU(e,t){let n=e[t*2],a=e[t*2+1];return{real:n,imag:a}}function fU(e,t,n,a){e[a*2]=t,e[a*2+1]=n}function mU(e,t){let n=new Float32Array(e/2),a=new Float32Array(e/2);for(let r=0;r<Math.ceil(e/2);r++){let s=(t?2:-2)*Math.PI*(r/e);n[r]=Math.cos(s),a[r]=Math.sin(s)}return{real:n,imag:a}}function gU(e,t,n){let a=(n?2:-2)*Math.PI*(e/t),r=Math.cos(a),s=Math.sin(a);return{real:r,imag:s}}var p1="->",yU=/->/g,M6=",",$6="...";function AU(e,t){e=e.replace(/\s/g,"");let n=(e.length-e.replace(yU,"").length)/p1.length;if(n<1)throw new Error("Equations without an arrow are not supported.");if(n>1)throw new Error(`Equation must contain exactly one arrow ("${p1}").`);let[a,r]=e.split(p1);L(a.indexOf($6)===-1,()=>`The ellipsis notation ("${$6}") is not supported yet.`);let s=a.split(M6),i=s.length;if(t!==i)throw new Error(`Expected ${i} input tensors, received ${t}`);if(i>2)throw new Error("Support for more than 2 input tensors is not implemented yet.");let o=[];for(let p=0;p<r.length;++p){let c=r[p];if(!s.some(m=>m.indexOf(c)!==-1))throw new Error(`Output subscripts contain the label ${c} not present in the input subscripts.`);o.indexOf(c)===-1&&o.push(c)}for(let p=0;p<a.length;++p){let c=a[p];o.indexOf(c)===-1&&c!==M6&&o.push(c)}let l=new Array(s.length);for(let p=0;p<i;++p){if(new Set(s[p].split("")).size!==s[p].length)throw new Error(`Found duplicate axes in input component ${s[p]}. Support for duplicate axes in input is not implemented yet.`);l[p]=[];for(let c=0;c<s[p].length;++c)l[p].push(o.indexOf(s[p][c]))}let u=o.length,d=r.length,h=[];for(let p=d;p<u;++p)h.push(p);return{allDims:o,summedDims:h,idDims:l}}function xU(e,t){let n=new Array(e);n.fill(-1);for(let r=0;r<t.length;++r)n[t[r]]=r;let a=[];for(let r=0;r<e;++r)n[r]===-1&&a.push(r);return n=n.filter(r=>r!==-1),{permutationIndices:n,expandDims:a}}function bU(e,t,n){let a=new Array(e);for(let r=0;r<n.length;++r){let s=n[r].shape;for(let i=0;i<t[r].length;++i)a[t[r][i]]===void 0?a[t[r][i]]=s[i]:L(a[t[r][i]]===s[i],()=>`Expected dimension ${a[t[r][i]]} at axis ${i} of input shaped ${JSON.stringify(s)}, but got dimension ${s[i]}`)}}function vU(e,t){let n=e,a=[],r=0;e.length===0&&n.push(-1),r=e.length+1;for(let i=0;i<r;++i)a.push([]);let s=[];for(let i=0;i<n.length;++i){let o=n[i],l=kU(t,o);for(let u of l)s.indexOf(u)===-1&&(a[i].push(u),s.push(u))}return{path:n,steps:a}}function wU(e){return e.every((t,n)=>t===n)}function kU(e,t){let n=[];for(let a=0;a<e.length;++a)(e[a].length===0||e[a].indexOf(t)!==-1||t===-1)&&n.push(a);return n}function IU(e,t,n=0){let a=[];if(typeof t=="number")L(e.shape[n]%t==0,()=>"Number of splits must evenly divide the axis."),a=new Array(t).fill(e.shape[n]/t);else{let r=t.reduce((i,o)=>(o===-1&&(i+=1),i),0);L(r<=1,()=>"There should be only one negative value in split array.");let s=t.indexOf(-1);if(s!==-1){let i=t.reduce((o,l)=>l>0?o+l:o);t[s]=e.shape[n]-i}L(e.shape[n]===t.reduce((i,o)=>i+o),()=>"The sum of sizes must match the size of the axis dimension."),a=t}return a}var R6={};$e(R6,{collectGatherOpShapeInfo:()=>TU,computeOutShape:()=>NU,segOpComputeOptimalWindowSize:()=>SU});function SU(e,t){let n=!1,a;for(e<=h1?(a=e,n=!0):a=tc(e,Math.floor(Math.sqrt(e)));!n;)a>t||a===e?n=!0:a=tc(e,a+1);return a}function NU(e,t,n){let a=[],r=e.length;for(let s=0;s<r;s++)s!==t?a.push(e[s]):a.push(n);return a}function TU(e,t,n,a){let r=t.shape.length,s=e.shape.length;if(a!==0&&(a<-r||a>r))throw new Error(`Expect batchDims in the range of [-${r}, ${r}], but got ${a}`);if(a<0&&(a+=r),a>s)throw new Error(`batchDims (${a}) must be less than rank(x) (
|
|
${s}).`);if(n<a)throw new Error(`batchDims (${a}) must be less than or equal to axis (${n}).`);for(let h=0;h<a;++h)if(e.shape[h]!==t.shape[h])throw new Error(`x.shape[${h}]: ${e.shape[h]} should be equal to indices.shape[${h}]: ${t.shape[h]}.`);let i=e.shape[n],o=[],l=1,u=1,d=1;for(let h=0;h<a;++h)o.push(e.shape[h]),l*=e.shape[h];for(let h=a;h<n;h++)o.push(e.shape[h]),u*=e.shape[h];for(let h=a;h<r;h++)o.push(t.shape[h]);for(let h=n+1;h<s;h++)o.push(e.shape[h]),d*=e.shape[h];return{batchSize:l,sliceSize:d,outerSize:u,dimSize:i,outputShape:o}}function EU(e){try{return e.map(t=>oc(t))}catch(t){throw new Error(`Failed to decode encoded string bytes into utf-8, error: ${t}`)}}function CU(e){return e.map(t=>Qu(t))}var F6={};$e(F6,{nonMaxSuppressionV3Impl:()=>I6,nonMaxSuppressionV4Impl:()=>S6,nonMaxSuppressionV5Impl:()=>N6,whereImpl:()=>y6});var MU=1e-7,$U=1e-4,c1=class{constructor(e,t){this.backend=e,this.dataMover=t,this.data=new WeakMap,this.dataIdsCount=0}get(e){return this.data.has(e)||this.dataMover.moveData(this.backend,e),this.data.get(e)}set(e,t){this.dataIdsCount++,this.data.set(e,t)}has(e){return this.data.has(e)}delete(e){return this.dataIdsCount--,this.data.delete(e)}numDataIds(){return this.dataIdsCount}},Wc=class{refCount(e){return ja("refCount")}incRef(e){return ja("incRef")}timerAvailable(){return!0}time(e){return ja("time")}read(e){return ja("read")}readSync(e){return ja("readSync")}numDataIds(){return ja("numDataIds")}disposeData(e,t){return ja("disposeData")}write(e,t,n){return ja("write")}move(e,t,n,a,r){return ja("move")}memory(){return ja("memory")}floatPrecision(){return ja("floatPrecision")}epsilon(){return this.floatPrecision()===32?MU:$U}dispose(){return ja("dispose")}};function ja(e){throw new Error(`'${e}' not yet implemented or not found in the registry. This kernel may not be supported by the tfjs backend you have chosen`)}function O6(e){let t=e.length,n=0,a=0;for(;t>0;)a=Math.random()*t|0,t--,n=e[t],e[t]=e[a],e[a]=n}function RU(e,t){if(e.length!==t.length)throw new Error(`Array sizes must match to be shuffled together First array length was ${e.length}Second array length was ${t.length}`);let n=e.length,a,r,s=0;for(;n>0;)s=Math.random()*n|0,n--,a=e[n],r=t[n],e[n]=e[s],t[n]=t[s],e[s]=a,t[s]=r}function gd(e,t,n){return Math.max(e,Math.min(t,n))}function FU(e){return e%2==0?e:e+1}function OU(e){let t=0;for(let n=0;n<e.length;n++)t+=e[n];return t}function DU(e,t){let n=Math.random();return t*n+(1-n)*e}function _U(e,t){let n=0;for(let a=0;a<e.length;a++){let r=Number(e[a])-Number(t[a]);n+=r*r}return n}function P(e,t){if(!e)throw new Error(typeof t=="string"?t:t())}function nr(e,t,n=""){P(Fs(e,t),()=>n+` Shapes ${e} and ${t} must match`)}function Bc(e){P(e!=null,()=>"The input to the tensor constructor must be a non-null value.")}function yd(e,t=[],n=!1){if(t==null&&(t=[]),Array.isArray(e)||ar(e)&&!n)for(let a=0;a<e.length;++a)yd(e[a],t,n);else t.push(e);return t}function on(e){if(e.length===0)return 1;let t=e[0];for(let n=1;n<e.length;n++)t*=e[n];return t}function zU(e){return e.length===0}function Fs(e,t){if(e===t)return!0;if(e==null||t==null||e.length!==t.length)return!1;for(let n=0;n<e.length;n++)if(e[n]!==t[n])return!1;return!0}function mn(e){return e%1==0}function PU(e){if(Math.tanh!=null)return Math.tanh(e);if(e===Infinity)return 1;if(e===-Infinity)return-1;{let t=Math.exp(2*e);return(t-1)/(t+1)}}function LU(e){let t=Math.ceil(Math.sqrt(e));return[t,Math.ceil(e/t)]}function WU(e){let t=new Uint32Array(e);for(let n=0;n<e;++n)t[n]=n;return O6(t),t}function Ad(e,t){return t<=e.length?e:e+" ".repeat(t-e.length)}function BU(e,t=a=>0,n){return new Promise((a,r)=>{let s=0,i=()=>{if(e()){a();return}s++;let o=t(s);if(n!=null&&s>=n){r();return}setTimeout(i,o)};i()})}function VU(e,t){let n=1,a=-1;for(let s=0;s<e.length;++s)if(e[s]>=0)n*=e[s];else if(e[s]===-1){if(a!==-1)throw Error(`Shapes can only have 1 implicit size. Found -1 at dim ${a} and dim ${s}`);a=s}else if(e[s]<0)throw Error(`Shapes can not be < 0. Found ${e[s]} at dim ${s}`);if(a===-1){if(t>0&&t!==n)throw Error(`Size(${t}) must match the product of shape ${e}`);return e}if(n===0)throw Error(`Cannot infer the missing size in [${e}] when there are 0 elements`);if(t%n!=0)throw Error(`The implicit shape can't be a fractional number. Got ${t} / ${n}`);let r=e.slice();return r[a]=t/n,r}function Ha(e,t){let n=t.length;return e=e==null?t.map((a,r)=>r):[].concat(e),P(e.every(a=>a>=-n&&a<n),()=>`All values in axis param must be in range [-${n}, ${n}) but got axis ${e}`),P(e.every(a=>mn(a)),()=>`All values in axis param must be integers but got axis ${e}`),e.map(a=>a<0?n+a:a)}function D6(e,t){let n=[],a=[],r=t!=null&&Array.isArray(t)&&t.length===0,s=t==null||r?null:Ha(t,e).sort(),i=0;for(let o=0;o<e.length;++o){if(s!=null){if(s[i]===o&&e[o]!==1)throw new Error(`Can't squeeze axis ${o} since its dim '${e[o]}' is not 1`);(s[i]==null||s[i]>o)&&e[o]===1&&(n.push(e[o]),a.push(o)),s[i]<=o&&i++}e[o]!==1&&(n.push(e[o]),a.push(o))}return{newShape:n,keptDims:a}}function UU(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else throw new Error(`Unknown data type ${e}`);return n}function _6(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else if(e==="string")n=new Array(t);else throw new Error(`Unknown data type ${e}`);return n}function z6(e,t){for(let n=0;n<e.length;n++){let a=e[n];if(isNaN(a)||!isFinite(a))throw Error(`A tensor of type ${t} being uploaded contains ${a}.`)}}function P6(e){return e==="bool"||e==="complex64"||e==="float32"||e==="int32"||e==="string"}function jU(e,t){return!(t==="complex64"||t==="float32"&&e!=="complex64"||t==="int32"&&e!=="float32"&&e!=="complex64"||t==="bool"&&e==="bool")}function ar(e){return e instanceof Float32Array||e instanceof Int32Array||e instanceof Uint8Array}function f1(e){if(e==="float32"||e==="int32")return 4;if(e==="complex64")return 8;if(e==="bool")return 1;throw new Error(`Unknown dtype ${e}`)}function L6(e){if(e==null)return 0;let t=0;return e.forEach(n=>t+=n.length),t}function Vc(e){return typeof e=="string"||e instanceof String}function W6(e){return typeof e=="boolean"}function B6(e){return typeof e=="number"}function Uc(e){return Array.isArray(e)?Uc(e[0]):e instanceof Float32Array?"float32":e instanceof Int32Array||e instanceof Uint8Array?"int32":B6(e)?"float32":Vc(e)?"string":W6(e)?"bool":"float32"}function jc(e){return!!(e&&e.constructor&&e.call&&e.apply)}function Hc(e,t){for(let n=t;n<e;++n)if(e%n==0)return n;return e}function Ko(e){let t=e.length;if(t<2)return[];let n=new Array(t-1);n[t-2]=e[t-1];for(let a=t-3;a>=0;--a)n[a]=n[a+1]*e[a+1];return n}function V6(e,t,n,a=!1){let r=new Array;if(t.length===1){let s=t[0]*(a?2:1);for(let i=0;i<s;i++)r[i]=n[e+i]}else{let s=t[0],i=t.slice(1),o=i.reduce((l,u)=>l*u)*(a?2:1);for(let l=0;l<s;l++)r[l]=V6(e+l*o,i,n,a)}return r}function Xo(e,t,n=!1){if(e.length===0)return t[0];let a=e.reduce((r,s)=>r*s)*(n?2:1);if(a===0)return[];if(a!==t.length)throw new Error(`[${e}] does not match the input size ${t.length}${n?" for a complex tensor":""}.`);return V6(0,e,t,n)}function m1(e,t){let n=Gc(e,t);for(let a=0;a<n.length;a++)n[a]=1;return n}function Gc(e,t){if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool")return new Uint8Array(e);throw new Error(`Unknown data type ${t}`)}function HU(e,t){let n=e.reduce((a,r)=>a*r,1);if(t==null||t==="float32")return Xo(e,new Float32Array(n));if(t==="int32")return Xo(e,new Int32Array(n));if(t==="bool")return Xo(e,new Uint8Array(n));throw new Error(`Unknown data type ${t}`)}function g1(e){e.forEach(t=>{P(Number.isInteger(t)&&t>=0,()=>`Tensor must have a shape comprised of positive integers but got shape [${e}].`)})}function GU(e,t,n){if(t===0)return 0;if(t===1)return e[0];let a=e[e.length-1];for(let r=0;r<e.length-1;++r)a+=n[r]*e[r];return a}function qU(e,t,n){if(t===0)return[];if(t===1)return[e];let a=new Array(t);for(let r=0;r<a.length-1;++r)a[r]=Math.floor(e/n[r]),e-=a[r]*n[r];return a[a.length-1]=e,a}function y1(e){return e&&e.then&&typeof e.then=="function"}var U6="tfjsflags",KU=class{constructor(e){this.global=e,this.flags={},this.flagRegistry={},this.urlFlags={},this.getQueryParams=XU,this.populateURLFlags()}setPlatform(e,t){this.platform!=null&&console.warn(`Platform ${this.platformName} has already been set. Overwriting the platform with ${t}.`),this.platformName=e,this.platform=t}registerFlag(e,t,n){if(this.flagRegistry[e]={evaluationFn:t,setHook:n},this.urlFlags[e]!=null){let a=this.urlFlags[e];console.warn(`Setting feature override from URL ${e}: ${a}.`),this.set(e,a)}}async getAsync(e){return e in this.flags?this.flags[e]:(this.flags[e]=await this.evaluateFlag(e),this.flags[e])}get(e){if(e in this.flags)return this.flags[e];let t=this.evaluateFlag(e);if(y1(t))throw new Error(`Flag ${e} cannot be synchronously evaluated. Please use getAsync() instead.`);return this.flags[e]=t,this.flags[e]}getNumber(e){return this.get(e)}getBool(e){return this.get(e)}getFlags(){return this.flags}get features(){return this.flags}set(e,t){if(this.flagRegistry[e]==null)throw new Error(`Cannot set flag ${e} as it has not been registered.`);this.flags[e]=t,this.flagRegistry[e].setHook!=null&&this.flagRegistry[e].setHook(t)}evaluateFlag(e){if(this.flagRegistry[e]==null)throw new Error(`Cannot evaluate flag '${e}': no evaluation function found.`);return this.flagRegistry[e].evaluationFn()}setFlags(e){this.flags=Object.assign({},e)}reset(){this.flags={},this.urlFlags={},this.populateURLFlags()}populateURLFlags(){if(typeof this.global=="undefined"||typeof this.global.location=="undefined"||typeof this.global.location.search=="undefined")return;let e=this.getQueryParams(this.global.location.search);U6 in e&&e[U6].split(",").forEach(t=>{let[n,a]=t.split(":");this.urlFlags[n]=YU(n,a)})}};function XU(e){let t={};return e.replace(/[?&]([^=?&]+)(?:=([^&]*))?/g,(n,...a)=>(ZU(t,a[0],a[1]),a.join("="))),t}function ZU(e,t,n){e[decodeURIComponent(t)]=decodeURIComponent(n||"")}function YU(e,t){if(t=t.toLowerCase(),t==="true"||t==="false")return t==="true";if(`${+t}`===t)return+t;throw new Error(`Could not parse value flag value ${t} for flag ${e}.`)}function se(){return j6}var j6=null;function JU(e){j6=e}var A1;function H6(){if(A1==null){let e;if(typeof window!="undefined")e=window;else if(typeof global!="undefined")e=global;else if(typeof process!="undefined")e=process;else if(typeof self!="undefined")e=self;else throw new Error("Could not find a global object");A1=e}return A1}function QU(){let e=H6();return e._tfGlobals==null&&(e._tfGlobals=new Map),e._tfGlobals}function x1(e,t){let n=QU();if(n.has(e))return n.get(e);{let a=t();return n.set(e,a),n.get(e)}}var xd="Abs",bd="Acos",vd="Acosh",Os="Add",Zo="AddN",wd="All",kd="Any",Yo="ArgMax",qc="ArgMin",Id="Asin",Sd="Asinh",Nd="Atan",Td="Atanh",Ed="Atan2",Jo="AvgPool",b1="AvgPoolGrad",Kc="AvgPool3D",v1="AvgPool3DGrad",Qo="BatchMatMul",Xc="BatchToSpaceND",w1="Bincount",ej="BroadcastTo",el="Cast",Ni="Ceil",Ti="ClipByValue",k1="Complex",Zc="ComplexAbs",Cd="Concat",tl="Conv2D",I1="Conv2DBackpropFilter",nl="Conv2DBackpropInput",Yc="Conv3D",S1="Conv3DBackpropFilterV2",N1="Conv3DBackpropInputV2",al="Cos",Md="Cosh",rl="Cumsum",$d="CropAndResize",T1="DenseBincount",Rd="DepthToSpace",sl="DepthwiseConv2dNative",E1="DepthwiseConv2dNativeBackpropFilter",C1="DepthwiseConv2dNativeBackpropInput",M1="Diag",Jc="Dilation2D",$1="Dilation2DBackpropInput",R1="Dilation2DBackpropFilter",il="RealDiv",F1="Einsum",Fd="Elu",O1="EluGrad",Od="Erf",ol="Equal",Ei="Exp",Dd="ExpandDims",ll="Expm1",D1="FFT",Qc="Fill",_d="FlipLeftRight",Ci="Floor",ul="FloorDiv",dl="FusedBatchNorm",zd="GatherV2",Pd="GatherNd",hl="Greater",Mi="GreaterEqual",pl="Identity",_1="IFFT",z1="Imag",Ld="IsFinite",Wd="IsInf",Bd="IsNan",cl="LeakyRelu",fl="Less",ml="LessEqual",P1="LinSpace",$i="Log",Vd="Log1p",Ud="LogicalAnd",ef="LogicalNot",tf="LogicalOr",tj="LogSoftmax",nf="LRN",L1="LRNGrad",gl="Max",Ri="Maximum",yl="MaxPool",W1="MaxPoolGrad",af="MaxPool3D",B1="MaxPool3DGrad",V1="MaxPoolWithArgmax",Al="Mean",xl="Min",Fi="Minimum",bl="MirrorPad",jd="Mod",U1="Multinomial",Oi="Multiply",Hd="Neg",vl="NotEqual",Gd="NonMaxSuppressionV3",qd="NonMaxSuppressionV4",Kd="NonMaxSuppressionV5",Xd="OnesLike",wl="OneHot",Zd="Pack",kl="PadV2",Il="Pow",Sl="Prelu",Yd="Prod",rf="Range",j1="Real",Jd="Reciprocal",Nl="Relu",Qd="Reshape",sf="ResizeNearestNeighbor",H1="ResizeNearestNeighborGrad",Tl="ResizeBilinear",G1="ResizeBilinearGrad",El="Relu6",Cl="Reverse",Ml="Round",Di="Rsqrt",eh="ScatterNd",th="Select",nh="Selu",ah="Slice",$l="Sin",rh="Sinh",sh="Sign",Rl="Sigmoid",ih="Softplus",Fl="Sqrt",Ol="Sum",of="SpaceToBatchND",oh="SplitV",Dl="Softmax",q1="SparseFillEmptyRows",K1="SparseReshape",X1="SparseSegmentMean",Z1="SparseSegmentSum",Y1="SparseToDense",_i="SquaredDifference",lf="Square",lh="StridedSlice",J1="StringNGrams",Q1="StringSplit",eA="StringToHashBucketFast",zi="Sub",_l="Tan",zl="Tanh",Pi="Tile",uh="TopK",dh="Transform",Pl="Transpose",tA="Unique",hh="Unpack",uf="UnsortedSegmentSum",ph="ZerosLike",Li="Step",nA="FromPixels",ch="RotateWithOffset",Ll="_FusedMatMul",Wl="FusedConv2D",Bl="FusedDepthwiseConv2D",df=x1("kernelRegistry",()=>new Map),aA=x1("gradRegistry",()=>new Map);function rA(e,t){let n=K6(e,t);return df.get(n)}function G6(e){return aA.get(e)}function q6(e){let t=df.entries(),n=[];for(;;){let{done:a,value:r}=t.next();if(a)break;let[s,i]=r,[o]=s.split("_");o===e&&n.push(i)}return n}function sA(e){let{kernelName:t,backendName:n}=e,a=K6(t,n);df.has(a)&&console.warn(`The kernel '${t}' for backend '${n}' is already registered`),df.set(a,e)}function nj(e){let{kernelName:t}=e;aA.has(t)&&se().getBool("DEBUG")&&console.warn(`Overriding the gradient for '${t}'`),aA.set(t,e)}function K6(e,t){return`${t}_${e}`}var k={};$e(k,{arraysEqual:()=>Fs,assert:()=>P,assertNonNegativeIntegerDimensions:()=>g1,assertNonNull:()=>Bc,assertShapesMatch:()=>nr,bytesFromStringArray:()=>L6,bytesPerElement:()=>f1,checkConversionForErrors:()=>z6,clamp:()=>gd,computeStrides:()=>Ko,createScalarValue:()=>lj,createShuffledIndices:()=>WU,decodeString:()=>ff,distSquared:()=>_U,encodeString:()=>cf,fetch:()=>dj,fingerPrint64:()=>oj,flatten:()=>yd,getArrayFromDType:()=>_6,getTypedArrayFromDType:()=>UU,hasEncodingLoss:()=>jU,hexToLong:()=>fh,indexToLoc:()=>qU,inferDtype:()=>Uc,inferFromImplicitShape:()=>VU,isBoolean:()=>W6,isFunction:()=>jc,isInt:()=>mn,isNumber:()=>B6,isPromise:()=>y1,isScalarShape:()=>zU,isString:()=>Vc,isTypedArray:()=>ar,isValidDtype:()=>P6,locToIndex:()=>GU,makeOnesTypedArray:()=>m1,makeZerosNestedTypedArray:()=>HU,makeZerosTypedArray:()=>Gc,nearestDivisor:()=>Hc,nearestLargerEven:()=>FU,now:()=>mh,parseAxisParam:()=>Ha,randUniform:()=>DU,repeatedTry:()=>BU,rightPad:()=>Ad,shuffle:()=>O6,shuffleCombo:()=>RU,sizeFromShape:()=>on,sizeToSquarishShape:()=>LU,squeezeShape:()=>D6,sum:()=>OU,tanh:()=>PU,toNestedArray:()=>Xo,toTypedArray:()=>pf});var X6=qr(D3()),Wi=X6.default||X6;function fh(e){return Wi.fromString(e,!0,16)}var Z6=fh("c3a5c85c97cb3127"),Bi=fh("b492b66fbe98f273"),zn=fh("9ae16a3b2f90404f");function iA(e){return e.xor(e.shru(47))}function Y6(e,t,n){let a=e.slice(t,t+n);return Wi.fromBytes(Array.from(a),!0,!0)}function Nt(e,t){return Y6(e,t,8)}function J6(e,t){return Y6(e,t,4)}function gn(e,t){return t===0?e:e.shru(t).or(e.shl(64-t))}function Ds(e,t,n=fh("9ddfea08eb382d69")){let a=e.xor(t).mul(n);a=a.xor(a.shru(47));let r=t.xor(a).mul(n);return r=r.xor(r.shru(47)),r=r.mul(n),r}function aj(e,t,n,a,r,s){r=r.add(e),s=gn(s.add(r).add(a),21);let i=r;return r=r.add(t),r=r.add(n),s=s.add(gn(r,44)),[r.add(a),s.add(i)]}function hf(e,t,n,a){return aj(Nt(e,t),Nt(e,t+8),Nt(e,t+16),Nt(e,t+24),n,a)}function rj(e,t=e.length){if(t>=8){let n=zn.add(t*2),a=Nt(e,0).add(zn),r=Nt(e,t-8),s=gn(r,37).mul(n).add(a),i=gn(a,25).add(r).mul(n);return Ds(s,i,n)}if(t>=4){let n=zn.add(t*2),a=J6(e,0);return Ds(a.shl(3).add(t),J6(e,t-4),n)}if(t>0){let n=e[0],a=e[t>>1],r=e[t-1],s=n+(a<<8),i=t+(r<<2);return iA(zn.mul(s).xor(Z6.mul(i))).mul(zn)}return zn}function sj(e,t=e.length){let n=zn.add(t*2),a=Nt(e,0).mul(Bi),r=Nt(e,8),s=Nt(e,t-8).mul(n),i=Nt(e,t-16).mul(zn);return Ds(gn(a.add(r),43).add(gn(s,30)).add(i),a.add(gn(r.add(zn),18)).add(s),n)}function ij(e,t=e.length){let n=zn.add(t*2),a=Nt(e,0).mul(zn),r=Nt(e,8),s=Nt(e,t-8).mul(n),i=Nt(e,t-16).mul(zn),o=gn(a.add(r),43).add(gn(s,30)).add(i),l=Ds(o,a.add(gn(r.add(zn),18)).add(s),n),u=Nt(e,16).mul(n),d=Nt(e,24),h=o.add(Nt(e,t-32)).mul(n),p=l.add(Nt(e,t-24)).mul(n);return Ds(gn(u.add(d),43).add(gn(h,30)).add(p),u.add(gn(d.add(a),18)).add(h),n)}function oj(e,t=e.length){let n=Wi.fromNumber(81,!0);if(t<=32)return t<=16?rj(e,t):sj(e,t);if(t<=64)return ij(e,t);let a=n,r=n.mul(Bi).add(113),s=iA(r.mul(zn).add(113)).mul(zn),i=[Wi.UZERO,Wi.UZERO],o=[Wi.UZERO,Wi.UZERO];a=a.mul(zn).add(Nt(e,0));let l=0,u=(t-1>>6)*64,d=u+(t-1&63)-63;do a=gn(a.add(r).add(i[0]).add(Nt(e,l+8)),37).mul(Bi),r=gn(r.add(i[1]).add(Nt(e,l+48)),42).mul(Bi),a=a.xor(o[1]),r=r.add(i[0]).add(Nt(e,l+40)),s=gn(s.add(o[0]),33).mul(Bi),i=hf(e,l,i[1].mul(Bi),a.add(o[0])),o=hf(e,l+32,s.add(o[1]),r.add(Nt(e,l+16))),[s,a]=[a,s],l+=64;while(l!==u);let h=Bi.add(s.and(255).shl(1));return l=d,o[0]=o[0].add(t-1&63),i[0]=i[0].add(o[0]),o[0]=o[0].add(i[0]),a=gn(a.add(r).add(i[0]).add(Nt(e,l+8)),37).mul(h),r=gn(r.add(i[1]).add(Nt(e,l+48)),42).mul(h),a=a.xor(o[1].mul(9)),r=r.add(i[0].mul(9).add(Nt(e,l+40))),s=gn(s.add(o[0]),33).mul(h),i=hf(e,l,i[1].mul(h),a.add(o[0])),o=hf(e,l+32,s.add(o[1]),r.add(Nt(e,l+16))),[s,a]=[a,s],Ds(Ds(i[0],o[0],h).add(iA(r).mul(Z6)).add(s),Ds(i[1],o[1],h).add(a),h)}function lj(e,t){return t==="string"?cf(e):pf([e],t)}function uj(e,t){return e instanceof Float32Array&&t==="float32"||e instanceof Int32Array&&t==="int32"||e instanceof Uint8Array&&t==="bool"}function pf(e,t){if(t==="string")throw new Error("Cannot convert a string[] to a TypedArray");if(Array.isArray(e)&&(e=yd(e)),se().getBool("DEBUG")&&z6(e,t),uj(e,t))return e;if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool"){let n=new Uint8Array(e.length);for(let a=0;a<n.length;++a)Math.round(e[a])!==0&&(n[a]=1);return n}else throw new Error(`Unknown data type ${t}`)}function mh(){return se().platform.now()}function dj(e,t){return se().platform.fetch(e,t)}function cf(e,t="utf-8"){return t=t||"utf-8",se().platform.encode(e,t)}function ff(e,t="utf-8"){return t=t||"utf-8",se().platform.decode(e,t)}var hj=class{constructor(e,t){this.backendTimer=e,this.logger=t,t==null&&(this.logger=new cj)}profileKernel(e,t,n){let a,r=()=>{a=n()},s,i=mh();if(this.backendTimer.timerAvailable())s=this.backendTimer.time(r);else{r();for(let o of a)o.dataSync();s=Promise.resolve({kernelMs:mh()-i})}if(se().getBool("CHECK_COMPUTATION_FOR_ERRORS"))for(let o=0;o<a.length;o++){let l=a[o];l.data().then(u=>{pj(u,l.dtype,e)})}return{kernelName:e,outputs:a,inputs:t,timeMs:s.then(o=>o.kernelMs),extraInfo:s.then(o=>o.getExtraProfileInfo!=null?o.getExtraProfileInfo():"")}}logKernelProfile(e){let{kernelName:t,outputs:n,timeMs:a,inputs:r,extraInfo:s}=e;n.forEach(i=>{Promise.all([i.data(),a,s]).then(o=>{this.logger.logKernelProfile(t,i,o[0],o[1],r,o[2])})})}};function pj(e,t,n){if(t!=="float32")return!1;for(let a=0;a<e.length;a++){let r=e[a];if(isNaN(r)||!isFinite(r))return console.warn(`Found ${r} in the result of '${n}'`),!0}return!1}var cj=class{logKernelProfile(e,t,n,a,r,s){let i=typeof a=="number"?Ad(`${a}ms`,9):a.error,o=Ad(e,25),l=t.rank,u=t.size,d=Ad(t.shape.toString(),14),h="";for(let p in r){let c=r[p];if(c!=null){let m=c.shape||t.shape,f=m.length;h+=`${p}: ${f}D ${f>0?m:""} `}}console.log(`%c${o} %c${i} %c${l}D ${d} %c${u} %c${h} %c${s}`,"font-weight:bold","color:red","color:blue","color: orange","color: green","color: steelblue")}};function fj(e,t,n){let a={},r={};for(let l=0;l<t.length;l++)a[t[l].id]=!0;for(let l=0;l<e.length;l++){let u=e[l],d=u.inputs;for(let h in d){let p=d[h],c=!1;for(let m=0;m<t.length;m++)if(a[p.id]){u.outputs.forEach(f=>a[f.id]=!0),c=!0,r[u.id]=!0;break}if(c)break}}let s={};s[n.id]=!0;let i={};for(let l=e.length-1;l>=0;l--){let u=e[l],d=u.inputs;for(let h=0;h<u.outputs.length;h++)if(s[u.outputs[h].id]){for(let p in d)s[d[p].id]=!0,i[u.id]=!0;break}}let o=[];for(let l=0;l<e.length;l++){let u=e[l];if(r[u.id]&&i[u.id]){let d={};for(let p in u.inputs){let c=u.inputs[p];a[c.id]&&(d[p]=c)}let h=Object.assign({},u);h.inputs=d,h.outputs=u.outputs,o.push(h)}}return o}function mj(e,t,n,a){for(let r=t.length-1;r>=0;r--){let s=t[r],i=[];if(s.outputs.forEach(l=>{let u=e[l.id];u!=null?i.push(u):i.push(null)}),s.gradient==null)throw new Error(`Cannot compute gradient: gradient function not found for ${s.kernelName}.`);let o=s.gradient(i);for(let l in s.inputs){if(!(l in o))throw new Error(`Cannot backprop through input ${l}. Available gradients found: ${Object.keys(o)}.`);let u=n(()=>o[l]());if(u.dtype!=="float32")throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input ${l} must have 'float32' dtype, but has '${u.dtype}'`);let d=s.inputs[l];if(!Fs(u.shape,d.shape))throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input '${l}' has shape '${u.shape}', which does not match the shape of the input '${d.shape}'`);if(e[d.id]==null)e[d.id]=u;else{let h=e[d.id];e[d.id]=a(h,u),h.dispose()}}}}var Q6=20,gh=3,oA=7;function gj(e,t,n,a){let r=Ko(t),s=yj(e,t,n,r),i=t.length,o=mf(e,t,n,r,s),l=["Tensor"];return a&&(l.push(` dtype: ${n}`),l.push(` rank: ${i}`),l.push(` shape: [${t}]`),l.push(" values:")),l.push(o.map(u=>" "+u).join(`
|
|
`)),l.join(`
|
|
`)}function yj(e,t,n,a){let r=on(t),s=a[a.length-1],i=new Array(s).fill(0),o=t.length,l=n==="complex64"?Ah(e):e;if(o>1)for(let u=0;u<r/s;u++){let d=u*s;for(let h=0;h<s;h++)i[h]=Math.max(i[h],yh(l[d+h],0,n).length)}return i}function yh(e,t,n){let a;return Array.isArray(e)?a=`${parseFloat(e[0].toFixed(oA))} + ${parseFloat(e[1].toFixed(oA))}j`:Vc(e)?a=`'${e}'`:n==="bool"?a=e4(e):a=parseFloat(e.toFixed(oA)).toString(),Ad(a,t)}function e4(e){return e===0?"false":"true"}function mf(e,t,n,a,r,s=!0){let i=n==="complex64"?2:1,o=t[0],l=t.length;if(l===0){if(n==="complex64"){let f=Ah(e);return[yh(f[0],0,n)]}return n==="bool"?[e4(e[0])]:[e[0].toString()]}if(l===1){if(o>Q6){let g=gh*i,y=Array.from(e.slice(0,g)),A=Array.from(e.slice((o-gh)*i,o*i));return n==="complex64"&&(y=Ah(y),A=Ah(A)),["["+y.map((x,v)=>yh(x,r[v],n)).join(", ")+", ..., "+A.map((x,v)=>yh(x,r[o-gh+v],n)).join(", ")+"]"]}let f=n==="complex64"?Ah(e):Array.from(e);return["["+f.map((g,y)=>yh(g,r[y],n)).join(", ")+"]"]}let u=t.slice(1),d=a.slice(1),h=a[0]*i,p=[];if(o>Q6){for(let f=0;f<gh;f++){let g=f*h,y=g+h;p.push(...mf(e.slice(g,y),u,n,d,r,!1))}p.push("...");for(let f=o-gh;f<o;f++){let g=f*h,y=g+h;p.push(...mf(e.slice(g,y),u,n,d,r,f===o-1))}}else for(let f=0;f<o;f++){let g=f*h,y=g+h;p.push(...mf(e.slice(g,y),u,n,d,r,f===o-1))}let c=l===2?",":"";p[0]="["+p[0]+c;for(let f=1;f<p.length-1;f++)p[f]=" "+p[f]+c;let m=`,
|
|
`;for(let f=2;f<l;f++)m+=`
|
|
`;return p[p.length-1]=" "+p[p.length-1]+"]"+(s?"":m),p}function Ah(e){let t=[];for(let n=0;n<e.length;n+=2)t.push([e[n],e[n+1]]);return t}var Qt=class{constructor(e,t,n){if(this.dtype=t,this.shape=e.slice(),this.size=on(e),n!=null){let a=n.length;P(a===this.size,()=>`Length of values '${a}' does not match the size inferred by the shape '${this.size}'.`)}if(t==="complex64")throw new Error("complex64 dtype TensorBuffers are not supported. Please create a TensorBuffer for the real and imaginary parts separately and call tf.complex(real, imag).");this.values=n||_6(t,this.size),this.strides=Ko(e)}set(e,...t){t.length===0&&(t=[0]),P(t.length===this.rank,()=>`The number of provided coordinates (${t.length}) must match the rank (${this.rank})`);let n=this.locToIndex(t);this.values[n]=e}get(...e){e.length===0&&(e=[0]);let t=0;for(let a of e){if(a<0||a>=this.shape[t]){let r=`Requested out of range element at ${e}. Buffer shape=${this.shape}`;throw new Error(r)}t++}let n=e[e.length-1];for(let a=0;a<e.length-1;++a)n+=this.strides[a]*e[a];return this.values[n]}locToIndex(e){if(this.rank===0)return 0;if(this.rank===1)return e[0];let t=e[e.length-1];for(let n=0;n<e.length-1;++n)t+=this.strides[n]*e[n];return t}indexToLoc(e){if(this.rank===0)return[];if(this.rank===1)return[e];let t=new Array(this.shape.length);for(let n=0;n<t.length-1;++n)t[n]=Math.floor(e/this.strides[n]),e-=t[n]*this.strides[n];return t[t.length-1]=e,t}get rank(){return this.shape.length}toTensor(){return Tr().makeTensor(this.values,this.shape,this.dtype)}},Tr=null,Vl=null,Aj=null;function xj(e){Tr=e}function bj(e){Vl=e}function vj(e){Aj=e}var Tt=class{constructor(e,t,n,a){this.kept=!1,this.isDisposedInternal=!1,this.shape=e.slice(),this.dtype=t||"float32",this.size=on(e),this.strides=Ko(e),this.dataId=n,this.id=a,this.rankType=this.rank<5?this.rank.toString():"higher"}get rank(){return this.shape.length}async buffer(){let e=await this.data();return Vl.buffer(this.shape,this.dtype,e)}bufferSync(){return Vl.buffer(this.shape,this.dtype,this.dataSync())}async array(){let e=await this.data();return Xo(this.shape,e,this.dtype==="complex64")}arraySync(){return Xo(this.shape,this.dataSync(),this.dtype==="complex64")}async data(){this.throwIfDisposed();let e=Tr().read(this.dataId);if(this.dtype==="string"){let t=await e;try{return t.map(n=>ff(n))}catch(n){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}}return e}dataSync(){this.throwIfDisposed();let e=Tr().readSync(this.dataId);if(this.dtype==="string")try{return e.map(t=>ff(t))}catch(t){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}return e}async bytes(){this.throwIfDisposed();let e=await Tr().read(this.dataId);return this.dtype==="string"?e:new Uint8Array(e.buffer)}dispose(){this.isDisposed||(Tr().disposeTensor(this),this.isDisposedInternal=!0)}get isDisposed(){return this.isDisposedInternal}throwIfDisposed(){if(this.isDisposed)throw new Error("Tensor is disposed.")}print(e=!1){return Vl.print(this,e)}clone(){return this.throwIfDisposed(),Vl.clone(this)}toString(e=!1){let t=this.dataSync();return gj(t,this.shape,this.dtype,e)}cast(e){return this.throwIfDisposed(),Vl.cast(this,e)}variable(e=!0,t,n){return this.throwIfDisposed(),Tr().makeVariable(this,e,t,n)}};Object.defineProperty(Tt,Symbol.hasInstance,{value:e=>!!e&&e.data!=null&&e.dataSync!=null&&e.throwIfDisposed!=null});function re(){return x1("Tensor",()=>Tt)}re();var gf=class extends Tt{constructor(e,t,n,a){super(e.shape,e.dtype,e.dataId,a);this.trainable=t,this.name=n}assign(e){if(e.dtype!==this.dtype)throw new Error(`dtype of the new value (${e.dtype}) and previous value (${this.dtype}) must match`);if(!Fs(e.shape,this.shape))throw new Error(`shape of the new value (${e.shape}) and previous value (${this.shape}) must match`);Tr().disposeTensor(this),this.dataId=e.dataId,Tr().incRef(this,null)}dispose(){Tr().disposeVariable(this),this.isDisposedInternal=!0}};Object.defineProperty(gf,Symbol.hasInstance,{value:e=>e instanceof Tt&&e.assign!=null&&e.assign instanceof Function});var Er={};$e(Er,{assertTypesMatch:()=>n4,getTensorsInContainer:()=>cA,isTensorInList:()=>kj,makeTypesMatch:()=>Ut});var t4;(function(e){e.R0="R0",e.R1="R1",e.R2="R2",e.R3="R3",e.R4="R4",e.R5="R5",e.R6="R6"})(t4||(t4={}));var lA;(function(e){e.float32="float32",e.int32="int32",e.bool="int32",e.complex64="complex64"})(lA||(lA={}));var uA;(function(e){e.float32="float32",e.int32="int32",e.bool="bool",e.complex64="complex64"})(uA||(uA={}));var dA;(function(e){e.float32="float32",e.int32="float32",e.bool="float32",e.complex64="complex64"})(dA||(dA={}));var hA;(function(e){e.float32="complex64",e.int32="complex64",e.bool="complex64",e.complex64="complex64"})(hA||(hA={}));var wj={float32:dA,int32:lA,bool:uA,complex64:hA};function Ga(e,t){if(e==="string"||t==="string"){if(e==="string"&&t==="string")return"string";throw new Error(`Can not upcast ${e} with ${t}`)}return wj[e][t]}function pA(e){return Ga(e,"int32")}function Ut(e,t){if(e.dtype===t.dtype)return[e,t];let n=Ga(e.dtype,t.dtype);return[e.cast(n),t.cast(n)]}function n4(e,t){P(e.dtype===t.dtype,()=>`The dtypes of the first(${e.dtype}) and second(${t.dtype}) input must match`)}function kj(e,t){return t.some(n=>n.id===e.id)}function cA(e){let t=[],n=new Set;return a4(e,t,n),t}function a4(e,t,n){if(e==null)return;if(e instanceof Tt){t.push(e);return}if(!Ij(e))return;let a=e;for(let r in a){let s=a[r];n.has(s)||(n.add(s),a4(s,t,n))}}function Ij(e){return Array.isArray(e)||typeof e=="object"}function fA(e){return e.kernelName!=null}var r4=class{constructor(){this.registeredVariables={},this.nextTapeNodeId=0,this.numBytes=0,this.numTensors=0,this.numStringTensors=0,this.numDataBuffers=0,this.gradientDepth=0,this.kernelDepth=0,this.scopeStack=[],this.numDataMovesStack=[],this.nextScopeId=0,this.tensorInfo=new WeakMap,this.profiling=!1,this.activeProfile={newBytes:0,newTensors:0,peakBytes:0,kernels:[],result:null,get kernelNames(){return Array.from(new Set(this.kernels.map(e=>e.name)))}}}dispose(){for(let e in this.registeredVariables)this.registeredVariables[e].dispose()}},xh=class{constructor(e){this.ENV=e,this.registry={},this.registryFactory={},this.pendingBackendInitId=0,this.state=new r4}async ready(){if(this.pendingBackendInit!=null)return this.pendingBackendInit.then(()=>{});if(this.backendInstance!=null)return;let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t];if(await this.initializeBackend(n).success){await this.setBackend(n);return}}throw new Error("Could not initialize any backends, all backend initializations failed.")}get backend(){if(this.pendingBackendInit!=null)throw new Error(`Backend '${this.backendName}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);if(this.backendInstance==null){let{name:e,asyncInit:t}=this.initializeBackendsAndReturnBest();if(t)throw new Error(`The highest priority backend '${e}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);this.setBackend(e)}return this.backendInstance}backendNames(){return Object.keys(this.registryFactory)}findBackend(e){if(!(e in this.registry))if(e in this.registryFactory){let{asyncInit:t}=this.initializeBackend(e);if(t)return null}else return null;return this.registry[e]}findBackendFactory(e){return e in this.registryFactory?this.registryFactory[e].factory:null}registerBackend(e,t,n=1){return e in this.registryFactory?(console.warn(`${e} backend was already registered. Reusing existing backend factory.`),!1):(this.registryFactory[e]={factory:t,priority:n},!0)}async setBackend(e){if(this.registryFactory[e]==null)throw new Error(`Backend name '${e}' not found in registry`);if(this.backendName=e,this.registry[e]==null){this.backendInstance=null;let{success:t,asyncInit:n}=this.initializeBackend(e);if(!(n?await t:t))return!1}return this.backendInstance=this.registry[e],this.setupRegisteredKernels(),this.profiler=new hj(this.backendInstance),!0}setupRegisteredKernels(){q6(this.backendName).forEach(e=>{e.setupFunc!=null&&e.setupFunc(this.backendInstance)})}disposeRegisteredKernels(e){q6(e).forEach(t=>{t.disposeFunc!=null&&t.disposeFunc(this.registry[e])})}initializeBackend(e){let t=this.registryFactory[e];if(t==null)throw new Error(`Cannot initialize backend ${e}, no registration found.`);try{let n=t.factory();if(n&&!(n instanceof Wc)&&typeof n.then=="function"){let a=++this.pendingBackendInitId,r=n.then(s=>a<this.pendingBackendInitId?!1:(this.registry[e]=s,this.pendingBackendInit=null,!0)).catch(s=>(a<this.pendingBackendInitId||(this.pendingBackendInit=null,console.warn(`Initialization of backend ${e} failed`),console.warn(s.stack||s.message)),!1));return this.pendingBackendInit=r,{success:r,asyncInit:!0}}else return this.registry[e]=n,{success:!0,asyncInit:!1}}catch(n){return console.warn(`Initialization of backend ${e} failed`),console.warn(n.stack||n.message),{success:!1,asyncInit:!1}}}removeBackend(e){if(!(e in this.registryFactory))throw new Error(`${e} backend not found in registry`);this.backendName===e&&this.pendingBackendInit!=null&&this.pendingBackendInitId++,e in this.registry&&(this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e]),delete this.registryFactory[e],this.backendName===e&&(this.pendingBackendInit=null,this.backendName=null,this.backendInstance=null)}getSortedBackends(){if(Object.keys(this.registryFactory).length===0)throw new Error("No backend found in registry.");return Object.keys(this.registryFactory).sort((e,t)=>this.registryFactory[t].priority-this.registryFactory[e].priority)}initializeBackendsAndReturnBest(){let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t],{success:a,asyncInit:r}=this.initializeBackend(n);if(r||a)return{name:n,asyncInit:r}}throw new Error("Could not initialize any backends, all backend initializations failed.")}moveData(e,t){let n=this.state.tensorInfo.get(t),a=n.backend,r=this.readSync(t),s=a.refCount(t);a.disposeData(t,!0),n.backend=e,e.move(t,r,n.shape,n.dtype,s),this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack[this.state.numDataMovesStack.length-1]++}tidy(e,t){let n=null;if(t==null){if(typeof e!="function")throw new Error("Please provide a function to tidy()");t=e}else{if(typeof e!="string"&&!(e instanceof String))throw new Error("When calling with two arguments, the first argument to tidy() must be a string");if(typeof t!="function")throw new Error("When calling with two arguments, the 2nd argument to tidy() must be a function");n=e}let a;return this.scopedRun(()=>this.startScope(n),()=>this.endScope(a),()=>(a=t(),a instanceof Promise&&console.error("Cannot return a Promise inside of tidy."),a))}scopedRun(e,t,n){e();try{let a=n();return t(),a}catch(a){throw t(),a}}nextTensorId(){return xh.nextTensorId++}nextVariableId(){return xh.nextVariableId++}clone(e){let t=j.runKernel(pl,{x:e}),n={x:e},a=s=>({x:()=>{let i="float32",o={x:s},l={dtype:i};return j.runKernel(el,o,l)}}),r=[];return this.addTapeNode(this.state.activeScope.name,n,[t],a,r,{}),t}runKernel(e,t,n){if(rA(e,this.backendName)==null)throw new Error(`Kernel '${e}' not registered for backend '${this.backendName}'`);return this.runKernelFunc({kernelName:e,inputs:t,attrs:n})}shouldCheckForMemLeaks(){return this.ENV.getBool("IS_TEST")}checkKernelForMemLeak(e,t,n){let a=this.backend.numDataIds(),r=0;n.forEach(o=>{r+=o.dtype==="complex64"?3:1});let s=this.state.numDataMovesStack[this.state.numDataMovesStack.length-1],i=a-t-r-s;if(i>0)throw new Error(`Backend '${this.backendName}' has an internal memory leak (${i} data ids) after running '${e}'`)}runKernelFunc(e){let t,n=[],a=this.isTapeOn(),r=this.state.numBytes,s=this.state.numTensors;this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack.push(0);let i;this.backendName==null&&this.backend;let o,l=fA(e)?e.kernelName:this.state.activeScope!=null?this.state.activeScope.name:"";if(fA(e)){let{kernelName:c,inputs:m,attrs:f}=e;this.backendName==null&&this.backend;let g=rA(c,this.backendName);P(g!=null,()=>`Cannot find registered kernel '${c}' for backend '${this.backendName}'`),i=()=>{let y=this.backend.numDataIds();o=g.kernelFunc({inputs:m,attrs:f,backend:this.backend});let A=Array.isArray(o)?o:[o];this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(c,y,A);let x=A.map(v=>{if(v.rank!=null)return v;let{dataId:b,shape:w,dtype:I}=v;return this.makeTensorFromDataId(b,w,I)});if(a){let v=this.getTensorsForGradient(c,m,x);n=this.saveTensorsForBackwardMode(v)}return x}}else{let{forwardFunc:c}=e,m=f=>{!a||(n=f.map(g=>this.keep(this.clone(g))))};i=()=>{let f=this.backend.numDataIds();o=this.tidy(()=>c(this.backend,m));let g=Array.isArray(o)?o:[o];return this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(l,f,g),g}}let{inputs:u,attrs:d}=e,h=fA(e)?null:e.backwardsFunc,p;return this.scopedRun(()=>this.state.kernelDepth++,()=>this.state.kernelDepth--,()=>{!this.ENV.getBool("DEBUG")&&!this.state.profiling?t=i():(p=this.profiler.profileKernel(l,u,()=>i()),this.ENV.getBool("DEBUG")&&this.profiler.logKernelProfile(p),t=p.outputs)}),a&&this.addTapeNode(l,u,t,h,n,d),this.state.profiling&&this.state.activeProfile.kernels.push({name:l,bytesAdded:this.state.numBytes-r,totalBytesSnapshot:this.state.numBytes,tensorsAdded:this.state.numTensors-s,totalTensorsSnapshot:this.state.numTensors,inputShapes:Object.keys(u).map(c=>u[c]!=null?u[c].shape:null),outputShapes:t.map(c=>c.shape),kernelTimeMs:p.timeMs,extraInfo:p.extraInfo}),Array.isArray(o)?t:t[0]}saveTensorsForBackwardMode(e){return e.map(t=>this.keep(this.clone(t)))}getTensorsForGradient(e,t,n){let a=G6(e);if(a!=null){let r=a.inputsToSave||[],s=a.outputsToSave||[],i;a.saveAllInputs?(P(Array.isArray(t),()=>"saveAllInputs is true, expected inputs to be an array."),i=Object.keys(t).map(l=>t[l])):i=r.map(l=>t[l]);let o=n.filter((l,u)=>s[u]);return i.concat(o)}return[]}makeTensor(e,t,n,a){if(e==null)throw new Error("Values passed to engine.makeTensor() are null");n=n||"float32",a=a||this.backend;let r=e;n==="string"&&Vc(e[0])&&(r=e.map(o=>cf(o)));let s=a.write(r,t,n),i=new Tt(t,n,s,this.nextTensorId());if(this.trackTensor(i,a),n==="string"){let o=this.state.tensorInfo.get(s),l=L6(r);this.state.numBytes+=l-o.bytes,o.bytes=l}return i}makeTensorFromDataId(e,t,n,a){n=n||"float32";let r=new Tt(t,n,e,this.nextTensorId());return this.trackTensor(r,a),r}makeVariable(e,t=!0,n,a){n=n||this.nextVariableId().toString(),a!=null&&a!==e.dtype&&(e=e.cast(a));let r=new gf(e,t,n,this.nextTensorId());if(this.state.registeredVariables[r.name]!=null)throw new Error(`Variable with name ${r.name} was already registered`);return this.state.registeredVariables[r.name]=r,this.incRef(r,this.backend),r}trackTensor(e,t){this.state.numTensors++,e.dtype==="string"&&this.state.numStringTensors++;let n=0;e.dtype!=="complex64"&&e.dtype!=="string"&&(n=e.size*f1(e.dtype)),this.state.numBytes+=n,this.state.tensorInfo.has(e.dataId)||(this.state.numDataBuffers++,this.state.tensorInfo.set(e.dataId,{backend:t||this.backend,dtype:e.dtype,shape:e.shape,bytes:n})),e instanceof gf||this.track(e)}incRef(e,t){this.trackTensor(e,t),this.backend.incRef(e.dataId)}removeDataId(e,t){this.state.tensorInfo.has(e)&&this.state.tensorInfo.get(e).backend===t&&(this.state.tensorInfo.delete(e),this.state.numDataBuffers--)}disposeTensor(e){if(!this.state.tensorInfo.has(e.dataId))return;let t=this.state.tensorInfo.get(e.dataId);if(this.state.numTensors--,e.dtype==="string"&&(this.state.numStringTensors--,this.state.numBytes-=t.bytes),e.dtype!=="complex64"&&e.dtype!=="string"){let n=e.size*f1(e.dtype);this.state.numBytes-=n}t.backend.disposeData(e.dataId)&&this.removeDataId(e.dataId,t.backend)}disposeVariables(){for(let e in this.state.registeredVariables){let t=this.state.registeredVariables[e];this.disposeVariable(t)}}disposeVariable(e){this.disposeTensor(e),this.state.registeredVariables[e.name]!=null&&delete this.state.registeredVariables[e.name]}memory(){let e=this.backend.memory();return e.numTensors=this.state.numTensors,e.numDataBuffers=this.state.numDataBuffers,e.numBytes=this.state.numBytes,this.state.numStringTensors>0&&(e.unreliable=!0,e.reasons==null&&(e.reasons=[]),e.reasons.push("Memory usage by string tensors is approximate (2 bytes per character)")),e}async profile(e){this.state.profiling=!0;let t=this.state.numBytes,n=this.state.numTensors;this.state.activeProfile.kernels=[],this.state.activeProfile.result=await e(),this.state.profiling=!1,this.state.activeProfile.peakBytes=Math.max(...this.state.activeProfile.kernels.map(a=>a.totalBytesSnapshot)),this.state.activeProfile.newBytes=this.state.numBytes-t,this.state.activeProfile.newTensors=this.state.numTensors-n;for(let a of this.state.activeProfile.kernels)a.kernelTimeMs=await a.kernelTimeMs,a.extraInfo=await a.extraInfo;return this.state.activeProfile}isTapeOn(){return this.state.gradientDepth>0&&this.state.kernelDepth===0}addTapeNode(e,t,n,a,r,s){let i={id:this.state.nextTapeNodeId++,kernelName:e,inputs:t,outputs:n,saved:r},o=G6(e);o!=null&&(a=o.gradFunc),a!=null&&(i.gradient=l=>(l=l.map((u,d)=>{if(u==null){let h=n[d],p=Gc(h.size,h.dtype);return this.makeTensor(p,h.shape,h.dtype)}return u}),a(l.length>1?l:l[0],r,s))),this.state.activeTape.push(i)}keep(e){return e.kept=!0,e}startTape(){this.state.gradientDepth===0&&(this.state.activeTape=[]),this.state.gradientDepth++}endTape(){this.state.gradientDepth--}startScope(e){let t={track:[],name:"unnamed scope",id:this.state.nextScopeId++};e&&(t.name=e),this.state.scopeStack.push(t),this.state.activeScope=t}endScope(e){let t=cA(e),n=new Set(t.map(r=>r.id));for(let r=0;r<this.state.activeScope.track.length;r++){let s=this.state.activeScope.track[r];!s.kept&&!n.has(s.id)&&s.dispose()}let a=this.state.scopeStack.pop();this.state.activeScope=this.state.scopeStack.length===0?null:this.state.scopeStack[this.state.scopeStack.length-1],t.forEach(r=>{!r.kept&&r.scopeId===a.id&&this.track(r)})}gradients(e,t,n,a=!1){if(P(t.length>0,()=>"gradients() received an empty list of xs."),n!=null&&n.dtype!=="float32")throw new Error(`dy must have 'float32' dtype, but has '${n.dtype}'`);let r=this.scopedRun(()=>this.startTape(),()=>this.endTape(),()=>this.tidy("forward",e));P(r instanceof Tt,()=>"The result y returned by f() must be a tensor.");let s=fj(this.state.activeTape,t,r);if(!a&&s.length===0&&t.length>0)throw new Error("Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.");return this.tidy("backward",()=>{let i={};i[r.id]=n==null?Sj(r.shape):n,mj(i,s,l=>this.tidy(l),Nj);let o=t.map(l=>i[l.id]);return this.state.gradientDepth===0&&(this.state.activeTape.forEach(l=>{for(let u of l.saved)u.dispose()}),this.state.activeTape=null),{value:r,grads:o}})}customGrad(e){return P(jc(e),()=>"The f passed in customGrad(f) must be a function."),(...t)=>{P(t.every(i=>i instanceof Tt),()=>"The args passed in customGrad(f)(x1, x2,...) must all be tensors");let n,a={};t.forEach((i,o)=>{a[o]=i});let r=(i,o)=>(n=e(...t,o),P(n.value instanceof Tt,()=>"The function f passed in customGrad(f) must return an object where `obj.value` is a tensor"),P(jc(n.gradFunc),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function."),n.value),s=(i,o)=>{let l=n.gradFunc(i,o),u=Array.isArray(l)?l:[l];P(u.length===t.length,()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns the same number of tensors as inputs passed to f(...)."),P(u.every(h=>h instanceof Tt),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns a list of only tensors.");let d={};return u.forEach((h,p)=>{d[p]=()=>h}),d};return this.runKernelFunc({forwardFunc:r,backwardsFunc:s,inputs:a})}}readSync(e){return this.state.tensorInfo.get(e).backend.readSync(e)}read(e){return this.state.tensorInfo.get(e).backend.read(e)}async time(e){let t=mh(),n=await this.backend.time(e);return n.wallMs=mh()-t,n}track(e){return this.state.activeScope!=null&&(e.scopeId=this.state.activeScope.id,this.state.activeScope.track.push(e)),e}get registeredVariables(){return this.state.registeredVariables}reset(){this.pendingBackendInitId++,this.state.dispose(),this.ENV.reset(),this.state=new r4;for(let e in this.registry)this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e];this.backendName=null,this.backendInstance=null,this.pendingBackendInit=null}};xh.nextTensorId=0;xh.nextVariableId=0;function Sj(e){let t=m1(on(e),"float32");return j.makeTensor(t,e,"float32")}function s4(){let e=H6();if(e._tfengine==null){let t=new KU(e);e._tfengine=new xh(t)}return JU(e._tfengine.ENV),xj(()=>e._tfengine),e._tfengine}var j=s4();function Nj(e,t){let n={a:e,b:t};return j.runKernel(Os,n)}var yf={};$e(yf,{isBrowser:()=>i4,isMobile:()=>Ej});function Tj(){return typeof navigator!="undefined"&&navigator!=null}function Ej(e){if(e||Tj()){if(e||(e=navigator),e.product==="ReactNative")return!0;let t=e.userAgent||e.vendor||window.opera;return/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i.test(t)||/1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(t.substr(0,4))}return!1}function i4(){return typeof window!="undefined"&&window.document!=null||typeof WorkerGlobalScope!="undefined"}var rr=se();rr.registerFlag("DEBUG",()=>!1,e=>{e&&console.warn("Debugging mode is ON. The output of every math call will be downloaded to CPU and checked for NaNs. This significantly impacts performance.")});rr.registerFlag("IS_BROWSER",()=>i4());rr.registerFlag("IS_NODE",()=>typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined");rr.registerFlag("IS_CHROME",()=>typeof navigator!="undefined"&&navigator!=null&&navigator.userAgent!=null&&/Chrome/.test(navigator.userAgent)&&/Google Inc/.test(navigator.vendor));rr.registerFlag("PROD",()=>!1);rr.registerFlag("TENSORLIKE_CHECK_SHAPE_CONSISTENCY",()=>rr.getBool("DEBUG"));rr.registerFlag("DEPRECATION_WARNINGS_ENABLED",()=>!0);rr.registerFlag("IS_TEST",()=>!1);rr.registerFlag("CHECK_COMPUTATION_FOR_ERRORS",()=>!0);rr.registerFlag("WRAP_TO_IMAGEBITMAP",()=>!1);function bh(e,t){let n=e;if(ar(e))return t==="string"?[]:[e.length];if(!Array.isArray(e))return[];let a=[];for(;Array.isArray(n)||ar(n)&&t!=="string";)a.push(n.length),n=n[0];return Array.isArray(e)&&se().getBool("TENSORLIKE_CHECK_SHAPE_CONSISTENCY")&&o4(e,a,[]),a}function o4(e,t,n){if(n=n||[],!Array.isArray(e)&&!ar(e)){P(t.length===0,()=>`Element arr[${n.join("][")}] is a primitive, but should be an array/TypedArray of ${t[0]} elements`);return}P(t.length>0,()=>`Element arr[${n.join("][")}] should be a primitive, but is an array of ${e.length} elements`),P(e.length===t[0],()=>`Element arr[${n.join("][")}] should have ${t[0]} elements, but has ${e.length} elements`);let a=t.slice(1);for(let r=0;r<e.length;++r)o4(e[r],a,n.concat(r))}function l4(e,t,n,a){if(e!=="string_or_numeric"){if(e==null)throw new Error("Expected dtype cannot be null.");if(e!=="numeric"&&e!==t||e==="numeric"&&t==="string")throw new Error(`Argument '${n}' passed to '${a}' must be ${e} tensor, but got ${t} tensor`)}}function F(e,t,n,a="numeric"){if(e instanceof Tt)return l4(a,e.dtype,t,n),e;let r=Uc(e);if(r!=="string"&&["bool","int32","float32"].indexOf(a)>=0&&(r=a),l4(a,r,t,n),e==null||!ar(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string"){let o=e==null?"null":e.constructor.name;throw new Error(`Argument '${t}' passed to '${n}' must be a Tensor or TensorLike, but got '${o}'`)}let s=bh(e,r);!ar(e)&&!Array.isArray(e)&&(e=[e]);let i=r!=="string"?pf(e,r):yd(e,[],!0);return j.makeTensor(i,s,r)}function Af(e,t,n,a="numeric"){if(!Array.isArray(e))throw new Error(`Argument ${t} passed to ${n} must be a \`Tensor[]\` or \`TensorLike[]\``);return e.map((r,s)=>F(r,`${t}[${s}]`,n,a))}var Cj="__op";function B(e){let t=Object.keys(e);if(t.length!==1)throw new Error(`Please provide an object with a single key (operation name) mapping to a function. Got an object with ${t.length} keys.`);let n=t[0],a=e[n];n.endsWith("_")&&(n=n.substring(0,n.length-1)),n=n+Cj;let r=(...s)=>{j.startScope(n);try{let i=a(...s);return y1(i)&&console.error("Cannot return a Promise inside of tidy."),j.endScope(i),i}catch(i){throw j.endScope(null),i}};return Object.defineProperty(r,"name",{value:n,configurable:!0}),r}function Mj(e,t){let n=F(e,"real","complex"),a=F(t,"imag","complex");nr(n.shape,a.shape,`real and imag shapes, ${n.shape} and ${a.shape}, must match in call to tf.complex().`);let r={real:n,imag:a};return j.runKernel(k1,r)}var Vi=B({complex_:Mj});function vh(e,t,n,a){if(a==null&&(a=Uc(e)),a==="complex64")throw new Error("Cannot construct a complex64 tensor directly. Please use tf.complex(real, imag).");if(!ar(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string")throw new Error("values passed to tensor(values) must be a number/boolean/string or an array of numbers/booleans/strings, or a TypedArray");if(t!=null){g1(t);let r=on(t),s=on(n);P(r===s,()=>`Based on the provided shape, [${t}], the tensor should have ${r} values but has ${s}`);for(let i=0;i<n.length;++i){let o=n[i],l=i===n.length-1?o!==on(t.slice(i)):!0;P(n[i]===t[i]||!l,()=>`Error creating a new Tensor. Inferred shape (${n}) does not match the provided shape (${t}). `)}}return!ar(e)&&!Array.isArray(e)&&(e=[e]),t=t||n,e=a!=="string"?pf(e,a):yd(e,[],!0),j.makeTensor(e,t,a)}function Cr(e,t,n){let a=bh(e,n);return vh(e,t,a,n)}var mA={float32:4,float16:2,int32:4,uint16:2,uint8:1,bool:1,complex64:8},xf=4;async function $j(e,t){let n=[],a=[],r=Array.isArray(e)?e.map(i=>i.name):Object.keys(e);for(let i=0;i<r.length;++i){let o=r[i],l=Array.isArray(e)?e[i].tensor:e[o];if(l.dtype!=="float32"&&l.dtype!=="int32"&&l.dtype!=="bool"&&l.dtype!=="string"&&l.dtype!=="complex64")throw new Error(`Unsupported dtype in weight '${o}': ${l.dtype}`);let u={name:o,shape:l.shape,dtype:l.dtype};if(l.dtype==="string"){let d=new Promise(async h=>{let p=await l.bytes(),c=p.reduce((g,y)=>g+y.length,0)+xf*p.length,m=new Uint8Array(c),f=0;for(let g=0;g<p.length;g++){let y=p[g],A=new Uint8Array(new Uint32Array([y.length]).buffer);m.set(A,f),f+=xf,m.set(y,f),f+=y.length}h(m)});a.push(d)}else a.push(l.data());t!=null&&(u.group=t),n.push(u)}let s=await Promise.all(a);return{data:Rj(s),specs:n}}function u4(e,t){let n={},a,r=0;for(let s of t){let i=s.name,o=s.dtype,l=s.shape,u=on(l),d;if("quantization"in s){let h=s.quantization;if(h.dtype==="uint8"||h.dtype==="uint16"){if(!("min"in h&&"scale"in h))throw new Error(`Weight ${s.name} with quantization ${h.dtype} doesn't have corresponding metadata min and scale.`)}else if(h.dtype==="float16"){if(o!=="float32")throw new Error(`Weight ${s.name} is quantized with ${h.dtype} which only supports weights of type float32 not ${o}.`)}else throw new Error(`Weight ${s.name} has unknown quantization dtype ${h.dtype}. Supported quantization dtypes are: 'uint8', 'uint16', and 'float16'.`);let p=mA[h.dtype],c=e.slice(r,r+u*p),m=h.dtype==="uint8"?new Uint8Array(c):new Uint16Array(c);if(o==="float32")if(h.dtype==="uint8"||h.dtype==="uint16"){d=new Float32Array(m.length);for(let f=0;f<m.length;f++){let g=m[f];d[f]=g*h.scale+h.min}}else if(h.dtype==="float16")a===void 0&&(a=Pj()),d=a(m);else throw new Error(`Unsupported quantization type ${h.dtype} for weight type float32.`);else if(o==="int32"){if(h.dtype!=="uint8"&&h.dtype!=="uint16")throw new Error(`Unsupported quantization type ${h.dtype} for weight type int32.`);d=new Int32Array(m.length);for(let f=0;f<m.length;f++){let g=m[f];d[f]=Math.round(g*h.scale+h.min)}}else throw new Error(`Unsupported dtype in weight '${i}': ${o}`);r+=u*p}else if(o==="string"){let h=on(s.shape);d=[];for(let p=0;p<h;p++){let c=new Uint32Array(e.slice(r,r+xf))[0];r+=xf;let m=new Uint8Array(e.slice(r,r+c));d.push(m),r+=c}}else{let h=mA[o],p=e.slice(r,r+u*h);if(o==="float32")d=new Float32Array(p);else if(o==="int32")d=new Int32Array(p);else if(o==="bool")d=new Uint8Array(p);else if(o==="complex64"){d=new Float32Array(p);let c=new Float32Array(d.length/2),m=new Float32Array(d.length/2);for(let y=0;y<c.length;y++)c[y]=d[y*2],m[y]=d[y*2+1];let f=Cr(c,l,"float32"),g=Cr(m,l,"float32");n[i]=Vi(f,g),f.dispose(),g.dispose()}else throw new Error(`Unsupported dtype in weight '${i}': ${o}`);r+=u*h}o!=="complex64"&&(n[i]=Cr(d,l,o))}return n}function Rj(e){if(e===null)throw new Error(`Invalid input value: ${JSON.stringify(e)}`);let t=0,n=[];e.forEach(s=>{if(t+=s.byteLength,n.push(s.byteLength===s.buffer.byteLength?s:new s.constructor(s)),!(s instanceof Float32Array||s instanceof Int32Array||s instanceof Uint8Array))throw new Error(`Unsupported TypedArray subtype: ${s.constructor.name}`)});let a=new Uint8Array(t),r=0;return n.forEach(s=>{a.set(new Uint8Array(s.buffer),r),r+=s.byteLength}),a.buffer}var gA=typeof Buffer!="undefined"&&(typeof Blob=="undefined"||typeof atob=="undefined"||typeof btoa=="undefined");function d4(e){return gA?Buffer.byteLength(e):new Blob([e]).size}function Fj(e){if(gA)return Buffer.from(e).toString("base64");let t=new Uint8Array(e),n="";for(let a=0,r=t.length;a<r;a++)n+=String.fromCharCode(t[a]);return btoa(n)}function Oj(e){if(gA){let a=Buffer.from(e,"base64");return a.buffer.slice(a.byteOffset,a.byteOffset+a.byteLength)}let t=atob(e),n=new Uint8Array(t.length);for(let a=0;a<t.length;++a)n.set([t.charCodeAt(a)],a);return n.buffer}function yA(e){if(e.length===1)return e[0];let t=0;e.forEach(r=>{t+=r.byteLength});let n=new Uint8Array(t),a=0;return e.forEach(r=>{n.set(new Uint8Array(r),a),a+=r.byteLength}),n.buffer}function h4(e){let t="/";for(e=e.trim();e.endsWith(t);)e=e.slice(0,e.length-1);let n=e.split(t);return n[n.length-1]}function wh(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("Expected JSON model topology, received ArrayBuffer.");return{dateSaved:new Date,modelTopologyType:"JSON",modelTopologyBytes:e.modelTopology==null?0:d4(JSON.stringify(e.modelTopology)),weightSpecsBytes:e.weightSpecs==null?0:d4(JSON.stringify(e.weightSpecs)),weightDataBytes:e.weightData==null?0:e.weightData.byteLength}}function Dj(){let e=n=>{let a=n<<13,r=0;for(;(a&8388608)==0;)r-=8388608,a<<=1;return a&=~8388608,r+=947912704,a|r},t=new Uint32Array(2048);t[0]=0;for(let n=1;n<1024;n++)t[n]=e(n);for(let n=1024;n<2048;n++)t[n]=939524096+(n-1024<<13);return t}function _j(){let e=new Uint32Array(64);e[0]=0,e[31]=1199570944,e[32]=2147483648,e[63]=3347054592;for(let t=1;t<31;t++)e[t]=t<<23;for(let t=33;t<63;t++)e[t]=2147483648+(t-32<<23);return e}function zj(){let e=new Uint32Array(64);for(let t=0;t<64;t++)e[t]=1024;return e[0]=e[32]=0,e}function Pj(){let e=Dj(),t=_j(),n=zj();return a=>{let r=new ArrayBuffer(4*a.length),s=new Uint32Array(r);for(let i=0;i<a.length;i++){let o=a[i],l=e[n[o>>10]+(o&1023)]+t[o>>10];s[i]=l}return new Float32Array(r)}}var qt=class{constructor(){this.saveRouters=[],this.loadRouters=[]}static getInstance(){return qt.instance==null&&(qt.instance=new qt),qt.instance}static registerSaveRouter(e){qt.getInstance().saveRouters.push(e)}static registerLoadRouter(e){qt.getInstance().loadRouters.push(e)}static getSaveHandlers(e){return qt.getHandlers(e,"save")}static getLoadHandlers(e,t){return qt.getHandlers(e,"load",t)}static getHandlers(e,t,n){let a=[];return(t==="load"?qt.getInstance().loadRouters:qt.getInstance().saveRouters).forEach(r=>{let s=r(e,n);s!==null&&a.push(s)}),a}},Lj=e=>qt.registerSaveRouter(e),Wj=e=>qt.registerLoadRouter(e),Bj=e=>qt.getSaveHandlers(e),Vj=(e,t)=>qt.getLoadHandlers(e,t),AA="tensorflowjs",xA=1,Ui="models_store",_s="model_info_store";function p4(){if(!se().getBool("IS_BROWSER"))throw new Error("Failed to obtain IndexedDB factory because the current environmentis not a web browser.");let e=typeof window=="undefined"?self:window,t=e.indexedDB||e.mozIndexedDB||e.webkitIndexedDB||e.msIndexedDB||e.shimIndexedDB;if(t==null)throw new Error("The current browser does not appear to support IndexedDB.");return t}function bA(e){let t=e.result;t.createObjectStore(Ui,{keyPath:"modelPath"}),t.createObjectStore(_s,{keyPath:"modelPath"})}var ji=class{constructor(e){if(this.indexedDB=p4(),e==null||!e)throw new Error("For IndexedDB, modelPath must not be null, undefined or empty.");this.modelPath=e}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");return this.databaseAction(this.modelPath,e)}async load(){return this.databaseAction(this.modelPath)}databaseAction(e,t){return new Promise((n,a)=>{let r=this.indexedDB.open(AA,xA);r.onupgradeneeded=()=>bA(r),r.onsuccess=()=>{let s=r.result;if(t==null){let i=s.transaction(Ui,"readonly"),o=i.objectStore(Ui).get(this.modelPath);o.onsuccess=()=>{if(o.result==null)return s.close(),a(new Error(`Cannot find model with path '${this.modelPath}' in IndexedDB.`));n(o.result.modelArtifacts)},o.onerror=l=>(s.close(),a(o.error)),i.oncomplete=()=>s.close()}else{let i=wh(t),o=s.transaction(_s,"readwrite"),l=o.objectStore(_s),u=l.put({modelPath:this.modelPath,modelArtifactsInfo:i}),d;u.onsuccess=()=>{d=s.transaction(Ui,"readwrite");let h=d.objectStore(Ui).put({modelPath:this.modelPath,modelArtifacts:t,modelArtifactsInfo:i});h.onsuccess=()=>n({modelArtifactsInfo:i}),h.onerror=p=>{l=o.objectStore(_s);let c=l.delete(this.modelPath);c.onsuccess=()=>(s.close(),a(h.error)),c.onerror=m=>(s.close(),a(h.error))}},u.onerror=h=>(s.close(),a(u.error)),o.oncomplete=()=>{d==null?s.close():d.oncomplete=()=>s.close()}}},r.onerror=s=>a(r.error)})}};ji.URL_SCHEME="indexeddb://";var c4=e=>se().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(ji.URL_SCHEME)?Uj(e.slice(ji.URL_SCHEME.length)):null;qt.registerSaveRouter(c4);qt.registerLoadRouter(c4);function Uj(e){return new ji(e)}function jj(e){return e.startsWith(ji.URL_SCHEME)?e.slice(ji.URL_SCHEME.length):e}var Hj=class{constructor(){this.indexedDB=p4()}async listModels(){return new Promise((e,t)=>{let n=this.indexedDB.open(AA,xA);n.onupgradeneeded=()=>bA(n),n.onsuccess=()=>{let a=n.result,r=a.transaction(_s,"readonly"),s=r.objectStore(_s).getAll();s.onsuccess=()=>{let i={};for(let o of s.result)i[o.modelPath]=o.modelArtifactsInfo;e(i)},s.onerror=i=>(a.close(),t(s.error)),r.oncomplete=()=>a.close()},n.onerror=a=>t(n.error)})}async removeModel(e){return e=jj(e),new Promise((t,n)=>{let a=this.indexedDB.open(AA,xA);a.onupgradeneeded=()=>bA(a),a.onsuccess=()=>{let r=a.result,s=r.transaction(_s,"readwrite"),i=s.objectStore(_s),o=i.get(e),l;o.onsuccess=()=>{if(o.result==null)return r.close(),n(new Error(`Cannot find model with path '${e}' in IndexedDB.`));{let u=i.delete(e),d=()=>{l=r.transaction(Ui,"readwrite");let h=l.objectStore(Ui).delete(e);h.onsuccess=()=>t(o.result.modelArtifactsInfo),h.onerror=p=>n(o.error)};u.onsuccess=d,u.onerror=h=>(d(),r.close(),n(o.error))}},o.onerror=u=>(r.close(),n(o.error)),s.oncomplete=()=>{l==null?r.close():l.oncomplete=()=>r.close()}},a.onerror=r=>n(a.error)})}},rs="/",Ul="tensorflowjs_models",f4="info",Gj="model_topology",qj="weight_specs",Kj="weight_data",Xj="model_metadata";function m4(e){return{info:[Ul,e,f4].join(rs),topology:[Ul,e,Gj].join(rs),weightSpecs:[Ul,e,qj].join(rs),weightData:[Ul,e,Kj].join(rs),modelMetadata:[Ul,e,Xj].join(rs)}}function Zj(e){let t=e.split(rs);if(t.length<3)throw new Error(`Invalid key format: ${e}`);return t.slice(1,t.length-1).join(rs)}function Yj(e){return e.startsWith(Hi.URL_SCHEME)?e.slice(Hi.URL_SCHEME.length):e}var Hi=class{constructor(e){if(!se().getBool("IS_BROWSER")||typeof window=="undefined"||typeof window.localStorage=="undefined")throw new Error("The current environment does not support local storage.");if(this.LS=window.localStorage,e==null||!e)throw new Error("For local storage, modelPath must not be null, undefined or empty.");this.modelPath=e,this.keys=m4(this.modelPath)}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");{let t=JSON.stringify(e.modelTopology),n=JSON.stringify(e.weightSpecs),a=wh(e);try{this.LS.setItem(this.keys.info,JSON.stringify(a)),this.LS.setItem(this.keys.topology,t),this.LS.setItem(this.keys.weightSpecs,n),this.LS.setItem(this.keys.weightData,Fj(e.weightData));let r={format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy};return e.signature!=null&&(r.signature=e.signature),e.userDefinedMetadata!=null&&(r.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(r.modelInitializer=e.modelInitializer),this.LS.setItem(this.keys.modelMetadata,JSON.stringify(r)),{modelArtifactsInfo:a}}catch(r){throw this.LS.removeItem(this.keys.info),this.LS.removeItem(this.keys.topology),this.LS.removeItem(this.keys.weightSpecs),this.LS.removeItem(this.keys.weightData),this.LS.removeItem(this.keys.modelMetadata),new Error(`Failed to save model '${this.modelPath}' to local storage: size quota being exceeded is a possible cause of this failure: modelTopologyBytes=${a.modelTopologyBytes}, weightSpecsBytes=${a.weightSpecsBytes}, weightDataBytes=${a.weightDataBytes}.`)}}}async load(){let e=JSON.parse(this.LS.getItem(this.keys.info));if(e==null)throw new Error(`In local storage, there is no model with name '${this.modelPath}'`);if(e.modelTopologyType!=="JSON")throw new Error("BrowserLocalStorage does not support loading non-JSON model topology yet.");let t={},n=JSON.parse(this.LS.getItem(this.keys.topology));if(n==null)throw new Error(`In local storage, the topology of model '${this.modelPath}' is missing.`);t.modelTopology=n;let a=JSON.parse(this.LS.getItem(this.keys.weightSpecs));if(a==null)throw new Error(`In local storage, the weight specs of model '${this.modelPath}' are missing.`);t.weightSpecs=a;let r=this.LS.getItem(this.keys.modelMetadata);if(r!=null){let i=JSON.parse(r);t.format=i.format,t.generatedBy=i.generatedBy,t.convertedBy=i.convertedBy,i.signature!=null&&(t.signature=i.signature),i.userDefinedMetadata!=null&&(t.userDefinedMetadata=i.userDefinedMetadata),i.modelInitializer!=null&&(t.modelInitializer=i.modelInitializer)}let s=this.LS.getItem(this.keys.weightData);if(s==null)throw new Error(`In local storage, the binary weight values of model '${this.modelPath}' are missing.`);return t.weightData=Oj(s),t}};Hi.URL_SCHEME="localstorage://";var g4=e=>se().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(Hi.URL_SCHEME)?Jj(e.slice(Hi.URL_SCHEME.length)):null;qt.registerSaveRouter(g4);qt.registerLoadRouter(g4);function Jj(e){return new Hi(e)}var Qj=class{constructor(){P(se().getBool("IS_BROWSER"),()=>"Current environment is not a web browser"),P(typeof window=="undefined"||typeof window.localStorage!="undefined",()=>"Current browser does not appear to support localStorage"),this.LS=window.localStorage}async listModels(){let e={},t=Ul+rs,n=rs+f4;for(let a=0;a<this.LS.length;++a){let r=this.LS.key(a);if(r.startsWith(t)&&r.endsWith(n)){let s=Zj(r);e[s]=JSON.parse(this.LS.getItem(r))}}return e}async removeModel(e){e=Yj(e);let t=m4(e);if(this.LS.getItem(t.info)==null)throw new Error(`Cannot find model at path '${e}'`);let n=JSON.parse(this.LS.getItem(t.info));return this.LS.removeItem(t.info),this.LS.removeItem(t.topology),this.LS.removeItem(t.weightSpecs),this.LS.removeItem(t.weightData),n}},jl="://",Ta=class{constructor(){this.managers={}}static getInstance(){return Ta.instance==null&&(Ta.instance=new Ta),Ta.instance}static registerManager(e,t){P(e!=null,()=>"scheme must not be undefined or null."),e.endsWith(jl)&&(e=e.slice(0,e.indexOf(jl))),P(e.length>0,()=>"scheme must not be an empty string.");let n=Ta.getInstance();P(n.managers[e]==null,()=>`A model store manager is already registered for scheme '${e}'.`),n.managers[e]=t}static getManager(e){let t=this.getInstance().managers[e];if(t==null)throw new Error(`Cannot find model manager for scheme '${e}'`);return t}static getSchemes(){return Object.keys(this.getInstance().managers)}};function bf(e){if(e.indexOf(jl)===-1)throw new Error(`The url string provided does not contain a scheme. Supported schemes are: ${Ta.getSchemes().join(",")}`);return{scheme:e.split(jl)[0],path:e.split(jl)[1]}}async function y4(e,t,n=!1){P(e!==t,()=>`Old path and new path are the same: '${e}'`);let a=qt.getLoadHandlers(e);P(a.length>0,()=>`Copying failed because no load handler is found for source URL ${e}.`),P(a.length<2,()=>`Copying failed because more than one (${a.length}) load handlers for source URL ${e}.`);let r=a[0],s=qt.getSaveHandlers(t);P(s.length>0,()=>`Copying failed because no save handler is found for destination URL ${t}.`),P(s.length<2,()=>`Copying failed because more than one (${a.length}) save handlers for destination URL ${t}.`);let i=s[0],o=bf(e).scheme,l=bf(e).path,u=o===bf(e).scheme,d=await r.load();n&&u&&await Ta.getManager(o).removeModel(l);let h=await i.save(d);return n&&!u&&await Ta.getManager(o).removeModel(l),h.modelArtifactsInfo}async function eH(){let e=Ta.getSchemes(),t={};for(let n of e){let a=await Ta.getManager(n).listModels();for(let r in a){let s=n+jl+r;t[s]=a[r]}}return t}async function tH(e){let t=bf(e);return Ta.getManager(t.scheme).removeModel(t.path)}async function nH(e,t){return y4(e,t,!1)}async function aH(e,t){return y4(e,t,!0)}var rH=class{fetch(e,t){return fetch(e,t)}now(){return performance.now()}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Browser's encoder only supports utf-8, but got ${t}`);return this.textEncoder==null&&(this.textEncoder=new TextEncoder),this.textEncoder.encode(e)}decode(e,t){return new TextDecoder(t).decode(e)}};if(se().get("IS_BROWSER")){se().setPlatform("browser",new rH);try{Ta.registerManager(Hi.URL_SCHEME,new Qj)}catch(e){}try{Ta.registerManager(ji.URL_SCHEME,new Hj)}catch(e){}}var sH={importFetch:()=>_3()},vA,iH=class{constructor(){this.util=di("util"),this.textEncoder=new this.util.TextEncoder}fetch(e,t){return se().global.fetch!=null?se().global.fetch(e,t):(vA==null&&(vA=sH.importFetch()),vA(e,t))}now(){let e=process.hrtime();return e[0]*1e3+e[1]/1e6}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Node built-in encoder only supports utf-8, but got ${t}`);return this.textEncoder.encode(e)}decode(e,t){return e.length===0?"":new this.util.TextDecoder(t).decode(e)}};se().get("IS_NODE")&&se().setPlatform("node",new iH);function Pe(e,t="float32",n){return t=t||"float32",g1(e),new Qt(e,t,n)}function oH(e,t){let n=F(e,"x","cast");if(!P6(t))throw new Error(`Failed to cast to unknown dtype ${t}`);if(t==="string"&&n.dtype!=="string"||t!=="string"&&n.dtype==="string")throw new Error("Only strings can be casted to strings");let a={x:n},r={dtype:t};return j.runKernel(el,a,r)}var we=B({cast_:oH});function lH(e){let t={x:F(e,"x","clone","string_or_numeric")};return j.runKernel(pl,t)}var Gi=B({clone_:lH});function uH(e,t=!1){console.log(e.toString(t))}s4();var dH={buffer:Pe,cast:we,clone:Gi,print:uH};bj(dH);var la={};$e(la,{browserFiles:()=>yH,browserHTTPRequest:()=>wH,concatenateArrayBuffers:()=>yA,copyModel:()=>nH,decodeWeights:()=>u4,encodeWeights:()=>$j,fromMemory:()=>IH,getLoadHandlers:()=>Vj,getModelArtifactsInfoForJSON:()=>wh,getSaveHandlers:()=>Bj,http:()=>IA,isHTTPScheme:()=>kA,listModels:()=>eH,loadWeights:()=>AH,moveModel:()=>aH,registerLoadRouter:()=>Wj,registerSaveRouter:()=>Lj,removeModel:()=>tH,weightsLoaderFactory:()=>v4,withSaveHandler:()=>SH});var hH="model",pH=".json",cH=".weights.bin";function A4(e){return new Promise(t=>setTimeout(t)).then(e)}var Hl=class{constructor(e){if(!se().getBool("IS_BROWSER"))throw new Error("browserDownloads() cannot proceed because the current environment is not a browser.");e.startsWith(Hl.URL_SCHEME)&&(e=e.slice(Hl.URL_SCHEME.length)),(e==null||e.length===0)&&(e=hH),this.modelTopologyFileName=e+pH,this.weightDataFileName=e+cH}async save(e){if(typeof document=="undefined")throw new Error("Browser downloads are not supported in this environment since `document` is not present");let t=window.URL.createObjectURL(new Blob([e.weightData],{type:"application/octet-stream"}));if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserDownloads.save() does not support saving model topology in binary formats yet.");{let n=[{paths:["./"+this.weightDataFileName],weights:e.weightSpecs}],a={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:n};e.signature!=null&&(a.signature=e.signature),e.userDefinedMetadata!=null&&(a.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(a.modelInitializer=e.modelInitializer);let r=window.URL.createObjectURL(new Blob([JSON.stringify(a)],{type:"application/json"})),s=this.jsonAnchor==null?document.createElement("a"):this.jsonAnchor;if(s.download=this.modelTopologyFileName,s.href=r,await A4(()=>s.dispatchEvent(new MouseEvent("click"))),e.weightData!=null){let i=this.weightDataAnchor==null?document.createElement("a"):this.weightDataAnchor;i.download=this.weightDataFileName,i.href=t,await A4(()=>i.dispatchEvent(new MouseEvent("click")))}return{modelArtifactsInfo:wh(e)}}}};Hl.URL_SCHEME="downloads://";var fH=class{constructor(e){if(e==null||e.length<1)throw new Error(`When calling browserFiles, at least 1 file is required, but received ${e}`);this.files=e}async load(){let e=this.files[0],t=this.files.slice(1);return new Promise((n,a)=>{let r=new FileReader;r.onload=s=>{let i=JSON.parse(s.target.result),o=i.modelTopology;if(o==null){a(new Error(`modelTopology field is missing from file ${e.name}`));return}t.length===0&&n({modelTopology:o});let l=i.weightsManifest;if(l==null){a(new Error(`weightManifest field is missing from file ${e.name}`));return}let u;try{u=this.checkManifestAndWeightFiles(l,t)}catch(c){a(c);return}let d=[],h=[],p=[];l.forEach(c=>{c.paths.forEach(m=>{h.push(m),p.push(null)}),d.push(...c.weights)}),l.forEach(c=>{c.paths.forEach(m=>{let f=new FileReader;f.onload=g=>{let y=g.target.result,A=h.indexOf(m);if(p[A]=y,p.indexOf(null)===-1){let x={modelTopology:o,weightSpecs:d,weightData:yA(p),format:i.format,generatedBy:i.generatedBy,convertedBy:i.convertedBy};i.signature!=null&&(x.signature=i.signature),i.userDefinedMetadata!=null&&(x.userDefinedMetadata=i.userDefinedMetadata),i.modelInitializer!=null&&(x.modelInitializer=i.modelInitializer),n(x)}},f.onerror=g=>a(`Failed to weights data from file of path '${m}'.`),f.readAsArrayBuffer(u[m])})})},r.onerror=s=>a(`Failed to read model topology and weights manifest JSON from file '${e.name}'. BrowserFiles supports loading Keras-style tf.Model artifacts only.`),r.readAsText(e)})}checkManifestAndWeightFiles(e,t){let n=[],a=t.map(s=>h4(s.name)),r={};for(let s of e)s.paths.forEach(i=>{let o=h4(i);if(n.indexOf(o)!==-1)throw new Error(`Duplicate file basename found in weights manifest: '${o}'`);if(n.push(o),a.indexOf(o)===-1)throw new Error(`Weight file with basename '${o}' is not provided.`);r[i]=t[a.indexOf(o)]});if(n.length!==t.length)throw new Error(`Mismatch in the number of files in weights manifest (${n.length}) and the number of weight files provided (${t.length}).`);return r}},mH=e=>se().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(Hl.URL_SCHEME)?gH(e.slice(Hl.URL_SCHEME.length)):null;qt.registerSaveRouter(mH);function gH(e="model"){return new Hl(e)}function yH(e){return new fH(e)}function x4(e,t,n,a){i(e),n=n==null?0:n,a=a==null?1:a,o(n,a);let r=0,s=l=>(l.then(u=>{let d=n+ ++r/e.length*(a-n);return t(d),u}),l);function i(l){P(l!=null&&Array.isArray(l)&&l.length>0,()=>"promises must be a none empty array")}function o(l,u){P(l>=0&&l<=1,()=>`Progress fraction must be in range [0, 1], but got startFraction ${l}`),P(u>=0&&u<=1,()=>`Progress fraction must be in range [0, 1], but got endFraction ${u}`),P(u>=l,()=>`startFraction must be no more than endFraction, but got startFraction ${l} and endFraction ${u}`)}return Promise.all(e.map(s))}async function b4(e,t){t==null&&(t={});let n=t.fetchFunc==null?se().platform.fetch:t.fetchFunc,a=e.map(u=>n(u,t.requestInit,{isBinary:!0})),r=0,s=.5,i=(t.onProgress==null?await Promise.all(a):await x4(a,t.onProgress,r,s)).map(u=>u.arrayBuffer()),o=.5,l=1;return t.onProgress==null?await Promise.all(i):await x4(i,t.onProgress,o,l)}async function AH(e,t="",n,a){return v4(r=>b4(r,{requestInit:a}))(e,t,n)}function v4(e){return async(t,n="",a)=>{let r=t.map(()=>!1),s={},i=a!=null?a.map(()=>!1):[],o=[];if(t.forEach((c,m)=>{let f=0;c.weights.forEach(g=>{let y="quantization"in g?g.quantization.dtype:g.dtype,A=mA[y]*on(g.shape),x=()=>{r[m]=!0,s[m]==null&&(s[m]=[]),s[m].push({manifestEntry:g,groupOffset:f,sizeBytes:A})};a!=null?a.forEach((v,b)=>{v===g.name&&(x(),i[b]=!0)}):x(),o.push(g.name),f+=A})}),!i.every(c=>c)){let c=a.filter((m,f)=>!i[f]);throw new Error(`Could not find weights in manifest with names: ${c.join(", ")}.
|
|
Manifest JSON has weights with names: ${o.join(", ")}.`)}let l=r.reduce((c,m,f)=>(m&&c.push(f),c),[]),u=[];l.forEach(c=>{t[c].paths.forEach(m=>{let f=n+(n.endsWith("/")?"":"/")+m;u.push(f)})});let d=await e(u),h={},p=0;return l.forEach(c=>{let m=t[c].paths.length,f=0;for(let x=0;x<m;x++)f+=d[p+x].byteLength;let g=new ArrayBuffer(f),y=new Uint8Array(g),A=0;for(let x=0;x<m;x++){let v=new Uint8Array(d[p+x]);y.set(v,A),A+=v.byteLength}s[c].forEach(x=>{let v=g.slice(x.groupOffset,x.groupOffset+x.sizeBytes),b=u4(v,[x.manifestEntry]);for(let w in b)h[w]=b[w]}),p+=m}),h}}var xH="application/octet-stream",bH="application/json",wA=class{constructor(e,t){if(this.DEFAULT_METHOD="POST",t==null&&(t={}),this.weightPathPrefix=t.weightPathPrefix,this.onProgress=t.onProgress,this.weightUrlConverter=t.weightUrlConverter,t.fetchFunc!=null?(P(typeof t.fetchFunc=="function",()=>"Must pass a function that matches the signature of `fetch` (see https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)"),this.fetch=t.fetchFunc):this.fetch=se().platform.fetch,P(e!=null&&e.length>0,()=>"URL path for http must not be null, undefined or empty."),Array.isArray(e)&&P(e.length===2,()=>`URL paths for http must have a length of 2, (actual length is ${e.length}).`),this.path=e,t.requestInit!=null&&t.requestInit.body!=null)throw new Error("requestInit is expected to have no pre-existing body, but has one.");this.requestInit=t.requestInit||{}}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserHTTPRequest.save() does not support saving model topology in binary formats yet.");let t=Object.assign({method:this.DEFAULT_METHOD},this.requestInit);t.body=new FormData;let n=[{paths:["./model.weights.bin"],weights:e.weightSpecs}],a={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:n};e.signature!=null&&(a.signature=e.signature),e.userDefinedMetadata!=null&&(a.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(a.modelInitializer=e.modelInitializer),t.body.append("model.json",new Blob([JSON.stringify(a)],{type:bH}),"model.json"),e.weightData!=null&&t.body.append("model.weights.bin",new Blob([e.weightData],{type:xH}),"model.weights.bin");let r=await this.fetch(this.path,t);if(r.ok)return{modelArtifactsInfo:wh(e),responses:[r]};throw new Error(`BrowserHTTPRequest.save() failed due to HTTP response status ${r.status}.`)}async load(){let e=await this.fetch(this.path,this.requestInit);if(!e.ok)throw new Error(`Request to ${this.path} failed with status code ${e.status}. Please verify this URL points to the model JSON of the model to load.`);let t;try{t=await e.json()}catch(c){let m=`Failed to parse model JSON of response from ${this.path}.`;throw this.path.endsWith(".pb")?m+=" Your path contains a .pb file extension. Support for .pb models have been removed in TensorFlow.js 1.0 in favor of .json models. You can re-convert your Python TensorFlow model using the TensorFlow.js 1.0 conversion scripts or you can convert your.pb models with the 'pb2json'NPM script in the tensorflow/tfjs-converter repository.":m+=" Please make sure the server is serving valid JSON for this request.",new Error(m)}let n=t.modelTopology,a=t.weightsManifest,r=t.generatedBy,s=t.convertedBy,i=t.format,o=t.signature,l=t.userDefinedMetadata;if(n==null&&a==null)throw new Error(`The JSON from HTTP path ${this.path} contains neither model topology or manifest for weights.`);let u,d;a!=null&&([u,d]=await this.loadWeights(a));let h={modelTopology:n,weightSpecs:u,weightData:d,generatedBy:r,convertedBy:s,format:i};o!=null&&(h.signature=o),l!=null&&(h.userDefinedMetadata=l);let p=t.modelInitializer;return p&&(h.modelInitializer=p),h}async loadWeights(e){let t=Array.isArray(this.path)?this.path[1]:this.path,[n,a]=vH(t),r=this.weightPathPrefix||n,s=[];for(let u of e)s.push(...u.weights);let i=[],o=[];for(let u of e)for(let d of u.paths)this.weightUrlConverter!=null?o.push(this.weightUrlConverter(d)):i.push(r+d+a);this.weightUrlConverter&&i.push(...await Promise.all(o));let l=await b4(i,{requestInit:this.requestInit,fetchFunc:this.fetch,onProgress:this.onProgress});return[s,yA(l)]}};wA.URL_SCHEME_REGEX=/^https?:\/\//;function vH(e){let t=e.lastIndexOf("/"),n=e.lastIndexOf("?"),a=e.substring(0,t),r=n>t?e.substring(n):"";return[a+"/",r]}function kA(e){return e.match(wA.URL_SCHEME_REGEX)!=null}var w4=(e,t)=>{if(typeof fetch=="undefined"&&(t==null||t.fetchFunc==null))return null;{let n=!0;if(Array.isArray(e)?n=e.every(a=>kA(a)):n=kA(e),n)return IA(e,t)}return null};qt.registerSaveRouter(w4);qt.registerLoadRouter(w4);function IA(e,t){return new wA(e,t)}function wH(e,t){return IA(e,t)}var SA=class{constructor(e){this.modelArtifacts=e}async load(){return this.modelArtifacts}},kH=class{constructor(e){this.saveHandler=e}async save(e){return this.saveHandler(e)}};function IH(e,t,n,a){return arguments.length===1?e.modelTopology!=null||e.weightSpecs!=null?new SA(e):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new SA({modelTopology:e})):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new SA({modelTopology:e,weightSpecs:t,weightData:n,trainingConfig:a}))}function SH(e){return new kH(e)}function NH(e,t,n=!1,a=!1){let r=F(e,"a","matMul"),s=F(t,"b","matMul");[r,s]=Ut(r,s);let i={a:r,b:s},o={transposeA:n,transposeB:a};return j.runKernel(Qo,i,o)}var it=B({matMul_:NH});function TH(e,t,n=1,a=0){if(t<2)throw new Error(`Error in oneHot: depth must be >=2, but it is ${t}`);let r={indices:F(e,"indices","oneHot","int32")},s={depth:t,onValue:n,offValue:a};return j.runKernel(wl,r,s)}var kh=B({oneHot_:TH});function EH(e,t){let n=F(e,"x","transpose");if(t==null&&(t=n.shape.map((s,i)=>i).reverse()),P(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of perm ${t}.`),t.forEach(s=>{P(s>=0&&s<n.rank,()=>`All entries in 'perm' must be between 0 and ${n.rank-1} but got ${t}`)}),n.rank<=1)return n.clone();let a={x:n},r={perm:t};return j.runKernel(Pl,a,r)}var ct=B({transpose_:EH});function CH(e,t,n){let a=F(e,"labels","confusionMatrix"),r=F(t,"predictions","confusionMatrix");P(n==null||n>0&&Number.isInteger(n),()=>`If provided, numClasses must be a positive integer, but got ${n}`),P(a.rank===1,()=>`Expected the rank of labels to be 1, but got ${a.rank}`),P(r.rank===1,()=>`Expected the rank of predictions to be 1, but got ${r.rank}`),P(a.shape[0]===r.shape[0],()=>`Mismatch in the number of examples: ${a.shape[0]} vs. ${r.shape[0]}. Labels and predictions should have the same number of elements.`),P(n>0&&Number.isInteger(n),()=>`numClasses is required to be a positive integer, but got ${n}`);let s=kh(we(a,"int32"),n),i=kh(we(r,"int32"),n),o=ct(s),l=it(o,i);return we(l,"int32")}var mwe=B({confusionMatrix_:CH}),k4={};$e(k4,{fromPixels:()=>zH,fromPixelsAsync:()=>DH,toPixels:()=>_H});function MH(e,t,n){if(Bc(e),t!=null&&t.length!==3)throw new Error("tensor3d() requires shape to have three numbers");let a=bh(e,n);if(a.length!==3&&a.length!==1)throw new Error("tensor3d() requires values to be number[][][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor3d() requires shape to be provided when `values` are a flat array");return vh(e,t,a,n)}var Gl;function I4(e,t=3){if(t>4)throw new Error("Cannot construct Tensor with more than 4 channels from pixels.");if(e==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let n=!1,a=!1,r=!1,s=!1,i=!1,o=!1;if(e.data instanceof Uint8Array)n=!0;else if(typeof ImageData!="undefined"&&e instanceof ImageData)a=!0;else if(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)r=!0;else if(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)s=!0;else if(e.getContext!=null)i=!0;else if(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)o=!0;else throw new Error(`pixels passed to tf.browser.fromPixels() must be either an HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData in browser, or OffscreenCanvas, ImageData in webworker or {data: Uint32Array, width: number, height: number}, but was ${e.constructor.name}`);if(r){let p=2;if(r&&e.readyState<p)throw new Error("The video element has not loaded data yet. Please wait for `loadeddata` event on the <video> element.")}if(rA(nA,j.backendName)!=null){let p={pixels:e},c={numChannels:t};return j.runKernel(nA,p,c)}let[l,u]=r?[e.videoWidth,e.videoHeight]:[e.width,e.height],d;i?d=e.getContext("2d").getImageData(0,0,l,u).data:a||n?d=e.data:(s||r||o)&&(Gl==null&&(Gl=document.createElement("canvas").getContext("2d")),Gl.canvas.width=l,Gl.canvas.height=u,Gl.drawImage(e,0,0,l,u),d=Gl.getImageData(0,0,l,u).data);let h;if(t===4)h=new Int32Array(d);else{let p=l*u;h=new Int32Array(p*t);for(let c=0;c<p;c++)for(let m=0;m<t;++m)h[c*t+m]=d[c*4+m]}return MH(h,[u,l,t],"int32")}function $H(e){return e!=null&&e.data instanceof Uint8Array}function RH(){return typeof window!="undefined"&&typeof ImageBitmap!="undefined"&&window.hasOwnProperty("createImageBitmap")}function FH(e){return e!=null&&e.width!==0&&e.height!==0}function OH(e){return RH()&&!(e instanceof ImageBitmap)&&FH(e)&&!$H(e)}async function DH(e,t=3){let n=null;if(se().getBool("WRAP_TO_IMAGEBITMAP")&&OH(e)){let a;try{a=await createImageBitmap(e,{premultiplyAlpha:"none"})}catch(r){a=null}a!=null&&a.width===e.width&&a.height===e.height?n=a:n=e}else n=e;return I4(n,t)}async function _H(e,t){let n=F(e,"img","toPixels");if(!(e instanceof Tt)){let u=n;n=we(u,"int32"),u.dispose()}if(n.rank!==2&&n.rank!==3)throw new Error(`toPixels only supports rank 2 or 3 tensors, got rank ${n.rank}.`);let[a,r]=n.shape.slice(0,2),s=n.rank===2?1:n.shape[2];if(s>4||s===2)throw new Error(`toPixels only supports depth of size 1, 3 or 4 but got ${s}`);if(n.dtype!=="float32"&&n.dtype!=="int32")throw new Error(`Unsupported type for toPixels: ${n.dtype}. Please use float32 or int32 tensors.`);let i=await n.data(),o=n.dtype==="float32"?255:1,l=new Uint8ClampedArray(r*a*4);for(let u=0;u<a*r;++u){let d=[0,0,0,255];for(let p=0;p<s;p++){let c=i[u*s+p];if(n.dtype==="float32"){if(c<0||c>1)throw new Error(`Tensor values for a float32 Tensor must be in the range [0 - 1] but encountered ${c}.`)}else if(n.dtype==="int32"&&(c<0||c>255))throw new Error(`Tensor values for a int32 Tensor must be in the range [0 - 255] but encountered ${c}.`);s===1?(d[0]=c*o,d[1]=c*o,d[2]=c*o):d[p]=c*o}let h=u*4;l[h+0]=Math.round(d[0]),l[h+1]=Math.round(d[1]),l[h+2]=Math.round(d[2]),l[h+3]=Math.round(d[3])}if(t!=null){t.width=r,t.height=a;let u=t.getContext("2d"),d=new ImageData(l,r,a);u.putImageData(d,0,0)}return n!==e&&n.dispose(),l}var zH=B({fromPixels_:I4}),S4={};$e(S4,{prepareAndValidate:()=>N4});function N4(e,t){let n=e.shape.length,a=t.shape.length;if(n<1)throw new Error(`tf.gatherND() expects the input to be rank 1 or higher, but the rank was ${n}.`);if(a<1)throw new Error(`tf.gatherND() expects the indices to be rank 1 or higher, but the rank was ${a}.`);if(t.dtype!=="int32")throw new Error(`tf.gatherND() expects the indices to be int32 type, but the dtype was ${t.dtype}.`);if(t.shape[a-1]>n)throw new Error(`index innermost dimension length must be <= tensor rank; saw: ${t.shape[a-1]} vs. ${n}`);if(on(e.shape)===0)throw new Error(`Requested more than 0 entries, but input is empty. Input shape: ${e.shape}.`);let r=t.shape,s=r[r.length-1],i=1;for(let h=0;h<r.length-1;++h)i*=r[h];let o=e.shape,l=r.slice();l.pop();let u=1;for(let h=s;h<n;++h)u*=o[h],l.push(o[h]);let d=[...Ko(e.shape).map(h=>h/u),1].slice(0,s);return[l,i,u,d]}var T4={};$e(T4,{calculateShapes:()=>E4,validateInput:()=>TA,validateUpdateShape:()=>NA});function NA(e,t,n){let a=t.rank>1?t.shape[t.rank-1]:1,r=t.rank>1?t.rank-1:1,s=`Must have updates.shape = indices.shape[:batchDim] + shape[sliceDim:], got updates.shape: ${n.shape}, indices.shape: ${t.shape}, shape: ${e}, sliceDim: ${a}, and batchDim: ${r}.`;if(n.rank<r)throw new Error(s+` update.rank < ${r}. `);if(e.length<a+(n.rank-r))throw new Error(s+` Output shape length < ${a+(n.rank-r)}`);if(n.rank!==r+e.length-a)throw new Error(s+` update.rank != ${r+e.length-a}`);for(let i=0;i<r;++i)if(n.shape[i]!==t.shape[i])throw new Error(s+` updates.shape[${i}] (${n.shape[i]}) != indices.shape[${i}] (${t.shape[i]}).`);for(let i=0;i<n.rank-r;++i)if(n.shape[i+r]!==e[i+a])throw new Error(s+` updates.shape[${i+r}] (${n.shape[i+r]}) != shape[${i+r}] (${e[i+r]})`)}function TA(e,t,n){if(t.rank<1)throw new Error(`tf.scatterND() expects the indices to be rank 1 or higher, but the rank was ${t.rank}.`);if(e.rank<1)throw new Error(`tf.scatterND() expects the updates to be rank 1 or higher, but the rank was ${e.rank}.`);if(t.dtype!=="int32")throw new Error(`The dtype of 'indices' should be int32, but got dtype: ${t.dtype}`);if(n.length<1)throw new Error(`Output rank must be greater or equal to 1, but got shape: ${n}`);if(n.length===0){if(t.size===0)throw new Error(`Indices specified for empty output. indices shape: ${t.shape}`);if(e.size===0)throw new Error(`Updates specified for empty output. updates shape: ${e.shape}`)}NA(n,t,e)}function E4(e,t,n){let a=t.shape.length,r=a>1?t.shape[a-1]:1,s=n.length,i=1;for(let h=r;h<s;++h)i*=n[h];let o=r<1?1:r,l=on(t.shape)/o,u=[...Ko(n.slice(0,r)),1],d=on(n);return{sliceRank:r,numUpdates:l,sliceSize:i,strides:u,outputSize:d}}var Cn={};$e(Cn,{assertParamsValid:()=>PH,computeFlatOffset:()=>WH,computeOutShape:()=>C4,getNormalizedAxes:()=>F4,isSliceContinous:()=>LH,maskToAxes:()=>vf,parseSliceParams:()=>L4,sliceInfo:()=>BH,startForAxis:()=>z4,startIndicesWithElidedDims:()=>O4,stopForAxis:()=>P4,stopIndicesWithElidedDims:()=>D4,stridesForAxis:()=>_4,stridesWithElidedDims:()=>M4});function PH(e,t,n){let a=e.shape.length;P(a===t.length,()=>`Error in slice${a}D: Length of begin ${t} must match the rank of the array (${a}).`),P(a===n.length,()=>`Error in slice${a}D: Length of size ${n} must match the rank of the array (${a}).`);for(let r=0;r<a;++r)P(t[r]+n[r]<=e.shape[r],()=>`Error in slice${a}D: begin[${r}] + size[${r}] (${t[r]+n[r]}) would overflow input.shape[${r}] (${e.shape[r]})`)}function vf(e){let t=[],n=0;for(;e>0;)e&1&&t.push(n),e/=2,n++;return t}function C4(e,t,n){let a=[];for(let r=0;r<e.length;r++)a[r]=Math.ceil((t[r]-e[r])/n[r]);return a}function M4(e,t,n,a){let r=[...e];for(let s=r.length;s<a.length;s++)r.push(1);for(let s=0;s<n;s++)s===0?r[t]=1:(r.splice(t,0,1),r.pop());return r}function $4(e,t,n){return n<=e?n:n-(t-1)}function R4(e,t){let n=[];for(let a=0;a<e;a++)n.push(t+a);return n}function F4(e,t,n,a,r,s,i,o,l){let u=e.length,d=new Array(u),h=new Array(u),p=new Array(u);if(t.length&&n>0){let c=t[0],m=n+1;d=O4(i,c,m,a,e),h=D4(o,c,m,r,e),p=M4(s,c,m,e)}else for(let c=0;c<u;c++)d[c]=z4(i,a,s,e,c,l),h[c]=P4(o,r,s,e,c,l),p[c]=_4(s,c,l);return{begin:d,end:h,strides:p}}function O4(e,t,n,a,r){let s=[...r],i=R4(n,t);for(let o=0;o<s.length;o++)if(i.indexOf(o)>-1)s[o]=0;else{let l=$4(t,n,o),u=a[l];e&1<<l&&(u=0),s[o]=u}return s}function D4(e,t,n,a,r){let s=[...r],i=R4(n,t);for(let o=0;o<s.length;o++)if(i.indexOf(o)>-1)s[o]=Number.MAX_SAFE_INTEGER;else{let l=$4(t,n,o),u=a[l];e&1<<l&&(u=Number.MAX_SAFE_INTEGER),s[o]=u}for(let o=0;o<s.length;o++){let l=r[o];s[o]<0&&(s[o]+=l),s[o]=gd(0,s[o],r[o])}return s}function _4(e,t,n){let a=e[t];return(n&1<<t||a==null)&&(a=1),a}function z4(e,t,n,a,r,s){let i=t[r],o=n[r]||1;(e&1<<r||s&1<<r||i==null)&&(o>0?i=Number.MIN_SAFE_INTEGER:i=Number.MAX_SAFE_INTEGER);let l=a[r];return i<0&&(i+=l),i=gd(0,i,l-1),i}function P4(e,t,n,a,r,s){let i=t[r],o=n[r]||1;(e&1<<r||s&1<<r||i==null)&&(o>0?i=Number.MAX_SAFE_INTEGER:i=Number.MIN_SAFE_INTEGER);let l=a[r];return i<0&&(i+=l),o>0?i=gd(0,i,l):i=gd(-1,i,l-1),i}function LH(e,t,n){let a=n.length;for(let r=0;r<n.length;r++)if(n[r]>1){a=r;break}for(let r=a+1;r<n.length;r++)if(t[r]>0||n[r]!==e[r])return!1;return!0}function WH(e,t){let n=e.length>0?e[e.length-1]:1;for(let a=0;a<e.length-1;a++)n+=e[a]*t[a];return n}function L4(e,t,n){let a,r=e.shape.length;typeof t=="number"?a=[t,...new Array(r-1).fill(0)]:t.length<r?a=t.concat(new Array(r-t.length).fill(0)):a=t.slice(),a.forEach(i=>{P(i!==-1,()=>"slice() does not support negative begin indexing.")});let s;return n==null?s=new Array(r).fill(-1):typeof n=="number"?s=[n,...new Array(r-1).fill(-1)]:n.length<r?s=n.concat(new Array(r-n.length).fill(-1)):s=n,s=s.map((i,o)=>i>=0?i:(P(i===-1,()=>`Negative size values should be exactly -1 but got ${i} for the slice() size at index ${o}.`),e.shape[o]-a[o])),[a,s]}function BH(e,t,n,a,r,s,i,o,l){let u=t.slice(),d=n.slice(),h=a;a==null&&(h=new Array(u.length));let p=vf(i);if(p.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(i!==0&&o!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(i!==0&&l!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let c=e.length-u.length,m=vf(o),f=e.slice();m.forEach(w=>{u[w]=0,d[w]=1,f.splice(w,0,1)});let{begin:g,end:y,strides:A}=F4(f,p,c,u,d,h,r,s,i);u=g,d=y,h=A;let x=vf(l);x.forEach(w=>{d[w]=u[w]+1,h[w]=1});let v=C4(u,d,h),b=v.filter((w,I)=>x.indexOf(I)===-1);return{nonStrided:h.every(w=>w===1),$begin:u,$end:d,$strides:h,size:v,newShape:f,outShape:b}}var ue={};$e(ue,{Serializable:()=>W4,SerializationMap:()=>qi,registerClass:()=>zs});var W4=class{getClassName(){return this.constructor.className}static fromConfig(e,t){return new e(t)}},qi=class{constructor(){this.classNameMap={}}static getMap(){return qi.instance==null&&(qi.instance=new qi),qi.instance}static register(e){qi.getMap().classNameMap[e.className]=[e,e.fromConfig]}};function zs(e){P(e.className!=null,()=>"Class being registered does not have the static className property defined."),P(typeof e.className=="string",()=>"className is required to be a string, but got type "+typeof e.className),P(e.className.length>0,()=>"Class being registered has an empty-string as its className, which is disallowed."),qi.register(e)}function B4(e){se().getBool("DEPRECATION_WARNINGS_ENABLED")&&console.warn(e+" You can disable deprecation warnings with tf.disableDeprecationWarnings().")}vj(B4);function Ps(){return j}function EA(){return j.memory()}function Z(e,t){return j.tidy(e,t)}function Ge(e){cA(e).forEach(t=>t.dispose())}function Sn(e){return j.keep(e)}function CA(e,t,n=1){return j.registerBackend(e,t,n)}function VH(){return j.backend}function UH(e,t){let n=F(e,"a","add"),a=F(t,"b","add");[n,a]=Ut(n,a);let r={a:n,b:a};return j.runKernel(Os,r)}var pe=B({add_:UH});function jH(e,t){let n=F(e,"a","floorDiv"),a=F(t,"b","floorDiv");[n,a]=Ut(n,a);let r={a:n,b:a};return j.runKernel(ul,r)}var MA=B({floorDiv_:jH});function HH(e,t){let n=F(e,"a","div"),a=F(t,"b","div");if([n,a]=Ut(n,a),n.dtype==="int32"&&a.dtype==="int32")return MA(n,a);let r={a:n,b:a},s={};return j.runKernel(il,r,s)}var Me=B({div_:HH});function GH(e,t){let n=F(e,"a","mul"),a=F(t,"b","mul");[n,a]=Ut(n,a);let r={a:n,b:a};return j.runKernel(Oi,r)}var K=B({mul_:GH});function qH(e){let t=F(e,"x","abs");if(t.dtype==="complex64"){let n={x:t};return j.runKernel(Zc,n)}else{let n={x:t};return j.runKernel(xd,n)}}var yn=B({abs_:qH});function KH(e){let t={x:F(e,"x","acos")};return j.runKernel(bd,t)}var V4=B({acos_:KH});function XH(e){let t={x:F(e,"x","acosh")};return j.runKernel(vd,t)}var U4=B({acosh_:XH});function ZH(e){P(Array.isArray(e),()=>"The argument passed to tf.addN() must be a list of tensors"),P(e.length>=1,()=>`Must pass at least one tensor to tf.addN(), but got ${e.length}`);let t=e.map((r,s)=>F(r,`tensors${s}`,"addN")),n=t[0];t.forEach(r=>{if(r.dtype!==n.dtype)throw new Error("All tensors passed to tf.addN() must have the same dtype")}),t.forEach(r=>{if(!Fs(r.shape,n.shape))throw new Error("All tensors passed to tf.addN() must have the same shape")});let a=t;return j.runKernel(Zo,a)}var YH=B({addN_:ZH});function JH(e,t=null,n=!1){let a={x:F(e,"x","all","bool")},r={axis:t,keepDims:n};return j.runKernel(wd,a,r)}var $A=B({all_:JH});function QH(e,t=null,n=!1){let a={x:F(e,"x","any","bool")},r={axis:t,keepDims:n};return j.runKernel(kd,a,r)}var wf=B({any_:QH});function eG(e,t=0){let n={x:F(e,"x","argMax")},a={axis:t};return j.runKernel(Yo,n,a)}var kf=B({argMax_:eG});function tG(e,t=0){let n={x:F(e,"x","argMin")},a={axis:t};return j.runKernel(qc,n,a)}var j4=B({argMin_:tG});function nG(e){let t={x:F(e,"x","asin")};return j.runKernel(Id,t)}var H4=B({asin_:nG});function aG(e){let t={x:F(e,"x","asinh")};return j.runKernel(Sd,t)}var G4=B({asinh_:aG});function rG(e){let t={x:F(e,"x","atan")};return j.runKernel(Nd,t)}var q4=B({atan_:rG});function sG(e,t){let n=F(e,"a","atan2"),a=F(t,"b","atan2");[n,a]=Ut(n,a);let r={a:n,b:a};return j.runKernel(Ed,r)}var K4=B({atan2_:sG});function iG(e){let t={x:F(e,"x","atanh")};return j.runKernel(Td,t)}var X4=B({atanh_:iG});function oG(e,t,n,a,r="NHWC",s){let i=e[3],o=[...t,i],l=J4(r);return Ih(e,o,n,s,a,null,null,l)}function Z4(e,t,n,a,r,s,i="channelsLast"){let[o,l]=If(t),u;if(i==="channelsLast")u=[o,l,e[3],e[3]];else if(i==="channelsFirst")u=[o,l,e[1],e[1]];else throw new Error(`Unknown dataFormat ${i}`);return Ih(e,u,n,a,r,s,!1,i)}function lG(e,t,n,a,r,s,i="NDHWC"){let[o,l,u]=FA(t),d,h;if(i==="NDHWC")h="channelsLast",d=[o,l,u,e[4],e[4]];else if(i==="NCDHW")h="channelsFirst",d=[o,l,u,e[1],e[1]];else throw new Error(`Unknown dataFormat ${i}`);return Y4(e,d,n,a,r,!1,h,s)}function Ih(e,t,n,a,r,s,i=!1,o="channelsLast"){let[l,u,d,h]=[-1,-1,-1,-1];if(o==="channelsLast")[l,u,d,h]=e;else if(o==="channelsFirst")[l,h,u,d]=e;else throw new Error(`Unknown dataFormat ${o}`);let[p,c,,m]=t,[f,g]=If(n),[y,A]=If(a),x=ql(p,y),v=ql(c,A),{padInfo:b,outHeight:w,outWidth:I}=hG(r,u,d,f,g,x,v,s,o),T=i?m*h:m,C;return o==="channelsFirst"?C=[l,T,w,I]:o==="channelsLast"&&(C=[l,w,I,T]),{batchSize:l,dataFormat:o,inHeight:u,inWidth:d,inChannels:h,outHeight:w,outWidth:I,outChannels:T,padInfo:b,strideHeight:f,strideWidth:g,filterHeight:p,filterWidth:c,effectiveFilterHeight:x,effectiveFilterWidth:v,dilationHeight:y,dilationWidth:A,inShape:e,outShape:C,filterShape:t}}function Y4(e,t,n,a,r,s=!1,i="channelsLast",o){let[l,u,d,h,p]=[-1,-1,-1,-1,-1];if(i==="channelsLast")[l,u,d,h,p]=e;else if(i==="channelsFirst")[l,p,u,d,h]=e;else throw new Error(`Unknown dataFormat ${i}`);let[c,m,f,,g]=t,[y,A,x]=FA(n),[v,b,w]=FA(a),I=ql(c,v),T=ql(m,b),C=ql(f,w),{padInfo:z,outDepth:$,outHeight:S,outWidth:D}=pG(r,u,d,h,y,A,x,I,T,C,o),_=s?g*p:g,W;return i==="channelsFirst"?W=[l,_,$,S,D]:i==="channelsLast"&&(W=[l,$,S,D,_]),{batchSize:l,dataFormat:i,inDepth:u,inHeight:d,inWidth:h,inChannels:p,outDepth:$,outHeight:S,outWidth:D,outChannels:_,padInfo:z,strideDepth:y,strideHeight:A,strideWidth:x,filterDepth:c,filterHeight:m,filterWidth:f,effectiveFilterDepth:I,effectiveFilterHeight:T,effectiveFilterWidth:C,dilationDepth:v,dilationHeight:b,dilationWidth:w,inShape:e,outShape:W,filterShape:t}}function uG(e,t,n,a,r){a==null&&(a=RA(e,t,n));let s=e[0],i=e[1],o=Ki((s-t+2*a)/n+1,r),l=Ki((i-t+2*a)/n+1,r);return[o,l]}function dG(e,t,n,a,r,s){r==null&&(r=RA(e,t,a));let i=e[0],o=e[1],l=e[2],u=Ki((i-t+2*r)/a+1,s),d=Ki((o-t+2*r)/a+1,s),h=Ki((l-t+2*r)/a+1,s);return[u,d,h,n]}function RA(e,t,n,a=1){let r=ql(t,a);return Math.floor((e[0]*(n-1)-n+r)/2)}function If(e){return typeof e=="number"?[e,e,e]:e.length===2?[e[0],e[1],1]:e}function FA(e){return typeof e=="number"?[e,e,e]:e}function ql(e,t){return t<=1?e:e+(e-1)*(t-1)}function hG(e,t,n,a,r,s,i,o,l){let u,d,h;if(typeof e=="number"){u={top:e,bottom:e,left:e,right:e,type:e===0?"VALID":"NUMBER"};let p=uG([t,n],s,a,e,o);d=p[0],h=p[1]}else if(e==="same"){d=Math.ceil(t/a),h=Math.ceil(n/r);let p=Math.max(0,(d-1)*a+s-t),c=Math.max(0,(h-1)*r+i-n),m=Math.floor(p/2),f=p-m,g=Math.floor(c/2),y=c-g;u={top:m,bottom:f,left:g,right:y,type:"SAME"}}else if(e==="valid")u={top:0,bottom:0,left:0,right:0,type:"VALID"},d=Math.ceil((t-s+1)/a),h=Math.ceil((n-i+1)/r);else if(typeof e=="object"){let p=l==="channelsLast"?e[1][0]:e[2][0],c=l==="channelsLast"?e[1][1]:e[2][1],m=l==="channelsLast"?e[2][0]:e[3][0],f=l==="channelsLast"?e[2][1]:e[3][1];u={top:p,bottom:c,left:m,right:f,type:p===0&&c===0&&m===0&&f===0?"VALID":"EXPLICIT"},d=Ki((t-s+p+c)/a+1,o),h=Ki((n-i+m+f)/r+1,o)}else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:u,outHeight:d,outWidth:h}}function pG(e,t,n,a,r,s,i,o,l,u,d){let h,p,c,m;if(typeof e=="number"){h={top:e,bottom:e,left:e,right:e,front:e,back:e,type:e===0?"VALID":"NUMBER"};let f=dG([t,n,a,1],o,1,r,e,d);p=f[0],c=f[1],m=f[2]}else if(e==="same"){p=Math.ceil(t/r),c=Math.ceil(n/s),m=Math.ceil(a/i);let f=(p-1)*r+o-t,g=(c-1)*s+l-n,y=(m-1)*i+u-a,A=Math.floor(f/2),x=f-A,v=Math.floor(g/2),b=g-v,w=Math.floor(y/2),I=y-w;h={top:v,bottom:b,left:w,right:I,front:A,back:x,type:"SAME"}}else if(e==="valid")h={top:0,bottom:0,left:0,right:0,front:0,back:0,type:"VALID"},p=Math.ceil((t-o+1)/r),c=Math.ceil((n-l+1)/s),m=Math.ceil((a-u+1)/i);else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:h,outDepth:p,outHeight:c,outWidth:m}}function Ki(e,t){if(!t)return Math.trunc(e);switch(t){case"round":return Math.round(e);case"ceil":return Math.ceil(e);case"floor":return Math.floor(e);default:throw new Error(`Unknown roundingMode ${t}`)}}function Ls(e){let[t,n,a]=If(e);return t===1&&n===1&&a===1}function Mr(e,t){return Ls(e)||Ls(t)}function J4(e){if(e==="NHWC")return"channelsLast";if(e==="NCHW")return"channelsFirst";throw new Error(`Unknown dataFormat ${e}`)}function cG(e,t){let n={x:F(e,"x","reshape","string_or_numeric")},a={shape:t};return j.runKernel(Qd,n,a)}var Y=B({reshape_:cG});function fG(e,t,n,a,r){let s=F(e,"x","avgPool","float32"),i=1;P(Mr(n,i),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${i}'`);let o=s,l=!1;s.rank===3&&(l=!0,o=Y(s,[1,s.shape[0],s.shape[1],s.shape[2]])),P(o.rank===4,()=>`Error in avgPool: x must be rank 4 but got rank ${o.rank}.`),r!=null&&P(mn(a),()=>`Error in avgPool: pad must be an integer when using, dimRoundingMode ${r} but got pad ${a}.`);let u={x:o},d={filterSize:t,strides:n,pad:a,dimRoundingMode:r},h=j.runKernel(Jo,u,d);return h=we(h,s.dtype),l?Y(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var Sf=B({avgPool_:fG});function mG(e,t,n,a,r,s="NDHWC"){let i=F(e,"x","avgPool3d","float32"),o=i,l=!1;i.rank===4&&(l=!0,o=Y(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),P(o.rank===5,()=>`Error in avgPool3d: x must be rank 5 but got rank ${o.rank}.`),P(s==="NDHWC",()=>`Error in avgPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),r!=null&&P(mn(a),()=>`Error in avgPool3d: pad must be an integer when using, dimRoundingMode ${r} but got pad ${a}.`);let u={x:o},d={filterSize:t,strides:n,pad:a,dimRoundingMode:r,dataFormat:s},h=j.runKernel(Kc,u,d);return h=we(h,o.dtype),l?Y(h,[h.shape[1],h.shape[2],h.shape[3],h.shape[4]]):h}var Q4=B({avgPool3d_:mG});function gG(e,t=0){P(e.length>=1,()=>"Pass at least one tensor to concat");let n=Af(e,"tensors","concat","string_or_numeric");if(n[0].dtype==="complex64"&&n.forEach(s=>{if(s.dtype!=="complex64")throw new Error(`Cannot concatenate complex64 tensors with a tensor
|
|
with dtype ${s.dtype}. `)}),n.length===1)return Gi(n[0]);let a=n,r={axis:t};return j.runKernel(Cd,a,r)}var en=B({concat_:gG});function yG(e){let t={x:F(e,"x","sigmoid")};return j.runKernel(Rl,t)}var $r=B({sigmoid_:yG});function AG(e,t,n){let a=F(e,"x","slice","string_or_numeric");if(a.rank===0)throw new Error("Slicing scalar is not possible");let r={x:a},s={begin:t,size:n};return j.runKernel(ah,r,s)}var nt=B({slice_:AG});function xG(e){let t={x:F(e,"x","tanh")};return j.runKernel(zl,t)}var Kl=B({tanh_:xG});function bG(e,t,n,a,r,s){let i=F(e,"forgetBias","basicLSTMCell"),o=F(t,"lstmKernel","basicLSTMCell"),l=F(n,"lstmBias","basicLSTMCell"),u=F(a,"data","basicLSTMCell"),d=F(r,"c","basicLSTMCell"),h=F(s,"h","basicLSTMCell"),p=en([u,h],1),c=it(p,o),m=pe(c,l),f=m.shape[0],g=m.shape[1]/4,y=[f,g],A=nt(m,[0,0],y),x=nt(m,[0,g],y),v=nt(m,[0,g*2],y),b=nt(m,[0,g*3],y),w=pe(K($r(A),Kl(x)),K(d,$r(pe(i,v)))),I=K(Kl(w),$r(b));return[w,I]}var gwe=B({basicLSTMCell_:bG});function vG(e,t,n){let a=F(e,"x","batchToSpaceND"),r=t.reduce((o,l)=>o*l);P(a.rank>=1+t.length,()=>`input rank is ${a.rank} but should be > than blockShape.length ${t.length}`),P(n.length===t.length,()=>`crops.length is ${n.length} but should be equal to blockShape.length ${t.length}`),P(a.shape[0]%r==0,()=>`input tensor batch is ${a.shape[0]} but is not divisible by the product of the elements of blockShape ${t.join(" * ")} === ${r}`);let s={x:a},i={blockShape:t,crops:n};return j.runKernel(Xc,s,i)}var Nf=B({batchToSpaceND_:vG});function wG(e){let t;return e.rank===0||e.rank===1?t=Y(e,[1,1,1,e.size]):e.rank===2?t=Y(e,[1,1,e.shape[0],e.shape[1]]):e.rank===3?t=Y(e,[1,e.shape[0],e.shape[1],e.shape[2]]):t=e,t}function kG(e,t,n,a,r,s){s==null&&(s=.001);let i=F(e,"x","batchNorm"),o=F(t,"mean","batchNorm"),l=F(n,"variance","batchNorm"),u;r!=null&&(u=F(r,"scale","batchNorm"));let d;a!=null&&(d=F(a,"offset","batchNorm")),P(o.rank===l.rank,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),P(d==null||o.rank===d.rank,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),P(u==null||o.rank===u.rank,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let h={x:wG(i),scale:u,offset:d,mean:o,variance:l},p={varianceEpsilon:s},c=j.runKernel(dl,h,p);return Y(c,i.shape)}var Xl=B({batchNorm_:kG});function IG(e,t,n,a,r,s){let i=F(e,"x","batchNorm"),o=F(t,"mean","batchNorm"),l=F(n,"variance","batchNorm"),u;r!=null&&(u=F(r,"scale","batchNorm"));let d;return a!=null&&(d=F(a,"offset","batchNorm")),P(i.rank===2,()=>`Error in batchNorm2D: x must be rank 2 but got rank ${i.rank}.`),P(o.rank===2||o.rank===1,()=>`Error in batchNorm2D: mean must be rank 2 or rank 1 but got rank ${o.rank}.`),P(l.rank===2||l.rank===1,()=>`Error in batchNorm2D: variance must be rank 2 or rank 1 but got rank ${l.rank}.`),u!=null&&P(u.rank===2||u.rank===1,()=>`Error in batchNorm2D: scale must be rank 2 or rank 1 but got rank ${u.rank}.`),d!=null&&P(d.rank===2||d.rank===1,()=>`Error in batchNorm2D: offset must be rank 2 or rank 1 but got rank ${d.rank}.`),Xl(i,o,l,d,u,s)}var SG=B({batchNorm2d_:IG});function NG(e,t,n,a,r,s){let i=F(e,"x","batchNorm"),o=F(t,"mean","batchNorm"),l=F(n,"variance","batchNorm"),u;r!=null&&(u=F(r,"scale","batchNorm"));let d;return a!=null&&(d=F(a,"offset","batchNorm")),P(i.rank===3,()=>`Error in batchNorm3D: x must be rank 3 but got rank ${i.rank}.`),P(o.rank===3||o.rank===1,()=>`Error in batchNorm3D: mean must be rank 3 or rank 1 but got rank ${o.rank}.`),P(l.rank===3||l.rank===1,()=>`Error in batchNorm3D: variance must be rank 3 or rank 1 but got rank ${l.rank}.`),u!=null&&P(u.rank===3||u.rank===1,()=>`Error in batchNorm3D: scale must be rank 3 or rank 1 but got rank ${u.rank}.`),d!=null&&P(d.rank===3||d.rank===1,()=>`Error in batchNorm3D: offset must be rank 3 or rank 1 but got rank ${d.rank}.`),Xl(i,o,l,d,u,s)}var TG=B({batchNorm3d_:NG});function EG(e,t,n,a,r,s){let i=F(e,"x","batchNorm"),o=F(t,"mean","batchNorm"),l=F(n,"variance","batchNorm"),u;r!=null&&(u=F(r,"scale","batchNorm"));let d;return a!=null&&(d=F(a,"offset","batchNorm")),P(i.rank===4,()=>`Error in batchNorm4D: x must be rank 4 but got rank ${i.rank}.`),P(o.rank===4||o.rank===1,()=>`Error in batchNorm4D: mean must be rank 4 or rank 1 but got rank ${o.rank}.`),P(l.rank===4||l.rank===1,()=>`Error in batchNorm4D: variance must be rank 4 or rank 1 but got rank ${l.rank}.`),u!=null&&P(u.rank===4||u.rank===1,()=>`Error in batchNorm4D: scale must be rank 4 or rank 1 but got rank ${u.rank}.`),d!=null&&P(d.rank===4||d.rank===1,()=>`Error in batchNorm4D: offset must be rank 4 or rank 1 but got rank ${d.rank}.`),Xl(i,o,l,d,u,s)}var CG=B({batchNorm4d_:EG});function MG(e,t,n){let a=F(e,"x","bincount"),r=F(t,"weights","bincount");P(a.dtype==="int32",()=>`Error in bincount: input dtype must be int32, but got ${a.dtype}`),P(n>=0,()=>`size must be non-negative, but got ${n}.`),P(r.size===a.size||r.size===0,()=>`Error in bincount: weights must have the same size as input or0-length, but got input shape: ${a.shape}, weights shape: ${r.shape}.`);let s={x:a,weights:r},i={size:n};return j.runKernel(w1,s,i)}var e8=B({bincount_:MG});function $G(e,t){let n=F(e,"broadcastTo","x"),a=n.shape;if(t.some(l=>!(l>0)||l%1!=0))throw new Error(`broadcastTo(): Invalid broadcast shape [${t}].`);if(t.length<n.rank)throw new Error(`broadcastTo(): shape.length=${t.length} < input.rank=${n.rank}.`);if(t.length>n.rank){let l=n.shape.slice();for(;l.length<t.length;)l.unshift(1);n=Y(n,l)}let r=n.shape,s=Array.from(t);for(let l=t.length-1;l>=0;l--)if(r[l]===t[l])s[l]=1;else if(n.shape[l]!==1)throw new Error(`broadcastTo(): [${a}] cannot be broadcast to [${t}].`);if(s.map((l,u)=>l>1?u:-1).filter(l=>l>=0).length===0)return Gi(n);let i={x:n},o={reps:s};return j.runKernel(Pi,i,o)}var Sh=B({broadcastTo_:$G});function RG(e){let t={x:F(e,"x","ceil")};return j.runKernel(Ni,t)}var t8=B({ceil_:RG});function FG(e,t,n){let a=F(e,"x","clipByValue");P(t<=n,()=>`Error in clip: min (${t}) must be less than or equal to max (${n}).`);let r={x:a},s={clipValueMin:t,clipValueMax:n};return j.runKernel(Ti,r,s)}var ua=B({clipByValue_:FG});function OG(e){return en(e,0)}var DG=B({concat1d_:OG});function _G(e,t){return en(e,t)}var zG=B({concat2d_:_G});function PG(e,t){return en(e,t)}var LG=B({concat3d_:PG});function WG(e,t){return en(e,t)}var BG=B({concat4d_:WG});function VG(e,t,n,a,r="NHWC",s=[1,1],i){let o=F(e,"x","conv2d"),l=F(t,"filter","conv2d"),u=o,d=!1;o.rank===3&&(d=!0,u=Y(o,[1,o.shape[0],o.shape[1],o.shape[2]])),P(u.rank===4,()=>`Error in conv2d: input must be rank 4, but got rank ${u.rank}.`),P(l.rank===4,()=>`Error in conv2d: filter must be rank 4, but got rank ${l.rank}.`),i!=null&&P(mn(a),()=>`Error in conv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${a}.`);let h=r==="NHWC"?u.shape[3]:u.shape[1];P(h===l.shape[2],()=>`Error in conv2d: depth of input (${h}) must match input depth for filter ${l.shape[2]}.`),P(Mr(n,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`);let p={x:u,filter:l},c={strides:n,pad:a,dataFormat:r,dilations:s,dimRoundingMode:i},m=j.runKernel(tl,p,c);return d?Y(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var Ws=B({conv2d_:VG});function UG(e,t,n,a,r="NWC",s=1,i){let o=F(e,"x","conv1d"),l=F(t,"filter","conv1d"),u=o,d=!1;o.rank===2&&(d=!0,u=Y(o,[1,o.shape[0],o.shape[1]])),P(u.rank===3,()=>`Error in conv1d: input must be rank 3, but got rank ${u.rank}.`),P(l.rank===3,()=>`Error in conv1d: filter must be rank 3, but got rank ${l.rank}.`),i!=null&&P(mn(a),()=>`Error in conv1d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${a}.`),P(u.shape[2]===l.shape[1],()=>`Error in conv1d: depth of input (${u.shape[2]}) must match input depth for filter ${l.shape[1]}.`),P(Mr(n,s),()=>`Error in conv1D: Either stride or dilation must be 1. Got stride ${n} and dilation '${s}'`),P(r==="NWC",()=>`Error in conv1d: got dataFormat of ${r} but only NWC is currently supported.`);let h=Y(l,[1,l.shape[0],l.shape[1],l.shape[2]]),p=Y(u,[u.shape[0],1,u.shape[1],u.shape[2]]),c=Ws(p,h,[1,n],a,"NHWC",[1,s],i);return d?Y(c,[c.shape[2],c.shape[3]]):Y(c,[c.shape[0],c.shape[2],c.shape[3]])}var OA=B({conv1d_:UG});function jG(e,t,n,a,r,s="NHWC",i){P(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let o=e,l=t,u=!1;t.rank===3&&(u=!0,l=Y(t,[1,t.shape[0],t.shape[1],t.shape[2]]),o=[1,e[0],e[1],e[2]]),P(o.length===4,()=>`Error in conv2dDerInput: inShape must be length 4, but got length ${o.length}.`),P(l.rank===4,()=>`Error in conv2dDerInput: dy must be rank 4, but got rank ${l.rank}`),P(n.rank===4,()=>`Error in conv2dDerInput: filter must be rank 4, but got rank ${n.rank}`);let d=s==="NHWC"?o[3]:o[1],h=s==="NHWC"?l.shape[3]:l.shape[1];P(d===n.shape[2],()=>`Error in conv2dDerInput: depth of input (${d}) must match input depth for filter ${n.shape[2]}.`),P(h===n.shape[3],()=>`Error in conv2dDerInput: depth of output (${h}) must match output depth for filter ${n.shape[3]}.`),i!=null&&P(mn(r),()=>`Error in conv2dDerInput: pad must be an integer when using, dimRoundingMode ${i} but got pad ${r}.`);let p={dy:l,filter:n},c={strides:a,pad:r,dataFormat:s,dimRoundingMode:i,inputShape:o},m=j.runKernel(nl,p,c);return u?Y(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var DA=B({conv2DBackpropInput_:jG});function HG(e,t,n,a,r,s){let i=F(e,"x","conv2dTranspose"),o=F(t,"filter","conv2dTranspose");return DA(n,i,o,a,r,"NHWC",s)}var _A=B({conv2dTranspose_:HG});function GG(e,t,n,a,r="NDHWC",s=[1,1,1]){let i=F(e,"x","conv3d"),o=F(t,"filter","conv3d"),l=i,u=!1;i.rank===4&&(u=!0,l=Y(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),P(l.rank===5,()=>`Error in conv3d: input must be rank 5, but got rank ${l.rank}.`),P(o.rank===5,()=>`Error in conv3d: filter must be rank 5, but got rank ${o.rank}.`),P(l.shape[4]===o.shape[3],()=>`Error in conv3d: depth of input (${l.shape[4]}) must match input depth for filter ${o.shape[3]}.`),P(Mr(n,s),()=>`Error in conv3D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),P(r==="NDHWC",()=>`Error in conv3d: got dataFormat of ${r} but only NDHWC is currently supported.`);let d={x:l,filter:o},h={strides:n,pad:a,dataFormat:r,dilations:s},p=j.runKernel(Yc,d,h);return u?Y(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var n8=B({conv3d_:GG});function qG(e,t,n,a,r){P(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let s=e,i=t,o=!1;t.rank===4&&(o=!0,i=Y(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]]),s=[1,e[0],e[1],e[2],e[3]]);let l=s[4],u=i.shape[4];P(s.length===5,()=>`Error in conv3dDerInput: inShape must be length 5, but got length ${s.length}.`),P(i.rank===5,()=>`Error in conv3dDerInput: dy must be rank 5, but got rank ${i.rank}`),P(n.rank===5,()=>`Error in conv3dDerInput: filter must be rank 5, but got rank ${n.rank}`),P(l===n.shape[3],()=>`Error in conv3dDerInput: depth of input (${l}) must match input depth for filter ${n.shape[3]}.`),P(u===n.shape[4],()=>`Error in conv3dDerInput: depth of output (${u}) must match output depth for filter ${n.shape[4]}.`);let d={dy:i,filter:n},h={pad:r,strides:a,inputShape:s},p=j.runKernel(N1,d,h);return o?Y(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var a8=B({conv3DBackpropInput_:qG});function KG(e,t,n,a,r){let s=F(e,"x","conv3dTranspose"),i=F(t,"filter","conv3dTranspose");return a8(n,s,i,a,r)}var XG=B({conv3dTranspose_:KG});function ZG(e){let t={x:F(e,"x","cos")};return j.runKernel(al,t)}var Tf=B({cos_:ZG});function YG(e){let t={x:F(e,"x","cosh")};return j.runKernel(Md,t)}var zA=B({cosh_:YG});function JG(e,t=0,n=!1,a=!1){let r={x:F(e,"x","cumsum")},s={axis:t,exclusive:n,reverse:a};return j.runKernel(rl,r,s)}var PA=B({cumsum_:JG});function QG(e,t,n,a=!1){let r=F(e,"x","denseBincount"),s=F(t,"weights","denseBincount");P(r.dtype==="int32",()=>`Error in denseBincount: input dtype must be int32, but got ${r.dtype}`),P(r.rank<=2,()=>`Error in denseBincount: input must be at most rank 2, but got rank ${r.rank}.`),P(n>=0,()=>`size must be non-negative, but got ${n}.`),P(s.size===r.size||s.size===0,()=>`Error in denseBincount: weights must have the same shape as x or 0-length, but got x shape: ${r.shape}, weights shape: ${s.shape}.`);let i={x:r,weights:s},o={size:n,binaryOutput:a};return j.runKernel(T1,i,o)}var eq=B({denseBincount_:QG});function tq(e,t,n="NHWC"){let a=F(e,"x","depthToSpace"),r=n==="NHWC"?a.shape[1]:a.shape[2],s=n==="NHWC"?a.shape[2]:a.shape[3],i=n==="NHWC"?a.shape[3]:a.shape[1];P(r*t>=0,()=>`Negative dimension size caused by overflow when multiplying
|
|
${r} and ${t} for depthToSpace with input shape
|
|
${a.shape}`),P(s*t>=0,()=>`Negative dimension size caused by overflow when multiplying
|
|
${s} and ${t} for depthToSpace with input shape
|
|
${a.shape}`),P(i%(t*t)==0,()=>`Dimension size must be evenly divisible by ${t*t} but is ${i} for depthToSpace with input shape ${a.shape}`);let o={x:a},l={blockSize:t,dataFormat:n};return j.runKernel(Rd,o,l)}var r8=B({depthToSpace_:tq});function nq(e,t,n,a,r="NHWC",s=[1,1],i){let o=F(e,"x","depthwiseConv2d"),l=F(t,"filter","depthwiseConv2d"),u=o,d=!1;o.rank===3&&(d=!0,u=Y(o,[1,o.shape[0],o.shape[1],o.shape[2]])),P(u.rank===4,()=>`Error in depthwiseConv2d: input must be rank 4, but got rank ${u.rank}.`),P(l.rank===4,()=>`Error in depthwiseConv2d: filter must be rank 4, but got rank ${l.rank}.`),P(u.shape[3]===l.shape[2],()=>`Error in depthwiseConv2d: number of input channels (${u.shape[3]}) must match the inChannels dimension in filter ${l.shape[2]}.`),i!=null&&P(mn(a),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${a}.`);let h={x:u,filter:l},p={strides:n,pad:a,dataFormat:r,dilations:s,dimRoundingMode:i},c=j.runKernel(sl,h,p);return d?Y(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var Nh=B({depthwiseConv2d_:nq});function aq(e){let t={x:F(e,"x","diag")};return j.runKernel(M1,t)}var ywe=B({diag_:aq});function rq(e,t,n,a,r=[1,1],s="NHWC"){let i=F(e,"x","dilation2d"),o=F(t,"filter","dilation2d");P(i.rank===3||i.rank===4,()=>`Error in dilation2d: input must be rank 3 or 4, but got rank ${i.rank}.`),P(o.rank===3,()=>`Error in dilation2d: filter must be rank 3, but got rank ${o.rank}.`),P(s==="NHWC",()=>`Error in dilation2d: Only NHWC is currently supported, but got dataFormat of ${s}`);let l=i,u=!1;i.rank===3&&(l=Y(i,[1,i.shape[0],i.shape[1],i.shape[2]]),u=!0);let d={x:l,filter:o},h={strides:n,pad:a,dilations:r},p=j.runKernel(Jc,d,h);return u?Y(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var s8=B({dilation2d_:rq});function sq(e,t){let n=e.length,a=[];for(let r=0;r<n;r++){let s=n-1-r,i=e[s]||1;(t[t.length-1-r]||1)>1&&i===1&&a.unshift(s)}return a}function ln(e,t){let n=[];for(let a=0;a<t.length;a++){let r=e[e.length-a-1],s=t.length-a-1,i=t[s];(r==null||r===1&&i>1)&&n.unshift(s)}return n}function Rt(e,t){let n=[],a=Math.max(e.length,t.length);for(let r=0;r<a;r++){let s=e[e.length-r-1];s==null&&(s=1);let i=t[t.length-r-1];if(i==null&&(i=1),s===1)n.unshift(i);else if(i===1)n.unshift(s);else if(s!==i){let o=`Operands could not be broadcast together with shapes ${e} and ${t}.`;throw Error(o)}else n.unshift(s)}return n}function iq(e,t){let n=F(e,"a","equal","string_or_numeric"),a=F(t,"b","equal","string_or_numeric");[n,a]=Ut(n,a),Rt(n.shape,a.shape);let r={a:n,b:a};return j.runKernel(ol,r)}var Xi=B({equal_:iq});function oq(e,t,n){let a=F(t,"a","where"),r=F(n,"b","where"),s=F(e,"condition","where","bool"),i=Rt(Rt(s.shape,a.shape),r.shape),o=Sh(s,i),l=Sh(a,i),u=Sh(r,i),d={condition:o,t:l,e:u};return j.runKernel(th,d)}var Pn=B({where_:oq});function lq(e){let t={x:F(e,"x","zerosLike")};return j.runKernel(ph,t)}var at=B({zerosLike_:lq});function uq(e,t){let n=F(e,"a","div"),a=F(t,"b","div");[n,a]=Ut(n,a);let r=Me(n,a),s=at(r),i=Xi(a,s);return Pn(i,s,r)}var i8=B({divNoNan_:uq});function dq(e,t){let n=F(e,"t1","dot"),a=F(t,"t2","dot");P((n.rank===1||n.rank===2)&&(a.rank===1||a.rank===2),()=>`Error in dot: inputs must all be rank 1 or 2, but got ranks ${n.rank} and ${a.rank}.`);let r=n.rank===1?n.size:n.shape[1],s=a.rank===1?a.size:a.shape[0];if(P(r===s,()=>`Error in dot: inner dimensions of inputs must match, but got ${r} and ${s}.`),n.rank===1&&a.rank===1){let i=Y(n,[1,-1]),o=Y(a,[-1,1]),l=it(i,o);return Y(l,[])}else if(n.rank===1&&a.rank===2){let i=Y(n,[1,-1]),o=Y(a,[a.shape[0],a.shape[1]]),l=it(i,o);return Y(l,[l.size])}else if(n.rank===2&&a.rank===1){let i=Y(a,[-1,1]),o=it(n,i);return Y(o,[o.size])}else{let i=Y(a,[a.shape[0],a.shape[1]]);return it(n,i)}}var hq=B({dot_:dq});function pq(e,...t){let n=t.map((r,s)=>F(r,`tensors${s}`,"einsum")),a={equation:e};return j.runKernel(F1,n,a)}var cq=B({einsum_:pq});function fq(e){let t={x:F(e,"x","elu")};return j.runKernel(Fd,t)}var Th=B({elu_:fq});function mq(e){let t=F(e,"x","erf");P(t.dtype==="int32"||t.dtype==="float32",()=>"Input dtype must be `int32` or `float32`."),t.dtype==="int32"&&(t=we(t,"float32"));let n={x:t};return j.runKernel(Od,n)}var o8=B({erf_:mq});function gq(e){let t={x:F(e,"x","exp")};return j.runKernel(Ei,t)}var qa=B({exp_:gq});function yq(e,t=0){let n=F(e,"x","expandDims","string_or_numeric");P(t<=n.rank,()=>"Axis must be <= rank of the tensor");let a={input:n},r={dim:t};return j.runKernel(Dd,a,r)}var Ea=B({expandDims_:yq});function Aq(e){let t={x:F(e,"x","expm1")};return j.runKernel(ll,t)}var l8=B({expm1_:Aq});function xq(e,t){let n=F(e,"x","tile","string_or_numeric");P(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of reps ${t}.`);let a={x:n},r={reps:t};return j.runKernel(Pi,a,r)}var Zi=B({tile_:xq});function bq(e,t,n,a="float32"){t==null&&(t=e);let r=Pe([e,t],a),s=e<=t?e:t;for(let o=0;o<s;++o)r.set(1,o,o);let i=Y(r.toTensor(),[e,t]);if(n==null)return i;if(n.length===1)return Zi(Ea(i,0),[n[0],1,1]);if(n.length===2)return Zi(Ea(Ea(i,0),0),[n[0],n[1],1,1]);if(n.length===3)return Zi(Ea(Ea(Ea(i,0),0),0),[n[0],n[1],n[2],1,1]);throw new Error(`eye() currently supports only 1D and 2D batchShapes, but received ${n.length}D.`)}var u8=B({eye_:bq});function Eh(e,t,n){let a={shape:e,value:t,dtype:n};return j.runKernel(Qc,{},a)}function vq(e){let t={x:F(e,"x","floor")};return j.runKernel(Ci,t)}var Ch=B({floor_:vq});function wq(e,t,n=0,a=0){let r=F(e,"x","gather"),s=F(t,"indices","gather","int32"),i={x:r,indices:s},o={axis:n,batchDims:a};return j.runKernel(zd,i,o)}var Mh=B({gather_:wq});function kq(e,t){let n=F(e,"a","greater","string_or_numeric"),a=F(t,"b","greater","string_or_numeric");[n,a]=Ut(n,a),Rt(n.shape,a.shape);let r={a:n,b:a};return j.runKernel(hl,r)}var Ca=B({greater_:kq});function Iq(e,t){let n=F(e,"a","greaterEqual","string_or_numeric"),a=F(t,"b","greaterEqual","string_or_numeric");[n,a]=Ut(n,a),Rt(n.shape,a.shape);let r={a:n,b:a};return j.runKernel(Mi,r)}var Yi=B({greaterEqual_:Iq});function Sq(e){let t={input:F(e,"input","imag")};return j.runKernel(z1,t)}var LA=B({imag_:Sq});function Nq(e){let t={x:F(e,"x","isFinite")};return j.runKernel(Ld,t)}var Tq=B({isFinite_:Nq});function Eq(e){let t={x:F(e,"x","isInf")};return j.runKernel(Wd,t)}var Cq=B({isInf_:Eq});function Mq(e){let t={x:F(e,"x","isNaN")};return j.runKernel(Bd,t)}var d8=B({isNaN_:Mq});function $q(e,t=.2){let n={x:F(e,"x","leakyRelu")},a={alpha:t};return j.runKernel(cl,n,a)}var Ef=B({leakyRelu_:$q});function Rq(e,t){let n=F(e,"a","less","string_or_numeric"),a=F(t,"b","less","string_or_numeric");[n,a]=Ut(n,a),Rt(n.shape,a.shape);let r={a:n,b:a};return j.runKernel(fl,r)}var WA=B({less_:Rq});function Fq(e,t){let n=F(e,"a","lessEqual","string_or_numeric"),a=F(t,"b","lessEqual","string_or_numeric");[n,a]=Ut(n,a),Rt(n.shape,a.shape);let r={a:n,b:a};return j.runKernel(ml,r)}var Ji=B({lessEqual_:Fq});function Oq(e,t,n){if(n<=0)throw new Error("The number of values should be positive.");let a={start:e,stop:t,num:n};return j.runKernel(P1,{},a)}function Dq(e,t=5,n=1,a=1,r=.5){let s=F(e,"x","localResponseNormalization");P(s.rank===4||s.rank===3,()=>`Error in localResponseNormalization: x must be rank 3 or 4 but got
|
|
rank ${s.rank}.`),P(mn(t),()=>`Error in localResponseNormalization: depthRadius must be an integer but got depthRadius ${t}.`);let i=s,o=!1;s.rank===3&&(o=!0,i=Y(s,[1,s.shape[0],s.shape[1],s.shape[2]]));let l={x:i},u={depthRadius:t,bias:n,alpha:a,beta:r},d=j.runKernel(nf,l,u);return o?Y(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var h8=B({localResponseNormalization_:Dq});function _q(e){let t={x:F(e,"x","log")};return j.runKernel($i,t)}var Ma=B({log_:_q});function zq(e){let t={x:F(e,"x","log1p")};return j.runKernel(Vd,t)}var BA=B({log1p_:zq});function Pq(e,t){P(jc(e),()=>"The f passed in variableGrads(f) must be a function"),P(t==null||Array.isArray(t)&&t.every(u=>u instanceof gf),()=>"The varList passed in variableGrads(f, varList) must be an array of variables");let n=t!=null;if(!n){t=[];for(let u in j.registeredVariables)t.push(j.registeredVariables[u])}let a=n?t.filter(u=>!u.trainable):null,r=t.length;t=t.filter(u=>u.trainable),P(t.length>0,()=>`variableGrads() expects at least one of the input variables to be trainable, but none of the ${r} variables is trainable.`);let s=!0,{value:i,grads:o}=j.gradients(e,t,null,s);P(o.some(u=>u!=null),()=>"Cannot find a connection between any variable and the result of the loss function y=f(x). Please make sure the operations that use variables are inside the function f passed to minimize()."),P(i.rank===0,()=>`The f passed in variableGrads(f) must return a scalar, but it returned a rank-${i.rank} tensor`);let l={};return t.forEach((u,d)=>{o[d]!=null&&(l[u.name]=o[d])}),a!=null&&a.forEach(u=>l[u.name]=null),{value:i,grads:l}}function ss(e){return j.customGrad(e)}function Lq(e){let t={x:F(e,"x","neg")};return j.runKernel(Hd,t)}var Kt=B({neg_:Lq});function Wq(e){let t={x:F(e,"x","softplus")};return j.runKernel(ih,t)}var Zl=B({softplus_:Wq});function Bq(e){let t=F(e,"x","logSigmoid");return ss(n=>({value:Kt(Zl(Kt(n))),gradFunc:a=>K(a,$r(Kt(n)))}))(t)}var Vq=B({logSigmoid_:Bq});function Uq(e,t=null,n=!1){let a={x:F(e,"x","max")},r={reductionIndices:t,keepDims:n};return j.runKernel(gl,a,r)}var sr=B({max_:Uq});function jq(e,t){let n=F(e,"a","sub"),a=F(t,"b","sub");[n,a]=Ut(n,a);let r={a:n,b:a};return j.runKernel(zi,r)}var Ne=B({sub_:jq});function Hq(e,t=null,n=!1){let a=F(e,"x","sum");a.dtype==="bool"&&(a=we(a,"int32"));let r={x:a},s={axis:t,keepDims:n};return j.runKernel(Ol,r,s)}var Ce=B({sum_:Hq});function Gq(e,t=-1){let n=F(e,"logits","logSoftmax");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Log Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and axis was ${t}`);return ss((a,r)=>{let s=!0,i=sr(a,t,!0),o=Ne(a,i),l=Ne(we(o,"float32"),Ma(Ce(qa(o),t,s)));return r([l]),{value:l,gradFunc:(u,d)=>{let[h]=d,p=!0,c=qa(h);return Ne(u,K(Ce(u,t,p),c))}}})(n)}var VA=B({logSoftmax_:Gq});function UA(e,t){for(let n=0;n<e.length;++n)if(e[e.length-n-1]!==t-1-n)return!1;return!0}function p8(e,t,n){let a=e.length+t.length,r=[],s=0,i=0;for(let o=0;o<a;o++)n.indexOf(o)===-1?r.push(e[s++]):r.push(t[i++]);return r}function c8(e,t){let n=[],a=e.length;for(let s=0;s<a;s++)t.indexOf(s)===-1&&n.push(e[s]);let r=t.map(s=>e[s]);return[n,r]}function Qi(e,t){let n=t.map(a=>1);return p8(e,n,t)}function qq(e,t,n){P(UA(t,n),()=>`${e} supports only inner-most axes for now. Got axes ${t} and rank-${n} input.`)}function f8(e,t){if(UA(e,t))return null;let n=[];for(let a=0;a<t;++a)e.indexOf(a)===-1&&n.push(a);return e.forEach(a=>n.push(a)),n}function jA(e){return e.map((t,n)=>[n,t]).sort((t,n)=>t[1]-n[1]).map(t=>t[0])}function Kq(e,t){let n=[];for(let a=t-e;a<t;++a)n.push(a);return n}function Xq(e,t=null,n=!1){let a=F(e,"x","logSumExp"),r=Ha(t,a.shape),s=sr(a,r,!0),i=Ne(a,s),o=qa(i),l=Ce(o,r),u=Ma(l),d=pe(Y(s,u.shape),u);if(n){let h=Qi(d.shape,r);return Y(d,h)}return d}var m8=B({logSumExp_:Xq});function Zq(e,t){let n=F(e,"a","logicalAnd","bool"),a=F(t,"b","logicalAnd","bool");Rt(n.shape,a.shape);let r={a:n,b:a};return j.runKernel(Ud,r)}var ir=B({logicalAnd_:Zq});function Yq(e){let t={x:F(e,"x","logicalNot","bool")};return j.runKernel(ef,t)}var Cf=B({logicalNot_:Yq});function Jq(e,t){let n=F(e,"a","logicalOr","bool"),a=F(t,"b","logicalOr","bool");Rt(n.shape,a.shape);let r={a:n,b:a};return j.runKernel(tf,r)}var HA=B({logicalOr_:Jq});function Qq(e,t){let n=F(e,"a","logicalXor","bool"),a=F(t,"b","logicalXor","bool");return Rt(n.shape,a.shape),ir(HA(e,t),Cf(ir(e,t)))}var eK=B({logicalXor_:Qq});function tK(e,t,n,a,r){let s=F(e,"x","maxPool"),i=1,o=s,l=!1;s.rank===3&&(l=!0,o=Y(s,[1,s.shape[0],s.shape[1],s.shape[2]])),P(o.rank===4,()=>`Error in maxPool: input must be rank 4 but got rank ${o.rank}.`),P(Mr(n,i),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${i}'`),r!=null&&P(mn(a),()=>`Error in maxPool: pad must be an integer when using, dimRoundingMode ${r} but got pad ${a}.`);let u={x:o},d={filterSize:t,strides:n,pad:a,dimRoundingMode:r},h=j.runKernel(yl,u,d);return l?Y(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var Mf=B({maxPool_:tK});function nK(e,t=[1,1,1],n,a,r,s="NDHWC"){let i=F(e,"x","maxPool3d"),o=i,l=!1;i.rank===4&&(l=!0,o=Y(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),P(o.rank===5,()=>`Error in maxPool3d: x must be rank 5 but got rank ${o.rank}.`),P(s==="NDHWC",()=>`Error in maxPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),r!=null&&P(mn(a),()=>`Error in maxPool3d: pad must be an integer when using, dimRoundingMode ${r} but got pad ${a}.`);let u={x:o},d={filterSize:t,strides:n,pad:a,dimRoundingMode:r,dataFormat:s},h=j.runKernel(af,u,d);return l?Y(h,[h.shape[1],h.shape[2],h.shape[3],h.shape[4]]):h}var g8=B({maxPool3d_:nK});function aK(e,t,n,a,r=!1){let s={x:F(e,"x","maxPoolWithArgmax")},i={filterSize:t,strides:n,pad:a,includeBatchInIndex:r},o=j.runKernel(V1,s,i);return{result:o[0],indexes:o[1]}}var rK=B({maxPoolWithArgmax_:aK});function sK(e,t){let n=F(e,"a","maximum"),a=F(t,"b","maximum");[n,a]=Ut(n,a),n.dtype==="bool"&&(n=we(n,"int32"),a=we(a,"int32")),Rt(n.shape,a.shape);let r={a:n,b:a};return j.runKernel(Ri,r)}var is=B({maximum_:sK});function iK(e,t=null,n=!1){let a={x:F(e,"x","mean")},r={axis:t,keepDims:n};return j.runKernel(Al,a,r)}var Xt=B({mean_:iK});function un(e,t="float32"){if(t==="complex64"){let a=un(e,"float32"),r=un(e,"float32");return Vi(a,r)}let n=Gc(on(e),t);return j.makeTensor(n,e,t)}function os(e,t="float32"){if(t==="complex64"){let a=os(e,"float32"),r=un(e,"float32");return Vi(a,r)}let n=m1(on(e),t);return j.makeTensor(n,e,t)}function oK(e,t=null,n=!1){let a={x:F(e,"x","min")},r={axis:t,keepDims:n};return j.runKernel(xl,a,r)}var $f=B({min_:oK});function lK(e,t){let n=F(e,"a","minimum"),a=F(t,"b","minimum");[n,a]=Ut(n,a),n.dtype==="bool"&&(n=we(n,"int32"),a=we(a,"int32")),Rt(n.shape,a.shape);let r={a:n,b:a};return j.runKernel(Fi,r)}var $h=B({minimum_:lK});function uK(e,t,n){P(n==="reflect"||n==="symmetric",()=>`Invalid mode. Mode must be either reflect or symmetric. Got ${n}.`);let a=F(e,"x","mirrorPad");if(a.rank===0)throw new Error("mirrorPad(scalar) is not defined. Pass non-scalar to mirrorPad");P(t.length===a.rank,()=>`Padding doesn't match input. Must be ${a.rank}. Got ${t.length}.`);let r=n==="reflect"?1:0;for(let o=0;o<a.rank;o++)P(t[o].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),P(t[o][0]>=0&&t[o][0]<=a.shape[o]-r&&t[o][1]>=0&&t[o][1]<=a.shape[o]-r,()=>`Padding in dimension ${o} cannot be greater than or equal to ${a.shape[o]-r} or less than 0 for input of shape ${a.shape}`);let s={paddings:t,mode:n},i={x:a};return j.runKernel(bl,i,s)}var y8=B({mirrorPad_:uK});function dK(e,t){let n=F(e,"a","mod"),a=F(t,"b","mod");[n,a]=Ut(n,a);let r={a:n,b:a};return j.runKernel(jd,r)}var A8=B({mod_:dK});function hK(e){let t=F(e,"x","square"),n={};return j.runKernel("Square",{x:t},n)}var vt=B({square_:hK});function pK(e,t=null,n=!1){e=F(e,"x","moments");let a=Ha(t,e.shape),r=Xt(e,a,n),s=r.shape;n||(s=Qi(r.shape,a));let i=vt(Ne(we(e,"float32"),Y(r,s))),o=Xt(i,a,n);return{mean:r,variance:o}}var GA=B({moments_:pK});function cK(e,t,n,a){let r=F(t,"data","multiRNNCell"),s=Af(n,"c","multiRNNCell"),i=Af(a,"h","multiRNNCell"),o=r,l=[];for(let h=0;h<e.length;h++){let p=e[h](o,s[h],i[h]);l.push(p[0]),l.push(p[1]),o=p[1]}let u=[],d=[];for(let h=0;h<l.length;h+=2)u.push(l[h]),d.push(l[h+1]);return[u,d]}var Awe=B({multiRNNCell_:cK});function fK(e,t,n,a=!1){let r=F(e,"logits","multinomial"),s=r.size,i=r.rank;if(s<2)throw new Error(`Error in multinomial: you need at least 2 outcomes, but got ${s}.`);if(i>2)throw new Error(`Rank of probabilities must be 1 or 2, but is ${i}`);n=n||Math.random();let o={logits:i===1?Y(r,[1,-1]):r},l={numSamples:t,seed:n,normalized:a},u=j.runKernel(U1,o,l);return i===1?Y(u,[u.size]):u}var mK=B({multinomial_:fK});function gK(e,t){let n=F(e,"a","notEqual","string_or_numeric"),a=F(t,"b","notEqual","string_or_numeric");[n,a]=Ut(n,a),Rt(n.shape,a.shape);let r={a:n,b:a};return j.runKernel(vl,r)}var Yl=B({notEqual_:gK});function yK(e){let t={x:F(e,"x","onesLike")};return j.runKernel(Xd,t)}var $a=B({onesLike_:yK});function AK(e,t){let n=F(e,"v1","outerProduct"),a=F(t,"v2","outerProduct");P(n.rank===1&&a.rank===1,()=>`Error in outerProduct: inputs must be rank 1, but got ranks ${n.rank} and ${a.rank}.`);let r=Y(n,[-1,1]),s=Y(a,[1,-1]);return it(r,s)}var xwe=B({outerProduct_:AK});function xK(e,t,n=0){let a=F(e,"x","pad");if(a.rank===0)throw new Error("pad(scalar) is not defined. Pass non-scalar to pad");let r={paddings:t,constantValue:n},s={x:a};return j.runKernel(kl,s,r)}var Bs=B({pad_:xK});function bK(e,t,n=0){return P(t.length===2,()=>"Invalid number of paddings. Must be length of 2."),Bs(e,[t],n)}var bwe=B({pad1d_:bK});function vK(e,t,n=0){return P(t.length===2&&t[0].length===2&&t[1].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Bs(e,t,n)}var vwe=B({pad2d_:vK});function wK(e,t,n=0){return P(t.length===3&&t[0].length===2&&t[1].length===2&&t[2].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Bs(e,t,n)}var wwe=B({pad3d_:wK});function kK(e,t,n=0){return P(t.length===4&&t[0].length===2&&t[1].length===2&&t[2].length===2&&t[3].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Bs(e,t,n)}var kwe=B({pad4d_:kK});function IK(e,t,n){let a=F(e,"x","spaceToBatchND");P(a.rank>=1+t.length,()=>`input rank ${a.rank} should be > than [blockShape] ${t.length}`),P(n.length===t.length,()=>`paddings.shape[0] ${n.length} must be equal to [blockShape] ${t.length}`),P(a.shape.reduce((i,o,l)=>l>0&&l<=t.length?i&&(o+n[l-1][0]+n[l-1][1])%t[l-1]==0:i,!0),()=>`input spatial dimensions ${a.shape.slice(1)} with paddings ${n.toString()} must be divisible by blockShapes ${t.toString()}`);let r={x:a},s={blockShape:t,paddings:n};return j.runKernel(of,r,s)}var Rf=B({spaceToBatchND_:IK});function SK(e,t,n,a,r,s){r==null&&(r=[1,1]),s==null&&(s=1),a===0&&(a="valid");let i=F(e,"x","maxPool"),o=i,l=!1;i.rank===3&&(l=!0,o=Y(i,[1,i.shape[0],i.shape[1],i.shape[2]])),P(Mr(s,r),()=>`Error in pool: Either strides or dilations must be 1. Got strides ${s} and dilations '${r}'`);let u=Z4(o.shape,t,s,r,a),d=[u.dilationHeight,u.dilationWidth],h;a==="same"?h=TK([u.filterHeight,u.filterWidth],d):h=[[0,0],[0,0]];let p=d[0]===1&&d[1]===1,[c,m]=NK([u.inHeight,u.inWidth],d,h),f=p?a:"valid",g=p?o:Rf(o,d,c),y=(n==="avg"?()=>Sf(g,t,s,f):()=>Mf(g,t,s,f))(),A=p?y:Nf(y,d,m);return l?Y(A,[A.shape[1],A.shape[2],A.shape[3]]):A}function NK(e,t,n){let a=n.map(d=>d[0]),r=n.map(d=>d[1]),s=e.concat(a,r),i=t.map((d,h)=>(d-s[h]%d)%d),o=r.map((d,h)=>d+i[h]),l=t.map((d,h)=>[a[h],o[h]]),u=t.map((d,h)=>[0,i[h]]);return[l,u]}function TK(e,t){let n=e.map((s,i)=>s+(s-1)*(t[i]-1)).map(s=>s-1),a=n.map(s=>Math.floor(s/2)),r=n.map((s,i)=>s-a[i]);return n.map((s,i)=>[a[i],r[i]])}var EK=B({pool_:SK});function CK(e,t){let n=F(e,"base","pow"),a=F(t,"exp","pow");[n,a]=Ut(n,a);let r={a:n,b:a};return j.runKernel(Il,r)}var Vs=B({pow_:CK});function MK(e,t){let n=F(e,"x","prelu"),a=F(t,"alpha","prelu"),r={x:n,alpha:a};return j.runKernel(Sl,r)}var Ff=B({prelu_:MK});function $K(e,t=null,n=!1){let a=F(e,"x","prod");a.dtype==="bool"&&(a=we(a,"int32"));let r={x:a},s={axis:t,keepDims:n};return j.runKernel(Yd,r,s)}var qA=B({prod_:$K});function RK(e,t,n){let a=on(e),r=null;if(n==null||n==="float32")r=new Float32Array(a);else if(n==="int32")r=new Int32Array(a);else if(n==="bool")r=new Uint8Array(a);else throw new Error(`Unknown data type ${n}`);for(let s=0;s<a;s++)r[s]=t();return j.makeTensor(r,e,n)}var Iwe=B({rand_:RK}),KA=qr(Qg()),XA=class{constructor(e,t,n,a,r){this.mean=e,this.stdDev=t,this.dtype=n,this.nextVal=NaN,this.truncated=a,this.truncated&&(this.upper=this.mean+this.stdDev*2,this.lower=this.mean-this.stdDev*2);let s=r||Math.random();this.random=KA.alea(s.toString())}nextValue(){if(!isNaN(this.nextVal)){let a=this.nextVal;return this.nextVal=NaN,a}let e,t,n=!1;for(;!n;){let a,r,s;do a=2*this.random()-1,r=2*this.random()-1,s=a*a+r*r;while(s>=1||s===0);let i=Math.sqrt(-2*Math.log(s)/s);e=this.mean+this.stdDev*a*i,t=this.mean+this.stdDev*r*i,(!this.truncated||this.isValidTruncated(e))&&(n=!0)}return(!this.truncated||this.isValidTruncated(t))&&(this.nextVal=this.convertValue(t)),this.convertValue(e)}convertValue(e){return this.dtype==null||this.dtype==="float32"?e:Math.round(e)}isValidTruncated(e){return e<=this.upper&&e>=this.lower}},FK=class{constructor(e,t,n,a){this.alpha=e,this.beta=1/t,this.dtype=n;let r=a||Math.random();this.randu=KA.alea(r.toString()),this.randn=new XA(0,1,n,!1,this.randu()),e<1?this.d=e+2/3:this.d=e-1/3,this.c=1/Math.sqrt(9*this.d)}nextValue(){let e,t,n,a,r,s;for(;;){do a=this.randn.nextValue(),s=1+this.c*a;while(s<=0);if(s*=s*s,e=a*a,t=1-.331*e*e,n=.5*e+this.d*(1-s+Math.log(s)),r=this.randu(),r<t||Math.log(r)<n)break}return s=1/this.beta*this.d*s,this.alpha<1&&(s*=Math.pow(this.randu(),1/this.alpha)),this.convertValue(s)}convertValue(e){return this.dtype==="float32"?e:Math.round(e)}},OK=class{constructor(e=0,t=1,n,a){if(this.canReturnFloat=()=>this.dtype==null||this.dtype==="float32",this.min=e,this.range=t-e,this.dtype=n,a==null&&(a=Math.random()),typeof a=="number"&&(a=a.toString()),!this.canReturnFloat()&&this.range<=1)throw new Error(`The difference between ${e} - ${t} <= 1 and dtype is not float`);this.random=KA.alea(a)}convertValue(e){return this.canReturnFloat()?e:Math.round(e)}nextValue(){return this.convertValue(this.min+this.range*this.random())}};function DK(e,t,n=1,a="float32",r){if(n==null&&(n=1),a==null&&(a="float32"),a!=="float32"&&a!=="int32")throw new Error(`Unsupported data type ${a}`);let s=new FK(t,n,a,r),i=Pe(e,a);for(let o=0;o<i.values.length;o++)i.values[o]=s.nextValue();return i.toTensor()}var Swe=B({randomGamma_:DK});function _K(e,t=0,n=1,a,r){if(a!=null&&a==="bool")throw new Error(`Unsupported data type ${a}`);let s=new XA(t,n,a,!1,r),i=Pe(e,a);for(let o=0;o<i.values.length;o++)i.values[o]=s.nextValue();return i.toTensor()}var zK=B({randomNormal_:_K});function PK(e,t=0,n=1,a="float32",r){let s=Pe(e,a),i=new OK(t,n,null,r);for(let o=0;o<s.values.length;o++)s.values[o]=i.nextValue();return s.toTensor()}var Rh=B({randomUniform_:PK});function Fh(e,t,n=1,a="float32"){if(n===0)throw new Error("Cannot have a step of zero");let r={start:e,stop:t,step:n,dtype:a};return j.runKernel(rf,{},r)}function LK(e){let t={input:F(e,"input","real")};return j.runKernel(j1,t)}var Of=B({real_:LK});function WK(e){let t={x:F(e,"x","reciprocal")};return j.runKernel(Jd,t)}var x8=B({reciprocal_:WK});function BK(e){let t={x:F(e,"x","relu")};return j.runKernel(Nl,t)}var ls=B({relu_:BK});function VK(e){let t={x:F(e,"x","relu6")};return j.runKernel(El,t)}var ZA=B({relu6_:VK});function UK(e,t){let n={x:F(e,"x","reverse")},a={dims:t};return j.runKernel(Cl,n,a)}var Ra=B({reverse_:UK});function jK(e){let t=F(e,"x","reverse");return P(t.rank===1,()=>`Error in reverse1D: x must be rank 1 but got rank ${t.rank}.`),Ra(t,0)}var Nwe=B({reverse1d_:jK});function HK(e,t){let n=F(e,"x","reverse");return P(n.rank===2,()=>`Error in reverse2D: x must be rank 2 but got rank ${n.rank}.`),Ra(n,t)}var Twe=B({reverse2d_:HK});function GK(e,t){let n=F(e,"x","reverse");return P(n.rank===3,()=>`Error in reverse3D: x must be rank 3 but got rank ${n.rank}.`),Ra(n,t)}var Ewe=B({reverse3d_:GK});function qK(e,t){let n=F(e,"x","reverse");return P(n.rank===4,()=>`Error in reverse4D: x must be rank 4 but got rank ${n.rank}.`),Ra(n,t)}var Cwe=B({reverse4d_:qK});function KK(e){let t={x:F(e,"x","round")};return j.runKernel(Ml,t)}var YA=B({round_:KK});function XK(e){let t={x:F(e,"x","rsqrt")};return j.runKernel(Di,t)}var JA=B({rsqrt_:XK});function Re(e,t){if((ar(e)&&t!=="string"||Array.isArray(e))&&t!=="complex64")throw new Error("Error creating a new Scalar: value must be a primitive (number|boolean|string)");if(t==="string"&&ar(e)&&!(e instanceof Uint8Array))throw new Error("When making a scalar from encoded string, the value must be `Uint8Array`.");return vh(e,[],[],t)}function ZK(e){let t={x:F(e,"x","selu")};return j.runKernel(nh,t)}var QA=B({selu_:ZK});function YK(e,t,n,a,r,s=[1,1],i="NHWC"){let o=F(e,"x","separableConv2d"),l=F(t,"depthwiseFilter","separableConv2d"),u=F(n,"pointwiseFilter","separableConv2d"),d=o,h=!1;if(o.rank===3&&(h=!0,d=Y(o,[1,o.shape[0],o.shape[1],o.shape[2]])),i==="NCHW")throw new Error("separableConv2d currently does not support dataFormat NCHW; only NHWC is supported");P(d.rank===4,()=>`Error in separableConv2d: input must be rank 4, but got rank ${d.rank}.`),P(l.rank===4,()=>`Error in separableConv2d: depthwise filter must be rank 4, but got rank ${l.rank}.`),P(u.rank===4,()=>`Error in separableConv2d: pointwise filter must be rank 4, but got rank ${l.rank}.`),P(u.shape[0]===1,()=>`Error in separableConv2d: the first dimension of pointwise filter must be 1, but got ${u.shape[0]}.`),P(u.shape[1]===1,()=>`Error in separableConv2d: the second dimension of pointwise filter must be 1, but got ${u.shape[1]}.`);let p=l.shape[2],c=l.shape[3];P(u.shape[2]===p*c,()=>`Error in separableConv2d: the third dimension of pointwise filter must be ${p*c}, but got ${u.shape[2]}.`);let m=Nh(d,l,a,r,i,s),f=Ws(m,u,1,"valid",i);return h?Y(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var b8=B({separableConv2d_:YK});async function JK(e,t){let n=F(e,"x","setdiff1d"),a=F(t,"y","setdiff1d");P(n.dtype===a.dtype,()=>`x and y should have the same dtype, but got x (${n.dtype}) and y (${a.dtype}).`),P(n.rank===1,()=>`x should be 1D tensor, but got x (${n.shape}).`),P(a.rank===1,()=>`y should be 1D tensor, but got y (${a.shape}).`);let r=await n.data(),s=await a.data(),i=new Set(s),o=0;for(let d=0;d<r.length;d++)i.has(r[d])||o++;let l=new Qt([o],n.dtype),u=new Qt([o],"int32");for(let d=0,h=0;d<r.length;d++)i.has(r[d])||(l.values[h]=r[d],u.values[h]=d,h++);return[l.toTensor(),u.toTensor()]}var QK=JK;function eX(e){let t={x:F(e,"x","sign")};return j.runKernel(sh,t)}var v8=B({sign_:eX});function tX(e){let t={x:F(e,"x","sin")};return j.runKernel($l,t)}var e2=B({sin_:tX});function nX(e){let t={x:F(e,"x","sinh")};return j.runKernel(rh,t)}var t2=B({sinh_:nX});function aX(e,t,n){let a=F(e,"x","slice1d");return P(a.rank===1,()=>`slice1d expects a rank-1 tensor, but got a rank-${a.rank} tensor`),nt(a,[t],[n])}var n2=B({slice1d_:aX});function rX(e,t,n){let a=F(e,"x","slice2d");return P(a.rank===2,()=>`slice2d expects a rank-2 tensor, but got a rank-${a.rank} tensor`),nt(a,t,n)}var w8=B({slice2d_:rX});function sX(e,t,n){let a=F(e,"x","slice3d");return P(a.rank===3,()=>`slice3d expects a rank-3 tensor, but got a rank-${a.rank} tensor`),nt(a,t,n)}var a2=B({slice3d_:sX});function iX(e,t,n){let a=F(e,"x","slice4d");return P(a.rank===4,()=>`slice4d expects a rank-4 tensor, but got a rank-${a.rank} tensor`),nt(a,t,n)}var Df=B({slice4d_:iX});function oX(e,t=-1){let n=F(e,"logits","softmax","float32");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and dim was ${t}`);let a={logits:n},r={dim:t};return j.runKernel(Dl,a,r)}var _f=B({softmax_:oX});function lX(e){P(e.dtype==="complex64",()=>`The dtype for tf.spectral.fft() must be complex64 but got ${e.dtype}.`);let t={input:e};return j.runKernel(D1,t)}var r2=B({fft_:lX});function uX(e){P(e.dtype==="complex64",()=>`The dtype for tf.spectral.ifft() must be complex64 but got ${e.dtype}.`);let t={input:e};return j.runKernel(_1,t)}var zf=B({ifft_:uX});function dX(e){let t=e.shape[e.shape.length-1],n=e.size/t,a;if(t<=2){let r=Y(e,[n,t]);a=zf(r)}else{let r=[n,2*(t-1)],s=Y(Of(e),[n,t]),i=Y(LA(e),[n,t]),o=Ra(nt(s,[0,1],[n,t-2]),1),l=K(Ra(nt(i,[0,1],[n,t-2]),1),Re(-1)),u=en([s,o],1),d=en([i,l],1),h=Y(Vi(u,d),[r[0],r[1]]);a=zf(h)}if(a=Of(a),e.rank===3&&e.shape[0]!==0){let r=a,s=e.shape[0];a=Y(a,[s,a.shape[0]/s,a.shape[1]]),r.dispose()}return a}var k8=B({irfft_:dX});function hX(e,t,n=0){let a={x:F(e,"x","split")},r={numOrSizeSplits:t,axis:n};return j.runKernel(oh,a,r)}var da=B({split_:hX});function pX(e,t){P(e.dtype==="float32",()=>`The dtype for rfft() must be real value but got ${e.dtype}`);let n=e.shape[e.shape.length-1],a=e.size/n,r;if(t!=null&&t<n){let m=e.shape.map(g=>0),f=e.shape.map(g=>g);f[e.shape.length-1]=t,r=nt(e,m,f),n=t}else if(t!=null&&t>n){let m=e.shape.map(f=>f);m[e.shape.length-1]=t-n,r=en([e,un(m)],e.shape.length-1),n=t}else r=e;let s=at(r),i=Y(Vi(r,s),[a,n]),o=r2(i),l=Math.floor(n/2)+1,u=Of(o),d=LA(o),h=da(u,[l,n-l],u.shape.length-1),p=da(d,[l,n-l],d.shape.length-1),c=r.shape.slice();return c[r.shape.length-1]=l,Y(Vi(h[0],p[0]),c)}var s2=B({rfft_:pX});function cX(e){let t={x:F(e,"x","sqrt")};return j.runKernel(Fl,t)}var Mn=B({sqrt_:cX});function fX(e,t){let n=F(e,"a","squaredDifference"),a=F(t,"b","squaredDifference");[n,a]=Ut(n,a),Rt(n.shape,a.shape);let r={a:n,b:a},s={};return j.runKernel(_i,r,s)}var i2=B({squaredDifference_:fX});function mX(e,t){let n=F(e,"x","squeeze");return Y(n,D6(n.shape,t).newShape)}var Jl=B({squeeze_:mX});function gX(e,t=0){let n=Af(e,"tensors","stack","string_or_numeric");P(n.length>=1,()=>"Pass at least one tensor to tf.stack"),n.length>0&&P(t<=n[0].rank,()=>"Axis must be <= rank of the tensor");let a=n,r={axis:t};return j.runKernel(Zd,a,r)}var Fa=B({stack_:gX});function yX(e,t=0){let n={x:F(e,"x","step")},a={alpha:t};return j.runKernel(Li,n,a)}var Oh=B({step_:yX});function AX(e,t,n,a,r=0,s=0,i=0,o=0,l=0){let u={x:F(e,"x","stridedSlice","string_or_numeric")},d={begin:t,end:n,strides:a,beginMask:r,endMask:s,ellipsisMask:i,newAxisMask:o,shrinkAxisMask:l};return j.runKernel(lh,u,d)}var I8=B({stridedSlice_:AX});function xX(e){let t={x:F(e,"x","tan")};return j.runKernel(_l,t)}var S8=B({tan_:xX});function $n(e,t){Bc(e);let n=bh(e,t);if(n.length!==1)throw new Error("tensor1d() requires values to be a flat/TypedArray");return vh(e,null,n,t)}function Ql(e,t,n){if(Bc(e),t!=null&&t.length!==2)throw new Error("tensor2d() requires shape to have two numbers");let a=bh(e,n);if(a.length!==2&&a.length!==1)throw new Error("tensor2d() requires values to be number[][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor2d() requires shape to be provided when `values` are a flat/TypedArray");return vh(e,t,a,n)}function bX(e,t=1,n=!0){let a=F(e,"x","topk");if(a.rank===0)throw new Error("topk() expects the input to be of rank 1 or higher");let r=a.shape[a.shape.length-1];if(t>r)throw new Error(`'k' passed to topk() must be <= the last dimension (${r}) but got ${t}`);let s={x:a},i={k:t,sorted:n},[o,l]=j.runKernel(uh,s,i);return{values:o,indices:l}}var N8=B({topk_:bX});function vX(e,t=0,n=1,a,r){if(a!=null&&a==="bool")throw new Error("Unsupported data type $ { dtype }");let s=new XA(t,n,a,!0,r),i=Pe(e,a);for(let o=0;o<i.values.length;o++)i.values[o]=s.nextValue();return i.toTensor()}var o2=B({truncatedNormal_:vX});function wX(e,t=0){let n=F(e,"x","unique","string_or_numeric");P(n.rank>0,()=>"The input tensor must be at least 1D");let a={x:n},r={axis:t},[s,i]=j.runKernel(tA,a,r);return{values:s,indices:i}}var l2=B({unique_:wX});function kX(e,t,n){let a=F(e,"x","unsortedSegmentSum"),r=F(t,"segmentIds","unsortedSegmentSum","int32");P(mn(n),()=>"numSegments must be of dtype int");let s={x:a,segmentIds:r},i={numSegments:n};return j.runKernel(uf,s,i)}var T8=B({unsortedSegmentSum_:kX});function IX(e,t=0){let n=F(e,"x","unstack","string_or_numeric");P(t>=-n.shape.length&&t<n.shape.length,()=>`Axis = ${t} is not in [-${n.shape.length}, ${n.shape.length})`);let a={value:n},r={axis:t};return j.runKernel(hh,a,r)}var or=B({unstack_:IX});function SX(e,t=!0,n,a){return j.makeVariable(e,t,n,a)}function E8(e,t){let n=[];for(let s=0;s<t.length;s++)t[s]&&n.push(s);let a=Pe(e,"int32"),r=Pe([n.length,e.length],"int32");for(let s=0;s<n.length;s++){let i=a.indexToLoc(n[s]),o=s*e.length;r.values.set(i,o)}return r.toTensor()}async function NX(e){let t=F(e,"condition","whereAsync","bool"),n=await t.data(),a=E8(t.shape,n);return e!==t&&t.dispose(),a}var TX=NX;function EX(e,t="euclidean",n=null,a=!1){e=F(e,"x","norm");let r=C8(e,t,n),s=r.shape;if(a){let i=Ha(n,e.shape);s=Qi(r.shape,i)}return Y(r,s)}function C8(e,t,n=null){if(e.rank===0)return yn(e);if(e.rank!==1&&n===null)return C8(Y(e,[-1]),t,n);if(e.rank===1||typeof n=="number"||Array.isArray(n)&&n.length===1){if(t===1)return Ce(yn(e),n);if(t===Infinity)return sr(yn(e),n);if(t===-Infinity)return $f(yn(e),n);if(t==="euclidean"||t===2)return Mn(Ce(Vs(yn(e),Re(2,"int32")),n));throw new Error(`Error in norm: invalid ord value: ${t}`)}if(Array.isArray(n)&&n.length===2){if(t===1)return sr(Ce(yn(e),n[0]),n[1]-1);if(t===Infinity)return sr(Ce(yn(e),n[1]),n[0]);if(t===-Infinity)return $f(Ce(yn(e),n[1]),n[0]);if(t==="fro"||t==="euclidean")return Mn(Ce(vt(e),n));throw new Error(`Error in norm: invalid ord value: ${t}`)}throw new Error(`Error in norm: invalid axis: ${n}`)}var u2=B({norm_:EX});function CX(e,t,n,a,r=!0){let s=F(e,"v","movingAverage"),i=F(t,"x","movingAverage"),o=F(n,"decay","movingAverage");n4(s,i),P(Fs(s.shape,i.shape),()=>"Shape mismatch in v and x");let l=Re(1),u=Ne(l,o),d=K(Ne(i,s),u);if(r){P(a!=null,()=>"When using zeroDebias: true, step is required.");let h=F(a,"step","movingAverage");d=Me(d,Ne(l,Vs(o,h)))}return pe(s,d)}var Mwe=B({movingAverage_:CX});function MX(e,t,n){let a=F(e,"indices","scatterND","int32"),r=F(t,"updates","scatterND");TA(r,a,n);let s={indices:a,updates:r},i={shape:n};return j.runKernel(eh,s,i)}var $X=B({scatterND_:MX});function RX(e,t,n,a){if(e.dtype!=="int32")throw new Error(`tf.sparseToDense() expects the indices to be int32 type, but the dtype was ${e.dtype}.`);if(e.rank>2)throw new Error(`sparseIndices should be a scalar, vector, or matrix, but got shape ${e.shape}.`);let r=e.rank>0?e.shape[0]:1,s=e.rank>1?e.shape[1]:1;if(n.length!==s)throw new Error(`outputShape has incorrect number of elements:, ${n.length}, should be: ${s}.`);let i=t.size;if(!(t.rank===0||t.rank===1&&i===r))throw new Error(`sparseValues has incorrect shape ${t.shape}, should be [] or [${r}]`);if(t.dtype!==a.dtype)throw new Error("sparseValues.dtype must match defaultValues.dtype")}function FX(e,t,n,a=0){let r=F(e,"sparseIndices","sparseToDense","int32"),s=F(t,"sparseValues","sparseToDense"),i=F(a,"defaultValue","sparseToDense",s.dtype);RX(r,s,n,i);let o={sparseIndices:r,sparseValues:s,defaultValue:i},l={outputShape:n};return j.runKernel(Y1,o,l)}var M8=B({sparseToDense_:FX});function OX(e,t){let n=F(t,"indices","gatherND","int32"),a={params:F(e,"x","gatherND","string_or_numeric"),indices:n};return j.runKernel(Pd,a)}var DX=B({gatherND_:OX});function _X(e,t){if(t==null)return e.shape.slice();if(Fs(e.shape,t))return t;if(e.shape.length===t.length){let n=[];for(let a=0;a<e.shape.length;a++)t[a]==null&&e.shape[a]!=null?n.push(e.shape[a]):n.push(t[a]);return n}return t}function zX(e,t,n,a){let r=F(e,"x","dropout");if(P(r.dtype==="float32",()=>`x has to be a floating point tensor since it's going to be scaled, but got a ${r.dtype} tensor instead.`),P(t>=0&&t<1,()=>`rate must be a float in the range [0, 1), but got ${t}.`),t===0)return e instanceof Tt?r.clone():r;let s=_X(r,n),i=1-t,o=Me(Ch(pe(Rh(s,0,1,"float32",a),i)),i);return K(r,o)}var PX=B({dropout_:zX});function LX(e){return Math.floor(Math.pow(2,Math.ceil(Math.log(e)/Math.log(2))))}function $8(e,t,n){let a=1-e%2,r=new Float32Array(e);for(let s=0;s<e;++s){let i=2*Math.PI*s/(e+a-1);r[s]=t-n*Math.cos(i)}return $n(r,"float32")}var eo={};$e(eo,{conv2d:()=>VX,depthwiseConv2d:()=>GX,matMul:()=>KX});function WX(e,t,n,a,r,s="NHWC",i){let o=e;e.rank===3&&(o=Y(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=Y(t,[1,t.shape[0],t.shape[1],t.shape[2]])),P(o.rank===4,()=>`Error in conv2dDerFilter: input must be rank 4, but got shape ${o.shape}.`),P(l.rank===4,()=>`Error in conv2dDerFilter: dy must be rank 4, but got shape ${l.shape}.`),P(n.length===4,()=>`Error in conv2dDerFilter: filterShape must be length 4, but got ${n}.`);let u=s==="NHWC"?o.shape[3]:o.shape[1],d=s==="NHWC"?l.shape[3]:l.shape[1];P(u===n[2],()=>`Error in conv2dDerFilter: depth of input ${u}) must match input depth in filter (${n[2]}.`),P(d===n[3],()=>`Error in conv2dDerFilter: depth of dy (${d}) must match output depth for filter (${n[3]}).`),i!=null&&P(mn(r),()=>`Error in conv2dDerFilter: pad must be an integer when using, dimRoundingMode ${i} but got pad ${r}.`);let h={x:o,dy:l},p={strides:a,pad:r,dataFormat:s,dimRoundingMode:i,filterShape:n};return j.runKernel(I1,h,p)}var d2=B({conv2DBackpropFilter_:WX});function Pf(e,t,n){if(n==null||n==="linear")return e;if(n==="relu")return K(e,Oh(t));throw new Error(`Cannot compute gradient for fused activation ${n}.`)}function Lf(e,t){let n=t,a=ln(e.shape,t.shape);return a.length>0&&(n=Ce(n,a)),Y(n,e.shape)}function Wf(e,t,n,a){if(t==="linear")return e;if(t==="relu")return ls(e);if(t==="elu")return Th(e);if(t==="relu6")return ZA(e);if(t==="prelu")return Ff(e,n);if(t==="leakyrelu")return Ef(e,a);if(t==="sigmoid")return $r(e);throw new Error(`Unknown fused activation ${t}.`)}var Bf=(e,t)=>!(e>0)||t==="linear";function BX({x:e,filter:t,strides:n,pad:a,dataFormat:r="NHWC",dilations:s=[1,1],dimRoundingMode:i,bias:o,activation:l="linear",preluActivationWeights:u,leakyreluAlpha:d}){if(l=l||"linear",Bf(j.state.gradientDepth,l)===!1){let b=Ws(e,t,n,a,r,s,i);return o!=null&&(b=pe(b,o)),Wf(b,l,u,d)}let h=F(e,"x","conv2d"),p=F(t,"filter","conv2d"),c=h,m=!1;h.rank===3&&(m=!0,c=Y(h,[1,h.shape[0],h.shape[1],h.shape[2]])),P(c.rank===4,()=>`Error in fused conv2d: input must be rank 4, but got rank ${c.rank}.`),P(p.rank===4,()=>`Error in fused conv2d: filter must be rank 4, but got rank ${p.rank}.`),i!=null&&P(mn(a),()=>`Error in fused conv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${a}.`),P(c.shape[3]===p.shape[2],()=>`Error in conv2d: depth of input (${c.shape[3]}) must match input depth for filter ${p.shape[2]}.`),P(Mr(n,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),P(r==="NHWC",()=>`Error in conv2d: got dataFormat of ${r} but only NHWC is currently supported.`);let f=Ih(c.shape,p.shape,n,s,a,i),g;o!=null&&(g=F(o,"bias","fused conv2d"),[g]=Ut(g,h),Rt(f.outShape,g.shape));let y;u!=null&&(y=F(u,"prelu weights","fused conv2d"));let A=(b,w)=>{let[I,T,C,z]=w,$=Pf(b,C,l);P(Ls(s),()=>`Error in gradient of fused conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`);let S=DA(T.shape,$,I,n,a),D=d2(T,$,I.shape,n,a),_=[S,D];if(z!=null){let W=Lf(z,$);_.push(W)}return _},x={x:c,filter:p,bias:g,preluActivationWeights:y},v={strides:n,pad:a,dataFormat:r,dilations:s,dimRoundingMode:i,activation:l,leakyreluAlpha:d};return o==null?ss((b,w,I)=>{let T=j.runKernel(Wl,x,v);return I([w,b,T]),m&&(T=Y(T,[T.shape[1],T.shape[2],T.shape[3]])),{value:T,gradFunc:A}})(c,p):ss((b,w,I,T)=>{let C=j.runKernel(Wl,x,v);return T([w,b,C,I]),m&&(C=Y(C,[C.shape[1],C.shape[2],C.shape[3]])),{value:C,gradFunc:A}})(c,p,g)}var VX=B({fusedConv2d_:BX});function UX(e,t,n,a,r,s=[1,1],i){let o=e;e.rank===3&&(o=Y(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=Y(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let u={x:o,dy:l},d={strides:a,pad:r,dimRoundingMode:i,dilations:s,filterShape:n};return j.runKernel(E1,u,d)}var R8=B({depthwiseConv2dNativeBackpropFilter_:UX});function jX(e,t,n,a,r,s=[1,1],i){let o=t,l=!1;t.rank===3&&(l=!0,o=Y(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let u={dy:o,filter:n},d={strides:a,pad:r,dimRoundingMode:i,dilations:s,inputShape:e},h=j.runKernel(C1,u,d);return l?Y(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var F8=B({depthwiseConv2dNativeBackpropInput_:jX});function HX({x:e,filter:t,strides:n,pad:a,dataFormat:r="NHWC",dilations:s=[1,1],dimRoundingMode:i,bias:o,activation:l="linear",preluActivationWeights:u,leakyreluAlpha:d}){if(Bf(j.state.gradientDepth,l)===!1){let b=Nh(e,t,n,a,r,s,i);return o!=null&&(b=pe(b,o)),Wf(b,l,u,d)}let h=F(e,"x","depthwiseConv2d"),p=F(t,"filter","depthwiseConv2d"),c=h,m=!1;h.rank===3&&(m=!0,c=Y(h,[1,h.shape[0],h.shape[1],h.shape[2]])),P(c.rank===4,()=>`Error in fused depthwiseConv2d: input must be rank 4, but got rank ${c.rank}.`),P(p.rank===4,()=>`Error in fused depthwiseConv2d: filter must be rank 4, but got rank ${p.rank}.`),P(c.shape[3]===p.shape[2],()=>`Error in fused depthwiseConv2d: number of input channels (${c.shape[3]}) must match the inChannels dimension in filter ${p.shape[2]}.`),s==null&&(s=[1,1]),P(Mr(n,s),()=>`Error in fused depthwiseConv2d: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),i!=null&&P(mn(a),()=>`Error in fused depthwiseConv2d: pad must be an integer when using dimRoundingMode ${i} but got pad ${a}.`);let f=Ih(c.shape,p.shape,n,s,a,i,!0),g;o!=null&&(g=F(o,"bias","fused conv2d"),[g]=Ut(g,h),Rt(f.outShape,g.shape));let y;u!=null&&(y=F(u,"prelu weights","fused depthwiseConv2d"));let A=(b,w)=>{P(Ls(s),()=>`Error in gradient of fused depthwiseConv2d: dilation rates greater than 1 are not yet supported. Got dilations '${s}'`);let[I,T,C,z]=w,$=Pf(b,C,l),S=F8(T.shape,$,I,n,a,s,i),D=R8(T,$,I.shape,n,a,s,i);if(z!=null){let _=Lf(g,$);return[S,D,_]}return[S,D]},x={x:c,filter:p,bias:g,preluActivationWeights:y},v={strides:n,pad:a,dataFormat:r,dilations:s,dimRoundingMode:i,activation:l,leakyreluAlpha:d};return o==null?ss((b,w,I)=>{let T=j.runKernel(Bl,x,v);return I([w,b,T]),m&&(T=Y(T,[T.shape[1],T.shape[2],T.shape[3]])),{value:T,gradFunc:A}})(c,p):ss((b,w,I,T)=>{let C=j.runKernel(Bl,x,v);return T([w,b,C,I]),m&&(C=Y(C,[C.shape[1],C.shape[2],C.shape[3]])),{value:C,gradFunc:A}})(c,p,g)}var GX=B({fusedDepthwiseConv2d_:HX});function qX({a:e,b:t,transposeA:n=!1,transposeB:a=!1,bias:r,activation:s="linear",preluActivationWeights:i,leakyreluAlpha:o}){if(Bf(j.state.gradientDepth,s)===!1){let z=it(e,t,n,a);return r!=null&&(z=pe(z,r)),Wf(z,s,i,o)}let l=F(e,"a","fused matMul"),u=F(t,"b","fused matMul");[l,u]=Ut(l,u);let d=n?l.shape[l.rank-2]:l.shape[l.rank-1],h=a?u.shape[u.rank-1]:u.shape[u.rank-2],p=n?l.shape[l.rank-1]:l.shape[l.rank-2],c=a?u.shape[u.rank-2]:u.shape[u.rank-1],m=l.shape.slice(0,-2),f=u.shape.slice(0,-2),g=on(m),y=on(f);P(l.rank>=2&&u.rank>=2&&l.rank===u.rank,()=>`Error in fused matMul: inputs must have the same rank of at least 2, got ranks ${l.rank} and ${u.rank}.`),P(Fs(m,f),()=>`Error in fused matMul: outer dimensions (${m}) and (${f}) of Tensors with shapes ${l.shape} and ${u.shape} must match.`),P(d===h,()=>`Error in fused matMul: inner shapes (${d}) and (${h}) of Tensors with shapes ${l.shape} and ${u.shape} and transposeA=${n} and transposeB=${a} must match.`);let A=l.shape.slice(0,-2).concat([p,c]),x=n?Y(l,[g,d,p]):Y(l,[g,p,d]),v=a?Y(u,[y,c,h]):Y(u,[y,h,c]),b;r!=null&&(b=F(r,"bias","fused matMul"),[b]=Ut(b,l),Rt(A,b.shape));let w;i!=null&&(w=F(i,"prelu weights","fused matMul"));let I=(z,$)=>{let[S,D,_,W]=$,X=Pf(Y(z,_.shape),_,s),q,Q;if(!n&&!a?(q=it(X,D,!1,!0),Q=it(S,X,!0,!1)):!n&&a?(q=it(X,D,!1,!1),Q=it(X,S,!0,!1)):n&&!a?(q=it(D,X,!1,!0),Q=it(S,X,!1,!1)):(q=it(D,X,!0,!0),Q=it(X,S,!0,!0)),r!=null){let ee=Lf(W,X);return[q,Q,ee]}else return[q,Q]},T={a:x,b:v,bias:b,preluActivationWeights:w},C={transposeA:n,transposeB:a,activation:s,leakyreluAlpha:o};return r==null?ss((z,$,S)=>{let D=j.runKernel(Ll,T,C);return S([z,$,D]),{value:Y(D,A),gradFunc:I}})(x,v):ss((z,$,S,D)=>{let _=j.runKernel(Ll,T,C);return D([z,$,_,S]),{value:Y(_,A),gradFunc:I}})(x,v,b)}var KX=B({fusedMatMul_:qX});function XX(e){return $8(e,.54,.46)}var $we=B({hammingWindow_:XX});function ZX(e){return $8(e,.5,.5)}var YX=B({hannWindow_:ZX});function JX(e,t,n,a=!1,r=0){let s=0,i=[];for(;s+t<=e.size;)i.push(nt(e,s,t)),s+=n;if(a)for(;s<e.size;){let o=s+t-e.size,l=en([nt(e,s,t-o),Eh([o],r)]);i.push(l),s+=n}return i.length===0?Ql([],[0,t]):Y(en(i),[i.length,t])}var QX=B({frame_:JX});function eZ(e,t,n,a,r=YX){a==null&&(a=LX(t));let s=QX(e,t,n),i=K(s,r(t));return s2(i,a)}var Rwe=B({stft_:eZ});function tZ(e,t,n,a,r="bilinear",s=0){let i=F(e,"image","cropAndResize"),o=F(t,"boxes","cropAndResize","float32"),l=F(n,"boxInd","cropAndResize","int32"),u=o.shape[0];P(i.rank===4,()=>`Error in cropAndResize: image must be rank 4,but got rank ${i.rank}.`),P(o.rank===2&&o.shape[1]===4,()=>`Error in cropAndResize: boxes must be have size [${u},4] but had shape ${o.shape}.`),P(l.rank===1&&l.shape[0]===u,()=>`Error in cropAndResize: boxInd must be have size [${u}] but had shape ${o.shape}.`),P(a.length===2,()=>`Error in cropAndResize: cropSize must be of length 2, but got length ${a.length}.`),P(a[0]>=1&&a[1]>=1,()=>`cropSize must be atleast [1,1], but was ${a}`),P(r==="bilinear"||r==="nearest",()=>`method must be bilinear or nearest, but was ${r}`);let d={image:i,boxes:o,boxInd:l},h={method:r,extrapolationValue:s,cropSize:a};return j.runKernel($d,d,h)}var nZ=B({cropAndResize_:tZ});function aZ(e){let t=F(e,"image","flipLeftRight","float32");P(t.rank===4,()=>`Error in flipLeftRight: image must be rank 4,but got rank ${t.rank}.`);let n={image:t};return j.runKernel(_d,n,{})}var rZ=B({flipLeftRight_:aZ});function sZ(e,t,n=0,a=.5){let r=F(e,"image","rotateWithOffset","float32");P(r.rank===4,()=>`Error in rotateWithOffset: image must be rank 4,but got rank ${r.rank}.`);let s={image:r},i={radians:t,fillValue:n,center:a};return j.runKernel(ch,s,i)}var iZ=B({rotateWithOffset_:sZ});function eu(e,t,n,a,r,s){a==null&&(a=.5),r==null&&(r=Number.NEGATIVE_INFINITY),s==null&&(s=0);let i=e.shape[0];return n=Math.min(n,i),P(0<=a&&a<=1,()=>`iouThreshold must be in [0, 1], but was '${a}'`),P(e.rank===2,()=>`boxes must be a 2D tensor, but was of rank '${e.rank}'`),P(e.shape[1]===4,()=>`boxes must have 4 columns, but 2nd dimension was ${e.shape[1]}`),P(t.rank===1,()=>"scores must be a 1D tensor"),P(t.shape[0]===i,()=>`scores has incompatible shape with boxes. Expected ${i}, but was ${t.shape[0]}`),P(0<=s&&s<=1,()=>`softNmsSigma must be in [0, 1], but was '${s}'`),{maxOutputSize:n,iouThreshold:a,scoreThreshold:r,softNmsSigma:s}}function oZ(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY){let s=F(e,"boxes","nonMaxSuppression"),i=F(t,"scores","nonMaxSuppression"),o=eu(s,i,n,a,r);n=o.maxOutputSize,a=o.iouThreshold,r=o.scoreThreshold;let l={maxOutputSize:n,iouThreshold:a,scoreThreshold:r};return j.runKernel(Gd,{boxes:s,scores:i},l)}var lZ=B({nonMaxSuppression_:oZ});function uZ(e,t,n){let a=dZ(e,t,n),r=a<0?-(a+1):a;e.splice(r,0,t)}function dZ(e,t,n){return pZ(e,t,n||hZ)}function hZ(e,t){return e>t?1:e<t?-1:0}function pZ(e,t,n){let a=0,r=e.length,s=0,i=!1;for(;a<r;){s=a+(r-a>>>1);let o=n(t,e[s]);o>0?a=s+1:(r=s,i=!o)}return i?a:-a-1}function O8(e,t,n,a,r){return h2(e,t,n,a,r,0)}function D8(e,t,n,a,r,s){return h2(e,t,n,a,r,0,!1,s,!0)}function _8(e,t,n,a,r,s){return h2(e,t,n,a,r,s,!0)}function h2(e,t,n,a,r,s,i=!1,o=!1,l=!1){let u=[];for(let g=0;g<t.length;g++)t[g]>r&&u.push({score:t[g],boxIndex:g,suppressBeginIndex:0});u.sort(z8);let d=s>0?-.5/s:0,h=[],p=[];for(;h.length<n&&u.length>0;){let g=u.pop(),{score:y,boxIndex:A,suppressBeginIndex:x}=g;if(y<r)break;let v=!1;for(let b=h.length-1;b>=x;--b){let w=cZ(e,A,h[b]);if(w>=a){v=!0;break}if(g.score=g.score*fZ(a,d,w),g.score<=r)break}g.suppressBeginIndex=h.length,v||(g.score===y?(h.push(A),p.push(g.score)):g.score>r&&uZ(u,g,z8))}let c=h.length,m=n-c;o&&m>0&&(h.push(...new Array(m).fill(0)),p.push(...new Array(m).fill(0)));let f={selectedIndices:h};return i&&(f.selectedScores=p),l&&(f.validOutputs=c),f}function cZ(e,t,n){let a=e.subarray(t*4,t*4+4),r=e.subarray(n*4,n*4+4),s=Math.min(a[0],a[2]),i=Math.min(a[1],a[3]),o=Math.max(a[0],a[2]),l=Math.max(a[1],a[3]),u=Math.min(r[0],r[2]),d=Math.min(r[1],r[3]),h=Math.max(r[0],r[2]),p=Math.max(r[1],r[3]),c=(o-s)*(l-i),m=(h-u)*(p-d);if(c<=0||m<=0)return 0;let f=Math.max(s,u),g=Math.max(i,d),y=Math.min(o,h),A=Math.min(l,p),x=Math.max(y-f,0)*Math.max(A-g,0);return x/(c+m-x)}function fZ(e,t,n){let a=Math.exp(t*n*n);return n<=e?a:0}function z8(e,t){return e.score-t.score||e.score===t.score&&t.boxIndex-e.boxIndex}async function mZ(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY){let s=F(e,"boxes","nonMaxSuppressionAsync"),i=F(t,"scores","nonMaxSuppressionAsync"),o=eu(s,i,n,a,r);n=o.maxOutputSize,a=o.iouThreshold,r=o.scoreThreshold;let l=await Promise.all([s.data(),i.data()]),u=l[0],d=l[1],{selectedIndices:h}=O8(u,d,n,a,r);return s!==e&&s.dispose(),i!==t&&i.dispose(),$n(h,"int32")}var gZ=mZ;function yZ(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY,s=0){let i=F(e,"boxes","nonMaxSuppression"),o=F(t,"scores","nonMaxSuppression"),l=eu(i,o,n,a,r,s);n=l.maxOutputSize,a=l.iouThreshold,r=l.scoreThreshold,s=l.softNmsSigma;let u={boxes:i,scores:o},d={maxOutputSize:n,iouThreshold:a,scoreThreshold:r,softNmsSigma:s},h=j.runKernel(Kd,u,d);return{selectedIndices:h[0],selectedScores:h[1]}}var AZ=B({nonMaxSuppressionWithScore_:yZ});async function xZ(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY,s=0){let i=F(e,"boxes","nonMaxSuppressionAsync"),o=F(t,"scores","nonMaxSuppressionAsync"),l=eu(i,o,n,a,r,s);n=l.maxOutputSize,a=l.iouThreshold,r=l.scoreThreshold,s=l.softNmsSigma;let u=await Promise.all([i.data(),o.data()]),d=u[0],h=u[1],{selectedIndices:p,selectedScores:c}=_8(d,h,n,a,r,s);return i!==e&&i.dispose(),o!==t&&o.dispose(),{selectedIndices:$n(p,"int32"),selectedScores:$n(c)}}var bZ=xZ;function vZ(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY,s=!1){let i=F(e,"boxes","nonMaxSuppression"),o=F(t,"scores","nonMaxSuppression"),l=eu(i,o,n,a,r,null),u=l.maxOutputSize,d=l.iouThreshold,h=l.scoreThreshold,p={boxes:i,scores:o},c={maxOutputSize:u,iouThreshold:d,scoreThreshold:h,padToMaxOutputSize:s},m=j.runKernel(qd,p,c);return{selectedIndices:m[0],validOutputs:m[1]}}var wZ=B({nonMaxSuppressionPadded_:vZ});async function kZ(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY,s=!1){let i=F(e,"boxes","nonMaxSuppressionAsync"),o=F(t,"scores","nonMaxSuppressionAsync"),l=eu(i,o,n,a,r,null),u=l.maxOutputSize,d=l.iouThreshold,h=l.scoreThreshold,[p,c]=await Promise.all([i.data(),o.data()]),{selectedIndices:m,validOutputs:f}=D8(p,c,u,d,h,s);return i!==e&&i.dispose(),o!==t&&o.dispose(),{selectedIndices:$n(m,"int32"),validOutputs:Re(f,"int32")}}var IZ=kZ;function SZ(e,t,n=!1,a=!1){let r=F(e,"images","resizeBilinear");P(r.rank===3||r.rank===4,()=>`Error in resizeBilinear: x must be rank 3 or 4, but got rank ${r.rank}.`),P(t.length===2,()=>`Error in resizeBilinear: new shape must 2D, but got shape ${t}.`),P(a===!1||n===!1,()=>"Error in resizeBilinear: If halfPixelCenters is true, alignCorners must be false.");let s=r,i=!1;r.rank===3&&(i=!0,s=Y(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let[]=t,o={images:s},l={alignCorners:n,halfPixelCenters:a,size:t},u=j.runKernel(Tl,o,l);return i?Y(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var P8=B({resizeBilinear_:SZ});function NZ(e,t,n=!1,a=!1){let r=F(e,"images","resizeNearestNeighbor");P(r.rank===3||r.rank===4,()=>`Error in resizeNearestNeighbor: x must be rank 3 or 4, but got rank ${r.rank}.`),P(t.length===2,()=>`Error in resizeNearestNeighbor: new shape must 2D, but got shape ${t}.`),P(r.dtype==="float32"||r.dtype==="int32",()=>"`images` must have `int32` or `float32` as dtype"),P(a===!1||n===!1,()=>"Error in resizeNearestNeighbor: If halfPixelCenters is true, alignCorners must be false.");let s=r,i=!1;r.rank===3&&(i=!0,s=Y(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let[]=t,o={images:s},l={alignCorners:n,halfPixelCenters:a,size:t},u=j.runKernel(sf,o,l);return i?Y(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var L8=B({resizeNearestNeighbor_:NZ});function TZ(e,t="binary",n=!1,a=.5){let r=F(e,"image","threshold"),s=.2989,i=.587,o=.114,l=r.shape[0]*r.shape[1],u=K($n([a]),255),d,h,p,c;if(P(r.rank===3,()=>`Error in threshold: image must be rank 3,but got rank ${r.rank}.`),P(r.shape[2]===3||r.shape[2]===1,()=>`Error in threshold: image color channel must be equal to 3 or 1but got ${r.shape[2]}.`),P(r.dtype==="int32"||r.dtype==="float32",()=>`Error in dtype: image dtype must be int32 or float32,but got dtype ${r.dtype}.`),P(t==="otsu"||t==="binary",()=>`Method must be binary or otsu, but was ${t}`),r.shape[2]===3){[d,h,p]=da(r,[1,1,1],-1);let f=K(d,s),g=K(h,i),y=K(p,o);c=pe(pe(f,g),y)}else c=e;if(t==="otsu"){let f=e8(we(YA(c),"int32"),Cr([]),256);u=EZ(f,l)}let m=n?Ji(c,u):Ca(c,u);return we(K(m,255),"int32")}function EZ(e,t){let n=$n([-1]),a=$n([0]),r=$n([0]),s,i,o,l,u,d;for(let h=0;h<e.size-1;h++){s=nt(e,0,h+1),i=nt(e,h+1),u=Me(Ce(s),t),d=Me(Ce(i),t);let p=Ce(K(s,Fh(0,s.size)));o=Me(p,Ce(s));let c=Eh(i.shape,s.size),m=pe(Fh(0,i.size),c),f=K(i,m);l=Me(Ce(f),Ce(i));let g=Ne(o,l),y=Ne(o,l),A=K(u,d);r=K(K(A,g),y);let x=Ca(r,a);a=Pn(x,r,a),n=Pn(x,$n([h]),n)}return n}var CZ=B({threshold_:TZ});function MZ(e,t,n="nearest",a="constant",r=0,s){let i=F(e,"image","transform","float32"),o=F(t,"transforms","transform","float32");P(i.rank===4,()=>`Error in transform: image must be rank 4,but got rank ${i.rank}.`),P(o.rank===2&&(o.shape[0]===i.shape[0]||o.shape[0]===1)&&o.shape[1]===8,()=>"Error in transform: Input transform should be batch x 8 or 1 x 8"),P(s==null||s.length===2,()=>`Error in transform: outputShape must be [height, width] or null, but got ${s}.`);let l={image:i,transforms:o},u={interpolation:n,fillMode:a,fillValue:r,outputShape:s};return j.runKernel(dh,l,u)}var $Z=B({transform_:MZ});function RZ(e,t,n){P(t%1==0,()=>`bandPart(): numLower must be an integer, got ${t}.`),P(n%1==0,()=>`bandPart(): numUpper must be an integer, got ${n}.`);let a=F(e,"a","bandPart");P(a.rank>=2,()=>`bandPart(): Rank must be at least 2, got ${a.rank}.`);let r=a.shape,[s,i]=a.shape.slice(-2);if(!(t<=s))throw new Error(`bandPart(): numLower (${t}) must not be greater than the number of rows (${s}).`);if(!(n<=i))throw new Error(`bandPart(): numUpper (${n}) must not be greater than the number of columns (${i}).`);t<0&&(t=s),n<0&&(n=i);let o=Y(Fh(0,s,1,"int32"),[-1,1]),l=Fh(0,i,1,"int32"),u=Ne(o,l),d=ir(Ji(u,Re(+t,"int32")),Yi(u,Re(-n,"int32"))),h=un([s,i],a.dtype);return Y(Fa(or(Y(a,[-1,s,i])).map(p=>Pn(d,p,h))),r)}var FZ=B({bandPart_:RZ});function OZ(e){let t;if(Array.isArray(e)){t=!1,P(e!=null&&e.length>0,()=>"Gram-Schmidt process: input must not be null, undefined, or empty");let r=e[0].shape[0];for(let s=1;s<e.length;++s)P(e[s].shape[0]===r,()=>`Gram-Schmidt: Non-unique lengths found in the input vectors: (${e[s].shape[0]} vs. ${r})`)}else t=!0,e=da(e,e.shape[0],0).map(r=>Jl(r,[0]));P(e.length<=e[0].shape[0],()=>`Gram-Schmidt: Number of vectors (${e.length}) exceeds number of dimensions (${e[0].shape[0]}).`);let n=[],a=e;for(let r=0;r<e.length;++r)n.push(j.tidy(()=>{let s=a[r];if(r>0)for(let i=0;i<r;++i){let o=K(Ce(K(n[i],s)),n[i]);s=Ne(s,o)}return Me(s,u2(s,"euclidean"))}));return t?Fa(n,0):n}var DZ=B({gramSchmidt_:OZ});function _Z(e,t=!1){if(P(e.rank>=2,()=>`qr() requires input tensor to have a rank >= 2, but got rank ${e.rank}`),e.rank===2)return W8(e,t);{let n=e.shape.slice(0,e.shape.length-2).reduce((l,u)=>l*u),a=or(Y(e,[n,e.shape[e.shape.length-2],e.shape[e.shape.length-1]]),0),r=[],s=[];a.forEach(l=>{let[u,d]=W8(l,t);r.push(u),s.push(d)});let i=Y(Fa(r,0),e.shape),o=Y(Fa(s,0),e.shape);return[i,o]}}function W8(e,t=!1){return j.tidy(()=>{P(e.shape.length===2,()=>`qr2d() requires a 2D Tensor, but got a ${e.shape.length}D Tensor.`);let n=e.shape[0],a=e.shape[1],r=u8(n),s=Gi(e),i=Ql([[1]],[1,1]),o=Gi(i),l=n>=a?a:n;for(let u=0;u<l;++u){let d=s,h=o,p=r;[o,s,r]=j.tidy(()=>{let c=nt(s,[u,u],[n-u,1]),m=u2(c),f=nt(s,[u,u],[1,1]),g=Pn(Ca(f,0),Ql([[-1]]),Ql([[1]])),y=Ne(f,K(g,m)),A=Me(c,y);A.shape[0]===1?o=Gi(i):o=en([i,nt(A,[1,0],[A.shape[0]-1,A.shape[1]])],0);let x=Kt(Me(it(g,y),m)),v=nt(s,[u,0],[n-u,a]),b=K(x,o),w=ct(o);if(u===0)s=Ne(v,it(b,it(w,v)));else{let C=Ne(v,it(b,it(w,v)));s=en([nt(s,[0,0],[u,a]),C],0)}let I=ct(b),T=nt(r,[0,u],[n,r.shape[1]-u]);if(u===0)r=Ne(T,it(it(T,o),I));else{let C=Ne(T,it(it(T,o),I));r=en([nt(r,[0,0],[n,u]),C],1)}return[o,s,r]}),Ge([d,h,p])}return!t&&n>a&&(r=nt(r,[0,0],[n,a]),s=nt(s,[0,0],[a,a])),[r,s]})}var zZ=B({qr_:_Z}),Jn;(function(e){e[e.NONE=0]="NONE",e[e.MEAN=1]="MEAN",e[e.SUM=2]="SUM",e[e.SUM_BY_NONZERO_WEIGHTS=3]="SUM_BY_NONZERO_WEIGHTS"})(Jn||(Jn={}));function PZ(e,t,n=Jn.SUM_BY_NONZERO_WEIGHTS){let a=F(e,"losses","computeWeightedLoss"),r=null;t!=null&&(r=F(t,"weights","computeWeightedLoss"));let s=r==null?a:K(a,r);if(n===Jn.NONE)return s;if(n===Jn.SUM)return Ce(s);if(n===Jn.MEAN){if(r==null)return Xt(s);{let i=a.size/r.size,o=Me(Ce(s),Ce(r));return i>1?Me(o,Re(i)):o}}if(n===Jn.SUM_BY_NONZERO_WEIGHTS){if(r==null)return Me(Ce(s),Re(a.size));{let i=K(r,os(a.shape)),o=we(Ce(Yl(i,Re(0))),"float32");return Me(Ce(s),o)}}throw Error(`Unknown reduction: ${n}`)}var Us=B({computeWeightedLoss_:PZ});function LZ(e,t,n,a=Jn.SUM_BY_NONZERO_WEIGHTS){let r=F(e,"labels","absoluteDifference"),s=F(t,"predictions","absoluteDifference"),i=null;n!=null&&(i=F(n,"weights","absoluteDifference")),nr(r.shape,s.shape,"Error in absoluteDifference: ");let o=yn(Ne(r,s));return Us(o,i,a)}var Fwe=B({absoluteDifference_:LZ});function WZ(e,t,n,a,r=Jn.SUM_BY_NONZERO_WEIGHTS){let s=F(e,"labels","cosineDistance"),i=F(t,"predictions","cosineDistance"),o=null;a!=null&&(o=F(a,"weights","cosineDistance")),nr(s.shape,i.shape,"Error in cosineDistance: ");let l=Re(1),u=Ne(l,Ce(K(s,i),n,!0));return Us(u,o,r)}var Owe=B({cosineDistance_:WZ});function BZ(e,t,n,a=Jn.SUM_BY_NONZERO_WEIGHTS){let r=F(e,"labels","hingeLoss"),s=F(t,"predictions","hingeLoss"),i=null;n!=null&&(i=F(n,"weights","hingeLoss")),nr(r.shape,s.shape,"Error in hingeLoss: ");let o=Re(1);r=Ne(K(Re(2),r),o);let l=ls(Ne(o,K(r,s)));return Us(l,i,a)}var Dwe=B({hingeLoss_:BZ});function VZ(e,t,n,a=1,r=Jn.SUM_BY_NONZERO_WEIGHTS){let s=F(e,"labels","huberLoss"),i=F(t,"predictions","huberLoss"),o=null;n!=null&&(o=F(n,"weights","huberLoss")),nr(s.shape,i.shape,"Error in huberLoss: ");let l=Re(a),u=yn(Ne(i,s)),d=$h(u,l),h=Ne(u,d),p=pe(K(Re(.5),vt(d)),K(l,h));return Us(p,o,r)}var _we=B({huberLoss_:VZ});function UZ(e,t,n,a=1e-7,r=Jn.SUM_BY_NONZERO_WEIGHTS){let s=F(e,"labels","logLoss"),i=F(t,"predictions","logLoss"),o=null;n!=null&&(o=F(n,"weights","logLoss")),nr(s.shape,i.shape,"Error in logLoss: ");let l=Re(1),u=Re(a),d=Kt(K(s,Ma(pe(i,u)))),h=K(Ne(l,s),Ma(pe(Ne(l,i),u))),p=Ne(d,h);return Us(p,o,r)}var zwe=B({logLoss_:UZ});function jZ(e,t,n,a=Jn.SUM_BY_NONZERO_WEIGHTS){let r=F(e,"labels","meanSquaredError"),s=F(t,"predictions","meanSquaredError"),i=null;n!=null&&(i=F(n,"weights","meanSquaredError")),nr(r.shape,s.shape,"Error in meanSquaredError: ");let o=i2(r,s);return Us(o,i,a)}var Pwe=B({meanSquaredError_:jZ});function HZ(e,t){let n=F(e,"labels","sigmoidCrossEntropyWithLogits"),a=F(t,"logits","sigmoidCrossEntropyWithLogits");nr(n.shape,a.shape,"Error in sigmoidCrossEntropyWithLogits: ");let r=ls(a),s=K(a,n),i=BA(qa(Kt(yn(a))));return pe(Ne(r,s),i)}function GZ(e,t,n,a=0,r=Jn.SUM_BY_NONZERO_WEIGHTS){let s=F(e,"multiClassLabels","sigmoidCrossEntropy"),i=F(t,"logits","sigmoidCrossEntropy"),o=null;if(n!=null&&(o=F(n,"weights","sigmoidCrossEntropy")),nr(s.shape,i.shape,"Error in sigmoidCrossEntropy: "),a>0){let u=Re(a),d=Re(1),h=Re(.5);s=pe(K(s,Ne(d,u)),K(h,u))}let l=HZ(s,i);return Us(l,o,r)}var Lwe=B({sigmoidCrossEntropy_:GZ});function qZ(e,t,n=-1){if(n===-1&&(n=t.rank-1),n!==t.rank-1)throw Error(`Softmax cross entropy along a non-last dimension is not yet supported. Labels / logits was rank ${t.rank} and dim was ${n}`);return ss((a,r,s)=>{let i=m8(r,[n],!0),o=Ne(we(r,"float32"),i);s([a,o]);let l=Kt(K(o,a));return{value:Ce(l,[n]),gradFunc:(u,d)=>{let[h,p]=d,c=Qi(u.shape,[n]);return[K(Y(u,c),Ne(we(h,"float32"),qa(p))),K(Y(u,c),Ne(qa(p),we(h,"float32")))]}}})(e,t)}function KZ(e,t,n,a=0,r=Jn.SUM_BY_NONZERO_WEIGHTS){let s=F(e,"onehotLabels","softmaxCrossEntropy"),i=F(t,"logits","softmaxCrossEntropy"),o=null;if(n!=null&&(o=F(n,"weights","softmaxCrossEntropy")),nr(s.shape,i.shape,"Error in softmaxCrossEntropy: "),a>0){let u=Re(a),d=Re(1),h=Re(s.shape[1]);s=pe(K(s,Ne(d,u)),Me(u,h))}let l=qZ(s,i);return Us(l,o,r)}var Wwe=B({softmaxCrossEntropy_:KZ});function XZ(e,t,n,a){let r=F(e,"indices","sparseFillEmptyRows"),s=F(t,"values","sparseFillEmptyRows"),i=F(n,"denseShape","sparseFillEmptyRows"),o=F(a,"defaultValue","sparseFillEmptyRows",s.dtype);if(r.rank!==2)throw new Error(`Indices should be Tensor2D but received shape
|
|
${r.shape}`);if(s.rank!==1)throw new Error(`Values should be Tensor1D but received shape ${s.shape}`);if(i.rank!==1)throw new Error(`Dense shape should be Tensor1D but received shape ${i.shape}`);if(o.rank!==0)throw new Error(`Default value should be a scalar but received shape ${o.shape}`);let l={indices:r,values:s,denseShape:i,defaultValue:o},u=j.runKernel(q1,l);return{outputIndices:u[0],outputValues:u[1],emptyRowIndicator:u[2],reverseIndexMap:u[3]}}var ZZ=B({sparseFillEmptyRows_:XZ});function YZ(e,t,n){let a=F(e,"inputIndices","sparseReshape"),r=F(t,"inputShape","sparseReshape"),s=F(n,"newShape","sparseReshape");if(a.rank!==2)throw new Error(`Input indices should be Tensor2D but received shape
|
|
${a.shape}`);if(r.rank!==1)throw new Error(`Input shape should be Tensor1D but received shape ${r.shape}`);if(s.rank!==1)throw new Error(`New shape should be Tensor1D but received shape ${s.shape}`);let i={inputIndices:a,inputShape:r,newShape:s},o=j.runKernel(K1,i);return{outputIndices:o[0],outputShape:o[1]}}var JZ=B({sparseReshape_:YZ});function QZ(e,t,n){let a=F(e,"data","sparseSegmentMean"),r=F(t,"indices","sparseSegmentMean"),s=F(n,"segmentIds","sparseSegmentMean");if(a.rank<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.rank!==1)throw new Error(`Indices should be Tensor1D but received shape
|
|
${r.shape}`);if(s.rank!==1)throw new Error(`Segment ids should be Tensor1D but received shape
|
|
${s.shape}`);let i={data:a,indices:r,segmentIds:s};return j.runKernel(X1,i)}var eY=B({sparseSegmentMean_:QZ});function tY(e,t,n){let a=F(e,"data","sparseSegmentSum"),r=F(t,"indices","sparseSegmentSum"),s=F(n,"segmentIds","sparseSegmentSum");if(a.rank<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.rank!==1)throw new Error(`Indices should be Tensor1D but received shape
|
|
${r.shape}`);if(s.rank!==1)throw new Error(`Segment ids should be Tensor1D but received shape
|
|
${s.shape}`);let i={data:a,indices:r,segmentIds:s};return j.runKernel(Z1,i)}var nY=B({sparseSegmentSum_:tY});function aY(e,t,n,a,r,s,i,o){let l=F(e,"data","stringNGrams","string");if(l.dtype!=="string")throw new Error("Data must be of datatype string");if(l.shape.length!==1)throw new Error(`Data must be a vector, saw: ${l.shape}`);let u=F(t,"dataSplits","stringNGrams");if(u.dtype!=="int32")throw new Error("Data splits must be of datatype int32");let d={separator:n,nGramWidths:a,leftPad:r,rightPad:s,padWidth:i,preserveShortSequences:o},h={data:l,dataSplits:u},p=j.runKernel(J1,h,d);return{nGrams:p[0],nGramsSplits:p[1]}}var rY=B({stringNGrams_:aY});function sY(e,t,n=!0){let a=F(e,"input","stringSplit","string"),r=F(t,"delimiter","stringSplit","string");if(a.rank!==1)throw new Error(`Input should be Tensor1D but received shape ${a.shape}`);if(r.rank!==0)throw new Error(`Delimiter should be a scalar but received shape ${r.shape}`);let s={skipEmpty:n},i={input:a,delimiter:r},o=j.runKernel(Q1,i,s);return{indices:o[0],values:o[1],shape:o[2]}}var iY=B({stringSplit_:sY});function oY(e,t){let n=F(e,"input","stringToHashBucketFast","string"),a={numBuckets:t};if(t<=0)throw new Error("Number of buckets must be at least 1");let r={input:n};return j.runKernel(eA,r,a)}var lY=B({stringToHashBucketFast_:oY}),to={flipLeftRight:rZ,resizeNearestNeighbor:L8,resizeBilinear:P8,rotateWithOffset:iZ,cropAndResize:nZ,nonMaxSuppression:lZ,nonMaxSuppressionAsync:gZ,nonMaxSuppressionWithScore:AZ,nonMaxSuppressionWithScoreAsync:bZ,nonMaxSuppressionPadded:wZ,nonMaxSuppressionPaddedAsync:IZ,threshold:CZ,transform:$Z},uY={bandPart:FZ,gramSchmidt:DZ,qr:zZ},Vf={sparseFillEmptyRows:ZZ,sparseReshape:JZ,sparseSegmentMean:eY,sparseSegmentSum:nY},p2={stringNGrams:rY,stringSplit:iY,stringToHashBucketFast:lY},js=class extends W4{minimize(e,t=!1,n){let{value:a,grads:r}=this.computeGradients(e,n);if(n!=null){let s=n.map(i=>({name:i.name,tensor:r[i.name]}));this.applyGradients(s)}else this.applyGradients(r);return Ge(r),t?a:(a.dispose(),null)}get iterations(){return this.iterations_==null&&(this.iterations_=0),this.iterations_}incrementIterations(){this.iterations_=this.iterations+1}computeGradients(e,t){return Pq(e,t)}dispose(){this.iterations_!=null&&Ge(this.iterations_)}async saveIterations(){return this.iterations_==null&&(this.iterations_=0),{name:"iter",tensor:Re(this.iterations_,"int32")}}async getWeights(){throw new Error("getWeights() is not implemented for this optimizer yet.")}async setWeights(e){throw new Error(`setWeights() is not implemented for this optimizer class ${this.getClassName()}`)}async extractIterations(e){return this.iterations_=(await e[0].tensor.data())[0],e.slice(1)}};Object.defineProperty(js,Symbol.hasInstance,{value:e=>e.minimize!=null&&e.computeGradients!=null&&e.applyGradients!=null});var c2=class extends js{constructor(e,t,n=null){super();this.learningRate=e,this.rho=t,this.epsilon=n,this.accumulatedGrads=[],this.accumulatedUpdates=[],n==null&&(this.epsilon=j.backend.epsilon())}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=j.registeredVariables[t],r=!1;this.accumulatedGrads[n]==null&&(this.accumulatedGrads[n]={originalName:`${t}/accum_grad`,variable:Z(()=>at(a).variable(r))}),this.accumulatedUpdates[n]==null&&(this.accumulatedUpdates[n]={originalName:`${t}/accum_var`,variable:Z(()=>at(a).variable(r))});let s=Array.isArray(e)?e[n].tensor:e[t];if(s==null)return;let i=this.accumulatedGrads[n].variable,o=this.accumulatedUpdates[n].variable;Z(()=>{let l=pe(K(i,this.rho),K(vt(s),1-this.rho)),u=K(Me(Mn(pe(o,this.epsilon)),Mn(pe(i,this.epsilon))),s),d=pe(K(o,this.rho),K(vt(u),1-this.rho));i.assign(l),o.assign(d);let h=pe(K(u,-this.learningRate),a);a.assign(h)})}),this.incrementIterations()}dispose(){this.accumulatedUpdates!=null&&(Ge(this.accumulatedGrads.map(e=>e.variable)),Ge(this.accumulatedUpdates.map(e=>e.variable)))}async getWeights(){let e=[...this.accumulatedGrads,...this.accumulatedUpdates];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=e.length/2,n=!1;this.accumulatedGrads=e.slice(0,t).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})),this.accumulatedUpdates=e.slice(t,t*2).map(a=>({originalName:a.name,variable:a.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,rho:this.rho,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.rho,t.epsilon)}};c2.className="Adadelta";zs(c2);var f2=class extends js{constructor(e,t=.1){super();this.learningRate=e,this.initialAccumulatorValue=t,this.accumulatedGrads=[]}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=j.registeredVariables[t];if(this.accumulatedGrads[n]==null){let i=!1;this.accumulatedGrads[n]={originalName:`${t}/accumulator`,variable:Z(()=>Eh(a.shape,this.initialAccumulatorValue).variable(i))}}let r=Array.isArray(e)?e[n].tensor:e[t];if(r==null)return;let s=this.accumulatedGrads[n].variable;Z(()=>{let i=pe(s,vt(r));s.assign(i);let o=pe(K(Me(r,Mn(pe(i,j.backend.epsilon()))),-this.learningRate),a);a.assign(o)})}),this.incrementIterations()}dispose(){this.accumulatedGrads!=null&&Ge(this.accumulatedGrads.map(e=>e.variable))}async getWeights(){return[await this.saveIterations()].concat(this.accumulatedGrads.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulatedGrads=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,initialAccumulatorValue:this.initialAccumulatorValue}}static fromConfig(e,t){return new e(t.learningRate,t.initialAccumulatorValue)}};f2.className="Adagrad";zs(f2);var m2=class extends js{constructor(e,t,n,a=null){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=a,this.accumulatedFirstMoment=[],this.accumulatedSecondMoment=[],Z(()=>{this.accBeta1=Re(t).variable(),this.accBeta2=Re(n).variable()}),a==null&&(this.epsilon=j.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);Z(()=>{let n=Ne(1,this.accBeta1),a=Ne(1,this.accBeta2);t.forEach((r,s)=>{let i=j.registeredVariables[r],o=!1;this.accumulatedFirstMoment[s]==null&&(this.accumulatedFirstMoment[s]={originalName:`${r}/m`,variable:Z(()=>at(i).variable(o))}),this.accumulatedSecondMoment[s]==null&&(this.accumulatedSecondMoment[s]={originalName:`${r}/v`,variable:Z(()=>at(i).variable(o))});let l=Array.isArray(e)?e[s].tensor:e[r];if(l==null)return;let u=this.accumulatedFirstMoment[s].variable,d=this.accumulatedSecondMoment[s].variable,h=pe(K(u,this.beta1),K(l,1-this.beta1)),p=pe(K(d,this.beta2),K(vt(l),1-this.beta2)),c=Me(h,n),m=Me(p,a);u.assign(h),d.assign(p);let f=pe(K(Me(c,pe(Mn(m),this.epsilon)),-this.learningRate),i);i.assign(f)}),this.accBeta1.assign(K(this.accBeta1,this.beta1)),this.accBeta2.assign(K(this.accBeta2,this.beta2))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.accBeta2.dispose(),this.accumulatedFirstMoment!=null&&Ge(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedSecondMoment!=null&&Ge(this.accumulatedSecondMoment.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedFirstMoment,...this.accumulatedSecondMoment];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e),Z(()=>{this.accBeta1.assign(Vs(this.beta1,this.iterations_+1)),this.accBeta2.assign(Vs(this.beta2,this.iterations_+1))});let t=e.length/2,n=!1;this.accumulatedFirstMoment=e.slice(0,t).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})),this.accumulatedSecondMoment=e.slice(t,t*2).map(a=>({originalName:a.name,variable:a.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon)}};m2.className="Adam";zs(m2);var g2=class extends js{constructor(e,t,n,a=null,r=0){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=a,this.decay=r,this.accumulatedFirstMoment=[],this.accumulatedWeightedInfNorm=[],Z(()=>{this.iteration=Re(0).variable(),this.accBeta1=Re(t).variable()}),a==null&&(this.epsilon=j.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);Z(()=>{let n=Ne(1,this.accBeta1),a=Me(-this.learningRate,pe(K(this.iteration,this.decay),1));t.forEach((r,s)=>{let i=j.registeredVariables[r],o=!1;this.accumulatedFirstMoment[s]==null&&(this.accumulatedFirstMoment[s]={originalName:`${r}/m`,variable:at(i).variable(o)}),this.accumulatedWeightedInfNorm[s]==null&&(this.accumulatedWeightedInfNorm[s]={originalName:`${r}/v`,variable:at(i).variable(o)});let l=Array.isArray(e)?e[s].tensor:e[r];if(l==null)return;let u=this.accumulatedFirstMoment[s].variable,d=this.accumulatedWeightedInfNorm[s].variable,h=pe(K(u,this.beta1),K(l,1-this.beta1)),p=K(d,this.beta2),c=yn(l),m=is(p,c);u.assign(h),d.assign(m);let f=pe(K(Me(a,n),Me(h,pe(m,this.epsilon))),i);i.assign(f)}),this.iteration.assign(pe(this.iteration,1)),this.accBeta1.assign(K(this.accBeta1,this.beta1))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.iteration.dispose(),this.accumulatedFirstMoment!=null&&Ge(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedWeightedInfNorm!=null&&Ge(this.accumulatedWeightedInfNorm.map(e=>e.variable))}async getWeights(){throw new Error("getWeights() is not implemented for Adamax yet.")}async setWeights(e){throw new Error("setWeights() is not implemented for Adamax yet.")}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon,decay:this.decay}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon,t.decay)}};g2.className="Adamax";zs(g2);var Uf=class extends js{constructor(e){super();this.learningRate=e,this.setLearningRate(e)}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=Array.isArray(e)?e[n].tensor:e[t];if(a==null)return;let r=j.registeredVariables[t];Z(()=>{let s=pe(K(this.c,a),r);r.assign(s)})}),this.incrementIterations()}setLearningRate(e){this.learningRate=e,this.c!=null&&this.c.dispose(),this.c=Sn(Re(-e))}dispose(){this.c.dispose()}async getWeights(){return[await this.saveIterations()]}async setWeights(e){if(e=await this.extractIterations(e),e.length!==0)throw new Error("SGD optimizer does not have settable weights.")}getConfig(){return{learningRate:this.learningRate}}static fromConfig(e,t){return new e(t.learningRate)}};Uf.className="SGD";zs(Uf);var y2=class extends Uf{constructor(e,t,n=!1){super(e);this.learningRate=e,this.momentum=t,this.useNesterov=n,this.accumulations=[],this.m=Re(this.momentum)}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=j.registeredVariables[t];if(this.accumulations[n]==null){let i=!1;this.accumulations[n]={originalName:`${t}/momentum`,variable:Z(()=>at(a).variable(i))}}let r=this.accumulations[n].variable,s=Array.isArray(e)?e[n].tensor:e[t];s!=null&&Z(()=>{let i,o=pe(K(this.m,r),s);this.useNesterov?i=pe(K(this.c,pe(s,K(o,this.m))),a):i=pe(K(this.c,o),a),r.assign(o),a.assign(i)})}),this.incrementIterations()}dispose(){this.m.dispose(),this.accumulations!=null&&Ge(this.accumulations.map(e=>e.variable))}setMomentum(e){this.momentum=e}async getWeights(){return[await this.saveIterations()].concat(this.accumulations.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulations=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,momentum:this.momentum,useNesterov:this.useNesterov}}static fromConfig(e,t){return new e(t.learningRate,t.momentum,t.useNesterov)}};y2.className="Momentum";zs(y2);var A2=class extends js{constructor(e,t=.9,n=0,a=null,r=!1){super();if(this.learningRate=e,this.decay=t,this.momentum=n,this.epsilon=a,this.accumulatedMeanSquares=[],this.accumulatedMoments=[],this.accumulatedMeanGrads=[],this.centered=r,a==null&&(this.epsilon=j.backend.epsilon()),e==null)throw new Error("learningRate for RMSPropOptimizer must be defined.")}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=j.registeredVariables[t],r=!1;this.accumulatedMeanSquares[n]==null&&(this.accumulatedMeanSquares[n]={originalName:`${t}/rms`,variable:Z(()=>at(a).variable(r))}),this.accumulatedMoments[n]==null&&(this.accumulatedMoments[n]={originalName:`${t}/momentum`,variable:Z(()=>at(a).variable(r))}),this.accumulatedMeanGrads[n]==null&&this.centered&&(this.accumulatedMeanGrads[n]={originalName:`${t}/mg`,variable:Z(()=>at(a).variable(r))});let s=Array.isArray(e)?e[n].tensor:e[t];if(s==null)return;let i=this.accumulatedMeanSquares[n].variable,o=this.accumulatedMoments[n].variable;Z(()=>{let l=pe(K(i,this.decay),K(vt(s),1-this.decay));if(this.centered){let u=this.accumulatedMeanGrads[n].variable,d=pe(K(u,this.decay),K(s,1-this.decay)),h=Me(K(s,this.learningRate),Mn(Ne(l,pe(vt(d),this.epsilon)))),p=pe(K(o,this.momentum),h);i.assign(l),u.assign(d),o.assign(p);let c=Ne(a,p);a.assign(c)}else{let u=pe(K(i,this.decay),K(vt(s),1-this.decay)),d=pe(K(o,this.momentum),Me(K(s,this.learningRate),Mn(pe(u,this.epsilon))));i.assign(u),o.assign(d);let h=Ne(a,d);a.assign(h)}})}),this.incrementIterations()}dispose(){this.accumulatedMeanSquares!=null&&Ge(this.accumulatedMeanSquares.map(e=>e.variable)),this.accumulatedMeanGrads!=null&&this.centered&&Ge(this.accumulatedMeanGrads.map(e=>e.variable)),this.accumulatedMoments!=null&&Ge(this.accumulatedMoments.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedMeanSquares,...this.accumulatedMoments];return this.centered&&e.push(...this.accumulatedMeanGrads),[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=this.centered?e.length/3:e.length/2,n=!1;this.accumulatedMeanSquares=e.slice(0,t).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})),this.accumulatedMoments=e.slice(t,t*2).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})),this.centered&&(this.accumulatedMeanGrads=e.slice(t*2,t*3).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})))}getConfig(){return{learningRate:this.learningRate,decay:this.decay,momentum:this.momentum,epsilon:this.epsilon,centered:this.centered}}static fromConfig(e,t){return new e(t.learningRate,t.decay,t.momentum,t.epsilon,t.centered)}};A2.className="RMSProp";zs(A2);var no=class{static sgd(e){return new Uf(e)}static momentum(e,t,n=!1){return new y2(e,t,n)}static rmsprop(e,t=.9,n=0,a=null,r=!1){return new A2(e,t,n,a,r)}static adam(e=.001,t=.9,n=.999,a=null){return new m2(e,t,n,a)}static adadelta(e=.001,t=.95,n=null){return new c2(e,t,n)}static adamax(e=.002,t=.9,n=.999,a=null,r=0){return new g2(e,t,n,a,r)}static adagrad(e,t=.1){return new f2(e,t)}},tu={sgd:no.sgd,momentum:no.momentum,adadelta:no.adadelta,adagrad:no.adagrad,rmsprop:no.rmsprop,adamax:no.adamax,adam:no.adam},dY=(()=>typeof requestAnimationFrame!="undefined"?requestAnimationFrame:typeof setImmediate!="undefined"?setImmediate:e=>e())();function x2(){return new Promise(e=>dY(()=>e()))}var M={};$e(M,{ERF_A1:()=>vY,ERF_A2:()=>wY,ERF_A3:()=>kY,ERF_A4:()=>IY,ERF_A5:()=>SY,ERF_P:()=>bY,PARALLELIZE_THRESHOLD:()=>b2,SELU_SCALE:()=>V8,SELU_SCALEALPHA:()=>B8,applyActivation:()=>Wf,assertAndGetBroadcastShape:()=>Rt,assertAxesAreInnerMostDims:()=>qq,assertParamsConsistent:()=>hY,assignToTypedArray:()=>FY,axesAreInnerMostDims:()=>UA,calculateShapes:()=>E4,checkEinsumDimSizes:()=>LY,combineLocations:()=>p8,complexWithEvenIndex:()=>MY,complexWithOddIndex:()=>$Y,computeConv2DInfo:()=>Ih,computeConv3DInfo:()=>Y4,computeDefaultPad:()=>RA,computeDilation2DInfo:()=>oG,computeOptimalWindowSize:()=>cY,computeOutAndReduceShapes:()=>c8,computeOutShape:()=>pY,computePool2DInfo:()=>Z4,computePool3DInfo:()=>lG,convertConv2DDataFormat:()=>J4,decodeEinsumEquation:()=>zY,eitherStridesOrDilationsAreOne:()=>Mr,expandShapeToKeepDim:()=>Qi,exponent:()=>DY,exponents:()=>OY,fromStringArrayToUint8:()=>KY,fromUint8ToStringArray:()=>qY,getAxesPermutation:()=>f8,getBroadcastDims:()=>sq,getComplexWithIndex:()=>RY,getEinsumComputePath:()=>WY,getEinsumPermutation:()=>PY,getFusedBiasGradient:()=>Lf,getFusedDyActivation:()=>Pf,getImageCenter:()=>fY,getInnerMostAxes:()=>Kq,getPermuted:()=>gY,getReductionAxes:()=>ln,getReshaped:()=>mY,getReshapedPermuted:()=>yY,getSliceBeginCoords:()=>AY,getSliceSize:()=>xY,getUndoAxesPermutation:()=>jA,isIdentityPermutation:()=>BY,log:()=>TY,mergeRealAndImagArrays:()=>EY,prepareAndValidate:()=>N4,prepareSplitSize:()=>UY,segment_util:()=>H8,shouldFuse:()=>Bf,slice_util:()=>Cn,splitRealAndImagArrays:()=>CY,tupleValuesAreOne:()=>Ls,upcastType:()=>Ga,validateInput:()=>TA,validateUpdateShape:()=>NA,warn:()=>NY});function hY(e,t){let n=e[0].length;e.forEach((r,s)=>{P(r.length===n,()=>`Error in concat${n}D: rank of tensors[${s}] must be the same as the rank of the rest (${n})`)}),P(t>=0&&t<n,()=>`Error in concat${n}D: axis must be between 0 and ${n-1}.`);let a=e[0];e.forEach((r,s)=>{for(let i=0;i<n;i++)P(i===t||r[i]===a[i],()=>`Error in concat${n}D: Shape of tensors[${s}] (${r}) does not match the shape of the rest (${a}) along the non-concatenated axis ${s}.`)})}function pY(e,t){let n=e[0].slice();for(let a=1;a<e.length;a++)n[t]+=e[a][t];return n}var b2=30;function cY(e){return e<=b2?e:Hc(e,Math.floor(Math.sqrt(e)))}function fY(e,t,n){let a=n*(typeof e=="number"?e:e[0]),r=t*(typeof e=="number"?e:e[1]);return[a,r]}function mY(e,t,n,a=!0){let r=[];if(a)r=r.concat(t.slice(0)),r.push(e[0]/n),r=r.concat(e.slice(1));else{r=r.concat(e[0]);let s=t.length;for(let i=0;i<s;++i)r=r.concat([e[i+1]/t[i],t[i]]);r=r.concat(e.slice(s+1))}return r}function gY(e,t,n=!0){let a=[];if(n){a.push(t);for(let r=t+1;r<e;++r)r<=2*t?(a.push(r),a.push(r-(t+1))):a.push(r)}else{let r=[],s=[];for(let i=1;i<e;++i)i>=t*2+1||i%2==1?s.push(i):r.push(i);a.push(...r),a.push(0),a.push(...s)}return a}function yY(e,t,n,a=!0){let r=[];a?r.push(e[0]/n):r.push(e[0]*n);for(let s=1;s<e.length;++s)s<=t.length?a?r.push(t[s-1]*e[s]):r.push(e[s]/t[s-1]):r.push(e[s]);return r}function AY(e,t){let n=[0];for(let a=0;a<t;++a)n.push(e[a][0]);return n}function xY(e,t,n){let a=e.slice(0,1);for(let r=0;r<n;++r)a.push(e[r+1]-t[r][0]-t[r][1]);return a}var B8=1.7580993408473768,V8=1.0507009873554805,bY=.3275911,vY=.254829592,wY=-.284496736,kY=1.421413741,IY=-1.453152027,SY=1.061405429;function NY(...e){se().getBool("IS_TEST")||console.warn(...e)}function TY(...e){se().getBool("IS_TEST")||console.log(...e)}function EY(e,t){if(e.length!==t.length)throw new Error(`Cannot merge real and imag arrays of different lengths. real:${e.length}, imag: ${t.length}.`);let n=new Float32Array(e.length*2);for(let a=0;a<n.length;a+=2)n[a]=e[a/2],n[a+1]=t[a/2];return n}function CY(e){let t=new Float32Array(e.length/2),n=new Float32Array(e.length/2);for(let a=0;a<e.length;a+=2)t[a/2]=e[a],n[a/2]=e[a+1];return{real:t,imag:n}}function MY(e){let t=Math.ceil(e.length/4),n=new Float32Array(t),a=new Float32Array(t);for(let r=0;r<e.length;r+=4)n[Math.floor(r/4)]=e[r],a[Math.floor(r/4)]=e[r+1];return{real:n,imag:a}}function $Y(e){let t=Math.floor(e.length/4),n=new Float32Array(t),a=new Float32Array(t);for(let r=2;r<e.length;r+=4)n[Math.floor(r/4)]=e[r],a[Math.floor(r/4)]=e[r+1];return{real:n,imag:a}}function RY(e,t){let n=e[t*2],a=e[t*2+1];return{real:n,imag:a}}function FY(e,t,n,a){e[a*2]=t,e[a*2+1]=n}function OY(e,t){let n=new Float32Array(e/2),a=new Float32Array(e/2);for(let r=0;r<Math.ceil(e/2);r++){let s=(t?2:-2)*Math.PI*(r/e);n[r]=Math.cos(s),a[r]=Math.sin(s)}return{real:n,imag:a}}function DY(e,t,n){let a=(n?2:-2)*Math.PI*(e/t),r=Math.cos(a),s=Math.sin(a);return{real:r,imag:s}}var v2="->",_Y=/->/g,U8=",",j8="...";function zY(e,t){e=e.replace(/\s/g,"");let n=(e.length-e.replace(_Y,"").length)/v2.length;if(n<1)throw new Error("Equations without an arrow are not supported.");if(n>1)throw new Error(`Equation must contain exactly one arrow ("${v2}").`);let[a,r]=e.split(v2);P(a.indexOf(j8)===-1,()=>`The ellipsis notation ("${j8}") is not supported yet.`);let s=a.split(U8),i=s.length;if(t!==i)throw new Error(`Expected ${i} input tensors, received ${t}`);if(i>2)throw new Error("Support for more than 2 input tensors is not implemented yet.");let o=[];for(let p=0;p<r.length;++p){let c=r[p];if(!s.some(m=>m.indexOf(c)!==-1))throw new Error(`Output subscripts contain the label ${c} not present in the input subscripts.`);o.indexOf(c)===-1&&o.push(c)}for(let p=0;p<a.length;++p){let c=a[p];o.indexOf(c)===-1&&c!==U8&&o.push(c)}let l=new Array(s.length);for(let p=0;p<i;++p){if(new Set(s[p].split("")).size!==s[p].length)throw new Error(`Found duplicate axes in input component ${s[p]}. Support for duplicate axes in input is not implemented yet.`);l[p]=[];for(let c=0;c<s[p].length;++c)l[p].push(o.indexOf(s[p][c]))}let u=o.length,d=r.length,h=[];for(let p=d;p<u;++p)h.push(p);return{allDims:o,summedDims:h,idDims:l}}function PY(e,t){let n=new Array(e);n.fill(-1);for(let r=0;r<t.length;++r)n[t[r]]=r;let a=[];for(let r=0;r<e;++r)n[r]===-1&&a.push(r);return n=n.filter(r=>r!==-1),{permutationIndices:n,expandDims:a}}function LY(e,t,n){let a=new Array(e);for(let r=0;r<n.length;++r){let s=n[r].shape;for(let i=0;i<t[r].length;++i)a[t[r][i]]===void 0?a[t[r][i]]=s[i]:P(a[t[r][i]]===s[i],()=>`Expected dimension ${a[t[r][i]]} at axis ${i} of input shaped ${JSON.stringify(s)}, but got dimension ${s[i]}`)}}function WY(e,t){let n=e,a=[],r=0;e.length===0&&n.push(-1),r=e.length+1;for(let i=0;i<r;++i)a.push([]);let s=[];for(let i=0;i<n.length;++i){let o=n[i],l=VY(t,o);for(let u of l)s.indexOf(u)===-1&&(a[i].push(u),s.push(u))}return{path:n,steps:a}}function BY(e){return e.every((t,n)=>t===n)}function VY(e,t){let n=[];for(let a=0;a<e.length;++a)(e[a].length===0||e[a].indexOf(t)!==-1||t===-1)&&n.push(a);return n}function UY(e,t,n=0){let a=[];if(typeof t=="number")P(e.shape[n]%t==0,()=>"Number of splits must evenly divide the axis."),a=new Array(t).fill(e.shape[n]/t);else{let r=t.reduce((i,o)=>(o===-1&&(i+=1),i),0);P(r<=1,()=>"There should be only one negative value in split array.");let s=t.indexOf(-1);if(s!==-1){let i=t.reduce((o,l)=>l>0?o+l:o);t[s]=e.shape[n]-i}P(e.shape[n]===t.reduce((i,o)=>i+o),()=>"The sum of sizes must match the size of the axis dimension."),a=t}return a}var H8={};$e(H8,{collectGatherOpShapeInfo:()=>GY,computeOutShape:()=>HY,segOpComputeOptimalWindowSize:()=>jY});function jY(e,t){let n=!1,a;for(e<=b2?(a=e,n=!0):a=Hc(e,Math.floor(Math.sqrt(e)));!n;)a>t||a===e?n=!0:a=Hc(e,a+1);return a}function HY(e,t,n){let a=[],r=e.length;for(let s=0;s<r;s++)s!==t?a.push(e[s]):a.push(n);return a}function GY(e,t,n,a){let r=t.shape.length,s=e.shape.length;if(a!==0&&(a<-r||a>r))throw new Error(`Expect batchDims in the range of [-${r}, ${r}], but got ${a}`);if(a<0&&(a+=r),a>s)throw new Error(`batchDims (${a}) must be less than rank(x) (
|
|
${s}).`);if(n<a)throw new Error(`batchDims (${a}) must be less than or equal to axis (${n}).`);for(let h=0;h<a;++h)if(e.shape[h]!==t.shape[h])throw new Error(`x.shape[${h}]: ${e.shape[h]} should be equal to indices.shape[${h}]: ${t.shape[h]}.`);let i=e.shape[n],o=[],l=1,u=1,d=1;for(let h=0;h<a;++h)o.push(e.shape[h]),l*=e.shape[h];for(let h=a;h<n;h++)o.push(e.shape[h]),u*=e.shape[h];for(let h=a;h<r;h++)o.push(t.shape[h]);for(let h=n+1;h<s;h++)o.push(e.shape[h]),d*=e.shape[h];return{batchSize:l,sliceSize:d,outerSize:u,dimSize:i,outputShape:o}}function qY(e){try{return e.map(t=>ff(t))}catch(t){throw new Error(`Failed to decode encoded string bytes into utf-8, error: ${t}`)}}function KY(e){return e.map(t=>cf(t))}var us={};$e(us,{nonMaxSuppressionV3Impl:()=>O8,nonMaxSuppressionV4Impl:()=>D8,nonMaxSuppressionV5Impl:()=>_8,whereImpl:()=>E8});re().prototype.abs=function(){return this.throwIfDisposed(),yn(this)};re().prototype.acos=function(){return this.throwIfDisposed(),V4(this)};re().prototype.acosh=function(){return this.throwIfDisposed(),U4(this)};re().prototype.add=function(e){return this.throwIfDisposed(),pe(this,e)};re().prototype.all=function(e,t){return this.throwIfDisposed(),$A(this,e,t)};re().prototype.any=function(e,t){return this.throwIfDisposed(),wf(this,e,t)};re().prototype.argMax=function(e){return this.throwIfDisposed(),kf(this,e)};re().prototype.argMin=function(e){return this.throwIfDisposed(),j4(this,e)};re().prototype.asScalar=function(){return this.throwIfDisposed(),P(this.size===1,()=>"The array must have only 1 element."),Y(this,[])};re().prototype.asType=function(e){return this.throwIfDisposed(),we(this,e)};re().prototype.as1D=function(){return this.throwIfDisposed(),Y(this,[this.size])};re().prototype.as2D=function(e,t){return this.throwIfDisposed(),Y(this,[e,t])};re().prototype.as3D=function(e,t,n){return this.throwIfDisposed(),Y(this,[e,t,n])};re().prototype.as4D=function(e,t,n,a){return this.throwIfDisposed(),Y(this,[e,t,n,a])};re().prototype.as5D=function(e,t,n,a,r){return this.throwIfDisposed(),Y(this,[e,t,n,a,r])};re().prototype.asin=function(){return this.throwIfDisposed(),H4(this)};re().prototype.asinh=function(){return this.throwIfDisposed(),G4(this)};re().prototype.atan=function(){return this.throwIfDisposed(),q4(this)};re().prototype.atan2=function(e){return this.throwIfDisposed(),K4(this,e)};re().prototype.atanh=function(){return this.throwIfDisposed(),X4(this)};re().prototype.avgPool=function(e,t,n,a){return this.throwIfDisposed(),Sf(this,e,t,n,a)};re().prototype.batchToSpaceND=function(e,t){return this.throwIfDisposed(),Nf(this,e,t)};re().prototype.batchNorm=function(e,t,n,a,r){return this.throwIfDisposed(),Xl(this,e,t,n,a,r)};re().prototype.broadcastTo=function(e){return this.throwIfDisposed(),Sh(this,e)};re().prototype.cast=function(e){return this.throwIfDisposed(),we(this,e)};re().prototype.ceil=function(){return this.throwIfDisposed(),t8(this)};re().prototype.clipByValue=function(e,t){return this.throwIfDisposed(),ua(this,e,t)};re().prototype.concat=function(e,t){return this.throwIfDisposed(),e instanceof Tt&&(e=[e]),en([this,...e],t)};re().prototype.conv1d=function(e,t,n,a,r,s){return this.throwIfDisposed(),OA(this,e,t,n,a,r,s)};re().prototype.conv2dTranspose=function(e,t,n,a,r){return this.throwIfDisposed(),_A(this,e,t,n,a,r)};re().prototype.conv2d=function(e,t,n,a,r,s){return this.throwIfDisposed(),Ws(this,e,t,n,a,r,s)};re().prototype.cos=function(){return this.throwIfDisposed(),Tf(this)};re().prototype.cosh=function(){return this.throwIfDisposed(),zA(this)};re().prototype.cumsum=function(e,t,n){return this.throwIfDisposed(),PA(this,e,t,n)};re().prototype.depthToSpace=function(e,t){return this.throwIfDisposed(),r8(this,e,t)};re().prototype.depthwiseConv2d=function(e,t,n,a,r,s){return this.throwIfDisposed(),Nh(this,e,t,n,a,r,s)};re().prototype.dilation2d=function(e,t,n,a,r){return this.throwIfDisposed(),s8(this,e,t,n,a,r)};re().prototype.divNoNan=function(e){return this.throwIfDisposed(),i8(this,e)};re().prototype.div=function(e){return this.throwIfDisposed(),Me(this,e)};re().prototype.dot=function(e){return this.throwIfDisposed(),hq(this,e)};re().prototype.elu=function(){return this.throwIfDisposed(),Th(this)};re().prototype.equal=function(e){return this.throwIfDisposed(),Xi(this,e)};re().prototype.erf=function(){return this.throwIfDisposed(),o8(this)};re().prototype.exp=function(){return this.throwIfDisposed(),qa(this)};re().prototype.expandDims=function(e){return this.throwIfDisposed(),Ea(this,e)};re().prototype.expm1=function(){return this.throwIfDisposed(),l8(this)};re().prototype.fft=function(){return this.throwIfDisposed(),r2(this)};re().prototype.flatten=function(){return this.throwIfDisposed(),Y(this,[this.size])};re().prototype.floor=function(){return this.throwIfDisposed(),Ch(this)};re().prototype.floorDiv=function(e){return this.throwIfDisposed(),MA(this,e)};re().prototype.gather=function(e,t){return this.throwIfDisposed(),Mh(this,e,t)};re().prototype.greaterEqual=function(e){return this.throwIfDisposed(),Yi(this,e)};re().prototype.greater=function(e){return this.throwIfDisposed(),Ca(this,e)};re().prototype.ifft=function(){return this.throwIfDisposed(),zf(this)};re().prototype.irfft=function(){return this.throwIfDisposed(),k8(this)};re().prototype.isFinite=function(){return this.throwIfDisposed(),Tq(this)};re().prototype.isInf=function(){return this.throwIfDisposed(),Cq(this)};re().prototype.isNaN=function(){return this.throwIfDisposed(),d8(this)};re().prototype.leakyRelu=function(e){return this.throwIfDisposed(),Ef(this,e)};re().prototype.lessEqual=function(e){return this.throwIfDisposed(),Ji(this,e)};re().prototype.less=function(e){return this.throwIfDisposed(),WA(this,e)};re().prototype.localResponseNormalization=function(e,t,n,a){return this.throwIfDisposed(),h8(this,e,t,n,a)};re().prototype.logSigmoid=function(){return this.throwIfDisposed(),Vq(this)};re().prototype.logSoftmax=function(e){return this.throwIfDisposed(),VA(this,e)};re().prototype.logSumExp=function(e,t){return this.throwIfDisposed(),m8(this,e,t)};re().prototype.log=function(){return this.throwIfDisposed(),Ma(this)};re().prototype.log1p=function(){return this.throwIfDisposed(),BA(this)};re().prototype.logicalAnd=function(e){return this.throwIfDisposed(),ir(this,e)};re().prototype.logicalNot=function(){return this.throwIfDisposed(),Cf(this)};re().prototype.logicalOr=function(e){return this.throwIfDisposed(),HA(this,e)};re().prototype.logicalXor=function(e){return this.throwIfDisposed(),eK(this,e)};re().prototype.matMul=function(e,t,n){return this.throwIfDisposed(),it(this,e,t,n)};re().prototype.maxPool=function(e,t,n,a){return this.throwIfDisposed(),Mf(this,e,t,n,a)};re().prototype.max=function(e,t){return this.throwIfDisposed(),sr(this,e,t)};re().prototype.maximum=function(e){return this.throwIfDisposed(),is(this,e)};re().prototype.mean=function(e,t){return this.throwIfDisposed(),Xt(this,e,t)};re().prototype.min=function(e,t){return this.throwIfDisposed(),$f(this,e,t)};re().prototype.minimum=function(e){return this.throwIfDisposed(),$h(this,e)};re().prototype.mirrorPad=function(e,t){return this.throwIfDisposed(),y8(this,e,t)};re().prototype.mod=function(e){return this.throwIfDisposed(),A8(this,e)};re().prototype.mul=function(e){return this.throwIfDisposed(),K(this,e)};re().prototype.neg=function(){return this.throwIfDisposed(),Kt(this)};re().prototype.norm=function(e,t,n){return this.throwIfDisposed(),u2(this,e,t,n)};re().prototype.notEqual=function(e){return this.throwIfDisposed(),Yl(this,e)};re().prototype.oneHot=function(e,t=1,n=0){return this.throwIfDisposed(),kh(this,e,t,n)};re().prototype.onesLike=function(){return this.throwIfDisposed(),$a(this)};re().prototype.pad=function(e,t){return this.throwIfDisposed(),Bs(this,e,t)};re().prototype.pool=function(e,t,n,a,r){return this.throwIfDisposed(),EK(this,e,t,n,a,r)};re().prototype.pow=function(e){return this.throwIfDisposed(),Vs(this,e)};re().prototype.prelu=function(e){return this.throwIfDisposed(),Ff(this,e)};re().prototype.prod=function(e,t){return this.throwIfDisposed(),qA(this,e,t)};re().prototype.reciprocal=function(){return this.throwIfDisposed(),x8(this)};re().prototype.relu=function(){return this.throwIfDisposed(),ls(this)};re().prototype.relu6=function(){return this.throwIfDisposed(),ZA(this)};re().prototype.reshapeAs=function(e){return this.throwIfDisposed(),Y(this,e.shape)};re().prototype.reshape=function(e){return this.throwIfDisposed(),Y(this,e)};re().prototype.resizeBilinear=function(e,t,n){return this.throwIfDisposed(),P8(this,e,t,n)};re().prototype.resizeNearestNeighbor=function(e,t,n){return this.throwIfDisposed(),L8(this,e,t,n)};re().prototype.reverse=function(e){return this.throwIfDisposed(),Ra(this,e)};re().prototype.rfft=function(){return this.throwIfDisposed(),s2(this)};re().prototype.round=function(){return this.throwIfDisposed(),YA(this)};re().prototype.rsqrt=function(){return this.throwIfDisposed(),JA(this)};re().prototype.selu=function(){return this.throwIfDisposed(),QA(this)};re().prototype.separableConv2d=function(e,t,n,a,r,s){return this.throwIfDisposed(),b8(this,e,t,n,a,r,s)};re().prototype.sigmoid=function(){return this.throwIfDisposed(),$r(this)};re().prototype.sign=function(){return this.throwIfDisposed(),v8(this)};re().prototype.sin=function(){return this.throwIfDisposed(),e2(this)};re().prototype.sinh=function(){return this.throwIfDisposed(),t2(this)};re().prototype.slice=function(e,t){return this.throwIfDisposed(),nt(this,e,t)};re().prototype.softmax=function(e){return this.throwIfDisposed(),_f(this,e)};re().prototype.softplus=function(){return this.throwIfDisposed(),Zl(this)};re().prototype.spaceToBatchND=function(e,t){return this.throwIfDisposed(),Rf(this,e,t)};re().prototype.split=function(e,t){return this.throwIfDisposed(),da(this,e,t)};re().prototype.sqrt=function(){return this.throwIfDisposed(),Mn(this)};re().prototype.square=function(){return this.throwIfDisposed(),vt(this)};re().prototype.squaredDifference=function(e){return this.throwIfDisposed(),i2(this,e)};re().prototype.squeeze=function(e){return this.throwIfDisposed(),Jl(this,e)};re().prototype.stack=function(e,t){this.throwIfDisposed();let n=e instanceof Tt?[this,e]:[this,...e];return Fa(n,t)};re().prototype.step=function(e){return this.throwIfDisposed(),Oh(this,e)};re().prototype.stridedSlice=function(e,t,n,a,r,s,i,o){return this.throwIfDisposed(),I8(this,e,t,n,a,r,s,i,o)};re().prototype.sub=function(e){return this.throwIfDisposed(),Ne(this,e)};re().prototype.sum=function(e,t){return this.throwIfDisposed(),Ce(this,e,t)};re().prototype.tan=function(){return this.throwIfDisposed(),S8(this)};re().prototype.tanh=function(){return this.throwIfDisposed(),Kl(this)};re().prototype.tile=function(e){return this.throwIfDisposed(),Zi(this,e)};re().prototype.toBool=function(){return this.throwIfDisposed(),we(this,"bool")};re().prototype.toFloat=function(){return this.throwIfDisposed(),we(this,"float32")};re().prototype.toInt=function(){return this.throwIfDisposed(),we(this,"int32")};re().prototype.topk=function(e,t){return this.throwIfDisposed(),N8(this,e,t)};re().prototype.transpose=function(e){return this.throwIfDisposed(),ct(this,e)};re().prototype.unique=function(e){return this.throwIfDisposed(),l2(this,e)};re().prototype.unsortedSegmentSum=function(e,t){return this.throwIfDisposed(),T8(this,e,t)};re().prototype.unstack=function(e){return this.throwIfDisposed(),or(this,e)};re().prototype.where=function(e,t){return this.throwIfDisposed(),Pn(e,this,t)};re().prototype.zerosLike=function(){return this.throwIfDisposed(),at(this)};var G8={kernelName:xd,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>K(e,Oh(we(n,"float32"),-1))}}},XY={kernelName:bd,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let a=vt(we(n,"float32")),r=Mn(Ne(Re(1),a));return Kt(Me(e,r))}}}},ZY={kernelName:vd,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let a=Mn(Ne(vt(we(n,"float32")),1));return Me(e,a)}}}},YY={kernelName:Os,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=Rt(n.shape,a.shape);return{a:()=>{let s=e,i=ln(n.shape,r);return i.length>0&&(s=Ce(s,i)),Y(s,n.shape)},b:()=>{let s=e,i=ln(a.shape,r);return i.length>0&&(s=Ce(s,i)),Y(s,a.shape)}}}},JY={kernelName:Zo,saveAllInputs:!0,gradFunc:(e,t)=>{let n={};return t.forEach((a,r)=>{n[r]=()=>e.clone()}),n}},QY={kernelName:Yo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>at(n)}}},eJ={kernelName:qc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>at(n)}}},tJ={kernelName:Id,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Me(e,Mn(Ne(Re(1),vt(we(n,"float32")))))}}},nJ={kernelName:Sd,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let a=Mn(pe(Re(1),vt(we(n,"float32"))));return Me(e,a)}}}},aJ={kernelName:Ed,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=Rt(n.shape,a.shape);return{a:()=>{let s=pe(vt(n),vt(a)),i=K(e,Me(a,s)),o=ln(n.shape,r);return o.length>0&&(i=Ce(i,o)),Y(i,n.shape)},b:()=>{let s=pe(vt(n),vt(a)),i=Kt(K(e,Me(n,s))),o=ln(a.shape,r);return o.length>0&&(i=Ce(i,o)),Y(i,a.shape)}}}},rJ={kernelName:Nd,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Me(e,pe(vt(we(n,"float32")),1))}}},sJ={kernelName:Td,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Me(e,Ne(Re(1),vt(we(n,"float32"))))}}};function iJ(e,t,n,a,r,s){let i=F(e,"dy","avgPool3dGrad"),o=F(t,"input","avgPool3dGrad"),l=i,u=o,d=!1;o.rank===4&&(d=!0,l=Y(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]]),u=Y(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),P(l.rank===5,()=>`Error in avgPool3dGrad: dy must be rank 5 but got rank ${l.rank}.`),P(u.rank===5,()=>`Error in avgPool3dGrad: input must be rank 5 but got rank ${u.rank}.`),s!=null&&P(mn(r),()=>`Error in avgPool3dGrad: pad must be an integer when using, dimRoundingMode ${s} but got pad ${r}.`);let h={dy:l,input:u},p={filterSize:n,strides:a,pad:r,dimRoundingMode:s},c=j.runKernel(v1,h,p);return d?Y(c,[c.shape[1],c.shape[2],c.shape[3],c.shape[4]]):c}var oJ=B({avgPool3dGrad_:iJ}),lJ={kernelName:Kc,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{filterSize:r,strides:s,pad:i,dimRoundingMode:o}=n;return{x:()=>oJ(e,a,r,s,i,o)}}};function uJ(e,t,n,a,r){let s=F(e,"dy","avgPoolGrad"),i=F(t,"input","avgPoolGrad");P(i.rank===s.rank,()=>`Rank of input (${i.rank}) does not match rank of dy (${s.rank})`);let o=i,l=s,u=!1;i.rank===3&&(u=!0,o=Y(i,[1,i.shape[0],i.shape[1],i.shape[2]]),l=Y(s,[1,s.shape[0],s.shape[1],s.shape[2]])),P(l.rank===4,()=>`Error in avgPoolGrad: dy must be rank 4 but got rank ${l.rank}.`),P(o.rank===4,()=>`Error in avgPoolGrad: input must be rank 4 but got rank ${o.rank}.`);let d={dy:l,input:o},h={filterSize:n,strides:a,pad:r},p=j.runKernel(b1,d,h);return u?Y(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var dJ=B({avgPoolGrad_:uJ}),hJ={kernelName:Jo,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{filterSize:r,strides:s,pad:i}=n;return{x:()=>dJ(e,a,r,s,i)}}},pJ={kernelName:Qo,inputsToSave:["a","b"],gradFunc:(e,t,n)=>{let[a,r]=t,{transposeA:s,transposeB:i}=n;return!s&&!i?{a:()=>it(e,r,!1,!0),b:()=>it(a,e,!0,!1)}:!s&&i?{a:()=>it(e,r,!1,!1),b:()=>it(e,a,!0,!1)}:s&&!i?{a:()=>it(r,e,!1,!0),b:()=>it(a,e,!1,!1)}:{a:()=>it(r,e,!0,!0),b:()=>it(e,a,!0,!0)}}},cJ={kernelName:Xc,gradFunc:(e,t,n)=>{let{blockShape:a,crops:r}=n;return{x:()=>Rf(e,a,r)}}},fJ={kernelName:ej,gradFunc:(e,t,n)=>{let a=n,r=a.inputShape,s=a.shape,i=Array.from(s);for(let l=r.length-1;l>=0;l--)if(r[l]===s[l])i[l]=1;else if(r[l]!==1)throw new Error(`broadcastTo(): [${r}] cannot be broadcast to [${s}].`);let o=[];for(let l=0;l<i.length;l++)i[l]>1&&o.push(l);return{x:()=>Ce(e,o,!0)}}},mJ={kernelName:el,gradFunc:e=>({x:()=>e.clone()})},gJ={kernelName:Ni,gradFunc:e=>({x:()=>at(e)})},yJ={kernelName:Ti,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{clipValueMin:r,clipValueMax:s}=n;return{x:()=>Pn(ir(Yi(a,r),Ji(a,s)),e,at(e))}}},AJ={kernelName:Zc,inputsToSave:["x"],gradFunc:G8.gradFunc},xJ={kernelName:Cd,saveAllInputs:!0,gradFunc:(e,t,n)=>{let a=t.map(o=>o.shape),{axis:r}=n,s=Ha(r,t[0].shape)[0],i=a.map(o=>o[s]);return da(e,i,s).map(o=>()=>o)}},bJ={kernelName:tl,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[a,r]=t,{dilations:s,strides:i,pad:o,dataFormat:l}=n;return P(Ls(s),()=>`Error in gradient of conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`),{x:()=>DA(a.shape,e,r,i,o,l),filter:()=>d2(a,e,r.shape,i,o,l)}}},vJ={kernelName:nl,inputsToSave:["dy","filter"],gradFunc:(e,t,n)=>{let[a,r]=t,{strides:s,pad:i,dataFormat:o,dimRoundingMode:l}=n;return{dy:()=>Ws(e,r,s,i,o,1,l),filter:()=>d2(e,a,r.shape,s,i,o,l)}}};function wJ(e,t,n,a,r){let s=e;e.rank===4&&(s=Y(e,[1,e.shape[0],e.shape[1],e.shape[2],e.shape[3]]));let i=t;i.rank===4&&(i=Y(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]])),P(s.rank===5,()=>`Error in conv3dDerFilter: input must be rank 5, but got shape ${s.shape}.`),P(i.rank===5,()=>`Error in conv3dDerFilter: dy must be rank 5, but got shape ${i.shape}.`),P(n.length===5,()=>`Error in conv3dDerFilter: filterShape must be length 5, but got ${n}.`),P(s.shape[4]===n[3],()=>`Error in conv3dDerFilter: depth of input ${s.shape[4]}) must match input depth in filter (${n[3]}.`),P(i.shape[4]===n[4],()=>`Error in conv3dDerFilter: depth of dy (${i.shape[4]}) must match output depth for filter (${n[4]}).`);let o={x:s,dy:i},l={strides:a,pad:r,filterShape:n};return j.runKernel(S1,o,l)}var kJ=B({conv3DBackpropFilter_:wJ}),IJ={kernelName:Yc,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:a,strides:r,pad:s}=n;P(Ls(a),()=>`Error in gradient of conv3D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${a}'`);let[i,o]=t;return{x:()=>a8(i.shape,e,o,r,s),filter:()=>kJ(i,e,o.shape,r,s)}}},SJ={kernelName:al,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>K(Kt(e2(we(n,"float32"))),e)}}},NJ={kernelName:Md,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>K(t2(we(n,"float32")),e)}}},TJ={kernelName:rl,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{axis:r,exclusive:s,reverse:i}=n;return{x:()=>{let o=f8([r],a.rank),l=PA(e,r,s,!i);return o!=null&&(l=ct(l,o)),l}}}},EJ={kernelName:sl,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:a,strides:r,pad:s,dimRoundingMode:i}=n,o=a==null?[1,1]:a;P(Ls(o),()=>`Error in gradient of depthwiseConv2dNative: dilation rates greater than 1 are not yet supported. Got dilations '${o}'`);let[l,u]=t;return P(l.rank===4,()=>`Error in gradient of depthwiseConv2dNative: input must be rank 4, but got rank ${l.rank}.`),P(u.rank===4,()=>`Error in gradient of depthwiseConv2dNative: filter must be rank 4, but got rank ${u.rank}.`),P(l.shape[3]===u.shape[2],()=>`Error in gradient of depthwiseConv2d: number of input channels (${l.shape[3]}) must match the inChannels dimension in filter ${u.shape[2]}.`),P(Mr(r,o),()=>`Error in gradient of depthwiseConv2d: Either strides or dilations must be 1. Got strides ${r} and dilations '${o}'.`),i!=null&&P(mn(s),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${s}.`),{x:()=>F8(l.shape,e,u,r,s,a,i),filter:()=>R8(l,e,u.shape,r,s,a,i)}}},CJ={kernelName:Jc,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[a,r]=t,s={x:a,filter:r,dy:e},i={x:a,filter:r,dy:e};return{x:()=>j.runKernel($1,s,n),filter:()=>j.runKernel(R1,i,n)}}},MJ={kernelName:Fd,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t,a={dy:e,y:n};return{x:()=>j.runKernel(O1,a)}}},$J={kernelName:Od,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,a=K(qa(Kt(vt(n))),2/Math.sqrt(Math.PI));return{x:()=>K(e,a)}}},RJ={kernelName:Ei,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>K(e,n)}}},FJ={kernelName:Dd,inputsToSave:["input"],gradFunc:(e,t)=>{let[n]=t;return{input:()=>Y(e,n.shape)}}},OJ={kernelName:ll,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>K(e,qa(n))}}},DJ={kernelName:Ci,gradFunc:e=>({x:()=>at(e)})},_J={kernelName:ul,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=Rt(n.shape,a.shape);return{a:()=>{let s=Me(e,we(a,"float32")),i=ln(n.shape,r);return i.length>0?Y(Ce(s,i),n.shape):s},b:()=>{let s=K(e,we(n,"float32")),i=ln(a.shape,r);i.length>0&&(s=Y(Ce(s,i),a.shape));let o=vt(a);return Kt(Me(s,we(o,"float32")))}}}},zJ={kernelName:dl,inputsToSave:["x","mean","variance","scale"],gradFunc:(e,t,n)=>{let{varianceEpsilon:a}=n,[r,s,i,o]=t,l=o==null?Re(1):o,u=ln(s.shape,r.shape),d=[];if(s.rank===1){for(let f=0;f<r.shape.length-1;++f)d.push(r.shape[f]);d.push(1)}let h=Ne(r,s),p=K(e,l),c=JA(pe(i,Re(a))),m=K(K(K(c,c),c),Re(-.5));return{x:()=>s.rank===1?Y(K(K(e,Zi(Y(c,[1,1,1,s.shape[0]]),d)),l),r.shape):Y(K(K(e,c),l),r.shape),mean:()=>{let f=K(K(c,Re(-1)),p);return s.rank===1&&(f=Ce(f,u)),Y(f,s.shape)},variance:()=>{let f=K(K(m,h),p);return s.rank===1&&(f=Ce(f,u)),Y(f,s.shape)},scale:()=>{let f=K(h,c),g=K(e,f);return s.rank===1&&(g=Ce(g,u)),Y(g,s.shape)},offset:()=>{let f=e;return s.rank===1&&(f=Ce(f,u)),Y(f,s.shape)}}}},PJ={kernelName:zd,inputsToSave:["x","indices"],gradFunc:(e,t,n)=>{let[a,r]=t,{axis:s}=n,i=Ha(s,a.shape)[0];return{x:()=>{let o=a.shape,l=r.size,u=o.slice(0,i),d=u.length,h=o.slice(s,o.length).slice(1),p=h.length,c=q8(0,d),m=q8(d+1,d+1+p),f=K8([u,[l],h]),g=Y(e,f),y=Y(r,[l]),A=K8([[d],c,m]),x=ct(g,A),v=T8(x,y,a.shape[i]),b=jA(A);return v=ct(v,b),v},indices:()=>r}}};function q8(e,t){let n=[];for(let a=e;a<t;++a)n.push(a);return n}function K8(e){let t=[];for(let n=0;n<e.length;++n)for(let a=0;a<e[n].length;++a)t.push(e[n][a]);return t}var LJ={kernelName:Mi,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t;return{a:()=>at(n),b:()=>at(a)}}},WJ={kernelName:pl,gradFunc:e=>({x:()=>we(e,"float32")})},BJ={kernelName:Ld,gradFunc:e=>({x:()=>at(e)})},VJ={kernelName:Wd,gradFunc:e=>({x:()=>at(e)})},UJ={kernelName:Bd,gradFunc:e=>({x:()=>at(e)})},jJ={kernelName:cl,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{alpha:r}=n,s=Ca(a,0);return{x:()=>Pn(s,e,K(e,r))}}},HJ={kernelName:Vd,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Me(e,pe(n,1))}}},GJ={kernelName:$i,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Me(e,we(n,"float32"))}}},qJ={kernelName:tj,inputsToSave:[],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a]=t,{axis:r}=n;return{logits:()=>{let s=!0,i=qa(a);return Ne(e,K(Ce(e,r,s),i))}}}};function KJ(e,t,n,a=5,r=1,s=1,i=.5){let o={x:e,y:t,dy:n},l={depthRadius:a,bias:r,alpha:s,beta:i};return j.runKernel(L1,o,l)}var XJ=B({localResponseNormalizationBackprop_:KJ}),ZJ={kernelName:nf,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a,r]=t,{depthRadius:s,bias:i,alpha:o,beta:l}=n;return{x:()=>XJ(a,r,e,s,i,o,l)}}};function X8(e,t,n,a){return t.rank<n.rank&&(t=Y(t,Qi(t.shape,a))),e.rank<n.rank&&(e=Y(e,Qi(e.shape,a))),{x:()=>K(e,we(Xi(n,t),e.dtype))}}var Z8={kernelName:gl,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let a=n,{reductionIndices:r}=a,s=t[0],i=t[1],o=Ha(r,s.shape),l=X8(e,i,s,o);return{x:()=>l.x()}}},YJ={kernelName:Ri,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t;return{a:()=>K(e,we(Yi(n,a),"float32")),b:()=>K(e,we(WA(n,a),"float32"))}}};function JJ(e,t,n,a,r,s,i){let o=F(e,"dy","maxPool3dGrad"),l=F(t,"input","maxPool3dGrad"),u=F(n,"output","maxPool3dGrad"),d=o,h=l,p=u,c=!1;l.rank===4&&(c=!0,d=Y(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]]),h=Y(l,[1,l.shape[0],l.shape[1],l.shape[2],l.shape[3]]),p=Y(u,[1,u.shape[0],u.shape[1],u.shape[2],u.shape[3]])),P(d.rank===5,()=>`Error in maxPool3dGrad: dy must be rank 5 but got rank ${d.rank}.`),P(h.rank===5,()=>`Error in maxPool3dGrad: input must be rank 5 but got rank ${h.rank}.`),P(p.rank===5,()=>`Error in maxPool3dGrad: output must be rank 5 but got rank ${p.rank}.`),i!=null&&P(mn(s),()=>`Error in maxPool3dGrad: pad must be an integer when using, dimRoundingMode ${i} but got pad ${s}.`);let m={dy:d,input:h,output:p},f={filterSize:a,strides:r,pad:s,dimRoundingMode:i},g=j.runKernel(B1,m,f);return c?Y(g,[g.shape[1],g.shape[2],g.shape[3],g.shape[4]]):g}var QJ=B({maxPool3dGrad_:JJ}),eQ={kernelName:af,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a,r]=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=n;return{x:()=>QJ(e,a,r,s,i,o,l)}}};function tQ(e,t,n,a,r,s,i){let o=F(e,"dy","maxPoolGrad"),l=F(t,"input","maxPoolGrad"),u=F(n,"output","maxPoolGrad");P(l.rank===o.rank,()=>`Rank of input (${l.rank}) does not match rank of dy (${o.rank})`),P(o.rank===4,()=>`Error in maxPoolGrad: dy must be rank 4 but got rank ${o.rank}.`),P(l.rank===4,()=>`Error in maxPoolGrad: input must be rank 4 but got rank ${l.rank}.`),i!=null&&P(mn(s),()=>`Error in maxPoolGrad: pad must be an integer when using, dimRoundingMode ${i} but got pad ${s}.`);let d={dy:o,input:l,output:u},h={filterSize:a,strides:r,pad:s,dimRoundingMode:i};return j.runKernel(W1,d,h)}var nQ=B({maxPoolGrad_:tQ}),aQ={kernelName:yl,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a,r]=t,{filterSize:s,strides:i,pad:o}=n;return{x:()=>nQ(e,a,r,s,i,o)}}},rQ={kernelName:Al,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{axis:r}=n,s=Ha(r,a.shape),i=c8(a.shape,s)[1],o=on(i);return{x:()=>{let l=a.shape.slice();s.forEach(d=>{l[d]=1});let u=Y(e,l);return Me(K(u,os(a.shape,"float32")),o)}}}},sQ={kernelName:xl,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let a=n,{axis:r}=a,[s,i]=t,o=Ha(r,s.shape),l=X8(e,i,s,o);return{x:()=>l.x()}}},iQ={kernelName:Fi,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t;return{a:()=>K(e,we(Ji(n,a),"float32")),b:()=>K(e,we(Ca(n,a),"float32"))}}},oQ={kernelName:bl,inputsToSave:["x"],gradFunc:(e,t,n)=>{let a=t[0],{paddings:r}=n,s=r.map(i=>i[0]);return{x:()=>nt(e,s,a.shape)}}},lQ={kernelName:jd,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=Rt(n.shape,a.shape);return{a:()=>{let s=ln(n.shape,r);return s.length>0?Y(Ce(e,s),n.shape):e},b:()=>{let s=K(e,Kt(Ch(Me(n,a)))),i=ln(a.shape,r);return i.length>0?Y(Ce(s,i),a.shape):s}}}},uQ={kernelName:Oi,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=Rt(n.shape,a.shape);return{a:()=>{let s=K(e,we(a,"float32")),i=ln(n.shape,r);return i.length>0?Y(Ce(s,i),n.shape):s},b:()=>{let s=K(e,we(n,"float32")),i=ln(a.shape,r);return i.length>0?Y(Ce(s,i),a.shape):s}}}},dQ={kernelName:Hd,gradFunc:e=>({x:()=>Kt(e)})},hQ={kernelName:wl,inputsToSave:["indices"],gradFunc:(e,t)=>{let n=t[0];return{indices:()=>un(n.shape,"float32")}}},pQ={kernelName:Xd,gradFunc:e=>({x:()=>at(e)})},cQ={kernelName:Zd,saveAllInputs:!0,gradFunc:(e,t,n)=>{let{axis:a}=n;return or(e,a).map(r=>()=>r)}},Y8={kernelName:kl,inputsToSave:["x"],gradFunc:(e,t,n)=>{let a=t[0],{paddings:r}=n,s=r.map(i=>i[0]);return{x:()=>nt(e,s,a.shape)}}},fQ={kernelName:Il,inputsToSave:["a","b"],outputsToSave:[!0],gradFunc:(e,t)=>{let[n,a,r]=t,s=n,i=a,o=Rt(s.shape,i.shape);return{a:()=>{let l=we(i,"float32"),u=K(e,K(l,Vs(s,Ne(l,Re(1))))),d=ln(s.shape,o);return d.length>0&&(u=Ce(u,d)),Y(u,s.shape)},b:()=>{let l=Ca(s,0),u=Pn(l,Ma(s),at(s)),d=K(e,K(r,u)),h=ln(i.shape,o);return h.length>0&&(d=Ce(d,h)),Y(d,i.shape)}}}},mQ={kernelName:Sl,inputsToSave:["x","alpha"],gradFunc:(e,t)=>{let[n,a]=t,r=Ca(n,0);return{x:()=>Pn(r,e,K(e,a)),alpha:()=>{let s=Pn(r,at(e),K(e,n)),i=ln(a.shape,e.shape);return i.length>0&&(s=Ce(s,i)),Y(s,a.shape)}}}},gQ={kernelName:il,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=Rt(n.shape,a.shape);return{a:()=>{let s=Me(e,we(a,"float32")),i=ln(n.shape,r);return i.length>0?Y(Ce(s,i),n.shape):s},b:()=>{let s=K(e,we(n,"float32")),i=ln(a.shape,r);i.length>0&&(s=Y(Ce(s,i),a.shape));let o=vt(a);return Kt(Me(s,we(o,"float32")))}}}},yQ={kernelName:Jd,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Me(e,Kt(vt(n)))}}},AQ={kernelName:El,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,a=K(Ji(n,6),Oh(n));return{x:()=>K(e,we(a,"float32"))}}},xQ={kernelName:Nl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>K(e,we(Oh(n),"float32"))}}},bQ={kernelName:Qd,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Y(e,n.shape)}}},vQ={kernelName:Tl,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[a]=t,r={dy:e,images:a};return{images:()=>j.runKernel(G1,r,n)}}},wQ={kernelName:sf,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[a]=t,r={dy:e,images:a};return{images:()=>j.runKernel(H1,r,n)}}},kQ={kernelName:Cl,gradFunc:(e,t,n)=>{let{dims:a}=n,r=Ha(a,e.shape);return{x:()=>Ra(e,r)}}},IQ={kernelName:Ml,gradFunc:e=>({x:()=>at(e)})},SQ={kernelName:Di,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Kt(Me(e,K(Vs(n,1.5),2)))}}},NQ={kernelName:th,inputsToSave:["condition"],gradFunc:(e,t)=>{let[n]=t;return{condition:()=>we(at(n),"float32"),t:()=>K(e,we(n,e.dtype)),e:()=>K(e,we(Cf(n),e.dtype))}}},TQ={kernelName:nh,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let a=Ca(n,Re(0)),r=Re(B8),s=Re(V8),i=K(e,s),o=K(K(e,r),qa(we(n,"float32")));return Pn(a,i,o)}}}},EQ={kernelName:Rl,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>K(e,K(n,Ne(Re(1),n)))}}},CQ={kernelName:sh,gradFunc:e=>({x:()=>at(e)})},MQ={kernelName:$l,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>K(Tf(we(n,"float32")),e)}}},$Q={kernelName:rh,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>K(zA(we(n,"float32")),e)}}},RQ={kernelName:ah,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{begin:r,size:s}=n,i=a.shape,[o,l]=L4(a,r,s),u=[];for(let d=0;d<e.rank;d++)u.push([o[d],i[d]-o[d]-l[d]]);return{x:()=>Bs(e,u)}}},FQ={kernelName:Dl,outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a]=t,{dim:r}=n,s=!0,i=K(e,a);return{logits:()=>Ne(i,K(Ce(i,[r],s),a))}}},OQ={kernelName:ih,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>K(e,$r(n))}}},J8={kernelName:of,gradFunc:(e,t,n)=>{let{blockShape:a,paddings:r}=n;return{x:()=>Nf(e,a,r)}}},Q8={kernelName:oh,gradFunc:(e,t,n)=>{let{axis:a}=n;return{x:()=>en(e,a)}}},DQ={kernelName:Fl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Me(e,K(Mn(we(n,"float32")),2))}}},_Q={kernelName:lf,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>K(e,K(we(n,"float32"),2))}}},zQ={kernelName:_i,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=Re(2);return{a:()=>K(e,K(r,Ne(n,a))),b:()=>K(e,K(r,Ne(a,n)))}}},PQ={kernelName:Li,gradFunc:e=>({x:()=>at(e)})},LQ={kernelName:zi,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=Rt(n.shape,a.shape);return{a:()=>{let s=e,i=ln(n.shape,r);return i.length>0&&(s=Ce(s,i)),Y(s,n.shape)},b:()=>{let s=e,i=ln(a.shape,r);return i.length>0&&(s=Ce(s,i)),Y(Kt(s),a.shape)}}}},WQ={kernelName:Ol,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,r=a.shape.slice(),{axis:s}=n;Ha(s,a.shape).forEach(l=>{r[l]=1});let i=Y(e,r),o=K(i,os(a.shape,"float32"));return{x:()=>o}}},BQ={kernelName:_l,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Me(e,vt(Tf(n)))}}},VQ={kernelName:zl,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>K(Ne(Re(1),vt(n)),e)}}},UQ={kernelName:Pi,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{reps:r}=n;return{x:()=>{let s=at(a);if(a.rank===1)for(let i=0;i<r[0];++i)s=pe(s,nt(e,[i*a.shape[0]],[a.shape[0]]));else if(a.rank===2)for(let i=0;i<r[0];++i)for(let o=0;o<r[1];++o)s=pe(s,nt(e,[i*a.shape[0],o*a.shape[1]],[a.shape[0],a.shape[1]]));else if(a.rank===3)for(let i=0;i<r[0];++i)for(let o=0;o<r[1];++o)for(let l=0;l<r[2];++l)s=pe(s,nt(e,[i*a.shape[0],o*a.shape[1],l*a.shape[2]],[a.shape[0],a.shape[1],a.shape[2]]));else if(a.rank===4)for(let i=0;i<r[0];++i)for(let o=0;o<r[1];++o)for(let l=0;l<r[2];++l)for(let u=0;u<r[3];++u)s=pe(s,nt(e,[i*a.shape[0],o*a.shape[1],l*a.shape[2],u*a.shape[3]],[a.shape[0],a.shape[1],a.shape[2],a.shape[3]]));else throw new Error(`Gradient for tile operation is not implemented for rank-${a.rank} tensors yet.`);return s}}}},jQ={kernelName:Pl,gradFunc:(e,t,n)=>{let a=n,{perm:r}=a,s=jA(r);return{x:()=>ct(e,s)}}},HQ={kernelName:hh,gradFunc:(e,t,n)=>{let a=n,{axis:r}=a;return{value:()=>Fa(e,r)}}},GQ={kernelName:uf,inputsToSave:["segmentIds"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>qQ(e,n)}}};function qQ(e,t){let n=is(t,at(t)),a=Mh(e,n),r=Yi(t,Re(0,"int32")),s=a.rank-r.rank;for(let o=0;o<s;++o)r=Ea(r,o+1);r=ir(r,os(a.shape,"bool"));let i=at(a);return Pn(r,a,i)}var KQ={kernelName:ph,gradFunc:e=>({x:()=>at(e)})},XQ=[G8,XY,ZY,YY,JY,QY,eJ,tJ,nJ,aJ,rJ,sJ,lJ,hJ,pJ,cJ,fJ,mJ,gJ,yJ,AJ,xJ,vJ,bJ,IJ,SJ,NJ,TJ,EJ,CJ,gQ,MJ,$J,RJ,FJ,OJ,_J,DJ,zJ,PJ,LJ,WJ,BJ,VJ,UJ,jJ,HJ,GJ,qJ,ZJ,Z8,Z8,YJ,eQ,aQ,rQ,sQ,iQ,oQ,lQ,uQ,dQ,hQ,pQ,cQ,Y8,Y8,fQ,mQ,yQ,AQ,xQ,bQ,vQ,wQ,kQ,IQ,SQ,NQ,TQ,EQ,CQ,MQ,$Q,RQ,FQ,OQ,J8,J8,Q8,Q8,DQ,zQ,_Q,PQ,LQ,WQ,BQ,VQ,UQ,jQ,HQ,GQ,KQ];for(let e of XQ)nj(e);var eI={};$e(eI,{maxNorm:()=>QQ,minMaxNorm:()=>nee,nonNeg:()=>tee,unitNorm:()=>eee});var w2;function dn(){return w2==null&&(w2=VH().epsilon()),w2}function lr(){return"channelsLast"}var ds=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,ds.prototype)}},ur=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,ur.prototype)}},G=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,G.prototype)}},He=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,He.prototype)}},tI=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,tI.prototype)}};function ao(e,t){if(Array.isArray(e)){let n=[];for(let a=0;a<t;a++)n=n.concat(e);return n}else{let n=new Array(t);return n.fill(e),n}}function Rr(e,t){if(!e)throw new tI(t)}function nI(e,t){let n=0;for(let a of e)a===t&&n++;return n}function Qn(e){return e.length===1?e[0]:e}function Ft(e){return Array.isArray(e)?e:[e]}function hs(e){let t=e.replace(/(.)([A-Z][a-z0-9]+)/g,"$1_$2").replace(/([a-z])([A-Z])/g,"$1_$2").toLowerCase();return t[0]!=="_"?t:"private"+t}function ro(e){return e.length<=1||e.indexOf("_")===-1?e:e.replace(/[_]+(\w|$)/g,(t,n)=>n.toUpperCase())}var Ka={};function k2(e){if(e==null)return null;let t={};return t.className=e.getClassName(),t.config=e.getConfig(),t}function I2(e){if(!(e==null||typeof e!="object"))if(Array.isArray(e))e.forEach(t=>I2(t));else{let t=Object.keys(e);for(let n of t){let a=e[n];a!=null&&typeof a=="object"&&(!Array.isArray(a)&&a.type==="ndarray"&&typeof a.value=="number"?e[n]=a.value:I2(a))}}}function Dh(e,t={},n={},a="object",r=!1){if(typeof e=="string"){let s=e,i;if(s in n)i=n[s];else if(s in Ka)i=Ka[s];else if(i=t[s],i==null)throw new G(`Unknown ${a}: ${e}. This may be due to one of the following reasons:
|
|
1. The ${a} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
|
|
2. The custom ${a} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);return i}else{let s=e;if(s.className==null||s.config==null)throw new G(`${a}: Improper config format: ${JSON.stringify(s)}.
|
|
'className' and 'config' must set.`);let i=s.className,o,l;if(i in n?[o,l]=n[i]:i in Ka?[o,l]=Ka.className:i in t&&([o,l]=t[i]),o==null)throw new G(`Unknown ${a}: ${i}. This may be due to one of the following reasons:
|
|
1. The ${a} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
|
|
2. The custom ${a} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);if(l!=null){let u={};for(let c of Object.keys(Ka))u[c]=Ka[c];for(let c of Object.keys(n))u[c]=n[c];let d=s.config;d.customObjects=u;let h={...Ka};for(let c of Object.keys(n))Ka[c]=n[c];I2(s.config);let p=l(o,s.config,n,r);return Ka={...h},p}else{let u={...Ka};for(let h of Object.keys(n))Ka[h]=n[h];let d=new o(s.config);return Ka={...u},d}}}function ZQ(e,t){return e<t?-1:e>t?1:0}function jf(e,t){return-1*ZQ(e,t)}function Hs(e){if(e==null)return e;let t=[];for(let n of e)t.indexOf(n)===-1&&t.push(n);return t}function YQ(e){if(e==null)throw new G(`Invalid value in obj: ${JSON.stringify(e)}`);for(let t in e)if(e.hasOwnProperty(t))return!1;return!0}function so(e,t,n){if(n!=null&&e.indexOf(n)<0)throw new G(`${n} is not a valid ${t}. Valid values are ${e} or null/undefined.`)}function S2(e,t,n=0,a=Infinity){return Rr(n>=0),Rr(a>=n),Array.isArray(e)&&e.length>=n&&e.length<=a&&e.every(r=>typeof r===t)}function An(e,t){Array.isArray(e)?(k.assert(e.length>0,()=>`${t} is unexpectedly an empty array.`),e.forEach((n,a)=>An(n,`element ${a+1} of ${t}`))):k.assert(Number.isInteger(e)&&e>0,()=>`Expected ${t} to be a positive integer, but got ${aI(e)}.`)}function aI(e){return e===null?"null":Array.isArray(e)?"["+e.map(t=>aI(t)).join(",")+"]":typeof e=="string"?`"${e}"`:`${e}`}function JQ(e,t){let n=k.now(),a;return(...r)=>{let s=k.now();return s-n<t||(n=s,a=e(...r)),a}}function rI(e){return e==="relu"?"relu":e==="linear"?"linear":e==="elu"?"elu":null}function N2(e,t){return Z(()=>Mn(Ce(K(e,e),t,!0)))}var _h=class extends ue.Serializable{getConfig(){return{}}},T2=class extends _h{constructor(e){super();this.defaultMaxValue=2,this.defaultAxis=0,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return Z(()=>{let t=N2(e,this.axis),n=ua(t,0,this.maxValue);return K(e,Me(n,pe(dn(),t)))})}getConfig(){return{maxValue:this.maxValue,axis:this.axis}}};T2.className="MaxNorm";ue.registerClass(T2);var E2=class extends _h{constructor(e){super();this.defaultAxis=0,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return Z(()=>Me(e,pe(dn(),N2(e,this.axis))))}getConfig(){return{axis:this.axis}}};E2.className="UnitNorm";ue.registerClass(E2);var C2=class extends _h{apply(e){return ls(e)}};C2.className="NonNeg";ue.registerClass(C2);var M2=class extends _h{constructor(e){super();this.defaultMinValue=0,this.defaultMaxValue=1,this.defaultRate=1,this.defaultAxis=0,this.minValue=e.minValue!=null?e.minValue:this.defaultMinValue,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.rate=e.rate!=null?e.rate:this.defaultRate,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return Z(()=>{let t=N2(e,this.axis),n=pe(K(this.rate,ua(t,this.minValue,this.maxValue)),K(1-this.rate,t));return K(e,Me(n,pe(dn(),t)))})}getConfig(){return{minValue:this.minValue,maxValue:this.maxValue,rate:this.rate,axis:this.axis}}};M2.className="MinMaxNorm";ue.registerClass(M2);var sI={maxNorm:"MaxNorm",minMaxNorm:"MinMaxNorm",nonNeg:"NonNeg",unitNorm:"UnitNorm"};function hn(e){return k2(e)}function iI(e,t={}){return Dh(e,ue.SerializationMap.getMap().classNameMap,t,"constraint")}function pn(e){if(e==null)return null;if(typeof e=="string"){let t={className:e in sI?sI[e]:e,config:{}};return iI(t)}else return e instanceof _h?e:iI(e)}function QQ(e){return new T2(e)}function eee(e){return new E2(e)}function tee(){return new C2}function nee(e){return new M2(e)}var oI={};$e(oI,{constant:()=>See,glorotNormal:()=>Ree,glorotUniform:()=>$ee,heNormal:()=>Fee,heUniform:()=>Oee,identity:()=>Cee,leCunNormal:()=>Dee,leCunUniform:()=>_ee,ones:()=>Iee,orthogonal:()=>zee,randomNormal:()=>Tee,randomUniform:()=>Nee,truncatedNormal:()=>Eee,varianceScaling:()=>Mee,zeros:()=>kee});var aee=["channelsFirst","channelsLast"],ree=["nearest","bilinear"],see=["valid","same","causal"],iee=["max","avg"],oee=["sum","mul","concat","ave"],nu=new Map;function Yt(e){so(aee,"DataFormat",e)}function lee(e){so(ree,"InterpolationFormat",e)}function Oa(e){so(see,"PaddingMode",e)}function lI(e){so(iee,"PoolMode",e)}var zh=[],uI="/";function io(e,t){zh.push(e);try{let n=t();return zh.pop(),n}catch(n){throw zh.pop(),n}}function uee(){return zh.length===0?"":zh.join(uI)+uI}function dI(e){if(!pI(e))throw new Error("Not a valid tensor name: '"+e+"'");return uee()+e}function hI(e){if(!pI(e))throw new Error("Not a valid tensor name: '"+e+"'");nu.has(e)||nu.set(e,0);let t=nu.get(e);if(nu.set(e,nu.get(e)+1),t>0){let n=`${e}_${t}`;return nu.set(n,1),n}else return e}var dee=new RegExp(/^[A-Za-z0-9][-A-Za-z0-9\._\/]*$/);function pI(e){return!!e.match(dee)}function hee(e){return e===parseInt(e.toString(),10)}function Gs(e,t,n){t==null&&(t=0),n==null&&(n=e.length);let a=1;for(let r=t;r<n;++r)a*=e[r];return a}function au(e){if(e.length===0)return Number.NaN;let t=Number.POSITIVE_INFINITY;for(let n=0;n<e.length;n++){let a=e[n];a<t&&(t=a)}return t}function qs(e){if(e.length===0)return Number.NaN;let t=Number.NEGATIVE_INFINITY;for(let n=0;n<e.length;n++){let a=e[n];a>t&&(t=a)}return t}function dr(e,t){if(t<e)throw new G(`end (${t}) < begin (${e}) is forbidden.`);let n=[];for(let a=e;a<t;++a)n.push(a);return n}function Ph(e,t){return e.asType(t)}function Lh(e,t=-1){let n=e.shape.slice();return t<0&&(t=n.length+t+1),n.splice(t,0,1),e.reshape(n)}function pee(e,t){return Z(()=>{if(e.shape.length!==2)throw new G(`repeat() expects a rank-2 tensor, but received a rank-${e.shape.length} tensor.`);let n=Lh(e,1);return F2(n,[1,t,1])})}function cee(e){let t=[Gs(e.shape)];return e.reshape(t)}function fee(e){if(e.rank<=1)throw new G(`batchFlatten requires a minimum rank of 2. Got rank: ${e.rank}.`);let t=[e.shape[0],Gs(e.shape,1)];return e.reshape(t)}function oo(e,t,n){return Z(()=>{switch(e.rank){case 1:return n2(e,t,n);case 2:return w8(e,[t,0],[n,e.shape[1]]);case 3:return a2(e,[t,0,0],[n,e.shape[1],e.shape[2]]);case 4:return Df(e,[t,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3]]);case 5:return nt(e,[t,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4]]);case 6:return nt(e,[t,0,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4],e.shape[5]]);default:throw new G(`sliceAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}})}function $2(e,t,n){return Z(()=>{switch(e.rank){case 1:return n2(e,t,n);case 2:return w8(e,[0,t],[e.shape[0],n]);case 3:return a2(e,[0,0,t],[e.shape[0],e.shape[1],n]);case 4:return Df(e,[0,0,0,t],[e.shape[0],e.shape[1],e.shape[2],n]);default:throw new G(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function Hf(e,t,n,a){return Z(()=>{switch(e.rank){case 1:return n2(e,t,n);case 2:switch(a){case 1:return oo(e,t,n);case 2:return $2(e,t,n);default:throw new G(`The axis is not within the rank of the tensor ${a}`)}case 3:switch(a){case 1:return oo(e,t,n);case 2:return a2(e,[0,t,0],[e.shape[0],n,e.shape[2]]);case 3:return $2(e,t,n);default:throw new G(`The axis is not within the rank of the tensor ${a}`)}case 4:switch(a){case 1:return oo(e,t,n);case 2:return Df(e,[0,t,0,0],[e.shape[0],n,e.shape[2],e.shape[3]]);case 3:return Df(e,[0,0,t,0],[e.shape[0],e.shape[1],n,e.shape[3]]);case 4:return $2(e,t,n);default:throw new G(`The axis is not within the rank of the tensor ${a}`)}default:throw new G(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function R2(e,t=-1){let n;return t<0&&(n=e[0].rank,n!==0?t=n:t=0),t===e[0].rank&&(t=-1),en(e,t)}function cI(e,t){switch(e.rank){case 1:return DG([e,t]);case 2:return zG([e,t],0);case 3:return LG([e,t],0);case 4:return BG([e,t],0);default:throw new G(`concatAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}}function F2(e,t){if(Array.isArray(t)||(t=[t]),e.rank!==t.length)throw new G(`The length of input n (${t.length}) does not match the number of dimensions in input x (${e.rank})`);return Zi(e,t)}function Gf(e,t=0,n=1,a,r){return zK(e,t,n,a,r)}function Fr(e,t,n,a){if(e.rank<2||t.rank<2)throw new He(`dot requires both inputs to be rank >= 2 but got x shape = ${e.shape} and y shape = ${t.shape}`);if(t.rank>=3){let r=e.shape.slice(-1)[0],s=t.shape.slice(-2)[0];if(r!==s)throw new He(`If rank y >= 3, then the second last dim of y must equal the last dim of x but got x shape = ${e.shape} and y shape = ${t.shape}`)}if(e.rank===2&&t.rank===2){let r=!1,s=!1;return eo.matMul({a:e,b:t,transposeA:r,transposeB:s,bias:a?O2(e.rank,a,lr()):null,activation:n})}else{let r=e.shape.slice(),s=r.pop();e=e.reshape([-1,s]);let i=t.shape.slice(),o=i.pop(),l=i.pop(),u=[...i,o],d=Array.from({length:t.rank},(m,f)=>f===0?t.rank-2:f<=t.rank-2?f-1:f);t=t.transpose(d).reshape([l,-1]);let h=[...r,...u],p=!1,c=!1;return eo.matMul({a:e,b:t,transposeA:p,transposeB:c,bias:a?O2(e.rank,a,lr()):null,activation:n}).reshape(h)}}function fI(e,t,n){return Z(()=>(Array.isArray(t)?t=$n(t,"int32"):t=t.toInt(),Mh(e,t,n)))}function Wh(e){return K(e,e)}function O2(e,t,n){let a=t.shape;if(t.rank!==1&&t.rank!==e)throw new G(`Unexpected bias dimensions: ${t.rank}; expected it to be 1 or ${e}`);if(e===5){if(n==="channelsFirst")return a.length===1?t.reshape([1,a[0],1,1,1]):t.reshape([1,a[3],a[0],a[1],a[2]]);if(n==="channelsLast")return a.length===1?t.reshape([1,1,1,1,a[0]]):t.reshape([1].concat(a))}else if(e===4){if(n==="channelsFirst")return a.length===1?t.reshape([1,a[0],1,1]):t.reshape([1,a[2],a[0],a[1]]);if(n==="channelsLast")return a.length===1?t.reshape([1,1,1,a[0]]):t.reshape([1].concat(a))}else if(e===3){if(n==="channelsFirst")return a.length===1?t.reshape([1,a[0],1]):t.reshape([1,a[1],a[0]]);if(n==="channelsLast")return a.length===1?t.reshape([1,1,a[0]]):t.reshape([1].concat(a))}else if(e<3)return t;throw new G(`Unsupported input rank by biasAdd: ${t.rank}`)}function hr(e,t,n){return Z(()=>(n==null&&(n=lr()),Yt(n),e.add(O2(e.rank,t,n))))}function mee(e,t=1){if(t!==1)throw new He(`Support for alpha values other than 1 (${t}) is not implemented yet.`);return Th(e)}function gee(e){return Z(()=>Me(e,yn(e).add(1)))}function mI(e,t,n,a){return Z(()=>PX(e,t,n,a))}function yee(e){return Z(()=>{let t=pe(.5,K(.2,e));return ua(t,0,1)})}function Bh(e,t,n=!1){return n?e():t()}var Aee=["fanIn","fanOut","fanAvg"],xee=["normal","uniform","truncatedNormal"];function bee(e){so(Aee,"FanMode",e)}function vee(e){so(xee,"Distribution",e)}var Xa=class extends ue.Serializable{fromConfigUsesCustomObjects(){return!1}getConfig(){return{}}},D2=class extends Xa{apply(e,t){return un(e,t)}};D2.className="Zeros";ue.registerClass(D2);var qf=class extends Xa{apply(e,t){return os(e,t)}};qf.className="Ones";ue.registerClass(qf);var _2=class extends Xa{constructor(e){super();if(typeof e!="object")throw new G(`Expected argument of type ConstantConfig but got ${e}`);if(e.value===void 0)throw new G(`config must have value set but got ${e}`);this.value=e.value}apply(e,t){return Z(()=>K(Re(this.value),os(e,t)))}getConfig(){return{value:this.value}}};_2.className="Constant";ue.registerClass(_2);var z2=class extends Xa{constructor(e){super();this.DEFAULT_MINVAL=-.05,this.DEFAULT_MAXVAL=.05,this.minval=e.minval||this.DEFAULT_MINVAL,this.maxval=e.maxval||this.DEFAULT_MAXVAL,this.seed=e.seed}apply(e,t){return Rh(e,this.minval,this.maxval,t)}getConfig(){return{minval:this.minval,maxval:this.maxval,seed:this.seed}}};z2.className="RandomUniform";ue.registerClass(z2);var P2=class extends Xa{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new He(`randomNormal does not support dType ${t}.`);return Gf(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};P2.className="RandomNormal";ue.registerClass(P2);var L2=class extends Xa{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new He(`truncatedNormal does not support dType ${t}.`);return o2(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};L2.className="TruncatedNormal";ue.registerClass(L2);var W2=class extends Xa{constructor(e){super();this.gain=e.gain!=null?e.gain:1}apply(e,t){return Z(()=>{if(e.length!==2||e[0]!==e[1])throw new G("Identity matrix initializer can only be used for 2D square matrices.");return K(this.gain,u8(e[0]))})}getConfig(){return{gain:this.gain}}};W2.className="Identity";ue.registerClass(W2);function wee(e,t="channelsLast"){let n,a;if(Yt(t),e.length===2)n=e[0],a=e[1];else if([3,4,5].indexOf(e.length)!==-1){if(t==="channelsFirst"){let r=Gs(e,2);n=e[1]*r,a=e[0]*r}else if(t==="channelsLast"){let r=Gs(e,0,e.length-2);n=e[e.length-2]*r,a=e[e.length-1]*r}}else{let r=Gs(e);n=Math.sqrt(r),a=Math.sqrt(r)}return[n,a]}var ea=class extends Xa{constructor(e){super();if(e.scale<0)throw new G(`scale must be a positive float. Got: ${e.scale}`);this.scale=e.scale==null?1:e.scale,this.mode=e.mode==null?"fanIn":e.mode,bee(this.mode),this.distribution=e.distribution==null?"normal":e.distribution,vee(this.distribution),this.seed=e.seed}apply(e,t){let n=wee(e),a=n[0],r=n[1],s=this.scale;if(this.mode==="fanIn"?s/=Math.max(1,a):this.mode==="fanOut"?s/=Math.max(1,r):s/=Math.max(1,(a+r)/2),this.distribution==="normal"){let i=Math.sqrt(s);if(t=t||"float32",t!=="float32"&&t!=="int32")throw new He(`${this.getClassName()} does not support dType ${t}.`);return o2(e,0,i,t,this.seed)}else{let i=Math.sqrt(3*s);return Rh(e,-i,i,t)}}getConfig(){return{scale:this.scale,mode:this.mode,distribution:this.distribution,seed:this.seed}}};ea.className="VarianceScaling";ue.registerClass(ea);var Kf=class extends ea{constructor(e){super({scale:1,mode:"fanAvg",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return ea.className}};Kf.className="GlorotUniform";ue.registerClass(Kf);var Xf=class extends ea{constructor(e){super({scale:1,mode:"fanAvg",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return ea.className}};Xf.className="GlorotNormal";ue.registerClass(Xf);var Zf=class extends ea{constructor(e){super({scale:2,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return ea.className}};Zf.className="HeNormal";ue.registerClass(Zf);var Yf=class extends ea{constructor(e){super({scale:2,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return ea.className}};Yf.className="HeUniform";ue.registerClass(Yf);var Jf=class extends ea{constructor(e){super({scale:1,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return ea.className}};Jf.className="LeCunNormal";ue.registerClass(Jf);var Qf=class extends ea{constructor(e){super({scale:1,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return ea.className}};Qf.className="LeCunNormal";ue.registerClass(Qf);var B2=class extends Xa{constructor(e){super();if(this.DEFAULT_GAIN=1,this.gain=e.gain==null?this.DEFAULT_GAIN:e.gain,this.seed=e.seed,this.seed!=null)throw new He("Random seed is not implemented for Orthogonal Initializer yet.")}apply(e,t){return Z(()=>{if(e.length<2)throw new He("Shape must be at least 2D.");e[0]*e[1]>2e3&&console.warn(`Orthogonal initializer is being called on a matrix with more than 2000 (${e[0]*e[1]}) elements: Slowness may result.`);let n=e[0]>e[1]?[e[1],e[0]]:e,a=Gf(n,0,1,"float32"),r=uY.gramSchmidt(a);return e[0]>e[1]&&(r=r.transpose()),K(this.gain,r)})}getConfig(){return{gain:this.gain,seed:this.seed}}};B2.className="Orthogonal";ue.registerClass(B2);var gI={constant:"Constant",glorotNormal:"GlorotNormal",glorotUniform:"GlorotUniform",heNormal:"HeNormal",heUniform:"HeUniform",identity:"Identity",leCunNormal:"LeCunNormal",leCunUniform:"LeCunUniform",ones:"Ones",orthogonal:"Orthogonal",randomNormal:"RandomNormal",randomUniform:"RandomUniform",truncatedNormal:"TruncatedNormal",varianceScaling:"VarianceScaling",zeros:"Zeros"};function yI(e,t={}){return Dh(e,ue.SerializationMap.getMap().classNameMap,t,"initializer")}function jt(e){return k2(e)}function Pt(e){if(typeof e=="string"){let t=e in gI?gI[e]:e;if(t==="GlorotNormal")return new Xf;if(t==="GlorotUniform")return new Kf;if(t==="HeNormal")return new Zf;if(t==="HeUniform")return new Yf;if(t==="LeCunNormal")return new Jf;if(t==="LeCunUniform")return new Qf;{let n={};return n.className=t,n.config={},yI(n)}}else return e instanceof Xa?e:yI(e)}function kee(){return new D2}function Iee(){return new qf}function See(e){return new _2(e)}function Nee(e){return new z2(e)}function Tee(e){return new P2(e)}function Eee(e){return new L2(e)}function Cee(e){return new W2(e)}function Mee(e){return new ea(e)}function $ee(e){return new Kf(e)}function Ree(e){return new Xf(e)}function Fee(e){return new Zf(e)}function Oee(e){return new Yf(e)}function Dee(e){return new Jf(e)}function _ee(e){return new Qf(e)}function zee(e){return new B2(e)}var AI={};$e(AI,{Layer:()=>rt,RNN:()=>cs,RNNCell:()=>Kh,activation:()=>Ane,add:()=>Tne,alphaDropout:()=>dae,average:()=>Ene,averagePooling1d:()=>l5,averagePooling2d:()=>u5,averagePooling3d:()=>d5,avgPool1d:()=>zne,avgPool2d:()=>Lne,avgPool3d:()=>Bne,avgPooling1d:()=>Pne,avgPooling2d:()=>Wne,avgPooling3d:()=>Vne,batchNormalization:()=>One,bidirectional:()=>nae,concatenate:()=>Cne,conv1d:()=>une,conv2d:()=>dne,conv2dTranspose:()=>hne,conv3d:()=>pne,conv3dTranspose:()=>cne,convLstm2d:()=>Jne,convLstm2dCell:()=>Qne,cropping2D:()=>mne,dense:()=>xne,depthwiseConv2d:()=>yne,dot:()=>Fne,dropout:()=>bne,elu:()=>ane,embedding:()=>Nne,flatten:()=>wne,gaussianDropout:()=>uae,gaussianNoise:()=>lae,globalAveragePooling1d:()=>Une,globalAveragePooling2d:()=>jne,globalMaxPool1d:()=>rae,globalMaxPool2d:()=>sae,globalMaxPooling1d:()=>$S,globalMaxPooling2d:()=>RS,gru:()=>Gne,gruCell:()=>qne,input:()=>YI,inputLayer:()=>nne,layerNormalization:()=>Dne,leakyReLU:()=>sne,lstm:()=>Kne,lstmCell:()=>Xne,masking:()=>hae,maxPool1d:()=>iae,maxPool2d:()=>oae,maxPooling1d:()=>FS,maxPooling2d:()=>OS,maxPooling3d:()=>Hne,maximum:()=>Mne,minimum:()=>$ne,multiply:()=>Rne,permute:()=>Sne,prelu:()=>ine,reLU:()=>rne,repeatVector:()=>kne,reshape:()=>Ine,rnn:()=>eae,separableConv2d:()=>fne,simpleRNN:()=>Zne,simpleRNNCell:()=>Yne,softmax:()=>one,spatialDropout1d:()=>vne,stackedRNNCells:()=>tae,thresholdedReLU:()=>lne,timeDistributed:()=>aae,upSampling2d:()=>gne,zeroPadding2d:()=>_ne});var Pee=0;function xI(){return Pee++}var e0={};function t0(e=""){return e in e0||(e0[e]=0),e0[e]+=1,e+e0[e].toString()}function V2(e){return Array.isArray(e)&&Array.isArray(e[0])}function n0(e){return e.length===0?[]:Array.isArray(e[0])?e:[e]}function Ke(e){let t;if(Array.isArray(e)){if(e.length!==1)throw new G(`Expected Tensor length to be 1; got ${e.length}`);t=e[0]}else t=e;return t}function At(e){if(Array.isArray(e)&&Array.isArray(e[0])){if(e.length===1)return e=e,e[0];throw new G(`Expected exactly 1 Shape; got ${e.length}`)}else return e}function a0(e){let t=0;for(let n of e)n.shape.length===0?t+=1:t+=n.shape.reduce((a,r)=>a*r);return t}var bI="Variable",vI=class{constructor(e,t="float32",n=bI,a=!0,r=null){this.dtype=t==null?"float32":t,this.shape=e.shape,this.id=xI(),n=n==null?bI:n,this.originalName=dI(n),this.name=hI(this.originalName),this.trainable_=a,this.constraint=r,this.val=SX(e,this.trainable_,this.name,this.dtype)}read(){return this.assertNotDisposed(),this.val}write(e){return this.assertNotDisposed(),Lee(this.val,e),this.val.id!==e.id&&(this.val.assign(e),this.constraint!=null&&this.val.assign(this.constraint.apply(this.val))),this}dispose(){this.assertNotDisposed(),this.val.dispose()}assertNotDisposed(){if(this.val.isDisposed)throw new Error(`LayersVariable ${this.name} is already disposed.`)}get trainable(){return this.trainable_}set trainable(e){this.trainable_=e,this.val.trainable=e}};function Lee(e,t){if(e.shape.toString()!==t.shape.toString())throw new Error("Shape mismatch: "+JSON.stringify(e.shape)+" vs. "+JSON.stringify(t.shape))}function U2(e){return e.map(t=>t.read())}function j2(e){e.forEach(t=>{t[0].write(t[1])})}var tn=class{constructor(e){this.dtype=e.dtype,this.shape=e.shape,e.shape!=null?this.ndim=e.shape.length:this.ndim=e.ndim,this.maxNDim=e.maxNDim,this.minNDim=e.minNDim,this.axes=e.axes||{}}},pr=class{constructor(e,t,n,a,r,s,i){this.dtype=e,this.shape=t,this.sourceLayer=n,this.inputs=a,this.callArgs=r,this.outputTensorIndex=i,this.id=xI(),s!=null&&(this.originalName=dI(s),this.name=hI(this.originalName)),this.rank=t.length}},Wee=0,r0=class{constructor(e,t){this.callArgs=t,this.id=Wee++,this.outboundLayer=e.outboundLayer,this.inboundLayers=e.inboundLayers,this.nodeIndices=e.nodeIndices,this.tensorIndices=e.tensorIndices,this.inputTensors=e.inputTensors,this.outputTensors=e.outputTensors,this.inputMasks=e.inputMasks,this.outputMasks=e.outputMasks,this.inputShapes=e.inputShapes,this.outputShapes=e.outputShapes;for(let n of e.inboundLayers)n!=null&&n.outboundNodes.push(this);e.outboundLayer.inboundNodes.push(this)}getConfig(){let e=[];for(let t of this.inboundLayers)t!=null?e.push(t.name):e.push(null);return{outboundLayer:this.outboundLayer?this.outboundLayer.name:null,inboundLayers:e,nodeIndices:this.nodeIndices,tensorIndices:this.tensorIndices}}},Bee=0,rt=class extends ue.Serializable{constructor(e={}){super();this._callHook=null,this._addedWeightNames=[],this._stateful=!1,this.id=Bee++,this.activityRegularizer=null,this.inputSpec=null,this.supportsMasking=!1,this._trainableWeights=[],this._nonTrainableWeights=[],this._losses=[],this._updates=[],this._built=!1,this.inboundNodes=[],this.outboundNodes=[];let t=e.name;if(!t){let n=this.getClassName();t=hs(n)+"_"+t0(n)}if(this.name=t,this.trainable_=e.trainable==null?!0:e.trainable,e.inputShape!=null||e.batchInputShape!=null){let n;if(e.batchInputShape!=null)n=e.batchInputShape;else if(e.inputShape!=null){let r=null;e.batchSize!=null&&(r=e.batchSize),n=[r].concat(e.inputShape)}this.batchInputShape=n;let a=e.dtype;a==null&&(a=e.inputDType),a==null&&(a="float32"),this.dtype=a}e.weights!=null?this.initialWeights=e.weights:this.initialWeights=null,this._refCount=null,this.fastWeightInitDuringBuild=!1}static nodeKey(e,t){return e.name+"_ib-"+t.toString()}getNodeAtIndex(e,t){if(this.inboundNodes.length===0)throw new ur(`The layer has never been called and thus has no defined ${t}.`);if(this.inboundNodes.length<=e)throw new G(`Asked to get ${t} at node ${e}, but the layer has only ${this.inboundNodes.length} inbound nodes.`);return this.inboundNodes[e]}getInputAt(e){return Qn(this.getNodeAtIndex(e,"input").inputTensors)}getOutputAt(e){return Qn(this.getNodeAtIndex(e,"output").outputTensors)}get input(){if(this.inboundNodes.length>1)throw new ds(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer input" is ill-defined. Use \`getInputAt(nodeIndex)\` instead.`);if(this.inboundNodes.length===0)throw new ds(`Layer ${this.name} is not connected, no input to return.`);return Qn(this.getNodeAtIndex(0,"input").inputTensors)}get output(){if(this.inboundNodes.length===0)throw new ds(`Layer ${this.name} has no inbound nodes.`);if(this.inboundNodes.length>1)throw new ds(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer output" is ill-defined. Use \`getOutputAt(nodeIndex)\` instead.`);return Qn(this.getNodeAtIndex(0,"output").outputTensors)}get losses(){return this._losses}calculateLosses(){return this.losses.map(e=>e())}get updates(){return this._updates}get built(){return this._built}set built(e){this._built=e}get trainable(){return this.trainable_}set trainable(e){this._trainableWeights.forEach(t=>t.trainable=e),this.trainable_=e}get trainableWeights(){return this.trainable_?this._trainableWeights.filter(e=>e.trainable):[]}set trainableWeights(e){this._trainableWeights=e}get nonTrainableWeights(){return this.trainable?this._trainableWeights.filter(e=>!e.trainable).concat(this._nonTrainableWeights):this._trainableWeights.concat(this._nonTrainableWeights)}set nonTrainableWeights(e){this._nonTrainableWeights=e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}get stateful(){return this._stateful}resetStates(){if(!this.stateful)throw new Error("Cannot call the resetStates() method of a non-stateful Layer object.")}assertInputCompatibility(e){if(e=Ft(e),this.inputSpec==null||this.inputSpec.length===0)return;let t=Ft(this.inputSpec);if(e.length!==t.length)throw new G(`Layer ${this.name} expects ${t.length} inputs, but it received ${e.length} input tensors. Input received: ${e}`);for(let n=0;n<e.length;n++){let a=e[n],r=t[n];if(r==null)continue;let s=a.rank;if(r.ndim!=null&&s!==r.ndim)throw new G(`Input ${n} is incompatible with layer ${this.name}: expected ndim=${r.ndim}, found ndim=${s}`);if(r.maxNDim!=null&&s>r.maxNDim)throw new G(`Input ${n} is incompatible with layer ${this.name}: expected max_ndim=${r.maxNDim}, found ndim=${s}`);if(r.minNDim!=null&&s<r.minNDim)throw new G(`Input ${n} is incompatible with layer ${this.name}: expected min_ndim=${r.minNDim}, found ndim=${s}.`);if(r.dtype!=null&&a.dtype!==r.dtype)throw new G(`Input ${n} is incompatible with layer ${this.name} : expected dtype=${r.dtype}, found dtype=${a.dtype}.`);if(r.axes){let i=a.shape;for(let o in r.axes){let l=Number(o),u=r.axes[o],d=l>=0?i[l]:i[i.length+l];if(u!=null&&[u,null].indexOf(d)===-1)throw new G(`Input ${n} is incompatible with layer ${this.name}: expected axis ${l} of input shape to have value ${u} but got shape ${i}.`)}}if(r.shape!=null)for(let i=0;i<r.shape.length;++i){let o=r.shape[i],l=a.shape[i];if(o!=null&&l!=null&&o!==l)throw new G(`Input ${n} is incompatible with layer ${this.name}: expected shape=${r.shape}, found shape=${a.shape}.`)}}}call(e,t){return e}invokeCallHook(e,t){this._callHook!=null&&this._callHook(e,t)}setCallHook(e){this._callHook=e}clearCallHook(){this._callHook=null}apply(e,t){t=t||{},this.assertNotDisposed();let n=Ft(e),a=!0;for(let s of n)if(!(s instanceof pr)){a=!1;break}let r=!0;for(let s of n)if(s instanceof pr){r=!1;break}if(a===r)throw new G("Arguments to apply() must be all SymbolicTensors or all Tensors");return io(this.name,()=>{if(!this.built){this.assertInputCompatibility(e);let s=[];for(let i of Ft(e))s.push(i.shape);this.build(Qn(s)),this.built=!0,this.initialWeights&&this.setWeights(this.initialWeights),this._refCount===null&&r&&(this._refCount=1)}if(this.assertInputCompatibility(e),r){let s=this.call(e,t),i=Ft(s),o=[];for(let l of i)n.indexOf(l)!==-1&&(l=l.clone()),o.push(l);if(s=Qn(o),this.activityRegularizer!=null)throw new He("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return s}else{let s=Vee(e),i=this.computeOutputShape(s),o,l=Uee(e);if(this.warnOnIncompatibleInputShape(Array.isArray(e)?s[0]:s),i!=null&&i.length>0&&Array.isArray(i[0])?o=i.map((u,d)=>new pr(l,u,this,Ft(e),t,this.name,d)):o=new pr(l,i,this,Ft(e),t,this.name),this.addInboundNode(e,o,null,null,s,i,t),this._refCount++,this.activityRegularizer!=null)throw new He("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return o}})}warnOnIncompatibleInputShape(e){if(this.batchInputShape!=null)if(e.length!==this.batchInputShape.length)console.warn(`The rank of the input tensor provided (shape: ${JSON.stringify(e)}) does not match that of the batchInputShape (${JSON.stringify(this.batchInputShape)}) of the layer ${this.name}`);else{let t=!1;this.batchInputShape.forEach((n,a)=>{n!=null&&e[a]!=null&&e[a]!==n&&(t=!0)}),t&&console.warn(`The shape of the input tensor (${JSON.stringify(e)}) does not match the expectation of layer ${this.name}: ${JSON.stringify(this.batchInputShape)}`)}}get outputShape(){if(this.inboundNodes==null||this.inboundNodes.length===0)throw new ds(`The layer ${this.name} has never been called and thus has no defined output shape.`);let e=[];for(let t of this.inboundNodes){let n=JSON.stringify(t.outputShapes);e.indexOf(n)===-1&&e.push(n)}if(e.length===1){let t=this.inboundNodes[0].outputShapes;return Array.isArray(t)&&Array.isArray(t[0])&&t.length===1?t[0]:t}else throw new ds(`The layer ${this.name} has multiple inbound nodes with different output shapes. Hence the notion of "output shape" is ill-defined for the layer.`)}countParams(){if(!this.built)throw new ur(`You tried to call countParams() on ${this.name}, but the layer is not built yet. Build it first by calling build(batchInputShape).`);return a0(this.weights)}build(e){this.built=!0}getWeights(e=!1){return U2(e?this.trainableWeights:this.weights)}setWeights(e){Z(()=>{let t=this.weights;if(t.length!==e.length)throw new G(`You called setWeights(weights) on layer "${this.name}" with a weight list of length ${e.length}, but the layer was expecting ${t.length} weights. Provided weights: ${e}...`);if(t.length===0)return;let n=[],a=U2(t);for(let r=0;r<a.length;++r){let s=a[r],i=t[r],o=e[r];if(!k.arraysEqual(s.shape,o.shape))throw new G(`Layer weight shape ${s.shape} not compatible with provided weight shape ${o.shape}`);n.push([i,o])}j2(n)})}addWeight(e,t,n,a,r,s,i){if(this._addedWeightNames.indexOf(e)!==-1)throw new G(`Duplicate weight name ${e} for layer ${this.name}`);this._addedWeightNames.push(e),n==null&&(n="float32"),this.fastWeightInitDuringBuild&&(a=Pt("zeros"));let o=a.apply(t,n),l=new vI(o,n,e,s,i);return o.dispose(),r!=null&&this.addLoss(()=>r.apply(l.read())),s==null&&(s=!0),s?this._trainableWeights.push(l):this._nonTrainableWeights.push(l),l}setFastWeightInitDuringBuild(e){this.fastWeightInitDuringBuild=e}addLoss(e){e==null||Array.isArray(e)&&e.length===0||(e=Ft(e),this._losses!==void 0&&this._losses!==null&&this.losses.push(...e))}computeOutputShape(e){return e}computeMask(e,t){if(!this.supportsMasking){if(t!=null)if(Array.isArray(t))t.forEach(n=>{if(n!=null)throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`)});else throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`);return null}return t}addInboundNode(e,t,n,a,r,s,i=null){let o=Ft(e);t=Ft(t),n=Ft(n),a=Ft(a),r=n0(r),s=n0(s);let l=[],u=[],d=[];for(let h of o)l.push(h.sourceLayer),u.push(h.nodeIndex),d.push(h.tensorIndex);new r0({outboundLayer:this,inboundLayers:l,nodeIndices:u,tensorIndices:d,inputTensors:o,outputTensors:t,inputMasks:n,outputMasks:a,inputShapes:r,outputShapes:s},i);for(let h=0;h<t.length;h++)t[h].sourceLayer=this,t[h].nodeIndex=this.inboundNodes.length-1,t[h].tensorIndex=h}getConfig(){let e={name:this.name,trainable:this.trainable};return this.batchInputShape!=null&&(e.batchInputShape=this.batchInputShape),this.dtype!=null&&(e.dtype=this.dtype),e}disposeWeights(){return this.weights.forEach(e=>e.dispose()),this.weights.length}assertNotDisposed(){if(this._refCount===0)throw new Error(`Layer '${this.name}' is already disposed.`)}dispose(){if(!this.built)throw new Error(`Cannot dispose Layer ${this.name} because it has not been built yet.`);if(this._refCount===null)throw new Error(`Cannot dispose Layer ${this.name} because it has not been used yet.`);this.assertNotDisposed();let e=0;return--this._refCount==0&&(e=this.disposeWeights()),{refCountAfterDispose:this._refCount,numDisposedVariables:e}}};function Vee(e){e=Ft(e);let t=[];for(let n of e)t.push(n.shape);return Qn(t)}function Uee(e){return"float32"}function wI(e,t,n){if((t==null||n!=null&&n>0)&&(t=e.sourceLayer,n=e.nodeIndex),t.inboundNodes.length===0)return[e];{let a=t.inboundNodes[n];if(a.inboundLayers.length===0)return a.inputTensors;{let r=[];for(let s=0;s<a.inboundLayers.length;s++){let i=a.inputTensors[s],o=a.inboundLayers[s],l=a.nodeIndices[s],u=wI(i,o,l);for(let d of u)r.indexOf(d)===-1&&r.push(d)}return r}}}var ru=class extends rt{constructor(e){super({dtype:e.dtype,name:e.name!=null?e.name:t0("input").toString()});if(e.batchSize==null&&(e.batchSize=null),e.sparse==null&&(e.sparse=!1),this.trainable=!1,this.built=!0,this.sparse=e.sparse,e.inputShape!=null&&e.batchInputShape!=null)throw new G("Only provide the inputShape OR batchInputShape argument to inputLayer, not both at the same time.");let t=e.batchInputShape;if(t==null){if(e.inputShape==null)throw new G("An InputLayer should be passed either a `batchInputShape` or an `inputShape`.");t=[e.batchSize].concat(e.inputShape)}else if(e.batchSize!=null)throw new G("Cannot specify batchSize if batchInputShape is specified when creating an InputLayer.");let n=e.dtype||"float32";this.batchInputShape=t,this.dtype=n,this.inputSpec=[{shape:t}];let a=new pr(this.dtype,this.batchInputShape,this,[],{},this.name);a.nodeIndex=0,a.tensorIndex=0,new r0({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:[a],outputTensors:[a],inputMasks:[null],outputMasks:[null],inputShapes:[t],outputShapes:[t]})}apply(e,t){throw new G(`Cannot pass any input to an InputLayer's apply() method. InputLayer name: ${this.name}`)}dispose(){return{refCountAfterDispose:this._refCount,numDisposedVariables:0}}getConfig(){return{batchInputShape:this.batchInputShape,dtype:this.dtype,sparse:this.sparse,name:this.name}}};ru.className="InputLayer";ue.registerClass(ru);function kI(e){if(e.batchShape==null&&e.shape==null)throw new Error("Please provide to Input either a `shape` or a `batchShape` argument. Note that `shape` does not include the batch dimension.");if(e.batchShape!=null&&e.shape!=null)throw new G("Please provide either a `shape` or `batchShape` argument to Input, but not both.");let t=e.batchShape;e.shape!=null&&t==null&&(t=[null].concat(e.shape));let n=e.dtype;return n==null&&(n="float32"),new ru({batchInputShape:t,name:e.name,dtype:n,sparse:e.sparse}).inboundNodes[0].outputTensors[0]}async function Ks(e){if(e==null)return;let t=[],n=[],a=[];for(let r in e){let s=e[r];if(typeof s!="number"){let i=s;t.push(i.data()),n.push(r),a.push(i)}}if(t.length>0){let r=await Promise.all(t);for(let s=0;s<r.length;++s)e[n[s]]=r[s][0];Ge(a)}}function II(e){if(e!=null)for(let t in e){let n=e[t];typeof n!="number"&&n.dispose()}}var SI;(function(e){e[e.SILENT=0]="SILENT",e[e.VERBOSE=1]="VERBOSE"})(SI||(SI={}));var jee=125,su=class{constructor(){this.validationData=null}setParams(e){this.params=e}async onEpochBegin(e,t){}async onEpochEnd(e,t){}async onBatchBegin(e,t){}async onBatchEnd(e,t){}async onTrainBegin(e){}async onTrainEnd(e){}setModel(e){}},NI=class{constructor(e,t=10){e==null&&(e=[]),this.callbacks=e,this.queueLength=t}append(e){this.callbacks.push(e)}setParams(e){for(let t of this.callbacks)t.setParams(e)}setModel(e){for(let t of this.callbacks)t.setModel(e)}async onEpochBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochBegin(e,t)}async onEpochEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochEnd(e,t)}async onBatchBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchBegin(e,t)}async onBatchEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchEnd(e,t)}async onTrainBegin(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainBegin(e)}async onTrainEnd(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainEnd(e)}},Hee=class extends su{constructor(){super()}async onEpochBegin(e){this.seen=0,this.totals={}}async onBatchEnd(e,t){t==null&&(t={});let n=t.size==null?0:t.size;this.seen+=n;for(let a in t){let r=t[a];if(typeof r=="number")this.totals.hasOwnProperty(a)||(this.totals[a]=0),this.totals[a]=this.totals[a]+r*n;else{let s;a in this.totals?s=this.totals[a]:this.totals[a]=0;let i=Z(()=>pe(this.totals[a],K(r,n)));this.totals[a]=i,s!=null&&s.dispose()}}}async onEpochEnd(e,t){if(t!=null)for(let n of this.params.metrics)this.totals[n]!=null&&(typeof this.totals[n]=="number"?t[n]=this.totals[n]/this.seen:Z(()=>{let a=K(Me(1,this.seen),this.totals[n]);t[n]=a,this.totals[n].dispose(),Sn(t[n])}))}},TI=class extends su{async onTrainBegin(e){this.epoch=[],this.history={}}async onEpochEnd(e,t){t==null&&(t={}),this.epoch.push(e);for(let n in t)this.history[n]==null&&(this.history[n]=[]),this.history[n].push(t[n])}async syncData(){let e=[],t=[],n=[];for(let r in this.history){let s=this.history[r];for(let i=0;i<s.length;++i)if(typeof s[i]!="number"){let o=s[i];e.push(o.data()),t.push(r),n.push(i)}}let a=await Promise.all(e);for(let r=0;r<a.length;++r)this.history[t[r]][n[r]].dispose(),this.history[t[r]][n[r]]=a[r][0]}},EI=class extends su{constructor(e,t){super();if(this.currentEpoch=0,this.yieldEvery=t||"auto",this.yieldEvery==="auto"&&(this.yieldEvery=jee),this.yieldEvery==="never"&&e.onYield!=null)throw new Error("yieldEvery is `never` but you provided an `onYield` callback. Either change `yieldEvery` or remove the callback");k.isNumber(this.yieldEvery)&&(this.maybeWait=JQ(this.maybeWait.bind(this),this.yieldEvery)),this.trainBegin=e.onTrainBegin,this.trainEnd=e.onTrainEnd,this.epochBegin=e.onEpochBegin,this.epochEnd=e.onEpochEnd,this.batchBegin=e.onBatchBegin,this.batchEnd=e.onBatchEnd,this.yield=e.onYield}async maybeWait(e,t,n){let a=[];this.yield!=null&&(await Ks(n),a.push(this.yield(e,t,n))),a.push(x2()),await Promise.all(a)}async onEpochBegin(e,t){this.currentEpoch=e,this.epochBegin!=null&&(await Ks(t),await this.epochBegin(e,t))}async onEpochEnd(e,t){let n=[];this.epochEnd!=null&&(await Ks(t),n.push(this.epochEnd(e,t))),this.yieldEvery==="epoch"&&n.push(x2()),await Promise.all(n)}async onBatchBegin(e,t){this.batchBegin!=null&&(await Ks(t),await this.batchBegin(e,t))}async onBatchEnd(e,t){let n=[];this.batchEnd!=null&&(await Ks(t),n.push(this.batchEnd(e,t))),this.yieldEvery==="batch"?n.push(x2()):k.isNumber(this.yieldEvery)&&n.push(this.maybeWait(this.currentEpoch,e,t)),await Promise.all(n)}async onTrainBegin(e){this.trainBegin!=null&&(await Ks(e),await this.trainBegin(e))}async onTrainEnd(e){this.trainEnd!=null&&(await Ks(e),await this.trainEnd(e))}};function CI(e,t){return e==null&&(e={}),e instanceof su?[e]:Array.isArray(e)&&e[0]instanceof su?e:Ft(e).map(n=>new EI(n,t))}var Or=class{constructor(){}static registerCallbackConstructor(e,t){k.assert(e>=0&&Number.isInteger(e),()=>`Verbosity level is expected to be an integer >= 0, but got ${e}`),Or.checkForDuplicate(t),Or.constructors[e]==null&&(Or.constructors[e]=[]),Or.constructors[e].push(t)}static checkForDuplicate(e){for(let t in Or.constructors)Or.constructors[+t].forEach(n=>{if(n===e)throw new G("Duplicate callback constructor.")})}static clear(){Or.constructors={}}static createCallbacks(e){let t=[];for(let n in Or.constructors){let a=+n;e>=a&&t.push(...Or.constructors[a])}return t.map(n=>new n)}},H2=Or;H2.constructors={};function MI(e,t,n,a,r,s,i,o,l){let u=new TI,d=[new Hee,...H2.createCallbacks(t)];e!=null&&d.push(...e),d.push(u);let h=new NI(d);return h.setParams({epochs:n,initialEpoch:a,samples:r,steps:s,batchSize:i,verbose:t,doValidation:o,metrics:l}),{callbackList:h,history:u}}function cr(e,t={},n=!1){return Dh(e,ue.SerializationMap.getMap().classNameMap,t,"layer",n)}function s0(e,t){return Z(()=>{e.dtype!=="float32"&&(e=e.asType("float32"));let n=Ce(Wh(e),t,!0),a=Eh(n.shape,dn()),r=Mn(is(n,a));return Me(e,r)})}function lo(e,t){return Z(()=>Xt(Wh(Ne(t,e)),-1))}function i0(e,t){return Z(()=>Xt(yn(Ne(t,e)),-1))}function iu(e,t){return Z(()=>{let n=Ne(e,t),a=ua(yn(e),dn(),Number.MAX_VALUE),r=yn(Me(n,a));return K(100,Xt(r,-1))})}function Gee(e,t){return Z(()=>{let n=ua(t,dn(),Number.MAX_VALUE),a=Ma(pe(1,n)),r=ua(e,dn(),Number.MAX_VALUE),s=Ma(pe(1,r));return Xt(Wh(Ne(a,s)),-1)})}function qee(e,t){return Z(()=>{let n=is(0,Ne(1,K(e,t)));return Xt(Wh(n),-1)})}function Kee(e,t){return Z(()=>{let n=is(0,Ne(1,K(e,t)));return Xt(n,-1)})}function Xee(e,t){return Z(()=>{let n=Ce(K(e,t),-1),a=sr(K(Ne(1,e),t),-1);return is(0,pe(1,Ne(a,n)))})}function Zee(e,t){return Z(()=>{let n=Math.log(2),a=Ne(t,e),r=Ne(pe(a,Zl(K(-2,a))),n);return Xt(r,-1)})}function Vh(e,t,n=!1){return Z(()=>{if(n)t=_f(t);else{let a=Ce(t,t.shape.length-1,!0);t=Me(t,a)}return t=ua(t,dn(),1-dn()),Kt(Ce(K(e.toFloat(),Ma(t)),t.shape.length-1))})}function o0(e,t,n=!1){return Z(()=>{let a=Ch(cee(e)).toInt();t=ua(t,dn(),1-dn());let r=t.shape,s=kh(a,r[r.length-1]).reshape(r);return Vh(s,t,n)})}function Yee(e,t){if(!k.arraysEqual(e.shape,t.shape))throw new G(`logits and labels must have the same shape, but got shapes ${JSON.stringify(e.shape)} and ${JSON.stringify(t.shape)}`);return Z(()=>{let n=t.relu(),a=t.abs().neg();return n.sub(t.mul(e)).add(a.exp().log1p())})}function l0(e,t){return Z(()=>{let n;return n=ua(t,dn(),1-dn()),n=Ma(Me(n,Ne(1,n))),Xt(Yee(e,n),-1)})}function Jee(e,t){return Z(()=>{let n=ua(e,dn(),1),a=ua(t,dn(),1);return Ce(K(e,Ma(Me(n,a))),-1)})}function Qee(e,t){return Z(()=>{let n=Ma(pe(dn(),t));return Xt(Ne(t,K(e,n)),-1)})}function G2(e,t){return Z(()=>{let n=s0(e,-1),a=s0(t,-1),r=K(n,a);return Kt(Ce(r,-1))})}var u0={meanSquaredError:lo,meanAbsoluteError:i0,meanAbsolutePercentageError:iu,meanSquaredLogarithmicError:Gee,squaredHinge:qee,hinge:Kee,categoricalHinge:Xee,logcosh:Zee,categoricalCrossentropy:Vh,sparseCategoricalCrossentropy:o0,binaryCrossentropy:l0,kullbackLeiblerDivergence:Jee,poisson:Qee,cosineProximity:G2};function q2(e){if(typeof e=="string"){if(e in u0)return u0[e];let t=`Unknown loss ${e}`;throw e.toLowerCase().includes("softmaxcrossentropy")&&(t=`Unknown loss ${e}. Use "categoricalCrossentropy" as the string name for tf.losses.softmaxCrossEntropy`),new G(t)}else return e}function K2(e,t){return Z(()=>{let n=K(.5,$a(t)),a=Ph(Ca(t,n),e.dtype);return Xt(Xi(e,a),-1)})}function X2(e,t){return Z(()=>Ph(Xi(kf(e,-1),kf(t,-1)),"float32"))}function $I(e,t){return Z(()=>ir(e.equal(1),t.equal(1)).sum().cast("float32"))}function ete(e,t){return Z(()=>ir(e.equal(1),t.equal(0)).sum().cast("float32"))}function tte(e,t){return Z(()=>ir(e.equal(0),t.equal(1)).sum().cast("float32"))}function RI(e,t){return Z(()=>{let n=$I(e,t),a=tte(e,t),r=n.add(a);return Pn(Ca(r,0),n.div(r),0).cast("float32")})}function nte(e,t){return Z(()=>{let n=$I(e,t),a=ete(e,t),r=n.add(a);return Pn(Ca(r,0),n.div(r),0).cast("float32")})}function FI(e,t){return l0(e,t)}function OI(e,t){return e.rank===t.rank&&(e=e.squeeze([e.rank-1])),t=t.argMax(-1),t.dtype!==e.dtype&&(t=t.asType(e.dtype)),Xi(e,t).asType("float32")}var ate=lo,rte=lo,ste=i0,ite=i0,ote=iu,lte=iu,Z2=Vh,ute=G2,DI=o0,d0={binaryAccuracy:K2,categoricalAccuracy:X2,precision:RI,categoricalCrossentropy:Z2,sparseCategoricalCrossentropy:DI,mse:ate,MSE:rte,mae:ste,MAE:ite,mape:ote,MAPE:lte,cosine:ute};function dte(e){if(typeof e=="string"&&e in d0)return d0[e];if(typeof e!="string"&&e!=null)return e;throw new G(`Unknown metric ${e}`)}function h0(e){if(Rr(e!==null,`Unknown LossOrMetricFn ${e}`),typeof e=="string")return e;{let t;for(let n of Object.keys(u0))if(u0[n]===e){t=n;break}if(t!==void 0)return t;for(let n of Object.keys(d0))if(d0[n]===e){t=n;break}return t!==void 0?t:e.name}}function hte(e){let t={Adagrad:()=>tu.adagrad(.01),Adadelta:()=>tu.adadelta(1,.95,dn()),Adam:()=>tu.adam(.001,.9,.999,dn()),Adamax:()=>tu.adamax(.002,.9,.999,dn(),0),RMSProp:()=>tu.rmsprop(.001,.9,0,dn()),SGD:()=>tu.sgd(.01)};if(t.adagrad=t.Adagrad,t.adadelta=t.Adadelta,t.adam=t.Adam,t.adamax=t.Adamax,t.rmsprop=t.RMSProp,t.sgd=t.SGD,e in t)return t[e]();throw new G(`Unknown Optimizer ${e}`)}var _I=1*1024*1024;function zI(e,t,n=!1){if(e==null||typeof e!="object"||Object.getPrototypeOf(e)!==Object.prototype||!Y2(e))throw new Error("User-defined metadata is expected to be a JSON object, but is not.");if(n){let a=JSON.stringify(e);a.length>_I&&console.warn(`User-defined metadata of model "${t}" is too large in size (length=${a.length} when serialized). It is not recommended to store such large objects in user-defined metadata. Please make sure its serialized length is <= ${_I}.`)}}function Y2(e){if(e===null)return!0;if(typeof e=="object")if(Object.getPrototypeOf(e)===Object.prototype){let t=Object.keys(e);for(let n of t)if(typeof n!="string"||!Y2(e[n]))return!1;return!0}else if(Array.isArray(e)){for(let t of e)if(!Y2(t))return!1;return!0}else return!1;else{let t=typeof e;return t==="string"||t==="number"||t==="boolean"}}function pte(e,t,n,a=console.log){let r=fte(e),s=["Layer (type)","Output shape","Param #"];r?(t=t||65,n=n||[.45,.85,1]):(t=t||98,n=n||[.33,.55,.67,1]),n[n.length-1]<=1&&(n=n.map(d=>Math.floor(t*d)));let i;if(!r){s.push("Receives inputs"),i=[];for(let d in e.nodesByDepth)i.push(...e.nodesByDepth[d])}a("_".repeat(t)),p0(s,n,a),a("=".repeat(t));let o=e.layers;for(let d=0;d<o.length;++d)r?mte(o[d],n,a):gte(o[d],n,i,a),a((d===o.length-1?"=":"_").repeat(t));e.checkTrainableWeightsConsistency();let l=cte(e),u=a0(e.nonTrainableWeights);a(`Total params: ${l+u}`),a(`Trainable params: ${l}`),a(`Non-trainable params: ${u}`),a("_".repeat(t))}function cte(e){let t;return e.collectedTrainableWeights!=null?t=a0(e.collectedTrainableWeights):t=a0(e.trainableWeights),t}function fte(e){let t=!0,n=[],a=[];for(let r in e.nodesByDepth)n.push(e.nodesByDepth[r]);for(let r of n){if(r.length>1||r.length===1&&r[0].inboundLayers.length>1){t=!1;break}a.push(...r)}if(t)for(let r of e.layers){let s=!1;for(let i of r.inboundNodes)if(a.indexOf(i)!==-1)if(s){t=!1;break}else s=!0;if(!t)break}return t}function p0(e,t,n=console.log){let a="";for(let r=0;r<e.length;++r)r>0&&(a=a.slice(0,a.length-1)+" "),a+=e[r],a=a.slice(0,t[r]),a+=" ".repeat(t[r]-a.length);n(a)}function mte(e,t,n){let a;try{a=JSON.stringify(e.outputShape)}catch(o){a="multiple"}let r=e.name,s=e.getClassName(),i=[`${r} (${s})`,a,e.countParams().toString()];p0(i,t,n)}function gte(e,t,n,a){let r;try{r=JSON.stringify(e.outputShape)}catch(d){r="multiple"}let s=[];for(let d of e.inboundNodes)if(!(n!=null&&n.length>0&&n.indexOf(d)===-1))for(let h=0;h<d.inboundLayers.length;++h){let p=d.inboundLayers[h].name,c=d.nodeIndices[h],m=d.tensorIndices[h];s.push(`${p}[${c}][${m}]`)}let i=e.name,o=e.getClassName(),l=s.length===0?"":s[0],u=[`${i} (${o})`,r,e.countParams().toString(),l];p0(u,t,a);for(let d=1;d<s.length;++d)p0(["","","",s[d]],t,a)}function PI(e,t,n){return(e==="inboundNodes"||e==="outputLayers"||e==="inputLayers")&&t===0&&typeof n=="string"}function Uh(e,t){if(e===null)return null;if(typeof e=="string")return ro(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let n=[],a=e.length;for(let r=0;r<a;++r){let s=e[r];PI(t,r,s)?n.push(s):n.push(Uh(s,t))}return n}else{let n={};for(let a of Object.keys(e)){let r=e[a];if(a==="name"&&typeof r=="string")n[a]=r;else{let s=ro(a);n[s]=Uh(r,s)}}return n}}function J2(e,t){if(e==null)return null;if(typeof e=="string")return hs(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let n=[],a=e.length;for(let r=0;r<a;++r){let s=e[r];PI(t,r,s)?n.push(s):n.push(J2(s,t))}return n}else{let n={};for(let a of Object.keys(e)){let r=e[a],s=hs(a);(a==="name"||a==="className")&&typeof r=="string"?n[s]=r:n[s]=J2(r,a)}return n}}var Q2="3.7.0";function yte(e,t){if(e.dtype==null||e.dtype===t.dtype)return t;try{return we(t,e.dtype)}catch(n){throw new G(`The dtype of the feed (${t.dtype}) can not be cast to the dtype of the key '${e.name}' (${e.dtype}).`)}}var uo=class{constructor(e){if(this.id2Value={},this.id2Mask={},this.name2Id={},e instanceof uo)for(let t in e.id2Value)this.id2Value[t]=e.id2Value[t],t in e.id2Mask&&(this.id2Mask[t]=e.id2Mask[t]);else{if(e==null)return;for(let t of e)this.add(t.key,t.value)}}add(e,t,n){if(this.id2Value[e.id]==null)this.id2Value[e.id]=yte(e,t),this.name2Id[e.name]=e.id,n!=null&&(this.id2Mask[e.id]=n);else throw new G(`Duplicate key: name=${e.name}, id=${e.id}`);return this}addFeed(e){this.add(e.key,e.value)}hasKey(e){return this.id2Value[e.id]!=null}names(){return Object.keys(this.name2Id)}getValue(e){if(e instanceof pr){if(this.id2Value[e.id]==null)throw new G(`Nonexistent key: ${e.name}`);return this.id2Value[e.id]}else{let t=this.name2Id[e];if(t==null)throw new G(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Value[t]}}getMask(e){if(e instanceof pr){if(this.id2Value[e.id]==null)throw new G(`Nonexistent key: ${e.name}`);return this.id2Mask[e.id]}else{let t=this.name2Id[e];if(t==null)throw new G(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Mask[t]}}disposeMasks(){this.id2Mask!=null&&Ge(this.id2Mask)}},ex={},LI={};function jh(e,t,n,a){let r=n==null?!1:n.training,s=Array.isArray(e),i=s?e:[e],o=i.map(m=>m.name),l=[],u=t.names();for(let m of o)u.indexOf(m)!==-1?l.push(t.getValue(m)):l.push(null);a!=null&&(a.maxNumTensors=-Infinity,a.minNumTensors=Infinity);let d=o.join(",")+"|"+t.names().join(","),h,p;if(ex[d]==null){let m=Ate(i,t);h=m.sorted,p=m.recipientCounts,ex[d]=h,LI[d]=p}h=ex[d],p={},r||Object.assign(p,LI[d]);let c=new uo(t);for(let m=0;m<h.length;++m){if(a!=null){let C=EA().numTensors;C>a.maxNumTensors&&(a.maxNumTensors=C),C<a.minNumTensors&&(a.minNumTensors=C)}let f=h[m],g=f.sourceLayer;if(g instanceof ru)continue;let y=[],A=[],x=[],v=!1;for(let C of f.inputs){let z=c.getValue(C),$=c.getMask(C);y.push(z),A.push($),$!=null&&(v=!0),r||(p[C.name]--,p[C.name]===0&&!t.hasKey(C)&&o.indexOf(C.name)===-1&&!z.isDisposed&&C.sourceLayer.stateful!==!0&&x.push(z))}v&&(n=n||{},n.mask=A[0]);let b=Ft(g.apply(y,n)),w=null;g.supportsMasking&&(w=g.computeMask(y,A));let I=bte(f),T=Array.isArray(I)?I:[I];for(let C=0;C<T.length;++C){c.hasKey(T[C])||c.add(T[C],b[C],Array.isArray(w)?w[0]:w);let z=o.indexOf(T[C].name);z!==-1&&(l[z]=b[C])}r||Ge(x)}return c.disposeMasks(),s?l:l[0]}function Ate(e,t){k.assert(e!=null&&e.length>0,()=>"Expected at least one fetch, got none");let n=[],a={};if(e.length===1){let r=WI(e[0],t);n=r.sorted,a=r.recipientMap}else{let r=new Set;for(let s of e){let{sorted:i,recipientMap:o}=WI(s,t);for(let l of i)r.has(l.name)||(n.push(l),r.add(l.name));for(let l in o)a[l]==null&&(a[l]=new Set),o[l].forEach(u=>a[l].add(u))}}return{sorted:n,recipientCounts:xte(a)}}function xte(e){let t={};for(let n in e)t[n]=e[n].size;return t}function WI(e,t){let n=new Set,a=[],r={};for(let o of t.names())n.add(o);let s=[],i=[];for(s.push(e);s.length>0;){let o=s[s.length-1];if(n.has(o.name)){s.pop();continue}let l=i[i.length-1]===s.length-1;if(o.inputs.length===0||l)s.pop(),a.push(o),n.add(o.name),l&&i.pop();else{i.push(s.length-1);for(let u of o.inputs)r[u.name]==null&&(r[u.name]=new Set),r[u.name].add(o.name),!n.has(u.name)&&s.push(u)}}return{sorted:a,recipientMap:r}}function bte(e){let t;if(e.sourceLayer.inboundNodes.length===1)t=e.sourceLayer.output;else{let n=null;for(let a=0;a<e.sourceLayer.inboundNodes.length;++a)for(let r of e.sourceLayer.inboundNodes[a].outputTensors)if(r.id===e.id){n=a;break}t=e.sourceLayer.getOutputAt(n)}return t}var Dr=class extends rt{constructor(e){super({});if(this.containerNodes=new Set,this.name=e.name,this.name==null){let y=this.getClassName().toLowerCase();this.name=t0(y)}if(this.supportsMasking=!1,this.trainable_=!0,Array.isArray(e.inputs)?this.inputs=e.inputs.slice():this.inputs=[e.inputs],Array.isArray(e.outputs)?this.outputs=e.outputs.slice():this.outputs=[e.outputs],Hs(this.inputs).length!==this.inputs.length)throw new G(`The list of inputs passed to the model is redundant. All inputs should only appear once. Found: ${this.inputs.map(y=>y.name)}`);Hs(this.outputs).length!==this.outputs.length&&console.warn(`The list of outputs passed to the model is redundant. All outputs should only appear once. Found: ${this.outputs.map(y=>y.name)}`),this.inputLayers=[],this.inputLayersNodeIndices=[],this.inputLayersTensorIndices=[],this.outputLayers=[],this.outputLayersNodeIndices=[],this.outputLayersTensorIndices=[],this.layers=[],this.internalContainerRefs=[];for(let y of this.outputs){let A=y.sourceLayer,x=y.nodeIndex,v=y.tensorIndex;this.outputLayers.push(A),this.outputLayersNodeIndices.push(x),this.outputLayersTensorIndices.push(v)}for(let y of this.inputs){let A=y.sourceLayer,x=y.nodeIndex,v=y.tensorIndex;Rr(x===0,"input layer has >1 nodes"),Rr(v===0,"input layer has >1 tensors"),this.inputLayers.push(A),this.inputLayersNodeIndices.push(x),this.inputLayersTensorIndices.push(v)}this.inputNames=[],this.outputNames=[],this.feedInputShapes=[],this.feedInputNames=[],this.feedOutputNames=[];for(let y=0;y<this.inputLayers.length;y++){let A=this.inputLayers[y];if(!(A instanceof ru))throw new TypeError(`Input layers to a LayersModel must be InputLayer objects. Received inputs: ${e.inputs}. Input ${y} (0-based) originates from layer type ${A.getClassName()}.`);this.inputNames.push(A.name),this.feedInputShapes.push(A.batchInputShape),this.feedInputNames.push(A.name)}for(let y of this.outputLayers)this.outputNames.push(y.name);this.internalInputShapes=this.inputs.map(y=>y.shape),this.internalOutputShapes=this.outputs.map(y=>y.shape);let t={},n={},a={},r={},s={},i=[],o=(y,A,x,v,b,w)=>{(v==null||b==null||w==null)&&(v=y.sourceLayer,b=y.nodeIndex,w=y.tensorIndex);let I=v.inboundNodes[b];if(x.indexOf(I)!==-1)throw new ur(`The tensor ${y.name} at layer "${v.name}" is part of a cycle.`);if(A.indexOf(I)!==-1)return;this.containerNodes.add(Dr.nodeKey(v,b)),v.id in s||(s[v.id]=Object.keys(s).length),x.indexOf(I)===-1&&x.push(I);let T=I.inboundLayers.length;for(let C=0;C<T;C++){let z=I.inputTensors[C],$=I.inboundLayers[C],S=I.nodeIndices[C],D=I.tensorIndices[C];o(z,A,x,$,S,D)}for(A.push(I);x.indexOf(I)>=0;)x.splice(x.indexOf(I),1);i.push(I)},l=[],u=[];for(let y of this.outputs)o(y,l,u);let d=i.slice().reverse();for(let y of d){n[y.id]=y,y.id in t||(t[y.id]=0);let A=t[y.id],x=a[y.outboundLayer.id]==null?0:a[y.outboundLayer.id];A=Math.max(A,x),a[y.outboundLayer.id]=A,r[y.outboundLayer.id]=y.outboundLayer,t[y.id]=A;for(let v=0;v<y.inboundLayers.length;v++){let b=y.inboundLayers[v],w=y.nodeIndices[v],I=b.inboundNodes[w],T=t[I.id]==null?0:t[I.id];t[I.id]=Math.max(A+1,T),n[I.id]=I}}let h={};for(let y in t){let A=t[y];A in h||(h[A]=[]),h[A].push(n[y])}let p={};for(let y in a){let A=a[y];A in p||(p[A]=[]),p[A].push(r[y])}let c=Object.keys(p).map(y=>parseInt(y,10)).sort(jf);this.layers=[];for(let y of c){let A=p[y];A.sort((x,v)=>{let b=s[x.id],w=s[v.id];return b<w?-1:b>w?1:0});for(let x of A)x instanceof Dr&&this.internalContainerRefs.push(x),this.layers.push(x)}this.layersByDepth=p,c=Object.keys(h).map(y=>parseInt(y,10)).sort(jf);let m=this.inputs.slice(),f=[];for(let y of c)for(let A of h[y]){let x=A.outboundLayer;if(x!=null){for(let v of A.inputTensors)if(m.indexOf(v)===-1)throw new ur(`Graph disconnected: cannot obtain value for tensor ${v} at layer "${x.name}". The following previous layers were accessed without issue: ${f}`);for(let v of A.outputTensors)m.push(v);f.push(x.name)}}this.nodesByDepth=h;let g=this.layers.map(y=>y.name);for(let y of g){let A=g.filter(x=>x===y).length;if(A!==1)throw new ur(`The name "${y}" is used ${A} times in the model. All layer names should be unique. Layer names: `+JSON.stringify(g))}this.outboundNodes=[],this.inboundNodes=[],new r0({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:this.inputs.map(y=>null),outputMasks:this.outputs.map(y=>null),inputShapes:this.inputs.map(y=>y.shape),outputShapes:this.outputs.map(y=>y.shape)}),this.built=!0,this._refCount=1}assertNotDisposed(){if(this._refCount===0)throw new Error(`Container '${this.name}' is already disposed.`)}dispose(){this.assertNotDisposed();let e={refCountAfterDispose:null,numDisposedVariables:0};if(--this._refCount==0){for(let t of this.layers)e.numDisposedVariables+=t.dispose().numDisposedVariables;for(let t of this.internalContainerRefs)e.numDisposedVariables+=t.dispose().numDisposedVariables}return e.refCountAfterDispose=this._refCount,e}get trainable(){return this.trainable_}set trainable(e){this.layers.forEach(t=>{t._trainableWeights.forEach(n=>n.trainable=e)}),this.trainable_=e}get trainableWeights(){if(this._trainableWeights.length>0)throw new G("Container instance unexpectedly contains _trainableWeights.The trainable weights of a Container are a union of the trainable weights of its consituent Layers. Its own _trainableWeights must remain an empty Array.");if(!this.trainable)return[];let e=[];for(let t of this.layers)e=e.concat(t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.layers)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.layers)t.push(...n.trainableWeights);return t.concat(e)}return e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}loadWeights(e,t=!0){let n={},a=0;for(let s of this.layers)for(let i of s.weights){if(n[i.originalName]!=null)throw new G(`Duplicate weight name: ${i.originalName}`);n[i.originalName]=i,a++}let r=[];for(let s in e){let i=s;if(n[s]==null){let o=s.split("/");i=o.slice(0,-2).concat([o[o.length-1]]).join("/")}if(n[i]!=null)r.push([n[i],e[s]]);else if(t)throw new G(`Provided weight data has no target variable: ${s}`);delete n[i]}if(t){let s=[];for(let i in n)s.push(i);if(s.length>0)throw new G(`${s.length} of ${a} weights are not set: ${s}`)}j2(r)}updatedConfig(){let e=this.getConfig(),t={};return t.className=this.getClassName(),t.config=e,t.kerasVersion=`tfjs-layers ${Q2}`,t.backend="TensorFlow.js",t}toJSON(e,t=!0){let n=J2(this.updatedConfig());return t?JSON.stringify(n):n}call(e,t){return Z(()=>{e=Ft(e);let n=new uo;for(let a=0;a<this.inputs.length;++a)n.add(this.inputs[a],e[a]);return jh(this.outputs,n,t)})}computeMask(e,t){return Z(()=>{e=Ft(e);let n;return t==null?n=ao(null,e.length):n=Ft(t),this.runInternalGraph(e,n)[1]})}computeOutputShape(e){let t=n0(e);if(t.length!==this.inputLayers.length)throw new G(`Invalid inputShape argument ${e}: model has ${this.inputLayers.length} tensor inputs.`);let n={};for(let i=0;i<t.length;i++){let o=this.inputLayers[i],l=t[i],u=o.name+"_0_0";n[u]=l}let a=Object.keys(this.nodesByDepth).map(i=>parseInt(i,10)).sort(jf);if(a.length>1)for(let i of a){let o=this.nodesByDepth[i];for(let l of o){let u=l.outboundLayer;if(this.inputLayers.map(m=>m.id).indexOf(u.id)!==-1)continue;let d=[];for(let m=0;m<l.inboundLayers.length;m++){let f=l.inboundLayers[m],g=l.nodeIndices[m],y=l.tensorIndices[m],A=`${f.name}_${g}_${y}`,x=n[A];d.push(x)}let h=u.computeOutputShape(Qn(d)),p=n0(h),c=u.inboundNodes.indexOf(l);for(let m=0;m<p.length;m++){let f=`${u.name}_${c}_${m}`;n[f]=p[m]}}}let r=[],s=[];for(let i=0;i<this.outputLayers.length;i++){let o=this.outputLayers[i],l=this.outputLayersNodeIndices[i],u=this.outputLayersTensorIndices[i],d=`${o.name}_${l}_${u}`;s.push(d)}for(let i=0;i<s.length;i++){let o=s[i];Rr(o in n),r.push(n[o])}return Qn(r)}runInternalGraph(e,t){t==null&&(t=ao(null,e.length));let n={};for(let o=0;o<this.inputs.length;++o){let l=this.inputs[o],u=e[o],d=t[o];n[l.id]=[u,d]}let a=Object.keys(this.nodesByDepth).map(o=>parseInt(o,10)).sort(jf);for(let o of a){let l=this.nodesByDepth[o];for(let u of l){let d=u.outboundLayer,h=u.inputTensors,p=u.outputTensors,c=new Array;for(let m of h)m.id in n&&c.push(n[m.id]);if(c.length===h.length){let m={},f,g,y,A;if(u.callArgs!=null&&(m=u.callArgs),c.length===1){let[x,v]=c[0];m.mask==null&&(m.mask=v),y=Ft(d.call(x,m)),A=Ft(d.computeMask(x,v)),f=[x],g=[v]}else f=c.map(x=>x[0]),g=c.map(x=>x[1]),m.mask==null&&(m.mask=g),y=Ft(d.call(f,m)),A=Ft(d.computeMask(f,g));if(d.activityRegularizer)throw new He("LayersModel invocation with concrete Tensor value(s) in the presence of activity regularizer(s) is not supported yet.");for(let x=0;x<p.length;++x){let v=p[x],b=y[x],w=A[x];n[v.id]=[b,w]}}}}let r=[],s=[],i=[];for(let o of this.outputs){Rr(o.id in n,`Could not compute output ${o.name} : ${o.id}`);let[l,u]=n[o.id];i.push(l.shape),r.push(l),s.push(u)}return[r,s,i]}buildNodeConversionMap(e){let t={},n;for(let a of this.layers){n=a instanceof Dr?1:0;for(let r=0;r<a.inboundNodes.length;r++){let s=Dr.nodeKey(a,r);this.containerNodes.has(s)&&(t[s]=n,n+=1)}}return t}getLayer(e,t){if(t!=null){if(this.layers.length<=t)throw new G(`Was asked to retrieve layer at index ${t}, but model only has ${this.layers.length} layer(s).`);return this.layers[t]}else if(e==null)throw new G("Provide either a layer name or layer index");for(let n of this.layers)if(n.name===e)return n;throw new G(`No such layer: ${e}`)}calculateLosses(){return Z(()=>{let e=[];for(let t of this.layers)for(let n=0;n<t.inboundNodes.length;++n){let a=Dr.nodeKey(t,n);this.containerNodes.has(a)&&e.push(...t.calculateLosses())}return e})}getConfig(){let e={name:this.name},t=this.buildNodeConversionMap(this.layers),n=[];for(let s of this.layers){let i=s.getClassName(),o=s.getConfig(),l=[];for(let d=0;d<s.inboundNodes.length;d++){let h=s.inboundNodes[d],p=Dr.nodeKey(s,d),c={};if(this.containerNodes.has(p)){if(h.callArgs)try{JSON.stringify(h.callArgs),c=h.callArgs}catch(m){console.warn(`Layer ${s.name} was passed non-serializable keyword arguments: ${h.callArgs}. They will not be included in the serialized model (and thus will be missing at deserialization time).`),c={}}if(h.inboundLayers.length>0){let m=[];for(let f=0;f<h.inboundLayers.length;f++){let g=h.inboundLayers[f],y=h.nodeIndices[f],A=h.tensorIndices[f],x=Dr.nodeKey(g,y),v=t[x];v==null&&(v=0),m.push([g.name,v,A,c])}l.push(m)}}}let u={};u.name=s.name,u.className=i,u.config=o,u.inboundNodes=l,n.push(u)}e.layers=n;let a=[];for(let s=0;s<this.inputLayers.length;s++){let i=this.inputLayers[s],o=this.inputLayersNodeIndices[s],l=Dr.nodeKey(i,o);if(!this.containerNodes.has(l))continue;let u=t[l];u==null&&(u=0);let d=this.inputLayersTensorIndices[s];a.push([i.name,u,d])}e.inputLayers=a;let r=[];for(let s=0;s<this.outputLayers.length;s++){let i=this.outputLayers[s],o=this.outputLayersNodeIndices[s],l=Dr.nodeKey(i,o);if(!this.containerNodes.has(l))continue;let u=t[l];u==null&&(u=0);let d=this.outputLayersTensorIndices[s];r.push([i.name,u,d])}return e.outputLayers=r,e}static fromConfig(e,t,n={},a=!1){let r={},s={};function i(f,g){f.name in s?s[f.name].push(g):s[f.name]=[g]}function o(f,g){let y=[],A;for(let x of g){let v=x[0],b=x[1],w=x[2];if(A=x[3]==null?{}:x[3],!(v in r)){i(f,g);return}let I=r[v];if(I.inboundNodes.length<=b){i(f,g);return}let T=I.inboundNodes[b];y.push(T.outputTensors[w])}y.length>0&&f.apply(Qn(y),A)}function l(f){let g=f.name,y=cr(f,t.customObjects!=null?t.customObjects:{});y.setFastWeightInitDuringBuild(a),r[g]=y,f.inboundNodes.forEach(A=>{if(!(A instanceof Array))throw new G(`Corrupted configuration, expected array for nodeData: ${A}`);i(y,A)})}let u=t.name,d=t.layers;for(let f of d)l(f);for(;!YQ(s);)for(let f of d){let g=r[f.name];if(g.name in s){let y=s[g.name];delete s[g.name];for(let A of y)o(g,A)}}let h=[],p=[],c=t.inputLayers;for(let f of c){let g=f[0],y=f[1],A=f[2];Rr(g in r);let x=r[g].inboundNodes[y].outputTensors;h.push(x[A])}let m=t.outputLayers;for(let f of m){let g=f[0],y=f[1],A=f[2];Rr(g in r);let x=r[g].inboundNodes[y].outputTensors;p.push(x[A])}return new e({inputs:h,outputs:p,name:u})}get stateful(){if(this._stateful)throw new G("Container instance unexpectedly has _stateful = true. The statefulness of a Container is determined by the Layers it contains. Its _stateful property must remain the default false.");for(let e of this.layers)if(e.stateful)return!0;return!1}resetStates(){Z(()=>{this.layers.forEach(e=>{e.stateful&&e.resetStates()})})}};function vte(e,t,n){let a=t.length;if(e==null||Array.isArray(e)&&e.length===0)return t.map(r=>null);if(a===1)return Array.isArray(e)&&e.length===1?e:typeof e=="object"&&t[0]in e?[e[t[0]]]:[e];if(Array.isArray(e)){if(e.length!==a)throw new Error(`Provided ${n} is an array of ${e.length} element(s), but the model has ${a} outputs. Make sure a set of weights is provided for each model output.`);return e}else if(typeof e=="object"&&Object.keys(e).length>0&&typeof e[Object.keys(e)[0]]=="object"){let r=[];return t.forEach(s=>{s in e?r.push(e[s]):r.push(null)}),r}else throw new Error(`The model has multiple (${a}) outputs, so ${n} must be either an array with ${a} elements or an object with ${t} keys. Provided ${n} not understood: ${JSON.stringify(e)}`)}function BI(e,t){return vte(e,t,"classWeight")}async function VI(e,t,n,a){if(t!=null||a!=null)throw new Error("Support sampleWeight is not implemented yet");if(n!=null){let r=Z(()=>{if(e.shape.length===1)return e.clone();if(e.shape.length===2)if(e.shape[1]>1){let o=1;return e.argMax(o)}else{if(e.shape[1]===1)return e.reshape([e.shape[0]]);throw new Error(`Encountered unexpected last-dimension size (${e.shape[1]}) during handling of class weights. The size is expected to be >= 1.`)}else throw new Error(`Unexpected rank of target (y) tensor (${e.rank}) during handling of class weights. The rank is expected to be 1 or 2.`)}),s=Array.from(await r.data());Ge(r);let i=[];return s.forEach(o=>{if(n[o]==null)throw new Error(`classWeight must contain all classes in the training data. The class ${o} exists in the data but not in classWeight`);i.push(n[o])}),$n(i,"float32")}else return null}function wte(e,t){return K(e,t)}var kte=32;function UI(e,t){let n,a,r=t;n=r.xs,a=r.ys,k.assert(n!=null&&a!=null,()=>`A Dataset iterator for fitDataset() is expected to generate objects of the form \`{xs: xVal, ys: yVal}\`, where the two values may be \`tf.Tensor\`, an array of Tensors, or a map of string to Tensor. The provided Dataset instead generates ${t}`);let s=jI("input",e.inputNames,n),i=jI("output",e.outputNames,a),o=s[0].shape[0];k.assert(s.length===e.inputs.length,()=>`LayersModel has ${e.inputs.length} inputs, but the dataset provides ${s.length} inputs. (Expected input keys: ${JSON.stringify(e.inputNames)})`),k.assert(i.length===e.outputs.length,()=>`LayersModel has ${e.outputs.length} outputs, but the dataset provides ${i.length} outputs. (Expected output keys: ${JSON.stringify(e.outputNames)})`);for(let l=0;l<s.length;l++)k.assert(s[l].shape[0]===o,()=>`Batch size mismatch: input ${e.inputNames[l]} has ${s[l].shape[0]}; expected ${o} based on input ${e.inputNames[0]}.`);for(let l=0;l<i.length;l++)k.assert(i[l].shape[0]===o,()=>`Batch size mismatch: output ${e.outputNames[l]} has ${i[l].shape[0]}; expected ${o} based on input ${e.inputNames[0]}.`);return{xs:s,ys:i}}function jI(e,t,n){if(n instanceof Tt)return[n];if(Array.isArray(n))return k.assert(n.length===t.length,()=>`Received an array of ${n.length} Tensors, but expected ${t.length} to match the ${e} keys ${t}.`),n;{let a=[];for(let r of t){if(n[r]==null)throw new G(`The feature data generated by the dataset lacks the required ${e} key '${r}'.`);a.push(n[r])}return a}}function Ite(e){if(e.length===3)throw new He("Validation with sample weights is not implemented yet.");return{xs:e[0],ys:e[1]}}async function Ste(e,t,n){let a=n.batchesPerEpoch!=null;if(k.assert(e.optimizer!=null,()=>"You must compile a model before training/testing. Use LayersModel.compile(modelCompileConfig)."),k.assert(n!=null,()=>"For fitDataset(), the 2nd argument (config) is required, but it is not provided in this call."),k.assert(n.epochs!=null&&n.epochs>0&&Number.isInteger(n.epochs),()=>`For fitDataset(), config.epochs is expected to be a positive integer, but got ${n.epochs}`),k.assert(!a||n.batchesPerEpoch>0&&Number.isInteger(n.batchesPerEpoch),()=>`For fitDataset(), config.batchesPerEpoch is expected to be a positive integer if specified, but got ${n.batchesPerEpoch}`),k.assert(n.validationSplit==null,()=>"`validationSplit` is not supported by `fitDataset()`. Use validationData instead."),e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;try{let r=n.validationData!=null,s,i;if(r)if(HI(n.validationData))k.assert(n.validationBatches==null||n.validationBatches>0&&Number.isInteger(n.validationBatches),()=>`For fitDataset() with dataset-based validation, config.validationBatches is expected not to be provided, or to be a positive integer, but got ${n.validationBatches}`);else{let g=Ite(n.validationData);s=g.xs,i=g.ys}let o=e.makeTrainFunction(),l=e.getDedupedMetricsNames(),u;r?u=l.slice().concat(l.map(g=>"val_"+g)):u=l.slice();let d=CI(n.callbacks,n.yieldEvery),h=n.verbose==null?1:n.verbose,{callbackList:p,history:c}=MI(d,h,n.epochs,null,null,Nte(t,n),null,r,u);p.setModel(e),e.history=c,await p.onTrainBegin(),e.stopTraining_=!1;let m=n.initialEpoch==null?0:n.initialEpoch,f=await t.iterator();for(;m<n.epochs;){let g={};await p.onEpochBegin(m);let y=0,A=0;for(a||(f=await t.iterator());a?y<n.batchesPerEpoch:!0;){let x=await f.next();if(a&&x.done){console.warn(`You provided \`batchesPerEpoch\` as ${n.batchesPerEpoch}, but your dataset iterator ran out of data after ${y} batches; interrupting training. Make sure that your dataset can generate at least \`batchesPerEpoch * epochs\` batches (in this case, ${n.batchesPerEpoch*n.epochs} batches). You may need to use the repeat() function when building your dataset.`);break}if(x.value!=null){let{xs:v,ys:b}=UI(e,x.value),w={};w.batch=A,w.size=v[0].shape[0],await p.onBatchBegin(A,w);let I=[];if(n.classWeight!=null){let z=BI(n.classWeight,e.outputNames);for(let $=0;$<z.length;++$)I.push(await VI(b[$],null,z[$]))}let T=v.concat(b).concat(I),C=o(T);Ge(T);for(let z=0;z<l.length;++z){let $=l[z],S=C[z];w[$]=S,Sn(S)}await p.onBatchEnd(A,w),II(w),A++,y++}if(a?y>=n.batchesPerEpoch:x.done){if(r){let v;HI(n.validationData)?v=Ft(await e.evaluateDataset(n.validationData,{batches:n.validationBatches})):v=Ft(e.evaluate(s,i,{batchSize:n.validationBatchSize==null?kte:n.validationBatchSize,verbose:0}));for(let b=0;b<e.metricsNames.length;++b)g[`val_${e.metricsNames[b]}`]=v[b]}break}if(e.stopTraining_)break}if(await p.onEpochEnd(m,g),m++,e.stopTraining_)break}return await p.onTrainEnd(),await e.history.syncData(),e.history}finally{e.isTraining=!1}}function Nte(e,t){let n=null;return t.batchesPerEpoch!=null?n=t.batchesPerEpoch:Number.isFinite(e.size)&&(n=e.size),n}function HI(e){return typeof e.iterator=="function"}function Tte(e){return typeof e.next=="function"}async function Ete(e,t,n){n=n||{};let a=n.batches!=null,r=e.testFunction,s=[];if(n.verbose>0)throw new He("Verbose mode is not implemented yet.");k.assert(!a||n.batches>0&&Number.isInteger(n.batches),()=>`Test loop expects \`batches\` to be a positive integer, but received ${JSON.stringify(n.batches)}`);let i=Tte(t)?t:await t.iterator(),o=0,l=0;for(;a?l<n.batches:!0;){let u=await i.next();if(s=Z(()=>{if(u.value){let{xs:d,ys:h}=UI(e,u.value),p=d.concat(h),c=Z(()=>r(p));if(Ge(p),l===0)for(let f=0;f<c.length;++f)s.push(Re(0));let m=p[0].shape[0];for(let f=0;f<c.length;++f){let g=c[f],y=s[f];s[f]=Z(()=>pe(s[f],K(m,g))),l>0&&Ge(y)}Ge(c),o+=m,++l}return s}),u.done){a&&console.warn(`Your dataset iterator ran out of data during evaluateDataset(). Interrupting evalution. Make sure that your dataset can generate at least \`batches\` batches (in this case, ${n.batches} batches). You may need to use the repeat() function when building your dataset.`);break}}for(let u=0;u<s.length;++u){let d=s[u];s[u]=Me(s[u],o),Ge(d)}return Qn(s)}function tx(e){k.assert(e>0&&Number.isInteger(e),()=>`batchSize is required to be a positive integer, but got ${e}`)}function Hh(e,t,n){return e==null?[null]:Array.isArray(e)?e.map(a=>oo(a,t,n-t)):oo(e,t,n-t)}function nx(e,t){return Z(()=>e==null?null:Array.isArray(e)?e.map(n=>nx(n,t)):fI(e,t.dtype==="int32"?t:t.toInt()))}function ax(e,t){let n=[],a=0,r=null;for(;a<e;)r=a+t,r>=e&&(r=e),n.push([a,r]),a=r;return n}async function Cte(e,t,n,a,r,s,i,o,l,u,d,h,p,c,m){r==null&&(r=32),s==null&&(s=1),d==null&&(d=!0),p==null&&(p=0);let f=!1;if(l!=null&&u!=null&&(f=!0),m!=null&&(f=!0,c==null))throw new G("Can only use `validationSteps` when doing step-wise training, i.e., `stepsPerEpoch` must be set.");let g=e.checkNumSamples(n,r,c,"steps_per_epoch"),y;g!=null&&(y=dr(0,g)),i==null&&(i=1);let{callbackList:A,history:x}=MI(o,i,s,p,g,c,r,f,h);A.setModel(e),e.history=x,await A.onTrainBegin(),e.stopTraining_=!1;for(let v=p;v<s;++v){await A.onEpochBegin(v);let b={};if(c!=null)throw new He("stepsPerEpoch mode is not implemented yet.");{if(d==="batch")throw new He("batch shuffling is not implemneted yet");d&&k.shuffle(y);let w=$n(y),I=ax(g,r);for(let T=0;T<I.length;++T){let C={};if(await A.onBatchBegin(T,C),Z(()=>{let z=I[T][0],$=I[T][1],S=oo(w,z,$-z);C.batch=T,C.size=$-z;let D=nx(n,S),_=t(D);for(let W=0;W<a.length;++W){let X=a[W],q=_[W];C[X]=q,Sn(q)}if(T===I.length-1&&f){let W=e.testLoop(l,u,r);for(let X=0;X<a.length;++X){let q=a[X],Q=W[X];Sn(Q),b["val_"+q]=Q}}}),await A.onBatchEnd(T,C),II(C),e.stopTraining_)break}w.dispose()}if(await A.onEpochEnd(v,b),e.stopTraining_)break}return await A.onTrainEnd(),await e.history.syncData(),e.history}async function Mte(e,t,n,a={}){if(e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;let r,s,i,o,l,u,d;try{let h=a.batchSize==null?32:a.batchSize;tx(h);let p=!1,c=await e.standardizeUserData(t,n,a.sampleWeight,a.classWeight,p,h);r=c[0],s=c[1],d=c[2];let m=!1,f;if(a.validationData!=null&&a.validationData.length>0){if(m=!0,a.validationData.length===2)i=a.validationData[0],o=a.validationData[1];else throw a.validationData.length===3?new He("validationData including sample weights is not supported yet."):new G(`When passing validation data, it must contain 2 (valX, valY) or 3 (valX, valY, valSampleWeight) items; ${a.validationData} is invalid.`);let w=!0,I=await e.standardizeUserData(i,o,null,null,w,h);l=I[0],u=I[1],f=l.concat(u)}else if(a.validationSplit!=null&&a.validationSplit>0&&a.validationSplit<1){m=!0;let w=Math.floor(r[0].shape[0]*(1-a.validationSplit)),I=r[0].shape[0];l=Hh(r,w,I),r=Hh(r,0,w),u=Hh(s,w,I),s=Hh(s,0,w),f=l.concat(u)}else a.validationSteps!=null&&(m=!0);let g=r.concat(s).concat(d);e.checkTrainableWeightsConsistency();let y=e.makeTrainFunction(),A=e.getDedupedMetricsNames(),x,v;m?(e.makeTestFunction(),x=e.testFunction,v=A.slice().concat(A.map(w=>"val_"+w))):(x=null,f=[],v=A.slice());let b=CI(a.callbacks,a.yieldEvery);return await Cte(e,y,g,A,h,a.epochs,a.verbose,b,x,f,a.shuffle,v,a.initialEpoch,null,null)}finally{e.isTraining=!1,ho(r,t),ho(s,n),ho(l,i),ho(u,o),d!=null&&Ge(d)}}function GI(e){let t=[];e instanceof Tt&&(e=[e]);for(let n=0;n<e.length;++n){let a=e[n];if(a.rank===1)t.push(Lh(a,1));else{if(a.rank===0)throw new Error("Expected tensor to be at least 1D, but received a 0D tensor (scalar).");t.push(a)}}return t}function ho(e,t){if(e==null)return;let n=[];if(t instanceof Tt)n.push(t.id);else if(Array.isArray(t))t.forEach(r=>n.push(r.id));else if(t!=null)for(let r in t){let s=t[r];n.push(s.id)}let a=[];if(e instanceof Tt)n.indexOf(e.id)===-1&&a.push(e);else if(Array.isArray(e))e.forEach(r=>{n.indexOf(r.id)===-1&&a.push(r)});else if(e!=null)for(let r in e){let s=e[r];n.indexOf(s.id)===-1&&a.push(s)}a.forEach(r=>{r.isDisposed||r.dispose()})}function $te(e){return e instanceof Tt}function rx(e){return Array.isArray(e)}function qI(e){return!$te(e)&&!rx(e)}function KI(e,t,n,a=!0,r=""){if(t==null||t.length===0){if(e!=null){let i=!1;if(rx(e)&&e.length>0)i=!0;else if(qI(e)){for(let o in e)if(e.hasOwnProperty(o)){i=!0;break}}else i=!0;if(i)throw new G(`Error when checking model ${r} expected no data, but got ${e}`)}return[]}if(e==null)return t.map(i=>null);let s;if(qI(e)){e=e,s=[];for(let i of t){if(e[i]==null)throw new G(`No data provided for "${i}". Need data for each key in: ${t}`);s.push(e[i])}}else if(rx(e)){if(e=e,e.length!==t.length)throw new G(`Error when checking model ${r}: the Array of Tensors that you are passing to your model is not the size the model expected. Expected to see ${t.length} Tensor(s), but instead got the following list of Tensor(s): ${e}`);s=e}else{if(e=e,t.length>1)throw new G(`The model ${r} expects ${t.length} Tensor(s), but only received one Tensor. Found: Tensor with shape ${e.shape}`);s=[e]}if(s=GI(s),n!=null)for(let i=0;i<t.length;++i){if(n[i]==null)continue;let o=s[i];if(o.shape.length!==n[i].length)throw new G(`Error when checking ${r}: expected ${t[i]} to have ${n[i].length} dimension(s). but got array with shape ${o.shape}`);for(let l=0;l<n[i].length;++l){if(l===0&&!a)continue;let u=o.shape[l],d=n[i][l];if(d!=null&&d>=0&&u!==d)throw new G(`Error when checking ${r}: expected ${t[i]} to have shape [${n[i]}], but got array with shape [${o.shape}].`)}}return s}function Rte(e,t,n){let a=Hs(e.map(s=>s.shape[0]));a.sort();let r=Hs(t.map(s=>s.shape[0]));if(r.sort(),a.length>1)throw new G(`All input Tensors (x) should have the same number of samples. Got array shapes: ${JSON.stringify(e.map(s=>s.shape))}`);if(r.length>1)throw new G(`All target Tensors (y) should have the same number of samples. Got array shapes: ${JSON.stringify(t.map(s=>s.shape))}`);if(a.length>0&&r.length>0&&!k.arraysEqual(a,r))throw new G(`Input Tensors should have the same number of samples as target Tensors. Found ${a[0]} input sample(s) and ${r[0]} target sample(s).`)}function Fte(e,t,n){let a=[lo,l0,Vh];for(let r=0;r<e.length;++r){let s=e[r],i=t[r],o=n[r];if(i!=null){if(i===Vh&&s.shape[s.shape.length-1]===1)throw new G(`You are passing a target array of shape ${s.shape} while using a loss 'categorical_crossentropy'. 'categorical_crossentropy'expects targets to be binary matrices (1s and 0s) of shape [samples, classes].`);if(a.indexOf(i)!==-1){let l=s.shape.slice(1),u=o.slice(1);for(let d=0;d<l.length;++d){let h=l[d],p=u[d];if(p!=null&&h!==p)throw new G(`A target Tensor with shape ${s.shape} was passed for an output of shape ${o}, while using a loss function that expects targets to have the same shape as the output.`)}}}}}function XI(e,t,n,a=!0,r=""){let s;if(Array.isArray(e)){if(e.length!==t.length)throw new G(`Error when checking model ${r}: the Array of Tensors that you are passing to your model is not the size the the model expected. Expected to see ${t.length} Tensor(s), but instead got ${e.length} Tensors(s).`);s=e}else{if(t.length>1)throw new G(`The model expects ${t.length} ${r} Tensors, but only received one Tensor. Found: array with shape ${JSON.stringify(e.shape)}.`);s=[e]}if(n!=null)for(let i=0;i<t.length;++i){if(n[i]==null)continue;let o=s[i];if(o.shape.length!==n[i].length)throw new G(`Error when checking ${r}: expected ${t[i]} to have ${n[i].length} dimension(s), but got array with shape ${JSON.stringify(o.shape)}`);for(let l=0;l<n[i].length;++l){if(l===0&&!a)continue;let u=o.shape[l],d=n[i][l];if(d!=null&&d!==u)throw new G(`Error when checking ${r}: expected ${t[i]} to have shape ${JSON.stringify(n[i])} but got array with shape ${JSON.stringify(o.shape)}.`)}}}function Ote(e,t){if(e==null||Array.isArray(e)&&e.length===0)return t.map(a=>[]);let n;if(typeof e=="string"||typeof e=="function")n=[e];else if(Array.isArray(e)||typeof e=="object")n=e;else throw new TypeError(`Type of metrics argument not understood. Expected an string,function, Array, or Object, found: ${e}`);if(Array.isArray(n))return t.map(a=>n);{let a=[];for(let r of t){let s=n.hasOwnProperty(r)?n[r]:[];Array.isArray(s)||(s=[s]),a.push(s)}return a}}var Dte="layers-model",ps=class extends Dr{constructor(e){super(e);this.isTraining=!1}summary(e,t,n=console.log){if(!this.built)throw new G("This model has never been called, thus its weights have not been created yet. So no summary can be displayed. Build the model first (e.g., by calling it on some test data).");pte(this,e,t,n)}compile(e){if(e.loss==null&&(e.loss=[]),this.loss=e.loss,typeof e.optimizer=="string")this.optimizer_=hte(e.optimizer),this.isOptimizerOwned=!0;else{if(!(e.optimizer instanceof js))throw new G("User-defined optimizer must be an instance of tf.Optimizer.");this.optimizer_=e.optimizer,this.isOptimizerOwned=!1}let t=[];if(!Array.isArray(e.loss)&&typeof e.loss!="string"&&typeof e.loss!="function"){e.loss=e.loss;for(let s in e.loss)if(this.outputNames.indexOf(s)===-1)throw new G(`Unknown entry in loss dictionary: "${s}". Only expected the following keys: ${this.outputNames}`);for(let s of this.outputNames)e.loss[s]==null&&console.warn(`Output "${s}" is missing from loss dictionary. We assume this was done on purpose, and we will not be expecting data to be passed to ${s} during training`),t.push(q2(e.loss[s]))}else if(Array.isArray(e.loss)){if(e.loss.length!==this.outputs.length)throw new G(`When passing an Array as loss, it should have one entry per model output. The model has ${this.outputs.length} output(s), but you passed loss=${e.loss}.`);t=e.loss.map(s=>q2(s))}else{let s=q2(e.loss);this.outputs.forEach(i=>{t.push(s)})}this.lossFunctions=t,this.feedOutputNames=[],this.feedOutputShapes=[],this.feedLossFns=[];for(let s=0;s<this.outputs.length;++s){let i=this.internalOutputShapes[s],o=this.outputNames[s];this.feedOutputNames.push(o),this.feedOutputShapes.push(i),this.feedLossFns.push(this.lossFunctions[s])}let n=[];this.metrics=e.metrics,this.metricsNames=["loss"],this.metricsTensors=[],io("loss",()=>{for(let s=0;s<this.outputs.length;++s){if(n.indexOf(s)!==-1)continue;let i=this.lossFunctions[s];this.outputs.length>1&&(this.metricsTensors.push([i,s]),this.metricsNames.push(this.outputNames[s]+"_loss"))}});let a=Ote(e.metrics,this.outputNames),r=(s,i,o)=>{this.outputNames.length>1&&(i=this.outputNames[s]+"_"+i),this.metricsNames.push(i),this.metricsTensors.push([o,s])};io("metric",()=>{for(let s=0;s<this.outputs.length;++s){if(n.indexOf(s)!==-1)continue;let i=a[s];(o=>{let l="",u,d,h;for(let p of o){if(typeof p=="string"&&["accuracy","acc","crossentropy","ce"].indexOf(p)!==-1){let m=this.internalOutputShapes[s];m[m.length-1]===1||this.lossFunctions[s]===l0?["accuracy","acc"].indexOf(p)!==-1?d=K2:["crossentropy","ce"].indexOf(p)!==-1&&(d=FI):this.lossFunctions[s]===o0?["accuracy","acc"].indexOf(p)!==-1?d=OI:["crossentropy","ce"].indexOf(p)!==-1&&(d=DI):["accuracy","acc"].indexOf(p)!==-1?d=X2:["crossentropy","ce"].indexOf(p)!==-1&&(d=Z2);let f;["accuracy","acc"].indexOf(p)!==-1?f="acc":["crossentropy","ce"].indexOf(p)!==-1&&(f="ce"),h=d,u=l+f}else h=dte(p),u=l+h0(p);let c;io(u,()=>{c=h}),r(s,u,c)}})(i)}}),this.collectedTrainableWeights=this.trainableWeights}checkTrainableWeightsConsistency(){this.collectedTrainableWeights!=null&&this.trainableWeights.length!==this.collectedTrainableWeights.length&&console.warn("Discrepancy between trainableweights and collected trainable weights. Did you set `model.trainable` without calling `model.compile()` afterwards?")}evaluate(e,t,n={}){let a=n.batchSize==null?32:n.batchSize;tx(a);let r=!0,s=this.standardizeUserDataXY(e,t,r,a);try{let i=s[0].concat(s[1]);this.makeTestFunction();let o=this.testFunction,l=this.testLoop(o,i,a,n.verbose,n.steps);return Qn(l)}finally{ho(s[0],e),ho(s[1],t)}}async evaluateDataset(e,t){return this.makeTestFunction(),Ete(this,e,t)}checkNumSamples(e,t,n,a="steps"){let r;if(n!=null){if(r=null,t!=null)throw new G(`If ${a} is set, batchSize must be null or undefined.Got batchSize = ${t}`)}else if(e!=null)Array.isArray(e)?r=e[0].shape[0]:r=e.shape[0];else throw new G(`Either the input data should have a defined shape, or ${a} shoud be specified.`);return r}execute(e,t){if(Array.isArray(t)&&t.length===0)throw new G("`outputs` is an empty Array, which is not allowed.");let n=Array.isArray(t),a=n?t:[t],r=this.retrieveSymbolicTensors(a),s=new uo;if(e instanceof Tt&&(e=[e]),Array.isArray(e)){if(e.length!==this.inputs.length)throw new G(`The number of inputs provided (${e.length}) does not match the number of inputs of this model (${this.inputs.length}).`);for(let o=0;o<this.inputs.length;++o)s.add(this.inputs[o],e[o])}else for(let o of this.inputs){let l=e[o.name];if(l==null)throw new G(`No value is provided for the model's input ${o.name}`);s.add(o,l)}let i=jh(r,s);return n?i:i[0]}retrieveSymbolicTensors(e){let t=ao(null,e.length),n=e.length;for(let a of this.layers){let r=Array.isArray(a.output)?a.output:[a.output],s=r.map(i=>i.name);for(let i=0;i<e.length;++i){let o=s.indexOf(e[i]);if(o!==-1&&(t[i]=r[o],n--),n===0)break}if(n===0)break}if(n>0){let a=[];throw t.forEach((r,s)=>{r==null&&a.push(e[s])}),new G(`Cannot find SymbolicTensors for output name(s): ${JSON.stringify(a)}`)}return t}predictLoop(e,t=32,n=!1){return Z(()=>{let a=this.checkNumSamples(e);if(n)throw new He("Verbose predictLoop() is not implemented yet.");let r=ax(a,t),s=this.outputs.map(i=>[]);for(let i=0;i<r.length;++i)Z(()=>{let o=r[i][0],l=r[i][1],u=Hh(e,o,l),d=[];if(Array.isArray(u))for(let p=0;p<u.length;++p)d.push({key:this.inputs[p],value:u[p]});else d.push({key:this.inputs[0],value:u});let h=new uo(d);return jh(this.outputs,h)}).forEach((o,l)=>s[l].push(o));return Qn(s.map(i=>en(i,0)))})}predict(e,t={}){let n=GI(e);XI(n,this.inputNames,this.feedInputShapes,!1);try{let a=t.batchSize==null?32:t.batchSize;return tx(a),this.predictLoop(n,a)}finally{ho(n,e)}}predictOnBatch(e){XI(e,this.inputNames,this.feedInputShapes,!0);let t=(Array.isArray(e)?e[0]:e).shape[0];return this.predictLoop(e,t)}standardizeUserDataXY(e,t,n=!0,a){if(this.optimizer_==null)throw new ur("You must compile a model before training/testing. Use LayersModel.compile(modelCompileArgs).");let r=[];for(let s=0;s<this.feedOutputShapes.length;++s){let i=this.feedOutputShapes[s];this.feedLossFns[s]===o0?r.push(i.slice(0,i.length-1).concat([1])):r.push(i)}if(e=KI(e,this.feedInputNames,this.feedInputShapes,!1,"input"),t=KI(t,this.feedOutputNames,r,!1,"target"),Rte(e,t,null),Fte(t,this.feedLossFns,this.feedOutputShapes),this.stateful&&a!=null&&a>0&&e[0].shape[0]%a!=0)throw new G(`In a stateful network, you should only pass inputs with a number of samples that is divisible by the batch size ${a}. Found: ${e[0].shape[0]} sample(s).`);return[e,t]}async standardizeUserData(e,t,n,a,r=!0,s){let[i,o]=this.standardizeUserDataXY(e,t,r,s);if(n!=null)throw new Error("sample weight is not supported yet.");let l=null;if(a!=null){let u=BI(a,this.outputNames);l=[];for(let d=0;d<u.length;++d)l.push(await VI(o[d],null,u[d]))}return[i,o,l]}testLoop(e,t,n,a=0,r){return Z(()=>{let s=this.checkNumSamples(t,n,r,"steps"),i=[];if(a>0)throw new He("Verbose mode is not implemented yet.");if(r!=null)throw new He("steps mode in testLoop() is not implemented yet");{let o=ax(s,n),l=$n(dr(0,s));for(let u=0;u<o.length;++u){let d=o[u][0],h=o[u][1],p=oo(l,d,h-d),c=nx(t,p),m=e(c);if(u===0)for(let f=0;f<m.length;++f)i.push(Re(0));for(let f=0;f<m.length;++f){let g=m[f];i[f]=pe(i[f],K(h-d,g))}}for(let u=0;u<i.length;++u)i[u]=Me(i[u],s)}return i})}getDedupedMetricsNames(){let e=this.metricsNames,t=[];for(let n=0;n<e.length;++n){let a=e[n],r=a;nI(e,a)>1&&(r+=`_${nI(e.slice(0,n),a)}`),t.push(r)}return t}makeTrainFunction(){return e=>{let t=[],n=e.slice(0,this.inputs.length),a=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),r=e.slice(this.inputs.length+this.outputs.length,this.inputs.length+this.outputs.length*2),s=[],i=()=>{let u=[];for(let c=0;c<this.inputs.length;++c)u.push({key:this.inputs[c],value:n[c]});let d=new uo(u),h=jh(this.outputs,d,{training:!0}),p;for(let c=0;c<this.lossFunctions.length;++c){let m=this.lossFunctions[c](a[c],h[c]);r[c]!=null&&(m=wte(m,r[c]));let f=Xt(m);t.push(f),c===0?p=m:p=pe(p,m)}for(let c=0;c<this.metricsTensors.length;++c){let m;if(this.outputs.length>1&&c<this.outputs.length)m=t[c];else{let f=this.metricsTensors[c][0],g=this.metricsTensors[c][1];m=Xt(f(a[g],h[g]))}Sn(m),s.push(m)}return p=Xt(p),this.calculateLosses().forEach(c=>{p=pe(p,c)}),p},o=this.collectedTrainableWeights.map(u=>u.read()),l=!0;return[this.optimizer_.minimize(i,l,o)].concat(s)}}makeTestFunction(){this.testFunction=e=>Z(()=>{let t=[],n,a=e.slice(0,this.inputs.length),r=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),s=[];for(let l=0;l<this.inputs.length;++l)s.push({key:this.inputs[l],value:a[l]});let i=new uo(s),o=jh(this.outputs,i);for(let l=0;l<this.lossFunctions.length;++l){let u=this.lossFunctions[l],d=Xt(u(r[l],o[l]));l===0?n=d:n=pe(n,d),t.push(n)}for(let l=0;l<this.metricsTensors.length;++l){let u=this.metricsTensors[l][0],d=this.metricsTensors[l][1],h=Xt(u(r[d],o[d]));t.push(h)}return t})}async fit(e,t,n={}){return Mte(this,e,t,n)}async fitDataset(e,t){return Ste(this,e,t)}async trainOnBatch(e,t){let n=await this.standardizeUserData(e,t),a=n[0],r=n[1],s=this.makeTrainFunction()(a.concat(r)),i=[];for(let o of s){let l=await o.data();i.push(l[0])}return Ge(s),Qn(i)}getNamedWeights(e){let t=[],n=e!=null&&e.trainableOnly,a=n?this.trainableWeights:this.weights,r=this.getWeights(n);for(let s=0;s<a.length;++s)n&&!a[s].trainable||t.push({name:a[s].originalName,tensor:r[s]});return t}set stopTraining(e){this.stopTraining_=e}get stopTraining(){return this.stopTraining_}get optimizer(){return this.optimizer_}set optimizer(e){this.optimizer_!==e&&(this.optimizer_=e,this.isOptimizerOwned=!1)}dispose(){let e=super.dispose();if(e.refCountAfterDispose===0&&this.optimizer!=null&&this.isOptimizerOwned){let t=EA().numTensors;this.optimizer_.dispose(),e.numDisposedVariables+=t-EA().numTensors}return e}getLossIdentifiers(){let e;if(typeof this.loss=="string")e=hs(this.loss);else if(Array.isArray(this.loss)){for(let t of this.loss)if(typeof t!="string")throw new Error("Serialization of non-string loss is not supported.");e=this.loss.map(t=>hs(t))}else{let t=Object.keys(this.loss);e={};let n=this.loss;for(let a of t)if(typeof n[a]=="string")e[a]=hs(n[a]);else throw new Error("Serialization of non-string loss is not supported.")}return e}getMetricIdentifiers(){if(typeof this.metrics=="string"||typeof this.metrics=="function")return[hs(h0(this.metrics))];if(Array.isArray(this.metrics))return this.metrics.map(e=>hs(h0(e)));{let e={};for(let t in this.metrics)e[t]=hs(h0(this.metrics[t]));return e}}getTrainingConfig(){return{loss:this.getLossIdentifiers(),metrics:this.getMetricIdentifiers(),optimizer_config:{class_name:this.optimizer.getClassName(),config:this.optimizer.getConfig()}}}loadTrainingConfig(e){if(e.weighted_metrics!=null)throw new Error("Loading weight_metrics is not supported yet.");if(e.loss_weights!=null)throw new Error("Loading loss_weights is not supported yet.");if(e.sample_weight_mode!=null)throw new Error("Loading sample_weight_mode is not supported yet.");let t=Uh(e.optimizer_config),n=cr(t),a;if(typeof e.loss=="string")a=ro(e.loss);else if(Array.isArray(e.loss))a=e.loss.map(s=>ro(s));else if(e.loss!=null){a={};for(let s in e.loss)a[s]=ro(e.loss[s])}let r;if(Array.isArray(e.metrics))r=e.metrics.map(s=>ro(s));else if(e.metrics!=null){r={};for(let s in e.metrics)r[s]=ro(e.metrics[s])}this.compile({loss:a,metrics:r,optimizer:n})}async save(e,t){if(typeof e=="string"){let i=la.getSaveHandlers(e);if(i.length===0)throw new G(`Cannot find any save handlers for URL '${e}'`);if(i.length>1)throw new G(`Found more than one (${i.length}) save handlers for URL '${e}'`);e=i[0]}if(e.save==null)throw new G("LayersModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");let n=await la.encodeWeights(this.getNamedWeights(t)),a=!1,r=null,s={modelTopology:this.toJSON(r,a),format:Dte,generatedBy:`TensorFlow.js tfjs-layers v${Q2}`,convertedBy:null};if((t==null?!1:t.includeOptimizer)&&this.optimizer!=null){s.trainingConfig=this.getTrainingConfig();let i="optimizer",{data:o,specs:l}=await la.encodeWeights(await this.optimizer.getWeights(),i);n.specs.push(...l),n.data=la.concatenateArrayBuffers([n.data,o])}if(this.userDefinedMetadata!=null){let i=!0;zI(this.userDefinedMetadata,this.name,i),s.userDefinedMetadata=this.userDefinedMetadata}return s.weightData=n.data,s.weightSpecs=n.specs,e.save(s)}setUserDefinedMetadata(e){zI(e,this.name),this.userDefinedMetadata=e}getUserDefinedMetadata(){return this.userDefinedMetadata}};ps.className="Model";ue.registerClass(ps);var ZI=class extends ps{};ZI.className="Functional";ue.registerClass(ZI);async function _te(e,t){"modelTopology"in e||(e={modelTopology:e}),e=e;let n=e.modelTopology;n.model_config!=null&&(n=n.model_config);let a=Uh(n),r=cr(a,t);if(e.weightsManifest!=null){let s=await la.loadWeights(e.weightsManifest,e.pathPrefix,r.weights.map(o=>o.originalName)),i={};for(let o of r.weights)i[o.originalName]=s[o.originalName];r.loadWeights(i),Ge(s)}return r}async function zte(e,t){if(t==null&&(t={}),typeof e=="string"){let n=la.getLoadHandlers(e,t);if(n.length===0)n.push(la.browserHTTPRequest(e,t));else if(n.length>1)throw new G(`Found more than one (${n.length}) load handlers for URL '${e}'`);e=n[0]}return Pte(e,void 0,t)}async function Pte(e,t,n){if(n==null&&(n={}),e.load==null)throw new G("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let a=await e.load(),r=a.modelTopology;r.model_config!=null&&(r=r.model_config);let s=n.strict==null?!0:n.strict,i=a.weightData!=null&&a.weightSpecs!=null&&s,o=cr(Uh(r),t,i),l=a.trainingConfig;if(l!=null&&o.loadTrainingConfig(l),a.userDefinedMetadata!=null&&o.setUserDefinedMetadata(a.userDefinedMetadata),a.weightData!=null){if(a.weightSpecs==null)throw new G("LayersModel artifacts contains weight data, but not weight specs. Therefore loading of weights cannot proceed.");let{modelWeights:u,optimizerWeights:d}=Lte(a.weightData,a.weightSpecs);o.loadWeights(u,s),o.optimizer!=null&&d.length>0&&await o.optimizer.setWeights(d),Ge(u),Ge(d.map(h=>h.tensor))}return o}function Lte(e,t){let n=la.decodeWeights(e,t),a={},r=[];return t.forEach(s=>{s.group==="optimizer"?r.push({name:s.name,tensor:n[s.name]}):a[s.name]=n[s.name]}),{modelWeights:a,optimizerWeights:r}}var sx=class extends ps{constructor(e){super({inputs:[],outputs:[]});if(e=e||{},this.trainable=!0,this.built=!1,this.name=e.name!=null?e.name:t0("sequential_"),e.layers!=null)for(let t of e.layers)this.add(t)}checkShape(e){if(e.inboundNodes[0].outputTensors[0].shape.some(t=>t<0))throw new G(`Negative dimension size caused by adding layer ${e.name} with input shape [${e.inboundNodes[0].inputTensors[0].shape}]`)}add(e){let t=e instanceof sx||e instanceof ps,n;if(t){if(n=e,n.outputs.length!==1)throw new G("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");if(n.inputs.length!==1)throw new G("All layers in a Sequential model should have a single input tensor. For multi-input layers, use the functional API.")}if(this.outputs.length===0){if(e.inboundNodes.length===0){if(e.batchInputShape==null)throw new G("The first layer in a Sequential model must get an `inputShape` or `batchInputShape` argument.");let a=kI({batchShape:e.batchInputShape,dtype:e.dtype,name:e.name+"_input"});e.apply(a)}if(t)this.outputs=n.outputs,this.inputs=n.inputs;else{if(e.inboundNodes.length!==1)throw new G(`A layer added to a Sequential model must not already be connected somewhere else. LayersModel received layer ${e.name} which has ${e.inboundNodes.length} pre-existing inbound connections.`);if(e.inboundNodes[0].outputTensors.length!==1)throw new G("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[e.inboundNodes[0].outputTensors[0]],this.inputs=wI(this.outputs[0])}this.inboundNodes=[],new r0({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:ao(null,this.inputs.length),outputMasks:[null],inputShapes:this.inputs.map(a=>a.shape),outputShapes:this.outputs[0].shape})}else{let a=e.apply(this.outputs[0]);if(Array.isArray(a))throw new TypeError("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[a],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}this.layers.push(e),this.built=!1}pop(){if(this.layers.length===0)throw new TypeError("There are no layers in the model.");if(this.layers.pop(),this.layers.length===0)this.outputs=[],this.inboundNodes=[],this.outboundNodes=[];else{let e=this.layers.length-1;this.layers[e].outboundNodes=[],this.outputs=[this.layers[e].output],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}}call(e,t){return this.model==null&&this.build(),this.model.call(e,t)}build(e){if(At(e),this.inputs.length===0||this.outputs.length===0)throw new TypeError("Sequential model cannot be built: model is empty. Add some layers first.");this.model=new ps({inputs:this.inputs,outputs:this.outputs[0],name:this.name+"_model"}),this.model.trainable=this.trainable,this.supportsMasking=this.model.supportsMasking,this.inputLayers=this.model.inputLayers,this.inputLayersNodeIndices=this.model.inputLayersNodeIndices,this.inputLayersTensorIndices=this.model.inputLayersTensorIndices,this.outputLayers=this.model.outputLayers,this.outputLayersNodeIndices=this.model.outputLayersNodeIndices,this.outputLayersTensorIndices=this.model.outputLayersTensorIndices,this.nodesByDepth=this.model.nodesByDepth,this.containerNodes=this.model.containerNodes,this.outputNames=this.model.outputNames,this.inputNames=this.model.inputNames,this.built=!0}countParams(){return this.built||this.build(),super.countParams()}summary(e,t,n=console.log){this.built||this.build(),super.summary(e,t,n)}setWeights(e){this.model==null&&this.build(),this.model.setWeights(e)}evaluate(e,t,n={}){if(!this.built)throw new ur("The model needs to be compiled before being used.");return this.model.evaluate(e,t,n)}async evaluateDataset(e,t){if(!this.built)throw new ur("The model needs to be compiled before being used.");return this.model.evaluateDataset(e,t)}predict(e,t={}){return this.model==null&&this.build(),this.model.predict(e,t)}predictOnBatch(e){return this.model==null&&this.build(),this.model.predictOnBatch(e)}compile(e){this.build(),this.model.compile(e),this.optimizer_=this.model.optimizer,this.isOptimizerOwned=this.model.isOptimizerOwned,this.loss=this.model.loss,this.metrics=this.model.metrics,this.metricsTensors=this.model.metricsTensors,this.metricsNames=this.model.metricsNames}get optimizer(){return this.model==null?void 0:this.model.optimizer}set optimizer(e){this.model.optimizer=e}async fit(e,t,n={}){if(!this.built)throw new ur("The model needs to be compiled before being used.");return this.model.fit(e,t,n)}async fitDataset(e,t){if(!this.built)throw new ur("The model needs to be compiled before being used.");return this.model.fitDataset(e,t)}async trainOnBatch(e,t){return this.model.trainOnBatch(e,t)}static fromConfig(e,t,n={},a=!1){let r,s={};if(t instanceof Array){if(t[0].className==null||t[0].className==="Merge")throw new G("Legacy serialization format not supported yet.");r=t}else k.assert(t.layers!=null,()=>"When the config data for a Sequential model is not an Array, it must be an Object that contains the 'layers' field."),r=t.layers,delete t.layers,s=t;let i=new e(s);if(!(i instanceof sx))throw new He(`Sequential.fromConfig called on non-Sequential input: ${i}`);for(let o of r){let l=cr(o,void 0,a);a&&l.setFastWeightInitDuringBuild(!0),i.add(l)}return i}set stopTraining(e){if(this.model==null)throw new G("Cannot set the stopTraining property of a sequential model before it is compiled.");this.model.stopTraining=e}get stopTraining(){if(this.model==null)throw new G("Cannot get the stopTraining property of a sequential model before it is compiled.");return this.model.stopTraining}getConfig(){let e=[];for(let t of this.layers){let n={};n.className=t.getClassName(),n.config=t.getConfig(),e.push(n)}return{name:this.name,layers:e}}},c0=sx;c0.className="Sequential";ue.registerClass(c0);function Wte(e){return new ps(e)}function Bte(e){return new c0(e)}function Vte(e,t){return t==null&&(t={}),zte(e,t)}function YI(e){return kI(e)}function Ute(e,t){H2.registerCallbackConstructor(e,t)}var ta=class extends ue.Serializable{getConfig(){return{}}},JI=class extends ta{apply(e,t=1){return mee(e,t)}};JI.className="elu";ue.registerClass(JI);var QI=class extends ta{apply(e){return QA(e)}};QI.className="selu";ue.registerClass(QI);var eS=class extends ta{apply(e){return ls(e)}};eS.className="relu";ue.registerClass(eS);var tS=class extends ta{apply(e){return Z(()=>$h(6,ls(e)))}};tS.className="relu6";ue.registerClass(tS);var nS=class extends ta{apply(e){return e}};nS.className="linear";ue.registerClass(nS);var aS=class extends ta{apply(e){return $r(e)}};aS.className="sigmoid";ue.registerClass(aS);var rS=class extends ta{apply(e){return yee(e)}};rS.className="hardSigmoid";ue.registerClass(rS);var sS=class extends ta{apply(e){return Zl(e)}};sS.className="softplus";ue.registerClass(sS);var iS=class extends ta{apply(e){return gee(e)}};iS.className="softsign";ue.registerClass(iS);var oS=class extends ta{apply(e){return Kl(e)}};oS.className="tanh";ue.registerClass(oS);var ix=class extends ta{apply(e,t=-1){return _f(e,t)}};ix.className="softmax";ue.registerClass(ix);var lS=class extends ta{apply(e,t=-1){return VA(e,t)}};lS.className="logSoftmax";ue.registerClass(lS);var uS=class extends ta{apply(e,t=1){return Z(()=>$r(e.mul(t)).mul(e))}};uS.className="swish";ue.registerClass(uS);var dS=class extends ta{apply(e){return Z(()=>K(e,Kl(Zl(e))))}};dS.className="mish";ue.registerClass(dS);function Xs(e){return e.getClassName()}function ox(e,t={}){return Dh(e,ue.SerializationMap.getMap().classNameMap,t,"activation")}function Zs(e){if(e==null){let t={};return t.className="linear",t.config={},ox(t)}if(typeof e=="string"){let t={};return t.className=e,t.config={},ox(t)}else return e instanceof ta?e:ox(e)}function lx(e){if(e!=null&&typeof e!="object")throw new Error(`Argument to L1L2 regularizer's constructor is expected to be an object, but received: ${e}`)}var hS=class extends ue.Serializable{},Gh=class extends hS{constructor(e){super();lx(e),this.l1=e==null||e.l1==null?.01:e.l1,this.l2=e==null||e.l2==null?.01:e.l2,this.hasL1=this.l1!==0,this.hasL2=this.l2!==0}apply(e){return Z(()=>{let t=un([1]);return this.hasL1&&(t=pe(t,Ce(K(this.l1,yn(e))))),this.hasL2&&(t=pe(t,Ce(K(this.l2,Wh(e))))),t.asScalar()})}getConfig(){return{l1:this.l1,l2:this.l2}}static fromConfig(e,t){return new e({l1:t.l1,l2:t.l2})}};Gh.className="L1L2";ue.registerClass(Gh);function jte(e){return lx(e),new Gh({l1:e!=null?e.l1:null,l2:0})}function Hte(e){return lx(e),new Gh({l2:e!=null?e.l2:null,l1:0})}var pS={l1l2:"L1L2"};function wt(e){return k2(e)}function cS(e,t={}){return Dh(e,ue.SerializationMap.getMap().classNameMap,t,"regularizer")}function Lt(e){if(e==null)return null;if(typeof e=="string"){let t={className:e in pS?pS[e]:e,config:{}};return cS(t)}else return e instanceof hS?e:cS(e)}var ux=class extends rt{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null&&(this.maxValue=e.maxValue)}call(e,t){e=Ke(e);let n=ls(e);return this.maxValue!=null&&(n=ua(n,0,this.maxValue)),n}computeOutputShape(e){return e}getConfig(){let e={maxValue:this.maxValue},t=super.getConfig();return Object.assign(e,t),e}};ux.className="ReLU";ue.registerClass(ux);var dx=class extends rt{constructor(e){super(e==null?{}:e);this.DEFAULT_ALPHA=.3,e==null&&(e={}),this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=Ke(e);return Ef(n,this.alpha)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};dx.className="LeakyReLU";ue.registerClass(dx);var hx=class extends rt{constructor(e){super(e==null?{}:e);if(this.DEFAULT_ALPHA_INITIALIZER="zeros",e==null&&(e={}),this.supportsMasking=!0,this.alphaInitializer=Pt(e.alphaInitializer||this.DEFAULT_ALPHA_INITIALIZER),this.alphaRegularizer=Lt(e.alphaRegularizer),this.alphaConstraint=pn(e.alphaConstraint),e.sharedAxes==null)this.sharedAxes=null;else if(Array.isArray(e.sharedAxes))this.sharedAxes=e.sharedAxes;else if(typeof e.sharedAxes=="number")this.sharedAxes=[e.sharedAxes];else throw new G(`Expected sharedAxes to be a number or an array of numbers, but got ${e.sharedAxes}`)}build(e){e=At(e);let t=e.slice(1);if(this.sharedAxes!=null)for(let a of this.sharedAxes)t[a-1]=1;this.alpha=this.addWeight("alpha",t,"float32",this.alphaInitializer,this.alphaRegularizer,!0,this.alphaConstraint);let n={};if(this.sharedAxes!=null)for(let a=1;a<e.length;++a)n[a]=e[a];this.inputSpec=[new tn({ndim:e.length,axes:n})],this.built=!0}call(e,t){return e=Ke(e),Ff(e,this.alpha.read())}getConfig(){let e={alphaInitializer:jt(this.alphaInitializer),alphaRegularizer:wt(this.alphaRegularizer),alphaConstraint:hn(this.alphaConstraint),sharedAxes:this.sharedAxes},t=super.getConfig();return Object.assign(e,t),e}};hx.className="PReLU";ue.registerClass(hx);var px=class extends rt{constructor(e){super(e==null?{}:e);if(this.DEFAULT_ALPHA=1,e==null&&(e={}),e.alpha!=null&&e.alpha!==this.DEFAULT_ALPHA)throw new He(`Non-default alpha value (${e.alpha}) is not supported by the ELU layer yet.`);this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=Ke(e);return Th(n)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};px.className="ELU";ue.registerClass(px);var cx=class extends rt{constructor(e){super(e==null?{}:e);this.DEFAULT_THETA=1,e==null&&(e={}),this.theta=e.theta==null?this.DEFAULT_THETA:e.theta}call(e,t){let n=Ke(e);return n.mul(Ph(n.greater(this.theta),"float32"))}computeOutputShape(e){return e}getConfig(){let e={theta:this.theta},t=super.getConfig();return Object.assign(e,t),e}};cx.className="ThresholdedReLU";ue.registerClass(cx);var fx=class extends rt{constructor(e){super(e==null?{}:e);this.DEFAULT_AXIS=1,e==null&&(e={}),this.softmax=new ix().apply,this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis}call(e,t){let n=Ke(e);return this.softmax(n,this.axis)}computeOutputShape(e){return e}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};fx.className="Softmax";ue.registerClass(fx);function ou(e,t,n){if(typeof e=="number")return ao(e,t);if(e.length!==t)throw new G(`The ${n} argument must be an integer or tuple of ${t} integers. Received: ${e.length} elements.`);for(let a=0;a<t;++a){let r=e[a];if(!hee(r))throw new G(`The ${n} argument must be an integer or tuple of ${t} integers. Received: ${JSON.stringify(e)} including a non-integer number ${r}`)}return e}function fr(e,t,n,a,r=1){if(e==null)return e;let s=t+(t-1)*(r-1),i;return n==="same"?i=e:i=e-s+1,Math.floor((i+a-1)/a)}function _r(e,t,n,a){if(e==null)return null;if(a==="valid")e=e*t+qs([n-t,0]);else if(a==="same")e=e*t;else throw new G(`Unsupport padding mode: ${a}.`);return e}function mx(e,t){return Z(()=>(Yt(t),t==="channelsFirst"?ct(e,[0,2,3,1]):e))}function fS(e,t){return Z(()=>(Yt(t),t==="channelsFirst"?ct(e,[0,2,3,4,1]):e))}function Gte(e,t,n,a=1,r="valid",s,i=1){return Z(()=>{if(s==null&&(s=lr()),Yt(s),e.shape.length!==3)throw new G(`The input of a conv1dWithBias operation should be 3, but is ${e.shape.length} instead.`);if(t.shape.length!==3)throw new G(`The kernel for a conv1dWithBias operation should be 3, but is ${t.shape.length} instead`);if(n!=null&&n.shape.length!==1)throw new G(`The bias for a conv1dWithBias operation should be 1, but is ${t.shape.length} instead`);if(s==="channelsFirst"&&(e=ct(e,[0,2,1])),r==="causal")throw new He("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");let o=OA(e,t,a,r==="same"?"same":"valid","NWC",i);return n!=null&&(o=hr(o,n)),o})}function mS(e,t,n,a=[1,1],r="valid",s,i,o=null){return Z(()=>{if(s==null&&(s=lr()),Yt(s),e.rank!==3&&e.rank!==4)throw new G(`conv2dWithBiasActivation expects input to be of rank 3 or 4, but received ${e.rank}.`);if(t.rank!==3&&t.rank!==4)throw new G(`conv2dWithBiasActivation expects kernel to be of rank 3 or 4, but received ${e.rank}.`);let l=mx(e,s);if(r==="causal")throw new He("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");return l=eo.conv2d({x:l,filter:t,strides:a,pad:r==="same"?"same":"valid",dilations:i,dataFormat:"NHWC",bias:n,activation:o}),s==="channelsFirst"&&(l=ct(l,[0,3,1,2])),l})}function qte(e,t,n,a=[1,1,1],r="valid",s,i){return Z(()=>{if(s==null&&(s=lr()),Yt(s),e.rank!==4&&e.rank!==5)throw new G(`conv3dWithBias expects input to be of rank 4 or 5, but received ${e.rank}.`);if(t.rank!==4&&t.rank!==5)throw new G(`conv3dWithBias expects kernel to be of rank 4 or 5, but received ${e.rank}.`);let o=fS(e,s);if(r==="causal")throw new He("The support for CAUSAL padding mode in conv3dWithBias is not implemented yet.");return o=n8(o,t,a,r==="same"?"same":"valid","NDHWC",i),n!=null&&(o=hr(o,n)),s==="channelsFirst"&&(o=ct(o,[0,4,1,2,3])),o})}var gx=class extends rt{constructor(e,t){super(t);if(this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",gx.verifyArgs(t),this.rank=e,An(this.rank,"rank"),this.rank!==1&&this.rank!==2&&this.rank!==3)throw new He(`Convolution layer for rank other than 1, 2, or 3 (${this.rank}) is not implemented yet.`);if(this.kernelSize=ou(t.kernelSize,e,"kernelSize"),this.strides=ou(t.strides==null?1:t.strides,e,"strides"),this.padding=t.padding==null?"valid":t.padding,Oa(this.padding),this.dataFormat=t.dataFormat==null?"channelsLast":t.dataFormat,Yt(this.dataFormat),this.activation=Zs(t.activation),this.useBias=t.useBias==null?!0:t.useBias,this.biasInitializer=Pt(t.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.biasConstraint=pn(t.biasConstraint),this.biasRegularizer=Lt(t.biasRegularizer),this.activityRegularizer=Lt(t.activityRegularizer),this.dilationRate=ou(t.dilationRate==null?1:t.dilationRate,e,"dilationRate"),this.rank===1&&Array.isArray(this.dilationRate)&&this.dilationRate.length!==1)throw new G(`dilationRate must be a number or an array of a single number for 1D convolution, but received ${JSON.stringify(this.dilationRate)}`);if(this.rank===2){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==2)throw new G(`dilationRate must be a number or array of two numbers for 2D convolution, but received ${JSON.stringify(this.dilationRate)}`)}else if(this.rank===3){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==3)throw new G(`dilationRate must be a number or array of three numbers for 3D convolution, but received ${JSON.stringify(this.dilationRate)}`)}}static verifyArgs(e){if(Rr("kernelSize"in e,"required key 'kernelSize' not in config"),typeof e.kernelSize!="number"&&!S2(e.kernelSize,"number",1,3))throw new G(`BaseConv expects config.kernelSize to be number or number[] with length 1, 2, or 3, but received ${JSON.stringify(e.kernelSize)}.`)}getConfig(){let e={kernelSize:this.kernelSize,strides:this.strides,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,activation:Xs(this.activation),useBias:this.useBias,biasInitializer:jt(this.biasInitializer),biasRegularizer:wt(this.biasRegularizer),activityRegularizer:wt(this.activityRegularizer),biasConstraint:hn(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}},qh=class extends gx{constructor(e,t){super(e,t);this.kernel=null,qh.verifyArgs(t),this.filters=t.filters,An(this.filters,"filters"),this.kernelInitializer=Pt(t.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.kernelConstraint=pn(t.kernelConstraint),this.kernelRegularizer=Lt(t.kernelRegularizer)}build(e){e=At(e);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new G(`The channel dimension of the input should be defined. Found ${e[t]}`);let n=e[t],a=this.kernelSize.concat([n,this.filters]);this.kernel=this.addWeight("kernel",a,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[{ndim:this.rank+2,axes:{[t]:n}}],this.built=!0}call(e,t){return Z(()=>{e=Ke(e);let n,a=this.bias==null?null:this.bias.read(),r=rI(this.activation.getClassName());if(r!=null&&this.rank===2)n=mS(e,this.kernel.read(),a,this.strides,this.padding,this.dataFormat,this.dilationRate,r);else{if(this.rank===1)n=Gte(e,this.kernel.read(),a,this.strides[0],this.padding,this.dataFormat,this.dilationRate[0]);else if(this.rank===2)n=mS(e,this.kernel.read(),a,this.strides,this.padding,this.dataFormat,this.dilationRate);else if(this.rank===3)n=qte(e,this.kernel.read(),a,this.strides,this.padding,this.dataFormat,this.dilationRate);else throw new He("convolutions greater than 3D are not implemented yet.");this.activation!=null&&(n=this.activation.apply(n))}return n})}computeOutputShape(e){e=At(e);let t=[],n=this.dataFormat==="channelsLast"?e.slice(1,e.length-1):e.slice(2);for(let r=0;r<n.length;++r){let s=fr(n[r],this.kernelSize[r],this.padding,this.strides[r],typeof this.dilationRate=="number"?this.dilationRate:this.dilationRate[r]);t.push(s)}let a=[e[0]];return this.dataFormat==="channelsLast"?(a=a.concat(t),a.push(this.filters)):(a.push(this.filters),a=a.concat(t)),a}getConfig(){let e={filters:this.filters,kernelInitializer:jt(this.kernelInitializer),kernelRegularizer:wt(this.kernelRegularizer),kernelConstraint:hn(this.kernelConstraint)},t=super.getConfig();return Object.assign(e,t),e}static verifyArgs(e){if(!("filters"in e)||typeof e.filters!="number"||e.filters<1)throw new G(`Convolution layer expected config.filters to be a 'number' > 0 but got ${JSON.stringify(e.filters)}`)}},gS=class extends qh{constructor(e){super(2,e);gS.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!S2(e.kernelSize,"number",1,2))throw new G(`Conv2D expects config.kernelSize to be number or number[] with length 1 or 2, but received ${JSON.stringify(e.kernelSize)}.`)}},f0=gS;f0.className="Conv2D";ue.registerClass(f0);var yS=class extends qh{constructor(e){super(3,e);yS.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!(Array.isArray(e.kernelSize)&&(e.kernelSize.length===1||e.kernelSize.length===3)))throw new G(`Conv3D expects config.kernelSize to be number or [number, number, number], but received ${JSON.stringify(e.kernelSize)}.`)}},m0=yS;m0.className="Conv3D";ue.registerClass(m0);var yx=class extends f0{constructor(e){super(e);if(this.inputSpec=[new tn({ndim:4})],this.padding!=="same"&&this.padding!=="valid")throw new G(`Conv2DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=At(e),e.length!==4)throw new G("Input should have rank 4; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new G("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],a=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",a,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new tn({ndim:4,axes:{[t]:n}})],this.built=!0}call(e,t){return Z(()=>{let n=Ke(e);if(n.shape.length!==4)throw new G(`Conv2DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let a=n.shape,r=a[0],s,i;this.dataFormat==="channelsFirst"?(s=2,i=3):(s=1,i=2);let o=a[s],l=a[i],u=this.kernelSize[0],d=this.kernelSize[1],h=this.strides[0],p=this.strides[1],c=_r(o,h,u,this.padding),m=_r(l,p,d,this.padding),f=[r,c,m,this.filters];this.dataFormat!=="channelsLast"&&(n=ct(n,[0,2,3,1]));let g=_A(n,this.kernel.read(),f,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(g=ct(g,[0,3,1,2])),this.bias!=null&&(g=hr(g,this.bias.read(),this.dataFormat)),this.activation!=null&&(g=this.activation.apply(g)),g})}computeOutputShape(e){e=At(e);let t=e.slice(),n,a,r;this.dataFormat==="channelsFirst"?(n=1,a=2,r=3):(n=3,a=1,r=2);let s=this.kernelSize[0],i=this.kernelSize[1],o=this.strides[0],l=this.strides[1];return t[n]=this.filters,t[a]=_r(t[a],o,s,this.padding),t[r]=_r(t[r],l,i,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};yx.className="Conv2DTranspose";ue.registerClass(yx);var Ax=class extends m0{constructor(e){super(e);if(this.inputSpec=[new tn({ndim:5})],this.padding!=="same"&&this.padding!=="valid")throw new G(`Conv3DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=At(e),e.length!==5)throw new G("Input should have rank 5; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new G("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],a=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",a,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new tn({ndim:5,axes:{[t]:n}})],this.built=!0}call(e,t){return Z(()=>{let n=Ke(e);if(n.shape.length!==5)throw new G(`Conv3DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let a=n.shape,r=a[0],s,i,o;this.dataFormat==="channelsFirst"?(o=2,s=3,i=4):(o=1,s=2,i=3);let l=a[o],u=a[s],d=a[i],h=this.kernelSize[0],p=this.kernelSize[1],c=this.kernelSize[2],m=this.strides[0],f=this.strides[1],g=this.strides[2],y=_r(l,m,h,this.padding),A=_r(u,f,p,this.padding),x=_r(d,g,c,this.padding),v=[r,y,A,x,this.filters];this.dataFormat!=="channelsLast"&&(n=ct(n,[0,2,3,4,1]));let b=XG(n,this.kernel.read(),v,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(b=ct(b,[0,4,1,2,3])),this.bias!==null&&(b=hr(b,this.bias.read(),this.dataFormat)),this.activation!==null&&(b=this.activation.apply(b)),b})}computeOutputShape(e){e=At(e);let t=e.slice(),n,a,r,s;this.dataFormat==="channelsFirst"?(n=1,a=2,r=3,s=4):(n=4,a=1,r=2,s=3);let i=this.kernelSize[0],o=this.kernelSize[1],l=this.kernelSize[2],u=this.strides[0],d=this.strides[1],h=this.strides[2];return t[n]=this.filters,t[a]=_r(t[a],u,i,this.padding),t[r]=_r(t[r],d,o,this.padding),t[s]=_r(t[s],h,l,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};Ax.className="Conv3DTranspose";ue.registerClass(Ax);var AS=class extends qh{constructor(e,t){super(e,t);if(this.DEFAULT_DEPTHWISE_INITIALIZER="glorotUniform",this.DEFAULT_POINTWISE_INITIALIZER="glorotUniform",this.depthwiseKernel=null,this.pointwiseKernel=null,t.filters==null)throw new G("The `filters` configuration field is required by SeparableConv, but is unspecified.");if(t.kernelInitializer!=null||t.kernelRegularizer!=null||t.kernelConstraint!=null)throw new G("Fields kernelInitializer, kernelRegularizer and kernelConstraint are invalid for SeparableConv2D. Use depthwiseInitializer, depthwiseRegularizer, depthwiseConstraint, pointwiseInitializer, pointwiseRegularizer and pointwiseConstraint instead.");if(t.padding!=null&&t.padding!=="same"&&t.padding!=="valid")throw new G(`SeparableConv${this.rank}D supports only padding modes: 'same' and 'valid', but received ${JSON.stringify(t.padding)}`);this.depthMultiplier=t.depthMultiplier==null?1:t.depthMultiplier,this.depthwiseInitializer=Pt(t.depthwiseInitializer||this.DEFAULT_DEPTHWISE_INITIALIZER),this.depthwiseRegularizer=Lt(t.depthwiseRegularizer),this.depthwiseConstraint=pn(t.depthwiseConstraint),this.pointwiseInitializer=Pt(t.depthwiseInitializer||this.DEFAULT_POINTWISE_INITIALIZER),this.pointwiseRegularizer=Lt(t.pointwiseRegularizer),this.pointwiseConstraint=pn(t.pointwiseConstraint)}build(e){if(e=At(e),e.length<this.rank+2)throw new G(`Inputs to SeparableConv${this.rank}D should have rank ${this.rank+2}, but received input shape: ${JSON.stringify(e)}`);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null||e[t]<0)throw new G(`The channel dimension of the inputs should be defined, but found ${JSON.stringify(e[t])}`);let n=e[t],a=this.kernelSize.concat([n,this.depthMultiplier]),r=[];for(let i=0;i<this.rank;++i)r.push(1);r.push(n*this.depthMultiplier,this.filters);let s=!0;this.depthwiseKernel=this.addWeight("depthwise_kernel",a,"float32",this.depthwiseInitializer,this.depthwiseRegularizer,s,this.depthwiseConstraint),this.pointwiseKernel=this.addWeight("pointwise_kernel",r,"float32",this.pointwiseInitializer,this.pointwiseRegularizer,s,this.pointwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,s,this.biasConstraint):this.bias=null,this.inputSpec=[new tn({ndim:this.rank+2,axes:{[t]:n}})],this.built=!0}call(e,t){return Z(()=>{e=Ke(e);let n;if(this.rank===1)throw new He("1D separable convolution is not implemented yet.");return this.rank===2&&(this.dataFormat==="channelsFirst"&&(e=ct(e,[0,2,3,1])),n=b8(e,this.depthwiseKernel.read(),this.pointwiseKernel.read(),this.strides,this.padding,this.dilationRate,"NHWC")),this.useBias&&(n=hr(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),this.dataFormat==="channelsFirst"&&(n=ct(n,[0,3,1,2])),n})}getConfig(){let e=super.getConfig();return delete e.rank,delete e.kernelInitializer,delete e.kernelRegularizer,delete e.kernelConstraint,e.depthwiseInitializer=jt(this.depthwiseInitializer),e.pointwiseInitializer=jt(this.pointwiseInitializer),e.depthwiseRegularizer=wt(this.depthwiseRegularizer),e.pointwiseRegularizer=wt(this.pointwiseRegularizer),e.depthwiseConstraint=hn(this.depthwiseConstraint),e.pointwiseConstraint=hn(this.pointwiseConstraint),e}};AS.className="SeparableConv";var xx=class extends AS{constructor(e){super(2,e)}};xx.className="SeparableConv2D";ue.registerClass(xx);var xS=class extends qh{constructor(e){super(1,e);xS.verifyArgs(e),this.inputSpec=[{ndim:3}]}getConfig(){let e=super.getConfig();return delete e.rank,delete e.dataFormat,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!S2(e.kernelSize,"number",1,1))throw new G(`Conv1D expects config.kernelSize to be number or number[] with length 1, but received ${JSON.stringify(e.kernelSize)}.`)}},bx=xS;bx.className="Conv1D";ue.registerClass(bx);var vx=class extends rt{constructor(e){super(e);typeof e.cropping=="number"?this.cropping=[[e.cropping,e.cropping],[e.cropping,e.cropping]]:typeof e.cropping[0]=="number"?this.cropping=[[e.cropping[0],e.cropping[0]],[e.cropping[1],e.cropping[1]]]:this.cropping=e.cropping,this.dataFormat=e.dataFormat===void 0?"channelsLast":e.dataFormat,this.inputSpec=[{ndim:4}]}computeOutputShape(e){return this.dataFormat==="channelsFirst"?[e[0],e[1],e[2]-this.cropping[0][0]-this.cropping[0][1],e[3]-this.cropping[1][0]-this.cropping[1][1]]:[e[0],e[1]-this.cropping[0][0]-this.cropping[0][1],e[2]-this.cropping[1][0]-this.cropping[1][1],e[3]]}call(e,t){return Z(()=>{if(e=Ke(e),this.dataFormat==="channelsLast"){let n=Hf(e,this.cropping[0][0],e.shape[1]-this.cropping[0][0]-this.cropping[0][1],2);return Hf(n,this.cropping[1][0],e.shape[2]-this.cropping[1][1]-this.cropping[1][0],3)}else{let n=Hf(e,this.cropping[0][0],e.shape[2]-this.cropping[0][0]-this.cropping[0][1],3);return Hf(n,this.cropping[1][0],e.shape[3]-this.cropping[1][1]-this.cropping[1][0],4)}})}getConfig(){let e={cropping:this.cropping,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};vx.className="Cropping2D";ue.registerClass(vx);var wx=class extends rt{constructor(e){super(e);this.DEFAULT_SIZE=[2,2],this.inputSpec=[{ndim:4}],this.size=e.size==null?this.DEFAULT_SIZE:e.size,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Yt(this.dataFormat),this.interpolation=e.interpolation==null?"nearest":e.interpolation,lee(this.interpolation)}computeOutputShape(e){if(this.dataFormat==="channelsFirst"){let t=e[2]==null?null:this.size[0]*e[2],n=e[3]==null?null:this.size[1]*e[3];return[e[0],e[1],t,n]}else{let t=e[1]==null?null:this.size[0]*e[1],n=e[2]==null?null:this.size[1]*e[2];return[e[0],t,n,e[3]]}}call(e,t){return Z(()=>{let n=Ke(e),a=n.shape;if(this.dataFormat==="channelsFirst"){n=ct(n,[0,2,3,1]);let r=this.size[0]*a[2],s=this.size[1]*a[3],i=this.interpolation==="nearest"?n.resizeNearestNeighbor([r,s]):n.resizeBilinear([r,s]);return ct(i,[0,3,1,2])}else{let r=this.size[0]*a[1],s=this.size[1]*a[2];return this.interpolation==="nearest"?n.resizeNearestNeighbor([r,s]):n.resizeBilinear([r,s])}})}getConfig(){let e={size:this.size,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};wx.className="UpSampling2D";ue.registerClass(wx);function Kte(e,t,n=[1,1],a="valid",r,s){return Z(()=>{r==null&&(r=lr()),Yt(r);let i=mx(e,r);if(e.rank!==4)throw new G(`Input for depthwiseConv2d is required to be 4-D, but is instead ${e.rank}-D`);if(t.rank!==4)throw new G(`depthwiseKernel is required to be 4-D, but is instead ${t.rank}-D`);return i=Nh(i,t,n,a==="same"?"same":"valid","NHWC",s),r==="channelsFirst"&&(i=ct(i,[0,3,1,2])),i})}var kx=class extends gx{constructor(e){super(2,e);this.depthwiseKernel=null,this.depthMultiplier=e.depthMultiplier==null?1:e.depthMultiplier,this.depthwiseInitializer=Pt(e.depthwiseInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.depthwiseConstraint=pn(e.depthwiseConstraint),this.depthwiseRegularizer=Lt(e.depthwiseRegularizer)}build(e){if(e=At(e),e.length<4)throw new G(`Inputs to DepthwiseConv2D should have rank 4. Received input shape: ${JSON.stringify(e)}.`);let t=this.dataFormat==="channelsFirst"?1:3;if(e[t]==null||e[t]<0)throw new G(`The channel dimension of the inputs to DepthwiseConv2D should be defined, but is not (${e[t]}).`);let n=e[t],a=[this.kernelSize[0],this.kernelSize[1],n,this.depthMultiplier];this.depthwiseKernel=this.addWeight("depthwise_kernel",a,null,this.depthwiseInitializer,this.depthwiseRegularizer,!0,this.depthwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[n*this.depthMultiplier],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return Z(()=>{e=Ke(e);let n=Kte(e,this.depthwiseKernel.read(),this.strides,this.padding,this.dataFormat,null);return this.useBias&&(n=hr(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),n})}computeOutputShape(e){e=At(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],a=this.dataFormat==="channelsFirst"?e[1]*this.depthMultiplier:e[3]*this.depthMultiplier,r=fr(t,this.kernelSize[0],this.padding,this.strides[0]),s=fr(n,this.kernelSize[1],this.padding,this.strides[1]);return this.dataFormat==="channelsFirst"?[e[0],a,r,s]:[e[0],r,s,a]}getConfig(){let e=super.getConfig();return e.depthMultiplier=this.depthMultiplier,e.depthwiseInitializer=jt(this.depthwiseInitializer),e.depthwiseRegularizer=wt(this.depthwiseRegularizer),e.depthwiseConstraint=hn(this.depthwiseRegularizer),e}};kx.className="DepthwiseConv2D";ue.registerClass(kx);function bS(e,t,n,a){if(Array.isArray(e)){if(t!=null||n!=null)throw new G("When inputs is an array, neither initialState or constants should be provided");a!=null&&(n=e.slice(e.length-a,e.length),e=e.slice(0,e.length-a)),e.length>1&&(t=e.slice(1,e.length)),e=e[0]}function r(s){return s==null||Array.isArray(s)?s:[s]}return t=r(t),n=r(n),{inputs:e,initialState:t,constants:n}}function vS(e,t,n,a=!1,r,s,i=!1,o=!1){return Z(()=>{let l=t.shape.length;if(l<3)throw new G(`Input should be at least 3D, but is ${l}D.`);let u=[1,0].concat(dr(2,l));if(t=ct(t,u),s!=null)throw new He("The rnn() functoin of the deeplearn.js backend does not support constants yet.");i&&console.warn("Backend rnn(): the unroll = true option is not applicable to the imperative deeplearn.js backend."),r!=null&&(r=r.asType("bool").asType("float32"),r.rank===l-1&&(r=Ea(r,-1)),r=ct(r,u)),a&&(t=Ra(t,0),r!=null&&(r=Ra(r,0)));let d=[],h,p=n,c=t.shape[0],m=or(t),f;r!=null&&(f=or(r));for(let y=0;y<c;++y){let A=m[y],x=Z(()=>e(A,p));if(r==null)h=x[0],p=x[1];else{let v=Z(()=>{let b=f[y],w=$a(b).sub(b),I=x[0].mul(b).add(p[0].mul(w)),T=p.map((C,z)=>x[1][z].mul(b).add(C.mul(w)));return{output:I,newStates:T}});h=v.output,p=v.newStates}o&&d.push(h)}let g;return o&&(g=Fa(d,1)),[h,g,p]})}var wS=class extends rt{constructor(e){super(e);let t;if(e.cell==null)throw new G("cell property is missing for the constructor of RNN.");if(Array.isArray(e.cell)?t=new A0({cells:e.cell}):t=e.cell,t.stateSize==null)throw new G("The RNN cell should have an attribute `stateSize` (tuple of integers, one integer per RNN state).");this.cell=t,this.returnSequences=e.returnSequences==null?!1:e.returnSequences,this.returnState=e.returnState==null?!1:e.returnState,this.goBackwards=e.goBackwards==null?!1:e.goBackwards,this._stateful=e.stateful==null?!1:e.stateful,this.unroll=e.unroll==null?!1:e.unroll,this.supportsMasking=!0,this.inputSpec=[new tn({ndim:3})],this.stateSpec=null,this.states_=null,this.numConstants=null,this.keptStates=[]}getStates(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;return dr(0,e).map(t=>null)}else return this.states_}setStates(e){this.states_=e}computeOutputShape(e){V2(e)&&(e=e[0]),e=e;let t=this.cell.stateSize;Array.isArray(t)||(t=[t]);let n=t[0],a;if(this.returnSequences?a=[e[0],e[1],n]:a=[e[0],n],this.returnState){let r=[];for(let s of t)r.push([e[0],s]);return[a].concat(r)}else return a}computeMask(e,t){return Z(()=>{Array.isArray(t)&&(t=t[0]);let n=this.returnSequences?t:null;if(this.returnState){let a=this.states.map(r=>null);return[n].concat(a)}else return n})}get states(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1,t=[];for(let n=0;n<e;++n)t.push(null);return t}else return this.states_}set states(e){this.states_=e}build(e){let t=null;if(this.numConstants!=null)throw new He("Constants support is not implemented in RNN yet.");V2(e)&&(e=e[0]),e=e;let n=this.stateful?e[0]:null,a=e.slice(2);this.inputSpec[0]=new tn({shape:[n,null,...a]});let r=[e[0]].concat(e.slice(2));if(t!=null)throw new He("Constants support is not implemented in RNN yet.");this.cell.build(r);let s;if(Array.isArray(this.cell.stateSize)?s=this.cell.stateSize:s=[this.cell.stateSize],this.stateSpec!=null){if(!k.arraysEqual(this.stateSpec.map(i=>i.shape[i.shape.length-1]),s))throw new G(`An initialState was passed that is not compatible with cell.stateSize. Received stateSpec=${this.stateSpec}; However cell.stateSize is ${this.cell.stateSize}`)}else this.stateSpec=s.map(i=>new tn({shape:[null,i]}));this.stateful&&this.resetStates()}resetStates(e,t=!1){Z(()=>{if(!this.stateful)throw new ds("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape[0];if(n==null)throw new G("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.states_==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(a=>un([n,a])):this.states_=[un([n,this.cell.stateSize])];else if(e==null)Ge(this.states_),this.keptStates!=null&&(Ge(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(a=>un([n,a])):this.states_[0]=un([n,this.cell.stateSize]);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new G(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t===!0?this.keptStates.push(this.states_.slice()):Ge(this.states_);for(let a=0;a<this.states_.length;++a){let r=e[a],s=Array.isArray(this.cell.stateSize)?this.cell.stateSize[a]:this.cell.stateSize,i=[n,s];if(!k.arraysEqual(r.shape,i))throw new G(`State ${a} is incompatible with layer ${this.name}: expected shape=${i}, received shape=${r.shape}`);this.states_[a]=r}}this.states_=this.states_.map(a=>Sn(a.clone()))})}apply(e,t){let n=t==null?null:t.initialState,a=t==null?null:t.constants;t==null&&(t={});let r=bS(e,n,a,this.numConstants);e=r.inputs,n=r.initialState,a=r.constants;let s=[],i=[];if(n!=null){t.initialState=n,s=s.concat(n),this.stateSpec=[];for(let o of n)this.stateSpec.push(new tn({shape:o.shape}));i=i.concat(this.stateSpec)}if(a!=null&&(t.constants=a,s=s.concat(a),this.numConstants=a.length),s[0]instanceof pr){let o=[e].concat(s),l=this.inputSpec.concat(i),u=this.inputSpec;this.inputSpec=l;let d=super.apply(o,t);return this.inputSpec=u,d}else return super.apply(e,t)}call(e,t){return Z(()=>{let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;e=Ke(e),r==null&&(this.stateful?r=this.states_:r=this.getInitialState(e));let s=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;if(r.length!==s)throw new G(`RNN Layer has ${s} state(s) but was passed ${r.length} initial state(s).`);this.unroll&&console.warn("Ignoring unroll = true for RNN layer, due to imperative backend.");let i={training:a},o=vS((p,c)=>{let m=this.cell.call([p].concat(c),i);return[m[0],m.slice(1)]},e,r,this.goBackwards,n,null,this.unroll,this.returnSequences),l=o[0],u=o[1],d=o[2];this.stateful&&this.resetStates(d,a);let h=this.returnSequences?u:l;return this.returnState?[h].concat(d):h})}getInitialState(e){return Z(()=>{let t=un(e.shape);return t=Ce(t,[1,2]),t=Lh(t),Array.isArray(this.cell.stateSize)?this.cell.stateSize.map(n=>n>1?F2(t,[1,n]):t):this.cell.stateSize>1?[F2(t,[1,this.cell.stateSize])]:[t]})}get trainableWeights(){return this.trainable?this.cell.trainableWeights:[]}get nonTrainableWeights(){return this.trainable?this.cell.nonTrainableWeights:this.cell.weights}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.cell!=null&&this.cell.setFastWeightInitDuringBuild(e)}getConfig(){let e=super.getConfig(),t={returnSequences:this.returnSequences,returnState:this.returnState,goBackwards:this.goBackwards,stateful:this.stateful,unroll:this.unroll};this.numConstants!=null&&(t.numConstants=this.numConstants);let n=this.cell.getConfig();return this.getClassName()===wS.className&&(t.cell={className:this.cell.getClassName(),config:n}),{...n,...e,...t}}static fromConfig(e,t,n={}){let a=t.cell,r=cr(a,n);return new e(Object.assign(t,{cell:r}))}},cs=wS;cs.className="RNN";ue.registerClass(cs);var Kh=class extends rt{},g0=class extends Kh{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,An(this.units,"units"),this.activation=Zs(e.activation==null?this.DEFAULT_ACTIVATION:e.activation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=Pt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=Pt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=Pt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=Lt(e.kernelRegularizer),this.recurrentRegularizer=Lt(e.recurrentRegularizer),this.biasRegularizer=Lt(e.biasRegularizer),this.kernelConstraint=pn(e.kernelConstraint),this.recurrentConstraint=pn(e.recurrentConstraint),this.biasConstraint=pn(e.biasConstraint),this.dropout=au([1,qs([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=au([1,qs([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=At(e),this.kernel=this.addWeight("kernel",[e[e.length-1],this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return Z(()=>{if(e=e,e.length!==2)throw new G(`SimpleRNNCell expects 2 input Tensors, got ${e.length}.`);let n=e[1];e=e[0];let a=t.training==null?!1:t.training;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Ys({ones:()=>$a(e),rate:this.dropout,training:a})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Ys({ones:()=>$a(n),rate:this.recurrentDropout,training:a}));let r,s=this.dropoutMask,i=this.recurrentDropoutMask;s!=null?r=Fr(K(e,s),this.kernel.read()):r=Fr(e,this.kernel.read()),this.bias!=null&&(r=hr(r,this.bias.read())),i!=null&&(n=K(n,i));let o=pe(r,Fr(n,this.recurrentKernel.read()));return this.activation!=null&&(o=this.activation.apply(o)),[o,o]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:Xs(this.activation),useBias:this.useBias,kernelInitializer:jt(this.kernelInitializer),recurrentInitializer:jt(this.recurrentInitializer),biasInitializer:jt(this.biasInitializer),kernelRegularizer:wt(this.kernelRegularizer),recurrentRegularizer:wt(this.recurrentRegularizer),biasRegularizer:wt(this.biasRegularizer),activityRegularizer:wt(this.activityRegularizer),kernelConstraint:hn(this.kernelConstraint),recurrentConstraint:hn(this.recurrentConstraint),biasConstraint:hn(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout};return{...e,...t}}};g0.className="SimpleRNNCell";ue.registerClass(g0);var Ix=class extends cs{constructor(e){e.cell=new g0(e),super(e)}call(e,t){return Z(()=>{this.cell.dropoutMask!=null&&(Ge(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Ge(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:a,initialState:r})})}static fromConfig(e,t){return new e(t)}};Ix.className="SimpleRNN";ue.registerClass(Ix);var y0=class extends Kh{constructor(e){super(e);if(this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.resetAfter)throw new G("GRUCell does not support reset_after parameter set to true.");this.units=e.units,An(this.units,"units"),this.activation=Zs(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=Zs(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=Pt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=Pt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=Pt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=Lt(e.kernelRegularizer),this.recurrentRegularizer=Lt(e.recurrentRegularizer),this.biasRegularizer=Lt(e.biasRegularizer),this.kernelConstraint=pn(e.kernelConstraint),this.recurrentConstraint=pn(e.recurrentConstraint),this.biasConstraint=pn(e.biasConstraint),this.dropout=au([1,qs([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=au([1,qs([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.implementation=e.implementation,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=At(e);let t=e[e.length-1];this.kernel=this.addWeight("kernel",[t,this.units*3],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*3],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units*3],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return Z(()=>{if(e=e,e.length!==2)throw new G(`GRUCell expects 2 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training==null?!1:t.training,a=e[1];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Ys({ones:()=>$a(e),rate:this.dropout,training:n,count:3})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Ys({ones:()=>$a(a),rate:this.recurrentDropout,training:n,count:3}));let r=this.dropoutMask,s=this.recurrentDropoutMask,i,o,l;0<this.dropout&&this.dropout<1&&(e=K(e,r[0]));let u=Fr(e,this.kernel.read());this.useBias&&(u=hr(u,this.bias.read())),0<this.recurrentDropout&&this.recurrentDropout<1&&(a=K(a,s[0]));let d=this.recurrentKernel.read(),[h,p]=da(d,[2*this.units,this.units],d.rank-1),c=Fr(a,h),[m,f,g]=da(u,3,u.rank-1),[y,A]=da(c,2,c.rank-1);i=this.recurrentActivation.apply(pe(m,y)),o=this.recurrentActivation.apply(pe(f,A));let x=Fr(K(o,a),p);l=this.activation.apply(pe(g,x));let v=pe(K(i,a),K(pe(1,Kt(i)),l));return[v,v]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:Xs(this.activation),recurrentActivation:Xs(this.recurrentActivation),useBias:this.useBias,kernelInitializer:jt(this.kernelInitializer),recurrentInitializer:jt(this.recurrentInitializer),biasInitializer:jt(this.biasInitializer),kernelRegularizer:wt(this.kernelRegularizer),recurrentRegularizer:wt(this.recurrentRegularizer),biasRegularizer:wt(this.biasRegularizer),activityRegularizer:wt(this.activityRegularizer),kernelConstraint:hn(this.kernelConstraint),recurrentConstraint:hn(this.recurrentConstraint),biasConstraint:hn(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation,resetAfter:!1};return{...e,...t}}};y0.className="GRUCell";ue.registerClass(y0);var Sx=class extends cs{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new y0(e),super(e)}call(e,t){return Z(()=>{this.cell.dropoutMask!=null&&(Ge(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Ge(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:a,initialState:r})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};Sx.className="GRU";ue.registerClass(Sx);var Xh=class extends Kh{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,An(this.units,"units"),this.activation=Zs(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=Zs(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=Pt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=Pt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=Pt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.unitForgetBias=e.unitForgetBias,this.kernelRegularizer=Lt(e.kernelRegularizer),this.recurrentRegularizer=Lt(e.recurrentRegularizer),this.biasRegularizer=Lt(e.biasRegularizer),this.kernelConstraint=pn(e.kernelConstraint),this.recurrentConstraint=pn(e.recurrentConstraint),this.biasConstraint=pn(e.biasConstraint),this.dropout=au([1,qs([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=au([1,qs([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.implementation=e.implementation,this.stateSize=[this.units,this.units],this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){var t;e=At(e);let n=e[e.length-1];this.kernel=this.addWeight("kernel",[n,this.units*4],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*4],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint);let a;if(this.useBias){if(this.unitForgetBias){let r=this.biasInitializer,s=this.units;a=new(t=class extends Xa{apply(i,o){let l=r.apply([s]),u=new qf().apply([s]),d=r.apply([s*2]);return cI(cI(l,u),d)}},t.className="CustomInit",t)}else a=this.biasInitializer;this.bias=this.addWeight("bias",[this.units*4],null,a,this.biasRegularizer,!0,this.biasConstraint)}else this.bias=null;this.built=!0}call(e,t){return Z(()=>{let n=t.training==null?!1:t.training;if(e=e,e.length!==3)throw new G(`LSTMCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let a=e[1],r=e[2];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Ys({ones:()=>$a(e),rate:this.dropout,training:n,count:4})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Ys({ones:()=>$a(a),rate:this.recurrentDropout,training:n,count:4}));let s=this.dropoutMask,i=this.recurrentDropoutMask,o,l,u,d;0<this.dropout&&this.dropout<1&&(e=K(e,s[0]));let h=Fr(e,this.kernel.read());0<this.recurrentDropout&&this.recurrentDropout<1&&(a=K(a,i[0])),h=pe(h,Fr(a,this.recurrentKernel.read())),this.useBias&&(h=hr(h,this.bias.read()));let[p,c,m,f]=da(h,4,h.rank-1);o=this.recurrentActivation.apply(p),l=this.recurrentActivation.apply(c),u=pe(K(l,r),K(o,this.activation.apply(m))),d=this.recurrentActivation.apply(f);let g=K(d,this.activation.apply(u));return[g,g,u]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:Xs(this.activation),recurrentActivation:Xs(this.recurrentActivation),useBias:this.useBias,kernelInitializer:jt(this.kernelInitializer),recurrentInitializer:jt(this.recurrentInitializer),biasInitializer:jt(this.biasInitializer),unitForgetBias:this.unitForgetBias,kernelRegularizer:wt(this.kernelRegularizer),recurrentRegularizer:wt(this.recurrentRegularizer),biasRegularizer:wt(this.biasRegularizer),activityRegularizer:wt(this.activityRegularizer),kernelConstraint:hn(this.kernelConstraint),recurrentConstraint:hn(this.recurrentConstraint),biasConstraint:hn(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation};return{...e,...t}}};Xh.className="LSTMCell";ue.registerClass(Xh);var Nx=class extends cs{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new Xh(e),super(e)}call(e,t){return Z(()=>{this.cell.dropoutMask!=null&&(Ge(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Ge(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:a,initialState:r})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};Nx.className="LSTM";ue.registerClass(Nx);var A0=class extends Kh{constructor(e){super(e);this.cells=e.cells}get stateSize(){let e=[];for(let t of this.cells.slice().reverse())Array.isArray(t.stateSize)?e.push(...t.stateSize):e.push(t.stateSize);return e}call(e,t){return Z(()=>{e=e;let n=e.slice(1),a=[];for(let i of this.cells.slice().reverse())Array.isArray(i.stateSize)?a.push(n.splice(0,i.stateSize.length)):a.push(n.splice(0,1));a.reverse();let r=[],s;for(let i=0;i<this.cells.length;++i){let o=this.cells[i];n=a[i],i===0?s=[e[0]].concat(n):s=[s[0]].concat(n),s=o.call(s,t),r.push(s.slice(1))}n=[];for(let i of r.slice().reverse())n.push(...i);return[s[0]].concat(n)})}build(e){V2(e)&&(e=e[0]),e=e;let t;this.cells.forEach((n,a)=>{io(`RNNCell_${a}`,()=>{n.build(e),Array.isArray(n.stateSize)?t=n.stateSize[0]:t=n.stateSize,e=[e[0],t]})}),this.built=!0}getConfig(){let e=super.getConfig(),t=a=>({className:a.getClassName(),config:a.getConfig()}),n={cells:this.cells.map(t)};return{...e,...n}}static fromConfig(e,t,n={}){let a=[];for(let r of t.cells)a.push(cr(r,n));return new e({cells:a})}get trainableWeights(){if(!this.trainable)return[];let e=[];for(let t of this.cells)e.push(...t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.cells)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.cells)t.push(...n.trainableWeights);return t.concat(e)}return e}getWeights(){let e=[];for(let t of this.cells)e.push(...t.weights);return U2(e)}setWeights(e){let t=[];for(let n of this.cells){let a=n.weights.length,r=e.splice(a);for(let s=0;s<n.weights.length;++s)t.push([n.weights[s],r[s]])}j2(t)}};A0.className="StackedRNNCells";ue.registerClass(A0);function Ys(e){let{ones:t,rate:n,training:a=!1,count:r=1}=e,s=()=>mI(t(),n),i=()=>Bh(s,t,a);return!r||r<=1?Sn(i().clone()):Array(r).fill(void 0).map(i).map(o=>Sn(o.clone()))}var kS=class extends cs{constructor(e){if(e.unroll)throw new He("Unrolling is not possible with convolutional RNNs.");if(Array.isArray(e.cell))throw new He("It is not possible at the moment to stack convolutional cells.");super(e);this.inputSpec=[new tn({ndim:5})]}call(e,t){return Z(()=>{if(this.cell.dropoutMask!=null&&(Ge(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Ge(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null),t&&t.constants)throw new G("ConvRNN2D cell does not support constants");let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:a,initialState:r})})}computeOutputShape(e){let t=this.computeSingleOutputShape(e);return this.returnSequences||(t=[t[0],...t.slice(2)]),this.returnState&&(t=[t,...Array(2).fill([e[0],...t.slice(-3)])]),t}getInitialState(e){return Z(()=>{let{stateSize:t}=this.cell,n=e.shape,a=this.computeSingleOutputShape(n),r=[a[0],...a.slice(2)],s=un(r);return Array.isArray(t)?Array(t.length).fill(s):[s]})}resetStates(e,t=!1){Z(()=>{if(!this.stateful)throw new ds("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape,a=this.computeSingleOutputShape(n),r=[a[0],...a.slice(2)];if(n[0]==null)throw new G("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.getStates()==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>un(r)):this.states_=[un(r)];else if(e==null)Ge(this.states_),this.keptStates!=null&&(Ge(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>un(r)):this.states_[0]=un(r);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new G(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t?this.keptStates.push(this.states_.slice()):Ge(this.states_);for(let s=0;s<this.states_.length;++s){let i=e[s],o=r;if(!k.arraysEqual(i.shape,o))throw new G(`State ${s} is incompatible with layer ${this.name}: expected shape=${o}, received shape=${i.shape}`);this.states_[s]=i}}this.states_=this.states_.map(s=>Sn(s.clone()))})}computeSingleOutputShape(e){let{dataFormat:t,filters:n,kernelSize:a,padding:r,strides:s,dilationRate:i}=this.cell,o=t==="channelsFirst",l=e[o?3:2],u=e[o?4:3],d=fr(l,a[0],r,s[0],i[0]),h=fr(u,a[1],r,s[1],i[1]);return[...e.slice(0,2),...o?[n,d,h]:[d,h,n]]}};kS.className="ConvRNN2D";var x0=class extends Xh{constructor(e){let{filters:t,kernelSize:n,strides:a,padding:r,dataFormat:s,dilationRate:i}=e;super({...e,units:t});this.filters=t,An(this.filters,"filters"),this.kernelSize=ou(n,2,"kernelSize"),this.kernelSize.forEach(o=>An(o,"kernelSize")),this.strides=ou(a||1,2,"strides"),this.strides.forEach(o=>An(o,"strides")),this.padding=r||"valid",Oa(this.padding),this.dataFormat=s||"channelsLast",Yt(this.dataFormat),this.dilationRate=ou(i||1,2,"dilationRate"),this.dilationRate.forEach(o=>An(o,"dilationRate"))}build(e){var t;e=At(e);let n=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[n]==null)throw new G(`The channel dimension of the input should be defined. Found ${e[n]}`);let a=e[n],r=4,s=this.kernelSize.concat([a,this.filters*r]);this.kernel=this.addWeight("kernel",s,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint);let i=this.kernelSize.concat([this.filters,this.filters*r]);if(this.recurrentKernel=this.addWeight("recurrent_kernel",i,null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias){let o;if(this.unitForgetBias){let l=this.biasInitializer,u=this.filters;o=new(t=class extends Xa{apply(d,h){let p=l.apply([u]),c=os([u]),m=l.apply([u*2]);return R2([p,c,m])}},t.className="CustomInit",t)}else o=this.biasInitializer;this.bias=this.addWeight("bias",[this.filters*r],null,o,this.biasRegularizer,!0,this.biasConstraint)}this.built=!0}call(e,t){return Z(()=>{if(e.length!==3)throw new G(`ConvLSTM2DCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training||!1,a=e[0],r=e[1],s=e[2],i=4;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Ys({ones:()=>$a(a),rate:this.dropout,training:n,count:i}));let o=this.dropoutMask,l=(ee,ie,ae)=>!ie||!ie[ae]?ee:K(ie[ae],ee),u=l(a,o,0),d=l(a,o,1),h=l(a,o,2),p=l(a,o,3);0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Ys({ones:()=>$a(r),rate:this.recurrentDropout,training:n,count:i}));let c=this.recurrentDropoutMask,m=l(r,c,0),f=l(r,c,1),g=l(r,c,2),y=l(r,c,3),A=3,[x,v,b,w]=da(this.kernel.read(),i,A),[I,T,C,z]=this.useBias?da(this.bias.read(),i):[null,null,null,null];u=this.inputConv(u,x,I,this.padding),d=this.inputConv(d,v,T,this.padding),h=this.inputConv(h,b,C,this.padding),p=this.inputConv(p,w,z,this.padding);let[$,S,D,_]=da(this.recurrentKernel.read(),i,A);m=this.recurrentConv(m,$),f=this.recurrentConv(f,S),g=this.recurrentConv(g,D),y=this.recurrentConv(y,_);let W=this.recurrentActivation.apply(pe(u,m)),X=this.recurrentActivation.apply(pe(d,f)),q=pe(K(X,s),K(W,this.activation.apply(pe(h,g)))),Q=K(this.recurrentActivation.apply(pe(p,y)),this.activation.apply(q));return[Q,Q,q]})}getConfig(){let{units:e,...t}=super.getConfig(),n={filters:this.filters,kernelSize:this.kernelSize,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,strides:this.strides};return{...t,...n}}inputConv(e,t,n,a){let r=Ws(e,t,this.strides,a||"valid",this.dataFormat==="channelsFirst"?"NCHW":"NHWC",this.dilationRate);return n?hr(r,n,this.dataFormat):r}recurrentConv(e,t){return Ws(e,t,1,"same",this.dataFormat==="channelsFirst"?"NCHW":"NHWC")}};x0.className="ConvLSTM2DCell";ue.registerClass(x0);var Tx=class extends kS{constructor(e){let t=new x0(e);super({...e,cell:t})}static fromConfig(e,t){return new e(t)}};Tx.className="ConvLSTM2D";ue.registerClass(Tx);var b0=class extends rt{constructor(e){super(e);this.rate=Math.max(Math.min(e.rate,1),0),this.noiseShape=e.noiseShape,this.seed=e.seed,this.supportsMasking=!0}getNoiseShape(e){if(this.noiseShape==null)return this.noiseShape;let t=e.shape,n=[];for(let a=0;a<this.noiseShape.length;++a)n.push(this.noiseShape[a]==null?t[a]:this.noiseShape[a]);return n}call(e,t){return Z(()=>{this.invokeCallHook(e,t);let n=Ke(e);if(0<this.rate&&this.rate<1){let a=t.training==null?!1:t.training,r=this.getNoiseShape(n);return Bh(()=>mI(n,this.rate,r,this.seed),()=>n,a)}return e})}getConfig(){let e={rate:this.rate,noiseShape:this.noiseShape,seed:this.seed},t=super.getConfig();return Object.assign(e,t),e}dispose(){return super.dispose()}};b0.className="Dropout";ue.registerClass(b0);var Ex=class extends b0{constructor(e){super(e);this.inputSpec=[{ndim:3}]}getNoiseShape(e){let t=e.shape;return[t[0],1,t[2]]}};Ex.className="SpatialDropout1D";ue.registerClass(Ex);var Cx=class extends rt{constructor(e){super(e);if(this.activation=null,this.useBias=!0,this.kernel=null,this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.batchInputShape==null&&e.inputShape==null&&e.inputDim!=null){let t=null;e.batchSize!=null&&(t=e.batchSize),this.batchInputShape=[t,e.inputDim]}this.units=e.units,An(this.units,"units"),this.activation=Zs(e.activation),e.useBias!=null&&(this.useBias=e.useBias),this.kernelInitializer=Pt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.biasInitializer=Pt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelConstraint=pn(e.kernelConstraint),this.biasConstraint=pn(e.biasConstraint),this.kernelRegularizer=Lt(e.kernelRegularizer),this.biasRegularizer=Lt(e.biasRegularizer),this.activityRegularizer=Lt(e.activityRegularizer),this.supportsMasking=!0,this.inputSpec=[{minNDim:2}]}build(e){e=At(e);let t=e[e.length-1];this.kernel==null&&(this.kernel=this.addWeight("kernel",[t,this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint))),this.inputSpec=[{minNDim:2,axes:{[-1]:t}}],this.built=!0}computeOutputShape(e){e=At(e);let t=e.slice();return t[t.length-1]=this.units,t}call(e,t){return Z(()=>{this.invokeCallHook(e,t);let n=Ke(e),a=rI(this.activation.getClassName()),r;return a!=null?r=Fr(n,this.kernel.read(),a,this.bias?this.bias.read():null):(r=Fr(n,this.kernel.read()),this.bias!=null&&(r=hr(r,this.bias.read())),this.activation!=null&&(r=this.activation.apply(r))),r})}getConfig(){let e={units:this.units,activation:Xs(this.activation),useBias:this.useBias,kernelInitializer:jt(this.kernelInitializer),biasInitializer:jt(this.biasInitializer),kernelRegularizer:wt(this.kernelRegularizer),biasRegularizer:wt(this.biasRegularizer),activityRegularizer:wt(this.activityRegularizer),kernelConstraint:hn(this.kernelConstraint),biasConstraint:hn(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}};Cx.className="Dense";ue.registerClass(Cx);var Mx=class extends rt{constructor(e){e=e||{},super(e),this.inputSpec=[{minNDim:3}],this.dataFormat=e.dataFormat}computeOutputShape(e){e=At(e);for(let t of e.slice(1))if(t==null)throw new G(`The shape of the input to "Flatten" is not fully defined (got ${e.slice(1)}). Make sure to pass a complete "input_shape" or "batch_input_shape" argument to the first layer in your model.`);return[e[0],Gs(e,1)]}call(e,t){return Z(()=>{this.invokeCallHook(e,t);let n=Ke(e);if(this.dataFormat==="channelsFirst"&&n.rank>1){let a=[0];for(let r=2;r<n.rank;++r)a.push(r);a.push(1),n=n.transpose(a)}return fee(n)})}getConfig(){let e={};this.dataFormat!=null&&(e.dataFormat=this.dataFormat);let t=super.getConfig();return Object.assign(e,t),e}};Mx.className="Flatten";ue.registerClass(Mx);var $x=class extends rt{constructor(e){super(e);this.supportsMasking=!0,this.activation=Zs(e.activation)}call(e,t){return Z(()=>{this.invokeCallHook(e,t);let n=Ke(e);return this.activation.apply(n)})}getConfig(){let e={activation:Xs(this.activation)},t=super.getConfig();return Object.assign(e,t),e}};$x.className="Activation";ue.registerClass($x);var Rx=class extends rt{constructor(e){super(e);this.n=e.n,this.inputSpec=[{ndim:2}]}computeOutputShape(e){return[e[0],this.n,e[1]]}call(e,t){return Z(()=>(e=Ke(e),pee(e,this.n)))}getConfig(){let e={n:this.n},t=super.getConfig();return Object.assign(e,t),e}};Rx.className="RepeatVector";ue.registerClass(Rx);var Fx=class extends rt{constructor(e){super(e);this.targetShape=e.targetShape;for(let t=0;t<this.targetShape.length;++t)this.isUnknown(this.targetShape[t])&&(this.targetShape[t]=null)}isUnknown(e){return e<0||e==null}fixUnknownDimension(e,t){let n="Total size of new array must be unchanged.",a=t.slice(),r=1,s=null;for(let o=0;o<a.length;++o){let l=a[o];if(this.isUnknown(l))if(s===null)s=o;else throw new G("Can only specifiy one unknown dimension.");else r*=l}let i=Gs(e);if(s!==null){if(r===0||i%r!=0)throw new G(n);a[s]=i/r}else if(i!==r)throw new G(n);return a}computeOutputShape(e){let t=!1;for(let n=0;n<e.length;++n)if(this.isUnknown(e[n])){t=!0;break}return t?e.slice(0,1).concat(this.targetShape):e.slice(0,1).concat(this.fixUnknownDimension(e.slice(1),this.targetShape))}call(e,t){return Z(()=>{this.invokeCallHook(e,t);let n=Ke(e),a=n.shape,r=a.slice(0,1).concat(this.fixUnknownDimension(a.slice(1),this.targetShape));return n.reshape(r)})}getConfig(){let e={targetShape:this.targetShape},t=super.getConfig();return Object.assign(e,t),e}};Fx.className="Reshape";ue.registerClass(Fx);var Ox=class extends rt{constructor(e){super(e);if(e.dims==null)throw new Error("Required configuration field `dims` is missing during Permute constructor call.");if(!Array.isArray(e.dims))throw new Error(`Permute constructor requires \`dims\` to be an Array, but received ${e.dims} instead.`);let t=dr(1,e.dims.length+1);if(!k.arraysEqual(e.dims.slice().sort(),t))throw new Error("Invalid permutation `dims`: "+JSON.stringify(e.dims)+" `dims` must contain consecutive integers starting from 1.");this.dims=e.dims,this.dimsIncludingBatch=[0].concat(this.dims),this.inputSpec=[new tn({ndim:this.dims.length+1})]}computeOutputShape(e){e=At(e);let t=e.slice();return this.dims.forEach((n,a)=>{t[a+1]=e[n]}),t}call(e,t){return ct(Ke(e),this.dimsIncludingBatch)}getConfig(){let e={dims:this.dims},t=super.getConfig();return Object.assign(e,t),e}};Ox.className="Permute";ue.registerClass(Ox);var Dx=class extends rt{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null?this.maskValue=e.maskValue==null?0:e.maskValue:this.maskValue=0}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={maskValue:this.maskValue};return Object.assign(t,e),t}computeMask(e,t){let n=Ke(e),a=-1;return wf(Yl(n,this.maskValue),a)}call(e,t){return Z(()=>{this.invokeCallHook(e,t);let n=Ke(e),a=-1,r=!0,s=wf(Yl(n,this.maskValue),a,r);return n.mul(s.asType(n.dtype))})}};Dx.className="Masking";ue.registerClass(Dx);var _x=class extends rt{constructor(e){super(e);if(this.embeddings=null,this.DEFAULT_EMBEDDINGS_INITIALIZER="randomUniform",e.batchInputShape==null&&e.inputShape==null){let t=null;e.batchSize!=null&&(t=e.batchSize),e.inputLength==null?this.batchInputShape=[t,null]:this.batchInputShape=[t].concat(Ft(e.inputLength))}this.inputDim=e.inputDim,An(this.inputDim,"inputDim"),this.outputDim=e.outputDim,An(this.outputDim,"outputDim"),this.embeddingsInitializer=Pt(e.embeddingsInitializer||this.DEFAULT_EMBEDDINGS_INITIALIZER),this.embeddingsRegularizer=Lt(e.embeddingsRegularizer),this.activityRegularizer=Lt(e.activityRegularizer),this.embeddingsConstraint=pn(e.embeddingsConstraint),this.maskZero=e.maskZero,this.supportsMasking=e.maskZero,this.inputLength=e.inputLength}build(e){this.embeddings=this.addWeight("embeddings",[this.inputDim,this.outputDim],this.dtype,this.embeddingsInitializer,this.embeddingsRegularizer,!0,this.embeddingsConstraint),this.built=!0}warnOnIncompatibleInputShape(e){}computeMask(e,t){return Z(()=>this.maskZero?(e=Ke(e),Yl(e,at(e))):null)}computeOutputShape(e){if(e=At(e),this.inputLength==null)return[...e,this.outputDim];let t=Ft(this.inputLength);if(t.length!==e.length-1)throw new G(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);{let n=0;for(let a=0;a<t.length;++a){let r=t[a],s=e[a+1];if(r!=null&&s!=null&&r!==s)throw new G(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);r==null&&(t[n]=s),n++}}return[e[0],...t,this.outputDim]}call(e,t){return Z(()=>{this.invokeCallHook(e,t);let n=Ke(e);return n.dtype!=="int32"&&(n=Ph(n,"int32")),fI(this.embeddings.read(),n.as1D()).reshape(At(this.computeOutputShape(n.shape)))})}getConfig(){let e={inputDim:this.inputDim,outputDim:this.outputDim,embeddingsInitializer:jt(this.embeddingsInitializer),embeddingsRegularizer:wt(this.embeddingsRegularizer),activityRegularizer:wt(this.activityRegularizer),embeddingsConstraint:hn(this.embeddingsConstraint),maskZero:this.maskZero,inputLength:this.inputLength},t=super.getConfig();return Object.assign(e,t),e}};_x.className="Embedding";ue.registerClass(_x);var po=class extends rt{constructor(e){super(e||{});this.supportsMasking=!0}mergeFunction(e){throw new He}computeElementwiseOpOutputShape(e,t){if(e==null||t==null)return null;if(e.length<t.length)return this.computeElementwiseOpOutputShape(t,e);if(t.length===0)return e;let n=e.slice(0,e.length-t.length);for(let a=0;a<t.length;++a){let r=e[e.length-t.length+a],s=t[a];if(r==null||s==null||r<0||s<0)n.push(null);else if(r===1)n.push(s);else if(s===1)n.push(r);else{if(r!==s)throw new G("Operands could not be broadcast together with shapes "+JSON.stringify(e)+" "+JSON.stringify(t));n.push(r)}}return n}build(e){if(Array.isArray(e)&&!Array.isArray(e[0])&&(e=[At(e)]),e=e,e.length<2)throw new G(`A merge layer should be called on an Array of at least 2 inputs. Got ${e.length} input(s).`);let t=[];for(let r of e)r!=null&&r[0]!==null&&t.push(r[0]);if(t=Hs(t),t.length>1)throw new G(`Can not merge tensors with different batch sizes. Got tensors with shapes: ${JSON.stringify(e)}.`);let n=e[0]==null?null:e[0].slice(1);for(let r=1;r<e.length;++r){let s=e[r]==null?null:e[r].slice(1);n=this.computeElementwiseOpOutputShape(n,s)}let a=e.map(r=>r.length);e.indexOf(null)===-1&&Hs(a).length===1?this.reshapeRequired=!1:this.reshapeRequired=!0}call(e,t){return Z(()=>{if(e=e,this.reshapeRequired){let n=[],a=e.map(r=>r.rank);if(a.indexOf(null)===-1){let r=qs(a);for(let s of e){let i=s.rank;for(let o=0;o<r-i;++o)s=Lh(s,1);n.push(s)}return this.mergeFunction(n)}else{let r=!1;for(let o of e){let l=o.rank;if(l==null){let u=o.shape,d=u[0],h=u.slice(1).concat([d]),p=o.reshape([d].concat(Gs(u.slice(1))));p=ct(p,[1,0]),p=p.reshape(h),n.push(p),r=!0}else if(l>1){let u=dr(1,l).concat([0]);n.push(ct(o,u)),r=!0}else n.push(o)}let s=this.mergeFunction(n),i=s.rank;if(r){if(i==null){let o=s.shape,l=o.length,u=o[l-1],d=[u].concat(o.slice(0,o.length-1));s=ct(s.reshape([-1,u]),[1,0]).reshape(d)}else if(i>1){let o=[i-1].concat(dr(0,i-1));s=ct(s,o)}}return s}}else return this.mergeFunction(e)})}computeOutputShape(e){e=e;let t;e[0]==null?t=null:t=e[0].slice(1);for(let a=1;a<e.length;++a){let r=e[a]==null?null:e[a].slice(1);t=this.computeElementwiseOpOutputShape(t,r)}let n=[];for(let a of e)a!=null&&a[0]!==null&&n.push(a[0]);return n=Hs(n),n.length===1?t=n.concat(t):t=[null].concat(t),t}computeMask(e,t){return Z(()=>{if(t==null)return null;if(!Array.isArray(t))throw new G("`mask` should be an Array");if(!Array.isArray(e))throw new G("`inputs` should be an Array");if(t.length!==e.length)throw new G(`The Array 'inputs' and 'mask' are expected to have the same length, but have different lengths (${e.length} vs ${t.length})`);if(t.every(a=>a==null))return null;t=t.map(a=>a==null?a:Ea(a,0));let n=t[0];for(let a=1;a<t.length-1;++a)n=ir(n,t[a]);return n})}},zx=class extends po{constructor(e){super(e)}mergeFunction(e){return Z(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=pe(t,e[n]);return t})}};zx.className="Add";ue.registerClass(zx);var Px=class extends po{constructor(e){super(e)}mergeFunction(e){return Z(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=K(t,e[n]);return t})}};Px.className="Multiply";ue.registerClass(Px);var Lx=class extends po{constructor(e){super(e)}mergeFunction(e){return Z(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=pe(t,e[n]);return K(1/e.length,t)})}};Lx.className="Average";ue.registerClass(Lx);var Wx=class extends po{constructor(e){super(e)}mergeFunction(e){return Z(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=is(t,e[n]);return t})}};Wx.className="Maximum";ue.registerClass(Wx);var Bx=class extends po{constructor(e){super(e)}mergeFunction(e){return Z(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=$h(t,e[n]);return t})}};Bx.className="Minimum";ue.registerClass(Bx);var Vx=class extends po{constructor(e){super(e);this.DEFAULT_AXIS=-1,e==null&&(e={}),this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){if(!(Array.isArray(e)&&Array.isArray(e[0]))||e.length===1)throw new G("A `Concatenate` layer should be called on a list of at least 2 inputs");e=e;let t=!0;for(let a of e)if(a!=null){t=!1;break}if(t)return;let n=[];for(let a=0;a<e.length;++a){let r=e[a].slice();r.splice(this.axis,1);let s=!1;for(let i of n)if(k.arraysEqual(i,r)){s=!0;break}s||n.push(r)}if(n.length>1)throw new G("A `Concatenate` layer requires inputs with matching shapes except for the concat axis. Got input shapes: "+JSON.stringify(e))}mergeFunction(e){return Z(()=>R2(e,this.axis))}computeOutputShape(e){if(!(Array.isArray(e)&&Array.isArray(e[0])))throw new G("A `Concatenate` layer should be called on a list of inputs.");let t=e,n=t[0].slice(),a=this.axis<0?n.length+this.axis:this.axis;for(let r of t.slice(1)){if(n[a]==null||r[a]==null){n[a]=null;break}n[a]+=r[a]}return n}computeMask(e,t){if(t==null)return null;if(!Array.isArray(t))throw new G("`mask` should be an array for Concatenate");if(!Array.isArray(e))throw new G("`inputs` should be an array for Concatenate");if(t.length!==e.length)throw new G(`Mismatch in the length of mask (${t.length}) and the legnth of inputs (${e.length})`);return Z(()=>{let n=!0;if(t.forEach(s=>{if(s!=null){n=!1;return}}),n)return null;let a=[];for(let s=0;s<e.length;++s)t[s]==null?a.push($a(e[s]).asType("bool")):t[s].rank<e[s].rank?a.push(Ea(t[s],-1)):a.push(t[s]);let r=en(a,this.axis);return $A(r,-1,!1)})}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};Vx.className="Concatenate";ue.registerClass(Vx);function Zh(e,t){for(;e<0;)e+=t;return e}function Xte(e,t,n){if(e.shape.length>3||t.shape.length>3)throw new He("batchDot is not implemented for tensors of 4D or higher rank yet");if(k.assert(e.shape.length>=2,()=>`batchDot requires the rank of x to be >= 2, but got ${e.shape.length}`),k.assert(e.shape.length>=2,()=>`batchDot requires the rank of y to be >= 2, but got ${t.shape.length}`),typeof n=="number"&&(n=[n,n]),e.dtype==="complex64"||t.dtype==="complex64")throw new He("batchDot is not implemented for complex64-type Tensors yet.");let a=e.shape.length,r=t.shape.length;n==null&&(n=[a-1,r-2]);let s=n;return Z(()=>{let i;if(a>r){i=a-r;let l=[];for(let u=0;u<i;++u)l.push(1);t=t.reshape(t.shape.concat(l))}else if(r>a){i=r-a;let l=[];for(let u=0;u<i;++u)l.push(1);e=e.reshape(e.shape.concat(l))}else i=0;let o;if(e.shape.length===2&&t.shape.length===2)s[0]===s[1]?o=e.mul(t).sum(s[0]):o=e.transpose([1,0]).mul(t).sum(s[1]);else{let l=s[0]!==e.shape.length-1,u=s[1]===t.shape.length-1;o=e.matMul(t,l,u)}if(i>0){let l;a>r?l=a+r-3:l=a-1;let u=[];for(let d=l;d<l+i;++d)u.push(d);o=o.squeeze(u)}return o.shape.length===1&&(o=o.expandDims(1)),o})}var Ux=class extends po{constructor(e){super(e);this.axes=e.axes,this.normalize=e.normalize==null?!1:e.normalize,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){k.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0],n=e[1];if(t.length>3||n.length>3)throw new He("Dot layer does not support tensors of 4D or higher rank yet.");let a=this.interpretAxes(t,n);if(t[a[0]]!==n[a[1]])throw new G(`Dimension incompatibility: ${t[a[0]]} !== ${n[a[1]]}`)}mergeFunction(e){if(e.length!==2)throw new G(`A \`Dot\` layer must be called on exactly 2 inputs, but received ${e.length} input(s).`);let t=e[0],n=e[1],a;return Array.isArray(this.axes)?a=this.axes.map((r,s)=>Zh(r,e[s].shape.length)):a=[Zh(this.axes,t.shape.length),Zh(this.axes,n.shape.length)],this.normalize&&(t=s0(t,a[0]),n=s0(n,a[1])),Xte(t,n,a)}interpretAxes(e,t){let n;return Array.isArray(this.axes)?n=this.axes:n=[Zh(this.axes,e.length),Zh(this.axes,t.length)],n}computeOutputShape(e){k.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0].slice(),n=e[1].slice();if(t.length>3||n.length>3)throw new He("Dot layer does not support tensors of 4D or higher rank yet.");let a=this.interpretAxes(t,n);t.splice(a[0],1),n.splice(a[1],1),n.splice(0,1);let r=t.concat(n);return r.length===1&&r.push(1),r}computeMask(e,t){return null}getConfig(){let e={axes:this.axes,normalize:this.normalize},t=super.getConfig();return Object.assign(e,t),e}};Ux.className="Dot";ue.registerClass(Ux);var jx=class extends rt{constructor(e){super(e);this.supportsMasking=!0,this.stddev=e.stddev}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={stddev:this.stddev};return Object.assign(t,e),t}call(e,t){return Z(()=>{this.invokeCallHook(e,t);let n=Ke(e);return Bh(()=>Gf(n.shape,0,this.stddev).add(n),()=>n,t.training||!1)})}};jx.className="GaussianNoise";ue.registerClass(jx);var Hx=class extends rt{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return Z(()=>{this.invokeCallHook(e,t);let n=Ke(e);return this.rate>0&&this.rate<1?Bh(()=>{let a=Math.sqrt(this.rate/(1-this.rate));return n.mul(Gf(n.shape,1,a))},()=>n,t.training||!1):n})}};Hx.className="GaussianDropout";ue.registerClass(Hx);var Gx=class extends rt{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate,this.noiseShape=e.noiseShape}_getNoiseShape(e){return this.noiseShape||Ke(e).shape}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return Z(()=>{if(this.rate<1&&this.rate>0){let n=this._getNoiseShape(e);return Bh(()=>{let a=Ke(e),r=1.6732632423543772,s=1.0507009873554805,i=-r*s,o=Yi(Rh(n),this.rate);o=Ph(o,"float32");let l=((1-this.rate)*(1+this.rate*i**2))**-.5,u=-l*i*this.rate;return a.mul(o).add(o.add(-1).mul(i)).mul(l).add(u)},()=>Ke(e),t.training||!1)}return e})}};Gx.className="AlphaDropout";ue.registerClass(Gx);function Yh(e,t,n,a,r,s=.001){let i;if(e.rank===2)i=SG(e,t,n,a,r,s);else if(e.rank===3)i=TG(e,t,n,a,r,s);else if(e.rank===4)i=CG(e,t,n,a,r,s);else throw new He(`batchNormalization is not implemented for array of rank ${e.rank} yet`);return i}function Zte(e,t,n,a,r=.001){return Z(()=>{let s=GA(e,a),i=s.mean,o=s.variance;return[Yh(e,i,o,n,t,r),i,o]})}function Yte(e,t,n,a,r=.001){return Z(()=>{let s=GA(e,a),i=s.mean,o=s.variance,l=[];for(let c of dr(0,e.rank))a.indexOf(c)!==-1?l.push(1):l.push(e.shape[c]);let u=i.reshape(l),d=o.reshape(l),h=t==null?null:t.reshape(l),p=n==null?null:n.reshape(l);return[Yh(e,u,d,p,h,r),i,o]})}function Jte(e,t,n,a,r=.001){return k.arraysEqual(a.slice().sort(),dr(0,e.rank-1))?Zte(e,t,n,a,r):Yte(e,t,n,a,r)}var qx=class extends rt{constructor(e){e==null&&(e={}),super(e),this.supportsMasking=!0,this.axis=e.axis==null?-1:e.axis,this.momentum=e.momentum==null?.99:e.momentum,this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=Pt(e.betaInitializer||"zeros"),this.gammaInitializer=Pt(e.gammaInitializer||"ones"),this.movingMeanInitializer=Pt(e.movingMeanInitializer||"zeros"),this.movingVarianceInitializer=Pt(e.movingVarianceInitializer||"ones"),this.betaConstraint=pn(e.betaConstraint),this.gammaConstraint=pn(e.gammaConstraint),this.betaRegularizer=Lt(e.betaRegularizer),this.gammaRegularizer=Lt(e.gammaRegularizer)}build(e){e=At(e);let t=this.axis>=0?this.axis:this.axis+e.length,n=e[t];if(n==null)throw new G(`Axis ${t} of input tensor should have a defined dimension but the layer received an input with shape ${JSON.stringify(e)}.`);this.inputSpec=[new tn({ndim:e.length,axes:{[t]:n}})];let a=[n];this.scale&&(this.gamma=this.addWeight("gamma",a,null,this.gammaInitializer,this.gammaRegularizer,!0,this.gammaConstraint)),this.center&&(this.beta=this.addWeight("beta",a,null,this.betaInitializer,this.betaRegularizer,!0,this.betaConstraint)),this.movingMean=this.addWeight("moving_mean",a,null,this.movingMeanInitializer,null,!1),this.movingVariance=this.addWeight("moving_variance",a,null,this.movingVarianceInitializer,null,!1),this.built=!0}call(e,t){return Z(()=>{let n=t.training==null?!1:t.training,a=Ke(e),r=a.shape,s=r.length,i=dr(0,s),o=this.axis>=0?this.axis:this.axis+s;i.splice(o,1);let l=ao(1,s);l[o]=r[o];let u=i.slice();u.sort();let d=!k.arraysEqual(u,dr(0,s).slice(0,s-1)),h=()=>{if(d){let g=this.movingMean.read().reshape(l),y=this.movingVariance.read().reshape(l),A=this.center?this.beta.read().reshape(l):null,x=this.scale?this.gamma.read().reshape(l):null;return Yh(a,g,y,A,x,this.epsilon)}else return Yh(a,this.movingMean.read(),this.movingVariance.read(),this.beta==null?null:this.beta.read(),this.gamma==null?null:this.gamma.read(),this.epsilon)};if(!n)return h();let[p,c,m]=Jte(a,this.gamma.read(),this.beta.read(),i,this.epsilon),f=(g,y,A)=>{Z(()=>{let x=1-A,v=g.read(),b=v.sub(y).mul(x);g.write(v.sub(b))})};return(()=>{f(this.movingMean,c,this.momentum),f(this.movingVariance,m,this.momentum)})(),p})}getConfig(){let e={axis:this.axis,momentum:this.momentum,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:jt(this.betaInitializer),gammaInitializer:jt(this.gammaInitializer),movingMeanInitializer:jt(this.movingMeanInitializer),movingVarianceInitializer:jt(this.movingVarianceInitializer),betaRegularizer:wt(this.betaRegularizer),gammaRegularizer:wt(this.gammaRegularizer),betaConstraint:hn(this.betaConstraint),gammaConstraint:hn(this.gammaConstraint)},t=super.getConfig();return Object.assign(e,t),e}};qx.className="BatchNormalization";ue.registerClass(qx);var Kx=class extends rt{constructor(e){if(e==null&&(e={}),super(e),this.axis=e.axis==null?-1:e.axis,typeof this.axis=="number"){if(!Number.isInteger(this.axis))throw new Error(`Expected axis to be an integer, but received ${this.axis}`)}else if(Array.isArray(this.axis)){for(let t of this.axis)if(!Number.isInteger(t))throw new Error(`Expected axis to be an array of integers, but received ${JSON.stringify(this.axis)}`)}else throw new Error(`Expected axis to be an integer or an array of integers, but received ${JSON.stringify(this.axis)}`);this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=Pt(e.betaInitializer||"zeros"),this.gammaInitializer=Pt(e.gammaInitializer||"ones"),this.betaRegularizer=Lt(e.betaRegularizer),this.gammaRegularizer=Lt(e.gammaRegularizer),this.supportsMasking=!0}build(e){e=At(e);let t=e.length;typeof this.axis=="number"&&(this.axis=[this.axis]);for(let r=0;r<this.axis.length;++r)this.axis[r]<0&&(this.axis[r]+=t);for(let r of this.axis)if(r<0||r>=t)throw new Error(`Invalid axis: ${r}`);if(this.axis.length!==Hs(this.axis).length)throw new Error(`Found duplicate axes in: ${this.axis}`);let n=this.axis.map(r=>e[r]),a=!0;this.scale?this.gamma=this.addWeight("gamma",n,"float32",this.gammaInitializer,this.gammaRegularizer,a):this.gamma=null,this.center?this.beta=this.addWeight("beta",n,"float32",this.betaInitializer,this.betaRegularizer,a):this.beta=null,this.built=!0}call(e,t){let n=Ke(e),a=n.shape,r=a.length;return Z(()=>{let s=!0,{mean:i,variance:o}=GA(n,this.axis,s),l=ao(1,r);for(let m of this.axis)l[m]=a[m];let u=m=>m!=null&&m.shape.length!==r&&this.axis!==[r-1]?m.reshape(l):m,d=u(this.gamma.read()),h=u(this.beta.read()),p=[],c=[];for(let m=0;m<r;++m)this.axis.indexOf(m)!==-1?(p.push(a[m]),c.push(1)):(p.push(1),c.push(a[m]));return i=i.tile(p),o=o.tile(p),d=d.tile(c),h=h.tile(c),Yh(n,i,o,h,d,this.epsilon)})}getConfig(){let e={axis:this.axis,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:jt(this.betaInitializer),gammaInitializer:jt(this.gammaInitializer),betaRegularizer:wt(this.betaRegularizer),gammaRegularizer:wt(this.gammaRegularizer)},t=super.getConfig();return Object.assign(e,t),e}};Kx.className="LayerNormalization";ue.registerClass(Kx);function Qte(e,t,n){return Z(()=>{if(e.rank!==4)throw new G(`temporalPadding expects input tensor to be 4-D, but received a ${e.rank}-D tensor.`);if(t==null&&(t=[[1,1],[1,1]]),t.length!==2||t[0].length!==2||t[1].length!==2)throw new G("spatial2dPadding expects `padding` to be an Array of two Arrays, each of which is an Array of two integers.");if(n==null&&(n=lr()),n!=="channelsLast"&&n!=="channelsFirst")throw new G(`Unknown data format: ${n}. Supported data formats are 'channelsLast' and 'channelsFirst.`);let a;return n==="channelsFirst"?a=[[0,0],[0,0],t[0],t[1]]:a=[[0,0],t[0],t[1],[0,0]],Bs(e,a)})}var Xx=class extends rt{constructor(e){if(e==null&&(e={}),super(e),this.dataFormat=e.dataFormat==null?lr():e.dataFormat,e.padding==null)this.padding=[[1,1],[1,1]];else if(typeof e.padding=="number")this.padding=[[e.padding,e.padding],[e.padding,e.padding]];else{if(e.padding=e.padding,e.padding.length!==2)throw new G(`ZeroPadding2D expects padding to be a length-2 array, but received a length-${e.padding.length} array.`);let t,n;if(typeof e.padding[0]=="number")t=[e.padding[0],e.padding[0]],n=[e.padding[1],e.padding[1]];else{if(e.padding=e.padding,e.padding[0].length!==2)throw new G(`ZeroPadding2D expects height padding to be a length-2 array, but received a length-${e.padding[0].length} array.`);if(t=e.padding[0],e.padding[1].length!==2)throw new G(`ZeroPadding2D expects width padding to be a length-2 array, but received a length-${e.padding[1].length} array.`);n=e.padding[1]}this.padding=[t,n]}this.inputSpec=[new tn({ndim:4})]}computeOutputShape(e){e=At(e);let t,n;return this.dataFormat==="channelsFirst"?(e[2]!=null&&e[2]>=0?t=e[2]+this.padding[0][0]+this.padding[0][1]:t=null,e[3]!=null&&e[3]>=0?n=e[3]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],e[1],t,n]):(e[1]!=null&&e[1]>=0?t=e[1]+this.padding[0][0]+this.padding[0][1]:t=null,e[2]!=null&&e[2]>=0?n=e[2]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],t,n,e[3]])}call(e,t){return Z(()=>Qte(Ke(e),this.padding,this.dataFormat))}getConfig(){let e={padding:this.padding,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};Xx.className="ZeroPadding2D";ue.registerClass(Xx);function v0(e,t,n,a,r,s){return Z(()=>{Yt(r),lI(s),Oa(a),n==null&&(n=[1,1]),a==null&&(a="valid"),r==null&&(r=lr()),s==null&&(s="max"),e=mx(e,r);let i,o=a==="same"?"same":"valid";return s==="max"?i=Mf(e,t,n,o):i=Sf(e,t,n,o),r==="channelsFirst"&&(i=ct(i,[0,3,1,2])),i})}function IS(e,t,n,a,r,s){return Z(()=>{Yt(r),lI(s),Oa(a),n==null&&(n=[1,1,1]),a==null&&(a="valid"),r==null&&(r=lr()),s==null&&(s="max"),e=fS(e,r);let i,o=a==="same"?"same":"valid";return s==="max"?i=g8(e,t,n,o):i=Q4(e,t,n,o),r==="channelsFirst"&&(i=ct(i,[0,4,1,2,3])),i})}var SS=class extends rt{constructor(e){if(e.poolSize==null&&(e.poolSize=2),super(e),typeof e.poolSize=="number")this.poolSize=[e.poolSize];else if(Array.isArray(e.poolSize)&&e.poolSize.length===1&&typeof e.poolSize[0]=="number")this.poolSize=e.poolSize;else throw new G(`poolSize for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.poolSize)}`);if(An(this.poolSize,"poolSize"),e.strides==null)this.strides=this.poolSize;else if(typeof e.strides=="number")this.strides=[e.strides];else if(Array.isArray(e.strides)&&e.strides.length===1&&typeof e.strides[0]=="number")this.strides=e.strides;else throw new G(`strides for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.strides)}`);An(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,Oa(this.padding),this.inputSpec=[new tn({ndim:3})]}computeOutputShape(e){e=At(e);let t=fr(e[1],this.poolSize[0],this.padding,this.strides[0]);return[e[0],t,e[2]]}call(e,t){return Z(()=>{this.invokeCallHook(e,t),e=Lh(Ke(e),2);let n=this.poolingFunction(Ke(e),[this.poolSize[0],1],[this.strides[0],1],this.padding,"channelsLast");return Jl(n,[2])})}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides},t=super.getConfig();return Object.assign(e,t),e}},Zx=class extends SS{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Yt(r),Oa(a),v0(e,t,n,a,r,"max")}};Zx.className="MaxPooling1D";ue.registerClass(Zx);var Yx=class extends SS{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Yt(r),Oa(a),v0(e,t,n,a,r,"avg")}};Yx.className="AveragePooling1D";ue.registerClass(Yx);var NS=class extends rt{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==2)throw new G(`If the strides property of a 2D pooling layer is an Array, it is expected to have a length of 2, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides];An(this.poolSize,"poolSize"),An(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Yt(this.dataFormat),Oa(this.padding),this.inputSpec=[new tn({ndim:4})]}computeOutputShape(e){e=At(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2];return t=fr(t,this.poolSize[0],this.padding,this.strides[0]),n=fr(n,this.poolSize[1],this.padding,this.strides[1]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n]:[e[0],t,n,e[3]]}call(e,t){return Z(()=>(this.invokeCallHook(e,t),this.poolingFunction(Ke(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},Jx=class extends NS{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Yt(r),Oa(a),v0(e,t,n,a,r,"max")}};Jx.className="MaxPooling2D";ue.registerClass(Jx);var Qx=class extends NS{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Yt(r),Oa(a),v0(e,t,n,a,r,"avg")}};Qx.className="AveragePooling2D";ue.registerClass(Qx);var TS=class extends rt{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==3)throw new G(`If the strides property of a 3D pooling layer is an Array, it is expected to have a length of 3, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides,e.strides];An(this.poolSize,"poolSize"),An(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Yt(this.dataFormat),Oa(this.padding),this.inputSpec=[new tn({ndim:5})]}computeOutputShape(e){e=At(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],a=this.dataFormat==="channelsFirst"?e[4]:e[3];return t=fr(t,this.poolSize[0],this.padding,this.strides[0]),n=fr(n,this.poolSize[1],this.padding,this.strides[1]),a=fr(a,this.poolSize[2],this.padding,this.strides[2]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n,a]:[e[0],t,n,a,e[4]]}call(e,t){return Z(()=>(this.invokeCallHook(e,t),this.poolingFunction(Ke(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},e5=class extends TS{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Yt(r),Oa(a),IS(e,t,n,a,r,"max")}};e5.className="MaxPooling3D";ue.registerClass(e5);var t5=class extends TS{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Yt(r),Oa(a),IS(e,t,n,a,r,"avg")}};t5.className="AveragePooling3D";ue.registerClass(t5);var ES=class extends rt{constructor(e){super(e);this.inputSpec=[new tn({ndim:3})]}computeOutputShape(e){return[e[0],e[2]]}call(e,t){throw new He}},n5=class extends ES{constructor(e){super(e||{})}call(e,t){return Z(()=>{let n=Ke(e);return Xt(n,1)})}};n5.className="GlobalAveragePooling1D";ue.registerClass(n5);var a5=class extends ES{constructor(e){super(e||{})}call(e,t){return Z(()=>{let n=Ke(e);return sr(n,1)})}};a5.className="GlobalMaxPooling1D";ue.registerClass(a5);var CS=class extends rt{constructor(e){super(e);this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Yt(this.dataFormat),this.inputSpec=[new tn({ndim:4})]}computeOutputShape(e){return e=e,this.dataFormat==="channelsLast"?[e[0],e[3]]:[e[0],e[1]]}call(e,t){throw new He}getConfig(){let e={dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},r5=class extends CS{call(e,t){return Z(()=>{let n=Ke(e);return this.dataFormat==="channelsLast"?Xt(n,[1,2]):Xt(n,[2,3])})}};r5.className="GlobalAveragePooling2D";ue.registerClass(r5);var s5=class extends CS{call(e,t){return Z(()=>{let n=Ke(e);return this.dataFormat==="channelsLast"?sr(n,[1,2]):sr(n,[2,3])})}};s5.className="GlobalMaxPooling2D";ue.registerClass(s5);var MS=class extends rt{constructor(e){super(e);this.layer=e.layer}build(e){this.built=!0}get trainable(){return this.layer!=null?this.layer.trainable:!1}set trainable(e){this.layer!=null&&(this.layer.trainable=e)}get trainableWeights(){return this.layer.trainableWeights}get nonTrainableWeights(){return this.layer.nonTrainableWeights}get updates(){return this.layer._updates}get losses(){return this.layer.losses}getWeights(){return this.layer.getWeights()}setWeights(e){this.layer.setWeights(e)}getConfig(){let e={layer:{className:this.layer.getClassName(),config:this.layer.getConfig()}},t=super.getConfig();return Object.assign(e,t),e}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.layer!=null&&this.layer.setFastWeightInitDuringBuild(e)}static fromConfig(e,t,n={}){let a=t.layer,r=cr(a,n);delete t.layer;let s={layer:r};return Object.assign(s,t),new e(s)}},i5=class extends MS{constructor(e){super(e);this.supportsMasking=!0}build(e){if(e=At(e),e.length<3)throw new G(`TimeDistributed layer expects an input shape >= 3D, but received input shape ${JSON.stringify(e)}`);this.inputSpec=[{shape:e}];let t=[e[0]].concat(e.slice(2));this.layer.built||(this.layer.build(t),this.layer.built=!0),super.build(e)}computeOutputShape(e){e=At(e);let t=[e[0]].concat(e.slice(2)),n=this.layer.computeOutputShape(t),a=e[1];return[n[0],a].concat(n.slice(1))}call(e,t){return Z(()=>(e=Ke(e),vS((n,a)=>[Ke(this.layer.call(n,t)),[]],e,[],!1,null,null,!1,!0)[1]))}};i5.className="TimeDistributed";ue.registerClass(i5);function ene(e){so(oee,"BidirectionalMergeMode",e)}var tne="concat",o5=class extends MS{constructor(e){super(e);let t=e.layer.getConfig(),n={};n.className=e.layer.getClassName(),n.config=t,this.forwardLayer=cr(n),t.goBackwards=t.goBackwards!==!0;let a={};if(a.className=e.layer.getClassName(),a.config=t,this.backwardLayer=cr(a),this.forwardLayer.name="forward_"+this.forwardLayer.name,this.backwardLayer.name="backward_"+this.backwardLayer.name,this.mergeMode=e.mergeMode===void 0?tne:e.mergeMode,ene(this.mergeMode),e.weights)throw new He("weights support is not implemented for Bidirectional layer yet.");this._stateful=e.layer.stateful,this.returnSequences=e.layer.returnSequences,this.returnState=e.layer.returnState,this.supportsMasking=!0,this._trainable=!0,this.inputSpec=e.layer.inputSpec,this.numConstants=null}get trainable(){return this._trainable}set trainable(e){this._trainable=e,this.forwardLayer!=null&&(this.forwardLayer.trainable=e),this.backwardLayer!=null&&(this.backwardLayer.trainable=e)}getWeights(){return this.forwardLayer.getWeights().concat(this.backwardLayer.getWeights())}setWeights(e){let t=e.length,n=Math.floor(t/2);this.forwardLayer.setWeights(e.slice(0,n)),this.backwardLayer.setWeights(e.slice(n))}computeOutputShape(e){let t=this.forwardLayer.computeOutputShape(e);Array.isArray(t)&&Array.isArray(t[0])||(t=[t]),t=t;let n,a,r;return this.returnState&&(r=t.slice(1)),n=t[0],n=n,this.mergeMode==="concat"?(n[n.length-1]*=2,a=[n]):this.mergeMode==null?a=[n,n.slice()]:a=[n],this.returnState?this.mergeMode==null?a.concat(r).concat(r.slice()):[n].concat(r).concat(r.slice()):Qn(a)}apply(e,t){let n=t==null?null:t.initialState,a=t==null?null:t.constants;t==null&&(t={});let r=bS(e,n,a,this.numConstants);if(e=r.inputs,n=r.initialState,a=r.constants,Array.isArray(e)&&(n=e.slice(1),e=e[0]),(n==null||n.length===0)&&a==null)return super.apply(e,t);let s=[],i=[];if(n!=null){let l=n.length;if(l%2>0)throw new G("When passing `initialState` to a Bidrectional RNN, the state should be an Array containing the states of the underlying RNNs.");t.initialState=n,s.push(...n);let u=n.map(d=>new tn({shape:d.shape}));this.forwardLayer.stateSpec=u.slice(0,l/2),this.backwardLayer.stateSpec=u.slice(l/2),i.push(...u)}if(a!=null)throw new He("Support for constants in Bidirectional layers is not implemented yet.");let o=s[0]instanceof pr;for(let l of s)if(l instanceof pr!==o)throw new G("The initial state of a Bidirectional layer cannot be specified as a mix of symbolic and non-symbolic tensors");if(o){let l=[e].concat(s),u=this.inputSpec.concat(i),d=this.inputSpec;this.inputSpec=u;let h=super.apply(l,t);return this.inputSpec=d,h}else return super.apply(e,t)}call(e,t){return Z(()=>{let n=t.initialState,a,r;if(n==null)a=this.forwardLayer.call(e,t),r=this.backwardLayer.call(e,t);else{let o=n.slice(0,n.length/2),l=n.slice(n.length/2);a=this.forwardLayer.call(e,Object.assign(t,{initialState:o})),r=this.backwardLayer.call(e,Object.assign(t,{initialState:l}))}let s;this.returnState&&(Array.isArray(a)&&(s=a.slice(1).concat(r.slice(1))),a=a[0],r=r[0]),this.returnSequences&&(r=Ra(r,1));let i;return this.mergeMode==="concat"?i=R2([a,r]):this.mergeMode==="sum"?i=pe(a,r):this.mergeMode==="ave"?i=K(.5,pe(a,r)):this.mergeMode==="mul"?i=K(a,r):this.mergeMode==null&&(i=[a,r]),this.returnState?this.mergeMode==null?i.concat(s):[i].concat(s):i})}resetStates(e){this.forwardLayer.resetStates(),this.backwardLayer.resetStates()}build(e){io(this.forwardLayer.name,()=>{this.forwardLayer.build(e)}),io(this.backwardLayer.name,()=>{this.backwardLayer.build(e)}),this.built=!0}computeMask(e,t){Array.isArray(t)&&(t=t[0]);let n;if(this.returnSequences?this.mergeMode==null?n=[t,t]:n=t:this.mergeMode==null?n=[null,null]:n=null,this.returnState){let a=this.forwardLayer.states.map(r=>null);return Array.isArray(n)?n.concat(a).concat(a):[n].concat(a).concat(a)}else return n}get trainableWeights(){return this.forwardLayer.trainableWeights.concat(this.backwardLayer.trainableWeights)}get nonTrainableWeights(){return this.forwardLayer.nonTrainableWeights.concat(this.backwardLayer.nonTrainableWeights)}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.forwardLayer!=null&&this.forwardLayer.setFastWeightInitDuringBuild(e),this.backwardLayer!=null&&this.backwardLayer.setFastWeightInitDuringBuild(e)}getConfig(){let e={mergeMode:this.mergeMode},t=super.getConfig();return Object.assign(e,t),e}static fromConfig(e,t){let n=cr(t.layer);if(delete t.layer,t.numConstants!=null)throw new He("Deserialization of a Bidirectional layer with numConstants present is not supported yet.");let a=t;return a.layer=n,new e(a)}};o5.className="Bidirectional";ue.registerClass(o5);function nne(e){return new ru(e)}function ane(e){return new px(e)}function rne(e){return new ux(e)}function sne(e){return new dx(e)}function ine(e){return new hx(e)}function one(e){return new fx(e)}function lne(e){return new cx(e)}function une(e){return new bx(e)}function dne(e){return new f0(e)}function hne(e){return new yx(e)}function pne(e){return new m0(e)}function cne(e){return new Ax(e)}function fne(e){return new xx(e)}function mne(e){return new vx(e)}function gne(e){return new wx(e)}function yne(e){return new kx(e)}function Ane(e){return new $x(e)}function xne(e){return new Cx(e)}function bne(e){return new b0(e)}function vne(e){return new Ex(e)}function wne(e){return new Mx(e)}function kne(e){return new Rx(e)}function Ine(e){return new Fx(e)}function Sne(e){return new Ox(e)}function Nne(e){return new _x(e)}function Tne(e){return new zx(e)}function Ene(e){return new Lx(e)}function Cne(e){return new Vx(e)}function Mne(e){return new Wx(e)}function $ne(e){return new Bx(e)}function Rne(e){return new Px(e)}function Fne(e){return new Ux(e)}function One(e){return new qx(e)}function Dne(e){return new Kx(e)}function _ne(e){return new Xx(e)}function l5(e){return new Yx(e)}function zne(e){return l5(e)}function Pne(e){return l5(e)}function u5(e){return new Qx(e)}function Lne(e){return u5(e)}function Wne(e){return u5(e)}function d5(e){return new t5(e)}function Bne(e){return d5(e)}function Vne(e){return d5(e)}function Une(e){return new n5(e)}function jne(e){return new r5(e)}function $S(e){return new a5(e)}function RS(e){return new s5(e)}function FS(e){return new Zx(e)}function OS(e){return new Jx(e)}function Hne(e){return new e5(e)}function Gne(e){return new Sx(e)}function qne(e){return new y0(e)}function Kne(e){return new Nx(e)}function Xne(e){return new Xh(e)}function Zne(e){return new Ix(e)}function Yne(e){return new g0(e)}function Jne(e){return new Tx(e)}function Qne(e){return new x0(e)}function eae(e){return new cs(e)}function tae(e){return new A0(e)}function nae(e){return new o5(e)}function aae(e){return new i5(e)}var rae=$S,sae=RS,iae=FS,oae=OS;function lae(e){return new jx(e)}function uae(e){return new Hx(e)}function dae(e){return new Gx(e)}function hae(e){return new Dx(e)}var DS={};$e(DS,{MAPE:()=>wae,MSE:()=>Sae,binaryAccuracy:()=>pae,binaryCrossentropy:()=>cae,categoricalAccuracy:()=>mae,categoricalCrossentropy:()=>gae,cosineProximity:()=>xae,mape:()=>kae,meanAbsoluteError:()=>bae,meanAbsolutePercentageError:()=>vae,meanSquaredError:()=>Iae,mse:()=>Nae,precision:()=>yae,recall:()=>Aae,sparseCategoricalAccuracy:()=>fae});function pae(e,t){return K2(e,t)}function cae(e,t){return FI(e,t)}function fae(e,t){return OI(e,t)}function mae(e,t){return X2(e,t)}function gae(e,t){return Z2(e,t)}function yae(e,t){return RI(e,t)}function Aae(e,t){return nte(e,t)}function xae(e,t){return G2(e,t)}function bae(e,t){return i0(e,t)}function vae(e,t){return iu(e,t)}function wae(e,t){return iu(e,t)}function kae(e,t){return iu(e,t)}function Iae(e,t){return lo(e,t)}function Sae(e,t){return lo(e,t)}function Nae(e,t){return lo(e,t)}var _S={};$e(_S,{modelFromJSON:()=>_te});var zS={};$e(zS,{l1:()=>Eae,l1l2:()=>Tae,l2:()=>Cae});function Tae(e){return new Gh(e)}function Eae(e){return jte(e)}function Cae(e){return Hte(e)}var PS=class extends su{constructor(){super(...arguments);this.model=null}setModel(e){if(!(e instanceof ps))throw new Error("model must be a LayersModel, not some other Container");this.model=e}};function w0(e,t){return e<t}function LS(e,t){return e>t}var WS=class extends PS{constructor(e){super();if(e==null&&(e={}),e.restoreBestWeights)throw new He("restoreBestWeights = True is not implemented in EarlyStopping yet.");this.monitor=e.monitor||"val_loss",this.minDelta=Math.abs(e.minDelta||0),this.patience=e.patience||0,this.verbose=e.verbose||0,this.mode=e.mode||"auto",this.baseline=e.baseline,["auto","min","max"].indexOf(this.mode)===-1&&(console.warn(`EarlyStopping mode '${this.mode}' is invalid. Falling back to mode 'auto'.`),this.mode="auto"),this.mode==="min"?this.monitorFunc=w0:this.mode==="max"?this.monitorFunc=LS:this.monitor.indexOf("acc")!==-1?this.monitorFunc=LS:this.monitorFunc=w0,this.monitorFunc===w0&&(this.minDelta*=-1)}async onTrainBegin(e){this.wait=0,this.stoppedEpoch=0,this.baseline!=null?this.best=this.baseline:this.best=this.monitorFunc===w0?Infinity:-Infinity}async onEpochEnd(e,t){await Ks(t);let n=this.getMonitorValue(t);n!=null&&(this.monitorFunc(n-this.minDelta,this.best)?(this.best=n,this.wait=0):(this.wait++,this.wait>=this.patience&&(this.stoppedEpoch=e,this.model.stopTraining=!0)))}async onTrainEnd(e){this.stoppedEpoch>0&&this.verbose&&console.log(`Epoch ${this.stoppedEpoch}: early stopping.`)}getMonitorValue(e){e==null&&(e={});let t=e[this.monitor];return t==null&&console.warn(`Metric for EarlyStopping ${this.monitor} is not available. Available metrics are: ${Object.keys(e)}`),t}};function Mae(e){return new WS(e)}var $ae={earlyStopping:Mae},mr;(function(e){e[e.DT_INVALID=0]="DT_INVALID",e[e.DT_FLOAT=1]="DT_FLOAT",e[e.DT_DOUBLE=2]="DT_DOUBLE",e[e.DT_INT32=3]="DT_INT32",e[e.DT_UINT8=4]="DT_UINT8",e[e.DT_INT16=5]="DT_INT16",e[e.DT_INT8=6]="DT_INT8",e[e.DT_STRING=7]="DT_STRING",e[e.DT_COMPLEX64=8]="DT_COMPLEX64",e[e.DT_INT64=9]="DT_INT64",e[e.DT_BOOL=10]="DT_BOOL",e[e.DT_QINT8=11]="DT_QINT8",e[e.DT_QUINT8=12]="DT_QUINT8",e[e.DT_QINT32=13]="DT_QINT32",e[e.DT_BFLOAT16=14]="DT_BFLOAT16",e[e.DT_FLOAT_REF=101]="DT_FLOAT_REF",e[e.DT_DOUBLE_REF=102]="DT_DOUBLE_REF",e[e.DT_INT32_REF=103]="DT_INT32_REF",e[e.DT_UINT8_REF=104]="DT_UINT8_REF",e[e.DT_INT16_REF=105]="DT_INT16_REF",e[e.DT_INT8_REF=106]="DT_INT8_REF",e[e.DT_STRING_REF=107]="DT_STRING_REF",e[e.DT_COMPLEX64_REF=108]="DT_COMPLEX64_REF",e[e.DT_INT64_REF=109]="DT_INT64_REF",e[e.DT_BOOL_REF=110]="DT_BOOL_REF",e[e.DT_QINT8_REF=111]="DT_QINT8_REF",e[e.DT_QUINT8_REF=112]="DT_QUINT8_REF",e[e.DT_QINT32_REF=113]="DT_QINT32_REF",e[e.DT_BFLOAT16_REF=114]="DT_BFLOAT16_REF"})(mr||(mr={}));var BS;(function(e){let t;(function(n){n[n.LEGACY=0]="LEGACY",n[n.V1=1]="V1",n[n.V2=2]="V2"})(t=e.CheckpointFormatVersion||(e.CheckpointFormatVersion={}))})(BS||(BS={}));var h5={};function Rae(e,t){let n={tfOpName:e,category:"custom",inputs:[],attrs:[],customExecutor:t};h5[e]=n}function VS(e){return h5[e]}function Fae(e){delete h5[e]}function N(e,t,n,a,r){let s=t.inputParams[e];if(s&&s.inputIndexStart!==void 0){let o=s.inputIndexStart,l=s.inputIndexEnd===0?void 0:s.inputIndexEnd===void 0?o+1:s.inputIndexEnd;if(s.type==="tensor")return Ln(t.inputNames[s.inputIndexStart],n,a,r);if(s.type==="tensors")return t.inputNames.slice(o,l).map(h=>Ln(h,n,a,r));let u=Ln(t.inputNames.slice(o)[0],n,a,r),d=u.dataSync();return s.type==="number"?d[0]:k.toNestedArray(u.shape,d)}let i=t.attrParams[e];return i&&i.value}function Ln(e,t,n,a){let[r,s]=ha(e);if(a!=null){let o=a.getHashTableHandleByName(r);if(o!=null)return o}let i=n.currentContextIds.find(o=>!!t[k0(r,o)]);return i!==void 0?t[k0(r,i)][s]:void 0}function Oae(e,t,n){return t[k0(e,n.currentContextId)]}function fs(e,t){let[n,a,r]=ha(e);return[k0(n,t&&t.currentContextId),a,r]}function k0(e,t){return t?`${e}-${t}`:e}function ha(e){let t=e.split(":");if(t.length===1)return[e,0,void 0];let n=t[0],a=t.length===3?t[1]:void 0,r=Number(t[t.length-1]);return[n,r,a]}function I0(e,t,n){let a=N("pad",e,t,n);if(a==="explicit"){a=N("explicitPaddings",e,t,n);let r=[[0,0],[0,0],[0,0],[0,0]];for(let s=0;s<4;s++)r[s][0]=a[s*2],r[s][1]=a[s*2+1];return r}return a}function ms(e){return e.kept?e:Gi(e)}var US={};$e(US,{json:()=>Dae});var Dae=[{tfOpName:"Add",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddV2",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddN",category:"arithmetic",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"BiasAdd",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"Sub",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"RealDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Div",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"DivNoNan",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mul",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Maximum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Minimum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Pow",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SquaredDifference",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorMod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],jS={};$e(jS,{json:()=>_ae});var _ae=[{tfOpName:"Abs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan2",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ceil",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ClipByValue",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"clipValueMin",type:"number"},{start:2,name:"clipValueMax",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Complex",category:"basic_math",inputs:[{start:0,name:"real",type:"tensor"},{start:1,name:"imag",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ComplexAbs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Elu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Exp",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Floor",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Imag",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Neg",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Real",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Prelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"alpha",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu6",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Selu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sigmoid",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Rsqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Square",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sign",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Round",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Expm1",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log1p",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Reciprocal",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Softplus",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Erf",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Prod",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axes",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LeakyRelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"alpha",name:"alpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"IsNan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],HS={};$e(HS,{json:()=>zae});var zae=[{tfOpName:"EmptyTensorList",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"maxNumElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"LoopCond",category:"control",inputs:[{start:0,name:"pred",type:"tensor"}]},{tfOpName:"Switch",category:"control",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"pred",type:"tensor"}]},{tfOpName:"Merge",category:"control",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"Enter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"frame_name",name:"frameName",type:"string"},{tfName:"is_constant",name:"isConstant",type:"bool"}]},{tfOpName:"Exit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NextIteration",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayV3",category:"control",inputs:[{start:0,name:"size",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"dynamic_size",name:"dynamicSize",type:"bool"},{tfName:"clear_after_read",name:"clearAfterRead",type:"bool"},{tfName:"identical_element_shapes",name:"identicalElementShapes",type:"bool"},{tfName:"tensor_array_name",name:"name",type:"string"}]},{tfOpName:"TensorArrayWriteV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayReadV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayGatherV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"}]},{tfOpName:"TensorArrayScatterV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArrayConcatV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape_except0",name:"elementShapeExcept0",type:"shape",notSupported:!0}]},{tfOpName:"TensorArraySplitV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"tensor",type:"tensor"},{start:2,name:"lengths",type:"number[]"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArraySizeV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}]},{tfOpName:"TensorArrayCloseV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"}]},{tfOpName:"StatelessIf",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"If",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"StatelessWhile",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"While",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"TensorListScatter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListScatterV2",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"},{start:3,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGather",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListSetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListReserve",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListFromTensor",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListStack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"},{tfName:"num_elements",name:"numElements",type:"dtype"}]},{tfOpName:"TensorListSplit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"},{start:2,name:"lengths",type:"number[]"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcat",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPopBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPushBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]}],GS={};$e(GS,{json:()=>Pae});var Pae=[{tfOpName:"AvgPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[],notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPoolWithArgmax",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"include_batch_in_index",name:"includeBatchInIndex",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AvgPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Conv1D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"stride",name:"stride",type:"number"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NWC"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"dilation",name:"dilation",type:"number",defaultValue:1}]},{tfOpName:"Conv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"useCudnnOnGpu",name:"useCudnnOnGpu",type:"bool"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"_FusedConv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"use_cudnn_on_gpu",name:"useCudnnOnGpu",type:"bool",defaultValue:!0},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"leakyrelu_alpha",name:"leakyreluAlpha",type:"number"}]},{tfOpName:"Conv2DBackpropInput",category:"convolution",inputs:[{start:2,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:0,name:"outputShape",type:"number[]"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]",notSupported:!0}]},{tfOpName:"DepthwiseConv2d",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"DepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"FusedDepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]}]},{tfOpName:"Conv3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"Dilation2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"rates",name:"dilations",type:"number[]"},{tfName:"padding",name:"pad",type:"string"}]}],qS={};$e(qS,{json:()=>Lae});var Lae=[{tfOpName:"Fill",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"},{start:1,name:"value",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"LinSpace",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"num",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"OneHot",category:"creation",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"depth",type:"number"},{start:2,name:"onValue",type:"number",defaultValue:1},{start:3,name:"offValue",type:"number",defaultValue:0}],attrs:[{tfName:"axis",name:"axis",type:"number",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ones",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"OnesLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"RandomUniform",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"minval",name:"minval",type:"number",defaultValue:0},{tfName:"maxval",name:"maxval",type:"number",defaultValue:1},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Range",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"step",type:"number",defaultValue:0}],attrs:[{tfName:"Tidx",name:"dtype",type:"dtype"}]},{tfOpName:"TruncatedNormal",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"means",name:"mean",type:"number",defaultValue:0},{tfName:"stddev",name:"stdDev",type:"number",defaultValue:1},{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Zeros",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"ZerosLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"Multinomial",category:"creation",inputs:[{start:0,name:"logits",type:"tensor"},{start:1,name:"numSamples",type:"number"}],attrs:[{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number"},{tfName:"T",name:"dtype",type:"dtype"},{tfName:"output_dtype",name:"output_dtype",type:"dtype"}]}],KS={};$e(KS,{json:()=>Wae});var Wae=[{tfOpName:"NonMaxSuppressionV2",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV3",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV4",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"T_threshold",name:"threshold",type:"dtype",notSupported:!0},{tfName:"pad_to_max_output_size",name:"padToMaxOutputSize",type:"bool"}]},{tfOpName:"NonMaxSuppressionV5",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"},{start:5,name:"softNmsSigma",type:"number"}]},{tfOpName:"Where",category:"dynamic",inputs:[{start:0,name:"condition",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ListDiff",category:"dynamic",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],XS={};$e(XS,{json:()=>Bae});var Bae=[{tfOpName:"TopKV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"k",type:"number"}],attrs:[{tfName:"sorted",name:"sorted",type:"bool"}]},{tfOpName:"Unique",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"UniqueV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]}],ZS={};$e(ZS,{json:()=>Vae});var Vae=[{tfOpName:"PlaceholderWithDefault",category:"graph",inputs:[{start:0,name:"default",type:"tensor"}],attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Placeholder",category:"graph",attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Const",category:"graph"},{tfOpName:"Identity",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IdentityN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Snapshot",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Rank",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Size",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Shape",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"ShapeN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Print",category:"graph",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"data",type:"tensors"}],attrs:[{tfName:"message",name:"message",type:"string"},{tfName:"first_n",name:"firstN",type:"number",notSupported:!0},{tfName:"summarize",name:"summarize",type:"number",defaultValue:3}]},{tfOpName:"NoOp",category:"graph",inputs:[]},{tfOpName:"StopGradient",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"FakeQuantWithMinMaxVars",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"min",name:"min",type:"number"},{tfName:"max",name:"max",type:"number"}]}],YS={};$e(YS,{json:()=>Uae});var Uae=[{tfOpName:"HashTable",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"HashTableV2",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"LookupTableImport",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableImportV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFind",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFindV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableSize",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]},{tfOpName:"LookupTableSizeV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]}],JS={};$e(JS,{json:()=>jae});var jae=[{tfOpName:"ResizeBilinear",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ResizeNearestNeighbor",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"CropAndResize",category:"image",inputs:[{start:0,name:"image",type:"tensor"},{start:1,name:"boxes",type:"tensor"},{start:2,name:"boxInd",type:"tensor"},{start:3,name:"cropSize",type:"number[]"}],attrs:[{tfName:"method",name:"method",type:"string"},{tfName:"extrapolation_value",name:"extrapolationValue",type:"number"}]}],QS={};$e(QS,{json:()=>Hae});var Hae=[{tfOpName:"Equal",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NotEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Greater",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"GreaterEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Less",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LessEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalAnd",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalNot",category:"logical",inputs:[{start:0,name:"a",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalOr",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Select",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SelectV2",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],e9={};$e(e9,{json:()=>Gae});var Gae=[{tfOpName:"_FusedMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMulV2",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Transpose",category:"matrices",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"perm",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Einsum",category:"matrices",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"equation",name:"equation",type:"string"},{tfName:"N",name:"n",type:"number",defaultValue:2},{tfName:"T",name:"dtype",type:"dtype"}]}],t9={};$e(t9,{json:()=>qae});var qae=[{tfOpName:"FusedBatchNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV2",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV3",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"LRN",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"depth_radius",name:"radius",type:"number",defaultValue:5},{tfName:"bias",name:"bias",type:"number",defaultValue:1},{tfName:"alpha",name:"alpha",type:"number",defaultValue:1},{tfName:"beta",name:"beta",type:"number",defaultValue:.5}]},{tfOpName:"Softmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"LogSoftmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"SparseToDense",category:"normalization",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!0,notSupported:!0}]}],n9={};$e(n9,{json:()=>Kae});var Kae=[{tfOpName:"Bincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}]},{tfOpName:"DenseBincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}],attrs:[{tfName:"binary_output",name:"binaryOutput",type:"bool"}]},{tfOpName:"Max",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Mean",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Min",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Sum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"All",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Any",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"ArgMax",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"ArgMin",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"Prod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Cumsum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]}],a9={};$e(a9,{json:()=>Xae});var Xae=[{tfOpName:"ConcatV2",category:"slice_join",inputs:[{start:0,end:-1,name:"tensors",type:"tensors"},{start:-1,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"Concat",category:"slice_join",inputs:[{start:1,end:0,name:"tensors",type:"tensors"},{start:0,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"GatherV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"axis",type:"number",defaultValue:0}],attrs:[{tfName:"batch_dims",name:"batchDims",type:"number",defaultValue:0}]},{tfOpName:"Gather",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",notSupported:!0}]},{tfOpName:"Reverse",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"dims",type:"bool[]"}]},{tfOpName:"ReverseV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}]},{tfOpName:"Slice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"size",type:"number[]"}]},{tfOpName:"StridedSlice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"end",type:"number[]"},{start:3,name:"strides",type:"number[]"}],attrs:[{tfName:"begin_mask",name:"beginMask",type:"number",defaultValue:0},{tfName:"end_mask",name:"endMask",type:"number",defaultValue:0},{tfName:"new_axis_mask",name:"newAxisMask",type:"number",defaultValue:0},{tfName:"ellipsis_mask",name:"ellipsisMask",type:"number",defaultValue:0},{tfName:"shrink_axis_mask",name:"shrinkAxisMask",type:"number",defaultValue:0}]},{tfOpName:"Pack",category:"slice_join",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0}]},{tfOpName:"Unpack",category:"slice_join",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0},{tfName:"num",name:"num",type:"number",defaultValue:0,notSupported:!0}]},{tfOpName:"Tile",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"reps",type:"number[]"}]},{tfOpName:"Split",category:"slice_join",inputs:[{start:0,name:"axis",type:"number",defaultValue:0},{start:1,name:"x",type:"tensor"}],attrs:[{tfName:"num_split",name:"numOrSizeSplits",type:"number",defaultValue:1}]},{tfOpName:"SplitV",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"numOrSizeSplits",type:"number[]"},{start:2,name:"axis",type:"number",defaultValue:0}]},{tfOpName:"ScatterNd",category:"slice_join",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"shape",type:"number[]"}]},{tfOpName:"GatherNd",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}]},{tfOpName:"SparseToDense",category:"slice_join",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!1,notSupported:!0}]}],r9={};$e(r9,{json:()=>Zae});var Zae=[{tfOpName:"SparseFillEmptyRows",category:"sparse",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"denseShape",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}]},{tfOpName:"SparseReshape",category:"sparse",inputs:[{start:0,name:"inputIndices",type:"tensor"},{start:1,name:"inputShape",type:"tensor"},{start:2,name:"newShape",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SparseSegmentMean",category:"sparse",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"segmentIds",type:"tensor"}]},{tfOpName:"SparseSegmentSum",category:"sparse",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"segmentIds",type:"tensor"}]}],s9={};$e(s9,{json:()=>Yae});var Yae=[{tfOpName:"FFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"RFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]},{tfOpName:"IRFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]}],i9={};$e(i9,{json:()=>Jae});var Jae=[{tfOpName:"StringNGrams",category:"string",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"dataSplits",type:"tensor"}],attrs:[{tfName:"separator",name:"separator",type:"string"},{tfName:"ngram_widths",name:"nGramWidths",type:"number[]"},{tfName:"left_pad",name:"leftPad",type:"string"},{tfName:"right_pad",name:"rightPad",type:"string"},{tfName:"pad_width",name:"padWidth",type:"number"},{tfName:"preserve_short_sequences",name:"preserveShortSequences",type:"bool"}],outputs:["ngrams","ngrams_splits"]},{tfOpName:"StringSplit",category:"string",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"delimiter",type:"tensor"}],attrs:[{tfName:"skip_empty",name:"skipEmpty",type:"bool"}],outputs:["indices","values","shape"]},{tfOpName:"StringToHashBucketFast",category:"string",inputs:[{start:0,name:"input",type:"tensor"}],attrs:[{tfName:"num_buckets",name:"numBuckets",type:"number"}]}],o9={};$e(o9,{json:()=>Qae});var Qae=[{tfOpName:"Cast",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"SrcT",name:"sdtype",type:"dtype",notSupported:!0},{tfName:"DstT",name:"dtype",type:"dtype"}]},{tfOpName:"ExpandDims",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"MirrorPad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"mode",name:"mode",type:"string"}]},{tfOpName:"Pad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"constant_value",name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"PadV2",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"},{start:2,name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"Reshape",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}]},{tfOpName:"Squeeze",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"axis",tfDeprecatedName:"squeeze_dims",name:"axis",type:"number[]"}]},{tfOpName:"SpaceToBatchND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"paddings",type:"number[]"}]},{tfOpName:"BatchToSpaceND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"crops",type:"number[]"}]},{tfOpName:"DepthToSpace",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"block_size",name:"blockSize",type:"number"},{tfName:"data_format",name:"dataFormat",type:"string"}]},{tfOpName:"BroadcastTo",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}],attrs:[]}],l9=class{static get Instance(){return this._instance||(this._instance=new this)}constructor(){let e=[US,jS,HS,GS,qS,KS,XS,ZS,YS,JS,QS,e9,t9,n9,a9,r9,s9,i9,o9],t=[].concat(...e.map(n=>n.json));this.opMappers=t.reduce((n,a)=>(n[a.tfOpName]=a,n),{})}transformGraph(e,t={}){let n=e.node,a=[],r=[],s=[],i=n.reduce((m,f)=>(m[f.name]=this.mapNode(f),f.op.startsWith("Placeholder")?a.push(m[f.name]):f.op==="Const"?r.push(m[f.name]):(f.input==null||f.input.length===0)&&s.push(m[f.name]),m),{}),o=[],l=[],u={},d={};t!=null&&(u=this.mapSignatureEntries(t.inputs),d=this.mapSignatureEntries(t.outputs));let h=Object.keys(i);h.forEach(m=>{let f=i[m];f.inputNames.forEach((g,y)=>{let[A,,x]=fs(g),v=i[A];if(v.outputs!=null){let b=v.outputs.indexOf(x);if(b!==-1){let w=`${A}:${b}`;f.inputNames[y]=w}}f.inputs.push(v),v.children.push(f)})}),Object.keys(d).length===0?h.forEach(m=>{let f=i[m];f.children.length===0&&l.push(f)}):Object.keys(d).forEach(m=>{let[f]=fs(m),g=i[f];g!=null&&(g.signatureKey=d[m],l.push(g))}),Object.keys(u).length>0?Object.keys(u).forEach(m=>{let[f]=fs(m),g=i[f];g&&(g.signatureKey=u[m],o.push(g))}):o=a;let p={};e.library!=null&&e.library.function!=null&&(p=e.library.function.reduce((m,f)=>(m[f.signature.name]=this.mapFunction(f),m),{}));let c={nodes:i,inputs:o,outputs:l,weights:r,placeholders:a,signature:t,functions:p};return s.length>0&&(c.initNodes=s),c}mapSignatureEntries(e){return Object.keys(e||{}).reduce((t,n)=>(t[e[n].name]=n,t),{})}mapNode(e){let t=VS(e.op)||this.opMappers[e.op]||{};e.attr==null&&(e.attr={});let n={name:e.name,op:e.op,category:t.category,inputNames:(e.input||[]).map(a=>a.startsWith("^")?a.substr(1):a),inputs:[],children:[],inputParams:{},attrParams:{},rawAttrs:e.attr,outputs:t.outputs};return t.inputs!=null&&(n.inputParams=t.inputs.reduce((a,r)=>(a[r.name]={type:r.type,inputIndexStart:r.start,inputIndexEnd:r.end},a),{})),t.attrs!=null&&(n.attrParams=t.attrs.reduce((a,r)=>{let s=r.type,i;switch(r.type){case"string":i=p5(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=p5(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"string[]":i=b5(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=b5(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"number":i=f5(e.attr,r.tfName,r.defaultValue||0),i===void 0&&!!r.tfDeprecatedName&&(i=f5(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"number[]":i=x5(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=x5(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"bool":i=c5(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=c5(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"bool[]":i=w5(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=w5(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"shape":i=A5(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=A5(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"shape[]":i=v5(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=v5(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"dtype":i=g5(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=g5(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"dtype[]":i=y5(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=y5(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"func":i=d9(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=d9(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"tensor":case"tensors":break;default:throw new Error(`Unsupported param type: ${r.type} for op: ${e.op}`)}return a[r.name]={value:i,type:s},a},{})),n}mapFunction(e){let t=e.nodeDef,n=[],a=[],r={};t!=null&&(r=t.reduce((u,d)=>(u[d.name]=this.mapNode(d),d.op==="Const"&&a.push(u[d.name]),u),{}));let s=[],i=[];e.signature.inputArg.forEach(u=>{let[d]=fs(u.name),h={name:d,op:"Placeholder",inputs:[],inputNames:[],category:"graph",inputParams:{},attrParams:{dtype:{value:m5(u.type),type:"dtype"}},children:[]};h.signatureKey=u.name,s.push(h),r[d]=h}),Object.keys(r).forEach(u=>{let d=r[u];d.inputNames.forEach((h,p)=>{let[c,,m]=fs(h),f=r[c];if(f.outputs!=null){let g=f.outputs.indexOf(m);if(g!==-1){let y=`${c}:${g}`;d.inputNames[p]=y}}d.inputs.push(f),f.children.push(d)})});let o=e.ret;e.signature.outputArg.forEach(u=>{let[d,h]=fs(o[u.name]),p=r[d];p!=null&&(p.defaultOutput=h,i.push(p))});let l=this.mapArgsToSignature(e);return{nodes:r,inputs:s,outputs:i,weights:a,placeholders:n,signature:l}}mapArgsToSignature(e){return{methodName:e.signature.name,inputs:e.signature.inputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n),t),{}),outputs:e.signature.outputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n,e.ret),t),{})}}mapArgToTensorInfo(e,t){let n=e.name;return t!=null&&(n=t[n]),{name:n,dtype:e.type}}};function ere(e){let t=se().global;if(typeof t.atob!="undefined")return t.atob(e);if(typeof Buffer!="undefined")return new Buffer(e,"base64").toString();throw new Error("Unable to decode base64 in this environment. Missing built-in atob() or Buffer()")}function u9(e,t){let n=Array.isArray(e)?String.fromCharCode.apply(null,e):ere(e);return t?n:n.toLowerCase()}function p5(e,t,n,a=!1){let r=e[t];return r!=null?u9(r.s,a):n}function c5(e,t,n){let a=e[t];return a?a.b:n}function f5(e,t,n){let a=e[t]||{},r=a.i!=null?a.i:a.f!=null?a.f:n;return typeof r=="number"?r:parseInt(r,10)}function m5(e){switch(typeof e=="string"&&(e=mr[e]),e){case mr.DT_FLOAT:return"float32";case mr.DT_INT32:case mr.DT_INT64:case mr.DT_INT8:case mr.DT_UINT8:return"int32";case mr.DT_BOOL:return"bool";case mr.DT_DOUBLE:return"float32";case mr.DT_STRING:return"string";default:return null}}function d9(e,t,n){let a=e[t];return a&&a.func?a.func.name:n}function g5(e,t,n){let a=e[t];return a&&a.type?m5(a.type):n}function y5(e,t,n){let a=e[t];return a&&a.list&&a.list.type?a.list.type.map(r=>m5(r)):n}function h9(e){if(!e.unknownRank)return e.dim!=null?e.dim.map(t=>typeof t.size=="number"?t.size:parseInt(t.size,10)):[]}function A5(e,t,n){let a=e[t];return a&&a.shape?h9(a.shape):n}function x5(e,t,n){let a=e[t];return a?((a.list.f&&a.list.f.length?a.list.f:a.list.i)||[]).map(r=>typeof r=="number"?r:parseInt(r,10)):n}function b5(e,t,n,a=!1){let r=e[t];return r&&r.list&&r.list.s?r.list.s.map(s=>u9(s,a)):n}function v5(e,t,n){let a=e[t];return a&&a.list&&a.list.shape?a.list.shape.map(r=>h9(r)):n}function w5(e,t,n){let a=e[t];return a&&a.list&&a.list.b?a.list.b:n}var tre=class{constructor(e,t,n){this.node=e,this.tensorMap=t,this.context=n,this.inputs=[],this.attrs={},this.inputs=e.inputNames.map(a=>this.getInput(a)),e.rawAttrs!=null&&(this.attrs=Object.keys(e.rawAttrs).reduce((a,r)=>(a[r]=this.getAttr(r),a),{}))}getInput(e){return Ln(e,this.tensorMap,this.context)}getAttr(e,t){let n=this.node.rawAttrs[e];if(n.tensor!=null)return Ln(e,this.tensorMap,this.context);if(n.i!=null||n.f!=null)return f5(this.node.rawAttrs,e,t);if(n.s!=null)return p5(this.node.rawAttrs,e,t);if(n.b!=null)return c5(this.node.rawAttrs,e,t);if(n.shape!=null)return A5(this.node.rawAttrs,e,t);if(n.type!=null)return g5(this.node.rawAttrs,e,t);if(n.list!=null){if(n.list.i!=null||n.list.f!=null)return x5(this.node.rawAttrs,e,t);if(n.list.s!=null)return b5(this.node.rawAttrs,e,t);if(n.list.shape!=null)return v5(this.node.rawAttrs,e,t);if(n.list.b!=null)return w5(this.node.rawAttrs,e,t);if(n.list.type!=null)return y5(this.node.rawAttrs,e,t)}return t}},nre=(e,t,n)=>{switch(e.op){case"BiasAdd":case"AddV2":case"Add":return[pe(N("a",e,t,n),N("b",e,t,n))];case"AddN":return[YH(N("tensors",e,t,n))];case"FloorMod":case"Mod":return[A8(N("a",e,t,n),N("b",e,t,n))];case"Mul":return[K(N("a",e,t,n),N("b",e,t,n))];case"RealDiv":case"Div":return[Me(N("a",e,t,n),N("b",e,t,n))];case"DivNoNan":return[i8(N("a",e,t,n),N("b",e,t,n))];case"FloorDiv":return[MA(N("a",e,t,n),N("b",e,t,n))];case"Sub":return[Ne(N("a",e,t,n),N("b",e,t,n))];case"Minimum":return[$h(N("a",e,t,n),N("b",e,t,n))];case"Maximum":return[is(N("a",e,t,n),N("b",e,t,n))];case"Pow":return[Vs(N("a",e,t,n),N("b",e,t,n))];case"SquaredDifference":return[i2(N("a",e,t,n),N("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},are=(e,t,n)=>{switch(e.op){case"Abs":case"ComplexAbs":return[yn(N("x",e,t,n))];case"Acos":return[V4(N("x",e,t,n))];case"Acosh":return[U4(N("x",e,t,n))];case"Asin":return[H4(N("x",e,t,n))];case"Asinh":return[G4(N("x",e,t,n))];case"Atan":return[q4(N("x",e,t,n))];case"Atan2":return[K4(N("x",e,t,n),N("y",e,t,n))];case"Atanh":return[X4(N("x",e,t,n))];case"Ceil":return[t8(N("x",e,t,n))];case"Complex":return[Vi(N("real",e,t,n),N("imag",e,t,n))];case"Cos":return[Tf(N("x",e,t,n))];case"Cosh":return[zA(N("x",e,t,n))];case"Elu":return[Th(N("x",e,t,n))];case"Erf":return[o8(N("x",e,t,n))];case"Exp":return[qa(N("x",e,t,n))];case"Expm1":return[l8(N("x",e,t,n))];case"Floor":return[Ch(N("x",e,t,n))];case"Log":return[Ma(N("x",e,t,n))];case"Log1p":return[BA(N("x",e,t,n))];case"Imag":return[LA(N("x",e,t,n))];case"Neg":return[Kt(N("x",e,t,n))];case"Reciprocal":return[x8(N("x",e,t,n))];case"Real":return[Of(N("x",e,t,n))];case"Relu":return[ls(N("x",e,t,n))];case"Round":return[YA(N("x",e,t,n))];case"Selu":return[QA(N("x",e,t,n))];case"Sigmoid":return[$r(N("x",e,t,n))];case"Sin":return[e2(N("x",e,t,n))];case"Sign":return[v8(N("x",e,t,n))];case"Sinh":return[t2(N("x",e,t,n))];case"Softplus":return[Zl(N("x",e,t,n))];case"Sqrt":return[Mn(N("x",e,t,n))];case"Square":return[vt(N("x",e,t,n))];case"Tanh":return[Kl(N("x",e,t,n))];case"Tan":return[S8(N("x",e,t,n))];case"ClipByValue":return[ua(N("x",e,t,n),N("clipValueMin",e,t,n),N("clipValueMax",e,t,n))];case"Relu6":return[ZA(N("x",e,t,n))];case"Rsqrt":return[JA(Ln(e.inputNames[0],t,n))];case"Prod":return[qA(N("x",e,t,n),N("axes",e,t,n))];case"LeakyRelu":return[Ef(N("x",e,t,n),N("alpha",e,t,n))];case"Prelu":return[Ff(N("x",e,t,n),N("alpha",e,t,n))];case"IsNan":return[d8(Ln(e.inputNames[0],t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function Za(e,t,n=""){if(!(typeof e=="number"||typeof t=="number")){k.assert(e.length===t.length,()=>n+` Shapes ${e} and ${t} must match`);for(let a=0;a<e.length;a++){let r=e[a],s=t[a];k.assert(r<0||s<0||r===s,()=>n+` Shapes ${e} and ${t} must match`)}}}function p9(e){return!(typeof e=="number"||e.some(t=>t<0))}function Jh(e,t,n){let a=k5(e,n),r=!p9(a);if(r&&t.length===0)throw new Error(`Tried to calculate elements of an empty list with non-fully-defined elementShape: ${a}`);if(r&&t.forEach(s=>{a=k5(s.shape,a)}),!p9(a))throw new Error(`Non-fully-defined elementShape: ${a}`);return a}function k5(e,t){if(typeof e=="number")return t;if(typeof t=="number")return e;if(e.length!==t.length)throw new Error(`Incompatible ranks during merge: ${e} vs. ${t}`);let n=[];for(let a=0;a<e.length;++a){let r=e[a],s=t[a];if(r>=0&&s>=0&&r!==s)throw new Error(`Incompatible shape during merge: ${e} vs. ${t}`);n[a]=r>=0?r:s}return n}var rre=class{constructor(e,t,n,a,r,s,i){this.name=e,this.dtype=t,this.maxSize=n,this.elementShape=a,this.identicalElementShapes=r,this.dynamicSize=s,this.clearAfterRead=i,this.tensors=[],this.closed_=!1,this.idTensor=Re(0),Sn(this.idTensor)}get id(){return this.idTensor.id}get closed(){return this.closed_}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.tensor.id))&&t.tensor.dispose()}),this.tensors=[],this.closed_=!0,this.idTensor.dispose()}size(){return this.tensors.length}read(e){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||e>=this.size())throw new Error(`Tried to read from index ${e}, but array size is: ${this.size()}`);let t=this.tensors[e];if(t.cleared)throw new Error(`TensorArray ${this.name}: Could not read index ${e} twice because it was cleared after a previous read (perhaps try setting clear_after_read = false?).`);return this.clearAfterRead&&(t.cleared=!0),t.read=!0,t.tensor}readMany(e){return e.map(t=>this.read(t))}write(e,t){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||!this.dynamicSize&&e>=this.maxSize)throw new Error(`Tried to write to index ${e}, but array is not resizeable and size is: ${this.maxSize}`);let n=this.tensors[e]||{};if(t.dtype!==this.dtype)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e},
|
|
because the value dtype is ${t.dtype}, but TensorArray dtype is ${this.dtype}.`);if(this.size()===0&&(this.elementShape==null||this.elementShape.length===0)&&(this.elementShape=t.shape),Za(this.elementShape,t.shape,`TensorArray ${this.name}: Could not write to TensorArray index ${e}.`),n.read)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been read.`);if(n.written)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been written.`);n.tensor=t,Sn(t),n.written=!0,this.tensors[e]=n}writeMany(e,t){if(e.length!==t.length)throw new Error(`TensorArray ${this.name}: could not write multiple tensors,because the index size: ${e.length} is not the same as tensors size: ${t.length}.`);e.forEach((n,a)=>this.write(n,t[a]))}gather(e,t){if(!!t&&t!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but gather requested dtype ${t}`);if(e)e=e.slice(0,this.size());else{e=[];for(let a=0;a<this.size();a++)e.push(a)}if(e.length===0)return Cr([],[0].concat(this.elementShape));let n=this.readMany(e);return Za(this.elementShape,n[0].shape,"TensorArray shape mismatch: "),Fa(n,0)}concat(e){if(!!e&&e!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but concat requested dtype ${e}`);if(this.size()===0)return Cr([],[0].concat(this.elementShape));let t=[];for(let a=0;a<this.size();a++)t.push(a);let n=this.readMany(t);return Za(this.elementShape,n[0].shape,`TensorArray shape mismatch: tensor array shape (${this.elementShape}) vs first tensor shape (${n[0].shape})`),en(n,0)}scatter(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);if(e.length!==t.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${e.length} vs. ${t.shape[0]}`);let n=Math.max(...e);if(!this.dynamicSize&&n>=this.maxSize)throw new Error(`Max index must be < array size (${n} vs. ${this.maxSize})`);this.writeMany(e,or(t,0))}split(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);let n=0,a=e.map(o=>(n+=o,n));if(n!==t.shape[0])throw new Error(`Expected sum of lengths to be equal to
|
|
tensor.shape[0], but sum of lengths is
|
|
${n}, and tensor's shape is: ${t.shape}`);if(!this.dynamicSize&&e.length!==this.maxSize)throw new Error(`TensorArray's size is not equal to the size of lengths (${this.maxSize} vs. ${e.length}), and the TensorArray is not marked as dynamically resizeable`);let r=n===0?0:t.size/n,s=[];Z(()=>{t=Y(t,[1,n,r]);for(let o=0;o<e.length;++o){let l=o===0?0:a[o-1],u=[0,l,0],d=[1,e[o],r];s[o]=Y(nt(t,u,d),this.elementShape)}return s});let i=[];for(let o=0;o<e.length;o++)i[o]=o;this.writeMany(i,s)}},Qh=class{constructor(e,t,n,a=-1){this.tensors=e,this.elementShape=t,this.elementDtype=n,e!=null&&e.forEach(r=>{if(n!==r.dtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${r.dtype}`);Za(t,r.shape,"TensorList shape mismatch: "),Sn(r)}),this.idTensor=Re(0),this.maxNumElements=a,Sn(this.idTensor)}get id(){return this.idTensor.id}copy(){return new Qh([...this.tensors],this.elementShape,this.elementDtype)}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.id))&&t.dispose()}),this.tensors.length=0,this.idTensor.dispose()}size(){return this.tensors.length}stack(e,t,n=-1){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(n!==-1&&this.tensors.length!==n)throw new Error(`Operation expected a list with ${n} elements but got a list with ${this.tensors.length} elements.`);Za(e,this.elementShape,"TensorList shape mismatch: ");let a=Jh(this.elementShape,this.tensors,e);return Z(()=>{let r=this.tensors.map(s=>Y(s,a));return Fa(r,0)})}popBack(e,t){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(this.size()===0)throw new Error("Trying to pop from an empty list.");let n=Jh(this.elementShape,this.tensors,e),a=this.tensors.pop();return Za(a.shape,e,"TensorList shape mismatch: "),Y(a,n)}pushBack(e){if(e.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${this.elementDtype}`);if(Za(e.shape,this.elementShape,"TensorList shape mismatch: "),this.maxNumElements===this.size())throw new Error("Trying to push element into a full list.");Sn(e),this.tensors.push(e)}resize(e){if(e<0)throw new Error(`TensorListResize expects size to be non-negative. Got: ${e}`);if(this.maxNumElements!==-1&&e>this.maxNumElements)throw new Error(`TensorListResize input size ${e} is greater maxNumElement ${this.maxNumElements}.`);this.tensors.length=e}getItem(e,t,n){if(n!==this.elementDtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${this.elementDtype}`);if(e<0||e>this.tensors.length)throw new Error(`Trying to access element ${e} in a list with ${this.tensors.length} elements.`);if(this.tensors[e]==null)throw new Error(`element at index ${e} is null.`);Za(this.tensors[e].shape,t,"TensorList shape mismatch: ");let a=Jh(this.elementShape,this.tensors,t);return Y(this.tensors[e],a)}setItem(e,t){if(t.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t.dtype}, but list elements ${this.elementDtype}`);if(e<0||this.maxNumElements!==-1&&e>=this.maxNumElements)throw new Error(`Trying to set element ${e} in a list with max ${this.maxNumElements} elements.`);Za(this.elementShape,t.shape,"TensorList shape mismatch: "),Sn(t),this.tensors[e]=t}gather(e,t,n){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);Za(this.elementShape,n,"TensorList shape mismatch: "),e=e.slice(0,this.size());let a=Jh(this.elementShape,this.tensors,n);return e.length===0?Cr([],[0].concat(a)):Z(()=>{let r=e.map(s=>Y(this.tensors[s],a));return Fa(r,0)})}concat(e,t){if(!!e&&e!==this.elementDtype)throw new Error(`TensorList dtype is ${this.elementDtype} but concat requested dtype ${e}`);Za(this.elementShape,t,"TensorList shape mismatch: ");let n=Jh(this.elementShape,this.tensors,t);return this.size()===0?Cr([],[0].concat(n)):Z(()=>{let a=this.tensors.map(r=>Y(r,n));return en(a,0)})}};function sre(e,t,n){let a=e.dtype;if(e.shape.length<1)throw new Error(`Tensor must be at least a vector, but saw shape: ${e.shape}`);if(e.dtype!==n)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${n}`);let r=e.shape.slice(1);Za(r,t,"TensorList shape mismatch: ");let s=or(e);return new Qh(s,t,a)}function ire(e,t,n){return new Qh([],e,t,n)}function ore(e,t,n,a){if(t.length!==e.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${t.length} vs. ${e.shape[0]}`);let r=Math.max(...t);if(a!=null&&a!==-1&&r>=a)throw new Error(`Max index must be < array size (${r} vs. ${a})`);let s=new Qh([],n,e.dtype,a),i=or(e,0);return t.forEach((o,l)=>{s.setItem(o,i[l])}),s}function lre(e,t,n){let a=0,r=t.map(d=>(a+=d,a));if(a!==e.shape[0])throw new Error(`Expected sum of lengths to be equal to
|
|
tensor.shape[0], but sum of lengths is
|
|
${a}, and tensor's shape is: ${e.shape}`);let s=e.shape.slice(1),i=k5(s,n),o=a===0?0:e.size/a,l=Z(()=>{let d=[];e=Y(e,[1,a,o]);for(let h=0;h<t.length;++h){let p=h===0?0:r[h-1],c=[0,p,0],m=[1,t[h],o];d[h]=Y(nt(e,c,m),i)}return e.dispose(),d}),u=new Qh([],n,e.dtype,t.length);for(let d=0;d<l.length;d++)u.setItem(d,l[d]);return u}var ure=async(e,t,n)=>{switch(e.op){case"If":case"StatelessIf":{let a=N("thenBranch",e,t,n),r=N("elseBranch",e,t,n),s=N("cond",e,t,n),i=N("args",e,t,n);return(await s.data())[0]?n.functionMap[a].executeFunctionAsync(i,n.tensorArrayMap,n.tensorListMap):n.functionMap[r].executeFunctionAsync(i,n.tensorArrayMap,n.tensorListMap)}case"While":case"StatelessWhile":{let a=N("body",e,t,n),r=N("cond",e,t,n),s=N("args",e,t,n),i=await n.functionMap[r].executeFunctionAsync(s,n.tensorArrayMap,n.tensorListMap),o=s.map(d=>d.id),l=await i[0].data();i.forEach(d=>{!d.kept&&o.indexOf(d.id)===-1&&d.dispose()});let u=s;for(;l[0];){let d=u;u=await n.functionMap[a].executeFunctionAsync(u,n.tensorArrayMap,n.tensorListMap);let h=u.map(c=>c.id);d.forEach(c=>{!c.kept&&o.indexOf(c.id)===-1&&h.indexOf(c.id)===-1&&c.dispose()});let p=await n.functionMap[r].executeFunctionAsync(u,n.tensorArrayMap,n.tensorListMap);l=await p[0].data(),p.forEach(c=>{!c.kept&&o.indexOf(c.id)===-1&&h.indexOf(c.id)===-1&&c.dispose()})}return u}case"LoopCond":{let a=N("pred",e,t,n);return[ms(a)]}case"Switch":{let a=N("pred",e,t,n),r=N("data",e,t,n);return r.kept||(r=ms(r)),(await a.data())[0]?[void 0,r]:[r,void 0]}case"Merge":{let a=e.inputNames.find(r=>Ln(r,t,n)!==void 0);if(a){let r=Ln(a,t,n);return[ms(r)]}return}case"Enter":{let a=N("frameName",e,t,n),r=N("tensor",e,t,n);return n.enterFrame(a),[ms(r)]}case"Exit":{let a=N("tensor",e,t,n);return n.exitFrame(),[ms(a)]}case"NextIteration":{let a=N("tensor",e,t,n);return n.nextIteration(),[ms(a)]}case"TensorArrayV3":{let a=N("size",e,t,n),r=N("dtype",e,t,n),s=N("elementShape",e,t,n),i=N("dynamicSize",e,t,n),o=N("clearAfterRead",e,t,n),l=N("identicalElementShapes",e,t,n),u=N("name",e,t,n),d=new rre(u,r,a,s,l,i,o);return n.addTensorArray(d),[d.idTensor,Re(1)]}case"TensorArrayWriteV3":{let a=N("tensorArrayId",e,t,n),r=N("index",e,t,n),s=N("tensor",e,t,n),i=n.getTensorArray(a.id);return i.write(r,s),[i.idTensor]}case"TensorArrayReadV3":{let a=N("tensorArrayId",e,t,n),r=N("index",e,t,n);return[n.getTensorArray(a.id).read(r)]}case"TensorArrayGatherV3":{let a=N("tensorArrayId",e,t,n),r=N("indices",e,t,n),s=N("dtype",e,t,n);return[n.getTensorArray(a.id).gather(r,s)]}case"TensorArrayScatterV3":{let a=N("tensorArrayId",e,t,n),r=N("indices",e,t,n),s=N("tensor",e,t,n),i=n.getTensorArray(a.id);return i.scatter(r,s),[i.idTensor]}case"TensorArrayConcatV3":{let a=N("tensorArrayId",e,t,n),r=n.getTensorArray(a.id),s=N("dtype",e,t,n);return[r.concat(s)]}case"TensorArraySplitV3":{let a=N("tensorArrayId",e,t,n),r=N("tensor",e,t,n),s=N("lengths",e,t,n),i=n.getTensorArray(a.id);return i.split(s,r),[i.idTensor]}case"TensorArraySizeV3":{let a=N("tensorArrayId",e,t,n),r=n.getTensorArray(a.id);return[Re(r.size(),"int32")]}case"TensorArrayCloseV3":{let a=N("tensorArrayId",e,t,n),r=n.getTensorArray(a.id);return r.clearAndClose(),[r.idTensor]}case"TensorListSetItem":{let a=N("tensorListId",e,t,n),r=N("index",e,t,n),s=N("tensor",e,t,n),i=n.getTensorList(a.id);return i.setItem(r,s),[i.idTensor]}case"TensorListGetItem":{let a=N("tensorListId",e,t,n),r=N("index",e,t,n),s=N("elementShape",e,t,n),i=N("elementDType",e,t,n);return[n.getTensorList(a.id).getItem(r,s,i)]}case"TensorListScatterV2":case"TensorListScatter":{let a=N("indices",e,t,n),r=N("tensor",e,t,n),s=N("elementShape",e,t,n),i=N("numElements",e,t,n),o=ore(r,a,s,i);return n.addTensorList(o),[o.idTensor]}case"TensorListReserve":case"EmptyTensorList":{let a=N("elementShape",e,t,n),r=N("elementDType",e,t,n),s;e.op==="TensorListReserve"?s="numElements":s="maxNumElements";let i=N(s,e,t,n),o=ire(a,r,i);return n.addTensorList(o),[o.idTensor]}case"TensorListGather":{let a=N("tensorListId",e,t,n),r=N("indices",e,t,n),s=N("elementShape",e,t,n),i=N("elementDType",e,t,n);return[n.getTensorList(a.id).gather(r,i,s)]}case"TensorListStack":{let a=N("tensorListId",e,t,n),r=N("elementShape",e,t,n),s=N("elementDType",e,t,n),i=N("numElements",e,t,n);return[n.getTensorList(a.id).stack(r,s,i)]}case"TensorListFromTensor":{let a=N("tensor",e,t,n),r=N("elementShape",e,t,n),s=N("elementDType",e,t,n),i=sre(a,r,s);return n.addTensorList(i),[i.idTensor]}case"TensorListConcat":{let a=N("tensorListId",e,t,n),r=n.getTensorList(a.id),s=N("dtype",e,t,n),i=N("elementShape",e,t,n);return[r.concat(s,i)]}case"TensorListPushBack":{let a=N("tensorListId",e,t,n),r=N("tensor",e,t,n),s=n.getTensorList(a.id);return s.pushBack(r),[s.idTensor]}case"TensorListPopBack":{let a=N("tensorListId",e,t,n),r=N("elementShape",e,t,n),s=N("elementDType",e,t,n);return[n.getTensorList(a.id).popBack(r,s)]}case"TensorListSplit":{let a=N("tensor",e,t,n),r=N("elementShape",e,t,n),s=N("lengths",e,t,n),i=lre(a,s,r);return n.addTensorList(i),[i.idTensor]}default:throw TypeError(`Node type ${e.op} is not implemented`)}};function c9(e,t,n){let[a,r]=N("fusedOps",e,t,n),s=a==="biasadd",i=!s,o=r==="prelu",l=a==="fusedbatchnorm",u=N("numArgs",e,t,n);if(s){if(o&&u!==2)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!o&&s&&u!==1)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd must have one extra argument: bias.")}if(l)throw new Error("FusedConv2d and DepthwiseConv2d with FusedBatchNorm is not supported");let d=N("strides",e,t,n),h=I0(e,t,n),p=N("dataFormat",e,t,n).toUpperCase(),c=N("dilations",e,t,n),[m,f]=N("args",e,t,n);i&&(f=m,m=void 0);let g=N("leakyreluAlpha",e,t,n);return{stride:d,pad:h,dataFormat:p,dilations:c,biasArg:m,preluArg:f,activationFunc:r,leakyreluAlpha:g}}var dre=(e,t,n)=>{switch(e.op){case"Conv1D":{let a=N("stride",e,t,n),r=N("pad",e,t,n),s=N("dataFormat",e,t,n).toUpperCase(),i=N("dilation",e,t,n);return[OA(N("x",e,t,n),N("filter",e,t,n),a,r,s,i)]}case"Conv2D":{let a=N("strides",e,t,n),r=I0(e,t,n),s=N("dataFormat",e,t,n).toUpperCase(),i=N("dilations",e,t,n);return[Ws(N("x",e,t,n),N("filter",e,t,n),[a[1],a[2]],r,s,[i[1],i[2]])]}case"_FusedConv2D":{let{stride:a,pad:r,dataFormat:s,dilations:i,biasArg:o,preluArg:l,activationFunc:u,leakyreluAlpha:d}=c9(e,t,n);return[eo.conv2d({x:N("x",e,t,n),filter:N("filter",e,t,n),strides:[a[1],a[2]],pad:r,dataFormat:s,dilations:[i[1],i[2]],bias:o,activation:u,preluActivationWeights:l,leakyreluAlpha:d})]}case"FusedDepthwiseConv2dNative":{let{stride:a,pad:r,dataFormat:s,dilations:i,biasArg:o,preluArg:l,activationFunc:u,leakyreluAlpha:d}=c9(e,t,n);return[eo.depthwiseConv2d({x:N("x",e,t,n),filter:N("filter",e,t,n),strides:[a[1],a[2]],pad:r,dataFormat:s,dilations:[i[1],i[2]],bias:o,activation:u,preluActivationWeights:l,leakyreluAlpha:d})]}case"Conv2DBackpropInput":case"Conv2dTranspose":{let a=N("outputShape",e,t,n),r=N("strides",e,t,n),s=I0(e,t,n);return[_A(N("x",e,t,n),N("filter",e,t,n),a,[r[1],r[2]],s)]}case"DepthwiseConv2dNative":case"DepthwiseConv2d":{let a=N("strides",e,t,n),r=I0(e,t,n),s=N("dilations",e,t,n),i=N("dataFormat",e,t,n).toUpperCase();return[Nh(N("input",e,t,n),N("filter",e,t,n),[a[1],a[2]],r,i,[s[1],s[2]])]}case"Conv3D":{let a=N("strides",e,t,n),r=N("pad",e,t,n),s=N("dataFormat",e,t,n).toUpperCase(),i=N("dilations",e,t,n);return[n8(N("x",e,t,n),N("filter",e,t,n),[a[1],a[2],a[3]],r,s,[i[1],i[2],i[3]])]}case"AvgPool":{let a=N("strides",e,t,n),r=N("pad",e,t,n),s=N("kernelSize",e,t,n);return[Sf(N("x",e,t,n),[s[1],s[2]],[a[1],a[2]],r)]}case"MaxPool":{let a=N("strides",e,t,n),r=N("pad",e,t,n),s=N("kernelSize",e,t,n);return[Mf(N("x",e,t,n),[s[1],s[2]],[a[1],a[2]],r)]}case"MaxPoolWithArgmax":{let a=N("strides",e,t,n),r=N("pad",e,t,n),s=N("kernelSize",e,t,n),i=N("includeBatchInIndex",e,t,n),{result:o,indexes:l}=rK(N("x",e,t,n),[s[1],s[2]],[a[1],a[2]],r,i);return[o,l]}case"AvgPool3D":{let a=N("strides",e,t,n),r=N("pad",e,t,n),s=N("kernelSize",e,t,n);return[Q4(N("x",e,t,n),[s[1],s[2],s[3]],[a[1],a[2],a[3]],r)]}case"MaxPool3D":{let a=N("strides",e,t,n),r=N("pad",e,t,n),s=N("kernelSize",e,t,n);return[g8(N("x",e,t,n),[s[1],s[2],s[3]],[a[1],a[2],a[3]],r)]}case"Dilation2D":{let a=N("strides",e,t,n),r=N("pad",e,t,n),s=N("dilations",e,t,n),i=a[1],o=a[2],l=s[1],u=s[2];return[s8(N("x",e,t,n),N("filter",e,t,n),[i,o],r,[l,u],"NHWC")]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},hre=(e,t,n)=>{switch(e.op){case"Fill":{let a=N("shape",e,t,n),r=N("dtype",e,t,n),s=N("value",e,t,n);return[Eh(a,s,r)]}case"LinSpace":{let a=N("start",e,t,n),r=N("stop",e,t,n),s=N("num",e,t,n);return[Oq(a,r,s)]}case"Multinomial":{let a=N("logits",e,t,n),r=N("numSamples",e,t,n),s=N("seed",e,t,n);return[mK(a,r,s)]}case"OneHot":{let a=N("indices",e,t,n),r=N("depth",e,t,n),s=N("onValue",e,t,n),i=N("offValue",e,t,n);return[kh(a,r,s,i)]}case"Ones":return[os(N("shape",e,t,n),N("dtype",e,t,n))];case"OnesLike":return[$a(N("x",e,t,n))];case"RandomUniform":return[Rh(N("shape",e,t,n),N("minval",e,t,n),N("maxval",e,t,n),N("dtype",e,t,n))];case"Range":{let a=N("start",e,t,n),r=N("stop",e,t,n),s=N("step",e,t,n);return[Fh(a,r,s,N("dtype",e,t,n))]}case"TruncatedNormal":{let a=N("shape",e,t,n),r=N("mean",e,t,n),s=N("stdDev",e,t,n),i=N("seed",e,t,n);return[o2(a,r,s,N("dtype",e,t,n),i)]}case"Zeros":return[un(N("shape",e,t,n),N("dtype",e,t,n))];case"ZerosLike":return[at(N("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function I5(e,t,n){let a=N("boxes",e,t,n),r=N("scores",e,t,n),s=N("maxOutputSize",e,t,n),i=N("iouThreshold",e,t,n),o=N("scoreThreshold",e,t,n),l=N("softNmsSigma",e,t,n);return{boxes:a,scores:r,maxOutputSize:s,iouThreshold:i,scoreThreshold:o,softNmsSigma:l}}var pre=async(e,t,n)=>{switch(e.op){case"NonMaxSuppressionV5":{let{boxes:a,scores:r,maxOutputSize:s,iouThreshold:i,scoreThreshold:o,softNmsSigma:l}=I5(e,t,n),u=await to.nonMaxSuppressionWithScoreAsync(a,r,s,i,o,l);return[u.selectedIndices,u.selectedScores]}case"NonMaxSuppressionV4":{let{boxes:a,scores:r,maxOutputSize:s,iouThreshold:i,scoreThreshold:o}=I5(e,t,n),l=N("padToMaxOutputSize",e,t,n),u=await to.nonMaxSuppressionPaddedAsync(a,r,s,i,o,l);return[u.selectedIndices,u.validOutputs]}case"NonMaxSuppressionV3":case"NonMaxSuppressionV2":{let{boxes:a,scores:r,maxOutputSize:s,iouThreshold:i,scoreThreshold:o}=I5(e,t,n);return[await to.nonMaxSuppressionAsync(a,r,s,i,o)]}case"Where":{let a=we(N("condition",e,t,n),"bool"),r=[await TX(a)];return a.dispose(),r}case"ListDiff":return QK(N("x",e,t,n),N("y",e,t,n));default:throw TypeError(`Node type ${e.op} is not implemented`)}},cre=(e,t,n)=>{switch(e.op){case"TopKV2":{let a=N("x",e,t,n),r=N("k",e,t,n),s=N("sorted",e,t,n),i=N8(a,r,s);return[i.values,i.indices]}case"Unique":{let a=N("x",e,t,n),r=l2(a);return[r.values,r.indices]}case"UniqueV2":{let a=N("x",e,t,n),r=N("axis",e,t,n),s=l2(a,r);return[s.values,s.indices]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},fre=(e,t,n)=>{switch(e.op){case"Const":return t[e.name];case"PlaceholderWithDefault":let a=N("default",e,t,n);return[Ln(e.name,t,n)||a];case"Placeholder":return[Ln(e.name,t,n)];case"Identity":case"StopGradient":case"FakeQuantWithMinMaxVars":{let u=N("x",e,t,n);return[ms(u)]}case"IdentityN":return N("x",e,t,n).map(u=>ms(u));case"Snapshot":let r=N("x",e,t,n);return[ms(r)];case"Shape":return[$n(N("x",e,t,n).shape,"int32")];case"ShapeN":return N("x",e,t,n).map(u=>$n(u.shape));case"Size":return[Re(N("x",e,t,n).size,"int32")];case"Rank":return[Re(N("x",e,t,n).rank,"int32")];case"NoOp":return[Re(1)];case"Print":let s=N("x",e,t,n),i=N("data",e,t,n),o=N("message",e,t,n),l=N("summarize",e,t,n);console.warn("The graph has a tf.print() operation,usually used for debugging, which slows down performance."),console.log(o);for(let u=0;u<i.length;u++)console.log(Array.prototype.slice.call(i[u].dataSync()).slice(0,l));return[s];default:throw TypeError(`Node type ${e.op} is not implemented`)}},mre=class{constructor(e,t){this.keyDType=e,this.valueDType=t,this.handle=Re(0),this.tensorMap=new Map,Sn(this.handle)}get id(){return this.handle.id}clearAndClose(){this.tensorMap.forEach(e=>e.dispose()),this.tensorMap.clear(),this.handle.dispose()}size(){return this.tensorMap.size}tensorSize(){return Re(this.size(),"int32")}async import(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return this.tensorMap.forEach(a=>a.dispose()),this.tensorMap.clear(),Z(()=>{let a=or(t),r=n.length,s=a.length;k.assert(r===s,()=>`The number of elements doesn't match, keys has ${r} elements, the values has ${s} elements.`);for(let i=0;i<r;i++){let o=n[i],l=a[i];Sn(l),this.tensorMap.set(o,l)}return this.handle})}async find(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return Z(()=>{let a=[];for(let r=0;r<n.length;r++){let s=n[r],i=this.findWithDefault(s,t);a.push(i)}return Fa(a)})}findWithDefault(e,t){let n=this.tensorMap.get(e);return n!=null?n:t}checkKeyAndValueTensor(e,t){if(e.dtype!==this.keyDType)throw new Error(`Expect key dtype ${this.keyDType}, but got ${e.dtype}`);if(t.dtype!==this.valueDType)throw new Error(`Expect value dtype ${this.valueDType}, but got ${t.dtype}`)}},gre=async(e,t,n,a)=>{switch(e.op){case"HashTable":case"HashTableV2":{let r=N("keyDType",e,t,n),s=N("valueDType",e,t,n),i=new mre(r,s);return a.addHashTable(e.name,i),[i.handle]}case"LookupTableImport":case"LookupTableImportV2":{let r=N("tableHandle",e,t,n,a),s=N("keys",e,t,n),i=N("values",e,t,n);return[await a.getHashTableById(r.id).import(s,i)]}case"LookupTableFind":case"LookupTableFindV2":{let r=N("tableHandle",e,t,n,a),s=N("keys",e,t,n),i=N("defaultValue",e,t,n);return[await a.getHashTableById(r.id).find(s,i)]}case"LookupTableSize":case"LookupTableSizeV2":{let r=N("tableHandle",e,t,n,a);return[a.getHashTableById(r.id).tensorSize()]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},yre=(e,t,n)=>{switch(e.op){case"ResizeBilinear":{let a=N("images",e,t,n),r=N("size",e,t,n),s=N("alignCorners",e,t,n),i=N("halfPixelCenters",e,t,n);return[to.resizeBilinear(a,[r[0],r[1]],s,i)]}case"ResizeNearestNeighbor":{let a=N("images",e,t,n),r=N("size",e,t,n),s=N("alignCorners",e,t,n),i=N("halfPixelCenters",e,t,n);return[to.resizeNearestNeighbor(a,[r[0],r[1]],s,i)]}case"CropAndResize":{let a=N("image",e,t,n),r=N("boxes",e,t,n),s=N("boxInd",e,t,n),i=N("cropSize",e,t,n),o=N("method",e,t,n),l=N("extrapolationValue",e,t,n);return[to.cropAndResize(a,r,s,i,o,l)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Are=(e,t,n)=>{switch(e.op){case"Equal":return[Xi(N("a",e,t,n),N("b",e,t,n))];case"NotEqual":return[Yl(N("a",e,t,n),N("b",e,t,n))];case"Greater":return[Ca(N("a",e,t,n),N("b",e,t,n))];case"GreaterEqual":return[Yi(N("a",e,t,n),N("b",e,t,n))];case"Less":return[WA(N("a",e,t,n),N("b",e,t,n))];case"LessEqual":return[Ji(N("a",e,t,n),N("b",e,t,n))];case"LogicalAnd":return[ir(N("a",e,t,n),N("b",e,t,n))];case"LogicalNot":return[Cf(N("a",e,t,n))];case"LogicalOr":return[HA(N("a",e,t,n),N("b",e,t,n))];case"Select":case"SelectV2":return[Pn(N("condition",e,t,n),N("a",e,t,n),N("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},xre=(e,t,n)=>{switch(e.op){case"BatchMatMul":case"BatchMatMulV2":case"MatMul":return[it(N("a",e,t,n),N("b",e,t,n),N("transposeA",e,t,n),N("transposeB",e,t,n))];case"Einsum":return[cq(N("equation",e,t,n),...N("tensors",e,t,n))];case"Transpose":return[ct(N("x",e,t,n),N("perm",e,t,n))];case"_FusedMatMul":let[a,r]=N("fusedOps",e,t,n),s=a==="biasadd",i=r==="prelu",o=N("numArgs",e,t,n),l=N("leakyreluAlpha",e,t,n);if(s){if(i&&o!==2)throw new Error("Fused MatMul with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!i&&o!==1)throw new Error("Fused MatMul with BiasAdd must have one extra argument: bias.")}let[u,d]=N("args",e,t,n);return[eo.matMul({a:N("a",e,t,n),b:N("b",e,t,n),transposeA:N("transposeA",e,t,n),transposeB:N("transposeB",e,t,n),bias:u,activation:r,preluActivationWeights:d,leakyreluAlpha:l})];default:throw TypeError(`Node type ${e.op} is not implemented`)}},bre=(e,t,n)=>{switch(e.op){case"FusedBatchNorm":case"FusedBatchNormV2":return[Xl(N("x",e,t,n),N("mean",e,t,n),N("variance",e,t,n),N("offset",e,t,n),N("scale",e,t,n),N("epsilon",e,t,n))];case"FusedBatchNormV3":return[Xl(N("x",e,t,n),N("mean",e,t,n),N("variance",e,t,n),N("offset",e,t,n),N("scale",e,t,n),N("epsilon",e,t,n))];case"LRN":return[h8(N("x",e,t,n),N("radius",e,t,n),N("bias",e,t,n),N("alpha",e,t,n),N("beta",e,t,n))];case"Softmax":return[_f(N("x",e,t,n))];case"LogSoftmax":return[VA(N("x",e,t,n))];case"SparseToDense":return[M8(N("sparseIndices",e,t,n),N("outputShape",e,t,n),N("sparseValues",e,t,n),N("defaultValue",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},vre=(e,t,n)=>{switch(e.op){case"Max":{let i=N("axis",e,t,n),o=N("keepDims",e,t,n);return[sr(N("x",e,t,n),i,o)]}case"Mean":{let i=N("axis",e,t,n),o=N("keepDims",e,t,n);return[Xt(N("x",e,t,n),i,o)]}case"Min":{let i=N("axis",e,t,n),o=N("keepDims",e,t,n);return[$f(N("x",e,t,n),i,o)]}case"Sum":{let i=N("axis",e,t,n),o=N("keepDims",e,t,n);return[Ce(N("x",e,t,n),i,o)]}case"All":{let i=N("axis",e,t,n),o=N("keepDims",e,t,n);return[$A(N("x",e,t,n),i,o)]}case"Any":{let i=N("axis",e,t,n),o=N("keepDims",e,t,n);return[wf(N("x",e,t,n),i,o)]}case"ArgMax":{let i=N("axis",e,t,n);return[kf(N("x",e,t,n),i)]}case"ArgMin":{let i=N("axis",e,t,n);return[j4(N("x",e,t,n),i)]}case"Prod":{let i=N("axis",e,t,n),o=N("keepDims",e,t,n);return[qA(N("x",e,t,n),i,o)]}case"Cumsum":{let i=N("axis",e,t,n),o=N("exclusive",e,t,n),l=N("reverse",e,t,n);return[PA(N("x",e,t,n),i,o,l)]}case"Bincount":let a=N("x",e,t,n),r=N("weights",e,t,n),s=N("size",e,t,n);return[e8(a,r,s)];case"DenseBincount":{let i=N("x",e,t,n),o=N("weights",e,t,n),l=N("size",e,t,n),u=N("binaryOutput",e,t,n);return[eq(i,o,l,u)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},wre=(e,t,n)=>{switch(e.op){case"ConcatV2":case"Concat":{let a=N("n",e,t,n),r=N("axis",e,t,n),s=N("tensors",e,t,n);return s=s.slice(0,a),[en(s,r)]}case"Gather":{let a=N("x",e,t,n),r=N("indices",e,t,n);return[Mh(a,we(r,"int32"),0)]}case"GatherV2":{let a=N("axis",e,t,n),r=N("batchDims",e,t,n),s=N("x",e,t,n),i=N("indices",e,t,n);return[Mh(s,we(i,"int32"),a,r)]}case"Reverse":{let a=N("dims",e,t,n),r=[];for(let i=0;i<a.length;i++)a[i]&&r.push(i);let s=N("x",e,t,n);return[Ra(s,r)]}case"ReverseV2":{let a=N("axis",e,t,n),r=N("x",e,t,n);return[Ra(r,a)]}case"Slice":{let a=N("begin",e,t,n),r=N("size",e,t,n);return[nt(N("x",e,t,n),a,r)]}case"StridedSlice":{let a=N("begin",e,t,n),r=N("end",e,t,n),s=N("strides",e,t,n),i=N("beginMask",e,t,n),o=N("endMask",e,t,n),l=N("ellipsisMask",e,t,n),u=N("newAxisMask",e,t,n),d=N("shrinkAxisMask",e,t,n),h=N("x",e,t,n);return[I8(h,a,r,s,i,o,l,u,d)]}case"Pack":return Z(()=>{let a=N("axis",e,t,n),r=N("tensors",e,t,n),s=r[0].shape,i=Jl(r[0]).shape,o=r.map(l=>{let u=k.arraysEqual(l.shape,s);if(!u&&!k.arraysEqual(Jl(l).shape,i))throw new Error("the input tensors shape does not match");return u?l:Y(l,s)});return[Fa(o,a)]});case"Unpack":{let a=N("axis",e,t,n),r=N("tensor",e,t,n);return or(r,a)}case"Tile":{let a=N("reps",e,t,n);return[Zi(N("x",e,t,n),a)]}case"Split":case"SplitV":{let a=N("axis",e,t,n),r=N("numOrSizeSplits",e,t,n),s=N("x",e,t,n);return da(s,r,a)}case"ScatterNd":{let a=N("indices",e,t,n),r=N("values",e,t,n),s=N("shape",e,t,n);return[$X(a,r,s)]}case"GatherNd":{let a=N("x",e,t,n),r=N("indices",e,t,n);return[DX(a,r)]}case"SparseToDense":{let a=N("sparseIndices",e,t,n),r=N("outputShape",e,t,n),s=N("sparseValues",e,t,n),i=N("defaultValue",e,t,n);return[M8(a,s,r,s.dtype===i.dtype?i:we(i,s.dtype))]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},kre=(e,t,n)=>{switch(e.op){case"SparseFillEmptyRows":{let{outputIndices:a,outputValues:r,emptyRowIndicator:s,reverseIndexMap:i}=Vf.sparseFillEmptyRows(N("indices",e,t,n),N("values",e,t,n),N("denseShape",e,t,n),N("defaultValue",e,t,n));return[a,r,s,i]}case"SparseReshape":{let{outputIndices:a,outputShape:r}=Vf.sparseReshape(N("inputIndices",e,t,n),N("inputShape",e,t,n),N("newShape",e,t,n));return[a,r]}case"SparseSegmentMean":return[Vf.sparseSegmentMean(N("data",e,t,n),N("indices",e,t,n),N("segmentIds",e,t,n))];case"SparseSegmentSum":return[Vf.sparseSegmentSum(N("data",e,t,n),N("indices",e,t,n),N("segmentIds",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Ire=(e,t,n)=>{switch(e.op){case"FFT":return[r2(N("x",e,t,n))];case"IFFT":return[zf(N("x",e,t,n))];case"RFFT":return[s2(N("x",e,t,n))];case"IRFFT":return[k8(N("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Sre=(e,t,n)=>{switch(e.op){case"StringNGrams":{let{nGrams:a,nGramsSplits:r}=p2.stringNGrams(N("data",e,t,n),N("dataSplits",e,t,n),N("separator",e,t,n),N("nGramWidths",e,t,n),N("leftPad",e,t,n),N("rightPad",e,t,n),N("padWidth",e,t,n),N("preserveShortSequences",e,t,n));return[a,r]}case"StringSplit":{let{indices:a,values:r,shape:s}=p2.stringSplit(N("input",e,t,n),N("delimiter",e,t,n),N("skipEmpty",e,t,n));return[a,r,s]}case"StringToHashBucketFast":return[p2.stringToHashBucketFast(N("input",e,t,n),N("numBuckets",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Nre=(e,t,n)=>{switch(e.op){case"Cast":return[we(N("x",e,t,n),N("dtype",e,t,n))];case"ExpandDims":{let a=N("axis",e,t,n);return[Ea(N("x",e,t,n),a)]}case"Squeeze":{let a=N("axis",e,t,n);return[Jl(N("x",e,t,n),a)]}case"Reshape":return[Y(N("x",e,t,n),N("shape",e,t,n))];case"MirrorPad":return[y8(N("x",e,t,n),N("padding",e,t,n),N("mode",e,t,n))];case"PadV2":case"Pad":return[Bs(N("x",e,t,n),N("padding",e,t,n),N("constantValue",e,t,n))];case"SpaceToBatchND":{let a=N("blockShape",e,t,n),r=N("paddings",e,t,n);return[Rf(N("x",e,t,n),a,r)]}case"BatchToSpaceND":{let a=N("blockShape",e,t,n),r=N("crops",e,t,n);return[Nf(N("x",e,t,n),a,r)]}case"DepthToSpace":{let a=N("blockSize",e,t,n),r=N("dataFormat",e,t,n).toUpperCase();return[r8(N("x",e,t,n),a,r)]}case"BroadcastTo":return[Sh(N("x",e,t,n),N("shape",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function f9(e,t,n,a){let r=((s,i,o)=>{switch(s.category){case"arithmetic":return Z(()=>nre(s,i,o));case"basic_math":return Z(()=>are(s,i,o));case"control":return ure(s,i,o);case"convolution":return Z(()=>dre(s,i,o));case"creation":return Z(()=>hre(s,i,o));case"dynamic":return pre(s,i,o);case"evaluation":return Z(()=>cre(s,i,o));case"image":return Z(()=>yre(s,i,o));case"graph":return Z(()=>fre(s,i,o));case"logical":return Z(()=>Are(s,i,o));case"matrices":return Z(()=>xre(s,i,o));case"normalization":return Z(()=>bre(s,i,o));case"reduction":return Z(()=>vre(s,i,o));case"slice_join":return Z(()=>wre(s,i,o));case"sparse":return Z(()=>kre(s,i,o));case"spectral":return Z(()=>Ire(s,i,o));case"string":return Z(()=>Sre(s,i,o));case"transformation":return Z(()=>Nre(s,i,o));case"hash_table":return gre(s,i,o,a);case"custom":let l=VS(s.op);if(l&&l.customExecutor)return l.customExecutor(new tre(s,i,o));throw TypeError(`Custom op ${s.op} is not registered.`);default:throw TypeError(`Unknown op '${s.op}'. File an issue at https://github.com/tensorflow/tfjs/issues so we can add it, or register a custom execution with tf.registerOp()`)}})(e,t,n);return k.isPromise(r)?r.then(s=>[].concat(s)):[].concat(r)}var m9=class{constructor(e={},t={},n={},a={}){this.weightMap=e,this.tensorArrayMap=t,this.tensorListMap=n,this.functionMap=a,this.rootContext={id:0,frameName:"",iterationId:0},this.contexts=[this.rootContext],this.lastId=0,this.generateCurrentContextIds()}newFrame(e,t){return{id:e,frameName:t,iterationId:0}}set currentContext(e){this.contexts!==e&&(this.contexts=e,this.generateCurrentContextIds())}get currentContext(){return this.contexts}get currentContextId(){return this._currentContextIds[0]}get currentContextIds(){return this._currentContextIds}generateCurrentContextIds(){let e=[];for(let t=0;t<this.contexts.length-1;t++){let n=this.contexts.slice(0,this.contexts.length-t);e.push(this.contextIdforContexts(n))}e.push(""),this._currentContextIds=e}contextIdforContexts(e){return e?e.map(t=>t.id===0&&t.iterationId===0?"":`${t.frameName}-${t.iterationId}`).join("/"):""}enterFrame(e){this.contexts&&(this.lastId++,this.contexts=this.contexts.slice(),this.contexts.push(this.newFrame(this.lastId,e)),this._currentContextIds.unshift(this.contextIdforContexts(this.contexts)))}exitFrame(){if(this.contexts&&this.contexts.length>1)this.contexts=this.contexts.slice(),this.contexts.splice(-1),this.currentContextIds.shift();else throw new Error("Cannot exit frame, the context is empty")}nextIteration(){if(this.contexts&&this.contexts.length>0){this.contexts=this.contexts.slice(),this.lastId++;let e=Object.assign({},this.contexts[this.contexts.length-1]);e.iterationId+=1,e.id=this.lastId,this.contexts.splice(-1,1,e),this._currentContextIds.splice(0,1,this.contextIdforContexts(this.contexts))}else throw new Error("Cannot increase frame iteration, the context is empty")}getWeight(e){return this.weightMap[e]}addTensorArray(e){this.tensorArrayMap[e.id]=e}getTensorArray(e){return this.tensorArrayMap[e]}addTensorList(e){this.tensorListMap[e.id]=e}getTensorList(e){return this.tensorListMap[e]}dispose(e){for(let t in this.tensorArrayMap)this.tensorArrayMap[t].clearAndClose(e);for(let t in this.tensorListMap)this.tensorListMap[t].clearAndClose(e)}};function g9(e,t,n,a){let r=new Set,s=[],i=null,o=null,l=new Set,u=Object.keys(e).map(p=>ha(p)[0]),d=[];a!=null&&(d=a.map(p=>ha(p.name)[0]));let h=[...t];for(;h.length>0;){let p=h.pop();if((y9(p)||$re(p)||Rre(p))&&i==null&&(i=p,o=i.children.map(c=>c.name).filter(c=>r.has(c))),r.add(p.name),n[p.name]==null&&u.indexOf(p.name)===-1&&d.indexOf(p.name)===-1){if(p.inputs.length===0){s.push(p.name);continue}p.inputs.forEach(c=>{l.has(c.name)||(l.add(c.name),h.push(c))})}}return{inputs:e,outputs:t,usedNodes:r,missingInputs:s,dynamicNode:i,syncInputs:o}}function Tre(e,t,n){let{usedNodes:a,inputs:r}=n,s=[],i=Object.keys(r).map(d=>ha(d)[0]).map(d=>e.nodes[d]),o=e.initNodes;i.forEach(d=>{a.has(d.name)&&s.push(d)}),e.weights.forEach(d=>{a.has(d.name)&&s.push(d)}),o!=null&&o.forEach(d=>{a.has(d.name)&&s.push(d)});let l=new Set,u=[];for(;s.length>0;){let d=s.pop();l.add(d.name),t[d.name]||u.push(d),d.children.forEach(h=>{!l.has(h.name)&&a.has(h.name)&&h.inputs.every(p=>l.has(p.name))&&s.push(h)})}return u}var Ere=["Switch","Merge","Enter","Exit","NextIteration","StatelessIf","StatelessWhile","if","While"],Cre=["NonMaxSuppressionV2","NonMaxSuppressionV3","NonMaxSuppressionV5","Where"],Mre=["HashTable","HashTableV2","LookupTableImport","LookupTableImportV2","LookupTableFind","LookupTableFindV2","LookupTableSize","LookupTableSizeV2"];function y9(e){return Ere.indexOf(e.op)>=0}function $re(e){return Cre.indexOf(e.op)>=0}function Rre(e){return Mre.indexOf(e.op)>=0}var S5=class{constructor(e,t){this.graph=e,this.parent=t,this.compiledMap=new Map,this._weightMap={},this.SEPERATOR=",",this._functions={},this._functionExecutorMap={},this._outputs=e.outputs,this._inputs=e.inputs,this._initNodes=e.initNodes,this._signature=e.signature,this._functions=e.functions,e.functions!=null&&Object.keys(e.functions).forEach(n=>{this._functionExecutorMap[n]=new S5(e.functions[n],this)})}get weightIds(){return this.parent?this.parent.weightIds:this._weightIds}get functionExecutorMap(){return this.parent?this.parent.functionExecutorMap:this._functionExecutorMap}get weightMap(){return this.parent?this.parent.weightMap:this._weightMap}set weightMap(e){let t=Object.keys(e).map(n=>e[n].map(a=>a.id));this._weightIds=[].concat(...t),this._weightMap=e}set resourceManager(e){this._resourceManager=e}get inputs(){return this._inputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get outputs(){return this._outputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get inputNodes(){return this._inputs.map(e=>e.signatureKey||e.name)}get outputNodes(){return this._outputs.map(e=>{let t=e.signatureKey||e.name;return e.defaultOutput?`${t}:${e.defaultOutput}`:t})}get functions(){return Object.keys(this._functions).reduce((e,t)=>(e[t]=this._functions[t].signature,e),{})}getCompilationKey(e,t){let n=e.map(r=>r.name).sort(),a=t.map(r=>r.name).sort();return n.join(this.SEPERATOR)+"--"+a.join(this.SEPERATOR)}compile(e,t){let n=g9(e,t,this.weightMap,this._initNodes),{missingInputs:a,dynamicNode:r,syncInputs:s}=n;if(r!=null)throw new Error(`This execution contains the node '${r.name}', which has the dynamic op '${r.op}'. Please use model.executeAsync() instead. Alternatively, to avoid the dynamic ops, specify the inputs [${s}]`);if(a.length>0){let i=t.map(l=>l.name),o=Object.keys(e);throw new Error(`Cannot compute the outputs [${i}] from the provided inputs [${o}]. Missing the following inputs: [${a}]`)}return Tre(this.graph,this.weightMap,n)}execute(e,t){e=this.mapInputs(e);let n=Object.keys(e).sort();this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t);let a=n.map(d=>this.graph.nodes[ha(d)[0]]),r=t.map(d=>ha(d)[0]),s=r.map(d=>this.graph.nodes[d]);s.length===0&&(s=this._outputs);let i=this.getCompilationKey(a,s),o=this.compiledMap.get(i);o==null&&(o=this.compile(e,s),this.compiledMap.set(i,o));let l={},u={};return Z(()=>{let d=new m9(this.weightMap,l,u,this.functionExecutorMap),h={...this.weightMap};Object.keys(e).forEach(m=>{let[f,g]=ha(m),y=[];y[g]=e[m],h[f]=y});let p=this.getFrozenTensorIds(h),c={};for(let m=0;m<o.length;m++){let f=o[m];if(!h[f.name]){let g=f9(f,h,d,this._resourceManager);if(k.isPromise(g))throw new Error(`The execution of the op '${f.op}' returned a promise. Please use model.executeAsync() instead.`);h[f.name]=g,this.checkTensorForDisposal(f.name,f,h,d,p,r,c)}}return this.parent==null&&d.dispose(p),t.map(m=>Ln(m,h,d))})}getFrozenTensorIds(e){let t=[].concat.apply([],Object.keys(e).map(n=>e[n]).map(n=>n.map(a=>a.id)));return new Set(t)}checkTensorForDisposal(e,t,n,a,r,s,i){t.category==="control"||s.indexOf(e)!==-1||(n[e].forEach(o=>{o!=null&&(i[o.id]=(i[o.id]||0)+t.children.length)}),t.inputs.forEach(o=>{if(o.category!=="control"){let l=Oae(o.name,n,a);l!=null&&l.forEach(u=>{if(u&&!u.kept&&!r.has(u.id)){let d=i[u.id];d===1?(u.dispose(),delete i[u.id]):d!=null&&i[u.id]--}})}}))}async executeAsync(e,t){return this._executeAsync(e,t)}async _executeAsync(e,t,n=!1,a={},r={}){n||(e=this.mapInputs(e),this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t));let s=new m9(this.weightMap,a,r,this.functionExecutorMap),i=await this.executeWithControlFlow(e,s,t,n),o=t.map(h=>Ln(h,i,s)),l=o.map(h=>h.id),u=Object.keys(e).map(h=>e[h].id),d=new Set([...l,...u,...this.weightIds]);return Object.keys(i).forEach(h=>{i[h].forEach(p=>{p&&!p.kept&&!p.isDisposed&&!d.has(p.id)&&p.dispose()})}),this.parent==null&&s.dispose(d),o}async executeFunctionAsync(e,t,n){let a=e.reduce((r,s,i)=>(r[this.inputs[i].name]=s,r),{});return this._executeAsync(a,this.outputNodes,!0,t,n)}async executeWithControlFlow(e,t,n,a){let r=Object.keys(e),s=r.map(A=>this.graph.nodes[ha(A)[0]]),i=n.map(A=>ha(A)[0]),o=i.map(A=>this.graph.nodes[A]);o.length===0&&(o=this._outputs);let{usedNodes:l,missingInputs:u,dynamicNode:d,syncInputs:h}=g9(e,o,this.weightMap,this._initNodes),p=[...s,...this.graph.weights,...this._initNodes||[]].map(A=>({node:A,contexts:t.currentContext})),c={...this.weightMap};Object.keys(e).forEach(A=>{let[x,v]=ha(A),b=[];b[v]=e[A],c[x]=b});let m={},f=this.getFrozenTensorIds(c),g={};for(;p.length>0;){let A=this.processStack(s,p,t,c,g,f,i,m,l);await Promise.all(A)}d==null&&!a&&console.warn("This model execution did not contain any nodes with control flow or dynamic output shapes. You can use model.execute() instead.");let y=o.filter(A=>!y9(A)&&!Ln(A.name,c,t)).map(A=>A.name);if(y.length>0){let A="";throw d!=null&&(A=`Alternatively, to avoid the dynamic ops, use model.execute() and specify the inputs [${h}]`),new Error(`Cannot compute the outputs [${y}] from the provided inputs [${r}]. Consider providing the following inputs: [${u}]. ${A}`)}return c}processStack(e,t,n,a,r,s,i,o,l){let u=[];for(;t.length>0;){let d=t.pop();n.currentContext=d.contexts;let h="";if(d.node.op==="Enter"&&N("isConstant",d.node,a,n)&&([h]=fs(d.node.name,n)),a[d.node.name]==null){let p=f9(d.node,a,n,this._resourceManager);h||([h]=fs(d.node.name,n));let c=n.currentContext;k.isPromise(p)?u.push(p.then(m=>(a[h]=m,n.currentContext=c,this.checkTensorForDisposal(h,d.node,a,n,s,i,o),this.processChildNodes(d.node,t,n,a,r,l),m))):(a[h]=p,this.checkTensorForDisposal(h,d.node,a,n,s,i,o),this.processChildNodes(d.node,t,n,a,r,l))}else this.processChildNodes(d.node,t,n,a,r,l)}return u}processChildNodes(e,t,n,a,r,s){e.children.forEach(i=>{let[o]=fs(i.name,n);r[o]||!s.has(i.name)||(i.op==="Merge"?i.inputNames.some(l=>!!Ln(l,a,n))&&(r[o]=!0,t.push({contexts:n.currentContext,node:i})):i.inputNames.every(l=>!!Ln(l,a,n))&&(r[o]=!0,t.push({contexts:n.currentContext,node:i})))})}dispose(){Object.keys(this.weightMap).forEach(e=>this.weightMap[e].forEach(t=>t.dispose()))}checkInputShapeAndType(e){Object.keys(e).forEach(t=>{let n=e[t],[a]=ha(t),r=this.graph.nodes[a];if(r.attrParams.shape&&r.attrParams.shape.value){let s=r.attrParams.shape.value,i=s.length===n.shape.length&&n.shape.every((o,l)=>s[l]===-1||s[l]===o);k.assert(i,()=>`The shape of dict['${r.name}'] provided in model.execute(dict) must be [${s}], but was [${n.shape}]`)}r.attrParams.dtype&&r.attrParams.dtype.value&&k.assert(n.dtype===r.attrParams.dtype.value,()=>`The dtype of dict['${r.name}'] provided in model.execute(dict) must be ${r.attrParams.dtype.value}, but was ${n.dtype}`)})}mapInputs(e){let t={};for(let n in e)if(this._signature!=null&&this._signature.inputs!=null&&this._signature.inputs[n]!=null){let a=this._signature.inputs[n];t[a.name]=e[n]}else t[n]=e[n];return t}checkInputs(e){let t=Object.keys(e).filter(n=>{let[a]=ha(n);return this.graph.nodes[a]==null});if(t.length>0)throw new Error(`The dict provided in model.execute(dict) has keys: [${t}] that are not part of graph`)}mapOutputs(e){return e.map(t=>this._signature!=null&&this._signature.outputs!=null&&this._signature.outputs[t]!=null?this._signature.outputs[t].name:t,{})}checkOutputs(e){e.forEach(t=>{let[n]=ha(t);if(!this.graph.nodes[n])throw new Error(`The output '${t}' is not found in the graph`)})}},Fre=class{constructor(e={},t={}){this.hashTableNameToHandle=e,this.hashTableMap=t}addHashTable(e,t){this.hashTableNameToHandle[e]=t.handle,this.hashTableMap[t.id]=t}getHashTableHandleByName(e){return this.hashTableNameToHandle[e]}getHashTableById(e){return this.hashTableMap[e]}dispose(){for(let e in this.hashTableMap)this.hashTableMap[e].clearAndClose(),delete this.hashTableMap[e];for(let e in this.hashTableNameToHandle)this.hashTableNameToHandle[e].dispose(),delete this.hashTableNameToHandle[e]}},Ore="?tfjs-format=file",Dre="model.json",A9=class{constructor(e,t={}){this.modelUrl=e,this.loadOptions=t,this.version="n/a",t==null&&(this.loadOptions={}),this.resourceManager=new Fre}get modelVersion(){return this.version}get inputNodes(){return this.executor.inputNodes}get outputNodes(){return this.executor.outputNodes}get inputs(){return this.executor.inputs}get outputs(){return this.executor.outputs}get weights(){return this.executor.weightMap}get metadata(){return this.artifacts.userDefinedMetadata}get modelSignature(){return this.signature}findIOHandler(){let e=this.modelUrl;if(e.load!=null)this.handler=e;else if(this.loadOptions.requestInit!=null)this.handler=la.browserHTTPRequest(e,this.loadOptions);else{let t=la.getLoadHandlers(e,this.loadOptions);if(t.length===0)t.push(la.browserHTTPRequest(e,this.loadOptions));else if(t.length>1)throw new Error(`Found more than one (${t.length}) load handlers for URL '${[e]}'`);this.handler=t[0]}}async load(){if(this.findIOHandler(),this.handler.load==null)throw new Error("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let e=await this.handler.load();return this.loadSync(e)}loadSync(e){this.artifacts=e;let t=this.artifacts.modelTopology,n;this.artifacts.userDefinedMetadata!=null&&this.artifacts.userDefinedMetadata.signature!=null?n=this.artifacts.userDefinedMetadata.signature:n=this.artifacts.signature,this.signature=n,this.version=`${t.versions.producer}.${t.versions.minConsumer}`;let a=la.decodeWeights(this.artifacts.weightData,this.artifacts.weightSpecs);if(this.executor=new S5(l9.Instance.transformGraph(t,this.signature)),this.executor.weightMap=this.convertTensorMapToTensorsMap(a),this.executor.resourceManager=this.resourceManager,e.modelInitializer!=null&&e.modelInitializer.node!=null){let r=l9.Instance.transformGraph(e.modelInitializer);this.initializer=new S5(r),this.initializer.weightMap=this.executor.weightMap,this.initializer.resourceManager=this.resourceManager,this.initializer.executeAsync({},[])}return!0}async save(e,t){if(typeof e=="string"){let n=la.getSaveHandlers(e);if(n.length===0)throw new Error(`Cannot find any save handlers for URL '${e}'`);if(n.length>1)throw new Error(`Found more than one (${n.length}) save handlers for URL '${e}'`);e=n[0]}if(e.save==null)throw new Error("GraphModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");return e.save(this.artifacts)}predict(e,t){return this.execute(e,this.outputNodes)}normalizeInputs(e){if(!(e instanceof Tt)&&!Array.isArray(e))return e;if(e=Array.isArray(e)?e:[e],e.length!==this.inputNodes.length)throw new Error(`Input tensor count mismatch,the graph model has ${this.inputNodes.length} placeholders, while there are ${e.length} input tensors.`);return this.inputNodes.reduce((t,n,a)=>(t[n]=e[a],t),{})}normalizeOutputs(e){return e=e||this.outputNodes,Array.isArray(e)?e:[e]}execute(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=this.executor.execute(e,t);return n.length>1?n:n[0]}async executeAsync(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=await this.executor.executeAsync(e,t);return n.length>1?n:n[0]}convertTensorMapToTensorsMap(e){return Object.keys(e).reduce((t,n)=>(t[n]=[e[n]],t),{})}dispose(){this.executor.dispose(),this.initializer&&this.initializer.dispose(),this.resourceManager.dispose()}};async function Et(e,t={}){if(e==null)throw new Error("modelUrl in loadGraphModel() cannot be null. Please provide a url or an IOHandler that loads the model");t==null&&(t={}),t.fromTFHub&&e.load==null&&(e.endsWith("/")||(e=e+"/"),e=`${e}${Dre}${Ore}`);let n=new A9(e,t);return await n.load(),n}var _re="3.7.0",x9={};$e(x9,{CSVDataset:()=>F9,Dataset:()=>uu,FileDataSource:()=>W9,TextLineDataset:()=>M9,URLDataSource:()=>B9,array:()=>sse,csv:()=>gse,func:()=>yse,generator:()=>Ase,microphone:()=>bse,version_data:()=>vse,webcam:()=>xse,zip:()=>ise});var zre=qr(P3()),Pre=qr(P3());function Lre(e,t){return S0(e,t)}function S0(e,t,n=new Map,a=new Set){if(e==null)return null;if(a.has(e))throw new Error("Circular references are not supported.");if(n.has(e))return n.get(e);let r=t(e);if(r.recurse&&r.value!==null)throw new Error("A deep map function may not return both a value and recurse=true.");if(r.recurse)if(lu(e)){let s=Array.isArray(e)?[]:{};a.add(e);for(let i in e){let o=e[i],l=S0(o,t,n,a);s[i]=l}return a.delete(e),s}else throw new Error(`Can't recurse into non-iterable type: ${e}`);else return n.set(e,r.value),r.value}function Wre(e,t=v9){return b9(e,t)}function b9(e,t,n=new Set){let a=e[0];if(n.has(a))throw new Error("Circular references are not supported.");let r=t(e);if(r.recurse&&r.value!==null)throw new Error("A deep zip function may not return both a value and recurse=true.");if(r.recurse)if(lu(a)){let s=Array.isArray(a)?[]:{};n.add(a);for(let i in a){let o=e.map(u=>u[i]),l=b9(o,t,n);s[i]=l}return n.delete(a),s}else throw new Error(`Can't recurse into non-iterable type: ${a}`);else return r.value}function v9(e){return e===null?null:lu(e[0])?{value:null,recurse:!0}:{value:e,recurse:!1}}async function w9(e,t){let n=new Map;S0(e,t,n);for(let a of Array.from(n.keys())){let r=n.get(a);if(k.isPromise(r)){let s=await r;n.set(a,s)}}return S0(e,t,n)}function lu(e){return e!=null&&!ArrayBuffer.isView(e)&&(Array.isArray(e)||typeof e=="object"&&!(e instanceof Tt))}function Bre(e){return e==null||Vre(e)||Array.isArray(e)||typeof e=="object"&&e instanceof Tt||k.isTypedArray(e)}function Vre(e){return e===null||typeof e!="object"&&typeof e!="function"}function Ure(e){return Lre(e,jre)}function jre(e){return e instanceof Tt?{value:e.clone(),recurse:!1}:lu(e)?{value:null,recurse:!0}:{value:e,recurse:!1}}var k9=class{constructor(e){if(this.capacity=e,this.begin=0,this.end=0,e==null)throw new RangeError("Can't create a ring buffer of unknown capacity.");if(e<1)throw new RangeError("Can't create ring buffer of capacity < 1.");this.data=new Array(e),this.doubledCapacity=2*e}wrap(e){for(;e<0;)e+=this.doubledCapacity;return e%this.doubledCapacity}get(e){if(e<0)throw new RangeError("Can't get item at a negative index.");return this.data[e%this.capacity]}set(e,t){if(e<0)throw new RangeError("Can't set item at a negative index.");this.data[e%this.capacity]=t}length(){let e=this.end-this.begin;return e<0&&(e=this.doubledCapacity+e),e}isFull(){return this.length()===this.capacity}isEmpty(){return this.length()===0}push(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.set(this.end,e),this.end=this.wrap(this.end+1)}pushAll(e){for(let t of e)this.push(t)}pop(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");this.end=this.wrap(this.end-1);let e=this.get(this.end);return this.set(this.end,void 0),e}unshift(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.begin=this.wrap(this.begin-1),this.set(this.begin,e)}shift(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let e=this.get(this.begin);return this.set(this.begin,void 0),this.begin=this.wrap(this.begin+1),e}shuffleExcise(e){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let t=this.wrap(this.begin+e),n=this.get(t);return this.set(t,this.pop()),n}},I9=class extends k9{constructor(){super(I9.INITIAL_CAPACITY)}isFull(){return!1}push(e){super.isFull()&&this.expand(),super.push(e)}unshift(e){super.isFull()&&this.expand(),super.unshift(e)}expand(){let e=this.capacity*2,t=new Array(e),n=this.length();for(let a=0;a<n;a++)t[a]=this.get(this.wrap(this.begin+a));this.data=t,this.capacity=e,this.doubledCapacity=2*this.capacity,this.begin=0,this.end=n}},S9=I9;S9.INITIAL_CAPACITY=32;function N9(e){return new qre(e)}function N5(e){return new Kre(e)}function Hre(e,t){return new E9(e,t)}function Gre(e,t=N0.FAIL){return new ase(e,t)}var xn=class{async toArray(){let e=[],t=await this.next();for(;!t.done;)e.push(t.value),t=await this.next();return e}async toArrayForTest(){let e=this.prefetch(100),t=[],n=await e.next();for(;!n.done;)t.push(n.value),n=await e.next();return t}async resolveFully(){let e=await this.next();for(;!e.done;)e=await this.next()}async resolveWhile(e){let t=await this.next(),n=e(t.value);for(;!t.done&&n;)t=await this.next(),n=e(t.value)}handleErrors(e){return new tse(this,e)}filter(e){return new Qre(this,e)}map(e){return new ese(this,e)}mapAsync(e){return new T9(this,e)}serialMapAsync(e){return new T9(this,e).serial()}flatmap(e){return new nse(this,e)}async forEachAsync(e){return this.map(e).resolveFully()}async serialForEach(e){return this.serialMapAsync(e).resolveWhile(t=>t===!0)}rowMajorBatch(e,t=!0){return new Jre(this,e,t)}columnMajorBatch(e,t=!0,n=v9){return this.rowMajorBatch(e,t).map(a=>Wre(a,n))}concatenate(e,t){return new E9(N9([this,e]),t)}take(e){return e<0||e==null?this:new Yre(this,e)}skip(e){return e<0||e==null?this:new Zre(this,e)}prefetch(e){return new C9(this,e)}shuffle(e,t){return new rse(this,e,t)}serial(){return new Xre(this)}},qre=class extends xn{constructor(e){super();this.items=e,this.trav=0}summary(){return`Array of ${this.items.length} items`}async next(){if(this.trav>=this.items.length)return{value:null,done:!0};let e=this.items[this.trav];return this.trav++,{value:Ure(e),done:!1}}},Kre=class extends xn{constructor(e){super();this.nextFn=e}summary(){return"Function call"}async next(){try{return this.nextFn()}catch(e){throw e.message=`Error thrown while iterating through a dataset: ${e.message}`,e}}},Xre=class extends xn{constructor(e){super();this.upstream=e,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Serial`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){return this.upstream.next()}},Zre=class extends xn{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Skip`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.count++<this.maxCount;){let e=await this.upstream.next();if(e.done)return e;Ge(e.value)}return this.upstream.next()}},Yre=class extends xn{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0}summary(){return`${this.upstream.summary()} -> Take`}async next(){return this.count++>=this.maxCount?{value:null,done:!0}:this.upstream.next()}},Jre=class extends xn{constructor(e,t,n=!0){super();this.upstream=e,this.batchSize=t,this.enableSmallLastBatch=n,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> RowMajorBatch`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){let e=[];for(;e.length<this.batchSize;){let t=await this.upstream.next();if(t.done)return this.enableSmallLastBatch&&e.length>0?{value:e,done:!1}:{value:null,done:!0};e.push(t.value)}return{value:e,done:!1}}},Qre=class extends xn{constructor(e,t){super();this.upstream=e,this.predicate=t,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Filter`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;){let e=await this.upstream.next();if(e.done||this.predicate(e.value))return e;Ge(e.value)}}},ese=class extends xn{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Map`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=Er.getTensorsInContainer(e.value),n=this.transform(e.value),a=Er.getTensorsInContainer(n);for(let r of t)Er.isTensorInList(r,a)||r.dispose();return{value:n,done:!1}}},tse=class extends xn{constructor(e,t){super();this.upstream=e,this.handler=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> handleErrors`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;)try{return await this.upstream.next()}catch(e){if(!this.handler(e))return{value:null,done:!0}}}},T9=class extends xn{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> AsyncMap`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=Er.getTensorsInContainer(e.value),n=await this.transform(e.value),a=Er.getTensorsInContainer(n);for(let r of t)Er.isTensorInList(r,a)||r.dispose();return{value:n,done:!1}}},T5=class extends xn{constructor(){super();this.outputQueue=new S9,this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.outputQueue.length()===0;)if(!await this.pump())return{value:null,done:!0};return{value:this.outputQueue.shift(),done:!1}}},nse=class extends T5{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Flatmap`}async pump(){let e=await this.upstream.next();if(e.done)return!1;let t=Er.getTensorsInContainer(e.value),n=this.transform(e.value),a=Er.getTensorsInContainer(n);this.outputQueue.pushAll(n);for(let r of t)Er.isTensorInList(r,a)||r.dispose();return!0}},E9=class extends xn{constructor(e,t){super();this.baseErrorHandler=t,this.lastRead=null,this.iterator=null,this.moreIterators=e}summary(){return"TODO: fill in upstream of chained summaries -> Chained"}async next(){return this.lastRead=this.readFromChain(this.lastRead),this.lastRead}async readFromChain(e){if(await e,this.iterator==null){let n=await this.moreIterators.next();if(n.done)return{value:null,done:!0};this.iterator=n.value,this.baseErrorHandler!=null&&(this.iterator=this.iterator.handleErrors(this.baseErrorHandler))}let t=await this.iterator.next();return t.done?(this.iterator=null,this.readFromChain(e)):t}},N0;(function(e){e[e.FAIL=0]="FAIL",e[e.SHORTEST=1]="SHORTEST",e[e.LONGEST=2]="LONGEST"})(N0||(N0={}));var ase=class extends xn{constructor(e,t=0){super();this.iterators=e,this.mismatchMode=t,this.count=0,this.currentPromise=null}summary(){return"{TODO: fill in upstream of zip summaries} -> Zip"}async nextState(e){await e;let t=0,n=0;function a(s){return s instanceof xn?{value:s.next().then(i=>(t++,i.done&&n++,i.value)),recurse:!1}:{value:null,recurse:!0}}let r=await w9(this.iterators,a);if(t===n)return{value:null,done:!0};if(n>0)switch(this.mismatchMode){case 0:throw new Error(`Zipped streams should have the same length. Mismatched at element ${this.count}.`);case 1:return{value:null,done:!0};case 2:default:}return this.count++,{value:r,done:!1}}async next(){return this.currentPromise=this.nextState(this.currentPromise),this.currentPromise}},C9=class extends xn{constructor(e,t){super();this.upstream=e,this.bufferSize=t,this.buffer=new k9(t)}summary(){return`${this.upstream.summary()} -> Prefetch`}refill(){for(;!this.buffer.isFull();){let e=this.upstream.next();this.buffer.push(e)}}next(){return this.refill(),this.buffer.shift()}},rse=class extends C9{constructor(e,t,n){super(e,t);this.upstream=e,this.windowSize=t,this.upstreamExhausted=!1,this.random=Pre.alea(n||k.now().toString()),this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}randomInt(e){return Math.floor(this.random()*e)}chooseIndex(){return this.randomInt(this.buffer.length())}async serialNext(){for(this.upstreamExhausted||this.refill();!this.buffer.isEmpty();){let e=this.chooseIndex(),t=await this.buffer.shuffleExcise(e);if(t.done)this.upstreamExhausted=!0;else return this.refill(),t}return{value:null,done:!0}}},uu=class{constructor(){this.size=null}batch(e,t=!0){let n=this;k.assert(e>0,()=>`batchSize needs to be positive, but it is
|
|
${e}`);let a;return this.size===Infinity||this.size==null?a=this.size:t?a=Math.ceil(this.size/e):a=Math.floor(this.size/e),pa(async()=>(await n.iterator()).columnMajorBatch(e,t,ose),a)}concatenate(e){let t=this,n;return this.size===Infinity||e.size===Infinity?n=Infinity:this.size!=null&&e.size!=null?n=this.size+e.size:n=null,pa(async()=>(await t.iterator()).concatenate(await e.iterator()),n)}filter(e){let t=this,n;return this.size===Infinity?n=Infinity:n=null,pa(async()=>(await t.iterator()).filter(a=>Z(()=>e(a))),n)}async forEachAsync(e){return(await this.iterator()).forEachAsync(e)}map(e){let t=this;return pa(async()=>(await t.iterator()).map(n=>Z(()=>e(n))),this.size)}mapAsync(e){let t=this;return pa(async()=>(await t.iterator()).mapAsync(e),this.size)}prefetch(e){if(e==null)throw new RangeError("`Dataset.prefetch()` requires bufferSize to be specified.");let t=this;return pa(async()=>(await t.iterator()).prefetch(e),this.size)}repeat(e){let t=this,n;return this.size!=null&&e>0?n=this.size*e:e===0?n=0:this.size!=null&&(e===void 0||e<0)?n=Infinity:n=null,pa(async()=>{let a=N5(async()=>({value:await t.iterator(),done:!1}));return Hre(a.take(e))},n)}skip(e){let t=this,n;return this.size!=null&&e>=0&&this.size>=e?n=this.size-e:this.size!=null&&(this.size<e||e===void 0||e<0)?n=0:n=null,pa(async()=>(await t.iterator()).skip(e),n)}shuffle(e,t,n=!0){if(e==null||e<0)throw this.size==null?new RangeError("`Dataset.shuffle()` requires bufferSize to be specified."):new RangeError(`\`Dataset.shuffle()\` requires bufferSize to be specified. If your data fits in main memory (for regular JS objects), and/or GPU memory (for \`tf.Tensor\`s), consider setting bufferSize to the dataset size (${this.size} elements)`);let a=this,r=zre.alea(t||k.now().toString());return pa(async()=>{let s=r.int32();return n&&(s+=r.int32()),(await a.iterator()).shuffle(e,s.toString())},this.size)}take(e){let t=this,n;return this.size!=null&&this.size>e?n=e:this.size!=null&&this.size<=e?n=this.size:n=null,pa(async()=>(await t.iterator()).take(e),n)}async toArray(){if(this.size===Infinity)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArray()}async toArrayForTest(){if(this.size===Infinity)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArrayForTest()}};uu.MAX_BUFFER_SIZE=1e4;function pa(e,t=null){return new class extends uu{constructor(){super(...arguments);this.size=t}async iterator(){return e()}}}function sse(e){return pa(async()=>N9(e),e.length)}function ise(e){if(!lu(e))throw new Error("The argument to zip() must be an object or array.");let t;if(Array.isArray(e))for(let n=0;n<e.length;n++)t=t==null?e[n].size:Math.min(t,e[n].size);else if(e instanceof Object)for(let n in e)t=t==null?e[n].size:Math.min(t,e[n].size);return pa(async()=>{let n=await w9(e,a=>{if(a instanceof uu)return{value:a.iterator(),recurse:!1};if(lu(a))return{value:null,recurse:!0};throw new Error("Leaves of the structure passed to zip() must be Datasets, not primitives.")});return Gre(n,N0.SHORTEST)},t)}function ose(e){if(e===null)return null;let t=e[0];return Bre(t)?{value:lse(e),recurse:!1}:{value:null,recurse:!0}}function lse(e){if(e.length===0)throw new Error("Can't make a batch of zero elements.");return e[0]instanceof Tt?Fa(e):Cr(e)}var M9=class extends uu{constructor(e){super();this.input=e}async iterator(){return(await this.input.iterator()).decodeUTF8().split(`
|
|
`).map(e=>(e.endsWith("\r")&&(e=e.slice(0,-1)),e))}},T0='"',ep=Symbol("out"),$9=Symbol("field"),E0=Symbol("quote"),E5=Symbol("quoteafterquote"),R9=Symbol("quoteinquote"),F9=class extends uu{constructor(e,t){super();this.input=e,this.hasHeader=!0,this.fullColumnNames=null,this.columnNamesValidated=!1,this.columnConfigs=null,this.configuredColumnsOnly=!1,this.delimiter=",",this.delimWhitespace=!1,this.base=new M9(e),t||(t={}),this.hasHeader=t.hasHeader!==!1,this.fullColumnNames=t.columnNames,this.columnConfigs=t.columnConfigs,this.configuredColumnsOnly=t.configuredColumnsOnly,t.delimWhitespace?(k.assert(t.delimiter==null,()=>"Delimiter should not be provided when delimWhitespace is true."),this.delimWhitespace=!0,this.delimiter=" "):this.delimiter=t.delimiter?t.delimiter:","}async columnNames(){return this.columnNamesValidated||await this.setColumnNames(),this.configuredColumnsOnly?Object.keys(this.columnConfigs):this.fullColumnNames}async setColumnNames(){let e=await this.maybeReadHeaderLine();if(!this.fullColumnNames&&!e)throw new Error("Column names must be provided if there is no header line.");this.fullColumnNames&&e&&k.assert(e.length===this.fullColumnNames.length,()=>"The length of provided columnNames ("+this.fullColumnNames.length.toString()+") does not match the length of the header line read from file ("+e.length.toString()+")."),this.fullColumnNames||(this.fullColumnNames=e);let t=this.fullColumnNames.reduce((a,r)=>(a[r]=a[r]+1||1,a),{}),n=Object.keys(t).filter(a=>t[a]>1);if(k.assert(n.length===0,()=>"Duplicate column names found: "+n.toString()),this.columnConfigs){for(let a of Object.keys(this.columnConfigs))if(this.fullColumnNames.indexOf(a)===-1)throw new Error('The key "'+a+'" provided in columnConfigs does not match any of the column names ('+this.fullColumnNames.toString()+").")}this.columnNamesValidated=!0}async maybeReadHeaderLine(){if(this.hasHeader){let e=await(await this.base.iterator()).next();if(e.done)throw new Error("No data was found for CSV parsing.");let t=e.value;return this.parseRow(t,!1)}else return null}async iterator(){this.columnNamesValidated||await this.setColumnNames();let e=await this.base.iterator();return this.hasHeader&&(e=e.skip(1)),e.map(t=>this.makeDataElement(t))}makeDataElement(e){let t=this.parseRow(e),n={},a={};for(let r=0;r<this.fullColumnNames.length;r++){let s=this.fullColumnNames[r],i=this.columnConfigs?this.columnConfigs[s]:null;if(!(this.configuredColumnsOnly&&!i)){let o=t[r],l=null;if(o==="")if(i&&i.default!==void 0)l=i.default;else{if(i&&(i.required||i.isLabel))throw new Error(`Required column ${s} is empty in this line: ${e}`);l=void 0}else{let u=Number(o);if(isNaN(u))i&&i.dtype==="bool"?l=this.getBoolean(o):l=o;else if(!i||!i.dtype)l=u;else switch(i.dtype){case"float32":l=u;break;case"int32":l=Math.floor(u);break;case"bool":l=this.getBoolean(o);break;default:l=u}}i&&i.isLabel?a[s]=l:n[s]=l}}return Object.keys(a).length===0?n:{xs:n,ys:a}}getBoolean(e){return e==="1"||e.toLowerCase()==="true"?1:0}parseRow(e,t=!0){let n=[],a=0,r=e.length,s=ep;for(let i=0;i<r;i++)switch(s){case ep:switch(e.charAt(i)){case T0:a=i+1,s=E0;break;case this.delimiter:if(a=i+1,this.delimiter===" "&&this.delimWhitespace)break;n.push(""),s=ep;break;default:s=$9,a=i;break}break;case $9:switch(e.charAt(i)){case this.delimiter:n.push(e.substring(a,i)),s=ep,a=i+1;break;default:}break;case E0:switch(e.charAt(i)){case T0:s=E5;break;default:}break;case E5:switch(e.charAt(i)){case this.delimiter:n.push(e.substring(a,i-1)),s=ep,a=i+1;break;case T0:s=E0;break;default:s=R9;break}break;case R9:switch(e.charAt(i)){case T0:s=E0;break;default:}break;default:}if(s===E5?n.push(e.substring(a,r-1)):n.push(e.substring(a)),t&&n.length!==this.fullColumnNames.length)throw new Error(`Invalid row in csv file. Should have ${this.fullColumnNames.length} elements in a row, but got ${n}`);return n}},O9=class extends xn{constructor(e){super();this.microphoneConfig=e,this.isClosed=!1,this.fftSize=e.fftSize||1024;let t=Math.log2(this.fftSize);if(this.fftSize<0||t<4||t>14||!Number.isInteger(t))throw new Error(`Invalid fftSize: it must be a power of 2 between 2 to 4 and 2 to 14, but got ${this.fftSize}`);if(this.numFrames=e.numFramesPerSpectrogram||43,this.sampleRateHz=e.sampleRateHz,this.columnTruncateLength=e.columnTruncateLength||this.fftSize,this.audioTrackConstraints=e.audioTrackConstraints,this.smoothingTimeConstant=e.smoothingTimeConstant||0,this.includeSpectrogram=e.includeSpectrogram!==!1,this.includeWaveform=e.includeWaveform===!0,!this.includeSpectrogram&&!this.includeWaveform)throw new Error("Both includeSpectrogram and includeWaveform are false. At least one type of data should be returned.")}summary(){return"microphone"}static async create(e={}){if(se().get("IS_NODE"))throw new Error("microphone API is only supported in browser environment.");let t=new O9(e);return await t.start(),t}async start(){try{this.stream=await navigator.mediaDevices.getUserMedia({audio:this.audioTrackConstraints==null?!0:this.audioTrackConstraints,video:!1})}catch(n){throw new Error(`Error thrown while initializing video stream: ${n.message}`)}if(!this.stream)throw new Error("Could not obtain audio from microphone.");let e=window.AudioContext||window.webkitAudioContext;if(this.audioContext=new e,!this.sampleRateHz)this.sampleRateHz=this.audioContext.sampleRate;else if(this.audioContext.sampleRate!==this.sampleRateHz)throw new Error(`Mismatch in sampling rate: Expected: ${this.sampleRateHz}; Actual: ${this.audioContext.sampleRate}`);let t=this.audioContext.createMediaStreamSource(this.stream);this.analyser=this.audioContext.createAnalyser(),this.analyser.fftSize=this.fftSize*2,this.analyser.smoothingTimeConstant=this.smoothingTimeConstant,t.connect(this.analyser),this.freqData=new Float32Array(this.fftSize),this.timeData=new Float32Array(this.fftSize)}async next(){if(this.isClosed)return{value:null,done:!0};let e,t,n=await this.getAudioData();if(this.includeSpectrogram){let a=this.flattenQueue(n.freqDataQueue);e=this.getTensorFromAudioDataArray(a,[this.numFrames,this.columnTruncateLength,1])}if(this.includeWaveform){let a=this.flattenQueue(n.timeDataQueue);t=this.getTensorFromAudioDataArray(a,[this.numFrames*this.fftSize,1])}return{value:{spectrogram:e,waveform:t},done:!1}}async capture(){return(await this.next()).value}async getAudioData(){let e=[],t=[],n=0;return new Promise(a=>{let r=setInterval(()=>{this.includeSpectrogram&&(this.analyser.getFloatFrequencyData(this.freqData),this.freqData[0]===-Infinity&&a({freqDataQueue:e,timeDataQueue:t}),e.push(this.freqData.slice(0,this.columnTruncateLength))),this.includeWaveform&&(this.analyser.getFloatTimeDomainData(this.timeData),t.push(this.timeData.slice())),++n===this.numFrames&&(clearInterval(r),a({freqDataQueue:e,timeDataQueue:t}))},this.fftSize/this.sampleRateHz*1e3)})}stop(){this.isClosed||(this.isClosed=!0,this.analyser.disconnect(),this.audioContext.close(),this.stream!=null&&this.stream.getTracks().length>0&&this.stream.getTracks()[0].stop())}toArray(){throw new Error("Can not convert infinite audio stream to array.")}getSampleRate(){return this.sampleRateHz}flattenQueue(e){let t=e[0].length,n=new Float32Array(e.length*t);return e.forEach((a,r)=>n.set(a,r*t)),n}getTensorFromAudioDataArray(e,t){let n=new Float32Array(k.sizeFromShape(t));return n.set(e,n.length-e.length),Cr(n,t)}},D9=class extends xn{constructor(e,t){super();if(this.webcamVideoElement=e,this.webcamConfig=t,this.isClosed=!0,this.resize=!1,this.needToResize())if(this.resize=!0,this.cropSize=[this.webcamConfig.resizeHeight,this.webcamConfig.resizeWidth],this.cropBoxInd=$n([0],"int32"),this.webcamConfig.centerCrop){let n=this.webcamConfig.resizeWidth*1/this.webcamVideoElement.width,a=this.webcamConfig.resizeHeight*1/this.webcamVideoElement.height,r=(1-n)/2,s=(1-a)/2,i=r+n,o=a+s;this.cropBox=Ql([s,r,o,i],[1,4])}else this.cropBox=Ql([0,0,1,1],[1,4])}summary(){return"webcam"}static async create(e,t={}){if(se().get("IS_NODE"))throw new Error("tf.data.webcam is only supported in browser environment.");if(!e){if(e=document.createElement("video"),!t.resizeWidth||!t.resizeHeight)throw new Error("Please provide webcam video element, or resizeWidth and resizeHeight to create a hidden video element.");e.width=t.resizeWidth,e.height=t.resizeHeight}let n=new D9(e,t);return await n.start(),n}async start(){this.webcamConfig.facingMode&&k.assert(this.webcamConfig.facingMode==="user"||this.webcamConfig.facingMode==="environment",()=>`Invalid webcam facing mode: ${this.webcamConfig.facingMode}. Please provide 'user' or 'environment'`);try{this.stream=await navigator.mediaDevices.getUserMedia({video:{deviceId:this.webcamConfig.deviceId,facingMode:this.webcamConfig.facingMode?this.webcamConfig.facingMode:"user",width:this.webcamVideoElement.width,height:this.webcamVideoElement.height}})}catch(e){throw e.message=`Error thrown while initializing video stream: ${e.message}`,e}if(!this.stream)throw new Error("Could not obtain video from webcam.");try{this.webcamVideoElement.srcObject=this.stream}catch(e){console.log(e),this.webcamVideoElement.src=window.URL.createObjectURL(this.stream)}return this.webcamVideoElement.play(),this.isClosed=!1,new Promise(e=>{this.webcamVideoElement.onloadedmetadata=()=>{e()}})}async next(){if(this.isClosed)return{value:null,done:!0};let e;try{e=k4.fromPixels(this.webcamVideoElement)}catch(t){throw new Error(`Error thrown converting video to pixels: ${JSON.stringify(t)}`)}if(this.resize)try{return{value:this.cropAndResizeFrame(e),done:!1}}catch(t){throw new Error(`Error thrown cropping the video: ${t.message}`)}finally{e.dispose()}else return{value:e,done:!1}}needToResize(){return!!(this.webcamConfig.resizeWidth&&this.webcamConfig.resizeHeight&&(this.webcamVideoElement.width!==this.webcamConfig.resizeWidth||this.webcamVideoElement.height!==this.webcamConfig.resizeHeight))}cropAndResizeFrame(e){return Z(()=>{let t=Ea(we(e,"float32"),0),n;n=to.cropAndResize(t,this.cropBox,this.cropBoxInd,this.cropSize,"bilinear");let a=n.shape;return Y(n,a.slice(1))})}async capture(){return(await this.next()).value}stop(){this.stream.getTracks().forEach(e=>e.stop());try{this.webcamVideoElement.srcObject=null}catch(e){console.log(e),this.webcamVideoElement.src=null}this.isClosed=!0}toArray(){throw new Error("Can not convert infinite video stream to array.")}},_9=class{},z9=class extends xn{split(e){return new use(this,e)}},use=class extends z9{constructor(e,t){super();this.upstream=e,this.impl=new dse(e,t)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},dse=class extends T5{constructor(e,t){super();this.upstream=e,this.separator=t,this.carryover=""}summary(){return`${this.upstream.summary()} -> Split('${this.separator}')`}async pump(){let e=await this.upstream.next();if(e.done)return this.carryover===""?!1:(this.outputQueue.push(this.carryover),this.carryover="",!0);let t=e.value.split(this.separator);t[0]=this.carryover+t[0];for(let n of t.slice(0,-1))this.outputQueue.push(n);return this.carryover=t[t.length-1],!0}},hse=class extends xn{decodeUTF8(){return new pse(this)}},pse=class extends z9{constructor(e){super();this.upstream=e,this.impl=new cse(e)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},cse=class extends T5{constructor(e){super();if(this.upstream=e,se().get("IS_BROWSER"))this.decoder=new TextDecoder("utf-8");else{let{StringDecoder:t}=vR();this.decoder=new t("utf8")}}summary(){return`${this.upstream.summary()} -> Utf8`}async pump(){let e=await this.upstream.next(),t;if(e.done)return!1;t=e.value;let n;return se().get("IS_BROWSER")?n=this.decoder.decode(t,{stream:!0}):n=this.decoder.write(Buffer.from(t.buffer)),this.outputQueue.push(n),!0}},P9=class extends hse{constructor(e,t={}){super();this.file=e,this.options=t,k.assert(e instanceof Uint8Array||(se().get("IS_BROWSER")?e instanceof File||e instanceof Blob:!1),()=>"FileChunkIterator only supports File, Blob and Uint8Array right now."),this.offset=t.offset||0,this.chunkSize=t.chunkSize||1024*1024}summary(){return`FileChunks ${this.file}`}async next(){return this.offset>=(this.file instanceof Uint8Array?this.file.byteLength:this.file.size)?{value:null,done:!0}:{value:await new Promise((e,t)=>{let n=this.offset+this.chunkSize;if(this.file instanceof Uint8Array)e(new Uint8Array(this.file.slice(this.offset,n)));else{let a=new FileReader;a.onload=s=>{let i=a.result;if(i instanceof ArrayBuffer&&(i=new Uint8Array(i)),!(i instanceof Uint8Array))return t(new TypeError("FileReader returned unknown type."));e(i)},a.onabort=s=>t(new Error("Aborted")),a.onerror=s=>t(new Error(s.type));let r=this.file.slice(this.offset,n);a.readAsArrayBuffer(r)}this.offset=n}),done:!1}}};async function fse(e,t={}){let n,a;typeof e=="string"?n=e:(n=e.url,a=mse(e));let r=await k.fetch(n,a);if(r.ok){let s=new Uint8Array(await r.arrayBuffer());return new P9(s,t)}else throw new Error(r.statusText)}var mse=e=>({method:e.method,headers:e.headers,body:e.body,mode:e.mode,credentials:e.credentials,cache:e.cache,redirect:e.redirect,referrer:e.referrer,integrity:e.integrity});function L9(e){return typeof e=="string"&&e.substr(0,7)==="file://"}var W9=class extends _9{constructor(e,t={}){super();this.input=e,this.options=t}async iterator(){if(L9(this.input)&&se().get("IS_NODE")){let e=di("fs");this.input=e.readFileSync(this.input.substr(7))}return new P9(this.input,this.options)}},B9=class extends _9{constructor(e,t={}){super();this.url=e,this.fileOptions=t}async iterator(){return L9(this.url)?new W9(this.url,this.fileOptions).iterator():fse(this.url,this.fileOptions)}};function gse(e,t={}){return new F9(new B9(e),t)}function yse(e){let t=N5(e);return pa(async()=>t)}function Ase(e){return pa(async()=>{let t=await e();return N5(()=>t.next())})}async function xse(e,t){return D9.create(e,t)}async function bse(e){return O9.create(e)}var vse="3.7.0";function Se(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&k.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the CPU backend.`)})}var wse=us.whereImpl,V9=class extends Wc{constructor(){super();this.blockSize=48,this.firstUse=!0,this.data=new c1(this,Ps())}nextDataId(){return V9.nextDataId++}write(e,t,n){this.firstUse&&(this.firstUse=!1,se().get("IS_NODE")&&M.warn(`
|
|
============================
|
|
Hi there \u{1F44B}. Looks like you are running TensorFlow.js in Node.js. To speed things up dramatically, install our node backend, which binds to TensorFlow C++, by running npm i @tensorflow/tfjs-node, or npm i @tensorflow/tfjs-node-gpu if you have CUDA. Then call require('@tensorflow/tfjs-node'); (-gpu suffix for CUDA) at the start of your program. Visit https://github.com/tensorflow/tfjs-node for more details.
|
|
============================`));let a={id:this.nextDataId()};return this.data.set(a,{values:e,dtype:n,refCount:1}),a}makeTensorInfo(e,t,n){let a;if(t==="string"&&n!=null&&n.length>0&&k.isString(n[0])){let r=n.map(s=>k.encodeString(s));a=this.write(r,e,t)}else a=this.write(n,e,t);return{dataId:a,shape:e,dtype:t}}refCount(e){return this.data.has(e)?this.data.get(e).refCount:0}incRef(e){let t=this.data.get(e);t.refCount++}decRef(e){if(this.data.has(e)){let t=this.data.get(e);t.refCount--}}move(e,t,n,a,r){this.data.set(e,{values:t,dtype:a,refCount:r})}numDataIds(){return this.data.numDataIds()}async read(e){return this.readSync(e)}readSync(e){let{dtype:t,complexTensorInfos:n}=this.data.get(e);if(t==="complex64"){let a=this.readSync(n.real.dataId),r=this.readSync(n.imag.dataId);return M.mergeRealAndImagArrays(a,r)}return this.data.get(e).values}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(a=>k.decodeString(a))}catch(a){throw new Error("Failed to decode encoded string bytes into utf-8")}return Pe(e.shape,e.dtype,n)}makeOutput(e,t,n){let a=this.write(e,t,n);return Ps().makeTensorFromDataId(a,t,n,this)}disposeData(e,t=!1){if(this.data.has(e)){if(this.data.get(e).refCount--,!t&&this.data.get(e).refCount>0)return!1;let{complexTensorInfos:n}=this.data.get(e);n!=null&&(this.disposeData(n.real.dataId,!0),this.disposeData(n.imag.dataId,!0)),this.data.delete(e)}return!0}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}async time(e){let t=k.now();return e(),{kernelMs:k.now()-t}}memory(){return{unreliable:!0,reasons:["The reported memory is an upper bound. Due to automatic garbage collection, the true allocated memory may be less."]}}where(e){Se([e],"where");let t=this.readSync(e.dataId);return wse(e.shape,t)}dispose(){}floatPrecision(){return 32}epsilon(){return super.epsilon()}},C5=V9;C5.nextDataId=0;var U9={};$e(U9,{addImpl:()=>H9,bincountImpl:()=>$5,bincountReduceImpl:()=>G9,ceilImpl:()=>q9,concatImpl:()=>K9,equalImpl:()=>X9,expImpl:()=>Y9,expm1Impl:()=>Q9,floorImpl:()=>eN,gatherNdImpl:()=>tN,gatherV2Impl:()=>nN,greaterEqualImpl:()=>rN,greaterImpl:()=>aN,lessEqualImpl:()=>iN,lessImpl:()=>sN,linSpaceImpl:()=>oN,logImpl:()=>lN,maxImpl:()=>uN,maximumImpl:()=>dN,minimumImpl:()=>hN,multiplyImpl:()=>R5,negImpl:()=>pN,notEqualImpl:()=>cN,prodImpl:()=>fN,rangeImpl:()=>mN,rsqrtImpl:()=>gN,simpleAbsImpl:()=>j9,sliceImpl:()=>yN,sparseFillEmptyRowsImpl:()=>AN,sparseReshapeImpl:()=>xN,sparseSegmentReductionImpl:()=>O5,squaredDifferenceImpl:()=>bN,stridedSliceImpl:()=>vN,stringNGramsImpl:()=>wN,stringSplitImpl:()=>kN,stringToHashBucketFastImpl:()=>IN,subImpl:()=>SN,tileImpl:()=>NN,topKImpl:()=>TN,transposeImpl:()=>F5,uniqueImpl:()=>EN});function j9(e){let t=new Float32Array(e.length);for(let n=0;n<e.length;++n)t[n]=Math.abs(e[n]);return t}var kse=e=>{let{x:t}=e.inputs,n=e.backend;Se(t,"abs");let a=new Float32Array(k.sizeFromShape(t.shape)),r=n.data.get(t.dataId).values;return a=j9(r),n.makeOutput(a,t.shape,"float32")},Ise={kernelName:xd,backendName:"cpu",kernelFunc:kse};function nn(e){return(t,n,a,r,s)=>{let i=M.assertAndGetBroadcastShape(t,n),o=i.length,l=k.computeStrides(i),u=k.sizeFromShape(i),d=k.getTypedArrayFromDType(s,u),h=t.length,p=n.length,c=k.computeStrides(t),m=k.computeStrides(n),f=M.getBroadcastDims(t,i),g=M.getBroadcastDims(n,i);if(f.length+g.length===0)for(let y=0;y<d.length;++y)d[y]=e(a[y%a.length],r[y%r.length]);else for(let y=0;y<d.length;++y){let A=k.indexToLoc(y,o,l),x=A.slice(-h);f.forEach(I=>x[I]=0);let v=k.locToIndex(x,h,c),b=A.slice(-p);g.forEach(I=>b[I]=0);let w=k.locToIndex(b,p,m);d[y]=e(a[v],r[w])}return[d,i]}}function ca(e){let{inputs:t,backend:n}=e,{real:a,imag:r}=t,s=n.data.get(a.dataId).values,i=n.data.get(r.dataId).values,o=n.makeTensorInfo(a.shape,"complex64"),l=n.data.get(o.dataId);return l.complexTensorInfos={real:n.makeTensorInfo(a.shape,"float32",s),imag:n.makeTensorInfo(r.shape,"float32",i)},o}var Sse={kernelName:k1,backendName:"cpu",kernelFunc:ca};function C0(e,t,n="float32"){if(n==="complex64"){let r=C0(e,t,"float32"),s=C0(e,t,"float32");return ca({inputs:{real:r,imag:s},backend:e})}let a=k.makeZerosTypedArray(k.sizeFromShape(t),n);return e.makeTensorInfo(t,n,a)}function zr(e){let{inputs:t,backend:n}=e,{x:a}=t;return n.incRef(a.dataId),{dataId:a.dataId,shape:a.shape,dtype:a.dtype}}var Nse={kernelName:pl,backendName:"cpu",kernelFunc:zr};function co(e){let{inputs:t,backend:n}=e,{input:a}=t,r=n.data.get(a.dataId).complexTensorInfos.real,s=n.data.get(r.dataId).values;return n.makeTensorInfo(r.shape,r.dtype,s)}var Tse={kernelName:j1,backendName:"cpu",kernelFunc:co};function Js(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dtype:s}=a;if(s==="complex64"){if(r.dtype==="complex64")return zr({inputs:{x:r},backend:n});let i=C0(n,r.shape,r.dtype),o=Js({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),l=ca({inputs:{real:o,imag:i},backend:n});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}if(r.dtype==="complex64"){let i=co({inputs:{input:r},backend:n}),o=Js({inputs:{x:i},backend:n,attrs:{dtype:s}});return n.disposeIntermediateTensorInfo(i),o}if(!k.hasEncodingLoss(r.dtype,s)){let i=zr({inputs:{x:r},backend:n});return{dataId:i.dataId,shape:i.shape,dtype:s}}if(s==="int32"){let i=n.data.get(r.dataId).values,o=Int32Array.from(i);return n.makeTensorInfo(r.shape,"int32",o)}if(s==="bool"){let i=n.data.get(r.dataId).values,o=k.toTypedArray([0],r.dtype),[l,u]=nn((d,h)=>d!==h?1:0)(r.shape,[],i,o,"bool");return n.makeTensorInfo(u,"bool",l)}throw new Error(`Error in Cast: failed to cast ${r.dtype} to ${s}`)}var Ese={kernelName:el,backendName:"cpu",kernelFunc:Js};function bn(e,t,n,a){return n==null?({inputs:r,backend:s})=>{let{a:i,b:o}=r,l=s;Se([i,o],e);let u=l.data.get(i.dataId).values,d=l.data.get(o.dataId).values,h=i.dtype==="string"?M.fromUint8ToStringArray(u):u,p=i.dtype==="string"?M.fromUint8ToStringArray(d):d,c=a||i.dtype,[m,f]=t(i.shape,o.shape,h,p,c);return l.makeTensorInfo(f,c,m)}:({inputs:r,backend:s})=>{let{a:i,b:o}=r,l=s;if(i.dtype==="complex64"||o.dtype==="complex64"){let u=Js({inputs:{x:i},backend:l,attrs:{dtype:"complex64"}}),d=l.data.get(u.dataId),h=d.complexTensorInfos.real,p=d.complexTensorInfos.imag,c=l.data.get(h.dataId).values,m=l.data.get(p.dataId).values,f=Js({inputs:{x:o},backend:l,attrs:{dtype:"complex64"}}),g=l.data.get(f.dataId),y=g.complexTensorInfos.real,A=g.complexTensorInfos.imag,x=l.data.get(y.dataId).values,v=l.data.get(A.dataId).values,[b,w,I]=n(i.shape,o.shape,c,m,x,v),T=l.makeTensorInfo(I,"float32",b),C=l.makeTensorInfo(I,"float32",w),z=ca({inputs:{real:T,imag:C},backend:l});return l.disposeIntermediateTensorInfo(u),l.disposeIntermediateTensorInfo(f),l.disposeIntermediateTensorInfo(T),l.disposeIntermediateTensorInfo(C),z}else{let u=l.data.get(i.dataId).values,d=l.data.get(o.dataId).values,h=a||i.dtype,[p,c]=t(i.shape,o.shape,u,d,h);return l.makeTensorInfo(c,h,p)}}}function M5(e){return(t,n,a,r,s,i)=>{let o=M.assertAndGetBroadcastShape(t,n),l=k.sizeFromShape(o),u=o.length,d=k.computeStrides(o),h=k.getTypedArrayFromDType("float32",l),p=k.getTypedArrayFromDType("float32",l),c=M.getBroadcastDims(t,o),m=M.getBroadcastDims(n,o),f=M.mergeRealAndImagArrays(a,r),g=M.mergeRealAndImagArrays(s,i),y=t.length,A=k.computeStrides(t),x=n.length,v=k.computeStrides(n);if(c.length+m.length===0)for(let b=0;b<h.length;b++){let w=b%f.length,I=b%g.length,T=e(f[w*2],f[w*2+1],g[I*2],g[I*2+1]);h[b]=T.real,p[b]=T.imag}else for(let b=0;b<h.length;b++){let w=k.indexToLoc(b,u,d),I=w.slice(-y);c.forEach(S=>I[S]=0);let T=k.locToIndex(I,y,A),C=w.slice(-x);m.forEach(S=>C[S]=0);let z=k.locToIndex(C,x,v),$=e(f[T*2],f[T*2+1],g[z*2],g[z*2+1]);h[b]=$.real,p[b]=$.imag}return[h,p,o]}}var H9=nn((e,t)=>e+t),Cse=M5((e,t,n,a)=>({real:e+n,imag:t+a})),tp=bn(Os,H9,Cse),Mse={kernelName:Os,backendName:"cpu",kernelFunc:tp};function $5(e,t,n,a,r){let s=k.sizeFromShape(a),i=k.makeZerosTypedArray(r,n);for(let o=0;o<e.length;o++){let l=e[o];if(l<0)throw new Error("Input x must be non-negative!");l>=r||(s>0?i[l]+=t[o]:i[l]+=1)}return i}function G9(e,t,n,a=!1){let r=e.shape[0],s=e.shape[1],i=Pe([r,n],t.dtype);for(let o=0;o<r;o++)for(let l=0;l<s;l++){let u=e.get(o,l);if(u<0)throw new Error("Input x must be non-negative!");u>=n||(a?i.set(1,o,u):t.size>0?i.set(i.get(o,u)+t.get(o,l),o,u):i.set(i.get(o,u)+1,o,u))}return i}function du(e){return(t,n,a)=>{let r=k.getTypedArrayFromDType(n,t.length);for(let s=0;s<t.length;++s)r[s]=e(t[s],a);return r}}function xt(e,t,n){return({inputs:a,attrs:r,backend:s})=>{let{x:i}=a;if(Se(i,e),i.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let o=s,l=o.data.get(i.dataId).values,u=k.sizeFromShape(i.shape),d=n||i.dtype,h=k.getArrayFromDType(d,u);for(let p=0;p<u;++p)h[p]=t(l[p],r);return o.makeTensorInfo(i.shape,d,h)}}function hu(e,t,n){return({inputs:a,attrs:r,backend:s})=>{let{x:i}=a;if(Se(i,e),i.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let o=s,l=o.data.get(i.dataId).values,u=n||i.dtype,d=t(l,u,r);return o.makeTensorInfo(i.shape,u,d)}}var q9=du(e=>Math.ceil(e)),$se=hu(Ni,q9),Rse={kernelName:Ni,backendName:"cpu",kernelFunc:$se};function K9(e,t,n,a){let r=k.getArrayFromDType(n,k.sizeFromShape(t));if(a&&n!=="string"){let s=0;e.forEach(i=>{let o=k.sizeFromShape(i.shape);r.set(i.vals,s),s+=o})}else{let s=0;e.forEach(i=>{let o=n==="string"?M.fromUint8ToStringArray(i.vals):i.vals,l=0;for(let u=0;u<i.shape[0];++u){let d=u*t[1]+s;for(let h=0;h<i.shape[1];++h)r[d+h]=o[l++]}s+=i.shape[1]})}return r}var X9=nn((e,t)=>e===t?1:0),Z9=bn(ol,X9,null,"bool"),Fse={kernelName:ol,backendName:"cpu",kernelFunc:Z9},Y9=du(e=>Math.exp(e)),J9=hu(Ei,Y9),Ose={kernelName:Ei,backendName:"cpu",kernelFunc:J9},Q9=du(e=>Math.expm1(e)),Dse=hu(ll,Q9),_se={kernelName:ll,backendName:"cpu",kernelFunc:Dse},eN=du(e=>Math.floor(e)),zse=hu(Ci,eN),Pse={kernelName:Ci,backendName:"cpu",kernelFunc:zse};function tN(e,t,n,a,r,s,i,o,l){let u=Pe([a,s],n);for(let d=0;d<a;d++){let h=[],p=0;for(let c=0;c<r;c++){let m=e[d*r+c];p+=m*i[c],h.push(m)}if(p<0||p>=l/s)throw new Error(`Invalid indices: ${h} does not index into ${o}`);for(let c=0;c<s;c++)u.values[d*s+c]=t.get(...t.indexToLoc(p*s+c))}return u}function nN(e,t,n){let a=Pe(n,e.dtype);for(let r=0;r<a.size;++r){let s=a.indexToLoc(r).slice(),i=s[0],o=s[2],l=t.locToIndex([i,o]);s[2]=t.values[l];let u=e.locToIndex(s);a.values[r]=e.values[u]}return a}var aN=nn((e,t)=>e>t?1:0),Lse=bn(hl,aN,null,"bool"),Wse={kernelName:hl,backendName:"cpu",kernelFunc:Lse},rN=nn((e,t)=>e>=t?1:0),Bse=bn(Mi,rN,null,"bool"),Vse={kernelName:Mi,backendName:"cpu",kernelFunc:Bse},sN=nn((e,t)=>e<t?1:0),Use=bn(fl,sN,null,"bool"),jse={kernelName:fl,backendName:"cpu",kernelFunc:Use},iN=nn((e,t)=>e<=t?1:0),Hse=bn(ml,iN,null,"bool"),Gse={kernelName:ml,backendName:"cpu",kernelFunc:Hse};function oN(e,t,n){let a=(t-e)/(n-1),r=k.makeZerosTypedArray(n,"float32");r[0]=e;for(let s=1;s<r.length;s++)r[s]=r[s-1]+a;return r}var lN=du(e=>Math.log(e)),qse=hu($i,lN),Kse={kernelName:$i,backendName:"cpu",kernelFunc:qse};function uN(e,t,n,a){let r=k.getTypedArrayFromDType(a,k.sizeFromShape(n));for(let s=0;s<r.length;++s){let i=s*t,o=e[i];for(let l=0;l<t;++l){let u=e[i+l];(Number.isNaN(u)||u>o)&&(o=u)}r[s]=o}return r}var dN=nn((e,t)=>Math.max(e,t)),Xse=bn(Ri,dN),Zse={kernelName:Ri,backendName:"cpu",kernelFunc:Xse},hN=nn((e,t)=>Math.min(e,t)),Yse=bn(Fi,hN),Jse={kernelName:Fi,backendName:"cpu",kernelFunc:Yse},R5=nn((e,t)=>e*t),Qse=M5((e,t,n,a)=>({real:e*n-t*a,imag:e*a+t*n})),M0=bn(Oi,R5,Qse),eie={kernelName:Oi,backendName:"cpu",kernelFunc:M0};function pN(e,t,n){let a=k.createScalarValue(-1,n);return R5([],t,a,e,n)}function tie(e){let{inputs:t,backend:n}=e,{x:a}=t;Se(a,"neg");let r=n.data.get(a.dataId).values,[s,i]=pN(r,a.shape,a.dtype);return n.makeTensorInfo(i,a.dtype,s)}var nie={kernelName:Hd,backendName:"cpu",kernelFunc:tie},cN=nn((e,t)=>e!==t?1:0),aie=bn(vl,cN,null,"bool"),rie={kernelName:vl,backendName:"cpu",kernelFunc:aie};function F5(e,t,n,a,r){let s=t.length,i=k.sizeFromShape(t),o=k.computeStrides(t),l=k.computeStrides(r),u=k.getTypedArrayFromDType(n,k.sizeFromShape(r));for(let d=0;d<i;++d){let h=k.indexToLoc(d,s,o),p=new Array(h.length);for(let m=0;m<p.length;m++)p[m]=h[a[m]];let c=k.locToIndex(p,s,l);u[c]=e[d]}return u}function Da(e){let{inputs:t,attrs:n,backend:a}=e,{x:r}=t,{perm:s}=n;Se(r,"transpose");let i=r.shape.length,o=new Array(i);for(let d=0;d<o.length;d++)o[d]=r.shape[s[d]];let l=a.data.get(r.dataId).values,u=F5(l,r.shape,r.dtype,s,o);return{dataId:a.write(u,o,r.dtype),shape:o,dtype:r.dtype}}var sie={kernelName:Pl,backendName:"cpu",kernelFunc:Da};function fN(e,t,n,a){let[r,s]=M.computeOutAndReduceShapes(e,a),i=Ga(t,"int32"),o=k.makeZerosTypedArray(k.sizeFromShape(r),i),l=k.sizeFromShape(s);for(let u=0;u<o.length;++u){let d=u*l,h=1;for(let p=0;p<l;++p)h*=n[d+p];o[u]=h}return{outVals:o,outShape:r,outDtype:i}}function iie(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;Se(r,"prod");let o=r.shape.length,l=k.parseAxisParam(s,r.shape),u=M.getAxesPermutation(l,o),d=l,h=r,p=[];u!=null&&(h=Da({inputs:{x:r},backend:n,attrs:{perm:u}}),p.push(h),d=M.getInnerMostAxes(d.length,o));let c=n.data.get(h.dataId).values,{outVals:m,outShape:f,outDtype:g}=fN(h.shape,h.dtype,c,d),y=f;return i&&(y=M.expandShapeToKeepDim(f,l)),p.forEach(A=>n.disposeIntermediateTensorInfo(A)),n.makeTensorInfo(y,g,m)}var oie={kernelName:Yd,backendName:"cpu",kernelFunc:iie};function mN(e,t,n,a){let r=e===t,s=e<t&&n<0,i=t<e&&n>1;if(r||s||i)return k.makeZerosTypedArray(0,a);let o=Math.abs(Math.ceil((t-e)/n)),l=k.makeZerosTypedArray(o,a);t<e&&n===1&&(n=-1),l[0]=e;for(let u=1;u<l.length;u++)l[u]=l[u-1]+n;return l}var gN=du(e=>1/Math.sqrt(e)),lie=hu(Di,gN),uie={kernelName:Di,backendName:"cpu",kernelFunc:lie};function yN(e,t,n,a,r){let s=Cn.isSliceContinous(a,t,n),i=k.sizeFromShape(n),o=k.computeStrides(a);if(s){let h=Cn.computeFlatOffset(t,o);return r==="string"?e.slice(h,h+i):e.subarray(h,h+i)}let l=r==="string"?M.fromUint8ToStringArray(e):e,u=Pe(a,r,l),d=Pe(n,r);for(let h=0;h<d.size;++h){let p=d.indexToLoc(h),c=p.map((m,f)=>m+t[f]);d.set(u.get(...c),...p)}return r==="string"?M.fromStringArrayToUint8(d.values):d.values}function fo(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{begin:s,size:i}=a;Se(r,"slice");let[o,l]=Cn.parseSliceParams(r,s,i);Cn.assertParamsValid(r,o,l);let u=n.data.get(r.dataId).values,d=yN(u,o,l,r.shape,r.dtype);return n.makeTensorInfo(l,r.dtype,d)}var die={kernelName:ah,backendName:"cpu",kernelFunc:fo};function AN(e,t,n,a,r,s,i){let o=t[0],l=s[0],u=new Array(l),d=new Array(o),h=t[1];if(l===0){if(o!==0)throw new Error(`Received SparseTensor with denseShape[0] = 0 but
|
|
indices.shape[0] = ${o}`);let g=k.getArrayFromDType(n,0),y=k.getArrayFromDType(r,0);return[g,[0,h],y,u,d]}let p=!0,c=0,m=new Array(l).fill(0);for(let g=0;g<o;++g){let y=e[g*h];if(y<0)throw new Error(`indices(${g}, 0) is invalid: ${y} < 0`);if(y>=l)throw new Error(`indices(${g}, 0) is invalid: ${y} >= ${l}`);++m[y],p=p&&y>=c,c=y}let f=!0;for(let g=0;g<l;++g){let y=m[g]===0;u[g]=y,f=f&&!y,m[g]=Math.max(m[g],1),g>0&&(m[g]+=m[g-1])}if(f&&p){let g=e,y=a;for(let A=0;A<o;++A)d[A]=A;return[g,[o,h],y,u,d]}else{let g=m[l-1],y=k.getArrayFromDType(n,g*h),A=k.getArrayFromDType(r,g),x=new Array(l).fill(0);for(let v=0;v<o;++v){let b=e[v*h],w=x[b],I=(b===0?0:m[b-1])+w;x[b]++;for(let T=0;T<h;++T)y[I*h+T]=e[v*h+T];A[I]=a[v],d[v]=I}for(let v=0;v<l;++v)if(x[v]===0){let b=v===0?0:m[v-1];y[b*h+0]=v;for(let w=1;w<h;++w)y[b*h+w]=0;A[b]=i}return[y,[g,h],A,u,d]}}function xN(e,t,n,a,r){let s=k.sizeFromShape(a),i=t[0],o=r.length,l=[],u=1,d=-1;for(let g=0;g<o;++g){let y=r[g];if(y===-1){if(d!==-1)throw new Error(`only one output dimension may be -1, not both ${d} and ${g}`);d=g,l.push(1)}else{if(y<0)throw new Error(`size ${g} must be non-negative, not ${y}`);u*=y,l.push(y)}}if(d!==-1){if(u<=0)throw new Error("reshape cannot infer the missing input size for an empty tensor unless all specified input sizes are non-zero");let g=Math.trunc(s/u);if(u*g!==s)throw new Error(`Input to reshape is a SparseTensor with ${s}
|
|
dense values, but the requested shape requires a multiple of ${u}. inputShape=${a} outputShape= ${l}`);l[d]=g}let h=k.sizeFromShape(l);if(h!==s)throw new Error(`Input to reshape is a tensor with ${s} dense values, but the requested shape has ${h}. inputShape=${a} outputShape=${l}`);let p=a.length,c=[];if(p>0){c[p-1]=1;for(let g=p-2;g>=0;--g)c[g]=c[g+1]*a[g+1]}let m=[];if(o>0){m[o-1]=1;for(let g=o-2;g>=0;--g)m[g]=m[g+1]*l[g+1]}let f=k.getArrayFromDType(n,i*o);for(let g=0;g<i;++g){let y=0;for(let A=0;A<p;++A)y+=e[g*p+A]*c[A];for(let A=0;A<o;++A)f[g*o+A]=Math.trunc(y/m[A]),y%=m[A]}return[f,[i,o],l]}function O5(e,t,n,a,r,s=!1,i=0){let o=a.length;if(o!==r.length)throw new Error("segmentIds and indices should have same size.");let l=[t[0],e.length/t[0]],u=l[1],d=o>0?r[o-1]+1:0;if(d<0)throw new Error("segment ids must be >= 0");let h=t.slice();h[0]=d;let p=h.reduce((A,x)=>A*x,1),c=k.getArrayFromDType(n,p);if(o===0)return d>0&&c.fill(i),[c,h];if(d<=0)throw new Error("segment ids must be >= 0");let m=0,f=1,g=0,y=r[m];for(;;){let A=0;if(f<o){if(A=r[f],y===A){++f;continue}if(y>=A)throw new Error("segment ids are not increasing")}if(y<0||y>=d)throw new Error(`Segment id ${y} out of range [0, ${d}), possibly because segmentIds input is not sorted.`);y>g&&c.fill(i,g*u,y*u);for(let x=m;x<f;++x){let v=a[x];if(v<0||v>=l[0])throw new Error(`Bad: indices[${x}] == ${a[x]} out of range [0, ${l[0]})`);for(let b=0;b<u;b++)c[y*u+b]+=e[v*u+b]}if(s)for(let x=0;x<u;x++)c[y*u+x]/=f-m;if(m=f,++f,g=y+1,y=A,f>o)break}return g<d&&c.fill(i,g*u,d*u),[c,h]}var bN=nn((e,t)=>{let n=e-t;return n*n}),hie=bn(_i,bN),pie={kernelName:_i,backendName:"cpu",kernelFunc:hie};function vN(e,t,n,a){let r=Pe(e,t.dtype);for(let s=0;s<r.size;s++){let i=r.indexToLoc(s),o=new Array(i.length);for(let l=0;l<o.length;l++)o[l]=i[l]*n[l]+a[l];r.set(t.get(...o),...i)}return r}var cie=class{constructor(e,t,n,a,r,s){this.separator=k.encodeString(e),this.nGramWidths=t,this.leftPad=k.encodeString(n),this.rightPad=k.encodeString(a),this.padWidth=r,this.preserveShort=s}getPadWidth(e){return Math.min(this.padWidth<0?e-1:this.padWidth,e-1)}getNumNGrams(e,t){let n=this.getPadWidth(t);return Math.max(0,e+2*n-t+1)}createNGrams(e,t,n,a,r,s){for(let i=0;i<r;++i){let o=this.getPadWidth(s),l=Math.max(0,o-i),u=Math.max(0,o-(r-(i+1))),d=s-(l+u),h=t+(l>0?0:i-o),p=0;p+=l*this.leftPad.length;for(let g=0;g<d;++g)p+=e[h+g].length;p+=u*this.rightPad.length,p+=(l+u+d-1)*this.separator.length,n[a+i]=new Uint8Array(p);let c=n[a+i],m=0,f=g=>g.forEach(y=>c[m++]=y);for(let g=0;g<l;++g)f(this.leftPad),f(this.separator);for(let g=0;g<d-1;++g)f(e[h+g]),f(this.separator);if(d>0){f(e[h+d-1]);for(let g=0;g<u;++g)f(this.separator),f(this.rightPad)}else{for(let g=0;g<u-1;++g)f(this.rightPad),f(this.separator);f(this.rightPad)}}}compute(e,t){let n=e.length,a=t.length;if(a>0){let o=t[0];if(o!==0)throw new Error(`First split value must be 0, got ${o}`);for(let l=1;l<a;++l){let u=t[l]>=o;if(u=u&&t[l]<=n,!u)throw new Error(`Invalid split value ${t[l]}, must be in [${o}, ${n}]`);o=t[l]}if(o!==n)throw new Error(`Last split value must be data size. Expected ${n}, got ${o}`)}let r=a-1,s=k.getArrayFromDType("int32",a);if(n===0||a===0){let o=new Array(n);for(let l=0;l<=r;++l)s[l]=0;return[o,s]}s[0]=0;for(let o=1;o<=r;++o){let l=t[o]-t[o-1],u=0;this.nGramWidths.forEach(d=>{u+=this.getNumNGrams(l,d)}),this.preserveShort&&l>0&&u===0&&(u=1),s[o]=s[o-1]+u}let i=new Array(s[r]);for(let o=0;o<r;++o){let l=t[o],u=s[o];if(this.nGramWidths.forEach(d=>{let h=t[o+1]-t[o],p=this.getNumNGrams(h,d);this.createNGrams(e,l,i,u,p,d),u+=p}),this.preserveShort&&u===s[o]){let d=t[o+1]-t[o];if(d===0)continue;let h=d+2*this.padWidth,p=1;this.createNGrams(e,l,i,u,p,h)}}return[i,s]}};function wN(e,t,n,a,r,s,i,o){return new cie(n,a,r,s,i,o).compute(e,t)}function fie(e,t,n){if(!e.length)return[];if(t.length===0){let s=new Array(e.length);for(let i=0;i<e.length;++i)s[i]=e.subarray(i,i+1);return s}if(t.length===1){let s=t[0],i=[],o=e.indexOf(s);for(;o!==-1;){let l=e.subarray(0,o);(!n||l.length!==0)&&i.push(l),e=e.subarray(o+1),o=e.indexOf(s)}return(!n||e.length!==0)&&i.push(e),i}let a=[],r=0;for(let s=0;s<e.length+1;s++)if(s===e.length||t.indexOf(e[s])!==-1){let i=e.subarray(r,s);(!n||i.length!==0)&&a.push(i),r=s+1}return a}function kN(e,t,n){let a=e.length,r=[],s=0,i=0,o=new Array(a);for(let p=0;p<a;++p){let c=fie(e[p],t,n),m=c.length;o[p]=m,s+=m,i=Math.max(i,m),r.push(...c)}let l=k.getArrayFromDType("int32",s*2),u=new Array(s),d=[a,i],h=0;for(let p=0;p<a;++p)for(let c=0;c<o[p];++c)l[h*2]=p,l[h*2+1]=c,u[h]=r[h],++h;return[l,u,d]}function IN(e,t){let n=k.getArrayFromDType("int32",e.length);for(let a=0;a<e.length;++a)n[a]=k.fingerPrint64(e[a]).modulo(t).getLowBitsUnsigned();return n}var SN=nn((e,t)=>e-t),mie=M5((e,t,n,a)=>({real:e-n,imag:t-a})),D5=bn(zi,SN,mie),gie={kernelName:zi,backendName:"cpu",kernelFunc:D5};function NN(e,t){let n=new Array(e.rank);for(let r=0;r<n.length;r++)n[r]=e.shape[r]*t[r];let a=Pe(n,e.dtype);for(let r=0;r<a.values.length;++r){let s=a.indexToLoc(r),i=new Array(e.rank);for(let l=0;l<i.length;l++)i[l]=s[l]%e.shape[l];let o=e.locToIndex(i);a.values[r]=e.values[o]}return a}function TN(e,t,n,a,r){let s=t[t.length-1],[i,o]=[e.length/s,s],l=k.getTypedArrayFromDType(n,i*a),u=k.getTypedArrayFromDType("int32",i*a);for(let h=0;h<i;h++){let p=h*o,c=e.subarray(p,p+o),m=[];for(let A=0;A<c.length;A++)m.push({value:c[A],index:A});m.sort((A,x)=>x.value-A.value);let f=h*a,g=l.subarray(f,f+a),y=u.subarray(f,f+a);for(let A=0;A<a;A++)g[A]=m[A].value,y[A]=m[A].index}let d=t.slice();return d[d.length-1]=a,[Pe(d,n,l),Pe(d,"int32",u)]}function EN(e,t,n,a){let r=k.parseAxisParam(t,n)[0],s=[1,n[0],1];for(let m=0;m<r;m++)s[0]*=n[m];s[1]=n[r];for(let m=r+1;m<n.length;m++)s[2]*=n[m];let i={},o=new Int32Array(n[r]),l=new Qt(s,a,e),u=[],d=s[0]===1&&s[2]===1;for(let m=0;m<n[r];m++){let f;if(d)f=e[m].toString();else{let g=[];for(let y=0;y<s[0];y++)for(let A=0;A<s[2];A++)g.push(l.get(y,m,A));f=g.join(",")}if(i[f]!==void 0)o[m]=i[f];else{let g=Object.keys(i).length;i[f]=g,o[m]=g,u.push(m)}}let h=s.slice();h[1]=Object.keys(i).length;let p=new Qt(h,a);u.forEach((m,f)=>{for(let g=0;g<s[0];g++)for(let y=0;y<s[2];y++)p.set(l.get(g,m,y),g,f,y)});let c=n.slice();return c[r]=h[1],{outputValues:p.values,outputShape:c,indices:o}}var yie="3.7.0";CA("cpu",()=>new C5,1);var CN=xt(Fd,e=>e>=0?e:Math.exp(e)-1),Aie={kernelName:Fd,backendName:"cpu",kernelFunc:CN};function MN(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{alpha:s}=a;Se([r],"leakyRelu");let i=k.sizeFromShape(r.shape),o=n.data.get(r.dataId).values,l=k.getTypedArrayFromDType("float32",i);for(let u=0;u<o.length;u++)l[u]=o[u]<0?s*o[u]:o[u];return n.makeTensorInfo(r.shape,"float32",l)}var xie={kernelName:cl,backendName:"cpu",kernelFunc:MN},bie=nn((e,t)=>e<0?t*e:e);function $N(e){let{inputs:t,backend:n}=e,{x:a,alpha:r}=t;Se([a,r],"prelu");let s=n.data.get(a.dataId).values,i=n.data.get(r.dataId).values,[o,l]=bie(a.shape,r.shape,s,i,a.dtype);return n.makeTensorInfo(l,a.dtype,o)}var vie={kernelName:Sl,backendName:"cpu",kernelFunc:$N},RN=xt(Nl,e=>Math.max(0,e)),wie={kernelName:Nl,backendName:"cpu",kernelFunc:RN},FN=xt(El,e=>Math.min(Math.max(0,e),6)),kie={kernelName:El,backendName:"cpu",kernelFunc:FN},ON=xt(Rl,e=>1/(1+Math.exp(-e))),Iie={kernelName:Rl,backendName:"cpu",kernelFunc:ON};function _5(e,t,n,a,r){if(n==="linear")return zr({inputs:{x:t},backend:e});if(n==="relu")return RN({inputs:{x:t},backend:e});if(n==="elu")return CN({inputs:{x:t},backend:e});if(n==="relu6")return FN({inputs:{x:t},backend:e});if(n==="prelu")return $N({inputs:{x:t,alpha:a},backend:e});if(n==="leakyrelu")return MN({inputs:{x:t},backend:e,attrs:{alpha:r}});if(n==="sigmoid")return ON({inputs:{x:t},backend:e});throw new Error(`Activation ${n} has not been implemented for the CPU backend.`)}function Ot(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{shape:s}=a,i=k.sizeFromShape(r.shape),o=k.inferFromImplicitShape(s,i),l=k.sizeFromShape(o);k.assert(i===l,()=>`The new shape (${o}) has ${l} elements and the old shape (${r.shape}) has ${i} elements. The new shape and old shape must have the same number of elements.`),n.incRef(r.dataId);let u=n.data.get(r.dataId);if(u.complexTensorInfos!=null){let d=u.complexTensorInfos.real,h=u.complexTensorInfos.imag;d.shape=o,h.shape=o}return{dataId:r.dataId,shape:o,dtype:r.dtype}}var Sie={kernelName:Qd,backendName:"cpu",kernelFunc:Ot};function DN(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s}=t,{transposeA:i,transposeB:o}=a;Se([r,s],"matMul");let l=r.shape.length,u=s.shape.length,d=i?r.shape[l-2]:r.shape[l-1],h=o?s.shape[u-1]:s.shape[u-2],p=i?r.shape[l-1]:r.shape[l-2],c=o?s.shape[u-2]:s.shape[u-1],m=r.shape.slice(0,-2),f=s.shape.slice(0,-2),g=k.sizeFromShape(m),y=k.sizeFromShape(f),A=g===y||g===1||y===1;k.assert(l>=2&&u>=2&&A,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${m}) and (${f}).`);let x=(g>y?r.shape.slice(0,-2):s.shape.slice(0,-2)).concat([p,c]);k.assert(d===h,()=>`Error in matMul: inner shapes (${d}) and (${h}) of Tensors with shapes ${r.shape} and ${s.shape} and transposeA=${i} and transposeB=${o} must match.`);let v=i?[g,d,p]:[g,p,d],b=o?[y,c,h]:[y,h,c],w=Ot({inputs:{x:r},backend:n,attrs:{shape:v}}),I=Ot({inputs:{x:s},backend:n,attrs:{shape:b}}),T=i?w.shape[1]:w.shape[2],C=i?w.shape[2]:w.shape[1],z=o?I.shape[1]:I.shape[2],$=Math.max(g,y),S=n.data.get(w.dataId).values,D=n.data.get(I.dataId).values,_=k.computeStrides(w.shape),W=k.computeStrides(I.shape),[X,q,Q]=i?[_[0],1,_[1]]:[_[0],_[1],1],[ee,ie,ae]=o?[1,W[1],W[0]]:[W[1],1,W[0]],de=C*z,te=Pe([$,C,z],w.dtype),ce=te.values,he=n.blockSize;for(let ve=0;ve<$;ve++)for(let xe=0;xe<C;xe+=he)for(let Ee=0;Ee<z;Ee+=he)for(let Fe=0;Fe<T;Fe+=he){let We=Math.min(xe+he,C),qe=Math.min(Ee+he,z),Be=Math.min(Fe+he,T);for(let ft=xe;ft<We;ft++)for(let mt=Ee;mt<qe;mt++){let bt=0;for(let lt=Fe;lt<Be;lt++){let Ct=Math.min(ve,g-1)*X,Je=Math.min(ve,y-1)*ae,Hn=S[Ct+ft*q+lt*Q],Bt=D[lt*ee+mt*ie+Je];bt+=Hn*Bt}ce[ve*de+(ft*z+mt)]+=bt}}return n.disposeIntermediateTensorInfo(w),n.disposeIntermediateTensorInfo(I),n.makeTensorInfo(x,te.dtype,te.values)}var Nie={kernelName:Qo,backendName:"cpu",kernelFunc:DN};function Tie(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s,bias:i,preluActivationWeights:o}=t,{transposeA:l,transposeB:u,activation:d,leakyreluAlpha:h}=a,p,c,m,f=[];p=DN({inputs:{a:r,b:s},attrs:{transposeA:l,transposeB:u},backend:n}),i&&(c=tp({inputs:{a:p,b:i},backend:n}),f.push(p),p=c),d&&(m=_5(n,p,d,o,h),f.push(p),p=m);for(let g of f)n.disposeIntermediateTensorInfo(g);return p}var Eie={kernelName:Ll,backendName:"cpu",kernelFunc:Tie},Cie=xt(bd,e=>Math.acos(e)),Mie={kernelName:bd,backendName:"cpu",kernelFunc:Cie},$ie=xt(vd,e=>Math.acosh(e)),Rie={kernelName:vd,backendName:"cpu",kernelFunc:$ie};function Fie(e){let{inputs:t,backend:n}=e,a=t;Se(t,"addN");let r=a.map(o=>n.data.get(o.dataId).values),s=Pe(a[0].shape,a[0].dtype),i=s.values;for(let o=0;o<a.length;o++){let l=r[o];for(let u=0;u<i.length;u++)i[u]+=l[u]}return n.makeTensorInfo(s.shape,s.dtype,s.values)}var Oie={kernelName:Zo,backendName:"cpu",kernelFunc:Fie};function Die(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;Se(r,"all");let o=k.parseAxisParam(s,r.shape),l=o,u=M.getAxesPermutation(l,r.shape.length),d=r;u!=null&&(d=Da({inputs:{x:r},backend:n,attrs:{perm:u}}),l=M.getInnerMostAxes(l.length,r.shape.length)),M.assertAxesAreInnerMostDims("all",l,d.shape.length);let[h,p]=M.computeOutAndReduceShapes(d.shape,l),c=k.sizeFromShape(p),m=k.makeZerosTypedArray(k.sizeFromShape(h),d.dtype),f=n.data.get(d.dataId).values;for(let y=0;y<m.length;++y){let A=y*c,x=f[A];for(let v=0;v<c;++v){let b=f[A+v];x=x&&b}m[y]=x}u!=null&&n.disposeIntermediateTensorInfo(d);let g=n.makeTensorInfo(h,d.dtype,m);if(i){let y=M.expandShapeToKeepDim(h,o),A=Ot({inputs:{x:g},backend:n,attrs:{shape:y}});return n.disposeIntermediateTensorInfo(g),A}return g}var _ie={kernelName:wd,backendName:"cpu",kernelFunc:Die};function zie(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;Se(r,"any");let o=k.parseAxisParam(s,r.shape),l=o,u=M.getAxesPermutation(l,r.shape.length),d=r;u!=null&&(d=Da({inputs:{x:r},backend:n,attrs:{perm:u}}),l=M.getInnerMostAxes(l.length,r.shape.length)),M.assertAxesAreInnerMostDims("any",l,d.shape.length);let[h,p]=M.computeOutAndReduceShapes(d.shape,l),c=k.sizeFromShape(p),m=k.makeZerosTypedArray(k.sizeFromShape(h),d.dtype),f=n.data.get(d.dataId).values;for(let y=0;y<m.length;++y){let A=y*c,x=f[A];for(let v=0;v<c;++v){let b=f[A+v];x=x||b}m[y]=x}u!=null&&n.disposeIntermediateTensorInfo(d);let g=n.makeTensorInfo(h,d.dtype,m);if(i){let y=M.expandShapeToKeepDim(h,o),A=Ot({inputs:{x:g},backend:n,attrs:{shape:y}});return n.disposeIntermediateTensorInfo(g),A}return g}var Pie={kernelName:kd,backendName:"cpu",kernelFunc:zie};function Lie(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s}=a;Se(r,"argMax");let i=k.parseAxisParam(s,r.shape),o=M.getAxesPermutation(i,r.shape.length),l=r,u=[];o!=null&&(l=Da({inputs:{x:r},backend:n,attrs:{perm:o}}),u.push(l),i=M.getInnerMostAxes(i.length,l.shape.length)),i=[i[0]],M.assertAxesAreInnerMostDims("argMax",i,l.shape.length);let[d,h]=M.computeOutAndReduceShapes(l.shape,i),p=k.sizeFromShape(d),c=k.makeZerosTypedArray(p,"int32"),m=k.sizeFromShape(h),f=n.data.get(l.dataId).values;for(let g=0;g<c.length;++g){let y=g*m,A=f[y],x=0;for(let v=0;v<m;++v){let b=f[y+v];b>A&&(A=b,x=v)}c[g]=x}return u.forEach(g=>n.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(d,"int32",c)}var Wie={kernelName:Yo,backendName:"cpu",kernelFunc:Lie};function Bie(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s}=a;Se(r,"argMin");let i=k.parseAxisParam(s,r.shape),o=M.getAxesPermutation(i,r.shape.length),l=r,u=[];o!=null&&(l=Da({inputs:{x:r},backend:n,attrs:{perm:o}}),u.push(l),i=M.getInnerMostAxes(i.length,l.shape.length)),i=[i[0]],M.assertAxesAreInnerMostDims("argMin",i,l.shape.length);let[d,h]=M.computeOutAndReduceShapes(l.shape,i),p=k.sizeFromShape(d),c=k.makeZerosTypedArray(p,"int32"),m=k.sizeFromShape(h),f=n.data.get(l.dataId).values;for(let g=0;g<c.length;++g){let y=g*m,A=f[y],x=0;for(let v=0;v<m;++v){let b=f[y+v];b<A&&(A=b,x=v)}c[g]=x}return u.forEach(g=>n.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(d,"int32",c)}var Vie={kernelName:qc,backendName:"cpu",kernelFunc:Bie},Uie=xt(Id,e=>Math.asin(e)),jie={kernelName:Id,backendName:"cpu",kernelFunc:Uie},Hie=xt(Sd,e=>Math.asinh(e)),Gie={kernelName:Sd,backendName:"cpu",kernelFunc:Hie},qie=xt(Nd,e=>Math.atan(e)),Kie={kernelName:Nd,backendName:"cpu",kernelFunc:qie},Xie=nn((e,t)=>Math.atan2(e,t)),Zie=bn(Ed,Xie),Yie={kernelName:Ed,backendName:"cpu",kernelFunc:Zie},Jie=xt(Td,e=>Math.atanh(e)),Qie={kernelName:Td,backendName:"cpu",kernelFunc:Jie};function z5(e,t,n,a,r,s){let i=r.strideHeight,o=r.strideWidth,l=r.dilationHeight,u=r.dilationWidth,d=r.effectiveFilterHeight,h=r.effectiveFilterWidth,p=r.padInfo.top,c=r.padInfo.left,m=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,f=Pe(r.outShape,n),g=f.values,y=r.outShape[1]*r.outShape[2]*r.outShape[3],A=r.outShape[2]*r.outShape[3],x=r.outShape[3];for(let v=0;v<r.batchSize;++v){let b=v*y,w=v*a[0];for(let I=0;I<r.inChannels;++I)for(let T=0;T<r.outHeight;++T){let C=T*i-p,z=Math.max(0,C),$=Math.min(r.inHeight,d+C),S=b+T*A;for(let D=0;D<r.outWidth;++D){let _=D*o-c,W=Math.max(0,_),X=Math.min(r.inWidth,h+_),q=m,Q=0,ee=0;for(let ae=z;ae<$;ae+=l){let de=w+ae*a[1];for(let te=W;te<X;te+=u){let ce=de+te*a[2],he=e[ce+I];s==="max"&&he>q?q=he:s==="avg"&&(Q+=he,ee++)}if(isNaN(q))break}let ie=S+D*x+I;g[ie]=s==="avg"?Q/ee:q}}}return f}function _N(e,t,n,a,r=!1,s=!1){let i=Pe(a.outShape,"int32"),o=a.strideHeight,l=a.strideWidth,u=a.dilationHeight,d=a.dilationWidth,h=a.effectiveFilterHeight,p=a.effectiveFilterWidth,c=a.padInfo.top,m=a.padInfo.left,f=Pe(t,n,e);for(let g=0;g<a.batchSize;++g)for(let y=0;y<a.inChannels;++y)for(let A=0;A<a.outHeight;++A){let x=A*o-c,v=x;for(;v<0;)v+=u;let b=Math.min(a.inHeight,h+x);for(let w=0;w<a.outWidth;++w){let I=w*l-m,T=I;for(;T<0;)T+=d;let C=Math.min(a.inWidth,p+I),z=Number.NEGATIVE_INFINITY,$=-1;for(let S=v;S<b;S+=u){let D=S-x;for(let _=T;_<C;_+=d){let W=_-I,X=f.get(g,S,_,y);X>z&&(z=X,r?$=s?((g*a.inHeight+S)*a.inWidth+_)*a.inChannels+y:(S*a.inWidth+_)*a.inChannels+y:$=D*p+W)}}i.set($,g,A,w,y)}}return i}function zN(e,t,n,a,r,s){let i=r.strideDepth,o=r.strideHeight,l=r.strideWidth,u=r.dilationDepth,d=r.dilationHeight,h=r.dilationWidth,p=r.effectiveFilterDepth,c=r.effectiveFilterHeight,m=r.effectiveFilterWidth,f=r.padInfo.front,g=r.padInfo.top,y=r.padInfo.left,A=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,x=Pe(r.outShape,n),v=x.values,b=r.outShape[1]*r.outShape[2]*r.outShape[3]*r.outShape[4],w=r.outShape[2]*r.outShape[3]*r.outShape[4],I=r.outShape[3]*r.outShape[4],T=r.outShape[4];for(let C=0;C<r.batchSize;++C){let z=C*b,$=C*a[0];for(let S=0;S<r.inChannels;++S)for(let D=0;D<r.outDepth;++D){let _=D*i-f,W=_;for(;W<0;)W+=u;let X=Math.min(r.inDepth,p+_),q=z+D*w;for(let Q=0;Q<r.outHeight;++Q){let ee=Q*o-g,ie=ee;for(;ie<0;)ie+=d;let ae=Math.min(r.inHeight,c+ee),de=q+Q*I;for(let te=0;te<r.outWidth;++te){let ce=te*l-y,he=ce;for(;he<0;)he+=h;let ve=Math.min(r.inWidth,m+ce),xe=de+te*T,Ee=A,Fe=0,We=0;for(let Be=W;Be<X;Be+=u){let ft=$+Be*a[1];for(let mt=ie;mt<ae;mt+=d){let bt=ft+mt*a[2];for(let lt=he;lt<ve;lt+=h){let Ct=bt+lt*a[3],Je=e[Ct+S];if(s==="max"&&Je>Ee?Ee=Je:s==="avg"&&(Fe+=Je,We++),isNaN(Ee))break}if(isNaN(Ee))break}if(isNaN(Ee))break}let qe=xe+S;v[qe]=s==="avg"?Fe/We:Ee}}}}return x}function eoe(e,t){let n=Pe(t.outShape,"int32"),a=t.strideDepth,r=t.strideHeight,s=t.strideWidth,i=t.dilationDepth,o=t.dilationHeight,l=t.dilationWidth,u=t.effectiveFilterDepth,d=t.effectiveFilterHeight,h=t.effectiveFilterWidth,p=t.padInfo.front,c=t.padInfo.top,m=t.padInfo.left;for(let f=0;f<t.batchSize;++f)for(let g=0;g<t.inChannels;++g)for(let y=0;y<t.outDepth;++y){let A=y*a-p,x=A;for(;x<0;)x+=i;let v=Math.min(t.inDepth,u+A);for(let b=0;b<t.outHeight;++b){let w=b*r-c,I=w;for(;I<0;)I+=o;let T=Math.min(t.inHeight,d+w);for(let C=0;C<t.outWidth;++C){let z=C*s-m,$=z;for(;$<0;)$+=l;let S=Math.min(t.inWidth,h+z),D=Number.NEGATIVE_INFINITY,_=-1;for(let W=x;W<v;W+=i){let X=W-A;for(let q=I;q<T;q+=o){let Q=q-w;for(let ee=$;ee<S;ee+=l){let ie=ee-z,ae=e.get(f,W,q,ee,g);ae>=D&&(D=ae,_=X*d*h+Q*d+ie)}}}n.set(_,f,y,b,C,g)}}}return n}function toe(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t;Se(r,"avgPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=a,u=1;k.assert(M.eitherStridesOrDilationsAreOne(i,u),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let d=M.computePool2DInfo(r.shape,s,i,u,o,l),h;if(d.filterWidth===1&&d.filterHeight===1&&k.arraysEqual(d.inShape,d.outShape))h=zr({inputs:{x:r},backend:n});else{let p=n.data.get(r.dataId).values,c=k.computeStrides(r.shape),m=z5(p,r.shape,r.dtype,c,d,"avg");h=n.makeTensorInfo(d.outShape,r.dtype,m.values)}return h}var noe={kernelName:Jo,backendName:"cpu",kernelFunc:toe};function aoe(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:u}=a;Se(r,"avgPool3d");let d=M.computePool3DInfo(r.shape,s,i,1,o,l,u),h=n.data.get(r.dataId).values,p=zN(h,r.shape,r.dtype,k.computeStrides(r.shape),d,"avg");return n.makeTensorInfo(p.shape,"float32",p.values)}var roe={kernelName:Kc,backendName:"cpu",kernelFunc:aoe};function soe(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=a;Se([r,s],"avgPool3DGrad");let d=M.computePool3DInfo(s.shape,i,o,1,l,u),h=d.strideDepth,p=d.strideHeight,c=d.strideWidth,m=d.filterDepth,f=d.filterHeight,g=d.filterWidth,y=d.dilationDepth,A=d.dilationHeight,x=d.dilationWidth,v=d.effectiveFilterDepth,b=d.effectiveFilterHeight,w=d.effectiveFilterWidth,I=v-1-d.padInfo.front,T=w-1-d.padInfo.left,C=b-1-d.padInfo.top,z=Pe(s.shape,"float32"),$=1/(m*f*g),S=n.bufferSync(r);for(let D=0;D<d.batchSize;++D)for(let _=0;_<d.inChannels;++_)for(let W=0;W<d.inDepth;++W)for(let X=0;X<d.inHeight;++X)for(let q=0;q<d.inWidth;++q){let Q=W-I,ee=X-C,ie=q-T,ae=0;for(let de=0;de<v;de+=y){let te=(Q+de)/h;if(!(te<0||te>=d.outDepth||Math.floor(te)!==te))for(let ce=0;ce<b;ce+=A){let he=(ee+ce)/p;if(!(he<0||he>=d.outHeight||Math.floor(he)!==he))for(let ve=0;ve<w;ve+=x){let xe=(ie+ve)/c;xe<0||xe>=d.outWidth||Math.floor(xe)!==xe||(ae+=S.get(D,te,he,xe,_))}}}z.set(ae*$,D,W,X,q,_)}return n.makeTensorInfo(z.shape,z.dtype,z.values)}var ioe={kernelName:v1,backendName:"cpu",kernelFunc:soe};function ooe(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,i=s;Se([r,s],"avgPoolGrad");let{filterSize:o,strides:l,pad:u}=a,d=M.computePool2DInfo(i.shape,o,l,1,u),h=d.strideHeight,p=d.strideWidth,c=d.filterHeight,m=d.filterWidth,f=d.dilationHeight,g=d.dilationWidth,y=d.effectiveFilterHeight,A=d.effectiveFilterWidth,x=A-1-d.padInfo.left,v=y-1-d.padInfo.top,b=Pe(i.shape,"float32"),w=1/(c*m),I=n.data.get(r.dataId).values,T=Pe(r.shape,"float32",I);for(let C=0;C<d.batchSize;++C)for(let z=0;z<d.inChannels;++z)for(let $=0;$<d.inHeight;++$)for(let S=0;S<d.inWidth;++S){let D=$-v,_=S-x,W=0;for(let X=0;X<y;X+=f){let q=(D+X)/h;if(!(q<0||q>=d.outHeight||Math.floor(q)!==q))for(let Q=0;Q<A;Q+=g){let ee=(_+Q)/p;ee<0||ee>=d.outWidth||Math.floor(ee)!==ee||(W+=T.get(C,q,ee,z))}}b.set(W*w,C,$,S,z)}return n.makeTensorInfo(b.shape,b.dtype,b.values)}var loe={kernelName:b1,backendName:"cpu",kernelFunc:ooe};function uoe(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,scale:s,offset:i,mean:o,variance:l}=t;k.assert(o.shape.length===l.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),k.assert(i==null||o.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),k.assert(s==null||o.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks."),Se([r,o,l,s,i],"batchNorm");let{varianceEpsilon:u}=a;u==null&&(u=.001);let d=n.data.get(r.dataId).values,h=n.data.get(o.dataId).values,p=n.data.get(l.dataId).values,c=s?n.data.get(s.dataId).values:new Float32Array([1]),m=i?n.data.get(i.dataId).values:new Float32Array([0]),f=new Float32Array(d.length),g=m.length,y=c.length,A=p.length,x=h.length,v=0,b=0,w=0,I=0;for(let T=0;T<d.length;++T)f[T]=m[v++]+(d[T]-h[b++])*c[w++]/Math.sqrt(p[I++]+u),v>=g&&(v=0),b>=x&&(b=0),w>=y&&(w=0),I>=A&&(I=0);return n.makeTensorInfo(r.shape,r.dtype,f)}var doe={kernelName:dl,backendName:"cpu",kernelFunc:uoe};function hoe(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,crops:i}=a;Se([r],"batchToSpaceND");let o=s.reduce((y,A)=>y*A),l=M.getReshaped(r.shape,s,o),u=M.getPermuted(l.length,s.length),d=M.getReshapedPermuted(r.shape,s,o),h=M.getSliceBeginCoords(i,s.length),p=M.getSliceSize(d,i,s.length),c=Ot({inputs:{x:r},backend:n,attrs:{shape:l}}),m=Da({inputs:{x:c},backend:n,attrs:{perm:u}}),f=Ot({inputs:{x:m},backend:n,attrs:{shape:d}}),g=fo({inputs:{x:f},backend:n,attrs:{begin:h,size:p}});return n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(f),g}var poe={kernelName:Xc,backendName:"cpu",kernelFunc:hoe};function coe(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,weights:s}=t,{size:i}=a,o=n.data.get(r.dataId).values,l=n.data.get(s.dataId).values,u=$5(o,l,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,u)}var foe={kernelName:w1,backendName:"cpu",kernelFunc:coe},moe=xt(Ti,(e,t)=>{let n=t;return e>n.clipValueMax?n.clipValueMax:e<n.clipValueMin?n.clipValueMin:e}),goe={kernelName:Ti,backendName:"cpu",kernelFunc:moe},yoe=e=>{let{x:t}=e.inputs,n=e.backend,a=new Float32Array(k.sizeFromShape(t.shape)),r=n.data.get(t.dataId),s=r.complexTensorInfos.real,i=r.complexTensorInfos.imag,o=n.data.get(s.dataId).values,l=n.data.get(i.dataId).values;for(let u=0;u<o.length;u++){let d=o[u],h=l[u];a[u]=Math.hypot(d,h)}return n.makeOutput(a,t.shape,"float32")},Aoe={kernelName:Zc,backendName:"cpu",kernelFunc:yoe};function pu(e){let{inputs:t,backend:n}=e,{input:a}=t,r=n.data.get(a.dataId).complexTensorInfos.imag,s=n.data.get(r.dataId).values;return n.makeTensorInfo(r.shape,r.dtype,s)}var xoe={kernelName:z1,backendName:"cpu",kernelFunc:pu};function cu(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a,s=k.parseAxisParam(r,t[0].shape)[0],i=M.computeOutShape(t.map(f=>f.shape),s);if(k.sizeFromShape(i)===0)return n.makeTensorInfo(i,t[0].dtype,[]);let o=t.filter(f=>k.sizeFromShape(f.shape)>0);if(o.length===1)return zr({inputs:{x:o[0]},backend:n});let l=o.map(f=>f.shape);if(M.assertParamsConsistent(l,s),o[0].dtype==="complex64"){let f=o.map(v=>co({inputs:{input:v},backend:n})),g=o.map(v=>pu({inputs:{input:v},backend:n})),y=cu({inputs:f,backend:n,attrs:{axis:s}}),A=cu({inputs:g,backend:n,attrs:{axis:s}}),x=ca({inputs:{real:y,imag:A},backend:n});return f.forEach(v=>n.disposeIntermediateTensorInfo(v)),g.forEach(v=>n.disposeIntermediateTensorInfo(v)),n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(A),x}let u=o.map(f=>{let g=k.sizeFromShape(f.shape.slice(s));return Ot({inputs:{x:f},backend:n,attrs:{shape:[-1,g]}})}),d=u.map(f=>({vals:n.data.get(f.dataId).values,shape:f.shape}));i=M.computeOutShape(u.map(f=>f.shape),1);let h=u[0].shape[0]===1,p=K9(d,i,t[0].dtype,h),c=M.computeOutShape(o.map(f=>f.shape),s),m=n.makeTensorInfo(c,t[0].dtype,p);return u.forEach(f=>n.disposeIntermediateTensorInfo(f)),m}var boe={kernelName:Cd,backendName:"cpu",kernelFunc:cu};function PN(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dataFormat:l,dilations:u,dimRoundingMode:d}=a;Se([r,s],"conv2d");let h=M.convertConv2DDataFormat(l),p=M.computeConv2DInfo(r.shape,s.shape,i,u,o,d,!1,h),c=p.filterHeight,m=p.filterWidth,f=p.dilationHeight,g=p.dilationWidth,y=p.padInfo.left,A=p.padInfo.top,x=p.dataFormat==="channelsLast",v=new Qt(p.outShape,r.dtype),b=k.computeStrides(r.shape),w=k.computeStrides(s.shape),I=b[0],T=x?b[1]:b[2],C=x?b[2]:1,z=x?1:b[1],$=v.strides[0],S=x?v.strides[1]:v.strides[2],D=x?v.strides[2]:1,_=x?1:v.strides[1],W=n.data.get(r.dataId).values,X=n.data.get(s.dataId).values,q=v.values;for(let Q=0;Q<p.batchSize;++Q){let ee=Q*I,ie=Q*$;for(let ae=0;ae<p.outHeight;++ae){let de=ie+ae*S,te=ae*p.strideHeight-A;for(let ce=0;ce<c;++ce){let he=te+ce*f;if(he<0||he>=p.inHeight)continue;let ve=ce*w[0],xe=ee+he*T;for(let Ee=0;Ee<p.outWidth;++Ee){let Fe=de+Ee*D,We=Ee*p.strideWidth-y;for(let qe=0;qe<m;++qe){let Be=We+qe*g;if(Be<0||Be>=p.inWidth)continue;let ft=ve+qe*w[1],mt=xe+Be*C,bt=ft;for(let lt=0;lt<p.inChannels;++lt){let Ct=W[mt+lt*z];for(let Je=0;Je<p.outChannels;++Je)q[Fe+Je*_]+=Ct*X[bt+Je];bt+=p.outChannels}}}}}}return n.makeTensorInfo(v.shape,v.dtype,q)}var voe={kernelName:tl,backendName:"cpu",kernelFunc:PN};function woe(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,pad:o,dataFormat:l,dimRoundingMode:u,filterShape:d}=a;Se([r,s],"conv2dBackpropFilter");let h=M.convertConv2DDataFormat(l),p=M.computeConv2DInfo(r.shape,d,i,1,o,u,!1,h),{strideHeight:c,strideWidth:m,filterHeight:f,filterWidth:g}=p,y=p.dataFormat==="channelsLast",A=new Qt(p.filterShape,"float32"),x=p.padInfo.left,v=p.padInfo.top,b=n.data.get(r.dataId).values,w=n.data.get(s.dataId).values,I=new Qt(r.shape,r.dtype,b),T=new Qt(s.shape,s.dtype,w);for(let C=0;C<f;++C){let z=Math.max(0,Math.ceil((v-C)/c)),$=Math.min(p.outHeight,(p.inHeight+v-C)/c);for(let S=0;S<g;++S){let D=Math.max(0,Math.ceil((x-S)/m)),_=Math.min(p.outWidth,(p.inWidth+x-S)/m);for(let W=0;W<p.inChannels;++W)for(let X=0;X<p.outChannels;++X){let q=0;for(let Q=0;Q<p.batchSize;++Q)for(let ee=z;ee<$;++ee){let ie=C+ee*c-v;for(let ae=D;ae<_;++ae){let de=S+ae*m-x;y?q+=I.get(Q,ie,de,W)*T.get(Q,ee,ae,X):q+=I.get(Q,W,ie,de)*T.get(Q,X,ee,ae)}}A.set(q,C,S,W,X)}}}return n.makeTensorInfo(A.shape,A.dtype,A.values)}var koe={kernelName:I1,backendName:"cpu",kernelFunc:woe};function Ioe(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{inputShape:i,strides:o,pad:l,dataFormat:u,dimRoundingMode:d}=a;Se([r,s],"conv2dBackpropInput");let h=k.computeStrides(s.shape),p=k.computeStrides(r.shape),c=M.convertConv2DDataFormat(u),m=M.computeConv2DInfo(i,s.shape,o,1,l,d,!1,c),f=new Qt(m.inShape,"float32"),g=f.values,y=n.data.get(r.dataId).values,A=n.data.get(s.dataId).values,[x,v,b]=h,{batchSize:w,filterHeight:I,filterWidth:T,inChannels:C,inHeight:z,inWidth:$,outChannels:S,outHeight:D,outWidth:_,strideHeight:W,strideWidth:X}=m;c=m.dataFormat;let q=I-1-m.padInfo.top,Q=T-1-m.padInfo.left,ee=c==="channelsLast",ie=f.strides[0],ae=ee?f.strides[1]:f.strides[2],de=ee?f.strides[2]:1,te=ee?1:f.strides[1],ce=p[0],he=ee?p[1]:p[2],ve=ee?p[2]:1,xe=ee?1:p[1];for(let Ee=0;Ee<w;++Ee)for(let Fe=0;Fe<C;++Fe)for(let We=0;We<z;++We){let qe=We-q,Be=Math.max(0,Math.ceil(qe/W)),ft=Math.min(D,(I+qe)/W);for(let mt=0;mt<$;++mt){let bt=mt-Q,lt=Math.max(0,Math.ceil(bt/X)),Ct=Math.min(_,(T+bt)/X),Je=0;for(let Bt=Be;Bt<ft;++Bt){let xa=Bt*W-qe;for(let vn=lt;vn<Ct;++vn){let Gn=vn*X-bt,ba=ce*Ee+he*Bt+ve*vn,sa=x*(I-1-xa)+v*(T-1-Gn)+b*Fe;for(let Rn=0;Rn<S;++Rn){let wn=y[ba+xe*Rn],vr=A[sa+Rn];Je+=wn*vr}}}let Hn=ie*Ee+ae*We+de*mt+te*Fe;g[Hn]=Je}}return n.makeTensorInfo(f.shape,f.dtype,f.values)}var Soe={kernelName:nl,backendName:"cpu",kernelFunc:Ioe};function Noe(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l}=a;Se([r,s],"conv3d");let u=M.computeConv3DInfo(r.shape,s.shape,i,l,o),{filterDepth:d,filterHeight:h,filterWidth:p,dilationDepth:c,dilationHeight:m,dilationWidth:f,padInfo:g}=u,y=g.front,A=g.left,x=g.top,v=new Qt(u.outShape,r.dtype),b=n.data.get(r.dataId).values,w=n.data.get(s.dataId).values,I=v.values,T=k.computeStrides(r.shape),C=k.computeStrides(s.shape);for(let z=0;z<u.batchSize;++z){let $=z*T[0],S=z*v.strides[0];for(let D=0;D<u.outDepth;++D){let _=S+D*v.strides[1],W=D*u.strideDepth-y;for(let X=0;X<d;++X){let q=W+X*c;if(q<0||q>=u.inDepth)continue;let Q=X*C[0],ee=$+q*T[1];for(let ie=0;ie<u.outHeight;++ie){let ae=_+ie*v.strides[2],de=ie*u.strideHeight-x;for(let te=0;te<h;++te){let ce=de+te*m;if(ce<0||ce>=u.inHeight)continue;let he=Q+te*C[1],ve=ee+ce*T[2];for(let xe=0;xe<u.outWidth;++xe){let Ee=ae+xe*u.outChannels,Fe=xe*u.strideWidth-A;for(let We=0;We<p;++We){let qe=Fe+We*f;if(qe<0||qe>=u.inWidth)continue;let Be=he+We*C[2],ft=ve+qe*u.inChannels,mt=Be;for(let bt=0;bt<u.inChannels;++bt){let lt=b[ft+bt];for(let Ct=0;Ct<u.outChannels;++Ct)I[Ee+Ct]+=lt*w[mt+Ct];mt+=u.outChannels}}}}}}}}return n.makeTensorInfo(v.shape,v.dtype,v.values)}var Toe={kernelName:Yc,backendName:"cpu",kernelFunc:Noe};function Eoe(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,pad:o,filterShape:l}=a;Se([r,s],"conv3dBackpropFilterV2");let u=k.computeStrides(r.shape),d=k.computeStrides(s.shape),h=M.computeConv3DInfo(r.shape,l,i,1,o),p=h.strideDepth,c=h.strideHeight,m=h.strideWidth,f=h.filterDepth,g=h.filterHeight,y=h.filterWidth,A=new Qt(h.filterShape,"float32"),x=A.values,[v,b,w,I]=A.strides,T=n.data.get(s.dataId).values,[C,z,$,S]=d,D=n.data.get(r.dataId).values,[_,W,X,q]=u,Q=h.padInfo.front,ee=h.padInfo.left,ie=h.padInfo.top;for(let ae=0;ae<f;++ae){let de=Math.max(0,Math.ceil((Q-ae)/p)),te=Math.min(h.outDepth,(h.inDepth+Q-ae)/p),ce=ae*v;for(let he=0;he<g;++he){let ve=Math.max(0,Math.ceil((ie-he)/c)),xe=Math.min(h.outHeight,(h.inHeight+ie-he)/c),Ee=he*b+ce;for(let Fe=0;Fe<y;++Fe){let We=Math.max(0,Math.ceil((ee-Fe)/m)),qe=Math.min(h.outWidth,(h.inWidth+ee-Fe)/m),Be=Fe*w+Ee;for(let ft=0;ft<h.inChannels;++ft){let mt=ft*I+Be;for(let bt=0;bt<h.outChannels;++bt){let lt=0;for(let Ct=0;Ct<h.batchSize;++Ct){let Je=Ct*_,Hn=Ct*C;for(let Bt=de;Bt<te;++Bt){let xa=(ae+Bt*p-Q)*W+Je,vn=Bt*z+Hn;for(let Gn=ve;Gn<xe;++Gn){let ba=(he+Gn*c-ie)*X+xa,sa=Gn*$+vn;for(let Rn=We;Rn<qe;++Rn){let wn=(Fe+Rn*m-ee)*q+ba,vr=Rn*S+sa;lt+=D[wn+ft]*T[vr+bt]}}}}x[mt+bt]=lt}}}}}return n.makeTensorInfo(A.shape,A.dtype,A.values)}var Coe={kernelName:S1,backendName:"cpu",kernelFunc:Eoe};function Moe(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{pad:i,strides:o,inputShape:l}=a;Se([r],"conv3dBackpropInputV2");let u=k.computeStrides(r.shape),d=k.computeStrides(s.shape),h=M.computeConv3DInfo(l,s.shape,o,1,i),p=new Qt(h.inShape,"float32"),c=p.values,[m,f,g,y]=p.strides,A=n.data.get(r.dataId).values,[x,v,b,w]=u,I=n.data.get(s.dataId).values,[T,C,z,$]=d,{batchSize:S,filterDepth:D,filterHeight:_,filterWidth:W,inChannels:X,inDepth:q,inHeight:Q,inWidth:ee,outChannels:ie,outDepth:ae,outHeight:de,outWidth:te,strideDepth:ce,strideHeight:he,strideWidth:ve}=h,xe=D-1-h.padInfo.front,Ee=_-1-h.padInfo.top,Fe=W-1-h.padInfo.left;for(let We=0;We<S;++We)for(let qe=0;qe<X;++qe)for(let Be=0;Be<q;++Be){let ft=Be-xe,mt=Math.max(0,Math.ceil(ft/ce)),bt=Math.min(ae,(D+ft)/ce);for(let lt=0;lt<Q;++lt){let Ct=lt-Ee,Je=Math.max(0,Math.ceil(Ct/he)),Hn=Math.min(de,(_+Ct)/he);for(let Bt=0;Bt<ee;++Bt){let xa=Bt-Fe,vn=Math.max(0,Math.ceil(xa/ve)),Gn=Math.min(te,(W+xa)/ve),ba=0;for(let sa=mt;sa<bt;++sa){let Rn=sa*ce-ft;for(let wn=Je;wn<Hn;++wn){let vr=wn*he-Ct;for(let Wa=vn;Wa<Gn;++Wa){let Ba=Wa*ve-xa,ys=x*We+v*sa+b*wn+w*Wa,Vr=T*(D-1-Rn)+C*(_-1-vr)+z*(W-1-Ba)+$*qe;for(let As=0;As<ie;++As){let So=A[ys+As],wr=I[Vr+As];ba+=So*wr}}}}c[m*We+f*Be+g*lt+y*Bt+qe]=ba}}}return n.makeTensorInfo(p.shape,p.dtype,p.values)}var $oe={kernelName:N1,backendName:"cpu",kernelFunc:Moe},Roe=xt(al,e=>Math.cos(e)),Foe={kernelName:al,backendName:"cpu",kernelFunc:Roe},Ooe=xt(Md,e=>Math.cosh(e)),Doe={kernelName:Md,backendName:"cpu",kernelFunc:Ooe};function _oe(e){let{inputs:t,backend:n,attrs:a}=e,{image:r,boxes:s,boxInd:i}=t,{cropSize:o,method:l,extrapolationValue:u}=a,[d,h,p,c]=r.shape,m=s.shape[0],[f,g]=o,y=Pe([m,f,g,c],"float32"),A=n.data.get(s.dataId).values,x=n.data.get(i.dataId).values,v=n.data.get(r.dataId).values,b=k.computeStrides(r.shape),w=k.computeStrides(y.shape);for(let I=0;I<m;I++){let T=I*4,C=A[T],z=A[T+1],$=A[T+2],S=A[T+3],D=x[I];if(D>=d)continue;let _=f>1?($-C)*(h-1)/(f-1):0,W=g>1?(S-z)*(p-1)/(g-1):0;for(let X=0;X<f;X++){let q=f>1?C*(h-1)+X*_:.5*(C+$)*(h-1);if(q<0||q>h-1){for(let Q=0;Q<g;Q++)for(let ee=0;ee<c;ee++){let ie=ee+Q*w[2]+X*w[1]+I*w[0];y.values[ie]=u}continue}if(l==="bilinear"){let Q=Math.floor(q),ee=Math.ceil(q),ie=q-Q;for(let ae=0;ae<g;ae++){let de=g>1?z*(p-1)+ae*W:.5*(z+S)*(p-1);if(de<0||de>p-1){for(let ve=0;ve<c;ve++){let xe=ve+ae*w[2]+X*w[1]+I*w[0];y.values[xe]=u}continue}let te=Math.floor(de),ce=Math.ceil(de),he=de-te;for(let ve=0;ve<c;ve++){let xe=ve+te*b[2]+Q*b[1]+D*b[0],Ee=v[xe];xe=ve+ce*b[2]+Q*b[1]+D*b[0];let Fe=v[xe];xe=ve+te*b[2]+ee*b[1]+D*b[0];let We=v[xe];xe=ve+ce*b[2]+ee*b[1]+D*b[0];let qe=v[xe],Be=Ee+(Fe-Ee)*he,ft=We+(qe-We)*he;xe=ve+ae*w[2]+X*w[1]+I*w[0],y.values[xe]=Be+(ft-Be)*ie}}}else for(let Q=0;Q<g;++Q){let ee=g>1?z*(p-1)+Q*W:.5*(z+S)*(p-1);if(ee<0||ee>p-1){for(let de=0;de<c;de++){let te=de+Q*w[2]+X*w[1]+I*w[0];y.values[te]=u}continue}let ie=Math.round(ee),ae=Math.round(q);for(let de=0;de<c;de++){let te=de+ie*b[2]+ae*b[1]+D*b[0],ce=de+Q*w[2]+X*w[1]+I*w[0];y.values[ce]=v[te]}}}}return n.makeTensorInfo(y.shape,y.dtype,y.values)}var zoe={kernelName:$d,backendName:"cpu",kernelFunc:_oe};function Poe(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,exclusive:i,reverse:o}=a;Se(r,"cumsum");let l=M.getAxesPermutation([s],r.shape.length),u=r;l!=null&&(u=Da({inputs:{x:r},backend:n,attrs:{perm:l}}));let d=M.getInnerMostAxes(1,r.shape.length)[0];if(d!==u.shape.length-1)throw new Error(`backend.cumsum in CPU expects an inner-most axis=${u.shape.length-1} but got axis=${d}`);let h=Ga(u.dtype,"int32"),p=k.makeZerosTypedArray(k.sizeFromShape(u.shape),h),c=n.data.get(u.dataId).values,m=u.shape[u.shape.length-1],f=o?(y,A)=>y+m-A-1:(y,A)=>y+A;for(let y=0;y<c.length;y+=m)for(let A=0;A<m;A++){let x=f(y,A);if(A===0)p[x]=i?0:c[x];else{let v=f(y,A-1);p[x]=i?c[v]+p[v]:c[x]+p[v]}}let g=n.makeTensorInfo(u.shape,h,p);if(l!=null){let y=M.getUndoAxesPermutation(l),A=Da({inputs:{x:g},backend:n,attrs:{perm:y}});return n.disposeIntermediateTensorInfo(g),n.disposeIntermediateTensorInfo(u),A}return g}var Loe={kernelName:rl,backendName:"cpu",kernelFunc:Poe};function Woe(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,weights:s}=t,{size:i,binaryOutput:o}=a;if(r.shape.length===1){let l=n.data.get(r.dataId).values,u=n.data.get(s.dataId).values,d=$5(l,u,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,d)}else if(r.shape.length===2){let l=n.bufferSync(r),u=n.bufferSync(s),d=G9(l,u,i,o);return n.makeTensorInfo(d.shape,s.dtype,d.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${r.shape.length}.`)}var Boe={kernelName:T1,backendName:"cpu",kernelFunc:Woe};function Voe(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockSize:s,dataFormat:i}=a;k.assert(i==="NHWC",()=>`Only NHWC dataFormat supported on CPU for depthToSpace. Got ${i}`),k.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let o=r.shape[0],l=r.shape[1],u=r.shape[2],d=r.shape[3],h=l*s,p=u*s,c=d/(s*s),m=n.data.get(r.dataId).values,f=new Float32Array(o*h*p*c),g=0;for(let y=0;y<o;++y)for(let A=0;A<h;++A){let x=Math.floor(A/s),v=A%s;for(let b=0;b<p;++b){let w=Math.floor(b/s),I=b%s,T=(v*s+I)*c;for(let C=0;C<c;++C){let z=C+T+d*(w+u*(x+l*y));f[g++]=m[z]}}}return n.makeTensorInfo([o,h,p,c],r.dtype,f)}var Uoe={kernelName:Rd,backendName:"cpu",kernelFunc:Voe};function LN(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l,dimRoundingMode:u}=a;Se([r,s],"depthwiseConv2DNative");let d=k.computeStrides(r.shape),h=k.computeStrides(s.shape),p=l;p==null&&(p=[1,1]),k.assert(M.eitherStridesOrDilationsAreOne(i,p),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${p}'`);let c=M.computeConv2DInfo(r.shape,s.shape,i,p,o,u,!0),{filterHeight:m,filterWidth:f,dilationHeight:g,dilationWidth:y,padInfo:A}=c,x=A.left,v=A.top,b=c.outChannels/c.inChannels,w=new Qt(c.outShape,r.dtype),I=n.data.get(r.dataId).values,T=n.data.get(s.dataId).values,C=w.values;for(let z=0;z<c.batchSize;++z){let $=z*d[0],S=z*w.strides[0];for(let D=0;D<c.outHeight;++D){let _=S+D*w.strides[1],W=D*c.strideHeight-v;for(let X=0;X<m;++X){let q=W+X*g;if(q<0||q>=c.inHeight)continue;let Q=X*h[0],ee=$+q*d[1];for(let ie=0;ie<c.outWidth;++ie){let ae=_+ie*w.strides[2],de=ie*c.strideWidth-x;for(let te=0;te<f;++te){let ce=de+te*y;if(ce<0||ce>=c.inWidth)continue;let he=Q+te*h[1],ve=ee+ce*c.inChannels,xe=ae,Ee=he;for(let Fe=0;Fe<c.inChannels;++Fe){let We=I[ve+Fe];for(let qe=0;qe<b;++qe)C[xe+qe]+=We*T[Ee+qe];xe+=b,Ee+=b}}}}}}return n.makeTensorInfo(w.shape,w.dtype,w.values)}var joe={kernelName:sl,backendName:"cpu",kernelFunc:LN};function Hoe(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:u,filterShape:d}=a;Se([r,s],"depthwiseConv2dNativeBackpropFilter");let h=M.computeConv2DInfo(r.shape,d,i,o,l,u,!0),{strideHeight:p,strideWidth:c,filterHeight:m,filterWidth:f}=h,g=new Qt(h.filterShape,"float32"),y=h.padInfo.left,A=h.padInfo.top,x=h.outChannels/h.inChannels,v=n.data.get(r.dataId).values,b=new Qt(r.shape,r.dtype,v),w=n.data.get(s.dataId).values,I=new Qt(s.shape,s.dtype,w);for(let T=0;T<m;++T){let C=Math.max(0,Math.ceil((A-T)/p)),z=Math.min(h.outHeight,(h.inHeight+A-T)/p);for(let $=0;$<f;++$){let S=Math.max(0,Math.ceil((y-$)/c)),D=Math.min(h.outWidth,(h.inWidth+y-$)/c);for(let _=0;_<h.outChannels;++_){let W=Math.trunc(_/x),X=_%x,q=0;for(let Q=0;Q<h.batchSize;++Q)for(let ee=C;ee<z;++ee){let ie=T+ee*p-A;for(let ae=S;ae<D;++ae){let de=$+ae*c-y;q+=b.get(Q,ie,de,W)*I.get(Q,ee,ae,_)}}g.set(q,T,$,W,X)}}}return n.makeTensorInfo(g.shape,g.dtype,g.values)}var Goe={kernelName:E1,backendName:"cpu",kernelFunc:Hoe};function qoe(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:u,inputShape:d}=a;Se([r,s],"depthwiseConv2DNativeBackpropInput");let h=k.computeStrides(r.shape),p=k.computeStrides(s.shape),c=M.computeConv2DInfo(d,s.shape,i,o,l,u,!0),m=new Qt(c.inShape,"float32"),f=m.values,[g,y,A]=m.strides,x=n.data.get(r.dataId).values,[v,b,w]=h,I=n.data.get(s.dataId).values,[T,C,z]=p,{batchSize:$,filterHeight:S,filterWidth:D,inChannels:_,inHeight:W,inWidth:X,outChannels:q,outHeight:Q,outWidth:ee,strideHeight:ie,strideWidth:ae}=c,de=S-1-c.padInfo.top,te=D-1-c.padInfo.left,ce=q/_;for(let he=0;he<$;++he)for(let ve=0;ve<_;++ve)for(let xe=0;xe<W;++xe){let Ee=xe-de,Fe=Math.max(0,Math.ceil(Ee/ie)),We=Math.min(Q,(S+Ee)/ie);for(let qe=0;qe<X;++qe){let Be=qe-te,ft=Math.max(0,Math.ceil(Be/ae)),mt=Math.min(ee,(D+Be)/ae),bt=0;for(let lt=Fe;lt<We;++lt){let Ct=lt*ie-Ee;for(let Je=ft;Je<mt;++Je){let Hn=Je*ae-Be,Bt=v*he+b*lt+w*Je,xa=T*(S-1-Ct)+C*(D-1-Hn)+z*ve;for(let vn=0;vn<ce;++vn){let Gn=ve*ce+vn,ba=x[Bt+Gn],sa=I[xa+vn];bt+=ba*sa}}}f[g*he+y*xe+A*qe+ve]=bt}}return n.makeTensorInfo(m.shape,m.dtype,m.values)}var Koe={kernelName:C1,backendName:"cpu",kernelFunc:qoe};function Xoe(e){let{inputs:t,backend:n}=e,{x:a}=t,r=k.sizeFromShape(a.shape),s=n.data.get(a.dataId).values,i=Pe([r,r],a.dtype),o=i.values;for(let u=0;u<s.length;u++)o[u*r+u]=s[u];let l=[...a.shape,...a.shape];return n.makeTensorInfo(l,i.dtype,i.values)}var Zoe={kernelName:M1,backendName:"cpu",kernelFunc:Xoe},Yoe={kernelName:Jc,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:a,filter:r}=e,{strides:s,pad:i,dilations:o}=n,l=t,u=l.data.get(a.dataId).values,d=a.shape.length,h=l.data.get(r.dataId).values,p=r.shape.length,{batchSize:c,inHeight:m,inWidth:f,inChannels:g,outHeight:y,outWidth:A,padInfo:x,strideHeight:v,strideWidth:b,filterHeight:w,filterWidth:I,dilationHeight:T,dilationWidth:C,outShape:z}=M.computeDilation2DInfo(a.shape,r.shape,s,i,"NHWC",o),$=k.sizeFromShape(z),S=z.length,D=k.getArrayFromDType(a.dtype,$);for(let _=0;_<c;++_)for(let W=0;W<y;++W){let X=W*v-x.top;for(let q=0;q<A;++q){let Q=q*b-x.left;for(let ee=0;ee<g;++ee){let ie=Number.MIN_SAFE_INTEGER;for(let de=0;de<w;++de){let te=X+de*T;if(te>=0&&te<m)for(let ce=0;ce<I;++ce){let he=Q+ce*C;if(he>=0&&he<f){let ve=k.locToIndex([_,te,he,ee],d,k.computeStrides(a.shape)),xe=k.locToIndex([de,ce,ee],p,k.computeStrides(r.shape)),Ee=u[ve]+h[xe];Ee>ie&&(ie=Ee)}}}let ae=k.locToIndex([_,W,q,ee],S,k.computeStrides(z));D[ae]=ie}}}return{dataId:l.write(k.toTypedArray(D,a.dtype),z,a.dtype),shape:z,dtype:a.dtype}}},Joe={kernelName:R1,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:a,filter:r,dy:s}=e,{strides:i,pad:o,dilations:l}=n,u=t,d=k.toNestedArray(a.shape,u.data.get(a.dataId).values),h=k.toNestedArray(r.shape,u.data.get(r.dataId).values),{batchSize:p,inHeight:c,inWidth:m,inChannels:f,outHeight:g,outWidth:y,padInfo:A,strideHeight:x,strideWidth:v,filterHeight:b,filterWidth:w,dilationHeight:I,dilationWidth:T,outShape:C}=M.computeDilation2DInfo(a.shape,r.shape,i,o,"NHWC",l);k.assert(s.rank===C.length,()=>`Error in ${R1}, dy must have the same rank as output ${C.length}, but got ${s.rank}`);let z=k.toNestedArray(C,u.data.get(s.dataId).values),$=k.makeZerosNestedTypedArray(r.shape,r.dtype);for(let S=0;S<p;++S)for(let D=0;D<g;++D){let _=D*x-A.top;for(let W=0;W<y;++W){let X=W*v-A.left;for(let q=0;q<f;++q){let Q=Number.MIN_SAFE_INTEGER,ee=0,ie=0;for(let ae=0;ae<b;++ae){let de=_+ae*I;if(de>=0&&de<c)for(let te=0;te<w;++te){let ce=X+te*T;if(ce>=0&&ce<m){let he=d[S][de][ce][q]+h[ae][te][q];he>Q&&(Q=he,ee=ae,ie=te)}}}$[ee][ie][q]+=z[S][D][W][q]}}}return{dataId:u.write(k.toTypedArray($,a.dtype),r.shape,r.dtype),shape:r.shape,dtype:r.dtype}}},Qoe={kernelName:$1,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:a,filter:r,dy:s}=e,{strides:i,pad:o,dilations:l}=n,u=t,d=k.toNestedArray(a.shape,u.data.get(a.dataId).values),h=k.toNestedArray(r.shape,u.data.get(r.dataId).values),{batchSize:p,inHeight:c,inWidth:m,inChannels:f,outHeight:g,outWidth:y,padInfo:A,strideHeight:x,strideWidth:v,filterHeight:b,filterWidth:w,dilationHeight:I,dilationWidth:T,outShape:C}=M.computeDilation2DInfo(a.shape,r.shape,i,o,"NHWC",l);k.assert(s.rank===C.length,()=>`Error in ${$1}, dy must have the same rank as output ${C.length}, but got ${s.rank}`);let z=k.toNestedArray(C,u.data.get(s.dataId).values),$=k.makeZerosNestedTypedArray(a.shape,a.dtype);for(let S=0;S<p;++S)for(let D=0;D<g;++D){let _=D*x-A.top;for(let W=0;W<y;++W){let X=W*v-A.left;for(let q=0;q<f;++q){let Q=Number.MIN_SAFE_INTEGER,ee=_<0?0:_,ie=X<0?0:X;for(let ae=0;ae<b;++ae){let de=_+ae*I;if(de>=0&&de<c)for(let te=0;te<w;++te){let ce=X+te*T;if(ce>=0&&ce<m){let he=d[S][de][ce][q]+h[ae][te][q];he>Q&&(Q=he,ee=de,ie=ce)}}}$[S][ee][ie][q]+=z[S][D][W][q]}}}return{dataId:u.write(k.toTypedArray($,a.dtype),a.shape,a.dtype),shape:a.shape,dtype:a.dtype}}};function np(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;Se(r,"sum");let o;r.dtype==="bool"?o=Js({inputs:{x:r},backend:n,attrs:{dtype:"int32"}}):o=zr({inputs:{x:r},backend:n});let l=o.shape.length,u=k.parseAxisParam(s,o.shape),d=M.getAxesPermutation(u,l),h=u,p=o;d!=null&&(p=Da({inputs:{x:o},backend:n,attrs:{perm:d}}),h=M.getInnerMostAxes(h.length,l)),M.assertAxesAreInnerMostDims("sum",h,p.shape.length);let[c,m]=M.computeOutAndReduceShapes(p.shape,h),f=M.upcastType(p.dtype,"int32"),g=C0(n,c,f),y=k.sizeFromShape(m),A=n.data.get(g.dataId).values,x=n.data.get(p.dataId).values;for(let v=0;v<A.length;++v){let b=v*y,w=0;for(let I=0;I<y;++I)w+=x[b+I];A[v]=w}if(i){let v=M.expandShapeToKeepDim(g.shape,u),b=g;g=Ot({inputs:{x:g},backend:n,attrs:{shape:v}}),n.disposeIntermediateTensorInfo(b)}return n.disposeIntermediateTensorInfo(o),d!=null&&n.disposeIntermediateTensorInfo(p),g}var ele={kernelName:Ol,backendName:"cpu",kernelFunc:np};function tle(e){let{inputs:t,backend:n,attrs:a}=e,{equation:r}=a,s=t,{allDims:i,summedDims:o,idDims:l}=M.decodeEinsumEquation(r,s.length);M.checkEinsumDimSizes(i.length,l,s);let{path:u,steps:d}=M.getEinsumComputePath(o,l),h=d.length,p=null,c=i.length,m=[];for(let f=0;f<h;++f){for(let g of d[f]){let{permutationIndices:y,expandDims:A}=M.getEinsumPermutation(c,l[g]),x;M.isIdentityPermutation(y)?x=s[g]:(x=Da({inputs:{x:s[g]},backend:n,attrs:{perm:y}}),m.push(x));let v=x.shape.slice();for(let b=0;b<A.length;++b)v.splice(A[b],0,1);k.arraysEqual(x.shape,v)||(x=Ot({inputs:{x},backend:n,attrs:{shape:v}}),m.push(x)),p===null?p=x:(p=M0({inputs:{a:x,b:p},backend:n}),m.push(p))}f<h-1&&(u[f]>=0&&(p=np({inputs:{x:p},backend:n,attrs:{axis:u[f]-(i.length-c),keepDims:!1}}),m.push(p)),c--)}for(let f of m)f!==p&&n.disposeIntermediateTensorInfo(f);return p}var nle={kernelName:F1,backendName:"cpu",kernelFunc:tle};function ale(e){let{inputs:t,backend:n}=e,{dy:a,y:r}=t;Se([a,r],"eluGrad");let s=new Float32Array(k.sizeFromShape(r.shape)),i=n.data.get(r.dataId).values,o=n.data.get(a.dataId).values;for(let l=0;l<i.length;++l){let u=i[l];u>=1?s[l]=o[l]:s[l]=o[l]*(u+1)}return n.makeTensorInfo(r.shape,"float32",s)}var rle={kernelName:O1,backendName:"cpu",kernelFunc:ale},sle=M.ERF_P,ile=M.ERF_A1,ole=M.ERF_A2,lle=M.ERF_A3,ule=M.ERF_A4,dle=M.ERF_A5,hle=xt(Od,e=>{let t=Math.sign(e),n=Math.abs(e),a=1/(1+sle*n);return t*(1-((((dle*a+ule)*a+lle)*a+ole)*a+ile)*a*Math.exp(-n*n))}),ple={kernelName:Od,backendName:"cpu",kernelFunc:hle};function $0(e){let{inputs:t,backend:n,attrs:a}=e,{input:r}=t,{dim:s}=a,i=r.shape.length,o=r.shape.slice(),l=s;return s<0&&(k.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+s+1),o.splice(l,0,1),Ot({inputs:{x:r},backend:n,attrs:{shape:o}})}var cle={kernelName:Dd,backendName:"cpu",kernelFunc:$0},fle=nn((e,t)=>e/t),P5=bn(il,fle),L5={kernelName:il,backendName:"cpu",kernelFunc:P5};function WN(e,t,n){let a=e.shape,r=a[0],s=a[1],i=n.data.get(e.dataId),o=i.complexTensorInfos.real,l=i.complexTensorInfos.imag,u=[r,s],d=k.sizeFromShape(u),h=k.getTypedArrayFromDType("float32",d),p=k.getTypedArrayFromDType("float32",d);for(let g=0;g<r;g++){let y=fo({inputs:{x:o},backend:n,attrs:{begin:[g,0],size:[1,s]}}),A=fo({inputs:{x:l},backend:n,attrs:{begin:[g,0],size:[1,s]}}),x=ca({inputs:{real:y,imag:A},backend:n}),{real:v,imag:b}=mle(x,t,n),w=M.mergeRealAndImagArrays(v,b);for(let I=0;I<s;I++){let T=M.getComplexWithIndex(w,I);h[g*s+I]=T.real,p[g*s+I]=T.imag}n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(A),n.disposeIntermediateTensorInfo(x)}let c=n.makeTensorInfo(u,"float32",h),m=n.makeTensorInfo(u,"float32",p),f=ca({inputs:{real:c,imag:m},backend:n});return n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(m),f}function mle(e,t,n){let a=k.sizeFromShape(e.shape),r=n.data.get(e.dataId),s=n.data.get(r.complexTensorInfos.real.dataId).values,i=n.data.get(r.complexTensorInfos.imag.dataId).values;if(gle(a)){let o=W5(s,i,a,t,n),l=[e.shape[0],e.shape[1]];if(t){let u=n.makeTensorInfo(l,"float32",o.real),d=n.makeTensorInfo(l,"float32",o.imag),h=n.makeTensorInfo([],"float32",k.createScalarValue(a,"float32")),p=zr({inputs:{x:h},backend:n}),c=L5.kernelFunc({inputs:{a:u,b:h},backend:n}),m=L5.kernelFunc({inputs:{a:d,b:p},backend:n}),f=n.data.get(c.dataId).values,g=n.data.get(m.dataId).values;return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(m),{real:f,imag:g}}return o}else{let o=M.mergeRealAndImagArrays(s,i),l=yle(o,a,t);return M.splitRealAndImagArrays(l)}}function gle(e){return(e&e-1)==0}function W5(e,t,n,a,r){if(n===1)return{real:e,imag:t};let s=M.mergeRealAndImagArrays(e,t),i=n/2,o=M.complexWithEvenIndex(s),l=o.real,u=o.imag,d=[l.length],h=r.makeTensorInfo(d,"float32",l),p=r.makeTensorInfo(d,"float32",u),c=ca({inputs:{real:h,imag:p},backend:r}),m=M.complexWithOddIndex(s),f=m.real,g=m.imag,y=[f.length],A=r.makeTensorInfo(y,"float32",f),x=r.makeTensorInfo(y,"float32",g),v=ca({inputs:{real:A,imag:x},backend:r}),b=W5(l,u,i,a,r),w=b.real,I=b.imag,T=[w.length],C=r.makeTensorInfo(T,"float32",w),z=r.makeTensorInfo(T,"float32",I),$=ca({inputs:{real:C,imag:z},backend:r}),S=W5(f,g,i,a,r),D=S.real,_=S.imag,W=[D.length],X=r.makeTensorInfo(W,"float32",D),q=r.makeTensorInfo(W,"float32",_),Q=ca({inputs:{real:X,imag:q},backend:r}),ee=M.exponents(n,a),ie=[ee.real.length],ae=r.makeTensorInfo(ie,"float32",ee.real),de=r.makeTensorInfo(ie,"float32",ee.imag),te=ca({inputs:{real:ae,imag:de},backend:r}),ce=M0({inputs:{a:te,b:Q},backend:r}),he=tp({inputs:{a:$,b:ce},backend:r}),ve=D5({inputs:{a:$,b:ce},backend:r}),xe=co({inputs:{input:he},backend:r}),Ee=co({inputs:{input:ve},backend:r}),Fe=pu({inputs:{input:he},backend:r}),We=pu({inputs:{input:ve},backend:r}),qe=cu({inputs:[xe,Ee],backend:r,attrs:{axis:0}}),Be=cu({inputs:[Fe,We],backend:r,attrs:{axis:0}}),ft=r.data.get(qe.dataId).values,mt=r.data.get(Be.dataId).values;return r.disposeIntermediateTensorInfo(h),r.disposeIntermediateTensorInfo(p),r.disposeIntermediateTensorInfo(c),r.disposeIntermediateTensorInfo(A),r.disposeIntermediateTensorInfo(x),r.disposeIntermediateTensorInfo(v),r.disposeIntermediateTensorInfo(C),r.disposeIntermediateTensorInfo(z),r.disposeIntermediateTensorInfo($),r.disposeIntermediateTensorInfo(X),r.disposeIntermediateTensorInfo(q),r.disposeIntermediateTensorInfo(Q),r.disposeIntermediateTensorInfo(ae),r.disposeIntermediateTensorInfo(de),r.disposeIntermediateTensorInfo(te),r.disposeIntermediateTensorInfo(ce),r.disposeIntermediateTensorInfo(he),r.disposeIntermediateTensorInfo(ve),r.disposeIntermediateTensorInfo(xe),r.disposeIntermediateTensorInfo(Fe),r.disposeIntermediateTensorInfo(Ee),r.disposeIntermediateTensorInfo(We),r.disposeIntermediateTensorInfo(qe),r.disposeIntermediateTensorInfo(Be),{real:ft,imag:mt}}function yle(e,t,n){let a=new Float32Array(t*2);for(let r=0;r<t;r++){let s=0,i=0;for(let o=0;o<t;o++){let l=M.exponent(r*o,t,n),u=M.getComplexWithIndex(e,o);s+=u.real*l.real-u.imag*l.imag,i+=u.real*l.imag+u.imag*l.real}n&&(s/=t,i/=t),M.assignToTypedArray(a,s,i,r)}return a}function Ale(e){let{inputs:t,backend:n}=e,{input:a}=t,r=k.sizeFromShape(a.shape),s=a.shape[a.shape.length-1],i=r/s,o=Ot({inputs:{x:a},backend:n,attrs:{shape:[i,s]}}),l=WN(o,!1,n),u=Ot({inputs:{x:l},backend:n,attrs:{shape:a.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(l),u}var xle={kernelName:D1,backendName:"cpu",kernelFunc:Ale};function B5(e){let{backend:t,attrs:n}=e,{shape:a,value:r,dtype:s}=n,i=s||k.inferDtype(r),o=k.getArrayFromDType(i,k.sizeFromShape(a));return vle(o,r,i),t.makeTensorInfo(a,i,o)}var ble={kernelName:Qc,backendName:"cpu",kernelFunc:B5};function vle(e,t,n){e.fill(t)}var wle={kernelName:_d,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:a}=e,r=n,s=k.getTypedArrayFromDType(a.dtype,k.sizeFromShape(a.shape)),[i,o,l,u]=a.shape,d=r.data.get(a.dataId).values;for(let h=0;h<i;h++){let p=h*l*o*u;for(let c=0;c<o;c++){let m=c*(l*u);for(let f=0;f<l;f++){let g=f*u;for(let y=0;y<u;y++){let A=[i,c,f,y][2],x=Math.round(l-A),v=p+m+g+y,b=d[v];if(x>=0&&x<l){let w=x*u,I=p+m+w+y;b=d[I]}s[v]=b}}}}return{dataId:r.write(s,a.shape,a.dtype),shape:a.shape,dtype:a.dtype}}},kle=nn((e,t)=>Math.floor(e/t)),Ile=bn(ul,kle,null,"int32"),Sle={kernelName:ul,backendName:"cpu",kernelFunc:Ile};function Nle(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dataFormat:d,dilations:h,dimRoundingMode:p,activation:c,leakyreluAlpha:m}=a,f=PN({inputs:{x:r,filter:s},backend:n,attrs:{strides:l,pad:u,dataFormat:d,dilations:h,dimRoundingMode:p}});if(i){let g=f;f=tp({inputs:{a:f,b:i},backend:n}),n.disposeIntermediateTensorInfo(g)}if(c){let g=f;f=_5(n,f,c,o,m),n.disposeIntermediateTensorInfo(g)}return f}var Tle={kernelName:Wl,backendName:"cpu",kernelFunc:Nle};function Ele(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dataFormat:d,dilations:h,dimRoundingMode:p,activation:c,leakyreluAlpha:m}=a,f=LN({inputs:{x:r,filter:s},backend:n,attrs:{strides:l,pad:u,dataFormat:d,dilations:h,dimRoundingMode:p}});if(i){let g=f;f=tp({inputs:{a:f,b:i},backend:n}),n.disposeIntermediateTensorInfo(g)}if(c){let g=f;f=_5(n,f,c,o,m),n.disposeIntermediateTensorInfo(g)}return f}var Cle={kernelName:Bl,backendName:"cpu",kernelFunc:Ele};function Mle(e){let{inputs:t,backend:n}=e,{params:a,indices:r}=t,s=k.sizeFromShape(a.shape),i=r.shape,o=i[i.length-1],[l,u,d,h]=M.prepareAndValidate(a,r);if(u===0)return n.makeTensorInfo(l,a.dtype,[]);let p=n.data.get(r.dataId).values,c=n.bufferSync(a),m=tN(p,c,a.dtype,u,o,d,h,a.shape,s);return n.makeTensorInfo(l,a.dtype,m.values)}var $le={kernelName:Pd,backendName:"cpu",kernelFunc:Mle};function Rle(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,indices:s}=t,{axis:i,batchDims:o}=a;Se([r,s],"gatherV2");let l=o;o==null&&(l=0);let u=k.sizeFromShape(s.shape),d=k.parseAxisParam(i,r.shape)[0],h=M.segment_util.collectGatherOpShapeInfo(r,s,d,l),p=Ot({inputs:{x:r},backend:n,attrs:{shape:[h.batchSize,h.outerSize,h.dimSize,h.sliceSize]}}),c=Ot({inputs:{x:s},backend:n,attrs:{shape:[h.batchSize,u/h.batchSize]}}),m=[h.batchSize,h.outerSize,u/h.batchSize,h.sliceSize],f=n.bufferSync(c),g=n.bufferSync(p),y=nN(g,f,m);return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(c),n.makeTensorInfo(h.outputShape,y.dtype,y.values)}var Fle={kernelName:zd,backendName:"cpu",kernelFunc:Rle};function Ole(e){let{inputs:t,backend:n}=e,{input:a}=t,r=k.sizeFromShape(a.shape),s=a.shape[a.shape.length-1],i=r/s,o=Ot({inputs:{x:a},backend:n,attrs:{shape:[i,s]}}),l=WN(o,!0,n),u=Ot({inputs:{x:l},backend:n,attrs:{shape:a.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(l),u}var Dle={kernelName:_1,backendName:"cpu",kernelFunc:Ole},_le=xt(Ld,e=>Number.isFinite(e)?1:0,"bool"),zle={kernelName:Ld,backendName:"cpu",kernelFunc:_le},Ple=xt(Wd,e=>Math.abs(e)===Infinity?1:0,"bool"),Lle={kernelName:Wd,backendName:"cpu",kernelFunc:Ple},Wle=xt(Bd,e=>Number.isNaN(e)?1:0,"bool"),Ble={kernelName:Bd,backendName:"cpu",kernelFunc:Wle};function Vle(e){let{backend:t,attrs:n}=e,{start:a,stop:r,num:s}=n,i=oN(a,r,s);return t.makeTensorInfo([i.length],"float32",i)}var Ule={kernelName:P1,backendName:"cpu",kernelFunc:Vle},jle=xt(Vd,e=>Math.log1p(e)),Hle={kernelName:Vd,backendName:"cpu",kernelFunc:jle},Gle=nn((e,t)=>e&&t),qle=bn(Ud,Gle,null,"bool"),Kle={kernelName:Ud,backendName:"cpu",kernelFunc:qle},Xle=xt(ef,e=>e?0:1,"bool"),Zle={kernelName:ef,backendName:"cpu",kernelFunc:Xle},Yle=nn((e,t)=>e||t),Jle=bn(tf,Yle,null,"bool"),Qle={kernelName:tf,backendName:"cpu",kernelFunc:Jle};function eue(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{depthRadius:s,bias:i,alpha:o,beta:l}=a;Se(r,"LRN");let u=r.shape[3],d=u-1,h=n.data.get(r.dataId).values,p=k.sizeFromShape(r.shape),c=new Float32Array(p);function m(f){let g=f%u,y=f-g+Math.max(0,g-s),A=f-g+Math.min(g+s,d),x=0;for(;y<=A;y++){let v=h[y];x+=v*v}return x}for(let f=0;f<p;f++){let g=m(f),y=h[f]*Math.pow(i+o*g,-l);c[f]=y}return n.makeTensorInfo(r.shape,r.dtype,c)}var tue={kernelName:nf,backendName:"cpu",kernelFunc:eue};function nue(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,y:s,dy:i}=t,{depthRadius:o,bias:l,alpha:u,beta:d}=a;Se(i,"LRNGrad");let h=k.sizeFromShape(i.shape),p=i.shape[3],c=n.data.get(i.dataId).values,m=n.data.get(r.dataId).values,f=n.data.get(s.dataId).values,g=new Float32Array(h),y=h;for(let A=0;A<y;A++){let x=A%p,v=A-x+Math.max(0,x-o),b=A-x+Math.min(p,x+o+1),w=0;for(let I=v;I<b;I++)w+=Math.pow(m[I],2);w=u*w+l;for(let I=v;I<b;I++){let T=-2*u*d*m[I]*f[A]/w;A===I&&(T+=Math.pow(w,-d)),T*=c[A],g[I]+=T}}return n.makeTensorInfo(i.shape,r.dtype,g)}var aue={kernelName:L1,backendName:"cpu",kernelFunc:nue};function BN(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{reductionIndices:s,keepDims:i}=a,o=n,l=r.shape,u=l.length,d=k.parseAxisParam(s,l),h=d,p=M.getAxesPermutation(h,u),c=o.data.get(r.dataId).values;if(p!=null){let v=new Array(u);for(let b=0;b<v.length;b++)v[b]=l[p[b]];c=F5(c,l,r.dtype,p,v),h=M.getInnerMostAxes(h.length,u),l=v}Se(r,"max"),M.assertAxesAreInnerMostDims("max",h,u);let[m,f]=M.computeOutAndReduceShapes(l,h),g=k.sizeFromShape(f),y=uN(c,g,m,r.dtype),A=o.write(y,m,r.dtype),x=m;return i&&(x=M.expandShapeToKeepDim(m,d)),{dataId:A,shape:x,dtype:r.dtype}}var rue={kernelName:gl,backendName:"cpu",kernelFunc:BN};function sue(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t;Se(r,"maxPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=a,u=1;k.assert(M.eitherStridesOrDilationsAreOne(i,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let d=M.computePool2DInfo(r.shape,s,i,u,o,l),h;if(d.filterWidth===1&&d.filterHeight===1&&k.arraysEqual(d.inShape,d.outShape))h=zr({inputs:{x:r},backend:n});else{let p=n.data.get(r.dataId).values,c=k.computeStrides(r.shape),m=z5(p,r.shape,r.dtype,c,d,"max");h=n.makeTensorInfo(d.outShape,r.dtype,m.values)}return h}var iue={kernelName:yl,backendName:"cpu",kernelFunc:sue};function oue(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:u}=a;Se(r,"maxPool3d");let d=M.computePool3DInfo(r.shape,s,i,1,o,l,u),h=n.data.get(r.dataId).values,p=zN(h,r.shape,r.dtype,k.computeStrides(r.shape),d,"max");return n.makeTensorInfo(p.shape,"float32",p.values)}var lue={kernelName:af,backendName:"cpu",kernelFunc:oue};function uue(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=a;Se([r,s],"maxPool3DGrad");let d=M.computePool3DInfo(s.shape,i,o,1,l,u),h=n.bufferSync(s),p=eoe(h,d),c=d.strideDepth,m=d.strideHeight,f=d.strideWidth,g=d.dilationDepth,y=d.dilationHeight,A=d.dilationWidth,x=d.effectiveFilterDepth,v=d.effectiveFilterHeight,b=d.effectiveFilterWidth,w=x-1-d.padInfo.front,I=b-1-d.padInfo.left,T=v-1-d.padInfo.top,C=Pe(s.shape,"float32"),z=n.bufferSync(r);for(let $=0;$<d.batchSize;++$)for(let S=0;S<d.inChannels;++S)for(let D=0;D<d.inDepth;++D)for(let _=0;_<d.inHeight;++_)for(let W=0;W<d.inWidth;++W){let X=D-w,q=_-T,Q=W-I,ee=0;for(let ie=0;ie<x;ie+=g){let ae=(X+ie)/c;if(!(ae<0||ae>=d.outDepth||Math.floor(ae)!==ae))for(let de=0;de<v;de+=y){let te=(q+de)/m;if(!(te<0||te>=d.outHeight||Math.floor(te)!==te))for(let ce=0;ce<b;ce+=A){let he=(Q+ce)/f;if(he<0||he>=d.outWidth||Math.floor(he)!==he)continue;let ve=x*v*b-1-p.get($,ae,te,he,S),xe=ie*v*b+de*b+ce,Ee=ve===xe?1:0;Ee!==0&&(ee+=z.get($,ae,te,he,S)*Ee)}}}C.set(ee,$,D,_,W,S)}return n.makeTensorInfo(C.shape,C.dtype,C.values)}var due={kernelName:B1,backendName:"cpu",kernelFunc:uue};function hue(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s,output:i}=t,o=s;Se([s,i],"maxPoolGrad");let{filterSize:l,strides:u,pad:d,dimRoundingMode:h}=a,p=M.computePool2DInfo(o.shape,l,u,1,d,h),c=n.data.get(o.dataId).values,m=Pe(p.outShape,o.dtype,_N(c,o.shape,o.dtype,p).values),f=p.strideHeight,g=p.strideWidth,y=p.dilationHeight,A=p.dilationWidth,x=p.effectiveFilterHeight,v=p.effectiveFilterWidth,b=v-1-p.padInfo.left,w=x-1-p.padInfo.top,I=Pe(o.shape,"float32"),T=n.data.get(r.dataId).values,C=Pe(r.shape,"float32",T);for(let z=0;z<p.batchSize;++z)for(let $=0;$<p.inChannels;++$)for(let S=0;S<p.inHeight;++S)for(let D=0;D<p.inWidth;++D){let _=S-w,W=D-b,X=0;for(let q=0;q<x;q+=y){let Q=(_+q)/f;if(!(Q<0||Q>=p.outHeight||Math.floor(Q)!==Q))for(let ee=0;ee<v;ee+=A){let ie=(W+ee)/g;if(ie<0||ie>=p.outWidth||Math.floor(ie)!==ie)continue;let ae=x*v-1-m.get(z,Q,ie,$),de=q*v+ee,te=ae===de?1:0;te!==0&&(X+=C.get(z,Q,ie,$)*te)}}I.set(X,z,S,D,$)}return n.makeTensorInfo(I.shape,I.dtype,I.values)}var pue={kernelName:W1,backendName:"cpu",kernelFunc:hue};function cue(e,t,n,a,r){let s=k.computeStrides(t),i=z5(e,t,n,s,r,"max"),o=_N(e,t,n,r,!0,a);return[i.values,o.values]}var fue={kernelName:V1,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:a}=e,{filterSize:r,strides:s,pad:i,includeBatchInIndex:o}=t,l=n;Se(a,"MaxPoolWithArgmax");let u=l.data.get(a.dataId).values,d=M.computePool2DInfo(a.shape,r,s,[1,1],i),[h,p]=cue(u,a.shape,a.dtype,o,d),c=l.write(h,d.outShape,a.dtype),m=l.write(p,d.outShape,a.dtype);return[{dataId:c,shape:d.outShape,dtype:a.dtype},{dataId:m,shape:d.outShape,dtype:"int32"}]}};function mue(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=k.parseAxisParam(s,r.shape),l=M.computeOutAndReduceShapes(r.shape,o)[1],u=k.sizeFromShape(l),d=[],h=n.makeTensorInfo([],"float32",new Float32Array([u]));d.push(h);let p=Js({inputs:{x:r},backend:n,attrs:{dtype:"float32"}});d.push(p);let c=P5({inputs:{a:p,b:h},backend:n});d.push(c);let m=np({inputs:{x:c},backend:n,attrs:{axis:s,keepDims:i}});return d.forEach(f=>n.disposeIntermediateTensorInfo(f)),m}var gue={kernelName:Al,backendName:"cpu",kernelFunc:mue};function yue(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;Se(r,"min");let o=k.parseAxisParam(s,r.shape),l=o,u=M.getAxesPermutation(l,r.shape.length),d=r;u!=null&&(d=Da({inputs:{x:r},backend:n,attrs:{perm:u}}),l=M.getInnerMostAxes(l.length,r.shape.length)),M.assertAxesAreInnerMostDims("min",l,d.shape.length);let[h,p]=M.computeOutAndReduceShapes(d.shape,l),c=k.sizeFromShape(p),m=k.makeZerosTypedArray(k.sizeFromShape(h),d.dtype),f=n.data.get(d.dataId).values;for(let y=0;y<m.length;++y){let A=y*c,x=f[A];for(let v=0;v<c;++v){let b=f[A+v];(Number.isNaN(b)||b<x)&&(x=b)}m[y]=x}u!=null&&n.disposeIntermediateTensorInfo(d);let g=n.makeTensorInfo(h,d.dtype,m);if(i){let y=M.expandShapeToKeepDim(h,o),A=Ot({inputs:{x:g},backend:n,attrs:{shape:y}});return n.disposeIntermediateTensorInfo(g),A}return g}var Aue={kernelName:xl,backendName:"cpu",kernelFunc:yue};function xue(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{paddings:s,mode:i}=a;Se(r,"mirrorPad");let o=s.map((A,x)=>A[0]+r.shape[x]+A[1]),l=s.map(A=>A[0]),u=s.map((A,x)=>A[0]+r.shape[x]),d=i==="reflect"?0:1,h=n.data.get(r.dataId).values,p=r.shape.length,c=k.computeStrides(r.shape),m=k.sizeFromShape(o),f=o.length,g=k.computeStrides(o),y=k.getTypedArrayFromDType(r.dtype,m);for(let A=0;A<m;A++){let x=k.indexToLoc(A,f,g);for(let b=0;b<f;b++)x[b]<l[b]?x[b]=l[b]*2-x[b]-d:x[b]>=u[b]&&(x[b]=(u[b]-1)*2-x[b]+d);x=x.map((b,w)=>b-l[w]);let v=k.locToIndex(x,p,c);y[A]=h[v]}return{dataId:n.write(y,o,r.dtype),shape:o,dtype:r.dtype}}var bue={kernelName:bl,backendName:"cpu",kernelFunc:xue},vue=nn((e,t)=>{let n=e%t;return e<0&&t<0||e>=0&&t>=0?n:(n+t)%t}),wue=bn(jd,vue),kue={kernelName:jd,backendName:"cpu",kernelFunc:wue},Iue=qr(Qg());function VN(e){let{inputs:t,backend:n,attrs:a}=e,{logits:r}=t,{dim:s}=a,i=r.shape.length,o=s;if(o===-1&&(o=i-1),o!==i-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${i} and dim was ${o}`);let l=k.parseAxisParam([o],r.shape),u=BN({inputs:{x:r},backend:n,attrs:{reductionIndices:l,keepDims:!1}}),d=M.expandShapeToKeepDim(u.shape,l),h=Ot({inputs:{x:u},backend:n,attrs:{shape:d}}),p=D5({inputs:{a:r,b:h},backend:n}),c=J9({inputs:{x:p},backend:n}),m=np({inputs:{x:c},backend:n,attrs:{axis:l,keepDims:!1}}),f=Ot({inputs:{x:m},backend:n,attrs:{shape:d}}),g=P5({inputs:{a:c,b:f},backend:n});return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(f),g}var Sue={kernelName:Dl,backendName:"cpu",kernelFunc:VN};function Nue(e){let{inputs:t,backend:n,attrs:a}=e,{logits:r}=t,{numSamples:s,seed:i,normalized:o}=a;Se(r,"multinomial");let l=o?r:VN({inputs:{logits:r},backend:n,attrs:{dim:-1}}),u=l.shape[0],d=l.shape[1],h=n.data.get(l.dataId).values,p=[u,s],c=k.makeZerosTypedArray(k.sizeFromShape(p),"int32");for(let m=0;m<u;++m){let f=m*d,g=new Float32Array(d-1);g[0]=h[f];for(let x=1;x<g.length;++x)g[x]=g[x-1]+h[f+x];let y=Iue.alea(i.toString()),A=m*s;for(let x=0;x<s;++x){let v=y();c[A+x]=g.length;for(let b=0;b<g.length;b++)if(v<g[b]){c[A+x]=b;break}}}return o||n.disposeIntermediateTensorInfo(l),n.makeTensorInfo(p,"int32",c)}var Tue={kernelName:U1,backendName:"cpu",kernelFunc:Nue},Eue=us.nonMaxSuppressionV3Impl;function Cue(e){let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l}=a;Se(r,"NonMaxSuppression");let u=n.data.get(r.dataId).values,d=n.data.get(s.dataId).values,{selectedIndices:h}=Eue(u,d,i,o,l);return n.makeTensorInfo([h.length],"int32",new Int32Array(h))}var Mue={kernelName:Gd,backendName:"cpu",kernelFunc:Cue},$ue=us.nonMaxSuppressionV4Impl;function Rue(e){let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,padToMaxOutputSize:u}=a;Se(r,"NonMaxSuppressionPadded");let d=n.data.get(r.dataId).values,h=n.data.get(s.dataId).values,{selectedIndices:p,validOutputs:c}=$ue(d,h,i,o,l,u);return[n.makeTensorInfo([p.length],"int32",new Int32Array(p)),n.makeTensorInfo([],"int32",new Int32Array([c]))]}var Fue={kernelName:qd,backendName:"cpu",kernelFunc:Rue},Oue=us.nonMaxSuppressionV5Impl;function Due(e){let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,softNmsSigma:u}=a;Se(r,"NonMaxSuppressionWithScore");let d=n.data.get(r.dataId).values,h=n.data.get(s.dataId).values,p=i,c=o,m=l,f=u,{selectedIndices:g,selectedScores:y}=Oue(d,h,p,c,m,f);return[n.makeTensorInfo([g.length],"int32",new Int32Array(g)),n.makeTensorInfo([y.length],"float32",new Float32Array(y))]}var _ue={kernelName:Kd,backendName:"cpu",kernelFunc:Due};function zue(e){let{inputs:t,backend:n,attrs:a}=e,{indices:r}=t,{depth:s,onValue:i,offValue:o}=a;Se(r,"oneHot");let l=k.sizeFromShape(r.shape),u=new Float32Array(l*s);u.fill(o);let d=n.data.get(r.dataId).values;for(let h=0;h<l;++h)d[h]>=0&&d[h]<s&&(u[h*s+d[h]]=i);return n.makeTensorInfo([...r.shape,s],"int32",u)}var Pue={kernelName:wl,backendName:"cpu",kernelFunc:zue};function R0(e){let{inputs:t,backend:n}=e,{x:a}=t;if(a.dtype==="string")throw new Error("zerosLike is not supported for string tensors");if(a.dtype==="complex64"){let r=co({inputs:{input:a},backend:n}),s=R0({inputs:{x:r},backend:n}),i=pu({inputs:{input:a},backend:n}),o=R0({inputs:{x:i},backend:n}),l=ca({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return B5({backend:n,attrs:{shape:a.shape,value:0,dtype:a.dtype}})}var Lue={kernelName:ph,backendName:"cpu",kernelFunc:R0};function UN(e){let{inputs:t,backend:n}=e,{x:a}=t;if(a.dtype==="string")throw new Error("onesLike is not supported for string tensors");if(a.dtype==="complex64"){let r=co({inputs:{input:a},backend:n}),s=UN({inputs:{x:r},backend:n}),i=pu({inputs:{input:a},backend:n}),o=R0({inputs:{x:i},backend:n}),l=ca({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return B5({backend:n,attrs:{shape:a.shape,value:1,dtype:a.dtype}})}var Wue={kernelName:Xd,backendName:"cpu",kernelFunc:UN};function jN(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a;if(t.length===1)return $0({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let s=t[0].shape,i=t[0].dtype;t.forEach(d=>{k.assertShapesMatch(s,d.shape,"All tensors passed to stack must have matching shapes"),k.assert(i===d.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(d=>{let h=$0({inputs:{input:d},backend:n,attrs:{dim:r}});return o.push(h),h}),u=cu({inputs:l,backend:n,attrs:{axis:r}});return o.forEach(d=>n.disposeIntermediateTensorInfo(d)),u}var Bue={kernelName:Zd,backendName:"cpu",kernelFunc:jN};function Vue(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{paddings:s,constantValue:i}=a;Se(r,"pad");let o=s.map((y,A)=>y[0]+r.shape[A]+y[1]),l=s.map(y=>y[0]),u=n.data.get(r.dataId).values,d=k.sizeFromShape(r.shape),h=r.shape.length,p=k.computeStrides(r.shape),c=k.sizeFromShape(o),m=o.length,f=k.computeStrides(o),g=k.getTypedArrayFromDType(r.dtype,c);i!==0&&g.fill(i);for(let y=0;y<d;y++){let A=k.indexToLoc(y,h,p).map((v,b)=>v+l[b]),x=k.locToIndex(A,m,f);g[x]=u[y]}return{dataId:n.write(g,o,r.dtype),shape:o,dtype:r.dtype}}var HN={kernelName:kl,backendName:"cpu",kernelFunc:Vue},Uue=nn((e,t)=>Math.pow(e,t)),jue=bn(Il,Uue),Hue={kernelName:Il,backendName:"cpu",kernelFunc:jue};function Gue(e){let{backend:t,attrs:n}=e,{start:a,stop:r,dtype:s,step:i}=n,o=mN(a,r,i,s);return t.makeTensorInfo([o.length],s,o)}var que={kernelName:rf,backendName:"cpu",kernelFunc:Gue},Kue=xt(Jd,e=>1/e),Xue={kernelName:Jd,backendName:"cpu",kernelFunc:Kue};function Zue(e){let{inputs:t,backend:n,attrs:a}=e,{images:r}=t,{alignCorners:s,halfPixelCenters:i,size:o}=a;Se(r,"resizeBilinear");let l=k.computeStrides(r.shape),[u,d]=o,[h,p,c,m]=r.shape,f=n.data.get(r.dataId).values,g=new Float32Array(k.sizeFromShape([h,u,d,m])),y=[s&&u>1?p-1:p,s&&d>1?c-1:c],A=[s&&u>1?u-1:u,s&&d>1?d-1:d],x=0,v=y[0]/A[0],b=y[1]/A[1];for(let w=0;w<h;w++)for(let I=0;I<u;I++){let T;i?T=v*(I+.5)-.5:T=v*I;let C=Math.max(0,Math.floor(T)),z=T-C,$=Math.min(p-1,Math.ceil(T)),S=w*l[0]+C*l[1],D=w*l[0]+$*l[1];for(let _=0;_<d;_++){let W;i?W=b*(_+.5)-.5:W=b*_;let X=Math.max(0,Math.floor(W)),q=W-X,Q=Math.min(c-1,Math.ceil(W)),ee=S+X*l[2],ie=D+X*l[2],ae=S+Q*l[2],de=D+Q*l[2];for(let te=0;te<m;te++){let ce=f[ee+te],he=f[ie+te],ve=f[ae+te],xe=f[de+te],Ee=ce+(ve-ce)*q,Fe=he+(xe-he)*q,We=Ee+(Fe-Ee)*z;g[x++]=We}}}return n.makeTensorInfo([h,u,d,m],"float32",g)}var Yue={kernelName:Tl,backendName:"cpu",kernelFunc:Zue};function Jue(e){let{inputs:t,backend:n,attrs:a}=e,{images:r,dy:s}=t,{alignCorners:i}=a;Se([s,r],"resizeBilinearGrad");let o=k.computeStrides(r.shape),[l,u,d,h]=r.shape,[,p,c]=s.shape,m=new Float32Array(l*u*d*h),f=[i&&p>1?u-1:u,i&&c>1?d-1:d],g=[i&&p>1?p-1:p,i&&c>1?c-1:c],y=f[0]/g[0],A=f[1]/g[1],x=n.data.get(s.dataId).values,v=0;for(let b=0;b<l;b++){let w=b*o[0];for(let I=0;I<p;I++){let T=I*y,C=Math.floor(T),z=Math.min(Math.ceil(T),u-1),$=w+C*o[1],S=w+z*o[1],D=T-C,_=1-D;for(let W=0;W<c;W++){let X=W*A,q=Math.floor(X),Q=Math.min(Math.ceil(X),d-1),ee=X-q,ie=1-ee,ae=$+q*o[2],de=$+Q*o[2],te=S+q*o[2],ce=S+Q*o[2],he=_*ie,ve=_*ee,xe=D*ie,Ee=D*ee;for(let Fe=0;Fe<h;Fe++){let We=x[v++];m[ae+Fe]+=We*he,m[de+Fe]+=We*ve,m[te+Fe]+=We*xe,m[ce+Fe]+=We*Ee}}}}return n.makeTensorInfo([l,d,u,h],"float32",m)}var Que={kernelName:G1,backendName:"cpu",kernelFunc:Jue};function ede(e){let{inputs:t,backend:n,attrs:a}=e,{images:r}=t,{alignCorners:s,halfPixelCenters:i,size:o}=a;Se(r,"resizeNearestNeighbor");let l=k.computeStrides(r.shape),[u,d]=o,[h,p,c,m]=r.shape,f=n.data.get(r.dataId).values,g=new Float32Array(h*u*d*m),y=[s&&u>1?p-1:p,s&&d>1?c-1:c],A=[s&&u>1?u-1:u,s&&d>1?d-1:d],x=y[0]/A[0],v=y[1]/A[1],b=0;for(let w=0;w<h;w++){let I=w*l[0];for(let T=0;T<u;T++){let C=i?x*(T+.5):x*T,z=Math.min(p-1,s?Math.round(C):Math.floor(C));i&&(z=Math.max(0,z));let $=I+z*l[1];for(let S=0;S<d;S++){let D=i?v*(S+.5):v*S,_=Math.min(c-1,s?Math.round(D):Math.floor(D));i&&(_=Math.max(0,_));let W=$+_*l[2];for(let X=0;X<m;X++){let q=f[W+X];g[b++]=q}}}}return n.makeTensorInfo([h,u,d,m],r.dtype,g)}var tde={kernelName:sf,backendName:"cpu",kernelFunc:ede};function nde(e){let{inputs:t,backend:n,attrs:a}=e,{images:r,dy:s}=t,{alignCorners:i}=a;Se([s,r],"resizeNearestNeighborGrad");let o=k.computeStrides(r.shape),l=k.computeStrides(s.shape),[u,d,h,p]=r.shape,[,c,m]=s.shape,f=new Float32Array(u*d*h*p),g=n.data.get(s.dataId).values,y=[i&&c>1?d-1:d,i&&m>1?h-1:h],A=[i&&c>1?c-1:c,i&&m>1?m-1:m],x=y[0]/A[0],v=y[1]/A[1],b=1/x,w=1/v,I=Math.ceil(b)*2+2,T=Math.ceil(w)*2+2;for(let C=0;C<u;C++){let z=C*o[0];for(let $=0;$<d;$++){let S=z+$*o[1],D=Math.floor($*b),_=Math.floor(D-I/2);for(let W=0;W<h;W++){let X=S+W*o[2],q=Math.floor(W*w),Q=Math.floor(q-T/2);for(let ee=0;ee<p;ee++){let ie=0;for(let ae=0;ae<I;ae++){let de=ae+_;if(de<0||de>=c)continue;let te=z+de*l[1],ce=de*x,he=Math.min(d-1,i?Math.round(ce):Math.floor(ce));if($===he)for(let ve=0;ve<T;ve++){let xe=ve+Q;if(xe<0||xe>=m)continue;let Ee=te+xe*l[2],Fe=xe*v,We=Math.min(h-1,i?Math.round(Fe):Math.floor(Fe));W===We&&(ie+=g[Ee+ee])}}f[X+ee]=ie}}}}return n.makeTensorInfo(r.shape,r.dtype,f)}var ade={kernelName:H1,backendName:"cpu",kernelFunc:nde};function rde(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dims:s}=a;Se(r,"reverse");let i=r.shape.length,o=k.parseAxisParam(s,r.shape);if(i===0)return zr({inputs:{x:r},backend:n});let l=new Qt(r.shape,r.dtype),u=n.bufferSync(r);for(let d=0;d<l.size;d++){let h=l.indexToLoc(d),p=h.slice();o.forEach(c=>p[c]=r.shape[c]-1-p[c]),l.set(u.get(...p),...h)}return n.makeTensorInfo(l.shape,l.dtype,l.values)}var sde={kernelName:Cl,backendName:"cpu",kernelFunc:rde},ide={kernelName:ch,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:a}=e,{radians:r,fillValue:s,center:i}=t,o=n,l=k.getTypedArrayFromDType(a.dtype,k.sizeFromShape(a.shape)),[u,d,h,p]=a.shape,[c,m]=M.getImageCenter(i,d,h),f=255,g=Math.sin(r),y=Math.cos(r),A=o.data.get(a.dataId).values;for(let x=0;x<u;x++){let v=x*h*d*p;for(let b=0;b<d;b++){let w=b*(h*p);for(let I=0;I<h;I++){let T=I*p;for(let C=0;C<p;C++){let z=[u,b,I,C],$=z[2],S=z[1],D=($-c)*y-(S-m)*g,_=($-c)*g+(S-m)*y;D=Math.round(D+c),_=Math.round(_+m);let W=s;if(typeof s!="number"&&(C===3?W=f:W=s[C]),D>=0&&D<h&&_>=0&&_<d){let q=_*(h*p),Q=D*p,ee=v+q+Q+C;W=A[ee]}let X=v+w+T+C;l[X]=W}}}}return{dataId:o.write(l,a.shape,a.dtype),shape:a.shape,dtype:a.dtype}}},ode=xt(Ml,e=>{let t=Math.floor(e);return e-t<.5?Math.floor(e):e-t>.5?Math.ceil(e):t%2==0?t:t+1}),lde={kernelName:Ml,backendName:"cpu",kernelFunc:ode};function GN(e,t,n,a,r,s,i,o,l,u){let d=[a/r,r],h=e.values,p=t.values;if(a===0)return Pe(n,t.dtype);let c=Pe(d,t.dtype);c.values.fill(l);for(let m=0;m<s;m++){let f=[],g=0;for(let y=0;y<i;y++){let A=h[m*i+y];f.push(A),g+=A*o[y]}if(g<0||g>=a/r)throw new Error(`Invalid indices: ${f} does not index into ${n}`);for(let y=0;y<r;y++)u?c.values[g*r+y]+=p[m*r+y]:c.values[g*r+y]=t.rank===0?p[0]:p[m*r+y]}return c}function ude(e){let{inputs:t,backend:n,attrs:a}=e,{indices:r,updates:s}=t,{shape:i}=a,{sliceRank:o,numUpdates:l,sliceSize:u,strides:d,outputSize:h}=M.calculateShapes(s,r,i),p=!0,c=n.bufferSync(r),m=n.bufferSync(s),f=GN(c,m,i,h,u,l,o,d,0,p);return n.makeTensorInfo(i,f.dtype,f.values)}var dde={kernelName:eh,backendName:"cpu",kernelFunc:ude};function hde(e){let{inputs:t,backend:n}=e,{condition:a,t:r,e:s}=t;Se([a,r,s],"select");let i=a.shape.length,o=n.data.get(a.dataId).values,l=n.data.get(r.dataId).values,u=n.data.get(s.dataId).values,d=Ga(r.dtype,s.dtype),h=k.makeZerosTypedArray(k.sizeFromShape(r.shape),d),p=0,c=i===0||i>1||r.shape.length===1?1:k.sizeFromShape(r.shape.slice(1));for(let m=0;m<o.length;m++)for(let f=0;f<c;f++)o[m]===1?h[p++]=l[m]:h[p++]=u[m];return n.makeTensorInfo(r.shape,d,h)}var pde={kernelName:th,backendName:"cpu",kernelFunc:hde},cde=M.SELU_SCALEALPHA,fde=M.SELU_SCALE,mde=xt(nh,e=>e>=0?fde*e:cde*(Math.exp(e)-1)),gde={kernelName:nh,backendName:"cpu",kernelFunc:mde},yde=xt(sh,e=>e<0?-1:e>0?1:0),Ade={kernelName:sh,backendName:"cpu",kernelFunc:yde},xde=xt($l,e=>Math.sin(e)),bde={kernelName:$l,backendName:"cpu",kernelFunc:xde},vde=xt(rh,e=>Math.sinh(e)),wde={kernelName:rh,backendName:"cpu",kernelFunc:vde},kde=11920928955078125e-23,qN=Math.log(kde)+2,Ide=xt(ih,e=>{let t=e>-qN,n=e<qN,a=Math.exp(e),r;return n?r=a:t?r=e:r=Math.log(1+a),r}),Sde={kernelName:ih,backendName:"cpu",kernelFunc:Ide};function Nde(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,paddings:i}=a;Se([r],"spaceToBatchND");let o=k.sizeFromShape(s),l=[[0,0]];l.push(...i);for(let g=1+s.length;g<r.shape.length;++g)l.push([0,0]);let u=HN.kernelFunc({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),d=M.getReshaped(u.shape,s,o,!1),h=M.getPermuted(d.length,s.length,!1),p=M.getReshapedPermuted(u.shape,s,o,!1),c=Ot({inputs:{x:u},backend:n,attrs:{shape:d}}),m=Da({inputs:{x:c},backend:n,attrs:{perm:h}}),f=Ot({inputs:{x:m},backend:n,attrs:{shape:p}});return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(m),f}var Tde={kernelName:of,backendName:"cpu",kernelFunc:Nde};function Ede(e){let{inputs:t,backend:n}=e,{indices:a,values:r,denseShape:s,defaultValue:i}=t;if(s.shape.length!==1)throw new Error(`Dense shape must be a vector, saw:
|
|
${s.shape}`);if(a.shape.length!==2)throw new Error(`Indices must be a matrix, saw:
|
|
${a.shape}`);if(r.shape.length!==1)throw new Error(`Values must be a vector, saw:
|
|
${r.shape}`);if(i.shape.length!==0)throw new Error(`Default value must be a scalar, saw:
|
|
${i.shape}`);let o=n.data.get(a.dataId).values,l=n.data.get(r.dataId).values,u=n.data.get(s.dataId).values,d=n.data.get(i.dataId).values[0],[h,p,c,m,f]=AN(o,a.shape,a.dtype,l,r.dtype,u,d);return[n.makeTensorInfo(p,a.dtype,h),n.makeTensorInfo([p[0]],r.dtype,c),n.makeTensorInfo([m.length],"bool",new Uint8Array(m.map(g=>Number(g)))),n.makeTensorInfo([f.length],a.dtype,new Int32Array(f))]}var Cde={kernelName:q1,backendName:"cpu",kernelFunc:Ede};function Mde(e){let{inputs:t,backend:n}=e,{inputIndices:a,inputShape:r,newShape:s}=t;if(a.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape
|
|
${a.shape}`);if(r.shape.length!==1)throw new Error(`Input shape should be a vector but received shape
|
|
${r.shape}`);if(s.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${s.shape}`);let i=Array.from(n.data.get(r.dataId).values),o=n.data.get(a.dataId).values,l=Array.from(n.data.get(s.dataId).values),[u,d,h]=xN(o,a.shape,a.dtype,i,l);return[n.makeTensorInfo(d,a.dtype,u),n.makeTensorInfo([h.length],s.dtype,new Int32Array(h))]}var $de={kernelName:K1,backendName:"cpu",kernelFunc:Mde};function Rde(e){let{inputs:t,backend:n}=e,{data:a,indices:r,segmentIds:s}=t;if(a.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
|
|
${r.shape}`);if(s.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
|
|
${s.shape}`);let i=n.data.get(a.dataId).values,o=n.data.get(r.dataId).values,l=n.data.get(s.dataId).values,[u,d]=O5(i,a.shape,a.dtype,o,l,!0);return n.makeTensorInfo(d,a.dtype,u)}var Fde={kernelName:X1,backendName:"cpu",kernelFunc:Rde};function Ode(e){let{inputs:t,backend:n}=e,{data:a,indices:r,segmentIds:s}=t;if(a.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
|
|
${r.shape}`);if(s.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
|
|
${s.shape}`);let i=n.data.get(a.dataId).values,o=n.data.get(r.dataId).values,l=n.data.get(s.dataId).values,[u,d]=O5(i,a.shape,a.dtype,o,l);return n.makeTensorInfo(d,a.dtype,u)}var Dde={kernelName:Z1,backendName:"cpu",kernelFunc:Ode};function _de(e){let{inputs:t,backend:n,attrs:a}=e,{sparseIndices:r,sparseValues:s,defaultValue:i}=t,{outputShape:o}=a,{sliceRank:l,numUpdates:u,sliceSize:d,strides:h,outputSize:p}=M.calculateShapes(s,r,o),c=!1,m=n.bufferSync(r),f=n.bufferSync(s),g=n.data.get(i.dataId).values[0],y=GN(m,f,o,p,d,u,l,h,g,c);return n.makeTensorInfo(o,y.dtype,y.values)}var zde={kernelName:Y1,backendName:"cpu",kernelFunc:_de};function Pde(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{numOrSizeSplits:s,axis:i}=a,o=k.parseAxisParam(i,r.shape)[0],l=M.prepareSplitSize(r,s,o),u=new Array(r.shape.length).fill(0),d=r.shape.slice();return l.map(h=>{let p=[...d];p[o]=h;let c=fo({inputs:{x:r},backend:n,attrs:{begin:u,size:p}});return u[o]+=h,c})}var Lde={kernelName:oh,backendName:"cpu",kernelFunc:Pde},Wde=xt(Fl,e=>Math.sqrt(e)),Bde={kernelName:Fl,backendName:"cpu",kernelFunc:Wde},Vde={kernelName:lf,backendName:"cpu",kernelFunc:({inputs:e,backend:t})=>{let{x:n}=e,a=t;Se(n,"square");let r=a.data.get(n.dataId).values,s=new Float32Array(r.length);for(let i=0;i<r.length;++i){let o=r[i];s[i]=o*o}return{dataId:a.write(s,n.shape,n.dtype),shape:n.shape,dtype:n.dtype}}},Ude=xt(Li,(e,t)=>{let n=t;return isNaN(e)?NaN:e>0?1:n.alpha}),jde={kernelName:Li,backendName:"cpu",kernelFunc:Ude};function Hde(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{begin:s,end:i,strides:o,beginMask:l,endMask:u,ellipsisMask:d,newAxisMask:h,shrinkAxisMask:p}=a;Se(r,"stridedSlice");let{nonStrided:c,$begin:m,$strides:f,size:g,newShape:y,outShape:A}=Cn.sliceInfo(r.shape,s,i,o,l,u,d,h,p),x=Ot({inputs:{x:r},backend:n,attrs:{shape:y}}),v;if(c){let w=fo({inputs:{x},backend:n,attrs:{begin:m,size:g}});v=Ot({inputs:{x:w},backend:n,attrs:{shape:A}}),n.disposeIntermediateTensorInfo(w)}else if(A.some(w=>w===0))v=n.makeTensorInfo(A,r.dtype,[]);else{let w=n.bufferSync(x),I=vN(A,w,f,m);v=n.makeTensorInfo(I.shape,I.dtype,I.values)}let b=Ot({inputs:{x:v},backend:n,attrs:{shape:A}});return n.disposeIntermediateTensorInfo(x),n.disposeIntermediateTensorInfo(v),b}var Gde={kernelName:lh,backendName:"cpu",kernelFunc:Hde};function qde(e){let{inputs:t,backend:n,attrs:a}=e,{separator:r,nGramWidths:s,leftPad:i,rightPad:o,padWidth:l,preserveShortSequences:u}=a,{data:d,dataSplits:h}=t,p=n.data.get(d.dataId).values,c=n.data.get(h.dataId).values,[m,f]=wN(p,c,r,s,i,o,l,u);return[n.makeTensorInfo([m.length],"string",m),n.makeTensorInfo(h.shape,"int32",f)]}var Kde={kernelName:J1,backendName:"cpu",kernelFunc:qde};function Xde(e){let{inputs:t,backend:n,attrs:a}=e,{skipEmpty:r}=a,{input:s,delimiter:i}=t;if(s.dtype!=="string")throw new Error("Input must be of datatype string");if(s.shape.length!==1)throw new Error(`Input must be a vector, got shape: ${s.shape}`);if(i.shape.length!==0)throw new Error(`Delimiter must be a scalar, got shape: ${i.shape}`);let o=n.data.get(s.dataId).values,l=n.data.get(i.dataId).values[0],[u,d,h]=kN(o,l,r),p=d.length;return[n.makeTensorInfo([p,2],"int32",u),n.makeTensorInfo([p],"string",d),n.makeTensorInfo([2],"int32",new Int32Array(h))]}var Zde={kernelName:Q1,backendName:"cpu",kernelFunc:Xde};function Yde(e){let{inputs:t,backend:n,attrs:a}=e,{numBuckets:r}=a,{input:s}=t;if(s.dtype!=="string")throw new Error("Input must be of datatype string");if(r<=0)throw new Error("Number of buckets must be at least 1");let i=n.data.get(s.dataId).values,o=IN(i,r);return n.makeTensorInfo(s.shape,"int32",o)}var Jde={kernelName:eA,backendName:"cpu",kernelFunc:Yde},Qde=xt(_l,e=>Math.tan(e)),ehe={kernelName:_l,backendName:"cpu",kernelFunc:Qde},the=xt(zl,e=>Math.tanh(e)),nhe={kernelName:zl,backendName:"cpu",kernelFunc:the};function ahe(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{reps:s}=a;Se(r,"tile");let i=NN(n.bufferSync(r),s);return n.makeTensorInfo(i.shape,i.dtype,i.values)}var rhe={kernelName:Pi,backendName:"cpu",kernelFunc:ahe};function she(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{k:s,sorted:i}=a;Se(r,"topk");let o=n.data.get(r.dataId).values,[l,u]=TN(o,r.shape,r.dtype,s,i);return[n.makeTensorInfo(l.shape,l.dtype,l.values),n.makeTensorInfo(u.shape,u.dtype,u.values)]}var ihe={kernelName:uh,backendName:"cpu",kernelFunc:she};function ohe(e){let{inputs:t,attrs:n,backend:a}=e,{image:r,transforms:s}=t,{interpolation:i,fillMode:o,fillValue:l,outputShape:u}=n,[d,h,p,c]=r.shape,[m,f]=u!=null?u:[h,p],g=[d,m,f,c],y=k.computeStrides(r.shape),A=y[0],x=y[1],v=y[2],b=k.getTypedArrayFromDType(r.dtype,k.sizeFromShape(g));b.fill(l);let w=a.data.get(r.dataId).values,I=a.data.get(s.dataId).values;for(let T=0;T<d;++T){let C=s.shape[0]===1?I:I.subarray(T*8,T*8+8);for(let z=0;z<m;++z)for(let $=0;$<f;++$)for(let S=0;S<c;++S){let D,_=C[6]*$+C[7]*z+1;if(_===0)continue;let W=(C[0]*$+C[1]*z+C[2])/_,X=(C[3]*$+C[4]*z+C[5])/_,q=KN(W,p,o),Q=KN(X,h,o);switch(i){case"nearest":D=che(w,h,p,A,x,v,T,Q,q,S,l);break;case"bilinear":D=fhe(w,h,p,A,x,v,T,Q,q,S,l);break;default:throw new Error(`Error in Transform: Expect 'nearest' or 'bilinear', but got ${i}`)}let ee=T*A+z*x+$*v+S;b[ee]=D}return a.makeTensorInfo(g,r.dtype,b)}return{dataId:a.write(b,g,r.dtype),shape:r.shape,dtype:r.dtype}}var lhe={kernelName:dh,backendName:"cpu",kernelFunc:ohe};function KN(e,t,n){switch(n){case"reflect":return uhe(e,t);case"wrap":return dhe(e,t);case"nearest":return phe(e,t);case"constant":default:return hhe(e,t)}}function uhe(e,t){let n=e;if(n<0)if(t<=1)n=0;else{let a=2*t;n<a&&(n=a*Math.trunc(-n/a)+n),n=n<-t?n+a:-n-1}else if(n>t-1)if(t<=1)n=0;else{let a=2*t;n-=a*Math.trunc(n/a),n>=t&&(n=a-n-1)}return k.clamp(0,n,t-1)}function dhe(e,t){let n=e;if(n<0)if(t<=1)n=0;else{let a=t-1;n+=t*(Math.trunc(-n/a)+1)}else if(n>t-1)if(t<=1)n=0;else{let a=t-1;n-=t*Math.trunc(n/a)}return k.clamp(0,n,t-1)}function hhe(e,t){return e}function phe(e,t){return k.clamp(0,e,t-1)}function ap(e,t,n,a,r,s,i,o,l,u,d){let h=i*a+o*r+l*s+u;return 0<=o&&o<t&&0<=l&&l<n?e[h]:d}function che(e,t,n,a,r,s,i,o,l,u,d){let h=Math.round(o),p=Math.round(l);return ap(e,t,n,a,r,s,i,h,p,u,d)}function fhe(e,t,n,a,r,s,i,o,l,u,d){let h=Math.floor(o),p=Math.floor(l),c=h+1,m=p+1,f=(m-l)*ap(e,t,n,a,r,s,i,h,p,u,d)+(l-p)*ap(e,t,n,a,r,s,i,h,m,u,d),g=(m-l)*ap(e,t,n,a,r,s,i,c,p,u,d)+(l-p)*ap(e,t,n,a,r,s,i,c,m,u,d);return(c-o)*f+(o-h)*g}function mhe(e){let{inputs:t,attrs:n,backend:a}=e,{axis:r}=n,{x:s}=t;Se(s,"unique");let i=a.data.get(s.dataId).values,{outputValues:o,outputShape:l,indices:u}=EN(i,r,s.shape,s.dtype);return[a.makeTensorInfo(l,s.dtype,o),a.makeTensorInfo([u.length],"int32",u)]}var ghe={kernelName:tA,backendName:"cpu",kernelFunc:mhe};function yhe(e){let{inputs:t,backend:n,attrs:a}=e,{value:r}=t,{axis:s}=a;s<0&&(s+=r.shape.length);let i=r.shape.length,o=r.shape[s],l=new Array(i-1),u=0;for(let c=0;c<i;c++)c!==s&&(l[u++]=r.shape[c]);let d=new Array(i).fill(0),h=r.shape.slice();h[s]=1;let p=new Array(o);for(let c=0;c<p.length;c++){d[s]=c;let m=fo({inputs:{x:r},backend:n,attrs:{begin:d,size:h}});p[c]=Ot({inputs:{x:m},backend:n,attrs:{shape:l}}),n.disposeIntermediateTensorInfo(m)}return p}var Ahe={kernelName:hh,backendName:"cpu",kernelFunc:yhe};function xhe(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,segmentIds:s}=t,{numSegments:i}=a;Se(r,"unsortedSegmentSum");let o=r.shape.length,l=s.shape.length,u=[],d=[],h=o-l,p=s;for(let m=0;m<h;++m){let f=$0({inputs:{input:p},backend:n,attrs:{dim:m+1}});p=f,d.push(f)}for(let m=0;m<i;++m){let f=k.createScalarValue(m,"int32"),g=n.makeTensorInfo([],"int32",f),y=Z9({inputs:{a:g,b:p},backend:n}),A=Js({inputs:{x:y},backend:n,attrs:{dtype:"float32"}}),x=M0({inputs:{a:A,b:r},backend:n}),v=np({inputs:{x},backend:n,attrs:{axis:0,keepDims:!1}});u.push(v),d.push(g),d.push(y),d.push(A),d.push(x),d.push(v)}let c=jN({inputs:u,backend:n,attrs:{axis:0}});return d.forEach(m=>n.disposeIntermediateTensorInfo(m)),c}var bhe={kernelName:uf,backendName:"cpu",kernelFunc:xhe},vhe=[Eie,Ise,Mie,Rie,Mse,Oie,_ie,Pie,Wie,Vie,jie,Gie,Kie,Yie,Qie,noe,roe,ioe,loe,Nie,doe,poe,foe,Ese,Rse,goe,Sse,Aoe,boe,koe,Soe,voe,Coe,$oe,Toe,Foe,Doe,zoe,Loe,Boe,Uoe,joe,Goe,Koe,Zoe,Yoe,Qoe,Joe,L5,nle,Aie,rle,Fse,ple,Ose,cle,_se,xle,ble,wle,Pse,Sle,Tle,Cle,$le,Fle,Wse,Vse,Nse,Dle,xoe,zle,Lle,Ble,xie,jse,Gse,Ule,Kse,Hle,Kle,Zle,Qle,tue,aue,Zse,iue,lue,due,pue,fue,rue,gue,Aue,Jse,bue,kue,Tue,eie,nie,Mue,Fue,_ue,rie,Pue,Wue,Bue,HN,Hue,vie,oie,que,Tse,Xue,wie,kie,Sie,Yue,Que,tde,ade,sde,ide,lde,uie,dde,pde,gde,Iie,Ade,bde,wde,die,Sue,Sde,Tde,Cde,$de,Fde,Dde,zde,Lde,Bde,Vde,pie,jde,Gde,Kde,Zde,Jde,gie,ele,ehe,nhe,rhe,ihe,sie,lhe,ghe,Ahe,bhe,Lue];for(let e of vhe)sA(e);var XN={};$e(XN,{assertNotComplex:()=>mu,bindCanvasToFramebuffer:()=>Fhe,bindColorTextureToFramebuffer:()=>D0,bindTextureToProgramUniformSampler:()=>dT,bindTextureUnit:()=>oT,bindVertexBufferToProgramAttribute:()=>j5,callAndCheck:()=>ke,canBeRepresented:()=>ZN,createFragmentShader:()=>QN,createFramebuffer:()=>iT,createProgram:()=>eT,createStaticIndexBuffer:()=>aT,createStaticVertexBuffer:()=>nT,createTexture:()=>rT,createVertexShader:()=>JN,getBatchDim:()=>go,getExtensionOrThrow:()=>op,getFramebufferErrorMessage:()=>hT,getMaxTexturesInShader:()=>mT,getNumChannels:()=>$he,getProgramUniformLocation:()=>uT,getProgramUniformLocationOrThrow:()=>lT,getRowsCols:()=>yo,getShapeAs3D:()=>_0,getTextureShapeFromLogicalShape:()=>cT,getWebGLDisjointQueryTimerVersion:()=>gT,getWebGLErrorMessage:()=>YN,getWebGLMaxTextureSize:()=>fT,hasExtension:()=>za,isCapableOfRenderingToFloatTexture:()=>yT,isDownloadFloatTextureEnabled:()=>AT,isReshapeFree:()=>up,isWebGLFenceEnabled:()=>xT,isWebGLVersionEnabled:()=>G5,linkProgram:()=>tT,resetMaxTextureSize:()=>Ohe,resetMaxTexturesInShader:()=>Dhe,unbindColorTextureFromFramebuffer:()=>H5,unbindTextureUnit:()=>Rhe,validateFramebuffer:()=>lp,validateProgram:()=>O0,validateTextureSize:()=>sT});var mo={},V5={alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!0};function F0(e,t){mo[e]=t}function Pr(e){if(!(e in mo)){let n=khe(e);if(n!==null)mo[e]=n;else return console.log("Could not get context for WebGL version",e),null}let t=mo[e];return t.isContextLost()?(delete mo[e],Pr(e)):(t.disable(t.DEPTH_TEST),t.disable(t.STENCIL_TEST),t.disable(t.BLEND),t.disable(t.DITHER),t.disable(t.POLYGON_OFFSET_FILL),t.disable(t.SAMPLE_COVERAGE),t.enable(t.SCISSOR_TEST),t.enable(t.CULL_FACE),t.cullFace(t.BACK),mo[e])}function whe(e){if(typeof OffscreenCanvas!="undefined"&&e===2)return new OffscreenCanvas(300,150);if(typeof document!="undefined")return document.createElement("canvas");throw new Error("Cannot create a canvas in this context")}function khe(e){if(e!==1&&e!==2)throw new Error("Cannot get WebGL rendering context, WebGL is disabled.");let t=whe(e);return t.addEventListener("webglcontextlost",n=>{n.preventDefault(),delete mo[e]},!1),e===1?t.getContext("webgl",V5)||t.getContext("experimental-webgl",V5):t.getContext("webgl2",V5)}var rp;(function(e){e[e.DENSE=0]="DENSE",e[e.SHARED_BATCH=1]="SHARED_BATCH"})(rp||(rp={}));var _a;(function(e){e[e.RENDER=0]="RENDER",e[e.UPLOAD=1]="UPLOAD",e[e.PIXELS=2]="PIXELS",e[e.DOWNLOAD=3]="DOWNLOAD"})(_a||(_a={}));var Nn;(function(e){e[e.UNPACKED_FLOAT16=0]="UNPACKED_FLOAT16",e[e.UNPACKED_FLOAT32=1]="UNPACKED_FLOAT32",e[e.PACKED_4X1_UNSIGNED_BYTE=2]="PACKED_4X1_UNSIGNED_BYTE",e[e.PACKED_2X2_FLOAT32=3]="PACKED_2X2_FLOAT32",e[e.PACKED_2X2_FLOAT16=4]="PACKED_2X2_FLOAT16"})(Nn||(Nn={}));function sp(e,t){return[t,e]}function Ihe(e,t){return e*t}function ip(e){let t=k.sizeFromShape(e),n=Math.ceil(t/4);return k.sizeToSquarishShape(n)}function fu(e,t){return[Math.max(1,Math.ceil(t/2)),Math.max(1,Math.ceil(e/2))]}function She(e,t){let[n,a]=fu(e,t);return n*a*4}function U5(e,t){let n=e,a,r,s,i,o,l,u,d,h,p;return se().getNumber("WEBGL_VERSION")===2?(a=n.R32F,r=n.R16F,s=n.RGBA16F,i=n.RGBA32F,o=n.RED,u=4,d=1,h=n.HALF_FLOAT,p=n.FLOAT):(a=e.RGBA,r=e.RGBA,s=e.RGBA,i=n.RGBA,o=e.RGBA,u=4,d=4,h=t!=null?t.HALF_FLOAT_OES:null,p=e.FLOAT),l=e.RGBA,{internalFormatFloat:a,internalFormatHalfFloat:r,internalFormatPackedHalfFloat:s,internalFormatPackedFloat:i,textureFormatFloat:o,downloadTextureFormat:l,downloadUnpackNumChannels:u,defaultNumChannels:d,textureTypeHalfFloat:h,textureTypeFloat:p}}function ke(e,t){let n=t();return se().getBool("DEBUG")&&Nhe(e),n}function Nhe(e){let t=e.getError();if(t!==e.NO_ERROR)throw new Error("WebGL Error: "+YN(e,t))}var The=596e-10,Ehe=65504;function ZN(e){return!!(se().getBool("WEBGL_RENDER_FLOAT32_ENABLED")||e===0||The<Math.abs(e)&&Math.abs(e)<Ehe)}function YN(e,t){switch(t){case e.NO_ERROR:return"NO_ERROR";case e.INVALID_ENUM:return"INVALID_ENUM";case e.INVALID_VALUE:return"INVALID_VALUE";case e.INVALID_OPERATION:return"INVALID_OPERATION";case e.INVALID_FRAMEBUFFER_OPERATION:return"INVALID_FRAMEBUFFER_OPERATION";case e.OUT_OF_MEMORY:return"OUT_OF_MEMORY";case e.CONTEXT_LOST_WEBGL:return"CONTEXT_LOST_WEBGL";default:return`Unknown error code ${t}`}}function op(e,t){return gs(e,()=>e.getExtension(t),'Extension "'+t+'" not supported on this browser.')}function JN(e,t){let n=gs(e,()=>e.createShader(e.VERTEX_SHADER),"Unable to create vertex WebGLShader.");if(ke(e,()=>e.shaderSource(n,t)),ke(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw console.log(e.getShaderInfoLog(n)),new Error("Failed to compile vertex shader.");return n}function QN(e,t){let n=gs(e,()=>e.createShader(e.FRAGMENT_SHADER),"Unable to create fragment WebGLShader.");if(ke(e,()=>e.shaderSource(n,t)),ke(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw Mhe(t,e.getShaderInfoLog(n)),new Error("Failed to compile fragment shader.");return n}var Che=/ERROR: [0-9]+:([0-9]+):/g;function Mhe(e,t){let n=Che.exec(t);if(n==null){console.log(`Couldn't parse line number in error: ${t}`),console.log(e);return}let a=+n[1],r=e.split(`
|
|
`),s=r.length.toString().length+2,i=r.map((h,p)=>k.rightPad((p+1).toString(),s)+h),o=0;for(let h=0;h<i.length;h++)o=Math.max(i[h].length,o);let l=i.slice(0,a-1),u=i.slice(a-1,a),d=i.slice(a);console.log(l.join(`
|
|
`)),console.log(t.split(`
|
|
`)[0]),console.log(`%c ${k.rightPad(u[0],o)}`,"border:1px solid red; background-color:#e3d2d2; color:#a61717"),console.log(d.join(`
|
|
`))}function eT(e){return gs(e,()=>e.createProgram(),"Unable to create WebGLProgram.")}function tT(e,t){if(ke(e,()=>e.linkProgram(t)),e.getProgramParameter(t,e.LINK_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Failed to link vertex and fragment shaders.")}function O0(e,t){if(ke(e,()=>e.validateProgram(t)),e.getProgramParameter(t,e.VALIDATE_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Shader program validation failed.")}function nT(e,t){let n=gs(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return ke(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),ke(e,()=>e.bufferData(e.ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function aT(e,t){let n=gs(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return ke(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,n)),ke(e,()=>e.bufferData(e.ELEMENT_ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function $he(){return se().getNumber("WEBGL_VERSION")===2?1:4}function rT(e){return gs(e,()=>e.createTexture(),"Unable to create WebGLTexture.")}function sT(e,t){let n=se().getNumber("WEBGL_MAX_TEXTURE_SIZE");if(e<=0||t<=0){let a=`[${e}x${t}]`;throw new Error("Requested texture size "+a+" is invalid.")}if(e>n||t>n){let a=`[${e}x${t}]`,r=`[${n}x${n}]`;throw new Error("Requested texture size "+a+" greater than WebGL maximum on this browser / GPU "+r+".")}}function iT(e){return gs(e,()=>e.createFramebuffer(),"Unable to create WebGLFramebuffer.")}function j5(e,t,n,a,r,s,i){let o=e.getAttribLocation(t,n);return o===-1?!1:(ke(e,()=>e.bindBuffer(e.ARRAY_BUFFER,a)),ke(e,()=>e.vertexAttribPointer(o,r,e.FLOAT,!1,s,i)),ke(e,()=>e.enableVertexAttribArray(o)),!0)}function oT(e,t,n){pT(e,n),ke(e,()=>e.activeTexture(e.TEXTURE0+n)),ke(e,()=>e.bindTexture(e.TEXTURE_2D,t))}function Rhe(e,t){pT(e,t),ke(e,()=>e.activeTexture(e.TEXTURE0+t)),ke(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function lT(e,t,n){return gs(e,()=>e.getUniformLocation(t,n),'uniform "'+n+'" not present in program.')}function uT(e,t,n){return e.getUniformLocation(t,n)}function dT(e,t,n,a){ke(e,()=>oT(e,t,a)),ke(e,()=>e.uniform1i(n,a))}function Fhe(e){ke(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),ke(e,()=>e.viewport(0,0,e.canvas.width,e.canvas.height)),ke(e,()=>e.scissor(0,0,e.canvas.width,e.canvas.height))}function D0(e,t,n){ke(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,n)),ke(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,t,0))}function H5(e,t){ke(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,t)),ke(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,null,0))}function lp(e){let t=e.checkFramebufferStatus(e.FRAMEBUFFER);if(t!==e.FRAMEBUFFER_COMPLETE)throw new Error("Error binding framebuffer: "+hT(e,t))}function hT(e,t){switch(t){case e.FRAMEBUFFER_INCOMPLETE_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_DIMENSIONS:return"FRAMEBUFFER_INCOMPLETE_DIMENSIONS";case e.FRAMEBUFFER_UNSUPPORTED:return"FRAMEBUFFER_UNSUPPORTED";default:return`unknown error ${t}`}}function gs(e,t,n){let a=ke(e,()=>t());if(a==null)throw new Error(n);return a}function pT(e,t){let n=e.MAX_COMBINED_TEXTURE_IMAGE_UNITS-1,a=t+e.TEXTURE0;if(a<e.TEXTURE0||a>n){let r=`[gl.TEXTURE0, gl.TEXTURE${n}]`;throw new Error(`textureUnit must be in ${r}.`)}}function go(e,t=2){return k.sizeFromShape(e.slice(0,e.length-t))}function yo(e){if(e.length===0)throw Error("Cannot get rows and columns of an empty shape array.");return[e.length>1?e[e.length-2]:1,e[e.length-1]]}function _0(e){let t=[1,1,1];return e.length===0||e.length===1&&e[0]===1||(t=[go(e),...yo(e)]),t}function cT(e,t=!1){let n=se().getNumber("WEBGL_MAX_TEXTURE_SIZE");t&&(n=n*2,e=e.map((r,s)=>s>=e.length-2?k.nearestLargerEven(e[s]):e[s]),e.length===1&&(e=[2,e[0]])),e.length!==2&&(e=k.squeezeShape(e).newShape);let a=k.sizeFromShape(e);if(e.length<=1&&a<=n)return[1,a];if(e.length===2&&e[0]<=n&&e[1]<=n)return e;if(e.length===3&&e[0]*e[1]<=n&&e[2]<=n)return[e[0]*e[1],e[2]];if(e.length===3&&e[0]<=n&&e[1]*e[2]<=n)return[e[0],e[1]*e[2]];if(e.length===4&&e[0]*e[1]*e[2]<=n&&e[3]<=n)return[e[0]*e[1]*e[2],e[3]];if(e.length===4&&e[0]<=n&&e[1]*e[2]*e[3]<=n)return[e[0],e[1]*e[2]*e[3]];if(t){let r=go(e),s=2,i=2;return e.length&&([s,i]=yo(e)),a=r*(s/2)*(i/2),k.sizeToSquarishShape(a).map(o=>o*2)}return k.sizeToSquarishShape(a)}function z0(e){return e%2==0}function up(e,t){if(e=e.slice(-2),t=t.slice(-2),k.arraysEqual(e,t)||!e.length||!t.length||e[0]===0||e[1]===0||t[0]===0||t[1]===0)return!0;if(e.length!==t.length){let n=e.slice(-1)[0],a=t.slice(-1)[0];if(n===a||z0(n)&&z0(a)&&(e[0]===1||t[0]===1))return!0}return e[1]===t[1]&&z0(e[0])&&z0(t[0])}var P0,L0;function fT(e){if(P0==null){let t=Pr(e);P0=t.getParameter(t.MAX_TEXTURE_SIZE)}return P0}function Ohe(){P0=null}function Dhe(){L0=null}function mT(e){if(L0==null){let t=Pr(e);L0=t.getParameter(t.MAX_TEXTURE_IMAGE_UNITS)}return Math.min(16,L0)}function gT(e){if(e===0)return 0;let t,n=Pr(e);return za(n,"EXT_disjoint_timer_query_webgl2")&&e===2?t=2:za(n,"EXT_disjoint_timer_query")?t=1:t=0,t}function za(e,t){return e.getExtension(t)!=null}function G5(e){try{if(Pr(e)!=null)return!0}catch(t){return console.log("Error when getting WebGL context: ",t),!1}return!1}function yT(e){if(e===0)return!1;let t=Pr(e);if(e===1){if(!za(t,"OES_texture_float"))return!1}else if(!za(t,"EXT_color_buffer_float"))return!1;return q5(t)}function AT(e){if(e===0)return!1;let t=Pr(e);if(e===1){if(!za(t,"OES_texture_float")||!za(t,"WEBGL_color_buffer_float"))return!1}else{if(za(t,"EXT_color_buffer_float"))return q5(t);let n="EXT_color_buffer_half_float";if(za(t,n)){let a=t.getExtension(n);return _he(t,a)}return!1}return q5(t)}function q5(e){let t=U5(e),n=e.createTexture();e.bindTexture(e.TEXTURE_2D,n);let a=1,r=1;e.texImage2D(e.TEXTURE_2D,0,t.internalFormatFloat,a,r,0,t.textureFormatFloat,t.textureTypeFloat,null);let s=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,s),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,n,0);let i=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(n),e.deleteFramebuffer(s),i}function _he(e,t){let n=U5(e,t),a=e.createTexture();e.bindTexture(e.TEXTURE_2D,a);let r=1,s=1;e.texImage2D(e.TEXTURE_2D,0,n.internalFormatHalfFloat,r,s,0,n.textureFormatFloat,n.textureTypeHalfFloat,null);let i=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,i),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,a,0);let o=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(a),e.deleteFramebuffer(i),o}function xT(e){return e!==2?!1:Pr(e).fenceSync!=null}function mu(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&k.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the WebGL backend.`)})}var ze=se();ze.registerFlag("HAS_WEBGL",()=>ze.getNumber("WEBGL_VERSION")>0);ze.registerFlag("WEBGL_VERSION",()=>G5(2)?2:G5(1)?1:0);ze.registerFlag("WEBGL_CHECK_NUMERICAL_PROBLEMS",()=>!1);ze.registerFlag("WEBGL_BUFFER_SUPPORTED",()=>ze.get("WEBGL_VERSION")===2);ze.registerFlag("WEBGL_CPU_FORWARD",()=>!0);ze.registerFlag("WEBGL_FORCE_F16_TEXTURES",()=>!1);ze.registerFlag("WEBGL_PACK",()=>ze.getBool("HAS_WEBGL"));ze.registerFlag("WEBGL_PACK_NORMALIZATION",()=>ze.getBool("WEBGL_PACK"));ze.registerFlag("WEBGL_PACK_CLIP",()=>ze.getBool("WEBGL_PACK"));ze.registerFlag("WEBGL_PACK_DEPTHWISECONV",()=>ze.getBool("WEBGL_PACK"));ze.registerFlag("WEBGL_PACK_BINARY_OPERATIONS",()=>ze.getBool("WEBGL_PACK"));ze.registerFlag("WEBGL_PACK_UNARY_OPERATIONS",()=>ze.getBool("WEBGL_PACK"));ze.registerFlag("WEBGL_PACK_ARRAY_OPERATIONS",()=>ze.getBool("WEBGL_PACK"));ze.registerFlag("WEBGL_PACK_IMAGE_OPERATIONS",()=>ze.getBool("WEBGL_PACK"));ze.registerFlag("WEBGL_PACK_REDUCE",()=>ze.getBool("WEBGL_PACK"));ze.registerFlag("WEBGL_LAZILY_UNPACK",()=>ze.getBool("WEBGL_PACK"));ze.registerFlag("WEBGL_CONV_IM2COL",()=>ze.getBool("WEBGL_PACK"));ze.registerFlag("WEBGL_MAX_TEXTURE_SIZE",()=>fT(ze.getNumber("WEBGL_VERSION")));ze.registerFlag("WEBGL_MAX_TEXTURES_IN_SHADER",()=>mT(ze.getNumber("WEBGL_VERSION")));ze.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION",()=>{let e=ze.getNumber("WEBGL_VERSION");return e===0?0:gT(e)});ze.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE",()=>ze.getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0&&!yf.isMobile());ze.registerFlag("WEBGL_RENDER_FLOAT32_CAPABLE",()=>yT(ze.getNumber("WEBGL_VERSION")));ze.registerFlag("WEBGL_RENDER_FLOAT32_ENABLED",()=>ze.getBool("WEBGL_FORCE_F16_TEXTURES")?!1:ze.getBool("WEBGL_RENDER_FLOAT32_CAPABLE"));ze.registerFlag("WEBGL_DOWNLOAD_FLOAT_ENABLED",()=>AT(ze.getNumber("WEBGL_VERSION")));ze.registerFlag("WEBGL_FENCE_API_ENABLED",()=>xT(ze.getNumber("WEBGL_VERSION")));ze.registerFlag("WEBGL_SIZE_UPLOAD_UNIFORM",()=>ze.getBool("WEBGL_RENDER_FLOAT32_ENABLED")?4:0);ze.registerFlag("WEBGL_DELETE_TEXTURE_THRESHOLD",()=>-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_DELETE_TEXTURE_THRESHOLD must be -1 (indicating never delete) or at least 0, but got ${e}.`)});ze.registerFlag("WEBGL_FLUSH_THRESHOLD",()=>yf.isMobile()&&ze.getBool("IS_CHROME")?1:-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_FLUSH_THRESHOLD must be -1 (indicating never manual flush) or at least 0, but got ${e}.`)});ze.registerFlag("CPU_HANDOFF_SIZE_THRESHOLD",()=>128);function Wn(){let e,t,n,a,r,s,i,o,l,u;return se().getNumber("WEBGL_VERSION")===2?(e="#version 300 es",t="in",n="out",a="in",r="texture",s="outputColor",i="out vec4 outputColor;",o=`
|
|
bool isnan_custom(float val) {
|
|
return (val > 0.0 || val < 0.0) ? false : val != 0.0;
|
|
}
|
|
|
|
bvec4 isnan_custom(vec4 val) {
|
|
return bvec4(isnan_custom(val.x),
|
|
isnan_custom(val.y), isnan_custom(val.z), isnan_custom(val.w));
|
|
}
|
|
|
|
#define isnan(value) isnan_custom(value)
|
|
`,l="",u=`
|
|
#define round(value) newRound(value)
|
|
int newRound(float value) {
|
|
return int(floor(value + 0.5));
|
|
}
|
|
|
|
ivec4 newRound(vec4 value) {
|
|
return ivec4(floor(value + vec4(0.5)));
|
|
}
|
|
`):(e="",t="attribute",n="varying",a="varying",r="texture2D",s="gl_FragColor",i="",o=`
|
|
#define isnan(value) isnan_custom(value)
|
|
bool isnan_custom(float val) {
|
|
return (val > 0. || val < 1. || val == 0.) ? false : true;
|
|
}
|
|
bvec4 isnan_custom(vec4 val) {
|
|
return bvec4(isnan(val.x), isnan(val.y), isnan(val.z), isnan(val.w));
|
|
}
|
|
`,l=`
|
|
uniform float INFINITY;
|
|
|
|
bool isinf(float val) {
|
|
return abs(val) == INFINITY;
|
|
}
|
|
bvec4 isinf(vec4 val) {
|
|
return equal(abs(val), vec4(INFINITY));
|
|
}
|
|
`,u=`
|
|
int round(float value) {
|
|
return int(floor(value + 0.5));
|
|
}
|
|
|
|
ivec4 round(vec4 value) {
|
|
return ivec4(floor(value + vec4(0.5)));
|
|
}
|
|
`),{version:e,attribute:t,varyingVs:n,varyingFs:a,texture2D:r,output:s,defineOutput:i,defineSpecialNaN:o,defineSpecialInf:l,defineRound:u}}function Ao(e,t,n="index"){let a=k.computeStrides(t);return a.map((r,s)=>{let i=`int ${e[s]} = ${n} / ${r}`,o=s===a.length-1?`int ${e[s+1]} = ${n} - ${e[s]} * ${r}`:`index -= ${e[s]} * ${r}`;return`${i}; ${o};`}).join("")}function K5(e){let t=k.computeStrides(e).map(n=>n.toString());return`
|
|
int getFlatIndex(ivec3 coords) {
|
|
return coords.x * ${t[0]} + coords.y * ${t[1]} + coords.z;
|
|
}
|
|
`}var bT=`
|
|
const float FLOAT_MAX = 1.70141184e38;
|
|
const float FLOAT_MIN = 1.17549435e-38;
|
|
|
|
lowp vec4 encode_float(highp float v) {
|
|
if (isnan(v)) {
|
|
return vec4(255, 255, 255, 255);
|
|
}
|
|
|
|
highp float av = abs(v);
|
|
|
|
if(av < FLOAT_MIN) {
|
|
return vec4(0.0, 0.0, 0.0, 0.0);
|
|
} else if(v > FLOAT_MAX) {
|
|
return vec4(0.0, 0.0, 128.0, 127.0) / 255.0;
|
|
} else if(v < -FLOAT_MAX) {
|
|
return vec4(0.0, 0.0, 128.0, 255.0) / 255.0;
|
|
}
|
|
|
|
highp vec4 c = vec4(0,0,0,0);
|
|
|
|
highp float e = floor(log2(av));
|
|
highp float m = exp2(fract(log2(av))) - 1.0;
|
|
|
|
c[2] = floor(128.0 * m);
|
|
m -= c[2] / 128.0;
|
|
c[1] = floor(32768.0 * m);
|
|
m -= c[1] / 32768.0;
|
|
c[0] = floor(8388608.0 * m);
|
|
|
|
highp float ebias = e + 127.0;
|
|
c[3] = floor(ebias / 2.0);
|
|
ebias -= c[3] * 2.0;
|
|
c[2] += floor(ebias) * 128.0;
|
|
|
|
c[3] += 128.0 * step(0.0, -v);
|
|
|
|
return c / 255.0;
|
|
}
|
|
`,zhe=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outPackingScheme=rp.DENSE;let t=ip(e),n=Wn();this.outputShape=e,this.userCode=`
|
|
ivec3 outCoordsFromFlatIndex(int index) {
|
|
${Ao(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = 4 * (resTexRC.x * ${t[1]} + resTexRC.y);
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for (int i=0; i<4; i++) {
|
|
int flatIndex = index + i;
|
|
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
|
|
result[i] = getA(rc.x, rc.y, rc.z);
|
|
}
|
|
|
|
${n.output} = result;
|
|
}
|
|
`}},Phe=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outPackingScheme=rp.DENSE;let t=ip(e),n=Wn();this.outputShape=e,this.userCode=`
|
|
ivec3 outCoordsFromFlatIndex(int index) {
|
|
${Ao(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = 4 * (resTexRC.x * ${t[1]} + resTexRC.y);
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for (int i=0; i<4; i++) {
|
|
int flatIndex = index + i;
|
|
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
|
|
result[i] = getChannel(getA(rc.x, rc.y, rc.z), vec2(rc.y, rc.z));
|
|
}
|
|
|
|
${n.output} = result;
|
|
}
|
|
`}},Lhe=class{constructor(e){this.variableNames=["A"],this.outTexUsage=_a.DOWNLOAD;let t=Wn();this.outputShape=e,this.userCode=`
|
|
${bT}
|
|
|
|
void main() {
|
|
float x = getAAtOutCoords();
|
|
${t.output} = encode_float(x);
|
|
}
|
|
`}},Whe=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outTexUsage=_a.DOWNLOAD;let t=Wn();this.outputShape=e,this.userCode=`
|
|
${bT}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
float x = getChannel(getAAtOutCoords(), vec2(coords.y, coords.z));
|
|
${t.output} = encode_float(x);
|
|
}
|
|
`}},Bhe=class{constructor(e,t,n=!1){this.variableNames=["A"];let a=Wn(),[r,s]=t;this.outputShape=e;let i="result";n&&(i="floor(result * 255. + 0.5)"),this.userCode=`
|
|
${K5(e)}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
|
|
int flatIndex = getFlatIndex(coords);
|
|
int offset = imod(flatIndex, 4);
|
|
|
|
flatIndex = idiv(flatIndex, 4, 1.);
|
|
|
|
int r = flatIndex / ${s};
|
|
int c = imod(flatIndex, ${s});
|
|
vec2 uv = (vec2(c, r) + halfCR) / vec2(${s}.0, ${r}.0);
|
|
vec4 values = ${a.texture2D}(A, uv);
|
|
|
|
float result;
|
|
|
|
if(offset == 0) {
|
|
result = values[0];
|
|
} else if(offset == 1) {
|
|
result = values[1];
|
|
} else if(offset == 2) {
|
|
result = values[2];
|
|
} else {
|
|
result = values[3];
|
|
}
|
|
|
|
${a.output} = vec4(${i}, 0., 0., 0.);
|
|
}
|
|
`}},Vhe=class{constructor(e,t,n=!1){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let a=Wn(),[r,s]=t;this.outputShape=e;let i="",o="result";n&&(o="floor(result * 255. + 0.5)");for(let l=0;l<=1;l++)for(let u=0;u<=1;u++){let d=l*2+u;i+=`
|
|
localCoords = coords;
|
|
if(localCoords[2] + ${u} < ${e[2]}) {
|
|
localCoords[2] += ${u};
|
|
if(localCoords[1] + ${l} < ${e[1]}) {
|
|
localCoords[1] += ${l};
|
|
|
|
flatIndex = getFlatIndex(localCoords);
|
|
offset = imod(flatIndex, 4);
|
|
|
|
flatIndex = idiv(flatIndex, 4, 1.);
|
|
|
|
r = flatIndex / ${s};
|
|
c = imod(flatIndex, ${s});
|
|
uv = (vec2(c, r) + halfCR) / vec2(${s}.0, ${r}.0);
|
|
values = ${a.texture2D}(A, uv);
|
|
|
|
if(offset == 0) {
|
|
result[${d}] = values[0];
|
|
} else if(offset == 1) {
|
|
result[${d}] = values[1];
|
|
} else if(offset == 2) {
|
|
result[${d}] = values[2];
|
|
} else {
|
|
result[${d}] = values[3];
|
|
}
|
|
}
|
|
}
|
|
`}this.userCode=`
|
|
${K5(e)}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
|
|
vec4 result = vec4(0.);
|
|
int flatIndex, r, c, offset;
|
|
ivec3 localCoords;
|
|
vec2 uv;
|
|
vec4 values;
|
|
|
|
${i}
|
|
|
|
${a.output} = ${o};
|
|
}
|
|
`}},vT={};$e(vT,{bindVertexProgramAttributeStreams:()=>MT,createBufferFromOutputTexture:()=>FT,createFloat16MatrixTexture:()=>NT,createFloat16PackedMatrixTexture:()=>CT,createFloat32MatrixTexture:()=>ST,createIndexBuffer:()=>IT,createPackedMatrixTexture:()=>ET,createUnsignedBytesMatrixTexture:()=>TT,createVertexBuffer:()=>kT,createVertexShader:()=>wT,downloadByteEncodedFloatMatrixFromOutputTexture:()=>DT,downloadFloat32MatrixFromBuffer:()=>OT,downloadMatrixFromPackedOutputTexture:()=>zT,downloadPackedMatrixFromBuffer:()=>_T,getInternalFormatForFloat16MatrixTexture:()=>Z5,getInternalFormatForFloat16PackedMatrixTexture:()=>Q5,getInternalFormatForFloat32MatrixTexture:()=>X5,getInternalFormatForPackedMatrixTexture:()=>J5,getInternalFormatForUnsignedBytesMatrixTexture:()=>Y5,uploadDenseMatrixToTexture:()=>$T,uploadPixelDataToTexture:()=>RT});function wT(e){let t=Wn(),n=`${t.version}
|
|
precision highp float;
|
|
${t.attribute} vec3 clipSpacePos;
|
|
${t.attribute} vec2 uv;
|
|
${t.varyingVs} vec2 resultUV;
|
|
|
|
void main() {
|
|
gl_Position = vec4(clipSpacePos, 1);
|
|
resultUV = uv;
|
|
}`;return JN(e,n)}function kT(e){let t=new Float32Array([-1,1,0,0,1,-1,-1,0,0,0,1,1,0,1,1,1,-1,0,1,0]);return nT(e,t)}function IT(e){let t=new Uint16Array([0,1,2,2,1,3]);return aT(e,t)}function dp(e,t,n,a,r,s){sT(t,n);let i=rT(e),o=e.TEXTURE_2D;return ke(e,()=>e.bindTexture(o,i)),ke(e,()=>e.texParameteri(o,e.TEXTURE_WRAP_S,e.CLAMP_TO_EDGE)),ke(e,()=>e.texParameteri(o,e.TEXTURE_WRAP_T,e.CLAMP_TO_EDGE)),ke(e,()=>e.texParameteri(o,e.TEXTURE_MIN_FILTER,e.NEAREST)),ke(e,()=>e.texParameteri(o,e.TEXTURE_MAG_FILTER,e.NEAREST)),ke(e,()=>e.texImage2D(o,0,a,t,n,0,r,s,null)),ke(e,()=>e.bindTexture(e.TEXTURE_2D,null)),i}function X5(e){return e.internalFormatFloat}function ST(e,t,n,a){let[r,s]=sp(t,n);return dp(e,r,s,X5(a),a.textureFormatFloat,e.FLOAT)}function Z5(e){return e.internalFormatHalfFloat}function NT(e,t,n,a){let[r,s]=sp(t,n);return dp(e,r,s,Z5(a),a.textureFormatFloat,a.textureTypeHalfFloat)}function Y5(e){return e.downloadTextureFormat}function TT(e,t,n,a){let[r,s]=sp(t,n);return dp(e,r,s,Y5(a),e.RGBA,e.UNSIGNED_BYTE)}function J5(e){return e.internalFormatPackedFloat}function ET(e,t,n,a){let[r,s]=fu(t,n);return dp(e,r,s,J5(a),e.RGBA,e.FLOAT)}function Q5(e){return e.internalFormatPackedHalfFloat}function CT(e,t,n,a){let[r,s]=fu(t,n);return dp(e,r,s,Q5(a),e.RGBA,a.textureTypeHalfFloat)}function MT(e,t,n){let a=0,r=3*4,s=3*4+2*4;return ke(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),j5(e,t,"clipSpacePos",n,3,s,a)&&j5(e,t,"uv",n,2,s,r)}function $T(e,t,n,a,r,s){ke(e,()=>e.bindTexture(e.TEXTURE_2D,t));let i,o,l;r instanceof Uint8Array?(i=new Uint8Array(n*a*4),o=e.UNSIGNED_BYTE,l=e.RGBA):(i=new Float32Array(n*a*4),o=e.FLOAT,l=s.internalFormatPackedFloat),i.set(r),ke(e,()=>e.texImage2D(e.TEXTURE_2D,0,l,n,a,0,e.RGBA,o,i)),ke(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function RT(e,t,n){ke(e,()=>e.bindTexture(e.TEXTURE_2D,t)),n.data instanceof Uint8Array?ke(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,n.width,n.height,0,e.RGBA,e.UNSIGNED_BYTE,n.data)):ke(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,e.RGBA,e.UNSIGNED_BYTE,n)),ke(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function FT(e,t,n,a){let r=e.createBuffer();ke(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,r));let s=4*4*t*n;return ke(e,()=>e.bufferData(e.PIXEL_PACK_BUFFER,s,e.STREAM_READ)),ke(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,0)),ke(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,null)),r}function OT(e,t,n){let a=e,r=new Float32Array(n);return a.bindBuffer(a.PIXEL_PACK_BUFFER,t),a.getBufferSubData(a.PIXEL_PACK_BUFFER,0,r),a.bindBuffer(a.PIXEL_PACK_BUFFER,null),r}function DT(e,t,n,a){let[r,s]=sp(t,n),i=4,o=new Uint8Array(Ihe(t*n,i));return ke(e,()=>e.readPixels(0,0,r,s,a.downloadTextureFormat,e.UNSIGNED_BYTE,o)),new Float32Array(o.buffer)}function _T(e,t,n,a,r,s,i,o){let l=e,u=new Float32Array(She(s,i));return l.bindBuffer(l.PIXEL_PACK_BUFFER,t),l.getBufferSubData(l.PIXEL_PACK_BUFFER,0,u),l.bindBuffer(l.PIXEL_PACK_BUFFER,null),u}function zT(e,t,n){let a=new Float32Array(t*n*4);return ke(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,a)),a}var W0=class{constructor(e){this.outputTexture=null,this.program=null,this.disposed=!1,this.vertexAttrsAreBound=!1,this.itemsToPoll=[];let t=se().getNumber("WEBGL_VERSION");e!=null?(this.gl=e,F0(t,e)):this.gl=Pr(t);let n="WEBGL_color_buffer_float",a="EXT_color_buffer_half_float";if(se().getNumber("WEBGL_VERSION")===1){let r="OES_texture_float",s="OES_texture_half_float";if(this.textureFloatExtension=op(this.gl,r),za(this.gl,s))this.textureHalfFloatExtension=op(this.gl,s);else if(se().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support half float textures, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.");if(this.colorBufferFloatExtension=this.gl.getExtension(n),za(this.gl,a))this.colorBufferHalfFloatExtension=op(this.gl,a);else if(se().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support color renderable half floats, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.")}else if(n="EXT_color_buffer_float",za(this.gl,n))this.colorBufferFloatExtension=this.gl.getExtension(n);else if(za(this.gl,a))this.colorBufferHalfFloatExtension=this.gl.getExtension(a);else throw new Error("GL context does not support color renderable floats");this.vertexBuffer=kT(this.gl),this.indexBuffer=IT(this.gl),this.framebuffer=iT(this.gl),this.textureConfig=U5(this.gl,this.textureHalfFloatExtension)}get debug(){return se().getBool("DEBUG")}dispose(){if(this.disposed)return;this.program!=null&&console.warn("Disposing a GPGPUContext that still has a bound WebGLProgram. This is probably a resource leak, delete the program with GPGPUContext.deleteProgram before disposing."),this.outputTexture!=null&&console.warn("Disposing a GPGPUContext that still has a bound output matrix texture. This is probably a resource leak, delete the output matrix texture with GPGPUContext.deleteMatrixTexture before disposing.");let e=this.gl;ke(e,()=>e.finish()),ke(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),ke(e,()=>e.deleteFramebuffer(this.framebuffer)),ke(e,()=>e.bindBuffer(e.ARRAY_BUFFER,null)),ke(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,null)),ke(e,()=>e.deleteBuffer(this.indexBuffer)),this.disposed=!0}createFloat32MatrixTexture(e,t){return this.throwIfDisposed(),ST(this.gl,e,t,this.textureConfig)}createFloat16MatrixTexture(e,t){return this.throwIfDisposed(),NT(this.gl,e,t,this.textureConfig)}createUnsignedBytesMatrixTexture(e,t){return this.throwIfDisposed(),TT(this.gl,e,t,this.textureConfig)}uploadPixelDataToTexture(e,t){this.throwIfDisposed(),RT(this.gl,e,t)}uploadDenseMatrixToTexture(e,t,n,a){this.throwIfDisposed(),$T(this.gl,e,t,n,a,this.textureConfig)}createFloat16PackedMatrixTexture(e,t){return this.throwIfDisposed(),CT(this.gl,e,t,this.textureConfig)}createPackedMatrixTexture(e,t){return this.throwIfDisposed(),ET(this.gl,e,t,this.textureConfig)}deleteMatrixTexture(e){this.throwIfDisposed(),this.outputTexture===e&&(H5(this.gl,this.framebuffer),this.outputTexture=null),ke(this.gl,()=>this.gl.deleteTexture(e))}downloadByteEncodedFloatMatrixFromOutputTexture(e,t,n){return this.downloadMatrixDriver(e,()=>DT(this.gl,t,n,this.textureConfig))}downloadPackedMatrixFromBuffer(e,t,n,a,r,s){return _T(this.gl,e,t,n,a,r,s,this.textureConfig)}downloadFloat32MatrixFromBuffer(e,t){return OT(this.gl,e,t)}createBufferFromTexture(e,t,n){this.bindTextureToFrameBuffer(e);let a=FT(this.gl,t,n,this.textureConfig);return this.unbindTextureToFrameBuffer(),a}createAndWaitForFence(){let e=this.createFence(this.gl);return this.pollFence(e)}createFence(e){let t,n;if(se().getBool("WEBGL_FENCE_API_ENABLED")){let a=e,r=a.fenceSync(a.SYNC_GPU_COMMANDS_COMPLETE,0);e.flush(),n=()=>{let s=a.clientWaitSync(r,0,0);return s===a.ALREADY_SIGNALED||s===a.CONDITION_SATISFIED},t=r}else se().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0?(t=this.beginQuery(),this.endQuery(),n=()=>this.isQueryAvailable(t,se().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))):n=()=>!0;return{query:t,isFencePassed:n}}downloadMatrixFromPackedTexture(e,t,n){return this.downloadMatrixDriver(e,()=>zT(this.gl,t,n))}createProgram(e){this.throwIfDisposed();let t=this.gl,n=QN(t,e);this.vertexShader==null&&(this.vertexShader=wT(t));let a=eT(t);return ke(t,()=>t.attachShader(a,this.vertexShader)),ke(t,()=>t.attachShader(a,n)),tT(t,a),this.debug&&O0(t,a),this.vertexAttrsAreBound||(this.setProgram(a),this.vertexAttrsAreBound=MT(t,this.program,this.vertexBuffer)),a}deleteProgram(e){this.throwIfDisposed(),e===this.program&&(this.program=null),e!=null&&ke(this.gl,()=>this.gl.deleteProgram(e))}setProgram(e){this.throwIfDisposed(),this.program=e,this.program!=null&&this.debug&&O0(this.gl,this.program),ke(this.gl,()=>this.gl.useProgram(e))}getUniformLocation(e,t,n=!0){return this.throwIfDisposed(),n?lT(this.gl,e,t):uT(this.gl,e,t)}getAttributeLocation(e,t){return this.throwIfDisposed(),ke(this.gl,()=>this.gl.getAttribLocation(e,t))}getUniformLocationNoThrow(e,t){return this.throwIfDisposed(),this.gl.getUniformLocation(e,t)}setInputMatrixTexture(e,t,n){this.throwIfDisposed(),this.throwIfNoProgram(),dT(this.gl,e,t,n)}setOutputMatrixTexture(e,t,n){this.setOutputMatrixTextureDriver(e,n,t)}setOutputPackedMatrixTexture(e,t,n){this.throwIfDisposed();let[a,r]=fu(t,n);this.setOutputMatrixTextureDriver(e,a,r)}setOutputMatrixWriteRegion(e,t,n,a){this.setOutputMatrixWriteRegionDriver(n,e,a,t)}setOutputPackedMatrixWriteRegion(e,t,n,a){throw new Error("setOutputPackedMatrixWriteRegion not implemented.")}debugValidate(){this.program!=null&&O0(this.gl,this.program),lp(this.gl)}executeProgram(){this.throwIfDisposed(),this.throwIfNoProgram();let e=this.gl;this.debug&&this.debugValidate(),ke(e,()=>e.drawElements(e.TRIANGLES,6,e.UNSIGNED_SHORT,0))}blockUntilAllProgramsCompleted(){this.throwIfDisposed(),ke(this.gl,()=>this.gl.finish())}getQueryTimerExtension(){return this.disjointQueryTimerExtension==null&&(this.disjointQueryTimerExtension=op(this.gl,se().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2?"EXT_disjoint_timer_query_webgl2":"EXT_disjoint_timer_query")),this.disjointQueryTimerExtension}getQueryTimerExtensionWebGL2(){return this.getQueryTimerExtension()}getQueryTimerExtensionWebGL1(){return this.getQueryTimerExtension()}beginQuery(){if(se().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let n=this.gl,a=this.getQueryTimerExtensionWebGL2(),r=n.createQuery();return n.beginQuery(a.TIME_ELAPSED_EXT,r),r}let e=this.getQueryTimerExtensionWebGL1(),t=e.createQueryEXT();return e.beginQueryEXT(e.TIME_ELAPSED_EXT,t),t}endQuery(){if(se().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let t=this.gl,n=this.getQueryTimerExtensionWebGL2();t.endQuery(n.TIME_ELAPSED_EXT);return}let e=this.getQueryTimerExtensionWebGL1();e.endQueryEXT(e.TIME_ELAPSED_EXT)}async waitForQueryAndGetTime(e){return await k.repeatedTry(()=>this.disposed||this.isQueryAvailable(e,se().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))),this.getQueryTime(e,se().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))}getQueryTime(e,t){if(t===0)return null;if(t===2){let n=this.gl;return n.getQueryParameter(e,n.QUERY_RESULT)/1e6}else{let n=this.getQueryTimerExtensionWebGL1();return n.getQueryObjectEXT(e,n.QUERY_RESULT_EXT)/1e6}}isQueryAvailable(e,t){if(t===0)return!0;if(t===2){let n=this.gl,a=this.getQueryTimerExtensionWebGL2(),r=n.getQueryParameter(e,n.QUERY_RESULT_AVAILABLE);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(a.GPU_DISJOINT_EXT)),r&&!this.disjoint}else{let n=this.getQueryTimerExtensionWebGL1(),a=n.getQueryObjectEXT(e,n.QUERY_RESULT_AVAILABLE_EXT);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(n.GPU_DISJOINT_EXT)),a&&!this.disjoint}}pollFence(e){return new Promise(t=>{this.addItemToPoll(()=>e.isFencePassed(),()=>t())})}pollItems(){let e=Uhe(this.itemsToPoll.map(t=>t.isDoneFn));for(let t=0;t<=e;++t){let{resolveFn:n}=this.itemsToPoll[t];n()}this.itemsToPoll=this.itemsToPoll.slice(e+1)}addItemToPoll(e,t){this.itemsToPoll.push({isDoneFn:e,resolveFn:t}),!(this.itemsToPoll.length>1)&&k.repeatedTry(()=>(this.pollItems(),this.itemsToPoll.length===0))}bindTextureToFrameBuffer(e){this.throwIfDisposed(),D0(this.gl,e,this.framebuffer),this.debug&&lp(this.gl)}unbindTextureToFrameBuffer(){this.outputTexture!=null?(D0(this.gl,this.outputTexture,this.framebuffer),this.debug&&lp(this.gl)):H5(this.gl,this.framebuffer)}downloadMatrixDriver(e,t){this.bindTextureToFrameBuffer(e);let n=t();return this.unbindTextureToFrameBuffer(),n}setOutputMatrixTextureDriver(e,t,n){this.throwIfDisposed();let a=this.gl;D0(a,e,this.framebuffer),this.debug&&lp(a),this.outputTexture=e,ke(a,()=>a.viewport(0,0,t,n)),ke(a,()=>a.scissor(0,0,t,n))}setOutputMatrixWriteRegionDriver(e,t,n,a){this.throwIfDisposed(),ke(this.gl,()=>this.gl.scissor(e,t,n,a))}throwIfDisposed(){if(this.disposed)throw new Error("Attempted to use disposed GPGPUContext.")}throwIfNoProgram(){if(this.program==null)throw new Error("No GPU program is currently set.")}};function Uhe(e){let t=0;for(;t<e.length&&e[t]();++t);return t-1}var{getBroadcastDims:PT}=M;function jhe(e,t,n,a){let r=[];e.forEach(c=>{let m=k.sizeFromShape(c.shapeInfo.logicalShape);c.shapeInfo.isUniform?r.push(`uniform float ${c.name}${m>1?`[${m}]`:""};`):(r.push(`uniform sampler2D ${c.name};`),r.push(`uniform int offset${c.name};`))});let s=r.join(`
|
|
`),i=e.map(c=>Hhe(c,t,a)).join(`
|
|
`),o=t.texShape,l=Wn(),u=Khe(l),d,h,p=Yhe(l);return t.isPacked?(d=Ghe(t.logicalShape,o),h=Zhe(l)):(d=qhe(t.logicalShape,o),h=Xhe(l)),a&&(p+=tpe),[p,u,h,s,d,i,n].join(`
|
|
`)}function gu(e){let t=e.shapeInfo.logicalShape;switch(t.length){case 0:return cpe(e);case 1:return mpe(e);case 2:return ype(e);case 3:return xpe(e);case 4:return vpe(e);case 5:return wpe(e);case 6:return kpe(e);default:throw new Error(`${t.length}-D input sampling is not yet supported`)}}function LT(e){switch(e.shapeInfo.logicalShape.length){case 0:return ppe(e);case 1:return fpe(e);case 2:return gpe(e);case 3:return Ape(e);default:return bpe(e)}}function Hhe(e,t,n=!1){let a="";n?a+=LT(e):a+=gu(e);let r=e.shapeInfo.logicalShape,s=t.logicalShape;return r.length<=s.length&&(n?a+=Ipe(e,t):a+=Spe(e,t)),a}function Ghe(e,t){switch(e.length){case 0:return WT();case 1:return npe(e,t);case 2:return dpe(e,t);case 3:return rpe(e,t);default:return ipe(e,t)}}function qhe(e,t){switch(e.length){case 0:return WT();case 1:return ape(e,t);case 2:return hpe(e,t);case 3:return spe(e,t);case 4:return ope(e,t);case 5:return lpe(e,t);case 6:return upe(e,t);default:throw new Error(`${e.length}-D output sampling is not yet supported`)}}function Khe(e){return`
|
|
float sampleTexture(sampler2D textureSampler, vec2 uv) {
|
|
return ${e.texture2D}(textureSampler, uv).r;
|
|
}
|
|
`}function Xhe(e){return`
|
|
void setOutput(float val) {
|
|
${e.output} = vec4(val, 0, 0, 0);
|
|
}
|
|
`}function Zhe(e){return`
|
|
void setOutput(vec4 val) {
|
|
${e.output} = val;
|
|
}
|
|
`}function Yhe(e){return`${e.version}
|
|
precision highp float;
|
|
precision highp int;
|
|
precision highp sampler2D;
|
|
${e.varyingFs} vec2 resultUV;
|
|
${e.defineOutput}
|
|
const vec2 halfCR = vec2(0.5, 0.5);
|
|
|
|
struct ivec5
|
|
{
|
|
int x;
|
|
int y;
|
|
int z;
|
|
int w;
|
|
int u;
|
|
};
|
|
|
|
struct ivec6
|
|
{
|
|
int x;
|
|
int y;
|
|
int z;
|
|
int w;
|
|
int u;
|
|
int v;
|
|
};
|
|
|
|
uniform float NAN;
|
|
${e.defineSpecialNaN}
|
|
${e.defineSpecialInf}
|
|
${e.defineRound}
|
|
|
|
int imod(int x, int y) {
|
|
return x - y * (x / y);
|
|
}
|
|
|
|
int idiv(int a, int b, float sign) {
|
|
int res = a / b;
|
|
int mod = imod(a, b);
|
|
if (sign < 0. && mod != 0) {
|
|
res -= 1;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
//Based on the work of Dave Hoskins
|
|
//https://www.shadertoy.com/view/4djSRW
|
|
#define HASHSCALE1 443.8975
|
|
float random(float seed){
|
|
vec2 p = resultUV * seed;
|
|
vec3 p3 = fract(vec3(p.xyx) * HASHSCALE1);
|
|
p3 += dot(p3, p3.yzx + 19.19);
|
|
return fract((p3.x + p3.y) * p3.z);
|
|
}
|
|
|
|
${Jhe}
|
|
${Qhe}
|
|
${epe}
|
|
`}var Jhe=`
|
|
vec2 uvFromFlat(int texNumR, int texNumC, int index) {
|
|
int texR = index / texNumC;
|
|
int texC = index - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
vec2 packedUVfrom1D(int texNumR, int texNumC, int index) {
|
|
int texelIndex = index / 2;
|
|
int texR = texelIndex / texNumC;
|
|
int texC = texelIndex - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,Qhe=`
|
|
vec2 packedUVfrom2D(int texelsInLogicalRow, int texNumR,
|
|
int texNumC, int row, int col) {
|
|
int texelIndex = (row / 2) * texelsInLogicalRow + (col / 2);
|
|
int texR = texelIndex / texNumC;
|
|
int texC = texelIndex - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,epe=`
|
|
vec2 packedUVfrom3D(int texNumR, int texNumC,
|
|
int texelsInBatch, int texelsInLogicalRow, int b,
|
|
int row, int col) {
|
|
int index = b * texelsInBatch + (row / 2) * texelsInLogicalRow + (col / 2);
|
|
int texR = index / texNumC;
|
|
int texC = index - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,tpe=`
|
|
float getChannel(vec4 frag, vec2 innerDims) {
|
|
vec2 modCoord = mod(innerDims, 2.);
|
|
return modCoord.x == 0. ?
|
|
(modCoord.y == 0. ? frag.r : frag.g) :
|
|
(modCoord.y == 0. ? frag.b : frag.a);
|
|
}
|
|
float getChannel(vec4 frag, int dim) {
|
|
float modCoord = mod(float(dim), 2.);
|
|
return modCoord == 0. ? frag.r : frag.g;
|
|
}
|
|
`;function WT(){return`
|
|
int getOutputCoords() {
|
|
return 0;
|
|
}
|
|
`}function npe(e,t){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];return n[0]===1?`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.x * ${n[1]}.0);
|
|
}
|
|
`:n[1]===1?`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.y * ${n[0]}.0);
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${n[0]}, ${n[1]}));
|
|
return 2 * (resTexRC.x * ${n[1]} + resTexRC.y);
|
|
}
|
|
`}function ape(e,t){return t[0]===1?`
|
|
int getOutputCoords() {
|
|
return int(resultUV.x * ${t[1]}.0);
|
|
}
|
|
`:t[1]===1?`
|
|
int getOutputCoords() {
|
|
return int(resultUV.y * ${t[0]}.0);
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
return resTexRC.x * ${t[1]} + resTexRC.y;
|
|
}
|
|
`}function rpe(e,t){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],a=Math.ceil(e[2]/2),r=a*Math.ceil(e[1]/2);return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${n[0]}, ${n[1]}));
|
|
int index = resTexRC.x * ${n[1]} + resTexRC.y;
|
|
|
|
int b = index / ${r};
|
|
index -= b * ${r};
|
|
|
|
int r = 2 * (index / ${a});
|
|
int c = imod(index, ${a}) * 2;
|
|
|
|
return ivec3(b, r, c);
|
|
}
|
|
`}function spe(e,t){let n=Ao(["r","c","d"],e);return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
${n}
|
|
return ivec3(r, c, d);
|
|
}
|
|
`}function ipe(e,t){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],a=Math.ceil(e[e.length-1]/2),r=a*Math.ceil(e[e.length-2]/2),s=r,i="",o="b, r, c";for(let l=2;l<e.length-1;l++)s*=e[e.length-l-1],i=`
|
|
int b${l} = index / ${s};
|
|
index -= b${l} * ${s};
|
|
`+i,o=`b${l}, `+o;return`
|
|
ivec${e.length} getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${n[0]}, ${n[1]}));
|
|
int index = resTexRC.x * ${n[1]} + resTexRC.y;
|
|
|
|
${i}
|
|
|
|
int b = index / ${r};
|
|
index -= b * ${r};
|
|
|
|
int r = 2 * (index / ${a});
|
|
int c = imod(index, ${a}) * 2;
|
|
|
|
return ivec${e.length}(${o});
|
|
}
|
|
`}function ope(e,t){let n=Ao(["r","c","d","d2"],e);return`
|
|
ivec4 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
${n}
|
|
return ivec4(r, c, d, d2);
|
|
}
|
|
`}function lpe(e,t){let n=Ao(["r","c","d","d2","d3"],e);return`
|
|
ivec5 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx * vec2(${t[0]},
|
|
${t[1]}));
|
|
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
|
|
${n}
|
|
|
|
ivec5 outShape = ivec5(r, c, d, d2, d3);
|
|
return outShape;
|
|
}
|
|
`}function upe(e,t){let n=Ao(["r","c","d","d2","d3","d4"],e);return`
|
|
ivec6 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
|
|
${n}
|
|
|
|
ivec6 result = ivec6(r, c, d, d2, d3, d4);
|
|
return result;
|
|
}
|
|
`}function dpe(e,t){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];if(k.arraysEqual(e,t))return`
|
|
ivec2 getOutputCoords() {
|
|
return 2 * ivec2(resultUV.yx * vec2(${n[0]}, ${n[1]}));
|
|
}
|
|
`;let a=Math.ceil(e[1]/2);return`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${n[0]}, ${n[1]}));
|
|
|
|
int index = resTexRC.x * ${n[1]} + resTexRC.y;
|
|
int r = 2 * (index / ${a});
|
|
int c = imod(index, ${a}) * 2;
|
|
|
|
return ivec2(r, c);
|
|
}
|
|
`}function hpe(e,t){return k.arraysEqual(e,t)?`
|
|
ivec2 getOutputCoords() {
|
|
return ivec2(resultUV.yx * vec2(${t[0]}, ${t[1]}));
|
|
}
|
|
`:e[1]===1?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
return ivec2(index, 0);
|
|
}
|
|
`:e[0]===1?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
return ivec2(0, index);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
int r = index / ${e[1]};
|
|
int c = index - r * ${e[1]};
|
|
return ivec2(r, c);
|
|
}
|
|
`}function xo(e){return`offset${e}`}function ppe(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1),a=Wn();return`
|
|
vec4 ${n}() {
|
|
return ${a.texture2D}(${t}, halfCR);
|
|
}
|
|
`}function cpe(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1);if(e.shapeInfo.isUniform)return`float ${n}() {return ${t};}`;let[a,r]=e.shapeInfo.texShape;if(a===1&&r===1)return`
|
|
float ${n}() {
|
|
return sampleTexture(${t}, halfCR);
|
|
}
|
|
`;let[s,i]=e.shapeInfo.texShape,o=xo(t);return`
|
|
float ${n}() {
|
|
vec2 uv = uvFromFlat(${s}, ${i}, ${o});
|
|
return sampleTexture(${t}, uv);
|
|
}
|
|
`}function fpe(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1),a=e.shapeInfo.texShape,r=[Math.ceil(a[0]/2),Math.ceil(a[1]/2)],s=Wn();return`
|
|
vec4 ${n}(int index) {
|
|
vec2 uv = packedUVfrom1D(
|
|
${r[0]}, ${r[1]}, index);
|
|
return ${s.texture2D}(${t}, uv);
|
|
}
|
|
`}function mpe(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1);if(e.shapeInfo.isUniform)return`
|
|
float ${n}(int index) {
|
|
${yu(e)}
|
|
}
|
|
`;let a=e.shapeInfo.texShape,r=a[0],s=a[1];if(s===1&&r===1)return`
|
|
float ${n}(int index) {
|
|
return sampleTexture(${t}, halfCR);
|
|
}
|
|
`;let i=xo(t);return s===1?`
|
|
float ${n}(int index) {
|
|
vec2 uv = vec2(0.5, (float(index + ${i}) + 0.5) / ${r}.0);
|
|
return sampleTexture(${t}, uv);
|
|
}
|
|
`:r===1?`
|
|
float ${n}(int index) {
|
|
vec2 uv = vec2((float(index + ${i}) + 0.5) / ${s}.0, 0.5);
|
|
return sampleTexture(${t}, uv);
|
|
}
|
|
`:`
|
|
float ${n}(int index) {
|
|
vec2 uv = uvFromFlat(${r}, ${s}, index + ${i});
|
|
return sampleTexture(${t}, uv);
|
|
}
|
|
`}function gpe(e){let t=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),r=e.shapeInfo.texShape,s=r[0],i=r[1],o=Wn();if(r!=null&&k.arraysEqual(t,r))return`
|
|
vec4 ${a}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${i}.0, ${s}.0);
|
|
|
|
return ${o.texture2D}(${n}, uv);
|
|
}
|
|
`;let l=[Math.ceil(r[0]/2),Math.ceil(r[1]/2)],u=Math.ceil(t[1]/2);return`
|
|
vec4 ${a}(int row, int col) {
|
|
vec2 uv = packedUVfrom2D(${u}, ${l[0]}, ${l[1]}, row, col);
|
|
return ${o.texture2D}(${n}, uv);
|
|
}
|
|
`}function ype(e){let t=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),r=e.shapeInfo.texShape;if(r!=null&&k.arraysEqual(t,r)){let h=r[0],p=r[1];return`
|
|
float ${a}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${p}.0, ${h}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}let{newShape:s,keptDims:i}=k.squeezeShape(t),o=s;if(o.length<t.length){let h=Au(e,o),p=["row","col"];return`
|
|
${gu(h)}
|
|
float ${a}(int row, int col) {
|
|
return ${a}(${xu(p,i)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${a}(int row, int col) {
|
|
int index = round(dot(vec2(row, col), vec2(${t[1]}, 1)));
|
|
${yu(e)}
|
|
}
|
|
`;let l=r[0],u=r[1],d=xo(n);return u===1?`
|
|
float ${a}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${d}), vec3(${t[1]}, 1, 1));
|
|
vec2 uv = vec2(0.5, (index + 0.5) / ${l}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:l===1?`
|
|
float ${a}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${d}), vec3(${t[1]}, 1, 1));
|
|
vec2 uv = vec2((index + 0.5) / ${u}.0, 0.5);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${a}(int row, int col) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${t[1]} + col + ${d};
|
|
vec2 uv = uvFromFlat(${l}, ${u}, index);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function Ape(e){let t=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),r=e.shapeInfo.texShape,s=[Math.ceil(r[0]/2),Math.ceil(r[1]/2)];if(t[0]===1){let h=t.slice(1),p=[1,2],c=Au(e,h),m=["b","row","col"];return`
|
|
${LT(c)}
|
|
vec4 ${a}(int b, int row, int col) {
|
|
return ${a}(${xu(m,p)});
|
|
}
|
|
`}let i=s[0],o=s[1],l=Math.ceil(t[2]/2),u=l*Math.ceil(t[1]/2),d=Wn();return`
|
|
vec4 ${a}(int b, int row, int col) {
|
|
vec2 uv = packedUVfrom3D(
|
|
${i}, ${o}, ${u}, ${l}, b, row, col);
|
|
return ${d.texture2D}(${n}, uv);
|
|
}
|
|
`}function xpe(e){let t=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),r=t[1]*t[2],s=t[2],{newShape:i,keptDims:o}=k.squeezeShape(t),l=i;if(l.length<t.length){let m=Au(e,l),f=["row","col","depth"];return`
|
|
${gu(m)}
|
|
float ${a}(int row, int col, int depth) {
|
|
return ${a}(${xu(f,o)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${a}(int row, int col, int depth) {
|
|
int index = round(dot(vec3(row, col, depth),
|
|
vec3(${r}, ${s}, 1)));
|
|
${yu(e)}
|
|
}
|
|
`;let u=e.shapeInfo.texShape,d=u[0],h=u[1],p=e.shapeInfo.flatOffset;if(h===r&&p==null)return`
|
|
float ${a}(int row, int col, int depth) {
|
|
float texR = float(row);
|
|
float texC = dot(vec2(col, depth), vec2(${s}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${h}.0, ${d}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;if(h===s&&p==null)return`
|
|
float ${a}(int row, int col, int depth) {
|
|
float texR = dot(vec2(row, col), vec2(${t[1]}, 1));
|
|
float texC = float(depth);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${h}.0, ${d}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let c=xo(n);return`
|
|
float ${a}(int row, int col, int depth) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${r} + col * ${s} + depth + ${c};
|
|
vec2 uv = uvFromFlat(${d}, ${h}, index);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function bpe(e){let t=e.shapeInfo.logicalShape,n=t.length,a=e.name,r="get"+a.charAt(0).toUpperCase()+a.slice(1),s=e.shapeInfo.texShape,i=[Math.ceil(s[0]/2),Math.ceil(s[1]/2)],o=i[0],l=i[1],u=Math.ceil(t[n-1]/2),d=u*Math.ceil(t[n-2]/2),h="int b, int row, int col",p=`b * ${d} + (row / 2) * ${u} + (col / 2)`;for(let m=2;m<n-1;m++)h=`int b${m}, `+h,d*=t[n-m-1],p=`b${m} * ${d} + `+p;let c=Wn();return`
|
|
vec4 ${r}(${h}) {
|
|
int index = ${p};
|
|
int texR = index / ${l};
|
|
int texC = index - texR * ${l};
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${l}, ${o});
|
|
return ${c.texture2D}(${a}, uv);
|
|
}
|
|
`}function vpe(e){let t=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),r=t[3],s=t[2]*r,i=t[1]*s,{newShape:o,keptDims:l}=k.squeezeShape(t);if(o.length<t.length){let m=Au(e,o),f=["row","col","depth","depth2"];return`
|
|
${gu(m)}
|
|
float ${a}(int row, int col, int depth, int depth2) {
|
|
return ${a}(${xu(f,l)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${a}(int row, int col, int depth, int depth2) {
|
|
int index = round(dot(vec4(row, col, depth, depth2),
|
|
vec4(${i}, ${s}, ${r}, 1)));
|
|
${yu(e)}
|
|
}
|
|
`;let u=e.shapeInfo.flatOffset,d=e.shapeInfo.texShape,h=d[0],p=d[1];if(p===i&&u==null)return`
|
|
float ${a}(int row, int col, int depth, int depth2) {
|
|
float texR = float(row);
|
|
float texC =
|
|
dot(vec3(col, depth, depth2),
|
|
vec3(${s}, ${r}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${p}.0, ${h}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;if(p===r&&u==null)return`
|
|
float ${a}(int row, int col, int depth, int depth2) {
|
|
float texR = dot(vec3(row, col, depth),
|
|
vec3(${t[1]*t[2]}, ${t[2]}, 1));
|
|
float texC = float(depth2);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${p}.0, ${h}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let c=xo(n);return`
|
|
float ${a}(int row, int col, int depth, int depth2) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${i} + col * ${s} +
|
|
depth * ${r} + depth2;
|
|
vec2 uv = uvFromFlat(${h}, ${p}, index + ${c});
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function wpe(e){let t=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),r=t[4],s=t[3]*r,i=t[2]*s,o=t[1]*i,{newShape:l,keptDims:u}=k.squeezeShape(t);if(l.length<t.length){let f=Au(e,l),g=["row","col","depth","depth2","depth3"];return`
|
|
${gu(f)}
|
|
float ${a}(int row, int col, int depth, int depth2, int depth3) {
|
|
return ${a}(${xu(g,u)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${a}(int row, int col, int depth, int depth2, int depth3) {
|
|
float index = dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${o}, ${i}, ${s}, ${r})) +
|
|
depth3;
|
|
${yu(e)}
|
|
}
|
|
`;let d=e.shapeInfo.flatOffset,h=e.shapeInfo.texShape,p=h[0],c=h[1];if(c===o&&d==null)return`
|
|
float ${a}(int row, int col, int depth, int depth2, int depth3) {
|
|
int texR = row;
|
|
float texC = dot(vec4(col, depth, depth2, depth3),
|
|
vec4(${i}, ${s}, ${r}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${c}.0, ${p}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;if(c===r&&d==null)return`
|
|
float ${a}(int row, int col, int depth, int depth2, int depth3) {
|
|
float texR = dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${t[1]*t[2]*t[3]},
|
|
${t[2]*t[3]}, ${t[3]}, 1));
|
|
int texC = depth3;
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${c}.0, ${p}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let m=xo(n);return`
|
|
float ${a}(int row, int col, int depth, int depth2, int depth3) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${o} + col * ${i} + depth * ${s} +
|
|
depth2 * ${r} + depth3 + ${m};
|
|
vec2 uv = uvFromFlat(${p}, ${c}, index);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function kpe(e){let t=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),{newShape:r,keptDims:s}=k.squeezeShape(t);if(r.length<t.length){let g=Au(e,r),y=["row","col","depth","depth2","depth3","depth4"];return`
|
|
${gu(g)}
|
|
float ${a}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
return ${a}(${xu(y,s)});
|
|
}
|
|
`}let i=t[5],o=t[4]*i,l=t[3]*o,u=t[2]*l,d=t[1]*u;if(e.shapeInfo.isUniform)return`
|
|
float ${a}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
int index = round(dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${d}, ${u}, ${l}, ${o})) +
|
|
dot(
|
|
vec2(depth3, depth4),
|
|
vec2(${i}, 1)));
|
|
${yu(e)}
|
|
}
|
|
`;let h=e.shapeInfo.flatOffset,p=e.shapeInfo.texShape,c=p[0],m=p[1];if(m===d&&h==null)return`
|
|
float ${a}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
int texR = row;
|
|
float texC = dot(vec4(col, depth, depth2, depth3),
|
|
vec4(${u}, ${l}, ${o}, ${i})) +
|
|
float(depth4);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${m}.0, ${c}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;if(m===i&&h==null)return`
|
|
float ${a}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
float texR = dot(vec4(row, col, depth, depth2),
|
|
vec4(${t[1]*t[2]*t[3]*t[4]},
|
|
${t[2]*t[3]*t[4]},
|
|
${t[3]*t[4]},
|
|
${t[4]})) + float(depth3);
|
|
int texC = depth4;
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${m}.0, ${c}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let f=xo(n);return`
|
|
float ${a}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${d} + col * ${u} + depth * ${l} +
|
|
depth2 * ${o} + depth3 * ${i} + depth4 + ${f};
|
|
vec2 uv = uvFromFlat(${c}, ${m}, index);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function yu(e){let t=e.name,n=k.sizeFromShape(e.shapeInfo.logicalShape);return n<2?`return ${t};`:`
|
|
for (int i = 0; i < ${n}; i++) {
|
|
if (i == index) {
|
|
return ${t}[i];
|
|
}
|
|
}
|
|
`}function Ipe(e,t){let n=e.name,a=n.charAt(0).toUpperCase()+n.slice(1),r="get"+a+"AtOutCoords",s=e.shapeInfo.logicalShape.length,i=t.logicalShape.length,o=PT(e.shapeInfo.logicalShape,t.logicalShape),l=kt(i),u=i-s,d,h=["x","y","z","w","u","v"];s===0?d="":i<2&&o.length>=1?d="coords = 0;":d=o.map(g=>`coords.${h[g+u]} = 0;`).join(`
|
|
`);let p="";i<2&&s>0?p="coords":p=e.shapeInfo.logicalShape.map((g,y)=>`coords.${h[y+u]}`).join(", ");let c="return outputValue;",m=k.sizeFromShape(e.shapeInfo.logicalShape)===1,f=k.sizeFromShape(t.logicalShape)===1;if(s===1&&!m&&!f)c=`
|
|
return vec4(outputValue.xy, outputValue.xy);
|
|
`;else if(m&&!f)i===1?c=`
|
|
return vec4(outputValue.x, outputValue.x, 0., 0.);
|
|
`:c=`
|
|
return vec4(outputValue.x);
|
|
`;else if(o.length){let g=s-2,y=s-1;o.indexOf(g)>-1&&o.indexOf(y)>-1?c="return vec4(outputValue.x);":o.indexOf(g)>-1?c="return vec4(outputValue.x, outputValue.y, outputValue.x, outputValue.y);":o.indexOf(y)>-1&&(c="return vec4(outputValue.xx, outputValue.zz);")}return`
|
|
vec4 ${r}() {
|
|
${l} coords = getOutputCoords();
|
|
${d}
|
|
vec4 outputValue = get${a}(${p});
|
|
${c}
|
|
}
|
|
`}function Spe(e,t){let n=e.name,a=n.charAt(0).toUpperCase()+n.slice(1),r="get"+a+"AtOutCoords",s=t.texShape,i=e.shapeInfo.texShape,o=e.shapeInfo.logicalShape.length,l=t.logicalShape.length;if(!e.shapeInfo.isUniform&&o===l&&e.shapeInfo.flatOffset==null&&k.arraysEqual(i,s))return`
|
|
float ${r}() {
|
|
return sampleTexture(${n}, resultUV);
|
|
}
|
|
`;let u=kt(l),d=PT(e.shapeInfo.logicalShape,t.logicalShape),h=l-o,p,c=["x","y","z","w","u","v"];o===0?p="":l<2&&d.length>=1?p="coords = 0;":p=d.map(f=>`coords.${c[f+h]} = 0;`).join(`
|
|
`);let m="";return l<2&&o>0?m="coords":m=e.shapeInfo.logicalShape.map((f,g)=>`coords.${c[g+h]}`).join(", "),`
|
|
float ${r}() {
|
|
${u} coords = getOutputCoords();
|
|
${p}
|
|
return get${a}(${m});
|
|
}
|
|
`}function kt(e){if(e<=1)return"int";if(e===2)return"ivec2";if(e===3)return"ivec3";if(e===4)return"ivec4";if(e===5)return"ivec5";if(e===6)return"ivec6";throw Error(`GPU for rank ${e} is not yet supported`)}function Au(e,t){let n=JSON.parse(JSON.stringify(e));return n.shapeInfo.logicalShape=t,n}function xu(e,t){return t.map(n=>e[n]).join(", ")}function Npe(e,t,n,a){let r=t.userCode,s=n.map((c,m)=>{let f={logicalShape:c.shape,texShape:c.isUniform?null:c.texData.texShape,isUniform:c.isUniform,isPacked:c.isUniform?!1:c.texData.isPacked,flatOffset:null};return c.texData!=null&&c.texData.slice!=null&&c.texData.slice.flatOffset>0&&(f.flatOffset=c.texData.slice.flatOffset),{name:t.variableNames[m],shapeInfo:f}}),i=s.map(c=>c.shapeInfo),o={logicalShape:a.shape,texShape:a.texData.texShape,isUniform:!1,isPacked:a.texData.isPacked,flatOffset:null},l=jhe(s,o,r,t.packedInputs),u=e.createProgram(l),d=null,h=e.getUniformLocation(u,"NAN",!1);se().getNumber("WEBGL_VERSION")===1&&(d=e.getUniformLocation(u,"INFINITY",!1));let p={};for(let c=0;c<t.variableNames.length;c++){let m=t.variableNames[c],f=!1;p[m]=e.getUniformLocation(u,m,f),p[`offset${m}`]=e.getUniformLocation(u,`offset${m}`,f)}return{program:t,source:l,webGLProgram:u,uniformLocations:p,inShapeInfos:i,outShapeInfo:o,infLoc:d,nanLoc:h}}function BT(e,t){if(e.length!==t.length)throw Error(`Binary was compiled with ${e.length} inputs, but was executed with ${t.length} inputs`);e.forEach((n,a)=>{let r=n.logicalShape,s=t[a],i=s.shape;if(!k.arraysEqual(r,i))throw Error(`Binary was compiled with different shapes than the current args. Shapes ${r} and ${i} must match`);if(n.isUniform&&s.isUniform)return;let o=n.texShape,l=s.isUniform?null:s.texData.texShape;if(!k.arraysEqual(o,l))throw Error(`Binary was compiled with different texture shapes than the current args. Shape ${o} and ${l} must match`)})}function Tpe(e,t,n,a,r){BT(t.inShapeInfos,n),BT([t.outShapeInfo],[a]);let s=a.texData.texture,i=a.texData.texShape;a.texData.isPacked?e.setOutputPackedMatrixTexture(s,i[0],i[1]):e.setOutputMatrixTexture(s,i[0],i[1]),e.setProgram(t.webGLProgram),se().getNumber("WEBGL_VERSION")===1&&t.infLoc!==null&&e.gl.uniform1f(t.infLoc,Infinity),t.nanLoc!==null&&e.gl.uniform1f(t.nanLoc,NaN),n.forEach((o,l)=>{let u=t.program.variableNames[l],d=t.uniformLocations[u],h=t.uniformLocations[`offset${u}`];if(d!=null){if(o.isUniform){if(k.sizeFromShape(o.shape)<2)e.gl.uniform1f(d,o.uniformValues[0]);else{let p=o.uniformValues;p instanceof Float32Array||(p=new Float32Array(p)),e.gl.uniform1fv(d,p)}return}o.texData.slice!=null&&h!=null&&e.gl.uniform1i(h,o.texData.slice.flatOffset),e.setInputMatrixTexture(o.texData.texture,d,l)}}),r!=null&&r(e,t.webGLProgram),e.executeProgram()}function Epe(e,t,n){let a="";t.concat(n).forEach(i=>{let o=i.texData!=null&&i.texData.slice!=null&&i.texData.slice.flatOffset>0,l=i.isUniform?"uniform":i.texData.texShape;a+=`${i.shape}_${l}_${o}`});let r=e.userCode,s=e.constructor.name;return s+="_"+a+"_"+r,s}var VT={};$e(VT,{addImpl:()=>HT,bincountImpl:()=>Rpe,bincountReduceImpl:()=>Fpe,ceilImpl:()=>GT,concatImpl:()=>qT,equalImpl:()=>KT,expImpl:()=>XT,expm1Impl:()=>ZT,floorImpl:()=>YT,gatherNdImpl:()=>Ope,gatherV2Impl:()=>Dpe,greaterEqualImpl:()=>QT,greaterImpl:()=>JT,lessEqualImpl:()=>tE,lessImpl:()=>eE,linSpaceImpl:()=>_pe,logImpl:()=>nE,maxImpl:()=>zpe,maximumImpl:()=>aE,minimumImpl:()=>rE,multiplyImpl:()=>ab,negImpl:()=>Lpe,notEqualImpl:()=>sE,prodImpl:()=>Bpe,rangeImpl:()=>iE,rsqrtImpl:()=>oE,simpleAbsImpl:()=>Cpe,sliceImpl:()=>rb,sparseFillEmptyRowsImpl:()=>Vpe,sparseReshapeImpl:()=>Upe,sparseSegmentReductionImpl:()=>jpe,squaredDifferenceImpl:()=>lE,stridedSliceImpl:()=>Hpe,stringNGramsImpl:()=>qpe,stringSplitImpl:()=>Xpe,stringToHashBucketFastImpl:()=>Zpe,subImpl:()=>uE,tileImpl:()=>Jpe,topKImpl:()=>Qpe,transposeImpl:()=>Wpe,uniqueImpl:()=>ece});function UT(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&k.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the CPU backend.`)})}function Cpe(e){let t=new Float32Array(e.length);for(let n=0;n<e.length;++n)t[n]=Math.abs(e[n]);return t}function Pa(e){return(t,n,a,r,s)=>{let i=M.assertAndGetBroadcastShape(t,n),o=i.length,l=k.computeStrides(i),u=k.sizeFromShape(i),d=k.getTypedArrayFromDType(s,u),h=t.length,p=n.length,c=k.computeStrides(t),m=k.computeStrides(n),f=M.getBroadcastDims(t,i),g=M.getBroadcastDims(n,i);if(f.length+g.length===0)for(let y=0;y<d.length;++y)d[y]=e(a[y%a.length],r[y%r.length]);else for(let y=0;y<d.length;++y){let A=k.indexToLoc(y,o,l),x=A.slice(-h);f.forEach(I=>x[I]=0);let v=k.locToIndex(x,h,c),b=A.slice(-p);g.forEach(I=>b[I]=0);let w=k.locToIndex(b,p,m);d[y]=e(a[v],r[w])}return[d,i]}}function eb(e){let{inputs:t,backend:n}=e,{real:a,imag:r}=t,s=n.data.get(a.dataId).values,i=n.data.get(r.dataId).values,o=n.makeTensorInfo(a.shape,"complex64"),l=n.data.get(o.dataId);return l.complexTensorInfos={real:n.makeTensorInfo(a.shape,"float32",s),imag:n.makeTensorInfo(r.shape,"float32",i)},o}function tb(e,t,n="float32"){if(n==="complex64"){let r=tb(e,t,"float32"),s=tb(e,t,"float32");return eb({inputs:{real:r,imag:s},backend:e})}let a=k.makeZerosTypedArray(k.sizeFromShape(t),n);return e.makeTensorInfo(t,n,a)}function jT(e){let{inputs:t,backend:n}=e,{x:a}=t;return n.incRef(a.dataId),{dataId:a.dataId,shape:a.shape,dtype:a.dtype}}function Mpe(e){let{inputs:t,backend:n}=e,{input:a}=t,r=n.data.get(a.dataId).complexTensorInfos.real,s=n.data.get(r.dataId).values;return n.makeTensorInfo(r.shape,r.dtype,s)}function B0(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dtype:s}=a;if(s==="complex64"){if(r.dtype==="complex64")return jT({inputs:{x:r},backend:n});let i=tb(n,r.shape,r.dtype),o=B0({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),l=eb({inputs:{real:o,imag:i},backend:n});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}if(r.dtype==="complex64"){let i=Mpe({inputs:{input:r},backend:n}),o=B0({inputs:{x:i},backend:n,attrs:{dtype:s}});return n.disposeIntermediateTensorInfo(i),o}if(!k.hasEncodingLoss(r.dtype,s)){let i=jT({inputs:{x:r},backend:n});return{dataId:i.dataId,shape:i.shape,dtype:s}}if(s==="int32"){let i=n.data.get(r.dataId).values,o=Int32Array.from(i);return n.makeTensorInfo(r.shape,"int32",o)}if(s==="bool"){let i=n.data.get(r.dataId).values,o=k.toTypedArray([0],r.dtype),[l,u]=Pa((d,h)=>d!==h?1:0)(r.shape,[],i,o,"bool");return n.makeTensorInfo(u,"bool",l)}throw new Error(`Error in Cast: failed to cast ${r.dtype} to ${s}`)}function Ya(e,t,n,a){return n==null?({inputs:r,backend:s})=>{let{a:i,b:o}=r,l=s;UT([i,o],e);let u=l.data.get(i.dataId).values,d=l.data.get(o.dataId).values,h=i.dtype==="string"?M.fromUint8ToStringArray(u):u,p=i.dtype==="string"?M.fromUint8ToStringArray(d):d,c=a||i.dtype,[m,f]=t(i.shape,o.shape,h,p,c);return l.makeTensorInfo(f,c,m)}:({inputs:r,backend:s})=>{let{a:i,b:o}=r,l=s;if(i.dtype==="complex64"||o.dtype==="complex64"){let u=B0({inputs:{x:i},backend:l,attrs:{dtype:"complex64"}}),d=l.data.get(u.dataId),h=d.complexTensorInfos.real,p=d.complexTensorInfos.imag,c=l.data.get(h.dataId).values,m=l.data.get(p.dataId).values,f=B0({inputs:{x:o},backend:l,attrs:{dtype:"complex64"}}),g=l.data.get(f.dataId),y=g.complexTensorInfos.real,A=g.complexTensorInfos.imag,x=l.data.get(y.dataId).values,v=l.data.get(A.dataId).values,[b,w,I]=n(i.shape,o.shape,c,m,x,v),T=l.makeTensorInfo(I,"float32",b),C=l.makeTensorInfo(I,"float32",w),z=eb({inputs:{real:T,imag:C},backend:l});return l.disposeIntermediateTensorInfo(u),l.disposeIntermediateTensorInfo(f),l.disposeIntermediateTensorInfo(T),l.disposeIntermediateTensorInfo(C),z}else{let u=l.data.get(i.dataId).values,d=l.data.get(o.dataId).values,h=a||i.dtype,[p,c]=t(i.shape,o.shape,u,d,h);return l.makeTensorInfo(c,h,p)}}}function nb(e){return(t,n,a,r,s,i)=>{let o=M.assertAndGetBroadcastShape(t,n),l=k.sizeFromShape(o),u=o.length,d=k.computeStrides(o),h=k.getTypedArrayFromDType("float32",l),p=k.getTypedArrayFromDType("float32",l),c=M.getBroadcastDims(t,o),m=M.getBroadcastDims(n,o),f=M.mergeRealAndImagArrays(a,r),g=M.mergeRealAndImagArrays(s,i),y=t.length,A=k.computeStrides(t),x=n.length,v=k.computeStrides(n);if(c.length+m.length===0)for(let b=0;b<h.length;b++){let w=b%f.length,I=b%g.length,T=e(f[w*2],f[w*2+1],g[I*2],g[I*2+1]);h[b]=T.real,p[b]=T.imag}else for(let b=0;b<h.length;b++){let w=k.indexToLoc(b,u,d),I=w.slice(-y);c.forEach(S=>I[S]=0);let T=k.locToIndex(I,y,A),C=w.slice(-x);m.forEach(S=>C[S]=0);let z=k.locToIndex(C,x,v),$=e(f[T*2],f[T*2+1],g[z*2],g[z*2+1]);h[b]=$.real,p[b]=$.imag}return[h,p,o]}}var HT=Pa((e,t)=>e+t),$pe=nb((e,t,n,a)=>({real:e+n,imag:t+a})),Bwe=Ya(Os,HT,$pe);function Rpe(e,t,n,a,r){let s=k.sizeFromShape(a),i=k.makeZerosTypedArray(r,n);for(let o=0;o<e.length;o++){let l=e[o];if(l<0)throw new Error("Input x must be non-negative!");l>=r||(s>0?i[l]+=t[o]:i[l]+=1)}return i}function Fpe(e,t,n,a=!1){let r=e.shape[0],s=e.shape[1],i=Pe([r,n],t.dtype);for(let o=0;o<r;o++)for(let l=0;l<s;l++){let u=e.get(o,l);if(u<0)throw new Error("Input x must be non-negative!");u>=n||(a?i.set(1,o,u):t.size>0?i.set(i.get(o,u)+t.get(o,l),o,u):i.set(i.get(o,u)+1,o,u))}return i}function bu(e){return(t,n,a)=>{let r=k.getTypedArrayFromDType(n,t.length);for(let s=0;s<t.length;++s)r[s]=e(t[s],a);return r}}function vu(e,t,n){return({inputs:a,attrs:r,backend:s})=>{let{x:i}=a;if(UT(i,e),i.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let o=s,l=o.data.get(i.dataId).values,u=n||i.dtype,d=t(l,u,r);return o.makeTensorInfo(i.shape,u,d)}}var GT=bu(e=>Math.ceil(e)),Vwe=vu(Ni,GT);function qT(e,t,n,a){let r=k.getArrayFromDType(n,k.sizeFromShape(t));if(a&&n!=="string"){let s=0;e.forEach(i=>{let o=k.sizeFromShape(i.shape);r.set(i.vals,s),s+=o})}else{let s=0;e.forEach(i=>{let o=n==="string"?M.fromUint8ToStringArray(i.vals):i.vals,l=0;for(let u=0;u<i.shape[0];++u){let d=u*t[1]+s;for(let h=0;h<i.shape[1];++h)r[d+h]=o[l++]}s+=i.shape[1]})}return r}var KT=Pa((e,t)=>e===t?1:0),Uwe=Ya(ol,KT,null,"bool"),XT=bu(e=>Math.exp(e)),jwe=vu(Ei,XT),ZT=bu(e=>Math.expm1(e)),Hwe=vu(ll,ZT),YT=bu(e=>Math.floor(e)),Gwe=vu(Ci,YT);function Ope(e,t,n,a,r,s,i,o,l){let u=Pe([a,s],n);for(let d=0;d<a;d++){let h=[],p=0;for(let c=0;c<r;c++){let m=e[d*r+c];p+=m*i[c],h.push(m)}if(p<0||p>=l/s)throw new Error(`Invalid indices: ${h} does not index into ${o}`);for(let c=0;c<s;c++)u.values[d*s+c]=t.get(...t.indexToLoc(p*s+c))}return u}function Dpe(e,t,n){let a=Pe(n,e.dtype);for(let r=0;r<a.size;++r){let s=a.indexToLoc(r).slice(),i=s[0],o=s[2],l=t.locToIndex([i,o]);s[2]=t.values[l];let u=e.locToIndex(s);a.values[r]=e.values[u]}return a}var JT=Pa((e,t)=>e>t?1:0),qwe=Ya(hl,JT,null,"bool"),QT=Pa((e,t)=>e>=t?1:0),Kwe=Ya(Mi,QT,null,"bool"),eE=Pa((e,t)=>e<t?1:0),Xwe=Ya(fl,eE,null,"bool"),tE=Pa((e,t)=>e<=t?1:0),Zwe=Ya(ml,tE,null,"bool");function _pe(e,t,n){let a=(t-e)/(n-1),r=k.makeZerosTypedArray(n,"float32");r[0]=e;for(let s=1;s<r.length;s++)r[s]=r[s-1]+a;return r}var nE=bu(e=>Math.log(e)),Ywe=vu($i,nE);function zpe(e,t,n,a){let r=k.getTypedArrayFromDType(a,k.sizeFromShape(n));for(let s=0;s<r.length;++s){let i=s*t,o=e[i];for(let l=0;l<t;++l){let u=e[i+l];(Number.isNaN(u)||u>o)&&(o=u)}r[s]=o}return r}var aE=Pa((e,t)=>Math.max(e,t)),Jwe=Ya(Ri,aE),rE=Pa((e,t)=>Math.min(e,t)),Qwe=Ya(Fi,rE),ab=Pa((e,t)=>e*t),Ppe=nb((e,t,n,a)=>({real:e*n-t*a,imag:e*a+t*n})),e7e=Ya(Oi,ab,Ppe);function Lpe(e,t,n){let a=k.createScalarValue(-1,n);return ab([],t,a,e,n)}var sE=Pa((e,t)=>e!==t?1:0),t7e=Ya(vl,sE,null,"bool");function Wpe(e,t,n,a,r){let s=t.length,i=k.sizeFromShape(t),o=k.computeStrides(t),l=k.computeStrides(r),u=k.getTypedArrayFromDType(n,k.sizeFromShape(r));for(let d=0;d<i;++d){let h=k.indexToLoc(d,s,o),p=new Array(h.length);for(let m=0;m<p.length;m++)p[m]=h[a[m]];let c=k.locToIndex(p,s,l);u[c]=e[d]}return u}function Bpe(e,t,n,a){let[r,s]=M.computeOutAndReduceShapes(e,a),i=Ga(t,"int32"),o=k.makeZerosTypedArray(k.sizeFromShape(r),i),l=k.sizeFromShape(s);for(let u=0;u<o.length;++u){let d=u*l,h=1;for(let p=0;p<l;++p)h*=n[d+p];o[u]=h}return{outVals:o,outShape:r,outDtype:i}}function iE(e,t,n,a){let r=e===t,s=e<t&&n<0,i=t<e&&n>1;if(r||s||i)return k.makeZerosTypedArray(0,a);let o=Math.abs(Math.ceil((t-e)/n)),l=k.makeZerosTypedArray(o,a);t<e&&n===1&&(n=-1),l[0]=e;for(let u=1;u<l.length;u++)l[u]=l[u-1]+n;return l}var oE=bu(e=>1/Math.sqrt(e)),n7e=vu(Di,oE);function rb(e,t,n,a,r){let s=Cn.isSliceContinous(a,t,n),i=k.sizeFromShape(n),o=k.computeStrides(a);if(s){let h=Cn.computeFlatOffset(t,o);return r==="string"?e.slice(h,h+i):e.subarray(h,h+i)}let l=r==="string"?M.fromUint8ToStringArray(e):e,u=Pe(a,r,l),d=Pe(n,r);for(let h=0;h<d.size;++h){let p=d.indexToLoc(h),c=p.map((m,f)=>m+t[f]);d.set(u.get(...c),...p)}return r==="string"?M.fromStringArrayToUint8(d.values):d.values}function Vpe(e,t,n,a,r,s,i){let o=t[0],l=s[0],u=new Array(l),d=new Array(o),h=t[1];if(l===0){if(o!==0)throw new Error(`Received SparseTensor with denseShape[0] = 0 but
|
|
indices.shape[0] = ${o}`);let g=k.getArrayFromDType(n,0),y=k.getArrayFromDType(r,0);return[g,[0,h],y,u,d]}let p=!0,c=0,m=new Array(l).fill(0);for(let g=0;g<o;++g){let y=e[g*h];if(y<0)throw new Error(`indices(${g}, 0) is invalid: ${y} < 0`);if(y>=l)throw new Error(`indices(${g}, 0) is invalid: ${y} >= ${l}`);++m[y],p=p&&y>=c,c=y}let f=!0;for(let g=0;g<l;++g){let y=m[g]===0;u[g]=y,f=f&&!y,m[g]=Math.max(m[g],1),g>0&&(m[g]+=m[g-1])}if(f&&p){let g=e,y=a;for(let A=0;A<o;++A)d[A]=A;return[g,[o,h],y,u,d]}else{let g=m[l-1],y=k.getArrayFromDType(n,g*h),A=k.getArrayFromDType(r,g),x=new Array(l).fill(0);for(let v=0;v<o;++v){let b=e[v*h],w=x[b],I=(b===0?0:m[b-1])+w;x[b]++;for(let T=0;T<h;++T)y[I*h+T]=e[v*h+T];A[I]=a[v],d[v]=I}for(let v=0;v<l;++v)if(x[v]===0){let b=v===0?0:m[v-1];y[b*h+0]=v;for(let w=1;w<h;++w)y[b*h+w]=0;A[b]=i}return[y,[g,h],A,u,d]}}function Upe(e,t,n,a,r){let s=k.sizeFromShape(a),i=t[0],o=r.length,l=[],u=1,d=-1;for(let g=0;g<o;++g){let y=r[g];if(y===-1){if(d!==-1)throw new Error(`only one output dimension may be -1, not both ${d} and ${g}`);d=g,l.push(1)}else{if(y<0)throw new Error(`size ${g} must be non-negative, not ${y}`);u*=y,l.push(y)}}if(d!==-1){if(u<=0)throw new Error("reshape cannot infer the missing input size for an empty tensor unless all specified input sizes are non-zero");let g=Math.trunc(s/u);if(u*g!==s)throw new Error(`Input to reshape is a SparseTensor with ${s}
|
|
dense values, but the requested shape requires a multiple of ${u}. inputShape=${a} outputShape= ${l}`);l[d]=g}let h=k.sizeFromShape(l);if(h!==s)throw new Error(`Input to reshape is a tensor with ${s} dense values, but the requested shape has ${h}. inputShape=${a} outputShape=${l}`);let p=a.length,c=[];if(p>0){c[p-1]=1;for(let g=p-2;g>=0;--g)c[g]=c[g+1]*a[g+1]}let m=[];if(o>0){m[o-1]=1;for(let g=o-2;g>=0;--g)m[g]=m[g+1]*l[g+1]}let f=k.getArrayFromDType(n,i*o);for(let g=0;g<i;++g){let y=0;for(let A=0;A<p;++A)y+=e[g*p+A]*c[A];for(let A=0;A<o;++A)f[g*o+A]=Math.trunc(y/m[A]),y%=m[A]}return[f,[i,o],l]}function jpe(e,t,n,a,r,s=!1,i=0){let o=a.length;if(o!==r.length)throw new Error("segmentIds and indices should have same size.");let l=[t[0],e.length/t[0]],u=l[1],d=o>0?r[o-1]+1:0;if(d<0)throw new Error("segment ids must be >= 0");let h=t.slice();h[0]=d;let p=h.reduce((A,x)=>A*x,1),c=k.getArrayFromDType(n,p);if(o===0)return d>0&&c.fill(i),[c,h];if(d<=0)throw new Error("segment ids must be >= 0");let m=0,f=1,g=0,y=r[m];for(;;){let A=0;if(f<o){if(A=r[f],y===A){++f;continue}if(y>=A)throw new Error("segment ids are not increasing")}if(y<0||y>=d)throw new Error(`Segment id ${y} out of range [0, ${d}), possibly because segmentIds input is not sorted.`);y>g&&c.fill(i,g*u,y*u);for(let x=m;x<f;++x){let v=a[x];if(v<0||v>=l[0])throw new Error(`Bad: indices[${x}] == ${a[x]} out of range [0, ${l[0]})`);for(let b=0;b<u;b++)c[y*u+b]+=e[v*u+b]}if(s)for(let x=0;x<u;x++)c[y*u+x]/=f-m;if(m=f,++f,g=y+1,y=A,f>o)break}return g<d&&c.fill(i,g*u,d*u),[c,h]}var lE=Pa((e,t)=>{let n=e-t;return n*n}),a7e=Ya(_i,lE);function Hpe(e,t,n,a){let r=Pe(e,t.dtype);for(let s=0;s<r.size;s++){let i=r.indexToLoc(s),o=new Array(i.length);for(let l=0;l<o.length;l++)o[l]=i[l]*n[l]+a[l];r.set(t.get(...o),...i)}return r}var Gpe=class{constructor(e,t,n,a,r,s){this.separator=k.encodeString(e),this.nGramWidths=t,this.leftPad=k.encodeString(n),this.rightPad=k.encodeString(a),this.padWidth=r,this.preserveShort=s}getPadWidth(e){return Math.min(this.padWidth<0?e-1:this.padWidth,e-1)}getNumNGrams(e,t){let n=this.getPadWidth(t);return Math.max(0,e+2*n-t+1)}createNGrams(e,t,n,a,r,s){for(let i=0;i<r;++i){let o=this.getPadWidth(s),l=Math.max(0,o-i),u=Math.max(0,o-(r-(i+1))),d=s-(l+u),h=t+(l>0?0:i-o),p=0;p+=l*this.leftPad.length;for(let g=0;g<d;++g)p+=e[h+g].length;p+=u*this.rightPad.length,p+=(l+u+d-1)*this.separator.length,n[a+i]=new Uint8Array(p);let c=n[a+i],m=0,f=g=>g.forEach(y=>c[m++]=y);for(let g=0;g<l;++g)f(this.leftPad),f(this.separator);for(let g=0;g<d-1;++g)f(e[h+g]),f(this.separator);if(d>0){f(e[h+d-1]);for(let g=0;g<u;++g)f(this.separator),f(this.rightPad)}else{for(let g=0;g<u-1;++g)f(this.rightPad),f(this.separator);f(this.rightPad)}}}compute(e,t){let n=e.length,a=t.length;if(a>0){let o=t[0];if(o!==0)throw new Error(`First split value must be 0, got ${o}`);for(let l=1;l<a;++l){let u=t[l]>=o;if(u=u&&t[l]<=n,!u)throw new Error(`Invalid split value ${t[l]}, must be in [${o}, ${n}]`);o=t[l]}if(o!==n)throw new Error(`Last split value must be data size. Expected ${n}, got ${o}`)}let r=a-1,s=k.getArrayFromDType("int32",a);if(n===0||a===0){let o=new Array(n);for(let l=0;l<=r;++l)s[l]=0;return[o,s]}s[0]=0;for(let o=1;o<=r;++o){let l=t[o]-t[o-1],u=0;this.nGramWidths.forEach(d=>{u+=this.getNumNGrams(l,d)}),this.preserveShort&&l>0&&u===0&&(u=1),s[o]=s[o-1]+u}let i=new Array(s[r]);for(let o=0;o<r;++o){let l=t[o],u=s[o];if(this.nGramWidths.forEach(d=>{let h=t[o+1]-t[o],p=this.getNumNGrams(h,d);this.createNGrams(e,l,i,u,p,d),u+=p}),this.preserveShort&&u===s[o]){let d=t[o+1]-t[o];if(d===0)continue;let h=d+2*this.padWidth,p=1;this.createNGrams(e,l,i,u,p,h)}}return[i,s]}};function qpe(e,t,n,a,r,s,i,o){return new Gpe(n,a,r,s,i,o).compute(e,t)}function Kpe(e,t,n){if(!e.length)return[];if(t.length===0){let s=new Array(e.length);for(let i=0;i<e.length;++i)s[i]=e.subarray(i,i+1);return s}if(t.length===1){let s=t[0],i=[],o=e.indexOf(s);for(;o!==-1;){let l=e.subarray(0,o);(!n||l.length!==0)&&i.push(l),e=e.subarray(o+1),o=e.indexOf(s)}return(!n||e.length!==0)&&i.push(e),i}let a=[],r=0;for(let s=0;s<e.length+1;s++)if(s===e.length||t.indexOf(e[s])!==-1){let i=e.subarray(r,s);(!n||i.length!==0)&&a.push(i),r=s+1}return a}function Xpe(e,t,n){let a=e.length,r=[],s=0,i=0,o=new Array(a);for(let p=0;p<a;++p){let c=Kpe(e[p],t,n),m=c.length;o[p]=m,s+=m,i=Math.max(i,m),r.push(...c)}let l=k.getArrayFromDType("int32",s*2),u=new Array(s),d=[a,i],h=0;for(let p=0;p<a;++p)for(let c=0;c<o[p];++c)l[h*2]=p,l[h*2+1]=c,u[h]=r[h],++h;return[l,u,d]}function Zpe(e,t){let n=k.getArrayFromDType("int32",e.length);for(let a=0;a<e.length;++a)n[a]=k.fingerPrint64(e[a]).modulo(t).getLowBitsUnsigned();return n}var uE=Pa((e,t)=>e-t),Ype=nb((e,t,n,a)=>({real:e-n,imag:t-a})),r7e=Ya(zi,uE,Ype);function Jpe(e,t){let n=new Array(e.rank);for(let r=0;r<n.length;r++)n[r]=e.shape[r]*t[r];let a=Pe(n,e.dtype);for(let r=0;r<a.values.length;++r){let s=a.indexToLoc(r),i=new Array(e.rank);for(let l=0;l<i.length;l++)i[l]=s[l]%e.shape[l];let o=e.locToIndex(i);a.values[r]=e.values[o]}return a}function Qpe(e,t,n,a,r){let s=t[t.length-1],[i,o]=[e.length/s,s],l=k.getTypedArrayFromDType(n,i*a),u=k.getTypedArrayFromDType("int32",i*a);for(let h=0;h<i;h++){let p=h*o,c=e.subarray(p,p+o),m=[];for(let A=0;A<c.length;A++)m.push({value:c[A],index:A});m.sort((A,x)=>x.value-A.value);let f=h*a,g=l.subarray(f,f+a),y=u.subarray(f,f+a);for(let A=0;A<a;A++)g[A]=m[A].value,y[A]=m[A].index}let d=t.slice();return d[d.length-1]=a,[Pe(d,n,l),Pe(d,"int32",u)]}function ece(e,t,n,a){let r=k.parseAxisParam(t,n)[0],s=[1,n[0],1];for(let m=0;m<r;m++)s[0]*=n[m];s[1]=n[r];for(let m=r+1;m<n.length;m++)s[2]*=n[m];let i={},o=new Int32Array(n[r]),l=new Qt(s,a,e),u=[],d=s[0]===1&&s[2]===1;for(let m=0;m<n[r];m++){let f;if(d)f=e[m].toString();else{let g=[];for(let y=0;y<s[0];y++)for(let A=0;A<s[2];A++)g.push(l.get(y,m,A));f=g.join(",")}if(i[f]!==void 0)o[m]=i[f];else{let g=Object.keys(i).length;i[f]=g,o[m]=g,u.push(m)}}let h=s.slice();h[1]=Object.keys(i).length;let p=new Qt(h,a);u.forEach((m,f)=>{for(let g=0;g<s[0];g++)for(let y=0;y<s[2];y++)p.set(l.get(g,m,y),g,f,y)});let c=n.slice();return c[r]=h[1],{outputValues:p.values,outputShape:c,indices:o}}var{addImpl:tce,bincountImpl:dE,bincountReduceImpl:nce,ceilImpl:ace,concatImpl:rce,equalImpl:sce,expImpl:ice,expm1Impl:oce,floorImpl:lce,gatherNdImpl:uce,gatherV2Impl:dce,greaterImpl:hce,greaterEqualImpl:pce,lessImpl:cce,lessEqualImpl:fce,linSpaceImpl:mce,logImpl:gce,maxImpl:yce,maximumImpl:Ace,minimumImpl:xce,multiplyImpl:bce,negImpl:vce,notEqualImpl:wce,prodImpl:kce,rangeImpl:Ice,rsqrtImpl:Sce,simpleAbsImpl:hE,sliceImpl:Nce,sparseFillEmptyRowsImpl:Tce,sparseReshapeImpl:Ece,sparseSegmentReductionImpl:pE,stridedSliceImpl:Cce,stringNGramsImpl:Mce,stringSplitImpl:$ce,stringToHashBucketFastImpl:Rce,subImpl:Fce,tileImpl:Oce,topKImpl:Dce,transposeImpl:sb,uniqueImpl:_ce}=VT;function cE(e,t){return["x","y","z","w","u","v"].slice(0,t).map(n=>`${e}.${n}`)}function Bn(e,t){return t===1?[e]:cE(e,t)}function zce(e,t){if(e===1)return"rc";let n="";for(let a=0;a<e;a++)n+=t[a],a<e-1&&(n+=",");return n}var Pce=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outputShape=e;let t=e.length;if(t===0)this.userCode=`
|
|
void main() {
|
|
setOutput(vec4(getA(), 0., 0., 0.));
|
|
}
|
|
`;else{let n=Bn("rc",t),a=kt(t),r=Wce(t,e,n),s=Bce(t,e[e.length-1],e[e.length-2],n),i=Vce(e,n);this.userCode=`
|
|
void main() {
|
|
${a} rc = getOutputCoords();
|
|
|
|
if(${r}) {
|
|
setOutput(vec4(0));
|
|
} else {
|
|
${s}
|
|
|
|
setOutput(vec4(${i}));
|
|
}
|
|
}
|
|
`}}};function Lce(e,t){let n=[];for(let a=0;a<=1;a++)for(let r=0;r<=1;r++){let s=`${a===0?"r":"rp1"}, ${r===0?"c":"cp1"}`;for(let i=2;i<e;i++)s=`${t[t.length-1-i]},`+s;n.push(s)}return n}function Wce(e,t,n){if(e===1)return`rc > ${t[0]}`;let a="";for(let r=e-2;r<e;r++)a+=`${n[r]} >= ${t[r]}`,r<e-1&&(a+="||");return a}function Bce(e,t,n,a){if(e===1)return"";let r=a.slice(-2);return`
|
|
int r = ${r[0]};
|
|
int c = ${r[1]};
|
|
int rp1 = r + 1;
|
|
int cp1 = c + 1;
|
|
|
|
bool cEdge = cp1 >= ${t};
|
|
bool rEdge = rp1 >= ${n};
|
|
`}function Vce(e,t){let n=e.length,a=Lce(n,t);return n===1?`getA(rc),
|
|
rc + 1 >= ${e[0]} ? 0. : getA(rc + 1),
|
|
0, 0`:`getA(${a[0]}),
|
|
cEdge ? 0. : getA(${a[1]}),
|
|
rEdge ? 0. : getA(${a[2]}),
|
|
rEdge || cEdge ? 0. : getA(${a[3]})`}var fE=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e;let n="";for(let a=0;a<4;a++){let r="thisRC = rc;";a%2==1&&(r+="thisRC.z += 1;"),a>1&&(r+="thisRC.y += 1;"),n+=`
|
|
${r}
|
|
${a>0?"if(thisRC.y < rows && thisRC.z < cols){":""}
|
|
int flatIndex = getFlatIndex(thisRC);
|
|
|
|
ivec3 inputRC = inputCoordsFromReshapedOutCoords(flatIndex);
|
|
vec2 inputRCInnerDims = vec2(float(inputRC.y),float(inputRC.z));
|
|
|
|
result[${a}] =
|
|
getChannel(getA(inputRC.x, inputRC.y, inputRC.z), inputRCInnerDims);
|
|
${a>0?"}":""}
|
|
`}this.userCode=`
|
|
${Uce(t)}
|
|
${K5(e)}
|
|
|
|
void main() {
|
|
ivec3 rc = getOutputCoords();
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
ivec3 thisRC;
|
|
int rows = ${e[1]};
|
|
int cols = ${e[2]};
|
|
|
|
${n}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}};function Uce(e){return`
|
|
ivec3 inputCoordsFromReshapedOutCoords(int index) {
|
|
${Ao(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
`}var jce=class{constructor(e){this.gpgpu=e,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0,this.freeTextures={},this.logEnabled=!1,this.usedTextures={}}acquireTexture(e,t,n){let a=gE(t,n),r=yE(e,a,n);r in this.freeTextures||(this.freeTextures[r]=[]),r in this.usedTextures||(this.usedTextures[r]=[]);let s=mE(e,a,this.gpgpu.gl,this.gpgpu.textureConfig,n);if(this.freeTextures[r].length>0){this.numFreeTextures--,this.numUsedTextures++,this._numBytesFree-=s,this.log();let o=this.freeTextures[r].shift();return this.usedTextures[r].push(o),o}let i;return a===Nn.PACKED_2X2_FLOAT32?i=this.gpgpu.createPackedMatrixTexture(e[0],e[1]):a===Nn.PACKED_2X2_FLOAT16?i=this.gpgpu.createFloat16PackedMatrixTexture(e[0],e[1]):a===Nn.UNPACKED_FLOAT32?i=this.gpgpu.createFloat32MatrixTexture(e[0],e[1]):a===Nn.UNPACKED_FLOAT16?i=this.gpgpu.createFloat16MatrixTexture(e[0],e[1]):a===Nn.PACKED_4X1_UNSIGNED_BYTE&&(i=this.gpgpu.createUnsignedBytesMatrixTexture(e[0],e[1])),this.usedTextures[r].push(i),this.numUsedTextures++,this._numBytesAllocated+=s,this.log(),i}releaseTexture(e,t,n,a){if(this.freeTextures==null)return;let r=gE(n,a),s=yE(t,r,a);s in this.freeTextures||(this.freeTextures[s]=[]);let i=mE(t,r,this.gpgpu.gl,this.gpgpu.textureConfig,a),o=se().get("WEBGL_DELETE_TEXTURE_THRESHOLD");o!==-1&&this._numBytesAllocated>o?(this.gpgpu.deleteMatrixTexture(e),this._numBytesAllocated-=i):(this.freeTextures[s].push(e),this.numFreeTextures++,this._numBytesFree+=i),this.numUsedTextures--;let l=this.usedTextures[s],u=l.indexOf(e);if(u<0)throw new Error("Cannot release a texture that was never provided by this texture manager");l.splice(u,1),this.log()}log(){if(!this.logEnabled)return;let e=this.numFreeTextures+this.numUsedTextures;console.log("Free/Used",`${this.numFreeTextures} / ${this.numUsedTextures}`,`(${e})`);let t=this._numBytesFree/this._numBytesAllocated;console.log(`Bytes allocated: ${this._numBytesAllocated}`),console.log(`Bytes unused: ${this._numBytesFree} (${Math.round(100*t)}%)`)}get numBytesAllocated(){return this._numBytesAllocated}get numBytesFree(){return this._numBytesFree}getNumUsedTextures(){return this.numUsedTextures}getNumFreeTextures(){return this.numFreeTextures}dispose(){if(this.freeTextures!=null){for(let e in this.freeTextures)this.freeTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});for(let e in this.usedTextures)this.usedTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});this.freeTextures=null,this.usedTextures=null,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0}}};function Hce(e,t){let n=e;if(t===n.R32F)return 4;if(t===n.R16F)return 2;if(t===n.RGBA32F||t===e.RGBA)return 16;if(t===n.RGBA16F)return 8;throw new Error(`Unknown internal format ${t}`)}function mE(e,t,n,a,r){let s=Gce(t,a),i;if(r){let[l,u]=fu(e[0],e[1]);i=l*u}else{let[l,u]=sp(e[0],e[1]);i=l*u}let o=Hce(n,s);return i*o}function Gce(e,t){switch(e){case Nn.PACKED_2X2_FLOAT32:return J5(t);case Nn.PACKED_2X2_FLOAT16:return Q5(t);case Nn.UNPACKED_FLOAT32:return X5(t);case Nn.UNPACKED_FLOAT16:return Z5(t);case Nn.PACKED_4X1_UNSIGNED_BYTE:return Y5(t);default:throw new Error(`Unknown physical texture type ${e}`)}}function qce(e){return se().getBool("WEBGL_RENDER_FLOAT32_ENABLED")?e?Nn.PACKED_2X2_FLOAT32:Nn.UNPACKED_FLOAT32:e?Nn.PACKED_2X2_FLOAT16:Nn.UNPACKED_FLOAT16}function gE(e,t){if(e===_a.UPLOAD)return Nn.PACKED_2X2_FLOAT32;if(e===_a.RENDER||e==null)return qce(t);if(e===_a.DOWNLOAD||e===_a.PIXELS)return Nn.PACKED_4X1_UNSIGNED_BYTE;throw new Error(`Unknown logical texture type ${e}`)}function yE(e,t,n){return`${e[0]}_${e[1]}_${t}_${n}`}var Qs=class{constructor(e,t){this.variableNames=["A"],this.outputShape=e,this.userCode=`
|
|
float unaryOperation(float x) {
|
|
${t}
|
|
}
|
|
|
|
void main() {
|
|
float x = getAAtOutCoords();
|
|
float y = unaryOperation(x);
|
|
|
|
setOutput(y);
|
|
}
|
|
`}},gr="if (isnan(x)) return x;",Kce="return x;",AE="return abs(x);",Xce="return (x >= 0.0) ? x : (exp(x) - 1.0);",Zce=gr+`
|
|
return (x < 0.0) ? 0.0 : x;
|
|
`,Yce=gr+`
|
|
return (x < 0.0) ? 0.0 : min(6.0, x);
|
|
`,V0="return x;",Jce="return 1.0 / (1.0 + exp(-1.0 * x));",Qce="return x;",efe=`
|
|
vec4 result;
|
|
|
|
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
|
|
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
|
|
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
|
|
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
|
|
|
|
return result;
|
|
`,tfe=`
|
|
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,nfe=`
|
|
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,afe="return 1.0 / (1.0 + exp(-1.0 * x));",wu=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.userCode=`
|
|
vec4 unaryOperation(vec4 x) {
|
|
${t}
|
|
}
|
|
|
|
void main() {
|
|
vec4 x = getAAtOutCoords();
|
|
vec4 y = unaryOperation(x);
|
|
|
|
setOutput(y);
|
|
}
|
|
`}},rfe=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outputShape=e;let t=e.length,n=Bn("rc",t),a=kt(t),r=zce(t,n),s=n.slice(-2),i=t<=1?"rc":`vec2(${s.join(",")})`;this.userCode=`
|
|
void main() {
|
|
${a} rc = getOutputCoords();
|
|
vec4 packedInput = getA(${r});
|
|
|
|
setOutput(getChannel(packedInput, ${i}));
|
|
}
|
|
`}},sfe=us.whereImpl,ife=1e-7,ofe=1e-4,ib={};function lfe(e){return e in ib||(ib[e]={}),ib[e]}var ufe=()=>se().getNumber("CPU_HANDOFF_SIZE_THRESHOLD"),dfe=600;function hfe(){return se().global.screen==null?1024:se().global.screen.height*se().global.screen.width*window.devicePixelRatio*dfe/1024/1024}var xE=class extends Wc{constructor(e){super();if(this.pendingRead=new WeakMap,this.pendingDisposal=new WeakSet,this.dataRefCount=new WeakMap,this.numBytesInGPU=0,this.uploadWaitMs=0,this.downloadWaitMs=0,this.lastGlFlushTime=0,this.warnedAboutMemory=!1,this.pendingDeletes=0,this.disposed=!1,!se().getBool("HAS_WEBGL"))throw new Error("WebGL is not supported on this device");if(e==null){let t=Pr(se().getNumber("WEBGL_VERSION"));this.binaryCache=lfe(se().getNumber("WEBGL_VERSION")),this.gpgpu=new W0(t),this.canvas=t.canvas,this.gpgpuCreatedLocally=!0}else this.gpgpu=e,this.binaryCache={},this.gpgpuCreatedLocally=!1,this.canvas=e.gl.canvas;this.textureManager=new jce(this.gpgpu),this.numMBBeforeWarning=hfe(),this.texData=new c1(this,Ps())}nextDataId(){return xE.nextDataId++}numDataIds(){return this.texData.numDataIds()-this.pendingDeletes}write(e,t,n){if((se().getBool("WEBGL_CHECK_NUMERICAL_PROBLEMS")||se().getBool("DEBUG"))&&this.checkNumericalProblems(e),n==="complex64"&&e!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let a={id:this.nextDataId()};return this.texData.set(a,{shape:t,dtype:n,values:e,usage:_a.UPLOAD,refCount:1}),a}refCount(e){return this.texData.has(e)?this.texData.get(e).refCount:0}incRef(e){let t=this.texData.get(e);t.refCount++}decRef(e){if(this.texData.has(e)){let t=this.texData.get(e);t.refCount--}}move(e,t,n,a,r){if(se().getBool("DEBUG")&&this.checkNumericalProblems(t),a==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");this.texData.set(e,{shape:n,dtype:a,values:t,usage:_a.UPLOAD,refCount:r})}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}readSync(e){let t=this.texData.get(e),{values:n,dtype:a,complexTensorInfos:r,slice:s,shape:i,isPacked:o}=t;if(s!=null){let h;o?h=new wu(i,V0):h=new Qs(i,V0);let p=this.runWebGLProgram(h,[{dataId:e,shape:i,dtype:a}],a),c=this.readSync(p.dataId);return this.disposeIntermediateTensorInfo(p),c}if(n!=null)return this.convertAndCacheOnCPU(e);if(a==="string")return n;let l=this.activeTimers!=null,u;l&&(u=k.now());let d;if(a==="complex64"){let h=this.readSync(r.real.dataId),p=this.readSync(r.imag.dataId);d=M.mergeRealAndImagArrays(h,p)}else d=this.getValuesFromTexture(e);return l&&(this.downloadWaitMs+=k.now()-u),this.convertAndCacheOnCPU(e,d)}async read(e){if(this.pendingRead.has(e)){let c=this.pendingRead.get(e);return new Promise(m=>c.push(m))}let t=this.texData.get(e),{values:n,shape:a,slice:r,dtype:s,complexTensorInfos:i,isPacked:o}=t;if(r!=null){let c;o?c=new wu(a,V0):c=new Qs(a,V0);let m=this.runWebGLProgram(c,[{dataId:e,shape:a,dtype:s}],s),f=this.read(m.dataId);return this.disposeIntermediateTensorInfo(m),f}if(n!=null)return this.convertAndCacheOnCPU(e);if(!se().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")&&se().getNumber("WEBGL_VERSION")===2)throw new Error("tensor.data() with WEBGL_DOWNLOAD_FLOAT_ENABLED=false and WEBGL_VERSION=2 not yet supported.");let l=null,u;if(s!=="complex64"&&se().get("WEBGL_BUFFER_SUPPORTED")){u=this.decode(e);let c=this.texData.get(u.dataId);l=this.gpgpu.createBufferFromTexture(c.texture,...ip(a))}this.pendingRead.set(e,[]),s!=="complex64"&&await this.gpgpu.createAndWaitForFence();let d;if(s==="complex64"){let c=await Promise.all([this.read(i.real.dataId),this.read(i.imag.dataId)]),m=c[0],f=c[1];d=M.mergeRealAndImagArrays(m,f)}else if(l==null)d=this.getValuesFromTexture(e);else{let c=k.sizeFromShape(a);d=this.gpgpu.downloadFloat32MatrixFromBuffer(l,c)}u!=null&&this.disposeIntermediateTensorInfo(u);let h=this.convertAndCacheOnCPU(e,d),p=this.pendingRead.get(e);return this.pendingRead.delete(e),p.forEach(c=>c(h)),this.pendingDisposal.has(e)&&(this.pendingDisposal.delete(e),this.disposeData(e)&&Ps().removeDataId(e,this),this.pendingDeletes--),h}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(a=>k.decodeString(a))}catch(a){throw new Error("Failed to decode encoded string bytes into utf-8")}return Pe(e.shape,e.dtype,n)}checkNumericalProblems(e){if(e!=null)for(let t=0;t<e.length;t++){let n=e[t];if(!ZN(n))throw se().getBool("WEBGL_RENDER_FLOAT32_CAPABLE")?Error(`The value ${n} cannot be represented with your current settings. Consider enabling float32 rendering: 'tf.env().set('WEBGL_RENDER_FLOAT32_ENABLED', true);'`):Error(`The value ${n} cannot be represented on this device.`)}}getValuesFromTexture(e){let{shape:t,dtype:n,isPacked:a}=this.texData.get(e),r=k.sizeFromShape(t);if(se().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")){let h=this.decode(e),p=this.texData.get(h.dataId),c=this.gpgpu.downloadMatrixFromPackedTexture(p.texture,...ip(t)).subarray(0,r);return this.disposeIntermediateTensorInfo(h),c}let s=se().getBool("WEBGL_PACK")&&a===!0,i=s?_0(t):t,o=s?new Whe(i):new Lhe(i),l=this.runWebGLProgram(o,[{shape:i,dtype:n,dataId:e}],"float32"),u=this.texData.get(l.dataId),d=this.gpgpu.downloadByteEncodedFloatMatrixFromOutputTexture(u.texture,u.texShape[0],u.texShape[1]).subarray(0,r);return this.disposeIntermediateTensorInfo(l),d}timerAvailable(){return se().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0}async time(e){let t=this.activeTimers,n=[],a=!1;this.programTimersStack==null?(this.programTimersStack=n,a=!0):this.activeTimers.push(n),this.activeTimers=n,e();let r=k.flatten(this.activeTimers.map(o=>o.query)).filter(o=>o!=null),s=k.flatten(this.activeTimers.map(o=>o.name)).filter(o=>o!=null);this.activeTimers=t,a&&(this.programTimersStack=null);let i={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null};if(se().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0){let o=await Promise.all(r);i.kernelMs=k.sum(o),i.getExtraProfileInfo=()=>o.map((l,u)=>({name:s[u],ms:l})).map(l=>`${l.name}: ${l.ms}`).join(", ")}else i.kernelMs={error:"WebGL query timers are not supported in this environment."};return this.uploadWaitMs=0,this.downloadWaitMs=0,i}memory(){return{unreliable:!1,numBytesInGPU:this.numBytesInGPU,numBytesInGPUAllocated:this.textureManager.numBytesAllocated,numBytesInGPUFree:this.textureManager.numBytesFree}}startTimer(){return se().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?this.gpgpu.beginQuery():{startMs:k.now(),endMs:null}}endTimer(e){return se().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?(this.gpgpu.endQuery(),e):(e.endMs=k.now(),e)}async getQueryTime(e){if(se().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0)return this.gpgpu.waitForQueryAndGetTime(e);let t=e;return t.endMs-t.startMs}disposeData(e,t=!1){if(this.pendingDisposal.has(e))return!1;if(!this.texData.has(e))return!0;if(t?this.texData.get(e).refCount=0:this.texData.get(e).refCount--,!t&&this.texData.get(e).refCount>0)return!1;if(this.pendingRead.has(e))return this.pendingDisposal.add(e),this.pendingDeletes++,!1;this.releaseGPUData(e);let{complexTensorInfos:n}=this.texData.get(e);return n!=null&&(this.disposeData(n.real.dataId,t),this.disposeData(n.imag.dataId,t)),this.texData.delete(e),!0}releaseGPUData(e){let{texture:t,dtype:n,texShape:a,usage:r,isPacked:s,slice:i}=this.texData.get(e),o=i&&i.origDataId||e,l=this.dataRefCount.get(o);l>1?this.dataRefCount.set(o,l-1):(this.dataRefCount.delete(o),t!=null&&(this.numBytesInGPU-=this.computeBytes(a,n),this.textureManager.releaseTexture(t,a,r,s)));let u=this.texData.get(e);u.texture=null,u.texShape=null,u.isPacked=!1,u.slice=null}getTexture(e){return this.uploadToGPU(e),this.texData.get(e).texture}getDataInfo(e){return this.texData.get(e)}shouldExecuteOnCPU(e,t=ufe){return se().getBool("WEBGL_CPU_FORWARD")&&e.every(n=>this.texData.get(n.dataId).texture==null&&k.sizeFromShape(n.shape)<t)}getGPGPUContext(){return this.gpgpu}where(e){M.warn("tf.where() in webgl locks the UI thread. Call tf.whereAsync() instead");let t=e.dataSync();return sfe(e.shape,t)}packedUnaryOp(e,t,n){let a=new wu(e.shape,t),r=this.compileAndRun(a,[e],n);return Ps().makeTensorFromDataId(r.dataId,r.shape,r.dtype)}abs(e){if(this.shouldExecuteOnCPU([e])&&e.dtype!=="complex64"){let a=hE(this.texData.get(e.dataId).values);return this.makeOutput(e.shape,e.dtype,a)}if(se().getBool("WEBGL_PACK_UNARY_OPERATIONS"))return this.packedUnaryOp(e,AE,e.dtype);let t=new Qs(e.shape,AE),n=this.compileAndRun(t,[e]);return Ps().makeTensorFromDataId(n.dataId,n.shape,n.dtype)}makeTensorInfo(e,t,n){let a;if(t==="string"&&n!=null&&n.length>0&&k.isString(n[0])){let r=n.map(s=>k.encodeString(s));a=this.write(r,e,t)}else a=this.write(n,e,t);return this.texData.get(a).usage=null,{dataId:a,shape:e,dtype:t}}makeOutput(e,t,n){let{dataId:a}=this.makeTensorInfo(e,t,n);return Ps().makeTensorFromDataId(a,e,t,this)}unpackTensor(e){let t=new rfe(e.shape);return this.runWebGLProgram(t,[e],e.dtype)}packTensor(e){let t=new Pce(e.shape),n=!0;return this.runWebGLProgram(t,[e],e.dtype,null,n)}packedReshape(e,t){let n=[go(e.shape),...yo(e.shape)],a={dtype:e.dtype,shape:n,dataId:e.dataId},r=[go(t),...yo(t)],s=new fE(r,n),i=!0,o=this.runWebGLProgram(s,[a],e.dtype,null,i);return{dataId:o.dataId,shape:t,dtype:o.dtype}}decode(e){let t=this.texData.get(e),{isPacked:n,shape:a,dtype:r}=t,s=_0(a),i;n?i=new Phe(s):i=new zhe(s);let o=!0,l=this.runWebGLProgram(i,[{shape:s,dtype:r,dataId:e}],r,null,o);return{dtype:r,shape:a,dataId:l.dataId}}runWebGLProgram(e,t,n,a,r=!1){let s=this.makeTensorInfo(e.outputShape,n),i=this.texData.get(s.dataId);if(e.packedOutput&&(i.isPacked=!0),e.outPackingScheme===rp.DENSE){let f=ip(e.outputShape);i.texShape=f.map(g=>g*2)}if(e.outTexUsage!=null&&(i.usage=e.outTexUsage),k.sizeFromShape(s.shape)===0)return i.values=k.getTypedArrayFromDType(s.dtype,0),s;let o=[],l=t.map(f=>{if(f.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");let g=this.texData.get(f.dataId);if(g.texture==null){if(!e.packedInputs&&k.sizeFromShape(f.shape)<=se().getNumber("WEBGL_SIZE_UPLOAD_UNIFORM"))return{shape:f.shape,texData:null,isUniform:!0,uniformValues:g.values};e.packedInputs&&(g.isPacked=!0,g.shape=f.shape)}else if(!!g.isPacked!=!!e.packedInputs)f=g.isPacked?this.unpackTensor(f):this.packTensor(f),o.push(f),g=this.texData.get(f.dataId);else if(g.isPacked&&!up(g.shape,f.shape)){let y=f,A=f.shape;f.shape=g.shape,f=this.packedReshape(f,A),o.push(f),g=this.texData.get(f.dataId),y.shape=A}return this.uploadToGPU(f.dataId),{shape:f.shape,texData:g,isUniform:!1}});this.uploadToGPU(s.dataId);let u={shape:s.shape,texData:i,isUniform:!1},d=Epe(e,l,u),h=this.getAndSaveBinary(d,()=>Npe(this.gpgpu,e,l,u)),p=this.activeTimers!=null,c;p&&(c=this.startTimer()),Tpe(this.gpgpu,h,l,u,a),o.forEach(f=>this.disposeIntermediateTensorInfo(f)),p&&(c=this.endTimer(c),this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(c)}));let m=se().get("WEBGL_FLUSH_THRESHOLD");if(m>0){let f=k.now();f-this.lastGlFlushTime>m&&(this.gpgpu.gl.flush(),this.lastGlFlushTime=f)}if(!se().getBool("WEBGL_LAZILY_UNPACK")&&i.isPacked&&r===!1){let f=this.unpackTensor(s);return this.disposeIntermediateTensorInfo(s),f}return s}compileAndRun(e,t,n,a,r=!1){return n=n||t[0].dtype,this.runWebGLProgram(e,t,n,a,r)}getAndSaveBinary(e,t){return e in this.binaryCache||(this.binaryCache[e]=t()),this.binaryCache[e]}getTextureManager(){return this.textureManager}dispose(){this.disposed||(se().getBool("IS_TEST")||Object.keys(this.binaryCache).forEach(e=>{this.gpgpu.deleteProgram(this.binaryCache[e].webGLProgram),delete this.binaryCache[e]}),this.textureManager.dispose(),this.canvas!=null&&typeof HTMLCanvasElement!="undefined"&&this.canvas instanceof HTMLCanvasElement?this.canvas.remove():this.canvas=null,this.gpgpuCreatedLocally&&(this.gpgpu.program=null,this.gpgpu.dispose()),this.disposed=!0)}floatPrecision(){return this.floatPrecisionValue==null&&(this.floatPrecisionValue=Z(()=>{if(!se().get("WEBGL_RENDER_FLOAT32_ENABLED")){let e=se().getBool("DEBUG");se().set("DEBUG",!1);let t=this.abs(Re(1e-8)).dataSync()[0];if(se().set("DEBUG",e),t>0)return 32}return 16})),this.floatPrecisionValue}epsilon(){return this.floatPrecision()===32?ife:ofe}uploadToGPU(e){let t=this.texData.get(e),{shape:n,dtype:a,values:r,texture:s,usage:i,isPacked:o}=t;if(s!=null)return;let l=this.activeTimers!=null,u;l&&(u=k.now());let d=t.texShape;if(d==null&&(d=cT(n,o),t.texShape=d),r!=null){let h=_0(n),p,c=d[1],m=d[0],f=r instanceof Uint8Array;o?([c,m]=fu(d[0],d[1]),p=new Vhe(h,[m,c],f)):p=new Bhe(h,[m,c],f);let g=this.makeTensorInfo([m,c],a);f?this.texData.get(g.dataId).usage=_a.PIXELS:this.texData.get(g.dataId).usage=_a.UPLOAD,this.gpgpu.uploadDenseMatrixToTexture(this.getTexture(g.dataId),c,m,r);let y=!0,A=this.runWebGLProgram(p,[g],a,null,y),x=this.texData.get(A.dataId);t.texture=x.texture,t.texShape=x.texShape,t.isPacked=x.isPacked,t.usage=x.usage,this.disposeIntermediateTensorInfo(g),this.texData.delete(A.dataId),t.values=null,l&&(this.uploadWaitMs+=k.now()-u)}else{let h=this.acquireTexture(d,i,a,o);t.texture=h}}convertAndCacheOnCPU(e,t){let n=this.texData.get(e),{dtype:a}=n;return this.releaseGPUData(e),t!=null&&(n.values=pfe(t,a)),n.values}acquireTexture(e,t,n,a){if(this.numBytesInGPU+=this.computeBytes(e,n),!this.warnedAboutMemory&&this.numBytesInGPU>this.numMBBeforeWarning*1024*1024){let r=(this.numBytesInGPU/1024/1024).toFixed(2);this.warnedAboutMemory=!0,console.warn(`High memory usage in GPU: ${r} MB, most likely due to a memory leak`)}return this.textureManager.acquireTexture(e,t,a)}computeBytes(e,t){return e[0]*e[1]*k.bytesPerElement(t)}},hp=xE;hp.nextDataId=0;function pfe(e,t){if(t==="float32"||t==="complex64")return e;if(t==="int32"||t==="bool"){let n=t==="int32"?new Int32Array(e.length):new Uint8Array(e.length);for(let a=0;a<n.length;++a)n[a]=Math.round(e[a]);return n}else throw new Error(`Unknown dtype ${t}`)}var cfe="3.7.0";function bE(){se().set("WEBGL_FORCE_F16_TEXTURES",!0)}yf.isBrowser()&&CA("webgl",()=>new hp,2);var ffe={forceHalfFloat:bE},vE=`
|
|
if (isnan(a)) return a;
|
|
if (isnan(b)) return b;
|
|
`,ku=class{constructor(e,t,n){this.variableNames=["A","B"],this.outputShape=M.assertAndGetBroadcastShape(t,n),this.userCode=`
|
|
float binaryOperation(float a, float b) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
float a = getAAtOutCoords();
|
|
float b = getBAtOutCoords();
|
|
setOutput(binaryOperation(a, b));
|
|
}
|
|
`}},U0=`
|
|
result.r = isNaN.r > 0. ? NAN : result.r;
|
|
result.g = isNaN.g > 0. ? NAN : result.g;
|
|
result.b = isNaN.b > 0. ? NAN : result.b;
|
|
result.a = isNaN.a > 0. ? NAN : result.a;
|
|
`,pp=class{constructor(e,t,n,a=!1){this.variableNames=["A","B"],this.supportsBroadcasting=!0,this.packedInputs=!0,this.packedOutput=!0,this.outputShape=M.assertAndGetBroadcastShape(t,n);let r=this.outputShape.length,s="";if(a)if(r===0||k.sizeFromShape(this.outputShape)===1)s=`
|
|
result.y = 0.;
|
|
result.z = 0.;
|
|
result.w = 0.;
|
|
`;else if(s=`
|
|
${kt(r)} coords = getOutputCoords();
|
|
`,r===1)s+=`
|
|
result.y = (coords + 1) >= ${this.outputShape[0]} ? 0. : result.y;
|
|
result.z = 0.;
|
|
result.w = 0.;
|
|
`;else{let i=Bn("coords",r);s+=`
|
|
bool nextRowOutOfBounds =
|
|
(${i[r-2]} + 1) >= ${this.outputShape[r-2]};
|
|
bool nextColOutOfBounds =
|
|
(${i[r-1]} + 1) >= ${this.outputShape[r-1]};
|
|
result.y = nextColOutOfBounds ? 0. : result.y;
|
|
result.z = nextRowOutOfBounds ? 0. : result.z;
|
|
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
|
|
`}this.userCode=`
|
|
vec4 binaryOperation(vec4 a, vec4 b) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
vec4 a = getAAtOutCoords();
|
|
vec4 b = getBAtOutCoords();
|
|
|
|
vec4 result = binaryOperation(a, b);
|
|
${s}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}};function fa(e){let{inputs:t,backend:n}=e,{x:a}=t;return n.incRef(a.dataId),{dataId:a.dataId,shape:a.shape,dtype:a.dtype}}var mfe={kernelName:pl,backendName:"webgl",kernelFunc:fa};function ei(e){let{inputs:t,backend:n}=e,{real:a,imag:r}=t,s=n.makeTensorInfo(a.shape,"complex64"),i=n.texData.get(s.dataId),o=fa({inputs:{x:a},backend:n}),l=fa({inputs:{x:r},backend:n});return i.complexTensorInfos={real:o,imag:l},s}var gfe={kernelName:k1,backendName:"webgl",kernelFunc:ei},wE="return (a < 0.) ? b * a : a;",kE=`
|
|
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
|
|
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
|
|
`;function yfe(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{alpha:s}=a,i=n.makeTensorInfo([],"float32",k.createScalarValue(s,"float32")),o=se().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new pp(kE,r.shape,i.shape):new ku(wE,r.shape,i.shape),l=n.runWebGLProgram(o,[r,i],r.dtype);return n.disposeIntermediateTensorInfo(i),l}var Afe={kernelName:cl,backendName:"webgl",kernelFunc:yfe},IE="return (a < 0.) ? b * a : a;",SE=`
|
|
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
|
|
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
|
|
`;function xfe(e){let{inputs:t,backend:n}=e,{x:a,alpha:r}=t,s=se().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new pp(SE,a.shape,r.shape):new ku(IE,a.shape,r.shape);return n.runWebGLProgram(s,[a,r],a.dtype)}var bfe={kernelName:Sl,backendName:"webgl",kernelFunc:xfe},NE="if (isnan(x)) return x;",vfe=`
|
|
if (isnan(a)) return a;
|
|
if (isnan(b)) return b;
|
|
`,wfe=`
|
|
result.r = isNaN.r > 0. ? NAN : result.r;
|
|
result.g = isNaN.g > 0. ? NAN : result.g;
|
|
result.b = isNaN.b > 0. ? NAN : result.b;
|
|
result.a = isNaN.a > 0. ? NAN : result.a;
|
|
`;function ot({opSnippet:e,packedOpSnippet:t,cpuKernelImpl:n,dtype:a}){return({inputs:r,backend:s})=>{let{x:i}=r,o=s,l=a||i.dtype;if(o.shouldExecuteOnCPU([i])&&n!=null){let h=o.texData.get(i.dataId),p=n(h.values,l);return o.makeTensorInfo(i.shape,l,p)}let u=se().getBool("WEBGL_PACK_UNARY_OPERATIONS")&&t!=null,d;return u?d=new wu(i.shape,t):d=new Qs(i.shape,e),o.runWebGLProgram(d,[i],l)}}function Tn({opSnippet:e,packedOpSnippet:t,checkOutOfBounds:n=!1,supportsComplex:a=!1,cpuKernelImpl:r,dtype:s}){return({inputs:i,backend:o})=>{let{a:l,b:u}=i,d=o;if(a&&l.dtype==="complex64"){let m=d.texData.get(l.dataId),f=d.texData.get(u.dataId),[g,y]=[[m.complexTensorInfos.real,f.complexTensorInfos.real],[m.complexTensorInfos.imag,f.complexTensorInfos.imag]].map(x=>{let[v,b]=x,w={dataId:v.dataId,dtype:v.dtype,shape:l.shape},I={dataId:b.dataId,dtype:b.dtype,shape:u.shape},T=new ku(e,l.shape,u.shape);return d.runWebGLProgram(T,[w,I],Ga(v.dtype,b.dtype))}),A=ei({inputs:{real:g,imag:y},backend:d});return d.disposeIntermediateTensorInfo(g),d.disposeIntermediateTensorInfo(y),A}let h=s||Ga(l.dtype,u.dtype);if((l.dtype==="string"||u.dtype==="string"||d.shouldExecuteOnCPU([l,u]))&&r!=null){let m=d.texData.get(l.dataId).values,f=d.texData.get(u.dataId).values,g=l.dtype==="string"?M.fromUint8ToStringArray(m):m,y=l.dtype==="string"?M.fromUint8ToStringArray(f):f,[A,x]=r(l.shape,u.shape,g,y,h),v=d.makeTensorInfo(x,h),b=d.texData.get(v.dataId);return b.values=A,v}let p=se().getBool("WEBGL_PACK_BINARY_OPERATIONS")&&t!=null,c;return p?c=new pp(t,l.shape,u.shape,n):c=new ku(e,l.shape,u.shape),d.runWebGLProgram(c,[l,u],h)}}function j0(e,t=!1){if(e==="linear")return t?Qce:Kce;if(e==="relu")return t?tfe:Zce;if(e==="elu")return t?efe:Xce;if(e==="relu6")return t?nfe:Yce;if(e==="prelu")return t?SE:IE;if(e==="leakyrelu")return t?kE:wE;if(e==="sigmoid")return t?afe:Jce;throw new Error(`Activation ${e} has not been implemented for the WebGL backend.`)}var TE=class{constructor(e,t,n,a=!1,r=!1,s=!1,i=null,o=!1,l=!1){this.variableNames=["matrixA","matrixB"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=n;let u=a?e[1]:e[2],d=Math.ceil(u/2),h=a?"i * 2, rc.y":"rc.y, i * 2",p=r?"rc.z, i * 2":"i * 2, rc.z",c=a?["a.xxyy","a.zzww"]:["a.xxzz","a.yyww"],m=r?["b.xzxz","b.ywyw"]:["b.xyxy","b.zwzw"],f="",g="";i&&(o?f=`vec4 activation(vec4 a) {
|
|
vec4 b = getPreluActivationWeightsAtOutCoords();
|
|
${i}
|
|
}`:l?f=`vec4 activation(vec4 a) {
|
|
vec4 b = getLeakyreluAlphaAtOutCoords();
|
|
${i}
|
|
}`:f=`vec4 activation(vec4 x) {
|
|
${i}
|
|
}`,g="result = activation(result);");let y=s?"result += getBiasAtOutCoords();":"";s&&this.variableNames.push("bias"),o&&this.variableNames.push("preluActivationWeights"),l&&this.variableNames.push("leakyreluAlpha");let A="rc.x",x="rc.x";e[0]<t[0]?A=`int(min(float(rc.x), ${e[0]-1}.))`:t[0]<e[0]&&(x=`int(min(float(rc.x), ${t[0]-1}.))`),this.userCode=`
|
|
${f}
|
|
|
|
const float sharedDimension = ${d}.0;
|
|
|
|
vec4 dot2x2ARowBCol(ivec3 rc) {
|
|
vec4 result = vec4(0);
|
|
for (int i = 0; i < ${d}; i++) {
|
|
int batchA = ${A};
|
|
int batchB = ${x};
|
|
vec4 a = getMatrixA(batchA, ${h});
|
|
vec4 b = getMatrixB(batchB, ${p});
|
|
|
|
// These swizzled products need to be separately added.
|
|
// See: https://github.com/tensorflow/tfjs/issues/1735
|
|
result += (${c[0]} * ${m[0]});
|
|
result += (${c[1]} * ${m[1]});
|
|
}
|
|
return result;
|
|
}
|
|
|
|
void main() {
|
|
ivec3 rc = getOutputCoords();
|
|
vec4 result = dot2x2ARowBCol(rc);
|
|
|
|
${y}
|
|
|
|
${g}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}},EE={REAL:"return areal * breal - aimag * bimag;",IMAG:"return areal * bimag + aimag * breal;"},CE=class{constructor(e,t,n){this.variableNames=["AReal","AImag","BReal","BImag"],this.outputShape=M.assertAndGetBroadcastShape(t,n),this.userCode=`
|
|
float binaryOpComplex(
|
|
float areal, float aimag, float breal, float bimag) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
float areal = getARealAtOutCoords();
|
|
float aimag = getAImagAtOutCoords();
|
|
float breal = getBRealAtOutCoords();
|
|
float bimag = getBImagAtOutCoords();
|
|
setOutput(binaryOpComplex(areal, aimag, breal, bimag));
|
|
}
|
|
`}},ME="return a * b;";function ob(e){let{inputs:t,backend:n}=e,{a,b:r}=t,s=M.upcastType(a.dtype,r.dtype);if(a.dtype==="complex64"){let o=n.texData.get(a.dataId),l=n.texData.get(r.dataId),u=new CE(EE.REAL,a.shape,r.shape),d=new CE(EE.IMAG,a.shape,r.shape),h=[{dataId:o.complexTensorInfos.real.dataId,dtype:o.complexTensorInfos.real.dtype,shape:a.shape},{dataId:o.complexTensorInfos.imag.dataId,dtype:o.complexTensorInfos.imag.dtype,shape:a.shape},{dataId:l.complexTensorInfos.real.dataId,dtype:l.complexTensorInfos.real.dtype,shape:r.shape},{dataId:l.complexTensorInfos.imag.dataId,dtype:l.complexTensorInfos.imag.dtype,shape:r.shape}],p=n.runWebGLProgram(u,h,"float32"),c=n.runWebGLProgram(d,h,"float32"),m=ei({inputs:{real:p,imag:c},backend:n});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(c),m}if(n.shouldExecuteOnCPU([a,r])){let o=n.texData.get(a.dataId),l=n.texData.get(r.dataId),[u,d]=bce(a.shape,r.shape,o.values,l.values,s),h=n.makeTensorInfo(d,s),p=n.texData.get(h.dataId);return p.values=u,h}let i;return se().getBool("WEBGL_PACK_BINARY_OPERATIONS")?i=new pp(ME,a.shape,r.shape):i=new ku(ME,a.shape,r.shape),n.runWebGLProgram(i,[a,r],s)}var kfe={kernelName:Oi,backendName:"webgl",kernelFunc:ob};function Ife(e,t,n){let a=[go(e.shape),...yo(e.shape)],r={dtype:e.dtype,shape:a,dataId:e.dataId},s=[go(t),...yo(t)],i=new fE(s,a),o=!0,l=n.runWebGLProgram(i,[r],e.dtype,null,o);return{dataId:l.dataId,shape:t,dtype:l.dtype}}function be(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{shape:s}=a,i=n,o=k.sizeFromShape(r.shape),l=k.inferFromImplicitShape(s,o),u=k.sizeFromShape(l);k.assert(o===u,()=>`The new shape (${l}) has ${u} elements and the old shape (${r.shape}) has ${o} elements. The new shape and old shape must have the same number of elements.`);let d=i.texData.get(r.dataId);return d.isPacked&&!up(r.shape,l)&&!(d.texture!==null&&up(d.shape,l))?Ife(r,l,i):(i.incRef(r.dataId),{dataId:r.dataId,shape:l,dtype:r.dtype})}var Sfe={kernelName:Qd,backendName:"webgl",kernelFunc:be},$E=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:a,inSize:r,outSize:s}=e;this.outputShape=[a,s];let i=Math.floor(n/4)*4,o=n%4,l="sumValue += dot(values, ones);";if(t!=null){let d=1/t;l=`sumValue += dot(values * ${k.isInt(d)?d.toPrecision(2):d}, ones);`}let u="";r%n>0&&(u=`
|
|
if (inIdx < 0 || inIdx >= ${r}) {
|
|
return 0.0;
|
|
}
|
|
`),this.userCode=`
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${u}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${n};
|
|
|
|
float sumValue = 0.0;
|
|
|
|
for (int i = 0; i < ${i}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
${l}
|
|
}
|
|
|
|
int inIdx = inOffset + ${i};
|
|
if (${o===1}) {
|
|
vec4 values = vec4(getValue(batch, inIdx), 0.0, 0.0, 0.0);
|
|
|
|
${l}
|
|
} else if (${o===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1), 0.0, 0.0);
|
|
|
|
${l}
|
|
} else if (${o===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2), 0.0);
|
|
|
|
${l}
|
|
}
|
|
setOutput(sumValue);
|
|
}
|
|
`}},Nfe=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:a,inSize:r,outSize:s}=e;this.outputShape=[a,s];let i="0.0",o="";t==="prod"?i="1.0":t==="min"?(i="1.0 / 1e-20",o="min"):t==="max"&&(i="-1.0 / 1e-20",o="max");let l=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="sum"?l="sumValue":t==="prod"?l="prodValue":t==="all"?l="allValue":t==="any"&&(l="anyValue");let u=Math.floor(n/4)*4,d=n%4,h=`
|
|
if (${t==="sum"}) {
|
|
sumValue += dot(values, ones);
|
|
} else if (${t==="prod"}) {
|
|
vec2 tmp = vec2(values[0], values[1]) * vec2(values[2], values[3]);
|
|
prodValue *= tmp[0] * tmp[1];
|
|
} else {
|
|
minMaxValue = ${o}(values, minMaxValue);
|
|
if (${t==="min"} || ${t==="max"}) {
|
|
minMaxValue = ${o}(values, minMaxValue);
|
|
bvec4 isNaN = isnan(values);
|
|
if (isNaN.r || isNaN.g || isNaN.b || isNaN.a) {
|
|
minMaxValue = vec4(NAN);
|
|
}
|
|
}
|
|
}
|
|
`,p="vec4";t==="all"?(i="1.0",h=`
|
|
bool reducedAllValue = all(values);
|
|
float floatedReducedAllValue = float(reducedAllValue);
|
|
allValue = float(allValue >= 1.0 && floatedReducedAllValue >= 1.0);
|
|
`,p="bvec4"):t==="any"&&(i="0.0",h=`
|
|
bool reducedAnyValue = any(values);
|
|
float floatedReducedAnyValue = float(reducedAnyValue);
|
|
anyValue = float(anyValue >= 1.0 || floatedReducedAnyValue >= 1.0);
|
|
`,p="bvec4");let c="";r%n>0&&(c=`
|
|
if (inIdx < 0 || inIdx >= ${r}) {
|
|
return initializationValue;
|
|
}
|
|
`),this.userCode=`
|
|
const float initializationValue = ${i};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${c}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${n};
|
|
|
|
vec4 minMaxValue = vec4(${i});
|
|
float prodValue = 1.0;
|
|
float sumValue = 0.0;
|
|
float allValue = 1.0;
|
|
float anyValue = 0.0;
|
|
|
|
for (int i = 0; i < ${u}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
${p} values = ${p}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
${h}
|
|
}
|
|
|
|
int inIdx = inOffset + ${u};
|
|
if (${d===1}) {
|
|
${p} values = ${p}(
|
|
getValue(batch, inIdx),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${h}
|
|
} else if (${d===2}) {
|
|
${p} values = ${p}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${h}
|
|
} else if (${d===3}) {
|
|
${p} values = ${p}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
initializationValue
|
|
);
|
|
|
|
${h}
|
|
}
|
|
setOutput(${l});
|
|
}
|
|
`}};function Tfe(e){let t=[];for(;t.length===0||t[t.length-1].outSize!==1;){let n=t.length?t[t.length-1].outSize:e[1],a=M.computeOptimalWindowSize(n);t.push({inSize:n,windowSize:a,outSize:Math.ceil(n/a)})}return t}function bo(e,t,n,a){let r=Tfe(e.shape),s=e;for(let i=0;i<r.length;i++){let{inSize:o,windowSize:l,outSize:u}=r[i],d,h;n==="mean"?d=i===0?new $E({windowSize:l,inSize:o,batchSize:e.shape[0],outSize:u},o):new $E({windowSize:l,inSize:o,batchSize:e.shape[0],outSize:u}):d=new Nfe({windowSize:l,inSize:o,batchSize:e.shape[0],outSize:u},n),h=s,s=a.runWebGLProgram(d,[s],t),h.dataId!==e.dataId&&a.disposeIntermediateTensorInfo(h)}return s}var Efe=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[t[s]];this.outputShape=n,this.rank=n.length;let a=kt(this.rank),r=Cfe(t);this.userCode=`
|
|
void main() {
|
|
${a} resRC = getOutputCoords();
|
|
setOutput(getA(${r}));
|
|
}
|
|
`}};function Cfe(e){let t=e.length;if(t>6)throw Error(`Transpose for rank ${t} is not yet supported`);let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u","resRC.v"],a=new Array(t);for(let r=0;r<e.length;r++)a[e[r]]=n[r];return a.join()}var Mfe=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0;let n=new Array(e.length);for(let u=0;u<n.length;u++)n[u]=e[t[u]];if(this.outputShape=n,this.rank=n.length,this.rank>6)throw Error(`Packed transpose for rank ${this.rank} is not yet supported.`);let a=kt(this.rank),r=cE("rc",this.rank),s=new Array(this.rank);for(let u=0;u<t.length;u++)s[t[u]]=r[u];let i=`vec2(${s.slice(-2).join()})`,o=`++${r[this.rank-1]} < ${n[this.rank-1]}`,l=`getChannel(getA(${s.join()}), ${i})`;this.userCode=`
|
|
void main() {
|
|
${a} rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result[0] = ${l};
|
|
if(${o}) {
|
|
result[1] = ${l};
|
|
}
|
|
--${r[this.rank-1]};
|
|
if(++${r[this.rank-2]} < ${n[this.rank-2]}) {
|
|
result[2] = ${l};
|
|
if(${o}) {
|
|
result[3] = ${l};
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}};function H0(e,t,n){let a=se().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new Mfe(e.shape,t):new Efe(e.shape,t);return n.runWebGLProgram(a,[e],e.dtype)}function $fe(e,t,n,a){let r=t,s=e.shape.length,i=k.parseAxisParam(r,e.shape),o=i,l=M.getAxesPermutation(o,s),u=l!=null,d=e;u&&(d=H0(e,l,a),o=M.getInnerMostAxes(o.length,s)),M.assertAxesAreInnerMostDims("sum",o,s);let[h,p]=M.computeOutAndReduceShapes(d.shape,o),c=h;n&&(c=M.expandShapeToKeepDim(h,i));let m=k.sizeFromShape(p),f=k.sizeFromShape(e.shape)/m,g=be({inputs:{x:d},attrs:{shape:[f,m]},backend:a}),y=pA(e.dtype),A=bo(g,y,"sum",a),x=be({inputs:{x:A},attrs:{shape:c},backend:a});return a.disposeIntermediateTensorInfo(g),a.disposeIntermediateTensorInfo(A),u&&a.disposeIntermediateTensorInfo(d),x}function G0(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;return $fe(r,s,i,n)}var Rfe={kernelName:Ol,backendName:"webgl",kernelFunc:G0};function Vn(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{perm:s}=a,i=n,o=r.shape.length,l=new Array(o);for(let d=0;d<l.length;d++)l[d]=r.shape[s[d]];let u;if(i.shouldExecuteOnCPU([r])){let d=i.texData.get(r.dataId).values,h=sb(d,r.shape,r.dtype,s,l);u=i.makeTensorInfo(l,r.dtype);let p=i.texData.get(u.dataId);p.values=h}else u=H0(r,s,i);return u}var Ffe={kernelName:Pl,backendName:"webgl",kernelFunc:Vn},RE=1e3;function q0({a:e,b:t,transposeA:n,transposeB:a,backend:r,bias:s=null,preluActivationWeights:i=null,leakyreluAlpha:o=0,activation:l=null}){let u=e.shape.length,d=t.shape.length,h=n?e.shape[u-2]:e.shape[u-1],p=a?t.shape[d-1]:t.shape[d-2],c=n?e.shape[u-1]:e.shape[u-2],m=a?t.shape[d-2]:t.shape[d-1],f=e.shape.slice(0,-2),g=t.shape.slice(0,-2),y=k.sizeFromShape(f),A=k.sizeFromShape(g),x=y===A||y===1||A===1;k.assert(u>=2&&d>=2&&x,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${f}) and (${g}).`);let v=(y>A?e.shape.slice(0,-2):t.shape.slice(0,-2)).concat([c,m]);k.assert(h===p,()=>`Error in matMul: inner shapes (${h}) and (${p}) of Tensors with shapes ${e.shape} and ${t.shape} and transposeA=${n} and transposeB=${a} must match.`);let b=n?[y,h,c]:[y,c,h],w=a?[A,m,p]:[A,p,m],I=be({inputs:{x:e},backend:r,attrs:{shape:b}}),T=be({inputs:{x:t},backend:r,attrs:{shape:w}}),C=[I,T],z=Math.max(y,A),$=n?I.shape[1]:I.shape[2],S=s!=null,D=i!=null,_=l==="leakyrelu",W=l!=null?j0(l,!0):null,X=S||D||_||W!=null,q;if((c===1||m===1)&&$>RE&&X===!1){let ee=I,ie=T;n&&(ee=Vn({inputs:{x:I},backend:r,attrs:{perm:[0,2,1]}}),C.push(ee)),a&&(ie=Vn({inputs:{x:T},backend:r,attrs:{perm:[0,2,1]}}),C.push(ie));let ae=m!==1,de=m===1,te=ee;ae&&(te=be({inputs:{x:ee},backend:r,attrs:{shape:[z,$,1]}}),C.push(te));let ce=m===1?2:1,he=ie;de&&(he=be({inputs:{x:ie},backend:r,attrs:{shape:[z,1,$]}}),C.push(he));let ve=ob({inputs:{a:te,b:he},backend:r});q=G0({inputs:{x:ve},backend:r,attrs:{axis:ce,keepDims:!0}}),C.push(ve)}else{let ee=Ga(e.dtype,t.dtype),ie=new TE(b,w,[z,c,m],n,a,S,W,D,_),ae=[I,T];if(s!=null&&ae.push(s),D&&ae.push(i),_){let de=r.makeTensorInfo([],"float32",k.createScalarValue(o,"float32"));ae.push(de),C.push(de)}q=r.runWebGLProgram(ie,ae,ee)}let Q=be({inputs:{x:q},backend:r,attrs:{shape:v}});C.push(q);for(let ee of C)r.disposeIntermediateTensorInfo(ee);return Q}function Ofe(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s,bias:i,preluActivationWeights:o}=t,{transposeA:l,transposeB:u,activation:d,leakyreluAlpha:h}=a;return q0({a:r,b:s,transposeA:l,transposeB:u,backend:n,bias:i,preluActivationWeights:o,leakyreluAlpha:h,activation:d})}var Dfe={kernelName:Ll,backendName:"webgl",kernelFunc:Ofe},FE="return abs(x);";function _fe(e){let{inputs:t,backend:n}=e,{x:a}=t;if(n.shouldExecuteOnCPU([a])&&a.dtype!=="complex64"){let s=n.texData.get(a.dataId),i=hE(s.values);return n.makeTensorInfo(a.shape,a.dtype,i)}let r;return se().getBool("WEBGL_PACK_UNARY_OPERATIONS")?r=new wu(a.shape,FE):r=new Qs(a.shape,FE),n.runWebGLProgram(r,[a],a.dtype)}var zfe={kernelName:xd,backendName:"webgl",kernelFunc:_fe},Pfe=gr+`
|
|
if (abs(x) > 1.) {
|
|
return NAN;
|
|
}
|
|
return acos(x);
|
|
`,Lfe=ot({opSnippet:Pfe}),Wfe={kernelName:bd,backendName:"webgl",kernelFunc:Lfe},Bfe=gr+`
|
|
if (x < 1.0) return NAN;
|
|
return log(x + sqrt(x * x - 1.0));`,Vfe=ot({opSnippet:Bfe}),Ufe={kernelName:vd,backendName:"webgl",kernelFunc:Vfe},OE="return a + b;",jfe=Tn({opSnippet:OE,packedOpSnippet:OE,supportsComplex:!0,cpuKernelImpl:tce}),Hfe={kernelName:Os,backendName:"webgl",kernelFunc:jfe},Gfe=class{constructor(e,t){this.outputShape=[],this.outputShape=e,this.variableNames=t.map((r,s)=>`T${s}`);let n=[];this.variableNames.forEach(r=>{n.push(`float v${r} = get${r}AtOutCoords();`)});let a=this.variableNames.map(r=>`v${r}`).join(" + ");this.userCode=`
|
|
void main() {
|
|
${n.join(`
|
|
`)}
|
|
|
|
float result = ${a};
|
|
setOutput(result);
|
|
}
|
|
`}},qfe=class{constructor(e,t){this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.variableNames=t.map((r,s)=>`T${s}`);let n=[];this.variableNames.forEach(r=>{n.push(`vec4 v${r} = get${r}AtOutCoords();`)});let a=this.variableNames.map(r=>`v${r}`).join(" + ");this.userCode=`
|
|
void main() {
|
|
${n.join(`
|
|
`)}
|
|
|
|
vec4 result = ${a};
|
|
setOutput(result);
|
|
}
|
|
`}};function K0(e){let{inputs:t,backend:n}=e,a=t;if(a.length===1)return fa({inputs:{x:a[0]},backend:n});if(a.length>se().get("WEBGL_MAX_TEXTURES_IN_SHADER")){let o=Math.floor(a.length/2),l=K0({inputs:a.slice(0,o),backend:n}),u=K0({inputs:a.slice(o),backend:n});return K0({inputs:[l,u],backend:n})}let r=a.map(o=>o.dtype).reduce((o,l)=>Ga(o,l)),s=a.map(o=>o.shape),i=se().getBool("WEBGL_PACK")?new qfe(a[0].shape,s):new Gfe(a[0].shape,s);return n.runWebGLProgram(i,a,r)}var Kfe={kernelName:Zo,backendName:"webgl",kernelFunc:K0};function Xfe(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=r.shape.length,l=k.parseAxisParam(s,r.shape),u=l,d=M.getAxesPermutation(u,o),h=r;d!=null&&(h=Vn({inputs:{x:r},backend:n,attrs:{perm:d}}),u=M.getInnerMostAxes(u.length,o)),M.assertAxesAreInnerMostDims("all",u,o);let[p,c]=M.computeOutAndReduceShapes(h.shape,u),m=k.sizeFromShape(c),f=be({inputs:{x:h},backend:n,attrs:{shape:[-1,m]}}),g=bo(f,f.dtype,"all",n),y;if(i){let A=M.expandShapeToKeepDim(p,l);y=be({inputs:{x:g},backend:n,attrs:{shape:A}})}else y=be({inputs:{x:g},backend:n,attrs:{shape:p}});return n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(g),d!=null&&n.disposeIntermediateTensorInfo(h),y}var Zfe={kernelName:wd,backendName:"webgl",kernelFunc:Xfe};function Yfe(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=r.shape.length,l=k.parseAxisParam(s,r.shape),u=l,d=M.getAxesPermutation(u,o),h=r;d!=null&&(h=Vn({inputs:{x:r},backend:n,attrs:{perm:d}}),u=M.getInnerMostAxes(u.length,o)),M.assertAxesAreInnerMostDims("any",u,o);let[p,c]=M.computeOutAndReduceShapes(h.shape,u),m=k.sizeFromShape(c),f=be({inputs:{x:h},backend:n,attrs:{shape:[-1,m]}}),g=bo(f,f.dtype,"any",n),y;if(i){let A=M.expandShapeToKeepDim(p,l);y=be({inputs:{x:g},backend:n,attrs:{shape:A}})}else y=be({inputs:{x:g},backend:n,attrs:{shape:p}});return n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(g),d!=null&&n.disposeIntermediateTensorInfo(h),y}var Jfe={kernelName:kd,backendName:"webgl",kernelFunc:Yfe},Qfe=class{constructor(e,t,n){this.variableNames=["A"];let{windowSize:a,batchSize:r,outSize:s}=e;n||this.variableNames.push("bestIndicesA"),this.outputShape=[r,s];let i=t==="max"?">":"<",o=n?"inOffset + i;":"round(getBestIndicesA(batch, inOffset + i));";this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${a};
|
|
|
|
int bestIndex = inOffset;
|
|
float bestValue = getA(batch, bestIndex);
|
|
|
|
for (int i = 0; i < ${a}; i++) {
|
|
int inIdx = ${o};
|
|
float candidate = getA(batch, inIdx);
|
|
if (candidate ${i} bestValue) {
|
|
bestValue = candidate;
|
|
bestIndex = inIdx;
|
|
}
|
|
}
|
|
setOutput(float(bestIndex));
|
|
}
|
|
`}},e0e=class{constructor(e,t,n,a){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,k.assert(e.length>2,()=>`Packed arg${n.charAt(0).toUpperCase()+n.slice(1)} supports only inputs with rank above 2.`);let r=e[e.length-1],s=Math.ceil(r/t);this.outputShape=e.slice(0,-1),s>1&&this.outputShape.push(s),a||this.variableNames.push("bestIndicesA");let i=this.outputShape,o=i.length,l=kt(o),u=Bn("coords",o),d,h;if(s===1){h=o+1;let I=kt(h);d=`
|
|
${I} sourceLocR = ${I}(${u.join()}, 0);
|
|
++${u[o-1]};
|
|
${I} sourceLocG = ${I}(${u.join()}, 0);
|
|
++${u[o-2]};
|
|
${I} sourceLocA = ${I}(${u.join()}, 0);
|
|
--${u[o-1]};
|
|
${I} sourceLocB = ${I}(${u.join()}, 0);
|
|
--${u[o-2]};`}else h=o,d=`
|
|
${l} sourceLocR = coords;
|
|
++${u[o-1]};
|
|
${l} sourceLocG = coords;
|
|
++${u[o-2]};
|
|
${l} sourceLocA = coords;
|
|
--${u[o-1]};
|
|
${l} sourceLocB = coords;
|
|
--${u[o-2]};`;let p=["x","y","z","w","u","v"].slice(0,h),c="."+p[h-1],m=p.map(I=>"int "+I),f=Bn("sourceLocR",h-1).concat("inIdx.r"),g=Bn("sourceLocG",h-1).concat("inIdx.g"),y=Bn("sourceLocB",h-1).concat("inIdx.b"),A=Bn("sourceLocA",h-1).concat("inIdx.a"),x=n==="max"?"greaterThan":"lessThan",v=a?"":`
|
|
inIdx = round(vec4(getBestIndicesAChannel(${f.join()}),
|
|
getBestIndicesAChannel(${g.join()}),
|
|
getBestIndicesAChannel(${y.join()}),
|
|
getBestIndicesAChannel(${A.join()})));`,b=`vec4(
|
|
getAChannel(${f.join()}),
|
|
hasNextCol ? getAChannel(${g.join()}) : 0.,
|
|
hasNextRow ? getAChannel(${y.join()}) : 0.,
|
|
hasNextRow && hasNextCol ? getAChannel(${A.join()}) : 0.)`,w=a?"":`
|
|
float getBestIndicesAChannel(${m.join()}) {
|
|
return getChannel(getBestIndicesA(${p.join()}),
|
|
vec2(${p.slice(-2).join()}));
|
|
}`;this.userCode=`
|
|
float getAChannel(${m.join()}) {
|
|
return getChannel(getA(${p.join()}),
|
|
vec2(${p.slice(-2).join()}));
|
|
}
|
|
${w}
|
|
void main() {
|
|
${l} coords = getOutputCoords();
|
|
bool hasNextCol = ${u[o-1]} < ${i[o-1]-1};
|
|
bool hasNextRow = ${u[o-2]} < ${i[o-2]-1};
|
|
${d}
|
|
ivec4 srcIdx = ivec4(sourceLocR${c}, sourceLocG${c},
|
|
sourceLocB${c}, sourceLocA${c}) * ${t};
|
|
ivec4 inIdx = srcIdx;
|
|
vec4 bestIndex = vec4(inIdx);
|
|
vec4 bestValue = ${b};
|
|
|
|
for (int i = 0; i < ${t}; i++) {
|
|
inIdx = srcIdx;
|
|
${v}
|
|
vec4 candidate = ${b};
|
|
bvec4 nan = isnan(candidate);
|
|
bvec4 replace = bvec4(
|
|
vec4(${x}(candidate, bestValue)) * (vec4(1.0) - vec4(nan)));
|
|
|
|
bestValue = vec4(replace.x ? candidate.x : bestValue.x,
|
|
replace.y ? candidate.y : bestValue.y,
|
|
replace.z ? candidate.z : bestValue.z,
|
|
replace.w ? candidate.w : bestValue.w);
|
|
bestIndex = mix(bestIndex, vec4(inIdx), vec4(replace));
|
|
srcIdx++;
|
|
}
|
|
setOutput(bestIndex);
|
|
}
|
|
`}};function DE(e,t,n,a=null){let r=t.shape[0],s=t.shape[1];a!=null&&(r=a.shape[0],s=a.shape[1]);let i=M.computeOptimalWindowSize(s),o={windowSize:i,inSize:s,batchSize:r,outSize:Math.ceil(s/i)},l=new Qfe(o,n,a==null),u=[t];a!=null&&u.push(a);let d=e.runWebGLProgram(l,u,"int32");if(d.shape[1]===1)return d;let h=DE(e,t,n,d);return e.disposeIntermediateTensorInfo(d),h}function _E(e,t,n,a=null){let r=a!=null?a.shape:t.shape,s=r[r.length-1],i=M.computeOptimalWindowSize(s),o=new e0e(r,i,n,a==null),l=a==null?[t]:[t,a],u=e.runWebGLProgram(o,l,"int32");if(u.shape.length===t.shape.length){let d=_E(e,t,n,u);return e.disposeIntermediateTensorInfo(u),d}return u}function zE(e,t,n,a){let r=[n];if(M.assertAxesAreInnerMostDims("arg"+a.charAt(0).toUpperCase()+a.slice(1),r,t.shape.length),!se().getBool("WEBGL_PACK_REDUCE")||t.shape.length<=2){let s=[],[i,o]=M.computeOutAndReduceShapes(t.shape,r),l=k.sizeFromShape(o),u=be({inputs:{x:t},backend:e,attrs:{shape:[-1,l]}});s.push(u);let d=DE(e,u,a);s.push(d);let h=be({inputs:{x:d},backend:e,attrs:{shape:i}});return s.forEach(p=>e.disposeIntermediateTensorInfo(p)),h}return _E(e,t,a)}function t0e(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s}=a,i=k.parseAxisParam(s,r.shape),o=M.getAxesPermutation(i,r.shape.length),l=r,u=[];o!=null&&(l=Vn({inputs:{x:r},backend:n,attrs:{perm:o}}),u.push(l),i=M.getInnerMostAxes(i.length,l.shape.length)),M.assertAxesAreInnerMostDims("argMax",[i[0]],l.shape.length);let d=zE(n,l,i[0],"max");return u.forEach(h=>n.disposeIntermediateTensorInfo(h)),d}var n0e={kernelName:Yo,backendName:"webgl",kernelFunc:t0e};function a0e(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s}=a,i=k.parseAxisParam(s,r.shape),o=M.getAxesPermutation(i,r.shape.length),l=r,u=[];o!=null&&(l=Vn({inputs:{x:r},backend:n,attrs:{perm:o}}),u.push(l),i=M.getInnerMostAxes(i.length,l.shape.length)),M.assertAxesAreInnerMostDims("argMin",[i[0]],l.shape.length);let d=zE(n,l,i[0],"min");return u.forEach(h=>n.disposeIntermediateTensorInfo(h)),d}var r0e={kernelName:qc,backendName:"webgl",kernelFunc:a0e},s0e=gr+`
|
|
if (abs(x) > 1.) {
|
|
return NAN;
|
|
}
|
|
return asin(x);
|
|
`,i0e=ot({opSnippet:s0e}),o0e={kernelName:Id,backendName:"webgl",kernelFunc:i0e},l0e=gr+"return log(x + sqrt(x * x + 1.0));",u0e=ot({opSnippet:l0e}),d0e={kernelName:Sd,backendName:"webgl",kernelFunc:u0e},h0e=gr+`
|
|
return atan(x);
|
|
`,p0e=ot({opSnippet:h0e}),c0e={kernelName:Nd,backendName:"webgl",kernelFunc:p0e},f0e=vfe+`
|
|
return atan(a, b);
|
|
`,m0e=`
|
|
vec4 result = atan(a, b);
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+wfe+`
|
|
return result;
|
|
`,g0e=Tn({opSnippet:f0e,packedOpSnippet:m0e}),y0e={kernelName:Ed,backendName:"webgl",kernelFunc:g0e},A0e=gr+`
|
|
if ((x < -1.0) || (x > 1.0)) return NAN;
|
|
return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,x0e=ot({opSnippet:A0e}),b0e={kernelName:Td,backendName:"webgl",kernelFunc:x0e},cp=class{constructor(e,t,n,a=!1,r=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let s=e.filterWidth,i=e.strideHeight,o=e.strideWidth,l=e.dilationHeight,u=e.dilationWidth,d=e.effectiveFilterHeight,h=e.effectiveFilterWidth,p=e.padInfo.top,c=e.padInfo.left;this.outputShape=e.outShape;let m=t==="avg",f=`((batch * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + d`,g=`(xR * ${e.inWidth} + xC) * ${e.inChannels} + d`,y="0.0";if(m||(y="-1.0 / 1e-20"),n){let I=">=";this.userCode=`
|
|
const ivec2 strides = ivec2(${i}, ${o});
|
|
const ivec2 pads = ivec2(${p}, ${c});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// max/min x(?, ?, d) to get y(yR, yC, d).
|
|
// ? = to be determined
|
|
float minMaxValue = 0.0;
|
|
float minMaxValueFound = 0.0;
|
|
int minMaxPosition = 0;
|
|
float avgValue = 0.0;
|
|
|
|
for (int wR = 0; wR < ${d};
|
|
wR += ${l}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${h};
|
|
wC += ${u}) {
|
|
int xC = xCCorner + wC;
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float value = getX(batch, xR, xC, d);
|
|
|
|
// If a min / max value has already been found, use it. If not,
|
|
// use the current value.
|
|
float currMinMaxValue = mix(
|
|
value, minMaxValue, minMaxValueFound);
|
|
if (value ${I} currMinMaxValue) {
|
|
minMaxValue = value;
|
|
minMaxValueFound = 1.0;
|
|
minMaxPosition = ${a?r?f:g:`wR * ${h} + wC`};
|
|
}
|
|
}
|
|
}
|
|
setOutput(float(minMaxPosition));
|
|
}
|
|
`;return}let A="max",x=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(x="avgValue / count");let v=Math.floor(s/4)*4,b=s%4,w=`
|
|
if (${m}) {
|
|
avgValue += dot(values, ones);
|
|
} else {
|
|
minMaxValue = ${A}(values, minMaxValue);
|
|
}
|
|
`;this.userCode=`
|
|
const ivec2 strides = ivec2(${i}, ${o});
|
|
const ivec2 pads = ivec2(${p}, ${c});
|
|
const float initializationValue = ${y};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float count = 0.0;
|
|
|
|
float getValue(int batch, int xR, int xC, int d) {
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
return initializationValue;
|
|
}
|
|
count += 1.0;
|
|
return getX(batch, xR, xC, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// max/min x(?, ?, d) to get y(yR, yC, d).
|
|
// ? = to be determined
|
|
vec4 minMaxValue = vec4(${y});
|
|
float avgValue = 0.0;
|
|
count = 0.0;
|
|
|
|
for (int wR = 0; wR < ${d};
|
|
wR += ${l}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${v}; wC += 4) {
|
|
int xC = xCCorner + wC * ${u};
|
|
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${u}, d),
|
|
getValue(batch, xR, xC + 2 * ${u}, d),
|
|
getValue(batch, xR, xC + 3 * ${u}, d)
|
|
);
|
|
|
|
${w}
|
|
}
|
|
|
|
int xC = xCCorner + ${v};
|
|
if (${b===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${w}
|
|
} else if (${b===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${u}, d),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${w}
|
|
} else if (${b===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${u}, d),
|
|
getValue(batch, xR, xC + 2 * ${u}, d),
|
|
initializationValue
|
|
);
|
|
|
|
${w}
|
|
}
|
|
}
|
|
setOutput(${x});
|
|
}
|
|
`}},lb=class{constructor(e,t,n,a=!1,r=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let s=e.filterWidth,i=e.strideDepth,o=e.strideHeight,l=e.strideWidth,u=e.dilationDepth,d=e.dilationHeight,h=e.dilationWidth,p=e.effectiveFilterDepth,c=e.effectiveFilterHeight,m=e.effectiveFilterWidth,f=e.padInfo.front,g=e.padInfo.top,y=e.padInfo.left;this.outputShape=e.outShape;let A=t==="avg",x="0.0";if(A||(x="-1.0 / 1e-20"),n){let C=">=";this.userCode=`
|
|
const ivec3 strides =
|
|
ivec3(${i}, ${o}, ${l});
|
|
const ivec3 pads = ivec3(${f}, ${g}, ${y});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xDCorner = xCorner.x;
|
|
int xRCorner = xCorner.y;
|
|
int xCCorner = xCorner.z;
|
|
|
|
// max/min x(?, ?, ?, ch) to get y(yD, yR, yC, ch).
|
|
// ? = to be determined
|
|
float minMaxValue = 0.0;
|
|
float minMaxValueFound = 0.0;
|
|
int minMaxPosition = 0;
|
|
|
|
for (int wD = 0; wD < ${p};
|
|
wD += ${u}) {
|
|
int xD = xDCorner + wD;
|
|
|
|
if (xD < 0 || xD >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${c};
|
|
wR += ${d}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${m};
|
|
wC += ${h}) {
|
|
int xC = xCCorner + wC;
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float value = getX(batch, xD, xR, xC, ch);
|
|
|
|
// If a min / max value has already been found, use it. If not,
|
|
// use the current value.
|
|
float currMinMaxValue = mix(
|
|
value, minMaxValue, minMaxValueFound);
|
|
if (value ${C} currMinMaxValue) {
|
|
minMaxValue = value;
|
|
minMaxValueFound = 1.0;
|
|
minMaxPosition = ${a?r?`(((batch * ${e.inDepth} + xD) * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`((xD * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`wD * ${c} * ${m} +
|
|
wR * ${m} + wC`};
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(float(minMaxPosition));
|
|
}
|
|
`;return}let v="max",b=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(b="avgValue / count");let w=Math.floor(s/4)*4,I=s%4,T=`
|
|
if (${A}) {
|
|
avgValue += dot(values, ones);
|
|
} else {
|
|
minMaxValue = ${v}(values, minMaxValue);
|
|
}
|
|
`;this.userCode=`
|
|
const ivec3 strides =
|
|
ivec3(${i}, ${o}, ${l});
|
|
const ivec3 pads = ivec3(${f}, ${g}, ${y});
|
|
const float initializationValue = ${x};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float count = 0.0;
|
|
|
|
float getValue(int batch, int xD, int xR, int xC, int ch) {
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
return initializationValue;
|
|
}
|
|
count += 1.0;
|
|
return getX(batch, xD, xR, xC, ch);
|
|
}
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xDCorner = xCorner.x;
|
|
int xRCorner = xCorner.y;
|
|
int xCCorner = xCorner.z;
|
|
|
|
// max/min x(?, ?, ?, d) to get y(yD, yR, yC, ch).
|
|
// ? = to be determined
|
|
vec4 minMaxValue = vec4(${x});
|
|
float avgValue = 0.0;
|
|
count = 0.0;
|
|
|
|
for (int wD = 0; wD < ${p};
|
|
wD += ${u}) {
|
|
int xD = xDCorner + wD;
|
|
|
|
if (xD < 0 || xD >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${c};
|
|
wR += ${d}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${w}; wC += 4) {
|
|
int xC = xCCorner + wC * ${h};
|
|
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${h}, ch),
|
|
getValue(batch, xD, xR, xC + 2 * ${h}, ch),
|
|
getValue(batch, xD, xR, xC + 3 * ${h}, ch)
|
|
);
|
|
|
|
${T}
|
|
}
|
|
|
|
int xC = xCCorner + ${w};
|
|
if (${I===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${T}
|
|
} else if (${I===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${h}, ch),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${T}
|
|
} else if (${I===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${h}, ch),
|
|
getValue(batch, xD, xR, xC + 2 * ${h}, ch),
|
|
initializationValue
|
|
);
|
|
|
|
${T}
|
|
}
|
|
}
|
|
setOutput(${b});
|
|
}
|
|
}
|
|
`}};function v0e(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t;mu(r,"avgPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=a,u=1;k.assert(M.eitherStridesOrDilationsAreOne(i,u),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let d=M.computePool2DInfo(r.shape,s,i,u,o,l);if(d.filterWidth===1&&d.filterHeight===1&&k.arraysEqual(d.inShape,d.outShape))return fa({inputs:{x:r},backend:n});let h=new cp(d,"avg",!1);return n.runWebGLProgram(h,[r],"float32")}var w0e={kernelName:Jo,backendName:"webgl",kernelFunc:v0e};function k0e(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:u}=a,d=[1,1,1],h=M.computePool3DInfo(r.shape,s,i,d,o,l,u),p=new lb(h,"avg",!1);return n.runWebGLProgram(p,[r],"float32")}var I0e={kernelName:Kc,backendName:"webgl",kernelFunc:k0e},S0e=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,a=e.strideHeight,r=e.strideWidth,s=e.dilationHeight,i=e.dilationWidth,o=e.effectiveFilterHeight,l=e.effectiveFilterWidth,u=o-1-e.padInfo.top,d=l-1-e.padInfo.left,h=1/(t*n);this.userCode=`
|
|
const ivec2 pads = ivec2(${u}, ${d});
|
|
const float avgMultiplier = float(${h});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 dyRCCorner = coords.yz - pads;
|
|
int dyRCorner = dyRCCorner.x;
|
|
int dyCCorner = dyRCCorner.y;
|
|
|
|
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${o};
|
|
wR += ${s}) {
|
|
float dyR = float(dyRCorner + wR) / ${a}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${l};
|
|
wC+= ${i}) {
|
|
float dyC = float(dyCCorner + wC) / ${r}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(b, idyR, idyC, d);
|
|
|
|
dotProd += dyValue * avgMultiplier;
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},N0e=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,a=e.filterWidth,r=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=e.dilationDepth,l=e.dilationHeight,u=e.dilationWidth,d=e.effectiveFilterDepth,h=e.effectiveFilterHeight,p=e.effectiveFilterWidth,c=d-1-e.padInfo.front,m=h-1-e.padInfo.top,f=p-1-e.padInfo.left,g=1/(t*n*a);this.userCode=`
|
|
const ivec3 pads = ivec3(${c}, ${m}, ${f});
|
|
const float avgMultiplier = float(${g});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyDCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
// Convolve dy(?, ?, ?, d) with pos mask(:, :, :, ch) to get
|
|
// dx(xD, xR, xC, ch).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int wD = 0; wD < ${d};
|
|
wD += ${o}) {
|
|
float dyD = float(dyDCorner + wD) / ${r}.0;
|
|
|
|
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyD = int(dyD);
|
|
|
|
for (int wR = 0; wR < ${h};
|
|
wR += ${l}) {
|
|
float dyR = float(dyRCorner + wR) / ${s}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${p};
|
|
wC += ${u}) {
|
|
float dyC = float(dyCCorner + wC) / ${i}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
|
|
|
|
dotProd += dyValue * avgMultiplier;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function T0e(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,i=s,{filterSize:o,strides:l,pad:u,dimRoundingMode:d}=a,h=[1,1,1],p=M.computePool3DInfo(i.shape,o,l,h,u,d),c=new N0e(p);return n.runWebGLProgram(c,[r],i.dtype)}var E0e={kernelName:v1,backendName:"webgl",kernelFunc:T0e};function C0e(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,i=s;mu([r,s],"avgPoolGrad");let{filterSize:o,strides:l,pad:u}=a,d=M.computePool2DInfo(i.shape,o,l,1,u),h=new S0e(d);return n.runWebGLProgram(h,[r],i.dtype)}var M0e={kernelName:b1,backendName:"webgl",kernelFunc:C0e};function $0e(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s}=t,{transposeA:i,transposeB:o}=a;return q0({a:r,b:s,transposeA:i,transposeB:o,backend:n})}var R0e={kernelName:Qo,backendName:"webgl",kernelFunc:$0e},F0e=class{constructor(e,t,n,a,r,s){this.outputShape=[],this.variableNames=["x","mean","variance"],M.assertAndGetBroadcastShape(e,t),M.assertAndGetBroadcastShape(e,n);let i="0.0";a!=null&&(M.assertAndGetBroadcastShape(e,a),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let o="1.0";r!=null&&(M.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale"),o="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
float x = getXAtOutCoords();
|
|
float mean = getMeanAtOutCoords();
|
|
float variance = getVarianceAtOutCoords();
|
|
float offset = ${i};
|
|
float scale = ${o};
|
|
float inv = scale * inversesqrt(variance + float(${s}));
|
|
setOutput(dot(vec3(x, -mean, offset), vec3(inv, inv, 1)));
|
|
}
|
|
`}},O0e=class{constructor(e,t,n,a,r,s){this.packedInputs=!0,this.packedOutput=!0,this.variableNames=["x","mean","variance"],M.assertAndGetBroadcastShape(e,t),M.assertAndGetBroadcastShape(e,n);let i="vec4(0.0)";a!=null&&(M.assertAndGetBroadcastShape(e,a),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let o="vec4(1.0)";r!=null&&(M.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale"),o="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
vec4 offset = ${i};
|
|
vec4 scale = ${o};
|
|
|
|
vec4 x = getXAtOutCoords();
|
|
vec4 mean = getMeanAtOutCoords();
|
|
vec4 variance = getVarianceAtOutCoords();
|
|
|
|
vec4 inv = scale * inversesqrt(variance + vec4(${s}));
|
|
|
|
setOutput((x - mean) * inv + offset);
|
|
}
|
|
`}},D0e=({inputs:e,backend:t,attrs:n})=>{let{x:a,mean:r,variance:s,offset:i,scale:o}=e;k.assert(r.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),k.assert(i==null||r.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),k.assert(o==null||r.shape.length===o.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let{varianceEpsilon:l}=n;l==null&&(l=.001);let u=[a,r,s],d=null;i!=null&&(d=i.shape,u.push(i));let h=null;o!=null&&(h=o.shape,u.push(o));let p=se().getBool("WEBGL_PACK_NORMALIZATION")?new O0e(a.shape,r.shape,s.shape,d,h,l):new F0e(a.shape,r.shape,s.shape,d,h,l);return t.runWebGLProgram(p,u,u[0].dtype)},_0e={kernelName:dl,backendName:"webgl",kernelFunc:D0e},z0e=class{constructor(e){this.variableNames=["source"],this.outputShape=e,this.rank=e.length;let t=kt(this.rank),n=`uniform int start[${this.rank}];`,a=P0e(this.rank),r,s=e.map((i,o)=>`sourceLoc.${ub[o]} = start[${o}] + coords.${ub[o]};`);r=`
|
|
${t} sourceLoc;
|
|
${t} coords = getOutputCoords();
|
|
${s.join(`
|
|
`)}
|
|
`,this.userCode=`
|
|
${n}
|
|
void main() {
|
|
${r}
|
|
setOutput(getSource(${a}));
|
|
}
|
|
`}getCustomSetupFunc(e){if(e.length!==this.rank)throw Error(`The rank (${this.rank}) of the program must match the length of start (${e.length})`);return(t,n)=>{this.startLoc==null&&(this.startLoc=t.getUniformLocationNoThrow(n,"start"),this.startLoc==null)||t.gl.uniform1iv(this.startLoc,e)}}},ub=["x","y","z","w","u","v"];function P0e(e){if(e===1)return"sourceLoc";if(e<=6)return ub.slice(0,e).map(t=>"sourceLoc."+t).join(",");throw Error(`Slicing for rank ${e} is not yet supported`)}var L0e=class{constructor(e){this.variableNames=["source"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.rank=e.length;let t=kt(this.rank),n=Bn("coords",this.rank),a=Bn("sourceLoc",this.rank),r=this.rank===1?"sourceLoc":`vec2(${a.slice(-2).join()})`,s=`getChannel(getSource(${a.join()}), ${r})`,i=`
|
|
result.x = ${s};
|
|
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
|
|
++${a[this.rank-1]};
|
|
result.y = ${s};
|
|
--${a[this.rank-1]};
|
|
}
|
|
`,o=this.rank===1?"":`
|
|
--${n[this.rank-1]};
|
|
if (++${n[this.rank-2]} < ${e[this.rank-2]}) {
|
|
++${a[this.rank-2]};
|
|
result.z = ${s};
|
|
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
|
|
++${a[this.rank-1]};
|
|
result.w = ${s};
|
|
}
|
|
}
|
|
`,l=this.rank<=4?`sourceLoc = coords +
|
|
${t}(${e.map((u,d)=>`start[${d}]`).join()});`:e.map((u,d)=>`${a[d]} = ${n[d]} + start[${d}];`).join(`
|
|
`);this.userCode=`
|
|
uniform int start[${this.rank}];
|
|
void main() {
|
|
${t} coords = getOutputCoords();
|
|
${t} sourceLoc;
|
|
${l}
|
|
vec4 result = vec4(0.);
|
|
${i}
|
|
${o}
|
|
setOutput(result);
|
|
}
|
|
`}getCustomSetupFunc(e){if(e.length!==this.rank)throw Error(`The rank (${this.rank}) of the program must match the length of start (${e.length})`);return(t,n)=>{this.startLoc==null&&(this.startLoc=t.getUniformLocationNoThrow(n,"start"),this.startLoc==null)||t.gl.uniform1iv(this.startLoc,e)}}};function W0e(e,t,n,a){let r=a.texData.get(e.dataId),s=a.makeTensorInfo(n,e.dtype),i=a.texData.get(s.dataId);Object.assign(i,r),i.refCount=1,i.shape=n,i.dtype=e.dtype;let o=Cn.computeFlatOffset(t,k.computeStrides(e.shape));r.slice&&(o+=r.slice.flatOffset),i.slice={flatOffset:o,origDataId:r.slice&&r.slice.origDataId||e.dataId};let l=a.dataRefCount.get(i.slice.origDataId)||1;return a.dataRefCount.set(i.slice.origDataId,l+1),s}function fp(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{begin:s,size:i}=a,[o,l]=Cn.parseSliceParams(r,s,i);if(Cn.assertParamsValid(r,o,l),k.sizeFromShape(l)===0)return n.makeTensorInfo(l,r.dtype,[]);if(n.shouldExecuteOnCPU([r])||r.dtype==="string"){let h=n.texData.get(r.dataId),p=Nce(h.values,o,l,r.shape,r.dtype);return n.makeTensorInfo(l,r.dtype,p)}let{isPacked:u}=n.texData.get(r.dataId),d=Cn.isSliceContinous(r.shape,o,l);if(u||!d){let h=se().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new L0e(l):new z0e(l),p=h.getCustomSetupFunc(o);return n.runWebGLProgram(h,[r],r.dtype,p)}return n.uploadToGPU(r.dataId),W0e(r,o,l,n)}var B0e={kernelName:ah,backendName:"webgl",kernelFunc:fp},V0e=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,crops:i}=a;k.assert(r.shape.length<=4,()=>"batchToSpaceND for rank > 4 with a WebGL backend not implemented yet");let o=s.reduce((A,x)=>A*x),l=M.getReshaped(r.shape,s,o),u=M.getPermuted(l.length,s.length),d=M.getReshapedPermuted(r.shape,s,o),h=M.getSliceBeginCoords(i,s.length),p=M.getSliceSize(d,i,s.length),c=[],m=be({inputs:{x:r},backend:n,attrs:{shape:l}}),f=Vn({inputs:{x:m},backend:n,attrs:{perm:u}}),g=be({inputs:{x:f},backend:n,attrs:{shape:d}}),y=fp({inputs:{x:g},backend:n,attrs:{begin:h,size:p}});return c.push(m),c.push(f),c.push(g),c.forEach(A=>n.disposeIntermediateTensorInfo(A)),y},U0e={kernelName:Xc,backendName:"webgl",kernelFunc:V0e};function j0e(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,weights:s}=t,{size:i}=a,o=n.readSync(r.dataId),l=n.readSync(s.dataId),u=dE(o,l,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,u)}var H0e={kernelName:w1,backendName:"webgl",kernelFunc:j0e},G0e="return float(a != b);",PE=Tn({opSnippet:G0e,cpuKernelImpl:wce,dtype:"bool"}),q0e={kernelName:vl,backendName:"webgl",kernelFunc:PE};function mp(e){let{inputs:t,backend:n}=e,{input:a}=t,r=n.texData.get(a.dataId);return fa({inputs:{x:r.complexTensorInfos.real},backend:n})}var K0e={kernelName:j1,backendName:"webgl",kernelFunc:mp},X0e="return float(int(x));";function Z0e(e,t){let n=new Qs(e.shape,X0e),a=t.runWebGLProgram(n,[e],"int32");return{dataId:a.dataId,shape:a.shape,dtype:a.dtype}}function db(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dtype:s}=a;if(s==="complex64"){if(r.dtype==="complex64")return fa({inputs:{x:r},backend:n});let i=un(r.shape),o=db({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),l=ei({inputs:{real:o,imag:i},backend:n});return i.dispose(),n.disposeIntermediateTensorInfo(o),l}if(r.dtype==="complex64"){let i=mp({inputs:{input:r},backend:n}),o=db({inputs:{x:i},backend:n,attrs:{dtype:s}});return n.disposeIntermediateTensorInfo(i),o}if(!k.hasEncodingLoss(r.dtype,s)){let i=fa({inputs:{x:r},backend:n});return{dataId:i.dataId,shape:i.shape,dtype:s}}if(s==="int32")return Z0e(r,n);if(s==="bool"){let i=n.makeTensorInfo([],"bool",k.getTypedArrayFromDType("bool",1)),o=PE({inputs:{a:r,b:i},backend:n});return n.disposeIntermediateTensorInfo(i),o}throw new Error(`Error in Cast: failed to cast ${r.dtype} to ${s}`)}var Y0e={kernelName:el,backendName:"webgl",kernelFunc:db},LE="return ceil(x);",J0e=ot({opSnippet:LE,packedOpSnippet:LE,cpuKernelImpl:ace}),Q0e={kernelName:Ni,backendName:"webgl",kernelFunc:J0e},eme=class{constructor(e){this.variableNames=["A"],this.outputShape=e,this.userCode=`
|
|
uniform float minVal;
|
|
uniform float maxVal;
|
|
|
|
void main() {
|
|
float value = getAAtOutCoords();
|
|
if (isnan(value)) {
|
|
setOutput(value);
|
|
return;
|
|
}
|
|
|
|
setOutput(clamp(value, minVal, maxVal));
|
|
}
|
|
`}getCustomSetupFunc(e,t){return(n,a)=>{this.minLoc==null&&(this.minLoc=n.getUniformLocationNoThrow(a,"minVal"),this.maxLoc=n.getUniformLocationNoThrow(a,"maxVal")),n.gl.uniform1f(this.minLoc,e),n.gl.uniform1f(this.maxLoc,t)}}},tme=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.userCode=`
|
|
uniform float minVal;
|
|
uniform float maxVal;
|
|
|
|
void main() {
|
|
vec4 value = getAAtOutCoords();
|
|
|
|
if (any(isnan(value))) {
|
|
setOutput(value);
|
|
return;
|
|
}
|
|
|
|
setOutput(clamp(value, vec4(minVal), vec4(maxVal)));
|
|
}
|
|
`}getCustomSetupFunc(e,t){return(n,a)=>{this.minLoc==null&&(this.minLoc=n.getUniformLocationNoThrow(a,"minVal"),this.maxLoc=n.getUniformLocationNoThrow(a,"maxVal")),n.gl.uniform1f(this.minLoc,e),n.gl.uniform1f(this.maxLoc,t)}}};function nme(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{clipValueMin:s,clipValueMax:i}=a,o;se().getBool("WEBGL_PACK_CLIP")?o=new tme(r.shape):o=new eme(r.shape);let l=o.getCustomSetupFunc(s,i);return n.runWebGLProgram(o,[r],r.dtype,l)}var ame={kernelName:Ti,backendName:"webgl",kernelFunc:nme},rme=class{constructor(e){this.variableNames=["real","imag"],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
float re = abs(getRealAtOutCoords());
|
|
float im = abs(getImagAtOutCoords());
|
|
float mx = max(re, im);
|
|
|
|
// sadly the length function in glsl is not underflow-safe
|
|
// (at least not on Intel GPUs). So the safe solution is
|
|
// to ensure underflow-safety in all cases.
|
|
setOutput(
|
|
mx == 0.0 ? 0.0 : mx * length(vec2(1, min(re, im)/mx))
|
|
);
|
|
}
|
|
`}};function WE(e,t){return{dataId:t.dataId,dtype:t.dtype,shape:e.shape}}function sme(e){let{inputs:t,backend:n}=e,{x:a}=t,r=n.texData.get(a.dataId),s=new rme(a.shape),i=[WE(a,r.complexTensorInfos.real),WE(a,r.complexTensorInfos.imag)];return n.runWebGLProgram(s,i,i[0].dtype)}var ime={kernelName:Zc,backendName:"webgl",kernelFunc:sme},ome=class{constructor(e){this.outputShape=[],this.outputShape=M.computeOutShape(e,1),this.variableNames=e.map((s,i)=>`T${i}`);let t=new Array(e.length-1);t[0]=e[0][1];for(let s=1;s<t.length;s++)t[s]=t[s-1]+e[s][1];let n=[`if (yC < ${t[0]}) setOutput(getT0(yR, yC));`];for(let s=1;s<t.length;s++){let i=t[s-1];n.push(`else if (yC < ${t[s]}) setOutput(getT${s}(yR, yC-${i}));`)}let a=t.length,r=t[t.length-1];n.push(`else setOutput(getT${a}(yR, yC-${r}));`),this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int yR = coords.x;
|
|
int yC = coords.y;
|
|
|
|
${n.join(`
|
|
`)}
|
|
}
|
|
`}},lme=class{constructor(e,t){this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[],this.outputShape=M.computeOutShape(e,t);let n=this.outputShape,a=n.length,r=kt(a),s=Bn("coords",a),i=["x","y","z","w","u","v"].slice(0,a);this.variableNames=e.map((m,f)=>`T${f}`);let o=new Array(e.length-1);o[0]=e[0][t];for(let m=1;m<o.length;m++)o[m]=o[m-1]+e[m][t];let l=i[t],u=i.slice(-2),d=i.join(),h=`if (${l} < ${o[0]}) {
|
|
return getChannel(
|
|
getT0(${d}), vec2(${u.join()}));
|
|
}`;for(let m=1;m<o.length;m++){let f=o[m-1];h+=`
|
|
if (${l} < ${o[m]} && ${l} >= ${o[m-1]}) {
|
|
return getChannel(
|
|
getT${m}(${X0(i,l,f)}),
|
|
vec2(${X0(u,l,f)}));
|
|
}`}let p=o.length,c=o[o.length-1];h+=`
|
|
return getChannel(
|
|
getT${p}(${X0(i,l,c)}),
|
|
vec2(${X0(u,l,c)}));`,this.userCode=`
|
|
float getValue(${i.map(m=>"int "+m)}) {
|
|
${h}
|
|
}
|
|
|
|
void main() {
|
|
${r} coords = getOutputCoords();
|
|
vec4 result = vec4(getValue(${s}), 0., 0., 0.);
|
|
|
|
${s[a-1]} = ${s[a-1]} + 1;
|
|
if (${s[a-1]} < ${n[a-1]}) {
|
|
result.g = getValue(${s});
|
|
}
|
|
|
|
${s[a-2]} = ${s[a-2]} + 1;
|
|
if (${s[a-2]} < ${n[a-2]}) {
|
|
result.a = getValue(${s});
|
|
}
|
|
|
|
${s[a-1]} = ${s[a-1]} - 1;
|
|
if (${s[a-2]} < ${n[a-2]} &&
|
|
${s[a-1]} < ${n[a-1]}) {
|
|
result.b = getValue(${s});
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}};function X0(e,t,n){let a=e.indexOf(t);return e.map((r,s)=>s===a?`${r} - ${n}`:r).join()}function Z0(e){let{inputs:t,backend:n}=e,{input:a}=t,r=n.texData.get(a.dataId);return fa({inputs:{x:r.complexTensorInfos.imag},backend:n})}var ume={kernelName:z1,backendName:"webgl",kernelFunc:Z0};function Iu(e,t,n){let a=e[0].dtype;if(a==="complex64"){let d=e.map(f=>mp({inputs:{input:f},backend:n})),h=e.map(f=>Z0({inputs:{input:f},backend:n})),p=Iu(d,t,n),c=Iu(h,t,n),m=ei({inputs:{real:p,imag:c},backend:n});return d.forEach(f=>n.disposeIntermediateTensorInfo(f)),h.forEach(f=>n.disposeIntermediateTensorInfo(f)),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(c),m}let r=n.shouldExecuteOnCPU(e);if(a==="string"&&(r=!0),r){let d=e.map(y=>{let A=k.sizeFromShape(y.shape.slice(t));return be({inputs:{x:y},backend:n,attrs:{shape:[-1,A]}})}),h=d.map(y=>({vals:n.readSync(y.dataId),shape:y.shape})),p=M.computeOutShape(d.map(y=>y.shape),1),c=d[0].shape[0]===1,m=rce(h,p,a,c),f=M.computeOutShape(e.map(y=>y.shape),t),g=n.makeTensorInfo(f,a,m);return d.forEach(y=>n.disposeIntermediateTensorInfo(y)),g}if(e.length>se().getNumber("WEBGL_MAX_TEXTURES_IN_SHADER")){let d=Math.floor(e.length/2),h=Iu(e.slice(0,d),t,n),p=Iu(e.slice(d),t,n),c=Iu([h,p],t,n);return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(p),c}if(se().getBool("WEBGL_PACK_ARRAY_OPERATIONS")&&e[0].shape.length>1){let d=new lme(e.map(h=>h.shape),t);return n.runWebGLProgram(d,e,a)}let{tensors2D:s,outShape:i}=dme(e,t,n),o=new ome(s.map(d=>d.shape)),l=n.runWebGLProgram(o,s,a);s.forEach(d=>n.disposeIntermediateTensorInfo(d));let u=be({inputs:{x:l},attrs:{shape:i},backend:n});return n.disposeIntermediateTensorInfo(l),u}function dme(e,t,n){let a=M.computeOutShape(e.map(r=>r.shape),t);return{tensors2D:e.map(r=>be({inputs:{x:r},attrs:{shape:[-1,k.sizeFromShape(r.shape.slice(t))]},backend:n})),outShape:a}}function BE(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a,s=k.parseAxisParam(r,t[0].shape)[0],i=M.computeOutShape(t.map(u=>u.shape),s);if(k.sizeFromShape(i)===0)return n.makeTensorInfo(i,t[0].dtype,[]);let o=t.filter(u=>k.sizeFromShape(u.shape)>0);if(o.length===1)return fa({inputs:{x:o[0]},backend:n});let l=o.map(u=>u.shape);return M.assertParamsConsistent(l,s),Iu(o,s,n)}var hme={kernelName:Cd,backendName:"webgl",kernelFunc:BE},VE=class{constructor(e,t=!1,n=null,a=!1,r=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let s=e.padInfo.top,i=e.padInfo.left,o=e.strideHeight,l=e.strideWidth,u=e.dilationHeight,d=e.dilationWidth,h=e.filterHeight,p=e.filterWidth,c=Math.floor(e.inChannels/4)*4,m=e.inChannels%4,f=e.dataFormat==="channelsLast",g=f?1:2,y=f?2:3,A=f?3:1,x="",v="";n&&(a?x=`float activation(float a) {
|
|
float b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:r?x=`float activation(float a) {
|
|
float b = getLeakyreluAlphaAtOutCoords();
|
|
${n}
|
|
}`:x=`
|
|
float activation(float x) {
|
|
${n}
|
|
}
|
|
`,v="result = activation(result);");let b=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),a&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${x}
|
|
|
|
const ivec2 strides = ivec2(${o}, ${l});
|
|
const ivec2 pads = ivec2(${s}, ${i});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d2 = coords[${A}];
|
|
|
|
ivec2 xRCCorner =
|
|
ivec2(coords[${g}], coords[${y}]) * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// Convolve x(?, ?, d1) with w(:, :, d1, d2) to get y(yR, yC, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${h}; wR++) {
|
|
int xR = xRCorner + wR * ${u};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${p}; wC++) {
|
|
int xC = xCCorner + wC * ${d};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int d1 = 0; d1 < ${c}; d1 += 4) {
|
|
vec4 wValues = vec4(
|
|
getW(wR, wC, d1, d2),
|
|
getW(wR, wC, d1 + 1, d2),
|
|
getW(wR, wC, d1 + 2, d2),
|
|
getW(wR, wC, d1 + 3, d2)
|
|
);
|
|
|
|
if (${f}) {
|
|
vec4 xValues = vec4(
|
|
getX(batch, xR, xC, d1),
|
|
getX(batch, xR, xC, d1 + 1),
|
|
getX(batch, xR, xC, d1 + 2),
|
|
getX(batch, xR, xC, d1 + 3)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec4 xValues = vec4(
|
|
getX(batch, d1, xR, xC),
|
|
getX(batch, d1 + 1, xR, xC),
|
|
getX(batch, d1 + 2, xR, xC),
|
|
getX(batch, d1 + 3, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
}
|
|
|
|
if (${m===1}) {
|
|
|
|
if (${f}) {
|
|
dotProd +=
|
|
getX(batch, xR, xC, ${c}) *
|
|
getW(wR, wC, ${c}, d2);
|
|
} else {
|
|
dotProd +=
|
|
getX(batch, ${c}, xR, xC) *
|
|
getW(wR, wC, ${c}, d2);
|
|
}
|
|
|
|
} else if (${m===2}) {
|
|
vec2 wValues = vec2(
|
|
getW(wR, wC, ${c}, d2),
|
|
getW(wR, wC, ${c} + 1, d2)
|
|
);
|
|
|
|
if (${f}) {
|
|
vec2 xValues = vec2(
|
|
getX(batch, xR, xC, ${c}),
|
|
getX(batch, xR, xC, ${c} + 1)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec2 xValues = vec2(
|
|
getX(batch, ${c}, xR, xC),
|
|
getX(batch, ${c} + 1, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
} else if (${m===3}) {
|
|
vec3 wValues = vec3(
|
|
getW(wR, wC, ${c}, d2),
|
|
getW(wR, wC, ${c} + 1, d2),
|
|
getW(wR, wC, ${c} + 2, d2)
|
|
);
|
|
|
|
if (${f}) {
|
|
vec3 xValues = vec3(
|
|
getX(batch, xR, xC, ${c}),
|
|
getX(batch, xR, xC, ${c} + 1),
|
|
getX(batch, xR, xC, ${c} + 2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec3 xValues = vec3(
|
|
getX(batch, ${c}, xR, xC),
|
|
getX(batch, ${c} + 1, xR, xC),
|
|
getX(batch, ${c} + 2, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
|
|
float result = dotProd;
|
|
${b}
|
|
${v}
|
|
setOutput(result);
|
|
}
|
|
`}},pme=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let t=e.padInfo.front,n=e.padInfo.top,a=e.padInfo.left,r=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=e.dilationDepth,l=e.dilationHeight,u=e.dilationWidth,d=e.filterDepth,h=e.filterHeight,p=e.filterWidth,c=Math.floor(e.inChannels/4)*4,m=e.inChannels%4;this.userCode=`
|
|
const ivec3 strides = ivec3(${r}, ${s}, ${i});
|
|
const ivec3 pads = ivec3(${t}, ${n}, ${a});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d2 = coords.u;
|
|
|
|
ivec3 xFRCCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xFCorner = xFRCCorner.x;
|
|
int xRCorner = xFRCCorner.y;
|
|
int xCCorner = xFRCCorner.z;
|
|
|
|
// Convolve x(?, ?, ?, d1) with w(:, :, :, d1, d2) to get
|
|
// y(yF, yR, yC, d2). ? = to be determined. : = across all
|
|
// values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wF = 0; wF < ${d}; wF++) {
|
|
int xF = xFCorner + wF * ${o};
|
|
|
|
if (xF < 0 || xF >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${h}; wR++) {
|
|
int xR = xRCorner + wR * ${l};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${p}; wC++) {
|
|
int xC = xCCorner + wC * ${u};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int d1 = 0; d1 < ${c}; d1 += 4) {
|
|
vec4 xValues = vec4(
|
|
getX(batch, xF, xR, xC, d1),
|
|
getX(batch, xF, xR, xC, d1 + 1),
|
|
getX(batch, xF, xR, xC, d1 + 2),
|
|
getX(batch, xF, xR, xC, d1 + 3)
|
|
);
|
|
vec4 wValues = vec4(
|
|
getW(wF, wR, wC, d1, d2),
|
|
getW(wF, wR, wC, d1 + 1, d2),
|
|
getW(wF, wR, wC, d1 + 2, d2),
|
|
getW(wF, wR, wC, d1 + 3, d2)
|
|
);
|
|
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
if (${m===1}) {
|
|
dotProd +=
|
|
getX(batch, xF, xR, xC, ${c}) *
|
|
getW(wF, wR, wC, ${c}, d2);
|
|
} else if (${m===2}) {
|
|
vec2 xValues = vec2(
|
|
getX(batch, xF, xR, xC, ${c}),
|
|
getX(batch, xF, xR, xC, ${c} + 1)
|
|
);
|
|
vec2 wValues = vec2(
|
|
getW(wF, wR, wC, ${c}, d2),
|
|
getW(wF, wR, wC, ${c} + 1, d2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else if (${m===3}) {
|
|
vec3 xValues = vec3(
|
|
getX(batch, xF, xR, xC, ${c}),
|
|
getX(batch, xF, xR, xC, ${c} + 1),
|
|
getX(batch, xF, xR, xC, ${c} + 2)
|
|
);
|
|
vec3 wValues = vec3(
|
|
getW(wF, wR, wC, ${c}, d2),
|
|
getW(wF, wR, wC, ${c} + 1, d2),
|
|
getW(wF, wR, wC, ${c} + 2, d2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},cme=class{constructor(e,t,n){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e;let{filterWidth:a,inChannels:r,strideWidth:s,strideHeight:i,padInfo:o,outWidth:l,dilationWidth:u,dilationHeight:d,dataFormat:h}=n,{left:p,top:c}=o,m=r*a,f=Wn(),g=h==="channelsLast",y=g?0:1,A=g?1:2,x="";for(let v=0;v<=1;v++)for(let b=0;b<=1;b++)x+=`
|
|
blockIndex = rc.y + ${b};
|
|
pos = rc.x + ${v};
|
|
|
|
if(blockIndex < ${e[1]} && pos < ${e[0]}) {
|
|
offsetY = int(blockIndex / (${l})) * ${i} - ${c};
|
|
d0 = offsetY + ${d} * (pos / ${m});
|
|
|
|
if(d0 < ${t[y]} && d0 >= 0) {
|
|
|
|
offsetX = int(mod(float(blockIndex), ${l}.) * ${s}. - ${p}.);
|
|
d1 = offsetX + ${u} * (int(mod(float(pos), ${m}.) / ${r}.));
|
|
|
|
if(d1 < ${t[A]} && d1 >= 0) {
|
|
|
|
ch = int(mod(float(pos), ${r}.));
|
|
|
|
if (${g}) {
|
|
innerDims = vec2(d1, ch);
|
|
result[${v*2+b}] = getChannel(
|
|
getA(d0, int(innerDims.x),
|
|
int(innerDims.y)), innerDims);
|
|
} else {
|
|
innerDims = vec2(d0, d1);
|
|
result[${v*2+b}] = getChannel(
|
|
getA(ch, int(innerDims.x),
|
|
int(innerDims.y)), innerDims);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
`;this.userCode=`
|
|
void main() {
|
|
ivec2 rc = getOutputCoords();
|
|
|
|
vec4 result = vec4(0);
|
|
|
|
int blockIndex, pos, offsetY, d0, offsetX, d1, ch;
|
|
vec2 innerDims;
|
|
|
|
${x}
|
|
|
|
${f.output} = result;
|
|
}
|
|
`}};function UE({x:e,filter:t,convInfo:n,backend:a,bias:r=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:o=null}){let l=e.shape,u=a.texData.get(e.dataId),d=n.inChannels,h=l[0]*l[1]*l[2],p=n.outChannels,c=n.dataFormat==="channelsLast",m=!1,f=!1,g,y=[],A=(h===1||p===1)&&d>RE,x=l[2]%2!=0&&!!u.isPacked;if(A||!se().getBool("WEBGL_LAZILY_UNPACK")||!se().getBool("WEBGL_PACK_BINARY_OPERATIONS")||!x){let v=c?l[0]*l[1]*l[2]:l[0]*l[2]*l[3],b=be({inputs:{x:e},backend:a,attrs:{shape:[1,v,n.inChannels]}}),w=be({inputs:{x:t},backend:a,attrs:{shape:[1,n.inChannels,n.outChannels]}}),I=q0({a:b,b:w,transposeA:m,transposeB:f,backend:a,bias:r,activation:o,preluActivationWeights:s,leakyreluAlpha:i});g=be({inputs:{x:I},backend:a,attrs:{shape:n.outShape}}),y.push(b),y.push(w),y.push(I)}else{let v=c?l[0]*l[1]*(l[2]+1):l[0]*l[2]*(l[3]+1),b={dataId:e.dataId,shape:[1,v,n.inChannels],dtype:e.dtype},w=u.shape;u.shape=u.shape.slice(),u.shape[u.shape.length-2]++,k.assert(up(u.shape,b.shape),()=>`packed reshape ${u.shape} to ${b.shape} isn't free`);let I=be({inputs:{x:t},backend:a,attrs:{shape:[1,n.inChannels,n.outChannels]}});y.push(I);let T=q0({a:b,b:I,backend:a,transposeA:m,transposeB:f,bias:r,activation:o,preluActivationWeights:s,leakyreluAlpha:i}),C=a.texData.get(T.dataId);k.assert(C.isPacked,()=>"batchMatMul result is expected to be packed"),u.shape=w,C.shape=n.outShape,g=fa({inputs:{x:T},backend:a}),g.shape=n.outShape,y.push(T)}for(let v of y)a.disposeIntermediateTensorInfo(v);return g}function jE({x:e,filter:t,convInfo:n,backend:a,bias:r=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:o=null}){let{filterWidth:l,filterHeight:u,inChannels:d,outWidth:h,outHeight:p,dataFormat:c}=n,m=c==="channelsLast",f=l*u*d,g=p*h,y=[f,g],A=!0,x=!1,v=[],b=be({inputs:{x:e},backend:a,attrs:{shape:e.shape.slice(1)}}),w=be({inputs:{x:t},backend:a,attrs:{shape:[1,f,k.sizeFromShape(t.shape)/f]}});v.push(b),v.push(w);let I=new cme(y,b.shape,n),T=a.runWebGLProgram(I,[b],"float32"),C=be({inputs:{x:T},backend:a,attrs:{shape:[1,y[0],y[1]]}});v.push(T),v.push(C);let z=r!=null,$=s!=null,S=o==="leakyrelu",D=o?j0(o,!0):null,_=new TE(C.shape,w.shape,[1,g,n.outChannels],A,x,z,D,$,S),W=[C,w];if(r&&W.push(r),$&&W.push(s),S){let ee=a.makeTensorInfo([],"float32",k.createScalarValue(i,"float32"));W.push(ee),v.push(ee)}let X=a.runWebGLProgram(_,W,"float32"),q=m?[1,p,h,n.outChannels]:[1,n.outChannels,p,h],Q=be({inputs:{x:X},backend:a,attrs:{shape:q}});v.push(X);for(let ee of v)a.disposeIntermediateTensorInfo(ee);return Q}function fme(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dataFormat:l,dilations:u,dimRoundingMode:d}=a,h=M.convertConv2DDataFormat(l),p=M.computeConv2DInfo(r.shape,s.shape,i,u,o,d,!1,h),c;if(p.filterHeight===1&&p.filterWidth===1&&p.dilationHeight===1&&p.dilationWidth===1&&p.strideHeight===1&&p.strideWidth===1&&(p.padInfo.type==="SAME"||p.padInfo.type==="VALID"))c=UE({x:r,filter:s,convInfo:p,backend:n});else if(se().getBool("WEBGL_CONV_IM2COL")&&r.shape[0]===1)c=jE({x:r,filter:s,convInfo:p,backend:n});else{let f=new VE(p);c=n.runWebGLProgram(f,[r,s],"float32")}let m=be({inputs:{x:c},backend:n,attrs:{shape:p.outShape}});return n.disposeIntermediateTensorInfo(c),m}var mme={kernelName:tl,backendName:"webgl",kernelFunc:fme},gme=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,a=e.padInfo.top,r=e.padInfo.left,s=e.dataFormat==="channelsLast";this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int wR = coords.x;
|
|
int wC = coords.y;
|
|
int d1 = coords.z;
|
|
int d2 = coords.w;
|
|
|
|
// Convolve x(?, ?, d1) with dy(:, :, d2) to get dw(wR, wC, d1, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${t} - ${a};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${n} - ${r};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
if (${s}) {
|
|
float dyValue = getDy(b, yR, yC, d2);
|
|
float xValue = getX(b, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
} else {
|
|
float dyValue = getDy(b, d2, yR, yC);
|
|
float xValue = getX(b, d1, xR, xC);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},yme=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,a=e.strideHeight,r=e.strideWidth,s=e.dataFormat==="channelsLast",i=t-1-e.padInfo.top,o=n-1-e.padInfo.left,l=s?1:2,u=s?2:3,d=s?3:1;this.userCode=`
|
|
const ivec2 pads = ivec2(${i}, ${o});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d1 = coords[${d}];
|
|
|
|
ivec2 dyCorner = ivec2(coords[${l}], coords[${u}]) - pads;
|
|
int dyRCorner = dyCorner.x;
|
|
int dyCCorner = dyCorner.y;
|
|
|
|
// Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${t}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${a}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${t} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${n}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${r}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${n} - 1 - wC;
|
|
|
|
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
|
|
|
|
if (${s}) {
|
|
float xValue = getDy(batch, idyR, idyC, d2);
|
|
float wValue = getW(wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
} else {
|
|
float xValue = getDy(batch, d2, idyR, idyC);
|
|
float wValue = getW(wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},Ame=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideDepth,n=e.strideHeight,a=e.strideWidth,r=e.padInfo.front,s=e.padInfo.top,i=e.padInfo.left;this.userCode=`
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int wF = coords.x;
|
|
int wR = coords.y;
|
|
int wC = coords.z;
|
|
int d1 = coords.w;
|
|
int d2 = coords.u;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yF = 0; yF < ${e.outDepth}; yF++) {
|
|
int xF = wF + yF * ${t} - ${r};
|
|
|
|
if (xF < 0 || xF >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${n} - ${s};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${a} - ${i};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float dyValue = getDy(b, yF, yR, yC, d2);
|
|
float xValue = getX(b, xF, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},xme=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,a=e.filterWidth,r=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=t-1-e.padInfo.front,l=n-1-e.padInfo.top,u=a-1-e.padInfo.left;this.userCode=`
|
|
const ivec3 pads = ivec3(${o}, ${l}, ${u});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d1 = coords.u;
|
|
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyFCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
float dotProd = 0.0;
|
|
for (int wF = 0; wF < ${t}; wF++) {
|
|
float dyF = float(dyFCorner + wF) / ${r}.0;
|
|
|
|
if (dyF < 0.0 || dyF >= ${e.outDepth}.0 || fract(dyF) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyF = int(dyF);
|
|
|
|
int wFPerm = ${t} - 1 - wF;
|
|
|
|
for (int wR = 0; wR < ${n}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${s}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${n} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${a}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${i}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${a} - 1 - wC;
|
|
|
|
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
|
|
float xValue = getDy(batch, idyF, idyR, idyC, d2);
|
|
float wValue = getW(wFPerm, wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function bme(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,pad:o,dataFormat:l,dimRoundingMode:u,filterShape:d}=a,h=M.convertConv2DDataFormat(l),p=M.computeConv2DInfo(r.shape,d,i,1,o,u,!1,h),c=new gme(p);return n.runWebGLProgram(c,[r,s],"float32")}var vme={kernelName:I1,backendName:"webgl",kernelFunc:bme};function wme(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{inputShape:i,strides:o,pad:l,dataFormat:u,dimRoundingMode:d}=a,h=M.convertConv2DDataFormat(u),p=M.computeConv2DInfo(i,s.shape,o,1,l,d,!1,h),c=new yme(p);return n.runWebGLProgram(c,[r,s],"float32")}var kme={kernelName:nl,backendName:"webgl",kernelFunc:wme};function Ime(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l}=a,u=M.computeConv3DInfo(r.shape,s.shape,i,l,o),d=new pme(u);return n.runWebGLProgram(d,[r,s],"float32")}var Sme={kernelName:Yc,backendName:"webgl",kernelFunc:Ime};function Nme(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,pad:o,filterShape:l}=a,u=M.computeConv3DInfo(r.shape,l,i,1,o),d=new Ame(u);return n.runWebGLProgram(d,[r,s],"float32")}var Tme={kernelName:S1,backendName:"webgl",kernelFunc:Nme};function Eme(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{pad:i,strides:o,inputShape:l}=a,u=M.computeConv3DInfo(l,s.shape,o,1,i),d=new xme(u);return n.runWebGLProgram(d,[r,s],"float32")}var Cme={kernelName:N1,backendName:"webgl",kernelFunc:Eme},Mme=NE+`
|
|
return cos(x);
|
|
`,$me=ot({opSnippet:Mme}),Rme={kernelName:al,backendName:"webgl",kernelFunc:$me},Fme=`
|
|
float e2x = exp(-x);
|
|
return (e2x + 1.0 / e2x) / 2.0;
|
|
`,Ome=ot({opSnippet:Fme}),Dme={kernelName:Md,backendName:"webgl",kernelFunc:Ome},_me=class{constructor(e,t,n,a,r){this.variableNames=["Image","Boxes","BoxInd"],this.outputShape=[];let[s,i,o,l]=e,[u]=t,[d,h]=n;this.outputShape=[u,d,h,l];let p=a==="bilinear"?1:0,[c,m]=[`${i-1}.0`,`${o-1}.0`],[f,g,y]=d>1?[`${(i-1)/(d-1)}`,"(y2-y1) * height_ratio",`y1*${c} + float(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${c}`],[A,x,v]=h>1?[`${(o-1)/(h-1)}`,"(x2-x1) * width_ratio",`x1*${m} + float(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${m}`];this.userCode=`
|
|
const float height_ratio = float(${f});
|
|
const float width_ratio = float(${A});
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int y = coords[1];
|
|
int x = coords[2];
|
|
int d = coords[3];
|
|
|
|
// get box vals
|
|
float y1 = getBoxes(b,0);
|
|
float x1 = getBoxes(b,1);
|
|
float y2 = getBoxes(b,2);
|
|
float x2 = getBoxes(b,3);
|
|
|
|
// get image in batch index
|
|
int bInd = round(getBoxInd(b));
|
|
if(bInd < 0 || bInd >= ${s}) {
|
|
return;
|
|
}
|
|
|
|
float height_scale = ${g};
|
|
float width_scale = ${x};
|
|
|
|
float in_y = ${y};
|
|
if( in_y < 0.0 || in_y > ${c} ) {
|
|
setOutput(float(${r}));
|
|
return;
|
|
}
|
|
float in_x = ${v};
|
|
if( in_x < 0.0 || in_x > ${m} ) {
|
|
setOutput(float(${r}));
|
|
return;
|
|
}
|
|
|
|
vec2 sourceFracIndexCR = vec2(in_x,in_y);
|
|
if(${p} == 1) {
|
|
// Compute the four integer indices.
|
|
ivec2 sourceFloorCR = ivec2(sourceFracIndexCR);
|
|
ivec2 sourceCeilCR = ivec2(ceil(sourceFracIndexCR));
|
|
|
|
float topLeft = getImage(b, sourceFloorCR.y, sourceFloorCR.x, d);
|
|
float bottomLeft = getImage(b, sourceCeilCR.y, sourceFloorCR.x, d);
|
|
float topRight = getImage(b, sourceFloorCR.y, sourceCeilCR.x, d);
|
|
float bottomRight = getImage(b, sourceCeilCR.y, sourceCeilCR.x, d);
|
|
|
|
vec2 fracCR = sourceFracIndexCR - vec2(sourceFloorCR);
|
|
|
|
float top = topLeft + (topRight - topLeft) * fracCR.x;
|
|
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracCR.x;
|
|
float newValue = top + (bottom - top) * fracCR.y;
|
|
setOutput(newValue);
|
|
} else {
|
|
// Compute the coordinators of nearest neighbor point.
|
|
ivec2 sourceNearestCR = ivec2(floor(
|
|
sourceFracIndexCR + vec2(0.5,0.5)));
|
|
float newValue = getImage(b, sourceNearestCR.y, sourceNearestCR.x, d);
|
|
setOutput(newValue);
|
|
}
|
|
}
|
|
`}},zme=e=>{let{inputs:t,backend:n,attrs:a}=e,{image:r,boxes:s,boxInd:i}=t,{cropSize:o,method:l,extrapolationValue:u}=a,d=new _me(r.shape,s.shape,o,l,u);return n.runWebGLProgram(d,[r,s,i],"float32")},Pme={kernelName:$d,backendName:"webgl",kernelFunc:zme},HE=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=e;let a=e.length,r=t?"0.0":`getX(${GE(a,"coords")})`,s=e[e.length-1],i="",o="";t?(i=n?`end != ${s-1}`:"end != 0",o=n?"end + 1":"end - 1"):(i=n?`end + pow2 < ${s}`:"end >= pow2",o=n?"end + pow2":"end - pow2"),this.userCode=`
|
|
uniform float index;
|
|
void main() {
|
|
${kt(a)} coords = getOutputCoords();
|
|
int end = ${qE(a,"coords")};
|
|
float val = ${r};
|
|
int pow2 = int(pow(2.0, index));
|
|
if (${i}) {
|
|
int idx = ${o};
|
|
${qE(a,"coords")} = idx;
|
|
val += getX(${GE(a,"coords")});
|
|
}
|
|
setOutput(val);
|
|
}
|
|
`}getCustomSetupFunc(e){return(t,n)=>{this.index==null&&(this.index=t.getUniformLocation(n,"index")),t.gl.uniform1f(this.index,e)}}};function GE(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.x, ${t}.y`;if(e===3)return`${t}.x, ${t}.y, ${t}.z`;if(e===4)return`${t}.x, ${t}.y, ${t}.z, ${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function qE(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.y`;if(e===3)return`${t}.z`;if(e===4)return`${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function Lme(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,exclusive:i,reverse:o}=a,l=r.shape.length,u=M.getAxesPermutation([s],l),d=r;u!=null&&(d=Vn({inputs:{x:r},backend:n,attrs:{perm:u}}));let h=M.getInnerMostAxes(1,l)[0];if(h!==l-1)throw new Error(`WebGL cumsum shader expects an inner-most axis=${r.shape.length-1} but got axis=${s}`);let p=d.shape[h],c=fa({inputs:{x:d},backend:n});for(let m=0;m<=Math.ceil(Math.log2(p))-1;m++){let f=new HE(d.shape,!1,o),g=f.getCustomSetupFunc(m),y=c;c=n.runWebGLProgram(f,[c],c.dtype,g),n.disposeIntermediateTensorInfo(y)}if(i){let m=new HE(d.shape,i,o),f=c;c=n.runWebGLProgram(m,[c],c.dtype),n.disposeIntermediateTensorInfo(f)}if(u!=null){let m=M.getUndoAxesPermutation(u),f=Vn({inputs:{x:c},backend:n,attrs:{perm:m}});return n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(d),f}return c}var Wme={kernelName:rl,backendName:"webgl",kernelFunc:Lme};function Bme(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,weights:s}=t,{size:i,binaryOutput:o}=a;if(r.shape.length===1){let l=n.readSync(r.dataId),u=n.readSync(s.dataId),d=dE(l,u,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,d)}else if(r.shape.length===2){let l=n.bufferSync(r),u=n.bufferSync(s),d=nce(l,u,i,o);return n.makeTensorInfo(d.shape,s.dtype,d.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${r.shape.length}.`)}var Vme={kernelName:T1,backendName:"webgl",kernelFunc:Bme},Ume=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=[],this.outputShape=e,this.blockSize=t,this.dataFormat=n,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int h = ${this.getHeightCoordString()};
|
|
int w = ${this.getWidthCoordString()};
|
|
int d = ${this.getDepthCoordString()};
|
|
|
|
int in_h = h / ${t};
|
|
int offset_h = imod(h, ${t});
|
|
int in_w = w / ${t};
|
|
int offset_w = imod(w, ${t});
|
|
int offset_d = (offset_h * ${t} + offset_w) *
|
|
${this.getOutputDepthSize()};
|
|
int in_d = d + offset_d;
|
|
|
|
float result = ${this.getInputSamplingString()};
|
|
setOutput(result);
|
|
}
|
|
`}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?this.outputShape[3]:this.outputShape[1]}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}};function jme(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockSize:s,dataFormat:i}=a;k.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let o=r.shape[0],l=i==="NHWC"?r.shape[1]:r.shape[2],u=i==="NHWC"?r.shape[2]:r.shape[3],d=i==="NHWC"?r.shape[3]:r.shape[1],h=l*s,p=u*s,c=d/(s*s),m=i==="NHWC"?[o,h,p,c]:[o,c,h,p],f=new Ume(m,s,i);return n.runWebGLProgram(f,[r],r.dtype)}var Hme={kernelName:Rd,backendName:"webgl",kernelFunc:jme},KE=class{constructor(e,t=!1,n=null,a=!1,r=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let s=e.inHeight,i=e.inWidth,o=e.padInfo.top,l=e.padInfo.left,u=e.strideHeight,d=e.strideWidth,h=e.dilationHeight,p=e.dilationWidth,c=e.filterHeight,m=e.filterWidth,f=e.outChannels/e.inChannels,g="",y="";n&&(a?g=`float activation(float a) {
|
|
float b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:r?g=`float activation(float a) {
|
|
float b = getLeakyreluAlphaAtOutCoords();
|
|
${n}
|
|
}`:g=`
|
|
float activation(float x) {
|
|
${n}
|
|
}
|
|
`,y="result = activation(result);");let A=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),a&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${g}
|
|
|
|
const ivec2 strides = ivec2(${u}, ${d});
|
|
const ivec2 pads = ivec2(${o}, ${l});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int d2 = coords.w;
|
|
int d1 = d2 / ${f};
|
|
int q = d2 - d1 * ${f};
|
|
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// Convolve x(?, ?, d1) with w(:, :, d1, q) to get y(yR, yC, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
// TO DO(dsmilkov): Flatten the two for loops and vec4 the operations.
|
|
for (int wR = 0; wR < ${c}; wR++) {
|
|
int xR = xRCorner + wR * ${h};
|
|
|
|
if (xR < 0 || xR >= ${s}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${m}; wC++) {
|
|
int xC = xCCorner + wC * ${p};
|
|
|
|
if (xC < 0 || xC >= ${i}) {
|
|
continue;
|
|
}
|
|
|
|
float xVal = getX(batch, xR, xC, d1);
|
|
float wVal = getW(wR, wC, d1, q);
|
|
dotProd += xVal * wVal;
|
|
}
|
|
}
|
|
|
|
float result = dotProd;
|
|
${A}
|
|
${y}
|
|
setOutput(result);
|
|
}
|
|
`}},XE=class{constructor(e,t=!1,n=null,a=!1,r=!1){this.variableNames=["x","W"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e.outShape;let s=e.outChannels/e.inChannels,i=e.inHeight,o=e.inWidth,l=e.padInfo.top,u=e.padInfo.left,d=e.strideHeight,h=e.strideWidth,p=e.dilationHeight,c=e.dilationWidth,m=e.filterHeight,f=e.filterWidth,g=f,y=`
|
|
int xR; int xC; int xCOffset;
|
|
vec4 wTexel; vec4 previous; vec4 final;`;for(let b=0;b<f;b++)y+=`
|
|
vec4 xTexelC${b*2};
|
|
int xTexelC${b*2}Ready;
|
|
vec4 xC${b};`;for(let b=0;b<m;b++){for(let w=0;w<f;w++)y+=`
|
|
xTexelC${w*2} = vec4(0.0);
|
|
xTexelC${w*2}Ready = 0;
|
|
xC${w} = vec4(0.0);`;y+=`
|
|
xR = xRCorner + ${b*p};
|
|
if (xR >=0 && xR < ${i}) {
|
|
`;for(let w=0;w<(g+1)/2;w++){let I=w*2,T=I*c;if(y+=`
|
|
xC = xCCorner + ${T};
|
|
`,h===1){if(I<f&&(u%2==1?(y+=`
|
|
xCOffset = xC + 1;
|
|
if (xCOffset >= 0 && xCOffset < ${o} && xTexelC${T}Ready == 0) {
|
|
xTexelC${T} = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= ${o}) {
|
|
xTexelC${T}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${T}Ready = 1;
|
|
}
|
|
`,c===1&&T>0?y+=`
|
|
xC${I} = vec4(xTexelC${T-2}.zw, xTexelC${T}.xy);
|
|
`:y+=`
|
|
xCOffset = xC + 1 - 2;
|
|
|
|
if (xCOffset >= 0 && xCOffset < ${o}) {
|
|
previous = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= ${o}) {
|
|
previous.zw = vec2(0.0);
|
|
}
|
|
|
|
xC${I} = vec4(previous.zw, xTexelC${T}.xy);
|
|
} else {
|
|
xC${I} = vec4(0.0, 0.0, xTexelC${T}.xy);
|
|
}
|
|
`):y+=`
|
|
if (xC >= 0 && xC < ${o} && xTexelC${T}Ready == 0) {
|
|
xTexelC${T} = getX(batch, xR, xC, d1);
|
|
if (xC + 1 >= ${o}) {
|
|
xTexelC${T}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${T}Ready = 1;
|
|
}
|
|
|
|
xC${I} = xTexelC${T};
|
|
`,T+1<f)){let C=u%2==0?k.nearestLargerEven(c):c;c%2==0&&u%2==1||c%2!=0&&u%2!=1?(y+=`
|
|
xCOffset = xC + ${u%2} + ${C};
|
|
|
|
if (xCOffset >= 0 && xCOffset < ${o} && xTexelC${T+2}Ready == 0) {
|
|
xTexelC${T+2} = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= ${o}) {
|
|
xTexelC${T+2}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${T+2}Ready = 1;
|
|
}
|
|
`,c>1&&(y+=`
|
|
xCOffset -= 2;
|
|
if (xCOffset >= 0 && xCOffset < ${o} && xTexelC${T}Ready == 0) {
|
|
xTexelC${T} = getX(batch, xR, xCOffset, d1);
|
|
xTexelC${T}Ready = 1;
|
|
}
|
|
`),y+=`
|
|
xC${I+1} = vec4(xTexelC${T}.zw, xTexelC${T+2}.xy);
|
|
`):C===1?y+=`
|
|
xC${I+1} = xTexelC${T};
|
|
`:y+=`
|
|
xCOffset = xC + ${C};
|
|
|
|
if (xCOffset >= 0 && xCOffset < ${o} && xTexelC${T+2}Ready == 0) {
|
|
xTexelC${T+2} = getX(batch, xR, xCOffset, d1);
|
|
if (xCOffset + 1 >= ${o}) {
|
|
xTexelC${T+2}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${T+2}Ready = 1;
|
|
}
|
|
|
|
xC${I+1} = xTexelC${T+2};
|
|
`}}else T<f&&(u%2==1?(y+=`
|
|
xCOffset = xC + 1 - ${h};
|
|
if(xCOffset >= 0 && xCOffset < ${o} && xTexelC${T}Ready == 0) {
|
|
xTexelC${T} = getX(batch, xR, xCOffset, d1);
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= ${o}) {
|
|
xTexelC${T}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${T}Ready = 1;
|
|
}
|
|
|
|
if(xC + 1 >= 0 && xC + 1 < ${o} && xTexelC${T+2}Ready == 0) {
|
|
xTexelC${T+2} = getX(batch, xR, xC + 1, d1);
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xC + 2 >= ${o}) {
|
|
xTexelC${T+2}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${T+2}Ready = 1;
|
|
}
|
|
|
|
xC${I} = vec4(xTexelC${T}.zw, xTexelC${T+2}.zw);
|
|
`,T+1<f&&(y+=`
|
|
final = vec4(0.0);
|
|
xCOffset = xC + 1 + ${h};
|
|
if(xCOffset >= 0 && xCOffset < ${o}) {
|
|
final = getX(batch, xR, xCOffset, d1);
|
|
}
|
|
xC${I+1} = vec4(xTexelC${T+2}.xy, final.xy);
|
|
`)):(y+=`
|
|
if(xC >= 0 && xC < ${o} && xTexelC${T}Ready == 0) {
|
|
xTexelC${T} = getX(batch, xR, xC, d1);
|
|
if (xC + 1 >= ${o}) {
|
|
xTexelC${T}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${T}Ready = 1;
|
|
}
|
|
|
|
xCOffset = xC + ${h};
|
|
if(xCOffset >= 0 && xCOffset < ${o} && xTexelC${T+2}Ready == 0) {
|
|
xTexelC${T+2} = getX(batch, xR, xCOffset, d1);
|
|
if (xCOffset + 1 >= ${o}) {
|
|
xTexelC${T+2}.zw = vec2(0.);
|
|
}
|
|
xTexelC${T+2}Ready = 1;
|
|
}
|
|
|
|
xC${I} = vec4(
|
|
xTexelC${T}.xy, xTexelC${T+2}.xy);
|
|
`,T+1<f&&(y+=`
|
|
xC${I+1} = vec4(xTexelC${T}.zw, xTexelC${T+2}.zw);
|
|
`)));I<f&&(y+=`
|
|
wTexel = getW(${b}, ${T}, d1, q);
|
|
dotProd += xC${I} * vec4(wTexel.xz, wTexel.xz);
|
|
`,T+1<f&&(y+=`
|
|
wTexel = getW(${b}, ${T+1}, d1, q);
|
|
dotProd += xC${I+1} * vec4(wTexel.xz, wTexel.xz);
|
|
`))}y+=`
|
|
}
|
|
`}let A="",x="";n&&(a?A=`vec4 activation(vec4 a) {
|
|
vec4 b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:r?A=`vec4 activation(vec4 a) {
|
|
vec4 b = getLeakyreluAlphaAtOutCoords();
|
|
${n}
|
|
}`:A=`vec4 activation(vec4 x) {
|
|
${n}
|
|
}`,x="result = activation(result);");let v=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),a&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${A}
|
|
|
|
const ivec2 strides = ivec2(${d}, ${h});
|
|
const ivec2 pads = ivec2(${l}, ${u});
|
|
|
|
void main() {
|
|
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int d2 = coords.w;
|
|
int d1 = d2 / ${s};
|
|
int q = d2 - d1 * ${s};
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
//intialize dotProd with a small epsilon seems to reduce GPU accuracy loss.
|
|
vec4 dotProd = vec4(0.000000000000001);
|
|
|
|
${y}
|
|
|
|
vec4 result = dotProd - vec4(0.000000000000001);
|
|
${v}
|
|
${x}
|
|
setOutput(result);
|
|
}
|
|
`}};function Gme(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l,dimRoundingMode:u}=a,d=l;d==null&&(d=[1,1]),k.assert(M.eitherStridesOrDilationsAreOne(i,d),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${d}'`);let h=M.computeConv2DInfo(r.shape,s.shape,i,d,o,u,!0),p;return se().getBool("WEBGL_PACK_DEPTHWISECONV")&&h.strideWidth<=2&&h.outChannels/h.inChannels==1?p=new XE(h):p=new KE(h),n.runWebGLProgram(p,[r,s],"float32")}var qme={kernelName:sl,backendName:"webgl",kernelFunc:Gme},Kme=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,a=e.padInfo.top,r=e.padInfo.left,s=e.outChannels/e.inChannels;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int wR = coords.x;
|
|
int wC = coords.y;
|
|
int d1 = coords.z;
|
|
int dm = coords.w;
|
|
int d2 = d1 * ${s} + dm;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
// TO DO: Vec4 over the batch size
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${t} - ${a};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${n} - ${r};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float dyValue = getDy(b, yR, yC, d2);
|
|
float xValue = getX(b, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},Xme=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,a=e.strideHeight,r=e.strideWidth,s=t-1-e.padInfo.top,i=n-1-e.padInfo.left,o=e.outChannels/e.inChannels;this.userCode=`
|
|
const ivec2 pads = ivec2(${s}, ${i});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d1 = coords[3];
|
|
ivec2 dyCorner = coords.yz - pads;
|
|
int dyRCorner = dyCorner.x;
|
|
int dyCCorner = dyCorner.y;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
for (int wR = 0; wR < ${t}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${a}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${t} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${n}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${r}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${n} - 1 - wC;
|
|
|
|
// TO DO: Vec4 over the channelMul
|
|
for (int dm = 0; dm < ${o}; dm++) {
|
|
int d2 = d1 * ${o} + dm;
|
|
float xValue = getDy(batch, idyR, idyC, d2);
|
|
float wValue = getW(wRPerm, wCPerm, d1, dm);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function Zme(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:u,filterShape:d}=a,h=M.computeConv2DInfo(r.shape,d,i,o,l,u,!0),p=new Kme(h);return n.runWebGLProgram(p,[r,s],"float32")}var Yme={kernelName:E1,backendName:"webgl",kernelFunc:Zme};function Jme(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:u,inputShape:d}=a,h=M.computeConv2DInfo(d,s.shape,i,o,l,u,!0),p=new Xme(h);return n.runWebGLProgram(p,[r,s],"float32")}var Qme={kernelName:C1,backendName:"webgl",kernelFunc:Jme},ege=class{constructor(e){this.variableNames=["X"],this.outputShape=[e,e],this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
float val = coords[0] == coords[1] ? getX(coords[0]) : 0.0;
|
|
setOutput(val);
|
|
}
|
|
`}};function tge(e){let{inputs:t,backend:n}=e,{x:a}=t,r=[...a.shape,...a.shape],s=k.sizeFromShape(a.shape),i=be({inputs:{x:a},backend:n,attrs:{shape:[s]}}),o=new ege(s),l=n.runWebGLProgram(o,[i],i.dtype),u=be({inputs:{x:l},backend:n,attrs:{shape:r}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(l),u}var nge={kernelName:M1,backendName:"webgl",kernelFunc:tge},age=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let{inHeight:t,inWidth:n,padInfo:a,strideHeight:r,strideWidth:s,filterHeight:i,filterWidth:o,dilationHeight:l,dilationWidth:u}=e,{top:d,left:h}=a;this.userCode=`
|
|
const ivec2 strides = ivec2(${r}, ${s});
|
|
const ivec2 pads = ivec2(${d}, ${h});
|
|
const float neg_infinity = -3.4e38;
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d1 = coords.w;
|
|
ivec2 outTopLeftCorner =
|
|
coords.yz * strides - pads;
|
|
int hBeg = outTopLeftCorner.x;
|
|
int wBeg = outTopLeftCorner.y;
|
|
|
|
float curVal = neg_infinity;
|
|
for (int h = 0; h < ${i}; h++) {
|
|
int hIn = hBeg + h * ${l};
|
|
|
|
if (hIn >= 0 && hIn < ${t}) {
|
|
for (int w = 0; w < ${o}; w++) {
|
|
int wIn = wBeg + w * ${u};
|
|
|
|
if (wIn >= 0 && wIn < ${n}) {
|
|
float xVal = getX(batch, hIn, wIn, d1);
|
|
float wVal = getW(h, w, d1);
|
|
|
|
float val = xVal + wVal;
|
|
if (val > curVal) {
|
|
curVal = val;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
float result = curVal;
|
|
setOutput(result);
|
|
}
|
|
`}};function rge(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l}=a,u=M.computeDilation2DInfo(r.shape,s.shape,i,o,"NHWC",l),d,h=new age(u);d=n.runWebGLProgram(h,[r,s],"float32");let p=be({inputs:{x:d},backend:n,attrs:{shape:u.outShape}});return n.disposeIntermediateTensorInfo(d),p}var sge={kernelName:Jc,backendName:"webgl",kernelFunc:rge};function ige(e){let{inputs:t,backend:n,attrs:a}=e,{equation:r}=a,s=t,{allDims:i,summedDims:o,idDims:l}=M.decodeEinsumEquation(r,s.length);M.checkEinsumDimSizes(i.length,l,s);let{path:u,steps:d}=M.getEinsumComputePath(o,l),h=d.length,p=null,c=i.length,m=[];for(let f=0;f<h;++f){for(let g of d[f]){let{permutationIndices:y,expandDims:A}=M.getEinsumPermutation(c,l[g]),x;M.isIdentityPermutation(y)?x=s[g]:(x=Vn({inputs:{x:s[g]},backend:n,attrs:{perm:y}}),m.push(x));let v=x.shape.slice();for(let b=0;b<A.length;++b)v.splice(A[b],0,1);k.arraysEqual(x.shape,v)||(x=be({inputs:{x},backend:n,attrs:{shape:v}}),m.push(x)),p===null?p=x:(p=ob({inputs:{a:x,b:p},backend:n}),m.push(p))}f<h-1&&(u[f]>=0&&(p=G0({inputs:{x:p},backend:n,attrs:{axis:u[f]-(i.length-c),keepDims:!1}}),m.push(p)),c--)}for(let f of m)f!==p&&n.disposeIntermediateTensorInfo(f);return p}var oge={kernelName:F1,backendName:"webgl",kernelFunc:ige},lge="return (x >= 0.0) ? x : (exp(x) - 1.0);",uge=`
|
|
vec4 result;
|
|
|
|
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
|
|
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
|
|
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
|
|
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
|
|
|
|
return result;
|
|
`,dge=ot({opSnippet:lge,packedOpSnippet:uge}),hge={kernelName:Fd,backendName:"webgl",kernelFunc:dge},pge="return (b >= 1.0) ? a : a * (b + 1.0);",cge=`
|
|
vec4 bGTEZero = vec4(greaterThanEqual(b, vec4(0.)));
|
|
return (bGTEZero * a) + ((vec4(1.0) - bGTEZero) * (a * (b + vec4(1.0))));
|
|
`,fge=e=>{let{inputs:t,backend:n}=e,{dy:a,y:r}=t,s=se().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new pp(cge,a.shape,r.shape):new ku(pge,a.shape,r.shape);return n.runWebGLProgram(s,[a,r],a.dtype)},mge={kernelName:O1,backendName:"webgl",kernelFunc:fge},gge=`
|
|
return vec4(equal(a, b));
|
|
`,yge="return float(a == b);",Age=Tn({opSnippet:yge,packedOpSnippet:gge,dtype:"bool",cpuKernelImpl:sce}),xge={kernelName:ol,backendName:"webgl",kernelFunc:Age},bge=`
|
|
// Error function is calculated approximately with elementary function.
|
|
// See "Handbook of Mathematical Functions with Formulas,
|
|
// Graphs, and Mathematical Tables", Abramowitz and Stegun.
|
|
float p = ${M.ERF_P};
|
|
float a1 = ${M.ERF_A1};
|
|
float a2 = ${M.ERF_A2};
|
|
float a3 = ${M.ERF_A3};
|
|
float a4 = ${M.ERF_A4};
|
|
float a5 = ${M.ERF_A5};
|
|
|
|
float sign = sign(x);
|
|
x = abs(x);
|
|
float t = 1.0 / (1.0 + p * x);
|
|
return sign * (1.0 - (((((a5*t + a4)*t) + a3)*t + a2)*t + a1)*t*exp(-x*x));
|
|
`,vge=ot({opSnippet:bge}),wge={kernelName:Od,backendName:"webgl",kernelFunc:vge},ZE="return exp(x);",YE=ot({opSnippet:ZE,packedOpSnippet:ZE,cpuKernelImpl:ice}),kge={kernelName:Ei,backendName:"webgl",kernelFunc:YE};function hb(e){let{inputs:t,attrs:n,backend:a}=e,{dim:r}=n,{input:s}=t,i=s.shape.length,o=s.shape.slice(),l=r;return r<0&&(k.assert(-(i+1)<=r,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+r+1),o.splice(l,0,1),be({inputs:{x:s},backend:a,attrs:{shape:o}})}var Ige={kernelName:Dd,backendName:"webgl",kernelFunc:hb},JE="return exp(x) - 1.0;",Sge=ot({opSnippet:JE,packedOpSnippet:JE,cpuKernelImpl:oce}),Nge={kernelName:ll,backendName:"webgl",kernelFunc:Sge},QE=class{constructor(e,t,n){this.variableNames=["real","imag"];let a=t[1];this.outputShape=t;let r=n?`2.0 * ${Math.PI}`:`-2.0 * ${Math.PI}`,s=n?`${a}.0`:"1.0",i;if(e==="real")i="return real * expR - imag * expI;";else if(e==="imag")i="return real * expI + imag * expR;";else throw new Error(`FFT component must be either "real" or "imag", got ${e}.`);this.userCode=`
|
|
const float exponentMultiplier = ${r};
|
|
|
|
float unaryOpComplex(float real, float expR, float imag, float expI) {
|
|
${i}
|
|
}
|
|
|
|
float mulMatDFT(int batch, int index) {
|
|
float indexRatio = float(index) / float(${a});
|
|
float exponentMultiplierTimesIndexRatio =
|
|
exponentMultiplier * indexRatio;
|
|
|
|
float result = 0.0;
|
|
|
|
for (int i = 0; i < ${a}; i++) {
|
|
// x = (-2|2 * PI / N) * index * i;
|
|
float x = exponentMultiplierTimesIndexRatio * float(i);
|
|
float expR = cos(x);
|
|
float expI = sin(x);
|
|
float real = getReal(batch, i);
|
|
float imag = getImag(batch, i);
|
|
|
|
result +=
|
|
unaryOpComplex(real, expR, imag, expI) / ${s};
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
setOutput(mulMatDFT(coords[0], coords[1]));
|
|
}
|
|
`}};function eC(e,t,n){let a=n.texData.get(e.dataId),r=k.sizeFromShape(e.shape),s=e.shape[e.shape.length-1],i=r/s,o=be({inputs:{x:e},backend:n,attrs:{shape:[i,s]}}),l=o.shape,u=new QE("real",l,t),d=new QE("imag",l,t),h=[{dataId:a.complexTensorInfos.real.dataId,dtype:a.complexTensorInfos.real.dtype,shape:l},{dataId:a.complexTensorInfos.imag.dataId,dtype:a.complexTensorInfos.imag.dtype,shape:l}],p=n.runWebGLProgram(u,h,"float32"),c=n.runWebGLProgram(d,h,"float32"),m=ei({inputs:{real:p,imag:c},backend:n});n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(c);let f=be({inputs:{x:m},backend:n,attrs:{shape:e.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(m),f}function Tge(e){let{inputs:t,backend:n}=e,{input:a}=t;return eC(a,!1,n)}var Ege={kernelName:D1,backendName:"webgl",kernelFunc:Tge},Cge=class{constructor(e,t){this.outputShape=[],this.variableNames=["x"],this.outputShape=e,this.userCode=`
|
|
uniform float value;
|
|
void main() {
|
|
// Input can be obtained from uniform value.
|
|
setOutput(value);
|
|
}
|
|
`}getCustomSetupFunc(e){return(t,n)=>{this.valueLoc==null&&(this.valueLoc=t.getUniformLocationNoThrow(n,"value")),t.gl.uniform1f(this.valueLoc,e)}}};function pb(e){let{backend:t,attrs:n}=e,{shape:a,value:r}=n,{dtype:s}=n;if(s=s||k.inferDtype(r),s==="string"){let i=k.getArrayFromDType(s,k.sizeFromShape(a));return i.fill(r),t.makeTensorInfo(a,s,i)}else{let i=new Cge(a,r),o=i.getCustomSetupFunc(r);return t.runWebGLProgram(i,[],s,o)}}var Mge={kernelName:Qc,backendName:"webgl",kernelFunc:pb},$ge=class{constructor(e){this.variableNames=["Image"],this.outputShape=[];let t=e[2];this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int x = coords[2];
|
|
|
|
int coordX = ${t} - x;
|
|
float outputValue;
|
|
if(coordX >= 0 && coordX < ${t}) {
|
|
outputValue = getImage(coords[0], coords[1], coordX, coords[3]);
|
|
} else {
|
|
outputValue = getImage(coords[0], coords[1], coords[2], coords[3]);
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}},Rge={kernelName:_d,backendName:"webgl",kernelFunc:({inputs:e,backend:t})=>{let{image:n}=e,a=t,r=new $ge(n.shape);return a.runWebGLProgram(r,[n],n.dtype)}},tC="return floor(x);",Fge=ot({opSnippet:tC,packedOpSnippet:tC,cpuKernelImpl:lce}),Oge={kernelName:Ci,backendName:"webgl",kernelFunc:Fge},Dge=`
|
|
float s = sign(a) * sign(b);
|
|
int ia = round(a);
|
|
int ib = round(b);
|
|
if (ib != 0) {
|
|
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
|
|
return float(idiv(ia, ib, s));
|
|
} else {
|
|
return NAN;
|
|
}
|
|
`,_ge=`
|
|
ivec4 ia = round(a);
|
|
ivec4 ib = round(b);
|
|
bvec4 cond = notEqual(ib, ivec4(0));
|
|
ivec4 result = ivec4(0);
|
|
vec4 s = sign(a) * sign(b);
|
|
|
|
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
|
|
if (cond[0]) {
|
|
result[0] = idiv(ia[0], ib[0], s[0]);
|
|
}
|
|
if (cond[1]) {
|
|
result[1] = idiv(ia[1], ib[1], s[1]);
|
|
}
|
|
if (cond[2]) {
|
|
result[2] = idiv(ia[2], ib[2], s[2]);
|
|
}
|
|
if (cond[3]) {
|
|
result[3] = idiv(ia[3], ib[3], s[3]);
|
|
}
|
|
return vec4(result);
|
|
`,zge=Tn({opSnippet:Dge,packedOpSnippet:_ge,dtype:"int32"}),Pge={kernelName:ul,backendName:"webgl",kernelFunc:zge},Lge=class{constructor(e){this.variableNames=["A"];let t=Wn(),[n,a]=e;this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
int texR = coords[0];
|
|
int texC = coords[1];
|
|
int depth = coords[2];
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${a}.0, ${n}.0);
|
|
|
|
vec4 values = ${t.texture2D}(A, uv);
|
|
float value;
|
|
if (depth == 0) {
|
|
value = values.r;
|
|
} else if (depth == 1) {
|
|
value = values.g;
|
|
} else if (depth == 2) {
|
|
value = values.b;
|
|
} else if (depth == 3) {
|
|
value = values.a;
|
|
}
|
|
|
|
setOutput(floor(value * 255.0 + 0.5));
|
|
}
|
|
`}},Wge=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let t=Wn(),[n,a]=e;this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
int texR = coords[0];
|
|
int texC = coords[1];
|
|
int depth = coords[2];
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for(int row=0; row<=1; row++) {
|
|
for(int col=0; col<=1; col++) {
|
|
texC = coords[1] + row;
|
|
depth = coords[2] + col;
|
|
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${a}.0, ${n}.0);
|
|
vec4 values = ${t.texture2D}(A, uv);
|
|
float value;
|
|
if (depth == 0) {
|
|
value = values.r;
|
|
} else if (depth == 1) {
|
|
value = values.g;
|
|
} else if (depth == 2) {
|
|
value = values.b;
|
|
} else if (depth == 3) {
|
|
value = values.a;
|
|
}
|
|
|
|
result[row * 2 + col] = floor(value * 255.0 + 0.5);
|
|
}
|
|
}
|
|
|
|
${t.output} = result;
|
|
}
|
|
`}},Bge={kernelName:nA,backendName:"webgl",kernelFunc:Vge},Su;function Vge(e){let{inputs:t,backend:n,attrs:a}=e,{pixels:r}=t,{numChannels:s}=a,i=typeof HTMLVideoElement!="undefined"&&r instanceof HTMLVideoElement,o=typeof HTMLImageElement!="undefined"&&r instanceof HTMLImageElement,[l,u]=i?[r.videoWidth,r.videoHeight]:[r.width,r.height],d=[u,l],h=[u,l,s];(o||i)&&(Su==null&&(Su=document.createElement("canvas").getContext("2d")),Su.canvas.width=l,Su.canvas.height=u,Su.drawImage(r,0,0,l,u),r=Su.canvas);let p=n.makeTensorInfo(d,"int32");n.texData.get(p.dataId).usage=_a.PIXELS,n.gpgpu.uploadPixelDataToTexture(n.getTexture(p.dataId),r);let c=se().getBool("WEBGL_PACK")?new Wge(h):new Lge(h),m=n.runWebGLProgram(c,[p],"int32");return n.disposeData(p.dataId),m}function Uge(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dataFormat:d,dilations:h,dimRoundingMode:p,activation:c,leakyreluAlpha:m}=a,f=M.convertConv2DDataFormat(d),g=M.computeConv2DInfo(r.shape,s.shape,l,h,u,p,!1,f),y,A=[];if(g.filterHeight===1&&g.filterWidth===1&&g.dilationHeight===1&&g.dilationWidth===1&&g.strideHeight===1&&g.strideWidth===1&&(g.padInfo.type==="SAME"||g.padInfo.type==="VALID"))y=UE({x:r,filter:s,convInfo:g,backend:n,bias:i,activation:c,preluActivationWeights:o,leakyreluAlpha:m});else if(se().getBool("WEBGL_CONV_IM2COL")&&r.shape[0]===1)y=jE({x:r,filter:s,convInfo:g,backend:n,bias:i,activation:c,preluActivationWeights:o,leakyreluAlpha:m});else{let v=i!=null,b=o!=null,w=c==="leakyrelu",I=c?j0(c,!1):null,T=new VE(g,v,I,b,w),C=[r,s];if(i&&C.push(i),o&&C.push(o),w){let z=n.makeTensorInfo([],"float32",k.createScalarValue(m,"float32"));C.push(z),A.push(z)}y=n.runWebGLProgram(T,C,"float32")}let x=be({inputs:{x:y},backend:n,attrs:{shape:g.outShape}});return A.push(y),A.forEach(v=>n.disposeIntermediateTensorInfo(v)),x}var jge={kernelName:Wl,backendName:"webgl",kernelFunc:Uge};function Hge(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dilations:d,dimRoundingMode:h,activation:p,leakyreluAlpha:c}=a,m=[],f=d;f==null&&(f=[1,1]),k.assert(M.eitherStridesOrDilationsAreOne(l,f),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${l} and dilations '${f}'`);let g=M.computeConv2DInfo(r.shape,s.shape,l,f,u,h,!0),y=se().getBool("WEBGL_PACK_DEPTHWISECONV")&&g.strideWidth<=2&&g.outChannels/g.inChannels==1,A=p?j0(p,y):null,x=[r,s],v=i!=null,b=o!=null,w=p==="leakyrelu";if(v&&x.push(i),b&&x.push(o),w){let C=n.makeTensorInfo([],"float32",k.createScalarValue(c,"float32"));x.push(C),m.push(C)}let I;y?I=new XE(g,v,A,b,w):I=new KE(g,v,A,b,w);let T=n.runWebGLProgram(I,x,"float32");return m.forEach(C=>n.disposeIntermediateTensorInfo(C)),T}var Gge={kernelName:Bl,backendName:"webgl",kernelFunc:Hge},qge=class{constructor(e,t,n){this.sliceDim=e,this.strides=t,this.variableNames=["x","indices"],this.outputShape=n;let a=kt(t.length),r=kt(n.length),s=this.sliceDim>1?"strides[j]":"strides";this.userCode=`
|
|
${a} strides = ${a}(${this.strides});
|
|
void main() {
|
|
${r} coords = getOutputCoords();
|
|
int flattenIndex = 0;
|
|
for (int j = 0; j < ${this.sliceDim}; j++) {
|
|
int index = round(getIndices(coords[0], j));
|
|
flattenIndex += index * ${s};
|
|
}
|
|
setOutput(getX(flattenIndex, coords[1]));
|
|
}
|
|
`}};function Kge(e){let{inputs:t,backend:n}=e,{params:a,indices:r}=t,s=r.shape,i=s[s.length-1],o=k.sizeFromShape(a.shape),[l,u,d,h]=M.prepareAndValidate(a,r),p=be({inputs:{x:r},backend:n,attrs:{shape:[u,i]}}),c=be({inputs:{x:a},backend:n,attrs:{shape:[k.sizeFromShape(a.shape)/d,d]}});if(n.shouldExecuteOnCPU([a,r])||a.dtype==="string"){let y=n.readSync(r.dataId),A=n.bufferSync(a),x=uce(y,A,a.dtype,u,i,d,h,a.shape,o);return n.makeTensorInfo(l,a.dtype,x.values)}let m=new qge(i,h,[u,d]),f=n.runWebGLProgram(m,[c,p],c.dtype),g=be({inputs:{x:f},backend:n,attrs:{shape:l}});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(f),g}var Xge={kernelName:Pd,backendName:"webgl",kernelFunc:Kge},Zge=class{constructor(e,t){this.variableNames=["A","indices"],this.outputShape=t,this.rank=t.length;let n=kt(this.rank),a=Yge(e,2);this.userCode=`
|
|
void main() {
|
|
${n} resRC = getOutputCoords();
|
|
setOutput(getA(${a}));
|
|
}
|
|
`}};function Yge(e,t){let n=["resRC.x","resRC.y","resRC.z","resRC.w"],a=[];for(let r=0;r<e.length;r++)r===2?a.push("int(getIndices(resRC.x, resRC.z))"):a.push(`${n[r]}`);return a.join()}function Jge(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,indices:s}=t,{axis:i,batchDims:o}=a,l=k.parseAxisParam(i,r.shape)[0],u=M.segment_util.collectGatherOpShapeInfo(r,s,l,o),d=k.sizeFromShape(s.shape),h=[],p=be({inputs:{x:r},backend:n,attrs:{shape:[u.batchSize,u.outerSize,u.dimSize,u.sliceSize]}}),c=be({inputs:{x:s},backend:n,attrs:{shape:[u.batchSize,d/u.batchSize]}});h.push(p),h.push(c);let m=[u.batchSize,u.outerSize,d/u.batchSize,u.sliceSize];if(n.shouldExecuteOnCPU([r,s])||r.dtype==="string"){let A=n.bufferSync(c),x=n.bufferSync(p),v=dce(x,A,m);return h.forEach(b=>n.disposeIntermediateTensorInfo(b)),n.makeTensorInfo(u.outputShape,v.dtype,v.values)}let f=new Zge(p.shape,m),g=n.runWebGLProgram(f,[p,c],p.dtype);h.push(g);let y=be({inputs:{x:g},backend:n,attrs:{shape:u.outputShape}});return h.forEach(A=>n.disposeIntermediateTensorInfo(A)),y}var Qge={kernelName:zd,backendName:"webgl",kernelFunc:Jge},eye="return float(a > b);",tye=`
|
|
return vec4(greaterThan(a, b));
|
|
`,nye=Tn({opSnippet:eye,packedOpSnippet:tye,cpuKernelImpl:hce,dtype:"bool"}),aye={kernelName:hl,backendName:"webgl",kernelFunc:nye},rye="return float(a >= b);",sye=`
|
|
return vec4(greaterThanEqual(a, b));
|
|
`,iye=Tn({opSnippet:rye,packedOpSnippet:sye,dtype:"bool",cpuKernelImpl:pce}),oye={kernelName:Mi,backendName:"webgl",kernelFunc:iye};function lye(e){let{inputs:t,backend:n}=e,{input:a}=t;return eC(a,!0,n)}var uye={kernelName:_1,backendName:"webgl",kernelFunc:lye},dye="return float(!isnan(x) && !isinf(x));",hye=ot({opSnippet:dye,dtype:"bool"}),pye={kernelName:Ld,backendName:"webgl",kernelFunc:hye},cye="return float(isinf(x));",fye=ot({opSnippet:cye,dtype:"bool"}),mye={kernelName:Wd,backendName:"webgl",kernelFunc:fye},gye="return float(isnan(x));",yye=ot({opSnippet:gye,dtype:"bool"}),Aye={kernelName:Bd,backendName:"webgl",kernelFunc:yye},xye="return float(a < b);",bye=`
|
|
return vec4(lessThan(a, b));
|
|
`,vye=Tn({opSnippet:xye,packedOpSnippet:bye,cpuKernelImpl:cce,dtype:"bool"}),wye={kernelName:fl,backendName:"webgl",kernelFunc:vye},kye="return float(a <= b);",Iye=`
|
|
return vec4(lessThanEqual(a, b));
|
|
`,Sye=Tn({opSnippet:kye,packedOpSnippet:Iye,cpuKernelImpl:fce,dtype:"bool"}),Nye={kernelName:ml,backendName:"webgl",kernelFunc:Sye};function Tye(e){let{backend:t,attrs:n}=e,{start:a,stop:r,num:s}=n,i=mce(a,r,s);return t.makeTensorInfo([i.length],"float32",i)}var Eye={kernelName:P1,backendName:"webgl",kernelFunc:Tye},Cye=`if (x < 0.0) return NAN;
|
|
return log(x);`,Mye=`
|
|
vec4 result = log(x);
|
|
vec4 isNaN = vec4(lessThan(x, vec4(0.0)));
|
|
result.r = isNaN.r == 1.0 ? NAN : result.r;
|
|
result.g = isNaN.g == 1.0 ? NAN : result.g;
|
|
result.b = isNaN.b == 1.0 ? NAN : result.b;
|
|
result.a = isNaN.a == 1.0 ? NAN : result.a;
|
|
|
|
return result;
|
|
`,$ye=ot({opSnippet:Cye,packedOpSnippet:Mye,cpuKernelImpl:gce}),Rye={kernelName:$i,backendName:"webgl",kernelFunc:$ye},Fye="return log(1.0 + x);",Oye=ot({opSnippet:Fye}),Dye={kernelName:Vd,backendName:"webgl",kernelFunc:Oye},_ye="return float(a >= 1.0 && b >= 1.0);",zye=`
|
|
return vec4(
|
|
vec4(greaterThanEqual(a, vec4(1.0))) *
|
|
vec4(greaterThanEqual(b, vec4(1.0))));
|
|
`,Pye=Tn({opSnippet:_ye,packedOpSnippet:zye,dtype:"bool"}),Lye={kernelName:Ud,backendName:"webgl",kernelFunc:Pye},Wye="return float(!(x >= 1.0));",Bye=ot({opSnippet:Wye}),Vye={kernelName:ef,backendName:"webgl",kernelFunc:Bye},Uye="return float(a >= 1.0 || b >= 1.0);",jye=`
|
|
return min(
|
|
vec4(greaterThanEqual(a, vec4(1.0))) +
|
|
vec4(greaterThanEqual(b, vec4(1.0))),
|
|
vec4(1.0));
|
|
`,Hye=Tn({opSnippet:Uye,packedOpSnippet:jye,dtype:"bool"}),Gye={kernelName:tf,backendName:"webgl",kernelFunc:Hye},qye=class{constructor(e,t,n,a,r){this.variableNames=["x"],this.outputShape=[];let s=t,i=e[3]-1;this.outputShape=e;let o,l=`float(${n}) + float(${a}) * sum`;r===.5?o=`inversesqrt(${l})`:r===1?o=`1.0/(${l})`:o=`exp(log(${l}) * float(-${r}));`,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
int d = coords[3];
|
|
float x = getX(b, r, c, d);
|
|
float sum = 0.0;
|
|
for (int j = -${s}; j <= ${s}; j++) {
|
|
int idx = d + j;
|
|
if (idx >= 0 && idx <= ${i}) {
|
|
float z = getX(b, r, c, idx);
|
|
sum += z * z;
|
|
}
|
|
}
|
|
float val = x * ${o};
|
|
setOutput(val);
|
|
}
|
|
`}},Kye=class{constructor(e,t,n,a,r){this.variableNames=["x"],this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0;let s=t,i=e[3]-1;this.outputShape=e;let o,l=`float(${n}) + float(${a}) * sum`;r===.5?o=`inversesqrt(${l})`:r===1?o=`1.0/(${l})`:o=`exp(log(${l}) * float(-${r}));`,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords.x;
|
|
int r = coords.y;
|
|
int c = coords.z;
|
|
int d = coords.w;
|
|
|
|
bool hasNextCol = d < ${this.outputShape[3]};
|
|
bool hasNextRow = c < ${this.outputShape[2]};
|
|
|
|
vec4 sum = vec4(0.);
|
|
vec4 xFragAtOutputCoords = getX(b, r, c, d);
|
|
|
|
vec4 xAtOutputCoords = vec4(
|
|
getChannel(xFragAtOutputCoords, vec2(c, d)),
|
|
hasNextCol ?
|
|
getChannel(xFragAtOutputCoords, vec2(c, d + 1)) : 0.0,
|
|
hasNextRow ?
|
|
getChannel(xFragAtOutputCoords , vec2(c + 1, d)) : 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getChannel(xFragAtOutputCoords, vec2(c + 1, d + 1)) : 0.0
|
|
);
|
|
|
|
int firstChannel = d - ${s};
|
|
vec2 cache = vec2(0.);
|
|
if(firstChannel >= 0){
|
|
vec4 firstChannelFrag = getX(b, r, c, firstChannel);
|
|
cache.x = getChannel(firstChannelFrag, vec2(c, firstChannel));
|
|
if(hasNextRow){
|
|
cache.y = getChannel(firstChannelFrag, vec2(c + 1, firstChannel));
|
|
}
|
|
}
|
|
|
|
ivec2 depth = ivec2(d, d + 1);
|
|
for (int j = - ${s}; j <= ${s}; j++) {
|
|
ivec2 idx = depth + j;
|
|
bvec2 aboveLowerBound = greaterThanEqual(idx, ivec2(0));
|
|
bvec2 belowUpperBound = lessThanEqual(idx, ivec2(${i}));
|
|
|
|
bool depthInRange = aboveLowerBound.x && belowUpperBound.x;
|
|
bool depthPlusOneInRange = aboveLowerBound.y && belowUpperBound.y;
|
|
|
|
if(depthInRange || depthPlusOneInRange){
|
|
vec4 z = vec4(0.);
|
|
vec4 xFragAtCurrentDepth;
|
|
z.xz = cache.xy;
|
|
if(depthPlusOneInRange && hasNextCol){
|
|
xFragAtCurrentDepth = idx.y != d ?
|
|
getX(b, r, c, idx.y) : xFragAtOutputCoords;
|
|
z.y = getChannel(xFragAtCurrentDepth, vec2(c, idx.y));
|
|
if(hasNextRow){
|
|
z.w = getChannel(xFragAtCurrentDepth, vec2(c + 1, idx.y));
|
|
}
|
|
}
|
|
cache.xy = z.yw;
|
|
sum += z * z;
|
|
}
|
|
}
|
|
vec4 result = xAtOutputCoords * ${o};
|
|
setOutput(result);
|
|
}
|
|
`}},Xye=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{depthRadius:s,bias:i,alpha:o,beta:l}=a,u=se().getBool("WEBGL_PACK_NORMALIZATION")?new Kye(r.shape,s,i,o,l):new qye(r.shape,s,i,o,l);return n.runWebGLProgram(u,[r],r.dtype)},Zye={kernelName:nf,backendName:"webgl",kernelFunc:Xye},Yye=class{constructor(e,t,n,a,r){this.variableNames=["inputImage","outputImage","dy"],this.outputShape=[],this.outputShape=e,this.depth=e[3],this.depthRadius=t,this.bias=n,this.alpha=a,this.beta=r,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float result = 0.0;
|
|
for (int d = 0; d < ${this.depth}; ++d) {
|
|
int depthBegin = int(max(0.0, float(d - ${t})));
|
|
int depthEnd = int(min(float(${this.depth}),
|
|
float(d + ${t} + 1)));
|
|
|
|
const int MIN_DEPTH_BEGIN = 0;
|
|
const int MAX_DEPTH_END = ${this.depth};
|
|
|
|
float norm = 0.0;
|
|
for (int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k) {
|
|
if (k < depthBegin){
|
|
continue;
|
|
}
|
|
else if (k >= depthBegin && k < depthEnd) {
|
|
norm += getInputImage(b, r, c, k) * getInputImage(b, r, c, k);
|
|
}
|
|
else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
norm = float(${a}) * norm + float(${n});
|
|
|
|
for(int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k){
|
|
if (k < depthBegin){
|
|
continue;
|
|
}
|
|
else if (k >= depthBegin && k < depthEnd){
|
|
float dyi = -2.0 * float(${a})
|
|
* float(${r})
|
|
* getInputImage(b ,r ,c, k) * getOutputImage(b, r, c, d)
|
|
/ norm;
|
|
if (k == d) {
|
|
dyi += pow(norm, -1.0 * ${r});
|
|
}
|
|
if (k == coords[3]) {
|
|
dyi *= getDy(b, r, c, d);
|
|
result += dyi;
|
|
}
|
|
}
|
|
else {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}},Jye=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r,y:s,dy:i}=t,{depthRadius:o,bias:l,alpha:u,beta:d}=a,h=new Yye(r.shape,o,l,u,d);return n.runWebGLProgram(h,[r,s,i],r.dtype)},Qye={kernelName:L1,backendName:"webgl",kernelFunc:Jye};function e1e(e,t,n,a){let r=k.sizeFromShape(t),s=k.sizeFromShape(e.shape)/r,i=be({inputs:{x:e},attrs:{shape:[s,r]},backend:a}),o=bo(i,e.dtype,"max",a),l=be({inputs:{x:o},attrs:{shape:n},backend:a});return a.disposeIntermediateTensorInfo(i),a.disposeIntermediateTensorInfo(o),l}function nC(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{reductionIndices:s,keepDims:i}=a,o=r.shape.length,l=k.parseAxisParam(s,r.shape),u=l,d=M.getAxesPermutation(u,o),h=d!=null,p=n.shouldExecuteOnCPU([r]),c=r;if(h){if(p){let A=n.texData.get(c.dataId).values,x=new Array(o);for(let w=0;w<x.length;w++)x[w]=r.shape[d[w]];let v=sb(A,r.shape,r.dtype,d,x);c=n.makeTensorInfo(x,r.dtype);let b=n.texData.get(c.dataId);b.values=v}else c=H0(r,d,n);u=M.getInnerMostAxes(u.length,o)}M.assertAxesAreInnerMostDims("max",u,o);let[m,f]=M.computeOutAndReduceShapes(c.shape,u),g=m;i&&(g=M.expandShapeToKeepDim(m,l));let y;if(p){let A=n.texData.get(c.dataId).values,x=yce(A,k.sizeFromShape(f),g,r.dtype);y=n.makeTensorInfo(g,r.dtype);let v=n.texData.get(y.dataId);v.values=x}else y=e1e(c,f,g,n);return h&&n.disposeIntermediateTensorInfo(c),y}var t1e={kernelName:gl,backendName:"webgl",kernelFunc:nC},n1e=vE+`
|
|
return max(a, b);
|
|
`,a1e=`
|
|
vec4 result = vec4(max(a, b));
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+U0+`
|
|
return result;
|
|
`,r1e=Tn({opSnippet:n1e,packedOpSnippet:a1e,cpuKernelImpl:Ace}),s1e={kernelName:Ri,backendName:"webgl",kernelFunc:r1e};function i1e(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t;mu(r,"maxPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=a,u=1;k.assert(M.eitherStridesOrDilationsAreOne(i,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let d=M.computePool2DInfo(r.shape,s,i,u,o,l);if(d.filterWidth===1&&d.filterHeight===1&&k.arraysEqual(d.inShape,d.outShape))return fa({inputs:{x:r},backend:n});let h=new cp(d,"max",!1);return n.runWebGLProgram(h,[r],r.dtype)}var o1e={kernelName:yl,backendName:"webgl",kernelFunc:i1e};function l1e(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{filterSize:s,strides:i,pad:o,dataFormat:l,dimRoundingMode:u}=a,d=[1,1,1],h=M.computePool3DInfo(r.shape,s,i,d,o,u,l),p=new lb(h,"max",!1);return n.runWebGLProgram(p,[r],r.dtype)}var u1e={kernelName:af,backendName:"webgl",kernelFunc:l1e},d1e=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideHeight,n=e.strideWidth,a=e.dilationHeight,r=e.effectiveFilterHeight,s=e.effectiveFilterWidth,i=r-1-e.padInfo.top,o=s-1-e.padInfo.left,l=r*s-1;this.userCode=`
|
|
const ivec2 pads = ivec2(${i}, ${o});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 dyRCCorner = coords.yz - pads;
|
|
int dyRCorner = dyRCCorner.x;
|
|
int dyCCorner = dyRCCorner.y;
|
|
|
|
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${r};
|
|
wR += ${a}) {
|
|
float dyR = float(dyRCorner + wR) / ${t}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${s}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${n}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(b, idyR, idyC, d);
|
|
int maxPosValue = ${l} - int(getMaxPos(b, idyR, idyC, d));
|
|
|
|
// Get the current value, check it against the value from the
|
|
// position matrix.
|
|
int curPosValue = wR * ${s} + wC;
|
|
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
|
|
|
|
dotProd += dyValue * mask;
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},h1e=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideDepth,n=e.strideHeight,a=e.strideWidth,r=e.dilationDepth,s=e.dilationHeight,i=e.dilationWidth,o=e.effectiveFilterDepth,l=e.effectiveFilterHeight,u=e.effectiveFilterWidth,d=o-1-e.padInfo.front,h=l-1-e.padInfo.top,p=u-1-e.padInfo.left,c=o*l*u-1;this.userCode=`
|
|
const ivec3 pads = ivec3(${d}, ${h}, ${p});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyDCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
// Convolve dy(?, ?, ?, ch) with pos mask(:, :, :, d) to get
|
|
// dx(xD, xR, xC, ch).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int wD = 0; wD < ${o};
|
|
wD += ${r}) {
|
|
float dyD = float(dyDCorner + wD) / ${t}.0;
|
|
|
|
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyD = int(dyD);
|
|
|
|
for (int wR = 0; wR < ${l};
|
|
wR += ${s}) {
|
|
float dyR = float(dyRCorner + wR) / ${n}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${u};
|
|
wC += ${i}) {
|
|
float dyC = float(dyCCorner + wC) / ${a}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
|
|
int maxPosValue = ${c} -
|
|
int(getMaxPos(batch, idyD, idyR, idyC, ch));
|
|
|
|
// Get the current value, check it against the value from the
|
|
// position matrix.
|
|
int curPosValue =
|
|
wD * ${l} * ${u} +
|
|
wR * ${u} + wC;
|
|
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
|
|
|
|
dotProd += dyValue * mask;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function p1e(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,i=s,{filterSize:o,strides:l,pad:u,dimRoundingMode:d}=a,h=[1,1,1],p=M.computePool3DInfo(i.shape,o,l,h,u,d),c=new lb(p,"max",!0),m=n.runWebGLProgram(c,[i],i.dtype),f=new h1e(p),g=n.runWebGLProgram(f,[r,m],i.dtype);return n.disposeIntermediateTensorInfo(m),g}var c1e={kernelName:B1,backendName:"webgl",kernelFunc:p1e};function f1e(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s,output:i}=t,o=s;mu([s,i],"maxPoolGrad");let{filterSize:l,strides:u,pad:d,dimRoundingMode:h}=a,p=M.computePool2DInfo(o.shape,l,u,1,d,h),c=!0,m=new cp(p,"max",c),f=n.runWebGLProgram(m,[o],o.dtype),g=new d1e(p),y=n.runWebGLProgram(g,[r,f],o.dtype);return n.disposeIntermediateTensorInfo(f),y}var m1e={kernelName:W1,backendName:"webgl",kernelFunc:f1e};function g1e(e,t,n,a){let r=new cp(n,"max",!1),s=a.runWebGLProgram(r,[e],"float32");r=new cp(n,"max",!0,!0,t);let i=a.runWebGLProgram(r,[e],"float32");return[s,i]}var y1e={kernelName:V1,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:a}=e,{filterSize:r,strides:s,pad:i,includeBatchInIndex:o}=t,l=n;k.assert(a.shape.length===4,()=>`Error in maxPool: input must be rank 4 but got rank ${a.shape.length}.`);let u=[1,1];k.assert(M.eitherStridesOrDilationsAreOne(s,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${s} and dilations '${u}'`);let d=M.computePool2DInfo(a.shape,r,s,u,i),[h,p]=g1e(a,o,d,l);return[h,p]}};function A1e(e,t,n,a){let r=k.sizeFromShape(t),s=k.sizeFromShape(e.shape)/r,i=be({inputs:{x:e},attrs:{shape:[s,r]},backend:a}),o=bo(i,"float32","mean",a),l=be({inputs:{x:o},attrs:{shape:n},backend:a});return a.disposeIntermediateTensorInfo(i),a.disposeIntermediateTensorInfo(o),l}var x1e={kernelName:Al,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:a}=e,{keepDims:r,axis:s}=t,i=n,o=a.shape.length,l=k.parseAxisParam(s,a.shape),u=l,d=M.getAxesPermutation(u,o),h=d!=null,p=i.shouldExecuteOnCPU([a]),c=[],m=a;if(h){if(p){let x=i.texData.get(m.dataId).values,v=new Array(o);for(let I=0;I<v.length;I++)v[I]=a.shape[d[I]];let b=sb(x,a.shape,a.dtype,d,v);m=i.makeTensorInfo(v,a.dtype);let w=i.texData.get(m.dataId);w.values=b}else m=H0(a,d,i);c.push(m),u=M.getInnerMostAxes(u.length,o)}M.assertAxesAreInnerMostDims("sum",u,o);let[f,g]=M.computeOutAndReduceShapes(m.shape,u),y=f;r&&(y=M.expandShapeToKeepDim(f,l));let A=A1e(m,g,y,i);for(let x of c)i.disposeIntermediateTensorInfo(x);return A}};function b1e(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=r.shape.length,l=k.parseAxisParam(s,r.shape),u=l,d=M.getAxesPermutation(u,o),h=r;d!=null&&(h=Vn({inputs:{x:r},backend:n,attrs:{perm:d}}),u=M.getInnerMostAxes(u.length,r.shape.length)),M.assertAxesAreInnerMostDims("min",u,o);let[p,c]=M.computeOutAndReduceShapes(h.shape,u),m=k.sizeFromShape(c),f=be({inputs:{x:h},backend:n,attrs:{shape:[-1,m]}}),g=bo(f,f.dtype,"min",n),y;if(i){let A=M.expandShapeToKeepDim(p,l);y=be({inputs:{x:g},backend:n,attrs:{shape:A}})}else y=be({inputs:{x:g},backend:n,attrs:{shape:p}});return n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(g),d!=null&&n.disposeIntermediateTensorInfo(h),y}var v1e={kernelName:xl,backendName:"webgl",kernelFunc:b1e},w1e=vE+`
|
|
return min(a, b);
|
|
`,k1e=`
|
|
vec4 result = vec4(min(a, b));
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+U0+`
|
|
return result;
|
|
`,I1e=Tn({opSnippet:w1e,packedOpSnippet:k1e,cpuKernelImpl:xce}),S1e={kernelName:Fi,backendName:"webgl",kernelFunc:I1e},N1e=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=t.map((u,d)=>u[0]+e[d]+u[1]);let a=e.length,r=kt(a),s=t.map(u=>u[0]).join(","),i=t.map((u,d)=>u[0]+e[d]).join(","),o=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,a),l=n==="reflect"?0:1;if(a===1){this.userCode=`
|
|
int start = ${s};
|
|
int end = ${i};
|
|
|
|
void main() {
|
|
int outC = getOutputCoords();
|
|
if (outC < start) {
|
|
outC = start * 2 - outC - ${l};
|
|
} else if(outC >= end) {
|
|
outC = (end - 1) * 2 - outC + ${l};
|
|
}
|
|
setOutput(getX(outC - start));
|
|
}
|
|
`;return}this.userCode=`
|
|
${r} start = ${r}(${s});
|
|
${r} end = ${r}(${i});
|
|
|
|
void main() {
|
|
${r} outC = getOutputCoords();
|
|
for (int i = 0; i < ${a}; i++) {
|
|
if (outC[i] < start[i]) {
|
|
outC[i] = start[i] * 2 - outC[i] - ${l};
|
|
} else if(outC[i] >= end[i]) {
|
|
outC[i] = (end[i] - 1) * 2 - outC[i] + ${l};
|
|
}
|
|
}
|
|
${r} coords = outC - start;
|
|
setOutput(getX(${o}));
|
|
}
|
|
`}},T1e=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((c,m)=>c[0]+e[m]+c[1]);let a=e.length,r=kt(a),s=t.map(c=>c[0]).join(","),i=t.map((c,m)=>c[0]+e[m]).join(","),o=Bn("rc",a),l=Bn("source",a),u=`${o[a-1]} < ${this.outputShape[a-1]}`,d=a===1?"source":`vec2(${l.slice(-2).join()})`,h=n==="reflect"?0:1,p="";if(a===1){let c=`
|
|
${r} source = rc;
|
|
if (source < start) {
|
|
source = start * 2 - source - ${h};
|
|
} else if (source >= end) {
|
|
source = (end - 1) * 2 - source + ${h};
|
|
}
|
|
source -= start;
|
|
`;p=`
|
|
${r} rc = outputLoc;
|
|
${c}
|
|
result[0] = getChannel(getX(${l.join()}), ${d});
|
|
${o[a-1]} += 1;
|
|
if(${u}) {
|
|
${c}
|
|
result[1] = getChannel(getX(${l.join()}), ${d});
|
|
}
|
|
`}else{let c=`
|
|
${r} source = rc;
|
|
${r} lt = ${r}(lessThan(source, start));
|
|
${r} gte = ${r}(greaterThanEqual(source, end));
|
|
${r} orig = 1 - (lt + gte);
|
|
source = orig * source +
|
|
lt * (start * 2 - source - ${h}) +
|
|
gte * ((end - 1) * 2 - source + ${h});
|
|
source -= start;
|
|
`;p=`
|
|
${r} rc = outputLoc;
|
|
${c}
|
|
result[0] = getChannel(getX(${l.join()}), ${d});
|
|
${o[a-1]} += 1;
|
|
if(${u}) {
|
|
${c}
|
|
result[1] = getChannel(getX(${l.join()}), ${d});
|
|
}
|
|
rc = outputLoc;
|
|
${o[a-2]} += 1;
|
|
if(${o[a-2]} < ${this.outputShape[a-2]}) {
|
|
${c}
|
|
result[2] = getChannel(getX(${l.join()}), ${d});
|
|
${o[a-1]} += 1;
|
|
if(${u}) {
|
|
${c}
|
|
result[3] = getChannel(getX(${l.join()}), ${d});
|
|
}
|
|
}
|
|
`}this.userCode=`
|
|
const ${r} start = ${r}(${s});
|
|
const ${r} end = ${r}(${i});
|
|
|
|
void main() {
|
|
${r} outputLoc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
${p}
|
|
setOutput(result);
|
|
}
|
|
`}},E1e=({inputs:e,backend:t,attrs:n})=>{let{x:a}=e,{paddings:r,mode:s}=n,i=se().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new T1e(a.shape,r,s):new N1e(a.shape,r,s);return t.runWebGLProgram(i,[a],a.dtype)},C1e={kernelName:bl,backendName:"webgl",kernelFunc:E1e},M1e=`if (b == 0.0) return NAN;
|
|
return mod(a, b);`,$1e=`
|
|
vec4 result = mod(a, b);
|
|
vec4 isNaN = vec4(equal(b, vec4(0.0)));
|
|
`+U0+`
|
|
return result;
|
|
`,R1e=Tn({opSnippet:M1e,packedOpSnippet:$1e}),F1e={kernelName:jd,backendName:"webgl",kernelFunc:R1e},O1e=class{constructor(e,t,n){this.variableNames=["probs"],this.outputShape=[e,n],this.userCode=`
|
|
uniform float seed;
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
|
|
float r = random(seed);
|
|
float cdf = 0.0;
|
|
|
|
for (int i = 0; i < ${t-1}; i++) {
|
|
cdf += getProbs(batch, i);
|
|
|
|
if (r < cdf) {
|
|
setOutput(float(i));
|
|
return;
|
|
}
|
|
}
|
|
|
|
// If no other event happened, last event happened.
|
|
setOutput(float(${t-1}));
|
|
}
|
|
`}getCustomSetupFunc(e){return(t,n)=>{this.seedLoc==null&&(this.seedLoc=t.getUniformLocation(n,"seed")),t.gl.uniform1f(this.seedLoc,e)}}},D1e=`
|
|
if (a == b) {
|
|
return 1.0;
|
|
};
|
|
return a / b;`,_1e=`
|
|
// vec4 one = vec4(equal(a, b));
|
|
// return one + (vec4(1.0) - one) * a / b;
|
|
vec4 result = a / b;
|
|
if(a.x == b.x) {
|
|
result.x = 1.;
|
|
}
|
|
if(a.y == b.y) {
|
|
result.y = 1.;
|
|
}
|
|
if(a.z == b.z) {
|
|
result.z = 1.;
|
|
}
|
|
if(a.w == b.w) {
|
|
result.w = 1.;
|
|
}
|
|
|
|
return result;
|
|
`,aC=Tn({opSnippet:D1e,packedOpSnippet:_1e,checkOutOfBounds:!0}),z1e={kernelName:il,backendName:"webgl",kernelFunc:aC},rC="return a - b;",sC=Tn({opSnippet:rC,packedOpSnippet:rC,supportsComplex:!0,cpuKernelImpl:Fce}),P1e={kernelName:zi,backendName:"webgl",kernelFunc:sC};function iC(e){let{inputs:t,backend:n,attrs:a}=e,{logits:r}=t,{dim:s}=a,i=k.parseAxisParam([s],r.shape),o=nC({inputs:{x:r},backend:n,attrs:{reductionIndices:i,keepDims:!1}}),l=M.expandShapeToKeepDim(o.shape,i),u=be({inputs:{x:o},backend:n,attrs:{shape:l}}),d=sC({inputs:{a:r,b:u},backend:n}),h=YE({inputs:{x:d},backend:n}),p=G0({inputs:{x:h},backend:n,attrs:{axis:i,keepDims:!1}}),c=be({inputs:{x:p},backend:n,attrs:{shape:l}}),m=aC({inputs:{a:h,b:c},backend:n});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(c),m}var L1e={kernelName:Dl,backendName:"webgl",kernelFunc:iC};function W1e(e){let{inputs:t,backend:n,attrs:a}=e,{logits:r}=t,{numSamples:s,seed:i,normalized:o}=a,l=o?r:iC({inputs:{logits:r},backend:n,attrs:{dim:r.shape.length-1}}),u=l.shape[0],d=l.shape[1],h=new O1e(u,d,s),p=h.getCustomSetupFunc(i),c=n.runWebGLProgram(h,[l],"int32",p);return o||n.disposeIntermediateTensorInfo(l),c}var B1e={kernelName:U1,backendName:"webgl",kernelFunc:W1e},oC="return -x;";function V1e(e){let{inputs:t,backend:n}=e,{x:a}=t;if(n.shouldExecuteOnCPU([a])){let s=n.texData.get(a.dataId),[i,o]=vce(s.values,a.shape,a.dtype);return n.makeTensorInfo(o,a.dtype,i)}let r;return se().getBool("WEBGL_PACK_UNARY_OPERATIONS")?r=new wu(a.shape,oC):r=new Qs(a.shape,oC),n.runWebGLProgram(r,[a],a.dtype)}var U1e={kernelName:Hd,backendName:"webgl",kernelFunc:V1e},j1e=us.nonMaxSuppressionV3Impl;function H1e(e){M.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l}=a,u=n.readSync(r.dataId),d=n.readSync(s.dataId),{selectedIndices:h}=j1e(u,d,i,o,l);return n.makeTensorInfo([h.length],"int32",new Int32Array(h))}var G1e={kernelName:Gd,backendName:"webgl",kernelFunc:H1e},q1e=us.nonMaxSuppressionV4Impl;function K1e(e){M.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,padToMaxOutputSize:u}=a,d=n.readSync(r.dataId),h=n.readSync(s.dataId),{selectedIndices:p,validOutputs:c}=q1e(d,h,i,o,l,u);return[n.makeTensorInfo([p.length],"int32",new Int32Array(p)),n.makeTensorInfo([],"int32",new Int32Array([c]))]}var X1e={kernelName:qd,backendName:"webgl",kernelFunc:K1e},Z1e=us.nonMaxSuppressionV5Impl;function Y1e(e){M.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,softNmsSigma:u}=a,d=n.readSync(r.dataId),h=n.readSync(s.dataId),p=i,c=o,m=l,f=u,{selectedIndices:g,selectedScores:y}=Z1e(d,h,p,c,m,f);return[n.makeTensorInfo([g.length],"int32",new Int32Array(g)),n.makeTensorInfo([y.length],"float32",new Float32Array(y))]}var J1e={kernelName:Kd,backendName:"webgl",kernelFunc:Y1e},Q1e=class{constructor(e,t,n,a){this.variableNames=["indices"],this.outputShape=[e,t],this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int index = round(getIndices(coords.x));
|
|
setOutput(mix(float(${a}), float(${n}),
|
|
float(index == coords.y)));
|
|
}
|
|
`}},eAe=e=>{let{inputs:t,backend:n,attrs:a}=e,{indices:r}=t,{depth:s,onValue:i,offValue:o}=a,l=k.sizeFromShape(r.shape),u=new Q1e(l,s,i,o),d=be({inputs:{x:r},backend:n,attrs:{shape:[l]}}),h=n.runWebGLProgram(u,[d],r.dtype);n.disposeIntermediateTensorInfo(d);let p=[...r.shape,s],c=be({inputs:{x:h},backend:n,attrs:{shape:p}});return n.disposeIntermediateTensorInfo(h),c},tAe={kernelName:wl,backendName:"webgl",kernelFunc:eAe};function Y0(e){let{inputs:t,backend:n}=e,{x:a}=t;if(a.dtype==="complex64"){let r=mp({inputs:{input:a},backend:n}),s=Y0({inputs:{x:r},backend:n}),i=Z0({inputs:{input:a},backend:n}),o=Y0({inputs:{x:i},backend:n}),l=ei({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return pb({attrs:{shape:a.shape,dtype:a.dtype,value:a.dtype==="string"?"":0},backend:n})}var nAe={kernelName:ph,backendName:"webgl",kernelFunc:Y0};function lC(e){let{inputs:t,backend:n}=e,{x:a}=t;if(a.dtype==="string")throw new Error("onesLike is not supported under string dtype");if(a.dtype==="complex64"){let r=mp({inputs:{input:a},backend:n}),s=lC({inputs:{x:r},backend:n}),i=Z0({inputs:{input:a},backend:n}),o=Y0({inputs:{x:i},backend:n}),l=ei({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return pb({attrs:{shape:a.shape,dtype:a.dtype,value:1},backend:n})}var aAe={kernelName:Xd,backendName:"webgl",kernelFunc:lC};function rAe(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a;if(t.length===1)return hb({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let s=t[0].shape,i=t[0].dtype;t.forEach(d=>{k.assertShapesMatch(s,d.shape,"All tensors passed to stack must have matching shapes"),k.assert(i===d.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(d=>{let h=hb({inputs:{input:d},backend:n,attrs:{dim:r}});return o.push(h),h}),u=BE({inputs:l,backend:n,attrs:{axis:r}});return o.forEach(d=>n.disposeIntermediateTensorInfo(d)),u}var sAe={kernelName:Zd,backendName:"webgl",kernelFunc:rAe},iAe=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=t.map((l,u)=>l[0]+e[u]+l[1]);let a=e.length,r=kt(a),s=t.map(l=>l[0]).join(","),i=t.map((l,u)=>l[0]+e[u]).join(","),o=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,a);if(a===1){this.userCode=`
|
|
int start = ${s};
|
|
int end = ${i};
|
|
uniform float value;
|
|
|
|
void main() {
|
|
int outC = getOutputCoords();
|
|
if (outC < start || outC >= end) {
|
|
setOutput(value);
|
|
} else {
|
|
setOutput(getX(outC - start));
|
|
}
|
|
}
|
|
`;return}this.userCode=`
|
|
${r} start = ${r}(${s});
|
|
${r} end = ${r}(${i});
|
|
uniform float value;
|
|
|
|
void main() {
|
|
${r} outC = getOutputCoords();
|
|
if (any(lessThan(outC, start)) || any(greaterThanEqual(outC, end))) {
|
|
setOutput(value);
|
|
} else {
|
|
${r} coords = outC - start;
|
|
setOutput(getX(${o}));
|
|
}
|
|
}
|
|
`}getCustomSetupFunc(e){return(t,n)=>{this.valueLoc==null&&(this.valueLoc=t.getUniformLocationNoThrow(n,"value")),t.gl.uniform1f(this.valueLoc,e)}}},oAe=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((m,f)=>m[0]+e[f]+m[1]);let a=e.length,r=kt(a),s=t.map(m=>m[0]).join(","),i=t.map((m,f)=>m[0]+e[f]).join(","),o=Bn("rc",a),l=Bn("source",a),u=`${o[a-1]} < ${this.outputShape[a-1]}`,d=a===1?"source":`vec2(${l.slice(-2).join()})`,h=[`${r} rc = outputLoc;`,`${o[a-1]} += 1;
|
|
if(${u}) {
|
|
`,a===1?"":`}
|
|
rc = outputLoc;
|
|
${o[a-2]} += 1;
|
|
if(${o[a-2]} < ${this.outputShape[a-2]}) {`,a===1?"":` ${o[a-1]} += 1;
|
|
if(${u}) {`],p=a===1?"rc < start || rc >= end":"any(lessThan(rc, start)) || any(greaterThanEqual(rc, end))",c="";for(let m=0,f=a===1?2:4;m<f;m++)c+=`
|
|
${h[m]}
|
|
if (${p}) {
|
|
result[${m}] = float(value);
|
|
} else {
|
|
${r} source = rc - start;
|
|
result[${m}] = getChannel(getX(${l.join()}), ${d});
|
|
}
|
|
`;c+=a===1?"} ":"}}",this.userCode=`
|
|
const ${r} start = ${r}(${s});
|
|
const ${r} end = ${r}(${i});
|
|
uniform float value;
|
|
|
|
void main() {
|
|
${r} outputLoc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
${c}
|
|
setOutput(result);
|
|
}
|
|
`}getCustomSetupFunc(e){return(t,n)=>{this.valueLoc==null&&(this.valueLoc=t.getUniformLocationNoThrow(n,"value")),t.gl.uniform1f(this.valueLoc,e)}}},uC=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{paddings:s,constantValue:i}=a,o=se().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new oAe(r.shape,s,i):new iAe(r.shape,s,i),l=o.getCustomSetupFunc(i);return n.runWebGLProgram(o,[r],r.dtype,l)},lAe={kernelName:kl,backendName:"webgl",kernelFunc:uC},uAe=`
|
|
if(a < 0.0 && floor(b) < b){
|
|
return NAN;
|
|
}
|
|
if (b == 0.0) {
|
|
return 1.0;
|
|
}
|
|
return (round(mod(b, 2.0)) != 1) ?
|
|
pow(abs(a), b) : sign(a) * pow(abs(a), b);
|
|
`,dAe=`
|
|
// isModRound1 has 1 for components with round(mod(b, 2.0)) == 1, 0 otherwise.
|
|
vec4 isModRound1 = vec4(equal(round(mod(b, 2.0)), ivec4(1)));
|
|
vec4 multiplier = sign(a) * isModRound1 + (vec4(1.0) - isModRound1);
|
|
vec4 result = multiplier * pow(abs(a), b);
|
|
|
|
// Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS
|
|
bvec4 isExpZero = equal(b, vec4(0.0));
|
|
result.r = isExpZero.r ? 1.0 : result.r;
|
|
result.g = isExpZero.g ? 1.0 : result.g;
|
|
result.b = isExpZero.b ? 1.0 : result.b;
|
|
result.a = isExpZero.a ? 1.0 : result.a;
|
|
|
|
vec4 isNaN = vec4(lessThan(a, vec4(0.0))) * vec4(lessThan(floor(b), b));
|
|
`+U0+`
|
|
return result;
|
|
`,hAe=Tn({opSnippet:uAe,packedOpSnippet:dAe}),pAe={kernelName:Il,backendName:"webgl",kernelFunc:hAe};function cAe(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=r.shape.length,l=[],u=k.parseAxisParam(s,r.shape),d=u,h=M.getAxesPermutation(d,o),p=r;h!=null&&(p=Vn({inputs:{x:r},backend:n,attrs:{perm:h}}),d=M.getInnerMostAxes(d.length,o),l.push(p)),M.assertAxesAreInnerMostDims("prod",d,o);let c;if(n.shouldExecuteOnCPU([p])){let m=n.texData.get(p.dataId).values,{outVals:f,outShape:g,outDtype:y}=kce(p.shape,p.dtype,m,d);c=n.makeTensorInfo(g,y,f)}else{let[m,f]=M.computeOutAndReduceShapes(p.shape,d),g=k.sizeFromShape(f),y=be({inputs:{x:p},backend:n,attrs:{shape:[-1,g]}}),A=pA(r.dtype),x=bo(y,A,"prod",n);c=be({inputs:{x},backend:n,attrs:{shape:m}}),l.push(y),l.push(x)}if(i){l.push(c);let m=M.expandShapeToKeepDim(c.shape,u);c=be({inputs:{x:c},backend:n,attrs:{shape:m}})}return l.forEach(m=>n.disposeIntermediateTensorInfo(m)),c}var fAe={kernelName:Yd,backendName:"webgl",kernelFunc:cAe},dC=e=>{let{backend:t,attrs:n}=e,{start:a,stop:r,step:s,dtype:i}=n,o=Ice(a,r,s,i);return t.makeTensorInfo([o.length],i,o)},mAe={kernelName:rf,backendName:"webgl",kernelFunc:dC},gAe="return 1.0 / x;",yAe=ot({opSnippet:gAe}),AAe={kernelName:Jd,backendName:"webgl",kernelFunc:yAe},xAe=gr+`
|
|
return (x < 0.0) ? 0.0 : x;
|
|
`,bAe=`
|
|
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,vAe=ot({opSnippet:xAe,packedOpSnippet:bAe}),wAe={kernelName:Nl,backendName:"webgl",kernelFunc:vAe},kAe=gr+`
|
|
return (x < 0.0) ? 0.0 : min(6.0, x);
|
|
`,IAe=`
|
|
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,SAe=ot({opSnippet:kAe,packedOpSnippet:IAe}),NAe={kernelName:El,backendName:"webgl",kernelFunc:SAe},TAe=class{constructor(e,t,n,a,r){this.variableNames=["A"],this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let u=[a&&t>1?i-1:i,a&&n>1?o-1:o],d=[a&&t>1?t-1:t,a&&n>1?n-1:n],h;r?h="(vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC - vec2(0.5)":h="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec2 effectiveInputOverOutputRatioRC = vec2(
|
|
${u[0]/d[0]},
|
|
${u[1]/d[1]});
|
|
const vec2 inputShapeRC = vec2(${i}.0, ${o}.0);
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
ivec2 yRC = coords.yz;
|
|
|
|
// Fractional source index.
|
|
vec2 sourceFracIndexRC = ${h};
|
|
|
|
// Compute the four integer indices.
|
|
ivec2 sourceFloorRC = ivec2(max(sourceFracIndexRC, vec2(0.0)));
|
|
ivec2 sourceCeilRC = ivec2(
|
|
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
|
|
|
|
float topLeft = getA(b, sourceFloorRC.x, sourceFloorRC.y, d);
|
|
float bottomLeft = getA(b, sourceCeilRC.x, sourceFloorRC.y, d);
|
|
float topRight = getA(b, sourceFloorRC.x, sourceCeilRC.y, d);
|
|
float bottomRight = getA(b, sourceCeilRC.x, sourceCeilRC.y, d);
|
|
|
|
vec2 fracRC = sourceFracIndexRC - vec2(sourceFloorRC);
|
|
|
|
float top = topLeft + (topRight - topLeft) * fracRC.y;
|
|
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracRC.y;
|
|
float newValue = top + (bottom - top) * fracRC.x;
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}},EAe=class{constructor(e,t,n,a,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let u=[a&&t>1?i-1:i,a&&n>1?o-1:o],d=[a&&t>1?t-1:t,a&&n>1?n-1:n],h;r?h="(vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC - vec3(0.5)":h="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec3 effectiveInputOverOutputRatioRC = vec3(
|
|
${u[0]/d[0]},
|
|
${u[1]/d[1]},
|
|
${u[1]/d[1]});
|
|
const vec3 inputShapeRC = vec3(${i}.0, ${o}.0,
|
|
${o}.0);
|
|
|
|
float getAValue(int b, int r, int c, int d) {
|
|
return getChannel(getA(b, r, c, d), vec2(c, d));
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
// Calculate values for next column in yRC.z.
|
|
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
|
|
|
|
// Fractional source index.
|
|
vec3 sourceFracIndexRC = ${h};
|
|
|
|
// Compute the four integer indices.
|
|
ivec3 sourceFloorRC = ivec3(max(sourceFracIndexRC, vec3(0.0)));
|
|
ivec3 sourceCeilRC = ivec3(
|
|
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
|
|
|
|
// Should we calculate next column and row elements in 2x2 packed cell.
|
|
bool hasNextCol = d < ${l-1};
|
|
bool hasNextRow = coords.z < ${n-1};
|
|
|
|
// In parallel, construct four corners for all four components in
|
|
// packed 2x2 cell.
|
|
vec4 topLeft = vec4(
|
|
getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d + 1) : 0.0);
|
|
|
|
vec4 bottomLeft = vec4(
|
|
getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d + 1) : 0.0);
|
|
|
|
vec4 topRight = vec4(
|
|
getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d + 1) : 0.0);
|
|
|
|
vec4 bottomRight = vec4(
|
|
getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d + 1) : 0.0);
|
|
|
|
vec3 fracRC = sourceFracIndexRC - vec3(sourceFloorRC);
|
|
|
|
vec4 top = mix(topLeft, topRight, fracRC.yyzz);
|
|
vec4 bottom = mix(bottomLeft, bottomRight, fracRC.yyzz);
|
|
vec4 newValue = mix(top, bottom, fracRC.x);
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}};function CAe(e){let{inputs:t,backend:n,attrs:a}=e,{images:r}=t,{alignCorners:s,halfPixelCenters:i,size:o}=a,[l,u]=o,d=se().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new EAe(r.shape,l,u,s,i):new TAe(r.shape,l,u,s,i);return n.runWebGLProgram(d,[r],"float32")}var MAe={kernelName:Tl,backendName:"webgl",kernelFunc:CAe},$Ae=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,a,r]=t,[,s,i]=e,o=[n&&s>1?a-1:a,n&&i>1?r-1:r],l=[n&&s>1?s-1:s,n&&i>1?i-1:i],u=o[0]/l[0],d=o[1]/l[1],h=1/u,p=1/d,c=Math.ceil(h)*2+2,m=Math.ceil(p)*2+2;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float accumulator = 0.0;
|
|
|
|
const float heightScale = float(${u});
|
|
const float widthScale = float(${d});
|
|
|
|
const float invHeightScale = float(${h});
|
|
const float invWidthScale = float(${p});
|
|
|
|
const int winHeight = int(${c});
|
|
const int winWidth = int(${m});
|
|
|
|
// Compute bounds for where in dy we will look
|
|
float startRLerp = floor(float(r) * invHeightScale);
|
|
int startDyR = int(startRLerp - float(winHeight / 2));
|
|
|
|
float startCLerp = floor(float(c) * invWidthScale);
|
|
int startDyC = int(startCLerp - float(winWidth / 2));
|
|
|
|
// Loop over dy
|
|
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
|
|
int dyR = dyROffset + startDyR;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyR < 0 || dyR >= ${s}) {
|
|
continue;
|
|
}
|
|
|
|
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
|
|
int dyC = dyCOffset + startDyC;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyC < 0 || dyC >= ${i}) {
|
|
continue;
|
|
}
|
|
|
|
float dxR = float(dyR) * heightScale;
|
|
int topDxRIndex = int(floor(dxR));
|
|
int bottomDxRIndex = int(min(ceil(dxR), ${a-1}.0));
|
|
float dxRLerp = dxR - float(topDxRIndex);
|
|
float inverseDxRLerp = 1.0 - dxRLerp;
|
|
|
|
float dxC = float(dyC) * widthScale;
|
|
int leftDxCIndex = int(floor(dxC));
|
|
int rightDxCIndex = int(min(ceil(dxC), ${r-1}.0));
|
|
float dxCLerp = dxC - float(leftDxCIndex);
|
|
float inverseDxCLerp = 1.0 - dxCLerp;
|
|
|
|
if (r == topDxRIndex && c == leftDxCIndex) {
|
|
// topLeft
|
|
accumulator +=
|
|
getDy(b, dyR, dyC, d) * inverseDxRLerp * inverseDxCLerp;
|
|
}
|
|
|
|
if (r == topDxRIndex && c == rightDxCIndex) {
|
|
// topRight
|
|
accumulator += getDy(b, dyR, dyC, d) * inverseDxRLerp * dxCLerp;
|
|
}
|
|
|
|
if (r == bottomDxRIndex && c == leftDxCIndex) {
|
|
// bottomLeft
|
|
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * inverseDxCLerp;
|
|
}
|
|
|
|
if (r == bottomDxRIndex && c == rightDxCIndex) {
|
|
// bottomRight
|
|
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * dxCLerp;
|
|
}
|
|
}
|
|
}
|
|
// End loop over dy
|
|
|
|
setOutput(accumulator);
|
|
}
|
|
`}};function RAe(e){let{inputs:t,backend:n,attrs:a}=e,{images:r,dy:s}=t,{alignCorners:i}=a,o=new $Ae(s.shape,r.shape,i);return n.runWebGLProgram(o,[s],s.dtype)}var FAe={kernelName:G1,backendName:"webgl",kernelFunc:RAe},OAe=class{constructor(e,t,n,a,r){this.variableNames=["A"],this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let u=[a&&t>1?i-1:i,a&&n>1?o-1:o],d=[a&&t>1?t-1:t,a&&n>1?n-1:n],h=a?"0.5":"0.0",p;r?p="max((vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC, vec2(0.0))":p="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec2 effectiveInputOverOutputRatioRC = vec2(
|
|
${u[0]/d[0]},
|
|
${u[1]/d[1]});
|
|
const vec2 inputShapeRC = vec2(${i}.0, ${o}.0);
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
ivec2 yRC = coords.yz;
|
|
|
|
// Fractional source index.
|
|
vec2 sourceFracIndexRC = ${p};
|
|
|
|
// Compute the coordinators of nearest neighbor point.
|
|
ivec2 sourceNearestRC = ivec2(
|
|
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${h})));
|
|
float newValue = getA(b, sourceNearestRC.x, sourceNearestRC.y, d);
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}},DAe=class{constructor(e,t,n,a,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let u=[a&&t>1?i-1:i,a&&n>1?o-1:o],d=[a&&t>1?t-1:t,a&&n>1?n-1:n],h=a?"0.5":"0.0",p;r?p="max((vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC, vec3(0.0))":p="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec3 effectiveInputOverOutputRatioRC = vec3(
|
|
${u[0]/d[0]},
|
|
${u[1]/d[1]},
|
|
${u[1]/d[1]});
|
|
const vec3 inputShapeRC = vec3(${i}.0, ${o}.0,
|
|
${o}.0);
|
|
|
|
float getAValue(int b, int r, int c, int d) {
|
|
return getChannel(getA(b, r, c, d), vec2(c, d));
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
// Calculate values for next column in yRC.z.
|
|
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
|
|
|
|
// Fractional source index.
|
|
vec3 sourceFracIndexRC = ${p};
|
|
|
|
// Compute the coordinators of nearest neighbor point.
|
|
ivec3 sourceNearestRC = ivec3(
|
|
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${h})));
|
|
|
|
// Should we calculate next column and row elements in 2x2 packed cell.
|
|
bool hasNextCol = d < ${l-1};
|
|
bool hasNextRow = coords.z < ${n-1};
|
|
|
|
vec4 newValue = vec4(
|
|
getAValue(b, sourceNearestRC.x, sourceNearestRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceNearestRC.x, sourceNearestRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceNearestRC.x, sourceNearestRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceNearestRC.x, sourceNearestRC.z, d + 1) : 0.0);
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}};function _Ae(e){let{inputs:t,backend:n,attrs:a}=e,{images:r}=t,{alignCorners:s,halfPixelCenters:i,size:o}=a,[l,u]=o,d=se().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new DAe(r.shape,l,u,s,i):new OAe(r.shape,l,u,s,i);return n.runWebGLProgram(d,[r],r.dtype)}var zAe={kernelName:sf,backendName:"webgl",kernelFunc:_Ae},PAe=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,a,r]=t,[,s,i]=e,o=[n&&s>1?a-1:a,n&&i>1?r-1:r],l=[n&&s>1?s-1:s,n&&i>1?i-1:i],u=o[0]/l[0],d=o[1]/l[1],h=1/u,p=1/d,c=Math.ceil(h)*2+2,m=Math.ceil(p)*2+2;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float accumulator = 0.0;
|
|
|
|
const float heightScale = float(${u});
|
|
const float widthScale = float(${d});
|
|
|
|
const float invHeightScale = float(${h});
|
|
const float invWidthScale = float(${p});
|
|
|
|
const int winHeight = int(${c});
|
|
const int winWidth = int(${m});
|
|
|
|
// Compute bounds for where in dy we will look
|
|
float startRLerp = floor(float(r) * invHeightScale);
|
|
int startDyR = int(floor(startRLerp - float(winHeight / 2)));
|
|
|
|
float startCLerp = floor(float(c) * invWidthScale);
|
|
int startDyC = int(floor(startCLerp - float(winWidth / 2)));
|
|
|
|
// Loop over dy
|
|
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
|
|
int dyR = dyROffset + startDyR;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyR < 0 || dyR >= ${s}) {
|
|
continue;
|
|
}
|
|
|
|
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
|
|
int dyC = dyCOffset + startDyC;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyC < 0 || dyC >= ${i}) {
|
|
continue;
|
|
}
|
|
|
|
float sourceFracRow =
|
|
float(${o[0]}) *
|
|
(float(dyR) / float(${l[0]}));
|
|
|
|
float sourceFracCol =
|
|
float(${o[1]}) *
|
|
(float(dyC) / float(${l[1]}));
|
|
|
|
int sourceNearestRow = int(min(
|
|
float(int(${a}) - 1),
|
|
${n} ? float(round(sourceFracRow)) :
|
|
float(floor(sourceFracRow))));
|
|
|
|
int sourceNearestCol = int(min(
|
|
float(int(${r}) - 1),
|
|
${n} ? float(round(sourceFracCol)) :
|
|
float(floor(sourceFracCol))));
|
|
|
|
if (r == sourceNearestRow && c == sourceNearestCol) {
|
|
accumulator += getDy(b, dyR, dyC, d);
|
|
}
|
|
}
|
|
}
|
|
// End loop over dy
|
|
|
|
setOutput(accumulator);
|
|
}
|
|
`}};function LAe(e){let{inputs:t,backend:n,attrs:a}=e,{images:r,dy:s}=t,{alignCorners:i}=a,o=new PAe(s.shape,r.shape,i);return n.runWebGLProgram(o,[s],s.dtype)}var WAe={kernelName:H1,backendName:"webgl",kernelFunc:LAe},BAe=class{constructor(e,t){this.variableNames=["x"];let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);if(this.outputShape=e,n===1){this.userCode=`
|
|
void main() {
|
|
int coord = getOutputCoords();
|
|
setOutput(getX(${e[0]} - coord - 1));
|
|
}
|
|
`;return}let a=i=>t.indexOf(i)!==-1&&e[i]!==1?`${e[i]} - coords[${i}] - 1`:`coords[${i}]`,r=e.map((i,o)=>a(o)).join(","),s=kt(n);this.userCode=`
|
|
void main() {
|
|
${s} coords = getOutputCoords();
|
|
setOutput(getX(${r}));
|
|
}
|
|
`}},VAe=class{constructor(e,t){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0;let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);this.outputShape=e;let a=Bn("rc",n),r=`${a[n-1]} + 1 < ${this.outputShape[n-1]}`,s=`${a[n-2]} + 1 < ${this.outputShape[n-2]}`,i=kt(n);n===1?this.userCode=`
|
|
void main(){
|
|
int rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result.r = getChannel(getX(${e[0]} - rc - 1),
|
|
${e[0]} - rc - 1);
|
|
if(${r}){
|
|
result.g = getChannel(getX(${e[0]} - (rc + 1) - 1),
|
|
${e[0]} - (rc + 1) - 1);
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`:this.userCode=`
|
|
void main() {
|
|
${i} rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result.r = ${o(a.slice())};
|
|
if(${r}){
|
|
result.g = ${l(a.slice())};
|
|
}
|
|
if(${s}) {
|
|
result.b = ${u(a.slice())};
|
|
if(${r}) {
|
|
result.a = ${d(a.slice())};
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`;function o(c){return h(c)}function l(c){return c[n-1]="("+c[n-1]+" + 1)",h(c)}function u(c){return c[n-2]="("+c[n-2]+" + 1)",h(c)}function d(c){return c[n-1]="("+c[n-1]+" + 1)",c[n-2]="("+c[n-2]+" + 1)",h(c)}function h(c){let m=e.map((y,A)=>p(A,c)),f=m.join(","),g=m.slice(-2).join(",");return`getChannel(getX(${f}), vec2(${g}))`}function p(c,m){return t.indexOf(c)!==-1&&e[c]!==1?`${e[c]} - ${m[c]} - 1`:`${m[c]}`}}};function UAe(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dims:s}=a,i=r.shape.length,o=k.parseAxisParam(s,r.shape);if(i===0)return fa({inputs:{x:r},backend:n});let l=se().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new VAe(r.shape,o):new BAe(r.shape,o);return n.runWebGLProgram(l,[r],r.dtype)}var jAe={kernelName:Cl,backendName:"webgl",kernelFunc:UAe},HAe=class{constructor(e,t){this.variableNames=["Image"],this.outputShape=[];let n=e[1],a=e[2];this.outputShape=e;let r="";typeof t=="number"?r=`float outputValue = ${t.toFixed(2)};`:r=`
|
|
vec3 fill = vec3(${t.join(",")});
|
|
float outputValue = fill[coords[3]];`,this.userCode=`
|
|
uniform vec4 params;
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int x = coords[2];
|
|
int y = coords[1];
|
|
float coordXFloat = (float(x) - params[0]) * params[3] -
|
|
(float(y) - params[1]) * params[2];
|
|
float coordYFloat = (float(x) - params[0]) * params[2] +
|
|
(float(y) - params[1]) * params[3];
|
|
int coordX = int(round(coordXFloat + params[0]));
|
|
int coordY = int(round(coordYFloat + params[1]));
|
|
${r}
|
|
if(coordX >= 0 && coordX < ${a} && coordY >= 0 && coordY < ${n}) {
|
|
outputValue = getImage(coords[0], coordY, coordX, coords[3]);
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}getCustomSetupFunc(e,t,n,a){return(r,s)=>{this.paramsLoc==null&&(this.paramsLoc=r.getUniformLocationNoThrow(s,"params")),r.gl.uniform4f(this.paramsLoc,e,t,n,a)}}},GAe={kernelName:ch,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:a}=e,{radians:r,fillValue:s,center:i}=t,o=n,l=new HAe(a.shape,s),[u,d]=M.getImageCenter(i,a.shape[1],a.shape[2]),h=l.getCustomSetupFunc(u,d,Math.sin(r),Math.cos(r));return o.runWebGLProgram(l,[a],a.dtype,h)}},qAe=`
|
|
// OpenGL ES does not support round function.
|
|
// The algorithm is based on banker's rounding.
|
|
float base = floor(x);
|
|
if ((x - base) < 0.5) {
|
|
return floor(x);
|
|
} else if ((x - base) > 0.5) {
|
|
return ceil(x);
|
|
} else {
|
|
if (mod(base, 2.0) == 0.0) {
|
|
return base;
|
|
} else {
|
|
return base + 1.0;
|
|
}
|
|
}
|
|
`,KAe=ot({opSnippet:qAe}),XAe={kernelName:Ml,backendName:"webgl",kernelFunc:KAe},ZAe="return inversesqrt(x);",YAe=ot({opSnippet:ZAe,cpuKernelImpl:Sce}),JAe={kernelName:Di,backendName:"webgl",kernelFunc:YAe},hC=class{constructor(e,t,n,a,r,s,i=!0){this.variableNames=["updates","indices","defaultValue"],this.outputShape=s;let o=kt(r.length),l=kt(s.length),u="";n===1?u="i":n===2&&(u="i, j");let d=`getIndices(${u})`,h="";a===1?h="i":a===2&&(h="i, coords[1]");let p=`getUpdates(${h})`,c=t>1?"strides[j]":"strides";this.userCode=`
|
|
${o} strides = ${o}(${r});
|
|
|
|
void main() {
|
|
${l} coords = getOutputCoords();
|
|
float sum = 0.0;
|
|
bool found = false;
|
|
for (int i = 0; i < ${e}; i++) {
|
|
int flattenedIndex = 0;
|
|
for (int j = 0; j < ${t}; j++) {
|
|
int index = round(${d});
|
|
flattenedIndex += index * ${c};
|
|
}
|
|
if (flattenedIndex == coords[0]) {
|
|
sum += ${p};
|
|
found = true;
|
|
}
|
|
}
|
|
setOutput(mix(getDefaultValue(), sum, float(found)));
|
|
}
|
|
`}};function QAe(e){let{inputs:t,backend:n,attrs:a}=e,{indices:r,updates:s}=t,{shape:i}=a,{sliceRank:o,numUpdates:l,sliceSize:u,strides:d,outputSize:h}=M.calculateShapes(s,r,i),p=[h/u,u];if(h===0)return n.makeTensorInfo(i,r.dtype);let c=be({inputs:{x:r},backend:n,attrs:{shape:[l,o]}}),m=be({inputs:{x:s},backend:n,attrs:{shape:[l,u]}}),f=n.makeTensorInfo([],"float32",new Float32Array([0])),g=new hC(l,o,c.shape.length,m.shape.length,d,p),y=n.runWebGLProgram(g,[m,c,f],m.dtype),A=be({inputs:{x:y},backend:n,attrs:{shape:i}});return n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(f),A}var e2e={kernelName:eh,backendName:"webgl",kernelFunc:QAe},t2e=class{constructor(e,t,n){this.variableNames=["c","a","b"],this.outputShape=t;let a,r;if(n>4)throw Error(`Where for rank ${n} is not yet supported`);if(n===1)r="resRC",a="resRC";else{let i=["resRC.x","resRC.y","resRC.z","resRC.w"],o=[],l=[];for(let u=0;u<t.length;u++)l.push(`${i[u]}`),u<e&&o.push(`${i[u]}`);a=o.join(),r=l.join()}let s=kt(n);this.userCode=`
|
|
void main() {
|
|
${s} resRC = getOutputCoords();
|
|
float cVal = getC(${a});
|
|
if (cVal >= 1.0) {
|
|
setOutput(getA(${r}));
|
|
} else {
|
|
setOutput(getB(${r}));
|
|
}
|
|
}
|
|
`}};function n2e(e){let{inputs:t,backend:n}=e,{condition:a,t:r,e:s}=t,i=new t2e(a.shape.length,r.shape,r.shape.length);return n.runWebGLProgram(i,[a,r,s],Ga(r.dtype,s.dtype))}var a2e={kernelName:th,backendName:"webgl",kernelFunc:n2e},r2e=`
|
|
// Stable and Attracting Fixed Point (0, 1) for Normalized Weights.
|
|
// see: https://arxiv.org/abs/1706.02515
|
|
float scaleAlpha = ${M.SELU_SCALEALPHA};
|
|
float scale = ${M.SELU_SCALE};
|
|
return (x >= 0.0) ? scale * x : scaleAlpha * (exp(x) - 1.0);
|
|
`,s2e=ot({opSnippet:r2e}),i2e={kernelName:nh,backendName:"webgl",kernelFunc:s2e},o2e="return 1.0 / (1.0 + exp(-1.0 * x));",l2e=ot({opSnippet:o2e}),u2e={kernelName:Rl,backendName:"webgl",kernelFunc:l2e},d2e=`
|
|
if (isnan(x)) { return 0.0; }
|
|
return sign(x);
|
|
`,h2e=ot({opSnippet:d2e}),p2e={kernelName:sh,backendName:"webgl",kernelFunc:h2e},c2e=NE+`
|
|
return sin(x);
|
|
`,f2e=ot({opSnippet:c2e}),m2e={kernelName:$l,backendName:"webgl",kernelFunc:f2e},g2e=`
|
|
float e2x = exp(x);
|
|
return (e2x - 1.0 / e2x) / 2.0;
|
|
`,y2e=ot({opSnippet:g2e}),A2e={kernelName:rh,backendName:"webgl",kernelFunc:y2e},x2e=`
|
|
float epsilon = 1.1920928955078125e-7;
|
|
float threshold = log(epsilon) + 2.0;
|
|
|
|
bool too_large = x > -threshold;
|
|
bool too_small = x < threshold;
|
|
|
|
float result;
|
|
float exp_x = exp(x);
|
|
|
|
if (too_large){
|
|
result = x;
|
|
}
|
|
else if (too_small){
|
|
result = exp_x;
|
|
}
|
|
else{
|
|
result = log(exp_x + 1.0);
|
|
}
|
|
return result;
|
|
`,b2e=ot({opSnippet:x2e}),v2e={kernelName:ih,backendName:"webgl",kernelFunc:b2e},w2e=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,paddings:i}=a;k.assert(r.shape.length<=4,()=>"spaceToBatchND for rank > 4 with a WebGL backend not implemented yet");let o=s.reduce((y,A)=>y*A),l=[[0,0]];l.push(...i);for(let y=1+s.length;y<r.shape.length;++y)l.push([0,0]);let u=[],d=uC({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),h=M.getReshaped(d.shape,s,o,!1),p=M.getPermuted(h.length,s.length,!1),c=M.getReshapedPermuted(d.shape,s,o,!1),m=be({inputs:{x:d},backend:n,attrs:{shape:h}}),f=Vn({inputs:{x:m},backend:n,attrs:{perm:p}}),g=be({inputs:{x:f},backend:n,attrs:{shape:c}});return u.push(d),u.push(m),u.push(f),u.forEach(y=>n.disposeIntermediateTensorInfo(y)),g},k2e={kernelName:of,backendName:"webgl",kernelFunc:w2e};function I2e(e){let{inputs:t,backend:n}=e,{indices:a,values:r,denseShape:s,defaultValue:i}=t;if(s.shape.length!==1)throw new Error(`Dense shape must be a vector, saw:
|
|
${s.shape}`);if(a.shape.length!==2)throw new Error(`Indices must be a matrix, saw:
|
|
${a.shape}`);if(r.shape.length!==1)throw new Error(`Values must be a vector, saw:
|
|
${r.shape}`);if(i.shape.length!==0)throw new Error(`Default value must be a scalar, saw:
|
|
${i.shape}`);let o=n.readSync(a.dataId),l=n.readSync(r.dataId),u=n.readSync(s.dataId),d=n.readSync(i.dataId)[0],[h,p,c,m,f]=Tce(o,a.shape,a.dtype,l,r.dtype,u,d);return[n.makeTensorInfo(p,a.dtype,h),n.makeTensorInfo([p[0]],r.dtype,c),n.makeTensorInfo([m.length],"bool",new Uint8Array(m.map(g=>Number(g)))),n.makeTensorInfo([f.length],a.dtype,new Int32Array(f))]}var S2e={kernelName:q1,backendName:"webgl",kernelFunc:I2e};function N2e(e){let{inputs:t,backend:n}=e,{inputIndices:a,inputShape:r,newShape:s}=t;if(a.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape ${a.shape}`);if(r.shape.length!==1)throw new Error(`Input shape should be a vector but received shape ${r.shape}`);if(s.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${s.shape}`);let i=Array.from(n.readSync(r.dataId)),o=n.readSync(a.dataId),l=Array.from(n.readSync(s.dataId)),[u,d,h]=Ece(o,a.shape,a.dtype,i,l);return[n.makeTensorInfo(d,a.dtype,u),n.makeTensorInfo([h.length],s.dtype,new Int32Array(h))]}var T2e={kernelName:K1,backendName:"webgl",kernelFunc:N2e};function E2e(e){let{inputs:t,backend:n}=e,{data:a,indices:r,segmentIds:s}=t;if(a.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
|
|
${r.shape}`);if(s.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
|
|
${s.shape}`);let i=n.readSync(a.dataId),o=n.readSync(r.dataId),l=n.readSync(s.dataId),[u,d]=pE(i,a.shape,a.dtype,o,l,!0);return n.makeTensorInfo(d,a.dtype,u)}var C2e={kernelName:X1,backendName:"webgl",kernelFunc:E2e};function M2e(e){let{inputs:t,backend:n}=e,{data:a,indices:r,segmentIds:s}=t;if(a.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
|
|
${r.shape}`);if(s.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
|
|
${s.shape}`);let i=n.readSync(a.dataId),o=n.readSync(r.dataId),l=n.readSync(s.dataId),[u,d]=pE(i,a.shape,a.dtype,o,l);return n.makeTensorInfo(d,a.dtype,u)}var $2e={kernelName:Z1,backendName:"webgl",kernelFunc:M2e};function R2e(e){let{inputs:t,backend:n,attrs:a}=e,{sparseIndices:r,sparseValues:s,defaultValue:i}=t,{outputShape:o}=a,{sliceRank:l,numUpdates:u,strides:d,outputSize:h}=M.calculateShapes(s,r,o),p=!1,c=new hC(u,l,r.shape.length,s.shape.length,d,[h,1],p),m=n.runWebGLProgram(c,[s,r,i],s.dtype),f=be({inputs:{x:m},backend:n,attrs:{shape:o}});return n.disposeIntermediateTensorInfo(m),f}var F2e={kernelName:Y1,backendName:"webgl",kernelFunc:R2e};function O2e(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{numOrSizeSplits:s,axis:i}=a,o=k.parseAxisParam(i,r.shape)[0],l=M.prepareSplitSize(r,s,o),u=r.shape.length,d=new Array(u).fill(0),h=r.shape.slice();return l.map(p=>{let c=[...h];c[o]=p;let m=fp({inputs:{x:r},backend:n,attrs:{begin:d,size:c}});return d[o]+=p,m})}var D2e={kernelName:oh,backendName:"webgl",kernelFunc:O2e},_2e="return sqrt(x);",z2e=ot({opSnippet:_2e}),P2e={kernelName:Fl,backendName:"webgl",kernelFunc:z2e},L2e="return x * x;",W2e=ot({opSnippet:L2e}),B2e={kernelName:lf,backendName:"webgl",kernelFunc:W2e},pC="return (a - b) * (a - b);",V2e=Tn({opSnippet:pC,packedOpSnippet:pC}),U2e={kernelName:_i,backendName:"webgl",kernelFunc:V2e};function j2e({inputs:e,attrs:t,backend:n}){let{x:a}=e,r=gr+`
|
|
return x > 0.0 ? 1.0 : float(${t.alpha});
|
|
`,s=new Qs(a.shape,r);return n.runWebGLProgram(s,[a],a.dtype)}var H2e={kernelName:Li,backendName:"webgl",kernelFunc:j2e},G2e=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=n;let a=n.length,r=kt(n.length),s=kt(n.length),i="";if(a===1)i="coords * strides + begin";else{let o=0;i=n.map((l,u)=>(o++,n.length===1?`coords * strides[${u}] + begin[${u}]`:`coords[${o-1}] * strides[${u}] + begin[${u}]`)).join(",")}this.userCode=`
|
|
${r} begin = ${r}(${e});
|
|
${r} strides = ${r}(${t});
|
|
|
|
void main() {
|
|
${s} coords = getOutputCoords();
|
|
setOutput(getX(${i}));
|
|
}
|
|
`}};function q2e(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{begin:s,end:i,strides:o,beginMask:l,endMask:u,ellipsisMask:d,newAxisMask:h,shrinkAxisMask:p}=a,{nonStrided:c,$begin:m,$strides:f,size:g,newShape:y,outShape:A}=Cn.sliceInfo(r.shape,s,i,o,l,u,d,h,p),x=be({inputs:{x:r},backend:n,attrs:{shape:y}}),v;if(c){let w=fp({inputs:{x},backend:n,attrs:{begin:m,size:g}});v=be({inputs:{x:w},backend:n,attrs:{shape:A}}),n.disposeIntermediateTensorInfo(w)}else if(A.some(w=>w===0))v=n.makeTensorInfo(A,r.dtype,[]);else if(n.shouldExecuteOnCPU([x])){let w=n.texData.get(x.dataId).values,I=Pe(x.shape,x.dtype,w),T=Cce(A,I,f,m);v=n.makeTensorInfo(A,x.dtype,T.values)}else{let w=new G2e(m,f,A);v=n.runWebGLProgram(w,[x],x.dtype)}let b=be({inputs:{x:v},backend:n,attrs:{shape:A}});return n.disposeIntermediateTensorInfo(x),n.disposeIntermediateTensorInfo(v),b}var K2e={kernelName:lh,backendName:"webgl",kernelFunc:q2e};function X2e(e){let{inputs:t,backend:n,attrs:a}=e,{separator:r,nGramWidths:s,leftPad:i,rightPad:o,padWidth:l,preserveShortSequences:u}=a,{data:d,dataSplits:h}=t,p=n.readSync(d.dataId),c=n.readSync(h.dataId),[m,f]=Mce(p,c,r,s,i,o,l,u);return[n.makeTensorInfo([m.length],"string",m),n.makeTensorInfo(h.shape,"int32",f)]}var Z2e={kernelName:J1,backendName:"webgl",kernelFunc:X2e};function Y2e(e){let{inputs:t,backend:n,attrs:a}=e,{skipEmpty:r}=a,{input:s,delimiter:i}=t;if(s.dtype!=="string")throw new Error("Input must be of datatype string");if(s.shape.length!==1)throw new Error(`Input must be a vector, got shape: ${s.shape}`);if(i.shape.length!==0)throw new Error(`Delimiter must be a scalar, got shape: ${i.shape}`);let o=n.readSync(s.dataId),l=n.readSync(i.dataId)[0],[u,d,h]=$ce(o,l,r),p=d.length;return[n.makeTensorInfo([p,2],"int32",u),n.makeTensorInfo([p],"string",d),n.makeTensorInfo([2],"int32",new Int32Array(h))]}var J2e={kernelName:Q1,backendName:"webgl",kernelFunc:Y2e};function Q2e(e){let{inputs:t,backend:n,attrs:a}=e,{numBuckets:r}=a,{input:s}=t;if(s.dtype!=="string")throw new Error("Input must be of datatype string");if(r<=0)throw new Error("Number of buckets must be at least 1");let i=n.readSync(s.dataId),o=Rce(i,r);return n.makeTensorInfo(s.shape,"int32",o)}var exe={kernelName:eA,backendName:"webgl",kernelFunc:Q2e},txe="return tan(x);",nxe=ot({opSnippet:txe}),axe={kernelName:_l,backendName:"webgl",kernelFunc:nxe},rxe=`
|
|
float e2x = exp(-2.0 * abs(x));
|
|
return sign(x) * (1.0 - e2x) / (1.0 + e2x);
|
|
`,sxe=ot({opSnippet:rxe}),ixe={kernelName:zl,backendName:"webgl",kernelFunc:sxe},oxe=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[s]*t[s];this.outputShape=n,this.rank=n.length;let a=kt(this.rank),r=lxe(e);this.userCode=`
|
|
void main() {
|
|
${a} resRC = getOutputCoords();
|
|
setOutput(getA(${r}));
|
|
}
|
|
`}};function lxe(e){let t=e.length;if(t>5)throw Error(`Tile for rank ${t} is not yet supported`);if(t===1)return`imod(resRC, ${e[0]})`;let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u"],a=[];for(let r=0;r<e.length;r++)a.push(`imod(${n[r]}, ${e[r]})`);return a.join()}function cC(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{reps:s}=a;if(r.dtype==="string"||r.shape.length>5){let o=n.readSync(r.dataId),l=r.dtype==="string"?o.map(h=>k.decodeString(h)):o,u=Pe(r.shape,r.dtype,l),d=Oce(u,s);return n.makeTensorInfo(d.shape,d.dtype,d.values)}let i=new oxe(r.shape,s);return n.runWebGLProgram(i,[r],r.dtype)}var uxe={kernelName:Pi,backendName:"webgl",kernelFunc:cC};function dxe(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{k:s,sorted:i}=a,o=n.readSync(r.dataId),[l,u]=Dce(o,r.shape,r.dtype,s,i);return[n.makeTensorInfo(l.shape,l.dtype,l.values),n.makeTensorInfo(u.shape,u.dtype,u.values)]}var hxe={kernelName:uh,backendName:"webgl",kernelFunc:dxe},pxe=class{constructor(e,t,n,a,r,s){this.variableNames=["Image","Transforms"],this.outputShape=s;let i=n==="nearest"?1:2,o;switch(a){case"constant":o=1;break;case"reflect":o=2;break;case"wrap":o=3;break;case"nearest":o=4;break;default:o=1;break}this.userCode=`
|
|
float mapCoord(float outCoord, float len) {
|
|
float inCoord = outCoord;
|
|
if(${o} == 2) {
|
|
if (inCoord < 0.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz2 = 2.0 * len;
|
|
if (inCoord < sz2) {
|
|
inCoord = sz2 * float(int(float(-inCoord / sz2))) +
|
|
inCoord;
|
|
}
|
|
inCoord = inCoord < -len ? inCoord + sz2 : -inCoord - 1.0;
|
|
}
|
|
} else if (inCoord > len - 1.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz2 = 2.0 * len;
|
|
inCoord -= sz2 * float(int(float(inCoord / sz2)));
|
|
if (inCoord >= len) {
|
|
inCoord = sz2 - inCoord - 1.0;
|
|
}
|
|
}
|
|
}
|
|
return clamp(inCoord, 0.0, len - 1.0);
|
|
} else if (${o} == 3) {
|
|
if (inCoord < 0.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz = len - 1.0;
|
|
inCoord += len * (float(int(float(-inCoord / sz))) + 1.0);
|
|
}
|
|
} else if (inCoord > len - 1.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz = len - 1.0;
|
|
inCoord -= len * float(int(float(inCoord / sz)));
|
|
}
|
|
}
|
|
return clamp(inCoord, 0.0, len - 1.0);
|
|
} else if (${o} == 4) {
|
|
return clamp(outCoord, 0.0, len - 1.0);
|
|
} else {
|
|
return outCoord;
|
|
}
|
|
}
|
|
|
|
float readWithFillValue(int batch, int coordY, int coordX,
|
|
int channel) {
|
|
float outputValue;
|
|
if (0 <= coordY && coordY < ${e} && 0 <= coordX && coordX < ${t}) {
|
|
outputValue = getImage(batch, coordY, coordX, channel);
|
|
} else {
|
|
outputValue = float(${r});
|
|
}
|
|
return outputValue;
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
float outputValue;
|
|
int batch = coords[0];
|
|
int x = coords[2];
|
|
int y = coords[1];
|
|
int channel = coords[3];
|
|
float xf = float(x);
|
|
float yf = float(y);
|
|
float a1 = getTransforms(batch, 0);
|
|
float a2 = getTransforms(batch, 1);
|
|
float a3 = getTransforms(batch, 2);
|
|
float b1 = getTransforms(batch, 3);
|
|
float b2 = getTransforms(batch, 4);
|
|
float b3 = getTransforms(batch, 5);
|
|
float c1 = getTransforms(batch, 6);
|
|
float c2 = getTransforms(batch, 7);
|
|
float projection = c1 * xf + c2 * yf + 1.0;
|
|
if (projection == 0.0) {
|
|
outputValue = float(${r});
|
|
} else {
|
|
float inX = (a1 * xf + a2 * yf + a3) / projection;
|
|
float inY = (b1 * xf + b2 * yf + b3) / projection;
|
|
float mapX = mapCoord(inX, float(${t}));
|
|
float mapY = mapCoord(inY, float(${e}));
|
|
|
|
if (${i} == 1) {
|
|
int coordY = int(round(mapY));
|
|
int coordX = int(round(mapX));
|
|
outputValue = readWithFillValue(batch, coordY, coordX,
|
|
channel);
|
|
} else {
|
|
float yFloor = floor(mapY);
|
|
float xFloor = floor(mapX);
|
|
float yCeil = yFloor + 1.0;
|
|
float xCeil = xFloor + 1.0;
|
|
float valueYFloor = (xCeil - mapX) *
|
|
readWithFillValue(batch, int(yFloor), int(xFloor), channel) +
|
|
(mapX - xFloor) *
|
|
readWithFillValue(batch, int(yFloor), int(xCeil), channel);
|
|
float valueYCeil = (xCeil - mapX) *
|
|
readWithFillValue(batch, int(yCeil), int(xFloor), channel) +
|
|
(mapX - xFloor) *
|
|
readWithFillValue(batch, int(yCeil), int(xCeil), channel);
|
|
outputValue = (yCeil - mapY) * valueYFloor +
|
|
(mapY - yFloor) * valueYCeil;
|
|
}
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}};function cxe(e){let{inputs:t,backend:n,attrs:a}=e,{image:r,transforms:s}=t,{interpolation:i,fillMode:o,fillValue:l,outputShape:u}=a,[d,h,p,c]=r.shape,[m,f]=u!=null?u:[h,p],g=[d,m,f,c],y=new pxe(h,p,i,o,l,g);return n.runWebGLProgram(y,[r,s],"float32")}var fxe={kernelName:dh,backendName:"webgl",kernelFunc:cxe};function mxe(e){let{inputs:t,attrs:n,backend:a}=e,{axis:r}=n,{x:s}=t;mu(s,"unique"),console.warn("WARNING: ","UI might be locked temporarily as data is being downloaded");let i=a.readSync(s.dataId),{outputValues:o,outputShape:l,indices:u}=_ce(i,r,s.shape,s.dtype);return[a.makeTensorInfo(l,s.dtype,o),a.makeTensorInfo([u.length],"int32",u)]}var gxe={kernelName:tA,backendName:"webgl",kernelFunc:mxe};function yxe(e){let{inputs:t,backend:n,attrs:a}=e,{value:r}=t,{axis:s}=a;s<0&&(s+=r.shape.length);let i=r,o=i.shape.length,l=r.shape[s],u=new Array(o-1),d=0;for(let f=0;f<o;f++)f!==s&&(u[d++]=i.shape[f]);let h=[],p=new Array(o).fill(0),c=i.shape.slice();c[s]=1;let m=new Array(l);for(let f=0;f<m.length;f++){p[s]=f;let g=fp({inputs:{x:i},backend:n,attrs:{begin:p,size:c}}),y=be({inputs:{x:g},backend:n,attrs:{shape:u}});m[f]=y,h.push(g)}return h.forEach(f=>n.disposeIntermediateTensorInfo(f)),m}var Axe={kernelName:hh,backendName:"webgl",kernelFunc:yxe},xxe=class{constructor(e,t){this.variableNames=["x","segmentIds"];let n=e.windowSize,a=e.batchSize,r=e.inSize,s=e.numSegments,i=s*Math.ceil(r/n);this.outputShape=[a,i];let o="0.0",l="sumValue",u=Math.floor(n/4)*4,d=n%4,h=`
|
|
sumValue += dot(values, segFilter);
|
|
`,p="";r%n>0&&(p=`
|
|
if (inIdx < 0 || inIdx >= ${r}) {
|
|
return initializationValue;
|
|
}
|
|
`);let c="";r%n>0&&(c=`
|
|
if (inIdx < 0 || inIdx >= ${r}) {
|
|
return -1.0;
|
|
}
|
|
`),this.userCode=`
|
|
const float initializationValue = ${o};
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${p}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
float getSegmentIdAtIndex(int inIdx) {
|
|
${c}
|
|
return getSegmentIds(inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = int(floor(float(outIdx) / float(
|
|
${s})) * float(${n}));
|
|
int currentSeg = int(mod(float(outIdx), float(${s})));
|
|
|
|
float sumValue = 0.0;
|
|
|
|
for (int i = 0; i < ${u}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 3)) == currentSeg ? 1 : 0
|
|
);
|
|
|
|
${h}
|
|
}
|
|
|
|
int inIdx = inOffset + ${u};
|
|
if (${d===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
int inIdxSeg = int(getSegmentIdAtIndex(inIdx));
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
0,
|
|
0,
|
|
0
|
|
);
|
|
|
|
${h}
|
|
} else if (${d===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
0,
|
|
0
|
|
);
|
|
|
|
${h}
|
|
} else if (${d===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
initializationValue
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
|
|
0
|
|
);
|
|
|
|
${h}
|
|
}
|
|
setOutput(${l});
|
|
}
|
|
`}};function bxe(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,segmentIds:s}=t,{numSegments:i}=a,o=r.shape.length,l=[],u=0,d=M.getAxesPermutation([u],o),h=r;d!=null&&(h=Vn({inputs:{x:r},backend:n,attrs:{perm:d}}),l.push(h),u=M.getInnerMostAxes(1,o)[0]);let p=M.segment_util.computeOutShape(h.shape,u,i),c=k.sizeFromShape([h.shape[u]]),m=be({inputs:{x:h},backend:n,attrs:{shape:[-1,c]}});l.push(m);let f=pA(r.dtype),g=(v,b,w,I,T)=>{let C=v.shape[0],z=v.shape[1],$=M.segment_util.segOpComputeOptimalWindowSize(z,T),S={windowSize:$,inSize:z,batchSize:C,numSegments:T},D=new xxe(S,b),_=n.compileAndRun(D,[v,w],I);if(l.push(_),_.shape[1]===T)return _;let W=dC({backend:n,attrs:{start:0,stop:T,step:1,dtype:"float32"}}),X=cC({inputs:{x:W},backend:n,attrs:{reps:[z/$]}});return l.push(W),l.push(X),g(_,b,X,I,T)},y=g(m,"unsortedSegmentSum",s,f,i),A=be({inputs:{x:y},backend:n,attrs:{shape:p}}),x=A;if(d!=null){l.push(A);let v=M.getUndoAxesPermutation(d);x=Vn({inputs:{x},backend:n,attrs:{perm:v}})}return l.forEach(v=>n.disposeIntermediateTensorInfo(v)),x}var vxe={kernelName:uf,backendName:"webgl",kernelFunc:bxe},wxe=[Zye,Qye,Dfe,zfe,Wfe,Ufe,Hfe,Kfe,Zfe,Jfe,n0e,r0e,o0e,d0e,y0e,c0e,b0e,I0e,w0e,E0e,M0e,R0e,_0e,U0e,H0e,Y0e,Q0e,ame,ime,gfe,hme,vme,kme,mme,Tme,Cme,Sme,Rme,Dme,Pme,Wme,Vme,Hme,Yme,Qme,qme,nge,sge,oge,hge,mge,xge,wge,kge,Ige,Nge,Ege,Mge,Rge,Oge,Pge,Bge,jge,Gge,Xge,Qge,aye,oye,mfe,uye,ume,pye,mye,Aye,Afe,wye,Nye,Eye,Dye,Rye,Lye,Vye,Gye,t1e,u1e,o1e,c1e,m1e,y1e,s1e,x1e,v1e,S1e,C1e,F1e,B1e,kfe,U1e,G1e,X1e,J1e,q0e,tAe,aAe,sAe,lAe,pAe,bfe,fAe,mAe,K0e,z1e,AAe,NAe,wAe,Sfe,MAe,FAe,zAe,WAe,jAe,GAe,XAe,JAe,e2e,a2e,i2e,u2e,p2e,m2e,A2e,B0e,L1e,v2e,k2e,S2e,T2e,C2e,$2e,F2e,D2e,P2e,B2e,U2e,H2e,K2e,Z2e,J2e,exe,P1e,Rfe,axe,ixe,uxe,hxe,fxe,Ffe,gxe,Axe,vxe,nAe];for(let e of wxe)sA(e);var na;(function(e){e[e.float32=0]="float32",e[e.int32=1]="int32",e[e.bool=2]="bool",e[e.string=3]="string",e[e.complex64=4]="complex64"})(na||(na={}));var gp;(function(e){e[e.linear=0]="linear",e[e.relu=1]="relu",e[e.relu6=2]="relu6",e[e.prelu=3]="prelu",e[e.leakyrelu=4]="leakyrelu",e[e.sigmoid=5]="sigmoid"})(gp||(gp={}));var fC;function kxe(e){fC=e.wasm.cwrap(Ll,null,["number","array","number","number","array","number","number","number","number","number","number","number","number"])}function Ixe(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s,bias:i,preluActivationWeights:o}=t;if(r.dtype!=="float32"||s.dtype!=="float32")throw new Error("_FusedMatMul for non non-float32 tensors not yet supported.");let{transposeA:l,transposeB:u,activation:d,leakyreluAlpha:h}=a,p=n.dataIdMap.get(r.dataId).id,c=n.dataIdMap.get(s.dataId).id,m=0;if(i!=null){let T=n.dataIdMap.get(i.dataId);if(T.shape.length!==1)throw new Error(`_FusedMatMul only supports rank-1 bias but got rank ${T.shape.length}.`);m=T.id}let f=o==null?0:n.dataIdMap.get(o.dataId).id,g=gp[d];if(g==null)throw new Error(`${d} activation not yet supported for FusedConv2D in the wasm backend.`);let y=l?r.shape[2]:r.shape[1],A=u?s.shape[1]:s.shape[2],x=r.shape[0],v=n.makeOutput([x,y,A],r.dtype),b=n.dataIdMap.get(v.dataId).id,w=new Uint8Array(new Int32Array(r.shape).buffer),I=new Uint8Array(new Int32Array(s.shape).buffer);return fC(p,w,r.shape.length,c,I,s.shape.length,l,u,g,m,f,h||0,b),v}var Sxe={kernelName:Ll,backendName:"wasm",setupFunc:kxe,kernelFunc:Ixe};function Un(e){let t;function n(r){t=r.wasm.cwrap(e,null,["number","number"])}function a(r){let{backend:s,inputs:{x:i}}=r,o=s.dataIdMap.get(i.dataId).id,l=s.makeOutput(i.shape,i.dtype),u=s.dataIdMap.get(l.dataId).id;return k.sizeFromShape(l.shape)===0||t(o,u),l}return{kernelName:e,backendName:"wasm",setupFunc:n,kernelFunc:a}}var Nxe=Un(xd);function jn(e,t,n){let a;function r(i){a=i.wasm.cwrap(e,null,["number","array","number","number","array","number","number","number"])}function s(i){let{backend:o,inputs:l}=i,{a:u,b:d}=l,h=o.dataIdMap.get(u.dataId).id,p=o.dataIdMap.get(d.dataId).id,c=n!=null?n:u.dtype,m=M.assertAndGetBroadcastShape(u.shape,d.shape),f=o.makeOutput(m,c);if(k.sizeFromShape(m)===0)return f;let g=new Uint8Array(new Int32Array(u.shape).buffer),y=new Uint8Array(new Int32Array(d.shape).buffer),A=o.dataIdMap.get(f.dataId).id,x=()=>a(h,g,u.shape.length,p,y,d.shape.length,na[u.dtype],A);if(t&&u.dtype==="float32")return x(),f;let v=M.getBroadcastDims(u.shape,m),b=M.getBroadcastDims(d.shape,m),w=v.every((T,C)=>T===C),I=b.every((T,C)=>T===C);if(w&&I)return x(),f;throw new Error(`Broadcasting along outer dims is not yet supported for ${u.dtype} ${e}.`)}return{kernelName:e,backendName:"wasm",setupFunc:r,kernelFunc:s}}var Txe=!0,Exe=jn(Os,Txe),mC;function Cxe(e){mC=e.wasm.cwrap(Zo,null,["array","number","number","number"])}function Mxe(e){let{inputs:t,backend:n}=e,a=n.makeOutput(t[0].shape,t[0].dtype);if(k.sizeFromShape(a.shape)===0)return a;let r=t.map(o=>n.dataIdMap.get(o.dataId).id),s=new Uint8Array(new Int32Array(r).buffer),i=n.dataIdMap.get(a.dataId).id;return mC(s,r.length,na[a.dtype],i),a}var $xe={kernelName:Zo,backendName:"wasm",setupFunc:Cxe,kernelFunc:Mxe};function J0(e){let{inputs:{x:t},backend:n}=e,a=n.makeOutput(t.shape,t.dtype),r=n.typedArrayFromHeap(t);return n.typedArrayFromHeap(a).set(r),a}var Rxe={kernelName:pl,backendName:"wasm",kernelFunc:J0},gC;function Fxe(e){gC=e.wasm.cwrap(Pl,null,["number","array","number","number","number","array","number"])}function Q0(e){let{inputs:t,backend:n,attrs:a}=e,[r,s]=Dxe(t.x.shape,a.perm),i=!0;for(let m=0;m<s.length;m++)s[m]!==m&&(i=!1);let o=Oxe(t.x.shape,a.perm),l={dataId:t.x.dataId,shape:r,dtype:t.x.dtype};if(i){let m=J0({inputs:t,backend:n});return m.shape=o,m}let u=n.makeOutput(o,l.dtype),d=n.dataIdMap.get(l.dataId).id,h=n.dataIdMap.get(u.dataId).id,p=new Uint8Array(new Int32Array(s).buffer),c=new Uint8Array(new Int32Array(l.shape).buffer);return gC(d,c,l.shape.length,na[l.dtype],h,p,s.length),u}function Oxe(e,t){let n=new Array(e.length);for(let a=0;a<n.length;a++)n[a]=e[t[a]];return n}function Dxe(e,t){let n=[],a=[];for(let r=0;r<e.length;++r)e[r]!==1&&n.push(e[r]),e[t[r]]!==1&&a.push(t[r]);for(let r=0;r<a.length;++r){let s=-1;for(let i=0;i<a.length;++i)a[i]>=r&&(s===-1||a[s]>a[i])&&(s=i);a[s]=r}return[n,a]}var _xe={kernelName:Pl,backendName:"wasm",kernelFunc:Q0,setupFunc:Fxe};function ti(e,t,n){let a=e.shape,r=e.shape.length,s=k.parseAxisParam(t,a),i=s,o=M.getAxesPermutation(i,r),l=null,u=!1;if(o!=null){let d=new Array(r);for(let p=0;p<d.length;p++)d[p]=a[o[p]];i=M.getInnerMostAxes(i.length,r),l=Q0({inputs:{x:e},attrs:{perm:o},backend:n});let h=n.dataIdMap.get(e.dataId).id;n.dataIdMap.get(l.dataId).id!==h&&(u=!0)}return{transposed:l,originalAxes:s,axes:i,inputWasTransposed:u}}var yC;function zxe(e){yC=e.wasm.cwrap(wd,null,["number, number, number"])}function Pxe(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=i,{transposed:u,axes:d,originalAxes:h,inputWasTransposed:p}=ti(i,r,t);if(p){let A=t.dataIdMap.get(u.dataId).id;l=u,o=A}let c=l.shape.length;M.assertAxesAreInnerMostDims("all",d,c);let[m,f]=M.computeOutAndReduceShapes(l.shape,d),g=k.sizeFromShape(f),y=t.makeOutput(m,i.dtype);if(k.sizeFromShape(l.shape)!==0){let A=t.dataIdMap.get(y.dataId).id;yC(o,g,A)}if(p&&t.disposeData(u.dataId),s){let A=M.expandShapeToKeepDim(y.shape,h);y.shape=A}return y}var Lxe={kernelName:wd,backendName:"wasm",setupFunc:zxe,kernelFunc:Pxe},AC;function Wxe(e){AC=e.wasm.cwrap(kd,null,["number, number, number"])}function Bxe(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=i,{transposed:u,axes:d,originalAxes:h,inputWasTransposed:p}=ti(i,r,t);if(p){let A=t.dataIdMap.get(u.dataId).id;l=u,o=A}let c=l.shape.length;M.assertAxesAreInnerMostDims("any",d,c);let[m,f]=M.computeOutAndReduceShapes(l.shape,d),g=k.sizeFromShape(f),y=t.makeOutput(m,i.dtype);if(k.sizeFromShape(l.shape)!==0){let A=t.dataIdMap.get(y.dataId).id;AC(o,g,A)}if(p&&t.disposeData(u.dataId),s){let A=M.expandShapeToKeepDim(y.shape,h);y.shape=A}return y}var Vxe={kernelName:kd,backendName:"wasm",setupFunc:Wxe,kernelFunc:Bxe},xC;function Uxe(e){xC=e.wasm.cwrap(Yo,null,["number","number","number","number","number"])}function jxe(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r}=a,{x:s}=n,i=t.dataIdMap.get(s.dataId).id,o=i,l=s,{transposed:u,axes:d,inputWasTransposed:h}=ti(s,r,t);if(h){let y=t.dataIdMap.get(u.dataId).id;y!==i&&(l=u,o=y)}let p=l.shape.slice(0,-1),c=t.makeOutput(p,"int32"),m=t.dataIdMap.get(c.dataId).id,f=k.sizeFromShape(c.shape),g=l.shape[d[0]];return xC(o,na[l.dtype],f,g,m),h&&t.disposeData(u.dataId),c}var Hxe={kernelName:Yo,backendName:"wasm",kernelFunc:jxe,setupFunc:Uxe},bC;function Gxe(e){bC=e.wasm.cwrap(Jo,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function qxe(e){let{inputs:t,attrs:n,backend:a}=e,r=t.x,s=a.dataIdMap.get(r.dataId).id,{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=n,d=M.computePool2DInfo(r.shape,i,o,1,l,u),h=d.filterHeight,p=d.filterWidth,c=d.padInfo.top,m=d.padInfo.right,f=d.padInfo.bottom,g=d.padInfo.left,y=d.strideHeight,A=d.strideWidth,x=d.inChannels;if(d.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${d.dataFormat}'. Please use 'channelsLast'.`);if(d.dilationWidth!==1||d.dilationHeight!==1)throw new Error(`was backend only supports average pooling with dilation = [1, 1], got [${d.dilationHeight}, ${d.dilationWidth}].`);let v=a.makeOutput(d.outShape,"float32"),b=a.dataIdMap.get(v.dataId).id;return bC(s,r.shape[0],r.shape[1],r.shape[2],h,p,c,m,f,g,y,A,x,b),v}var Kxe={kernelName:Jo,backendName:"wasm",setupFunc:Gxe,kernelFunc:qxe};function yr(e){let{inputs:t,attrs:n}=e,{x:a}=t,{shape:r}=n,s=k.sizeFromShape(a.shape),i=k.inferFromImplicitShape(r,s);return k.assert(s===k.sizeFromShape(i),()=>`new shape: ${i}, old shape: ${a.shape}. New shape and old shape must have the same number of elements.`),e.backend.incRef(a.dataId),{dataId:a.dataId,shape:i,dtype:a.dtype}}var Xxe={kernelName:Qd,backendName:"wasm",kernelFunc:yr},vC;function Zxe(e){vC=e.wasm.cwrap(Qo,null,["number","array","number","number","array","number","number","number","number"])}function Yxe(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s}=t,{transposeA:i,transposeB:o}=a;if(r.dtype!=="float32"||s.dtype!=="float32")throw new Error("BatchMatMul for non non-float32 tensors not yet supported.");let l=r.shape.length,u=s.shape.length,d=i?r.shape[l-2]:r.shape[l-1],h=o?s.shape[u-1]:s.shape[u-2],p=i?r.shape[l-1]:r.shape[l-2],c=o?s.shape[u-2]:s.shape[u-1],m=r.shape.slice(0,-2),f=s.shape.slice(0,-2),g=k.sizeFromShape(m),y=k.sizeFromShape(f),A=g===y||g===1||y===1;k.assert(l>=2&&u>=2&&A,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${m}) and (${f}).`);let x=(g>y?r.shape.slice(0,-2):s.shape.slice(0,-2)).concat([p,c]);k.assert(d===h,()=>`Error in matMul: inner shapes (${d}) and (${h}) of Tensors with shapes ${r.shape} and ${s.shape} and transposeA=${i} and transposeB=${o} must match.`);let v=i?[g,d,p]:[g,p,d],b=o?[y,c,h]:[y,h,c],w=yr({inputs:{x:r},backend:n,attrs:{shape:v}}),I=yr({inputs:{x:s},backend:n,attrs:{shape:b}}),T=n.dataIdMap.get(w.dataId).id,C=n.dataIdMap.get(I.dataId).id,z=i?w.shape[2]:w.shape[1],$=o?I.shape[1]:I.shape[2],S=Math.max(g,y),D=n.makeOutput([S,z,$],w.dtype),_=n.dataIdMap.get(D.dataId).id,W=new Uint8Array(new Int32Array(w.shape).buffer),X=new Uint8Array(new Int32Array(I.shape).buffer);return vC(T,W,w.shape.length,C,X,I.shape.length,i,o,_),n.disposeData(w.dataId),n.disposeData(I.dataId),D.shape=x,D}var Jxe={kernelName:Qo,backendName:"wasm",setupFunc:Zxe,kernelFunc:Yxe};function em(e){let{inputs:{x:t},attrs:{dtype:n},backend:a}=e,r=a.makeOutput(t.shape,n),s=a.typedArrayFromHeap(t);return a.typedArrayFromHeap(r).set(s),r}var Qxe={kernelName:el,backendName:"wasm",kernelFunc:em},e5e=Un(Ni),wC;function t5e(e){wC=e.wasm.cwrap(Ti,null,["number","number","number","number"])}function n5e(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{clipValueMin:s,clipValueMax:i}=a,o=n.dataIdMap.get(r.dataId).id,l=n.makeOutput(r.shape,r.dtype),u=n.dataIdMap.get(l.dataId).id;return wC(o,s,i,u),l}var a5e={kernelName:Ti,backendName:"wasm",setupFunc:t5e,kernelFunc:n5e};function kC(e){let{inputs:t,backend:n}=e,a=k.parseAxisParam(e.attrs.axis,t[0].shape)[0],r=M.computeOutShape(t.map(c=>c.shape),a),s=t.filter(c=>k.sizeFromShape(c.shape)>0);if(s.length===1)return J0({inputs:{x:s[0]},backend:n});let i=n.makeOutput(r,t[0].dtype);if(k.sizeFromShape(r)===0)return i;let o=s.map(c=>c.shape);if(M.assertParamsConsistent(o,a),s[0].dtype==="string"){let c=s.map(x=>{let v=k.sizeFromShape(x.shape.slice(a));return yr({inputs:{x},backend:n,attrs:{shape:[-1,v]}})}),m=c.map(x=>({vals:n.readSync(x.dataId),shape:x.shape}));r=M.computeOutShape(c.map(x=>x.shape),1);let f=c[0].shape[0]===1,g=qT(m,r,t[0].dtype,f),y=M.computeOutShape(s.map(x=>x.shape),a);i.shape=y;let A=n.dataIdMap.get(i.dataId);return A.stringBytes=M.fromStringArrayToUint8(g),c.forEach(x=>n.disposeData(x.dataId)),i}let l=k.sizeFromShape(s[0].shape.slice(0,a)),u=0,d=s.map(c=>{let m=k.sizeFromShape(c.shape.slice(a));return u+=m,m}),h=s.map(c=>n.typedArrayFromHeap(c)),p=n.typedArrayFromHeap(i);for(let c=0;c<l;c++){let m=c*u;for(let f=0;f<h.length;f++){let g=d[f],y=c*g,A=h[f].subarray(y,y+g);p.set(A,m),m+=g}}return i}var r5e={kernelName:Cd,backendName:"wasm",kernelFunc:kC},IC;function s5e(e){IC=e.wasm.cwrap(tl,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function i5e(e){let{inputs:t,attrs:n,backend:a}=e,{x:r,filter:s}=t,i=a.dataIdMap.get(r.dataId).id,o=a.dataIdMap.get(s.dataId).id,{strides:l,dilations:u,pad:d,dimRoundingMode:h,dataFormat:p}=n,c=M.convertConv2DDataFormat(p),m=M.computeConv2DInfo(r.shape,s.shape,l,u,d,h,!1,c),f=m.filterHeight,g=m.filterWidth,y=m.padInfo.top,A=m.padInfo.right,x=m.padInfo.bottom,v=m.padInfo.left,b=m.dilationHeight,w=m.dilationWidth,I=m.strideHeight,T=m.strideWidth,C=m.inChannels,z=m.outChannels,$=m.padInfo.type==="SAME"?1:0;if(m.dataFormat!=="channelsLast")throw new Error(`wasm backend Conv2D does not support dataFormat:'${m.dataFormat}'. Please use 'channelsLast'.`);let S=a.makeOutput(m.outShape,"float32"),D=a.dataIdMap.get(S.dataId).id;return IC(i,r.shape[0],r.shape[1],r.shape[2],o,f,g,y,A,x,v,$,b,w,I,T,C,z,D),S}var o5e={kernelName:tl,backendName:"wasm",setupFunc:s5e,kernelFunc:i5e},SC;function l5e(e){SC=e.wasm.cwrap(nl,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function u5e(e){let{backend:t,inputs:n,attrs:a}=e,{dy:r,filter:s}=n,{strides:i,pad:o,dataFormat:l,dimRoundingMode:u,inputShape:d}=a,h=1,p=M.convertConv2DDataFormat(l),c=M.computeConv2DInfo(d,s.shape,i,h,o,u,!1,p),{batchSize:m,filterHeight:f,filterWidth:g,inChannels:y,inHeight:A,inWidth:x,outChannels:v,outHeight:b,outWidth:w,strideHeight:I,strideWidth:T}=c,C=f-1-c.padInfo.top,z=g-1-c.padInfo.left,$=c.dataFormat==="channelsLast",S=k.computeStrides(c.inShape),D=k.computeStrides(r.shape),[_,W,X]=k.computeStrides(s.shape),q=S[0],Q=$?S[1]:S[2],ee=$?S[2]:1,ie=$?1:S[1],ae=D[0],de=$?D[1]:D[2],te=$?D[2]:1,ce=$?1:D[1],he=t.makeOutput(c.inShape,"float32"),ve=t.dataIdMap.get(he.dataId).id,xe=t.dataIdMap.get(r.dataId).id,Ee=t.dataIdMap.get(s.dataId).id;return SC(xe,Ee,m,f,g,A,x,y,b,w,v,I,T,C,z,_,W,X,q,Q,ee,ie,ae,de,te,ce,ve),he}var d5e={kernelName:nl,backendName:"wasm",setupFunc:l5e,kernelFunc:u5e},h5e=Un(al),cb;(function(e){e[e.bilinear=0]="bilinear",e[e.nearest=1]="nearest"})(cb||(cb={}));var NC;function p5e(e){NC=e.wasm.cwrap($d,null,["number","number","number","number","array","number","number","number","number","number"])}function c5e(e){let{backend:t,inputs:n,attrs:a}=e,{method:r,extrapolationValue:s,cropSize:i}=a,{image:o,boxes:l,boxInd:u}=n,d=l.shape[0],[h,p]=i,c=[d,h,p,o.shape[3]],m=t.dataIdMap.get(o.dataId),f;o.dtype!=="float32"&&(f=em({backend:t,inputs:{x:o},attrs:{dtype:"float32"}}),m=t.dataIdMap.get(f.dataId));let g=m.id,y=t.dataIdMap.get(l.dataId).id,A=t.dataIdMap.get(u.dataId).id,x=t.makeOutput(c,"float32"),v=t.dataIdMap.get(x.dataId).id,b=new Uint8Array(new Int32Array(o.shape).buffer);return NC(g,y,A,d,b,h,p,cb[r],s,v),f!=null&&t.disposeData(f.dataId),x}var f5e={kernelName:$d,backendName:"wasm",setupFunc:p5e,kernelFunc:c5e},TC;function m5e(e){TC=e.wasm.cwrap(rl,null,["number","number","number","number","number","number"])}function g5e(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,exclusive:i,reverse:o}=a,l=r.shape.length;k.assert(r.dtype==="float32"||r.dtype==="int32",()=>`cumsum does not support ${r.dtype} tensors in the WASM backend`);let u=M.getAxesPermutation([s],l),d=r;u!==null&&(d=Q0({inputs:{x:r},attrs:{perm:u},backend:n}));let h=M.getInnerMostAxes(1,l)[0];M.assertAxesAreInnerMostDims("cumsum",[h],l);let p=n.makeOutput(d.shape,d.dtype),c=d.shape[h],m=n.dataIdMap.get(d.dataId).id,f=n.dataIdMap.get(p.dataId).id;TC(m,i?1:0,o?1:0,c,f,na[r.dtype]);let g=p;if(u!==null){let y=M.getUndoAxesPermutation(u);g=Q0({inputs:{x:p},attrs:{perm:y},backend:n}),n.disposeData(d.dataId),n.disposeData(p.dataId)}return g}var y5e={kernelName:rl,backendName:"wasm",setupFunc:m5e,kernelFunc:g5e},EC;function A5e(e){EC=e.wasm.cwrap(Rd,null,["number","number","number","array","number","array","array","number","number"])}function x5e(e){let{backend:t,inputs:n,attrs:a}=e,{x:r}=n,{blockSize:s,dataFormat:i}=a;k.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let o=r.shape[0],l=i==="NHWC"?r.shape[1]:r.shape[2],u=i==="NHWC"?r.shape[2]:r.shape[3],d=i==="NHWC"?r.shape[3]:r.shape[1],h=l*s,p=u*s,c=d/(s*s),m=i==="NHWC"?[o,h,p,c]:[o,c,h,p],f=t.makeOutput(m,"float32"),g=t.dataIdMap.get(r.dataId).id,y=new Uint8Array(new Int32Array(k.computeStrides(r.shape)).buffer),A=new Uint8Array(new Int32Array(m).buffer),x=new Uint8Array(new Int32Array(k.computeStrides(m)).buffer),v=t.dataIdMap.get(f.dataId).id;return EC(g,s,i==="NHWC"?1:0,y,r.shape.length-1,A,x,m.length,v),f}var b5e={kernelName:Rd,backendName:"wasm",setupFunc:A5e,kernelFunc:x5e},CC;function v5e(e){CC=e.wasm.cwrap(sl,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function w5e(e){let{inputs:t,attrs:n,backend:a}=e,{x:r,filter:s}=t,i=a.dataIdMap.get(r.dataId).id,o=a.dataIdMap.get(s.dataId).id,{strides:l,dilations:u,pad:d,dimRoundingMode:h}=n,p=u==null?[1,1]:u,c=M.computeConv2DInfo(r.shape,s.shape,l,p,d,h,!0),m=c.filterHeight,f=c.filterWidth,g=c.padInfo.top,y=c.padInfo.right,A=c.padInfo.bottom,x=c.padInfo.left,v=c.dilationHeight,b=c.dilationWidth,w=c.strideHeight,I=c.strideWidth,T=c.inChannels,C=c.outChannels,z=c.padInfo.type==="SAME"?1:0;if(c.dataFormat!=="channelsLast")throw new Error(`wasm backend DepthwiseConv2dNative does not support dataFormat:'${c.dataFormat}'. Please use 'channelsLast'.`);let $=a.makeOutput(c.outShape,"float32"),S=a.dataIdMap.get($.dataId).id;return CC(i,r.shape[0],r.shape[1],r.shape[2],o,m,f,g,y,A,x,z,v,b,w,I,T,C,S),$}var k5e={kernelName:sl,backendName:"wasm",setupFunc:v5e,kernelFunc:w5e},I5e=!1,S5e=jn(ol,I5e,"bool"),N5e=Un(Ei);function fb(e){let{inputs:t,attrs:n,backend:a}=e,{input:r}=t,{dim:s}=n,i=r.shape.length,o=r.shape.slice(),l=s;return s<0&&(k.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+s+1),o.splice(l,0,1),yr({inputs:{x:r},backend:a,attrs:{shape:o}})}var T5e={kernelName:Dd,backendName:"wasm",kernelFunc:fb};function E5e(e){let{attrs:{shape:t,value:n,dtype:a},backend:r}=e,s=r.makeOutput(t,a);return r.typedArrayFromHeap(s).fill(n),s}var C5e={kernelName:Qc,backendName:"wasm",kernelFunc:E5e},MC;function M5e(e){MC=e.wasm.cwrap(_d,null,["number","number","number","number","number","number"])}function $5e(e){let{inputs:t,backend:n}=e,{image:a}=t,r=n.makeOutput(a.shape,a.dtype),s=n.dataIdMap.get(a.dataId).id,i=n.dataIdMap.get(r.dataId).id,[o,l,u,d]=a.shape;return MC(s,o,l,u,d,i),r}var R5e={kernelName:_d,backendName:"wasm",kernelFunc:$5e,setupFunc:M5e},F5e=Un(Ci),O5e=!1,D5e=jn(ul,O5e),$C;function _5e(e){$C=e.wasm.cwrap(dl,null,["number","number","number","number","number","number","number"])}function z5e(e){let{backend:t,inputs:n,attrs:a}=e,{varianceEpsilon:r}=a,{x:s,mean:i,variance:o,offset:l,scale:u}=n,d=t.dataIdMap.get(s.dataId).id,h=t.dataIdMap.get(i.dataId).id,p=t.dataIdMap.get(o.dataId).id,c=l!=null?t.dataIdMap.get(l.dataId).id:0,m=u!=null?t.dataIdMap.get(u.dataId).id:0,f=t.makeOutput(s.shape,s.dtype);if(k.sizeFromShape(s.shape)===0)return f;let g=t.dataIdMap.get(f.dataId).id;return $C(d,h,p,c,m,r,g),f}var P5e={kernelName:dl,backendName:"wasm",setupFunc:_5e,kernelFunc:z5e},RC;function L5e(e){RC=e.wasm.cwrap(Wl,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function W5e(e){let{inputs:t,attrs:n,backend:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dilations:d,dataFormat:h,dimRoundingMode:p,activation:c,leakyreluAlpha:m}=n,f=M.computeConv2DInfo(r.shape,s.shape,l,d,u,p),g=gp[c];if(g==null)throw new Error(`${c} activation not yet supported for FusedConv2D in the wasm backend.`);let y=a.dataIdMap.get(r.dataId).id,A=a.dataIdMap.get(s.dataId).id,x=f.outChannels,v=0;if(i!=null){let te=a.dataIdMap.get(i.dataId);if(te.shape.length!==1)throw new Error(`FusedConv2D only supports rank-1 bias but got rank ${te.shape.length}.`);if(te.shape[0]!==x)throw new Error(`FusedConv2D bias shape (${te.shape}) does not match the number of output channels (${x})`);v=te.id}let b=f.filterHeight,w=f.filterWidth,I=f.padInfo.top,T=f.padInfo.right,C=f.padInfo.bottom,z=f.padInfo.left,$=f.dilationHeight,S=f.dilationWidth,D=f.strideHeight,_=f.strideWidth,W=f.inChannels,X=f.padInfo.type==="SAME"?1:0,q=f.batchSize,Q=f.inHeight,ee=f.inWidth;if(h!=="NHWC")throw new Error(`wasm backend FusedConv2D does not support dataFormat:'${h}'. Please use 'NHWC'.`);let ie=a.makeOutput(f.outShape,"float32"),ae=a.dataIdMap.get(ie.dataId).id,de=o==null?0:a.dataIdMap.get(o.dataId).id;return RC(y,q,Q,ee,A,b,w,v,I,T,C,z,X,$,S,D,_,W,x,g,de,m||0,ae),ie}var B5e={kernelName:Wl,backendName:"wasm",setupFunc:L5e,kernelFunc:W5e},FC;function V5e(e){FC=e.wasm.cwrap(Bl,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function U5e(e){let{inputs:t,attrs:n,backend:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dilations:d,dataFormat:h,dimRoundingMode:p,activation:c,leakyreluAlpha:m}=n,f=M.computeConv2DInfo(r.shape,s.shape,l,d,u,p,!0),g=gp[c];if(g==null)throw new Error(`${c} activation not yet supported for FusedDepthwiseConv2D in the wasm backend.`);let y=a.dataIdMap.get(r.dataId).id,A=a.dataIdMap.get(s.dataId).id,x=f.outChannels,v=0;if(i!=null){let te=a.dataIdMap.get(i.dataId);if(te.shape.length!==1)throw new Error(`FusedDepthwiseConv2D only supports rank-1 bias but got rank ${te.shape.length}.`);if(te.shape[0]!==x)throw new Error(`FusedDepthwiseConv2D bias shape (${te.shape}) does not match the number of output channels (${x})`);v=te.id}let b=f.filterHeight,w=f.filterWidth,I=f.padInfo.top,T=f.padInfo.right,C=f.padInfo.bottom,z=f.padInfo.left,$=f.dilationHeight,S=f.dilationWidth,D=f.strideHeight,_=f.strideWidth,W=f.inChannels,X=f.padInfo.type==="SAME"?1:0,q=f.batchSize,Q=f.inHeight,ee=f.inWidth;if(h!=="NHWC")throw new Error(`wasm backend FusedDepthwiseConv2D does not support dataFormat:'${h}'. Please use 'NHWC'.`);let ie=a.makeOutput(f.outShape,"float32"),ae=a.dataIdMap.get(ie.dataId).id,de=o==null?0:a.dataIdMap.get(o.dataId).id;return FC(y,q,Q,ee,A,b,w,v,I,T,C,z,X,$,S,D,_,W,x,g,de,m||0,ae),ie}var j5e={kernelName:Bl,backendName:"wasm",setupFunc:V5e,kernelFunc:U5e},OC;function H5e(e){OC=e.wasm.cwrap(Pd,null,["number","number","number","number","number","number","array","number"])}function G5e(e){let{backend:t,inputs:n}=e,{params:a,indices:r}=n,[s,i,o,l]=S4.prepareAndValidate(a,r),u=t.makeOutput(s,a.dtype);if(i===0)return u;let d=r.shape,h=d[d.length-1],p=t.dataIdMap.get(a.dataId).id,c=t.dataIdMap.get(r.dataId).id,m=new Uint8Array(new Int32Array(l).buffer),f=t.dataIdMap.get(u.dataId).id;return OC(p,na[a.dtype],c,i,h,o,m,f),u}var q5e={kernelName:Pd,backendName:"wasm",setupFunc:H5e,kernelFunc:G5e},DC;function K5e(e){DC=e.wasm.cwrap("Gather",null,["number","number","array","number","number","number","array","number"])}function X5e(e){let{backend:t,inputs:n,attrs:a}=e,{x:r,indices:s}=n,{axis:i,batchDims:o}=a,l=k.parseAxisParam(i,r.shape)[0],u=M.segment_util.collectGatherOpShapeInfo(r,s,l,o),d=yr({inputs:{x:r},attrs:{shape:[u.batchSize,u.outerSize,u.dimSize,u.sliceSize]},backend:t}),h=k.sizeFromShape(s.shape),p=yr({inputs:{x:s},attrs:{shape:[u.batchSize,h/u.batchSize]},backend:t}),c=[u.batchSize,u.outerSize,h/u.batchSize,u.sliceSize],m=t.makeOutput(c,r.dtype);if(k.sizeFromShape(r.shape)===0)return m;let f=d.shape.length-1,g=t.dataIdMap.get(d.dataId).id,y=t.dataIdMap.get(p.dataId).id,A=t.dataIdMap.get(m.dataId).id,x=new Uint8Array(new Int32Array(k.computeStrides(d.shape)).buffer),v=new Uint8Array(new Int32Array(k.computeStrides(c)).buffer);return DC(g,na[r.dtype],x,f,y,u.batchSize,v,A),t.disposeData(d.dataId),t.disposeData(p.dataId),m.shape=u.outputShape,m}var Z5e={kernelName:zd,backendName:"wasm",setupFunc:K5e,kernelFunc:X5e},Y5e=!1,J5e=jn(hl,Y5e,"bool"),Q5e=!1,ebe=jn(Mi,Q5e,"bool"),_C;function tbe(e){_C=e.wasm.cwrap(cl,null,["number","number","number"])}function nbe(e){let{inputs:{x:t},attrs:{alpha:n},backend:a}=e,r=a.dataIdMap.get(t.dataId).id,s=a.makeOutput(t.shape,t.dtype);if(k.sizeFromShape(t.shape)!==0){let i=a.dataIdMap.get(s.dataId).id;_C(r,n,i)}return s}var abe={kernelName:cl,backendName:"wasm",setupFunc:tbe,kernelFunc:nbe},rbe=!1,sbe=jn(fl,rbe,"bool"),ibe=!1,obe=jn(ml,ibe,"bool"),lbe=Un($i),ube=!1,dbe=jn(Ud,ube,"bool"),zC;function hbe(e){zC=e.wasm.cwrap(gl,null,["number, number, number"])}function pbe(e){let{backend:t,inputs:n,attrs:a}=e,{reductionIndices:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=i,{transposed:u,axes:d,originalAxes:h,inputWasTransposed:p}=ti(i,r,t);if(p){let A=t.dataIdMap.get(u.dataId).id;l=u,o=A}let c=l.shape.length;M.assertAxesAreInnerMostDims("max",d,c);let[m,f]=M.computeOutAndReduceShapes(l.shape,d),g=k.sizeFromShape(f),y=t.makeOutput(m,i.dtype);if(k.sizeFromShape(l.shape)!==0){let A=t.dataIdMap.get(y.dataId).id;zC(o,g,A)}if(p&&t.disposeData(u.dataId),s){let A=M.expandShapeToKeepDim(y.shape,h);y.shape=A}return y}var cbe={kernelName:gl,backendName:"wasm",setupFunc:hbe,kernelFunc:pbe},fbe=!1,mbe=jn(Ri,fbe),PC;function gbe(e){PC=e.wasm.cwrap(yl,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function ybe(e){let{inputs:t,attrs:n,backend:a}=e,r=t.x,s=a.dataIdMap.get(r.dataId).id,{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=n,d=M.computePool2DInfo(r.shape,i,o,1,l,u),h=d.filterHeight,p=d.filterWidth,c=d.padInfo.top,m=d.padInfo.right,f=d.padInfo.bottom,g=d.padInfo.left,y=d.dilationHeight,A=d.dilationWidth,x=d.strideHeight,v=d.strideWidth,b=d.inChannels,w=d.outChannels;if(d.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${d.dataFormat}'. Please use 'channelsLast'.`);let I=a.makeOutput(d.outShape,"float32"),T=a.dataIdMap.get(I.dataId).id;return PC(s,r.shape[0],r.shape[1],r.shape[2],h,p,c,m,f,g,y,A,x,v,b,w,T),I}var Abe={kernelName:yl,backendName:"wasm",setupFunc:gbe,kernelFunc:ybe},LC;function xbe(e){LC=e.wasm.cwrap(Al,null,["number, number, number"])}function bbe(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:d,axes:h,originalAxes:p,inputWasTransposed:c}=ti(i,r,t),m=h;if(c){let v=t.dataIdMap.get(d.dataId).id;v!==o&&(u=d,l=v,m=M.getInnerMostAxes(m.length,u.shape.length))}M.assertAxesAreInnerMostDims("mean",m,u.shape.length);let[f,g]=M.computeOutAndReduceShapes(u.shape,m),y=k.sizeFromShape(g),A=u;u.dtype!=="float32"&&(A=em({backend:t,inputs:{x:u},attrs:{dtype:"float32"}}),l=t.dataIdMap.get(A.dataId).id);let x=t.makeOutput(f,"float32");if(k.sizeFromShape(u.shape)!==0){let v=t.dataIdMap.get(x.dataId).id;LC(l,y,v)}if(c&&t.disposeData(d.dataId),s){let v=M.expandShapeToKeepDim(x.shape,p);x.shape=v}return u.dtype!=="float32"&&t.disposeData(A.dataId),x}var vbe={kernelName:Al,backendName:"wasm",setupFunc:xbe,kernelFunc:bbe},WC;function wbe(e){WC=e.wasm.cwrap(xl,null,["number, number, number"])}function kbe(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:d,axes:h,originalAxes:p,inputWasTransposed:c}=ti(i,r,t);if(c){let x=t.dataIdMap.get(d.dataId).id;x!==o&&(u=d,l=x)}let m=u.shape.length;M.assertAxesAreInnerMostDims("min",h,m);let[f,g]=M.computeOutAndReduceShapes(u.shape,h),y=k.sizeFromShape(g),A=t.makeOutput(f,u.dtype);if(k.sizeFromShape(u.shape)!==0){let x=t.dataIdMap.get(A.dataId).id;WC(l,y,x)}if(c&&t.disposeData(d.dataId),s){let x=M.expandShapeToKeepDim(A.shape,p);A.shape=x}return A}var Ibe={kernelName:xl,backendName:"wasm",setupFunc:wbe,kernelFunc:kbe},Sbe=!1,Nbe=jn(Fi,Sbe),mb;(function(e){e[e.reflect=0]="reflect",e[e.symmetric=1]="symmetric"})(mb||(mb={}));var BC;function Tbe(e){BC=e.wasm.cwrap(bl,null,["number","array","number","number","array","array","number","number"])}function Ebe(e){let{inputs:{x:t},backend:n,attrs:{paddings:a,mode:r}}=e,s=a.map((m,f)=>m[0]+t.shape[f]+m[1]),i=n.dataIdMap.get(t.dataId).id,o=n.makeOutput(s,t.dtype),l=n.dataIdMap.get(o.dataId).id,u=new Uint8Array(new Int32Array(t.shape).buffer),d=a.map(m=>m[0]),h=a.map(m=>m[1]),p=new Uint8Array(new Int32Array(d).buffer),c=new Uint8Array(new Int32Array(h).buffer);return BC(i,u,t.shape.length,na[t.dtype],p,c,mb[r],l),o}var Cbe={kernelName:bl,backendName:"wasm",kernelFunc:Ebe,setupFunc:Tbe},Mbe=!0,$be=jn(Oi,Mbe),Rbe=Un(Hd);function gb(e,t){let n=new Int32Array(e.wasm.HEAPU8.buffer,t,4),a=n[0],r=n[1],s=n[2],i=n[3];return e.wasm._free(t),{pSelectedIndices:a,selectedSize:r,pSelectedScores:s,pValidOutputs:i}}var VC;function Fbe(e){VC=e.wasm.cwrap(Gd,"number",["number","number","number","number","number"])}function Obe(e){let{backend:t,inputs:n,attrs:a}=e,{iouThreshold:r,maxOutputSize:s,scoreThreshold:i}=a,{boxes:o,scores:l}=n,u=t.dataIdMap.get(o.dataId).id,d=t.dataIdMap.get(l.dataId).id,h=VC(u,d,s,r,i),{pSelectedIndices:p,selectedSize:c,pSelectedScores:m,pValidOutputs:f}=gb(t,h);return t.wasm._free(m),t.wasm._free(f),t.makeOutput([c],"int32",p)}var Dbe={kernelName:Gd,backendName:"wasm",setupFunc:Fbe,kernelFunc:Obe},UC;function _be(e){UC=e.wasm.cwrap(qd,"number",["number","number","number","number","number","bool"])}function zbe(e){let{backend:t,inputs:n,attrs:a}=e,{iouThreshold:r,maxOutputSize:s,scoreThreshold:i,padToMaxOutputSize:o}=a,{boxes:l,scores:u}=n,d=t.dataIdMap.get(l.dataId).id,h=t.dataIdMap.get(u.dataId).id,p=UC(d,h,s,r,i,o),{pSelectedIndices:c,selectedSize:m,pSelectedScores:f,pValidOutputs:g}=gb(t,p);t.wasm._free(f);let y=t.makeOutput([m],"int32",c),A=t.makeOutput([],"int32",g);return[y,A]}var Pbe={kernelName:qd,backendName:"wasm",setupFunc:_be,kernelFunc:zbe},jC;function Lbe(e){jC=e.wasm.cwrap(Kd,"number",["number","number","number","number","number","number"])}function Wbe(e){let{backend:t,inputs:n,attrs:a}=e,{iouThreshold:r,maxOutputSize:s,scoreThreshold:i,softNmsSigma:o}=a,{boxes:l,scores:u}=n,d=t.dataIdMap.get(l.dataId).id,h=t.dataIdMap.get(u.dataId).id,p=jC(d,h,s,r,i,o),{pSelectedIndices:c,selectedSize:m,pSelectedScores:f,pValidOutputs:g}=gb(t,p);t.wasm._free(g);let y=t.makeOutput([m],"int32",c),A=t.makeOutput([m],"float32",f);return[y,A]}var Bbe={kernelName:Kd,backendName:"wasm",setupFunc:Lbe,kernelFunc:Wbe},Vbe=!1,Ube=jn(vl,Vbe,"bool"),HC;function jbe(e){HC=e.wasm.cwrap(wl,null,["number","number","number","number","number"])}function Hbe(e){let{inputs:t,backend:n,attrs:a}=e,{indices:r}=t,{depth:s,onValue:i,offValue:o}=a,l=n.makeOutput([...r.shape,s],"int32"),u=n.dataIdMap.get(l.dataId).id,d=n.dataIdMap.get(r.dataId).id;return HC(d,s,i,o,u),l}var Gbe={kernelName:wl,backendName:"wasm",setupFunc:jbe,kernelFunc:Hbe};function qbe(e){let{inputs:{x:t},backend:n}=e,a=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(a).fill(1),a}var Kbe={kernelName:Xd,backendName:"wasm",kernelFunc:qbe};function Xbe(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a;if(t.length===1)return fb({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let s=t[0].shape,i=t[0].dtype;t.forEach(d=>{k.assertShapesMatch(s,d.shape,"All tensors passed to stack must have matching shapes"),k.assert(i===d.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(d=>{let h=fb({inputs:{input:d},backend:n,attrs:{dim:r}});return o.push(h),h}),u=kC({inputs:l,backend:n,attrs:{axis:r}});return o.forEach(d=>n.disposeData(d.dataId)),u}var Zbe={kernelName:Zd,backendName:"wasm",kernelFunc:Xbe},GC;function Ybe(e){GC=e.wasm.cwrap(kl,null,["number","array","number","number","array","array","number","number"])}function Jbe(e){let{inputs:{x:t},backend:n,attrs:{paddings:a,constantValue:r}}=e,s=a.map((m,f)=>m[0]+t.shape[f]+m[1]),i=n.dataIdMap.get(t.dataId).id,o=n.makeOutput(s,t.dtype),l=n.dataIdMap.get(o.dataId).id,u=new Uint8Array(new Int32Array(t.shape).buffer),d=a.map(m=>m[0]),h=a.map(m=>m[1]),p=new Uint8Array(new Int32Array(d).buffer),c=new Uint8Array(new Int32Array(h).buffer);return GC(i,u,t.shape.length,na[t.dtype],p,c,r,l),o}var Qbe={kernelName:kl,backendName:"wasm",kernelFunc:Jbe,setupFunc:Ybe},e3e=!1,t3e=jn(Il,e3e),qC;function n3e(e){qC=e.wasm.cwrap(Sl,null,["number","number","number"])}function a3e(e){let{inputs:t,backend:n}=e,{x:a,alpha:r}=t,s=n.dataIdMap.get(a.dataId).id,i=n.dataIdMap.get(r.dataId).id,o=n.makeOutput(a.shape,"float32"),l=n.dataIdMap.get(o.dataId).id;return qC(s,i,l),o}var r3e={kernelName:Sl,backendName:"wasm",setupFunc:n3e,kernelFunc:a3e},KC;function s3e(e){KC=e.wasm.cwrap(Yd,null,["number","number","number","number"])}function i3e(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:d,axes:h,originalAxes:p,inputWasTransposed:c}=ti(i,r,t),m=h;if(c){let x=t.dataIdMap.get(d.dataId).id;x!==o&&(u=d,l=x,m=M.getInnerMostAxes(m.length,u.shape.length))}M.assertAxesAreInnerMostDims("prod",m,u.shape.length);let[f,g]=M.computeOutAndReduceShapes(u.shape,m),y=k.sizeFromShape(g),A=t.makeOutput(f,u.dtype);if(k.sizeFromShape(u.shape)!==0){let x=t.dataIdMap.get(A.dataId).id;KC(l,y,na[A.dtype],x)}if(c&&t.disposeData(d.dataId),s){let x=M.expandShapeToKeepDim(A.shape,p);A.shape=x}return A}var o3e={kernelName:Yd,backendName:"wasm",setupFunc:s3e,kernelFunc:i3e},l3e=e=>{let{backend:t,attrs:n}=e,{start:a,stop:r,step:s,dtype:i}=n,o=iE(a,r,s,i),l=t.makeOutput([o.length],i);return t.typedArrayFromHeap(l).set(o),l},u3e={kernelName:rf,backendName:"wasm",kernelFunc:l3e},d3e=!0,h3e=jn(il,d3e),p3e=Un(Nl),c3e=Un(El),XC;function f3e(e){XC=e.wasm.cwrap(Tl,null,["number","number","number","number","number","number","number","number","number","number"])}function m3e(e){let{backend:t,inputs:n,attrs:a}=e,{images:r}=n,{alignCorners:s,halfPixelCenters:i,size:o}=a,[l,u]=o,[d,h,p,c]=r.shape,m=[d,l,u,c],f=t.dataIdMap.get(r.dataId),g;f.dtype!=="float32"&&(g=em({backend:t,inputs:{x:r},attrs:{dtype:"float32"}}),f=t.dataIdMap.get(g.dataId));let y=f.id,A=t.makeOutput(m,"float32");if(k.sizeFromShape(r.shape)===0)return A;let x=t.dataIdMap.get(A.dataId).id;return XC(y,d,h,p,c,l,u,s?1:0,i?1:0,x),g!=null&&t.disposeData(g.dataId),A}var g3e={kernelName:Tl,backendName:"wasm",setupFunc:f3e,kernelFunc:m3e},ZC;function y3e(e){ZC=e.wasm.cwrap(Cl,null,["number","array","number","array","number","number"])}function A3e(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dims:s}=a,i=k.parseAxisParam(s,r.shape);if(r.shape.length===0)return J0({inputs:{x:r},backend:n});let o=n.makeOutput(r.shape,r.dtype),l=n.dataIdMap.get(r.dataId).id,u=n.dataIdMap.get(o.dataId).id,d=new Uint8Array(new Int32Array(i).buffer),h=new Uint8Array(new Int32Array(r.shape).buffer);ZC(l,d,i.length,h,r.shape.length,u);let p=yr({inputs:{x:o},attrs:{shape:r.shape},backend:n});return n.disposeData(o.dataId),p}var x3e={kernelName:Cl,backendName:"wasm",kernelFunc:A3e,setupFunc:y3e},YC;function b3e(e){YC=e.wasm.cwrap(ch,null,["number","number","number","number","number","number","number","number","array","number","number"])}function v3e(e){let{inputs:t,backend:n,attrs:a}=e,{image:r}=t,{radians:s,fillValue:i,center:o}=a,l=n.makeOutput(r.shape,r.dtype),u=n.dataIdMap.get(r.dataId).id,d=n.dataIdMap.get(l.dataId).id,[h,p,c,m]=r.shape,[f,g]=M.getImageCenter(o,p,c),y=i===0,A=255,x=typeof i=="number"?[i,i,i,y?0:A]:[...i,A],v=new Uint8Array(new Int32Array(x).buffer);return YC(u,h,p,c,m,s,f,g,v,x.length,d),l}var w3e={kernelName:ch,backendName:"wasm",kernelFunc:v3e,setupFunc:b3e},k3e=Un(Ml),I3e=Un(Di),JC;function S3e(e){JC=e.wasm.cwrap(eh,null,["number","number","number","number","number","number","array","number","number"])}function N3e(e){let{backend:t,inputs:n,attrs:a}=e,{indices:r,updates:s}=n,{shape:i}=a,o=t.makeOutput(i,s.dtype);if(k.sizeFromShape(i)===0)return o;let{sliceRank:l,numUpdates:u,sliceSize:d,strides:h,outputSize:p}=T4.calculateShapes(s,r,i),c=t.dataIdMap.get(r.dataId).id,m=t.dataIdMap.get(s.dataId).id,f=new Uint8Array(new Int32Array(h).buffer),g=t.dataIdMap.get(o.dataId).id;return JC(c,m,na[s.dtype],l,u,d,f,p,g),o}var T3e={kernelName:eh,backendName:"wasm",setupFunc:S3e,kernelFunc:N3e},QC;function E3e(e){QC=e.wasm.cwrap("SelectV2",null,["number","number","number","number","number"])}function C3e(e){let{inputs:t,backend:n}=e,{condition:a,t:r,e:s}=t,i=n.dataIdMap.get(a.dataId).id,o=n.dataIdMap.get(r.dataId).id,l=n.dataIdMap.get(s.dataId).id,u=n.makeOutput(r.shape,r.dtype),d=n.dataIdMap.get(u.dataId).id,h=a.shape.length,p=r.shape.length,c=h===0||h>1||p===1?1:k.sizeFromShape(r.shape.slice(1));return QC(i,o,l,c,d),u}var M3e={kernelName:th,backendName:"wasm",kernelFunc:C3e,setupFunc:E3e},eM;function $3e(e){eM=e.wasm.cwrap(Rl,null,["number","number"])}function R3e(e){let{backend:t,inputs:{x:n}}=e,a=t.dataIdMap.get(n.dataId).id,r=t.makeOutput(n.shape,n.dtype),s=t.dataIdMap.get(r.dataId).id;return k.sizeFromShape(r.shape)===0||eM(a,s),r}var F3e={kernelName:"Sigmoid",backendName:"wasm",setupFunc:$3e,kernelFunc:R3e},O3e=Un($l);function tm(e){let{inputs:{x:t},attrs:{begin:n,size:a},backend:r}=e,[s,i]=Cn.parseSliceParams(t,n,a),o=Cn.isSliceContinous(t.shape,s,i),l=r.readSync(t.dataId),u=r.makeOutput(i,t.dtype),d=k.computeStrides(t.shape),h=r.dataIdMap.get(u.dataId);if(o){let m=Cn.computeFlatOffset(s,d);return t.dtype==="string"?h.stringBytes=l.slice(m,m+k.sizeFromShape(i)):r.typedArrayFromHeap(u).set(l.subarray(m,m+k.sizeFromShape(i))),u}if(t.dtype==="string"){let m=rb(l,s,i,t.shape,t.dtype);return h.stringBytes=m,u}let p=r.typedArrayFromHeap(u),c=t.shape.length;if(c===2)D3e(l,d[0],p,s,i);else if(c===3)_3e(l,d[0],d[1],p,s,i);else if(c===4)z3e(l,d[0],d[1],d[2],p,s,i);else{let m=rb(l,s,i,t.shape,t.dtype);p.set(m)}return u}function D3e(e,t,n,a,r){let s=0,i=a[0],o=a[1],l=i+r[0];for(let u=i;u<l;u++){let d=u*t+o;n.set(e.subarray(d,d+r[1]),s),s+=r[1]}}function _3e(e,t,n,a,r,s){let i=0,o=r[0],l=r[1],u=r[2],d=o+s[0],h=l+s[1];for(let p=o;p<d;p++)for(let c=l;c<h;c++){let m=p*t+c*n+u;a.set(e.subarray(m,m+s[2]),i),i+=s[2]}}function z3e(e,t,n,a,r,s,i){let o=0,l=s[0],u=s[1],d=s[2],h=l+i[0],p=u+i[1],c=d+i[2],m=s[3];for(let f=l;f<h;f++)for(let g=u;g<p;g++)for(let y=d;y<c;y++){let A=f*t+g*n+y*a+m;r.set(e.subarray(A,A+i[3]),o),o+=i[3]}}var P3e={kernelName:ah,backendName:"wasm",kernelFunc:tm},tM;function L3e(e){tM=e.wasm.cwrap(Dl,null,["number","number","number","number"])}function W3e(e){let{backend:t,inputs:{logits:n},attrs:{dim:a}}=e,r=t.dataIdMap.get(n.dataId).id,s=t.makeOutput(n.shape,n.dtype),i=t.dataIdMap.get(s.dataId).id,o=n.shape[a],l=k.sizeFromShape(n.shape)/o;return k.sizeFromShape(s.shape)===0||tM(r,i,o,l),s}var B3e={kernelName:Dl,backendName:"wasm",setupFunc:L3e,kernelFunc:W3e};function V3e(e){let{inputs:t,attrs:n,backend:a}=e,{x:r}=t,{numOrSizeSplits:s,axis:i}=n,o=k.parseAxisParam(i,r.shape)[0],l=M.prepareSplitSize(r,s,o),u=new Array(r.shape.length).fill(0),d=r.shape.slice();return l.map(h=>{let p=[...d];p[o]=h;let c=tm({inputs:{x:r},attrs:{begin:u,size:p},backend:a});return u[o]+=h,c})}var U3e={kernelName:oh,backendName:"wasm",kernelFunc:V3e},j3e=Un(Fl),H3e=Un(lf),G3e=!0,q3e=jn(_i,G3e),nM;function K3e(e){nM=e.wasm.cwrap(Li,null,["number","number","number"])}function X3e(e){let{backend:t,inputs:n,attrs:a}=e,{alpha:r}=a,{x:s}=n,i=t.dataIdMap.get(s.dataId).id,o=t.makeOutput(s.shape,s.dtype),l=t.dataIdMap.get(o.dataId).id;return nM(i,r,l),o}var Z3e={kernelName:Li,backendName:"wasm",setupFunc:K3e,kernelFunc:X3e},aM;function Y3e(e){aM=e.wasm.cwrap(lh,null,["number","array","number","array","array","array","array","array","number","number"])}function J3e(e){let{backend:t,inputs:n,attrs:a}=e,{x:r}=n,{begin:s,end:i,strides:o}=a;o==null&&(o=new Array(s.length));let{beginMask:l,endMask:u,ellipsisMask:d,newAxisMask:h,shrinkAxisMask:p}=a,c=M.slice_util.maskToAxes(d);if(c.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(d!==0&&h!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(d!==0&&p!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let m=r.shape.length-s.length,f=M.slice_util.maskToAxes(h),g=r.shape.slice();f.forEach(z=>{s[z]=0,i[z]=1,g.splice(z,0,1)});let y=yr({inputs:{x:r},attrs:{shape:g},backend:t}),{begin:A,end:x,strides:v}=M.slice_util.getNormalizedAxes(y.shape,c,m,s,i,o,l,u,d);s=A,i=x,o=v;let b=M.slice_util.maskToAxes(p);b.forEach(z=>{i[z]=s[z]+1,o[z]=1});let w=M.slice_util.computeOutShape(s,i,o),I=w.filter((z,$)=>b.indexOf($)===-1);if(o.every(z=>z===1)){let z=tm({inputs:{x:y},attrs:{begin:s,size:w},backend:t});t.disposeData(y.dataId);let $=yr({inputs:{x:z},attrs:{shape:I},backend:t});return t.disposeData(z.dataId),$}let T=t.makeOutput(I,"float32");if(!I.some(z=>z===0)){let z=t.dataIdMap.get(y.dataId).id,$=new Uint8Array(new Int32Array(k.computeStrides(y.shape)).buffer),S=new Uint8Array(new Int32Array(s).buffer),D=new Uint8Array(new Int32Array(i).buffer),_=new Uint8Array(new Int32Array(o).buffer),W=new Uint8Array(new Int32Array(I).buffer),X=new Uint8Array(new Int32Array(k.computeStrides(I)).buffer),q=t.dataIdMap.get(T.dataId).id;aM(z,$,y.shape.length,S,D,_,W,X,I.length,q)}t.disposeData(y.dataId);let C=yr({inputs:{x:T},attrs:{shape:I},backend:t});return t.disposeData(T.dataId),C}var Q3e={kernelName:lh,backendName:"wasm",setupFunc:Y3e,kernelFunc:J3e},eve=!0,tve=jn(zi,eve),rM;function nve(e){rM=e.wasm.cwrap(Ol,null,["number, number, number"])}function ave(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:d,axes:h,originalAxes:p,inputWasTransposed:c}=ti(i,r,t),m=h;if(c){let x=t.dataIdMap.get(d.dataId).id;x!==o&&(u=d,l=x,m=M.getInnerMostAxes(m.length,u.shape.length))}M.assertAxesAreInnerMostDims("sum",m,u.shape.length);let[f,g]=M.computeOutAndReduceShapes(u.shape,m),y=k.sizeFromShape(g),A=t.makeOutput(f,u.dtype);if(k.sizeFromShape(u.shape)!==0){let x=t.dataIdMap.get(A.dataId).id;rM(l,y,x)}if(c&&t.disposeData(d.dataId),s){let x=M.expandShapeToKeepDim(A.shape,p);A.shape=x}return A}var rve={kernelName:Ol,backendName:"wasm",setupFunc:nve,kernelFunc:ave},sve=Un(_l),ive=Un(zl),sM;function ove(e){sM=e.wasm.cwrap(Pi,null,["number","array","number","array","number","number"])}function lve(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,s=n.dataIdMap.get(r.dataId).id,{reps:i}=a,o=new Array(r.shape.length);for(let p=0;p<o.length;p++)o[p]=r.shape[p]*i[p];let l=new Uint8Array(new Int32Array(r.shape).buffer),u=new Uint8Array(new Int32Array(o).buffer),d=n.makeOutput(o,r.dtype),h=n.dataIdMap.get(d.dataId).id;return sM(s,l,r.shape.length,u,o.length,na[d.dtype],h),d}var uve={kernelName:Pi,backendName:"wasm",setupFunc:ove,kernelFunc:lve},iM;function dve(e){iM=e.wasm.cwrap(uh,null,["number","array","number","number","number","bool","number","number"])}var hve=({inputs:e,backend:t,attrs:n})=>{let{x:a}=e,{k:r,sorted:s}=n,i=t.dataIdMap.get(a.dataId).id,o=new Uint8Array(new Int32Array(a.shape).buffer),l=a.shape.slice();l[l.length-1]=r;let u=t.makeOutput(l,a.dtype),d=t.dataIdMap.get(u.dataId).id,h=t.makeOutput(l,"int32"),p=t.dataIdMap.get(h.dataId).id;return iM(i,o,a.shape.length,na[a.dtype],r,s,d,p),[u,h]},pve={kernelName:uh,backendName:"wasm",setupFunc:dve,kernelFunc:hve},oM;function cve(e){oM=e.wasm.cwrap(dh,null,["number","number","bool","number","number","number","number","number","number","array","number","number","number","number","number"])}function fve(e){let{backend:t,inputs:n,attrs:a}=e,{image:r,transforms:s}=n,{interpolation:i,fillMode:o,fillValue:l,outputShape:u}=a,[d,h,p,c]=r.shape,[m,f]=u!=null?u:[h,p],g=[d,m,f,c],y=new Uint8Array(new Int32Array(k.computeStrides(r.shape)).buffer),A=t.makeOutput(g,r.dtype),x=t.dataIdMap.get(A.dataId).id,v=t.dataIdMap.get(r.dataId).id,b=t.dataIdMap.get(s.dataId).id,w=i==="nearest"?1:2,I;switch(o){case"constant":I=1;break;case"reflect":I=2;break;case"wrap":I=3;break;case"nearest":I=4;break;default:I=1;break}return oM(v,b,s.shape[0]>1,d,m,f,c,p,h,y,r.shape.length-1,w,I,l,x),A}var mve={kernelName:dh,backendName:"wasm",setupFunc:cve,kernelFunc:fve};function gve(e){let{inputs:t,backend:n,attrs:a}=e,{value:r}=t,{axis:s}=a;s<0&&(s+=r.shape.length);let i=r.shape[s],o=r.shape.length,l=new Array(o-1),u=0;for(let c=0;c<o;c++)c!==s&&(l[u++]=r.shape[c]);let d=new Array(i),h=new Array(o).fill(0),p=r.shape.slice();p[s]=1;for(let c=0;c<d.length;c++)h[s]=c,d[c]=tm({inputs:{x:r},attrs:{begin:h,size:p},backend:n});return d.map(({dataId:c,dtype:m})=>({dataId:c,dtype:m,shape:l}))}var yve={kernelName:hh,backendName:"wasm",kernelFunc:gve};function Ave(e){let{inputs:{x:t},backend:n}=e,a=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(a).fill(0),a}var xve={kernelName:ph,backendName:"wasm",kernelFunc:Ave},bve=[Nxe,Exe,$xe,Lxe,Vxe,Hxe,Kxe,Jxe,Qxe,e5e,a5e,r5e,o5e,d5e,h5e,f5e,y5e,b5e,k5e,S5e,N5e,T5e,C5e,R5e,F5e,D5e,Sxe,P5e,B5e,j5e,q5e,Z5e,J5e,ebe,Rxe,abe,sbe,obe,lbe,dbe,cbe,mbe,Abe,vbe,Ibe,Nbe,Cbe,$be,Rbe,Dbe,Pbe,Bbe,Ube,Gbe,Kbe,Zbe,Qbe,t3e,r3e,o3e,u3e,h3e,p3e,c3e,Xxe,g3e,x3e,w3e,I3e,k3e,T3e,M3e,F3e,O3e,P3e,B3e,U3e,j3e,H3e,q3e,Z3e,Q3e,tve,rve,sve,ive,uve,pve,mve,_xe,yve,xve];for(let e of bve)sA(e);var yb=se();yb.registerFlag("WASM_HAS_SIMD_SUPPORT",async()=>WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,10,9,1,7,0,65,0,253,15,26,11])));yb.registerFlag("WASM_HAS_MULTITHREAD_SUPPORT",async()=>{if(yb.get("IS_NODE"))return!1;try{return new MessageChannel().port1.postMessage(new SharedArrayBuffer(1)),WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,5,4,1,3,1,1,10,11,1,9,0,65,0,254,16,2,0,26,11]))}catch(e){return!1}});var lM=qr(IR()),vve='var Module={};function threadPrintErr(){var text=Array.prototype.slice.call(arguments).join(" ");console.error(text)}function threadAlert(){var text=Array.prototype.slice.call(arguments).join(" ");postMessage({cmd:"alert",text:text,threadId:Module["_pthread_self"]()})}var err=threadPrintErr;this.alert=threadAlert;Module["instantiateWasm"]=function(info,receiveInstance){var instance=new WebAssembly.Instance(Module["wasmModule"],info);Module["wasmModule"]=null;receiveInstance(instance);return instance.exports};function moduleLoaded(){}this.onmessage=function(e){try{if(e.data.cmd==="load"){Module["wasmModule"]=e.data.wasmModule;Module["wasmMemory"]=e.data.wasmMemory;Module["buffer"]=Module["wasmMemory"].buffer;Module["ENVIRONMENT_IS_PTHREAD"]=true;if(typeof e.data.urlOrBlob==="string"){importScripts(e.data.urlOrBlob)}else{var objectUrl=URL.createObjectURL(e.data.urlOrBlob);importScripts(objectUrl);URL.revokeObjectURL(objectUrl)}WasmBackendModuleThreadedSimd(Module).then(function(instance){Module=instance;moduleLoaded()})}else if(e.data.cmd==="objectTransfer"){Module["PThread"].receiveObjectTransfer(e.data)}else if(e.data.cmd==="run"){Module["__performance_now_clock_drift"]=performance.now()-e.data.time;Module["__emscripten_thread_init"](e.data.threadInfoStruct,0,0);var max=e.data.stackBase;var top=e.data.stackBase+e.data.stackSize;Module["establishStackSpace"](top,max);Module["_emscripten_tls_init"]();Module["PThread"].receiveObjectTransfer(e.data);Module["PThread"].setThreadStatus(Module["_pthread_self"](),1);try{var result=Module["invokeEntryPoint"](e.data.start_routine,e.data.arg);if(!Module["getNoExitRuntime"]())Module["PThread"].threadExit(result)}catch(ex){if(ex==="Canceled!"){Module["PThread"].threadCancel()}else if(ex!="unwind"){if(ex instanceof Module["ExitStatus"]){if(Module["getNoExitRuntime"]()){}else{Module["PThread"].threadExit(ex.status)}}else{Module["PThread"].threadExit(-2);throw ex}}}}else if(e.data.cmd==="cancel"){if(Module["_pthread_self"]()){Module["PThread"].threadCancel()}}else if(e.data.target==="setimmediate"){}else if(e.data.cmd==="processThreadQueue"){if(Module["_pthread_self"]()){Module["_emscripten_current_thread_process_queued_calls"]()}}else{err("worker.js received unknown command "+e.data.cmd);err(e.data)}}catch(ex){err("worker.js onmessage() captured an uncaught exception: "+ex);if(ex&&ex.stack)err(ex.stack);throw ex}};if(typeof process==="object"&&typeof process.versions==="object"&&typeof process.versions.node==="string"){self={location:{href:__filename}};var onmessage=this.onmessage;var nodeWorkerThreads=require("worker_threads");global.Worker=nodeWorkerThreads.Worker;var parentPort=nodeWorkerThreads.parentPort;parentPort.on("message",function(data){onmessage({data:data})});var nodeFS=require("fs");var nodeRead=function(filename){return nodeFS.readFileSync(filename,"utf8")};function globalEval(x){global.require=require;global.Module=Module;eval.call(null,x)}importScripts=function(f){globalEval(nodeRead(f))};postMessage=function(msg){parentPort.postMessage(msg)};if(typeof performance==="undefined"){performance={now:function(){return Date.now()}}}}',wve=qr(SR()),uM=class extends Wc{constructor(e){super();this.wasm=e,this.dataIdNextNumber=1,this.wasm.tfjs.init(),this.dataIdMap=new c1(this,Ps())}write(e,t,n){let a={id:this.dataIdNextNumber++};return this.move(a,e,t,n,1),a}numDataIds(){return this.dataIdMap.numDataIds()}async time(e){let t=k.now();return e(),{kernelMs:k.now()-t}}move(e,t,n,a,r){let s=this.dataIdNextNumber++;if(a==="string"){let u=t;this.dataIdMap.set(e,{id:s,stringBytes:u,shape:n,dtype:a,memoryOffset:null,refCount:r});return}let i=k.sizeFromShape(n),o=i*k.bytesPerElement(a),l=this.wasm._malloc(o);this.dataIdMap.set(e,{id:s,memoryOffset:l,shape:n,dtype:a,refCount:r}),this.wasm.tfjs.registerTensor(s,i,l),t!=null&&this.wasm.HEAPU8.set(new Uint8Array(t.buffer,t.byteOffset,o),l)}async read(e){return this.readSync(e)}readSync(e){let{memoryOffset:t,dtype:n,shape:a,stringBytes:r}=this.dataIdMap.get(e);if(n==="string")return r;let s=this.wasm.HEAPU8.slice(t,t+k.sizeFromShape(a)*k.bytesPerElement(n));return Sve(s.buffer,n)}disposeData(e,t=!1){if(this.dataIdMap.has(e)){let n=this.dataIdMap.get(e);if(n.refCount--,!t&&n.refCount>0)return!1;this.wasm._free(n.memoryOffset),this.wasm.tfjs.disposeData(n.id),this.dataIdMap.delete(e)}return!0}refCount(e){return this.dataIdMap.has(e)?this.dataIdMap.get(e).refCount:0}incRef(e){let t=this.dataIdMap.get(e);t!=null&&t.refCount++}floatPrecision(){return 32}getMemoryOffset(e){return this.dataIdMap.get(e).memoryOffset}dispose(){this.wasm.tfjs.dispose(),"PThread"in this.wasm&&this.wasm.PThread.terminateAllThreads(),this.wasm=null}memory(){return{unreliable:!1}}makeOutput(e,t,n){let a;if(n==null)a=this.write(null,e,t);else{let r=this.dataIdNextNumber++;a={id:r},this.dataIdMap.set(a,{id:r,memoryOffset:n,shape:e,dtype:t,refCount:1});let s=k.sizeFromShape(e);this.wasm.tfjs.registerTensor(r,s,n)}return{dataId:a,shape:e,dtype:t}}typedArrayFromHeap({shape:e,dtype:t,dataId:n}){let a=this.wasm.HEAPU8.buffer,{memoryOffset:r}=this.dataIdMap.get(n),s=k.sizeFromShape(e);switch(t){case"float32":return new Float32Array(a,r,s);case"int32":return new Int32Array(a,r,s);case"bool":return new Uint8Array(a,r,s);default:throw new Error(`Unknown dtype ${t}`)}}};function kve(e){return(t,n)=>(k.fetch(e,{credentials:"same-origin"}).then(a=>{a.ok||t.env.a(`failed to load wasm binary file at '${e}'`),a.arrayBuffer().then(r=>{WebAssembly.instantiate(r,t).then(s=>{n(s.instance,s.module)})})}),{})}function dM(e,t,n){if(nm!=null)return nm;let a="tfjs-backend-wasm.wasm";return e&&t?a="tfjs-backend-wasm-threaded-simd.wasm":e&&(a="tfjs-backend-wasm-simd.wasm"),Ap!=null&&Ap[a]!=null?Ap[a]:n+a}async function Ive(){let[e,t]=await Promise.all([se().getAsync("WASM_HAS_SIMD_SUPPORT"),se().getAsync("WASM_HAS_MULTITHREAD_SUPPORT")]);return new Promise((n,a)=>{let r={};r.locateFile=(o,l)=>{if(o.endsWith(".worker.js")){let u=vve,d=new Blob([u],{type:"application/javascript"});return URL.createObjectURL(d)}return o.endsWith(".wasm")?dM(e,t,yp!=null?yp:l):l+o},Ab&&(r.instantiateWasm=kve(dM(e,t,yp!=null?yp:"")));let s=!1;r.onAbort=()=>{s||xp||(xp=!0,a({message:"Make sure the server can serve the `.wasm` file relative to the bundled js file. For more details see https://github.com/tensorflow/tfjs/blob/master/tfjs-backend-wasm/README.md#using-bundlers"}))};let i;t&&e&&nm==null?(r.mainScriptUrlOrBlob=new Blob(["var WasmBackendModuleThreadedSimd = "+lM.default.toString()],{type:"text/javascript"}),i=(0,lM.default)(r)):i=(0,wve.default)(r),i.then(o=>{s=!0,xp=!1;let l=null;o.tfjs={init:o.cwrap("init",null,[]),registerTensor:o.cwrap("register_tensor",null,["number","number","number"]),disposeData:o.cwrap("dispose_data",l,["number"]),dispose:o.cwrap("dispose",l,[])},n({wasm:o})})})}function Sve(e,t){switch(t){case"float32":return new Float32Array(e);case"int32":return new Int32Array(e);case"bool":return new Uint8Array(e);default:throw new Error(`Unknown dtype ${t}`)}}var Nve=["tfjs-backend-wasm.wasm","tfjs-backend-wasm-simd.wasm","tfjs-backend-wasm-threaded-simd.wasm"],nm=null,yp=null,Ap={},xp=!1,Ab=!1;function Tve(e,t=!1){if(B4("setWasmPath has been deprecated in favor of setWasmPaths and will be removed in a future release."),xp)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPath()` before you call `tf.setBackend()` or `tf.ready()`");nm=e,Ab=t}function Eve(e,t=!1){if(xp)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPaths()` before you call `tf.setBackend()` or `tf.ready()`");if(typeof e=="string")yp=e;else{Ap=e;let n=Nve.filter(a=>Ap[a]==null);if(n.length>0)throw new Error(`There were no entries found for the following binaries: ${n.join(",")}. Please either call setWasmPaths with a map providing a path for each binary, or with a string indicating the directory where all the binaries can be found.`)}Ab=t}var Cve="3.7.0",Mve=2;CA("wasm",async()=>{let{wasm:e}=await Ive();return new uM(e)},Mve);var $ve={tfjs:NR,"tfjs-core":TR,"tfjs-data":ER,"tfjs-layers":CR,"tfjs-converter":MR,"tfjs-backend-cpu":$R,"tfjs-backend-webgl":RR,"tfjs-backend-wasm":FR};var ma={name:"humangl",priority:99,canvas:null,gl:null,width:1024,height:1024,webGLattr:{alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!1,desynchronized:!0}};function hM(){if(!Gy(ma.name)){ge("backend registration:",ma.name);try{ma.canvas=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(ma.width,ma.height):document.createElement("canvas")}catch(e){ge("error: cannot create canvas:",e);return}try{ma.gl=ma.canvas.getContext("webgl2",ma.webGLattr)}catch(e){ge("error: cannot get WebGL2 context:",e);return}try{F0(2,ma.gl)}catch(e){ge("error: cannot set WebGL2 context:",e);return}try{let e=new W0(ma.gl);qy(ma.name,()=>new hp(e),ma.priority)}catch(e){ge("error: cannot register WebGL backend:",e);return}try{Lo("webgl").forEach(t=>{let n={...t,backendName:ma.name};rc(n)})}catch(e){ge("error: cannot update WebGL backend registration:",e);return}try{ka.set("WEBGL_VERSION",2)}catch(e){ge("error: cannot set WebGL backend flags:",e);return}ge("backend registered:",ma.name)}}function pM(e,t){let n=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],a=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]];return{startPoint:n,endPoint:a}}function vp(e){return[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])]}function Nu(e){return[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2]}function Tu(e,t,n){let a=t.shape[1],r=t.shape[2],s=[[e.startPoint[1]/a,e.startPoint[0]/r,e.endPoint[1]/a,e.endPoint[0]/r]];return Ye.cropAndResize(t,s,[0],n)}function am(e,t=1.5){let n=Nu(e),a=vp(e),r=[t*a[0]/2,t*a[1]/2],s=[n[0]-r[0],n[1]-r[1]],i=[n[0]+r[0],n[1]+r[1]];return{startPoint:s,endPoint:i,landmarks:e.landmarks}}function rm(e){let t=Nu(e),n=vp(e),r=Math.max(...n)/2,s=[Math.round(t[0]-r),Math.round(t[1]-r)],i=[Math.round(t[0]+r),Math.round(t[1]+r)];return{startPoint:s,endPoint:i,landmarks:e.landmarks}}function xb(e){let t=e.map(s=>s[0]),n=e.map(s=>s[1]),a=[Math.min(...t),Math.min(...n)],r=[Math.max(...t),Math.max(...n)];return{startPoint:a,endPoint:r,landmarks:e}}var cM=e=>({startPoint:Ze(e,[0,0],[-1,2]),endPoint:Ze(e,[0,2],[-1,2])});var sm=[[1,0,0],[0,1,0],[0,0,1]];function Rve(e){return e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI))}function bb(e,t){let n=Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]);return Rve(n)}function fM(e,t){return[[1,0,e],[0,1,t],[0,0,1]]}function ni(e,t){let n=0;for(let a=0;a<e.length;a++)n+=e[a]*t[a];return n}function Fve(e,t){let n=[];for(let a=0;a<e.length;a++)n.push(e[a][t]);return n}function mM(e,t){let n=[],a=e.length;for(let r=0;r<a;r++){n.push([]);for(let s=0;s<a;s++)n[r].push(ni(e[r],Fve(t,s)))}return n}function im(e,t){let n=Math.cos(e),a=Math.sin(e),r=[[n,-a,0],[a,n,0],[0,0,1]],s=fM(t[0],t[1]),i=mM(s,r),o=fM(-t[0],-t[1]);return mM(i,o)}function gM(e){let t=[[e[0][0],e[1][0]],[e[0][1],e[1][1]]],n=[e[0][2],e[1][2]],a=[-ni(t[0],n),-ni(t[1],n)];return[t[0].concat(a[0]),t[1].concat(a[1]),[0,0,1]]}function yM(e,t){return[ni(e,t[0]),ni(e,t[1])]}function AM(e){let t={strides:[e/16,e/8],anchors:[2,6]},n=[];for(let a=0;a<t.strides.length;a++){let r=t.strides[a],s=Math.floor((e+r-1)/r),i=Math.floor((e+r-1)/r),o=t.anchors[a];for(let l=0;l<s;l++){let u=r*(l+.5);for(let d=0;d<i;d++){let h=r*(d+.5);for(let p=0;p<o;p++)n.push([h,u])}}}return n}var xM=6;function Ove(e,t,n){let a=Ze(e,[0,1],[-1,2]),r=De(a,t),s=Ze(e,[0,3],[-1,2]),i=Qe(s,n),o=Qe(r,n),l=Qe(i,2),u=je(o,l),d=De(o,l),h=fe(u,n),p=fe(d,n);return ld([h,p],1)}var bM=class{constructor(t,n){this.model=t,this.anchorsData=AM(t.inputs[0].shape[1]),this.anchors=ns(this.anchorsData),this.inputSize=t.inputs[0].shape[2],this.config=n}async getBoundingBoxes(t){if(!t||t.isDisposedInternal||t.shape.length!==4||t.shape[1]<1||t.shape[2]<1)return null;let[n,a,r]=Ue(()=>{let u=Ye.resizeBilinear(t,[this.inputSize,this.inputSize]).div(127.5).sub(.5),d=this.model.execute(u),h;if(Array.isArray(d)){let f=d.sort((x,v)=>x.size-v.size),g=sn([f[0],f[2]],2),y=sn([f[1],f[3]],2);h=sn([y,g],1).squeeze(0)}else h=Yn(d);let p=Ove(h,this.anchors,[this.inputSize,this.inputSize]),c=Ze(h,[0,0],[-1,1]),m=Sr(c).squeeze().dataSync();return[h,p,m]}),s=await Ye.nonMaxSuppressionAsync(a,r,this.config.face.detector.maxDetected,this.config.face.detector.iouThreshold,this.config.face.detector.minConfidence),i=s.arraySync();s.dispose();let o=[];for(let l=0;l<i.length;l++){let u=r[i[l]];if(u>this.config.face.detector.minConfidence){let d=Ze(a,[i[l],0],[1,-1]),h=cM(d);d.dispose();let p=this.anchorsData[i[l]],c=Ue(()=>Ze(n,[i[l],xM-1],[1,-1]).squeeze().reshape([xM,-1]));o.push({box:h,landmarks:c,anchor:p,confidence:u})}}return n.dispose(),a.dispose(),{boxes:o,scaleFactor:[t.shape[2]/this.inputSize,t.shape[1]/this.inputSize]}}};async function vM(e){let t=await Et(Mt(e.modelBasePath,e.face.detector.modelPath),{fromTFHub:e.face.detector.modelPath.includes("tfhub.dev")}),n=new bM(t,e);return!t||!t.modelUrl?ge("load model failed:",e.face.detector.modelPath):e.debug&&ge("load model:",t.modelUrl),n}var Lr={silhouette:[10,338,297,332,284,251,389,356,454,323,361,288,397,365,379,378,400,377,152,148,176,149,150,136,172,58,132,93,234,127,162,21,54,103,67,109],lipsUpperOuter:[61,185,40,39,37,0,267,269,270,409,291],lipsLowerOuter:[146,91,181,84,17,314,405,321,375,291],lipsUpperInner:[78,191,80,81,82,13,312,311,310,415,308],lipsLowerInner:[78,95,88,178,87,14,317,402,318,324,308],rightEyeUpper0:[246,161,160,159,158,157,173],rightEyeLower0:[33,7,163,144,145,153,154,155,133],rightEyeUpper1:[247,30,29,27,28,56,190],rightEyeLower1:[130,25,110,24,23,22,26,112,243],rightEyeUpper2:[113,225,224,223,222,221,189],rightEyeLower2:[226,31,228,229,230,231,232,233,244],rightEyeLower3:[143,111,117,118,119,120,121,128,245],rightEyebrowUpper:[156,70,63,105,66,107,55,193],rightEyebrowLower:[35,124,46,53,52,65],rightEyeIris:[473,474,475,476,477],leftEyeUpper0:[466,388,387,386,385,384,398],leftEyeLower0:[263,249,390,373,374,380,381,382,362],leftEyeUpper1:[467,260,259,257,258,286,414],leftEyeLower1:[359,255,339,254,253,252,256,341,463],leftEyeUpper2:[342,445,444,443,442,441,413],leftEyeLower2:[446,261,448,449,450,451,452,453,464],leftEyeLower3:[372,340,346,347,348,349,350,357,465],leftEyebrowUpper:[383,300,293,334,296,336,285,417],leftEyebrowLower:[265,353,276,283,282,295],leftEyeIris:[468,469,470,471,472],midwayBetweenEyes:[168],noseTip:[1],noseBottom:[2],noseRightCorner:[98],noseLeftCorner:[327],rightCheek:[205],leftCheek:[425]},vb=[{key:"EyeUpper0",indices:[9,10,11,12,13,14,15]},{key:"EyeUpper1",indices:[25,26,27,28,29,30,31]},{key:"EyeUpper2",indices:[41,42,43,44,45,46,47]},{key:"EyeLower0",indices:[0,1,2,3,4,5,6,7,8]},{key:"EyeLower1",indices:[16,17,18,19,20,21,22,23,24]},{key:"EyeLower2",indices:[32,33,34,35,36,37,38,39,40]},{key:"EyeLower3",indices:[54,55,56,57,58,59,60,61,62]}],wp=[[.499976992607117,.652534008026123],[.500025987625122,.547487020492554],[.499974012374878,.602371990680695],[.482113003730774,.471979022026062],[.500150978565216,.527155995368958],[.499909996986389,.498252987861633],[.499523013830185,.40106201171875],[.289712011814117,.380764007568359],[.499954998493195,.312398016452789],[.499987006187439,.269918978214264],[.500023007392883,.107050001621246],[.500023007392883,.666234016418457],[.5000159740448,.679224014282227],[.500023007392883,.692348003387451],[.499976992607117,.695277988910675],[.499976992607117,.70593398809433],[.499976992607117,.719385027885437],[.499976992607117,.737019002437592],[.499967992305756,.781370997428894],[.499816000461578,.562981009483337],[.473773002624512,.573909997940063],[.104906998574734,.254140973091125],[.365929991006851,.409575998783112],[.338757991790771,.41302502155304],[.311120003461838,.409460008144379],[.274657994508743,.389131009578705],[.393361985683441,.403706014156342],[.345234006643295,.344011008739471],[.370094001293182,.346076011657715],[.319321990013123,.347265005111694],[.297903001308441,.353591024875641],[.24779200553894,.410809993743896],[.396889001131058,.842755019664764],[.280097991228104,.375599980354309],[.106310002505779,.399955987930298],[.2099249958992,.391353011131287],[.355807989835739,.534406006336212],[.471751004457474,.65040397644043],[.474155008792877,.680191993713379],[.439785003662109,.657229006290436],[.414617002010345,.66654098033905],[.450374007225037,.680860996246338],[.428770989179611,.682690978050232],[.374971002340317,.727805018424988],[.486716985702515,.547628998756409],[.485300987958908,.527395009994507],[.257764995098114,.314490020275116],[.401223003864288,.455172002315521],[.429818987846375,.548614978790283],[.421351999044418,.533740997314453],[.276895999908447,.532056987285614],[.483370006084442,.499586999416351],[.33721199631691,.282882988452911],[.296391993761063,.293242990970612],[.169294998049736,.193813979625702],[.447580009698868,.302609980106354],[.392390012741089,.353887975215912],[.354490011930466,.696784019470215],[.067304998636246,.730105042457581],[.442739009857178,.572826027870178],[.457098007202148,.584792017936707],[.381974011659622,.694710969924927],[.392388999462128,.694203019142151],[.277076005935669,.271932005882263],[.422551989555359,.563233017921448],[.385919004678726,.281364023685455],[.383103013038635,.255840003490448],[.331431001424789,.119714021682739],[.229923993349075,.232002973556519],[.364500999450684,.189113974571228],[.229622006416321,.299540996551514],[.173287004232407,.278747975826263],[.472878992557526,.666198015213013],[.446828007698059,.668527007102966],[.422762006521225,.673889994621277],[.445307999849319,.580065965652466],[.388103008270264,.693961024284363],[.403039008378983,.706539988517761],[.403629004955292,.693953037261963],[.460041999816895,.557139039039612],[.431158006191254,.692366003990173],[.452181994915009,.692366003990173],[.475387006998062,.692366003990173],[.465828001499176,.779190003871918],[.472328990697861,.736225962638855],[.473087012767792,.717857003211975],[.473122000694275,.704625964164734],[.473033010959625,.695277988910675],[.427942007780075,.695277988910675],[.426479011774063,.703539967536926],[.423162013292313,.711845993995667],[.4183090031147,.720062971115112],[.390094995498657,.639572978019714],[.013953999616206,.560034036636353],[.499913990497589,.58014702796936],[.413199990987778,.69539999961853],[.409626007080078,.701822996139526],[.468080013990402,.601534962654114],[.422728985548019,.585985004901886],[.463079988956451,.593783974647522],[.37211999297142,.47341400384903],[.334562003612518,.496073007583618],[.411671012639999,.546965003013611],[.242175996303558,.14767599105835],[.290776997804642,.201445996761322],[.327338010072708,.256527006626129],[.399509996175766,.748921036720276],[.441727995872498,.261676013469696],[.429764986038208,.187834024429321],[.412198007106781,.108901023864746],[.288955003023148,.398952007293701],[.218936994671822,.435410976409912],[.41278201341629,.398970007896423],[.257135003805161,.355440020561218],[.427684992551804,.437960982322693],[.448339998722076,.536936044692993],[.178560003638268,.45755398273468],[.247308000922203,.457193970680237],[.286267012357712,.467674970626831],[.332827985286713,.460712015628815],[.368755996227264,.447206974029541],[.398963987827301,.432654976844788],[.476410001516342,.405806005001068],[.189241006970406,.523923993110657],[.228962004184723,.348950982093811],[.490725994110107,.562400996685028],[.404670000076294,.485132992267609],[.019469000399113,.401564002037048],[.426243007183075,.420431017875671],[.396993011236191,.548797011375427],[.266469985246658,.376977026462555],[.439121007919312,.51895797252655],[.032313998788595,.644356966018677],[.419054001569748,.387154996395111],[.462783008813858,.505746960639954],[.238978996872902,.779744982719421],[.198220998048782,.831938028335571],[.107550002634525,.540755033493042],[.183610007166862,.740257024765015],[.134409993886948,.333683013916016],[.385764002799988,.883153975009918],[.490967005491257,.579378008842468],[.382384985685349,.508572995662689],[.174399003386497,.397670984268188],[.318785011768341,.39623498916626],[.343364000320435,.400596976280212],[.396100014448166,.710216999053955],[.187885001301765,.588537991046906],[.430987000465393,.944064974784851],[.318993002176285,.898285031318665],[.266247987747192,.869701027870178],[.500023007392883,.190576016902924],[.499976992607117,.954452991485596],[.366169989109039,.398822009563446],[.393207013607025,.39553701877594],[.410373002290726,.391080021858215],[.194993004202843,.342101991176605],[.388664990663528,.362284004688263],[.365961998701096,.355970978736877],[.343364000320435,.355356991291046],[.318785011768341,.35834002494812],[.301414996385574,.363156020641327],[.058132998645306,.319076001644135],[.301414996385574,.387449026107788],[.499987989664078,.618434011936188],[.415838003158569,.624195992946625],[.445681989192963,.566076993942261],[.465844005346298,.620640993118286],[.49992299079895,.351523995399475],[.288718998432159,.819945991039276],[.335278987884521,.852819979190826],[.440512001514435,.902418971061707],[.128294005990028,.791940987110138],[.408771991729736,.373893976211548],[.455606997013092,.451801002025604],[.499877005815506,.908990025520325],[.375436991453171,.924192011356354],[.11421000212431,.615022003650665],[.448662012815475,.695277988910675],[.4480200111866,.704632043838501],[.447111994028091,.715808033943176],[.444831997156143,.730794012546539],[.430011987686157,.766808986663818],[.406787008047104,.685672998428345],[.400738000869751,.681069016456604],[.392399996519089,.677703022956848],[.367855995893478,.663918972015381],[.247923001646996,.601333022117615],[.452769994735718,.420849978923798],[.43639200925827,.359887003898621],[.416164010763168,.368713974952698],[.413385987281799,.692366003990173],[.228018000721931,.683571994304657],[.468268007040024,.352671027183533],[.411361992359161,.804327011108398],[.499989002943039,.469825029373169],[.479153990745544,.442654013633728],[.499974012374878,.439637005329132],[.432112008333206,.493588984012604],[.499886006116867,.866917014122009],[.49991300702095,.821729004383087],[.456548988819122,.819200992584229],[.344549000263214,.745438992977142],[.37890899181366,.574010014533997],[.374292999505997,.780184984207153],[.319687992334366,.570737957954407],[.357154995203018,.604269981384277],[.295284003019333,.621580958366394],[.447750002145767,.862477004528046],[.410986006259918,.508723020553589],[.31395098567009,.775308012962341],[.354128003120422,.812552988529205],[.324548006057739,.703992962837219],[.189096003770828,.646299958229065],[.279776990413666,.71465802192688],[.1338230073452,.682700991630554],[.336768001317978,.644733011722565],[.429883986711502,.466521978378296],[.455527991056442,.548622965812683],[.437114000320435,.558896005153656],[.467287987470627,.529924988746643],[.414712011814117,.335219979286194],[.37704598903656,.322777986526489],[.344107985496521,.320150971412659],[.312875986099243,.32233202457428],[.283526003360748,.333190023899078],[.241245999932289,.382785975933075],[.102986000478268,.468762993812561],[.267612010240555,.424560010433197],[.297879010438919,.433175981044769],[.333433985710144,.433878004550934],[.366427004337311,.426115989685059],[.396012008190155,.416696012020111],[.420121014118195,.41022801399231],[.007561000064015,.480777025222778],[.432949006557465,.569517970085144],[.458638995885849,.479089021682739],[.473466008901596,.545744001865387],[.476087987422943,.563830018043518],[.468472003936768,.555056989192963],[.433990985155106,.582361996173859],[.483518004417419,.562983989715576],[.482482999563217,.57784903049469],[.42645001411438,.389798998832703],[.438998997211456,.39649498462677],[.450067013502121,.400434017181396],[.289712011814117,.368252992630005],[.276670008897781,.363372981548309],[.517862021923065,.471948027610779],[.710287988185883,.380764007568359],[.526226997375488,.573909997940063],[.895093023777008,.254140973091125],[.634069979190826,.409575998783112],[.661242008209229,.41302502155304],[.688880026340485,.409460008144379],[.725341975688934,.389131009578705],[.606630027294159,.40370500087738],[.654766023159027,.344011008739471],[.629905998706818,.346076011657715],[.680678009986877,.347265005111694],[.702096998691559,.353591024875641],[.75221198797226,.410804986953735],[.602918028831482,.842862963676453],[.719901978969574,.375599980354309],[.893692970275879,.399959981441498],[.790081977844238,.391354024410248],[.643998026847839,.534487962722778],[.528249025344849,.65040397644043],[.525849997997284,.680191040039062],[.560214996337891,.657229006290436],[.585384011268616,.66654098033905],[.549625992774963,.680860996246338],[.57122802734375,.682691991329193],[.624852001667023,.72809898853302],[.513050019741058,.547281980514526],[.51509702205658,.527251958847046],[.742246985435486,.314507007598877],[.598631024360657,.454979002475739],[.570338010787964,.548575043678284],[.578631997108459,.533622980117798],[.723087012767792,.532054007053375],[.516445994377136,.499638974666595],[.662801027297974,.282917976379395],[.70362401008606,.293271005153656],[.830704987049103,.193813979625702],[.552385985851288,.302568018436432],[.607609987258911,.353887975215912],[.645429015159607,.696707010269165],[.932694971561432,.730105042457581],[.557260990142822,.572826027870178],[.542901992797852,.584792017936707],[.6180260181427,.694710969924927],[.607590973377228,.694203019142151],[.722943007946014,.271963000297546],[.577413976192474,.563166975975037],[.614082992076874,.281386971473694],[.616907000541687,.255886018276215],[.668509006500244,.119913995265961],[.770092010498047,.232020974159241],[.635536015033722,.189248979091644],[.77039098739624,.299556016921997],[.826722025871277,.278755009174347],[.527121007442474,.666198015213013],[.553171992301941,.668527007102966],[.577238023281097,.673889994621277],[.554691970348358,.580065965652466],[.611896991729736,.693961024284363],[.59696102142334,.706539988517761],[.596370995044708,.693953037261963],[.539958000183105,.557139039039612],[.568841993808746,.692366003990173],[.547818005084991,.692366003990173],[.52461302280426,.692366003990173],[.534089982509613,.779141008853912],[.527670979499817,.736225962638855],[.526912987232208,.717857003211975],[.526877999305725,.704625964164734],[.526966989040375,.695277988910675],[.572058022022247,.695277988910675],[.573521018028259,.703539967536926],[.57683801651001,.711845993995667],[.581691026687622,.720062971115112],[.609944999217987,.639909982681274],[.986046016216278,.560034036636353],[.5867999792099,.69539999961853],[.590372025966644,.701822996139526],[.531915009021759,.601536989212036],[.577268004417419,.585934996604919],[.536915004253387,.593786001205444],[.627542972564697,.473352015018463],[.665585994720459,.495950996875763],[.588353991508484,.546862006187439],[.757824003696442,.14767599105835],[.709249973297119,.201507985591888],[.672684013843536,.256581008434296],[.600408971309662,.74900496006012],[.55826598405838,.261672019958496],[.570303976535797,.187870979309082],[.588165998458862,.109044015407562],[.711045026779175,.398952007293701],[.781069993972778,.435405015945435],[.587247014045715,.398931980133057],[.742869973182678,.355445981025696],[.572156012058258,.437651991844177],[.55186802148819,.536570012569427],[.821442008018494,.457556009292603],[.752701997756958,.457181990146637],[.71375697851181,.467626988887787],[.66711300611496,.460672974586487],[.631101012229919,.447153985500336],[.6008620262146,.432473003864288],[.523481011390686,.405627012252808],[.810747981071472,.523926019668579],[.771045982837677,.348959028720856],[.509127020835876,.562718033790588],[.595292985439301,.485023975372314],[.980530977249146,.401564002037048],[.573499977588654,.420000016689301],[.602994978427887,.548687994480133],[.733529984951019,.376977026462555],[.560611009597778,.519016981124878],[.967685997486115,.644356966018677],[.580985009670258,.387160003185272],[.537728011608124,.505385041236877],[.760966002941132,.779752969741821],[.801778972148895,.831938028335571],[.892440974712372,.54076099395752],[.816350996494293,.740260004997253],[.865594983100891,.333687007427216],[.614073991775513,.883246004581451],[.508952975273132,.579437971115112],[.617941975593567,.508316040039062],[.825608015060425,.397674977779388],[.681214988231659,.39623498916626],[.656635999679565,.400596976280212],[.603900015354156,.710216999053955],[.81208598613739,.588539004325867],[.56801301240921,.944564998149872],[.681007981300354,.898285031318665],[.733752012252808,.869701027870178],[.633830010890961,.398822009563446],[.606792986392975,.39553701877594],[.589659988880157,.391062021255493],[.805015981197357,.342108011245728],[.611334979534149,.362284004688263],[.634037971496582,.355970978736877],[.656635999679565,.355356991291046],[.681214988231659,.35834002494812],[.698584973812103,.363156020641327],[.941866993904114,.319076001644135],[.698584973812103,.387449026107788],[.584177017211914,.624107003211975],[.554318010807037,.566076993942261],[.534153997898102,.62064003944397],[.711217999458313,.819975018501282],[.664629995822906,.852871000766754],[.559099972248077,.902631998062134],[.871706008911133,.791940987110138],[.591234028339386,.373893976211548],[.544341027736664,.451583981513977],[.624562978744507,.924192011356354],[.88577002286911,.615028977394104],[.551338016986847,.695277988910675],[.551980018615723,.704632043838501],[.552887976169586,.715808033943176],[.555167973041534,.730794012546539],[.569944024085999,.767035007476807],[.593203008174896,.685675978660583],[.599261999130249,.681069016456604],[.607599973678589,.677703022956848],[.631937980651855,.663500010967255],[.752032995223999,.601315021514893],[.547226011753082,.420395016670227],[.563543975353241,.359827995300293],[.583841025829315,.368713974952698],[.586614012718201,.692366003990173],[.771915018558502,.683578014373779],[.531597018241882,.352482974529266],[.588370978832245,.804440975189209],[.52079701423645,.442565023899078],[.567984998226166,.493479013442993],[.543282985687256,.819254994392395],[.655317008495331,.745514988899231],[.621008992195129,.574018001556396],[.625559985637665,.78031200170517],[.680198013782501,.570719003677368],[.64276397228241,.604337990283966],[.704662978649139,.621529996395111],[.552012026309967,.862591981887817],[.589071989059448,.508637011051178],[.685944974422455,.775357007980347],[.645735025405884,.812640011310577],[.675342977046967,.703978002071381],[.810858011245728,.646304965019226],[.72012197971344,.714666962623596],[.866151988506317,.682704985141754],[.663187026977539,.644596993923187],[.570082008838654,.466325998306274],[.544561982154846,.548375964164734],[.562758982181549,.558784961700439],[.531987011432648,.530140042304993],[.585271000862122,.335177004337311],[.622952997684479,.32277899980545],[.655896008014679,.320163011550903],[.687132000923157,.322345972061157],[.716481983661652,.333200991153717],[.758756995201111,.382786989212036],[.897013008594513,.468769013881683],[.732392013072968,.424547016620636],[.70211398601532,.433162987232208],[.66652500629425,.433866024017334],[.633504986763,.426087975502014],[.603875994682312,.416586995124817],[.579657971858978,.409945011138916],[.992439985275269,.480777025222778],[.567192018032074,.569419980049133],[.54136598110199,.478899002075195],[.526564002037048,.546118021011353],[.523913025856018,.563830018043518],[.531529009342194,.555056989192963],[.566035985946655,.582329034805298],[.51631098985672,.563053965568542],[.5174720287323,.577877044677734],[.573594987392426,.389806985855103],[.560697972774506,.395331978797913],[.549755990505219,.399751007556915],[.710287988185883,.368252992630005],[.723330020904541,.363372981548309]],vo=[127,34,139,11,0,37,232,231,120,72,37,39,128,121,47,232,121,128,104,69,67,175,171,148,157,154,155,118,50,101,73,39,40,9,151,108,48,115,131,194,204,211,74,40,185,80,42,183,40,92,186,230,229,118,202,212,214,83,18,17,76,61,146,160,29,30,56,157,173,106,204,194,135,214,192,203,165,98,21,71,68,51,45,4,144,24,23,77,146,91,205,50,187,201,200,18,91,106,182,90,91,181,85,84,17,206,203,36,148,171,140,92,40,39,193,189,244,159,158,28,247,246,161,236,3,196,54,68,104,193,168,8,117,228,31,189,193,55,98,97,99,126,47,100,166,79,218,155,154,26,209,49,131,135,136,150,47,126,217,223,52,53,45,51,134,211,170,140,67,69,108,43,106,91,230,119,120,226,130,247,63,53,52,238,20,242,46,70,156,78,62,96,46,53,63,143,34,227,173,155,133,123,117,111,44,125,19,236,134,51,216,206,205,154,153,22,39,37,167,200,201,208,36,142,100,57,212,202,20,60,99,28,158,157,35,226,113,160,159,27,204,202,210,113,225,46,43,202,204,62,76,77,137,123,116,41,38,72,203,129,142,64,98,240,49,102,64,41,73,74,212,216,207,42,74,184,169,170,211,170,149,176,105,66,69,122,6,168,123,147,187,96,77,90,65,55,107,89,90,180,101,100,120,63,105,104,93,137,227,15,86,85,129,102,49,14,87,86,55,8,9,100,47,121,145,23,22,88,89,179,6,122,196,88,95,96,138,172,136,215,58,172,115,48,219,42,80,81,195,3,51,43,146,61,171,175,199,81,82,38,53,46,225,144,163,110,246,33,7,52,65,66,229,228,117,34,127,234,107,108,69,109,108,151,48,64,235,62,78,191,129,209,126,111,35,143,163,161,246,117,123,50,222,65,52,19,125,141,221,55,65,3,195,197,25,7,33,220,237,44,70,71,139,122,193,245,247,130,33,71,21,162,153,158,159,170,169,150,188,174,196,216,186,92,144,160,161,2,97,167,141,125,241,164,167,37,72,38,12,145,159,160,38,82,13,63,68,71,226,35,111,158,153,154,101,50,205,206,92,165,209,198,217,165,167,97,220,115,218,133,112,243,239,238,241,214,135,169,190,173,133,171,208,32,125,44,237,86,87,178,85,86,179,84,85,180,83,84,181,201,83,182,137,93,132,76,62,183,61,76,184,57,61,185,212,57,186,214,207,187,34,143,156,79,239,237,123,137,177,44,1,4,201,194,32,64,102,129,213,215,138,59,166,219,242,99,97,2,94,141,75,59,235,24,110,228,25,130,226,23,24,229,22,23,230,26,22,231,112,26,232,189,190,243,221,56,190,28,56,221,27,28,222,29,27,223,30,29,224,247,30,225,238,79,20,166,59,75,60,75,240,147,177,215,20,79,166,187,147,213,112,233,244,233,128,245,128,114,188,114,217,174,131,115,220,217,198,236,198,131,134,177,132,58,143,35,124,110,163,7,228,110,25,356,389,368,11,302,267,452,350,349,302,303,269,357,343,277,452,453,357,333,332,297,175,152,377,384,398,382,347,348,330,303,304,270,9,336,337,278,279,360,418,262,431,304,408,409,310,415,407,270,409,410,450,348,347,422,430,434,313,314,17,306,307,375,387,388,260,286,414,398,335,406,418,364,367,416,423,358,327,251,284,298,281,5,4,373,374,253,307,320,321,425,427,411,421,313,18,321,405,406,320,404,405,315,16,17,426,425,266,377,400,369,322,391,269,417,465,464,386,257,258,466,260,388,456,399,419,284,332,333,417,285,8,346,340,261,413,441,285,327,460,328,355,371,329,392,439,438,382,341,256,429,420,360,364,394,379,277,343,437,443,444,283,275,440,363,431,262,369,297,338,337,273,375,321,450,451,349,446,342,467,293,334,282,458,461,462,276,353,383,308,324,325,276,300,293,372,345,447,382,398,362,352,345,340,274,1,19,456,248,281,436,427,425,381,256,252,269,391,393,200,199,428,266,330,329,287,273,422,250,462,328,258,286,384,265,353,342,387,259,257,424,431,430,342,353,276,273,335,424,292,325,307,366,447,345,271,303,302,423,266,371,294,455,460,279,278,294,271,272,304,432,434,427,272,407,408,394,430,431,395,369,400,334,333,299,351,417,168,352,280,411,325,319,320,295,296,336,319,403,404,330,348,349,293,298,333,323,454,447,15,16,315,358,429,279,14,15,316,285,336,9,329,349,350,374,380,252,318,402,403,6,197,419,318,319,325,367,364,365,435,367,397,344,438,439,272,271,311,195,5,281,273,287,291,396,428,199,311,271,268,283,444,445,373,254,339,263,466,249,282,334,296,449,347,346,264,447,454,336,296,299,338,10,151,278,439,455,292,407,415,358,371,355,340,345,372,390,249,466,346,347,280,442,443,282,19,94,370,441,442,295,248,419,197,263,255,359,440,275,274,300,383,368,351,412,465,263,467,466,301,368,389,380,374,386,395,378,379,412,351,419,436,426,322,373,390,388,2,164,393,370,462,461,164,0,267,302,11,12,374,373,387,268,12,13,293,300,301,446,261,340,385,384,381,330,266,425,426,423,391,429,355,437,391,327,326,440,457,438,341,382,362,459,457,461,434,430,394,414,463,362,396,369,262,354,461,457,316,403,402,315,404,403,314,405,404,313,406,405,421,418,406,366,401,361,306,408,407,291,409,408,287,410,409,432,436,410,434,416,411,264,368,383,309,438,457,352,376,401,274,275,4,421,428,262,294,327,358,433,416,367,289,455,439,462,370,326,2,326,370,305,460,455,254,449,448,255,261,446,253,450,449,252,451,450,256,452,451,341,453,452,413,464,463,441,413,414,258,442,441,257,443,442,259,444,443,260,445,444,467,342,445,459,458,250,289,392,290,290,328,460,376,433,435,250,290,392,411,416,433,341,463,464,453,464,465,357,465,412,343,412,399,360,363,440,437,399,456,420,456,363,401,435,288,372,383,353,339,255,249,448,261,255,133,243,190,133,155,112,33,246,247,33,130,25,398,384,286,362,398,414,362,463,341,263,359,467,263,249,255,466,467,260,75,60,166,238,239,79,162,127,139,72,11,37,121,232,120,73,72,39,114,128,47,233,232,128,103,104,67,152,175,148,173,157,155,119,118,101,74,73,40,107,9,108,49,48,131,32,194,211,184,74,185,191,80,183,185,40,186,119,230,118,210,202,214,84,83,17,77,76,146,161,160,30,190,56,173,182,106,194,138,135,192,129,203,98,54,21,68,5,51,4,145,144,23,90,77,91,207,205,187,83,201,18,181,91,182,180,90,181,16,85,17,205,206,36,176,148,140,165,92,39,245,193,244,27,159,28,30,247,161,174,236,196,103,54,104,55,193,8,111,117,31,221,189,55,240,98,99,142,126,100,219,166,218,112,155,26,198,209,131,169,135,150,114,47,217,224,223,53,220,45,134,32,211,140,109,67,108,146,43,91,231,230,120,113,226,247,105,63,52,241,238,242,124,46,156,95,78,96,70,46,63,116,143,227,116,123,111,1,44,19,3,236,51,207,216,205,26,154,22,165,39,167,199,200,208,101,36,100,43,57,202,242,20,99,56,28,157,124,35,113,29,160,27,211,204,210,124,113,46,106,43,204,96,62,77,227,137,116,73,41,72,36,203,142,235,64,240,48,49,64,42,41,74,214,212,207,183,42,184,210,169,211,140,170,176,104,105,69,193,122,168,50,123,187,89,96,90,66,65,107,179,89,180,119,101,120,68,63,104,234,93,227,16,15,85,209,129,49,15,14,86,107,55,9,120,100,121,153,145,22,178,88,179,197,6,196,89,88,96,135,138,136,138,215,172,218,115,219,41,42,81,5,195,51,57,43,61,208,171,199,41,81,38,224,53,225,24,144,110,105,52,66,118,229,117,227,34,234,66,107,69,10,109,151,219,48,235,183,62,191,142,129,126,116,111,143,7,163,246,118,117,50,223,222,52,94,19,141,222,221,65,196,3,197,45,220,44,156,70,139,188,122,245,139,71,162,145,153,159,149,170,150,122,188,196,206,216,92,163,144,161,164,2,167,242,141,241,0,164,37,11,72,12,144,145,160,12,38,13,70,63,71,31,226,111,157,158,154,36,101,205,203,206,165,126,209,217,98,165,97,237,220,218,237,239,241,210,214,169,140,171,32,241,125,237,179,86,178,180,85,179,181,84,180,182,83,181,194,201,182,177,137,132,184,76,183,185,61,184,186,57,185,216,212,186,192,214,187,139,34,156,218,79,237,147,123,177,45,44,4,208,201,32,98,64,129,192,213,138,235,59,219,141,242,97,97,2,141,240,75,235,229,24,228,31,25,226,230,23,229,231,22,230,232,26,231,233,112,232,244,189,243,189,221,190,222,28,221,223,27,222,224,29,223,225,30,224,113,247,225,99,60,240,213,147,215,60,20,166,192,187,213,243,112,244,244,233,245,245,128,188,188,114,174,134,131,220,174,217,236,236,198,134,215,177,58,156,143,124,25,110,7,31,228,25,264,356,368,0,11,267,451,452,349,267,302,269,350,357,277,350,452,357,299,333,297,396,175,377,381,384,382,280,347,330,269,303,270,151,9,337,344,278,360,424,418,431,270,304,409,272,310,407,322,270,410,449,450,347,432,422,434,18,313,17,291,306,375,259,387,260,424,335,418,434,364,416,391,423,327,301,251,298,275,281,4,254,373,253,375,307,321,280,425,411,200,421,18,335,321,406,321,320,405,314,315,17,423,426,266,396,377,369,270,322,269,413,417,464,385,386,258,248,456,419,298,284,333,168,417,8,448,346,261,417,413,285,326,327,328,277,355,329,309,392,438,381,382,256,279,429,360,365,364,379,355,277,437,282,443,283,281,275,363,395,431,369,299,297,337,335,273,321,348,450,349,359,446,467,283,293,282,250,458,462,300,276,383,292,308,325,283,276,293,264,372,447,346,352,340,354,274,19,363,456,281,426,436,425,380,381,252,267,269,393,421,200,428,371,266,329,432,287,422,290,250,328,385,258,384,446,265,342,386,387,257,422,424,430,445,342,276,422,273,424,306,292,307,352,366,345,268,271,302,358,423,371,327,294,460,331,279,294,303,271,304,436,432,427,304,272,408,395,394,431,378,395,400,296,334,299,6,351,168,376,352,411,307,325,320,285,295,336,320,319,404,329,330,349,334,293,333,366,323,447,316,15,315,331,358,279,317,14,316,8,285,9,277,329,350,253,374,252,319,318,403,351,6,419,324,318,325,397,367,365,288,435,397,278,344,439,310,272,311,248,195,281,375,273,291,175,396,199,312,311,268,276,283,445,390,373,339,295,282,296,448,449,346,356,264,454,337,336,299,337,338,151,294,278,455,308,292,415,429,358,355,265,340,372,388,390,466,352,346,280,295,442,282,354,19,370,285,441,295,195,248,197,457,440,274,301,300,368,417,351,465,251,301,389,385,380,386,394,395,379,399,412,419,410,436,322,387,373,388,326,2,393,354,370,461,393,164,267,268,302,12,386,374,387,312,268,13,298,293,301,265,446,340,380,385,381,280,330,425,322,426,391,420,429,437,393,391,326,344,440,438,458,459,461,364,434,394,428,396,262,274,354,457,317,316,402,316,315,403,315,314,404,314,313,405,313,421,406,323,366,361,292,306,407,306,291,408,291,287,409,287,432,410,427,434,411,372,264,383,459,309,457,366,352,401,1,274,4,418,421,262,331,294,358,435,433,367,392,289,439,328,462,326,94,2,370,289,305,455,339,254,448,359,255,446,254,253,449,253,252,450,252,256,451,256,341,452,414,413,463,286,441,414,286,258,441,258,257,442,257,259,443,259,260,444,260,467,445,309,459,250,305,289,290,305,290,460,401,376,435,309,250,392,376,411,433,453,341,464,357,453,465,343,357,412,437,343,399,344,360,440,420,437,456,360,420,363,361,401,288,265,372,353,390,339,249,339,448,255];var Dve=[127,234,132,58,172,150,149,148,152,377,378,379,397,288,361,454,356,70,63,105,66,107,336,296,334,293,300,168,6,195,4,98,97,2,326,327,33,160,158,133,153,144,362,385,387,263,373,380,57,40,37,0,267,270,287,321,314,17,84,91,78,81,13,311,308,402,14,178],_ve=[33,133,362,263,1,62,308,159,145,386,374,6,102,331,2,13,14,70,105,107,336,334,300,54,10,284,50,280,234,454,58,288,152],zve=[33,133,362,263,1,78,308],g7e=Dve.map(e=>wp[e]),y7e=_ve.map(e=>wp[e]),A7e=zve.map(e=>wp[e]);var wb=Lr.leftEyeLower0,kb=Lr.rightEyeLower0,Eu={leftBounds:[wb[0],wb[wb.length-1]],rightBounds:[kb[0],kb[kb.length-1]]},om={count:468,mouth:13,symmetryLine:[13,Lr.midwayBetweenEyes[0]]},wM={leftEye:0,rightEye:1,nose:2,mouth:3,leftEar:4,rightEar:5,symmetryLine:[3,2]},Cu={upperCenter:3,lowerCenter:4,index:71,numCoordinates:76};function lm(e,t,n,a){for(let r=0;r<vb.length;r++){let{key:s,indices:i}=vb[r],o=Lr[`${n}${s}`];if(!a||a.includes(s))for(let l=0;l<i.length;l++){let u=i[l];e[o[l]]=[t[u][0],t[u][1],(t[u][2]+e[o[l]][2])/2]}}}var Ib=class{constructor(t,n,a){var r,s;this.storedBoxes=[],this.boundingBoxDetector=t,this.meshDetector=n,this.irisModel=a,this.boxSize=((r=t==null?void 0:t.model)==null?void 0:r.inputs[0].shape[2])||0,this.meshSize=(n==null?void 0:n.inputs[0].shape[2])||((s=t==null?void 0:t.model)==null?void 0:s.inputs[0].shape[2]),this.irisSize=(a==null?void 0:a.inputs[0].shape[1])||0,this.irisEnlarge=2.3,this.skipped=0,this.detectedFaces=0}transformRawCoords(t,n,a,r){let s=vp({startPoint:n.startPoint,endPoint:n.endPoint}),i=t.map(h=>[s[0]/this.meshSize*(h[0]-this.meshSize/2),s[1]/this.meshSize*(h[1]-this.meshSize/2),h[2]]),o=a!==0?im(a,[0,0]):sm,l=a!==0?i.map(h=>[...yM(h,o),h[2]]):i,u=a!==0?gM(r):sm,d=[...Nu({startPoint:n.startPoint,endPoint:n.endPoint}),1];return l.map(h=>[Math.round(h[0]+ni(d,u[0])),Math.round(h[1]+ni(d,u[1])),Math.round(h[2])])}getLeftToRightEyeDepthDifference(t){let n=t[Eu.leftBounds[0]][2],a=t[Eu.rightBounds[0]][2];return n-a}getEyeBox(t,n,a,r,s=!1){let i=rm(am(xb([t[a],t[r]]),this.irisEnlarge)),o=vp(i),l=Ye.cropAndResize(n,[[i.startPoint[1]/this.meshSize,i.startPoint[0]/this.meshSize,i.endPoint[1]/this.meshSize,i.endPoint[0]/this.meshSize]],[0],[this.irisSize,this.irisSize]);return s&&ka.flags.IS_BROWSER&&(l=Ye.flipLeftRight(l)),{box:i,boxSize:o,crop:l}}getEyeCoords(t,n,a,r=!1){let s=[];for(let i=0;i<Cu.numCoordinates;i++){let o=t[i*3],l=t[i*3+1],u=t[i*3+2];s.push([(r?1-o/this.irisSize:o/this.irisSize)*a[0]+n.startPoint[0],l/this.irisSize*a[1]+n.startPoint[1],u])}return{rawCoords:s,iris:s.slice(Cu.index)}}getAdjustedIrisCoords(t,n,a){let r=t[Lr[`${a}EyeUpper0`][Cu.upperCenter]][2],s=t[Lr[`${a}EyeLower0`][Cu.lowerCenter]][2],i=(r+s)/2;return n.map((o,l)=>{let u=i;return l===2?u=r:l===4&&(u=s),[o[0],o[1],u]})}async predict(t,n){let a=!1,r;if((this.skipped===0||this.skipped>n.face.detector.skipFrames||!n.face.mesh.enabled||!n.skipFrame)&&(r=await this.boundingBoxDetector.getBoundingBoxes(t),this.skipped=0),n.skipFrame&&this.skipped++,!n.skipFrame||r&&r.boxes&&(!n.face.mesh.enabled||r.boxes.length!==this.detectedFaces&&this.detectedFaces!==n.face.detector.maxDetected)){this.storedBoxes=[],this.detectedFaces=0;for(let i of r.boxes)this.storedBoxes.push({startPoint:i.box.startPoint.dataSync(),endPoint:i.box.endPoint.dataSync(),landmarks:i.landmarks.arraySync(),confidence:i.confidence});this.storedBoxes.length>0&&(a=!0)}if(a){if(!r||!r.boxes||r.boxes.length===0)return this.storedBoxes=[],this.detectedFaces=0,null;for(let i=0;i<this.storedBoxes.length;i++){let o=pM({startPoint:this.storedBoxes[i].startPoint,endPoint:this.storedBoxes[i].endPoint},r.scaleFactor),l=am(o),u=rm(l),d=this.storedBoxes[i].landmarks,h=this.storedBoxes[i].confidence;this.storedBoxes[i]={...u,confidence:h,landmarks:d}}}r&&r.boxes&&r.boxes.forEach(i=>{i.box.startPoint.dispose(),i.box.endPoint.dispose(),i.landmarks.dispose()});let s=Ue(()=>this.storedBoxes.map((i,o)=>{let l,u=0,d;if(n.face.detector.rotation&&n.face.mesh.enabled&&ka.flags.IS_BROWSER){let[x,v]=i.landmarks.length>=om.count?om.symmetryLine:wM.symmetryLine;u=bb(i.landmarks[x],i.landmarks[v]);let b=Nu({startPoint:i.startPoint,endPoint:i.endPoint}),w=[b[0]/t.shape[2],b[1]/t.shape[1]],I=Ye.rotateWithOffset(t,u,0,w);d=im(-u,b),n.face.mesh.enabled?l=Tu({startPoint:i.startPoint,endPoint:i.endPoint},I,[this.meshSize,this.meshSize]).div(255):l=Tu({startPoint:i.startPoint,endPoint:i.endPoint},I,[this.boxSize,this.boxSize]).div(255)}else{d=sm;let x=t.clone();n.face.mesh.enabled?l=Tu({startPoint:i.startPoint,endPoint:i.endPoint},x,[this.meshSize,this.meshSize]).div(255):l=Tu({startPoint:i.startPoint,endPoint:i.endPoint},x,[this.boxSize,this.boxSize]).div(255)}if(!n.face.mesh.enabled)return{mesh:[],box:i,faceConfidence:null,boxConfidence:i.confidence,confidence:i.confidence,image:l};let[,h,p]=this.meshDetector.execute(l),c=h.dataSync()[0];if(c<n.face.detector.minConfidence)return this.storedBoxes[o].confidence=c,null;let f=le(p,[-1,3]).arraySync();if(n.face.iris.enabled){let{box:x,boxSize:v,crop:b}=this.getEyeBox(f,l,Eu.leftBounds[0],Eu.leftBounds[1],!0),{box:w,boxSize:I,crop:T}=this.getEyeBox(f,l,Eu.rightBounds[0],Eu.rightBounds[1]),z=this.irisModel.predict(sn([b,T])).dataSync(),$=z.slice(0,Cu.numCoordinates*3),{rawCoords:S,iris:D}=this.getEyeCoords($,x,v,!0),_=z.slice(Cu.numCoordinates*3),{rawCoords:W,iris:X}=this.getEyeCoords(_,w,I),q=this.getLeftToRightEyeDepthDifference(f);Math.abs(q)<30?(lm(f,S,"left",null),lm(f,W,"right",null)):q<1?lm(f,S,"left",["EyeUpper0","EyeLower0"]):lm(f,W,"right",["EyeUpper0","EyeLower0"]);let Q=this.getAdjustedIrisCoords(f,D,"left"),ee=this.getAdjustedIrisCoords(f,X,"right");f=f.concat(Q).concat(ee)}let g=this.transformRawCoords(f,i,u,d),y=i.confidence;if(i=am(xb(g),1.5),i.confidence=y,n.face.detector.rotation&&n.face.mesh.enabled&&n.face.description.enabled&&ka.flags.IS_BROWSER){let[x,v]=i.landmarks.length>=om.count?om.symmetryLine:wM.symmetryLine;u=bb(i.landmarks[x],i.landmarks[v]);let b=Nu({startPoint:i.startPoint,endPoint:i.endPoint}),w=[b[0]/t.shape[2],b[1]/t.shape[1]],I=Ye.rotateWithOffset(t.toFloat(),u,0,w);d=im(-u,b),l=Tu({startPoint:i.startPoint,endPoint:i.endPoint},I,[this.meshSize,this.meshSize]).div(255)}let A={mesh:g,box:i,faceConfidence:c,boxConfidence:i.confidence,image:l};return this.storedBoxes[o]={...rm(i),confidence:i.confidence,faceConfidence:c},A}));return n.face.mesh.enabled&&(this.storedBoxes=this.storedBoxes.filter(i=>i.confidence>n.face.detector.minConfidence)),this.detectedFaces=s.length,s}};var Zt=[null,null,null],Sb;async function kM(e,t){let n=await Sb.predict(e,t),a=[],r=0;for(let s of n||[]){if(!s||s.isDisposedInternal)continue;let i=s.mesh.map(d=>[d[0]/(e.shape[2]||0),d[1]/(e.shape[1]||0),d[2]/Sb.meshSize]),o={};if(s.mesh&&s.mesh.length>0)for(let d of Object.keys(Lr))o[d]=Lr[d].map(h=>s.mesh[h]);let l=s.box?[Math.trunc(Math.max(0,s.box.startPoint[0])),Math.trunc(Math.max(0,s.box.startPoint[1])),Math.trunc(Math.min(e.shape[2]||0,s.box.endPoint[0])-Math.max(0,s.box.startPoint[0])),Math.trunc(Math.min(e.shape[1]||0,s.box.endPoint[1])-Math.max(0,s.box.startPoint[1]))]:[0,0,0,0],u=s.box?[s.box.startPoint[0]/(e.shape[2]||0),s.box.startPoint[1]/(e.shape[1]||0),(s.box.endPoint[0]-s.box.startPoint[0])/(e.shape[2]||0),(s.box.endPoint[1]-s.box.startPoint[1])/(e.shape[1]||0)]:[0,0,0,0];a.push({id:r++,score:Math.round(100*s.faceConfidence||100*s.boxConfidence||0)/100,boxScore:Math.round(100*s.boxConfidence)/100,faceScore:Math.round(100*s.faceConfidence)/100,box:l,boxRaw:u,mesh:s.mesh,meshRaw:i,annotations:o,image:s.image,tensor:s.image}),s.coords&&s.coords.dispose()}return a}async function Nb(e){return!Zt[0]&&e.face.enabled||!Zt[1]&&e.face.mesh.enabled||!Zt[2]&&e.face.iris.enabled?(Zt=await Promise.all([!Zt[0]&&e.face.enabled?vM(e):null,!Zt[1]&&e.face.mesh.enabled?Et(Mt(e.modelBasePath,e.face.mesh.modelPath),{fromTFHub:e.face.mesh.modelPath.includes("tfhub.dev")}):null,!Zt[2]&&e.face.iris.enabled?Et(Mt(e.modelBasePath,e.face.iris.modelPath),{fromTFHub:e.face.iris.modelPath.includes("tfhub.dev")}):null]),e.face.mesh.enabled&&(!Zt[1]||!Zt[1].modelUrl?ge("load model failed:",e.face.mesh.modelPath):e.debug&&ge("load model:",Zt[1].modelUrl)),e.face.iris.enabled&&(!Zt[2]||!Zt[2].modelUrl?ge("load model failed:",e.face.iris.modelPath):e.debug&&ge("load model:",Zt[2].modelUrl))):e.debug&&(Zt[0]&&ge("cached model:",Zt[0].model.modelUrl),Zt[1]&&ge("cached model:",Zt[1].modelUrl),Zt[2]&&ge("cached model:",Zt[2].modelUrl)),Sb=new Ib(Zt[0],Zt[1],Zt[2]),Zt}var IM=vo,SM=wp;var Pve=["angry","disgust","fear","happy","sad","surprise","neutral"],Ar,um=[],NM=0,Tb=Number.MAX_SAFE_INTEGER,Eb=[.2989,.587,.114];async function Cb(e){return Ar?e.debug&&ge("cached model:",Ar.modelUrl):(Ar=await Et(Mt(e.modelBasePath,e.face.emotion.modelPath)),!Ar||!Ar.modelUrl?ge("load model failed:",e.face.emotion.modelPath):e.debug&&ge("load model:",Ar.modelUrl)),Ar}async function Mb(e,t,n,a){return Ar?Tb<t.face.emotion.skipFrames&&t.skipFrame&&NM===a&&um[n]&&um[n].length>0?(Tb++,um[n]):(Tb=0,new Promise(async r=>{let s=Ye.resizeBilinear(e,[Ar.inputs[0].shape[2],Ar.inputs[0].shape[1]],!1),[i,o,l]=es(s,3,3);s.dispose();let u=fe(i,Eb[0]),d=fe(o,Eb[1]),h=fe(l,Eb[2]);i.dispose(),o.dispose(),l.dispose();let p=Ky([u,d,h]);u.dispose(),d.dispose(),h.dispose();let c=Ue(()=>p.sub(.5).mul(2));p.dispose();let m=[];if(t.face.emotion.enabled){let f=await Ar.predict(c),g=f.dataSync();Ve(f);for(let y=0;y<g.length;y++)g[y]>t.face.emotion.minConfidence&&m.push({score:Math.min(.99,Math.trunc(100*g[y])/100),emotion:Pve[y]});m.sort((y,A)=>A.score-y.score)}c.dispose(),um[n]=m,NM=a,r(m)})):null}var xr,dm=[],TM=0,$b=Number.MAX_SAFE_INTEGER;async function Rb(e){let t=Mt(e.modelBasePath,e.face.description.modelPath);return xr?e.debug&&ge("cached model:",t):(xr=await Et(t),xr?e.debug&&ge("load model:",t):ge("load model failed:",e.face.description.modelPath)),xr}function Fb(e,t,n=2){if(!e||!t||(e==null?void 0:e.length)===0||(t==null?void 0:t.length)===0||(e==null?void 0:e.length)!==(t==null?void 0:t.length))return 0;let a=5*e.map((s,i)=>Math.abs(e[i]-t[i])**n).reduce((s,i)=>s+i,0)**(1/n);return Math.max(0,100-a)/100}function EM(e,t,n=0){let a={similarity:0,name:"",source:"",embedding:[]};if(!e||!t||!Array.isArray(e)||!Array.isArray(t))return a;for(let r of t)if(r.embedding&&r.name){let s=Fb(e,r.embedding);s>n&&s>a.similarity&&(a={...r,similarity:s})}return a}function Ob(e){return Ue(()=>{let n=e.image||e.tensor||e;if(!(n instanceof St))return null;let a=[[.05,.15,.85,.85]];return xr.inputs[0].shape?(n.shape.length===3?Ye.cropAndResize(Qr(n,0),a,[0],[xr.inputs[0].shape[2],xr.inputs[0].shape[1]]):Ye.cropAndResize(n,a,[0],[xr.inputs[0].shape[2],xr.inputs[0].shape[1]])).mul(255):null})}async function Db(e,t,n,a){var r,s;return xr?$b<t.face.description.skipFrames&&t.skipFrame&&TM===a&&((r=dm[n])==null?void 0:r.age)&&((s=dm[n])==null?void 0:s.age)>0?($b++,dm[n]):($b=0,new Promise(async i=>{let o=Ob(e),l,u={age:0,gender:"unknown",genderScore:0,descriptor:[]};t.face.description.enabled&&(l=await xr.predict(o)),Ve(o),l&&(Ue(()=>{let d=l.find(f=>f.shape[1]===1).dataSync(),h=Math.trunc(200*Math.abs(d[0]-.5))/100;h>t.face.description.minConfidence&&(u.gender=d[0]<=.5?"female":"male",u.genderScore=Math.min(.99,h));let p=l.find(f=>f.shape[1]===100).argMax(1).dataSync()[0],c=l.find(f=>f.shape[1]===100).dataSync();u.age=Math.round(c[p-1]>c[p+1]?10*p-100*c[p-1]:10*p+100*c[p+1])/10;let m=l.find(f=>f.shape[1]===1024);u.descriptor=[...m.dataSync()]}),l.forEach(d=>Ve(d))),dm[n]=u,TM=a,i(u)})):null}var Lve=e=>{let t=(h,p)=>Math.atan2(h[1]-p[1],h[0]-p[0]);if(!e.annotations.rightEyeIris||!e.annotations.leftEyeIris)return{bearing:0,strength:0};let n=[0,-.1],a=1,r=e.mesh[33][2]>e.mesh[263][2],s=r?e.mesh[473]:e.mesh[468],i=r?[(e.mesh[133][0]+e.mesh[33][0])/2,(e.mesh[133][1]+e.mesh[33][1])/2]:[(e.mesh[263][0]+e.mesh[362][0])/2,(e.mesh[263][1]+e.mesh[362][1])/2],o=r?[e.mesh[133][0]-e.mesh[33][0],e.mesh[23][1]-e.mesh[27][1]]:[e.mesh[263][0]-e.mesh[362][0],e.mesh[253][1]-e.mesh[257][1]],l=[(i[0]-s[0])/o[0]-n[0],a*(s[1]-i[1])/o[1]-n[1]],u=Math.sqrt(l[0]**2+l[1]**2);return u=Math.min(u,e.boxRaw[2]/2,e.boxRaw[3]/2),{bearing:(t([0,0],l)+Math.PI/2)%Math.PI,strength:u}},Wve=(e,t)=>{let n=g=>{let y=Math.sqrt(g[0]*g[0]+g[1]*g[1]+g[2]*g[2]);return g[0]/=y,g[1]/=y,g[2]/=y,g},a=(g,y)=>{let A=g[0]-y[0],x=g[1]-y[1],v=g[2]-y[2];return[A,x,v]},r=(g,y)=>{let A=g[1]*y[2]-g[2]*y[1],x=g[2]*y[0]-g[0]*y[2],v=g[0]*y[1]-g[1]*y[0];return[A,x,v]},s=g=>{let[y,A,x,v,b,w,I,T,C]=g,z,$,S;return v<1?v>-1?(S=Math.asin(v),$=Math.atan2(-I,y),z=Math.atan2(-w,b)):(S=-Math.PI/2,$=-Math.atan2(T,C),z=0):(S=Math.PI/2,$=Math.atan2(T,C),z=0),{pitch:2*-z,yaw:2*-$,roll:2*-S}},i=g=>{let y=(x,v,b,w)=>Math.atan2(w-v,b-x);return{pitch:y(g[10][1],g[10][2],g[152][1],g[152][2]),yaw:y(g[33][0],g[33][2],g[263][0],g[263][2]),roll:y(g[33][0],g[33][1],g[263][0],g[263][1])}},o=e.meshRaw;if(!o||o.length<300)return{angle:{pitch:0,yaw:0,roll:0},matrix:[1,0,0,0,1,0,0,0,1],gaze:{bearing:0,strength:0}};let l=Math.max(e.boxRaw[2]*t[0],e.boxRaw[3]*t[1])/1.5,u=[o[10],o[152],o[234],o[454]].map(g=>[g[0]*t[0]/l,g[1]*t[1]/l,g[2]]),d=n(a(u[1],u[0])),h=n(a(u[3],u[2])),p=n(r(h,d));h=r(d,p);let c=[h[0],h[1],h[2],d[0],d[1],d[2],p[0],p[1],p[2]],m=s(c),f=o.length===478?Lve(e):{bearing:0,strength:0};return{angle:m,matrix:c,gaze:f}},_b=async(e,t)=>{var d,h,p,c,m,f;let n,a,r,s,i,o,l=[];e.state="run:face",n=st();let u=await kM(t,e.config);if(e.performance.face=Math.trunc(st()-n),!t.shape||t.shape.length!==4)return[];if(!u)return[];for(let g=0;g<u.length;g++){if(e.analyze("Get Face"),!u[g].image||u[g].image.isDisposedInternal){ge("Face object is disposed:",u[g].image);continue}let y=Wve(u[g],[t.shape[2],t.shape[1]]);e.analyze("Start Emotion:"),e.config.async?s=e.config.face.emotion.enabled?Mb(u[g].image||er([]),e.config,g,u.length):{}:(e.state="run:emotion",n=st(),s=e.config.face.emotion.enabled?await Mb(u[g].image||er([]),e.config,g,u.length):{},e.performance.emotion=Math.trunc(st()-n)),e.analyze("End Emotion:"),e.analyze("Start Description:"),e.config.async?o=e.config.face.description.enabled?Db(u[g].image||er([]),e.config,g,u.length):[]:(e.state="run:description",n=st(),o=e.config.face.description.enabled?await Db(u[g].image||er([]),e.config,g,u.length):[],e.performance.embedding=Math.trunc(st()-n)),e.analyze("End Description:"),e.config.async&&([a,r,s,i,o]=await Promise.all([a,r,s,i,o])),e.analyze("Finish Face:"),!e.config.face.iris.enabled&&((h=(d=u[g])==null?void 0:d.annotations)==null?void 0:h.leftEyeIris)&&((c=(p=u[g])==null?void 0:p.annotations)==null?void 0:c.rightEyeIris)&&(delete u[g].annotations.leftEyeIris,delete u[g].annotations.rightEyeIris);let A=((m=u[g].annotations)==null?void 0:m.leftEyeIris)&&((f=u[g].annotations)==null?void 0:f.rightEyeIris)?Math.max(Math.abs(u[g].annotations.leftEyeIris[3][0]-u[g].annotations.leftEyeIris[1][0]),Math.abs(u[g].annotations.rightEyeIris[4][1]-u[g].annotations.rightEyeIris[2][1]))/t.shape[2]:0;l.push({...u[g],id:g,age:o.age,gender:o.gender,genderScore:o.genderScore,embedding:o.descriptor,emotion:s,iris:A!==0?Math.trunc(500/A/11.7)/100:0,rotation:y,tensor:e.config.face.detector.return?Yn(u[g].image):null}),Ve(u[g].image),u[g].image&&delete u[g].image,e.analyze("End Face")}return e.analyze("End FaceMesh:"),e.config.async&&(e.performance.face&&delete e.performance.face,e.performance.age&&delete e.performance.age,e.performance.gender&&delete e.performance.gender,e.performance.emotion&&delete e.performance.emotion),l};var kp=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"],CM=kp.length,Ip=kp.reduce((e,t,n)=>(e[t]=n,e),{}),Bve=[["leftHip","leftShoulder"],["leftElbow","leftShoulder"],["leftElbow","leftWrist"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["rightHip","rightShoulder"],["rightElbow","rightShoulder"],["rightElbow","rightWrist"],["rightHip","rightKnee"],["rightKnee","rightAnkle"],["leftShoulder","rightShoulder"],["leftHip","rightHip"]],Vve=Bve.map(([e,t])=>[Ip[e],Ip[t]]),MM=[["nose","leftEye"],["leftEye","leftEar"],["nose","rightEye"],["rightEye","rightEar"],["nose","leftShoulder"],["leftShoulder","leftElbow"],["leftElbow","leftWrist"],["leftShoulder","leftHip"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["nose","rightShoulder"],["rightShoulder","rightElbow"],["rightElbow","rightWrist"],["rightShoulder","rightHip"],["rightHip","rightKnee"],["rightKnee","rightAnkle"]];function $M(e){let t=e.reduce(({maxX:n,maxY:a,minX:r,minY:s},{position:{x:i,y:o}})=>({maxX:Math.max(n,i),maxY:Math.max(a,o),minX:Math.min(r,i),minY:Math.min(s,o)}),{maxX:Number.NEGATIVE_INFINITY,maxY:Number.NEGATIVE_INFINITY,minX:Number.POSITIVE_INFINITY,minY:Number.POSITIVE_INFINITY});return[t.minX,t.minY,t.maxX-t.minX,t.maxY-t.minY]}function RM(e,[t,n],[a,r]){let s=t/a,i=n/r,o=(u,d)=>({id:d,score:u.score,boxRaw:[u.box[0]/r,u.box[1]/a,u.box[2]/r,u.box[3]/a],box:[Math.trunc(u.box[0]*i),Math.trunc(u.box[1]*s),Math.trunc(u.box[2]*i),Math.trunc(u.box[3]*s)],keypoints:u.keypoints.map(({score:h,part:p,position:c})=>({score:h,part:p,position:[Math.trunc(c.x*i),Math.trunc(c.y*s)],positionRaw:[c.x/a,c.y/a]}))});return e.map((u,d)=>o(u,d))}var zb=class{constructor(t,n){this.priorityQueue=new Array(t),this.numberOfElements=-1,this.getElementValue=n}enqueue(t){this.priorityQueue[++this.numberOfElements]=t,this.swim(this.numberOfElements)}dequeue(){let t=this.priorityQueue[0];return this.exchange(0,this.numberOfElements--),this.sink(0),this.priorityQueue[this.numberOfElements+1]=null,t}empty(){return this.numberOfElements===-1}size(){return this.numberOfElements+1}all(){return this.priorityQueue.slice(0,this.numberOfElements+1)}max(){return this.priorityQueue[0]}swim(t){for(;t>0&&this.less(Math.floor(t/2),t);)this.exchange(t,Math.floor(t/2)),t=Math.floor(t/2)}sink(t){for(;2*t<=this.numberOfElements;){let n=2*t;if(n<this.numberOfElements&&this.less(n,n+1)&&n++,!this.less(t,n))break;this.exchange(t,n),t=n}}getValueAt(t){return this.getElementValue(this.priorityQueue[t])}less(t,n){return this.getValueAt(t)<this.getValueAt(n)}exchange(t,n){let a=this.priorityQueue[t];this.priorityQueue[t]=this.priorityQueue[n],this.priorityQueue[n]=a}};function Pb(e,t,n,a){return{y:a.get(e,t,n),x:a.get(e,t,n+CM)}}function Lb(e,t,n){let{heatmapY:a,heatmapX:r,id:s}=e,{y:i,x:o}=Pb(a,r,s,n);return{x:e.heatmapX*t+o,y:e.heatmapY*t+i}}function Wb(e,t,n){return e<t?t:e>n?n:e}function FM(e,t,n,a){let r=n-e,s=a-t;return r*r+s*s}function Bb(e,t){return{x:e.x+t.x,y:e.y+t.y}}var hm=1,Mu=16,Uve=50**2;function OM(e,t,n,a,r,s,i=2){let o=y=>({y:s.get(y.y,y.x,e),x:s.get(y.y,y.x,s.shape[2]/2+e)}),l=(y,A,x)=>({y:Wb(Math.round(y.y/Mu),0,A-1),x:Wb(Math.round(y.x/Mu),0,x-1)}),[u,d]=a.shape,h=l(t.position,u,d),p=o(h),m=Bb(t.position,p);for(let y=0;y<i;y++){let A=l(m,u,d),x=Pb(A.y,A.x,n,r);m=Bb({x:A.x*Mu,y:A.y*Mu},{x:x.x,y:x.y})}let f=l(m,u,d),g=a.get(f.y,f.x,n);return{position:m,part:kp[n],score:g}}function jve(e,t,n,a,r){let s=MM.map(([p,c])=>[Ip[p],Ip[c]]),i=s.map(([,p])=>p),o=s.map(([p])=>p),l=t.shape[2],u=i.length,d=new Array(l),h=Lb(e.part,Mu,n);d[e.part.id]={score:e.score,part:kp[e.part.id],position:h};for(let p=u-1;p>=0;--p){let c=i[p],m=o[p];d[c]&&!d[m]&&(d[m]=OM(p,d[c],m,t,n,r))}for(let p=0;p<u;++p){let c=o[p],m=i[p];d[c]&&!d[m]&&(d[m]=OM(p,d[c],m,t,n,a))}return d}function Hve(e,t,n,a,r){let[s,i]=r.shape,o=!0,l=Math.max(n-hm,0),u=Math.min(n+hm+1,s);for(let d=l;d<u;++d){let h=Math.max(a-hm,0),p=Math.min(a+hm+1,i);for(let c=h;c<p;++c)if(r.get(d,c,e)>t){o=!1;break}if(!o)break}return o}function Gve(e,t){let[n,a,r]=t.shape,s=new zb(n*a*r,({score:i})=>i);for(let i=0;i<n;++i)for(let o=0;o<a;++o)for(let l=0;l<r;++l){let u=t.get(i,o,l);u<e||Hve(l,u,i,o,t)&&s.enqueue({score:u,part:{heatmapY:i,heatmapX:o,id:l}})}return s}function DM(e,{x:t,y:n},a){return e.some(({keypoints:r})=>{var i;let s=(i=r[a])==null?void 0:i.position;return s?FM(n,t,s.y,s.x)<=Uve:!1})}function qve(e,t){return t.reduce((a,{position:r,score:s},i)=>(DM(e,r,i)||(a+=s),a),0)/t.length}function _M(e,t,n,a,r,s){let i=[],o=Gve(s,t);for(;i.length<r&&!o.empty();){let l=o.dequeue(),u=Lb(l.part,Mu,e);if(DM(i,u,l.part.id))continue;let d=jve(l,t,e,n,a);d=d.filter(c=>c.score>s);let h=qve(i,d),p=$M(d);h>s&&i.push({keypoints:d,box:p,score:Math.round(100*h)/100})}return i}var ga,Kve=["MobilenetV1/offset_2/BiasAdd","MobilenetV1/heatmap_2/BiasAdd","MobilenetV1/displacement_fwd_2/BiasAdd","MobilenetV1/displacement_bwd_2/BiasAdd"];async function Vb(e,t){let n=Ue(()=>{if(!ga.inputs[0].shape)return[];let o=Ye.resizeBilinear(e,[ga.inputs[0].shape[2],ga.inputs[0].shape[1]]).toFloat().div(127.5).sub(1),u=ga.execute(o,Kve).map(d=>Yn(d,[0]));return u[1]=u[1].sigmoid(),u}),a=await Promise.all(n.map(i=>i.buffer()));for(let i of n)i.dispose();let r=await _M(a[0],a[1],a[2],a[3],t.body.maxDetected,t.body.minConfidence);return ga.inputs[0].shape?RM(r,[e.shape[1],e.shape[2]],[ga.inputs[0].shape[2],ga.inputs[0].shape[1]]):[]}async function Ub(e){return ga?e.debug&&ge("cached model:",ga.modelUrl):(ga=await Et(Mt(e.modelBasePath,e.body.modelPath)),!ga||!ga.modelUrl?ge("load model failed:",e.body.modelPath):e.debug&&ge("load model:",ga.modelUrl)),ga}function pm(e){return[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])]}function Sp(e){return[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2]}function zM(e,t,n){let a=t.shape[1],r=t.shape[2],s=[[e.startPoint[1]/a,e.startPoint[0]/r,e.endPoint[1]/a,e.endPoint[0]/r]];return Ye.cropAndResize(t,s,[0],n)}function PM(e,t){let n=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],a=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]],r=e.palmLandmarks.map(s=>[s[0]*t[0],s[1]*t[1]]);return{startPoint:n,endPoint:a,palmLandmarks:r,confidence:e.confidence}}function cm(e,t=1.5){let n=Sp(e),a=pm(e),r=[t*a[0]/2,t*a[1]/2],s=[n[0]-r[0],n[1]-r[1]],i=[n[0]+r[0],n[1]+r[1]];return{startPoint:s,endPoint:i,palmLandmarks:e.palmLandmarks}}function fm(e){let t=Sp(e),n=pm(e),r=Math.max(...n)/2,s=[t[0]-r,t[1]-r],i=[t[0]+r,t[1]+r];return{startPoint:s,endPoint:i,palmLandmarks:e.palmLandmarks}}var LM=[{x:.015625,y:.015625},{x:.015625,y:.015625},{x:.046875,y:.015625},{x:.046875,y:.015625},{x:.078125,y:.015625},{x:.078125,y:.015625},{x:.109375,y:.015625},{x:.109375,y:.015625},{x:.140625,y:.015625},{x:.140625,y:.015625},{x:.171875,y:.015625},{x:.171875,y:.015625},{x:.203125,y:.015625},{x:.203125,y:.015625},{x:.234375,y:.015625},{x:.234375,y:.015625},{x:.265625,y:.015625},{x:.265625,y:.015625},{x:.296875,y:.015625},{x:.296875,y:.015625},{x:.328125,y:.015625},{x:.328125,y:.015625},{x:.359375,y:.015625},{x:.359375,y:.015625},{x:.390625,y:.015625},{x:.390625,y:.015625},{x:.421875,y:.015625},{x:.421875,y:.015625},{x:.453125,y:.015625},{x:.453125,y:.015625},{x:.484375,y:.015625},{x:.484375,y:.015625},{x:.515625,y:.015625},{x:.515625,y:.015625},{x:.546875,y:.015625},{x:.546875,y:.015625},{x:.578125,y:.015625},{x:.578125,y:.015625},{x:.609375,y:.015625},{x:.609375,y:.015625},{x:.640625,y:.015625},{x:.640625,y:.015625},{x:.671875,y:.015625},{x:.671875,y:.015625},{x:.703125,y:.015625},{x:.703125,y:.015625},{x:.734375,y:.015625},{x:.734375,y:.015625},{x:.765625,y:.015625},{x:.765625,y:.015625},{x:.796875,y:.015625},{x:.796875,y:.015625},{x:.828125,y:.015625},{x:.828125,y:.015625},{x:.859375,y:.015625},{x:.859375,y:.015625},{x:.890625,y:.015625},{x:.890625,y:.015625},{x:.921875,y:.015625},{x:.921875,y:.015625},{x:.953125,y:.015625},{x:.953125,y:.015625},{x:.984375,y:.015625},{x:.984375,y:.015625},{x:.015625,y:.046875},{x:.015625,y:.046875},{x:.046875,y:.046875},{x:.046875,y:.046875},{x:.078125,y:.046875},{x:.078125,y:.046875},{x:.109375,y:.046875},{x:.109375,y:.046875},{x:.140625,y:.046875},{x:.140625,y:.046875},{x:.171875,y:.046875},{x:.171875,y:.046875},{x:.203125,y:.046875},{x:.203125,y:.046875},{x:.234375,y:.046875},{x:.234375,y:.046875},{x:.265625,y:.046875},{x:.265625,y:.046875},{x:.296875,y:.046875},{x:.296875,y:.046875},{x:.328125,y:.046875},{x:.328125,y:.046875},{x:.359375,y:.046875},{x:.359375,y:.046875},{x:.390625,y:.046875},{x:.390625,y:.046875},{x:.421875,y:.046875},{x:.421875,y:.046875},{x:.453125,y:.046875},{x:.453125,y:.046875},{x:.484375,y:.046875},{x:.484375,y:.046875},{x:.515625,y:.046875},{x:.515625,y:.046875},{x:.546875,y:.046875},{x:.546875,y:.046875},{x:.578125,y:.046875},{x:.578125,y:.046875},{x:.609375,y:.046875},{x:.609375,y:.046875},{x:.640625,y:.046875},{x:.640625,y:.046875},{x:.671875,y:.046875},{x:.671875,y:.046875},{x:.703125,y:.046875},{x:.703125,y:.046875},{x:.734375,y:.046875},{x:.734375,y:.046875},{x:.765625,y:.046875},{x:.765625,y:.046875},{x:.796875,y:.046875},{x:.796875,y:.046875},{x:.828125,y:.046875},{x:.828125,y:.046875},{x:.859375,y:.046875},{x:.859375,y:.046875},{x:.890625,y:.046875},{x:.890625,y:.046875},{x:.921875,y:.046875},{x:.921875,y:.046875},{x:.953125,y:.046875},{x:.953125,y:.046875},{x:.984375,y:.046875},{x:.984375,y:.046875},{x:.015625,y:.078125},{x:.015625,y:.078125},{x:.046875,y:.078125},{x:.046875,y:.078125},{x:.078125,y:.078125},{x:.078125,y:.078125},{x:.109375,y:.078125},{x:.109375,y:.078125},{x:.140625,y:.078125},{x:.140625,y:.078125},{x:.171875,y:.078125},{x:.171875,y:.078125},{x:.203125,y:.078125},{x:.203125,y:.078125},{x:.234375,y:.078125},{x:.234375,y:.078125},{x:.265625,y:.078125},{x:.265625,y:.078125},{x:.296875,y:.078125},{x:.296875,y:.078125},{x:.328125,y:.078125},{x:.328125,y:.078125},{x:.359375,y:.078125},{x:.359375,y:.078125},{x:.390625,y:.078125},{x:.390625,y:.078125},{x:.421875,y:.078125},{x:.421875,y:.078125},{x:.453125,y:.078125},{x:.453125,y:.078125},{x:.484375,y:.078125},{x:.484375,y:.078125},{x:.515625,y:.078125},{x:.515625,y:.078125},{x:.546875,y:.078125},{x:.546875,y:.078125},{x:.578125,y:.078125},{x:.578125,y:.078125},{x:.609375,y:.078125},{x:.609375,y:.078125},{x:.640625,y:.078125},{x:.640625,y:.078125},{x:.671875,y:.078125},{x:.671875,y:.078125},{x:.703125,y:.078125},{x:.703125,y:.078125},{x:.734375,y:.078125},{x:.734375,y:.078125},{x:.765625,y:.078125},{x:.765625,y:.078125},{x:.796875,y:.078125},{x:.796875,y:.078125},{x:.828125,y:.078125},{x:.828125,y:.078125},{x:.859375,y:.078125},{x:.859375,y:.078125},{x:.890625,y:.078125},{x:.890625,y:.078125},{x:.921875,y:.078125},{x:.921875,y:.078125},{x:.953125,y:.078125},{x:.953125,y:.078125},{x:.984375,y:.078125},{x:.984375,y:.078125},{x:.015625,y:.109375},{x:.015625,y:.109375},{x:.046875,y:.109375},{x:.046875,y:.109375},{x:.078125,y:.109375},{x:.078125,y:.109375},{x:.109375,y:.109375},{x:.109375,y:.109375},{x:.140625,y:.109375},{x:.140625,y:.109375},{x:.171875,y:.109375},{x:.171875,y:.109375},{x:.203125,y:.109375},{x:.203125,y:.109375},{x:.234375,y:.109375},{x:.234375,y:.109375},{x:.265625,y:.109375},{x:.265625,y:.109375},{x:.296875,y:.109375},{x:.296875,y:.109375},{x:.328125,y:.109375},{x:.328125,y:.109375},{x:.359375,y:.109375},{x:.359375,y:.109375},{x:.390625,y:.109375},{x:.390625,y:.109375},{x:.421875,y:.109375},{x:.421875,y:.109375},{x:.453125,y:.109375},{x:.453125,y:.109375},{x:.484375,y:.109375},{x:.484375,y:.109375},{x:.515625,y:.109375},{x:.515625,y:.109375},{x:.546875,y:.109375},{x:.546875,y:.109375},{x:.578125,y:.109375},{x:.578125,y:.109375},{x:.609375,y:.109375},{x:.609375,y:.109375},{x:.640625,y:.109375},{x:.640625,y:.109375},{x:.671875,y:.109375},{x:.671875,y:.109375},{x:.703125,y:.109375},{x:.703125,y:.109375},{x:.734375,y:.109375},{x:.734375,y:.109375},{x:.765625,y:.109375},{x:.765625,y:.109375},{x:.796875,y:.109375},{x:.796875,y:.109375},{x:.828125,y:.109375},{x:.828125,y:.109375},{x:.859375,y:.109375},{x:.859375,y:.109375},{x:.890625,y:.109375},{x:.890625,y:.109375},{x:.921875,y:.109375},{x:.921875,y:.109375},{x:.953125,y:.109375},{x:.953125,y:.109375},{x:.984375,y:.109375},{x:.984375,y:.109375},{x:.015625,y:.140625},{x:.015625,y:.140625},{x:.046875,y:.140625},{x:.046875,y:.140625},{x:.078125,y:.140625},{x:.078125,y:.140625},{x:.109375,y:.140625},{x:.109375,y:.140625},{x:.140625,y:.140625},{x:.140625,y:.140625},{x:.171875,y:.140625},{x:.171875,y:.140625},{x:.203125,y:.140625},{x:.203125,y:.140625},{x:.234375,y:.140625},{x:.234375,y:.140625},{x:.265625,y:.140625},{x:.265625,y:.140625},{x:.296875,y:.140625},{x:.296875,y:.140625},{x:.328125,y:.140625},{x:.328125,y:.140625},{x:.359375,y:.140625},{x:.359375,y:.140625},{x:.390625,y:.140625},{x:.390625,y:.140625},{x:.421875,y:.140625},{x:.421875,y:.140625},{x:.453125,y:.140625},{x:.453125,y:.140625},{x:.484375,y:.140625},{x:.484375,y:.140625},{x:.515625,y:.140625},{x:.515625,y:.140625},{x:.546875,y:.140625},{x:.546875,y:.140625},{x:.578125,y:.140625},{x:.578125,y:.140625},{x:.609375,y:.140625},{x:.609375,y:.140625},{x:.640625,y:.140625},{x:.640625,y:.140625},{x:.671875,y:.140625},{x:.671875,y:.140625},{x:.703125,y:.140625},{x:.703125,y:.140625},{x:.734375,y:.140625},{x:.734375,y:.140625},{x:.765625,y:.140625},{x:.765625,y:.140625},{x:.796875,y:.140625},{x:.796875,y:.140625},{x:.828125,y:.140625},{x:.828125,y:.140625},{x:.859375,y:.140625},{x:.859375,y:.140625},{x:.890625,y:.140625},{x:.890625,y:.140625},{x:.921875,y:.140625},{x:.921875,y:.140625},{x:.953125,y:.140625},{x:.953125,y:.140625},{x:.984375,y:.140625},{x:.984375,y:.140625},{x:.015625,y:.171875},{x:.015625,y:.171875},{x:.046875,y:.171875},{x:.046875,y:.171875},{x:.078125,y:.171875},{x:.078125,y:.171875},{x:.109375,y:.171875},{x:.109375,y:.171875},{x:.140625,y:.171875},{x:.140625,y:.171875},{x:.171875,y:.171875},{x:.171875,y:.171875},{x:.203125,y:.171875},{x:.203125,y:.171875},{x:.234375,y:.171875},{x:.234375,y:.171875},{x:.265625,y:.171875},{x:.265625,y:.171875},{x:.296875,y:.171875},{x:.296875,y:.171875},{x:.328125,y:.171875},{x:.328125,y:.171875},{x:.359375,y:.171875},{x:.359375,y:.171875},{x:.390625,y:.171875},{x:.390625,y:.171875},{x:.421875,y:.171875},{x:.421875,y:.171875},{x:.453125,y:.171875},{x:.453125,y:.171875},{x:.484375,y:.171875},{x:.484375,y:.171875},{x:.515625,y:.171875},{x:.515625,y:.171875},{x:.546875,y:.171875},{x:.546875,y:.171875},{x:.578125,y:.171875},{x:.578125,y:.171875},{x:.609375,y:.171875},{x:.609375,y:.171875},{x:.640625,y:.171875},{x:.640625,y:.171875},{x:.671875,y:.171875},{x:.671875,y:.171875},{x:.703125,y:.171875},{x:.703125,y:.171875},{x:.734375,y:.171875},{x:.734375,y:.171875},{x:.765625,y:.171875},{x:.765625,y:.171875},{x:.796875,y:.171875},{x:.796875,y:.171875},{x:.828125,y:.171875},{x:.828125,y:.171875},{x:.859375,y:.171875},{x:.859375,y:.171875},{x:.890625,y:.171875},{x:.890625,y:.171875},{x:.921875,y:.171875},{x:.921875,y:.171875},{x:.953125,y:.171875},{x:.953125,y:.171875},{x:.984375,y:.171875},{x:.984375,y:.171875},{x:.015625,y:.203125},{x:.015625,y:.203125},{x:.046875,y:.203125},{x:.046875,y:.203125},{x:.078125,y:.203125},{x:.078125,y:.203125},{x:.109375,y:.203125},{x:.109375,y:.203125},{x:.140625,y:.203125},{x:.140625,y:.203125},{x:.171875,y:.203125},{x:.171875,y:.203125},{x:.203125,y:.203125},{x:.203125,y:.203125},{x:.234375,y:.203125},{x:.234375,y:.203125},{x:.265625,y:.203125},{x:.265625,y:.203125},{x:.296875,y:.203125},{x:.296875,y:.203125},{x:.328125,y:.203125},{x:.328125,y:.203125},{x:.359375,y:.203125},{x:.359375,y:.203125},{x:.390625,y:.203125},{x:.390625,y:.203125},{x:.421875,y:.203125},{x:.421875,y:.203125},{x:.453125,y:.203125},{x:.453125,y:.203125},{x:.484375,y:.203125},{x:.484375,y:.203125},{x:.515625,y:.203125},{x:.515625,y:.203125},{x:.546875,y:.203125},{x:.546875,y:.203125},{x:.578125,y:.203125},{x:.578125,y:.203125},{x:.609375,y:.203125},{x:.609375,y:.203125},{x:.640625,y:.203125},{x:.640625,y:.203125},{x:.671875,y:.203125},{x:.671875,y:.203125},{x:.703125,y:.203125},{x:.703125,y:.203125},{x:.734375,y:.203125},{x:.734375,y:.203125},{x:.765625,y:.203125},{x:.765625,y:.203125},{x:.796875,y:.203125},{x:.796875,y:.203125},{x:.828125,y:.203125},{x:.828125,y:.203125},{x:.859375,y:.203125},{x:.859375,y:.203125},{x:.890625,y:.203125},{x:.890625,y:.203125},{x:.921875,y:.203125},{x:.921875,y:.203125},{x:.953125,y:.203125},{x:.953125,y:.203125},{x:.984375,y:.203125},{x:.984375,y:.203125},{x:.015625,y:.234375},{x:.015625,y:.234375},{x:.046875,y:.234375},{x:.046875,y:.234375},{x:.078125,y:.234375},{x:.078125,y:.234375},{x:.109375,y:.234375},{x:.109375,y:.234375},{x:.140625,y:.234375},{x:.140625,y:.234375},{x:.171875,y:.234375},{x:.171875,y:.234375},{x:.203125,y:.234375},{x:.203125,y:.234375},{x:.234375,y:.234375},{x:.234375,y:.234375},{x:.265625,y:.234375},{x:.265625,y:.234375},{x:.296875,y:.234375},{x:.296875,y:.234375},{x:.328125,y:.234375},{x:.328125,y:.234375},{x:.359375,y:.234375},{x:.359375,y:.234375},{x:.390625,y:.234375},{x:.390625,y:.234375},{x:.421875,y:.234375},{x:.421875,y:.234375},{x:.453125,y:.234375},{x:.453125,y:.234375},{x:.484375,y:.234375},{x:.484375,y:.234375},{x:.515625,y:.234375},{x:.515625,y:.234375},{x:.546875,y:.234375},{x:.546875,y:.234375},{x:.578125,y:.234375},{x:.578125,y:.234375},{x:.609375,y:.234375},{x:.609375,y:.234375},{x:.640625,y:.234375},{x:.640625,y:.234375},{x:.671875,y:.234375},{x:.671875,y:.234375},{x:.703125,y:.234375},{x:.703125,y:.234375},{x:.734375,y:.234375},{x:.734375,y:.234375},{x:.765625,y:.234375},{x:.765625,y:.234375},{x:.796875,y:.234375},{x:.796875,y:.234375},{x:.828125,y:.234375},{x:.828125,y:.234375},{x:.859375,y:.234375},{x:.859375,y:.234375},{x:.890625,y:.234375},{x:.890625,y:.234375},{x:.921875,y:.234375},{x:.921875,y:.234375},{x:.953125,y:.234375},{x:.953125,y:.234375},{x:.984375,y:.234375},{x:.984375,y:.234375},{x:.015625,y:.265625},{x:.015625,y:.265625},{x:.046875,y:.265625},{x:.046875,y:.265625},{x:.078125,y:.265625},{x:.078125,y:.265625},{x:.109375,y:.265625},{x:.109375,y:.265625},{x:.140625,y:.265625},{x:.140625,y:.265625},{x:.171875,y:.265625},{x:.171875,y:.265625},{x:.203125,y:.265625},{x:.203125,y:.265625},{x:.234375,y:.265625},{x:.234375,y:.265625},{x:.265625,y:.265625},{x:.265625,y:.265625},{x:.296875,y:.265625},{x:.296875,y:.265625},{x:.328125,y:.265625},{x:.328125,y:.265625},{x:.359375,y:.265625},{x:.359375,y:.265625},{x:.390625,y:.265625},{x:.390625,y:.265625},{x:.421875,y:.265625},{x:.421875,y:.265625},{x:.453125,y:.265625},{x:.453125,y:.265625},{x:.484375,y:.265625},{x:.484375,y:.265625},{x:.515625,y:.265625},{x:.515625,y:.265625},{x:.546875,y:.265625},{x:.546875,y:.265625},{x:.578125,y:.265625},{x:.578125,y:.265625},{x:.609375,y:.265625},{x:.609375,y:.265625},{x:.640625,y:.265625},{x:.640625,y:.265625},{x:.671875,y:.265625},{x:.671875,y:.265625},{x:.703125,y:.265625},{x:.703125,y:.265625},{x:.734375,y:.265625},{x:.734375,y:.265625},{x:.765625,y:.265625},{x:.765625,y:.265625},{x:.796875,y:.265625},{x:.796875,y:.265625},{x:.828125,y:.265625},{x:.828125,y:.265625},{x:.859375,y:.265625},{x:.859375,y:.265625},{x:.890625,y:.265625},{x:.890625,y:.265625},{x:.921875,y:.265625},{x:.921875,y:.265625},{x:.953125,y:.265625},{x:.953125,y:.265625},{x:.984375,y:.265625},{x:.984375,y:.265625},{x:.015625,y:.296875},{x:.015625,y:.296875},{x:.046875,y:.296875},{x:.046875,y:.296875},{x:.078125,y:.296875},{x:.078125,y:.296875},{x:.109375,y:.296875},{x:.109375,y:.296875},{x:.140625,y:.296875},{x:.140625,y:.296875},{x:.171875,y:.296875},{x:.171875,y:.296875},{x:.203125,y:.296875},{x:.203125,y:.296875},{x:.234375,y:.296875},{x:.234375,y:.296875},{x:.265625,y:.296875},{x:.265625,y:.296875},{x:.296875,y:.296875},{x:.296875,y:.296875},{x:.328125,y:.296875},{x:.328125,y:.296875},{x:.359375,y:.296875},{x:.359375,y:.296875},{x:.390625,y:.296875},{x:.390625,y:.296875},{x:.421875,y:.296875},{x:.421875,y:.296875},{x:.453125,y:.296875},{x:.453125,y:.296875},{x:.484375,y:.296875},{x:.484375,y:.296875},{x:.515625,y:.296875},{x:.515625,y:.296875},{x:.546875,y:.296875},{x:.546875,y:.296875},{x:.578125,y:.296875},{x:.578125,y:.296875},{x:.609375,y:.296875},{x:.609375,y:.296875},{x:.640625,y:.296875},{x:.640625,y:.296875},{x:.671875,y:.296875},{x:.671875,y:.296875},{x:.703125,y:.296875},{x:.703125,y:.296875},{x:.734375,y:.296875},{x:.734375,y:.296875},{x:.765625,y:.296875},{x:.765625,y:.296875},{x:.796875,y:.296875},{x:.796875,y:.296875},{x:.828125,y:.296875},{x:.828125,y:.296875},{x:.859375,y:.296875},{x:.859375,y:.296875},{x:.890625,y:.296875},{x:.890625,y:.296875},{x:.921875,y:.296875},{x:.921875,y:.296875},{x:.953125,y:.296875},{x:.953125,y:.296875},{x:.984375,y:.296875},{x:.984375,y:.296875},{x:.015625,y:.328125},{x:.015625,y:.328125},{x:.046875,y:.328125},{x:.046875,y:.328125},{x:.078125,y:.328125},{x:.078125,y:.328125},{x:.109375,y:.328125},{x:.109375,y:.328125},{x:.140625,y:.328125},{x:.140625,y:.328125},{x:.171875,y:.328125},{x:.171875,y:.328125},{x:.203125,y:.328125},{x:.203125,y:.328125},{x:.234375,y:.328125},{x:.234375,y:.328125},{x:.265625,y:.328125},{x:.265625,y:.328125},{x:.296875,y:.328125},{x:.296875,y:.328125},{x:.328125,y:.328125},{x:.328125,y:.328125},{x:.359375,y:.328125},{x:.359375,y:.328125},{x:.390625,y:.328125},{x:.390625,y:.328125},{x:.421875,y:.328125},{x:.421875,y:.328125},{x:.453125,y:.328125},{x:.453125,y:.328125},{x:.484375,y:.328125},{x:.484375,y:.328125},{x:.515625,y:.328125},{x:.515625,y:.328125},{x:.546875,y:.328125},{x:.546875,y:.328125},{x:.578125,y:.328125},{x:.578125,y:.328125},{x:.609375,y:.328125},{x:.609375,y:.328125},{x:.640625,y:.328125},{x:.640625,y:.328125},{x:.671875,y:.328125},{x:.671875,y:.328125},{x:.703125,y:.328125},{x:.703125,y:.328125},{x:.734375,y:.328125},{x:.734375,y:.328125},{x:.765625,y:.328125},{x:.765625,y:.328125},{x:.796875,y:.328125},{x:.796875,y:.328125},{x:.828125,y:.328125},{x:.828125,y:.328125},{x:.859375,y:.328125},{x:.859375,y:.328125},{x:.890625,y:.328125},{x:.890625,y:.328125},{x:.921875,y:.328125},{x:.921875,y:.328125},{x:.953125,y:.328125},{x:.953125,y:.328125},{x:.984375,y:.328125},{x:.984375,y:.328125},{x:.015625,y:.359375},{x:.015625,y:.359375},{x:.046875,y:.359375},{x:.046875,y:.359375},{x:.078125,y:.359375},{x:.078125,y:.359375},{x:.109375,y:.359375},{x:.109375,y:.359375},{x:.140625,y:.359375},{x:.140625,y:.359375},{x:.171875,y:.359375},{x:.171875,y:.359375},{x:.203125,y:.359375},{x:.203125,y:.359375},{x:.234375,y:.359375},{x:.234375,y:.359375},{x:.265625,y:.359375},{x:.265625,y:.359375},{x:.296875,y:.359375},{x:.296875,y:.359375},{x:.328125,y:.359375},{x:.328125,y:.359375},{x:.359375,y:.359375},{x:.359375,y:.359375},{x:.390625,y:.359375},{x:.390625,y:.359375},{x:.421875,y:.359375},{x:.421875,y:.359375},{x:.453125,y:.359375},{x:.453125,y:.359375},{x:.484375,y:.359375},{x:.484375,y:.359375},{x:.515625,y:.359375},{x:.515625,y:.359375},{x:.546875,y:.359375},{x:.546875,y:.359375},{x:.578125,y:.359375},{x:.578125,y:.359375},{x:.609375,y:.359375},{x:.609375,y:.359375},{x:.640625,y:.359375},{x:.640625,y:.359375},{x:.671875,y:.359375},{x:.671875,y:.359375},{x:.703125,y:.359375},{x:.703125,y:.359375},{x:.734375,y:.359375},{x:.734375,y:.359375},{x:.765625,y:.359375},{x:.765625,y:.359375},{x:.796875,y:.359375},{x:.796875,y:.359375},{x:.828125,y:.359375},{x:.828125,y:.359375},{x:.859375,y:.359375},{x:.859375,y:.359375},{x:.890625,y:.359375},{x:.890625,y:.359375},{x:.921875,y:.359375},{x:.921875,y:.359375},{x:.953125,y:.359375},{x:.953125,y:.359375},{x:.984375,y:.359375},{x:.984375,y:.359375},{x:.015625,y:.390625},{x:.015625,y:.390625},{x:.046875,y:.390625},{x:.046875,y:.390625},{x:.078125,y:.390625},{x:.078125,y:.390625},{x:.109375,y:.390625},{x:.109375,y:.390625},{x:.140625,y:.390625},{x:.140625,y:.390625},{x:.171875,y:.390625},{x:.171875,y:.390625},{x:.203125,y:.390625},{x:.203125,y:.390625},{x:.234375,y:.390625},{x:.234375,y:.390625},{x:.265625,y:.390625},{x:.265625,y:.390625},{x:.296875,y:.390625},{x:.296875,y:.390625},{x:.328125,y:.390625},{x:.328125,y:.390625},{x:.359375,y:.390625},{x:.359375,y:.390625},{x:.390625,y:.390625},{x:.390625,y:.390625},{x:.421875,y:.390625},{x:.421875,y:.390625},{x:.453125,y:.390625},{x:.453125,y:.390625},{x:.484375,y:.390625},{x:.484375,y:.390625},{x:.515625,y:.390625},{x:.515625,y:.390625},{x:.546875,y:.390625},{x:.546875,y:.390625},{x:.578125,y:.390625},{x:.578125,y:.390625},{x:.609375,y:.390625},{x:.609375,y:.390625},{x:.640625,y:.390625},{x:.640625,y:.390625},{x:.671875,y:.390625},{x:.671875,y:.390625},{x:.703125,y:.390625},{x:.703125,y:.390625},{x:.734375,y:.390625},{x:.734375,y:.390625},{x:.765625,y:.390625},{x:.765625,y:.390625},{x:.796875,y:.390625},{x:.796875,y:.390625},{x:.828125,y:.390625},{x:.828125,y:.390625},{x:.859375,y:.390625},{x:.859375,y:.390625},{x:.890625,y:.390625},{x:.890625,y:.390625},{x:.921875,y:.390625},{x:.921875,y:.390625},{x:.953125,y:.390625},{x:.953125,y:.390625},{x:.984375,y:.390625},{x:.984375,y:.390625},{x:.015625,y:.421875},{x:.015625,y:.421875},{x:.046875,y:.421875},{x:.046875,y:.421875},{x:.078125,y:.421875},{x:.078125,y:.421875},{x:.109375,y:.421875},{x:.109375,y:.421875},{x:.140625,y:.421875},{x:.140625,y:.421875},{x:.171875,y:.421875},{x:.171875,y:.421875},{x:.203125,y:.421875},{x:.203125,y:.421875},{x:.234375,y:.421875},{x:.234375,y:.421875},{x:.265625,y:.421875},{x:.265625,y:.421875},{x:.296875,y:.421875},{x:.296875,y:.421875},{x:.328125,y:.421875},{x:.328125,y:.421875},{x:.359375,y:.421875},{x:.359375,y:.421875},{x:.390625,y:.421875},{x:.390625,y:.421875},{x:.421875,y:.421875},{x:.421875,y:.421875},{x:.453125,y:.421875},{x:.453125,y:.421875},{x:.484375,y:.421875},{x:.484375,y:.421875},{x:.515625,y:.421875},{x:.515625,y:.421875},{x:.546875,y:.421875},{x:.546875,y:.421875},{x:.578125,y:.421875},{x:.578125,y:.421875},{x:.609375,y:.421875},{x:.609375,y:.421875},{x:.640625,y:.421875},{x:.640625,y:.421875},{x:.671875,y:.421875},{x:.671875,y:.421875},{x:.703125,y:.421875},{x:.703125,y:.421875},{x:.734375,y:.421875},{x:.734375,y:.421875},{x:.765625,y:.421875},{x:.765625,y:.421875},{x:.796875,y:.421875},{x:.796875,y:.421875},{x:.828125,y:.421875},{x:.828125,y:.421875},{x:.859375,y:.421875},{x:.859375,y:.421875},{x:.890625,y:.421875},{x:.890625,y:.421875},{x:.921875,y:.421875},{x:.921875,y:.421875},{x:.953125,y:.421875},{x:.953125,y:.421875},{x:.984375,y:.421875},{x:.984375,y:.421875},{x:.015625,y:.453125},{x:.015625,y:.453125},{x:.046875,y:.453125},{x:.046875,y:.453125},{x:.078125,y:.453125},{x:.078125,y:.453125},{x:.109375,y:.453125},{x:.109375,y:.453125},{x:.140625,y:.453125},{x:.140625,y:.453125},{x:.171875,y:.453125},{x:.171875,y:.453125},{x:.203125,y:.453125},{x:.203125,y:.453125},{x:.234375,y:.453125},{x:.234375,y:.453125},{x:.265625,y:.453125},{x:.265625,y:.453125},{x:.296875,y:.453125},{x:.296875,y:.453125},{x:.328125,y:.453125},{x:.328125,y:.453125},{x:.359375,y:.453125},{x:.359375,y:.453125},{x:.390625,y:.453125},{x:.390625,y:.453125},{x:.421875,y:.453125},{x:.421875,y:.453125},{x:.453125,y:.453125},{x:.453125,y:.453125},{x:.484375,y:.453125},{x:.484375,y:.453125},{x:.515625,y:.453125},{x:.515625,y:.453125},{x:.546875,y:.453125},{x:.546875,y:.453125},{x:.578125,y:.453125},{x:.578125,y:.453125},{x:.609375,y:.453125},{x:.609375,y:.453125},{x:.640625,y:.453125},{x:.640625,y:.453125},{x:.671875,y:.453125},{x:.671875,y:.453125},{x:.703125,y:.453125},{x:.703125,y:.453125},{x:.734375,y:.453125},{x:.734375,y:.453125},{x:.765625,y:.453125},{x:.765625,y:.453125},{x:.796875,y:.453125},{x:.796875,y:.453125},{x:.828125,y:.453125},{x:.828125,y:.453125},{x:.859375,y:.453125},{x:.859375,y:.453125},{x:.890625,y:.453125},{x:.890625,y:.453125},{x:.921875,y:.453125},{x:.921875,y:.453125},{x:.953125,y:.453125},{x:.953125,y:.453125},{x:.984375,y:.453125},{x:.984375,y:.453125},{x:.015625,y:.484375},{x:.015625,y:.484375},{x:.046875,y:.484375},{x:.046875,y:.484375},{x:.078125,y:.484375},{x:.078125,y:.484375},{x:.109375,y:.484375},{x:.109375,y:.484375},{x:.140625,y:.484375},{x:.140625,y:.484375},{x:.171875,y:.484375},{x:.171875,y:.484375},{x:.203125,y:.484375},{x:.203125,y:.484375},{x:.234375,y:.484375},{x:.234375,y:.484375},{x:.265625,y:.484375},{x:.265625,y:.484375},{x:.296875,y:.484375},{x:.296875,y:.484375},{x:.328125,y:.484375},{x:.328125,y:.484375},{x:.359375,y:.484375},{x:.359375,y:.484375},{x:.390625,y:.484375},{x:.390625,y:.484375},{x:.421875,y:.484375},{x:.421875,y:.484375},{x:.453125,y:.484375},{x:.453125,y:.484375},{x:.484375,y:.484375},{x:.484375,y:.484375},{x:.515625,y:.484375},{x:.515625,y:.484375},{x:.546875,y:.484375},{x:.546875,y:.484375},{x:.578125,y:.484375},{x:.578125,y:.484375},{x:.609375,y:.484375},{x:.609375,y:.484375},{x:.640625,y:.484375},{x:.640625,y:.484375},{x:.671875,y:.484375},{x:.671875,y:.484375},{x:.703125,y:.484375},{x:.703125,y:.484375},{x:.734375,y:.484375},{x:.734375,y:.484375},{x:.765625,y:.484375},{x:.765625,y:.484375},{x:.796875,y:.484375},{x:.796875,y:.484375},{x:.828125,y:.484375},{x:.828125,y:.484375},{x:.859375,y:.484375},{x:.859375,y:.484375},{x:.890625,y:.484375},{x:.890625,y:.484375},{x:.921875,y:.484375},{x:.921875,y:.484375},{x:.953125,y:.484375},{x:.953125,y:.484375},{x:.984375,y:.484375},{x:.984375,y:.484375},{x:.015625,y:.515625},{x:.015625,y:.515625},{x:.046875,y:.515625},{x:.046875,y:.515625},{x:.078125,y:.515625},{x:.078125,y:.515625},{x:.109375,y:.515625},{x:.109375,y:.515625},{x:.140625,y:.515625},{x:.140625,y:.515625},{x:.171875,y:.515625},{x:.171875,y:.515625},{x:.203125,y:.515625},{x:.203125,y:.515625},{x:.234375,y:.515625},{x:.234375,y:.515625},{x:.265625,y:.515625},{x:.265625,y:.515625},{x:.296875,y:.515625},{x:.296875,y:.515625},{x:.328125,y:.515625},{x:.328125,y:.515625},{x:.359375,y:.515625},{x:.359375,y:.515625},{x:.390625,y:.515625},{x:.390625,y:.515625},{x:.421875,y:.515625},{x:.421875,y:.515625},{x:.453125,y:.515625},{x:.453125,y:.515625},{x:.484375,y:.515625},{x:.484375,y:.515625},{x:.515625,y:.515625},{x:.515625,y:.515625},{x:.546875,y:.515625},{x:.546875,y:.515625},{x:.578125,y:.515625},{x:.578125,y:.515625},{x:.609375,y:.515625},{x:.609375,y:.515625},{x:.640625,y:.515625},{x:.640625,y:.515625},{x:.671875,y:.515625},{x:.671875,y:.515625},{x:.703125,y:.515625},{x:.703125,y:.515625},{x:.734375,y:.515625},{x:.734375,y:.515625},{x:.765625,y:.515625},{x:.765625,y:.515625},{x:.796875,y:.515625},{x:.796875,y:.515625},{x:.828125,y:.515625},{x:.828125,y:.515625},{x:.859375,y:.515625},{x:.859375,y:.515625},{x:.890625,y:.515625},{x:.890625,y:.515625},{x:.921875,y:.515625},{x:.921875,y:.515625},{x:.953125,y:.515625},{x:.953125,y:.515625},{x:.984375,y:.515625},{x:.984375,y:.515625},{x:.015625,y:.546875},{x:.015625,y:.546875},{x:.046875,y:.546875},{x:.046875,y:.546875},{x:.078125,y:.546875},{x:.078125,y:.546875},{x:.109375,y:.546875},{x:.109375,y:.546875},{x:.140625,y:.546875},{x:.140625,y:.546875},{x:.171875,y:.546875},{x:.171875,y:.546875},{x:.203125,y:.546875},{x:.203125,y:.546875},{x:.234375,y:.546875},{x:.234375,y:.546875},{x:.265625,y:.546875},{x:.265625,y:.546875},{x:.296875,y:.546875},{x:.296875,y:.546875},{x:.328125,y:.546875},{x:.328125,y:.546875},{x:.359375,y:.546875},{x:.359375,y:.546875},{x:.390625,y:.546875},{x:.390625,y:.546875},{x:.421875,y:.546875},{x:.421875,y:.546875},{x:.453125,y:.546875},{x:.453125,y:.546875},{x:.484375,y:.546875},{x:.484375,y:.546875},{x:.515625,y:.546875},{x:.515625,y:.546875},{x:.546875,y:.546875},{x:.546875,y:.546875},{x:.578125,y:.546875},{x:.578125,y:.546875},{x:.609375,y:.546875},{x:.609375,y:.546875},{x:.640625,y:.546875},{x:.640625,y:.546875},{x:.671875,y:.546875},{x:.671875,y:.546875},{x:.703125,y:.546875},{x:.703125,y:.546875},{x:.734375,y:.546875},{x:.734375,y:.546875},{x:.765625,y:.546875},{x:.765625,y:.546875},{x:.796875,y:.546875},{x:.796875,y:.546875},{x:.828125,y:.546875},{x:.828125,y:.546875},{x:.859375,y:.546875},{x:.859375,y:.546875},{x:.890625,y:.546875},{x:.890625,y:.546875},{x:.921875,y:.546875},{x:.921875,y:.546875},{x:.953125,y:.546875},{x:.953125,y:.546875},{x:.984375,y:.546875},{x:.984375,y:.546875},{x:.015625,y:.578125},{x:.015625,y:.578125},{x:.046875,y:.578125},{x:.046875,y:.578125},{x:.078125,y:.578125},{x:.078125,y:.578125},{x:.109375,y:.578125},{x:.109375,y:.578125},{x:.140625,y:.578125},{x:.140625,y:.578125},{x:.171875,y:.578125},{x:.171875,y:.578125},{x:.203125,y:.578125},{x:.203125,y:.578125},{x:.234375,y:.578125},{x:.234375,y:.578125},{x:.265625,y:.578125},{x:.265625,y:.578125},{x:.296875,y:.578125},{x:.296875,y:.578125},{x:.328125,y:.578125},{x:.328125,y:.578125},{x:.359375,y:.578125},{x:.359375,y:.578125},{x:.390625,y:.578125},{x:.390625,y:.578125},{x:.421875,y:.578125},{x:.421875,y:.578125},{x:.453125,y:.578125},{x:.453125,y:.578125},{x:.484375,y:.578125},{x:.484375,y:.578125},{x:.515625,y:.578125},{x:.515625,y:.578125},{x:.546875,y:.578125},{x:.546875,y:.578125},{x:.578125,y:.578125},{x:.578125,y:.578125},{x:.609375,y:.578125},{x:.609375,y:.578125},{x:.640625,y:.578125},{x:.640625,y:.578125},{x:.671875,y:.578125},{x:.671875,y:.578125},{x:.703125,y:.578125},{x:.703125,y:.578125},{x:.734375,y:.578125},{x:.734375,y:.578125},{x:.765625,y:.578125},{x:.765625,y:.578125},{x:.796875,y:.578125},{x:.796875,y:.578125},{x:.828125,y:.578125},{x:.828125,y:.578125},{x:.859375,y:.578125},{x:.859375,y:.578125},{x:.890625,y:.578125},{x:.890625,y:.578125},{x:.921875,y:.578125},{x:.921875,y:.578125},{x:.953125,y:.578125},{x:.953125,y:.578125},{x:.984375,y:.578125},{x:.984375,y:.578125},{x:.015625,y:.609375},{x:.015625,y:.609375},{x:.046875,y:.609375},{x:.046875,y:.609375},{x:.078125,y:.609375},{x:.078125,y:.609375},{x:.109375,y:.609375},{x:.109375,y:.609375},{x:.140625,y:.609375},{x:.140625,y:.609375},{x:.171875,y:.609375},{x:.171875,y:.609375},{x:.203125,y:.609375},{x:.203125,y:.609375},{x:.234375,y:.609375},{x:.234375,y:.609375},{x:.265625,y:.609375},{x:.265625,y:.609375},{x:.296875,y:.609375},{x:.296875,y:.609375},{x:.328125,y:.609375},{x:.328125,y:.609375},{x:.359375,y:.609375},{x:.359375,y:.609375},{x:.390625,y:.609375},{x:.390625,y:.609375},{x:.421875,y:.609375},{x:.421875,y:.609375},{x:.453125,y:.609375},{x:.453125,y:.609375},{x:.484375,y:.609375},{x:.484375,y:.609375},{x:.515625,y:.609375},{x:.515625,y:.609375},{x:.546875,y:.609375},{x:.546875,y:.609375},{x:.578125,y:.609375},{x:.578125,y:.609375},{x:.609375,y:.609375},{x:.609375,y:.609375},{x:.640625,y:.609375},{x:.640625,y:.609375},{x:.671875,y:.609375},{x:.671875,y:.609375},{x:.703125,y:.609375},{x:.703125,y:.609375},{x:.734375,y:.609375},{x:.734375,y:.609375},{x:.765625,y:.609375},{x:.765625,y:.609375},{x:.796875,y:.609375},{x:.796875,y:.609375},{x:.828125,y:.609375},{x:.828125,y:.609375},{x:.859375,y:.609375},{x:.859375,y:.609375},{x:.890625,y:.609375},{x:.890625,y:.609375},{x:.921875,y:.609375},{x:.921875,y:.609375},{x:.953125,y:.609375},{x:.953125,y:.609375},{x:.984375,y:.609375},{x:.984375,y:.609375},{x:.015625,y:.640625},{x:.015625,y:.640625},{x:.046875,y:.640625},{x:.046875,y:.640625},{x:.078125,y:.640625},{x:.078125,y:.640625},{x:.109375,y:.640625},{x:.109375,y:.640625},{x:.140625,y:.640625},{x:.140625,y:.640625},{x:.171875,y:.640625},{x:.171875,y:.640625},{x:.203125,y:.640625},{x:.203125,y:.640625},{x:.234375,y:.640625},{x:.234375,y:.640625},{x:.265625,y:.640625},{x:.265625,y:.640625},{x:.296875,y:.640625},{x:.296875,y:.640625},{x:.328125,y:.640625},{x:.328125,y:.640625},{x:.359375,y:.640625},{x:.359375,y:.640625},{x:.390625,y:.640625},{x:.390625,y:.640625},{x:.421875,y:.640625},{x:.421875,y:.640625},{x:.453125,y:.640625},{x:.453125,y:.640625},{x:.484375,y:.640625},{x:.484375,y:.640625},{x:.515625,y:.640625},{x:.515625,y:.640625},{x:.546875,y:.640625},{x:.546875,y:.640625},{x:.578125,y:.640625},{x:.578125,y:.640625},{x:.609375,y:.640625},{x:.609375,y:.640625},{x:.640625,y:.640625},{x:.640625,y:.640625},{x:.671875,y:.640625},{x:.671875,y:.640625},{x:.703125,y:.640625},{x:.703125,y:.640625},{x:.734375,y:.640625},{x:.734375,y:.640625},{x:.765625,y:.640625},{x:.765625,y:.640625},{x:.796875,y:.640625},{x:.796875,y:.640625},{x:.828125,y:.640625},{x:.828125,y:.640625},{x:.859375,y:.640625},{x:.859375,y:.640625},{x:.890625,y:.640625},{x:.890625,y:.640625},{x:.921875,y:.640625},{x:.921875,y:.640625},{x:.953125,y:.640625},{x:.953125,y:.640625},{x:.984375,y:.640625},{x:.984375,y:.640625},{x:.015625,y:.671875},{x:.015625,y:.671875},{x:.046875,y:.671875},{x:.046875,y:.671875},{x:.078125,y:.671875},{x:.078125,y:.671875},{x:.109375,y:.671875},{x:.109375,y:.671875},{x:.140625,y:.671875},{x:.140625,y:.671875},{x:.171875,y:.671875},{x:.171875,y:.671875},{x:.203125,y:.671875},{x:.203125,y:.671875},{x:.234375,y:.671875},{x:.234375,y:.671875},{x:.265625,y:.671875},{x:.265625,y:.671875},{x:.296875,y:.671875},{x:.296875,y:.671875},{x:.328125,y:.671875},{x:.328125,y:.671875},{x:.359375,y:.671875},{x:.359375,y:.671875},{x:.390625,y:.671875},{x:.390625,y:.671875},{x:.421875,y:.671875},{x:.421875,y:.671875},{x:.453125,y:.671875},{x:.453125,y:.671875},{x:.484375,y:.671875},{x:.484375,y:.671875},{x:.515625,y:.671875},{x:.515625,y:.671875},{x:.546875,y:.671875},{x:.546875,y:.671875},{x:.578125,y:.671875},{x:.578125,y:.671875},{x:.609375,y:.671875},{x:.609375,y:.671875},{x:.640625,y:.671875},{x:.640625,y:.671875},{x:.671875,y:.671875},{x:.671875,y:.671875},{x:.703125,y:.671875},{x:.703125,y:.671875},{x:.734375,y:.671875},{x:.734375,y:.671875},{x:.765625,y:.671875},{x:.765625,y:.671875},{x:.796875,y:.671875},{x:.796875,y:.671875},{x:.828125,y:.671875},{x:.828125,y:.671875},{x:.859375,y:.671875},{x:.859375,y:.671875},{x:.890625,y:.671875},{x:.890625,y:.671875},{x:.921875,y:.671875},{x:.921875,y:.671875},{x:.953125,y:.671875},{x:.953125,y:.671875},{x:.984375,y:.671875},{x:.984375,y:.671875},{x:.015625,y:.703125},{x:.015625,y:.703125},{x:.046875,y:.703125},{x:.046875,y:.703125},{x:.078125,y:.703125},{x:.078125,y:.703125},{x:.109375,y:.703125},{x:.109375,y:.703125},{x:.140625,y:.703125},{x:.140625,y:.703125},{x:.171875,y:.703125},{x:.171875,y:.703125},{x:.203125,y:.703125},{x:.203125,y:.703125},{x:.234375,y:.703125},{x:.234375,y:.703125},{x:.265625,y:.703125},{x:.265625,y:.703125},{x:.296875,y:.703125},{x:.296875,y:.703125},{x:.328125,y:.703125},{x:.328125,y:.703125},{x:.359375,y:.703125},{x:.359375,y:.703125},{x:.390625,y:.703125},{x:.390625,y:.703125},{x:.421875,y:.703125},{x:.421875,y:.703125},{x:.453125,y:.703125},{x:.453125,y:.703125},{x:.484375,y:.703125},{x:.484375,y:.703125},{x:.515625,y:.703125},{x:.515625,y:.703125},{x:.546875,y:.703125},{x:.546875,y:.703125},{x:.578125,y:.703125},{x:.578125,y:.703125},{x:.609375,y:.703125},{x:.609375,y:.703125},{x:.640625,y:.703125},{x:.640625,y:.703125},{x:.671875,y:.703125},{x:.671875,y:.703125},{x:.703125,y:.703125},{x:.703125,y:.703125},{x:.734375,y:.703125},{x:.734375,y:.703125},{x:.765625,y:.703125},{x:.765625,y:.703125},{x:.796875,y:.703125},{x:.796875,y:.703125},{x:.828125,y:.703125},{x:.828125,y:.703125},{x:.859375,y:.703125},{x:.859375,y:.703125},{x:.890625,y:.703125},{x:.890625,y:.703125},{x:.921875,y:.703125},{x:.921875,y:.703125},{x:.953125,y:.703125},{x:.953125,y:.703125},{x:.984375,y:.703125},{x:.984375,y:.703125},{x:.015625,y:.734375},{x:.015625,y:.734375},{x:.046875,y:.734375},{x:.046875,y:.734375},{x:.078125,y:.734375},{x:.078125,y:.734375},{x:.109375,y:.734375},{x:.109375,y:.734375},{x:.140625,y:.734375},{x:.140625,y:.734375},{x:.171875,y:.734375},{x:.171875,y:.734375},{x:.203125,y:.734375},{x:.203125,y:.734375},{x:.234375,y:.734375},{x:.234375,y:.734375},{x:.265625,y:.734375},{x:.265625,y:.734375},{x:.296875,y:.734375},{x:.296875,y:.734375},{x:.328125,y:.734375},{x:.328125,y:.734375},{x:.359375,y:.734375},{x:.359375,y:.734375},{x:.390625,y:.734375},{x:.390625,y:.734375},{x:.421875,y:.734375},{x:.421875,y:.734375},{x:.453125,y:.734375},{x:.453125,y:.734375},{x:.484375,y:.734375},{x:.484375,y:.734375},{x:.515625,y:.734375},{x:.515625,y:.734375},{x:.546875,y:.734375},{x:.546875,y:.734375},{x:.578125,y:.734375},{x:.578125,y:.734375},{x:.609375,y:.734375},{x:.609375,y:.734375},{x:.640625,y:.734375},{x:.640625,y:.734375},{x:.671875,y:.734375},{x:.671875,y:.734375},{x:.703125,y:.734375},{x:.703125,y:.734375},{x:.734375,y:.734375},{x:.734375,y:.734375},{x:.765625,y:.734375},{x:.765625,y:.734375},{x:.796875,y:.734375},{x:.796875,y:.734375},{x:.828125,y:.734375},{x:.828125,y:.734375},{x:.859375,y:.734375},{x:.859375,y:.734375},{x:.890625,y:.734375},{x:.890625,y:.734375},{x:.921875,y:.734375},{x:.921875,y:.734375},{x:.953125,y:.734375},{x:.953125,y:.734375},{x:.984375,y:.734375},{x:.984375,y:.734375},{x:.015625,y:.765625},{x:.015625,y:.765625},{x:.046875,y:.765625},{x:.046875,y:.765625},{x:.078125,y:.765625},{x:.078125,y:.765625},{x:.109375,y:.765625},{x:.109375,y:.765625},{x:.140625,y:.765625},{x:.140625,y:.765625},{x:.171875,y:.765625},{x:.171875,y:.765625},{x:.203125,y:.765625},{x:.203125,y:.765625},{x:.234375,y:.765625},{x:.234375,y:.765625},{x:.265625,y:.765625},{x:.265625,y:.765625},{x:.296875,y:.765625},{x:.296875,y:.765625},{x:.328125,y:.765625},{x:.328125,y:.765625},{x:.359375,y:.765625},{x:.359375,y:.765625},{x:.390625,y:.765625},{x:.390625,y:.765625},{x:.421875,y:.765625},{x:.421875,y:.765625},{x:.453125,y:.765625},{x:.453125,y:.765625},{x:.484375,y:.765625},{x:.484375,y:.765625},{x:.515625,y:.765625},{x:.515625,y:.765625},{x:.546875,y:.765625},{x:.546875,y:.765625},{x:.578125,y:.765625},{x:.578125,y:.765625},{x:.609375,y:.765625},{x:.609375,y:.765625},{x:.640625,y:.765625},{x:.640625,y:.765625},{x:.671875,y:.765625},{x:.671875,y:.765625},{x:.703125,y:.765625},{x:.703125,y:.765625},{x:.734375,y:.765625},{x:.734375,y:.765625},{x:.765625,y:.765625},{x:.765625,y:.765625},{x:.796875,y:.765625},{x:.796875,y:.765625},{x:.828125,y:.765625},{x:.828125,y:.765625},{x:.859375,y:.765625},{x:.859375,y:.765625},{x:.890625,y:.765625},{x:.890625,y:.765625},{x:.921875,y:.765625},{x:.921875,y:.765625},{x:.953125,y:.765625},{x:.953125,y:.765625},{x:.984375,y:.765625},{x:.984375,y:.765625},{x:.015625,y:.796875},{x:.015625,y:.796875},{x:.046875,y:.796875},{x:.046875,y:.796875},{x:.078125,y:.796875},{x:.078125,y:.796875},{x:.109375,y:.796875},{x:.109375,y:.796875},{x:.140625,y:.796875},{x:.140625,y:.796875},{x:.171875,y:.796875},{x:.171875,y:.796875},{x:.203125,y:.796875},{x:.203125,y:.796875},{x:.234375,y:.796875},{x:.234375,y:.796875},{x:.265625,y:.796875},{x:.265625,y:.796875},{x:.296875,y:.796875},{x:.296875,y:.796875},{x:.328125,y:.796875},{x:.328125,y:.796875},{x:.359375,y:.796875},{x:.359375,y:.796875},{x:.390625,y:.796875},{x:.390625,y:.796875},{x:.421875,y:.796875},{x:.421875,y:.796875},{x:.453125,y:.796875},{x:.453125,y:.796875},{x:.484375,y:.796875},{x:.484375,y:.796875},{x:.515625,y:.796875},{x:.515625,y:.796875},{x:.546875,y:.796875},{x:.546875,y:.796875},{x:.578125,y:.796875},{x:.578125,y:.796875},{x:.609375,y:.796875},{x:.609375,y:.796875},{x:.640625,y:.796875},{x:.640625,y:.796875},{x:.671875,y:.796875},{x:.671875,y:.796875},{x:.703125,y:.796875},{x:.703125,y:.796875},{x:.734375,y:.796875},{x:.734375,y:.796875},{x:.765625,y:.796875},{x:.765625,y:.796875},{x:.796875,y:.796875},{x:.796875,y:.796875},{x:.828125,y:.796875},{x:.828125,y:.796875},{x:.859375,y:.796875},{x:.859375,y:.796875},{x:.890625,y:.796875},{x:.890625,y:.796875},{x:.921875,y:.796875},{x:.921875,y:.796875},{x:.953125,y:.796875},{x:.953125,y:.796875},{x:.984375,y:.796875},{x:.984375,y:.796875},{x:.015625,y:.828125},{x:.015625,y:.828125},{x:.046875,y:.828125},{x:.046875,y:.828125},{x:.078125,y:.828125},{x:.078125,y:.828125},{x:.109375,y:.828125},{x:.109375,y:.828125},{x:.140625,y:.828125},{x:.140625,y:.828125},{x:.171875,y:.828125},{x:.171875,y:.828125},{x:.203125,y:.828125},{x:.203125,y:.828125},{x:.234375,y:.828125},{x:.234375,y:.828125},{x:.265625,y:.828125},{x:.265625,y:.828125},{x:.296875,y:.828125},{x:.296875,y:.828125},{x:.328125,y:.828125},{x:.328125,y:.828125},{x:.359375,y:.828125},{x:.359375,y:.828125},{x:.390625,y:.828125},{x:.390625,y:.828125},{x:.421875,y:.828125},{x:.421875,y:.828125},{x:.453125,y:.828125},{x:.453125,y:.828125},{x:.484375,y:.828125},{x:.484375,y:.828125},{x:.515625,y:.828125},{x:.515625,y:.828125},{x:.546875,y:.828125},{x:.546875,y:.828125},{x:.578125,y:.828125},{x:.578125,y:.828125},{x:.609375,y:.828125},{x:.609375,y:.828125},{x:.640625,y:.828125},{x:.640625,y:.828125},{x:.671875,y:.828125},{x:.671875,y:.828125},{x:.703125,y:.828125},{x:.703125,y:.828125},{x:.734375,y:.828125},{x:.734375,y:.828125},{x:.765625,y:.828125},{x:.765625,y:.828125},{x:.796875,y:.828125},{x:.796875,y:.828125},{x:.828125,y:.828125},{x:.828125,y:.828125},{x:.859375,y:.828125},{x:.859375,y:.828125},{x:.890625,y:.828125},{x:.890625,y:.828125},{x:.921875,y:.828125},{x:.921875,y:.828125},{x:.953125,y:.828125},{x:.953125,y:.828125},{x:.984375,y:.828125},{x:.984375,y:.828125},{x:.015625,y:.859375},{x:.015625,y:.859375},{x:.046875,y:.859375},{x:.046875,y:.859375},{x:.078125,y:.859375},{x:.078125,y:.859375},{x:.109375,y:.859375},{x:.109375,y:.859375},{x:.140625,y:.859375},{x:.140625,y:.859375},{x:.171875,y:.859375},{x:.171875,y:.859375},{x:.203125,y:.859375},{x:.203125,y:.859375},{x:.234375,y:.859375},{x:.234375,y:.859375},{x:.265625,y:.859375},{x:.265625,y:.859375},{x:.296875,y:.859375},{x:.296875,y:.859375},{x:.328125,y:.859375},{x:.328125,y:.859375},{x:.359375,y:.859375},{x:.359375,y:.859375},{x:.390625,y:.859375},{x:.390625,y:.859375},{x:.421875,y:.859375},{x:.421875,y:.859375},{x:.453125,y:.859375},{x:.453125,y:.859375},{x:.484375,y:.859375},{x:.484375,y:.859375},{x:.515625,y:.859375},{x:.515625,y:.859375},{x:.546875,y:.859375},{x:.546875,y:.859375},{x:.578125,y:.859375},{x:.578125,y:.859375},{x:.609375,y:.859375},{x:.609375,y:.859375},{x:.640625,y:.859375},{x:.640625,y:.859375},{x:.671875,y:.859375},{x:.671875,y:.859375},{x:.703125,y:.859375},{x:.703125,y:.859375},{x:.734375,y:.859375},{x:.734375,y:.859375},{x:.765625,y:.859375},{x:.765625,y:.859375},{x:.796875,y:.859375},{x:.796875,y:.859375},{x:.828125,y:.859375},{x:.828125,y:.859375},{x:.859375,y:.859375},{x:.859375,y:.859375},{x:.890625,y:.859375},{x:.890625,y:.859375},{x:.921875,y:.859375},{x:.921875,y:.859375},{x:.953125,y:.859375},{x:.953125,y:.859375},{x:.984375,y:.859375},{x:.984375,y:.859375},{x:.015625,y:.890625},{x:.015625,y:.890625},{x:.046875,y:.890625},{x:.046875,y:.890625},{x:.078125,y:.890625},{x:.078125,y:.890625},{x:.109375,y:.890625},{x:.109375,y:.890625},{x:.140625,y:.890625},{x:.140625,y:.890625},{x:.171875,y:.890625},{x:.171875,y:.890625},{x:.203125,y:.890625},{x:.203125,y:.890625},{x:.234375,y:.890625},{x:.234375,y:.890625},{x:.265625,y:.890625},{x:.265625,y:.890625},{x:.296875,y:.890625},{x:.296875,y:.890625},{x:.328125,y:.890625},{x:.328125,y:.890625},{x:.359375,y:.890625},{x:.359375,y:.890625},{x:.390625,y:.890625},{x:.390625,y:.890625},{x:.421875,y:.890625},{x:.421875,y:.890625},{x:.453125,y:.890625},{x:.453125,y:.890625},{x:.484375,y:.890625},{x:.484375,y:.890625},{x:.515625,y:.890625},{x:.515625,y:.890625},{x:.546875,y:.890625},{x:.546875,y:.890625},{x:.578125,y:.890625},{x:.578125,y:.890625},{x:.609375,y:.890625},{x:.609375,y:.890625},{x:.640625,y:.890625},{x:.640625,y:.890625},{x:.671875,y:.890625},{x:.671875,y:.890625},{x:.703125,y:.890625},{x:.703125,y:.890625},{x:.734375,y:.890625},{x:.734375,y:.890625},{x:.765625,y:.890625},{x:.765625,y:.890625},{x:.796875,y:.890625},{x:.796875,y:.890625},{x:.828125,y:.890625},{x:.828125,y:.890625},{x:.859375,y:.890625},{x:.859375,y:.890625},{x:.890625,y:.890625},{x:.890625,y:.890625},{x:.921875,y:.890625},{x:.921875,y:.890625},{x:.953125,y:.890625},{x:.953125,y:.890625},{x:.984375,y:.890625},{x:.984375,y:.890625},{x:.015625,y:.921875},{x:.015625,y:.921875},{x:.046875,y:.921875},{x:.046875,y:.921875},{x:.078125,y:.921875},{x:.078125,y:.921875},{x:.109375,y:.921875},{x:.109375,y:.921875},{x:.140625,y:.921875},{x:.140625,y:.921875},{x:.171875,y:.921875},{x:.171875,y:.921875},{x:.203125,y:.921875},{x:.203125,y:.921875},{x:.234375,y:.921875},{x:.234375,y:.921875},{x:.265625,y:.921875},{x:.265625,y:.921875},{x:.296875,y:.921875},{x:.296875,y:.921875},{x:.328125,y:.921875},{x:.328125,y:.921875},{x:.359375,y:.921875},{x:.359375,y:.921875},{x:.390625,y:.921875},{x:.390625,y:.921875},{x:.421875,y:.921875},{x:.421875,y:.921875},{x:.453125,y:.921875},{x:.453125,y:.921875},{x:.484375,y:.921875},{x:.484375,y:.921875},{x:.515625,y:.921875},{x:.515625,y:.921875},{x:.546875,y:.921875},{x:.546875,y:.921875},{x:.578125,y:.921875},{x:.578125,y:.921875},{x:.609375,y:.921875},{x:.609375,y:.921875},{x:.640625,y:.921875},{x:.640625,y:.921875},{x:.671875,y:.921875},{x:.671875,y:.921875},{x:.703125,y:.921875},{x:.703125,y:.921875},{x:.734375,y:.921875},{x:.734375,y:.921875},{x:.765625,y:.921875},{x:.765625,y:.921875},{x:.796875,y:.921875},{x:.796875,y:.921875},{x:.828125,y:.921875},{x:.828125,y:.921875},{x:.859375,y:.921875},{x:.859375,y:.921875},{x:.890625,y:.921875},{x:.890625,y:.921875},{x:.921875,y:.921875},{x:.921875,y:.921875},{x:.953125,y:.921875},{x:.953125,y:.921875},{x:.984375,y:.921875},{x:.984375,y:.921875},{x:.015625,y:.953125},{x:.015625,y:.953125},{x:.046875,y:.953125},{x:.046875,y:.953125},{x:.078125,y:.953125},{x:.078125,y:.953125},{x:.109375,y:.953125},{x:.109375,y:.953125},{x:.140625,y:.953125},{x:.140625,y:.953125},{x:.171875,y:.953125},{x:.171875,y:.953125},{x:.203125,y:.953125},{x:.203125,y:.953125},{x:.234375,y:.953125},{x:.234375,y:.953125},{x:.265625,y:.953125},{x:.265625,y:.953125},{x:.296875,y:.953125},{x:.296875,y:.953125},{x:.328125,y:.953125},{x:.328125,y:.953125},{x:.359375,y:.953125},{x:.359375,y:.953125},{x:.390625,y:.953125},{x:.390625,y:.953125},{x:.421875,y:.953125},{x:.421875,y:.953125},{x:.453125,y:.953125},{x:.453125,y:.953125},{x:.484375,y:.953125},{x:.484375,y:.953125},{x:.515625,y:.953125},{x:.515625,y:.953125},{x:.546875,y:.953125},{x:.546875,y:.953125},{x:.578125,y:.953125},{x:.578125,y:.953125},{x:.609375,y:.953125},{x:.609375,y:.953125},{x:.640625,y:.953125},{x:.640625,y:.953125},{x:.671875,y:.953125},{x:.671875,y:.953125},{x:.703125,y:.953125},{x:.703125,y:.953125},{x:.734375,y:.953125},{x:.734375,y:.953125},{x:.765625,y:.953125},{x:.765625,y:.953125},{x:.796875,y:.953125},{x:.796875,y:.953125},{x:.828125,y:.953125},{x:.828125,y:.953125},{x:.859375,y:.953125},{x:.859375,y:.953125},{x:.890625,y:.953125},{x:.890625,y:.953125},{x:.921875,y:.953125},{x:.921875,y:.953125},{x:.953125,y:.953125},{x:.953125,y:.953125},{x:.984375,y:.953125},{x:.984375,y:.953125},{x:.015625,y:.984375},{x:.015625,y:.984375},{x:.046875,y:.984375},{x:.046875,y:.984375},{x:.078125,y:.984375},{x:.078125,y:.984375},{x:.109375,y:.984375},{x:.109375,y:.984375},{x:.140625,y:.984375},{x:.140625,y:.984375},{x:.171875,y:.984375},{x:.171875,y:.984375},{x:.203125,y:.984375},{x:.203125,y:.984375},{x:.234375,y:.984375},{x:.234375,y:.984375},{x:.265625,y:.984375},{x:.265625,y:.984375},{x:.296875,y:.984375},{x:.296875,y:.984375},{x:.328125,y:.984375},{x:.328125,y:.984375},{x:.359375,y:.984375},{x:.359375,y:.984375},{x:.390625,y:.984375},{x:.390625,y:.984375},{x:.421875,y:.984375},{x:.421875,y:.984375},{x:.453125,y:.984375},{x:.453125,y:.984375},{x:.484375,y:.984375},{x:.484375,y:.984375},{x:.515625,y:.984375},{x:.515625,y:.984375},{x:.546875,y:.984375},{x:.546875,y:.984375},{x:.578125,y:.984375},{x:.578125,y:.984375},{x:.609375,y:.984375},{x:.609375,y:.984375},{x:.640625,y:.984375},{x:.640625,y:.984375},{x:.671875,y:.984375},{x:.671875,y:.984375},{x:.703125,y:.984375},{x:.703125,y:.984375},{x:.734375,y:.984375},{x:.734375,y:.984375},{x:.765625,y:.984375},{x:.765625,y:.984375},{x:.796875,y:.984375},{x:.796875,y:.984375},{x:.828125,y:.984375},{x:.828125,y:.984375},{x:.859375,y:.984375},{x:.859375,y:.984375},{x:.890625,y:.984375},{x:.890625,y:.984375},{x:.921875,y:.984375},{x:.921875,y:.984375},{x:.953125,y:.984375},{x:.953125,y:.984375},{x:.984375,y:.984375},{x:.984375,y:.984375},{x:.03125,y:.03125},{x:.03125,y:.03125},{x:.09375,y:.03125},{x:.09375,y:.03125},{x:.15625,y:.03125},{x:.15625,y:.03125},{x:.21875,y:.03125},{x:.21875,y:.03125},{x:.28125,y:.03125},{x:.28125,y:.03125},{x:.34375,y:.03125},{x:.34375,y:.03125},{x:.40625,y:.03125},{x:.40625,y:.03125},{x:.46875,y:.03125},{x:.46875,y:.03125},{x:.53125,y:.03125},{x:.53125,y:.03125},{x:.59375,y:.03125},{x:.59375,y:.03125},{x:.65625,y:.03125},{x:.65625,y:.03125},{x:.71875,y:.03125},{x:.71875,y:.03125},{x:.78125,y:.03125},{x:.78125,y:.03125},{x:.84375,y:.03125},{x:.84375,y:.03125},{x:.90625,y:.03125},{x:.90625,y:.03125},{x:.96875,y:.03125},{x:.96875,y:.03125},{x:.03125,y:.09375},{x:.03125,y:.09375},{x:.09375,y:.09375},{x:.09375,y:.09375},{x:.15625,y:.09375},{x:.15625,y:.09375},{x:.21875,y:.09375},{x:.21875,y:.09375},{x:.28125,y:.09375},{x:.28125,y:.09375},{x:.34375,y:.09375},{x:.34375,y:.09375},{x:.40625,y:.09375},{x:.40625,y:.09375},{x:.46875,y:.09375},{x:.46875,y:.09375},{x:.53125,y:.09375},{x:.53125,y:.09375},{x:.59375,y:.09375},{x:.59375,y:.09375},{x:.65625,y:.09375},{x:.65625,y:.09375},{x:.71875,y:.09375},{x:.71875,y:.09375},{x:.78125,y:.09375},{x:.78125,y:.09375},{x:.84375,y:.09375},{x:.84375,y:.09375},{x:.90625,y:.09375},{x:.90625,y:.09375},{x:.96875,y:.09375},{x:.96875,y:.09375},{x:.03125,y:.15625},{x:.03125,y:.15625},{x:.09375,y:.15625},{x:.09375,y:.15625},{x:.15625,y:.15625},{x:.15625,y:.15625},{x:.21875,y:.15625},{x:.21875,y:.15625},{x:.28125,y:.15625},{x:.28125,y:.15625},{x:.34375,y:.15625},{x:.34375,y:.15625},{x:.40625,y:.15625},{x:.40625,y:.15625},{x:.46875,y:.15625},{x:.46875,y:.15625},{x:.53125,y:.15625},{x:.53125,y:.15625},{x:.59375,y:.15625},{x:.59375,y:.15625},{x:.65625,y:.15625},{x:.65625,y:.15625},{x:.71875,y:.15625},{x:.71875,y:.15625},{x:.78125,y:.15625},{x:.78125,y:.15625},{x:.84375,y:.15625},{x:.84375,y:.15625},{x:.90625,y:.15625},{x:.90625,y:.15625},{x:.96875,y:.15625},{x:.96875,y:.15625},{x:.03125,y:.21875},{x:.03125,y:.21875},{x:.09375,y:.21875},{x:.09375,y:.21875},{x:.15625,y:.21875},{x:.15625,y:.21875},{x:.21875,y:.21875},{x:.21875,y:.21875},{x:.28125,y:.21875},{x:.28125,y:.21875},{x:.34375,y:.21875},{x:.34375,y:.21875},{x:.40625,y:.21875},{x:.40625,y:.21875},{x:.46875,y:.21875},{x:.46875,y:.21875},{x:.53125,y:.21875},{x:.53125,y:.21875},{x:.59375,y:.21875},{x:.59375,y:.21875},{x:.65625,y:.21875},{x:.65625,y:.21875},{x:.71875,y:.21875},{x:.71875,y:.21875},{x:.78125,y:.21875},{x:.78125,y:.21875},{x:.84375,y:.21875},{x:.84375,y:.21875},{x:.90625,y:.21875},{x:.90625,y:.21875},{x:.96875,y:.21875},{x:.96875,y:.21875},{x:.03125,y:.28125},{x:.03125,y:.28125},{x:.09375,y:.28125},{x:.09375,y:.28125},{x:.15625,y:.28125},{x:.15625,y:.28125},{x:.21875,y:.28125},{x:.21875,y:.28125},{x:.28125,y:.28125},{x:.28125,y:.28125},{x:.34375,y:.28125},{x:.34375,y:.28125},{x:.40625,y:.28125},{x:.40625,y:.28125},{x:.46875,y:.28125},{x:.46875,y:.28125},{x:.53125,y:.28125},{x:.53125,y:.28125},{x:.59375,y:.28125},{x:.59375,y:.28125},{x:.65625,y:.28125},{x:.65625,y:.28125},{x:.71875,y:.28125},{x:.71875,y:.28125},{x:.78125,y:.28125},{x:.78125,y:.28125},{x:.84375,y:.28125},{x:.84375,y:.28125},{x:.90625,y:.28125},{x:.90625,y:.28125},{x:.96875,y:.28125},{x:.96875,y:.28125},{x:.03125,y:.34375},{x:.03125,y:.34375},{x:.09375,y:.34375},{x:.09375,y:.34375},{x:.15625,y:.34375},{x:.15625,y:.34375},{x:.21875,y:.34375},{x:.21875,y:.34375},{x:.28125,y:.34375},{x:.28125,y:.34375},{x:.34375,y:.34375},{x:.34375,y:.34375},{x:.40625,y:.34375},{x:.40625,y:.34375},{x:.46875,y:.34375},{x:.46875,y:.34375},{x:.53125,y:.34375},{x:.53125,y:.34375},{x:.59375,y:.34375},{x:.59375,y:.34375},{x:.65625,y:.34375},{x:.65625,y:.34375},{x:.71875,y:.34375},{x:.71875,y:.34375},{x:.78125,y:.34375},{x:.78125,y:.34375},{x:.84375,y:.34375},{x:.84375,y:.34375},{x:.90625,y:.34375},{x:.90625,y:.34375},{x:.96875,y:.34375},{x:.96875,y:.34375},{x:.03125,y:.40625},{x:.03125,y:.40625},{x:.09375,y:.40625},{x:.09375,y:.40625},{x:.15625,y:.40625},{x:.15625,y:.40625},{x:.21875,y:.40625},{x:.21875,y:.40625},{x:.28125,y:.40625},{x:.28125,y:.40625},{x:.34375,y:.40625},{x:.34375,y:.40625},{x:.40625,y:.40625},{x:.40625,y:.40625},{x:.46875,y:.40625},{x:.46875,y:.40625},{x:.53125,y:.40625},{x:.53125,y:.40625},{x:.59375,y:.40625},{x:.59375,y:.40625},{x:.65625,y:.40625},{x:.65625,y:.40625},{x:.71875,y:.40625},{x:.71875,y:.40625},{x:.78125,y:.40625},{x:.78125,y:.40625},{x:.84375,y:.40625},{x:.84375,y:.40625},{x:.90625,y:.40625},{x:.90625,y:.40625},{x:.96875,y:.40625},{x:.96875,y:.40625},{x:.03125,y:.46875},{x:.03125,y:.46875},{x:.09375,y:.46875},{x:.09375,y:.46875},{x:.15625,y:.46875},{x:.15625,y:.46875},{x:.21875,y:.46875},{x:.21875,y:.46875},{x:.28125,y:.46875},{x:.28125,y:.46875},{x:.34375,y:.46875},{x:.34375,y:.46875},{x:.40625,y:.46875},{x:.40625,y:.46875},{x:.46875,y:.46875},{x:.46875,y:.46875},{x:.53125,y:.46875},{x:.53125,y:.46875},{x:.59375,y:.46875},{x:.59375,y:.46875},{x:.65625,y:.46875},{x:.65625,y:.46875},{x:.71875,y:.46875},{x:.71875,y:.46875},{x:.78125,y:.46875},{x:.78125,y:.46875},{x:.84375,y:.46875},{x:.84375,y:.46875},{x:.90625,y:.46875},{x:.90625,y:.46875},{x:.96875,y:.46875},{x:.96875,y:.46875},{x:.03125,y:.53125},{x:.03125,y:.53125},{x:.09375,y:.53125},{x:.09375,y:.53125},{x:.15625,y:.53125},{x:.15625,y:.53125},{x:.21875,y:.53125},{x:.21875,y:.53125},{x:.28125,y:.53125},{x:.28125,y:.53125},{x:.34375,y:.53125},{x:.34375,y:.53125},{x:.40625,y:.53125},{x:.40625,y:.53125},{x:.46875,y:.53125},{x:.46875,y:.53125},{x:.53125,y:.53125},{x:.53125,y:.53125},{x:.59375,y:.53125},{x:.59375,y:.53125},{x:.65625,y:.53125},{x:.65625,y:.53125},{x:.71875,y:.53125},{x:.71875,y:.53125},{x:.78125,y:.53125},{x:.78125,y:.53125},{x:.84375,y:.53125},{x:.84375,y:.53125},{x:.90625,y:.53125},{x:.90625,y:.53125},{x:.96875,y:.53125},{x:.96875,y:.53125},{x:.03125,y:.59375},{x:.03125,y:.59375},{x:.09375,y:.59375},{x:.09375,y:.59375},{x:.15625,y:.59375},{x:.15625,y:.59375},{x:.21875,y:.59375},{x:.21875,y:.59375},{x:.28125,y:.59375},{x:.28125,y:.59375},{x:.34375,y:.59375},{x:.34375,y:.59375},{x:.40625,y:.59375},{x:.40625,y:.59375},{x:.46875,y:.59375},{x:.46875,y:.59375},{x:.53125,y:.59375},{x:.53125,y:.59375},{x:.59375,y:.59375},{x:.59375,y:.59375},{x:.65625,y:.59375},{x:.65625,y:.59375},{x:.71875,y:.59375},{x:.71875,y:.59375},{x:.78125,y:.59375},{x:.78125,y:.59375},{x:.84375,y:.59375},{x:.84375,y:.59375},{x:.90625,y:.59375},{x:.90625,y:.59375},{x:.96875,y:.59375},{x:.96875,y:.59375},{x:.03125,y:.65625},{x:.03125,y:.65625},{x:.09375,y:.65625},{x:.09375,y:.65625},{x:.15625,y:.65625},{x:.15625,y:.65625},{x:.21875,y:.65625},{x:.21875,y:.65625},{x:.28125,y:.65625},{x:.28125,y:.65625},{x:.34375,y:.65625},{x:.34375,y:.65625},{x:.40625,y:.65625},{x:.40625,y:.65625},{x:.46875,y:.65625},{x:.46875,y:.65625},{x:.53125,y:.65625},{x:.53125,y:.65625},{x:.59375,y:.65625},{x:.59375,y:.65625},{x:.65625,y:.65625},{x:.65625,y:.65625},{x:.71875,y:.65625},{x:.71875,y:.65625},{x:.78125,y:.65625},{x:.78125,y:.65625},{x:.84375,y:.65625},{x:.84375,y:.65625},{x:.90625,y:.65625},{x:.90625,y:.65625},{x:.96875,y:.65625},{x:.96875,y:.65625},{x:.03125,y:.71875},{x:.03125,y:.71875},{x:.09375,y:.71875},{x:.09375,y:.71875},{x:.15625,y:.71875},{x:.15625,y:.71875},{x:.21875,y:.71875},{x:.21875,y:.71875},{x:.28125,y:.71875},{x:.28125,y:.71875},{x:.34375,y:.71875},{x:.34375,y:.71875},{x:.40625,y:.71875},{x:.40625,y:.71875},{x:.46875,y:.71875},{x:.46875,y:.71875},{x:.53125,y:.71875},{x:.53125,y:.71875},{x:.59375,y:.71875},{x:.59375,y:.71875},{x:.65625,y:.71875},{x:.65625,y:.71875},{x:.71875,y:.71875},{x:.71875,y:.71875},{x:.78125,y:.71875},{x:.78125,y:.71875},{x:.84375,y:.71875},{x:.84375,y:.71875},{x:.90625,y:.71875},{x:.90625,y:.71875},{x:.96875,y:.71875},{x:.96875,y:.71875},{x:.03125,y:.78125},{x:.03125,y:.78125},{x:.09375,y:.78125},{x:.09375,y:.78125},{x:.15625,y:.78125},{x:.15625,y:.78125},{x:.21875,y:.78125},{x:.21875,y:.78125},{x:.28125,y:.78125},{x:.28125,y:.78125},{x:.34375,y:.78125},{x:.34375,y:.78125},{x:.40625,y:.78125},{x:.40625,y:.78125},{x:.46875,y:.78125},{x:.46875,y:.78125},{x:.53125,y:.78125},{x:.53125,y:.78125},{x:.59375,y:.78125},{x:.59375,y:.78125},{x:.65625,y:.78125},{x:.65625,y:.78125},{x:.71875,y:.78125},{x:.71875,y:.78125},{x:.78125,y:.78125},{x:.78125,y:.78125},{x:.84375,y:.78125},{x:.84375,y:.78125},{x:.90625,y:.78125},{x:.90625,y:.78125},{x:.96875,y:.78125},{x:.96875,y:.78125},{x:.03125,y:.84375},{x:.03125,y:.84375},{x:.09375,y:.84375},{x:.09375,y:.84375},{x:.15625,y:.84375},{x:.15625,y:.84375},{x:.21875,y:.84375},{x:.21875,y:.84375},{x:.28125,y:.84375},{x:.28125,y:.84375},{x:.34375,y:.84375},{x:.34375,y:.84375},{x:.40625,y:.84375},{x:.40625,y:.84375},{x:.46875,y:.84375},{x:.46875,y:.84375},{x:.53125,y:.84375},{x:.53125,y:.84375},{x:.59375,y:.84375},{x:.59375,y:.84375},{x:.65625,y:.84375},{x:.65625,y:.84375},{x:.71875,y:.84375},{x:.71875,y:.84375},{x:.78125,y:.84375},{x:.78125,y:.84375},{x:.84375,y:.84375},{x:.84375,y:.84375},{x:.90625,y:.84375},{x:.90625,y:.84375},{x:.96875,y:.84375},{x:.96875,y:.84375},{x:.03125,y:.90625},{x:.03125,y:.90625},{x:.09375,y:.90625},{x:.09375,y:.90625},{x:.15625,y:.90625},{x:.15625,y:.90625},{x:.21875,y:.90625},{x:.21875,y:.90625},{x:.28125,y:.90625},{x:.28125,y:.90625},{x:.34375,y:.90625},{x:.34375,y:.90625},{x:.40625,y:.90625},{x:.40625,y:.90625},{x:.46875,y:.90625},{x:.46875,y:.90625},{x:.53125,y:.90625},{x:.53125,y:.90625},{x:.59375,y:.90625},{x:.59375,y:.90625},{x:.65625,y:.90625},{x:.65625,y:.90625},{x:.71875,y:.90625},{x:.71875,y:.90625},{x:.78125,y:.90625},{x:.78125,y:.90625},{x:.84375,y:.90625},{x:.84375,y:.90625},{x:.90625,y:.90625},{x:.90625,y:.90625},{x:.96875,y:.90625},{x:.96875,y:.90625},{x:.03125,y:.96875},{x:.03125,y:.96875},{x:.09375,y:.96875},{x:.09375,y:.96875},{x:.15625,y:.96875},{x:.15625,y:.96875},{x:.21875,y:.96875},{x:.21875,y:.96875},{x:.28125,y:.96875},{x:.28125,y:.96875},{x:.34375,y:.96875},{x:.34375,y:.96875},{x:.40625,y:.96875},{x:.40625,y:.96875},{x:.46875,y:.96875},{x:.46875,y:.96875},{x:.53125,y:.96875},{x:.53125,y:.96875},{x:.59375,y:.96875},{x:.59375,y:.96875},{x:.65625,y:.96875},{x:.65625,y:.96875},{x:.71875,y:.96875},{x:.71875,y:.96875},{x:.78125,y:.96875},{x:.78125,y:.96875},{x:.84375,y:.96875},{x:.84375,y:.96875},{x:.90625,y:.96875},{x:.90625,y:.96875},{x:.96875,y:.96875},{x:.96875,y:.96875},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375}];var jb=class{constructor(t){var n;this.model=t,this.anchors=LM.map(a=>[a.x,a.y]),this.anchorsTensor=ns(this.anchors),this.inputSize=(n=this.model)==null?void 0:n.inputs[0].shape[2],this.inputSizeTensor=oa([this.inputSize,this.inputSize]),this.doubleInputSizeTensor=oa([this.inputSize*2,this.inputSize*2])}normalizeBoxes(t){return Ue(()=>{let n=Ze(t,[0,0],[-1,2]),a=Ze(t,[0,2],[-1,2]),r=De(Qe(n,this.inputSizeTensor),this.anchorsTensor),s=Qe(a,this.doubleInputSizeTensor),i=fe(je(r,s),this.inputSizeTensor),o=fe(De(r,s),this.inputSizeTensor);return ld([i,o],1)})}normalizeLandmarks(t,n){return Ue(()=>{let a=De(Qe(t.reshape([-1,7,2]),this.inputSizeTensor),this.anchors[n]);return fe(a,this.inputSizeTensor)})}async getBoxes(t,n){let a=this.model.predict(t),r=Yn(a);a.dispose();let s=Ue(()=>Sr(Ze(r,[0,0],[-1,1])).squeeze()),i=s.dataSync(),o=Ze(r,[0,1],[-1,4]),l=this.normalizeBoxes(o);o.dispose();let u=await Ye.nonMaxSuppressionAsync(l,i,n.hand.maxDetected,n.hand.iouThreshold,n.hand.minConfidence),d=u.arraySync();s.dispose(),u.dispose();let h=[];for(let p of d)if(i[p]>=n.hand.minConfidence){let c=Ze(l,[p,0],[1,-1]),m=Ze(r,[p,5],[1,14]),f=Ue(()=>this.normalizeLandmarks(m,p).reshape([-1,2]));m.dispose(),h.push({box:c,palmLandmarks:f,confidence:i[p]})}return r.dispose(),l.dispose(),h}async estimateHandBounds(t,n){let a=t.shape[1],r=t.shape[2],s=Ue(()=>t.resizeBilinear([this.inputSize,this.inputSize]).div(127.5).sub(1)),i=await this.getBoxes(s,n);s.dispose();let o=[];if(!i||i.length===0)return o;for(let l of i){let u=l.box.dataSync(),d=u.slice(0,2),h=u.slice(2,4),p=l.palmLandmarks.arraySync();l.box.dispose(),l.palmLandmarks.dispose(),o.push(PM({startPoint:d,endPoint:h,palmLandmarks:p,confidence:l.confidence},[r/this.inputSize,a/this.inputSize]))}return o}};function Xve(e){return e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI))}function WM(e,t){let n=Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]);return Xve(n)}var BM=(e,t)=>[[1,0,e],[0,1,t],[0,0,1]];function ai(e,t){let n=0;for(let a=0;a<e.length;a++)n+=e[a]*t[a];return n}function Zve(e,t){let n=[];for(let a=0;a<e.length;a++)n.push(e[a][t]);return n}function VM(e,t){let n=[],a=e.length;for(let r=0;r<a;r++){n.push([]);for(let s=0;s<a;s++)n[r].push(ai(e[r],Zve(t,s)))}return n}function Hb(e,t){let n=Math.cos(e),a=Math.sin(e),r=[[n,-a,0],[a,n,0],[0,0,1]],s=BM(t[0],t[1]),i=VM(s,r),o=BM(-t[0],-t[1]);return VM(i,o)}function UM(e){let t=[[e[0][0],e[1][0]],[e[0][1],e[1][1]]],n=[e[0][2],e[1][2]],a=[-ai(t[0],n),-ai(t[1],n)];return[t[0].concat(a[0]),t[1].concat(a[1]),[0,0,1]]}function Gb(e,t){return[ai(e,t[0]),ai(e,t[1])]}var Yve=5,jM=1.65,HM=[0,5,9,13,17,1,2],Jve=0,Qve=2,qb=class{constructor(t,n){var a;this.handDetector=t,this.handPoseModel=n,this.inputSize=(a=this.handPoseModel)==null?void 0:a.inputs[0].shape[2],this.storedBoxes=[],this.skipped=0,this.detectedHands=0}calculateLandmarksBoundingBox(t){let n=t.map(i=>i[0]),a=t.map(i=>i[1]),r=[Math.min(...n),Math.min(...a)],s=[Math.max(...n),Math.max(...a)];return{startPoint:r,endPoint:s}}getBoxForPalmLandmarks(t,n){let a=t.map(s=>Gb([...s,1],n)),r=this.calculateLandmarksBoundingBox(a);return cm(fm(r),Yve)}getBoxForHandLandmarks(t){let n=this.calculateLandmarksBoundingBox(t),a=cm(fm(n),jM);a.palmLandmarks=[];for(let r=0;r<HM.length;r++)a.palmLandmarks.push(t[HM[r]].slice(0,2));return a}transformRawCoords(t,n,a,r){let s=pm(n),i=[s[0]/this.inputSize,s[1]/this.inputSize,(s[0]+s[1])/this.inputSize/2],o=t.map(c=>[i[0]*(c[0]-this.inputSize/2),i[1]*(c[1]-this.inputSize/2),i[2]*c[2]]),l=Hb(a,[0,0]),u=o.map(c=>[...Gb(c,l),c[2]]),d=UM(r),h=[...Sp(n),1],p=[ai(h,d[0]),ai(h,d[1])];return u.map(c=>[Math.trunc(c[0]+p[0]),Math.trunc(c[1]+p[1]),Math.trunc(c[2])])}async estimateHands(t,n){let a=!1,r;(this.skipped===0||this.skipped>n.hand.skipFrames||!n.hand.landmarks||!n.skipFrame)&&(r=await this.handDetector.estimateHandBounds(t,n),this.skipped=0),n.skipFrame&&this.skipped++,r&&r.length>0&&(r.length!==this.detectedHands&&this.detectedHands!==n.hand.maxDetected||!n.hand.landmarks)&&(this.detectedHands=0,this.storedBoxes=[...r],this.storedBoxes.length>0&&(a=!0));let s=[];for(let i=0;i<this.storedBoxes.length;i++){let o=this.storedBoxes[i];if(!!o)if(n.hand.landmarks){let l=n.hand.rotation?WM(o.palmLandmarks[Jve],o.palmLandmarks[Qve]):0,u=Sp(o),d=[u[0]/t.shape[2],u[1]/t.shape[1]],h=n.hand.rotation&&ka.flags.IS_BROWSER?Ye.rotateWithOffset(t,l,0,d):t.clone(),p=Hb(-l,u),c=a?this.getBoxForPalmLandmarks(o.palmLandmarks,p):o,m=zM(c,h,[this.inputSize,this.inputSize]),f=m.div(255);m.dispose(),h.dispose();let[g,y]=await this.handPoseModel.predict(f);f.dispose();let A=g.dataSync()[0];if(g.dispose(),A>=n.hand.minConfidence){let x=le(y,[-1,3]),v=x.arraySync();y.dispose(),x.dispose();let b=this.transformRawCoords(v,c,l,p),w=this.getBoxForHandLandmarks(b);this.storedBoxes[i]={...w,confidence:A};let I={landmarks:b,confidence:A,box:{topLeft:w.startPoint,bottomRight:w.endPoint}};s.push(I)}else this.storedBoxes[i]=null;y.dispose()}else{let l=cm(fm(o),jM),u={confidence:o.confidence,box:{topLeft:l.startPoint,bottomRight:l.endPoint}};s.push(u)}}return this.storedBoxes=this.storedBoxes.filter(i=>i!==null),this.detectedHands=s.length,s}};var GM={thumb:[1,2,3,4],indexFinger:[5,6,7,8],middleFinger:[9,10,11,12],ringFinger:[13,14,15,16],pinky:[17,18,19,20],palmBase:[0]},ri,si,qM;async function Kb(e,t){let n=await qM.estimateHands(e,t);if(!n)return[];let a=[];for(let r=0;r<n.length;r++){let s={};if(n[r].landmarks)for(let u of Object.keys(GM))s[u]=GM[u].map(d=>n[r].landmarks[d]);let i=n[r].landmarks,o=[Number.MAX_SAFE_INTEGER,Number.MAX_SAFE_INTEGER,0,0],l=[0,0,0,0];if(i&&i.length>0){for(let u of i)u[0]<o[0]&&(o[0]=u[0]),u[1]<o[1]&&(o[1]=u[1]),u[0]>o[2]&&(o[2]=u[0]),u[1]>o[3]&&(o[3]=u[1]);o[2]-=o[0],o[3]-=o[1],l=[o[0]/(e.shape[2]||0),o[1]/(e.shape[1]||0),o[2]/(e.shape[2]||0),o[3]/(e.shape[1]||0)]}else o=n[r].box?[Math.trunc(Math.max(0,n[r].box.topLeft[0])),Math.trunc(Math.max(0,n[r].box.topLeft[1])),Math.trunc(Math.min(e.shape[2]||0,n[r].box.bottomRight[0])-Math.max(0,n[r].box.topLeft[0])),Math.trunc(Math.min(e.shape[1]||0,n[r].box.bottomRight[1])-Math.max(0,n[r].box.topLeft[1]))]:[0,0,0,0],l=[n[r].box.topLeft[0]/(e.shape[2]||0),n[r].box.topLeft[1]/(e.shape[1]||0),(n[r].box.bottomRight[0]-n[r].box.topLeft[0])/(e.shape[2]||0),(n[r].box.bottomRight[1]-n[r].box.topLeft[1])/(e.shape[1]||0)];a.push({id:r,score:Math.round(100*n[r].confidence)/100,box:o,boxRaw:l,keypoints:i,annotations:s})}return a}async function Xb(e){!ri||!si?([ri,si]=await Promise.all([e.hand.enabled?Et(Mt(e.modelBasePath,e.hand.detector.modelPath),{fromTFHub:e.hand.detector.modelPath.includes("tfhub.dev")}):null,e.hand.landmarks?Et(Mt(e.modelBasePath,e.hand.skeleton.modelPath),{fromTFHub:e.hand.skeleton.modelPath.includes("tfhub.dev")}):null]),e.hand.enabled&&(!ri||!ri.modelUrl?ge("load model failed:",e.hand.detector.modelPath):e.debug&&ge("load model:",ri.modelUrl),!si||!si.modelUrl?ge("load model failed:",e.hand.skeleton.modelPath):e.debug&&ge("load model:",si.modelUrl))):(e.debug&&ge("cached model:",ri.modelUrl),e.debug&&ge("cached model:",si.modelUrl));let t=new jb(ri);return qM=new qb(t,si),[ri,si]}var KM=["nose","leftEyeInside","leftEye","leftEyeOutside","rightEyeInside","rightEye","rightEyeOutside","leftEar","rightEar","leftMouth","rightMouth","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftPalm","rightPalm","leftIndex","rightIndex","leftPinky","rightPinky","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle","leftHeel","rightHeel","leftFoot","rightFoot","midHip","forehead","leftThumb","leftHand","rightThumb","rightHand"],XM=["nose","leftEyeInside","leftEye","leftEyeOutside","rightEyeInside","rightEye","rightEyeOutside","leftEar","rightEar","leftMouth","rightMouth","leftShoulder","rightShoulder","leftElbow","rightElbow","left:15","right:16","left:17","right:18","left:19","right:20","left:21","right:22","leftChest","rightChest","neck","forehead","left:27","right:28","left:29","right:30"];var aa;async function mm(e){return aa?e.debug&&ge("cached model:",aa.modelUrl):(aa=await Et(Mt(e.modelBasePath,e.body.modelPath)),aa.width=parseInt(aa.signature.inputs["input_1:0"].tensorShape.dim[2].size),aa.height=parseInt(aa.signature.inputs["input_1:0"].tensorShape.dim[1].size),!aa||!aa.modelUrl?ge("load model failed:",e.body.modelPath):e.debug&&ge("load model:",aa.modelUrl)),aa}async function Zb(e,t){var f;if(!aa)return[];if(!t.body.enabled)return[];let n={width:e.shape[2]||0,height:e.shape[1]||0},a=Ye.resizeBilinear(e,[aa.width,aa.height],!1),r=Qe(a,[255]);a.dispose();let s=await aa.predict(r),i=((f=s.find(g=>g.size===195||g.size===155))==null?void 0:f.dataSync())||[];s.forEach(g=>g.dispose()),r.dispose();let o=[],l=(i==null?void 0:i.length)===195?KM:XM,u=5;for(let g=0;g<i.length/u;g++)o.push({id:g,part:l[g],position:[Math.trunc(n.width*i[u*g+0]/255),Math.trunc(n.height*i[u*g+1]/255),Math.trunc(i[u*g+2])+0],positionRaw:[i[u*g+0]/255,i[u*g+1]/255,i[u*g+2]+0],score:(100-Math.trunc(100/(1+Math.exp(i[u*g+3]))))/100,presence:(100-Math.trunc(100/(1+Math.exp(i[u*g+4]))))/100});let d=o.map(g=>g.position[0]),h=o.map(g=>g.position[1]),p=[Math.min(...d),Math.min(...h),Math.max(...d)-Math.min(...d),Math.max(...h)-Math.min(...d)],c=[0,0,0,0],m=o.reduce((g,y)=>y.score>g?y.score:g,0);return[{id:0,score:m,box:p,boxRaw:c,keypoints:o}]}var ra,Wr=[],Yb=[0,0,0,0],Jb=[0,0,0,0],gm=0,Qb=Number.MAX_SAFE_INTEGER,ewe=["head","neck","rightShoulder","rightElbow","rightWrist","chest","leftShoulder","leftElbow","leftWrist","pelvis","rightHip","rightKnee","rightAnkle","leftHip","leftKnee","leftAnkle"];async function ZM(e){return ra?e.debug&&ge("cached model:",ra.modelUrl):(ra=await Et(Mt(e.modelBasePath,e.body.modelPath)),!ra||!ra.modelUrl?ge("load model failed:",e.body.modelPath):e.debug&&ge("load model:",ra.modelUrl)),ra}function twe(e,t){let[n,a]=e.shape;return Ue(()=>{let r=(o,l)=>je(o,fe(Qe(o,dt(l,"int32")),dt(l,"int32"))),s=le(e,[a*n]),i=$s(s,0).dataSync()[0];if(i>t){let o=Xy(s,0),l=r(o,n).dataSync()[0],u=Qe(o,dt(n,"int32")).dataSync()[0];return[l,u,i]}return[0,0,i]})}async function e3(e,t){return Qb<t.body.skipFrames&&t.skipFrame&&Object.keys(Wr).length>0?(Qb++,[{id:0,score:gm,box:Yb,boxRaw:Jb,keypoints:Wr}]):(Qb=0,new Promise(async n=>{let a=Ue(()=>{if(!ra.inputs[0].shape)return null;let u=Ye.resizeBilinear(e,[ra.inputs[0].shape[2],ra.inputs[0].shape[1]],!1);return fe(u,2).sub(1)}),r;if(t.body.enabled&&(r=await ra.predict(a)),a.dispose(),r){Wr.length=0;let u=r.squeeze();Ve(r);let d=u.unstack(2);Ve(u);for(let h=0;h<d.length;h++){let[p,c,m]=twe(d[h],t.body.minConfidence);gm>t.body.minConfidence&&Wr.push({score:Math.round(100*m)/100,part:ewe[h],positionRaw:[p/ra.inputs[0].shape[2],c/ra.inputs[0].shape[1]],position:[Math.round(e.shape[2]*p/ra.inputs[0].shape[2]),Math.round(e.shape[1]*c/ra.inputs[0].shape[1])]})}d.forEach(h=>Ve(h))}gm=Wr.reduce((u,d)=>d.score>u?d.score:u,0);let s=Wr.map(u=>u.position[0]),i=Wr.map(u=>u.position[1]);Yb=[Math.min(...s),Math.min(...i),Math.max(...s)-Math.min(...s),Math.max(...i)-Math.min(...i)];let o=Wr.map(u=>u.positionRaw[0]),l=Wr.map(u=>u.positionRaw[1]);Jb=[Math.min(...o),Math.min(...l),Math.max(...o)-Math.min(...o),Math.max(...l)-Math.min(...l)],n([{id:0,score:gm,box:Yb,boxRaw:Jb,keypoints:Wr}])}))}var br,Br=[],t3=[0,0,0,0],n3=[0,0,0,0],$u=0,a3=Number.MAX_SAFE_INTEGER,nwe=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"];async function r3(e){return br?e.debug&&ge("cached model:",br.modelUrl):(br=await Et(Mt(e.modelBasePath,e.body.modelPath)),!br||!br.modelUrl?ge("load model failed:",e.body.modelPath):e.debug&&ge("load model:",br.modelUrl)),br}async function s3(e,t){return a3<t.body.skipFrames&&t.skipFrame&&Object.keys(Br).length>0?(a3++,[{id:0,score:$u,box:t3,boxRaw:n3,keypoints:Br}]):(a3=0,new Promise(async n=>{let a=Ue(()=>{if(!br.inputs[0].shape)return null;let u=Ye.resizeBilinear(e,[br.inputs[0].shape[2],br.inputs[0].shape[1]],!1);return zt(u,"int32")}),r;if(t.body.enabled&&(r=await br.predict(a)),a.dispose(),r){Br.length=0;let u=r.arraySync();Ve(r);let d=u[0][0];for(let h=0;h<d.length;h++)$u=d[h][2],$u>t.body.minConfidence&&Br.push({score:Math.round(100*$u)/100,part:nwe[h],positionRaw:[d[h][1],d[h][0]],position:[Math.round((e.shape[2]||0)*d[h][1]),Math.round((e.shape[1]||0)*d[h][0])]})}$u=Br.reduce((u,d)=>d.score>u?d.score:u,0);let s=Br.map(u=>u.position[0]),i=Br.map(u=>u.position[1]);t3=[Math.min(...s),Math.min(...i),Math.max(...s)-Math.min(...s),Math.max(...i)-Math.min(...i)];let o=Br.map(u=>u.positionRaw[0]),l=Br.map(u=>u.positionRaw[1]);n3=[Math.min(...o),Math.min(...l),Math.max(...o)-Math.min(...o),Math.max(...l)-Math.min(...l)],n([{id:0,score:$u,box:t3,boxRaw:n3,keypoints:Br}])}))}var Ru=[{class:1,label:"person"},{class:2,label:"bicycle"},{class:3,label:"car"},{class:4,label:"motorcycle"},{class:5,label:"airplane"},{class:6,label:"bus"},{class:7,label:"train"},{class:8,label:"truck"},{class:9,label:"boat"},{class:10,label:"traffic light"},{class:11,label:"fire hydrant"},{class:12,label:"stop sign"},{class:13,label:"parking meter"},{class:14,label:"bench"},{class:15,label:"bird"},{class:16,label:"cat"},{class:17,label:"dog"},{class:18,label:"horse"},{class:19,label:"sheep"},{class:20,label:"cow"},{class:21,label:"elephant"},{class:22,label:"bear"},{class:23,label:"zebra"},{class:24,label:"giraffe"},{class:25,label:"backpack"},{class:26,label:"umbrella"},{class:27,label:"handbag"},{class:28,label:"tie"},{class:29,label:"suitcase"},{class:30,label:"frisbee"},{class:31,label:"skis"},{class:32,label:"snowboard"},{class:33,label:"sports ball"},{class:34,label:"kite"},{class:35,label:"baseball bat"},{class:36,label:"baseball glove"},{class:37,label:"skateboard"},{class:38,label:"surfboard"},{class:39,label:"tennis racket"},{class:40,label:"bottle"},{class:41,label:"wine glass"},{class:42,label:"cup"},{class:43,label:"fork"},{class:44,label:"knife"},{class:45,label:"spoon"},{class:46,label:"bowl"},{class:47,label:"banana"},{class:48,label:"apple"},{class:49,label:"sandwich"},{class:50,label:"orange"},{class:51,label:"broccoli"},{class:52,label:"carrot"},{class:53,label:"hot dog"},{class:54,label:"pizza"},{class:55,label:"donut"},{class:56,label:"cake"},{class:57,label:"chair"},{class:58,label:"couch"},{class:59,label:"potted plant"},{class:60,label:"bed"},{class:61,label:"dining table"},{class:62,label:"toilet"},{class:63,label:"tv"},{class:64,label:"laptop"},{class:65,label:"mouse"},{class:66,label:"remote"},{class:67,label:"keyboard"},{class:68,label:"cell phone"},{class:69,label:"microwave"},{class:70,label:"oven"},{class:71,label:"toaster"},{class:72,label:"sink"},{class:73,label:"refrigerator"},{class:74,label:"book"},{class:75,label:"clock"},{class:76,label:"vase"},{class:77,label:"scissors"},{class:78,label:"teddy bear"},{class:79,label:"hair drier"},{class:80,label:"toothbrush"}];var ya,i3=[],o3=Number.MAX_SAFE_INTEGER,ym=2.5;async function l3(e){if(ya)e.debug&&ge("cached model:",ya.modelUrl);else{ya=await Et(Mt(e.modelBasePath,e.object.modelPath));let t=Object.values(ya.modelSignature.inputs);if(ya.inputSize=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):null,!ya.inputSize)throw new Error(`Human: Cannot determine model inputSize: ${e.object.modelPath}`);!ya||!ya.modelUrl?ge("load model failed:",e.object.modelPath):e.debug&&ge("load model:",ya.modelUrl)}return ya}async function awe(e,t,n,a){let r=0,s=[];for(let u of[1,2,4])Ue(()=>{var g,y;let d=u*13,h=(g=e.find(A=>A.shape[1]===d**2&&A.shape[2]===Ru.length))==null?void 0:g.squeeze(),p=(y=e.find(A=>A.shape[1]===d**2&&A.shape[2]<Ru.length))==null?void 0:y.squeeze(),m=p.reshape([-1,4,p.shape[1]/4]).argMax(2).arraySync(),f=h.arraySync();for(let A=0;A<h.shape[0];A++)for(let x=0;x<h.shape[1];x++){let v=f[A][x];if(v>a.object.minConfidence&&x!==61){let b=(.5+Math.trunc(A%d))/d,w=(.5+Math.trunc(A/d))/d,I=m[A].map(W=>W*(d/u/t)),[T,C]=[b-ym/u*I[0],w-ym/u*I[1]],[z,$]=[b+ym/u*I[2]-T,w+ym/u*I[3]-C],S=[T,C,z,$];S=S.map(W=>Math.max(0,Math.min(W,1)));let D=[S[0]*n[0],S[1]*n[1],S[2]*n[0],S[3]*n[1]],_={id:r++,score:Math.round(100*v)/100,class:x+1,label:Ru[x].label,box:D.map(W=>Math.trunc(W)),boxRaw:S};s.push(_)}}});e.forEach(u=>Ve(u));let i=s.map(u=>[u.boxRaw[1],u.boxRaw[0],u.boxRaw[3],u.boxRaw[2]]),o=s.map(u=>u.score),l=[];if(i&&i.length>0){let u=await Ye.nonMaxSuppressionAsync(i,o,a.object.maxDetected,a.object.iouThreshold,a.object.minConfidence);l=u.dataSync(),Ve(u)}return s=s.filter((u,d)=>l.includes(d)).sort((u,d)=>d.score-u.score),s}async function u3(e,t){return o3<t.object.skipFrames&&t.skipFrame&&i3.length>0?(o3++,i3):(o3=0,new Promise(async n=>{let a=[e.shape[2],e.shape[1]],r=Ye.resizeBilinear(e,[ya.inputSize,ya.inputSize],!1),s=r.div(255),i=s.transpose([0,3,1,2]);s.dispose(),r.dispose();let o;t.object.enabled&&(o=await ya.predict(i)),i.dispose();let l=await awe(o,ya.inputSize,a,t);i3=l,n(l)}))}var Aa,d3=[],h3=Number.MAX_SAFE_INTEGER;async function p3(e){if(Aa)e.debug&&ge("cached model:",Aa.modelUrl);else{Aa=await Et(Mt(e.modelBasePath,e.object.modelPath));let t=Object.values(Aa.modelSignature.inputs);if(Aa.inputSize=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):null,!Aa.inputSize)throw new Error(`Human: Cannot determine model inputSize: ${e.object.modelPath}`);!Aa||!Aa.modelUrl?ge("load model failed:",e.object.modelPath):e.debug&&ge("load model:",Aa.modelUrl)}return Aa}async function rwe(e,t,n,a){if(!e)return[];let r=[],s=e.arraySync(),i=Yn(e);e.dispose();let o=es(i,6,1);i.dispose();let u=Ii([o[1],o[0],o[3],o[2]],1).squeeze(),d=o[4].squeeze(),h=o[5].squeeze();o.forEach(f=>f.dispose());let p=await Ye.nonMaxSuppressionAsync(u,d,a.object.maxDetected,a.object.iouThreshold,a.object.minConfidence);u.dispose(),d.dispose(),h.dispose();let c=p.dataSync();p.dispose();let m=0;for(let f of c){let g=Math.trunc(100*s[0][f][4])/100,y=s[0][f][5],A=Ru[y].label,x=[s[0][f][0]/t,s[0][f][1]/t,s[0][f][2]/t,s[0][f][3]/t],v=[Math.trunc(x[0]*n[0]),Math.trunc(x[1]*n[1]),Math.trunc(x[2]*n[0]),Math.trunc(x[3]*n[1])];r.push({id:m++,score:g,class:y,label:A,box:v,boxRaw:x})}return r}async function c3(e,t){return h3<t.object.skipFrames&&t.skipFrame&&d3.length>0?(h3++,d3):(h3=0,new Promise(async n=>{let a=[e.shape[2],e.shape[1]],r=Ye.resizeBilinear(e,[Aa.inputSize,Aa.inputSize]),s=t.object.enabled?Aa.execute(r,["tower_0/detections"]):null;r.dispose();let i=await rwe(s,Aa.inputSize,a,t);d3=i,n(i)}))}var YM=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++){let a=e[n].keypoints.find(l=>l.part==="leftWrist"),r=e[n].keypoints.find(l=>l.part==="rightWrist"),s=e[n].keypoints.find(l=>l.part==="nose");s&&a&&r&&a.position.y<s.position.y&&r.position.y<s.position.y?t.push({body:n,gesture:"i give up"}):s&&a&&a.position.y<s.position.y?t.push({body:n,gesture:"raise left hand"}):s&&r&&r.position.y<s.position.y&&t.push({body:n,gesture:"raise right hand"});let i=e[n].keypoints.find(l=>l.part==="leftShoulder"),o=e[n].keypoints.find(l=>l.part==="rightShoulder");i&&o&&t.push({body:n,gesture:`leaning ${i.position.y>o.position.y?"left":"right"}`})}return t},JM=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++)if(e[n].mesh&&e[n].mesh.length>0){let a=e[n].mesh[33][2]-e[n].mesh[263][2];Math.abs(a)<10?t.push({face:n,gesture:"facing center"}):t.push({face:n,gesture:`facing ${a<0?"left":"right"}`}),Math.abs(e[n].mesh[374][1]-e[n].mesh[386][1])/Math.abs(e[n].mesh[443][1]-e[n].mesh[450][1])<.2&&t.push({face:n,gesture:"blink left eye"}),Math.abs(e[n].mesh[145][1]-e[n].mesh[159][1])/Math.abs(e[n].mesh[223][1]-e[n].mesh[230][1])<.2&&t.push({face:n,gesture:"blink right eye"});let i=Math.min(100,500*Math.abs(e[n].mesh[13][1]-e[n].mesh[14][1])/Math.abs(e[n].mesh[10][1]-e[n].mesh[152][1]));i>10&&t.push({face:n,gesture:`mouth ${Math.trunc(i)}% open`});let o=e[n].mesh[152][2];Math.abs(o)>10&&t.push({face:n,gesture:`head ${o<0?"up":"down"}`})}return t},QM=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++){if(!e[n].annotations||!e[n].annotations.leftEyeIris||!e[n].annotations.rightEyeIris)continue;let a=e[n].annotations.leftEyeIris[3][0]-e[n].annotations.leftEyeIris[1][0],r=e[n].annotations.leftEyeIris[4][1]-e[n].annotations.leftEyeIris[2][1],s=Math.abs(a*r),i=e[n].annotations.rightEyeIris[3][0]-e[n].annotations.rightEyeIris[1][0],o=e[n].annotations.rightEyeIris[4][1]-e[n].annotations.rightEyeIris[2][1],l=Math.abs(i*o),u=!1;Math.abs(s-l)/Math.max(s,l)<.25&&(u=!0,t.push({iris:n,gesture:"facing center"}));let h=Math.abs(e[n].mesh[33][0]-e[n].annotations.rightEyeIris[0][0])/e[n].box[2],p=Math.abs(e[n].mesh[263][0]-e[n].annotations.leftEyeIris[0][0])/e[n].box[2];(p>.06||h>.06)&&(u=!1),p>.06&&t.push({iris:n,gesture:"looking right"}),h>.06&&t.push({iris:n,gesture:"looking left"});let c=Math.abs(e[n].mesh[145][1]-e[n].annotations.rightEyeIris[0][1])/e[n].box[3],m=Math.abs(e[n].mesh[374][1]-e[n].annotations.leftEyeIris[0][1])/e[n].box[3];(m<.01||c<.01||m>.022||c>.022)&&(u=!1),(m<.01||c<.01)&&t.push({iris:n,gesture:"looking down"}),(m>.022||c>.022)&&t.push({iris:n,gesture:"looking up"}),u&&t.push({iris:n,gesture:"looking center"})}return t},e$=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++){let a=[];for(let[r,s]of Object.entries(e[n].annotations))r!=="palmBase"&&Array.isArray(s)&&a.push({name:r.toLowerCase(),position:s[0]});if(a&&a.length>0){let r=a.reduce((i,o)=>i.position[2]<o.position[2]?i:o),s=a.reduce((i,o)=>i.position[1]<o.position[1]?i:o);t.push({hand:n,gesture:`${r.name} forward ${s.name} up`})}}return t};function swe(e,t,n){let a=function(o,l,u){let d=new RegExp("\\b"+l+" \\w+ (\\w+)","ig");o.replace(d,(h,p)=>(u[p]=0,h))},r=function(o,l){let u=e.createShader(l);if(e.shaderSource(u,o),e.compileShader(u),!e.getShaderParameter(u,e.COMPILE_STATUS))throw new Error("Filter: GL compile failed",e.getShaderInfoLog(u));return u};this.uniform={},this.attribute={};let s=r(t,e.VERTEX_SHADER),i=r(n,e.FRAGMENT_SHADER);if(this.id=e.createProgram(),e.attachShader(this.id,s),e.attachShader(this.id,i),e.linkProgram(this.id),!e.getProgramParameter(this.id,e.LINK_STATUS))throw new Error("Filter: GL link failed",e.getProgramInfoLog(this.id));e.useProgram(this.id),a(t,"attribute",this.attribute);for(let o in this.attribute)this.attribute[o]=e.getAttribLocation(this.id,o);a(t,"uniform",this.uniform),a(n,"uniform",this.uniform);for(let o in this.uniform)this.uniform[o]=e.getUniformLocation(this.id,o)}function t$(e){e||(e={});let t=0,n=null,a=!1,r=-1,s=[null,null],i=[],o=-1,l=-1,u=null,d=null,h={},p=e.canvas||document.createElement("canvas"),c={},m={INTERMEDIATE:1},f=p.getContext("webgl");if(!f)throw new Error("Filter: getContext() failed");this.addFilter=function(b){let w=Array.prototype.slice.call(arguments,1),I=h[b];i.push({func:I,args:w})},this.reset=function(){i=[]};let g=function(b,w){if(!(b===o&&w===l)){if(p.width=b,o=b,p.height=w,l=w,!u){let I=new Float32Array([-1,-1,0,1,1,-1,1,1,-1,1,0,0,-1,1,0,0,1,-1,1,1,1,1,1,0]);u=f.createBuffer(),f.bindBuffer(f.ARRAY_BUFFER,u),f.bufferData(f.ARRAY_BUFFER,I,f.STATIC_DRAW),f.pixelStorei(f.UNPACK_PREMULTIPLY_ALPHA_WEBGL,!0)}f.viewport(0,0,o,l),s=[null,null]}},y=function(b,w){let I=f.createFramebuffer();f.bindFramebuffer(f.FRAMEBUFFER,I);let T=f.createRenderbuffer();f.bindRenderbuffer(f.RENDERBUFFER,T);let C=f.createTexture();return f.bindTexture(f.TEXTURE_2D,C),f.texImage2D(f.TEXTURE_2D,0,f.RGBA,b,w,0,f.RGBA,f.UNSIGNED_BYTE,null),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_MAG_FILTER,f.LINEAR),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_MIN_FILTER,f.LINEAR),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_WRAP_S,f.CLAMP_TO_EDGE),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_WRAP_T,f.CLAMP_TO_EDGE),f.framebufferTexture2D(f.FRAMEBUFFER,f.COLOR_ATTACHMENT0,f.TEXTURE_2D,C,0),f.bindTexture(f.TEXTURE_2D,null),f.bindFramebuffer(f.FRAMEBUFFER,null),{fbo:I,texture:C}},A=function(b){return s[b]=s[b]||y(o,l),s[b]},x=function(b=null){var C,z;let w=null,I=null,T=!1;t===0?w=n:w=(C=A(r))==null?void 0:C.texture,t++,a&&!(b&m.INTERMEDIATE)?(I=null,T=t%2==0):(r=(r+1)%2,I=(z=A(r))==null?void 0:z.fbo),f.bindTexture(f.TEXTURE_2D,w),f.bindFramebuffer(f.FRAMEBUFFER,I),f.uniform1f(d.uniform.flipY,T?-1:1),f.drawArrays(f.TRIANGLES,0,6)};this.apply=function(b){if(g(b.width,b.height),t=0,n||(n=f.createTexture()),f.bindTexture(f.TEXTURE_2D,n),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_WRAP_S,f.CLAMP_TO_EDGE),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_WRAP_T,f.CLAMP_TO_EDGE),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_MIN_FILTER,f.NEAREST),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_MAG_FILTER,f.NEAREST),f.texImage2D(f.TEXTURE_2D,0,f.RGBA,f.RGBA,f.UNSIGNED_BYTE,b),i.length===0)return x(),p;for(let w=0;w<i.length;w++){a=w===i.length-1;let I=i[w];I.func.apply(this,I.args||[])}return p};let v=function(b){if(c[b])return d=c[b],f.useProgram(d.id),d;let w={};w.VERTEX_IDENTITY=["precision highp float;","attribute vec2 pos;","attribute vec2 uv;","varying vec2 vUv;","uniform float flipY;","void main(void) {","vUv = uv;","gl_Position = vec4(pos.x, pos.y*flipY, 0.0, 1.);","}"].join(`
|
|
`),w.FRAGMENT_IDENTITY=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","void main(void) {","gl_FragColor = texture2D(texture, vUv);","}"].join(`
|
|
`),d=new swe(f,w.VERTEX_IDENTITY,b);let I=Float32Array.BYTES_PER_ELEMENT,T=4*I;return f.enableVertexAttribArray(d.attribute.pos),f.vertexAttribPointer(d.attribute.pos,2,f.FLOAT,!1,T,0*I),f.enableVertexAttribArray(d.attribute.uv),f.vertexAttribPointer(d.attribute.uv,2,f.FLOAT,!1,T,2*I),c[b]=d,d};h.colorMatrix=function(b){let w=new Float32Array(b);w[4]/=255,w[9]/=255,w[14]/=255,w[19]/=255;let I=w[18]===1&&w[3]===0&&w[8]===0&&w[13]===0&&w[15]===0&&w[16]===0&&w[17]===0&&w[19]===0?h.colorMatrix.SHADER.WITHOUT_ALPHA:h.colorMatrix.SHADER.WITH_ALPHA,T=v(I);f.uniform1fv(T.uniform.m,w),x()},h.colorMatrix.SHADER={},h.colorMatrix.SHADER.WITH_ALPHA=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","uniform float m[20];","void main(void) {","vec4 c = texture2D(texture, vUv);","gl_FragColor.r = m[0] * c.r + m[1] * c.g + m[2] * c.b + m[3] * c.a + m[4];","gl_FragColor.g = m[5] * c.r + m[6] * c.g + m[7] * c.b + m[8] * c.a + m[9];","gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[13] * c.a + m[14];","gl_FragColor.a = m[15] * c.r + m[16] * c.g + m[17] * c.b + m[18] * c.a + m[19];","}"].join(`
|
|
`),h.colorMatrix.SHADER.WITHOUT_ALPHA=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","uniform float m[20];","void main(void) {","vec4 c = texture2D(texture, vUv);","gl_FragColor.r = m[0] * c.r + m[1] * c.g + m[2] * c.b + m[4];","gl_FragColor.g = m[5] * c.r + m[6] * c.g + m[7] * c.b + m[9];","gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[14];","gl_FragColor.a = c.a;","}"].join(`
|
|
`),h.brightness=function(b){let w=(b||0)+1;h.colorMatrix([w,0,0,0,0,0,w,0,0,0,0,0,w,0,0,0,0,0,1,0])},h.saturation=function(b){let w=(b||0)*2/3+1,I=(w-1)*-.5;h.colorMatrix([w,I,I,0,0,I,w,I,0,0,I,I,w,0,0,0,0,0,1,0])},h.desaturate=function(){h.saturation(-1)},h.contrast=function(b){let w=(b||0)+1,I=-128*(w-1);h.colorMatrix([w,0,0,0,I,0,w,0,0,I,0,0,w,0,I,0,0,0,1,0])},h.negative=function(){h.contrast(-2)},h.hue=function(b){b=(b||0)/180*Math.PI;let w=Math.cos(b),I=Math.sin(b),T=.213,C=.715,z=.072;h.colorMatrix([T+w*(1-T)+I*-T,C+w*-C+I*-C,z+w*-z+I*(1-z),0,0,T+w*-T+I*.143,C+w*(1-C)+I*.14,z+w*-z+I*-.283,0,0,T+w*-T+I*-(1-T),C+w*-C+I*C,z+w*(1-z)+I*z,0,0,0,0,0,1,0])},h.desaturateLuminance=function(){h.colorMatrix([.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,0,0,0,1,0])},h.sepia=function(){h.colorMatrix([.393,.7689999,.18899999,0,0,.349,.6859999,.16799999,0,0,.272,.5339999,.13099999,0,0,0,0,0,1,0])},h.brownie=function(){h.colorMatrix([.5997023498159715,.34553243048391263,-.2708298674538042,0,47.43192855600873,-.037703249837783157,.8609577587992641,.15059552388459913,0,-36.96841498319127,.24113635128153335,-.07441037908422492,.44972182064877153,0,-7.562075277591283,0,0,0,1,0])},h.vintagePinhole=function(){h.colorMatrix([.6279345635605994,.3202183420819367,-.03965408211312453,0,9.651285835294123,.02578397704808868,.6441188644374771,.03259127616149294,0,7.462829176470591,.0466055556782719,-.0851232987247891,.5241648018700465,0,5.159190588235296,0,0,0,1,0])},h.kodachrome=function(){h.colorMatrix([1.1285582396593525,-.3967382283601348,-.03992559172921793,0,63.72958762196502,-.16404339962244616,1.0835251566291304,-.05498805115633132,0,24.732407896706203,-.16786010706155763,-.5603416277695248,1.6014850761964943,0,35.62982807460946,0,0,0,1,0])},h.technicolor=function(){h.colorMatrix([1.9125277891456083,-.8545344976951645,-.09155508482755585,0,11.793603434377337,-.3087833385928097,1.7658908555458428,-.10601743074722245,0,-70.35205161461398,-.231103377548616,-.7501899197440212,1.847597816108189,0,30.950940869491138,0,0,0,1,0])},h.polaroid=function(){h.colorMatrix([1.438,-.062,-.062,0,0,-.122,1.378,-.122,0,0,-.016,-.016,1.483,0,0,0,0,0,1,0])},h.shiftToBGR=function(){h.colorMatrix([0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,1,0])},h.convolution=function(b){let w=new Float32Array(b),I=1/o,T=1/l,C=v(h.convolution.SHADER);f.uniform1fv(C.uniform.m,w),f.uniform2f(C.uniform.px,I,T),x()},h.convolution.SHADER=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","uniform vec2 px;","uniform float m[9];","void main(void) {","vec4 c11 = texture2D(texture, vUv - px);","vec4 c12 = texture2D(texture, vec2(vUv.x, vUv.y - px.y));","vec4 c13 = texture2D(texture, vec2(vUv.x + px.x, vUv.y - px.y));","vec4 c21 = texture2D(texture, vec2(vUv.x - px.x, vUv.y) );","vec4 c22 = texture2D(texture, vUv);","vec4 c23 = texture2D(texture, vec2(vUv.x + px.x, vUv.y) );","vec4 c31 = texture2D(texture, vec2(vUv.x - px.x, vUv.y + px.y) );","vec4 c32 = texture2D(texture, vec2(vUv.x, vUv.y + px.y) );","vec4 c33 = texture2D(texture, vUv + px );","gl_FragColor = ","c11 * m[0] + c12 * m[1] + c22 * m[2] +","c21 * m[3] + c22 * m[4] + c23 * m[5] +","c31 * m[6] + c32 * m[7] + c33 * m[8];","gl_FragColor.a = c22.a;","}"].join(`
|
|
`),h.detectEdges=function(){h.convolution.call(this,[0,1,0,1,-4,1,0,1,0])},h.sobelX=function(){h.convolution.call(this,[-1,0,1,-2,0,2,-1,0,1])},h.sobelY=function(){h.convolution.call(this,[-1,-2,-1,0,0,0,1,2,1])},h.sharpen=function(b){let w=b||1;h.convolution.call(this,[0,-1*w,0,-1*w,1+4*w,-1*w,0,-1*w,0])},h.emboss=function(b){let w=b||1;h.convolution.call(this,[-2*w,-1*w,0,-1*w,1,1*w,0,1*w,2*w])},h.blur=function(b){let w=b/7/o,I=b/7/l,T=v(h.blur.SHADER);f.uniform2f(T.uniform.px,0,I),x(m.INTERMEDIATE),f.uniform2f(T.uniform.px,w,0),x()},h.blur.SHADER=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","uniform vec2 px;","void main(void) {","gl_FragColor = vec4(0.0);","gl_FragColor += texture2D(texture, vUv + vec2(-7.0*px.x, -7.0*px.y))*0.0044299121055113265;","gl_FragColor += texture2D(texture, vUv + vec2(-6.0*px.x, -6.0*px.y))*0.00895781211794;","gl_FragColor += texture2D(texture, vUv + vec2(-5.0*px.x, -5.0*px.y))*0.0215963866053;","gl_FragColor += texture2D(texture, vUv + vec2(-4.0*px.x, -4.0*px.y))*0.0443683338718;","gl_FragColor += texture2D(texture, vUv + vec2(-3.0*px.x, -3.0*px.y))*0.0776744219933;","gl_FragColor += texture2D(texture, vUv + vec2(-2.0*px.x, -2.0*px.y))*0.115876621105;","gl_FragColor += texture2D(texture, vUv + vec2(-1.0*px.x, -1.0*px.y))*0.147308056121;","gl_FragColor += texture2D(texture, vUv )*0.159576912161;","gl_FragColor += texture2D(texture, vUv + vec2( 1.0*px.x, 1.0*px.y))*0.147308056121;","gl_FragColor += texture2D(texture, vUv + vec2( 2.0*px.x, 2.0*px.y))*0.115876621105;","gl_FragColor += texture2D(texture, vUv + vec2( 3.0*px.x, 3.0*px.y))*0.0776744219933;","gl_FragColor += texture2D(texture, vUv + vec2( 4.0*px.x, 4.0*px.y))*0.0443683338718;","gl_FragColor += texture2D(texture, vUv + vec2( 5.0*px.x, 5.0*px.y))*0.0215963866053;","gl_FragColor += texture2D(texture, vUv + vec2( 6.0*px.x, 6.0*px.y))*0.00895781211794;","gl_FragColor += texture2D(texture, vUv + vec2( 7.0*px.x, 7.0*px.y))*0.0044299121055113265;","}"].join(`
|
|
`),h.pixelate=function(b){let w=b/o,I=b/l,T=v(h.pixelate.SHADER);f.uniform2f(T.uniform.size,w,I),x()},h.pixelate.SHADER=["precision highp float;","varying vec2 vUv;","uniform vec2 size;","uniform sampler2D texture;","vec2 pixelate(vec2 coord, vec2 size) {","return floor( coord / size ) * size;","}","void main(void) {","gl_FragColor = vec4(0.0);","vec2 coord = pixelate(vUv, size);","gl_FragColor += texture2D(texture, coord);","}"].join(`
|
|
`)}var Am=2048,_e,Wt,an;function wo(e,t){let n;if(!e)throw new Error("Human: Input is missing");if(!(e instanceof St)&&!(typeof Image!="undefined"&&e instanceof Image)&&!(typeof ImageData!="undefined"&&e instanceof ImageData)&&!(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)&&!(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)&&!(typeof HTMLMediaElement!="undefined"&&e instanceof HTMLMediaElement)&&!(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)&&!(typeof HTMLCanvasElement!="undefined"&&e instanceof HTMLCanvasElement)&&!(typeof OffscreenCanvas!="undefined"&&e instanceof OffscreenCanvas))throw new Error("Human: Input type is not recognized");if(e instanceof St)if(e.shape&&e.shape.length===4&&e.shape[0]===1&&e.shape[3]===3)n=Yr(e);else throw new Error(`Human: Input tensor shape must be [1, height, width, 3] and instead was ${e.shape}`);else{let r=e.naturalWidth||e.videoWidth||e.width||e.shape&&e.shape[1]>0,s=e.naturalHeight||e.videoHeight||e.height||e.shape&&e.shape[2]>0;if(!r||!s)return{tensor:null,canvas:_e};let i=r,o=s;if(i>Am&&(i=Am,o=i*s/r),o>Am&&(o=Am,i=o*r/s),t.filter.width>0?i=t.filter.width:t.filter.height>0&&(i=r*(t.filter.height/s)),t.filter.height>0?o=t.filter.height:t.filter.width>0&&(o=s*(t.filter.width/r)),!i||!o)throw new Error("Human: Input cannot determine dimension");(!_e||(_e==null?void 0:_e.width)!==i||(_e==null?void 0:_e.height)!==o)&&(_e=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(i,o):document.createElement("canvas"),(_e==null?void 0:_e.width)!==i&&(_e.width=i),(_e==null?void 0:_e.height)!==o&&(_e.height=o));let l=_e.getContext("2d");if(e instanceof ImageData?l.putImageData(e,0,0):t.filter.flip&&typeof l.translate!="undefined"?(l.translate(r,0),l.scale(-1,1),l.drawImage(e,0,0,r,s,0,0,_e==null?void 0:_e.width,_e==null?void 0:_e.height),l.setTransform(1,0,0,1,0,0)):l.drawImage(e,0,0,r,s,0,0,_e==null?void 0:_e.width,_e==null?void 0:_e.height),t.filter.enabled){if((!an||!Wt||_e.width!==Wt.width||(_e==null?void 0:_e.height)!==(Wt==null?void 0:Wt.height))&&(Wt=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(_e==null?void 0:_e.width,_e==null?void 0:_e.height):document.createElement("canvas"),(Wt==null?void 0:Wt.width)!==(_e==null?void 0:_e.width)&&(Wt.width=_e==null?void 0:_e.width),(Wt==null?void 0:Wt.height)!==(_e==null?void 0:_e.height)&&(Wt.height=_e==null?void 0:_e.height),an=ka.flags.IS_BROWSER?new t$({canvas:Wt}):null),!an)return{tensor:null,canvas:_e};an.reset(),an.addFilter("brightness",t.filter.brightness),t.filter.contrast!==0&&an.addFilter("contrast",t.filter.contrast),t.filter.sharpness!==0&&an.addFilter("sharpen",t.filter.sharpness),t.filter.blur!==0&&an.addFilter("blur",t.filter.blur),t.filter.saturation!==0&&an.addFilter("saturation",t.filter.saturation),t.filter.hue!==0&&an.addFilter("hue",t.filter.hue),t.filter.negative&&an.addFilter("negative"),t.filter.sepia&&an.addFilter("sepia"),t.filter.vintage&&an.addFilter("brownie"),t.filter.sepia&&an.addFilter("sepia"),t.filter.kodachrome&&an.addFilter("kodachrome"),t.filter.technicolor&&an.addFilter("technicolor"),t.filter.polaroid&&an.addFilter("polaroid"),t.filter.pixelate!==0&&an.addFilter("pixelate",t.filter.pixelate),an.apply(_e)}else Wt=_e,an&&(an=null);let u;if(Wt.data){let d=[Wt.height,Wt.width,3];u=mc(Wt.data,d,"int32")}else if(Wt instanceof ImageData)u=Ua?Ua.fromPixels(Wt):null;else if(t.backend==="webgl"||t.backend==="humangl"){let d=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(i,o):document.createElement("canvas");d.width=i,d.height=o;let h=d.getContext("2d");h==null||h.drawImage(Wt,0,0),u=Ua?Ua.fromPixels(d):null}else{let d=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(i,o):document.createElement("canvas");d.width=i,d.height=o;let h=d.getContext("2d");h==null||h.drawImage(Wt,0,0);let p=h==null?void 0:h.getImageData(0,0,i,o);u=Ua?Ua.fromPixels(p):null}if(u){let d=u.toFloat();n=d.expandDims(0),u.dispose(),d.dispose()}}let a=t.filter.return?Wt:null;return{tensor:n,canvas:a}}var g3={};$3(g3,{all:()=>lwe,body:()=>r$,canvas:()=>owe,face:()=>a$,gesture:()=>n$,hand:()=>s$,object:()=>i$,options:()=>ii,person:()=>iwe});var ii={color:"rgba(173, 216, 230, 0.6)",labelColor:"rgba(173, 216, 230, 1)",shadowColor:"black",font:'small-caps 14px "Segoe UI"',lineHeight:24,lineWidth:6,pointSize:2,roundRect:28,drawPoints:!1,drawLabels:!0,drawBoxes:!0,drawPolygons:!0,drawGaze:!0,fillPolygons:!1,useDepth:!0,useCurves:!1,bufferedOutput:!0},xm=e=>Math.round(e*180/Math.PI);function f3(e,t,n,a=0,r){e.fillStyle=r.useDepth&&a?`rgba(${127.5+2*a}, ${127.5-2*a}, 255, 0.3)`:r.color,e.beginPath(),e.arc(t,n,r.pointSize,0,2*Math.PI),e.fill()}function Np(e,t,n,a,r,s){if(e.beginPath(),s.useCurves){let i=(t+t+a)/2,o=(n+n+r)/2;e.ellipse(i,o,a/2,r/2,0,0,2*Math.PI)}else e.lineWidth=s.lineWidth,e.moveTo(t+s.roundRect,n),e.lineTo(t+a-s.roundRect,n),e.quadraticCurveTo(t+a,n,t+a,n+s.roundRect),e.lineTo(t+a,n+r-s.roundRect),e.quadraticCurveTo(t+a,n+r,t+a-s.roundRect,n+r),e.lineTo(t+s.roundRect,n+r),e.quadraticCurveTo(t,n+r,t,n+r-s.roundRect),e.lineTo(t,n+s.roundRect),e.quadraticCurveTo(t,n,t+s.roundRect,n),e.closePath();e.stroke()}function m3(e,t=[],n){if(!(t===void 0||t.length===0)){e.beginPath(),e.moveTo(t[0][0],t[0][1]);for(let a of t){let r=a[2]||0;e.strokeStyle=n.useDepth&&r?`rgba(${127.5+2*r}, ${127.5-2*r}, 255, 0.3)`:n.color,e.fillStyle=n.useDepth&&r?`rgba(${127.5+2*r}, ${127.5-2*r}, 255, 0.3)`:n.color,e.lineTo(a[0],Math.round(a[1]))}e.stroke(),n.fillPolygons&&(e.closePath(),e.fill())}}function Tp(e,t=[],n){if(!(t===void 0||t.length===0)){if(!n.useCurves||t.length<=2){m3(e,t,n);return}e.moveTo(t[0][0],t[0][1]);for(let a=0;a<t.length-2;a++){let r=(t[a][0]+t[a+1][0])/2,s=(t[a][1]+t[a+1][1])/2;e.quadraticCurveTo(t[a][0],t[a][1],r,s)}e.quadraticCurveTo(t[t.length-2][0],t[t.length-2][1],t[t.length-1][0],t[t.length-1][1]),e.stroke(),n.fillPolygons&&(e.closePath(),e.fill())}}async function n$(e,t,n){let a=ia(ii,n);if(!t||!e||!(e instanceof HTMLCanvasElement))return;let r=e.getContext("2d");if(!r)return;r.font=a.font,r.fillStyle=a.color;let s=1;for(let i=0;i<t.length;i++){let o=[],l=[];if([o,l]=Object.entries(t[i]),l.length>1&&l[1].length>0){let u=o[1]>0?`#${o[1]}`:"",d=`${o[0]} ${u}: ${l[1]}`;a.shadowColor&&a.shadowColor!==""&&(r.fillStyle=a.shadowColor,r.fillText(d,8,2+s*a.lineHeight)),r.fillStyle=a.labelColor,r.fillText(d,6,0+s*a.lineHeight),s+=1}}}async function a$(e,t,n){var s,i,o,l;let a=ia(ii,n);if(!t||!e||!(e instanceof HTMLCanvasElement))return;let r=e.getContext("2d");if(!!r)for(let u of t){r.font=a.font,r.strokeStyle=a.color,r.fillStyle=a.color,a.drawBoxes&&Np(r,u.box[0],u.box[1],u.box[2],u.box[3],a);let d=[];if(d.push(`face: ${Math.trunc(100*u.score)}%`),u.genderScore&&d.push(`${u.gender||""} ${Math.trunc(100*u.genderScore)}%`),u.age&&d.push(`age: ${u.age||""}`),u.iris&&d.push(`distance: ${u.iris}`),u.emotion&&u.emotion.length>0){let h=u.emotion.map(p=>`${Math.trunc(100*p.score)}% ${p.emotion}`);h.length>3&&(h.length=3),d.push(h.join(" "))}u.rotation&&u.rotation.angle&&u.rotation.gaze&&(u.rotation.angle.roll&&d.push(`roll: ${xm(u.rotation.angle.roll)}\xB0 yaw:${xm(u.rotation.angle.yaw)}\xB0 pitch:${xm(u.rotation.angle.pitch)}\xB0`),u.rotation.gaze.bearing&&d.push(`gaze: ${xm(u.rotation.gaze.bearing)}\xB0`)),d.length===0&&d.push("face"),r.fillStyle=a.color;for(let h=d.length-1;h>=0;h--){let p=Math.max(u.box[0],0),c=h*a.lineHeight+u.box[1];a.shadowColor&&a.shadowColor!==""&&(r.fillStyle=a.shadowColor,r.fillText(d[h],p+5,c+16)),r.fillStyle=a.labelColor,r.fillText(d[h],p+4,c+15)}if(r.lineWidth=1,u.mesh&&u.mesh.length>0){if(a.drawPoints)for(let h of u.mesh)f3(r,h[0],h[1],h[2],a);if(a.drawPolygons){r.lineWidth=1;for(let h=0;h<vo.length/3;h++){let p=[vo[h*3+0],vo[h*3+1],vo[h*3+2]].map(c=>u.mesh[c]);m3(r,p,a)}if(u.annotations&&u.annotations.leftEyeIris){r.strokeStyle=a.useDepth?"rgba(255, 200, 255, 0.3)":a.color,r.beginPath();let h=Math.abs(u.annotations.leftEyeIris[3][0]-u.annotations.leftEyeIris[1][0])/2,p=Math.abs(u.annotations.leftEyeIris[4][1]-u.annotations.leftEyeIris[2][1])/2;r.ellipse(u.annotations.leftEyeIris[0][0],u.annotations.leftEyeIris[0][1],h,p,0,0,2*Math.PI),r.stroke(),a.fillPolygons&&(r.fillStyle=a.useDepth?"rgba(255, 255, 200, 0.3)":a.color,r.fill())}if(u.annotations&&u.annotations.rightEyeIris){r.strokeStyle=a.useDepth?"rgba(255, 200, 255, 0.3)":a.color,r.beginPath();let h=Math.abs(u.annotations.rightEyeIris[3][0]-u.annotations.rightEyeIris[1][0])/2,p=Math.abs(u.annotations.rightEyeIris[4][1]-u.annotations.rightEyeIris[2][1])/2;r.ellipse(u.annotations.rightEyeIris[0][0],u.annotations.rightEyeIris[0][1],h,p,0,0,2*Math.PI),r.stroke(),a.fillPolygons&&(r.fillStyle=a.useDepth?"rgba(255, 255, 200, 0.3)":a.color,r.fill())}if(a.drawGaze&&((i=(s=u.rotation)==null?void 0:s.gaze)==null?void 0:i.strength)&&((l=(o=u.rotation)==null?void 0:o.gaze)==null?void 0:l.bearing)&&u.annotations.leftEyeIris&&u.annotations.rightEyeIris&&u.annotations.leftEyeIris[0]&&u.annotations.rightEyeIris[0]){r.strokeStyle="pink",r.beginPath();let h=[u.annotations.leftEyeIris[0][0]+Math.sin(u.rotation.gaze.bearing)*u.rotation.gaze.strength*u.box[3],u.annotations.leftEyeIris[0][1]+Math.cos(u.rotation.gaze.bearing)*u.rotation.gaze.strength*u.box[2]];r.moveTo(u.annotations.leftEyeIris[0][0],u.annotations.leftEyeIris[0][1]),r.lineTo(h[0],h[1]);let p=[u.annotations.rightEyeIris[0][0]+Math.sin(u.rotation.gaze.bearing)*u.rotation.gaze.strength*u.box[3],u.annotations.rightEyeIris[0][1]+Math.cos(u.rotation.gaze.bearing)*u.rotation.gaze.strength*u.box[2]];r.moveTo(u.annotations.rightEyeIris[0][0],u.annotations.rightEyeIris[0][1]),r.lineTo(p[0],p[1]),r.stroke()}}}}}async function r$(e,t,n){var s;let a=ia(ii,n);if(!t||!e||!(e instanceof HTMLCanvasElement))return;let r=e.getContext("2d");if(!!r){r.lineJoin="round";for(let i=0;i<t.length;i++){if(r.strokeStyle=a.color,r.fillStyle=a.color,r.lineWidth=a.lineWidth,r.font=a.font,a.drawBoxes&&t[i].box&&((s=t[i].box)==null?void 0:s.length)===4&&(Np(r,t[i].box[0],t[i].box[1],t[i].box[2],t[i].box[3],a),a.drawLabels&&(a.shadowColor&&a.shadowColor!==""&&(r.fillStyle=a.shadowColor,r.fillText(`body ${100*t[i].score}%`,t[i].box[0]+3,1+t[i].box[1]+a.lineHeight,t[i].box[2])),r.fillStyle=a.labelColor,r.fillText(`body ${100*t[i].score}%`,t[i].box[0]+2,0+t[i].box[1]+a.lineHeight,t[i].box[2]))),a.drawPoints)for(let o=0;o<t[i].keypoints.length;o++)r.fillStyle=a.useDepth&&t[i].keypoints[o].position[2]?`rgba(${127.5+2*(t[i].keypoints[o].position[2]||0)}, ${127.5-2*(t[i].keypoints[o].position[2]||0)}, 255, 0.5)`:a.color,f3(r,t[i].keypoints[o].position[0],t[i].keypoints[o].position[1],0,a);if(a.drawLabels&&(r.font=a.font,t[i].keypoints))for(let o of t[i].keypoints)r.fillStyle=a.useDepth&&o.position[2]?`rgba(${127.5+2*o.position[2]}, ${127.5-2*o.position[2]}, 255, 0.5)`:a.color,r.fillText(`${o.part} ${Math.trunc(100*o.score)}%`,o.position[0]+4,o.position[1]+4);if(a.drawPolygons&&t[i].keypoints){let o,l=[];l.length=0,o=t[i].keypoints.find(u=>u.part==="leftShoulder"),o&&l.push([o.position[0],o.position[1]]),o=t[i].keypoints.find(u=>u.part==="rightShoulder"),o&&l.push([o.position[0],o.position[1]]),Tp(r,l,a),l.length=0,o=t[i].keypoints.find(u=>u.part==="rightShoulder"),o&&l.push([o.position[0],o.position[1]]),o=t[i].keypoints.find(u=>u.part==="rightHip"),o&&l.push([o.position[0],o.position[1]]),o=t[i].keypoints.find(u=>u.part==="leftHip"),o&&l.push([o.position[0],o.position[1]]),o=t[i].keypoints.find(u=>u.part==="leftShoulder"),o&&l.push([o.position[0],o.position[1]]),l.length===4&&m3(r,l,a),l.length=0,o=t[i].keypoints.find(u=>u.part==="leftHip"),o&&l.push([o.position[0],o.position[1]]),o=t[i].keypoints.find(u=>u.part==="leftKnee"),o&&l.push([o.position[0],o.position[1]]),o=t[i].keypoints.find(u=>u.part==="leftAnkle"),o&&l.push([o.position[0],o.position[1]]),o=t[i].keypoints.find(u=>u.part==="leftHeel"),o&&l.push([o.position[0],o.position[1]]),o=t[i].keypoints.find(u=>u.part==="leftFoot"),o&&l.push([o.position[0],o.position[1]]),Tp(r,l,a),l.length=0,o=t[i].keypoints.find(u=>u.part==="rightHip"),o&&l.push([o.position[0],o.position[1]]),o=t[i].keypoints.find(u=>u.part==="rightKnee"),o&&l.push([o.position[0],o.position[1]]),o=t[i].keypoints.find(u=>u.part==="rightAnkle"),o&&l.push([o.position[0],o.position[1]]),o=t[i].keypoints.find(u=>u.part==="rightHeel"),o&&l.push([o.position[0],o.position[1]]),o=t[i].keypoints.find(u=>u.part==="rightFoot"),o&&l.push([o.position[0],o.position[1]]),Tp(r,l,a),l.length=0,o=t[i].keypoints.find(u=>u.part==="leftShoulder"),o&&l.push([o.position[0],o.position[1]]),o=t[i].keypoints.find(u=>u.part==="leftElbow"),o&&l.push([o.position[0],o.position[1]]),o=t[i].keypoints.find(u=>u.part==="leftWrist"),o&&l.push([o.position[0],o.position[1]]),o=t[i].keypoints.find(u=>u.part==="leftPalm"),o&&l.push([o.position[0],o.position[1]]),Tp(r,l,a),l.length=0,o=t[i].keypoints.find(u=>u.part==="rightShoulder"),o&&l.push([o.position[0],o.position[1]]),o=t[i].keypoints.find(u=>u.part==="rightElbow"),o&&l.push([o.position[0],o.position[1]]),o=t[i].keypoints.find(u=>u.part==="rightWrist"),o&&l.push([o.position[0],o.position[1]]),o=t[i].keypoints.find(u=>u.part==="rightPalm"),o&&l.push([o.position[0],o.position[1]]),Tp(r,l,a)}}}}async function s$(e,t,n){let a=ia(ii,n);if(!t||!e||!(e instanceof HTMLCanvasElement))return;let r=e.getContext("2d");if(!!r){r.lineJoin="round",r.font=a.font;for(let s of t){if(a.drawBoxes&&(r.strokeStyle=a.color,r.fillStyle=a.color,Np(r,s.box[0],s.box[1],s.box[2],s.box[3],a),a.drawLabels&&(a.shadowColor&&a.shadowColor!==""&&(r.fillStyle=a.shadowColor,r.fillText("hand",s.box[0]+3,1+s.box[1]+a.lineHeight,s.box[2])),r.fillStyle=a.labelColor,r.fillText("hand",s.box[0]+2,0+s.box[1]+a.lineHeight,s.box[2])),r.stroke()),a.drawPoints&&s.keypoints&&s.keypoints.length>0)for(let i of s.keypoints)r.fillStyle=a.useDepth?`rgba(${127.5+2*i[2]}, ${127.5-2*i[2]}, 255, 0.5)`:a.color,f3(r,i[0],i[1],0,a);if(a.drawLabels){let i=(o,l)=>{r.fillStyle=a.useDepth?`rgba(${127.5+2*o[o.length-1][2]}, ${127.5-2*o[o.length-1][2]}, 255, 0.5)`:a.color,r.fillText(l,o[o.length-1][0]+4,o[o.length-1][1]+4)};r.font=a.font,i(s.annotations.indexFinger,"index"),i(s.annotations.middleFinger,"middle"),i(s.annotations.ringFinger,"ring"),i(s.annotations.pinky,"pinky"),i(s.annotations.thumb,"thumb"),i(s.annotations.palmBase,"palm")}if(a.drawPolygons){let i=o=>{if(!!o)for(let l=0;l<o.length;l++)r.beginPath(),r.strokeStyle=a.useDepth?`rgba(${127.5+2*o[l][2]}, ${127.5-2*o[l][2]}, 255, 0.5)`:a.color,r.moveTo(o[l>0?l-1:0][0],o[l>0?l-1:0][1]),r.lineTo(o[l][0],o[l][1]),r.stroke()};r.lineWidth=a.lineWidth,i(s.annotations.indexFinger),i(s.annotations.middleFinger),i(s.annotations.ringFinger),i(s.annotations.pinky),i(s.annotations.thumb)}}}}async function i$(e,t,n){let a=ia(ii,n);if(!t||!e||!(e instanceof HTMLCanvasElement))return;let r=e.getContext("2d");if(!!r){r.lineJoin="round",r.font=a.font;for(let s of t)if(a.drawBoxes){if(r.strokeStyle=a.color,r.fillStyle=a.color,Np(r,s.box[0],s.box[1],s.box[2],s.box[3],a),a.drawLabels){let i=`${Math.round(100*s.score)}% ${s.label}`;a.shadowColor&&a.shadowColor!==""&&(r.fillStyle=a.shadowColor,r.fillText(i,s.box[0]+3,1+s.box[1]+a.lineHeight,s.box[2])),r.fillStyle=a.labelColor,r.fillText(i,s.box[0]+2,0+s.box[1]+a.lineHeight,s.box[2])}r.stroke()}}}async function iwe(e,t,n){let a=ia(ii,n);if(!t||!e||!(e instanceof HTMLCanvasElement))return;let r=e.getContext("2d");if(!!r){r.lineJoin="round",r.font=a.font;for(let s=0;s<t.length;s++)if(a.drawBoxes){if(r.strokeStyle=a.color,r.fillStyle=a.color,Np(r,t[s].box[0],t[s].box[1],t[s].box[2],t[s].box[3],a),a.drawLabels){let i=`person #${s}`;a.shadowColor&&a.shadowColor!==""&&(r.fillStyle=a.shadowColor,r.fillText(i,t[s].box[0]+3,1+t[s].box[1]+a.lineHeight,t[s].box[2])),r.fillStyle=a.labelColor,r.fillText(i,t[s].box[0]+2,0+t[s].box[1]+a.lineHeight,t[s].box[2])}r.stroke()}}}async function owe(e,t){if(!e||!t||!(e instanceof HTMLCanvasElement)||!(t instanceof HTMLCanvasElement))return;let n=e.getContext("2d");n==null||n.drawImage(e,0,0)}async function lwe(e,t,n){let a=st(),r=ia(ii,n);!t||!e||e instanceof HTMLCanvasElement&&(a$(e,t.face,r),r$(e,t.body,r),s$(e,t.hand,r),i$(e,t.object,r),n$(e,t.gesture,r),t.performance.draw=Math.trunc(st()-a))}function o$(e,t,n,a,r){var o,l,u,d,h,p,c,m,f,g,y,A,x,v,b,w;let s=0,i=[];for(let I of e){let T={id:s++,face:I,body:null,hands:{left:null,right:null},gestures:[],box:[0,0,0,0]};for(let _ of t)I.box[0]>_.box[0]&&I.box[0]<_.box[0]+_.box[2]&&I.box[1]+I.box[3]>_.box[1]&&I.box[1]+I.box[3]<_.box[1]+_.box[3]&&(T.body=_);if(T.body)for(let _ of n)_.box[0]+_.box[2]>T.body.box[0]&&_.box[0]+_.box[2]<T.body.box[0]+T.body.box[2]&&_.box[1]+_.box[3]>T.body.box[1]&&_.box[1]+_.box[3]<T.body.box[1]+T.body.box[3]&&T.hands&&(T.hands.left=_),_.box[0]<T.body.box[0]+T.body.box[2]&&_.box[0]>T.body.box[0]&&_.box[1]+_.box[3]>T.body.box[1]&&_.box[1]+_.box[3]<T.body.box[1]+T.body.box[3]&&T.hands&&(T.hands.right=_);for(let _ of a)_.face!==void 0&&_.face===I.id?(o=T.gestures)==null||o.push(_):_.iris!==void 0&&_.iris===I.id?(l=T.gestures)==null||l.push(_):_.body!==void 0&&_.body===((u=T.body)==null?void 0:u.id)?(d=T.gestures)==null||d.push(_):_.hand!==void 0&&_.hand===((p=(h=T.hands)==null?void 0:h.left)==null?void 0:p.id)?(c=T.gestures)==null||c.push(_):_.hand!==void 0&&_.hand===((f=(m=T.hands)==null?void 0:m.right)==null?void 0:f.id)&&((g=T.gestures)==null||g.push(_));let C=[],z=[],$=_=>{_&&_.length===4&&(C.push(_[0],_[0]+_[2]),z.push(_[1],_[1]+_[3]))};$((y=T.face)==null?void 0:y.box),$((A=T.body)==null?void 0:A.box),$((v=(x=T.hands)==null?void 0:x.left)==null?void 0:v.box),$((w=(b=T.hands)==null?void 0:b.right)==null?void 0:w.box);let S=Math.min(...C),D=Math.min(...z);T.box=[S,D,Math.max(...C)-S,Math.max(...z)-D],r&&r.length===4&&(T.boxRaw=[T.box[0]/r[2],T.box[1]/r[1],T.box[2]/r[2],T.box[3]/r[1]]),i.push(T)}return i}var Le={face:[],body:[],hand:[],gesture:[],object:[],persons:[],performance:{},timestamp:0};function l$(e){var r,s,i,o,l,u,d,h,p,c,m,f,g,y,A,x,v,b,w,I,T;let t=Date.now()-e.timestamp,n=t<1e3?8-Math.log(t):1;if(Le.canvas=e.canvas,!Le.body||e.body.length!==Le.body.length)Le.body=JSON.parse(JSON.stringify(e.body));else for(let C=0;C<e.body.length;C++){let z=e.body[C].box.map((D,_)=>((n-1)*Le.body[C].box[_]+D)/n),$=e.body[C].boxRaw.map((D,_)=>((n-1)*Le.body[C].boxRaw[_]+D)/n),S=e.body[C].keypoints.map((D,_)=>({score:D.score,part:D.part,position:[Le.body[C].keypoints[_]?((n-1)*Le.body[C].keypoints[_].position[0]+D.position[0])/n:D.position[0],Le.body[C].keypoints[_]?((n-1)*Le.body[C].keypoints[_].position[1]+D.position[1])/n:D.position[1]],positionRaw:[Le.body[C].keypoints[_]?((n-1)*Le.body[C].keypoints[_].positionRaw[0]+D.positionRaw[0])/n:D.position[0],Le.body[C].keypoints[_]?((n-1)*Le.body[C].keypoints[_].positionRaw[1]+D.positionRaw[1])/n:D.position[1]]}));Le.body[C]={...e.body[C],box:z,boxRaw:$,keypoints:S}}if(!Le.hand||e.hand.length!==Le.hand.length)Le.hand=JSON.parse(JSON.stringify(e.hand));else for(let C=0;C<e.hand.length;C++){let z=e.hand[C].box.map((W,X)=>((n-1)*Le.hand[C].box[X]+W)/n),$=e.hand[C].boxRaw.map((W,X)=>((n-1)*Le.hand[C].boxRaw[X]+W)/n),S=e.hand[C].keypoints.map((W,X)=>W.map((q,Q)=>((n-1)*Le.hand[C].keypoints[X][Q]+q)/n)),D=Object.keys(e.hand[C].annotations),_={};for(let W of D)_[W]=e.hand[C].annotations[W].map((X,q)=>X.map((Q,ee)=>((n-1)*Le.hand[C].annotations[W][q][ee]+Q)/n));Le.hand[C]={...e.hand[C],box:z,boxRaw:$,keypoints:S,annotations:_}}if(!Le.face||e.face.length!==Le.face.length)Le.face=JSON.parse(JSON.stringify(e.face));else for(let C=0;C<e.face.length;C++){let z=e.face[C].box.map((D,_)=>((n-1)*Le.face[C].box[_]+D)/n),$=e.face[C].boxRaw.map((D,_)=>((n-1)*Le.face[C].boxRaw[_]+D)/n),S={matrix:[0,0,0,0,0,0,0,0,0],angle:{roll:0,yaw:0,pitch:0},gaze:{bearing:0,strength:0}};S.matrix=(r=e.face[C].rotation)==null?void 0:r.matrix,S.angle={roll:((n-1)*(((i=(s=Le.face[C].rotation)==null?void 0:s.angle)==null?void 0:i.roll)||0)+(((l=(o=e.face[C].rotation)==null?void 0:o.angle)==null?void 0:l.roll)||0))/n,yaw:((n-1)*(((d=(u=Le.face[C].rotation)==null?void 0:u.angle)==null?void 0:d.yaw)||0)+(((p=(h=e.face[C].rotation)==null?void 0:h.angle)==null?void 0:p.yaw)||0))/n,pitch:((n-1)*(((m=(c=Le.face[C].rotation)==null?void 0:c.angle)==null?void 0:m.pitch)||0)+(((g=(f=e.face[C].rotation)==null?void 0:f.angle)==null?void 0:g.pitch)||0))/n},S.gaze={bearing:((n-1)*(((A=(y=Le.face[C].rotation)==null?void 0:y.gaze)==null?void 0:A.bearing)||0)+(((v=(x=e.face[C].rotation)==null?void 0:x.gaze)==null?void 0:v.bearing)||0))/n,strength:((n-1)*(((w=(b=Le.face[C].rotation)==null?void 0:b.gaze)==null?void 0:w.strength)||0)+(((T=(I=e.face[C].rotation)==null?void 0:I.gaze)==null?void 0:T.strength)||0))/n},Le.face[C]={...e.face[C],rotation:S,box:z,boxRaw:$}}if(!Le.object||e.object.length!==Le.object.length)Le.object=JSON.parse(JSON.stringify(e.object));else for(let C=0;C<e.object.length;C++){let z=e.object[C].box.map((S,D)=>((n-1)*Le.object[C].box[D]+S)/n),$=e.object[C].boxRaw.map((S,D)=>((n-1)*Le.object[C].boxRaw[D]+S)/n);Le.object[C]={...e.object[C],box:z,boxRaw:$}}let a=e.persons;if(!Le.persons||a.length!==Le.persons.length)Le.persons=JSON.parse(JSON.stringify(a));else for(let C=0;C<a.length;C++)Le.persons[C].box=a[C].box.map((z,$)=>((n-1)*Le.persons[C].box[$]+z)/n);return Le.gesture=e.gesture,Le.performance=e.performance,Le}var La,y3=!1;async function bm(e){return La?e.debug&&ge("cached model:",La.modelUrl):(La=await Et(Mt(e.modelBasePath,e.segmentation.modelPath)),!La||!La.modelUrl?ge("load model failed:",e.segmentation.modelPath):e.debug&&ge("load model:",La.modelUrl)),La}async function A3(e){var m,f;let t=((m=e.tensor)==null?void 0:m.shape[1])||0,n=((f=e.tensor)==null?void 0:f.shape[2])||0;if(!e.tensor||!La||!La.inputs[0].shape)return null;let a=Ye.resizeBilinear(e.tensor,[La.inputs[0].shape[1],La.inputs[0].shape[2]],!1),r=a.div(255),s=La.predict(r);Ve(a),Ve(r);let i=Yn(s,0),o;if(i.shape[2]===2){let g=i.softmax(),[y,A]=fd(g,2),x=A.expandDims(2),v=x.expandDims(0);Ve(g),Ve(y),Ve(A);let b=Ye.cropAndResize(v,[[0,0,.5,.5]],[0],[t,n]);o=b.squeeze(0),Ve(b),Ve(x),Ve(v)}else o=Ye.resizeBilinear(i,[t,n]);if(typeof document=="undefined")return o.dataSync();let l=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(t,n):document.createElement("canvas");l.width=t,l.height=n,Ua&&await Ua.toPixels(o,l),Ve(o),Ve(i),Ve(s);let u=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(t,n):document.createElement("canvas");u.width=t,u.height=n;let d=u.getContext("2d");d.filter="blur(8px",await d.drawImage(l,0,0);let h=d.getImageData(0,0,t,n).data,p=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(t,n):document.createElement("canvas");p.width=t,p.height=n;let c=p.getContext("2d");return e.canvas&&await c.drawImage(e.canvas,0,0),c.globalCompositeOperation="darken",c.filter="blur(8px)",await c.drawImage(l,0,0),c.globalCompositeOperation="source-over",c.filter="none",e.canvas=p,h}async function u$(e,t,n){var s;if(y3)return null;y3=!0,La||await bm(n);let a=wo(e,n),r=await A3(a);if(Ve(a.tensor),t&&r){let i=wo(t,n),o=i.canvas;Ve(i.tensor);let l=a.canvas,u=(s=l.getContext("2d"))==null?void 0:s.getImageData(0,0,l.width,l.height).data,d=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(l.width,l.height):document.createElement("canvas");d.width=l.width,d.height=l.height;let h=d.getContext("2d");h.globalCompositeOperation="copy",h.drawImage(o,0,0,d.width,d.height);let p=h.getImageData(0,0,d.width,d.height);for(let c=0;c<d.width*d.height;c++)p.data[4*c+0]=(255-r[4*c+0])/255*p.data[4*c+0]+r[4*c+0]/255*u[4*c+0],p.data[4*c+1]=(255-r[4*c+1])/255*p.data[4*c+1]+r[4*c+1]/255*u[4*c+1],p.data[4*c+2]=(255-r[4*c+2])/255*p.data[4*c+2]+r[4*c+2]/255*u[4*c+2],p.data[4*c+3]=(255-r[4*c+3])/255*p.data[4*c+3]+r[4*c+3]/255*u[4*c+3];h.putImageData(p,0,0),a.canvas=d}return y3=!1,a.canvas}var vm=`
|
|
/9j/4AAQSkZJRgABAQEAYABgAAD/4QBoRXhpZgAATU0AKgAAAAgABAEaAAUAAAABAAAAPgEbAAUA
|
|
AAABAAAARgEoAAMAAAABAAIAAAExAAIAAAARAAAATgAAAAAAAABgAAAAAQAAAGAAAAABcGFpbnQu
|
|
bmV0IDQuMi4xMwAA/9sAQwAGBAUGBQQGBgUGBwcGCAoQCgoJCQoUDg8MEBcUGBgXFBYWGh0lHxob
|
|
IxwWFiAsICMmJykqKRkfLTAtKDAlKCko/9sAQwEHBwcKCAoTCgoTKBoWGigoKCgoKCgoKCgoKCgo
|
|
KCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgo/8AAEQgBAAEAAwEhAAIRAQMRAf/E
|
|
AB8AAAEFAQEBAQEBAAAAAAAAAAABAgMEBQYHCAkKC//EALUQAAIBAwMCBAMFBQQEAAABfQECAwAE
|
|
EQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZH
|
|
SElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1
|
|
tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+v/EAB8BAAMBAQEBAQEB
|
|
AQEAAAAAAAABAgMEBQYHCAkKC//EALURAAIBAgQEAwQHBQQEAAECdwABAgMRBAUhMQYSQVEHYXET
|
|
IjKBCBRCkaGxwQkjM1LwFWJy0QoWJDThJfEXGBkaJicoKSo1Njc4OTpDREVGR0hJSlNUVVZXWFla
|
|
Y2RlZmdoaWpzdHV2d3h5eoKDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXG
|
|
x8jJytLT1NXW19jZ2uLj5OXm5+jp6vLz9PX29/j5+v/aAAwDAQACEQMRAD8A+qaKACigApGOKAML
|
|
Xp8xlF5A7V4X8RtYs7PzfNImnx8sa8Kp9z3q2tEgp6angWs62ZZ5CTGoJ6DArGNz5p+UrID6EUrF
|
|
PUlW1EuN0XNW7PQ2L5j3JnoKXN0KijqNP0eYoqXBdgPuuo+ZPeupisWn2Jd4+0r924XgsQOCff3/
|
|
AJ1FzRKxDqGii6m3siiQ8F1XGfXI6YNWLfRbiRQMkcZI9fpTDluT2/h6Qy8gDPbtmtG38JeY480Z
|
|
5zSLUTZg8M28YwYxjAArXtdPt402qgHbpSaLWhma3o0Uqk7Nx9DWLaaVblgPs6qRyds2M/gRSQp9
|
|
zZOni2iWS2hlQ+kjYz9OMGrdjq89vIPPVhj+8M/lQyDq9P1WOYBlMZz1AOD+VdDaTiReOKulK0jO
|
|
tHmi0WDTlr0TyxRVhT8tJjIX+9SUxHXUV553BRQAVBcPhSBTSuxPY86+IGti0s5I7dsORy9fM3i6
|
|
8e8mfDO5P90ZrWWiJicNPpZZtxV/xrW0jQt4DOv6Vk2dEEdTY6BHuB25rpbPSo0QARjP0qTRI17W
|
|
wA/hFaMWmoQMgflQXYsDS142rU9tpqqenfNA7GgtihxkdKuRW6qMY/GkDZY8sY4Ap4hXbyB+VArk
|
|
EtuH4wPyrk/EGkOm+a3jw3suRQLc5i38SX9hJ9nnY+XnBUdPyNdFY6pa3KkkAE9l6f8AfJ/pSJT6
|
|
GhDmI+Zb4ZRycdv6ium0nUhKFydrelTsNnS2829RnrVgV6NKXNG55lWPLIM81Op+WrZkRMfmNNzT
|
|
A7GivPO4KKAEY4XNYWt3vkwPg4OK0giJdjw/xrqhm87Zs8tc7pX5A+leSajf6aHYJ50kn4AZpTep
|
|
rBWRm2Vobm4BXfyehPFdnpmnBFUY5rI2SN63tlToK0YI+KZpFF+3QdavwoKTLtoW0Toaswpk5pCb
|
|
LCxipAhoIuP2dKevHXoaYDylRyxhlwRQI4nxVoCXWZI1GfpXGtbSWjYPGP73+NIGupt6TqMsLruZ
|
|
ih4xnP5V09mQ+JLd8gn0xSYJnVaVdkook69K34zuUGunDS3Rx4qOzHVIp4rrOMY3NJQI7GivPO8K
|
|
KAILt9kZrz3xlebYiu8KCCWb0XvW0NFch6ysfO3jLVjfXLIn+pQkKorl7WxNxIPl71g2dUUdpo+l
|
|
pBGvHPet23iC8ihFosrxirkHQUFo0IF4FXI1O726CpKLacCrMJoJLYHAPpTwucHpSRJJ5e4AZI9x
|
|
UqpxzVpCuOC8cUpQUMRnXttuB4rjNdsYyeVwfXpmpGmcvcQyafMCFJjPY10eg34BUg4DcZP8jUO4
|
|
HaRq3lLNF+IHet7R7jz7c56rwa2wz9+xhiVeFy/T1PFegeaNPWigDsc0ZrzzvDNIaAM7VpNqdegr
|
|
xL4l6kywyRhseZ19lrdfAZL4jxYg3Fw20d63tJsdrDI5rm3Z3R0R0Mce1eKnQYAplIkWrMJ45oZS
|
|
NO3PHbNXIyfpSGWowSOasxLUiZdjFSqtNEMkUemKlAGKsRJjAppFAiORMjmsTVrNZEO4cfSoZSOD
|
|
1eJ7WXBUzQZ+7nkfSo7e2Ei+ZaMzxntjBX2NSU1Y6/wxqojiEFzkA8KTXYaUoWRyv3W5rSjpNHPX
|
|
+BmpSg8V6J5gUUAdhRXnneFFAGHrTfu5PpXzj8S70/aZtxzztXFbv4DKHxHI+H4GZiz9zxXXW8G3
|
|
GBXMjvLRXAx0oPGPSmMVeOnWrMTYpFI0bcg1fh54xmgovRcD3qxETSIZcRvzp+/BpEkqsBUqsM9K
|
|
q4Em4Gkxk0yRGXrVW6i8yFhkg+tJjRxGsWrxllkUMh9eK5uMz6bcebbnfG33kPcVkay2OntPKuo0
|
|
nhXI67c8qa7Lw3c+adjcEDGK1paSRhVV4s6A0or0jyRRQ1AHX0V553hRQBz+vNtt5z3xXzX8Qbdm
|
|
uic5YnOMdK3l8JnTXvlbwpYl+WySOgrp5YfLOOB9O1c62O7qQkc+9RsKChFPWp4DluOlSykaNruH
|
|
ArUgHShFNF2NT1qxGO3NBmyxGcE1N2560CFzjrUysO9JAPDDjFOVuKoQuSRTWouBkazbCa3cd8cV
|
|
wF7IISQccHBzUSWpV9C3o1x5b5GAjdQD1rs9DjC3kckbEhqKfxIzn8LOupRXqnkPccBSkUAzraK8
|
|
87wooA5rxMSI3HqK8B8bQl9Q8sffY5b/AAraXwkUviNrw9pH2W1ViMMRTdRjw4HpWNtDti9TPc4P
|
|
FQs2M5qdyyMHLcfjV63HTAoBGtap0wK0YxigpsuRDtVhVYd6GQydVwwIqdRnqKCR23I5pCMUW6gD
|
|
YNKuetAEise9KTxQBWuFyhrznxNZkXjFeN3I+tTIZg2OqmzmxNF0PO3vXp/g2+hukVl4zyPanTXv
|
|
JmVR+60dpThXpnlPceopWFAbnV0V553hSGgRynjC5FujOey14Ssp1HxNmTnc+a3kvcIpv37HoEYQ
|
|
QmMdVHSsnVbYJF5jVk0dsNzlruVIsl2wKxbjWrVHILjg1CRbZJb+ILHPzyhfStODWLQgFJFYd+el
|
|
UJM27HUIXxhga1Y5lLVLKLkMnoauxnPPrSEx7ShF+Y/n2qrc6xBbhizDAqkK1zJuvG9nbg8ZA681
|
|
ly/Ei052RO3uKAsZlx8QGd8xxvt9Aa1NH8dK7AXMcip64zigdkdrZX8F7EJLdwwNXMkrz1qRMRly
|
|
CK4TxmpidWI49felPYSOMmi80NIoOV6qRzXYeA5SskYPfirpfEjGr8LPWVHyD6U4CvQPL3ZItOYc
|
|
UDOoNFeed4Uhpks4H4iE/Z5MeleMeGULeLgjds10S+BGdL+Jc9OSBU2Huc5Nc74yvUtrcDBrJnZF
|
|
63PJdXvLy/lKWw46bvQVz82jXhkLO5Y+9ZlsYthcRnbIjY9R3q3awTRkEM3WmJI6C0ea3dGRsr1x
|
|
XY6TqW9FLHnjrUs0izpLK5DDjofSta3ckH09KRUkZuuTvFGdvPauE1Y3U6Mqbssf/rUxHPTaJPK2
|
|
ZmJPbBqzY6DCZh5xJC9s9aBJHU6dpemJjfEmfetJtI0+VPkUr/unFOxdiextHs33W07YHQHk11mk
|
|
Xb3KbZ1xIvcd6LEyWho4Nct41sTPYb16ipexCPPZN+wYGCvH1rrPAEJmvkPoc1VL4kZVvgZ6yFwK
|
|
cBXoHkkqinFaVyzo80GuE7WJRQSziPiGdthK5HQV4x4J/wBI8WPIewNdEvgRNL42emO/yj1UHNef
|
|
eNpRczbC+I17DvWT2OqJxc0sMK4TCisy41q0hfEkqj8aixdwTXNOlwvmqD9anS9tXH7uVG+hosO4
|
|
/wC0oOhrR0+6G4YNIEzsNEuCxAPNdjZruA4xxUmjINSjURksOlcbqFykbnjFA1sYGoassaknCqO5
|
|
rl7rxhGm7yBnBxuJq0rkSlYpw+NLlsfd5P8AerVsvHEqSBHwPVgcgVpyMyVXU3rXxcHYETAk+hru
|
|
/DWti6ZSTyOKzZqndHaxvvUGq2rQ+dYyqR24qWI8dvbr7LqDxyDAzXpvw6FvIxePGSM06Xxoyr/A
|
|
zviKFHNegeX1J41zUhXioGbuaSuM6wpCaBHG/EcA6HN/exxXjXw2jL67cv8A3Qa6H8CFR+NnoWpO
|
|
I4XI44rxLxrqjQzSEsQM1gdSPM9U1uR1YbmWIdXHf2rmpIb67YS28UrRlsLI3c/jW0VZGUpO5pW1
|
|
jfLNOjahawzwReYI5cjzMkDavHJ5/SrVv9uhtPtVxCPLBwzxnlT9KGghLU3tKvvPjHzbl7EGuisJ
|
|
GRxWLOg7nRXJEbDjmvSNK+aFSfSoZr0KutRkphc4NcRrdkVjL9aVio7Hk3iqS8ubhrWzUlsZY9kG
|
|
cZNc5D4aee5MclzJIFTzHAO0MfatqSOWu7bFS1srDUZEis0vIZoUxPvfcC+4/dx2xjr712XiTwXb
|
|
WmlQ6hol3cRhoFd4rlg3zY5wR0GelavQwjq7GD4etdVvSnk2wAB+9v8A8mvcfA2kXiRo0/UdcDis
|
|
ZnTTulqeoWqbUAJqWUb42X1FZlnjfjSwlGrr5S/eNdD4RkvLAAQ4yRyaUZcruVKl7TQ9I0G+mnzH
|
|
ckFwM8VuIK7ac3KF2eXiKapz5UWYxipNtMyNejNch0jSar3cjR27uoyQCRVRWom9DxTx54gu5fMi
|
|
lbKdMVjfCZPNlv5v9rFbVHpYqjGzbOn8SzFI9o715L4u0r7arYzk+lYdTqSujy7U/C0u4vHk+WwO
|
|
xuh9q3J9dgvbdVukMV1EwbDDgn04rZMwlHoZ+orZ6hfQ3RWVnQYCgZAq+8U0ln5NtBsV2yxYcfgK
|
|
JtW0CnB31LlroVwJ1nQLGDjeP7w+lb0dsFxjrWB0tHS6NuWPJ6A16ToUm63T3Gallr4S7cxiTjrX
|
|
PaxaF7dlVeSMUhxZ5jd+H7qCa4eF3DSE5x3zXN3Wk6jbyeaiFWUY6ZyPStYS5SalPmVipFbX0E4c
|
|
W0alvmPHJrag0rVvEE6LdljGpG2NRtQD+tW5XMI0uU9M8NeFo9PiQhecDIIrtrOMIoG3H4VlJm9t
|
|
C6CB06VPGM1IHLeItGS6uw+ORT7e3jsbQvj7gzUNam0JaWE+HN7NqOqX80n3FO1RXo8YzXdS+BHk
|
|
4z+KyzGPapcU2YIv7qQtiuaxvcaWqG4O6FwfSrS1JbPnrxoxkv7qIfejcitj4V2f2exumI+8+aKn
|
|
xHTT+G5d8Txlm4rjLxMsQwzWT3OiK0Mm6sEkVsAcjFc1d+FEmlGwEDPQVopaEuOpr6f4ZWNAu3tW
|
|
vHpAj5ZQcUFIWaDjGMVUMQ3cVDBmvbhY7QAV2nh+T/R1yeKhlrY31+b61FcQK6nIoJMi401WblRi
|
|
qr6PCw5UYq9y+YgOgWzNkRrx3xWjp+nx2v3FQcelAbmko9anQ4GBUNisPHWr1qMrQhS2K11HvmYV
|
|
hamcxSRZ5xRIqluS/DKAQQXZxyXrvo2FdlL4EeZjH+/ZbjNSZpswLNBrE1Gt7VE4ODVIlnh/j61F
|
|
j4lmeTGyUbq6LwdEqWbeX0YbhSqfEddP4Bddj4JIrhL5d8h7VjI6oLQqKNzelWre3yc4/ClFjaL6
|
|
wqBxxUUxwCKu5BmXRA6c+9ZjP83FSBoQuPs4BrsNBlUW659KmRrDY6G1lyQtW3Hy0lqQ1qVJnAbm
|
|
oy3b9KYJCqRj3o4zRctIlhjLHmpSuOBRbQOpLGpPFaES7UqkZzKN1KsEc87/AHUUmvPLTVGv72aQ
|
|
k7WJwKmRrQ3ud74Ltilgz4++2a6iNDXdS0gjyMU71my7GpqTbxSbMki3SViajTTHqkSeR/GeyZmg
|
|
nQHkEE1S+F+oPPavBL96I4/Cia1udVF+4dVrkW+Fq8+v4tjMDWUkdVJ6WM0cNV+F+MVmjUcZgqnP
|
|
1qpNNnkcVRLiZtxIS1UzzIF7mghlxUZpVQdq6nTVdAoAOKzkbQWhvwM6gMM1twOJYx3NOJE11Kt1
|
|
H1/pVVlwBkk+9NocXoOQ45FPj+fkUJFF2NSB700v/hTEty5ZpkjvVyUgcCq6GM9zC14/8Se6GcZQ
|
|
1574Xs5WkI2HBPHFQ1dm1KSSZ7Rotn9l0+KPHIHNacae1dy0Vjxaj5ptlhVp+2s2CJ9ppCKzuWNx
|
|
zSFc1SYrHNeNdIGpaYw25ZeRXmvheyk0jVpEdcLJ0q3ZxNKTa0O3vQHg/DNcHrsJDmsmjspnNzNt
|
|
fFIJ24GazOhC+azDmgZIOOKBsp3J2qSaZodubq58yQ4QAnmhGT3NO18pb7BORmu205LfYpyKVkWp
|
|
Oxr5gKYWoIZWgfGfloFq1qTPLubnGO1RPtxg4P0oBAkY/hBz6VNDDkZ6AU0W2WSdqkdKr9ZOaGSj
|
|
VtcLHmnOcgmmYvcz7mBLy3MbdD1q9ouiRK6bUAVeelOC1InPlidSsWMDFOCEdq3uefykqrinYqGy
|
|
rFvApMVka2DAowKAsMkRXQqwyDXn/iWyitNQ3qPl6itIvRoF8RXinW4tQ6HI6GuW8SIVBPalc6qe
|
|
5x9x97r3qruwTjrWZ0ksZ9TUmcDNAmZ9/wAoao63rR0+w22MLPtAzt6mghmfofiB76LdJBJBIp5D
|
|
d/oa7bSdWLIPnpDi9TM8TeKdas51XTbIyxd3J/pXS+E/EFxqNoFu7do5OmD60maHWrnZyDRkn/69
|
|
MlEyOR0xntVoNx+FUgYjPxg4FLCuWDZyKQr2RoRnP0qO+nEFpJITgAUzLqZnhu6+0rknOTXpOmwJ
|
|
Fbrt5yMmnHYyr6Oxb2ijaKLnPYMClwKQWK3n0hn+lachHOJ9pNNN0apQFzsY10a4v4hXQh0xpieQ
|
|
MA1XLZNjhK80cT8OdV+3Wl3A7ZZJCw+hrR1qLcjZ/CsbnfHRnFXseHJArOYYbrUs1uPhYbuatqFP
|
|
ByfSkMq3UIINYkto+87Tx6GkSxfsDbflGD7CtTw/pk4nzITtPIFMFudsukh4Rxz71paTpKwP5jcn
|
|
0qTRy0NORMDgVCqewoJTJgAoxjntTiTu7fWmFxAcnn1q3EPl+X8KZMi4gKqB1Peob/Tv7Us5bfeU
|
|
yOoq4R5nYxqT5I8xieH9J1DTbvyJELRg8ODwa9Ms5mSFV9BWiptbnNVrKdmif7Q1KLg96XIZc5Is
|
|
pNL5pqeUrmMtZs0jzV08phchaY00zH1p2ZNxjS1g+LdJOt6U9ssmxjyGp2urDjLlaZzng/wUPDqz
|
|
TSTmWeTrjpVjVk3Rvjr2rnqQ5dDvo1XUd2cTqSNk9OKxXGCeKxZ1DAxHTr2q5C/y8GokUhsz54qu
|
|
uCxzSQjQ0+FZblR2ro4bZYiMVQ0dBb7Qi5x0qzuG5QOh71LYErDufpSeWrHnimIXbjkUjLkH1Hem
|
|
gGxryc+tXI19KYmWegq9YLiLJ7mtqS945cS7QsWehqxA9dEjz4krPSxyZqbFFhGxUm6smjRM55Lk
|
|
HvSvNxXTY57kLT+9MNwKdhXGm5FIbkU7Bca1wMEVhaiuQcVhXWiZ14R6tHGanGBI2OtYkqEHjgVy
|
|
s9ErEeo6UBsHipKEZs5qpPdRxcbhx70NCSuybTNWihc5brW9Fq6vjMnFSdEIdDRi8RRKygZbHFbu
|
|
m6nb3RA3gMegNJhOm0jbXGOoxTuCc1Rz3FyoGKawz9KaAVcZqeMgCmIkB4FaUTbYwB6V00Fuzixb
|
|
0SFMuDU8Mlbs4UPeXHeiOXkUrDuXYnyKk3cVk0ap6HMxxketSMhrcwRC0dMMZFMQ3yzSeVQAeUaz
|
|
9Vj8uPd271nVV4m+GdpnHX67pCeKyLtBtNcR6xlk9RVeWTb3qRnO6trgttyIfm71z7ai8j7/AJmN
|
|
DNqUVa5Yi1AnjynHuBV+11YJhWWXcP8AZNSzqgmaEerSsf3NtIQP4mGKtRavdRgMIpVI9KjU0a7n
|
|
R6T43uYQI7qN2Tpkqciu503VVuQGAYZHQjFVc4alPlZrpKGAznpTwxOc9+lWjIlUACnM4XApiLNk
|
|
nmvnsK0NvpXZRVonmYqV52GsmanhXitTmFkSiJTSAvwrxUxXIrJ7miOfjf1pzNWxkRlqYWpgJupu
|
|
6gQbuahvIxPA6eo4pNXVioS5WmefakGhndH4INZs5DJXA10PaTurmLO21uKpSZqGMoXGnRzBiyjd
|
|
9Kx5rcQS428fSkjanLoaOliHGZFB56VswW+mtPufcBsGOAfmxz+tFkd8HpoaUx09FAtFY8DO71qb
|
|
Sms/Nb7RbecG6AEjFLS5c78t+p0djpVs9wsyQiJAdyr1rW+zqjErzSe559Sbk9S3C+MA1bjbgE1S
|
|
MSXzMVG0vNUI2tPKrAuCMnrVzNd0PhR49W/O2xrHmp4TxVMzQshpIzzQBehqesnuaI5VGzT2bitz
|
|
FEbNTC1ADS1JupgG6l3UAc14s04yR/aYRll+8BXCtLncDXFWjys9TCz5oW7GddH5qqNzWDOgQnC8
|
|
VSuo1kHzAGkPYopEY2+RWxV23Vzj5G/Kg3jWaNazhZuqNXS6TaKhB2c0jR1nJWOlhOxRxU4YkCgx
|
|
Y0OQatQyDbyaaFYe8uF4NY3iC9ltbVGj43NTIL3h7WzMihjzXVQXYYDdW9Cf2WcOJpfaRZ3g9KsQ
|
|
mupnCLIabGeaAL0LcVY3cVmzRHIxtUhetzEjZqjLUAIWpN1ArhupwagAfDKQ3Q1594v0c2bm6tx+
|
|
5Y8j+6ayrR5onThp8s7dzkZjuqAAmuBnqC7c0iwgtzSA0rWzjfGRW3ZadDu4AoNYo2rfS4v7orSh
|
|
05UA2r0pDbsTm29KRottBNyJ0wpJ9KhD7f6U0ikNWffIFBz60zVUW52ow4UcUN6EPcx44WsbgOmd
|
|
ua7TT5Bd24KHnFKnLlZFSN4koluLdueRWvp14swweG9DXoxldHlTjYtzGoo25qzEvwtUxas2jRPQ
|
|
5CNqkLVsYoYzUzdQA3dSFqBBmnqaBhuqhriCXTpVIzxUz+Fl03aSPI9QTypW2/dz0qKNw3SvOPZR
|
|
Mqin8VLKRcs3O4Cuk0w/MDjt1NBtHY6O2IIHY1pxgFaETIRwMkjtVSUEk4570MlFW5bap6dKzWm8
|
|
1tqH8aY+hp2FvGoGayNevVt7/ap4xzUvYjqTLtvLPcvJxSaVcyWsxTnFZlnT2t15xHmCtOBYwQy4
|
|
B9q7cPO+jPPxFO2qLEj5HWo42+aus4HpoX4W4FTF+KlotbHII9SFuK0MUNZqiLUDE3UbqBBupwag
|
|
Bc1DefPbyD/ZND2KjujyPWlKzuPesRZjHJXms9lMuw3StjnmphKDSLTJ7OfE3JrpbO4GQc9qlnRA
|
|
3LO82k5NbFvdADkjBoCSHyXIIIzgVQvdRigT7wzjgUzO1jHknlvG7qnp61etYFQDIpCZoqVijzXn
|
|
3iC8EmsOuaCGb/heR/s0ijkVv6fbxy3QMg5xmsnuX0Ldzut3+UYTPWk+2GJSe+M1pFtamcldalmx
|
|
1eO4XaThhWnC+TXqR2PHqL3maUJ4qRjxSEjj42qXdxVmaGs1MJoATfSbqBAG5p6mgAzTJTmNvpQU
|
|
tzzHXY83D/U1zF5FhjgV5r3Pa6FMsV5HWnLe7RhqBRdmTwagN2d2K2rPU1C5LAnPrUs6Iysbdrq6
|
|
f3gK0BrUKj/WClY05iM6xLOcQAj3NT29uznfKSzHuadzNu7NSBFjHNSm5VO9IRnajqoWMhTzXFtA
|
|
bvUfMduSeg702Qz0rS7FbTToQFwzjJqaGTFyfK5PQViyzUuFmuIdgGABya5u/vTaN5cnUHFUmLoZ
|
|
zyskwlgJweSK6zQdUEwVJeGr0aUrxPLxEfe0OrhPAqVjxWhznGRtUwatDK4jNxURbmkAm6jNABup
|
|
6tQAFqhupNtu59qUnZFwV5JHnWsHdIx96w5lz15rzT2uhRmt85xWbcxMnUGmZlB0bdxmrNvFIcfM
|
|
350mWjbs7YkDJY/jW5ZWW4jikWkdNp9mqYJFaJdEHHakUULu/VB1rLn1Ld/FgetMGYd/qWSQmSa0
|
|
/AemS32pfa7piLeLkg9z6UmQtz0W7uQ2cZx0A9BVzR7cAea6j2rPqX0L99KRat5A6Dk1wOoKZ52a
|
|
YfMORTYRLujiGWEq6/NWza2yKQVHNdOHerRy4laJo6TTnbbtb8KuM3Fdh5z3OJjbmpt3FaMxAtUZ
|
|
agBN1GaQBzTwaAAms3VbjERUGsa07RsdeFpuUuY4jUjljWTKK4j02RE4IpJYFk6imQkVl0xWarsO
|
|
mAEcUi0bNnZBR0rWtoguMCkUi21wI161mXuocEKaYXMS4u+pY/hVCSWSY4HT0pEmlouiSahdpEBl
|
|
mOceleiwWcNjClvHgJH97Hc1EmVFFi3Czy7mwIl/WtJbjP7uLgd/apQ2VNVvtsBhiPzdK5S4nAuR
|
|
nqOCaTGi9pcytPlU+XpmumtWII44rah8ZjiNIXRuWeNvvViQ/LXpJWPJbu7nCRvVkNxVsxBmqJmo
|
|
EPiXca0YLMuOlJsuKuPlsSi5IrNuG8s4HWs5VEkbwoOTKsk+FJY4rC1K53k1xTk5O7PSpwVNWRzt
|
|
4cms+WpKICtSLTETQj5q0YeBSGiys23pUguGxQMq3E59ayrm4x3yaAKiRtO2WPHcmhruKFxFajzZ
|
|
ScA44qRHoXhuMaLpxaUg6hcDLMf4F9KlhuDeXGASIl+8azZslYma68y48m1+7nFW5rtbRNhb5z1p
|
|
iMKbUg0zuW4A4rPgb7VdKXOMmpA7HRbMS7nUYiUda0lkQOBngVrS+JGdbWLRt2bAx5BqeQ/LXpnj
|
|
PQ4GJ+ashuK0MhWaoWcA0AaOmASMK7jRNPWYBmHyiuepO2x10qfcv6vYxCzYqoGK4HVYVTJrmb5l
|
|
c6oaM5TUJ8EgGsG4kLNUHT0M64OaqMMikSRsuKbnFMRLG3zVehOaGNE445NNlnVFpDMu6uie9Vo1
|
|
8z5mOAOST2pDK91cNN+5tsrH3PrW54a06KxT7fdrlh/q1Pc+tJ6IUdZGvHPLezMcnBOWbsPap5r3
|
|
ylFtbdT1xUWNWzU0/Zbwlgfmx8zGsHWtRHmMqE59aAMyNifvHPc1f0gtPdqkY5JosJHeNci2tktY
|
|
euPnNY+oXWZEVJNrZ9aun8SIq/CzodHuriIokhDIR1ronbKZr0o6o8ipoz//2Q==`,wm=`
|
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAsICAoIBwsKCQoNDAsNERwSEQ8PESIZGhQcKSQrKigk
|
|
JyctMkA3LTA9MCcnOEw5PUNFSElIKzZPVU5GVEBHSEX/2wBDAQwNDREPESESEiFFLicuRUVFRUVF
|
|
RUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUX/wAARCASwBLADASIA
|
|
AhEBAxEB/8QAGwABAAIDAQEAAAAAAAAAAAAAAAEDAgQFBgf/xABDEAEAAgECBAMECQIDBgUFAQAA
|
|
AQIDBBEFEiExE0FRBiJhcRQjMkJSgZGhsWLBJDNyFSVTY3OSNEPR4fAHFjWCokT/xAAYAQEAAwEA
|
|
AAAAAAAAAAAAAAAAAQIDBP/EACARAQEBAQADAQEBAQEBAAAAAAABAhEDITFBEjJRIhP/2gAMAwEA
|
|
AhEDEQA/APqYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAKNTq8OkxzfNkisQC8eb1XtRNbzXT4q7eU2nu0MntRq/D8StMccvW29ZmdvgjsTyvZjxOLj
|
|
+s8WLxn8TFPXs6Oj9oct7c14rkxz22nrB2I49KOdTjelmszfmpMeUxv/AA28OqwZ4icWWtt/SUi4
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmdo3nsPNe0Pt
|
|
Fh09Z0+DNWL7+9O/7A3eJcZppsV5raI27esvH6jX5ddM25p79Ilo59VbUZOe2Tm/PeGvfPfT2iKR
|
|
PLv1+DO678XmW/a97U6TtOyzTbTF538/T9WjTNecm9a7126tqk3rSYxY5ta1plRZqZNXGjyZcPXl
|
|
mZmsx+qjBrsuO16xM7eXRt04JrdTltk5OWJnfaWf0a2lty5MdZnfzSn+WOHiOutFpjHa9e8bQ2fp
|
|
+alYy462pk7zXbuxjPesbRS0f6ZZV1ET1tErzXFLHo+A+1ddZf6NrI8PJHa1vN6iJi0bxMTHwfOa
|
|
zhzd61v1846utwniM6DUdb3nBaNrVmd9vjC/ZVePYirBqMWppz4rxaPgtEAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAItaK1m09ojcHnvarjM8P0vh49+a/eY8ng9D
|
|
h1fGM1rxjtGPfvbzdbjuTJxHX48cTPNltM/KsS9Dw7S49Jp6UpHaGe2vjz1y9J7LYK13vHWe7bj2
|
|
ex1tvM80ekuxW3RnW3Vm6P5jRx8H0+OYmMcb+bapo8GKPdpC6bQwtdHU8JpWkdJ/JweL6e23iU67
|
|
d4dubSqyVi9Zi0bwIs68XGp36TtEq7ZJmZmevzdbifCKWtbJinkt6eTgZPFw32t+sRurbWVzxs1y
|
|
Rv6T8V1NZNPtfq0seTm+Kevr+SZuxXjvaPiV8N4viycto9HseG6+uu08W6Rkj7UPmFck1tE1nlmP
|
|
Ld3eA8V8HVVi1pjq6Ma/pnqce/ERMTETHaUrKgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAADW19+TQ5p/p2bLS4v04Zmt5VjeQeJ4bjnLqsupv+Ka1+ERLv4reTmcNxcuC
|
|
vy3l0qdI2hlr66sT02ot0ZV7qqrInruzrVZLGSZ37JjqgYTG0K5lbaFVhDT1Ub456RPweY4hixWi
|
|
eSdpjvD1eWejz3FNHWYtkpvFo9EIseb3tS3SerOms22rfpPqZKzvvHSYUz70TExG6Gdbs2rljeJ/
|
|
Mx5L0vEzPaelnOi98c9J2bFNTFpit47+a+PVUvx9T9nOIfT+GV5p3yY/ds67wvsXqpxau+G09Lx+
|
|
r3TqrEAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADV4ljnLw3U0jvO
|
|
O0fs2lWqyUw6XLkyfYrWZkHldBEV09eveG3Fq1mI3jd4vPrOIaid8G9MP3Y38k6fNrt/rMk9Ou8s
|
|
tfXXn49rGWInuy8SO/k5Gl1E3rG/fzbOe94wTy99mbRvTrMOOvNfJWsesywniukrG/jU6fF43WYN
|
|
TmtEeJtEQ06aSmK2+bNtEd+qfSO17unF9Hmvy1y13XWyVmN4tExLxVK8PmNq5NrT58zawam+m/yc
|
|
0Xj8NpRYSvQZ7xEOdqI3rPozxayNRXe0ct/ON03jmrKB5nV4q1yTO20Obmv4c+cx8HoeI6WZpNoj
|
|
q83niYmYscU0r8aJ6T1n49zeJ+Meqm1drb9J+Kd5p136StGVem9l9TbHxLDFp7W7+sS+q1nesT6w
|
|
+PcAzVjiGHftzQ+v4f8AJpv6On8jH9ZgIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAABp8VrW/C9TW0ztOO3b5Nxp8VmI4bn37TWYB8f1HFtTfUfR9FWJmsdZ9I7MtJxDX5s
|
|
d8ta1y0xzteaR2277rcuhycP12SceLxMeWNpjttHwlu8I0mfQ1y+D7k5YmJmY36T36Ka43z/AF1t
|
|
cI1ds+qxVj7/AEej19PCw9HJ4NoK4OIU5Y35YmZdzVTGebVZabx5jJS+Tmns81rNLm1Wrzc9rVw4
|
|
Yibbem72mXTTS0w0M3BvEta1bWrM95ie5EanY87wXgNOL6XPfxraXLhra/W28bR/dzYzarBqJxRe
|
|
bzE7Rt5vWU9n8mPHOGmS0Ypnea1naJb+k9ncNLR7u2y/WcxXO4TOoyUrN6zD0FaW5Y3hu49FiwUi
|
|
KxCvLMR0hlW0jn6ukWw3iXjOJzbDlneOj3GaN6zDzfFOH+LE7SRGo83XNSZ2lbG2/WfdlvaT2cy6
|
|
rNFInlrv1mfJ37cK4PwTTxOoidRm2+/2/KFuyMp47XB4LivXiunrH2b2iH2qn2K/J8x4fGDNxTSZ
|
|
9Nh8OviRvTyfT6xtWI+DeXs9MNZubypASqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAOZx6/LoOWPvWiHTcf2hiZ0e8fc2mf1E5+vP/AEeuSd7RC2uKtI6QjHfeINTfwtPf
|
|
Jvty9WPfbt/lucP03gxfJf7d/wBoReYpm97zaNeLb4Ims9Nt94auDjem1Wo5PFi1onylS+1o7l8V
|
|
bxvtupjDMdNkYtXS1+Stt+m63xImEJ4xjHER2ZxMUjeUTO3VRmydBbjLJqPi08mbeVOXJPq1sl5Q
|
|
Vbkz9+rRy35rxHqzmZlVEe/Ez5LRlW5iyfR6zffaIjq1OSNZps2a21rZInafSPJhxGMl9LStLRWM
|
|
lorM/A4dkrWbYfLZC2W/7K6eubX6b4RzT+W76K8b7G6X62cu3Sten59nsm3j+OXz3/0ANGIAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0OIYfpOHPijvNNo+fdvtXJO18k/
|
|
/OwPFYbz2ls3jx8VqW6xMdWPEdP9D4lkx/dt79flLLHbkxTPwY6nt2512ORTRzE2x4/dpE7cvkme
|
|
E4IrW3hRMxO8THRtU1FKWtvtvK2upx22rzRCtXkqzh2jtF7ZbT122b01ndnpuWuP3Z3+Ky20qDVv
|
|
fauzVy3mejZzNK8dVjqi87KLRLYtXruqvXzkQp7Qoid88R6rcl+WGlW0/Sa22mfhCZOq2x082ix6
|
|
jkm822pO8VrPdr4dNObVeDo8XW3uzMbzK+mvxT7szE27cvnu9j7PcNjSaXx8mOIzZevbrEeic5tN
|
|
+SZnpt8J4fHD9HXHO3PPW0x/DeBtJxx29vaAJQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAKNRim9Z5e89Nl4DzXtVh5babURHrSf7f3ec1+qnDorWrvvt5Pccb0n0zhmWk
|
|
Rvevv1+cPE2rGTFNZU26PFfxwa5dVkjelI2772nZnX6bbrEUq3o0d678u8wmuDL2ittvVjXdneeK
|
|
cGv4jpJ6U56+kS7+j118+GLXpakzHaWlp9NNY3tv+bbiYiNoQy1y30uyZJlrWmZnuym6q1iIJnop
|
|
yW2Te8bdWnnypQqzZOadokiIpSZntWN5lrxki19vNRxrUeBwnNNd+fJEY6/OejXLn3Xe/wDp9wyn
|
|
E8uo4lqqxblv7lJ26T6vpD5X7G8QycKzeBMbzMRM1/FH/wA/h9QwZ6ajDXLitvWzRgsAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeL45w+dDrZvWv1OWd4+E+j2jX
|
|
12jx67TWw5Y6T2nzifU+rZ1y9eHwzDYxxEy18+DJodXfT5o96vafWPVbjyxDn1OOzHudbM0rt2UW
|
|
iI69mVtRXZq5tREb9VUoy2iIlRbJ0UX1VZ6btTLrI7V6yk62M2oisT1c7JmtkttVMUyZp6x0beDS
|
|
RWOvdKijDimvWd3G9pNRMfRcNfvZOb9Hpb0itJeP47k/3hgjaZnbaP1XxWW3T0movbNS0W645nbf
|
|
0nrMPpXs3xamoxdJiLbe/X1n8Uf3fKsOTw4jbaXo+EarJhtGTHMxeJ6xH7Sti9Zaj6x3HM4NxXFx
|
|
DS1mtoi8dJrv2l011QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AGjxLhODieOIye7kr9m8d4eM4to9RwjPXFa0ZIvG9bR0fQXmPbDFvTTZPOJmEWS/V8bs9R43NxLL
|
|
G8eFbePg1bajU5/s0l1ceKLx1hbjwRE9mOpx0y2uRTSZsm3PMw2aaKtIjo6kYo9EXpET0hVLXxYK
|
|
xC6MZvyx1lFs0RHfaPiCnU12pLyHGNDbUajBekWma2npWN3p8+opa20e9LSyZLxExTlpM+vdOdcZ
|
|
a9tPS8MyUvFrzWlI6727u1pYxYrbVmb7x+TQx6au3Nqcl7/0rcmW9axGnwZJj1novmxnZXV0fFp4
|
|
ZxLBPgTGK8xzXr5fOH0bFlpmxVyY7Rato3iYfNuG2x56Wrqa8s2jz+7Lu8O12bS6jkwzN6THNNI6
|
|
tvrN68Y4rxlx1vHa0bskAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAA4XtTTm0OKfTJ/aXdcL2pyRGjwU362yb7fkJz9eTxxyZJjyltRXzUZK7TFtl9Lbwy06YzrHwa+
|
|
fJFd/wCVt8m0bQ0eS2qzcm+1K/an+zNZFL5M1pjFXeI72ky48eGnPkvNp27+TPU6nHpMfLXaIjpE
|
|
erk5dRMxOfN1mPeisfshW1ne1a1577Y6x5R3U0zze31FOWI6ze0byU098kRlzbxM9qrMlPDpyRMR
|
|
Md5Vt/Ihp5898mWZm1pjftE91uCt7fCI7dWeHDEW3t723l6rslqxWZnasR+SYhFbzhnfxJ2jyeq9
|
|
lcGXWZcmW0zWKxHLaI7794eJx5fpfEKabT8t8l5isddo3l9S4VjrwrRUwzSJt3tav3pdOL6Y6dXD
|
|
j8HFWm+/KsU4NRXPvtWazHquWVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAa+fXYNP9u8b+kdZBsDkZOO135cWOZn4y5Wu4xqctbe9y19Kp4njt6vi+PDm8DFMWybbzPlV
|
|
5PiGtz67UxbNbeKTtWIjaIXYpnwuaftT5tXJT3vmi1pMsrU5qIrG1V1a+5DCa7b9GFbRr5J6Wnbt
|
|
Cu+Wmk0m8956z8ZWZNorbfzcbX5rZslazPux3hUt41NTntktObJ13+zX1bek01r4/HzVm0bxPXy/
|
|
+bNfDgjVa2uOY92kdfg6ufJOKvLXtttVVSqbcta2vM7zXtHpLQy5ZtMd+vWd+7Zy3mdJHXra3f0c
|
|
vUarw7zFY5rT2hH1Lavnrgx81p3U49Pk4nE5L35MO/StfNRXR5tXnrS8W67WvfyiPSPi7uLHFK1p
|
|
jrtSsbR5Lc4RzsXBaYreP4l45esRD2HD9fnw6evvWvO3Tfr0aGk0U55ra0TFInv6uzgrXFXlx0i0
|
|
77RPlC83Yj+JW7oddqr6vHzTTw9/f6dod+L1t9m0T8pcbFSmPHER3892W0zPuz+jSbVvidkcqmfP
|
|
Sel7bekrI4n4dZnPWIrHeYnZee2Wpy8dEaml4npNZblw5qzb8M9JbYgAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAABEzFYmZnaI7yCXL1XGa0jJXT0571nbee27DiXEprp8nhbxG20W8
|
|
5cbD0ikfnKO+urTPvjoZdXqctdsmTaPSvRpWmsdZ6yztfaGplvv3lWW1tyRlz1x0vkn7Vo5atTNe
|
|
Y0+1o79V2KsZsvX7Ne5mwxnyTNvsx2iGneM/rCdRSuOsTasTt5kRFtpjqmOH4t4nk7estiMNa97R
|
|
Hwhna0iuKTEdmGWa4672nZtRele1N59Zlq6vLOSsYorEc07qcW65euzRvtXvPZy52naZ7ujr6fXV
|
|
rWdukREK8+njHgmZmPc67bq6ivVWhxxgxZLztNrT1mZ/SP4VZs0zaOvfp84WUtNsXLvtv3699+rU
|
|
z7+Jtt5qURqMnPpctaR1rMSw4ZoK57eNk6xHaJRh97Ltt7lo5Z+L1HAPZvVauZ2nFTSzMTzeJEz8
|
|
to6xPfvsZntPZ9rXxabmxzefdrv0j1dXh/BcmstW1qxTHHasR3+b0GPhGl+kWmd64dNEVjf73T7X
|
|
y8vy+Ddx6O3iRakxTH5RXrMw1/lX+3Itw2MFIraN48qRHdZi0cUjmmPen9noox1iO0fNzdXEYrTt
|
|
stcmd9aX0bJ+HePmiKTitO8TMLZ1cVjrMfqpz6ys4pjfrPRWZ9rXXptUit6zO+23VyaRHEc05L1/
|
|
w9J9ys/en1ljqdVbwYw452tlnl3jyjzbmmiMeKtYjpEbLeTXPUU8ee/+qjJpsV5rbkrFqzE1tEbT
|
|
DpYNbW21Mnu29fKWna0KbqTdjXXjld0cvQ63ltGHNPSfs2n+HUbS9c2s2UASqAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAOVxPWe99HpP8ArmP4b+r1EabT3yT3iOkesvMVtN7za07zad5l
|
|
XV5GmM9vVfEstvDx0jtaVVMlq+UJ18b5cMRvPeSuK87bUt+i2Z3PtG7zXpjkzXt6R+TXyTMzvM7t
|
|
ydHqZ+zhv1+Cv/ZuqvPTHMfOYaTMil1a1K2vHSLTELq2v+KWzThGo84rH5rq8JzedqR+ZeI7WnOS
|
|
34pYTafWXR/2Pln/AMyrKOCWnvmiPyR6O1y9585lhWJvl557Q6eo4T4dYiMvW3b3UanhldHpJtGX
|
|
e09unmjsT7eb1l4trI2t0hsZfrdNO0bzy+nzU20/+NmkzO9esz+TZxWis9dttvPv+Tn21jjaW8zn
|
|
26bTG3mp1M/Wzv3t0jyWXiKZJmsTERaZhXXDbNl8WaztWenxZLstPp5pau8frDtVrNMM5cfTfpMf
|
|
3aunxxbes9d/R09Dp8ebJi09ptFr3jtt2WyrW9wy1Jx132mK+Xq9PotT0iIU19ntLtExa3T47T+q
|
|
6nBaYvsZstZ+cT/LeMnUi0TXffo1s2m8Ws2/OIMWk5Jib5L328rS2t94Sh5TV4ppklpW6PT6rh+P
|
|
NbebTHyas8E081mZy5P2W6OFhjxNTE/hr/LoRO0Kvo9dPqctKzMxEx1la5t3tdnjnMs4noievcrO
|
|
yZjeFF1OSnNV0OG62cn1GWffj7Mz5w05joovzY7xes7TE7w0xrjPeex6Ua+j1UarBFu1o6Wj0lsN
|
|
3JfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrU5o0+nvlt92P3BxuM6nxNRGCs+7Tv8
|
|
2hToxm1r3m9utrTvMsonqyt7XTmcja0u3O6FMfi5t/u0/lzdJM81p9O3zdvHTwsUR5+bfPqOfX1h
|
|
dqV+3O7bs1+T31oqmI3TEM4rvCdkDGIIhlFd2daboS0NXG2bD6bufxXU1vlmu/u4us/N0+L1tTSx
|
|
kr9qk7w89j1FNZMV3jxLzvaJ8mer+LSOZqK2xZotbvljfr/89U453rXt9lse081xZtNjx7TGKu0t
|
|
DHlrevSevaN5Y6+tJ8c7VRNMt63n3ub+6/R54rERMztDYy4a5omclYmfxKcenrjtHLvtPrCnVmdb
|
|
eFe3JXmjy6eS/DrMuLVYsta9Mdt++6qLxO+0dEc8UmInr18iUfReHcXrqccb9Z27Q61Lb13eJ9nc
|
|
1Z35rTvE9avY4bTkpG8xEfB05vYxqybc07R281naGMREdoT5JQqy9mply7Q3bV3iXG1eXw7TWSka
|
|
c258t7+tpT5/BjT7MfHqndz12Z+M4lMMKyziUJJiN1WSu9fku23RaOgKNJqbaTU1t9yelo+D0cTE
|
|
xEx1iXmM1Nt3W4PqvFweDaffx9vjDbGvxz+TP66QDRiAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAOJxzU73rp6z296zsZMkYsdr2naKxvLyObNOfNfJbvad1dXkaeOdpvsc2yuZVzfbfqybutwu
|
|
s5s8R92J3dvJb3tnO4HSMegtmt3nfZvYp8SZl0z45NfSK7onH1bNcfRFqnUKJr0Y7dVtq7prjEsK
|
|
0XVpEM6028mW20IHK41aPo3J6zs4ODhdcvPnvExFevNXpMOrxi/PlrTee7PLX6Pwa09uaNlKtHg9
|
|
dM3z5d7ReOu02nu0JzZMfblrv5R5uvrcdImZ26T1mYhxs1Os7RH93PZ7axuafNfLitvbaYU3yZYt
|
|
PXs9NwHhui1HBa5LVicsb81onrEuVqNNSuS8Y67dZ6xPZa59Il9uX41vEitImZme3q2Kxbxora0T
|
|
Md/ROSa4Ztkj7c9OafL5LuGYubmyX3iu/TfbdSfVnpvZLT/XZK233+Mbbva1xRXyiPk8pwbH4N6T
|
|
adq5a71n0tD1WDL4tPe6Xr0tDpz8YVnJHWEXYxbqlBedoef4tW0XraO09HdyztSZcbUz43C+ee9b
|
|
SVMaeOfqq7+jGckQ1Yz7+7v2RN/WXPXZPjci2+2yyJaVMuy+uSJlA2d+pNoVRbeDcSxyTE+TDDlt
|
|
pdRXLTynrHrDOyiyZeVFnY9TjvXJjres71tG8MnJ4Nqt4tp7T1jrV1nRL1x2cvABKAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAHJ49qfD09cNZ97JPX5PPw2uI6j6Vrsl/ux7tfk1mWr7dOM8iLdm
|
|
vfebREefRsWldw7SxqNbWbR7lPesrn3Vteo7dYjDpMGCvfbeXQ0uLlxRLRxROfUc34p6fCHYrXlr
|
|
EejqrjY8uzCYW7MZjdVKqK9VlaxCYrsnYExBMRMJRPZA8/xPHtmpP9W2xx76vhWOInvt/C7ike7N
|
|
vwzE9kcapGfhlevTaFbFo8RqJ5vy8/RoW09ek0msxHfp3dzNoLzp4zUmZpMbT8HJyYJi20X2n0lh
|
|
ZY1li/RaidBF4w2mK3jrHaFGp1lN+tptPp5IjBkid5mIp16TKu0abBPv33vPlM7z+iPdFNcWXU5I
|
|
tkrNce/b1W5db1nTaf3ax9q0fxDW1ebNk2phty1mOu09VOm8W19orEz23j1TwfSeERFuEYMddptW
|
|
d43dvBn21eKJ75KbW+cf/JcTgMxXTb3nbljz+TpcPmc2uyZO1KRtVtGVdi0bx07qJnllsRO6rNTe
|
|
N4XVamsy8mnvPwc3R2jPwe8TPbdlxXNOPSZfhWWpwO85OFzv57qrODkzeHntSe8Sn6Rv0a3EZ218
|
|
8nXekfr1a0ZLVnqx19dWb6demXybOO7lYMvNMdW9S/VVLo0us7tPHdtUtEwJiZU3jq2Jhham8CVG
|
|
PNODNTJXvWd3qcWSubFXJWd4tG8PK3pPd1OB6veLaa89Y61/u2xfxh5c/rsgNHOAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAANLimq+i6O0xPv392rdeZ4rq/pOqnlnelOkIt5F8Z7Wj27I2I6sb25YY
|
|
V1ImY3dbQ08LRc23vZp2j5OJG+XJWle9p2h6HHtbJXFT7OOIpX+7TxT31j5rycdTh+Dpz+XaG/sw
|
|
w18PHWseULN2trBE9UcrJKBhFU7JAQi0dEomegNDUYovM7x3jb5tO1ZvpbaTLtzRExWfWPJ08kbT
|
|
Ex5NXWYYyV5omYtHWJieyeDzuizfRs19Jn6TM7Ru1uMcJxZqTkw+5f4ebqa7SV1MR4tdrx2vEfy1
|
|
axqsNOTLjnLXytVXi3Xj8+nmsxTLM16d5npPyUzpekTtSK+U7vS6vQ/SYmK1vWPS1HOn2dvvvvE/
|
|
tDO5XlcO+LbfHSd/W3o6/BdDOXPTnj3Kz38rS6Wm4FNrRyRzTH3p6RH/AKvR8L4dXSzE3jmtHn5I
|
|
mbfqLV+m4dbLSsZInHjr3iI6zLpYaxS01rHuxHRHiT9mv6s67Vj1aqL6326MrWiYa+/Q54BxPaGe
|
|
XRZpj8MquB4+Xg8zPnB7SX30to379GxpK1xcHiKz5IS8xr8PLPixH2bftLTy05o6dHYyVjLhy0t1
|
|
izjZa3pMVv3iO/qz1G2L+NbSajbNyW7xLsY8kTDz+fJXFqKZN4iZnafi6WHL0iYlStI7OO+7axW2
|
|
crFl7dW9jvE9ULN+J3ZbdFGOy+AYWpEqN7afNXLj+1Wd23KrJVMvCzseh0+auow1yU7WhY4fCdV4
|
|
OadPefcvPuz6S7jol649Tl4AJVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAV581NPhtkvO0R+4NPi2
|
|
r8DB4dJ9+/7Q83Po2NTqLanNbLfvPaPSFDHV66sZ5ET0hRknyW2lTtMyouz0c8usx2n7s7vScKwx
|
|
zc1vu/y85p+maJh6Th+SOWeveXR4/wDLm8v+nX5mUWa9bbrInolmu5jdTNkxYFk2Isr3TuCzeGMz
|
|
+THdEyDDJO9Ja823rt2XWnya946pGvktDXta0ztWu/ybvLE9dkcoOf4GbJPWK1j49VmLh9JtE33v
|
|
Mevb9G7WsW8l1ccREISophiJ2jpDYpijbaOjOuOJ8ujOdqxsgVcsUjaETYvbaFFrgu5lVsm0yUtu
|
|
ryg43H5m+GIj1XcJzePoL4pnrWGtxmfchr8JvfHS1622if3QljzTTLes+qrNjrkiYtCzPMxnm095
|
|
YZJ6boS5teB49Tqscza97VtvWvlv8V/FOF34RrIxTM2xXjelp/eHoeA6XnzReY3ivX/0dfivDcfE
|
|
9HbDbaLx1pb0lOs+jO7K8Lis3cN+0NKcd9PmthzV5clJ2mF9J9GHHVL108dm1SznYr/Ft0tuhLb8
|
|
mNohFbMhLWy0mJ3rPXvDvcO1karBG8/WV6Wj+7kWrvDDBlvpdRGSnbzj1hpjX4z8mOx6UYYstc2O
|
|
uSk71tG7Ns5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZ2jeXneJ62dVl5KT9VTt8Z9W9xbWclPo+O
|
|
fft9qfSHEU1pv48ftYST23ZTDC/p0YtlVuvVjMbM5+LCZjYGWGdrTPxiHY4ffaf3cjTxz1v6xMS6
|
|
Olty2iXVj/Dk8n+ndrkhnGRo1v8AFdW3RCrZ5uiYsqrboncSu508yjmZRYQt50TfowYTbYGVrKrT
|
|
uTZjvukQnYhMIGVY2ZxPVWyrHVCWzXpVXkt3TE7Va+W4K7X3jv1auTNy3jdba0RZpamfroQN7Hk3
|
|
6wr1GTaN2OOJiu6Mu98NvgDi8Wy74d/yZ8PiPAiO2zU4nb6qIn1bugjfFE/ASp1ke9u15mbbRDZ1
|
|
Mb823kx0Ontn1OOkedoJCvT8I03gaKsz9q/WW+isRWsVjtHRKyrhe0XCfpWL6Vgr9fjjrEfeh5fF
|
|
feH0V5Dj3DPoOo+k4a/U5J6xH3ZZ7z3228evytOk7NvFbo0cdols47bSybt7HbddHVqUs2aW3Qnq
|
|
xVeu8LILR3SlZw3V/R8nhXn6u0/pLuPMXjeHT4Zruf6jLPvR9mZ8/g1xrvpz+TH7HUAaMAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAABRq9VXSYJyW79qx6yvmdo3l5viGs+maqYrO+OnSvx+KLeLZz2te1rZL2v
|
|
ed7WneZYWnZl5K72YV1xEyxmeqJljzIEWlVkszvbZp5soN3h2SJz3pP3odCnuWmPRxuERfJrZmtZ
|
|
mtY96fR28kbX3dXj/wAuTyf6bmK+9YX1s0cNtm3Sd4LFY2K23W1s16StiUJW7bp22RW3RluBuruz
|
|
mWEgrmCGWyNkoExKE1QlPmsqRDKeyBjaejWy2W3ttDUyz1QKslvehVqKTNosyyTvELabXptIJpaP
|
|
B39Ia2mz+JGpr51jdZefDx2hzuHZObNq58poJaGtjxJ2+LoaKP8ADRPo5+T3skx5OhpOmC0fBNQ0
|
|
5yTbn+bt8A0u9raiY6RHLVwY62mI6zMvaaHBGn0mPHt1iN5+aYVsACBXqMFNTgviyxvW0bSsAeE1
|
|
mkvw7V2w5Ote9besJx2er4rw2nEdNNekZa9aW9JeQjnxZLYskTW9Z2mJY7zz26fHrrdpbZsY7NGt
|
|
mxjvso1b9NmUwpx33XRO4K7VUTE1nmrvEx1bVo2VWiJE/XY4frY1WPlt0y17x6/FuPM0m+HJGTHO
|
|
1qu9pNVXVYt46Xj7VfRtnXXL5MfzexsALsgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHM4jxOMFJphmJv529Dq
|
|
ZLfjDjPEIx450+K3v2+1MeUOHSOWFc3nJkmZnf4yujpVlqunOeFpV2nctLCZUXRM7MJtsWlRkv3Q
|
|
ky5NmpWt9RnrixVm17TtEQnJabXisRMzPSIew9n+CRoccajURvqLx5/chfOest642OGcIpoOG2w7
|
|
ROW9d72+LQvXevyejcPUU5M+SvpLeOataraw2a0dLbLqTtK1G3Es4lVWWUSoldFtmcXUbpidgXzK
|
|
GEW3TuCUSncnsDFMMLSms9EC6J6FpVzbZE5ALy0809ZbFr9GtfrEoFMzuuwz0Ueey3HbaBLDXe7i
|
|
tMOfwWnP9I+NZbuttvhs1uBRtXPb4SDm3iIvf57N7Dbl0VrS5+XrltEd+Z1Jx7cNms9N4TURRw3T
|
|
+PrcO3WszEvZOD7P6aYiMlvu16S7y1QAIAABxOPcLnUY/pWCv1tI96I+9DtgmXl68Biy7/NtUu3+
|
|
O8HnFa2s0tfd75KR5fFyMWTdhrPHVnX9R0cd21S3Rzsdm1iuqs256wrmGcT0RYSx5d047X02SMmO
|
|
esd49YRE9WcdSXhZ2O1p89NRji9J+cei1xMc3wXi+KZj1j1dTTaqmor06WjvWW+ddcu8XK8BZmAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAMMmWmKu952UZ9XFZmuP3revlDTtzWnmvO8q3XGmfHb9ZanV3yxtWeWn7y4es
|
|
vPNtDqZJ6Ts5mppvdl/XXRMyfGvSNlu/RVvtOzLfoipLT1VTKbSpvfogRkvtDVyZOhkyvQcA4Dzz
|
|
XV6yvTvTHMfvK+c9U3rkW+zvA/D21urr789cdZ8vi9KDb45rejl8Rry6iJ/FV1HP4vXbBTJEfYt1
|
|
+UpiHM295bXsqrO9l8QkZ0lZEqqLeyBZHZLGvZkhIndADKJ3TMoqWQMZ6pjsxll2jsCLSrmU2lFY
|
|
36gieyu0LJk3jbsga0wdqzK20QpyztQGprL/AFMrOE05NLkt6qdVWZxNrSe5o9vWBLiUjnzXn0vL
|
|
q555dHt8HOwV928/1z/LpzXxbYccRvzTB+jucOwxh0dI22mY3ltIrHLWIjyjZKyoAAAAACJiJjaY
|
|
3iXleM8InR5J1GniZw2n3oj7s/8Ao9Wi9a3rNbRE1mNpifNFnVs65XhcWTdt47bnFuF24dm8TFEz
|
|
p7T0/pn0a+HJux1OOrOux08d1ndqY7tillVkzExLOk7yd4YxGwluViJhE45raL0na0dtlWO0+bZr
|
|
1TKi+2zptZGTamT3b/tLacvJjiY3XaTWdYxZZ6/dtPm1zrv1z78fPcbwC7EAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABhkyV
|
|
xUm152iAZWtFazNp2iGhm1Vss8uP3aevnKrNntqLdelI7VRHRnrX/HRjx/tZREVjZXeybW6KbWZt
|
|
pCZ6S08tN7Nmbb7zCrJtyoS5145bSx5mWafelr3tsKmS/o08uXyhlly7RPV2+AcBnPNdZrK+53pS
|
|
fP4ytnPVda4y4BwHxOXV6uvu96Unz+MvVxG0bQRG0bR2G0nHLb2gCUDX12LxtFmpHeazt82wT1gH
|
|
mMN4tWs+rcr2aEV8DU5sM/cvO3yb+O0csLUTSdrLphRE8tlkZI7Atr2ZMazDJVKTYSCawi7Ksq7z
|
|
1QERvLK3ZGPrKbyCrbdnMcsbeaa18/RhvvM7oGEwTG0JmYYTIML22a2e28xELM19oURPNO4lOem+
|
|
n3ZY5+prVnMc2GYU4/L4A0a15cNf6rz/AC6fC6+NxCPOuOu/5tHJTbHj+F5/l1+BYumXJMd9o3/d
|
|
MRXYASgAAAAAAABhlxUz4rY8lYtS0bTEvH8R4ffhmo6bzhtPu29Pg9mq1Gnx6rDbFmrzVsizq2df
|
|
zXkMWTeIbNL7tbXaHLwzUctvexWn3bmPL8WFnHVL326VZ91MfFVjvvVlz79kLrcf2m7j7bNHH3bl
|
|
J2SirLQoy4t1++7G0dBC/RanxI8PJPv18/WG241+alovSdrV6w6mDNGfFF4/OPSW2b1zeTPL1aAs
|
|
zAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAVZ9RXBTe3WZ7R6iZOpzZq4ac1p+UermZMl89+a/byj0Ra9815ted59PQ32hlrXXRjH
|
|
DpCLX6ML5NlNsm/ZRqstfdXzbsZt06sLZNvNB1Za8RDWyZdo7q8udq5Mu/mIMt4md2lmy7JzZuWJ
|
|
dHgfBL8RvGo1MTXTxPSPx/8AstJ1XWpIs4BwSdbeNVqq/URPu0n73/s9hEREbRG0QUpWlYrWIisR
|
|
tER5JbSccur2gCUAAAAPM8Sry8Uyz67fwuxbzVPGsE49XGbvF42V4M0TEL33ERnktsxpk3sumK2j
|
|
admFdPFZ33VS2Mdui2J3UU6LYlFSsN2O5NkCyJ6K7T1TEsbAsxdpReerKkTFGMxvYEz0rsqtbbpC
|
|
b2VT1QEzuwtbaGUxspuJU3neWdKoiu8rq12gCI92YatLcublnzbEz1aOptyZqTuDHLfxN6R0+t5X
|
|
qdJhjBp6UiPLeXl9NSMnEKxHa1+bb8nrlvxUAAAAAAAAAAABTqtNj1eC2LLXeto/R43VabJw/VTh
|
|
ydY+7b1h7ho8V4dXiGlmvbJXrS3xRZ1fGv5rzeHN02bEW3cys3xZJx5ImtqztMS3MeTeGFjqlb2O
|
|
8btql3NpbZtYsnSBLeiWfdTjtutid+ghherHS5p0+f3vsX6T8Fkw181d4lMvEWdnHaGnw/UeNh5L
|
|
T7+PpPxbjdyWcvAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAo1Oprgr63ntAmTqdRqK4K9etp7Q5d7Wy2m953lNrWyWm953mVd77R0
|
|
Za1104xxlN9lV8qnJl2a9s3xUXX2ybsJyRDWtl3YWydEC+2VRkzeW6q+T4tbJm+KRdfK1cmWZnlr
|
|
vNp7RC/R6HU8SycmCk7ed57Q9ZwvgOn4fEXtHi5/O9o7fJaZ6z1uRyOEezVstq6jiEbV71xevzer
|
|
rWtKxWsRFY6REeSRrJxz22gCUAAAAAANbX6aNVpL0npMRvWfSXlKamsRMVvXm+EvZXjmpaPWHzfL
|
|
oNRjzXicfWJ8phfPxFejx72x7xMzK+sXiNoiXlq+Pi6fWV/VfTNqfLJl/WTg9Pji8R70LqvMV1Gq
|
|
j/zcv6yz+lanzzZP1lWpelTET6S81Gp1P/Gyf90s412rjtnyfqql6asREdWM9+jz9eJ6yP8Az7uh
|
|
odZqMt458tpB1JvEViI3/RhzRt13/R1MNaziiZiJn5K9ZNceKZiIiQcu/WekT+iYrWI3lzdTrs+8
|
|
8uW0fJzcur1Np/zsn6g79phVaIeetqNR/wAXJ/3SwnUaj/i5P+6UD0ldonum161h5mNRqP8Ai5P1
|
|
lNtRqJjacuT9Qd22WN5aGeZyZd/KHJy59RHbLf8AVq31Gp/4uT9ZEvS8Lr/vSs2npzRtL1z53wK+
|
|
oza/HW2XJNd99pmX0Rb8VAAAAAAAAAAAAAAcHj/C5yV+l4I9+v24jzj1cLFk8nu5jeNpeW41wmdL
|
|
knU6ev1Vp96sfdn/ANFdTrXG+eq1q5F2LLtbZoY8m8d11bbSydErsYsm+zZrO/zcnBm226uhiyRK
|
|
EtrvCrJDOJTeu8A1MWX6Lqq5N/dnpb5O5ExMbx2cPNTeJb/DM/iYPDtPvY+nzhri/jDy5/W6AuwA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAa2p1UYo5adbz+xbxMlvqJ1OqjDHLXree0ejmzNrWm953tPmTPWbWneZ7yoy5YhjrXXTjH8s75N
|
|
mtkyxt0VZM2/m175N1V03yTKubMLXVXybeYLLX2VXy7eam+b0bOg4VquJW+rry4/O9uyZOq3UjVm
|
|
9r25axMzPaIdvhns1kzbZddM0p5Y47z8/R2+HcF03Doi1a8+Xzvbv+TotJnjDXkt+K8ODHp8cY8N
|
|
IpSO0RCwF2YAAAAAAAAACvUZYw6fJkntWN3k8dfHz2vLucdz8mkjFE9bz1+UOZosX1UzPm0nqI/W
|
|
MYo9FlcPNklfFGeH/NshLGun+Cz6PtHZtVZWlRLS+jxPkRpIn7rdoupHTdA5s6SI+7H6Mfo+32Y2
|
|
+To3neSIiZ7A0IjPXpXLePlMotGW3272t85datKzHZjbTVnsDj+FG/2Y/RlGP4R+jo20u7H6N1Ql
|
|
o+H8I/REY957R+jpfReiK6eOYHLtj2tttH6KrY/6Y/R2c+kjeJiFVtLG24hxpw7/AHY/RRkw9O37
|
|
O99Hrt1YX0tfOBLjcGp4XF8c+u8fs9c4dcVcGemSI61nd3IneN1orQAAAAAAAAAAAAABFqxes1tE
|
|
TE9JiUgPKcX4RbRXnNgiZwWnrH4XPi28PdXpW9JraImsxtMS8pxXhF9DecuGJtgmf+1TWW2N/la1
|
|
L7N7T5e3Vy6W3hsYcvLbqzbO9jvvCzvDR0+XeO7crO6FmGSvRThy/RtVXJ92elvk2rRvDUzU7pl4
|
|
izsd2J3jeBpcNz+Lg5LT7+Pp+Xk3W7js5eAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADs0NTrN96Yp6edkW8Wzm6+LNTq4pvTHO9vOfRoWtt
|
|
1mes95YWvs1s2fZldddOczLPLn2ju0MmebT3YZc2/mpm3qqllN1drsbZIhr3yzvtHf4AsvlYYseb
|
|
V5Yx4KTe0+UQ6nDvZ3UazbJqd8OKeu33peq0eh0+hxcmnxxWPOfOfm0mP+steT/ji8N9mKY9suum
|
|
L37+HHaPm9DSlaVitKxWsdohI0Y22gAgAAAAAAAAAABXnyRhw3yT92Nwef4xm8bVzET0rPJH5d12
|
|
CvLhho3rN9RWs9Z23n5y6O21YhrVYbdGOCfrrLPJRpv863zVS6FS09SvZj3lVZZRdPSqmnSWdrIE
|
|
ebOkK4ldTsgW1WKqd1oMZhEVZyRAImOjGI6rJ7IiATNd46qL02bHkiaxaoNGY2n4ImPgtyV2n0Vo
|
|
Gvlx7x2beiyTk08RPevSVUxux00+Fn2n7N+n5rRFb4AAAAAAAAAAAAAAACLVres1tETWekxKQHlu
|
|
L8InR2nPp43wz3j8P/s5dLveWrFqzW0bxPeJeV4xwmdFec+CJnDM9Y/CrY1xv8qvTZ+WYdbDk5oh
|
|
5zHk283U0eo3jaZZ2N5XYjrCnLSJhOK+8d1kxvCqzSwZvousrb7k9LfJ3nB1OLeJdLhufx9LEWn3
|
|
6e7LXN9Ofy5/W4AuxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAETaKxMzO0Qi9646Ta07RDmZ9VbPbaOlI7Qi3i+c3TPUaqcu9adKfy0722ZXvFa9
|
|
XO1OrjrESxt66ZJmcjPUanlidmhkzTZVfLN5VWvsC2b7R3U3yqrZZtO1esz2h2+F+zWTUcuXXTNM
|
|
feKR3n5+iZLVbqRzNJo9TxHLyaekz62ntD1fDOA6fQbZL7Zc/wCKY6R8odLBgxabFGPDSKUjyiFj
|
|
SZkYa3aALKAAAAAAAAAAAAAADQ4pl2pTFH3p3n5Q33E12Tn1eSfKscsLZ+orS00eJqbW+Lfnu1tF
|
|
XaJnZsz3WpCfsyp00fWSvmPdVYOmSUDd8kR3InoQosy7JmUX7MdwZ17ro7KKT1XRPRAsrO0rYndr
|
|
79V1ZBaQiJ6JgCSIJASwrO07MpV2nqBlrv1a1o2bf2qtfLXaQUTO0sb05o3jv3ZXhjS20xEphW5h
|
|
yeJjjf7UdJWNKLziyRePsz0lux1SgAQAAAAAAAAAAAAAADG9K5KTS8Rato2mJZAPIcU4ZbQZuekT
|
|
OC3afT4NXFkmlntc2GmoxWx5K71tG0vHa/RX0GpmlutJ61t6wrY2xr8dXS5uesN+tt4ef0eaa223
|
|
2dnHk3juyreM81OaFGiy/RtZET9jJ7s/2bdutd2jqKeic3iNTsd8a2h1H0jTVtP2o6W+bZbOO+gA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABje9cdJt
|
|
adohGTLXFTmvO0fy52bJfU23t0pHaqLeL5xdK9Rnvqb+cUjtCi94xxvK3JetKuHrdZvaa1ljb10y
|
|
cnIs1Wt3naJc++TmVWvMz1YWybfMGdsm3eWek0mo4jm8PT0mfW3lDf4V7P5tdMZdRviwfvZ6/TaX
|
|
DpMMYsFIpWPTzXmf+steT8jn8L4Dp+HxF77Zc/4pjpHydYGjC3oAAAAAAAAAAAAAAAAADG9opS1p
|
|
7RG7zszN6WtPe0zLua+3Joss/wBOzhzG2OsL5+IrY09dsSyYRijbHEMvOChb7KjF0yS2LQ169Mso
|
|
S24noyrPVXWejNVKbTuw3T3REdQWU6LYlVvsyiUDPfqupPRr79VuOQX1lZEqoZxIMksd0gT2VT0l
|
|
bPZVbuCaW8i8bwr32WxbcGnkjaZa9p2ndv5qbw5+aNugLItF6TEtvTX5sMb969HMpfazc0d9stqe
|
|
vVZDdAQAAAAAAAAAAAAAAAADV1+iprtPOO/2u9bektoB4TJTJpNRbHkja1Z6uto8viVht+0HDvpG
|
|
H6Tjj6zHHvbecONw7Ltfkmeqmo6Ma69DXbbZTkr1mGWO3RneOaGbZRoM30fVzSelMnT83aef1FZ7
|
|
x3h1tBqfpGnjmn369LNc3sc3kzy9bQCzIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAa+q1dNNXr7157VhGp1Xh70x+9f9ocy283m1p5rz3mVbrjXHjt91lz
|
|
5c9+fJ1nyjyhdM8lZlOOIiqrUXikd+kMreunnI5XEdX4dZiZcG+XmtNl/F83PeeWWHDOGanieSKY
|
|
q+5H2rz2hMzWd1Iqx1yajJXHhrNrW6REeb1nCPZumn2z62Ivl7xTyr/6uhwzhGn4Zj2xxzZJ+1kn
|
|
vLoNJnjHW7TbbsAszAAAAAAAAAAAAAAAAAAAAaPFrbaSK/itEOXt0rDf4xb/ACa/GZacRvaF58Q2
|
|
IjasQnzPIhCU92tMbZGzHmotG10C6nZkwpPRmipIllEbMIZIE7solgmJBnCyk9VMM6z1BtVllEqK
|
|
z0WRILYlluriWcSDJVbusV27gwInaSWM9ECyZ3hqamnSWxFmOSOaqRx725bNnSZNs9J+OynVY+WZ
|
|
YYr7TE+nVaIr0Ais81Yn1hKAAAAAAAAAAAAAAAAAABExvG09peU4nov9n66L0j6q/WPg9Y1OJaON
|
|
ZpL0+9HWs/EWzeVz9PbmrEtnyc3h9reHy26TWdnSr2YX6657ijLXpLX0+onSamL/AHJ6W+Tbv2aW
|
|
ekTv16JzeI1Ox6KJiYiY7Slz+E6jxdN4dp3vj6fl5Og2clnKACAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZ2jeQRMxEbzO0Q08uqtkma4ulfO3r8lefUePMxWf
|
|
cjy9WvlzVxV6T1Z61/x0Y8f7Wc7Ur1lqVy+LqOWJ2hp6rXddon5rOF1tfmz5OkT0qzb8dWbxjp1c
|
|
biuuilJ5Z6r+IcQrixzEy8zl1E6rNt1tMztFY81sztU1eRucN4ffi2p5esRM72n0h7rS6XFo8FcO
|
|
CkVpX082nwXh3+z9FWLxHi36328vg6TZyW9ABAAAAAAAAAAAAAAAAAAAAAADj8Unm1tK/hqppHvw
|
|
y1k8/EMk+m0GOPeafiFpCZYwolnXspvHvLa9mF46gmnZmwozRUiUCBKYYsoBLOFbKAX0llEqqyzi
|
|
QXRLOJVRLOOwLIljZMEgrlhKyYYTAK5nZPN0RZjugUanHzVlz6xtLq361c+9eXItPpXX0dubTU+E
|
|
bL2lw2++O1fSW6m/VYAISAAAAAAAAAAAAAAAAAp1GbwcfTreelYEydcuMcRrM/L9nnlsV6wqpi2r
|
|
tv133mfWVkRyRtEdGFva7MzkYZNoamWN4bV4mYa9qztKIujhVppxGI8r1mJegeZpknBqKZY+7L0t
|
|
LRekWrO8TG8Ns/HJ5ZypAWZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAADS12fp4VJ6z9qVuq1HgUiI+3bpDl589cOKZmevqprXPTbx477rDJlrhr1nq4+s182tMRP
|
|
RqaziXiZJrWekNG17ZbxWJ336M5LXRbI3dLTJrs07RMY6fan1dHLrowY+X7MVjt6N3R6Kul0EbWm
|
|
s7bz8Z+LnabQX43r7Y53php/mXj+Dnv0f1JO1x/8ZxbUzj02O15mfLtD13AvZqnDds+pmMmo26el
|
|
XX0Wh0/D8EYtNjilY7+s/NstpOOTW7QBKgAAAAAAAAAAAAAAAAAAAAAADG88tLW9I3BwJtz6nNf1
|
|
vK/DHVqYJ3pzT5y3MPZeojOWMQylEKpTVjZnDCwkqzYQyRRICATCITAJZQxhMAshnEq4ZQC2srKq
|
|
qrIBZCWNZZgwswmFloVyCu0dFcx1WyrtCBhv5NTPHXds2U5o3hIz4ffbPt+KHUcTSW5c9Jme0u2v
|
|
VYAKpAAAAAAAAAAAAAAAAYZctcVOa35R6tLrltN795/YvknNqrfhpPLH92V5isd9mWq6fHjk6rn0
|
|
ZxG8KK5Jm/wbVZiYZtqrmkqL023bkxvCiY3lJHNyRG81mHS4Rn5sNsNp64+3yaWaNrzOzHBl+i6q
|
|
mT7s9J+S+ay8mex6EIneN47SNXKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAImYiJme0JafEs3h6fkidrZOn5eaLeJk7eOdm1Hi2vmtPTry/CHmOJcUvmvOPF1n09Pm
|
|
6HF9ZGm01qxO3R5vSY7XwzmzTy47zzTEd7en5Mfvt2/PURWdo3tvPrPlKymbktFqTtMTvHzbOLDG
|
|
f63JXbFX7FdnoODcDprZpq9TjiMMTvSn4vj8l5fxnrk91saPSa7i2hpOfbTVt5x1m0fLydzR6PDo
|
|
dPGHBXasd585n1lsRERG0dIF5OOe6tAEqgAAAAAAAAAAAAAAAAAAAAAAADX11+TRZrf0y2Gjxe22
|
|
gtH4piP3TPpXKwxtjhuYo9xq442iIblI2pC1RET2ILd9kxCqRjZmwlCSEohIJAQAAJZISDKGUd2M
|
|
MoBnVbVVCyAWVWeSuqyOwIlXZZKue4MJV2WWYT2QKbKL9YlfdRdIo35b7/Hd3KTzUrPrDh27uxpb
|
|
c2mpPwX/ABX9XAKpAAAAAAAAAAAAAACekTIp1eTwtJmv+GkyJn1oafeazbfpMzLR4jq/o8b823zX
|
|
6XNF8ERCvTcNpxLV5LauvPhx9Irv3lhztdtv8TtaWLicXrt03jzjzb2k1nid56ty3s/w+a7Uwzjn
|
|
1raejlarhmbhl/FpbxMO/fzj5p/ixSeXOvTtRfeI280ZI26tfDm3pWe63LaZx7qtGvniJ6tPLvOK
|
|
fOa9WzbJvTbza02jl3n5SSljscK1MajSxWZ96nSW88xw/VfQ9XMT9nfa3yemid43jtLeXsce88qQ
|
|
EqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADia3UTm1l4j7OP3Y/u
|
|
7Vp2rM+kPJW1PhYcmS0+9MzKm/jbwz31weMzbV8UppazPL9q0/BF4rk1GLDSNqxPWPhCnHmnNrtT
|
|
qPKteWPm6U6OdHaZvO+SaRNvhv12Ub/q3FhtrNVj0uKOt56z6R5y9zix1w4qY6RtWsREOJ7L6OKa
|
|
S2rvX6zNM7T6Vh3mmZyOfya7eACzIAAAAAAAAAAAAAAAAAAAAAAAAAAczjVvqMVfW/8AZ03I41bf
|
|
Lp6/OVs/UVrY47NyOzUxd4bUJpEbb3Z7IiOrKIVSjZhMLJYyhKIgmGUQSDESIEbJEgQmCITEAmGU
|
|
IiGUAyhZVhDOoM4Wx2VQtqBKuyyWEgqlhKyyuyBVaGtkbNmvk7A15l1eH2300R6TMORPSXT4ZO+O
|
|
8fFefEX63gEAAAAAAAAAAAAAAAq1WPxdLlp+Kkx+y1Fvsz8gjhaDauGK8sx07y3OE3m1tT6RaP4c
|
|
vU6yMNKUx73zT0ilY3l2eF6a+m0kRl/zbzz3+Ez5M8z26fJruW6wzYq5sV8d43raNpZjRzPPaTmx
|
|
5b6bJ9rHO3zb2WJ8GWPEscY9bgzxH2t62n19GWW0eHOzHU5XbjXZ1x8WTnz2iZ7S2M1IjH2+LX0V
|
|
KTqs8zO9ot0j8nUthi1J3UaOFMTfLFo6xMbS9BwHWTqdHOO8+/hnln5eTjYMFo1WTH5VnePzXcIm
|
|
2k4zlpPSmXy/hfF5eMfJns69OA2cgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAADG/2LfJ874rW845mubliY7bPoto5qzHrDz0+yePNF41OotaJ7RWNtpV1OtfHqZ715fhu
|
|
j8adNpcVfeyzE2/vLuanhOu1nEctIxTTFa/+ZPbZ3eHcF0vDbTfFE2yzG03t32+DokynXl9+leDB
|
|
TTYKYccbUpWIhYCzEAAAAAAAAAAAAAAAAAAAAAAAAAAAAcXjE/4zDH9M/wAu04XF5/3jj/0f3Wz9
|
|
RUYmzDWxS2I7FSyjuzY1ZKpRKEygEwiWUIkGIk2QJNhKQhMIhkCYZQxhlAMoZwwZwgWQshVCyATL
|
|
CWc9ldpBhZXLOVdpQK7NfJPRdaWvknoDVvPvOnwuel4+TlXn3nS4VPvXj4QtEV0wAAAAAAAAAAAA
|
|
AAAAAVV02CmTxK4qRf8AFFeq0AAAanEsfPpZmO9Ji0NDLfkwdOsulrumiyzHlVzJrz4Ovoy26vB8
|
|
cTBa9NffLtMY77Rv8Yegx5ImkKdJoY1HC81Y+3OSbVn0mGGkmbY45u6tnrrTOu2xGO0RxCd+nNVj
|
|
qKxTV1vH2pjaGtnyzXXYdo96ZmGXEMk15b7/AGZiVerWPTYckZcNbx5wzc7hGbnxXxzPWk7x8pdF
|
|
0S9jh1OXgAlUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAcPjEf4/FP9H93ccXjMf4vDP9Mx+62fqKrx+S+GvibEFSsqyYwlVK
|
|
ZYsmIMoRKYJQIPIEiQ2ATCUQygCGUIhMAyhnDCGUIFkLIV1ZxIMpVWWSrsCuyqyyyq09ECq8tfJK
|
|
66jJ2Bp5J6upwn7dv9Lk5J951uE/av8AJaIrqAAAAAAAAAAAAAAAAAAAAAAq1Mc2myxPnWf4cmtu
|
|
XT9fR0tffk0WSe28bfq5Wbamm3326MtunwfK6PCv/AxPraZ/dz9PO97/AOqf5dHhdZrw7Dv3mOb9
|
|
XOxRFM+avpe38mvkPHf/AFWlrKba7Tzt99ZxKkfR7euyNXMTrtPHfa0z+zPiM/UR8Zj+Wbdu8HpN
|
|
M2bfzrV13M4dO2pyR61dNvj44/J/oAWZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADj8bj63BPzdhyeNx0wz8ZWz9RWri7Nmv
|
|
VrYu0NmqaRZHZlDGGSiwxZSgCEkCBCQSCQBMJRCYgEsoYx3Z17AlMIhlCBnDOGEM4AlhZZKq4KrK
|
|
7LLKrIFN2vdfZReAaObu6/CO9vk5OePR1uEd7fJeIrqAIAAAAAAAAAAAAAAAAAAAAGtxCk5NFliI
|
|
3mI32+XVyNTyZOHTee946PQKPoeDffw4777eW/yVs60xv+ZxOnr4Okx1t05KRv8Ao41Z5q3yed5m
|
|
XY1szXRZ5jvFJ/hxItP0aOSN9q7yrtr4f2tHFM5+KT16Yq/vK/iGSbXw4vO14UcPx5MGfNbPG18m
|
|
1oj4THRsTw7VanPXVYpi3gzMcnrvCnG11JOupwuN8+a3pEQ6jT4divjxWnJExa09pbjbM5HHu90A
|
|
JUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAHM41H1GOf6nTc/jEf4Ws+lls/UX45uGekNujTwdm5RNIthKIZKLDFlsiQIShIC
|
|
EgCUJ7AmGTGO7IDzZQhMSDJMMYZQgZwzhhDOATuqssmVdgVWVWWyqtCBTeVF19lF+wNLNG7q8I+9
|
|
8nLyupwnt+S8RXUAQAAAAAAAAAAAAAAAAAAAAAAItWL1mto3iY2lyrcLyUxzix2ia2nvPeK+jrCL
|
|
OrTVnxpanhuPPemSs8l6RtE7dJj0ldpNP9GwRSZ3neZmV4cR/Vs4AJQAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANHi1d9H
|
|
M+kt5ra+vPoskfDdOfqK4mn7Q3aNHBPZu0W0RdDOGFWcKLCJZeTGQQlCQSgASBsCYZQxhlAJTAmA
|
|
TsmAgGcM4YQyjsgRLC3VnaVcgwsrt3Z2V2QK7tbJ1bN5a9waeWO7p8Knt8nNyebpcK8vkvlFdQBA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAK9RXmwZI+ErEWjesx6wQeZwejeo0cccuW8
|
|
elpblJaaRGxVnCuss4ZrMvJEgCAASISCQIBlCYYpieoM0wx8k7gzIRueYM4Z79FcSy3QEsLJmWFp
|
|
BjaVVpZWlXMoGNmvkXXlr3kGtknu6XCf7OXkl1OEdl8orqgIAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAHmskcmtzV/rls0U62OXiWX4zErcc9GmkRfWVkSqqziWayxCPIANwBIhIJSxS
|
|
CRG6dwZwlhEs4BluMdzfqgZxLLdXuy3AmVdpZTKuZBjaVVpWWV2QlhZRdfZRcGpl7urwfrzfJy8r
|
|
rcH61vPyWitdMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHA4nHLxKZ9awnH2ZcY
|
|
jbW459aq8fZpfiI2IZwrqzhmsz3Ebm4JN0AMhCQSIASndiAziWUSriWcAyRujc80DM3RCfIETLCW
|
|
UsZEsJYSslXZAwlTddPZTkBp5e7r8Gj6rJPxhx8k9Xa4PG2C8/FaK10QAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAcfjcbZMFvnDWx9m5x2PqcNvS+zSxT7sNPxH62YZQwqzhRZO6UCB
|
|
KUAJTux3SDIRuAncQAmJZRLBMSgZ7iIAZRKd2DICUSlAljLCYWMLIFVukNfI2bNbIDTyT7zu8Ijb
|
|
Sz/qcG/2nf4T/wCE/wD2WnxWt4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHL9oL
|
|
+Hw2cm28VvEuPptfgyVj6yIn0no7/FtJfW8NzYMe3PaPd39d3iMug1WktNc2C9dvPbeP1aZ9xF+v
|
|
T471tHu2iflK2HkqWmvaZj5Surqc9Ps5bx+alTHqYHm68S1Vf/NmfnC2vGNTXvyT84Ql6A3cSvHM
|
|
sfaxVn5Ssrxyv3sM/lKB1xza8bwT3pePyWV4tpZ+/MfOEjfGrXiGlt2zV/PotrqcN/s5aT/+wLRj
|
|
FontMSlAlKEgndO6IAZQljDIEgeQljLCzOVdkCu/SGrkbF56NPNeKxMzMRHxENe0+89DwuNtHHzl
|
|
5PJr8NcnLW3Pbf7r1nCZm2gpae8zMrz4i/W6AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAETETG0xukB4HVaeMHEtRi26RedvkyjBSfX9W77QYvC4xz7dMlYlrU7M929dWJLFc6aPK0q
|
|
7YLxPS0S22FlP6q38Zac0yR92s/KVc3tHfFf8tpbcsLRvB/dR/8ALLVnU0r9uL1+dZI1mnmdvGpv
|
|
6TOy6ym+Oto2tWJ+cJ/tW+KLK5KW+zes/KU7tG+h01p64qx8Y6NXNo6Y+uPJlp8rLf0rfG7MXtHa
|
|
0x8pZxqs9e2a8f8A7Oj7HaTHn0+f6RWM23LETfr6vRW4PoL99NT8ui7F4+vEdXXtnt+fVbXjGsr/
|
|
AOZE/OsPS29nuH27YrV+VpeV9pdPXhOtw49NG9Mld55+vXcTPd42I47qo7xSfyWV9oM8d8VJ/VxM
|
|
d8l46xWF9cV7en6o/qLfxp2I9ob+eCv/AHMo9op89P8A/wBORGmyT5R+qfo2X8P7n9Q/jTsx7RR5
|
|
6ef+4/8AuHftg/8A6cWcOSO9J/WEbWr3pY7Efzp2Lcfv5YK/9zWy8d1E/ZpSv5Oba1/+Hb9lc+LP
|
|
bFt87I7E/wAabWbiurvEx4nL/pjZzc2bJkn372t85ZXx55/BX85lucC0vPxnTxlnnjm32mOiZqUu
|
|
LJ2p4TwnVavNWaYbRTfre0bQ99pcH0bT0xb78vmtiIiNojaErMwAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAHnfarF7umzRHaZrLjYrdIen9ocPi8JyTt1xzF4eUw23rCm3R4r6bMy
|
|
wt6kdTaWLdjswmNoZontsCm0K5XWjopnuDC0dGpqG5bs08/daKV672MjbSaif6oh6Z5f2LtvptRX
|
|
0tEvUN3Jfo8f7cYve0eX4zV7B5z20xc/C8eSPuZIRficfXlcPaG7ino08HWIbePpLF2NuiyOyrHK
|
|
3fZFSwuovHVfaVF4QK5YWTM9UT0EKry6Ps1Tn4zjn8NZn9nOtLseydObiWW34cf918fWfk+PYANn
|
|
KAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAq1WKM+ly4p+/WYeBxTNd6zG0xO0
|
|
vobw3FcP0bi2em20Tbmj5Srr418V9sa2Z7qKyzi07MXUylhaU7yjqhLCeiq3ddaFNxFYW7NLNG8t
|
|
zya+WO6Va9J7FW66mvwidnrXiPY3Ny8RyUn71Jj9Ht3RPjk19HK9pMHj8D1ER3rHN+jqqtTjjNps
|
|
uOe16zAifXzfTz7kNyndpYazS9qT0mszDdoxrsi6m8LazMq6zDOsq1ZEyrt1WWlXaUCqyq0rbKbi
|
|
Fdp6PReyFd8uqv8ACsfy83aXrPZHHto89/xX2/SP/dpj6y8vx6EBq5gAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAB5n2q03LfDqqx39y39npmlxbS/TOG5se29tuavzgWzeV4mtui2
|
|
O3RRSY2hdVhqO2MvI36iu9lUsrSrvDHn6spnmSiq5jooyV6tq1VV69RC32byTh43h8otMx+r6I+Z
|
|
aK/g8TwX7bXh9Mid4iW+fjl8n1ICWb57xLBOm4zqse20Tbmj8+qKdnS9q8PhcTw5tumSm0/OHMxz
|
|
0Za+uzx3sX1t0Zxurr1ZxvspWiZYWZbsbT0QK7KLrZVZJFaqt5vbezNOTg9J/FaZeJns93wCvLwb
|
|
T/GJn92uGHldIBowAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADuAPA67F9H4l
|
|
qMW20VvO3yRWW97T4fC4rXJHSMtI/WGhVlue3b473K2KzMML4+62tujG9pnozXaOSOVFMnVbmq1t
|
|
trJRW5E7wwvUxTvCyY6CHOt7moxz6Wh9PxTzYaT61h8x1MbZK/OH0zTf+Fxf6I/htj45vL9WgLMn
|
|
mvbPFvocGWO9L7fq85p5maw9d7VYvE4JkmPu2if3eW0+PasdFNOnxfF1Y2hlykRsmY+LJ0MZjZXa
|
|
eq2eyi8oQTO0KLdZWzPRjWu6VaqtHR73g0bcI0sf0Q8Nkq93wqNuFaWP+XDTDDytwBowAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAef9q8HNpcGaI60vtPyl56k9Iew49j8ThGe
|
|
PwxFv0l4zH2U26fDfTYiyJljvsjf4sm6vJ1hrXjq2MkqLdZEVbgbMx0auGdmzNt6iHN1Ub5af6of
|
|
TdPG2nxx6Vj+HzaaTm1+nx/iyVj930ysbViPRrj45vL9SAuyc7j1efguqj+jd4/T33rD3HEcPj8O
|
|
1GP8WOY/Z4TTT7sKadHhbcsZnaCJ3TPZk6VdrKbTutmP0U2nqgrGOsr8deiuI2X09EqKM1dt3uuG
|
|
f/jdN/06/wAPE546S9rwud+Gaaf+XH8NMMPK2wGjAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAABrcRp4nDtRWPPHP8PCYusPoWSvNjtX1iYfPuWaXtX8MzCuvjfw32siu8ptXoxi
|
|
0wy5t4YulReqmazu2skbquURWFInddM7VYRGyL291KFnCcfj8e0le/Lbmn8n0N4b2Ur4nHLWmPsY
|
|
5e5a5+OXyXugBZmiY3iY9Xz7NjnTa3Ph/BeYj5PoTxftFg8Hjk2iOmWkW/Psrr418V5WrWd2faFc
|
|
V2jdnEMXWxntupmN7NiYU27iWML6dVMVnddjgVqMsdHr+CW5uE6f4Rt+7yuSsTDv+zWXn0WTHP3L
|
|
/tK+GHl+O0A1c4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8Dn93W56/wDM
|
|
t/L3z59qp24jn+OS38lnpr4r7ZxHQ2TEstt3PXUrt27K57rr1VT0BjKnJPRbMqMs7QlV2fYvHvrd
|
|
VknyrEfu9m8f7FZI8fVU85iJewbT45NfQBKo817W4eulzxHaZrL0rje09ItwqbfhtBVs3leai8RD
|
|
KLw1sduesL606dWFdsZT1jdhNeq6K9DlhCVUU6s4jZnt1YzAhnM71dH2bycmszY/K1d/0c6OzY4R
|
|
fwuK4p8rTstn6z8k7HrwGzkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHz3
|
|
Vxvr80/8y38voTwGpj/F5/8AqT/JfjTx/WVeyY6FPspc9dZPVXaOq2WEwIUTVRmjo2rNfLHRI3vZ
|
|
DJycXtX8dZh7t879nsnhcbwz23tt+r6I2nxyb+gCVBzuPY/E4PqI9K7ui19fTxNBnp60n+Aj5/pJ
|
|
3jZu1aOnnltMNussdfXbm+l3ZM9URHREdZVXTuT1Nk7boQiOkJw28PU47/htEp5eivJPLMTCZ9Vv
|
|
x7mJ3iJ9UqNHk8XR4b+tIXuhxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD
|
|
weqjbWZ4/wCZP8vePCaz/wDIaiP+Zb+UX408f0r9lOxWOifJhXWjfyYWllPRXYQxnrCrJHRd3YZI
|
|
6A1NJecHEsN/S0T+76bE7xE+r5dk93LW3pL6ZpMni6PDf8VIn9m2fjm8s9rgFmQxvHNS0esbMiew
|
|
PnHLyai9fS0w2aNfUTtrs3+uf5bGPqy068fF227KtSsdFlKqNGMV6myyY6sbdIQI8tlOWOi6Jhhk
|
|
j3RD0vA8nicMx9etZmHRcT2Zyb6XNT8N9/2dt0T449T2AJVAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAHhdfG3E9TH9cvdPEcXjk4zqI/q3L8aeP6xr2TsxpLOekMK6mFo6qpXSrm
|
|
OqBixvHSVmzC4OfqK7S9/wAByeLwbTW9K7fo8Fqo6Paeyl+fglI/Da0NcMPK7QC7AAB8313TiOf/
|
|
AKk/y2MHWrX4jG3E9R/1Lfyv0/aFNOrHxuU7LI7MMayGTVlHWUXhNe6Z6wIUsb9d1m20q7dkDpez
|
|
N9tRqKT5xEvRvKez9+Xis1/FSYerb5+OTyf6AFlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAB43j9eXjN/jWJ/Z7J5L2mry8Upb8VIF8f6aGOey2eynHvOy7bowrrYSxZSwQJ2YXZ
|
|
92N4BoanrEvVexmTm4blr+HJ/aHltRHSXofYm/1Wrp5RaJaYY+X49WA0c4AD51xONuKan/qW/lbp
|
|
+0MOLRtxbU/9SU4J7KadWPjep2WQrr2WRPRk1TvsndXMpiRCb9FNu0rbTuqvKBscCjfi9PhWZeue
|
|
V9n434rafTHL1TfPxy+T/QAszAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHmv
|
|
avHtfTZfnV6VxPajHzcNrf8ABeJFs/XnMcr4no18c+6vr2YadkY2YM57sEDLyY37Mo7MMnYGlqO0
|
|
vQ+xNfqNVb1tEfs87qZ2rL0/sVX/AHdnt65P7Q0wx8vx6UBo5wAHz/jUbcX1PT78qtO2vaCnJxjP
|
|
8Zif2amnnspp04+OjWejKJ6MKdmcMmyJn4m5ZHzEVPMwtJv0VZLbQDqezcb8RzT6Y/7vUPM+ytZt
|
|
n1OTyiIh6Ztn45N/6AFlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABocbxeLw
|
|
nUR5xXm/Rvq8+OMuDJjntaswEeBxT0bNZ6NatZpNqz3rO0rqsdO3PxlaWEMpY+aqWXkryT0ZT2V3
|
|
7A0dVPuy9f7G124NM/iyT/Z4zWT7sw957MYfB4Fp4/FE2/WWmGHldcBowAAeM9qKcvFeb8VIly9P
|
|
0nq7ntbTbVYL+tJj93CwT76unR4/jo0nozhhTsy3Y1sWljM9Ce7HyQIm3RRlttVbaWrnt0Sh6n2U
|
|
x8vD8mSfv3/h3XN4Bi8Lg2nj8Uc36y6TeOPXugCUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAPD8RxeBxXUU26Tbmj8+quro+02Lw+I4ssdslNvzhzazvDPbq8d7GW7Dfqz2VzG
|
|
0s2qd+iu/Zn5Ksk9BVztX1mI8930zh2LwOHabH+HHWP2fNYp4+vwYvxXiP3fUqxtWIjyjZtj45/L
|
|
faQFmQADzftfj3w6fJ6WmHmsP23rvaqnNwqLfhvEvIYZ+sV038bo0noy36MK9oZQxrdMyrlnMbMZ
|
|
QKrS1M07zEestq/RRjr4utwY/wAV4j91p9V18fQdJj8LR4ccfdpEfsuREbREJbuMAAAAAAAAAAAA
|
|
BAJAAAAEAJEAJQAJQAJEAJQAJQAJEACUJAQlAJEAJQAJQJAAAEAJEAJBAAAJAABAJEJAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABwvanDzaPFmjvjv8A
|
|
tLztJ3h7HjGHx+FainnFeaPnHV4vFbeIU038VbHeGF+kso7Mb9mTdhKnLK3dRm7SIrHhGPxeP6Sv
|
|
9cT/AHfSnz72Zx+J7Q45/BWZ/Z9BbZ+OXyfQBZQABzeP4/E4NqI9Ii36S8Ng/wAx9C4jTxOH6ivr
|
|
jn+Hz3B/mQi/GvjdCnWNlsdI2V07LIlg6USrt2ZzZXMoFV+zPhGLxeOaavpbm/RVltEN72Yx+Jxm
|
|
b7dKUmf7L5+s9/HtRA2cqRACRACRACRACUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAACQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQCQQCRACRACRCQBCQBCQB
|
|
ACRACRACRACRACL1i9LVntMbPATTwdRkxT3pea/u+gPE8Xx+DxrPHlaYt+qNfGvjvtXXsi0dOrKk
|
|
dEXjZg6VMtbP2bMtXUdpEV0/Y2nNxbNf8OP+727xvsXH+N1U/wBEfy9k3nxyb+gCVQAGOWvNivX1
|
|
rMPnGGOXNNfOJ2fSZ6w+dZKeHxDPX8N7R+6L8a+L63KdoZ7q6zvEMpnowdKJ6ywmWUyqvIKM0vQ+
|
|
x+D6rU55+9aKx+TzWa36vbezmDwODYenW+95/Nphj5L6dQBo5wAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAEiAAAEoA
|
|
AAAAAAAAAAAAAEAkEAkRuAkQbgkQAkQAkQAkQAl5T2nx8nEMOT8dNv0l6pwfarHvpcGWPu32/WCr
|
|
YvK4mOem6b9mGKd4Z3idmFdka0y1c892zfpMtLPaNpEV6D2Kj/Eauf6YeweQ9ieuTVz8K/3evbT4
|
|
5NfQBKoAA8FxCvJxrUx/XMvevD8Zry8fz/Haf2RfjTx/6RSOnRMyypHu9kXjowrqVSrvPRnZVl6V
|
|
kK0775MsUjvadn0nT4ow6bFijtSsVfPuFYvpPGtNTy54mfy6vorXDm8l9pEC7JIgBIgBIgBIgBIg
|
|
BIgBIhIAgBIhIAgBIgBIIBIAAhIAhIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJAAAAAAAAAAAAAAA
|
|
AAAAAAAAABAJQkAEAAAAAAAAAAjc3BIjdG4Mkbo5kcwMjdhzHMDPc3V8xzAs3N1fMjmBZubq+Y5g
|
|
Wbm6vmOYFm5ur5jmBZubq+Y5gWbm6vmOYFm5ur5jmBZubq+Y5gWbm6vmTzAz3N2HMnmBlu5ftFTx
|
|
OEZJ/DMW/d0t2rxKni8N1FPWkiZ9eS08e7Cy8dGGn6UhZaJljXZGnmc3UT3dPP2cnUT78xCIV6j2
|
|
H/8A9c/6f7vXPI+w8bU1U+vL/d63du5NfUiDcVSIAS8b7RV5eOb/AIqRL2TyXtNX/e2KfXH/AHlF
|
|
+NPH/pr4+2xcxx0hFpY11K7R16KM32ZWz3UaidqSgrc9kcPicWyZJjfw6T+727y3sXh2xarN+K0V
|
|
h6lvPjj3e0ASqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJQAAAAAkQAkQAkAAAAAAAAAAAAAAA
|
|
EgAAAAAAAAAAAAAAAAAAAAAgAAABKDcAN0bgkY8xzAyRux5kcwM9zdXNkTcFm6OZXzMeYFvMibKu
|
|
ZHMC2bo51U2RuC2bom6rc3BZzom6sBZzI52ADPnOdggFnMc6skFnMc6rc3BbznOp3RzAv50c6nml
|
|
HMC/nOf4qOY5wX85zqOc5wbHOc7X5znBsc6edr85zg2ec52vzpi4NjmY5bROG+/bllVzsNTk5dLl
|
|
n0pP8BHmMHWNmzt0aum8obm08vVjfrtnxztR0mXHzTvaZdjVRMTLkZo6yiFen9iZ2pqY/wBP93rN
|
|
3kPY+/LfPX1rE/u9XzN3HfqzdO6vmTuIZ7m7Hc3Bnu8t7TR/vHBP9E/y9Pu837SV31umn+if5Rfi
|
|
/j/01MMb1hjkrtKzBG0bMsmOZY11tOYamr6Und0LUc7XT7u3rJPqL8er9lcPhcFpbzyWm39v7O00
|
|
+FYvA4Zpsc94xxu227jv1IAgAAAAAAAAABKAAAASgASgBIgBIgBIgBIhIAAAAAAAAAAAAAAAAAAC
|
|
UACUJAAAAAAAAAAAABIAAAAAAAAAAAAAAAAAAAAg3AEbomQZbo3YzLGbAz3RNlc3YzcFs2YzdVN2
|
|
M2Bdzom6nmNwW86JurTAMuY3REJ2BB1ZRVMVBhsbSsiqeUFXLucq3lTygp5TlXcpygp5TlXcpygp
|
|
5TlXcqOUFXKjlXcrGYBXysdlswiYBVMdUTCyY6sZBWxlnMMZgGLGZZSwkDdHMiWO4MuY5mEyjcFn
|
|
N1OdVzHMC3nTzqeY5gX85zqOZPMC+Lqdbk20eb/RKOZr8QybaK/XvtH7iZ9aGlp2luzT3fg19NHS
|
|
OjbmPcYX67XH1XSZ9XIzRvMuzrK7zLkZYmYnciunb9lZ5dTk+OP+71cXeP8AZnJ/ip2nf3J/l6iL
|
|
/Fu5L9bMWZczXi6YuIbEWTzKIuyiwLt3nuO25uI4a/hx7/rLuczg8TicvFLbfdpEK6+NPH/phhjo
|
|
stLGkctUWnoxrrU3j1cnWTzZq1jzl1clo5Zcu8c+txR63iP3Tn6pv4+g4o5cVI9IiGe7CJ2iE7t3
|
|
GyN2O6dwSINwSISAlAAlACRAAlAAlACRACRCQAAAAAAAAAASgASISAAAAAAAAAAAAACQAAAAAAAA
|
|
AAAAAASAAAAAAAAAAAAAAAAIAAAQCAJljuljsCJlhMs9mOwMJYys5TkBVsjZdyHICrZPKt5E8oK4
|
|
qmKrOVOwMIqyirPY2Bjyp2ZbAI2NmSARsbMgEbI2ZAMdjZICNkbMkSCNmOzJEgx2YyzljMAwlhKy
|
|
WEwCuWErJhhMArlhLOWEgxljMpljIImWMyTKJA3N0IBO5vux3NwZbnMx3NwZczT4jf3MdPW27a3a
|
|
fJOq1XNP2KdIRfi+J2trSYfcjeF+Wm1OicVeWIiN9kai8xjY12ORqultnI1Ecsujq79XP1FovWYI
|
|
rTgeq+j8QrWZ+3Mx+r2UXeC0WG2Ti2kiN5mL807eUREvbzbaejefHJv62Iv8WUXa0WTFhVtRdlF2
|
|
rz9WUXBtc7jR9dqc2T1ttHyhvZMvJitb0jdq6XHNcNenWVN3028U99WRj6Kb02be3Tq18/SN2Lpc
|
|
3UdN9nOmZrqKX/DaJ/d0svvTLRzV3jomK6+Pd1vvWJj0ZczT0mXxNJht60hfFnQ4qu3N1cWTEgs3
|
|
Tur5k7gz3N2O5uDM3Y7m4MtxBuCQASIASIASAAAAAAACRCQAAAAAAAAEoSAAAAAAAAAAAlAAlCQA
|
|
AAAAAAAAAAASAAAAAAAAAAAAIASgAAAEJAQJQCNkbMgGOyOVnsAw5TlZ7GwMOVPKy2NgY7GzIBGx
|
|
skA2AAAAAAAAAAQkBAEghEskAxYzDPZGwK5hjMLJhjMAqmGEwumrCagomFcw2JqqtUFEsLLrV82F
|
|
o7gqljKyYYTGwMZRKUSCAQAboJnaN5Bjkneu0d5W4ccViIiOzHFWbTzNumP1Zarr8eeRMbxDW1Mx
|
|
NO67NbkhzNVnmInqzaOZrL93JyZeV0M1++7S02jvxDWxhxx033tPpC8Z6rrezWjmZyazJG2/u03h
|
|
2vFibTHoqvamiwVwY+nLGzV0+SZ1Mx8G0/45tOhzJ5lXMc3UVXRdlF1HP+iYsDPLPPy49/tz1+Te
|
|
pSIr0ho6ak5Ms5J8o2q6NImOrHV7XX488ypzTtHXo0s9t6zG7c1G1qz6ubeZiZ3UatXJG3yauSO7
|
|
cvMTEx5tPLb3prPRMVr0HB8vicNxf0+7+kt+LOJwTJyY/Bnz3tH93X36N58cWvq6LSyiyndMSlC7
|
|
mZcymLJiwLosmJVRLKLAtiU7q4lMSCzc3YxJuDMRuAlKAEgAAAlAkAAAAAABKAEgAAAAAJAAAAAA
|
|
AAAAAAAEgAAAAAAAAAAAAAkAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAhIAAACAAAASgAAAAAAEAAAA
|
|
hGzJAImGMwzQDDZjNVuyNgUTVhNGxysZqDVmiu1G5NN2M4waM0+DCaN2cbGcQNGaMZq3JxMJxA1J
|
|
qx2bU4kU09slorWNwa20z02RXHbJbl26QvtFovbHWkxEdJt5y2MOHlr2U1W3jx+1hiw8vSO63lmI
|
|
XRTaEWmtY6snRHO1VpmJ+DjavpSZl2s8b7y4HFcnh0n0gha5ebJN55KRM2mdoiPN6fh+kpwXh0Wy
|
|
RHj5Otp/s5Ps1p62y31+em9aTMYt/OfVfxTiPjZ52naI7fBrI5t66xz5+a1rW7yx0eSL6iZjtEOX
|
|
qNbSletom3lENjh2fbHzbbWt3iVozruc+5ztWubf4M4ybpQ2Oboyrva0Vjza8WdDR4OkXt3n9ldX
|
|
kaePP9VtYqctYhdvt5oivTeCZ2YOxXk6ubqMfV0b9mrljfqlFcq88k7z2U5axeItDa1OPessuC8P
|
|
ya7XRWYnwqdbT/ZMilvIu4dpslNdixXja8Y5tt85djZdbDWnGOesRtXFtuw6T27No5Kx2OrKYQlC
|
|
ExKJgBnEpiyvdlEgsizKLKollFgWxLKJVRLKJBbEp3VxLKJBnuMWQJEbpBIAAAJAAAABIAAAAAAA
|
|
lAJAAAAAAAAAAAAAASAAAAAAAAAAAAAJAAAABAJABAlAAAAAAAAAAAAAAAAAAAAAAAAIAAAAAAAA
|
|
AAABAJQAAAAgAABAAI2EoBGyJhkgGPKxmqxAKpownHC+YRMdN5BrTj67R3bOn01o7p01Iv71u89o
|
|
b9a7LfBTfS1vWI2jf12VfQPSW8KX2mas+NC2iv6xMNfJpMnLtEbuuxtMRCtzF55NR5rPps1N/ctP
|
|
y6uHreE6nXZ4pak48X3rT06fB7fNeI33cbX6mI32R/MWu7XF116aDSRhxbRERs8f499bkyZeeKae
|
|
kzE2mdon81/tfxDLGOunwbzlzbx08oaHBvZHJlx48mrvaa94pu04y617576rNGLRRM0397JEd/lu
|
|
9Dw/S3x4qxffo6mm4NjwUiKY4iI9Ib1dHFY6QIaNabbrYrLfrpJtaK1rMzPZb/s+05IpP59OyLeJ
|
|
k7eNfRaOc1ue32I7fGXYpi5Y77M8OGMeOKxHSFsU3Y29deZMzirl6dlVvhLatCjJHeYQv1rXnps1
|
|
8k9/VsW6qLVmZIi1rzitlvFKRvaZ2h6TSaenC9FFY+3brM+sqeG8Prp4+kZ+lvuxPkr1mqm95nfp
|
|
DXM459676a2q1dsV7XietvNno78+CJn1cjX6mOeIm0bR33dfRU5NJjidt9t5afjG/V6JZ7I2QMNh
|
|
nyo2BhsMuVG3wAhMSbbQRAMolnE+iuGUSCyJZRKuGUSCyJZK4llEgyZMYTuCUsYSCQASISAAAlCQ
|
|
AAAAAAEoASCASAAAAAAAAAAAAlACRACQAAAAAAAAAEgCEoASCAAAAAAAAAAAAAAAAAAAAAAABAAA
|
|
AAAAAAAISAIAAAAAAQAAACASgAAAQJAQAAhIDHZhln3do7z0WS18mWsajHjmes7pg3dNi5aRMNqO
|
|
yvDHTpPRaigHZhN4hHRlaVN59JY3zRENLUavaO+yq0iNVlitJ6vNcR1MVi0zO0era1/Ea0rPvbz5
|
|
PM5MWp45qvo2GZrhmfrsnpHpHzTCseEcM/2vrr8Q1Eb4qzy44nziPN63HpYiIiI7LNHoqabBTFii
|
|
IpSNohuVxrKtWMEejPwY9G1FFmHB4mWJn7MdfnIM9JpIx15to5pbUaas/a6rqViI7MxPxqX0UT1r
|
|
O3wVzpbR2hviP5i03Y5s6a879FNtHljydhExCv8AMTPJXBnRZbz0iG5ptFjwe/l96zctMVamTJtE
|
|
yTMibu1VrdTzRMR0j0ed4lr64MVpm0RERvMz5NvX62uOJ69XhOKX1HH9bHDtFvNYnfJeOy0Z2ojX
|
|
6jjnEq6fRUmccTvN/J9H0eKcOnx45neaxEbubwHgOHg+milI3vP2resu3Wu0JQmITsmISDHZHKz2
|
|
JgFc1RMLJhGwK9iIZ7MZgEdgmAEwyiWCdwWRLKJVxKYsC2JTuriWUSDNlEsIlMAySx3SCRCQSIAS
|
|
AAACRACQAAAAAAASIASAAAAAAAAAAAAAAACRACRACQASIAAAAAAAAAAAAAAAAAAAAAAAAQCUAAAA
|
|
AAAAAAIAAAAAAAAQAAAAAACBICBICAAEJAQJQCJcLjuS2ny6fPG/LWdpd1o8T0X07SXx/e7wCdJx
|
|
Wa0jmneHQpxPDMdZmJfNtZm49weZrh0/j4o7VtSZ2+Uw0/8A7o49k92vBLc/ntFohFW9PqGXimOI
|
|
6Tu1L8T3eCx6r2t1O3JwvHjifO99v7t/Bwf2l1PXU6rS6eJ8qUm8x+so5TsekzcSjbvs4mt4rzW5
|
|
K2mbT0itesy2cHsvbvqtbmyz5xERWP2jd1tJwrTaONsOKtZ8585+cnDrzmn4Rq+IZObUROHD32n7
|
|
Vv8A0ej0uhxaXFGPFSK1j0bkY4jyZRVZVXFGUVWbGwKsk8mObekNrSW3pWf1a2aYjHbm7bNnQ1id
|
|
PW0TvuDdhJEbQABMsLW2R0ZTMQrvfbz2YWzVhpanUxEd0dWkW5c8R5uXxDX1w4pnfr5Q19XxKuOJ
|
|
2neXltVqtVxbV/RdJ715+1bypANfiOu1HENV9C0MTfNeesx2rD1PAeBYuE6aKx72W3W9/WVnBuB4
|
|
eF4dqRzZbdb5J72l160WVK02ZxCYhOwI23TsnY2BGxsnYBjsiYZsZBjMMZZSgGEolMsQDdG6NwZ7
|
|
piVe6YkFsSziVMWZRILolMSriWUSCyJTuwhMSDMRCQSI3SAlACRCQAAEoAEoASAAAAAAAAACUACR
|
|
ACQAAAAAAAAAAAAASAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAABAAAAAAAAAAAAACBKAAAAAAAQ
|
|
JQAAAhICEbJAYTWJ7wx8KvpC0BV4ceieWGewDHlNmWwCNjZICNhIDmcZredBecdpiY69FXCOLW+i
|
|
UiZidukulmxxlx2paN4mNng+K4+I8Hy2yaTfl37TXetoCPfRxfp1qi3F48ofKMvtvxak8s6LDv61
|
|
rZji9rPaLUf5PC+bfttS0q8q3p9W/wBrRMdpUZuKdN99nzvFqPbTVz7nD8OKs+do2/mW3h4D7Xaq
|
|
ZnPrtNpqz35aRaYOHY9Zk4pNt9rR+rl6zi+OnS+WN57Rv1lXp/YrNaYtruL6zNPnGO3hxP6O5w/2
|
|
f0HDuun09Yv55Le9afznqcOvO4tBreMTHu30unnva0bWt8on+70nDuE4OHYYx4Kbesz3tPrMuhGO
|
|
IjpDOKrK9YVpsyiGUQnYGOyUgI2SlAIEmwMWMs9kTAMJYzDOYRMArmGErZhhMArlHmzmGMwDE3Ts
|
|
bAbs4swj5pgFkSziVcM4BZEsolXDKAZwyhjCYBkACQhIAAAAAAAJAAAAAAAAAAAAAAAAAAAShIAA
|
|
AAAAAAJAAAAAAAAAAAAAABAJEAAAAAAAAAAAAAAAIEoBKAAAAAAAAAAAAAAABAlAAAAAAAIAAAAA
|
|
BAkBAkBAkBAlACEgMZjdjbFW8bWrEx8YWANb6Fp+bfwab+vLDKMFK9qxH5L0bAr8OPRPKz2AY7J2
|
|
SbAjYZAI2E7AIEgIEgIEgMdkSy2NgY7MdlmyNoBXsxmFuyNgVTVjNV3KjlBRNTlXTVHKCrlIqt5T
|
|
lBhEMohlFerLlBjEMohMVTEARDKCITsAk2AEgAAAkAAAAAAAAAAAAAAAAAAAAAAAASAAAAAAAAD/
|
|
2Q==`;var d$="2.0.0";var Fu,Ep,Cp,ko,Io,Ou,km,Mp,Im,Sm,Nm,Tm,dwe=class{constructor(t){wa(this,Fu,void 0);wa(this,Ep,void 0);wa(this,Cp,void 0);wa(this,ko,void 0);wa(this,Io,void 0);wa(this,Ou,void 0);this.analyze=(...t)=>{if(!Fn(this,Ep))return;let n=this.tf.engine().state.numTensors,a=Fn(this,Fu);Ja(this,Fu,n);let r=n-a;r!==0&&ge(...t,r)};wa(this,km,t=>{if(!Fn(this,Cp))return null;if(!t)return"input is not defined";if(this.tf.ENV.flags.IS_NODE&&!(t instanceof St))return"input must be a tensor";try{this.tf.getBackend()}catch(n){return"backend not loaded"}return null});wa(this,Mp,async(t=!1)=>{var n;if(this.config.backend&&this.config.backend.length>0&&t||this.tf.getBackend()!==this.config.backend){let a=st();if(this.state="backend",this.config.backend&&this.config.backend.length>0){if(typeof window=="undefined"&&typeof WorkerGlobalScope!="undefined"&&this.config.debug&&ge("running inside web worker"),this.tf.ENV.flags.IS_BROWSER&&this.config.backend==="tensorflow"&&(this.config.backend="webgl"),this.tf.ENV.flags.IS_NODE&&(this.config.backend==="webgl"||this.config.backend==="humangl")&&(this.config.backend="tensorflow"),this.config.debug&&ge("setting backend:",this.config.backend),this.config.backend==="wasm"){if(this.config.debug&&ge("wasm path:",this.config.wasmPath),typeof((n=this.tf)==null?void 0:n.setWasmPaths)!="undefined")this.tf.setWasmPaths(this.config.wasmPath);else throw new Error("Human: WASM backend is not loaded");let r=await this.tf.env().getAsync("WASM_HAS_SIMD_SUPPORT"),s=await this.tf.env().getAsync("WASM_HAS_MULTITHREAD_SUPPORT");this.config.debug&&ge(`wasm execution: ${r?"SIMD":"no SIMD"} ${s?"multithreaded":"singlethreaded"}`),this.config.debug&&!r&&ge("warning: wasm simd support is not enabled")}this.config.backend==="humangl"&&hM();try{await this.tf.setBackend(this.config.backend)}catch(r){ge("error: cannot set backend:",this.config.backend,r)}}if(this.tf.enableProdMode(),this.tf.getBackend()==="webgl"||this.tf.getBackend()==="humangl"){this.tf.ENV.set("CHECK_COMPUTATION_FOR_ERRORS",!1),this.tf.ENV.set("WEBGL_CPU_FORWARD",!0),this.tf.ENV.set("WEBGL_PACK_DEPTHWISECONV",!0),typeof this.config.deallocate!="undefined"&&this.config.deallocate&&(ge("changing webgl: WEBGL_DELETE_TEXTURE_THRESHOLD:",!0),this.tf.ENV.set("WEBGL_DELETE_TEXTURE_THRESHOLD",0));let r=await this.tf.backend().getGPGPUContext().gl;this.config.debug&&ge(`gl version:${r.getParameter(r.VERSION)} renderer:${r.getParameter(r.RENDERER)}`)}await this.tf.ready(),this.performance.backend=Math.trunc(st()-a)}});this.next=t=>l$(t||this.result);wa(this,Im,async t=>{if(this.config.cacheSensitivity===0)return!1;let n=32,a=t.resizeBilinear([Math.trunc(t.shape[1]/n),Math.trunc(t.shape[2]/n)]),r=a.dataSync(),s=0;for(let l=0;l<r.length/3;l++)s+=r[3*l+2];a.dispose();let i=100*(Math.max(s,Fn(this,Io))/Math.min(s,Fn(this,Io))-1);Ja(this,Io,s);let o=i<Math.max(this.config.cacheSensitivity,Fn(this,Ou));return Ja(this,Ou,i>10*this.config.cacheSensitivity?0:i),o});wa(this,Sm,async()=>{let t=(r,s="application/octet-stream")=>fetch(`data:${s};base64,${r}`).then(i=>i.blob()),n,a;switch(this.config.warmup){case"face":n=await t(vm);break;case"full":n=await t(wm);break;default:n=null}if(n){let r=await createImageBitmap(n);a=await this.detect(r,this.config),r.close()}return a});wa(this,Nm,async()=>new Promise(t=>{let n,a=0;switch(this.config.warmup){case"face":a=256,n="data:image/jpeg;base64,"+vm;break;case"full":case"body":a=1200,n="data:image/jpeg;base64,"+wm;break;default:n=null}let r=new Image;r.onload=async()=>{let s=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(a,a):document.createElement("canvas");s.width=r.naturalWidth,s.height=r.naturalHeight;let i=s.getContext("2d");i==null||i.drawImage(r,0,0);let o=await this.detect(s,this.config);t(o)},n?r.src=n:t(null)}));wa(this,Tm,async()=>{let t=r=>Buffer.from(r,"base64"),n;if(this.config.warmup==="face"&&(n=t(vm)),(this.config.warmup==="body"||this.config.warmup==="full")&&(n=t(wm)),!n)return null;let a;if(typeof void 0!="undefined"){let r=(void 0).decodeJpeg(n),s=r.expandDims(0);this.tf.dispose(r),a=await this.detect(s,this.config),this.tf.dispose(s)}else this.config.debug&&ge("Warmup tfjs-node not loaded");return a});this.config=ia(F3,t||{}),this.tf=bp,this.draw=g3,this.version=d$,this.state="idle",Ja(this,Fu,0),Ja(this,Ep,!1),Ja(this,Cp,!1),Ja(this,ko,!0),Ja(this,Ou,0),this.performance={backend:0,load:0,image:0,frames:0,cached:0,changed:0,total:0,draw:0},this.models={face:null,posenet:null,blazepose:null,efficientpose:null,movenet:null,handpose:null,age:null,gender:null,emotion:null,embedding:null,nanodet:null,centernet:null,faceres:null,segmentation:null},this.image=n=>wo(n,this.config),this.faceTriangulation=IM,this.faceUVMap=SM,this.sysinfo=O3(),Ja(this,Io,1)}similarity(t,n){return Fb(t,n)}segmentation(t,n){return u$(t,n,this.config)}enhance(t){return Ob(t)}match(t,n,a=0){return EM(t,n,a)}async load(t){this.state="load";let n=st();t&&(this.config=ia(this.config,t)),Fn(this,ko)&&(this.config.debug&&ge(`version: ${this.version}`),this.config.debug&&ge(`tfjs version: ${this.tf.version_core}`),this.config.debug&&ge("platform:",this.sysinfo.platform),this.config.debug&&ge("agent:",this.sysinfo.agent),await Fn(this,Mp).call(this,!0),this.tf.ENV.flags.IS_BROWSER&&(this.config.debug&&ge("configuration:",this.config),this.config.debug&&ge("tf flags:",this.tf.ENV.flags))),this.config.async?[this.models.face,this.models.emotion,this.models.handpose,this.models.posenet,this.models.blazepose,this.models.efficientpose,this.models.movenet,this.models.nanodet,this.models.centernet,this.models.faceres,this.models.segmentation]=await Promise.all([this.models.face||(this.config.face.enabled?Nb(this.config):null),this.models.emotion||(this.config.face.enabled&&this.config.face.emotion.enabled?Cb(this.config):null),this.models.handpose||(this.config.hand.enabled?Xb(this.config):null),this.models.posenet||(this.config.body.enabled&&this.config.body.modelPath.includes("posenet")?Ub(this.config):null),this.models.blazepose||(this.config.body.enabled&&this.config.body.modelPath.includes("blazepose")?mm(this.config):null),this.models.efficientpose||(this.config.body.enabled&&this.config.body.modelPath.includes("efficientpose")?ZM(this.config):null),this.models.movenet||(this.config.body.enabled&&this.config.body.modelPath.includes("movenet")?r3(this.config):null),this.models.nanodet||(this.config.object.enabled&&this.config.object.modelPath.includes("nanodet")?l3(this.config):null),this.models.centernet||(this.config.object.enabled&&this.config.object.modelPath.includes("centernet")?p3(this.config):null),this.models.faceres||(this.config.face.enabled&&this.config.face.description.enabled?Rb(this.config):null),this.models.segmentation||(this.config.segmentation.enabled?bm(this.config):null)]):(this.config.face.enabled&&!this.models.face&&(this.models.face=await Nb(this.config)),this.config.face.enabled&&this.config.face.emotion.enabled&&!this.models.emotion&&(this.models.emotion=await Cb(this.config)),this.config.hand.enabled&&!this.models.handpose&&(this.models.handpose=await Xb(this.config)),this.config.body.enabled&&!this.models.posenet&&this.config.body.modelPath.includes("posenet")&&(this.models.posenet=await Ub(this.config)),this.config.body.enabled&&!this.models.blazepose&&this.config.body.modelPath.includes("blazepose")&&(this.models.blazepose=await mm(this.config)),this.config.body.enabled&&!this.models.efficientpose&&this.config.body.modelPath.includes("efficientpose")&&(this.models.efficientpose=await mm(this.config)),this.config.body.enabled&&!this.models.movenet&&this.config.body.modelPath.includes("movenet")&&(this.models.movenet=await r3(this.config)),this.config.object.enabled&&!this.models.nanodet&&this.config.object.modelPath.includes("nanodet")&&(this.models.nanodet=await l3(this.config)),this.config.object.enabled&&!this.models.centernet&&this.config.object.modelPath.includes("centernet")&&(this.models.centernet=await p3(this.config)),this.config.face.enabled&&this.config.face.description.enabled&&!this.models.faceres&&(this.models.faceres=await Rb(this.config)),this.config.segmentation.enabled&&!this.models.segmentation&&(this.models.segmentation=await bm(this.config))),Fn(this,ko)&&(this.config.debug&&ge("tf engine state:",this.tf.engine().state.numBytes,"bytes",this.tf.engine().state.numTensors,"tensors"),Ja(this,ko,!1));let a=Math.trunc(st()-n);a>(this.performance.load||0)&&(this.performance.load=a)}async detect(t,n){return new Promise(async a=>{this.state="config";let r,s;this.config=ia(this.config,n),this.state="check";let i=Fn(this,km).call(this,t);i&&(ge(i,t),a({error:i}));let o=st();await Fn(this,Mp).call(this),await this.load(),r=st();let l=wo(t,this.config);if(this.performance.image=Math.trunc(st()-r),this.analyze("Get Image:"),this.config.segmentation.enabled&&l&&l.tensor&&(this.analyze("Start Segmentation:"),this.state="run:segmentation",r=st(),await A3(l),s=Math.trunc(st()-r),s>0&&(this.performance.segmentation=s),l.canvas&&(l.tensor.dispose(),l=wo(l.canvas,this.config)),this.analyze("End Segmentation:")),!l||!l.tensor){ge("could not convert input to tensor"),a({error:"could not convert input to tensor"});return}r=st(),this.config.skipFrame=await Fn(this,Im).call(this,l.tensor),this.performance.frames||(this.performance.frames=0),this.performance.cached||(this.performance.cached=0),this.performance.frames++,this.config.skipFrame&&this.performance.cached++,this.performance.changed=Math.trunc(st()-r),this.analyze("Check Changed:");let u,d,h,p;this.config.async?(u=this.config.face.enabled?_b(this,l.tensor):[],this.performance.face&&delete this.performance.face):(this.state="run:face",r=st(),u=this.config.face.enabled?await _b(this,l.tensor):[],s=Math.trunc(st()-r),s>0&&(this.performance.face=s)),this.analyze("Start Body:"),this.config.async?(this.config.body.modelPath.includes("posenet")?d=this.config.body.enabled?Vb(l.tensor,this.config):[]:this.config.body.modelPath.includes("blazepose")?d=this.config.body.enabled?Zb(l.tensor,this.config):[]:this.config.body.modelPath.includes("efficientpose")?d=this.config.body.enabled?e3(l.tensor,this.config):[]:this.config.body.modelPath.includes("movenet")&&(d=this.config.body.enabled?s3(l.tensor,this.config):[]),this.performance.body&&delete this.performance.body):(this.state="run:body",r=st(),this.config.body.modelPath.includes("posenet")?d=this.config.body.enabled?await Vb(l.tensor,this.config):[]:this.config.body.modelPath.includes("blazepose")?d=this.config.body.enabled?await Zb(l.tensor,this.config):[]:this.config.body.modelPath.includes("efficientpose")?d=this.config.body.enabled?await e3(l.tensor,this.config):[]:this.config.body.modelPath.includes("movenet")&&(d=this.config.body.enabled?await s3(l.tensor,this.config):[]),s=Math.trunc(st()-r),s>0&&(this.performance.body=s)),this.analyze("End Body:"),this.analyze("Start Hand:"),this.config.async?(h=this.config.hand.enabled?Kb(l.tensor,this.config):[],this.performance.hand&&delete this.performance.hand):(this.state="run:hand",r=st(),h=this.config.hand.enabled?await Kb(l.tensor,this.config):[],s=Math.trunc(st()-r),s>0&&(this.performance.hand=s)),this.analyze("End Hand:"),this.analyze("Start Object:"),this.config.async?(this.config.object.modelPath.includes("nanodet")?p=this.config.object.enabled?u3(l.tensor,this.config):[]:this.config.object.modelPath.includes("centernet")&&(p=this.config.object.enabled?c3(l.tensor,this.config):[]),this.performance.object&&delete this.performance.object):(this.state="run:object",r=st(),this.config.object.modelPath.includes("nanodet")?p=this.config.object.enabled?await u3(l.tensor,this.config):[]:this.config.object.modelPath.includes("centernet")&&(p=this.config.object.enabled?await c3(l.tensor,this.config):[]),s=Math.trunc(st()-r),s>0&&(this.performance.object=s)),this.analyze("End Object:"),this.config.async&&([u,d,h,p]=await Promise.all([u,d,h,p]));let c=[];this.config.gesture.enabled&&(r=st(),c=[...JM(u),...YM(d),...e$(h),...QM(u)],this.config.async?this.performance.gesture&&delete this.performance.gesture:this.performance.gesture=Math.trunc(st()-r)),this.performance.total=Math.trunc(st()-o),this.state="idle",this.result={face:u,body:d,hand:h,gesture:c,object:p,performance:this.performance,canvas:l.canvas,timestamp:Date.now(),get persons(){var m;return o$(u,d,h,c,(m=l==null?void 0:l.tensor)==null?void 0:m.shape)}},Ve(l.tensor),a(this.result)})}async warmup(t){let n=st();if(t&&(this.config=ia(this.config,t)),!this.config.warmup||this.config.warmup==="none")return{error:"null"};let a;typeof createImageBitmap=="function"?a=await Fn(this,Sm).call(this):typeof Image!="undefined"?a=await Fn(this,Nm).call(this):a=await Fn(this,Tm).call(this);let r=st();return this.config.debug&&ge("Warmup",this.config.warmup,Math.round(r-n),"ms",a),a}};Fu=new WeakMap,Ep=new WeakMap,Cp=new WeakMap,ko=new WeakMap,Io=new WeakMap,Ou=new WeakMap,km=new WeakMap,Mp=new WeakMap,Im=new WeakMap,Sm=new WeakMap,Nm=new WeakMap,Tm=new WeakMap;export{dwe as Human,dwe as default};
|
|
/**
|
|
* @license
|
|
* Copyright 2017 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2019 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2019 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2019 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google Inc. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the License);
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an AS IS BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2021 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2021 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* https://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/** @license See the LICENSE file. */
|
|
//# sourceMappingURL=human.esm.js.map
|