human/test/browser.html

157 lines
6.7 KiB
HTML

<!DOCTYPE html>
<html lang="en">
<head>
<title>Human Browser Tests</title>
<meta http-equiv="content-type" content="text/html; charset=utf-8">
<meta name="viewport" content="width=device-width, shrink-to-fit=yes">
<meta name="keywords" content="Human">
<meta name="application-name" content="Human">
<meta name="description" content="Human: 3D Face Detection, Body Pose, Hand & Finger Tracking, Iris Tracking, Age & Gender Prediction, Emotion Prediction & Gesture Recognition; Author: Vladimir Mandic <https://github.com/vladmandic>">
<meta name="msapplication-tooltip" content="Human: 3D Face Detection, Body Pose, Hand & Finger Tracking, Iris Tracking, Age & Gender Prediction, Emotion Prediction & Gesture Recognition; Author: Vladimir Mandic <https://github.com/vladmandic>">
<link rel="shortcut icon" href="../../favicon.ico" type="image/x-icon">
<link rel="apple-touch-icon" href="../../assets/icon.png">
<style>
@font-face { font-family: 'Lato'; font-display: swap; font-style: normal; font-weight: 100; src: local('Lato'), url('../../assets/lato-light.woff2') }
html { font-family: 'Lato', 'Segoe UI'; font-size: 14px; font-variant: small-caps; }
body { margin: 0; background: black; color: white; }
.canvas { position: absolute; bottom: 10px; right: 10px; width: 256px; height: 256px; z-index: 99; }
.pre { line-height: 150%; }
.events { position: absolute; top: 10px; right: 10px; width: 12rem; height: 1.25rem; background-color: grey; padding: 8px; z-index: 99; }
.state { position: absolute; top: 60px; right: 10px; width: 12rem; height: 1.25rem; background-color: grey; padding: 8px; z-index: 99; }
</style>
</head>
<body>
<pre id="log" class="pre"></pre>
<div id="events" class="events"></div>
<div id="state" class="state"></div>
<canvas id="canvas" class="canvas" width=256 height=256></canvas>
<script type="module">
import Human from '../dist/human.esm.js';
const config = {
async: true,
warmup: 'none',
debug: true,
cacheSensitivity: 0,
object: { enabled: true },
}
const backends = ['wasm', 'webgl', 'humangl'];
// const backends = ['wasm', 'wasm'];
// const backends = ['humangl'];
const start = performance.now();
function str(...msg) {
if (!Array.isArray(msg)) return msg;
let line = '';
for (const entry of msg) {
if (typeof entry === 'object') line += JSON.stringify(entry).replace(/"/g, '').replace(/,/g, ', ').replace(/:/g, ': ');
else line += entry;
}
return line + '\n';
}
let last = new Date();
async function log(...msgs) {
const dt = new Date();
const ts = `${dt.getHours().toString().padStart(2, '0')}:${dt.getMinutes().toString().padStart(2, '0')}:${dt.getSeconds().toString().padStart(2, '0')}.${dt.getMilliseconds().toString().padStart(3, '0')}`;
const elap = (dt - last).toString().padStart(5, '0');
document.getElementById('log').innerHTML += ts + ' +' + elap + 'ms' + '&nbsp' + str(...msgs);
console.log(ts, elap, ...msgs);
last = dt;
}
async function image(url) {
const el = document.createElement('img');
el.id = 'image';
const loaded = new Promise((resolve) => { el.onload = () => resolve(true) });
el.src = url;
await loaded;
return el;
}
async function wait(time) {
const waiting = new Promise((resolve) => setTimeout(() => resolve(), time));
await waiting;
}
function draw(canvas = null) {
const c = document.getElementById('canvas');
const ctx = c.getContext('2d');
if (canvas) ctx.drawImage(canvas, 0, 0, c.width, c.height);
else ctx.clearRect(0, 0, c.width, c.height);
}
async function events(event) {
document.getElementById('events').innerText = `${Math.round(performance.now() - start)}ms Event: ${event}`;
}
async function main() {
log('human tests');
let res;
let human = new Human(config);
human.events.addEventListener('warmup', () => events('warmup'));
human.events.addEventListener('image', () => events('image'));
human.events.addEventListener('detect', () => events('detect'));
const timer = setInterval(() => { document.getElementById('state').innerText = `State: ${human.state}`; }, 10);
log({ version: human.version });
log({ env: human.env });
log({ config: human.config });
log({ tfjs: human.tf.version.tfjs, backend: human.config.backend });
await human.load();
const models = Object.keys(human.models).map((model) => ({ name: model, loaded: (human.models[model] !== null) }));
log({ models });
for (const backend of backends) {
log();
log('test start:', backend);
human.config.backend = backend;
await human.init();
log({ initialized: human.tf.getBackend() });
log({ memory: human.tf.memory() });
res = await human.validate();
log({ validate: res });
res = await human.warmup({ warmup: 'face'});
draw(res.canvas);
log({ warmup: 'face' });
let img = await image('../../samples/in/ai-body.jpg');
const input = await human.image(img);
log({ input: input.tensor.shape });
draw(res.canvas);
res = await human.detect(input.tensor);
log({ detect: true });
const interpolated = human.next();
log({ interpolated: true });
const persons = res.persons;
log({ persons: true });
log({ summary: { persons: persons.length, face: res.face.length, body: res.body.length, hand: res.hand.length, object: res.object.length, gesture: res.gesture.length }});
log({ performance: human.performance });
human.tf.dispose(input.tensor);
draw();
img = await image('../../samples/in/ai-face.jpg');
for (const val of [0, 0.25, 0.5, 0.75, 10]) {
human.performance = {};
const t0 = performance.now();
for (let i = 0; i < 10; i++) {
res = await human.detect(img, { cacheSensitivity: val, filter: { pixelate: 5 * i }, object: { enabled: false } });
draw(res.canvas);
}
const t1 = performance.now();
log({ benchmark: { time: Math.round((t1 - t0) / 10), cacheSensitivity: val }, performance: human.performance });
await wait(10);
}
draw();
log({ memory: human.tf.memory() });
}
clearInterval(timer);
log();
log('tests complete');
}
main();
</script>
</body>
</html>