mirror of https://github.com/vladmandic/human
264 lines
11 KiB
JavaScript
264 lines
11 KiB
JavaScript
// @ts-nocheck // typescript checks disabled as this is pure javascript
|
|
|
|
/**
|
|
* Human demo for browsers
|
|
*
|
|
* Demo for face descriptor analysis and face simmilarity analysis
|
|
*/
|
|
|
|
import Human from '../../dist/human.esm.js';
|
|
|
|
const userConfig = {
|
|
backend: 'wasm',
|
|
async: false,
|
|
warmup: 'none',
|
|
cacheSensitivity: 0,
|
|
debug: true,
|
|
modelBasePath: '../../models/',
|
|
// wasmPath: 'https://cdn.jsdelivr.net/npm/@tensorflow/tfjs-backend-wasm@3.9.0/dist/',
|
|
face: {
|
|
enabled: true,
|
|
detector: { rotation: true, return: true, maxDetected: 50 },
|
|
mesh: { enabled: true },
|
|
embedding: { enabled: false },
|
|
iris: { enabled: true },
|
|
emotion: { enabled: true },
|
|
description: { enabled: true },
|
|
},
|
|
hand: { enabled: false },
|
|
gesture: { enabled: true },
|
|
body: { enabled: false },
|
|
filter: { enabled: true },
|
|
segmentation: { enabled: false },
|
|
};
|
|
|
|
const human = new Human(userConfig); // new instance of human
|
|
|
|
const all = []; // array that will hold all detected faces
|
|
let db = []; // array that holds all known faces
|
|
|
|
const minScore = 0.4;
|
|
|
|
function log(...msg) {
|
|
const dt = new Date();
|
|
const ts = `${dt.getHours().toString().padStart(2, '0')}:${dt.getMinutes().toString().padStart(2, '0')}:${dt.getSeconds().toString().padStart(2, '0')}.${dt.getMilliseconds().toString().padStart(3, '0')}`;
|
|
// eslint-disable-next-line no-console
|
|
console.log(ts, ...msg);
|
|
}
|
|
|
|
function title(msg) {
|
|
document.getElementById('title').innerHTML = msg;
|
|
}
|
|
|
|
async function loadFaceMatchDB() {
|
|
// download db with known faces
|
|
try {
|
|
let res = await fetch('/demo/facematch/faces.json');
|
|
if (!res || !res.ok) res = await fetch('/human/demo/facematch/faces.json');
|
|
db = (res && res.ok) ? await res.json() : [];
|
|
log('Loaded Faces DB:', db);
|
|
} catch (err) {
|
|
log('Could not load faces database', err);
|
|
}
|
|
}
|
|
|
|
async function SelectFaceCanvas(face) {
|
|
// if we have face image tensor, enhance it and display it
|
|
let embedding;
|
|
document.getElementById('orig').style.filter = 'blur(16px)';
|
|
if (face.tensor) {
|
|
title('Sorting Faces by Similarity');
|
|
const enhanced = human.enhance(face);
|
|
if (enhanced) {
|
|
const c = document.getElementById('orig');
|
|
const squeeze = human.tf.squeeze(enhanced);
|
|
const normalize = human.tf.div(squeeze, 255);
|
|
await human.tf.browser.toPixels(normalize, c);
|
|
human.tf.dispose(enhanced);
|
|
human.tf.dispose(squeeze);
|
|
human.tf.dispose(normalize);
|
|
const ctx = c.getContext('2d');
|
|
ctx.font = 'small-caps 0.4rem "Lato"';
|
|
ctx.fillStyle = 'rgba(255, 255, 255, 1)';
|
|
}
|
|
const arr = db.map((rec) => rec.embedding);
|
|
const res = await human.match(face.embedding, arr);
|
|
log('Match:', db[res.index].name);
|
|
const emotion = face.emotion[0] ? `${Math.round(100 * face.emotion[0].score)}% ${face.emotion[0].emotion}` : 'N/A';
|
|
document.getElementById('desc').innerHTML = `
|
|
source: ${face.fileName}<br>
|
|
match: ${Math.round(1000 * res.similarity) / 10}% ${db[res.index].name}<br>
|
|
score: ${Math.round(100 * face.boxScore)}% detection ${Math.round(100 * face.faceScore)}% analysis<br>
|
|
age: ${face.age} years<br>
|
|
gender: ${Math.round(100 * face.genderScore)}% ${face.gender}<br>
|
|
emotion: ${emotion}<br>
|
|
`;
|
|
embedding = face.embedding.map((a) => parseFloat(a.toFixed(4)));
|
|
navigator.clipboard.writeText(`{"name":"unknown", "source":"${face.fileName}", "embedding":[${embedding}]},`);
|
|
}
|
|
|
|
// loop through all canvases that contain faces
|
|
const canvases = document.getElementsByClassName('face');
|
|
let time = 0;
|
|
for (const canvas of canvases) {
|
|
// calculate similarity from selected face to current one in the loop
|
|
const current = all[canvas.tag.sample][canvas.tag.face];
|
|
const similarity = human.similarity(face.embedding, current.embedding);
|
|
canvas.tag.similarity = similarity;
|
|
// get best match
|
|
// draw the canvas
|
|
await human.tf.browser.toPixels(current.tensor, canvas);
|
|
const ctx = canvas.getContext('2d');
|
|
ctx.font = 'small-caps 1rem "Lato"';
|
|
ctx.fillStyle = 'rgba(0, 0, 0, 1)';
|
|
ctx.fillText(`${(100 * similarity).toFixed(1)}%`, 3, 23);
|
|
ctx.fillStyle = 'rgba(255, 255, 255, 1)';
|
|
ctx.fillText(`${(100 * similarity).toFixed(1)}%`, 4, 24);
|
|
ctx.font = 'small-caps 0.8rem "Lato"';
|
|
ctx.fillText(`${current.age}y ${(100 * (current.genderScore || 0)).toFixed(1)}% ${current.gender}`, 4, canvas.height - 6);
|
|
// identify person
|
|
ctx.font = 'small-caps 1rem "Lato"';
|
|
const start = human.now();
|
|
const arr = db.map((rec) => rec.embedding);
|
|
const res = await human.match(current.embedding, arr);
|
|
time += (human.now() - start);
|
|
if (res.similarity > minScore) ctx.fillText(`DB: ${(100 * res.similarity).toFixed(1)}% ${db[res.index].name}`, 4, canvas.height - 30);
|
|
}
|
|
|
|
log('Analyzed:', 'Face:', canvases.length, 'DB:', db.length, 'Time:', time);
|
|
// sort all faces by similarity
|
|
const sorted = document.getElementById('faces');
|
|
[...sorted.children]
|
|
.sort((a, b) => parseFloat(b.tag.similarity) - parseFloat(a.tag.similarity))
|
|
.forEach((canvas) => sorted.appendChild(canvas));
|
|
document.getElementById('orig').style.filter = 'blur(0)';
|
|
title('Selected Face');
|
|
}
|
|
|
|
async function AddFaceCanvas(index, res, fileName) {
|
|
all[index] = res.face;
|
|
let ok = false;
|
|
for (const i in res.face) {
|
|
if (res.face[i].mesh.length === 0) continue;
|
|
ok = true;
|
|
all[index][i].fileName = fileName;
|
|
const canvas = document.createElement('canvas');
|
|
canvas.tag = { sample: index, face: i, source: fileName };
|
|
canvas.width = 200;
|
|
canvas.height = 200;
|
|
canvas.className = 'face';
|
|
const emotion = res.face[i].emotion[0] ? `${Math.round(100 * res.face[i].emotion[0].score)}% ${res.face[i].emotion[0].emotion}` : 'N/A';
|
|
canvas.title = `
|
|
source: ${res.face[i].fileName}
|
|
score: ${Math.round(100 * res.face[i].boxScore)}% detection ${Math.round(100 * res.face[i].faceScore)}% analysis
|
|
age: ${res.face[i].age} years
|
|
gender: ${Math.round(100 * res.face[i].genderScore)}% ${res.face[i].gender}
|
|
emotion: ${emotion}
|
|
`.replace(/ /g, ' ');
|
|
// mouse click on any face canvas triggers analysis
|
|
canvas.addEventListener('click', (evt) => {
|
|
log('Select:', 'Image:', evt.target.tag.sample, 'Face:', evt.target.tag.face, 'Source:', evt.target.tag.source, all[evt.target.tag.sample][evt.target.tag.face]);
|
|
SelectFaceCanvas(all[evt.target.tag.sample][evt.target.tag.face]);
|
|
});
|
|
// if we actually got face image tensor, draw canvas with that face
|
|
if (res.face[i].tensor) {
|
|
await human.tf.browser.toPixels(res.face[i].tensor, canvas);
|
|
document.getElementById('faces').appendChild(canvas);
|
|
const ctx = canvas.getContext('2d');
|
|
ctx.font = 'small-caps 0.8rem "Lato"';
|
|
ctx.fillStyle = 'rgba(255, 255, 255, 1)';
|
|
ctx.fillText(`${res.face[i].age}y ${(100 * (res.face[i].genderScore || 0)).toFixed(1)}% ${res.face[i].gender}`, 4, canvas.height - 6);
|
|
const arr = db.map((rec) => rec.embedding);
|
|
const result = await human.match(res.face[i].embedding, arr);
|
|
ctx.font = 'small-caps 1rem "Lato"';
|
|
if (result.similarity && res.similarity > minScore) ctx.fillText(`${(100 * result.similarity).toFixed(1)}% ${db[result.index].name}`, 4, canvas.height - 30);
|
|
}
|
|
}
|
|
return ok;
|
|
}
|
|
|
|
async function AddImageElement(index, image, length) {
|
|
const faces = all.reduce((prev, curr) => prev += curr.length, 0);
|
|
title(`Analyzing Input Images<br> ${Math.round(100 * index / length)}% [${index} / ${length}]<br>Found ${faces} Faces`);
|
|
return new Promise((resolve) => {
|
|
const img = new Image(128, 128);
|
|
img.onload = () => { // must wait until image is loaded
|
|
human.detect(img, userConfig).then(async (res) => {
|
|
const ok = await AddFaceCanvas(index, res, image); // then wait until image is analyzed
|
|
// log('Add image:', index + 1, image, 'faces:', res.face.length);
|
|
if (ok) document.getElementById('images').appendChild(img); // and finally we can add it
|
|
resolve(true);
|
|
});
|
|
};
|
|
img.onerror = () => {
|
|
log('Add image error:', index + 1, image);
|
|
resolve(false);
|
|
};
|
|
img.title = image;
|
|
img.src = encodeURI(image);
|
|
});
|
|
}
|
|
|
|
async function createFaceMatchDB() {
|
|
log('Creating Faces DB...');
|
|
for (const image of all) {
|
|
for (const face of image) db.push({ name: 'unknown', source: face.fileName, embedding: face.embedding });
|
|
}
|
|
log(db);
|
|
}
|
|
|
|
async function main() {
|
|
// pre-load human models
|
|
await human.load();
|
|
|
|
title('Loading Face Match Database');
|
|
let images = [];
|
|
let dir = [];
|
|
// load face descriptor database
|
|
await loadFaceMatchDB();
|
|
|
|
// enumerate all sample images in /assets
|
|
title('Enumerating Input Images');
|
|
const res = await fetch('/samples/in');
|
|
dir = (res && res.ok) ? await res.json() : [];
|
|
images = images.concat(dir.filter((img) => (img.endsWith('.jpg') && img.includes('sample'))));
|
|
|
|
// could not dynamically enumerate images so using static list
|
|
if (images.length === 0) {
|
|
images = [
|
|
'ai-body.jpg', 'solvay1927.jpg', 'ai-upper.jpg',
|
|
'person-carolina.jpg', 'person-celeste.jpg', 'person-leila1.jpg', 'person-leila2.jpg', 'person-lexi.jpg', 'person-linda.jpg', 'person-nicole.jpg', 'person-tasia.jpg',
|
|
'person-tetiana.jpg', 'person-vlado1.jpg', 'person-vlado5.jpg', 'person-vlado.jpg', 'person-christina.jpg', 'person-lauren.jpg',
|
|
'group-1.jpg', 'group-2.jpg', 'group-3.jpg', 'group-4.jpg', 'group-5.jpg', 'group-6.jpg', 'group-7.jpg',
|
|
'daz3d-brianna.jpg', 'daz3d-chiyo.jpg', 'daz3d-cody.jpg', 'daz3d-drew-01.jpg', 'daz3d-drew-02.jpg', 'daz3d-ella-01.jpg', 'daz3d-ella-02.jpg', 'daz3d-gillian.jpg',
|
|
'daz3d-hye-01.jpg', 'daz3d-hye-02.jpg', 'daz3d-kaia.jpg', 'daz3d-karen.jpg', 'daz3d-kiaria-01.jpg', 'daz3d-kiaria-02.jpg', 'daz3d-lilah-01.jpg', 'daz3d-lilah-02.jpg',
|
|
'daz3d-lilah-03.jpg', 'daz3d-lila.jpg', 'daz3d-lindsey.jpg', 'daz3d-megah.jpg', 'daz3d-selina-01.jpg', 'daz3d-selina-02.jpg', 'daz3d-snow.jpg',
|
|
'daz3d-sunshine.jpg', 'daz3d-taia.jpg', 'daz3d-tuesday-01.jpg', 'daz3d-tuesday-02.jpg', 'daz3d-tuesday-03.jpg', 'daz3d-zoe.jpg', 'daz3d-ginnifer.jpg',
|
|
'daz3d-_emotions01.jpg', 'daz3d-_emotions02.jpg', 'daz3d-_emotions03.jpg', 'daz3d-_emotions04.jpg', 'daz3d-_emotions05.jpg',
|
|
];
|
|
// add prefix for gitpages
|
|
images = images.map((a) => `/human/samples/in/${a}`);
|
|
log('Adding static image list:', images);
|
|
} else {
|
|
log('Discovered images:', images);
|
|
}
|
|
|
|
// images = ['/samples/in/solvay1927.jpg'];
|
|
|
|
// download and analyze all images
|
|
for (let i = 0; i < images.length; i++) await AddImageElement(i, images[i], images.length);
|
|
|
|
// print stats
|
|
const num = all.reduce((prev, cur) => prev += cur.length, 0);
|
|
log('Extracted faces:', num, 'from images:', all.length);
|
|
log(human.tf.engine().memory());
|
|
|
|
// if we didn't download db, generate it from current faces
|
|
if (!db || db.length === 0) await createFaceMatchDB();
|
|
|
|
title('');
|
|
log('Ready');
|
|
}
|
|
|
|
window.onload = main;
|