mirror of https://github.com/vladmandic/human
4950 lines
1.3 MiB
4950 lines
1.3 MiB
|
|
/*
|
|
Human library
|
|
homepage: <https://github.com/vladmandic/human>
|
|
author: <https://github.com/vladmandic>'
|
|
*/
|
|
|
|
var G8=Object.create,Ih=Object.defineProperty,H8=Object.getPrototypeOf,q8=Object.prototype.hasOwnProperty,X8=Object.getOwnPropertyNames,K8=Object.getOwnPropertyDescriptor;var Z2=e=>Ih(e,"__esModule",{value:!0});var it=(e,t)=>()=>(t||(t={exports:{}},e(t.exports,t)),t.exports),Y2=(e,t)=>{Z2(e);for(var n in t)Ih(e,n,{get:t[n],enumerable:!0})},Z8=(e,t,n)=>{if(Z2(e),t&&typeof t=="object"||typeof t=="function")for(let r of X8(t))!q8.call(e,r)&&r!=="default"&&Ih(e,r,{get:()=>t[r],enumerable:!(n=K8(t,r))||n.enumerable});return e},Le=e=>e&&e.__esModule?e:Z8(Ih(e!=null?G8(H8(e)):{},"default",{value:e,enumerable:!0}),e);var e6=it(A0=>{var Zv=6;function Wae(e){let t={strides:[e/16,e/8],anchors:[2,6]},n=[];for(let r=0;r<t.strides.length;r++){let a=t.strides[r],s=Math.floor((e+a-1)/a),i=Math.floor((e+a-1)/a),o=t.anchors[r];for(let l=0;l<s;l++){let u=a*(l+.5);for(let c=0;c<i;c++){let h=a*(c+.5);for(let d=0;d<o;d++)n.push([h,u])}}}return n}var Yv=e=>{e.startEndTensor.dispose(),e.startPoint.dispose(),e.endPoint.dispose()},Jv=e=>({startEndTensor:e,startPoint:Ce(e,[0,0],[-1,2]),endPoint:Ce(e,[0,2],[-1,2])}),Qv=(e,t)=>{let n=L(e.startPoint,t),r=L(e.endPoint,t),a=ui([n,r],1);return Jv(a)};function Bae(e,t,n){let r=Ce(e,[0,1],[-1,2]),a=oe(r,t),s=Ce(e,[0,3],[-1,2]),i=_e(s,n),o=_e(a,n),l=_e(i,2),u=ye(o,l),c=oe(o,l),h=L(u,n),d=L(c,n);return ui([h,d],1)}function Vae(e,t){return W(()=>{let n=e.box?e.box:e;return Qv(n,t).startEndTensor.squeeze()})}var t2=class{constructor(t,n){this.blazeFaceModel=t,this.width=n.face.detector.inputSize,this.height=n.face.detector.inputSize,this.anchorsData=Wae(n.face.detector.inputSize),this.anchors=xn(this.anchorsData),this.inputSize=jt([this.width,this.height]),this.config=n,this.scaleFaces=.8}async getBoundingBoxes(t){if(!t||t.isDisposedInternal||t.shape.length!==4||t.shape[1]<1||t.shape[2]<1)return null;let[n,r,a]=W(()=>{let h=t.resizeBilinear([this.width,this.height]),d=ye(h.div(127.5),1),p=this.blazeFaceModel.predict(d),f;if(Array.isArray(p)){let g=p.sort((w,I)=>w.size-I.size),_=rt([g[0],g[2]],2),b=rt([g[1],g[3]],2);f=rt([b,_],1).squeeze(0)}else f=p.squeeze();let m=Bae(f,this.anchors,this.inputSize),A=Ce(f,[0,0],[-1,1]),y=Sn(A).squeeze();return[f,m,y]}),s=await at.nonMaxSuppressionAsync(r,a,this.config.face.detector.maxFaces,this.config.face.detector.iouThreshold,this.config.face.detector.scoreThreshold),i=s.arraySync();s.dispose();let l=i.map(h=>Ce(r,[h,0],[1,-1])).map(h=>{let d=h.arraySync();return h.dispose(),d}),u=a.dataSync(),c=[];for(let h=0;h<l.length;h++){let d=i[h],p=u[d];if(p>this.config.face.detector.minConfidence){let f=Jv(l[h]),m=this.anchorsData[d],A=W(()=>Ce(n,[d,Zv-1],[1,-1]).squeeze().reshape([Zv,-1]));c.push({box:f,landmarks:A,anchor:m,confidence:p})}}return n.dispose(),r.dispose(),a.dispose(),n.dispose(),{boxes:c,scaleFactor:[t.shape[2]/this.width,t.shape[1]/this.height]}}async estimateFaces(t){let{boxes:n,scaleFactor:r}=await this.getBoundingBoxes(t),a=[];for(let s of n){let i=s.landmarks.arraySync(),o=Vae(s,r),l=Qv.arraySync(),u=s.probability.arraySync(),c=s.anchor,[h,d]=r,p=i.map(m=>[(m[0]+c[0])*h,(m[1]+c[1])*d]),f={topLeft:l.slice(0,2),bottomRight:l.slice(2),landmarks:p,probability:u};Yv(s.box),s.landmarks.dispose(),s.probability.dispose(),o.dispose(),a.push(f)}return a}};async function Uae(e){let t=await Xt(e.face.detector.modelPath,{fromTFHub:e.face.detector.modelPath.includes("tfhub.dev")}),n=new t2(t,e);return Me(`load model: ${e.face.detector.modelPath.match(/\/(.*)\./)[1]}`),n}A0.load=Uae;A0.BlazeFaceModel=t2;A0.disposeBox=Yv});var t6=it(Mi=>{function jae(e,t){let n=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],r=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]];return{startPoint:n,endPoint:r}}Mi.scaleBoxCoordinates=jae;function n2(e){return[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])]}Mi.getBoxSize=n2;function r2(e){return[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2]}Mi.getBoxCenter=r2;function Gae(e,t,n){let r=t.shape[1],a=t.shape[2],s=[[e.startPoint[1]/r,e.startPoint[0]/a,e.endPoint[1]/r,e.endPoint[0]/a]];return at.cropAndResize(t,s,[0],n)}Mi.cutBoxFromImageAndResize=Gae;function Hae(e,t=1.5){let n=r2(e),r=n2(e),a=[t*r[0]/2,t*r[1]/2],s=[n[0]-a[0],n[1]-a[1]],i=[n[0]+a[0],n[1]+a[1]];return{startPoint:s,endPoint:i,landmarks:e.landmarks}}Mi.enlargeBox=Hae;function qae(e){let t=r2(e),n=n2(e),a=Math.max(...n)/2,s=[t[0]-a,t[1]-a],i=[t[0]+a,t[1]+a];return{startPoint:s,endPoint:i,landmarks:e.landmarks}}Mi.squarifyBox=qae});var i6=it(Ir=>{Ir.IDENTITY_MATRIX=[[1,0,0],[0,1,0],[0,0,1]];function n6(e){return e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI))}Ir.normalizeRadians=n6;function Xae(e,t){let n=Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]);return n6(n)}Ir.computeRotation=Xae;function Kae(e){return e*180/Math.PI}Ir.radToDegrees=Kae;function r6(e,t){return[[1,0,e],[0,1,t],[0,0,1]]}function Hl(e,t){let n=0;for(let r=0;r<e.length;r++)n+=e[r]*t[r];return n}Ir.dot=Hl;function a6(e,t){let n=[];for(let r=0;r<e.length;r++)n.push(e[r][t]);return n}Ir.getColumnFrom2DArr=a6;function s6(e,t){let n=[],r=e.length;for(let a=0;a<r;a++){n.push([]);for(let s=0;s<r;s++)n[a].push(Hl(e[a],a6(t,s)))}return n}function Zae(e,t){let n=Math.cos(e),r=Math.sin(e),a=[[n,-r,0],[r,n,0],[0,0,1]],s=r6(t[0],t[1]),i=s6(s,a),o=r6(-t[0],-t[1]);return s6(i,o)}Ir.buildRotationMatrix=Zae;function Yae(e){let t=[[e[0][0],e[1][0]],[e[0][1],e[1][1]]],n=[e[0][2],e[1][2]],r=[-Hl(t[0],n),-Hl(t[1],n)];return[t[0].concat(r[0]),t[1].concat(r[1]),[0,0,1]]}Ir.invertTransformMatrix=Yae;function Jae(e,t){return[Hl(e,t[0]),Hl(e,t[1])]}Ir.rotatePoint=Jae;function Qae(e,t){return Math.sqrt((e[0]-t[0])**2+(e[1]-t[1])**2)}Ir.xyDistanceBetweenPoints=Qae});var a2=it(Sr=>{var ese={silhouette:[10,338,297,332,284,251,389,356,454,323,361,288,397,365,379,378,400,377,152,148,176,149,150,136,172,58,132,93,234,127,162,21,54,103,67,109],lipsUpperOuter:[61,185,40,39,37,0,267,269,270,409,291],lipsLowerOuter:[146,91,181,84,17,314,405,321,375,291],lipsUpperInner:[78,191,80,81,82,13,312,311,310,415,308],lipsLowerInner:[78,95,88,178,87,14,317,402,318,324,308],rightEyeUpper0:[246,161,160,159,158,157,173],rightEyeLower0:[33,7,163,144,145,153,154,155,133],rightEyeUpper1:[247,30,29,27,28,56,190],rightEyeLower1:[130,25,110,24,23,22,26,112,243],rightEyeUpper2:[113,225,224,223,222,221,189],rightEyeLower2:[226,31,228,229,230,231,232,233,244],rightEyeLower3:[143,111,117,118,119,120,121,128,245],rightEyebrowUpper:[156,70,63,105,66,107,55,193],rightEyebrowLower:[35,124,46,53,52,65],rightEyeIris:[473,474,475,476,477],leftEyeUpper0:[466,388,387,386,385,384,398],leftEyeLower0:[263,249,390,373,374,380,381,382,362],leftEyeUpper1:[467,260,259,257,258,286,414],leftEyeLower1:[359,255,339,254,253,252,256,341,463],leftEyeUpper2:[342,445,444,443,442,441,413],leftEyeLower2:[446,261,448,449,450,451,452,453,464],leftEyeLower3:[372,340,346,347,348,349,350,357,465],leftEyebrowUpper:[383,300,293,334,296,336,285,417],leftEyebrowLower:[265,353,276,283,282,295],leftEyeIris:[468,469,470,471,472],midwayBetweenEyes:[168],noseTip:[1],noseBottom:[2],noseRightCorner:[98],noseLeftCorner:[327],rightCheek:[205],leftCheek:[425]},tse=[{key:"EyeUpper0",indices:[9,10,11,12,13,14,15]},{key:"EyeUpper1",indices:[25,26,27,28,29,30,31]},{key:"EyeUpper2",indices:[41,42,43,44,45,46,47]},{key:"EyeLower0",indices:[0,1,2,3,4,5,6,7,8]},{key:"EyeLower1",indices:[16,17,18,19,20,21,22,23,24]},{key:"EyeLower2",indices:[32,33,34,35,36,37,38,39,40]},{key:"EyeLower3",indices:[54,55,56,57,58,59,60,61,62]}],y0=[[.499976992607117,.652534008026123],[.500025987625122,.547487020492554],[.499974012374878,.602371990680695],[.482113003730774,.471979022026062],[.500150978565216,.527155995368958],[.499909996986389,.498252987861633],[.499523013830185,.40106201171875],[.289712011814117,.380764007568359],[.499954998493195,.312398016452789],[.499987006187439,.269918978214264],[.500023007392883,.107050001621246],[.500023007392883,.666234016418457],[.5000159740448,.679224014282227],[.500023007392883,.692348003387451],[.499976992607117,.695277988910675],[.499976992607117,.70593398809433],[.499976992607117,.719385027885437],[.499976992607117,.737019002437592],[.499967992305756,.781370997428894],[.499816000461578,.562981009483337],[.473773002624512,.573909997940063],[.104906998574734,.254140973091125],[.365929991006851,.409575998783112],[.338757991790771,.41302502155304],[.311120003461838,.409460008144379],[.274657994508743,.389131009578705],[.393361985683441,.403706014156342],[.345234006643295,.344011008739471],[.370094001293182,.346076011657715],[.319321990013123,.347265005111694],[.297903001308441,.353591024875641],[.24779200553894,.410809993743896],[.396889001131058,.842755019664764],[.280097991228104,.375599980354309],[.106310002505779,.399955987930298],[.2099249958992,.391353011131287],[.355807989835739,.534406006336212],[.471751004457474,.65040397644043],[.474155008792877,.680191993713379],[.439785003662109,.657229006290436],[.414617002010345,.66654098033905],[.450374007225037,.680860996246338],[.428770989179611,.682690978050232],[.374971002340317,.727805018424988],[.486716985702515,.547628998756409],[.485300987958908,.527395009994507],[.257764995098114,.314490020275116],[.401223003864288,.455172002315521],[.429818987846375,.548614978790283],[.421351999044418,.533740997314453],[.276895999908447,.532056987285614],[.483370006084442,.499586999416351],[.33721199631691,.282882988452911],[.296391993761063,.293242990970612],[.169294998049736,.193813979625702],[.447580009698868,.302609980106354],[.392390012741089,.353887975215912],[.354490011930466,.696784019470215],[.067304998636246,.730105042457581],[.442739009857178,.572826027870178],[.457098007202148,.584792017936707],[.381974011659622,.694710969924927],[.392388999462128,.694203019142151],[.277076005935669,.271932005882263],[.422551989555359,.563233017921448],[.385919004678726,.281364023685455],[.383103013038635,.255840003490448],[.331431001424789,.119714021682739],[.229923993349075,.232002973556519],[.364500999450684,.189113974571228],[.229622006416321,.299540996551514],[.173287004232407,.278747975826263],[.472878992557526,.666198015213013],[.446828007698059,.668527007102966],[.422762006521225,.673889994621277],[.445307999849319,.580065965652466],[.388103008270264,.693961024284363],[.403039008378983,.706539988517761],[.403629004955292,.693953037261963],[.460041999816895,.557139039039612],[.431158006191254,.692366003990173],[.452181994915009,.692366003990173],[.475387006998062,.692366003990173],[.465828001499176,.779190003871918],[.472328990697861,.736225962638855],[.473087012767792,.717857003211975],[.473122000694275,.704625964164734],[.473033010959625,.695277988910675],[.427942007780075,.695277988910675],[.426479011774063,.703539967536926],[.423162013292313,.711845993995667],[.4183090031147,.720062971115112],[.390094995498657,.639572978019714],[.013953999616206,.560034036636353],[.499913990497589,.58014702796936],[.413199990987778,.69539999961853],[.409626007080078,.701822996139526],[.468080013990402,.601534962654114],[.422728985548019,.585985004901886],[.463079988956451,.593783974647522],[.37211999297142,.47341400384903],[.334562003612518,.496073007583618],[.411671012639999,.546965003013611],[.242175996303558,.14767599105835],[.290776997804642,.201445996761322],[.327338010072708,.256527006626129],[.399509996175766,.748921036720276],[.441727995872498,.261676013469696],[.429764986038208,.187834024429321],[.412198007106781,.108901023864746],[.288955003023148,.398952007293701],[.218936994671822,.435410976409912],[.41278201341629,.398970007896423],[.257135003805161,.355440020561218],[.427684992551804,.437960982322693],[.448339998722076,.536936044692993],[.178560003638268,.45755398273468],[.247308000922203,.457193970680237],[.286267012357712,.467674970626831],[.332827985286713,.460712015628815],[.368755996227264,.447206974029541],[.398963987827301,.432654976844788],[.476410001516342,.405806005001068],[.189241006970406,.523923993110657],[.228962004184723,.348950982093811],[.490725994110107,.562400996685028],[.404670000076294,.485132992267609],[.019469000399113,.401564002037048],[.426243007183075,.420431017875671],[.396993011236191,.548797011375427],[.266469985246658,.376977026462555],[.439121007919312,.51895797252655],[.032313998788595,.644356966018677],[.419054001569748,.387154996395111],[.462783008813858,.505746960639954],[.238978996872902,.779744982719421],[.198220998048782,.831938028335571],[.107550002634525,.540755033493042],[.183610007166862,.740257024765015],[.134409993886948,.333683013916016],[.385764002799988,.883153975009918],[.490967005491257,.579378008842468],[.382384985685349,.508572995662689],[.174399003386497,.397670984268188],[.318785011768341,.39623498916626],[.343364000320435,.400596976280212],[.396100014448166,.710216999053955],[.187885001301765,.588537991046906],[.430987000465393,.944064974784851],[.318993002176285,.898285031318665],[.266247987747192,.869701027870178],[.500023007392883,.190576016902924],[.499976992607117,.954452991485596],[.366169989109039,.398822009563446],[.393207013607025,.39553701877594],[.410373002290726,.391080021858215],[.194993004202843,.342101991176605],[.388664990663528,.362284004688263],[.365961998701096,.355970978736877],[.343364000320435,.355356991291046],[.318785011768341,.35834002494812],[.301414996385574,.363156020641327],[.058132998645306,.319076001644135],[.301414996385574,.387449026107788],[.499987989664078,.618434011936188],[.415838003158569,.624195992946625],[.445681989192963,.566076993942261],[.465844005346298,.620640993118286],[.49992299079895,.351523995399475],[.288718998432159,.819945991039276],[.335278987884521,.852819979190826],[.440512001514435,.902418971061707],[.128294005990028,.791940987110138],[.408771991729736,.373893976211548],[.455606997013092,.451801002025604],[.499877005815506,.908990025520325],[.375436991453171,.924192011356354],[.11421000212431,.615022003650665],[.448662012815475,.695277988910675],[.4480200111866,.704632043838501],[.447111994028091,.715808033943176],[.444831997156143,.730794012546539],[.430011987686157,.766808986663818],[.406787008047104,.685672998428345],[.400738000869751,.681069016456604],[.392399996519089,.677703022956848],[.367855995893478,.663918972015381],[.247923001646996,.601333022117615],[.452769994735718,.420849978923798],[.43639200925827,.359887003898621],[.416164010763168,.368713974952698],[.413385987281799,.692366003990173],[.228018000721931,.683571994304657],[.468268007040024,.352671027183533],[.411361992359161,.804327011108398],[.499989002943039,.469825029373169],[.479153990745544,.442654013633728],[.499974012374878,.439637005329132],[.432112008333206,.493588984012604],[.499886006116867,.866917014122009],[.49991300702095,.821729004383087],[.456548988819122,.819200992584229],[.344549000263214,.745438992977142],[.37890899181366,.574010014533997],[.374292999505997,.780184984207153],[.319687992334366,.570737957954407],[.357154995203018,.604269981384277],[.295284003019333,.621580958366394],[.447750002145767,.862477004528046],[.410986006259918,.508723020553589],[.31395098567009,.775308012962341],[.354128003120422,.812552988529205],[.324548006057739,.703992962837219],[.189096003770828,.646299958229065],[.279776990413666,.71465802192688],[.1338230073452,.682700991630554],[.336768001317978,.644733011722565],[.429883986711502,.466521978378296],[.455527991056442,.548622965812683],[.437114000320435,.558896005153656],[.467287987470627,.529924988746643],[.414712011814117,.335219979286194],[.37704598903656,.322777986526489],[.344107985496521,.320150971412659],[.312875986099243,.32233202457428],[.283526003360748,.333190023899078],[.241245999932289,.382785975933075],[.102986000478268,.468762993812561],[.267612010240555,.424560010433197],[.297879010438919,.433175981044769],[.333433985710144,.433878004550934],[.366427004337311,.426115989685059],[.396012008190155,.416696012020111],[.420121014118195,.41022801399231],[.007561000064015,.480777025222778],[.432949006557465,.569517970085144],[.458638995885849,.479089021682739],[.473466008901596,.545744001865387],[.476087987422943,.563830018043518],[.468472003936768,.555056989192963],[.433990985155106,.582361996173859],[.483518004417419,.562983989715576],[.482482999563217,.57784903049469],[.42645001411438,.389798998832703],[.438998997211456,.39649498462677],[.450067013502121,.400434017181396],[.289712011814117,.368252992630005],[.276670008897781,.363372981548309],[.517862021923065,.471948027610779],[.710287988185883,.380764007568359],[.526226997375488,.573909997940063],[.895093023777008,.254140973091125],[.634069979190826,.409575998783112],[.661242008209229,.41302502155304],[.688880026340485,.409460008144379],[.725341975688934,.389131009578705],[.606630027294159,.40370500087738],[.654766023159027,.344011008739471],[.629905998706818,.346076011657715],[.680678009986877,.347265005111694],[.702096998691559,.353591024875641],[.75221198797226,.410804986953735],[.602918028831482,.842862963676453],[.719901978969574,.375599980354309],[.893692970275879,.399959981441498],[.790081977844238,.391354024410248],[.643998026847839,.534487962722778],[.528249025344849,.65040397644043],[.525849997997284,.680191040039062],[.560214996337891,.657229006290436],[.585384011268616,.66654098033905],[.549625992774963,.680860996246338],[.57122802734375,.682691991329193],[.624852001667023,.72809898853302],[.513050019741058,.547281980514526],[.51509702205658,.527251958847046],[.742246985435486,.314507007598877],[.598631024360657,.454979002475739],[.570338010787964,.548575043678284],[.578631997108459,.533622980117798],[.723087012767792,.532054007053375],[.516445994377136,.499638974666595],[.662801027297974,.282917976379395],[.70362401008606,.293271005153656],[.830704987049103,.193813979625702],[.552385985851288,.302568018436432],[.607609987258911,.353887975215912],[.645429015159607,.696707010269165],[.932694971561432,.730105042457581],[.557260990142822,.572826027870178],[.542901992797852,.584792017936707],[.6180260181427,.694710969924927],[.607590973377228,.694203019142151],[.722943007946014,.271963000297546],[.577413976192474,.563166975975037],[.614082992076874,.281386971473694],[.616907000541687,.255886018276215],[.668509006500244,.119913995265961],[.770092010498047,.232020974159241],[.635536015033722,.189248979091644],[.77039098739624,.299556016921997],[.826722025871277,.278755009174347],[.527121007442474,.666198015213013],[.553171992301941,.668527007102966],[.577238023281097,.673889994621277],[.554691970348358,.580065965652466],[.611896991729736,.693961024284363],[.59696102142334,.706539988517761],[.596370995044708,.693953037261963],[.539958000183105,.557139039039612],[.568841993808746,.692366003990173],[.547818005084991,.692366003990173],[.52461302280426,.692366003990173],[.534089982509613,.779141008853912],[.527670979499817,.736225962638855],[.526912987232208,.717857003211975],[.526877999305725,.704625964164734],[.526966989040375,.695277988910675],[.572058022022247,.695277988910675],[.573521018028259,.703539967536926],[.57683801651001,.711845993995667],[.581691026687622,.720062971115112],[.609944999217987,.639909982681274],[.986046016216278,.560034036636353],[.5867999792099,.69539999961853],[.590372025966644,.701822996139526],[.531915009021759,.601536989212036],[.577268004417419,.585934996604919],[.536915004253387,.593786001205444],[.627542972564697,.473352015018463],[.665585994720459,.495950996875763],[.588353991508484,.546862006187439],[.757824003696442,.14767599105835],[.709249973297119,.201507985591888],[.672684013843536,.256581008434296],[.600408971309662,.74900496006012],[.55826598405838,.261672019958496],[.570303976535797,.187870979309082],[.588165998458862,.109044015407562],[.711045026779175,.398952007293701],[.781069993972778,.435405015945435],[.587247014045715,.398931980133057],[.742869973182678,.355445981025696],[.572156012058258,.437651991844177],[.55186802148819,.536570012569427],[.821442008018494,.457556009292603],[.752701997756958,.457181990146637],[.71375697851181,.467626988887787],[.66711300611496,.460672974586487],[.631101012229919,.447153985500336],[.6008620262146,.432473003864288],[.523481011390686,.405627012252808],[.810747981071472,.523926019668579],[.771045982837677,.348959028720856],[.509127020835876,.562718033790588],[.595292985439301,.485023975372314],[.980530977249146,.401564002037048],[.573499977588654,.420000016689301],[.602994978427887,.548687994480133],[.733529984951019,.376977026462555],[.560611009597778,.519016981124878],[.967685997486115,.644356966018677],[.580985009670258,.387160003185272],[.537728011608124,.505385041236877],[.760966002941132,.779752969741821],[.801778972148895,.831938028335571],[.892440974712372,.54076099395752],[.816350996494293,.740260004997253],[.865594983100891,.333687007427216],[.614073991775513,.883246004581451],[.508952975273132,.579437971115112],[.617941975593567,.508316040039062],[.825608015060425,.397674977779388],[.681214988231659,.39623498916626],[.656635999679565,.400596976280212],[.603900015354156,.710216999053955],[.81208598613739,.588539004325867],[.56801301240921,.944564998149872],[.681007981300354,.898285031318665],[.733752012252808,.869701027870178],[.633830010890961,.398822009563446],[.606792986392975,.39553701877594],[.589659988880157,.391062021255493],[.805015981197357,.342108011245728],[.611334979534149,.362284004688263],[.634037971496582,.355970978736877],[.656635999679565,.355356991291046],[.681214988231659,.35834002494812],[.698584973812103,.363156020641327],[.941866993904114,.319076001644135],[.698584973812103,.387449026107788],[.584177017211914,.624107003211975],[.554318010807037,.566076993942261],[.534153997898102,.62064003944397],[.711217999458313,.819975018501282],[.664629995822906,.852871000766754],[.559099972248077,.902631998062134],[.871706008911133,.791940987110138],[.591234028339386,.373893976211548],[.544341027736664,.451583981513977],[.624562978744507,.924192011356354],[.88577002286911,.615028977394104],[.551338016986847,.695277988910675],[.551980018615723,.704632043838501],[.552887976169586,.715808033943176],[.555167973041534,.730794012546539],[.569944024085999,.767035007476807],[.593203008174896,.685675978660583],[.599261999130249,.681069016456604],[.607599973678589,.677703022956848],[.631937980651855,.663500010967255],[.752032995223999,.601315021514893],[.547226011753082,.420395016670227],[.563543975353241,.359827995300293],[.583841025829315,.368713974952698],[.586614012718201,.692366003990173],[.771915018558502,.683578014373779],[.531597018241882,.352482974529266],[.588370978832245,.804440975189209],[.52079701423645,.442565023899078],[.567984998226166,.493479013442993],[.543282985687256,.819254994392395],[.655317008495331,.745514988899231],[.621008992195129,.574018001556396],[.625559985637665,.78031200170517],[.680198013782501,.570719003677368],[.64276397228241,.604337990283966],[.704662978649139,.621529996395111],[.552012026309967,.862591981887817],[.589071989059448,.508637011051178],[.685944974422455,.775357007980347],[.645735025405884,.812640011310577],[.675342977046967,.703978002071381],[.810858011245728,.646304965019226],[.72012197971344,.714666962623596],[.866151988506317,.682704985141754],[.663187026977539,.644596993923187],[.570082008838654,.466325998306274],[.544561982154846,.548375964164734],[.562758982181549,.558784961700439],[.531987011432648,.530140042304993],[.585271000862122,.335177004337311],[.622952997684479,.32277899980545],[.655896008014679,.320163011550903],[.687132000923157,.322345972061157],[.716481983661652,.333200991153717],[.758756995201111,.382786989212036],[.897013008594513,.468769013881683],[.732392013072968,.424547016620636],[.70211398601532,.433162987232208],[.66652500629425,.433866024017334],[.633504986763,.426087975502014],[.603875994682312,.416586995124817],[.579657971858978,.409945011138916],[.992439985275269,.480777025222778],[.567192018032074,.569419980049133],[.54136598110199,.478899002075195],[.526564002037048,.546118021011353],[.523913025856018,.563830018043518],[.531529009342194,.555056989192963],[.566035985946655,.582329034805298],[.51631098985672,.563053965568542],[.5174720287323,.577877044677734],[.573594987392426,.389806985855103],[.560697972774506,.395331978797913],[.549755990505219,.399751007556915],[.710287988185883,.368252992630005],[.723330020904541,.363372981548309]],nse=[127,34,139,11,0,37,232,231,120,72,37,39,128,121,47,232,121,128,104,69,67,175,171,148,157,154,155,118,50,101,73,39,40,9,151,108,48,115,131,194,204,211,74,40,185,80,42,183,40,92,186,230,229,118,202,212,214,83,18,17,76,61,146,160,29,30,56,157,173,106,204,194,135,214,192,203,165,98,21,71,68,51,45,4,144,24,23,77,146,91,205,50,187,201,200,18,91,106,182,90,91,181,85,84,17,206,203,36,148,171,140,92,40,39,193,189,244,159,158,28,247,246,161,236,3,196,54,68,104,193,168,8,117,228,31,189,193,55,98,97,99,126,47,100,166,79,218,155,154,26,209,49,131,135,136,150,47,126,217,223,52,53,45,51,134,211,170,140,67,69,108,43,106,91,230,119,120,226,130,247,63,53,52,238,20,242,46,70,156,78,62,96,46,53,63,143,34,227,173,155,133,123,117,111,44,125,19,236,134,51,216,206,205,154,153,22,39,37,167,200,201,208,36,142,100,57,212,202,20,60,99,28,158,157,35,226,113,160,159,27,204,202,210,113,225,46,43,202,204,62,76,77,137,123,116,41,38,72,203,129,142,64,98,240,49,102,64,41,73,74,212,216,207,42,74,184,169,170,211,170,149,176,105,66,69,122,6,168,123,147,187,96,77,90,65,55,107,89,90,180,101,100,120,63,105,104,93,137,227,15,86,85,129,102,49,14,87,86,55,8,9,100,47,121,145,23,22,88,89,179,6,122,196,88,95,96,138,172,136,215,58,172,115,48,219,42,80,81,195,3,51,43,146,61,171,175,199,81,82,38,53,46,225,144,163,110,246,33,7,52,65,66,229,228,117,34,127,234,107,108,69,109,108,151,48,64,235,62,78,191,129,209,126,111,35,143,163,161,246,117,123,50,222,65,52,19,125,141,221,55,65,3,195,197,25,7,33,220,237,44,70,71,139,122,193,245,247,130,33,71,21,162,153,158,159,170,169,150,188,174,196,216,186,92,144,160,161,2,97,167,141,125,241,164,167,37,72,38,12,145,159,160,38,82,13,63,68,71,226,35,111,158,153,154,101,50,205,206,92,165,209,198,217,165,167,97,220,115,218,133,112,243,239,238,241,214,135,169,190,173,133,171,208,32,125,44,237,86,87,178,85,86,179,84,85,180,83,84,181,201,83,182,137,93,132,76,62,183,61,76,184,57,61,185,212,57,186,214,207,187,34,143,156,79,239,237,123,137,177,44,1,4,201,194,32,64,102,129,213,215,138,59,166,219,242,99,97,2,94,141,75,59,235,24,110,228,25,130,226,23,24,229,22,23,230,26,22,231,112,26,232,189,190,243,221,56,190,28,56,221,27,28,222,29,27,223,30,29,224,247,30,225,238,79,20,166,59,75,60,75,240,147,177,215,20,79,166,187,147,213,112,233,244,233,128,245,128,114,188,114,217,174,131,115,220,217,198,236,198,131,134,177,132,58,143,35,124,110,163,7,228,110,25,356,389,368,11,302,267,452,350,349,302,303,269,357,343,277,452,453,357,333,332,297,175,152,377,384,398,382,347,348,330,303,304,270,9,336,337,278,279,360,418,262,431,304,408,409,310,415,407,270,409,410,450,348,347,422,430,434,313,314,17,306,307,375,387,388,260,286,414,398,335,406,418,364,367,416,423,358,327,251,284,298,281,5,4,373,374,253,307,320,321,425,427,411,421,313,18,321,405,406,320,404,405,315,16,17,426,425,266,377,400,369,322,391,269,417,465,464,386,257,258,466,260,388,456,399,419,284,332,333,417,285,8,346,340,261,413,441,285,327,460,328,355,371,329,392,439,438,382,341,256,429,420,360,364,394,379,277,343,437,443,444,283,275,440,363,431,262,369,297,338,337,273,375,321,450,451,349,446,342,467,293,334,282,458,461,462,276,353,383,308,324,325,276,300,293,372,345,447,382,398,362,352,345,340,274,1,19,456,248,281,436,427,425,381,256,252,269,391,393,200,199,428,266,330,329,287,273,422,250,462,328,258,286,384,265,353,342,387,259,257,424,431,430,342,353,276,273,335,424,292,325,307,366,447,345,271,303,302,423,266,371,294,455,460,279,278,294,271,272,304,432,434,427,272,407,408,394,430,431,395,369,400,334,333,299,351,417,168,352,280,411,325,319,320,295,296,336,319,403,404,330,348,349,293,298,333,323,454,447,15,16,315,358,429,279,14,15,316,285,336,9,329,349,350,374,380,252,318,402,403,6,197,419,318,319,325,367,364,365,435,367,397,344,438,439,272,271,311,195,5,281,273,287,291,396,428,199,311,271,268,283,444,445,373,254,339,263,466,249,282,334,296,449,347,346,264,447,454,336,296,299,338,10,151,278,439,455,292,407,415,358,371,355,340,345,372,390,249,466,346,347,280,442,443,282,19,94,370,441,442,295,248,419,197,263,255,359,440,275,274,300,383,368,351,412,465,263,467,466,301,368,389,380,374,386,395,378,379,412,351,419,436,426,322,373,390,388,2,164,393,370,462,461,164,0,267,302,11,12,374,373,387,268,12,13,293,300,301,446,261,340,385,384,381,330,266,425,426,423,391,429,355,437,391,327,326,440,457,438,341,382,362,459,457,461,434,430,394,414,463,362,396,369,262,354,461,457,316,403,402,315,404,403,314,405,404,313,406,405,421,418,406,366,401,361,306,408,407,291,409,408,287,410,409,432,436,410,434,416,411,264,368,383,309,438,457,352,376,401,274,275,4,421,428,262,294,327,358,433,416,367,289,455,439,462,370,326,2,326,370,305,460,455,254,449,448,255,261,446,253,450,449,252,451,450,256,452,451,341,453,452,413,464,463,441,413,414,258,442,441,257,443,442,259,444,443,260,445,444,467,342,445,459,458,250,289,392,290,290,328,460,376,433,435,250,290,392,411,416,433,341,463,464,453,464,465,357,465,412,343,412,399,360,363,440,437,399,456,420,456,363,401,435,288,372,383,353,339,255,249,448,261,255,133,243,190,133,155,112,33,246,247,33,130,25,398,384,286,362,398,414,362,463,341,263,359,467,263,249,255,466,467,260,75,60,166,238,239,79,162,127,139,72,11,37,121,232,120,73,72,39,114,128,47,233,232,128,103,104,67,152,175,148,173,157,155,119,118,101,74,73,40,107,9,108,49,48,131,32,194,211,184,74,185,191,80,183,185,40,186,119,230,118,210,202,214,84,83,17,77,76,146,161,160,30,190,56,173,182,106,194,138,135,192,129,203,98,54,21,68,5,51,4,145,144,23,90,77,91,207,205,187,83,201,18,181,91,182,180,90,181,16,85,17,205,206,36,176,148,140,165,92,39,245,193,244,27,159,28,30,247,161,174,236,196,103,54,104,55,193,8,111,117,31,221,189,55,240,98,99,142,126,100,219,166,218,112,155,26,198,209,131,169,135,150,114,47,217,224,223,53,220,45,134,32,211,140,109,67,108,146,43,91,231,230,120,113,226,247,105,63,52,241,238,242,124,46,156,95,78,96,70,46,63,116,143,227,116,123,111,1,44,19,3,236,51,207,216,205,26,154,22,165,39,167,199,200,208,101,36,100,43,57,202,242,20,99,56,28,157,124,35,113,29,160,27,211,204,210,124,113,46,106,43,204,96,62,77,227,137,116,73,41,72,36,203,142,235,64,240,48,49,64,42,41,74,214,212,207,183,42,184,210,169,211,140,170,176,104,105,69,193,122,168,50,123,187,89,96,90,66,65,107,179,89,180,119,101,120,68,63,104,234,93,227,16,15,85,209,129,49,15,14,86,107,55,9,120,100,121,153,145,22,178,88,179,197,6,196,89,88,96,135,138,136,138,215,172,218,115,219,41,42,81,5,195,51,57,43,61,208,171,199,41,81,38,224,53,225,24,144,110,105,52,66,118,229,117,227,34,234,66,107,69,10,109,151,219,48,235,183,62,191,142,129,126,116,111,143,7,163,246,118,117,50,223,222,52,94,19,141,222,221,65,196,3,197,45,220,44,156,70,139,188,122,245,139,71,162,145,153,159,149,170,150,122,188,196,206,216,92,163,144,161,164,2,167,242,141,241,0,164,37,11,72,12,144,145,160,12,38,13,70,63,71,31,226,111,157,158,154,36,101,205,203,206,165,126,209,217,98,165,97,237,220,218,237,239,241,210,214,169,140,171,32,241,125,237,179,86,178,180,85,179,181,84,180,182,83,181,194,201,182,177,137,132,184,76,183,185,61,184,186,57,185,216,212,186,192,214,187,139,34,156,218,79,237,147,123,177,45,44,4,208,201,32,98,64,129,192,213,138,235,59,219,141,242,97,97,2,141,240,75,235,229,24,228,31,25,226,230,23,229,231,22,230,232,26,231,233,112,232,244,189,243,189,221,190,222,28,221,223,27,222,224,29,223,225,30,224,113,247,225,99,60,240,213,147,215,60,20,166,192,187,213,243,112,244,244,233,245,245,128,188,188,114,174,134,131,220,174,217,236,236,198,134,215,177,58,156,143,124,25,110,7,31,228,25,264,356,368,0,11,267,451,452,349,267,302,269,350,357,277,350,452,357,299,333,297,396,175,377,381,384,382,280,347,330,269,303,270,151,9,337,344,278,360,424,418,431,270,304,409,272,310,407,322,270,410,449,450,347,432,422,434,18,313,17,291,306,375,259,387,260,424,335,418,434,364,416,391,423,327,301,251,298,275,281,4,254,373,253,375,307,321,280,425,411,200,421,18,335,321,406,321,320,405,314,315,17,423,426,266,396,377,369,270,322,269,413,417,464,385,386,258,248,456,419,298,284,333,168,417,8,448,346,261,417,413,285,326,327,328,277,355,329,309,392,438,381,382,256,279,429,360,365,364,379,355,277,437,282,443,283,281,275,363,395,431,369,299,297,337,335,273,321,348,450,349,359,446,467,283,293,282,250,458,462,300,276,383,292,308,325,283,276,293,264,372,447,346,352,340,354,274,19,363,456,281,426,436,425,380,381,252,267,269,393,421,200,428,371,266,329,432,287,422,290,250,328,385,258,384,446,265,342,386,387,257,422,424,430,445,342,276,422,273,424,306,292,307,352,366,345,268,271,302,358,423,371,327,294,460,331,279,294,303,271,304,436,432,427,304,272,408,395,394,431,378,395,400,296,334,299,6,351,168,376,352,411,307,325,320,285,295,336,320,319,404,329,330,349,334,293,333,366,323,447,316,15,315,331,358,279,317,14,316,8,285,9,277,329,350,253,374,252,319,318,403,351,6,419,324,318,325,397,367,365,288,435,397,278,344,439,310,272,311,248,195,281,375,273,291,175,396,199,312,311,268,276,283,445,390,373,339,295,282,296,448,449,346,356,264,454,337,336,299,337,338,151,294,278,455,308,292,415,429,358,355,265,340,372,388,390,466,352,346,280,295,442,282,354,19,370,285,441,295,195,248,197,457,440,274,301,300,368,417,351,465,251,301,389,385,380,386,394,395,379,399,412,419,410,436,322,387,373,388,326,2,393,354,370,461,393,164,267,268,302,12,386,374,387,312,268,13,298,293,301,265,446,340,380,385,381,280,330,425,322,426,391,420,429,437,393,391,326,344,440,438,458,459,461,364,434,394,428,396,262,274,354,457,317,316,402,316,315,403,315,314,404,314,313,405,313,421,406,323,366,361,292,306,407,306,291,408,291,287,409,287,432,410,427,434,411,372,264,383,459,309,457,366,352,401,1,274,4,418,421,262,331,294,358,435,433,367,392,289,439,328,462,326,94,2,370,289,305,455,339,254,448,359,255,446,254,253,449,253,252,450,252,256,451,256,341,452,414,413,463,286,441,414,286,258,441,258,257,442,257,259,443,259,260,444,260,467,445,309,459,250,305,289,290,305,290,460,401,376,435,309,250,392,376,411,433,453,341,464,357,453,465,343,357,412,437,343,399,344,360,440,420,437,456,360,420,363,361,401,288,265,372,353,390,339,249,339,448,255],rse=[0,1,36,0,36,17,1,2,41,1,41,36,2,3,31,2,31,41,3,4,48,3,48,31,4,5,48,5,6,48,6,7,59,6,59,48,7,8,58,7,58,59,8,9,56,8,56,57,8,57,58,9,10,55,9,55,56,10,11,54,10,54,55,11,12,54,12,13,54,13,14,35,13,35,54,14,15,46,14,46,35,15,16,45,15,45,46,16,26,45,17,36,18,18,37,19,18,36,37,19,38,20,19,37,38,20,39,21,20,38,39,21,39,27,22,42,23,22,27,42,23,43,24,23,42,43,24,44,25,24,43,44,25,45,26,25,44,45,27,39,28,27,28,42,28,39,29,28,29,42,29,31,30,29,30,35,29,40,31,29,35,47,29,39,40,29,47,42,30,31,32,30,32,33,30,33,34,30,34,35,31,50,32,31,40,41,31,48,49,31,49,50,32,51,33,32,50,51,33,51,34,34,52,35,34,51,52,35,46,47,35,52,53,35,53,54,36,41,37,37,40,38,37,41,40,38,40,39,42,47,43,43,47,44,44,46,45,44,47,46,48,60,49,48,59,60,49,61,50,49,60,61,50,62,51,50,61,62,51,62,52,52,63,53,52,62,63,53,64,54,53,63,64,54,64,55,55,65,56,55,64,65,56,66,57,56,65,66,57,66,58,58,67,59,58,66,67,59,67,60,60,67,61,61,66,62,61,67,66,62,66,63,63,65,64,63,66,65,21,27,22],ase=[0,8,7,7,8,1,2,10,9,9,10,3,17,0,18,18,0,7,18,7,19,19,7,1,19,1,11,19,11,20,21,3,22,21,9,3,20,9,21,20,2,9,20,11,2,23,17,18,25,21,22,24,19,20,24,18,19,24,20,21,24,23,18,24,21,25,11,12,4,11,4,13,1,12,11,11,13,2,12,14,4,4,14,13,14,5,15,14,15,6,12,5,14,14,6,13,8,12,1,2,13,10,8,26,12,10,13,27,26,5,12,13,6,27,0,26,8,10,27,3,5,32,16,16,32,6,5,30,32,6,32,31,26,30,5,27,6,31,0,28,26,3,27,29,17,28,0,3,29,22,23,28,17,22,29,25,28,30,26,27,31,29],sse=[0,4,1,2,4,3,4,5,6],ise=[127,234,132,58,172,150,149,148,152,377,378,379,397,288,361,454,356,70,63,105,66,107,336,296,334,293,300,168,6,195,4,98,97,2,326,327,33,160,158,133,153,144,362,385,387,263,373,380,57,40,37,0,267,270,287,321,314,17,84,91,78,81,13,311,308,402,14,178],ose=[33,133,362,263,1,62,308,159,145,386,374,6,102,331,2,13,14,70,105,107,336,334,300,54,10,284,50,280,234,454,58,288,152],lse=[33,133,362,263,1,78,308];Sr.MESH_ANNOTATIONS=ese;Sr.MESH_TO_IRIS_INDICES_MAP=tse;Sr.TRI468=nse;Sr.TRI68=rse;Sr.TRI33=ase;Sr.TRI7=sse;Sr.UV468=y0;Sr.UV68=ise.map(e=>y0[e]);Sr.UV33=ose.map(e=>y0[e]);Sr.UV7=lse.map(e=>y0[e])});var u6=it(o6=>{var Zt=Le(t6()),fn=Le(i6()),Hr=Le(a2()),use=468,cse=13,hse=[cse,Hr.MESH_ANNOTATIONS.midwayBetweenEyes[0]],dse=3,pse=2,fse=[dse,pse],s2=Hr.MESH_ANNOTATIONS.leftEyeLower0,i2=[s2[0],s2[s2.length-1]],o2=Hr.MESH_ANNOTATIONS.rightEyeLower0,l2=[o2[0],o2[o2.length-1]],mse=3,Ase=4,yse=71,u2=76;function g0(e,t,n,r){for(let a=0;a<Hr.MESH_TO_IRIS_INDICES_MAP.length;a++){let{key:s,indices:i}=Hr.MESH_TO_IRIS_INDICES_MAP[a],o=Hr.MESH_ANNOTATIONS[`${n}${s}`];if(r==null||r.includes(s))for(let u=0;u<i.length;u++){let c=i[u];e[o[u]]=[t[c][0],t[c][1],(t[c][2]+e[o[u]][2])/2]}}}var l6=class{constructor(t,n,r,a){this.storedBoxes=[],this.runsWithoutFaceDetector=0,this.boundingBoxDetector=t,this.meshDetector=n,this.irisModel=r,this.meshWidth=a.face.mesh.inputSize,this.meshHeight=a.face.mesh.inputSize,this.irisSize=a.face.iris.inputSize,this.irisEnlarge=2.3,this.skipped=0,this.detectedFaces=0}transformRawCoords(t,n,r,a){let s=Zt.getBoxSize({startPoint:n.startPoint,endPoint:n.endPoint}),i=[s[0]/this.meshWidth,s[1]/this.meshHeight],o=t.map(d=>[i[0]*(d[0]-this.meshWidth/2),i[1]*(d[1]-this.meshHeight/2),d[2]]),l=r!==0?fn.buildRotationMatrix(r,[0,0]):fn.IDENTITY_MATRIX,u=r!==0?o.map(d=>[...fn.rotatePoint(d,l),d[2]]):o,c=r!==0?fn.invertTransformMatrix(a):fn.IDENTITY_MATRIX,h=[...Zt.getBoxCenter({startPoint:n.startPoint,endPoint:n.endPoint}),1];return u.map(d=>[d[0]+fn.dot(h,c[0]),d[1]+fn.dot(h,c[1]),d[2]])}getLeftToRightEyeDepthDifference(t){let n=t[i2[0]][2],r=t[l2[0]][2];return n-r}getEyeBox(t,n,r,a,s=!1){let i=Zt.squarifyBox(Zt.enlargeBox(this.calculateLandmarksBoundingBox([t[r],t[a]]),this.irisEnlarge)),o=Zt.getBoxSize(i),l=at.cropAndResize(n,[[i.startPoint[1]/this.meshHeight,i.startPoint[0]/this.meshWidth,i.endPoint[1]/this.meshHeight,i.endPoint[0]/this.meshWidth]],[0],[this.irisSize,this.irisSize]);return s&&(l=at.flipLeftRight(l)),{box:i,boxSize:o,crop:l}}getEyeCoords(t,n,r,a=!1){let s=[];for(let i=0;i<u2;i++){let o=t[i*3],l=t[i*3+1],u=t[i*3+2];s.push([(a?1-o/this.irisSize:o/this.irisSize)*r[0]+n.startPoint[0],l/this.irisSize*r[1]+n.startPoint[1],u])}return{rawCoords:s,iris:s.slice(yse)}}getAdjustedIrisCoords(t,n,r){let a=t[Hr.MESH_ANNOTATIONS[`${r}EyeUpper0`][mse]][2],s=t[Hr.MESH_ANNOTATIONS[`${r}EyeLower0`][Ase]][2],i=(a+s)/2;return n.map((o,l)=>{let u=i;return l===2?u=a:l===4&&(u=s),[o[0],o[1],u]})}async predict(t,n){let r=!1,a;if((this.skipped===0||this.skipped>n.face.detector.skipFrames||!n.face.mesh.enabled||!n.videoOptimized)&&(a=await this.boundingBoxDetector.getBoundingBoxes(t),this.skipped=0),n.videoOptimized&&this.skipped++,a&&a.boxes&&a.boxes.length>0&&(!n.face.mesh.enabled||a.boxes.length!==this.detectedFaces&&this.detectedFaces!==n.face.detector.maxFaces)){this.storedBoxes=[],this.detectedFaces=0;for(let i of a.boxes)this.storedBoxes.push({startPoint:i.box.startPoint.dataSync(),endPoint:i.box.endPoint.dataSync(),landmarks:i.landmarks,confidence:i.confidence});this.storedBoxes.length>0&&(r=!0)}if(r){if(!a||!a.boxes||a.boxes.length===0)return this.storedBoxes=[],this.detectedFaces=0,null;for(let i=0;i<this.storedBoxes.length;i++){let o=Zt.scaleBoxCoordinates({startPoint:this.storedBoxes[i].startPoint,endPoint:this.storedBoxes[i].endPoint},a.scaleFactor),l=Zt.enlargeBox(o),u=Zt.squarifyBox(l),c=this.storedBoxes[i].landmarks.arraySync(),h=this.storedBoxes[i].confidence;this.storedBoxes[i]={...u,confidence:h,landmarks:c}}this.runsWithoutFaceDetector=0}a&&a.boxes&&a.boxes.forEach(i=>{i.box.startPoint.dispose(),i.box.endPoint.dispose(),i.landmarks.dispose()});let s=W(()=>this.storedBoxes.map((i,o)=>{let l,u=0,c;if(n.face.detector.rotation){let[x,w]=i.landmarks.length>=use?hse:fse;u=fn.computeRotation(i.landmarks[x],i.landmarks[w]);let I=Zt.getBoxCenter({startPoint:i.startPoint,endPoint:i.endPoint}),T=[I[0]/t.shape[2],I[1]/t.shape[1]],E=at.rotateWithOffset(t,u,0,T);c=fn.buildRotationMatrix(-u,I),l=Zt.cutBoxFromImageAndResize({startPoint:i.startPoint,endPoint:i.endPoint},E,[this.meshHeight,this.meshWidth]).div(255)}else{c=fn.IDENTITY_MATRIX;let x=t.clone();l=Zt.cutBoxFromImageAndResize({startPoint:i.startPoint,endPoint:i.endPoint},x,[this.meshHeight,this.meshWidth]).div(255)}if(!n.face.mesh.enabled)return{coords:null,box:i,faceConfidence:null,confidence:i.confidence,image:l};let[,h,d]=this.meshDetector.predict(l),p=h.dataSync()[0];if(p<n.face.detector.minConfidence)return null;let m=K(d,[-1,3]).arraySync();if(n.face.iris.enabled){let{box:x,boxSize:w,crop:I}=this.getEyeBox(m,l,i2[0],i2[1],!0),{box:T,boxSize:E,crop:M}=this.getEyeBox(m,l,l2[0],l2[1]),P=this.irisModel.predict(rt([I,M])).dataSync(),B=P.slice(0,u2*3),{rawCoords:q,iris:H}=this.getEyeCoords(B,x,w,!0),X=P.slice(u2*3),{rawCoords:Z,iris:ee}=this.getEyeCoords(X,T,E),J=this.getLeftToRightEyeDepthDifference(m);Math.abs(J)<30?(g0(m,q,"left"),g0(m,Z,"right")):J<1?g0(m,q,"left",["EyeUpper0","EyeLower0"]):g0(m,Z,"right",["EyeUpper0","EyeLower0"]);let se=this.getAdjustedIrisCoords(m,H,"left"),re=this.getAdjustedIrisCoords(m,ee,"right");m=m.concat(se).concat(re)}let A=this.transformRawCoords(m,i,u,c),y=Zt.enlargeBox(this.calculateLandmarksBoundingBox(A)),g=Zt.squarifyBox(y),_=xn(A),b={coords:_,box:y,faceConfidence:p,confidence:i.confidence,image:l};return n.face.mesh.returnRawData&&(b.rawCoords=m),this.storedBoxes[o]={...g,landmarks:_.arraySync(),confidence:i.confidence,faceConfidence:p},b}));return s=s.filter(i=>i!==null),this.detectedFaces=s.length,s}calculateLandmarksBoundingBox(t){let n=t.map(i=>i[0]),r=t.map(i=>i[1]),a=[Math.min(...n),Math.min(...r)],s=[Math.max(...n),Math.max(...r)];return{startPoint:a,endPoint:s,landmarks:t}}};o6.Pipeline=l6});var d6=it(x0=>{var c6=Le(e6()),h6=Le(u6()),Xc=Le(a2()),c2=class{constructor(t,n,r,a){this.facePipeline=new h6.Pipeline(t,n,r,a),this.config=a}async estimateFaces(t,n){let r=await this.facePipeline.predict(t,n),a=[];for(let s of r||[]){if(s.isDisposedInternal)continue;let i=s.coords?s.coords.arraySync():null,o=s.rawCoords,l={};if(i&&i.length>0)for(let h of Object.keys(Xc.MESH_ANNOTATIONS))l[h]=Xc.MESH_ANNOTATIONS[h].map(d=>i[d]);let u=n.face.mesh.returnRawData&&s.box?{topLeft:s.box.startPoint,bottomRight:s.box.endPoint}:null,c=s.box?[Math.max(0,s.box.startPoint[0]),Math.max(0,s.box.startPoint[1]),Math.min(t.shape[2],s.box.endPoint[0])-s.box.startPoint[0],Math.min(t.shape[1],s.box.endPoint[1])-s.box.startPoint[1]]:0;a.push({confidence:s.confidence||0,box:c,mesh:i,boxRaw:u,meshRaw:o,annotations:l,image:s.image?nr(s.image):null}),s.coords&&s.coords.dispose(),s.image&&s.image.dispose()}return a}},Oi=[null,null,null];async function gse(e){Oi=await Promise.all([!Oi[0]&&e.face.enabled?c6.load(e):null,!Oi[1]&&e.face.mesh.enabled?Xt(e.face.mesh.modelPath,{fromTFHub:e.face.mesh.modelPath.includes("tfhub.dev")}):null,!Oi[2]&&e.face.iris.enabled?Xt(e.face.iris.modelPath,{fromTFHub:e.face.iris.modelPath.includes("tfhub.dev")}):null]);let t=new c2(Oi[0],Oi[1],Oi[2],e);return e.face.mesh.enabled&&Me(`load model: ${e.face.mesh.modelPath.match(/\/(.*)\./)[1]}`),e.face.iris.enabled&&Me(`load model: ${e.face.iris.modelPath.match(/\/(.*)\./)[1]}`),t}x0.load=gse;x0.MediaPipeFaceMesh=c2;x0.triangulation=Xc.TRI468});var ql=it(p6=>{var xse={};function wse(e,t){if(!t||!t.kernels)return;let n=5,r=t.kernels.filter(o=>o.kernelTimeMs>0).reduce((o,l)=>o+=l.kernelTimeMs,0),a=t.kernels.map((o,l)=>(o.id=l,o)).filter(o=>o.kernelTimeMs>0).sort((o,l)=>l.kernelTimeMs-o.kernelTimeMs),s=t.kernels.map((o,l)=>(o.id=l,o)).filter(o=>o.totalBytesSnapshot>0).sort((o,l)=>l.totalBytesSnapshot-o.totalBytesSnapshot);a.length>n&&(a.length=n),s.length>n&&(s.length=n);let i={newBytes:t.newBytes,newTensors:t.newTensors,peakBytes:t.peakBytes,numKernelOps:t.kernels.length,timeKernelOps:r,slowestKernelOps:a,largestKernelOps:s};xse[e]=i,Me("Human profiler",e,i)}p6.run=wse});var m6=it(h2=>{var f6=Le(ql()),Xl={},w0={age:0},_0=Number.MAX_SAFE_INTEGER;async function _se(e){return Xl.age||(Xl.age=await Xt(e.face.age.modelPath),Me(`load model: ${e.face.age.modelPath.match(/\/(.*)\./)[1]}`)),Xl.age}async function bse(e,t){return Xl.age?_0<t.face.age.skipFrames&&t.videoOptimized&&w0.age&&w0.age>0?(_0++,w0):(t.videoOptimized?_0=0:_0=Number.MAX_SAFE_INTEGER,new Promise(async n=>{let r=at.resizeBilinear(e,[t.face.age.inputSize,t.face.age.inputSize],!1),a=L(r,[255]);Te(r);let s,i={};if(!t.profile)t.face.age.enabled&&(s=await Xl.age.predict(a));else{let o=t.face.age.enabled?await aa(()=>Xl.age.predict(a)):{};s=o.result.clone(),o.result.dispose(),f6.run("age",o)}if(a.dispose(),s){let o=s.dataSync();i.age=Math.trunc(10*o[0])/10}s.dispose(),w0=i,n(i)})):null}h2.predict=bse;h2.load=_se});var y6=it(d2=>{var A6=Le(ql()),Di={},p2={gender:""},b0=Number.MAX_SAFE_INTEGER,f2=!1,m2=[.2989,.587,.114];async function vse(e){return Di.gender||(Di.gender=await Xt(e.face.gender.modelPath),f2=Di.gender.inputs[0].shape[3]===1,Me(`load model: ${e.face.gender.modelPath.match(/\/(.*)\./)[1]}`)),Di.gender}async function kse(e,t){return Di.gender?b0<t.face.gender.skipFrames&&t.videoOptimized&&p2.gender!==""?(b0++,p2):(t.videoOptimized?b0=0:b0=Number.MAX_SAFE_INTEGER,new Promise(async n=>{let r=at.resizeBilinear(e,[t.face.gender.inputSize,t.face.gender.inputSize],!1),a;f2?a=W(()=>{let[o,l,u]=Jt(r,3,3),c=L(o,m2[0]),h=L(l,m2[1]),d=L(u,m2[2]);return hl([c,h,d]).sub(.5).mul(2)}):a=L(r,[255]),Te(r);let s,i={};if(!t.profile)t.face.gender.enabled&&(s=await Di.gender.predict(a));else{let o=t.face.gender.enabled?await aa(()=>Di.gender.predict(a)):{};s=o.result.clone(),o.result.dispose(),A6.run("gender",o)}if(a.dispose(),s){let o=s.dataSync();if(f2){let l=Math.trunc(100*Math.abs(o[0]-o[1]))/100;l>t.face.gender.minConfidence&&(i.gender=o[0]>o[1]?"female":"male",i.confidence=l)}else{let l=Math.trunc(200*Math.abs(o[0]-.5))/100;l>t.face.gender.minConfidence&&(i.gender=o[0]<=.5?"female":"male",i.confidence=Math.min(.99,l))}}s.dispose(),p2=i,n(i)})):null}d2.predict=kse;d2.load=vse});var w6=it(A2=>{var g6=Le(ql()),Nse=["angry","disgust","fear","happy","sad","surprise","neutral"],Kl={},y2=[],v0=Number.MAX_SAFE_INTEGER,g2=[.2989,.587,.114],x6=1;async function Ise(e){return Kl.emotion||(Kl.emotion=await Xt(e.face.emotion.modelPath),Me(`load model: ${e.face.emotion.modelPath.match(/\/(.*)\./)[1]}`)),Kl.emotion}async function Sse(e,t){return Kl.emotion?v0<t.face.emotion.skipFrames&&t.videoOptimized&&y2.length>0?(v0++,y2):(t.videoOptimized?v0=0:v0=Number.MAX_SAFE_INTEGER,new Promise(async n=>{let r=at.resizeBilinear(e,[t.face.emotion.inputSize,t.face.emotion.inputSize],!1),[a,s,i]=Jt(r,3,3);r.dispose();let o=L(a,g2[0]),l=L(s,g2[1]),u=L(i,g2[2]);a.dispose(),s.dispose(),i.dispose();let c=hl([o,l,u]);o.dispose(),l.dispose(),u.dispose();let h=W(()=>c.sub(.5).mul(2));c.dispose();let d=[];if(t.face.emotion.enabled){let p;if(t.profile){let f=await aa(()=>Kl.emotion.predict(h));p=f.result.dataSync(),f.result.dispose(),g6.run("emotion",f)}else{let f=await Kl.emotion.predict(h);p=f.dataSync(),Te(f)}for(let f=0;f<p.length;f++)x6*p[f]>t.face.emotion.minConfidence&&d.push({score:Math.min(.99,Math.trunc(100*x6*p[f])/100),emotion:Nse[f]});d.sort((f,m)=>m.score-f.score)}h.dispose(),y2=d,n(d)})):null}A2.predict=Sse;A2.load=Ise});var b6=it(k0=>{var _6=Le(ql()),Zl={};async function Tse(e){return Zl.embedding||(Zl.embedding=await Xt(e.face.embedding.modelPath),Me(`load model: ${e.face.embedding.modelPath.match(/\/(.*)\./)[1]}`)),Zl.embedding}function Ese(e,t){if((e==null?void 0:e.length)!==(t==null?void 0:t.length))return 0;let n=2,r=10*e.map((a,s)=>a-t[s]).reduce((a,s)=>a+s**n,0)**(1/n);return Math.trunc(1e3*(1-r))/1e3}async function Cse(e,t){return Zl.embedding?new Promise(async n=>{let r=at.resizeBilinear(e,[t.face.embedding.inputSize,t.face.embedding.inputSize],!1),a=[];if(t.face.embedding.enabled)if(t.profile){let s=await aa(()=>Zl.embedding.predict({img_inputs:r}));a=[...s.result.dataSync()],s.result.dispose(),_6.run("emotion",s)}else{let s=await Zl.embedding.predict({img_inputs:r});a=[...s.dataSync()],Te(s)}r.dispose(),n(a)}):null}k0.predict=Cse;k0.simmilarity=Ese;k0.load=Tse});var N6=it(v6=>{var Rse=[-123.15,-115.9,-103.06];function Fse(e){let[t,n,r,a]=e;return{offsets:t,heatmap:n,displacementFwd:r,displacementBwd:a}}function Mse(e){let[t,n,r,a]=e;return{offsets:r,heatmap:a,displacementFwd:t,displacementBwd:n}}var k6=class{constructor(t){this.model=t}predict(t,n){return W(()=>{let a=(n.body.modelType==="ResNet"?t.toFloat().add(Rse):t.toFloat().div(127.5).sub(1)).expandDims(0),i=this.model.predict(a).map(l=>l.squeeze([0])),o=n.body.modelType==="ResNet"?Mse(i):Fse(i);return{heatmapScores:o.heatmap.sigmoid(),offsets:o.offsets,displacementFwd:o.displacementFwd,displacementBwd:o.displacementBwd}})}dispose(){this.model.dispose()}};v6.BaseModel=k6});var T6=it(I6=>{function x2(e){return Math.floor(e/2)}var S6=class{constructor(t,n){this.priorityQueue=new Array(t),this.numberOfElements=-1,this.getElementValue=n}enqueue(t){this.priorityQueue[++this.numberOfElements]=t,this.swim(this.numberOfElements)}dequeue(){let t=this.priorityQueue[0];return this.exchange(0,this.numberOfElements--),this.sink(0),this.priorityQueue[this.numberOfElements+1]=null,t}empty(){return this.numberOfElements===-1}size(){return this.numberOfElements+1}all(){return this.priorityQueue.slice(0,this.numberOfElements+1)}max(){return this.priorityQueue[0]}swim(t){for(;t>0&&this.less(x2(t),t);)this.exchange(t,x2(t)),t=x2(t)}sink(t){for(;2*t<=this.numberOfElements;){let n=2*t;if(n<this.numberOfElements&&this.less(n,n+1)&&n++,!this.less(t,n))break;this.exchange(t,n),t=n}}getValueAt(t){return this.getElementValue(this.priorityQueue[t])}less(t,n){return this.getValueAt(t)<this.getValueAt(n)}exchange(t,n){let r=this.priorityQueue[t];this.priorityQueue[t]=this.priorityQueue[n],this.priorityQueue[n]=r}};I6.MaxHeap=S6});var R6=it(E6=>{var C6=Le(T6());function Ose(e,t,n,r,a,s){let[i,o]=s.shape,l=!0,u=Math.max(n-a,0),c=Math.min(n+a+1,i);for(let h=u;h<c;++h){let d=Math.max(r-a,0),p=Math.min(r+a+1,o);for(let f=d;f<p;++f)if(s.get(h,f,e)>t){l=!1;break}if(!l)break}return l}function Dse(e,t,n){let[r,a,s]=n.shape,i=new C6.MaxHeap(r*a*s,({score:o})=>o);for(let o=0;o<r;++o)for(let l=0;l<a;++l)for(let u=0;u<s;++u){let c=n.get(o,l,u);c<e||Ose(u,c,o,l,t,n)&&i.enqueue({score:c,part:{heatmapY:o,heatmapX:l,id:u}})}return i}E6.buildPartWithScoreQueue=Dse});var Yl=it(Tr=>{Tr.partNames=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"];Tr.NUM_KEYPOINTS=Tr.partNames.length;Tr.partIds=Tr.partNames.reduce((e,t,n)=>(e[t]=n,e),{});var $se=[["leftHip","leftShoulder"],["leftElbow","leftShoulder"],["leftElbow","leftWrist"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["rightHip","rightShoulder"],["rightElbow","rightShoulder"],["rightElbow","rightWrist"],["rightHip","rightKnee"],["rightKnee","rightAnkle"],["leftShoulder","rightShoulder"],["leftHip","rightHip"]];Tr.connectedPartIndices=$se.map(([e,t])=>[Tr.partIds[e],Tr.partIds[t]]);Tr.poseChain=[["nose","leftEye"],["leftEye","leftEar"],["nose","rightEye"],["rightEye","rightEar"],["nose","leftShoulder"],["leftShoulder","leftElbow"],["leftElbow","leftWrist"],["leftShoulder","leftHip"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["nose","rightShoulder"],["rightShoulder","rightElbow"],["rightElbow","rightWrist"],["rightShoulder","rightHip"],["rightHip","rightKnee"],["rightKnee","rightAnkle"]];Tr.partChannels=["left_face","right_face","right_upper_leg_front","right_lower_leg_back","right_upper_leg_back","left_lower_leg_front","left_upper_leg_front","left_upper_leg_back","left_lower_leg_back","right_feet","right_lower_leg_front","left_feet","torso_front","torso_back","right_upper_arm_front","right_upper_arm_back","right_lower_arm_back","left_lower_arm_front","left_upper_arm_front","left_upper_arm_back","left_lower_arm_back","right_hand","right_lower_arm_front","left_hand"]});var _2=it(Xa=>{var F6=Le(Yl());function M6(e,t,n,r){return{y:r.get(e,t,n),x:r.get(e,t,n+F6.NUM_KEYPOINTS)}}Xa.getOffsetPoint=M6;function zse(e,t,n){let{heatmapY:r,heatmapX:a,id:s}=e,{y:i,x:o}=M6(r,a,s,n);return{x:e.heatmapX*t+o,y:e.heatmapY*t+i}}Xa.getImageCoords=zse;function Pse(e,t){let n=new Array(t);for(let r=0;r<t;r++)n[r]=e;return n}Xa.fillArray=Pse;function w2(e,t,n){return e<t?t:e>n?n:e}Xa.clamp=w2;function Lse(e,t,n,r){let a=n-e,s=r-t;return a*a+s*s}Xa.squaredDistance=Lse;function Wse(e,t){return{x:e.x+t.x,y:e.y+t.y}}Xa.addVectors=Wse;function Bse(e,t,n){return{y:w2(e.y,t,n),x:w2(e.x,t,n)}}Xa.clampVector=Bse});var D6=it(Kc=>{var N0=Le(Yl());function Vse(e,t){let n=t.shape[0],r=new Float32Array(n);for(let a=0;a<n;a++){let s=t.get(a,0),i=t.get(a,1);r[a]=e.get(s,i,a)}return r}Kc.getPointsConfidence=Vse;function Use(e,t,n,r){return{y:r.get(e,t,n),x:r.get(e,t,n+N0.NUM_KEYPOINTS)}}function O6(e,t){let n=[];for(let r=0;r<N0.NUM_KEYPOINTS;r++){let a=e.get(r,0).valueOf(),s=e.get(r,1).valueOf(),{x:i,y:o}=Use(a,s,r,t);n.push(o),n.push(i)}return xn(n,[N0.NUM_KEYPOINTS,2])}Kc.getOffsetVectors=O6;function jse(e,t,n){return W(()=>e.toTensor().mul(ke(t,"int32")).toFloat().add(O6(e,n)))}Kc.getOffsetPoints=jse;function Gse(e,t){return W(()=>{let n=e.div(ke(t,"int32"));return e.sub(n.mul(ke(t,"int32")))})}function Hse(e){let[t,n,r]=e.shape;return W(()=>{let s=e.reshape([t*n,r]).argMax(0),i=s.div(ke(n,"int32")).expandDims(1),o=Gse(s,n).expandDims(1);return rt([i,o],1)})}Kc.argmax2d=Hse});var N2=it(b2=>{var ya=Le(Yl()),qr=Le(_2()),Jl=Le(D6()),$6=ya.poseChain.map(([e,t])=>[ya.partIds[e],ya.partIds[t]]),v2=$6.map(([,e])=>e),z6=$6.map(([e])=>e);function qse(e,t,n){let r=n.shape[2]/2;return{y:n.get(t.y,t.x,e),x:n.get(t.y,t.x,r+e)}}function k2(e,t,n,r){return{y:qr.clamp(Math.round(e.y/t),0,n-1),x:qr.clamp(Math.round(e.x/t),0,r-1)}}function P6(e,t,n,r,a,s,i,o=2){let[l,u]=r.shape,c=k2(t.position,s,l,u),h=qse(e,c,i),p=qr.addVectors(t.position,h);for(let A=0;A<o;A++){let y=k2(p,s,l,u),g=qr.getOffsetPoint(y.y,y.x,n,a);p=qr.addVectors({x:y.x*s,y:y.y*s},{x:g.x,y:g.y})}let f=k2(p,s,l,u),m=r.get(f.y,f.x,n);return{position:p,part:ya.partNames[n],score:m}}function Xse(e,t,n,r,a,s){let i=t.shape[2],o=v2.length,l=new Array(i),{part:u,score:c}=e,h=qr.getImageCoords(u,r,n);l[u.id]={score:c,part:ya.partNames[u.id],position:h};for(let d=o-1;d>=0;--d){let p=v2[d],f=z6[d];l[p]&&!l[f]&&(l[f]=P6(d,l[p],f,t,n,r,s))}for(let d=0;d<o;++d){let p=z6[d],f=v2[d];l[p]&&!l[f]&&(l[f]=P6(d,l[p],f,t,n,r,a))}return l}b2.decodePose=Xse;async function Kse(e,t,n){let r=0,a=Jl.argmax2d(e),s=await Promise.all([e.buffer(),t.buffer(),a.buffer()]),i=s[0],o=s[1],l=s[2],u=Jl.getOffsetPoints(l,n.body.outputStride,o),c=await u.buffer(),d=Array.from(Jl.getPointsConfidence(i,l)).map((f,m)=>(r+=f,{position:{y:c.get(m,0),x:c.get(m,1)},part:ya.partNames[m],score:f})),p=d.filter(f=>f.score>n.body.scoreThreshold);return a.dispose(),u.dispose(),{keypoints:p,score:r/d.length}}b2.decodeSinglePose=Kse});var U6=it(L6=>{var W6=Le(R6()),B6=Le(N2()),I0=Le(_2()),Zse=1;function V6(e,t,{x:n,y:r},a){return e.some(({keypoints:s})=>{let i=s[a].position;return I0.squaredDistance(r,n,i.y,i.x)<=t})}function Yse(e,t,n){return n.reduce((a,{position:s,score:i},o)=>(V6(e,t,s,o)||(a+=i),a),0)/n.length}function Jse(e,t,n,r,a){let s=[],i=W6.buildPartWithScoreQueue(a.body.scoreThreshold,Zse,e),o=a.body.nmsRadius^2;for(;s.length<a.body.maxDetections&&!i.empty();){let l=i.dequeue(),u=I0.getImageCoords(l.part,a.body.outputStride,t);if(V6(s,o,u,l.part.id))continue;let c=B6.decodePose(l,e,t,a.body.outputStride,n,r),h=Yse(s,o,c);h>a.body.scoreThreshold&&s.push({keypoints:c,score:h})}return s}L6.decodeMultiplePoses=Jse});var I2=it(Ka=>{var j6=Le(Yl());function Qse(e,t,n){return e<n||t<n}function eie(e,t){return j6.connectedPartIndices.reduce((n,[r,a])=>(Qse(e[r].score,e[a].score,t)||n.push([e[r],e[a]]),n),[])}Ka.getAdjacentKeyPoints=eie;var{NEGATIVE_INFINITY:G6,POSITIVE_INFINITY:H6}=Number;function q6(e){return e.reduce(({maxX:t,maxY:n,minX:r,minY:a},{position:{x:s,y:i}})=>({maxX:Math.max(t,s),maxY:Math.max(n,i),minX:Math.min(r,s),minY:Math.min(a,i)}),{maxX:G6,maxY:G6,minX:H6,minY:H6})}Ka.getBoundingBox=q6;function tie(e){let{minX:t,minY:n,maxX:r,maxY:a}=q6(e);return[{x:t,y:n},{x:r,y:n},{x:r,y:a},{x:t,y:a}]}Ka.getBoundingBoxPoints=tie;async function nie(e){return Promise.all(e.map(t=>t.buffer()))}Ka.toTensorBuffers3D=nie;function X6(e,t,n){return{score:e.score,keypoints:e.keypoints.map(({score:r,part:a,position:s})=>({score:r,part:a,position:{x:s.x*n,y:s.y*t}}))}}Ka.scalePose=X6;function rie(e,[t,n]){let r=e.squeeze(0),a=r.resizeBilinear([t,n]);return r.dispose(),a}Ka.resizeTo=rie;function aie(e,[t,n],[r,a]){return e.map(i=>X6(i,t/r,n/a))}Ka.scaleAndFlipPoses=aie});var J6=it(S2=>{var K6=Le(N6()),Z6=Le(U6()),Y6=Le(N2()),$i=Le(I2());async function sie(e,t,n){return new Promise(async r=>{let a=e.shape[1],s=e.shape[2],i=await $i.toTensorBuffers3D([t.heatmapScores,t.offsets,t.displacementFwd,t.displacementBwd]),o=i[0],l=i[1],u=i[2],c=i[3],h=await Z6.decodeMultiplePoses(o,l,u,c,n),d=$i.scaleAndFlipPoses(h,[a,s],[n.body.inputSize,n.body.inputSize]);r(d)})}async function iie(e,t,n){return new Promise(async r=>{let a=e.shape[1],s=e.shape[2],o=[await Y6.decodeSinglePose(t.heatmapScores,t.offsets,n)],l=$i.scaleAndFlipPoses(o,[a,s],[n.body.inputSize,n.body.inputSize]);r(l)})}var T2=class{constructor(t){this.baseModel=t}async estimatePoses(t,n){let r=$i.resizeTo(t,[n.body.inputSize,n.body.inputSize]),a=this.baseModel.predict(r,n),s=n.body.maxDetections<2?await iie(t,a,n):await sie(t,a,n);return a.heatmapScores.dispose(),a.offsets.dispose(),a.displacementFwd.dispose(),a.displacementBwd.dispose(),r.dispose(),s}dispose(){this.baseModel.dispose()}};S2.PoseNet=T2;async function oie(e){let t=await Xt(e.body.modelPath),n=new K6.BaseModel(t);return Me(`load model: ${e.body.modelPath.match(/\/(.*)\./)[1]}`),new T2(n)}S2.load=oie});var Q6=it(cr=>{var S0=Le(J6()),Za=Le(Yl()),Xr=Le(I2());cr.load=S0.load;cr.PoseNet=S0.PoseNet;cr.partChannels=Za.partChannels;cr.partIds=Za.partIds;cr.partNames=Za.partNames;cr.poseChain=Za.poseChain;cr.getAdjacentKeyPoints=Xr.getAdjacentKeyPoints;cr.getBoundingBox=Xr.getBoundingBox;cr.getBoundingBoxPoints=Xr.getBoundingBoxPoints;cr.scaleAndFlipPoses=Xr.scaleAndFlipPoses;cr.scalePose=Xr.scalePose});var a4=it(n4=>{var r4=class{constructor(t,n,r){this.model=t,this.anchors=r.map(a=>[a.x_center,a.y_center]),this.anchorsTensor=xn(this.anchors),this.inputSizeTensor=jt([n,n]),this.doubleInputSizeTensor=jt([n*2,n*2])}normalizeBoxes(t){return W(()=>{let n=Ce(t,[0,0],[-1,2]),r=Ce(t,[0,2],[-1,2]),a=oe(_e(n,this.inputSizeTensor),this.anchorsTensor),s=_e(r,this.doubleInputSizeTensor),i=L(ye(a,s),this.inputSizeTensor),o=L(oe(a,s),this.inputSizeTensor);return ui([i,o],1)})}normalizeLandmarks(t,n){return W(()=>{let r=oe(_e(t.reshape([-1,7,2]),this.inputSizeTensor),this.anchors[n]);return L(r,this.inputSizeTensor)})}async getBoxes(t,n){let r=this.model.predict(t),a=r.squeeze();r.dispose();let s=W(()=>Sn(Ce(a,[0,0],[-1,1])).squeeze()),i=s.dataSync(),o=Ce(a,[0,1],[-1,4]),l=this.normalizeBoxes(o);o.dispose();let u=await at.nonMaxSuppressionAsync(l,i,n.hand.maxHands,n.hand.iouThreshold,n.hand.scoreThreshold),c=u.arraySync();s.dispose(),u.dispose();let h=[];for(let d of c)if(i[d]>=n.hand.minConfidence){let p=Ce(l,[d,0],[1,-1]),f=Ce(a,[d,5],[1,14]),m=W(()=>this.normalizeLandmarks(f,d).reshape([-1,2]));f.dispose(),h.push({box:p,palmLandmarks:m,confidence:i[d]})}return a.dispose(),l.dispose(),h}async estimateHandBounds(t,n){let r=t.shape[1],a=t.shape[2],s=W(()=>t.resizeBilinear([n.hand.inputSize,n.hand.inputSize]).div(127.5).sub(1)),i=await this.getBoxes(s,n);s.dispose();let o=[];if(!i||i.length===0)return o;for(let l of i){let u=l.box.dataSync(),c=u.slice(0,2),h=u.slice(2,4),d=l.palmLandmarks.arraySync();l.box.dispose(),l.palmLandmarks.dispose(),o.push(t4({startPoint:c,endPoint:h,palmLandmarks:d,confidence:l.confidence},[a/n.hand.inputSize,r/n.hand.inputSize]))}return o}};n4.HandDetector=r4});var p4=it(u4=>{var cie=5,c4=1.65,h4=[0,5,9,13,17,1,2],hie=0,die=2,d4=class{constructor(t,n,r){this.handDetector=t,this.landmarkDetector=n,this.inputSize=r,this.storedBoxes=[],this.skipped=0,this.detectedHands=0}getBoxForPalmLandmarks(t,n){let r=t.map(s=>C2([...s,1],n)),a=this.calculateLandmarksBoundingBox(r);return E0(C0(a),cie)}getBoxForHandLandmarks(t){let n=this.calculateLandmarksBoundingBox(t),r=E0(C0(n),c4);r.palmLandmarks=[];for(let a=0;a<h4.length;a++)r.palmLandmarks.push(t[h4[a]].slice(0,2));return r}transformRawCoords(t,n,r,a){let s=T0(n),i=[s[0]/this.inputSize,s[1]/this.inputSize,(s[0]+s[1])/this.inputSize/2],o=t.map(p=>[i[0]*(p[0]-this.inputSize/2),i[1]*(p[1]-this.inputSize/2),i[2]*p[2]]),l=E2(r,[0,0]),u=o.map(p=>[...C2(p,l),p[2]]),c=l4(a),h=[...Zc(n),1],d=[Ya(h,c[0]),Ya(h,c[1])];return u.map(p=>[p[0]+d[0],p[1]+d[1],p[2]])}async estimateHands(t,n){let r=!1,a;(this.skipped===0||this.skipped>n.hand.skipFrames||!n.hand.landmarks||!n.videoOptimized)&&(a=await this.handDetector.estimateHandBounds(t,n),this.skipped=0),n.videoOptimized&&this.skipped++,a&&a.length>0&&(a.length!==this.detectedHands&&this.detectedHands!==n.hand.maxHands||!n.hand.landmarks)&&(this.detectedHands=0,this.storedBoxes=[...a],this.storedBoxes.length>0&&(r=!0));let s=[];for(let i=0;i<this.storedBoxes.length;i++){let o=this.storedBoxes[i];if(!!o)if(n.hand.landmarks){let l=n.hand.rotation?s4(o.palmLandmarks[hie],o.palmLandmarks[die]):0,u=Zc(o),c=[u[0]/t.shape[2],u[1]/t.shape[1]],h=n.hand.rotation?at.rotateWithOffset(t,l,0,c):t.clone(),d=E2(-l,u),p=r?this.getBoxForPalmLandmarks(o.palmLandmarks,d):o,f=e4(p,h,[this.inputSize,this.inputSize]),m=f.div(255);f.dispose(),h.dispose();let[A,y]=await this.landmarkDetector.predict(m);m.dispose();let g=A.dataSync()[0];if(A.dispose(),g>=n.hand.minConfidence){let _=K(y,[-1,3]),b=_.arraySync();y.dispose(),_.dispose();let x=this.transformRawCoords(b,p,l,d),w=this.getBoxForHandLandmarks(x);this.storedBoxes[i]=w;let I={landmarks:x,confidence:g,box:{topLeft:w.startPoint,bottomRight:w.endPoint}};s.push(I)}else this.storedBoxes[i]=null;y.dispose()}else{let l=E0(C0(o),c4),u={confidence:o.confidence,box:{topLeft:l.startPoint,bottomRight:l.endPoint}};s.push(u)}}return this.storedBoxes=this.storedBoxes.filter(i=>i!==null),this.detectedHands=s.length,s}calculateLandmarksBoundingBox(t){let n=t.map(i=>i[0]),r=t.map(i=>i[1]),a=[Math.min(...n),Math.min(...r)],s=[Math.max(...n),Math.max(...r)];return{startPoint:a,endPoint:s}}};u4.HandPipeline=d4});var m4=it(f4=>{f4.anchors=[{w:1,h:1,x_center:.015625,y_center:.015625},{w:1,h:1,x_center:.015625,y_center:.015625},{w:1,h:1,x_center:.046875,y_center:.015625},{w:1,h:1,x_center:.046875,y_center:.015625},{w:1,h:1,x_center:.078125,y_center:.015625},{w:1,h:1,x_center:.078125,y_center:.015625},{w:1,h:1,x_center:.109375,y_center:.015625},{w:1,h:1,x_center:.109375,y_center:.015625},{w:1,h:1,x_center:.140625,y_center:.015625},{w:1,h:1,x_center:.140625,y_center:.015625},{w:1,h:1,x_center:.171875,y_center:.015625},{w:1,h:1,x_center:.171875,y_center:.015625},{w:1,h:1,x_center:.203125,y_center:.015625},{w:1,h:1,x_center:.203125,y_center:.015625},{w:1,h:1,x_center:.234375,y_center:.015625},{w:1,h:1,x_center:.234375,y_center:.015625},{w:1,h:1,x_center:.265625,y_center:.015625},{w:1,h:1,x_center:.265625,y_center:.015625},{w:1,h:1,x_center:.296875,y_center:.015625},{w:1,h:1,x_center:.296875,y_center:.015625},{w:1,h:1,x_center:.328125,y_center:.015625},{w:1,h:1,x_center:.328125,y_center:.015625},{w:1,h:1,x_center:.359375,y_center:.015625},{w:1,h:1,x_center:.359375,y_center:.015625},{w:1,h:1,x_center:.390625,y_center:.015625},{w:1,h:1,x_center:.390625,y_center:.015625},{w:1,h:1,x_center:.421875,y_center:.015625},{w:1,h:1,x_center:.421875,y_center:.015625},{w:1,h:1,x_center:.453125,y_center:.015625},{w:1,h:1,x_center:.453125,y_center:.015625},{w:1,h:1,x_center:.484375,y_center:.015625},{w:1,h:1,x_center:.484375,y_center:.015625},{w:1,h:1,x_center:.515625,y_center:.015625},{w:1,h:1,x_center:.515625,y_center:.015625},{w:1,h:1,x_center:.546875,y_center:.015625},{w:1,h:1,x_center:.546875,y_center:.015625},{w:1,h:1,x_center:.578125,y_center:.015625},{w:1,h:1,x_center:.578125,y_center:.015625},{w:1,h:1,x_center:.609375,y_center:.015625},{w:1,h:1,x_center:.609375,y_center:.015625},{w:1,h:1,x_center:.640625,y_center:.015625},{w:1,h:1,x_center:.640625,y_center:.015625},{w:1,h:1,x_center:.671875,y_center:.015625},{w:1,h:1,x_center:.671875,y_center:.015625},{w:1,h:1,x_center:.703125,y_center:.015625},{w:1,h:1,x_center:.703125,y_center:.015625},{w:1,h:1,x_center:.734375,y_center:.015625},{w:1,h:1,x_center:.734375,y_center:.015625},{w:1,h:1,x_center:.765625,y_center:.015625},{w:1,h:1,x_center:.765625,y_center:.015625},{w:1,h:1,x_center:.796875,y_center:.015625},{w:1,h:1,x_center:.796875,y_center:.015625},{w:1,h:1,x_center:.828125,y_center:.015625},{w:1,h:1,x_center:.828125,y_center:.015625},{w:1,h:1,x_center:.859375,y_center:.015625},{w:1,h:1,x_center:.859375,y_center:.015625},{w:1,h:1,x_center:.890625,y_center:.015625},{w:1,h:1,x_center:.890625,y_center:.015625},{w:1,h:1,x_center:.921875,y_center:.015625},{w:1,h:1,x_center:.921875,y_center:.015625},{w:1,h:1,x_center:.953125,y_center:.015625},{w:1,h:1,x_center:.953125,y_center:.015625},{w:1,h:1,x_center:.984375,y_center:.015625},{w:1,h:1,x_center:.984375,y_center:.015625},{w:1,h:1,x_center:.015625,y_center:.046875},{w:1,h:1,x_center:.015625,y_center:.046875},{w:1,h:1,x_center:.046875,y_center:.046875},{w:1,h:1,x_center:.046875,y_center:.046875},{w:1,h:1,x_center:.078125,y_center:.046875},{w:1,h:1,x_center:.078125,y_center:.046875},{w:1,h:1,x_center:.109375,y_center:.046875},{w:1,h:1,x_center:.109375,y_center:.046875},{w:1,h:1,x_center:.140625,y_center:.046875},{w:1,h:1,x_center:.140625,y_center:.046875},{w:1,h:1,x_center:.171875,y_center:.046875},{w:1,h:1,x_center:.171875,y_center:.046875},{w:1,h:1,x_center:.203125,y_center:.046875},{w:1,h:1,x_center:.203125,y_center:.046875},{w:1,h:1,x_center:.234375,y_center:.046875},{w:1,h:1,x_center:.234375,y_center:.046875},{w:1,h:1,x_center:.265625,y_center:.046875},{w:1,h:1,x_center:.265625,y_center:.046875},{w:1,h:1,x_center:.296875,y_center:.046875},{w:1,h:1,x_center:.296875,y_center:.046875},{w:1,h:1,x_center:.328125,y_center:.046875},{w:1,h:1,x_center:.328125,y_center:.046875},{w:1,h:1,x_center:.359375,y_center:.046875},{w:1,h:1,x_center:.359375,y_center:.046875},{w:1,h:1,x_center:.390625,y_center:.046875},{w:1,h:1,x_center:.390625,y_center:.046875},{w:1,h:1,x_center:.421875,y_center:.046875},{w:1,h:1,x_center:.421875,y_center:.046875},{w:1,h:1,x_center:.453125,y_center:.046875},{w:1,h:1,x_center:.453125,y_center:.046875},{w:1,h:1,x_center:.484375,y_center:.046875},{w:1,h:1,x_center:.484375,y_center:.046875},{w:1,h:1,x_center:.515625,y_center:.046875},{w:1,h:1,x_center:.515625,y_center:.046875},{w:1,h:1,x_center:.546875,y_center:.046875},{w:1,h:1,x_center:.546875,y_center:.046875},{w:1,h:1,x_center:.578125,y_center:.046875},{w:1,h:1,x_center:.578125,y_center:.046875},{w:1,h:1,x_center:.609375,y_center:.046875},{w:1,h:1,x_center:.609375,y_center:.046875},{w:1,h:1,x_center:.640625,y_center:.046875},{w:1,h:1,x_center:.640625,y_center:.046875},{w:1,h:1,x_center:.671875,y_center:.046875},{w:1,h:1,x_center:.671875,y_center:.046875},{w:1,h:1,x_center:.703125,y_center:.046875},{w:1,h:1,x_center:.703125,y_center:.046875},{w:1,h:1,x_center:.734375,y_center:.046875},{w:1,h:1,x_center:.734375,y_center:.046875},{w:1,h:1,x_center:.765625,y_center:.046875},{w:1,h:1,x_center:.765625,y_center:.046875},{w:1,h:1,x_center:.796875,y_center:.046875},{w:1,h:1,x_center:.796875,y_center:.046875},{w:1,h:1,x_center:.828125,y_center:.046875},{w:1,h:1,x_center:.828125,y_center:.046875},{w:1,h:1,x_center:.859375,y_center:.046875},{w:1,h:1,x_center:.859375,y_center:.046875},{w:1,h:1,x_center:.890625,y_center:.046875},{w:1,h:1,x_center:.890625,y_center:.046875},{w:1,h:1,x_center:.921875,y_center:.046875},{w:1,h:1,x_center:.921875,y_center:.046875},{w:1,h:1,x_center:.953125,y_center:.046875},{w:1,h:1,x_center:.953125,y_center:.046875},{w:1,h:1,x_center:.984375,y_center:.046875},{w:1,h:1,x_center:.984375,y_center:.046875},{w:1,h:1,x_center:.015625,y_center:.078125},{w:1,h:1,x_center:.015625,y_center:.078125},{w:1,h:1,x_center:.046875,y_center:.078125},{w:1,h:1,x_center:.046875,y_center:.078125},{w:1,h:1,x_center:.078125,y_center:.078125},{w:1,h:1,x_center:.078125,y_center:.078125},{w:1,h:1,x_center:.109375,y_center:.078125},{w:1,h:1,x_center:.109375,y_center:.078125},{w:1,h:1,x_center:.140625,y_center:.078125},{w:1,h:1,x_center:.140625,y_center:.078125},{w:1,h:1,x_center:.171875,y_center:.078125},{w:1,h:1,x_center:.171875,y_center:.078125},{w:1,h:1,x_center:.203125,y_center:.078125},{w:1,h:1,x_center:.203125,y_center:.078125},{w:1,h:1,x_center:.234375,y_center:.078125},{w:1,h:1,x_center:.234375,y_center:.078125},{w:1,h:1,x_center:.265625,y_center:.078125},{w:1,h:1,x_center:.265625,y_center:.078125},{w:1,h:1,x_center:.296875,y_center:.078125},{w:1,h:1,x_center:.296875,y_center:.078125},{w:1,h:1,x_center:.328125,y_center:.078125},{w:1,h:1,x_center:.328125,y_center:.078125},{w:1,h:1,x_center:.359375,y_center:.078125},{w:1,h:1,x_center:.359375,y_center:.078125},{w:1,h:1,x_center:.390625,y_center:.078125},{w:1,h:1,x_center:.390625,y_center:.078125},{w:1,h:1,x_center:.421875,y_center:.078125},{w:1,h:1,x_center:.421875,y_center:.078125},{w:1,h:1,x_center:.453125,y_center:.078125},{w:1,h:1,x_center:.453125,y_center:.078125},{w:1,h:1,x_center:.484375,y_center:.078125},{w:1,h:1,x_center:.484375,y_center:.078125},{w:1,h:1,x_center:.515625,y_center:.078125},{w:1,h:1,x_center:.515625,y_center:.078125},{w:1,h:1,x_center:.546875,y_center:.078125},{w:1,h:1,x_center:.546875,y_center:.078125},{w:1,h:1,x_center:.578125,y_center:.078125},{w:1,h:1,x_center:.578125,y_center:.078125},{w:1,h:1,x_center:.609375,y_center:.078125},{w:1,h:1,x_center:.609375,y_center:.078125},{w:1,h:1,x_center:.640625,y_center:.078125},{w:1,h:1,x_center:.640625,y_center:.078125},{w:1,h:1,x_center:.671875,y_center:.078125},{w:1,h:1,x_center:.671875,y_center:.078125},{w:1,h:1,x_center:.703125,y_center:.078125},{w:1,h:1,x_center:.703125,y_center:.078125},{w:1,h:1,x_center:.734375,y_center:.078125},{w:1,h:1,x_center:.734375,y_center:.078125},{w:1,h:1,x_center:.765625,y_center:.078125},{w:1,h:1,x_center:.765625,y_center:.078125},{w:1,h:1,x_center:.796875,y_center:.078125},{w:1,h:1,x_center:.796875,y_center:.078125},{w:1,h:1,x_center:.828125,y_center:.078125},{w:1,h:1,x_center:.828125,y_center:.078125},{w:1,h:1,x_center:.859375,y_center:.078125},{w:1,h:1,x_center:.859375,y_center:.078125},{w:1,h:1,x_center:.890625,y_center:.078125},{w:1,h:1,x_center:.890625,y_center:.078125},{w:1,h:1,x_center:.921875,y_center:.078125},{w:1,h:1,x_center:.921875,y_center:.078125},{w:1,h:1,x_center:.953125,y_center:.078125},{w:1,h:1,x_center:.953125,y_center:.078125},{w:1,h:1,x_center:.984375,y_center:.078125},{w:1,h:1,x_center:.984375,y_center:.078125},{w:1,h:1,x_center:.015625,y_center:.109375},{w:1,h:1,x_center:.015625,y_center:.109375},{w:1,h:1,x_center:.046875,y_center:.109375},{w:1,h:1,x_center:.046875,y_center:.109375},{w:1,h:1,x_center:.078125,y_center:.109375},{w:1,h:1,x_center:.078125,y_center:.109375},{w:1,h:1,x_center:.109375,y_center:.109375},{w:1,h:1,x_center:.109375,y_center:.109375},{w:1,h:1,x_center:.140625,y_center:.109375},{w:1,h:1,x_center:.140625,y_center:.109375},{w:1,h:1,x_center:.171875,y_center:.109375},{w:1,h:1,x_center:.171875,y_center:.109375},{w:1,h:1,x_center:.203125,y_center:.109375},{w:1,h:1,x_center:.203125,y_center:.109375},{w:1,h:1,x_center:.234375,y_center:.109375},{w:1,h:1,x_center:.234375,y_center:.109375},{w:1,h:1,x_center:.265625,y_center:.109375},{w:1,h:1,x_center:.265625,y_center:.109375},{w:1,h:1,x_center:.296875,y_center:.109375},{w:1,h:1,x_center:.296875,y_center:.109375},{w:1,h:1,x_center:.328125,y_center:.109375},{w:1,h:1,x_center:.328125,y_center:.109375},{w:1,h:1,x_center:.359375,y_center:.109375},{w:1,h:1,x_center:.359375,y_center:.109375},{w:1,h:1,x_center:.390625,y_center:.109375},{w:1,h:1,x_center:.390625,y_center:.109375},{w:1,h:1,x_center:.421875,y_center:.109375},{w:1,h:1,x_center:.421875,y_center:.109375},{w:1,h:1,x_center:.453125,y_center:.109375},{w:1,h:1,x_center:.453125,y_center:.109375},{w:1,h:1,x_center:.484375,y_center:.109375},{w:1,h:1,x_center:.484375,y_center:.109375},{w:1,h:1,x_center:.515625,y_center:.109375},{w:1,h:1,x_center:.515625,y_center:.109375},{w:1,h:1,x_center:.546875,y_center:.109375},{w:1,h:1,x_center:.546875,y_center:.109375},{w:1,h:1,x_center:.578125,y_center:.109375},{w:1,h:1,x_center:.578125,y_center:.109375},{w:1,h:1,x_center:.609375,y_center:.109375},{w:1,h:1,x_center:.609375,y_center:.109375},{w:1,h:1,x_center:.640625,y_center:.109375},{w:1,h:1,x_center:.640625,y_center:.109375},{w:1,h:1,x_center:.671875,y_center:.109375},{w:1,h:1,x_center:.671875,y_center:.109375},{w:1,h:1,x_center:.703125,y_center:.109375},{w:1,h:1,x_center:.703125,y_center:.109375},{w:1,h:1,x_center:.734375,y_center:.109375},{w:1,h:1,x_center:.734375,y_center:.109375},{w:1,h:1,x_center:.765625,y_center:.109375},{w:1,h:1,x_center:.765625,y_center:.109375},{w:1,h:1,x_center:.796875,y_center:.109375},{w:1,h:1,x_center:.796875,y_center:.109375},{w:1,h:1,x_center:.828125,y_center:.109375},{w:1,h:1,x_center:.828125,y_center:.109375},{w:1,h:1,x_center:.859375,y_center:.109375},{w:1,h:1,x_center:.859375,y_center:.109375},{w:1,h:1,x_center:.890625,y_center:.109375},{w:1,h:1,x_center:.890625,y_center:.109375},{w:1,h:1,x_center:.921875,y_center:.109375},{w:1,h:1,x_center:.921875,y_center:.109375},{w:1,h:1,x_center:.953125,y_center:.109375},{w:1,h:1,x_center:.953125,y_center:.109375},{w:1,h:1,x_center:.984375,y_center:.109375},{w:1,h:1,x_center:.984375,y_center:.109375},{w:1,h:1,x_center:.015625,y_center:.140625},{w:1,h:1,x_center:.015625,y_center:.140625},{w:1,h:1,x_center:.046875,y_center:.140625},{w:1,h:1,x_center:.046875,y_center:.140625},{w:1,h:1,x_center:.078125,y_center:.140625},{w:1,h:1,x_center:.078125,y_center:.140625},{w:1,h:1,x_center:.109375,y_center:.140625},{w:1,h:1,x_center:.109375,y_center:.140625},{w:1,h:1,x_center:.140625,y_center:.140625},{w:1,h:1,x_center:.140625,y_center:.140625},{w:1,h:1,x_center:.171875,y_center:.140625},{w:1,h:1,x_center:.171875,y_center:.140625},{w:1,h:1,x_center:.203125,y_center:.140625},{w:1,h:1,x_center:.203125,y_center:.140625},{w:1,h:1,x_center:.234375,y_center:.140625},{w:1,h:1,x_center:.234375,y_center:.140625},{w:1,h:1,x_center:.265625,y_center:.140625},{w:1,h:1,x_center:.265625,y_center:.140625},{w:1,h:1,x_center:.296875,y_center:.140625},{w:1,h:1,x_center:.296875,y_center:.140625},{w:1,h:1,x_center:.328125,y_center:.140625},{w:1,h:1,x_center:.328125,y_center:.140625},{w:1,h:1,x_center:.359375,y_center:.140625},{w:1,h:1,x_center:.359375,y_center:.140625},{w:1,h:1,x_center:.390625,y_center:.140625},{w:1,h:1,x_center:.390625,y_center:.140625},{w:1,h:1,x_center:.421875,y_center:.140625},{w:1,h:1,x_center:.421875,y_center:.140625},{w:1,h:1,x_center:.453125,y_center:.140625},{w:1,h:1,x_center:.453125,y_center:.140625},{w:1,h:1,x_center:.484375,y_center:.140625},{w:1,h:1,x_center:.484375,y_center:.140625},{w:1,h:1,x_center:.515625,y_center:.140625},{w:1,h:1,x_center:.515625,y_center:.140625},{w:1,h:1,x_center:.546875,y_center:.140625},{w:1,h:1,x_center:.546875,y_center:.140625},{w:1,h:1,x_center:.578125,y_center:.140625},{w:1,h:1,x_center:.578125,y_center:.140625},{w:1,h:1,x_center:.609375,y_center:.140625},{w:1,h:1,x_center:.609375,y_center:.140625},{w:1,h:1,x_center:.640625,y_center:.140625},{w:1,h:1,x_center:.640625,y_center:.140625},{w:1,h:1,x_center:.671875,y_center:.140625},{w:1,h:1,x_center:.671875,y_center:.140625},{w:1,h:1,x_center:.703125,y_center:.140625},{w:1,h:1,x_center:.703125,y_center:.140625},{w:1,h:1,x_center:.734375,y_center:.140625},{w:1,h:1,x_center:.734375,y_center:.140625},{w:1,h:1,x_center:.765625,y_center:.140625},{w:1,h:1,x_center:.765625,y_center:.140625},{w:1,h:1,x_center:.796875,y_center:.140625},{w:1,h:1,x_center:.796875,y_center:.140625},{w:1,h:1,x_center:.828125,y_center:.140625},{w:1,h:1,x_center:.828125,y_center:.140625},{w:1,h:1,x_center:.859375,y_center:.140625},{w:1,h:1,x_center:.859375,y_center:.140625},{w:1,h:1,x_center:.890625,y_center:.140625},{w:1,h:1,x_center:.890625,y_center:.140625},{w:1,h:1,x_center:.921875,y_center:.140625},{w:1,h:1,x_center:.921875,y_center:.140625},{w:1,h:1,x_center:.953125,y_center:.140625},{w:1,h:1,x_center:.953125,y_center:.140625},{w:1,h:1,x_center:.984375,y_center:.140625},{w:1,h:1,x_center:.984375,y_center:.140625},{w:1,h:1,x_center:.015625,y_center:.171875},{w:1,h:1,x_center:.015625,y_center:.171875},{w:1,h:1,x_center:.046875,y_center:.171875},{w:1,h:1,x_center:.046875,y_center:.171875},{w:1,h:1,x_center:.078125,y_center:.171875},{w:1,h:1,x_center:.078125,y_center:.171875},{w:1,h:1,x_center:.109375,y_center:.171875},{w:1,h:1,x_center:.109375,y_center:.171875},{w:1,h:1,x_center:.140625,y_center:.171875},{w:1,h:1,x_center:.140625,y_center:.171875},{w:1,h:1,x_center:.171875,y_center:.171875},{w:1,h:1,x_center:.171875,y_center:.171875},{w:1,h:1,x_center:.203125,y_center:.171875},{w:1,h:1,x_center:.203125,y_center:.171875},{w:1,h:1,x_center:.234375,y_center:.171875},{w:1,h:1,x_center:.234375,y_center:.171875},{w:1,h:1,x_center:.265625,y_center:.171875},{w:1,h:1,x_center:.265625,y_center:.171875},{w:1,h:1,x_center:.296875,y_center:.171875},{w:1,h:1,x_center:.296875,y_center:.171875},{w:1,h:1,x_center:.328125,y_center:.171875},{w:1,h:1,x_center:.328125,y_center:.171875},{w:1,h:1,x_center:.359375,y_center:.171875},{w:1,h:1,x_center:.359375,y_center:.171875},{w:1,h:1,x_center:.390625,y_center:.171875},{w:1,h:1,x_center:.390625,y_center:.171875},{w:1,h:1,x_center:.421875,y_center:.171875},{w:1,h:1,x_center:.421875,y_center:.171875},{w:1,h:1,x_center:.453125,y_center:.171875},{w:1,h:1,x_center:.453125,y_center:.171875},{w:1,h:1,x_center:.484375,y_center:.171875},{w:1,h:1,x_center:.484375,y_center:.171875},{w:1,h:1,x_center:.515625,y_center:.171875},{w:1,h:1,x_center:.515625,y_center:.171875},{w:1,h:1,x_center:.546875,y_center:.171875},{w:1,h:1,x_center:.546875,y_center:.171875},{w:1,h:1,x_center:.578125,y_center:.171875},{w:1,h:1,x_center:.578125,y_center:.171875},{w:1,h:1,x_center:.609375,y_center:.171875},{w:1,h:1,x_center:.609375,y_center:.171875},{w:1,h:1,x_center:.640625,y_center:.171875},{w:1,h:1,x_center:.640625,y_center:.171875},{w:1,h:1,x_center:.671875,y_center:.171875},{w:1,h:1,x_center:.671875,y_center:.171875},{w:1,h:1,x_center:.703125,y_center:.171875},{w:1,h:1,x_center:.703125,y_center:.171875},{w:1,h:1,x_center:.734375,y_center:.171875},{w:1,h:1,x_center:.734375,y_center:.171875},{w:1,h:1,x_center:.765625,y_center:.171875},{w:1,h:1,x_center:.765625,y_center:.171875},{w:1,h:1,x_center:.796875,y_center:.171875},{w:1,h:1,x_center:.796875,y_center:.171875},{w:1,h:1,x_center:.828125,y_center:.171875},{w:1,h:1,x_center:.828125,y_center:.171875},{w:1,h:1,x_center:.859375,y_center:.171875},{w:1,h:1,x_center:.859375,y_center:.171875},{w:1,h:1,x_center:.890625,y_center:.171875},{w:1,h:1,x_center:.890625,y_center:.171875},{w:1,h:1,x_center:.921875,y_center:.171875},{w:1,h:1,x_center:.921875,y_center:.171875},{w:1,h:1,x_center:.953125,y_center:.171875},{w:1,h:1,x_center:.953125,y_center:.171875},{w:1,h:1,x_center:.984375,y_center:.171875},{w:1,h:1,x_center:.984375,y_center:.171875},{w:1,h:1,x_center:.015625,y_center:.203125},{w:1,h:1,x_center:.015625,y_center:.203125},{w:1,h:1,x_center:.046875,y_center:.203125},{w:1,h:1,x_center:.046875,y_center:.203125},{w:1,h:1,x_center:.078125,y_center:.203125},{w:1,h:1,x_center:.078125,y_center:.203125},{w:1,h:1,x_center:.109375,y_center:.203125},{w:1,h:1,x_center:.109375,y_center:.203125},{w:1,h:1,x_center:.140625,y_center:.203125},{w:1,h:1,x_center:.140625,y_center:.203125},{w:1,h:1,x_center:.171875,y_center:.203125},{w:1,h:1,x_center:.171875,y_center:.203125},{w:1,h:1,x_center:.203125,y_center:.203125},{w:1,h:1,x_center:.203125,y_center:.203125},{w:1,h:1,x_center:.234375,y_center:.203125},{w:1,h:1,x_center:.234375,y_center:.203125},{w:1,h:1,x_center:.265625,y_center:.203125},{w:1,h:1,x_center:.265625,y_center:.203125},{w:1,h:1,x_center:.296875,y_center:.203125},{w:1,h:1,x_center:.296875,y_center:.203125},{w:1,h:1,x_center:.328125,y_center:.203125},{w:1,h:1,x_center:.328125,y_center:.203125},{w:1,h:1,x_center:.359375,y_center:.203125},{w:1,h:1,x_center:.359375,y_center:.203125},{w:1,h:1,x_center:.390625,y_center:.203125},{w:1,h:1,x_center:.390625,y_center:.203125},{w:1,h:1,x_center:.421875,y_center:.203125},{w:1,h:1,x_center:.421875,y_center:.203125},{w:1,h:1,x_center:.453125,y_center:.203125},{w:1,h:1,x_center:.453125,y_center:.203125},{w:1,h:1,x_center:.484375,y_center:.203125},{w:1,h:1,x_center:.484375,y_center:.203125},{w:1,h:1,x_center:.515625,y_center:.203125},{w:1,h:1,x_center:.515625,y_center:.203125},{w:1,h:1,x_center:.546875,y_center:.203125},{w:1,h:1,x_center:.546875,y_center:.203125},{w:1,h:1,x_center:.578125,y_center:.203125},{w:1,h:1,x_center:.578125,y_center:.203125},{w:1,h:1,x_center:.609375,y_center:.203125},{w:1,h:1,x_center:.609375,y_center:.203125},{w:1,h:1,x_center:.640625,y_center:.203125},{w:1,h:1,x_center:.640625,y_center:.203125},{w:1,h:1,x_center:.671875,y_center:.203125},{w:1,h:1,x_center:.671875,y_center:.203125},{w:1,h:1,x_center:.703125,y_center:.203125},{w:1,h:1,x_center:.703125,y_center:.203125},{w:1,h:1,x_center:.734375,y_center:.203125},{w:1,h:1,x_center:.734375,y_center:.203125},{w:1,h:1,x_center:.765625,y_center:.203125},{w:1,h:1,x_center:.765625,y_center:.203125},{w:1,h:1,x_center:.796875,y_center:.203125},{w:1,h:1,x_center:.796875,y_center:.203125},{w:1,h:1,x_center:.828125,y_center:.203125},{w:1,h:1,x_center:.828125,y_center:.203125},{w:1,h:1,x_center:.859375,y_center:.203125},{w:1,h:1,x_center:.859375,y_center:.203125},{w:1,h:1,x_center:.890625,y_center:.203125},{w:1,h:1,x_center:.890625,y_center:.203125},{w:1,h:1,x_center:.921875,y_center:.203125},{w:1,h:1,x_center:.921875,y_center:.203125},{w:1,h:1,x_center:.953125,y_center:.203125},{w:1,h:1,x_center:.953125,y_center:.203125},{w:1,h:1,x_center:.984375,y_center:.203125},{w:1,h:1,x_center:.984375,y_center:.203125},{w:1,h:1,x_center:.015625,y_center:.234375},{w:1,h:1,x_center:.015625,y_center:.234375},{w:1,h:1,x_center:.046875,y_center:.234375},{w:1,h:1,x_center:.046875,y_center:.234375},{w:1,h:1,x_center:.078125,y_center:.234375},{w:1,h:1,x_center:.078125,y_center:.234375},{w:1,h:1,x_center:.109375,y_center:.234375},{w:1,h:1,x_center:.109375,y_center:.234375},{w:1,h:1,x_center:.140625,y_center:.234375},{w:1,h:1,x_center:.140625,y_center:.234375},{w:1,h:1,x_center:.171875,y_center:.234375},{w:1,h:1,x_center:.171875,y_center:.234375},{w:1,h:1,x_center:.203125,y_center:.234375},{w:1,h:1,x_center:.203125,y_center:.234375},{w:1,h:1,x_center:.234375,y_center:.234375},{w:1,h:1,x_center:.234375,y_center:.234375},{w:1,h:1,x_center:.265625,y_center:.234375},{w:1,h:1,x_center:.265625,y_center:.234375},{w:1,h:1,x_center:.296875,y_center:.234375},{w:1,h:1,x_center:.296875,y_center:.234375},{w:1,h:1,x_center:.328125,y_center:.234375},{w:1,h:1,x_center:.328125,y_center:.234375},{w:1,h:1,x_center:.359375,y_center:.234375},{w:1,h:1,x_center:.359375,y_center:.234375},{w:1,h:1,x_center:.390625,y_center:.234375},{w:1,h:1,x_center:.390625,y_center:.234375},{w:1,h:1,x_center:.421875,y_center:.234375},{w:1,h:1,x_center:.421875,y_center:.234375},{w:1,h:1,x_center:.453125,y_center:.234375},{w:1,h:1,x_center:.453125,y_center:.234375},{w:1,h:1,x_center:.484375,y_center:.234375},{w:1,h:1,x_center:.484375,y_center:.234375},{w:1,h:1,x_center:.515625,y_center:.234375},{w:1,h:1,x_center:.515625,y_center:.234375},{w:1,h:1,x_center:.546875,y_center:.234375},{w:1,h:1,x_center:.546875,y_center:.234375},{w:1,h:1,x_center:.578125,y_center:.234375},{w:1,h:1,x_center:.578125,y_center:.234375},{w:1,h:1,x_center:.609375,y_center:.234375},{w:1,h:1,x_center:.609375,y_center:.234375},{w:1,h:1,x_center:.640625,y_center:.234375},{w:1,h:1,x_center:.640625,y_center:.234375},{w:1,h:1,x_center:.671875,y_center:.234375},{w:1,h:1,x_center:.671875,y_center:.234375},{w:1,h:1,x_center:.703125,y_center:.234375},{w:1,h:1,x_center:.703125,y_center:.234375},{w:1,h:1,x_center:.734375,y_center:.234375},{w:1,h:1,x_center:.734375,y_center:.234375},{w:1,h:1,x_center:.765625,y_center:.234375},{w:1,h:1,x_center:.765625,y_center:.234375},{w:1,h:1,x_center:.796875,y_center:.234375},{w:1,h:1,x_center:.796875,y_center:.234375},{w:1,h:1,x_center:.828125,y_center:.234375},{w:1,h:1,x_center:.828125,y_center:.234375},{w:1,h:1,x_center:.859375,y_center:.234375},{w:1,h:1,x_center:.859375,y_center:.234375},{w:1,h:1,x_center:.890625,y_center:.234375},{w:1,h:1,x_center:.890625,y_center:.234375},{w:1,h:1,x_center:.921875,y_center:.234375},{w:1,h:1,x_center:.921875,y_center:.234375},{w:1,h:1,x_center:.953125,y_center:.234375},{w:1,h:1,x_center:.953125,y_center:.234375},{w:1,h:1,x_center:.984375,y_center:.234375},{w:1,h:1,x_center:.984375,y_center:.234375},{w:1,h:1,x_center:.015625,y_center:.265625},{w:1,h:1,x_center:.015625,y_center:.265625},{w:1,h:1,x_center:.046875,y_center:.265625},{w:1,h:1,x_center:.046875,y_center:.265625},{w:1,h:1,x_center:.078125,y_center:.265625},{w:1,h:1,x_center:.078125,y_center:.265625},{w:1,h:1,x_center:.109375,y_center:.265625},{w:1,h:1,x_center:.109375,y_center:.265625},{w:1,h:1,x_center:.140625,y_center:.265625},{w:1,h:1,x_center:.140625,y_center:.265625},{w:1,h:1,x_center:.171875,y_center:.265625},{w:1,h:1,x_center:.171875,y_center:.265625},{w:1,h:1,x_center:.203125,y_center:.265625},{w:1,h:1,x_center:.203125,y_center:.265625},{w:1,h:1,x_center:.234375,y_center:.265625},{w:1,h:1,x_center:.234375,y_center:.265625},{w:1,h:1,x_center:.265625,y_center:.265625},{w:1,h:1,x_center:.265625,y_center:.265625},{w:1,h:1,x_center:.296875,y_center:.265625},{w:1,h:1,x_center:.296875,y_center:.265625},{w:1,h:1,x_center:.328125,y_center:.265625},{w:1,h:1,x_center:.328125,y_center:.265625},{w:1,h:1,x_center:.359375,y_center:.265625},{w:1,h:1,x_center:.359375,y_center:.265625},{w:1,h:1,x_center:.390625,y_center:.265625},{w:1,h:1,x_center:.390625,y_center:.265625},{w:1,h:1,x_center:.421875,y_center:.265625},{w:1,h:1,x_center:.421875,y_center:.265625},{w:1,h:1,x_center:.453125,y_center:.265625},{w:1,h:1,x_center:.453125,y_center:.265625},{w:1,h:1,x_center:.484375,y_center:.265625},{w:1,h:1,x_center:.484375,y_center:.265625},{w:1,h:1,x_center:.515625,y_center:.265625},{w:1,h:1,x_center:.515625,y_center:.265625},{w:1,h:1,x_center:.546875,y_center:.265625},{w:1,h:1,x_center:.546875,y_center:.265625},{w:1,h:1,x_center:.578125,y_center:.265625},{w:1,h:1,x_center:.578125,y_center:.265625},{w:1,h:1,x_center:.609375,y_center:.265625},{w:1,h:1,x_center:.609375,y_center:.265625},{w:1,h:1,x_center:.640625,y_center:.265625},{w:1,h:1,x_center:.640625,y_center:.265625},{w:1,h:1,x_center:.671875,y_center:.265625},{w:1,h:1,x_center:.671875,y_center:.265625},{w:1,h:1,x_center:.703125,y_center:.265625},{w:1,h:1,x_center:.703125,y_center:.265625},{w:1,h:1,x_center:.734375,y_center:.265625},{w:1,h:1,x_center:.734375,y_center:.265625},{w:1,h:1,x_center:.765625,y_center:.265625},{w:1,h:1,x_center:.765625,y_center:.265625},{w:1,h:1,x_center:.796875,y_center:.265625},{w:1,h:1,x_center:.796875,y_center:.265625},{w:1,h:1,x_center:.828125,y_center:.265625},{w:1,h:1,x_center:.828125,y_center:.265625},{w:1,h:1,x_center:.859375,y_center:.265625},{w:1,h:1,x_center:.859375,y_center:.265625},{w:1,h:1,x_center:.890625,y_center:.265625},{w:1,h:1,x_center:.890625,y_center:.265625},{w:1,h:1,x_center:.921875,y_center:.265625},{w:1,h:1,x_center:.921875,y_center:.265625},{w:1,h:1,x_center:.953125,y_center:.265625},{w:1,h:1,x_center:.953125,y_center:.265625},{w:1,h:1,x_center:.984375,y_center:.265625},{w:1,h:1,x_center:.984375,y_center:.265625},{w:1,h:1,x_center:.015625,y_center:.296875},{w:1,h:1,x_center:.015625,y_center:.296875},{w:1,h:1,x_center:.046875,y_center:.296875},{w:1,h:1,x_center:.046875,y_center:.296875},{w:1,h:1,x_center:.078125,y_center:.296875},{w:1,h:1,x_center:.078125,y_center:.296875},{w:1,h:1,x_center:.109375,y_center:.296875},{w:1,h:1,x_center:.109375,y_center:.296875},{w:1,h:1,x_center:.140625,y_center:.296875},{w:1,h:1,x_center:.140625,y_center:.296875},{w:1,h:1,x_center:.171875,y_center:.296875},{w:1,h:1,x_center:.171875,y_center:.296875},{w:1,h:1,x_center:.203125,y_center:.296875},{w:1,h:1,x_center:.203125,y_center:.296875},{w:1,h:1,x_center:.234375,y_center:.296875},{w:1,h:1,x_center:.234375,y_center:.296875},{w:1,h:1,x_center:.265625,y_center:.296875},{w:1,h:1,x_center:.265625,y_center:.296875},{w:1,h:1,x_center:.296875,y_center:.296875},{w:1,h:1,x_center:.296875,y_center:.296875},{w:1,h:1,x_center:.328125,y_center:.296875},{w:1,h:1,x_center:.328125,y_center:.296875},{w:1,h:1,x_center:.359375,y_center:.296875},{w:1,h:1,x_center:.359375,y_center:.296875},{w:1,h:1,x_center:.390625,y_center:.296875},{w:1,h:1,x_center:.390625,y_center:.296875},{w:1,h:1,x_center:.421875,y_center:.296875},{w:1,h:1,x_center:.421875,y_center:.296875},{w:1,h:1,x_center:.453125,y_center:.296875},{w:1,h:1,x_center:.453125,y_center:.296875},{w:1,h:1,x_center:.484375,y_center:.296875},{w:1,h:1,x_center:.484375,y_center:.296875},{w:1,h:1,x_center:.515625,y_center:.296875},{w:1,h:1,x_center:.515625,y_center:.296875},{w:1,h:1,x_center:.546875,y_center:.296875},{w:1,h:1,x_center:.546875,y_center:.296875},{w:1,h:1,x_center:.578125,y_center:.296875},{w:1,h:1,x_center:.578125,y_center:.296875},{w:1,h:1,x_center:.609375,y_center:.296875},{w:1,h:1,x_center:.609375,y_center:.296875},{w:1,h:1,x_center:.640625,y_center:.296875},{w:1,h:1,x_center:.640625,y_center:.296875},{w:1,h:1,x_center:.671875,y_center:.296875},{w:1,h:1,x_center:.671875,y_center:.296875},{w:1,h:1,x_center:.703125,y_center:.296875},{w:1,h:1,x_center:.703125,y_center:.296875},{w:1,h:1,x_center:.734375,y_center:.296875},{w:1,h:1,x_center:.734375,y_center:.296875},{w:1,h:1,x_center:.765625,y_center:.296875},{w:1,h:1,x_center:.765625,y_center:.296875},{w:1,h:1,x_center:.796875,y_center:.296875},{w:1,h:1,x_center:.796875,y_center:.296875},{w:1,h:1,x_center:.828125,y_center:.296875},{w:1,h:1,x_center:.828125,y_center:.296875},{w:1,h:1,x_center:.859375,y_center:.296875},{w:1,h:1,x_center:.859375,y_center:.296875},{w:1,h:1,x_center:.890625,y_center:.296875},{w:1,h:1,x_center:.890625,y_center:.296875},{w:1,h:1,x_center:.921875,y_center:.296875},{w:1,h:1,x_center:.921875,y_center:.296875},{w:1,h:1,x_center:.953125,y_center:.296875},{w:1,h:1,x_center:.953125,y_center:.296875},{w:1,h:1,x_center:.984375,y_center:.296875},{w:1,h:1,x_center:.984375,y_center:.296875},{w:1,h:1,x_center:.015625,y_center:.328125},{w:1,h:1,x_center:.015625,y_center:.328125},{w:1,h:1,x_center:.046875,y_center:.328125},{w:1,h:1,x_center:.046875,y_center:.328125},{w:1,h:1,x_center:.078125,y_center:.328125},{w:1,h:1,x_center:.078125,y_center:.328125},{w:1,h:1,x_center:.109375,y_center:.328125},{w:1,h:1,x_center:.109375,y_center:.328125},{w:1,h:1,x_center:.140625,y_center:.328125},{w:1,h:1,x_center:.140625,y_center:.328125},{w:1,h:1,x_center:.171875,y_center:.328125},{w:1,h:1,x_center:.171875,y_center:.328125},{w:1,h:1,x_center:.203125,y_center:.328125},{w:1,h:1,x_center:.203125,y_center:.328125},{w:1,h:1,x_center:.234375,y_center:.328125},{w:1,h:1,x_center:.234375,y_center:.328125},{w:1,h:1,x_center:.265625,y_center:.328125},{w:1,h:1,x_center:.265625,y_center:.328125},{w:1,h:1,x_center:.296875,y_center:.328125},{w:1,h:1,x_center:.296875,y_center:.328125},{w:1,h:1,x_center:.328125,y_center:.328125},{w:1,h:1,x_center:.328125,y_center:.328125},{w:1,h:1,x_center:.359375,y_center:.328125},{w:1,h:1,x_center:.359375,y_center:.328125},{w:1,h:1,x_center:.390625,y_center:.328125},{w:1,h:1,x_center:.390625,y_center:.328125},{w:1,h:1,x_center:.421875,y_center:.328125},{w:1,h:1,x_center:.421875,y_center:.328125},{w:1,h:1,x_center:.453125,y_center:.328125},{w:1,h:1,x_center:.453125,y_center:.328125},{w:1,h:1,x_center:.484375,y_center:.328125},{w:1,h:1,x_center:.484375,y_center:.328125},{w:1,h:1,x_center:.515625,y_center:.328125},{w:1,h:1,x_center:.515625,y_center:.328125},{w:1,h:1,x_center:.546875,y_center:.328125},{w:1,h:1,x_center:.546875,y_center:.328125},{w:1,h:1,x_center:.578125,y_center:.328125},{w:1,h:1,x_center:.578125,y_center:.328125},{w:1,h:1,x_center:.609375,y_center:.328125},{w:1,h:1,x_center:.609375,y_center:.328125},{w:1,h:1,x_center:.640625,y_center:.328125},{w:1,h:1,x_center:.640625,y_center:.328125},{w:1,h:1,x_center:.671875,y_center:.328125},{w:1,h:1,x_center:.671875,y_center:.328125},{w:1,h:1,x_center:.703125,y_center:.328125},{w:1,h:1,x_center:.703125,y_center:.328125},{w:1,h:1,x_center:.734375,y_center:.328125},{w:1,h:1,x_center:.734375,y_center:.328125},{w:1,h:1,x_center:.765625,y_center:.328125},{w:1,h:1,x_center:.765625,y_center:.328125},{w:1,h:1,x_center:.796875,y_center:.328125},{w:1,h:1,x_center:.796875,y_center:.328125},{w:1,h:1,x_center:.828125,y_center:.328125},{w:1,h:1,x_center:.828125,y_center:.328125},{w:1,h:1,x_center:.859375,y_center:.328125},{w:1,h:1,x_center:.859375,y_center:.328125},{w:1,h:1,x_center:.890625,y_center:.328125},{w:1,h:1,x_center:.890625,y_center:.328125},{w:1,h:1,x_center:.921875,y_center:.328125},{w:1,h:1,x_center:.921875,y_center:.328125},{w:1,h:1,x_center:.953125,y_center:.328125},{w:1,h:1,x_center:.953125,y_center:.328125},{w:1,h:1,x_center:.984375,y_center:.328125},{w:1,h:1,x_center:.984375,y_center:.328125},{w:1,h:1,x_center:.015625,y_center:.359375},{w:1,h:1,x_center:.015625,y_center:.359375},{w:1,h:1,x_center:.046875,y_center:.359375},{w:1,h:1,x_center:.046875,y_center:.359375},{w:1,h:1,x_center:.078125,y_center:.359375},{w:1,h:1,x_center:.078125,y_center:.359375},{w:1,h:1,x_center:.109375,y_center:.359375},{w:1,h:1,x_center:.109375,y_center:.359375},{w:1,h:1,x_center:.140625,y_center:.359375},{w:1,h:1,x_center:.140625,y_center:.359375},{w:1,h:1,x_center:.171875,y_center:.359375},{w:1,h:1,x_center:.171875,y_center:.359375},{w:1,h:1,x_center:.203125,y_center:.359375},{w:1,h:1,x_center:.203125,y_center:.359375},{w:1,h:1,x_center:.234375,y_center:.359375},{w:1,h:1,x_center:.234375,y_center:.359375},{w:1,h:1,x_center:.265625,y_center:.359375},{w:1,h:1,x_center:.265625,y_center:.359375},{w:1,h:1,x_center:.296875,y_center:.359375},{w:1,h:1,x_center:.296875,y_center:.359375},{w:1,h:1,x_center:.328125,y_center:.359375},{w:1,h:1,x_center:.328125,y_center:.359375},{w:1,h:1,x_center:.359375,y_center:.359375},{w:1,h:1,x_center:.359375,y_center:.359375},{w:1,h:1,x_center:.390625,y_center:.359375},{w:1,h:1,x_center:.390625,y_center:.359375},{w:1,h:1,x_center:.421875,y_center:.359375},{w:1,h:1,x_center:.421875,y_center:.359375},{w:1,h:1,x_center:.453125,y_center:.359375},{w:1,h:1,x_center:.453125,y_center:.359375},{w:1,h:1,x_center:.484375,y_center:.359375},{w:1,h:1,x_center:.484375,y_center:.359375},{w:1,h:1,x_center:.515625,y_center:.359375},{w:1,h:1,x_center:.515625,y_center:.359375},{w:1,h:1,x_center:.546875,y_center:.359375},{w:1,h:1,x_center:.546875,y_center:.359375},{w:1,h:1,x_center:.578125,y_center:.359375},{w:1,h:1,x_center:.578125,y_center:.359375},{w:1,h:1,x_center:.609375,y_center:.359375},{w:1,h:1,x_center:.609375,y_center:.359375},{w:1,h:1,x_center:.640625,y_center:.359375},{w:1,h:1,x_center:.640625,y_center:.359375},{w:1,h:1,x_center:.671875,y_center:.359375},{w:1,h:1,x_center:.671875,y_center:.359375},{w:1,h:1,x_center:.703125,y_center:.359375},{w:1,h:1,x_center:.703125,y_center:.359375},{w:1,h:1,x_center:.734375,y_center:.359375},{w:1,h:1,x_center:.734375,y_center:.359375},{w:1,h:1,x_center:.765625,y_center:.359375},{w:1,h:1,x_center:.765625,y_center:.359375},{w:1,h:1,x_center:.796875,y_center:.359375},{w:1,h:1,x_center:.796875,y_center:.359375},{w:1,h:1,x_center:.828125,y_center:.359375},{w:1,h:1,x_center:.828125,y_center:.359375},{w:1,h:1,x_center:.859375,y_center:.359375},{w:1,h:1,x_center:.859375,y_center:.359375},{w:1,h:1,x_center:.890625,y_center:.359375},{w:1,h:1,x_center:.890625,y_center:.359375},{w:1,h:1,x_center:.921875,y_center:.359375},{w:1,h:1,x_center:.921875,y_center:.359375},{w:1,h:1,x_center:.953125,y_center:.359375},{w:1,h:1,x_center:.953125,y_center:.359375},{w:1,h:1,x_center:.984375,y_center:.359375},{w:1,h:1,x_center:.984375,y_center:.359375},{w:1,h:1,x_center:.015625,y_center:.390625},{w:1,h:1,x_center:.015625,y_center:.390625},{w:1,h:1,x_center:.046875,y_center:.390625},{w:1,h:1,x_center:.046875,y_center:.390625},{w:1,h:1,x_center:.078125,y_center:.390625},{w:1,h:1,x_center:.078125,y_center:.390625},{w:1,h:1,x_center:.109375,y_center:.390625},{w:1,h:1,x_center:.109375,y_center:.390625},{w:1,h:1,x_center:.140625,y_center:.390625},{w:1,h:1,x_center:.140625,y_center:.390625},{w:1,h:1,x_center:.171875,y_center:.390625},{w:1,h:1,x_center:.171875,y_center:.390625},{w:1,h:1,x_center:.203125,y_center:.390625},{w:1,h:1,x_center:.203125,y_center:.390625},{w:1,h:1,x_center:.234375,y_center:.390625},{w:1,h:1,x_center:.234375,y_center:.390625},{w:1,h:1,x_center:.265625,y_center:.390625},{w:1,h:1,x_center:.265625,y_center:.390625},{w:1,h:1,x_center:.296875,y_center:.390625},{w:1,h:1,x_center:.296875,y_center:.390625},{w:1,h:1,x_center:.328125,y_center:.390625},{w:1,h:1,x_center:.328125,y_center:.390625},{w:1,h:1,x_center:.359375,y_center:.390625},{w:1,h:1,x_center:.359375,y_center:.390625},{w:1,h:1,x_center:.390625,y_center:.390625},{w:1,h:1,x_center:.390625,y_center:.390625},{w:1,h:1,x_center:.421875,y_center:.390625},{w:1,h:1,x_center:.421875,y_center:.390625},{w:1,h:1,x_center:.453125,y_center:.390625},{w:1,h:1,x_center:.453125,y_center:.390625},{w:1,h:1,x_center:.484375,y_center:.390625},{w:1,h:1,x_center:.484375,y_center:.390625},{w:1,h:1,x_center:.515625,y_center:.390625},{w:1,h:1,x_center:.515625,y_center:.390625},{w:1,h:1,x_center:.546875,y_center:.390625},{w:1,h:1,x_center:.546875,y_center:.390625},{w:1,h:1,x_center:.578125,y_center:.390625},{w:1,h:1,x_center:.578125,y_center:.390625},{w:1,h:1,x_center:.609375,y_center:.390625},{w:1,h:1,x_center:.609375,y_center:.390625},{w:1,h:1,x_center:.640625,y_center:.390625},{w:1,h:1,x_center:.640625,y_center:.390625},{w:1,h:1,x_center:.671875,y_center:.390625},{w:1,h:1,x_center:.671875,y_center:.390625},{w:1,h:1,x_center:.703125,y_center:.390625},{w:1,h:1,x_center:.703125,y_center:.390625},{w:1,h:1,x_center:.734375,y_center:.390625},{w:1,h:1,x_center:.734375,y_center:.390625},{w:1,h:1,x_center:.765625,y_center:.390625},{w:1,h:1,x_center:.765625,y_center:.390625},{w:1,h:1,x_center:.796875,y_center:.390625},{w:1,h:1,x_center:.796875,y_center:.390625},{w:1,h:1,x_center:.828125,y_center:.390625},{w:1,h:1,x_center:.828125,y_center:.390625},{w:1,h:1,x_center:.859375,y_center:.390625},{w:1,h:1,x_center:.859375,y_center:.390625},{w:1,h:1,x_center:.890625,y_center:.390625},{w:1,h:1,x_center:.890625,y_center:.390625},{w:1,h:1,x_center:.921875,y_center:.390625},{w:1,h:1,x_center:.921875,y_center:.390625},{w:1,h:1,x_center:.953125,y_center:.390625},{w:1,h:1,x_center:.953125,y_center:.390625},{w:1,h:1,x_center:.984375,y_center:.390625},{w:1,h:1,x_center:.984375,y_center:.390625},{w:1,h:1,x_center:.015625,y_center:.421875},{w:1,h:1,x_center:.015625,y_center:.421875},{w:1,h:1,x_center:.046875,y_center:.421875},{w:1,h:1,x_center:.046875,y_center:.421875},{w:1,h:1,x_center:.078125,y_center:.421875},{w:1,h:1,x_center:.078125,y_center:.421875},{w:1,h:1,x_center:.109375,y_center:.421875},{w:1,h:1,x_center:.109375,y_center:.421875},{w:1,h:1,x_center:.140625,y_center:.421875},{w:1,h:1,x_center:.140625,y_center:.421875},{w:1,h:1,x_center:.171875,y_center:.421875},{w:1,h:1,x_center:.171875,y_center:.421875},{w:1,h:1,x_center:.203125,y_center:.421875},{w:1,h:1,x_center:.203125,y_center:.421875},{w:1,h:1,x_center:.234375,y_center:.421875},{w:1,h:1,x_center:.234375,y_center:.421875},{w:1,h:1,x_center:.265625,y_center:.421875},{w:1,h:1,x_center:.265625,y_center:.421875},{w:1,h:1,x_center:.296875,y_center:.421875},{w:1,h:1,x_center:.296875,y_center:.421875},{w:1,h:1,x_center:.328125,y_center:.421875},{w:1,h:1,x_center:.328125,y_center:.421875},{w:1,h:1,x_center:.359375,y_center:.421875},{w:1,h:1,x_center:.359375,y_center:.421875},{w:1,h:1,x_center:.390625,y_center:.421875},{w:1,h:1,x_center:.390625,y_center:.421875},{w:1,h:1,x_center:.421875,y_center:.421875},{w:1,h:1,x_center:.421875,y_center:.421875},{w:1,h:1,x_center:.453125,y_center:.421875},{w:1,h:1,x_center:.453125,y_center:.421875},{w:1,h:1,x_center:.484375,y_center:.421875},{w:1,h:1,x_center:.484375,y_center:.421875},{w:1,h:1,x_center:.515625,y_center:.421875},{w:1,h:1,x_center:.515625,y_center:.421875},{w:1,h:1,x_center:.546875,y_center:.421875},{w:1,h:1,x_center:.546875,y_center:.421875},{w:1,h:1,x_center:.578125,y_center:.421875},{w:1,h:1,x_center:.578125,y_center:.421875},{w:1,h:1,x_center:.609375,y_center:.421875},{w:1,h:1,x_center:.609375,y_center:.421875},{w:1,h:1,x_center:.640625,y_center:.421875},{w:1,h:1,x_center:.640625,y_center:.421875},{w:1,h:1,x_center:.671875,y_center:.421875},{w:1,h:1,x_center:.671875,y_center:.421875},{w:1,h:1,x_center:.703125,y_center:.421875},{w:1,h:1,x_center:.703125,y_center:.421875},{w:1,h:1,x_center:.734375,y_center:.421875},{w:1,h:1,x_center:.734375,y_center:.421875},{w:1,h:1,x_center:.765625,y_center:.421875},{w:1,h:1,x_center:.765625,y_center:.421875},{w:1,h:1,x_center:.796875,y_center:.421875},{w:1,h:1,x_center:.796875,y_center:.421875},{w:1,h:1,x_center:.828125,y_center:.421875},{w:1,h:1,x_center:.828125,y_center:.421875},{w:1,h:1,x_center:.859375,y_center:.421875},{w:1,h:1,x_center:.859375,y_center:.421875},{w:1,h:1,x_center:.890625,y_center:.421875},{w:1,h:1,x_center:.890625,y_center:.421875},{w:1,h:1,x_center:.921875,y_center:.421875},{w:1,h:1,x_center:.921875,y_center:.421875},{w:1,h:1,x_center:.953125,y_center:.421875},{w:1,h:1,x_center:.953125,y_center:.421875},{w:1,h:1,x_center:.984375,y_center:.421875},{w:1,h:1,x_center:.984375,y_center:.421875},{w:1,h:1,x_center:.015625,y_center:.453125},{w:1,h:1,x_center:.015625,y_center:.453125},{w:1,h:1,x_center:.046875,y_center:.453125},{w:1,h:1,x_center:.046875,y_center:.453125},{w:1,h:1,x_center:.078125,y_center:.453125},{w:1,h:1,x_center:.078125,y_center:.453125},{w:1,h:1,x_center:.109375,y_center:.453125},{w:1,h:1,x_center:.109375,y_center:.453125},{w:1,h:1,x_center:.140625,y_center:.453125},{w:1,h:1,x_center:.140625,y_center:.453125},{w:1,h:1,x_center:.171875,y_center:.453125},{w:1,h:1,x_center:.171875,y_center:.453125},{w:1,h:1,x_center:.203125,y_center:.453125},{w:1,h:1,x_center:.203125,y_center:.453125},{w:1,h:1,x_center:.234375,y_center:.453125},{w:1,h:1,x_center:.234375,y_center:.453125},{w:1,h:1,x_center:.265625,y_center:.453125},{w:1,h:1,x_center:.265625,y_center:.453125},{w:1,h:1,x_center:.296875,y_center:.453125},{w:1,h:1,x_center:.296875,y_center:.453125},{w:1,h:1,x_center:.328125,y_center:.453125},{w:1,h:1,x_center:.328125,y_center:.453125},{w:1,h:1,x_center:.359375,y_center:.453125},{w:1,h:1,x_center:.359375,y_center:.453125},{w:1,h:1,x_center:.390625,y_center:.453125},{w:1,h:1,x_center:.390625,y_center:.453125},{w:1,h:1,x_center:.421875,y_center:.453125},{w:1,h:1,x_center:.421875,y_center:.453125},{w:1,h:1,x_center:.453125,y_center:.453125},{w:1,h:1,x_center:.453125,y_center:.453125},{w:1,h:1,x_center:.484375,y_center:.453125},{w:1,h:1,x_center:.484375,y_center:.453125},{w:1,h:1,x_center:.515625,y_center:.453125},{w:1,h:1,x_center:.515625,y_center:.453125},{w:1,h:1,x_center:.546875,y_center:.453125},{w:1,h:1,x_center:.546875,y_center:.453125},{w:1,h:1,x_center:.578125,y_center:.453125},{w:1,h:1,x_center:.578125,y_center:.453125},{w:1,h:1,x_center:.609375,y_center:.453125},{w:1,h:1,x_center:.609375,y_center:.453125},{w:1,h:1,x_center:.640625,y_center:.453125},{w:1,h:1,x_center:.640625,y_center:.453125},{w:1,h:1,x_center:.671875,y_center:.453125},{w:1,h:1,x_center:.671875,y_center:.453125},{w:1,h:1,x_center:.703125,y_center:.453125},{w:1,h:1,x_center:.703125,y_center:.453125},{w:1,h:1,x_center:.734375,y_center:.453125},{w:1,h:1,x_center:.734375,y_center:.453125},{w:1,h:1,x_center:.765625,y_center:.453125},{w:1,h:1,x_center:.765625,y_center:.453125},{w:1,h:1,x_center:.796875,y_center:.453125},{w:1,h:1,x_center:.796875,y_center:.453125},{w:1,h:1,x_center:.828125,y_center:.453125},{w:1,h:1,x_center:.828125,y_center:.453125},{w:1,h:1,x_center:.859375,y_center:.453125},{w:1,h:1,x_center:.859375,y_center:.453125},{w:1,h:1,x_center:.890625,y_center:.453125},{w:1,h:1,x_center:.890625,y_center:.453125},{w:1,h:1,x_center:.921875,y_center:.453125},{w:1,h:1,x_center:.921875,y_center:.453125},{w:1,h:1,x_center:.953125,y_center:.453125},{w:1,h:1,x_center:.953125,y_center:.453125},{w:1,h:1,x_center:.984375,y_center:.453125},{w:1,h:1,x_center:.984375,y_center:.453125},{w:1,h:1,x_center:.015625,y_center:.484375},{w:1,h:1,x_center:.015625,y_center:.484375},{w:1,h:1,x_center:.046875,y_center:.484375},{w:1,h:1,x_center:.046875,y_center:.484375},{w:1,h:1,x_center:.078125,y_center:.484375},{w:1,h:1,x_center:.078125,y_center:.484375},{w:1,h:1,x_center:.109375,y_center:.484375},{w:1,h:1,x_center:.109375,y_center:.484375},{w:1,h:1,x_center:.140625,y_center:.484375},{w:1,h:1,x_center:.140625,y_center:.484375},{w:1,h:1,x_center:.171875,y_center:.484375},{w:1,h:1,x_center:.171875,y_center:.484375},{w:1,h:1,x_center:.203125,y_center:.484375},{w:1,h:1,x_center:.203125,y_center:.484375},{w:1,h:1,x_center:.234375,y_center:.484375},{w:1,h:1,x_center:.234375,y_center:.484375},{w:1,h:1,x_center:.265625,y_center:.484375},{w:1,h:1,x_center:.265625,y_center:.484375},{w:1,h:1,x_center:.296875,y_center:.484375},{w:1,h:1,x_center:.296875,y_center:.484375},{w:1,h:1,x_center:.328125,y_center:.484375},{w:1,h:1,x_center:.328125,y_center:.484375},{w:1,h:1,x_center:.359375,y_center:.484375},{w:1,h:1,x_center:.359375,y_center:.484375},{w:1,h:1,x_center:.390625,y_center:.484375},{w:1,h:1,x_center:.390625,y_center:.484375},{w:1,h:1,x_center:.421875,y_center:.484375},{w:1,h:1,x_center:.421875,y_center:.484375},{w:1,h:1,x_center:.453125,y_center:.484375},{w:1,h:1,x_center:.453125,y_center:.484375},{w:1,h:1,x_center:.484375,y_center:.484375},{w:1,h:1,x_center:.484375,y_center:.484375},{w:1,h:1,x_center:.515625,y_center:.484375},{w:1,h:1,x_center:.515625,y_center:.484375},{w:1,h:1,x_center:.546875,y_center:.484375},{w:1,h:1,x_center:.546875,y_center:.484375},{w:1,h:1,x_center:.578125,y_center:.484375},{w:1,h:1,x_center:.578125,y_center:.484375},{w:1,h:1,x_center:.609375,y_center:.484375},{w:1,h:1,x_center:.609375,y_center:.484375},{w:1,h:1,x_center:.640625,y_center:.484375},{w:1,h:1,x_center:.640625,y_center:.484375},{w:1,h:1,x_center:.671875,y_center:.484375},{w:1,h:1,x_center:.671875,y_center:.484375},{w:1,h:1,x_center:.703125,y_center:.484375},{w:1,h:1,x_center:.703125,y_center:.484375},{w:1,h:1,x_center:.734375,y_center:.484375},{w:1,h:1,x_center:.734375,y_center:.484375},{w:1,h:1,x_center:.765625,y_center:.484375},{w:1,h:1,x_center:.765625,y_center:.484375},{w:1,h:1,x_center:.796875,y_center:.484375},{w:1,h:1,x_center:.796875,y_center:.484375},{w:1,h:1,x_center:.828125,y_center:.484375},{w:1,h:1,x_center:.828125,y_center:.484375},{w:1,h:1,x_center:.859375,y_center:.484375},{w:1,h:1,x_center:.859375,y_center:.484375},{w:1,h:1,x_center:.890625,y_center:.484375},{w:1,h:1,x_center:.890625,y_center:.484375},{w:1,h:1,x_center:.921875,y_center:.484375},{w:1,h:1,x_center:.921875,y_center:.484375},{w:1,h:1,x_center:.953125,y_center:.484375},{w:1,h:1,x_center:.953125,y_center:.484375},{w:1,h:1,x_center:.984375,y_center:.484375},{w:1,h:1,x_center:.984375,y_center:.484375},{w:1,h:1,x_center:.015625,y_center:.515625},{w:1,h:1,x_center:.015625,y_center:.515625},{w:1,h:1,x_center:.046875,y_center:.515625},{w:1,h:1,x_center:.046875,y_center:.515625},{w:1,h:1,x_center:.078125,y_center:.515625},{w:1,h:1,x_center:.078125,y_center:.515625},{w:1,h:1,x_center:.109375,y_center:.515625},{w:1,h:1,x_center:.109375,y_center:.515625},{w:1,h:1,x_center:.140625,y_center:.515625},{w:1,h:1,x_center:.140625,y_center:.515625},{w:1,h:1,x_center:.171875,y_center:.515625},{w:1,h:1,x_center:.171875,y_center:.515625},{w:1,h:1,x_center:.203125,y_center:.515625},{w:1,h:1,x_center:.203125,y_center:.515625},{w:1,h:1,x_center:.234375,y_center:.515625},{w:1,h:1,x_center:.234375,y_center:.515625},{w:1,h:1,x_center:.265625,y_center:.515625},{w:1,h:1,x_center:.265625,y_center:.515625},{w:1,h:1,x_center:.296875,y_center:.515625},{w:1,h:1,x_center:.296875,y_center:.515625},{w:1,h:1,x_center:.328125,y_center:.515625},{w:1,h:1,x_center:.328125,y_center:.515625},{w:1,h:1,x_center:.359375,y_center:.515625},{w:1,h:1,x_center:.359375,y_center:.515625},{w:1,h:1,x_center:.390625,y_center:.515625},{w:1,h:1,x_center:.390625,y_center:.515625},{w:1,h:1,x_center:.421875,y_center:.515625},{w:1,h:1,x_center:.421875,y_center:.515625},{w:1,h:1,x_center:.453125,y_center:.515625},{w:1,h:1,x_center:.453125,y_center:.515625},{w:1,h:1,x_center:.484375,y_center:.515625},{w:1,h:1,x_center:.484375,y_center:.515625},{w:1,h:1,x_center:.515625,y_center:.515625},{w:1,h:1,x_center:.515625,y_center:.515625},{w:1,h:1,x_center:.546875,y_center:.515625},{w:1,h:1,x_center:.546875,y_center:.515625},{w:1,h:1,x_center:.578125,y_center:.515625},{w:1,h:1,x_center:.578125,y_center:.515625},{w:1,h:1,x_center:.609375,y_center:.515625},{w:1,h:1,x_center:.609375,y_center:.515625},{w:1,h:1,x_center:.640625,y_center:.515625},{w:1,h:1,x_center:.640625,y_center:.515625},{w:1,h:1,x_center:.671875,y_center:.515625},{w:1,h:1,x_center:.671875,y_center:.515625},{w:1,h:1,x_center:.703125,y_center:.515625},{w:1,h:1,x_center:.703125,y_center:.515625},{w:1,h:1,x_center:.734375,y_center:.515625},{w:1,h:1,x_center:.734375,y_center:.515625},{w:1,h:1,x_center:.765625,y_center:.515625},{w:1,h:1,x_center:.765625,y_center:.515625},{w:1,h:1,x_center:.796875,y_center:.515625},{w:1,h:1,x_center:.796875,y_center:.515625},{w:1,h:1,x_center:.828125,y_center:.515625},{w:1,h:1,x_center:.828125,y_center:.515625},{w:1,h:1,x_center:.859375,y_center:.515625},{w:1,h:1,x_center:.859375,y_center:.515625},{w:1,h:1,x_center:.890625,y_center:.515625},{w:1,h:1,x_center:.890625,y_center:.515625},{w:1,h:1,x_center:.921875,y_center:.515625},{w:1,h:1,x_center:.921875,y_center:.515625},{w:1,h:1,x_center:.953125,y_center:.515625},{w:1,h:1,x_center:.953125,y_center:.515625},{w:1,h:1,x_center:.984375,y_center:.515625},{w:1,h:1,x_center:.984375,y_center:.515625},{w:1,h:1,x_center:.015625,y_center:.546875},{w:1,h:1,x_center:.015625,y_center:.546875},{w:1,h:1,x_center:.046875,y_center:.546875},{w:1,h:1,x_center:.046875,y_center:.546875},{w:1,h:1,x_center:.078125,y_center:.546875},{w:1,h:1,x_center:.078125,y_center:.546875},{w:1,h:1,x_center:.109375,y_center:.546875},{w:1,h:1,x_center:.109375,y_center:.546875},{w:1,h:1,x_center:.140625,y_center:.546875},{w:1,h:1,x_center:.140625,y_center:.546875},{w:1,h:1,x_center:.171875,y_center:.546875},{w:1,h:1,x_center:.171875,y_center:.546875},{w:1,h:1,x_center:.203125,y_center:.546875},{w:1,h:1,x_center:.203125,y_center:.546875},{w:1,h:1,x_center:.234375,y_center:.546875},{w:1,h:1,x_center:.234375,y_center:.546875},{w:1,h:1,x_center:.265625,y_center:.546875},{w:1,h:1,x_center:.265625,y_center:.546875},{w:1,h:1,x_center:.296875,y_center:.546875},{w:1,h:1,x_center:.296875,y_center:.546875},{w:1,h:1,x_center:.328125,y_center:.546875},{w:1,h:1,x_center:.328125,y_center:.546875},{w:1,h:1,x_center:.359375,y_center:.546875},{w:1,h:1,x_center:.359375,y_center:.546875},{w:1,h:1,x_center:.390625,y_center:.546875},{w:1,h:1,x_center:.390625,y_center:.546875},{w:1,h:1,x_center:.421875,y_center:.546875},{w:1,h:1,x_center:.421875,y_center:.546875},{w:1,h:1,x_center:.453125,y_center:.546875},{w:1,h:1,x_center:.453125,y_center:.546875},{w:1,h:1,x_center:.484375,y_center:.546875},{w:1,h:1,x_center:.484375,y_center:.546875},{w:1,h:1,x_center:.515625,y_center:.546875},{w:1,h:1,x_center:.515625,y_center:.546875},{w:1,h:1,x_center:.546875,y_center:.546875},{w:1,h:1,x_center:.546875,y_center:.546875},{w:1,h:1,x_center:.578125,y_center:.546875},{w:1,h:1,x_center:.578125,y_center:.546875},{w:1,h:1,x_center:.609375,y_center:.546875},{w:1,h:1,x_center:.609375,y_center:.546875},{w:1,h:1,x_center:.640625,y_center:.546875},{w:1,h:1,x_center:.640625,y_center:.546875},{w:1,h:1,x_center:.671875,y_center:.546875},{w:1,h:1,x_center:.671875,y_center:.546875},{w:1,h:1,x_center:.703125,y_center:.546875},{w:1,h:1,x_center:.703125,y_center:.546875},{w:1,h:1,x_center:.734375,y_center:.546875},{w:1,h:1,x_center:.734375,y_center:.546875},{w:1,h:1,x_center:.765625,y_center:.546875},{w:1,h:1,x_center:.765625,y_center:.546875},{w:1,h:1,x_center:.796875,y_center:.546875},{w:1,h:1,x_center:.796875,y_center:.546875},{w:1,h:1,x_center:.828125,y_center:.546875},{w:1,h:1,x_center:.828125,y_center:.546875},{w:1,h:1,x_center:.859375,y_center:.546875},{w:1,h:1,x_center:.859375,y_center:.546875},{w:1,h:1,x_center:.890625,y_center:.546875},{w:1,h:1,x_center:.890625,y_center:.546875},{w:1,h:1,x_center:.921875,y_center:.546875},{w:1,h:1,x_center:.921875,y_center:.546875},{w:1,h:1,x_center:.953125,y_center:.546875},{w:1,h:1,x_center:.953125,y_center:.546875},{w:1,h:1,x_center:.984375,y_center:.546875},{w:1,h:1,x_center:.984375,y_center:.546875},{w:1,h:1,x_center:.015625,y_center:.578125},{w:1,h:1,x_center:.015625,y_center:.578125},{w:1,h:1,x_center:.046875,y_center:.578125},{w:1,h:1,x_center:.046875,y_center:.578125},{w:1,h:1,x_center:.078125,y_center:.578125},{w:1,h:1,x_center:.078125,y_center:.578125},{w:1,h:1,x_center:.109375,y_center:.578125},{w:1,h:1,x_center:.109375,y_center:.578125},{w:1,h:1,x_center:.140625,y_center:.578125},{w:1,h:1,x_center:.140625,y_center:.578125},{w:1,h:1,x_center:.171875,y_center:.578125},{w:1,h:1,x_center:.171875,y_center:.578125},{w:1,h:1,x_center:.203125,y_center:.578125},{w:1,h:1,x_center:.203125,y_center:.578125},{w:1,h:1,x_center:.234375,y_center:.578125},{w:1,h:1,x_center:.234375,y_center:.578125},{w:1,h:1,x_center:.265625,y_center:.578125},{w:1,h:1,x_center:.265625,y_center:.578125},{w:1,h:1,x_center:.296875,y_center:.578125},{w:1,h:1,x_center:.296875,y_center:.578125},{w:1,h:1,x_center:.328125,y_center:.578125},{w:1,h:1,x_center:.328125,y_center:.578125},{w:1,h:1,x_center:.359375,y_center:.578125},{w:1,h:1,x_center:.359375,y_center:.578125},{w:1,h:1,x_center:.390625,y_center:.578125},{w:1,h:1,x_center:.390625,y_center:.578125},{w:1,h:1,x_center:.421875,y_center:.578125},{w:1,h:1,x_center:.421875,y_center:.578125},{w:1,h:1,x_center:.453125,y_center:.578125},{w:1,h:1,x_center:.453125,y_center:.578125},{w:1,h:1,x_center:.484375,y_center:.578125},{w:1,h:1,x_center:.484375,y_center:.578125},{w:1,h:1,x_center:.515625,y_center:.578125},{w:1,h:1,x_center:.515625,y_center:.578125},{w:1,h:1,x_center:.546875,y_center:.578125},{w:1,h:1,x_center:.546875,y_center:.578125},{w:1,h:1,x_center:.578125,y_center:.578125},{w:1,h:1,x_center:.578125,y_center:.578125},{w:1,h:1,x_center:.609375,y_center:.578125},{w:1,h:1,x_center:.609375,y_center:.578125},{w:1,h:1,x_center:.640625,y_center:.578125},{w:1,h:1,x_center:.640625,y_center:.578125},{w:1,h:1,x_center:.671875,y_center:.578125},{w:1,h:1,x_center:.671875,y_center:.578125},{w:1,h:1,x_center:.703125,y_center:.578125},{w:1,h:1,x_center:.703125,y_center:.578125},{w:1,h:1,x_center:.734375,y_center:.578125},{w:1,h:1,x_center:.734375,y_center:.578125},{w:1,h:1,x_center:.765625,y_center:.578125},{w:1,h:1,x_center:.765625,y_center:.578125},{w:1,h:1,x_center:.796875,y_center:.578125},{w:1,h:1,x_center:.796875,y_center:.578125},{w:1,h:1,x_center:.828125,y_center:.578125},{w:1,h:1,x_center:.828125,y_center:.578125},{w:1,h:1,x_center:.859375,y_center:.578125},{w:1,h:1,x_center:.859375,y_center:.578125},{w:1,h:1,x_center:.890625,y_center:.578125},{w:1,h:1,x_center:.890625,y_center:.578125},{w:1,h:1,x_center:.921875,y_center:.578125},{w:1,h:1,x_center:.921875,y_center:.578125},{w:1,h:1,x_center:.953125,y_center:.578125},{w:1,h:1,x_center:.953125,y_center:.578125},{w:1,h:1,x_center:.984375,y_center:.578125},{w:1,h:1,x_center:.984375,y_center:.578125},{w:1,h:1,x_center:.015625,y_center:.609375},{w:1,h:1,x_center:.015625,y_center:.609375},{w:1,h:1,x_center:.046875,y_center:.609375},{w:1,h:1,x_center:.046875,y_center:.609375},{w:1,h:1,x_center:.078125,y_center:.609375},{w:1,h:1,x_center:.078125,y_center:.609375},{w:1,h:1,x_center:.109375,y_center:.609375},{w:1,h:1,x_center:.109375,y_center:.609375},{w:1,h:1,x_center:.140625,y_center:.609375},{w:1,h:1,x_center:.140625,y_center:.609375},{w:1,h:1,x_center:.171875,y_center:.609375},{w:1,h:1,x_center:.171875,y_center:.609375},{w:1,h:1,x_center:.203125,y_center:.609375},{w:1,h:1,x_center:.203125,y_center:.609375},{w:1,h:1,x_center:.234375,y_center:.609375},{w:1,h:1,x_center:.234375,y_center:.609375},{w:1,h:1,x_center:.265625,y_center:.609375},{w:1,h:1,x_center:.265625,y_center:.609375},{w:1,h:1,x_center:.296875,y_center:.609375},{w:1,h:1,x_center:.296875,y_center:.609375},{w:1,h:1,x_center:.328125,y_center:.609375},{w:1,h:1,x_center:.328125,y_center:.609375},{w:1,h:1,x_center:.359375,y_center:.609375},{w:1,h:1,x_center:.359375,y_center:.609375},{w:1,h:1,x_center:.390625,y_center:.609375},{w:1,h:1,x_center:.390625,y_center:.609375},{w:1,h:1,x_center:.421875,y_center:.609375},{w:1,h:1,x_center:.421875,y_center:.609375},{w:1,h:1,x_center:.453125,y_center:.609375},{w:1,h:1,x_center:.453125,y_center:.609375},{w:1,h:1,x_center:.484375,y_center:.609375},{w:1,h:1,x_center:.484375,y_center:.609375},{w:1,h:1,x_center:.515625,y_center:.609375},{w:1,h:1,x_center:.515625,y_center:.609375},{w:1,h:1,x_center:.546875,y_center:.609375},{w:1,h:1,x_center:.546875,y_center:.609375},{w:1,h:1,x_center:.578125,y_center:.609375},{w:1,h:1,x_center:.578125,y_center:.609375},{w:1,h:1,x_center:.609375,y_center:.609375},{w:1,h:1,x_center:.609375,y_center:.609375},{w:1,h:1,x_center:.640625,y_center:.609375},{w:1,h:1,x_center:.640625,y_center:.609375},{w:1,h:1,x_center:.671875,y_center:.609375},{w:1,h:1,x_center:.671875,y_center:.609375},{w:1,h:1,x_center:.703125,y_center:.609375},{w:1,h:1,x_center:.703125,y_center:.609375},{w:1,h:1,x_center:.734375,y_center:.609375},{w:1,h:1,x_center:.734375,y_center:.609375},{w:1,h:1,x_center:.765625,y_center:.609375},{w:1,h:1,x_center:.765625,y_center:.609375},{w:1,h:1,x_center:.796875,y_center:.609375},{w:1,h:1,x_center:.796875,y_center:.609375},{w:1,h:1,x_center:.828125,y_center:.609375},{w:1,h:1,x_center:.828125,y_center:.609375},{w:1,h:1,x_center:.859375,y_center:.609375},{w:1,h:1,x_center:.859375,y_center:.609375},{w:1,h:1,x_center:.890625,y_center:.609375},{w:1,h:1,x_center:.890625,y_center:.609375},{w:1,h:1,x_center:.921875,y_center:.609375},{w:1,h:1,x_center:.921875,y_center:.609375},{w:1,h:1,x_center:.953125,y_center:.609375},{w:1,h:1,x_center:.953125,y_center:.609375},{w:1,h:1,x_center:.984375,y_center:.609375},{w:1,h:1,x_center:.984375,y_center:.609375},{w:1,h:1,x_center:.015625,y_center:.640625},{w:1,h:1,x_center:.015625,y_center:.640625},{w:1,h:1,x_center:.046875,y_center:.640625},{w:1,h:1,x_center:.046875,y_center:.640625},{w:1,h:1,x_center:.078125,y_center:.640625},{w:1,h:1,x_center:.078125,y_center:.640625},{w:1,h:1,x_center:.109375,y_center:.640625},{w:1,h:1,x_center:.109375,y_center:.640625},{w:1,h:1,x_center:.140625,y_center:.640625},{w:1,h:1,x_center:.140625,y_center:.640625},{w:1,h:1,x_center:.171875,y_center:.640625},{w:1,h:1,x_center:.171875,y_center:.640625},{w:1,h:1,x_center:.203125,y_center:.640625},{w:1,h:1,x_center:.203125,y_center:.640625},{w:1,h:1,x_center:.234375,y_center:.640625},{w:1,h:1,x_center:.234375,y_center:.640625},{w:1,h:1,x_center:.265625,y_center:.640625},{w:1,h:1,x_center:.265625,y_center:.640625},{w:1,h:1,x_center:.296875,y_center:.640625},{w:1,h:1,x_center:.296875,y_center:.640625},{w:1,h:1,x_center:.328125,y_center:.640625},{w:1,h:1,x_center:.328125,y_center:.640625},{w:1,h:1,x_center:.359375,y_center:.640625},{w:1,h:1,x_center:.359375,y_center:.640625},{w:1,h:1,x_center:.390625,y_center:.640625},{w:1,h:1,x_center:.390625,y_center:.640625},{w:1,h:1,x_center:.421875,y_center:.640625},{w:1,h:1,x_center:.421875,y_center:.640625},{w:1,h:1,x_center:.453125,y_center:.640625},{w:1,h:1,x_center:.453125,y_center:.640625},{w:1,h:1,x_center:.484375,y_center:.640625},{w:1,h:1,x_center:.484375,y_center:.640625},{w:1,h:1,x_center:.515625,y_center:.640625},{w:1,h:1,x_center:.515625,y_center:.640625},{w:1,h:1,x_center:.546875,y_center:.640625},{w:1,h:1,x_center:.546875,y_center:.640625},{w:1,h:1,x_center:.578125,y_center:.640625},{w:1,h:1,x_center:.578125,y_center:.640625},{w:1,h:1,x_center:.609375,y_center:.640625},{w:1,h:1,x_center:.609375,y_center:.640625},{w:1,h:1,x_center:.640625,y_center:.640625},{w:1,h:1,x_center:.640625,y_center:.640625},{w:1,h:1,x_center:.671875,y_center:.640625},{w:1,h:1,x_center:.671875,y_center:.640625},{w:1,h:1,x_center:.703125,y_center:.640625},{w:1,h:1,x_center:.703125,y_center:.640625},{w:1,h:1,x_center:.734375,y_center:.640625},{w:1,h:1,x_center:.734375,y_center:.640625},{w:1,h:1,x_center:.765625,y_center:.640625},{w:1,h:1,x_center:.765625,y_center:.640625},{w:1,h:1,x_center:.796875,y_center:.640625},{w:1,h:1,x_center:.796875,y_center:.640625},{w:1,h:1,x_center:.828125,y_center:.640625},{w:1,h:1,x_center:.828125,y_center:.640625},{w:1,h:1,x_center:.859375,y_center:.640625},{w:1,h:1,x_center:.859375,y_center:.640625},{w:1,h:1,x_center:.890625,y_center:.640625},{w:1,h:1,x_center:.890625,y_center:.640625},{w:1,h:1,x_center:.921875,y_center:.640625},{w:1,h:1,x_center:.921875,y_center:.640625},{w:1,h:1,x_center:.953125,y_center:.640625},{w:1,h:1,x_center:.953125,y_center:.640625},{w:1,h:1,x_center:.984375,y_center:.640625},{w:1,h:1,x_center:.984375,y_center:.640625},{w:1,h:1,x_center:.015625,y_center:.671875},{w:1,h:1,x_center:.015625,y_center:.671875},{w:1,h:1,x_center:.046875,y_center:.671875},{w:1,h:1,x_center:.046875,y_center:.671875},{w:1,h:1,x_center:.078125,y_center:.671875},{w:1,h:1,x_center:.078125,y_center:.671875},{w:1,h:1,x_center:.109375,y_center:.671875},{w:1,h:1,x_center:.109375,y_center:.671875},{w:1,h:1,x_center:.140625,y_center:.671875},{w:1,h:1,x_center:.140625,y_center:.671875},{w:1,h:1,x_center:.171875,y_center:.671875},{w:1,h:1,x_center:.171875,y_center:.671875},{w:1,h:1,x_center:.203125,y_center:.671875},{w:1,h:1,x_center:.203125,y_center:.671875},{w:1,h:1,x_center:.234375,y_center:.671875},{w:1,h:1,x_center:.234375,y_center:.671875},{w:1,h:1,x_center:.265625,y_center:.671875},{w:1,h:1,x_center:.265625,y_center:.671875},{w:1,h:1,x_center:.296875,y_center:.671875},{w:1,h:1,x_center:.296875,y_center:.671875},{w:1,h:1,x_center:.328125,y_center:.671875},{w:1,h:1,x_center:.328125,y_center:.671875},{w:1,h:1,x_center:.359375,y_center:.671875},{w:1,h:1,x_center:.359375,y_center:.671875},{w:1,h:1,x_center:.390625,y_center:.671875},{w:1,h:1,x_center:.390625,y_center:.671875},{w:1,h:1,x_center:.421875,y_center:.671875},{w:1,h:1,x_center:.421875,y_center:.671875},{w:1,h:1,x_center:.453125,y_center:.671875},{w:1,h:1,x_center:.453125,y_center:.671875},{w:1,h:1,x_center:.484375,y_center:.671875},{w:1,h:1,x_center:.484375,y_center:.671875},{w:1,h:1,x_center:.515625,y_center:.671875},{w:1,h:1,x_center:.515625,y_center:.671875},{w:1,h:1,x_center:.546875,y_center:.671875},{w:1,h:1,x_center:.546875,y_center:.671875},{w:1,h:1,x_center:.578125,y_center:.671875},{w:1,h:1,x_center:.578125,y_center:.671875},{w:1,h:1,x_center:.609375,y_center:.671875},{w:1,h:1,x_center:.609375,y_center:.671875},{w:1,h:1,x_center:.640625,y_center:.671875},{w:1,h:1,x_center:.640625,y_center:.671875},{w:1,h:1,x_center:.671875,y_center:.671875},{w:1,h:1,x_center:.671875,y_center:.671875},{w:1,h:1,x_center:.703125,y_center:.671875},{w:1,h:1,x_center:.703125,y_center:.671875},{w:1,h:1,x_center:.734375,y_center:.671875},{w:1,h:1,x_center:.734375,y_center:.671875},{w:1,h:1,x_center:.765625,y_center:.671875},{w:1,h:1,x_center:.765625,y_center:.671875},{w:1,h:1,x_center:.796875,y_center:.671875},{w:1,h:1,x_center:.796875,y_center:.671875},{w:1,h:1,x_center:.828125,y_center:.671875},{w:1,h:1,x_center:.828125,y_center:.671875},{w:1,h:1,x_center:.859375,y_center:.671875},{w:1,h:1,x_center:.859375,y_center:.671875},{w:1,h:1,x_center:.890625,y_center:.671875},{w:1,h:1,x_center:.890625,y_center:.671875},{w:1,h:1,x_center:.921875,y_center:.671875},{w:1,h:1,x_center:.921875,y_center:.671875},{w:1,h:1,x_center:.953125,y_center:.671875},{w:1,h:1,x_center:.953125,y_center:.671875},{w:1,h:1,x_center:.984375,y_center:.671875},{w:1,h:1,x_center:.984375,y_center:.671875},{w:1,h:1,x_center:.015625,y_center:.703125},{w:1,h:1,x_center:.015625,y_center:.703125},{w:1,h:1,x_center:.046875,y_center:.703125},{w:1,h:1,x_center:.046875,y_center:.703125},{w:1,h:1,x_center:.078125,y_center:.703125},{w:1,h:1,x_center:.078125,y_center:.703125},{w:1,h:1,x_center:.109375,y_center:.703125},{w:1,h:1,x_center:.109375,y_center:.703125},{w:1,h:1,x_center:.140625,y_center:.703125},{w:1,h:1,x_center:.140625,y_center:.703125},{w:1,h:1,x_center:.171875,y_center:.703125},{w:1,h:1,x_center:.171875,y_center:.703125},{w:1,h:1,x_center:.203125,y_center:.703125},{w:1,h:1,x_center:.203125,y_center:.703125},{w:1,h:1,x_center:.234375,y_center:.703125},{w:1,h:1,x_center:.234375,y_center:.703125},{w:1,h:1,x_center:.265625,y_center:.703125},{w:1,h:1,x_center:.265625,y_center:.703125},{w:1,h:1,x_center:.296875,y_center:.703125},{w:1,h:1,x_center:.296875,y_center:.703125},{w:1,h:1,x_center:.328125,y_center:.703125},{w:1,h:1,x_center:.328125,y_center:.703125},{w:1,h:1,x_center:.359375,y_center:.703125},{w:1,h:1,x_center:.359375,y_center:.703125},{w:1,h:1,x_center:.390625,y_center:.703125},{w:1,h:1,x_center:.390625,y_center:.703125},{w:1,h:1,x_center:.421875,y_center:.703125},{w:1,h:1,x_center:.421875,y_center:.703125},{w:1,h:1,x_center:.453125,y_center:.703125},{w:1,h:1,x_center:.453125,y_center:.703125},{w:1,h:1,x_center:.484375,y_center:.703125},{w:1,h:1,x_center:.484375,y_center:.703125},{w:1,h:1,x_center:.515625,y_center:.703125},{w:1,h:1,x_center:.515625,y_center:.703125},{w:1,h:1,x_center:.546875,y_center:.703125},{w:1,h:1,x_center:.546875,y_center:.703125},{w:1,h:1,x_center:.578125,y_center:.703125},{w:1,h:1,x_center:.578125,y_center:.703125},{w:1,h:1,x_center:.609375,y_center:.703125},{w:1,h:1,x_center:.609375,y_center:.703125},{w:1,h:1,x_center:.640625,y_center:.703125},{w:1,h:1,x_center:.640625,y_center:.703125},{w:1,h:1,x_center:.671875,y_center:.703125},{w:1,h:1,x_center:.671875,y_center:.703125},{w:1,h:1,x_center:.703125,y_center:.703125},{w:1,h:1,x_center:.703125,y_center:.703125},{w:1,h:1,x_center:.734375,y_center:.703125},{w:1,h:1,x_center:.734375,y_center:.703125},{w:1,h:1,x_center:.765625,y_center:.703125},{w:1,h:1,x_center:.765625,y_center:.703125},{w:1,h:1,x_center:.796875,y_center:.703125},{w:1,h:1,x_center:.796875,y_center:.703125},{w:1,h:1,x_center:.828125,y_center:.703125},{w:1,h:1,x_center:.828125,y_center:.703125},{w:1,h:1,x_center:.859375,y_center:.703125},{w:1,h:1,x_center:.859375,y_center:.703125},{w:1,h:1,x_center:.890625,y_center:.703125},{w:1,h:1,x_center:.890625,y_center:.703125},{w:1,h:1,x_center:.921875,y_center:.703125},{w:1,h:1,x_center:.921875,y_center:.703125},{w:1,h:1,x_center:.953125,y_center:.703125},{w:1,h:1,x_center:.953125,y_center:.703125},{w:1,h:1,x_center:.984375,y_center:.703125},{w:1,h:1,x_center:.984375,y_center:.703125},{w:1,h:1,x_center:.015625,y_center:.734375},{w:1,h:1,x_center:.015625,y_center:.734375},{w:1,h:1,x_center:.046875,y_center:.734375},{w:1,h:1,x_center:.046875,y_center:.734375},{w:1,h:1,x_center:.078125,y_center:.734375},{w:1,h:1,x_center:.078125,y_center:.734375},{w:1,h:1,x_center:.109375,y_center:.734375},{w:1,h:1,x_center:.109375,y_center:.734375},{w:1,h:1,x_center:.140625,y_center:.734375},{w:1,h:1,x_center:.140625,y_center:.734375},{w:1,h:1,x_center:.171875,y_center:.734375},{w:1,h:1,x_center:.171875,y_center:.734375},{w:1,h:1,x_center:.203125,y_center:.734375},{w:1,h:1,x_center:.203125,y_center:.734375},{w:1,h:1,x_center:.234375,y_center:.734375},{w:1,h:1,x_center:.234375,y_center:.734375},{w:1,h:1,x_center:.265625,y_center:.734375},{w:1,h:1,x_center:.265625,y_center:.734375},{w:1,h:1,x_center:.296875,y_center:.734375},{w:1,h:1,x_center:.296875,y_center:.734375},{w:1,h:1,x_center:.328125,y_center:.734375},{w:1,h:1,x_center:.328125,y_center:.734375},{w:1,h:1,x_center:.359375,y_center:.734375},{w:1,h:1,x_center:.359375,y_center:.734375},{w:1,h:1,x_center:.390625,y_center:.734375},{w:1,h:1,x_center:.390625,y_center:.734375},{w:1,h:1,x_center:.421875,y_center:.734375},{w:1,h:1,x_center:.421875,y_center:.734375},{w:1,h:1,x_center:.453125,y_center:.734375},{w:1,h:1,x_center:.453125,y_center:.734375},{w:1,h:1,x_center:.484375,y_center:.734375},{w:1,h:1,x_center:.484375,y_center:.734375},{w:1,h:1,x_center:.515625,y_center:.734375},{w:1,h:1,x_center:.515625,y_center:.734375},{w:1,h:1,x_center:.546875,y_center:.734375},{w:1,h:1,x_center:.546875,y_center:.734375},{w:1,h:1,x_center:.578125,y_center:.734375},{w:1,h:1,x_center:.578125,y_center:.734375},{w:1,h:1,x_center:.609375,y_center:.734375},{w:1,h:1,x_center:.609375,y_center:.734375},{w:1,h:1,x_center:.640625,y_center:.734375},{w:1,h:1,x_center:.640625,y_center:.734375},{w:1,h:1,x_center:.671875,y_center:.734375},{w:1,h:1,x_center:.671875,y_center:.734375},{w:1,h:1,x_center:.703125,y_center:.734375},{w:1,h:1,x_center:.703125,y_center:.734375},{w:1,h:1,x_center:.734375,y_center:.734375},{w:1,h:1,x_center:.734375,y_center:.734375},{w:1,h:1,x_center:.765625,y_center:.734375},{w:1,h:1,x_center:.765625,y_center:.734375},{w:1,h:1,x_center:.796875,y_center:.734375},{w:1,h:1,x_center:.796875,y_center:.734375},{w:1,h:1,x_center:.828125,y_center:.734375},{w:1,h:1,x_center:.828125,y_center:.734375},{w:1,h:1,x_center:.859375,y_center:.734375},{w:1,h:1,x_center:.859375,y_center:.734375},{w:1,h:1,x_center:.890625,y_center:.734375},{w:1,h:1,x_center:.890625,y_center:.734375},{w:1,h:1,x_center:.921875,y_center:.734375},{w:1,h:1,x_center:.921875,y_center:.734375},{w:1,h:1,x_center:.953125,y_center:.734375},{w:1,h:1,x_center:.953125,y_center:.734375},{w:1,h:1,x_center:.984375,y_center:.734375},{w:1,h:1,x_center:.984375,y_center:.734375},{w:1,h:1,x_center:.015625,y_center:.765625},{w:1,h:1,x_center:.015625,y_center:.765625},{w:1,h:1,x_center:.046875,y_center:.765625},{w:1,h:1,x_center:.046875,y_center:.765625},{w:1,h:1,x_center:.078125,y_center:.765625},{w:1,h:1,x_center:.078125,y_center:.765625},{w:1,h:1,x_center:.109375,y_center:.765625},{w:1,h:1,x_center:.109375,y_center:.765625},{w:1,h:1,x_center:.140625,y_center:.765625},{w:1,h:1,x_center:.140625,y_center:.765625},{w:1,h:1,x_center:.171875,y_center:.765625},{w:1,h:1,x_center:.171875,y_center:.765625},{w:1,h:1,x_center:.203125,y_center:.765625},{w:1,h:1,x_center:.203125,y_center:.765625},{w:1,h:1,x_center:.234375,y_center:.765625},{w:1,h:1,x_center:.234375,y_center:.765625},{w:1,h:1,x_center:.265625,y_center:.765625},{w:1,h:1,x_center:.265625,y_center:.765625},{w:1,h:1,x_center:.296875,y_center:.765625},{w:1,h:1,x_center:.296875,y_center:.765625},{w:1,h:1,x_center:.328125,y_center:.765625},{w:1,h:1,x_center:.328125,y_center:.765625},{w:1,h:1,x_center:.359375,y_center:.765625},{w:1,h:1,x_center:.359375,y_center:.765625},{w:1,h:1,x_center:.390625,y_center:.765625},{w:1,h:1,x_center:.390625,y_center:.765625},{w:1,h:1,x_center:.421875,y_center:.765625},{w:1,h:1,x_center:.421875,y_center:.765625},{w:1,h:1,x_center:.453125,y_center:.765625},{w:1,h:1,x_center:.453125,y_center:.765625},{w:1,h:1,x_center:.484375,y_center:.765625},{w:1,h:1,x_center:.484375,y_center:.765625},{w:1,h:1,x_center:.515625,y_center:.765625},{w:1,h:1,x_center:.515625,y_center:.765625},{w:1,h:1,x_center:.546875,y_center:.765625},{w:1,h:1,x_center:.546875,y_center:.765625},{w:1,h:1,x_center:.578125,y_center:.765625},{w:1,h:1,x_center:.578125,y_center:.765625},{w:1,h:1,x_center:.609375,y_center:.765625},{w:1,h:1,x_center:.609375,y_center:.765625},{w:1,h:1,x_center:.640625,y_center:.765625},{w:1,h:1,x_center:.640625,y_center:.765625},{w:1,h:1,x_center:.671875,y_center:.765625},{w:1,h:1,x_center:.671875,y_center:.765625},{w:1,h:1,x_center:.703125,y_center:.765625},{w:1,h:1,x_center:.703125,y_center:.765625},{w:1,h:1,x_center:.734375,y_center:.765625},{w:1,h:1,x_center:.734375,y_center:.765625},{w:1,h:1,x_center:.765625,y_center:.765625},{w:1,h:1,x_center:.765625,y_center:.765625},{w:1,h:1,x_center:.796875,y_center:.765625},{w:1,h:1,x_center:.796875,y_center:.765625},{w:1,h:1,x_center:.828125,y_center:.765625},{w:1,h:1,x_center:.828125,y_center:.765625},{w:1,h:1,x_center:.859375,y_center:.765625},{w:1,h:1,x_center:.859375,y_center:.765625},{w:1,h:1,x_center:.890625,y_center:.765625},{w:1,h:1,x_center:.890625,y_center:.765625},{w:1,h:1,x_center:.921875,y_center:.765625},{w:1,h:1,x_center:.921875,y_center:.765625},{w:1,h:1,x_center:.953125,y_center:.765625},{w:1,h:1,x_center:.953125,y_center:.765625},{w:1,h:1,x_center:.984375,y_center:.765625},{w:1,h:1,x_center:.984375,y_center:.765625},{w:1,h:1,x_center:.015625,y_center:.796875},{w:1,h:1,x_center:.015625,y_center:.796875},{w:1,h:1,x_center:.046875,y_center:.796875},{w:1,h:1,x_center:.046875,y_center:.796875},{w:1,h:1,x_center:.078125,y_center:.796875},{w:1,h:1,x_center:.078125,y_center:.796875},{w:1,h:1,x_center:.109375,y_center:.796875},{w:1,h:1,x_center:.109375,y_center:.796875},{w:1,h:1,x_center:.140625,y_center:.796875},{w:1,h:1,x_center:.140625,y_center:.796875},{w:1,h:1,x_center:.171875,y_center:.796875},{w:1,h:1,x_center:.171875,y_center:.796875},{w:1,h:1,x_center:.203125,y_center:.796875},{w:1,h:1,x_center:.203125,y_center:.796875},{w:1,h:1,x_center:.234375,y_center:.796875},{w:1,h:1,x_center:.234375,y_center:.796875},{w:1,h:1,x_center:.265625,y_center:.796875},{w:1,h:1,x_center:.265625,y_center:.796875},{w:1,h:1,x_center:.296875,y_center:.796875},{w:1,h:1,x_center:.296875,y_center:.796875},{w:1,h:1,x_center:.328125,y_center:.796875},{w:1,h:1,x_center:.328125,y_center:.796875},{w:1,h:1,x_center:.359375,y_center:.796875},{w:1,h:1,x_center:.359375,y_center:.796875},{w:1,h:1,x_center:.390625,y_center:.796875},{w:1,h:1,x_center:.390625,y_center:.796875},{w:1,h:1,x_center:.421875,y_center:.796875},{w:1,h:1,x_center:.421875,y_center:.796875},{w:1,h:1,x_center:.453125,y_center:.796875},{w:1,h:1,x_center:.453125,y_center:.796875},{w:1,h:1,x_center:.484375,y_center:.796875},{w:1,h:1,x_center:.484375,y_center:.796875},{w:1,h:1,x_center:.515625,y_center:.796875},{w:1,h:1,x_center:.515625,y_center:.796875},{w:1,h:1,x_center:.546875,y_center:.796875},{w:1,h:1,x_center:.546875,y_center:.796875},{w:1,h:1,x_center:.578125,y_center:.796875},{w:1,h:1,x_center:.578125,y_center:.796875},{w:1,h:1,x_center:.609375,y_center:.796875},{w:1,h:1,x_center:.609375,y_center:.796875},{w:1,h:1,x_center:.640625,y_center:.796875},{w:1,h:1,x_center:.640625,y_center:.796875},{w:1,h:1,x_center:.671875,y_center:.796875},{w:1,h:1,x_center:.671875,y_center:.796875},{w:1,h:1,x_center:.703125,y_center:.796875},{w:1,h:1,x_center:.703125,y_center:.796875},{w:1,h:1,x_center:.734375,y_center:.796875},{w:1,h:1,x_center:.734375,y_center:.796875},{w:1,h:1,x_center:.765625,y_center:.796875},{w:1,h:1,x_center:.765625,y_center:.796875},{w:1,h:1,x_center:.796875,y_center:.796875},{w:1,h:1,x_center:.796875,y_center:.796875},{w:1,h:1,x_center:.828125,y_center:.796875},{w:1,h:1,x_center:.828125,y_center:.796875},{w:1,h:1,x_center:.859375,y_center:.796875},{w:1,h:1,x_center:.859375,y_center:.796875},{w:1,h:1,x_center:.890625,y_center:.796875},{w:1,h:1,x_center:.890625,y_center:.796875},{w:1,h:1,x_center:.921875,y_center:.796875},{w:1,h:1,x_center:.921875,y_center:.796875},{w:1,h:1,x_center:.953125,y_center:.796875},{w:1,h:1,x_center:.953125,y_center:.796875},{w:1,h:1,x_center:.984375,y_center:.796875},{w:1,h:1,x_center:.984375,y_center:.796875},{w:1,h:1,x_center:.015625,y_center:.828125},{w:1,h:1,x_center:.015625,y_center:.828125},{w:1,h:1,x_center:.046875,y_center:.828125},{w:1,h:1,x_center:.046875,y_center:.828125},{w:1,h:1,x_center:.078125,y_center:.828125},{w:1,h:1,x_center:.078125,y_center:.828125},{w:1,h:1,x_center:.109375,y_center:.828125},{w:1,h:1,x_center:.109375,y_center:.828125},{w:1,h:1,x_center:.140625,y_center:.828125},{w:1,h:1,x_center:.140625,y_center:.828125},{w:1,h:1,x_center:.171875,y_center:.828125},{w:1,h:1,x_center:.171875,y_center:.828125},{w:1,h:1,x_center:.203125,y_center:.828125},{w:1,h:1,x_center:.203125,y_center:.828125},{w:1,h:1,x_center:.234375,y_center:.828125},{w:1,h:1,x_center:.234375,y_center:.828125},{w:1,h:1,x_center:.265625,y_center:.828125},{w:1,h:1,x_center:.265625,y_center:.828125},{w:1,h:1,x_center:.296875,y_center:.828125},{w:1,h:1,x_center:.296875,y_center:.828125},{w:1,h:1,x_center:.328125,y_center:.828125},{w:1,h:1,x_center:.328125,y_center:.828125},{w:1,h:1,x_center:.359375,y_center:.828125},{w:1,h:1,x_center:.359375,y_center:.828125},{w:1,h:1,x_center:.390625,y_center:.828125},{w:1,h:1,x_center:.390625,y_center:.828125},{w:1,h:1,x_center:.421875,y_center:.828125},{w:1,h:1,x_center:.421875,y_center:.828125},{w:1,h:1,x_center:.453125,y_center:.828125},{w:1,h:1,x_center:.453125,y_center:.828125},{w:1,h:1,x_center:.484375,y_center:.828125},{w:1,h:1,x_center:.484375,y_center:.828125},{w:1,h:1,x_center:.515625,y_center:.828125},{w:1,h:1,x_center:.515625,y_center:.828125},{w:1,h:1,x_center:.546875,y_center:.828125},{w:1,h:1,x_center:.546875,y_center:.828125},{w:1,h:1,x_center:.578125,y_center:.828125},{w:1,h:1,x_center:.578125,y_center:.828125},{w:1,h:1,x_center:.609375,y_center:.828125},{w:1,h:1,x_center:.609375,y_center:.828125},{w:1,h:1,x_center:.640625,y_center:.828125},{w:1,h:1,x_center:.640625,y_center:.828125},{w:1,h:1,x_center:.671875,y_center:.828125},{w:1,h:1,x_center:.671875,y_center:.828125},{w:1,h:1,x_center:.703125,y_center:.828125},{w:1,h:1,x_center:.703125,y_center:.828125},{w:1,h:1,x_center:.734375,y_center:.828125},{w:1,h:1,x_center:.734375,y_center:.828125},{w:1,h:1,x_center:.765625,y_center:.828125},{w:1,h:1,x_center:.765625,y_center:.828125},{w:1,h:1,x_center:.796875,y_center:.828125},{w:1,h:1,x_center:.796875,y_center:.828125},{w:1,h:1,x_center:.828125,y_center:.828125},{w:1,h:1,x_center:.828125,y_center:.828125},{w:1,h:1,x_center:.859375,y_center:.828125},{w:1,h:1,x_center:.859375,y_center:.828125},{w:1,h:1,x_center:.890625,y_center:.828125},{w:1,h:1,x_center:.890625,y_center:.828125},{w:1,h:1,x_center:.921875,y_center:.828125},{w:1,h:1,x_center:.921875,y_center:.828125},{w:1,h:1,x_center:.953125,y_center:.828125},{w:1,h:1,x_center:.953125,y_center:.828125},{w:1,h:1,x_center:.984375,y_center:.828125},{w:1,h:1,x_center:.984375,y_center:.828125},{w:1,h:1,x_center:.015625,y_center:.859375},{w:1,h:1,x_center:.015625,y_center:.859375},{w:1,h:1,x_center:.046875,y_center:.859375},{w:1,h:1,x_center:.046875,y_center:.859375},{w:1,h:1,x_center:.078125,y_center:.859375},{w:1,h:1,x_center:.078125,y_center:.859375},{w:1,h:1,x_center:.109375,y_center:.859375},{w:1,h:1,x_center:.109375,y_center:.859375},{w:1,h:1,x_center:.140625,y_center:.859375},{w:1,h:1,x_center:.140625,y_center:.859375},{w:1,h:1,x_center:.171875,y_center:.859375},{w:1,h:1,x_center:.171875,y_center:.859375},{w:1,h:1,x_center:.203125,y_center:.859375},{w:1,h:1,x_center:.203125,y_center:.859375},{w:1,h:1,x_center:.234375,y_center:.859375},{w:1,h:1,x_center:.234375,y_center:.859375},{w:1,h:1,x_center:.265625,y_center:.859375},{w:1,h:1,x_center:.265625,y_center:.859375},{w:1,h:1,x_center:.296875,y_center:.859375},{w:1,h:1,x_center:.296875,y_center:.859375},{w:1,h:1,x_center:.328125,y_center:.859375},{w:1,h:1,x_center:.328125,y_center:.859375},{w:1,h:1,x_center:.359375,y_center:.859375},{w:1,h:1,x_center:.359375,y_center:.859375},{w:1,h:1,x_center:.390625,y_center:.859375},{w:1,h:1,x_center:.390625,y_center:.859375},{w:1,h:1,x_center:.421875,y_center:.859375},{w:1,h:1,x_center:.421875,y_center:.859375},{w:1,h:1,x_center:.453125,y_center:.859375},{w:1,h:1,x_center:.453125,y_center:.859375},{w:1,h:1,x_center:.484375,y_center:.859375},{w:1,h:1,x_center:.484375,y_center:.859375},{w:1,h:1,x_center:.515625,y_center:.859375},{w:1,h:1,x_center:.515625,y_center:.859375},{w:1,h:1,x_center:.546875,y_center:.859375},{w:1,h:1,x_center:.546875,y_center:.859375},{w:1,h:1,x_center:.578125,y_center:.859375},{w:1,h:1,x_center:.578125,y_center:.859375},{w:1,h:1,x_center:.609375,y_center:.859375},{w:1,h:1,x_center:.609375,y_center:.859375},{w:1,h:1,x_center:.640625,y_center:.859375},{w:1,h:1,x_center:.640625,y_center:.859375},{w:1,h:1,x_center:.671875,y_center:.859375},{w:1,h:1,x_center:.671875,y_center:.859375},{w:1,h:1,x_center:.703125,y_center:.859375},{w:1,h:1,x_center:.703125,y_center:.859375},{w:1,h:1,x_center:.734375,y_center:.859375},{w:1,h:1,x_center:.734375,y_center:.859375},{w:1,h:1,x_center:.765625,y_center:.859375},{w:1,h:1,x_center:.765625,y_center:.859375},{w:1,h:1,x_center:.796875,y_center:.859375},{w:1,h:1,x_center:.796875,y_center:.859375},{w:1,h:1,x_center:.828125,y_center:.859375},{w:1,h:1,x_center:.828125,y_center:.859375},{w:1,h:1,x_center:.859375,y_center:.859375},{w:1,h:1,x_center:.859375,y_center:.859375},{w:1,h:1,x_center:.890625,y_center:.859375},{w:1,h:1,x_center:.890625,y_center:.859375},{w:1,h:1,x_center:.921875,y_center:.859375},{w:1,h:1,x_center:.921875,y_center:.859375},{w:1,h:1,x_center:.953125,y_center:.859375},{w:1,h:1,x_center:.953125,y_center:.859375},{w:1,h:1,x_center:.984375,y_center:.859375},{w:1,h:1,x_center:.984375,y_center:.859375},{w:1,h:1,x_center:.015625,y_center:.890625},{w:1,h:1,x_center:.015625,y_center:.890625},{w:1,h:1,x_center:.046875,y_center:.890625},{w:1,h:1,x_center:.046875,y_center:.890625},{w:1,h:1,x_center:.078125,y_center:.890625},{w:1,h:1,x_center:.078125,y_center:.890625},{w:1,h:1,x_center:.109375,y_center:.890625},{w:1,h:1,x_center:.109375,y_center:.890625},{w:1,h:1,x_center:.140625,y_center:.890625},{w:1,h:1,x_center:.140625,y_center:.890625},{w:1,h:1,x_center:.171875,y_center:.890625},{w:1,h:1,x_center:.171875,y_center:.890625},{w:1,h:1,x_center:.203125,y_center:.890625},{w:1,h:1,x_center:.203125,y_center:.890625},{w:1,h:1,x_center:.234375,y_center:.890625},{w:1,h:1,x_center:.234375,y_center:.890625},{w:1,h:1,x_center:.265625,y_center:.890625},{w:1,h:1,x_center:.265625,y_center:.890625},{w:1,h:1,x_center:.296875,y_center:.890625},{w:1,h:1,x_center:.296875,y_center:.890625},{w:1,h:1,x_center:.328125,y_center:.890625},{w:1,h:1,x_center:.328125,y_center:.890625},{w:1,h:1,x_center:.359375,y_center:.890625},{w:1,h:1,x_center:.359375,y_center:.890625},{w:1,h:1,x_center:.390625,y_center:.890625},{w:1,h:1,x_center:.390625,y_center:.890625},{w:1,h:1,x_center:.421875,y_center:.890625},{w:1,h:1,x_center:.421875,y_center:.890625},{w:1,h:1,x_center:.453125,y_center:.890625},{w:1,h:1,x_center:.453125,y_center:.890625},{w:1,h:1,x_center:.484375,y_center:.890625},{w:1,h:1,x_center:.484375,y_center:.890625},{w:1,h:1,x_center:.515625,y_center:.890625},{w:1,h:1,x_center:.515625,y_center:.890625},{w:1,h:1,x_center:.546875,y_center:.890625},{w:1,h:1,x_center:.546875,y_center:.890625},{w:1,h:1,x_center:.578125,y_center:.890625},{w:1,h:1,x_center:.578125,y_center:.890625},{w:1,h:1,x_center:.609375,y_center:.890625},{w:1,h:1,x_center:.609375,y_center:.890625},{w:1,h:1,x_center:.640625,y_center:.890625},{w:1,h:1,x_center:.640625,y_center:.890625},{w:1,h:1,x_center:.671875,y_center:.890625},{w:1,h:1,x_center:.671875,y_center:.890625},{w:1,h:1,x_center:.703125,y_center:.890625},{w:1,h:1,x_center:.703125,y_center:.890625},{w:1,h:1,x_center:.734375,y_center:.890625},{w:1,h:1,x_center:.734375,y_center:.890625},{w:1,h:1,x_center:.765625,y_center:.890625},{w:1,h:1,x_center:.765625,y_center:.890625},{w:1,h:1,x_center:.796875,y_center:.890625},{w:1,h:1,x_center:.796875,y_center:.890625},{w:1,h:1,x_center:.828125,y_center:.890625},{w:1,h:1,x_center:.828125,y_center:.890625},{w:1,h:1,x_center:.859375,y_center:.890625},{w:1,h:1,x_center:.859375,y_center:.890625},{w:1,h:1,x_center:.890625,y_center:.890625},{w:1,h:1,x_center:.890625,y_center:.890625},{w:1,h:1,x_center:.921875,y_center:.890625},{w:1,h:1,x_center:.921875,y_center:.890625},{w:1,h:1,x_center:.953125,y_center:.890625},{w:1,h:1,x_center:.953125,y_center:.890625},{w:1,h:1,x_center:.984375,y_center:.890625},{w:1,h:1,x_center:.984375,y_center:.890625},{w:1,h:1,x_center:.015625,y_center:.921875},{w:1,h:1,x_center:.015625,y_center:.921875},{w:1,h:1,x_center:.046875,y_center:.921875},{w:1,h:1,x_center:.046875,y_center:.921875},{w:1,h:1,x_center:.078125,y_center:.921875},{w:1,h:1,x_center:.078125,y_center:.921875},{w:1,h:1,x_center:.109375,y_center:.921875},{w:1,h:1,x_center:.109375,y_center:.921875},{w:1,h:1,x_center:.140625,y_center:.921875},{w:1,h:1,x_center:.140625,y_center:.921875},{w:1,h:1,x_center:.171875,y_center:.921875},{w:1,h:1,x_center:.171875,y_center:.921875},{w:1,h:1,x_center:.203125,y_center:.921875},{w:1,h:1,x_center:.203125,y_center:.921875},{w:1,h:1,x_center:.234375,y_center:.921875},{w:1,h:1,x_center:.234375,y_center:.921875},{w:1,h:1,x_center:.265625,y_center:.921875},{w:1,h:1,x_center:.265625,y_center:.921875},{w:1,h:1,x_center:.296875,y_center:.921875},{w:1,h:1,x_center:.296875,y_center:.921875},{w:1,h:1,x_center:.328125,y_center:.921875},{w:1,h:1,x_center:.328125,y_center:.921875},{w:1,h:1,x_center:.359375,y_center:.921875},{w:1,h:1,x_center:.359375,y_center:.921875},{w:1,h:1,x_center:.390625,y_center:.921875},{w:1,h:1,x_center:.390625,y_center:.921875},{w:1,h:1,x_center:.421875,y_center:.921875},{w:1,h:1,x_center:.421875,y_center:.921875},{w:1,h:1,x_center:.453125,y_center:.921875},{w:1,h:1,x_center:.453125,y_center:.921875},{w:1,h:1,x_center:.484375,y_center:.921875},{w:1,h:1,x_center:.484375,y_center:.921875},{w:1,h:1,x_center:.515625,y_center:.921875},{w:1,h:1,x_center:.515625,y_center:.921875},{w:1,h:1,x_center:.546875,y_center:.921875},{w:1,h:1,x_center:.546875,y_center:.921875},{w:1,h:1,x_center:.578125,y_center:.921875},{w:1,h:1,x_center:.578125,y_center:.921875},{w:1,h:1,x_center:.609375,y_center:.921875},{w:1,h:1,x_center:.609375,y_center:.921875},{w:1,h:1,x_center:.640625,y_center:.921875},{w:1,h:1,x_center:.640625,y_center:.921875},{w:1,h:1,x_center:.671875,y_center:.921875},{w:1,h:1,x_center:.671875,y_center:.921875},{w:1,h:1,x_center:.703125,y_center:.921875},{w:1,h:1,x_center:.703125,y_center:.921875},{w:1,h:1,x_center:.734375,y_center:.921875},{w:1,h:1,x_center:.734375,y_center:.921875},{w:1,h:1,x_center:.765625,y_center:.921875},{w:1,h:1,x_center:.765625,y_center:.921875},{w:1,h:1,x_center:.796875,y_center:.921875},{w:1,h:1,x_center:.796875,y_center:.921875},{w:1,h:1,x_center:.828125,y_center:.921875},{w:1,h:1,x_center:.828125,y_center:.921875},{w:1,h:1,x_center:.859375,y_center:.921875},{w:1,h:1,x_center:.859375,y_center:.921875},{w:1,h:1,x_center:.890625,y_center:.921875},{w:1,h:1,x_center:.890625,y_center:.921875},{w:1,h:1,x_center:.921875,y_center:.921875},{w:1,h:1,x_center:.921875,y_center:.921875},{w:1,h:1,x_center:.953125,y_center:.921875},{w:1,h:1,x_center:.953125,y_center:.921875},{w:1,h:1,x_center:.984375,y_center:.921875},{w:1,h:1,x_center:.984375,y_center:.921875},{w:1,h:1,x_center:.015625,y_center:.953125},{w:1,h:1,x_center:.015625,y_center:.953125},{w:1,h:1,x_center:.046875,y_center:.953125},{w:1,h:1,x_center:.046875,y_center:.953125},{w:1,h:1,x_center:.078125,y_center:.953125},{w:1,h:1,x_center:.078125,y_center:.953125},{w:1,h:1,x_center:.109375,y_center:.953125},{w:1,h:1,x_center:.109375,y_center:.953125},{w:1,h:1,x_center:.140625,y_center:.953125},{w:1,h:1,x_center:.140625,y_center:.953125},{w:1,h:1,x_center:.171875,y_center:.953125},{w:1,h:1,x_center:.171875,y_center:.953125},{w:1,h:1,x_center:.203125,y_center:.953125},{w:1,h:1,x_center:.203125,y_center:.953125},{w:1,h:1,x_center:.234375,y_center:.953125},{w:1,h:1,x_center:.234375,y_center:.953125},{w:1,h:1,x_center:.265625,y_center:.953125},{w:1,h:1,x_center:.265625,y_center:.953125},{w:1,h:1,x_center:.296875,y_center:.953125},{w:1,h:1,x_center:.296875,y_center:.953125},{w:1,h:1,x_center:.328125,y_center:.953125},{w:1,h:1,x_center:.328125,y_center:.953125},{w:1,h:1,x_center:.359375,y_center:.953125},{w:1,h:1,x_center:.359375,y_center:.953125},{w:1,h:1,x_center:.390625,y_center:.953125},{w:1,h:1,x_center:.390625,y_center:.953125},{w:1,h:1,x_center:.421875,y_center:.953125},{w:1,h:1,x_center:.421875,y_center:.953125},{w:1,h:1,x_center:.453125,y_center:.953125},{w:1,h:1,x_center:.453125,y_center:.953125},{w:1,h:1,x_center:.484375,y_center:.953125},{w:1,h:1,x_center:.484375,y_center:.953125},{w:1,h:1,x_center:.515625,y_center:.953125},{w:1,h:1,x_center:.515625,y_center:.953125},{w:1,h:1,x_center:.546875,y_center:.953125},{w:1,h:1,x_center:.546875,y_center:.953125},{w:1,h:1,x_center:.578125,y_center:.953125},{w:1,h:1,x_center:.578125,y_center:.953125},{w:1,h:1,x_center:.609375,y_center:.953125},{w:1,h:1,x_center:.609375,y_center:.953125},{w:1,h:1,x_center:.640625,y_center:.953125},{w:1,h:1,x_center:.640625,y_center:.953125},{w:1,h:1,x_center:.671875,y_center:.953125},{w:1,h:1,x_center:.671875,y_center:.953125},{w:1,h:1,x_center:.703125,y_center:.953125},{w:1,h:1,x_center:.703125,y_center:.953125},{w:1,h:1,x_center:.734375,y_center:.953125},{w:1,h:1,x_center:.734375,y_center:.953125},{w:1,h:1,x_center:.765625,y_center:.953125},{w:1,h:1,x_center:.765625,y_center:.953125},{w:1,h:1,x_center:.796875,y_center:.953125},{w:1,h:1,x_center:.796875,y_center:.953125},{w:1,h:1,x_center:.828125,y_center:.953125},{w:1,h:1,x_center:.828125,y_center:.953125},{w:1,h:1,x_center:.859375,y_center:.953125},{w:1,h:1,x_center:.859375,y_center:.953125},{w:1,h:1,x_center:.890625,y_center:.953125},{w:1,h:1,x_center:.890625,y_center:.953125},{w:1,h:1,x_center:.921875,y_center:.953125},{w:1,h:1,x_center:.921875,y_center:.953125},{w:1,h:1,x_center:.953125,y_center:.953125},{w:1,h:1,x_center:.953125,y_center:.953125},{w:1,h:1,x_center:.984375,y_center:.953125},{w:1,h:1,x_center:.984375,y_center:.953125},{w:1,h:1,x_center:.015625,y_center:.984375},{w:1,h:1,x_center:.015625,y_center:.984375},{w:1,h:1,x_center:.046875,y_center:.984375},{w:1,h:1,x_center:.046875,y_center:.984375},{w:1,h:1,x_center:.078125,y_center:.984375},{w:1,h:1,x_center:.078125,y_center:.984375},{w:1,h:1,x_center:.109375,y_center:.984375},{w:1,h:1,x_center:.109375,y_center:.984375},{w:1,h:1,x_center:.140625,y_center:.984375},{w:1,h:1,x_center:.140625,y_center:.984375},{w:1,h:1,x_center:.171875,y_center:.984375},{w:1,h:1,x_center:.171875,y_center:.984375},{w:1,h:1,x_center:.203125,y_center:.984375},{w:1,h:1,x_center:.203125,y_center:.984375},{w:1,h:1,x_center:.234375,y_center:.984375},{w:1,h:1,x_center:.234375,y_center:.984375},{w:1,h:1,x_center:.265625,y_center:.984375},{w:1,h:1,x_center:.265625,y_center:.984375},{w:1,h:1,x_center:.296875,y_center:.984375},{w:1,h:1,x_center:.296875,y_center:.984375},{w:1,h:1,x_center:.328125,y_center:.984375},{w:1,h:1,x_center:.328125,y_center:.984375},{w:1,h:1,x_center:.359375,y_center:.984375},{w:1,h:1,x_center:.359375,y_center:.984375},{w:1,h:1,x_center:.390625,y_center:.984375},{w:1,h:1,x_center:.390625,y_center:.984375},{w:1,h:1,x_center:.421875,y_center:.984375},{w:1,h:1,x_center:.421875,y_center:.984375},{w:1,h:1,x_center:.453125,y_center:.984375},{w:1,h:1,x_center:.453125,y_center:.984375},{w:1,h:1,x_center:.484375,y_center:.984375},{w:1,h:1,x_center:.484375,y_center:.984375},{w:1,h:1,x_center:.515625,y_center:.984375},{w:1,h:1,x_center:.515625,y_center:.984375},{w:1,h:1,x_center:.546875,y_center:.984375},{w:1,h:1,x_center:.546875,y_center:.984375},{w:1,h:1,x_center:.578125,y_center:.984375},{w:1,h:1,x_center:.578125,y_center:.984375},{w:1,h:1,x_center:.609375,y_center:.984375},{w:1,h:1,x_center:.609375,y_center:.984375},{w:1,h:1,x_center:.640625,y_center:.984375},{w:1,h:1,x_center:.640625,y_center:.984375},{w:1,h:1,x_center:.671875,y_center:.984375},{w:1,h:1,x_center:.671875,y_center:.984375},{w:1,h:1,x_center:.703125,y_center:.984375},{w:1,h:1,x_center:.703125,y_center:.984375},{w:1,h:1,x_center:.734375,y_center:.984375},{w:1,h:1,x_center:.734375,y_center:.984375},{w:1,h:1,x_center:.765625,y_center:.984375},{w:1,h:1,x_center:.765625,y_center:.984375},{w:1,h:1,x_center:.796875,y_center:.984375},{w:1,h:1,x_center:.796875,y_center:.984375},{w:1,h:1,x_center:.828125,y_center:.984375},{w:1,h:1,x_center:.828125,y_center:.984375},{w:1,h:1,x_center:.859375,y_center:.984375},{w:1,h:1,x_center:.859375,y_center:.984375},{w:1,h:1,x_center:.890625,y_center:.984375},{w:1,h:1,x_center:.890625,y_center:.984375},{w:1,h:1,x_center:.921875,y_center:.984375},{w:1,h:1,x_center:.921875,y_center:.984375},{w:1,h:1,x_center:.953125,y_center:.984375},{w:1,h:1,x_center:.953125,y_center:.984375},{w:1,h:1,x_center:.984375,y_center:.984375},{w:1,h:1,x_center:.984375,y_center:.984375},{w:1,h:1,x_center:.03125,y_center:.03125},{w:1,h:1,x_center:.03125,y_center:.03125},{w:1,h:1,x_center:.09375,y_center:.03125},{w:1,h:1,x_center:.09375,y_center:.03125},{w:1,h:1,x_center:.15625,y_center:.03125},{w:1,h:1,x_center:.15625,y_center:.03125},{w:1,h:1,x_center:.21875,y_center:.03125},{w:1,h:1,x_center:.21875,y_center:.03125},{w:1,h:1,x_center:.28125,y_center:.03125},{w:1,h:1,x_center:.28125,y_center:.03125},{w:1,h:1,x_center:.34375,y_center:.03125},{w:1,h:1,x_center:.34375,y_center:.03125},{w:1,h:1,x_center:.40625,y_center:.03125},{w:1,h:1,x_center:.40625,y_center:.03125},{w:1,h:1,x_center:.46875,y_center:.03125},{w:1,h:1,x_center:.46875,y_center:.03125},{w:1,h:1,x_center:.53125,y_center:.03125},{w:1,h:1,x_center:.53125,y_center:.03125},{w:1,h:1,x_center:.59375,y_center:.03125},{w:1,h:1,x_center:.59375,y_center:.03125},{w:1,h:1,x_center:.65625,y_center:.03125},{w:1,h:1,x_center:.65625,y_center:.03125},{w:1,h:1,x_center:.71875,y_center:.03125},{w:1,h:1,x_center:.71875,y_center:.03125},{w:1,h:1,x_center:.78125,y_center:.03125},{w:1,h:1,x_center:.78125,y_center:.03125},{w:1,h:1,x_center:.84375,y_center:.03125},{w:1,h:1,x_center:.84375,y_center:.03125},{w:1,h:1,x_center:.90625,y_center:.03125},{w:1,h:1,x_center:.90625,y_center:.03125},{w:1,h:1,x_center:.96875,y_center:.03125},{w:1,h:1,x_center:.96875,y_center:.03125},{w:1,h:1,x_center:.03125,y_center:.09375},{w:1,h:1,x_center:.03125,y_center:.09375},{w:1,h:1,x_center:.09375,y_center:.09375},{w:1,h:1,x_center:.09375,y_center:.09375},{w:1,h:1,x_center:.15625,y_center:.09375},{w:1,h:1,x_center:.15625,y_center:.09375},{w:1,h:1,x_center:.21875,y_center:.09375},{w:1,h:1,x_center:.21875,y_center:.09375},{w:1,h:1,x_center:.28125,y_center:.09375},{w:1,h:1,x_center:.28125,y_center:.09375},{w:1,h:1,x_center:.34375,y_center:.09375},{w:1,h:1,x_center:.34375,y_center:.09375},{w:1,h:1,x_center:.40625,y_center:.09375},{w:1,h:1,x_center:.40625,y_center:.09375},{w:1,h:1,x_center:.46875,y_center:.09375},{w:1,h:1,x_center:.46875,y_center:.09375},{w:1,h:1,x_center:.53125,y_center:.09375},{w:1,h:1,x_center:.53125,y_center:.09375},{w:1,h:1,x_center:.59375,y_center:.09375},{w:1,h:1,x_center:.59375,y_center:.09375},{w:1,h:1,x_center:.65625,y_center:.09375},{w:1,h:1,x_center:.65625,y_center:.09375},{w:1,h:1,x_center:.71875,y_center:.09375},{w:1,h:1,x_center:.71875,y_center:.09375},{w:1,h:1,x_center:.78125,y_center:.09375},{w:1,h:1,x_center:.78125,y_center:.09375},{w:1,h:1,x_center:.84375,y_center:.09375},{w:1,h:1,x_center:.84375,y_center:.09375},{w:1,h:1,x_center:.90625,y_center:.09375},{w:1,h:1,x_center:.90625,y_center:.09375},{w:1,h:1,x_center:.96875,y_center:.09375},{w:1,h:1,x_center:.96875,y_center:.09375},{w:1,h:1,x_center:.03125,y_center:.15625},{w:1,h:1,x_center:.03125,y_center:.15625},{w:1,h:1,x_center:.09375,y_center:.15625},{w:1,h:1,x_center:.09375,y_center:.15625},{w:1,h:1,x_center:.15625,y_center:.15625},{w:1,h:1,x_center:.15625,y_center:.15625},{w:1,h:1,x_center:.21875,y_center:.15625},{w:1,h:1,x_center:.21875,y_center:.15625},{w:1,h:1,x_center:.28125,y_center:.15625},{w:1,h:1,x_center:.28125,y_center:.15625},{w:1,h:1,x_center:.34375,y_center:.15625},{w:1,h:1,x_center:.34375,y_center:.15625},{w:1,h:1,x_center:.40625,y_center:.15625},{w:1,h:1,x_center:.40625,y_center:.15625},{w:1,h:1,x_center:.46875,y_center:.15625},{w:1,h:1,x_center:.46875,y_center:.15625},{w:1,h:1,x_center:.53125,y_center:.15625},{w:1,h:1,x_center:.53125,y_center:.15625},{w:1,h:1,x_center:.59375,y_center:.15625},{w:1,h:1,x_center:.59375,y_center:.15625},{w:1,h:1,x_center:.65625,y_center:.15625},{w:1,h:1,x_center:.65625,y_center:.15625},{w:1,h:1,x_center:.71875,y_center:.15625},{w:1,h:1,x_center:.71875,y_center:.15625},{w:1,h:1,x_center:.78125,y_center:.15625},{w:1,h:1,x_center:.78125,y_center:.15625},{w:1,h:1,x_center:.84375,y_center:.15625},{w:1,h:1,x_center:.84375,y_center:.15625},{w:1,h:1,x_center:.90625,y_center:.15625},{w:1,h:1,x_center:.90625,y_center:.15625},{w:1,h:1,x_center:.96875,y_center:.15625},{w:1,h:1,x_center:.96875,y_center:.15625},{w:1,h:1,x_center:.03125,y_center:.21875},{w:1,h:1,x_center:.03125,y_center:.21875},{w:1,h:1,x_center:.09375,y_center:.21875},{w:1,h:1,x_center:.09375,y_center:.21875},{w:1,h:1,x_center:.15625,y_center:.21875},{w:1,h:1,x_center:.15625,y_center:.21875},{w:1,h:1,x_center:.21875,y_center:.21875},{w:1,h:1,x_center:.21875,y_center:.21875},{w:1,h:1,x_center:.28125,y_center:.21875},{w:1,h:1,x_center:.28125,y_center:.21875},{w:1,h:1,x_center:.34375,y_center:.21875},{w:1,h:1,x_center:.34375,y_center:.21875},{w:1,h:1,x_center:.40625,y_center:.21875},{w:1,h:1,x_center:.40625,y_center:.21875},{w:1,h:1,x_center:.46875,y_center:.21875},{w:1,h:1,x_center:.46875,y_center:.21875},{w:1,h:1,x_center:.53125,y_center:.21875},{w:1,h:1,x_center:.53125,y_center:.21875},{w:1,h:1,x_center:.59375,y_center:.21875},{w:1,h:1,x_center:.59375,y_center:.21875},{w:1,h:1,x_center:.65625,y_center:.21875},{w:1,h:1,x_center:.65625,y_center:.21875},{w:1,h:1,x_center:.71875,y_center:.21875},{w:1,h:1,x_center:.71875,y_center:.21875},{w:1,h:1,x_center:.78125,y_center:.21875},{w:1,h:1,x_center:.78125,y_center:.21875},{w:1,h:1,x_center:.84375,y_center:.21875},{w:1,h:1,x_center:.84375,y_center:.21875},{w:1,h:1,x_center:.90625,y_center:.21875},{w:1,h:1,x_center:.90625,y_center:.21875},{w:1,h:1,x_center:.96875,y_center:.21875},{w:1,h:1,x_center:.96875,y_center:.21875},{w:1,h:1,x_center:.03125,y_center:.28125},{w:1,h:1,x_center:.03125,y_center:.28125},{w:1,h:1,x_center:.09375,y_center:.28125},{w:1,h:1,x_center:.09375,y_center:.28125},{w:1,h:1,x_center:.15625,y_center:.28125},{w:1,h:1,x_center:.15625,y_center:.28125},{w:1,h:1,x_center:.21875,y_center:.28125},{w:1,h:1,x_center:.21875,y_center:.28125},{w:1,h:1,x_center:.28125,y_center:.28125},{w:1,h:1,x_center:.28125,y_center:.28125},{w:1,h:1,x_center:.34375,y_center:.28125},{w:1,h:1,x_center:.34375,y_center:.28125},{w:1,h:1,x_center:.40625,y_center:.28125},{w:1,h:1,x_center:.40625,y_center:.28125},{w:1,h:1,x_center:.46875,y_center:.28125},{w:1,h:1,x_center:.46875,y_center:.28125},{w:1,h:1,x_center:.53125,y_center:.28125},{w:1,h:1,x_center:.53125,y_center:.28125},{w:1,h:1,x_center:.59375,y_center:.28125},{w:1,h:1,x_center:.59375,y_center:.28125},{w:1,h:1,x_center:.65625,y_center:.28125},{w:1,h:1,x_center:.65625,y_center:.28125},{w:1,h:1,x_center:.71875,y_center:.28125},{w:1,h:1,x_center:.71875,y_center:.28125},{w:1,h:1,x_center:.78125,y_center:.28125},{w:1,h:1,x_center:.78125,y_center:.28125},{w:1,h:1,x_center:.84375,y_center:.28125},{w:1,h:1,x_center:.84375,y_center:.28125},{w:1,h:1,x_center:.90625,y_center:.28125},{w:1,h:1,x_center:.90625,y_center:.28125},{w:1,h:1,x_center:.96875,y_center:.28125},{w:1,h:1,x_center:.96875,y_center:.28125},{w:1,h:1,x_center:.03125,y_center:.34375},{w:1,h:1,x_center:.03125,y_center:.34375},{w:1,h:1,x_center:.09375,y_center:.34375},{w:1,h:1,x_center:.09375,y_center:.34375},{w:1,h:1,x_center:.15625,y_center:.34375},{w:1,h:1,x_center:.15625,y_center:.34375},{w:1,h:1,x_center:.21875,y_center:.34375},{w:1,h:1,x_center:.21875,y_center:.34375},{w:1,h:1,x_center:.28125,y_center:.34375},{w:1,h:1,x_center:.28125,y_center:.34375},{w:1,h:1,x_center:.34375,y_center:.34375},{w:1,h:1,x_center:.34375,y_center:.34375},{w:1,h:1,x_center:.40625,y_center:.34375},{w:1,h:1,x_center:.40625,y_center:.34375},{w:1,h:1,x_center:.46875,y_center:.34375},{w:1,h:1,x_center:.46875,y_center:.34375},{w:1,h:1,x_center:.53125,y_center:.34375},{w:1,h:1,x_center:.53125,y_center:.34375},{w:1,h:1,x_center:.59375,y_center:.34375},{w:1,h:1,x_center:.59375,y_center:.34375},{w:1,h:1,x_center:.65625,y_center:.34375},{w:1,h:1,x_center:.65625,y_center:.34375},{w:1,h:1,x_center:.71875,y_center:.34375},{w:1,h:1,x_center:.71875,y_center:.34375},{w:1,h:1,x_center:.78125,y_center:.34375},{w:1,h:1,x_center:.78125,y_center:.34375},{w:1,h:1,x_center:.84375,y_center:.34375},{w:1,h:1,x_center:.84375,y_center:.34375},{w:1,h:1,x_center:.90625,y_center:.34375},{w:1,h:1,x_center:.90625,y_center:.34375},{w:1,h:1,x_center:.96875,y_center:.34375},{w:1,h:1,x_center:.96875,y_center:.34375},{w:1,h:1,x_center:.03125,y_center:.40625},{w:1,h:1,x_center:.03125,y_center:.40625},{w:1,h:1,x_center:.09375,y_center:.40625},{w:1,h:1,x_center:.09375,y_center:.40625},{w:1,h:1,x_center:.15625,y_center:.40625},{w:1,h:1,x_center:.15625,y_center:.40625},{w:1,h:1,x_center:.21875,y_center:.40625},{w:1,h:1,x_center:.21875,y_center:.40625},{w:1,h:1,x_center:.28125,y_center:.40625},{w:1,h:1,x_center:.28125,y_center:.40625},{w:1,h:1,x_center:.34375,y_center:.40625},{w:1,h:1,x_center:.34375,y_center:.40625},{w:1,h:1,x_center:.40625,y_center:.40625},{w:1,h:1,x_center:.40625,y_center:.40625},{w:1,h:1,x_center:.46875,y_center:.40625},{w:1,h:1,x_center:.46875,y_center:.40625},{w:1,h:1,x_center:.53125,y_center:.40625},{w:1,h:1,x_center:.53125,y_center:.40625},{w:1,h:1,x_center:.59375,y_center:.40625},{w:1,h:1,x_center:.59375,y_center:.40625},{w:1,h:1,x_center:.65625,y_center:.40625},{w:1,h:1,x_center:.65625,y_center:.40625},{w:1,h:1,x_center:.71875,y_center:.40625},{w:1,h:1,x_center:.71875,y_center:.40625},{w:1,h:1,x_center:.78125,y_center:.40625},{w:1,h:1,x_center:.78125,y_center:.40625},{w:1,h:1,x_center:.84375,y_center:.40625},{w:1,h:1,x_center:.84375,y_center:.40625},{w:1,h:1,x_center:.90625,y_center:.40625},{w:1,h:1,x_center:.90625,y_center:.40625},{w:1,h:1,x_center:.96875,y_center:.40625},{w:1,h:1,x_center:.96875,y_center:.40625},{w:1,h:1,x_center:.03125,y_center:.46875},{w:1,h:1,x_center:.03125,y_center:.46875},{w:1,h:1,x_center:.09375,y_center:.46875},{w:1,h:1,x_center:.09375,y_center:.46875},{w:1,h:1,x_center:.15625,y_center:.46875},{w:1,h:1,x_center:.15625,y_center:.46875},{w:1,h:1,x_center:.21875,y_center:.46875},{w:1,h:1,x_center:.21875,y_center:.46875},{w:1,h:1,x_center:.28125,y_center:.46875},{w:1,h:1,x_center:.28125,y_center:.46875},{w:1,h:1,x_center:.34375,y_center:.46875},{w:1,h:1,x_center:.34375,y_center:.46875},{w:1,h:1,x_center:.40625,y_center:.46875},{w:1,h:1,x_center:.40625,y_center:.46875},{w:1,h:1,x_center:.46875,y_center:.46875},{w:1,h:1,x_center:.46875,y_center:.46875},{w:1,h:1,x_center:.53125,y_center:.46875},{w:1,h:1,x_center:.53125,y_center:.46875},{w:1,h:1,x_center:.59375,y_center:.46875},{w:1,h:1,x_center:.59375,y_center:.46875},{w:1,h:1,x_center:.65625,y_center:.46875},{w:1,h:1,x_center:.65625,y_center:.46875},{w:1,h:1,x_center:.71875,y_center:.46875},{w:1,h:1,x_center:.71875,y_center:.46875},{w:1,h:1,x_center:.78125,y_center:.46875},{w:1,h:1,x_center:.78125,y_center:.46875},{w:1,h:1,x_center:.84375,y_center:.46875},{w:1,h:1,x_center:.84375,y_center:.46875},{w:1,h:1,x_center:.90625,y_center:.46875},{w:1,h:1,x_center:.90625,y_center:.46875},{w:1,h:1,x_center:.96875,y_center:.46875},{w:1,h:1,x_center:.96875,y_center:.46875},{w:1,h:1,x_center:.03125,y_center:.53125},{w:1,h:1,x_center:.03125,y_center:.53125},{w:1,h:1,x_center:.09375,y_center:.53125},{w:1,h:1,x_center:.09375,y_center:.53125},{w:1,h:1,x_center:.15625,y_center:.53125},{w:1,h:1,x_center:.15625,y_center:.53125},{w:1,h:1,x_center:.21875,y_center:.53125},{w:1,h:1,x_center:.21875,y_center:.53125},{w:1,h:1,x_center:.28125,y_center:.53125},{w:1,h:1,x_center:.28125,y_center:.53125},{w:1,h:1,x_center:.34375,y_center:.53125},{w:1,h:1,x_center:.34375,y_center:.53125},{w:1,h:1,x_center:.40625,y_center:.53125},{w:1,h:1,x_center:.40625,y_center:.53125},{w:1,h:1,x_center:.46875,y_center:.53125},{w:1,h:1,x_center:.46875,y_center:.53125},{w:1,h:1,x_center:.53125,y_center:.53125},{w:1,h:1,x_center:.53125,y_center:.53125},{w:1,h:1,x_center:.59375,y_center:.53125},{w:1,h:1,x_center:.59375,y_center:.53125},{w:1,h:1,x_center:.65625,y_center:.53125},{w:1,h:1,x_center:.65625,y_center:.53125},{w:1,h:1,x_center:.71875,y_center:.53125},{w:1,h:1,x_center:.71875,y_center:.53125},{w:1,h:1,x_center:.78125,y_center:.53125},{w:1,h:1,x_center:.78125,y_center:.53125},{w:1,h:1,x_center:.84375,y_center:.53125},{w:1,h:1,x_center:.84375,y_center:.53125},{w:1,h:1,x_center:.90625,y_center:.53125},{w:1,h:1,x_center:.90625,y_center:.53125},{w:1,h:1,x_center:.96875,y_center:.53125},{w:1,h:1,x_center:.96875,y_center:.53125},{w:1,h:1,x_center:.03125,y_center:.59375},{w:1,h:1,x_center:.03125,y_center:.59375},{w:1,h:1,x_center:.09375,y_center:.59375},{w:1,h:1,x_center:.09375,y_center:.59375},{w:1,h:1,x_center:.15625,y_center:.59375},{w:1,h:1,x_center:.15625,y_center:.59375},{w:1,h:1,x_center:.21875,y_center:.59375},{w:1,h:1,x_center:.21875,y_center:.59375},{w:1,h:1,x_center:.28125,y_center:.59375},{w:1,h:1,x_center:.28125,y_center:.59375},{w:1,h:1,x_center:.34375,y_center:.59375},{w:1,h:1,x_center:.34375,y_center:.59375},{w:1,h:1,x_center:.40625,y_center:.59375},{w:1,h:1,x_center:.40625,y_center:.59375},{w:1,h:1,x_center:.46875,y_center:.59375},{w:1,h:1,x_center:.46875,y_center:.59375},{w:1,h:1,x_center:.53125,y_center:.59375},{w:1,h:1,x_center:.53125,y_center:.59375},{w:1,h:1,x_center:.59375,y_center:.59375},{w:1,h:1,x_center:.59375,y_center:.59375},{w:1,h:1,x_center:.65625,y_center:.59375},{w:1,h:1,x_center:.65625,y_center:.59375},{w:1,h:1,x_center:.71875,y_center:.59375},{w:1,h:1,x_center:.71875,y_center:.59375},{w:1,h:1,x_center:.78125,y_center:.59375},{w:1,h:1,x_center:.78125,y_center:.59375},{w:1,h:1,x_center:.84375,y_center:.59375},{w:1,h:1,x_center:.84375,y_center:.59375},{w:1,h:1,x_center:.90625,y_center:.59375},{w:1,h:1,x_center:.90625,y_center:.59375},{w:1,h:1,x_center:.96875,y_center:.59375},{w:1,h:1,x_center:.96875,y_center:.59375},{w:1,h:1,x_center:.03125,y_center:.65625},{w:1,h:1,x_center:.03125,y_center:.65625},{w:1,h:1,x_center:.09375,y_center:.65625},{w:1,h:1,x_center:.09375,y_center:.65625},{w:1,h:1,x_center:.15625,y_center:.65625},{w:1,h:1,x_center:.15625,y_center:.65625},{w:1,h:1,x_center:.21875,y_center:.65625},{w:1,h:1,x_center:.21875,y_center:.65625},{w:1,h:1,x_center:.28125,y_center:.65625},{w:1,h:1,x_center:.28125,y_center:.65625},{w:1,h:1,x_center:.34375,y_center:.65625},{w:1,h:1,x_center:.34375,y_center:.65625},{w:1,h:1,x_center:.40625,y_center:.65625},{w:1,h:1,x_center:.40625,y_center:.65625},{w:1,h:1,x_center:.46875,y_center:.65625},{w:1,h:1,x_center:.46875,y_center:.65625},{w:1,h:1,x_center:.53125,y_center:.65625},{w:1,h:1,x_center:.53125,y_center:.65625},{w:1,h:1,x_center:.59375,y_center:.65625},{w:1,h:1,x_center:.59375,y_center:.65625},{w:1,h:1,x_center:.65625,y_center:.65625},{w:1,h:1,x_center:.65625,y_center:.65625},{w:1,h:1,x_center:.71875,y_center:.65625},{w:1,h:1,x_center:.71875,y_center:.65625},{w:1,h:1,x_center:.78125,y_center:.65625},{w:1,h:1,x_center:.78125,y_center:.65625},{w:1,h:1,x_center:.84375,y_center:.65625},{w:1,h:1,x_center:.84375,y_center:.65625},{w:1,h:1,x_center:.90625,y_center:.65625},{w:1,h:1,x_center:.90625,y_center:.65625},{w:1,h:1,x_center:.96875,y_center:.65625},{w:1,h:1,x_center:.96875,y_center:.65625},{w:1,h:1,x_center:.03125,y_center:.71875},{w:1,h:1,x_center:.03125,y_center:.71875},{w:1,h:1,x_center:.09375,y_center:.71875},{w:1,h:1,x_center:.09375,y_center:.71875},{w:1,h:1,x_center:.15625,y_center:.71875},{w:1,h:1,x_center:.15625,y_center:.71875},{w:1,h:1,x_center:.21875,y_center:.71875},{w:1,h:1,x_center:.21875,y_center:.71875},{w:1,h:1,x_center:.28125,y_center:.71875},{w:1,h:1,x_center:.28125,y_center:.71875},{w:1,h:1,x_center:.34375,y_center:.71875},{w:1,h:1,x_center:.34375,y_center:.71875},{w:1,h:1,x_center:.40625,y_center:.71875},{w:1,h:1,x_center:.40625,y_center:.71875},{w:1,h:1,x_center:.46875,y_center:.71875},{w:1,h:1,x_center:.46875,y_center:.71875},{w:1,h:1,x_center:.53125,y_center:.71875},{w:1,h:1,x_center:.53125,y_center:.71875},{w:1,h:1,x_center:.59375,y_center:.71875},{w:1,h:1,x_center:.59375,y_center:.71875},{w:1,h:1,x_center:.65625,y_center:.71875},{w:1,h:1,x_center:.65625,y_center:.71875},{w:1,h:1,x_center:.71875,y_center:.71875},{w:1,h:1,x_center:.71875,y_center:.71875},{w:1,h:1,x_center:.78125,y_center:.71875},{w:1,h:1,x_center:.78125,y_center:.71875},{w:1,h:1,x_center:.84375,y_center:.71875},{w:1,h:1,x_center:.84375,y_center:.71875},{w:1,h:1,x_center:.90625,y_center:.71875},{w:1,h:1,x_center:.90625,y_center:.71875},{w:1,h:1,x_center:.96875,y_center:.71875},{w:1,h:1,x_center:.96875,y_center:.71875},{w:1,h:1,x_center:.03125,y_center:.78125},{w:1,h:1,x_center:.03125,y_center:.78125},{w:1,h:1,x_center:.09375,y_center:.78125},{w:1,h:1,x_center:.09375,y_center:.78125},{w:1,h:1,x_center:.15625,y_center:.78125},{w:1,h:1,x_center:.15625,y_center:.78125},{w:1,h:1,x_center:.21875,y_center:.78125},{w:1,h:1,x_center:.21875,y_center:.78125},{w:1,h:1,x_center:.28125,y_center:.78125},{w:1,h:1,x_center:.28125,y_center:.78125},{w:1,h:1,x_center:.34375,y_center:.78125},{w:1,h:1,x_center:.34375,y_center:.78125},{w:1,h:1,x_center:.40625,y_center:.78125},{w:1,h:1,x_center:.40625,y_center:.78125},{w:1,h:1,x_center:.46875,y_center:.78125},{w:1,h:1,x_center:.46875,y_center:.78125},{w:1,h:1,x_center:.53125,y_center:.78125},{w:1,h:1,x_center:.53125,y_center:.78125},{w:1,h:1,x_center:.59375,y_center:.78125},{w:1,h:1,x_center:.59375,y_center:.78125},{w:1,h:1,x_center:.65625,y_center:.78125},{w:1,h:1,x_center:.65625,y_center:.78125},{w:1,h:1,x_center:.71875,y_center:.78125},{w:1,h:1,x_center:.71875,y_center:.78125},{w:1,h:1,x_center:.78125,y_center:.78125},{w:1,h:1,x_center:.78125,y_center:.78125},{w:1,h:1,x_center:.84375,y_center:.78125},{w:1,h:1,x_center:.84375,y_center:.78125},{w:1,h:1,x_center:.90625,y_center:.78125},{w:1,h:1,x_center:.90625,y_center:.78125},{w:1,h:1,x_center:.96875,y_center:.78125},{w:1,h:1,x_center:.96875,y_center:.78125},{w:1,h:1,x_center:.03125,y_center:.84375},{w:1,h:1,x_center:.03125,y_center:.84375},{w:1,h:1,x_center:.09375,y_center:.84375},{w:1,h:1,x_center:.09375,y_center:.84375},{w:1,h:1,x_center:.15625,y_center:.84375},{w:1,h:1,x_center:.15625,y_center:.84375},{w:1,h:1,x_center:.21875,y_center:.84375},{w:1,h:1,x_center:.21875,y_center:.84375},{w:1,h:1,x_center:.28125,y_center:.84375},{w:1,h:1,x_center:.28125,y_center:.84375},{w:1,h:1,x_center:.34375,y_center:.84375},{w:1,h:1,x_center:.34375,y_center:.84375},{w:1,h:1,x_center:.40625,y_center:.84375},{w:1,h:1,x_center:.40625,y_center:.84375},{w:1,h:1,x_center:.46875,y_center:.84375},{w:1,h:1,x_center:.46875,y_center:.84375},{w:1,h:1,x_center:.53125,y_center:.84375},{w:1,h:1,x_center:.53125,y_center:.84375},{w:1,h:1,x_center:.59375,y_center:.84375},{w:1,h:1,x_center:.59375,y_center:.84375},{w:1,h:1,x_center:.65625,y_center:.84375},{w:1,h:1,x_center:.65625,y_center:.84375},{w:1,h:1,x_center:.71875,y_center:.84375},{w:1,h:1,x_center:.71875,y_center:.84375},{w:1,h:1,x_center:.78125,y_center:.84375},{w:1,h:1,x_center:.78125,y_center:.84375},{w:1,h:1,x_center:.84375,y_center:.84375},{w:1,h:1,x_center:.84375,y_center:.84375},{w:1,h:1,x_center:.90625,y_center:.84375},{w:1,h:1,x_center:.90625,y_center:.84375},{w:1,h:1,x_center:.96875,y_center:.84375},{w:1,h:1,x_center:.96875,y_center:.84375},{w:1,h:1,x_center:.03125,y_center:.90625},{w:1,h:1,x_center:.03125,y_center:.90625},{w:1,h:1,x_center:.09375,y_center:.90625},{w:1,h:1,x_center:.09375,y_center:.90625},{w:1,h:1,x_center:.15625,y_center:.90625},{w:1,h:1,x_center:.15625,y_center:.90625},{w:1,h:1,x_center:.21875,y_center:.90625},{w:1,h:1,x_center:.21875,y_center:.90625},{w:1,h:1,x_center:.28125,y_center:.90625},{w:1,h:1,x_center:.28125,y_center:.90625},{w:1,h:1,x_center:.34375,y_center:.90625},{w:1,h:1,x_center:.34375,y_center:.90625},{w:1,h:1,x_center:.40625,y_center:.90625},{w:1,h:1,x_center:.40625,y_center:.90625},{w:1,h:1,x_center:.46875,y_center:.90625},{w:1,h:1,x_center:.46875,y_center:.90625},{w:1,h:1,x_center:.53125,y_center:.90625},{w:1,h:1,x_center:.53125,y_center:.90625},{w:1,h:1,x_center:.59375,y_center:.90625},{w:1,h:1,x_center:.59375,y_center:.90625},{w:1,h:1,x_center:.65625,y_center:.90625},{w:1,h:1,x_center:.65625,y_center:.90625},{w:1,h:1,x_center:.71875,y_center:.90625},{w:1,h:1,x_center:.71875,y_center:.90625},{w:1,h:1,x_center:.78125,y_center:.90625},{w:1,h:1,x_center:.78125,y_center:.90625},{w:1,h:1,x_center:.84375,y_center:.90625},{w:1,h:1,x_center:.84375,y_center:.90625},{w:1,h:1,x_center:.90625,y_center:.90625},{w:1,h:1,x_center:.90625,y_center:.90625},{w:1,h:1,x_center:.96875,y_center:.90625},{w:1,h:1,x_center:.96875,y_center:.90625},{w:1,h:1,x_center:.03125,y_center:.96875},{w:1,h:1,x_center:.03125,y_center:.96875},{w:1,h:1,x_center:.09375,y_center:.96875},{w:1,h:1,x_center:.09375,y_center:.96875},{w:1,h:1,x_center:.15625,y_center:.96875},{w:1,h:1,x_center:.15625,y_center:.96875},{w:1,h:1,x_center:.21875,y_center:.96875},{w:1,h:1,x_center:.21875,y_center:.96875},{w:1,h:1,x_center:.28125,y_center:.96875},{w:1,h:1,x_center:.28125,y_center:.96875},{w:1,h:1,x_center:.34375,y_center:.96875},{w:1,h:1,x_center:.34375,y_center:.96875},{w:1,h:1,x_center:.40625,y_center:.96875},{w:1,h:1,x_center:.40625,y_center:.96875},{w:1,h:1,x_center:.46875,y_center:.96875},{w:1,h:1,x_center:.46875,y_center:.96875},{w:1,h:1,x_center:.53125,y_center:.96875},{w:1,h:1,x_center:.53125,y_center:.96875},{w:1,h:1,x_center:.59375,y_center:.96875},{w:1,h:1,x_center:.59375,y_center:.96875},{w:1,h:1,x_center:.65625,y_center:.96875},{w:1,h:1,x_center:.65625,y_center:.96875},{w:1,h:1,x_center:.71875,y_center:.96875},{w:1,h:1,x_center:.71875,y_center:.96875},{w:1,h:1,x_center:.78125,y_center:.96875},{w:1,h:1,x_center:.78125,y_center:.96875},{w:1,h:1,x_center:.84375,y_center:.96875},{w:1,h:1,x_center:.84375,y_center:.96875},{w:1,h:1,x_center:.90625,y_center:.96875},{w:1,h:1,x_center:.90625,y_center:.96875},{w:1,h:1,x_center:.96875,y_center:.96875},{w:1,h:1,x_center:.96875,y_center:.96875},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375}]});var x4=it(R2=>{var A4=Le(a4()),y4=Le(p4()),g4=Le(m4()),F2={thumb:[1,2,3,4],indexFinger:[5,6,7,8],middleFinger:[9,10,11,12],ringFinger:[13,14,15,16],pinky:[17,18,19,20],palmBase:[0]},M2=class{constructor(t){this.handPipeline=t}static getAnnotations(){return F2}async estimateHands(t,n){let r=await this.handPipeline.estimateHands(t,n);if(!r)return[];let a=[];for(let s of r){let i={};if(s.landmarks)for(let l of Object.keys(F2))i[l]=F2[l].map(u=>s.landmarks[u]);let o=s.box?[Math.max(0,s.box.topLeft[0]),Math.max(0,s.box.topLeft[1]),Math.min(t.shape[2],s.box.bottomRight[0])-s.box.topLeft[0],Math.min(t.shape[1],s.box.bottomRight[1])-s.box.topLeft[1]]:0;a.push({confidence:s.confidence,box:o,landmarks:s.landmarks,annotations:i})}return a}};R2.HandPose=M2;async function pie(e){let[t,n]=await Promise.all([e.hand.enabled?Xt(e.hand.detector.modelPath,{fromTFHub:e.hand.detector.modelPath.includes("tfhub.dev")}):null,e.hand.landmarks?Xt(e.hand.skeleton.modelPath,{fromTFHub:e.hand.skeleton.modelPath.includes("tfhub.dev")}):null]),r=new A4.HandDetector(t,e.hand.inputSize,g4.anchors),a=new y4.HandPipeline(r,n,e.hand.inputSize),s=new M2(a);return e.hand.enabled&&Me(`load model: ${e.hand.detector.modelPath.match(/\/(.*)\./)[1]}`),e.hand.landmarks&&Me(`load model: ${e.hand.skeleton.modelPath.match(/\/(.*)\./)[1]}`),s}R2.load=pie});var w4=it(Yc=>{Yc.body=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++){let r=e[n].keypoints.find(l=>l.part==="leftWrist"),a=e[n].keypoints.find(l=>l.part==="rightWrist"),s=e[n].keypoints.find(l=>l.part==="nose");s&&r&&a&&r.position.y<s.position.y&&a.position.y<s.position.y?t.push({body:n,gesture:"i give up"}):s&&r&&r.position.y<s.position.y?t.push({body:n,gesture:"raise left hand"}):s&&a&&a.position.y<s.position.y&&t.push({body:n,gesture:"raise right hand"});let i=e[n].keypoints.find(l=>l.part==="leftShoulder"),o=e[n].keypoints.find(l=>l.part==="rightShoulder");i&&o&&t.push({body:n,gesture:`leaning ${i.position.y>o.position.y?"left":"right"}`})}return t};Yc.face=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++)if(e[n].mesh&&e[n].mesh.length>0){let r=e[n].mesh[35][2]-e[n].mesh[263][2];Math.abs(r)<10?t.push({face:n,gesture:"facing camera"}):t.push({face:n,gesture:`facing ${r<0?"right":"left"}`}),Math.abs(e[n].mesh[374][1]-e[n].mesh[386][1])/Math.abs(e[n].mesh[443][1]-e[n].mesh[450][1])<.2&&t.push({face:n,gesture:"blink left eye"}),Math.abs(e[n].mesh[145][1]-e[n].mesh[159][1])/Math.abs(e[n].mesh[223][1]-e[n].mesh[230][1])<.2&&t.push({face:n,gesture:"blink right eye"});let i=Math.min(100,500*Math.abs(e[n].mesh[13][1]-e[n].mesh[14][1])/Math.abs(e[n].mesh[10][1]-e[n].mesh[152][1]));i>10&&t.push({face:n,gesture:`mouth ${Math.trunc(i)}% open`});let o=e[n].mesh[152][2];Math.abs(o)>10&&t.push({face:n,gesture:`head ${o<0?"up":"down"}`})}return t};Yc.iris=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++){if(!e[n].annotations||!e[n].annotations.leftEyeIris||!e[n].annotations.rightEyeIris)continue;let r=e[n].annotations.leftEyeIris[3][0]-e[n].annotations.leftEyeIris[1][0],a=e[n].annotations.leftEyeIris[4][1]-e[n].annotations.leftEyeIris[2][1],s=Math.abs(r*a),i=e[n].annotations.rightEyeIris[3][0]-e[n].annotations.rightEyeIris[1][0],o=e[n].annotations.rightEyeIris[4][1]-e[n].annotations.rightEyeIris[2][1],l=Math.abs(i*o);Math.abs(s-l)/Math.max(s,l)<.25&&t.push({iris:n,gesture:"looking at camera"})}return t};Yc.hand=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++){let r=[];for(let[a,s]of Object.entries(e[n].annotations))a!=="palmBase"&&r.push({name:a.toLowerCase(),position:s[0]});if(r&&r.length>0){let a=r.reduce((i,o)=>i.position[2]<o.position[2]?i:o),s=r.reduce((i,o)=>i.position[1]<o.position[1]?i:o);t.push({hand:n,gesture:`${a.name} forward ${s.name} up`})}}return t}});var b4=it(_4=>{var fie=function(e,t,n){let r=function(o,l,u){let c=new RegExp("\\b"+l+" \\w+ (\\w+)","ig");o.replace(c,(h,d)=>(u[d]=0,h))},a=function(o,l){let u=e.createShader(l);if(e.shaderSource(u,o),e.compileShader(u),!e.getShaderParameter(u,e.COMPILE_STATUS))throw new Error("Filter: GL compile failed",e.getShaderInfoLog(u));return u};this.uniform={},this.attribute={};let s=a(t,e.VERTEX_SHADER),i=a(n,e.FRAGMENT_SHADER);if(this.id=e.createProgram(),e.attachShader(this.id,s),e.attachShader(this.id,i),e.linkProgram(this.id),!e.getProgramParameter(this.id,e.LINK_STATUS))throw new Error("Filter: GL link failed",e.getProgramInfoLog(this.id));e.useProgram(this.id),r(t,"attribute",this.attribute);for(let o in this.attribute)this.attribute[o]=e.getAttribLocation(this.id,o);r(t,"uniform",this.uniform),r(n,"uniform",this.uniform);for(let o in this.uniform)this.uniform[o]=e.getUniformLocation(this.id,o)},mie=function(e){e||(e={});let t=0,n=null,r=!1,a=-1,s=[null,null],i=[],o=-1,l=-1,u=null,c=null,h=e.canvas||document.createElement("canvas"),d={},p=h.getContext("webgl");if(!p)throw new Error("Filter: getContext() failed");this.addFilter=function(w){let I=Array.prototype.slice.call(arguments,1),T=x[w];i.push({func:T,args:I})},this.reset=function(){i=[]},this.apply=function(w){if(f(w.width,w.height),t=0,n||(n=p.createTexture()),p.bindTexture(p.TEXTURE_2D,n),p.texParameteri(p.TEXTURE_2D,p.TEXTURE_WRAP_S,p.CLAMP_TO_EDGE),p.texParameteri(p.TEXTURE_2D,p.TEXTURE_WRAP_T,p.CLAMP_TO_EDGE),p.texParameteri(p.TEXTURE_2D,p.TEXTURE_MIN_FILTER,p.NEAREST),p.texParameteri(p.TEXTURE_2D,p.TEXTURE_MAG_FILTER,p.NEAREST),p.texImage2D(p.TEXTURE_2D,0,p.RGBA,p.RGBA,p.UNSIGNED_BYTE,w),i.length===0)return y(),h;for(let I=0;I<i.length;I++){r=I===i.length-1;let T=i[I];T.func.apply(this,T.args||[])}return h};let f=function(w,I){if(!(w===o&&I===l)){if(h.width=w,o=w,h.height=I,l=I,!u){let T=new Float32Array([-1,-1,0,1,1,-1,1,1,-1,1,0,0,-1,1,0,0,1,-1,1,1,1,1,1,0]);u=p.createBuffer(),p.bindBuffer(p.ARRAY_BUFFER,u),p.bufferData(p.ARRAY_BUFFER,T,p.STATIC_DRAW),p.pixelStorei(p.UNPACK_PREMULTIPLY_ALPHA_WEBGL,!0)}p.viewport(0,0,o,l),s=[null,null]}},m=function(w){return s[w]=s[w]||A(o,l),s[w]},A=function(w,I){let T=p.createFramebuffer();p.bindFramebuffer(p.FRAMEBUFFER,T);let E=p.createRenderbuffer();p.bindRenderbuffer(p.RENDERBUFFER,E);let M=p.createTexture();return p.bindTexture(p.TEXTURE_2D,M),p.texImage2D(p.TEXTURE_2D,0,p.RGBA,w,I,0,p.RGBA,p.UNSIGNED_BYTE,null),p.texParameteri(p.TEXTURE_2D,p.TEXTURE_MAG_FILTER,p.LINEAR),p.texParameteri(p.TEXTURE_2D,p.TEXTURE_MIN_FILTER,p.LINEAR),p.texParameteri(p.TEXTURE_2D,p.TEXTURE_WRAP_S,p.CLAMP_TO_EDGE),p.texParameteri(p.TEXTURE_2D,p.TEXTURE_WRAP_T,p.CLAMP_TO_EDGE),p.framebufferTexture2D(p.FRAMEBUFFER,p.COLOR_ATTACHMENT0,p.TEXTURE_2D,M,0),p.bindTexture(p.TEXTURE_2D,null),p.bindFramebuffer(p.FRAMEBUFFER,null),{fbo:T,texture:M}},y=function(w){var M,z;let I=null,T=null,E=!1;t===0?I=n:I=(M=m(a))==null?void 0:M.texture,t++,r&&!(w&_.INTERMEDIATE)?(T=null,E=t%2==0):(a=(a+1)%2,T=(z=m(a))==null?void 0:z.fbo),p.bindTexture(p.TEXTURE_2D,I),p.bindFramebuffer(p.FRAMEBUFFER,T),p.uniform1f(c.uniform.flipY,E?-1:1),p.drawArrays(p.TRIANGLES,0,6)},g=function(w){if(d[w])return c=d[w],p.useProgram(c.id),c;c=new fie(p,b.VERTEX_IDENTITY,w);let I=Float32Array.BYTES_PER_ELEMENT,T=4*I;return p.enableVertexAttribArray(c.attribute.pos),p.vertexAttribPointer(c.attribute.pos,2,p.FLOAT,!1,T,0*I),p.enableVertexAttribArray(c.attribute.uv),p.vertexAttribPointer(c.attribute.uv,2,p.FLOAT,!1,T,2*I),d[w]=c,c},_={INTERMEDIATE:1},b={};b.VERTEX_IDENTITY=["precision highp float;","attribute vec2 pos;","attribute vec2 uv;","varying vec2 vUv;","uniform float flipY;","void main(void) {","vUv = uv;","gl_Position = vec4(pos.x, pos.y*flipY, 0.0, 1.);","}"].join(`
|
|
`),b.FRAGMENT_IDENTITY=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","void main(void) {","gl_FragColor = texture2D(texture, vUv);","}"].join(`
|
|
`);let x={};x.colorMatrix=function(w){let I=new Float32Array(w);I[4]/=255,I[9]/=255,I[14]/=255,I[19]/=255;let T=I[18]===1&&I[3]===0&&I[8]===0&&I[13]===0&&I[15]===0&&I[16]===0&&I[17]===0&&I[19]===0?x.colorMatrix.SHADER.WITHOUT_ALPHA:x.colorMatrix.SHADER.WITH_ALPHA,E=g(T);p.uniform1fv(E.uniform.m,I),y()},x.colorMatrix.SHADER={},x.colorMatrix.SHADER.WITH_ALPHA=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","uniform float m[20];","void main(void) {","vec4 c = texture2D(texture, vUv);","gl_FragColor.r = m[0] * c.r + m[1] * c.g + m[2] * c.b + m[3] * c.a + m[4];","gl_FragColor.g = m[5] * c.r + m[6] * c.g + m[7] * c.b + m[8] * c.a + m[9];","gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[13] * c.a + m[14];","gl_FragColor.a = m[15] * c.r + m[16] * c.g + m[17] * c.b + m[18] * c.a + m[19];","}"].join(`
|
|
`),x.colorMatrix.SHADER.WITHOUT_ALPHA=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","uniform float m[20];","void main(void) {","vec4 c = texture2D(texture, vUv);","gl_FragColor.r = m[0] * c.r + m[1] * c.g + m[2] * c.b + m[4];","gl_FragColor.g = m[5] * c.r + m[6] * c.g + m[7] * c.b + m[9];","gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[14];","gl_FragColor.a = c.a;","}"].join(`
|
|
`),x.brightness=function(w){let I=(w||0)+1;x.colorMatrix([I,0,0,0,0,0,I,0,0,0,0,0,I,0,0,0,0,0,1,0])},x.saturation=function(w){let I=(w||0)*2/3+1,T=(I-1)*-.5;x.colorMatrix([I,T,T,0,0,T,I,T,0,0,T,T,I,0,0,0,0,0,1,0])},x.desaturate=function(){x.saturation(-1)},x.contrast=function(w){let I=(w||0)+1,T=-128*(I-1);x.colorMatrix([I,0,0,0,T,0,I,0,0,T,0,0,I,0,T,0,0,0,1,0])},x.negative=function(){x.contrast(-2)},x.hue=function(w){w=(w||0)/180*Math.PI;let I=Math.cos(w),T=Math.sin(w),E=.213,M=.715,z=.072;x.colorMatrix([E+I*(1-E)+T*-E,M+I*-M+T*-M,z+I*-z+T*(1-z),0,0,E+I*-E+T*.143,M+I*(1-M)+T*.14,z+I*-z+T*-.283,0,0,E+I*-E+T*-(1-E),M+I*-M+T*M,z+I*(1-z)+T*z,0,0,0,0,0,1,0])},x.desaturateLuminance=function(){x.colorMatrix([.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,0,0,0,1,0])},x.sepia=function(){x.colorMatrix([.393,.7689999,.18899999,0,0,.349,.6859999,.16799999,0,0,.272,.5339999,.13099999,0,0,0,0,0,1,0])},x.brownie=function(){x.colorMatrix([.5997023498159715,.34553243048391263,-.2708298674538042,0,47.43192855600873,-.037703249837783157,.8609577587992641,.15059552388459913,0,-36.96841498319127,.24113635128153335,-.07441037908422492,.44972182064877153,0,-7.562075277591283,0,0,0,1,0])},x.vintagePinhole=function(){x.colorMatrix([.6279345635605994,.3202183420819367,-.03965408211312453,0,9.651285835294123,.02578397704808868,.6441188644374771,.03259127616149294,0,7.462829176470591,.0466055556782719,-.0851232987247891,.5241648018700465,0,5.159190588235296,0,0,0,1,0])},x.kodachrome=function(){x.colorMatrix([1.1285582396593525,-.3967382283601348,-.03992559172921793,0,63.72958762196502,-.16404339962244616,1.0835251566291304,-.05498805115633132,0,24.732407896706203,-.16786010706155763,-.5603416277695248,1.6014850761964943,0,35.62982807460946,0,0,0,1,0])},x.technicolor=function(){x.colorMatrix([1.9125277891456083,-.8545344976951645,-.09155508482755585,0,11.793603434377337,-.3087833385928097,1.7658908555458428,-.10601743074722245,0,-70.35205161461398,-.231103377548616,-.7501899197440212,1.847597816108189,0,30.950940869491138,0,0,0,1,0])},x.polaroid=function(){x.colorMatrix([1.438,-.062,-.062,0,0,-.122,1.378,-.122,0,0,-.016,-.016,1.483,0,0,0,0,0,1,0])},x.shiftToBGR=function(){x.colorMatrix([0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,1,0])},x.convolution=function(w){let I=new Float32Array(w),T=1/o,E=1/l,M=g(x.convolution.SHADER);p.uniform1fv(M.uniform.m,I),p.uniform2f(M.uniform.px,T,E),y()},x.convolution.SHADER=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","uniform vec2 px;","uniform float m[9];","void main(void) {","vec4 c11 = texture2D(texture, vUv - px);","vec4 c12 = texture2D(texture, vec2(vUv.x, vUv.y - px.y));","vec4 c13 = texture2D(texture, vec2(vUv.x + px.x, vUv.y - px.y));","vec4 c21 = texture2D(texture, vec2(vUv.x - px.x, vUv.y) );","vec4 c22 = texture2D(texture, vUv);","vec4 c23 = texture2D(texture, vec2(vUv.x + px.x, vUv.y) );","vec4 c31 = texture2D(texture, vec2(vUv.x - px.x, vUv.y + px.y) );","vec4 c32 = texture2D(texture, vec2(vUv.x, vUv.y + px.y) );","vec4 c33 = texture2D(texture, vUv + px );","gl_FragColor = ","c11 * m[0] + c12 * m[1] + c22 * m[2] +","c21 * m[3] + c22 * m[4] + c23 * m[5] +","c31 * m[6] + c32 * m[7] + c33 * m[8];","gl_FragColor.a = c22.a;","}"].join(`
|
|
`),x.detectEdges=function(){x.convolution.call(this,[0,1,0,1,-4,1,0,1,0])},x.sobelX=function(){x.convolution.call(this,[-1,0,1,-2,0,2,-1,0,1])},x.sobelY=function(){x.convolution.call(this,[-1,-2,-1,0,0,0,1,2,1])},x.sharpen=function(w){let I=w||1;x.convolution.call(this,[0,-1*I,0,-1*I,1+4*I,-1*I,0,-1*I,0])},x.emboss=function(w){let I=w||1;x.convolution.call(this,[-2*I,-1*I,0,-1*I,1,1*I,0,1*I,2*I])},x.blur=function(w){let I=w/7/o,T=w/7/l,E=g(x.blur.SHADER);p.uniform2f(E.uniform.px,0,T),y(_.INTERMEDIATE),p.uniform2f(E.uniform.px,I,0),y()},x.blur.SHADER=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","uniform vec2 px;","void main(void) {","gl_FragColor = vec4(0.0);","gl_FragColor += texture2D(texture, vUv + vec2(-7.0*px.x, -7.0*px.y))*0.0044299121055113265;","gl_FragColor += texture2D(texture, vUv + vec2(-6.0*px.x, -6.0*px.y))*0.00895781211794;","gl_FragColor += texture2D(texture, vUv + vec2(-5.0*px.x, -5.0*px.y))*0.0215963866053;","gl_FragColor += texture2D(texture, vUv + vec2(-4.0*px.x, -4.0*px.y))*0.0443683338718;","gl_FragColor += texture2D(texture, vUv + vec2(-3.0*px.x, -3.0*px.y))*0.0776744219933;","gl_FragColor += texture2D(texture, vUv + vec2(-2.0*px.x, -2.0*px.y))*0.115876621105;","gl_FragColor += texture2D(texture, vUv + vec2(-1.0*px.x, -1.0*px.y))*0.147308056121;","gl_FragColor += texture2D(texture, vUv )*0.159576912161;","gl_FragColor += texture2D(texture, vUv + vec2( 1.0*px.x, 1.0*px.y))*0.147308056121;","gl_FragColor += texture2D(texture, vUv + vec2( 2.0*px.x, 2.0*px.y))*0.115876621105;","gl_FragColor += texture2D(texture, vUv + vec2( 3.0*px.x, 3.0*px.y))*0.0776744219933;","gl_FragColor += texture2D(texture, vUv + vec2( 4.0*px.x, 4.0*px.y))*0.0443683338718;","gl_FragColor += texture2D(texture, vUv + vec2( 5.0*px.x, 5.0*px.y))*0.0215963866053;","gl_FragColor += texture2D(texture, vUv + vec2( 6.0*px.x, 6.0*px.y))*0.00895781211794;","gl_FragColor += texture2D(texture, vUv + vec2( 7.0*px.x, 7.0*px.y))*0.0044299121055113265;","}"].join(`
|
|
`),x.pixelate=function(w){let I=w/o,T=w/l,E=g(x.pixelate.SHADER);p.uniform2f(E.uniform.size,I,T),y()},x.pixelate.SHADER=["precision highp float;","varying vec2 vUv;","uniform vec2 size;","uniform sampler2D texture;","vec2 pixelate(vec2 coord, vec2 size) {","return floor( coord / size ) * size;","}","void main(void) {","gl_FragColor = vec4(0.0);","vec2 coord = pixelate(vUv, size);","gl_FragColor += texture2D(texture, coord);","}"].join(`
|
|
`)};_4.Canvas=mie});var N4=it(v4=>{var k4=Le(b4()),Ct=null,nn=null;function Aie(e,t){let n;if(e instanceof U)n=nr(e);else{let r=e.naturalWidth||e.videoWidth||e.width||e.shape&&e.shape[1]>0,a=e.naturalHeight||e.videoHeight||e.height||e.shape&&e.shape[2]>0,s=r,i=a;if(t.filter.width>0?s=t.filter.width:t.filter.height>0&&(s=r*(t.filter.height/a)),t.filter.height>0?i=t.filter.height:t.filter.width>0&&(i=a*(t.filter.width/r)),!s||!i)return Me("Human: invalid input",e),null;(!Ct||Ct.width!==s||Ct.height!==i)&&(Ct=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(s,i):document.createElement("canvas"),Ct.width!==s&&(Ct.width=s),Ct.height!==i&&(Ct.height=i));let o=Ct.getContext("2d");if(e instanceof ImageData?o.putImageData(e,0,0):o.drawImage(e,0,0,r,a,0,0,Ct.width,Ct.height),t.filter.enabled){if((!this.fx||!nn||Ct.width!==nn.width||Ct.height!==nn.height)&&(nn=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(Ct.width,Ct.height):document.createElement("canvas"),nn.width!==Ct.width&&(nn.width=Ct.width),nn.height!==Ct.height&&(nn.height=Ct.height),this.fx=on.flags.IS_BROWSER?new k4.Canvas({canvas:nn}):null),!this.fx)return Ct;this.fx.reset(),this.fx.addFilter("brightness",t.filter.brightness),t.filter.contrast!==0&&this.fx.addFilter("contrast",t.filter.contrast),t.filter.sharpness!==0&&this.fx.addFilter("sharpen",t.filter.sharpness),t.filter.blur!==0&&this.fx.addFilter("blur",t.filter.blur),t.filter.saturation!==0&&this.fx.addFilter("saturation",t.filter.saturation),t.filter.hue!==0&&this.fx.addFilter("hue",t.filter.hue),t.filter.negative&&this.fx.addFilter("negative"),t.filter.sepia&&this.fx.addFilter("sepia"),t.filter.vintage&&this.fx.addFilter("brownie"),t.filter.sepia&&this.fx.addFilter("sepia"),t.filter.kodachrome&&this.fx.addFilter("kodachrome"),t.filter.technicolor&&this.fx.addFilter("technicolor"),t.filter.polaroid&&this.fx.addFilter("polaroid"),t.filter.pixelate!==0&&this.fx.addFilter("pixelate",t.filter.pixelate),this.fx.apply(Ct)}else nn=Ct;let l;if(nn.data){let c=[nn.height,nn.width,3];l=Ad(nn.data,c,"int32")}else if(t.backend==="webgl"||nn instanceof ImageData)l=ll.fromPixels(nn);else{let c=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(s,i):document.createElement("canvas");c.width=s,c.height=i;let h=c.getContext("2d");h==null||h.drawImage(nn,0,0);let d=h==null?void 0:h.getImageData(0,0,s,i);l=ll.fromPixels(d)}let u=l.toFloat();n=u.expandDims(0),l.dispose(),u.dispose()}return{tensor:n,canvas:t.filter.return?nn:null}}v4.process=Aie});function Me(...e){let t=new Date,n=`${t.getHours().toString().padStart(2,"0")}:${t.getMinutes().toString().padStart(2,"0")}:${t.getSeconds().toString().padStart(2,"0")}.${t.getMilliseconds().toString().padStart(3,"0")}`;e&&console.log(n,"Human:",...e)}var L1={};Y2(L1,{Abs:()=>Ji,Acos:()=>Qi,Acosh:()=>eo,AdadeltaOptimizer:()=>Yd,AdagradOptimizer:()=>Jd,AdamOptimizer:()=>Qd,AdamaxOptimizer:()=>ep,Add:()=>ka,AddN:()=>us,All:()=>Fh,Any:()=>Mh,ArgMax:()=>cs,ArgMin:()=>xu,Asin:()=>to,Asinh:()=>no,Atan:()=>ro,Atan2:()=>so,Atanh:()=>ao,AvgPool:()=>hs,AvgPool3D:()=>wu,AvgPool3DGrad:()=>Dh,AvgPoolGrad:()=>Oh,BackendWasm:()=>d3,BatchMatMul:()=>ds,BatchToSpaceND:()=>_u,Bincount:()=>$h,BroadcastTo:()=>Ag,Callback:()=>Z7,CallbackList:()=>X3,Cast:()=>ps,Ceil:()=>io,ClipByValue:()=>Na,Complex:()=>zh,ComplexAbs:()=>bu,Concat:()=>oo,Conv2D:()=>fs,Conv2DBackpropFilter:()=>Ph,Conv2DBackpropInput:()=>ms,Conv3D:()=>vu,Conv3DBackpropFilterV2:()=>Lh,Conv3DBackpropInputV2:()=>Wh,Cos:()=>As,Cosh:()=>lo,CropAndResize:()=>uo,Cumsum:()=>ys,CustomCallback:()=>Z3,DataStorage:()=>Th,DenseBincount:()=>Bh,DepthToSpace:()=>co,DepthwiseConv2dNative:()=>gs,DepthwiseConv2dNativeBackpropFilter:()=>Vh,DepthwiseConv2dNativeBackpropInput:()=>Uh,Diag:()=>jh,Dilation2D:()=>ku,Dilation2DBackpropFilter:()=>Hh,Dilation2DBackpropInput:()=>Gh,ENV:()=>on,EarlyStopping:()=>J7,Elu:()=>ho,EluGrad:()=>qh,Environment:()=>pg,Equal:()=>fo,Erf:()=>po,Exp:()=>ws,ExpandDims:()=>mo,Expm1:()=>Ao,FFT:()=>Xh,Fill:()=>Nu,FlipLeftRight:()=>yo,Floor:()=>_s,FloorDiv:()=>bs,FromPixels:()=>ld,FusedBatchNorm:()=>vs,FusedConv2D:()=>ei,FusedDepthwiseConv2D:()=>ti,GPGPUContext:()=>Ap,GatherNd:()=>xo,GatherV2:()=>go,GraphModel:()=>Sv,Greater:()=>wo,GreaterEqual:()=>ks,History:()=>K3,IFFT:()=>Kh,Identity:()=>_o,Imag:()=>Zh,InputSpec:()=>qt,IsFinite:()=>bo,IsInf:()=>vo,IsNan:()=>ko,KernelBackend:()=>Au,LRN:()=>Tu,LRNGrad:()=>Jh,LayerVariable:()=>U3,LayersModel:()=>fa,LeakyRelu:()=>Ns,Less:()=>No,LessEqual:()=>Io,LinSpace:()=>Yh,Log:()=>Is,Log1p:()=>So,LogSoftmax:()=>yg,LogicalAnd:()=>To,LogicalNot:()=>Iu,LogicalOr:()=>Su,MathBackendCPU:()=>Rx,MathBackendWebGL:()=>gp,Max:()=>Ss,MaxPool:()=>Es,MaxPool3D:()=>Eu,MaxPool3DGrad:()=>ed,MaxPoolGrad:()=>Qh,MaxPoolWithArgmax:()=>td,Maximum:()=>Ts,Mean:()=>Cs,Min:()=>Rs,Minimum:()=>Fs,MirrorPad:()=>Cu,Mod:()=>Eo,MomentumOptimizer:()=>tp,Multinomial:()=>nd,Multiply:()=>Ms,Neg:()=>Co,NonMaxSuppressionV3:()=>Fo,NonMaxSuppressionV4:()=>Mo,NonMaxSuppressionV5:()=>Oo,NotEqual:()=>Ro,OP_SCOPE_SUFFIX:()=>Tg,OneHot:()=>Os,OnesLike:()=>Do,Optimizer:()=>ca,Pack:()=>$o,PadV2:()=>Ds,Pool:()=>r9,Pow:()=>$s,Prelu:()=>zs,Prod:()=>zo,RMSPropOptimizer:()=>np,RNN:()=>jr,Range:()=>Ru,Rank:()=>Y1,Real:()=>rd,RealDiv:()=>xs,Reciprocal:()=>Po,Reduction:()=>un,Relu:()=>Ps,Relu6:()=>Ws,Reshape:()=>Lo,ResizeBilinear:()=>Ls,ResizeBilinearGrad:()=>sd,ResizeNearestNeighbor:()=>Fu,ResizeNearestNeighborGrad:()=>ad,Reverse:()=>Bs,RotateWithOffset:()=>el,Round:()=>Vs,Rsqrt:()=>Us,SGDOptimizer:()=>hc,ScatterNd:()=>Wo,Select:()=>Bo,Selu:()=>Vo,Sequential:()=>Vl,Sigmoid:()=>Gs,Sign:()=>Go,Sin:()=>js,Sinh:()=>jo,Slice:()=>Uo,Softmax:()=>Xs,Softplus:()=>Ho,SpaceToBatchND:()=>Mu,SparseToDense:()=>id,SplitV:()=>qo,Sqrt:()=>Hs,Square:()=>Ou,SquaredDifference:()=>Ks,Step:()=>Qo,StridedSlice:()=>Xo,Sub:()=>Zs,Sum:()=>qs,SymbolicTensor:()=>br,Tan:()=>Ko,Tanh:()=>Ys,Tensor:()=>U,TensorBuffer:()=>Dt,Tile:()=>Ia,TopK:()=>Zo,Transpose:()=>Js,Unique:()=>od,Unpack:()=>Yo,UnsortedSegmentSum:()=>Du,Variable:()=>Bu,ZerosLike:()=>Jo,_FusedMatMul:()=>Qs,abs:()=>$t,acos:()=>vf,acosh:()=>kf,add:()=>oe,addN:()=>hl,addStrict:()=>X5,all:()=>_d,any:()=>Gu,argMax:()=>Hu,argMin:()=>Nf,asin:()=>If,asinh:()=>Sf,atan:()=>Tf,atan2:()=>Ef,atanh:()=>Cf,avgPool:()=>Xu,avgPool3d:()=>Mf,backend:()=>bf,backend_util:()=>R,basicLSTMCell:()=>II,batchNorm:()=>li,batchNorm2d:()=>m5,batchNorm3d:()=>A5,batchNorm4d:()=>y5,batchToSpaceND:()=>Ku,bincount:()=>g5,booleanMaskAsync:()=>RE,broadcastTo:()=>Zu,browser:()=>ll,buffer:()=>We,callbacks:()=>Yne,cast:()=>Ae,ceil:()=>Of,clipByValue:()=>yn,clone:()=>nr,complex:()=>Sa,concat:()=>rt,concat1d:()=>x5,concat2d:()=>ui,concat3d:()=>w5,concat4d:()=>_5,constraints:()=>A3,conv1d:()=>vd,conv2d:()=>sa,conv2dTranspose:()=>kd,conv3d:()=>$f,conv3dTranspose:()=>XI,copyRegisteredKernels:()=>i9,cos:()=>Yu,cosh:()=>Nd,cosineWindow:()=>lm,cumsum:()=>Id,customGrad:()=>Or,data:()=>Tv,denseBincount:()=>v5,deprecationWarn:()=>Rt,depthToSpace:()=>zf,depthwiseConv2d:()=>ci,deregisterOp:()=>Qne,device_util:()=>pd,diag:()=>nS,dilation2d:()=>Pf,disableDeprecationWarnings:()=>UN,dispose:()=>Te,disposeVariables:()=>jN,div:()=>_e,divNoNan:()=>Lf,divStrict:()=>K5,dot:()=>k5,dropout:()=>ix,elu:()=>fl,enableDebugMode:()=>VN,enableProdMode:()=>u5,enclosingPowerOfTwo:()=>ox,engine:()=>jn,env:()=>Q,equal:()=>ia,equalStrict:()=>V5,erf:()=>Wf,exp:()=>Gn,expandDims:()=>Hn,expm1:()=>Bf,eye:()=>Vf,fft:()=>lc,fill:()=>Ju,findBackend:()=>_f,findBackendFactory:()=>qN,floor:()=>ml,floorDiv:()=>wd,forceHalfFloat:()=>I_,fused:()=>$a,gather:()=>hi,gatherND:()=>sx,gather_util:()=>ff,getBackend:()=>xd,getGradient:()=>q1,getKernel:()=>H1,getKernelsForBackend:()=>nl,gpgpu_util:()=>Zw,grad:()=>RS,grads:()=>FS,greater:()=>qn,greaterEqual:()=>oa,greaterEqualStrict:()=>U5,greaterStrict:()=>j5,ifft:()=>xl,imag:()=>Sd,image:()=>at,inTopKAsync:()=>rC,initializers:()=>v3,input:()=>$3,io:()=>An,irfft:()=>Ud,isFinite:()=>N5,isInf:()=>I5,isNaN:()=>S5,keep:()=>Ut,kernel_impls:()=>Pr,layers:()=>D3,leakyRelu:()=>Qu,less:()=>ec,lessEqual:()=>Ma,lessEqualStrict:()=>G5,lessStrict:()=>H5,linalg:()=>xx,linspace:()=>T5,loadGraphModel:()=>Xt,loadLayersModel:()=>yne,localResponseNormalization:()=>Uf,log:()=>Tn,log1p:()=>Td,logSigmoid:()=>C5,logSoftmax:()=>Cd,logSumExp:()=>Hf,logicalAnd:()=>rr,logicalNot:()=>tc,logicalOr:()=>Rd,logicalXor:()=>O5,losses:()=>gR,matMul:()=>He,math:()=>jg,max:()=>Xn,maxPool:()=>nc,maxPool3d:()=>qf,maxPoolWithArgmax:()=>D5,maximum:()=>Ar,maximumStrict:()=>Z5,mean:()=>vt,memory:()=>gd,metrics:()=>q7,min:()=>yl,minimum:()=>pi,minimumStrict:()=>Y5,mirrorPad:()=>Xf,mod:()=>Fd,modStrict:()=>J5,model:()=>mne,models:()=>X7,moments:()=>Md,movingAverage:()=>KE,mul:()=>L,mulStrict:()=>Q5,multiRNNCell:()=>oT,multinomial:()=>$5,neg:()=>bt,nextFrame:()=>rp,norm:()=>Hd,notEqual:()=>Oa,notEqualStrict:()=>q5,oneHot:()=>ol,ones:()=>Dr,onesLike:()=>En,op:()=>D,outerProduct:()=>dT,pad:()=>la,pad1d:()=>mT,pad2d:()=>yT,pad3d:()=>xT,pad4d:()=>_T,pool:()=>z5,pow:()=>$r,powStrict:()=>ex,prelu:()=>ac,print:()=>Pg,prod:()=>Od,profile:()=>aa,rand:()=>CT,randomGamma:()=>OT,randomNormal:()=>P5,randomUniform:()=>gl,range:()=>Dd,ready:()=>h5,real:()=>sc,reciprocal:()=>Yf,registerBackend:()=>cl,registerCallbackConstructor:()=>gne,registerGradient:()=>gg,registerKernel:()=>ni,registerOp:()=>Jne,regularizers:()=>K7,relu:()=>zr,relu6:()=>$d,removeBackend:()=>HN,reshape:()=>K,reverse:()=>Cn,reverse1d:()=>UT,reverse2d:()=>GT,reverse3d:()=>qT,reverse4d:()=>KT,rfft:()=>uc,round:()=>Jf,rsqrt:()=>zd,scalar:()=>ke,scatterND:()=>ax,scatter_util:()=>mf,selu:()=>Pd,separableConv2d:()=>Qf,sequential:()=>Ane,serialization:()=>ae,setBackend:()=>c5,setPlatform:()=>XN,setWasmPath:()=>pQ,setWasmPaths:()=>f3,setWebGLContext:()=>dp,setdiff1dAsync:()=>L5,shared:()=>dm,sigmoid:()=>Sn,sign:()=>em,signal:()=>yR,sin:()=>Ld,sinh:()=>Wd,slice:()=>Ce,slice1d:()=>Bd,slice2d:()=>tm,slice3d:()=>Vd,slice4d:()=>ic,slice_util:()=>ln,softmax:()=>oc,softplus:()=>Al,spaceToBatchND:()=>rc,sparseToDense:()=>om,spectral:()=>AR,split:()=>Jt,sqrt:()=>Qt,square:()=>ot,squaredDifference:()=>cc,squaredDifferenceStrict:()=>tx,squeeze:()=>Da,stack:()=>Rn,step:()=>wl,stridedSlice:()=>nm,sub:()=>ye,subStrict:()=>nx,sum:()=>Se,sumOutType:()=>dd,tan:()=>rm,tanh:()=>pl,tensor:()=>mr,tensor1d:()=>jt,tensor2d:()=>xn,tensor3d:()=>Ad,tensor4d:()=>_E,tensor5d:()=>bE,tensor6d:()=>vE,tensor_util:()=>fr,test_util:()=>s5,tidy:()=>W,tile:()=>Fa,time:()=>GN,topk:()=>am,train:()=>mi,transpose:()=>nt,truncatedNormal:()=>jd,unique:()=>Gd,unregisterGradient:()=>s9,unregisterKernel:()=>a9,unsortedSegmentSum:()=>sm,unstack:()=>ar,upcastType:()=>tr,util:()=>k,valueAndGrad:()=>MS,valueAndGrads:()=>OS,variable:()=>W5,variableGrads:()=>E5,version:()=>Lae,version_converter:()=>Qre,version_core:()=>l5,version_cpu:()=>aw,version_layers:()=>RA,version_wasm:()=>m3,version_webgl:()=>N_,webgl:()=>PB,webgl_util:()=>kw,where:()=>gn,whereAsync:()=>im,zeros:()=>Tt,zerosLike:()=>je});var Y8=Object.create,Sh=Object.defineProperty,J8=Object.getPrototypeOf,Q8=Object.prototype.hasOwnProperty,ek=Object.getOwnPropertyNames,tk=Object.getOwnPropertyDescriptor,J2=e=>Sh(e,"__esModule",{value:!0}),et=(e,t)=>()=>(t||(t={exports:{}},e(t.exports,t)),t.exports),$e=(e,t)=>{J2(e);for(var n in t)Sh(e,n,{get:t[n],enumerable:!0})},nk=(e,t,n)=>{if(J2(e),t&&typeof t=="object"||typeof t=="function")for(let r of ek(t))!Q8.call(e,r)&&r!=="default"&&Sh(e,r,{get:()=>t[r],enumerable:!(n=tk(t,r))||n.enumerable});return e},Ki=e=>e&&e.__esModule?e:nk(Sh(e!=null?Y8(J8(e)):{},"default",{value:e,enumerable:!0}),e),rk=et(()=>{}),ak=et((e,t)=>{(function(n,r,a){function s(u){var c=this,h=l();c.next=function(){var d=2091639*c.s0+c.c*23283064365386963e-26;return c.s0=c.s1,c.s1=c.s2,c.s2=d-(c.c=d|0)},c.c=1,c.s0=h(" "),c.s1=h(" "),c.s2=h(" "),c.s0-=h(u),c.s0<0&&(c.s0+=1),c.s1-=h(u),c.s1<0&&(c.s1+=1),c.s2-=h(u),c.s2<0&&(c.s2+=1),h=null}function i(u,c){return c.c=u.c,c.s0=u.s0,c.s1=u.s1,c.s2=u.s2,c}function o(u,c){var h=new s(u),d=c&&c.state,p=h.next;return p.int32=function(){return h.next()*4294967296|0},p.double=function(){return p()+(p()*2097152|0)*11102230246251565e-32},p.quick=p,d&&(typeof d=="object"&&i(d,h),p.state=function(){return i(h,{})}),p}function l(){var u=4022871197,c=function(h){h=h.toString();for(var d=0;d<h.length;d++){u+=h.charCodeAt(d);var p=.02519603282416938*u;u=p>>>0,p-=u,p*=u,u=p>>>0,p-=u,u+=p*4294967296}return(u>>>0)*23283064365386963e-26};return c}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.alea=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),sk=et((e,t)=>{(function(n,r,a){function s(l){var u=this,c="";u.x=0,u.y=0,u.z=0,u.w=0,u.next=function(){var d=u.x^u.x<<11;return u.x=u.y,u.y=u.z,u.z=u.w,u.w^=u.w>>>19^d^d>>>8},l===(l|0)?u.x=l:c+=l;for(var h=0;h<c.length+64;h++)u.x^=c.charCodeAt(h)|0,u.next()}function i(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u}function o(l,u){var c=new s(l),h=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,h&&(typeof h=="object"&&i(h,c),d.state=function(){return i(c,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xor128=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),ik=et((e,t)=>{(function(n,r,a){function s(l){var u=this,c="";u.next=function(){var d=u.x^u.x>>>2;return u.x=u.y,u.y=u.z,u.z=u.w,u.w=u.v,(u.d=u.d+362437|0)+(u.v=u.v^u.v<<4^(d^d<<1))|0},u.x=0,u.y=0,u.z=0,u.w=0,u.v=0,l===(l|0)?u.x=l:c+=l;for(var h=0;h<c.length+64;h++)u.x^=c.charCodeAt(h)|0,h==c.length&&(u.d=u.x<<10^u.x>>>4),u.next()}function i(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u.v=l.v,u.d=l.d,u}function o(l,u){var c=new s(l),h=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,h&&(typeof h=="object"&&i(h,c),d.state=function(){return i(c,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xorwow=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),ok=et((e,t)=>{(function(n,r,a){function s(l){var u=this;u.next=function(){var h=u.x,d=u.i,p,f,m;return p=h[d],p^=p>>>7,f=p^p<<24,p=h[d+1&7],f^=p^p>>>10,p=h[d+3&7],f^=p^p>>>3,p=h[d+4&7],f^=p^p<<7,p=h[d+7&7],p=p^p<<13,f^=p^p<<9,h[d]=f,u.i=d+1&7,f};function c(h,d){var p,f,m=[];if(d===(d|0))f=m[0]=d;else for(d=""+d,p=0;p<d.length;++p)m[p&7]=m[p&7]<<15^d.charCodeAt(p)+m[p+1&7]<<13;for(;m.length<8;)m.push(0);for(p=0;p<8&&m[p]===0;++p);for(p==8?f=m[7]=-1:f=m[p],h.x=m,h.i=0,p=256;p>0;--p)h.next()}c(u,l)}function i(l,u){return u.x=l.x.slice(),u.i=l.i,u}function o(l,u){l==null&&(l=+new Date);var c=new s(l),h=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,h&&(h.x&&i(h,c),d.state=function(){return i(c,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xorshift7=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),lk=et((e,t)=>{(function(n,r,a){function s(l){var u=this;u.next=function(){var h=u.w,d=u.X,p=u.i,f,m;return u.w=h=h+1640531527|0,m=d[p+34&127],f=d[p=p+1&127],m^=m<<13,f^=f<<17,m^=m>>>15,f^=f>>>12,m=d[p]=m^f,u.i=p,m+(h^h>>>16)|0};function c(h,d){var p,f,m,A,y,g=[],_=128;for(d===(d|0)?(f=d,d=null):(d=d+"\0",f=0,_=Math.max(_,d.length)),m=0,A=-32;A<_;++A)d&&(f^=d.charCodeAt((A+32)%d.length)),A===0&&(y=f),f^=f<<10,f^=f>>>15,f^=f<<4,f^=f>>>13,A>=0&&(y=y+1640531527|0,p=g[A&127]^=f+y,m=p==0?m+1:0);for(m>=128&&(g[(d&&d.length||0)&127]=-1),m=127,A=4*128;A>0;--A)f=g[m+34&127],p=g[m=m+1&127],f^=f<<13,p^=p<<17,f^=f>>>15,p^=p>>>12,g[m]=f^p;h.w=y,h.X=g,h.i=m}c(u,l)}function i(l,u){return u.i=l.i,u.w=l.w,u.X=l.X.slice(),u}function o(l,u){l==null&&(l=+new Date);var c=new s(l),h=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,h&&(h.X&&i(h,c),d.state=function(){return i(c,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xor4096=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),uk=et((e,t)=>{(function(n,r,a){function s(l){var u=this,c="";u.next=function(){var d=u.b,p=u.c,f=u.d,m=u.a;return d=d<<25^d>>>7^p,p=p-f|0,f=f<<24^f>>>8^m,m=m-d|0,u.b=d=d<<20^d>>>12^p,u.c=p=p-f|0,u.d=f<<16^p>>>16^m,u.a=m-d|0},u.a=0,u.b=0,u.c=2654435769|0,u.d=1367130551,l===Math.floor(l)?(u.a=l/4294967296|0,u.b=l|0):c+=l;for(var h=0;h<c.length+20;h++)u.b^=c.charCodeAt(h)|0,u.next()}function i(l,u){return u.a=l.a,u.b=l.b,u.c=l.c,u.d=l.d,u}function o(l,u){var c=new s(l),h=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,h&&(typeof h=="object"&&i(h,c),d.state=function(){return i(c,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.tychei=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),W1=et(()=>{}),ck=et((e,t)=>{(function(n,r){var a=this,s=256,i=6,o=52,l="random",u=r.pow(s,i),c=r.pow(2,o),h=c*2,d=s-1,p;function f(x,w,I){var T=[];w=w==!0?{entropy:!0}:w||{};var E=g(y(w.entropy?[x,b(n)]:x==null?_():x,3),T),M=new m(T),z=function(){for(var P=M.g(i),B=u,q=0;P<c;)P=(P+q)*s,B*=s,q=M.g(1);for(;P>=h;)P/=2,B/=2,q>>>=1;return(P+q)/B};return z.int32=function(){return M.g(4)|0},z.quick=function(){return M.g(4)/4294967296},z.double=z,g(b(M.S),n),(w.pass||I||function(P,B,q,H){return H&&(H.S&&A(H,M),P.state=function(){return A(M,{})}),q?(r[l]=P,B):P})(z,E,"global"in w?w.global:this==r,w.state)}r["seed"+l]=f;function m(x){var w,I=x.length,T=this,E=0,M=T.i=T.j=0,z=T.S=[];for(I||(x=[I++]);E<s;)z[E]=E++;for(E=0;E<s;E++)z[E]=z[M=d&M+x[E%I]+(w=z[E])],z[M]=w;(T.g=function(P){for(var B,q=0,H=T.i,X=T.j,Z=T.S;P--;)B=Z[H=d&H+1],q=q*s+Z[d&(Z[H]=Z[X=d&X+B])+(Z[X]=B)];return T.i=H,T.j=X,q})(s)}function A(x,w){return w.i=x.i,w.j=x.j,w.S=x.S.slice(),w}function y(x,w){var I=[],T=typeof x,E;if(w&&T=="object")for(E in x)try{I.push(y(x[E],w-1))}catch(M){}return I.length?I:T=="string"?x:x+"\0"}function g(x,w){for(var I=x+"",T,E=0;E<I.length;)w[d&E]=d&(T^=w[d&E]*19)+I.charCodeAt(E++);return b(w)}function _(){try{var x;return p&&(x=p.randomBytes)?x=x(s):(x=new Uint8Array(s),(a.crypto||a.msCrypto).getRandomValues(x)),b(x)}catch(T){var w=a.navigator,I=w&&w.plugins;return[+new Date,a,I,a.screen,b(n)]}}function b(x){return String.fromCharCode.apply(0,x)}if(g(r.random(),n),typeof t=="object"&&t.exports){t.exports=f;try{p=W1()}catch(x){}}else typeof define=="function"&&define.amd&&define(function(){return f})})([],Math)}),hk=et((e,t)=>{var n=ak(),r=sk(),a=ik(),s=ok(),i=lk(),o=uk(),l=ck();l.alea=n,l.xor128=r,l.xorwow=a,l.xorshift7=s,l.xor4096=i,l.tychei=o,t.exports=l}),dk=et((e,t)=>{(function(n,r,a){function s(u){var c=this,h=l();c.next=function(){var d=2091639*c.s0+c.c*23283064365386963e-26;return c.s0=c.s1,c.s1=c.s2,c.s2=d-(c.c=d|0)},c.c=1,c.s0=h(" "),c.s1=h(" "),c.s2=h(" "),c.s0-=h(u),c.s0<0&&(c.s0+=1),c.s1-=h(u),c.s1<0&&(c.s1+=1),c.s2-=h(u),c.s2<0&&(c.s2+=1),h=null}function i(u,c){return c.c=u.c,c.s0=u.s0,c.s1=u.s1,c.s2=u.s2,c}function o(u,c){var h=new s(u),d=c&&c.state,p=h.next;return p.int32=function(){return h.next()*4294967296|0},p.double=function(){return p()+(p()*2097152|0)*11102230246251565e-32},p.quick=p,d&&(typeof d=="object"&&i(d,h),p.state=function(){return i(h,{})}),p}function l(){var u=4022871197,c=function(h){h=h.toString();for(var d=0;d<h.length;d++){u+=h.charCodeAt(d);var p=.02519603282416938*u;u=p>>>0,p-=u,p*=u,u=p>>>0,p-=u,u+=p*4294967296}return(u>>>0)*23283064365386963e-26};return c}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.alea=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),pk=et((e,t)=>{(function(n,r,a){function s(l){var u=this,c="";u.x=0,u.y=0,u.z=0,u.w=0,u.next=function(){var d=u.x^u.x<<11;return u.x=u.y,u.y=u.z,u.z=u.w,u.w^=u.w>>>19^d^d>>>8},l===(l|0)?u.x=l:c+=l;for(var h=0;h<c.length+64;h++)u.x^=c.charCodeAt(h)|0,u.next()}function i(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u}function o(l,u){var c=new s(l),h=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,h&&(typeof h=="object"&&i(h,c),d.state=function(){return i(c,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xor128=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),fk=et((e,t)=>{(function(n,r,a){function s(l){var u=this,c="";u.next=function(){var d=u.x^u.x>>>2;return u.x=u.y,u.y=u.z,u.z=u.w,u.w=u.v,(u.d=u.d+362437|0)+(u.v=u.v^u.v<<4^(d^d<<1))|0},u.x=0,u.y=0,u.z=0,u.w=0,u.v=0,l===(l|0)?u.x=l:c+=l;for(var h=0;h<c.length+64;h++)u.x^=c.charCodeAt(h)|0,h==c.length&&(u.d=u.x<<10^u.x>>>4),u.next()}function i(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u.v=l.v,u.d=l.d,u}function o(l,u){var c=new s(l),h=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,h&&(typeof h=="object"&&i(h,c),d.state=function(){return i(c,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xorwow=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),mk=et((e,t)=>{(function(n,r,a){function s(l){var u=this;u.next=function(){var h=u.x,d=u.i,p,f,m;return p=h[d],p^=p>>>7,f=p^p<<24,p=h[d+1&7],f^=p^p>>>10,p=h[d+3&7],f^=p^p>>>3,p=h[d+4&7],f^=p^p<<7,p=h[d+7&7],p=p^p<<13,f^=p^p<<9,h[d]=f,u.i=d+1&7,f};function c(h,d){var p,f,m=[];if(d===(d|0))f=m[0]=d;else for(d=""+d,p=0;p<d.length;++p)m[p&7]=m[p&7]<<15^d.charCodeAt(p)+m[p+1&7]<<13;for(;m.length<8;)m.push(0);for(p=0;p<8&&m[p]===0;++p);for(p==8?f=m[7]=-1:f=m[p],h.x=m,h.i=0,p=256;p>0;--p)h.next()}c(u,l)}function i(l,u){return u.x=l.x.slice(),u.i=l.i,u}function o(l,u){l==null&&(l=+new Date);var c=new s(l),h=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,h&&(h.x&&i(h,c),d.state=function(){return i(c,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xorshift7=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),Ak=et((e,t)=>{(function(n,r,a){function s(l){var u=this;u.next=function(){var h=u.w,d=u.X,p=u.i,f,m;return u.w=h=h+1640531527|0,m=d[p+34&127],f=d[p=p+1&127],m^=m<<13,f^=f<<17,m^=m>>>15,f^=f>>>12,m=d[p]=m^f,u.i=p,m+(h^h>>>16)|0};function c(h,d){var p,f,m,A,y,g=[],_=128;for(d===(d|0)?(f=d,d=null):(d=d+"\0",f=0,_=Math.max(_,d.length)),m=0,A=-32;A<_;++A)d&&(f^=d.charCodeAt((A+32)%d.length)),A===0&&(y=f),f^=f<<10,f^=f>>>15,f^=f<<4,f^=f>>>13,A>=0&&(y=y+1640531527|0,p=g[A&127]^=f+y,m=p==0?m+1:0);for(m>=128&&(g[(d&&d.length||0)&127]=-1),m=127,A=4*128;A>0;--A)f=g[m+34&127],p=g[m=m+1&127],f^=f<<13,p^=p<<17,f^=f>>>15,p^=p>>>12,g[m]=f^p;h.w=y,h.X=g,h.i=m}c(u,l)}function i(l,u){return u.i=l.i,u.w=l.w,u.X=l.X.slice(),u}function o(l,u){l==null&&(l=+new Date);var c=new s(l),h=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,h&&(h.X&&i(h,c),d.state=function(){return i(c,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xor4096=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),yk=et((e,t)=>{(function(n,r,a){function s(l){var u=this,c="";u.next=function(){var d=u.b,p=u.c,f=u.d,m=u.a;return d=d<<25^d>>>7^p,p=p-f|0,f=f<<24^f>>>8^m,m=m-d|0,u.b=d=d<<20^d>>>12^p,u.c=p=p-f|0,u.d=f<<16^p>>>16^m,u.a=m-d|0},u.a=0,u.b=0,u.c=2654435769|0,u.d=1367130551,l===Math.floor(l)?(u.a=l/4294967296|0,u.b=l|0):c+=l;for(var h=0;h<c.length+20;h++)u.b^=c.charCodeAt(h)|0,u.next()}function i(l,u){return u.a=l.a,u.b=l.b,u.c=l.c,u.d=l.d,u}function o(l,u){var c=new s(l),h=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,h&&(typeof h=="object"&&i(h,c),d.state=function(){return i(c,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.tychei=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),gk=et((e,t)=>{(function(n,r){var a=this,s=256,i=6,o=52,l="random",u=r.pow(s,i),c=r.pow(2,o),h=c*2,d=s-1,p;function f(x,w,I){var T=[];w=w==!0?{entropy:!0}:w||{};var E=g(y(w.entropy?[x,b(n)]:x==null?_():x,3),T),M=new m(T),z=function(){for(var P=M.g(i),B=u,q=0;P<c;)P=(P+q)*s,B*=s,q=M.g(1);for(;P>=h;)P/=2,B/=2,q>>>=1;return(P+q)/B};return z.int32=function(){return M.g(4)|0},z.quick=function(){return M.g(4)/4294967296},z.double=z,g(b(M.S),n),(w.pass||I||function(P,B,q,H){return H&&(H.S&&A(H,M),P.state=function(){return A(M,{})}),q?(r[l]=P,B):P})(z,E,"global"in w?w.global:this==r,w.state)}r["seed"+l]=f;function m(x){var w,I=x.length,T=this,E=0,M=T.i=T.j=0,z=T.S=[];for(I||(x=[I++]);E<s;)z[E]=E++;for(E=0;E<s;E++)z[E]=z[M=d&M+x[E%I]+(w=z[E])],z[M]=w;(T.g=function(P){for(var B,q=0,H=T.i,X=T.j,Z=T.S;P--;)B=Z[H=d&H+1],q=q*s+Z[d&(Z[H]=Z[X=d&X+B])+(Z[X]=B)];return T.i=H,T.j=X,q})(s)}function A(x,w){return w.i=x.i,w.j=x.j,w.S=x.S.slice(),w}function y(x,w){var I=[],T=typeof x,E;if(w&&T=="object")for(E in x)try{I.push(y(x[E],w-1))}catch(M){}return I.length?I:T=="string"?x:x+"\0"}function g(x,w){for(var I=x+"",T,E=0;E<I.length;)w[d&E]=d&(T^=w[d&E]*19)+I.charCodeAt(E++);return b(w)}function _(){try{var x;return p&&(x=p.randomBytes)?x=x(s):(x=new Uint8Array(s),(a.crypto||a.msCrypto).getRandomValues(x)),b(x)}catch(T){var w=a.navigator,I=w&&w.plugins;return[+new Date,a,I,a.screen,b(n)]}}function b(x){return String.fromCharCode.apply(0,x)}if(g(r.random(),n),typeof t=="object"&&t.exports){t.exports=f;try{p=W1()}catch(x){}}else typeof define=="function"&&define.amd&&define(function(){return f})})([],Math)}),xk=et((e,t)=>{var n=dk(),r=pk(),a=fk(),s=mk(),i=Ak(),o=yk(),l=gk();l.alea=n,l.xor128=r,l.xorwow=a,l.xorshift7=s,l.xor4096=i,l.tychei=o,t.exports=l}),mu=et(()=>{}),wk=et(()=>{}),_k=et(()=>{}),bk=et((e,t)=>{var n=function(){var r=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(r=r||__filename),function(a){a=a||{};function s(){return ne.buffer!=wt&&hr(ne.buffer),Yt}function i(){return ne.buffer!=wt&&hr(ne.buffer),mn}function o(){return ne.buffer!=wt&&hr(ne.buffer),sn}function l(){return ne.buffer!=wt&&hr(ne.buffer),Ln}function u(){return ne.buffer!=wt&&hr(ne.buffer),Zr}var c=typeof a!="undefined"?a:{},h=void 0,d={},p;for(p in c)c.hasOwnProperty(p)&&(d[p]=c[p]);var f=[],m="./this.program",A=function(v,S){throw S},y=!1,g=!1,_=!1,b=!1;y=typeof window=="object",g=typeof importScripts=="function",_=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",b=!y&&!_&&!g;var x=c.ENVIRONMENT_IS_PTHREAD||!1;x&&(wt=c.buffer,pr=c.DYNAMIC_BASE,es=c.DYNAMICTOP_PTR);var w="";function I(v){return c.locateFile?c.locateFile(v,w):w+v}var T,E,M,z,P,B;if(_){g?w=mu().dirname(w)+"/":w=__dirname+"/",T=function(v,S){return P||(P=require("fs")),B||(B=mu()),v=B.normalize(v),P.readFileSync(v,S?null:"utf8")},M=function(v){var S=T(v,!0);return S.buffer||(S=new Uint8Array(S)),Ie(S.buffer),S},process.argv.length>1&&(m=process.argv[1].replace(/\\/g,"/")),f=process.argv.slice(2),process.on("uncaughtException",function(v){if(!(v instanceof X2))throw v}),process.on("unhandledRejection",Qr),A=function(v){process.exit(v)},c.inspect=function(){return"[Emscripten Module object]"};var q;try{q=wk()}catch(v){throw console.error('The "worker_threads" module is not supported in this node.js build - perhaps a newer version is needed?'),v}Worker=q.Worker}else b?(typeof read!="undefined"&&(T=function(v){return read(v)}),M=function(v){var S;return typeof readbuffer=="function"?new Uint8Array(readbuffer(v)):(S=read(v,"binary"),Ie(typeof S=="object"),S)},typeof scriptArgs!="undefined"?f=scriptArgs:typeof arguments!="undefined"&&(f=arguments),typeof quit=="function"&&(A=function(v){quit(v)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(y||g)&&(g?w=self.location.href:document.currentScript&&(w=document.currentScript.src),h&&(w=h),w.indexOf("blob:")!==0?w=w.substr(0,w.lastIndexOf("/")+1):w="",_?(T=function(v,S){return P||(P=require("fs")),B||(B=mu()),v=B.normalize(v),P.readFileSync(v,S?null:"utf8")},M=function(v){var S=T(v,!0);return S.buffer||(S=new Uint8Array(S)),Ie(S.buffer),S}):(T=function(v){var S=new XMLHttpRequest;return S.open("GET",v,!1),S.send(null),S.responseText},g&&(M=function(v){var S=new XMLHttpRequest;return S.open("GET",v,!1),S.responseType="arraybuffer",S.send(null),new Uint8Array(S.response)}),E=function(v,S,O){var G=new XMLHttpRequest;G.open("GET",v,!0),G.responseType="arraybuffer",G.onload=function(){if(G.status==200||G.status==0&&G.response){S(G.response);return}O()},G.onerror=O,G.send(null)}),z=function(v){document.title=v});_&&typeof performance=="undefined"&&(performance=_k().performance);var H=c.print||console.log.bind(console),X=c.printErr||console.warn.bind(console);for(p in d)d.hasOwnProperty(p)&&(c[p]=d[p]);d=null,c.arguments&&(f=c.arguments),c.thisProgram&&(m=c.thisProgram),c.quit&&(A=c.quit);var Z=Atomics.load,ee=Atomics.store,J=Atomics.compareExchange,se;c.wasmBinary&&(se=c.wasmBinary);var re;c.noExitRuntime&&(re=c.noExitRuntime),typeof WebAssembly!="object"&&X("no native wasm support detected");var ne,ie=new WebAssembly.Table({initial:169,maximum:169+0,element:"anyfunc"}),he,ce=0,pe=0,me=!1,ve=0;function Ie(v,S){v||Qr("Assertion failed: "+S)}function Ee(v){var S=c["_"+v];return Ie(S,"Cannot call unknown function "+v+", make sure it is exported"),S}function De(v,S,O,G,de){var ue={string:function(Vn){var _a=0;if(Vn!=null&&Vn!==0){var fu=(Vn.length<<2)+1;_a=Gi(fu),Ue(Vn,_a,fu)}return _a},array:function(Vn){var _a=Gi(Vn.length);return ft(Vn,_a),_a}};function le(Vn){return S==="string"?Ve(Vn):S==="boolean"?Boolean(Vn):Vn}var we=Ee(v),Ye=[],Mt=0;if(G)for(var rn=0;rn<G.length;rn++){var qi=ue[O[rn]];qi?(Mt===0&&(Mt=hu()),Ye[rn]=qi(G[rn])):Ye[rn]=G[rn]}var pu=we.apply(null,Ye);return pu=le(pu),Mt!==0&&Hi(Mt),pu}function Ze(v,S,O,G){O=O||[];var de=O.every(function(le){return le==="number"}),ue=S!=="string";return ue&&de&&!G?Ee(v):function(){return De(v,S,O,arguments,G)}}function Je(v,S,O){for(var G=S+O,de="";!(S>=G);){var ue=v[S++];if(!ue)return de;if(!(ue&128)){de+=String.fromCharCode(ue);continue}var le=v[S++]&63;if((ue&224)==192){de+=String.fromCharCode((ue&31)<<6|le);continue}var we=v[S++]&63;if((ue&240)==224?ue=(ue&15)<<12|le<<6|we:ue=(ue&7)<<18|le<<12|we<<6|v[S++]&63,ue<65536)de+=String.fromCharCode(ue);else{var Ye=ue-65536;de+=String.fromCharCode(55296|Ye>>10,56320|Ye&1023)}}return de}function Ve(v,S){return v?Je(i(),v,S):""}function lt(v,S,O,G){if(!(G>0))return 0;for(var de=O,ue=O+G-1,le=0;le<v.length;++le){var we=v.charCodeAt(le);if(we>=55296&&we<=57343){var Ye=v.charCodeAt(++le);we=65536+((we&1023)<<10)|Ye&1023}if(we<=127){if(O>=ue)break;S[O++]=we}else if(we<=2047){if(O+1>=ue)break;S[O++]=192|we>>6,S[O++]=128|we&63}else if(we<=65535){if(O+2>=ue)break;S[O++]=224|we>>12,S[O++]=128|we>>6&63,S[O++]=128|we&63}else{if(O+3>=ue)break;S[O++]=240|we>>18,S[O++]=128|we>>12&63,S[O++]=128|we>>6&63,S[O++]=128|we&63}}return S[O]=0,O-de}function Ue(v,S,O){return lt(v,i(),S,O)}function ut(v){for(var S=0,O=0;O<v.length;++O){var G=v.charCodeAt(O);G>=55296&&G<=57343&&(G=65536+((G&1023)<<10)|v.charCodeAt(++O)&1023),G<=127?++S:G<=2047?S+=2:G<=65535?S+=3:S+=4}return S}function ft(v,S){s().set(v,S)}var kn=65536;function Nt(v,S){return v%S>0&&(v+=S-v%S),v}var wt,Yt,mn,Jn,Nn,sn,Ln,Kr,Zr;function hr(v){wt=v,c.HEAP8=Yt=new Int8Array(v),c.HEAP16=Jn=new Int16Array(v),c.HEAP32=sn=new Int32Array(v),c.HEAPU8=mn=new Uint8Array(v),c.HEAPU16=Nn=new Uint16Array(v),c.HEAPU32=Ln=new Uint32Array(v),c.HEAPF32=Kr=new Float32Array(v),c.HEAPF64=Zr=new Float64Array(v)}var zi=5256464,dr=zi,Er=13584,pr=5256464,es=12656,th=c.INITIAL_MEMORY||16777216;if(x)ne=c.wasmMemory,wt=c.buffer;else if(c.wasmMemory)ne=c.wasmMemory;else if(ne=new WebAssembly.Memory({initial:th/kn,maximum:2147483648/kn,shared:!0}),!(ne.buffer instanceof SharedArrayBuffer))throw X("requested a shared WebAssembly.Memory but the returned buffer is not a SharedArrayBuffer, indicating that while the browser has SharedArrayBuffer it does not have WebAssembly threads support - you may need to set a flag"),_&&console.log("(on node you may need: --experimental-wasm-threads --experimental-wasm-bulk-memory and also use a recent version)"),Error("bad memory");ne&&(wt=ne.buffer),th=wt.byteLength,hr(wt),x||(o()[es>>2]=pr);function Yr(v){for(;v.length>0;){var S=v.shift();if(typeof S=="function"){S(c);continue}var O=S.func;typeof O=="number"?S.arg===void 0?c.dynCall_v(O):c.dynCall_vi(O,S.arg):O(S.arg===void 0?null:S.arg)}}var eu=[],nh=[],rh=[],ah=[],tu=[],Wn=!1;x&&(Wn=!0);function sh(){if(!x){if(c.preRun)for(typeof c.preRun=="function"&&(c.preRun=[c.preRun]);c.preRun.length;)ts(c.preRun.shift());Yr(eu)}}function F0(){Wn=!0,Yr(nh)}function M0(){x||Yr(rh)}function O0(){if(!x){if(c.postRun)for(typeof c.postRun=="function"&&(c.postRun=[c.postRun]);c.postRun.length;)Pi(c.postRun.shift());Yr(tu)}}function ts(v){eu.unshift(v)}function Pi(v){tu.unshift(v)}var D0=Math.ceil,$0=Math.floor,Jr=0,nu=null,ns=null;function z0(v){Ie(!x,"addRunDependency cannot be used in a pthread worker"),Jr++,c.monitorRunDependencies&&c.monitorRunDependencies(Jr)}function ih(v){if(Jr--,c.monitorRunDependencies&&c.monitorRunDependencies(Jr),Jr==0&&(nu!==null&&(clearInterval(nu),nu=null),ns)){var S=ns;ns=null,S()}}c.preloadedImages={},c.preloadedAudios={};function Qr(v){throw c.onAbort&&c.onAbort(v),x&&console.error("Pthread aborting at "+new Error().stack),v+="",H(v),X(v),me=!0,ve=1,v="abort("+v+"). Build with -s ASSERTIONS=1 for more info.",new WebAssembly.RuntimeError(v)}function oh(v,S){return String.prototype.startsWith?v.startsWith(S):v.indexOf(S)===0}var P0="data:application/octet-stream;base64,";function lh(v){return oh(v,P0)}var L0="file://";function uh(v){return oh(v,L0)}var Qn="tfjs-backend-wasm-threaded-simd.wasm";lh(Qn)||(Qn=I(Qn));function ch(){try{if(se)return new Uint8Array(se);if(M)return M(Qn);throw"both async and sync fetching of the wasm failed"}catch(v){Qr(v)}}function W0(){return!se&&(y||g)&&typeof fetch=="function"&&!uh(Qn)?fetch(Qn,{credentials:"same-origin"}).then(function(v){if(!v.ok)throw"failed to load wasm binary file at '"+Qn+"'";return v.arrayBuffer()}).catch(function(){return ch()}):new Promise(function(v,S){v(ch())})}function B0(){var v={a:_h};function S(le,we){var Ye=le.exports;if(c.asm=Ye,he=we,!x){var Mt=fe.unusedWorkers.length;fe.unusedWorkers.forEach(function(rn){fe.loadWasmModuleToWorker(rn,function(){--Mt||ih("wasm-instantiate")})})}}x||z0("wasm-instantiate");function O(le){S(le.instance,le.module)}function G(le){return W0().then(function(we){return WebAssembly.instantiate(we,v)}).then(le,function(we){X("failed to asynchronously prepare wasm: "+we),Qr(we)})}function de(){if(!se&&typeof WebAssembly.instantiateStreaming=="function"&&!lh(Qn)&&!uh(Qn)&&typeof fetch=="function")fetch(Qn,{credentials:"same-origin"}).then(function(le){var we=WebAssembly.instantiateStreaming(le,v);return we.then(O,function(Ye){X("wasm streaming compile failed: "+Ye),X("falling back to ArrayBuffer instantiation"),G(O)})});else return G(O)}if(c.instantiateWasm)try{var ue=c.instantiateWasm(v,S);return ue}catch(le){return X("Module.instantiateWasm callback failed with error: "+le),!1}return de(),{}}var V0={};function U0(){fe.initRuntime()}x||nh.push({func:function(){su()}});var hh=0,dh=0,ph=0;function Li(v,S,O){v=v|0,S=S|0,O=O|0,hh=v,ph=S,dh=O}c.__register_pthread_ptr=Li;var ru={EPERM:63,ENOENT:44,ESRCH:71,EINTR:27,EIO:29,ENXIO:60,E2BIG:1,ENOEXEC:45,EBADF:8,ECHILD:12,EAGAIN:6,EWOULDBLOCK:6,ENOMEM:48,EACCES:2,EFAULT:21,ENOTBLK:105,EBUSY:10,EEXIST:20,EXDEV:75,ENODEV:43,ENOTDIR:54,EISDIR:31,EINVAL:28,ENFILE:41,EMFILE:33,ENOTTY:59,ETXTBSY:74,EFBIG:22,ENOSPC:51,ESPIPE:70,EROFS:69,EMLINK:34,EPIPE:64,EDOM:18,ERANGE:68,ENOMSG:49,EIDRM:24,ECHRNG:106,EL2NSYNC:156,EL3HLT:107,EL3RST:108,ELNRNG:109,EUNATCH:110,ENOCSI:111,EL2HLT:112,EDEADLK:16,ENOLCK:46,EBADE:113,EBADR:114,EXFULL:115,ENOANO:104,EBADRQC:103,EBADSLT:102,EDEADLOCK:16,EBFONT:101,ENOSTR:100,ENODATA:116,ETIME:117,ENOSR:118,ENONET:119,ENOPKG:120,EREMOTE:121,ENOLINK:47,EADV:122,ESRMNT:123,ECOMM:124,EPROTO:65,EMULTIHOP:36,EDOTDOT:125,EBADMSG:9,ENOTUNIQ:126,EBADFD:127,EREMCHG:128,ELIBACC:129,ELIBBAD:130,ELIBSCN:131,ELIBMAX:132,ELIBEXEC:133,ENOSYS:52,ENOTEMPTY:55,ENAMETOOLONG:37,ELOOP:32,EOPNOTSUPP:138,EPFNOSUPPORT:139,ECONNRESET:15,ENOBUFS:42,EAFNOSUPPORT:5,EPROTOTYPE:67,ENOTSOCK:57,ENOPROTOOPT:50,ESHUTDOWN:140,ECONNREFUSED:14,EADDRINUSE:3,ECONNABORTED:13,ENETUNREACH:40,ENETDOWN:38,ETIMEDOUT:73,EHOSTDOWN:142,EHOSTUNREACH:23,EINPROGRESS:26,EALREADY:7,EDESTADDRREQ:17,EMSGSIZE:35,EPROTONOSUPPORT:66,ESOCKTNOSUPPORT:137,EADDRNOTAVAIL:4,ENETRESET:39,EISCONN:30,ENOTCONN:53,ETOOMANYREFS:141,EUSERS:136,EDQUOT:19,ESTALE:72,ENOTSUP:138,ENOMEDIUM:148,EILSEQ:25,EOVERFLOW:61,ECANCELED:11,ENOTRECOVERABLE:56,EOWNERDEAD:62,ESTRPIPE:135},Wi=13568;function Bi(v,S){if(v<=0||v>s().length||v&!0||S<0)return-28;if(S==0)return 0;S>=2147483647&&(S=Infinity);var O=Atomics.load(o(),Wi>>2),G=0;if(O==v){var de=Atomics.compareExchange(o(),Wi>>2,O,0);if(de==O&&(--S,G=1,S<=0))return 1}var ue=Atomics.notify(o(),v>>2,S);if(ue>=0)return ue+G;throw"Atomics.notify returned an unexpected value "+ue}c._emscripten_futex_wake=Bi;function j0(v){if(x)throw"Internal Error! _kill_thread() can only ever be called from main application thread!";if(!v)throw"Internal Error! Null pthread_ptr in _kill_thread!";o()[v+12>>2]=0;var S=fe.pthreads[v];S.worker.terminate(),fe.freeThreadData(S),fe.runningWorkers.splice(fe.runningWorkers.indexOf(S.worker),1),S.worker.pthread=void 0}function G0(v){if(x)throw"Internal Error! _cancel_thread() can only ever be called from main application thread!";if(!v)throw"Internal Error! Null pthread_ptr in _cancel_thread!";var S=fe.pthreads[v];S.worker.postMessage({cmd:"cancel"})}function H0(v){if(x)throw"Internal Error! _cleanup_thread() can only ever be called from main application thread!";if(!v)throw"Internal Error! Null pthread_ptr in _cleanup_thread!";o()[v+12>>2]=0;var S=fe.pthreads[v];if(S){var O=S.worker;fe.returnWorkerToPool(O)}}var fe={MAIN_THREAD_ID:1,mainThreadInfo:{schedPolicy:0,schedPrio:0},unusedWorkers:[],runningWorkers:[],initRuntime:function(){Li(fe.mainThreadBlock,!g,1),j2(fe.mainThreadBlock)},initMainThreadBlock:function(){for(var v=8,S=0;S<v;++S)fe.allocateUnusedWorker();fe.mainThreadBlock=12816;for(var S=0;S<232/4;++S)l()[fe.mainThreadBlock/4+S]=0;o()[fe.mainThreadBlock+12>>2]=fe.mainThreadBlock;var O=fe.mainThreadBlock+156;o()[O>>2]=O;for(var G=13056,S=0;S<128;++S)l()[G/4+S]=0;Atomics.store(l(),fe.mainThreadBlock+104>>2,G),Atomics.store(l(),fe.mainThreadBlock+40>>2,fe.mainThreadBlock),Atomics.store(l(),fe.mainThreadBlock+44>>2,42)},initWorker:function(){},pthreads:{},exitHandlers:null,setThreadStatus:function(){},runExitHandlers:function(){if(fe.exitHandlers!==null){for(;fe.exitHandlers.length>0;)fe.exitHandlers.pop()();fe.exitHandlers=null}x&&ce&&U2()},threadExit:function(v){var S=Cr();S&&(Atomics.store(l(),S+4>>2,v),Atomics.store(l(),S+0>>2,1),Atomics.store(l(),S+60>>2,1),Atomics.store(l(),S+64>>2,0),fe.runExitHandlers(),Bi(S+0,2147483647),Li(0,0,0),ce=0,x&&postMessage({cmd:"exit"}))},threadCancel:function(){fe.runExitHandlers(),Atomics.store(l(),ce+4>>2,-1),Atomics.store(l(),ce+0>>2,1),Bi(ce+0,2147483647),ce=pe=0,Li(0,0,0),postMessage({cmd:"cancelDone"})},terminateAllThreads:function(){for(var v in fe.pthreads){var S=fe.pthreads[v];S&&S.worker&&fe.returnWorkerToPool(S.worker)}fe.pthreads={};for(var O=0;O<fe.unusedWorkers.length;++O){var G=fe.unusedWorkers[O];G.terminate()}fe.unusedWorkers=[];for(var O=0;O<fe.runningWorkers.length;++O){var G=fe.runningWorkers[O],S=G.pthread;fe.freeThreadData(S),G.terminate()}fe.runningWorkers=[]},freeThreadData:function(v){if(v){if(v.threadInfoStruct){var S=o()[v.threadInfoStruct+104>>2];o()[v.threadInfoStruct+104>>2]=0,cu(S),cu(v.threadInfoStruct)}v.threadInfoStruct=0,v.allocatedOwnStack&&v.stackBase&&cu(v.stackBase),v.stackBase=0,v.worker&&(v.worker.pthread=null)}},returnWorkerToPool:function(v){delete fe.pthreads[v.pthread.thread],fe.unusedWorkers.push(v),fe.runningWorkers.splice(fe.runningWorkers.indexOf(v),1),fe.freeThreadData(v.pthread),v.pthread=void 0},receiveObjectTransfer:function(v){},loadWasmModuleToWorker:function(v,S){v.onmessage=function(O){var G=O.data,de=G.cmd;if(v.pthread&&(fe.currentProxiedOperationCallerThread=v.pthread.threadInfoStruct),G.targetThread&&G.targetThread!=Cr()){var ue=fe.pthreads[G.targetThread];ue?ue.worker.postMessage(O.data,G.transferList):console.error('Internal error! Worker sent a message "'+de+'" to target pthread '+G.targetThread+", but that thread no longer exists!"),fe.currentProxiedOperationCallerThread=void 0;return}if(de==="processQueuedMainThreadWork")O1();else if(de==="spawnThread")xh(O.data);else if(de==="cleanupThread")H0(G.thread);else if(de==="killThread")j0(G.thread);else if(de==="cancelThread")G0(G.thread);else if(de==="loaded")v.loaded=!0,S&&S(v),v.runPthread&&(v.runPthread(),delete v.runPthread);else if(de==="print")H("Thread "+G.threadId+": "+G.text);else if(de==="printErr")X("Thread "+G.threadId+": "+G.text);else if(de==="alert")alert("Thread "+G.threadId+": "+G.text);else if(de==="exit"){var le=v.pthread&&Atomics.load(l(),v.pthread.thread+68>>2);le&&fe.returnWorkerToPool(v)}else de==="cancelDone"?fe.returnWorkerToPool(v):de==="objectTransfer"?fe.receiveObjectTransfer(O.data):O.data.target==="setimmediate"?v.postMessage(O.data):X("worker sent an unknown command "+de);fe.currentProxiedOperationCallerThread=void 0},v.onerror=function(O){X("pthread sent an error! "+O.filename+":"+O.lineno+": "+O.message)},_&&(v.on("message",function(O){v.onmessage({data:O})}),v.on("error",function(O){v.onerror(O)}),v.on("exit",function(O){console.log("worker exited - TODO: update the worker queue?")})),v.postMessage({cmd:"load",urlOrBlob:c.mainScriptUrlOrBlob||h,wasmMemory:ne,wasmModule:he,DYNAMIC_BASE:pr,DYNAMICTOP_PTR:es})},allocateUnusedWorker:function(){var v=I("tfjs-backend-wasm-threaded-simd.worker.js");fe.unusedWorkers.push(new Worker(v))},getNewWorker:function(){return fe.unusedWorkers.length==0&&(fe.allocateUnusedWorker(),fe.loadWasmModuleToWorker(fe.unusedWorkers[0])),fe.unusedWorkers.length>0?fe.unusedWorkers.pop():null},busySpinWait:function(v){for(var S=performance.now()+v;performance.now()<S;);}};function q0(v,S){zi=dr=v,Er=S,Hi(v)}c.establishStackSpace=q0;function X0(){return re}c.getNoExitRuntime=X0;function K0(v,S,O,G){Qr("Assertion failed: "+Ve(v)+", at: "+[S?Ve(S):"unknown filename",O,G?Ve(G):"unknown function"])}function Z0(v,S){var O=_main(v,S)}var rs;_?rs=function(){var v=process.hrtime();return v[0]*1e3+v[1]/1e6}:x?rs=function(){return performance.now()-c.__performance_now_clock_drift}:typeof dateNow!="undefined"?rs=dateNow:rs=function(){return performance.now()};function Y0(v){return o()[B2()>>2]=v,v}function J0(v,S){if(x)return ga(1,1,v,S);ah.unshift({func:v,arg:S})}function Q0(v,S){if(v==S)postMessage({cmd:"processQueuedMainThreadWork"});else if(x)postMessage({targetThread:v,cmd:"processThreadQueue"});else{var O=fe.pthreads[v],G=O&&O.worker;if(!G)return;G.postMessage({cmd:"processThreadQueue"})}return 1}function e1(){Qr()}function t1(v,S){v=v|0,S=S|0}function n1(v,S,O){if(v<=0||v>s().length||v&!0)return-28;if(g){var G=Atomics.wait(o(),v>>2,S,O);if(G==="timed-out")return-73;if(G==="not-equal")return-6;if(G==="ok")return 0;throw"Atomics.wait returned an unexpected value "+G}else{var de=Atomics.load(o(),v>>2);if(S!=de)return-6;var ue=performance.now(),le=ue+O;Atomics.store(o(),Wi>>2,v);for(var we=v;v==we;){if(ue=performance.now(),ue>le)return-73;O1(),v=Atomics.load(o(),Wi>>2)}return 0}}function r1(){return ph|0}function a1(){return dh|0}function s1(v,S,O){i().copyWithin(v,S,S+O)}function i1(){return navigator.hardwareConcurrency}function ga(v,S){for(var O=arguments.length-2,G=hu(),de=Gi(O*8),ue=de>>3,le=0;le<O;le++)u()[ue+le]=arguments[2+le];var we=H2(v,O,de,S);return Hi(G),we}var as=[];function Vi(v,S){Vi.array||(Vi.array=[]);var O=Vi.array;O.length=0;for(var G;G=i()[v++];)G===100||G===102?(S=S+7&~7,O.push(u()[S>>3]),S+=8):(S=S+3&~3,O.push(o()[S>>2]),S+=4);return O}function o1(v,S,O){as.length=S;for(var G=O>>3,de=0;de<S;de++)as[de]=u()[G+de];var ue=v<0,le=ue?V0[-v-1]:R1[v];if(ue){var we=as[1],Ye=as[2],Mt=Vi(we,Ye);return le.apply(null,Mt)}return le.apply(null,as)}function l1(){return i().length}function u1(v){try{return ne.grow(v-wt.byteLength+65535>>>16),hr(ne.buffer),1}catch(S){}}function c1(v){v=v>>>0;var S=l1();if(v<=S)return!1;var O=65536,G=2147483648;if(v>G)return!1;for(var de=16777216,ue=1;ue<=4;ue*=2){var le=S*(1+.2/ue);le=Math.min(le,v+100663296);var we=Math.min(G,Nt(Math.max(de,v,le),O)),Ye=u1(we);if(Ye)return!0}return!1}var Pe={keyEvent:0,mouseEvent:0,wheelEvent:0,uiEvent:0,focusEvent:0,deviceOrientationEvent:0,deviceMotionEvent:0,fullscreenChangeEvent:0,pointerlockChangeEvent:0,visibilityChangeEvent:0,touchEvent:0,previousFullscreenElement:null,previousScreenX:null,previousScreenY:null,removeEventListenersRegistered:!1,removeAllEventListeners:function(){for(var v=Pe.eventHandlers.length-1;v>=0;--v)Pe._removeHandler(v);Pe.eventHandlers=[],Pe.deferredCalls=[]},registerRemoveEventListeners:function(){Pe.removeEventListenersRegistered||(ah.push(Pe.removeAllEventListeners),Pe.removeEventListenersRegistered=!0)},deferredCalls:[],deferCall:function(v,S,O){function G(le,we){if(le.length!=we.length)return!1;for(var Ye in le)if(le[Ye]!=we[Ye])return!1;return!0}for(var de in Pe.deferredCalls){var ue=Pe.deferredCalls[de];if(ue.targetFunction==v&&G(ue.argsList,O))return}Pe.deferredCalls.push({targetFunction:v,precedence:S,argsList:O}),Pe.deferredCalls.sort(function(le,we){return le.precedence<we.precedence})},removeDeferredCalls:function(v){for(var S=0;S<Pe.deferredCalls.length;++S)Pe.deferredCalls[S].targetFunction==v&&(Pe.deferredCalls.splice(S,1),--S)},canPerformEventHandlerRequests:function(){return Pe.inEventHandler&&Pe.currentEventHandler.allowsDeferredCalls},runDeferredCalls:function(){if(Pe.canPerformEventHandlerRequests())for(var v=0;v<Pe.deferredCalls.length;++v){var S=Pe.deferredCalls[v];Pe.deferredCalls.splice(v,1),--v,S.targetFunction.apply(null,S.argsList)}},inEventHandler:0,currentEventHandler:null,eventHandlers:[],removeAllHandlersOnTarget:function(v,S){for(var O=0;O<Pe.eventHandlers.length;++O)Pe.eventHandlers[O].target==v&&(!S||S==Pe.eventHandlers[O].eventTypeString)&&Pe._removeHandler(O--)},_removeHandler:function(v){var S=Pe.eventHandlers[v];S.target.removeEventListener(S.eventTypeString,S.eventListenerFunc,S.useCapture),Pe.eventHandlers.splice(v,1)},registerOrRemoveHandler:function(v){var S=function(G){++Pe.inEventHandler,Pe.currentEventHandler=v,Pe.runDeferredCalls(),v.handlerFunc(G),Pe.runDeferredCalls(),--Pe.inEventHandler};if(v.callbackfunc)v.eventListenerFunc=S,v.target.addEventListener(v.eventTypeString,S,v.useCapture),Pe.eventHandlers.push(v),Pe.registerRemoveEventListeners();else for(var O=0;O<Pe.eventHandlers.length;++O)Pe.eventHandlers[O].target==v.target&&Pe.eventHandlers[O].eventTypeString==v.eventTypeString&&Pe._removeHandler(O--)},queueEventHandlerOnThread_iiii:function(v,S,O,G,de){var ue=hu(),le=Gi(12);o()[le>>2]=O,o()[le+4>>2]=G,o()[le+8>>2]=de,D1(v,637534208,S,G,le),Hi(ue)},getTargetThreadForEventCallback:function(v){switch(v){case 1:return 0;case 2:return fe.currentProxiedOperationCallerThread;default:return v}},getNodeNameForTarget:function(v){return v?v==window?"#window":v==screen?"#screen":v&&v.nodeName?v.nodeName:"":""},fullscreenEnabled:function(){return document.fullscreenEnabled||document.webkitFullscreenEnabled}};function h1(v){var S=ut(v)+1,O=uu(S);return Ue(v,O,S),O}function d1(v,S,O,G){var de=hu(),ue=Gi(12),le=0;S&&(le=h1(S)),o()[ue>>2]=le,o()[ue+4>>2]=O,o()[ue+8>>2]=G,D1(v,657457152,0,le,ue),Hi(de)}function p1(v,S,O,G){S=S?Ve(S):"",d1(v,S,O,G)}function f1(v){return v>2?Ve(v):v}var m1=[0,typeof document!="undefined"?document:0,typeof window!="undefined"?window:0];function A1(v){v=f1(v);var S=m1[v]||(typeof document!="undefined"?document.querySelector(v):void 0);return S}function au(v){return A1(v)}function fh(v,S,O){var G=au(v);if(!G)return-4;if(G.canvasSharedPtr&&(o()[G.canvasSharedPtr>>2]=S,o()[G.canvasSharedPtr+4>>2]=O),G.offscreenCanvas||!G.controlTransferredOffscreen){G.offscreenCanvas&&(G=G.offscreenCanvas);var de=!1;if(G.GLctxObject&&G.GLctxObject.GLctx){var ue=G.GLctxObject.GLctx.getParameter(2978);de=ue[0]===0&&ue[1]===0&&ue[2]===G.width&&ue[3]===G.height}G.width=S,G.height=O,de&&G.GLctxObject.GLctx.viewport(0,0,S,O)}else if(G.canvasSharedPtr){var le=o()[G.canvasSharedPtr+8>>2];return p1(le,v,S,O),1}else return-4;return 0}function mh(v,S,O){return x?ga(2,1,v,S,O):fh(v,S,O)}function y1(v,S,O){var G=au(v);return G?fh(v,S,O):mh(v,S,O)}function g1(v){v=v|0}function x1(v,S){v=v|0,S=S|0}function w1(v){var S=v.getExtension("ANGLE_instanced_arrays");if(S)return v.vertexAttribDivisor=function(O,G){S.vertexAttribDivisorANGLE(O,G)},v.drawArraysInstanced=function(O,G,de,ue){S.drawArraysInstancedANGLE(O,G,de,ue)},v.drawElementsInstanced=function(O,G,de,ue,le){S.drawElementsInstancedANGLE(O,G,de,ue,le)},1}function _1(v){var S=v.getExtension("OES_vertex_array_object");if(S)return v.createVertexArray=function(){return S.createVertexArrayOES()},v.deleteVertexArray=function(O){S.deleteVertexArrayOES(O)},v.bindVertexArray=function(O){S.bindVertexArrayOES(O)},v.isVertexArray=function(O){return S.isVertexArrayOES(O)},1}function b1(v){var S=v.getExtension("WEBGL_draw_buffers");if(S)return v.drawBuffers=function(O,G){S.drawBuffersWEBGL(O,G)},1}var Be={counter:1,lastError:0,buffers:[],mappedBuffers:{},programs:[],framebuffers:[],renderbuffers:[],textures:[],uniforms:[],shaders:[],vaos:[],contexts:{},currentContext:null,offscreenCanvases:{},timerQueriesEXT:[],programInfos:{},stringCache:{},unpackAlignment:4,init:function(){for(var v=new Float32Array(Be.MINI_TEMP_BUFFER_SIZE),S=0;S<Be.MINI_TEMP_BUFFER_SIZE;S++)Be.miniTempBufferFloatViews[S]=v.subarray(0,S+1);for(var O=new Int32Array(Be.MINI_TEMP_BUFFER_SIZE),S=0;S<Be.MINI_TEMP_BUFFER_SIZE;S++)Be.miniTempBufferIntViews[S]=O.subarray(0,S+1)},recordError:function(v){Be.lastError||(Be.lastError=v)},getNewId:function(v){for(var S=Be.counter++,O=v.length;O<S;O++)v[O]=null;return S},MINI_TEMP_BUFFER_SIZE:256,miniTempBufferFloatViews:[0],miniTempBufferIntViews:[0],getSource:function(v,S,O,G){for(var de="",ue=0;ue<S;++ue){var le=G?o()[G+ue*4>>2]:-1;de+=Ve(o()[O+ue*4>>2],le<0?void 0:le)}return de},createContext:function(v,S){var O=v.getContext("webgl",S);if(!O)return 0;var G=Be.registerContext(O,S);return G},registerContext:function(v,S){var O=uu(8);o()[O+4>>2]=Cr();var G={handle:O,attributes:S,version:S.majorVersion,GLctx:v};return v.canvas&&(v.canvas.GLctxObject=G),Be.contexts[O]=G,(typeof S.enableExtensionsByDefault=="undefined"||S.enableExtensionsByDefault)&&Be.initExtensions(G),O},makeContextCurrent:function(v){return Be.currentContext=Be.contexts[v],c.ctx=xa=Be.currentContext&&Be.currentContext.GLctx,!(v&&!xa)},getContext:function(v){return Be.contexts[v]},deleteContext:function(v){Be.currentContext===Be.contexts[v]&&(Be.currentContext=null),typeof Pe=="object"&&Pe.removeAllHandlersOnTarget(Be.contexts[v].GLctx.canvas),Be.contexts[v]&&Be.contexts[v].GLctx.canvas&&(Be.contexts[v].GLctx.canvas.GLctxObject=void 0),cu(Be.contexts[v].handle),Be.contexts[v]=null},initExtensions:function(v){if(v||(v=Be.currentContext),!v.initExtensionsDone){v.initExtensionsDone=!0;var S=v.GLctx;w1(S),_1(S),b1(S),S.disjointTimerQueryExt=S.getExtension("EXT_disjoint_timer_query");var O=["OES_texture_float","OES_texture_half_float","OES_standard_derivatives","OES_vertex_array_object","WEBGL_compressed_texture_s3tc","WEBGL_depth_texture","OES_element_index_uint","EXT_texture_filter_anisotropic","EXT_frag_depth","WEBGL_draw_buffers","ANGLE_instanced_arrays","OES_texture_float_linear","OES_texture_half_float_linear","EXT_blend_minmax","EXT_shader_texture_lod","EXT_texture_norm16","WEBGL_compressed_texture_pvrtc","EXT_color_buffer_half_float","WEBGL_color_buffer_float","EXT_sRGB","WEBGL_compressed_texture_etc1","EXT_disjoint_timer_query","WEBGL_compressed_texture_etc","WEBGL_compressed_texture_astc","EXT_color_buffer_float","WEBGL_compressed_texture_s3tc_srgb","EXT_disjoint_timer_query_webgl2","WEBKIT_WEBGL_compressed_texture_pvrtc"],G=S.getSupportedExtensions()||[];G.forEach(function(de){O.indexOf(de)!=-1&&S.getExtension(de)})}},populateUniformTable:function(v){for(var S=Be.programs[v],O=Be.programInfos[v]={uniforms:{},maxUniformLength:0,maxAttributeLength:-1,maxUniformBlockNameLength:-1},G=O.uniforms,de=xa.getProgramParameter(S,35718),ue=0;ue<de;++ue){var le=xa.getActiveUniform(S,ue),we=le.name;O.maxUniformLength=Math.max(O.maxUniformLength,we.length+1),we.slice(-1)=="]"&&(we=we.slice(0,we.lastIndexOf("[")));var Ye=xa.getUniformLocation(S,we);if(Ye){var Mt=Be.getNewId(Be.uniforms);G[we]=[le.size,Mt],Be.uniforms[Mt]=Ye;for(var rn=1;rn<le.size;++rn){var qi=we+"["+rn+"]";Ye=xa.getUniformLocation(S,qi),Mt=Be.getNewId(Be.uniforms),Be.uniforms[Mt]=Ye}}}}},v1=["default","low-power","high-performance"];function k1(v,S){var O={},G=S>>2;O.alpha=!!o()[G+(0>>2)],O.depth=!!o()[G+(4>>2)],O.stencil=!!o()[G+(8>>2)],O.antialias=!!o()[G+(12>>2)],O.premultipliedAlpha=!!o()[G+(16>>2)],O.preserveDrawingBuffer=!!o()[G+(20>>2)];var de=o()[G+(24>>2)];O.powerPreference=v1[de],O.failIfMajorPerformanceCaveat=!!o()[G+(28>>2)],O.majorVersion=o()[G+(32>>2)],O.minorVersion=o()[G+(36>>2)],O.enableExtensionsByDefault=o()[G+(40>>2)],O.explicitSwapControl=o()[G+(44>>2)],O.proxyContextToMainThread=o()[G+(48>>2)],O.renderViaOffscreenBackBuffer=o()[G+(52>>2)];var ue=au(v);if(!ue)return-4;if(O.explicitSwapControl)return-1;var le=Be.createContext(ue,O);return le}function N1(v,S){return k1(v,S)}var ss={splitPath:function(v){var S=/^(\/?|)([\s\S]*?)((?:\.{1,2}|[^\/]+?|)(\.[^.\/]*|))(?:[\/]*)$/;return S.exec(v).slice(1)},normalizeArray:function(v,S){for(var O=0,G=v.length-1;G>=0;G--){var de=v[G];de==="."?v.splice(G,1):de===".."?(v.splice(G,1),O++):O&&(v.splice(G,1),O--)}if(S)for(;O;O--)v.unshift("..");return v},normalize:function(v){var S=v.charAt(0)==="/",O=v.substr(-1)==="/";return v=ss.normalizeArray(v.split("/").filter(function(G){return!!G}),!S).join("/"),!v&&!S&&(v="."),v&&O&&(v+="/"),(S?"/":"")+v},dirname:function(v){var S=ss.splitPath(v),O=S[0],G=S[1];return!O&&!G?".":(G&&(G=G.substr(0,G.length-1)),O+G)},basename:function(v){if(v==="/")return"/";var S=v.lastIndexOf("/");return S===-1?v:v.substr(S+1)},extname:function(v){return ss.splitPath(v)[3]},join:function(){var v=Array.prototype.slice.call(arguments,0);return ss.normalize(v.join("/"))},join2:function(v,S){return ss.normalize(v+"/"+S)}},Ui={mappings:{},buffers:[null,[],[]],printChar:function(v,S){var O=Ui.buffers[v];S===0||S===10?((v===1?H:X)(Je(O,0)),O.length=0):O.push(S)},varargs:void 0,get:function(){Ui.varargs+=4;var v=o()[Ui.varargs-4>>2];return v},getStr:function(v){var S=Ve(v);return S},get64:function(v,S){return v}};function Ah(v){return x?ga(3,1,v):0}function yh(v,S,O,G,de){if(x)return ga(4,1,v,S,O,G,de)}function gh(v,S,O,G){if(x)return ga(5,1,v,S,O,G);for(var de=0,ue=0;ue<O;ue++){for(var le=o()[S+ue*8>>2],we=o()[S+(ue*8+4)>>2],Ye=0;Ye<we;Ye++)Ui.printChar(v,i()[le+Ye]);de+=we}return o()[G>>2]=de,0}function I1(v){var S=fe.exitHandlers.pop();v&&S()}function S1(v,S){fe.exitHandlers===null&&(fe.exitHandlers=[]),fe.exitHandlers.push(function(){q2(v,S)})}function xh(v){if(x)throw"Internal Error! _spawn_thread() can only ever be called from main application thread!";var S=fe.getNewWorker();if(S.pthread!==void 0)throw"Internal error!";if(!v.pthread_ptr)throw"Internal error, no pthread ptr!";fe.runningWorkers.push(S);for(var O=uu(128*4),G=0;G<128;++G)o()[O+G*4>>2]=0;var de=v.stackBase+v.stackSize,ue=fe.pthreads[v.pthread_ptr]={worker:S,stackBase:v.stackBase,stackSize:v.stackSize,allocatedOwnStack:v.allocatedOwnStack,thread:v.pthread_ptr,threadInfoStruct:v.pthread_ptr},le=ue.threadInfoStruct>>2;Atomics.store(l(),le+(0>>2),0),Atomics.store(l(),le+(4>>2),0),Atomics.store(l(),le+(8>>2),0),Atomics.store(l(),le+(68>>2),v.detached),Atomics.store(l(),le+(104>>2),O),Atomics.store(l(),le+(48>>2),0),Atomics.store(l(),le+(40>>2),ue.threadInfoStruct),Atomics.store(l(),le+(44>>2),42),Atomics.store(l(),le+(108>>2),v.stackSize),Atomics.store(l(),le+(84>>2),v.stackSize),Atomics.store(l(),le+(80>>2),de),Atomics.store(l(),le+(108+8>>2),de),Atomics.store(l(),le+(108+12>>2),v.detached),Atomics.store(l(),le+(108+20>>2),v.schedPolicy),Atomics.store(l(),le+(108+24>>2),v.schedPrio);var we=W2(),Ye=we+40;Atomics.store(l(),le+(176>>2),Ye),S.pthread=ue;var Mt={cmd:"run",start_routine:v.startRoutine,arg:v.arg,threadInfoStruct:v.pthread_ptr,selfThreadId:v.pthread_ptr,parentThreadId:v.parent_pthread_ptr,stackBase:v.stackBase,stackSize:v.stackSize};S.runPthread=function(){Mt.time=performance.now(),S.postMessage(Mt,v.transferList)},S.loaded&&(S.runPthread(),delete S.runPthread)}function T1(v,S,O){if(!S&&!O)return ru.EINVAL;if(!v)return X("pthread_getschedparam called with a null thread pointer!"),ru.ESRCH;var G=o()[v+12>>2];if(G!==v)return X("pthread_getschedparam attempted on thread "+v+", which does not point to a valid thread, or does not exist anymore!"),ru.ESRCH;var de=Atomics.load(l(),v+108+20>>2),ue=Atomics.load(l(),v+108+24>>2);return S&&(o()[S>>2]=de),O&&(o()[O>>2]=ue),0}function Cr(){return hh|0}c._pthread_self=Cr;function E1(v,S,O,G){if(typeof SharedArrayBuffer=="undefined")return X("Current environment does not support SharedArrayBuffer, pthreads are not available!"),6;if(!v)return X("pthread_create called with a null thread pointer!"),28;var de=[],ue=0;if(x&&(de.length===0||ue))return G2(687865856,v,S,O,G);if(ue)return ue;var le=0,we=0,Ye=0,Mt=0,rn=0;if(S){le=o()[S>>2],le+=81920,we=o()[S+8>>2],Ye=o()[S+12>>2]!==0;var qi=o()[S+16>>2]===0;if(qi){var pu=o()[S+20>>2],Vn=o()[S+24>>2],_a=fe.currentProxiedOperationCallerThread?fe.currentProxiedOperationCallerThread:Cr();T1(_a,S+20,S+24),Mt=o()[S+20>>2],rn=o()[S+24>>2],o()[S+20>>2]=pu,o()[S+24>>2]=Vn}else Mt=o()[S+20>>2],rn=o()[S+24>>2]}else le=2097152;var fu=we==0;fu?we=V2(16,le):(we-=le,Ie(we>0));for(var Xi=uu(232),z1=0;z1<232>>2;++z1)l()[(Xi>>2)+z1]=0;o()[v>>2]=Xi,o()[Xi+12>>2]=Xi;var K2=Xi+156;o()[K2>>2]=K2;var P1={stackBase:we,stackSize:le,allocatedOwnStack:fu,schedPolicy:Mt,schedPrio:rn,detached:Ye,startRoutine:O,pthread_ptr:Xi,parent_pthread_ptr:Cr(),arg:G,transferList:de};return x?(P1.cmd="spawnThread",postMessage(P1,de)):xh(P1),0}function C1(v){return v=+v,v>=0?+$0(v+.5):+D0(v-.5)}function wh(v){if(x)return ga(6,1,v);switch(v){case 30:return 16384;case 85:var S=2147483648;return S/16384;case 132:case 133:case 12:case 137:case 138:case 15:case 235:case 16:case 17:case 18:case 19:case 20:case 149:case 13:case 10:case 236:case 153:case 9:case 21:case 22:case 159:case 154:case 14:case 77:case 78:case 139:case 80:case 81:case 82:case 68:case 67:case 164:case 11:case 29:case 47:case 48:case 95:case 52:case 51:case 46:case 79:return 200809;case 27:case 246:case 127:case 128:case 23:case 24:case 160:case 161:case 181:case 182:case 242:case 183:case 184:case 243:case 244:case 245:case 165:case 178:case 179:case 49:case 50:case 168:case 169:case 175:case 170:case 171:case 172:case 97:case 76:case 32:case 173:case 35:return-1;case 176:case 177:case 7:case 155:case 8:case 157:case 125:case 126:case 92:case 93:case 129:case 130:case 131:case 94:case 91:return 1;case 74:case 60:case 69:case 70:case 4:return 1024;case 31:case 42:case 72:return 32;case 87:case 26:case 33:return 2147483647;case 34:case 1:return 47839;case 38:case 36:return 99;case 43:case 37:return 2048;case 0:return 2097152;case 3:return 65536;case 28:return 32768;case 44:return 32767;case 75:return 16384;case 39:return 1e3;case 89:return 700;case 71:return 256;case 40:return 255;case 2:return 100;case 180:return 64;case 25:return 20;case 5:return 16;case 6:return 6;case 73:return 4;case 84:return typeof navigator=="object"&&navigator.hardwareConcurrency||1}return Y0(28),-1}x?fe.initWorker():fe.initMainThreadBlock();var xa;Be.init();var R1=[null,J0,mh,Ah,yh,gh,wh],_h={e:K0,r:Z0,w:Q0,a:e1,l:t1,d:n1,c:Bi,h:rs,g:r1,x:a1,q:s1,B:i1,t:o1,A:c1,u:y1,k:g1,s:x1,v:N1,m:Ah,o:yh,i:gh,p:U0,memory:ne||c.wasmMemory,y:I1,z:S1,j:E1,b:Cr,f:C1,n:wh,table:ie},ji=B0();c.asm=ji;var su=c.___wasm_call_ctors=function(){return(su=c.___wasm_call_ctors=c.asm.C).apply(null,arguments)},is=c._init=function(){return(is=c._init=c.asm.D).apply(null,arguments)},iu=c._register_tensor=function(){return(iu=c._register_tensor=c.asm.E).apply(null,arguments)},F1=c._dispose_data=function(){return(F1=c._dispose_data=c.asm.F).apply(null,arguments)},M1=c._dispose=function(){return(M1=c._dispose=c.asm.G).apply(null,arguments)},ou=c._Abs=function(){return(ou=c._Abs=c.asm.H).apply(null,arguments)},bh=c._Add=function(){return(bh=c._Add=c.asm.I).apply(null,arguments)},vh=c._AddN=function(){return(vh=c._AddN=c.asm.J).apply(null,arguments)},j=c._ArgMax=function(){return(j=c._ArgMax=c.asm.K).apply(null,arguments)},te=c._AvgPool=function(){return(te=c._AvgPool=c.asm.L).apply(null,arguments)},Ne=c._BatchMatMul=function(){return(Ne=c._BatchMatMul=c.asm.M).apply(null,arguments)},Re=c._ClipByValue=function(){return(Re=c._ClipByValue=c.asm.N).apply(null,arguments)},Qe=c._Conv2D=function(){return(Qe=c._Conv2D=c.asm.O).apply(null,arguments)},It=c._Conv2DBackpropInput=function(){return(It=c._Conv2DBackpropInput=c.asm.P).apply(null,arguments)},Xe=c._Cos=function(){return(Xe=c._Cos=c.asm.Q).apply(null,arguments)},Ge=c._CropAndResize=function(){return(Ge=c._CropAndResize=c.asm.R).apply(null,arguments)},Bt=c._Cumsum=function(){return(Bt=c._Cumsum=c.asm.S).apply(null,arguments)},ea=c._DepthToSpace=function(){return(ea=c._DepthToSpace=c.asm.T).apply(null,arguments)},ta=c._DepthwiseConv2dNative=function(){return(ta=c._DepthwiseConv2dNative=c.asm.U).apply(null,arguments)},kh=c._Equal=function(){return(kh=c._Equal=c.asm.V).apply(null,arguments)},lu=c._Exp=function(){return(lu=c._Exp=c.asm.W).apply(null,arguments)},Bn=c._FlipLeftRight=function(){return(Bn=c._FlipLeftRight=c.asm.X).apply(null,arguments)},wa=c._Floor=function(){return(wa=c._Floor=c.asm.Y).apply(null,arguments)},Nh=c._FloorDiv=function(){return(Nh=c._FloorDiv=c.asm.Z).apply(null,arguments)},C4=c._FusedBatchNorm=function(){return(C4=c._FusedBatchNorm=c.asm._).apply(null,arguments)},R4=c._FusedConv2D=function(){return(R4=c._FusedConv2D=c.asm.$).apply(null,arguments)},F4=c._FusedDepthwiseConv2D=function(){return(F4=c._FusedDepthwiseConv2D=c.asm.aa).apply(null,arguments)},M4=c._Gather=function(){return(M4=c._Gather=c.asm.ba).apply(null,arguments)},O4=c._GatherNd=function(){return(O4=c._GatherNd=c.asm.ca).apply(null,arguments)},D4=c._Greater=function(){return(D4=c._Greater=c.asm.da).apply(null,arguments)},$4=c._GreaterEqual=function(){return($4=c._GreaterEqual=c.asm.ea).apply(null,arguments)},z4=c._LeakyRelu=function(){return(z4=c._LeakyRelu=c.asm.fa).apply(null,arguments)},P4=c._Less=function(){return(P4=c._Less=c.asm.ga).apply(null,arguments)},L4=c._LessEqual=function(){return(L4=c._LessEqual=c.asm.ha).apply(null,arguments)},W4=c._Log=function(){return(W4=c._Log=c.asm.ia).apply(null,arguments)},B4=c._LogicalAnd=function(){return(B4=c._LogicalAnd=c.asm.ja).apply(null,arguments)},V4=c._Max=function(){return(V4=c._Max=c.asm.ka).apply(null,arguments)},U4=c._MaxPool=function(){return(U4=c._MaxPool=c.asm.la).apply(null,arguments)},j4=c._Maximum=function(){return(j4=c._Maximum=c.asm.ma).apply(null,arguments)},G4=c._Mean=function(){return(G4=c._Mean=c.asm.na).apply(null,arguments)},H4=c._Min=function(){return(H4=c._Min=c.asm.oa).apply(null,arguments)},q4=c._Minimum=function(){return(q4=c._Minimum=c.asm.pa).apply(null,arguments)},X4=c._Multiply=function(){return(X4=c._Multiply=c.asm.qa).apply(null,arguments)},K4=c._Neg=function(){return(K4=c._Neg=c.asm.ra).apply(null,arguments)},Z4=c._NonMaxSuppressionV3=function(){return(Z4=c._NonMaxSuppressionV3=c.asm.sa).apply(null,arguments)},Y4=c._NonMaxSuppressionV4=function(){return(Y4=c._NonMaxSuppressionV4=c.asm.ta).apply(null,arguments)},J4=c._NonMaxSuppressionV5=function(){return(J4=c._NonMaxSuppressionV5=c.asm.ua).apply(null,arguments)},Q4=c._NotEqual=function(){return(Q4=c._NotEqual=c.asm.va).apply(null,arguments)},e8=c._OneHot=function(){return(e8=c._OneHot=c.asm.wa).apply(null,arguments)},t8=c._PadV2=function(){return(t8=c._PadV2=c.asm.xa).apply(null,arguments)},n8=c._Pow=function(){return(n8=c._Pow=c.asm.ya).apply(null,arguments)},r8=c._Prelu=function(){return(r8=c._Prelu=c.asm.za).apply(null,arguments)},a8=c._Prod=function(){return(a8=c._Prod=c.asm.Aa).apply(null,arguments)},s8=c._RealDiv=function(){return(s8=c._RealDiv=c.asm.Ba).apply(null,arguments)},i8=c._Relu=function(){return(i8=c._Relu=c.asm.Ca).apply(null,arguments)},o8=c._Relu6=function(){return(o8=c._Relu6=c.asm.Da).apply(null,arguments)},l8=c._ResizeBilinear=function(){return(l8=c._ResizeBilinear=c.asm.Ea).apply(null,arguments)},u8=c._Reverse=function(){return(u8=c._Reverse=c.asm.Fa).apply(null,arguments)},c8=c._RotateWithOffset=function(){return(c8=c._RotateWithOffset=c.asm.Ga).apply(null,arguments)},h8=c._Round=function(){return(h8=c._Round=c.asm.Ha).apply(null,arguments)},d8=c._Rsqrt=function(){return(d8=c._Rsqrt=c.asm.Ia).apply(null,arguments)},p8=c._ScatterNd=function(){return(p8=c._ScatterNd=c.asm.Ja).apply(null,arguments)},f8=c._SelectV2=function(){return(f8=c._SelectV2=c.asm.Ka).apply(null,arguments)},m8=c._Sigmoid=function(){return(m8=c._Sigmoid=c.asm.La).apply(null,arguments)},A8=c._Sin=function(){return(A8=c._Sin=c.asm.Ma).apply(null,arguments)},y8=c._Softmax=function(){return(y8=c._Softmax=c.asm.Na).apply(null,arguments)},g8=c._Sqrt=function(){return(g8=c._Sqrt=c.asm.Oa).apply(null,arguments)},x8=c._Square=function(){return(x8=c._Square=c.asm.Pa).apply(null,arguments)},w8=c._SquaredDifference=function(){return(w8=c._SquaredDifference=c.asm.Qa).apply(null,arguments)},_8=c._StridedSlice=function(){return(_8=c._StridedSlice=c.asm.Ra).apply(null,arguments)},b8=c._Sub=function(){return(b8=c._Sub=c.asm.Sa).apply(null,arguments)},v8=c._Sum=function(){return(v8=c._Sum=c.asm.Ta).apply(null,arguments)},k8=c._Tanh=function(){return(k8=c._Tanh=c.asm.Ua).apply(null,arguments)},N8=c._Tile=function(){return(N8=c._Tile=c.asm.Va).apply(null,arguments)},I8=c._TopK=function(){return(I8=c._TopK=c.asm.Wa).apply(null,arguments)},S8=c._Transpose=function(){return(S8=c._Transpose=c.asm.Xa).apply(null,arguments)},T8=c.__FusedMatMul=function(){return(T8=c.__FusedMatMul=c.asm.Ya).apply(null,arguments)},uu=c._malloc=function(){return(uu=c._malloc=c.asm.Za).apply(null,arguments)},cu=c._free=function(){return(cu=c._free=c.asm._a).apply(null,arguments)},W2=c._emscripten_get_global_libc=function(){return(W2=c._emscripten_get_global_libc=c.asm.$a).apply(null,arguments)},B2=c.___errno_location=function(){return(B2=c.___errno_location=c.asm.ab).apply(null,arguments)},E8=c.___em_js__initPthreadsJS=function(){return(E8=c.___em_js__initPthreadsJS=c.asm.bb).apply(null,arguments)},V2=c._memalign=function(){return(V2=c._memalign=c.asm.cb).apply(null,arguments)},U2=c.___pthread_tsd_run_dtors=function(){return(U2=c.___pthread_tsd_run_dtors=c.asm.db).apply(null,arguments)},O1=c._emscripten_main_thread_process_queued_calls=function(){return(O1=c._emscripten_main_thread_process_queued_calls=c.asm.eb).apply(null,arguments)},C8=c._emscripten_current_thread_process_queued_calls=function(){return(C8=c._emscripten_current_thread_process_queued_calls=c.asm.fb).apply(null,arguments)},j2=c._emscripten_register_main_browser_thread_id=function(){return(j2=c._emscripten_register_main_browser_thread_id=c.asm.gb).apply(null,arguments)},R8=c._emscripten_main_browser_thread_id=function(){return(R8=c._emscripten_main_browser_thread_id=c.asm.hb).apply(null,arguments)},F8=c._emscripten_async_run_in_main_thread=function(){return(F8=c._emscripten_async_run_in_main_thread=c.asm.ib).apply(null,arguments)},M8=c._emscripten_sync_run_in_main_thread=function(){return(M8=c._emscripten_sync_run_in_main_thread=c.asm.jb).apply(null,arguments)},O8=c._emscripten_sync_run_in_main_thread_0=function(){return(O8=c._emscripten_sync_run_in_main_thread_0=c.asm.kb).apply(null,arguments)},D8=c._emscripten_sync_run_in_main_thread_1=function(){return(D8=c._emscripten_sync_run_in_main_thread_1=c.asm.lb).apply(null,arguments)},$8=c._emscripten_sync_run_in_main_thread_2=function(){return($8=c._emscripten_sync_run_in_main_thread_2=c.asm.mb).apply(null,arguments)},z8=c._emscripten_sync_run_in_main_thread_xprintf_varargs=function(){return(z8=c._emscripten_sync_run_in_main_thread_xprintf_varargs=c.asm.nb).apply(null,arguments)},P8=c._emscripten_sync_run_in_main_thread_3=function(){return(P8=c._emscripten_sync_run_in_main_thread_3=c.asm.ob).apply(null,arguments)},G2=c._emscripten_sync_run_in_main_thread_4=function(){return(G2=c._emscripten_sync_run_in_main_thread_4=c.asm.pb).apply(null,arguments)},L8=c._emscripten_sync_run_in_main_thread_5=function(){return(L8=c._emscripten_sync_run_in_main_thread_5=c.asm.qb).apply(null,arguments)},W8=c._emscripten_sync_run_in_main_thread_6=function(){return(W8=c._emscripten_sync_run_in_main_thread_6=c.asm.rb).apply(null,arguments)},B8=c._emscripten_sync_run_in_main_thread_7=function(){return(B8=c._emscripten_sync_run_in_main_thread_7=c.asm.sb).apply(null,arguments)},H2=c._emscripten_run_in_main_runtime_thread_js=function(){return(H2=c._emscripten_run_in_main_runtime_thread_js=c.asm.tb).apply(null,arguments)},D1=c._emscripten_async_queue_on_thread_=function(){return(D1=c._emscripten_async_queue_on_thread_=c.asm.ub).apply(null,arguments)},V8=c._emscripten_tls_init=function(){return(V8=c._emscripten_tls_init=c.asm.vb).apply(null,arguments)},hu=c.stackSave=function(){return(hu=c.stackSave=c.asm.wb).apply(null,arguments)},Gi=c.stackAlloc=function(){return(Gi=c.stackAlloc=c.asm.xb).apply(null,arguments)},Hi=c.stackRestore=function(){return(Hi=c.stackRestore=c.asm.yb).apply(null,arguments)},q2=c.dynCall_vi=function(){return(q2=c.dynCall_vi=c.asm.zb).apply(null,arguments)},U8=c.dynCall_v=function(){return(U8=c.dynCall_v=c.asm.Ab).apply(null,arguments)},j8=c.dynCall_ii=function(){return(j8=c.dynCall_ii=c.asm.Bb).apply(null,arguments)};c.asm=ji,c.cwrap=Ze,c.PThread=fe,c.PThread=fe,c._pthread_self=Cr,c.wasmMemory=ne,c.ExitStatus=X2;var du;c.then=function(v){if(du)v(c);else{var S=c.onRuntimeInitialized;c.onRuntimeInitialized=function(){S&&S(),v(c)}}return c};function X2(v){this.name="ExitStatus",this.message="Program terminated with exit("+v+")",this.status=v}ns=function v(){du||$1(),du||(ns=v)};function $1(v){if(v=v||f,Jr>0||(sh(),Jr>0))return;function S(){du||(du=!0,c.calledRun=!0,!me&&(F0(),M0(),c.onRuntimeInitialized&&c.onRuntimeInitialized(),O0()))}c.setStatus?(c.setStatus("Running..."),setTimeout(function(){setTimeout(function(){c.setStatus("")},1),S()},1)):S()}if(c.run=$1,c.preInit)for(typeof c.preInit=="function"&&(c.preInit=[c.preInit]);c.preInit.length>0;)c.preInit.pop()();return x||(re=!0),x||$1(),a}}();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModuleThreadedSimd=n)}),vk=et((e,t)=>{var n=function(){var r=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(r=r||__filename),function(a){a=a||{};var s=typeof a!="undefined"?a:{},i={},o;for(o in s)s.hasOwnProperty(o)&&(i[o]=s[o]);var l=[],u="./this.program",c=function(j,te){throw te},h=!1,d=!1,p=!1,f=!1;h=typeof window=="object",d=typeof importScripts=="function",p=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",f=!h&&!p&&!d;var m="";function A(j){return s.locateFile?s.locateFile(j,m):m+j}var y,g,_,b,x,w;p?(d?m=mu().dirname(m)+"/":m=__dirname+"/",y=function(j,te){return x||(x=require("fs")),w||(w=mu()),j=w.normalize(j),x.readFileSync(j,te?null:"utf8")},_=function(j){var te=y(j,!0);return te.buffer||(te=new Uint8Array(te)),H(te.buffer),te},process.argv.length>1&&(u=process.argv[1].replace(/\\/g,"/")),l=process.argv.slice(2),process.on("uncaughtException",function(j){if(!(j instanceof iu))throw j}),process.on("unhandledRejection",Yr),c=function(j){process.exit(j)},s.inspect=function(){return"[Emscripten Module object]"}):f?(typeof read!="undefined"&&(y=function(j){return read(j)}),_=function(j){var te;return typeof readbuffer=="function"?new Uint8Array(readbuffer(j)):(te=read(j,"binary"),H(typeof te=="object"),te)},typeof scriptArgs!="undefined"?l=scriptArgs:typeof arguments!="undefined"&&(l=arguments),typeof quit=="function"&&(c=function(j){quit(j)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(h||d)&&(d?m=self.location.href:document.currentScript&&(m=document.currentScript.src),r&&(m=r),m.indexOf("blob:")!==0?m=m.substr(0,m.lastIndexOf("/")+1):m="",y=function(j){var te=new XMLHttpRequest;return te.open("GET",j,!1),te.send(null),te.responseText},d&&(_=function(j){var te=new XMLHttpRequest;return te.open("GET",j,!1),te.responseType="arraybuffer",te.send(null),new Uint8Array(te.response)}),g=function(j,te,Ne){var Re=new XMLHttpRequest;Re.open("GET",j,!0),Re.responseType="arraybuffer",Re.onload=function(){if(Re.status==200||Re.status==0&&Re.response){te(Re.response);return}Ne()},Re.onerror=Ne,Re.send(null)},b=function(j){document.title=j});var I=s.print||console.log.bind(console),T=s.printErr||console.warn.bind(console);for(o in i)i.hasOwnProperty(o)&&(s[o]=i[o]);i=null,s.arguments&&(l=s.arguments),s.thisProgram&&(u=s.thisProgram),s.quit&&(c=s.quit);var E;s.wasmBinary&&(E=s.wasmBinary);var M;s.noExitRuntime&&(M=s.noExitRuntime),typeof WebAssembly!="object"&&T("no native wasm support detected");var z,P=new WebAssembly.Table({initial:151,maximum:151+0,element:"anyfunc"}),B=!1,q=0;function H(j,te){j||Yr("Assertion failed: "+te)}function X(j){var te=s["_"+j];return H(te,"Cannot call unknown function "+j+", make sure it is exported"),te}function Z(j,te,Ne,Re,Qe){var It={string:function(Bn){var wa=0;if(Bn!=null&&Bn!==0){var Nh=(Bn.length<<2)+1;wa=ji(Nh),ie(Bn,wa,Nh)}return wa},array:function(Bn){var wa=ji(Bn.length);return he(Bn,wa),wa}};function Xe(Bn){return te==="string"?re(Bn):te==="boolean"?Boolean(Bn):Bn}var Ge=X(j),Bt=[],ea=0;if(Re)for(var ta=0;ta<Re.length;ta++){var kh=It[Ne[ta]];kh?(ea===0&&(ea=_h()),Bt[ta]=kh(Re[ta])):Bt[ta]=Re[ta]}var lu=Ge.apply(null,Bt);return lu=Xe(lu),ea!==0&&su(ea),lu}function ee(j,te,Ne,Re){Ne=Ne||[];var Qe=Ne.every(function(Xe){return Xe==="number"}),It=te!=="string";return It&&Qe&&!Re?X(j):function(){return Z(j,te,Ne,arguments,Re)}}var J=typeof TextDecoder!="undefined"?new TextDecoder("utf8"):void 0;function se(j,te,Ne){for(var Re=te+Ne,Qe=te;j[Qe]&&!(Qe>=Re);)++Qe;if(Qe-te>16&&j.subarray&&J)return J.decode(j.subarray(te,Qe));for(var It="";te<Qe;){var Xe=j[te++];if(!(Xe&128)){It+=String.fromCharCode(Xe);continue}var Ge=j[te++]&63;if((Xe&224)==192){It+=String.fromCharCode((Xe&31)<<6|Ge);continue}var Bt=j[te++]&63;if((Xe&240)==224?Xe=(Xe&15)<<12|Ge<<6|Bt:Xe=(Xe&7)<<18|Ge<<12|Bt<<6|j[te++]&63,Xe<65536)It+=String.fromCharCode(Xe);else{var ea=Xe-65536;It+=String.fromCharCode(55296|ea>>10,56320|ea&1023)}}return It}function re(j,te){return j?se(me,j,te):""}function ne(j,te,Ne,Re){if(!(Re>0))return 0;for(var Qe=Ne,It=Ne+Re-1,Xe=0;Xe<j.length;++Xe){var Ge=j.charCodeAt(Xe);if(Ge>=55296&&Ge<=57343){var Bt=j.charCodeAt(++Xe);Ge=65536+((Ge&1023)<<10)|Bt&1023}if(Ge<=127){if(Ne>=It)break;te[Ne++]=Ge}else if(Ge<=2047){if(Ne+1>=It)break;te[Ne++]=192|Ge>>6,te[Ne++]=128|Ge&63}else if(Ge<=65535){if(Ne+2>=It)break;te[Ne++]=224|Ge>>12,te[Ne++]=128|Ge>>6&63,te[Ne++]=128|Ge&63}else{if(Ne+3>=It)break;te[Ne++]=240|Ge>>18,te[Ne++]=128|Ge>>12&63,te[Ne++]=128|Ge>>6&63,te[Ne++]=128|Ge&63}}return te[Ne]=0,Ne-Qe}function ie(j,te,Ne){return ne(j,me,te,Ne)}function he(j,te){pe.set(j,te)}var ce,pe,me,ve,Ie,Ee,De,Ze,Je;function Ve(j){ce=j,s.HEAP8=pe=new Int8Array(j),s.HEAP16=ve=new Int16Array(j),s.HEAP32=Ee=new Int32Array(j),s.HEAPU8=me=new Uint8Array(j),s.HEAPU16=Ie=new Uint16Array(j),s.HEAPU32=De=new Uint32Array(j),s.HEAPF32=Ze=new Float32Array(j),s.HEAPF64=Je=new Float64Array(j)}var lt=s.INITIAL_MEMORY||16777216;function Ue(j){for(;j.length>0;){var te=j.shift();if(typeof te=="function"){te(s);continue}var Ne=te.func;typeof Ne=="number"?te.arg===void 0?s.dynCall_v(Ne):s.dynCall_vi(Ne,te.arg):Ne(te.arg===void 0?null:te.arg)}}var ut=[],ft=[],kn=[],Nt=[],wt=!1,Yt=!1;function mn(){if(s.preRun)for(typeof s.preRun=="function"&&(s.preRun=[s.preRun]);s.preRun.length;)Kr(s.preRun.shift());Ue(ut)}function Jn(){wt=!0,Ue(ft)}function Nn(){Ue(kn)}function sn(){Yt=!0}function Ln(){if(s.postRun)for(typeof s.postRun=="function"&&(s.postRun=[s.postRun]);s.postRun.length;)Zr(s.postRun.shift());Ue(Nt)}function Kr(j){ut.unshift(j)}function Zr(j){Nt.unshift(j)}var hr=Math.ceil,zi=Math.floor,dr=0,Er=null,pr=null;function es(j){dr++,s.monitorRunDependencies&&s.monitorRunDependencies(dr)}function th(j){if(dr--,s.monitorRunDependencies&&s.monitorRunDependencies(dr),dr==0&&(Er!==null&&(clearInterval(Er),Er=null),pr)){var te=pr;pr=null,te()}}s.preloadedImages={},s.preloadedAudios={};function Yr(j){throw s.onAbort&&s.onAbort(j),j+="",I(j),T(j),B=!0,q=1,j="abort("+j+"). Build with -s ASSERTIONS=1 for more info.",new WebAssembly.RuntimeError(j)}function eu(j,te){return String.prototype.startsWith?j.startsWith(te):j.indexOf(te)===0}var nh="data:application/octet-stream;base64,";function rh(j){return eu(j,nh)}var ah="file://";function tu(j){return eu(j,ah)}var Wn="tfjs-backend-wasm.wasm";rh(Wn)||(Wn=A(Wn));function sh(){try{if(E)return new Uint8Array(E);if(_)return _(Wn);throw"both async and sync fetching of the wasm failed"}catch(j){Yr(j)}}function F0(){return!E&&(h||d)&&typeof fetch=="function"&&!tu(Wn)?fetch(Wn,{credentials:"same-origin"}).then(function(j){if(!j.ok)throw"failed to load wasm binary file at '"+Wn+"'";return j.arrayBuffer()}).catch(function(){return sh()}):new Promise(function(j,te){j(sh())})}function M0(){var j={env:ih,wasi_snapshot_preview1:ih};function te(Xe,Ge){var Bt=Xe.exports;s.asm=Bt,z=Bt.memory,Ve(z.buffer),th("wasm-instantiate")}es("wasm-instantiate");function Ne(Xe){te(Xe.instance)}function Re(Xe){return F0().then(function(Ge){return WebAssembly.instantiate(Ge,j)}).then(Xe,function(Ge){T("failed to asynchronously prepare wasm: "+Ge),Yr(Ge)})}function Qe(){if(!E&&typeof WebAssembly.instantiateStreaming=="function"&&!rh(Wn)&&!tu(Wn)&&typeof fetch=="function")fetch(Wn,{credentials:"same-origin"}).then(function(Xe){var Ge=WebAssembly.instantiateStreaming(Xe,j);return Ge.then(Ne,function(Bt){T("wasm streaming compile failed: "+Bt),T("falling back to ArrayBuffer instantiation"),Re(Ne)})});else return Re(Ne)}if(s.instantiateWasm)try{var It=s.instantiateWasm(j,te);return It}catch(Xe){return T("Module.instantiateWasm callback failed with error: "+Xe),!1}return Qe(),{}}ft.push();function O0(j){Ve(z.buffer)}var ts={splitPath:function(j){var te=/^(\/?|)([\s\S]*?)((?:\.{1,2}|[^\/]+?|)(\.[^.\/]*|))(?:[\/]*)$/;return te.exec(j).slice(1)},normalizeArray:function(j,te){for(var Ne=0,Re=j.length-1;Re>=0;Re--){var Qe=j[Re];Qe==="."?j.splice(Re,1):Qe===".."?(j.splice(Re,1),Ne++):Ne&&(j.splice(Re,1),Ne--)}if(te)for(;Ne;Ne--)j.unshift("..");return j},normalize:function(j){var te=j.charAt(0)==="/",Ne=j.substr(-1)==="/";return j=ts.normalizeArray(j.split("/").filter(function(Re){return!!Re}),!te).join("/"),!j&&!te&&(j="."),j&&Ne&&(j+="/"),(te?"/":"")+j},dirname:function(j){var te=ts.splitPath(j),Ne=te[0],Re=te[1];return!Ne&&!Re?".":(Re&&(Re=Re.substr(0,Re.length-1)),Ne+Re)},basename:function(j){if(j==="/")return"/";var te=j.lastIndexOf("/");return te===-1?j:j.substr(te+1)},extname:function(j){return ts.splitPath(j)[3]},join:function(){var j=Array.prototype.slice.call(arguments,0);return ts.normalize(j.join("/"))},join2:function(j,te){return ts.normalize(j+"/"+te)}},Pi={mappings:{},buffers:[null,[],[]],printChar:function(j,te){var Ne=Pi.buffers[j];te===0||te===10?((j===1?I:T)(se(Ne,0)),Ne.length=0):Ne.push(te)},varargs:void 0,get:function(){Pi.varargs+=4;var j=Ee[Pi.varargs-4>>2];return j},getStr:function(j){var te=re(j);return te},get64:function(j,te){return j}};function D0(j){return 0}function $0(j,te,Ne,Re,Qe){}function Jr(j,te,Ne,Re){for(var Qe=0,It=0;It<Ne;It++){for(var Xe=Ee[te+It*8>>2],Ge=Ee[te+(It*8+4)>>2],Bt=0;Bt<Ge;Bt++)Pi.printChar(j,me[Xe+Bt]);Qe+=Ge}return Ee[Re>>2]=Qe,0}function nu(j){bh(j)}function ns(j){nu(j)}function z0(j){return j=+j,j>=0?+zi(j+.5):+hr(j-.5)}var ih={emscripten_notify_memory_growth:O0,fd_close:D0,fd_seek:$0,fd_write:Jr,proc_exit:ns,roundf:z0},Qr=M0();s.asm=Qr;var oh=s._init=function(){return(oh=s._init=s.asm.init).apply(null,arguments)},P0=s._register_tensor=function(){return(P0=s._register_tensor=s.asm.register_tensor).apply(null,arguments)},lh=s._dispose_data=function(){return(lh=s._dispose_data=s.asm.dispose_data).apply(null,arguments)},L0=s._dispose=function(){return(L0=s._dispose=s.asm.dispose).apply(null,arguments)},uh=s._Abs=function(){return(uh=s._Abs=s.asm.Abs).apply(null,arguments)},Qn=s._Add=function(){return(Qn=s._Add=s.asm.Add).apply(null,arguments)},ch=s._AddN=function(){return(ch=s._AddN=s.asm.AddN).apply(null,arguments)},W0=s._ArgMax=function(){return(W0=s._ArgMax=s.asm.ArgMax).apply(null,arguments)},B0=s._AvgPool=function(){return(B0=s._AvgPool=s.asm.AvgPool).apply(null,arguments)},V0=s._BatchMatMul=function(){return(V0=s._BatchMatMul=s.asm.BatchMatMul).apply(null,arguments)},U0=s._ClipByValue=function(){return(U0=s._ClipByValue=s.asm.ClipByValue).apply(null,arguments)},hh=s._Conv2D=function(){return(hh=s._Conv2D=s.asm.Conv2D).apply(null,arguments)},dh=s._Conv2DBackpropInput=function(){return(dh=s._Conv2DBackpropInput=s.asm.Conv2DBackpropInput).apply(null,arguments)},ph=s._Cos=function(){return(ph=s._Cos=s.asm.Cos).apply(null,arguments)},Li=s._CropAndResize=function(){return(Li=s._CropAndResize=s.asm.CropAndResize).apply(null,arguments)},ru=s._Cumsum=function(){return(ru=s._Cumsum=s.asm.Cumsum).apply(null,arguments)},Wi=s._DepthToSpace=function(){return(Wi=s._DepthToSpace=s.asm.DepthToSpace).apply(null,arguments)},Bi=s._DepthwiseConv2dNative=function(){return(Bi=s._DepthwiseConv2dNative=s.asm.DepthwiseConv2dNative).apply(null,arguments)},j0=s._Equal=function(){return(j0=s._Equal=s.asm.Equal).apply(null,arguments)},G0=s._Exp=function(){return(G0=s._Exp=s.asm.Exp).apply(null,arguments)},H0=s._FlipLeftRight=function(){return(H0=s._FlipLeftRight=s.asm.FlipLeftRight).apply(null,arguments)},fe=s._Floor=function(){return(fe=s._Floor=s.asm.Floor).apply(null,arguments)},q0=s._FloorDiv=function(){return(q0=s._FloorDiv=s.asm.FloorDiv).apply(null,arguments)},X0=s._FusedBatchNorm=function(){return(X0=s._FusedBatchNorm=s.asm.FusedBatchNorm).apply(null,arguments)},K0=s._FusedConv2D=function(){return(K0=s._FusedConv2D=s.asm.FusedConv2D).apply(null,arguments)},Z0=s._FusedDepthwiseConv2D=function(){return(Z0=s._FusedDepthwiseConv2D=s.asm.FusedDepthwiseConv2D).apply(null,arguments)},rs=s._Gather=function(){return(rs=s._Gather=s.asm.Gather).apply(null,arguments)},Y0=s._GatherNd=function(){return(Y0=s._GatherNd=s.asm.GatherNd).apply(null,arguments)},J0=s._Greater=function(){return(J0=s._Greater=s.asm.Greater).apply(null,arguments)},Q0=s._GreaterEqual=function(){return(Q0=s._GreaterEqual=s.asm.GreaterEqual).apply(null,arguments)},e1=s._LeakyRelu=function(){return(e1=s._LeakyRelu=s.asm.LeakyRelu).apply(null,arguments)},t1=s._Less=function(){return(t1=s._Less=s.asm.Less).apply(null,arguments)},n1=s._LessEqual=function(){return(n1=s._LessEqual=s.asm.LessEqual).apply(null,arguments)},r1=s._Log=function(){return(r1=s._Log=s.asm.Log).apply(null,arguments)},a1=s._LogicalAnd=function(){return(a1=s._LogicalAnd=s.asm.LogicalAnd).apply(null,arguments)},s1=s._Max=function(){return(s1=s._Max=s.asm.Max).apply(null,arguments)},i1=s._MaxPool=function(){return(i1=s._MaxPool=s.asm.MaxPool).apply(null,arguments)},ga=s._Maximum=function(){return(ga=s._Maximum=s.asm.Maximum).apply(null,arguments)},as=s._Mean=function(){return(as=s._Mean=s.asm.Mean).apply(null,arguments)},Vi=s._Min=function(){return(Vi=s._Min=s.asm.Min).apply(null,arguments)},o1=s._Minimum=function(){return(o1=s._Minimum=s.asm.Minimum).apply(null,arguments)},l1=s._Multiply=function(){return(l1=s._Multiply=s.asm.Multiply).apply(null,arguments)},u1=s._Neg=function(){return(u1=s._Neg=s.asm.Neg).apply(null,arguments)},c1=s._NonMaxSuppressionV3=function(){return(c1=s._NonMaxSuppressionV3=s.asm.NonMaxSuppressionV3).apply(null,arguments)},Pe=s._NonMaxSuppressionV4=function(){return(Pe=s._NonMaxSuppressionV4=s.asm.NonMaxSuppressionV4).apply(null,arguments)},h1=s._NonMaxSuppressionV5=function(){return(h1=s._NonMaxSuppressionV5=s.asm.NonMaxSuppressionV5).apply(null,arguments)},d1=s._NotEqual=function(){return(d1=s._NotEqual=s.asm.NotEqual).apply(null,arguments)},p1=s._OneHot=function(){return(p1=s._OneHot=s.asm.OneHot).apply(null,arguments)},f1=s._PadV2=function(){return(f1=s._PadV2=s.asm.PadV2).apply(null,arguments)},m1=s._Pow=function(){return(m1=s._Pow=s.asm.Pow).apply(null,arguments)},A1=s._Prelu=function(){return(A1=s._Prelu=s.asm.Prelu).apply(null,arguments)},au=s._Prod=function(){return(au=s._Prod=s.asm.Prod).apply(null,arguments)},fh=s._RealDiv=function(){return(fh=s._RealDiv=s.asm.RealDiv).apply(null,arguments)},mh=s._Relu=function(){return(mh=s._Relu=s.asm.Relu).apply(null,arguments)},y1=s._Relu6=function(){return(y1=s._Relu6=s.asm.Relu6).apply(null,arguments)},g1=s._ResizeBilinear=function(){return(g1=s._ResizeBilinear=s.asm.ResizeBilinear).apply(null,arguments)},x1=s._Reverse=function(){return(x1=s._Reverse=s.asm.Reverse).apply(null,arguments)},w1=s._RotateWithOffset=function(){return(w1=s._RotateWithOffset=s.asm.RotateWithOffset).apply(null,arguments)},_1=s._Round=function(){return(_1=s._Round=s.asm.Round).apply(null,arguments)},b1=s._Rsqrt=function(){return(b1=s._Rsqrt=s.asm.Rsqrt).apply(null,arguments)},Be=s._ScatterNd=function(){return(Be=s._ScatterNd=s.asm.ScatterNd).apply(null,arguments)},v1=s._SelectV2=function(){return(v1=s._SelectV2=s.asm.SelectV2).apply(null,arguments)},k1=s._Sigmoid=function(){return(k1=s._Sigmoid=s.asm.Sigmoid).apply(null,arguments)},N1=s._Sin=function(){return(N1=s._Sin=s.asm.Sin).apply(null,arguments)},ss=s._Softmax=function(){return(ss=s._Softmax=s.asm.Softmax).apply(null,arguments)},Ui=s._Sqrt=function(){return(Ui=s._Sqrt=s.asm.Sqrt).apply(null,arguments)},Ah=s._Square=function(){return(Ah=s._Square=s.asm.Square).apply(null,arguments)},yh=s._SquaredDifference=function(){return(yh=s._SquaredDifference=s.asm.SquaredDifference).apply(null,arguments)},gh=s._StridedSlice=function(){return(gh=s._StridedSlice=s.asm.StridedSlice).apply(null,arguments)},I1=s._Sub=function(){return(I1=s._Sub=s.asm.Sub).apply(null,arguments)},S1=s._Sum=function(){return(S1=s._Sum=s.asm.Sum).apply(null,arguments)},xh=s._Tanh=function(){return(xh=s._Tanh=s.asm.Tanh).apply(null,arguments)},T1=s._Tile=function(){return(T1=s._Tile=s.asm.Tile).apply(null,arguments)},Cr=s._TopK=function(){return(Cr=s._TopK=s.asm.TopK).apply(null,arguments)},E1=s._Transpose=function(){return(E1=s._Transpose=s.asm.Transpose).apply(null,arguments)},C1=s.__FusedMatMul=function(){return(C1=s.__FusedMatMul=s.asm._FusedMatMul).apply(null,arguments)},wh=s._malloc=function(){return(wh=s._malloc=s.asm.malloc).apply(null,arguments)},xa=s._free=function(){return(xa=s._free=s.asm.free).apply(null,arguments)},R1=s.__start=function(){return(R1=s.__start=s.asm._start).apply(null,arguments)},_h=s.stackSave=function(){return(_h=s.stackSave=s.asm.stackSave).apply(null,arguments)},ji=s.stackAlloc=function(){return(ji=s.stackAlloc=s.asm.stackAlloc).apply(null,arguments)},su=s.stackRestore=function(){return(su=s.stackRestore=s.asm.stackRestore).apply(null,arguments)};s.asm=Qr,s.cwrap=ee;var is;s.then=function(j){if(is)j(s);else{var te=s.onRuntimeInitialized;s.onRuntimeInitialized=function(){te&&te(),j(s)}}return s};function iu(j){this.name="ExitStatus",this.message="Program terminated with exit("+j+")",this.status=j}var F1=!1;pr=function j(){is||ou(),is||(pr=j)};function M1(j){var te=s.__start;try{te();var Ne=0;bh(Ne,!0)}catch(Qe){if(Qe instanceof iu)return;if(Qe=="unwind"){M=!0;return}else{var Re=Qe;Qe&&typeof Qe=="object"&&Qe.stack&&(Re=[Qe,Qe.stack]),T("exception thrown: "+Re),c(1,Qe)}}finally{F1=!0}}function ou(j){if(j=j||l,dr>0||(mn(),dr>0))return;function te(){is||(is=!0,s.calledRun=!0,!B&&(Jn(),Nn(),s.onRuntimeInitialized&&s.onRuntimeInitialized(),vh&&M1(j),Ln()))}s.setStatus?(s.setStatus("Running..."),setTimeout(function(){setTimeout(function(){s.setStatus("")},1),te()},1)):te()}s.run=ou;function bh(j,te){te&&M&&j===0||(M||(B=!0,q=j,sn(),s.onExit&&s.onExit(j)),c(j,new iu(j)))}if(s.preInit)for(typeof s.preInit=="function"&&(s.preInit=[s.preInit]);s.preInit.length>0;)s.preInit.pop()();var vh=!0;return s.noInitialRun&&(vh=!1),M=!0,ou(),a}}();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModule=n)}),kk=et((e,t)=>{(function(n,r,a){function s(u){var c=this,h=l();c.next=function(){var d=2091639*c.s0+c.c*23283064365386963e-26;return c.s0=c.s1,c.s1=c.s2,c.s2=d-(c.c=d|0)},c.c=1,c.s0=h(" "),c.s1=h(" "),c.s2=h(" "),c.s0-=h(u),c.s0<0&&(c.s0+=1),c.s1-=h(u),c.s1<0&&(c.s1+=1),c.s2-=h(u),c.s2<0&&(c.s2+=1),h=null}function i(u,c){return c.c=u.c,c.s0=u.s0,c.s1=u.s1,c.s2=u.s2,c}function o(u,c){var h=new s(u),d=c&&c.state,p=h.next;return p.int32=function(){return h.next()*4294967296|0},p.double=function(){return p()+(p()*2097152|0)*11102230246251565e-32},p.quick=p,d&&(typeof d=="object"&&i(d,h),p.state=function(){return i(h,{})}),p}function l(){var u=4022871197,c=function(h){h=String(h);for(var d=0;d<h.length;d++){u+=h.charCodeAt(d);var p=.02519603282416938*u;u=p>>>0,p-=u,p*=u,u=p>>>0,p-=u,u+=p*4294967296}return(u>>>0)*23283064365386963e-26};return c}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.alea=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),Nk=et((e,t)=>{(function(n,r,a){function s(l){var u=this,c="";u.x=0,u.y=0,u.z=0,u.w=0,u.next=function(){var d=u.x^u.x<<11;return u.x=u.y,u.y=u.z,u.z=u.w,u.w^=u.w>>>19^d^d>>>8},l===(l|0)?u.x=l:c+=l;for(var h=0;h<c.length+64;h++)u.x^=c.charCodeAt(h)|0,u.next()}function i(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u}function o(l,u){var c=new s(l),h=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,h&&(typeof h=="object"&&i(h,c),d.state=function(){return i(c,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xor128=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),Ik=et((e,t)=>{(function(n,r,a){function s(l){var u=this,c="";u.next=function(){var d=u.x^u.x>>>2;return u.x=u.y,u.y=u.z,u.z=u.w,u.w=u.v,(u.d=u.d+362437|0)+(u.v=u.v^u.v<<4^(d^d<<1))|0},u.x=0,u.y=0,u.z=0,u.w=0,u.v=0,l===(l|0)?u.x=l:c+=l;for(var h=0;h<c.length+64;h++)u.x^=c.charCodeAt(h)|0,h==c.length&&(u.d=u.x<<10^u.x>>>4),u.next()}function i(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u.v=l.v,u.d=l.d,u}function o(l,u){var c=new s(l),h=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,h&&(typeof h=="object"&&i(h,c),d.state=function(){return i(c,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xorwow=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),Sk=et((e,t)=>{(function(n,r,a){function s(l){var u=this;u.next=function(){var h=u.x,d=u.i,p,f,m;return p=h[d],p^=p>>>7,f=p^p<<24,p=h[d+1&7],f^=p^p>>>10,p=h[d+3&7],f^=p^p>>>3,p=h[d+4&7],f^=p^p<<7,p=h[d+7&7],p=p^p<<13,f^=p^p<<9,h[d]=f,u.i=d+1&7,f};function c(h,d){var p,f,m=[];if(d===(d|0))f=m[0]=d;else for(d=""+d,p=0;p<d.length;++p)m[p&7]=m[p&7]<<15^d.charCodeAt(p)+m[p+1&7]<<13;for(;m.length<8;)m.push(0);for(p=0;p<8&&m[p]===0;++p);for(p==8?f=m[7]=-1:f=m[p],h.x=m,h.i=0,p=256;p>0;--p)h.next()}c(u,l)}function i(l,u){return u.x=l.x.slice(),u.i=l.i,u}function o(l,u){l==null&&(l=+new Date);var c=new s(l),h=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,h&&(h.x&&i(h,c),d.state=function(){return i(c,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xorshift7=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),Tk=et((e,t)=>{(function(n,r,a){function s(l){var u=this;u.next=function(){var h=u.w,d=u.X,p=u.i,f,m;return u.w=h=h+1640531527|0,m=d[p+34&127],f=d[p=p+1&127],m^=m<<13,f^=f<<17,m^=m>>>15,f^=f>>>12,m=d[p]=m^f,u.i=p,m+(h^h>>>16)|0};function c(h,d){var p,f,m,A,y,g=[],_=128;for(d===(d|0)?(f=d,d=null):(d=d+"\0",f=0,_=Math.max(_,d.length)),m=0,A=-32;A<_;++A)d&&(f^=d.charCodeAt((A+32)%d.length)),A===0&&(y=f),f^=f<<10,f^=f>>>15,f^=f<<4,f^=f>>>13,A>=0&&(y=y+1640531527|0,p=g[A&127]^=f+y,m=p==0?m+1:0);for(m>=128&&(g[(d&&d.length||0)&127]=-1),m=127,A=4*128;A>0;--A)f=g[m+34&127],p=g[m=m+1&127],f^=f<<13,p^=p<<17,f^=f>>>15,p^=p>>>12,g[m]=f^p;h.w=y,h.X=g,h.i=m}c(u,l)}function i(l,u){return u.i=l.i,u.w=l.w,u.X=l.X.slice(),u}function o(l,u){l==null&&(l=+new Date);var c=new s(l),h=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,h&&(h.X&&i(h,c),d.state=function(){return i(c,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xor4096=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),Ek=et((e,t)=>{(function(n,r,a){function s(l){var u=this,c="";u.next=function(){var d=u.b,p=u.c,f=u.d,m=u.a;return d=d<<25^d>>>7^p,p=p-f|0,f=f<<24^f>>>8^m,m=m-d|0,u.b=d=d<<20^d>>>12^p,u.c=p=p-f|0,u.d=f<<16^p>>>16^m,u.a=m-d|0},u.a=0,u.b=0,u.c=2654435769|0,u.d=1367130551,l===Math.floor(l)?(u.a=l/4294967296|0,u.b=l|0):c+=l;for(var h=0;h<c.length+20;h++)u.b^=c.charCodeAt(h)|0,u.next()}function i(l,u){return u.a=l.a,u.b=l.b,u.c=l.c,u.d=l.d,u}function o(l,u){var c=new s(l),h=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,h&&(typeof h=="object"&&i(h,c),d.state=function(){return i(c,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.tychei=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),Ck=et((e,t)=>{(function(n,r,a){var s=256,i=6,o=52,l="random",u=a.pow(s,i),c=a.pow(2,o),h=c*2,d=s-1,p;function f(x,w,I){var T=[];w=w==!0?{entropy:!0}:w||{};var E=g(y(w.entropy?[x,b(r)]:x==null?_():x,3),T),M=new m(T),z=function(){for(var P=M.g(i),B=u,q=0;P<c;)P=(P+q)*s,B*=s,q=M.g(1);for(;P>=h;)P/=2,B/=2,q>>>=1;return(P+q)/B};return z.int32=function(){return M.g(4)|0},z.quick=function(){return M.g(4)/4294967296},z.double=z,g(b(M.S),r),(w.pass||I||function(P,B,q,H){return H&&(H.S&&A(H,M),P.state=function(){return A(M,{})}),q?(a[l]=P,B):P})(z,E,"global"in w?w.global:this==a,w.state)}function m(x){var w,I=x.length,T=this,E=0,M=T.i=T.j=0,z=T.S=[];for(I||(x=[I++]);E<s;)z[E]=E++;for(E=0;E<s;E++)z[E]=z[M=d&M+x[E%I]+(w=z[E])],z[M]=w;(T.g=function(P){for(var B,q=0,H=T.i,X=T.j,Z=T.S;P--;)B=Z[H=d&H+1],q=q*s+Z[d&(Z[H]=Z[X=d&X+B])+(Z[X]=B)];return T.i=H,T.j=X,q})(s)}function A(x,w){return w.i=x.i,w.j=x.j,w.S=x.S.slice(),w}function y(x,w){var I=[],T=typeof x,E;if(w&&T=="object")for(E in x)try{I.push(y(x[E],w-1))}catch(M){}return I.length?I:T=="string"?x:x+"\0"}function g(x,w){for(var I=x+"",T,E=0;E<I.length;)w[d&E]=d&(T^=w[d&E]*19)+I.charCodeAt(E++);return b(w)}function _(){try{var x;return p&&(x=p.randomBytes)?x=x(s):(x=new Uint8Array(s),(n.crypto||n.msCrypto).getRandomValues(x)),b(x)}catch(T){var w=n.navigator,I=w&&w.plugins;return[+new Date,n,I,n.screen,b(r)]}}function b(x){return String.fromCharCode.apply(0,x)}if(g(a.random(),r),typeof t=="object"&&t.exports){t.exports=f;try{p=W1()}catch(x){}}else typeof define=="function"&&define.amd?define(function(){return f}):a["seed"+l]=f})(typeof self!="undefined"?self:e,[],Math)}),Q2=et((e,t)=>{var n=kk(),r=Nk(),a=Ik(),s=Sk(),i=Tk(),o=Ek(),l=Ck();l.alea=n,l.xor128=r,l.xorwow=a,l.xorshift7=s,l.xor4096=i,l.tychei=o,t.exports=l}),Rk=et(()=>{}),Fk="2.8.3",Mk="2.8.3",Ok="2.8.3",Dk="2.8.3",$k="2.8.3",zk=1e-7,Pk=1e-4,Th=class{constructor(e,t){this.backend=e,this.dataMover=t,this.data=new WeakMap,this.dataIdsCount=0}get(e){return this.data.has(e)||this.dataMover.moveData(this.backend,e),this.data.get(e)}set(e,t){this.dataIdsCount++,this.data.set(e,t)}has(e){return this.data.has(e)}delete(e){return this.dataIdsCount--,this.data.delete(e)}numDataIds(){return this.dataIdsCount}},Au=class{time(e){return Y("time")}read(e){return Y("read")}readSync(e){return Y("readSync")}numDataIds(){return Y("numDataIds")}disposeData(e){return Y("disposeData")}write(e,t,n){return Y("write")}move(e,t,n,r){return Y("move")}memory(){return Y("memory")}floatPrecision(){return Y("floatPrecision")}epsilon(){return this.floatPrecision()===32?zk:Pk}batchMatMul(e,t,n,r){return Y("batchMatMul")}fusedBatchMatMul({a:e,b:t,transposeA:n,transposeB:r,bias:a,activation:s,preluActivationWeights:i}){return Y("fusedBatchMatMul")}slice(e,t,n){return Y("slice")}stridedSlice(e,t,n,r){return Y("stridedSlice")}unstack(e,t){return Y("unstack")}reverse(e,t){return Y("reverse")}concat(e,t){return Y("concat")}neg(e){return Y("neg")}add(e,t){return Y("add")}addN(e){return Y("addN")}subtract(e,t){return Y("subtract")}multiply(e,t){return Y("multiply")}realDivide(e,t){return Y("realDivide")}floorDiv(e,t){return Y("floorDiv")}sum(e,t){return Y("sum")}prod(e,t){return Y("prod")}unsortedSegmentSum(e,t,n){return Y("unsortedSegmentSum")}argMin(e,t){return Y("argMin")}argMax(e,t){return Y("argMax")}equal(e,t){return Y("equal")}notEqual(e,t){return Y("notEqual")}less(e,t){return Y("less")}lessEqual(e,t){return Y("lessEqual")}greater(e,t){return Y("greater")}greaterEqual(e,t){return Y("greaterEqual")}logicalNot(e){return Y("logicalNot")}logicalAnd(e,t){return Y("logicalAnd")}logicalOr(e,t){return Y("logicalOr")}where(e){return Y("where")}select(e,t,n){return Y("select")}topk(e,t,n){return Y("topk")}min(e,t){return Y("min")}minimum(e,t){return Y("minimum")}mod(e,t){return Y("mod")}max(e,t){return Y("max")}maximum(e,t){return Y("maximum")}all(e,t){return Y("all")}any(e,t){return Y("any")}squaredDifference(e,t){return Y("squaredDifference")}ceil(e){return Y("ceil")}floor(e){return Y("floor")}round(e){return Y("round")}sign(e){return Y("sign")}isNaN(e){return Y("isNaN")}isInf(e){return Y("isInf")}isFinite(e){return Y("isFinite")}pow(e,t){return Y("pow")}exp(e){return Y("exp")}expm1(e){return Y("expm1")}softmax(e,t){return Y("softmax")}log(e){return Y("log")}log1p(e){return Y("log1p")}sqrt(e){return Y("sqrt")}rsqrt(e){return Y("rsqrt")}square(e){return Y("square")}reciprocal(e){return Y("reciprocal")}relu(e){return Y("relu")}relu6(e){return Y("relu6")}prelu(e,t){return Y("prelu")}elu(e){return Y("elu")}eluDer(e,t){return Y("eluDer")}selu(e){return Y("selu")}int(e){return Y("int")}clip(e,t,n){return Y("clip")}abs(e){return Y("abs")}complexAbs(e){return Y("complexAbs")}sigmoid(e){return Y("sigmoid")}softplus(e){return Y("softplus")}sin(e){return Y("sin")}cos(e){return Y("cos")}tan(e){return Y("tan")}asin(e){return Y("asin")}acos(e){return Y("acos")}atan(e){return Y("atan")}atan2(e,t){return Y("atan2")}sinh(e){return Y("sinh")}cosh(e){return Y("cosh")}tanh(e){return Y("tanh")}asinh(e){return Y("asinh")}acosh(e){return Y("acosh")}atanh(e){return Y("atanh")}erf(e){return Y("erf")}step(e,t){return Y("step")}fusedConv2d({input:e,filter:t,convInfo:n,bias:r,activation:a,preluActivationWeights:s}){return Y("fusedConv2d")}conv2d(e,t,n){return Y("conv2d")}conv2dDerInput(e,t,n){return Y("conv2dDerInput")}conv2dDerFilter(e,t,n){return Y("conv2dDerFilter")}fusedDepthwiseConv2D({input:e,filter:t,convInfo:n,bias:r,activation:a,preluActivationWeights:s}){return Y("fusedDepthwiseConv2D")}depthwiseConv2D(e,t,n){return Y("depthwiseConv2D")}depthwiseConv2DDerInput(e,t,n){return Y("depthwiseConv2DDerInput")}depthwiseConv2DDerFilter(e,t,n){return Y("depthwiseConv2DDerFilter")}conv3d(e,t,n){return Y("conv3d")}conv3dDerInput(e,t,n){return Y("conv3dDerInput")}conv3dDerFilter(e,t,n){return Y("conv3dDerFilter")}maxPool(e,t){return Y("maxPool")}maxPoolBackprop(e,t,n,r){return Y("maxPoolBackprop")}avgPool(e,t){return Y("avgPool")}avgPoolBackprop(e,t,n){return Y("avgPoolBackprop")}avgPool3d(e,t){return Y("avgPool3d")}avgPool3dBackprop(e,t,n){return Y("avgPool3dBackprop")}maxPool3d(e,t){return Y("maxPool3d")}maxPool3dBackprop(e,t,n,r){return Y("maxPool3dBackprop")}reshape(e,t){return Y("reshape")}cast(e,t){return Y("cast")}tile(e,t){return Y("tile")}pad(e,t,n){return Y("pad")}transpose(e,t){return Y("transpose")}gather(e,t,n,r=0){return Y("gather")}gatherND(e,t){return Y("gatherND")}scatterND(e,t,n){return Y("scatterND")}batchToSpaceND(e,t,n){return Y("batchToSpaceND")}spaceToBatchND(e,t,n){return Y("spaceToBatchND")}resizeBilinear(e,t,n,r,a){return Y("resizeBilinear")}resizeBilinearBackprop(e,t,n){return Y("resizeBilinearBackprop")}resizeNearestNeighbor(e,t,n,r,a){return Y("resizeNearestNeighbor")}resizeNearestNeighborBackprop(e,t,n){return Y("resizeNearestNeighborBackprop")}batchNorm(e,t,n,r,a,s){return Y("batchNorm")}localResponseNormalization4D(e,t,n,r,a){return Y("localResponseNormalization4D")}LRNGrad(e,t,n,r,a,s,i){return Y("LRNGrad")}multinomial(e,t,n,r){return Y("multinomial")}oneHot(e,t,n,r){return Y("oneHot")}cumsum(e,t,n,r){return Y("cumsum")}nonMaxSuppression(e,t,n,r,a){return Y("nonMaxSuppression")}fft(e){return Y("fft")}ifft(e){return Y("ifft")}complex(e,t){return Y("complex")}real(e){return Y("real")}imag(e){return Y("imag")}cropAndResize(e,t,n,r,a,s){return Y("cropAndResize")}depthToSpace(e,t,n){return Y("depthToSpace")}split(e,t,n){return Y("split")}sparseToDense(e,t,n,r){return Y("sparseToDense")}diag(e){return Y("diag")}fill(e,t,n){return Y("fill")}onesLike(e){return Y("onesLike")}zerosLike(e){return Y("zerosLike")}linspace(e,t,n){return Y("linspace")}dispose(){return Y("dispose")}};function Y(e){throw new Error(`'${e}' not yet implemented or not found in the registry. This kernel may not be supported by the tfjs backend you have chosen`)}function eg(e){let t=e.length,n=0,r=0;for(;t>0;)r=Math.random()*t|0,t--,n=e[t],e[t]=e[r],e[r]=n}function yu(e,t,n){return Math.max(e,Math.min(t,n))}function Lk(e){return e%2==0?e:e+1}function Wk(e){let t=0;for(let n=0;n<e.length;n++)t+=e[n];return t}function Bk(e,t){let n=Math.random();return t*n+(1-n)*e}function Vk(e,t){let n=0;for(let r=0;r<e.length;r++){let a=Number(e[r])-Number(t[r]);n+=a*a}return n}function F(e,t){if(!e)throw new Error(typeof t=="string"?t:t())}function tt(e,t,n=""){F(na(e,t),()=>n+` Shapes ${e} and ${t} must match`)}function os(e){F(e!=null,()=>"The input to the tensor constructor must be a non-null value.")}function ls(e,t=[],n=!1){if(t==null&&(t=[]),Array.isArray(e)||an(e)&&!n)for(let r=0;r<e.length;++r)ls(e[r],t,n);else t.push(e);return t}function Ot(e){if(e.length===0)return 1;let t=e[0];for(let n=1;n<e.length;n++)t*=e[n];return t}function Uk(e){return e.length===0}function na(e,t){if(e===t)return!0;if(e==null||t==null||e.length!==t.length)return!1;for(let n=0;n<e.length;n++)if(e[n]!==t[n])return!1;return!0}function Vt(e){return e%1==0}function jk(e){if(Math.tanh!=null)return Math.tanh(e);if(e===Infinity)return 1;if(e===-Infinity)return-1;{let t=Math.exp(2*e);return(t-1)/(t+1)}}function Gk(e){let t=Math.ceil(Math.sqrt(e));return[t,Math.ceil(e/t)]}function Hk(e){let t=new Uint32Array(e);for(let n=0;n<e;++n)t[n]=n;return eg(t),t}function gu(e,t){return t<=e.length?e:e+" ".repeat(t-e.length)}function qk(e,t=r=>0,n){return new Promise((r,a)=>{let s=0,i=()=>{if(e()){r();return}s++;let o=t(s);if(n!=null&&s>=n){a();return}setTimeout(i,o)};i()})}function Xk(e,t){let n=1,r=-1;for(let s=0;s<e.length;++s)if(e[s]>=0)n*=e[s];else if(e[s]===-1){if(r!==-1)throw Error(`Shapes can only have 1 implicit size. Found -1 at dim ${r} and dim ${s}`);r=s}else if(e[s]<0)throw Error(`Shapes can not be < 0. Found ${e[s]} at dim ${s}`);if(r===-1){if(t>0&&t!==n)throw Error(`Size(${t}) must match the product of shape ${e}`);return e}if(n===0)throw Error(`Cannot infer the missing size in [${e}] when there are 0 elements`);if(t%n!=0)throw Error(`The implicit shape can't be a fractional number. Got ${t} / ${n}`);let a=e.slice();return a[r]=t/n,a}function er(e,t){let n=t.length;return e=e==null?t.map((r,a)=>a):[].concat(e),F(e.every(r=>r>=-n&&r<n),()=>`All values in axis param must be in range [-${n}, ${n}) but got axis ${e}`),F(e.every(r=>Vt(r)),()=>`All values in axis param must be integers but got axis ${e}`),e.map(r=>r<0?n+r:r)}function tg(e,t){let n=[],r=[],a=t!=null&&Array.isArray(t)&&t.length===0,s=t==null||a?null:er(t,e).sort(),i=0;for(let o=0;o<e.length;++o){if(s!=null){if(s[i]===o&&e[o]!==1)throw new Error(`Can't squeeze axis ${o} since its dim '${e[o]}' is not 1`);(s[i]==null||s[i]>o)&&e[o]===1&&(n.push(e[o]),r.push(o)),s[i]<=o&&i++}e[o]!==1&&(n.push(e[o]),r.push(o))}return{newShape:n,keptDims:r}}function ng(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else throw new Error(`Unknown data type ${e}`);return n}function rg(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else if(e==="string")n=new Array(t);else throw new Error(`Unknown data type ${e}`);return n}function ag(e,t){for(let n=0;n<e.length;n++){let r=e[n];if(isNaN(r)||!isFinite(r))throw Error(`A tensor of type ${t} being uploaded contains ${r}.`)}}function sg(e){return e==="bool"||e==="complex64"||e==="float32"||e==="int32"||e==="string"}function ig(e,t){return!(t==="complex64"||t==="float32"&&e!=="complex64"||t==="int32"&&e!=="float32"&&e!=="complex64"||t==="bool"&&e==="bool")}function an(e){return e instanceof Float32Array||e instanceof Int32Array||e instanceof Uint8Array}function og(e){if(e==="float32"||e==="int32")return 4;if(e==="complex64")return 8;if(e==="bool")return 1;throw new Error(`Unknown dtype ${e}`)}function lg(e){if(e==null)return 0;let t=0;return e.forEach(n=>t+=n.length),t}function ba(e){return typeof e=="string"||e instanceof String}function ug(e){return typeof e=="boolean"}function cg(e){return typeof e=="number"}function Eh(e){return Array.isArray(e)?Eh(e[0]):e instanceof Float32Array?"float32":e instanceof Int32Array||e instanceof Uint8Array?"int32":cg(e)?"float32":ba(e)?"string":ug(e)?"bool":"float32"}function va(e){return!!(e&&e.constructor&&e.call&&e.apply)}function Ch(e,t){for(let n=t;n<e;++n)if(e%n==0)return n;return e}function Zi(e){let t=e.length;if(t<2)return[];let n=new Array(t-1);n[t-2]=e[t-1];for(let r=t-3;r>=0;--r)n[r]=n[r+1]*e[r+1];return n}function hg(e,t,n){let r=new Array;if(t.length===1){let a=t[0];for(let s=0;s<a;s++)r[s]=n[e+s]}else{let a=t[0],s=t.slice(1),i=s.reduce((o,l)=>o*l);for(let o=0;o<a;o++)r[o]=hg(e+o*i,s,n)}return r}function Yi(e,t){if(e.length===0)return t[0];let n=e.reduce((r,a)=>r*a);if(n===0)return[];if(n!==t.length)throw new Error(`[${e}] does not match the input size ${t.length}.`);return hg(0,e,t)}function B1(e,t){let n=Rh(e,t);for(let r=0;r<n.length;r++)n[r]=1;return n}function Rh(e,t){if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool")return new Uint8Array(e);throw new Error(`Unknown data type ${t}`)}function Kk(e,t){let n=e.reduce((r,a)=>r*a,1);if(t==null||t==="float32")return Yi(e,new Float32Array(n));if(t==="int32")return Yi(e,new Int32Array(n));if(t==="bool")return Yi(e,new Uint8Array(n));throw new Error(`Unknown data type ${t}`)}function V1(e){e.forEach(t=>{F(Number.isInteger(t)&&t>=0,()=>`Tensor must have a shape comprised of positive integers but got shape [${e}].`)})}function Zk(e,t,n){if(t===0)return 0;if(t===1)return e[0];let r=e[e.length-1];for(let a=0;a<e.length-1;++a)r+=n[a]*e[a];return r}function Yk(e,t,n){if(t===0)return[];if(t===1)return[e];let r=new Array(t);for(let a=0;a<r.length-1;++a)r[a]=Math.floor(e/n[a]),e-=r[a]*n[a];return r[r.length-1]=e,r}function U1(e){return e&&e.then&&typeof e.then=="function"}var dg="tfjsflags",pg=class{constructor(e){this.global=e,this.flags={},this.flagRegistry={},this.urlFlags={},this.populateURLFlags()}setPlatform(e,t){this.platform!=null&&console.warn(`Platform ${this.platformName} has already been set. Overwriting the platform with ${t}.`),this.platformName=e,this.platform=t}registerFlag(e,t,n){if(this.flagRegistry[e]={evaluationFn:t,setHook:n},this.urlFlags[e]!=null){let r=this.urlFlags[e];console.warn(`Setting feature override from URL ${e}: ${r}.`),this.set(e,r)}}async getAsync(e){return e in this.flags?this.flags[e]:(this.flags[e]=await this.evaluateFlag(e),this.flags[e])}get(e){if(e in this.flags)return this.flags[e];let t=this.evaluateFlag(e);if(U1(t))throw new Error(`Flag ${e} cannot be synchronously evaluated. Please use getAsync() instead.`);return this.flags[e]=t,this.flags[e]}getNumber(e){return this.get(e)}getBool(e){return this.get(e)}getFlags(){return this.flags}get features(){return this.flags}set(e,t){if(this.flagRegistry[e]==null)throw new Error(`Cannot set flag ${e} as it has not been registered.`);this.flags[e]=t,this.flagRegistry[e].setHook!=null&&this.flagRegistry[e].setHook(t)}evaluateFlag(e){if(this.flagRegistry[e]==null)throw new Error(`Cannot evaluate flag '${e}': no evaluation function found.`);return this.flagRegistry[e].evaluationFn()}setFlags(e){this.flags=Object.assign({},e)}reset(){this.flags={},this.urlFlags={},this.populateURLFlags()}populateURLFlags(){if(typeof this.global=="undefined"||typeof this.global.location=="undefined"||typeof this.global.location.search=="undefined")return;let e=Jk(this.global.location.search);dg in e&&e[dg].split(",").forEach(t=>{let[n,r]=t.split(":");this.urlFlags[n]=Qk(n,r)})}};function Jk(e){let t={};return e.replace(/[?&]([^=?&]+)(?:=([^&]*))?/g,(n,...r)=>(e9(t,r[0],r[1]),r.join("="))),t}function e9(e,t,n){e[decodeURIComponent(t)]=decodeURIComponent(n||"")}function Qk(e,t){if(t=t.toLowerCase(),t==="true"||t==="false")return t==="true";if(`${+t}`===t)return+t;throw new Error(`Could not parse value flag value ${t} for flag ${e}.`)}function Q(){return on}var on=null;function t9(e){on=e}var j1;function fg(){if(j1==null){let e;if(typeof window!="undefined")e=window;else if(typeof global!="undefined")e=global;else if(typeof process!="undefined")e=process;else if(typeof self!="undefined")e=self;else throw new Error("Could not find a global object");j1=e}return j1}function n9(){let e=fg();return e._tfGlobals==null&&(e._tfGlobals=new Map),e._tfGlobals}function mg(e,t){let n=n9();if(n.has(e))return n.get(e);{let r=t();return n.set(e,r),n.get(e)}}var Ji="Abs",Qi="Acos",eo="Acosh",ka="Add",us="AddN",Fh="All",Mh="Any",cs="ArgMax",xu="ArgMin",to="Asin",no="Asinh",ro="Atan",ao="Atanh",so="Atan2",hs="AvgPool",Oh="AvgPoolGrad",wu="AvgPool3D",Dh="AvgPool3DGrad",ds="BatchMatMul",_u="BatchToSpaceND",$h="Bincount",Ag="BroadcastTo",ps="Cast",io="Ceil",Na="ClipByValue",zh="Complex",bu="ComplexAbs",oo="Concat",fs="Conv2D",Ph="Conv2DBackpropFilter",ms="Conv2DBackpropInput",vu="Conv3D",Lh="Conv3DBackpropFilterV2",Wh="Conv3DBackpropInputV2",As="Cos",lo="Cosh",ys="Cumsum",uo="CropAndResize",Bh="DenseBincount",co="DepthToSpace",gs="DepthwiseConv2dNative",Vh="DepthwiseConv2dNativeBackpropFilter",Uh="DepthwiseConv2dNativeBackpropInput",jh="Diag",ku="Dilation2D",Gh="Dilation2DBackpropInput",Hh="Dilation2DBackpropFilter",xs="RealDiv",ho="Elu",qh="EluGrad",po="Erf",fo="Equal",ws="Exp",mo="ExpandDims",Ao="Expm1",Xh="FFT",Nu="Fill",yo="FlipLeftRight",_s="Floor",bs="FloorDiv",vs="FusedBatchNorm",go="GatherV2",xo="GatherNd",wo="Greater",ks="GreaterEqual",_o="Identity",Kh="IFFT",Zh="Imag",bo="IsFinite",vo="IsInf",ko="IsNan",Ns="LeakyRelu",No="Less",Io="LessEqual",Yh="LinSpace",Is="Log",So="Log1p",To="LogicalAnd",Iu="LogicalNot",Su="LogicalOr",yg="LogSoftmax",Tu="LRN",Jh="LRNGrad",Ss="Max",Ts="Maximum",Es="MaxPool",Qh="MaxPoolGrad",Eu="MaxPool3D",ed="MaxPool3DGrad",td="MaxPoolWithArgmax",Cs="Mean",Rs="Min",Fs="Minimum",Cu="MirrorPad",Eo="Mod",nd="Multinomial",Ms="Multiply",Co="Neg",Ro="NotEqual",Fo="NonMaxSuppressionV3",Mo="NonMaxSuppressionV4",Oo="NonMaxSuppressionV5",Do="OnesLike",Os="OneHot",$o="Pack",Ds="PadV2",r9="Pool",$s="Pow",zs="Prelu",zo="Prod",Ru="Range",rd="Real",Po="Reciprocal",Ps="Relu",Lo="Reshape",Fu="ResizeNearestNeighbor",ad="ResizeNearestNeighborGrad",Ls="ResizeBilinear",sd="ResizeBilinearGrad",Ws="Relu6",Bs="Reverse",Vs="Round",Us="Rsqrt",Wo="ScatterNd",Bo="Select",Vo="Selu",Uo="Slice",js="Sin",jo="Sinh",Go="Sign",Gs="Sigmoid",Ho="Softplus",Hs="Sqrt",qs="Sum",Mu="SpaceToBatchND",qo="SplitV",Xs="Softmax",Ks="SquaredDifference",Ou="Square",Zs="Sub",id="SparseToDense",Xo="StridedSlice",Ko="Tan",Ys="Tanh",Ia="Tile",Zo="TopK",Js="Transpose",od="Unique",Yo="Unpack",Du="UnsortedSegmentSum",Jo="ZerosLike",Qo="Step",ld="FromPixels",el="RotateWithOffset",Qs="_FusedMatMul",ei="FusedConv2D",ti="FusedDepthwiseConv2D",tl=mg("kernelRegistry",()=>new Map),$u=mg("gradRegistry",()=>new Map);function H1(e,t){let n=G1(e,t);return tl.get(n)}function q1(e){return $u.get(e)}function nl(e){let t=tl.entries(),n=[];for(;;){let{done:r,value:a}=t.next();if(r)break;let[s,i]=a,[o]=s.split("_");o===e&&n.push(i)}return n}function ni(e){let{kernelName:t,backendName:n}=e,r=G1(t,n);tl.has(r)&&console.warn(`The kernel '${t}' for backend '${n}' is already registered`),tl.set(r,e)}function gg(e){let{kernelName:t}=e;$u.has(t)&&Q().getBool("DEBUG")&&console.warn(`Overriding the gradient for '${t}'`),$u.set(t,e)}function a9(e,t){let n=G1(e,t);if(!tl.has(n))throw new Error(`The kernel '${e}' for backend '${t}' is not registered`);tl.delete(n)}function s9(e){if(!$u.has(e))throw new Error(`The gradient '${e}' for backend is not registered`);$u.delete(e)}function i9(e,t){nl(e).forEach(n=>{let r=Object.assign({},n,{backendName:t});ni(r)})}function G1(e,t){return`${t}_${e}`}var k={};$e(k,{arraysEqual:()=>na,assert:()=>F,assertNonNegativeIntegerDimensions:()=>V1,assertNonNull:()=>os,assertShapesMatch:()=>tt,bytesFromStringArray:()=>lg,bytesPerElement:()=>og,checkConversionForErrors:()=>ag,clamp:()=>yu,computeStrides:()=>Zi,createScalarValue:()=>o9,createShuffledIndices:()=>Hk,decodeString:()=>cd,distSquared:()=>Vk,encodeString:()=>zu,fetch:()=>l9,flatten:()=>ls,getArrayFromDType:()=>rg,getTypedArrayFromDType:()=>ng,hasEncodingLoss:()=>ig,indexToLoc:()=>Yk,inferDtype:()=>Eh,inferFromImplicitShape:()=>Xk,isBoolean:()=>ug,isFunction:()=>va,isInt:()=>Vt,isNumber:()=>cg,isPromise:()=>U1,isScalarShape:()=>Uk,isString:()=>ba,isTypedArray:()=>an,isValidDtype:()=>sg,locToIndex:()=>Zk,makeOnesTypedArray:()=>B1,makeZerosNestedTypedArray:()=>Kk,makeZerosTypedArray:()=>Rh,nearestDivisor:()=>Ch,nearestLargerEven:()=>Lk,now:()=>X1,parseAxisParam:()=>er,randUniform:()=>Bk,repeatedTry:()=>qk,rightPad:()=>gu,shuffle:()=>eg,sizeFromShape:()=>Ot,sizeToSquarishShape:()=>Gk,squeezeShape:()=>tg,sum:()=>Wk,tanh:()=>jk,toNestedArray:()=>Yi,toTypedArray:()=>ud});function o9(e,t){return t==="string"?zu(e):ud([e],t)}function u9(e,t){return e instanceof Float32Array&&t==="float32"||e instanceof Int32Array&&t==="int32"||e instanceof Uint8Array&&t==="bool"}function ud(e,t){if(t==="string")throw new Error("Cannot convert a string[] to a TypedArray");if(Array.isArray(e)&&(e=ls(e)),Q().getBool("DEBUG")&&ag(e,t),u9(e,t))return e;if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool"){let n=new Uint8Array(e.length);for(let r=0;r<n.length;++r)Math.round(e[r])!==0&&(n[r]=1);return n}else throw new Error(`Unknown data type ${t}`)}function X1(){return Q().platform.now()}function l9(e,t){return Q().platform.fetch(e,t)}function zu(e,t="utf-8"){return t=t||"utf-8",Q().platform.encode(e,t)}function cd(e,t="utf-8"){return t=t||"utf-8",Q().platform.decode(e,t)}var d9=class{constructor(e,t){this.backendTimer=e,this.logger=t,t==null&&(this.logger=new h9)}profileKernel(e,t,n){let r,a=()=>{r=n()},s=this.backendTimer.time(a);if(Q().getBool("CHECK_COMPUTATION_FOR_ERRORS"))for(let i=0;i<r.length;i++){let o=r[i];o.data().then(l=>{c9(l,o.dtype,e)})}return{kernelName:e,outputs:r,inputs:t,timeMs:s.then(i=>i.kernelMs),extraInfo:s.then(i=>i.getExtraProfileInfo!=null?i.getExtraProfileInfo():"")}}logKernelProfile(e){let{kernelName:t,outputs:n,timeMs:r,inputs:a,extraInfo:s}=e;n.forEach(i=>{Promise.all([i.data(),r,s]).then(o=>{this.logger.logKernelProfile(t,i,o[0],o[1],a,o[2])})})}};function c9(e,t,n){if(t!=="float32")return!1;for(let r=0;r<e.length;r++){let a=e[r];if(isNaN(a)||!isFinite(a))return console.warn(`Found ${a} in the result of '${n}'`),!0}return!1}var h9=class{logKernelProfile(e,t,n,r,a,s){let i=typeof r=="number"?gu(`${r}ms`,9):r.error,o=gu(e,25),l=t.rank,u=t.size,c=gu(t.shape.toString(),14),h="";for(let d in a){let p=a[d];if(p!=null){let f=p.shape||t.shape,m=f.length;h+=`${d}: ${m}D ${m>0?f:""} `}}console.log(`%c${o} %c${i} %c${l}D ${c} %c${u} %c${h} %c${s}`,"font-weight:bold","color:red","color:blue","color: orange","color: green","color: steelblue")}};function p9(e,t,n){let r={},a={};for(let l=0;l<t.length;l++)r[t[l].id]=!0;for(let l=0;l<e.length;l++){let u=e[l],c=u.inputs;for(let h in c){let d=c[h],p=!1;for(let f=0;f<t.length;f++)if(r[d.id]){u.outputs.forEach(m=>r[m.id]=!0),p=!0,a[u.id]=!0;break}if(p)break}}let s={};s[n.id]=!0;let i={};for(let l=e.length-1;l>=0;l--){let u=e[l],c=u.inputs;for(let h=0;h<u.outputs.length;h++)if(s[u.outputs[h].id]){for(let d in c)s[c[d].id]=!0,i[u.id]=!0;break}}let o=[];for(let l=0;l<e.length;l++){let u=e[l];if(a[u.id]&&i[u.id]){let c={};for(let d in u.inputs){let p=u.inputs[d];r[p.id]&&(c[d]=p)}let h=Object.assign({},u);h.inputs=c,h.outputs=u.outputs,o.push(h)}}return o}function f9(e,t,n,r){for(let a=t.length-1;a>=0;a--){let s=t[a],i=[];if(s.outputs.forEach(l=>{let u=e[l.id];u!=null?i.push(u):i.push(null)}),s.gradient==null)throw new Error(`Cannot compute gradient: gradient function not found for ${s.kernelName}.`);let o=s.gradient(i);for(let l in s.inputs){if(!(l in o))throw new Error(`Cannot backprop through input ${l}. Available gradients found: ${Object.keys(o)}.`);let u=n(()=>o[l]());if(u.dtype!=="float32")throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input ${l} must have 'float32' dtype, but has '${u.dtype}'`);let c=s.inputs[l];if(!na(u.shape,c.shape))throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input '${l}' has shape '${u.shape}', which does not match the shape of the input '${c.shape}'`);if(e[c.id]==null)e[c.id]=u;else{let h=e[c.id];e[c.id]=r(h,u),h.dispose()}}}}var xg=20,Pu=3,K1=7;function A9(e,t,n,r){let a=Zi(t),s=m9(e,t,n,a),i=t.length,o=hd(e,t,n,a,s),l=["Tensor"];return r&&(l.push(` dtype: ${n}`),l.push(` rank: ${i}`),l.push(` shape: [${t}]`),l.push(" values:")),l.push(o.map(u=>" "+u).join(`
|
|
`)),l.join(`
|
|
`)}function m9(e,t,n,r){let a=Ot(t),s=r[r.length-1],i=new Array(s).fill(0),o=t.length,l=n==="complex64"?Wu(e):e;if(o>1)for(let u=0;u<a/s;u++){let c=u*s;for(let h=0;h<s;h++)i[h]=Math.max(i[h],Lu(l[c+h],0,n).length)}return i}function Lu(e,t,n){let r;return Array.isArray(e)?r=`${parseFloat(e[0].toFixed(K1))} + ${parseFloat(e[1].toFixed(K1))}j`:ba(e)?r=`'${e}'`:n==="bool"?r=wg(e):r=parseFloat(e.toFixed(K1)).toString(),gu(r,t)}function wg(e){return e===0?"false":"true"}function hd(e,t,n,r,a,s=!0){let i=n==="complex64"?2:1,o=t[0],l=t.length;if(l===0){if(n==="complex64"){let m=Wu(e);return[Lu(m[0],0,n)]}return n==="bool"?[wg(e[0])]:[e[0].toString()]}if(l===1){if(o>xg){let A=Pu*i,y=Array.from(e.slice(0,A)),g=Array.from(e.slice((o-Pu)*i,o*i));return n==="complex64"&&(y=Wu(y),g=Wu(g)),["["+y.map((_,b)=>Lu(_,a[b],n)).join(", ")+", ..., "+g.map((_,b)=>Lu(_,a[o-Pu+b],n)).join(", ")+"]"]}let m=n==="complex64"?Wu(e):Array.from(e);return["["+m.map((A,y)=>Lu(A,a[y],n)).join(", ")+"]"]}let u=t.slice(1),c=r.slice(1),h=r[0]*i,d=[];if(o>xg){for(let m=0;m<Pu;m++){let A=m*h,y=A+h;d.push(...hd(e.slice(A,y),u,n,c,a,!1))}d.push("...");for(let m=o-Pu;m<o;m++){let A=m*h,y=A+h;d.push(...hd(e.slice(A,y),u,n,c,a,m===o-1))}}else for(let m=0;m<o;m++){let A=m*h,y=A+h;d.push(...hd(e.slice(A,y),u,n,c,a,m===o-1))}let p=l===2?",":"";d[0]="["+d[0]+p;for(let m=1;m<d.length-1;m++)d[m]=" "+d[m]+p;let f=`,
|
|
`;for(let m=2;m<l;m++)f+=`
|
|
`;return d[d.length-1]=" "+d[d.length-1]+"]"+(s?"":f),d}function Wu(e){let t=[];for(let n=0;n<e.length;n+=2)t.push([e[n],e[n+1]]);return t}var Dt=class{constructor(e,t,n){if(this.dtype=t,this.shape=e.slice(),this.size=Ot(e),n!=null){let r=n.length;F(r===this.size,()=>`Length of values '${r}' does not match the size inferred by the shape '${this.size}'.`)}if(t==="complex64")throw new Error("complex64 dtype TensorBuffers are not supported. Please create a TensorBuffer for the real and imaginary parts separately and call tf.complex(real, imag).");this.values=n||rg(t,this.size),this.strides=Zi(e)}set(e,...t){t.length===0&&(t=[0]),F(t.length===this.rank,()=>`The number of provided coordinates (${t.length}) must match the rank (${this.rank})`);let n=this.locToIndex(t);this.values[n]=e}get(...e){e.length===0&&(e=[0]);let t=0;for(let r of e){if(r<0||r>=this.shape[t]){let a=`Requested out of range element at ${e}. Buffer shape=${this.shape}`;throw new Error(a)}t++}let n=e[e.length-1];for(let r=0;r<e.length-1;++r)n+=this.strides[r]*e[r];return this.values[n]}locToIndex(e){if(this.rank===0)return 0;if(this.rank===1)return e[0];let t=e[e.length-1];for(let n=0;n<e.length-1;++n)t+=this.strides[n]*e[n];return t}indexToLoc(e){if(this.rank===0)return[];if(this.rank===1)return[e];let t=new Array(this.shape.length);for(let n=0;n<t.length-1;++n)t[n]=Math.floor(e/this.strides[n]),e-=t[n]*this.strides[n];return t[t.length-1]=e,t}get rank(){return this.shape.length}toTensor(){return Rr().makeTensor(this.values,this.shape,this.dtype)}},Rr=null,rl=null,y9=null;function g9(e){Rr=e}function x9(e){rl=e}function w9(e){y9=e}var U=class{constructor(e,t,n,r){this.kept=!1,this.isDisposedInternal=!1,this.shape=e.slice(),this.dtype=t||"float32",this.size=Ot(e),this.strides=Zi(e),this.dataId=n,this.id=r,this.rankType=this.rank<5?this.rank.toString():"higher"}get rank(){return this.shape.length}async buffer(){let e=await this.data();return rl.buffer(this.shape,this.dtype,e)}bufferSync(){return rl.buffer(this.shape,this.dtype,this.dataSync())}async array(){let e=await this.data();return Yi(this.shape,e)}arraySync(){return Yi(this.shape,this.dataSync())}async data(){this.throwIfDisposed();let e=Rr().read(this.dataId);if(this.dtype==="string"){let t=await e;try{return t.map(n=>cd(n))}catch(n){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}}return e}dataSync(){this.throwIfDisposed();let e=Rr().readSync(this.dataId);if(this.dtype==="string")try{return e.map(t=>cd(t))}catch(t){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}return e}async bytes(){this.throwIfDisposed();let e=await Rr().read(this.dataId);return this.dtype==="string"?e:new Uint8Array(e.buffer)}dispose(){this.isDisposed||(Rr().disposeTensor(this),this.isDisposedInternal=!0)}get isDisposed(){return this.isDisposedInternal}throwIfDisposed(){if(this.isDisposed)throw new Error("Tensor is disposed.")}print(e=!1){return rl.print(this,e)}clone(){return this.throwIfDisposed(),rl.clone(this)}toString(e=!1){let t=this.dataSync();return A9(t,this.shape,this.dtype,e)}cast(e){return this.throwIfDisposed(),rl.cast(this,e)}variable(e=!0,t,n){return this.throwIfDisposed(),Rr().makeVariable(this,e,t,n)}};Object.defineProperty(U,Symbol.hasInstance,{value:e=>!!e&&e.data!=null&&e.dataSync!=null&&e.throwIfDisposed!=null});var Bu=class extends U{constructor(e,t,n,r){super(e.shape,e.dtype,e.dataId,r);this.trainable=t,this.name=n}assign(e){if(e.dtype!==this.dtype)throw new Error(`dtype of the new value (${e.dtype}) and previous value (${this.dtype}) must match`);if(!na(e.shape,this.shape))throw new Error(`shape of the new value (${e.shape}) and previous value (${this.shape}) must match`);Rr().disposeTensor(this),this.dataId=e.dataId,Rr().incRef(this,null)}dispose(){Rr().disposeVariable(this),this.isDisposedInternal=!0}};Object.defineProperty(Bu,Symbol.hasInstance,{value:e=>e instanceof U&&e.assign!=null&&e.assign instanceof Function});var fr={};$e(fr,{assertTypesMatch:()=>_g,getTensorsInContainer:()=>Z1,isTensorInList:()=>_9,makeTypesMatch:()=>_t});var Y1;(function(e){e.R0="R0",e.R1="R1",e.R2="R2",e.R3="R3",e.R4="R4",e.R5="R5",e.R6="R6"})(Y1||(Y1={}));var J1;(function(e){e.float32="float32",e.int32="int32",e.bool="int32",e.complex64="complex64"})(J1||(J1={}));var Q1;(function(e){e.float32="float32",e.int32="int32",e.bool="bool",e.complex64="complex64"})(Q1||(Q1={}));var ef;(function(e){e.float32="float32",e.int32="float32",e.bool="float32",e.complex64="complex64"})(ef||(ef={}));var tf;(function(e){e.float32="complex64",e.int32="complex64",e.bool="complex64",e.complex64="complex64"})(tf||(tf={}));var b9={float32:ef,int32:J1,bool:Q1,complex64:tf};function tr(e,t){if(e==="string"||t==="string"){if(e==="string"&&t==="string")return"string";throw new Error(`Can not upcast ${e} with ${t}`)}return b9[e][t]}function dd(e){return tr(e,"int32")}function _t(e,t){if(e.dtype===t.dtype)return[e,t];let n=tr(e.dtype,t.dtype);return[e.cast(n),t.cast(n)]}function _g(e,t){F(e.dtype===t.dtype,()=>`The dtypes of the first(${e.dtype}) and second(${t.dtype}) input must match`)}function _9(e,t){return t.some(n=>n.id===e.id)}function Z1(e){let t=[],n=new Set;return bg(e,t,n),t}function bg(e,t,n){if(e==null)return;if(e instanceof U){t.push(e);return}if(!v9(e))return;let r=e;for(let a in r){let s=r[a];n.has(s)||(n.add(s),bg(s,t,n))}}function v9(e){return Array.isArray(e)||typeof e=="object"}var vg=class{constructor(){this.registeredVariables={},this.nextTapeNodeId=0,this.numBytes=0,this.numTensors=0,this.numStringTensors=0,this.numDataBuffers=0,this.gradientDepth=0,this.kernelDepth=0,this.scopeStack=[],this.numDataMovesStack=[],this.nextScopeId=0,this.tensorInfo=new WeakMap,this.profiling=!1,this.activeProfile={newBytes:0,newTensors:0,peakBytes:0,kernels:[],result:null,get kernelNames(){return Array.from(new Set(this.kernels.map(e=>e.name)))}}}dispose(){for(let e in this.registeredVariables)this.registeredVariables[e].dispose()}},Vu=class{constructor(e){this.ENV=e,this.registry={},this.registryFactory={},this.pendingBackendInitId=0,this.state=new vg}async ready(){if(this.pendingBackendInit!=null)return this.pendingBackendInit.then(()=>{});if(this.backendInstance!=null)return;let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t];if(await this.initializeBackend(n).success){await this.setBackend(n);return}}throw new Error("Could not initialize any backends, all backend initializations failed.")}get backend(){if(this.pendingBackendInit!=null)throw new Error(`Backend '${this.backendName}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);if(this.backendInstance==null){let{name:e,asyncInit:t}=this.initializeBackendsAndReturnBest();if(t)throw new Error(`The highest priority backend '${e}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);this.setBackend(e)}return this.backendInstance}backendNames(){return Object.keys(this.registryFactory)}findBackend(e){if(!(e in this.registry))if(e in this.registryFactory){let{asyncInit:t}=this.initializeBackend(e);if(t)return null}else return null;return this.registry[e]}findBackendFactory(e){return e in this.registryFactory?this.registryFactory[e].factory:null}registerBackend(e,t,n=1){return e in this.registryFactory?(console.warn(`${e} backend was already registered. Reusing existing backend factory.`),!1):(this.registryFactory[e]={factory:t,priority:n},!0)}async setBackend(e){if(this.registryFactory[e]==null)throw new Error(`Backend name '${e}' not found in registry`);if(this.backendName=e,this.registry[e]==null){this.backendInstance=null;let{success:t,asyncInit:n}=this.initializeBackend(e);if(!(n?await t:t))return!1}return this.backendInstance=this.registry[e],this.setupRegisteredKernels(),this.profiler=new d9(this.backendInstance),!0}setupRegisteredKernels(){nl(this.backendName).forEach(e=>{e.setupFunc!=null&&e.setupFunc(this.backendInstance)})}disposeRegisteredKernels(e){nl(e).forEach(t=>{t.disposeFunc!=null&&t.disposeFunc(this.registry[e])})}initializeBackend(e){let t=this.registryFactory[e];if(t==null)throw new Error(`Cannot initialize backend ${e}, no registration found.`);try{let n=t.factory();if(n&&!(n instanceof Au)&&typeof n.then=="function"){let r=++this.pendingBackendInitId,a=n.then(s=>r<this.pendingBackendInitId?!1:(this.registry[e]=s,this.pendingBackendInit=null,!0)).catch(s=>(r<this.pendingBackendInitId||(this.pendingBackendInit=null,console.warn(`Initialization of backend ${e} failed`),console.warn(s.stack||s.message)),!1));return this.pendingBackendInit=a,{success:a,asyncInit:!0}}else return this.registry[e]=n,{success:!0,asyncInit:!1}}catch(n){return console.warn(`Initialization of backend ${e} failed`),console.warn(n.stack||n.message),{success:!1,asyncInit:!1}}}removeBackend(e){if(!(e in this.registryFactory))throw new Error(`${e} backend not found in registry`);this.backendName===e&&this.pendingBackendInit!=null&&this.pendingBackendInitId++,e in this.registry&&(this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e]),delete this.registryFactory[e],this.backendName===e&&(this.pendingBackendInit=null,this.backendName=null,this.backendInstance=null)}getSortedBackends(){if(Object.keys(this.registryFactory).length===0)throw new Error("No backend found in registry.");return Object.keys(this.registryFactory).sort((e,t)=>this.registryFactory[t].priority-this.registryFactory[e].priority)}initializeBackendsAndReturnBest(){let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t],{success:r,asyncInit:a}=this.initializeBackend(n);if(a||r)return{name:n,asyncInit:a}}throw new Error("Could not initialize any backends, all backend initializations failed.")}moveData(e,t){let n=this.state.tensorInfo.get(t),r=n.backend,a=this.readSync(t);r.disposeData(t),n.backend=e,e.move(t,a,n.shape,n.dtype),this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack[this.state.numDataMovesStack.length-1]++}tidy(e,t){let n=null;if(t==null){if(typeof e!="function")throw new Error("Please provide a function to tidy()");t=e}else{if(typeof e!="string"&&!(e instanceof String))throw new Error("When calling with two arguments, the first argument to tidy() must be a string");if(typeof t!="function")throw new Error("When calling with two arguments, the 2nd argument to tidy() must be a function");n=e}let r;return this.scopedRun(()=>this.startScope(n),()=>this.endScope(r),()=>(r=t(),r instanceof Promise&&console.error("Cannot return a Promise inside of tidy."),r))}scopedRun(e,t,n){e();try{let r=n();return t(),r}catch(r){throw t(),r}}nextTensorId(){return Vu.nextTensorId++}nextVariableId(){return Vu.nextVariableId++}clone(e){let t=this.makeTensorFromDataId(e.dataId,e.shape,e.dtype),n={x:e},r=s=>({x:()=>{let i="float32",o={x:s},l={dtype:i};return $.runKernelFunc(u=>u.cast(s,i),o,null,ps,l)}}),a=[];return this.addTapeNode(this.state.activeScope.name,n,[t],r,a,{}),t}runKernel(e,t,n,r,a){let s=null,i=null;return this.runKernelFunc(s,t,i,e,n,r,a)}shouldCheckForMemLeaks(){return this.ENV.getBool("IS_TEST")}checkKernelForMemLeak(e,t,n){let r=this.backend.numDataIds(),a=0;n.forEach(o=>{a+=o.dtype==="complex64"?3:1});let s=this.state.numDataMovesStack[this.state.numDataMovesStack.length-1],i=r-t-a-s;if(i>0)throw new Error(`Backend '${this.backendName}' has an internal memory leak (${i} data ids) after running '${e}'`)}runKernelFunc(e,t,n,r,a,s,i){let o,l=[],u=this.isTapeOn();r==null&&(r=this.state.activeScope!=null?this.state.activeScope.name:"");let c=this.state.numBytes,h=this.state.numTensors;this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack.push(0);let d;this.backendName==null&&this.backend;let p=H1(r,this.backendName),f;if(p!=null)d=()=>{let A=this.backend.numDataIds();f=p.kernelFunc({inputs:t,attrs:a,backend:this.backend});let y=Array.isArray(f)?f:[f];this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(r,A,y);let g=y.map(_=>{if(_.rank!=null)return _;let{dataId:b,shape:x,dtype:w}=_;return this.makeTensorFromDataId(b,x,w)});if(u){let _=this.getTensorsForGradient(r,t,g);if(_==null){i==null&&(i=[]);let b=g.filter((x,w)=>i[w]);_=(s||[]).slice().concat(b)}l=this.saveTensorsForBackwardMode(_)}return g};else{if(e==null)throw new Error(`Error running ${r}: Neither modular kernel nor forward func passed`);let A=y=>{!u||(l=y.map(g=>this.keep(this.clone(g))))};d=()=>{let y=this.backend.numDataIds();f=this.tidy(()=>e(this.backend,A));let g=Array.isArray(f)?f:[f];return this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(r,y,g),g}}let m;return this.scopedRun(()=>this.state.kernelDepth++,()=>this.state.kernelDepth--,()=>{!this.ENV.getBool("DEBUG")&&!this.state.profiling?o=d():(m=this.profiler.profileKernel(r,t,()=>d()),this.ENV.getBool("DEBUG")&&this.profiler.logKernelProfile(m),o=m.outputs)}),u&&this.addTapeNode(r,t,o,n,l,a),this.state.profiling&&this.state.activeProfile.kernels.push({name:r,bytesAdded:this.state.numBytes-c,totalBytesSnapshot:this.state.numBytes,tensorsAdded:this.state.numTensors-h,totalTensorsSnapshot:this.state.numTensors,inputShapes:Object.keys(t).map(A=>t[A]!=null?t[A].shape:null),outputShapes:o.map(A=>A.shape),kernelTimeMs:m.timeMs,extraInfo:m.extraInfo}),Array.isArray(f)?o:o[0]}saveTensorsForBackwardMode(e){return e.map(t=>this.keep(this.clone(t)))}getTensorsForGradient(e,t,n){let r=q1(e);if(r!=null){let a=r.inputsToSave||[],s=r.outputsToSave||[],i;r.saveAllInputs?(F(Array.isArray(t),()=>"saveAllInputs is true, expected inputs to be an array."),i=Object.keys(t).map(l=>t[l])):i=a.map(l=>t[l]);let o=n.filter((l,u)=>s[u]);return i.concat(o)}return null}makeTensor(e,t,n,r){if(e==null)throw new Error("Values passed to engine.makeTensor() are null");n=n||"float32",r=r||this.backend;let a=e;n==="string"&&ba(e[0])&&(a=e.map(o=>zu(o)));let s=r.write(a,t,n),i=new U(t,n,s,this.nextTensorId());if(this.incRef(i,r),n==="string"){let o=this.state.tensorInfo.get(s),l=lg(a);this.state.numBytes+=l-o.bytes,o.bytes=l}return i}makeTensorFromDataId(e,t,n,r){n=n||"float32";let a=new U(t,n,e,this.nextTensorId());return this.incRef(a,r),a}makeVariable(e,t=!0,n,r){n=n||this.nextVariableId().toString(),r!=null&&r!==e.dtype&&(e=e.cast(r));let a=new Bu(e,t,n,this.nextTensorId());if(this.state.registeredVariables[a.name]!=null)throw new Error(`Variable with name ${a.name} was already registered`);return this.state.registeredVariables[a.name]=a,this.incRef(a,this.backend),a}incRef(e,t){let n=this.state.tensorInfo.has(e.dataId)?this.state.tensorInfo.get(e.dataId).refCount:0;if(this.state.numTensors++,e.dtype==="string"&&this.state.numStringTensors++,n===0){this.state.numDataBuffers++;let r=0;e.dtype!=="complex64"&&e.dtype!=="string"&&(r=e.size*og(e.dtype)),this.state.tensorInfo.set(e.dataId,{backend:t||this.backend,dtype:e.dtype,shape:e.shape,bytes:r,refCount:0}),this.state.numBytes+=r}this.state.tensorInfo.get(e.dataId).refCount++,e instanceof Bu||this.track(e)}disposeTensor(e){if(!this.state.tensorInfo.has(e.dataId))return;this.state.numTensors--,e.dtype==="string"&&this.state.numStringTensors--;let t=this.state.tensorInfo.get(e.dataId);t.refCount<=1?(e.dtype!=="complex64"&&(this.state.numBytes-=t.bytes),this.state.numDataBuffers--,t.backend.disposeData(e.dataId),this.state.tensorInfo.delete(e.dataId)):this.state.tensorInfo.get(e.dataId).refCount--}disposeVariables(){for(let e in this.state.registeredVariables){let t=this.state.registeredVariables[e];this.disposeVariable(t)}}disposeVariable(e){this.disposeTensor(e),this.state.registeredVariables[e.name]!=null&&delete this.state.registeredVariables[e.name]}memory(){let e=this.backend.memory();return e.numTensors=this.state.numTensors,e.numDataBuffers=this.state.numDataBuffers,e.numBytes=this.state.numBytes,this.state.numStringTensors>0&&(e.unreliable=!0,e.reasons==null&&(e.reasons=[]),e.reasons.push("Memory usage by string tensors is approximate (2 bytes per character)")),e}async profile(e){this.state.profiling=!0;let t=this.state.numBytes,n=this.state.numTensors;this.state.activeProfile.kernels=[],this.state.activeProfile.result=await e(),this.state.profiling=!1,this.state.activeProfile.peakBytes=Math.max(...this.state.activeProfile.kernels.map(r=>r.totalBytesSnapshot)),this.state.activeProfile.newBytes=this.state.numBytes-t,this.state.activeProfile.newTensors=this.state.numTensors-n;for(let r of this.state.activeProfile.kernels)r.kernelTimeMs=await r.kernelTimeMs,r.extraInfo=await r.extraInfo;return this.state.activeProfile}isTapeOn(){return this.state.gradientDepth>0&&this.state.kernelDepth===0}addTapeNode(e,t,n,r,a,s){let i={id:this.state.nextTapeNodeId++,kernelName:e,inputs:t,outputs:n,saved:a},o=q1(e);o!=null&&(r=o.gradFunc),r!=null&&(i.gradient=l=>(l=l.map((u,c)=>{if(u==null){let h=n[c],d=Rh(h.size,h.dtype);return this.makeTensor(d,h.shape,h.dtype)}return u}),r(l.length>1?l:l[0],a,s))),this.state.activeTape.push(i)}keep(e){return e.kept=!0,e}startTape(){this.state.gradientDepth===0&&(this.state.activeTape=[]),this.state.gradientDepth++}endTape(){this.state.gradientDepth--}startScope(e){let t={track:[],name:"unnamed scope",id:this.state.nextScopeId++};e&&(t.name=e),this.state.scopeStack.push(t),this.state.activeScope=t}endScope(e){let t=Z1(e),n=new Set(t.map(a=>a.id));for(let a=0;a<this.state.activeScope.track.length;a++){let s=this.state.activeScope.track[a];!s.kept&&!n.has(s.id)&&s.dispose()}let r=this.state.scopeStack.pop();this.state.activeScope=this.state.scopeStack.length===0?null:this.state.scopeStack[this.state.scopeStack.length-1],t.forEach(a=>{!a.kept&&a.scopeId===r.id&&this.track(a)})}gradients(e,t,n,r=!1){if(F(t.length>0,()=>"gradients() received an empty list of xs."),n!=null&&n.dtype!=="float32")throw new Error(`dy must have 'float32' dtype, but has '${n.dtype}'`);let a=this.scopedRun(()=>this.startTape(),()=>this.endTape(),()=>this.tidy("forward",e));F(a instanceof U,()=>"The result y returned by f() must be a tensor.");let s=p9(this.state.activeTape,t,a);if(!r&&s.length===0&&t.length>0)throw new Error("Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.");return this.tidy("backward",()=>{let i={};i[a.id]=n==null?k9(a.shape):n,f9(i,s,l=>this.tidy(l),N9);let o=t.map(l=>i[l.id]);return this.state.gradientDepth===0&&(this.state.activeTape.forEach(l=>{for(let u of l.saved)u.dispose()}),this.state.activeTape=null),{value:a,grads:o}})}customGrad(e){return F(va(e),()=>"The f passed in customGrad(f) must be a function."),(...t)=>{F(t.every(a=>a instanceof U),()=>"The args passed in customGrad(f)(x1, x2,...) must all be tensors");let n,r={};return t.forEach((a,s)=>{r[s]=a}),this.runKernelFunc((a,s)=>(n=e(...t,s),F(n.value instanceof U,()=>"The function f passed in customGrad(f) must return an object where `obj.value` is a tensor"),F(va(n.gradFunc),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function."),n.value),r,(a,s)=>{let i=n.gradFunc(a,s),o=Array.isArray(i)?i:[i];F(o.length===t.length,()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns the same number of tensors as inputs passed to f(...)."),F(o.every(u=>u instanceof U),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns a list of only tensors.");let l={};return o.forEach((u,c)=>{l[c]=()=>u}),l})}}readSync(e){return this.state.tensorInfo.get(e).backend.readSync(e)}read(e){return this.state.tensorInfo.get(e).backend.read(e)}async time(e){let t=X1(),n=await this.backend.time(e);return n.wallMs=X1()-t,n}track(e){return this.state.activeScope!=null&&(e.scopeId=this.state.activeScope.id,this.state.activeScope.track.push(e)),e}get registeredVariables(){return this.state.registeredVariables}reset(){this.pendingBackendInitId++,this.state.dispose(),this.ENV.reset(),this.state=new vg;for(let e in this.registry)this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e];this.backendName=null,this.backendInstance=null,this.pendingBackendInit=null}};Vu.nextTensorId=0;Vu.nextVariableId=0;function k9(e){let t=B1(Ot(e),"float32");return $.makeTensor(t,e,"float32")}function kg(){let e=fg();if(e._tfengine==null){let t=new pg(e);e._tfengine=new Vu(t)}return t9(e._tfengine.ENV),g9(()=>e._tfengine),e._tfengine}var $=kg();function N9(e,t){let n={a:e,b:t};return $.runKernel(ka,n)}var pd={};$e(pd,{isBrowser:()=>Ng,isMobile:()=>I9});function S9(){return typeof navigator!="undefined"&&navigator!=null}function I9(){if(S9()){let e=navigator.userAgent||navigator.vendor||window.opera;return/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i.test(e)||/1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(e.substr(0,4))}return!1}function Ng(){return typeof window!="undefined"&&window.document!=null||typeof WorkerGlobalScope!="undefined"}var Fr=Q();Fr.registerFlag("DEBUG",()=>!1,e=>{e&&console.warn("Debugging mode is ON. The output of every math call will be downloaded to CPU and checked for NaNs. This significantly impacts performance.")});Fr.registerFlag("IS_BROWSER",()=>Ng());Fr.registerFlag("IS_NODE",()=>typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined");Fr.registerFlag("IS_CHROME",()=>typeof navigator!="undefined"&&navigator!=null&&navigator.userAgent!=null&&/Chrome/.test(navigator.userAgent)&&/Google Inc/.test(navigator.vendor));Fr.registerFlag("PROD",()=>!1);Fr.registerFlag("TENSORLIKE_CHECK_SHAPE_CONSISTENCY",()=>Fr.getBool("DEBUG"));Fr.registerFlag("DEPRECATION_WARNINGS_ENABLED",()=>!0);Fr.registerFlag("IS_TEST",()=>!1);Fr.registerFlag("CHECK_COMPUTATION_FOR_ERRORS",()=>!0);function Mr(e,t){let n=e;if(an(e))return t==="string"?[]:[e.length];if(!Array.isArray(e))return[];let r=[];for(;Array.isArray(n)||an(n)&&t!=="string";)r.push(n.length),n=n[0];return Array.isArray(e)&&Q().getBool("TENSORLIKE_CHECK_SHAPE_CONSISTENCY")&&Ig(e,r,[]),r}function Ig(e,t,n){if(n=n||[],!Array.isArray(e)&&!an(e)){F(t.length===0,()=>`Element arr[${n.join("][")}] is a primitive, but should be an array/TypedArray of ${t[0]} elements`);return}F(t.length>0,()=>`Element arr[${n.join("][")}] should be a primitive, but is an array of ${e.length} elements`),F(e.length===t[0],()=>`Element arr[${n.join("][")}] should have ${t[0]} elements, but has ${e.length} elements`);let r=t.slice(1);for(let a=0;a<e.length;++a)Ig(e[a],r,n.concat(a))}function Sg(e,t,n,r){if(e!=="string_or_numeric"){if(e==null)throw new Error("Expected dtype cannot be null.");if(e!=="numeric"&&e!==t||e==="numeric"&&t==="string")throw new Error(`Argument '${n}' passed to '${r}' must be ${e} tensor, but got ${t} tensor`)}}function C(e,t,n,r="numeric"){if(e instanceof U)return Sg(r,e.dtype,t,n),e;let a=Eh(e);if(a!=="string"&&["bool","int32","float32"].indexOf(r)>=0&&(a=r),Sg(r,a,t,n),e==null||!an(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string"){let o=e==null?"null":e.constructor.name;throw new Error(`Argument '${t}' passed to '${n}' must be a Tensor or TensorLike, but got '${o}'`)}let s=Mr(e,a);!an(e)&&!Array.isArray(e)&&(e=[e]);let i=a!=="string"?ud(e,a):ls(e,[],!0);return $.makeTensor(i,s,a)}function Uu(e,t,n,r="numeric"){if(!Array.isArray(e))throw new Error(`Argument ${t} passed to ${n} must be a \`Tensor[]\` or \`TensorLike[]\``);return e.map((a,s)=>C(a,`${t}[${s}]`,n,r))}var Tg="__op";function D(e){let t=Object.keys(e);if(t.length!==1)throw new Error(`Please provide an object with a single key (operation name) mapping to a function. Got an object with ${t.length} keys.`);let n=t[0],r=e[n];n.endsWith("_")&&(n=n.substring(0,n.length-1)),n=n+Tg;let a=(...s)=>{$.startScope(n);try{let i=r(...s);return U1(i)&&console.error("Cannot return a Promise inside of tidy."),$.endScope(i),i}catch(i){throw $.endScope(null),i}};return Object.defineProperty(a,"name",{value:n,configurable:!0}),a}function T9(e,t){let n=C(e,"real","complex"),r=C(t,"imag","complex");tt(n.shape,r.shape,`real and imag shapes, ${n.shape} and ${r.shape}, must match in call to tf.complex().`);let a={real:n,imag:r};return $.runKernel(zh,a)}var Sa=D({complex_:T9});function Ta(e,t,n,r){if(r==null&&(r=Eh(e)),r==="complex64")throw new Error("Cannot construct a complex64 tensor directly. Please use tf.complex(real, imag).");if(!an(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string")throw new Error("values passed to tensor(values) must be a number/boolean/string or an array of numbers/booleans/strings, or a TypedArray");if(t!=null){V1(t);let a=Ot(t),s=Ot(n);F(a===s,()=>`Based on the provided shape, [${t}], the tensor should have ${a} values but has ${s}`);for(let i=0;i<n.length;++i){let o=n[i],l=i===n.length-1?o!==Ot(t.slice(i)):!0;F(n[i]===t[i]||!l,()=>`Error creating a new Tensor. Inferred shape (${n}) does not match the provided shape (${t}). `)}}return!an(e)&&!Array.isArray(e)&&(e=[e]),t=t||n,e=r!=="string"?ud(e,r):ls(e,[],!0),$.makeTensor(e,t,r)}function mr(e,t,n){let r=Mr(e,n);return Ta(e,t,r,n)}var nf={float32:4,float16:2,int32:4,uint16:2,uint8:1,bool:1,complex64:8},fd=4;async function C9(e,t){let n=[],r=[],a=Array.isArray(e)?e.map(i=>i.name):Object.keys(e);for(let i=0;i<a.length;++i){let o=a[i],l=Array.isArray(e)?e[i].tensor:e[o];if(l.dtype!=="float32"&&l.dtype!=="int32"&&l.dtype!=="bool"&&l.dtype!=="string"&&l.dtype!=="complex64")throw new Error(`Unsupported dtype in weight '${o}': ${l.dtype}`);let u={name:o,shape:l.shape,dtype:l.dtype};if(l.dtype==="string"){let c=new Promise(async h=>{let d=await l.bytes(),p=d.reduce((A,y)=>A+y.length,0)+fd*d.length,f=new Uint8Array(p),m=0;for(let A=0;A<d.length;A++){let y=d[A],g=new Uint8Array(new Uint32Array([y.length]).buffer);f.set(g,m),m+=fd,f.set(y,m),m+=y.length}h(f)});r.push(c)}else r.push(l.data());t!=null&&(u.group=t),n.push(u)}let s=await Promise.all(r);return{data:E9(s),specs:n}}function Eg(e,t){let n={},r,a=0;for(let s of t){let i=s.name,o=s.dtype,l=s.shape,u=Ot(l),c;if("quantization"in s){let h=s.quantization;if(h.dtype==="uint8"||h.dtype==="uint16"){if(!("min"in h&&"scale"in h))throw new Error(`Weight ${s.name} with quantization ${h.dtype} doesn't have corresponding metadata min and scale.`)}else if(h.dtype==="float16"){if(o!=="float32")throw new Error(`Weight ${s.name} is quantized with ${h.dtype} which only supports weights of type float32 not ${o}.`)}else throw new Error(`Weight ${s.name} has unknown quantization dtype ${h.dtype}. Supported quantization dtypes are: 'uint8', 'uint16', and 'float16'.`);let d=nf[h.dtype],p=e.slice(a,a+u*d),f=h.dtype==="uint8"?new Uint8Array(p):new Uint16Array(p);if(o==="float32")if(h.dtype==="uint8"||h.dtype==="uint16"){c=new Float32Array(f.length);for(let m=0;m<f.length;m++){let A=f[m];c[m]=A*h.scale+h.min}}else if(h.dtype==="float16")r===void 0&&(r=R9()),c=r(f);else throw new Error(`Unsupported quantization type ${h.dtype} for weight type float32.`);else if(o==="int32"){if(h.dtype!=="uint8"&&h.dtype!=="uint16")throw new Error(`Unsupported quantization type ${h.dtype} for weight type int32.`);c=new Int32Array(f.length);for(let m=0;m<f.length;m++){let A=f[m];c[m]=Math.round(A*h.scale+h.min)}}else throw new Error(`Unsupported dtype in weight '${i}': ${o}`);a+=u*d}else if(o==="string"){let h=Ot(s.shape);c=[];for(let d=0;d<h;d++){let p=new Uint32Array(e.slice(a,a+fd))[0];a+=fd;let f=new Uint8Array(e.slice(a,a+p));c.push(f),a+=p}}else{let h=nf[o],d=e.slice(a,a+u*h);if(o==="float32")c=new Float32Array(d);else if(o==="int32")c=new Int32Array(d);else if(o==="bool")c=new Uint8Array(d);else if(o==="complex64"){c=new Float32Array(d);let p=new Float32Array(c.length/2),f=new Float32Array(c.length/2);for(let y=0;y<p.length;y++)p[y]=c[y*2],f[y]=c[y*2+1];let m=mr(p,l,"float32"),A=mr(f,l,"float32");n[i]=Sa(m,A),m.dispose(),A.dispose()}else throw new Error(`Unsupported dtype in weight '${i}': ${o}`);a+=u*h}o!=="complex64"&&(n[i]=mr(c,l,o))}return n}function E9(e){if(e===null)throw new Error(`Invalid input value: ${JSON.stringify(e)}`);let t=0,n=[];e.forEach(s=>{if(t+=s.byteLength,n.push(s.byteLength===s.buffer.byteLength?s:new s.constructor(s)),!(s instanceof Float32Array||s instanceof Int32Array||s instanceof Uint8Array))throw new Error(`Unsupported TypedArray subtype: ${s.constructor.name}`)});let r=new Uint8Array(t),a=0;return n.forEach(s=>{r.set(new Uint8Array(s.buffer),a),a+=s.byteLength}),r.buffer}var rf=typeof Buffer!="undefined"&&(typeof Blob=="undefined"||typeof atob=="undefined"||typeof btoa=="undefined");function Cg(e){return rf?Buffer.byteLength(e):new Blob([e]).size}function F9(e){if(rf)return Buffer.from(e).toString("base64");let t=new Uint8Array(e),n="";for(let r=0,a=t.length;r<a;r++)n+=String.fromCharCode(t[r]);return btoa(n)}function M9(e){if(rf){let r=Buffer.from(e,"base64");return r.buffer.slice(r.byteOffset,r.byteOffset+r.byteLength)}let t=atob(e),n=new Uint8Array(t.length);for(let r=0;r<t.length;++r)n.set([t.charCodeAt(r)],r);return n.buffer}function af(e){if(e.length===1)return e[0];let t=0;e.forEach(a=>{t+=a.byteLength});let n=new Uint8Array(t),r=0;return e.forEach(a=>{n.set(new Uint8Array(a),r),r+=a.byteLength}),n.buffer}function Rg(e){let t="/";for(e=e.trim();e.endsWith(t);)e=e.slice(0,e.length-1);let n=e.split(t);return n[n.length-1]}function ju(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("Expected JSON model topology, received ArrayBuffer.");return{dateSaved:new Date,modelTopologyType:"JSON",modelTopologyBytes:e.modelTopology==null?0:Cg(JSON.stringify(e.modelTopology)),weightSpecsBytes:e.weightSpecs==null?0:Cg(JSON.stringify(e.weightSpecs)),weightDataBytes:e.weightData==null?0:e.weightData.byteLength}}function O9(){let e=n=>{let r=n<<13,a=0;for(;(r&8388608)==0;)a-=8388608,r<<=1;return r&=~8388608,a+=947912704,r|a},t=new Uint32Array(2048);t[0]=0;for(let n=1;n<1024;n++)t[n]=e(n);for(let n=1024;n<2048;n++)t[n]=939524096+(n-1024<<13);return t}function D9(){let e=new Uint32Array(64);e[0]=0,e[31]=1199570944,e[32]=2147483648,e[63]=3347054592;for(let t=1;t<31;t++)e[t]=t<<23;for(let t=33;t<63;t++)e[t]=2147483648+(t-32<<23);return e}function $9(){let e=new Uint32Array(64);for(let t=0;t<64;t++)e[t]=1024;return e[0]=e[32]=0,e}function R9(){let e=O9(),t=D9(),n=$9();return r=>{let a=new ArrayBuffer(4*r.length),s=new Uint32Array(a);for(let i=0;i<r.length;i++){let o=r[i],l=e[n[o>>10]+(o&1023)]+t[o>>10];s[i]=l}return new Float32Array(a)}}var St=class{constructor(){this.saveRouters=[],this.loadRouters=[]}static getInstance(){return St.instance==null&&(St.instance=new St),St.instance}static registerSaveRouter(e){St.getInstance().saveRouters.push(e)}static registerLoadRouter(e){St.getInstance().loadRouters.push(e)}static getSaveHandlers(e){return St.getHandlers(e,"save")}static getLoadHandlers(e,t){return St.getHandlers(e,"load",t)}static getHandlers(e,t,n){let r=[];return(t==="load"?St.getInstance().loadRouters:St.getInstance().saveRouters).forEach(a=>{let s=a(e,n);s!==null&&r.push(s)}),r}},z9=e=>St.registerSaveRouter(e),P9=e=>St.registerLoadRouter(e),L9=e=>St.getSaveHandlers(e),W9=(e,t)=>St.getLoadHandlers(e,t),sf="tensorflowjs",of=1,ri="models_store",Ea="model_info_store";function Fg(){if(!Q().getBool("IS_BROWSER"))throw new Error("Failed to obtain IndexedDB factory because the current environmentis not a web browser.");let e=typeof window=="undefined"?self:window,t=e.indexedDB||e.mozIndexedDB||e.webkitIndexedDB||e.msIndexedDB||e.shimIndexedDB;if(t==null)throw new Error("The current browser does not appear to support IndexedDB.");return t}function lf(e){let t=e.result;t.createObjectStore(ri,{keyPath:"modelPath"}),t.createObjectStore(Ea,{keyPath:"modelPath"})}var ai=class{constructor(e){if(this.indexedDB=Fg(),e==null||!e)throw new Error("For IndexedDB, modelPath must not be null, undefined or empty.");this.modelPath=e}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");return this.databaseAction(this.modelPath,e)}async load(){return this.databaseAction(this.modelPath)}databaseAction(e,t){return new Promise((n,r)=>{let a=this.indexedDB.open(sf,of);a.onupgradeneeded=()=>lf(a),a.onsuccess=()=>{let s=a.result;if(t==null){let i=s.transaction(ri,"readonly"),o=i.objectStore(ri).get(this.modelPath);o.onsuccess=()=>{if(o.result==null)return s.close(),r(new Error(`Cannot find model with path '${this.modelPath}' in IndexedDB.`));n(o.result.modelArtifacts)},o.onerror=l=>(s.close(),r(o.error)),i.oncomplete=()=>s.close()}else{let i=ju(t),o=s.transaction(Ea,"readwrite"),l=o.objectStore(Ea),u=l.put({modelPath:this.modelPath,modelArtifactsInfo:i}),c;u.onsuccess=()=>{c=s.transaction(ri,"readwrite");let h=c.objectStore(ri).put({modelPath:this.modelPath,modelArtifacts:t,modelArtifactsInfo:i});h.onsuccess=()=>n({modelArtifactsInfo:i}),h.onerror=d=>{l=o.objectStore(Ea);let p=l.delete(this.modelPath);p.onsuccess=()=>(s.close(),r(h.error)),p.onerror=f=>(s.close(),r(h.error))}},u.onerror=h=>(s.close(),r(u.error)),o.oncomplete=()=>{c==null?s.close():c.oncomplete=()=>s.close()}}},a.onerror=s=>r(a.error)})}};ai.URL_SCHEME="indexeddb://";var Mg=e=>Q().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(ai.URL_SCHEME)?B9(e.slice(ai.URL_SCHEME.length)):null;St.registerSaveRouter(Mg);St.registerLoadRouter(Mg);function B9(e){return new ai(e)}function V9(e){return e.startsWith(ai.URL_SCHEME)?e.slice(ai.URL_SCHEME.length):e}var U9=class{constructor(){this.indexedDB=Fg()}async listModels(){return new Promise((e,t)=>{let n=this.indexedDB.open(sf,of);n.onupgradeneeded=()=>lf(n),n.onsuccess=()=>{let r=n.result,a=r.transaction(Ea,"readonly"),s=a.objectStore(Ea).getAll();s.onsuccess=()=>{let i={};for(let o of s.result)i[o.modelPath]=o.modelArtifactsInfo;e(i)},s.onerror=i=>(r.close(),t(s.error)),a.oncomplete=()=>r.close()},n.onerror=r=>t(n.error)})}async removeModel(e){return e=V9(e),new Promise((t,n)=>{let r=this.indexedDB.open(sf,of);r.onupgradeneeded=()=>lf(r),r.onsuccess=()=>{let a=r.result,s=a.transaction(Ea,"readwrite"),i=s.objectStore(Ea),o=i.get(e),l;o.onsuccess=()=>{if(o.result==null)return a.close(),n(new Error(`Cannot find model with path '${e}' in IndexedDB.`));{let u=i.delete(e),c=()=>{l=a.transaction(ri,"readwrite");let h=l.objectStore(ri).delete(e);h.onsuccess=()=>t(o.result.modelArtifactsInfo),h.onerror=d=>n(o.error)};u.onsuccess=c,u.onerror=h=>(c(),a.close(),n(o.error))}},o.onerror=u=>(a.close(),n(o.error)),s.oncomplete=()=>{l==null?a.close():l.oncomplete=()=>a.close()}},r.onerror=a=>n(r.error)})}},ra="/",al="tensorflowjs_models",Og="info",j9="model_topology",G9="weight_specs",H9="weight_data",q9="model_metadata";function Dg(e){return{info:[al,e,Og].join(ra),topology:[al,e,j9].join(ra),weightSpecs:[al,e,G9].join(ra),weightData:[al,e,H9].join(ra),modelMetadata:[al,e,q9].join(ra)}}function X9(e){let t=e.split(ra);if(t.length<3)throw new Error(`Invalid key format: ${e}`);return t.slice(1,t.length-1).join(ra)}function K9(e){return e.startsWith(si.URL_SCHEME)?e.slice(si.URL_SCHEME.length):e}var si=class{constructor(e){if(!Q().getBool("IS_BROWSER")||typeof window=="undefined"||typeof window.localStorage=="undefined")throw new Error("The current environment does not support local storage.");if(this.LS=window.localStorage,e==null||!e)throw new Error("For local storage, modelPath must not be null, undefined or empty.");this.modelPath=e,this.keys=Dg(this.modelPath)}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");{let t=JSON.stringify(e.modelTopology),n=JSON.stringify(e.weightSpecs),r=ju(e);try{this.LS.setItem(this.keys.info,JSON.stringify(r)),this.LS.setItem(this.keys.topology,t),this.LS.setItem(this.keys.weightSpecs,n),this.LS.setItem(this.keys.weightData,F9(e.weightData));let a={format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy};return e.signature!=null&&(a.signature=e.signature),e.userDefinedMetadata!=null&&(a.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(a.modelInitializer=e.modelInitializer),this.LS.setItem(this.keys.modelMetadata,JSON.stringify(a)),{modelArtifactsInfo:r}}catch(a){throw this.LS.removeItem(this.keys.info),this.LS.removeItem(this.keys.topology),this.LS.removeItem(this.keys.weightSpecs),this.LS.removeItem(this.keys.weightData),this.LS.removeItem(this.keys.modelMetadata),new Error(`Failed to save model '${this.modelPath}' to local storage: size quota being exceeded is a possible cause of this failure: modelTopologyBytes=${r.modelTopologyBytes}, weightSpecsBytes=${r.weightSpecsBytes}, weightDataBytes=${r.weightDataBytes}.`)}}}async load(){let e=JSON.parse(this.LS.getItem(this.keys.info));if(e==null)throw new Error(`In local storage, there is no model with name '${this.modelPath}'`);if(e.modelTopologyType!=="JSON")throw new Error("BrowserLocalStorage does not support loading non-JSON model topology yet.");let t={},n=JSON.parse(this.LS.getItem(this.keys.topology));if(n==null)throw new Error(`In local storage, the topology of model '${this.modelPath}' is missing.`);t.modelTopology=n;let r=JSON.parse(this.LS.getItem(this.keys.weightSpecs));if(r==null)throw new Error(`In local storage, the weight specs of model '${this.modelPath}' are missing.`);t.weightSpecs=r;let a=this.LS.getItem(this.keys.modelMetadata);if(a!=null){let i=JSON.parse(a);t.format=i.format,t.generatedBy=i.generatedBy,t.convertedBy=i.convertedBy,i.signature!=null&&(t.signature=i.signature),i.userDefinedMetadata!=null&&(t.userDefinedMetadata=i.userDefinedMetadata),i.modelInitializer!=null&&(t.modelInitializer=i.modelInitializer)}let s=this.LS.getItem(this.keys.weightData);if(s==null)throw new Error(`In local storage, the binary weight values of model '${this.modelPath}' are missing.`);return t.weightData=M9(s),t}};si.URL_SCHEME="localstorage://";var $g=e=>Q().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(si.URL_SCHEME)?Z9(e.slice(si.URL_SCHEME.length)):null;St.registerSaveRouter($g);St.registerLoadRouter($g);function Z9(e){return new si(e)}var Y9=class{constructor(){F(Q().getBool("IS_BROWSER"),()=>"Current environment is not a web browser"),F(typeof window=="undefined"||typeof window.localStorage!="undefined",()=>"Current browser does not appear to support localStorage"),this.LS=window.localStorage}async listModels(){let e={},t=al+ra,n=ra+Og;for(let r=0;r<this.LS.length;++r){let a=this.LS.key(r);if(a.startsWith(t)&&a.endsWith(n)){let s=X9(a);e[s]=JSON.parse(this.LS.getItem(a))}}return e}async removeModel(e){e=K9(e);let t=Dg(e);if(this.LS.getItem(t.info)==null)throw new Error(`Cannot find model at path '${e}'`);let n=JSON.parse(this.LS.getItem(t.info));return this.LS.removeItem(t.info),this.LS.removeItem(t.topology),this.LS.removeItem(t.weightSpecs),this.LS.removeItem(t.weightData),n}},sl="://",Un=class{constructor(){this.managers={}}static getInstance(){return Un.instance==null&&(Un.instance=new Un),Un.instance}static registerManager(e,t){F(e!=null,()=>"scheme must not be undefined or null."),e.endsWith(sl)&&(e=e.slice(0,e.indexOf(sl))),F(e.length>0,()=>"scheme must not be an empty string.");let n=Un.getInstance();F(n.managers[e]==null,()=>`A model store manager is already registered for scheme '${e}'.`),n.managers[e]=t}static getManager(e){let t=this.getInstance().managers[e];if(t==null)throw new Error(`Cannot find model manager for scheme '${e}'`);return t}static getSchemes(){return Object.keys(this.getInstance().managers)}};function md(e){if(e.indexOf(sl)===-1)throw new Error(`The url string provided does not contain a scheme. Supported schemes are: ${Un.getSchemes().join(",")}`);return{scheme:e.split(sl)[0],path:e.split(sl)[1]}}async function zg(e,t,n=!1){F(e!==t,()=>`Old path and new path are the same: '${e}'`);let r=St.getLoadHandlers(e);F(r.length>0,()=>`Copying failed because no load handler is found for source URL ${e}.`),F(r.length<2,()=>`Copying failed because more than one (${r.length}) load handlers for source URL ${e}.`);let a=r[0],s=St.getSaveHandlers(t);F(s.length>0,()=>`Copying failed because no save handler is found for destination URL ${t}.`),F(s.length<2,()=>`Copying failed because more than one (${r.length}) save handlers for destination URL ${t}.`);let i=s[0],o=md(e).scheme,l=md(e).path,u=o===md(e).scheme,c=await a.load();n&&u&&await Un.getManager(o).removeModel(l);let h=await i.save(c);return n&&!u&&await Un.getManager(o).removeModel(l),h.modelArtifactsInfo}async function J9(){let e=Un.getSchemes(),t={};for(let n of e){let r=await Un.getManager(n).listModels();for(let a in r){let s=n+sl+a;t[s]=r[a]}}return t}async function Q9(e){let t=md(e);return Un.getManager(t.scheme).removeModel(t.path)}async function eN(e,t){return zg(e,t,!1)}async function tN(e,t){return zg(e,t,!0)}var nN=class{fetch(e,t){return fetch(e,t)}now(){return performance.now()}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Browser's encoder only supports utf-8, but got ${t}`);return this.textEncoder==null&&(this.textEncoder=new TextEncoder),this.textEncoder.encode(e)}decode(e,t){return new TextDecoder(t).decode(e)}};if(Q().get("IS_BROWSER")){Q().setPlatform("browser",new nN);try{Un.registerManager(si.URL_SCHEME,new Y9)}catch(e){}try{Un.registerManager(ai.URL_SCHEME,new U9)}catch(e){}}var rN={importFetch:()=>rk()},uf,aN=class{constructor(){this.util=require("util"),this.textEncoder=new this.util.TextEncoder}fetch(e,t){return Q().global.fetch!=null?Q().global.fetch(e,t):(uf==null&&(uf=rN.importFetch()),uf(e,t))}now(){let e=process.hrtime();return e[0]*1e3+e[1]/1e6}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Node built-in encoder only supports utf-8, but got ${t}`);return this.textEncoder.encode(e)}decode(e,t){return e.length===0?"":new this.util.TextDecoder(t).decode(e)}};Q().get("IS_NODE")&&Q().setPlatform("node",new aN);function We(e,t="float32",n){return t=t||"float32",V1(e),new Dt(e,t,n)}function sN(e,t){let n=C(e,"x","cast");if(!sg(t))throw new Error(`Failed to cast to unknown dtype ${t}`);if(t==="string"&&n.dtype!=="string"||t!=="string"&&n.dtype==="string")throw new Error("Only strings can be casted to strings");let r={x:n},a={dtype:t};return $.runKernel(ps,r,a)}var Ae=D({cast_:sN});function iN(e){let t={x:C(e,"x","clone","string_or_numeric")};return $.runKernel(_o,t)}var nr=D({clone_:iN});function Pg(e,t=!1){console.log(e.toString(t))}kg();var oN={buffer:We,cast:Ae,clone:nr,print:Pg};x9(oN);var An={};$e(An,{browserFiles:()=>lN,browserHTTPRequest:()=>cN,concatenateArrayBuffers:()=>af,copyModel:()=>eN,decodeWeights:()=>Eg,encodeWeights:()=>C9,fromMemory:()=>hN,getLoadHandlers:()=>W9,getModelArtifactsInfoForJSON:()=>ju,getSaveHandlers:()=>L9,http:()=>hf,isHTTPScheme:()=>cf,listModels:()=>J9,loadWeights:()=>uN,moveModel:()=>tN,registerLoadRouter:()=>P9,registerSaveRouter:()=>z9,removeModel:()=>Q9,weightsLoaderFactory:()=>Lg,withSaveHandler:()=>dN});var pN="model",fN=".json",mN=".weights.bin";function Wg(e){return new Promise(t=>setTimeout(t)).then(e)}var il=class{constructor(e){if(!Q().getBool("IS_BROWSER"))throw new Error("browserDownloads() cannot proceed because the current environment is not a browser.");e.startsWith(il.URL_SCHEME)&&(e=e.slice(il.URL_SCHEME.length)),(e==null||e.length===0)&&(e=pN),this.modelTopologyFileName=e+fN,this.weightDataFileName=e+mN}async save(e){if(typeof document=="undefined")throw new Error("Browser downloads are not supported in this environment since `document` is not present");let t=window.URL.createObjectURL(new Blob([e.weightData],{type:"application/octet-stream"}));if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserDownloads.save() does not support saving model topology in binary formats yet.");{let n=[{paths:["./"+this.weightDataFileName],weights:e.weightSpecs}],r={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:n};e.signature!=null&&(r.signature=e.signature),e.userDefinedMetadata!=null&&(r.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(r.modelInitializer=e.modelInitializer);let a=window.URL.createObjectURL(new Blob([JSON.stringify(r)],{type:"application/json"})),s=this.jsonAnchor==null?document.createElement("a"):this.jsonAnchor;if(s.download=this.modelTopologyFileName,s.href=a,await Wg(()=>s.dispatchEvent(new MouseEvent("click"))),e.weightData!=null){let i=this.weightDataAnchor==null?document.createElement("a"):this.weightDataAnchor;i.download=this.weightDataFileName,i.href=t,await Wg(()=>i.dispatchEvent(new MouseEvent("click")))}return{modelArtifactsInfo:ju(e)}}}};il.URL_SCHEME="downloads://";var AN=class{constructor(e){if(e==null||e.length<1)throw new Error(`When calling browserFiles, at least 1 file is required, but received ${e}`);this.files=e}async load(){let e=this.files[0],t=this.files.slice(1);return new Promise((n,r)=>{let a=new FileReader;a.onload=s=>{let i=JSON.parse(s.target.result),o=i.modelTopology;if(o==null){r(new Error(`modelTopology field is missing from file ${e.name}`));return}t.length===0&&n({modelTopology:o});let l=i.weightsManifest;if(l==null){r(new Error(`weightManifest field is missing from file ${e.name}`));return}let u;try{u=this.checkManifestAndWeightFiles(l,t)}catch(p){r(p);return}let c=[],h=[],d=[];l.forEach(p=>{p.paths.forEach(f=>{h.push(f),d.push(null)}),c.push(...p.weights)}),l.forEach(p=>{p.paths.forEach(f=>{let m=new FileReader;m.onload=A=>{let y=A.target.result,g=h.indexOf(f);if(d[g]=y,d.indexOf(null)===-1){let _={modelTopology:o,weightSpecs:c,weightData:af(d),format:i.format,generatedBy:i.generatedBy,convertedBy:i.convertedBy};i.signature!=null&&(_.signature=i.signature),i.userDefinedMetadata!=null&&(_.userDefinedMetadata=i.userDefinedMetadata),i.modelInitializer!=null&&(_.modelInitializer=i.modelInitializer),n(_)}},m.onerror=A=>r(`Failed to weights data from file of path '${f}'.`),m.readAsArrayBuffer(u[f])})})},a.onerror=s=>r(`Failed to read model topology and weights manifest JSON from file '${e.name}'. BrowserFiles supports loading Keras-style tf.Model artifacts only.`),a.readAsText(e)})}checkManifestAndWeightFiles(e,t){let n=[],r=t.map(s=>Rg(s.name)),a={};for(let s of e)s.paths.forEach(i=>{let o=Rg(i);if(n.indexOf(o)!==-1)throw new Error(`Duplicate file basename found in weights manifest: '${o}'`);if(n.push(o),r.indexOf(o)===-1)throw new Error(`Weight file with basename '${o}' is not provided.`);a[i]=t[r.indexOf(o)]});if(n.length!==t.length)throw new Error(`Mismatch in the number of files in weights manifest (${n.length}) and the number of weight files provided (${t.length}).`);return a}},gN=e=>Q().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(il.URL_SCHEME)?yN(e.slice(il.URL_SCHEME.length)):null;St.registerSaveRouter(gN);function yN(e="model"){return new il(e)}function lN(e){return new AN(e)}function Bg(e,t,n,r){i(e),n=n==null?0:n,r=r==null?1:r,o(n,r);let a=0,s=l=>(l.then(u=>{let c=n+ ++a/e.length*(r-n);return t(c),u}),l);function i(l){F(l!=null&&Array.isArray(l)&&l.length>0,()=>"promises must be a none empty array")}function o(l,u){F(l>=0&&l<=1,()=>`Progress fraction must be in range [0, 1], but got startFraction ${l}`),F(u>=0&&u<=1,()=>`Progress fraction must be in range [0, 1], but got endFraction ${u}`),F(u>=l,()=>`startFraction must be no more than endFraction, but got startFraction ${l} and endFraction ${u}`)}return Promise.all(e.map(s))}async function Vg(e,t){t==null&&(t={});let n=t.fetchFunc==null?Q().platform.fetch:t.fetchFunc,r=e.map(u=>n(u,t.requestInit,{isBinary:!0})),a=0,s=.5,i=(t.onProgress==null?await Promise.all(r):await Bg(r,t.onProgress,a,s)).map(u=>u.arrayBuffer()),o=.5,l=1;return t.onProgress==null?await Promise.all(i):await Bg(i,t.onProgress,o,l)}async function uN(e,t="",n,r){return Lg(a=>Vg(a,{requestInit:r}))(e,t,n)}function Lg(e){return async(t,n="",r)=>{let a=t.map(()=>!1),s={},i=r!=null?r.map(()=>!1):[],o=[];if(t.forEach((p,f)=>{let m=0;p.weights.forEach(A=>{let y="quantization"in A?A.quantization.dtype:A.dtype,g=nf[y]*Ot(A.shape),_=()=>{a[f]=!0,s[f]==null&&(s[f]=[]),s[f].push({manifestEntry:A,groupOffset:m,sizeBytes:g})};r!=null?r.forEach((b,x)=>{b===A.name&&(_(),i[x]=!0)}):_(),o.push(A.name),m+=g})}),!i.every(p=>p)){let p=r.filter((f,m)=>!i[m]);throw new Error(`Could not find weights in manifest with names: ${p.join(", ")}.
|
|
Manifest JSON has weights with names: ${o.join(", ")}.`)}let l=a.reduce((p,f,m)=>(f&&p.push(m),p),[]),u=[];l.forEach(p=>{t[p].paths.forEach(f=>{let m=n+(n.endsWith("/")?"":"/")+f;u.push(m)})});let c=await e(u),h={},d=0;return l.forEach(p=>{let f=t[p].paths.length,m=0;for(let _=0;_<f;_++)m+=c[d+_].byteLength;let A=new ArrayBuffer(m),y=new Uint8Array(A),g=0;for(let _=0;_<f;_++){let b=new Uint8Array(c[d+_]);y.set(b,g),g+=b.byteLength}s[p].forEach(_=>{let b=A.slice(_.groupOffset,_.groupOffset+_.sizeBytes),x=Eg(b,[_.manifestEntry]);for(let w in x)h[w]=x[w]}),d+=f}),h}}var xN="application/octet-stream",wN="application/json",df=class{constructor(e,t){if(this.DEFAULT_METHOD="POST",t==null&&(t={}),this.weightPathPrefix=t.weightPathPrefix,this.onProgress=t.onProgress,this.weightUrlConverter=t.weightUrlConverter,t.fetchFunc!=null?(F(typeof t.fetchFunc=="function",()=>"Must pass a function that matches the signature of `fetch` (see https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)"),this.fetch=t.fetchFunc):this.fetch=Q().platform.fetch,F(e!=null&&e.length>0,()=>"URL path for http must not be null, undefined or empty."),Array.isArray(e)&&F(e.length===2,()=>`URL paths for http must have a length of 2, (actual length is ${e.length}).`),this.path=e,t.requestInit!=null&&t.requestInit.body!=null)throw new Error("requestInit is expected to have no pre-existing body, but has one.");this.requestInit=t.requestInit||{}}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserHTTPRequest.save() does not support saving model topology in binary formats yet.");let t=Object.assign({method:this.DEFAULT_METHOD},this.requestInit);t.body=new FormData;let n=[{paths:["./model.weights.bin"],weights:e.weightSpecs}],r={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:n};e.signature!=null&&(r.signature=e.signature),e.userDefinedMetadata!=null&&(r.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(r.modelInitializer=e.modelInitializer),t.body.append("model.json",new Blob([JSON.stringify(r)],{type:wN}),"model.json"),e.weightData!=null&&t.body.append("model.weights.bin",new Blob([e.weightData],{type:xN}),"model.weights.bin");let a=await this.fetch(this.path,t);if(a.ok)return{modelArtifactsInfo:ju(e),responses:[a]};throw new Error(`BrowserHTTPRequest.save() failed due to HTTP response status ${a.status}.`)}async load(){let e=await this.fetch(this.path,this.requestInit);if(!e.ok)throw new Error(`Request to ${this.path} failed with status code ${e.status}. Please verify this URL points to the model JSON of the model to load.`);let t;try{t=await e.json()}catch(p){let f=`Failed to parse model JSON of response from ${this.path}.`;throw this.path.endsWith(".pb")?f+=" Your path contains a .pb file extension. Support for .pb models have been removed in TensorFlow.js 1.0 in favor of .json models. You can re-convert your Python TensorFlow model using the TensorFlow.js 1.0 conversion scripts or you can convert your.pb models with the 'pb2json'NPM script in the tensorflow/tfjs-converter repository.":f+=" Please make sure the server is serving valid JSON for this request.",new Error(f)}let n=t.modelTopology,r=t.weightsManifest,a=t.generatedBy,s=t.convertedBy,i=t.format,o=t.signature,l=t.userDefinedMetadata;if(n==null&&r==null)throw new Error(`The JSON from HTTP path ${this.path} contains neither model topology or manifest for weights.`);let u,c;r!=null&&([u,c]=await this.loadWeights(r));let h={modelTopology:n,weightSpecs:u,weightData:c,generatedBy:a,convertedBy:s,format:i};o!=null&&(h.signature=o),l!=null&&(h.userDefinedMetadata=l);let d=t.modelInitializer;return d&&(h.modelInitializer=d),h}async loadWeights(e){let t=Array.isArray(this.path)?this.path[1]:this.path,[n,r]=_N(t),a=this.weightPathPrefix||n,s=[];for(let u of e)s.push(...u.weights);let i=[],o=[];for(let u of e)for(let c of u.paths)this.weightUrlConverter!=null?o.push(this.weightUrlConverter(c)):i.push(a+c+r);this.weightUrlConverter&&i.push(...await Promise.all(o));let l=await Vg(i,{requestInit:this.requestInit,fetchFunc:this.fetch,onProgress:this.onProgress});return[s,af(l)]}};df.URL_SCHEME_REGEX=/^https?:\/\//;function _N(e){let t=e.lastIndexOf("/"),n=e.lastIndexOf("?"),r=e.substring(0,t),a=n>t?e.substring(n):"";return[r+"/",a]}function cf(e){return e.match(df.URL_SCHEME_REGEX)!=null}var Ug=(e,t)=>{if(typeof fetch=="undefined"&&(t==null||t.fetchFunc==null))return null;{let n=!0;if(Array.isArray(e)?n=e.every(r=>cf(r)):n=cf(e),n)return hf(e,t)}return null};St.registerSaveRouter(Ug);St.registerLoadRouter(Ug);function hf(e,t){return new df(e,t)}function cN(e,t){return hf(e,t)}var pf=class{constructor(e){this.modelArtifacts=e}async load(){return this.modelArtifacts}},bN=class{constructor(e){this.saveHandler=e}async save(e){return this.saveHandler(e)}};function hN(e,t,n,r){return arguments.length===1?e.modelTopology!=null||e.weightSpecs!=null?new pf(e):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new pf({modelTopology:e})):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new pf({modelTopology:e,weightSpecs:t,weightData:n,trainingConfig:r}))}function dN(e){return new bN(e)}var jg={};$e(jg,{confusionMatrix:()=>vN});function kN(e,t,n=!1,r=!1){let a=C(e,"a","matMul"),s=C(t,"b","matMul");[a,s]=_t(a,s);let i={a,b:s},o={transposeA:n,transposeB:r};return $.runKernel(ds,i,o)}var He=D({matMul_:kN});function NN(e,t,n=1,r=0){if(t<2)throw new Error(`Error in oneHot: depth must be >=2, but it is ${t}`);let a={indices:C(e,"indices","oneHot","int32")},s={depth:t,onValue:n,offValue:r};return $.runKernel(Os,a,s)}var ol=D({oneHot_:NN});function IN(e,t){let n=C(e,"x","transpose");if(t==null&&(t=n.shape.map((s,i)=>i).reverse()),F(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of perm ${t}.`),t.forEach(s=>{F(s>=0&&s<n.rank,()=>`All entries in 'perm' must be between 0 and ${n.rank-1} but got ${t}`)}),n.rank<=1)return n.clone();let r={x:n},a={perm:t};return $.runKernel(Js,r,a)}var nt=D({transpose_:IN});function SN(e,t,n){let r=C(e,"labels","confusionMatrix"),a=C(t,"predictions","confusionMatrix");F(n==null||n>0&&Number.isInteger(n),()=>`If provided, numClasses must be a positive integer, but got ${n}`),F(r.rank===1,()=>`Expected the rank of labels to be 1, but got ${r.rank}`),F(a.rank===1,()=>`Expected the rank of predictions to be 1, but got ${a.rank}`),F(r.shape[0]===a.shape[0],()=>`Mismatch in the number of examples: ${r.shape[0]} vs. ${a.shape[0]}. Labels and predictions should have the same number of elements.`),F(n>0&&Number.isInteger(n),()=>`numClasses is required to be a positive integer, but got ${n}`);let s=ol(Ae(r,"int32"),n),i=ol(Ae(a,"int32"),n),o=nt(s),l=He(o,i);return Ae(l,"int32")}var vN=D({confusionMatrix_:SN}),ll={};$e(ll,{fromPixels:()=>EN,toPixels:()=>TN});function Ad(e,t,n){if(os(e),t!=null&&t.length!==3)throw new Error("tensor3d() requires shape to have three numbers");let r=Mr(e,n);if(r.length!==3&&r.length!==1)throw new Error("tensor3d() requires values to be number[][][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor3d() requires shape to be provided when `values` are a flat array");return Ta(e,t,r,n)}var ul;function CN(e,t=3){if(t>4)throw new Error("Cannot construct Tensor with more than 4 channels from pixels.");if(e==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let n=!1,r=!1,a=!1,s=!1,i=!1,o=!1;if(e.data instanceof Uint8Array)n=!0;else if(typeof ImageData!="undefined"&&e instanceof ImageData)r=!0;else if(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)a=!0;else if(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)s=!0;else if(e.getContext!=null)i=!0;else if(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)o=!0;else throw new Error(`pixels passed to tf.browser.fromPixels() must be either an HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData in browser, or OffscreenCanvas, ImageData in webworker or {data: Uint32Array, width: number, height: number}, but was ${e.constructor.name}`);if(a){let d=2;if(a&&e.readyState<d)throw new Error("The video element has not loaded data yet. Please wait for `loadeddata` event on the <video> element.")}if(H1(ld,$.backendName)!=null){let d={pixels:e},p={numChannels:t};return $.runKernel(ld,d,p)}let[l,u]=a?[e.videoWidth,e.videoHeight]:[e.width,e.height],c;i?c=e.getContext("2d").getImageData(0,0,l,u).data:r||n?c=e.data:(s||a||o)&&(ul==null&&(ul=document.createElement("canvas").getContext("2d")),ul.canvas.width=l,ul.canvas.height=u,ul.drawImage(e,0,0,l,u),c=ul.getImageData(0,0,l,u).data);let h;if(t===4)h=new Int32Array(c);else{let d=l*u;h=new Int32Array(d*t);for(let p=0;p<d;p++)for(let f=0;f<t;++f)h[p*t+f]=c[p*4+f]}return Ad(h,[u,l,t],"int32")}async function TN(e,t){let n=C(e,"img","toPixels");if(!(e instanceof U)){let u=n;n=Ae(u,"int32"),u.dispose()}if(n.rank!==2&&n.rank!==3)throw new Error(`toPixels only supports rank 2 or 3 tensors, got rank ${n.rank}.`);let[r,a]=n.shape.slice(0,2),s=n.rank===2?1:n.shape[2];if(s>4||s===2)throw new Error(`toPixels only supports depth of size 1, 3 or 4 but got ${s}`);if(n.dtype!=="float32"&&n.dtype!=="int32")throw new Error(`Unsupported type for toPixels: ${n.dtype}. Please use float32 or int32 tensors.`);let i=await n.data(),o=n.dtype==="float32"?255:1,l=new Uint8ClampedArray(a*r*4);for(let u=0;u<r*a;++u){let c=[0,0,0,255];for(let d=0;d<s;d++){let p=i[u*s+d];if(n.dtype==="float32"){if(p<0||p>1)throw new Error(`Tensor values for a float32 Tensor must be in the range [0 - 1] but encountered ${p}.`)}else if(n.dtype==="int32"&&(p<0||p>255))throw new Error(`Tensor values for a int32 Tensor must be in the range [0 - 255] but encountered ${p}.`);s===1?(c[0]=p*o,c[1]=p*o,c[2]=p*o):c[d]=p*o}let h=u*4;l[h+0]=Math.round(c[0]),l[h+1]=Math.round(c[1]),l[h+2]=Math.round(c[2]),l[h+3]=Math.round(c[3])}if(t!=null){t.width=a,t.height=r;let u=t.getContext("2d"),c=new ImageData(l,a,r);u.putImageData(c,0,0)}return n!==e&&n.dispose(),l}var EN=D({fromPixels_:CN}),ff={};$e(ff,{prepareAndValidate:()=>Gg});function Gg(e,t){let n=e.shape.length,r=t.shape.length;if(n<1)throw new Error(`tf.gatherND() expects the input to be rank 1 or higher, but the rank was ${n}.`);if(r<1)throw new Error(`tf.gatherND() expects the indices to be rank 1 or higher, but the rank was ${r}.`);if(t.dtype!=="int32")throw new Error(`tf.gatherND() expects the indices to be int32 type, but the dtype was ${t.dtype}.`);if(t.shape[r-1]>n)throw new Error(`index innermost dimension length must be <= tensor rank; saw: ${t.shape[r-1]} vs. ${n}`);if(Ot(e.shape)===0)throw new Error(`Requested more than 0 entries, but input is empty. Input shape: ${e.shape}.`);let a=t.shape,s=a[a.length-1],i=1;for(let h=0;h<a.length-1;++h)i*=a[h];let o=e.shape,l=a.slice();l.pop();let u=1;for(let h=s;h<n;++h)u*=o[h],l.push(o[h]);let c=[...Zi(e.shape).map(h=>h/u),1].slice(0,s);return[l,i,u,c]}var mf={};$e(mf,{calculateShapes:()=>Hg,validateInput:()=>yf,validateUpdateShape:()=>Af});function Af(e,t,n){let r=t.rank>1?t.shape[t.rank-1]:1,a=t.rank>1?t.rank-1:1,s=`Must have updates.shape = indices.shape[:batchDim] + shape[sliceDim:], got updates.shape: ${n.shape}, indices.shape: ${t.shape}, shape: ${e}, sliceDim: ${r}, and batchDim: ${a}.`;if(n.rank<a)throw new Error(s+` update.rank < ${a}. `);if(e.length<r+(n.rank-a))throw new Error(s+` Output shape length < ${r+(n.rank-a)}`);if(n.rank!==a+e.length-r)throw new Error(s+` update.rank != ${a+e.length-r}`);for(let i=0;i<a;++i)if(n.shape[i]!==t.shape[i])throw new Error(s+` updates.shape[${i}] (${n.shape[i]}) != indices.shape[${i}] (${t.shape[i]}).`);for(let i=0;i<n.rank-a;++i)if(n.shape[i+a]!==e[i+r])throw new Error(s+` updates.shape[${i+a}] (${n.shape[i+a]}) != shape[${i+a}] (${e[i+a]})`)}function yf(e,t,n){if(t.rank<1)throw new Error(`tf.scatterND() expects the indices to be rank 1 or higher, but the rank was ${t.rank}.`);if(e.rank<1)throw new Error(`tf.scatterND() expects the updates to be rank 1 or higher, but the rank was ${e.rank}.`);if(t.dtype!=="int32")throw new Error(`The dtype of 'indices' should be int32, but got dtype: ${t.dtype}`);if(n.length<1)throw new Error(`Output rank must be greater or equal to 1, but got shape: ${n}`);if(n.length===0){if(t.size===0)throw new Error(`Indices specified for empty output. indices shape: ${t.shape}`);if(e.size===0)throw new Error(`Updates specified for empty output. updates shape: ${e.shape}`)}Af(n,t,e)}function Hg(e,t,n){let r=t.shape.length,a=r>1?t.shape[r-1]:1,s=n.length,i=1;for(let h=a;h<s;++h)i*=n[h];let o=a<1?1:a,l=Ot(t.shape)/o,u=[...Zi(n.slice(0,a)),1],c=Ot(n);return{sliceRank:a,numUpdates:l,sliceSize:i,strides:u,outputSize:c}}var ln={};$e(ln,{assertParamsValid:()=>RN,computeFlatOffset:()=>MN,computeOutShape:()=>qg,getNormalizedAxes:()=>Kg,isSliceContinous:()=>FN,maskToAxes:()=>yd,parseSliceParams:()=>t5,sliceInfo:()=>ON,startForAxis:()=>Qg,startIndicesWithElidedDims:()=>Zg,stopForAxis:()=>e5,stopIndicesWithElidedDims:()=>Yg,stridesForAxis:()=>Jg,stridesWithElidedDims:()=>Xg});function RN(e,t,n){let r=e.shape.length;F(r===t.length,()=>`Error in slice${r}D: Length of begin ${t} must match the rank of the array (${r}).`),F(r===n.length,()=>`Error in slice${r}D: Length of size ${n} must match the rank of the array (${r}).`);for(let a=0;a<r;++a)F(t[a]+n[a]<=e.shape[a],()=>`Error in slice${r}D: begin[${a}] + size[${a}] (${t[a]+n[a]}) would overflow input.shape[${a}] (${e.shape[a]})`)}function yd(e){let t=[],n=0;for(;e>0;)e&1&&t.push(n),e/=2,n++;return t}function qg(e,t,n){let r=[];for(let a=0;a<e.length;a++)r[a]=Math.ceil((t[a]-e[a])/n[a]);return r}function Xg(e,t,n,r){let a=[...e];for(let s=a.length;s<r.length;s++)a.push(1);for(let s=0;s<n;s++)s===0?a[t]=1:(a.splice(t,0,1),a.pop());return a}function n5(e,t,n){return n<=e?n:n-(t-1)}function r5(e,t){let n=[];for(let r=0;r<e;r++)n.push(t+r);return n}function Kg(e,t,n,r,a,s,i,o,l){let u=e.length,c=new Array(u),h=new Array(u),d=new Array(u);if(t.length&&n>0){let p=t[0],f=n+1;c=Zg(i,p,f,r,e),h=Yg(o,p,f,a,e),d=Xg(s,p,f,e)}else for(let p=0;p<u;p++)c[p]=Qg(i,r,s,e,p,l),h[p]=e5(o,a,s,e,p,l),d[p]=Jg(s,p,l);return{begin:c,end:h,strides:d}}function Zg(e,t,n,r,a){let s=[...a],i=r5(n,t);for(let o=0;o<s.length;o++)if(i.indexOf(o)>-1)s[o]=0;else{let l=n5(t,n,o),u=r[l];e&1<<l&&(u=0),s[o]=u}return s}function Yg(e,t,n,r,a){let s=[...a],i=r5(n,t);for(let o=0;o<s.length;o++)if(i.indexOf(o)>-1)s[o]=Number.MAX_SAFE_INTEGER;else{let l=n5(t,n,o),u=r[l];e&1<<l&&(u=Number.MAX_SAFE_INTEGER),s[o]=u}for(let o=0;o<s.length;o++){let l=a[o];s[o]<0&&(s[o]+=l),s[o]=yu(0,s[o],a[o])}return s}function Jg(e,t,n){let r=e[t];return(n&1<<t||r==null)&&(r=1),r}function Qg(e,t,n,r,a,s){let i=t[a],o=n[a]||1;(e&1<<a||s&1<<a||i==null)&&(o>0?i=Number.MIN_SAFE_INTEGER:i=Number.MAX_SAFE_INTEGER);let l=r[a];return i<0&&(i+=l),i=yu(0,i,l-1),i}function e5(e,t,n,r,a,s){let i=t[a],o=n[a]||1;(e&1<<a||s&1<<a||i==null)&&(o>0?i=Number.MAX_SAFE_INTEGER:i=Number.MIN_SAFE_INTEGER);let l=r[a];return i<0&&(i+=l),o>0?i=yu(0,i,l):i=yu(-1,i,l-1),i}function FN(e,t,n){let r=n.length;for(let a=0;a<n.length;a++)if(n[a]>1){r=a;break}for(let a=r+1;a<n.length;a++)if(t[a]>0||n[a]!==e[a])return!1;return!0}function MN(e,t){let n=e.length>0?e[e.length-1]:1;for(let r=0;r<e.length-1;r++)n+=e[r]*t[r];return n}function t5(e,t,n){let r,a=e.shape.length;typeof t=="number"?r=[t,...new Array(a-1).fill(0)]:t.length<a?r=t.concat(new Array(a-t.length).fill(0)):r=t.slice(),r.forEach(i=>{F(i!==-1,()=>"slice() does not support negative begin indexing.")});let s;return n==null?s=new Array(a).fill(-1):typeof n=="number"?s=[n,...new Array(a-1).fill(-1)]:n.length<a?s=n.concat(new Array(a-n.length).fill(-1)):s=n,s=s.map((i,o)=>i>=0?i:(F(i===-1,()=>`Negative size values should be exactly -1 but got ${i} for the slice() size at index ${o}.`),e.shape[o]-r[o])),[r,s]}function ON(e,t,n,r,a,s,i,o,l){let u=t.slice(),c=n.slice(),h=r;r==null&&(h=new Array(u.length));let d=yd(i);if(d.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(i!==0&&o!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(i!==0&&l!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let p=e.length-u.length,f=yd(o),m=e.slice();f.forEach(w=>{u[w]=0,c[w]=1,m.splice(w,0,1)});let{begin:A,end:y,strides:g}=Kg(m,d,p,u,c,h,a,s,i);u=A,c=y,h=g;let _=yd(l);_.forEach(w=>{c[w]=u[w]+1,h[w]=1});let b=qg(u,c,h),x=b.filter((w,I)=>_.indexOf(I)===-1);return{nonStrided:h.every(w=>w===1),$begin:u,$end:c,$strides:h,size:b,newShape:m,outShape:x}}var ae={};$e(ae,{Serializable:()=>a5,SerializationMap:()=>ii,registerClass:()=>Ca});var a5=class{getClassName(){return this.constructor.className}static fromConfig(e,t){return new e(t)}},ii=class{constructor(){this.classNameMap={}}static getMap(){return ii.instance==null&&(ii.instance=new ii),ii.instance}static register(e){ii.getMap().classNameMap[e.className]=[e,e.fromConfig]}};function Ca(e){F(e.className!=null,()=>"Class being registered does not have the static className property defined."),F(typeof e.className=="string",()=>"className is required to be a string, but got type "+typeof e.className),F(e.className.length>0,()=>"Class being registered has an empty-string as its className, which is disallowed."),ii.register(e)}var s5={};$e(s5,{TEST_EPSILON_FLOAT16:()=>i5,encodeStrings:()=>o5,expectArrayBuffersEqual:()=>WN,expectArraysClose:()=>DN,expectArraysEqual:()=>zN,expectNumbersClose:()=>PN,expectPromiseToFail:()=>$N,expectValuesInRange:()=>LN,testEpsilon:()=>gf});var BN=.001,i5=.1;function DN(e,t,n){return n==null&&(n=gf()),xf(e,t,(r,a)=>wf(r,a,n))}function gf(){return $.backend.floatPrecision()===32?BN:i5}function xf(e,t,n){let r=!0;if((an(e)||an(t))&&(r=!1),an(e)&&an(t)&&(r=!0),r){let i=e.constructor.name,o=t.constructor.name;if(i!==o)throw new Error(`Arrays are of different type. Actual: ${i}. Expected: ${o}`)}if(Array.isArray(e)&&Array.isArray(t)){let i=Mr(e),o=Mr(t);if(!na(i,o))throw new Error(`Arrays have different shapes. Actual: [${i}]. Expected: [${o}]`)}let a=an(e)?e:ls(e),s=an(t)?t:ls(t);if(a.length!==s.length)throw new Error(`Arrays have different lengths actual: ${a.length} vs expected: ${s.length}.
|
|
Actual: ${a}.
|
|
Expected: ${s}.`);for(let i=0;i<s.length;++i){let o=a[i],l=s[i];if(!n(o,l))throw new Error(`Arrays differ: actual[${i}] = ${o}, expected[${i}] = ${l}.
|
|
Actual: ${a}.
|
|
Expected: ${s}.`)}}function $N(e,t){e().then(()=>t.fail(),()=>t())}function zN(e,t){let n=typeof t=="string"||typeof t=="number"||typeof t=="boolean"?[t]:t;return ba(e)||ba(e[0])||ba(t)||ba(t[0])?xf(e,n,(r,a)=>r==a):xf(e,t,(r,a)=>wf(r,a,0))}function PN(e,t,n){if(n==null&&(n=gf()),!wf(e,t,n))throw new Error(`Numbers differ: actual === ${e}, expected === ${t}`)}function wf(e,t,n){return!isFinite(e)&&!isFinite(t)?!0:!(isNaN(e)||isNaN(t)||Math.abs(e-t)>n)}function LN(e,t,n){for(let r=0;r<e.length;r++)if(e[r]<t||e[r]>n)throw new Error(`Value out of range:${e[r]} low: ${t}, high: ${n}`)}function WN(e,t){expect(new Float32Array(e)).toEqual(new Float32Array(t))}function o5(e){for(let t=0;t<e.length;t++){let n=e[t];Array.isArray(n)?o5(n):e[t]=zu(n)}return e}var l5="2.8.3";function u5(){Q().set("PROD",!0)}function VN(){Q().set("DEBUG",!0)}function UN(){Q().set("DEPRECATION_WARNINGS_ENABLED",!1),console.warn("TensorFlow.js deprecation warnings have been disabled.")}function Rt(e){Q().getBool("DEPRECATION_WARNINGS_ENABLED")&&console.warn(e+" You can disable deprecation warnings with tf.disableDeprecationWarnings().")}w9(Rt);function jN(){$.disposeVariables()}function jn(){return $}function gd(){return $.memory()}function aa(e){return $.profile(e)}function W(e,t){return $.tidy(e,t)}function Te(e){Z1(e).forEach(t=>t.dispose())}function Ut(e){return $.keep(e)}function GN(e){return $.time(e)}function c5(e){return $.setBackend(e)}function h5(){return $.ready()}function xd(){return $.backendName}function HN(e){$.removeBackend(e)}function _f(e){return $.findBackend(e)}function qN(e){return $.findBackendFactory(e)}function cl(e,t,n=1){return $.registerBackend(e,t,n)}function bf(){return $.backend}function XN(e,t){Q().setPlatform(e,t)}function KN(e,t){let n=C(e,"a","add"),r=C(t,"b","add");[n,r]=_t(n,r);let a={a:n,b:r};return $.runKernel(ka,a)}var oe=D({add_:KN});function ZN(e,t){let n=C(e,"a","floorDiv"),r=C(t,"b","floorDiv");[n,r]=_t(n,r);let a={a:n,b:r};return $.runKernel(bs,a)}var wd=D({floorDiv_:ZN});function YN(e,t){let n=C(e,"a","div"),r=C(t,"b","div");if([n,r]=_t(n,r),n.dtype==="int32"&&r.dtype==="int32")return wd(n,r);let a={a:n,b:r},s={};return $.runKernel(xs,a,s)}var _e=D({div_:YN});function JN(e,t){let n=C(e,"a","mul"),r=C(t,"b","mul");[n,r]=_t(n,r);let a={a:n,b:r};return $.runKernel(Ms,a)}var L=D({mul_:JN});function QN(e){let t=C(e,"x","abs");if(t.dtype==="complex64"){let n={x:t};return $.runKernel(bu,n)}else{let n={x:t};return $.runKernel(Ji,n)}}var $t=D({abs_:QN});function eI(e){let t={x:C(e,"x","acos")};return $.runKernel(Qi,t)}var vf=D({acos_:eI});function tI(e){let t={x:C(e,"x","acosh")};return $.runKernel(eo,t)}var kf=D({acosh_:tI});function nI(e){F(Array.isArray(e),()=>"The argument passed to tf.addN() must be a list of tensors"),F(e.length>=1,()=>`Must pass at least one tensor to tf.addN(), but got ${e.length}`);let t=e.map((a,s)=>C(a,`tensors${s}`,"addN")),n=t[0];t.forEach(a=>{if(a.dtype!==n.dtype)throw new Error("All tensors passed to tf.addN() must have the same dtype")}),t.forEach(a=>{if(!na(a.shape,n.shape))throw new Error("All tensors passed to tf.addN() must have the same shape")});let r=t;return $.runKernel(us,r)}var hl=D({addN_:nI});function rI(e,t=null,n=!1){let r={x:C(e,"x","all","bool")},a={axis:t,keepDims:n};return $.runKernel(Fh,r,a)}var _d=D({all_:rI});function aI(e,t=null,n=!1){let r={x:C(e,"x","any","bool")},a={axis:t,keepDims:n};return $.runKernel(Mh,r,a)}var Gu=D({any_:aI});function sI(e,t=0){let n={x:C(e,"x","argMax")},r={axis:t};return $.runKernel(cs,n,r)}var Hu=D({argMax_:sI});function iI(e,t=0){let n={x:C(e,"x","argMin")},r={axis:t};return $.runKernel(xu,n,r)}var Nf=D({argMin_:iI});function oI(e){let t={x:C(e,"x","asin")};return $.runKernel(to,t)}var If=D({asin_:oI});function lI(e){let t={x:C(e,"x","asinh")};return $.runKernel(no,t)}var Sf=D({asinh_:lI});function uI(e){let t={x:C(e,"x","atan")};return $.runKernel(ro,t)}var Tf=D({atan_:uI});function cI(e,t){let n=C(e,"a","atan2"),r=C(t,"b","atan2");[n,r]=_t(n,r);let a={a:n,b:r};return $.runKernel(so,a)}var Ef=D({atan2_:cI});function hI(e){let t={x:C(e,"x","atanh")};return $.runKernel(ao,t)}var Cf=D({atanh_:hI});function dI(e,t,n,r,a="NHWC",s){let i=e[3],o=[...t,i],l=d5(a);return qu(e,o,n,s,r,null,null,l)}function p5(e,t,n,r,a,s,i="channelsLast"){let[o,l]=bd(t),u;if(i==="channelsLast")u=[o,l,e[3],e[3]];else if(i==="channelsFirst")u=[o,l,e[1],e[1]];else throw new Error(`Unknown dataFormat ${i}`);return qu(e,u,n,r,a,s,!1,i)}function pI(e,t,n,r,a,s,i="NDHWC"){let[o,l,u]=Rf(t),c,h;if(i==="NDHWC")h="channelsLast",c=[o,l,u,e[4],e[4]];else if(i==="NCDHW")h="channelsFirst",c=[o,l,u,e[1],e[1]];else throw new Error(`Unknown dataFormat ${i}`);return f5(e,c,n,r,a,!1,h,s)}function qu(e,t,n,r,a,s,i=!1,o="channelsLast"){let[l,u,c,h]=[-1,-1,-1,-1];if(o==="channelsLast")[l,u,c,h]=e;else if(o==="channelsFirst")[l,h,u,c]=e;else throw new Error(`Unknown dataFormat ${o}`);let[d,p,,f]=t,[m,A]=bd(n),[y,g]=bd(r),_=dl(d,y),b=dl(p,g),{padInfo:x,outHeight:w,outWidth:I}=fI(a,u,c,m,A,_,b,s,o),T=i?f*h:f,E;return o==="channelsFirst"?E=[l,T,w,I]:o==="channelsLast"&&(E=[l,w,I,T]),{batchSize:l,dataFormat:o,inHeight:u,inWidth:c,inChannels:h,outHeight:w,outWidth:I,outChannels:T,padInfo:x,strideHeight:m,strideWidth:A,filterHeight:d,filterWidth:p,effectiveFilterHeight:_,effectiveFilterWidth:b,dilationHeight:y,dilationWidth:g,inShape:e,outShape:E,filterShape:t}}function f5(e,t,n,r,a,s=!1,i="channelsLast",o){let[l,u,c,h,d]=[-1,-1,-1,-1,-1];if(i==="channelsLast")[l,u,c,h,d]=e;else if(i==="channelsFirst")[l,d,u,c,h]=e;else throw new Error(`Unknown dataFormat ${i}`);let[p,f,m,,A]=t,[y,g,_]=Rf(n),[b,x,w]=Rf(r),I=dl(p,b),T=dl(f,x),E=dl(m,w),{padInfo:M,outDepth:z,outHeight:P,outWidth:B}=mI(a,u,c,h,y,g,_,I,T,E,o),q=s?A*d:A,H;return i==="channelsFirst"?H=[l,q,z,P,B]:i==="channelsLast"&&(H=[l,z,P,B,q]),{batchSize:l,dataFormat:i,inDepth:u,inHeight:c,inWidth:h,inChannels:d,outDepth:z,outHeight:P,outWidth:B,outChannels:q,padInfo:M,strideDepth:y,strideHeight:g,strideWidth:_,filterDepth:p,filterHeight:f,filterWidth:m,effectiveFilterDepth:I,effectiveFilterHeight:T,effectiveFilterWidth:E,dilationDepth:b,dilationHeight:x,dilationWidth:w,inShape:e,outShape:H,filterShape:t}}function AI(e,t,n,r,a){r==null&&(r=Ff(e,t,n));let s=e[0],i=e[1],o=oi((s-t+2*r)/n+1,a),l=oi((i-t+2*r)/n+1,a);return[o,l]}function yI(e,t,n,r,a,s){a==null&&(a=Ff(e,t,r));let i=e[0],o=e[1],l=e[2],u=oi((i-t+2*a)/r+1,s),c=oi((o-t+2*a)/r+1,s),h=oi((l-t+2*a)/r+1,s);return[u,c,h,n]}function Ff(e,t,n,r=1){let a=dl(t,r);return Math.floor((e[0]*(n-1)-n+a)/2)}function bd(e){return typeof e=="number"?[e,e,e]:e.length===2?[e[0],e[1],1]:e}function Rf(e){return typeof e=="number"?[e,e,e]:e}function dl(e,t){return t<=1?e:e+(e-1)*(t-1)}function fI(e,t,n,r,a,s,i,o,l){let u,c,h;if(typeof e=="number"){u={top:e,bottom:e,left:e,right:e,type:e===0?"VALID":"NUMBER"};let d=AI([t,n],s,r,e,o);c=d[0],h=d[1]}else if(e==="same"){c=Math.ceil(t/r),h=Math.ceil(n/a);let d=Math.max(0,(c-1)*r+s-t),p=Math.max(0,(h-1)*a+i-n),f=Math.floor(d/2),m=d-f,A=Math.floor(p/2),y=p-A;u={top:f,bottom:m,left:A,right:y,type:"SAME"}}else if(e==="valid")u={top:0,bottom:0,left:0,right:0,type:"VALID"},c=Math.ceil((t-s+1)/r),h=Math.ceil((n-i+1)/a);else if(typeof e=="object"){let d=l==="channelsLast"?e[1][0]:e[2][0],p=l==="channelsLast"?e[1][1]:e[2][1],f=l==="channelsLast"?e[2][0]:e[3][0],m=l==="channelsLast"?e[2][1]:e[3][1];u={top:d,bottom:p,left:f,right:m,type:d===0&&p===0&&f===0&&m===0?"VALID":"EXPLICIT"},c=oi((t-s+d+p)/r+1,o),h=oi((n-i+f+m)/a+1,o)}else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:u,outHeight:c,outWidth:h}}function mI(e,t,n,r,a,s,i,o,l,u,c){let h,d,p,f;if(typeof e=="number"){h={top:e,bottom:e,left:e,right:e,front:e,back:e,type:e===0?"VALID":"NUMBER"};let m=yI([t,n,r,1],o,1,a,e,c);d=m[0],p=m[1],f=m[2]}else if(e==="same"){d=Math.ceil(t/a),p=Math.ceil(n/s),f=Math.ceil(r/i);let m=(d-1)*a+o-t,A=(p-1)*s+l-n,y=(f-1)*i+u-r,g=Math.floor(m/2),_=m-g,b=Math.floor(A/2),x=A-b,w=Math.floor(y/2),I=y-w;h={top:b,bottom:x,left:w,right:I,front:g,back:_,type:"SAME"}}else if(e==="valid")h={top:0,bottom:0,left:0,right:0,front:0,back:0,type:"VALID"},d=Math.ceil((t-o+1)/a),p=Math.ceil((n-l+1)/s),f=Math.ceil((r-u+1)/i);else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:h,outDepth:d,outHeight:p,outWidth:f}}function oi(e,t){if(!t)return Math.trunc(e);switch(t){case"round":return Math.round(e);case"ceil":return Math.ceil(e);case"floor":return Math.floor(e);default:throw new Error(`Unknown roundingMode ${t}`)}}function Ra(e){let[t,n,r]=bd(e);return t===1&&n===1&&r===1}function In(e,t){return Ra(e)||Ra(t)}function d5(e){if(e==="NHWC")return"channelsLast";if(e==="NCHW")return"channelsFirst";throw new Error(`Unknown dataFormat ${e}`)}function gI(e,t){let n={x:C(e,"x","reshape","string_or_numeric")},r={shape:t};return $.runKernel(Lo,n,r)}var K=D({reshape_:gI});function xI(e,t,n,r,a){let s=C(e,"x","avgPool","float32"),i=1;F(In(n,i),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${i}'`);let o=s,l=!1;s.rank===3&&(l=!0,o=K(s,[1,s.shape[0],s.shape[1],s.shape[2]])),F(o.rank===4,()=>`Error in avgPool: x must be rank 4 but got rank ${o.rank}.`),a!=null&&F(Vt(r),()=>`Error in avgPool: pad must be an integer when using, dimRoundingMode ${a} but got pad ${r}.`);let u={x:o},c={filterSize:t,strides:n,pad:r,dimRoundingMode:a},h=$.runKernel(hs,u,c);return h=Ae(h,s.dtype),l?K(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var Xu=D({avgPool_:xI});function wI(e,t,n,r,a,s="NDHWC",i){i==null?i=[1,1,1]:Rt("dilations is deprecated, this field will be gone in v3.0.0.");let o=C(e,"x","avgPool3d","float32"),l=o,u=!1;o.rank===4&&(u=!0,l=K(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),F(l.rank===5,()=>`Error in avgPool3d: x must be rank 5 but got rank ${l.rank}.`),F(s==="NDHWC",()=>`Error in avgPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),F(In(n,i),()=>`Error in avgPool3d: Either strides or dilations must be 1. Got strides ${n} and dilations '${i}'`),a!=null&&F(Vt(r),()=>`Error in avgPool3d: pad must be an integer when using, dimRoundingMode ${a} but got pad ${r}.`);let c={x:l},h={filterSize:t,strides:n,pad:r,dimRoundingMode:a,dataFormat:s,dilations:i},d=$.runKernel(wu,c,h);return d=Ae(d,l.dtype),u?K(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var Mf=D({avgPool3d_:wI});function _I(e,t=0){F(e.length>=1,()=>"Pass at least one tensor to concat");let n=Uu(e,"tensors","concat","string_or_numeric");if(n[0].dtype==="complex64"&&n.forEach(s=>{if(s.dtype!=="complex64")throw new Error(`Cannot concatenate complex64 tensors with a tensor
|
|
with dtype ${s.dtype}. `)}),n.length===1)return nr(n[0]);let r=n,a={axis:t};return $.runKernel(oo,r,a)}var rt=D({concat_:_I});function bI(e){let t={x:C(e,"x","sigmoid")};return $.runKernel(Gs,t)}var Sn=D({sigmoid_:bI});function vI(e,t,n){let r=C(e,"x","slice","string_or_numeric");if(r.rank===0)throw new Error("Slicing scalar is not possible");let a={x:r},s={begin:t,size:n};return $.runKernel(Uo,a,s)}var Ce=D({slice_:vI});function kI(e){let t={x:C(e,"x","tanh")};return $.runKernel(Ys,t)}var pl=D({tanh_:kI});function NI(e,t,n,r,a,s){let i=C(e,"forgetBias","basicLSTMCell"),o=C(t,"lstmKernel","basicLSTMCell"),l=C(n,"lstmBias","basicLSTMCell"),u=C(r,"data","basicLSTMCell"),c=C(a,"c","basicLSTMCell"),h=C(s,"h","basicLSTMCell"),d=rt([u,h],1),p=He(d,o),f=oe(p,l),m=f.shape[0],A=f.shape[1]/4,y=[m,A],g=Ce(f,[0,0],y),_=Ce(f,[0,A],y),b=Ce(f,[0,A*2],y),x=Ce(f,[0,A*3],y),w=oe(L(Sn(g),pl(_)),L(c,Sn(oe(i,b)))),I=L(pl(w),Sn(x));return[w,I]}var II=D({basicLSTMCell_:NI});function SI(e,t,n){let r=C(e,"x","batchToSpaceND"),a=t.reduce((o,l)=>o*l);F(r.rank>=1+t.length,()=>`input rank is ${r.rank} but should be > than blockShape.length ${t.length}`),F(n.length===t.length,()=>`crops.length is ${n.length} but should be equal to blockShape.length ${t.length}`),F(r.shape[0]%a==0,()=>`input tensor batch is ${r.shape[0]} but is not divisible by the product of the elements of blockShape ${t.join(" * ")} === ${a}`);let s={x:r},i={blockShape:t,crops:n};return $.runKernel(_u,s,i)}var Ku=D({batchToSpaceND_:SI});function TI(e){let t;return e.rank===0||e.rank===1?t=K(e,[1,1,1,e.size]):e.rank===2?t=K(e,[1,1,e.shape[0],e.shape[1]]):e.rank===3?t=K(e,[1,e.shape[0],e.shape[1],e.shape[2]]):t=e,t}function EI(e,t,n,r,a,s){s==null&&(s=.001);let i=C(e,"x","batchNorm"),o=C(t,"mean","batchNorm"),l=C(n,"variance","batchNorm"),u;a!=null&&(u=C(a,"scale","batchNorm"));let c;r!=null&&(c=C(r,"offset","batchNorm")),F(o.rank===l.rank,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),F(c==null||o.rank===c.rank,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),F(u==null||o.rank===u.rank,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let h={x:TI(i),scale:u,offset:c,mean:o,variance:l},d={varianceEpsilon:s},p=$.runKernel(vs,h,d);return K(p,i.shape)}var li=D({batchNorm_:EI});function CI(e,t,n,r,a,s){let i=C(e,"x","batchNorm"),o=C(t,"mean","batchNorm"),l=C(n,"variance","batchNorm"),u;a!=null&&(u=C(a,"scale","batchNorm"));let c;return r!=null&&(c=C(r,"offset","batchNorm")),F(i.rank===2,()=>`Error in batchNorm2D: x must be rank 2 but got rank ${i.rank}.`),F(o.rank===2||o.rank===1,()=>`Error in batchNorm2D: mean must be rank 2 or rank 1 but got rank ${o.rank}.`),F(l.rank===2||l.rank===1,()=>`Error in batchNorm2D: variance must be rank 2 or rank 1 but got rank ${l.rank}.`),u!=null&&F(u.rank===2||u.rank===1,()=>`Error in batchNorm2D: scale must be rank 2 or rank 1 but got rank ${u.rank}.`),c!=null&&F(c.rank===2||c.rank===1,()=>`Error in batchNorm2D: offset must be rank 2 or rank 1 but got rank ${c.rank}.`),li(i,o,l,c,u,s)}var m5=D({batchNorm2d_:CI});function RI(e,t,n,r,a,s){let i=C(e,"x","batchNorm"),o=C(t,"mean","batchNorm"),l=C(n,"variance","batchNorm"),u;a!=null&&(u=C(a,"scale","batchNorm"));let c;return r!=null&&(c=C(r,"offset","batchNorm")),F(i.rank===3,()=>`Error in batchNorm3D: x must be rank 3 but got rank ${i.rank}.`),F(o.rank===3||o.rank===1,()=>`Error in batchNorm3D: mean must be rank 3 or rank 1 but got rank ${o.rank}.`),F(l.rank===3||l.rank===1,()=>`Error in batchNorm3D: variance must be rank 3 or rank 1 but got rank ${l.rank}.`),u!=null&&F(u.rank===3||u.rank===1,()=>`Error in batchNorm3D: scale must be rank 3 or rank 1 but got rank ${u.rank}.`),c!=null&&F(c.rank===3||c.rank===1,()=>`Error in batchNorm3D: offset must be rank 3 or rank 1 but got rank ${c.rank}.`),li(i,o,l,c,u,s)}var A5=D({batchNorm3d_:RI});function FI(e,t,n,r,a,s){let i=C(e,"x","batchNorm"),o=C(t,"mean","batchNorm"),l=C(n,"variance","batchNorm"),u;a!=null&&(u=C(a,"scale","batchNorm"));let c;return r!=null&&(c=C(r,"offset","batchNorm")),F(i.rank===4,()=>`Error in batchNorm4D: x must be rank 4 but got rank ${i.rank}.`),F(o.rank===4||o.rank===1,()=>`Error in batchNorm4D: mean must be rank 4 or rank 1 but got rank ${o.rank}.`),F(l.rank===4||l.rank===1,()=>`Error in batchNorm4D: variance must be rank 4 or rank 1 but got rank ${l.rank}.`),u!=null&&F(u.rank===4||u.rank===1,()=>`Error in batchNorm4D: scale must be rank 4 or rank 1 but got rank ${u.rank}.`),c!=null&&F(c.rank===4||c.rank===1,()=>`Error in batchNorm4D: offset must be rank 4 or rank 1 but got rank ${c.rank}.`),li(i,o,l,c,u,s)}var y5=D({batchNorm4d_:FI});function MI(e,t,n){let r=C(e,"x","bincount"),a=C(t,"weights","bincount");F(r.dtype==="int32",()=>`Error in bincount: input dtype must be int32, but got ${r.dtype}`),F(n>=0,()=>`size must be non-negative, but got ${n}.`),F(a.size===r.size||a.size===0,()=>`Error in bincount: weights must have the same size as input or0-length, but got input shape: ${r.shape}, weights shape: ${a.shape}.`);let s={x:r,weights:a},i={size:n};return $.runKernel($h,s,i)}var g5=D({bincount_:MI});function OI(e,t){let n=C(e,"broadcastTo","x"),r=n.shape;if(t.some(l=>!(l>0)||l%1!=0))throw new Error(`broadcastTo(): Invalid broadcast shape [${t}].`);if(t.length<n.rank)throw new Error(`broadcastTo(): shape.length=${t.length} < input.rank=${n.rank}.`);if(t.length>n.rank){let l=n.shape.slice();for(;l.length<t.length;)l.unshift(1);n=K(n,l)}let a=n.shape,s=Array.from(t);for(let l=t.length-1;l>=0;l--)if(a[l]===t[l])s[l]=1;else if(n.shape[l]!==1)throw new Error(`broadcastTo(): [${r}] cannot be broadcast to [${t}].`);if(s.map((l,u)=>l>1?u:-1).filter(l=>l>=0).length===0)return nr(n);let i={x:n},o={reps:s};return $.runKernel(Ia,i,o)}var Zu=D({broadcastTo_:OI});function DI(e){let t={x:C(e,"x","ceil")};return $.runKernel(io,t)}var Of=D({ceil_:DI});function $I(e,t,n){let r=C(e,"x","clipByValue");F(t<=n,()=>`Error in clip: min (${t}) must be less than or equal to max (${n}).`);let a={x:r},s={clipValueMin:t,clipValueMax:n};return $.runKernel(Na,a,s)}var yn=D({clipByValue_:$I});function zI(e){return rt(e,0)}var x5=D({concat1d_:zI});function PI(e,t){return rt(e,t)}var ui=D({concat2d_:PI});function LI(e,t){return rt(e,t)}var w5=D({concat3d_:LI});function WI(e,t){return rt(e,t)}var _5=D({concat4d_:WI});function BI(e,t,n,r,a="NHWC",s=[1,1],i){let o=C(e,"x","conv2d"),l=C(t,"filter","conv2d"),u=o,c=!1;o.rank===3&&(c=!0,u=K(o,[1,o.shape[0],o.shape[1],o.shape[2]])),F(u.rank===4,()=>`Error in conv2d: input must be rank 4, but got rank ${u.rank}.`),F(l.rank===4,()=>`Error in conv2d: filter must be rank 4, but got rank ${l.rank}.`),i!=null&&F(Vt(r),()=>`Error in conv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${r}.`);let h=a==="NHWC"?u.shape[3]:u.shape[1];F(h===l.shape[2],()=>`Error in conv2d: depth of input (${h}) must match input depth for filter ${l.shape[2]}.`),F(In(n,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`);let d={x:u,filter:l},p={strides:n,pad:r,dataFormat:a,dilations:s,dimRoundingMode:i},f=$.runKernel(fs,d,p);return c?K(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var sa=D({conv2d_:BI});function VI(e,t,n,r,a="NWC",s=1,i){let o=C(e,"x","conv1d"),l=C(t,"filter","conv1d"),u=o,c=!1;o.rank===2&&(c=!0,u=K(o,[1,o.shape[0],o.shape[1]])),F(u.rank===3,()=>`Error in conv1d: input must be rank 3, but got rank ${u.rank}.`),F(l.rank===3,()=>`Error in conv1d: filter must be rank 3, but got rank ${l.rank}.`),i!=null&&F(Vt(r),()=>`Error in conv1d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${r}.`),F(u.shape[2]===l.shape[1],()=>`Error in conv1d: depth of input (${u.shape[2]}) must match input depth for filter ${l.shape[1]}.`),F(In(n,s),()=>`Error in conv1D: Either stride or dilation must be 1. Got stride ${n} and dilation '${s}'`),F(a==="NWC",()=>`Error in conv1d: got dataFormat of ${a} but only NWC is currently supported.`);let h=K(l,[1,l.shape[0],l.shape[1],l.shape[2]]),d=K(u,[u.shape[0],1,u.shape[1],u.shape[2]]),p=sa(d,h,[1,n],r,"NHWC",[1,s],i);return c?K(p,[p.shape[2],p.shape[3]]):K(p,[p.shape[0],p.shape[2],p.shape[3]])}var vd=D({conv1d_:VI});function UI(e,t,n,r,a,s="NHWC",i){F(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let o=e,l=t,u=!1;t.rank===3&&(u=!0,l=K(t,[1,t.shape[0],t.shape[1],t.shape[2]]),o=[1,e[0],e[1],e[2]]),F(o.length===4,()=>`Error in conv2dDerInput: inShape must be length 4, but got length ${o.length}.`),F(l.rank===4,()=>`Error in conv2dDerInput: dy must be rank 4, but got rank ${l.rank}`),F(n.rank===4,()=>`Error in conv2dDerInput: filter must be rank 4, but got rank ${n.rank}`);let c=s==="NHWC"?o[3]:o[1],h=s==="NHWC"?l.shape[3]:l.shape[1];F(c===n.shape[2],()=>`Error in conv2dDerInput: depth of input (${c}) must match input depth for filter ${n.shape[2]}.`),F(h===n.shape[3],()=>`Error in conv2dDerInput: depth of output (${h}) must match output depth for filter ${n.shape[3]}.`),i!=null&&F(Vt(a),()=>`Error in conv2dDerInput: pad must be an integer when using, dimRoundingMode ${i} but got pad ${a}.`);let d={dy:l,filter:n},p={strides:r,pad:a,dataFormat:s,dimRoundingMode:i,inputShape:o},f=$.runKernel(ms,d,p);return u?K(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var Df=D({conv2DBackpropInput_:UI});function jI(e,t,n,r,a,s){let i=C(e,"x","conv2dTranspose"),o=C(t,"filter","conv2dTranspose");return Df(n,i,o,r,a,"NHWC",s)}var kd=D({conv2dTranspose_:jI});function GI(e,t,n,r,a="NDHWC",s=[1,1,1]){let i=C(e,"x","conv3d"),o=C(t,"filter","conv3d"),l=i,u=!1;i.rank===4&&(u=!0,l=K(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),F(l.rank===5,()=>`Error in conv3d: input must be rank 5, but got rank ${l.rank}.`),F(o.rank===5,()=>`Error in conv3d: filter must be rank 5, but got rank ${o.rank}.`),F(l.shape[4]===o.shape[3],()=>`Error in conv3d: depth of input (${l.shape[4]}) must match input depth for filter ${o.shape[3]}.`),F(In(n,s),()=>`Error in conv3D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),F(a==="NDHWC",()=>`Error in conv3d: got dataFormat of ${a} but only NDHWC is currently supported.`);let c={x:l,filter:o},h={strides:n,pad:r,dataFormat:a,dilations:s},d=$.runKernel(vu,c,h);return u?K(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var $f=D({conv3d_:GI});function HI(e,t,n,r,a){F(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let s=e,i=t,o=!1;t.rank===4&&(o=!0,i=K(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]]),s=[1,e[0],e[1],e[2],e[3]]);let l=s[4],u=i.shape[4];F(s.length===5,()=>`Error in conv3dDerInput: inShape must be length 5, but got length ${s.length}.`),F(i.rank===5,()=>`Error in conv3dDerInput: dy must be rank 5, but got rank ${i.rank}`),F(n.rank===5,()=>`Error in conv3dDerInput: filter must be rank 5, but got rank ${n.rank}`),F(l===n.shape[3],()=>`Error in conv3dDerInput: depth of input (${l}) must match input depth for filter ${n.shape[3]}.`),F(u===n.shape[4],()=>`Error in conv3dDerInput: depth of output (${u}) must match output depth for filter ${n.shape[4]}.`);let c={dy:i,filter:n},h={pad:a,strides:r,inputShape:s},d=$.runKernel(Wh,c,h);return o?K(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var b5=D({conv3DBackpropInput_:HI});function qI(e,t,n,r,a){let s=C(e,"x","conv3dTranspose"),i=C(t,"filter","conv3dTranspose");return b5(n,s,i,r,a)}var XI=D({conv3dTranspose_:qI});function KI(e){let t={x:C(e,"x","cos")};return $.runKernel(As,t)}var Yu=D({cos_:KI});function ZI(e){let t={x:C(e,"x","cosh")};return $.runKernel(lo,t)}var Nd=D({cosh_:ZI});function YI(e,t=0,n=!1,r=!1){let a={x:C(e,"x","cumsum")},s={axis:t,exclusive:n,reverse:r};return $.runKernel(ys,a,s)}var Id=D({cumsum_:YI});function JI(e,t,n,r=!1){let a=C(e,"x","denseBincount"),s=C(t,"weights","denseBincount");F(a.dtype==="int32",()=>`Error in denseBincount: input dtype must be int32, but got ${a.dtype}`),F(a.rank<=2,()=>`Error in denseBincount: input must be at most rank 2, but got rank ${a.rank}.`),F(n>=0,()=>`size must be non-negative, but got ${n}.`),F(s.size===a.size||s.size===0,()=>`Error in denseBincount: weights must have the same shape as x or 0-length, but got x shape: ${a.shape}, weights shape: ${s.shape}.`);let i={x:a,weights:s},o={size:n,binaryOutput:r};return $.runKernel(Bh,i,o)}var v5=D({denseBincount_:JI});function QI(e,t,n="NHWC"){let r=C(e,"x","depthToSpace"),a=n==="NHWC"?r.shape[1]:r.shape[2],s=n==="NHWC"?r.shape[2]:r.shape[3],i=n==="NHWC"?r.shape[3]:r.shape[1];F(a*t>=0,()=>`Negative dimension size caused by overflow when multiplying
|
|
${a} and ${t} for depthToSpace with input shape
|
|
${r.shape}`),F(s*t>=0,()=>`Negative dimension size caused by overflow when multiplying
|
|
${s} and ${t} for depthToSpace with input shape
|
|
${r.shape}`),F(i%(t*t)==0,()=>`Dimension size must be evenly divisible by ${t*t} but is ${i} for depthToSpace with input shape ${r.shape}`);let o={x:r},l={blockSize:t,dataFormat:n};return $.runKernel(co,o,l)}var zf=D({depthToSpace_:QI});function eS(e,t,n,r,a="NHWC",s=[1,1],i){let o=C(e,"x","depthwiseConv2d"),l=C(t,"filter","depthwiseConv2d"),u=o,c=!1;o.rank===3&&(c=!0,u=K(o,[1,o.shape[0],o.shape[1],o.shape[2]])),F(u.rank===4,()=>`Error in depthwiseConv2d: input must be rank 4, but got rank ${u.rank}.`),F(l.rank===4,()=>`Error in depthwiseConv2d: filter must be rank 4, but got rank ${l.rank}.`),F(u.shape[3]===l.shape[2],()=>`Error in depthwiseConv2d: number of input channels (${u.shape[3]}) must match the inChannels dimension in filter ${l.shape[2]}.`),i!=null&&F(Vt(r),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${r}.`);let h={x:u,filter:l},d={strides:n,pad:r,dataFormat:a,dilations:s,dimRoundingMode:i},p=$.runKernel(gs,h,d);return c?K(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var ci=D({depthwiseConv2d_:eS});function tS(e){let t={x:C(e,"x","diag")};return $.runKernel(jh,t)}var nS=D({diag_:tS});function rS(e,t,n,r,a=[1,1],s="NHWC"){let i=C(e,"x","dilation2d"),o=C(t,"filter","dilation2d");F(i.rank===3||i.rank===4,()=>`Error in dilation2d: input must be rank 3 or 4, but got rank ${i.rank}.`),F(o.rank===3,()=>`Error in dilation2d: filter must be rank 3, but got rank ${o.rank}.`),F(s==="NHWC",()=>`Error in dilation2d: Only NHWC is currently supported, but got dataFormat of ${s}`);let l=i,u=!1;i.rank===3&&(l=K(i,[1,i.shape[0],i.shape[1],i.shape[2]]),u=!0);let c={x:l,filter:o},h={strides:n,pad:r,dilations:a},d=$.runKernel(ku,c,h);return u?K(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var Pf=D({dilation2d_:rS});function aS(e,t){let n=e.length,r=[];for(let a=0;a<n;a++){let s=n-1-a,i=e[s]||1;(t[t.length-1-a]||1)>1&&i===1&&r.unshift(s)}return r}function zt(e,t){let n=[];for(let r=0;r<t.length;r++){let a=e[e.length-r-1],s=t.length-r-1,i=t[s];(a==null||a===1&&i>1)&&n.unshift(s)}return n}function At(e,t){let n=[],r=Math.max(e.length,t.length);for(let a=0;a<r;a++){let s=e[e.length-a-1];s==null&&(s=1);let i=t[t.length-a-1];if(i==null&&(i=1),s===1)n.unshift(i);else if(i===1)n.unshift(s);else if(s!==i){let o=`Operands could not be broadcast together with shapes ${e} and ${t}.`;throw Error(o)}else n.unshift(s)}return n}function sS(e,t){let n=C(e,"a","equal"),r=C(t,"b","equal");[n,r]=_t(n,r),At(n.shape,r.shape);let a={a:n,b:r};return $.runKernel(fo,a)}var ia=D({equal_:sS});function iS(e,t,n){let r=C(t,"a","where"),a=C(n,"b","where"),s=C(e,"condition","where","bool"),i=At(r.shape,a.shape),o=Zu(r,i),l=Zu(a,i);s.rank===1&&F(s.shape[0]===r.shape[0],()=>"The first dimension of `a` must match the size of `condition`."),s.rank!==1&&tt(s.shape,l.shape,"Error in where: ");let u={condition:s,t:o,e:l};return $.runKernel(Bo,u)}var gn=D({where_:iS});function oS(e){let t={x:C(e,"x","zerosLike")};return $.runKernel(Jo,t)}var je=D({zerosLike_:oS});function lS(e,t){let n=C(e,"a","div"),r=C(t,"b","div");[n,r]=_t(n,r);let a=_e(n,r),s=je(a),i=ia(r,s);return gn(i,s,a)}var Lf=D({divNoNan_:lS});function uS(e,t){let n=C(e,"t1","dot"),r=C(t,"t2","dot");F((n.rank===1||n.rank===2)&&(r.rank===1||r.rank===2),()=>`Error in dot: inputs must all be rank 1 or 2, but got ranks ${n.rank} and ${r.rank}.`);let a=n.rank===1?n.size:n.shape[1],s=r.rank===1?r.size:r.shape[0];if(F(a===s,()=>`Error in dot: inner dimensions of inputs must match, but got ${a} and ${s}.`),n.rank===1&&r.rank===1){let i=K(n,[1,-1]),o=K(r,[-1,1]),l=He(i,o);return K(l,[])}else if(n.rank===1&&r.rank===2){let i=K(n,[1,-1]),o=K(r,[r.shape[0],r.shape[1]]),l=He(i,o);return K(l,[l.size])}else if(n.rank===2&&r.rank===1){let i=K(r,[-1,1]),o=He(n,i);return K(o,[o.size])}else{let i=K(r,[r.shape[0],r.shape[1]]);return He(n,i)}}var k5=D({dot_:uS});function cS(e){let t={x:C(e,"x","elu")};return $.runKernel(ho,t)}var fl=D({elu_:cS});function hS(e){let t=C(e,"x","erf");F(t.dtype==="int32"||t.dtype==="float32",()=>"Input dtype must be `int32` or `float32`."),t.dtype==="int32"&&(t=Ae(t,"float32"));let n={x:t};return $.runKernel(po,n)}var Wf=D({erf_:hS});function dS(e){let t={x:C(e,"x","exp")};return $.runKernel(ws,t)}var Gn=D({exp_:dS});function pS(e,t=0){let n=C(e,"x","expandDims","string_or_numeric");F(t<=n.rank,()=>"Axis must be <= rank of the tensor");let r={input:n},a={dim:t};return $.runKernel(mo,r,a)}var Hn=D({expandDims_:pS});function fS(e){let t={x:C(e,"x","expm1")};return $.runKernel(Ao,t)}var Bf=D({expm1_:fS});function mS(e,t){let n=C(e,"x","tile","string_or_numeric");F(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of reps ${t}.`);let r={x:n},a={reps:t};return $.runKernel(Ia,r,a)}var Fa=D({tile_:mS});function AS(e,t,n,r="float32"){t==null&&(t=e);let a=We([e,t],r),s=e<=t?e:t;for(let o=0;o<s;++o)a.set(1,o,o);let i=K(a.toTensor(),[e,t]);if(n==null)return i;if(n.length===1)return Fa(Hn(i,0),[n[0],1,1]);if(n.length===2)return Fa(Hn(Hn(i,0),0),[n[0],n[1],1,1]);if(n.length===3)return Fa(Hn(Hn(Hn(i,0),0),0),[n[0],n[1],n[2],1,1]);throw new Error(`eye() currently supports only 1D and 2D batchShapes, but received ${n.length}D.`)}var Vf=D({eye_:AS});function Ju(e,t,n){let r={shape:e,value:t,dtype:n};return $.runKernel(Nu,{},r)}function yS(e){let t={x:C(e,"x","floor")};return $.runKernel(_s,t)}var ml=D({floor_:yS});function gS(e,t,n=0,r=0){let a=C(e,"x","gather"),s=C(t,"indices","gather","int32"),i={x:a,indices:s},o={axis:n,batchDims:r};return $.runKernel(go,i,o)}var hi=D({gather_:gS});function xS(e,t){let n=C(e,"a","greater"),r=C(t,"b","greater");[n,r]=_t(n,r),At(n.shape,r.shape);let a={a:n,b:r};return $.runKernel(wo,a)}var qn=D({greater_:xS});function wS(e,t){let n=C(e,"a","greaterEqual"),r=C(t,"b","greaterEqual");[n,r]=_t(n,r),At(n.shape,r.shape);let a={a:n,b:r};return $.runKernel(ks,a)}var oa=D({greaterEqual_:wS});function _S(e){let t={input:C(e,"input","imag")};return $.runKernel(Zh,t)}var Sd=D({imag_:_S});function bS(e){let t={x:C(e,"x","isFinite")};return $.runKernel(bo,t)}var N5=D({isFinite_:bS});function vS(e){let t={x:C(e,"x","isInf")};return $.runKernel(vo,t)}var I5=D({isInf_:vS});function kS(e){let t={x:C(e,"x","isNaN")};return $.runKernel(ko,t)}var S5=D({isNaN_:kS});function NS(e,t=.2){let n={x:C(e,"x","leakyRelu")},r={alpha:t};return $.runKernel(Ns,n,r)}var Qu=D({leakyRelu_:NS});function IS(e,t){let n=C(e,"a","less"),r=C(t,"b","less");[n,r]=_t(n,r),At(n.shape,r.shape);let a={a:n,b:r};return $.runKernel(No,a)}var ec=D({less_:IS});function SS(e,t){let n=C(e,"a","lessEqual"),r=C(t,"b","lessEqual");[n,r]=_t(n,r),At(n.shape,r.shape);let a={a:n,b:r};return $.runKernel(Io,a)}var Ma=D({lessEqual_:SS});function T5(e,t,n){if(n<=0)throw new Error("The number of values should be positive.");let r={start:e,stop:t,num:n};return $.runKernel(Yh,{},r)}function TS(e,t=5,n=1,r=1,a=.5){let s=C(e,"x","localResponseNormalization");F(s.rank===4||s.rank===3,()=>`Error in localResponseNormalization: x must be rank 3 or 4 but got
|
|
rank ${s.rank}.`),F(Vt(t),()=>`Error in localResponseNormalization: depthRadius must be an integer but got depthRadius ${t}.`);let i=s,o=!1;s.rank===3&&(o=!0,i=K(s,[1,s.shape[0],s.shape[1],s.shape[2]]));let l={x:i},u={depthRadius:t,bias:n,alpha:r,beta:a},c=$.runKernel(Tu,l,u);return o?K(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var Uf=D({localResponseNormalization_:TS});function ES(e){let t={x:C(e,"x","log")};return $.runKernel(Is,t)}var Tn=D({log_:ES});function CS(e){let t={x:C(e,"x","log1p")};return $.runKernel(So,t)}var Td=D({log1p_:CS});function RS(e){return F(va(e),()=>"The f passed in grad(f) must be a function"),(t,n)=>{let r=C(t,"x","tf.grad","string_or_numeric"),a=n!=null?C(n,"dy","tf.grad"):null;return $.tidy(()=>{let{value:s,grads:i}=$.gradients(()=>e(r),[r],a);return a!=null&&tt(s.shape,a.shape,"The shape of dy passed in grad(f)(x, dy) must match the shape returned by f(x)"),Ed(i),i[0]})}}function FS(e){return F(va(e),()=>"The f passed in grads(f) must be a function"),(t,n)=>{F(Array.isArray(t),()=>"The args passed in grads(f)(args) must be an array of `Tensor`s or `TensorLike`s");let r=Uu(t,"args","tf.grads","string_or_numeric"),a=n!=null?C(n,"dy","tf.grads"):null;return $.tidy(()=>{let{value:s,grads:i}=$.gradients(()=>e(...r),r,a);return a!=null&&tt(s.shape,a.shape,"The shape of dy passed in grads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),Ed(i),i})}}function MS(e){return F(va(e),()=>"The f passed in valueAndGrad(f) must be a function"),(t,n)=>{F(t instanceof U,()=>"The x passed in valueAndGrad(f)(x) must be a tensor"),F(n==null||n instanceof U,()=>"The dy passed in valueAndGrad(f)(x, dy) must be a tensor");let{grads:r,value:a}=$.gradients(()=>e(t),[t],n);return Ed(r),{grad:r[0],value:a}}}function OS(e){return F(va(e),()=>"The f passed in valueAndGrads(f) must be a function"),(t,n)=>{F(Array.isArray(t)&&t.every(a=>a instanceof U),()=>"The args passed in valueAndGrads(f)(args) must be array of tensors"),F(n==null||n instanceof U,()=>"The dy passed in valueAndGrads(f)(args, dy) must be a tensor");let r=$.gradients(()=>e(...t),t,n);return n!=null&&tt(r.value.shape,n.shape,"The shape of dy passed in valueAndGrads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),Ed(r.grads),r}}function E5(e,t){F(va(e),()=>"The f passed in variableGrads(f) must be a function"),F(t==null||Array.isArray(t)&&t.every(u=>u instanceof Bu),()=>"The varList passed in variableGrads(f, varList) must be an array of variables");let n=t!=null;if(!n){t=[];for(let u in $.registeredVariables)t.push($.registeredVariables[u])}let r=n?t.filter(u=>!u.trainable):null,a=t.length;t=t.filter(u=>u.trainable),F(t.length>0,()=>`variableGrads() expects at least one of the input variables to be trainable, but none of the ${a} variables is trainable.`);let s=!0,{value:i,grads:o}=$.gradients(e,t,null,s);F(o.some(u=>u!=null),()=>"Cannot find a connection between any variable and the result of the loss function y=f(x). Please make sure the operations that use variables are inside the function f passed to minimize()."),F(i.rank===0,()=>`The f passed in variableGrads(f) must return a scalar, but it returned a rank-${i.rank} tensor`);let l={};return t.forEach((u,c)=>{o[c]!=null&&(l[u.name]=o[c])}),r!=null&&r.forEach(u=>l[u.name]=null),{value:i,grads:l}}function Or(e){return $.customGrad(e)}function Ed(e){if(e.filter(t=>t==null).length>0)throw new Error(`Cannot compute gradient of y=f(x) with respect to x. Make sure that
|
|
the f you passed encloses all operations that lead from x to y.`)}function DS(e){let t={x:C(e,"x","neg")};return $.runKernel(Co,t)}var bt=D({neg_:DS});function $S(e){let t={x:C(e,"x","softplus")};return $.runKernel(Ho,t)}var Al=D({softplus_:$S});function zS(e){let t=C(e,"x","logSigmoid");return Or(n=>({value:bt(Al(bt(n))),gradFunc:r=>L(r,Sn(bt(n)))}))(t)}var C5=D({logSigmoid_:zS});function PS(e,t=null,n=!1){let r={x:C(e,"x","max")},a={reductionIndices:t,keepDims:n};return $.runKernel(Ss,r,a)}var Xn=D({max_:PS});function LS(e,t){let n=C(e,"a","sub"),r=C(t,"b","sub");[n,r]=_t(n,r);let a={a:n,b:r};return $.runKernel(Zs,a)}var ye=D({sub_:LS});function WS(e,t=null,n=!1){let r=C(e,"x","sum");r.dtype==="bool"&&(r=Ae(r,"int32"));let a={x:r},s={axis:t,keepDims:n};return $.runKernel(qs,a,s)}var Se=D({sum_:WS});function BS(e,t=-1){let n=C(e,"logits","logSoftmax");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Log Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and axis was ${t}`);return Or((r,a)=>{let s=!0,i=Xn(r,t,!0),o=ye(r,i),l=ye(Ae(o,"float32"),Tn(Se(Gn(o),t,s)));return a([l]),{value:l,gradFunc:(u,c)=>{let[h]=c,d=!0,p=Gn(h);return ye(u,L(Se(u,t,d),p))}}})(n)}var Cd=D({logSoftmax_:BS});function jf(e,t){for(let n=0;n<e.length;++n)if(e[e.length-n-1]!==t-1-n)return!1;return!0}function R5(e,t,n){let r=e.length+t.length,a=[],s=0,i=0;for(let o=0;o<r;o++)n.indexOf(o)===-1?a.push(e[s++]):a.push(t[i++]);return a}function F5(e,t){let n=[],r=e.length;for(let s=0;s<r;s++)t.indexOf(s)===-1&&n.push(e[s]);let a=t.map(s=>e[s]);return[n,a]}function di(e,t){let n=t.map(r=>1);return R5(e,n,t)}function VS(e,t,n){F(jf(t,n),()=>`${e} supports only inner-most axes for now. Got axes ${t} and rank-${n} input.`)}function M5(e,t){if(jf(e,t))return null;let n=[];for(let r=0;r<t;++r)e.indexOf(r)===-1&&n.push(r);return e.forEach(r=>n.push(r)),n}function Gf(e){return e.map((t,n)=>[n,t]).sort((t,n)=>t[1]-n[1]).map(t=>t[0])}function US(e,t){let n=[];for(let r=t-e;r<t;++r)n.push(r);return n}function jS(e,t=null,n=!1){let r=C(e,"x","logSumExp"),a=er(t,r.shape),s=Xn(r,a,!0),i=ye(r,s),o=Gn(i),l=Se(o,a),u=Tn(l),c=oe(K(s,u.shape),u);if(n){let h=di(c.shape,a);return K(c,h)}return c}var Hf=D({logSumExp_:jS});function GS(e,t){let n=C(e,"a","logicalAnd","bool"),r=C(t,"b","logicalAnd","bool");At(n.shape,r.shape);let a={a:n,b:r};return $.runKernel(To,a)}var rr=D({logicalAnd_:GS});function HS(e){let t={x:C(e,"x","logicalNot","bool")};return $.runKernel(Iu,t)}var tc=D({logicalNot_:HS});function qS(e,t){let n=C(e,"a","logicalOr","bool"),r=C(t,"b","logicalOr","bool");At(n.shape,r.shape);let a={a:n,b:r};return $.runKernel(Su,a)}var Rd=D({logicalOr_:qS});function XS(e,t){let n=C(e,"a","logicalXor","bool"),r=C(t,"b","logicalXor","bool");return At(n.shape,r.shape),rr(Rd(e,t),tc(rr(e,t)))}var O5=D({logicalXor_:XS});function KS(e,t,n,r,a){let s=C(e,"x","maxPool"),i=1,o=s,l=!1;s.rank===3&&(l=!0,o=K(s,[1,s.shape[0],s.shape[1],s.shape[2]])),F(o.rank===4,()=>`Error in maxPool: input must be rank 4 but got rank ${o.rank}.`),F(In(n,i),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${i}'`),a!=null&&F(Vt(r),()=>`Error in maxPool: pad must be an integer when using, dimRoundingMode ${a} but got pad ${r}.`);let u={x:o},c={filterSize:t,strides:n,pad:r,dimRoundingMode:a},h=$.runKernel(Es,u,c);return l?K(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var nc=D({maxPool_:KS});function ZS(e,t=[1,1,1],n,r,a,s="NDHWC",i){i==null?i=[1,1,1]:Rt("dilations is deprecated, this field will be gone in v3.0.0.");let o=C(e,"x","maxPool3d"),l=o,u=!1;o.rank===4&&(u=!0,l=K(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),F(l.rank===5,()=>`Error in maxPool3d: x must be rank 5 but got rank ${l.rank}.`),F(s==="NDHWC",()=>`Error in maxPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),F(In(n,i),()=>`Error in maxPool3d: Either strides or dilations must be 1. Got strides ${n} and dilations '${i}'`),a!=null&&F(Vt(r),()=>`Error in maxPool3d: pad must be an integer when using, dimRoundingMode ${a} but got pad ${r}.`);let c={x:l},h={filterSize:t,strides:n,pad:r,dimRoundingMode:a,dataFormat:s,dilations:i},d=$.runKernel(Eu,c,h);return u?K(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var qf=D({maxPool3d_:ZS});function YS(e,t,n,r,a=!1){let s={x:C(e,"x","maxPoolWithArgmax")},i={filterSize:t,strides:n,pad:r,includeBatchInIndex:a},o=$.runKernel(td,s,i);return{result:o[0],indexes:o[1]}}var D5=D({maxPoolWithArgmax_:YS});function JS(e,t){let n=C(e,"a","maximum"),r=C(t,"b","maximum");[n,r]=_t(n,r),n.dtype==="bool"&&(n=Ae(n,"int32"),r=Ae(r,"int32")),At(n.shape,r.shape);let a={a:n,b:r};return $.runKernel(Ts,a)}var Ar=D({maximum_:JS});function QS(e,t=null,n=!1){let r={x:C(e,"x","mean")},a={axis:t,keepDims:n};return $.runKernel(Cs,r,a)}var vt=D({mean_:QS});function eT(e,t=null,n=!1){let r={x:C(e,"x","min")},a={axis:t,keepDims:n};return $.runKernel(Rs,r,a)}var yl=D({min_:eT});function tT(e,t){let n=C(e,"a","minimum"),r=C(t,"b","minimum");[n,r]=_t(n,r),n.dtype==="bool"&&(n=Ae(n,"int32"),r=Ae(r,"int32")),At(n.shape,r.shape);let a={a:n,b:r};return $.runKernel(Fs,a)}var pi=D({minimum_:tT});function nT(e,t,n){F(n==="reflect"||n==="symmetric",()=>`Invalid mode. Mode must be either reflect or symmetric. Got ${n}.`);let r=C(e,"x","mirrorPad");if(r.rank===0)throw new Error("mirrorPad(scalar) is not defined. Pass non-scalar to mirrorPad");F(t.length===r.rank,()=>`Padding doesn't match input. Must be ${r.rank}. Got ${t.length}.`);let a=n==="reflect"?1:0;for(let o=0;o<r.rank;o++)F(t[o].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),F(t[o][0]>=0&&t[o][0]<=r.shape[o]-a&&t[o][1]>=0&&t[o][1]<=r.shape[o]-a,()=>`Padding in dimension ${o} cannot be greater than or equal to ${r.shape[o]-a} or less than 0 for input of shape ${r.shape}`);let s={paddings:t,mode:n},i={x:r};return $.runKernel(Cu,i,s)}var Xf=D({mirrorPad_:nT});function rT(e,t){let n=C(e,"a","mod"),r=C(t,"b","mod");[n,r]=_t(n,r);let a={a:n,b:r};return $.runKernel(Eo,a)}var Fd=D({mod_:rT});function aT(e){let t=C(e,"x","square"),n={};return $.runKernel("Square",{x:t},n)}var ot=D({square_:aT});function sT(e,t=null,n=!1){e=C(e,"x","moments");let r=er(t,e.shape),a=vt(e,r,n),s=a.shape;n||(s=di(a.shape,r));let i=ot(ye(Ae(e,"float32"),K(a,s))),o=vt(i,r,n);return{mean:a,variance:o}}var Md=D({moments_:sT});function iT(e,t,n,r){let a=C(t,"data","multiRNNCell"),s=Uu(n,"c","multiRNNCell"),i=Uu(r,"h","multiRNNCell"),o=a,l=[];for(let h=0;h<e.length;h++){let d=e[h](o,s[h],i[h]);l.push(d[0]),l.push(d[1]),o=d[1]}let u=[],c=[];for(let h=0;h<l.length;h+=2)u.push(l[h]),c.push(l[h+1]);return[u,c]}var oT=D({multiRNNCell_:iT});function lT(e,t,n,r=!1){let a=C(e,"logits","multinomial"),s=a.size,i=a.rank;if(s<2)throw new Error(`Error in multinomial: you need at least 2 outcomes, but got ${s}.`);if(i>2)throw new Error(`Rank of probabilities must be 1 or 2, but is ${i}`);n=n||Math.random();let o={logits:i===1?K(a,[1,-1]):a},l={numSamples:t,seed:n,normalized:r},u=$.runKernel(nd,o,l);return i===1?K(u,[u.size]):u}var $5=D({multinomial_:lT});function uT(e,t){let n=C(e,"a","notEqual"),r=C(t,"b","notEqual");[n,r]=_t(n,r),At(n.shape,r.shape);let a={a:n,b:r};return $.runKernel(Ro,a)}var Oa=D({notEqual_:uT});function Tt(e,t="float32"){if(t==="complex64"){let r=Tt(e,"float32"),a=Tt(e,"float32");return Sa(r,a)}let n=Rh(Ot(e),t);return $.makeTensor(n,e,t)}function Dr(e,t="float32"){if(t==="complex64"){let r=Dr(e,"float32"),a=Tt(e,"float32");return Sa(r,a)}let n=B1(Ot(e),t);return $.makeTensor(n,e,t)}function cT(e){let t={x:C(e,"x","onesLike")};return $.runKernel(Do,t)}var En=D({onesLike_:cT});function hT(e,t){let n=C(e,"v1","outerProduct"),r=C(t,"v2","outerProduct");F(n.rank===1&&r.rank===1,()=>`Error in outerProduct: inputs must be rank 1, but got ranks ${n.rank} and ${r.rank}.`);let a=K(n,[-1,1]),s=K(r,[1,-1]);return He(a,s)}var dT=D({outerProduct_:hT});function pT(e,t,n=0){let r=C(e,"x","pad");if(r.rank===0)throw new Error("pad(scalar) is not defined. Pass non-scalar to pad");let a={paddings:t,constantValue:n},s={x:r};return $.runKernel(Ds,s,a)}var la=D({pad_:pT});function fT(e,t,n=0){return F(t.length===2,()=>"Invalid number of paddings. Must be length of 2."),la(e,[t],n)}var mT=D({pad1d_:fT});function AT(e,t,n=0){return F(t.length===2&&t[0].length===2&&t[1].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),la(e,t,n)}var yT=D({pad2d_:AT});function gT(e,t,n=0){return F(t.length===3&&t[0].length===2&&t[1].length===2&&t[2].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),la(e,t,n)}var xT=D({pad3d_:gT});function wT(e,t,n=0){return F(t.length===4&&t[0].length===2&&t[1].length===2&&t[2].length===2&&t[3].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),la(e,t,n)}var _T=D({pad4d_:wT});function bT(e,t,n){let r=C(e,"x","spaceToBatchND");F(r.rank>=1+t.length,()=>`input rank ${r.rank} should be > than [blockShape] ${t.length}`),F(n.length===t.length,()=>`paddings.shape[0] ${n.length} must be equal to [blockShape] ${t.length}`),F(r.shape.reduce((i,o,l)=>l>0&&l<=t.length?i&&(o+n[l-1][0]+n[l-1][1])%t[l-1]==0:i,!0),()=>`input spatial dimensions ${r.shape.slice(1)} with paddings ${n.toString()} must be divisible by blockShapes ${t.toString()}`);let a={x:r},s={blockShape:t,paddings:n};return $.runKernel(Mu,a,s)}var rc=D({spaceToBatchND_:bT});function NT(e,t,n,r,a,s){a==null&&(a=[1,1]),s==null&&(s=1),r===0&&(r="valid");let i=C(e,"x","maxPool"),o=i,l=!1;i.rank===3&&(l=!0,o=K(i,[1,i.shape[0],i.shape[1],i.shape[2]])),F(In(s,a),()=>`Error in pool: Either strides or dilations must be 1. Got strides ${s} and dilations '${a}'`);let u=p5(o.shape,t,s,a,r),c=[u.dilationHeight,u.dilationWidth],h;r==="same"?h=kT([u.filterHeight,u.filterWidth],c):h=[[0,0],[0,0]];let d=c[0]===1&&c[1]===1,[p,f]=vT([u.inHeight,u.inWidth],c,h),m=d?r:"valid",A=d?o:rc(o,c,p),y=(n==="avg"?()=>Xu(A,t,s,m):()=>nc(A,t,s,m))(),g=d?y:Ku(y,c,f);return l?K(g,[g.shape[1],g.shape[2],g.shape[3]]):g}function vT(e,t,n){let r=n.map(c=>c[0]),a=n.map(c=>c[1]),s=e.concat(r,a),i=t.map((c,h)=>(c-s[h]%c)%c),o=a.map((c,h)=>c+i[h]),l=t.map((c,h)=>[r[h],o[h]]),u=t.map((c,h)=>[0,i[h]]);return[l,u]}function kT(e,t){let n=e.map((s,i)=>s+(s-1)*(t[i]-1)).map(s=>s-1),r=n.map(s=>Math.floor(s/2)),a=n.map((s,i)=>s-r[i]);return n.map((s,i)=>[r[i],a[i]])}var z5=D({pool_:NT});function IT(e,t){let n=C(e,"base","pow"),r=C(t,"exp","pow");[n,r]=_t(n,r);let a={a:n,b:r};return $.runKernel($s,a)}var $r=D({pow_:IT});function ST(e,t){let n=C(e,"x","prelu"),r=C(t,"alpha","prelu"),a={x:n,alpha:r};return $.runKernel(zs,a)}var ac=D({prelu_:ST});function TT(e,t=null,n=!1){let r=C(e,"x","prod");r.dtype==="bool"&&(r=Ae(r,"int32"));let a={x:r},s={axis:t,keepDims:n};return $.runKernel(zo,a,s)}var Od=D({prod_:TT});function ET(e,t,n){let r=Ot(e),a=null;if(n==null||n==="float32")a=new Float32Array(r);else if(n==="int32")a=new Int32Array(r);else if(n==="bool")a=new Uint8Array(r);else throw new Error(`Unknown data type ${n}`);for(let s=0;s<r;s++)a[s]=t();return $.makeTensor(a,e,n)}var CT=D({rand_:ET}),Kf=Ki(hk()),Zf=class{constructor(e,t,n,r,a){this.mean=e,this.stdDev=t,this.dtype=n,this.nextVal=NaN,this.truncated=r,this.truncated&&(this.upper=this.mean+this.stdDev*2,this.lower=this.mean-this.stdDev*2);let s=a||Math.random();this.random=Kf.alea(s.toString())}nextValue(){if(!isNaN(this.nextVal)){let r=this.nextVal;return this.nextVal=NaN,r}let e,t,n=!1;for(;!n;){let r,a,s;do r=2*this.random()-1,a=2*this.random()-1,s=r*r+a*a;while(s>=1||s===0);let i=Math.sqrt(-2*Math.log(s)/s);e=this.mean+this.stdDev*r*i,t=this.mean+this.stdDev*a*i,(!this.truncated||this.isValidTruncated(e))&&(n=!0)}return(!this.truncated||this.isValidTruncated(t))&&(this.nextVal=this.convertValue(t)),this.convertValue(e)}convertValue(e){return this.dtype==null||this.dtype==="float32"?e:Math.round(e)}isValidTruncated(e){return e<=this.upper&&e>=this.lower}},RT=class{constructor(e,t,n,r){this.alpha=e,this.beta=1/t,this.dtype=n;let a=r||Math.random();this.randu=Kf.alea(a.toString()),this.randn=new Zf(0,1,n,!1,this.randu()),e<1?this.d=e+2/3:this.d=e-1/3,this.c=1/Math.sqrt(9*this.d)}nextValue(){let e,t,n,r,a,s;for(;;){do r=this.randn.nextValue(),s=1+this.c*r;while(s<=0);if(s*=s*s,e=r*r,t=1-.331*e*e,n=.5*e+this.d*(1-s+Math.log(s)),a=this.randu(),a<t||Math.log(a)<n)break}return s=1/this.beta*this.d*s,this.alpha<1&&(s*=Math.pow(this.randu(),1/this.alpha)),this.convertValue(s)}convertValue(e){return this.dtype==="float32"?e:Math.round(e)}},FT=class{constructor(e=0,t=1,n,r){if(this.canReturnFloat=()=>this.dtype==null||this.dtype==="float32",this.min=e,this.range=t-e,this.dtype=n,r==null&&(r=Math.random()),typeof r=="number"&&(r=r.toString()),!this.canReturnFloat()&&this.range<=1)throw new Error(`The difference between ${e} - ${t} <= 1 and dtype is not float`);this.random=Kf.alea(r)}convertValue(e){return this.canReturnFloat()?e:Math.round(e)}nextValue(){return this.convertValue(this.min+this.range*this.random())}};function MT(e,t,n=1,r="float32",a){if(n==null&&(n=1),r==null&&(r="float32"),r!=="float32"&&r!=="int32")throw new Error(`Unsupported data type ${r}`);let s=new RT(t,n,r,a),i=We(e,r);for(let o=0;o<i.values.length;o++)i.values[o]=s.nextValue();return i.toTensor()}var OT=D({randomGamma_:MT});function DT(e,t=0,n=1,r,a){if(r!=null&&r==="bool")throw new Error(`Unsupported data type ${r}`);let s=new Zf(t,n,r,!1,a),i=We(e,r);for(let o=0;o<i.values.length;o++)i.values[o]=s.nextValue();return i.toTensor()}var P5=D({randomNormal_:DT});function $T(e,t=0,n=1,r="float32",a){let s=We(e,r),i=new FT(t,n,null,a);for(let o=0;o<s.values.length;o++)s.values[o]=i.nextValue();return s.toTensor()}var gl=D({randomUniform_:$T});function Dd(e,t,n=1,r="float32"){if(n===0)throw new Error("Cannot have a step of zero");let a={start:e,stop:t,step:n,dtype:r};return $.runKernel(Ru,{},a)}function zT(e){let t={input:C(e,"input","real")};return $.runKernel(rd,t)}var sc=D({real_:zT});function PT(e){let t={x:C(e,"x","reciprocal")};return $.runKernel(Po,t)}var Yf=D({reciprocal_:PT});function LT(e){let t={x:C(e,"x","relu")};return $.runKernel(Ps,t)}var zr=D({relu_:LT});function WT(e){let t={x:C(e,"x","relu6")};return $.runKernel(Ws,t)}var $d=D({relu6_:WT});function BT(e,t){let n={x:C(e,"x","reverse")},r={dims:t};return $.runKernel(Bs,n,r)}var Cn=D({reverse_:BT});function VT(e){let t=C(e,"x","reverse");return F(t.rank===1,()=>`Error in reverse1D: x must be rank 1 but got rank ${t.rank}.`),Cn(t,0)}var UT=D({reverse1d_:VT});function jT(e,t){let n=C(e,"x","reverse");return F(n.rank===2,()=>`Error in reverse2D: x must be rank 2 but got rank ${n.rank}.`),Cn(n,t)}var GT=D({reverse2d_:jT});function HT(e,t){let n=C(e,"x","reverse");return F(n.rank===3,()=>`Error in reverse3D: x must be rank 3 but got rank ${n.rank}.`),Cn(n,t)}var qT=D({reverse3d_:HT});function XT(e,t){let n=C(e,"x","reverse");return F(n.rank===4,()=>`Error in reverse4D: x must be rank 4 but got rank ${n.rank}.`),Cn(n,t)}var KT=D({reverse4d_:XT});function ZT(e){let t={x:C(e,"x","round")};return $.runKernel(Vs,t)}var Jf=D({round_:ZT});function YT(e){let t={x:C(e,"x","rsqrt")};return $.runKernel(Us,t)}var zd=D({rsqrt_:YT});function ke(e,t){if((an(e)&&t!=="string"||Array.isArray(e))&&t!=="complex64")throw new Error("Error creating a new Scalar: value must be a primitive (number|boolean|string)");if(t==="string"&&an(e)&&!(e instanceof Uint8Array))throw new Error("When making a scalar from encoded string, the value must be `Uint8Array`.");return Ta(e,[],[],t)}function JT(e){let t={x:C(e,"x","selu")};return $.runKernel(Vo,t)}var Pd=D({selu_:JT});function QT(e,t,n,r,a,s=[1,1],i="NHWC"){let o=C(e,"x","separableConv2d"),l=C(t,"depthwiseFilter","separableConv2d"),u=C(n,"pointwiseFilter","separableConv2d"),c=o,h=!1;if(o.rank===3&&(h=!0,c=K(o,[1,o.shape[0],o.shape[1],o.shape[2]])),i==="NCHW")throw new Error("separableConv2d currently does not support dataFormat NCHW; only NHWC is supported");F(c.rank===4,()=>`Error in separableConv2d: input must be rank 4, but got rank ${c.rank}.`),F(l.rank===4,()=>`Error in separableConv2d: depthwise filter must be rank 4, but got rank ${l.rank}.`),F(u.rank===4,()=>`Error in separableConv2d: pointwise filter must be rank 4, but got rank ${l.rank}.`),F(u.shape[0]===1,()=>`Error in separableConv2d: the first dimension of pointwise filter must be 1, but got ${u.shape[0]}.`),F(u.shape[1]===1,()=>`Error in separableConv2d: the second dimension of pointwise filter must be 1, but got ${u.shape[1]}.`);let d=l.shape[2],p=l.shape[3];F(u.shape[2]===d*p,()=>`Error in separableConv2d: the third dimension of pointwise filter must be ${d*p}, but got ${u.shape[2]}.`);let f=ci(c,l,r,a,i,s),m=sa(f,u,1,"valid",i);return h?K(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var Qf=D({separableConv2d_:QT});async function eE(e,t){let n=C(e,"x","setdiff1d"),r=C(t,"y","setdiff1d");F(n.dtype===r.dtype,()=>`x and y should have the same dtype, but got x (${n.dtype}) and y (${r.dtype}).`),F(n.rank===1,()=>`x should be 1D tensor, but got x (${n.shape}).`),F(r.rank===1,()=>`y should be 1D tensor, but got y (${r.shape}).`);let a=await n.data(),s=await r.data(),i=new Set(s),o=0;for(let c=0;c<a.length;c++)i.has(a[c])||o++;let l=new Dt([o],n.dtype),u=new Dt([o],"int32");for(let c=0,h=0;c<a.length;c++)i.has(a[c])||(l.values[h]=a[c],u.values[h]=c,h++);return[l.toTensor(),u.toTensor()]}var L5=eE;function tE(e){let t={x:C(e,"x","sign")};return $.runKernel(Go,t)}var em=D({sign_:tE});function nE(e){let t={x:C(e,"x","sin")};return $.runKernel(js,t)}var Ld=D({sin_:nE});function rE(e){let t={x:C(e,"x","sinh")};return $.runKernel(jo,t)}var Wd=D({sinh_:rE});function aE(e,t,n){let r=C(e,"x","slice1d");return F(r.rank===1,()=>`slice1d expects a rank-1 tensor, but got a rank-${r.rank} tensor`),Ce(r,[t],[n])}var Bd=D({slice1d_:aE});function sE(e,t,n){let r=C(e,"x","slice2d");return F(r.rank===2,()=>`slice2d expects a rank-2 tensor, but got a rank-${r.rank} tensor`),Ce(r,t,n)}var tm=D({slice2d_:sE});function iE(e,t,n){let r=C(e,"x","slice3d");return F(r.rank===3,()=>`slice3d expects a rank-3 tensor, but got a rank-${r.rank} tensor`),Ce(r,t,n)}var Vd=D({slice3d_:iE});function oE(e,t,n){let r=C(e,"x","slice4d");return F(r.rank===4,()=>`slice4d expects a rank-4 tensor, but got a rank-${r.rank} tensor`),Ce(r,t,n)}var ic=D({slice4d_:oE});function lE(e,t=-1){let n=C(e,"logits","softmax","float32");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and dim was ${t}`);let r={logits:n},a={dim:t};return $.runKernel(Xs,r,a)}var oc=D({softmax_:lE});function uE(e){F(e.dtype==="complex64",()=>`The dtype for tf.spectral.fft() must be complex64 but got ${e.dtype}.`);let t={input:e};return $.runKernel(Xh,t)}var lc=D({fft_:uE});function cE(e){F(e.dtype==="complex64",()=>`The dtype for tf.spectral.ifft() must be complex64 but got ${e.dtype}.`);let t={input:e};return $.runKernel(Kh,t)}var xl=D({ifft_:cE});function hE(e){let t=e.shape[e.shape.length-1],n=e.size/t,r;if(t<=2){let a=K(e,[n,t]);r=xl(a)}else{let a=[n,2*(t-1)],s=K(sc(e),[n,t]),i=K(Sd(e),[n,t]),o=Cn(Ce(s,[0,1],[n,t-2]),1),l=L(Cn(Ce(i,[0,1],[n,t-2]),1),ke(-1)),u=rt([s,o],1),c=rt([i,l],1),h=K(Sa(u,c),[a[0],a[1]]);r=xl(h)}if(r=sc(r),e.rank===3&&e.shape[0]!==0){let a=r,s=e.shape[0];r=K(r,[s,r.shape[0]/s,r.shape[1]]),a.dispose()}return r}var Ud=D({irfft_:hE});function dE(e,t,n=0){let r={x:C(e,"x","split")},a={numOrSizeSplits:t,axis:n};return $.runKernel(qo,r,a)}var Jt=D({split_:dE});function pE(e,t){F(e.dtype==="float32",()=>`The dtype for rfft() must be real value but got ${e.dtype}`);let n=e.shape[e.shape.length-1],r=e.size/n,a;if(t!=null&&t<n){let f=e.shape.map(A=>0),m=e.shape.map(A=>A);m[e.shape.length-1]=t,a=Ce(e,f,m),n=t}else if(t!=null&&t>n){let f=e.shape.map(m=>m);f[e.shape.length-1]=t-n,a=rt([e,Tt(f)],e.shape.length-1),n=t}else a=e;let s=je(a),i=K(Sa(a,s),[r,n]),o=lc(i),l=Math.floor(n/2)+1,u=sc(o),c=Sd(o),h=Jt(u,[l,n-l],u.shape.length-1),d=Jt(c,[l,n-l],c.shape.length-1),p=a.shape.slice();return p[a.shape.length-1]=l,K(Sa(h[0],d[0]),p)}var uc=D({rfft_:pE});function fE(e){let t={x:C(e,"x","sqrt")};return $.runKernel(Hs,t)}var Qt=D({sqrt_:fE});function mE(e,t){let n=C(e,"a","squaredDifference"),r=C(t,"b","squaredDifference");[n,r]=_t(n,r),At(n.shape,r.shape);let a={a:n,b:r},s={};return $.runKernel(Ks,a,s)}var cc=D({squaredDifference_:mE});function AE(e,t){let n=C(e,"x","squeeze");return K(n,tg(n.shape,t).newShape)}var Da=D({squeeze_:AE});function yE(e,t=0){let n=Uu(e,"tensors","stack","string_or_numeric");F(n.length>=1,()=>"Pass at least one tensor to tf.stack"),n.length>0&&F(t<=n[0].rank,()=>"Axis must be <= rank of the tensor");let r=n,a={axis:t};return $.runKernel($o,r,a)}var Rn=D({stack_:yE});function gE(e,t=0){let n={x:C(e,"x","step")},r={alpha:t};return $.runKernel(Qo,n,r)}var wl=D({step_:gE});function xE(e,t,n,r,a=0,s=0,i=0,o=0,l=0){let u={x:C(e,"x","stridedSlice")},c={begin:t,end:n,strides:r,beginMask:a,endMask:s,ellipsisMask:i,newAxisMask:o,shrinkAxisMask:l};return $.runKernel(Xo,u,c)}var nm=D({stridedSlice_:xE});function wE(e){let t={x:C(e,"x","tan")};return $.runKernel(Ko,t)}var rm=D({tan_:wE});function jt(e,t){os(e);let n=Mr(e,t);if(n.length!==1)throw new Error("tensor1d() requires values to be a flat/TypedArray");return Ta(e,null,n,t)}function xn(e,t,n){if(os(e),t!=null&&t.length!==2)throw new Error("tensor2d() requires shape to have two numbers");let r=Mr(e,n);if(r.length!==2&&r.length!==1)throw new Error("tensor2d() requires values to be number[][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor2d() requires shape to be provided when `values` are a flat/TypedArray");return Ta(e,t,r,n)}function _E(e,t,n){if(os(e),t!=null&&t.length!==4)throw new Error("tensor4d() requires shape to have four numbers");let r=Mr(e,n);if(r.length!==4&&r.length!==1)throw new Error("tensor4d() requires values to be number[][][][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor4d() requires shape to be provided when `values` are a flat array");return Ta(e,t,r,n)}function bE(e,t,n){if(os(e),t!=null&&t.length!==5)throw new Error("tensor5d() requires shape to have five numbers");let r=Mr(e,n);if(r.length!==5&&r.length!==1)throw new Error("tensor5d() requires values to be number[][][][][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor5d() requires shape to be provided when `values` are a flat array");return Ta(e,t,r,n)}function vE(e,t,n){if(os(e),t!=null&&t.length!==6)throw new Error("tensor6d() requires shape to have six numbers");let r=Mr(e,n);if(r.length!==6&&r.length!==1)throw new Error("tensor6d() requires values to be number[][][][][][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor6d() requires shape to be provided when `values` are a flat array");return t=t||r,Ta(e,t,r,n)}function kE(e,t=1,n=!0){let r=C(e,"x","topk");if(r.rank===0)throw new Error("topk() expects the input to be of rank 1 or higher");let a=r.shape[r.shape.length-1];if(t>a)throw new Error(`'k' passed to topk() must be <= the last dimension (${a}) but got ${t}`);let s={x:r},i={k:t,sorted:n},[o,l]=$.runKernel(Zo,s,i);return{values:o,indices:l}}var am=D({topk_:kE});function NE(e,t=0,n=1,r,a){if(r!=null&&r==="bool")throw new Error("Unsupported data type $ { dtype }");let s=new Zf(t,n,r,!0,a),i=We(e,r);for(let o=0;o<i.values.length;o++)i.values[o]=s.nextValue();return i.toTensor()}var jd=D({truncatedNormal_:NE});function IE(e,t=0){let n=C(e,"x","unique","string_or_numeric");F(n.rank>0,()=>"The input tensor must be at least 1D");let r={x:n},a={axis:t},[s,i]=$.runKernel(od,r,a);return{values:s,indices:i}}var Gd=D({unique_:IE});function SE(e,t,n){let r=C(e,"x","unsortedSegmentSum"),a=C(t,"segmentIds","unsortedSegmentSum","int32");F(Vt(n),()=>"numSegments must be of dtype int");let s={x:r,segmentIds:a},i={numSegments:n};return $.runKernel(Du,s,i)}var sm=D({unsortedSegmentSum_:SE});function TE(e,t=0){let n=C(e,"x","unstack","string_or_numeric");F(t>=-n.shape.length&&t<n.shape.length,()=>`Axis = ${t} is not in [-${n.shape.length}, ${n.shape.length})`);let r={value:n},a={axis:t};return $.runKernel(Yo,r,a)}var ar=D({unstack_:TE});function W5(e,t=!0,n,r){return $.makeVariable(e,t,n,r)}function B5(e,t){let n=[];for(let s=0;s<t.length;s++)t[s]&&n.push(s);let r=We(e,"int32"),a=We([n.length,e.length],"int32");for(let s=0;s<n.length;s++){let i=r.indexToLoc(n[s]),o=s*e.length;a.values.set(i,o)}return a.toTensor()}async function EE(e){let t=C(e,"condition","whereAsync","bool"),n=await t.data(),r=B5(t.shape,n);return e!==t&&t.dispose(),r}var im=EE;async function CE(e,t,n){let r=C(e,"tensor","boolMask"),a=C(t,"mask","boolMask","bool"),s=n==null?0:n,i=a.rank,o=r.shape;F(i>0,()=>"mask cannot be scalar"),tt(o.slice(s,s+i),a.shape,"mask's shape must match the first K dimensions of tensor's shape,");let l=1;for(let m=s;m<s+i;m++)l*=o[m];let u=o.slice(0,s).concat([l],o.slice(s+i)),c=K(r,u),h=K(a,[-1]),d=await im(h),p=Da(d,[1]),f=hi(c,p,s);return e!==r&&r.dispose(),t!==a&&a.dispose(),p.dispose(),c.dispose(),h.dispose(),d.dispose(),f}var RE=CE;function FE(e,t){Rt("strict variants of ops have been deprecated and will be removed in future");let n=C(e,"a","notEqualStrict"),r=C(t,"b","notEqualStrict");return tt(n.shape,r.shape,"Error in notEqualStrict: "),Oa(n,r)}function ME(e,t){Rt("strict variants of ops have been deprecated and will be removed in future");let n=C(e,"a","lessStrict"),r=C(t,"b","lessStrict");return tt(n.shape,r.shape,"Error in lessStrict: "),ec(n,r)}function OE(e,t){Rt("strict variants of ops have been deprecated and will be removed in future");let n=C(e,"a","equalStrict"),r=C(t,"b","equalStrict");return tt(n.shape,r.shape,"Error in equalStrict: "),ia(n,r)}function DE(e,t){Rt("strict variants of ops have been deprecated and will be removed in future");let n=C(e,"a","lessEqualStrict"),r=C(t,"b","lessEqualStrict");return tt(n.shape,r.shape,"Error in lessEqualStrict: "),Ma(n,r)}function $E(e,t){Rt("strict variants of ops have been deprecated and will be removed in future");let n=C(e,"a","greaterStrict"),r=C(t,"b","greaterStrict");return tt(n.shape,r.shape,"Error in greaterStrict: "),qn(n,r)}function zE(e,t){Rt("strict variants of ops have been deprecated and will be removed in future");let n=C(e,"a","greaterEqualStrict"),r=C(t,"b","greaterEqualStrict");return tt(n.shape,r.shape,"Error in greaterEqualStrict: "),oa(n,r)}var V5=D({equalStrict_:OE}),U5=D({greaterEqualStrict_:zE}),j5=D({greaterStrict_:$E}),G5=D({lessEqualStrict_:DE}),H5=D({lessStrict_:ME}),q5=D({notEqualStrict_:FE});function PE(e,t){Rt("strict variants of ops have been deprecated and will be removed in future");let n=C(e,"a","addStrict"),r=C(t,"b","addStrict");return tt(n.shape,r.shape,"Error in addStrict: "),oe(n,r)}function LE(e,t){Rt("strict variants of ops have been deprecated and will be removed in future");let n=C(e,"a","subStrict"),r=C(t,"b","subStrict");return tt(n.shape,r.shape,"Error in subStrict: "),ye(n,r)}function WE(e,t){return Rt("strict variants of ops have been deprecated and will be removed in future"),tt(e.shape,t.shape,"Error in powStrict: "),$r(e,t)}function BE(e,t){Rt("strict variants of ops have been deprecated and will be removed in future");let n=C(e,"a","mul"),r=C(t,"b","mul");return tt(n.shape,r.shape,"Error in multiplyStrict: "),L(n,r)}function VE(e,t){Rt("strict variants of ops have been deprecated and will be removed in future");let n=C(e,"a","div"),r=C(t,"b","div");return tt(n.shape,r.shape,"Error in divideStrict: "),_e(n,r)}function UE(e,t){Rt("strict variants of ops have been deprecated and will be removed in future");let n=C(e,"a","modStrict"),r=C(t,"b","modStrict");return tt(n.shape,r.shape,"Error in modStrict: "),Fd(n,r)}function jE(e,t){Rt("strict variants of ops have been deprecated and will be removed in future");let n=C(e,"a","minimumStrict"),r=C(t,"b","minimumStrict");return tt(n.shape,r.shape,"Error in minimumStrict: "),pi(n,r)}function GE(e,t){Rt("strict variants of ops have been deprecated and will be removed in future");let n=C(e,"a","maximumStrict"),r=C(t,"b","maximumStrict");return tt(n.shape,r.shape,"Error in maximumStrict: "),Ar(n,r)}function HE(e,t){Rt("strict variants of ops have been deprecated and will be removed in future");let n=C(e,"a","squaredDifferenceStrict"),r=C(t,"b","squaredDifferenceStrict");return tt(n.shape,r.shape,"Error in squaredDifferenceStrict: "),cc(n,r)}var X5=D({addStrict_:PE}),K5=D({divStrict_:VE}),Z5=D({maximumStrict_:GE}),Y5=D({minimumStrict_:jE}),J5=D({modStrict_:UE}),Q5=D({mulStrict_:BE}),ex=D({powStrict_:WE}),tx=D({squaredDifferenceStrict_:HE}),nx=D({subStrict_:LE});function qE(e,t="euclidean",n=null,r=!1){e=C(e,"x","norm");let a=rx(e,t,n),s=a.shape;if(r){let i=er(n,e.shape);s=di(a.shape,i)}return K(a,s)}function rx(e,t,n=null){if(e.rank===0)return $t(e);if(e.rank!==1&&n===null)return rx(K(e,[-1]),t,n);if(e.rank===1||typeof n=="number"||Array.isArray(n)&&n.length===1){if(t===1)return Se($t(e),n);if(t===Infinity)return Xn($t(e),n);if(t===-Infinity)return yl($t(e),n);if(t==="euclidean"||t===2)return Qt(Se($r($t(e),ke(2,"int32")),n));throw new Error(`Error in norm: invalid ord value: ${t}`)}if(Array.isArray(n)&&n.length===2){if(t===1)return Xn(Se($t(e),n[0]),n[1]-1);if(t===Infinity)return Xn(Se($t(e),n[1]),n[0]);if(t===-Infinity)return yl(Se($t(e),n[1]),n[0]);if(t==="fro"||t==="euclidean")return Qt(Se(ot(e),n));throw new Error(`Error in norm: invalid ord value: ${t}`)}throw new Error(`Error in norm: invalid axis: ${n}`)}var Hd=D({norm_:qE});function XE(e,t,n,r,a=!0){let s=C(e,"v","movingAverage"),i=C(t,"x","movingAverage"),o=C(n,"decay","movingAverage");_g(s,i),F(na(s.shape,i.shape),()=>"Shape mismatch in v and x");let l=ke(1),u=ye(l,o),c=L(ye(i,s),u);if(a){F(r!=null,()=>"When using zeroDebias: true, step is required.");let h=C(r,"step","movingAverage");c=_e(c,ye(l,$r(o,h)))}return oe(s,c)}var KE=D({movingAverage_:XE});function ZE(e,t,n){let r=C(e,"indices","scatterND","int32"),a=C(t,"updates","scatterND");yf(a,r,n);let s={indices:r,updates:a},i={shape:n};return $.runKernel(Wo,s,i)}var ax=D({scatterND_:ZE});function YE(e,t,n,r){if(e.dtype!=="int32")throw new Error(`tf.sparseToDense() expects the indices to be int32 type, but the dtype was ${e.dtype}.`);if(e.rank>2)throw new Error(`sparseIndices should be a scalar, vector, or matrix, but got shape ${e.shape}.`);let a=e.rank>0?e.shape[0]:1,s=e.rank>1?e.shape[1]:1;if(n.length!==s)throw new Error(`outputShape has incorrect number of elements:, ${n.length}, should be: ${s}.`);let i=t.size;if(!(t.rank===0||t.rank===1&&i===a))throw new Error(`sparseValues has incorrect shape ${t.shape}, should be [] or [${a}]`);if(t.dtype!==r.dtype)throw new Error("sparseValues.dtype must match defaultValues.dtype")}function JE(e,t,n,r=0){let a=C(e,"sparseIndices","sparseToDense","int32"),s=C(t,"sparseValues","sparseToDense"),i=C(r,"defaultValue","sparseToDense",s.dtype);YE(a,s,n,i);let o={sparseIndices:a,sparseValues:s,defaultValue:i},l={outputShape:n};return $.runKernel(id,o,l)}var om=D({sparseToDense_:JE});function QE(e,t){let n=C(t,"indices","gatherND","int32"),r={params:C(e,"x","gatherND"),indices:n};return $.runKernel(xo,r)}var sx=D({gatherND_:QE});function eC(e,t){if(t==null)return e.shape.slice();if(na(e.shape,t))return t;if(e.shape.length===t.length){let n=[];for(let r=0;r<e.shape.length;r++)t[r]==null&&e.shape[r]!=null?n.push(e.shape[r]):n.push(t[r]);return n}return t}function tC(e,t,n,r){let a=C(e,"x","dropout");if(F(a.dtype==="float32",()=>`x has to be a floating point tensor since it's going to be scaled, but got a ${a.dtype} tensor instead.`),F(t>=0&&t<1,()=>`rate must be a float in the range [0, 1), but got ${t}.`),t===0)return e instanceof U?a.clone():a;let s=eC(a,n),i=1-t,o=_e(ml(oe(gl(s,0,1,"float32",r),i)),i);return L(a,o)}var ix=D({dropout_:tC});function ox(e){return Math.floor(Math.pow(2,Math.ceil(Math.log(e)/Math.log(2))))}function lm(e,t,n){let r=1-e%2,a=new Float32Array(e);for(let s=0;s<e;++s){let i=2*Math.PI*s/(e+r-1);a[s]=t-n*Math.cos(i)}return jt(a,"float32")}async function nC(e,t,n=1){let r=C(e,"predictions","inTopK"),a=C(t,"targets","inTopK");F(r.rank>1,()=>`inTopK() expects the predictions to be of rank 2 or higher, but got ${r.rank}`),F(r.rank-1===a.rank,()=>`predictions rank should be 1 larger than targets rank, but got predictions rank ${r.rank} and targets rank ${a.rank}`),tt(r.shape.slice(0,r.shape.length-1),a.shape,"predictions's shape should be align with the targets' shape, except the last dimension.");let s=r.shape[r.shape.length-1];F(n>0&&n<=s,()=>`'k' passed to inTopK() must be > 0 && <= the predictions last dimension (${s}), but got ${n}`);let i=await r.data(),o=await a.data(),[l,u]=[i.length/s,s],c=ng("bool",l);for(let h=0;h<l;h++){let d=h*u,p=i.subarray(d,d+u),f=[];for(let m=0;m<p.length;m++)f.push({value:p[m],index:m});f.sort((m,A)=>A.value-m.value),c[h]=0;for(let m=0;m<n;m++)if(f[m].index===o[h]){c[h]=1;break}}return e!==r&&r.dispose(),t!==a&&a.dispose(),mr(c,a.shape,"bool")}var rC=nC,$a={};$e($a,{conv2d:()=>aC,depthwiseConv2d:()=>sC,matMul:()=>iC});function oC(e,t,n,r,a,s="NHWC",i){let o=e;e.rank===3&&(o=K(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=K(t,[1,t.shape[0],t.shape[1],t.shape[2]])),F(o.rank===4,()=>`Error in conv2dDerFilter: input must be rank 4, but got shape ${o.shape}.`),F(l.rank===4,()=>`Error in conv2dDerFilter: dy must be rank 4, but got shape ${l.shape}.`),F(n.length===4,()=>`Error in conv2dDerFilter: filterShape must be length 4, but got ${n}.`);let u=s==="NHWC"?o.shape[3]:o.shape[1],c=s==="NHWC"?l.shape[3]:l.shape[1];F(u===n[2],()=>`Error in conv2dDerFilter: depth of input ${u}) must match input depth in filter (${n[2]}.`),F(c===n[3],()=>`Error in conv2dDerFilter: depth of dy (${c}) must match output depth for filter (${n[3]}).`),i!=null&&F(Vt(a),()=>`Error in conv2dDerFilter: pad must be an integer when using, dimRoundingMode ${i} but got pad ${a}.`);let h={x:o,dy:l},d={strides:r,pad:a,dataFormat:s,dimRoundingMode:i,filterShape:n};return $.runKernel(Ph,h,d)}var um=D({conv2DBackpropFilter_:oC});function qd(e,t,n){if(n==null||n==="linear")return e;if(n==="relu")return L(e,wl(t));throw new Error(`Cannot compute gradient for fused activation ${n}.`)}function Xd(e,t){let n=t,r=zt(e.shape,t.shape);return r.length>0&&(n=Se(n,r)),K(n,e.shape)}function Kd(e,t,n,r){if(t==="linear")return e;if(t==="relu")return zr(e);if(t==="elu")return fl(e);if(t==="relu6")return $d(e);if(t==="prelu")return ac(e,n);if(t==="leakyrelu")return Qu(e,r);throw new Error(`Unknown fused activation ${t}.`)}var Zd=(e,t)=>!(e>0)||t==="linear";function lC({x:e,filter:t,strides:n,pad:r,dataFormat:a="NHWC",dilations:s=[1,1],dimRoundingMode:i,bias:o,activation:l="linear",preluActivationWeights:u,leakyreluAlpha:c}){if(l=l||"linear",Zd($.state.gradientDepth,l)===!1){let x=sa(e,t,n,r,a,s,i);return o!=null&&(x=oe(x,o)),Kd(x,l,u,c)}let h=C(e,"x","conv2d"),d=C(t,"filter","conv2d"),p=h,f=!1;h.rank===3&&(f=!0,p=K(h,[1,h.shape[0],h.shape[1],h.shape[2]])),F(p.rank===4,()=>`Error in fused conv2d: input must be rank 4, but got rank ${p.rank}.`),F(d.rank===4,()=>`Error in fused conv2d: filter must be rank 4, but got rank ${d.rank}.`),i!=null&&F(Vt(r),()=>`Error in fused conv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${r}.`),F(p.shape[3]===d.shape[2],()=>`Error in conv2d: depth of input (${p.shape[3]}) must match input depth for filter ${d.shape[2]}.`),F(In(n,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),F(a==="NHWC",()=>`Error in conv2d: got dataFormat of ${a} but only NHWC is currently supported.`);let m=qu(p.shape,d.shape,n,s,r,i),A;o!=null&&(A=C(o,"bias","fused conv2d"),[A]=_t(A,h),At(m.outShape,A.shape));let y;u!=null&&(y=C(u,"prelu weights","fused conv2d"));let g=(x,w)=>{let[I,T,E,M]=w,z=qd(x,E,l);F(Ra(s),()=>`Error in gradient of fused conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`);let P=Df(T.shape,z,I,n,r),B=um(T,z,I.shape,n,r),q=[P,B];if(M!=null){let H=Xd(M,z);q.push(H)}return q},_={x:p,filter:d,bias:A,preluActivationWeights:y},b={strides:n,pad:r,dataFormat:a,dilations:s,dimRoundingMode:i,activation:l,leakyreluAlpha:c};return o==null?Or((x,w,I)=>{let T=$.runKernel(ei,_,b);return I([w,x,T]),f&&(T=K(T,[T.shape[1],T.shape[2],T.shape[3]])),{value:T,gradFunc:g}})(p,d):Or((x,w,I,T)=>{let E=$.runKernel(ei,_,b);return T([w,x,E,I]),f&&(E=K(E,[E.shape[1],E.shape[2],E.shape[3]])),{value:E,gradFunc:g}})(p,d,A)}var aC=D({fusedConv2d_:lC});function uC(e,t,n,r,a,s=[1,1],i){let o=e;e.rank===3&&(o=K(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=K(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let u={x:o,dy:l},c={strides:r,pad:a,dimRoundingMode:i,dilations:s,filterShape:n};return $.runKernel(Vh,u,c)}var lx=D({depthwiseConv2dNativeBackpropFilter_:uC});function cC(e,t,n,r,a,s=[1,1],i){let o=t,l=!1;t.rank===3&&(l=!0,o=K(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let u={dy:o,filter:n},c={strides:r,pad:a,dimRoundingMode:i,dilations:s,inputShape:e},h=$.runKernel(Uh,u,c);return l?K(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var ux=D({depthwiseConv2dNativeBackpropInput_:cC});function hC({x:e,filter:t,strides:n,pad:r,dataFormat:a="NHWC",dilations:s=[1,1],dimRoundingMode:i,bias:o,activation:l="linear",preluActivationWeights:u,leakyreluAlpha:c}){if(Zd($.state.gradientDepth,l)===!1){let x=ci(e,t,n,r,a,s,i);return o!=null&&(x=oe(x,o)),Kd(x,l,u,c)}let h=C(e,"x","depthwiseConv2d"),d=C(t,"filter","depthwiseConv2d"),p=h,f=!1;h.rank===3&&(f=!0,p=K(h,[1,h.shape[0],h.shape[1],h.shape[2]])),F(p.rank===4,()=>`Error in fused depthwiseConv2d: input must be rank 4, but got rank ${p.rank}.`),F(d.rank===4,()=>`Error in fused depthwiseConv2d: filter must be rank 4, but got rank ${d.rank}.`),F(p.shape[3]===d.shape[2],()=>`Error in fused depthwiseConv2d: number of input channels (${p.shape[3]}) must match the inChannels dimension in filter ${d.shape[2]}.`),s==null&&(s=[1,1]),F(In(n,s),()=>`Error in fused depthwiseConv2d: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),i!=null&&F(Vt(r),()=>`Error in fused depthwiseConv2d: pad must be an integer when using dimRoundingMode ${i} but got pad ${r}.`);let m=qu(p.shape,d.shape,n,s,r,i,!0),A;o!=null&&(A=C(o,"bias","fused conv2d"),[A]=_t(A,h),At(m.outShape,A.shape));let y;u!=null&&(y=C(u,"prelu weights","fused depthwiseConv2d"));let g=(x,w)=>{F(Ra(s),()=>`Error in gradient of fused depthwiseConv2d: dilation rates greater than 1 are not yet supported. Got dilations '${s}'`);let[I,T,E,M]=w,z=qd(x,E,l),P=ux(T.shape,z,I,n,r,s,i),B=lx(T,z,I.shape,n,r,s,i);if(M!=null){let q=Xd(A,z);return[P,B,q]}return[P,B]},_={x:p,filter:d,bias:A,preluActivationWeights:y},b={strides:n,pad:r,dataFormat:a,dilations:s,dimRoundingMode:i,activation:l,leakyreluAlpha:c};return o==null?Or((x,w,I)=>{let T=$.runKernel(ti,_,b);return I([w,x,T]),f&&(T=K(T,[T.shape[1],T.shape[2],T.shape[3]])),{value:T,gradFunc:g}})(p,d):Or((x,w,I,T)=>{let E=$.runKernel(ti,_,b);return T([w,x,E,I]),f&&(E=K(E,[E.shape[1],E.shape[2],E.shape[3]])),{value:E,gradFunc:g}})(p,d,A)}var sC=D({fusedDepthwiseConv2d_:hC});function dC({a:e,b:t,transposeA:n=!1,transposeB:r=!1,bias:a,activation:s="linear",preluActivationWeights:i,leakyreluAlpha:o}){if(Zd($.state.gradientDepth,s)===!1){let M=He(e,t,n,r);return a!=null&&(M=oe(M,a)),Kd(M,s,i,o)}let l=C(e,"a","fused matMul"),u=C(t,"b","fused matMul");[l,u]=_t(l,u);let c=n?l.shape[l.rank-2]:l.shape[l.rank-1],h=r?u.shape[u.rank-1]:u.shape[u.rank-2],d=n?l.shape[l.rank-1]:l.shape[l.rank-2],p=r?u.shape[u.rank-2]:u.shape[u.rank-1],f=l.shape.slice(0,-2),m=u.shape.slice(0,-2),A=Ot(f),y=Ot(m);F(l.rank>=2&&u.rank>=2&&l.rank===u.rank,()=>`Error in fused matMul: inputs must have the same rank of at least 2, got ranks ${l.rank} and ${u.rank}.`),F(na(f,m),()=>`Error in fused matMul: outer dimensions (${f}) and (${m}) of Tensors with shapes ${l.shape} and ${u.shape} must match.`),F(c===h,()=>`Error in fused matMul: inner shapes (${c}) and (${h}) of Tensors with shapes ${l.shape} and ${u.shape} and transposeA=${n} and transposeB=${r} must match.`);let g=l.shape.slice(0,-2).concat([d,p]),_=n?K(l,[A,c,d]):K(l,[A,d,c]),b=r?K(u,[y,p,h]):K(u,[y,h,p]),x;a!=null&&(x=C(a,"bias","fused matMul"),[x]=_t(x,l),At(g,x.shape));let w;i!=null&&(w=C(i,"prelu weights","fused matMul"));let I=(M,z)=>{let[P,B,q,H]=z,X=qd(K(M,q.shape),q,s),Z,ee;if(!n&&!r?(Z=He(X,B,!1,!0),ee=He(P,X,!0,!1)):!n&&r?(Z=He(X,B,!1,!1),ee=He(X,P,!0,!1)):n&&!r?(Z=He(B,X,!1,!0),ee=He(P,X,!1,!1)):(Z=He(B,X,!0,!0),ee=He(X,P,!0,!0)),a!=null){let J=Xd(H,X);return[Z,ee,J]}else return[Z,ee]},T={a:_,b,bias:x,preluActivationWeights:w},E={transposeA:n,transposeB:r,activation:s,leakyreluAlpha:o};return a==null?Or((M,z,P)=>{let B=$.runKernel(Qs,T,E);return P([M,z,B]),{value:K(B,g),gradFunc:I}})(_,b):Or((M,z,P,B)=>{let q=$.runKernel(Qs,T,E);return B([M,z,q,P]),{value:K(q,g),gradFunc:I}})(_,b,x)}var iC=D({fusedMatMul_:dC});function pC(e){return lm(e,.54,.46)}var fC=D({hammingWindow_:pC});function mC(e){return lm(e,.5,.5)}var cx=D({hannWindow_:mC});function AC(e,t,n,r=!1,a=0){let s=0,i=[];for(;s+t<=e.size;)i.push(Ce(e,s,t)),s+=n;if(r)for(;s<e.size;){let o=s+t-e.size,l=rt([Ce(e,s,t-o),Ju([o],a)]);i.push(l),s+=n}return i.length===0?xn([],[0,t]):K(rt(i),[i.length,t])}var hx=D({frame_:AC});function yC(e,t,n,r,a=cx){r==null&&(r=ox(t));let s=hx(e,t,n),i=L(s,a(t)),o=[];for(let l=0;l<s.shape[0];l++)o.push(uc(Ce(i,[l,0],[1,t]),r));return rt(o)}var gC=D({stft_:yC});function xC(e,t,n,r,a="bilinear",s=0){let i=C(e,"image","cropAndResize"),o=C(t,"boxes","cropAndResize","float32"),l=C(n,"boxInd","cropAndResize","int32"),u=o.shape[0];F(i.rank===4,()=>`Error in cropAndResize: image must be rank 4,but got rank ${i.rank}.`),F(o.rank===2&&o.shape[1]===4,()=>`Error in cropAndResize: boxes must be have size [${u},4] but had shape ${o.shape}.`),F(l.rank===1&&l.shape[0]===u,()=>`Error in cropAndResize: boxInd must be have size [${u}] but had shape ${o.shape}.`),F(r.length===2,()=>`Error in cropAndResize: cropSize must be of length 2, but got length ${r.length}.`),F(r[0]>=1&&r[1]>=1,()=>`cropSize must be atleast [1,1], but was ${r}`),F(a==="bilinear"||a==="nearest",()=>`method must be bilinear or nearest, but was ${a}`);let c={image:i,boxes:o,boxInd:l},h={method:a,extrapolationValue:s,cropSize:r};return $.runKernel(uo,c,h)}var wC=D({cropAndResize_:xC});function _C(e){let t=C(e,"image","flipLeftRight","float32");F(t.rank===4,()=>`Error in flipLeftRight: image must be rank 4,but got rank ${t.rank}.`);let n={image:t};return $.runKernel(yo,n,{})}var bC=D({flipLeftRight_:_C});function vC(e,t,n=0,r=.5){let a=C(e,"image","rotateWithOffset","float32");F(a.rank===4,()=>`Error in rotateWithOffset: image must be rank 4,but got rank ${a.rank}.`);let s={image:a},i={radians:t,fillValue:n,center:r};return $.runKernel(el,s,i)}var kC=D({rotateWithOffset_:vC});function _l(e,t,n,r,a,s){r==null&&(r=.5),a==null&&(a=Number.NEGATIVE_INFINITY),s==null&&(s=0);let i=e.shape[0];return n=Math.min(n,i),F(0<=r&&r<=1,()=>`iouThreshold must be in [0, 1], but was '${r}'`),F(e.rank===2,()=>`boxes must be a 2D tensor, but was of rank '${e.rank}'`),F(e.shape[1]===4,()=>`boxes must have 4 columns, but 2nd dimension was ${e.shape[1]}`),F(t.rank===1,()=>"scores must be a 1D tensor"),F(t.shape[0]===i,()=>`scores has incompatible shape with boxes. Expected ${i}, but was ${t.shape[0]}`),F(0<=s&&s<=1,()=>`softNmsSigma must be in [0, 1], but was '${s}'`),{maxOutputSize:n,iouThreshold:r,scoreThreshold:a,softNmsSigma:s}}function NC(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY){let s=C(e,"boxes","nonMaxSuppression"),i=C(t,"scores","nonMaxSuppression"),o=_l(s,i,n,r,a);n=o.maxOutputSize,r=o.iouThreshold,a=o.scoreThreshold;let l={maxOutputSize:n,iouThreshold:r,scoreThreshold:a};return $.runKernel(Fo,{boxes:s,scores:i},l)}var IC=D({nonMaxSuppression_:NC});function TC(e,t,n){let r=SC(e,t,n),a=r<0?-(r+1):r;e.splice(a,0,t)}function SC(e,t,n){return CC(e,t,n||EC)}function EC(e,t){return e>t?1:e<t?-1:0}function CC(e,t,n){let r=0,a=e.length,s=0,i=!1;for(;r<a;){s=r+(a-r>>>1);let o=n(t,e[s]);o>0?r=s+1:(a=s,i=!o)}return i?r:-r-1}function dx(e,t,n,r,a){return cm(e,t,n,r,a,0)}function px(e,t,n,r,a,s){return cm(e,t,n,r,a,0,!1,s,!0)}function fx(e,t,n,r,a,s){return cm(e,t,n,r,a,s,!0)}function cm(e,t,n,r,a,s,i=!1,o=!1,l=!1){let u=[];for(let A=0;A<t.length;A++)t[A]>a&&u.push({score:t[A],boxIndex:A,suppressBeginIndex:0});u.sort(mx);let c=s>0?-.5/s:0,h=[],d=[];for(;h.length<n&&u.length>0;){let A=u.pop(),{score:y,boxIndex:g,suppressBeginIndex:_}=A;if(y<a)break;let b=!1;for(let x=h.length-1;x>=_;--x){let w=RC(e,g,h[x]);if(w>=r){b=!0;break}if(A.score=A.score*FC(r,c,w),A.score<=a)break}A.suppressBeginIndex=h.length,b||(A.score===y?(h.push(g),d.push(A.score)):A.score>a&&TC(u,A,mx))}let p=h.length,f=n-p;o&&f>0&&(h.push(...new Array(f).fill(0)),d.push(...new Array(f).fill(0)));let m={selectedIndices:h};return i&&(m.selectedScores=d),l&&(m.validOutputs=p),m}function RC(e,t,n){let r=e.subarray(t*4,t*4+4),a=e.subarray(n*4,n*4+4),s=Math.min(r[0],r[2]),i=Math.min(r[1],r[3]),o=Math.max(r[0],r[2]),l=Math.max(r[1],r[3]),u=Math.min(a[0],a[2]),c=Math.min(a[1],a[3]),h=Math.max(a[0],a[2]),d=Math.max(a[1],a[3]),p=(o-s)*(l-i),f=(h-u)*(d-c);if(p<=0||f<=0)return 0;let m=Math.max(s,u),A=Math.max(i,c),y=Math.min(o,h),g=Math.min(l,d),_=Math.max(y-m,0)*Math.max(g-A,0);return _/(p+f-_)}function FC(e,t,n){let r=Math.exp(t*n*n);return n<=e?r:0}function mx(e,t){return e.score-t.score||e.score===t.score&&t.boxIndex-e.boxIndex}async function MC(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY){let s=C(e,"boxes","nonMaxSuppressionAsync"),i=C(t,"scores","nonMaxSuppressionAsync"),o=_l(s,i,n,r,a);n=o.maxOutputSize,r=o.iouThreshold,a=o.scoreThreshold;let l=await Promise.all([s.data(),i.data()]),u=l[0],c=l[1],{selectedIndices:h}=dx(u,c,n,r,a);return s!==e&&s.dispose(),i!==t&&i.dispose(),jt(h,"int32")}var OC=MC;function DC(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY,s=0){let i=C(e,"boxes","nonMaxSuppression"),o=C(t,"scores","nonMaxSuppression"),l=_l(i,o,n,r,a,s);n=l.maxOutputSize,r=l.iouThreshold,a=l.scoreThreshold,s=l.softNmsSigma;let u={boxes:i,scores:o},c={maxOutputSize:n,iouThreshold:r,scoreThreshold:a,softNmsSigma:s},h=$.runKernel(Oo,u,c);return{selectedIndices:h[0],selectedScores:h[1]}}var $C=D({nonMaxSuppressionWithScore_:DC});async function zC(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY,s=0){let i=C(e,"boxes","nonMaxSuppressionAsync"),o=C(t,"scores","nonMaxSuppressionAsync"),l=_l(i,o,n,r,a,s);n=l.maxOutputSize,r=l.iouThreshold,a=l.scoreThreshold,s=l.softNmsSigma;let u=await Promise.all([i.data(),o.data()]),c=u[0],h=u[1],{selectedIndices:d,selectedScores:p}=fx(c,h,n,r,a,s);return i!==e&&i.dispose(),o!==t&&o.dispose(),{selectedIndices:jt(d,"int32"),selectedScores:jt(p)}}var PC=zC;function LC(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY,s=!1){let i=C(e,"boxes","nonMaxSuppression"),o=C(t,"scores","nonMaxSuppression"),l=_l(i,o,n,r,a,null),u=l.maxOutputSize,c=l.iouThreshold,h=l.scoreThreshold,d={boxes:i,scores:o},p={maxOutputSize:u,iouThreshold:c,scoreThreshold:h,padToMaxOutputSize:s},f=$.runKernel(Mo,d,p);return{selectedIndices:f[0],validOutputs:f[1]}}var WC=D({nonMaxSuppressionPadded_:LC});async function BC(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY,s=!1){let i=C(e,"boxes","nonMaxSuppressionAsync"),o=C(t,"scores","nonMaxSuppressionAsync"),l=_l(i,o,n,r,a,null),u=l.maxOutputSize,c=l.iouThreshold,h=l.scoreThreshold,[d,p]=await Promise.all([i.data(),o.data()]),{selectedIndices:f,validOutputs:m}=px(d,p,u,c,h,s);return i!==e&&i.dispose(),o!==t&&o.dispose(),{selectedIndices:jt(f,"int32"),validOutputs:ke(m,"int32")}}var VC=BC;function UC(e,t,n=!1,r=!1){let a=C(e,"images","resizeBilinear");F(a.rank===3||a.rank===4,()=>`Error in resizeBilinear: x must be rank 3 or 4, but got rank ${a.rank}.`),F(t.length===2,()=>`Error in resizeBilinear: new shape must 2D, but got shape ${t}.`),F(r===!1||n===!1,()=>"Error in resizeBilinear: If halfPixelCenters is true, alignCorners must be false.");let s=a,i=!1;a.rank===3&&(i=!0,s=K(a,[1,a.shape[0],a.shape[1],a.shape[2]]));let[]=t,o={images:s},l={alignCorners:n,halfPixelCenters:r,size:t},u=$.runKernel(Ls,o,l);return i?K(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var Ax=D({resizeBilinear_:UC});function jC(e,t,n=!1,r=!1){let a=C(e,"images","resizeNearestNeighbor");F(a.rank===3||a.rank===4,()=>`Error in resizeNearestNeighbor: x must be rank 3 or 4, but got rank ${a.rank}.`),F(t.length===2,()=>`Error in resizeNearestNeighbor: new shape must 2D, but got shape ${t}.`),F(a.dtype==="float32"||a.dtype==="int32",()=>"`images` must have `int32` or `float32` as dtype"),F(r===!1||n===!1,()=>"Error in resizeNearestNeighbor: If halfPixelCenters is true, alignCorners must be false.");let s=a,i=!1;a.rank===3&&(i=!0,s=K(a,[1,a.shape[0],a.shape[1],a.shape[2]]));let[]=t,o={images:s},l={alignCorners:n,halfPixelCenters:r,size:t},u=$.runKernel(Fu,o,l);return i?K(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var yx=D({resizeNearestNeighbor_:jC});function GC(e,t,n){F(t%1==0,()=>`bandPart(): numLower must be an integer, got ${t}.`),F(n%1==0,()=>`bandPart(): numUpper must be an integer, got ${n}.`);let r=C(e,"a","bandPart");F(r.rank>=2,()=>`bandPart(): Rank must be at least 2, got ${r.rank}.`);let a=r.shape,[s,i]=r.shape.slice(-2);if(!(t<=s))throw new Error(`bandPart(): numLower (${t}) must not be greater than the number of rows (${s}).`);if(!(n<=i))throw new Error(`bandPart(): numUpper (${n}) must not be greater than the number of columns (${i}).`);t<0&&(t=s),n<0&&(n=i);let o=K(Dd(0,s,1,"int32"),[-1,1]),l=Dd(0,i,1,"int32"),u=ye(o,l),c=rr(Ma(u,ke(+t,"int32")),oa(u,ke(-n,"int32"))),h=Tt([s,i],r.dtype);return K(Rn(ar(K(r,[-1,s,i])).map(d=>gn(c,d,h))),a)}var HC=D({bandPart_:GC});function qC(e){let t;if(Array.isArray(e)){t=!1,F(e!=null&&e.length>0,()=>"Gram-Schmidt process: input must not be null, undefined, or empty");let a=e[0].shape[0];for(let s=1;s<e.length;++s)F(e[s].shape[0]===a,()=>`Gram-Schmidt: Non-unique lengths found in the input vectors: (${e[s].shape[0]} vs. ${a})`)}else t=!0,e=Jt(e,e.shape[0],0).map(a=>Da(a,[0]));F(e.length<=e[0].shape[0],()=>`Gram-Schmidt: Number of vectors (${e.length}) exceeds number of dimensions (${e[0].shape[0]}).`);let n=[],r=e;for(let a=0;a<e.length;++a)n.push($.tidy(()=>{let s=r[a];if(a>0)for(let i=0;i<a;++i){let o=L(Se(L(n[i],s)),n[i]);s=ye(s,o)}return _e(s,Hd(s,"euclidean"))}));return t?Rn(n,0):n}var XC=D({gramSchmidt_:qC});function KC(e,t=!1){if(F(e.rank>=2,()=>`qr() requires input tensor to have a rank >= 2, but got rank ${e.rank}`),e.rank===2)return gx(e,t);{let n=e.shape.slice(0,e.shape.length-2).reduce((l,u)=>l*u),r=ar(K(e,[n,e.shape[e.shape.length-2],e.shape[e.shape.length-1]]),0),a=[],s=[];r.forEach(l=>{let[u,c]=gx(l,t);a.push(u),s.push(c)});let i=K(Rn(a,0),e.shape),o=K(Rn(s,0),e.shape);return[i,o]}}function gx(e,t=!1){return $.tidy(()=>{F(e.shape.length===2,()=>`qr2d() requires a 2D Tensor, but got a ${e.shape.length}D Tensor.`);let n=e.shape[0],r=e.shape[1],a=Vf(n),s=nr(e),i=xn([[1]],[1,1]),o=nr(i),l=n>=r?r:n;for(let u=0;u<l;++u){let c=s,h=o,d=a;[o,s,a]=$.tidy(()=>{let p=Ce(s,[u,u],[n-u,1]),f=Hd(p),m=Ce(s,[u,u],[1,1]),A=gn(qn(m,0),xn([[-1]]),xn([[1]])),y=ye(m,L(A,f)),g=_e(p,y);g.shape[0]===1?o=nr(i):o=rt([i,Ce(g,[1,0],[g.shape[0]-1,g.shape[1]])],0);let _=bt(_e(He(A,y),f)),b=Ce(s,[u,0],[n-u,r]),x=L(_,o),w=nt(o);if(u===0)s=ye(b,He(x,He(w,b)));else{let E=ye(b,He(x,He(w,b)));s=rt([Ce(s,[0,0],[u,r]),E],0)}let I=nt(x),T=Ce(a,[0,u],[n,a.shape[1]-u]);if(u===0)a=ye(T,He(He(T,o),I));else{let E=ye(T,He(He(T,o),I));a=rt([Ce(a,[0,0],[n,u]),E],1)}return[o,s,a]}),Te([c,h,d])}return!t&&n>r&&(a=Ce(a,[0,0],[n,r]),s=Ce(s,[0,0],[r,r])),[a,s]})}var ZC=D({qr_:KC}),un;(function(e){e[e.NONE=0]="NONE",e[e.MEAN=1]="MEAN",e[e.SUM=2]="SUM",e[e.SUM_BY_NONZERO_WEIGHTS=3]="SUM_BY_NONZERO_WEIGHTS"})(un||(un={}));function YC(e,t,n=un.SUM_BY_NONZERO_WEIGHTS){let r=C(e,"losses","computeWeightedLoss"),a=null;t!=null&&(a=C(t,"weights","computeWeightedLoss"));let s=a==null?r:L(r,a);if(n===un.NONE)return s;if(n===un.SUM)return Se(s);if(n===un.MEAN){if(a==null)return vt(s);{let i=r.size/a.size,o=_e(Se(s),Se(a));return i>1?_e(o,ke(i)):o}}if(n===un.SUM_BY_NONZERO_WEIGHTS){if(a==null)return _e(Se(s),ke(r.size));{let i=L(a,Dr(r.shape)),o=Ae(Se(Oa(i,ke(0))),"float32");return _e(Se(s),o)}}throw Error(`Unknown reduction: ${n}`)}var ua=D({computeWeightedLoss_:YC});function JC(e,t,n,r=un.SUM_BY_NONZERO_WEIGHTS){let a=C(e,"labels","absoluteDifference"),s=C(t,"predictions","absoluteDifference"),i=null;n!=null&&(i=C(n,"weights","absoluteDifference")),tt(a.shape,s.shape,"Error in absoluteDifference: ");let o=$t(ye(a,s));return ua(o,i,r)}var QC=D({absoluteDifference_:JC});function eR(e,t,n,r,a=un.SUM_BY_NONZERO_WEIGHTS){let s=C(e,"labels","cosineDistance"),i=C(t,"predictions","cosineDistance"),o=null;r!=null&&(o=C(r,"weights","cosineDistance")),tt(s.shape,i.shape,"Error in cosineDistance: ");let l=ke(1),u=ye(l,Se(L(s,i),n,!0));return ua(u,o,a)}var tR=D({cosineDistance_:eR});function nR(e,t,n,r=un.SUM_BY_NONZERO_WEIGHTS){let a=C(e,"labels","hingeLoss"),s=C(t,"predictions","hingeLoss"),i=null;n!=null&&(i=C(n,"weights","hingeLoss")),tt(a.shape,s.shape,"Error in hingeLoss: ");let o=ke(1);a=ye(L(ke(2),a),o);let l=zr(ye(o,L(a,s)));return ua(l,i,r)}var rR=D({hingeLoss_:nR});function aR(e,t,n,r=1,a=un.SUM_BY_NONZERO_WEIGHTS){let s=C(e,"labels","huberLoss"),i=C(t,"predictions","huberLoss"),o=null;n!=null&&(o=C(n,"weights","huberLoss")),tt(s.shape,i.shape,"Error in huberLoss: ");let l=ke(r),u=$t(ye(i,s)),c=pi(u,l),h=ye(u,c),d=oe(L(ke(.5),ot(c)),L(l,h));return ua(d,o,a)}var sR=D({huberLoss_:aR});function iR(e,t,n,r=1e-7,a=un.SUM_BY_NONZERO_WEIGHTS){let s=C(e,"labels","logLoss"),i=C(t,"predictions","logLoss"),o=null;n!=null&&(o=C(n,"weights","logLoss")),tt(s.shape,i.shape,"Error in logLoss: ");let l=ke(1),u=ke(r),c=bt(L(s,Tn(oe(i,u)))),h=L(ye(l,s),Tn(oe(ye(l,i),u))),d=ye(c,h);return ua(d,o,a)}var oR=D({logLoss_:iR});function lR(e,t,n,r=un.SUM_BY_NONZERO_WEIGHTS){let a=C(e,"labels","meanSquaredError"),s=C(t,"predictions","meanSquaredError"),i=null;n!=null&&(i=C(n,"weights","meanSquaredError")),tt(a.shape,s.shape,"Error in meanSquaredError: ");let o=cc(a,s);return ua(o,i,r)}var uR=D({meanSquaredError_:lR});function cR(e,t){let n=C(e,"labels","sigmoidCrossEntropyWithLogits"),r=C(t,"logits","sigmoidCrossEntropyWithLogits");tt(n.shape,r.shape,"Error in sigmoidCrossEntropyWithLogits: ");let a=zr(r),s=L(r,n),i=Td(Gn(bt($t(r))));return oe(ye(a,s),i)}function hR(e,t,n,r=0,a=un.SUM_BY_NONZERO_WEIGHTS){let s=C(e,"multiClassLabels","sigmoidCrossEntropy"),i=C(t,"logits","sigmoidCrossEntropy"),o=null;if(n!=null&&(o=C(n,"weights","sigmoidCrossEntropy")),tt(s.shape,i.shape,"Error in sigmoidCrossEntropy: "),r>0){let u=ke(r),c=ke(1),h=ke(.5);s=oe(L(s,ye(c,u)),L(h,u))}let l=cR(s,i);return ua(l,o,a)}var dR=D({sigmoidCrossEntropy_:hR});function pR(e,t,n=-1){if(n===-1&&(n=t.rank-1),n!==t.rank-1)throw Error(`Softmax cross entropy along a non-last dimension is not yet supported. Labels / logits was rank ${t.rank} and dim was ${n}`);return Or((r,a,s)=>{let i=Hf(a,[n],!0),o=ye(Ae(a,"float32"),i);s([r,o]);let l=bt(L(o,r));return{value:Se(l,[n]),gradFunc:(u,c)=>{let[h,d]=c,p=di(u.shape,[n]);return[L(K(u,p),ye(Ae(h,"float32"),Gn(d))),L(K(u,p),ye(Gn(d),Ae(h,"float32")))]}}})(e,t)}function fR(e,t,n,r=0,a=un.SUM_BY_NONZERO_WEIGHTS){let s=C(e,"onehotLabels","softmaxCrossEntropy"),i=C(t,"logits","softmaxCrossEntropy"),o=null;if(n!=null&&(o=C(n,"weights","softmaxCrossEntropy")),tt(s.shape,i.shape,"Error in softmaxCrossEntropy: "),r>0){let u=ke(r),c=ke(1),h=ke(s.shape[1]);s=oe(L(s,ye(c,u)),_e(u,h))}let l=pR(s,i);return ua(l,o,a)}var mR=D({softmaxCrossEntropy_:fR}),AR={fft:lc,ifft:xl,rfft:uc,irfft:Ud},yR={hammingWindow:fC,hannWindow:cx,frame:hx,stft:gC},at={flipLeftRight:bC,resizeNearestNeighbor:yx,resizeBilinear:Ax,rotateWithOffset:kC,cropAndResize:wC,nonMaxSuppression:IC,nonMaxSuppressionAsync:OC,nonMaxSuppressionWithScore:$C,nonMaxSuppressionWithScoreAsync:PC,nonMaxSuppressionPadded:WC,nonMaxSuppressionPaddedAsync:VC},xx={bandPart:HC,gramSchmidt:XC,qr:ZC},gR={absoluteDifference:QC,computeWeightedLoss:ua,cosineDistance:tR,hingeLoss:rR,huberLoss:sR,logLoss:oR,meanSquaredError:uR,sigmoidCrossEntropy:dR,softmaxCrossEntropy:mR},ca=class extends a5{minimize(e,t=!1,n){let{value:r,grads:a}=this.computeGradients(e,n);if(n!=null){let s=n.map(i=>({name:i.name,tensor:a[i.name]}));this.applyGradients(s)}else this.applyGradients(a);return Te(a),t?r:(r.dispose(),null)}get iterations(){return this.iterations_==null&&(this.iterations_=0),this.iterations_}incrementIterations(){this.iterations_=this.iterations+1}computeGradients(e,t){return E5(e,t)}dispose(){this.iterations_!=null&&Te(this.iterations_)}async saveIterations(){return this.iterations_==null&&(this.iterations_=0),{name:"iter",tensor:ke(this.iterations_,"int32")}}async getWeights(){throw new Error("getWeights() is not implemented for this optimizer yet.")}async setWeights(e){throw new Error(`setWeights() is not implemented for this optimizer class ${this.getClassName()}`)}async extractIterations(e){return this.iterations_=(await e[0].tensor.data())[0],e.slice(1)}};Object.defineProperty(ca,Symbol.hasInstance,{value:e=>e.minimize!=null&&e.computeGradients!=null&&e.applyGradients!=null});var Yd=class extends ca{constructor(e,t,n=null){super();this.learningRate=e,this.rho=t,this.epsilon=n,this.accumulatedGrads=[],this.accumulatedUpdates=[],n==null&&(this.epsilon=$.backend.epsilon())}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let r=$.registeredVariables[t],a=!1;this.accumulatedGrads[n]==null&&(this.accumulatedGrads[n]={originalName:`${t}/accum_grad`,variable:W(()=>je(r).variable(a))}),this.accumulatedUpdates[n]==null&&(this.accumulatedUpdates[n]={originalName:`${t}/accum_var`,variable:W(()=>je(r).variable(a))});let s=Array.isArray(e)?e[n].tensor:e[t];if(s==null)return;let i=this.accumulatedGrads[n].variable,o=this.accumulatedUpdates[n].variable;W(()=>{let l=oe(L(i,this.rho),L(ot(s),1-this.rho)),u=L(_e(Qt(oe(o,this.epsilon)),Qt(oe(i,this.epsilon))),s),c=oe(L(o,this.rho),L(ot(u),1-this.rho));i.assign(l),o.assign(c);let h=oe(L(u,-this.learningRate),r);r.assign(h)})}),this.incrementIterations()}dispose(){this.accumulatedUpdates!=null&&(Te(this.accumulatedGrads.map(e=>e.variable)),Te(this.accumulatedUpdates.map(e=>e.variable)))}async getWeights(){let e=[...this.accumulatedGrads,...this.accumulatedUpdates];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=e.length/2,n=!1;this.accumulatedGrads=e.slice(0,t).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})),this.accumulatedUpdates=e.slice(t,t*2).map(r=>({originalName:r.name,variable:r.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,rho:this.rho,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.rho,t.epsilon)}};Yd.className="Adadelta";Ca(Yd);var Jd=class extends ca{constructor(e,t=.1){super();this.learningRate=e,this.initialAccumulatorValue=t,this.accumulatedGrads=[]}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let r=$.registeredVariables[t];if(this.accumulatedGrads[n]==null){let i=!1;this.accumulatedGrads[n]={originalName:`${t}/accumulator`,variable:W(()=>Ju(r.shape,this.initialAccumulatorValue).variable(i))}}let a=Array.isArray(e)?e[n].tensor:e[t];if(a==null)return;let s=this.accumulatedGrads[n].variable;W(()=>{let i=oe(s,ot(a));s.assign(i);let o=oe(L(_e(a,Qt(oe(i,$.backend.epsilon()))),-this.learningRate),r);r.assign(o)})}),this.incrementIterations()}dispose(){this.accumulatedGrads!=null&&Te(this.accumulatedGrads.map(e=>e.variable))}async getWeights(){return[await this.saveIterations()].concat(this.accumulatedGrads.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulatedGrads=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,initialAccumulatorValue:this.initialAccumulatorValue}}static fromConfig(e,t){return new e(t.learningRate,t.initialAccumulatorValue)}};Jd.className="Adagrad";Ca(Jd);var Qd=class extends ca{constructor(e,t,n,r=null){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=r,this.accumulatedFirstMoment=[],this.accumulatedSecondMoment=[],W(()=>{this.accBeta1=ke(t).variable(),this.accBeta2=ke(n).variable()}),r==null&&(this.epsilon=$.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);W(()=>{let n=ye(1,this.accBeta1),r=ye(1,this.accBeta2);t.forEach((a,s)=>{let i=$.registeredVariables[a],o=!1;this.accumulatedFirstMoment[s]==null&&(this.accumulatedFirstMoment[s]={originalName:`${a}/m`,variable:W(()=>je(i).variable(o))}),this.accumulatedSecondMoment[s]==null&&(this.accumulatedSecondMoment[s]={originalName:`${a}/v`,variable:W(()=>je(i).variable(o))});let l=Array.isArray(e)?e[s].tensor:e[a];if(l==null)return;let u=this.accumulatedFirstMoment[s].variable,c=this.accumulatedSecondMoment[s].variable,h=oe(L(u,this.beta1),L(l,1-this.beta1)),d=oe(L(c,this.beta2),L(ot(l),1-this.beta2)),p=_e(h,n),f=_e(d,r);u.assign(h),c.assign(d);let m=oe(L(_e(p,oe(Qt(f),this.epsilon)),-this.learningRate),i);i.assign(m)}),this.accBeta1.assign(L(this.accBeta1,this.beta1)),this.accBeta2.assign(L(this.accBeta2,this.beta2))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.accBeta2.dispose(),this.accumulatedFirstMoment!=null&&Te(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedSecondMoment!=null&&Te(this.accumulatedSecondMoment.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedFirstMoment,...this.accumulatedSecondMoment];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e),W(()=>{this.accBeta1.assign($r(this.beta1,this.iterations_+1)),this.accBeta2.assign($r(this.beta2,this.iterations_+1))});let t=e.length/2,n=!1;this.accumulatedFirstMoment=e.slice(0,t).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})),this.accumulatedSecondMoment=e.slice(t,t*2).map(r=>({originalName:r.name,variable:r.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon)}};Qd.className="Adam";Ca(Qd);var ep=class extends ca{constructor(e,t,n,r=null,a=0){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=r,this.decay=a,this.accumulatedFirstMoment=[],this.accumulatedWeightedInfNorm=[],W(()=>{this.iteration=ke(0).variable(),this.accBeta1=ke(t).variable()}),r==null&&(this.epsilon=$.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);W(()=>{let n=ye(1,this.accBeta1),r=_e(-this.learningRate,oe(L(this.iteration,this.decay),1));t.forEach((a,s)=>{let i=$.registeredVariables[a],o=!1;this.accumulatedFirstMoment[s]==null&&(this.accumulatedFirstMoment[s]={originalName:`${a}/m`,variable:je(i).variable(o)}),this.accumulatedWeightedInfNorm[s]==null&&(this.accumulatedWeightedInfNorm[s]={originalName:`${a}/v`,variable:je(i).variable(o)});let l=Array.isArray(e)?e[s].tensor:e[a];if(l==null)return;let u=this.accumulatedFirstMoment[s].variable,c=this.accumulatedWeightedInfNorm[s].variable,h=oe(L(u,this.beta1),L(l,1-this.beta1)),d=L(c,this.beta2),p=$t(l),f=Ar(d,p);u.assign(h),c.assign(f);let m=oe(L(_e(r,n),_e(h,oe(f,this.epsilon))),i);i.assign(m)}),this.iteration.assign(oe(this.iteration,1)),this.accBeta1.assign(L(this.accBeta1,this.beta1))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.iteration.dispose(),this.accumulatedFirstMoment!=null&&Te(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedWeightedInfNorm!=null&&Te(this.accumulatedWeightedInfNorm.map(e=>e.variable))}async getWeights(){throw new Error("getWeights() is not implemented for Adamax yet.")}async setWeights(e){throw new Error("setWeights() is not implemented for Adamax yet.")}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon,decay:this.decay}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon,t.decay)}};ep.className="Adamax";Ca(ep);var hc=class extends ca{constructor(e){super();this.learningRate=e,this.setLearningRate(e)}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let r=Array.isArray(e)?e[n].tensor:e[t];if(r==null)return;let a=$.registeredVariables[t];W(()=>{let s=oe(L(this.c,r),a);a.assign(s)})}),this.incrementIterations()}setLearningRate(e){this.learningRate=e,this.c!=null&&this.c.dispose(),this.c=Ut(ke(-e))}dispose(){this.c.dispose()}async getWeights(){return[await this.saveIterations()]}async setWeights(e){if(e=await this.extractIterations(e),e.length!==0)throw new Error("SGD optimizer does not have settable weights.")}getConfig(){return{learningRate:this.learningRate}}static fromConfig(e,t){return new e(t.learningRate)}};hc.className="SGD";Ca(hc);var tp=class extends hc{constructor(e,t,n=!1){super(e);this.learningRate=e,this.momentum=t,this.useNesterov=n,this.accumulations=[],this.m=ke(this.momentum)}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let r=$.registeredVariables[t];if(this.accumulations[n]==null){let i=!1;this.accumulations[n]={originalName:`${t}/momentum`,variable:W(()=>je(r).variable(i))}}let a=this.accumulations[n].variable,s=Array.isArray(e)?e[n].tensor:e[t];s!=null&&W(()=>{let i,o=oe(L(this.m,a),s);this.useNesterov?i=oe(L(this.c,oe(s,L(o,this.m))),r):i=oe(L(this.c,o),r),a.assign(o),r.assign(i)})}),this.incrementIterations()}dispose(){this.m.dispose(),this.accumulations!=null&&Te(this.accumulations.map(e=>e.variable))}setMomentum(e){this.momentum=e}async getWeights(){return[await this.saveIterations()].concat(this.accumulations.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulations=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,momentum:this.momentum,useNesterov:this.useNesterov}}static fromConfig(e,t){return new e(t.learningRate,t.momentum,t.useNesterov)}};tp.className="Momentum";Ca(tp);var np=class extends ca{constructor(e,t=.9,n=0,r=null,a=!1){super();if(this.learningRate=e,this.decay=t,this.momentum=n,this.epsilon=r,this.accumulatedMeanSquares=[],this.accumulatedMoments=[],this.accumulatedMeanGrads=[],this.centered=a,r==null&&(this.epsilon=$.backend.epsilon()),e==null)throw new Error("learningRate for RMSPropOptimizer must be defined.")}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let r=$.registeredVariables[t],a=!1;this.accumulatedMeanSquares[n]==null&&(this.accumulatedMeanSquares[n]={originalName:`${t}/rms`,variable:W(()=>je(r).variable(a))}),this.accumulatedMoments[n]==null&&(this.accumulatedMoments[n]={originalName:`${t}/momentum`,variable:W(()=>je(r).variable(a))}),this.accumulatedMeanGrads[n]==null&&this.centered&&(this.accumulatedMeanGrads[n]={originalName:`${t}/mg`,variable:W(()=>je(r).variable(a))});let s=Array.isArray(e)?e[n].tensor:e[t];if(s==null)return;let i=this.accumulatedMeanSquares[n].variable,o=this.accumulatedMoments[n].variable;W(()=>{let l=oe(L(i,this.decay),L(ot(s),1-this.decay));if(this.centered){let u=this.accumulatedMeanGrads[n].variable,c=oe(L(u,this.decay),L(s,1-this.decay)),h=_e(L(s,this.learningRate),Qt(ye(l,oe(ot(c),this.epsilon)))),d=oe(L(o,this.momentum),h);i.assign(l),u.assign(c),o.assign(d);let p=ye(r,d);r.assign(p)}else{let u=oe(L(i,this.decay),L(ot(s),1-this.decay)),c=oe(L(o,this.momentum),_e(L(s,this.learningRate),Qt(oe(u,this.epsilon))));i.assign(u),o.assign(c);let h=ye(r,c);r.assign(h)}})}),this.incrementIterations()}dispose(){this.accumulatedMeanSquares!=null&&Te(this.accumulatedMeanSquares.map(e=>e.variable)),this.accumulatedMeanGrads!=null&&this.centered&&Te(this.accumulatedMeanGrads.map(e=>e.variable)),this.accumulatedMoments!=null&&Te(this.accumulatedMoments.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedMeanSquares,...this.accumulatedMoments];return this.centered&&e.push(...this.accumulatedMeanGrads),[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=this.centered?e.length/3:e.length/2,n=!1;this.accumulatedMeanSquares=e.slice(0,t).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})),this.accumulatedMoments=e.slice(t,t*2).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})),this.centered&&(this.accumulatedMeanGrads=e.slice(t*2,t*3).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})))}getConfig(){return{learningRate:this.learningRate,decay:this.decay,momentum:this.momentum,epsilon:this.epsilon,centered:this.centered}}static fromConfig(e,t){return new e(t.learningRate,t.decay,t.momentum,t.epsilon,t.centered)}};np.className="RMSProp";Ca(np);var fi=class{static sgd(e){return new hc(e)}static momentum(e,t,n=!1){return new tp(e,t,n)}static rmsprop(e,t=.9,n=0,r=null,a=!1){return new np(e,t,n,r,a)}static adam(e=.001,t=.9,n=.999,r=null){return new Qd(e,t,n,r)}static adadelta(e=.001,t=.95,n=null){return new Yd(e,t,n)}static adamax(e=.002,t=.9,n=.999,r=null,a=0){return new ep(e,t,n,r,a)}static adagrad(e,t=.1){return new Jd(e,t)}},mi={sgd:fi.sgd,momentum:fi.momentum,adadelta:fi.adadelta,adagrad:fi.adagrad,rmsprop:fi.rmsprop,adamax:fi.adamax,adam:fi.adam},xR=(()=>typeof requestAnimationFrame!="undefined"?requestAnimationFrame:typeof setImmediate!="undefined"?setImmediate:e=>e())();function rp(){return new Promise(e=>xR(()=>e()))}var R={};$e(R,{ERF_A1:()=>CR,ERF_A2:()=>RR,ERF_A3:()=>FR,ERF_A4:()=>MR,ERF_A5:()=>OR,ERF_P:()=>ER,PARALLELIZE_THRESHOLD:()=>hm,SELU_SCALE:()=>_x,SELU_SCALEALPHA:()=>wx,applyActivation:()=>Kd,assertAndGetBroadcastShape:()=>At,assertAxesAreInnerMostDims:()=>VS,assertParamsConsistent:()=>wR,assignToTypedArray:()=>VR,axesAreInnerMostDims:()=>jf,calculateShapes:()=>Hg,castTensor:()=>HR,combineLocations:()=>R5,complexWithEvenIndex:()=>LR,complexWithOddIndex:()=>WR,computeConv2DInfo:()=>qu,computeConv3DInfo:()=>f5,computeDefaultPad:()=>Ff,computeDilation2DInfo:()=>dI,computeOptimalWindowSize:()=>bR,computeOutAndReduceShapes:()=>F5,computeOutShape:()=>_R,computePool2DInfo:()=>p5,computePool3DInfo:()=>pI,convertConv2DDataFormat:()=>d5,eitherStridesOrDilationsAreOne:()=>In,expandShapeToKeepDim:()=>di,exponent:()=>jR,exponents:()=>UR,fromStringArrayToUint8:()=>KR,fromUint8ToStringArray:()=>XR,getAxesPermutation:()=>M5,getBroadcastDims:()=>aS,getComplexWithIndex:()=>BR,getFusedBiasGradient:()=>Xd,getFusedDyActivation:()=>qd,getImageCenter:()=>vR,getInnerMostAxes:()=>US,getPermuted:()=>NR,getReductionAxes:()=>zt,getReshaped:()=>kR,getReshapedPermuted:()=>IR,getSliceBeginCoords:()=>SR,getSliceSize:()=>TR,getUndoAxesPermutation:()=>Gf,log:()=>$R,mergeRealAndImagArrays:()=>zR,prepareAndValidate:()=>Gg,prepareSplitSize:()=>GR,reshapeTensor:()=>qR,segment_util:()=>bx,shouldFuse:()=>Zd,slice_util:()=>ln,splitRealAndImagArrays:()=>PR,tupleValuesAreOne:()=>Ra,upcastType:()=>tr,validateInput:()=>yf,validateUpdateShape:()=>Af,warn:()=>DR});function wR(e,t){let n=e[0].length;e.forEach((a,s)=>{F(a.length===n,()=>`Error in concat${n}D: rank of tensors[${s}] must be the same as the rank of the rest (${n})`)}),F(t>=0&&t<n,()=>`Error in concat${n}D: axis must be between 0 and ${n-1}.`);let r=e[0];e.forEach((a,s)=>{for(let i=0;i<n;i++)F(i===t||a[i]===r[i],()=>`Error in concat${n}D: Shape of tensors[${s}] (${a}) does not match the shape of the rest (${r}) along the non-concatenated axis ${s}.`)})}function _R(e,t){let n=e[0].slice();for(let r=1;r<e.length;r++)n[t]+=e[r][t];return n}var hm=30;function bR(e){return e<=hm?e:Ch(e,Math.floor(Math.sqrt(e)))}function vR(e,t,n){let r=n*(typeof e=="number"?e:e[0]),a=t*(typeof e=="number"?e:e[1]);return[r,a]}function kR(e,t,n,r=!0){let a=[];if(r)a=a.concat(t.slice(0)),a.push(e[0]/n),a=a.concat(e.slice(1));else{a=a.concat(e[0]);let s=t.length;for(let i=0;i<s;++i)a=a.concat([e[i+1]/t[i],t[i]]);a=a.concat(e.slice(s+1))}return a}function NR(e,t,n=!0){let r=[];if(n){r.push(t);for(let a=t+1;a<e;++a)a<=2*t?(r.push(a),r.push(a-(t+1))):r.push(a)}else{let a=[],s=[];for(let i=1;i<e;++i)i>=t*2+1||i%2==1?s.push(i):a.push(i);r.push(...a),r.push(0),r.push(...s)}return r}function IR(e,t,n,r=!0){let a=[];r?a.push(e[0]/n):a.push(e[0]*n);for(let s=1;s<e.length;++s)s<=t.length?r?a.push(t[s-1]*e[s]):a.push(e[s]/t[s-1]):a.push(e[s]);return a}function SR(e,t){let n=[0];for(let r=0;r<t;++r)n.push(e[r][0]);return n}function TR(e,t,n){let r=e.slice(0,1);for(let a=0;a<n;++a)r.push(e[a+1]-t[a][0]-t[a][1]);return r}var wx=1.7580993408473768,_x=1.0507009873554805,ER=.3275911,CR=.254829592,RR=-.284496736,FR=1.421413741,MR=-1.453152027,OR=1.061405429;function DR(...e){Q().getBool("IS_TEST")||console.warn(...e)}function $R(...e){Q().getBool("IS_TEST")||console.log(...e)}function zR(e,t){if(e.length!==t.length)throw new Error(`Cannot merge real and imag arrays of different lengths. real:${e.length}, imag: ${t.length}.`);let n=new Float32Array(e.length*2);for(let r=0;r<n.length;r+=2)n[r]=e[r/2],n[r+1]=t[r/2];return n}function PR(e){let t=new Float32Array(e.length/2),n=new Float32Array(e.length/2);for(let r=0;r<e.length;r+=2)t[r/2]=e[r],n[r/2]=e[r+1];return{real:t,imag:n}}function LR(e){let t=Math.ceil(e.length/4),n=new Float32Array(t),r=new Float32Array(t);for(let a=0;a<e.length;a+=4)n[Math.floor(a/4)]=e[a],r[Math.floor(a/4)]=e[a+1];return{real:n,imag:r}}function WR(e){let t=Math.floor(e.length/4),n=new Float32Array(t),r=new Float32Array(t);for(let a=2;a<e.length;a+=4)n[Math.floor(a/4)]=e[a],r[Math.floor(a/4)]=e[a+1];return{real:n,imag:r}}function BR(e,t){let n=e[t*2],r=e[t*2+1];return{real:n,imag:r}}function VR(e,t,n,r){e[r*2]=t,e[r*2+1]=n}function UR(e,t){let n=new Float32Array(e/2),r=new Float32Array(e/2);for(let a=0;a<Math.ceil(e/2);a++){let s=(t?2:-2)*Math.PI*(a/e);n[a]=Math.cos(s),r[a]=Math.sin(s)}return{real:n,imag:r}}function jR(e,t,n){let r=(n?2:-2)*Math.PI*(e/t),a=Math.cos(r),s=Math.sin(r);return{real:a,imag:s}}function GR(e,t,n=0){let r=[];if(typeof t=="number")F(e.shape[n]%t==0,()=>"Number of splits must evenly divide the axis."),r=new Array(t).fill(e.shape[n]/t);else{let a=t.reduce((i,o)=>(o===-1&&(i+=1),i),0);F(a<=1,()=>"There should be only one negative value in split array.");let s=t.indexOf(-1);if(s!==-1){let i=t.reduce((o,l)=>l>0?o+l:o);t[s]=e.shape[n]-i}F(e.shape[n]===t.reduce((i,o)=>i+o),()=>"The sum of sizes must match the size of the axis dimension."),r=t}return r}var bx={};$e(bx,{collectGatherOpShapeInfo:()=>JR,computeOutShape:()=>YR,segOpComputeOptimalWindowSize:()=>ZR});function ZR(e,t){let n=!1,r;for(e<=hm?(r=e,n=!0):r=Ch(e,Math.floor(Math.sqrt(e)));!n;)r>t||r===e?n=!0:r=Ch(e,r+1);return r}function YR(e,t,n){let r=[],a=e.length;for(let s=0;s<a;s++)s!==t?r.push(e[s]):r.push(n);return r}function JR(e,t,n,r){let a=t.shape.length,s=e.shape.length;if(r!==0&&(r<-a||r>a))throw new Error(`Expect batchDims in the range of [-${a}, ${a}], but got ${r}`);if(r<0&&(r+=a),r>s)throw new Error(`batchDims (${r}) must be less than rank(x) (
|
|
${s}).`);if(n<r)throw new Error(`batchDims (${r}) must be less than or equal to axis (${n}).`);for(let h=0;h<r;++h)if(e.shape[h]!==t.shape[h])throw new Error(`x.shape[${h}]: ${e.shape[h]} should be equal to indices.shape[${h}]: ${t.shape[h]}.`);let i=e.shape[n],o=[],l=1,u=1,c=1;for(let h=0;h<r;++h)o.push(e.shape[h]),l*=e.shape[h];for(let h=r;h<n;h++)o.push(e.shape[h]),u*=e.shape[h];for(let h=r;h<a;h++)o.push(t.shape[h]);for(let h=n+1;h<s;h++)o.push(e.shape[h]),c*=e.shape[h];return{batchSize:l,sliceSize:c,outerSize:u,dimSize:i,outputShape:o}}function HR(e,t,n){if(t==="complex64"){if(e.dtype==="complex64")return e.clone();let r=Tt(e.shape),a=Ae(e,"float32"),s=n.complex(a,r);return r.dispose(),a.dispose(),s}if(!ig(e.dtype,t))return $.makeTensorFromDataId(e.dataId,e.shape,t);if(e.dtype==="complex64"){let r=n.real(e),a=Ae(r,t);return r.dispose(),a}if(t==="int32")return n.int(e);if(t==="bool"){let r=ke(0,e.dtype),a=n.notEqual(e,r);return r.dispose(),a}else throw new Error(`Error in Cast: failed to cast ${e.dtype} to ${t}`)}function qR(e,t){return $.makeTensorFromDataId(e.dataId,t,e.dtype)}function XR(e){try{return e.map(t=>cd(t))}catch(t){throw new Error(`Failed to decode encoded string bytes into utf-8, error: ${t}`)}}function KR(e){return e.map(t=>zu(t))}var Pr={};$e(Pr,{nonMaxSuppressionV3Impl:()=>dx,nonMaxSuppressionV4Impl:()=>px,nonMaxSuppressionV5Impl:()=>fx,whereImpl:()=>B5});var vx={kernelName:Ji,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,wl(Ae(n,"float32"),-1))}}},QR={kernelName:Qi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let r=ot(Ae(n,"float32")),a=Qt(ye(ke(1),r));return bt(_e(e,a))}}}},eF={kernelName:eo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let r=Qt(ye(ot(Ae(n,"float32")),1));return _e(e,r)}}}},tF={kernelName:ka,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=At(n.shape,r.shape);return{a:()=>{let s=e,i=zt(n.shape,a);return i.length>0&&(s=Se(s,i)),K(s,n.shape)},b:()=>{let s=e,i=zt(r.shape,a);return i.length>0&&(s=Se(s,i)),K(s,r.shape)}}}},nF={kernelName:us,saveAllInputs:!0,gradFunc:(e,t)=>{let n={};return t.forEach((r,a)=>{n[a]=()=>e.clone()}),n}},rF={kernelName:cs,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>je(n)}}},aF={kernelName:xu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>je(n)}}},sF={kernelName:to,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>_e(e,Qt(ye(ke(1),ot(Ae(n,"float32")))))}}},iF={kernelName:no,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let r=Qt(oe(ke(1),ot(Ae(n,"float32"))));return _e(e,r)}}}},oF={kernelName:so,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=At(n.shape,r.shape);return{a:()=>{let s=oe(ot(n),ot(r)),i=L(e,_e(r,s)),o=zt(n.shape,a);return o.length>0&&(i=Se(i,o)),K(i,n.shape)},b:()=>{let s=oe(ot(n),ot(r)),i=bt(L(e,_e(n,s))),o=zt(r.shape,a);return o.length>0&&(i=Se(i,o)),K(i,r.shape)}}}},lF={kernelName:ro,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>_e(e,oe(ot(Ae(n,"float32")),1))}}},uF={kernelName:ao,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>_e(e,ye(ke(1),ot(Ae(n,"float32"))))}}};function cF(e,t,n,r,a=[1,1,1],s,i){let o=C(e,"dy","avgPool3dGrad"),l=C(t,"input","avgPool3dGrad"),u=o,c=l,h=!1;l.rank===4&&(h=!0,u=K(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]]),c=K(l,[1,l.shape[0],l.shape[1],l.shape[2],l.shape[3]])),F(u.rank===5,()=>`Error in avgPool3dGrad: dy must be rank 5 but got rank ${u.rank}.`),F(c.rank===5,()=>`Error in avgPool3dGrad: input must be rank 5 but got rank ${c.rank}.`),F(In(r,a),()=>`Error in avgPool3dGrad: Either strides or dilations must be 1. Got strides ${r} and dilations '${a}'`),i!=null&&F(Vt(s),()=>`Error in avgPool3dGrad: pad must be an integer when using, dimRoundingMode ${i} but got pad ${s}.`);let d={dy:u,input:c},p={filterSize:n,strides:r,dilations:a,pad:s,dimRoundingMode:i},f=$.runKernel(Dh,d,p);return h?K(f,[f.shape[1],f.shape[2],f.shape[3],f.shape[4]]):f}var hF=D({avgPool3dGrad_:cF}),dF={kernelName:wu,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{filterSize:a,strides:s,dilations:i,pad:o,dimRoundingMode:l}=n,u=i==null?[1,1,1]:i;return{x:()=>hF(e,r,a,s,u,o,l)}}};function pF(e,t,n,r,a){let s=C(e,"dy","avgPoolGrad"),i=C(t,"input","avgPoolGrad");F(i.rank===s.rank,()=>`Rank of input (${i.rank}) does not match rank of dy (${s.rank})`);let o=i,l=s,u=!1;i.rank===3&&(u=!0,o=K(i,[1,i.shape[0],i.shape[1],i.shape[2]]),l=K(s,[1,s.shape[0],s.shape[1],s.shape[2]])),F(l.rank===4,()=>`Error in avgPoolGrad: dy must be rank 4 but got rank ${l.rank}.`),F(o.rank===4,()=>`Error in avgPoolGrad: input must be rank 4 but got rank ${o.rank}.`);let c={dy:l,input:o},h={filterSize:n,strides:r,pad:a},d=$.runKernel(Oh,c,h);return u?K(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var fF=D({avgPoolGrad_:pF}),mF={kernelName:hs,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{filterSize:a,strides:s,pad:i}=n;return{x:()=>fF(e,r,a,s,i)}}},AF={kernelName:ds,inputsToSave:["a","b"],gradFunc:(e,t,n)=>{let[r,a]=t,{transposeA:s,transposeB:i}=n;return!s&&!i?{a:()=>He(e,a,!1,!0),b:()=>He(r,e,!0,!1)}:!s&&i?{a:()=>He(e,a,!1,!1),b:()=>He(e,r,!0,!1)}:s&&!i?{a:()=>He(a,e,!1,!0),b:()=>He(r,e,!1,!1)}:{a:()=>He(a,e,!0,!0),b:()=>He(e,r,!0,!0)}}},yF={kernelName:_u,gradFunc:(e,t,n)=>{let{blockShape:r,crops:a}=n;return{x:()=>rc(e,r,a)}}},gF={kernelName:Ag,gradFunc:(e,t,n)=>{let r=n,a=r.inputShape,s=r.shape,i=Array.from(s);for(let l=a.length-1;l>=0;l--)if(a[l]===s[l])i[l]=1;else if(a[l]!==1)throw new Error(`broadcastTo(): [${a}] cannot be broadcast to [${s}].`);let o=[];for(let l=0;l<i.length;l++)i[l]>1&&o.push(l);return{x:()=>Se(e,o,!0)}}},xF={kernelName:ps,gradFunc:e=>({x:()=>e.clone()})},wF={kernelName:io,gradFunc:e=>({x:()=>je(e)})},_F={kernelName:Na,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{clipValueMin:a,clipValueMax:s}=n;return{x:()=>gn(rr(oa(r,a),Ma(r,s)),e,je(e))}}},bF={kernelName:bu,inputsToSave:["x"],gradFunc:vx.gradFunc},vF={kernelName:oo,saveAllInputs:!0,gradFunc:(e,t,n)=>{let r=t.map(o=>o.shape),{axis:a}=n,s=er(a,t[0].shape)[0],i=r.map(o=>o[s]);return Jt(e,i,s).map(o=>()=>o)}},kF={kernelName:fs,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[r,a]=t,{dilations:s,strides:i,pad:o,dataFormat:l}=n;return F(Ra(s),()=>`Error in gradient of conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`),{x:()=>Df(r.shape,e,a,i,o,l),filter:()=>um(r,e,a.shape,i,o,l)}}},NF={kernelName:ms,inputsToSave:["dy","filter"],gradFunc:(e,t,n)=>{let[r,a]=t,{strides:s,pad:i,dataFormat:o,dimRoundingMode:l}=n;return{dy:()=>sa(e,a,s,i,o,1,l),filter:()=>um(e,r,a.shape,s,i,o,l)}}};function IF(e,t,n,r,a){let s=e;e.rank===4&&(s=K(e,[1,e.shape[0],e.shape[1],e.shape[2],e.shape[3]]));let i=t;i.rank===4&&(i=K(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]])),F(s.rank===5,()=>`Error in conv3dDerFilter: input must be rank 5, but got shape ${s.shape}.`),F(i.rank===5,()=>`Error in conv3dDerFilter: dy must be rank 5, but got shape ${i.shape}.`),F(n.length===5,()=>`Error in conv3dDerFilter: filterShape must be length 5, but got ${n}.`),F(s.shape[4]===n[3],()=>`Error in conv3dDerFilter: depth of input ${s.shape[4]}) must match input depth in filter (${n[3]}.`),F(i.shape[4]===n[4],()=>`Error in conv3dDerFilter: depth of dy (${i.shape[4]}) must match output depth for filter (${n[4]}).`);let o={x:s,dy:i},l={strides:r,pad:a,filterShape:n};return $.runKernel(Lh,o,l)}var SF=D({conv3DBackpropFilter_:IF}),TF={kernelName:vu,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:r,strides:a,pad:s}=n;F(Ra(r),()=>`Error in gradient of conv3D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${r}'`);let[i,o]=t;return{x:()=>b5(i.shape,e,o,a,s),filter:()=>SF(i,e,o.shape,a,s)}}},EF={kernelName:As,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(bt(Ld(Ae(n,"float32"))),e)}}},CF={kernelName:lo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(Wd(Ae(n,"float32")),e)}}},RF={kernelName:ys,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{axis:a,exclusive:s,reverse:i}=n;return{x:()=>{let o=M5([a],r.rank),l=Id(e,a,s,!i);return o!=null&&(l=nt(l,o)),l}}}},FF={kernelName:gs,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:r,strides:a,pad:s,dimRoundingMode:i}=n,o=r==null?[1,1]:r;F(Ra(o),()=>`Error in gradient of depthwiseConv2dNative: dilation rates greater than 1 are not yet supported. Got dilations '${o}'`);let[l,u]=t;return F(l.rank===4,()=>`Error in gradient of depthwiseConv2dNative: input must be rank 4, but got rank ${l.rank}.`),F(u.rank===4,()=>`Error in gradient of depthwiseConv2dNative: filter must be rank 4, but got rank ${u.rank}.`),F(l.shape[3]===u.shape[2],()=>`Error in gradient of depthwiseConv2d: number of input channels (${l.shape[3]}) must match the inChannels dimension in filter ${u.shape[2]}.`),F(In(a,o),()=>`Error in gradient of depthwiseConv2d: Either strides or dilations must be 1. Got strides ${a} and dilations '${o}'.`),i!=null&&F(Vt(s),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${s}.`),{x:()=>ux(l.shape,e,u,a,s,r,i),filter:()=>lx(l,e,u.shape,a,s,r,i)}}},MF={kernelName:ku,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[r,a]=t,s={x:r,filter:a,dy:e},i={x:r,filter:a,dy:e};return{x:()=>$.runKernel(Gh,s,n),filter:()=>$.runKernel(Hh,i,n)}}},OF={kernelName:ho,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t,r={dy:e,y:n};return{x:()=>$.runKernel(qh,r)}}},DF={kernelName:po,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,r=L(Gn(bt(ot(n))),2/Math.sqrt(Math.PI));return{x:()=>L(e,r)}}},$F={kernelName:ws,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,n)}}},zF={kernelName:mo,inputsToSave:["input"],gradFunc:(e,t)=>{let[n]=t;return{input:()=>K(e,n.shape)}}},PF={kernelName:Ao,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,Gn(n))}}},LF={kernelName:_s,gradFunc:e=>({x:()=>je(e)})},WF={kernelName:bs,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=At(n.shape,r.shape);return{a:()=>{let s=_e(e,Ae(r,"float32")),i=zt(n.shape,a);return i.length>0?K(Se(s,i),n.shape):s},b:()=>{let s=L(e,Ae(n,"float32")),i=zt(r.shape,a);i.length>0&&(s=K(Se(s,i),r.shape));let o=ot(r);return bt(_e(s,Ae(o,"float32")))}}}},BF={kernelName:vs,inputsToSave:["x","mean","variance","scale"],gradFunc:(e,t,n)=>{let{varianceEpsilon:r}=n,[a,s,i,o]=t,l=o==null?ke(1):o,u=zt(s.shape,a.shape),c=[];if(s.rank===1){for(let m=0;m<a.shape.length-1;++m)c.push(a.shape[m]);c.push(1)}let h=ye(a,s),d=L(e,l),p=zd(oe(i,ke(r))),f=L(L(L(p,p),p),ke(-.5));return{x:()=>s.rank===1?K(L(L(e,Fa(K(p,[1,1,1,s.shape[0]]),c)),l),a.shape):K(L(L(e,p),l),a.shape),mean:()=>{let m=L(L(p,ke(-1)),d);return s.rank===1&&(m=Se(m,u)),K(m,s.shape)},variance:()=>{let m=L(L(f,h),d);return s.rank===1&&(m=Se(m,u)),K(m,s.shape)},scale:()=>{let m=L(h,p),A=L(e,m);return s.rank===1&&(A=Se(A,u)),K(A,s.shape)},offset:()=>{let m=e;return s.rank===1&&(m=Se(m,u)),K(m,s.shape)}}}},VF={kernelName:go,inputsToSave:["x","indices"],gradFunc:(e,t,n)=>{let[r,a]=t,{axis:s}=n,i=er(s,r.shape)[0];return{x:()=>{let o=r.shape,l=a.size,u=o.slice(0,i),c=u.length,h=o.slice(s,o.length).slice(1),d=h.length,p=kx(0,c),f=kx(c+1,c+1+d),m=Nx([u,[l],h]),A=K(e,m),y=K(a,[l]),g=Nx([[c],p,f]),_=nt(A,g),b=sm(_,y,r.shape[i]),x=Gf(g);return b=nt(b,x),b},indices:()=>a}}};function kx(e,t){let n=[];for(let r=e;r<t;++r)n.push(r);return n}function Nx(e){let t=[];for(let n=0;n<e.length;++n)for(let r=0;r<e[n].length;++r)t.push(e[n][r]);return t}var UF={kernelName:ks,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t;return{a:()=>je(n),b:()=>je(r)}}},jF={kernelName:_o,gradFunc:e=>({x:()=>Ae(e,"float32")})},GF={kernelName:bo,gradFunc:e=>({x:()=>je(e)})},HF={kernelName:vo,gradFunc:e=>({x:()=>je(e)})},qF={kernelName:ko,gradFunc:e=>({x:()=>je(e)})},XF={kernelName:Ns,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{alpha:a}=n,s=qn(r,0);return{x:()=>gn(s,e,L(e,a))}}},KF={kernelName:So,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>_e(e,oe(n,1))}}},ZF={kernelName:Is,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>_e(e,Ae(n,"float32"))}}},YF={kernelName:yg,inputsToSave:[],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r]=t,{axis:a}=n;return{logits:()=>{let s=!0,i=Gn(r);return ye(e,L(Se(e,a,s),i))}}}};function JF(e,t,n,r=5,a=1,s=1,i=.5){let o={x:e,y:t,dy:n},l={depthRadius:r,bias:a,alpha:s,beta:i};return $.runKernel(Jh,o,l)}var QF=D({localResponseNormalizationBackprop_:JF}),eM={kernelName:Tu,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r,a]=t,{depthRadius:s,bias:i,alpha:o,beta:l}=n;return{x:()=>QF(r,a,e,s,i,o,l)}}};function Ix(e,t,n,r){return t.rank<n.rank&&(t=K(t,di(t.shape,r))),e.rank<n.rank&&(e=K(e,di(e.shape,r))),{x:()=>L(e,Ae(ia(n,t),e.dtype))}}var Sx={kernelName:Ss,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let r=n,{reductionIndices:a}=r,s=t[0],i=t[1],o=er(a,s.shape),l=Ix(e,i,s,o);return{x:()=>l.x()}}},tM={kernelName:Ts,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t;return{a:()=>L(e,Ae(oa(n,r),"float32")),b:()=>L(e,Ae(ec(n,r),"float32"))}}};function nM(e,t,n,r,a,s=[1,1,1],i,o){let l=C(e,"dy","maxPool3dGrad"),u=C(t,"input","maxPool3dGrad"),c=C(n,"output","maxPool3dGrad"),h=l,d=u,p=c,f=!1;u.rank===4&&(f=!0,h=K(l,[1,l.shape[0],l.shape[1],l.shape[2],l.shape[3]]),d=K(u,[1,u.shape[0],u.shape[1],u.shape[2],u.shape[3]]),p=K(c,[1,c.shape[0],c.shape[1],c.shape[2],c.shape[3]])),F(h.rank===5,()=>`Error in maxPool3dGrad: dy must be rank 5 but got rank ${h.rank}.`),F(d.rank===5,()=>`Error in maxPool3dGrad: input must be rank 5 but got rank ${d.rank}.`),F(p.rank===5,()=>`Error in maxPool3dGrad: output must be rank 5 but got rank ${p.rank}.`),F(In(a,s),()=>`Error in maxPool3dGrad: Either strides or dilations must be 1. Got strides ${a} and dilations '${s}'`),o!=null&&F(Vt(i),()=>`Error in maxPool3dGrad: pad must be an integer when using, dimRoundingMode ${o} but got pad ${i}.`);let m={dy:h,input:d,output:p},A={filterSize:r,strides:a,dilations:s,pad:i,dimRoundingMode:o},y=$.runKernel(ed,m,A);return f?K(y,[y.shape[1],y.shape[2],y.shape[3],y.shape[4]]):y}var rM=D({maxPool3dGrad_:nM}),aM={kernelName:Eu,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r,a]=t,{filterSize:s,strides:i,dilations:o,pad:l,dimRoundingMode:u}=n,c=o==null?[1,1,1]:o;return{x:()=>rM(e,r,a,s,i,c,l,u)}}};function sM(e,t,n,r,a,s,i){let o=C(e,"dy","maxPoolGrad"),l=C(t,"input","maxPoolGrad"),u=C(n,"output","maxPoolGrad");F(l.rank===o.rank,()=>`Rank of input (${l.rank}) does not match rank of dy (${o.rank})`),F(o.rank===4,()=>`Error in maxPoolGrad: dy must be rank 4 but got rank ${o.rank}.`),F(l.rank===4,()=>`Error in maxPoolGrad: input must be rank 4 but got rank ${l.rank}.`),i!=null&&F(Vt(s),()=>`Error in maxPoolGrad: pad must be an integer when using, dimRoundingMode ${i} but got pad ${s}.`);let c={dy:o,input:l,output:u},h={filterSize:r,strides:a,pad:s,dimRoundingMode:i};return $.runKernel(Qh,c,h)}var iM=D({maxPoolGrad_:sM}),oM={kernelName:Es,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r,a]=t,{filterSize:s,strides:i,pad:o}=n;return{x:()=>iM(e,r,a,s,i,o)}}},lM={kernelName:Cs,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{axis:a}=n,s=er(a,r.shape),i=F5(r.shape,s)[1],o=Ot(i);return{x:()=>{let l=r.shape.slice();s.forEach(c=>{l[c]=1});let u=K(e,l);return _e(L(u,Dr(r.shape,"float32")),o)}}}},uM={kernelName:Rs,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let r=n,{axis:a}=r,[s,i]=t,o=er(a,s.shape),l=Ix(e,i,s,o);return{x:()=>l.x()}}},cM={kernelName:Fs,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t;return{a:()=>L(e,Ae(Ma(n,r),"float32")),b:()=>L(e,Ae(qn(n,r),"float32"))}}},hM={kernelName:Cu,inputsToSave:["x"],gradFunc:(e,t,n)=>{let r=t[0],{paddings:a}=n,s=a.map(i=>i[0]);return{x:()=>Ce(e,s,r.shape)}}},dM={kernelName:Eo,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=At(n.shape,r.shape);return{a:()=>{let s=zt(n.shape,a);return s.length>0?K(Se(e,s),n.shape):e},b:()=>{let s=L(e,bt(ml(_e(n,r)))),i=zt(r.shape,a);return i.length>0?K(Se(s,i),r.shape):s}}}},pM={kernelName:Ms,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=At(n.shape,r.shape);return{a:()=>{let s=L(e,Ae(r,"float32")),i=zt(n.shape,a);return i.length>0?K(Se(s,i),n.shape):s},b:()=>{let s=L(e,Ae(n,"float32")),i=zt(r.shape,a);return i.length>0?K(Se(s,i),r.shape):s}}}},fM={kernelName:Co,gradFunc:e=>({x:()=>bt(e)})},mM={kernelName:Os,inputsToSave:["indices"],gradFunc:(e,t)=>{let n=t[0];return{indices:()=>Tt(n.shape,"float32")}}},AM={kernelName:Do,gradFunc:e=>({x:()=>je(e)})},yM={kernelName:$o,saveAllInputs:!0,gradFunc:(e,t,n)=>{let{axis:r}=n;return ar(e,r).map(a=>()=>a)}},Tx={kernelName:Ds,inputsToSave:["x"],gradFunc:(e,t,n)=>{let r=t[0],{paddings:a}=n,s=a.map(i=>i[0]);return{x:()=>Ce(e,s,r.shape)}}},gM={kernelName:$s,inputsToSave:["a","b"],outputsToSave:[!0],gradFunc:(e,t)=>{let[n,r,a]=t,s=n,i=r,o=At(s.shape,i.shape);return{a:()=>{let l=Ae(i,"float32"),u=L(e,L(l,$r(s,ye(l,ke(1))))),c=zt(s.shape,o);return c.length>0&&(u=Se(u,c)),K(u,s.shape)},b:()=>{let l=qn(s,0),u=gn(l,Tn(s),je(s)),c=L(e,L(a,u)),h=zt(i.shape,o);return h.length>0&&(c=Se(c,h)),K(c,i.shape)}}}},xM={kernelName:zs,inputsToSave:["x","alpha"],gradFunc:(e,t)=>{let[n,r]=t,a=qn(n,0);return{x:()=>gn(a,e,L(e,r)),alpha:()=>{let s=gn(a,je(e),L(e,n)),i=zt(r.shape,e.shape);return i.length>0&&(s=Se(s,i)),K(s,r.shape)}}}},wM={kernelName:xs,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=At(n.shape,r.shape);return{a:()=>{let s=_e(e,Ae(r,"float32")),i=zt(n.shape,a);return i.length>0?K(Se(s,i),n.shape):s},b:()=>{let s=L(e,Ae(n,"float32")),i=zt(r.shape,a);i.length>0&&(s=K(Se(s,i),r.shape));let o=ot(r);return bt(_e(s,Ae(o,"float32")))}}}},_M={kernelName:Po,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>_e(e,bt(ot(n)))}}},bM={kernelName:Ws,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,r=L(Ma(n,6),wl(n));return{x:()=>L(e,Ae(r,"float32"))}}},vM={kernelName:Ps,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,Ae(wl(n),"float32"))}}},kM={kernelName:Lo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>K(e,n.shape)}}},NM={kernelName:Ls,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[r]=t,a={dy:e,images:r};return{images:()=>$.runKernel(sd,a,n)}}},IM={kernelName:Fu,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[r]=t,a={dy:e,images:r};return{images:()=>$.runKernel(ad,a,n)}}},SM={kernelName:Bs,gradFunc:(e,t,n)=>{let{dims:r}=n,a=er(r,e.shape);return{x:()=>Cn(e,a)}}},TM={kernelName:Vs,gradFunc:e=>({x:()=>je(e)})},EM={kernelName:Us,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>bt(_e(e,L($r(n,1.5),2)))}}},CM={kernelName:Bo,inputsToSave:["condition"],gradFunc:(e,t)=>{let[n]=t;return{condition:()=>Ae(je(n),"float32"),t:()=>L(e,Ae(n,e.dtype)),e:()=>L(e,Ae(tc(n),e.dtype))}}},RM={kernelName:Vo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let r=qn(n,ke(0)),a=ke(wx),s=ke(_x),i=L(e,s),o=L(L(e,a),Gn(Ae(n,"float32")));return gn(r,i,o)}}}},FM={kernelName:Gs,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,L(n,ye(ke(1),n)))}}},MM={kernelName:Go,gradFunc:e=>({x:()=>je(e)})},OM={kernelName:js,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(Yu(Ae(n,"float32")),e)}}},DM={kernelName:jo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(Nd(Ae(n,"float32")),e)}}},$M={kernelName:Uo,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{begin:a,size:s}=n,i=r.shape,[o,l]=t5(r,a,s),u=[];for(let c=0;c<e.rank;c++)u.push([o[c],i[c]-o[c]-l[c]]);return{x:()=>la(e,u)}}},zM={kernelName:Xs,outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r]=t,{dim:a}=n,s=!0,i=L(e,r);return{logits:()=>ye(i,L(Se(i,[a],s),r))}}},PM={kernelName:Ho,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,Sn(n))}}},Ex={kernelName:Mu,gradFunc:(e,t,n)=>{let{blockShape:r,paddings:a}=n;return{x:()=>Ku(e,r,a)}}},Cx={kernelName:qo,gradFunc:(e,t,n)=>{let{axis:r}=n;return{x:()=>rt(e,r)}}},LM={kernelName:Hs,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>_e(e,L(Qt(Ae(n,"float32")),2))}}},WM={kernelName:Ou,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,L(Ae(n,"float32"),2))}}},BM={kernelName:Ks,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=ke(2);return{a:()=>L(e,L(a,ye(n,r))),b:()=>L(e,L(a,ye(r,n)))}}},VM={kernelName:Qo,gradFunc:e=>({x:()=>je(e)})},UM={kernelName:Zs,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=At(n.shape,r.shape);return{a:()=>{let s=e,i=zt(n.shape,a);return i.length>0&&(s=Se(s,i)),K(s,n.shape)},b:()=>{let s=e,i=zt(r.shape,a);return i.length>0&&(s=Se(s,i)),K(bt(s),r.shape)}}}},jM={kernelName:qs,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,a=r.shape.slice(),{axis:s}=n;er(s,r.shape).forEach(l=>{a[l]=1});let i=K(e,a),o=L(i,Dr(r.shape,"float32"));return{x:()=>o}}},GM={kernelName:Ko,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>_e(e,ot(Yu(n)))}}},HM={kernelName:Ys,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(ye(ke(1),ot(n)),e)}}},qM={kernelName:Ia,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{reps:a}=n;return{x:()=>{let s=je(r);if(r.rank===1)for(let i=0;i<a[0];++i)s=oe(s,Ce(e,[i*r.shape[0]],[r.shape[0]]));else if(r.rank===2)for(let i=0;i<a[0];++i)for(let o=0;o<a[1];++o)s=oe(s,Ce(e,[i*r.shape[0],o*r.shape[1]],[r.shape[0],r.shape[1]]));else if(r.rank===3)for(let i=0;i<a[0];++i)for(let o=0;o<a[1];++o)for(let l=0;l<a[2];++l)s=oe(s,Ce(e,[i*r.shape[0],o*r.shape[1],l*r.shape[2]],[r.shape[0],r.shape[1],r.shape[2]]));else if(r.rank===4)for(let i=0;i<a[0];++i)for(let o=0;o<a[1];++o)for(let l=0;l<a[2];++l)for(let u=0;u<a[3];++u)s=oe(s,Ce(e,[i*r.shape[0],o*r.shape[1],l*r.shape[2],u*r.shape[3]],[r.shape[0],r.shape[1],r.shape[2],r.shape[3]]));else throw new Error(`Gradient for tile operation is not implemented for rank-${r.rank} tensors yet.`);return s}}}},XM={kernelName:Js,gradFunc:(e,t,n)=>{let r=n,{perm:a}=r,s=Gf(a);return{x:()=>nt(e,s)}}},KM={kernelName:Yo,gradFunc:(e,t,n)=>{let r=n,{axis:a}=r;return{value:()=>Rn(e,a)}}},YM={kernelName:Du,inputsToSave:["segmentIds"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>ZM(e,n)}}};function ZM(e,t){let n=Ar(t,je(t)),r=hi(e,n),a=oa(t,ke(0,"int32")),s=r.rank-a.rank;for(let o=0;o<s;++o)a=Hn(a,o+1);a=rr(a,Dr(r.shape,"bool"));let i=je(r);return gn(a,r,i)}var JM={kernelName:Jo,gradFunc:e=>({x:()=>je(e)})},QM=[vx,QR,eF,tF,nF,rF,aF,sF,iF,oF,lF,uF,dF,mF,AF,yF,gF,xF,wF,_F,bF,vF,NF,kF,TF,EF,CF,RF,FF,MF,wM,OF,DF,$F,zF,PF,WF,LF,BF,VF,UF,jF,GF,HF,qF,XF,KF,ZF,YF,eM,Sx,Sx,tM,aM,oM,lM,uM,cM,hM,dM,pM,fM,mM,AM,yM,Tx,Tx,gM,xM,_M,bM,vM,kM,NM,IM,SM,TM,EM,CM,RM,FM,MM,OM,DM,$M,zM,PM,Ex,Ex,Cx,Cx,LM,BM,WM,VM,UM,jM,GM,HM,qM,XM,KM,YM,JM];for(let e of QM)gg(e);U.prototype.abs=function(){return this.throwIfDisposed(),$t(this)};U.prototype.acos=function(){return this.throwIfDisposed(),vf(this)};U.prototype.acosh=function(){return this.throwIfDisposed(),kf(this)};U.prototype.addStrict=function(e){return this.throwIfDisposed(),X5(this,e)};U.prototype.add=function(e){return this.throwIfDisposed(),oe(this,e)};U.prototype.all=function(e,t){return this.throwIfDisposed(),_d(this,e,t)};U.prototype.any=function(e,t){return this.throwIfDisposed(),Gu(this,e,t)};U.prototype.argMax=function(e){return this.throwIfDisposed(),Hu(this,e)};U.prototype.argMin=function(e){return this.throwIfDisposed(),Nf(this,e)};U.prototype.asScalar=function(){return this.throwIfDisposed(),F(this.size===1,()=>"The array must have only 1 element."),K(this,[])};U.prototype.asType=function(e){return this.throwIfDisposed(),Ae(this,e)};U.prototype.as1D=function(){return this.throwIfDisposed(),K(this,[this.size])};U.prototype.as2D=function(e,t){return this.throwIfDisposed(),K(this,[e,t])};U.prototype.as3D=function(e,t,n){return this.throwIfDisposed(),K(this,[e,t,n])};U.prototype.as4D=function(e,t,n,r){return this.throwIfDisposed(),K(this,[e,t,n,r])};U.prototype.as5D=function(e,t,n,r,a){return this.throwIfDisposed(),K(this,[e,t,n,r,a])};U.prototype.asin=function(){return this.throwIfDisposed(),If(this)};U.prototype.asinh=function(){return this.throwIfDisposed(),Sf(this)};U.prototype.atan=function(){return this.throwIfDisposed(),Tf(this)};U.prototype.atan2=function(e){return this.throwIfDisposed(),Ef(this,e)};U.prototype.atanh=function(){return this.throwIfDisposed(),Cf(this)};U.prototype.avgPool=function(e,t,n,r){return this.throwIfDisposed(),Xu(this,e,t,n,r)};U.prototype.batchToSpaceND=function(e,t){return this.throwIfDisposed(),Ku(this,e,t)};U.prototype.batchNorm=function(e,t,n,r,a){return this.throwIfDisposed(),li(this,e,t,n,r,a)};U.prototype.broadcastTo=function(e){return this.throwIfDisposed(),Zu(this,e)};U.prototype.cast=function(e){return this.throwIfDisposed(),Ae(this,e)};U.prototype.ceil=function(){return this.throwIfDisposed(),Of(this)};U.prototype.clipByValue=function(e,t){return this.throwIfDisposed(),yn(this,e,t)};U.prototype.concat=function(e,t){return this.throwIfDisposed(),e instanceof U&&(e=[e]),rt([this,...e],t)};U.prototype.conv1d=function(e,t,n,r,a,s){return this.throwIfDisposed(),vd(this,e,t,n,r,a,s)};U.prototype.conv2dTranspose=function(e,t,n,r,a){return this.throwIfDisposed(),kd(this,e,t,n,r,a)};U.prototype.conv2d=function(e,t,n,r,a,s){return this.throwIfDisposed(),sa(this,e,t,n,r,a,s)};U.prototype.cos=function(){return this.throwIfDisposed(),Yu(this)};U.prototype.cosh=function(){return this.throwIfDisposed(),Nd(this)};U.prototype.cumsum=function(e,t,n){return this.throwIfDisposed(),Id(this,e,t,n)};U.prototype.depthToSpace=function(e,t){return this.throwIfDisposed(),zf(this,e,t)};U.prototype.depthwiseConv2D=function(e,t,n,r,a,s){return Rt("depthwiseConv2D is deprecated, use depthwiseConv2d instead"),this.throwIfDisposed(),ci(this,e,t,n,r,a,s)};U.prototype.depthwiseConv2d=function(e,t,n,r,a,s){return this.throwIfDisposed(),ci(this,e,t,n,r,a,s)};U.prototype.dilation2d=function(e,t,n,r,a){return this.throwIfDisposed(),Pf(this,e,t,n,r,a)};U.prototype.divNoNan=function(e){return this.throwIfDisposed(),Lf(this,e)};U.prototype.divStrict=function(e){return this.throwIfDisposed(),K5(this,e)};U.prototype.div=function(e){return this.throwIfDisposed(),_e(this,e)};U.prototype.dot=function(e){return this.throwIfDisposed(),k5(this,e)};U.prototype.elu=function(){return this.throwIfDisposed(),fl(this)};U.prototype.equalStrict=function(e){return this.throwIfDisposed(),V5(this,e)};U.prototype.equal=function(e){return this.throwIfDisposed(),ia(this,e)};U.prototype.erf=function(){return this.throwIfDisposed(),Wf(this)};U.prototype.exp=function(){return this.throwIfDisposed(),Gn(this)};U.prototype.expandDims=function(e){return this.throwIfDisposed(),Hn(this,e)};U.prototype.expm1=function(){return this.throwIfDisposed(),Bf(this)};U.prototype.fft=function(){return this.throwIfDisposed(),lc(this)};U.prototype.flatten=function(){return this.throwIfDisposed(),K(this,[this.size])};U.prototype.floor=function(){return this.throwIfDisposed(),ml(this)};U.prototype.floorDiv=function(e){return this.throwIfDisposed(),wd(this,e)};U.prototype.gather=function(e,t){return this.throwIfDisposed(),hi(this,e,t)};U.prototype.greaterEqualStrict=function(e){return this.throwIfDisposed(),U5(this,e)};U.prototype.greaterEqual=function(e){return this.throwIfDisposed(),oa(this,e)};U.prototype.greaterStrict=function(e){return this.throwIfDisposed(),j5(this,e)};U.prototype.greater=function(e){return this.throwIfDisposed(),qn(this,e)};U.prototype.ifft=function(){return this.throwIfDisposed(),xl(this)};U.prototype.irfft=function(){return this.throwIfDisposed(),Ud(this)};U.prototype.isFinite=function(){return this.throwIfDisposed(),N5(this)};U.prototype.isInf=function(){return this.throwIfDisposed(),I5(this)};U.prototype.isNaN=function(){return this.throwIfDisposed(),S5(this)};U.prototype.leakyRelu=function(e){return this.throwIfDisposed(),Qu(this,e)};U.prototype.lessEqualStrict=function(e){return this.throwIfDisposed(),G5(this,e)};U.prototype.lessEqual=function(e){return this.throwIfDisposed(),Ma(this,e)};U.prototype.lessStrict=function(e){return this.throwIfDisposed(),H5(this,e)};U.prototype.less=function(e){return this.throwIfDisposed(),ec(this,e)};U.prototype.localResponseNormalization=function(e,t,n,r){return this.throwIfDisposed(),Uf(this,e,t,n,r)};U.prototype.logSigmoid=function(){return this.throwIfDisposed(),C5(this)};U.prototype.logSoftmax=function(e){return this.throwIfDisposed(),Cd(this,e)};U.prototype.logSumExp=function(e,t){return this.throwIfDisposed(),Hf(this,e,t)};U.prototype.log=function(){return this.throwIfDisposed(),Tn(this)};U.prototype.log1p=function(){return this.throwIfDisposed(),Td(this)};U.prototype.logicalAnd=function(e){return this.throwIfDisposed(),rr(this,e)};U.prototype.logicalNot=function(){return this.throwIfDisposed(),tc(this)};U.prototype.logicalOr=function(e){return this.throwIfDisposed(),Rd(this,e)};U.prototype.logicalXor=function(e){return this.throwIfDisposed(),O5(this,e)};U.prototype.matMul=function(e,t,n){return this.throwIfDisposed(),He(this,e,t,n)};U.prototype.maxPool=function(e,t,n,r){return this.throwIfDisposed(),nc(this,e,t,n,r)};U.prototype.max=function(e,t){return this.throwIfDisposed(),Xn(this,e,t)};U.prototype.maximumStrict=function(e){return this.throwIfDisposed(),Z5(this,e)};U.prototype.maximum=function(e){return this.throwIfDisposed(),Ar(this,e)};U.prototype.mean=function(e,t){return this.throwIfDisposed(),vt(this,e,t)};U.prototype.min=function(e,t){return this.throwIfDisposed(),yl(this,e,t)};U.prototype.minimumStrict=function(e){return this.throwIfDisposed(),Y5(this,e)};U.prototype.minimum=function(e){return this.throwIfDisposed(),pi(this,e)};U.prototype.mirrorPad=function(e,t){return this.throwIfDisposed(),Xf(this,e,t)};U.prototype.modStrict=function(e){return this.throwIfDisposed(),J5(this,e)};U.prototype.mod=function(e){return this.throwIfDisposed(),Fd(this,e)};U.prototype.mulStrict=function(e){return this.throwIfDisposed(),Q5(this,e)};U.prototype.mul=function(e){return this.throwIfDisposed(),L(this,e)};U.prototype.neg=function(){return this.throwIfDisposed(),bt(this)};U.prototype.norm=function(e,t,n){return this.throwIfDisposed(),Hd(this,e,t,n)};U.prototype.notEqualStrict=function(e){return this.throwIfDisposed(),q5(this,e)};U.prototype.notEqual=function(e){return this.throwIfDisposed(),Oa(this,e)};U.prototype.oneHot=function(e,t=1,n=0){return this.throwIfDisposed(),ol(this,e,t,n)};U.prototype.onesLike=function(){return this.throwIfDisposed(),En(this)};U.prototype.pad=function(e,t){return this.throwIfDisposed(),la(this,e,t)};U.prototype.pool=function(e,t,n,r,a){return this.throwIfDisposed(),z5(this,e,t,n,r,a)};U.prototype.powStrict=function(e){return this.throwIfDisposed(),ex(this,e)};U.prototype.pow=function(e){return this.throwIfDisposed(),$r(this,e)};U.prototype.prelu=function(e){return this.throwIfDisposed(),ac(this,e)};U.prototype.prod=function(e,t){return this.throwIfDisposed(),Od(this,e,t)};U.prototype.reciprocal=function(){return this.throwIfDisposed(),Yf(this)};U.prototype.relu=function(){return this.throwIfDisposed(),zr(this)};U.prototype.relu6=function(){return this.throwIfDisposed(),$d(this)};U.prototype.reshapeAs=function(e){return this.throwIfDisposed(),K(this,e.shape)};U.prototype.reshape=function(e){return this.throwIfDisposed(),K(this,e)};U.prototype.resizeBilinear=function(e,t,n){return this.throwIfDisposed(),Ax(this,e,t,n)};U.prototype.resizeNearestNeighbor=function(e,t,n){return this.throwIfDisposed(),yx(this,e,t,n)};U.prototype.reverse=function(e){return this.throwIfDisposed(),Cn(this,e)};U.prototype.rfft=function(){return this.throwIfDisposed(),uc(this)};U.prototype.round=function(){return this.throwIfDisposed(),Jf(this)};U.prototype.rsqrt=function(){return this.throwIfDisposed(),zd(this)};U.prototype.selu=function(){return this.throwIfDisposed(),Pd(this)};U.prototype.separableConv2d=function(e,t,n,r,a,s){return this.throwIfDisposed(),Qf(this,e,t,n,r,a,s)};U.prototype.sigmoid=function(){return this.throwIfDisposed(),Sn(this)};U.prototype.sign=function(){return this.throwIfDisposed(),em(this)};U.prototype.sin=function(){return this.throwIfDisposed(),Ld(this)};U.prototype.sinh=function(){return this.throwIfDisposed(),Wd(this)};U.prototype.slice=function(e,t){return this.throwIfDisposed(),Ce(this,e,t)};U.prototype.softmax=function(e){return this.throwIfDisposed(),oc(this,e)};U.prototype.softplus=function(){return this.throwIfDisposed(),Al(this)};U.prototype.spaceToBatchND=function(e,t){return this.throwIfDisposed(),rc(this,e,t)};U.prototype.split=function(e,t){return this.throwIfDisposed(),Jt(this,e,t)};U.prototype.sqrt=function(){return this.throwIfDisposed(),Qt(this)};U.prototype.square=function(){return this.throwIfDisposed(),ot(this)};U.prototype.squaredDifference=function(e){return this.throwIfDisposed(),cc(this,e)};U.prototype.squaredDifferenceStrict=function(e){return this.throwIfDisposed(),tx(this,e)};U.prototype.squeeze=function(e){return this.throwIfDisposed(),Da(this,e)};U.prototype.stack=function(e,t){this.throwIfDisposed();let n=e instanceof U?[this,e]:[this,...e];return Rn(n,t)};U.prototype.step=function(e){return this.throwIfDisposed(),wl(this,e)};U.prototype.stridedSlice=function(e,t,n,r,a,s,i,o){return this.throwIfDisposed(),nm(this,e,t,n,r,a,s,i,o)};U.prototype.subStrict=function(e){return this.throwIfDisposed(),nx(this,e)};U.prototype.sub=function(e){return this.throwIfDisposed(),ye(this,e)};U.prototype.sum=function(e,t){return this.throwIfDisposed(),Se(this,e,t)};U.prototype.tan=function(){return this.throwIfDisposed(),rm(this)};U.prototype.tanh=function(){return this.throwIfDisposed(),pl(this)};U.prototype.tile=function(e){return this.throwIfDisposed(),Fa(this,e)};U.prototype.toBool=function(){return this.throwIfDisposed(),Ae(this,"bool")};U.prototype.toFloat=function(){return this.throwIfDisposed(),Ae(this,"float32")};U.prototype.toInt=function(){return this.throwIfDisposed(),Ae(this,"int32")};U.prototype.topk=function(e,t){return this.throwIfDisposed(),am(this,e,t)};U.prototype.transpose=function(e){return this.throwIfDisposed(),nt(this,e)};U.prototype.unique=function(e){return this.throwIfDisposed(),Gd(this,e)};U.prototype.unsortedSegmentSum=function(e,t){return this.throwIfDisposed(),sm(this,e,t)};U.prototype.unstack=function(e){return this.throwIfDisposed(),ar(this,e)};U.prototype.where=function(e,t){return this.throwIfDisposed(),gn(e,this,t)};U.prototype.zerosLike=function(){return this.throwIfDisposed(),je(this)};function be(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&k.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the CPU backend.`)})}var eO=Pr.whereImpl,Rx=class extends Au{constructor(){super();this.blockSize=48,this.firstUse=!0,this.data=new Th(this,jn())}write(e,t,n){this.firstUse&&(this.firstUse=!1,Q().get("IS_NODE")&&R.warn(`
|
|
============================
|
|
Hi there \u{1F44B}. Looks like you are running TensorFlow.js in Node.js. To speed things up dramatically, install our node backend, which binds to TensorFlow C++, by running npm i @tensorflow/tfjs-node, or npm i @tensorflow/tfjs-node-gpu if you have CUDA. Then call require('@tensorflow/tfjs-node'); (-gpu suffix for CUDA) at the start of your program. Visit https://github.com/tensorflow/tfjs-node for more details.
|
|
============================`));let r={};return this.data.set(r,{values:e,dtype:n,refCount:1}),r}makeTensorInfo(e,t,n){let r;if(t==="string"&&n!=null&&n.length>0&&k.isString(n[0])){let a=n.map(s=>k.encodeString(s));r=this.write(a,e,t)}else r=this.write(n,e,t);return{dataId:r,shape:e,dtype:t}}incRef(e){let t=this.data.get(e);t.refCount++}decRef(e){if(this.data.has(e)){let t=this.data.get(e);t.refCount--}}move(e,t,n,r){this.data.set(e,{values:t,dtype:r,refCount:1})}numDataIds(){return this.data.numDataIds()}async read(e){return this.readSync(e)}readSync(e){let{dtype:t,complexTensorInfos:n}=this.data.get(e);if(t==="complex64"){let r=this.readSync(n.real.dataId),a=this.readSync(n.imag.dataId);return R.mergeRealAndImagArrays(r,a)}return this.data.get(e).values}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(r=>k.decodeString(r))}catch(r){throw new Error("Failed to decode encoded string bytes into utf-8")}return We(e.shape,e.dtype,n)}makeOutput(e,t,n){let r=this.write(e,t,n);return jn().makeTensorFromDataId(r,t,n,this)}disposeData(e){if(this.data.has(e)){let{complexTensorInfos:t}=this.data.get(e);t!=null&&(this.disposeData(t.real.dataId),this.disposeData(t.imag.dataId)),this.data.delete(e)}}disposeIntermediateTensorInfo(e){let t=e.dataId;if(this.data.has(t)){let n=this.data.get(t);n.refCount--,n.refCount<1&&this.disposeData(t)}}async time(e){let t=k.now();return e(),{kernelMs:k.now()-t}}memory(){return{unreliable:!0,reasons:["The reported memory is an upper bound. Due to automatic garbage collection, the true allocated memory may be less."]}}where(e){be([e],"where");let t=this.readSync(e.dataId);return eO(e.shape,t)}dispose(){}floatPrecision(){return 32}epsilon(){return super.epsilon()}},dm={};$e(dm,{addImpl:()=>Mx,bincountImpl:()=>pm,bincountReduceImpl:()=>Ox,ceilImpl:()=>Dx,concatImpl:()=>fm,expImpl:()=>$x,expm1Impl:()=>zx,floorImpl:()=>Px,gatherV2Impl:()=>Lx,greaterImpl:()=>Wx,lessImpl:()=>Bx,linSpaceImpl:()=>Vx,logImpl:()=>Ux,maxImpl:()=>jx,maximumImpl:()=>Gx,minimumImpl:()=>Hx,multiplyImpl:()=>mm,negImpl:()=>qx,notEqualImpl:()=>Xx,prodImpl:()=>Kx,rangeImpl:()=>ym,rsqrtImpl:()=>Zx,simpleAbsImpl:()=>Fx,sliceImpl:()=>ap,squaredDifferenceImpl:()=>Yx,stridedSliceImpl:()=>Jx,subImpl:()=>Qx,tileImpl:()=>ew,topKImpl:()=>tw,transposeImpl:()=>Am,uniqueImpl:()=>nw});function Fx(e){let t=new Float32Array(e.length);for(let n=0;n<e.length;++n)t[n]=Math.abs(e[n]);return t}var tO=e=>{let{x:t}=e.inputs,n=e.backend;be(t,"abs");let r=new Float32Array(k.sizeFromShape(t.shape)),a=n.data.get(t.dataId).values;return r=Fx(a),n.makeOutput(r,t.shape,"float32")},nO={kernelName:Ji,backendName:"cpu",kernelFunc:tO};function Ft(e){return(t,n,r,a,s)=>{let i=R.assertAndGetBroadcastShape(t,n),o=i.length,l=k.computeStrides(i),u=k.sizeFromShape(i),c=k.getTypedArrayFromDType(s,u),h=t.length,d=n.length,p=k.computeStrides(t),f=k.computeStrides(n),m=R.getBroadcastDims(t,i),A=R.getBroadcastDims(n,i);if(m.length+A.length===0)for(let y=0;y<c.length;++y)c[y]=e(r[y%r.length],a[y%a.length]);else for(let y=0;y<c.length;++y){let g=k.indexToLoc(y,o,l),_=g.slice(-h);m.forEach(I=>_[I]=0);let b=k.locToIndex(_,h,p),x=g.slice(-d);A.forEach(I=>x[I]=0);let w=k.locToIndex(x,d,f);c[y]=e(r[b],a[w])}return[c,i]}}function Fn(e){let{inputs:t,backend:n}=e,{real:r,imag:a}=t,s=n.data.get(r.dataId).values,i=n.data.get(a.dataId).values,o=n.makeTensorInfo(r.shape,"complex64"),l=n.data.get(o.dataId);return l.complexTensorInfos={real:n.makeTensorInfo(r.shape,"float32",s),imag:n.makeTensorInfo(a.shape,"float32",i)},o}var rO={kernelName:zh,backendName:"cpu",kernelFunc:Fn};function sp(e,t,n="float32"){if(n==="complex64"){let a=sp(e,t,"float32"),s=sp(e,t,"float32");return Fn({inputs:{real:a,imag:s},backend:e})}let r=k.makeZerosTypedArray(k.sizeFromShape(t),n);return e.makeTensorInfo(t,n,r)}function Lr(e){let{inputs:t,backend:n}=e,{x:r}=t;return n.incRef(r.dataId),{dataId:r.dataId,shape:r.shape,dtype:r.dtype}}var aO={kernelName:_o,backendName:"cpu",kernelFunc:Lr};function Ai(e){let{inputs:t,backend:n}=e,{input:r}=t,a=n.data.get(r.dataId).complexTensorInfos.real,s=n.data.get(a.dataId).values;return n.makeTensorInfo(a.shape,a.dtype,s)}var sO={kernelName:rd,backendName:"cpu",kernelFunc:Ai};function za(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{dtype:s}=r;if(s==="complex64"){if(a.dtype==="complex64")return Lr({inputs:{x:a},backend:n});let i=sp(n,a.shape,a.dtype),o=za({inputs:{x:a},backend:n,attrs:{dtype:"float32"}}),l=Fn({inputs:{real:o,imag:i},backend:n});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}if(a.dtype==="complex64"){let i=Ai({inputs:{input:a},backend:n}),o=za({inputs:{x:i},backend:n,attrs:{dtype:s}});return n.disposeIntermediateTensorInfo(i),o}if(!k.hasEncodingLoss(a.dtype,s)){let i=Lr({inputs:{x:a},backend:n});return{dataId:i.dataId,shape:i.shape,dtype:s}}if(s==="int32"){let i=n.data.get(a.dataId).values,o=Int32Array.from(i);return n.makeTensorInfo(a.shape,"int32",o)}if(s==="bool"){let i=n.data.get(a.dataId).values,o=k.toTypedArray([0],a.dtype),[l,u]=Ft((c,h)=>c!==h?1:0)(a.shape,[],i,o,"bool");return n.makeTensorInfo(u,"bool",l)}throw new Error(`Error in Cast: failed to cast ${a.dtype} to ${s}`)}var iO={kernelName:ps,backendName:"cpu",kernelFunc:za};function Gt(e,t,n,r){return n==null?({inputs:a,backend:s})=>{let{a:i,b:o}=a,l=s;be([i,o],e);let u=l.data.get(i.dataId).values,c=l.data.get(o.dataId).values,h=r||i.dtype,[d,p]=t(i.shape,o.shape,u,c,h);return l.makeTensorInfo(p,h,d)}:({inputs:a,backend:s})=>{let{a:i,b:o}=a,l=s;if(i.dtype==="complex64"||o.dtype==="complex64"){let u=za({inputs:{x:i},backend:l,attrs:{dtype:"complex64"}}),c=l.data.get(u.dataId),h=c.complexTensorInfos.real,d=c.complexTensorInfos.imag,p=l.data.get(h.dataId).values,f=l.data.get(d.dataId).values,m=za({inputs:{x:o},backend:l,attrs:{dtype:"complex64"}}),A=l.data.get(m.dataId),y=A.complexTensorInfos.real,g=A.complexTensorInfos.imag,_=l.data.get(y.dataId).values,b=l.data.get(g.dataId).values,[x,w,I]=n(i.shape,o.shape,p,f,_,b),T=l.makeTensorInfo(I,"float32",x),E=l.makeTensorInfo(I,"float32",w),M=Fn({inputs:{real:T,imag:E},backend:l});return l.disposeIntermediateTensorInfo(u),l.disposeIntermediateTensorInfo(m),l.disposeIntermediateTensorInfo(T),l.disposeIntermediateTensorInfo(E),M}else{let u=l.data.get(i.dataId).values,c=l.data.get(o.dataId).values,h=r||i.dtype,[d,p]=t(i.shape,o.shape,u,c,h);return l.makeTensorInfo(p,h,d)}}}function gm(e){return(t,n,r,a,s,i)=>{let o=R.assertAndGetBroadcastShape(t,n),l=k.sizeFromShape(o),u=o.length,c=k.computeStrides(o),h=k.getTypedArrayFromDType("float32",l),d=k.getTypedArrayFromDType("float32",l),p=R.getBroadcastDims(t,o),f=R.getBroadcastDims(n,o),m=R.mergeRealAndImagArrays(r,a),A=R.mergeRealAndImagArrays(s,i),y=t.length,g=k.computeStrides(t),_=n.length,b=k.computeStrides(n);if(p.length+f.length===0)for(let x=0;x<h.length;x++){let w=x%m.length,I=x%A.length,T=e(m[w*2],m[w*2+1],A[I*2],A[I*2+1]);h[x]=T.real,d[x]=T.imag}else for(let x=0;x<h.length;x++){let w=k.indexToLoc(x,u,c),I=w.slice(-y);p.forEach(P=>I[P]=0);let T=k.locToIndex(I,y,g),E=w.slice(-_);f.forEach(P=>E[P]=0);let M=k.locToIndex(E,_,b),z=e(m[T*2],m[T*2+1],A[M*2],A[M*2+1]);h[x]=z.real,d[x]=z.imag}return[h,d,o]}}var Mx=Ft((e,t)=>e+t),oO=gm((e,t,n,r)=>({real:e+n,imag:t+r})),dc=Gt(ka,Mx,oO),lO={kernelName:ka,backendName:"cpu",kernelFunc:dc};function pm(e,t,n,r,a){let s=k.sizeFromShape(r),i=k.makeZerosTypedArray(a,n);for(let o=0;o<e.length;o++){let l=e[o];if(l<0)throw new Error("Input x must be non-negative!");l>=a||(s>0?i[l]+=t[o]:i[l]+=1)}return i}function Ox(e,t,n,r=!1){let a=e.shape[0],s=e.shape[1],i=We([a,n],t.dtype);for(let o=0;o<a;o++)for(let l=0;l<s;l++){let u=e.get(o,l);if(u<0)throw new Error("Input x must be non-negative!");u>=n||(r?i.set(1,o,u):t.size>0?i.set(i.get(o,u)+t.get(o,l),o,u):i.set(i.get(o,u)+1,o,u))}return i}function bl(e){return(t,n,r)=>{let a=k.getTypedArrayFromDType(n,t.length);for(let s=0;s<t.length;++s)a[s]=e(t[s],r);return a}}function st(e,t,n){return({inputs:r,attrs:a,backend:s})=>{let{x:i}=r;if(be(i,e),i.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let o=s,l=o.data.get(i.dataId).values,u=k.sizeFromShape(i.shape),c=n||i.dtype,h=k.getArrayFromDType(c,u);for(let d=0;d<u;++d)h[d]=t(l[d],a);return o.makeTensorInfo(i.shape,c,h)}}function vl(e,t,n){return({inputs:r,attrs:a,backend:s})=>{let{x:i}=r;if(be(i,e),i.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let o=s,l=o.data.get(i.dataId).values,u=n||i.dtype,c=t(l,u,a);return o.makeTensorInfo(i.shape,u,c)}}var Dx=bl(e=>Math.ceil(e)),uO=vl(io,Dx),cO={kernelName:io,backendName:"cpu",kernelFunc:uO};function fm(e,t,n,r){let a=k.getArrayFromDType(n,k.sizeFromShape(t));if(r&&n!=="string"){let s=0;e.forEach(i=>{let o=k.sizeFromShape(i.shape);a.set(i.vals,s),s+=o})}else{let s=0;e.forEach(i=>{let o=n==="string"?R.fromUint8ToStringArray(i.vals):i.vals,l=0;for(let u=0;u<i.shape[0];++u){let c=u*t[1]+s;for(let h=0;h<i.shape[1];++h)a[c+h]=o[l++]}s+=i.shape[1]})}return a}var $x=bl(e=>Math.exp(e)),rw=vl(ws,$x),hO={kernelName:ws,backendName:"cpu",kernelFunc:rw},zx=bl(e=>Math.expm1(e)),dO=vl(Ao,zx),pO={kernelName:Ao,backendName:"cpu",kernelFunc:dO},Px=bl(e=>Math.floor(e)),fO=vl(_s,Px),mO={kernelName:_s,backendName:"cpu",kernelFunc:fO};function Lx(e,t,n){let r=We(n,e.dtype);for(let a=0;a<r.size;++a){let s=r.indexToLoc(a).slice(),i=s[0],o=s[2],l=t.locToIndex([i,o]);s[2]=t.values[l];let u=e.locToIndex(s);r.values[a]=e.values[u]}return r}var Wx=Ft((e,t)=>e>t?1:0),AO=Gt(wo,Wx,null,"bool"),yO={kernelName:wo,backendName:"cpu",kernelFunc:AO},Bx=Ft((e,t)=>e<t?1:0),gO=Gt(No,Bx,null,"bool"),xO={kernelName:No,backendName:"cpu",kernelFunc:gO};function Vx(e,t,n){let r=(t-e)/(n-1),a=k.makeZerosTypedArray(n,"float32");a[0]=e;for(let s=1;s<a.length;s++)a[s]=a[s-1]+r;return a}var Ux=bl(e=>Math.log(e)),wO=vl(Is,Ux),_O={kernelName:Is,backendName:"cpu",kernelFunc:wO};function jx(e,t,n,r){let a=k.getTypedArrayFromDType(r,k.sizeFromShape(n));for(let s=0;s<a.length;++s){let i=s*t,o=e[i];for(let l=0;l<t;++l){let u=e[i+l];u>o&&(o=u)}a[s]=o}return a}var Gx=Ft((e,t)=>Math.max(e,t)),bO=Gt(Ts,Gx),vO={kernelName:Ts,backendName:"cpu",kernelFunc:bO},Hx=Ft((e,t)=>Math.min(e,t)),kO=Gt(Fs,Hx),NO={kernelName:Fs,backendName:"cpu",kernelFunc:kO},mm=Ft((e,t)=>e*t),IO=gm((e,t,n,r)=>({real:e*n-t*r,imag:e*r+t*n})),xm=Gt(Ms,mm,IO),SO={kernelName:Ms,backendName:"cpu",kernelFunc:xm};function qx(e,t,n){let r=k.createScalarValue(-1,n);return mm([],t,r,e,n)}function TO(e){let{inputs:t,backend:n}=e,{x:r}=t;be(r,"neg");let a=n.data.get(r.dataId).values,[s,i]=qx(a,r.shape,r.dtype);return n.makeTensorInfo(i,r.dtype,s)}var EO={kernelName:Co,backendName:"cpu",kernelFunc:TO},Xx=Ft((e,t)=>e!==t?1:0),CO=Gt(Ro,Xx,null,"bool"),RO={kernelName:Ro,backendName:"cpu",kernelFunc:CO};function Am(e,t,n,r,a){let s=t.length,i=k.sizeFromShape(t),o=k.computeStrides(t),l=k.computeStrides(a),u=k.getTypedArrayFromDType(n,k.sizeFromShape(a));for(let c=0;c<i;++c){let h=k.indexToLoc(c,s,o),d=new Array(h.length);for(let f=0;f<d.length;f++)d[f]=h[r[f]];let p=k.locToIndex(d,s,l);u[p]=e[c]}return u}function sr(e){let{inputs:t,attrs:n,backend:r}=e,{x:a}=t,{perm:s}=n;be(a,"transpose");let i=a.shape.length,o=new Array(i);for(let c=0;c<o.length;c++)o[c]=a.shape[s[c]];let l=r.data.get(a.dataId).values,u=Am(l,a.shape,a.dtype,s,o);return{dataId:r.write(u,o,a.dtype),shape:o,dtype:a.dtype}}var FO={kernelName:Js,backendName:"cpu",kernelFunc:sr};function Kx(e,t,n,r){let[a,s]=R.computeOutAndReduceShapes(e,r),i=tr(t,"int32"),o=k.makeZerosTypedArray(k.sizeFromShape(a),i),l=k.sizeFromShape(s);for(let u=0;u<o.length;++u){let c=u*l,h=1;for(let d=0;d<l;++d)h*=n[c+d];o[u]=h}return{outVals:o,outShape:a,outDtype:i}}function MO(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r;be(a,"prod");let o=a.shape.length,l=k.parseAxisParam(s,a.shape),u=R.getAxesPermutation(l,o),c=l,h=a,d=[];u!=null&&(h=sr({inputs:{x:a},backend:n,attrs:{perm:u}}),d.push(h),c=R.getInnerMostAxes(c.length,o));let p=n.data.get(h.dataId).values,{outVals:f,outShape:m,outDtype:A}=Kx(h.shape,h.dtype,p,c),y=m;return i&&(y=R.expandShapeToKeepDim(m,l)),d.forEach(g=>n.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(y,A,f)}var OO={kernelName:zo,backendName:"cpu",kernelFunc:MO};function ym(e,t,n,r){let a=e===t,s=e<t&&n<0,i=t<e&&n>1;if(a||s||i)return k.makeZerosTypedArray(0,r);let o=Math.abs(Math.ceil((t-e)/n)),l=k.makeZerosTypedArray(o,r);t<e&&n===1&&(n=-1),l[0]=e;for(let u=1;u<l.length;u++)l[u]=l[u-1]+n;return l}var Zx=bl(e=>1/Math.sqrt(e)),DO=vl(Us,Zx),$O={kernelName:Us,backendName:"cpu",kernelFunc:DO};function ap(e,t,n,r,a){let s=ln.isSliceContinous(r,t,n),i=k.sizeFromShape(n),o=k.computeStrides(r);if(s){let h=ln.computeFlatOffset(t,o);return a==="string"?e.slice(h,h+i):e.subarray(h,h+i)}let l=a==="string"?R.fromUint8ToStringArray(e):e,u=We(r,a,l),c=We(n,a);for(let h=0;h<c.size;++h){let d=c.indexToLoc(h),p=d.map((f,m)=>f+t[m]);c.set(u.get(...p),...d)}return a==="string"?R.fromStringArrayToUint8(c.values):c.values}function yi(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{begin:s,size:i}=r;be(a,"slice");let[o,l]=ln.parseSliceParams(a,s,i);ln.assertParamsValid(a,o,l);let u=n.data.get(a.dataId).values,c=ap(u,o,l,a.shape,a.dtype);return n.makeTensorInfo(l,a.dtype,c)}var zO={kernelName:Uo,backendName:"cpu",kernelFunc:yi},Yx=Ft((e,t)=>{let n=e-t;return n*n}),PO=Gt(Ks,Yx),LO={kernelName:Ks,backendName:"cpu",kernelFunc:PO};function Jx(e,t,n,r){let a=We(e,t.dtype);for(let s=0;s<a.size;s++){let i=a.indexToLoc(s),o=new Array(i.length);for(let l=0;l<o.length;l++)o[l]=i[l]*n[l]+r[l];a.set(t.get(...o),...i)}return a}var Qx=Ft((e,t)=>e-t),WO=gm((e,t,n,r)=>({real:e-n,imag:t-r})),wm=Gt(Zs,Qx,WO),BO={kernelName:Zs,backendName:"cpu",kernelFunc:wm};function ew(e,t){let n=new Array(e.rank);for(let a=0;a<n.length;a++)n[a]=e.shape[a]*t[a];let r=We(n,e.dtype);for(let a=0;a<r.values.length;++a){let s=r.indexToLoc(a),i=new Array(e.rank);for(let l=0;l<i.length;l++)i[l]=s[l]%e.shape[l];let o=e.locToIndex(i);r.values[a]=e.values[o]}return r}function tw(e,t,n,r,a){let s=t[t.length-1],[i,o]=[e.length/s,s],l=k.getTypedArrayFromDType(n,i*r),u=k.getTypedArrayFromDType("int32",i*r);for(let h=0;h<i;h++){let d=h*o,p=e.subarray(d,d+o),f=[];for(let g=0;g<p.length;g++)f.push({value:p[g],index:g});f.sort((g,_)=>_.value-g.value);let m=h*r,A=l.subarray(m,m+r),y=u.subarray(m,m+r);for(let g=0;g<r;g++)A[g]=f[g].value,y[g]=f[g].index}let c=t.slice();return c[c.length-1]=r,[We(c,n,l),We(c,"int32",u)]}function nw(e,t,n,r){let a=k.parseAxisParam(t,n)[0],s=[1,n[0],1];for(let f=0;f<a;f++)s[0]*=n[f];s[1]=n[a];for(let f=a+1;f<n.length;f++)s[2]*=n[f];let i={},o=new Int32Array(n[a]),l=new Dt(s,r,e),u=[],c=s[0]===1&&s[2]===1;for(let f=0;f<n[a];f++){let m;if(c)m=e[f].toString();else{let A=[];for(let y=0;y<s[0];y++)for(let g=0;g<s[2];g++)A.push(l.get(y,f,g));m=A.join(",")}if(i[m]!==void 0)o[f]=i[m];else{let A=Object.keys(i).length;i[m]=A,o[f]=A,u.push(f)}}let h=s.slice();h[1]=Object.keys(i).length;let d=new Dt(h,r);u.forEach((f,m)=>{for(let A=0;A<s[0];A++)for(let y=0;y<s[2];y++)d.set(l.get(A,f,y),A,m,y)});let p=n.slice();return p[a]=h[1],{outputValues:d.values,outputShape:p,indices:o}}var aw="2.8.3";cl("cpu",()=>new Rx,1);var sw=st(ho,e=>e>=0?e:Math.exp(e)-1),VO={kernelName:ho,backendName:"cpu",kernelFunc:sw};function iw(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{alpha:s}=r;be([a],"leakyRelu");let i=k.sizeFromShape(a.shape),o=n.data.get(a.dataId).values,l=k.getTypedArrayFromDType("float32",i);for(let u=0;u<o.length;u++)l[u]=o[u]<0?s*o[u]:o[u];return n.makeTensorInfo(a.shape,"float32",l)}var UO={kernelName:Ns,backendName:"cpu",kernelFunc:iw},jO=Ft((e,t)=>e<0?t*e:e);function ow(e){let{inputs:t,backend:n}=e,{x:r,alpha:a}=t;be([r,a],"prelu");let s=n.data.get(r.dataId).values,i=n.data.get(a.dataId).values,[o,l]=jO(r.shape,a.shape,s,i,r.dtype);return n.makeTensorInfo(l,r.dtype,o)}var GO={kernelName:zs,backendName:"cpu",kernelFunc:ow},lw=st(Ps,e=>Math.max(0,e)),HO={kernelName:Ps,backendName:"cpu",kernelFunc:lw},uw=st(Ws,e=>Math.min(Math.max(0,e),6)),qO={kernelName:Ws,backendName:"cpu",kernelFunc:uw};function _m(e,t,n,r,a){if(n==="linear")return Lr({inputs:{x:t},backend:e});if(n==="relu")return lw({inputs:{x:t},backend:e});if(n==="elu")return sw({inputs:{x:t},backend:e});if(n==="relu6")return uw({inputs:{x:t},backend:e});if(n==="prelu")return ow({inputs:{x:t,alpha:r},backend:e});if(n==="leakyrelu")return iw({inputs:{x:t},backend:e,attrs:{alpha:a}});throw new Error(`Activation ${n} has not been implemented for the CPU backend.`)}function yt(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{shape:s}=r,i=k.sizeFromShape(a.shape),o=k.inferFromImplicitShape(s,i),l=k.sizeFromShape(o);k.assert(i===l,()=>`The new shape (${o}) has ${l} elements and the old shape (${a.shape}) has ${i} elements. The new shape and old shape must have the same number of elements.`),n.incRef(a.dataId);let u=n.data.get(a.dataId);if(u.complexTensorInfos!=null){let c=u.complexTensorInfos.real,h=u.complexTensorInfos.imag;c.shape=o,h.shape=o}return{dataId:a.dataId,shape:o,dtype:a.dtype}}var XO={kernelName:Lo,backendName:"cpu",kernelFunc:yt};function cw(e){let{inputs:t,backend:n,attrs:r}=e,{a,b:s}=t,{transposeA:i,transposeB:o}=r;be([a,s],"matMul");let l=a.shape.length,u=s.shape.length,c=i?a.shape[l-2]:a.shape[l-1],h=o?s.shape[u-1]:s.shape[u-2],d=i?a.shape[l-1]:a.shape[l-2],p=o?s.shape[u-2]:s.shape[u-1],f=a.shape.slice(0,-2),m=s.shape.slice(0,-2),A=k.sizeFromShape(f),y=k.sizeFromShape(m),g=A===y||A===1||y===1;k.assert(l>=2&&u>=2&&g,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${f}) and (${m}).`);let _=(A>y?a.shape.slice(0,-2):s.shape.slice(0,-2)).concat([d,p]);k.assert(c===h,()=>`Error in matMul: inner shapes (${c}) and (${h}) of Tensors with shapes ${a.shape} and ${s.shape} and transposeA=${i} and transposeB=${o} must match.`);let b=i?[A,c,d]:[A,d,c],x=o?[y,p,h]:[y,h,p],w=yt({inputs:{x:a},backend:n,attrs:{shape:b}}),I=yt({inputs:{x:s},backend:n,attrs:{shape:x}}),T=i?w.shape[1]:w.shape[2],E=i?w.shape[2]:w.shape[1],M=o?I.shape[1]:I.shape[2],z=Math.max(A,y),P=n.data.get(w.dataId).values,B=n.data.get(I.dataId).values,q=k.computeStrides(w.shape),H=k.computeStrides(I.shape),[X,Z,ee]=i?[q[0],1,q[1]]:[q[0],q[1],1],[J,se,re]=o?[1,H[1],H[0]]:[H[1],1,H[0]],ne=E*M,ie=We([z,E,M],w.dtype),he=ie.values,ce=n.blockSize;for(let pe=0;pe<z;pe++)for(let me=0;me<E;me+=ce)for(let ve=0;ve<M;ve+=ce)for(let Ie=0;Ie<T;Ie+=ce){let Ee=Math.min(me+ce,E),De=Math.min(ve+ce,M),Ze=Math.min(Ie+ce,T);for(let Je=me;Je<Ee;Je++)for(let Ve=ve;Ve<De;Ve++){let lt=0;for(let Ue=Ie;Ue<Ze;Ue++){let ut=Math.min(pe,A-1)*X,ft=Math.min(pe,y-1)*re,kn=P[ut+Je*Z+Ue*ee],Nt=B[Ue*J+Ve*se+ft];lt+=kn*Nt}he[pe*ne+(Je*M+Ve)]+=lt}}return n.disposeIntermediateTensorInfo(w),n.disposeIntermediateTensorInfo(I),n.makeTensorInfo(_,ie.dtype,ie.values)}var KO={kernelName:ds,backendName:"cpu",kernelFunc:cw};function ZO(e){let{inputs:t,backend:n,attrs:r}=e,{a,b:s,bias:i,preluActivationWeights:o}=t,{transposeA:l,transposeB:u,activation:c,leakyreluAlpha:h}=r,d,p,f,m=[];d=cw({inputs:{a,b:s},attrs:{transposeA:l,transposeB:u},backend:n}),i&&(p=dc({inputs:{a:d,b:i},backend:n}),m.push(d),d=p),c&&(f=_m(n,d,c,o,h),m.push(d),d=f);for(let A of m)n.disposeIntermediateTensorInfo(A);return d}var YO={kernelName:Qs,backendName:"cpu",kernelFunc:ZO},JO=st(Qi,e=>Math.acos(e)),QO={kernelName:Qi,backendName:"cpu",kernelFunc:JO},eD=st(eo,e=>Math.acosh(e)),tD={kernelName:eo,backendName:"cpu",kernelFunc:eD};function nD(e){let{inputs:t,backend:n}=e,r=t;be(t,"addN");let a=r.map(o=>n.data.get(o.dataId).values),s=We(r[0].shape,r[0].dtype),i=s.values;for(let o=0;o<r.length;o++){let l=a[o];for(let u=0;u<i.length;u++)i[u]+=l[u]}return n.makeTensorInfo(s.shape,s.dtype,s.values)}var rD={kernelName:us,backendName:"cpu",kernelFunc:nD};function aD(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r;be(a,"all");let o=k.parseAxisParam(s,a.shape),l=o,u=R.getAxesPermutation(l,a.shape.length),c=a;u!=null&&(c=sr({inputs:{x:a},backend:n,attrs:{perm:u}}),l=R.getInnerMostAxes(l.length,a.shape.length)),R.assertAxesAreInnerMostDims("all",l,c.shape.length);let[h,d]=R.computeOutAndReduceShapes(c.shape,l),p=k.sizeFromShape(d),f=k.makeZerosTypedArray(k.sizeFromShape(h),c.dtype),m=n.data.get(c.dataId).values;for(let y=0;y<f.length;++y){let g=y*p,_=m[g];for(let b=0;b<p;++b){let x=m[g+b];_=_&&x}f[y]=_}u!=null&&n.disposeIntermediateTensorInfo(c);let A=n.makeTensorInfo(h,c.dtype,f);if(i){let y=R.expandShapeToKeepDim(h,o),g=yt({inputs:{x:A},backend:n,attrs:{shape:y}});return n.disposeIntermediateTensorInfo(A),g}return A}var sD={kernelName:Fh,backendName:"cpu",kernelFunc:aD};function iD(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r;be(a,"any");let o=k.parseAxisParam(s,a.shape),l=o,u=R.getAxesPermutation(l,a.shape.length),c=a;u!=null&&(c=sr({inputs:{x:a},backend:n,attrs:{perm:u}}),l=R.getInnerMostAxes(l.length,a.shape.length)),R.assertAxesAreInnerMostDims("any",l,c.shape.length);let[h,d]=R.computeOutAndReduceShapes(c.shape,l),p=k.sizeFromShape(d),f=k.makeZerosTypedArray(k.sizeFromShape(h),c.dtype),m=n.data.get(c.dataId).values;for(let y=0;y<f.length;++y){let g=y*p,_=m[g];for(let b=0;b<p;++b){let x=m[g+b];_=_||x}f[y]=_}u!=null&&n.disposeIntermediateTensorInfo(c);let A=n.makeTensorInfo(h,c.dtype,f);if(i){let y=R.expandShapeToKeepDim(h,o),g=yt({inputs:{x:A},backend:n,attrs:{shape:y}});return n.disposeIntermediateTensorInfo(A),g}return A}var oD={kernelName:Mh,backendName:"cpu",kernelFunc:iD};function lD(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s}=r;be(a,"argMax");let i=k.parseAxisParam(s,a.shape),o=R.getAxesPermutation(i,a.shape.length),l=a,u=[];o!=null&&(l=sr({inputs:{x:a},backend:n,attrs:{perm:o}}),u.push(l),i=R.getInnerMostAxes(i.length,l.shape.length)),i=[i[0]],R.assertAxesAreInnerMostDims("argMax",i,l.shape.length);let[c,h]=R.computeOutAndReduceShapes(l.shape,i),d=k.sizeFromShape(c),p=k.makeZerosTypedArray(d,"int32"),f=k.sizeFromShape(h),m=n.data.get(l.dataId).values;for(let A=0;A<p.length;++A){let y=A*f,g=m[y],_=0;for(let b=0;b<f;++b){let x=m[y+b];x>g&&(g=x,_=b)}p[A]=_}return u.forEach(A=>n.disposeIntermediateTensorInfo(A)),n.makeTensorInfo(c,"int32",p)}var uD={kernelName:cs,backendName:"cpu",kernelFunc:lD};function cD(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s}=r;be(a,"argMin");let i=k.parseAxisParam(s,a.shape),o=R.getAxesPermutation(i,a.shape.length),l=a,u=[];o!=null&&(l=sr({inputs:{x:a},backend:n,attrs:{perm:o}}),u.push(l),i=R.getInnerMostAxes(i.length,l.shape.length)),i=[i[0]],R.assertAxesAreInnerMostDims("argMin",i,l.shape.length);let[c,h]=R.computeOutAndReduceShapes(l.shape,i),d=k.sizeFromShape(c),p=k.makeZerosTypedArray(d,"int32"),f=k.sizeFromShape(h),m=n.data.get(l.dataId).values;for(let A=0;A<p.length;++A){let y=A*f,g=m[y],_=0;for(let b=0;b<f;++b){let x=m[y+b];x<g&&(g=x,_=b)}p[A]=_}return u.forEach(A=>n.disposeIntermediateTensorInfo(A)),n.makeTensorInfo(c,"int32",p)}var hD={kernelName:xu,backendName:"cpu",kernelFunc:cD},dD=st(to,e=>Math.asin(e)),pD={kernelName:to,backendName:"cpu",kernelFunc:dD},fD=st(no,e=>Math.asinh(e)),mD={kernelName:no,backendName:"cpu",kernelFunc:fD},AD=st(ro,e=>Math.atan(e)),yD={kernelName:ro,backendName:"cpu",kernelFunc:AD},gD=Ft((e,t)=>Math.atan2(e,t)),xD=Gt(so,gD),wD={kernelName:so,backendName:"cpu",kernelFunc:xD},_D=st(ao,e=>Math.atanh(e)),bD={kernelName:ao,backendName:"cpu",kernelFunc:_D};function bm(e,t,n,r,a,s){let i=a.strideHeight,o=a.strideWidth,l=a.dilationHeight,u=a.dilationWidth,c=a.effectiveFilterHeight,h=a.effectiveFilterWidth,d=a.padInfo.top,p=a.padInfo.left,f=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,m=We(a.outShape,n),A=m.values,y=a.outShape[1]*a.outShape[2]*a.outShape[3],g=a.outShape[2]*a.outShape[3],_=a.outShape[3];for(let b=0;b<a.batchSize;++b){let x=b*y,w=b*r[0];for(let I=0;I<a.inChannels;++I)for(let T=0;T<a.outHeight;++T){let E=T*i-d,M=Math.max(0,E),z=Math.min(a.inHeight,c+E),P=x+T*g;for(let B=0;B<a.outWidth;++B){let q=B*o-p,H=Math.max(0,q),X=Math.min(a.inWidth,h+q),Z=f,ee=0,J=0;for(let re=M;re<z;re+=l){let ne=w+re*r[1];for(let ie=H;ie<X;ie+=u){let he=ne+ie*r[2],ce=e[he+I];s==="max"&&ce>Z?Z=ce:s==="avg"&&(ee+=ce,J++)}if(isNaN(Z))break}let se=P+B*_+I;A[se]=s==="avg"?ee/J:Z}}}return m}function hw(e,t,n,r,a=!1,s=!1){let i=We(r.outShape,"int32"),o=r.strideHeight,l=r.strideWidth,u=r.dilationHeight,c=r.dilationWidth,h=r.effectiveFilterHeight,d=r.effectiveFilterWidth,p=r.padInfo.top,f=r.padInfo.left,m=We(t,n,e);for(let A=0;A<r.batchSize;++A)for(let y=0;y<r.inChannels;++y)for(let g=0;g<r.outHeight;++g){let _=g*o-p,b=_;for(;b<0;)b+=u;let x=Math.min(r.inHeight,h+_);for(let w=0;w<r.outWidth;++w){let I=w*l-f,T=I;for(;T<0;)T+=c;let E=Math.min(r.inWidth,d+I),M=Number.NEGATIVE_INFINITY,z=-1;for(let P=b;P<x;P+=u){let B=P-_;for(let q=T;q<E;q+=c){let H=q-I,X=m.get(A,P,q,y);X>M&&(M=X,a?z=s?((A*r.inHeight+P)*r.inWidth+q)*r.inChannels+y:(P*r.inWidth+q)*r.inChannels+y:z=B*d+H)}}i.set(z,A,g,w,y)}}return i}function dw(e,t,n,r,a,s){let i=a.strideDepth,o=a.strideHeight,l=a.strideWidth,u=a.dilationDepth,c=a.dilationHeight,h=a.dilationWidth,d=a.effectiveFilterDepth,p=a.effectiveFilterHeight,f=a.effectiveFilterWidth,m=a.padInfo.front,A=a.padInfo.top,y=a.padInfo.left,g=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,_=We(a.outShape,n),b=_.values,x=a.outShape[1]*a.outShape[2]*a.outShape[3]*a.outShape[4],w=a.outShape[2]*a.outShape[3]*a.outShape[4],I=a.outShape[3]*a.outShape[4],T=a.outShape[4];for(let E=0;E<a.batchSize;++E){let M=E*x,z=E*r[0];for(let P=0;P<a.inChannels;++P)for(let B=0;B<a.outDepth;++B){let q=B*i-m,H=q;for(;H<0;)H+=u;let X=Math.min(a.inDepth,d+q),Z=M+B*w;for(let ee=0;ee<a.outHeight;++ee){let J=ee*o-A,se=J;for(;se<0;)se+=c;let re=Math.min(a.inHeight,p+J),ne=Z+ee*I;for(let ie=0;ie<a.outWidth;++ie){let he=ie*l-y,ce=he;for(;ce<0;)ce+=h;let pe=Math.min(a.inWidth,f+he),me=ne+ie*T,ve=g,Ie=0,Ee=0;for(let Ze=H;Ze<X;Ze+=u){let Je=z+Ze*r[1];for(let Ve=se;Ve<re;Ve+=c){let lt=Je+Ve*r[2];for(let Ue=ce;Ue<pe;Ue+=h){let ut=lt+Ue*r[3],ft=e[ut+P];if(s==="max"&&ft>ve?ve=ft:s==="avg"&&(Ie+=ft,Ee++),isNaN(ve))break}if(isNaN(ve))break}if(isNaN(ve))break}let De=me+P;b[De]=s==="avg"?Ie/Ee:ve}}}}return _}function vD(e,t){let n=We(t.outShape,"int32"),r=t.strideDepth,a=t.strideHeight,s=t.strideWidth,i=t.dilationDepth,o=t.dilationHeight,l=t.dilationWidth,u=t.effectiveFilterDepth,c=t.effectiveFilterHeight,h=t.effectiveFilterWidth,d=t.padInfo.front,p=t.padInfo.top,f=t.padInfo.left;for(let m=0;m<t.batchSize;++m)for(let A=0;A<t.inChannels;++A)for(let y=0;y<t.outDepth;++y){let g=y*r-d,_=g;for(;_<0;)_+=i;let b=Math.min(t.inDepth,u+g);for(let x=0;x<t.outHeight;++x){let w=x*a-p,I=w;for(;I<0;)I+=o;let T=Math.min(t.inHeight,c+w);for(let E=0;E<t.outWidth;++E){let M=E*s-f,z=M;for(;z<0;)z+=l;let P=Math.min(t.inWidth,h+M),B=Number.NEGATIVE_INFINITY,q=-1;for(let H=_;H<b;H+=i){let X=H-g;for(let Z=I;Z<T;Z+=o){let ee=Z-w;for(let J=z;J<P;J+=l){let se=J-M,re=e.get(m,H,Z,J,A);re>=B&&(B=re,q=X*c*h+ee*c+se)}}}n.set(q,m,y,x,E,A)}}}return n}function kD(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t;be(a,"avgPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=r,u=1;k.assert(R.eitherStridesOrDilationsAreOne(i,u),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let c=R.computePool2DInfo(a.shape,s,i,u,o,l),h;if(c.filterWidth===1&&c.filterHeight===1&&k.arraysEqual(c.inShape,c.outShape))h=Lr({inputs:{x:a},backend:n});else{let d=n.data.get(a.dataId).values,p=k.computeStrides(a.shape),f=bm(d,a.shape,a.dtype,p,c,"avg");h=n.makeTensorInfo(c.outShape,a.dtype,f.values)}return h}var ND={kernelName:hs,backendName:"cpu",kernelFunc:kD};function ID(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:u,dilations:c}=r;be(a,"avgPool3d");let h=c;h==null&&(h=[1,1,1]);let d=R.computePool3DInfo(a.shape,s,i,h,o,l,u),p=n.data.get(a.dataId).values,f=dw(p,a.shape,a.dtype,k.computeStrides(a.shape),d,"avg");return n.makeTensorInfo(f.shape,"float32",f.values)}var SD={kernelName:wu,backendName:"cpu",kernelFunc:ID};function TD(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s}=t,{filterSize:i,strides:o,pad:l,dilations:u,dimRoundingMode:c}=r;be([a,s],"avgPool3DGrad");let h=R.computePool3DInfo(s.shape,i,o,u,l,c),d=h.strideDepth,p=h.strideHeight,f=h.strideWidth,m=h.filterDepth,A=h.filterHeight,y=h.filterWidth,g=h.dilationDepth,_=h.dilationHeight,b=h.dilationWidth,x=h.effectiveFilterDepth,w=h.effectiveFilterHeight,I=h.effectiveFilterWidth,T=x-1-h.padInfo.front,E=I-1-h.padInfo.left,M=w-1-h.padInfo.top,z=We(s.shape,"float32"),P=1/(m*A*y),B=n.bufferSync(a);for(let q=0;q<h.batchSize;++q)for(let H=0;H<h.inChannels;++H)for(let X=0;X<h.inDepth;++X)for(let Z=0;Z<h.inHeight;++Z)for(let ee=0;ee<h.inWidth;++ee){let J=X-T,se=Z-M,re=ee-E,ne=0;for(let ie=0;ie<x;ie+=g){let he=(J+ie)/d;if(!(he<0||he>=h.outDepth||Math.floor(he)!==he))for(let ce=0;ce<w;ce+=_){let pe=(se+ce)/p;if(!(pe<0||pe>=h.outHeight||Math.floor(pe)!==pe))for(let me=0;me<I;me+=b){let ve=(re+me)/f;ve<0||ve>=h.outWidth||Math.floor(ve)!==ve||(ne+=B.get(q,he,pe,ve,H))}}}z.set(ne*P,q,X,Z,ee,H)}return n.makeTensorInfo(z.shape,z.dtype,z.values)}var ED={kernelName:Dh,backendName:"cpu",kernelFunc:TD};function CD(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s}=t,i=s;be([a,s],"avgPoolGrad");let{filterSize:o,strides:l,pad:u}=r,c=R.computePool2DInfo(i.shape,o,l,1,u),h=c.strideHeight,d=c.strideWidth,p=c.filterHeight,f=c.filterWidth,m=c.dilationHeight,A=c.dilationWidth,y=c.effectiveFilterHeight,g=c.effectiveFilterWidth,_=g-1-c.padInfo.left,b=y-1-c.padInfo.top,x=We(i.shape,"float32"),w=1/(p*f),I=n.data.get(a.dataId).values,T=We(a.shape,"float32",I);for(let E=0;E<c.batchSize;++E)for(let M=0;M<c.inChannels;++M)for(let z=0;z<c.inHeight;++z)for(let P=0;P<c.inWidth;++P){let B=z-b,q=P-_,H=0;for(let X=0;X<y;X+=m){let Z=(B+X)/h;if(!(Z<0||Z>=c.outHeight||Math.floor(Z)!==Z))for(let ee=0;ee<g;ee+=A){let J=(q+ee)/d;J<0||J>=c.outWidth||Math.floor(J)!==J||(H+=T.get(E,Z,J,M))}}x.set(H*w,E,z,P,M)}return n.makeTensorInfo(x.shape,x.dtype,x.values)}var RD={kernelName:Oh,backendName:"cpu",kernelFunc:CD};function FD(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,scale:s,offset:i,mean:o,variance:l}=t;k.assert(o.shape.length===l.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),k.assert(i==null||o.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),k.assert(s==null||o.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks."),be([a,o,l,s,i],"batchNorm");let{varianceEpsilon:u}=r;u==null&&(u=.001);let c=n.data.get(a.dataId).values,h=n.data.get(o.dataId).values,d=n.data.get(l.dataId).values,p=s?n.data.get(s.dataId).values:new Float32Array([1]),f=i?n.data.get(i.dataId).values:new Float32Array([0]),m=new Float32Array(c.length),A=f.length,y=p.length,g=d.length,_=h.length,b=0,x=0,w=0,I=0;for(let T=0;T<c.length;++T)m[T]=f[b++]+(c[T]-h[x++])*p[w++]/Math.sqrt(d[I++]+u),b>=A&&(b=0),x>=_&&(x=0),w>=y&&(w=0),I>=g&&(I=0);return n.makeTensorInfo(a.shape,a.dtype,m)}var MD={kernelName:vs,backendName:"cpu",kernelFunc:FD};function OD(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{blockShape:s,crops:i}=r;be([a],"batchToSpaceND");let o=s.reduce((y,g)=>y*g),l=R.getReshaped(a.shape,s,o),u=R.getPermuted(l.length,s.length),c=R.getReshapedPermuted(a.shape,s,o),h=R.getSliceBeginCoords(i,s.length),d=R.getSliceSize(c,i,s.length),p=yt({inputs:{x:a},backend:n,attrs:{shape:l}}),f=sr({inputs:{x:p},backend:n,attrs:{perm:u}}),m=yt({inputs:{x:f},backend:n,attrs:{shape:c}}),A=yi({inputs:{x:m},backend:n,attrs:{begin:h,size:d}});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(m),A}var DD={kernelName:_u,backendName:"cpu",kernelFunc:OD};function $D(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,weights:s}=t,{size:i}=r,o=n.data.get(a.dataId).values,l=n.data.get(s.dataId).values,u=pm(o,l,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,u)}var zD={kernelName:$h,backendName:"cpu",kernelFunc:$D},PD=st(Na,(e,t)=>{let n=t;return e>n.clipValueMax?n.clipValueMax:e<n.clipValueMin?n.clipValueMin:e}),LD={kernelName:Na,backendName:"cpu",kernelFunc:PD},WD=e=>{let{x:t}=e.inputs,n=e.backend,r=new Float32Array(k.sizeFromShape(t.shape)),a=n.data.get(t.dataId),s=a.complexTensorInfos.real,i=a.complexTensorInfos.imag,o=n.data.get(s.dataId).values,l=n.data.get(i.dataId).values;for(let u=0;u<o.length;u++){let c=o[u],h=l[u];r[u]=Math.hypot(c,h)}return n.makeOutput(r,t.shape,"float32")},BD={kernelName:bu,backendName:"cpu",kernelFunc:WD};function kl(e){let{inputs:t,backend:n}=e,{input:r}=t,a=n.data.get(r.dataId).complexTensorInfos.imag,s=n.data.get(a.dataId).values;return n.makeTensorInfo(a.shape,a.dtype,s)}var VD={kernelName:Zh,backendName:"cpu",kernelFunc:kl};function Nl(e){let{inputs:t,backend:n,attrs:r}=e,{axis:a}=r,s=k.parseAxisParam(a,t[0].shape)[0],i=R.computeOutShape(t.map(m=>m.shape),s);if(k.sizeFromShape(i)===0)return n.makeTensorInfo(i,t[0].dtype,[]);let o=t.filter(m=>k.sizeFromShape(m.shape)>0);if(o.length===1)return Lr({inputs:{x:o[0]},backend:n});let l=o.map(m=>m.shape);if(R.assertParamsConsistent(l,s),o[0].dtype==="complex64"){let m=o.map(b=>Ai({inputs:{input:b},backend:n})),A=o.map(b=>kl({inputs:{input:b},backend:n})),y=Nl({inputs:m,backend:n,attrs:{axis:s}}),g=Nl({inputs:A,backend:n,attrs:{axis:s}}),_=Fn({inputs:{real:y,imag:g},backend:n});return m.forEach(b=>n.disposeIntermediateTensorInfo(b)),A.forEach(b=>n.disposeIntermediateTensorInfo(b)),n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(g),_}let u=o.map(m=>{let A=k.sizeFromShape(m.shape.slice(s));return yt({inputs:{x:m},backend:n,attrs:{shape:[-1,A]}})}),c=u.map(m=>({vals:n.data.get(m.dataId).values,shape:m.shape}));i=R.computeOutShape(u.map(m=>m.shape),1);let h=u[0].shape[0]===1,d=fm(c,i,t[0].dtype,h),p=R.computeOutShape(o.map(m=>m.shape),s),f=n.makeTensorInfo(p,t[0].dtype,d);return u.forEach(m=>n.disposeIntermediateTensorInfo(m)),f}var UD={kernelName:oo,backendName:"cpu",kernelFunc:Nl};function pw(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s}=t,{strides:i,pad:o,dataFormat:l,dilations:u,dimRoundingMode:c}=r;be([a,s],"conv2d");let h=R.convertConv2DDataFormat(l),d=R.computeConv2DInfo(a.shape,s.shape,i,u,o,c,!1,h),p=d.filterHeight,f=d.filterWidth,m=d.dilationHeight,A=d.dilationWidth,y=d.padInfo.left,g=d.padInfo.top,_=d.dataFormat==="channelsLast",b=new Dt(d.outShape,a.dtype),x=k.computeStrides(a.shape),w=k.computeStrides(s.shape),I=x[0],T=_?x[1]:x[2],E=_?x[2]:1,M=_?1:x[1],z=b.strides[0],P=_?b.strides[1]:b.strides[2],B=_?b.strides[2]:1,q=_?1:b.strides[1],H=n.data.get(a.dataId).values,X=n.data.get(s.dataId).values,Z=b.values;for(let ee=0;ee<d.batchSize;++ee){let J=ee*I,se=ee*z;for(let re=0;re<d.outHeight;++re){let ne=se+re*P,ie=re*d.strideHeight-g;for(let he=0;he<p;++he){let ce=ie+he*m;if(ce<0||ce>=d.inHeight)continue;let pe=he*w[0],me=J+ce*T;for(let ve=0;ve<d.outWidth;++ve){let Ie=ne+ve*B,Ee=ve*d.strideWidth-y;for(let De=0;De<f;++De){let Ze=Ee+De*A;if(Ze<0||Ze>=d.inWidth)continue;let Je=pe+De*w[1],Ve=me+Ze*E,lt=Je;for(let Ue=0;Ue<d.inChannels;++Ue){let ut=H[Ve+Ue*M];for(let ft=0;ft<d.outChannels;++ft)Z[Ie+ft*q]+=ut*X[lt+ft];lt+=d.outChannels}}}}}}return n.makeTensorInfo(b.shape,b.dtype,Z)}var jD={kernelName:fs,backendName:"cpu",kernelFunc:pw};function GD(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,dy:s}=t,{strides:i,pad:o,dataFormat:l,dimRoundingMode:u,filterShape:c}=r;be([a,s],"conv2dBackpropFilter");let h=R.convertConv2DDataFormat(l),d=R.computeConv2DInfo(a.shape,c,i,1,o,u,!1,h),{strideHeight:p,strideWidth:f,filterHeight:m,filterWidth:A}=d,y=d.dataFormat==="channelsLast",g=new Dt(d.filterShape,"float32"),_=d.padInfo.left,b=d.padInfo.top,x=n.data.get(a.dataId).values,w=n.data.get(s.dataId).values,I=new Dt(a.shape,a.dtype,x),T=new Dt(s.shape,s.dtype,w);for(let E=0;E<m;++E){let M=Math.max(0,Math.ceil((b-E)/p)),z=Math.min(d.outHeight,(d.inHeight+b-E)/p);for(let P=0;P<A;++P){let B=Math.max(0,Math.ceil((_-P)/f)),q=Math.min(d.outWidth,(d.inWidth+_-P)/f);for(let H=0;H<d.inChannels;++H)for(let X=0;X<d.outChannels;++X){let Z=0;for(let ee=0;ee<d.batchSize;++ee)for(let J=M;J<z;++J){let se=E+J*p-b;for(let re=B;re<q;++re){let ne=P+re*f-_;y?Z+=I.get(ee,se,ne,H)*T.get(ee,J,re,X):Z+=I.get(ee,H,se,ne)*T.get(ee,X,J,re)}}g.set(Z,E,P,H,X)}}}return n.makeTensorInfo(g.shape,g.dtype,g.values)}var HD={kernelName:Ph,backendName:"cpu",kernelFunc:GD};function qD(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,filter:s}=t,{inputShape:i,strides:o,pad:l,dataFormat:u,dimRoundingMode:c}=r;be([a,s],"conv2dBackpropInput");let h=k.computeStrides(s.shape),d=k.computeStrides(a.shape),p=R.convertConv2DDataFormat(u),f=R.computeConv2DInfo(i,s.shape,o,1,l,c,!1,p),m=new Dt(f.inShape,"float32"),A=m.values,y=n.data.get(a.dataId).values,g=n.data.get(s.dataId).values,[_,b,x]=h,{batchSize:w,filterHeight:I,filterWidth:T,inChannels:E,inHeight:M,inWidth:z,outChannels:P,outHeight:B,outWidth:q,strideHeight:H,strideWidth:X}=f;p=f.dataFormat;let Z=I-1-f.padInfo.top,ee=T-1-f.padInfo.left,J=p==="channelsLast",se=m.strides[0],re=J?m.strides[1]:m.strides[2],ne=J?m.strides[2]:1,ie=J?1:m.strides[1],he=d[0],ce=J?d[1]:d[2],pe=J?d[2]:1,me=J?1:d[1];for(let ve=0;ve<w;++ve)for(let Ie=0;Ie<E;++Ie)for(let Ee=0;Ee<M;++Ee){let De=Ee-Z,Ze=Math.max(0,Math.ceil(De/H)),Je=Math.min(B,(I+De)/H);for(let Ve=0;Ve<z;++Ve){let lt=Ve-ee,Ue=Math.max(0,Math.ceil(lt/X)),ut=Math.min(q,(T+lt)/X),ft=0;for(let Nt=Ze;Nt<Je;++Nt){let wt=Nt*H-De;for(let Yt=Ue;Yt<ut;++Yt){let mn=Yt*X-lt,Jn=he*ve+ce*Nt+pe*Yt,Nn=_*(I-1-wt)+b*(T-1-mn)+x*Ie;for(let sn=0;sn<P;++sn){let Ln=y[Jn+me*sn],Kr=g[Nn+sn];ft+=Ln*Kr}}}let kn=se*ve+re*Ee+ne*Ve+ie*Ie;A[kn]=ft}}return n.makeTensorInfo(m.shape,m.dtype,m.values)}var XD={kernelName:ms,backendName:"cpu",kernelFunc:qD};function KD(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s}=t,{strides:i,pad:o,dilations:l}=r;be([a,s],"conv3d");let u=R.computeConv3DInfo(a.shape,s.shape,i,l,o),{filterDepth:c,filterHeight:h,filterWidth:d,dilationDepth:p,dilationHeight:f,dilationWidth:m,padInfo:A}=u,y=A.front,g=A.left,_=A.top,b=new Dt(u.outShape,a.dtype),x=n.data.get(a.dataId).values,w=n.data.get(s.dataId).values,I=b.values,T=k.computeStrides(a.shape),E=k.computeStrides(s.shape);for(let M=0;M<u.batchSize;++M){let z=M*T[0],P=M*b.strides[0];for(let B=0;B<u.outDepth;++B){let q=P+B*b.strides[1],H=B*u.strideDepth-y;for(let X=0;X<c;++X){let Z=H+X*p;if(Z<0||Z>=u.inDepth)continue;let ee=X*E[0],J=z+Z*T[1];for(let se=0;se<u.outHeight;++se){let re=q+se*b.strides[2],ne=se*u.strideHeight-_;for(let ie=0;ie<h;++ie){let he=ne+ie*f;if(he<0||he>=u.inHeight)continue;let ce=ee+ie*E[1],pe=J+he*T[2];for(let me=0;me<u.outWidth;++me){let ve=re+me*u.outChannels,Ie=me*u.strideWidth-g;for(let Ee=0;Ee<d;++Ee){let De=Ie+Ee*m;if(De<0||De>=u.inWidth)continue;let Ze=ce+Ee*E[2],Je=pe+De*u.inChannels,Ve=Ze;for(let lt=0;lt<u.inChannels;++lt){let Ue=x[Je+lt];for(let ut=0;ut<u.outChannels;++ut)I[ve+ut]+=Ue*w[Ve+ut];Ve+=u.outChannels}}}}}}}}return n.makeTensorInfo(b.shape,b.dtype,b.values)}var ZD={kernelName:vu,backendName:"cpu",kernelFunc:KD};function YD(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,dy:s}=t,{strides:i,pad:o,filterShape:l}=r;be([a,s],"conv3dBackpropFilterV2");let u=k.computeStrides(a.shape),c=k.computeStrides(s.shape),h=R.computeConv3DInfo(a.shape,l,i,1,o),d=h.strideDepth,p=h.strideHeight,f=h.strideWidth,m=h.filterDepth,A=h.filterHeight,y=h.filterWidth,g=new Dt(h.filterShape,"float32"),_=g.values,[b,x,w,I]=g.strides,T=n.data.get(s.dataId).values,[E,M,z,P]=c,B=n.data.get(a.dataId).values,[q,H,X,Z]=u,ee=h.padInfo.front,J=h.padInfo.left,se=h.padInfo.top;for(let re=0;re<m;++re){let ne=Math.max(0,Math.ceil((ee-re)/d)),ie=Math.min(h.outDepth,(h.inDepth+ee-re)/d),he=re*b;for(let ce=0;ce<A;++ce){let pe=Math.max(0,Math.ceil((se-ce)/p)),me=Math.min(h.outHeight,(h.inHeight+se-ce)/p),ve=ce*x+he;for(let Ie=0;Ie<y;++Ie){let Ee=Math.max(0,Math.ceil((J-Ie)/f)),De=Math.min(h.outWidth,(h.inWidth+J-Ie)/f),Ze=Ie*w+ve;for(let Je=0;Je<h.inChannels;++Je){let Ve=Je*I+Ze;for(let lt=0;lt<h.outChannels;++lt){let Ue=0;for(let ut=0;ut<h.batchSize;++ut){let ft=ut*q,kn=ut*E;for(let Nt=ne;Nt<ie;++Nt){let wt=(re+Nt*d-ee)*H+ft,Yt=Nt*M+kn;for(let mn=pe;mn<me;++mn){let Jn=(ce+mn*p-se)*X+wt,Nn=mn*z+Yt;for(let sn=Ee;sn<De;++sn){let Ln=(Ie+sn*f-J)*Z+Jn,Kr=sn*P+Nn;Ue+=B[Ln+Je]*T[Kr+lt]}}}}_[Ve+lt]=Ue}}}}}return n.makeTensorInfo(g.shape,g.dtype,g.values)}var JD={kernelName:Lh,backendName:"cpu",kernelFunc:YD};function QD(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,filter:s}=t,{pad:i,strides:o,inputShape:l}=r;be([a],"conv3dBackpropInputV2");let u=k.computeStrides(a.shape),c=k.computeStrides(s.shape),h=R.computeConv3DInfo(l,s.shape,o,1,i),d=new Dt(h.inShape,"float32"),p=d.values,[f,m,A,y]=d.strides,g=n.data.get(a.dataId).values,[_,b,x,w]=u,I=n.data.get(s.dataId).values,[T,E,M,z]=c,{batchSize:P,filterDepth:B,filterHeight:q,filterWidth:H,inChannels:X,inDepth:Z,inHeight:ee,inWidth:J,outChannels:se,outDepth:re,outHeight:ne,outWidth:ie,strideDepth:he,strideHeight:ce,strideWidth:pe}=h,me=B-1-h.padInfo.front,ve=q-1-h.padInfo.top,Ie=H-1-h.padInfo.left;for(let Ee=0;Ee<P;++Ee)for(let De=0;De<X;++De)for(let Ze=0;Ze<Z;++Ze){let Je=Ze-me,Ve=Math.max(0,Math.ceil(Je/he)),lt=Math.min(re,(B+Je)/he);for(let Ue=0;Ue<ee;++Ue){let ut=Ue-ve,ft=Math.max(0,Math.ceil(ut/ce)),kn=Math.min(ne,(q+ut)/ce);for(let Nt=0;Nt<J;++Nt){let wt=Nt-Ie,Yt=Math.max(0,Math.ceil(wt/pe)),mn=Math.min(ie,(H+wt)/pe),Jn=0;for(let Nn=Ve;Nn<lt;++Nn){let sn=Nn*he-Je;for(let Ln=ft;Ln<kn;++Ln){let Kr=Ln*ce-ut;for(let Zr=Yt;Zr<mn;++Zr){let hr=Zr*pe-wt,zi=_*Ee+b*Nn+x*Ln+w*Zr,dr=T*(B-1-sn)+E*(q-1-Kr)+M*(H-1-hr)+z*De;for(let Er=0;Er<se;++Er){let pr=g[zi+Er],es=I[dr+Er];Jn+=pr*es}}}}p[f*Ee+m*Ze+A*Ue+y*Nt+De]=Jn}}}return n.makeTensorInfo(d.shape,d.dtype,d.values)}var e$={kernelName:Wh,backendName:"cpu",kernelFunc:QD},t$=st(As,e=>Math.cos(e)),n$={kernelName:As,backendName:"cpu",kernelFunc:t$},r$=st(lo,e=>Math.cosh(e)),a$={kernelName:lo,backendName:"cpu",kernelFunc:r$};function s$(e){let{inputs:t,backend:n,attrs:r}=e,{image:a,boxes:s,boxInd:i}=t,{cropSize:o,method:l,extrapolationValue:u}=r,[c,h,d,p]=a.shape,f=s.shape[0],[m,A]=o,y=We([f,m,A,p],"float32"),g=n.data.get(s.dataId).values,_=n.data.get(i.dataId).values,b=n.data.get(a.dataId).values,x=k.computeStrides(a.shape),w=k.computeStrides(y.shape);for(let I=0;I<f;I++){let T=I*4,E=g[T],M=g[T+1],z=g[T+2],P=g[T+3],B=_[I];if(B>=c)continue;let q=m>1?(z-E)*(h-1)/(m-1):0,H=A>1?(P-M)*(d-1)/(A-1):0;for(let X=0;X<m;X++){let Z=m>1?E*(h-1)+X*q:.5*(E+z)*(h-1);if(Z<0||Z>h-1){for(let ee=0;ee<A;ee++)for(let J=0;J<p;J++){let se=J+ee*w[2]+X*w[1]+I*w[0];y.values[se]=u}continue}if(l==="bilinear"){let ee=Math.floor(Z),J=Math.ceil(Z),se=Z-ee;for(let re=0;re<A;re++){let ne=A>1?M*(d-1)+re*H:.5*(M+P)*(d-1);if(ne<0||ne>d-1){for(let pe=0;pe<p;pe++){let me=pe+re*w[2]+X*w[1]+I*w[0];y.values[me]=u}continue}let ie=Math.floor(ne),he=Math.ceil(ne),ce=ne-ie;for(let pe=0;pe<p;pe++){let me=pe+ie*x[2]+ee*x[1]+B*x[0],ve=b[me];me=pe+he*x[2]+ee*x[1]+B*x[0];let Ie=b[me];me=pe+ie*x[2]+J*x[1]+B*x[0];let Ee=b[me];me=pe+he*x[2]+J*x[1]+B*x[0];let De=b[me],Ze=ve+(Ie-ve)*ce,Je=Ee+(De-Ee)*ce;me=pe+re*w[2]+X*w[1]+I*w[0],y.values[me]=Ze+(Je-Ze)*se}}}else for(let ee=0;ee<A;++ee){let J=A>1?M*(d-1)+ee*H:.5*(M+P)*(d-1);if(J<0||J>d-1){for(let ne=0;ne<p;ne++){let ie=ne+ee*w[2]+X*w[1]+I*w[0];y.values[ie]=u}continue}let se=Math.round(J),re=Math.round(Z);for(let ne=0;ne<p;ne++){let ie=ne+se*x[2]+re*x[1]+B*x[0],he=ne+ee*w[2]+X*w[1]+I*w[0];y.values[he]=b[ie]}}}}return n.makeTensorInfo(y.shape,y.dtype,y.values)}var i$={kernelName:uo,backendName:"cpu",kernelFunc:s$};function o$(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,exclusive:i,reverse:o}=r;be(a,"cumsum");let l=R.getAxesPermutation([s],a.shape.length),u=a;l!=null&&(u=sr({inputs:{x:a},backend:n,attrs:{perm:l}}));let c=R.getInnerMostAxes(1,a.shape.length)[0];if(c!==u.shape.length-1)throw new Error(`backend.cumsum in CPU expects an inner-most axis=${u.shape.length-1} but got axis=${c}`);let h=tr(u.dtype,"int32"),d=k.makeZerosTypedArray(k.sizeFromShape(u.shape),h),p=n.data.get(u.dataId).values,f=u.shape[u.shape.length-1],m=o?(y,g)=>y+f-g-1:(y,g)=>y+g;for(let y=0;y<p.length;y+=f)for(let g=0;g<f;g++){let _=m(y,g);if(g===0)d[_]=i?0:p[_];else{let b=m(y,g-1);d[_]=i?p[b]+d[b]:p[_]+d[b]}}let A=n.makeTensorInfo(u.shape,h,d);if(l!=null){let y=R.getUndoAxesPermutation(l),g=sr({inputs:{x:A},backend:n,attrs:{perm:y}});return n.disposeIntermediateTensorInfo(A),n.disposeIntermediateTensorInfo(u),g}return A}var l$={kernelName:ys,backendName:"cpu",kernelFunc:o$};function u$(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,weights:s}=t,{size:i,binaryOutput:o}=r;if(a.shape.length===1){let l=n.data.get(a.dataId).values,u=n.data.get(s.dataId).values,c=pm(l,u,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,c)}else if(a.shape.length===2){let l=n.bufferSync(a),u=n.bufferSync(s),c=Ox(l,u,i,o);return n.makeTensorInfo(c.shape,s.dtype,c.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${a.shape.length}.`)}var c$={kernelName:Bh,backendName:"cpu",kernelFunc:u$};function h$(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{blockSize:s,dataFormat:i}=r;k.assert(i==="NHWC",()=>`Only NHWC dataFormat supported on CPU for depthToSpace. Got ${i}`),k.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let o=a.shape[0],l=a.shape[1],u=a.shape[2],c=a.shape[3],h=l*s,d=u*s,p=c/(s*s),f=n.data.get(a.dataId).values,m=new Float32Array(o*h*d*p),A=0;for(let y=0;y<o;++y)for(let g=0;g<h;++g){let _=Math.floor(g/s),b=g%s;for(let x=0;x<d;++x){let w=Math.floor(x/s),I=x%s,T=(b*s+I)*p;for(let E=0;E<p;++E){let M=E+T+c*(w+u*(_+l*y));m[A++]=f[M]}}}return n.makeTensorInfo([o,h,d,p],a.dtype,m)}var d$={kernelName:co,backendName:"cpu",kernelFunc:h$};function fw(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s}=t,{strides:i,pad:o,dilations:l,dimRoundingMode:u}=r;be([a,s],"depthwiseConv2DNative");let c=k.computeStrides(a.shape),h=k.computeStrides(s.shape),d=l;d==null&&(d=[1,1]),k.assert(R.eitherStridesOrDilationsAreOne(i,d),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${d}'`);let p=R.computeConv2DInfo(a.shape,s.shape,i,d,o,u,!0),{filterHeight:f,filterWidth:m,dilationHeight:A,dilationWidth:y,padInfo:g}=p,_=g.left,b=g.top,x=p.outChannels/p.inChannels,w=new Dt(p.outShape,a.dtype),I=n.data.get(a.dataId).values,T=n.data.get(s.dataId).values,E=w.values;for(let M=0;M<p.batchSize;++M){let z=M*c[0],P=M*w.strides[0];for(let B=0;B<p.outHeight;++B){let q=P+B*w.strides[1],H=B*p.strideHeight-_;for(let X=0;X<f;++X){let Z=H+X*A;if(Z<0||Z>=p.inHeight)continue;let ee=X*h[0],J=z+Z*c[1];for(let se=0;se<p.outWidth;++se){let re=q+se*w.strides[2],ne=se*p.strideWidth-b;for(let ie=0;ie<m;++ie){let he=ne+ie*y;if(he<0||he>=p.inWidth)continue;let ce=ee+ie*h[1],pe=J+he*p.inChannels,me=re,ve=ce;for(let Ie=0;Ie<p.inChannels;++Ie){let Ee=I[pe+Ie];for(let De=0;De<x;++De)E[me+De]+=Ee*T[ve+De];me+=x,ve+=x}}}}}}return n.makeTensorInfo(w.shape,w.dtype,w.values)}var p$={kernelName:gs,backendName:"cpu",kernelFunc:fw};function f$(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,dy:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:u,filterShape:c}=r;be([a,s],"depthwiseConv2dNativeBackpropFilter");let h=R.computeConv2DInfo(a.shape,c,i,o,l,u,!0),{strideHeight:d,strideWidth:p,filterHeight:f,filterWidth:m}=h,A=new Dt(h.filterShape,"float32"),y=h.padInfo.left,g=h.padInfo.top,_=h.outChannels/h.inChannels,b=n.data.get(a.dataId).values,x=new Dt(a.shape,a.dtype,b),w=n.data.get(s.dataId).values,I=new Dt(s.shape,s.dtype,w);for(let T=0;T<f;++T){let E=Math.max(0,Math.ceil((g-T)/d)),M=Math.min(h.outHeight,(h.inHeight+g-T)/d);for(let z=0;z<m;++z){let P=Math.max(0,Math.ceil((y-z)/p)),B=Math.min(h.outWidth,(h.inWidth+y-z)/p);for(let q=0;q<h.outChannels;++q){let H=Math.trunc(q/_),X=q%_,Z=0;for(let ee=0;ee<h.batchSize;++ee)for(let J=E;J<M;++J){let se=T+J*d-g;for(let re=P;re<B;++re){let ne=z+re*p-y;Z+=x.get(ee,se,ne,H)*I.get(ee,J,re,q)}}A.set(Z,T,z,H,X)}}}return n.makeTensorInfo(A.shape,A.dtype,A.values)}var m$={kernelName:Vh,backendName:"cpu",kernelFunc:f$};function A$(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,filter:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:u,inputShape:c}=r;be([a,s],"depthwiseConv2DNativeBackpropInput");let h=k.computeStrides(a.shape),d=k.computeStrides(s.shape),p=R.computeConv2DInfo(c,s.shape,i,o,l,u,!0),f=new Dt(p.inShape,"float32"),m=f.values,[A,y,g]=f.strides,_=n.data.get(a.dataId).values,[b,x,w]=h,I=n.data.get(s.dataId).values,[T,E,M]=d,{batchSize:z,filterHeight:P,filterWidth:B,inChannels:q,inHeight:H,inWidth:X,outChannels:Z,outHeight:ee,outWidth:J,strideHeight:se,strideWidth:re}=p,ne=P-1-p.padInfo.top,ie=B-1-p.padInfo.left,he=Z/q;for(let ce=0;ce<z;++ce)for(let pe=0;pe<q;++pe)for(let me=0;me<H;++me){let ve=me-ne,Ie=Math.max(0,Math.ceil(ve/se)),Ee=Math.min(ee,(P+ve)/se);for(let De=0;De<X;++De){let Ze=De-ie,Je=Math.max(0,Math.ceil(Ze/re)),Ve=Math.min(J,(B+Ze)/re),lt=0;for(let Ue=Ie;Ue<Ee;++Ue){let ut=Ue*se-ve;for(let ft=Je;ft<Ve;++ft){let kn=ft*re-Ze,Nt=b*ce+x*Ue+w*ft,wt=T*(P-1-ut)+E*(B-1-kn)+M*pe;for(let Yt=0;Yt<he;++Yt){let mn=pe*he+Yt,Jn=_[Nt+mn],Nn=I[wt+Yt];lt+=Jn*Nn}}}m[A*ce+y*me+g*De+pe]=lt}}return n.makeTensorInfo(f.shape,f.dtype,f.values)}var y$={kernelName:Uh,backendName:"cpu",kernelFunc:A$};function g$(e){let{inputs:t,backend:n}=e,{x:r}=t,a=k.sizeFromShape(r.shape),s=n.data.get(r.dataId).values,i=We([a,a],r.dtype),o=i.values;for(let u=0;u<s.length;u++)o[u*a+u]=s[u];let l=[...r.shape,...r.shape];return n.makeTensorInfo(l,i.dtype,i.values)}var x$={kernelName:jh,backendName:"cpu",kernelFunc:g$},w$={kernelName:ku,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:r,filter:a}=e,{strides:s,pad:i,dilations:o}=n,l=t,u=l.data.get(r.dataId).values,c=r.shape.length,h=l.data.get(a.dataId).values,d=a.shape.length,{batchSize:p,inHeight:f,inWidth:m,inChannels:A,outHeight:y,outWidth:g,padInfo:_,strideHeight:b,strideWidth:x,filterHeight:w,filterWidth:I,dilationHeight:T,dilationWidth:E,outShape:M}=R.computeDilation2DInfo(r.shape,a.shape,s,i,"NHWC",o),z=k.sizeFromShape(M),P=M.length,B=k.getArrayFromDType(r.dtype,z);for(let q=0;q<p;++q)for(let H=0;H<y;++H){let X=H*b-_.top;for(let Z=0;Z<g;++Z){let ee=Z*x-_.left;for(let J=0;J<A;++J){let se=Number.MIN_SAFE_INTEGER;for(let ne=0;ne<w;++ne){let ie=X+ne*T;if(ie>=0&&ie<f)for(let he=0;he<I;++he){let ce=ee+he*E;if(ce>=0&&ce<m){let pe=k.locToIndex([q,ie,ce,J],c,k.computeStrides(r.shape)),me=k.locToIndex([ne,he,J],d,k.computeStrides(a.shape)),ve=u[pe]+h[me];ve>se&&(se=ve)}}}let re=k.locToIndex([q,H,Z,J],P,k.computeStrides(M));B[re]=se}}}return{dataId:l.write(k.toTypedArray(B,r.dtype),M,r.dtype),shape:M,dtype:r.dtype}}},_$={kernelName:Hh,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:r,filter:a,dy:s}=e,{strides:i,pad:o,dilations:l}=n,u=t,c=k.toNestedArray(r.shape,u.data.get(r.dataId).values),h=k.toNestedArray(a.shape,u.data.get(a.dataId).values),{batchSize:d,inHeight:p,inWidth:f,inChannels:m,outHeight:A,outWidth:y,padInfo:g,strideHeight:_,strideWidth:b,filterHeight:x,filterWidth:w,dilationHeight:I,dilationWidth:T,outShape:E}=R.computeDilation2DInfo(r.shape,a.shape,i,o,"NHWC",l);k.assert(s.rank===E.length,()=>`Error in ${Hh}, dy must have the same rank as output ${E.length}, but got ${s.rank}`);let M=k.toNestedArray(E,u.data.get(s.dataId).values),z=k.makeZerosNestedTypedArray(a.shape,a.dtype);for(let P=0;P<d;++P)for(let B=0;B<A;++B){let q=B*_-g.top;for(let H=0;H<y;++H){let X=H*b-g.left;for(let Z=0;Z<m;++Z){let ee=Number.MIN_SAFE_INTEGER,J=0,se=0;for(let re=0;re<x;++re){let ne=q+re*I;if(ne>=0&&ne<p)for(let ie=0;ie<w;++ie){let he=X+ie*T;if(he>=0&&he<f){let ce=c[P][ne][he][Z]+h[re][ie][Z];ce>ee&&(ee=ce,J=re,se=ie)}}}z[J][se][Z]+=M[P][B][H][Z]}}}return{dataId:u.write(k.toTypedArray(z,r.dtype),a.shape,a.dtype),shape:a.shape,dtype:a.dtype}}},b$={kernelName:Gh,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:r,filter:a,dy:s}=e,{strides:i,pad:o,dilations:l}=n,u=t,c=k.toNestedArray(r.shape,u.data.get(r.dataId).values),h=k.toNestedArray(a.shape,u.data.get(a.dataId).values),{batchSize:d,inHeight:p,inWidth:f,inChannels:m,outHeight:A,outWidth:y,padInfo:g,strideHeight:_,strideWidth:b,filterHeight:x,filterWidth:w,dilationHeight:I,dilationWidth:T,outShape:E}=R.computeDilation2DInfo(r.shape,a.shape,i,o,"NHWC",l);k.assert(s.rank===E.length,()=>`Error in ${Gh}, dy must have the same rank as output ${E.length}, but got ${s.rank}`);let M=k.toNestedArray(E,u.data.get(s.dataId).values),z=k.makeZerosNestedTypedArray(r.shape,r.dtype);for(let P=0;P<d;++P)for(let B=0;B<A;++B){let q=B*_-g.top;for(let H=0;H<y;++H){let X=H*b-g.left;for(let Z=0;Z<m;++Z){let ee=Number.MIN_SAFE_INTEGER,J=q<0?0:q,se=X<0?0:X;for(let re=0;re<x;++re){let ne=q+re*I;if(ne>=0&&ne<p)for(let ie=0;ie<w;++ie){let he=X+ie*T;if(he>=0&&he<f){let ce=c[P][ne][he][Z]+h[re][ie][Z];ce>ee&&(ee=ce,J=ne,se=he)}}}z[P][J][se][Z]+=M[P][B][H][Z]}}}return{dataId:u.write(k.toTypedArray(z,r.dtype),r.shape,r.dtype),shape:r.shape,dtype:r.dtype}}};function v$(e){let{inputs:t,backend:n}=e,{dy:r,y:a}=t;be([r,a],"eluGrad");let s=new Float32Array(k.sizeFromShape(a.shape)),i=n.data.get(a.dataId).values,o=n.data.get(r.dataId).values;for(let l=0;l<i.length;++l){let u=i[l];u>=1?s[l]=o[l]:s[l]=o[l]*(u+1)}return n.makeTensorInfo(a.shape,"float32",s)}var k$={kernelName:qh,backendName:"cpu",kernelFunc:v$},N$=Ft((e,t)=>e===t?1:0),mw=Gt(fo,N$,null,"bool"),I$={kernelName:fo,backendName:"cpu",kernelFunc:mw},S$=R.ERF_P,T$=R.ERF_A1,E$=R.ERF_A2,C$=R.ERF_A3,R$=R.ERF_A4,F$=R.ERF_A5,M$=st(po,e=>{let t=Math.sign(e),n=Math.abs(e),r=1/(1+S$*n);return t*(1-((((F$*r+R$)*r+C$)*r+E$)*r+T$)*r*Math.exp(-n*n))}),O$={kernelName:po,backendName:"cpu",kernelFunc:M$};function ip(e){let{inputs:t,backend:n,attrs:r}=e,{input:a}=t,{dim:s}=r,i=a.shape.length,o=a.shape.slice(),l=s;return s<0&&(k.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+s+1),o.splice(l,0,1),yt({inputs:{x:a},backend:n,attrs:{shape:o}})}var D$={kernelName:mo,backendName:"cpu",kernelFunc:ip},$$=Ft((e,t)=>e/t),vm=Gt(xs,$$),km={kernelName:xs,backendName:"cpu",kernelFunc:vm};function Aw(e,t,n){let r=e.shape,a=r[0],s=r[1],i=n.data.get(e.dataId),o=i.complexTensorInfos.real,l=i.complexTensorInfos.imag,u=[a,s],c=k.sizeFromShape(u),h=k.getTypedArrayFromDType("float32",c),d=k.getTypedArrayFromDType("float32",c);for(let A=0;A<a;A++){let y=yi({inputs:{x:o},backend:n,attrs:{begin:[A,0],size:[1,s]}}),g=yi({inputs:{x:l},backend:n,attrs:{begin:[A,0],size:[1,s]}}),_=Fn({inputs:{real:y,imag:g},backend:n}),{real:b,imag:x}=z$(_,t,n),w=R.mergeRealAndImagArrays(b,x);for(let I=0;I<s;I++){let T=R.getComplexWithIndex(w,I);h[A*s+I]=T.real,d[A*s+I]=T.imag}n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(g),n.disposeIntermediateTensorInfo(_)}let p=n.makeTensorInfo(u,"float32",h),f=n.makeTensorInfo(u,"float32",d),m=Fn({inputs:{real:p,imag:f},backend:n});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(f),m}function z$(e,t,n){let r=k.sizeFromShape(e.shape),a=n.data.get(e.dataId),s=n.data.get(a.complexTensorInfos.real.dataId).values,i=n.data.get(a.complexTensorInfos.imag.dataId).values;if(P$(r)){let o=Nm(s,i,r,t,n),l=[e.shape[0],e.shape[1]];if(t){let u=n.makeTensorInfo(l,"float32",o.real),c=n.makeTensorInfo(l,"float32",o.imag),h=n.makeTensorInfo([],"float32",k.createScalarValue(r,"float32")),d=Lr({inputs:{x:h},backend:n}),p=km.kernelFunc({inputs:{a:u,b:h},backend:n}),f=km.kernelFunc({inputs:{a:c,b:d},backend:n}),m=n.data.get(p.dataId).values,A=n.data.get(f.dataId).values;return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(f),{real:m,imag:A}}return o}else{let o=R.mergeRealAndImagArrays(s,i),l=L$(o,r,t);return R.splitRealAndImagArrays(l)}}function P$(e){return(e&e-1)==0}function Nm(e,t,n,r,a){if(n===1)return{real:e,imag:t};let s=R.mergeRealAndImagArrays(e,t),i=n/2,o=R.complexWithEvenIndex(s),l=o.real,u=o.imag,c=[l.length],h=a.makeTensorInfo(c,"float32",l),d=a.makeTensorInfo(c,"float32",u),p=Fn({inputs:{real:h,imag:d},backend:a}),f=R.complexWithOddIndex(s),m=f.real,A=f.imag,y=[m.length],g=a.makeTensorInfo(y,"float32",m),_=a.makeTensorInfo(y,"float32",A),b=Fn({inputs:{real:g,imag:_},backend:a}),x=Nm(l,u,i,r,a),w=x.real,I=x.imag,T=[w.length],E=a.makeTensorInfo(T,"float32",w),M=a.makeTensorInfo(T,"float32",I),z=Fn({inputs:{real:E,imag:M},backend:a}),P=Nm(m,A,i,r,a),B=P.real,q=P.imag,H=[B.length],X=a.makeTensorInfo(H,"float32",B),Z=a.makeTensorInfo(H,"float32",q),ee=Fn({inputs:{real:X,imag:Z},backend:a}),J=R.exponents(n,r),se=[J.real.length],re=a.makeTensorInfo(se,"float32",J.real),ne=a.makeTensorInfo(se,"float32",J.imag),ie=Fn({inputs:{real:re,imag:ne},backend:a}),he=xm({inputs:{a:ie,b:ee},backend:a}),ce=dc({inputs:{a:z,b:he},backend:a}),pe=wm({inputs:{a:z,b:he},backend:a}),me=Ai({inputs:{input:ce},backend:a}),ve=Ai({inputs:{input:pe},backend:a}),Ie=kl({inputs:{input:ce},backend:a}),Ee=kl({inputs:{input:pe},backend:a}),De=Nl({inputs:[me,ve],backend:a,attrs:{axis:0}}),Ze=Nl({inputs:[Ie,Ee],backend:a,attrs:{axis:0}}),Je=a.data.get(De.dataId).values,Ve=a.data.get(Ze.dataId).values;return a.disposeIntermediateTensorInfo(h),a.disposeIntermediateTensorInfo(d),a.disposeIntermediateTensorInfo(p),a.disposeIntermediateTensorInfo(g),a.disposeIntermediateTensorInfo(_),a.disposeIntermediateTensorInfo(b),a.disposeIntermediateTensorInfo(E),a.disposeIntermediateTensorInfo(M),a.disposeIntermediateTensorInfo(z),a.disposeIntermediateTensorInfo(X),a.disposeIntermediateTensorInfo(Z),a.disposeIntermediateTensorInfo(ee),a.disposeIntermediateTensorInfo(re),a.disposeIntermediateTensorInfo(ne),a.disposeIntermediateTensorInfo(ie),a.disposeIntermediateTensorInfo(he),a.disposeIntermediateTensorInfo(ce),a.disposeIntermediateTensorInfo(pe),a.disposeIntermediateTensorInfo(me),a.disposeIntermediateTensorInfo(Ie),a.disposeIntermediateTensorInfo(ve),a.disposeIntermediateTensorInfo(Ee),a.disposeIntermediateTensorInfo(De),a.disposeIntermediateTensorInfo(Ze),{real:Je,imag:Ve}}function L$(e,t,n){let r=new Float32Array(t*2);for(let a=0;a<t;a++){let s=0,i=0;for(let o=0;o<t;o++){let l=R.exponent(a*o,t,n),u=R.getComplexWithIndex(e,o);s+=u.real*l.real-u.imag*l.imag,i+=u.real*l.imag+u.imag*l.real}n&&(s/=t,i/=t),R.assignToTypedArray(r,s,i,a)}return r}function W$(e){let{inputs:t,backend:n}=e,{input:r}=t,a=k.sizeFromShape(r.shape),s=r.shape[r.shape.length-1],i=a/s,o=yt({inputs:{x:r},backend:n,attrs:{shape:[i,s]}}),l=Aw(o,!1,n),u=yt({inputs:{x:l},backend:n,attrs:{shape:r.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(l),u}var B$={kernelName:Xh,backendName:"cpu",kernelFunc:W$};function Im(e){let{backend:t,attrs:n}=e,{shape:r,value:a,dtype:s}=n,i=s||k.inferDtype(a),o=k.getArrayFromDType(i,k.sizeFromShape(r));return V$(o,a,i),t.makeTensorInfo(r,i,o)}var U$={kernelName:Nu,backendName:"cpu",kernelFunc:Im};function V$(e,t,n){e.fill(t)}var j$={kernelName:yo,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:r}=e,a=n,s=k.getTypedArrayFromDType(r.dtype,k.sizeFromShape(r.shape)),[i,o,l,u]=r.shape,c=a.data.get(r.dataId).values;for(let h=0;h<i;h++){let d=h*l*o*u;for(let p=0;p<o;p++){let f=p*(l*u);for(let m=0;m<l;m++){let A=m*u;for(let y=0;y<u;y++){let g=[i,p,m,y][2],_=Math.round(l-g),b=d+f+A+y,x=c[b];if(_>=0&&_<l){let w=_*u,I=d+f+w+y;x=c[I]}s[b]=x}}}}return{dataId:a.write(s,r.shape,r.dtype),shape:r.shape,dtype:r.dtype}}},G$=Ft((e,t)=>Math.floor(e/t)),H$=Gt(bs,G$,null,"int32"),q$={kernelName:bs,backendName:"cpu",kernelFunc:H$};function X$(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dataFormat:c,dilations:h,dimRoundingMode:d,activation:p,leakyreluAlpha:f}=r,m=pw({inputs:{x:a,filter:s},backend:n,attrs:{strides:l,pad:u,dataFormat:c,dilations:h,dimRoundingMode:d}});if(i){let A=m;m=dc({inputs:{a:m,b:i},backend:n}),n.disposeIntermediateTensorInfo(A)}if(p){let A=m;m=_m(n,m,p,o,f),n.disposeIntermediateTensorInfo(A)}return m}var K$={kernelName:ei,backendName:"cpu",kernelFunc:X$};function Z$(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dataFormat:c,dilations:h,dimRoundingMode:d,activation:p,leakyreluAlpha:f}=r,m=fw({inputs:{x:a,filter:s},backend:n,attrs:{strides:l,pad:u,dataFormat:c,dilations:h,dimRoundingMode:d}});if(i){let A=m;m=dc({inputs:{a:m,b:i},backend:n}),n.disposeIntermediateTensorInfo(A)}if(p){let A=m;m=_m(n,m,p,o,f),n.disposeIntermediateTensorInfo(A)}return m}var Y$={kernelName:ti,backendName:"cpu",kernelFunc:Z$};function J$(e){let{inputs:t,backend:n}=e,{params:r,indices:a}=t,s=k.sizeFromShape(r.shape),i=a.shape,o=i[i.length-1],[l,u,c,h]=R.prepareAndValidate(r,a);if(u===0)return n.makeTensorInfo(l,r.dtype,[]);let d=We([u,c],r.dtype),p=n.data.get(a.dataId).values,f=n.data.get(r.dataId).values;for(let m=0;m<u;m++){let A=[],y=0;for(let g=0;g<o;g++){let _=p[m*o+g];y+=_*h[g],A.push(_)}if(y<0||y>=s/c)throw new Error(`Invalid indices: ${A} does not index into ${r.shape}`);for(let g=0;g<c;g++)d.values[m*c+g]=f[y*c+g]}return n.makeTensorInfo(l,d.dtype,d.values)}var Q$={kernelName:xo,backendName:"cpu",kernelFunc:J$};function ez(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,indices:s}=t,{axis:i,batchDims:o}=r;be([a,s],"gatherV2");let l=o;o==null&&(l=0);let u=k.sizeFromShape(s.shape),c=k.parseAxisParam(i,a.shape)[0],h=R.segment_util.collectGatherOpShapeInfo(a,s,c,l),d=yt({inputs:{x:a},backend:n,attrs:{shape:[h.batchSize,h.outerSize,h.dimSize,h.sliceSize]}}),p=yt({inputs:{x:s},backend:n,attrs:{shape:[h.batchSize,u/h.batchSize]}}),f=[h.batchSize,h.outerSize,u/h.batchSize,h.sliceSize],m=n.bufferSync(p),A=n.bufferSync(d),y=Lx(A,m,f);return n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),n.makeTensorInfo(h.outputShape,y.dtype,y.values)}var tz={kernelName:go,backendName:"cpu",kernelFunc:ez},nz=Ft((e,t)=>e>=t?1:0),rz=Gt(ks,nz,null,"bool"),az={kernelName:ks,backendName:"cpu",kernelFunc:rz};function sz(e){let{inputs:t,backend:n}=e,{input:r}=t,a=k.sizeFromShape(r.shape),s=r.shape[r.shape.length-1],i=a/s,o=yt({inputs:{x:r},backend:n,attrs:{shape:[i,s]}}),l=Aw(o,!0,n),u=yt({inputs:{x:l},backend:n,attrs:{shape:r.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(l),u}var iz={kernelName:Kh,backendName:"cpu",kernelFunc:sz},oz=st(bo,e=>Number.isFinite(e)?1:0,"bool"),lz={kernelName:bo,backendName:"cpu",kernelFunc:oz},uz=st(vo,e=>Math.abs(e)===Infinity?1:0,"bool"),cz={kernelName:vo,backendName:"cpu",kernelFunc:uz},hz=st(ko,e=>Number.isNaN(e)?1:0,"bool"),dz={kernelName:ko,backendName:"cpu",kernelFunc:hz},pz=Ft((e,t)=>e<=t?1:0),fz=Gt(Io,pz,null,"bool"),mz={kernelName:Io,backendName:"cpu",kernelFunc:fz};function Az(e){let{backend:t,attrs:n}=e,{start:r,stop:a,num:s}=n,i=Vx(r,a,s);return t.makeTensorInfo([i.length],"float32",i)}var yz={kernelName:Yh,backendName:"cpu",kernelFunc:Az},gz=st(So,e=>Math.log1p(e)),xz={kernelName:So,backendName:"cpu",kernelFunc:gz},wz=Ft((e,t)=>e&&t),_z=Gt(To,wz,null,"bool"),bz={kernelName:To,backendName:"cpu",kernelFunc:_z},vz=st(Iu,e=>e?0:1,"bool"),kz={kernelName:Iu,backendName:"cpu",kernelFunc:vz},Nz=Ft((e,t)=>e||t),Iz=Gt(Su,Nz,null,"bool"),Sz={kernelName:Su,backendName:"cpu",kernelFunc:Iz};function Tz(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{depthRadius:s,bias:i,alpha:o,beta:l}=r;be(a,"LRN");let u=a.shape[3],c=u-1,h=n.data.get(a.dataId).values,d=k.sizeFromShape(a.shape),p=new Float32Array(d);function f(m){let A=m%u,y=m-A+Math.max(0,A-s),g=m-A+Math.min(A+s,c),_=0;for(;y<=g;y++){let b=h[y];_+=b*b}return _}for(let m=0;m<d;m++){let A=f(m),y=h[m]*Math.pow(i+o*A,-l);p[m]=y}return n.makeTensorInfo(a.shape,a.dtype,p)}var Ez={kernelName:Tu,backendName:"cpu",kernelFunc:Tz};function Cz(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,y:s,dy:i}=t,{depthRadius:o,bias:l,alpha:u,beta:c}=r;be(i,"LRNGrad");let h=k.sizeFromShape(i.shape),d=i.shape[3],p=n.data.get(i.dataId).values,f=n.data.get(a.dataId).values,m=n.data.get(s.dataId).values,A=new Float32Array(h),y=h;for(let g=0;g<y;g++){let _=g%d,b=g-_+Math.max(0,_-o),x=g-_+Math.min(d,_+o+1),w=0;for(let I=b;I<x;I++)w+=Math.pow(f[I],2);w=u*w+l;for(let I=b;I<x;I++){let T=-2*u*c*f[I]*m[g]/w;g===I&&(T+=Math.pow(w,-c)),T*=p[g],A[I]+=T}}return n.makeTensorInfo(i.shape,a.dtype,A)}var Rz={kernelName:Jh,backendName:"cpu",kernelFunc:Cz};function yw(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{reductionIndices:s,keepDims:i}=r,o=n,l=a.shape,u=l.length,c=k.parseAxisParam(s,l),h=c,d=R.getAxesPermutation(h,u),p=o.data.get(a.dataId).values;if(d!=null){let b=new Array(u);for(let x=0;x<b.length;x++)b[x]=l[d[x]];p=Am(p,l,a.dtype,d,b),h=R.getInnerMostAxes(h.length,u),l=b}be(a,"max"),R.assertAxesAreInnerMostDims("max",h,u);let[f,m]=R.computeOutAndReduceShapes(l,h),A=k.sizeFromShape(m),y=jx(p,A,f,a.dtype),g=o.write(y,f,a.dtype),_=f;return i&&(_=R.expandShapeToKeepDim(f,c)),{dataId:g,shape:_,dtype:a.dtype}}var Fz={kernelName:Ss,backendName:"cpu",kernelFunc:yw};function Mz(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t;be(a,"maxPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=r,u=1;k.assert(R.eitherStridesOrDilationsAreOne(i,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let c=R.computePool2DInfo(a.shape,s,i,u,o,l),h;if(c.filterWidth===1&&c.filterHeight===1&&k.arraysEqual(c.inShape,c.outShape))h=Lr({inputs:{x:a},backend:n});else{let d=n.data.get(a.dataId).values,p=k.computeStrides(a.shape),f=bm(d,a.shape,a.dtype,p,c,"max");h=n.makeTensorInfo(c.outShape,a.dtype,f.values)}return h}var Oz={kernelName:Es,backendName:"cpu",kernelFunc:Mz};function Dz(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:u,dilations:c}=r;be(a,"maxPool3d");let h=c;h==null&&(h=[1,1,1]);let d=R.computePool3DInfo(a.shape,s,i,h,o,l,u),p=n.data.get(a.dataId).values,f=dw(p,a.shape,a.dtype,k.computeStrides(a.shape),d,"max");return n.makeTensorInfo(f.shape,"float32",f.values)}var $z={kernelName:Eu,backendName:"cpu",kernelFunc:Dz};function zz(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s}=t,{filterSize:i,strides:o,pad:l,dilations:u,dimRoundingMode:c}=r;be([a,s],"maxPool3DGrad");let h=R.computePool3DInfo(s.shape,i,o,u,l,c),d=n.bufferSync(s),p=vD(d,h),f=h.strideDepth,m=h.strideHeight,A=h.strideWidth,y=h.dilationDepth,g=h.dilationHeight,_=h.dilationWidth,b=h.effectiveFilterDepth,x=h.effectiveFilterHeight,w=h.effectiveFilterWidth,I=b-1-h.padInfo.front,T=w-1-h.padInfo.left,E=x-1-h.padInfo.top,M=We(s.shape,"float32"),z=n.bufferSync(a);for(let P=0;P<h.batchSize;++P)for(let B=0;B<h.inChannels;++B)for(let q=0;q<h.inDepth;++q)for(let H=0;H<h.inHeight;++H)for(let X=0;X<h.inWidth;++X){let Z=q-I,ee=H-E,J=X-T,se=0;for(let re=0;re<b;re+=y){let ne=(Z+re)/f;if(!(ne<0||ne>=h.outDepth||Math.floor(ne)!==ne))for(let ie=0;ie<x;ie+=g){let he=(ee+ie)/m;if(!(he<0||he>=h.outHeight||Math.floor(he)!==he))for(let ce=0;ce<w;ce+=_){let pe=(J+ce)/A;if(pe<0||pe>=h.outWidth||Math.floor(pe)!==pe)continue;let me=b*x*w-1-p.get(P,ne,he,pe,B),ve=re*x*w+ie*w+ce,Ie=me===ve?1:0;Ie!==0&&(se+=z.get(P,ne,he,pe,B)*Ie)}}}M.set(se,P,q,H,X,B)}return n.makeTensorInfo(M.shape,M.dtype,M.values)}var Pz={kernelName:ed,backendName:"cpu",kernelFunc:zz};function Lz(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s,output:i}=t,o=s;be([s,i],"maxPoolGrad");let{filterSize:l,strides:u,pad:c,dimRoundingMode:h}=r,d=R.computePool2DInfo(o.shape,l,u,1,c,h),p=n.data.get(o.dataId).values,f=We(d.outShape,o.dtype,hw(p,o.shape,o.dtype,d).values),m=d.strideHeight,A=d.strideWidth,y=d.dilationHeight,g=d.dilationWidth,_=d.effectiveFilterHeight,b=d.effectiveFilterWidth,x=b-1-d.padInfo.left,w=_-1-d.padInfo.top,I=We(o.shape,"float32"),T=n.data.get(a.dataId).values,E=We(a.shape,"float32",T);for(let M=0;M<d.batchSize;++M)for(let z=0;z<d.inChannels;++z)for(let P=0;P<d.inHeight;++P)for(let B=0;B<d.inWidth;++B){let q=P-w,H=B-x,X=0;for(let Z=0;Z<_;Z+=y){let ee=(q+Z)/m;if(!(ee<0||ee>=d.outHeight||Math.floor(ee)!==ee))for(let J=0;J<b;J+=g){let se=(H+J)/A;if(se<0||se>=d.outWidth||Math.floor(se)!==se)continue;let re=_*b-1-f.get(M,ee,se,z),ne=Z*b+J,ie=re===ne?1:0;ie!==0&&(X+=E.get(M,ee,se,z)*ie)}}I.set(X,M,P,B,z)}return n.makeTensorInfo(I.shape,I.dtype,I.values)}var Wz={kernelName:Qh,backendName:"cpu",kernelFunc:Lz};function Bz(e,t,n,r,a){let s=k.computeStrides(t),i=bm(e,t,n,s,a,"max"),o=hw(e,t,n,a,!0,r);return[i.values,o.values]}var Vz={kernelName:td,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:r}=e,{filterSize:a,strides:s,pad:i,includeBatchInIndex:o}=t,l=n;be(r,"MaxPoolWithArgmax");let u=l.data.get(r.dataId).values,c=R.computePool2DInfo(r.shape,a,s,[1,1],i),[h,d]=Bz(u,r.shape,r.dtype,o,c),p=l.write(h,c.outShape,r.dtype),f=l.write(d,c.outShape,r.dtype);return[{dataId:p,shape:c.outShape,dtype:r.dtype},{dataId:f,shape:c.outShape,dtype:"int32"}]}};function op(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r;be(a,"sum");let o;a.dtype==="bool"?o=za({inputs:{x:a},backend:n,attrs:{dtype:"int32"}}):o=Lr({inputs:{x:a},backend:n});let l=o.shape.length,u=k.parseAxisParam(s,o.shape),c=R.getAxesPermutation(u,l),h=u,d=o;c!=null&&(d=sr({inputs:{x:o},backend:n,attrs:{perm:c}}),h=R.getInnerMostAxes(h.length,l)),R.assertAxesAreInnerMostDims("sum",h,d.shape.length);let[p,f]=R.computeOutAndReduceShapes(d.shape,h),m=R.upcastType(d.dtype,"int32"),A=sp(n,p,m),y=k.sizeFromShape(f),g=n.data.get(A.dataId).values,_=n.data.get(d.dataId).values;for(let b=0;b<g.length;++b){let x=b*y,w=0;for(let I=0;I<y;++I)w+=_[x+I];g[b]=w}if(i){let b=R.expandShapeToKeepDim(A.shape,u),x=A;A=yt({inputs:{x:A},backend:n,attrs:{shape:b}}),n.disposeIntermediateTensorInfo(x)}return n.disposeIntermediateTensorInfo(o),c!=null&&n.disposeIntermediateTensorInfo(d),A}var Uz={kernelName:qs,backendName:"cpu",kernelFunc:op};function jz(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r,o=k.parseAxisParam(s,a.shape),l=R.computeOutAndReduceShapes(a.shape,o)[1],u=k.sizeFromShape(l),c=[],h=n.makeTensorInfo([],"float32",new Float32Array([u]));c.push(h);let d=za({inputs:{x:a},backend:n,attrs:{dtype:"float32"}});c.push(d);let p=vm({inputs:{a:d,b:h},backend:n});c.push(p);let f=op({inputs:{x:p},backend:n,attrs:{axis:s,keepDims:i}});return c.forEach(m=>n.disposeIntermediateTensorInfo(m)),f}var Gz={kernelName:Cs,backendName:"cpu",kernelFunc:jz};function Hz(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r;be(a,"min");let o=k.parseAxisParam(s,a.shape),l=o,u=R.getAxesPermutation(l,a.shape.length),c=a;u!=null&&(c=sr({inputs:{x:a},backend:n,attrs:{perm:u}}),l=R.getInnerMostAxes(l.length,a.shape.length)),R.assertAxesAreInnerMostDims("min",l,c.shape.length);let[h,d]=R.computeOutAndReduceShapes(c.shape,l),p=k.sizeFromShape(d),f=k.makeZerosTypedArray(k.sizeFromShape(h),c.dtype),m=n.data.get(c.dataId).values;for(let y=0;y<f.length;++y){let g=y*p,_=m[g];for(let b=0;b<p;++b){let x=m[g+b];x<_&&(_=x)}f[y]=_}u!=null&&n.disposeIntermediateTensorInfo(c);let A=n.makeTensorInfo(h,c.dtype,f);if(i){let y=R.expandShapeToKeepDim(h,o),g=yt({inputs:{x:A},backend:n,attrs:{shape:y}});return n.disposeIntermediateTensorInfo(A),g}return A}var qz={kernelName:Rs,backendName:"cpu",kernelFunc:Hz};function Xz(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{paddings:s,mode:i}=r;be(a,"mirrorPad");let o=s.map((g,_)=>g[0]+a.shape[_]+g[1]),l=s.map(g=>g[0]),u=s.map((g,_)=>g[0]+a.shape[_]),c=i==="reflect"?0:1,h=n.data.get(a.dataId).values,d=a.shape.length,p=k.computeStrides(a.shape),f=k.sizeFromShape(o),m=o.length,A=k.computeStrides(o),y=k.getTypedArrayFromDType(a.dtype,f);for(let g=0;g<f;g++){let _=k.indexToLoc(g,m,A);for(let x=0;x<m;x++)_[x]<l[x]?_[x]=l[x]*2-_[x]-c:_[x]>=u[x]&&(_[x]=(u[x]-1)*2-_[x]+c);_=_.map((x,w)=>x-l[w]);let b=k.locToIndex(_,d,p);y[g]=h[b]}return{dataId:n.write(y,o,a.dtype),shape:o,dtype:a.dtype}}var Kz={kernelName:Cu,backendName:"cpu",kernelFunc:Xz},Zz=Ft((e,t)=>{let n=e%t;return e<0&&t<0||e>=0&&t>=0?n:(n+t)%t}),Yz=Gt(Eo,Zz),Jz={kernelName:Eo,backendName:"cpu",kernelFunc:Yz},Qz=Ki(xk());function gw(e){let{inputs:t,backend:n,attrs:r}=e,{logits:a}=t,{dim:s}=r,i=a.shape.length,o=s;if(o===-1&&(o=i-1),o!==i-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${i} and dim was ${o}`);let l=k.parseAxisParam([o],a.shape),u=yw({inputs:{x:a},backend:n,attrs:{reductionIndices:l,keepDims:!1}}),c=R.expandShapeToKeepDim(u.shape,l),h=yt({inputs:{x:u},backend:n,attrs:{shape:c}}),d=wm({inputs:{a,b:h},backend:n}),p=rw({inputs:{x:d},backend:n}),f=op({inputs:{x:p},backend:n,attrs:{axis:l,keepDims:!1}}),m=yt({inputs:{x:f},backend:n,attrs:{shape:c}}),A=vm({inputs:{a:p,b:m},backend:n});return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(m),A}var eP={kernelName:Xs,backendName:"cpu",kernelFunc:gw};function tP(e){let{inputs:t,backend:n,attrs:r}=e,{logits:a}=t,{numSamples:s,seed:i,normalized:o}=r;be(a,"multinomial");let l=o?a:gw({inputs:{logits:a},backend:n,attrs:{dim:-1}}),u=l.shape[0],c=l.shape[1],h=n.data.get(l.dataId).values,d=[u,s],p=k.makeZerosTypedArray(k.sizeFromShape(d),"int32");for(let f=0;f<u;++f){let m=f*c,A=new Float32Array(c-1);A[0]=h[m];for(let _=1;_<A.length;++_)A[_]=A[_-1]+h[m+_];let y=Qz.alea(i.toString()),g=f*s;for(let _=0;_<s;++_){let b=y();p[g+_]=A.length;for(let x=0;x<A.length;x++)if(b<A[x]){p[g+_]=x;break}}}return o||n.disposeIntermediateTensorInfo(l),n.makeTensorInfo(d,"int32",p)}var nP={kernelName:nd,backendName:"cpu",kernelFunc:tP},rP=Pr.nonMaxSuppressionV3Impl;function aP(e){let{inputs:t,backend:n,attrs:r}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l}=r;be(a,"NonMaxSuppression");let u=n.data.get(a.dataId).values,c=n.data.get(s.dataId).values,{selectedIndices:h}=rP(u,c,i,o,l);return n.makeTensorInfo([h.length],"int32",new Int32Array(h))}var sP={kernelName:Fo,backendName:"cpu",kernelFunc:aP},iP=Pr.nonMaxSuppressionV4Impl;function oP(e){let{inputs:t,backend:n,attrs:r}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,padToMaxOutputSize:u}=r;be(a,"NonMaxSuppressionPadded");let c=n.data.get(a.dataId).values,h=n.data.get(s.dataId).values,{selectedIndices:d,validOutputs:p}=iP(c,h,i,o,l,u);return[n.makeTensorInfo([d.length],"int32",new Int32Array(d)),n.makeTensorInfo([],"int32",new Int32Array([p]))]}var lP={kernelName:Mo,backendName:"cpu",kernelFunc:oP},uP=Pr.nonMaxSuppressionV5Impl;function cP(e){let{inputs:t,backend:n,attrs:r}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,softNmsSigma:u}=r;be(a,"NonMaxSuppressionWithScore");let c=n.data.get(a.dataId).values,h=n.data.get(s.dataId).values,d=i,p=o,f=l,m=u,{selectedIndices:A,selectedScores:y}=uP(c,h,d,p,f,m);return[n.makeTensorInfo([A.length],"int32",new Int32Array(A)),n.makeTensorInfo([y.length],"float32",new Float32Array(y))]}var hP={kernelName:Oo,backendName:"cpu",kernelFunc:cP};function dP(e){let{inputs:t,backend:n,attrs:r}=e,{indices:a}=t,{depth:s,onValue:i,offValue:o}=r;be(a,"oneHot");let l=k.sizeFromShape(a.shape),u=new Float32Array(l*s);u.fill(o);let c=n.data.get(a.dataId).values;for(let h=0;h<l;++h)c[h]>=0&&c[h]<s&&(u[h*s+c[h]]=i);return n.makeTensorInfo([...a.shape,s],"int32",u)}var pP={kernelName:Os,backendName:"cpu",kernelFunc:dP};function lp(e){let{inputs:t,backend:n}=e,{x:r}=t;if(r.dtype==="string")throw new Error("zerosLike is not supported for string tensors");if(r.dtype==="complex64"){let a=Ai({inputs:{input:r},backend:n}),s=lp({inputs:{x:a},backend:n}),i=kl({inputs:{input:r},backend:n}),o=lp({inputs:{x:i},backend:n}),l=Fn({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return Im({backend:n,attrs:{shape:r.shape,value:0,dtype:r.dtype}})}var fP={kernelName:Jo,backendName:"cpu",kernelFunc:lp};function xw(e){let{inputs:t,backend:n}=e,{x:r}=t;if(r.dtype==="string")throw new Error("onesLike is not supported for string tensors");if(r.dtype==="complex64"){let a=Ai({inputs:{input:r},backend:n}),s=xw({inputs:{x:a},backend:n}),i=kl({inputs:{input:r},backend:n}),o=lp({inputs:{x:i},backend:n}),l=Fn({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return Im({backend:n,attrs:{shape:r.shape,value:1,dtype:r.dtype}})}var mP={kernelName:Do,backendName:"cpu",kernelFunc:xw};function ww(e){let{inputs:t,backend:n,attrs:r}=e,{axis:a}=r;if(t.length===1)return ip({inputs:{input:t[0]},backend:n,attrs:{dim:a}});let s=t[0].shape,i=t[0].dtype;t.forEach(c=>{k.assertShapesMatch(s,c.shape,"All tensors passed to stack must have matching shapes"),k.assert(i===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(c=>{let h=ip({inputs:{input:c},backend:n,attrs:{dim:a}});return o.push(h),h}),u=Nl({inputs:l,backend:n,attrs:{axis:a}});return o.forEach(c=>n.disposeIntermediateTensorInfo(c)),u}var AP={kernelName:$o,backendName:"cpu",kernelFunc:ww};function yP(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{paddings:s,constantValue:i}=r;be(a,"pad");let o=s.map((y,g)=>y[0]+a.shape[g]+y[1]),l=s.map(y=>y[0]),u=n.data.get(a.dataId).values,c=k.sizeFromShape(a.shape),h=a.shape.length,d=k.computeStrides(a.shape),p=k.sizeFromShape(o),f=o.length,m=k.computeStrides(o),A=k.getTypedArrayFromDType(a.dtype,p);i!==0&&A.fill(i);for(let y=0;y<c;y++){let g=k.indexToLoc(y,h,d).map((b,x)=>b+l[x]),_=k.locToIndex(g,f,m);A[_]=u[y]}return{dataId:n.write(A,o,a.dtype),shape:o,dtype:a.dtype}}var _w={kernelName:Ds,backendName:"cpu",kernelFunc:yP},gP=Ft((e,t)=>Math.pow(e,t)),xP=Gt($s,gP),wP={kernelName:$s,backendName:"cpu",kernelFunc:xP};function _P(e){let{backend:t,attrs:n}=e,{start:r,stop:a,dtype:s,step:i}=n,o=ym(r,a,i,s);return t.makeTensorInfo([o.length],s,o)}var bP={kernelName:Ru,backendName:"cpu",kernelFunc:_P},vP=st(Po,e=>1/e),kP={kernelName:Po,backendName:"cpu",kernelFunc:vP};function NP(e){let{inputs:t,backend:n,attrs:r}=e,{images:a}=t,{alignCorners:s,halfPixelCenters:i,size:o}=r;be(a,"resizeBilinear");let l=k.computeStrides(a.shape),[u,c]=o,[h,d,p,f]=a.shape,m=n.data.get(a.dataId).values,A=new Float32Array(k.sizeFromShape([h,u,c,f])),y=[s&&u>1?d-1:d,s&&c>1?p-1:p],g=[s&&u>1?u-1:u,s&&c>1?c-1:c],_=0,b=y[0]/g[0],x=y[1]/g[1];for(let w=0;w<h;w++)for(let I=0;I<u;I++){let T;i?T=b*(I+.5)-.5:T=b*I;let E=Math.max(0,Math.floor(T)),M=T-E,z=Math.min(d-1,Math.ceil(T)),P=w*l[0]+E*l[1],B=w*l[0]+z*l[1];for(let q=0;q<c;q++){let H;i?H=x*(q+.5)-.5:H=x*q;let X=Math.max(0,Math.floor(H)),Z=H-X,ee=Math.min(p-1,Math.ceil(H)),J=P+X*l[2],se=B+X*l[2],re=P+ee*l[2],ne=B+ee*l[2];for(let ie=0;ie<f;ie++){let he=m[J+ie],ce=m[se+ie],pe=m[re+ie],me=m[ne+ie],ve=he+(pe-he)*Z,Ie=ce+(me-ce)*Z,Ee=ve+(Ie-ve)*M;A[_++]=Ee}}}return n.makeTensorInfo([h,u,c,f],"float32",A)}var IP={kernelName:Ls,backendName:"cpu",kernelFunc:NP};function SP(e){let{inputs:t,backend:n,attrs:r}=e,{images:a,dy:s}=t,{alignCorners:i}=r;be([s,a],"resizeBilinearGrad");let o=k.computeStrides(a.shape),[l,u,c,h]=a.shape,[,d,p]=s.shape,f=new Float32Array(l*u*c*h),m=[i&&d>1?u-1:u,i&&p>1?c-1:c],A=[i&&d>1?d-1:d,i&&p>1?p-1:p],y=m[0]/A[0],g=m[1]/A[1],_=n.data.get(s.dataId).values,b=0;for(let x=0;x<l;x++){let w=x*o[0];for(let I=0;I<d;I++){let T=I*y,E=Math.floor(T),M=Math.min(Math.ceil(T),u-1),z=w+E*o[1],P=w+M*o[1],B=T-E,q=1-B;for(let H=0;H<p;H++){let X=H*g,Z=Math.floor(X),ee=Math.min(Math.ceil(X),c-1),J=X-Z,se=1-J,re=z+Z*o[2],ne=z+ee*o[2],ie=P+Z*o[2],he=P+ee*o[2],ce=q*se,pe=q*J,me=B*se,ve=B*J;for(let Ie=0;Ie<h;Ie++){let Ee=_[b++];f[re+Ie]+=Ee*ce,f[ne+Ie]+=Ee*pe,f[ie+Ie]+=Ee*me,f[he+Ie]+=Ee*ve}}}}return n.makeTensorInfo([l,c,u,h],"float32",f)}var TP={kernelName:sd,backendName:"cpu",kernelFunc:SP};function EP(e){let{inputs:t,backend:n,attrs:r}=e,{images:a}=t,{alignCorners:s,halfPixelCenters:i,size:o}=r;be(a,"resizeNearestNeighbor");let l=k.computeStrides(a.shape),[u,c]=o,[h,d,p,f]=a.shape,m=n.data.get(a.dataId).values,A=new Float32Array(h*u*c*f),y=[s&&u>1?d-1:d,s&&c>1?p-1:p],g=[s&&u>1?u-1:u,s&&c>1?c-1:c],_=y[0]/g[0],b=y[1]/g[1],x=0;for(let w=0;w<h;w++){let I=w*l[0];for(let T=0;T<u;T++){let E=i?_*(T+.5):_*T,M=Math.min(d-1,s?Math.round(E):Math.floor(E));i&&(M=Math.max(0,M));let z=I+M*l[1];for(let P=0;P<c;P++){let B=i?b*(P+.5):b*P,q=Math.min(p-1,s?Math.round(B):Math.floor(B));i&&(q=Math.max(0,q));let H=z+q*l[2];for(let X=0;X<f;X++){let Z=m[H+X];A[x++]=Z}}}}return n.makeTensorInfo([h,u,c,f],a.dtype,A)}var CP={kernelName:Fu,backendName:"cpu",kernelFunc:EP};function RP(e){let{inputs:t,backend:n,attrs:r}=e,{images:a,dy:s}=t,{alignCorners:i}=r;be([s,a],"resizeNearestNeighborGrad");let o=k.computeStrides(a.shape),l=k.computeStrides(s.shape),[u,c,h,d]=a.shape,[,p,f]=s.shape,m=new Float32Array(u*c*h*d),A=n.data.get(s.dataId).values,y=[i&&p>1?c-1:c,i&&f>1?h-1:h],g=[i&&p>1?p-1:p,i&&f>1?f-1:f],_=y[0]/g[0],b=y[1]/g[1],x=1/_,w=1/b,I=Math.ceil(x)*2+2,T=Math.ceil(w)*2+2;for(let E=0;E<u;E++){let M=E*o[0];for(let z=0;z<c;z++){let P=M+z*o[1],B=Math.floor(z*x),q=Math.floor(B-I/2);for(let H=0;H<h;H++){let X=P+H*o[2],Z=Math.floor(H*w),ee=Math.floor(Z-T/2);for(let J=0;J<d;J++){let se=0;for(let re=0;re<I;re++){let ne=re+q;if(ne<0||ne>=p)continue;let ie=M+ne*l[1],he=ne*_,ce=Math.min(c-1,i?Math.round(he):Math.floor(he));if(z===ce)for(let pe=0;pe<T;pe++){let me=pe+ee;if(me<0||me>=f)continue;let ve=ie+me*l[2],Ie=me*b,Ee=Math.min(h-1,i?Math.round(Ie):Math.floor(Ie));H===Ee&&(se+=A[ve+J])}}m[X+J]=se}}}}return n.makeTensorInfo(a.shape,a.dtype,m)}var FP={kernelName:ad,backendName:"cpu",kernelFunc:RP};function MP(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{dims:s}=r;be(a,"reverse");let i=a.shape.length,o=k.parseAxisParam(s,a.shape);if(i===0)return Lr({inputs:{x:a},backend:n});let l=new Dt(a.shape,a.dtype),u=n.bufferSync(a);for(let c=0;c<l.size;c++){let h=l.indexToLoc(c),d=h.slice();o.forEach(p=>d[p]=a.shape[p]-1-d[p]),l.set(u.get(...d),...h)}return n.makeTensorInfo(l.shape,l.dtype,l.values)}var OP={kernelName:Bs,backendName:"cpu",kernelFunc:MP},DP={kernelName:el,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:r}=e,{radians:a,fillValue:s,center:i}=t,o=n,l=k.getTypedArrayFromDType(r.dtype,k.sizeFromShape(r.shape)),[u,c,h,d]=r.shape,[p,f]=R.getImageCenter(i,c,h),m=255,A=Math.sin(a),y=Math.cos(a),g=o.data.get(r.dataId).values;for(let _=0;_<u;_++){let b=_*h*c*d;for(let x=0;x<c;x++){let w=x*(h*d);for(let I=0;I<h;I++){let T=I*d;for(let E=0;E<d;E++){let M=[u,x,I,E],z=M[2],P=M[1],B=(z-p)*y-(P-f)*A,q=(z-p)*A+(P-f)*y;B=Math.round(B+p),q=Math.round(q+f);let H=s;if(typeof s!="number"&&(E===3?H=m:H=s[E]),B>=0&&B<h&&q>=0&&q<c){let Z=q*(h*d),ee=B*d,J=b+Z+ee+E;H=g[J]}let X=b+w+T+E;l[X]=H}}}}return{dataId:o.write(l,r.shape,r.dtype),shape:r.shape,dtype:r.dtype}}},$P=st(Vs,e=>{let t=Math.floor(e);return e-t<.5?Math.floor(e):e-t>.5?Math.ceil(e):t%2==0?t:t+1}),zP={kernelName:Vs,backendName:"cpu",kernelFunc:$P};function bw(e,t,n,r,a,s,i,o,l,u){let c=[r/a,a],h=e.values,d=t.values;if(r===0)return We(n,t.dtype);let p=We(c,t.dtype);p.values.fill(l);for(let f=0;f<s;f++){let m=[],A=0;for(let y=0;y<i;y++){let g=h[f*i+y];m.push(g),A+=g*o[y]}if(A<0||A>=r/a)throw new Error(`Invalid indices: ${m} does not index into ${n}`);for(let y=0;y<a;y++)u?p.values[A*a+y]+=d[f*a+y]:p.values[A*a+y]=t.rank===0?d[0]:d[f*a+y]}return p}function PP(e){let{inputs:t,backend:n,attrs:r}=e,{indices:a,updates:s}=t,{shape:i}=r,{sliceRank:o,numUpdates:l,sliceSize:u,strides:c,outputSize:h}=R.calculateShapes(s,a,i),d=!0,p=n.bufferSync(a),f=n.bufferSync(s),m=bw(p,f,i,h,u,l,o,c,0,d);return n.makeTensorInfo(i,m.dtype,m.values)}var LP={kernelName:Wo,backendName:"cpu",kernelFunc:PP};function WP(e){let{inputs:t,backend:n}=e,{condition:r,t:a,e:s}=t;be([r,a,s],"select");let i=r.shape.length,o=n.data.get(r.dataId).values,l=n.data.get(a.dataId).values,u=n.data.get(s.dataId).values,c=tr(a.dtype,s.dtype),h=k.makeZerosTypedArray(k.sizeFromShape(a.shape),c),d=0,p=i===0||i>1||a.shape.length===1?1:k.sizeFromShape(a.shape.slice(1));for(let f=0;f<o.length;f++)for(let m=0;m<p;m++)o[f]===1?h[d++]=l[f]:h[d++]=u[f];return n.makeTensorInfo(a.shape,c,h)}var BP={kernelName:Bo,backendName:"cpu",kernelFunc:WP},VP=R.SELU_SCALEALPHA,UP=R.SELU_SCALE,jP=st(Vo,e=>e>=0?UP*e:VP*(Math.exp(e)-1)),GP={kernelName:Vo,backendName:"cpu",kernelFunc:jP},HP=st(Gs,e=>1/(1+Math.exp(-e))),qP={kernelName:Gs,backendName:"cpu",kernelFunc:HP},XP=st(Go,e=>e<0?-1:e>0?1:0),KP={kernelName:Go,backendName:"cpu",kernelFunc:XP},ZP=st(js,e=>Math.sin(e)),YP={kernelName:js,backendName:"cpu",kernelFunc:ZP},JP=st(jo,e=>Math.sinh(e)),QP={kernelName:jo,backendName:"cpu",kernelFunc:JP},eL=11920928955078125e-23,vw=Math.log(eL)+2,tL=st(Ho,e=>{let t=e>-vw,n=e<vw,r=Math.exp(e),a;return n?a=r:t?a=e:a=Math.log(1+r),a}),nL={kernelName:Ho,backendName:"cpu",kernelFunc:tL};function rL(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{blockShape:s,paddings:i}=r;be([a],"spaceToBatchND");let o=k.sizeFromShape(s),l=[[0,0]];l.push(...i);for(let A=1+s.length;A<a.shape.length;++A)l.push([0,0]);let u=_w.kernelFunc({inputs:{x:a},backend:n,attrs:{paddings:l,constantValue:0}}),c=R.getReshaped(u.shape,s,o,!1),h=R.getPermuted(c.length,s.length,!1),d=R.getReshapedPermuted(u.shape,s,o,!1),p=yt({inputs:{x:u},backend:n,attrs:{shape:c}}),f=sr({inputs:{x:p},backend:n,attrs:{perm:h}}),m=yt({inputs:{x:f},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(f),m}var aL={kernelName:Mu,backendName:"cpu",kernelFunc:rL};function sL(e){let{inputs:t,backend:n,attrs:r}=e,{sparseIndices:a,sparseValues:s,defaultValue:i}=t,{outputShape:o}=r,{sliceRank:l,numUpdates:u,sliceSize:c,strides:h,outputSize:d}=R.calculateShapes(s,a,o),p=!1,f=n.bufferSync(a),m=n.bufferSync(s),A=n.data.get(i.dataId).values[0],y=bw(f,m,o,d,c,u,l,h,A,p);return n.makeTensorInfo(o,y.dtype,y.values)}var iL={kernelName:id,backendName:"cpu",kernelFunc:sL};function oL(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{numOrSizeSplits:s,axis:i}=r,o=k.parseAxisParam(i,a.shape)[0],l=R.prepareSplitSize(a,s,o),u=new Array(a.shape.length).fill(0),c=a.shape.slice();return l.map(h=>{let d=[...c];d[o]=h;let p=yi({inputs:{x:a},backend:n,attrs:{begin:u,size:d}});return u[o]+=h,p})}var lL={kernelName:qo,backendName:"cpu",kernelFunc:oL},uL=st(Hs,e=>Math.sqrt(e)),cL={kernelName:Hs,backendName:"cpu",kernelFunc:uL},hL={kernelName:Ou,backendName:"cpu",kernelFunc:({inputs:e,backend:t})=>{let{x:n}=e,r=t;be(n,"square");let a=r.data.get(n.dataId).values,s=new Float32Array(a.length);for(let i=0;i<a.length;++i){let o=a[i];s[i]=o*o}return{dataId:r.write(s,n.shape,n.dtype),shape:n.shape,dtype:n.dtype}}},dL=st(Qo,(e,t)=>{let n=t;return isNaN(e)?NaN:e>0?1:n.alpha}),pL={kernelName:Qo,backendName:"cpu",kernelFunc:dL};function fL(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{begin:s,end:i,strides:o,beginMask:l,endMask:u,ellipsisMask:c,newAxisMask:h,shrinkAxisMask:d}=r;be(a,"stridedSlice");let{nonStrided:p,$begin:f,$strides:m,size:A,newShape:y,outShape:g}=ln.sliceInfo(a.shape,s,i,o,l,u,c,h,d),_=yt({inputs:{x:a},backend:n,attrs:{shape:y}}),b;if(p){let w=yi({inputs:{x:_},backend:n,attrs:{begin:f,size:A}});b=yt({inputs:{x:w},backend:n,attrs:{shape:g}}),n.disposeIntermediateTensorInfo(w)}else if(g.some(w=>w===0))b=n.makeTensorInfo(g,a.dtype,[]);else{let w=n.bufferSync(_),I=Jx(g,w,m,f);b=n.makeTensorInfo(I.shape,I.dtype,I.values)}let x=yt({inputs:{x:b},backend:n,attrs:{shape:g}});return n.disposeIntermediateTensorInfo(_),n.disposeIntermediateTensorInfo(b),x}var mL={kernelName:Xo,backendName:"cpu",kernelFunc:fL},AL=st(Ko,e=>Math.tan(e)),yL={kernelName:Ko,backendName:"cpu",kernelFunc:AL},gL=st(Ys,e=>Math.tanh(e)),xL={kernelName:Ys,backendName:"cpu",kernelFunc:gL};function wL(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{reps:s}=r;be(a,"tile");let i=ew(n.bufferSync(a),s);return n.makeTensorInfo(i.shape,i.dtype,i.values)}var _L={kernelName:Ia,backendName:"cpu",kernelFunc:wL};function bL(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{k:s,sorted:i}=r;be(a,"topk");let o=n.data.get(a.dataId).values,[l,u]=tw(o,a.shape,a.dtype,s,i);return[n.makeTensorInfo(l.shape,l.dtype,l.values),n.makeTensorInfo(u.shape,u.dtype,u.values)]}var vL={kernelName:Zo,backendName:"cpu",kernelFunc:bL};function kL(e){let{inputs:t,attrs:n,backend:r}=e,{axis:a}=n,{x:s}=t;be(s,"unique");let i=r.data.get(s.dataId).values,{outputValues:o,outputShape:l,indices:u}=nw(i,a,s.shape,s.dtype);return[r.makeTensorInfo(l,s.dtype,o),r.makeTensorInfo([u.length],"int32",u)]}var NL={kernelName:od,backendName:"cpu",kernelFunc:kL};function IL(e){let{inputs:t,backend:n,attrs:r}=e,{value:a}=t,{axis:s}=r;s<0&&(s+=a.shape.length);let i=a.shape.length,o=a.shape[s],l=new Array(i-1),u=0;for(let p=0;p<i;p++)p!==s&&(l[u++]=a.shape[p]);let c=new Array(i).fill(0),h=a.shape.slice();h[s]=1;let d=new Array(o);for(let p=0;p<d.length;p++){c[s]=p;let f=yi({inputs:{x:a},backend:n,attrs:{begin:c,size:h}});d[p]=yt({inputs:{x:f},backend:n,attrs:{shape:l}}),n.disposeIntermediateTensorInfo(f)}return d}var SL={kernelName:Yo,backendName:"cpu",kernelFunc:IL};function TL(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,segmentIds:s}=t,{numSegments:i}=r;be(a,"unsortedSegmentSum");let o=a.shape.length,l=s.shape.length,u=[],c=[],h=o-l,d=s;for(let f=0;f<h;++f){let m=ip({inputs:{input:d},backend:n,attrs:{dim:f+1}});d=m,c.push(m)}for(let f=0;f<i;++f){let m=k.createScalarValue(f,"int32"),A=n.makeTensorInfo([],"int32",m),y=mw({inputs:{a:A,b:d},backend:n}),g=za({inputs:{x:y},backend:n,attrs:{dtype:"float32"}}),_=xm({inputs:{a:g,b:a},backend:n}),b=op({inputs:{x:_},backend:n,attrs:{axis:0,keepDims:!1}});u.push(b),c.push(A),c.push(y),c.push(g),c.push(_),c.push(b)}let p=ww({inputs:u,backend:n,attrs:{axis:0}});return c.forEach(f=>n.disposeIntermediateTensorInfo(f)),p}var EL={kernelName:Du,backendName:"cpu",kernelFunc:TL},CL=[YO,nO,QO,tD,lO,rD,sD,oD,uD,hD,pD,mD,yD,wD,bD,ND,SD,ED,RD,KO,MD,DD,zD,iO,cO,LD,rO,BD,UD,HD,XD,jD,JD,e$,ZD,n$,a$,i$,l$,c$,d$,p$,m$,y$,x$,w$,b$,_$,km,VO,k$,I$,O$,hO,D$,pO,B$,U$,j$,mO,q$,K$,Y$,Q$,tz,yO,az,aO,iz,VD,lz,cz,dz,UO,xO,mz,yz,_O,xz,bz,kz,Sz,Ez,Rz,vO,Oz,$z,Pz,Wz,Vz,Fz,Gz,qz,NO,Kz,Jz,nP,SO,EO,sP,lP,hP,RO,pP,mP,AP,_w,wP,GO,OO,bP,sO,kP,HO,qO,XO,IP,TP,CP,FP,OP,DP,zP,$O,LP,BP,GP,qP,KP,YP,QP,zO,eP,nL,aL,iL,lL,cL,hL,LO,pL,mL,BO,Uz,yL,xL,_L,vL,FO,NL,SL,EL,fP];for(let e of CL)ni(e);var kw={};$e(kw,{assertNotComplex:()=>Il,bindCanvasToFramebuffer:()=>ML,bindColorTextureToFramebuffer:()=>cp,bindTextureToProgramUniformSampler:()=>Lw,bindTextureUnit:()=>$w,bindVertexBufferToProgramAttribute:()=>Sm,callAndCheck:()=>xe,canBeRepresented:()=>Nw,createFragmentShader:()=>Tw,createFramebuffer:()=>Dw,createProgram:()=>Ew,createStaticIndexBuffer:()=>Fw,createStaticVertexBuffer:()=>Rw,createTexture:()=>Mw,createVertexShader:()=>Sw,getBatchDim:()=>gi,getExtensionOrThrow:()=>pc,getFramebufferErrorMessage:()=>Ww,getMaxTexturesInShader:()=>Uw,getNumChannels:()=>RL,getProgramUniformLocation:()=>Pw,getProgramUniformLocationOrThrow:()=>zw,getRowsCols:()=>xi,getShapeAs3D:()=>hp,getTextureShapeFromLogicalShape:()=>Bw,getWebGLDisjointQueryTimerVersion:()=>jw,getWebGLErrorMessage:()=>Iw,getWebGLMaxTextureSize:()=>Vw,hasExtension:()=>Kn,isCapableOfRenderingToFloatTexture:()=>Gw,isDownloadFloatTextureEnabled:()=>Hw,isReshapeFree:()=>mc,isWebGLFenceEnabled:()=>qw,isWebGLVersionEnabled:()=>Em,linkProgram:()=>Cw,resetMaxTextureSize:()=>OL,resetMaxTexturesInShader:()=>DL,unbindColorTextureFromFramebuffer:()=>Tm,unbindTextureUnit:()=>FL,validateFramebuffer:()=>fc,validateProgram:()=>up,validateTextureSize:()=>Ow});var wi={},Cm={alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!0};function dp(e,t){wi[e]=t}function Wr(e){if(!(e in wi)){let n=$L(e);if(n!==null)wi[e]=n;else return console.log("Could not get context for WebGL version",e),null}let t=wi[e];return t.isContextLost()?(delete wi[e],Wr(e)):(t.disable(t.DEPTH_TEST),t.disable(t.STENCIL_TEST),t.disable(t.BLEND),t.disable(t.DITHER),t.disable(t.POLYGON_OFFSET_FILL),t.disable(t.SAMPLE_COVERAGE),t.enable(t.SCISSOR_TEST),t.enable(t.CULL_FACE),t.cullFace(t.BACK),wi[e])}function zL(e){if(typeof OffscreenCanvas!="undefined"&&e===2)return new OffscreenCanvas(300,150);if(typeof document!="undefined")return document.createElement("canvas");throw new Error("Cannot create a canvas in this context")}function $L(e){if(e!==1&&e!==2)throw new Error("Cannot get WebGL rendering context, WebGL is disabled.");let t=zL(e);return t.addEventListener("webglcontextlost",n=>{n.preventDefault(),delete wi[e]},!1),e===1?t.getContext("webgl",Cm)||t.getContext("experimental-webgl",Cm):t.getContext("webgl2",Cm)}var Ac;(function(e){e[e.DENSE=0]="DENSE",e[e.SHARED_BATCH=1]="SHARED_BATCH"})(Ac||(Ac={}));var Zn;(function(e){e[e.RENDER=0]="RENDER",e[e.UPLOAD=1]="UPLOAD",e[e.PIXELS=2]="PIXELS",e[e.DOWNLOAD=3]="DOWNLOAD"})(Zn||(Zn={}));var en;(function(e){e[e.UNPACKED_FLOAT16=0]="UNPACKED_FLOAT16",e[e.UNPACKED_FLOAT32=1]="UNPACKED_FLOAT32",e[e.PACKED_4X1_UNSIGNED_BYTE=2]="PACKED_4X1_UNSIGNED_BYTE",e[e.PACKED_2X2_FLOAT32=3]="PACKED_2X2_FLOAT32",e[e.PACKED_2X2_FLOAT16=4]="PACKED_2X2_FLOAT16"})(en||(en={}));function yc(e,t){return[t,e]}function PL(e,t){return e*t}function gc(e){let t=k.sizeFromShape(e),n=Math.ceil(t/4);return k.sizeToSquarishShape(n)}function Sl(e,t){return[Math.max(1,Math.ceil(t/2)),Math.max(1,Math.ceil(e/2))]}function LL(e,t){let[n,r]=Sl(e,t);return n*r*4}function Rm(e,t){let n=e,r,a,s,i,o,l,u,c,h,d;return Q().getNumber("WEBGL_VERSION")===2?(r=n.R32F,a=n.R16F,s=n.RGBA16F,i=n.RGBA32F,o=n.RED,u=4,c=1,h=n.HALF_FLOAT,d=n.FLOAT):(r=e.RGBA,a=e.RGBA,s=e.RGBA,i=n.RGBA,o=e.RGBA,u=4,c=4,h=t!=null?t.HALF_FLOAT_OES:null,d=e.FLOAT),l=e.RGBA,{internalFormatFloat:r,internalFormatHalfFloat:a,internalFormatPackedHalfFloat:s,internalFormatPackedFloat:i,textureFormatFloat:o,downloadTextureFormat:l,downloadUnpackNumChannels:u,defaultNumChannels:c,textureTypeHalfFloat:h,textureTypeFloat:d}}function xe(e,t){let n=t();return Q().getBool("DEBUG")&&WL(e),n}function WL(e){let t=e.getError();if(t!==e.NO_ERROR)throw new Error("WebGL Error: "+Iw(e,t))}var BL=596e-10,VL=65504;function Nw(e){return!!(Q().getBool("WEBGL_RENDER_FLOAT32_ENABLED")||e===0||BL<Math.abs(e)&&Math.abs(e)<VL)}function Iw(e,t){switch(t){case e.NO_ERROR:return"NO_ERROR";case e.INVALID_ENUM:return"INVALID_ENUM";case e.INVALID_VALUE:return"INVALID_VALUE";case e.INVALID_OPERATION:return"INVALID_OPERATION";case e.INVALID_FRAMEBUFFER_OPERATION:return"INVALID_FRAMEBUFFER_OPERATION";case e.OUT_OF_MEMORY:return"OUT_OF_MEMORY";case e.CONTEXT_LOST_WEBGL:return"CONTEXT_LOST_WEBGL";default:return`Unknown error code ${t}`}}function pc(e,t){return ha(e,()=>e.getExtension(t),'Extension "'+t+'" not supported on this browser.')}function Sw(e,t){let n=ha(e,()=>e.createShader(e.VERTEX_SHADER),"Unable to create vertex WebGLShader.");if(xe(e,()=>e.shaderSource(n,t)),xe(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw console.log(e.getShaderInfoLog(n)),new Error("Failed to compile vertex shader.");return n}function Tw(e,t){let n=ha(e,()=>e.createShader(e.FRAGMENT_SHADER),"Unable to create fragment WebGLShader.");if(xe(e,()=>e.shaderSource(n,t)),xe(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw UL(t,e.getShaderInfoLog(n)),new Error("Failed to compile fragment shader.");return n}var jL=/ERROR: [0-9]+:([0-9]+):/g;function UL(e,t){let n=jL.exec(t);if(n==null){console.log(`Couldn't parse line number in error: ${t}`),console.log(e);return}let r=+n[1],a=e.split(`
|
|
`),s=a.length.toString().length+2,i=a.map((h,d)=>k.rightPad((d+1).toString(),s)+h),o=0;for(let h=0;h<i.length;h++)o=Math.max(i[h].length,o);let l=i.slice(0,r-1),u=i.slice(r-1,r),c=i.slice(r);console.log(l.join(`
|
|
`)),console.log(t.split(`
|
|
`)[0]),console.log(`%c ${k.rightPad(u[0],o)}`,"border:1px solid red; background-color:#e3d2d2; color:#a61717"),console.log(c.join(`
|
|
`))}function Ew(e){return ha(e,()=>e.createProgram(),"Unable to create WebGLProgram.")}function Cw(e,t){if(xe(e,()=>e.linkProgram(t)),e.getProgramParameter(t,e.LINK_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Failed to link vertex and fragment shaders.")}function up(e,t){if(xe(e,()=>e.validateProgram(t)),e.getProgramParameter(t,e.VALIDATE_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Shader program validation failed.")}function Rw(e,t){let n=ha(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return xe(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),xe(e,()=>e.bufferData(e.ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function Fw(e,t){let n=ha(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return xe(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,n)),xe(e,()=>e.bufferData(e.ELEMENT_ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function RL(){return Q().getNumber("WEBGL_VERSION")===2?1:4}function Mw(e){return ha(e,()=>e.createTexture(),"Unable to create WebGLTexture.")}function Ow(e,t){let n=Q().getNumber("WEBGL_MAX_TEXTURE_SIZE");if(e<=0||t<=0){let r=`[${e}x${t}]`;throw new Error("Requested texture size "+r+" is invalid.")}if(e>n||t>n){let r=`[${e}x${t}]`,a=`[${n}x${n}]`;throw new Error("Requested texture size "+r+" greater than WebGL maximum on this browser / GPU "+a+".")}}function Dw(e){return ha(e,()=>e.createFramebuffer(),"Unable to create WebGLFramebuffer.")}function Sm(e,t,n,r,a,s,i){let o=e.getAttribLocation(t,n);return o===-1?!1:(xe(e,()=>e.bindBuffer(e.ARRAY_BUFFER,r)),xe(e,()=>e.vertexAttribPointer(o,a,e.FLOAT,!1,s,i)),xe(e,()=>e.enableVertexAttribArray(o)),!0)}function $w(e,t,n){Xw(e,n),xe(e,()=>e.activeTexture(e.TEXTURE0+n)),xe(e,()=>e.bindTexture(e.TEXTURE_2D,t))}function FL(e,t){Xw(e,t),xe(e,()=>e.activeTexture(e.TEXTURE0+t)),xe(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function zw(e,t,n){return ha(e,()=>e.getUniformLocation(t,n),'uniform "'+n+'" not present in program.')}function Pw(e,t,n){return e.getUniformLocation(t,n)}function Lw(e,t,n,r){xe(e,()=>$w(e,t,r)),xe(e,()=>e.uniform1i(n,r))}function ML(e){xe(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),xe(e,()=>e.viewport(0,0,e.canvas.width,e.canvas.height)),xe(e,()=>e.scissor(0,0,e.canvas.width,e.canvas.height))}function cp(e,t,n){xe(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,n)),xe(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,t,0))}function Tm(e,t){xe(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,t)),xe(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,null,0))}function fc(e){let t=e.checkFramebufferStatus(e.FRAMEBUFFER);if(t!==e.FRAMEBUFFER_COMPLETE)throw new Error("Error binding framebuffer: "+Ww(e,t))}function Ww(e,t){switch(t){case e.FRAMEBUFFER_INCOMPLETE_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_DIMENSIONS:return"FRAMEBUFFER_INCOMPLETE_DIMENSIONS";case e.FRAMEBUFFER_UNSUPPORTED:return"FRAMEBUFFER_UNSUPPORTED";default:return`unknown error ${t}`}}function ha(e,t,n){let r=xe(e,()=>t());if(r==null)throw new Error(n);return r}function Xw(e,t){let n=e.MAX_COMBINED_TEXTURE_IMAGE_UNITS-1,r=t+e.TEXTURE0;if(r<e.TEXTURE0||r>n){let a=`[gl.TEXTURE0, gl.TEXTURE${n}]`;throw new Error(`textureUnit must be in ${a}.`)}}function gi(e,t=2){return k.sizeFromShape(e.slice(0,e.length-t))}function xi(e){if(e.length===0)throw Error("Cannot get rows and columns of an empty shape array.");return[e.length>1?e[e.length-2]:1,e[e.length-1]]}function hp(e){let t=[1,1,1];return e.length===0||e.length===1&&e[0]===1||(t=[gi(e),...xi(e)]),t}function Bw(e,t=!1){let n=Q().getNumber("WEBGL_MAX_TEXTURE_SIZE");t&&(n=n*2,e=e.map((a,s)=>s>=e.length-2?k.nearestLargerEven(e[s]):e[s]),e.length===1&&(e=[2,e[0]])),e.length!==2&&(e=k.squeezeShape(e).newShape);let r=k.sizeFromShape(e);if(e.length<=1&&r<=n)return[1,r];if(e.length===2&&e[0]<=n&&e[1]<=n)return e;if(e.length===3&&e[0]*e[1]<=n&&e[2]<=n)return[e[0]*e[1],e[2]];if(e.length===3&&e[0]<=n&&e[1]*e[2]<=n)return[e[0],e[1]*e[2]];if(e.length===4&&e[0]*e[1]*e[2]<=n&&e[3]<=n)return[e[0]*e[1]*e[2],e[3]];if(e.length===4&&e[0]<=n&&e[1]*e[2]*e[3]<=n)return[e[0],e[1]*e[2]*e[3]];if(t){let a=gi(e),s=2,i=2;return e.length&&([s,i]=xi(e)),r=a*(s/2)*(i/2),k.sizeToSquarishShape(r).map(o=>o*2)}return k.sizeToSquarishShape(r)}function pp(e){return e%2==0}function mc(e,t){if(e=e.slice(-2),t=t.slice(-2),k.arraysEqual(e,t)||!e.length||!t.length||e[0]===0||e[1]===0||t[0]===0||t[1]===0)return!0;if(e.length!==t.length){let n=e.slice(-1)[0],r=t.slice(-1)[0];if(n===r||pp(n)&&pp(r)&&(e[0]===1||t[0]===1))return!0}return e[1]===t[1]&&pp(e[0])&&pp(t[0])}var fp,mp;function Vw(e){if(fp==null){let t=Wr(e);fp=t.getParameter(t.MAX_TEXTURE_SIZE)}return fp}function OL(){fp=null}function DL(){mp=null}function Uw(e){if(mp==null){let t=Wr(e);mp=t.getParameter(t.MAX_TEXTURE_IMAGE_UNITS)}return Math.min(16,mp)}function jw(e){if(e===0)return 0;let t,n=Wr(e);return Kn(n,"EXT_disjoint_timer_query_webgl2")&&e===2?t=2:Kn(n,"EXT_disjoint_timer_query")?t=1:t=0,t}function Kn(e,t){return e.getExtension(t)!=null}function Em(e){try{if(Wr(e)!=null)return!0}catch(t){return console.log("Error when getting WebGL context: ",t),!1}return!1}function Gw(e){if(e===0)return!1;let t=Wr(e);if(e===1){if(!Kn(t,"OES_texture_float"))return!1}else if(!Kn(t,"EXT_color_buffer_float"))return!1;return Fm(t)}function Hw(e){if(e===0)return!1;let t=Wr(e);if(e===1){if(!Kn(t,"OES_texture_float")||!Kn(t,"WEBGL_color_buffer_float"))return!1}else{if(Kn(t,"EXT_color_buffer_float"))return Fm(t);let n="EXT_color_buffer_half_float";if(Kn(t,n)){let r=t.getExtension(n);return GL(t,r)}return!1}return Fm(t)}function Fm(e){let t=Rm(e),n=e.createTexture();e.bindTexture(e.TEXTURE_2D,n);let r=1,a=1;e.texImage2D(e.TEXTURE_2D,0,t.internalFormatFloat,r,a,0,t.textureFormatFloat,t.textureTypeFloat,null);let s=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,s),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,n,0);let i=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(n),e.deleteFramebuffer(s),i}function GL(e,t){let n=Rm(e,t),r=e.createTexture();e.bindTexture(e.TEXTURE_2D,r);let a=1,s=1;e.texImage2D(e.TEXTURE_2D,0,n.internalFormatHalfFloat,a,s,0,n.textureFormatFloat,n.textureTypeHalfFloat,null);let i=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,i),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,r,0);let o=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(r),e.deleteFramebuffer(i),o}function qw(e){return e!==2?!1:Wr(e).fenceSync!=null}function Il(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&k.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the WebGL backend.`)})}var Fe=Q();Fe.registerFlag("HAS_WEBGL",()=>Fe.getNumber("WEBGL_VERSION")>0);Fe.registerFlag("WEBGL_VERSION",()=>Em(2)?2:Em(1)?1:0);Fe.registerFlag("WEBGL_CHECK_NUMERICAL_PROBLEMS",()=>!1);Fe.registerFlag("WEBGL_BUFFER_SUPPORTED",()=>Fe.get("WEBGL_VERSION")===2);Fe.registerFlag("WEBGL_CPU_FORWARD",()=>!0);Fe.registerFlag("WEBGL_FORCE_F16_TEXTURES",()=>!1);Fe.registerFlag("WEBGL_PACK",()=>Fe.getBool("HAS_WEBGL"));Fe.registerFlag("WEBGL_PACK_NORMALIZATION",()=>Fe.getBool("WEBGL_PACK"));Fe.registerFlag("WEBGL_PACK_CLIP",()=>Fe.getBool("WEBGL_PACK"));Fe.registerFlag("WEBGL_PACK_DEPTHWISECONV",()=>!1);Fe.registerFlag("WEBGL_PACK_BINARY_OPERATIONS",()=>Fe.getBool("WEBGL_PACK"));Fe.registerFlag("WEBGL_PACK_UNARY_OPERATIONS",()=>Fe.getBool("WEBGL_PACK"));Fe.registerFlag("WEBGL_PACK_ARRAY_OPERATIONS",()=>Fe.getBool("WEBGL_PACK"));Fe.registerFlag("WEBGL_PACK_IMAGE_OPERATIONS",()=>Fe.getBool("WEBGL_PACK"));Fe.registerFlag("WEBGL_PACK_REDUCE",()=>Fe.getBool("WEBGL_PACK"));Fe.registerFlag("WEBGL_LAZILY_UNPACK",()=>Fe.getBool("WEBGL_PACK"));Fe.registerFlag("WEBGL_CONV_IM2COL",()=>Fe.getBool("WEBGL_PACK"));Fe.registerFlag("WEBGL_MAX_TEXTURE_SIZE",()=>Vw(Fe.getNumber("WEBGL_VERSION")));Fe.registerFlag("WEBGL_MAX_TEXTURES_IN_SHADER",()=>Uw(Fe.getNumber("WEBGL_VERSION")));Fe.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION",()=>{let e=Fe.getNumber("WEBGL_VERSION");return e===0?0:jw(e)});Fe.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE",()=>Fe.getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0&&!pd.isMobile());Fe.registerFlag("WEBGL_RENDER_FLOAT32_CAPABLE",()=>Gw(Fe.getNumber("WEBGL_VERSION")));Fe.registerFlag("WEBGL_RENDER_FLOAT32_ENABLED",()=>Fe.getBool("WEBGL_FORCE_F16_TEXTURES")?!1:Fe.getBool("WEBGL_RENDER_FLOAT32_CAPABLE"));Fe.registerFlag("WEBGL_DOWNLOAD_FLOAT_ENABLED",()=>Hw(Fe.getNumber("WEBGL_VERSION")));Fe.registerFlag("WEBGL_FENCE_API_ENABLED",()=>qw(Fe.getNumber("WEBGL_VERSION")));Fe.registerFlag("WEBGL_SIZE_UPLOAD_UNIFORM",()=>Fe.getBool("WEBGL_RENDER_FLOAT32_ENABLED")?4:0);Fe.registerFlag("WEBGL_DELETE_TEXTURE_THRESHOLD",()=>-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_DELETE_TEXTURE_THRESHOLD must be -1 (indicating never delete) or at least 0, but got ${e}.`)});function cn(){let e,t,n,r,a,s,i,o,l,u;return Q().getNumber("WEBGL_VERSION")===2?(e="#version 300 es",t="in",n="out",r="in",a="texture",s="outputColor",i="out vec4 outputColor;",o=`
|
|
bool isnan_custom(float val) {
|
|
return (val > 0.0 || val < 0.0) ? false : val != 0.0;
|
|
}
|
|
|
|
bvec4 isnan_custom(vec4 val) {
|
|
return bvec4(isnan_custom(val.x),
|
|
isnan_custom(val.y), isnan_custom(val.z), isnan_custom(val.w));
|
|
}
|
|
|
|
#define isnan(value) isnan_custom(value)
|
|
`,l="",u=`
|
|
#define round(value) newRound(value)
|
|
int newRound(float value) {
|
|
return int(floor(value + 0.5));
|
|
}
|
|
|
|
ivec4 newRound(vec4 value) {
|
|
return ivec4(floor(value + vec4(0.5)));
|
|
}
|
|
`):(e="",t="attribute",n="varying",r="varying",a="texture2D",s="gl_FragColor",i="",o=`
|
|
#define isnan(value) isnan_custom(value)
|
|
bool isnan_custom(float val) {
|
|
return (val > 0. || val < 1. || val == 0.) ? false : true;
|
|
}
|
|
bvec4 isnan_custom(vec4 val) {
|
|
return bvec4(isnan(val.x), isnan(val.y), isnan(val.z), isnan(val.w));
|
|
}
|
|
`,l=`
|
|
uniform float INFINITY;
|
|
|
|
bool isinf(float val) {
|
|
return abs(val) == INFINITY;
|
|
}
|
|
bvec4 isinf(vec4 val) {
|
|
return equal(abs(val), vec4(INFINITY));
|
|
}
|
|
`,u=`
|
|
int round(float value) {
|
|
return int(floor(value + 0.5));
|
|
}
|
|
|
|
ivec4 round(vec4 value) {
|
|
return ivec4(floor(value + vec4(0.5)));
|
|
}
|
|
`),{version:e,attribute:t,varyingVs:n,varyingFs:r,texture2D:a,output:s,defineOutput:i,defineSpecialNaN:o,defineSpecialInf:l,defineRound:u}}function _i(e,t,n="index"){let r=k.computeStrides(t);return r.map((a,s)=>{let i=`int ${e[s]} = ${n} / ${a}`,o=s===r.length-1?`int ${e[s+1]} = ${n} - ${e[s]} * ${a}`:`index -= ${e[s]} * ${a}`;return`${i}; ${o};`}).join("")}function Mm(e){let t=k.computeStrides(e).map(n=>n.toString());return`
|
|
int getFlatIndex(ivec3 coords) {
|
|
return coords.x * ${t[0]} + coords.y * ${t[1]} + coords.z;
|
|
}
|
|
`}var Kw=`
|
|
const float FLOAT_MAX = 1.70141184e38;
|
|
const float FLOAT_MIN = 1.17549435e-38;
|
|
|
|
lowp vec4 encode_float(highp float v) {
|
|
if (isnan(v)) {
|
|
return vec4(255, 255, 255, 255);
|
|
}
|
|
|
|
highp float av = abs(v);
|
|
|
|
if(av < FLOAT_MIN) {
|
|
return vec4(0.0, 0.0, 0.0, 0.0);
|
|
} else if(v > FLOAT_MAX) {
|
|
return vec4(0.0, 0.0, 128.0, 127.0) / 255.0;
|
|
} else if(v < -FLOAT_MAX) {
|
|
return vec4(0.0, 0.0, 128.0, 255.0) / 255.0;
|
|
}
|
|
|
|
highp vec4 c = vec4(0,0,0,0);
|
|
|
|
highp float e = floor(log2(av));
|
|
highp float m = exp2(fract(log2(av))) - 1.0;
|
|
|
|
c[2] = floor(128.0 * m);
|
|
m -= c[2] / 128.0;
|
|
c[1] = floor(32768.0 * m);
|
|
m -= c[1] / 32768.0;
|
|
c[0] = floor(8388608.0 * m);
|
|
|
|
highp float ebias = e + 127.0;
|
|
c[3] = floor(ebias / 2.0);
|
|
ebias -= c[3] * 2.0;
|
|
c[2] += floor(ebias) * 128.0;
|
|
|
|
c[3] += 128.0 * step(0.0, -v);
|
|
|
|
return c / 255.0;
|
|
}
|
|
`,HL=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outPackingScheme=Ac.DENSE;let t=gc(e),n=cn();this.outputShape=e,this.userCode=`
|
|
ivec3 outCoordsFromFlatIndex(int index) {
|
|
${_i(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = 4 * (resTexRC.x * ${t[1]} + resTexRC.y);
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for (int i=0; i<4; i++) {
|
|
int flatIndex = index + i;
|
|
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
|
|
result[i] = getA(rc.x, rc.y, rc.z);
|
|
}
|
|
|
|
${n.output} = result;
|
|
}
|
|
`}},qL=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outPackingScheme=Ac.DENSE;let t=gc(e),n=cn();this.outputShape=e,this.userCode=`
|
|
ivec3 outCoordsFromFlatIndex(int index) {
|
|
${_i(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = 4 * (resTexRC.x * ${t[1]} + resTexRC.y);
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for (int i=0; i<4; i++) {
|
|
int flatIndex = index + i;
|
|
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
|
|
result[i] = getChannel(getA(rc.x, rc.y, rc.z), vec2(rc.y, rc.z));
|
|
}
|
|
|
|
${n.output} = result;
|
|
}
|
|
`}},XL=class{constructor(e){this.variableNames=["A"],this.outTexUsage=Zn.DOWNLOAD;let t=cn();this.outputShape=e,this.userCode=`
|
|
${Kw}
|
|
|
|
void main() {
|
|
float x = getAAtOutCoords();
|
|
${t.output} = encode_float(x);
|
|
}
|
|
`}},KL=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outTexUsage=Zn.DOWNLOAD;let t=cn();this.outputShape=e,this.userCode=`
|
|
${Kw}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
float x = getChannel(getAAtOutCoords(), vec2(coords.y, coords.z));
|
|
${t.output} = encode_float(x);
|
|
}
|
|
`}},ZL=class{constructor(e,t,n=!1){this.variableNames=["A"];let r=cn(),[a,s]=t;this.outputShape=e;let i="result";n&&(i="floor(result * 255. + 0.5)"),this.userCode=`
|
|
${Mm(e)}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
|
|
int flatIndex = getFlatIndex(coords);
|
|
int offset = imod(flatIndex, 4);
|
|
|
|
flatIndex = idiv(flatIndex, 4, 1.);
|
|
|
|
int r = flatIndex / ${s};
|
|
int c = imod(flatIndex, ${s});
|
|
vec2 uv = (vec2(c, r) + halfCR) / vec2(${s}.0, ${a}.0);
|
|
vec4 values = ${r.texture2D}(A, uv);
|
|
|
|
float result;
|
|
|
|
if(offset == 0) {
|
|
result = values[0];
|
|
} else if(offset == 1) {
|
|
result = values[1];
|
|
} else if(offset == 2) {
|
|
result = values[2];
|
|
} else {
|
|
result = values[3];
|
|
}
|
|
|
|
${r.output} = vec4(${i}, 0., 0., 0.);
|
|
}
|
|
`}},YL=class{constructor(e,t,n=!1){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let r=cn(),[a,s]=t;this.outputShape=e;let i="",o="result";n&&(o="floor(result * 255. + 0.5)");for(let l=0;l<=1;l++)for(let u=0;u<=1;u++){let c=l*2+u;i+=`
|
|
localCoords = coords;
|
|
if(localCoords[2] + ${u} < ${e[2]}) {
|
|
localCoords[2] += ${u};
|
|
if(localCoords[1] + ${l} < ${e[1]}) {
|
|
localCoords[1] += ${l};
|
|
|
|
flatIndex = getFlatIndex(localCoords);
|
|
offset = imod(flatIndex, 4);
|
|
|
|
flatIndex = idiv(flatIndex, 4, 1.);
|
|
|
|
r = flatIndex / ${s};
|
|
c = imod(flatIndex, ${s});
|
|
uv = (vec2(c, r) + halfCR) / vec2(${s}.0, ${a}.0);
|
|
values = ${r.texture2D}(A, uv);
|
|
|
|
if(offset == 0) {
|
|
result[${c}] = values[0];
|
|
} else if(offset == 1) {
|
|
result[${c}] = values[1];
|
|
} else if(offset == 2) {
|
|
result[${c}] = values[2];
|
|
} else {
|
|
result[${c}] = values[3];
|
|
}
|
|
}
|
|
}
|
|
`}this.userCode=`
|
|
${Mm(e)}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
|
|
vec4 result = vec4(0.);
|
|
int flatIndex, r, c, offset;
|
|
ivec3 localCoords;
|
|
vec2 uv;
|
|
vec4 values;
|
|
|
|
${i}
|
|
|
|
${r.output} = ${o};
|
|
}
|
|
`}},Zw={};$e(Zw,{bindVertexProgramAttributeStreams:()=>s_,createBufferFromOutputTexture:()=>l_,createFloat16MatrixTexture:()=>t_,createFloat16PackedMatrixTexture:()=>a_,createFloat32MatrixTexture:()=>e_,createIndexBuffer:()=>Qw,createPackedMatrixTexture:()=>r_,createUnsignedBytesMatrixTexture:()=>n_,createVertexBuffer:()=>Jw,createVertexShader:()=>Yw,downloadByteEncodedFloatMatrixFromOutputTexture:()=>c_,downloadFloat32MatrixFromBuffer:()=>u_,downloadMatrixFromPackedOutputTexture:()=>d_,downloadPackedMatrixFromBuffer:()=>h_,getInternalFormatForFloat16MatrixTexture:()=>Dm,getInternalFormatForFloat16PackedMatrixTexture:()=>Pm,getInternalFormatForFloat32MatrixTexture:()=>Om,getInternalFormatForPackedMatrixTexture:()=>zm,getInternalFormatForUnsignedBytesMatrixTexture:()=>$m,uploadDenseMatrixToTexture:()=>i_,uploadPixelDataToTexture:()=>o_});function Yw(e){let t=cn(),n=`${t.version}
|
|
precision highp float;
|
|
${t.attribute} vec3 clipSpacePos;
|
|
${t.attribute} vec2 uv;
|
|
${t.varyingVs} vec2 resultUV;
|
|
|
|
void main() {
|
|
gl_Position = vec4(clipSpacePos, 1);
|
|
resultUV = uv;
|
|
}`;return Sw(e,n)}function Jw(e){let t=new Float32Array([-1,1,0,0,1,-1,-1,0,0,0,1,1,0,1,1,1,-1,0,1,0]);return Rw(e,t)}function Qw(e){let t=new Uint16Array([0,1,2,2,1,3]);return Fw(e,t)}function xc(e,t,n,r,a,s){Ow(t,n);let i=Mw(e),o=e.TEXTURE_2D;return xe(e,()=>e.bindTexture(o,i)),xe(e,()=>e.texParameteri(o,e.TEXTURE_WRAP_S,e.CLAMP_TO_EDGE)),xe(e,()=>e.texParameteri(o,e.TEXTURE_WRAP_T,e.CLAMP_TO_EDGE)),xe(e,()=>e.texParameteri(o,e.TEXTURE_MIN_FILTER,e.NEAREST)),xe(e,()=>e.texParameteri(o,e.TEXTURE_MAG_FILTER,e.NEAREST)),xe(e,()=>e.texImage2D(o,0,r,t,n,0,a,s,null)),xe(e,()=>e.bindTexture(e.TEXTURE_2D,null)),i}function Om(e){return e.internalFormatFloat}function e_(e,t,n,r){let[a,s]=yc(t,n);return xc(e,a,s,Om(r),r.textureFormatFloat,e.FLOAT)}function Dm(e){return e.internalFormatHalfFloat}function t_(e,t,n,r){let[a,s]=yc(t,n);return xc(e,a,s,Dm(r),r.textureFormatFloat,r.textureTypeHalfFloat)}function $m(e){return e.downloadTextureFormat}function n_(e,t,n,r){let[a,s]=yc(t,n);return xc(e,a,s,$m(r),e.RGBA,e.UNSIGNED_BYTE)}function zm(e){return e.internalFormatPackedFloat}function r_(e,t,n,r){let[a,s]=Sl(t,n);return xc(e,a,s,zm(r),e.RGBA,e.FLOAT)}function Pm(e){return e.internalFormatPackedHalfFloat}function a_(e,t,n,r){let[a,s]=Sl(t,n);return xc(e,a,s,Pm(r),e.RGBA,r.textureTypeHalfFloat)}function s_(e,t,n){let r=0,a=3*4,s=3*4+2*4;return xe(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),Sm(e,t,"clipSpacePos",n,3,s,r)&&Sm(e,t,"uv",n,2,s,a)}function i_(e,t,n,r,a,s){xe(e,()=>e.bindTexture(e.TEXTURE_2D,t));let i,o,l;a instanceof Uint8Array?(i=new Uint8Array(n*r*4),o=e.UNSIGNED_BYTE,l=e.RGBA):(i=new Float32Array(n*r*4),o=e.FLOAT,l=s.internalFormatPackedFloat),i.set(a),xe(e,()=>e.texImage2D(e.TEXTURE_2D,0,l,n,r,0,e.RGBA,o,i)),xe(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function o_(e,t,n){xe(e,()=>e.bindTexture(e.TEXTURE_2D,t)),n.data instanceof Uint8Array?xe(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,n.width,n.height,0,e.RGBA,e.UNSIGNED_BYTE,n.data)):xe(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,e.RGBA,e.UNSIGNED_BYTE,n)),xe(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function l_(e,t,n,r){let a=e.createBuffer();xe(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,a));let s=4*4*t*n;return xe(e,()=>e.bufferData(e.PIXEL_PACK_BUFFER,s,e.STREAM_READ)),xe(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,0)),xe(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,null)),a}function u_(e,t,n){let r=e,a=new Float32Array(n);return r.bindBuffer(r.PIXEL_PACK_BUFFER,t),r.getBufferSubData(r.PIXEL_PACK_BUFFER,0,a),r.bindBuffer(r.PIXEL_PACK_BUFFER,null),a}function c_(e,t,n,r){let[a,s]=yc(t,n),i=4,o=new Uint8Array(PL(t*n,i));return xe(e,()=>e.readPixels(0,0,a,s,r.downloadTextureFormat,e.UNSIGNED_BYTE,o)),new Float32Array(o.buffer)}function h_(e,t,n,r,a,s,i,o){let l=e,u=new Float32Array(LL(s,i));return l.bindBuffer(l.PIXEL_PACK_BUFFER,t),l.getBufferSubData(l.PIXEL_PACK_BUFFER,0,u),l.bindBuffer(l.PIXEL_PACK_BUFFER,null),u}function d_(e,t,n){let r=new Float32Array(t*n*4);return xe(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,r)),r}var Ap=class{constructor(e){this.outputTexture=null,this.program=null,this.disposed=!1,this.vertexAttrsAreBound=!1,this.itemsToPoll=[];let t=Q().getNumber("WEBGL_VERSION");e!=null?(this.gl=e,dp(t,e)):this.gl=Wr(t);let n="WEBGL_color_buffer_float",r="EXT_color_buffer_half_float";if(Q().getNumber("WEBGL_VERSION")===1){let a="OES_texture_float",s="OES_texture_half_float";if(this.textureFloatExtension=pc(this.gl,a),Kn(this.gl,s))this.textureHalfFloatExtension=pc(this.gl,s);else if(Q().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support half float textures, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.");if(this.colorBufferFloatExtension=this.gl.getExtension(n),Kn(this.gl,r))this.colorBufferHalfFloatExtension=pc(this.gl,r);else if(Q().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support color renderable half floats, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.")}else if(n="EXT_color_buffer_float",Kn(this.gl,n))this.colorBufferFloatExtension=this.gl.getExtension(n);else if(Kn(this.gl,r))this.colorBufferHalfFloatExtension=this.gl.getExtension(r);else throw new Error("GL context does not support color renderable floats");this.vertexBuffer=Jw(this.gl),this.indexBuffer=Qw(this.gl),this.framebuffer=Dw(this.gl),this.textureConfig=Rm(this.gl,this.textureHalfFloatExtension)}get debug(){return Q().getBool("DEBUG")}dispose(){if(this.disposed)return;this.program!=null&&console.warn("Disposing a GPGPUContext that still has a bound WebGLProgram. This is probably a resource leak, delete the program with GPGPUContext.deleteProgram before disposing."),this.outputTexture!=null&&console.warn("Disposing a GPGPUContext that still has a bound output matrix texture. This is probably a resource leak, delete the output matrix texture with GPGPUContext.deleteMatrixTexture before disposing.");let e=this.gl;xe(e,()=>e.finish()),xe(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),xe(e,()=>e.deleteFramebuffer(this.framebuffer)),xe(e,()=>e.bindBuffer(e.ARRAY_BUFFER,null)),xe(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,null)),xe(e,()=>e.deleteBuffer(this.indexBuffer)),this.disposed=!0}createFloat32MatrixTexture(e,t){return this.throwIfDisposed(),e_(this.gl,e,t,this.textureConfig)}createFloat16MatrixTexture(e,t){return this.throwIfDisposed(),t_(this.gl,e,t,this.textureConfig)}createUnsignedBytesMatrixTexture(e,t){return this.throwIfDisposed(),n_(this.gl,e,t,this.textureConfig)}uploadPixelDataToTexture(e,t){this.throwIfDisposed(),o_(this.gl,e,t)}uploadDenseMatrixToTexture(e,t,n,r){this.throwIfDisposed(),i_(this.gl,e,t,n,r,this.textureConfig)}createFloat16PackedMatrixTexture(e,t){return this.throwIfDisposed(),a_(this.gl,e,t,this.textureConfig)}createPackedMatrixTexture(e,t){return this.throwIfDisposed(),r_(this.gl,e,t,this.textureConfig)}deleteMatrixTexture(e){this.throwIfDisposed(),this.outputTexture===e&&(Tm(this.gl,this.framebuffer),this.outputTexture=null),xe(this.gl,()=>this.gl.deleteTexture(e))}downloadByteEncodedFloatMatrixFromOutputTexture(e,t,n){return this.downloadMatrixDriver(e,()=>c_(this.gl,t,n,this.textureConfig))}downloadPackedMatrixFromBuffer(e,t,n,r,a,s){return h_(this.gl,e,t,n,r,a,s,this.textureConfig)}downloadFloat32MatrixFromBuffer(e,t){return u_(this.gl,e,t)}createBufferFromTexture(e,t,n){this.bindTextureToFrameBuffer(e);let r=l_(this.gl,t,n,this.textureConfig);return this.unbindTextureToFrameBuffer(),r}createAndWaitForFence(){let e=this.createFence(this.gl);return this.pollFence(e)}createFence(e){let t,n;if(Q().getBool("WEBGL_FENCE_API_ENABLED")){let r=e,a=r.fenceSync(r.SYNC_GPU_COMMANDS_COMPLETE,0);e.flush(),n=()=>{let s=r.clientWaitSync(a,0,0);return s===r.ALREADY_SIGNALED||s===r.CONDITION_SATISFIED},t=a}else Q().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0?(t=this.beginQuery(),this.endQuery(),n=()=>this.isQueryAvailable(t,Q().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))):n=()=>!0;return{query:t,isFencePassed:n}}downloadMatrixFromPackedTexture(e,t,n){return this.downloadMatrixDriver(e,()=>d_(this.gl,t,n))}createProgram(e){this.throwIfDisposed();let t=this.gl,n=Tw(t,e),r=Yw(t),a=Ew(t);return xe(t,()=>t.attachShader(a,r)),xe(t,()=>t.attachShader(a,n)),Cw(t,a),this.debug&&up(t,a),this.vertexAttrsAreBound||(this.setProgram(a),this.vertexAttrsAreBound=s_(t,this.program,this.vertexBuffer)),a}deleteProgram(e){this.throwIfDisposed(),e===this.program&&(this.program=null),e!=null&&xe(this.gl,()=>this.gl.deleteProgram(e))}setProgram(e){this.throwIfDisposed(),this.program=e,this.program!=null&&this.debug&&up(this.gl,this.program),xe(this.gl,()=>this.gl.useProgram(e))}getUniformLocation(e,t,n=!0){return this.throwIfDisposed(),n?zw(this.gl,e,t):Pw(this.gl,e,t)}getAttributeLocation(e,t){return this.throwIfDisposed(),xe(this.gl,()=>this.gl.getAttribLocation(e,t))}getUniformLocationNoThrow(e,t){return this.throwIfDisposed(),this.gl.getUniformLocation(e,t)}setInputMatrixTexture(e,t,n){this.throwIfDisposed(),this.throwIfNoProgram(),Lw(this.gl,e,t,n)}setOutputMatrixTexture(e,t,n){this.setOutputMatrixTextureDriver(e,n,t)}setOutputPackedMatrixTexture(e,t,n){this.throwIfDisposed();let[r,a]=Sl(t,n);this.setOutputMatrixTextureDriver(e,r,a)}setOutputMatrixWriteRegion(e,t,n,r){this.setOutputMatrixWriteRegionDriver(n,e,r,t)}setOutputPackedMatrixWriteRegion(e,t,n,r){throw new Error("setOutputPackedMatrixWriteRegion not implemented.")}debugValidate(){this.program!=null&&up(this.gl,this.program),fc(this.gl)}executeProgram(){this.throwIfDisposed(),this.throwIfNoProgram();let e=this.gl;this.debug&&this.debugValidate(),xe(e,()=>e.drawElements(e.TRIANGLES,6,e.UNSIGNED_SHORT,0))}blockUntilAllProgramsCompleted(){this.throwIfDisposed(),xe(this.gl,()=>this.gl.finish())}getQueryTimerExtension(){return this.disjointQueryTimerExtension==null&&(this.disjointQueryTimerExtension=pc(this.gl,Q().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2?"EXT_disjoint_timer_query_webgl2":"EXT_disjoint_timer_query")),this.disjointQueryTimerExtension}getQueryTimerExtensionWebGL2(){return this.getQueryTimerExtension()}getQueryTimerExtensionWebGL1(){return this.getQueryTimerExtension()}beginQuery(){if(Q().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let n=this.gl,r=this.getQueryTimerExtensionWebGL2(),a=n.createQuery();return n.beginQuery(r.TIME_ELAPSED_EXT,a),a}let e=this.getQueryTimerExtensionWebGL1(),t=e.createQueryEXT();return e.beginQueryEXT(e.TIME_ELAPSED_EXT,t),t}endQuery(){if(Q().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let t=this.gl,n=this.getQueryTimerExtensionWebGL2();t.endQuery(n.TIME_ELAPSED_EXT);return}let e=this.getQueryTimerExtensionWebGL1();e.endQueryEXT(e.TIME_ELAPSED_EXT)}async waitForQueryAndGetTime(e){return await k.repeatedTry(()=>this.disposed||this.isQueryAvailable(e,Q().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))),this.getQueryTime(e,Q().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))}getQueryTime(e,t){if(t===0)return null;if(t===2){let n=this.gl;return n.getQueryParameter(e,n.QUERY_RESULT)/1e6}else{let n=this.getQueryTimerExtensionWebGL1();return n.getQueryObjectEXT(e,n.QUERY_RESULT_EXT)/1e6}}isQueryAvailable(e,t){if(t===0)return!0;if(t===2){let n=this.gl,r=this.getQueryTimerExtensionWebGL2(),a=n.getQueryParameter(e,n.QUERY_RESULT_AVAILABLE);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(r.GPU_DISJOINT_EXT)),a&&!this.disjoint}else{let n=this.getQueryTimerExtensionWebGL1(),r=n.getQueryObjectEXT(e,n.QUERY_RESULT_AVAILABLE_EXT);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(n.GPU_DISJOINT_EXT)),r&&!this.disjoint}}pollFence(e){return new Promise(t=>{this.addItemToPoll(()=>e.isFencePassed(),()=>t())})}pollItems(){let e=JL(this.itemsToPoll.map(t=>t.isDoneFn));for(let t=0;t<=e;++t){let{resolveFn:n}=this.itemsToPoll[t];n()}this.itemsToPoll=this.itemsToPoll.slice(e+1)}addItemToPoll(e,t){this.itemsToPoll.push({isDoneFn:e,resolveFn:t}),!(this.itemsToPoll.length>1)&&k.repeatedTry(()=>(this.pollItems(),this.itemsToPoll.length===0))}bindTextureToFrameBuffer(e){this.throwIfDisposed(),cp(this.gl,e,this.framebuffer),this.debug&&fc(this.gl)}unbindTextureToFrameBuffer(){this.outputTexture!=null?(cp(this.gl,this.outputTexture,this.framebuffer),this.debug&&fc(this.gl)):Tm(this.gl,this.framebuffer)}downloadMatrixDriver(e,t){this.bindTextureToFrameBuffer(e);let n=t();return this.unbindTextureToFrameBuffer(),n}setOutputMatrixTextureDriver(e,t,n){this.throwIfDisposed();let r=this.gl;cp(r,e,this.framebuffer),this.debug&&fc(r),this.outputTexture=e,xe(r,()=>r.viewport(0,0,t,n)),xe(r,()=>r.scissor(0,0,t,n))}setOutputMatrixWriteRegionDriver(e,t,n,r){this.throwIfDisposed(),xe(this.gl,()=>this.gl.scissor(e,t,n,r))}throwIfDisposed(){if(this.disposed)throw new Error("Attempted to use disposed GPGPUContext.")}throwIfNoProgram(){if(this.program==null)throw new Error("No GPU program is currently set.")}};function JL(e){let t=0;for(;t<e.length&&e[t]();++t);return t-1}var{getBroadcastDims:p_}=R;function oW(e,t,n,r){let a=[];e.forEach(p=>{let f=k.sizeFromShape(p.shapeInfo.logicalShape);p.shapeInfo.isUniform?a.push(`uniform float ${p.name}${f>1?`[${f}]`:""};`):(a.push(`uniform sampler2D ${p.name};`),a.push(`uniform int offset${p.name};`))});let s=a.join(`
|
|
`),i=e.map(p=>QL(p,t,r)).join(`
|
|
`),o=t.texShape,l=cn(),u=nW(l),c,h,d=sW(l);return t.isPacked?(c=eW(t.logicalShape,o),h=aW(l)):(c=tW(t.logicalShape,o),h=rW(l)),r&&(d+=iW),[d,u,h,s,c,i,n].join(`
|
|
`)}function Tl(e){let t=e.shapeInfo.logicalShape;switch(t.length){case 0:return lW(e);case 1:return uW(e);case 2:return cW(e);case 3:return hW(e);case 4:return dW(e);case 5:return pW(e);case 6:return fW(e);default:throw new Error(`${t.length}-D input sampling is not yet supported`)}}function f_(e){switch(e.shapeInfo.logicalShape.length){case 0:return mW(e);case 1:return AW(e);case 2:return yW(e);case 3:return gW(e);default:return xW(e)}}function QL(e,t,n=!1){let r="";n?r+=f_(e):r+=Tl(e);let a=e.shapeInfo.logicalShape,s=t.logicalShape;return a.length<=s.length&&(n?r+=wW(e,t):r+=_W(e,t)),r}function eW(e,t){switch(e.length){case 0:return m_();case 1:return bW(e,t);case 2:return NW(e,t);case 3:return vW(e,t);default:return kW(e,t)}}function tW(e,t){switch(e.length){case 0:return m_();case 1:return IW(e,t);case 2:return RW(e,t);case 3:return SW(e,t);case 4:return TW(e,t);case 5:return EW(e,t);case 6:return CW(e,t);default:throw new Error(`${e.length}-D output sampling is not yet supported`)}}function nW(e){return`
|
|
float sampleTexture(sampler2D textureSampler, vec2 uv) {
|
|
return ${e.texture2D}(textureSampler, uv).r;
|
|
}
|
|
`}function rW(e){return`
|
|
void setOutput(float val) {
|
|
${e.output} = vec4(val, 0, 0, 0);
|
|
}
|
|
`}function aW(e){return`
|
|
void setOutput(vec4 val) {
|
|
${e.output} = val;
|
|
}
|
|
`}function sW(e){return`${e.version}
|
|
precision highp float;
|
|
precision highp int;
|
|
precision highp sampler2D;
|
|
${e.varyingFs} vec2 resultUV;
|
|
${e.defineOutput}
|
|
const vec2 halfCR = vec2(0.5, 0.5);
|
|
|
|
struct ivec5
|
|
{
|
|
int x;
|
|
int y;
|
|
int z;
|
|
int w;
|
|
int u;
|
|
};
|
|
|
|
struct ivec6
|
|
{
|
|
int x;
|
|
int y;
|
|
int z;
|
|
int w;
|
|
int u;
|
|
int v;
|
|
};
|
|
|
|
uniform float NAN;
|
|
${e.defineSpecialNaN}
|
|
${e.defineSpecialInf}
|
|
${e.defineRound}
|
|
|
|
int imod(int x, int y) {
|
|
return x - y * (x / y);
|
|
}
|
|
|
|
int idiv(int a, int b, float sign) {
|
|
int res = a / b;
|
|
int mod = imod(a, b);
|
|
if (sign < 0. && mod != 0) {
|
|
res -= 1;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
//Based on the work of Dave Hoskins
|
|
//https://www.shadertoy.com/view/4djSRW
|
|
#define HASHSCALE1 443.8975
|
|
float random(float seed){
|
|
vec2 p = resultUV * seed;
|
|
vec3 p3 = fract(vec3(p.xyx) * HASHSCALE1);
|
|
p3 += dot(p3, p3.yzx + 19.19);
|
|
return fract((p3.x + p3.y) * p3.z);
|
|
}
|
|
|
|
${FW}
|
|
${MW}
|
|
${OW}
|
|
`}var FW=`
|
|
vec2 uvFromFlat(int texNumR, int texNumC, int index) {
|
|
int texR = index / texNumC;
|
|
int texC = index - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
vec2 packedUVfrom1D(int texNumR, int texNumC, int index) {
|
|
int texelIndex = index / 2;
|
|
int texR = texelIndex / texNumC;
|
|
int texC = texelIndex - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,MW=`
|
|
vec2 packedUVfrom2D(int texelsInLogicalRow, int texNumR,
|
|
int texNumC, int row, int col) {
|
|
int texelIndex = (row / 2) * texelsInLogicalRow + (col / 2);
|
|
int texR = texelIndex / texNumC;
|
|
int texC = texelIndex - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,OW=`
|
|
vec2 packedUVfrom3D(int texNumR, int texNumC,
|
|
int texelsInBatch, int texelsInLogicalRow, int b,
|
|
int row, int col) {
|
|
int index = b * texelsInBatch + (row / 2) * texelsInLogicalRow + (col / 2);
|
|
int texR = index / texNumC;
|
|
int texC = index - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,iW=`
|
|
float getChannel(vec4 frag, vec2 innerDims) {
|
|
vec2 modCoord = mod(innerDims, 2.);
|
|
return modCoord.x == 0. ?
|
|
(modCoord.y == 0. ? frag.r : frag.g) :
|
|
(modCoord.y == 0. ? frag.b : frag.a);
|
|
}
|
|
float getChannel(vec4 frag, int dim) {
|
|
float modCoord = mod(float(dim), 2.);
|
|
return modCoord == 0. ? frag.r : frag.g;
|
|
}
|
|
`;function m_(){return`
|
|
int getOutputCoords() {
|
|
return 0;
|
|
}
|
|
`}function bW(e,t){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];return n[0]===1?`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.x * ${n[1]}.0);
|
|
}
|
|
`:n[1]===1?`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.y * ${n[0]}.0);
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${n[0]}, ${n[1]}));
|
|
return 2 * (resTexRC.x * ${n[1]} + resTexRC.y);
|
|
}
|
|
`}function IW(e,t){return t[0]===1?`
|
|
int getOutputCoords() {
|
|
return int(resultUV.x * ${t[1]}.0);
|
|
}
|
|
`:t[1]===1?`
|
|
int getOutputCoords() {
|
|
return int(resultUV.y * ${t[0]}.0);
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
return resTexRC.x * ${t[1]} + resTexRC.y;
|
|
}
|
|
`}function vW(e,t){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],r=Math.ceil(e[2]/2),a=r*Math.ceil(e[1]/2);return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${n[0]}, ${n[1]}));
|
|
int index = resTexRC.x * ${n[1]} + resTexRC.y;
|
|
|
|
int b = index / ${a};
|
|
index -= b * ${a};
|
|
|
|
int r = 2 * (index / ${r});
|
|
int c = imod(index, ${r}) * 2;
|
|
|
|
return ivec3(b, r, c);
|
|
}
|
|
`}function SW(e,t){let n=_i(["r","c","d"],e);return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
${n}
|
|
return ivec3(r, c, d);
|
|
}
|
|
`}function kW(e,t){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],r=Math.ceil(e[e.length-1]/2),a=r*Math.ceil(e[e.length-2]/2),s=a,i="",o="b, r, c";for(let l=2;l<e.length-1;l++)s*=e[e.length-l-1],i=`
|
|
int b${l} = index / ${s};
|
|
index -= b${l} * ${s};
|
|
`+i,o=`b${l}, `+o;return`
|
|
ivec${e.length} getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${n[0]}, ${n[1]}));
|
|
int index = resTexRC.x * ${n[1]} + resTexRC.y;
|
|
|
|
${i}
|
|
|
|
int b = index / ${a};
|
|
index -= b * ${a};
|
|
|
|
int r = 2 * (index / ${r});
|
|
int c = imod(index, ${r}) * 2;
|
|
|
|
return ivec${e.length}(${o});
|
|
}
|
|
`}function TW(e,t){let n=_i(["r","c","d","d2"],e);return`
|
|
ivec4 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
${n}
|
|
return ivec4(r, c, d, d2);
|
|
}
|
|
`}function EW(e,t){let n=_i(["r","c","d","d2","d3"],e);return`
|
|
ivec5 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx * vec2(${t[0]},
|
|
${t[1]}));
|
|
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
|
|
${n}
|
|
|
|
ivec5 outShape = ivec5(r, c, d, d2, d3);
|
|
return outShape;
|
|
}
|
|
`}function CW(e,t){let n=_i(["r","c","d","d2","d3","d4"],e);return`
|
|
ivec6 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
|
|
${n}
|
|
|
|
ivec6 result = ivec6(r, c, d, d2, d3, d4);
|
|
return result;
|
|
}
|
|
`}function NW(e,t){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];if(k.arraysEqual(e,t))return`
|
|
ivec2 getOutputCoords() {
|
|
return 2 * ivec2(resultUV.yx * vec2(${n[0]}, ${n[1]}));
|
|
}
|
|
`;let r=Math.ceil(e[1]/2);return`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${n[0]}, ${n[1]}));
|
|
|
|
int index = resTexRC.x * ${n[1]} + resTexRC.y;
|
|
int r = 2 * (index / ${r});
|
|
int c = imod(index, ${r}) * 2;
|
|
|
|
return ivec2(r, c);
|
|
}
|
|
`}function RW(e,t){return k.arraysEqual(e,t)?`
|
|
ivec2 getOutputCoords() {
|
|
return ivec2(resultUV.yx * vec2(${t[0]}, ${t[1]}));
|
|
}
|
|
`:e[1]===1?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
return ivec2(index, 0);
|
|
}
|
|
`:e[0]===1?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
return ivec2(0, index);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
int r = index / ${e[1]};
|
|
int c = index - r * ${e[1]};
|
|
return ivec2(r, c);
|
|
}
|
|
`}function bi(e){return`offset${e}`}function mW(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1),r=cn();return`
|
|
vec4 ${n}() {
|
|
return ${r.texture2D}(${t}, halfCR);
|
|
}
|
|
`}function lW(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1);if(e.shapeInfo.isUniform)return`float ${n}() {return ${t};}`;let[r,a]=e.shapeInfo.texShape;if(r===1&&a===1)return`
|
|
float ${n}() {
|
|
return sampleTexture(${t}, halfCR);
|
|
}
|
|
`;let[s,i]=e.shapeInfo.texShape,o=bi(t);return`
|
|
float ${n}() {
|
|
vec2 uv = uvFromFlat(${s}, ${i}, ${o});
|
|
return sampleTexture(${t}, uv);
|
|
}
|
|
`}function AW(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1),r=e.shapeInfo.texShape,a=[Math.ceil(r[0]/2),Math.ceil(r[1]/2)],s=cn();return`
|
|
vec4 ${n}(int index) {
|
|
vec2 uv = packedUVfrom1D(
|
|
${a[0]}, ${a[1]}, index);
|
|
return ${s.texture2D}(${t}, uv);
|
|
}
|
|
`}function uW(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1);if(e.shapeInfo.isUniform)return`
|
|
float ${n}(int index) {
|
|
${El(e)}
|
|
}
|
|
`;let r=e.shapeInfo.texShape,a=r[0],s=r[1];if(s===1&&a===1)return`
|
|
float ${n}(int index) {
|
|
return sampleTexture(${t}, halfCR);
|
|
}
|
|
`;let i=bi(t);return s===1?`
|
|
float ${n}(int index) {
|
|
vec2 uv = vec2(0.5, (float(index + ${i}) + 0.5) / ${a}.0);
|
|
return sampleTexture(${t}, uv);
|
|
}
|
|
`:a===1?`
|
|
float ${n}(int index) {
|
|
vec2 uv = vec2((float(index + ${i}) + 0.5) / ${s}.0, 0.5);
|
|
return sampleTexture(${t}, uv);
|
|
}
|
|
`:`
|
|
float ${n}(int index) {
|
|
vec2 uv = uvFromFlat(${a}, ${s}, index + ${i});
|
|
return sampleTexture(${t}, uv);
|
|
}
|
|
`}function yW(e){let t=e.shapeInfo.logicalShape,n=e.name,r="get"+n.charAt(0).toUpperCase()+n.slice(1),a=e.shapeInfo.texShape,s=a[0],i=a[1],o=cn();if(a!=null&&k.arraysEqual(t,a))return`
|
|
vec4 ${r}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${i}.0, ${s}.0);
|
|
|
|
return ${o.texture2D}(${n}, uv);
|
|
}
|
|
`;let l=[Math.ceil(a[0]/2),Math.ceil(a[1]/2)],u=Math.ceil(t[1]/2);return`
|
|
vec4 ${r}(int row, int col) {
|
|
vec2 uv = packedUVfrom2D(${u}, ${l[0]}, ${l[1]}, row, col);
|
|
return ${o.texture2D}(${n}, uv);
|
|
}
|
|
`}function cW(e){let t=e.shapeInfo.logicalShape,n=e.name,r="get"+n.charAt(0).toUpperCase()+n.slice(1),a=e.shapeInfo.texShape;if(a!=null&&k.arraysEqual(t,a)){let h=a[0],d=a[1];return`
|
|
float ${r}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${d}.0, ${h}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}let{newShape:s,keptDims:i}=k.squeezeShape(t),o=s;if(o.length<t.length){let h=Cl(e,o),d=["row","col"];return`
|
|
${Tl(h)}
|
|
float ${r}(int row, int col) {
|
|
return ${r}(${Rl(d,i)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${r}(int row, int col) {
|
|
int index = round(dot(vec2(row, col), vec2(${t[1]}, 1)));
|
|
${El(e)}
|
|
}
|
|
`;let l=a[0],u=a[1],c=bi(n);return u===1?`
|
|
float ${r}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${c}), vec3(${t[1]}, 1, 1));
|
|
vec2 uv = vec2(0.5, (index + 0.5) / ${l}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:l===1?`
|
|
float ${r}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${c}), vec3(${t[1]}, 1, 1));
|
|
vec2 uv = vec2((index + 0.5) / ${u}.0, 0.5);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${t[1]} + col + ${c};
|
|
vec2 uv = uvFromFlat(${l}, ${u}, index);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function gW(e){let t=e.shapeInfo.logicalShape,n=e.name,r="get"+n.charAt(0).toUpperCase()+n.slice(1),a=e.shapeInfo.texShape,s=[Math.ceil(a[0]/2),Math.ceil(a[1]/2)];if(t[0]===1){let h=t.slice(1),d=[1,2],p=Cl(e,h),f=["b","row","col"];return`
|
|
${f_(p)}
|
|
vec4 ${r}(int b, int row, int col) {
|
|
return ${r}(${Rl(f,d)});
|
|
}
|
|
`}let i=s[0],o=s[1],l=Math.ceil(t[2]/2),u=l*Math.ceil(t[1]/2),c=cn();return`
|
|
vec4 ${r}(int b, int row, int col) {
|
|
vec2 uv = packedUVfrom3D(
|
|
${i}, ${o}, ${u}, ${l}, b, row, col);
|
|
return ${c.texture2D}(${n}, uv);
|
|
}
|
|
`}function hW(e){let t=e.shapeInfo.logicalShape,n=e.name,r="get"+n.charAt(0).toUpperCase()+n.slice(1),a=t[1]*t[2],s=t[2],{newShape:i,keptDims:o}=k.squeezeShape(t),l=i;if(l.length<t.length){let f=Cl(e,l),m=["row","col","depth"];return`
|
|
${Tl(f)}
|
|
float ${r}(int row, int col, int depth) {
|
|
return ${r}(${Rl(m,o)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${r}(int row, int col, int depth) {
|
|
int index = round(dot(vec3(row, col, depth),
|
|
vec3(${a}, ${s}, 1)));
|
|
${El(e)}
|
|
}
|
|
`;let u=e.shapeInfo.texShape,c=u[0],h=u[1],d=e.shapeInfo.flatOffset;if(h===a&&d==null)return`
|
|
float ${r}(int row, int col, int depth) {
|
|
float texR = float(row);
|
|
float texC = dot(vec2(col, depth), vec2(${s}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${h}.0, ${c}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;if(h===s&&d==null)return`
|
|
float ${r}(int row, int col, int depth) {
|
|
float texR = dot(vec2(row, col), vec2(${t[1]}, 1));
|
|
float texC = float(depth);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${h}.0, ${c}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let p=bi(n);return`
|
|
float ${r}(int row, int col, int depth) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${a} + col * ${s} + depth + ${p};
|
|
vec2 uv = uvFromFlat(${c}, ${h}, index);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function xW(e){let t=e.shapeInfo.logicalShape,n=t.length,r=e.name,a="get"+r.charAt(0).toUpperCase()+r.slice(1),s=e.shapeInfo.texShape,i=[Math.ceil(s[0]/2),Math.ceil(s[1]/2)],o=i[0],l=i[1],u=Math.ceil(t[n-1]/2),c=u*Math.ceil(t[n-2]/2),h="int b, int row, int col",d=`b * ${c} + (row / 2) * ${u} + (col / 2)`;for(let f=2;f<n-1;f++)h=`int b${f}, `+h,c*=t[n-f-1],d=`b${f} * ${c} + `+d;let p=cn();return`
|
|
vec4 ${a}(${h}) {
|
|
int index = ${d};
|
|
int texR = index / ${l};
|
|
int texC = index - texR * ${l};
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${l}, ${o});
|
|
return ${p.texture2D}(${r}, uv);
|
|
}
|
|
`}function dW(e){let t=e.shapeInfo.logicalShape,n=e.name,r="get"+n.charAt(0).toUpperCase()+n.slice(1),a=t[3],s=t[2]*a,i=t[1]*s,{newShape:o,keptDims:l}=k.squeezeShape(t);if(o.length<t.length){let f=Cl(e,o),m=["row","col","depth","depth2"];return`
|
|
${Tl(f)}
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
return ${r}(${Rl(m,l)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
int index = round(dot(vec4(row, col, depth, depth2),
|
|
vec4(${i}, ${s}, ${a}, 1)));
|
|
${El(e)}
|
|
}
|
|
`;let u=e.shapeInfo.flatOffset,c=e.shapeInfo.texShape,h=c[0],d=c[1];if(d===i&&u==null)return`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
float texR = float(row);
|
|
float texC =
|
|
dot(vec3(col, depth, depth2),
|
|
vec3(${s}, ${a}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${d}.0, ${h}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;if(d===a&&u==null)return`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
float texR = dot(vec3(row, col, depth),
|
|
vec3(${t[1]*t[2]}, ${t[2]}, 1));
|
|
float texC = float(depth2);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${d}.0, ${h}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let p=bi(n);return`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${i} + col * ${s} +
|
|
depth * ${a} + depth2;
|
|
vec2 uv = uvFromFlat(${h}, ${d}, index + ${p});
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function pW(e){let t=e.shapeInfo.logicalShape,n=e.name,r="get"+n.charAt(0).toUpperCase()+n.slice(1),a=t[4],s=t[3]*a,i=t[2]*s,o=t[1]*i,{newShape:l,keptDims:u}=k.squeezeShape(t);if(l.length<t.length){let m=Cl(e,l),A=["row","col","depth","depth2","depth3"];return`
|
|
${Tl(m)}
|
|
float ${r}(int row, int col, int depth, int depth2, int depth3) {
|
|
return ${r}(${Rl(A,u)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${r}(int row, int col, int depth, int depth2, int depth3) {
|
|
float index = dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${o}, ${i}, ${s}, ${a})) +
|
|
depth3;
|
|
${El(e)}
|
|
}
|
|
`;let c=e.shapeInfo.flatOffset,h=e.shapeInfo.texShape,d=h[0],p=h[1];if(p===o&&c==null)return`
|
|
float ${r}(int row, int col, int depth, int depth2, int depth3) {
|
|
int texR = row;
|
|
float texC = dot(vec4(col, depth, depth2, depth3),
|
|
vec4(${i}, ${s}, ${a}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${p}.0, ${d}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;if(p===a&&c==null)return`
|
|
float ${r}(int row, int col, int depth, int depth2, int depth3) {
|
|
float texR = dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${t[1]*t[2]*t[3]},
|
|
${t[2]*t[3]}, ${t[3]}, 1));
|
|
int texC = depth3;
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${p}.0, ${d}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let f=bi(n);return`
|
|
float ${r}(int row, int col, int depth, int depth2, int depth3) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${o} + col * ${i} + depth * ${s} +
|
|
depth2 * ${a} + depth3 + ${f};
|
|
vec2 uv = uvFromFlat(${d}, ${p}, index);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function fW(e){let t=e.shapeInfo.logicalShape,n=e.name,r="get"+n.charAt(0).toUpperCase()+n.slice(1),{newShape:a,keptDims:s}=k.squeezeShape(t);if(a.length<t.length){let A=Cl(e,a),y=["row","col","depth","depth2","depth3","depth4"];return`
|
|
${Tl(A)}
|
|
float ${r}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
return ${r}(${Rl(y,s)});
|
|
}
|
|
`}let i=t[5],o=t[4]*i,l=t[3]*o,u=t[2]*l,c=t[1]*u;if(e.shapeInfo.isUniform)return`
|
|
float ${r}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
int index = round(dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${c}, ${u}, ${l}, ${o})) +
|
|
dot(
|
|
vec2(depth3, depth4),
|
|
vec2(${i}, 1)));
|
|
${El(e)}
|
|
}
|
|
`;let h=e.shapeInfo.flatOffset,d=e.shapeInfo.texShape,p=d[0],f=d[1];if(f===c&&h==null)return`
|
|
float ${r}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
int texR = row;
|
|
float texC = dot(vec4(col, depth, depth2, depth3),
|
|
vec4(${u}, ${l}, ${o}, ${i})) +
|
|
float(depth4);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${f}.0, ${p}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;if(f===i&&h==null)return`
|
|
float ${r}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
float texR = dot(vec4(row, col, depth, depth2),
|
|
vec4(${t[1]*t[2]*t[3]*t[4]},
|
|
${t[2]*t[3]*t[4]},
|
|
${t[3]*t[4]},
|
|
${t[4]})) + float(depth3);
|
|
int texC = depth4;
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${f}.0, ${p}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let m=bi(n);return`
|
|
float ${r}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${c} + col * ${u} + depth * ${l} +
|
|
depth2 * ${o} + depth3 * ${i} + depth4 + ${m};
|
|
vec2 uv = uvFromFlat(${p}, ${f}, index);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function El(e){let t=e.name,n=k.sizeFromShape(e.shapeInfo.logicalShape);return n<2?`return ${t};`:`
|
|
for (int i = 0; i < ${n}; i++) {
|
|
if (i == index) {
|
|
return ${t}[i];
|
|
}
|
|
}
|
|
`}function wW(e,t){let n=e.name,r=n.charAt(0).toUpperCase()+n.slice(1),a="get"+r+"AtOutCoords",s=e.shapeInfo.logicalShape.length,i=t.logicalShape.length,o=p_(e.shapeInfo.logicalShape,t.logicalShape),l=ct(i),u=i-s,c,h=["x","y","z","w","u","v"];s===0?c="":i<2&&o.length>=1?c="coords = 0;":c=o.map(A=>`coords.${h[A+u]} = 0;`).join(`
|
|
`);let d="";i<2&&s>0?d="coords":d=e.shapeInfo.logicalShape.map((A,y)=>`coords.${h[y+u]}`).join(", ");let p="return outputValue;",f=k.sizeFromShape(e.shapeInfo.logicalShape)===1,m=k.sizeFromShape(t.logicalShape)===1;if(s===1&&!f&&!m)p=`
|
|
return vec4(outputValue.xy, outputValue.xy);
|
|
`;else if(f&&!m)i===1?p=`
|
|
return vec4(outputValue.x, outputValue.x, 0., 0.);
|
|
`:p=`
|
|
return vec4(outputValue.x);
|
|
`;else if(o.length){let A=s-2,y=s-1;o.indexOf(A)>-1&&o.indexOf(y)>-1?p="return vec4(outputValue.x);":o.indexOf(A)>-1?p="return vec4(outputValue.x, outputValue.y, outputValue.x, outputValue.y);":o.indexOf(y)>-1&&(p="return vec4(outputValue.xx, outputValue.zz);")}return`
|
|
vec4 ${a}() {
|
|
${l} coords = getOutputCoords();
|
|
${c}
|
|
vec4 outputValue = get${r}(${d});
|
|
${p}
|
|
}
|
|
`}function _W(e,t){let n=e.name,r=n.charAt(0).toUpperCase()+n.slice(1),a="get"+r+"AtOutCoords",s=t.texShape,i=e.shapeInfo.texShape,o=e.shapeInfo.logicalShape.length,l=t.logicalShape.length;if(!e.shapeInfo.isUniform&&o===l&&e.shapeInfo.flatOffset==null&&k.arraysEqual(i,s))return`
|
|
float ${a}() {
|
|
return sampleTexture(${n}, resultUV);
|
|
}
|
|
`;let u=ct(l),c=p_(e.shapeInfo.logicalShape,t.logicalShape),h=l-o,d,p=["x","y","z","w","u","v"];o===0?d="":l<2&&c.length>=1?d="coords = 0;":d=c.map(m=>`coords.${p[m+h]} = 0;`).join(`
|
|
`);let f="";return l<2&&o>0?f="coords":f=e.shapeInfo.logicalShape.map((m,A)=>`coords.${p[A+h]}`).join(", "),`
|
|
float ${a}() {
|
|
${u} coords = getOutputCoords();
|
|
${d}
|
|
return get${r}(${f});
|
|
}
|
|
`}function ct(e){if(e<=1)return"int";if(e===2)return"ivec2";if(e===3)return"ivec3";if(e===4)return"ivec4";if(e===5)return"ivec5";if(e===6)return"ivec6";throw Error(`GPU for rank ${e} is not yet supported`)}function Cl(e,t){let n=JSON.parse(JSON.stringify(e));return n.shapeInfo.logicalShape=t,n}function Rl(e,t){return t.map(n=>e[n]).join(", ")}function DW(e,t,n,r){let a=t.userCode,s=n.map((p,f)=>{let m={logicalShape:p.shape,texShape:p.isUniform?null:p.texData.texShape,isUniform:p.isUniform,isPacked:p.isUniform?!1:p.texData.isPacked,flatOffset:null};return p.texData!=null&&p.texData.slice!=null&&p.texData.slice.flatOffset>0&&(m.flatOffset=p.texData.slice.flatOffset),{name:t.variableNames[f],shapeInfo:m}}),i=s.map(p=>p.shapeInfo),o={logicalShape:r.shape,texShape:r.texData.texShape,isUniform:!1,isPacked:r.texData.isPacked,flatOffset:null},l=oW(s,o,a,t.packedInputs),u=e.createProgram(l),c=null,h=e.getUniformLocation(u,"NAN",!1);Q().getNumber("WEBGL_VERSION")===1&&(c=e.getUniformLocation(u,"INFINITY",!1));let d={};for(let p=0;p<t.variableNames.length;p++){let f=t.variableNames[p],m=!1;d[f]=e.getUniformLocation(u,f,m),d[`offset${f}`]=e.getUniformLocation(u,`offset${f}`,m)}return{program:t,source:l,webGLProgram:u,uniformLocations:d,inShapeInfos:i,outShapeInfo:o,infLoc:c,nanLoc:h}}function A_(e,t){if(e.length!==t.length)throw Error(`Binary was compiled with ${e.length} inputs, but was executed with ${t.length} inputs`);e.forEach((n,r)=>{let a=n.logicalShape,s=t[r],i=s.shape;if(!k.arraysEqual(a,i))throw Error(`Binary was compiled with different shapes than the current args. Shapes ${a} and ${i} must match`);if(n.isUniform&&s.isUniform)return;let o=n.texShape,l=s.isUniform?null:s.texData.texShape;if(!k.arraysEqual(o,l))throw Error(`Binary was compiled with different texture shapes than the current args. Shape ${o} and ${l} must match`)})}function $W(e,t,n,r,a){A_(t.inShapeInfos,n),A_([t.outShapeInfo],[r]);let s=r.texData.texture,i=r.texData.texShape;r.texData.isPacked?e.setOutputPackedMatrixTexture(s,i[0],i[1]):e.setOutputMatrixTexture(s,i[0],i[1]),e.setProgram(t.webGLProgram),Q().getNumber("WEBGL_VERSION")===1&&t.infLoc!==null&&e.gl.uniform1f(t.infLoc,Infinity),t.nanLoc!==null&&e.gl.uniform1f(t.nanLoc,NaN),n.forEach((o,l)=>{let u=t.program.variableNames[l],c=t.uniformLocations[u],h=t.uniformLocations[`offset${u}`];if(c!=null){if(o.isUniform){if(k.sizeFromShape(o.shape)<2)e.gl.uniform1f(c,o.uniformValues[0]);else{let d=o.uniformValues;d instanceof Float32Array||(d=new Float32Array(d)),e.gl.uniform1fv(c,d)}return}o.texData.slice!=null&&h!=null&&e.gl.uniform1i(h,o.texData.slice.flatOffset),e.setInputMatrixTexture(o.texData.texture,c,l)}}),a!=null&&a(e,t.webGLProgram),e.executeProgram()}function zW(e,t,n){let r="";t.concat(n).forEach(i=>{let o=i.texData!=null&&i.texData.slice!=null&&i.texData.slice.flatOffset>0,l=i.isUniform?"uniform":i.texData.texShape;r+=`${i.shape}_${l}_${o}`});let a=e.userCode,s=e.constructor.name;return s+="_"+r+"_"+a,s}var{addImpl:PW,bincountImpl:y_,bincountReduceImpl:LW,ceilImpl:WW,concatImpl:BW,expImpl:VW,expm1Impl:UW,floorImpl:jW,gatherV2Impl:GW,greaterImpl:HW,lessImpl:qW,linSpaceImpl:XW,logImpl:KW,maxImpl:ZW,maximumImpl:YW,minimumImpl:JW,multiplyImpl:QW,negImpl:eB,prodImpl:tB,rangeImpl:nB,rsqrtImpl:rB,simpleAbsImpl:g_,sliceImpl:aB,stridedSliceImpl:sB,subImpl:iB,tileImpl:oB,topKImpl:lB,transposeImpl:Lm,uniqueImpl:uB}=dm;function x_(e,t){return["x","y","z","w","u","v"].slice(0,t).map(n=>`${e}.${n}`)}function hn(e,t){return t===1?[e]:x_(e,t)}function cB(e,t){if(e===1)return"rc";let n="";for(let r=0;r<e;r++)n+=t[r],r<e-1&&(n+=",");return n}var fB=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outputShape=e;let t=e.length;if(t===0)this.userCode=`
|
|
void main() {
|
|
setOutput(vec4(getA(), 0., 0., 0.));
|
|
}
|
|
`;else{let n=hn("rc",t),r=ct(t),a=hB(t,e,n),s=dB(t,e[e.length-1],e[e.length-2],n),i=pB(e,n);this.userCode=`
|
|
void main() {
|
|
${r} rc = getOutputCoords();
|
|
|
|
if(${a}) {
|
|
setOutput(vec4(0));
|
|
} else {
|
|
${s}
|
|
|
|
setOutput(vec4(${i}));
|
|
}
|
|
}
|
|
`}}};function mB(e,t){let n=[];for(let r=0;r<=1;r++)for(let a=0;a<=1;a++){let s=`${r===0?"r":"rp1"}, ${a===0?"c":"cp1"}`;for(let i=2;i<e;i++)s=`${t[t.length-1-i]},`+s;n.push(s)}return n}function hB(e,t,n){if(e===1)return`rc > ${t[0]}`;let r="";for(let a=e-2;a<e;a++)r+=`${n[a]} >= ${t[a]}`,a<e-1&&(r+="||");return r}function dB(e,t,n,r){if(e===1)return"";let a=r.slice(-2);return`
|
|
int r = ${a[0]};
|
|
int c = ${a[1]};
|
|
int rp1 = r + 1;
|
|
int cp1 = c + 1;
|
|
|
|
bool cEdge = cp1 >= ${t};
|
|
bool rEdge = rp1 >= ${n};
|
|
`}function pB(e,t){let n=e.length,r=mB(n,t);return n===1?`getA(rc),
|
|
rc + 1 >= ${e[0]} ? 0. : getA(rc + 1),
|
|
0, 0`:`getA(${r[0]}),
|
|
cEdge ? 0. : getA(${r[1]}),
|
|
rEdge ? 0. : getA(${r[2]}),
|
|
rEdge || cEdge ? 0. : getA(${r[3]})`}var w_=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e;let n="";for(let r=0;r<4;r++){let a="thisRC = rc;";r%2==1&&(a+="thisRC.z += 1;"),r>1&&(a+="thisRC.y += 1;"),n+=`
|
|
${a}
|
|
${r>0?"if(thisRC.y < rows && thisRC.z < cols){":""}
|
|
int flatIndex = getFlatIndex(thisRC);
|
|
|
|
ivec3 inputRC = inputCoordsFromReshapedOutCoords(flatIndex);
|
|
vec2 inputRCInnerDims = vec2(float(inputRC.y),float(inputRC.z));
|
|
|
|
result[${r}] =
|
|
getChannel(getA(inputRC.x, inputRC.y, inputRC.z), inputRCInnerDims);
|
|
${r>0?"}":""}
|
|
`}this.userCode=`
|
|
${AB(t)}
|
|
${Mm(e)}
|
|
|
|
void main() {
|
|
ivec3 rc = getOutputCoords();
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
ivec3 thisRC;
|
|
int rows = ${e[1]};
|
|
int cols = ${e[2]};
|
|
|
|
${n}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}};function AB(e){return`
|
|
ivec3 inputCoordsFromReshapedOutCoords(int index) {
|
|
${_i(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
`}var yB=class{constructor(e){this.gpgpu=e,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0,this.freeTextures={},this.logEnabled=!1,this.usedTextures={}}acquireTexture(e,t,n){let r=b_(t,n),a=v_(e,r,n);a in this.freeTextures||(this.freeTextures[a]=[]),a in this.usedTextures||(this.usedTextures[a]=[]);let s=__(e,r,this.gpgpu.gl,this.gpgpu.textureConfig,n);if(this.freeTextures[a].length>0){this.numFreeTextures--,this.numUsedTextures++,this._numBytesFree-=s,this.log();let o=this.freeTextures[a].shift();return this.usedTextures[a].push(o),o}let i;return r===en.PACKED_2X2_FLOAT32?i=this.gpgpu.createPackedMatrixTexture(e[0],e[1]):r===en.PACKED_2X2_FLOAT16?i=this.gpgpu.createFloat16PackedMatrixTexture(e[0],e[1]):r===en.UNPACKED_FLOAT32?i=this.gpgpu.createFloat32MatrixTexture(e[0],e[1]):r===en.UNPACKED_FLOAT16?i=this.gpgpu.createFloat16MatrixTexture(e[0],e[1]):r===en.PACKED_4X1_UNSIGNED_BYTE&&(i=this.gpgpu.createUnsignedBytesMatrixTexture(e[0],e[1])),this.usedTextures[a].push(i),this.numUsedTextures++,this._numBytesAllocated+=s,this.log(),i}releaseTexture(e,t,n,r){if(this.freeTextures==null)return;let a=b_(n,r),s=v_(t,a,r);s in this.freeTextures||(this.freeTextures[s]=[]);let i=__(t,a,this.gpgpu.gl,this.gpgpu.textureConfig,r),o=Q().get("WEBGL_DELETE_TEXTURE_THRESHOLD");o!==-1&&this._numBytesAllocated>o?(this.gpgpu.deleteMatrixTexture(e),this._numBytesAllocated-=i):(this.freeTextures[s].push(e),this.numFreeTextures++,this._numBytesFree+=i),this.numUsedTextures--;let l=this.usedTextures[s],u=l.indexOf(e);if(u<0)throw new Error("Cannot release a texture that was never provided by this texture manager");l.splice(u,1),this.log()}log(){if(!this.logEnabled)return;let e=this.numFreeTextures+this.numUsedTextures;console.log("Free/Used",`${this.numFreeTextures} / ${this.numUsedTextures}`,`(${e})`);let t=this._numBytesFree/this._numBytesAllocated;console.log(`Bytes allocated: ${this._numBytesAllocated}`),console.log(`Bytes unused: ${this._numBytesFree} (${Math.round(100*t)}%)`)}get numBytesAllocated(){return this._numBytesAllocated}get numBytesFree(){return this._numBytesFree}getNumUsedTextures(){return this.numUsedTextures}getNumFreeTextures(){return this.numFreeTextures}dispose(){if(this.freeTextures!=null){for(let e in this.freeTextures)this.freeTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});for(let e in this.usedTextures)this.usedTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});this.freeTextures=null,this.usedTextures=null,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0}}};function gB(e,t){let n=e;if(t===n.R32F)return 4;if(t===n.R16F)return 2;if(t===n.RGBA32F||t===e.RGBA)return 16;if(t===n.RGBA16F)return 8;throw new Error(`Unknown internal format ${t}`)}function __(e,t,n,r,a){let s=xB(t,r),i;if(a){let[l,u]=Sl(e[0],e[1]);i=l*u}else{let[l,u]=yc(e[0],e[1]);i=l*u}let o=gB(n,s);return i*o}function xB(e,t){switch(e){case en.PACKED_2X2_FLOAT32:return zm(t);case en.PACKED_2X2_FLOAT16:return Pm(t);case en.UNPACKED_FLOAT32:return Om(t);case en.UNPACKED_FLOAT16:return Dm(t);case en.PACKED_4X1_UNSIGNED_BYTE:return $m(t);default:throw new Error(`Unknown physical texture type ${e}`)}}function wB(e){return Q().getBool("WEBGL_RENDER_FLOAT32_ENABLED")?e?en.PACKED_2X2_FLOAT32:en.UNPACKED_FLOAT32:e?en.PACKED_2X2_FLOAT16:en.UNPACKED_FLOAT16}function b_(e,t){if(e===Zn.UPLOAD)return en.PACKED_2X2_FLOAT32;if(e===Zn.RENDER||e==null)return wB(t);if(e===Zn.DOWNLOAD||e===Zn.PIXELS)return en.PACKED_4X1_UNSIGNED_BYTE;throw new Error(`Unknown logical texture type ${e}`)}function v_(e,t,n){return`${e[0]}_${e[1]}_${t}_${n}`}var Pa=class{constructor(e,t){this.variableNames=["A"],this.outputShape=e,this.userCode=`
|
|
float unaryOperation(float x) {
|
|
${t}
|
|
}
|
|
|
|
void main() {
|
|
float x = getAAtOutCoords();
|
|
float y = unaryOperation(x);
|
|
|
|
setOutput(y);
|
|
}
|
|
`}},yr="if (isnan(x)) return x;",_B="return x;",k_="return abs(x);",bB="return (x >= 0.0) ? x : (exp(x) - 1.0);",vB=yr+`
|
|
return (x < 0.0) ? 0.0 : x;
|
|
`,kB=yr+`
|
|
return (x < 0.0) ? 0.0 : min(6.0, x);
|
|
`,yp="return x;",NB="return x;",IB=`
|
|
vec4 result;
|
|
|
|
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
|
|
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
|
|
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
|
|
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
|
|
|
|
return result;
|
|
`,SB=`
|
|
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,TB=`
|
|
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,Fl=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.userCode=`
|
|
vec4 unaryOperation(vec4 x) {
|
|
${t}
|
|
}
|
|
|
|
void main() {
|
|
vec4 x = getAAtOutCoords();
|
|
vec4 y = unaryOperation(x);
|
|
|
|
setOutput(y);
|
|
}
|
|
`}},EB=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outputShape=e;let t=e.length,n=hn("rc",t),r=ct(t),a=cB(t,n),s=n.slice(-2),i=t<=1?"rc":`vec2(${s.join(",")})`;this.userCode=`
|
|
void main() {
|
|
${r} rc = getOutputCoords();
|
|
vec4 packedInput = getA(${a});
|
|
|
|
setOutput(getChannel(packedInput, ${i}));
|
|
}
|
|
`}},CB=Pr.whereImpl,RB=1e-7,FB=1e-4,Wm={};function MB(e){return e in Wm||(Wm[e]={}),Wm[e]}var OB=128,DB=600;function $B(){return Q().global.screen==null?1024:Q().global.screen.height*Q().global.screen.width*window.devicePixelRatio*DB/1024/1024}var gp=class extends Au{constructor(e){super();if(this.pendingRead=new WeakMap,this.pendingDisposal=new WeakSet,this.dataRefCount=new WeakMap,this.numBytesInGPU=0,this.uploadWaitMs=0,this.downloadWaitMs=0,this.warnedAboutMemory=!1,this.warnedAboutCPUBackend=!1,this.pendingDeletes=0,this.disposed=!1,!Q().getBool("HAS_WEBGL"))throw new Error("WebGL is not supported on this device");if(e==null){let t=Wr(Q().getNumber("WEBGL_VERSION"));this.binaryCache=MB(Q().getNumber("WEBGL_VERSION")),this.gpgpu=new Ap(t),this.canvas=t.canvas,this.gpgpuCreatedLocally=!0}else this.gpgpu=e,this.binaryCache={},this.gpgpuCreatedLocally=!1,this.canvas=e.gl.canvas;this.textureManager=new yB(this.gpgpu),this.numMBBeforeWarning=$B(),this.texData=new Th(this,jn())}numDataIds(){return this.texData.numDataIds()+(this.cpuBackend?this.cpuBackend.numDataIds():0)-this.pendingDeletes}write(e,t,n){if((Q().getBool("WEBGL_CHECK_NUMERICAL_PROBLEMS")||Q().getBool("DEBUG"))&&this.checkNumericalProblems(e),n==="complex64"&&e!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let r={};return this.texData.set(r,{shape:t,dtype:n,values:e,usage:Zn.UPLOAD,refCount:1,complexParentRefCount:0}),r}incRef(e){let t=this.texData.get(e);t.refCount++}decRef(e){if(this.texData.has(e)){let t=this.texData.get(e);t.refCount--}}move(e,t,n,r){if(Q().getBool("DEBUG")&&this.checkNumericalProblems(t),r==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");this.texData.set(e,{shape:n,dtype:r,values:t,usage:Zn.UPLOAD,refCount:1,complexParentRefCount:0})}disposeIntermediateTensorInfo(e){let t=e.dataId;if(this.texData.has(t)){let n=this.texData.get(t);n.refCount--,n.refCount<1&&this.disposeData(t)}}readSync(e){let t=this.texData.get(e),{values:n,dtype:r,complexTensorInfos:a,slice:s,shape:i,isPacked:o}=t;if(s!=null){let h;o?h=new Fl(i,yp):h=new Pa(i,yp);let d=this.runWebGLProgram(h,[{dataId:e,shape:i,dtype:r}],r),p=this.readSync(d.dataId);return this.disposeIntermediateTensorInfo(d),p}if(n!=null)return this.convertAndCacheOnCPU(e);if(r==="string")return n;let l=this.activeTimers!=null,u;l&&(u=k.now());let c;if(r==="complex64"){let h=this.readSync(a.real.dataId),d=this.readSync(a.imag.dataId);c=R.mergeRealAndImagArrays(h,d)}else c=this.getValuesFromTexture(e);return l&&(this.downloadWaitMs+=k.now()-u),this.convertAndCacheOnCPU(e,c)}async read(e){if(this.pendingRead.has(e)){let p=this.pendingRead.get(e);return new Promise(f=>p.push(f))}let t=this.texData.get(e),{values:n,shape:r,slice:a,dtype:s,complexTensorInfos:i,isPacked:o}=t;if(a!=null){let p;o?p=new Fl(r,yp):p=new Pa(r,yp);let f=this.runWebGLProgram(p,[{dataId:e,shape:r,dtype:s}],s),m=this.read(f.dataId);return this.disposeIntermediateTensorInfo(f),m}if(n!=null)return this.convertAndCacheOnCPU(e);if(!Q().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")&&Q().getNumber("WEBGL_VERSION")===2)throw new Error("tensor.data() with WEBGL_DOWNLOAD_FLOAT_ENABLED=false and WEBGL_VERSION=2 not yet supported.");let l=null,u;if(s!=="complex64"&&Q().get("WEBGL_BUFFER_SUPPORTED")){u=this.decode(e);let p=this.texData.get(u.dataId);l=this.gpgpu.createBufferFromTexture(p.texture,...gc(r))}this.pendingRead.set(e,[]),s!=="complex64"&&await this.gpgpu.createAndWaitForFence();let c;if(s==="complex64"){let p=await Promise.all([this.read(i.real.dataId),this.read(i.imag.dataId)]),f=p[0],m=p[1];c=R.mergeRealAndImagArrays(f,m)}else if(l==null)c=this.getValuesFromTexture(e);else{let p=k.sizeFromShape(r);c=this.gpgpu.downloadFloat32MatrixFromBuffer(l,p)}u!=null&&this.disposeIntermediateTensorInfo(u);let h=this.convertAndCacheOnCPU(e,c),d=this.pendingRead.get(e);return this.pendingRead.delete(e),d.forEach(p=>p(h)),this.pendingDisposal.has(e)&&(this.pendingDisposal.delete(e),this.disposeData(e),this.pendingDeletes--),h}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(r=>k.decodeString(r))}catch(r){throw new Error("Failed to decode encoded string bytes into utf-8")}return We(e.shape,e.dtype,n)}checkNumericalProblems(e){if(e!=null)for(let t=0;t<e.length;t++){let n=e[t];if(!Nw(n))throw Q().getBool("WEBGL_RENDER_FLOAT32_CAPABLE")?Error(`The value ${n} cannot be represented with your current settings. Consider enabling float32 rendering: 'tf.env().set('WEBGL_RENDER_FLOAT32_ENABLED', true);'`):Error(`The value ${n} cannot be represented on this device.`)}}getValuesFromTexture(e){let{shape:t,dtype:n,isPacked:r}=this.texData.get(e),a=k.sizeFromShape(t);if(Q().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")){let h=this.decode(e),d=this.texData.get(h.dataId),p=this.gpgpu.downloadMatrixFromPackedTexture(d.texture,...gc(t)).subarray(0,a);return this.disposeIntermediateTensorInfo(h),p}let s=Q().getBool("WEBGL_PACK")&&r===!0,i=s?hp(t):t,o=s?new KL(i):new XL(i),l=this.runWebGLProgram(o,[{shape:i,dtype:n,dataId:e}],"float32"),u=this.texData.get(l.dataId),c=this.gpgpu.downloadByteEncodedFloatMatrixFromOutputTexture(u.texture,u.texShape[0],u.texShape[1]).subarray(0,a);return this.disposeIntermediateTensorInfo(l),c}async time(e){let t=this.activeTimers,n=[],r=!1;this.programTimersStack==null?(this.programTimersStack=n,r=!0):this.activeTimers.push(n),this.activeTimers=n,e();let a=k.flatten(this.activeTimers.map(o=>o.query)).filter(o=>o!=null),s=k.flatten(this.activeTimers.map(o=>o.name)).filter(o=>o!=null);this.activeTimers=t,r&&(this.programTimersStack=null);let i={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null};if(Q().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0){let o=await Promise.all(a);i.kernelMs=k.sum(o),i.getExtraProfileInfo=()=>o.map((l,u)=>({name:s[u],ms:l})).map(l=>`${l.name}: ${l.ms}`).join(", ")}else i.kernelMs={error:"WebGL query timers are not supported in this environment."};return this.uploadWaitMs=0,this.downloadWaitMs=0,i}memory(){return{unreliable:!1,numBytesInGPU:this.numBytesInGPU,numBytesInGPUAllocated:this.textureManager.numBytesAllocated,numBytesInGPUFree:this.textureManager.numBytesFree}}startTimer(){return Q().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?this.gpgpu.beginQuery():{startMs:k.now(),endMs:null}}endTimer(e){return Q().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?(this.gpgpu.endQuery(),e):(e.endMs=k.now(),e)}async getQueryTime(e){if(Q().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0)return this.gpgpu.waitForQueryAndGetTime(e);let t=e;return t.endMs-t.startMs}disposeData(e){if(this.pendingDisposal.has(e))return;if(this.pendingRead.has(e)){this.pendingDisposal.add(e),this.pendingDeletes++;return}if(!this.texData.has(e))return;if(this.texData.get(e).complexParentRefCount>0){this.texData.get(e).refCount--;return}this.releaseGPUData(e);let{complexTensorInfos:t}=this.texData.get(e);t!=null&&(this.texData.get(t.real.dataId).complexParentRefCount--,this.disposeIntermediateTensorInfo(t.real),this.texData.get(t.imag.dataId).complexParentRefCount--,this.disposeIntermediateTensorInfo(t.imag)),this.texData.delete(e)}releaseGPUData(e){let{texture:t,dtype:n,texShape:r,usage:a,isPacked:s,slice:i}=this.texData.get(e),o=i&&i.origDataId||e,l=this.dataRefCount.get(o);l>1?this.dataRefCount.set(o,l-1):(this.dataRefCount.delete(o),t!=null&&(this.numBytesInGPU-=this.computeBytes(r,n),this.textureManager.releaseTexture(t,r,a,s)));let u=this.texData.get(e);u.texture=null,u.texShape=null,u.isPacked=!1,u.slice=null}getTexture(e){return this.uploadToGPU(e),this.texData.get(e).texture}getDataInfo(e){return this.texData.get(e)}getCPUBackend(){return Q().getBool("WEBGL_CPU_FORWARD")?(this.cpuBackend==null&&(this.cpuBackend=jn().findBackend("cpu")),this.cpuBackend):null}shouldExecuteOnCPU(e,t=OB){let n=this.getCPUBackend();return!Q().getBool("IS_TEST")&&!this.warnedAboutCPUBackend&&n==null&&(console.warn("Your application contains ops that are small enough to be executed on the CPU backend, however the CPU backend cannot be found. Consider importing the CPU backend (@tensorflow/tfjs-backend-cpu) for better performance."),this.warnedAboutCPUBackend=!0),n!=null&&e.every(r=>this.texData.get(r.dataId).texture==null&&k.sizeFromShape(r.shape)<t)}getGPGPUContext(){return this.gpgpu}where(e){R.warn("tf.where() in webgl locks the UI thread. Call tf.whereAsync() instead");let t=e.dataSync();return CB(e.shape,t)}packedUnaryOp(e,t,n){let r=new Fl(e.shape,t);return this.compileAndRun(r,[e],n)}abs(e){if(this.shouldExecuteOnCPU([e])&&e.dtype!=="complex64"){let n=g_(this.texData.get(e.dataId).values);return this.makeOutput(e.shape,e.dtype,n)}if(Q().getBool("WEBGL_PACK_UNARY_OPERATIONS"))return this.packedUnaryOp(e,k_,e.dtype);let t=new Pa(e.shape,k_);return this.compileAndRun(t,[e])}makeTensorInfo(e,t,n){let r;if(t==="string"&&n!=null&&n.length>0&&k.isString(n[0])){let a=n.map(s=>k.encodeString(s));r=this.write(a,e,t)}else r=this.write(n,e,t);return this.texData.get(r).usage=null,{dataId:r,shape:e,dtype:t}}makeOutput(e,t,n){let{dataId:r}=this.makeTensorInfo(e,t,n);return jn().makeTensorFromDataId(r,e,t,this)}unpackTensor(e){let t=new EB(e.shape);return this.runWebGLProgram(t,[e],e.dtype)}packTensor(e){let t=new fB(e.shape),n=!0;return this.runWebGLProgram(t,[e],e.dtype,null,n)}packedReshape(e,t){let n=[gi(e.shape),...xi(e.shape)],r={dtype:e.dtype,shape:n,dataId:e.dataId},a=[gi(t),...xi(t)],s=new w_(a,n),i=!0,o=this.runWebGLProgram(s,[r],e.dtype,null,i);return{dataId:o.dataId,shape:t,dtype:o.dtype}}decode(e){let t=this.texData.get(e),{isPacked:n,shape:r,dtype:a}=t,s=hp(r),i;n?i=new qL(s):i=new HL(s);let o=!0,l=this.runWebGLProgram(i,[{shape:s,dtype:a,dataId:e}],a,null,o);return{dtype:a,shape:r,dataId:l.dataId}}runWebGLProgram(e,t,n,r,a=!1){let s=this.makeTensorInfo(e.outputShape,n),i=this.texData.get(s.dataId);if(e.packedOutput&&(i.isPacked=!0),e.outPackingScheme===Ac.DENSE){let f=gc(e.outputShape);i.texShape=f.map(m=>m*2)}if(e.outTexUsage!=null&&(i.usage=e.outTexUsage),k.sizeFromShape(s.shape)===0)return i.values=k.getTypedArrayFromDType(s.dtype,0),s;let o=[],l=t.map(f=>{if(f.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");let m=this.texData.get(f.dataId);if(m.texture==null){if(!e.packedInputs&&k.sizeFromShape(f.shape)<=Q().getNumber("WEBGL_SIZE_UPLOAD_UNIFORM"))return{shape:f.shape,texData:null,isUniform:!0,uniformValues:m.values};e.packedInputs&&(m.isPacked=!0,m.shape=f.shape)}else if(!!m.isPacked!=!!e.packedInputs)f=m.isPacked?this.unpackTensor(f):this.packTensor(f),o.push(f),m=this.texData.get(f.dataId);else if(m.isPacked&&!mc(m.shape,f.shape)){let A=f,y=f.shape;f.shape=m.shape,f=this.packedReshape(f,y),o.push(f),m=this.texData.get(f.dataId),A.shape=y}return this.uploadToGPU(f.dataId),{shape:f.shape,texData:m,isUniform:!1}});this.uploadToGPU(s.dataId);let u={shape:s.shape,texData:i,isUniform:!1},c=zW(e,l,u),h=this.getAndSaveBinary(c,()=>DW(this.gpgpu,e,l,u)),d=this.activeTimers!=null,p;if(d&&(p=this.startTimer()),$W(this.gpgpu,h,l,u,r),o.forEach(f=>this.disposeIntermediateTensorInfo(f)),d&&(p=this.endTimer(p),this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(p)})),!Q().getBool("WEBGL_LAZILY_UNPACK")&&i.isPacked&&a===!1){let f=this.unpackTensor(s);return this.disposeIntermediateTensorInfo(s),f}return s}compileAndRun(e,t,n,r,a=!1){n=n||t[0].dtype;let s=this.runWebGLProgram(e,t,n,r,a);return jn().makeTensorFromDataId(s.dataId,s.shape,s.dtype)}getAndSaveBinary(e,t){return e in this.binaryCache||(this.binaryCache[e]=t()),this.binaryCache[e]}getTextureManager(){return this.textureManager}dispose(){this.disposed||(Q().getBool("IS_TEST")||Object.keys(this.binaryCache).forEach(e=>{this.gpgpu.deleteProgram(this.binaryCache[e].webGLProgram),delete this.binaryCache[e]}),this.textureManager.dispose(),this.canvas!=null&&typeof HTMLCanvasElement!="undefined"&&this.canvas instanceof HTMLCanvasElement?this.canvas.remove():this.canvas=null,this.gpgpuCreatedLocally&&(this.gpgpu.program=null,this.gpgpu.dispose()),this.disposed=!0)}floatPrecision(){return this.floatPrecisionValue==null&&(this.floatPrecisionValue=W(()=>{if(!Q().get("WEBGL_RENDER_FLOAT32_ENABLED")){let e=Q().getBool("DEBUG");Q().set("DEBUG",!1);let t=this.abs(ke(1e-8)).dataSync()[0];if(Q().set("DEBUG",e),t>0)return 32}return 16})),this.floatPrecisionValue}epsilon(){return this.floatPrecision()===32?RB:FB}uploadToGPU(e){let t=this.texData.get(e),{shape:n,dtype:r,values:a,texture:s,usage:i,isPacked:o}=t;if(s!=null)return;let l=this.activeTimers!=null,u;l&&(u=k.now());let c=t.texShape;if(c==null&&(c=Bw(n,o),t.texShape=c),a!=null){let h=hp(n),d,p=c[1],f=c[0],m=a instanceof Uint8Array;o?([p,f]=Sl(c[0],c[1]),d=new YL(h,[f,p],m)):d=new ZL(h,[f,p],m);let A=this.makeTensorInfo([f,p],r);m?this.texData.get(A.dataId).usage=Zn.PIXELS:this.texData.get(A.dataId).usage=Zn.UPLOAD,this.gpgpu.uploadDenseMatrixToTexture(this.getTexture(A.dataId),p,f,a);let y=!0,g=this.runWebGLProgram(d,[A],r,null,y),_=this.texData.get(g.dataId);t.texture=_.texture,t.texShape=_.texShape,t.isPacked=_.isPacked,t.usage=_.usage,this.disposeIntermediateTensorInfo(A),this.texData.delete(g.dataId),t.values=null,l&&(this.uploadWaitMs+=k.now()-u)}else{let h=this.acquireTexture(c,i,r,o);t.texture=h}}convertAndCacheOnCPU(e,t){let n=this.texData.get(e),{dtype:r}=n;return this.releaseGPUData(e),t!=null&&(n.values=zB(t,r)),n.values}acquireTexture(e,t,n,r){if(this.numBytesInGPU+=this.computeBytes(e,n),!this.warnedAboutMemory&&this.numBytesInGPU>this.numMBBeforeWarning*1024*1024){let a=(this.numBytesInGPU/1024/1024).toFixed(2);this.warnedAboutMemory=!0,console.warn(`High memory usage in GPU: ${a} MB, most likely due to a memory leak`)}return this.textureManager.acquireTexture(e,t,r)}computeBytes(e,t){return e[0]*e[1]*k.bytesPerElement(t)}};function zB(e,t){if(t==="float32"||t==="complex64")return e;if(t==="int32"||t==="bool"){let n=t==="int32"?new Int32Array(e.length):new Uint8Array(e.length);for(let r=0;r<n.length;++r)n[r]=Math.round(e[r]);return n}else throw new Error(`Unknown dtype ${t}`)}var N_="2.8.3";function I_(){Q().set("WEBGL_FORCE_F16_TEXTURES",!0)}pd.isBrowser()&&cl("webgl",()=>new gp,2);var PB={forceHalfFloat:I_},S_=`
|
|
if (isnan(a)) return a;
|
|
if (isnan(b)) return b;
|
|
`,Ml=class{constructor(e,t,n){this.variableNames=["A","B"],this.outputShape=R.assertAndGetBroadcastShape(t,n),this.userCode=`
|
|
float binaryOperation(float a, float b) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
float a = getAAtOutCoords();
|
|
float b = getBAtOutCoords();
|
|
setOutput(binaryOperation(a, b));
|
|
}
|
|
`}},xp=`
|
|
result.r = isNaN.r > 0. ? NAN : result.r;
|
|
result.g = isNaN.g > 0. ? NAN : result.g;
|
|
result.b = isNaN.b > 0. ? NAN : result.b;
|
|
result.a = isNaN.a > 0. ? NAN : result.a;
|
|
`,wc=class{constructor(e,t,n,r=!1){this.variableNames=["A","B"],this.supportsBroadcasting=!0,this.packedInputs=!0,this.packedOutput=!0,this.outputShape=R.assertAndGetBroadcastShape(t,n);let a=this.outputShape.length,s="";if(r)if(a===0||k.sizeFromShape(this.outputShape)===1)s=`
|
|
result.y = 0.;
|
|
result.z = 0.;
|
|
result.w = 0.;
|
|
`;else if(s=`
|
|
${ct(a)} coords = getOutputCoords();
|
|
`,a===1)s+=`
|
|
result.y = (coords + 1) >= ${this.outputShape[0]} ? 0. : result.y;
|
|
result.z = 0.;
|
|
result.w = 0.;
|
|
`;else{let i=hn("coords",a);s+=`
|
|
bool nextRowOutOfBounds =
|
|
(${i[a-2]} + 1) >= ${this.outputShape[a-2]};
|
|
bool nextColOutOfBounds =
|
|
(${i[a-1]} + 1) >= ${this.outputShape[a-1]};
|
|
result.y = nextColOutOfBounds ? 0. : result.y;
|
|
result.z = nextRowOutOfBounds ? 0. : result.z;
|
|
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
|
|
`}this.userCode=`
|
|
vec4 binaryOperation(vec4 a, vec4 b) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
vec4 a = getAAtOutCoords();
|
|
vec4 b = getBAtOutCoords();
|
|
|
|
vec4 result = binaryOperation(a, b);
|
|
${s}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}};function Mn(e){let{inputs:t,backend:n}=e,{x:r}=t;return n.incRef(r.dataId),{dataId:r.dataId,shape:r.shape,dtype:r.dtype}}var LB={kernelName:_o,backendName:"webgl",kernelFunc:Mn};function La(e){let{inputs:t,backend:n}=e,{real:r,imag:a}=t,s=n.makeTensorInfo(r.shape,"complex64"),i=n.texData.get(s.dataId),o=Mn({inputs:{x:r},backend:n}),l=n.texData.get(o.dataId);l.complexParentRefCount++;let u=Mn({inputs:{x:a},backend:n}),c=n.texData.get(u.dataId);return c.complexParentRefCount++,i.complexTensorInfos={real:o,imag:u},s}var WB={kernelName:zh,backendName:"webgl",kernelFunc:La},T_="return (a < 0.) ? b * a : a;",E_=`
|
|
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
|
|
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
|
|
`;function BB(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{alpha:s}=r,i=n.makeTensorInfo([],"float32",k.createScalarValue(s,"float32")),o=Q().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new wc(E_,a.shape,i.shape):new Ml(T_,a.shape,i.shape),l=n.runWebGLProgram(o,[a,i],a.dtype);return n.disposeIntermediateTensorInfo(i),l}var VB={kernelName:Ns,backendName:"webgl",kernelFunc:BB},C_="return (a < 0.) ? b * a : a;",R_=`
|
|
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
|
|
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
|
|
`;function UB(e){let{inputs:t,backend:n}=e,{x:r,alpha:a}=t,s=Q().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new wc(R_,r.shape,a.shape):new Ml(C_,r.shape,a.shape);return n.runWebGLProgram(s,[r,a],r.dtype)}var jB={kernelName:zs,backendName:"webgl",kernelFunc:UB},F_="if (isnan(x)) return x;",GB=`
|
|
if (isnan(a)) return a;
|
|
if (isnan(b)) return b;
|
|
`,HB=`
|
|
result.r = isNaN.r > 0. ? NAN : result.r;
|
|
result.g = isNaN.g > 0. ? NAN : result.g;
|
|
result.b = isNaN.b > 0. ? NAN : result.b;
|
|
result.a = isNaN.a > 0. ? NAN : result.a;
|
|
`;function Ke({opSnippet:e,packedOpSnippet:t,cpuKernelImpl:n,dtype:r}){return({inputs:a,backend:s})=>{let{x:i}=a,o=s,l=r||i.dtype;if(o.shouldExecuteOnCPU([i])&&n!=null){let h=o.texData.get(i.dataId),d=n(h.values,l);return o.makeTensorInfo(i.shape,l,d)}let u=Q().getBool("WEBGL_PACK_UNARY_OPERATIONS")&&t!=null,c;return u?c=new Fl(i.shape,t):c=new Pa(i.shape,e),o.runWebGLProgram(c,[i],l)}}function tn({opSnippet:e,packedOpSnippet:t,checkOutOfBounds:n=!1,supportsComplex:r=!1,cpuKernelImpl:a,dtype:s}){return({inputs:i,backend:o})=>{let{a:l,b:u}=i,c=o;if(r&&l.dtype==="complex64"){let f=c.texData.get(l.dataId),m=c.texData.get(u.dataId),[A,y]=[[f.complexTensorInfos.real,m.complexTensorInfos.real],[f.complexTensorInfos.imag,m.complexTensorInfos.imag]].map(_=>{let[b,x]=_,w={dataId:b.dataId,dtype:b.dtype,shape:l.shape},I={dataId:x.dataId,dtype:x.dtype,shape:u.shape},T=new Ml(e,l.shape,u.shape);return c.runWebGLProgram(T,[w,I],tr(b.dtype,x.dtype))}),g=La({inputs:{real:A,imag:y},backend:c});return c.disposeIntermediateTensorInfo(A),c.disposeIntermediateTensorInfo(y),g}let h=s||tr(l.dtype,u.dtype);if(c.shouldExecuteOnCPU([l,u])&&a!=null){let f=c.texData.get(l.dataId),m=c.texData.get(u.dataId),[A,y]=a(l.shape,u.shape,f.values,m.values,h),g=c.makeTensorInfo(y,h),_=c.texData.get(g.dataId);return _.values=A,g}let d=Q().getBool("WEBGL_PACK_BINARY_OPERATIONS")&&t!=null,p;return d?p=new wc(t,l.shape,u.shape,n):p=new Ml(e,l.shape,u.shape),c.runWebGLProgram(p,[l,u],h)}}function wp(e,t=!1){if(e==="linear")return t?NB:_B;if(e==="relu")return t?SB:vB;if(e==="elu")return t?IB:bB;if(e==="relu6")return t?TB:kB;if(e==="prelu")return t?R_:C_;if(e==="leakyrelu")return t?E_:T_;throw new Error(`Activation ${e} has not been implemented for the WebGL backend.`)}var M_=class{constructor(e,t,n,r=!1,a=!1,s=!1,i=null,o=!1,l=!1){this.variableNames=["matrixA","matrixB"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=n;let u=r?e[1]:e[2],c=Math.ceil(u/2),h=r?"i * 2, rc.y":"rc.y, i * 2",d=a?"rc.z, i * 2":"i * 2, rc.z",p=r?["a.xxyy","a.zzww"]:["a.xxzz","a.yyww"],f=a?["b.xzxz","b.ywyw"]:["b.xyxy","b.zwzw"],m="",A="";i&&(o?m=`vec4 activation(vec4 a) {
|
|
vec4 b = getPreluActivationWeightsAtOutCoords();
|
|
${i}
|
|
}`:l?m=`vec4 activation(vec4 a) {
|
|
vec4 b = getLeakyreluAlphaAtOutCoords();
|
|
${i}
|
|
}`:m=`vec4 activation(vec4 x) {
|
|
${i}
|
|
}`,A="result = activation(result);");let y=s?"result += getBiasAtOutCoords();":"";s&&this.variableNames.push("bias"),o&&this.variableNames.push("preluActivationWeights"),l&&this.variableNames.push("leakyreluAlpha");let g="rc.x",_="rc.x";e[0]<t[0]?g=`int(min(float(rc.x), ${e[0]-1}.))`:t[0]<e[0]&&(_=`int(min(float(rc.x), ${t[0]-1}.))`),this.userCode=`
|
|
${m}
|
|
|
|
const float sharedDimension = ${c}.0;
|
|
|
|
vec4 dot2x2ARowBCol(ivec3 rc) {
|
|
vec4 result = vec4(0);
|
|
for (int i = 0; i < ${c}; i++) {
|
|
int batchA = ${g};
|
|
int batchB = ${_};
|
|
vec4 a = getMatrixA(batchA, ${h});
|
|
vec4 b = getMatrixB(batchB, ${d});
|
|
|
|
// These swizzled products need to be separately added.
|
|
// See: https://github.com/tensorflow/tfjs/issues/1735
|
|
result += (${p[0]} * ${f[0]});
|
|
result += (${p[1]} * ${f[1]});
|
|
}
|
|
return result;
|
|
}
|
|
|
|
void main() {
|
|
ivec3 rc = getOutputCoords();
|
|
vec4 result = dot2x2ARowBCol(rc);
|
|
|
|
${y}
|
|
|
|
${A}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}},O_={REAL:"return areal * breal - aimag * bimag;",IMAG:"return areal * bimag + aimag * breal;"},D_=class{constructor(e,t,n){this.variableNames=["AReal","AImag","BReal","BImag"],this.outputShape=R.assertAndGetBroadcastShape(t,n),this.userCode=`
|
|
float binaryOpComplex(
|
|
float areal, float aimag, float breal, float bimag) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
float areal = getARealAtOutCoords();
|
|
float aimag = getAImagAtOutCoords();
|
|
float breal = getBRealAtOutCoords();
|
|
float bimag = getBImagAtOutCoords();
|
|
setOutput(binaryOpComplex(areal, aimag, breal, bimag));
|
|
}
|
|
`}},$_="return a * b;";function z_(e){let{inputs:t,backend:n}=e,{a:r,b:a}=t,s=R.upcastType(r.dtype,a.dtype);if(r.dtype==="complex64"){let o=n.texData.get(r.dataId),l=n.texData.get(a.dataId),u=new D_(O_.REAL,r.shape,a.shape),c=new D_(O_.IMAG,r.shape,a.shape),h=[{dataId:o.complexTensorInfos.real.dataId,dtype:o.complexTensorInfos.real.dtype,shape:r.shape},{dataId:o.complexTensorInfos.imag.dataId,dtype:o.complexTensorInfos.imag.dtype,shape:r.shape},{dataId:l.complexTensorInfos.real.dataId,dtype:l.complexTensorInfos.real.dtype,shape:a.shape},{dataId:l.complexTensorInfos.imag.dataId,dtype:l.complexTensorInfos.imag.dtype,shape:a.shape}],d=n.runWebGLProgram(u,h,"float32"),p=n.runWebGLProgram(c,h,"float32"),f=La({inputs:{real:d,imag:p},backend:n});return n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),f}if(n.shouldExecuteOnCPU([r,a])){let o=n.texData.get(r.dataId),l=n.texData.get(a.dataId),[u,c]=QW(r.shape,a.shape,o.values,l.values,s),h=n.makeTensorInfo(c,s),d=n.texData.get(h.dataId);return d.values=u,h}let i;return Q().getBool("WEBGL_PACK_BINARY_OPERATIONS")?i=new wc($_,r.shape,a.shape):i=new Ml($_,r.shape,a.shape),n.runWebGLProgram(i,[r,a],s)}var qB={kernelName:Ms,backendName:"webgl",kernelFunc:z_};function XB(e,t,n){let r=[gi(e.shape),...xi(e.shape)],a={dtype:e.dtype,shape:r,dataId:e.dataId},s=[gi(t),...xi(t)],i=new w_(s,r),o=!0,l=n.runWebGLProgram(i,[a],e.dtype,null,o);return{dataId:l.dataId,shape:t,dtype:l.dtype}}function ge(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{shape:s}=r,i=n,o=k.sizeFromShape(a.shape),l=k.inferFromImplicitShape(s,o),u=k.sizeFromShape(l);k.assert(o===u,()=>`The new shape (${l}) has ${u} elements and the old shape (${a.shape}) has ${o} elements. The new shape and old shape must have the same number of elements.`);let c=i.texData.get(a.dataId);return c.isPacked&&!mc(a.shape,l)&&!(c.texture!==null&&mc(c.shape,l))?XB(a,l,i):(i.incRef(a.dataId),{dataId:a.dataId,shape:l,dtype:a.dtype})}var KB={kernelName:Lo,backendName:"webgl",kernelFunc:ge},P_=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:r,inSize:a,outSize:s}=e;this.outputShape=[r,s];let i=Math.floor(n/4)*4,o=n%4,l="sumValue += dot(values, ones);";if(t!=null){let c=1/t;l=`sumValue += dot(values * ${k.isInt(c)?c.toPrecision(2):c}, ones);`}let u="";a%n>0&&(u=`
|
|
if (inIdx < 0 || inIdx >= ${a}) {
|
|
return 0.0;
|
|
}
|
|
`),this.userCode=`
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${u}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${n};
|
|
|
|
float sumValue = 0.0;
|
|
|
|
for (int i = 0; i < ${i}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
${l}
|
|
}
|
|
|
|
int inIdx = inOffset + ${i};
|
|
if (${o===1}) {
|
|
vec4 values = vec4(getValue(batch, inIdx), 0.0, 0.0, 0.0);
|
|
|
|
${l}
|
|
} else if (${o===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1), 0.0, 0.0);
|
|
|
|
${l}
|
|
} else if (${o===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2), 0.0);
|
|
|
|
${l}
|
|
}
|
|
setOutput(sumValue);
|
|
}
|
|
`}},ZB=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:r,inSize:a,outSize:s}=e;this.outputShape=[r,s];let i="0.0",o="";t==="prod"?i="1.0":t==="min"?(i="1.0 / 1e-20",o="min"):t==="max"&&(i="-1.0 / 1e-20",o="max");let l=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="sum"?l="sumValue":t==="prod"?l="prodValue":t==="all"?l="allValue":t==="any"&&(l="anyValue");let u=Math.floor(n/4)*4,c=n%4,h=`
|
|
if (${t==="sum"}) {
|
|
sumValue += dot(values, ones);
|
|
} else if (${t==="prod"}) {
|
|
vec2 tmp = vec2(values[0], values[1]) * vec2(values[2], values[3]);
|
|
prodValue *= tmp[0] * tmp[1];
|
|
} else {
|
|
minMaxValue = ${o}(values, minMaxValue);
|
|
}
|
|
`,d="vec4";t==="all"?(i="1.0",h=`
|
|
bool reducedAllValue = all(values);
|
|
float floatedReducedAllValue = float(reducedAllValue);
|
|
allValue = float(allValue >= 1.0 && floatedReducedAllValue >= 1.0);
|
|
`,d="bvec4"):t==="any"&&(i="0.0",h=`
|
|
bool reducedAnyValue = any(values);
|
|
float floatedReducedAnyValue = float(reducedAnyValue);
|
|
anyValue = float(anyValue >= 1.0 || floatedReducedAnyValue >= 1.0);
|
|
`,d="bvec4");let p="";a%n>0&&(p=`
|
|
if (inIdx < 0 || inIdx >= ${a}) {
|
|
return initializationValue;
|
|
}
|
|
`),this.userCode=`
|
|
const float initializationValue = ${i};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${p}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${n};
|
|
|
|
vec4 minMaxValue = vec4(${i});
|
|
float prodValue = 1.0;
|
|
float sumValue = 0.0;
|
|
float allValue = 1.0;
|
|
float anyValue = 0.0;
|
|
|
|
for (int i = 0; i < ${u}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
${d} values = ${d}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
${h}
|
|
}
|
|
|
|
int inIdx = inOffset + ${u};
|
|
if (${c===1}) {
|
|
${d} values = ${d}(
|
|
getValue(batch, inIdx),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${h}
|
|
} else if (${c===2}) {
|
|
${d} values = ${d}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${h}
|
|
} else if (${c===3}) {
|
|
${d} values = ${d}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
initializationValue
|
|
);
|
|
|
|
${h}
|
|
}
|
|
setOutput(${l});
|
|
}
|
|
`}};function YB(e){let t=[];for(;t.length===0||t[t.length-1].outSize!==1;){let n=t.length?t[t.length-1].outSize:e[1],r=R.computeOptimalWindowSize(n);t.push({inSize:n,windowSize:r,outSize:Math.ceil(n/r)})}return t}function vi(e,t,n,r){let a=YB(e.shape),s=e;for(let i=0;i<a.length;i++){let{inSize:o,windowSize:l,outSize:u}=a[i],c,h;n==="mean"?c=i===0?new P_({windowSize:l,inSize:o,batchSize:e.shape[0],outSize:u},o):new P_({windowSize:l,inSize:o,batchSize:e.shape[0],outSize:u}):c=new ZB({windowSize:l,inSize:o,batchSize:e.shape[0],outSize:u},n),h=s,s=r.runWebGLProgram(c,[s],t),h.dataId!==e.dataId&&r.disposeIntermediateTensorInfo(h)}return s}var QB=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[t[s]];this.outputShape=n,this.rank=n.length;let r=ct(this.rank),a=JB(t);this.userCode=`
|
|
void main() {
|
|
${r} resRC = getOutputCoords();
|
|
setOutput(getA(${a}));
|
|
}
|
|
`}};function JB(e){let t=e.length;if(t>6)throw Error(`Transpose for rank ${t} is not yet supported`);let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u","resRC.v"],r=new Array(t);for(let a=0;a<e.length;a++)r[e[a]]=n[a];return r.join()}var eV=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0;let n=new Array(e.length);for(let u=0;u<n.length;u++)n[u]=e[t[u]];if(this.outputShape=n,this.rank=n.length,this.rank>6)throw Error(`Packed transpose for rank ${this.rank} is not yet supported.`);let r=ct(this.rank),a=x_("rc",this.rank),s=new Array(this.rank);for(let u=0;u<t.length;u++)s[t[u]]=a[u];let i=`vec2(${s.slice(-2).join()})`,o=`++${a[this.rank-1]} < ${n[this.rank-1]}`,l=`getChannel(getA(${s.join()}), ${i})`;this.userCode=`
|
|
void main() {
|
|
${r} rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result[0] = ${l};
|
|
if(${o}) {
|
|
result[1] = ${l};
|
|
}
|
|
--${a[this.rank-1]};
|
|
if(++${a[this.rank-2]} < ${n[this.rank-2]}) {
|
|
result[2] = ${l};
|
|
if(${o}) {
|
|
result[3] = ${l};
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}};function _p(e,t,n){let r=Q().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new eV(e.shape,t):new QB(e.shape,t);return n.runWebGLProgram(r,[e],e.dtype)}function tV(e,t,n,r){let a=t,s=e.shape.length,i=k.parseAxisParam(a,e.shape),o=i,l=R.getAxesPermutation(o,s),u=l!=null,c=e;u&&(c=_p(e,l,r),o=R.getInnerMostAxes(o.length,s)),R.assertAxesAreInnerMostDims("sum",o,s);let[h,d]=R.computeOutAndReduceShapes(c.shape,o),p=h;n&&(p=R.expandShapeToKeepDim(h,i));let f=k.sizeFromShape(d),m=k.sizeFromShape(e.shape)/f,A=ge({inputs:{x:c},attrs:{shape:[m,f]},backend:r}),y=dd(e.dtype),g=vi(A,y,"sum",r),_=ge({inputs:{x:g},attrs:{shape:p},backend:r});return r.disposeIntermediateTensorInfo(A),r.disposeIntermediateTensorInfo(g),u&&r.disposeIntermediateTensorInfo(c),_}function Bm(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r;return tV(a,s,i,n)}var nV={kernelName:qs,backendName:"webgl",kernelFunc:Bm};function wn(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{perm:s}=r,i=n,o=a.shape.length,l=new Array(o);for(let c=0;c<l.length;c++)l[c]=a.shape[s[c]];let u;if(i.shouldExecuteOnCPU([a])){let c=i.texData.get(a.dataId).values,h=Lm(c,a.shape,a.dtype,s,l);u=i.makeTensorInfo(l,a.dtype);let d=i.texData.get(u.dataId);d.values=h}else u=_p(a,s,i);return u}var rV={kernelName:Js,backendName:"webgl",kernelFunc:wn},L_=1e3;function bp({a:e,b:t,transposeA:n,transposeB:r,backend:a,bias:s=null,preluActivationWeights:i=null,leakyreluAlpha:o=0,activation:l=null}){let u=e.shape.length,c=t.shape.length,h=n?e.shape[u-2]:e.shape[u-1],d=r?t.shape[c-1]:t.shape[c-2],p=n?e.shape[u-1]:e.shape[u-2],f=r?t.shape[c-2]:t.shape[c-1],m=e.shape.slice(0,-2),A=t.shape.slice(0,-2),y=k.sizeFromShape(m),g=k.sizeFromShape(A),_=y===g||y===1||g===1;k.assert(u>=2&&c>=2&&_,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${m}) and (${A}).`);let b=(y>g?e.shape.slice(0,-2):t.shape.slice(0,-2)).concat([p,f]);k.assert(h===d,()=>`Error in matMul: inner shapes (${h}) and (${d}) of Tensors with shapes ${e.shape} and ${t.shape} and transposeA=${n} and transposeB=${r} must match.`);let x=n?[y,h,p]:[y,p,h],w=r?[g,f,d]:[g,d,f],I=ge({inputs:{x:e},backend:a,attrs:{shape:x}}),T=ge({inputs:{x:t},backend:a,attrs:{shape:w}}),E=[I,T],M=Math.max(y,g),z=n?I.shape[1]:I.shape[2],P=s!=null,B=i!=null,q=l==="leakyrelu",H=l!=null?wp(l,!0):null,X=P||B||q||H!=null,Z;if((p===1||f===1)&&z>L_&&X===!1){let J=I,se=T;n&&(J=wn({inputs:{x:I},backend:a,attrs:{perm:[0,2,1]}}),E.push(J)),r&&(se=wn({inputs:{x:T},backend:a,attrs:{perm:[0,2,1]}}),E.push(se));let re=f!==1,ne=f===1,ie=J;re&&(ie=ge({inputs:{x:J},backend:a,attrs:{shape:[M,z,1]}}),E.push(ie));let he=f===1?2:1,ce=se;ne&&(ce=ge({inputs:{x:se},backend:a,attrs:{shape:[M,1,z]}}),E.push(ce));let pe=z_({inputs:{a:ie,b:ce},backend:a});Z=Bm({inputs:{x:pe},backend:a,attrs:{axis:he,keepDims:!0}}),E.push(pe)}else{let J=tr(e.dtype,t.dtype),se=new M_(x,w,[M,p,f],n,r,P,H,B,q),re=[I,T];if(s!=null&&re.push(s),B&&re.push(i),q){let ne=a.makeTensorInfo([],"float32",k.createScalarValue(o,"float32"));re.push(ne),E.push(ne)}Z=a.runWebGLProgram(se,re,J)}let ee=ge({inputs:{x:Z},backend:a,attrs:{shape:b}});E.push(Z);for(let J of E)a.disposeIntermediateTensorInfo(J);return ee}function aV(e){let{inputs:t,backend:n,attrs:r}=e,{a,b:s,bias:i,preluActivationWeights:o}=t,{transposeA:l,transposeB:u,activation:c,leakyreluAlpha:h}=r;return bp({a,b:s,transposeA:l,transposeB:u,backend:n,bias:i,preluActivationWeights:o,leakyreluAlpha:h,activation:c})}var sV={kernelName:Qs,backendName:"webgl",kernelFunc:aV},W_="return abs(x);";function iV(e){let{inputs:t,backend:n}=e,{x:r}=t;if(n.shouldExecuteOnCPU([r])&&r.dtype!=="complex64"){let s=n.texData.get(r.dataId),i=g_(s.values);return n.makeTensorInfo(r.shape,r.dtype,i)}let a;return Q().getBool("WEBGL_PACK_UNARY_OPERATIONS")?a=new Fl(r.shape,W_):a=new Pa(r.shape,W_),n.runWebGLProgram(a,[r],r.dtype)}var oV={kernelName:Ji,backendName:"webgl",kernelFunc:iV},lV=yr+`
|
|
if (abs(x) > 1.) {
|
|
return NAN;
|
|
}
|
|
return acos(x);
|
|
`,uV=Ke({opSnippet:lV}),cV={kernelName:Qi,backendName:"webgl",kernelFunc:uV},hV=yr+`
|
|
if (x < 1.0) return NAN;
|
|
return log(x + sqrt(x * x - 1.0));`,dV=Ke({opSnippet:hV}),pV={kernelName:eo,backendName:"webgl",kernelFunc:dV},B_="return a + b;",fV=tn({opSnippet:B_,packedOpSnippet:B_,supportsComplex:!0,cpuKernelImpl:PW}),mV={kernelName:ka,backendName:"webgl",kernelFunc:fV},AV=class{constructor(e,t){this.outputShape=[],this.outputShape=e,this.variableNames=t.map((a,s)=>`T${s}`);let n=[];this.variableNames.forEach(a=>{n.push(`float v${a} = get${a}AtOutCoords();`)});let r=this.variableNames.map(a=>`v${a}`).join(" + ");this.userCode=`
|
|
void main() {
|
|
${n.join(`
|
|
`)}
|
|
|
|
float result = ${r};
|
|
setOutput(result);
|
|
}
|
|
`}},yV=class{constructor(e,t){this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.variableNames=t.map((a,s)=>`T${s}`);let n=[];this.variableNames.forEach(a=>{n.push(`vec4 v${a} = get${a}AtOutCoords();`)});let r=this.variableNames.map(a=>`v${a}`).join(" + ");this.userCode=`
|
|
void main() {
|
|
${n.join(`
|
|
`)}
|
|
|
|
vec4 result = ${r};
|
|
setOutput(result);
|
|
}
|
|
`}};function vp(e){let{inputs:t,backend:n}=e,r=t;if(r.length===1)return Mn({inputs:{x:r[0]},backend:n});if(r.length>Q().get("WEBGL_MAX_TEXTURES_IN_SHADER")){let o=Math.floor(r.length/2),l=vp({inputs:r.slice(0,o),backend:n}),u=vp({inputs:r.slice(o),backend:n});return vp({inputs:[l,u],backend:n})}let a=r.map(o=>o.dtype).reduce((o,l)=>tr(o,l)),s=r.map(o=>o.shape),i=Q().getBool("WEBGL_PACK")?new yV(r[0].shape,s):new AV(r[0].shape,s);return n.runWebGLProgram(i,r,a)}var gV={kernelName:us,backendName:"webgl",kernelFunc:vp};function xV(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r,o=a.shape.length,l=k.parseAxisParam(s,a.shape),u=l,c=R.getAxesPermutation(u,o),h=a;c!=null&&(h=wn({inputs:{x:a},backend:n,attrs:{perm:c}}),u=R.getInnerMostAxes(u.length,o)),R.assertAxesAreInnerMostDims("all",u,o);let[d,p]=R.computeOutAndReduceShapes(h.shape,u),f=k.sizeFromShape(p),m=ge({inputs:{x:h},backend:n,attrs:{shape:[-1,f]}}),A=vi(m,m.dtype,"all",n),y;if(i){let g=R.expandShapeToKeepDim(d,l);y=ge({inputs:{x:A},backend:n,attrs:{shape:g}})}else y=ge({inputs:{x:A},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(A),c!=null&&n.disposeIntermediateTensorInfo(h),y}var wV={kernelName:Fh,backendName:"webgl",kernelFunc:xV};function _V(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r,o=a.shape.length,l=k.parseAxisParam(s,a.shape),u=l,c=R.getAxesPermutation(u,o),h=a;c!=null&&(h=wn({inputs:{x:a},backend:n,attrs:{perm:c}}),u=R.getInnerMostAxes(u.length,o)),R.assertAxesAreInnerMostDims("any",u,o);let[d,p]=R.computeOutAndReduceShapes(h.shape,u),f=k.sizeFromShape(p),m=ge({inputs:{x:h},backend:n,attrs:{shape:[-1,f]}}),A=vi(m,m.dtype,"any",n),y;if(i){let g=R.expandShapeToKeepDim(d,l);y=ge({inputs:{x:A},backend:n,attrs:{shape:g}})}else y=ge({inputs:{x:A},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(A),c!=null&&n.disposeIntermediateTensorInfo(h),y}var bV={kernelName:Mh,backendName:"webgl",kernelFunc:_V},vV=class{constructor(e,t,n){this.variableNames=["A"];let{windowSize:r,batchSize:a,outSize:s}=e;n||this.variableNames.push("bestIndicesA"),this.outputShape=[a,s];let i=t==="max"?">":"<",o=n?"inOffset + i;":"round(getBestIndicesA(batch, inOffset + i));";this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${r};
|
|
|
|
int bestIndex = inOffset;
|
|
float bestValue = getA(batch, bestIndex);
|
|
|
|
for (int i = 0; i < ${r}; i++) {
|
|
int inIdx = ${o};
|
|
float candidate = getA(batch, inIdx);
|
|
if (candidate ${i} bestValue) {
|
|
bestValue = candidate;
|
|
bestIndex = inIdx;
|
|
}
|
|
}
|
|
setOutput(float(bestIndex));
|
|
}
|
|
`}},kV=class{constructor(e,t,n,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,k.assert(e.length>2,()=>`Packed arg${n.charAt(0).toUpperCase()+n.slice(1)} supports only inputs with rank above 2.`);let a=e[e.length-1],s=Math.ceil(a/t);this.outputShape=e.slice(0,-1),s>1&&this.outputShape.push(s),r||this.variableNames.push("bestIndicesA");let i=this.outputShape,o=i.length,l=ct(o),u=hn("coords",o),c,h;if(s===1){h=o+1;let I=ct(h);c=`
|
|
${I} sourceLocR = ${I}(${u.join()}, 0);
|
|
++${u[o-1]};
|
|
${I} sourceLocG = ${I}(${u.join()}, 0);
|
|
++${u[o-2]};
|
|
${I} sourceLocA = ${I}(${u.join()}, 0);
|
|
--${u[o-1]};
|
|
${I} sourceLocB = ${I}(${u.join()}, 0);
|
|
--${u[o-2]};`}else h=o,c=`
|
|
${l} sourceLocR = coords;
|
|
++${u[o-1]};
|
|
${l} sourceLocG = coords;
|
|
++${u[o-2]};
|
|
${l} sourceLocA = coords;
|
|
--${u[o-1]};
|
|
${l} sourceLocB = coords;
|
|
--${u[o-2]};`;let d=["x","y","z","w","u","v"].slice(0,h),p="."+d[h-1],f=d.map(I=>"int "+I),m=hn("sourceLocR",h-1).concat("inIdx.r"),A=hn("sourceLocG",h-1).concat("inIdx.g"),y=hn("sourceLocB",h-1).concat("inIdx.b"),g=hn("sourceLocA",h-1).concat("inIdx.a"),_=n==="max"?"greaterThan":"lessThan",b=r?"":`
|
|
inIdx = round(vec4(getBestIndicesAChannel(${m.join()}),
|
|
getBestIndicesAChannel(${A.join()}),
|
|
getBestIndicesAChannel(${y.join()}),
|
|
getBestIndicesAChannel(${g.join()})));`,x=`vec4(
|
|
getAChannel(${m.join()}),
|
|
hasNextCol ? getAChannel(${A.join()}) : 0.,
|
|
hasNextRow ? getAChannel(${y.join()}) : 0.,
|
|
hasNextRow && hasNextCol ? getAChannel(${g.join()}) : 0.)`,w=r?"":`
|
|
float getBestIndicesAChannel(${f.join()}) {
|
|
return getChannel(getBestIndicesA(${d.join()}),
|
|
vec2(${d.slice(-2).join()}));
|
|
}`;this.userCode=`
|
|
float getAChannel(${f.join()}) {
|
|
return getChannel(getA(${d.join()}),
|
|
vec2(${d.slice(-2).join()}));
|
|
}
|
|
${w}
|
|
void main() {
|
|
${l} coords = getOutputCoords();
|
|
bool hasNextCol = ${u[o-1]} < ${i[o-1]-1};
|
|
bool hasNextRow = ${u[o-2]} < ${i[o-2]-1};
|
|
${c}
|
|
ivec4 srcIdx = ivec4(sourceLocR${p}, sourceLocG${p},
|
|
sourceLocB${p}, sourceLocA${p}) * ${t};
|
|
ivec4 inIdx = srcIdx;
|
|
vec4 bestIndex = vec4(inIdx);
|
|
vec4 bestValue = ${x};
|
|
|
|
for (int i = 0; i < ${t}; i++) {
|
|
inIdx = srcIdx;
|
|
${b}
|
|
vec4 candidate = ${x};
|
|
bvec4 nan = isnan(candidate);
|
|
bvec4 replace = bvec4(
|
|
vec4(${_}(candidate, bestValue)) * (vec4(1.0) - vec4(nan)));
|
|
|
|
bestValue = vec4(replace.x ? candidate.x : bestValue.x,
|
|
replace.y ? candidate.y : bestValue.y,
|
|
replace.z ? candidate.z : bestValue.z,
|
|
replace.w ? candidate.w : bestValue.w);
|
|
bestIndex = mix(bestIndex, vec4(inIdx), vec4(replace));
|
|
srcIdx++;
|
|
}
|
|
setOutput(bestIndex);
|
|
}
|
|
`}};function V_(e,t,n,r=null){let a=t.shape[0],s=t.shape[1];r!=null&&(a=r.shape[0],s=r.shape[1]);let i=R.computeOptimalWindowSize(s),o={windowSize:i,inSize:s,batchSize:a,outSize:Math.ceil(s/i)},l=new vV(o,n,r==null),u=[t];r!=null&&u.push(r);let c=e.runWebGLProgram(l,u,"int32");if(c.shape[1]===1)return c;let h=V_(e,t,n,c);return e.disposeIntermediateTensorInfo(c),h}function U_(e,t,n,r=null){let a=r!=null?r.shape:t.shape,s=a[a.length-1],i=R.computeOptimalWindowSize(s),o=new kV(a,i,n,r==null),l=r==null?[t]:[t,r],u=e.runWebGLProgram(o,l,"int32");if(u.shape.length===t.shape.length){let c=U_(e,t,n,u);return e.disposeIntermediateTensorInfo(u),c}return u}function j_(e,t,n,r){let a=[n];if(R.assertAxesAreInnerMostDims("arg"+r.charAt(0).toUpperCase()+r.slice(1),a,t.shape.length),!Q().getBool("WEBGL_PACK_REDUCE")||t.shape.length<=2){let s=[],[i,o]=R.computeOutAndReduceShapes(t.shape,a),l=k.sizeFromShape(o),u=ge({inputs:{x:t},backend:e,attrs:{shape:[-1,l]}});s.push(u);let c=V_(e,u,r);s.push(c);let h=ge({inputs:{x:c},backend:e,attrs:{shape:i}});return s.forEach(d=>e.disposeIntermediateTensorInfo(d)),h}return U_(e,t,r)}function NV(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s}=r,i=k.parseAxisParam(s,a.shape),o=R.getAxesPermutation(i,a.shape.length),l=a,u=[];o!=null&&(l=wn({inputs:{x:a},backend:n,attrs:{perm:o}}),u.push(l),i=R.getInnerMostAxes(i.length,l.shape.length)),R.assertAxesAreInnerMostDims("argMax",[i[0]],l.shape.length);let c=j_(n,l,i[0],"max");return u.forEach(h=>n.disposeIntermediateTensorInfo(h)),c}var IV={kernelName:cs,backendName:"webgl",kernelFunc:NV};function SV(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s}=r,i=k.parseAxisParam(s,a.shape),o=R.getAxesPermutation(i,a.shape.length),l=a,u=[];o!=null&&(l=wn({inputs:{x:a},backend:n,attrs:{perm:o}}),u.push(l),i=R.getInnerMostAxes(i.length,l.shape.length)),R.assertAxesAreInnerMostDims("argMin",[i[0]],l.shape.length);let c=j_(n,l,i[0],"min");return u.forEach(h=>n.disposeIntermediateTensorInfo(h)),c}var TV={kernelName:xu,backendName:"webgl",kernelFunc:SV},EV=yr+`
|
|
if (abs(x) > 1.) {
|
|
return NAN;
|
|
}
|
|
return asin(x);
|
|
`,CV=Ke({opSnippet:EV}),RV={kernelName:to,backendName:"webgl",kernelFunc:CV},FV=yr+"return log(x + sqrt(x * x + 1.0));",MV=Ke({opSnippet:FV}),OV={kernelName:no,backendName:"webgl",kernelFunc:MV},DV=yr+`
|
|
return atan(x);
|
|
`,$V=Ke({opSnippet:DV}),zV={kernelName:ro,backendName:"webgl",kernelFunc:$V},PV=GB+`
|
|
return atan(a, b);
|
|
`,LV=`
|
|
vec4 result = atan(a, b);
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+HB+`
|
|
return result;
|
|
`,WV=tn({opSnippet:PV,packedOpSnippet:LV}),BV={kernelName:so,backendName:"webgl",kernelFunc:WV},VV=yr+`
|
|
if ((x < -1.0) || (x > 1.0)) return NAN;
|
|
return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,UV=Ke({opSnippet:VV}),jV={kernelName:ao,backendName:"webgl",kernelFunc:UV},_c=class{constructor(e,t,n,r=!1,a=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let s=e.filterWidth,i=e.strideHeight,o=e.strideWidth,l=e.dilationHeight,u=e.dilationWidth,c=e.effectiveFilterHeight,h=e.effectiveFilterWidth,d=e.padInfo.top,p=e.padInfo.left;this.outputShape=e.outShape;let f=t==="avg",m=`((batch * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + d`,A=`(xR * ${e.inWidth} + xC) * ${e.inChannels} + d`,y="0.0";if(f||(y="-1.0 / 1e-20"),n){let I=">=";this.userCode=`
|
|
const ivec2 strides = ivec2(${i}, ${o});
|
|
const ivec2 pads = ivec2(${d}, ${p});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// max/min x(?, ?, d) to get y(yR, yC, d).
|
|
// ? = to be determined
|
|
float minMaxValue = 0.0;
|
|
float minMaxValueFound = 0.0;
|
|
int minMaxPosition = 0;
|
|
float avgValue = 0.0;
|
|
|
|
for (int wR = 0; wR < ${c};
|
|
wR += ${l}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${h};
|
|
wC += ${u}) {
|
|
int xC = xCCorner + wC;
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float value = getX(batch, xR, xC, d);
|
|
|
|
// If a min / max value has already been found, use it. If not,
|
|
// use the current value.
|
|
float currMinMaxValue = mix(
|
|
value, minMaxValue, minMaxValueFound);
|
|
if (value ${I} currMinMaxValue) {
|
|
minMaxValue = value;
|
|
minMaxValueFound = 1.0;
|
|
minMaxPosition = ${r?a?m:A:`wR * ${h} + wC`};
|
|
}
|
|
}
|
|
}
|
|
setOutput(float(minMaxPosition));
|
|
}
|
|
`;return}let g="max",_=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(_="avgValue / count");let b=Math.floor(s/4)*4,x=s%4,w=`
|
|
if (${f}) {
|
|
avgValue += dot(values, ones);
|
|
} else {
|
|
minMaxValue = ${g}(values, minMaxValue);
|
|
}
|
|
`;this.userCode=`
|
|
const ivec2 strides = ivec2(${i}, ${o});
|
|
const ivec2 pads = ivec2(${d}, ${p});
|
|
const float initializationValue = ${y};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float count = 0.0;
|
|
|
|
float getValue(int batch, int xR, int xC, int d) {
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
return initializationValue;
|
|
}
|
|
count += 1.0;
|
|
return getX(batch, xR, xC, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// max/min x(?, ?, d) to get y(yR, yC, d).
|
|
// ? = to be determined
|
|
vec4 minMaxValue = vec4(${y});
|
|
float avgValue = 0.0;
|
|
count = 0.0;
|
|
|
|
for (int wR = 0; wR < ${c};
|
|
wR += ${l}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${b}; wC += 4) {
|
|
int xC = xCCorner + wC * ${u};
|
|
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${u}, d),
|
|
getValue(batch, xR, xC + 2 * ${u}, d),
|
|
getValue(batch, xR, xC + 3 * ${u}, d)
|
|
);
|
|
|
|
${w}
|
|
}
|
|
|
|
int xC = xCCorner + ${b};
|
|
if (${x===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${w}
|
|
} else if (${x===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${u}, d),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${w}
|
|
} else if (${x===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${u}, d),
|
|
getValue(batch, xR, xC + 2 * ${u}, d),
|
|
initializationValue
|
|
);
|
|
|
|
${w}
|
|
}
|
|
}
|
|
setOutput(${_});
|
|
}
|
|
`}},Vm=class{constructor(e,t,n,r=!1,a=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let s=e.filterWidth,i=e.strideDepth,o=e.strideHeight,l=e.strideWidth,u=e.dilationDepth,c=e.dilationHeight,h=e.dilationWidth,d=e.effectiveFilterDepth,p=e.effectiveFilterHeight,f=e.effectiveFilterWidth,m=e.padInfo.front,A=e.padInfo.top,y=e.padInfo.left;this.outputShape=e.outShape;let g=t==="avg",_="0.0";if(g||(_="-1.0 / 1e-20"),n){let E=">=";this.userCode=`
|
|
const ivec3 strides =
|
|
ivec3(${i}, ${o}, ${l});
|
|
const ivec3 pads = ivec3(${m}, ${A}, ${y});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xDCorner = xCorner.x;
|
|
int xRCorner = xCorner.y;
|
|
int xCCorner = xCorner.z;
|
|
|
|
// max/min x(?, ?, ?, ch) to get y(yD, yR, yC, ch).
|
|
// ? = to be determined
|
|
float minMaxValue = 0.0;
|
|
float minMaxValueFound = 0.0;
|
|
int minMaxPosition = 0;
|
|
|
|
for (int wD = 0; wD < ${d};
|
|
wD += ${u}) {
|
|
int xD = xDCorner + wD;
|
|
|
|
if (xD < 0 || xD >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${p};
|
|
wR += ${c}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${f};
|
|
wC += ${h}) {
|
|
int xC = xCCorner + wC;
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float value = getX(batch, xD, xR, xC, ch);
|
|
|
|
// If a min / max value has already been found, use it. If not,
|
|
// use the current value.
|
|
float currMinMaxValue = mix(
|
|
value, minMaxValue, minMaxValueFound);
|
|
if (value ${E} currMinMaxValue) {
|
|
minMaxValue = value;
|
|
minMaxValueFound = 1.0;
|
|
minMaxPosition = ${r?a?`(((batch * ${e.inDepth} + xD) * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`((xD * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`wD * ${p} * ${f} +
|
|
wR * ${f} + wC`};
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(float(minMaxPosition));
|
|
}
|
|
`;return}let b="max",x=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(x="avgValue / count");let w=Math.floor(s/4)*4,I=s%4,T=`
|
|
if (${g}) {
|
|
avgValue += dot(values, ones);
|
|
} else {
|
|
minMaxValue = ${b}(values, minMaxValue);
|
|
}
|
|
`;this.userCode=`
|
|
const ivec3 strides =
|
|
ivec3(${i}, ${o}, ${l});
|
|
const ivec3 pads = ivec3(${m}, ${A}, ${y});
|
|
const float initializationValue = ${_};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float count = 0.0;
|
|
|
|
float getValue(int batch, int xD, int xR, int xC, int ch) {
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
return initializationValue;
|
|
}
|
|
count += 1.0;
|
|
return getX(batch, xD, xR, xC, ch);
|
|
}
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xDCorner = xCorner.x;
|
|
int xRCorner = xCorner.y;
|
|
int xCCorner = xCorner.z;
|
|
|
|
// max/min x(?, ?, ?, d) to get y(yD, yR, yC, ch).
|
|
// ? = to be determined
|
|
vec4 minMaxValue = vec4(${_});
|
|
float avgValue = 0.0;
|
|
count = 0.0;
|
|
|
|
for (int wD = 0; wD < ${d};
|
|
wD += ${u}) {
|
|
int xD = xDCorner + wD;
|
|
|
|
if (xD < 0 || xD >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${p};
|
|
wR += ${c}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${w}; wC += 4) {
|
|
int xC = xCCorner + wC * ${h};
|
|
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${h}, ch),
|
|
getValue(batch, xD, xR, xC + 2 * ${h}, ch),
|
|
getValue(batch, xD, xR, xC + 3 * ${h}, ch)
|
|
);
|
|
|
|
${T}
|
|
}
|
|
|
|
int xC = xCCorner + ${w};
|
|
if (${I===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${T}
|
|
} else if (${I===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${h}, ch),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${T}
|
|
} else if (${I===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${h}, ch),
|
|
getValue(batch, xD, xR, xC + 2 * ${h}, ch),
|
|
initializationValue
|
|
);
|
|
|
|
${T}
|
|
}
|
|
}
|
|
setOutput(${x});
|
|
}
|
|
}
|
|
`}};function GV(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t;Il(a,"avgPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=r,u=1;k.assert(R.eitherStridesOrDilationsAreOne(i,u),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let c=R.computePool2DInfo(a.shape,s,i,u,o,l);if(c.filterWidth===1&&c.filterHeight===1&&k.arraysEqual(c.inShape,c.outShape))return Mn({inputs:{x:a},backend:n});let h=new _c(c,"avg",!1);return n.runWebGLProgram(h,[a],"float32")}var HV={kernelName:hs,backendName:"webgl",kernelFunc:GV};function qV(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:u}=r,c=[1,1,1],h=R.computePool3DInfo(a.shape,s,i,c,o,l,u),d=new Vm(h,"avg",!1);return n.runWebGLProgram(d,[a],"float32")}var XV={kernelName:wu,backendName:"webgl",kernelFunc:qV},KV=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,r=e.strideHeight,a=e.strideWidth,s=e.dilationHeight,i=e.dilationWidth,o=e.effectiveFilterHeight,l=e.effectiveFilterWidth,u=o-1-e.padInfo.top,c=l-1-e.padInfo.left,h=1/(t*n);this.userCode=`
|
|
const ivec2 pads = ivec2(${u}, ${c});
|
|
const float avgMultiplier = float(${h});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 dyRCCorner = coords.yz - pads;
|
|
int dyRCorner = dyRCCorner.x;
|
|
int dyCCorner = dyRCCorner.y;
|
|
|
|
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${o};
|
|
wR += ${s}) {
|
|
float dyR = float(dyRCorner + wR) / ${r}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${l};
|
|
wC+= ${i}) {
|
|
float dyC = float(dyCCorner + wC) / ${a}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(b, idyR, idyC, d);
|
|
|
|
dotProd += dyValue * avgMultiplier;
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},ZV=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,r=e.filterWidth,a=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=e.dilationDepth,l=e.dilationHeight,u=e.dilationWidth,c=e.effectiveFilterDepth,h=e.effectiveFilterHeight,d=e.effectiveFilterWidth,p=c-1-e.padInfo.front,f=h-1-e.padInfo.top,m=d-1-e.padInfo.left,A=1/(t*n*r);this.userCode=`
|
|
const ivec3 pads = ivec3(${p}, ${f}, ${m});
|
|
const float avgMultiplier = float(${A});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyDCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
// Convolve dy(?, ?, ?, d) with pos mask(:, :, :, ch) to get
|
|
// dx(xD, xR, xC, ch).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int wD = 0; wD < ${c};
|
|
wD += ${o}) {
|
|
float dyD = float(dyDCorner + wD) / ${a}.0;
|
|
|
|
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyD = int(dyD);
|
|
|
|
for (int wR = 0; wR < ${h};
|
|
wR += ${l}) {
|
|
float dyR = float(dyRCorner + wR) / ${s}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${d};
|
|
wC += ${u}) {
|
|
float dyC = float(dyCCorner + wC) / ${i}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
|
|
|
|
dotProd += dyValue * avgMultiplier;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function YV(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s}=t,i=s,{filterSize:o,strides:l,pad:u,dimRoundingMode:c}=r,h=[1,1,1],d=R.computePool3DInfo(i.shape,o,l,h,u,c),p=new ZV(d);return n.runWebGLProgram(p,[a],i.dtype)}var JV={kernelName:Dh,backendName:"webgl",kernelFunc:YV};function QV(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s}=t,i=s;Il([a,s],"avgPoolGrad");let{filterSize:o,strides:l,pad:u}=r,c=R.computePool2DInfo(i.shape,o,l,1,u),h=new KV(c);return n.runWebGLProgram(h,[a],i.dtype)}var eU={kernelName:Oh,backendName:"webgl",kernelFunc:QV};function tU(e){let{inputs:t,backend:n,attrs:r}=e,{a,b:s}=t,{transposeA:i,transposeB:o}=r;return bp({a,b:s,transposeA:i,transposeB:o,backend:n})}var nU={kernelName:ds,backendName:"webgl",kernelFunc:tU},rU=class{constructor(e,t,n,r,a,s){this.outputShape=[],this.variableNames=["x","mean","variance"],R.assertAndGetBroadcastShape(e,t),R.assertAndGetBroadcastShape(e,n);let i="0.0";r!=null&&(R.assertAndGetBroadcastShape(e,r),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let o="1.0";a!=null&&(R.assertAndGetBroadcastShape(e,a),this.variableNames.push("scale"),o="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
float x = getXAtOutCoords();
|
|
float mean = getMeanAtOutCoords();
|
|
float variance = getVarianceAtOutCoords();
|
|
float offset = ${i};
|
|
float scale = ${o};
|
|
float inv = scale * inversesqrt(variance + float(${s}));
|
|
setOutput(dot(vec3(x, -mean, offset), vec3(inv, inv, 1)));
|
|
}
|
|
`}},aU=class{constructor(e,t,n,r,a,s){this.packedInputs=!0,this.packedOutput=!0,this.variableNames=["x","mean","variance"],R.assertAndGetBroadcastShape(e,t),R.assertAndGetBroadcastShape(e,n);let i="vec4(0.0)";r!=null&&(R.assertAndGetBroadcastShape(e,r),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let o="vec4(1.0)";a!=null&&(R.assertAndGetBroadcastShape(e,a),this.variableNames.push("scale"),o="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
vec4 offset = ${i};
|
|
vec4 scale = ${o};
|
|
|
|
vec4 x = getXAtOutCoords();
|
|
vec4 mean = getMeanAtOutCoords();
|
|
vec4 variance = getVarianceAtOutCoords();
|
|
|
|
vec4 inv = scale * inversesqrt(variance + vec4(${s}));
|
|
|
|
setOutput((x - mean) * inv + offset);
|
|
}
|
|
`}},sU=({inputs:e,backend:t,attrs:n})=>{let{x:r,mean:a,variance:s,offset:i,scale:o}=e;k.assert(a.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),k.assert(i==null||a.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),k.assert(o==null||a.shape.length===o.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let{varianceEpsilon:l}=n;l==null&&(l=.001);let u=[r,a,s],c=null;i!=null&&(c=i.shape,u.push(i));let h=null;o!=null&&(h=o.shape,u.push(o));let d=Q().getBool("WEBGL_PACK_NORMALIZATION")?new aU(r.shape,a.shape,s.shape,c,h,l):new rU(r.shape,a.shape,s.shape,c,h,l);return t.runWebGLProgram(d,u,u[0].dtype)},iU={kernelName:vs,backendName:"webgl",kernelFunc:sU},lU=class{constructor(e){this.variableNames=["source"],this.outputShape=e,this.rank=e.length;let t=ct(this.rank),n=`uniform int start[${this.rank}];`,r=oU(this.rank),a,s=e.map((i,o)=>`sourceLoc.${Um[o]} = start[${o}] + coords.${Um[o]};`);a=`
|
|
${t} sourceLoc;
|
|
${t} coords = getOutputCoords();
|
|
${s.join(`
|
|
`)}
|
|
`,this.userCode=`
|
|
${n}
|
|
void main() {
|
|
${a}
|
|
setOutput(getSource(${r}));
|
|
}
|
|
`}getCustomSetupFunc(e){if(e.length!==this.rank)throw Error(`The rank (${this.rank}) of the program must match the length of start (${e.length})`);return(t,n)=>{this.startLoc==null&&(this.startLoc=t.getUniformLocationNoThrow(n,"start"),this.startLoc==null)||t.gl.uniform1iv(this.startLoc,e)}}},Um=["x","y","z","w","u","v"];function oU(e){if(e===1)return"sourceLoc";if(e<=6)return Um.slice(0,e).map(t=>"sourceLoc."+t).join(",");throw Error(`Slicing for rank ${e} is not yet supported`)}var uU=class{constructor(e){this.variableNames=["source"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.rank=e.length;let t=ct(this.rank),n=hn("coords",this.rank),r=hn("sourceLoc",this.rank),a=this.rank===1?"sourceLoc":`vec2(${r.slice(-2).join()})`,s=`getChannel(getSource(${r.join()}), ${a})`,i=`
|
|
result.x = ${s};
|
|
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
|
|
++${r[this.rank-1]};
|
|
result.y = ${s};
|
|
--${r[this.rank-1]};
|
|
}
|
|
`,o=this.rank===1?"":`
|
|
--${n[this.rank-1]};
|
|
if (++${n[this.rank-2]} < ${e[this.rank-2]}) {
|
|
++${r[this.rank-2]};
|
|
result.z = ${s};
|
|
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
|
|
++${r[this.rank-1]};
|
|
result.w = ${s};
|
|
}
|
|
}
|
|
`,l=this.rank<=4?`sourceLoc = coords +
|
|
${t}(${e.map((u,c)=>`start[${c}]`).join()});`:e.map((u,c)=>`${r[c]} = ${n[c]} + start[${c}];`).join(`
|
|
`);this.userCode=`
|
|
uniform int start[${this.rank}];
|
|
void main() {
|
|
${t} coords = getOutputCoords();
|
|
${t} sourceLoc;
|
|
${l}
|
|
vec4 result = vec4(0.);
|
|
${i}
|
|
${o}
|
|
setOutput(result);
|
|
}
|
|
`}getCustomSetupFunc(e){if(e.length!==this.rank)throw Error(`The rank (${this.rank}) of the program must match the length of start (${e.length})`);return(t,n)=>{this.startLoc==null&&(this.startLoc=t.getUniformLocationNoThrow(n,"start"),this.startLoc==null)||t.gl.uniform1iv(this.startLoc,e)}}};function cU(e,t,n,r){let a=r.texData.get(e.dataId),s=r.makeTensorInfo(n,e.dtype),i=r.texData.get(s.dataId);Object.assign(i,a),i.shape=n,i.dtype=e.dtype;let o=ln.computeFlatOffset(t,k.computeStrides(e.shape));a.slice&&(o+=a.slice.flatOffset),i.slice={flatOffset:o,origDataId:a.slice&&a.slice.origDataId||e.dataId};let l=r.dataRefCount.get(i.slice.origDataId)||1;return r.dataRefCount.set(i.slice.origDataId,l+1),s}function bc(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{begin:s,size:i}=r,[o,l]=ln.parseSliceParams(a,s,i);if(ln.assertParamsValid(a,o,l),k.sizeFromShape(l)===0)return n.makeTensorInfo(l,a.dtype,[]);if(n.shouldExecuteOnCPU([a])||a.dtype==="string"){let h=n.texData.get(a.dataId),d=aB(h.values,o,l,a.shape,a.dtype);return n.makeTensorInfo(l,a.dtype,d)}let{isPacked:u}=n.texData.get(a.dataId),c=ln.isSliceContinous(a.shape,o,l);if(u||!c){let h=Q().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new uU(l):new lU(l),d=h.getCustomSetupFunc(o);return n.runWebGLProgram(h,[a],a.dtype,d)}return n.uploadToGPU(a.dataId),cU(a,o,l,n)}var hU={kernelName:Uo,backendName:"webgl",kernelFunc:bc},dU=e=>{let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{blockShape:s,crops:i}=r;k.assert(a.shape.length<=4,()=>"batchToSpaceND for rank > 4 with a WebGL backend not implemented yet");let o=s.reduce((g,_)=>g*_),l=R.getReshaped(a.shape,s,o),u=R.getPermuted(l.length,s.length),c=R.getReshapedPermuted(a.shape,s,o),h=R.getSliceBeginCoords(i,s.length),d=R.getSliceSize(c,i,s.length),p=[],f=ge({inputs:{x:a},backend:n,attrs:{shape:l}}),m=wn({inputs:{x:f},backend:n,attrs:{perm:u}}),A=ge({inputs:{x:m},backend:n,attrs:{shape:c}}),y=bc({inputs:{x:A},backend:n,attrs:{begin:h,size:d}});return p.push(f),p.push(m),p.push(A),p.forEach(g=>n.disposeIntermediateTensorInfo(g)),y},pU={kernelName:_u,backendName:"webgl",kernelFunc:dU};function fU(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,weights:s}=t,{size:i}=r,o=n.readSync(a.dataId),l=n.readSync(s.dataId),u=y_(o,l,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,u)}var mU={kernelName:$h,backendName:"webgl",kernelFunc:fU},AU="return float(a != b);",G_=tn({opSnippet:AU,dtype:"bool"}),yU={kernelName:Ro,backendName:"webgl",kernelFunc:G_};function vc(e){let{inputs:t,backend:n}=e,{input:r}=t,a=n.texData.get(r.dataId);return Mn({inputs:{x:a.complexTensorInfos.real},backend:n})}var gU={kernelName:rd,backendName:"webgl",kernelFunc:vc},xU="return float(int(x));";function wU(e,t){let n=new Pa(e.shape,xU),r=t.runWebGLProgram(n,[e],"int32");return{dataId:r.dataId,shape:r.shape,dtype:r.dtype}}function jm(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{dtype:s}=r;if(s==="complex64"){if(a.dtype==="complex64")return Mn({inputs:{x:a},backend:n});let i=Tt(a.shape),o=jm({inputs:{x:a},backend:n,attrs:{dtype:"float32"}}),l=La({inputs:{real:o,imag:i},backend:n});return i.dispose(),n.disposeIntermediateTensorInfo(o),l}if(a.dtype==="complex64"){let i=vc({inputs:{input:a},backend:n}),o=jm({inputs:{x:i},backend:n,attrs:{dtype:s}});return n.disposeIntermediateTensorInfo(i),o}if(!k.hasEncodingLoss(a.dtype,s)){let i=Mn({inputs:{x:a},backend:n});return{dataId:i.dataId,shape:i.shape,dtype:s}}if(s==="int32")return wU(a,n);if(s==="bool"){let i=n.makeTensorInfo([],"bool",k.getTypedArrayFromDType("bool",1)),o=G_({inputs:{a,b:i},backend:n});return n.disposeIntermediateTensorInfo(i),o}throw new Error(`Error in Cast: failed to cast ${a.dtype} to ${s}`)}var _U={kernelName:ps,backendName:"webgl",kernelFunc:jm},H_="return ceil(x);",bU=Ke({opSnippet:H_,packedOpSnippet:H_,cpuKernelImpl:WW}),vU={kernelName:io,backendName:"webgl",kernelFunc:bU},kU=class{constructor(e){this.variableNames=["A"],this.outputShape=e,this.userCode=`
|
|
uniform float minVal;
|
|
uniform float maxVal;
|
|
|
|
void main() {
|
|
float value = getAAtOutCoords();
|
|
if (isnan(value)) {
|
|
setOutput(value);
|
|
return;
|
|
}
|
|
|
|
setOutput(clamp(value, minVal, maxVal));
|
|
}
|
|
`}getCustomSetupFunc(e,t){return(n,r)=>{this.minLoc==null&&(this.minLoc=n.getUniformLocationNoThrow(r,"minVal"),this.maxLoc=n.getUniformLocationNoThrow(r,"maxVal")),n.gl.uniform1f(this.minLoc,e),n.gl.uniform1f(this.maxLoc,t)}}},NU=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.userCode=`
|
|
uniform float minVal;
|
|
uniform float maxVal;
|
|
|
|
void main() {
|
|
vec4 value = getAAtOutCoords();
|
|
|
|
if (any(isnan(value))) {
|
|
setOutput(value);
|
|
return;
|
|
}
|
|
|
|
setOutput(clamp(value, vec4(minVal), vec4(maxVal)));
|
|
}
|
|
`}getCustomSetupFunc(e,t){return(n,r)=>{this.minLoc==null&&(this.minLoc=n.getUniformLocationNoThrow(r,"minVal"),this.maxLoc=n.getUniformLocationNoThrow(r,"maxVal")),n.gl.uniform1f(this.minLoc,e),n.gl.uniform1f(this.maxLoc,t)}}};function IU(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{clipValueMin:s,clipValueMax:i}=r,o;Q().getBool("WEBGL_PACK_CLIP")?o=new NU(a.shape):o=new kU(a.shape);let l=o.getCustomSetupFunc(s,i);return n.runWebGLProgram(o,[a],a.dtype,l)}var SU={kernelName:Na,backendName:"webgl",kernelFunc:IU},TU=class{constructor(e){this.variableNames=["real","imag"],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
float re = abs(getRealAtOutCoords());
|
|
float im = abs(getImagAtOutCoords());
|
|
float mx = max(re, im);
|
|
|
|
// sadly the length function in glsl is not underflow-safe
|
|
// (at least not on Intel GPUs). So the safe solution is
|
|
// to ensure underflow-safety in all cases.
|
|
setOutput(
|
|
mx == 0.0 ? 0.0 : mx * length(vec2(1, min(re, im)/mx))
|
|
);
|
|
}
|
|
`}};function q_(e,t){return{dataId:t.dataId,dtype:t.dtype,shape:e.shape}}function EU(e){let{inputs:t,backend:n}=e,{x:r}=t,a=n.texData.get(r.dataId),s=new TU(r.shape),i=[q_(r,a.complexTensorInfos.real),q_(r,a.complexTensorInfos.imag)];return n.runWebGLProgram(s,i,i[0].dtype)}var CU={kernelName:bu,backendName:"webgl",kernelFunc:EU},RU=class{constructor(e){this.outputShape=[],this.outputShape=R.computeOutShape(e,1),this.variableNames=e.map((s,i)=>`T${i}`);let t=new Array(e.length-1);t[0]=e[0][1];for(let s=1;s<t.length;s++)t[s]=t[s-1]+e[s][1];let n=[`if (yC < ${t[0]}) setOutput(getT0(yR, yC));`];for(let s=1;s<t.length;s++){let i=t[s-1];n.push(`else if (yC < ${t[s]}) setOutput(getT${s}(yR, yC-${i}));`)}let r=t.length,a=t[t.length-1];n.push(`else setOutput(getT${r}(yR, yC-${a}));`),this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int yR = coords.x;
|
|
int yC = coords.y;
|
|
|
|
${n.join(`
|
|
`)}
|
|
}
|
|
`}},FU=class{constructor(e,t){this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[],this.outputShape=R.computeOutShape(e,t);let n=this.outputShape,r=n.length,a=ct(r),s=hn("coords",r),i=["x","y","z","w","u","v"].slice(0,r);this.variableNames=e.map((f,m)=>`T${m}`);let o=new Array(e.length-1);o[0]=e[0][t];for(let f=1;f<o.length;f++)o[f]=o[f-1]+e[f][t];let l=i[t],u=i.slice(-2),c=i.join(),h=`if (${l} < ${o[0]}) {
|
|
return getChannel(
|
|
getT0(${c}), vec2(${u.join()}));
|
|
}`;for(let f=1;f<o.length;f++){let m=o[f-1];h+=`
|
|
if (${l} < ${o[f]} && ${l} >= ${o[f-1]}) {
|
|
return getChannel(
|
|
getT${f}(${kp(i,l,m)}),
|
|
vec2(${kp(u,l,m)}));
|
|
}`}let d=o.length,p=o[o.length-1];h+=`
|
|
return getChannel(
|
|
getT${d}(${kp(i,l,p)}),
|
|
vec2(${kp(u,l,p)}));`,this.userCode=`
|
|
float getValue(${i.map(f=>"int "+f)}) {
|
|
${h}
|
|
}
|
|
|
|
void main() {
|
|
${a} coords = getOutputCoords();
|
|
vec4 result = vec4(getValue(${s}), 0., 0., 0.);
|
|
|
|
${s[r-1]} = ${s[r-1]} + 1;
|
|
if (${s[r-1]} < ${n[r-1]}) {
|
|
result.g = getValue(${s});
|
|
}
|
|
|
|
${s[r-2]} = ${s[r-2]} + 1;
|
|
if (${s[r-2]} < ${n[r-2]}) {
|
|
result.a = getValue(${s});
|
|
}
|
|
|
|
${s[r-1]} = ${s[r-1]} - 1;
|
|
if (${s[r-2]} < ${n[r-2]} &&
|
|
${s[r-1]} < ${n[r-1]}) {
|
|
result.b = getValue(${s});
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}};function kp(e,t,n){let r=e.indexOf(t);return e.map((a,s)=>s===r?`${a} - ${n}`:a).join()}function Np(e){let{inputs:t,backend:n}=e,{input:r}=t,a=n.texData.get(r.dataId);return Mn({inputs:{x:a.complexTensorInfos.imag},backend:n})}var MU={kernelName:Zh,backendName:"webgl",kernelFunc:Np};function Ol(e,t,n){let r=e[0].dtype;if(r==="complex64"){let u=e.map(f=>vc({inputs:{input:f},backend:n})),c=e.map(f=>Np({inputs:{input:f},backend:n})),h=Ol(u,t,n),d=Ol(c,t,n),p=La({inputs:{real:h,imag:d},backend:n});return u.forEach(f=>n.disposeIntermediateTensorInfo(f)),c.forEach(f=>n.disposeIntermediateTensorInfo(f)),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(d),p}if(r==="string"){let{tensors2D:u,outShape:c}=X_(e,t,n),h=u.map(A=>({vals:n.readSync(A.dataId),shape:A.shape})),d=u[0].shape[0]===1,p=BW(h,c,r,d),f=R.computeOutShape(e.map(A=>A.shape),t),m=n.makeTensorInfo(f,r,p);return u.forEach(A=>n.disposeIntermediateTensorInfo(A)),m}if(e.length>Q().getNumber("WEBGL_MAX_TEXTURES_IN_SHADER")){let u=Math.floor(e.length/2),c=Ol(e.slice(0,u),t,n),h=Ol(e.slice(u),t,n),d=Ol([c,h],t,n);return n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),d}if(Q().getBool("WEBGL_PACK_ARRAY_OPERATIONS")&&e[0].shape.length>1){let u=new FU(e.map(c=>c.shape),t);return n.runWebGLProgram(u,e,r)}let{tensors2D:a,outShape:s}=X_(e,t,n),i=new RU(a.map(u=>u.shape)),o=n.runWebGLProgram(i,a,r);a.forEach(u=>n.disposeIntermediateTensorInfo(u));let l=ge({inputs:{x:o},attrs:{shape:s},backend:n});return n.disposeIntermediateTensorInfo(o),l}function X_(e,t,n){let r=R.computeOutShape(e.map(a=>a.shape),t);return{tensors2D:e.map(a=>ge({inputs:{x:a},attrs:{shape:[-1,k.sizeFromShape(a.shape.slice(t))]},backend:n})),outShape:r}}function K_(e){let{inputs:t,backend:n,attrs:r}=e,{axis:a}=r,s=k.parseAxisParam(a,t[0].shape)[0],i=R.computeOutShape(t.map(u=>u.shape),s);if(k.sizeFromShape(i)===0)return n.makeTensorInfo(i,t[0].dtype,[]);let o=t.filter(u=>k.sizeFromShape(u.shape)>0);if(o.length===1)return Mn({inputs:{x:o[0]},backend:n});let l=o.map(u=>u.shape);return R.assertParamsConsistent(l,s),Ol(o,s,n)}var OU={kernelName:oo,backendName:"webgl",kernelFunc:K_},Z_=class{constructor(e,t=!1,n=null,r=!1,a=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let s=e.padInfo.top,i=e.padInfo.left,o=e.strideHeight,l=e.strideWidth,u=e.dilationHeight,c=e.dilationWidth,h=e.filterHeight,d=e.filterWidth,p=Math.floor(e.inChannels/4)*4,f=e.inChannels%4,m=e.dataFormat==="channelsLast",A=m?1:2,y=m?2:3,g=m?3:1,_="",b="";n&&(r?_=`float activation(float a) {
|
|
float b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:a?_=`float activation(float a) {
|
|
float b = getLeakyreluAlphaAtOutCoords();
|
|
${n}
|
|
}`:_=`
|
|
float activation(float x) {
|
|
${n}
|
|
}
|
|
`,b="result = activation(result);");let x=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),r&&this.variableNames.push("preluActivationWeights"),a&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${_}
|
|
|
|
const ivec2 strides = ivec2(${o}, ${l});
|
|
const ivec2 pads = ivec2(${s}, ${i});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d2 = coords[${g}];
|
|
|
|
ivec2 xRCCorner =
|
|
ivec2(coords[${A}], coords[${y}]) * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// Convolve x(?, ?, d1) with w(:, :, d1, d2) to get y(yR, yC, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${h}; wR++) {
|
|
int xR = xRCorner + wR * ${u};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${d}; wC++) {
|
|
int xC = xCCorner + wC * ${c};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int d1 = 0; d1 < ${p}; d1 += 4) {
|
|
vec4 wValues = vec4(
|
|
getW(wR, wC, d1, d2),
|
|
getW(wR, wC, d1 + 1, d2),
|
|
getW(wR, wC, d1 + 2, d2),
|
|
getW(wR, wC, d1 + 3, d2)
|
|
);
|
|
|
|
if (${m}) {
|
|
vec4 xValues = vec4(
|
|
getX(batch, xR, xC, d1),
|
|
getX(batch, xR, xC, d1 + 1),
|
|
getX(batch, xR, xC, d1 + 2),
|
|
getX(batch, xR, xC, d1 + 3)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec4 xValues = vec4(
|
|
getX(batch, d1, xR, xC),
|
|
getX(batch, d1 + 1, xR, xC),
|
|
getX(batch, d1 + 2, xR, xC),
|
|
getX(batch, d1 + 3, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
}
|
|
|
|
if (${f===1}) {
|
|
|
|
if (${m}) {
|
|
dotProd +=
|
|
getX(batch, xR, xC, ${p}) *
|
|
getW(wR, wC, ${p}, d2);
|
|
} else {
|
|
dotProd +=
|
|
getX(batch, ${p}, xR, xC) *
|
|
getW(wR, wC, ${p}, d2);
|
|
}
|
|
|
|
} else if (${f===2}) {
|
|
vec2 wValues = vec2(
|
|
getW(wR, wC, ${p}, d2),
|
|
getW(wR, wC, ${p} + 1, d2)
|
|
);
|
|
|
|
if (${m}) {
|
|
vec2 xValues = vec2(
|
|
getX(batch, xR, xC, ${p}),
|
|
getX(batch, xR, xC, ${p} + 1)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec2 xValues = vec2(
|
|
getX(batch, ${p}, xR, xC),
|
|
getX(batch, ${p} + 1, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
} else if (${f===3}) {
|
|
vec3 wValues = vec3(
|
|
getW(wR, wC, ${p}, d2),
|
|
getW(wR, wC, ${p} + 1, d2),
|
|
getW(wR, wC, ${p} + 2, d2)
|
|
);
|
|
|
|
if (${m}) {
|
|
vec3 xValues = vec3(
|
|
getX(batch, xR, xC, ${p}),
|
|
getX(batch, xR, xC, ${p} + 1),
|
|
getX(batch, xR, xC, ${p} + 2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec3 xValues = vec3(
|
|
getX(batch, ${p}, xR, xC),
|
|
getX(batch, ${p} + 1, xR, xC),
|
|
getX(batch, ${p} + 2, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
|
|
float result = dotProd;
|
|
${x}
|
|
${b}
|
|
setOutput(result);
|
|
}
|
|
`}},DU=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let t=e.padInfo.front,n=e.padInfo.top,r=e.padInfo.left,a=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=e.dilationDepth,l=e.dilationHeight,u=e.dilationWidth,c=e.filterDepth,h=e.filterHeight,d=e.filterWidth,p=Math.floor(e.inChannels/4)*4,f=e.inChannels%4;this.userCode=`
|
|
const ivec3 strides = ivec3(${a}, ${s}, ${i});
|
|
const ivec3 pads = ivec3(${t}, ${n}, ${r});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d2 = coords.u;
|
|
|
|
ivec3 xFRCCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xFCorner = xFRCCorner.x;
|
|
int xRCorner = xFRCCorner.y;
|
|
int xCCorner = xFRCCorner.z;
|
|
|
|
// Convolve x(?, ?, ?, d1) with w(:, :, :, d1, d2) to get
|
|
// y(yF, yR, yC, d2). ? = to be determined. : = across all
|
|
// values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wF = 0; wF < ${c}; wF++) {
|
|
int xF = xFCorner + wF * ${o};
|
|
|
|
if (xF < 0 || xF >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${h}; wR++) {
|
|
int xR = xRCorner + wR * ${l};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${d}; wC++) {
|
|
int xC = xCCorner + wC * ${u};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int d1 = 0; d1 < ${p}; d1 += 4) {
|
|
vec4 xValues = vec4(
|
|
getX(batch, xF, xR, xC, d1),
|
|
getX(batch, xF, xR, xC, d1 + 1),
|
|
getX(batch, xF, xR, xC, d1 + 2),
|
|
getX(batch, xF, xR, xC, d1 + 3)
|
|
);
|
|
vec4 wValues = vec4(
|
|
getW(wF, wR, wC, d1, d2),
|
|
getW(wF, wR, wC, d1 + 1, d2),
|
|
getW(wF, wR, wC, d1 + 2, d2),
|
|
getW(wF, wR, wC, d1 + 3, d2)
|
|
);
|
|
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
if (${f===1}) {
|
|
dotProd +=
|
|
getX(batch, xF, xR, xC, ${p}) *
|
|
getW(wF, wR, wC, ${p}, d2);
|
|
} else if (${f===2}) {
|
|
vec2 xValues = vec2(
|
|
getX(batch, xF, xR, xC, ${p}),
|
|
getX(batch, xF, xR, xC, ${p} + 1)
|
|
);
|
|
vec2 wValues = vec2(
|
|
getW(wF, wR, wC, ${p}, d2),
|
|
getW(wF, wR, wC, ${p} + 1, d2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else if (${f===3}) {
|
|
vec3 xValues = vec3(
|
|
getX(batch, xF, xR, xC, ${p}),
|
|
getX(batch, xF, xR, xC, ${p} + 1),
|
|
getX(batch, xF, xR, xC, ${p} + 2)
|
|
);
|
|
vec3 wValues = vec3(
|
|
getW(wF, wR, wC, ${p}, d2),
|
|
getW(wF, wR, wC, ${p} + 1, d2),
|
|
getW(wF, wR, wC, ${p} + 2, d2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},$U=class{constructor(e,t,n){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e;let{filterWidth:r,inChannels:a,strideWidth:s,strideHeight:i,padInfo:o,outWidth:l,dilationWidth:u,dilationHeight:c,dataFormat:h}=n,{left:d,top:p}=o,f=a*r,m=cn(),A=h==="channelsLast",y=A?0:1,g=A?1:2,_="";for(let b=0;b<=1;b++)for(let x=0;x<=1;x++)_+=`
|
|
blockIndex = rc.y + ${x};
|
|
pos = rc.x + ${b};
|
|
|
|
if(blockIndex < ${e[1]} && pos < ${e[0]}) {
|
|
offsetY = int(blockIndex / (${l})) * ${i} - ${p};
|
|
d0 = offsetY + ${c} * (pos / ${f});
|
|
|
|
if(d0 < ${t[y]} && d0 >= 0) {
|
|
|
|
offsetX = int(mod(float(blockIndex), ${l}.) * ${s}. - ${d}.);
|
|
d1 = offsetX + ${u} * (int(mod(float(pos), ${f}.) / ${a}.));
|
|
|
|
if(d1 < ${t[g]} && d1 >= 0) {
|
|
|
|
ch = int(mod(float(pos), ${a}.));
|
|
|
|
if (${A}) {
|
|
innerDims = vec2(d1, ch);
|
|
result[${b*2+x}] = getChannel(
|
|
getA(d0, int(innerDims.x),
|
|
int(innerDims.y)), innerDims);
|
|
} else {
|
|
innerDims = vec2(d0, d1);
|
|
result[${b*2+x}] = getChannel(
|
|
getA(ch, int(innerDims.x),
|
|
int(innerDims.y)), innerDims);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
`;this.userCode=`
|
|
void main() {
|
|
ivec2 rc = getOutputCoords();
|
|
|
|
vec4 result = vec4(0);
|
|
|
|
int blockIndex, pos, offsetY, d0, offsetX, d1, ch;
|
|
vec2 innerDims;
|
|
|
|
${_}
|
|
|
|
${m.output} = result;
|
|
}
|
|
`}};function Y_({x:e,filter:t,convInfo:n,backend:r,bias:a=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:o=null}){let l=e.shape,u=r.texData.get(e.dataId),c=n.inChannels,h=l[0]*l[1]*l[2],d=n.outChannels,p=n.dataFormat==="channelsLast",f=!1,m=!1,A,y=[],g=(h===1||d===1)&&c>L_,_=l[2]%2!=0&&!!u.isPacked;if(g||!Q().getBool("WEBGL_LAZILY_UNPACK")||!Q().getBool("WEBGL_PACK_BINARY_OPERATIONS")||!_){let b=p?l[0]*l[1]*l[2]:l[0]*l[2]*l[3],x=ge({inputs:{x:e},backend:r,attrs:{shape:[1,b,n.inChannels]}}),w=ge({inputs:{x:t},backend:r,attrs:{shape:[1,n.inChannels,n.outChannels]}}),I=bp({a:x,b:w,transposeA:f,transposeB:m,backend:r,bias:a,activation:o,preluActivationWeights:s,leakyreluAlpha:i});A=ge({inputs:{x:I},backend:r,attrs:{shape:n.outShape}}),y.push(x),y.push(w),y.push(I)}else{let b=p?l[0]*l[1]*(l[2]+1):l[0]*l[2]*(l[3]+1),x={dataId:e.dataId,shape:[1,b,n.inChannels],dtype:e.dtype},w=u.shape;u.shape=u.shape.slice(),u.shape[u.shape.length-2]++,k.assert(mc(u.shape,x.shape),()=>`packed reshape ${u.shape} to ${x.shape} isn't free`);let I=ge({inputs:{x:t},backend:r,attrs:{shape:[1,n.inChannels,n.outChannels]}});y.push(I);let T=bp({a:x,b:I,backend:r,transposeA:f,transposeB:m,bias:a,activation:o,preluActivationWeights:s,leakyreluAlpha:i}),E=r.texData.get(T.dataId);k.assert(E.isPacked,()=>"batchMatMul result is expected to be packed"),u.shape=w,E.shape=n.outShape,A=Mn({inputs:{x:T},backend:r}),A.shape=n.outShape,y.push(T)}for(let b of y)r.disposeIntermediateTensorInfo(b);return A}function J_({x:e,filter:t,convInfo:n,backend:r,bias:a=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:o=null}){let{filterWidth:l,filterHeight:u,inChannels:c,outWidth:h,outHeight:d,dataFormat:p}=n,f=p==="channelsLast",m=l*u*c,A=d*h,y=[m,A],g=!0,_=!1,b=[],x=ge({inputs:{x:e},backend:r,attrs:{shape:e.shape.slice(1)}}),w=ge({inputs:{x:t},backend:r,attrs:{shape:[1,m,k.sizeFromShape(t.shape)/m]}});b.push(x),b.push(w);let I=new $U(y,x.shape,n),T=r.runWebGLProgram(I,[x],"float32"),E=ge({inputs:{x:T},backend:r,attrs:{shape:[1,y[0],y[1]]}});b.push(T),b.push(E);let M=a!=null,z=s!=null,P=o==="leakyrelu",B=o?wp(o,!0):null,q=new M_(E.shape,w.shape,[1,A,n.outChannels],g,_,M,B,z,P),H=[E,w];if(a&&H.push(a),z&&H.push(s),P){let J=r.makeTensorInfo([],"float32",k.createScalarValue(i,"float32"));H.push(J),b.push(J)}let X=r.runWebGLProgram(q,H,"float32"),Z=f?[1,d,h,n.outChannels]:[1,n.outChannels,d,h],ee=ge({inputs:{x:X},backend:r,attrs:{shape:Z}});b.push(X);for(let J of b)r.disposeIntermediateTensorInfo(J);return ee}function zU(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s}=t,{strides:i,pad:o,dataFormat:l,dilations:u,dimRoundingMode:c}=r,h=R.convertConv2DDataFormat(l),d=R.computeConv2DInfo(a.shape,s.shape,i,u,o,c,!1,h),p;if(d.filterHeight===1&&d.filterWidth===1&&d.dilationHeight===1&&d.dilationWidth===1&&d.strideHeight===1&&d.strideWidth===1&&(d.padInfo.type==="SAME"||d.padInfo.type==="VALID"))p=Y_({x:a,filter:s,convInfo:d,backend:n});else if(Q().getBool("WEBGL_CONV_IM2COL")&&a.shape[0]===1)p=J_({x:a,filter:s,convInfo:d,backend:n});else{let m=new Z_(d);p=n.runWebGLProgram(m,[a,s],"float32")}let f=ge({inputs:{x:p},backend:n,attrs:{shape:d.outShape}});return n.disposeIntermediateTensorInfo(p),f}var PU={kernelName:fs,backendName:"webgl",kernelFunc:zU},LU=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,r=e.padInfo.top,a=e.padInfo.left,s=e.dataFormat==="channelsLast";this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int wR = coords.x;
|
|
int wC = coords.y;
|
|
int d1 = coords.z;
|
|
int d2 = coords.w;
|
|
|
|
// Convolve x(?, ?, d1) with dy(:, :, d2) to get dw(wR, wC, d1, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${t} - ${r};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${n} - ${a};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
if (${s}) {
|
|
float dyValue = getDy(b, yR, yC, d2);
|
|
float xValue = getX(b, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
} else {
|
|
float dyValue = getDy(b, d2, yR, yC);
|
|
float xValue = getX(b, d1, xR, xC);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},WU=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,r=e.strideHeight,a=e.strideWidth,s=e.dataFormat==="channelsLast",i=t-1-e.padInfo.top,o=n-1-e.padInfo.left,l=s?1:2,u=s?2:3,c=s?3:1;this.userCode=`
|
|
const ivec2 pads = ivec2(${i}, ${o});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d1 = coords[${c}];
|
|
|
|
ivec2 dyCorner = ivec2(coords[${l}], coords[${u}]) - pads;
|
|
int dyRCorner = dyCorner.x;
|
|
int dyCCorner = dyCorner.y;
|
|
|
|
// Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${t}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${r}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${t} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${n}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${a}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${n} - 1 - wC;
|
|
|
|
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
|
|
|
|
if (${s}) {
|
|
float xValue = getDy(batch, idyR, idyC, d2);
|
|
float wValue = getW(wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
} else {
|
|
float xValue = getDy(batch, d2, idyR, idyC);
|
|
float wValue = getW(wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},BU=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideDepth,n=e.strideHeight,r=e.strideWidth,a=e.padInfo.front,s=e.padInfo.top,i=e.padInfo.left;this.userCode=`
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int wF = coords.x;
|
|
int wR = coords.y;
|
|
int wC = coords.z;
|
|
int d1 = coords.w;
|
|
int d2 = coords.u;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yF = 0; yF < ${e.outDepth}; yF++) {
|
|
int xF = wF + yF * ${t} - ${a};
|
|
|
|
if (xF < 0 || xF >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${n} - ${s};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${r} - ${i};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float dyValue = getDy(b, yF, yR, yC, d2);
|
|
float xValue = getX(b, xF, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},VU=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,r=e.filterWidth,a=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=t-1-e.padInfo.front,l=n-1-e.padInfo.top,u=r-1-e.padInfo.left;this.userCode=`
|
|
const ivec3 pads = ivec3(${o}, ${l}, ${u});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d1 = coords.u;
|
|
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyFCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
float dotProd = 0.0;
|
|
for (int wF = 0; wF < ${t}; wF++) {
|
|
float dyF = float(dyFCorner + wF) / ${a}.0;
|
|
|
|
if (dyF < 0.0 || dyF >= ${e.outDepth}.0 || fract(dyF) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyF = int(dyF);
|
|
|
|
int wFPerm = ${t} - 1 - wF;
|
|
|
|
for (int wR = 0; wR < ${n}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${s}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${n} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${r}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${i}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${r} - 1 - wC;
|
|
|
|
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
|
|
float xValue = getDy(batch, idyF, idyR, idyC, d2);
|
|
float wValue = getW(wFPerm, wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function UU(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,dy:s}=t,{strides:i,pad:o,dataFormat:l,dimRoundingMode:u,filterShape:c}=r,h=R.convertConv2DDataFormat(l),d=R.computeConv2DInfo(a.shape,c,i,1,o,u,!1,h),p=new LU(d);return n.runWebGLProgram(p,[a,s],"float32")}var jU={kernelName:Ph,backendName:"webgl",kernelFunc:UU};function GU(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,filter:s}=t,{inputShape:i,strides:o,pad:l,dataFormat:u,dimRoundingMode:c}=r,h=R.convertConv2DDataFormat(u),d=R.computeConv2DInfo(i,s.shape,o,1,l,c,!1,h),p=new WU(d);return n.runWebGLProgram(p,[a,s],"float32")}var HU={kernelName:ms,backendName:"webgl",kernelFunc:GU};function qU(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s}=t,{strides:i,pad:o,dilations:l}=r,u=R.computeConv3DInfo(a.shape,s.shape,i,l,o),c=new DU(u);return n.runWebGLProgram(c,[a,s],"float32")}var XU={kernelName:vu,backendName:"webgl",kernelFunc:qU};function KU(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,dy:s}=t,{strides:i,pad:o,filterShape:l}=r,u=R.computeConv3DInfo(a.shape,l,i,1,o),c=new BU(u);return n.runWebGLProgram(c,[a,s],"float32")}var ZU={kernelName:Lh,backendName:"webgl",kernelFunc:KU};function YU(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,filter:s}=t,{pad:i,strides:o,inputShape:l}=r,u=R.computeConv3DInfo(l,s.shape,o,1,i),c=new VU(u);return n.runWebGLProgram(c,[a,s],"float32")}var JU={kernelName:Wh,backendName:"webgl",kernelFunc:YU},QU=F_+`
|
|
return cos(x);
|
|
`,ej=Ke({opSnippet:QU}),tj={kernelName:As,backendName:"webgl",kernelFunc:ej},nj=`
|
|
float e2x = exp(-x);
|
|
return (e2x + 1.0 / e2x) / 2.0;
|
|
`,rj=Ke({opSnippet:nj}),aj={kernelName:lo,backendName:"webgl",kernelFunc:rj},sj=class{constructor(e,t,n,r,a){this.variableNames=["Image","Boxes","BoxInd"],this.outputShape=[];let[s,i,o,l]=e,[u]=t,[c,h]=n;this.outputShape=[u,c,h,l];let d=r==="bilinear"?1:0,[p,f]=[`${i-1}.0`,`${o-1}.0`],[m,A,y]=c>1?[`${(i-1)/(c-1)}`,"(y2-y1) * height_ratio",`y1*${p} + float(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${p}`],[g,_,b]=h>1?[`${(o-1)/(h-1)}`,"(x2-x1) * width_ratio",`x1*${f} + float(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${f}`];this.userCode=`
|
|
const float height_ratio = float(${m});
|
|
const float width_ratio = float(${g});
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int y = coords[1];
|
|
int x = coords[2];
|
|
int d = coords[3];
|
|
|
|
// get box vals
|
|
float y1 = getBoxes(b,0);
|
|
float x1 = getBoxes(b,1);
|
|
float y2 = getBoxes(b,2);
|
|
float x2 = getBoxes(b,3);
|
|
|
|
// get image in batch index
|
|
int bInd = round(getBoxInd(b));
|
|
if(bInd < 0 || bInd >= ${s}) {
|
|
return;
|
|
}
|
|
|
|
float height_scale = ${A};
|
|
float width_scale = ${_};
|
|
|
|
float in_y = ${y};
|
|
if( in_y < 0.0 || in_y > ${p} ) {
|
|
setOutput(float(${a}));
|
|
return;
|
|
}
|
|
float in_x = ${b};
|
|
if( in_x < 0.0 || in_x > ${f} ) {
|
|
setOutput(float(${a}));
|
|
return;
|
|
}
|
|
|
|
vec2 sourceFracIndexCR = vec2(in_x,in_y);
|
|
if(${d} == 1) {
|
|
// Compute the four integer indices.
|
|
ivec2 sourceFloorCR = ivec2(sourceFracIndexCR);
|
|
ivec2 sourceCeilCR = ivec2(ceil(sourceFracIndexCR));
|
|
|
|
float topLeft = getImage(b, sourceFloorCR.y, sourceFloorCR.x, d);
|
|
float bottomLeft = getImage(b, sourceCeilCR.y, sourceFloorCR.x, d);
|
|
float topRight = getImage(b, sourceFloorCR.y, sourceCeilCR.x, d);
|
|
float bottomRight = getImage(b, sourceCeilCR.y, sourceCeilCR.x, d);
|
|
|
|
vec2 fracCR = sourceFracIndexCR - vec2(sourceFloorCR);
|
|
|
|
float top = topLeft + (topRight - topLeft) * fracCR.x;
|
|
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracCR.x;
|
|
float newValue = top + (bottom - top) * fracCR.y;
|
|
setOutput(newValue);
|
|
} else {
|
|
// Compute the coordinators of nearest neighbor point.
|
|
ivec2 sourceNearestCR = ivec2(floor(
|
|
sourceFracIndexCR + vec2(0.5,0.5)));
|
|
float newValue = getImage(b, sourceNearestCR.y, sourceNearestCR.x, d);
|
|
setOutput(newValue);
|
|
}
|
|
}
|
|
`}},ij=e=>{let{inputs:t,backend:n,attrs:r}=e,{image:a,boxes:s,boxInd:i}=t,{cropSize:o,method:l,extrapolationValue:u}=r,c=new sj(a.shape,s.shape,o,l,u);return n.runWebGLProgram(c,[a,s,i],"float32")},oj={kernelName:uo,backendName:"webgl",kernelFunc:ij},tb=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=e;let r=e.length,a=t?"0.0":`getX(${Q_(r,"coords")})`,s=e[e.length-1],i="",o="";t?(i=n?`end != ${s-1}`:"end != 0",o=n?"end + 1":"end - 1"):(i=n?`end + pow2 < ${s}`:"end >= pow2",o=n?"end + pow2":"end - pow2"),this.userCode=`
|
|
uniform float index;
|
|
void main() {
|
|
${ct(r)} coords = getOutputCoords();
|
|
int end = ${eb(r,"coords")};
|
|
float val = ${a};
|
|
int pow2 = int(pow(2.0, index));
|
|
if (${i}) {
|
|
int idx = ${o};
|
|
${eb(r,"coords")} = idx;
|
|
val += getX(${Q_(r,"coords")});
|
|
}
|
|
setOutput(val);
|
|
}
|
|
`}getCustomSetupFunc(e){return(t,n)=>{this.index==null&&(this.index=t.getUniformLocation(n,"index")),t.gl.uniform1f(this.index,e)}}};function Q_(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.x, ${t}.y`;if(e===3)return`${t}.x, ${t}.y, ${t}.z`;if(e===4)return`${t}.x, ${t}.y, ${t}.z, ${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function eb(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.y`;if(e===3)return`${t}.z`;if(e===4)return`${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function lj(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,exclusive:i,reverse:o}=r,l=a.shape.length,u=R.getAxesPermutation([s],l),c=a;u!=null&&(c=wn({inputs:{x:a},backend:n,attrs:{perm:u}}));let h=R.getInnerMostAxes(1,l)[0];if(h!==l-1)throw new Error(`WebGL cumsum shader expects an inner-most axis=${a.shape.length-1} but got axis=${s}`);let d=a.shape[h],p=Mn({inputs:{x:c},backend:n});for(let f=0;f<=Math.ceil(Math.log2(d))-1;f++){let m=new tb(c.shape,!1,o),A=m.getCustomSetupFunc(f),y=p;p=n.runWebGLProgram(m,[p],p.dtype,A),n.disposeIntermediateTensorInfo(y)}if(i){let f=new tb(c.shape,i,o),m=p;p=n.runWebGLProgram(f,[p],p.dtype),n.disposeIntermediateTensorInfo(m)}if(u!=null){let f=R.getUndoAxesPermutation(u),m=wn({inputs:{x:p},backend:n,attrs:{perm:f}});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(c),m}return p}var uj={kernelName:ys,backendName:"webgl",kernelFunc:lj};function cj(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,weights:s}=t,{size:i,binaryOutput:o}=r;if(a.shape.length===1){let l=n.readSync(a.dataId),u=n.readSync(s.dataId),c=y_(l,u,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,c)}else if(a.shape.length===2){let l=n.bufferSync(a),u=n.bufferSync(s),c=LW(l,u,i,o);return n.makeTensorInfo(c.shape,s.dtype,c.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${a.shape.length}.`)}var hj={kernelName:Bh,backendName:"webgl",kernelFunc:cj},dj=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=[],this.outputShape=e,this.blockSize=t,this.dataFormat=n,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int h = ${this.getHeightCoordString()};
|
|
int w = ${this.getWidthCoordString()};
|
|
int d = ${this.getDepthCoordString()};
|
|
|
|
int in_h = h / ${t};
|
|
int offset_h = imod(h, ${t});
|
|
int in_w = w / ${t};
|
|
int offset_w = imod(w, ${t});
|
|
int offset_d = (offset_h * ${t} + offset_w) *
|
|
${this.getOutputDepthSize()};
|
|
int in_d = d + offset_d;
|
|
|
|
float result = ${this.getInputSamplingString()};
|
|
setOutput(result);
|
|
}
|
|
`}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?this.outputShape[3]:this.outputShape[1]}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}};function pj(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{blockSize:s,dataFormat:i}=r;k.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let o=a.shape[0],l=i==="NHWC"?a.shape[1]:a.shape[2],u=i==="NHWC"?a.shape[2]:a.shape[3],c=i==="NHWC"?a.shape[3]:a.shape[1],h=l*s,d=u*s,p=c/(s*s),f=i==="NHWC"?[o,h,d,p]:[o,p,h,d],m=new dj(f,s,i);return n.runWebGLProgram(m,[a],a.dtype)}var fj={kernelName:co,backendName:"webgl",kernelFunc:pj},nb=class{constructor(e,t=!1,n=null,r=!1,a=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let s=e.inHeight,i=e.inWidth,o=e.padInfo.top,l=e.padInfo.left,u=e.strideHeight,c=e.strideWidth,h=e.dilationHeight,d=e.dilationWidth,p=e.filterHeight,f=e.filterWidth,m=e.outChannels/e.inChannels,A="",y="";n&&(r?A=`float activation(float a) {
|
|
float b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:a?A=`float activation(float a) {
|
|
float b = getLeakyreluAlphaAtOutCoords();
|
|
${n}
|
|
}`:A=`
|
|
float activation(float x) {
|
|
${n}
|
|
}
|
|
`,y="result = activation(result);");let g=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),r&&this.variableNames.push("preluActivationWeights"),a&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${A}
|
|
|
|
const ivec2 strides = ivec2(${u}, ${c});
|
|
const ivec2 pads = ivec2(${o}, ${l});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int d2 = coords.w;
|
|
int d1 = d2 / ${m};
|
|
int q = d2 - d1 * ${m};
|
|
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// Convolve x(?, ?, d1) with w(:, :, d1, q) to get y(yR, yC, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
// TO DO(dsmilkov): Flatten the two for loops and vec4 the operations.
|
|
for (int wR = 0; wR < ${p}; wR++) {
|
|
int xR = xRCorner + wR * ${h};
|
|
|
|
if (xR < 0 || xR >= ${s}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${f}; wC++) {
|
|
int xC = xCCorner + wC * ${d};
|
|
|
|
if (xC < 0 || xC >= ${i}) {
|
|
continue;
|
|
}
|
|
|
|
float xVal = getX(batch, xR, xC, d1);
|
|
float wVal = getW(wR, wC, d1, q);
|
|
dotProd += xVal * wVal;
|
|
}
|
|
}
|
|
|
|
float result = dotProd;
|
|
${g}
|
|
${y}
|
|
setOutput(result);
|
|
}
|
|
`}},rb=class{constructor(e,t=!1,n=null,r=!1,a=!1){this.variableNames=["x","W"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e.outShape;let s=e.inHeight,i=e.inWidth,o=e.padInfo.top,l=e.padInfo.left,u=e.strideHeight,c=e.strideWidth,h=e.dilationHeight,d=e.dilationWidth,p=e.filterHeight,f=e.filterWidth,m=f,A="int xR; int xC; int xCOffset;";for(let b=0;b<p;b++)for(let x=0;x<f;x++)A+=`
|
|
vec4 xTexelR${b}C${x*2} = vec4(0.);
|
|
vec4 wR${b}C${x} = vec4(0.);
|
|
vec4 xR${b}C${x} = vec4(0.);`;for(let b=0;b<p;b++)for(let x=0;x<m;x++){let w=x*2;if(A+=`
|
|
xR = xRCorner + ${b*h};
|
|
xC = xCCorner + ${w*d};
|
|
`,c===1){if(w<f&&(l%2==1?A+=`
|
|
xCOffset = xC + 1;
|
|
if(xR >= 0 && xR < ${s} && xCOffset >= 0 && xCOffset < ${i}) {
|
|
xTexelR${b}C${w} = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if(xCOffset + 1 >= ${i}) {
|
|
xTexelR${b}C${w}.zw = vec2(0.);
|
|
}
|
|
} else {
|
|
xTexelR${b}C${w} = vec4(0.);
|
|
}
|
|
|
|
xCOffset = xC + 1 - 2;
|
|
if(xR >= 0 && xR < ${s} && xCOffset >= 0 && xCOffset < ${i}) {
|
|
vec4 previous = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if(xCOffset + 1 >= ${i}) {
|
|
previous.zw = vec2(0.);
|
|
}
|
|
|
|
xR${b}C${w} = vec4(previous.zw, xTexelR${b}C${w}.xy);
|
|
} else {
|
|
xR${b}C${w} = vec4(0, 0, xTexelR${b}C${w}.xy);
|
|
}
|
|
`:A+=`
|
|
if(xR >= 0 && xR < ${s} && xC >= 0 && xC < ${i}) {
|
|
xTexelR${b}C${w} = getX(batch, xR, xC, d1);
|
|
} else {
|
|
xTexelR${b}C${w} = vec4(0.);
|
|
}
|
|
|
|
xR${b}C${w} = xTexelR${b}C${w};
|
|
`,w+1<f)){let I=l%2==0?k.nearestLargerEven(d):d;d%2==0&&l%2==1||d%2!=0&&l%2!=1?(A+=`
|
|
xCOffset = xC + ${l%2} + ${I};
|
|
|
|
if(xR >= 0 && xR < ${s} &&
|
|
xCOffset >= 0 && xCOffset < ${i}) {
|
|
xTexelR${b}C${w+2} = getX(batch, xR, xCOffset, d1);
|
|
}
|
|
`,d>1&&(A+=`
|
|
xCOffset -= 2;
|
|
if(xR >= 0 && xR < ${s} &&
|
|
xCOffset >= 0 && xCOffset < ${i}) {
|
|
xTexelR${b}C${w} = getX(batch, xR, xCOffset, d1);
|
|
} else {
|
|
xTexelR${b}C${w} = vec4(0.);
|
|
}
|
|
`),A+=`
|
|
xR${b}C${w+1} = vec4(
|
|
xTexelR${b}C${w}.zw, xTexelR${b}C${w+2}.xy);
|
|
`):A+=`
|
|
xCOffset = xC + ${I};
|
|
|
|
if(xR >= 0 && xR < ${s} &&
|
|
xCOffset >= 0 && xCOffset < ${i}) {
|
|
xTexelR${b}C${w+2} = getX(batch, xR, xCOffset, d1);
|
|
}
|
|
|
|
xR${b}C${w+1} = xTexelR${b}C${w+2};
|
|
`}}else w<f&&(A+=`
|
|
if(xR >= 0 && xR < ${s}) {
|
|
`,l%2==1?(A+=`
|
|
xCOffset = xC + 1 - ${c};
|
|
if(xCOffset >= 0 && xCOffset < ${i}) {
|
|
xTexelR${b}C${w} = getX(batch, xR, xCOffset, d1);
|
|
} else {
|
|
xTexelR${b}C${w} = vec4(0.);
|
|
}
|
|
|
|
if(xC + 1 >= 0 && xC + 1 < ${i}) {
|
|
xTexelR${b}C${w+2} = getX(batch, xR, xC + 1, d1);
|
|
} else {
|
|
xTexelR${b}C${w+2} = vec4(0.);
|
|
}
|
|
|
|
xR${b}C${w} = vec4(
|
|
xTexelR${b}C${w}.zw, xTexelR${b}C${w+2}.zw);
|
|
`,w+1<f&&(A+=`
|
|
vec4 final = vec4(0.);
|
|
xCOffset = xC + 1 + ${c};
|
|
if(xCOffset >= 0 && xCOffset < ${i}) {
|
|
final = getX(batch, xR, xCOffset, d1);
|
|
}
|
|
xR${b}C${w+1} = vec4(xTexelR${b}C${w+2}.xy, final.xy);
|
|
`)):(A+=`
|
|
if(xC >= 0 && xC < ${i}) {
|
|
xTexelR${b}C${w} = getX(batch, xR, xC, d1);
|
|
} else {
|
|
xTexelR${b}C${w} = vec4(0.);
|
|
}
|
|
|
|
xCOffset = xC + ${c};
|
|
if(xCOffset >= 0 && xCOffset < ${i}) {
|
|
xTexelR${b}C${w+2} = getX(batch, xR, xCOffset, d1);
|
|
} else {
|
|
xTexelR${b}C${w+2} = vec4(0.);
|
|
}
|
|
|
|
xR${b}C${w} = vec4(
|
|
xTexelR${b}C${w}.xy, xTexelR${b}C${w+2}.xy);
|
|
`,w+1<f&&(A+=`
|
|
xR${b}C${w+1} = vec4(
|
|
xTexelR${b}C${w}.zw, xTexelR${b}C${w+2}.zw);
|
|
`)),A+="}");w<f&&(A+=`
|
|
vec4 wTexelR${b}C${w} = getW(${b}, ${w}, d1, q);
|
|
wR${b}C${w} = vec4(wTexelR${b}C${w}.xz, wTexelR${b}C${w}.xz);
|
|
`,w+1<f&&(A+=`
|
|
vec4 wTexelR${b}C${w+1} = getW(${b}, ${w+1}, d1, q);
|
|
wR${b}C${w+1} =
|
|
vec4(wTexelR${b}C${w+1}.xz, wTexelR${b}C${w+1}.xz);`))}for(let b=0;b<p;b++)for(let x=0;x<f;x++)A+=`dotProd += xR${b}C${x} * wR${b}C${x};`;let y="",g="";n&&(r?y=`vec4 activation(vec4 a) {
|
|
vec4 b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:a?y=`vec4 activation(vec4 a) {
|
|
vec4 b = getLeakyreluAlphaAtOutCoords();
|
|
${n}
|
|
}`:y=`vec4 activation(vec4 x) {
|
|
${n}
|
|
}`,g="result = activation(result);");let _=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),r&&this.variableNames.push("preluActivationWeights"),a&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${y}
|
|
|
|
const ivec2 strides = ivec2(${u}, ${c});
|
|
const ivec2 pads = ivec2(${o}, ${l});
|
|
|
|
void main() {
|
|
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int d2 = coords.w;
|
|
int d1 = d2;
|
|
int q = 0;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
vec4 dotProd = vec4(0.);
|
|
|
|
${A}
|
|
|
|
vec4 result = dotProd;
|
|
${_}
|
|
${g}
|
|
setOutput(result);
|
|
}
|
|
`}};function mj(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s}=t,{strides:i,pad:o,dilations:l,dimRoundingMode:u}=r,c=l;c==null&&(c=[1,1]),k.assert(R.eitherStridesOrDilationsAreOne(i,c),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${c}'`);let h=R.computeConv2DInfo(a.shape,s.shape,i,c,o,u,!0),d;return Q().getBool("WEBGL_PACK_DEPTHWISECONV")&&h.strideWidth<=2&&h.outChannels/h.inChannels==1?d=new rb(h):d=new nb(h),n.runWebGLProgram(d,[a,s],"float32")}var Aj={kernelName:gs,backendName:"webgl",kernelFunc:mj},yj=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,r=e.padInfo.top,a=e.padInfo.left,s=e.outChannels/e.inChannels;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int wR = coords.x;
|
|
int wC = coords.y;
|
|
int d1 = coords.z;
|
|
int dm = coords.w;
|
|
int d2 = d1 * ${s} + dm;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
// TO DO: Vec4 over the batch size
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${t} - ${r};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${n} - ${a};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float dyValue = getDy(b, yR, yC, d2);
|
|
float xValue = getX(b, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},gj=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,r=e.strideHeight,a=e.strideWidth,s=t-1-e.padInfo.top,i=n-1-e.padInfo.left,o=e.outChannels/e.inChannels;this.userCode=`
|
|
const ivec2 pads = ivec2(${s}, ${i});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d1 = coords[3];
|
|
ivec2 dyCorner = coords.yz - pads;
|
|
int dyRCorner = dyCorner.x;
|
|
int dyCCorner = dyCorner.y;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
for (int wR = 0; wR < ${t}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${r}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${t} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${n}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${a}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${n} - 1 - wC;
|
|
|
|
// TO DO: Vec4 over the channelMul
|
|
for (int dm = 0; dm < ${o}; dm++) {
|
|
int d2 = d1 * ${o} + dm;
|
|
float xValue = getDy(batch, idyR, idyC, d2);
|
|
float wValue = getW(wRPerm, wCPerm, d1, dm);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function xj(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,dy:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:u,filterShape:c}=r,h=R.computeConv2DInfo(a.shape,c,i,o,l,u,!0),d=new yj(h);return n.runWebGLProgram(d,[a,s],"float32")}var wj={kernelName:Vh,backendName:"webgl",kernelFunc:xj};function _j(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,filter:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:u,inputShape:c}=r,h=R.computeConv2DInfo(c,s.shape,i,o,l,u,!0),d=new gj(h);return n.runWebGLProgram(d,[a,s],"float32")}var bj={kernelName:Uh,backendName:"webgl",kernelFunc:_j},vj=class{constructor(e){this.variableNames=["X"],this.outputShape=[e,e],this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
float val = coords[0] == coords[1] ? getX(coords[0]) : 0.0;
|
|
setOutput(val);
|
|
}
|
|
`}};function kj(e){let{inputs:t,backend:n}=e,{x:r}=t,a=[...r.shape,...r.shape],s=k.sizeFromShape(r.shape),i=ge({inputs:{x:r},backend:n,attrs:{shape:[s]}}),o=new vj(s),l=n.runWebGLProgram(o,[i],i.dtype),u=ge({inputs:{x:l},backend:n,attrs:{shape:a}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(l),u}var Nj={kernelName:jh,backendName:"webgl",kernelFunc:kj},Ij=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let{inHeight:t,inWidth:n,padInfo:r,strideHeight:a,strideWidth:s,filterHeight:i,filterWidth:o,dilationHeight:l,dilationWidth:u}=e,{top:c,left:h}=r;this.userCode=`
|
|
const ivec2 strides = ivec2(${a}, ${s});
|
|
const ivec2 pads = ivec2(${c}, ${h});
|
|
const float neg_infinity = -3.4e38;
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d1 = coords.w;
|
|
ivec2 outTopLeftCorner =
|
|
coords.yz * strides - pads;
|
|
int hBeg = outTopLeftCorner.x;
|
|
int wBeg = outTopLeftCorner.y;
|
|
|
|
float curVal = neg_infinity;
|
|
for (int h = 0; h < ${i}; h++) {
|
|
int hIn = hBeg + h * ${l};
|
|
|
|
if (hIn >= 0 && hIn < ${t}) {
|
|
for (int w = 0; w < ${o}; w++) {
|
|
int wIn = wBeg + w * ${u};
|
|
|
|
if (wIn >= 0 && wIn < ${n}) {
|
|
float xVal = getX(batch, hIn, wIn, d1);
|
|
float wVal = getW(h, w, d1);
|
|
|
|
float val = xVal + wVal;
|
|
if (val > curVal) {
|
|
curVal = val;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
float result = curVal;
|
|
setOutput(result);
|
|
}
|
|
`}};function Sj(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s}=t,{strides:i,pad:o,dilations:l}=r,u=R.computeDilation2DInfo(a.shape,s.shape,i,o,"NHWC",l),c,h=new Ij(u);c=n.runWebGLProgram(h,[a,s],"float32");let d=ge({inputs:{x:c},backend:n,attrs:{shape:u.outShape}});return n.disposeIntermediateTensorInfo(c),d}var Tj={kernelName:ku,backendName:"webgl",kernelFunc:Sj},Ej="return (x >= 0.0) ? x : (exp(x) - 1.0);",Cj=`
|
|
vec4 result;
|
|
|
|
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
|
|
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
|
|
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
|
|
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
|
|
|
|
return result;
|
|
`,Rj=Ke({opSnippet:Ej,packedOpSnippet:Cj}),Fj={kernelName:ho,backendName:"webgl",kernelFunc:Rj},Mj="return (b >= 1.0) ? a : a * (b + 1.0);",Oj=`
|
|
vec4 bGTEZero = vec4(greaterThanEqual(b, vec4(0.)));
|
|
return (bGTEZero * a) + ((vec4(1.0) - bGTEZero) * (a * (b + vec4(1.0))));
|
|
`,Dj=e=>{let{inputs:t,backend:n}=e,{dy:r,y:a}=t,s=Q().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new wc(Oj,r.shape,a.shape):new Ml(Mj,r.shape,a.shape);return n.runWebGLProgram(s,[r,a],r.dtype)},$j={kernelName:qh,backendName:"webgl",kernelFunc:Dj},zj=`
|
|
return vec4(equal(a, b));
|
|
`,Pj="return float(a == b);",Lj=tn({opSnippet:Pj,packedOpSnippet:zj,dtype:"bool"}),Wj={kernelName:fo,backendName:"webgl",kernelFunc:Lj},Bj=`
|
|
// Error function is calculated approximately with elementary function.
|
|
// See "Handbook of Mathematical Functions with Formulas,
|
|
// Graphs, and Mathematical Tables", Abramowitz and Stegun.
|
|
float p = ${R.ERF_P};
|
|
float a1 = ${R.ERF_A1};
|
|
float a2 = ${R.ERF_A2};
|
|
float a3 = ${R.ERF_A3};
|
|
float a4 = ${R.ERF_A4};
|
|
float a5 = ${R.ERF_A5};
|
|
|
|
float sign = sign(x);
|
|
x = abs(x);
|
|
float t = 1.0 / (1.0 + p * x);
|
|
return sign * (1.0 - (((((a5*t + a4)*t) + a3)*t + a2)*t + a1)*t*exp(-x*x));
|
|
`,Vj=Ke({opSnippet:Bj}),Uj={kernelName:po,backendName:"webgl",kernelFunc:Vj},ab="return exp(x);",sb=Ke({opSnippet:ab,packedOpSnippet:ab,cpuKernelImpl:VW}),jj={kernelName:ws,backendName:"webgl",kernelFunc:sb};function Gm(e){let{inputs:t,attrs:n,backend:r}=e,{dim:a}=n,{input:s}=t,i=s.shape.length,o=s.shape.slice(),l=a;return a<0&&(k.assert(-(i+1)<=a,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+a+1),o.splice(l,0,1),ge({inputs:{x:s},backend:r,attrs:{shape:o}})}var Gj={kernelName:mo,backendName:"webgl",kernelFunc:Gm},ib="return exp(x) - 1.0;",Hj=Ke({opSnippet:ib,packedOpSnippet:ib,cpuKernelImpl:UW}),qj={kernelName:Ao,backendName:"webgl",kernelFunc:Hj},ob=class{constructor(e,t,n){this.variableNames=["real","imag"];let r=t[1];this.outputShape=t;let a=n?`2.0 * ${Math.PI}`:`-2.0 * ${Math.PI}`,s=n?`${r}.0`:"1.0",i;if(e==="real")i="return real * expR - imag * expI;";else if(e==="imag")i="return real * expI + imag * expR;";else throw new Error(`FFT component must be either "real" or "imag", got ${e}.`);this.userCode=`
|
|
const float exponentMultiplier = ${a};
|
|
|
|
float unaryOpComplex(float real, float expR, float imag, float expI) {
|
|
${i}
|
|
}
|
|
|
|
float mulMatDFT(int batch, int index) {
|
|
float indexRatio = float(index) / float(${r});
|
|
float exponentMultiplierTimesIndexRatio =
|
|
exponentMultiplier * indexRatio;
|
|
|
|
float result = 0.0;
|
|
|
|
for (int i = 0; i < ${r}; i++) {
|
|
// x = (-2|2 * PI / N) * index * i;
|
|
float x = exponentMultiplierTimesIndexRatio * float(i);
|
|
float expR = cos(x);
|
|
float expI = sin(x);
|
|
float real = getReal(batch, i);
|
|
float imag = getImag(batch, i);
|
|
|
|
result +=
|
|
unaryOpComplex(real, expR, imag, expI) / ${s};
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
setOutput(mulMatDFT(coords[0], coords[1]));
|
|
}
|
|
`}};function lb(e,t,n){let r=n.texData.get(e.dataId),a=k.sizeFromShape(e.shape),s=e.shape[e.shape.length-1],i=a/s,o=ge({inputs:{x:e},backend:n,attrs:{shape:[i,s]}}).shape,l=new ob("real",o,t),u=new ob("imag",o,t),c=[{dataId:r.complexTensorInfos.real.dataId,dtype:r.complexTensorInfos.real.dtype,shape:o},{dataId:r.complexTensorInfos.imag.dataId,dtype:r.complexTensorInfos.imag.dtype,shape:o}],h=n.runWebGLProgram(l,c,"float32"),d=n.runWebGLProgram(u,c,"float32"),p=La({inputs:{real:h,imag:d},backend:n});n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(d);let f=ge({inputs:{x:p},backend:n,attrs:{shape:e.shape}});return n.disposeIntermediateTensorInfo(f),f}function Xj(e){let{inputs:t,backend:n}=e,{input:r}=t;return lb(r,!1,n)}var Kj={kernelName:Xh,backendName:"webgl",kernelFunc:Xj},Zj=class{constructor(e,t){this.outputShape=[],this.variableNames=["x"],this.outputShape=e,this.userCode=`
|
|
uniform float value;
|
|
void main() {
|
|
// Input can be obtained from uniform value.
|
|
setOutput(value);
|
|
}
|
|
`}getCustomSetupFunc(e){return(t,n)=>{this.valueLoc==null&&(this.valueLoc=t.getUniformLocationNoThrow(n,"value")),t.gl.uniform1f(this.valueLoc,e)}}};function Hm(e){let{backend:t,attrs:n}=e,{shape:r,value:a}=n,{dtype:s}=n;if(s=s||k.inferDtype(a),s==="string"){let i=k.getArrayFromDType(s,k.sizeFromShape(r));return i.fill(a),t.makeTensorInfo(r,s,i)}else{let i=new Zj(r,a),o=i.getCustomSetupFunc(a);return t.runWebGLProgram(i,[],s,o)}}var Yj={kernelName:Nu,backendName:"webgl",kernelFunc:Hm},Jj=class{constructor(e){this.variableNames=["Image"],this.outputShape=[];let t=e[2];this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int x = coords[2];
|
|
|
|
int coordX = ${t} - x;
|
|
float outputValue;
|
|
if(coordX >= 0 && coordX < ${t}) {
|
|
outputValue = getImage(coords[0], coords[1], coordX, coords[3]);
|
|
} else {
|
|
outputValue = getImage(coords[0], coords[1], coords[2], coords[3]);
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}},Qj={kernelName:yo,backendName:"webgl",kernelFunc:({inputs:e,backend:t})=>{let{image:n}=e,r=t,a=new Jj(n.shape);return r.runWebGLProgram(a,[n],n.dtype)}},ub="return floor(x);",eG=Ke({opSnippet:ub,packedOpSnippet:ub,cpuKernelImpl:jW}),tG={kernelName:_s,backendName:"webgl",kernelFunc:eG},nG=`
|
|
float s = sign(a) * sign(b);
|
|
int ia = round(a);
|
|
int ib = round(b);
|
|
if (ib != 0) {
|
|
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
|
|
return float(idiv(ia, ib, s));
|
|
} else {
|
|
return NAN;
|
|
}
|
|
`,rG=`
|
|
ivec4 ia = round(a);
|
|
ivec4 ib = round(b);
|
|
bvec4 cond = notEqual(ib, ivec4(0));
|
|
ivec4 result = ivec4(0);
|
|
vec4 s = sign(a) * sign(b);
|
|
|
|
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
|
|
if (cond[0]) {
|
|
result[0] = idiv(ia[0], ib[0], s[0]);
|
|
}
|
|
if (cond[1]) {
|
|
result[1] = idiv(ia[1], ib[1], s[1]);
|
|
}
|
|
if (cond[2]) {
|
|
result[2] = idiv(ia[2], ib[2], s[2]);
|
|
}
|
|
if (cond[3]) {
|
|
result[3] = idiv(ia[3], ib[3], s[3]);
|
|
}
|
|
return vec4(result);
|
|
`,aG=tn({opSnippet:nG,packedOpSnippet:rG,dtype:"int32"}),sG={kernelName:bs,backendName:"webgl",kernelFunc:aG},iG=class{constructor(e){this.variableNames=["A"];let t=cn(),[n,r]=e;this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
int texR = coords[0];
|
|
int texC = coords[1];
|
|
int depth = coords[2];
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${r}.0, ${n}.0);
|
|
|
|
vec4 values = ${t.texture2D}(A, uv);
|
|
float value;
|
|
if (depth == 0) {
|
|
value = values.r;
|
|
} else if (depth == 1) {
|
|
value = values.g;
|
|
} else if (depth == 2) {
|
|
value = values.b;
|
|
} else if (depth == 3) {
|
|
value = values.a;
|
|
}
|
|
|
|
setOutput(floor(value * 255.0 + 0.5));
|
|
}
|
|
`}},oG=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let t=cn(),[n,r]=e;this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
int texR = coords[0];
|
|
int texC = coords[1];
|
|
int depth = coords[2];
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for(int row=0; row<=1; row++) {
|
|
for(int col=0; col<=1; col++) {
|
|
texC = coords[1] + row;
|
|
depth = coords[2] + col;
|
|
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${r}.0, ${n}.0);
|
|
vec4 values = ${t.texture2D}(A, uv);
|
|
float value;
|
|
if (depth == 0) {
|
|
value = values.r;
|
|
} else if (depth == 1) {
|
|
value = values.g;
|
|
} else if (depth == 2) {
|
|
value = values.b;
|
|
} else if (depth == 3) {
|
|
value = values.a;
|
|
}
|
|
|
|
result[row * 2 + col] = floor(value * 255.0 + 0.5);
|
|
}
|
|
}
|
|
|
|
${t.output} = result;
|
|
}
|
|
`}},uG={kernelName:ld,backendName:"webgl",kernelFunc:lG},Dl;function lG(e){let{inputs:t,backend:n,attrs:r}=e,{pixels:a}=t,{numChannels:s}=r,i=typeof HTMLVideoElement!="undefined"&&a instanceof HTMLVideoElement,o=typeof HTMLImageElement!="undefined"&&a instanceof HTMLImageElement,l=typeof ImageBitmap!="undefined"&&a instanceof ImageBitmap,[u,c]=i?[a.videoWidth,a.videoHeight]:[a.width,a.height],h=[c,u],d=[c,u,s];(o||i||l)&&(Dl==null&&(Dl=document.createElement("canvas").getContext("2d")),Dl.canvas.width=u,Dl.canvas.height=c,Dl.drawImage(a,0,0,u,c),a=Dl.canvas);let p=n.makeTensorInfo(h,"int32");n.texData.get(p.dataId).usage=Zn.PIXELS,n.gpgpu.uploadPixelDataToTexture(n.getTexture(p.dataId),a);let f=Q().getBool("WEBGL_PACK")?new oG(d):new iG(d),m=n.runWebGLProgram(f,[p],"int32");return n.disposeData(p.dataId),m}function cG(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dataFormat:c,dilations:h,dimRoundingMode:d,activation:p,leakyreluAlpha:f}=r,m=R.convertConv2DDataFormat(c),A=R.computeConv2DInfo(a.shape,s.shape,l,h,u,d,!1,m),y,g=[];if(A.filterHeight===1&&A.filterWidth===1&&A.dilationHeight===1&&A.dilationWidth===1&&A.strideHeight===1&&A.strideWidth===1&&(A.padInfo.type==="SAME"||A.padInfo.type==="VALID"))y=Y_({x:a,filter:s,convInfo:A,backend:n,bias:i,activation:p,preluActivationWeights:o,leakyreluAlpha:f});else if(Q().getBool("WEBGL_CONV_IM2COL")&&a.shape[0]===1)y=J_({x:a,filter:s,convInfo:A,backend:n,bias:i,activation:p,preluActivationWeights:o,leakyreluAlpha:f});else{let b=i!=null,x=o!=null,w=p==="leakyrelu",I=p?wp(p,!1):null,T=new Z_(A,b,I,x,w),E=[a,s];if(i&&E.push(i),o&&E.push(o),w){let M=n.makeTensorInfo([],"float32",k.createScalarValue(f,"float32"));E.push(M),g.push(M)}y=n.runWebGLProgram(T,E,"float32")}let _=ge({inputs:{x:y},backend:n,attrs:{shape:A.outShape}});return g.push(y),g.forEach(b=>n.disposeIntermediateTensorInfo(b)),_}var hG={kernelName:ei,backendName:"webgl",kernelFunc:cG};function dG(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dilations:c,dimRoundingMode:h,activation:d,leakyreluAlpha:p}=r,f=[],m=c;m==null&&(m=[1,1]),k.assert(R.eitherStridesOrDilationsAreOne(l,m),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${l} and dilations '${m}'`);let A=R.computeConv2DInfo(a.shape,s.shape,l,m,u,h,!0),y=Q().getBool("WEBGL_PACK_DEPTHWISECONV")&&A.strideWidth<=2&&A.outChannels/A.inChannels==1,g=d?wp(d,y):null,_=[a,s],b=i!=null,x=o!=null,w=d==="leakyrelu";if(b&&_.push(i),x&&_.push(o),w){let E=n.makeTensorInfo([],"float32",k.createScalarValue(p,"float32"));_.push(E),f.push(E)}let I;y?I=new rb(A,b,g,x,w):I=new nb(A,b,g,x,w);let T=n.runWebGLProgram(I,_,"float32");return f.forEach(E=>n.disposeIntermediateTensorInfo(E)),T}var pG={kernelName:ti,backendName:"webgl",kernelFunc:dG},fG=class{constructor(e,t,n){this.sliceDim=e,this.strides=t,this.variableNames=["x","indices"],this.outputShape=n;let r=ct(t.length),a=ct(n.length),s=this.sliceDim>1?"strides[j]":"strides";this.userCode=`
|
|
${r} strides = ${r}(${this.strides});
|
|
void main() {
|
|
${a} coords = getOutputCoords();
|
|
int flattenIndex = 0;
|
|
for (int j = 0; j < ${this.sliceDim}; j++) {
|
|
int index = round(getIndices(coords[0], j));
|
|
flattenIndex += index * ${s};
|
|
}
|
|
setOutput(getX(flattenIndex, coords[1]));
|
|
}
|
|
`}};function mG(e){let{inputs:t,backend:n}=e,{params:r,indices:a}=t,s=a.shape,i=s[s.length-1],[o,l,u,c]=R.prepareAndValidate(r,a),h=ge({inputs:{x:a},backend:n,attrs:{shape:[l,i]}}),d=ge({inputs:{x:r},backend:n,attrs:{shape:[k.sizeFromShape(r.shape)/u,u]}}),p=new fG(i,c,[l,u]),f=n.runWebGLProgram(p,[d,h],d.dtype),m=ge({inputs:{x:f},backend:n,attrs:{shape:o}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(f),m}var AG={kernelName:xo,backendName:"webgl",kernelFunc:mG},gG=class{constructor(e,t){this.variableNames=["A","indices"],this.outputShape=t,this.rank=t.length;let n=ct(this.rank),r=yG(e,2);this.userCode=`
|
|
void main() {
|
|
${n} resRC = getOutputCoords();
|
|
setOutput(getA(${r}));
|
|
}
|
|
`}};function yG(e,t){let n=["resRC.x","resRC.y","resRC.z","resRC.w"],r=[];for(let a=0;a<e.length;a++)a===2?r.push("int(getIndices(resRC.x, resRC.z))"):r.push(`${n[a]}`);return r.join()}function xG(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,indices:s}=t,{axis:i,batchDims:o}=r,l=k.parseAxisParam(i,a.shape)[0],u=R.segment_util.collectGatherOpShapeInfo(a,s,l,o),c=k.sizeFromShape(s.shape),h=[],d=ge({inputs:{x:a},backend:n,attrs:{shape:[u.batchSize,u.outerSize,u.dimSize,u.sliceSize]}}),p=ge({inputs:{x:s},backend:n,attrs:{shape:[u.batchSize,c/u.batchSize]}});h.push(d),h.push(p);let f=[u.batchSize,u.outerSize,c/u.batchSize,u.sliceSize];if(n.shouldExecuteOnCPU([a,s])||a.dtype==="string"){let g=n.bufferSync(p),_=n.bufferSync(d),b=GW(_,g,f);return h.forEach(x=>n.disposeIntermediateTensorInfo(x)),n.makeTensorInfo(u.outputShape,b.dtype,b.values)}let m=new gG(d.shape,f),A=n.runWebGLProgram(m,[d,p],d.dtype);h.push(A);let y=ge({inputs:{x:A},backend:n,attrs:{shape:u.outputShape}});return h.forEach(g=>n.disposeIntermediateTensorInfo(g)),y}var wG={kernelName:go,backendName:"webgl",kernelFunc:xG},_G="return float(a > b);",bG=`
|
|
return vec4(greaterThan(a, b));
|
|
`,vG=tn({opSnippet:_G,packedOpSnippet:bG,cpuKernelImpl:HW,dtype:"bool"}),kG={kernelName:wo,backendName:"webgl",kernelFunc:vG},NG="return float(a >= b);",IG=`
|
|
return vec4(greaterThanEqual(a, b));
|
|
`,SG=tn({opSnippet:NG,packedOpSnippet:IG,dtype:"bool"}),TG={kernelName:ks,backendName:"webgl",kernelFunc:SG};function EG(e){let{inputs:t,backend:n}=e,{input:r}=t;return lb(r,!0,n)}var CG={kernelName:Kh,backendName:"webgl",kernelFunc:EG},RG="return float(!isnan(x) && !isinf(x));",FG=Ke({opSnippet:RG,dtype:"bool"}),MG={kernelName:bo,backendName:"webgl",kernelFunc:FG},OG="return float(isinf(x));",DG=Ke({opSnippet:OG,dtype:"bool"}),$G={kernelName:vo,backendName:"webgl",kernelFunc:DG},zG="return float(isnan(x));",PG=Ke({opSnippet:zG,dtype:"bool"}),LG={kernelName:ko,backendName:"webgl",kernelFunc:PG},WG="return float(a < b);",BG=`
|
|
return vec4(lessThan(a, b));
|
|
`,VG=tn({opSnippet:WG,packedOpSnippet:BG,cpuKernelImpl:qW,dtype:"bool"}),UG={kernelName:No,backendName:"webgl",kernelFunc:VG},jG="return float(a <= b);",GG=`
|
|
return vec4(lessThanEqual(a, b));
|
|
`,HG=tn({opSnippet:jG,packedOpSnippet:GG,dtype:"bool"}),qG={kernelName:Io,backendName:"webgl",kernelFunc:HG};function XG(e){let{backend:t,attrs:n}=e,{start:r,stop:a,num:s}=n,i=XW(r,a,s);return t.makeTensorInfo([i.length],"float32",i)}var KG={kernelName:Yh,backendName:"webgl",kernelFunc:XG},ZG=`if (x < 0.0) return NAN;
|
|
return log(x);`,YG=`
|
|
vec4 result = log(x);
|
|
vec4 isNaN = vec4(lessThan(x, vec4(0.0)));
|
|
result.r = isNaN.r == 1.0 ? NAN : result.r;
|
|
result.g = isNaN.g == 1.0 ? NAN : result.g;
|
|
result.b = isNaN.b == 1.0 ? NAN : result.b;
|
|
result.a = isNaN.a == 1.0 ? NAN : result.a;
|
|
|
|
return result;
|
|
`,JG=Ke({opSnippet:ZG,packedOpSnippet:YG,cpuKernelImpl:KW}),QG={kernelName:Is,backendName:"webgl",kernelFunc:JG},eH="return log(1.0 + x);",tH=Ke({opSnippet:eH}),nH={kernelName:So,backendName:"webgl",kernelFunc:tH},rH="return float(a >= 1.0 && b >= 1.0);",aH=`
|
|
return vec4(
|
|
vec4(greaterThanEqual(a, vec4(1.0))) *
|
|
vec4(greaterThanEqual(b, vec4(1.0))));
|
|
`,sH=tn({opSnippet:rH,packedOpSnippet:aH,dtype:"bool"}),iH={kernelName:To,backendName:"webgl",kernelFunc:sH},oH="return float(!(x >= 1.0));",lH=Ke({opSnippet:oH}),uH={kernelName:Iu,backendName:"webgl",kernelFunc:lH},cH="return float(a >= 1.0 || b >= 1.0);",hH=`
|
|
return min(
|
|
vec4(greaterThanEqual(a, vec4(1.0))) +
|
|
vec4(greaterThanEqual(b, vec4(1.0))),
|
|
vec4(1.0));
|
|
`,dH=tn({opSnippet:cH,packedOpSnippet:hH,dtype:"bool"}),pH={kernelName:Su,backendName:"webgl",kernelFunc:dH},fH=class{constructor(e,t,n,r,a){this.variableNames=["x"],this.outputShape=[];let s=t,i=e[3]-1;this.outputShape=e;let o,l=`float(${n}) + float(${r}) * sum`;a===.5?o=`inversesqrt(${l})`:a===1?o=`1.0/(${l})`:o=`exp(log(${l}) * float(-${a}));`,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
int d = coords[3];
|
|
float x = getX(b, r, c, d);
|
|
float sum = 0.0;
|
|
for (int j = -${s}; j <= ${s}; j++) {
|
|
int idx = d + j;
|
|
if (idx >= 0 && idx <= ${i}) {
|
|
float z = getX(b, r, c, idx);
|
|
sum += z * z;
|
|
}
|
|
}
|
|
float val = x * ${o};
|
|
setOutput(val);
|
|
}
|
|
`}},mH=class{constructor(e,t,n,r,a){this.variableNames=["x"],this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0;let s=t,i=e[3]-1;this.outputShape=e;let o,l=`float(${n}) + float(${r}) * sum`;a===.5?o=`inversesqrt(${l})`:a===1?o=`1.0/(${l})`:o=`exp(log(${l}) * float(-${a}));`,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords.x;
|
|
int r = coords.y;
|
|
int c = coords.z;
|
|
int d = coords.w;
|
|
|
|
bool hasNextCol = d < ${this.outputShape[3]};
|
|
bool hasNextRow = c < ${this.outputShape[2]};
|
|
|
|
vec4 sum = vec4(0.);
|
|
vec4 xFragAtOutputCoords = getX(b, r, c, d);
|
|
|
|
vec4 xAtOutputCoords = vec4(
|
|
getChannel(xFragAtOutputCoords, vec2(c, d)),
|
|
hasNextCol ?
|
|
getChannel(xFragAtOutputCoords, vec2(c, d + 1)) : 0.0,
|
|
hasNextRow ?
|
|
getChannel(xFragAtOutputCoords , vec2(c + 1, d)) : 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getChannel(xFragAtOutputCoords, vec2(c + 1, d + 1)) : 0.0
|
|
);
|
|
|
|
int firstChannel = d - ${s};
|
|
vec2 cache = vec2(0.);
|
|
if(firstChannel >= 0){
|
|
vec4 firstChannelFrag = getX(b, r, c, firstChannel);
|
|
cache.x = getChannel(firstChannelFrag, vec2(c, firstChannel));
|
|
if(hasNextRow){
|
|
cache.y = getChannel(firstChannelFrag, vec2(c + 1, firstChannel));
|
|
}
|
|
}
|
|
|
|
ivec2 depth = ivec2(d, d + 1);
|
|
for (int j = - ${s}; j <= ${s}; j++) {
|
|
ivec2 idx = depth + j;
|
|
bvec2 aboveLowerBound = greaterThanEqual(idx, ivec2(0));
|
|
bvec2 belowUpperBound = lessThanEqual(idx, ivec2(${i}));
|
|
|
|
bool depthInRange = aboveLowerBound.x && belowUpperBound.x;
|
|
bool depthPlusOneInRange = aboveLowerBound.y && belowUpperBound.y;
|
|
|
|
if(depthInRange || depthPlusOneInRange){
|
|
vec4 z = vec4(0.);
|
|
vec4 xFragAtCurrentDepth;
|
|
z.xz = cache.xy;
|
|
if(depthPlusOneInRange && hasNextCol){
|
|
xFragAtCurrentDepth = idx.y != d ?
|
|
getX(b, r, c, idx.y) : xFragAtOutputCoords;
|
|
z.y = getChannel(xFragAtCurrentDepth, vec2(c, idx.y));
|
|
if(hasNextRow){
|
|
z.w = getChannel(xFragAtCurrentDepth, vec2(c + 1, idx.y));
|
|
}
|
|
}
|
|
cache.xy = z.yw;
|
|
sum += z * z;
|
|
}
|
|
}
|
|
vec4 result = xAtOutputCoords * ${o};
|
|
setOutput(result);
|
|
}
|
|
`}},AH=e=>{let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{depthRadius:s,bias:i,alpha:o,beta:l}=r,u=Q().getBool("WEBGL_PACK_NORMALIZATION")?new mH(a.shape,s,i,o,l):new fH(a.shape,s,i,o,l);return n.runWebGLProgram(u,[a],a.dtype)},yH={kernelName:Tu,backendName:"webgl",kernelFunc:AH},gH=class{constructor(e,t,n,r,a){this.variableNames=["inputImage","outputImage","dy"],this.outputShape=[],this.outputShape=e,this.depth=e[3],this.depthRadius=t,this.bias=n,this.alpha=r,this.beta=a,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float result = 0.0;
|
|
for (int d = 0; d < ${this.depth}; ++d) {
|
|
int depthBegin = int(max(0.0, float(d - ${t})));
|
|
int depthEnd = int(min(float(${this.depth}),
|
|
float(d + ${t} + 1)));
|
|
|
|
const int MIN_DEPTH_BEGIN = 0;
|
|
const int MAX_DEPTH_END = ${this.depth};
|
|
|
|
float norm = 0.0;
|
|
for (int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k) {
|
|
if (k < depthBegin){
|
|
continue;
|
|
}
|
|
else if (k >= depthBegin && k < depthEnd) {
|
|
norm += getInputImage(b, r, c, k) * getInputImage(b, r, c, k);
|
|
}
|
|
else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
norm = float(${r}) * norm + float(${n});
|
|
|
|
for(int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k){
|
|
if (k < depthBegin){
|
|
continue;
|
|
}
|
|
else if (k >= depthBegin && k < depthEnd){
|
|
float dyi = -2.0 * float(${r})
|
|
* float(${a})
|
|
* getInputImage(b ,r ,c, k) * getOutputImage(b, r, c, d)
|
|
/ norm;
|
|
if (k == d) {
|
|
dyi += pow(norm, -1.0 * ${a});
|
|
}
|
|
if (k == coords[3]) {
|
|
dyi *= getDy(b, r, c, d);
|
|
result += dyi;
|
|
}
|
|
}
|
|
else {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}},xH=e=>{let{inputs:t,backend:n,attrs:r}=e,{x:a,y:s,dy:i}=t,{depthRadius:o,bias:l,alpha:u,beta:c}=r,h=new gH(a.shape,o,l,u,c);return n.runWebGLProgram(h,[a,s,i],a.dtype)},wH={kernelName:Jh,backendName:"webgl",kernelFunc:xH};function _H(e,t,n,r){let a=k.sizeFromShape(t),s=k.sizeFromShape(e.shape)/a,i=ge({inputs:{x:e},attrs:{shape:[s,a]},backend:r}),o=vi(i,e.dtype,"max",r),l=ge({inputs:{x:o},attrs:{shape:n},backend:r});return r.disposeIntermediateTensorInfo(i),r.disposeIntermediateTensorInfo(o),l}function cb(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{reductionIndices:s,keepDims:i}=r,o=a.shape.length,l=k.parseAxisParam(s,a.shape),u=l,c=R.getAxesPermutation(u,o),h=c!=null,d=n.shouldExecuteOnCPU([a]),p=a;if(h){if(d){let g=n.texData.get(p.dataId).values,_=new Array(o);for(let w=0;w<_.length;w++)_[w]=a.shape[c[w]];let b=Lm(g,a.shape,a.dtype,c,_);p=n.makeTensorInfo(_,a.dtype);let x=n.texData.get(p.dataId);x.values=b}else p=_p(a,c,n);u=R.getInnerMostAxes(u.length,o)}R.assertAxesAreInnerMostDims("max",u,o);let[f,m]=R.computeOutAndReduceShapes(p.shape,u),A=f;i&&(A=R.expandShapeToKeepDim(f,l));let y;if(d){let g=n.texData.get(p.dataId).values,_=ZW(g,k.sizeFromShape(m),A,a.dtype);y=n.makeTensorInfo(A,a.dtype);let b=n.texData.get(y.dataId);b.values=_}else y=_H(p,m,A,n);return h&&n.disposeIntermediateTensorInfo(p),y}var bH={kernelName:Ss,backendName:"webgl",kernelFunc:cb},vH=S_+`
|
|
return max(a, b);
|
|
`,kH=`
|
|
vec4 result = vec4(max(a, b));
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+xp+`
|
|
return result;
|
|
`,NH=tn({opSnippet:vH,packedOpSnippet:kH,cpuKernelImpl:YW}),IH={kernelName:Ts,backendName:"webgl",kernelFunc:NH};function SH(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t;Il(a,"maxPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=r,u=1;k.assert(R.eitherStridesOrDilationsAreOne(i,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let c=R.computePool2DInfo(a.shape,s,i,u,o,l);if(c.filterWidth===1&&c.filterHeight===1&&k.arraysEqual(c.inShape,c.outShape))return Mn({inputs:{x:a},backend:n});let h=new _c(c,"max",!1);return n.runWebGLProgram(h,[a],a.dtype)}var TH={kernelName:Es,backendName:"webgl",kernelFunc:SH};function EH(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{filterSize:s,strides:i,pad:o,dataFormat:l,dimRoundingMode:u}=r,c=[1,1,1],h=R.computePool3DInfo(a.shape,s,i,c,o,u,l),d=new Vm(h,"max",!1);return n.runWebGLProgram(d,[a],a.dtype)}var CH={kernelName:Eu,backendName:"webgl",kernelFunc:EH},RH=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideHeight,n=e.strideWidth,r=e.dilationHeight,a=e.effectiveFilterHeight,s=e.effectiveFilterWidth,i=a-1-e.padInfo.top,o=s-1-e.padInfo.left,l=a*s-1;this.userCode=`
|
|
const ivec2 pads = ivec2(${i}, ${o});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 dyRCCorner = coords.yz - pads;
|
|
int dyRCorner = dyRCCorner.x;
|
|
int dyCCorner = dyRCCorner.y;
|
|
|
|
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${a};
|
|
wR += ${r}) {
|
|
float dyR = float(dyRCorner + wR) / ${t}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${s}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${n}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(b, idyR, idyC, d);
|
|
int maxPosValue = ${l} - int(getMaxPos(b, idyR, idyC, d));
|
|
|
|
// Get the current value, check it against the value from the
|
|
// position matrix.
|
|
int curPosValue = wR * ${s} + wC;
|
|
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
|
|
|
|
dotProd += dyValue * mask;
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},FH=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideDepth,n=e.strideHeight,r=e.strideWidth,a=e.dilationDepth,s=e.dilationHeight,i=e.dilationWidth,o=e.effectiveFilterDepth,l=e.effectiveFilterHeight,u=e.effectiveFilterWidth,c=o-1-e.padInfo.front,h=l-1-e.padInfo.top,d=u-1-e.padInfo.left,p=o*l*u-1;this.userCode=`
|
|
const ivec3 pads = ivec3(${c}, ${h}, ${d});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyDCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
// Convolve dy(?, ?, ?, ch) with pos mask(:, :, :, d) to get
|
|
// dx(xD, xR, xC, ch).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int wD = 0; wD < ${o};
|
|
wD += ${a}) {
|
|
float dyD = float(dyDCorner + wD) / ${t}.0;
|
|
|
|
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyD = int(dyD);
|
|
|
|
for (int wR = 0; wR < ${l};
|
|
wR += ${s}) {
|
|
float dyR = float(dyRCorner + wR) / ${n}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${u};
|
|
wC += ${i}) {
|
|
float dyC = float(dyCCorner + wC) / ${r}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
|
|
int maxPosValue = ${p} -
|
|
int(getMaxPos(batch, idyD, idyR, idyC, ch));
|
|
|
|
// Get the current value, check it against the value from the
|
|
// position matrix.
|
|
int curPosValue =
|
|
wD * ${l} * ${u} +
|
|
wR * ${u} + wC;
|
|
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
|
|
|
|
dotProd += dyValue * mask;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function MH(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s}=t,i=s,{filterSize:o,strides:l,pad:u,dimRoundingMode:c}=r,h=[1,1,1],d=R.computePool3DInfo(i.shape,o,l,h,u,c),p=new Vm(d,"max",!0),f=n.runWebGLProgram(p,[i],i.dtype),m=new FH(d),A=n.runWebGLProgram(m,[a,f],i.dtype);return n.disposeIntermediateTensorInfo(f),A}var OH={kernelName:ed,backendName:"webgl",kernelFunc:MH};function DH(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s,output:i}=t,o=s;Il([s,i],"maxPoolGrad");let{filterSize:l,strides:u,pad:c,dimRoundingMode:h}=r,d=R.computePool2DInfo(o.shape,l,u,1,c,h),p=!0,f=new _c(d,"max",p),m=n.runWebGLProgram(f,[o],o.dtype),A=new RH(d),y=n.runWebGLProgram(A,[a,m],o.dtype);return n.disposeIntermediateTensorInfo(m),y}var $H={kernelName:Qh,backendName:"webgl",kernelFunc:DH};function zH(e,t,n,r){let a=new _c(n,"max",!1),s=r.runWebGLProgram(a,[e],"float32");a=new _c(n,"max",!0,!0,t);let i=r.runWebGLProgram(a,[e],"float32");return[s,i]}var PH={kernelName:td,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:r}=e,{filterSize:a,strides:s,pad:i,includeBatchInIndex:o}=t,l=n;k.assert(r.shape.length===4,()=>`Error in maxPool: input must be rank 4 but got rank ${r.shape.length}.`);let u=[1,1];k.assert(R.eitherStridesOrDilationsAreOne(s,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${s} and dilations '${u}'`);let c=R.computePool2DInfo(r.shape,a,s,u,i),[h,d]=zH(r,o,c,l);return[h,d]}};function LH(e,t,n,r){let a=k.sizeFromShape(t),s=k.sizeFromShape(e.shape)/a,i=ge({inputs:{x:e},attrs:{shape:[s,a]},backend:r}),o=vi(i,"float32","mean",r),l=ge({inputs:{x:o},attrs:{shape:n},backend:r});return r.disposeIntermediateTensorInfo(i),r.disposeIntermediateTensorInfo(o),l}var WH={kernelName:Cs,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:r}=e,{keepDims:a,axis:s}=t,i=n,o=r.shape.length,l=k.parseAxisParam(s,r.shape),u=l,c=R.getAxesPermutation(u,o),h=c!=null,d=i.shouldExecuteOnCPU([r]),p=[],f=r;if(h){if(d){let _=i.texData.get(f.dataId).values,b=new Array(o);for(let I=0;I<b.length;I++)b[I]=r.shape[c[I]];let x=Lm(_,r.shape,r.dtype,c,b);f=i.makeTensorInfo(b,r.dtype);let w=i.texData.get(f.dataId);w.values=x}else f=_p(r,c,i);p.push(f),u=R.getInnerMostAxes(u.length,o)}R.assertAxesAreInnerMostDims("sum",u,o);let[m,A]=R.computeOutAndReduceShapes(f.shape,u),y=m;a&&(y=R.expandShapeToKeepDim(m,l));let g=LH(f,A,y,i);for(let _ of p)i.disposeIntermediateTensorInfo(_);return g}};function BH(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r,o=a.shape.length,l=k.parseAxisParam(s,a.shape),u=l,c=R.getAxesPermutation(u,o),h=a;c!=null&&(h=wn({inputs:{x:a},backend:n,attrs:{perm:c}}),u=R.getInnerMostAxes(u.length,a.shape.length)),R.assertAxesAreInnerMostDims("min",u,o);let[d,p]=R.computeOutAndReduceShapes(h.shape,u),f=k.sizeFromShape(p),m=ge({inputs:{x:h},backend:n,attrs:{shape:[-1,f]}}),A=vi(m,m.dtype,"min",n),y;if(i){let g=R.expandShapeToKeepDim(d,l);y=ge({inputs:{x:A},backend:n,attrs:{shape:g}})}else y=ge({inputs:{x:A},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(A),c!=null&&n.disposeIntermediateTensorInfo(h),y}var VH={kernelName:Rs,backendName:"webgl",kernelFunc:BH},UH=S_+`
|
|
return min(a, b);
|
|
`,jH=`
|
|
vec4 result = vec4(min(a, b));
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+xp+`
|
|
return result;
|
|
`,GH=tn({opSnippet:UH,packedOpSnippet:jH,cpuKernelImpl:JW}),HH={kernelName:Fs,backendName:"webgl",kernelFunc:GH},qH=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=t.map((u,c)=>u[0]+e[c]+u[1]);let r=e.length,a=ct(r),s=t.map(u=>u[0]).join(","),i=t.map((u,c)=>u[0]+e[c]).join(","),o=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,r),l=n==="reflect"?0:1;if(r===1){this.userCode=`
|
|
int start = ${s};
|
|
int end = ${i};
|
|
|
|
void main() {
|
|
int outC = getOutputCoords();
|
|
if (outC < start) {
|
|
outC = start * 2 - outC - ${l};
|
|
} else if(outC >= end) {
|
|
outC = (end - 1) * 2 - outC + ${l};
|
|
}
|
|
setOutput(getX(outC - start));
|
|
}
|
|
`;return}this.userCode=`
|
|
${a} start = ${a}(${s});
|
|
${a} end = ${a}(${i});
|
|
|
|
void main() {
|
|
${a} outC = getOutputCoords();
|
|
for (int i = 0; i < ${r}; i++) {
|
|
if (outC[i] < start[i]) {
|
|
outC[i] = start[i] * 2 - outC[i] - ${l};
|
|
} else if(outC[i] >= end[i]) {
|
|
outC[i] = (end[i] - 1) * 2 - outC[i] + ${l};
|
|
}
|
|
}
|
|
${a} coords = outC - start;
|
|
setOutput(getX(${o}));
|
|
}
|
|
`}},XH=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((p,f)=>p[0]+e[f]+p[1]);let r=e.length,a=ct(r),s=t.map(p=>p[0]).join(","),i=t.map((p,f)=>p[0]+e[f]).join(","),o=hn("rc",r),l=hn("source",r),u=`${o[r-1]} < ${this.outputShape[r-1]}`,c=r===1?"source":`vec2(${l.slice(-2).join()})`,h=n==="reflect"?0:1,d="";if(r===1){let p=`
|
|
${a} source = rc;
|
|
if (source < start) {
|
|
source = start * 2 - source - ${h};
|
|
} else if (source >= end) {
|
|
source = (end - 1) * 2 - source + ${h};
|
|
}
|
|
source -= start;
|
|
`;d=`
|
|
${a} rc = outputLoc;
|
|
${p}
|
|
result[0] = getChannel(getX(${l.join()}), ${c});
|
|
${o[r-1]} += 1;
|
|
if(${u}) {
|
|
${p}
|
|
result[1] = getChannel(getX(${l.join()}), ${c});
|
|
}
|
|
`}else{let p=`
|
|
${a} source = rc;
|
|
${a} lt = ${a}(lessThan(source, start));
|
|
${a} gte = ${a}(greaterThanEqual(source, end));
|
|
${a} orig = 1 - (lt + gte);
|
|
source = orig * source +
|
|
lt * (start * 2 - source - ${h}) +
|
|
gte * ((end - 1) * 2 - source + ${h});
|
|
source -= start;
|
|
`;d=`
|
|
${a} rc = outputLoc;
|
|
${p}
|
|
result[0] = getChannel(getX(${l.join()}), ${c});
|
|
${o[r-1]} += 1;
|
|
if(${u}) {
|
|
${p}
|
|
result[1] = getChannel(getX(${l.join()}), ${c});
|
|
}
|
|
rc = outputLoc;
|
|
${o[r-2]} += 1;
|
|
if(${o[r-2]} < ${this.outputShape[r-2]}) {
|
|
${p}
|
|
result[2] = getChannel(getX(${l.join()}), ${c});
|
|
${o[r-1]} += 1;
|
|
if(${u}) {
|
|
${p}
|
|
result[3] = getChannel(getX(${l.join()}), ${c});
|
|
}
|
|
}
|
|
`}this.userCode=`
|
|
const ${a} start = ${a}(${s});
|
|
const ${a} end = ${a}(${i});
|
|
|
|
void main() {
|
|
${a} outputLoc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
${d}
|
|
setOutput(result);
|
|
}
|
|
`}},KH=({inputs:e,backend:t,attrs:n})=>{let{x:r}=e,{paddings:a,mode:s}=n,i=Q().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new XH(r.shape,a,s):new qH(r.shape,a,s);return t.runWebGLProgram(i,[r],r.dtype)},ZH={kernelName:Cu,backendName:"webgl",kernelFunc:KH},YH=`if (b == 0.0) return NAN;
|
|
return mod(a, b);`,JH=`
|
|
vec4 result = mod(a, b);
|
|
vec4 isNaN = vec4(equal(b, vec4(0.0)));
|
|
`+xp+`
|
|
return result;
|
|
`,QH=tn({opSnippet:YH,packedOpSnippet:JH}),eq={kernelName:Eo,backendName:"webgl",kernelFunc:QH},tq=class{constructor(e,t,n){this.variableNames=["probs"],this.outputShape=[e,n],this.userCode=`
|
|
uniform float seed;
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
|
|
float r = random(seed);
|
|
float cdf = 0.0;
|
|
|
|
for (int i = 0; i < ${t-1}; i++) {
|
|
cdf += getProbs(batch, i);
|
|
|
|
if (r < cdf) {
|
|
setOutput(float(i));
|
|
return;
|
|
}
|
|
}
|
|
|
|
// If no other event happened, last event happened.
|
|
setOutput(float(${t-1}));
|
|
}
|
|
`}getCustomSetupFunc(e){return(t,n)=>{this.seedLoc==null&&(this.seedLoc=t.getUniformLocation(n,"seed")),t.gl.uniform1f(this.seedLoc,e)}}},nq=`
|
|
if (a == b) {
|
|
return 1.0;
|
|
};
|
|
return a / b;`,rq=`
|
|
// vec4 one = vec4(equal(a, b));
|
|
// return one + (vec4(1.0) - one) * a / b;
|
|
vec4 result = a / b;
|
|
if(a.x == b.x) {
|
|
result.x = 1.;
|
|
}
|
|
if(a.y == b.y) {
|
|
result.y = 1.;
|
|
}
|
|
if(a.z == b.z) {
|
|
result.z = 1.;
|
|
}
|
|
if(a.w == b.w) {
|
|
result.w = 1.;
|
|
}
|
|
|
|
return result;
|
|
`,hb=tn({opSnippet:nq,packedOpSnippet:rq,checkOutOfBounds:!0}),aq={kernelName:xs,backendName:"webgl",kernelFunc:hb},db="return a - b;",pb=tn({opSnippet:db,packedOpSnippet:db,supportsComplex:!0,cpuKernelImpl:iB}),sq={kernelName:Zs,backendName:"webgl",kernelFunc:pb};function fb(e){let{inputs:t,backend:n,attrs:r}=e,{logits:a}=t,{dim:s}=r,i=k.parseAxisParam([s],a.shape),o=cb({inputs:{x:a},backend:n,attrs:{reductionIndices:i,keepDims:!1}}),l=R.expandShapeToKeepDim(o.shape,i),u=ge({inputs:{x:o},backend:n,attrs:{shape:l}}),c=pb({inputs:{a,b:u},backend:n}),h=sb({inputs:{x:c},backend:n}),d=Bm({inputs:{x:h},backend:n,attrs:{axis:i,keepDims:!1}}),p=ge({inputs:{x:d},backend:n,attrs:{shape:l}}),f=hb({inputs:{a:h,b:p},backend:n});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),f}var iq={kernelName:Xs,backendName:"webgl",kernelFunc:fb};function oq(e){let{inputs:t,backend:n,attrs:r}=e,{logits:a}=t,{numSamples:s,seed:i,normalized:o}=r,l=o?a:fb({inputs:{logits:a},backend:n,attrs:{dim:a.shape.length-1}}),u=l.shape[0],c=l.shape[1],h=new tq(u,c,s),d=h.getCustomSetupFunc(i),p=n.runWebGLProgram(h,[l],"int32",d);return o||n.disposeIntermediateTensorInfo(l),p}var lq={kernelName:nd,backendName:"webgl",kernelFunc:oq},mb="return -x;";function uq(e){let{inputs:t,backend:n}=e,{x:r}=t;if(n.shouldExecuteOnCPU([r])){let s=n.texData.get(r.dataId),[i,o]=eB(s.values,r.shape,r.dtype);return n.makeTensorInfo(o,r.dtype,i)}let a;return Q().getBool("WEBGL_PACK_UNARY_OPERATIONS")?a=new Fl(r.shape,mb):a=new Pa(r.shape,mb),n.runWebGLProgram(a,[r],r.dtype)}var cq={kernelName:Co,backendName:"webgl",kernelFunc:uq},hq=Pr.nonMaxSuppressionV3Impl;function dq(e){R.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:r}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l}=r,u=n.readSync(a.dataId),c=n.readSync(s.dataId),{selectedIndices:h}=hq(u,c,i,o,l);return n.makeTensorInfo([h.length],"int32",new Int32Array(h))}var pq={kernelName:Fo,backendName:"webgl",kernelFunc:dq},fq=Pr.nonMaxSuppressionV4Impl;function mq(e){R.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:r}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,padToMaxOutputSize:u}=r,c=n.readSync(a.dataId),h=n.readSync(s.dataId),{selectedIndices:d,validOutputs:p}=fq(c,h,i,o,l,u);return[n.makeTensorInfo([d.length],"int32",new Int32Array(d)),n.makeTensorInfo([],"int32",new Int32Array([p]))]}var Aq={kernelName:Mo,backendName:"webgl",kernelFunc:mq},yq=Pr.nonMaxSuppressionV5Impl;function gq(e){R.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:r}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,softNmsSigma:u}=r,c=n.readSync(a.dataId),h=n.readSync(s.dataId),d=i,p=o,f=l,m=u,{selectedIndices:A,selectedScores:y}=yq(c,h,d,p,f,m);return[n.makeTensorInfo([A.length],"int32",new Int32Array(A)),n.makeTensorInfo([y.length],"float32",new Float32Array(y))]}var xq={kernelName:Oo,backendName:"webgl",kernelFunc:gq},wq=class{constructor(e,t,n,r){this.variableNames=["indices"],this.outputShape=[e,t],this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int index = round(getIndices(coords.x));
|
|
setOutput(mix(float(${r}), float(${n}),
|
|
float(index == coords.y)));
|
|
}
|
|
`}},_q=e=>{let{inputs:t,backend:n,attrs:r}=e,{indices:a}=t,{depth:s,onValue:i,offValue:o}=r,l=k.sizeFromShape(a.shape),u=new wq(l,s,i,o),c=ge({inputs:{x:a},backend:n,attrs:{shape:[l]}}),h=n.runWebGLProgram(u,[c],a.dtype);n.disposeIntermediateTensorInfo(c);let d=[...a.shape,s],p=ge({inputs:{x:h},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(h),p},bq={kernelName:Os,backendName:"webgl",kernelFunc:_q};function Ip(e){let{inputs:t,backend:n}=e,{x:r}=t;if(r.dtype==="complex64"){let a=vc({inputs:{input:r},backend:n}),s=Ip({inputs:{x:a},backend:n}),i=Np({inputs:{input:r},backend:n}),o=Ip({inputs:{x:i},backend:n}),l=La({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return Hm({attrs:{shape:r.shape,dtype:r.dtype,value:r.dtype==="string"?"":0},backend:n})}var vq={kernelName:Jo,backendName:"webgl",kernelFunc:Ip};function Ab(e){let{inputs:t,backend:n}=e,{x:r}=t;if(r.dtype==="string")throw new Error("onesLike is not supported under string dtype");if(r.dtype==="complex64"){let a=vc({inputs:{input:r},backend:n}),s=Ab({inputs:{x:a},backend:n}),i=Np({inputs:{input:r},backend:n}),o=Ip({inputs:{x:i},backend:n}),l=La({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return Hm({attrs:{shape:r.shape,dtype:r.dtype,value:1},backend:n})}var kq={kernelName:Do,backendName:"webgl",kernelFunc:Ab};function Nq(e){let{inputs:t,backend:n,attrs:r}=e,{axis:a}=r;if(t.length===1)return Gm({inputs:{input:t[0]},backend:n,attrs:{dim:a}});let s=t[0].shape,i=t[0].dtype;t.forEach(c=>{k.assertShapesMatch(s,c.shape,"All tensors passed to stack must have matching shapes"),k.assert(i===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(c=>{let h=Gm({inputs:{input:c},backend:n,attrs:{dim:a}});return o.push(h),h}),u=K_({inputs:l,backend:n,attrs:{axis:a}});return o.forEach(c=>n.disposeIntermediateTensorInfo(c)),u}var Iq={kernelName:$o,backendName:"webgl",kernelFunc:Nq},Sq=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=t.map((l,u)=>l[0]+e[u]+l[1]);let r=e.length,a=ct(r),s=t.map(l=>l[0]).join(","),i=t.map((l,u)=>l[0]+e[u]).join(","),o=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,r);if(r===1){this.userCode=`
|
|
int start = ${s};
|
|
int end = ${i};
|
|
|
|
void main() {
|
|
int outC = getOutputCoords();
|
|
if (outC < start || outC >= end) {
|
|
setOutput(float(${n}));
|
|
} else {
|
|
setOutput(getX(outC - start));
|
|
}
|
|
}
|
|
`;return}this.userCode=`
|
|
${a} start = ${a}(${s});
|
|
${a} end = ${a}(${i});
|
|
|
|
void main() {
|
|
${a} outC = getOutputCoords();
|
|
if (any(lessThan(outC, start)) || any(greaterThanEqual(outC, end))) {
|
|
setOutput(float(${n}));
|
|
} else {
|
|
${a} coords = outC - start;
|
|
setOutput(getX(${o}));
|
|
}
|
|
}
|
|
`}},Tq=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((f,m)=>f[0]+e[m]+f[1]);let r=e.length,a=ct(r),s=t.map(f=>f[0]).join(","),i=t.map((f,m)=>f[0]+e[m]).join(","),o=hn("rc",r),l=hn("source",r),u=`${o[r-1]} < ${this.outputShape[r-1]}`,c=r===1?"source":`vec2(${l.slice(-2).join()})`,h=[`${a} rc = outputLoc;`,`${o[r-1]} += 1;
|
|
if(${u}) {
|
|
`,r===1?"":`}
|
|
rc = outputLoc;
|
|
${o[r-2]} += 1;
|
|
if(${o[r-2]} < ${this.outputShape[r-2]}) {`,r===1?"":` ${o[r-1]} += 1;
|
|
if(${u}) {`],d=r===1?"rc < start || rc >= end":"any(lessThan(rc, start)) || any(greaterThanEqual(rc, end))",p="";for(let f=0,m=r===1?2:4;f<m;f++)p+=`
|
|
${h[f]}
|
|
if (${d}) {
|
|
result[${f}] = float(${n});
|
|
} else {
|
|
${a} source = rc - start;
|
|
result[${f}] = getChannel(getX(${l.join()}), ${c});
|
|
}
|
|
`;p+=r===1?"} ":"}}",this.userCode=`
|
|
const ${a} start = ${a}(${s});
|
|
const ${a} end = ${a}(${i});
|
|
|
|
void main() {
|
|
${a} outputLoc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
${p}
|
|
setOutput(result);
|
|
}
|
|
`}},yb=e=>{let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{paddings:s,constantValue:i}=r,o=Q().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new Tq(a.shape,s,i):new Sq(a.shape,s,i);return n.runWebGLProgram(o,[a],a.dtype)},Eq={kernelName:Ds,backendName:"webgl",kernelFunc:yb},Cq=`
|
|
if(a < 0.0 && floor(b) < b){
|
|
return NAN;
|
|
}
|
|
if (b == 0.0) {
|
|
return 1.0;
|
|
}
|
|
return (round(mod(b, 2.0)) != 1) ?
|
|
pow(abs(a), b) : sign(a) * pow(abs(a), b);
|
|
`,Rq=`
|
|
// isModRound1 has 1 for components with round(mod(b, 2.0)) == 1, 0 otherwise.
|
|
vec4 isModRound1 = vec4(equal(round(mod(b, 2.0)), ivec4(1)));
|
|
vec4 multiplier = sign(a) * isModRound1 + (vec4(1.0) - isModRound1);
|
|
vec4 result = multiplier * pow(abs(a), b);
|
|
|
|
// Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS
|
|
bvec4 isExpZero = equal(b, vec4(0.0));
|
|
result.r = isExpZero.r ? 1.0 : result.r;
|
|
result.g = isExpZero.g ? 1.0 : result.g;
|
|
result.b = isExpZero.b ? 1.0 : result.b;
|
|
result.a = isExpZero.a ? 1.0 : result.a;
|
|
|
|
vec4 isNaN = vec4(lessThan(a, vec4(0.0))) * vec4(lessThan(floor(b), b));
|
|
`+xp+`
|
|
return result;
|
|
`,Fq=tn({opSnippet:Cq,packedOpSnippet:Rq}),Mq={kernelName:$s,backendName:"webgl",kernelFunc:Fq};function Oq(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r,o=a.shape.length,l=[],u=k.parseAxisParam(s,a.shape),c=u,h=R.getAxesPermutation(c,o),d=a;h!=null&&(d=wn({inputs:{x:a},backend:n,attrs:{perm:h}}),c=R.getInnerMostAxes(c.length,o),l.push(d)),R.assertAxesAreInnerMostDims("prod",c,o);let p;if(n.shouldExecuteOnCPU([d])){let f=n.texData.get(d.dataId).values,{outVals:m,outShape:A,outDtype:y}=tB(d.shape,d.dtype,f,c);p=n.makeTensorInfo(A,y,m)}else{let[f,m]=R.computeOutAndReduceShapes(d.shape,c),A=k.sizeFromShape(m),y=ge({inputs:{x:d},backend:n,attrs:{shape:[-1,A]}}),g=dd(a.dtype),_=vi(y,g,"prod",n);p=ge({inputs:{x:_},backend:n,attrs:{shape:f}}),l.push(y),l.push(_)}if(i){l.push(p);let f=R.expandShapeToKeepDim(p.shape,u);p=ge({inputs:{x:p},backend:n,attrs:{shape:f}})}return l.forEach(f=>n.disposeIntermediateTensorInfo(f)),p}var Dq={kernelName:zo,backendName:"webgl",kernelFunc:Oq},gb=e=>{let{backend:t,attrs:n}=e,{start:r,stop:a,step:s,dtype:i}=n,o=nB(r,a,s,i);return t.makeTensorInfo([o.length],i,o)},$q={kernelName:Ru,backendName:"webgl",kernelFunc:gb},zq="return 1.0 / x;",Pq=Ke({opSnippet:zq}),Lq={kernelName:Po,backendName:"webgl",kernelFunc:Pq},Wq=yr+`
|
|
return (x < 0.0) ? 0.0 : x;
|
|
`,Bq=`
|
|
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,Vq=Ke({opSnippet:Wq,packedOpSnippet:Bq}),Uq={kernelName:Ps,backendName:"webgl",kernelFunc:Vq},jq=yr+`
|
|
return (x < 0.0) ? 0.0 : min(6.0, x);
|
|
`,Gq=`
|
|
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,Hq=Ke({opSnippet:jq,packedOpSnippet:Gq}),qq={kernelName:Ws,backendName:"webgl",kernelFunc:Hq},Xq=class{constructor(e,t,n,r,a){this.variableNames=["A"],this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let u=[r&&t>1?i-1:i,r&&n>1?o-1:o],c=[r&&t>1?t-1:t,r&&n>1?n-1:n],h;a?h="(vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC - vec2(0.5)":h="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec2 effectiveInputOverOutputRatioRC = vec2(
|
|
${u[0]/c[0]},
|
|
${u[1]/c[1]});
|
|
const vec2 inputShapeRC = vec2(${i}.0, ${o}.0);
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
ivec2 yRC = coords.yz;
|
|
|
|
// Fractional source index.
|
|
vec2 sourceFracIndexRC = ${h};
|
|
|
|
// Compute the four integer indices.
|
|
ivec2 sourceFloorRC = ivec2(max(sourceFracIndexRC, vec2(0.0)));
|
|
ivec2 sourceCeilRC = ivec2(
|
|
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
|
|
|
|
float topLeft = getA(b, sourceFloorRC.x, sourceFloorRC.y, d);
|
|
float bottomLeft = getA(b, sourceCeilRC.x, sourceFloorRC.y, d);
|
|
float topRight = getA(b, sourceFloorRC.x, sourceCeilRC.y, d);
|
|
float bottomRight = getA(b, sourceCeilRC.x, sourceCeilRC.y, d);
|
|
|
|
vec2 fracRC = sourceFracIndexRC - vec2(sourceFloorRC);
|
|
|
|
float top = topLeft + (topRight - topLeft) * fracRC.y;
|
|
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracRC.y;
|
|
float newValue = top + (bottom - top) * fracRC.x;
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}},Kq=class{constructor(e,t,n,r,a){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let u=[r&&t>1?i-1:i,r&&n>1?o-1:o],c=[r&&t>1?t-1:t,r&&n>1?n-1:n],h;a?h="(vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC - vec3(0.5)":h="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec3 effectiveInputOverOutputRatioRC = vec3(
|
|
${u[0]/c[0]},
|
|
${u[1]/c[1]},
|
|
${u[1]/c[1]});
|
|
const vec3 inputShapeRC = vec3(${i}.0, ${o}.0,
|
|
${o}.0);
|
|
|
|
float getAValue(int b, int r, int c, int d) {
|
|
return getChannel(getA(b, r, c, d), vec2(c, d));
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
// Calculate values for next column in yRC.z.
|
|
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
|
|
|
|
// Fractional source index.
|
|
vec3 sourceFracIndexRC = ${h};
|
|
|
|
// Compute the four integer indices.
|
|
ivec3 sourceFloorRC = ivec3(max(sourceFracIndexRC, vec3(0.0)));
|
|
ivec3 sourceCeilRC = ivec3(
|
|
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
|
|
|
|
// Should we calculate next column and row elements in 2x2 packed cell.
|
|
bool hasNextCol = d < ${l-1};
|
|
bool hasNextRow = coords.z < ${n-1};
|
|
|
|
// In parallel, construct four corners for all four components in
|
|
// packed 2x2 cell.
|
|
vec4 topLeft = vec4(
|
|
getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d + 1) : 0.0);
|
|
|
|
vec4 bottomLeft = vec4(
|
|
getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d + 1) : 0.0);
|
|
|
|
vec4 topRight = vec4(
|
|
getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d + 1) : 0.0);
|
|
|
|
vec4 bottomRight = vec4(
|
|
getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d + 1) : 0.0);
|
|
|
|
vec3 fracRC = sourceFracIndexRC - vec3(sourceFloorRC);
|
|
|
|
vec4 top = mix(topLeft, topRight, fracRC.yyzz);
|
|
vec4 bottom = mix(bottomLeft, bottomRight, fracRC.yyzz);
|
|
vec4 newValue = mix(top, bottom, fracRC.x);
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}};function Zq(e){let{inputs:t,backend:n,attrs:r}=e,{images:a}=t,{alignCorners:s,halfPixelCenters:i,size:o}=r,[l,u]=o,c=Q().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new Kq(a.shape,l,u,s,i):new Xq(a.shape,l,u,s,i);return n.runWebGLProgram(c,[a],"float32")}var Yq={kernelName:Ls,backendName:"webgl",kernelFunc:Zq},Jq=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,r,a]=t,[,s,i]=e,o=[n&&s>1?r-1:r,n&&i>1?a-1:a],l=[n&&s>1?s-1:s,n&&i>1?i-1:i],u=o[0]/l[0],c=o[1]/l[1],h=1/u,d=1/c,p=Math.ceil(h)*2+2,f=Math.ceil(d)*2+2;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float accumulator = 0.0;
|
|
|
|
const float heightScale = float(${u});
|
|
const float widthScale = float(${c});
|
|
|
|
const float invHeightScale = float(${h});
|
|
const float invWidthScale = float(${d});
|
|
|
|
const int winHeight = int(${p});
|
|
const int winWidth = int(${f});
|
|
|
|
// Compute bounds for where in dy we will look
|
|
float startRLerp = floor(float(r) * invHeightScale);
|
|
int startDyR = int(startRLerp - float(winHeight / 2));
|
|
|
|
float startCLerp = floor(float(c) * invWidthScale);
|
|
int startDyC = int(startCLerp - float(winWidth / 2));
|
|
|
|
// Loop over dy
|
|
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
|
|
int dyR = dyROffset + startDyR;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyR < 0 || dyR >= ${s}) {
|
|
continue;
|
|
}
|
|
|
|
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
|
|
int dyC = dyCOffset + startDyC;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyC < 0 || dyC >= ${i}) {
|
|
continue;
|
|
}
|
|
|
|
float dxR = float(dyR) * heightScale;
|
|
int topDxRIndex = int(floor(dxR));
|
|
int bottomDxRIndex = int(min(ceil(dxR), ${r-1}.0));
|
|
float dxRLerp = dxR - float(topDxRIndex);
|
|
float inverseDxRLerp = 1.0 - dxRLerp;
|
|
|
|
float dxC = float(dyC) * widthScale;
|
|
int leftDxCIndex = int(floor(dxC));
|
|
int rightDxCIndex = int(min(ceil(dxC), ${a-1}.0));
|
|
float dxCLerp = dxC - float(leftDxCIndex);
|
|
float inverseDxCLerp = 1.0 - dxCLerp;
|
|
|
|
if (r == topDxRIndex && c == leftDxCIndex) {
|
|
// topLeft
|
|
accumulator +=
|
|
getDy(b, dyR, dyC, d) * inverseDxRLerp * inverseDxCLerp;
|
|
}
|
|
|
|
if (r == topDxRIndex && c == rightDxCIndex) {
|
|
// topRight
|
|
accumulator += getDy(b, dyR, dyC, d) * inverseDxRLerp * dxCLerp;
|
|
}
|
|
|
|
if (r == bottomDxRIndex && c == leftDxCIndex) {
|
|
// bottomLeft
|
|
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * inverseDxCLerp;
|
|
}
|
|
|
|
if (r == bottomDxRIndex && c == rightDxCIndex) {
|
|
// bottomRight
|
|
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * dxCLerp;
|
|
}
|
|
}
|
|
}
|
|
// End loop over dy
|
|
|
|
setOutput(accumulator);
|
|
}
|
|
`}};function Qq(e){let{inputs:t,backend:n,attrs:r}=e,{images:a,dy:s}=t,{alignCorners:i}=r,o=new Jq(s.shape,a.shape,i);return n.runWebGLProgram(o,[s],s.dtype)}var eX={kernelName:sd,backendName:"webgl",kernelFunc:Qq},tX=class{constructor(e,t,n,r,a){this.variableNames=["A"],this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let u=[r&&t>1?i-1:i,r&&n>1?o-1:o],c=[r&&t>1?t-1:t,r&&n>1?n-1:n],h=r?"0.5":"0.0",d;a?d="max((vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC, vec2(0.0))":d="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec2 effectiveInputOverOutputRatioRC = vec2(
|
|
${u[0]/c[0]},
|
|
${u[1]/c[1]});
|
|
const vec2 inputShapeRC = vec2(${i}.0, ${o}.0);
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
ivec2 yRC = coords.yz;
|
|
|
|
// Fractional source index.
|
|
vec2 sourceFracIndexRC = ${d};
|
|
|
|
// Compute the coordinators of nearest neighbor point.
|
|
ivec2 sourceNearestRC = ivec2(
|
|
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${h})));
|
|
float newValue = getA(b, sourceNearestRC.x, sourceNearestRC.y, d);
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}};function nX(e){let{inputs:t,backend:n,attrs:r}=e,{images:a}=t,{alignCorners:s,halfPixelCenters:i,size:o}=r,[l,u]=o,c=new tX(a.shape,l,u,s,i);return n.runWebGLProgram(c,[a],a.dtype)}var rX={kernelName:Fu,backendName:"webgl",kernelFunc:nX},aX=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,r,a]=t,[,s,i]=e,o=[n&&s>1?r-1:r,n&&i>1?a-1:a],l=[n&&s>1?s-1:s,n&&i>1?i-1:i],u=o[0]/l[0],c=o[1]/l[1],h=1/u,d=1/c,p=Math.ceil(h)*2+2,f=Math.ceil(d)*2+2;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float accumulator = 0.0;
|
|
|
|
const float heightScale = float(${u});
|
|
const float widthScale = float(${c});
|
|
|
|
const float invHeightScale = float(${h});
|
|
const float invWidthScale = float(${d});
|
|
|
|
const int winHeight = int(${p});
|
|
const int winWidth = int(${f});
|
|
|
|
// Compute bounds for where in dy we will look
|
|
float startRLerp = floor(float(r) * invHeightScale);
|
|
int startDyR = int(floor(startRLerp - float(winHeight / 2)));
|
|
|
|
float startCLerp = floor(float(c) * invWidthScale);
|
|
int startDyC = int(floor(startCLerp - float(winWidth / 2)));
|
|
|
|
// Loop over dy
|
|
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
|
|
int dyR = dyROffset + startDyR;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyR < 0 || dyR >= ${s}) {
|
|
continue;
|
|
}
|
|
|
|
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
|
|
int dyC = dyCOffset + startDyC;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyC < 0 || dyC >= ${i}) {
|
|
continue;
|
|
}
|
|
|
|
float sourceFracRow =
|
|
float(${o[0]}) *
|
|
(float(dyR) / float(${l[0]}));
|
|
|
|
float sourceFracCol =
|
|
float(${o[1]}) *
|
|
(float(dyC) / float(${l[1]}));
|
|
|
|
int sourceNearestRow = int(min(
|
|
float(int(${r}) - 1),
|
|
${n} ? float(round(sourceFracRow)) :
|
|
float(floor(sourceFracRow))));
|
|
|
|
int sourceNearestCol = int(min(
|
|
float(int(${a}) - 1),
|
|
${n} ? float(round(sourceFracCol)) :
|
|
float(floor(sourceFracCol))));
|
|
|
|
if (r == sourceNearestRow && c == sourceNearestCol) {
|
|
accumulator += getDy(b, dyR, dyC, d);
|
|
}
|
|
}
|
|
}
|
|
// End loop over dy
|
|
|
|
setOutput(accumulator);
|
|
}
|
|
`}};function sX(e){let{inputs:t,backend:n,attrs:r}=e,{images:a,dy:s}=t,{alignCorners:i}=r,o=new aX(s.shape,a.shape,i);return n.runWebGLProgram(o,[s],s.dtype)}var iX={kernelName:ad,backendName:"webgl",kernelFunc:sX},oX=class{constructor(e,t){this.variableNames=["x"];let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);if(this.outputShape=e,n===1){this.userCode=`
|
|
void main() {
|
|
int coord = getOutputCoords();
|
|
setOutput(getX(${e[0]} - coord - 1));
|
|
}
|
|
`;return}let r=i=>t.indexOf(i)!==-1&&e[i]!==1?`${e[i]} - coords[${i}] - 1`:`coords[${i}]`,a=e.map((i,o)=>r(o)).join(","),s=ct(n);this.userCode=`
|
|
void main() {
|
|
${s} coords = getOutputCoords();
|
|
setOutput(getX(${a}));
|
|
}
|
|
`}},lX=class{constructor(e,t){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0;let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);this.outputShape=e;let r=hn("rc",n),a=`${r[n-1]} + 1 < ${this.outputShape[n-1]}`,s=`${r[n-2]} + 1 < ${this.outputShape[n-2]}`,i=ct(n);n===1?this.userCode=`
|
|
void main(){
|
|
int rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result.r = getChannel(getX(${e[0]} - rc - 1),
|
|
${e[0]} - rc - 1);
|
|
if(${a}){
|
|
result.g = getChannel(getX(${e[0]} - (rc + 1) - 1),
|
|
${e[0]} - (rc + 1) - 1);
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`:this.userCode=`
|
|
void main() {
|
|
${i} rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result.r = ${o(r.slice())};
|
|
if(${a}){
|
|
result.g = ${l(r.slice())};
|
|
}
|
|
if(${s}) {
|
|
result.b = ${u(r.slice())};
|
|
if(${a}) {
|
|
result.a = ${c(r.slice())};
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`;function o(p){return h(p)}function l(p){return p[n-1]="("+p[n-1]+" + 1)",h(p)}function u(p){return p[n-2]="("+p[n-2]+" + 1)",h(p)}function c(p){return p[n-1]="("+p[n-1]+" + 1)",p[n-2]="("+p[n-2]+" + 1)",h(p)}function h(p){let f=e.map((y,g)=>d(g,p)),m=f.join(","),A=f.slice(-2).join(",");return`getChannel(getX(${m}), vec2(${A}))`}function d(p,f){return t.indexOf(p)!==-1&&e[p]!==1?`${e[p]} - ${f[p]} - 1`:`${f[p]}`}}};function uX(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{dims:s}=r,i=a.shape.length,o=k.parseAxisParam(s,a.shape);if(i===0)return Mn({inputs:{x:a},backend:n});let l=Q().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new lX(a.shape,o):new oX(a.shape,o);return n.runWebGLProgram(l,[a],a.dtype)}var cX={kernelName:Bs,backendName:"webgl",kernelFunc:uX},hX=class{constructor(e,t,n,r){this.variableNames=["Image"],this.outputShape=[];let a=e[1],s=e[2],i=Math.sin(t).toFixed(3),o=Math.cos(t).toFixed(3);this.outputShape=e;let[l,u]=R.getImageCenter(r,a,s),c=l.toFixed(3),h=u.toFixed(3),d="";typeof n=="number"?d=`float outputValue = ${n.toFixed(2)};`:d=`
|
|
vec3 fill = vec3(${n.join(",")});
|
|
float outputValue = fill[coords[3]];`,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int x = coords[2];
|
|
int y = coords[1];
|
|
float coordXFloat = (float(x) - ${c}) * ${o} - (float(y) - ${h}) * ${i};
|
|
float coordYFloat = (float(x) - ${c}) * ${i} + (float(y) - ${h}) * ${o};
|
|
int coordX = int(round(coordXFloat + ${c}));
|
|
int coordY = int(round(coordYFloat + ${h}));
|
|
${d}
|
|
if(coordX >= 0 && coordX < ${s} && coordY >= 0 && coordY < ${a}) {
|
|
outputValue = getImage(coords[0], coordY, coordX, coords[3]);
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}},dX={kernelName:el,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:r}=e,{radians:a,fillValue:s,center:i}=t,o=n,l=new hX(r.shape,a,s,i);return o.runWebGLProgram(l,[r],r.dtype)}},pX=`
|
|
// OpenGL ES does not support round function.
|
|
// The algorithm is based on banker's rounding.
|
|
float base = floor(x);
|
|
if ((x - base) < 0.5) {
|
|
return floor(x);
|
|
} else if ((x - base) > 0.5) {
|
|
return ceil(x);
|
|
} else {
|
|
if (mod(base, 2.0) == 0.0) {
|
|
return base;
|
|
} else {
|
|
return base + 1.0;
|
|
}
|
|
}
|
|
`,fX=Ke({opSnippet:pX}),mX={kernelName:Vs,backendName:"webgl",kernelFunc:fX},AX="return inversesqrt(x);",yX=Ke({opSnippet:AX,cpuKernelImpl:rB}),gX={kernelName:Us,backendName:"webgl",kernelFunc:yX},xb=class{constructor(e,t,n,r,a,s,i=!0){this.variableNames=["updates","indices","defaultValue"],this.outputShape=s;let o=ct(a.length),l=ct(s.length),u="";n===1?u="i":n===2&&(u="i, j");let c=`getIndices(${u})`,h="";r===1?h="i":r===2&&(h="i, coords[1]");let d=`getUpdates(${h})`,p=t>1?"strides[j]":"strides";this.userCode=`
|
|
${o} strides = ${o}(${a});
|
|
|
|
void main() {
|
|
${l} coords = getOutputCoords();
|
|
float sum = 0.0;
|
|
bool found = false;
|
|
for (int i = 0; i < ${e}; i++) {
|
|
int flattenedIndex = 0;
|
|
for (int j = 0; j < ${t}; j++) {
|
|
int index = round(${c});
|
|
flattenedIndex += index * ${p};
|
|
}
|
|
if (flattenedIndex == coords[0]) {
|
|
sum += ${d};
|
|
found = true;
|
|
}
|
|
}
|
|
setOutput(mix(getDefaultValue(), sum, float(found)));
|
|
}
|
|
`}};function xX(e){let{inputs:t,backend:n,attrs:r}=e,{indices:a,updates:s}=t,{shape:i}=r,{sliceRank:o,numUpdates:l,sliceSize:u,strides:c,outputSize:h}=R.calculateShapes(s,a,i),d=[h/u,u];if(h===0)return n.makeTensorInfo(i,a.dtype);let p=ge({inputs:{x:a},backend:n,attrs:{shape:[l,o]}}),f=ge({inputs:{x:s},backend:n,attrs:{shape:[l,u]}}),m=n.makeTensorInfo([],"float32",new Float32Array([0])),A=new xb(l,o,p.shape.length,f.shape.length,c,d),y=n.runWebGLProgram(A,[f,p,m],f.dtype),g=ge({inputs:{x:y},backend:n,attrs:{shape:i}});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(m),g}var wX={kernelName:Wo,backendName:"webgl",kernelFunc:xX},_X=class{constructor(e,t,n){this.variableNames=["c","a","b"],this.outputShape=t;let r,a;if(n>4)throw Error(`Where for rank ${n} is not yet supported`);if(n===1)a="resRC",r="resRC";else{let i=["resRC.x","resRC.y","resRC.z","resRC.w"],o=[],l=[];for(let u=0;u<t.length;u++)l.push(`${i[u]}`),u<e&&o.push(`${i[u]}`);r=o.join(),a=l.join()}let s=ct(n);this.userCode=`
|
|
void main() {
|
|
${s} resRC = getOutputCoords();
|
|
float cVal = getC(${r});
|
|
if (cVal >= 1.0) {
|
|
setOutput(getA(${a}));
|
|
} else {
|
|
setOutput(getB(${a}));
|
|
}
|
|
}
|
|
`}};function bX(e){let{inputs:t,backend:n}=e,{condition:r,t:a,e:s}=t,i=new _X(r.shape.length,a.shape,a.shape.length);return n.runWebGLProgram(i,[r,a,s],tr(a.dtype,s.dtype))}var vX={kernelName:Bo,backendName:"webgl",kernelFunc:bX},kX=`
|
|
// Stable and Attracting Fixed Point (0, 1) for Normalized Weights.
|
|
// see: https://arxiv.org/abs/1706.02515
|
|
float scaleAlpha = ${R.SELU_SCALEALPHA};
|
|
float scale = ${R.SELU_SCALE};
|
|
return (x >= 0.0) ? scale * x : scaleAlpha * (exp(x) - 1.0);
|
|
`,NX=Ke({opSnippet:kX}),IX={kernelName:Vo,backendName:"webgl",kernelFunc:NX},SX="return 1.0 / (1.0 + exp(-1.0 * x));",TX=Ke({opSnippet:SX}),EX={kernelName:Gs,backendName:"webgl",kernelFunc:TX},CX=`
|
|
if (isnan(x)) { return 0.0; }
|
|
return sign(x);
|
|
`,RX=Ke({opSnippet:CX}),FX={kernelName:Go,backendName:"webgl",kernelFunc:RX},MX=F_+`
|
|
return sin(x);
|
|
`,OX=Ke({opSnippet:MX}),DX={kernelName:js,backendName:"webgl",kernelFunc:OX},$X=`
|
|
float e2x = exp(x);
|
|
return (e2x - 1.0 / e2x) / 2.0;
|
|
`,zX=Ke({opSnippet:$X}),PX={kernelName:jo,backendName:"webgl",kernelFunc:zX},LX=`
|
|
float epsilon = 1.1920928955078125e-7;
|
|
float threshold = log(epsilon) + 2.0;
|
|
|
|
bool too_large = x > -threshold;
|
|
bool too_small = x < threshold;
|
|
|
|
float result;
|
|
float exp_x = exp(x);
|
|
|
|
if (too_large){
|
|
result = x;
|
|
}
|
|
else if (too_small){
|
|
result = exp_x;
|
|
}
|
|
else{
|
|
result = log(exp_x + 1.0);
|
|
}
|
|
return result;
|
|
`,WX=Ke({opSnippet:LX}),BX={kernelName:Ho,backendName:"webgl",kernelFunc:WX},VX=e=>{let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{blockShape:s,paddings:i}=r;k.assert(a.shape.length<=4,()=>"spaceToBatchND for rank > 4 with a WebGL backend not implemented yet");let o=s.reduce((y,g)=>y*g),l=[[0,0]];l.push(...i);for(let y=1+s.length;y<a.shape.length;++y)l.push([0,0]);let u=[],c=yb({inputs:{x:a},backend:n,attrs:{paddings:l,constantValue:0}}),h=R.getReshaped(c.shape,s,o,!1),d=R.getPermuted(h.length,s.length,!1),p=R.getReshapedPermuted(c.shape,s,o,!1),f=ge({inputs:{x:c},backend:n,attrs:{shape:h}}),m=wn({inputs:{x:f},backend:n,attrs:{perm:d}}),A=ge({inputs:{x:m},backend:n,attrs:{shape:p}});return u.push(c),u.push(f),u.push(m),u.forEach(y=>n.disposeIntermediateTensorInfo(y)),A},UX={kernelName:Mu,backendName:"webgl",kernelFunc:VX};function jX(e){let{inputs:t,backend:n,attrs:r}=e,{sparseIndices:a,sparseValues:s,defaultValue:i}=t,{outputShape:o}=r,{sliceRank:l,numUpdates:u,strides:c,outputSize:h}=R.calculateShapes(s,a,o),d=!1,p=new xb(u,l,a.shape.length,s.shape.length,c,[h,1],d),f=n.runWebGLProgram(p,[s,a,i],s.dtype),m=ge({inputs:{x:f},backend:n,attrs:{shape:o}});return n.disposeIntermediateTensorInfo(f),m}var GX={kernelName:id,backendName:"webgl",kernelFunc:jX};function HX(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{numOrSizeSplits:s,axis:i}=r,o=k.parseAxisParam(i,a.shape)[0],l=R.prepareSplitSize(a,s,o),u=a.shape.length,c=new Array(u).fill(0),h=a.shape.slice();return l.map(d=>{let p=[...h];p[o]=d;let f=bc({inputs:{x:a},backend:n,attrs:{begin:c,size:p}});return c[o]+=d,f})}var qX={kernelName:qo,backendName:"webgl",kernelFunc:HX},XX="return sqrt(x);",KX=Ke({opSnippet:XX}),ZX={kernelName:Hs,backendName:"webgl",kernelFunc:KX},YX="return x * x;",JX=Ke({opSnippet:YX}),QX={kernelName:Ou,backendName:"webgl",kernelFunc:JX},wb="return (a - b) * (a - b);",eK=tn({opSnippet:wb,packedOpSnippet:wb}),tK={kernelName:Ks,backendName:"webgl",kernelFunc:eK};function nK({inputs:e,attrs:t,backend:n}){let{x:r}=e,a=yr+`
|
|
return x > 0.0 ? 1.0 : float(${t.alpha});
|
|
`,s=new Pa(r.shape,a);return n.runWebGLProgram(s,[r],r.dtype)}var rK={kernelName:Qo,backendName:"webgl",kernelFunc:nK},aK=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=n;let r=n.length,a=ct(n.length),s=ct(n.length),i="";if(r===1)i="coords * strides + begin";else{let o=0;i=n.map((l,u)=>(o++,n.length===1?`coords * strides[${u}] + begin[${u}]`:`coords[${o-1}] * strides[${u}] + begin[${u}]`)).join(",")}this.userCode=`
|
|
${a} begin = ${a}(${e});
|
|
${a} strides = ${a}(${t});
|
|
|
|
void main() {
|
|
${s} coords = getOutputCoords();
|
|
setOutput(getX(${i}));
|
|
}
|
|
`}};function sK(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{begin:s,end:i,strides:o,beginMask:l,endMask:u,ellipsisMask:c,newAxisMask:h,shrinkAxisMask:d}=r,{nonStrided:p,$begin:f,$strides:m,size:A,newShape:y,outShape:g}=ln.sliceInfo(a.shape,s,i,o,l,u,c,h,d),_=ge({inputs:{x:a},backend:n,attrs:{shape:y}}),b;if(p){let w=bc({inputs:{x:_},backend:n,attrs:{begin:f,size:A}});b=ge({inputs:{x:w},backend:n,attrs:{shape:g}}),n.disposeIntermediateTensorInfo(w)}else if(g.some(w=>w===0))b=n.makeTensorInfo(g,a.dtype,[]);else if(n.shouldExecuteOnCPU([_])){let w=n.texData.get(_.dataId).values,I=We(_.shape,_.dtype,w),T=sB(g,I,m,f);b=n.makeTensorInfo(g,_.dtype,T.values)}else{let w=new aK(f,m,g);b=n.runWebGLProgram(w,[_],_.dtype)}let x=ge({inputs:{x:b},backend:n,attrs:{shape:g}});return n.disposeIntermediateTensorInfo(_),n.disposeIntermediateTensorInfo(b),x}var iK={kernelName:Xo,backendName:"webgl",kernelFunc:sK},oK="return tan(x);",lK=Ke({opSnippet:oK}),uK={kernelName:Ko,backendName:"webgl",kernelFunc:lK},cK=`
|
|
float e2x = exp(-2.0 * abs(x));
|
|
return sign(x) * (1.0 - e2x) / (1.0 + e2x);
|
|
`,hK=Ke({opSnippet:cK}),dK={kernelName:Ys,backendName:"webgl",kernelFunc:hK},fK=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[s]*t[s];this.outputShape=n,this.rank=n.length;let r=ct(this.rank),a=pK(e);this.userCode=`
|
|
void main() {
|
|
${r} resRC = getOutputCoords();
|
|
setOutput(getA(${a}));
|
|
}
|
|
`}};function pK(e){let t=e.length;if(t>5)throw Error(`Tile for rank ${t} is not yet supported`);if(t===1)return`imod(resRC, ${e[0]})`;let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u"],r=[];for(let a=0;a<e.length;a++)r.push(`imod(${n[a]}, ${e[a]})`);return r.join()}function _b(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{reps:s}=r;if(a.dtype==="string"){let o=n.readSync(a.dataId).map(c=>k.decodeString(c)),l=We(a.shape,a.dtype,o),u=oB(l,s);return n.makeTensorInfo(u.shape,u.dtype,u.values)}let i=new fK(a.shape,s);return n.runWebGLProgram(i,[a],a.dtype)}var mK={kernelName:Ia,backendName:"webgl",kernelFunc:_b};function AK(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{k:s,sorted:i}=r,o=n.readSync(a.dataId),[l,u]=lB(o,a.shape,a.dtype,s,i);return[n.makeTensorInfo(l.shape,l.dtype,l.values),n.makeTensorInfo(u.shape,u.dtype,u.values)]}var yK={kernelName:Zo,backendName:"webgl",kernelFunc:AK};function gK(e){let{inputs:t,attrs:n,backend:r}=e,{axis:a}=n,{x:s}=t;Il(s,"unique"),console.warn("WARNING: ","UI might be locked temporarily as data is being downloaded");let i=r.readSync(s.dataId),{outputValues:o,outputShape:l,indices:u}=uB(i,a,s.shape,s.dtype);return[r.makeTensorInfo(l,s.dtype,o),r.makeTensorInfo([u.length],"int32",u)]}var xK={kernelName:od,backendName:"webgl",kernelFunc:gK};function wK(e){let{inputs:t,backend:n,attrs:r}=e,{value:a}=t,{axis:s}=r;s<0&&(s+=a.shape.length);let i=a,o=i.shape.length,l=a.shape[s],u=new Array(o-1),c=0;for(let m=0;m<o;m++)m!==s&&(u[c++]=i.shape[m]);let h=[],d=new Array(o).fill(0),p=i.shape.slice();p[s]=1;let f=new Array(l);for(let m=0;m<f.length;m++){d[s]=m;let A=bc({inputs:{x:i},backend:n,attrs:{begin:d,size:p}}),y=ge({inputs:{x:A},backend:n,attrs:{shape:u}});f[m]=y,h.push(A)}return h.forEach(m=>n.disposeIntermediateTensorInfo(m)),f}var _K={kernelName:Yo,backendName:"webgl",kernelFunc:wK},bK=class{constructor(e,t){this.variableNames=["x","segmentIds"];let n=e.windowSize,r=e.batchSize,a=e.inSize,s=e.numSegments,i=s*Math.ceil(a/n);this.outputShape=[r,i];let o="0.0",l="sumValue",u=Math.floor(n/4)*4,c=n%4,h=`
|
|
sumValue += dot(values, segFilter);
|
|
`,d="";a%n>0&&(d=`
|
|
if (inIdx < 0 || inIdx >= ${a}) {
|
|
return initializationValue;
|
|
}
|
|
`);let p="";a%n>0&&(p=`
|
|
if (inIdx < 0 || inIdx >= ${a}) {
|
|
return -1.0;
|
|
}
|
|
`),this.userCode=`
|
|
const float initializationValue = ${o};
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${d}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
float getSegmentIdAtIndex(int inIdx) {
|
|
${p}
|
|
return getSegmentIds(inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = int(floor(float(outIdx) / float(
|
|
${s})) * float(${n}));
|
|
int currentSeg = int(mod(float(outIdx), float(${s})));
|
|
|
|
float sumValue = 0.0;
|
|
|
|
for (int i = 0; i < ${u}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 3)) == currentSeg ? 1 : 0
|
|
);
|
|
|
|
${h}
|
|
}
|
|
|
|
int inIdx = inOffset + ${u};
|
|
if (${c===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
int inIdxSeg = int(getSegmentIdAtIndex(inIdx));
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
0,
|
|
0,
|
|
0
|
|
);
|
|
|
|
${h}
|
|
} else if (${c===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
0,
|
|
0
|
|
);
|
|
|
|
${h}
|
|
} else if (${c===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
initializationValue
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
|
|
0
|
|
);
|
|
|
|
${h}
|
|
}
|
|
setOutput(${l});
|
|
}
|
|
`}};function vK(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,segmentIds:s}=t,{numSegments:i}=r,o=a.shape.length,l=[],u=0,c=R.getAxesPermutation([u],o),h=a;c!=null&&(h=wn({inputs:{x:a},backend:n,attrs:{perm:c}}),l.push(h),u=R.getInnerMostAxes(1,o)[0]);let d=R.segment_util.computeOutShape(h.shape,u,i),p=k.sizeFromShape([h.shape[u]]),f=ge({inputs:{x:h},backend:n,attrs:{shape:[-1,p]}});l.push(f);let m=dd(a.dtype),A=(b,x,w,I,T)=>{let E=b.shape[0],M=b.shape[1],z=R.segment_util.segOpComputeOptimalWindowSize(M,T),P={windowSize:z,inSize:M,batchSize:E,numSegments:T},B=new bK(P,x),q=n.compileAndRun(B,[b,w],I);if(l.push(q),q.shape[1]===T)return q;let H=gb({backend:n,attrs:{start:0,stop:T,step:1,dtype:"float32"}}),X=_b({inputs:{x:H},backend:n,attrs:{reps:[M/z]}});return l.push(H),l.push(X),A(q,x,X,I,T)},y=A(f,"unsortedSegmentSum",s,m,i),g=ge({inputs:{x:y},backend:n,attrs:{shape:d}}),_=g;if(c!=null){l.push(g);let b=R.getUndoAxesPermutation(c);_=wn({inputs:{x:_},backend:n,attrs:{perm:b}})}return l.forEach(b=>n.disposeIntermediateTensorInfo(b)),_}var kK={kernelName:Du,backendName:"webgl",kernelFunc:vK},NK=[yH,wH,sV,oV,cV,pV,mV,gV,wV,bV,IV,TV,RV,OV,BV,zV,jV,XV,HV,JV,eU,nU,iU,pU,mU,_U,vU,SU,CU,WB,OU,jU,HU,PU,ZU,JU,XU,tj,aj,oj,uj,hj,fj,wj,bj,Aj,Nj,Tj,Fj,$j,Wj,Uj,jj,Gj,qj,Kj,Yj,Qj,tG,sG,uG,hG,pG,AG,wG,kG,TG,LB,CG,MU,MG,$G,LG,VB,UG,qG,KG,nH,QG,iH,uH,pH,bH,CH,TH,OH,$H,PH,IH,WH,VH,HH,ZH,eq,lq,qB,cq,pq,Aq,xq,yU,bq,kq,Iq,Eq,Mq,jB,Dq,$q,gU,aq,Lq,qq,Uq,KB,Yq,eX,rX,iX,cX,dX,mX,gX,wX,vX,IX,EX,FX,DX,PX,hU,iq,BX,UX,GX,qX,ZX,QX,tK,rK,iK,sq,nV,uK,dK,mK,yK,rV,xK,_K,kK,vq];for(let e of NK)ni(e);var On;(function(e){e[e.float32=0]="float32",e[e.int32=1]="int32",e[e.bool=2]="bool",e[e.string=3]="string",e[e.complex64=4]="complex64"})(On||(On={}));var kc;(function(e){e[e.linear=0]="linear",e[e.relu=1]="relu",e[e.relu6=2]="relu6",e[e.prelu=3]="prelu",e[e.leakyrelu=4]="leakyrelu"})(kc||(kc={}));var bb;function IK(e){bb=e.wasm.cwrap(Qs,null,["number","array","number","number","array","number","number","number","number","number","number","number","number"])}function SK(e){let{inputs:t,backend:n,attrs:r}=e,{a,b:s,bias:i,preluActivationWeights:o}=t;if(a.dtype!=="float32"||s.dtype!=="float32")throw new Error("_FusedMatMul for non non-float32 tensors not yet supported.");let{transposeA:l,transposeB:u,activation:c,leakyreluAlpha:h}=r,d=n.dataIdMap.get(a.dataId).id,p=n.dataIdMap.get(s.dataId).id,f=0;if(i!=null){let T=n.dataIdMap.get(i.dataId);if(T.shape.length!==1)throw new Error(`_FusedMatMul only supports rank-1 bias but got rank ${T.shape.length}.`);f=T.id}let m=o==null?0:n.dataIdMap.get(o.dataId).id,A=kc[c];if(A==null)throw new Error(`${c} activation not yet supported for FusedConv2D in the wasm backend.`);let y=l?a.shape[2]:a.shape[1],g=u?s.shape[1]:s.shape[2],_=a.shape[0],b=n.makeOutput([_,y,g],a.dtype),x=n.dataIdMap.get(b.dataId).id,w=new Uint8Array(new Int32Array(a.shape).buffer),I=new Uint8Array(new Int32Array(s.shape).buffer);return bb(d,w,a.shape.length,p,I,s.shape.length,l,u,A,f,m,h||0,x),b}var TK={kernelName:Qs,backendName:"wasm",setupFunc:IK,kernelFunc:SK};function Dn(e){let t;function n(a){t=a.wasm.cwrap(e,null,["number","number"])}function r(a){let{backend:s,inputs:{x:i}}=a,o=s.dataIdMap.get(i.dataId).id,l=s.makeOutput(i.shape,i.dtype),u=s.dataIdMap.get(l.dataId).id;return k.sizeFromShape(l.shape)===0||t(o,u),l}return{kernelName:e,backendName:"wasm",setupFunc:n,kernelFunc:r}}var EK=Dn(Ji);function dn(e,t,n){let r;function a(i){r=i.wasm.cwrap(e,null,["number","array","number","number","array","number","number","number"])}function s(i){let{backend:o,inputs:l}=i,{a:u,b:c}=l,h=o.dataIdMap.get(u.dataId).id,d=o.dataIdMap.get(c.dataId).id,p=n!=null?n:u.dtype,f=R.assertAndGetBroadcastShape(u.shape,c.shape),m=o.makeOutput(f,p);if(k.sizeFromShape(f)===0)return m;let A=new Uint8Array(new Int32Array(u.shape).buffer),y=new Uint8Array(new Int32Array(c.shape).buffer),g=o.dataIdMap.get(m.dataId).id,_=()=>r(h,A,u.shape.length,d,y,c.shape.length,On[u.dtype],g);if(t&&u.dtype==="float32")return _(),m;let b=R.getBroadcastDims(u.shape,f),x=R.getBroadcastDims(c.shape,f),w=b.every((T,E)=>T===E),I=x.every((T,E)=>T===E);if(w&&I)return _(),m;throw new Error(`Broadcasting along outer dims is not yet supported for ${u.dtype} ${e}.`)}return{kernelName:e,backendName:"wasm",setupFunc:a,kernelFunc:s}}var CK=!0,RK=dn(ka,CK),vb;function FK(e){vb=e.wasm.cwrap(us,null,["array","number","number","number"])}function MK(e){let{inputs:t,backend:n}=e,r=n.makeOutput(t[0].shape,t[0].dtype);if(k.sizeFromShape(r.shape)===0)return r;let a=t.map(o=>n.dataIdMap.get(o.dataId).id),s=new Uint8Array(new Int32Array(a).buffer),i=n.dataIdMap.get(r.dataId).id;return vb(s,a.length,On[r.dtype],i),r}var OK={kernelName:us,backendName:"wasm",setupFunc:FK,kernelFunc:MK};function Sp(e){let{inputs:{x:t},backend:n}=e,r=n.makeOutput(t.shape,t.dtype),a=n.typedArrayFromHeap(t);return n.typedArrayFromHeap(r).set(a),r}var DK={kernelName:_o,backendName:"wasm",kernelFunc:Sp},kb;function $K(e){kb=e.wasm.cwrap(Js,null,["number","array","number","number","number","array","number"])}function Tp(e){let{inputs:t,backend:n,attrs:r}=e,[a,s]=PK(t.x.shape,r.perm),i=!0;for(let f=0;f<s.length;f++)s[f]!==f&&(i=!1);let o=zK(t.x.shape,r.perm),l={dataId:t.x.dataId,shape:a,dtype:t.x.dtype};if(i){let f=Sp({inputs:t,backend:n});return f.shape=o,f}let u=n.makeOutput(o,l.dtype),c=n.dataIdMap.get(l.dataId).id,h=n.dataIdMap.get(u.dataId).id,d=new Uint8Array(new Int32Array(s).buffer),p=new Uint8Array(new Int32Array(l.shape).buffer);return kb(c,p,l.shape.length,On[l.dtype],h,d,s.length),u}function zK(e,t){let n=new Array(e.length);for(let r=0;r<n.length;r++)n[r]=e[t[r]];return n}function PK(e,t){let n=[],r=[];for(let a=0;a<e.length;++a)e[a]!==1&&n.push(e[a]),e[t[a]]!==1&&r.push(t[a]);for(let a=0;a<r.length;++a){let s=-1;for(let i=0;i<r.length;++i)r[i]>=a&&(s===-1||r[s]>r[i])&&(s=i);r[s]=a}return[n,r]}var LK={kernelName:Js,backendName:"wasm",kernelFunc:Tp,setupFunc:$K};function $l(e,t,n){let r=e.shape,a=e.shape.length,s=k.parseAxisParam(t,r),i=s,o=R.getAxesPermutation(i,a),l=null,u=!1;if(o!=null){let c=new Array(a);for(let d=0;d<c.length;d++)c[d]=r[o[d]];i=R.getInnerMostAxes(i.length,a),l=Tp({inputs:{x:e},attrs:{perm:o},backend:n});let h=n.dataIdMap.get(e.dataId).id;n.dataIdMap.get(l.dataId).id!==h&&(u=!0)}return{transposed:l,originalAxes:s,axes:i,inputWasTransposed:u}}var Nb;function WK(e){Nb=e.wasm.cwrap(cs,null,["number","number","number","number","number"])}function BK(e){let{backend:t,inputs:n,attrs:r}=e,{axis:a}=r,{x:s}=n,i=t.dataIdMap.get(s.dataId).id,o=i,l=s,{transposed:u,axes:c,inputWasTransposed:h}=$l(s,a,t);if(h){let y=t.dataIdMap.get(u.dataId).id;y!==i&&(l=u,o=y)}let d=l.shape.slice(0,-1),p=t.makeOutput(d,"int32"),f=t.dataIdMap.get(p.dataId).id,m=k.sizeFromShape(p.shape),A=l.shape[c[0]];return Nb(o,On[l.dtype],m,A,f),h&&t.disposeData(u.dataId),p}var VK={kernelName:cs,backendName:"wasm",kernelFunc:BK,setupFunc:WK},Ib;function UK(e){Ib=e.wasm.cwrap(hs,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function jK(e){let{inputs:t,attrs:n,backend:r}=e,a=t.x,s=r.dataIdMap.get(a.dataId).id,{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=n,c=R.computePool2DInfo(a.shape,i,o,1,l,u),h=c.filterHeight,d=c.filterWidth,p=c.padInfo.top,f=c.padInfo.right,m=c.padInfo.bottom,A=c.padInfo.left,y=c.strideHeight,g=c.strideWidth,_=c.inChannels;if(c.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${c.dataFormat}'. Please use 'channelsLast'.`);if(c.dilationWidth!==1||c.dilationHeight!==1)throw new Error(`was backend only supports average pooling with dilation = [1, 1], got [${c.dilationHeight}, ${c.dilationWidth}].`);let b=r.makeOutput(c.outShape,"float32"),x=r.dataIdMap.get(b.dataId).id;return Ib(s,a.shape[0],a.shape[1],a.shape[2],h,d,p,f,m,A,y,g,_,x),b}var GK={kernelName:hs,backendName:"wasm",setupFunc:UK,kernelFunc:jK};function gr(e){let{inputs:t,attrs:n}=e,{x:r}=t,{shape:a}=n,s=k.sizeFromShape(r.shape),i=k.inferFromImplicitShape(a,s);return k.assert(s===k.sizeFromShape(i),()=>`new shape: ${i}, old shape: ${r.shape}. New shape and old shape must have the same number of elements.`),{dataId:r.dataId,shape:i,dtype:r.dtype}}var HK={kernelName:Lo,backendName:"wasm",kernelFunc:gr},Sb;function qK(e){Sb=e.wasm.cwrap(ds,null,["number","array","number","number","array","number","number","number","number"])}function XK(e){let{inputs:t,backend:n,attrs:r}=e,{a,b:s}=t,{transposeA:i,transposeB:o}=r;if(a.dtype!=="float32"||s.dtype!=="float32")throw new Error("BatchMatMul for non non-float32 tensors not yet supported.");let l=a.shape.length,u=s.shape.length,c=i?a.shape[l-2]:a.shape[l-1],h=o?s.shape[u-1]:s.shape[u-2],d=i?a.shape[l-1]:a.shape[l-2],p=o?s.shape[u-2]:s.shape[u-1],f=a.shape.slice(0,-2),m=s.shape.slice(0,-2),A=k.sizeFromShape(f),y=k.sizeFromShape(m),g=A===y||A===1||y===1;k.assert(l>=2&&u>=2&&g,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${f}) and (${m}).`);let _=(A>y?a.shape.slice(0,-2):s.shape.slice(0,-2)).concat([d,p]);k.assert(c===h,()=>`Error in matMul: inner shapes (${c}) and (${h}) of Tensors with shapes ${a.shape} and ${s.shape} and transposeA=${i} and transposeB=${o} must match.`);let b=i?[A,c,d]:[A,d,c],x=o?[y,p,h]:[y,h,p],w=gr({inputs:{x:a},backend:n,attrs:{shape:b}}),I=gr({inputs:{x:s},backend:n,attrs:{shape:x}}),T=n.dataIdMap.get(w.dataId).id,E=n.dataIdMap.get(I.dataId).id,M=i?w.shape[2]:w.shape[1],z=o?I.shape[1]:I.shape[2],P=Math.max(A,y),B=n.makeOutput([P,M,z],w.dtype),q=n.dataIdMap.get(B.dataId).id,H=new Uint8Array(new Int32Array(w.shape).buffer),X=new Uint8Array(new Int32Array(I.shape).buffer);return Sb(T,H,w.shape.length,E,X,I.shape.length,i,o,q),B.shape=_,B}var KK={kernelName:ds,backendName:"wasm",setupFunc:qK,kernelFunc:XK};function Ep(e){let{inputs:{x:t},attrs:{dtype:n},backend:r}=e,a=r.makeOutput(t.shape,n),s=r.typedArrayFromHeap(t);return r.typedArrayFromHeap(a).set(s),a}var ZK={kernelName:ps,backendName:"wasm",kernelFunc:Ep},Tb;function YK(e){Tb=e.wasm.cwrap(Na,null,["number","number","number","number"])}function JK(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{clipValueMin:s,clipValueMax:i}=r,o=n.dataIdMap.get(a.dataId).id,l=n.makeOutput(a.shape,a.dtype),u=n.dataIdMap.get(l.dataId).id;return Tb(o,s,i,u),l}var QK={kernelName:Na,backendName:"wasm",setupFunc:YK,kernelFunc:JK};function Eb(e){let{inputs:t,backend:n}=e,r=k.parseAxisParam(e.attrs.axis,t[0].shape)[0],a=R.computeOutShape(t.map(p=>p.shape),r),s=t.filter(p=>k.sizeFromShape(p.shape)>0);if(s.length===1)return Sp({inputs:{x:s[0]},backend:n});let i=n.makeOutput(a,t[0].dtype);if(k.sizeFromShape(a)===0)return i;let o=s.map(p=>p.shape);if(R.assertParamsConsistent(o,r),s[0].dtype==="string"){let p=s.map(_=>{let b=k.sizeFromShape(_.shape.slice(r));return gr({inputs:{x:_},backend:n,attrs:{shape:[-1,b]}})}),f=p.map(_=>({vals:n.readSync(_.dataId),shape:_.shape}));a=R.computeOutShape(p.map(_=>_.shape),1);let m=p[0].shape[0]===1,A=fm(f,a,t[0].dtype,m),y=R.computeOutShape(s.map(_=>_.shape),r);i.shape=y;let g=n.dataIdMap.get(i.dataId);return g.stringBytes=R.fromStringArrayToUint8(A),i}let l=k.sizeFromShape(s[0].shape.slice(0,r)),u=0,c=s.map(p=>{let f=k.sizeFromShape(p.shape.slice(r));return u+=f,f}),h=s.map(p=>n.typedArrayFromHeap(p)),d=n.typedArrayFromHeap(i);for(let p=0;p<l;p++){let f=p*u;for(let m=0;m<h.length;m++){let A=c[m],y=p*A,g=h[m].subarray(y,y+A);d.set(g,f),f+=A}}return i}var eZ={kernelName:oo,backendName:"wasm",kernelFunc:Eb},Cb;function tZ(e){Cb=e.wasm.cwrap(fs,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function nZ(e){let{inputs:t,attrs:n,backend:r}=e,{x:a,filter:s}=t,i=r.dataIdMap.get(a.dataId).id,o=r.dataIdMap.get(s.dataId).id,{strides:l,dilations:u,pad:c,dimRoundingMode:h,dataFormat:d}=n,p=R.convertConv2DDataFormat(d),f=R.computeConv2DInfo(a.shape,s.shape,l,u,c,h,!1,p),m=f.filterHeight,A=f.filterWidth,y=f.padInfo.top,g=f.padInfo.right,_=f.padInfo.bottom,b=f.padInfo.left,x=f.dilationHeight,w=f.dilationWidth,I=f.strideHeight,T=f.strideWidth,E=f.inChannels,M=f.outChannels,z=f.padInfo.type==="SAME"?1:0;if(f.dataFormat!=="channelsLast")throw new Error(`wasm backend Conv2D does not support dataFormat:'${f.dataFormat}'. Please use 'channelsLast'.`);let P=r.makeOutput(f.outShape,"float32"),B=r.dataIdMap.get(P.dataId).id;return Cb(i,a.shape[0],a.shape[1],a.shape[2],o,m,A,y,g,_,b,z,x,w,I,T,E,M,B),P}var rZ={kernelName:fs,backendName:"wasm",setupFunc:tZ,kernelFunc:nZ},Rb;function aZ(e){Rb=e.wasm.cwrap(ms,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function sZ(e){let{backend:t,inputs:n,attrs:r}=e,{dy:a,filter:s}=n,{strides:i,pad:o,dataFormat:l,dimRoundingMode:u,inputShape:c}=r,h=1,d=R.convertConv2DDataFormat(l),p=R.computeConv2DInfo(c,s.shape,i,h,o,u,!1,d),{batchSize:f,filterHeight:m,filterWidth:A,inChannels:y,inHeight:g,inWidth:_,outChannels:b,outHeight:x,outWidth:w,strideHeight:I,strideWidth:T}=p,E=m-1-p.padInfo.top,M=A-1-p.padInfo.left,z=p.dataFormat==="channelsLast",P=k.computeStrides(p.inShape),B=k.computeStrides(a.shape),[q,H,X]=k.computeStrides(s.shape),Z=P[0],ee=z?P[1]:P[2],J=z?P[2]:1,se=z?1:P[1],re=B[0],ne=z?B[1]:B[2],ie=z?B[2]:1,he=z?1:B[1],ce=t.makeOutput(p.inShape,"float32"),pe=t.dataIdMap.get(ce.dataId).id,me=t.dataIdMap.get(a.dataId).id,ve=t.dataIdMap.get(s.dataId).id;return Rb(me,ve,f,m,A,g,_,y,x,w,b,I,T,E,M,q,H,X,Z,ee,J,se,re,ne,ie,he,pe),ce}var iZ={kernelName:ms,backendName:"wasm",setupFunc:aZ,kernelFunc:sZ},oZ=Dn(As),qm;(function(e){e[e.bilinear=0]="bilinear",e[e.nearest=1]="nearest"})(qm||(qm={}));var Fb;function lZ(e){Fb=e.wasm.cwrap(uo,null,["number","number","number","number","array","number","number","number","number","number"])}function uZ(e){let{backend:t,inputs:n,attrs:r}=e,{method:a,extrapolationValue:s,cropSize:i}=r,{image:o,boxes:l,boxInd:u}=n,c=l.shape[0],[h,d]=i,p=[c,h,d,o.shape[3]],f=t.dataIdMap.get(o.dataId),m;o.dtype!=="float32"&&(m=Ep({backend:t,inputs:{x:o},attrs:{dtype:"float32"}}),f=t.dataIdMap.get(m.dataId));let A=f.id,y=t.dataIdMap.get(l.dataId).id,g=t.dataIdMap.get(u.dataId).id,_=t.makeOutput(p,"float32"),b=t.dataIdMap.get(_.dataId).id,x=new Uint8Array(new Int32Array(o.shape).buffer);return Fb(A,y,g,c,x,h,d,qm[a],s,b),m!=null&&t.disposeData(m.dataId),_}var cZ={kernelName:uo,backendName:"wasm",setupFunc:lZ,kernelFunc:uZ},Mb;function hZ(e){Mb=e.wasm.cwrap(ys,null,["number","number","number","number","number","number"])}function dZ(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,exclusive:i,reverse:o}=r,l=a.shape.length;k.assert(a.dtype==="float32"||a.dtype==="int32",()=>`cumsum does not support ${a.dtype} tensors in the WASM backend`);let u=R.getAxesPermutation([s],l),c=a;u!==null&&(c=Tp({inputs:{x:a},attrs:{perm:u},backend:n}));let h=R.getInnerMostAxes(1,l)[0];R.assertAxesAreInnerMostDims("cumsum",[h],l);let d=n.makeOutput(c.shape,c.dtype),p=c.shape[h],f=n.dataIdMap.get(c.dataId).id,m=n.dataIdMap.get(d.dataId).id;Mb(f,i?1:0,o?1:0,p,m,On[a.dtype]);let A=d;if(u!==null){let y=R.getUndoAxesPermutation(u);A=Tp({inputs:{x:d},attrs:{perm:y},backend:n}),n.disposeData(c.dataId),n.disposeData(d.dataId)}return A}var pZ={kernelName:ys,backendName:"wasm",setupFunc:hZ,kernelFunc:dZ},Ob;function fZ(e){Ob=e.wasm.cwrap(co,null,["number","number","number","array","number","array","array","number","number"])}function mZ(e){let{backend:t,inputs:n,attrs:r}=e,{x:a}=n,{blockSize:s,dataFormat:i}=r;k.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let o=a.shape[0],l=i==="NHWC"?a.shape[1]:a.shape[2],u=i==="NHWC"?a.shape[2]:a.shape[3],c=i==="NHWC"?a.shape[3]:a.shape[1],h=l*s,d=u*s,p=c/(s*s),f=i==="NHWC"?[o,h,d,p]:[o,p,h,d],m=t.makeOutput(f,"float32"),A=t.dataIdMap.get(a.dataId).id,y=new Uint8Array(new Int32Array(k.computeStrides(a.shape)).buffer),g=new Uint8Array(new Int32Array(f).buffer),_=new Uint8Array(new Int32Array(k.computeStrides(f)).buffer),b=t.dataIdMap.get(m.dataId).id;return Ob(A,s,i==="NHWC"?1:0,y,a.shape.length-1,g,_,f.length,b),m}var AZ={kernelName:co,backendName:"wasm",setupFunc:fZ,kernelFunc:mZ},Db;function yZ(e){Db=e.wasm.cwrap(gs,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function gZ(e){let{inputs:t,attrs:n,backend:r}=e,{x:a,filter:s}=t,i=r.dataIdMap.get(a.dataId).id,o=r.dataIdMap.get(s.dataId).id,{strides:l,dilations:u,pad:c,dimRoundingMode:h}=n,d=u==null?[1,1]:u,p=R.computeConv2DInfo(a.shape,s.shape,l,d,c,h,!0),f=p.filterHeight,m=p.filterWidth,A=p.padInfo.top,y=p.padInfo.right,g=p.padInfo.bottom,_=p.padInfo.left,b=p.dilationHeight,x=p.dilationWidth,w=p.strideHeight,I=p.strideWidth,T=p.inChannels,E=p.outChannels,M=p.padInfo.type==="SAME"?1:0;if(p.dataFormat!=="channelsLast")throw new Error(`wasm backend DepthwiseConv2dNative does not support dataFormat:'${p.dataFormat}'. Please use 'channelsLast'.`);let z=r.makeOutput(p.outShape,"float32"),P=r.dataIdMap.get(z.dataId).id;return Db(i,a.shape[0],a.shape[1],a.shape[2],o,f,m,A,y,g,_,M,b,x,w,I,T,E,P),z}var xZ={kernelName:gs,backendName:"wasm",setupFunc:yZ,kernelFunc:gZ},wZ=!1,_Z=dn(fo,wZ,"bool"),bZ=Dn(ws);function Xm(e){let{inputs:t,attrs:n,backend:r}=e,{input:a}=t,{dim:s}=n,i=a.shape.length,o=a.shape.slice(),l=s;return s<0&&(k.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+s+1),o.splice(l,0,1),gr({inputs:{x:a},backend:r,attrs:{shape:o}})}var vZ={kernelName:mo,backendName:"wasm",kernelFunc:Xm};function kZ(e){let{attrs:{shape:t,value:n,dtype:r},backend:a}=e,s=a.makeOutput(t,r);return a.typedArrayFromHeap(s).fill(n),s}var NZ={kernelName:Nu,backendName:"wasm",kernelFunc:kZ},$b;function IZ(e){$b=e.wasm.cwrap(yo,null,["number","number","number","number","number","number"])}function SZ(e){let{inputs:t,backend:n}=e,{image:r}=t,a=n.makeOutput(r.shape,r.dtype),s=n.dataIdMap.get(r.dataId).id,i=n.dataIdMap.get(a.dataId).id,[o,l,u,c]=r.shape;return $b(s,o,l,u,c,i),a}var TZ={kernelName:yo,backendName:"wasm",kernelFunc:SZ,setupFunc:IZ},EZ=Dn(_s),CZ=!1,RZ=dn(bs,CZ),zb;function FZ(e){zb=e.wasm.cwrap(vs,null,["number","number","number","number","number","number","number"])}function MZ(e){let{backend:t,inputs:n,attrs:r}=e,{varianceEpsilon:a}=r,{x:s,mean:i,variance:o,offset:l,scale:u}=n,c=t.dataIdMap.get(s.dataId).id,h=t.dataIdMap.get(i.dataId).id,d=t.dataIdMap.get(o.dataId).id,p=l!=null?t.dataIdMap.get(l.dataId).id:0,f=u!=null?t.dataIdMap.get(u.dataId).id:0,m=t.makeOutput(s.shape,s.dtype);if(k.sizeFromShape(s.shape)===0)return m;let A=t.dataIdMap.get(m.dataId).id;return zb(c,h,d,p,f,a,A),m}var OZ={kernelName:vs,backendName:"wasm",setupFunc:FZ,kernelFunc:MZ},Pb;function DZ(e){Pb=e.wasm.cwrap(ei,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function $Z(e){let{inputs:t,attrs:n,backend:r}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dilations:c,dataFormat:h,dimRoundingMode:d,activation:p,leakyreluAlpha:f}=n,m=R.computeConv2DInfo(a.shape,s.shape,l,c,u,d),A=kc[p];if(A==null)throw new Error(`${p} activation not yet supported for FusedConv2D in the wasm backend.`);let y=r.dataIdMap.get(a.dataId).id,g=r.dataIdMap.get(s.dataId).id,_=m.outChannels,b=0;if(i!=null){let ie=r.dataIdMap.get(i.dataId);if(ie.shape.length!==1)throw new Error(`FusedConv2D only supports rank-1 bias but got rank ${ie.shape.length}.`);if(ie.shape[0]!==_)throw new Error(`FusedConv2D bias shape (${ie.shape}) does not match the number of output channels (${_})`);b=ie.id}let x=m.filterHeight,w=m.filterWidth,I=m.padInfo.top,T=m.padInfo.right,E=m.padInfo.bottom,M=m.padInfo.left,z=m.dilationHeight,P=m.dilationWidth,B=m.strideHeight,q=m.strideWidth,H=m.inChannels,X=m.padInfo.type==="SAME"?1:0,Z=m.batchSize,ee=m.inHeight,J=m.inWidth;if(h!=="NHWC")throw new Error(`wasm backend FusedConv2D does not support dataFormat:'${h}'. Please use 'NHWC'.`);let se=r.makeOutput(m.outShape,"float32"),re=r.dataIdMap.get(se.dataId).id,ne=o==null?0:r.dataIdMap.get(o.dataId).id;return Pb(y,Z,ee,J,g,x,w,b,I,T,E,M,X,z,P,B,q,H,_,A,ne,f||0,re),se}var zZ={kernelName:ei,backendName:"wasm",setupFunc:DZ,kernelFunc:$Z},Lb;function PZ(e){Lb=e.wasm.cwrap(ti,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function LZ(e){let{inputs:t,attrs:n,backend:r}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dilations:c,dataFormat:h,dimRoundingMode:d,activation:p,leakyreluAlpha:f}=n,m=R.computeConv2DInfo(a.shape,s.shape,l,c,u,d,!0),A=kc[p];if(A==null)throw new Error(`${p} activation not yet supported for FusedDepthwiseConv2D in the wasm backend.`);let y=r.dataIdMap.get(a.dataId).id,g=r.dataIdMap.get(s.dataId).id,_=m.outChannels,b=0;if(i!=null){let ie=r.dataIdMap.get(i.dataId);if(ie.shape.length!==1)throw new Error(`FusedDepthwiseConv2D only supports rank-1 bias but got rank ${ie.shape.length}.`);if(ie.shape[0]!==_)throw new Error(`FusedDepthwiseConv2D bias shape (${ie.shape}) does not match the number of output channels (${_})`);b=ie.id}let x=m.filterHeight,w=m.filterWidth,I=m.padInfo.top,T=m.padInfo.right,E=m.padInfo.bottom,M=m.padInfo.left,z=m.dilationHeight,P=m.dilationWidth,B=m.strideHeight,q=m.strideWidth,H=m.inChannels,X=m.padInfo.type==="SAME"?1:0,Z=m.batchSize,ee=m.inHeight,J=m.inWidth;if(h!=="NHWC")throw new Error(`wasm backend FusedDepthwiseConv2D does not support dataFormat:'${h}'. Please use 'NHWC'.`);let se=r.makeOutput(m.outShape,"float32"),re=r.dataIdMap.get(se.dataId).id,ne=o==null?0:r.dataIdMap.get(o.dataId).id;return Lb(y,Z,ee,J,g,x,w,b,I,T,E,M,X,z,P,B,q,H,_,A,ne,f||0,re),se}var WZ={kernelName:ti,backendName:"wasm",setupFunc:PZ,kernelFunc:LZ},Wb;function BZ(e){Wb=e.wasm.cwrap(xo,null,["number","number","number","number","number","number","array","number"])}function VZ(e){let{backend:t,inputs:n}=e,{params:r,indices:a}=n,[s,i,o,l]=ff.prepareAndValidate(r,a),u=t.makeOutput(s,r.dtype);if(i===0)return u;let c=a.shape,h=c[c.length-1],d=t.dataIdMap.get(r.dataId).id,p=t.dataIdMap.get(a.dataId).id,f=new Uint8Array(new Int32Array(l).buffer),m=t.dataIdMap.get(u.dataId).id;return Wb(d,On[r.dtype],p,i,h,o,f,m),u}var UZ={kernelName:xo,backendName:"wasm",setupFunc:BZ,kernelFunc:VZ},Bb;function jZ(e){Bb=e.wasm.cwrap("Gather",null,["number","number","array","number","number","number","array","number"])}function GZ(e){let{backend:t,inputs:n,attrs:r}=e,{x:a,indices:s}=n,{axis:i,batchDims:o}=r,l=k.parseAxisParam(i,a.shape)[0],u=R.segment_util.collectGatherOpShapeInfo(a,s,l,o),c=gr({inputs:{x:a},attrs:{shape:[u.batchSize,u.outerSize,u.dimSize,u.sliceSize]},backend:t}),h=k.sizeFromShape(s.shape),d=gr({inputs:{x:s},attrs:{shape:[u.batchSize,h/u.batchSize]},backend:t}),p=[u.batchSize,u.outerSize,h/u.batchSize,u.sliceSize],f=t.makeOutput(p,a.dtype);if(k.sizeFromShape(a.shape)===0)return f;let m=c.shape.length-1,A=t.dataIdMap.get(c.dataId).id,y=t.dataIdMap.get(d.dataId).id,g=t.dataIdMap.get(f.dataId).id,_=new Uint8Array(new Int32Array(k.computeStrides(c.shape)).buffer),b=new Uint8Array(new Int32Array(k.computeStrides(p)).buffer);return Bb(A,On[a.dtype],_,m,y,u.batchSize,b,g),f.shape=u.outputShape,f}var HZ={kernelName:go,backendName:"wasm",setupFunc:jZ,kernelFunc:GZ},qZ=!1,XZ=dn(wo,qZ,"bool"),KZ=!1,ZZ=dn(ks,KZ,"bool"),Vb;function YZ(e){Vb=e.wasm.cwrap(Ns,null,["number","number","number"])}function JZ(e){let{inputs:{x:t},attrs:{alpha:n},backend:r}=e,a=r.dataIdMap.get(t.dataId).id,s=r.makeOutput(t.shape,t.dtype);if(k.sizeFromShape(t.shape)!==0){let i=r.dataIdMap.get(s.dataId).id;Vb(a,n,i)}return s}var QZ={kernelName:Ns,backendName:"wasm",setupFunc:YZ,kernelFunc:JZ},eY=!1,tY=dn(No,eY,"bool"),nY=!1,rY=dn(Io,nY,"bool"),aY=Dn(Is),sY=!1,iY=dn(To,sY,"bool"),Ub;function oY(e){Ub=e.wasm.cwrap(Ss,null,["number, number, number"])}function lY(e){let{backend:t,inputs:n,attrs:r}=e,{reductionIndices:a,keepDims:s}=r,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=i,{transposed:u,axes:c,originalAxes:h,inputWasTransposed:d}=$l(i,a,t);if(d){let g=t.dataIdMap.get(u.dataId).id;l=u,o=g}let p=l.shape.length;R.assertAxesAreInnerMostDims("max",c,p);let[f,m]=R.computeOutAndReduceShapes(l.shape,c),A=k.sizeFromShape(m),y=t.makeOutput(f,i.dtype);if(k.sizeFromShape(l.shape)!==0){let g=t.dataIdMap.get(y.dataId).id;Ub(o,A,g)}if(d&&t.disposeData(u.dataId),s){let g=R.expandShapeToKeepDim(y.shape,h);y.shape=g}return y}var uY={kernelName:Ss,backendName:"wasm",setupFunc:oY,kernelFunc:lY},cY=!1,hY=dn(Ts,cY),jb;function dY(e){jb=e.wasm.cwrap(Es,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function pY(e){let{inputs:t,attrs:n,backend:r}=e,a=t.x,s=r.dataIdMap.get(a.dataId).id,{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=n,c=R.computePool2DInfo(a.shape,i,o,1,l,u),h=c.filterHeight,d=c.filterWidth,p=c.padInfo.top,f=c.padInfo.right,m=c.padInfo.bottom,A=c.padInfo.left,y=c.dilationHeight,g=c.dilationWidth,_=c.strideHeight,b=c.strideWidth,x=c.inChannels,w=c.outChannels;if(c.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${c.dataFormat}'. Please use 'channelsLast'.`);let I=r.makeOutput(c.outShape,"float32"),T=r.dataIdMap.get(I.dataId).id;return jb(s,a.shape[0],a.shape[1],a.shape[2],h,d,p,f,m,A,y,g,_,b,x,w,T),I}var fY={kernelName:Es,backendName:"wasm",setupFunc:dY,kernelFunc:pY},Gb;function mY(e){Gb=e.wasm.cwrap(Cs,null,["number, number, number"])}function AY(e){let{backend:t,inputs:n,attrs:r}=e,{axis:a,keepDims:s}=r,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:c,axes:h,originalAxes:d,inputWasTransposed:p}=$l(i,a,t),f=h;if(p){let b=t.dataIdMap.get(c.dataId).id;b!==o&&(u=c,l=b,f=R.getInnerMostAxes(f.length,u.shape.length))}R.assertAxesAreInnerMostDims("mean",f,u.shape.length);let[m,A]=R.computeOutAndReduceShapes(u.shape,f),y=k.sizeFromShape(A),g=u;u.dtype!=="float32"&&(g=Ep({backend:t,inputs:{x:u},attrs:{dtype:"float32"}}),l=t.dataIdMap.get(g.dataId).id);let _=t.makeOutput(m,"float32");if(k.sizeFromShape(u.shape)!==0){let b=t.dataIdMap.get(_.dataId).id;Gb(l,y,b)}if(p&&t.disposeData(c.dataId),s){let b=R.expandShapeToKeepDim(_.shape,d);_.shape=b}return u.dtype!=="float32"&&t.disposeData(g.dataId),_}var yY={kernelName:Cs,backendName:"wasm",setupFunc:mY,kernelFunc:AY},Hb;function gY(e){Hb=e.wasm.cwrap(Rs,null,["number, number, number"])}function xY(e){let{backend:t,inputs:n,attrs:r}=e,{axis:a,keepDims:s}=r,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:c,axes:h,originalAxes:d,inputWasTransposed:p}=$l(i,a,t);if(p){let _=t.dataIdMap.get(c.dataId).id;_!==o&&(u=c,l=_)}let f=u.shape.length;R.assertAxesAreInnerMostDims("min",h,f);let[m,A]=R.computeOutAndReduceShapes(u.shape,h),y=k.sizeFromShape(A),g=t.makeOutput(m,u.dtype);if(k.sizeFromShape(u.shape)!==0){let _=t.dataIdMap.get(g.dataId).id;Hb(l,y,_)}if(p&&t.disposeData(c.dataId),s){let _=R.expandShapeToKeepDim(g.shape,d);g.shape=_}return g}var wY={kernelName:Rs,backendName:"wasm",setupFunc:gY,kernelFunc:xY},_Y=!1,bY=dn(Fs,_Y),vY=!0,kY=dn(Ms,vY),NY=Dn(Co);function Km(e,t){let n=new Int32Array(e.wasm.HEAPU8.buffer,t,4),r=n[0],a=n[1],s=n[2],i=n[3];return e.wasm._free(t),{pSelectedIndices:r,selectedSize:a,pSelectedScores:s,pValidOutputs:i}}var qb;function IY(e){qb=e.wasm.cwrap(Fo,"number",["number","number","number","number","number"])}function SY(e){let{backend:t,inputs:n,attrs:r}=e,{iouThreshold:a,maxOutputSize:s,scoreThreshold:i}=r,{boxes:o,scores:l}=n,u=t.dataIdMap.get(o.dataId).id,c=t.dataIdMap.get(l.dataId).id,h=qb(u,c,s,a,i),{pSelectedIndices:d,selectedSize:p,pSelectedScores:f,pValidOutputs:m}=Km(t,h);return t.wasm._free(f),t.wasm._free(m),t.makeOutput([p],"int32",d)}var TY={kernelName:Fo,backendName:"wasm",setupFunc:IY,kernelFunc:SY},Xb;function EY(e){Xb=e.wasm.cwrap(Mo,"number",["number","number","number","number","number","bool"])}function CY(e){let{backend:t,inputs:n,attrs:r}=e,{iouThreshold:a,maxOutputSize:s,scoreThreshold:i,padToMaxOutputSize:o}=r,{boxes:l,scores:u}=n,c=t.dataIdMap.get(l.dataId).id,h=t.dataIdMap.get(u.dataId).id,d=Xb(c,h,s,a,i,o),{pSelectedIndices:p,selectedSize:f,pSelectedScores:m,pValidOutputs:A}=Km(t,d);t.wasm._free(m);let y=t.makeOutput([f],"int32",p),g=t.makeOutput([],"int32",A);return[y,g]}var RY={kernelName:Mo,backendName:"wasm",setupFunc:EY,kernelFunc:CY},Kb;function FY(e){Kb=e.wasm.cwrap(Oo,"number",["number","number","number","number","number","number"])}function MY(e){let{backend:t,inputs:n,attrs:r}=e,{iouThreshold:a,maxOutputSize:s,scoreThreshold:i,softNmsSigma:o}=r,{boxes:l,scores:u}=n,c=t.dataIdMap.get(l.dataId).id,h=t.dataIdMap.get(u.dataId).id,d=Kb(c,h,s,a,i,o),{pSelectedIndices:p,selectedSize:f,pSelectedScores:m,pValidOutputs:A}=Km(t,d);t.wasm._free(A);let y=t.makeOutput([f],"int32",p),g=t.makeOutput([f],"float32",m);return[y,g]}var OY={kernelName:Oo,backendName:"wasm",setupFunc:FY,kernelFunc:MY},DY=!1,$Y=dn(Ro,DY,"bool"),Zb;function zY(e){Zb=e.wasm.cwrap(Os,null,["number","number","number","number","number"])}function PY(e){let{inputs:t,backend:n,attrs:r}=e,{indices:a}=t,{depth:s,onValue:i,offValue:o}=r,l=n.makeOutput([...a.shape,s],"int32"),u=n.dataIdMap.get(l.dataId).id,c=n.dataIdMap.get(a.dataId).id;return Zb(c,s,i,o,u),l}var LY={kernelName:Os,backendName:"wasm",setupFunc:zY,kernelFunc:PY};function WY(e){let{inputs:{x:t},backend:n}=e,r=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(r).fill(1),r}var BY={kernelName:Do,backendName:"wasm",kernelFunc:WY};function VY(e){let{inputs:t,backend:n,attrs:r}=e,{axis:a}=r;if(t.length===1)return Xm({inputs:{input:t[0]},backend:n,attrs:{dim:a}});let s=t[0].shape,i=t[0].dtype;t.forEach(l=>{k.assertShapesMatch(s,l.shape,"All tensors passed to stack must have matching shapes"),k.assert(i===l.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=t.map(l=>Xm({inputs:{input:l},backend:n,attrs:{dim:a}}));return Eb({inputs:o,backend:n,attrs:{axis:a}})}var UY={kernelName:$o,backendName:"wasm",kernelFunc:VY},Yb;function jY(e){Yb=e.wasm.cwrap(Ds,null,["number","array","number","number","array","array","number","number"])}function GY(e){let{inputs:{x:t},backend:n,attrs:{paddings:r,constantValue:a}}=e,s=r.map((f,m)=>f[0]+t.shape[m]+f[1]),i=n.dataIdMap.get(t.dataId).id,o=n.makeOutput(s,t.dtype),l=n.dataIdMap.get(o.dataId).id,u=new Uint8Array(new Int32Array(t.shape).buffer),c=r.map(f=>f[0]),h=r.map(f=>f[1]),d=new Uint8Array(new Int32Array(c).buffer),p=new Uint8Array(new Int32Array(h).buffer);return Yb(i,u,t.shape.length,On[t.dtype],d,p,a,l),o}var HY={kernelName:Ds,backendName:"wasm",kernelFunc:GY,setupFunc:jY},qY=!1,XY=dn($s,qY),Jb;function KY(e){Jb=e.wasm.cwrap(zs,null,["number","number","number"])}function ZY(e){let{inputs:t,backend:n}=e,{x:r,alpha:a}=t,s=n.dataIdMap.get(r.dataId).id,i=n.dataIdMap.get(a.dataId).id,o=n.makeOutput(r.shape,"float32"),l=n.dataIdMap.get(o.dataId).id;return Jb(s,i,l),o}var YY={kernelName:zs,backendName:"wasm",setupFunc:KY,kernelFunc:ZY},Qb;function JY(e){Qb=e.wasm.cwrap(zo,null,["number","number","number","number"])}function QY(e){let{backend:t,inputs:n,attrs:r}=e,{axis:a,keepDims:s}=r,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:c,axes:h,originalAxes:d,inputWasTransposed:p}=$l(i,a,t),f=h;if(p){let _=t.dataIdMap.get(c.dataId).id;_!==o&&(u=c,l=_,f=R.getInnerMostAxes(f.length,u.shape.length))}R.assertAxesAreInnerMostDims("prod",f,u.shape.length);let[m,A]=R.computeOutAndReduceShapes(u.shape,f),y=k.sizeFromShape(A),g=t.makeOutput(m,u.dtype);if(k.sizeFromShape(u.shape)!==0){let _=t.dataIdMap.get(g.dataId).id;Qb(l,y,On[g.dtype],_)}if(p&&t.disposeData(c.dataId),s){let _=R.expandShapeToKeepDim(g.shape,d);g.shape=_}return g}var eJ={kernelName:zo,backendName:"wasm",setupFunc:JY,kernelFunc:QY},tJ=e=>{let{backend:t,attrs:n}=e,{start:r,stop:a,step:s,dtype:i}=n,o=ym(r,a,s,i),l=t.makeOutput([o.length],i);return t.typedArrayFromHeap(l).set(o),l},nJ={kernelName:Ru,backendName:"wasm",kernelFunc:tJ},rJ=!0,aJ=dn(xs,rJ),sJ=Dn(Ps),iJ=Dn(Ws),e3;function oJ(e){e3=e.wasm.cwrap(Ls,null,["number","number","number","number","number","number","number","number","number","number"])}function lJ(e){let{backend:t,inputs:n,attrs:r}=e,{images:a}=n,{alignCorners:s,halfPixelCenters:i,size:o}=r,[l,u]=o,[c,h,d,p]=a.shape,f=[c,l,u,p],m=t.dataIdMap.get(a.dataId),A;m.dtype!=="float32"&&(A=Ep({backend:t,inputs:{x:a},attrs:{dtype:"float32"}}),m=t.dataIdMap.get(A.dataId));let y=m.id,g=t.makeOutput(f,"float32");if(k.sizeFromShape(a.shape)===0)return g;let _=t.dataIdMap.get(g.dataId).id;return e3(y,c,h,d,p,l,u,s?1:0,i?1:0,_),A!=null&&t.disposeData(A.dataId),g}var uJ={kernelName:Ls,backendName:"wasm",setupFunc:oJ,kernelFunc:lJ},t3;function cJ(e){t3=e.wasm.cwrap(Bs,null,["number","array","number","array","number","number"])}function hJ(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{dims:s}=r,i=k.parseAxisParam(s,a.shape);if(a.shape.length===0)return Sp({inputs:{x:a},backend:n});let o=n.makeOutput(a.shape,a.dtype),l=n.dataIdMap.get(a.dataId).id,u=n.dataIdMap.get(o.dataId).id,c=new Uint8Array(new Int32Array(i).buffer),h=new Uint8Array(new Int32Array(a.shape).buffer);return t3(l,c,i.length,h,a.shape.length,u),gr({inputs:{x:o},attrs:{shape:a.shape},backend:n})}var dJ={kernelName:Bs,backendName:"wasm",kernelFunc:hJ,setupFunc:cJ},n3;function pJ(e){n3=e.wasm.cwrap(el,null,["number","number","number","number","number","number","number","number","array","number","number"])}function fJ(e){let{inputs:t,backend:n,attrs:r}=e,{image:a}=t,{radians:s,fillValue:i,center:o}=r,l=n.makeOutput(a.shape,a.dtype),u=n.dataIdMap.get(a.dataId).id,c=n.dataIdMap.get(l.dataId).id,[h,d,p,f]=a.shape,[m,A]=R.getImageCenter(o,d,p),y=i===0,g=255,_=typeof i=="number"?[i,i,i,y?0:g]:[...i,g],b=new Uint8Array(new Int32Array(_).buffer);return n3(u,h,d,p,f,s,m,A,b,_.length,c),l}var mJ={kernelName:el,backendName:"wasm",kernelFunc:fJ,setupFunc:pJ},AJ=Dn(Vs),yJ=Dn(Us),r3;function gJ(e){r3=e.wasm.cwrap(Wo,null,["number","number","number","number","number","number","array","number","number"])}function xJ(e){let{backend:t,inputs:n,attrs:r}=e,{indices:a,updates:s}=n,{shape:i}=r,o=t.makeOutput(i,s.dtype);if(k.sizeFromShape(i)===0)return o;let{sliceRank:l,numUpdates:u,sliceSize:c,strides:h,outputSize:d}=mf.calculateShapes(s,a,i),p=t.dataIdMap.get(a.dataId).id,f=t.dataIdMap.get(s.dataId).id,m=new Uint8Array(new Int32Array(h).buffer),A=t.dataIdMap.get(o.dataId).id;return r3(p,f,On[s.dtype],l,u,c,m,d,A),o}var wJ={kernelName:Wo,backendName:"wasm",setupFunc:gJ,kernelFunc:xJ},a3;function _J(e){a3=e.wasm.cwrap("SelectV2",null,["number","number","number","number","number"])}function bJ(e){let{inputs:t,backend:n}=e,{condition:r,t:a,e:s}=t,i=n.dataIdMap.get(r.dataId).id,o=n.dataIdMap.get(a.dataId).id,l=n.dataIdMap.get(s.dataId).id,u=n.makeOutput(a.shape,a.dtype),c=n.dataIdMap.get(u.dataId).id,h=r.shape.length,d=a.shape.length,p=h===0||h>1||d===1?1:k.sizeFromShape(a.shape.slice(1));return a3(i,o,l,p,c),u}var vJ={kernelName:Bo,backendName:"wasm",kernelFunc:bJ,setupFunc:_J},s3;function kJ(e){s3=e.wasm.cwrap(Gs,null,["number","number"])}function NJ(e){let{backend:t,inputs:{x:n}}=e,r=t.dataIdMap.get(n.dataId).id,a=t.makeOutput(n.shape,n.dtype),s=t.dataIdMap.get(a.dataId).id;return k.sizeFromShape(a.shape)===0||s3(r,s),a}var IJ={kernelName:"Sigmoid",backendName:"wasm",setupFunc:kJ,kernelFunc:NJ},SJ=Dn(js);function Cp(e){let{inputs:{x:t},attrs:{begin:n,size:r},backend:a}=e,[s,i]=ln.parseSliceParams(t,n,r),o=ln.isSliceContinous(t.shape,s,i),l=a.readSync(t.dataId),u=a.makeOutput(i,t.dtype),c=k.computeStrides(t.shape),h=a.dataIdMap.get(u.dataId);if(o){let f=ln.computeFlatOffset(s,c);return t.dtype==="string"?h.stringBytes=l.slice(f,f+k.sizeFromShape(i)):a.typedArrayFromHeap(u).set(l.subarray(f,f+k.sizeFromShape(i))),u}if(t.dtype==="string"){let f=ap(l,s,i,t.shape,t.dtype);return h.stringBytes=f,u}let d=a.typedArrayFromHeap(u),p=t.shape.length;if(p===2)TJ(l,c[0],d,s,i);else if(p===3)EJ(l,c[0],c[1],d,s,i);else if(p===4)CJ(l,c[0],c[1],c[2],d,s,i);else{let f=ap(l,s,i,t.shape,t.dtype);d.set(f)}return u}function TJ(e,t,n,r,a){let s=0,i=r[0],o=r[1],l=i+a[0];for(let u=i;u<l;u++){let c=u*t+o;n.set(e.subarray(c,c+a[1]),s),s+=a[1]}}function EJ(e,t,n,r,a,s){let i=0,o=a[0],l=a[1],u=a[2],c=o+s[0],h=l+s[1];for(let d=o;d<c;d++)for(let p=l;p<h;p++){let f=d*t+p*n+u;r.set(e.subarray(f,f+s[2]),i),i+=s[2]}}function CJ(e,t,n,r,a,s,i){let o=0,l=s[0],u=s[1],c=s[2],h=l+i[0],d=u+i[1],p=c+i[2],f=s[3];for(let m=l;m<h;m++)for(let A=u;A<d;A++)for(let y=c;y<p;y++){let g=m*t+A*n+y*r+f;a.set(e.subarray(g,g+i[3]),o),o+=i[3]}}var RJ={kernelName:Uo,backendName:"wasm",kernelFunc:Cp},i3;function FJ(e){i3=e.wasm.cwrap(Xs,null,["number","number","number","number"])}function MJ(e){let{backend:t,inputs:{logits:n},attrs:{dim:r}}=e,a=t.dataIdMap.get(n.dataId).id,s=t.makeOutput(n.shape,n.dtype),i=t.dataIdMap.get(s.dataId).id,o=n.shape[r],l=k.sizeFromShape(n.shape)/o;return k.sizeFromShape(s.shape)===0||i3(a,i,o,l),s}var OJ={kernelName:Xs,backendName:"wasm",setupFunc:FJ,kernelFunc:MJ};function DJ(e){let{inputs:t,attrs:n,backend:r}=e,{x:a}=t,{numOrSizeSplits:s,axis:i}=n,o=k.parseAxisParam(i,a.shape)[0],l=R.prepareSplitSize(a,s,o),u=new Array(a.shape.length).fill(0),c=a.shape.slice();return l.map(h=>{let d=[...c];d[o]=h;let p=Cp({inputs:{x:a},attrs:{begin:u,size:d},backend:r});return u[o]+=h,p})}var $J={kernelName:qo,backendName:"wasm",kernelFunc:DJ},zJ=Dn(Hs),PJ=Dn(Ou),LJ=!0,WJ=dn(Ks,LJ),o3;function BJ(e){o3=e.wasm.cwrap(Xo,null,["number","array","number","array","array","array","array","array","number","number"])}function VJ(e){let{backend:t,inputs:n,attrs:r}=e,{x:a}=n,{begin:s,end:i,strides:o}=r;o==null&&(o=new Array(s.length));let{beginMask:l,endMask:u,ellipsisMask:c,newAxisMask:h,shrinkAxisMask:d}=r,p=R.slice_util.maskToAxes(c);if(p.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(c!==0&&h!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(c!==0&&d!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let f=a.shape.length-s.length,m=R.slice_util.maskToAxes(h),A=a.shape.slice();m.forEach(E=>{s[E]=0,i[E]=1,A.splice(E,0,1)});let y=gr({inputs:{x:a},attrs:{shape:A},backend:t}),{begin:g,end:_,strides:b}=R.slice_util.getNormalizedAxes(y.shape,p,f,s,i,o,l,u,c);s=g,i=_,o=b;let x=R.slice_util.maskToAxes(d);x.forEach(E=>{i[E]=s[E]+1,o[E]=1});let w=R.slice_util.computeOutShape(s,i,o),I=w.filter((E,M)=>x.indexOf(M)===-1);if(o.every(E=>E===1)){let E=Cp({inputs:{x:a},attrs:{begin:s,size:w},backend:t});return gr({inputs:{x:E},attrs:{shape:I},backend:t})}let T=t.makeOutput(I,"float32");if(!I.some(E=>E===0)){let E=t.dataIdMap.get(y.dataId).id,M=new Uint8Array(new Int32Array(k.computeStrides(y.shape)).buffer),z=new Uint8Array(new Int32Array(s).buffer),P=new Uint8Array(new Int32Array(i).buffer),B=new Uint8Array(new Int32Array(o).buffer),q=new Uint8Array(new Int32Array(I).buffer),H=new Uint8Array(new Int32Array(k.computeStrides(I)).buffer),X=t.dataIdMap.get(T.dataId).id;o3(E,M,y.shape.length,z,P,B,q,H,I.length,X)}return gr({inputs:{x:T},attrs:{shape:I},backend:t})}var UJ={kernelName:Xo,backendName:"wasm",setupFunc:BJ,kernelFunc:VJ},jJ=!0,GJ=dn(Zs,jJ),l3;function HJ(e){l3=e.wasm.cwrap(qs,null,["number, number, number"])}function qJ(e){let{backend:t,inputs:n,attrs:r}=e,{axis:a,keepDims:s}=r,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:c,axes:h,originalAxes:d,inputWasTransposed:p}=$l(i,a,t),f=h;if(p){let _=t.dataIdMap.get(c.dataId).id;_!==o&&(u=c,l=_,f=R.getInnerMostAxes(f.length,u.shape.length))}R.assertAxesAreInnerMostDims("sum",f,u.shape.length);let[m,A]=R.computeOutAndReduceShapes(u.shape,f),y=k.sizeFromShape(A),g=t.makeOutput(m,u.dtype);if(k.sizeFromShape(u.shape)!==0){let _=t.dataIdMap.get(g.dataId).id;l3(l,y,_)}if(p&&t.disposeData(c.dataId),s){let _=R.expandShapeToKeepDim(g.shape,d);g.shape=_}return g}var XJ={kernelName:qs,backendName:"wasm",setupFunc:HJ,kernelFunc:qJ},KJ=Dn(Ys),u3;function ZJ(e){u3=e.wasm.cwrap(Ia,null,["number","array","number","array","number","number"])}function YJ(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,s=n.dataIdMap.get(a.dataId).id,{reps:i}=r,o=new Array(a.shape.length);for(let d=0;d<o.length;d++)o[d]=a.shape[d]*i[d];let l=new Uint8Array(new Int32Array(a.shape).buffer),u=new Uint8Array(new Int32Array(o).buffer),c=n.makeOutput(o,a.dtype),h=n.dataIdMap.get(c.dataId).id;return u3(s,l,a.shape.length,u,o.length,On[c.dtype],h),c}var JJ={kernelName:Ia,backendName:"wasm",setupFunc:ZJ,kernelFunc:YJ},c3;function QJ(e){c3=e.wasm.cwrap(Zo,null,["number","array","number","number","number","bool","number","number"])}var eQ=({inputs:e,backend:t,attrs:n})=>{let{x:r}=e,{k:a,sorted:s}=n,i=t.dataIdMap.get(r.dataId).id,o=new Uint8Array(new Int32Array(r.shape).buffer),l=r.shape.slice();l[l.length-1]=a;let u=t.makeOutput(l,r.dtype),c=t.dataIdMap.get(u.dataId).id,h=t.makeOutput(l,"int32"),d=t.dataIdMap.get(h.dataId).id;return c3(i,o,r.shape.length,On[r.dtype],a,s,c,d),[u,h]},tQ={kernelName:Zo,backendName:"wasm",setupFunc:QJ,kernelFunc:eQ};function nQ(e){let{inputs:t,backend:n,attrs:r}=e,{value:a}=t,{axis:s}=r;s<0&&(s+=a.shape.length);let i=a.shape[s],o=a.shape.length,l=new Array(o-1),u=0;for(let p=0;p<o;p++)p!==s&&(l[u++]=a.shape[p]);let c=new Array(i),h=new Array(o).fill(0),d=a.shape.slice();d[s]=1;for(let p=0;p<c.length;p++)h[s]=p,c[p]=Cp({inputs:{x:a},attrs:{begin:h,size:d},backend:n});return c.map(({dataId:p,dtype:f})=>({dataId:p,dtype:f,shape:l}))}var rQ={kernelName:Yo,backendName:"wasm",kernelFunc:nQ};function aQ(e){let{inputs:{x:t},backend:n}=e,r=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(r).fill(0),r}var sQ={kernelName:Jo,backendName:"wasm",kernelFunc:aQ},iQ=[EK,RK,OK,VK,GK,KK,ZK,QK,eZ,rZ,iZ,oZ,cZ,pZ,AZ,xZ,_Z,bZ,vZ,NZ,TZ,EZ,RZ,TK,OZ,zZ,WZ,UZ,HZ,XZ,ZZ,DK,QZ,tY,rY,aY,iY,uY,hY,fY,yY,wY,bY,kY,NY,TY,RY,OY,$Y,LY,BY,UY,HY,XY,YY,eJ,nJ,aJ,sJ,iJ,HK,uJ,dJ,mJ,yJ,AJ,wJ,vJ,IJ,SJ,RJ,OJ,$J,zJ,PJ,WJ,UJ,GJ,XJ,KJ,JJ,tQ,LK,rQ,sQ];for(let e of iQ)ni(e);var Zm=Q();Zm.registerFlag("WASM_HAS_SIMD_SUPPORT",async()=>WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,10,9,1,7,0,65,0,253,15,26,11])));Zm.registerFlag("WASM_HAS_MULTITHREAD_SUPPORT",async()=>{if(Zm.get("IS_NODE"))return!1;try{return new MessageChannel().port1.postMessage(new SharedArrayBuffer(1)),WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,5,4,1,3,1,1,10,11,1,9,0,65,0,254,16,2,0,26,11]))}catch(e){return!1}});var h3=Ki(bk()),oQ='var threadInfoStruct=0;var selfThreadId=0;var parentThreadId=0;var Module={};function threadPrintErr(){var text=Array.prototype.slice.call(arguments).join(" ");console.error(text)}function threadAlert(){var text=Array.prototype.slice.call(arguments).join(" ");postMessage({cmd:"alert",text:text,threadId:selfThreadId})}var err=threadPrintErr;this.alert=threadAlert;Module["instantiateWasm"]=function(info,receiveInstance){var instance=new WebAssembly.Instance(Module["wasmModule"],info);Module["wasmModule"]=null;receiveInstance(instance);return instance.exports};this.onmessage=function(e){try{if(e.data.cmd==="load"){Module["DYNAMIC_BASE"]=e.data.DYNAMIC_BASE;Module["DYNAMICTOP_PTR"]=e.data.DYNAMICTOP_PTR;Module["wasmModule"]=e.data.wasmModule;Module["wasmMemory"]=e.data.wasmMemory;Module["buffer"]=Module["wasmMemory"].buffer;Module["ENVIRONMENT_IS_PTHREAD"]=true;if(typeof e.data.urlOrBlob==="string"){importScripts(e.data.urlOrBlob)}else{var objectUrl=URL.createObjectURL(e.data.urlOrBlob);importScripts(objectUrl);URL.revokeObjectURL(objectUrl)}Module=WasmBackendModuleThreadedSimd(Module);postMessage({"cmd":"loaded"})}else if(e.data.cmd==="objectTransfer"){Module["PThread"].receiveObjectTransfer(e.data)}else if(e.data.cmd==="run"){Module["__performance_now_clock_drift"]=performance.now()-e.data.time;threadInfoStruct=e.data.threadInfoStruct;Module["__register_pthread_ptr"](threadInfoStruct,0,0);selfThreadId=e.data.selfThreadId;parentThreadId=e.data.parentThreadId;var max=e.data.stackBase;var top=e.data.stackBase+e.data.stackSize;Module["establishStackSpace"](top,max);Module["_emscripten_tls_init"]();Module["PThread"].receiveObjectTransfer(e.data);Module["PThread"].setThreadStatus(Module["_pthread_self"](),1);try{var result=Module["dynCall_ii"](e.data.start_routine,e.data.arg);if(!Module["getNoExitRuntime"]())Module["PThread"].threadExit(result)}catch(ex){if(ex==="Canceled!"){Module["PThread"].threadCancel()}else if(ex!="unwind"){Atomics.store(Module["HEAPU32"],threadInfoStruct+4>>2,ex instanceof Module["ExitStatus"]?ex.status:-2);Atomics.store(Module["HEAPU32"],threadInfoStruct+0>>2,1);Module["_emscripten_futex_wake"](threadInfoStruct+0,2147483647);if(!(ex instanceof Module["ExitStatus"]))throw ex}}}else if(e.data.cmd==="cancel"){if(threadInfoStruct){Module["PThread"].threadCancel()}}else if(e.data.target==="setimmediate"){}else if(e.data.cmd==="processThreadQueue"){if(threadInfoStruct){Module["_emscripten_current_thread_process_queued_calls"]()}}else{err("worker.js received unknown command "+e.data.cmd);err(e.data)}}catch(ex){err("worker.js onmessage() captured an uncaught exception: "+ex);if(ex.stack)err(ex.stack);throw ex}};if(typeof process==="object"&&typeof process.versions==="object"&&typeof process.versions.node==="string"){self={location:{href:__filename}};var onmessage=this.onmessage;var nodeWorkerThreads=require("worker_threads");Worker=nodeWorkerThreads.Worker;var parentPort=nodeWorkerThreads.parentPort;parentPort.on("message",function(data){onmessage({data:data})});var nodeFS=require("fs");var nodeRead=function(filename){return nodeFS.readFileSync(filename,"utf8")};function globalEval(x){global.require=require;global.Module=Module;eval.call(null,x)}importScripts=function(f){globalEval(nodeRead(f))};postMessage=function(msg){parentPort.postMessage(msg)};if(typeof performance==="undefined"){performance={now:function(){return Date.now()}}}}',lQ=Ki(vk()),d3=class extends Au{constructor(e){super();this.wasm=e,this.dataIdNextNumber=1,this.wasm.tfjs.init(),this.dataIdMap=new Th(this,jn())}write(e,t,n){let r={};return this.move(r,e,t,n),r}numDataIds(){return this.dataIdMap.numDataIds()}async time(e){let t=k.now();return e(),{kernelMs:k.now()-t}}move(e,t,n,r){let a=this.dataIdNextNumber++;if(r==="string"){let l=t;this.dataIdMap.set(e,{id:a,stringBytes:l,shape:n,dtype:r,memoryOffset:null});return}let s=k.sizeFromShape(n),i=s*k.bytesPerElement(r),o=this.wasm._malloc(i);this.dataIdMap.set(e,{id:a,memoryOffset:o,shape:n,dtype:r}),this.wasm.tfjs.registerTensor(a,s,o),t!=null&&this.wasm.HEAPU8.set(new Uint8Array(t.buffer,t.byteOffset,i),o)}async read(e){return this.readSync(e)}readSync(e){let{memoryOffset:t,dtype:n,shape:r,stringBytes:a}=this.dataIdMap.get(e);if(n==="string")return a;let s=this.wasm.HEAPU8.slice(t,t+k.sizeFromShape(r)*k.bytesPerElement(n));return uQ(s.buffer,n)}disposeData(e){let t=this.dataIdMap.get(e);this.wasm._free(t.memoryOffset),this.wasm.tfjs.disposeData(t.id),this.dataIdMap.delete(e)}floatPrecision(){return 32}getMemoryOffset(e){return this.dataIdMap.get(e).memoryOffset}dispose(){this.wasm.tfjs.dispose(),this.wasm=null}memory(){return{unreliable:!1}}makeOutput(e,t,n){let r;if(n==null)r=this.write(null,e,t);else{r={};let a=this.dataIdNextNumber++;this.dataIdMap.set(r,{id:a,memoryOffset:n,shape:e,dtype:t});let s=k.sizeFromShape(e);this.wasm.tfjs.registerTensor(a,s,n)}return{dataId:r,shape:e,dtype:t}}typedArrayFromHeap({shape:e,dtype:t,dataId:n}){let r=this.wasm.HEAPU8.buffer,{memoryOffset:a}=this.dataIdMap.get(n),s=k.sizeFromShape(e);switch(t){case"float32":return new Float32Array(r,a,s);case"int32":return new Int32Array(r,a,s);case"bool":return new Uint8Array(r,a,s);default:throw new Error(`Unknown dtype ${t}`)}}};function cQ(e){return(t,n)=>(k.fetch(e,{credentials:"same-origin"}).then(r=>{r.ok||t.env.a(`failed to load wasm binary file at '${e}'`),r.arrayBuffer().then(a=>{WebAssembly.instantiate(a,t).then(s=>{n(s.instance)})})}),{})}function p3(e,t,n){if(Rp!=null)return Rp;let r="tfjs-backend-wasm.wasm";return e&&t?r="tfjs-backend-wasm-threaded-simd.wasm":e&&(r="tfjs-backend-wasm-simd.wasm"),Nc!=null&&Nc[r]!=null?Nc[r]:n+r}async function hQ(){let[e,t]=await Promise.all([Q().getAsync("WASM_HAS_SIMD_SUPPORT"),Q().getAsync("WASM_HAS_MULTITHREAD_SUPPORT")]);return new Promise((n,r)=>{let a={};a.locateFile=(l,u)=>{if(l.endsWith(".worker.js")){let c=oQ,h=new Blob([c],{type:"application/javascript"});return URL.createObjectURL(h)}return l.endsWith(".wasm")?p3(e,t,Ic!=null?Ic:u):u+l},Ym&&(a.instantiateWasm=cQ(p3(e,t,Ic!=null?Ic:"")));let s;t&&e&&Rp==null?(s=h3.default(a),s.mainScriptUrlOrBlob=new Blob(["var WasmBackendModuleThreadedSimd = "+h3.default.toString()],{type:"text/javascript"})):s=lQ.default(a);let i=null;s.tfjs={init:s.cwrap("init",null,[]),registerTensor:s.cwrap("register_tensor",null,["number","number","number"]),disposeData:s.cwrap("dispose_data",i,["number"]),dispose:s.cwrap("dispose",i,[])};let o=!1;s.onRuntimeInitialized=()=>{o=!0,Sc=!1,n({wasm:s})},s.onAbort=()=>{o||Sc||(Sc=!0,r({message:"Make sure the server can serve the `.wasm` file relative to the bundled js file. For more details see https://github.com/tensorflow/tfjs/blob/master/tfjs-backend-wasm/README.md#using-bundlers"}))}})}function uQ(e,t){switch(t){case"float32":return new Float32Array(e);case"int32":return new Int32Array(e);case"bool":return new Uint8Array(e);default:throw new Error(`Unknown dtype ${t}`)}}var dQ=["tfjs-backend-wasm.wasm","tfjs-backend-wasm-simd.wasm","tfjs-backend-wasm-threaded-simd.wasm"],Rp=null,Ic=null,Nc={},Sc=!1,Ym=!1;function pQ(e,t=!1){if(Rt("setWasmPath has been deprecated in favor of setWasmPaths and will be removed in a future release."),Sc)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPath()` before you call `tf.setBackend()` or `tf.ready()`");Rp=e,Ym=t}function f3(e,t=!1){if(Sc)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPaths()` before you call `tf.setBackend()` or `tf.ready()`");if(typeof e=="string")Ic=e;else{Nc=e;let n=dQ.filter(r=>Nc[r]==null);if(n.length>0)throw new Error(`There were no entries found for the following binaries: ${n.join(",")}. Please either call setWasmPaths with a map providing a path for each binary, or with a string indicating the directory where all the binaries can be found.`)}Ym=t}var m3="2.8.3",fQ=2;cl("wasm",async()=>{let{wasm:e}=await hQ();return new d3(e)},fQ);var A3={};$e(A3,{maxNorm:()=>mQ,minMaxNorm:()=>gQ,nonNeg:()=>yQ,unitNorm:()=>AQ});var Jm;function Pt(){return Jm==null&&(Jm=bf().epsilon()),Jm}function xr(){return"channelsLast"}var da=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,da.prototype)}},wr=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,wr.prototype)}},V=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,V.prototype)}},Oe=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Oe.prototype)}},y3=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,y3.prototype)}},xQ=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,xQ.prototype)}};function ki(e,t){if(Array.isArray(e)){let n=[];for(let r=0;r<t;r++)n=n.concat(e);return n}else{let n=new Array(t);return n.fill(e),n}}function Br(e,t){if(!e)throw new y3(t)}function g3(e,t){let n=0;for(let r of e)r===t&&n++;return n}function _n(e){return e.length===1?e[0]:e}function mt(e){return Array.isArray(e)?e:[e]}function pa(e){let t=e.replace(/(.)([A-Z][a-z0-9]+)/g,"$1_$2").replace(/([a-z])([A-Z])/g,"$1_$2").toLowerCase();return t[0]!=="_"?t:"private"+t}function Ni(e){return e.length<=1||e.indexOf("_")===-1?e:e.replace(/[_]+(\w|$)/g,(t,n)=>n.toUpperCase())}var ir={};function Qm(e){if(e==null)return null;let t={};return t.className=e.getClassName(),t.config=e.getConfig(),t}function eA(e){if(!(e==null||typeof e!="object"))if(Array.isArray(e))e.forEach(t=>eA(t));else{let t=Object.keys(e);for(let n of t){let r=e[n];r!=null&&typeof r=="object"&&(!Array.isArray(r)&&r.type==="ndarray"&&typeof r.value=="number"?e[n]=r.value:eA(r))}}}function Tc(e,t={},n={},r="object",a=!1){if(typeof e=="string"){let s=e,i;if(s in n)i=n[s];else if(s in ir)i=ir[s];else if(i=t[s],i==null)throw new V(`Unknown ${r}: ${e}. This may be due to one of the following reasons:
|
|
1. The ${r} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
|
|
2. The custom ${r} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);return i}else{let s=e;if(s.className==null||s.config==null)throw new V(`${r}: Improper config format: ${JSON.stringify(s)}.
|
|
'className' and 'config' must set.`);let i=s.className,o,l;if(i in n?[o,l]=n[i]:i in ir?[o,l]=ir.className:i in t&&([o,l]=t[i]),o==null)throw new V(`Unknown ${r}: ${i}. This may be due to one of the following reasons:
|
|
1. The ${r} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
|
|
2. The custom ${r} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);if(l!=null){let u={};for(let p of Object.keys(ir))u[p]=ir[p];for(let p of Object.keys(n))u[p]=n[p];let c=s.config;c.customObjects=u;let h=Object.assign({},ir);for(let p of Object.keys(n))ir[p]=n[p];eA(s.config);let d=l(o,s.config,n,a);return ir=Object.assign({},h),d}else{let u=Object.assign({},ir);for(let h of Object.keys(n))ir[h]=n[h];let c=new o(s.config);return ir=Object.assign({},u),c}}}function wQ(e,t){return e<t?-1:e>t?1:0}function Fp(e,t){return-1*wQ(e,t)}function Wa(e){if(e==null)return e;let t=[];for(let n of e)t.indexOf(n)===-1&&t.push(n);return t}function _Q(e){if(e==null)throw new V(`Invalid value in obj: ${JSON.stringify(e)}`);for(let t in e)if(e.hasOwnProperty(t))return!1;return!0}function Ii(e,t,n){if(n!=null&&e.indexOf(n)<0)throw new V(`${n} is not a valid ${t}. Valid values are ${e} or null/undefined.`)}function tA(e,t,n=0,r=Infinity){return Br(n>=0),Br(r>=n),Array.isArray(e)&&e.length>=n&&e.length<=r&&e.every(a=>typeof a===t)}function Ht(e,t){Array.isArray(e)?(k.assert(e.length>0,()=>`${t} is unexpectedly an empty array.`),e.forEach((n,r)=>Ht(n,`element ${r+1} of ${t}`))):k.assert(Number.isInteger(e)&&e>0,()=>`Expected ${t} to be a positive integer, but got ${x3(e)}.`)}function x3(e){return e===null?"null":Array.isArray(e)?"["+e.map(t=>x3(t)).join(",")+"]":typeof e=="string"?`"${e}"`:`${e}`}function bQ(e,t){let n=k.now(),r;return(...a)=>{let s=k.now();return s-n<t||(n=s,r=e(...a)),r}}function w3(e){return e==="relu"?"relu":e==="linear"?"linear":e==="elu"?"elu":null}function nA(e,t){return W(()=>Qt(Se(L(e,e),t,!0)))}var Ec=class extends ae.Serializable{getConfig(){return{}}},rA=class extends Ec{constructor(e){super();this.defaultMaxValue=2,this.defaultAxis=0,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return W(()=>{let t=nA(e,this.axis),n=yn(t,0,this.maxValue);return L(e,_e(n,oe(Pt(),t)))})}getConfig(){return{maxValue:this.maxValue,axis:this.axis}}};rA.className="MaxNorm";ae.registerClass(rA);var aA=class extends Ec{constructor(e){super();this.defaultAxis=0,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return W(()=>_e(e,oe(Pt(),nA(e,this.axis))))}getConfig(){return{axis:this.axis}}};aA.className="UnitNorm";ae.registerClass(aA);var sA=class extends Ec{apply(e){return zr(e)}};sA.className="NonNeg";ae.registerClass(sA);var iA=class extends Ec{constructor(e){super();this.defaultMinValue=0,this.defaultMaxValue=1,this.defaultRate=1,this.defaultAxis=0,this.minValue=e.minValue!=null?e.minValue:this.defaultMinValue,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.rate=e.rate!=null?e.rate:this.defaultRate,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return W(()=>{let t=nA(e,this.axis),n=oe(L(this.rate,yn(t,this.minValue,this.maxValue)),L(1-this.rate,t));return L(e,_e(n,oe(Pt(),t)))})}getConfig(){return{minValue:this.minValue,maxValue:this.maxValue,rate:this.rate,axis:this.axis}}};iA.className="MinMaxNorm";ae.registerClass(iA);var _3={maxNorm:"MaxNorm",minMaxNorm:"MinMaxNorm",nonNeg:"NonNeg",unitNorm:"UnitNorm"};function Lt(e){return Qm(e)}function b3(e,t={}){return Tc(e,ae.SerializationMap.getMap().classNameMap,t,"constraint")}function Wt(e){if(e==null)return null;if(typeof e=="string"){let t={className:e in _3?_3[e]:e,config:{}};return b3(t)}else return e instanceof Ec?e:b3(e)}function mQ(e){return new rA(e)}function AQ(e){return new aA(e)}function yQ(){return new sA}function gQ(e){return new iA(e)}var v3={};$e(v3,{constant:()=>NQ,glorotNormal:()=>FQ,glorotUniform:()=>RQ,heNormal:()=>MQ,heUniform:()=>OQ,identity:()=>EQ,leCunNormal:()=>DQ,leCunUniform:()=>$Q,ones:()=>kQ,orthogonal:()=>zQ,randomNormal:()=>SQ,randomUniform:()=>IQ,truncatedNormal:()=>TQ,varianceScaling:()=>CQ,zeros:()=>vQ});var PQ=["channelsFirst","channelsLast"],LQ=["nearest","bilinear"],WQ=["valid","same","causal"],BQ=["max","avg"],VQ=["sum","mul","concat","ave"],zl=new Map;function Et(e){Ii(PQ,"DataFormat",e)}function UQ(e){Ii(LQ,"InterpolationFormat",e)}function Yn(e){Ii(WQ,"PaddingMode",e)}function k3(e){Ii(BQ,"PoolMode",e)}var Cc=[],N3="/";function Si(e,t){Cc.push(e);try{let n=t();return Cc.pop(),n}catch(n){throw Cc.pop(),n}}function jQ(){return Cc.length===0?"":Cc.join(N3)+N3}function S3(e){if(!I3(e))throw new Error("Not a valid tensor name: '"+e+"'");return jQ()+e}function T3(e){if(!I3(e))throw new Error("Not a valid tensor name: '"+e+"'");zl.has(e)||zl.set(e,0);let t=zl.get(e);if(zl.set(e,zl.get(e)+1),t>0){let n=`${e}_${t}`;return zl.set(n,1),n}else return e}var GQ=new RegExp(/^[A-Za-z0-9][-A-Za-z0-9\._\/]*$/);function I3(e){return!!e.match(GQ)}function HQ(e){return e===parseInt(e.toString(),10)}function Ba(e,t,n){t==null&&(t=0),n==null&&(n=e.length);let r=1;for(let a=t;a<n;++a)r*=e[a];return r}function E3(e){return e=Array.isArray(e)?new Float32Array(e):e,jt(e)}function Pl(e){return yl(E3(e)).dataSync()[0]}function Va(e){return Xn(E3(e)).dataSync()[0]}function _r(e,t){if(t<e)throw new V(`end (${t}) < begin (${e}) is forbidden.`);let n=[];for(let r=e;r<t;++r)n.push(r);return n}function Rc(e,t){return e.asType(t)}function Fc(e,t=-1){let n=e.shape.slice();return t<0&&(t=n.length+t+1),n.splice(t,0,1),e.reshape(n)}function qQ(e,t){return W(()=>{if(e.shape.length!==2)throw new V(`repeat() expects a rank-2 tensor, but received a rank-${e.shape.length} tensor.`);let n=Fc(e,1);return oA(n,[1,t,1])})}function XQ(e){let t=[Ba(e.shape)];return e.reshape(t)}function KQ(e){if(e.rank<=1)throw new V(`batchFlatten requires a minimum rank of 2. Got rank: ${e.rank}.`);let t=[e.shape[0],Ba(e.shape,1)];return e.reshape(t)}function Ti(e,t,n){return W(()=>{switch(e.rank){case 1:return Bd(e,t,n);case 2:return tm(e,[t,0],[n,e.shape[1]]);case 3:return Vd(e,[t,0,0],[n,e.shape[1],e.shape[2]]);case 4:return ic(e,[t,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3]]);case 5:return Ce(e,[t,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4]]);case 6:return Ce(e,[t,0,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4],e.shape[5]]);default:throw new V(`sliceAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}})}function lA(e,t,n){return W(()=>{switch(e.rank){case 1:return Bd(e,t,n);case 2:return tm(e,[0,t],[e.shape[0],n]);case 3:return Vd(e,[0,0,t],[e.shape[0],e.shape[1],n]);case 4:return ic(e,[0,0,0,t],[e.shape[0],e.shape[1],e.shape[2],n]);default:throw new V(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function Mp(e,t,n,r){return W(()=>{switch(e.rank){case 1:return Bd(e,t,n);case 2:switch(r){case 1:return Ti(e,t,n);case 2:return lA(e,t,n);default:throw new V(`The axis is not within the rank of the tensor ${r}`)}case 3:switch(r){case 1:return Ti(e,t,n);case 2:return Vd(e,[0,t,0],[e.shape[0],n,e.shape[2]]);case 3:return lA(e,t,n);default:throw new V(`The axis is not within the rank of the tensor ${r}`)}case 4:switch(r){case 1:return Ti(e,t,n);case 2:return ic(e,[0,t,0,0],[e.shape[0],n,e.shape[2],e.shape[3]]);case 3:return ic(e,[0,0,t,0],[e.shape[0],e.shape[1],n,e.shape[3]]);case 4:return lA(e,t,n);default:throw new V(`The axis is not within the rank of the tensor ${r}`)}default:throw new V(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function uA(e,t=-1){let n;return t<0&&(n=e[0].rank,n!==0?t=n:t=0),t===e[0].rank&&(t=-1),rt(e,t)}function C3(e,t){switch(e.rank){case 1:return x5([e,t]);case 2:return ui([e,t],0);case 3:return w5([e,t],0);case 4:return _5([e,t],0);default:throw new V(`concatAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}}function oA(e,t){if(Array.isArray(t)||(t=[t]),e.rank!==t.length)throw new V(`The length of input n (${t.length}) does not match the number of dimensions in input x (${e.rank})`);return Fa(e,t)}function Op(e,t=0,n=1,r,a){return P5(e,t,n,r,a)}function Vr(e,t,n,r){if(e.rank<2||t.rank<2)throw new Oe(`dot requires both inputs to be rank >= 2 but got x shape = ${e.shape} and y shape = ${t.shape}`);if(t.rank>=3){let a=e.shape.slice(-1)[0],s=t.shape.slice(-2)[0];if(a!==s)throw new Oe(`If rank y >= 3, then the second last dim of y must equal the last dim of x but got x shape = ${e.shape} and y shape = ${t.shape}`)}if(e.rank===2&&t.rank===2){let a=!1,s=!1;return $a.matMul({a:e,b:t,transposeA:a,transposeB:s,bias:r?cA(e.rank,r,xr()):null,activation:n})}else{let a=e.shape.slice(),s=a.pop();e=e.reshape([-1,s]);let i=t.shape.slice(),o=i.pop(),l=i.pop(),u=[...i,o],c=Array.from({length:t.rank},(f,m)=>m===0?t.rank-2:m<=t.rank-2?m-1:m);t=t.transpose(c).reshape([l,-1]);let h=[...a,...u],d=!1,p=!1;return $a.matMul({a:e,b:t,transposeA:d,transposeB:p,bias:r?cA(e.rank,r,xr()):null,activation:n}).reshape(h)}}function R3(e,t,n){return W(()=>(Array.isArray(t)?t=jt(t,"int32"):t=t.toInt(),hi(e,t,n)))}function Mc(e){return L(e,e)}function cA(e,t,n){let r=t.shape;if(t.rank!==1&&t.rank!==e)throw new V(`Unexpected bias dimensions: ${t.rank}; expected it to be 1 or ${e}`);if(e===5){if(n==="channelsFirst")return r.length===1?t.reshape([1,r[0],1,1,1]):t.reshape([1,r[3],r[0],r[1],r[2]]);if(n==="channelsLast")return r.length===1?t.reshape([1,1,1,1,r[0]]):t.reshape([1].concat(r))}else if(e===4){if(n==="channelsFirst")return r.length===1?t.reshape([1,r[0],1,1]):t.reshape([1,r[2],r[0],r[1]]);if(n==="channelsLast")return r.length===1?t.reshape([1,1,1,r[0]]):t.reshape([1].concat(r))}else if(e===3){if(n==="channelsFirst")return r.length===1?t.reshape([1,r[0],1]):t.reshape([1,r[1],r[0]]);if(n==="channelsLast")return r.length===1?t.reshape([1,1,r[0]]):t.reshape([1].concat(r))}else if(e<3)return t;throw new V(`Unsupported input rank by biasAdd: ${t.rank}`)}function Ur(e,t,n){return W(()=>(n==null&&(n=xr()),Et(n),e.add(cA(e.rank,t,n))))}function ZQ(e,t=1){if(t!==1)throw new Oe(`Support for alpha values other than 1 (${t}) is not implemented yet.`);return fl(e)}function YQ(e){return W(()=>_e(e,$t(e).add(1)))}function F3(e,t,n,r){return W(()=>ix(e,t,n,r))}function JQ(e){return W(()=>{let t=oe(.5,L(.2,e));return yn(t,0,1)})}function Oc(e,t,n=!1){return n?e():t()}var QQ=["fanIn","fanOut","fanAvg"],eee=["normal","uniform","truncatedNormal"];function tee(e){Ii(QQ,"FanMode",e)}function nee(e){Ii(eee,"Distribution",e)}var or=class extends ae.Serializable{fromConfigUsesCustomObjects(){return!1}getConfig(){return{}}},hA=class extends or{apply(e,t){return Tt(e,t)}};hA.className="Zeros";ae.registerClass(hA);var Dp=class extends or{apply(e,t){return Dr(e,t)}};Dp.className="Ones";ae.registerClass(Dp);var dA=class extends or{constructor(e){super();if(typeof e!="object")throw new V(`Expected argument of type ConstantConfig but got ${e}`);if(e.value===void 0)throw new V(`config must have value set but got ${e}`);this.value=e.value}apply(e,t){return W(()=>L(ke(this.value),Dr(e,t)))}getConfig(){return{value:this.value}}};dA.className="Constant";ae.registerClass(dA);var pA=class extends or{constructor(e){super();this.DEFAULT_MINVAL=-.05,this.DEFAULT_MAXVAL=.05,this.minval=e.minval||this.DEFAULT_MINVAL,this.maxval=e.maxval||this.DEFAULT_MAXVAL,this.seed=e.seed}apply(e,t){return gl(e,this.minval,this.maxval,t)}getConfig(){return{minval:this.minval,maxval:this.maxval,seed:this.seed}}};pA.className="RandomUniform";ae.registerClass(pA);var fA=class extends or{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Oe(`randomNormal does not support dType ${t}.`);return Op(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};fA.className="RandomNormal";ae.registerClass(fA);var mA=class extends or{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Oe(`truncatedNormal does not support dType ${t}.`);return jd(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};mA.className="TruncatedNormal";ae.registerClass(mA);var AA=class extends or{constructor(e){super();this.gain=e.gain!=null?e.gain:1}apply(e,t){return W(()=>{if(e.length!==2||e[0]!==e[1])throw new V("Identity matrix initializer can only be used for 2D square matrices.");return L(this.gain,Vf(e[0]))})}getConfig(){return{gain:this.gain}}};AA.className="Identity";ae.registerClass(AA);function ree(e,t="channelsLast"){let n,r;if(Et(t),e.length===2)n=e[0],r=e[1];else if([3,4,5].indexOf(e.length)!==-1){if(t==="channelsFirst"){let a=Ba(e,2);n=e[1]*a,r=e[0]*a}else if(t==="channelsLast"){let a=Ba(e,0,e.length-2);n=e[e.length-2]*a,r=e[e.length-1]*a}}else{let a=Ba(e);n=Math.sqrt(a),r=Math.sqrt(a)}return[n,r]}var bn=class extends or{constructor(e){super();if(e.scale<0)throw new V(`scale must be a positive float. Got: ${e.scale}`);this.scale=e.scale==null?1:e.scale,this.mode=e.mode==null?"fanIn":e.mode,tee(this.mode),this.distribution=e.distribution==null?"normal":e.distribution,nee(this.distribution),this.seed=e.seed}apply(e,t){let n=ree(e),r=n[0],a=n[1],s=this.scale;if(this.mode==="fanIn"?s/=Math.max(1,r):this.mode==="fanOut"?s/=Math.max(1,a):s/=Math.max(1,(r+a)/2),this.distribution==="normal"){let i=Math.sqrt(s);if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Oe(`${this.getClassName()} does not support dType ${t}.`);return jd(e,0,i,t,this.seed)}else{let i=Math.sqrt(3*s);return gl(e,-i,i,t)}}getConfig(){return{scale:this.scale,mode:this.mode,distribution:this.distribution,seed:this.seed}}};bn.className="VarianceScaling";ae.registerClass(bn);var $p=class extends bn{constructor(e){super({scale:1,mode:"fanAvg",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return bn.className}};$p.className="GlorotUniform";ae.registerClass($p);var zp=class extends bn{constructor(e){super({scale:1,mode:"fanAvg",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return bn.className}};zp.className="GlorotNormal";ae.registerClass(zp);var Pp=class extends bn{constructor(e){super({scale:2,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return bn.className}};Pp.className="HeNormal";ae.registerClass(Pp);var Lp=class extends bn{constructor(e){super({scale:2,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return bn.className}};Lp.className="HeUniform";ae.registerClass(Lp);var Wp=class extends bn{constructor(e){super({scale:1,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return bn.className}};Wp.className="LeCunNormal";ae.registerClass(Wp);var Bp=class extends bn{constructor(e){super({scale:1,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return bn.className}};Bp.className="LeCunNormal";ae.registerClass(Bp);var yA=class extends or{constructor(e){super();if(this.DEFAULT_GAIN=1,this.gain=e.gain==null?this.DEFAULT_GAIN:e.gain,this.seed=e.seed,this.seed!=null)throw new Oe("Random seed is not implemented for Orthogonal Initializer yet.")}apply(e,t){return W(()=>{if(e.length<2)throw new Oe("Shape must be at least 2D.");e[0]*e[1]>2e3&&console.warn(`Orthogonal initializer is being called on a matrix with more than 2000 (${e[0]*e[1]}) elements: Slowness may result.`);let n=e[0]>e[1]?[e[1],e[0]]:e,r=Op(n,0,1,"float32"),a=xx.gramSchmidt(r);return e[0]>e[1]&&(a=a.transpose()),L(this.gain,a)})}getConfig(){return{gain:this.gain,seed:this.seed}}};yA.className="Orthogonal";ae.registerClass(yA);var M3={constant:"Constant",glorotNormal:"GlorotNormal",glorotUniform:"GlorotUniform",heNormal:"HeNormal",heUniform:"HeUniform",identity:"Identity",leCunNormal:"LeCunNormal",leCunUniform:"LeCunUniform",ones:"Ones",orthogonal:"Orthogonal",randomNormal:"RandomNormal",randomUniform:"RandomUniform",truncatedNormal:"TruncatedNormal",varianceScaling:"VarianceScaling",zeros:"Zeros"};function O3(e,t={}){return Tc(e,ae.SerializationMap.getMap().classNameMap,t,"initializer")}function kt(e){return Qm(e)}function gt(e){if(typeof e=="string"){let t=e in M3?M3[e]:e;if(t==="GlorotNormal")return new zp;if(t==="GlorotUniform")return new $p;if(t==="HeNormal")return new Pp;if(t==="HeUniform")return new Lp;if(t==="LeCunNormal")return new Wp;if(t==="LeCunUniform")return new Bp;{let n={};return n.className=t,n.config={},O3(n)}}else return e instanceof or?e:O3(e)}function vQ(){return new hA}function kQ(){return new Dp}function NQ(e){return new dA(e)}function IQ(e){return new pA(e)}function SQ(e){return new fA(e)}function TQ(e){return new mA(e)}function EQ(e){return new AA(e)}function CQ(e){return new bn(e)}function RQ(e){return new $p(e)}function FQ(e){return new zp(e)}function MQ(e){return new Pp(e)}function OQ(e){return new Lp(e)}function DQ(e){return new Wp(e)}function $Q(e){return new Bp(e)}function zQ(e){return new yA(e)}var D3={};$e(D3,{Layer:()=>qe,RNN:()=>jr,RNNCell:()=>Dc,activation:()=>xee,add:()=>Tee,alphaDropout:()=>hte,average:()=>Eee,averagePooling1d:()=>gA,averagePooling2d:()=>xA,averagePooling3d:()=>wA,avgPool1d:()=>Pee,avgPool2d:()=>Wee,avgPool3d:()=>Vee,avgPooling1d:()=>Lee,avgPooling2d:()=>Bee,avgPooling3d:()=>Uee,batchNormalization:()=>Dee,bidirectional:()=>rte,concatenate:()=>Cee,conv1d:()=>hee,conv2d:()=>dee,conv2dTranspose:()=>pee,conv3d:()=>fee,convLstm2d:()=>Qee,convLstm2dCell:()=>ete,cropping2D:()=>Aee,dense:()=>wee,depthwiseConv2d:()=>gee,dot:()=>Oee,dropout:()=>_ee,elu:()=>see,embedding:()=>See,flatten:()=>vee,gaussianDropout:()=>cte,gaussianNoise:()=>ute,globalAveragePooling1d:()=>jee,globalAveragePooling2d:()=>Gee,globalMaxPool1d:()=>ste,globalMaxPool2d:()=>ite,globalMaxPooling1d:()=>z3,globalMaxPooling2d:()=>P3,gru:()=>qee,gruCell:()=>Xee,input:()=>$3,inputLayer:()=>aee,layerNormalization:()=>$ee,leakyReLU:()=>oee,lstm:()=>Kee,lstmCell:()=>Zee,masking:()=>dte,maxPool1d:()=>ote,maxPool2d:()=>lte,maxPooling1d:()=>L3,maxPooling2d:()=>W3,maxPooling3d:()=>Hee,maximum:()=>Ree,minimum:()=>Fee,multiply:()=>Mee,permute:()=>Iee,prelu:()=>lee,reLU:()=>iee,repeatVector:()=>kee,reshape:()=>Nee,rnn:()=>tte,separableConv2d:()=>mee,simpleRNN:()=>Yee,simpleRNNCell:()=>Jee,softmax:()=>uee,spatialDropout1d:()=>bee,stackedRNNCells:()=>nte,thresholdedReLU:()=>cee,timeDistributed:()=>ate,upSampling2d:()=>yee,zeroPadding2d:()=>zee});var pte=0;function B3(){return pte++}var Vp={};function Up(e=""){return e in Vp||(Vp[e]=0),Vp[e]+=1,e+Vp[e].toString()}function _A(e){return Array.isArray(e)&&Array.isArray(e[0])}function jp(e){return e.length===0?[]:Array.isArray(e[0])?e:[e]}function ze(e){let t;if(Array.isArray(e)){if(e.length!==1)throw new V(`Expected Tensor length to be 1; got ${e.length}`);t=e[0]}else t=e;return t}function ht(e){if(Array.isArray(e)&&Array.isArray(e[0])){if(e.length===1)return e=e,e[0];throw new V(`Expected exactly 1 Shape; got ${e.length}`)}else return e}function Gp(e){let t=0;for(let n of e)n.shape.length===0?t+=1:t+=n.shape.reduce((r,a)=>r*a);return t}var V3="Variable",U3=class{constructor(e,t="float32",n=V3,r=!0,a=null){this.dtype=t==null?"float32":t,this.shape=e.shape,this.id=B3(),n=n==null?V3:n,this.originalName=S3(n),this.name=T3(this.originalName),this.trainable_=r,this.constraint=a,this.val=W5(e,this.trainable_,this.name,this.dtype)}read(){return this.assertNotDisposed(),this.val}write(e){return this.assertNotDisposed(),fte(this.val,e),this.val.id!==e.id&&(this.val.assign(e),this.constraint!=null&&this.val.assign(this.constraint.apply(this.val))),this}dispose(){this.assertNotDisposed(),this.val.dispose()}assertNotDisposed(){if(this.val.isDisposed)throw new Error(`LayersVariable ${this.name} is already disposed.`)}get trainable(){return this.trainable_}set trainable(e){this.trainable_=e,this.val.trainable=e}};function fte(e,t){if(e.shape.toString()!==t.shape.toString())throw new Error("Shape mismatch: "+JSON.stringify(e.shape)+" vs. "+JSON.stringify(t.shape))}function bA(e){return e.map(t=>t.read())}function vA(e){e.forEach(t=>{t[0].write(t[1])})}var qt=class{constructor(e){this.dtype=e.dtype,this.shape=e.shape,e.shape!=null?this.ndim=e.shape.length:this.ndim=e.ndim,this.maxNDim=e.maxNDim,this.minNDim=e.minNDim,this.axes=e.axes||{}}},br=class{constructor(e,t,n,r,a,s,i){this.dtype=e,this.shape=t,this.sourceLayer=n,this.inputs=r,this.callArgs=a,this.outputTensorIndex=i,this.id=B3(),s!=null&&(this.originalName=S3(s),this.name=T3(this.originalName)),this.rank=t.length}},mte=0,Hp=class{constructor(e,t){this.callArgs=t,this.id=mte++,this.outboundLayer=e.outboundLayer,this.inboundLayers=e.inboundLayers,this.nodeIndices=e.nodeIndices,this.tensorIndices=e.tensorIndices,this.inputTensors=e.inputTensors,this.outputTensors=e.outputTensors,this.inputMasks=e.inputMasks,this.outputMasks=e.outputMasks,this.inputShapes=e.inputShapes,this.outputShapes=e.outputShapes;for(let n of e.inboundLayers)n!=null&&n.outboundNodes.push(this);e.outboundLayer.inboundNodes.push(this)}getConfig(){let e=[];for(let t of this.inboundLayers)t!=null?e.push(t.name):e.push(null);return{outboundLayer:this.outboundLayer?this.outboundLayer.name:null,inboundLayers:e,nodeIndices:this.nodeIndices,tensorIndices:this.tensorIndices}}},Ate=0,qe=class extends ae.Serializable{constructor(e={}){super();this._callHook=null,this._addedWeightNames=[],this._stateful=!1,this.id=Ate++,this.activityRegularizer=null,this.inputSpec=null,this.supportsMasking=!1,this._trainableWeights=[],this._nonTrainableWeights=[],this._losses=[],this._updates=[],this._built=!1,this.inboundNodes=[],this.outboundNodes=[];let t=e.name;if(!t){let n=this.getClassName();t=pa(n)+"_"+Up(n)}if(this.name=t,this.trainable_=e.trainable==null?!0:e.trainable,e.inputShape!=null||e.batchInputShape!=null){let n;if(e.batchInputShape!=null)n=e.batchInputShape;else if(e.inputShape!=null){let a=null;e.batchSize!=null&&(a=e.batchSize),n=[a].concat(e.inputShape)}this.batchInputShape=n;let r=e.dtype;r==null&&(r=e.inputDType),r==null&&(r="float32"),this.dtype=r}e.weights!=null?this.initialWeights=e.weights:this.initialWeights=null,this._refCount=null,this.fastWeightInitDuringBuild=!1}static nodeKey(e,t){return e.name+"_ib-"+t.toString()}getNodeAtIndex(e,t){if(this.inboundNodes.length===0)throw new wr(`The layer has never been called and thus has no defined ${t}.`);if(this.inboundNodes.length<=e)throw new V(`Asked to get ${t} at node ${e}, but the layer has only ${this.inboundNodes.length} inbound nodes.`);return this.inboundNodes[e]}getInputAt(e){return _n(this.getNodeAtIndex(e,"input").inputTensors)}getOutputAt(e){return _n(this.getNodeAtIndex(e,"output").outputTensors)}get input(){if(this.inboundNodes.length>1)throw new da(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer input" is ill-defined. Use \`getInputAt(nodeIndex)\` instead.`);if(this.inboundNodes.length===0)throw new da(`Layer ${this.name} is not connected, no input to return.`);return _n(this.getNodeAtIndex(0,"input").inputTensors)}get output(){if(this.inboundNodes.length===0)throw new da(`Layer ${this.name} has no inbound nodes.`);if(this.inboundNodes.length>1)throw new da(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer output" is ill-defined. Use \`getOutputAt(nodeIndex)\` instead.`);return _n(this.getNodeAtIndex(0,"output").outputTensors)}get losses(){return this._losses}calculateLosses(){return this.losses.map(e=>e())}get updates(){return this._updates}get built(){return this._built}set built(e){this._built=e}get trainable(){return this.trainable_}set trainable(e){this._trainableWeights.forEach(t=>t.trainable=e),this.trainable_=e}get trainableWeights(){return this.trainable_?this._trainableWeights.filter(e=>e.trainable):[]}set trainableWeights(e){this._trainableWeights=e}get nonTrainableWeights(){return this.trainable?this._trainableWeights.filter(e=>!e.trainable).concat(this._nonTrainableWeights):this._trainableWeights.concat(this._nonTrainableWeights)}set nonTrainableWeights(e){this._nonTrainableWeights=e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}get stateful(){return this._stateful}resetStates(){if(!this.stateful)throw new Error("Cannot call the resetStates() method of a non-stateful Layer object.")}assertInputCompatibility(e){if(e=mt(e),this.inputSpec==null||this.inputSpec.length===0)return;let t=mt(this.inputSpec);if(e.length!==t.length)throw new V(`Layer ${this.name} expects ${t.length} inputs, but it received ${e.length} input tensors. Input received: ${e}`);for(let n=0;n<e.length;n++){let r=e[n],a=t[n];if(a==null)continue;let s=r.rank;if(a.ndim!=null&&s!==a.ndim)throw new V(`Input ${n} is incompatible with layer ${this.name}: expected ndim=${a.ndim}, found ndim=${s}`);if(a.maxNDim!=null&&s>a.maxNDim)throw new V(`Input ${n} is incompatible with layer ${this.name}: expected max_ndim=${a.maxNDim}, found ndim=${s}`);if(a.minNDim!=null&&s<a.minNDim)throw new V(`Input ${n} is incompatible with layer ${this.name}: expected min_ndim=${a.minNDim}, found ndim=${s}.`);if(a.dtype!=null&&r.dtype!==a.dtype)throw new V(`Input ${n} is incompatible with layer ${this.name} : expected dtype=${a.dtype}, found dtype=${r.dtype}.`);if(a.axes){let i=r.shape;for(let o in a.axes){let l=Number(o),u=a.axes[o],c=l>=0?i[l]:i[i.length+l];if(u!=null&&[u,null].indexOf(c)===-1)throw new V(`Input ${n} is incompatible with layer ${this.name}: expected axis ${l} of input shape to have value ${u} but got shape ${i}.`)}}if(a.shape!=null)for(let i=0;i<a.shape.length;++i){let o=a.shape[i],l=r.shape[i];if(o!=null&&l!=null&&o!==l)throw new V(`Input ${n} is incompatible with layer ${this.name}: expected shape=${a.shape}, found shape=${r.shape}.`)}}}call(e,t){return e}invokeCallHook(e,t){this._callHook!=null&&this._callHook(e,t)}setCallHook(e){this._callHook=e}clearCallHook(){this._callHook=null}apply(e,t){t=t||{},this.assertNotDisposed();let n=mt(e),r=!0;for(let s of n)if(!(s instanceof br)){r=!1;break}let a=!0;for(let s of n)if(s instanceof br){a=!1;break}if(r===a)throw new V("Arguments to apply() must be all SymbolicTensors or all Tensors");return Si(this.name,()=>{if(!this.built){this.assertInputCompatibility(e);let s=[];for(let i of mt(e))s.push(i.shape);this.build(_n(s)),this.built=!0,this.initialWeights&&this.setWeights(this.initialWeights),this._refCount===null&&a&&(this._refCount=1)}if(this.assertInputCompatibility(e),a){let s=this.call(e,t),i=mt(s),o=[];for(let l of i)n.indexOf(l)!==-1&&(l=l.clone()),o.push(l);if(s=_n(o),this.activityRegularizer!=null)throw new Oe("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return s}else{let s=yte(e),i=this.computeOutputShape(s),o,l=gte(e);if(this.warnOnIncompatibleInputShape(Array.isArray(e)?s[0]:s),i!=null&&i.length>0&&Array.isArray(i[0])?o=i.map((u,c)=>new br(l,u,this,mt(e),t,this.name,c)):o=new br(l,i,this,mt(e),t,this.name),this.addInboundNode(e,o,null,null,s,i,t),this._refCount++,this.activityRegularizer!=null)throw new Oe("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return o}})}warnOnIncompatibleInputShape(e){if(this.batchInputShape!=null)if(e.length!==this.batchInputShape.length)console.warn(`The rank of the input tensor provided (shape: ${JSON.stringify(e)}) does not match that of the batchInputShape (${JSON.stringify(this.batchInputShape)}) of the layer ${this.name}`);else{let t=!1;this.batchInputShape.forEach((n,r)=>{n!=null&&e[r]!=null&&e[r]!==n&&(t=!0)}),t&&console.warn(`The shape of the input tensor (${JSON.stringify(e)}) does not match the expectation of layer ${this.name}: ${JSON.stringify(this.batchInputShape)}`)}}get outputShape(){if(this.inboundNodes==null||this.inboundNodes.length===0)throw new da(`The layer ${this.name} has never been called and thus has no defined output shape.`);let e=[];for(let t of this.inboundNodes){let n=JSON.stringify(t.outputShapes);e.indexOf(n)===-1&&e.push(n)}if(e.length===1){let t=this.inboundNodes[0].outputShapes;return Array.isArray(t)&&Array.isArray(t[0])&&t.length===1?t[0]:t}else throw new da(`The layer ${this.name} has multiple inbound nodes with different output shapes. Hence the notion of "output shape" is ill-defined for the layer.`)}countParams(){if(!this.built)throw new wr(`You tried to call countParams() on ${this.name}, but the layer is not built yet. Build it first by calling build(batchInputShape).`);return Gp(this.weights)}build(e){this.built=!0}getWeights(e=!1){return bA(e?this.trainableWeights:this.weights)}setWeights(e){W(()=>{let t=this.weights;if(t.length!==e.length)throw new V(`You called setWeights(weights) on layer "${this.name}" with a weight list of length ${e.length}, but the layer was expecting ${t.length} weights. Provided weights: ${e}...`);if(t.length===0)return;let n=[],r=bA(t);for(let a=0;a<r.length;++a){let s=r[a],i=t[a],o=e[a];if(!k.arraysEqual(s.shape,o.shape))throw new V(`Layer weight shape ${s.shape} not compatible with provided weight shape ${o.shape}`);n.push([i,o])}vA(n)})}addWeight(e,t,n,r,a,s,i){if(this._addedWeightNames.indexOf(e)!==-1)throw new V(`Duplicate weight name ${e} for layer ${this.name}`);this._addedWeightNames.push(e),n==null&&(n="float32"),this.fastWeightInitDuringBuild&&(r=gt("zeros"));let o=r.apply(t,n),l=new U3(o,n,e,s,i);return o.dispose(),a!=null&&this.addLoss(()=>a.apply(l.read())),s==null&&(s=!0),s?this._trainableWeights.push(l):this._nonTrainableWeights.push(l),l}setFastWeightInitDuringBuild(e){this.fastWeightInitDuringBuild=e}addLoss(e){e==null||Array.isArray(e)&&e.length===0||(e=mt(e),this._losses!==void 0&&this._losses!==null&&this.losses.push(...e))}computeOutputShape(e){return e}computeMask(e,t){if(!this.supportsMasking){if(t!=null)if(Array.isArray(t))t.forEach(n=>{if(n!=null)throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`)});else throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`);return null}return t}addInboundNode(e,t,n,r,a,s,i=null){let o=mt(e);t=mt(t),n=mt(n),r=mt(r),a=jp(a),s=jp(s);let l=[],u=[],c=[];for(let h of o)l.push(h.sourceLayer),u.push(h.nodeIndex),c.push(h.tensorIndex);new Hp({outboundLayer:this,inboundLayers:l,nodeIndices:u,tensorIndices:c,inputTensors:o,outputTensors:t,inputMasks:n,outputMasks:r,inputShapes:a,outputShapes:s},i);for(let h=0;h<t.length;h++)t[h].sourceLayer=this,t[h].nodeIndex=this.inboundNodes.length-1,t[h].tensorIndex=h}getConfig(){let e={name:this.name,trainable:this.trainable};return this.batchInputShape!=null&&(e.batchInputShape=this.batchInputShape),this.dtype!=null&&(e.dtype=this.dtype),e}disposeWeights(){return this.weights.forEach(e=>e.dispose()),this.weights.length}assertNotDisposed(){if(this._refCount===0)throw new Error(`Layer '${this.name}' is already disposed.`)}dispose(){if(!this.built)throw new Error(`Cannot dispose Layer ${this.name} because it has not been built yet.`);if(this._refCount===null)throw new Error(`Cannot dispose Layer ${this.name} because it has not been used yet.`);this.assertNotDisposed();let e=0;return--this._refCount==0&&(e=this.disposeWeights()),{refCountAfterDispose:this._refCount,numDisposedVariables:e}}};function yte(e){e=mt(e);let t=[];for(let n of e)t.push(n.shape);return _n(t)}function gte(e){return"float32"}function j3(e,t,n){if((t==null||n!=null&&n>0)&&(t=e.sourceLayer,n=e.nodeIndex),t.inboundNodes.length===0)return[e];{let r=t.inboundNodes[n];if(r.inboundLayers.length===0)return r.inputTensors;{let a=[];for(let s=0;s<r.inboundLayers.length;s++){let i=r.inputTensors[s],o=r.inboundLayers[s],l=r.nodeIndices[s],u=j3(i,o,l);for(let c of u)a.indexOf(c)===-1&&a.push(c)}return a}}}var Ll=class extends qe{constructor(e){super({dtype:e.dtype,name:e.name!=null?e.name:Up("input").toString()});if(e.batchSize==null&&(e.batchSize=null),e.sparse==null&&(e.sparse=!1),this.trainable=!1,this.built=!0,this.sparse=e.sparse,e.inputShape!=null&&e.batchInputShape!=null)throw new V("Only provide the inputShape OR batchInputShape argument to inputLayer, not both at the same time.");let t=e.batchInputShape;if(t==null){if(e.inputShape==null)throw new V("An InputLayer should be passed either a `batchInputShape` or an `inputShape`.");t=[e.batchSize].concat(e.inputShape)}else if(e.batchSize!=null)throw new V("Cannot specify batchSize if batchInputShape is specified when creating an InputLayer.");let n=e.dtype||"float32";this.batchInputShape=t,this.dtype=n,this.inputSpec=[{shape:t}];let r=new br(this.dtype,this.batchInputShape,this,[],{},this.name);r.nodeIndex=0,r.tensorIndex=0,new Hp({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:[r],outputTensors:[r],inputMasks:[null],outputMasks:[null],inputShapes:[t],outputShapes:[t]})}apply(e,t){throw new V(`Cannot pass any input to an InputLayer's apply() method. InputLayer name: ${this.name}`)}dispose(){return{refCountAfterDispose:this._refCount,numDisposedVariables:0}}getConfig(){return{batchInputShape:this.batchInputShape,dtype:this.dtype,sparse:this.sparse,name:this.name}}};Ll.className="InputLayer";ae.registerClass(Ll);function G3(e){if(e.batchShape==null&&e.shape==null)throw new Error("Please provide to Input either a `shape` or a `batchShape` argument. Note that `shape` does not include the batch dimension.");if(e.batchShape!=null&&e.shape!=null)throw new V("Please provide either a `shape` or `batchShape` argument to Input, but not both.");let t=e.batchShape;e.shape!=null&&t==null&&(t=[null].concat(e.shape));let n=e.dtype;return n==null&&(n="float32"),new Ll({batchInputShape:t,name:e.name,dtype:n,sparse:e.sparse}).inboundNodes[0].outputTensors[0]}async function Ua(e){if(e==null)return;let t=[],n=[],r=[];for(let a in e){let s=e[a];if(typeof s!="number"){let i=s;t.push(i.data()),n.push(a),r.push(i)}}if(t.length>0){let a=await Promise.all(t);for(let s=0;s<a.length;++s)e[n[s]]=a[s][0];Te(r)}}function H3(e){if(e!=null)for(let t in e){let n=e[t];typeof n!="number"&&n.dispose()}}var q3;(function(e){e[e.SILENT=0]="SILENT",e[e.VERBOSE=1]="VERBOSE"})(q3||(q3={}));var xte=125,Wl=class{constructor(){this.validationData=null}setParams(e){this.params=e}async onEpochBegin(e,t){}async onEpochEnd(e,t){}async onBatchBegin(e,t){}async onBatchEnd(e,t){}async onTrainBegin(e){}async onTrainEnd(e){}setModel(e){}},X3=class{constructor(e,t=10){e==null&&(e=[]),this.callbacks=e,this.queueLength=t}append(e){this.callbacks.push(e)}setParams(e){for(let t of this.callbacks)t.setParams(e)}setModel(e){for(let t of this.callbacks)t.setModel(e)}async onEpochBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochBegin(e,t)}async onEpochEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochEnd(e,t)}async onBatchBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchBegin(e,t)}async onBatchEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchEnd(e,t)}async onTrainBegin(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainBegin(e)}async onTrainEnd(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainEnd(e)}},wte=class extends Wl{constructor(){super()}async onEpochBegin(e){this.seen=0,this.totals={}}async onBatchEnd(e,t){t==null&&(t={});let n=t.size==null?0:t.size;this.seen+=n;for(let r in t){let a=t[r];if(typeof a=="number")this.totals.hasOwnProperty(r)||(this.totals[r]=0),this.totals[r]=this.totals[r]+a*n;else{let s;r in this.totals?s=this.totals[r]:this.totals[r]=0;let i=W(()=>oe(this.totals[r],L(a,n)));this.totals[r]=i,s!=null&&s.dispose()}}}async onEpochEnd(e,t){if(t!=null)for(let n of this.params.metrics)this.totals[n]!=null&&(typeof this.totals[n]=="number"?t[n]=this.totals[n]/this.seen:W(()=>{let r=L(_e(1,this.seen),this.totals[n]);t[n]=r,this.totals[n].dispose(),Ut(t[n])}))}},K3=class extends Wl{async onTrainBegin(e){this.epoch=[],this.history={}}async onEpochEnd(e,t){t==null&&(t={}),this.epoch.push(e);for(let n in t)this.history[n]==null&&(this.history[n]=[]),this.history[n].push(t[n])}async syncData(){let e=[],t=[],n=[];for(let a in this.history){let s=this.history[a];for(let i=0;i<s.length;++i)if(typeof s[i]!="number"){let o=s[i];e.push(o.data()),t.push(a),n.push(i)}}let r=await Promise.all(e);for(let a=0;a<r.length;++a)this.history[t[a]][n[a]].dispose(),this.history[t[a]][n[a]]=r[a][0]}},Z3=class extends Wl{constructor(e,t){super();if(this.currentEpoch=0,this.yieldEvery=t||"auto",this.yieldEvery==="auto"&&(this.yieldEvery=xte),this.yieldEvery==="never"&&e.onYield!=null)throw new Error("yieldEvery is `never` but you provided an `onYield` callback. Either change `yieldEvery` or remove the callback");k.isNumber(this.yieldEvery)&&(this.maybeWait=bQ(this.maybeWait.bind(this),this.yieldEvery)),this.trainBegin=e.onTrainBegin,this.trainEnd=e.onTrainEnd,this.epochBegin=e.onEpochBegin,this.epochEnd=e.onEpochEnd,this.batchBegin=e.onBatchBegin,this.batchEnd=e.onBatchEnd,this.yield=e.onYield}async maybeWait(e,t,n){let r=[];this.yield!=null&&(await Ua(n),r.push(this.yield(e,t,n))),r.push(rp()),await Promise.all(r)}async onEpochBegin(e,t){this.currentEpoch=e,this.epochBegin!=null&&(await Ua(t),await this.epochBegin(e,t))}async onEpochEnd(e,t){let n=[];this.epochEnd!=null&&(await Ua(t),n.push(this.epochEnd(e,t))),this.yieldEvery==="epoch"&&n.push(rp()),await Promise.all(n)}async onBatchBegin(e,t){this.batchBegin!=null&&(await Ua(t),await this.batchBegin(e,t))}async onBatchEnd(e,t){let n=[];this.batchEnd!=null&&(await Ua(t),n.push(this.batchEnd(e,t))),this.yieldEvery==="batch"?n.push(rp()):k.isNumber(this.yieldEvery)&&n.push(this.maybeWait(this.currentEpoch,e,t)),await Promise.all(n)}async onTrainBegin(e){this.trainBegin!=null&&(await Ua(e),await this.trainBegin(e))}async onTrainEnd(e){this.trainEnd!=null&&(await Ua(e),await this.trainEnd(e))}};function Y3(e,t){return e==null&&(e={}),e instanceof Wl?[e]:Array.isArray(e)&&e[0]instanceof Wl?e:mt(e).map(n=>new Z3(n,t))}var lr=class{constructor(){}static registerCallbackConstructor(e,t){k.assert(e>=0&&Number.isInteger(e),()=>`Verbosity level is expected to be an integer >= 0, but got ${e}`),lr.checkForDuplicate(t),lr.constructors[e]==null&&(lr.constructors[e]=[]),lr.constructors[e].push(t)}static checkForDuplicate(e){for(let t in lr.constructors)lr.constructors[+t].forEach(n=>{if(n===e)throw new V("Duplicate callback constructor.")})}static clear(){lr.constructors={}}static createCallbacks(e){let t=[];for(let n in lr.constructors){let r=+n;e>=r&&t.push(...lr.constructors[r])}return t.map(n=>new n)}};lr.constructors={};function J3(e,t,n,r,a,s,i,o,l){let u=new K3,c=[new wte,...lr.createCallbacks(t)];e!=null&&c.push(...e),c.push(u);let h=new X3(c);return h.setParams({epochs:n,initialEpoch:r,samples:a,steps:s,batchSize:i,verbose:t,doValidation:o,metrics:l}),{callbackList:h,history:u}}function vr(e,t={},n=!1){return Tc(e,ae.SerializationMap.getMap().classNameMap,t,"layer",n)}function qp(e,t){return W(()=>{e.dtype!=="float32"&&(e=e.asType("float32"));let n=Se(Mc(e),t,!0),r=Ju(n.shape,Pt()),a=Qt(Ar(n,r));return _e(e,a)})}function Ei(e,t){return W(()=>vt(Mc(ye(t,e)),-1))}function Xp(e,t){return W(()=>vt($t(ye(t,e)),-1))}function Bl(e,t){return W(()=>{let n=ye(e,t),r=yn($t(e),Pt(),Number.MAX_VALUE),a=$t(_e(n,r));return L(100,vt(a,-1))})}function _te(e,t){return W(()=>{let n=yn(t,Pt(),Number.MAX_VALUE),r=Tn(oe(1,n)),a=yn(e,Pt(),Number.MAX_VALUE),s=Tn(oe(1,a));return vt(Mc(ye(r,s)),-1)})}function bte(e,t){return W(()=>{let n=Ar(0,ye(1,L(e,t)));return vt(Mc(n),-1)})}function vte(e,t){return W(()=>{let n=Ar(0,ye(1,L(e,t)));return vt(n,-1)})}function kte(e,t){return W(()=>{let n=Se(L(e,t),-1),r=Xn(L(ye(1,e),t),-1);return Ar(0,oe(1,ye(r,n)))})}function Nte(e,t){return W(()=>{let n=Math.log(2),r=ye(t,e),a=ye(oe(r,Al(L(-2,r))),n);return vt(a,-1)})}function $c(e,t,n=!1){return W(()=>{if(n)t=oc(t);else{let r=Se(t,t.shape.length-1,!0);t=_e(t,r)}return t=yn(t,Pt(),1-Pt()),bt(Se(L(e.toFloat(),Tn(t)),t.shape.length-1))})}function Kp(e,t,n=!1){return W(()=>{let r=ml(XQ(e)).toInt();t=yn(t,Pt(),1-Pt());let a=t.shape,s=ol(r,a[a.length-1]).reshape(a);return $c(s,t,n)})}function Ite(e,t){if(!k.arraysEqual(e.shape,t.shape))throw new V(`logits and labels must have the same shape, but got shapes ${JSON.stringify(e.shape)} and ${JSON.stringify(t.shape)}`);return W(()=>{let n=t.relu(),r=t.abs().neg();return n.sub(t.mul(e)).add(r.exp().log1p())})}function Zp(e,t){return W(()=>{let n;return n=yn(t,Pt(),1-Pt()),n=Tn(_e(n,ye(1,n))),vt(Ite(e,n),-1)})}function Ste(e,t){return W(()=>{let n=yn(e,Pt(),1),r=yn(t,Pt(),1);return Se(L(e,Tn(_e(n,r))),-1)})}function Tte(e,t){return W(()=>{let n=Tn(oe(Pt(),t));return vt(ye(t,L(e,n)),-1)})}function kA(e,t){return W(()=>{let n=qp(e,-1),r=qp(t,-1),a=L(n,r);return bt(Se(a,-1))})}var Yp={meanSquaredError:Ei,meanAbsoluteError:Xp,meanAbsolutePercentageError:Bl,meanSquaredLogarithmicError:_te,squaredHinge:bte,hinge:vte,categoricalHinge:kte,logcosh:Nte,categoricalCrossentropy:$c,sparseCategoricalCrossentropy:Kp,binaryCrossentropy:Zp,kullbackLeiblerDivergence:Ste,poisson:Tte,cosineProximity:kA};function NA(e){if(typeof e=="string"){if(e in Yp)return Yp[e];let t=`Unknown loss ${e}`;throw e.toLowerCase().includes("softmaxcrossentropy")&&(t=`Unknown loss ${e}. Use "categoricalCrossentropy" as the string name for tf.losses.softmaxCrossEntropy`),new V(t)}else return e}function IA(e,t){return W(()=>{let n=L(.5,En(t)),r=Rc(qn(t,n),e.dtype);return vt(ia(e,r),-1)})}function SA(e,t){return W(()=>Rc(ia(Hu(e,-1),Hu(t,-1)),"float32"))}function Q3(e,t){return W(()=>rr(e.equal(1),t.equal(1)).sum().cast("float32"))}function Ete(e,t){return W(()=>rr(e.equal(1),t.equal(0)).sum().cast("float32"))}function Cte(e,t){return W(()=>rr(e.equal(0),t.equal(1)).sum().cast("float32"))}function e7(e,t){return W(()=>{let n=Q3(e,t),r=Cte(e,t),a=n.add(r);return gn(qn(a,0),n.div(a),0).cast("float32")})}function Rte(e,t){return W(()=>{let n=Q3(e,t),r=Ete(e,t),a=n.add(r);return gn(qn(a,0),n.div(a),0).cast("float32")})}function t7(e,t){return Zp(e,t)}function n7(e,t){return e.rank===t.rank&&(e=e.squeeze([e.rank-1])),t=t.argMax(-1),t.dtype!==e.dtype&&(t=t.asType(e.dtype)),ia(e,t).asType("float32")}var Fte=Ei,Mte=Ei,Ote=Xp,Dte=Xp,$te=Bl,zte=Bl,TA=$c,Pte=kA,r7=Kp,Jp={binaryAccuracy:IA,categoricalAccuracy:SA,precision:e7,categoricalCrossentropy:TA,sparseCategoricalCrossentropy:r7,mse:Fte,MSE:Mte,mae:Ote,MAE:Dte,mape:$te,MAPE:zte,cosine:Pte};function Lte(e){if(typeof e=="string"&&e in Jp)return Jp[e];if(typeof e!="string"&&e!=null)return e;throw new V(`Unknown metric ${e}`)}function Qp(e){if(Br(e!==null,`Unknown LossOrMetricFn ${e}`),typeof e=="string")return e;{let t;for(let n of Object.keys(Yp))if(Yp[n]===e){t=n;break}if(t!==void 0)return t;for(let n of Object.keys(Jp))if(Jp[n]===e){t=n;break}return t!==void 0?t:e.name}}function Wte(e){let t={Adagrad:()=>mi.adagrad(.01),Adadelta:()=>mi.adadelta(1,.95,Pt()),Adam:()=>mi.adam(.001,.9,.999,Pt()),Adamax:()=>mi.adamax(.002,.9,.999,Pt(),0),RMSProp:()=>mi.rmsprop(.001,.9,0,Pt()),SGD:()=>mi.sgd(.01)};if(t.adagrad=t.Adagrad,t.adadelta=t.Adadelta,t.adam=t.Adam,t.adamax=t.Adamax,t.rmsprop=t.RMSProp,t.sgd=t.SGD,e in t)return t[e]();throw new V(`Unknown Optimizer ${e}`)}var a7=1*1024*1024;function s7(e,t,n=!1){if(e==null||typeof e!="object"||Object.getPrototypeOf(e)!==Object.prototype||!EA(e))throw new Error("User-defined metadata is expected to be a JSON object, but is not.");if(n){let r=JSON.stringify(e);r.length>a7&&console.warn(`User-defined metadata of model "${t}" is too large in size (length=${r.length} when serialized). It is not recommended to store such large objects in user-defined metadata. Please make sure its serialized length is <= ${a7}.`)}}function EA(e){if(e===null)return!0;if(typeof e=="object")if(Object.getPrototypeOf(e)===Object.prototype){let t=Object.keys(e);for(let n of t)if(typeof n!="string"||!EA(e[n]))return!1;return!0}else if(Array.isArray(e)){for(let t of e)if(!EA(t))return!1;return!0}else return!1;else{let t=typeof e;return t==="string"||t==="number"||t==="boolean"}}function Gte(e,t,n,r=console.log){let a=Vte(e),s=["Layer (type)","Output shape","Param #"];a?(t=t||65,n=n||[.45,.85,1]):(t=t||98,n=n||[.33,.55,.67,1]),n[n.length-1]<=1&&(n=n.map(c=>Math.floor(t*c)));let i;if(!a){s.push("Receives inputs"),i=[];for(let c in e.nodesByDepth)i.push(...e.nodesByDepth[c])}r("_".repeat(t)),e0(s,n,r),r("=".repeat(t));let o=e.layers;for(let c=0;c<o.length;++c)a?Ute(o[c],n,r):jte(o[c],n,i,r),r((c===o.length-1?"=":"_").repeat(t));e.checkTrainableWeightsConsistency();let l=Bte(e),u=Gp(e.nonTrainableWeights);r(`Total params: ${l+u}`),r(`Trainable params: ${l}`),r(`Non-trainable params: ${u}`),r("_".repeat(t))}function Bte(e){let t;return e.collectedTrainableWeights!=null?t=Gp(e.collectedTrainableWeights):t=Gp(e.trainableWeights),t}function Vte(e){let t=!0,n=[],r=[];for(let a in e.nodesByDepth)n.push(e.nodesByDepth[a]);for(let a of n){if(a.length>1||a.length===1&&a[0].inboundLayers.length>1){t=!1;break}r.push(...a)}if(t)for(let a of e.layers){let s=!1;for(let i of a.inboundNodes)if(r.indexOf(i)!==-1)if(s){t=!1;break}else s=!0;if(!t)break}return t}function e0(e,t,n=console.log){let r="";for(let a=0;a<e.length;++a)a>0&&(r=r.slice(0,r.length-1)+" "),r+=e[a],r=r.slice(0,t[a]),r+=" ".repeat(t[a]-r.length);n(r)}function Ute(e,t,n){let r;try{r=JSON.stringify(e.outputShape)}catch(o){r="multiple"}let a=e.name,s=e.getClassName(),i=[`${a} (${s})`,r,e.countParams().toString()];e0(i,t,n)}function jte(e,t,n,r){let a;try{a=JSON.stringify(e.outputShape)}catch(c){a="multiple"}let s=[];for(let c of e.inboundNodes)if(!(n!=null&&n.length>0&&n.indexOf(c)===-1))for(let h=0;h<c.inboundLayers.length;++h){let d=c.inboundLayers[h].name,p=c.nodeIndices[h],f=c.tensorIndices[h];s.push(`${d}[${p}][${f}]`)}let i=e.name,o=e.getClassName(),l=s.length===0?"":s[0],u=[`${i} (${o})`,a,e.countParams().toString(),l];e0(u,t,r);for(let c=1;c<s.length;++c)e0(["","","",s[c]],t,r)}function i7(e,t,n){return(e==="inboundNodes"||e==="outputLayers"||e==="inputLayers")&&t===0&&typeof n=="string"}function zc(e,t){if(e===null)return null;if(typeof e=="string")return Ni(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let n=[],r=e.length;for(let a=0;a<r;++a){let s=e[a];i7(t,a,s)?n.push(s):n.push(zc(s,t))}return n}else{let n={};for(let r of Object.keys(e)){let a=e[r];if(r==="name"&&typeof a=="string")n[r]=a;else{let s=Ni(r);n[s]=zc(a,s)}}return n}}function CA(e,t){if(e==null)return null;if(typeof e=="string")return pa(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let n=[],r=e.length;for(let a=0;a<r;++a){let s=e[a];i7(t,a,s)?n.push(s):n.push(CA(s,t))}return n}else{let n={};for(let r of Object.keys(e)){let a=e[r],s=pa(r);(r==="name"||r==="className")&&typeof a=="string"?n[s]=a:n[s]=CA(a,r)}return n}}var RA="2.8.3";function Hte(e,t){if(e.dtype==null||e.dtype===t.dtype)return t;try{return Ae(t,e.dtype)}catch(n){throw new V(`The dtype of the feed (${t.dtype}) can not be cast to the dtype of the key '${e.name}' (${e.dtype}).`)}}var Ci=class{constructor(e){if(this.id2Value={},this.id2Mask={},this.name2Id={},e instanceof Ci)for(let t in e.id2Value)this.id2Value[t]=e.id2Value[t],t in e.id2Mask&&(this.id2Mask[t]=e.id2Mask[t]);else{if(e==null)return;for(let t of e)this.add(t.key,t.value)}}add(e,t,n){if(this.id2Value[e.id]==null)this.id2Value[e.id]=Hte(e,t),this.name2Id[e.name]=e.id,n!=null&&(this.id2Mask[e.id]=n);else throw new V(`Duplicate key: name=${e.name}, id=${e.id}`);return this}addFeed(e){this.add(e.key,e.value)}hasKey(e){return this.id2Value[e.id]!=null}names(){return Object.keys(this.name2Id)}getValue(e){if(e instanceof br){if(this.id2Value[e.id]==null)throw new V(`Nonexistent key: ${e.name}`);return this.id2Value[e.id]}else{let t=this.name2Id[e];if(t==null)throw new V(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Value[t]}}getMask(e){if(e instanceof br){if(this.id2Value[e.id]==null)throw new V(`Nonexistent key: ${e.name}`);return this.id2Mask[e.id]}else{let t=this.name2Id[e];if(t==null)throw new V(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Mask[t]}}disposeMasks(){this.id2Mask!=null&&Te(this.id2Mask)}},FA={},o7={};function Pc(e,t,n,r){let a=n==null?!1:n.training,s=Array.isArray(e),i=s?e:[e],o=i.map(f=>f.name),l=[],u=t.names();for(let f of o)u.indexOf(f)!==-1?l.push(t.getValue(f)):l.push(null);r!=null&&(r.maxNumTensors=-Infinity,r.minNumTensors=Infinity);let c=o.join(",")+"|"+t.names().join(","),h,d;if(FA[c]==null){let f=qte(i,t);h=f.sorted,d=f.recipientCounts,FA[c]=h,o7[c]=d}h=FA[c],d={},a||Object.assign(d,o7[c]);let p=new Ci(t);for(let f=0;f<h.length;++f){if(r!=null){let E=gd().numTensors;E>r.maxNumTensors&&(r.maxNumTensors=E),E<r.minNumTensors&&(r.minNumTensors=E)}let m=h[f],A=m.sourceLayer;if(A instanceof Ll)continue;let y=[],g=[],_=[],b=!1;for(let E of m.inputs){let M=p.getValue(E),z=p.getMask(E);y.push(M),g.push(z),z!=null&&(b=!0),a||(d[E.name]--,d[E.name]===0&&!t.hasKey(E)&&o.indexOf(E.name)===-1&&!M.isDisposed&&E.sourceLayer.stateful!==!0&&_.push(M))}b&&(n=n||{},n.mask=g[0]);let x=mt(A.apply(y,n)),w=null;A.supportsMasking&&(w=A.computeMask(y,g));let I=Xte(m),T=Array.isArray(I)?I:[I];for(let E=0;E<T.length;++E){p.hasKey(T[E])||p.add(T[E],x[E],Array.isArray(w)?w[0]:w);let M=o.indexOf(T[E].name);M!==-1&&(l[M]=x[E])}a||Te(_)}return p.disposeMasks(),s?l:l[0]}function qte(e,t){k.assert(e!=null&&e.length>0,()=>"Expected at least one fetch, got none");let n=[],r={};if(e.length===1){let a=l7(e[0],t);n=a.sorted,r=a.recipientMap}else{let a=new Set;for(let s of e){let{sorted:i,recipientMap:o}=l7(s,t);for(let l of i)a.has(l.name)||(n.push(l),a.add(l.name));for(let l in o)r[l]==null&&(r[l]=new Set),o[l].forEach(u=>r[l].add(u))}}return{sorted:n,recipientCounts:Kte(r)}}function Kte(e){let t={};for(let n in e)t[n]=e[n].size;return t}function l7(e,t){let n=new Set,r=[],a={};for(let o of t.names())n.add(o);let s=[],i=[];for(s.push(e);s.length>0;){let o=s[s.length-1];if(n.has(o.name)){s.pop();continue}let l=i[i.length-1]===s.length-1;if(o.inputs.length===0||l)s.pop(),r.push(o),n.add(o.name),l&&i.pop();else{i.push(s.length-1);for(let u of o.inputs)a[u.name]==null&&(a[u.name]=new Set),a[u.name].add(o.name),!n.has(u.name)&&s.push(u)}}return{sorted:r,recipientMap:a}}function Xte(e){let t;if(e.sourceLayer.inboundNodes.length===1)t=e.sourceLayer.output;else{let n=null;for(let r=0;r<e.sourceLayer.inboundNodes.length;++r)for(let a of e.sourceLayer.inboundNodes[r].outputTensors)if(a.id===e.id){n=r;break}t=e.sourceLayer.getOutputAt(n)}return t}var Gr=class extends qe{constructor(e){super({});if(this.containerNodes=new Set,this.name=e.name,this.name==null){let y=this.getClassName().toLowerCase();this.name=Up(y)}if(this.supportsMasking=!1,this.trainable_=!0,Array.isArray(e.inputs)?this.inputs=e.inputs.slice():this.inputs=[e.inputs],Array.isArray(e.outputs)?this.outputs=e.outputs.slice():this.outputs=[e.outputs],Wa(this.inputs).length!==this.inputs.length)throw new V(`The list of inputs passed to the model is redundant. All inputs should only appear once. Found: ${this.inputs.map(y=>y.name)}`);Wa(this.outputs).length!==this.outputs.length&&console.warn(`The list of outputs passed to the model is redundant. All outputs should only appear once. Found: ${this.outputs.map(y=>y.name)}`),this.inputLayers=[],this.inputLayersNodeIndices=[],this.inputLayersTensorIndices=[],this.outputLayers=[],this.outputLayersNodeIndices=[],this.outputLayersTensorIndices=[],this.layers=[],this.internalContainerRefs=[];for(let y of this.outputs){let g=y.sourceLayer,_=y.nodeIndex,b=y.tensorIndex;this.outputLayers.push(g),this.outputLayersNodeIndices.push(_),this.outputLayersTensorIndices.push(b)}for(let y of this.inputs){let g=y.sourceLayer,_=y.nodeIndex,b=y.tensorIndex;Br(_===0,"input layer has >1 nodes"),Br(b===0,"input layer has >1 tensors"),this.inputLayers.push(g),this.inputLayersNodeIndices.push(_),this.inputLayersTensorIndices.push(b)}this.inputNames=[],this.outputNames=[],this.feedInputShapes=[],this.feedInputNames=[],this.feedOutputNames=[];for(let y=0;y<this.inputLayers.length;y++){let g=this.inputLayers[y];if(!(g instanceof Ll))throw new TypeError(`Input layers to a LayersModel must be InputLayer objects. Received inputs: ${e.inputs}. Input ${y} (0-based) originates from layer type ${g.getClassName()}.`);this.inputNames.push(g.name),this.feedInputShapes.push(g.batchInputShape),this.feedInputNames.push(g.name)}for(let y of this.outputLayers)this.outputNames.push(y.name);this.internalInputShapes=this.inputs.map(y=>y.shape),this.internalOutputShapes=this.outputs.map(y=>y.shape);let t={},n={},r={},a={},s={},i=[],o=(y,g,_,b,x,w)=>{(b==null||x==null||w==null)&&(b=y.sourceLayer,x=y.nodeIndex,w=y.tensorIndex);let I=b.inboundNodes[x];if(_.indexOf(I)!==-1)throw new wr(`The tensor ${y.name} at layer "${b.name}" is part of a cycle.`);if(g.indexOf(I)!==-1)return;this.containerNodes.add(Gr.nodeKey(b,x)),b.id in s||(s[b.id]=Object.keys(s).length),_.indexOf(I)===-1&&_.push(I);let T=I.inboundLayers.length;for(let E=0;E<T;E++){let M=I.inputTensors[E],z=I.inboundLayers[E],P=I.nodeIndices[E],B=I.tensorIndices[E];o(M,g,_,z,P,B)}for(g.push(I);_.indexOf(I)>=0;)_.splice(_.indexOf(I),1);i.push(I)},l=[],u=[];for(let y of this.outputs)o(y,l,u);let c=i.slice().reverse();for(let y of c){n[y.id]=y,y.id in t||(t[y.id]=0);let g=t[y.id],_=r[y.outboundLayer.id]==null?0:r[y.outboundLayer.id];g=Math.max(g,_),r[y.outboundLayer.id]=g,a[y.outboundLayer.id]=y.outboundLayer,t[y.id]=g;for(let b=0;b<y.inboundLayers.length;b++){let x=y.inboundLayers[b],w=y.nodeIndices[b],I=x.inboundNodes[w],T=t[I.id]==null?0:t[I.id];t[I.id]=Math.max(g+1,T),n[I.id]=I}}let h={};for(let y in t){let g=t[y];g in h||(h[g]=[]),h[g].push(n[y])}let d={};for(let y in r){let g=r[y];g in d||(d[g]=[]),d[g].push(a[y])}let p=Object.keys(d).map(y=>parseInt(y,10)).sort(Fp);this.layers=[];for(let y of p){let g=d[y];g.sort((_,b)=>{let x=s[_.id],w=s[b.id];return x<w?-1:x>w?1:0});for(let _ of g)_ instanceof Gr&&this.internalContainerRefs.push(_),this.layers.push(_)}this.layersByDepth=d,p=Object.keys(h).map(y=>parseInt(y,10)).sort(Fp);let f=this.inputs.slice(),m=[];for(let y of p)for(let g of h[y]){let _=g.outboundLayer;if(_!=null){for(let b of g.inputTensors)if(f.indexOf(b)===-1)throw new wr(`Graph disconnected: cannot obtain value for tensor ${b} at layer "${_.name}". The following previous layers were accessed without issue: ${m}`);for(let b of g.outputTensors)f.push(b);m.push(_.name)}}this.nodesByDepth=h;let A=this.layers.map(y=>y.name);for(let y of A){let g=A.filter(_=>_===y).length;if(g!==1)throw new wr(`The name "${y}" is used ${g} times in the model. All layer names should be unique. Layer names: `+JSON.stringify(A))}this.outboundNodes=[],this.inboundNodes=[],new Hp({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:this.inputs.map(y=>null),outputMasks:this.outputs.map(y=>null),inputShapes:this.inputs.map(y=>y.shape),outputShapes:this.outputs.map(y=>y.shape)}),this.built=!0,this._refCount=1}assertNotDisposed(){if(this._refCount===0)throw new Error(`Container '${this.name}' is already disposed.`)}dispose(){this.assertNotDisposed();let e={refCountAfterDispose:null,numDisposedVariables:0};if(--this._refCount==0){for(let t of this.layers)e.numDisposedVariables+=t.dispose().numDisposedVariables;for(let t of this.internalContainerRefs)e.numDisposedVariables+=t.dispose().numDisposedVariables}return e.refCountAfterDispose=this._refCount,e}get trainable(){return this.trainable_}set trainable(e){this.layers.forEach(t=>{t._trainableWeights.forEach(n=>n.trainable=e)}),this.trainable_=e}get trainableWeights(){if(this._trainableWeights.length>0)throw new V("Container instance unexpectedly contains _trainableWeights.The trainable weights of a Container are a union of the trainable weights of its consituent Layers. Its own _trainableWeights must remain an empty Array.");if(!this.trainable)return[];let e=[];for(let t of this.layers)e=e.concat(t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.layers)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.layers)t.push(...n.trainableWeights);return t.concat(e)}return e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}loadWeights(e,t=!0){let n={},r=0;for(let s of this.layers)for(let i of s.weights){if(n[i.originalName]!=null)throw new V(`Duplicate weight name: ${i.originalName}`);n[i.originalName]=i,r++}let a=[];for(let s in e){let i=s;if(n[s]==null){let o=s.split("/");i=o.slice(0,-2).concat([o[o.length-1]]).join("/")}if(n[i]!=null)a.push([n[i],e[s]]);else if(t)throw new V(`Provided weight data has no target variable: ${s}`);delete n[i]}if(t){let s=[];for(let i in n)s.push(i);if(s.length>0)throw new V(`${s.length} of ${r} weights are not set: ${s}`)}vA(a)}updatedConfig(){let e=this.getConfig(),t={};return t.className=this.getClassName(),t.config=e,t.kerasVersion=`tfjs-layers ${RA}`,t.backend="TensorFlow.js",t}toJSON(e,t=!0){let n=CA(this.updatedConfig());return t?JSON.stringify(n):n}call(e,t){return W(()=>{e=mt(e);let n=new Ci;for(let r=0;r<this.inputs.length;++r)n.add(this.inputs[r],e[r]);return Pc(this.outputs,n,t)})}computeMask(e,t){return W(()=>{e=mt(e);let n;return t==null?n=ki(null,e.length):n=mt(t),this.runInternalGraph(e,n)[1]})}computeOutputShape(e){let t=jp(e);if(t.length!==this.inputLayers.length)throw new V(`Invalid inputShape argument ${e}: model has ${this.inputLayers.length} tensor inputs.`);let n={};for(let i=0;i<t.length;i++){let o=this.inputLayers[i],l=t[i],u=o.name+"_0_0";n[u]=l}let r=Object.keys(this.nodesByDepth).map(i=>parseInt(i,10)).sort(Fp);if(r.length>1)for(let i of r){let o=this.nodesByDepth[i];for(let l of o){let u=l.outboundLayer;if(this.inputLayers.map(f=>f.id).indexOf(u.id)!==-1)continue;let c=[];for(let f=0;f<l.inboundLayers.length;f++){let m=l.inboundLayers[f],A=l.nodeIndices[f],y=l.tensorIndices[f],g=`${m.name}_${A}_${y}`,_=n[g];c.push(_)}let h=u.computeOutputShape(_n(c)),d=jp(h),p=u.inboundNodes.indexOf(l);for(let f=0;f<d.length;f++){let m=`${u.name}_${p}_${f}`;n[m]=d[f]}}}let a=[],s=[];for(let i=0;i<this.outputLayers.length;i++){let o=this.outputLayers[i],l=this.outputLayersNodeIndices[i],u=this.outputLayersTensorIndices[i],c=`${o.name}_${l}_${u}`;s.push(c)}for(let i=0;i<s.length;i++){let o=s[i];Br(o in n),a.push(n[o])}return _n(a)}runInternalGraph(e,t){t==null&&(t=ki(null,e.length));let n={};for(let o=0;o<this.inputs.length;++o){let l=this.inputs[o],u=e[o],c=t[o];n[l.id]=[u,c]}let r=Object.keys(this.nodesByDepth).map(o=>parseInt(o,10)).sort(Fp);for(let o of r){let l=this.nodesByDepth[o];for(let u of l){let c=u.outboundLayer,h=u.inputTensors,d=u.outputTensors,p=new Array;for(let f of h)f.id in n&&p.push(n[f.id]);if(p.length===h.length){let f={},m,A,y,g;if(u.callArgs!=null&&(f=u.callArgs),p.length===1){let[_,b]=p[0];f.mask==null&&(f.mask=b),y=mt(c.call(_,f)),g=mt(c.computeMask(_,b)),m=[_],A=[b]}else m=p.map(_=>_[0]),A=p.map(_=>_[1]),f.mask==null&&(f.mask=A),y=mt(c.call(m,f)),g=mt(c.computeMask(m,A));if(c.activityRegularizer)throw new Oe("LayersModel invocation with concrete Tensor value(s) in the presence of activity regularizer(s) is not supported yet.");for(let _=0;_<d.length;++_){let b=d[_],x=y[_],w=g[_];n[b.id]=[x,w]}}}}let a=[],s=[],i=[];for(let o of this.outputs){Br(o.id in n,`Could not compute output ${o.name} : ${o.id}`);let[l,u]=n[o.id];i.push(l.shape),a.push(l),s.push(u)}return[a,s,i]}buildNodeConversionMap(e){let t={},n;for(let r of this.layers){n=r instanceof Gr?1:0;for(let a=0;a<r.inboundNodes.length;a++){let s=Gr.nodeKey(r,a);this.containerNodes.has(s)&&(t[s]=n,n+=1)}}return t}getLayer(e,t){if(t!=null){if(this.layers.length<=t)throw new V(`Was asked to retrieve layer at index ${t}, but model only has ${this.layers.length} layer(s).`);return this.layers[t]}else if(e==null)throw new V("Provide either a layer name or layer index");for(let n of this.layers)if(n.name===e)return n;throw new V(`No such layer: ${e}`)}calculateLosses(){return W(()=>{let e=[];for(let t of this.layers)for(let n=0;n<t.inboundNodes.length;++n){let r=Gr.nodeKey(t,n);this.containerNodes.has(r)&&e.push(...t.calculateLosses())}return e})}getConfig(){let e={name:this.name},t=this.buildNodeConversionMap(this.layers),n=[];for(let s of this.layers){let i=s.getClassName(),o=s.getConfig(),l=[];for(let c=0;c<s.inboundNodes.length;c++){let h=s.inboundNodes[c],d=Gr.nodeKey(s,c),p={};if(this.containerNodes.has(d)){if(h.callArgs)try{JSON.stringify(h.callArgs),p=h.callArgs}catch(f){console.warn(`Layer ${s.name} was passed non-serializable keyword arguments: ${h.callArgs}. They will not be included in the serialized model (and thus will be missing at deserialization time).`),p={}}if(h.inboundLayers.length>0){let f=[];for(let m=0;m<h.inboundLayers.length;m++){let A=h.inboundLayers[m],y=h.nodeIndices[m],g=h.tensorIndices[m],_=Gr.nodeKey(A,y),b=t[_];b==null&&(b=0),f.push([A.name,b,g,p])}l.push(f)}}}let u={};u.name=s.name,u.className=i,u.config=o,u.inboundNodes=l,n.push(u)}e.layers=n;let r=[];for(let s=0;s<this.inputLayers.length;s++){let i=this.inputLayers[s],o=this.inputLayersNodeIndices[s],l=Gr.nodeKey(i,o);if(!this.containerNodes.has(l))continue;let u=t[l];u==null&&(u=0);let c=this.inputLayersTensorIndices[s];r.push([i.name,u,c])}e.inputLayers=r;let a=[];for(let s=0;s<this.outputLayers.length;s++){let i=this.outputLayers[s],o=this.outputLayersNodeIndices[s],l=Gr.nodeKey(i,o);if(!this.containerNodes.has(l))continue;let u=t[l];u==null&&(u=0);let c=this.outputLayersTensorIndices[s];a.push([i.name,u,c])}return e.outputLayers=a,e}static fromConfig(e,t,n={},r=!1){let a={},s={};function i(m,A){m.name in s?s[m.name].push(A):s[m.name]=[A]}function o(m,A){let y=[],g;for(let _ of A){let b=_[0],x=_[1],w=_[2];if(g=_[3]==null?{}:_[3],!(b in a)){i(m,A);return}let I=a[b];if(I.inboundNodes.length<=x){i(m,A);return}let T=I.inboundNodes[x];y.push(T.outputTensors[w])}y.length>0&&m.apply(_n(y),g)}function l(m){let A=m.name,y=vr(m,t.customObjects!=null?t.customObjects:{});y.setFastWeightInitDuringBuild(r),a[A]=y,m.inboundNodes.forEach(g=>{if(!(g instanceof Array))throw new V(`Corrupted configuration, expected array for nodeData: ${g}`);i(y,g)})}let u=t.name,c=t.layers;for(let m of c)l(m);for(;!_Q(s);)for(let m of c){let A=a[m.name];if(A.name in s){let y=s[A.name];delete s[A.name];for(let g of y)o(A,g)}}let h=[],d=[],p=t.inputLayers;for(let m of p){let A=m[0],y=m[1],g=m[2];Br(A in a);let _=a[A].inboundNodes[y].outputTensors;h.push(_[g])}let f=t.outputLayers;for(let m of f){let A=m[0],y=m[1],g=m[2];Br(A in a);let _=a[A].inboundNodes[y].outputTensors;d.push(_[g])}return new e({inputs:h,outputs:d,name:u})}get stateful(){if(this._stateful)throw new V("Container instance unexpectedly has _stateful = true. The statefulness of a Container is determined by the Layers it contains. Its _stateful property must remain the default false.");for(let e of this.layers)if(e.stateful)return!0;return!1}resetStates(){W(()=>{this.layers.forEach(e=>{e.stateful&&e.resetStates()})})}};function Zte(e,t,n){let r=t.length;if(e==null||Array.isArray(e)&&e.length===0)return t.map(a=>null);if(r===1)return Array.isArray(e)&&e.length===1?e:typeof e=="object"&&t[0]in e?[e[t[0]]]:[e];if(Array.isArray(e)){if(e.length!==r)throw new Error(`Provided ${n} is an array of ${e.length} element(s), but the model has ${r} outputs. Make sure a set of weights is provided for each model output.`);return e}else if(typeof e=="object"&&Object.keys(e).length>0&&typeof e[Object.keys(e)[0]]=="object"){let a=[];return t.forEach(s=>{s in e?a.push(e[s]):a.push(null)}),a}else throw new Error(`The model has multiple (${r}) outputs, so ${n} must be either an array with ${r} elements or an object with ${t} keys. Provided ${n} not understood: ${JSON.stringify(e)}`)}function u7(e,t){return Zte(e,t,"classWeight")}async function c7(e,t,n,r){if(t!=null||r!=null)throw new Error("Support sampleWeight is not implemented yet");if(n!=null){let a=W(()=>{if(e.shape.length===1)return e.clone();if(e.shape.length===2)if(e.shape[1]>1){let o=1;return e.argMax(o)}else{if(e.shape[1]===1)return e.reshape([e.shape[0]]);throw new Error(`Encountered unexpected last-dimension size (${e.shape[1]}) during handling of class weights. The size is expected to be >= 1.`)}else throw new Error(`Unexpected rank of target (y) tensor (${e.rank}) during handling of class weights. The rank is expected to be 1 or 2.`)}),s=Array.from(await a.data());Te(a);let i=[];return s.forEach(o=>{if(n[o]==null)throw new Error(`classWeight must contain all classes in the training data. The class ${o} exists in the data but not in classWeight`);i.push(n[o])}),jt(i,"float32")}else return null}function Yte(e,t){return L(e,t)}var Jte=32;function d7(e,t){let n,r,a=t;n=a.xs,r=a.ys,k.assert(n!=null&&r!=null,()=>`A Dataset iterator for fitDataset() is expected to generate objects of the form \`{xs: xVal, ys: yVal}\`, where the two values may be \`tf.Tensor\`, an array of Tensors, or a map of string to Tensor. The provided Dataset instead generates ${t}`);let s=h7("input",e.inputNames,n),i=h7("output",e.outputNames,r),o=s[0].shape[0];k.assert(s.length===e.inputs.length,()=>`LayersModel has ${e.inputs.length} inputs, but the dataset provides ${s.length} inputs. (Expected input keys: ${JSON.stringify(e.inputNames)})`),k.assert(i.length===e.outputs.length,()=>`LayersModel has ${e.outputs.length} outputs, but the dataset provides ${i.length} outputs. (Expected output keys: ${JSON.stringify(e.outputNames)})`);for(let l=0;l<s.length;l++)k.assert(s[l].shape[0]===o,()=>`Batch size mismatch: input ${e.inputNames[l]} has ${s[l].shape[0]}; expected ${o} based on input ${e.inputNames[0]}.`);for(let l=0;l<i.length;l++)k.assert(i[l].shape[0]===o,()=>`Batch size mismatch: output ${e.outputNames[l]} has ${i[l].shape[0]}; expected ${o} based on input ${e.inputNames[0]}.`);return{xs:s,ys:i}}function h7(e,t,n){if(n instanceof U)return[n];if(Array.isArray(n))return k.assert(n.length===t.length,()=>`Received an array of ${n.length} Tensors, but expected ${t.length} to match the ${e} keys ${t}.`),n;{let r=[];for(let a of t){if(n[a]==null)throw new V(`The feature data generated by the dataset lacks the required ${e} key '${a}'.`);r.push(n[a])}return r}}function Qte(e){if(e.length===3)throw new Oe("Validation with sample weights is not implemented yet.");return{xs:e[0],ys:e[1]}}async function tne(e,t,n){let r=n.batchesPerEpoch!=null;if(k.assert(e.optimizer!=null,()=>"You must compile a model before training/testing. Use LayersModel.compile(modelCompileConfig)."),k.assert(n!=null,()=>"For fitDataset(), the 2nd argument (config) is required, but it is not provided in this call."),k.assert(n.epochs!=null&&n.epochs>0&&Number.isInteger(n.epochs),()=>`For fitDataset(), config.epochs is expected to be a positive integer, but got ${n.epochs}`),k.assert(!r||n.batchesPerEpoch>0&&Number.isInteger(n.batchesPerEpoch),()=>`For fitDataset(), config.batchesPerEpoch is expected to be a positive integer if specified, but got ${n.batchesPerEpoch}`),k.assert(n.validationSplit==null,()=>"`validationSplit` is not supported by `fitDataset()`. Use validationData instead."),e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;try{let a=n.validationData!=null,s,i;if(a)if(p7(n.validationData))k.assert(n.validationBatches==null||n.validationBatches>0&&Number.isInteger(n.validationBatches),()=>`For fitDataset() with dataset-based validation, config.validationBatches is expected not to be provided, or to be a positive integer, but got ${n.validationBatches}`);else{let A=Qte(n.validationData);s=A.xs,i=A.ys}let o=e.makeTrainFunction(),l=e.getDedupedMetricsNames(),u;a?u=l.slice().concat(l.map(A=>"val_"+A)):u=l.slice();let c=Y3(n.callbacks,n.yieldEvery),h=n.verbose==null?1:n.verbose,{callbackList:d,history:p}=J3(c,h,n.epochs,null,null,ene(t,n),null,a,u);d.setModel(e),e.history=p,await d.onTrainBegin(),e.stopTraining_=!1;let f=n.initialEpoch==null?0:n.initialEpoch,m=await t.iterator();for(;f<n.epochs;){let A={};await d.onEpochBegin(f);let y=0,g=0;for(r||(m=await t.iterator());r?y<n.batchesPerEpoch:!0;){let _=await m.next();if(r&&_.done){console.warn(`You provided \`batchesPerEpoch\` as ${n.batchesPerEpoch}, but your dataset iterator ran out of data after ${y} batches; interrupting training. Make sure that your dataset can generate at least \`batchesPerEpoch * epochs\` batches (in this case, ${n.batchesPerEpoch*n.epochs} batches). You may need to use the repeat() function when building your dataset.`);break}if(_.value!=null){let{xs:b,ys:x}=d7(e,_.value),w={};w.batch=g,w.size=b[0].shape[0],await d.onBatchBegin(g,w);let I=[];if(n.classWeight!=null){let M=u7(n.classWeight,e.outputNames);for(let z=0;z<M.length;++z)I.push(await c7(x[z],null,M[z]))}let T=b.concat(x).concat(I),E=o(T);Te(T);for(let M=0;M<l.length;++M){let z=l[M],P=E[M];w[z]=P,Ut(P)}await d.onBatchEnd(g,w),H3(w),g++,y++}if(r?y>=n.batchesPerEpoch:_.done){if(a){let b;p7(n.validationData)?b=mt(await e.evaluateDataset(n.validationData,{batches:n.validationBatches})):b=mt(e.evaluate(s,i,{batchSize:n.validationBatchSize==null?Jte:n.validationBatchSize,verbose:0}));for(let x=0;x<e.metricsNames.length;++x)A[`val_${e.metricsNames[x]}`]=b[x]}break}if(e.stopTraining_)break}if(await d.onEpochEnd(f,A),f++,e.stopTraining_)break}return await d.onTrainEnd(),await e.history.syncData(),e.history}finally{e.isTraining=!1}}function ene(e,t){let n=null;return t.batchesPerEpoch!=null?n=t.batchesPerEpoch:Number.isFinite(e.size)&&(n=e.size),n}function p7(e){return typeof e.iterator=="function"}function nne(e){return typeof e.next=="function"}async function rne(e,t,n){n=n||{};let r=n.batches!=null,a=e.testFunction,s=[];if(n.verbose>0)throw new Oe("Verbose mode is not implemented yet.");k.assert(!r||n.batches>0&&Number.isInteger(n.batches),()=>`Test loop expects \`batches\` to be a positive integer, but received ${JSON.stringify(n.batches)}`);let i=nne(t)?t:await t.iterator(),o=0,l=0;for(;r?l<n.batches:!0;){let u=await i.next();if(s=W(()=>{if(u.value){let{xs:c,ys:h}=d7(e,u.value),d=c.concat(h),p=W(()=>a(d));if(Te(d),l===0)for(let m=0;m<p.length;++m)s.push(ke(0));let f=d[0].shape[0];for(let m=0;m<p.length;++m){let A=p[m],y=s[m];s[m]=W(()=>oe(s[m],L(f,A))),l>0&&Te(y)}Te(p),o+=f,++l}return s}),u.done){r&&console.warn(`Your dataset iterator ran out of data during evaluateDataset(). Interrupting evalution. Make sure that your dataset can generate at least \`batches\` batches (in this case, ${n.batches} batches). You may need to use the repeat() function when building your dataset.`);break}}for(let u=0;u<s.length;++u){let c=s[u];s[u]=_e(s[u],o),Te(c)}return _n(s)}function MA(e){k.assert(e>0&&Number.isInteger(e),()=>`batchSize is required to be a positive integer, but got ${e}`)}function Lc(e,t,n){return e==null?[null]:Array.isArray(e)?e.map(r=>Ti(r,t,n-t)):Ti(e,t,n-t)}function OA(e,t){return W(()=>e==null?null:Array.isArray(e)?e.map(n=>OA(n,t)):R3(e,t.dtype==="int32"?t:t.toInt()))}function DA(e,t){let n=[],r=0,a=null;for(;r<e;)a=r+t,a>=e&&(a=e),n.push([r,a]),r=a;return n}async function ane(e,t,n,r,a,s,i,o,l,u,c,h,d,p,f){a==null&&(a=32),s==null&&(s=1),c==null&&(c=!0),d==null&&(d=0);let m=!1;if(l!=null&&u!=null&&(m=!0),f!=null&&(m=!0,p==null))throw new V("Can only use `validationSteps` when doing step-wise training, i.e., `stepsPerEpoch` must be set.");let A=e.checkNumSamples(n,a,p,"steps_per_epoch"),y;A!=null&&(y=_r(0,A)),i==null&&(i=1);let{callbackList:g,history:_}=J3(o,i,s,d,A,p,a,m,h);g.setModel(e),e.history=_,await g.onTrainBegin(),e.stopTraining_=!1;for(let b=d;b<s;++b){await g.onEpochBegin(b);let x={};if(p!=null)throw new Oe("stepsPerEpoch mode is not implemented yet.");{if(c==="batch")throw new Oe("batch shuffling is not implemneted yet");c&&k.shuffle(y);let w=jt(y),I=DA(A,a);for(let T=0;T<I.length;++T){let E={};if(await g.onBatchBegin(T,E),W(()=>{let M=I[T][0],z=I[T][1],P=Ti(w,M,z-M);E.batch=T,E.size=z-M;let B=OA(n,P),q=t(B);for(let H=0;H<r.length;++H){let X=r[H],Z=q[H];E[X]=Z,Ut(Z)}if(T===I.length-1&&m){let H=e.testLoop(l,u,a);for(let X=0;X<r.length;++X){let Z=r[X],ee=H[X];Ut(ee),x["val_"+Z]=ee}}}),await g.onBatchEnd(T,E),H3(E),e.stopTraining_)break}w.dispose()}if(await g.onEpochEnd(b,x),e.stopTraining_)break}return await g.onTrainEnd(),await e.history.syncData(),e.history}async function sne(e,t,n,r={}){if(e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;let a,s,i,o,l,u,c;try{let h=r.batchSize==null?32:r.batchSize;MA(h);let d=!1,p=await e.standardizeUserData(t,n,r.sampleWeight,r.classWeight,d,h);a=p[0],s=p[1],c=p[2];let f=!1,m;if(r.validationData!=null&&r.validationData.length>0){if(f=!0,r.validationData.length===2)i=r.validationData[0],o=r.validationData[1];else throw r.validationData.length===3?new Oe("validationData including sample weights is not supported yet."):new V(`When passing validation data, it must contain 2 (valX, valY) or 3 (valX, valY, valSampleWeight) items; ${r.validationData} is invalid.`);let w=!0,I=await e.standardizeUserData(i,o,null,null,w,h);l=I[0],u=I[1],m=l.concat(u)}else if(r.validationSplit!=null&&r.validationSplit>0&&r.validationSplit<1){f=!0;let w=Math.floor(a[0].shape[0]*(1-r.validationSplit)),I=a[0].shape[0];l=Lc(a,w,I),a=Lc(a,0,w),u=Lc(s,w,I),s=Lc(s,0,w),m=l.concat(u)}else r.validationSteps!=null&&(f=!0);let A=a.concat(s).concat(c);e.checkTrainableWeightsConsistency();let y=e.makeTrainFunction(),g=e.getDedupedMetricsNames(),_,b;f?(e.makeTestFunction(),_=e.testFunction,b=g.slice().concat(g.map(w=>"val_"+w))):(_=null,m=[],b=g.slice());let x=Y3(r.callbacks,r.yieldEvery);return await ane(e,y,A,g,h,r.epochs,r.verbose,x,_,m,r.shuffle,b,r.initialEpoch,null,null)}finally{e.isTraining=!1,Ri(a,t),Ri(s,n),Ri(l,i),Ri(u,o),c!=null&&Te(c)}}function f7(e){let t=[];e instanceof U&&(e=[e]);for(let n=0;n<e.length;++n){let r=e[n];if(r.rank===1)t.push(Fc(r,1));else{if(r.rank===0)throw new Error("Expected tensor to be at least 1D, but received a 0D tensor (scalar).");t.push(r)}}return t}function Ri(e,t){if(e==null)return;let n=[];if(t instanceof U)n.push(t.id);else if(Array.isArray(t))t.forEach(a=>n.push(a.id));else if(t!=null)for(let a in t){let s=t[a];n.push(s.id)}let r=[];if(e instanceof U)n.indexOf(e.id)===-1&&r.push(e);else if(Array.isArray(e))e.forEach(a=>{n.indexOf(a.id)===-1&&r.push(a)});else if(e!=null)for(let a in e){let s=e[a];n.indexOf(s.id)===-1&&r.push(s)}r.forEach(a=>{a.isDisposed||a.dispose()})}function ine(e){return e instanceof U}function $A(e){return Array.isArray(e)}function m7(e){return!ine(e)&&!$A(e)}function A7(e,t,n,r=!0,a=""){if(t==null||t.length===0){if(e!=null){let i=!1;if($A(e)&&e.length>0)i=!0;else if(m7(e)){for(let o in e)if(e.hasOwnProperty(o)){i=!0;break}}else i=!0;if(i)throw new V(`Error when checking model ${a} expected no data, but got ${e}`)}return[]}if(e==null)return t.map(i=>null);let s;if(m7(e)){e=e,s=[];for(let i of t){if(e[i]==null)throw new V(`No data provided for "${i}". Need data for each key in: ${t}`);s.push(e[i])}}else if($A(e)){if(e=e,e.length!==t.length)throw new V(`Error when checking model ${a}: the Array of Tensors that you are passing to your model is not the size the model expected. Expected to see ${t.length} Tensor(s), but instead got the following list of Tensor(s): ${e}`);s=e}else{if(e=e,t.length>1)throw new V(`The model ${a} expects ${t.length} Tensor(s), but only received one Tensor. Found: Tensor with shape ${e.shape}`);s=[e]}if(s=f7(s),n!=null)for(let i=0;i<t.length;++i){if(n[i]==null)continue;let o=s[i];if(o.shape.length!==n[i].length)throw new V(`Error when checking ${a}: expected ${t[i]} to have ${n[i].length} dimension(s). but got array with shape ${o.shape}`);for(let l=0;l<n[i].length;++l){if(l===0&&!r)continue;let u=o.shape[l],c=n[i][l];if(c!=null&&c>=0&&u!==c)throw new V(`Error when checking ${a}: expected ${t[i]} to have shape [${n[i]}], but got array with shape [${o.shape}].`)}}return s}function one(e,t,n){let r=Wa(e.map(s=>s.shape[0]));r.sort();let a=Wa(t.map(s=>s.shape[0]));if(a.sort(),r.length>1)throw new V(`All input Tensors (x) should have the same number of samples. Got array shapes: ${JSON.stringify(e.map(s=>s.shape))}`);if(a.length>1)throw new V(`All target Tensors (y) should have the same number of samples. Got array shapes: ${JSON.stringify(t.map(s=>s.shape))}`);if(r.length>0&&a.length>0&&!k.arraysEqual(r,a))throw new V(`Input Tensors should have the same number of samples as target Tensors. Found ${r[0]} input sample(s) and ${a[0]} target sample(s).`)}function lne(e,t,n){let r=[Ei,Zp,$c];for(let a=0;a<e.length;++a){let s=e[a],i=t[a],o=n[a];if(i!=null){if(i===$c&&s.shape[s.shape.length-1]===1)throw new V(`You are passing a target array of shape ${s.shape} while using a loss 'categorical_crossentropy'. 'categorical_crossentropy'expects targets to be binary matrices (1s and 0s) of shape [samples, classes].`);if(r.indexOf(i)!==-1){let l=s.shape.slice(1),u=o.slice(1);for(let c=0;c<l.length;++c){let h=l[c],d=u[c];if(d!=null&&h!==d)throw new V(`A target Tensor with shape ${s.shape} was passed for an output of shape ${o}, while using a loss function that expects targets to have the same shape as the output.`)}}}}}function y7(e,t,n,r=!0,a=""){let s;if(Array.isArray(e)){if(e.length!==t.length)throw new V(`Error when checking model ${a}: the Array of Tensors that you are passing to your model is not the size the the model expected. Expected to see ${t.length} Tensor(s), but instead got ${e.length} Tensors(s).`);s=e}else{if(t.length>1)throw new V(`The model expects ${t.length} ${a} Tensors, but only received one Tensor. Found: array with shape ${JSON.stringify(e.shape)}.`);s=[e]}if(n!=null)for(let i=0;i<t.length;++i){if(n[i]==null)continue;let o=s[i];if(o.shape.length!==n[i].length)throw new V(`Error when checking ${a}: expected ${t[i]} to have ${n[i].length} dimension(s), but got array with shape ${JSON.stringify(o.shape)}`);for(let l=0;l<n[i].length;++l){if(l===0&&!r)continue;let u=o.shape[l],c=n[i][l];if(c!=null&&c!==u)throw new V(`Error when checking ${a}: expected ${t[i]} to have shape ${JSON.stringify(n[i])} but got array with shape ${JSON.stringify(o.shape)}.`)}}}function une(e,t){if(e==null||Array.isArray(e)&&e.length===0)return t.map(r=>[]);let n;if(typeof e=="string"||typeof e=="function")n=[e];else if(Array.isArray(e)||typeof e=="object")n=e;else throw new TypeError(`Type of metrics argument not understood. Expected an string,function, Array, or Object, found: ${e}`);if(Array.isArray(n))return t.map(r=>n);{let r=[];for(let a of t){let s=n.hasOwnProperty(a)?n[a]:[];Array.isArray(s)||(s=[s]),r.push(s)}return r}}var cne="layers-model",fa=class extends Gr{constructor(e){super(e);this.isTraining=!1}summary(e,t,n=console.log){if(!this.built)throw new V("This model has never been called, thus its weights have not been created yet. So no summary can be displayed. Build the model first (e.g., by calling it on some test data).");Gte(this,e,t,n)}compile(e){if(e.loss==null&&(e.loss=[]),this.loss=e.loss,typeof e.optimizer=="string")this.optimizer_=Wte(e.optimizer),this.isOptimizerOwned=!0;else{if(!(e.optimizer instanceof ca))throw new V("User-defined optimizer must be an instance of tf.Optimizer.");this.optimizer_=e.optimizer,this.isOptimizerOwned=!1}let t=[];if(!Array.isArray(e.loss)&&typeof e.loss!="string"&&typeof e.loss!="function"){e.loss=e.loss;for(let s in e.loss)if(this.outputNames.indexOf(s)===-1)throw new V(`Unknown entry in loss dictionary: "${s}". Only expected the following keys: ${this.outputNames}`);for(let s of this.outputNames)e.loss[s]==null&&console.warn(`Output "${s}" is missing from loss dictionary. We assume this was done on purpose, and we will not be expecting data to be passed to ${s} during training`),t.push(NA(e.loss[s]))}else if(Array.isArray(e.loss)){if(e.loss.length!==this.outputs.length)throw new V(`When passing an Array as loss, it should have one entry per model output. The model has ${this.outputs.length} output(s), but you passed loss=${e.loss}.`);t=e.loss.map(s=>NA(s))}else{let s=NA(e.loss);this.outputs.forEach(i=>{t.push(s)})}this.lossFunctions=t,this.feedOutputNames=[],this.feedOutputShapes=[],this.feedLossFns=[];for(let s=0;s<this.outputs.length;++s){let i=this.internalOutputShapes[s],o=this.outputNames[s];this.feedOutputNames.push(o),this.feedOutputShapes.push(i),this.feedLossFns.push(this.lossFunctions[s])}let n=[];this.metrics=e.metrics,this.metricsNames=["loss"],this.metricsTensors=[],Si("loss",()=>{for(let s=0;s<this.outputs.length;++s){if(n.indexOf(s)!==-1)continue;let i=this.lossFunctions[s];this.outputs.length>1&&(this.metricsTensors.push([i,s]),this.metricsNames.push(this.outputNames[s]+"_loss"))}});let r=une(e.metrics,this.outputNames),a=(s,i,o)=>{this.outputNames.length>1&&(i=this.outputNames[s]+"_"+i),this.metricsNames.push(i),this.metricsTensors.push([o,s])};Si("metric",()=>{for(let s=0;s<this.outputs.length;++s){if(n.indexOf(s)!==-1)continue;let i=r[s];(o=>{let l="",u,c,h;for(let d of o){if(typeof d=="string"&&["accuracy","acc","crossentropy","ce"].indexOf(d)!==-1){let f=this.internalOutputShapes[s];f[f.length-1]===1||this.lossFunctions[s]===Zp?["accuracy","acc"].indexOf(d)!==-1?c=IA:["crossentropy","ce"].indexOf(d)!==-1&&(c=t7):this.lossFunctions[s]===Kp?["accuracy","acc"].indexOf(d)!==-1?c=n7:["crossentropy","ce"].indexOf(d)!==-1&&(c=r7):["accuracy","acc"].indexOf(d)!==-1?c=SA:["crossentropy","ce"].indexOf(d)!==-1&&(c=TA);let m;["accuracy","acc"].indexOf(d)!==-1?m="acc":["crossentropy","ce"].indexOf(d)!==-1&&(m="ce"),h=c,u=l+m}else h=Lte(d),u=l+Qp(d);let p;Si(u,()=>{p=h}),a(s,u,p)}})(i)}}),this.collectedTrainableWeights=this.trainableWeights}checkTrainableWeightsConsistency(){this.collectedTrainableWeights!=null&&this.trainableWeights.length!==this.collectedTrainableWeights.length&&console.warn("Discrepancy between trainableweights and collected trainable weights. Did you set `model.trainable` without calling `model.compile()` afterwards?")}evaluate(e,t,n={}){let r=n.batchSize==null?32:n.batchSize;MA(r);let a=!0,s=this.standardizeUserDataXY(e,t,a,r);try{let i=s[0].concat(s[1]);this.makeTestFunction();let o=this.testFunction,l=this.testLoop(o,i,r,n.verbose,n.steps);return _n(l)}finally{Ri(s[0],e),Ri(s[1],t)}}async evaluateDataset(e,t){return this.makeTestFunction(),rne(this,e,t)}checkNumSamples(e,t,n,r="steps"){let a;if(n!=null){if(a=null,t!=null)throw new V(`If ${r} is set, batchSize must be null or undefined.Got batchSize = ${t}`)}else if(e!=null)Array.isArray(e)?a=e[0].shape[0]:a=e.shape[0];else throw new V(`Either the input data should have a defined shape, or ${r} shoud be specified.`);return a}execute(e,t){if(Array.isArray(t)&&t.length===0)throw new V("`outputs` is an empty Array, which is not allowed.");let n=Array.isArray(t),r=n?t:[t],a=this.retrieveSymbolicTensors(r),s=new Ci;if(e instanceof U&&(e=[e]),Array.isArray(e)){if(e.length!==this.inputs.length)throw new V(`The number of inputs provided (${e.length}) does not match the number of inputs of this model (${this.inputs.length}).`);for(let o=0;o<this.inputs.length;++o)s.add(this.inputs[o],e[o])}else for(let o of this.inputs){let l=e[o.name];if(l==null)throw new V(`No value is provided for the model's input ${o.name}`);s.add(o,l)}let i=Pc(a,s);return n?i:i[0]}retrieveSymbolicTensors(e){let t=ki(null,e.length),n=e.length;for(let r of this.layers){let a=Array.isArray(r.output)?r.output:[r.output],s=a.map(i=>i.name);for(let i=0;i<e.length;++i){let o=s.indexOf(e[i]);if(o!==-1&&(t[i]=a[o],n--),n===0)break}if(n===0)break}if(n>0){let r=[];throw t.forEach((a,s)=>{a==null&&r.push(e[s])}),new V(`Cannot find SymbolicTensors for output name(s): ${JSON.stringify(r)}`)}return t}predictLoop(e,t=32,n=!1){return W(()=>{let r=this.checkNumSamples(e);if(n)throw new Oe("Verbose predictLoop() is not implemented yet.");let a=DA(r,t),s=this.outputs.map(i=>[]);for(let i=0;i<a.length;++i)W(()=>{let o=a[i][0],l=a[i][1],u=Lc(e,o,l),c=[];if(Array.isArray(u))for(let d=0;d<u.length;++d)c.push({key:this.inputs[d],value:u[d]});else c.push({key:this.inputs[0],value:u});let h=new Ci(c);return Pc(this.outputs,h)}).forEach((o,l)=>s[l].push(o));return _n(s.map(i=>rt(i,0)))})}predict(e,t={}){let n=f7(e);y7(n,this.inputNames,this.feedInputShapes,!1);try{let r=t.batchSize==null?32:t.batchSize;return MA(r),this.predictLoop(n,r)}finally{Ri(n,e)}}predictOnBatch(e){y7(e,this.inputNames,this.feedInputShapes,!0);let t=(Array.isArray(e)?e[0]:e).shape[0];return this.predictLoop(e,t)}standardizeUserDataXY(e,t,n=!0,r){if(this.optimizer_==null)throw new wr("You must compile a model before training/testing. Use LayersModel.compile(modelCompileArgs).");let a=[];for(let s=0;s<this.feedOutputShapes.length;++s){let i=this.feedOutputShapes[s];this.feedLossFns[s]===Kp?a.push(i.slice(0,i.length-1).concat([1])):a.push(i)}if(e=A7(e,this.feedInputNames,this.feedInputShapes,!1,"input"),t=A7(t,this.feedOutputNames,a,!1,"target"),one(e,t,null),lne(t,this.feedLossFns,this.feedOutputShapes),this.stateful&&r!=null&&r>0&&e[0].shape[0]%r!=0)throw new V(`In a stateful network, you should only pass inputs with a number of samples that is divisible by the batch size ${r}. Found: ${e[0].shape[0]} sample(s).`);return[e,t]}async standardizeUserData(e,t,n,r,a=!0,s){let[i,o]=this.standardizeUserDataXY(e,t,a,s);if(n!=null)throw new Error("sample weight is not supported yet.");let l=null;if(r!=null){let u=u7(r,this.outputNames);l=[];for(let c=0;c<u.length;++c)l.push(await c7(o[c],null,u[c]))}return[i,o,l]}testLoop(e,t,n,r=0,a){return W(()=>{let s=this.checkNumSamples(t,n,a,"steps"),i=[];if(r>0)throw new Oe("Verbose mode is not implemented yet.");if(a!=null)throw new Oe("steps mode in testLoop() is not implemented yet");{let o=DA(s,n),l=jt(_r(0,s));for(let u=0;u<o.length;++u){let c=o[u][0],h=o[u][1],d=Ti(l,c,h-c),p=OA(t,d),f=e(p);if(u===0)for(let m=0;m<f.length;++m)i.push(ke(0));for(let m=0;m<f.length;++m){let A=f[m];i[m]=oe(i[m],L(h-c,A))}}for(let u=0;u<i.length;++u)i[u]=_e(i[u],s)}return i})}getDedupedMetricsNames(){let e=this.metricsNames,t=[];for(let n=0;n<e.length;++n){let r=e[n],a=r;g3(e,r)>1&&(a+=`_${g3(e.slice(0,n),r)}`),t.push(a)}return t}makeTrainFunction(){return e=>{let t=[],n=e.slice(0,this.inputs.length),r=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),a=e.slice(this.inputs.length+this.outputs.length,this.inputs.length+this.outputs.length*2),s=[],i=()=>{let u=[];for(let p=0;p<this.inputs.length;++p)u.push({key:this.inputs[p],value:n[p]});let c=new Ci(u),h=Pc(this.outputs,c,{training:!0}),d;for(let p=0;p<this.lossFunctions.length;++p){let f=this.lossFunctions[p](r[p],h[p]);a[p]!=null&&(f=Yte(f,a[p]));let m=vt(f);t.push(m),p===0?d=f:d=oe(d,f)}for(let p=0;p<this.metricsTensors.length;++p){let f;if(this.outputs.length>1&&p<this.outputs.length)f=t[p];else{let m=this.metricsTensors[p][0],A=this.metricsTensors[p][1];f=vt(m(r[A],h[A]))}Ut(f),s.push(f)}return d=vt(d),this.calculateLosses().forEach(p=>{d=oe(d,p)}),d},o=this.collectedTrainableWeights.map(u=>u.read()),l=!0;return[this.optimizer_.minimize(i,l,o)].concat(s)}}makeTestFunction(){this.testFunction=e=>W(()=>{let t=[],n,r=e.slice(0,this.inputs.length),a=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),s=[];for(let l=0;l<this.inputs.length;++l)s.push({key:this.inputs[l],value:r[l]});let i=new Ci(s),o=Pc(this.outputs,i);for(let l=0;l<this.lossFunctions.length;++l){let u=this.lossFunctions[l],c=vt(u(a[l],o[l]));l===0?n=c:n=oe(n,c),t.push(n)}for(let l=0;l<this.metricsTensors.length;++l){let u=this.metricsTensors[l][0],c=this.metricsTensors[l][1],h=vt(u(a[c],o[c]));t.push(h)}return t})}async fit(e,t,n={}){return sne(this,e,t,n)}async fitDataset(e,t){return tne(this,e,t)}async trainOnBatch(e,t){let n=await this.standardizeUserData(e,t),r=n[0],a=n[1],s=this.makeTrainFunction()(r.concat(a)),i=[];for(let o of s){let l=await o.data();i.push(l[0])}return Te(s),_n(i)}getNamedWeights(e){let t=[],n=e!=null&&e.trainableOnly,r=n?this.trainableWeights:this.weights,a=this.getWeights(n);for(let s=0;s<r.length;++s)n&&!r[s].trainable||t.push({name:r[s].originalName,tensor:a[s]});return t}set stopTraining(e){this.stopTraining_=e}get stopTraining(){return this.stopTraining_}get optimizer(){return this.optimizer_}set optimizer(e){this.optimizer_!==e&&(this.optimizer_=e,this.isOptimizerOwned=!1)}dispose(){let e=super.dispose();if(e.refCountAfterDispose===0&&this.optimizer!=null&&this.isOptimizerOwned){let t=gd().numTensors;this.optimizer_.dispose(),e.numDisposedVariables+=t-gd().numTensors}return e}getLossIdentifiers(){let e;if(typeof this.loss=="string")e=pa(this.loss);else if(Array.isArray(this.loss)){for(let t of this.loss)if(typeof t!="string")throw new Error("Serialization of non-string loss is not supported.");e=this.loss.map(t=>pa(t))}else{let t=Object.keys(this.loss);e={};let n=this.loss;for(let r of t)if(typeof n[r]=="string")e[r]=pa(n[r]);else throw new Error("Serialization of non-string loss is not supported.")}return e}getMetricIdentifiers(){if(typeof this.metrics=="string"||typeof this.metrics=="function")return[pa(Qp(this.metrics))];if(Array.isArray(this.metrics))return this.metrics.map(e=>pa(Qp(e)));{let e={};for(let t in this.metrics)e[t]=pa(Qp(this.metrics[t]));return e}}getTrainingConfig(){return{loss:this.getLossIdentifiers(),metrics:this.getMetricIdentifiers(),optimizer_config:{class_name:this.optimizer.getClassName(),config:this.optimizer.getConfig()}}}loadTrainingConfig(e){if(e.weighted_metrics!=null)throw new Error("Loading weight_metrics is not supported yet.");if(e.loss_weights!=null)throw new Error("Loading loss_weights is not supported yet.");if(e.sample_weight_mode!=null)throw new Error("Loading sample_weight_mode is not supported yet.");let t=zc(e.optimizer_config),n=vr(t),r;if(typeof e.loss=="string")r=Ni(e.loss);else if(Array.isArray(e.loss))r=e.loss.map(s=>Ni(s));else if(e.loss!=null){r={};for(let s in e.loss)r[s]=Ni(e.loss[s])}let a;if(Array.isArray(e.metrics))a=e.metrics.map(s=>Ni(s));else if(e.metrics!=null){a={};for(let s in e.metrics)a[s]=Ni(e.metrics[s])}this.compile({loss:r,metrics:a,optimizer:n})}async save(e,t){if(typeof e=="string"){let i=An.getSaveHandlers(e);if(i.length===0)throw new V(`Cannot find any save handlers for URL '${e}'`);if(i.length>1)throw new V(`Found more than one (${i.length}) save handlers for URL '${e}'`);e=i[0]}if(e.save==null)throw new V("LayersModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");let n=await An.encodeWeights(this.getNamedWeights(t)),r=!1,a=null,s={modelTopology:this.toJSON(a,r),format:cne,generatedBy:`TensorFlow.js tfjs-layers v${RA}`,convertedBy:null};if((t==null?!1:t.includeOptimizer)&&this.optimizer!=null){s.trainingConfig=this.getTrainingConfig();let i="optimizer",{data:o,specs:l}=await An.encodeWeights(await this.optimizer.getWeights(),i);n.specs.push(...l),n.data=An.concatenateArrayBuffers([n.data,o])}if(this.userDefinedMetadata!=null){let i=!0;s7(this.userDefinedMetadata,this.name,i),s.userDefinedMetadata=this.userDefinedMetadata}return s.weightData=n.data,s.weightSpecs=n.specs,e.save(s)}setUserDefinedMetadata(e){s7(e,this.name),this.userDefinedMetadata=e}getUserDefinedMetadata(){return this.userDefinedMetadata}};fa.className="Model";ae.registerClass(fa);var g7=class extends fa{};g7.className="Functional";ae.registerClass(g7);async function hne(e,t){"modelTopology"in e||(e={modelTopology:e}),e=e;let n=e.modelTopology;n.model_config!=null&&(n=n.model_config);let r=zc(n),a=vr(r,t);if(e.weightsManifest!=null){let s=await An.loadWeights(e.weightsManifest,e.pathPrefix,a.weights.map(o=>o.originalName)),i={};for(let o of a.weights)i[o.originalName]=s[o.originalName];a.loadWeights(i),Te(s)}return a}async function pne(e,t){if(t==null&&(t={}),typeof e=="string"){let n=An.getLoadHandlers(e,t);if(n.length===0)n.push(An.browserHTTPRequest(e,t));else if(n.length>1)throw new V(`Found more than one (${n.length}) load handlers for URL '${e}'`);e=n[0]}return dne(e,void 0,t)}async function dne(e,t,n){if(n==null&&(n={}),e.load==null)throw new V("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let r=await e.load(),a=r.modelTopology;a.model_config!=null&&(a=a.model_config);let s=n.strict==null?!0:n.strict,i=r.weightData!=null&&r.weightSpecs!=null&&s,o=vr(zc(a),t,i),l=r.trainingConfig;if(l!=null&&o.loadTrainingConfig(l),r.userDefinedMetadata!=null&&o.setUserDefinedMetadata(r.userDefinedMetadata),r.weightData!=null){if(r.weightSpecs==null)throw new V("LayersModel artifacts contains weight data, but not weight specs. Therefore loading of weights cannot proceed.");let{modelWeights:u,optimizerWeights:c}=fne(r.weightData,r.weightSpecs);o.loadWeights(u,s),o.optimizer!=null&&c.length>0&&await o.optimizer.setWeights(c),Te(u),Te(c.map(h=>h.tensor))}return o}function fne(e,t){let n=An.decodeWeights(e,t),r={},a=[];return t.forEach(s=>{s.group==="optimizer"?a.push({name:s.name,tensor:n[s.name]}):r[s.name]=n[s.name]}),{modelWeights:r,optimizerWeights:a}}var Vl=class extends fa{constructor(e){super({inputs:[],outputs:[]});if(e=e||{},this.trainable=!0,this.built=!1,this.name=e.name!=null?e.name:Up("sequential_"),e.layers!=null)for(let t of e.layers)this.add(t)}checkShape(e){if(e.inboundNodes[0].outputTensors[0].shape.some(t=>t<0))throw new V(`Negative dimension size caused by adding layer ${e.name} with input shape [${e.inboundNodes[0].inputTensors[0].shape}]`)}add(e){let t=e instanceof Vl||e instanceof fa,n;if(t){if(n=e,n.outputs.length!==1)throw new V("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");if(n.inputs.length!==1)throw new V("All layers in a Sequential model should have a single input tensor. For multi-input layers, use the functional API.")}if(this.outputs.length===0){if(e.inboundNodes.length===0){if(e.batchInputShape==null)throw new V("The first layer in a Sequential model must get an `inputShape` or `batchInputShape` argument.");let r=G3({batchShape:e.batchInputShape,dtype:e.dtype,name:e.name+"_input"});e.apply(r)}if(t)this.outputs=n.outputs,this.inputs=n.inputs;else{if(e.inboundNodes.length!==1)throw new V(`A layer added to a Sequential model must not already be connected somewhere else. LayersModel received layer ${e.name} which has ${e.inboundNodes.length} pre-existing inbound connections.`);if(e.inboundNodes[0].outputTensors.length!==1)throw new V("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[e.inboundNodes[0].outputTensors[0]],this.inputs=j3(this.outputs[0])}this.inboundNodes=[],new Hp({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:ki(null,this.inputs.length),outputMasks:[null],inputShapes:this.inputs.map(r=>r.shape),outputShapes:this.outputs[0].shape})}else{let r=e.apply(this.outputs[0]);if(Array.isArray(r))throw new TypeError("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[r],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}this.layers.push(e),this.built=!1}pop(){if(this.layers.length===0)throw new TypeError("There are no layers in the model.");if(this.layers.pop(),this.layers.length===0)this.outputs=[],this.inboundNodes=[],this.outboundNodes=[];else{let e=this.layers.length-1;this.layers[e].outboundNodes=[],this.outputs=[this.layers[e].output],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}}call(e,t){return this.model==null&&this.build(),this.model.call(e,t)}build(e){if(ht(e),this.inputs.length===0||this.outputs.length===0)throw new TypeError("Sequential model cannot be built: model is empty. Add some layers first.");this.model=new fa({inputs:this.inputs,outputs:this.outputs[0],name:this.name+"_model"}),this.model.trainable=this.trainable,this.supportsMasking=this.model.supportsMasking,this.inputLayers=this.model.inputLayers,this.inputLayersNodeIndices=this.model.inputLayersNodeIndices,this.inputLayersTensorIndices=this.model.inputLayersTensorIndices,this.outputLayers=this.model.outputLayers,this.outputLayersNodeIndices=this.model.outputLayersNodeIndices,this.outputLayersTensorIndices=this.model.outputLayersTensorIndices,this.nodesByDepth=this.model.nodesByDepth,this.containerNodes=this.model.containerNodes,this.outputNames=this.model.outputNames,this.inputNames=this.model.inputNames,this.built=!0}countParams(){return this.built||this.build(),super.countParams()}summary(e,t,n=console.log){this.built||this.build(),super.summary(e,t,n)}setWeights(e){this.model==null&&this.build(),this.model.setWeights(e)}evaluate(e,t,n={}){if(!this.built)throw new wr("The model needs to be compiled before being used.");return this.model.evaluate(e,t,n)}async evaluateDataset(e,t){if(!this.built)throw new wr("The model needs to be compiled before being used.");return this.model.evaluateDataset(e,t)}predict(e,t={}){return this.model==null&&this.build(),this.model.predict(e,t)}predictOnBatch(e){return this.model==null&&this.build(),this.model.predictOnBatch(e)}compile(e){this.build(),this.model.compile(e),this.optimizer_=this.model.optimizer,this.isOptimizerOwned=this.model.isOptimizerOwned,this.loss=this.model.loss,this.metrics=this.model.metrics,this.metricsTensors=this.model.metricsTensors,this.metricsNames=this.model.metricsNames}get optimizer(){return this.model==null?void 0:this.model.optimizer}set optimizer(e){this.model.optimizer=e}async fit(e,t,n={}){if(!this.built)throw new wr("The model needs to be compiled before being used.");return this.model.fit(e,t,n)}async fitDataset(e,t){if(!this.built)throw new wr("The model needs to be compiled before being used.");return this.model.fitDataset(e,t)}async trainOnBatch(e,t){return this.model.trainOnBatch(e,t)}static fromConfig(e,t,n={},r=!1){let a,s={};if(t instanceof Array){if(t[0].className==null||t[0].className==="Merge")throw new V("Legacy serialization format not supported yet.");a=t}else k.assert(t.layers!=null,()=>"When the config data for a Sequential model is not an Array, it must be an Object that contains the 'layers' field."),a=t.layers,delete t.layers,s=t;let i=new e(s);if(!(i instanceof Vl))throw new Oe(`Sequential.fromConfig called on non-Sequential input: ${i}`);for(let o of a){let l=vr(o,void 0,r);r&&l.setFastWeightInitDuringBuild(!0),i.add(l)}return i}set stopTraining(e){if(this.model==null)throw new V("Cannot set the stopTraining property of a sequential model before it is compiled.");this.model.stopTraining=e}get stopTraining(){if(this.model==null)throw new V("Cannot get the stopTraining property of a sequential model before it is compiled.");return this.model.stopTraining}getConfig(){let e=[];for(let t of this.layers){let n={};n.className=t.getClassName(),n.config=t.getConfig(),e.push(n)}return{name:this.name,layers:e}}};Vl.className="Sequential";ae.registerClass(Vl);function mne(e){return new fa(e)}function Ane(e){return new Vl(e)}function yne(e,t){return t==null&&(t={}),pne(e,t)}function $3(e){return G3(e)}function gne(e,t){lr.registerCallbackConstructor(e,t)}var $n=class extends ae.Serializable{getConfig(){return{}}},x7=class extends $n{apply(e,t=1){return ZQ(e,t)}};x7.className="elu";ae.registerClass(x7);var w7=class extends $n{apply(e){return Pd(e)}};w7.className="selu";ae.registerClass(w7);var _7=class extends $n{apply(e){return zr(e)}};_7.className="relu";ae.registerClass(_7);var b7=class extends $n{apply(e){return W(()=>pi(6,zr(e)))}};b7.className="relu6";ae.registerClass(b7);var v7=class extends $n{apply(e){return e}};v7.className="linear";ae.registerClass(v7);var k7=class extends $n{apply(e){return Sn(e)}};k7.className="sigmoid";ae.registerClass(k7);var N7=class extends $n{apply(e){return JQ(e)}};N7.className="hardSigmoid";ae.registerClass(N7);var I7=class extends $n{apply(e){return Al(e)}};I7.className="softplus";ae.registerClass(I7);var S7=class extends $n{apply(e){return YQ(e)}};S7.className="softsign";ae.registerClass(S7);var T7=class extends $n{apply(e){return pl(e)}};T7.className="tanh";ae.registerClass(T7);var zA=class extends $n{apply(e,t=-1){return oc(e,t)}};zA.className="softmax";ae.registerClass(zA);var E7=class extends $n{apply(e,t=-1){return Cd(e,t)}};E7.className="logSoftmax";ae.registerClass(E7);var C7=class extends $n{apply(e,t=1){return W(()=>Sn(e.mul(t)).mul(e))}};C7.className="swish";ae.registerClass(C7);function ja(e){return e.getClassName()}function PA(e,t={}){return Tc(e,ae.SerializationMap.getMap().classNameMap,t,"activation")}function Ga(e){if(e==null){let t={};return t.className="linear",t.config={},PA(t)}if(typeof e=="string"){let t={};return t.className=e,t.config={},PA(t)}else return e instanceof $n?e:PA(e)}function LA(e){if(e!=null&&typeof e!="object")throw new Error(`Argument to L1L2 regularizer's constructor is expected to be an object, but received: ${e}`)}var R7=class extends ae.Serializable{},Wc=class extends R7{constructor(e){super();LA(e),this.l1=e==null||e.l1==null?.01:e.l1,this.l2=e==null||e.l2==null?.01:e.l2,this.hasL1=this.l1!==0,this.hasL2=this.l2!==0}apply(e){return W(()=>{let t=Tt([1]);return this.hasL1&&(t=oe(t,Se(L(this.l1,$t(e))))),this.hasL2&&(t=oe(t,Se(L(this.l2,Mc(e))))),t.asScalar()})}getConfig(){return{l1:this.l1,l2:this.l2}}static fromConfig(e,t){return new e({l1:t.l1,l2:t.l2})}};Wc.className="L1L2";ae.registerClass(Wc);function xne(e){return LA(e),new Wc({l1:e!=null?e.l1:null,l2:0})}function wne(e){return LA(e),new Wc({l2:e!=null?e.l2:null,l1:0})}var F7={l1l2:"L1L2"};function dt(e){return Qm(e)}function M7(e,t={}){return Tc(e,ae.SerializationMap.getMap().classNameMap,t,"regularizer")}function xt(e){if(e==null)return null;if(typeof e=="string"){let t={className:e in F7?F7[e]:e,config:{}};return M7(t)}else return e instanceof R7?e:M7(e)}var WA=class extends qe{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null&&(this.maxValue=e.maxValue)}call(e,t){e=ze(e);let n=zr(e);return this.maxValue!=null&&(n=yn(n,0,this.maxValue)),n}computeOutputShape(e){return e}getConfig(){let e={maxValue:this.maxValue},t=super.getConfig();return Object.assign(e,t),e}};WA.className="ReLU";ae.registerClass(WA);var BA=class extends qe{constructor(e){super(e==null?{}:e);this.DEFAULT_ALPHA=.3,e==null&&(e={}),this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=ze(e);return Qu(n,this.alpha)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};BA.className="LeakyReLU";ae.registerClass(BA);var VA=class extends qe{constructor(e){super(e==null?{}:e);if(this.DEFAULT_ALPHA_INITIALIZER="zeros",e==null&&(e={}),this.supportsMasking=!0,this.alphaInitializer=gt(e.alphaInitializer||this.DEFAULT_ALPHA_INITIALIZER),this.alphaRegularizer=xt(e.alphaRegularizer),this.alphaConstraint=Wt(e.alphaConstraint),e.sharedAxes==null)this.sharedAxes=null;else if(Array.isArray(e.sharedAxes))this.sharedAxes=e.sharedAxes;else if(typeof e.sharedAxes=="number")this.sharedAxes=[e.sharedAxes];else throw new V(`Expected sharedAxes to be a number or an array of numbers, but got ${e.sharedAxes}`)}build(e){e=ht(e);let t=e.slice(1);if(this.sharedAxes!=null)for(let r of this.sharedAxes)t[r-1]=1;this.alpha=this.addWeight("alpha",t,"float32",this.alphaInitializer,this.alphaRegularizer,!0,this.alphaConstraint);let n={};if(this.sharedAxes!=null)for(let r=1;r<e.length;++r)n[r]=e[r];this.inputSpec=[new qt({ndim:e.length,axes:n})],this.built=!0}call(e,t){return e=ze(e),ac(e,this.alpha.read())}getConfig(){let e={alphaInitializer:kt(this.alphaInitializer),alphaRegularizer:dt(this.alphaRegularizer),alphaConstraint:Lt(this.alphaConstraint),sharedAxes:this.sharedAxes},t=super.getConfig();return Object.assign(e,t),e}};VA.className="PReLU";ae.registerClass(VA);var UA=class extends qe{constructor(e){super(e==null?{}:e);if(this.DEFAULT_ALPHA=1,e==null&&(e={}),e.alpha!=null&&e.alpha!==this.DEFAULT_ALPHA)throw new Oe(`Non-default alpha value (${e.alpha}) is not supported by the ELU layer yet.`);this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=ze(e);return fl(n)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};UA.className="ELU";ae.registerClass(UA);var jA=class extends qe{constructor(e){super(e==null?{}:e);this.DEFAULT_THETA=1,e==null&&(e={}),this.theta=e.theta==null?this.DEFAULT_THETA:e.theta}call(e,t){let n=ze(e);return n.mul(Rc(n.greater(this.theta),"float32"))}computeOutputShape(e){return e}getConfig(){let e={theta:this.theta},t=super.getConfig();return Object.assign(e,t),e}};jA.className="ThresholdedReLU";ae.registerClass(jA);var GA=class extends qe{constructor(e){super(e==null?{}:e);this.DEFAULT_AXIS=1,e==null&&(e={}),this.softmax=new zA().apply,this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis}call(e,t){let n=ze(e);return this.softmax(n,this.axis)}computeOutputShape(e){return e}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};GA.className="Softmax";ae.registerClass(GA);function Ul(e,t,n){if(typeof e=="number")return ki(e,t);if(e.length!==t)throw new V(`The ${n} argument must be an integer or tuple of ${t} integers. Received: ${e.length} elements.`);for(let r=0;r<t;++r){let a=e[r];if(!HQ(a))throw new V(`The ${n} argument must be an integer or tuple of ${t} integers. Received: ${JSON.stringify(e)} including a non-integer number ${a}`)}return e}function kr(e,t,n,r,a=1){if(e==null)return e;let s=t+(t-1)*(a-1),i;return n==="same"?i=e:i=e-s+1,Math.floor((i+r-1)/r)}function t0(e,t,n,r){if(e==null)return null;if(r==="valid")e=e*t+Va([n-t,0]);else if(r==="same")e=e*t;else throw new V(`Unsupport padding mode: ${r}.`);return e}function HA(e,t){return W(()=>(Et(t),t==="channelsFirst"?nt(e,[0,2,3,1]):e))}function O7(e,t){return W(()=>(Et(t),t==="channelsFirst"?nt(e,[0,2,3,4,1]):e))}function _ne(e,t,n,r=1,a="valid",s,i=1){return W(()=>{if(s==null&&(s=xr()),Et(s),e.shape.length!==3)throw new V(`The input of a conv1dWithBias operation should be 3, but is ${e.shape.length} instead.`);if(t.shape.length!==3)throw new V(`The kernel for a conv1dWithBias operation should be 3, but is ${t.shape.length} instead`);if(n!=null&&n.shape.length!==1)throw new V(`The bias for a conv1dWithBias operation should be 1, but is ${t.shape.length} instead`);if(s==="channelsFirst"&&(e=nt(e,[0,2,1])),a==="causal")throw new Oe("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");let o=vd(e,t,r,a==="same"?"same":"valid","NWC",i);return n!=null&&(o=Ur(o,n)),o})}function D7(e,t,n,r=[1,1],a="valid",s,i,o=null){return W(()=>{if(s==null&&(s=xr()),Et(s),e.rank!==3&&e.rank!==4)throw new V(`conv2dWithBiasActivation expects input to be of rank 3 or 4, but received ${e.rank}.`);if(t.rank!==3&&t.rank!==4)throw new V(`conv2dWithBiasActivation expects kernel to be of rank 3 or 4, but received ${e.rank}.`);let l=HA(e,s);if(a==="causal")throw new Oe("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");return l=$a.conv2d({x:l,filter:t,strides:r,pad:a==="same"?"same":"valid",dilations:i,dataFormat:"NHWC",bias:n,activation:o}),s==="channelsFirst"&&(l=nt(l,[0,3,1,2])),l})}function bne(e,t,n,r=[1,1,1],a="valid",s,i){return W(()=>{if(s==null&&(s=xr()),Et(s),e.rank!==4&&e.rank!==5)throw new V(`conv3dWithBias expects input to be of rank 4 or 5, but received ${e.rank}.`);if(t.rank!==4&&t.rank!==5)throw new V(`conv3dWithBias expects kernel to be of rank 4 or 5, but received ${e.rank}.`);let o=O7(e,s);if(a==="causal")throw new Oe("The support for CAUSAL padding mode in conv3dWithBias is not implemented yet.");return o=$f(o,t,r,a==="same"?"same":"valid","NDHWC",i),n!=null&&(o=Ur(o,n)),s==="channelsFirst"&&(o=nt(o,[0,4,1,2,3])),o})}var qA=class extends qe{constructor(e,t){super(t);if(this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",qA.verifyArgs(t),this.rank=e,Ht(this.rank,"rank"),this.rank!==1&&this.rank!==2&&this.rank!==3)throw new Oe(`Convolution layer for rank other than 1, 2, or 3 (${this.rank}) is not implemented yet.`);if(this.kernelSize=Ul(t.kernelSize,e,"kernelSize"),this.strides=Ul(t.strides==null?1:t.strides,e,"strides"),this.padding=t.padding==null?"valid":t.padding,Yn(this.padding),this.dataFormat=t.dataFormat==null?"channelsLast":t.dataFormat,Et(this.dataFormat),this.activation=Ga(t.activation),this.useBias=t.useBias==null?!0:t.useBias,this.biasInitializer=gt(t.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.biasConstraint=Wt(t.biasConstraint),this.biasRegularizer=xt(t.biasRegularizer),this.activityRegularizer=xt(t.activityRegularizer),this.dilationRate=Ul(t.dilationRate==null?1:t.dilationRate,e,"dilationRate"),this.rank===1&&Array.isArray(this.dilationRate)&&this.dilationRate.length!==1)throw new V(`dilationRate must be a number or an array of a single number for 1D convolution, but received ${JSON.stringify(this.dilationRate)}`);if(this.rank===2){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==2)throw new V(`dilationRate must be a number or array of two numbers for 2D convolution, but received ${JSON.stringify(this.dilationRate)}`)}else if(this.rank===3){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==3)throw new V(`dilationRate must be a number or array of three numbers for 3D convolution, but received ${JSON.stringify(this.dilationRate)}`)}}static verifyArgs(e){if(Br("kernelSize"in e,"required key 'kernelSize' not in config"),typeof e.kernelSize!="number"&&!tA(e.kernelSize,"number",1,3))throw new V(`BaseConv expects config.kernelSize to be number or number[] with length 1, 2, or 3, but received ${JSON.stringify(e.kernelSize)}.`)}getConfig(){let e={kernelSize:this.kernelSize,strides:this.strides,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,activation:ja(this.activation),useBias:this.useBias,biasInitializer:kt(this.biasInitializer),biasRegularizer:dt(this.biasRegularizer),activityRegularizer:dt(this.activityRegularizer),biasConstraint:Lt(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}},Bc=class extends qA{constructor(e,t){super(e,t);this.kernel=null,Bc.verifyArgs(t),this.filters=t.filters,Ht(this.filters,"filters"),this.kernelInitializer=gt(t.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.kernelConstraint=Wt(t.kernelConstraint),this.kernelRegularizer=xt(t.kernelRegularizer)}build(e){e=ht(e);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new V(`The channel dimension of the input should be defined. Found ${e[t]}`);let n=e[t],r=this.kernelSize.concat([n,this.filters]);this.kernel=this.addWeight("kernel",r,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[{ndim:this.rank+2,axes:{[t]:n}}],this.built=!0}call(e,t){return W(()=>{e=ze(e);let n,r=this.bias==null?null:this.bias.read(),a=w3(this.activation.getClassName());if(a!=null&&this.rank===2)n=D7(e,this.kernel.read(),r,this.strides,this.padding,this.dataFormat,this.dilationRate,a);else{if(this.rank===1)n=_ne(e,this.kernel.read(),r,this.strides[0],this.padding,this.dataFormat,this.dilationRate[0]);else if(this.rank===2)n=D7(e,this.kernel.read(),r,this.strides,this.padding,this.dataFormat,this.dilationRate);else if(this.rank===3)n=bne(e,this.kernel.read(),r,this.strides,this.padding,this.dataFormat,this.dilationRate);else throw new Oe("convolutions greater than 3D are not implemented yet.");this.activation!=null&&(n=this.activation.apply(n))}return n})}computeOutputShape(e){e=ht(e);let t=[],n=this.dataFormat==="channelsLast"?e.slice(1,e.length-1):e.slice(2);for(let a=0;a<n.length;++a){let s=kr(n[a],this.kernelSize[a],this.padding,this.strides[a],typeof this.dilationRate=="number"?this.dilationRate:this.dilationRate[a]);t.push(s)}let r=[e[0]];return this.dataFormat==="channelsLast"?(r=r.concat(t),r.push(this.filters)):(r.push(this.filters),r=r.concat(t)),r}getConfig(){let e={filters:this.filters,kernelInitializer:kt(this.kernelInitializer),kernelRegularizer:dt(this.kernelRegularizer),kernelConstraint:Lt(this.kernelConstraint)},t=super.getConfig();return Object.assign(e,t),e}static verifyArgs(e){if(!("filters"in e)||typeof e.filters!="number"||e.filters<1)throw new V(`Convolution layer expected config.filters to be a 'number' > 0 but got ${JSON.stringify(e.filters)}`)}},Vc=class extends Bc{constructor(e){super(2,e);Vc.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!tA(e.kernelSize,"number",1,2))throw new V(`Conv2D expects config.kernelSize to be number or number[] with length 1 or 2, but received ${JSON.stringify(e.kernelSize)}.`)}};Vc.className="Conv2D";ae.registerClass(Vc);var n0=class extends Bc{constructor(e){super(3,e);n0.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!(Array.isArray(e.kernelSize)&&(e.kernelSize.length===1||e.kernelSize.length===3)))throw new V(`Conv3D expects config.kernelSize to be number or [number, number, number], but received ${JSON.stringify(e.kernelSize)}.`)}};n0.className="Conv3D";ae.registerClass(n0);var XA=class extends Vc{constructor(e){super(e);if(this.inputSpec=[new qt({ndim:4})],this.padding!=="same"&&this.padding!=="valid")throw new V(`Conv2DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=ht(e),e.length!==4)throw new V("Input should have rank 4; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new V("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],r=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",r,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new qt({ndim:4,axes:{[t]:n}})],this.built=!0}call(e,t){return W(()=>{let n=ze(e);if(n.shape.length!==4)throw new V(`Conv2DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let r=n.shape,a=r[0],s,i;this.dataFormat==="channelsFirst"?(s=2,i=3):(s=1,i=2);let o=r[s],l=r[i],u=this.kernelSize[0],c=this.kernelSize[1],h=this.strides[0],d=this.strides[1],p=t0(o,h,u,this.padding),f=t0(l,d,c,this.padding),m=[a,p,f,this.filters];this.dataFormat!=="channelsLast"&&(n=nt(n,[0,2,3,1]));let A=kd(n,this.kernel.read(),m,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(A=nt(A,[0,3,1,2])),this.bias!=null&&(A=Ur(A,this.bias.read(),this.dataFormat)),this.activation!=null&&(A=this.activation.apply(A)),A})}computeOutputShape(e){e=ht(e);let t=e.slice(),n,r,a;this.dataFormat==="channelsFirst"?(n=1,r=2,a=3):(n=3,r=1,a=2);let s=this.kernelSize[0],i=this.kernelSize[1],o=this.strides[0],l=this.strides[1];return t[n]=this.filters,t[r]=t0(t[r],o,s,this.padding),t[a]=t0(t[a],l,i,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};XA.className="Conv2DTranspose";ae.registerClass(XA);var $7=class extends Bc{constructor(e,t){super(e,t);if(this.DEFAULT_DEPTHWISE_INITIALIZER="glorotUniform",this.DEFAULT_POINTWISE_INITIALIZER="glorotUniform",this.depthwiseKernel=null,this.pointwiseKernel=null,t.filters==null)throw new V("The `filters` configuration field is required by SeparableConv, but is unspecified.");if(t.kernelInitializer!=null||t.kernelRegularizer!=null||t.kernelConstraint!=null)throw new V("Fields kernelInitializer, kernelRegularizer and kernelConstraint are invalid for SeparableConv2D. Use depthwiseInitializer, depthwiseRegularizer, depthwiseConstraint, pointwiseInitializer, pointwiseRegularizer and pointwiseConstraint instead.");if(t.padding!=null&&t.padding!=="same"&&t.padding!=="valid")throw new V(`SeparableConv${this.rank}D supports only padding modes: 'same' and 'valid', but received ${JSON.stringify(t.padding)}`);this.depthMultiplier=t.depthMultiplier==null?1:t.depthMultiplier,this.depthwiseInitializer=gt(t.depthwiseInitializer||this.DEFAULT_DEPTHWISE_INITIALIZER),this.depthwiseRegularizer=xt(t.depthwiseRegularizer),this.depthwiseConstraint=Wt(t.depthwiseConstraint),this.pointwiseInitializer=gt(t.depthwiseInitializer||this.DEFAULT_POINTWISE_INITIALIZER),this.pointwiseRegularizer=xt(t.pointwiseRegularizer),this.pointwiseConstraint=Wt(t.pointwiseConstraint)}build(e){if(e=ht(e),e.length<this.rank+2)throw new V(`Inputs to SeparableConv${this.rank}D should have rank ${this.rank+2}, but received input shape: ${JSON.stringify(e)}`);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null||e[t]<0)throw new V(`The channel dimension of the inputs should be defined, but found ${JSON.stringify(e[t])}`);let n=e[t],r=this.kernelSize.concat([n,this.depthMultiplier]),a=[];for(let i=0;i<this.rank;++i)a.push(1);a.push(n*this.depthMultiplier,this.filters);let s=!0;this.depthwiseKernel=this.addWeight("depthwise_kernel",r,"float32",this.depthwiseInitializer,this.depthwiseRegularizer,s,this.depthwiseConstraint),this.pointwiseKernel=this.addWeight("pointwise_kernel",a,"float32",this.pointwiseInitializer,this.pointwiseRegularizer,s,this.pointwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,s,this.biasConstraint):this.bias=null,this.inputSpec=[new qt({ndim:this.rank+2,axes:{[t]:n}})],this.built=!0}call(e,t){return W(()=>{e=ze(e);let n;if(this.rank===1)throw new Oe("1D separable convolution is not implemented yet.");return this.rank===2&&(this.dataFormat==="channelsFirst"&&(e=nt(e,[0,2,3,1])),n=Qf(e,this.depthwiseKernel.read(),this.pointwiseKernel.read(),this.strides,this.padding,this.dilationRate,"NHWC")),this.useBias&&(n=Ur(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),this.dataFormat==="channelsFirst"&&(n=nt(n,[0,3,1,2])),n})}getConfig(){let e=super.getConfig();return delete e.rank,delete e.kernelInitializer,delete e.kernelRegularizer,delete e.kernelConstraint,e.depthwiseInitializer=kt(this.depthwiseInitializer),e.pointwiseInitializer=kt(this.pointwiseInitializer),e.depthwiseRegularizer=dt(this.depthwiseRegularizer),e.pointwiseRegularizer=dt(this.pointwiseRegularizer),e.depthwiseConstraint=Lt(this.depthwiseConstraint),e.pointwiseConstraint=Lt(this.pointwiseConstraint),e}};$7.className="SeparableConv";var KA=class extends $7{constructor(e){super(2,e)}};KA.className="SeparableConv2D";ae.registerClass(KA);var r0=class extends Bc{constructor(e){super(1,e);r0.verifyArgs(e),this.inputSpec=[{ndim:3}]}getConfig(){let e=super.getConfig();return delete e.rank,delete e.dataFormat,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!tA(e.kernelSize,"number",1,1))throw new V(`Conv1D expects config.kernelSize to be number or number[] with length 1, but received ${JSON.stringify(e.kernelSize)}.`)}};r0.className="Conv1D";ae.registerClass(r0);var ZA=class extends qe{constructor(e){super(e);typeof e.cropping=="number"?this.cropping=[[e.cropping,e.cropping],[e.cropping,e.cropping]]:typeof e.cropping[0]=="number"?this.cropping=[[e.cropping[0],e.cropping[0]],[e.cropping[1],e.cropping[1]]]:this.cropping=e.cropping,this.dataFormat=e.dataFormat===void 0?"channelsLast":e.dataFormat,this.inputSpec=[{ndim:4}]}computeOutputShape(e){return this.dataFormat==="channelsFirst"?[e[0],e[1],e[2]-this.cropping[0][0]-this.cropping[0][1],e[3]-this.cropping[1][0]-this.cropping[1][1]]:[e[0],e[1]-this.cropping[0][0]-this.cropping[0][1],e[2]-this.cropping[1][0]-this.cropping[1][1],e[3]]}call(e,t){return W(()=>{if(e=ze(e),this.dataFormat==="channelsLast"){let n=Mp(e,this.cropping[0][0],e.shape[1]-this.cropping[0][0]-this.cropping[0][1],2);return Mp(n,this.cropping[1][0],e.shape[2]-this.cropping[1][1]-this.cropping[1][0],3)}else{let n=Mp(e,this.cropping[0][0],e.shape[2]-this.cropping[0][0]-this.cropping[0][1],3);return Mp(n,this.cropping[1][0],e.shape[3]-this.cropping[1][1]-this.cropping[1][0],4)}})}getConfig(){let e={cropping:this.cropping,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};ZA.className="Cropping2D";ae.registerClass(ZA);var YA=class extends qe{constructor(e){super(e);this.DEFAULT_SIZE=[2,2],this.inputSpec=[{ndim:4}],this.size=e.size==null?this.DEFAULT_SIZE:e.size,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Et(this.dataFormat),this.interpolation=e.interpolation==null?"nearest":e.interpolation,UQ(this.interpolation)}computeOutputShape(e){if(this.dataFormat==="channelsFirst"){let t=e[2]==null?null:this.size[0]*e[2],n=e[3]==null?null:this.size[1]*e[3];return[e[0],e[1],t,n]}else{let t=e[1]==null?null:this.size[0]*e[1],n=e[2]==null?null:this.size[1]*e[2];return[e[0],t,n,e[3]]}}call(e,t){return W(()=>{let n=ze(e),r=n.shape;if(this.dataFormat==="channelsFirst"){n=nt(n,[0,2,3,1]);let a=this.size[0]*r[2],s=this.size[1]*r[3],i=this.interpolation==="nearest"?n.resizeNearestNeighbor([a,s]):n.resizeBilinear([a,s]);return nt(i,[0,3,1,2])}else{let a=this.size[0]*r[1],s=this.size[1]*r[2];return this.interpolation==="nearest"?n.resizeNearestNeighbor([a,s]):n.resizeBilinear([a,s])}})}getConfig(){let e={size:this.size,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};YA.className="UpSampling2D";ae.registerClass(YA);function vne(e,t,n=[1,1],r="valid",a,s){return W(()=>{a==null&&(a=xr()),Et(a);let i=HA(e,a);if(e.rank!==4)throw new V(`Input for depthwiseConv2d is required to be 4-D, but is instead ${e.rank}-D`);if(t.rank!==4)throw new V(`depthwiseKernel is required to be 4-D, but is instead ${t.rank}-D`);return i=ci(i,t,n,r==="same"?"same":"valid","NHWC",s),a==="channelsFirst"&&(i=nt(i,[0,3,1,2])),i})}var JA=class extends qA{constructor(e){super(2,e);this.depthwiseKernel=null,this.depthMultiplier=e.depthMultiplier==null?1:e.depthMultiplier,this.depthwiseInitializer=gt(e.depthwiseInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.depthwiseConstraint=Wt(e.depthwiseConstraint),this.depthwiseRegularizer=xt(e.depthwiseRegularizer)}build(e){if(e=ht(e),e.length<4)throw new V(`Inputs to DepthwiseConv2D should have rank 4. Received input shape: ${JSON.stringify(e)}.`);let t=this.dataFormat==="channelsFirst"?1:3;if(e[t]==null||e[t]<0)throw new V(`The channel dimension of the inputs to DepthwiseConv2D should be defined, but is not (${e[t]}).`);let n=e[t],r=[this.kernelSize[0],this.kernelSize[1],n,this.depthMultiplier];this.depthwiseKernel=this.addWeight("depthwise_kernel",r,null,this.depthwiseInitializer,this.depthwiseRegularizer,!0,this.depthwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[n*this.depthMultiplier],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return W(()=>{e=ze(e);let n=vne(e,this.depthwiseKernel.read(),this.strides,this.padding,this.dataFormat,null);return this.useBias&&(n=Ur(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),n})}computeOutputShape(e){e=ht(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],r=this.dataFormat==="channelsFirst"?e[1]*this.depthMultiplier:e[3]*this.depthMultiplier,a=kr(t,this.kernelSize[0],this.padding,this.strides[0]),s=kr(n,this.kernelSize[1],this.padding,this.strides[1]);return this.dataFormat==="channelsFirst"?[e[0],r,a,s]:[e[0],a,s,r]}getConfig(){let e=super.getConfig();return e.depthMultiplier=this.depthMultiplier,e.depthwiseInitializer=kt(this.depthwiseInitializer),e.depthwiseRegularizer=dt(this.depthwiseRegularizer),e.depthwiseConstraint=Lt(this.depthwiseRegularizer),e}};JA.className="DepthwiseConv2D";ae.registerClass(JA);function z7(e,t,n,r){if(Array.isArray(e)){if(t!=null||n!=null)throw new V("When inputs is an array, neither initialState or constants should be provided");r!=null&&(n=e.slice(e.length-r,e.length),e=e.slice(0,e.length-r)),e.length>1&&(t=e.slice(1,e.length)),e=e[0]}function a(s){return s==null||Array.isArray(s)?s:[s]}return t=a(t),n=a(n),{inputs:e,initialState:t,constants:n}}function P7(e,t,n,r=!1,a,s,i=!1,o=!1){return W(()=>{let l=t.shape.length;if(l<3)throw new V(`Input should be at least 3D, but is ${l}D.`);let u=[1,0].concat(_r(2,l));if(t=nt(t,u),s!=null)throw new Oe("The rnn() functoin of the deeplearn.js backend does not support constants yet.");i&&console.warn("Backend rnn(): the unroll = true option is not applicable to the imperative deeplearn.js backend."),a!=null&&(a=a.asType("bool").asType("float32"),a.rank===l-1&&(a=Hn(a,-1)),a=nt(a,u)),r&&(t=Cn(t,0),a!=null&&(a=Cn(a,0)));let c=[],h,d=n,p=t.shape[0],f=ar(t),m;a!=null&&(m=ar(a));for(let y=0;y<p;++y){let g=f[y],_=W(()=>e(g,d));if(a==null)h=_[0],d=_[1];else{let b=W(()=>{let x=m[y],w=En(x).sub(x),I=_[0].mul(x).add(d[0].mul(w)),T=d.map((E,M)=>_[1][M].mul(x).add(E.mul(w)));return{output:I,newStates:T}});h=b.output,d=b.newStates}o&&c.push(h)}let A;return o&&(A=Rn(c,1)),[h,A,d]})}var jr=class extends qe{constructor(e){super(e);let t;if(e.cell==null)throw new V("cell property is missing for the constructor of RNN.");if(Array.isArray(e.cell)?t=new a0({cells:e.cell}):t=e.cell,t.stateSize==null)throw new V("The RNN cell should have an attribute `stateSize` (tuple of integers, one integer per RNN state).");this.cell=t,this.returnSequences=e.returnSequences==null?!1:e.returnSequences,this.returnState=e.returnState==null?!1:e.returnState,this.goBackwards=e.goBackwards==null?!1:e.goBackwards,this._stateful=e.stateful==null?!1:e.stateful,this.unroll=e.unroll==null?!1:e.unroll,this.supportsMasking=!0,this.inputSpec=[new qt({ndim:3})],this.stateSpec=null,this.states_=null,this.numConstants=null,this.keptStates=[]}getStates(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;return _r(0,e).map(t=>null)}else return this.states_}setStates(e){this.states_=e}computeOutputShape(e){_A(e)&&(e=e[0]),e=e;let t=this.cell.stateSize;Array.isArray(t)||(t=[t]);let n=t[0],r;if(this.returnSequences?r=[e[0],e[1],n]:r=[e[0],n],this.returnState){let a=[];for(let s of t)a.push([e[0],s]);return[r].concat(a)}else return r}computeMask(e,t){return W(()=>{Array.isArray(t)&&(t=t[0]);let n=this.returnSequences?t:null;if(this.returnState){let r=this.states.map(a=>null);return[n].concat(r)}else return n})}get states(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1,t=[];for(let n=0;n<e;++n)t.push(null);return t}else return this.states_}set states(e){this.states_=e}build(e){let t=null;if(this.numConstants!=null)throw new Oe("Constants support is not implemented in RNN yet.");_A(e)&&(e=e[0]),e=e;let n=this.stateful?e[0]:null,r=e.slice(2);this.inputSpec[0]=new qt({shape:[n,null,...r]});let a=[e[0]].concat(e.slice(2));if(t!=null)throw new Oe("Constants support is not implemented in RNN yet.");this.cell.build(a);let s;if(Array.isArray(this.cell.stateSize)?s=this.cell.stateSize:s=[this.cell.stateSize],this.stateSpec!=null){if(!k.arraysEqual(this.stateSpec.map(i=>i.shape[i.shape.length-1]),s))throw new V(`An initialState was passed that is not compatible with cell.stateSize. Received stateSpec=${this.stateSpec}; However cell.stateSize is ${this.cell.stateSize}`)}else this.stateSpec=s.map(i=>new qt({shape:[null,i]}));this.stateful&&this.resetStates()}resetStates(e,t=!1){W(()=>{if(!this.stateful)throw new da("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape[0];if(n==null)throw new V("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.states_==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(r=>Tt([n,r])):this.states_=[Tt([n,this.cell.stateSize])];else if(e==null)Te(this.states_),this.keptStates!=null&&(Te(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(r=>Tt([n,r])):this.states_[0]=Tt([n,this.cell.stateSize]);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new V(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t===!0?this.keptStates.push(this.states_.slice()):Te(this.states_);for(let r=0;r<this.states_.length;++r){let a=e[r],s=Array.isArray(this.cell.stateSize)?this.cell.stateSize[r]:this.cell.stateSize,i=[n,s];if(!k.arraysEqual(a.shape,i))throw new V(`State ${r} is incompatible with layer ${this.name}: expected shape=${i}, received shape=${a.shape}`);this.states_[r]=a}}this.states_=this.states_.map(r=>Ut(r.clone()))})}apply(e,t){let n=t==null?null:t.initialState,r=t==null?null:t.constants;t==null&&(t={});let a=z7(e,n,r,this.numConstants);e=a.inputs,n=a.initialState,r=a.constants;let s=[],i=[];if(n!=null){t.initialState=n,s=s.concat(n),this.stateSpec=[];for(let o of n)this.stateSpec.push(new qt({shape:o.shape}));i=i.concat(this.stateSpec)}if(r!=null&&(t.constants=r,s=s.concat(r),this.numConstants=r.length),s[0]instanceof br){let o=[e].concat(s),l=this.inputSpec.concat(i),u=this.inputSpec;this.inputSpec=l;let c=super.apply(o,t);return this.inputSpec=u,c}else return super.apply(e,t)}call(e,t){return W(()=>{let n=t==null?null:t.mask,r=t==null?null:t.training,a=t==null?null:t.initialState;e=ze(e),a==null&&(this.stateful?a=this.states_:a=this.getInitialState(e));let s=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;if(a.length!==s)throw new V(`RNN Layer has ${s} state(s) but was passed ${a.length} initial state(s).`);this.unroll&&console.warn("Ignoring unroll = true for RNN layer, due to imperative backend.");let i={training:r},o=P7((d,p)=>{let f=this.cell.call([d].concat(p),i);return[f[0],f.slice(1)]},e,a,this.goBackwards,n,null,this.unroll,this.returnSequences),l=o[0],u=o[1],c=o[2];this.stateful&&this.resetStates(c,r);let h=this.returnSequences?u:l;return this.returnState?[h].concat(c):h})}getInitialState(e){return W(()=>{let t=Tt(e.shape);return t=Se(t,[1,2]),t=Fc(t),Array.isArray(this.cell.stateSize)?this.cell.stateSize.map(n=>n>1?oA(t,[1,n]):t):this.cell.stateSize>1?[oA(t,[1,this.cell.stateSize])]:[t]})}get trainableWeights(){return this.trainable?this.cell.trainableWeights:[]}get nonTrainableWeights(){return this.trainable?this.cell.nonTrainableWeights:this.cell.weights}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.cell!=null&&this.cell.setFastWeightInitDuringBuild(e)}getConfig(){let e=super.getConfig(),t={returnSequences:this.returnSequences,returnState:this.returnState,goBackwards:this.goBackwards,stateful:this.stateful,unroll:this.unroll};this.numConstants!=null&&(t.numConstants=this.numConstants);let n=this.cell.getConfig();return this.getClassName()===jr.className&&(t.cell={className:this.cell.getClassName(),config:n}),Object.assign({},n,e,t)}static fromConfig(e,t,n={}){let r=t.cell,a=vr(r,n);return new e(Object.assign(t,{cell:a}))}};jr.className="RNN";ae.registerClass(jr);var Dc=class extends qe{},s0=class extends Dc{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,Ht(this.units,"units"),this.activation=Ga(e.activation==null?this.DEFAULT_ACTIVATION:e.activation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=gt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=gt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=gt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=xt(e.kernelRegularizer),this.recurrentRegularizer=xt(e.recurrentRegularizer),this.biasRegularizer=xt(e.biasRegularizer),this.kernelConstraint=Wt(e.kernelConstraint),this.recurrentConstraint=Wt(e.recurrentConstraint),this.biasConstraint=Wt(e.biasConstraint),this.dropout=Pl([1,Va([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Pl([1,Va([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=ht(e),this.kernel=this.addWeight("kernel",[e[e.length-1],this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return W(()=>{if(e=e,e.length!==2)throw new V(`SimpleRNNCell expects 2 input Tensors, got ${e.length}.`);let n=e[1];e=e[0];let r=t.training==null?!1:t.training;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Ha({ones:()=>En(e),rate:this.dropout,training:r})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Ha({ones:()=>En(n),rate:this.recurrentDropout,training:r}));let a,s=this.dropoutMask,i=this.recurrentDropoutMask;s!=null?a=Vr(L(e,s),this.kernel.read()):a=Vr(e,this.kernel.read()),this.bias!=null&&(a=Ur(a,this.bias.read())),i!=null&&(n=L(n,i));let o=oe(a,Vr(n,this.recurrentKernel.read()));return this.activation!=null&&(o=this.activation.apply(o)),[o,o]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:ja(this.activation),useBias:this.useBias,kernelInitializer:kt(this.kernelInitializer),recurrentInitializer:kt(this.recurrentInitializer),biasInitializer:kt(this.biasInitializer),kernelRegularizer:dt(this.kernelRegularizer),recurrentRegularizer:dt(this.recurrentRegularizer),biasRegularizer:dt(this.biasRegularizer),activityRegularizer:dt(this.activityRegularizer),kernelConstraint:Lt(this.kernelConstraint),recurrentConstraint:Lt(this.recurrentConstraint),biasConstraint:Lt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout};return Object.assign({},e,t)}};s0.className="SimpleRNNCell";ae.registerClass(s0);var QA=class extends jr{constructor(e){e.cell=new s0(e),super(e)}call(e,t){return W(()=>{this.cell.dropoutMask!=null&&(Te(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Te(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,r=t==null?null:t.training,a=t==null?null:t.initialState;return super.call(e,{mask:n,training:r,initialState:a})})}static fromConfig(e,t){return new e(t)}};QA.className="SimpleRNN";ae.registerClass(QA);var i0=class extends Dc{constructor(e){super(e);if(this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.resetAfter)throw new V("GRUCell does not support reset_after parameter set to true.");this.units=e.units,Ht(this.units,"units"),this.activation=Ga(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=Ga(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=gt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=gt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=gt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=xt(e.kernelRegularizer),this.recurrentRegularizer=xt(e.recurrentRegularizer),this.biasRegularizer=xt(e.biasRegularizer),this.kernelConstraint=Wt(e.kernelConstraint),this.recurrentConstraint=Wt(e.recurrentConstraint),this.biasConstraint=Wt(e.biasConstraint),this.dropout=Pl([1,Va([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Pl([1,Va([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.implementation=e.implementation,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=ht(e);let t=e[e.length-1];this.kernel=this.addWeight("kernel",[t,this.units*3],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*3],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units*3],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return W(()=>{if(e=e,e.length!==2)throw new V(`GRUCell expects 2 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training==null?!1:t.training,r=e[1];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Ha({ones:()=>En(e),rate:this.dropout,training:n,count:3})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Ha({ones:()=>En(r),rate:this.recurrentDropout,training:n,count:3}));let a=this.dropoutMask,s=this.recurrentDropoutMask,i,o,l;0<this.dropout&&this.dropout<1&&(e=L(e,a[0]));let u=Vr(e,this.kernel.read());this.useBias&&(u=Ur(u,this.bias.read())),0<this.recurrentDropout&&this.recurrentDropout<1&&(r=L(r,s[0]));let c=this.recurrentKernel.read(),[h,d]=Jt(c,[2*this.units,this.units],c.rank-1),p=Vr(r,h),[f,m,A]=Jt(u,3,u.rank-1),[y,g]=Jt(p,2,p.rank-1);i=this.recurrentActivation.apply(oe(f,y)),o=this.recurrentActivation.apply(oe(m,g));let _=Vr(L(o,r),d);l=this.activation.apply(oe(A,_));let b=oe(L(i,r),L(oe(1,bt(i)),l));return[b,b]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:ja(this.activation),recurrentActivation:ja(this.recurrentActivation),useBias:this.useBias,kernelInitializer:kt(this.kernelInitializer),recurrentInitializer:kt(this.recurrentInitializer),biasInitializer:kt(this.biasInitializer),kernelRegularizer:dt(this.kernelRegularizer),recurrentRegularizer:dt(this.recurrentRegularizer),biasRegularizer:dt(this.biasRegularizer),activityRegularizer:dt(this.activityRegularizer),kernelConstraint:Lt(this.kernelConstraint),recurrentConstraint:Lt(this.recurrentConstraint),biasConstraint:Lt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation,resetAfter:!1};return Object.assign({},e,t)}};i0.className="GRUCell";ae.registerClass(i0);var ey=class extends jr{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new i0(e),super(e)}call(e,t){return W(()=>{this.cell.dropoutMask!=null&&(Te(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Te(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,r=t==null?null:t.training,a=t==null?null:t.initialState;return super.call(e,{mask:n,training:r,initialState:a})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};ey.className="GRU";ae.registerClass(ey);var Uc=class extends Dc{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,Ht(this.units,"units"),this.activation=Ga(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=Ga(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=gt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=gt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=gt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.unitForgetBias=e.unitForgetBias,this.kernelRegularizer=xt(e.kernelRegularizer),this.recurrentRegularizer=xt(e.recurrentRegularizer),this.biasRegularizer=xt(e.biasRegularizer),this.kernelConstraint=Wt(e.kernelConstraint),this.recurrentConstraint=Wt(e.recurrentConstraint),this.biasConstraint=Wt(e.biasConstraint),this.dropout=Pl([1,Va([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Pl([1,Va([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.implementation=e.implementation,this.stateSize=[this.units,this.units],this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){var t;e=ht(e);let n=e[e.length-1];this.kernel=this.addWeight("kernel",[n,this.units*4],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*4],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint);let r;if(this.useBias){if(this.unitForgetBias){let a=this.biasInitializer,s=this.units;r=new(t=class extends or{apply(i,o){let l=a.apply([s]),u=new Dp().apply([s]),c=a.apply([s*2]);return C3(C3(l,u),c)}},t.className="CustomInit",t)}else r=this.biasInitializer;this.bias=this.addWeight("bias",[this.units*4],null,r,this.biasRegularizer,!0,this.biasConstraint)}else this.bias=null;this.built=!0}call(e,t){return W(()=>{let n=t.training==null?!1:t.training;if(e=e,e.length!==3)throw new V(`LSTMCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let r=e[1],a=e[2];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Ha({ones:()=>En(e),rate:this.dropout,training:n,count:4})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Ha({ones:()=>En(r),rate:this.recurrentDropout,training:n,count:4}));let s=this.dropoutMask,i=this.recurrentDropoutMask,o,l,u,c;0<this.dropout&&this.dropout<1&&(e=L(e,s[0]));let h=Vr(e,this.kernel.read());0<this.recurrentDropout&&this.recurrentDropout<1&&(r=L(r,i[0])),h=oe(h,Vr(r,this.recurrentKernel.read())),this.useBias&&(h=Ur(h,this.bias.read()));let[d,p,f,m]=Jt(h,4,h.rank-1);o=this.recurrentActivation.apply(d),l=this.recurrentActivation.apply(p),u=oe(L(l,a),L(o,this.activation.apply(f))),c=this.recurrentActivation.apply(m);let A=L(c,this.activation.apply(u));return[A,A,u]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:ja(this.activation),recurrentActivation:ja(this.recurrentActivation),useBias:this.useBias,kernelInitializer:kt(this.kernelInitializer),recurrentInitializer:kt(this.recurrentInitializer),biasInitializer:kt(this.biasInitializer),unitForgetBias:this.unitForgetBias,kernelRegularizer:dt(this.kernelRegularizer),recurrentRegularizer:dt(this.recurrentRegularizer),biasRegularizer:dt(this.biasRegularizer),activityRegularizer:dt(this.activityRegularizer),kernelConstraint:Lt(this.kernelConstraint),recurrentConstraint:Lt(this.recurrentConstraint),biasConstraint:Lt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation};return Object.assign({},e,t)}};Uc.className="LSTMCell";ae.registerClass(Uc);var ty=class extends jr{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new Uc(e),super(e)}call(e,t){return W(()=>{this.cell.dropoutMask!=null&&(Te(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Te(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,r=t==null?null:t.training,a=t==null?null:t.initialState;return super.call(e,{mask:n,training:r,initialState:a})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};ty.className="LSTM";ae.registerClass(ty);var a0=class extends Dc{constructor(e){super(e);this.cells=e.cells}get stateSize(){let e=[];for(let t of this.cells.slice().reverse())Array.isArray(t.stateSize)?e.push(...t.stateSize):e.push(t.stateSize);return e}call(e,t){return W(()=>{e=e;let n=e.slice(1),r=[];for(let i of this.cells.slice().reverse())Array.isArray(i.stateSize)?r.push(n.splice(0,i.stateSize.length)):r.push(n.splice(0,1));r.reverse();let a=[],s;for(let i=0;i<this.cells.length;++i){let o=this.cells[i];n=r[i],i===0?s=[e[0]].concat(n):s=[s[0]].concat(n),s=o.call(s,t),a.push(s.slice(1))}n=[];for(let i of a.slice().reverse())n.push(...i);return[s[0]].concat(n)})}build(e){_A(e)&&(e=e[0]),e=e;let t;this.cells.forEach((n,r)=>{Si(`RNNCell_${r}`,()=>{n.build(e),Array.isArray(n.stateSize)?t=n.stateSize[0]:t=n.stateSize,e=[e[0],t]})}),this.built=!0}getConfig(){let e=super.getConfig(),t=r=>({className:r.getClassName(),config:r.getConfig()}),n={cells:this.cells.map(t)};return Object.assign({},e,n)}static fromConfig(e,t,n={}){let r=[];for(let a of t.cells)r.push(vr(a,n));return new e({cells:r})}get trainableWeights(){if(!this.trainable)return[];let e=[];for(let t of this.cells)e.push(...t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.cells)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.cells)t.push(...n.trainableWeights);return t.concat(e)}return e}getWeights(){let e=[];for(let t of this.cells)e.push(...t.weights);return bA(e)}setWeights(e){let t=[];for(let n of this.cells){let r=n.weights.length,a=e.splice(r);for(let s=0;s<n.weights.length;++s)t.push([n.weights[s],a[s]])}vA(t)}};a0.className="StackedRNNCells";ae.registerClass(a0);function Ha(e){let{ones:t,rate:n,training:r=!1,count:a=1}=e,s=()=>F3(t(),n),i=()=>Oc(s,t,r);return!a||a<=1?Ut(i().clone()):Array(a).fill(void 0).map(i).map(o=>Ut(o.clone()))}var kne=function(e,t){var n={};for(var r in e)Object.prototype.hasOwnProperty.call(e,r)&&t.indexOf(r)<0&&(n[r]=e[r]);if(e!=null&&typeof Object.getOwnPropertySymbols=="function")for(var a=0,r=Object.getOwnPropertySymbols(e);a<r.length;a++)t.indexOf(r[a])<0&&Object.prototype.propertyIsEnumerable.call(e,r[a])&&(n[r[a]]=e[r[a]]);return n},L7=class extends jr{constructor(e){if(e.unroll)throw new Oe("Unrolling is not possible with convolutional RNNs.");if(Array.isArray(e.cell))throw new Oe("It is not possible at the moment to stack convolutional cells.");super(e);this.inputSpec=[new qt({ndim:5})]}call(e,t){return W(()=>{if(this.cell.dropoutMask!=null&&(Te(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Te(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null),t&&t.constants)throw new V("ConvRNN2D cell does not support constants");let n=t==null?null:t.mask,r=t==null?null:t.training,a=t==null?null:t.initialState;return super.call(e,{mask:n,training:r,initialState:a})})}computeOutputShape(e){let t=this.computeSingleOutputShape(e);return this.returnSequences||(t=[t[0],...t.slice(2)]),this.returnState&&(t=[t,...Array(2).fill([e[0],...t.slice(-3)])]),t}getInitialState(e){return W(()=>{let{stateSize:t}=this.cell,n=e.shape,r=this.computeSingleOutputShape(n),a=[r[0],...r.slice(2)],s=Tt(a);return Array.isArray(t)?Array(t.length).fill(s):[s]})}resetStates(e,t=!1){W(()=>{if(!this.stateful)throw new da("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape,r=this.computeSingleOutputShape(n),a=[r[0],...r.slice(2)];if(n[0]==null)throw new V("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.getStates()==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>Tt(a)):this.states_=[Tt(a)];else if(e==null)Te(this.states_),this.keptStates!=null&&(Te(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>Tt(a)):this.states_[0]=Tt(a);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new V(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t?this.keptStates.push(this.states_.slice()):Te(this.states_);for(let s=0;s<this.states_.length;++s){let i=e[s],o=a;if(!k.arraysEqual(i.shape,o))throw new V(`State ${s} is incompatible with layer ${this.name}: expected shape=${o}, received shape=${i.shape}`);this.states_[s]=i}}this.states_=this.states_.map(s=>Ut(s.clone()))})}computeSingleOutputShape(e){let{dataFormat:t,filters:n,kernelSize:r,padding:a,strides:s,dilationRate:i}=this.cell,o=t==="channelsFirst",l=e[o?3:2],u=e[o?4:3],c=kr(l,r[0],a,s[0],i[0]),h=kr(u,r[1],a,s[1],i[1]);return[...e.slice(0,2),...o?[n,c,h]:[c,h,n]]}};L7.className="ConvRNN2D";var o0=class extends Uc{constructor(e){let{filters:t,kernelSize:n,strides:r,padding:a,dataFormat:s,dilationRate:i}=e;super(Object.assign({},e,{units:t}));this.filters=t,Ht(this.filters,"filters"),this.kernelSize=Ul(n,2,"kernelSize"),this.kernelSize.forEach(o=>Ht(o,"kernelSize")),this.strides=Ul(r||1,2,"strides"),this.strides.forEach(o=>Ht(o,"strides")),this.padding=a||"valid",Yn(this.padding),this.dataFormat=s||"channelsLast",Et(this.dataFormat),this.dilationRate=Ul(i||1,2,"dilationRate"),this.dilationRate.forEach(o=>Ht(o,"dilationRate"))}build(e){var t;e=ht(e);let n=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[n]==null)throw new V(`The channel dimension of the input should be defined. Found ${e[n]}`);let r=e[n],a=4,s=this.kernelSize.concat([r,this.filters*a]);this.kernel=this.addWeight("kernel",s,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint);let i=this.kernelSize.concat([this.filters,this.filters*a]);if(this.recurrentKernel=this.addWeight("recurrent_kernel",i,null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias){let o;if(this.unitForgetBias){let l=this.biasInitializer,u=this.filters;o=new(t=class extends or{apply(c,h){let d=l.apply([u]),p=Dr([u]),f=l.apply([u*2]);return uA([d,p,f])}},t.className="CustomInit",t)}else o=this.biasInitializer;this.bias=this.addWeight("bias",[this.filters*a],null,o,this.biasRegularizer,!0,this.biasConstraint)}this.built=!0}call(e,t){return W(()=>{if(e.length!==3)throw new V(`ConvLSTM2DCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training||!1,r=e[0],a=e[1],s=e[2],i=4;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Ha({ones:()=>En(r),rate:this.dropout,training:n,count:i}));let o=this.dropoutMask,l=(J,se,re)=>!se||!se[re]?J:L(se[re],J),u=l(r,o,0),c=l(r,o,1),h=l(r,o,2),d=l(r,o,3);0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Ha({ones:()=>En(a),rate:this.recurrentDropout,training:n,count:i}));let p=this.recurrentDropoutMask,f=l(a,p,0),m=l(a,p,1),A=l(a,p,2),y=l(a,p,3),g=3,[_,b,x,w]=Jt(this.kernel.read(),i,g),[I,T,E,M]=this.useBias?Jt(this.bias.read(),i):[null,null,null,null];u=this.inputConv(u,_,I,this.padding),c=this.inputConv(c,b,T,this.padding),h=this.inputConv(h,x,E,this.padding),d=this.inputConv(d,w,M,this.padding);let[z,P,B,q]=Jt(this.recurrentKernel.read(),i,g);f=this.recurrentConv(f,z),m=this.recurrentConv(m,P),A=this.recurrentConv(A,B),y=this.recurrentConv(y,q);let H=this.recurrentActivation.apply(oe(u,f)),X=this.recurrentActivation.apply(oe(c,m)),Z=oe(L(X,s),L(H,this.activation.apply(oe(h,A)))),ee=L(this.recurrentActivation.apply(oe(d,y)),this.activation.apply(Z));return[ee,ee,Z]})}getConfig(){let e=super.getConfig(),{units:t}=e,n=kne(e,["units"]),r={filters:this.filters,kernelSize:this.kernelSize,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,strides:this.strides};return Object.assign({},n,r)}inputConv(e,t,n,r){let a=sa(e,t,this.strides,r||"valid",this.dataFormat==="channelsFirst"?"NCHW":"NHWC",this.dilationRate);return n?Ur(a,n,this.dataFormat):a}recurrentConv(e,t){return sa(e,t,1,"same",this.dataFormat==="channelsFirst"?"NCHW":"NHWC")}};o0.className="ConvLSTM2DCell";ae.registerClass(o0);var ny=class extends L7{constructor(e){let t=new o0(e);super(Object.assign({},e,{cell:t}))}static fromConfig(e,t){return new e(t)}};ny.className="ConvLSTM2D";ae.registerClass(ny);var l0=class extends qe{constructor(e){super(e);this.rate=Math.max(Math.min(e.rate,1),0),this.noiseShape=e.noiseShape,this.seed=e.seed,this.supportsMasking=!0}getNoiseShape(e){if(this.noiseShape==null)return this.noiseShape;let t=e.shape,n=[];for(let r=0;r<this.noiseShape.length;++r)n.push(this.noiseShape[r]==null?t[r]:this.noiseShape[r]);return n}call(e,t){return W(()=>{this.invokeCallHook(e,t);let n=ze(e);if(0<this.rate&&this.rate<1){let r=t.training==null?!1:t.training,a=this.getNoiseShape(n);return Oc(()=>F3(n,this.rate,a,this.seed),()=>n,r)}return e})}getConfig(){let e={rate:this.rate,noiseShape:this.noiseShape,seed:this.seed},t=super.getConfig();return Object.assign(e,t),e}dispose(){return super.dispose()}};l0.className="Dropout";ae.registerClass(l0);var ry=class extends l0{constructor(e){super(e);this.inputSpec=[{ndim:3}]}getNoiseShape(e){let t=e.shape;return[t[0],1,t[2]]}};ry.className="SpatialDropout1D";ae.registerClass(ry);var ay=class extends qe{constructor(e){super(e);if(this.activation=null,this.useBias=!0,this.kernel=null,this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.batchInputShape==null&&e.inputShape==null&&e.inputDim!=null){let t=null;e.batchSize!=null&&(t=e.batchSize),this.batchInputShape=[t,e.inputDim]}this.units=e.units,Ht(this.units,"units"),this.activation=Ga(e.activation),e.useBias!=null&&(this.useBias=e.useBias),this.kernelInitializer=gt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.biasInitializer=gt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelConstraint=Wt(e.kernelConstraint),this.biasConstraint=Wt(e.biasConstraint),this.kernelRegularizer=xt(e.kernelRegularizer),this.biasRegularizer=xt(e.biasRegularizer),this.activityRegularizer=xt(e.activityRegularizer),this.supportsMasking=!0,this.inputSpec=[{minNDim:2}]}build(e){e=ht(e);let t=e[e.length-1];this.kernel==null&&(this.kernel=this.addWeight("kernel",[t,this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint))),this.inputSpec=[{minNDim:2,axes:{[-1]:t}}],this.built=!0}computeOutputShape(e){e=ht(e);let t=e.slice();return t[t.length-1]=this.units,t}call(e,t){return W(()=>{this.invokeCallHook(e,t);let n=ze(e),r=w3(this.activation.getClassName()),a;return r!=null?a=Vr(n,this.kernel.read(),r,this.bias?this.bias.read():null):(a=Vr(n,this.kernel.read()),this.bias!=null&&(a=Ur(a,this.bias.read())),this.activation!=null&&(a=this.activation.apply(a))),a})}getConfig(){let e={units:this.units,activation:ja(this.activation),useBias:this.useBias,kernelInitializer:kt(this.kernelInitializer),biasInitializer:kt(this.biasInitializer),kernelRegularizer:dt(this.kernelRegularizer),biasRegularizer:dt(this.biasRegularizer),activityRegularizer:dt(this.activityRegularizer),kernelConstraint:Lt(this.kernelConstraint),biasConstraint:Lt(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}};ay.className="Dense";ae.registerClass(ay);var sy=class extends qe{constructor(e){e=e||{},super(e),this.inputSpec=[{minNDim:3}],this.dataFormat=e.dataFormat}computeOutputShape(e){e=ht(e);for(let t of e.slice(1))if(t==null)throw new V(`The shape of the input to "Flatten" is not fully defined (got ${e.slice(1)}). Make sure to pass a complete "input_shape" or "batch_input_shape" argument to the first layer in your model.`);return[e[0],Ba(e,1)]}call(e,t){return W(()=>{this.invokeCallHook(e,t);let n=ze(e);if(this.dataFormat==="channelsFirst"&&n.rank>1){let r=[0];for(let a=2;a<n.rank;++a)r.push(a);r.push(1),n=n.transpose(r)}return KQ(n)})}getConfig(){let e={};this.dataFormat!=null&&(e.dataFormat=this.dataFormat);let t=super.getConfig();return Object.assign(e,t),e}};sy.className="Flatten";ae.registerClass(sy);var iy=class extends qe{constructor(e){super(e);this.supportsMasking=!0,this.activation=Ga(e.activation)}call(e,t){return W(()=>{this.invokeCallHook(e,t);let n=ze(e);return this.activation.apply(n)})}getConfig(){let e={activation:ja(this.activation)},t=super.getConfig();return Object.assign(e,t),e}};iy.className="Activation";ae.registerClass(iy);var oy=class extends qe{constructor(e){super(e);this.n=e.n,this.inputSpec=[{ndim:2}]}computeOutputShape(e){return[e[0],this.n,e[1]]}call(e,t){return W(()=>(e=ze(e),qQ(e,this.n)))}getConfig(){let e={n:this.n},t=super.getConfig();return Object.assign(e,t),e}};oy.className="RepeatVector";ae.registerClass(oy);var ly=class extends qe{constructor(e){super(e);this.targetShape=e.targetShape;for(let t=0;t<this.targetShape.length;++t)this.isUnknown(this.targetShape[t])&&(this.targetShape[t]=null)}isUnknown(e){return e<0||e==null}fixUnknownDimension(e,t){let n="Total size of new array must be unchanged.",r=t.slice(),a=1,s=null;for(let o=0;o<r.length;++o){let l=r[o];if(this.isUnknown(l))if(s===null)s=o;else throw new V("Can only specifiy one unknown dimension.");else a*=l}let i=Ba(e);if(s!==null){if(a===0||i%a!=0)throw new V(n);r[s]=i/a}else if(i!==a)throw new V(n);return r}computeOutputShape(e){let t=!1;for(let n=0;n<e.length;++n)if(this.isUnknown(e[n])){t=!0;break}return t?e.slice(0,1).concat(this.targetShape):e.slice(0,1).concat(this.fixUnknownDimension(e.slice(1),this.targetShape))}call(e,t){return W(()=>{this.invokeCallHook(e,t);let n=ze(e),r=n.shape,a=r.slice(0,1).concat(this.fixUnknownDimension(r.slice(1),this.targetShape));return n.reshape(a)})}getConfig(){let e={targetShape:this.targetShape},t=super.getConfig();return Object.assign(e,t),e}};ly.className="Reshape";ae.registerClass(ly);var uy=class extends qe{constructor(e){super(e);if(e.dims==null)throw new Error("Required configuration field `dims` is missing during Permute constructor call.");if(!Array.isArray(e.dims))throw new Error(`Permute constructor requires \`dims\` to be an Array, but received ${e.dims} instead.`);let t=_r(1,e.dims.length+1);if(!k.arraysEqual(e.dims.slice().sort(),t))throw new Error("Invalid permutation `dims`: "+JSON.stringify(e.dims)+" `dims` must contain consecutive integers starting from 1.");this.dims=e.dims,this.dimsIncludingBatch=[0].concat(this.dims),this.inputSpec=[new qt({ndim:this.dims.length+1})]}computeOutputShape(e){e=ht(e);let t=e.slice();return this.dims.forEach((n,r)=>{t[r+1]=e[n]}),t}call(e,t){return nt(ze(e),this.dimsIncludingBatch)}getConfig(){let e={dims:this.dims},t=super.getConfig();return Object.assign(e,t),e}};uy.className="Permute";ae.registerClass(uy);var cy=class extends qe{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null?this.maskValue=e.maskValue==null?0:e.maskValue:this.maskValue=0}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={maskValue:this.maskValue};return Object.assign(t,e),t}computeMask(e,t){let n=ze(e),r=-1;return Gu(Oa(n,this.maskValue),r)}call(e,t){return W(()=>{this.invokeCallHook(e,t);let n=ze(e),r=-1,a=!0,s=Gu(Oa(n,this.maskValue),r,a);return n.mul(s.asType(n.dtype))})}};cy.className="Masking";ae.registerClass(cy);var hy=class extends qe{constructor(e){super(e);if(this.embeddings=null,this.DEFAULT_EMBEDDINGS_INITIALIZER="randomUniform",e.batchInputShape==null&&e.inputShape==null){let t=null;e.batchSize!=null&&(t=e.batchSize),e.inputLength==null?this.batchInputShape=[t,null]:this.batchInputShape=[t].concat(mt(e.inputLength))}this.inputDim=e.inputDim,Ht(this.inputDim,"inputDim"),this.outputDim=e.outputDim,Ht(this.outputDim,"outputDim"),this.embeddingsInitializer=gt(e.embeddingsInitializer||this.DEFAULT_EMBEDDINGS_INITIALIZER),this.embeddingsRegularizer=xt(e.embeddingsRegularizer),this.activityRegularizer=xt(e.activityRegularizer),this.embeddingsConstraint=Wt(e.embeddingsConstraint),this.maskZero=e.maskZero,this.supportsMasking=e.maskZero,this.inputLength=e.inputLength}build(e){this.embeddings=this.addWeight("embeddings",[this.inputDim,this.outputDim],this.dtype,this.embeddingsInitializer,this.embeddingsRegularizer,!0,this.embeddingsConstraint),this.built=!0}warnOnIncompatibleInputShape(e){}computeMask(e,t){return W(()=>this.maskZero?(e=ze(e),Oa(e,je(e))):null)}computeOutputShape(e){if(e=ht(e),this.inputLength==null)return[...e,this.outputDim];let t=mt(this.inputLength);if(t.length!==e.length-1)throw new V(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);{let n=0;for(let r=0;r<t.length;++r){let a=t[r],s=e[r+1];if(a!=null&&s!=null&&a!==s)throw new V(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);a==null&&(t[n]=s),n++}}return[e[0],...t,this.outputDim]}call(e,t){return W(()=>{this.invokeCallHook(e,t);let n=ze(e);return n.dtype!=="int32"&&(n=Rc(n,"int32")),R3(this.embeddings.read(),n.as1D()).reshape(ht(this.computeOutputShape(n.shape)))})}getConfig(){let e={inputDim:this.inputDim,outputDim:this.outputDim,embeddingsInitializer:kt(this.embeddingsInitializer),embeddingsRegularizer:dt(this.embeddingsRegularizer),activityRegularizer:dt(this.activityRegularizer),embeddingsConstraint:Lt(this.embeddingsConstraint),maskZero:this.maskZero,inputLength:this.inputLength},t=super.getConfig();return Object.assign(e,t),e}};hy.className="Embedding";ae.registerClass(hy);var Fi=class extends qe{constructor(e){super(e||{});this.supportsMasking=!0}mergeFunction(e){throw new Oe}computeElementwiseOpOutputShape(e,t){if(e==null||t==null)return null;if(e.length<t.length)return this.computeElementwiseOpOutputShape(t,e);if(t.length===0)return e;let n=e.slice(0,e.length-t.length);for(let r=0;r<t.length;++r){let a=e[e.length-t.length+r],s=t[r];if(a==null||s==null||a<0||s<0)n.push(null);else if(a===1)n.push(s);else if(s===1)n.push(a);else{if(a!==s)throw new V("Operands could not be broadcast together with shapes "+JSON.stringify(e)+" "+JSON.stringify(t));n.push(a)}}return n}build(e){if(Array.isArray(e)&&!Array.isArray(e[0])&&(e=[ht(e)]),e=e,e.length<2)throw new V(`A merge layer should be called on an Array of at least 2 inputs. Got ${e.length} input(s).`);let t=[];for(let a of e)a!=null&&a[0]!==null&&t.push(a[0]);if(t=Wa(t),t.length>1)throw new V(`Can not merge tensors with different batch sizes. Got tensors with shapes: ${JSON.stringify(e)}.`);let n=e[0]==null?null:e[0].slice(1);for(let a=1;a<e.length;++a){let s=e[a]==null?null:e[a].slice(1);n=this.computeElementwiseOpOutputShape(n,s)}let r=e.map(a=>a.length);e.indexOf(null)===-1&&Wa(r).length===1?this.reshapeRequired=!1:this.reshapeRequired=!0}call(e,t){return W(()=>{if(e=e,this.reshapeRequired){let n=[],r=e.map(a=>a.rank);if(r.indexOf(null)===-1){let a=Va(r);for(let s of e){let i=s.rank;for(let o=0;o<a-i;++o)s=Fc(s,1);n.push(s)}return this.mergeFunction(n)}else{let a=!1;for(let o of e){let l=o.rank;if(l==null){let u=o.shape,c=u[0],h=u.slice(1).concat([c]),d=o.reshape([c].concat(Ba(u.slice(1))));d=nt(d,[1,0]),d=d.reshape(h),n.push(d),a=!0}else if(l>1){let u=_r(1,l).concat([0]);n.push(nt(o,u)),a=!0}else n.push(o)}let s=this.mergeFunction(n),i=s.rank;if(a){if(i==null){let o=s.shape,l=o.length,u=o[l-1],c=[u].concat(o.slice(0,o.length-1));s=nt(s.reshape([-1,u]),[1,0]).reshape(c)}else if(i>1){let o=[i-1].concat(_r(0,i-1));s=nt(s,o)}}return s}}else return this.mergeFunction(e)})}computeOutputShape(e){e=e;let t;e[0]==null?t=null:t=e[0].slice(1);for(let r=1;r<e.length;++r){let a=e[r]==null?null:e[r].slice(1);t=this.computeElementwiseOpOutputShape(t,a)}let n=[];for(let r of e)r!=null&&r[0]!==null&&n.push(r[0]);return n=Wa(n),n.length===1?t=n.concat(t):t=[null].concat(t),t}computeMask(e,t){return W(()=>{if(t==null)return null;if(!Array.isArray(t))throw new V("`mask` should be an Array");if(!Array.isArray(e))throw new V("`inputs` should be an Array");if(t.length!==e.length)throw new V(`The Array 'inputs' and 'mask' are expected to have the same length, but have different lengths (${e.length} vs ${t.length})`);if(t.every(r=>r==null))return null;t=t.map(r=>r==null?r:Hn(r,0));let n=t[0];for(let r=1;r<t.length-1;++r)n=rr(n,t[r]);return n})}},dy=class extends Fi{constructor(e){super(e)}mergeFunction(e){return W(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=oe(t,e[n]);return t})}};dy.className="Add";ae.registerClass(dy);var py=class extends Fi{constructor(e){super(e)}mergeFunction(e){return W(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=L(t,e[n]);return t})}};py.className="Multiply";ae.registerClass(py);var fy=class extends Fi{constructor(e){super(e)}mergeFunction(e){return W(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=oe(t,e[n]);return L(1/e.length,t)})}};fy.className="Average";ae.registerClass(fy);var my=class extends Fi{constructor(e){super(e)}mergeFunction(e){return W(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=Ar(t,e[n]);return t})}};my.className="Maximum";ae.registerClass(my);var Ay=class extends Fi{constructor(e){super(e)}mergeFunction(e){return W(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=pi(t,e[n]);return t})}};Ay.className="Minimum";ae.registerClass(Ay);var yy=class extends Fi{constructor(e){super(e);this.DEFAULT_AXIS=-1,e==null&&(e={}),this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){if(!(Array.isArray(e)&&Array.isArray(e[0]))||e.length===1)throw new V("A `Concatenate` layer should be called on a list of at least 2 inputs");e=e;let t=!0;for(let r of e)if(r!=null){t=!1;break}if(t)return;let n=[];for(let r=0;r<e.length;++r){let a=e[r].slice();a.splice(this.axis,1);let s=!1;for(let i of n)if(k.arraysEqual(i,a)){s=!0;break}s||n.push(a)}if(n.length>1)throw new V("A `Concatenate` layer requires inputs with matching shapes except for the concat axis. Got input shapes: "+JSON.stringify(e))}mergeFunction(e){return W(()=>uA(e,this.axis))}computeOutputShape(e){if(!(Array.isArray(e)&&Array.isArray(e[0])))throw new V("A `Concatenate` layer should be called on a list of inputs.");let t=e,n=t[0].slice(),r=this.axis<0?n.length+this.axis:this.axis;for(let a of t.slice(1)){if(n[r]==null||a[r]==null){n[r]=null;break}n[r]+=a[r]}return n}computeMask(e,t){if(t==null)return null;if(!Array.isArray(t))throw new V("`mask` should be an array for Concatenate");if(!Array.isArray(e))throw new V("`inputs` should be an array for Concatenate");if(t.length!==e.length)throw new V(`Mismatch in the length of mask (${t.length}) and the legnth of inputs (${e.length})`);return W(()=>{let n=!0;if(t.forEach(s=>{if(s!=null){n=!1;return}}),n)return null;let r=[];for(let s=0;s<e.length;++s)t[s]==null?r.push(En(e[s]).asType("bool")):t[s].rank<e[s].rank?r.push(Hn(t[s],-1)):r.push(t[s]);let a=rt(r,this.axis);return _d(a,-1,!1)})}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};yy.className="Concatenate";ae.registerClass(yy);function jc(e,t){for(;e<0;)e+=t;return e}function Nne(e,t,n){if(e.shape.length>3||t.shape.length>3)throw new Oe("batchDot is not implemented for tensors of 4D or higher rank yet");if(k.assert(e.shape.length>=2,()=>`batchDot requires the rank of x to be >= 2, but got ${e.shape.length}`),k.assert(e.shape.length>=2,()=>`batchDot requires the rank of y to be >= 2, but got ${t.shape.length}`),typeof n=="number"&&(n=[n,n]),e.dtype==="complex64"||t.dtype==="complex64")throw new Oe("batchDot is not implemented for complex64-type Tensors yet.");let r=e.shape.length,a=t.shape.length;n==null&&(n=[r-1,a-2]);let s=n;return W(()=>{let i;if(r>a){i=r-a;let l=[];for(let u=0;u<i;++u)l.push(1);t=t.reshape(t.shape.concat(l))}else if(a>r){i=a-r;let l=[];for(let u=0;u<i;++u)l.push(1);e=e.reshape(e.shape.concat(l))}else i=0;let o;if(e.shape.length===2&&t.shape.length===2)s[0]===s[1]?o=e.mul(t).sum(s[0]):o=e.transpose([1,0]).mul(t).sum(s[1]);else{let l=s[0]!==e.shape.length-1,u=s[1]===t.shape.length-1;o=e.matMul(t,l,u)}if(i>0){let l;r>a?l=r+a-3:l=r-1;let u=[];for(let c=l;c<l+i;++c)u.push(c);o=o.squeeze(u)}return o.shape.length===1&&(o=o.expandDims(1)),o})}var gy=class extends Fi{constructor(e){super(e);this.axes=e.axes,this.normalize=e.normalize==null?!1:e.normalize,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){k.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0],n=e[1];if(t.length>3||n.length>3)throw new Oe("Dot layer does not support tensors of 4D or higher rank yet.");let r=this.interpretAxes(t,n);if(t[r[0]]!==n[r[1]])throw new V(`Dimension incompatibility: ${t[r[0]]} !== ${n[r[1]]}`)}mergeFunction(e){if(e.length!==2)throw new V(`A \`Dot\` layer must be called on exactly 2 inputs, but received ${e.length} input(s).`);let t=e[0],n=e[1],r;return Array.isArray(this.axes)?r=this.axes.map((a,s)=>jc(a,e[s].shape.length)):r=[jc(this.axes,t.shape.length),jc(this.axes,n.shape.length)],this.normalize&&(t=qp(t,r[0]),n=qp(n,r[1])),Nne(t,n,r)}interpretAxes(e,t){let n;return Array.isArray(this.axes)?n=this.axes:n=[jc(this.axes,e.length),jc(this.axes,t.length)],n}computeOutputShape(e){k.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0].slice(),n=e[1].slice();if(t.length>3||n.length>3)throw new Oe("Dot layer does not support tensors of 4D or higher rank yet.");let r=this.interpretAxes(t,n);t.splice(r[0],1),n.splice(r[1],1),n.splice(0,1);let a=t.concat(n);return a.length===1&&a.push(1),a}computeMask(e,t){return null}getConfig(){let e={axes:this.axes,normalize:this.normalize},t=super.getConfig();return Object.assign(e,t),e}};gy.className="Dot";ae.registerClass(gy);var xy=class extends qe{constructor(e){super(e);this.supportsMasking=!0,this.stddev=e.stddev}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={stddev:this.stddev};return Object.assign(t,e),t}call(e,t){return W(()=>{this.invokeCallHook(e,t);let n=ze(e);return Oc(()=>Op(n.shape,0,this.stddev).add(n),()=>n,t.training||!1)})}};xy.className="GaussianNoise";ae.registerClass(xy);var wy=class extends qe{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return W(()=>{this.invokeCallHook(e,t);let n=ze(e);return this.rate>0&&this.rate<1?Oc(()=>{let r=Math.sqrt(this.rate/(1-this.rate));return n.mul(Op(n.shape,1,r))},()=>n,t.training||!1):n})}};wy.className="GaussianDropout";ae.registerClass(wy);var _y=class extends qe{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate,this.noiseShape=e.noiseShape}_getNoiseShape(e){return this.noiseShape||ze(e).shape}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return W(()=>{if(this.rate<1&&this.rate>0){let n=this._getNoiseShape(e);return Oc(()=>{let r=ze(e),a=1.6732632423543772,s=1.0507009873554805,i=-a*s,o=oa(gl(n),this.rate);o=Rc(o,"float32");let l=((1-this.rate)*(1+this.rate*i**2))**-.5,u=-l*i*this.rate;return r.mul(o).add(o.add(-1).mul(i)).mul(l).add(u)},()=>ze(e),t.training||!1)}return e})}};_y.className="AlphaDropout";ae.registerClass(_y);function Gc(e,t,n,r,a,s=.001){let i;if(e.rank===2)i=m5(e,t,n,r,a,s);else if(e.rank===3)i=A5(e,t,n,r,a,s);else if(e.rank===4)i=y5(e,t,n,r,a,s);else throw new Oe(`batchNormalization is not implemented for array of rank ${e.rank} yet`);return i}function Ine(e,t,n,r,a=.001){return W(()=>{let s=Md(e,r),i=s.mean,o=s.variance;return[Gc(e,i,o,n,t,a),i,o]})}function Sne(e,t,n,r,a=.001){return W(()=>{let s=Md(e,r),i=s.mean,o=s.variance,l=[];for(let p of _r(0,e.rank))r.indexOf(p)!==-1?l.push(1):l.push(e.shape[p]);let u=i.reshape(l),c=o.reshape(l),h=t==null?null:t.reshape(l),d=n==null?null:n.reshape(l);return[Gc(e,u,c,d,h,a),i,o]})}function Tne(e,t,n,r,a=.001){return k.arraysEqual(r.slice().sort(),_r(0,e.rank-1))?Ine(e,t,n,r,a):Sne(e,t,n,r,a)}var by=class extends qe{constructor(e){e==null&&(e={}),super(e),this.supportsMasking=!0,this.axis=e.axis==null?-1:e.axis,this.momentum=e.momentum==null?.99:e.momentum,this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=gt(e.betaInitializer||"zeros"),this.gammaInitializer=gt(e.gammaInitializer||"ones"),this.movingMeanInitializer=gt(e.movingMeanInitializer||"zeros"),this.movingVarianceInitializer=gt(e.movingVarianceInitializer||"ones"),this.betaConstraint=Wt(e.betaConstraint),this.gammaConstraint=Wt(e.gammaConstraint),this.betaRegularizer=xt(e.betaRegularizer),this.gammaRegularizer=xt(e.gammaRegularizer)}build(e){e=ht(e);let t=this.axis>=0?this.axis:this.axis+e.length,n=e[t];if(n==null)throw new V(`Axis ${t} of input tensor should have a defined dimension but the layer received an input with shape ${JSON.stringify(e)}.`);this.inputSpec=[new qt({ndim:e.length,axes:{[t]:n}})];let r=[n];this.scale&&(this.gamma=this.addWeight("gamma",r,null,this.gammaInitializer,this.gammaRegularizer,!0,this.gammaConstraint)),this.center&&(this.beta=this.addWeight("beta",r,null,this.betaInitializer,this.betaRegularizer,!0,this.betaConstraint)),this.movingMean=this.addWeight("moving_mean",r,null,this.movingMeanInitializer,null,!1),this.movingVariance=this.addWeight("moving_variance",r,null,this.movingVarianceInitializer,null,!1),this.built=!0}call(e,t){return W(()=>{let n=t.training==null?!1:t.training,r=ze(e),a=r.shape,s=a.length,i=_r(0,s),o=this.axis>=0?this.axis:this.axis+s;i.splice(o,1);let l=ki(1,s);l[o]=a[o];let u=i.slice();u.sort();let c=!k.arraysEqual(u,_r(0,s).slice(0,s-1)),h=()=>{if(c){let A=this.movingMean.read().reshape(l),y=this.movingVariance.read().reshape(l),g=this.center?this.beta.read().reshape(l):null,_=this.scale?this.gamma.read().reshape(l):null;return Gc(r,A,y,g,_,this.epsilon)}else return Gc(r,this.movingMean.read(),this.movingVariance.read(),this.beta==null?null:this.beta.read(),this.gamma==null?null:this.gamma.read(),this.epsilon)};if(!n)return h();let[d,p,f]=Tne(r,this.gamma.read(),this.beta.read(),i,this.epsilon),m=(A,y,g)=>{W(()=>{let _=1-g,b=A.read(),x=b.sub(y).mul(_);A.write(b.sub(x))})};return(()=>{m(this.movingMean,p,this.momentum),m(this.movingVariance,f,this.momentum)})(),d})}getConfig(){let e={axis:this.axis,momentum:this.momentum,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:kt(this.betaInitializer),gammaInitializer:kt(this.gammaInitializer),movingMeanInitializer:kt(this.movingMeanInitializer),movingVarianceInitializer:kt(this.movingVarianceInitializer),betaRegularizer:dt(this.betaRegularizer),gammaRegularizer:dt(this.gammaRegularizer),betaConstraint:Lt(this.betaConstraint),gammaConstraint:Lt(this.gammaConstraint)},t=super.getConfig();return Object.assign(e,t),e}};by.className="BatchNormalization";ae.registerClass(by);var vy=class extends qe{constructor(e){if(e==null&&(e={}),super(e),this.axis=e.axis==null?-1:e.axis,typeof this.axis=="number"){if(!Number.isInteger(this.axis))throw new Error(`Expected axis to be an integer, but received ${this.axis}`)}else if(Array.isArray(this.axis)){for(let t of this.axis)if(!Number.isInteger(t))throw new Error(`Expected axis to be an array of integers, but received ${JSON.stringify(this.axis)}`)}else throw new Error(`Expected axis to be an integer or an array of integers, but received ${JSON.stringify(this.axis)}`);this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=gt(e.betaInitializer||"zeros"),this.gammaInitializer=gt(e.gammaInitializer||"ones"),this.betaRegularizer=xt(e.betaRegularizer),this.gammaRegularizer=xt(e.gammaRegularizer),this.supportsMasking=!0}build(e){e=ht(e);let t=e.length;typeof this.axis=="number"&&(this.axis=[this.axis]);for(let a=0;a<this.axis.length;++a)this.axis[a]<0&&(this.axis[a]+=t);for(let a of this.axis)if(a<0||a>=t)throw new Error(`Invalid axis: ${a}`);if(this.axis.length!==Wa(this.axis).length)throw new Error(`Found duplicate axes in: ${this.axis}`);let n=this.axis.map(a=>e[a]),r=!0;this.scale?this.gamma=this.addWeight("gamma",n,"float32",this.gammaInitializer,this.gammaRegularizer,r):this.gamma=null,this.center?this.beta=this.addWeight("beta",n,"float32",this.betaInitializer,this.betaRegularizer,r):this.beta=null,this.built=!0}call(e,t){let n=ze(e),r=n.shape,a=r.length;return W(()=>{let s=!0,{mean:i,variance:o}=Md(n,this.axis,s),l=ki(1,a);for(let f of this.axis)l[f]=r[f];let u=f=>f!=null&&f.shape.length!==a&&this.axis!==[a-1]?f.reshape(l):f,c=u(this.gamma.read()),h=u(this.beta.read()),d=[],p=[];for(let f=0;f<a;++f)this.axis.indexOf(f)!==-1?(d.push(r[f]),p.push(1)):(d.push(1),p.push(r[f]));return i=i.tile(d),o=o.tile(d),c=c.tile(p),h=h.tile(p),Gc(n,i,o,h,c,this.epsilon)})}getConfig(){let e={axis:this.axis,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:kt(this.betaInitializer),gammaInitializer:kt(this.gammaInitializer),betaRegularizer:dt(this.betaRegularizer),gammaRegularizer:dt(this.gammaRegularizer)},t=super.getConfig();return Object.assign(e,t),e}};vy.className="LayerNormalization";ae.registerClass(vy);function Ene(e,t,n){return W(()=>{if(e.rank!==4)throw new V(`temporalPadding expects input tensor to be 4-D, but received a ${e.rank}-D tensor.`);if(t==null&&(t=[[1,1],[1,1]]),t.length!==2||t[0].length!==2||t[1].length!==2)throw new V("spatial2dPadding expects `padding` to be an Array of two Arrays, each of which is an Array of two integers.");if(n==null&&(n=xr()),n!=="channelsLast"&&n!=="channelsFirst")throw new V(`Unknown data format: ${n}. Supported data formats are 'channelsLast' and 'channelsFirst.`);let r;return n==="channelsFirst"?r=[[0,0],[0,0],t[0],t[1]]:r=[[0,0],t[0],t[1],[0,0]],la(e,r)})}var ky=class extends qe{constructor(e){if(e==null&&(e={}),super(e),this.dataFormat=e.dataFormat==null?xr():e.dataFormat,e.padding==null)this.padding=[[1,1],[1,1]];else if(typeof e.padding=="number")this.padding=[[e.padding,e.padding],[e.padding,e.padding]];else{if(e.padding=e.padding,e.padding.length!==2)throw new V(`ZeroPadding2D expects padding to be a length-2 array, but received a length-${e.padding.length} array.`);let t,n;if(typeof e.padding[0]=="number")t=[e.padding[0],e.padding[0]],n=[e.padding[1],e.padding[1]];else{if(e.padding=e.padding,e.padding[0].length!==2)throw new V(`ZeroPadding2D expects height padding to be a length-2 array, but received a length-${e.padding[0].length} array.`);if(t=e.padding[0],e.padding[1].length!==2)throw new V(`ZeroPadding2D expects width padding to be a length-2 array, but received a length-${e.padding[1].length} array.`);n=e.padding[1]}this.padding=[t,n]}this.inputSpec=[new qt({ndim:4})]}computeOutputShape(e){e=ht(e);let t,n;return this.dataFormat==="channelsFirst"?(e[2]!=null&&e[2]>=0?t=e[2]+this.padding[0][0]+this.padding[0][1]:t=null,e[3]!=null&&e[3]>=0?n=e[3]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],e[1],t,n]):(e[1]!=null&&e[1]>=0?t=e[1]+this.padding[0][0]+this.padding[0][1]:t=null,e[2]!=null&&e[2]>=0?n=e[2]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],t,n,e[3]])}call(e,t){return W(()=>Ene(ze(e),this.padding,this.dataFormat))}getConfig(){let e={padding:this.padding,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};ky.className="ZeroPadding2D";ae.registerClass(ky);function u0(e,t,n,r,a,s){return W(()=>{Et(a),k3(s),Yn(r),n==null&&(n=[1,1]),r==null&&(r="valid"),a==null&&(a=xr()),s==null&&(s="max"),e=HA(e,a);let i,o=r==="same"?"same":"valid";return s==="max"?i=nc(e,t,n,o):i=Xu(e,t,n,o),a==="channelsFirst"&&(i=nt(i,[0,3,1,2])),i})}function W7(e,t,n,r,a,s){return W(()=>{Et(a),k3(s),Yn(r),n==null&&(n=[1,1,1]),r==null&&(r="valid"),a==null&&(a=xr()),s==null&&(s="max"),e=O7(e,a);let i,o=r==="same"?"same":"valid";return s==="max"?i=qf(e,t,n,o):i=Mf(e,t,n,o),a==="channelsFirst"&&(i=nt(i,[0,4,1,2,3])),i})}var B7=class extends qe{constructor(e){if(e.poolSize==null&&(e.poolSize=2),super(e),typeof e.poolSize=="number")this.poolSize=[e.poolSize];else if(Array.isArray(e.poolSize)&&e.poolSize.length===1&&typeof e.poolSize[0]=="number")this.poolSize=e.poolSize;else throw new V(`poolSize for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.poolSize)}`);if(Ht(this.poolSize,"poolSize"),e.strides==null)this.strides=this.poolSize;else if(typeof e.strides=="number")this.strides=[e.strides];else if(Array.isArray(e.strides)&&e.strides.length===1&&typeof e.strides[0]=="number")this.strides=e.strides;else throw new V(`strides for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.strides)}`);Ht(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,Yn(this.padding),this.inputSpec=[new qt({ndim:3})]}computeOutputShape(e){e=ht(e);let t=kr(e[1],this.poolSize[0],this.padding,this.strides[0]);return[e[0],t,e[2]]}call(e,t){return W(()=>{this.invokeCallHook(e,t),e=Fc(ze(e),2);let n=this.poolingFunction(ze(e),[this.poolSize[0],1],[this.strides[0],1],this.padding,"channelsLast");return Da(n,[2])})}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides},t=super.getConfig();return Object.assign(e,t),e}},Ny=class extends B7{constructor(e){super(e)}poolingFunction(e,t,n,r,a){return Et(a),Yn(r),u0(e,t,n,r,a,"max")}};Ny.className="MaxPooling1D";ae.registerClass(Ny);var Iy=class extends B7{constructor(e){super(e)}poolingFunction(e,t,n,r,a){return Et(a),Yn(r),u0(e,t,n,r,a,"avg")}};Iy.className="AveragePooling1D";ae.registerClass(Iy);var V7=class extends qe{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==2)throw new V(`If the strides property of a 2D pooling layer is an Array, it is expected to have a length of 2, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides];Ht(this.poolSize,"poolSize"),Ht(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Et(this.dataFormat),Yn(this.padding),this.inputSpec=[new qt({ndim:4})]}computeOutputShape(e){e=ht(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2];return t=kr(t,this.poolSize[0],this.padding,this.strides[0]),n=kr(n,this.poolSize[1],this.padding,this.strides[1]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n]:[e[0],t,n,e[3]]}call(e,t){return W(()=>(this.invokeCallHook(e,t),this.poolingFunction(ze(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},Sy=class extends V7{constructor(e){super(e)}poolingFunction(e,t,n,r,a){return Et(a),Yn(r),u0(e,t,n,r,a,"max")}};Sy.className="MaxPooling2D";ae.registerClass(Sy);var Ty=class extends V7{constructor(e){super(e)}poolingFunction(e,t,n,r,a){return Et(a),Yn(r),u0(e,t,n,r,a,"avg")}};Ty.className="AveragePooling2D";ae.registerClass(Ty);var U7=class extends qe{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==3)throw new V(`If the strides property of a 3D pooling layer is an Array, it is expected to have a length of 3, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides,e.strides];Ht(this.poolSize,"poolSize"),Ht(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Et(this.dataFormat),Yn(this.padding),this.inputSpec=[new qt({ndim:5})]}computeOutputShape(e){e=ht(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],r=this.dataFormat==="channelsFirst"?e[4]:e[3];return t=kr(t,this.poolSize[0],this.padding,this.strides[0]),n=kr(n,this.poolSize[1],this.padding,this.strides[1]),r=kr(r,this.poolSize[2],this.padding,this.strides[2]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n,r]:[e[0],t,n,r,e[4]]}call(e,t){return W(()=>(this.invokeCallHook(e,t),this.poolingFunction(ze(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},Ey=class extends U7{constructor(e){super(e)}poolingFunction(e,t,n,r,a){return Et(a),Yn(r),W7(e,t,n,r,a,"max")}};Ey.className="MaxPooling3D";ae.registerClass(Ey);var Cy=class extends U7{constructor(e){super(e)}poolingFunction(e,t,n,r,a){return Et(a),Yn(r),W7(e,t,n,r,a,"avg")}};Cy.className="AveragePooling3D";ae.registerClass(Cy);var j7=class extends qe{constructor(e){super(e);this.inputSpec=[new qt({ndim:3})]}computeOutputShape(e){return[e[0],e[2]]}call(e,t){throw new Oe}},Ry=class extends j7{constructor(e){super(e||{})}call(e,t){return W(()=>{let n=ze(e);return vt(n,1)})}};Ry.className="GlobalAveragePooling1D";ae.registerClass(Ry);var Fy=class extends j7{constructor(e){super(e||{})}call(e,t){return W(()=>{let n=ze(e);return Xn(n,1)})}};Fy.className="GlobalMaxPooling1D";ae.registerClass(Fy);var G7=class extends qe{constructor(e){super(e);this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Et(this.dataFormat),this.inputSpec=[new qt({ndim:4})]}computeOutputShape(e){return e=e,this.dataFormat==="channelsLast"?[e[0],e[3]]:[e[0],e[1]]}call(e,t){throw new Oe}getConfig(){let e={dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},My=class extends G7{call(e,t){return W(()=>{let n=ze(e);return this.dataFormat==="channelsLast"?vt(n,[1,2]):vt(n,[2,3])})}};My.className="GlobalAveragePooling2D";ae.registerClass(My);var Oy=class extends G7{call(e,t){return W(()=>{let n=ze(e);return this.dataFormat==="channelsLast"?Xn(n,[1,2]):Xn(n,[2,3])})}};Oy.className="GlobalMaxPooling2D";ae.registerClass(Oy);var H7=class extends qe{constructor(e){super(e);this.layer=e.layer}build(e){this.built=!0}get trainable(){return this.layer!=null?this.layer.trainable:!1}set trainable(e){this.layer!=null&&(this.layer.trainable=e)}get trainableWeights(){return this.layer.trainableWeights}get nonTrainableWeights(){return this.layer.nonTrainableWeights}get updates(){return this.layer._updates}get losses(){return this.layer.losses}getWeights(){return this.layer.getWeights()}setWeights(e){this.layer.setWeights(e)}getConfig(){let e={layer:{className:this.layer.getClassName(),config:this.layer.getConfig()}},t=super.getConfig();return Object.assign(e,t),e}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.layer!=null&&this.layer.setFastWeightInitDuringBuild(e)}static fromConfig(e,t,n={}){let r=t.layer,a=vr(r,n);delete t.layer;let s={layer:a};return Object.assign(s,t),new e(s)}},Dy=class extends H7{constructor(e){super(e);this.supportsMasking=!0}build(e){if(e=ht(e),e.length<3)throw new V(`TimeDistributed layer expects an input shape >= 3D, but received input shape ${JSON.stringify(e)}`);this.inputSpec=[{shape:e}];let t=[e[0]].concat(e.slice(2));this.layer.built||(this.layer.build(t),this.layer.built=!0),super.build(e)}computeOutputShape(e){e=ht(e);let t=[e[0]].concat(e.slice(2)),n=this.layer.computeOutputShape(t),r=e[1];return[n[0],r].concat(n.slice(1))}call(e,t){return W(()=>(e=ze(e),P7((n,r)=>[ze(this.layer.call(n,t)),[]],e,[],!1,null,null,!1,!0)[1]))}};Dy.className="TimeDistributed";ae.registerClass(Dy);function Cne(e){Ii(VQ,"BidirectionalMergeMode",e)}var Rne="concat",$y=class extends H7{constructor(e){super(e);let t=e.layer.getConfig(),n={};n.className=e.layer.getClassName(),n.config=t,this.forwardLayer=vr(n),t.goBackwards=t.goBackwards!==!0;let r={};if(r.className=e.layer.getClassName(),r.config=t,this.backwardLayer=vr(r),this.forwardLayer.name="forward_"+this.forwardLayer.name,this.backwardLayer.name="backward_"+this.backwardLayer.name,this.mergeMode=e.mergeMode===void 0?Rne:e.mergeMode,Cne(this.mergeMode),e.weights)throw new Oe("weights support is not implemented for Bidirectional layer yet.");this._stateful=e.layer.stateful,this.returnSequences=e.layer.returnSequences,this.returnState=e.layer.returnState,this.supportsMasking=!0,this._trainable=!0,this.inputSpec=e.layer.inputSpec,this.numConstants=null}get trainable(){return this._trainable}set trainable(e){this._trainable=e,this.forwardLayer!=null&&(this.forwardLayer.trainable=e),this.backwardLayer!=null&&(this.backwardLayer.trainable=e)}getWeights(){return this.forwardLayer.getWeights().concat(this.backwardLayer.getWeights())}setWeights(e){let t=e.length,n=Math.floor(t/2);this.forwardLayer.setWeights(e.slice(0,n)),this.backwardLayer.setWeights(e.slice(n))}computeOutputShape(e){let t=this.forwardLayer.computeOutputShape(e);Array.isArray(t)&&Array.isArray(t[0])||(t=[t]),t=t;let n,r,a;return this.returnState&&(a=t.slice(1)),n=t[0],n=n,this.mergeMode==="concat"?(n[n.length-1]*=2,r=[n]):this.mergeMode==null?r=[n,n.slice()]:r=[n],this.returnState?this.mergeMode==null?r.concat(a).concat(a.slice()):[n].concat(a).concat(a.slice()):_n(r)}apply(e,t){let n=t==null?null:t.initialState,r=t==null?null:t.constants;t==null&&(t={});let a=z7(e,n,r,this.numConstants);if(e=a.inputs,n=a.initialState,r=a.constants,Array.isArray(e)&&(n=e.slice(1),e=e[0]),(n==null||n.length===0)&&r==null)return super.apply(e,t);let s=[],i=[];if(n!=null){let l=n.length;if(l%2>0)throw new V("When passing `initialState` to a Bidrectional RNN, the state should be an Array containing the states of the underlying RNNs.");t.initialState=n,s.push(...n);let u=n.map(c=>new qt({shape:c.shape}));this.forwardLayer.stateSpec=u.slice(0,l/2),this.backwardLayer.stateSpec=u.slice(l/2),i.push(...u)}if(r!=null)throw new Oe("Support for constants in Bidirectional layers is not implemented yet.");let o=s[0]instanceof br;for(let l of s)if(l instanceof br!==o)throw new V("The initial state of a Bidirectional layer cannot be specified as a mix of symbolic and non-symbolic tensors");if(o){let l=[e].concat(s),u=this.inputSpec.concat(i),c=this.inputSpec;this.inputSpec=u;let h=super.apply(l,t);return this.inputSpec=c,h}else return super.apply(e,t)}call(e,t){return W(()=>{let n=t.initialState,r,a;if(n==null)r=this.forwardLayer.call(e,t),a=this.backwardLayer.call(e,t);else{let o=n.slice(0,n.length/2),l=n.slice(n.length/2);r=this.forwardLayer.call(e,Object.assign(t,{initialState:o})),a=this.backwardLayer.call(e,Object.assign(t,{initialState:l}))}let s;this.returnState&&(Array.isArray(r)&&(s=r.slice(1).concat(a.slice(1))),r=r[0],a=a[0]),this.returnSequences&&(a=Cn(a,1));let i;return this.mergeMode==="concat"?i=uA([r,a]):this.mergeMode==="sum"?i=oe(r,a):this.mergeMode==="ave"?i=L(.5,oe(r,a)):this.mergeMode==="mul"?i=L(r,a):this.mergeMode==null&&(i=[r,a]),this.returnState?this.mergeMode==null?i.concat(s):[i].concat(s):i})}resetStates(e){this.forwardLayer.resetStates(),this.backwardLayer.resetStates()}build(e){Si(this.forwardLayer.name,()=>{this.forwardLayer.build(e)}),Si(this.backwardLayer.name,()=>{this.backwardLayer.build(e)}),this.built=!0}computeMask(e,t){Array.isArray(t)&&(t=t[0]);let n;if(this.returnSequences?this.mergeMode==null?n=[t,t]:n=t:this.mergeMode==null?n=[null,null]:n=null,this.returnState){let r=this.forwardLayer.states.map(a=>null);return Array.isArray(n)?n.concat(r).concat(r):[n].concat(r).concat(r)}else return n}get trainableWeights(){return this.forwardLayer.trainableWeights.concat(this.backwardLayer.trainableWeights)}get nonTrainableWeights(){return this.forwardLayer.nonTrainableWeights.concat(this.backwardLayer.nonTrainableWeights)}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.forwardLayer!=null&&this.forwardLayer.setFastWeightInitDuringBuild(e),this.backwardLayer!=null&&this.backwardLayer.setFastWeightInitDuringBuild(e)}getConfig(){let e={mergeMode:this.mergeMode},t=super.getConfig();return Object.assign(e,t),e}static fromConfig(e,t){let n=vr(t.layer);if(delete t.layer,t.numConstants!=null)throw new Oe("Deserialization of a Bidirectional layer with numConstants present is not supported yet.");let r=t;return r.layer=n,new e(r)}};$y.className="Bidirectional";ae.registerClass($y);function aee(e){return new Ll(e)}function see(e){return new UA(e)}function iee(e){return new WA(e)}function oee(e){return new BA(e)}function lee(e){return new VA(e)}function uee(e){return new GA(e)}function cee(e){return new jA(e)}function hee(e){return new r0(e)}function dee(e){return new Vc(e)}function pee(e){return new XA(e)}function fee(e){return new n0(e)}function mee(e){return new KA(e)}function Aee(e){return new ZA(e)}function yee(e){return new YA(e)}function gee(e){return new JA(e)}function xee(e){return new iy(e)}function wee(e){return new ay(e)}function _ee(e){return new l0(e)}function bee(e){return new ry(e)}function vee(e){return new sy(e)}function kee(e){return new oy(e)}function Nee(e){return new ly(e)}function Iee(e){return new uy(e)}function See(e){return new hy(e)}function Tee(e){return new dy(e)}function Eee(e){return new fy(e)}function Cee(e){return new yy(e)}function Ree(e){return new my(e)}function Fee(e){return new Ay(e)}function Mee(e){return new py(e)}function Oee(e){return new gy(e)}function Dee(e){return new by(e)}function $ee(e){return new vy(e)}function zee(e){return new ky(e)}function gA(e){return new Iy(e)}function Pee(e){return gA(e)}function Lee(e){return gA(e)}function xA(e){return new Ty(e)}function Wee(e){return xA(e)}function Bee(e){return xA(e)}function wA(e){return new Cy(e)}function Vee(e){return wA(e)}function Uee(e){return wA(e)}function jee(e){return new Ry(e)}function Gee(e){return new My(e)}function z3(e){return new Fy(e)}function P3(e){return new Oy(e)}function L3(e){return new Ny(e)}function W3(e){return new Sy(e)}function Hee(e){return new Ey(e)}function qee(e){return new ey(e)}function Xee(e){return new i0(e)}function Kee(e){return new ty(e)}function Zee(e){return new Uc(e)}function Yee(e){return new QA(e)}function Jee(e){return new s0(e)}function Qee(e){return new ny(e)}function ete(e){return new o0(e)}function tte(e){return new jr(e)}function nte(e){return new a0(e)}function rte(e){return new $y(e)}function ate(e){return new Dy(e)}var ste=z3,ite=P3,ote=L3,lte=W3;function ute(e){return new xy(e)}function cte(e){return new wy(e)}function hte(e){return new _y(e)}function dte(e){return new cy(e)}var q7={};$e(q7,{MAPE:()=>Vne,MSE:()=>Gne,binaryAccuracy:()=>Fne,binaryCrossentropy:()=>Mne,categoricalAccuracy:()=>Dne,categoricalCrossentropy:()=>$ne,cosineProximity:()=>Lne,mape:()=>Une,meanAbsoluteError:()=>Wne,meanAbsolutePercentageError:()=>Bne,meanSquaredError:()=>jne,mse:()=>Hne,precision:()=>zne,recall:()=>Pne,sparseCategoricalAccuracy:()=>One});function Fne(e,t){return IA(e,t)}function Mne(e,t){return t7(e,t)}function One(e,t){return n7(e,t)}function Dne(e,t){return SA(e,t)}function $ne(e,t){return TA(e,t)}function zne(e,t){return e7(e,t)}function Pne(e,t){return Rte(e,t)}function Lne(e,t){return kA(e,t)}function Wne(e,t){return Xp(e,t)}function Bne(e,t){return Bl(e,t)}function Vne(e,t){return Bl(e,t)}function Une(e,t){return Bl(e,t)}function jne(e,t){return Ei(e,t)}function Gne(e,t){return Ei(e,t)}function Hne(e,t){return Ei(e,t)}var X7={};$e(X7,{modelFromJSON:()=>hne});var K7={};$e(K7,{l1:()=>Xne,l1l2:()=>qne,l2:()=>Kne});function qne(e){return new Wc(e)}function Xne(e){return xne(e)}function Kne(e){return wne(e)}var Z7=class extends Wl{constructor(){super(...arguments);this.model=null}setModel(e){if(!(e instanceof fa))throw new Error("model must be a LayersModel, not some other Container");this.model=e}};function c0(e,t){return e<t}function Y7(e,t){return e>t}var J7=class extends Z7{constructor(e){super();if(e==null&&(e={}),e.restoreBestWeights)throw new Oe("restoreBestWeights = True is not implemented in EarlyStopping yet.");this.monitor=e.monitor||"val_loss",this.minDelta=Math.abs(e.minDelta||0),this.patience=e.patience||0,this.verbose=e.verbose||0,this.mode=e.mode||"auto",this.baseline=e.baseline,["auto","min","max"].indexOf(this.mode)===-1&&(console.warn(`EarlyStopping mode '${this.mode}' is invalid. Falling back to mode 'auto'.`),this.mode="auto"),this.mode==="min"?this.monitorFunc=c0:this.mode==="max"?this.monitorFunc=Y7:this.monitor.indexOf("acc")!==-1?this.monitorFunc=Y7:this.monitorFunc=c0,this.monitorFunc===c0&&(this.minDelta*=-1)}async onTrainBegin(e){this.wait=0,this.stoppedEpoch=0,this.baseline!=null?this.best=this.baseline:this.best=this.monitorFunc===c0?Infinity:-Infinity}async onEpochEnd(e,t){await Ua(t);let n=this.getMonitorValue(t);n!=null&&(this.monitorFunc(n-this.minDelta,this.best)?(this.best=n,this.wait=0):(this.wait++,this.wait>=this.patience&&(this.stoppedEpoch=e,this.model.stopTraining=!0)))}async onTrainEnd(e){this.stoppedEpoch>0&&this.verbose&&console.log(`Epoch ${this.stoppedEpoch}: early stopping.`)}getMonitorValue(e){e==null&&(e={});let t=e[this.monitor];return t==null&&console.warn(`Metric for EarlyStopping ${this.monitor} is not available. Available metrics are: ${Object.keys(e)}`),t}};function Zne(e){return new J7(e)}var Yne={earlyStopping:Zne},Nr;(function(e){e[e.DT_INVALID=0]="DT_INVALID",e[e.DT_FLOAT=1]="DT_FLOAT",e[e.DT_DOUBLE=2]="DT_DOUBLE",e[e.DT_INT32=3]="DT_INT32",e[e.DT_UINT8=4]="DT_UINT8",e[e.DT_INT16=5]="DT_INT16",e[e.DT_INT8=6]="DT_INT8",e[e.DT_STRING=7]="DT_STRING",e[e.DT_COMPLEX64=8]="DT_COMPLEX64",e[e.DT_INT64=9]="DT_INT64",e[e.DT_BOOL=10]="DT_BOOL",e[e.DT_QINT8=11]="DT_QINT8",e[e.DT_QUINT8=12]="DT_QUINT8",e[e.DT_QINT32=13]="DT_QINT32",e[e.DT_BFLOAT16=14]="DT_BFLOAT16",e[e.DT_FLOAT_REF=101]="DT_FLOAT_REF",e[e.DT_DOUBLE_REF=102]="DT_DOUBLE_REF",e[e.DT_INT32_REF=103]="DT_INT32_REF",e[e.DT_UINT8_REF=104]="DT_UINT8_REF",e[e.DT_INT16_REF=105]="DT_INT16_REF",e[e.DT_INT8_REF=106]="DT_INT8_REF",e[e.DT_STRING_REF=107]="DT_STRING_REF",e[e.DT_COMPLEX64_REF=108]="DT_COMPLEX64_REF",e[e.DT_INT64_REF=109]="DT_INT64_REF",e[e.DT_BOOL_REF=110]="DT_BOOL_REF",e[e.DT_QINT8_REF=111]="DT_QINT8_REF",e[e.DT_QUINT8_REF=112]="DT_QUINT8_REF",e[e.DT_QINT32_REF=113]="DT_QINT32_REF",e[e.DT_BFLOAT16_REF=114]="DT_BFLOAT16_REF"})(Nr||(Nr={}));var Q7;(function(e){let t;(function(n){n[n.LEGACY=0]="LEGACY",n[n.V1=1]="V1",n[n.V2=2]="V2"})(t=e.CheckpointFormatVersion||(e.CheckpointFormatVersion={}))})(Q7||(Q7={}));var zy={};function Jne(e,t){let n={tfOpName:e,category:"custom",inputs:[],attrs:[],customExecutor:t};zy[e]=n}function ev(e){return zy[e]}function Qne(e){delete zy[e]}function N(e,t,n,r,a){let s=t.inputParams[e];if(s&&s.inputIndexStart!==void 0){let o=s.inputIndexStart,l=s.inputIndexEnd===0?void 0:s.inputIndexEnd===void 0?o+1:s.inputIndexEnd;if(s.type==="tensor")return vn(t.inputNames[s.inputIndexStart],n,r,a);if(s.type==="tensors")return t.inputNames.slice(o,l).map(h=>vn(h,n,r,a));let u=vn(t.inputNames.slice(o)[0],n,r,a),c=u.dataSync();return s.type==="number"?c[0]:k.toNestedArray(u.shape,c)}let i=t.attrParams[e];return i&&i.value}function vn(e,t,n,r){let[a,s]=zn(e);if(r!=null){let o=r.getHashTableHandleByName(a);if(o!=null)return o}let i=n.currentContextIds.find(o=>!!t[h0(a,o)]);return i!==void 0?t[h0(a,i)][s]:void 0}function ere(e,t,n){return t[h0(e,n.currentContextId)]}function ma(e,t){let[n,r]=zn(e);return[h0(n,t&&t.currentContextId),r]}function h0(e,t){return t?`${e}-${t}`:e}function zn(e){let t=e.split(":");return t.length===1?[e,0]:[t[0],Number(t[t.length-1])]}function d0(e,t,n){let r=N("pad",e,t,n);if(r==="explicit"){r=N("explicitPaddings",e,t,n);let a=[[0,0],[0,0],[0,0],[0,0]];for(let s=0;s<4;s++)a[s][0]=r[s*2],a[s][1]=r[s*2+1];return a}return r}function Aa(e){return e.kept?e:nr(e)}var tv={};$e(tv,{json:()=>tre});var tre=[{tfOpName:"Add",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddV2",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddN",category:"arithmetic",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"BiasAdd",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"Sub",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"RealDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Div",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"DivNoNan",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mul",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Maximum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Minimum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Pow",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SquaredDifference",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorMod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],nv={};$e(nv,{json:()=>nre});var nre=[{tfOpName:"Abs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan2",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ceil",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ClipByValue",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"clipValueMin",type:"number"},{start:2,name:"clipValueMax",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Complex",category:"basic_math",inputs:[{start:0,name:"real",type:"tensor"},{start:1,name:"imag",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ComplexAbs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Elu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Exp",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Floor",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Imag",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Neg",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Real",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Prelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"alpha",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu6",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Selu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sigmoid",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Rsqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Square",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sign",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Round",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Expm1",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log1p",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Reciprocal",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Softplus",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Erf",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Prod",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axes",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LeakyRelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"alpha",name:"alpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],rv={};$e(rv,{json:()=>rre});var rre=[{tfOpName:"EmptyTensorList",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"maxNumElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"LoopCond",category:"control",inputs:[{start:0,name:"pred",type:"tensor"}]},{tfOpName:"Switch",category:"control",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"pred",type:"tensor"}]},{tfOpName:"Merge",category:"control",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"Enter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"frame_name",name:"frameName",type:"string"},{tfName:"is_constant",name:"isConstant",type:"bool"}]},{tfOpName:"Exit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NextIteration",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayV3",category:"control",inputs:[{start:0,name:"size",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"dynamic_size",name:"dynamicSize",type:"bool"},{tfName:"clear_after_read",name:"clearAfterRead",type:"bool"},{tfName:"identical_element_shapes",name:"identicalElementShapes",type:"bool"},{tfName:"tensor_array_name",name:"name",type:"string"}]},{tfOpName:"TensorArrayWriteV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayReadV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayGatherV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"}]},{tfOpName:"TensorArrayScatterV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArrayConcatV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape_except0",name:"elementShapeExcept0",type:"shape",notSupported:!0}]},{tfOpName:"TensorArraySplitV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"tensor",type:"tensor"},{start:2,name:"lengths",type:"number[]"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArraySizeV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}]},{tfOpName:"TensorArrayCloseV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"}]},{tfOpName:"StatelessIf",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"If",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"StatelessWhile",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"While",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"TensorListScatter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListScatterV2",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"},{start:3,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGather",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListSetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListReserve",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListFromTensor",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListStack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"},{tfName:"num_elements",name:"numElements",type:"dtype"}]},{tfOpName:"TensorListSplit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"},{start:2,name:"lengths",type:"number[]"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcat",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPopBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPushBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]}],av={};$e(av,{json:()=>are});var are=[{tfOpName:"AvgPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[],notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPoolWithArgmax",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"include_batch_in_index",name:"includeBatchInIndex",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AvgPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Conv1D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"stride",name:"stride",type:"number"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NWC"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"dilation",name:"dilation",type:"number",defaultValue:1}]},{tfOpName:"Conv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"useCudnnOnGpu",name:"useCudnnOnGpu",type:"bool"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"_FusedConv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"use_cudnn_on_gpu",name:"useCudnnOnGpu",type:"bool",defaultValue:!0},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"leakyrelu_alpha",name:"leakyreluAlpha",type:"number"}]},{tfOpName:"Conv2DBackpropInput",category:"convolution",inputs:[{start:2,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:0,name:"outputShape",type:"number[]"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]",notSupported:!0}]},{tfOpName:"DepthwiseConv2d",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"DepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"FusedDepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]}]},{tfOpName:"Conv3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"Dilation2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"rates",name:"dilations",type:"number[]"},{tfName:"padding",name:"pad",type:"string"}]}],sv={};$e(sv,{json:()=>sre});var sre=[{tfOpName:"Fill",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"},{start:1,name:"value",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"LinSpace",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"num",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"OneHot",category:"creation",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"depth",type:"number"},{start:2,name:"onValue",type:"number",defaultValue:1},{start:3,name:"offValue",type:"number",defaultValue:0}],attrs:[{tfName:"axis",name:"axis",type:"number",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ones",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"OnesLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"RandomUniform",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"minval",name:"minval",type:"number",defaultValue:0},{tfName:"maxval",name:"maxval",type:"number",defaultValue:1},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Range",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"step",type:"number",defaultValue:0}],attrs:[{tfName:"Tidx",name:"dtype",type:"dtype"}]},{tfOpName:"TruncatedNormal",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"means",name:"mean",type:"number",defaultValue:0},{tfName:"stddev",name:"stdDev",type:"number",defaultValue:1},{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Zeros",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"ZerosLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"Multinomial",category:"creation",inputs:[{start:0,name:"logits",type:"tensor"},{start:1,name:"numSamples",type:"number"}],attrs:[{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number"},{tfName:"T",name:"dtype",type:"dtype"},{tfName:"output_dtype",name:"output_dtype",type:"dtype"}]}],iv={};$e(iv,{json:()=>ire});var ire=[{tfOpName:"NonMaxSuppressionV2",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV3",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV4",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"T_threshold",name:"threshold",type:"dtype",notSupported:!0},{tfName:"pad_to_max_output_size",name:"padToMaxOutputSize",type:"bool"}]},{tfOpName:"NonMaxSuppressionV5",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"},{start:5,name:"softNmsSigma",type:"number"}]},{tfOpName:"Where",category:"dynamic",inputs:[{start:0,name:"condition",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ListDiff",category:"dynamic",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],ov={};$e(ov,{json:()=>ore});var ore=[{tfOpName:"TopKV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"k",type:"number"}],attrs:[{tfName:"sorted",name:"sorted",type:"bool"}]},{tfOpName:"Unique",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"UniqueV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]}],lv={};$e(lv,{json:()=>lre});var lre=[{tfOpName:"PlaceholderWithDefault",category:"graph",inputs:[{start:0,name:"default",type:"tensor"}],attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Placeholder",category:"graph",attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Const",category:"graph"},{tfOpName:"Identity",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IdentityN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Snapshot",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Rank",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Size",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Shape",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"ShapeN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Print",category:"graph",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"data",type:"tensors"}],attrs:[{tfName:"message",name:"message",type:"string"},{tfName:"first_n",name:"firstN",type:"number",notSupported:!0},{tfName:"summarize",name:"summarize",type:"number",defaultValue:3}]},{tfOpName:"NoOp",category:"graph",inputs:[]},{tfOpName:"StopGradient",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"FakeQuantWithMinMaxVars",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"min",name:"min",type:"number"},{tfName:"max",name:"max",type:"number"}]}],uv={};$e(uv,{json:()=>ure});var ure=[{tfOpName:"HashTable",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"HashTableV2",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"LookupTableImport",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableImportV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFind",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFindV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]}],cv={};$e(cv,{json:()=>cre});var cre=[{tfOpName:"ResizeBilinear",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ResizeNearestNeighbor",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"CropAndResize",category:"image",inputs:[{start:0,name:"image",type:"tensor"},{start:1,name:"boxes",type:"tensor"},{start:2,name:"boxInd",type:"tensor"},{start:3,name:"cropSize",type:"number[]"}],attrs:[{tfName:"method",name:"method",type:"string"},{tfName:"extrapolation_value",name:"extrapolationValue",type:"number"}]}],hv={};$e(hv,{json:()=>hre});var hre=[{tfOpName:"Equal",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NotEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Greater",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"GreaterEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Less",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LessEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalAnd",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalNot",category:"logical",inputs:[{start:0,name:"a",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalOr",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Select",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SelectV2",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],dv={};$e(dv,{json:()=>dre});var dre=[{tfOpName:"_FusedMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMulV2",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Transpose",category:"matrices",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"perm",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],pv={};$e(pv,{json:()=>pre});var pre=[{tfOpName:"FusedBatchNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV2",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV3",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"LRN",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"depth_radius",name:"radius",type:"number",defaultValue:5},{tfName:"bias",name:"bias",type:"number",defaultValue:1},{tfName:"alpha",name:"alpha",type:"number",defaultValue:1},{tfName:"beta",name:"beta",type:"number",defaultValue:.5}]},{tfOpName:"Softmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"LogSoftmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"SparseToDense",category:"normalization",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!0,notSupported:!0}]}],fv={};$e(fv,{json:()=>fre});var fre=[{tfOpName:"Bincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}]},{tfOpName:"DenseBincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}],attrs:[{tfName:"binary_output",name:"binaryOutput",type:"bool"}]},{tfOpName:"Max",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Mean",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Min",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Sum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"All",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Any",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"ArgMax",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"ArgMin",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"Prod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Cumsum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]}],mv={};$e(mv,{json:()=>mre});var mre=[{tfOpName:"ConcatV2",category:"slice_join",inputs:[{start:0,end:-1,name:"tensors",type:"tensors"},{start:-1,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"Concat",category:"slice_join",inputs:[{start:1,end:0,name:"tensors",type:"tensors"},{start:0,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"GatherV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"axis",type:"number",defaultValue:0}],attrs:[{tfName:"batch_dims",name:"batchDims",type:"number",defaultValue:0}]},{tfOpName:"Gather",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",notSupported:!0}]},{tfOpName:"Reverse",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"dims",type:"bool[]"}]},{tfOpName:"ReverseV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}]},{tfOpName:"Slice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"size",type:"number[]"}]},{tfOpName:"StridedSlice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"end",type:"number[]"},{start:3,name:"strides",type:"number[]"}],attrs:[{tfName:"begin_mask",name:"beginMask",type:"number",defaultValue:0},{tfName:"end_mask",name:"endMask",type:"number",defaultValue:0},{tfName:"new_axis_mask",name:"newAxisMask",type:"number",defaultValue:0},{tfName:"ellipsis_mask",name:"ellipsisMask",type:"number",defaultValue:0},{tfName:"shrink_axis_mask",name:"shrinkAxisMask",type:"number",defaultValue:0}]},{tfOpName:"Pack",category:"slice_join",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0}]},{tfOpName:"Unpack",category:"slice_join",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0},{tfName:"num",name:"num",type:"number",defaultValue:0,notSupported:!0}]},{tfOpName:"Tile",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"reps",type:"number[]"}]},{tfOpName:"Split",category:"slice_join",inputs:[{start:0,name:"axis",type:"number",defaultValue:0},{start:1,name:"x",type:"tensor"}],attrs:[{tfName:"num_split",name:"numOrSizeSplits",type:"number",defaultValue:1}]},{tfOpName:"SplitV",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"numOrSizeSplits",type:"number[]"},{start:2,name:"axis",type:"number",defaultValue:0}]},{tfOpName:"ScatterNd",category:"slice_join",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"shape",type:"number[]"}]},{tfOpName:"GatherNd",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}]},{tfOpName:"SparseToDense",category:"slice_join",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!1,notSupported:!0}]}],Av={};$e(Av,{json:()=>Are});var Are=[{tfOpName:"FFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"RFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]},{tfOpName:"IRFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]}],yv={};$e(yv,{json:()=>yre});var yre=[{tfOpName:"Cast",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"SrcT",name:"sdtype",type:"dtype",notSupported:!0},{tfName:"DstT",name:"dtype",type:"dtype"}]},{tfOpName:"ExpandDims",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"MirrorPad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"mode",name:"mode",type:"string"}]},{tfOpName:"Pad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"constant_value",name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"PadV2",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"},{start:2,name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"Reshape",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}]},{tfOpName:"Squeeze",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"axis",tfDeprecatedName:"squeeze_dims",name:"axis",type:"number[]"}]},{tfOpName:"SpaceToBatchND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"paddings",type:"number[]"}]},{tfOpName:"BatchToSpaceND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"crops",type:"number[]"}]},{tfOpName:"DepthToSpace",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"block_size",name:"blockSize",type:"number"},{tfName:"data_format",name:"dataFormat",type:"string"}]},{tfOpName:"BroadcastTo",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}],attrs:[]}],xv=class{static get Instance(){return this._instance||(this._instance=new this)}constructor(){let e=[tv,nv,rv,av,sv,iv,ov,hv,cv,lv,dv,pv,fv,mv,Av,yv,uv],t=[].concat(...e.map(n=>n.json));this.opMappers=t.reduce((n,r)=>(n[r.tfOpName]=r,n),{})}transformGraph(e,t={}){let n=e.node,r=[],a=[],s=[],i=n.reduce((f,m)=>(f[m.name]=this.mapNode(m),m.op.startsWith("Placeholder")?r.push(f[m.name]):m.op==="Const"?a.push(f[m.name]):(m.input==null||m.input.length===0)&&s.push(f[m.name]),f),{}),o=[],l=[],u={},c={};t!=null&&(u=this.mapSignatureEntries(t.inputs),c=this.mapSignatureEntries(t.outputs));let h=Object.keys(i);h.forEach(f=>{let m=i[f];m.inputNames.forEach(A=>{let[y]=ma(A);m.inputs.push(i[y]),i[y].children.push(m)})}),Object.keys(c).length===0?h.forEach(f=>{let m=i[f];m.children.length===0&&l.push(m)}):Object.keys(c).forEach(f=>{let[m]=ma(f),A=i[m];A!=null&&(A.signatureKey=c[f],l.push(A))}),Object.keys(u).length>0?Object.keys(u).forEach(f=>{let[m]=ma(f),A=i[m];A&&(A.signatureKey=u[f],o.push(A))}):o=r;let d={};e.library!=null&&e.library.function!=null&&(d=e.library.function.reduce((f,m)=>(f[m.signature.name]=this.mapFunction(m),f),{}));let p={nodes:i,inputs:o,outputs:l,weights:a,placeholders:r,signature:t,functions:d};return s.length>0&&(p.initNodes=s),p}mapSignatureEntries(e){return Object.keys(e||{}).reduce((t,n)=>(t[e[n].name]=n,t),{})}mapNode(e){let t=ev(e.op)||this.opMappers[e.op]||{};e.attr==null&&(e.attr={});let n={name:e.name,op:e.op,category:t.category,inputNames:(e.input||[]).map(r=>r.startsWith("^")?r.substr(1):r),inputs:[],children:[],inputParams:{},attrParams:{},rawAttrs:e.attr};return t.inputs!=null&&(n.inputParams=t.inputs.reduce((r,a)=>(r[a.name]={type:a.type,inputIndexStart:a.start,inputIndexEnd:a.end},r),{})),t.attrs!=null&&(n.attrParams=t.attrs.reduce((r,a)=>{let s=a.type,i;switch(a.type){case"string":i=Py(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=Py(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"string[]":i=Hy(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=Hy(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"number":i=Wy(e.attr,a.tfName,a.defaultValue||0),i===void 0&&!!a.tfDeprecatedName&&(i=Wy(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"number[]":i=Gy(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=Gy(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"bool":i=Ly(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=Ly(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"bool[]":i=Xy(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=Xy(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"shape":i=jy(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=jy(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"shape[]":i=qy(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=qy(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"dtype":i=Vy(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=Vy(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"dtype[]":i=Uy(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=Uy(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"func":i=gv(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=gv(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"tensor":case"tensors":break;default:throw new Error(`Unsupported param type: ${a.type} for op: ${e.op}`)}return r[a.name]={value:i,type:s},r},{})),n}mapFunction(e){let t=e.nodeDef,n=[],r=[],a={};t!=null&&(a=t.reduce((u,c)=>(u[c.name]=this.mapNode(c),c.op==="Const"&&r.push(u[c.name]),u),{}));let s=[],i=[];e.signature.inputArg.forEach(u=>{let[c]=ma(u.name),h={name:c,op:"Placeholder",inputs:[],inputNames:[],category:"graph",inputParams:{},attrParams:{dtype:{value:By(u.type),type:"dtype"}},children:[]};h.signatureKey=u.name,s.push(h),a[c]=h}),Object.keys(a).forEach(u=>{let c=a[u];c.inputNames.forEach(h=>{let[d]=ma(h);c.inputs.push(a[d]),a[d].children.push(c)})});let o=e.ret;e.signature.outputArg.forEach(u=>{let[c,h]=ma(o[u.name]),d=a[c];d!=null&&(d.defaultOutput=h,i.push(d))});let l=this.mapArgsToSignature(e);return{nodes:a,inputs:s,outputs:i,weights:r,placeholders:n,signature:l}}mapArgsToSignature(e){return{methodName:e.signature.name,inputs:e.signature.inputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n),t),{}),outputs:e.signature.outputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n,e.ret),t),{})}}mapArgToTensorInfo(e,t){let n=e.name;return t!=null&&(n=t[n]),{name:n,dtype:e.type}}};function gre(e){let t=Q().global;if(typeof t.atob!="undefined")return t.atob(e);if(typeof Buffer!="undefined")return new Buffer(e,"base64").toString();throw new Error("Unable to decode base64 in this environment. Missing built-in atob() or Buffer()")}function wv(e,t){let n=Array.isArray(e)?String.fromCharCode.apply(null,e):gre(e);return t?n:n.toLowerCase()}function Py(e,t,n,r=!1){let a=e[t];return a!=null?wv(a.s,r):n}function Ly(e,t,n){let r=e[t];return r?r.b:n}function Wy(e,t,n){let r=e[t]||{},a=r.i!=null?r.i:r.f!=null?r.f:n;return typeof a=="number"?a:parseInt(a,10)}function By(e){switch(typeof e=="string"&&(e=Nr[e]),e){case Nr.DT_FLOAT:return"float32";case Nr.DT_INT32:case Nr.DT_INT64:case Nr.DT_INT8:case Nr.DT_UINT8:return"int32";case Nr.DT_BOOL:return"bool";case Nr.DT_DOUBLE:return"float32";case Nr.DT_STRING:return"string";default:return null}}function gv(e,t,n){let r=e[t];return r&&r.func?r.func.name:n}function Vy(e,t,n){let r=e[t];return r&&r.type?By(r.type):n}function Uy(e,t,n){let r=e[t];return r&&r.list&&r.list.type?r.list.type.map(a=>By(a)):n}function _v(e){if(!e.unknownRank)return e.dim!=null?e.dim.map(t=>typeof t.size=="number"?t.size:parseInt(t.size,10)):[]}function jy(e,t,n){let r=e[t];return r&&r.shape?_v(r.shape):n}function Gy(e,t,n){let r=e[t];return r?((r.list.f&&r.list.f.length?r.list.f:r.list.i)||[]).map(a=>typeof a=="number"?a:parseInt(a,10)):n}function Hy(e,t,n,r=!1){let a=e[t];return a&&a.list&&a.list.s?a.list.s.map(s=>wv(s,r)):n}function qy(e,t,n){let r=e[t];return r&&r.list&&r.list.shape?r.list.shape.map(a=>_v(a)):n}function Xy(e,t,n){let r=e[t];return r&&r.list&&r.list.b?r.list.b:n}var xre=class{constructor(e,t,n){this.node=e,this.tensorMap=t,this.context=n,this.inputs=[],this.attrs={},this.inputs=e.inputNames.map(r=>this.getInput(r)),e.rawAttrs!=null&&(this.attrs=Object.keys(e.rawAttrs).reduce((r,a)=>(r[a]=this.getAttr(a),r),{}))}getInput(e){return vn(e,this.tensorMap,this.context)}getAttr(e,t){let n=this.node.rawAttrs[e];if(n.tensor!=null)return vn(e,this.tensorMap,this.context);if(n.i!=null||n.f!=null)return Wy(this.node.rawAttrs,e,t);if(n.s!=null)return Py(this.node.rawAttrs,e,t);if(n.b!=null)return Ly(this.node.rawAttrs,e,t);if(n.shape!=null)return jy(this.node.rawAttrs,e,t);if(n.type!=null)return Vy(this.node.rawAttrs,e,t);if(n.list!=null){if(n.list.i!=null||n.list.f!=null)return Gy(this.node.rawAttrs,e,t);if(n.list.s!=null)return Hy(this.node.rawAttrs,e,t);if(n.list.shape!=null)return qy(this.node.rawAttrs,e,t);if(n.list.b!=null)return Xy(this.node.rawAttrs,e,t);if(n.list.type!=null)return Uy(this.node.rawAttrs,e,t)}return t}},wre=(e,t,n)=>{switch(e.op){case"BiasAdd":case"AddV2":case"Add":return[oe(N("a",e,t,n),N("b",e,t,n))];case"AddN":return[hl(N("tensors",e,t,n))];case"FloorMod":case"Mod":return[Fd(N("a",e,t,n),N("b",e,t,n))];case"Mul":return[L(N("a",e,t,n),N("b",e,t,n))];case"RealDiv":case"Div":return[_e(N("a",e,t,n),N("b",e,t,n))];case"DivNoNan":return[Lf(N("a",e,t,n),N("b",e,t,n))];case"FloorDiv":return[wd(N("a",e,t,n),N("b",e,t,n))];case"Sub":return[ye(N("a",e,t,n),N("b",e,t,n))];case"Minimum":return[pi(N("a",e,t,n),N("b",e,t,n))];case"Maximum":return[Ar(N("a",e,t,n),N("b",e,t,n))];case"Pow":return[$r(N("a",e,t,n),N("b",e,t,n))];case"SquaredDifference":return[cc(N("a",e,t,n),N("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},_re=(e,t,n)=>{switch(e.op){case"Abs":case"ComplexAbs":return[$t(N("x",e,t,n))];case"Acos":return[vf(N("x",e,t,n))];case"Acosh":return[kf(N("x",e,t,n))];case"Asin":return[If(N("x",e,t,n))];case"Asinh":return[Sf(N("x",e,t,n))];case"Atan":return[Tf(N("x",e,t,n))];case"Atan2":return[Ef(N("x",e,t,n),N("y",e,t,n))];case"Atanh":return[Cf(N("x",e,t,n))];case"Ceil":return[Of(N("x",e,t,n))];case"Complex":return[Sa(N("real",e,t,n),N("imag",e,t,n))];case"Cos":return[Yu(N("x",e,t,n))];case"Cosh":return[Nd(N("x",e,t,n))];case"Elu":return[fl(N("x",e,t,n))];case"Erf":return[Wf(N("x",e,t,n))];case"Exp":return[Gn(N("x",e,t,n))];case"Expm1":return[Bf(N("x",e,t,n))];case"Floor":return[ml(N("x",e,t,n))];case"Log":return[Tn(N("x",e,t,n))];case"Log1p":return[Td(N("x",e,t,n))];case"Imag":return[Sd(N("x",e,t,n))];case"Neg":return[bt(N("x",e,t,n))];case"Reciprocal":return[Yf(N("x",e,t,n))];case"Real":return[sc(N("x",e,t,n))];case"Relu":return[zr(N("x",e,t,n))];case"Round":return[Jf(N("x",e,t,n))];case"Selu":return[Pd(N("x",e,t,n))];case"Sigmoid":return[Sn(N("x",e,t,n))];case"Sin":return[Ld(N("x",e,t,n))];case"Sign":return[em(N("x",e,t,n))];case"Sinh":return[Wd(N("x",e,t,n))];case"Softplus":return[Al(N("x",e,t,n))];case"Sqrt":return[Qt(N("x",e,t,n))];case"Square":return[ot(N("x",e,t,n))];case"Tanh":return[pl(N("x",e,t,n))];case"Tan":return[rm(N("x",e,t,n))];case"ClipByValue":return[yn(N("x",e,t,n),N("clipValueMin",e,t,n),N("clipValueMax",e,t,n))];case"Relu6":return[$d(N("x",e,t,n))];case"Rsqrt":return[zd(vn(e.inputNames[0],t,n))];case"Prod":return[Od(N("x",e,t,n),N("axes",e,t,n))];case"LeakyRelu":return[Qu(N("x",e,t,n),N("alpha",e,t,n))];case"Prelu":return[ac(N("x",e,t,n),N("alpha",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function ur(e,t,n=""){k.assert(bre(e,t),()=>n+` Shapes ${e} and ${t} must match`)}function bre(e,t){if(e.length!==t.length)return!1;for(let n=0;n<e.length;n++)if(e[n]!==-1&&t[n]!==-1&&e[n]!==t[n])return!1;return!0}var vre=class{constructor(e,t,n,r,a,s,i){this.name=e,this.dtype=t,this.maxSize=n,this.elementShape=r,this.identicalElementShapes=a,this.dynamicSize=s,this.clearAfterRead=i,this.tensors=[],this.closed_=!1,this.idTensor=ke(0),Ut(this.idTensor)}get id(){return this.idTensor.id}get closed(){return this.closed_}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.tensor.id))&&t.tensor.dispose()}),this.tensors=[],this.closed_=!0,this.idTensor.dispose()}size(){return this.tensors.length}read(e){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||e>=this.size())throw new Error(`Tried to read from index ${e}, but array size is: ${this.size()}`);let t=this.tensors[e];if(t.cleared)throw new Error(`TensorArray ${this.name}: Could not read index ${e} twice because it was cleared after a previous read (perhaps try setting clear_after_read = false?).`);return this.clearAfterRead&&(t.cleared=!0),t.read=!0,t.tensor}readMany(e){return e.map(t=>this.read(t))}write(e,t){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||!this.dynamicSize&&e>=this.maxSize)throw new Error(`Tried to write to index ${e}, but array is not resizeable and size is: ${this.maxSize}`);let n=this.tensors[e]||{};if(t.dtype!==this.dtype)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e},
|
|
because the value dtype is ${t.dtype}, but TensorArray dtype is ${this.dtype}.`);if(this.size()===0&&(this.elementShape==null||this.elementShape.length===0)&&(this.elementShape=t.shape),ur(this.elementShape,t.shape,`TensorArray ${this.name}: Could not write to TensorArray index ${e}.`),n.read)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been read.`);if(n.written)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been written.`);n.tensor=t,Ut(t),n.written=!0,this.tensors[e]=n}writeMany(e,t){if(e.length!==t.length)throw new Error(`TensorArray ${this.name}: could not write multiple tensors,because the index size: ${e.length} is not the same as tensors size: ${t.length}.`);e.forEach((n,r)=>this.write(n,t[r]))}gather(e,t){if(!!t&&t!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but gather requested dtype ${t}`);if(e)e=e.slice(0,this.size());else{e=[];for(let r=0;r<this.size();r++)e.push(r)}if(e.length===0)return mr([],[0].concat(this.elementShape));let n=this.readMany(e);return ur(this.elementShape,n[0].shape,"TensorArray shape mismatch: "),Rn(n,0)}concat(e){if(!!e&&e!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but concat requested dtype ${e}`);if(this.size()===0)return mr([],[0].concat(this.elementShape));let t=[];for(let r=0;r<this.size();r++)t.push(r);let n=this.readMany(t);return ur(this.elementShape,n[0].shape,`TensorArray shape mismatch: tensor array shape (${this.elementShape}) vs first tensor shape (${n[0].shape})`),rt(n,0)}scatter(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);if(e.length!==t.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${e.length} vs. ${t.shape[0]}`);let n=Math.max(...e);if(!this.dynamicSize&&n>=this.maxSize)throw new Error(`Max index must be < array size (${n} vs. ${this.maxSize})`);this.writeMany(e,ar(t,0))}split(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);let n=0,r=e.map(o=>(n+=o,n));if(n!==t.shape[0])throw new Error(`Expected sum of lengths to be equal to
|
|
tensor.shape[0], but sum of lengths is
|
|
${n}, and tensor's shape is: ${t.shape}`);if(!this.dynamicSize&&e.length!==this.maxSize)throw new Error(`TensorArray's size is not equal to the size of lengths (${this.maxSize} vs. ${e.length}), and the TensorArray is not marked as dynamically resizeable`);let a=n===0?0:t.size/n,s=[];W(()=>{t=K(t,[1,n,a]);for(let o=0;o<e.length;++o){let l=o===0?0:r[o-1],u=[0,l,0],c=[1,e[o],a];s[o]=K(Ce(t,u,c),this.elementShape)}return s});let i=[];for(let o=0;o<e.length;o++)i[o]=o;this.writeMany(i,s)}},Hc=class{constructor(e,t,n,r=-1){this.tensors=e,this.elementShape=t,this.elementDtype=n,e!=null&&e.forEach(a=>{if(n!==a.dtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${a.dtype}`);ur(t,a.shape,"TensorList shape mismatch: "),Ut(a)}),this.idTensor=ke(0),this.maxNumElements=r,Ut(this.idTensor)}get id(){return this.idTensor.id}copy(){return new Hc([...this.tensors],this.elementShape,this.elementDtype)}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.id))&&t.dispose()}),this.tensors.length=0,this.idTensor.dispose()}size(){return this.tensors.length}stack(e,t,n=-1){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(n!==-1&&this.tensors.length!==n)throw new Error(`Operation expected a list with ${n} elements but got a list with ${this.tensors.length} elements.`);return ur(e,this.elementShape,"TensorList shape mismatch: "),W(()=>{let r=this.tensors.map(a=>K(a,e));return Rn(r,0)})}popBack(e,t){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(this.size()===0)throw new Error("Trying to pop from an empty list.");let n=this.tensors.pop();return ur(n.shape,e,"TensorList shape mismatch: "),K(n,e)}pushBack(e){if(e.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${this.elementDtype}`);if(ur(e.shape,this.elementShape,"TensorList shape mismatch: "),this.maxNumElements===this.size())throw new Error("Trying to push element into a full list.");Ut(e),this.tensors.push(e)}resize(e){if(e<0)throw new Error(`TensorListResize expects size to be non-negative. Got: ${e}`);if(this.maxNumElements!==-1&&e>this.maxNumElements)throw new Error(`TensorListResize input size ${e} is greater maxNumElement ${this.maxNumElements}.`);this.tensors.length=e}getItem(e,t,n){if(n!==this.elementDtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${this.elementDtype}`);if(e<0||e>this.tensors.length)throw new Error(`Trying to access element ${e} in a list with ${this.tensors.length} elements.`);if(this.tensors[e]==null)throw new Error(`element at index ${e} is null.`);return ur(this.tensors[e].shape,t,"TensorList shape mismatch: "),this.tensors[e]}setItem(e,t){if(t.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t.dtype}, but list elements ${this.elementDtype}`);if(e<0||this.maxNumElements!==-1&&e>=this.maxNumElements)throw new Error(`Trying to set element ${e} in a list with max ${this.maxNumElements} elements.`);ur(this.elementShape,t.shape,"TensorList shape mismatch: "),Ut(t),this.tensors[e]=t}gather(e,t,n){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);return ur(this.elementShape,n,"TensorList shape mismatch: "),e=e.slice(0,this.size()),e.length===0?mr([],[0].concat(this.elementShape)):W(()=>{let r=e.map(a=>K(this.tensors[a],n));return Rn(r,0)})}concat(e,t){if(!!e&&e!==this.elementDtype)throw new Error(`TensorList dtype is ${this.elementDtype} but concat requested dtype ${e}`);return ur(this.elementShape,t,"TensorList shape mismatch: "),this.size()===0?mr([],[0].concat(this.elementShape)):W(()=>{let n=this.tensors.map(r=>K(r,t));return rt(n,0)})}};function kre(e,t,n){let r=e.dtype;if(e.shape.length<1)throw new Error(`Tensor must be at least a vector, but saw shape: ${e.shape}`);if(e.dtype!==n)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${n}`);let a=e.shape.slice(1);ur(a,t,"TensorList shape mismatch: ");let s=ar(e);return new Hc(s,t,r)}function Nre(e,t,n){return new Hc([],e,t,n)}function Ire(e,t,n,r){if(t.length!==e.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${t.length} vs. ${e.shape[0]}`);let a=Math.max(...t);if(r!=null&&r!==-1&&a>=r)throw new Error(`Max index must be < array size (${a} vs. ${r})`);let s=new Hc([],n,e.dtype,r),i=ar(e,0);return t.forEach((o,l)=>{s.setItem(o,i[l])}),s}function Sre(e,t,n){let r=0,a=t.map(l=>(r+=l,r));if(r!==e.shape[0])throw new Error(`Expected sum of lengths to be equal to
|
|
tensor.shape[0], but sum of lengths is
|
|
${r}, and tensor's shape is: ${e.shape}`);let s=r===0?0:e.size/r,i=W(()=>{let l=[];e=K(e,[1,r,s]);for(let u=0;u<t.length;++u){let c=u===0?0:a[u-1],h=[0,c,0],d=[1,t[u],s];l[u]=K(Ce(e,h,d),n)}return e.dispose(),l}),o=new Hc([],n,e.dtype,t.length);for(let l=0;l<i.length;l++)o.setItem(l,i[l]);return o}var Tre=async(e,t,n)=>{switch(e.op){case"If":case"StatelessIf":{let r=N("thenBranch",e,t,n),a=N("elseBranch",e,t,n),s=N("cond",e,t,n),i=N("args",e,t,n);return(await s.data())[0]?n.functionMap[r].executeFunctionAsync(i,n.tensorArrayMap,n.tensorListMap):n.functionMap[a].executeFunctionAsync(i,n.tensorArrayMap,n.tensorListMap)}case"While":case"StatelessWhile":{let r=N("body",e,t,n),a=N("cond",e,t,n),s=N("args",e,t,n),i=await n.functionMap[a].executeFunctionAsync(s,n.tensorArrayMap,n.tensorListMap),o=s.map(c=>c.id),l=await i[0].data();i.forEach(c=>{!c.kept&&o.indexOf(c.id)===-1&&c.dispose()});let u=s;for(;l[0];){let c=u;u=await n.functionMap[r].executeFunctionAsync(u,n.tensorArrayMap,n.tensorListMap);let h=u.map(p=>p.id);c.forEach(p=>{!p.kept&&o.indexOf(p.id)===-1&&h.indexOf(p.id)===-1&&p.dispose()});let d=await n.functionMap[a].executeFunctionAsync(u,n.tensorArrayMap,n.tensorListMap);l=await d[0].data(),d.forEach(p=>{!p.kept&&o.indexOf(p.id)===-1&&h.indexOf(p.id)===-1&&p.dispose()})}return u}case"LoopCond":{let r=N("pred",e,t,n);return[Aa(r)]}case"Switch":{let r=N("pred",e,t,n),a=N("data",e,t,n);return a.kept||(a=Aa(a)),(await r.data())[0]?[void 0,a]:[a,void 0]}case"Merge":{let r=e.inputNames.find(a=>vn(a,t,n)!==void 0);if(r){let a=vn(r,t,n);return[Aa(a)]}return}case"Enter":{let r=N("frameName",e,t,n),a=N("tensor",e,t,n);return n.enterFrame(r),[Aa(a)]}case"Exit":{let r=N("tensor",e,t,n);return n.exitFrame(),[Aa(r)]}case"NextIteration":{let r=N("tensor",e,t,n);return n.nextIteration(),[Aa(r)]}case"TensorArrayV3":{let r=N("size",e,t,n),a=N("dtype",e,t,n),s=N("elementShape",e,t,n),i=N("dynamicSize",e,t,n),o=N("clearAfterRead",e,t,n),l=N("identicalElementShapes",e,t,n),u=N("name",e,t,n),c=new vre(u,a,r,s,l,i,o);return n.addTensorArray(c),[c.idTensor,ke(1)]}case"TensorArrayWriteV3":{let r=N("tensorArrayId",e,t,n),a=N("index",e,t,n),s=N("tensor",e,t,n),i=n.getTensorArray(r.id);return i.write(a,s),[i.idTensor]}case"TensorArrayReadV3":{let r=N("tensorArrayId",e,t,n),a=N("index",e,t,n);return[n.getTensorArray(r.id).read(a)]}case"TensorArrayGatherV3":{let r=N("tensorArrayId",e,t,n),a=N("indices",e,t,n),s=N("dtype",e,t,n);return[n.getTensorArray(r.id).gather(a,s)]}case"TensorArrayScatterV3":{let r=N("tensorArrayId",e,t,n),a=N("indices",e,t,n),s=N("tensor",e,t,n),i=n.getTensorArray(r.id);return i.scatter(a,s),[i.idTensor]}case"TensorArrayConcatV3":{let r=N("tensorArrayId",e,t,n),a=n.getTensorArray(r.id),s=N("dtype",e,t,n);return[a.concat(s)]}case"TensorArraySplitV3":{let r=N("tensorArrayId",e,t,n),a=N("tensor",e,t,n),s=N("lengths",e,t,n),i=n.getTensorArray(r.id);return i.split(s,a),[i.idTensor]}case"TensorArraySizeV3":{let r=N("tensorArrayId",e,t,n),a=n.getTensorArray(r.id);return[ke(a.size(),"int32")]}case"TensorArrayCloseV3":{let r=N("tensorArrayId",e,t,n),a=n.getTensorArray(r.id);return a.clearAndClose(),[a.idTensor]}case"TensorListSetItem":{let r=N("tensorListId",e,t,n),a=N("index",e,t,n),s=N("tensor",e,t,n),i=n.getTensorList(r.id);return i.setItem(a,s),[i.idTensor]}case"TensorListGetItem":{let r=N("tensorListId",e,t,n),a=N("index",e,t,n),s=N("elementShape",e,t,n),i=N("elementDType",e,t,n);return[n.getTensorList(r.id).getItem(a,s,i)]}case"TensorListScatterV2":case"TensorListScatter":{let r=N("indices",e,t,n),a=N("tensor",e,t,n),s=N("elementShape",e,t,n),i=N("numElements",e,t,n),o=Ire(a,r,s,i);return n.addTensorList(o),[o.idTensor]}case"TensorListReserve":case"EmptyTensorList":{let r=N("elementShape",e,t,n),a=N("elementDType",e,t,n),s;e.op==="TensorListReserve"?s="numElements":s="maxNumElements";let i=N(s,e,t,n),o=Nre(r,a,i);return n.addTensorList(o),[o.idTensor]}case"TensorListGather":{let r=N("tensorListId",e,t,n),a=N("indices",e,t,n),s=N("elementShape",e,t,n),i=N("elementDType",e,t,n);return[n.getTensorList(r.id).gather(a,i,s)]}case"TensorListStack":{let r=N("tensorListId",e,t,n),a=N("elementShape",e,t,n),s=N("elementDType",e,t,n),i=N("numElements",e,t,n);return[n.getTensorList(r.id).stack(a,s,i)]}case"TensorListFromTensor":{let r=N("tensor",e,t,n),a=N("elementShape",e,t,n),s=N("elementDType",e,t,n),i=kre(r,a,s);return n.addTensorList(i),[i.idTensor]}case"TensorListConcat":{let r=N("tensorListId",e,t,n),a=n.getTensorList(r.id),s=N("dtype",e,t,n),i=N("elementShape",e,t,n);return[a.concat(s,i)]}case"TensorListPushBack":{let r=N("tensorListId",e,t,n),a=N("tensor",e,t,n),s=n.getTensorList(r.id);return s.pushBack(a),[s.idTensor]}case"TensorListPopBack":{let r=N("tensorListId",e,t,n),a=N("elementShape",e,t,n),s=N("elementDType",e,t,n);return[n.getTensorList(r.id).popBack(a,s)]}case"TensorListSplit":{let r=N("tensor",e,t,n),a=N("elementShape",e,t,n),s=N("lengths",e,t,n),i=Sre(r,s,a);return n.addTensorList(i),[i.idTensor]}default:throw TypeError(`Node type ${e.op} is not implemented`)}};function bv(e,t,n){let[r,a]=N("fusedOps",e,t,n),s=r==="biasadd",i=a==="prelu",o=r==="fusedbatchnorm",l=N("numArgs",e,t,n);if(s){if(i&&l!==2)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!i&&l!==1)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd must have one extra argument: bias.")}if(o)throw new Error("FusedConv2d and DepthwiseConv2d with FusedBatchNorm is not supported.");let u=N("strides",e,t,n),c=d0(e,t,n),h=N("dataFormat",e,t,n).toUpperCase(),d=N("dilations",e,t,n),[p,f]=N("args",e,t,n),m=N("leakyreluAlpha",e,t,n);return{stride:u,pad:c,dataFormat:h,dilations:d,biasArg:p,preluArg:f,activationFunc:a,leakyreluAlpha:m}}var Ere=(e,t,n)=>{switch(e.op){case"Conv1D":{let r=N("stride",e,t,n),a=N("pad",e,t,n),s=N("dataFormat",e,t,n).toUpperCase(),i=N("dilation",e,t,n);return[vd(N("x",e,t,n),N("filter",e,t,n),r,a,s,i)]}case"Conv2D":{let r=N("strides",e,t,n),a=d0(e,t,n),s=N("dataFormat",e,t,n).toUpperCase(),i=N("dilations",e,t,n);return[sa(N("x",e,t,n),N("filter",e,t,n),[r[1],r[2]],a,s,[i[1],i[2]])]}case"_FusedConv2D":{let{stride:r,pad:a,dataFormat:s,dilations:i,biasArg:o,preluArg:l,activationFunc:u,leakyreluAlpha:c}=bv(e,t,n);return[$a.conv2d({x:N("x",e,t,n),filter:N("filter",e,t,n),strides:[r[1],r[2]],pad:a,dataFormat:s,dilations:[i[1],i[2]],bias:o,activation:u,preluActivationWeights:l,leakyreluAlpha:c})]}case"FusedDepthwiseConv2dNative":{let{stride:r,pad:a,dataFormat:s,dilations:i,biasArg:o,preluArg:l,activationFunc:u,leakyreluAlpha:c}=bv(e,t,n);return[$a.depthwiseConv2d({x:N("x",e,t,n),filter:N("filter",e,t,n),strides:[r[1],r[2]],pad:a,dataFormat:s,dilations:[i[1],i[2]],bias:o,activation:u,preluActivationWeights:l,leakyreluAlpha:c})]}case"Conv2DBackpropInput":case"Conv2dTranspose":{let r=N("outputShape",e,t,n),a=N("strides",e,t,n),s=d0(e,t,n);return[kd(N("x",e,t,n),N("filter",e,t,n),r,[a[1],a[2]],s)]}case"DepthwiseConv2dNative":case"DepthwiseConv2d":{let r=N("strides",e,t,n),a=d0(e,t,n),s=N("dilations",e,t,n),i=N("dataFormat",e,t,n).toUpperCase();return[ci(N("input",e,t,n),N("filter",e,t,n),[r[1],r[2]],a,i,[s[1],s[2]])]}case"Conv3D":{let r=N("strides",e,t,n),a=N("pad",e,t,n),s=N("dataFormat",e,t,n).toUpperCase(),i=N("dilations",e,t,n);return[$f(N("x",e,t,n),N("filter",e,t,n),[r[1],r[2],r[3]],a,s,[i[1],i[2],i[3]])]}case"AvgPool":{let r=N("strides",e,t,n),a=N("pad",e,t,n),s=N("kernelSize",e,t,n);return[Xu(N("x",e,t,n),[s[1],s[2]],[r[1],r[2]],a)]}case"MaxPool":{let r=N("strides",e,t,n),a=N("pad",e,t,n),s=N("kernelSize",e,t,n);return[nc(N("x",e,t,n),[s[1],s[2]],[r[1],r[2]],a)]}case"MaxPoolWithArgmax":{let r=N("strides",e,t,n),a=N("pad",e,t,n),s=N("kernelSize",e,t,n),i=N("includeBatchInIndex",e,t,n),{result:o,indexes:l}=D5(N("x",e,t,n),[s[1],s[2]],[r[1],r[2]],a,i);return[o,l]}case"AvgPool3D":{let r=N("strides",e,t,n),a=N("pad",e,t,n),s=N("kernelSize",e,t,n);return[Mf(N("x",e,t,n),[s[1],s[2],s[3]],[r[1],r[2],r[3]],a)]}case"MaxPool3D":{let r=N("strides",e,t,n),a=N("pad",e,t,n),s=N("kernelSize",e,t,n);return[qf(N("x",e,t,n),[s[1],s[2],s[3]],[r[1],r[2],r[3]],a)]}case"Dilation2D":{let r=N("strides",e,t,n),a=N("pad",e,t,n),s=N("dilations",e,t,n),i=r[1],o=r[2],l=s[1],u=s[2];return[Pf(N("x",e,t,n),N("filter",e,t,n),[i,o],a,[l,u],"NHWC")]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Cre=(e,t,n)=>{switch(e.op){case"Fill":{let r=N("shape",e,t,n),a=N("dtype",e,t,n),s=N("value",e,t,n);return[Ju(r,s,a)]}case"LinSpace":{let r=N("start",e,t,n),a=N("stop",e,t,n),s=N("num",e,t,n);return[T5(r,a,s)]}case"Multinomial":{let r=N("logits",e,t,n),a=N("numSamples",e,t,n),s=N("seed",e,t,n);return[$5(r,a,s)]}case"OneHot":{let r=N("indices",e,t,n),a=N("depth",e,t,n),s=N("onValue",e,t,n),i=N("offValue",e,t,n);return[ol(r,a,s,i)]}case"Ones":return[Dr(N("shape",e,t,n),N("dtype",e,t,n))];case"OnesLike":return[En(N("x",e,t,n))];case"RandomUniform":return[gl(N("shape",e,t,n),N("minval",e,t,n),N("maxval",e,t,n),N("dtype",e,t,n))];case"Range":{let r=N("start",e,t,n),a=N("stop",e,t,n),s=N("step",e,t,n);return[Dd(r,a,s,N("dtype",e,t,n))]}case"TruncatedNormal":{let r=N("shape",e,t,n),a=N("mean",e,t,n),s=N("stdDev",e,t,n),i=N("seed",e,t,n);return[jd(r,a,s,N("dtype",e,t,n),i)]}case"Zeros":return[Tt(N("shape",e,t,n),N("dtype",e,t,n))];case"ZerosLike":return[je(N("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function Ky(e,t,n){let r=N("boxes",e,t,n),a=N("scores",e,t,n),s=N("maxOutputSize",e,t,n),i=N("iouThreshold",e,t,n),o=N("scoreThreshold",e,t,n),l=N("softNmsSigma",e,t,n);return{boxes:r,scores:a,maxOutputSize:s,iouThreshold:i,scoreThreshold:o,softNmsSigma:l}}var Rre=async(e,t,n)=>{switch(e.op){case"NonMaxSuppressionV5":{let{boxes:r,scores:a,maxOutputSize:s,iouThreshold:i,scoreThreshold:o,softNmsSigma:l}=Ky(e,t,n),u=await at.nonMaxSuppressionWithScoreAsync(r,a,s,i,o,l);return[u.selectedIndices,u.selectedScores]}case"NonMaxSuppressionV4":{let{boxes:r,scores:a,maxOutputSize:s,iouThreshold:i,scoreThreshold:o}=Ky(e,t,n),l=N("padToMaxOutputSize",e,t,n),u=await at.nonMaxSuppressionPaddedAsync(r,a,s,i,o,l);return[u.selectedIndices,u.validOutputs]}case"NonMaxSuppressionV3":case"NonMaxSuppressionV2":{let{boxes:r,scores:a,maxOutputSize:s,iouThreshold:i,scoreThreshold:o}=Ky(e,t,n);return[await at.nonMaxSuppressionAsync(r,a,s,i,o)]}case"Where":{let r=Ae(N("condition",e,t,n),"bool"),a=[await im(r)];return r.dispose(),a}case"ListDiff":return L5(N("x",e,t,n),N("y",e,t,n));default:throw TypeError(`Node type ${e.op} is not implemented`)}},Fre=(e,t,n)=>{switch(e.op){case"TopKV2":{let r=N("x",e,t,n),a=N("k",e,t,n),s=N("sorted",e,t,n),i=am(r,a,s);return[i.values,i.indices]}case"Unique":{let r=N("x",e,t,n),a=Gd(r);return[a.values,a.indices]}case"UniqueV2":{let r=N("x",e,t,n),a=N("axis",e,t,n),s=Gd(r,a);return[s.values,s.indices]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Mre=(e,t,n)=>{switch(e.op){case"Const":return t[e.name];case"PlaceholderWithDefault":let r=N("default",e,t,n);return[vn(e.name,t,n)||r];case"Placeholder":return[vn(e.name,t,n)];case"Identity":case"StopGradient":case"FakeQuantWithMinMaxVars":{let u=N("x",e,t,n);return[Aa(u)]}case"IdentityN":return N("x",e,t,n).map(u=>Aa(u));case"Snapshot":let a=N("x",e,t,n);return[Aa(a)];case"Shape":return[jt(N("x",e,t,n).shape,"int32")];case"ShapeN":return N("x",e,t,n).map(u=>jt(u.shape));case"Size":return[ke(N("x",e,t,n).size,"int32")];case"Rank":return[ke(N("x",e,t,n).rank,"int32")];case"NoOp":return[ke(1)];case"Print":let s=N("x",e,t,n),i=N("data",e,t,n),o=N("message",e,t,n),l=N("summarize",e,t,n);console.warn("The graph has a tf.print() operation,usually used for debugging, which slows down performance."),console.log(o);for(let u=0;u<i.length;u++)console.log(Array.prototype.slice.call(i[u].dataSync()).slice(0,l));return[s];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Ore=class{constructor(e,t){this.keyDType=e,this.valueDType=t,this.handle=ke(0),this.tensorMap=new Map,Ut(this.handle)}get id(){return this.handle.id}clearAndClose(){this.tensorMap.forEach(e=>e.dispose()),this.tensorMap.clear(),this.handle.dispose()}size(){return this.tensorMap.size}async import(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return this.tensorMap.forEach(r=>r.dispose()),this.tensorMap.clear(),W(()=>{let r=ar(t),a=n.length,s=r.length;k.assert(a===s,()=>`The number of elements doesn't match, keys has ${a} elements, the values has ${s} elements.`);for(let i=0;i<a;i++){let o=n[i],l=r[i];Ut(l),this.tensorMap.set(o,l)}return this.handle})}async find(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return W(()=>{let r=[];for(let a=0;a<n.length;a++){let s=n[a],i=this.findWithDefault(s,t);r.push(i)}return Rn(r)})}findWithDefault(e,t){let n=this.tensorMap.get(e);return n!=null?n:t}checkKeyAndValueTensor(e,t){if(e.dtype!==this.keyDType)throw new Error(`Expect key dtype ${this.keyDType}, but got ${e.dtype}`);if(t.dtype!==this.valueDType)throw new Error(`Expect value dtype ${this.valueDType}, but got ${t.dtype}`)}},Dre=async(e,t,n,r)=>{switch(e.op){case"HashTable":case"HashTableV2":{let a=N("keyDType",e,t,n),s=N("valueDType",e,t,n),i=new Ore(a,s);return r.addHashTable(e.name,i),[i.handle]}case"LookupTableImport":case"LookupTableImportV2":{let a=N("tableHandle",e,t,n,r),s=N("keys",e,t,n),i=N("values",e,t,n);return[await r.getHashTableById(a.id).import(s,i)]}case"LookupTableFind":case"LookupTableFindV2":{let a=N("tableHandle",e,t,n,r),s=N("keys",e,t,n),i=N("defaultValue",e,t,n);return[await r.getHashTableById(a.id).find(s,i)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},$re=(e,t,n)=>{switch(e.op){case"ResizeBilinear":{let r=N("images",e,t,n),a=N("size",e,t,n),s=N("alignCorners",e,t,n),i=N("halfPixelCenters",e,t,n);return[at.resizeBilinear(r,[a[0],a[1]],s,i)]}case"ResizeNearestNeighbor":{let r=N("images",e,t,n),a=N("size",e,t,n),s=N("alignCorners",e,t,n),i=N("halfPixelCenters",e,t,n);return[at.resizeNearestNeighbor(r,[a[0],a[1]],s,i)]}case"CropAndResize":{let r=N("image",e,t,n),a=N("boxes",e,t,n),s=N("boxInd",e,t,n),i=N("cropSize",e,t,n),o=N("method",e,t,n),l=N("extrapolationValue",e,t,n);return[at.cropAndResize(r,a,s,i,o,l)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},zre=(e,t,n)=>{switch(e.op){case"Equal":return[ia(N("a",e,t,n),N("b",e,t,n))];case"NotEqual":return[Oa(N("a",e,t,n),N("b",e,t,n))];case"Greater":return[qn(N("a",e,t,n),N("b",e,t,n))];case"GreaterEqual":return[oa(N("a",e,t,n),N("b",e,t,n))];case"Less":return[ec(N("a",e,t,n),N("b",e,t,n))];case"LessEqual":return[Ma(N("a",e,t,n),N("b",e,t,n))];case"LogicalAnd":return[rr(N("a",e,t,n),N("b",e,t,n))];case"LogicalNot":return[tc(N("a",e,t,n))];case"LogicalOr":return[Rd(N("a",e,t,n),N("b",e,t,n))];case"Select":case"SelectV2":return[gn(N("condition",e,t,n),N("a",e,t,n),N("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Pre=(e,t,n)=>{switch(e.op){case"BatchMatMul":case"BatchMatMulV2":case"MatMul":return[He(N("a",e,t,n),N("b",e,t,n),N("transposeA",e,t,n),N("transposeB",e,t,n))];case"Transpose":return[nt(N("x",e,t,n),N("perm",e,t,n))];case"_FusedMatMul":let[r,a]=N("fusedOps",e,t,n),s=r==="biasadd",i=a==="prelu",o=N("numArgs",e,t,n),l=N("leakyreluAlpha",e,t,n);if(s){if(i&&o!==2)throw new Error("Fused MatMul with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!i&&o!==1)throw new Error("Fused MatMul with BiasAdd must have one extra argument: bias.")}let[u,c]=N("args",e,t,n);return[$a.matMul({a:N("a",e,t,n),b:N("b",e,t,n),transposeA:N("transposeA",e,t,n),transposeB:N("transposeB",e,t,n),bias:u,activation:a,preluActivationWeights:c,leakyreluAlpha:l})];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Lre=(e,t,n)=>{switch(e.op){case"FusedBatchNorm":case"FusedBatchNormV2":return[li(N("x",e,t,n),N("mean",e,t,n),N("variance",e,t,n),N("offset",e,t,n),N("scale",e,t,n),N("epsilon",e,t,n))];case"FusedBatchNormV3":return[li(N("x",e,t,n),N("mean",e,t,n),N("variance",e,t,n),N("offset",e,t,n),N("scale",e,t,n),N("epsilon",e,t,n))];case"LRN":return[Uf(N("x",e,t,n),N("radius",e,t,n),N("bias",e,t,n),N("alpha",e,t,n),N("beta",e,t,n))];case"Softmax":return[oc(N("x",e,t,n))];case"LogSoftmax":return[Cd(N("x",e,t,n))];case"SparseToDense":return[om(N("sparseIndices",e,t,n),N("outputShape",e,t,n),N("sparseValues",e,t,n),N("defaultValue",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Wre=(e,t,n)=>{switch(e.op){case"Max":{let i=N("axis",e,t,n),o=N("keepDims",e,t,n);return[Xn(N("x",e,t,n),i,o)]}case"Mean":{let i=N("axis",e,t,n),o=N("keepDims",e,t,n);return[vt(N("x",e,t,n),i,o)]}case"Min":{let i=N("axis",e,t,n),o=N("keepDims",e,t,n);return[yl(N("x",e,t,n),i,o)]}case"Sum":{let i=N("axis",e,t,n),o=N("keepDims",e,t,n);return[Se(N("x",e,t,n),i,o)]}case"All":{let i=N("axis",e,t,n),o=N("keepDims",e,t,n);return[_d(N("x",e,t,n),i,o)]}case"Any":{let i=N("axis",e,t,n),o=N("keepDims",e,t,n);return[Gu(N("x",e,t,n),i,o)]}case"ArgMax":{let i=N("axis",e,t,n);return[Hu(N("x",e,t,n),i)]}case"ArgMin":{let i=N("axis",e,t,n);return[Nf(N("x",e,t,n),i)]}case"Prod":{let i=N("axis",e,t,n),o=N("keepDims",e,t,n);return[Od(N("x",e,t,n),i,o)]}case"Cumsum":{let i=N("axis",e,t,n),o=N("exclusive",e,t,n),l=N("reverse",e,t,n);return[Id(N("x",e,t,n),i,o,l)]}case"Bincount":let r=N("x",e,t,n),a=N("weights",e,t,n),s=N("size",e,t,n);return[g5(r,a,s)];case"DenseBincount":{let i=N("x",e,t,n),o=N("weights",e,t,n),l=N("size",e,t,n),u=N("binaryOutput",e,t,n);return[v5(i,o,l,u)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Bre=(e,t,n)=>{switch(e.op){case"ConcatV2":case"Concat":{let r=N("n",e,t,n),a=N("axis",e,t,n),s=N("tensors",e,t,n);return s=s.slice(0,r),[rt(s,a)]}case"Gather":{let r=N("x",e,t,n),a=N("indices",e,t,n);return[hi(r,Ae(a,"int32"),0)]}case"GatherV2":{let r=N("axis",e,t,n),a=N("batchDims",e,t,n),s=N("x",e,t,n),i=N("indices",e,t,n);return[hi(s,Ae(i,"int32"),r,a)]}case"Reverse":{let r=N("dims",e,t,n),a=[];for(let i=0;i<r.length;i++)r[i]&&a.push(i);let s=N("x",e,t,n);return[Cn(s,a)]}case"ReverseV2":{let r=N("axis",e,t,n),a=N("x",e,t,n);return[Cn(a,r)]}case"Slice":{let r=N("begin",e,t,n),a=N("size",e,t,n);return[Ce(N("x",e,t,n),r,a)]}case"StridedSlice":{let r=N("begin",e,t,n),a=N("end",e,t,n),s=N("strides",e,t,n),i=N("beginMask",e,t,n),o=N("endMask",e,t,n),l=N("ellipsisMask",e,t,n),u=N("newAxisMask",e,t,n),c=N("shrinkAxisMask",e,t,n),h=N("x",e,t,n);return[nm(h,r,a,s,i,o,l,u,c)]}case"Pack":return W(()=>{let r=N("axis",e,t,n),a=N("tensors",e,t,n),s=a[0].shape,i=Da(a[0]).shape,o=a.map(l=>{let u=k.arraysEqual(l.shape,s);if(!u&&!k.arraysEqual(Da(l).shape,i))throw new Error("the input tensors shape does not match");return u?l:K(l,s)});return[Rn(o,r)]});case"Unpack":{let r=N("axis",e,t,n),a=N("tensor",e,t,n);return ar(a,r)}case"Tile":{let r=N("reps",e,t,n);return[Fa(N("x",e,t,n),r)]}case"Split":case"SplitV":{let r=N("axis",e,t,n),a=N("numOrSizeSplits",e,t,n),s=N("x",e,t,n);return Jt(s,a,r)}case"ScatterNd":{let r=N("indices",e,t,n),a=N("values",e,t,n),s=N("shape",e,t,n);return[ax(r,a,s)]}case"GatherNd":{let r=N("x",e,t,n),a=N("indices",e,t,n);return[sx(r,a)]}case"SparseToDense":{let r=N("sparseIndices",e,t,n),a=N("outputShape",e,t,n),s=N("sparseValues",e,t,n),i=N("defaultValue",e,t,n);return[om(r,s,a,s.dtype===i.dtype?i:Ae(i,s.dtype))]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Vre=(e,t,n)=>{switch(e.op){case"FFT":return[lc(N("x",e,t,n))];case"IFFT":return[xl(N("x",e,t,n))];case"RFFT":return[uc(N("x",e,t,n))];case"IRFFT":return[Ud(N("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Ure=(e,t,n)=>{switch(e.op){case"Cast":return[Ae(N("x",e,t,n),N("dtype",e,t,n))];case"ExpandDims":{let r=N("axis",e,t,n);return[Hn(N("x",e,t,n),r)]}case"Squeeze":{let r=N("axis",e,t,n);return[Da(N("x",e,t,n),r)]}case"Reshape":return[K(N("x",e,t,n),N("shape",e,t,n))];case"MirrorPad":return[Xf(N("x",e,t,n),N("padding",e,t,n),N("mode",e,t,n))];case"PadV2":case"Pad":return[la(N("x",e,t,n),N("padding",e,t,n),N("constantValue",e,t,n))];case"SpaceToBatchND":{let r=N("blockShape",e,t,n),a=N("paddings",e,t,n);return[rc(N("x",e,t,n),r,a)]}case"BatchToSpaceND":{let r=N("blockShape",e,t,n),a=N("crops",e,t,n);return[Ku(N("x",e,t,n),r,a)]}case"DepthToSpace":{let r=N("blockSize",e,t,n),a=N("dataFormat",e,t,n).toUpperCase();return[zf(N("x",e,t,n),r,a)]}case"BroadcastTo":return[Zu(N("x",e,t,n),N("shape",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function vv(e,t,n,r){let a=((s,i,o)=>{switch(s.category){case"arithmetic":return W(()=>wre(s,i,o));case"basic_math":return W(()=>_re(s,i,o));case"control":return Tre(s,i,o);case"convolution":return W(()=>Ere(s,i,o));case"creation":return W(()=>Cre(s,i,o));case"dynamic":return Rre(s,i,o);case"evaluation":return W(()=>Fre(s,i,o));case"image":return W(()=>$re(s,i,o));case"graph":return W(()=>Mre(s,i,o));case"logical":return W(()=>zre(s,i,o));case"matrices":return W(()=>Pre(s,i,o));case"normalization":return W(()=>Lre(s,i,o));case"reduction":return W(()=>Wre(s,i,o));case"slice_join":return W(()=>Bre(s,i,o));case"spectral":return W(()=>Vre(s,i,o));case"transformation":return W(()=>Ure(s,i,o));case"hash_table":return Dre(s,i,o,r);case"custom":let l=ev(s.op);if(l&&l.customExecutor)return l.customExecutor(new xre(s,i,o));throw TypeError(`Custom op ${s.op} is not registered.`);default:throw TypeError(`Unknown op '${s.op}'. File an issue at https://github.com/tensorflow/tfjs/issues so we can add it, or register a custom execution with tf.registerOp()`)}})(e,t,n);return k.isPromise(a)?a.then(s=>[].concat(s)):[].concat(a)}var kv=class{constructor(e={},t={},n={},r={}){this.weightMap=e,this.tensorArrayMap=t,this.tensorListMap=n,this.functionMap=r,this.rootContext={id:0,frameName:"",iterationId:0},this.contexts=[this.rootContext],this.lastId=0,this.generateCurrentContextIds()}newFrame(e,t){return{id:e,frameName:t,iterationId:0}}set currentContext(e){this.contexts!==e&&(this.contexts=e,this.generateCurrentContextIds())}get currentContext(){return this.contexts}get currentContextId(){return this._currentContextIds[0]}get currentContextIds(){return this._currentContextIds}generateCurrentContextIds(){let e=[];for(let t=0;t<this.contexts.length-1;t++){let n=this.contexts.slice(0,this.contexts.length-t);e.push(this.contextIdforContexts(n))}e.push(""),this._currentContextIds=e}contextIdforContexts(e){return e?e.map(t=>t.id===0&&t.iterationId===0?"":`${t.frameName}-${t.iterationId}`).join("/"):""}enterFrame(e){this.contexts&&(this.lastId++,this.contexts=this.contexts.slice(),this.contexts.push(this.newFrame(this.lastId,e)),this._currentContextIds.unshift(this.contextIdforContexts(this.contexts)))}exitFrame(){if(this.contexts&&this.contexts.length>1)this.contexts=this.contexts.slice(),this.contexts.splice(-1),this.currentContextIds.shift();else throw new Error("Cannot exit frame, the context is empty")}nextIteration(){if(this.contexts&&this.contexts.length>0){this.contexts=this.contexts.slice(),this.lastId++;let e=Object.assign({},this.contexts[this.contexts.length-1]);e.iterationId+=1,e.id=this.lastId,this.contexts.splice(-1,1,e),this._currentContextIds.splice(0,1,this.contextIdforContexts(this.contexts))}else throw new Error("Cannot increase frame iteration, the context is empty")}getWeight(e){return this.weightMap[e]}addTensorArray(e){this.tensorArrayMap[e.id]=e}getTensorArray(e){return this.tensorArrayMap[e]}addTensorList(e){this.tensorListMap[e.id]=e}getTensorList(e){return this.tensorListMap[e]}dispose(e){for(let t in this.tensorArrayMap)this.tensorArrayMap[t].clearAndClose(e);for(let t in this.tensorListMap)this.tensorListMap[t].clearAndClose(e)}};function Iv(e,t,n,r){let a=new Set,s=[],i=null,o=null,l=new Set,u=Object.keys(e).map(d=>zn(d)[0]),c=[];r!=null&&(c=r.map(d=>zn(d.name)[0]));let h=[...t];for(;h.length>0;){let d=h.pop();if((Nv(d)||jre(d)||Gre(d))&&i==null&&(i=d,o=i.children.map(p=>p.name).filter(p=>a.has(p))),a.add(d.name),n[d.name]==null&&u.indexOf(d.name)===-1&&c.indexOf(d.name)===-1){if(d.inputs.length===0){s.push(d.name);continue}d.inputs.forEach(p=>{l.has(p.name)||(l.add(p.name),h.push(p))})}}return{inputs:e,outputs:t,usedNodes:a,missingInputs:s,dynamicNode:i,syncInputs:o}}function Hre(e,t,n){let{usedNodes:r,inputs:a}=n,s=[],i=Object.keys(a).map(c=>zn(c)[0]).map(c=>e.nodes[c]),o=e.initNodes;i.forEach(c=>{r.has(c.name)&&s.push(c)}),e.weights.forEach(c=>{r.has(c.name)&&s.push(c)}),o!=null&&o.forEach(c=>{r.has(c.name)&&s.push(c)});let l=new Set,u=[];for(;s.length>0;){let c=s.pop();l.add(c.name),t[c.name]||u.push(c),c.children.forEach(h=>{!l.has(h.name)&&r.has(h.name)&&h.inputs.every(d=>l.has(d.name))&&s.push(h)})}return u}var qre=["Switch","Merge","Enter","Exit","NextIteration","StatelessIf","StatelessWhile","if","While"],Xre=["NonMaxSuppressionV2","NonMaxSuppressionV3","NonMaxSuppressionV5","Where"],Kre=["HashTable","HashTableV2","LookupTableImport","LookupTableImportV2","LookupTableFind","LookupTableFindV2"];function Nv(e){return qre.indexOf(e.op)>=0}function jre(e){return Xre.indexOf(e.op)>=0}function Gre(e){return Kre.indexOf(e.op)>=0}var Zy=class{constructor(e,t){this.graph=e,this.parent=t,this.compiledMap=new Map,this._weightMap={},this.SEPERATOR=",",this._functions={},this._functionExecutorMap={},this._outputs=e.outputs,this._inputs=e.inputs,this._initNodes=e.initNodes,this._signature=e.signature,this._functions=e.functions,e.functions!=null&&Object.keys(e.functions).forEach(n=>{this._functionExecutorMap[n]=new Zy(e.functions[n],this)})}get weightIds(){return this.parent?this.parent.weightIds:this._weightIds}get functionExecutorMap(){return this.parent?this.parent.functionExecutorMap:this._functionExecutorMap}get weightMap(){return this.parent?this.parent.weightMap:this._weightMap}set weightMap(e){let t=Object.keys(e).map(n=>e[n].map(r=>r.id));this._weightIds=[].concat(...t),this._weightMap=e}set resourceManager(e){this._resourceManager=e}get inputs(){return this._inputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get outputs(){return this._outputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get inputNodes(){return this._inputs.map(e=>e.signatureKey||e.name)}get outputNodes(){return this._outputs.map(e=>{let t=e.signatureKey||e.name;return e.defaultOutput?`${t}:${e.defaultOutput}`:t})}get functions(){return Object.keys(this._functions).reduce((e,t)=>(e[t]=this._functions[t].signature,e),{})}getCompilationKey(e,t){let n=e.map(a=>a.name).sort(),r=t.map(a=>a.name).sort();return n.join(this.SEPERATOR)+"--"+r.join(this.SEPERATOR)}compile(e,t){let n=Iv(e,t,this.weightMap,this._initNodes),{missingInputs:r,dynamicNode:a,syncInputs:s}=n;if(a!=null)throw new Error(`This execution contains the node '${a.name}', which has the dynamic op '${a.op}'. Please use model.executeAsync() instead. Alternatively, to avoid the dynamic ops, specify the inputs [${s}]`);if(r.length>0){let i=t.map(l=>l.name),o=Object.keys(e);throw new Error(`Cannot compute the outputs [${i}] from the provided inputs [${o}]. Missing the following inputs: [${r}]`)}return Hre(this.graph,this.weightMap,n)}execute(e,t){e=this.mapInputs(e);let n=Object.keys(e).sort();this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t);let r=n.map(c=>this.graph.nodes[zn(c)[0]]),a=t.map(c=>zn(c)[0]),s=a.map(c=>this.graph.nodes[c]);s.length===0&&(s=this._outputs);let i=this.getCompilationKey(r,s),o=this.compiledMap.get(i);o==null&&(o=this.compile(e,s),this.compiledMap.set(i,o));let l={},u={};return W(()=>{let c=new kv(this.weightMap,l,u,this.functionExecutorMap),h=Object.assign({},this.weightMap);Object.keys(e).forEach(f=>{let[m,A]=zn(f),y=[];y[A]=e[f],h[m]=y});let d=this.getFrozenTensorIds(h),p={};for(let f=0;f<o.length;f++){let m=o[f];if(!h[m.name]){let A=vv(m,h,c,this._resourceManager);if(k.isPromise(A))throw new Error(`The execution of the op '${m.op}' returned a promise. Please use model.executeAsync() instead.`);h[m.name]=A,this.checkTensorForDisposal(m.name,m,h,c,d,a,p)}}return this.parent==null&&c.dispose(d),t.map(f=>vn(f,h,c))})}getFrozenTensorIds(e){let t=[].concat.apply([],Object.keys(e).map(n=>e[n]).map(n=>n.map(r=>r.id)));return new Set(t)}checkTensorForDisposal(e,t,n,r,a,s,i){t.category==="control"||s.indexOf(e)!==-1||(n[e].forEach(o=>{o!=null&&(i[o.id]=(i[o.id]||0)+t.children.length)}),t.inputs.forEach(o=>{if(o.category!=="control"){let l=ere(o.name,n,r);l!=null&&l.forEach(u=>{if(u&&!a.has(u.id)){let c=i[u.id];c===1?(u.dispose(),delete i[u.id]):c!=null&&i[u.id]--}})}}))}async executeAsync(e,t){return this._executeAsync(e,t)}async _executeAsync(e,t,n=!1,r={},a={}){n||(e=this.mapInputs(e),this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t));let s=new kv(this.weightMap,r,a,this.functionExecutorMap),i=await this.executeWithControlFlow(e,s,t,n),o=t.map(h=>vn(h,i,s)),l=o.map(h=>h.id),u=Object.keys(e).map(h=>e[h].id),c=new Set([...l,...u,...this.weightIds]);return Object.keys(i).forEach(h=>{i[h].forEach(d=>{d&&!d.isDisposed&&!c.has(d.id)&&d.dispose()})}),this.parent==null&&s.dispose(c),o}async executeFunctionAsync(e,t,n){let r=e.reduce((a,s,i)=>(a[this.inputs[i].name]=s,a),{});return this._executeAsync(r,this.outputNodes,!0,t,n)}async executeWithControlFlow(e,t,n,r){let a=Object.keys(e),s=a.map(g=>this.graph.nodes[zn(g)[0]]),i=n.map(g=>zn(g)[0]),o=i.map(g=>this.graph.nodes[g]);o.length===0&&(o=this._outputs);let{usedNodes:l,missingInputs:u,dynamicNode:c,syncInputs:h}=Iv(e,o,this.weightMap,this._initNodes),d=[...s,...this.graph.weights,...this._initNodes||[]].map(g=>({node:g,contexts:t.currentContext})),p=Object.assign({},this.weightMap);Object.keys(e).forEach(g=>{let[_,b]=zn(g),x=[];x[b]=e[g],p[_]=x});let f={},m=this.getFrozenTensorIds(p),A={};for(;d.length>0;){let g=this.processStack(s,d,t,p,A,m,i,f,l);await Promise.all(g)}c==null&&!r&&console.warn("This model execution did not contain any nodes with control flow or dynamic output shapes. You can use model.execute() instead.");let y=o.filter(g=>!Nv(g)&&!vn(g.name,p,t)).map(g=>g.name);if(y.length>0){let g="";throw c!=null&&(g=`Alternatively, to avoid the dynamic ops, use model.execute() and specify the inputs [${h}]`),new Error(`Cannot compute the outputs [${y}] from the provided inputs [${a}]. Consider providing the following inputs: [${u}]. ${g}`)}return p}processStack(e,t,n,r,a,s,i,o,l){let u=[];for(;t.length>0;){let c=t.pop();n.currentContext=c.contexts;let h="";if(c.node.op==="Enter"&&N("isConstant",c.node,r,n)&&([h]=ma(c.node.name,n)),r[c.node.name]==null){let d=vv(c.node,r,n,this._resourceManager);h||([h]=ma(c.node.name,n));let p=n.currentContext;k.isPromise(d)?u.push(d.then(f=>(r[h]=f,n.currentContext=p,this.checkTensorForDisposal(h,c.node,r,n,s,i,o),this.processChildNodes(c.node,t,n,r,a,l),f))):(r[h]=d,this.checkTensorForDisposal(h,c.node,r,n,s,i,o),this.processChildNodes(c.node,t,n,r,a,l))}else this.processChildNodes(c.node,t,n,r,a,l)}return u}processChildNodes(e,t,n,r,a,s){e.children.forEach(i=>{let[o]=ma(i.name,n);a[o]||!s.has(i.name)||(i.op==="Merge"?i.inputNames.some(l=>!!vn(l,r,n))&&(a[o]=!0,t.push({contexts:n.currentContext,node:i})):i.inputNames.every(l=>!!vn(l,r,n))&&(a[o]=!0,t.push({contexts:n.currentContext,node:i})))})}dispose(){Object.keys(this.weightMap).forEach(e=>this.weightMap[e].forEach(t=>t.dispose()))}checkInputShapeAndType(e){Object.keys(e).forEach(t=>{let n=e[t],[r]=zn(t),a=this.graph.nodes[r];if(a.attrParams.shape&&a.attrParams.shape.value){let s=a.attrParams.shape.value,i=s.length===n.shape.length&&n.shape.every((o,l)=>s[l]===-1||s[l]===o);k.assert(i,()=>`The shape of dict['${a.name}'] provided in model.execute(dict) must be [${s}], but was [${n.shape}]`)}a.attrParams.dtype&&a.attrParams.dtype.value&&k.assert(n.dtype===a.attrParams.dtype.value,()=>`The dtype of dict['${a.name}'] provided in model.execute(dict) must be ${a.attrParams.dtype.value}, but was ${n.dtype}`)})}mapInputs(e){let t={};for(let n in e)if(this._signature!=null&&this._signature.inputs!=null&&this._signature.inputs[n]!=null){let r=this._signature.inputs[n];t[r.name]=e[n]}else t[n]=e[n];return t}checkInputs(e){let t=Object.keys(e).filter(n=>{let[r]=zn(n);return this.graph.nodes[r]==null});if(t.length>0)throw new Error(`The dict provided in model.execute(dict) has keys: [${t}] that are not part of graph`)}mapOutputs(e){return e.map(t=>this._signature!=null&&this._signature.outputs!=null&&this._signature.outputs[t]!=null?this._signature.outputs[t].name:t,{})}checkOutputs(e){e.forEach(t=>{let[n]=zn(t);if(!this.graph.nodes[n])throw new Error(`The output '${t}' is not found in the graph`)})}},Zre=class{constructor(e={},t={}){this.hashTableNameToHandle=e,this.hashTableMap=t}addHashTable(e,t){this.hashTableNameToHandle[e]=t.handle,this.hashTableMap[t.id]=t}getHashTableHandleByName(e){return this.hashTableNameToHandle[e]}getHashTableById(e){return this.hashTableMap[e]}dispose(){for(let e in this.hashTableMap)this.hashTableMap[e].clearAndClose(),delete this.hashTableMap[e];for(let e in this.hashTableNameToHandle)this.hashTableNameToHandle[e].dispose(),delete this.hashTableNameToHandle[e]}},Yre="?tfjs-format=file",Jre="model.json",Sv=class{constructor(e,t={}){this.modelUrl=e,this.loadOptions=t,this.version="n/a",t==null&&(this.loadOptions={}),this.resourceManager=new Zre}get modelVersion(){return this.version}get inputNodes(){return this.executor.inputNodes}get outputNodes(){return this.executor.outputNodes}get inputs(){return this.executor.inputs}get outputs(){return this.executor.outputs}get weights(){return this.executor.weightMap}get metadata(){return this.artifacts.userDefinedMetadata}get modelSignature(){return this.signature}findIOHandler(){let e=this.modelUrl;if(e.load!=null)this.handler=e;else if(this.loadOptions.requestInit!=null)this.handler=An.browserHTTPRequest(e,this.loadOptions);else{let t=An.getLoadHandlers(e,this.loadOptions);if(t.length===0)t.push(An.browserHTTPRequest(e,this.loadOptions));else if(t.length>1)throw new Error(`Found more than one (${t.length}) load handlers for URL '${[e]}'`);this.handler=t[0]}}async load(){if(this.findIOHandler(),this.handler.load==null)throw new Error("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let e=await this.handler.load();return this.loadSync(e)}loadSync(e){this.artifacts=e;let t=this.artifacts.modelTopology,n;this.artifacts.userDefinedMetadata!=null&&this.artifacts.userDefinedMetadata.signature!=null?n=this.artifacts.userDefinedMetadata.signature:n=this.artifacts.signature,this.signature=n,this.version=`${t.versions.producer}.${t.versions.minConsumer}`;let r=An.decodeWeights(this.artifacts.weightData,this.artifacts.weightSpecs);if(this.executor=new Zy(xv.Instance.transformGraph(t,this.signature)),this.executor.weightMap=this.convertTensorMapToTensorsMap(r),this.executor.resourceManager=this.resourceManager,e.modelInitializer!=null&&e.modelInitializer.node!=null){let a=xv.Instance.transformGraph(e.modelInitializer);this.initializer=new Zy(a),this.initializer.weightMap=this.executor.weightMap,this.initializer.resourceManager=this.resourceManager,this.initializer.executeAsync({},[])}return!0}async save(e,t){if(typeof e=="string"){let n=An.getSaveHandlers(e);if(n.length===0)throw new Error(`Cannot find any save handlers for URL '${e}'`);if(n.length>1)throw new Error(`Found more than one (${n.length}) save handlers for URL '${e}'`);e=n[0]}if(e.save==null)throw new Error("GraphModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");return e.save(this.artifacts)}predict(e,t){return this.execute(e,this.outputNodes)}normalizeInputs(e){if(!(e instanceof U)&&!Array.isArray(e))return e;if(e=Array.isArray(e)?e:[e],e.length!==this.inputNodes.length)throw new Error(`Input tensor count mismatch,the graph model has ${this.inputNodes.length} placeholders, while there are ${e.length} input tensors.`);return this.inputNodes.reduce((t,n,r)=>(t[n]=e[r],t),{})}normalizeOutputs(e){return e=e||this.outputNodes,Array.isArray(e)?e:[e]}execute(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=this.executor.execute(e,t);return n.length>1?n:n[0]}async executeAsync(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=await this.executor.executeAsync(e,t);return n.length>1?n:n[0]}convertTensorMapToTensorsMap(e){return Object.keys(e).reduce((t,n)=>(t[n]=[e[n]],t),{})}dispose(){this.executor.dispose(),this.initializer&&this.initializer.dispose(),this.resourceManager.dispose()}};async function Xt(e,t={}){if(e==null)throw new Error("modelUrl in loadGraphModel() cannot be null. Please provide a url or an IOHandler that loads the model");t==null&&(t={}),t.fromTFHub&&e.load==null&&(e.endsWith("/")||(e=e+"/"),e=`${e}${Jre}${Yre}`);let n=new Sv(e,t);return await n.load(),n}var Qre="2.8.3",Tv={};$e(Tv,{CSVDataset:()=>Cv,Dataset:()=>jl,FileDataSource:()=>Rv,TextLineDataset:()=>Ev,URLDataSource:()=>Fv,array:()=>eae,csv:()=>nae,func:()=>rae,generator:()=>aae,microphone:()=>iae,version_data:()=>oae,webcam:()=>sae,zip:()=>tae});var lae=Ki(Q2()),uae=Ki(Q2());function cae(e,t){return p0(e,t)}function p0(e,t,n=new Map,r=new Set){if(e==null)return null;if(r.has(e))throw new Error("Circular references are not supported.");if(n.has(e))return n.get(e);let a=t(e);if(a.recurse&&a.value!==null)throw new Error("A deep map function may not return both a value and recurse=true.");if(a.recurse)if(Gl(e)){let s=Array.isArray(e)?[]:{};r.add(e);for(let i in e){let o=e[i],l=p0(o,t,n,r);s[i]=l}return r.delete(e),s}else throw new Error(`Can't recurse into non-iterable type: ${e}`);else return n.set(e,a.value),a.value}function hae(e,t=Ov){return Mv(e,t)}function Mv(e,t,n=new Set){let r=e[0];if(n.has(r))throw new Error("Circular references are not supported.");let a=t(e);if(a.recurse&&a.value!==null)throw new Error("A deep zip function may not return both a value and recurse=true.");if(a.recurse)if(Gl(r)){let s=Array.isArray(r)?[]:{};n.add(r);for(let i in r){let o=e.map(u=>u[i]),l=Mv(o,t,n);s[i]=l}return n.delete(r),s}else throw new Error(`Can't recurse into non-iterable type: ${r}`);else return a.value}function Ov(e){return e===null?null:Gl(e[0])?{value:null,recurse:!0}:{value:e,recurse:!1}}async function Dv(e,t){let n=new Map;p0(e,t,n);for(let r of Array.from(n.keys())){let a=n.get(r);if(k.isPromise(a)){let s=await a;n.set(r,s)}}return p0(e,t,n)}function Gl(e){return e!=null&&!ArrayBuffer.isView(e)&&(Array.isArray(e)||typeof e=="object"&&!(e instanceof U))}function pae(e){return e==null||dae(e)||Array.isArray(e)||typeof e=="object"&&e instanceof U||k.isTypedArray(e)}function dae(e){return e===null||typeof e!="object"&&typeof e!="function"}function mae(e){return cae(e,fae)}function fae(e){return e instanceof U?{value:e.clone(),recurse:!1}:Gl(e)?{value:null,recurse:!0}:{value:e,recurse:!1}}var $v=class{constructor(e){if(this.capacity=e,this.begin=0,this.end=0,e==null)throw new RangeError("Can't create a ring buffer of unknown capacity.");if(e<1)throw new RangeError("Can't create ring buffer of capacity < 1.");this.data=new Array(e),this.doubledCapacity=2*e}wrap(e){for(;e<0;)e+=this.doubledCapacity;return e%this.doubledCapacity}get(e){if(e<0)throw new RangeError("Can't get item at a negative index.");return this.data[e%this.capacity]}set(e,t){if(e<0)throw new RangeError("Can't set item at a negative index.");this.data[e%this.capacity]=t}length(){let e=this.end-this.begin;return e<0&&(e=this.doubledCapacity+e),e}isFull(){return this.length()===this.capacity}isEmpty(){return this.length()===0}push(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.set(this.end,e),this.end=this.wrap(this.end+1)}pushAll(e){for(let t of e)this.push(t)}pop(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");this.end=this.wrap(this.end-1);let e=this.get(this.end);return this.set(this.end,void 0),e}unshift(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.begin=this.wrap(this.begin-1),this.set(this.begin,e)}shift(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let e=this.get(this.begin);return this.set(this.begin,void 0),this.begin=this.wrap(this.begin+1),e}shuffleExcise(e){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let t=this.wrap(this.begin+e),n=this.get(t);return this.set(t,this.pop()),n}},Yy=class extends $v{constructor(){super(Yy.INITIAL_CAPACITY)}isFull(){return!1}push(e){super.isFull()&&this.expand(),super.push(e)}unshift(e){super.isFull()&&this.expand(),super.unshift(e)}expand(){let e=this.capacity*2,t=new Array(e),n=this.length();for(let r=0;r<n;r++)t[r]=this.get(this.wrap(this.begin+r));this.data=t,this.capacity=e,this.doubledCapacity=2*this.capacity,this.begin=0,this.end=n}};Yy.INITIAL_CAPACITY=32;function zv(e){return new Aae(e)}function Jy(e){return new yae(e)}function gae(e,t){return new Pv(e,t)}function wae(e,t=qa.FAIL){return new xae(e,t)}var Kt=class{async toArray(){let e=[],t=await this.next();for(;!t.done;)e.push(t.value),t=await this.next();return e}async toArrayForTest(){let e=this.prefetch(100),t=[],n=await e.next();for(;!n.done;)t.push(n.value),n=await e.next();return t}async resolveFully(){let e=await this.next();for(;!e.done;)e=await this.next()}async resolveWhile(e){let t=await this.next(),n=e(t.value);for(;!t.done&&n;)t=await this.next(),n=e(t.value)}handleErrors(e){return new Sae(this,e)}filter(e){return new Nae(this,e)}map(e){return new Iae(this,e)}mapAsync(e){return new Lv(this,e)}serialMapAsync(e){return new Lv(this,e).serial()}flatmap(e){return new Tae(this,e)}async forEachAsync(e){return this.map(e).resolveFully()}async serialForEach(e){return this.serialMapAsync(e).resolveWhile(t=>t===!0)}rowMajorBatch(e,t=!0){return new kae(this,e,t)}columnMajorBatch(e,t=!0,n=Ov){return this.rowMajorBatch(e,t).map(r=>hae(r,n))}concatenate(e,t){return new Pv(zv([this,e]),t)}take(e){return e<0||e==null?this:new vae(this,e)}skip(e){return e<0||e==null?this:new bae(this,e)}prefetch(e){return new Wv(this,e)}shuffle(e,t){return new Eae(this,e,t)}serial(){return new _ae(this)}},Aae=class extends Kt{constructor(e){super();this.items=e,this.trav=0}summary(){return`Array of ${this.items.length} items`}async next(){if(this.trav>=this.items.length)return{value:null,done:!0};let e=this.items[this.trav];return this.trav++,{value:mae(e),done:!1}}},yae=class extends Kt{constructor(e){super();this.nextFn=e}summary(){return"Function call"}async next(){try{return this.nextFn()}catch(e){throw e.message=`Error thrown while iterating through a dataset: ${e.message}`,e}}},_ae=class extends Kt{constructor(e){super();this.upstream=e,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Serial`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){return this.upstream.next()}},bae=class extends Kt{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Skip`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.count++<this.maxCount;){let e=await this.upstream.next();if(e.done)return e;Te(e.value)}return this.upstream.next()}},vae=class extends Kt{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0}summary(){return`${this.upstream.summary()} -> Take`}async next(){return this.count++>=this.maxCount?{value:null,done:!0}:this.upstream.next()}},kae=class extends Kt{constructor(e,t,n=!0){super();this.upstream=e,this.batchSize=t,this.enableSmallLastBatch=n,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> RowMajorBatch`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){let e=[];for(;e.length<this.batchSize;){let t=await this.upstream.next();if(t.done)return this.enableSmallLastBatch&&e.length>0?{value:e,done:!1}:{value:null,done:!0};e.push(t.value)}return{value:e,done:!1}}},Nae=class extends Kt{constructor(e,t){super();this.upstream=e,this.predicate=t,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Filter`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;){let e=await this.upstream.next();if(e.done||this.predicate(e.value))return e;Te(e.value)}}},Iae=class extends Kt{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Map`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=fr.getTensorsInContainer(e.value),n=this.transform(e.value),r=fr.getTensorsInContainer(n);for(let a of t)fr.isTensorInList(a,r)||a.dispose();return{value:n,done:!1}}},Sae=class extends Kt{constructor(e,t){super();this.upstream=e,this.handler=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> handleErrors`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;)try{return await this.upstream.next()}catch(e){if(!this.handler(e))return{value:null,done:!0}}}},Lv=class extends Kt{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> AsyncMap`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=fr.getTensorsInContainer(e.value),n=await this.transform(e.value),r=fr.getTensorsInContainer(n);for(let a of t)fr.isTensorInList(a,r)||a.dispose();return{value:n,done:!1}}},Qy=class extends Kt{constructor(){super();this.outputQueue=new Yy,this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.outputQueue.length()===0;)if(!await this.pump())return{value:null,done:!0};return{value:this.outputQueue.shift(),done:!1}}},Tae=class extends Qy{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Flatmap`}async pump(){let e=await this.upstream.next();if(e.done)return!1;let t=fr.getTensorsInContainer(e.value),n=this.transform(e.value),r=fr.getTensorsInContainer(n);this.outputQueue.pushAll(n);for(let a of t)fr.isTensorInList(a,r)||a.dispose();return!0}},Pv=class extends Kt{constructor(e,t){super();this.baseErrorHandler=t,this.lastRead=null,this.iterator=null,this.moreIterators=e}summary(){return"TODO: fill in upstream of chained summaries -> Chained"}async next(){return this.lastRead=this.readFromChain(this.lastRead),this.lastRead}async readFromChain(e){if(await e,this.iterator==null){let n=await this.moreIterators.next();if(n.done)return{value:null,done:!0};this.iterator=n.value,this.baseErrorHandler!=null&&(this.iterator=this.iterator.handleErrors(this.baseErrorHandler))}let t=await this.iterator.next();return t.done?(this.iterator=null,this.readFromChain(e)):t}},qa;(function(e){e[e.FAIL=0]="FAIL",e[e.SHORTEST=1]="SHORTEST",e[e.LONGEST=2]="LONGEST"})(qa||(qa={}));var xae=class extends Kt{constructor(e,t=qa.FAIL){super();this.iterators=e,this.mismatchMode=t,this.count=0,this.currentPromise=null}summary(){return"{TODO: fill in upstream of zip summaries} -> Zip"}async nextState(e){await e;let t=0,n=0;function r(s){return s instanceof Kt?{value:s.next().then(i=>(t++,i.done&&n++,i.value)),recurse:!1}:{value:null,recurse:!0}}let a=await Dv(this.iterators,r);if(t===n)return{value:null,done:!0};if(n>0)switch(this.mismatchMode){case qa.FAIL:throw new Error(`Zipped streams should have the same length. Mismatched at element ${this.count}.`);case qa.SHORTEST:return{value:null,done:!0};case qa.LONGEST:default:}return this.count++,{value:a,done:!1}}async next(){return this.currentPromise=this.nextState(this.currentPromise),this.currentPromise}},Wv=class extends Kt{constructor(e,t){super();this.upstream=e,this.bufferSize=t,this.buffer=new $v(t)}summary(){return`${this.upstream.summary()} -> Prefetch`}refill(){for(;!this.buffer.isFull();){let e=this.upstream.next();this.buffer.push(e)}}next(){return this.refill(),this.buffer.shift()}},Eae=class extends Wv{constructor(e,t,n){super(e,t);this.upstream=e,this.windowSize=t,this.upstreamExhausted=!1,this.random=uae.alea(n||k.now().toString()),this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}randomInt(e){return Math.floor(this.random()*e)}chooseIndex(){return this.randomInt(this.buffer.length())}async serialNext(){for(this.upstreamExhausted||this.refill();!this.buffer.isEmpty();){let e=this.chooseIndex(),t=await this.buffer.shuffleExcise(e);if(t.done)this.upstreamExhausted=!0;else return this.refill(),t}return{value:null,done:!0}}},jl=class{constructor(){this.size=null}batch(e,t=!0){let n=this;k.assert(e>0,()=>`batchSize needs to be positive, but it is
|
|
${e}`);let r;return this.size===Infinity||this.size==null?r=this.size:t?r=Math.ceil(this.size/e):r=Math.floor(this.size/e),Pn(async()=>(await n.iterator()).columnMajorBatch(e,t,Cae),r)}concatenate(e){let t=this,n;return this.size===Infinity||e.size===Infinity?n=Infinity:this.size!=null&&e.size!=null?n=this.size+e.size:n=null,Pn(async()=>(await t.iterator()).concatenate(await e.iterator()),n)}filter(e){let t=this,n;return this.size===Infinity?n=Infinity:n=null,Pn(async()=>(await t.iterator()).filter(r=>W(()=>e(r))),n)}async forEachAsync(e){return(await this.iterator()).forEachAsync(e)}map(e){let t=this;return Pn(async()=>(await t.iterator()).map(n=>W(()=>e(n))),this.size)}mapAsync(e){let t=this;return Pn(async()=>(await t.iterator()).mapAsync(e),this.size)}prefetch(e){if(e==null)throw new RangeError("`Dataset.prefetch()` requires bufferSize to be specified.");let t=this;return Pn(async()=>(await t.iterator()).prefetch(e),this.size)}repeat(e){let t=this,n;return this.size!=null&&e>0?n=this.size*e:e===0?n=0:this.size!=null&&(e===void 0||e<0)?n=Infinity:n=null,Pn(async()=>{let r=Jy(async()=>({value:await t.iterator(),done:!1}));return gae(r.take(e))},n)}skip(e){let t=this,n;return this.size!=null&&e>=0&&this.size>=e?n=this.size-e:this.size!=null&&(this.size<e||e===void 0||e<0)?n=0:n=null,Pn(async()=>(await t.iterator()).skip(e),n)}shuffle(e,t,n=!0){if(e==null||e<0)throw this.size==null?new RangeError("`Dataset.shuffle()` requires bufferSize to be specified."):new RangeError(`\`Dataset.shuffle()\` requires bufferSize to be specified. If your data fits in main memory (for regular JS objects), and/or GPU memory (for \`tf.Tensor\`s), consider setting bufferSize to the dataset size (${this.size} elements)`);let r=this,a=lae.alea(t||k.now().toString());return Pn(async()=>{let s=a.int32();return n&&(s+=a.int32()),(await r.iterator()).shuffle(e,s.toString())},this.size)}take(e){let t=this,n;return this.size!=null&&this.size>e?n=e:this.size!=null&&this.size<=e?n=this.size:n=null,Pn(async()=>(await t.iterator()).take(e),n)}async toArray(){if(this.size===Infinity)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArray()}async toArrayForTest(){if(this.size===Infinity)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArrayForTest()}};jl.MAX_BUFFER_SIZE=1e4;function Pn(e,t=null){return new class extends jl{constructor(){super(...arguments);this.size=t}async iterator(){return e()}}}function eae(e){return Pn(async()=>zv(e),e.length)}function tae(e){if(!Gl(e))throw new Error("The argument to zip() must be an object or array.");let t;if(Array.isArray(e))for(let n=0;n<e.length;n++)t=t==null?e[n].size:Math.min(t,e[n].size);else if(e instanceof Object)for(let n in e)t=t==null?e[n].size:Math.min(t,e[n].size);return Pn(async()=>{let n=await Dv(e,r=>{if(r instanceof jl)return{value:r.iterator(),recurse:!1};if(Gl(r))return{value:null,recurse:!0};throw new Error("Leaves of the structure passed to zip() must be Datasets, not primitives.")});return wae(n,qa.SHORTEST)},t)}function Cae(e){if(e===null)return null;let t=e[0];return pae(t)?{value:Rae(e),recurse:!1}:{value:null,recurse:!0}}function Rae(e){if(e.length===0)throw new Error("Can't make a batch of zero elements.");return e[0]instanceof U?Rn(e):mr(e)}var Ev=class extends jl{constructor(e){super();this.input=e}async iterator(){return(await this.input.iterator()).decodeUTF8().split(`
|
|
`).map(e=>(e.endsWith("\r")&&(e=e.slice(0,-1)),e))}},f0='"',qc=Symbol("out"),Bv=Symbol("field"),m0=Symbol("quote"),e2=Symbol("quoteafterquote"),Vv=Symbol("quoteinquote"),Cv=class extends jl{constructor(e,t){super();this.input=e,this.hasHeader=!0,this.fullColumnNames=null,this.columnNamesValidated=!1,this.columnConfigs=null,this.configuredColumnsOnly=!1,this.delimiter=",",this.delimWhitespace=!1,this.base=new Ev(e),t||(t={}),this.hasHeader=t.hasHeader!==!1,this.fullColumnNames=t.columnNames,this.columnConfigs=t.columnConfigs,this.configuredColumnsOnly=t.configuredColumnsOnly,t.delimWhitespace?(k.assert(t.delimiter==null,()=>"Delimiter should not be provided when delimWhitespace is true."),this.delimWhitespace=!0,this.delimiter=" "):this.delimiter=t.delimiter?t.delimiter:","}async columnNames(){return this.columnNamesValidated||await this.setColumnNames(),this.configuredColumnsOnly?Object.keys(this.columnConfigs):this.fullColumnNames}async setColumnNames(){let e=await this.maybeReadHeaderLine();if(!this.fullColumnNames&&!e)throw new Error("Column names must be provided if there is no header line.");this.fullColumnNames&&e&&k.assert(e.length===this.fullColumnNames.length,()=>"The length of provided columnNames ("+this.fullColumnNames.length.toString()+") does not match the length of the header line read from file ("+e.length.toString()+")."),this.fullColumnNames||(this.fullColumnNames=e);let t=this.fullColumnNames.reduce((r,a)=>(r[a]=r[a]+1||1,r),{}),n=Object.keys(t).filter(r=>t[r]>1);if(k.assert(n.length===0,()=>"Duplicate column names found: "+n.toString()),this.columnConfigs){for(let r of Object.keys(this.columnConfigs))if(this.fullColumnNames.indexOf(r)===-1)throw new Error('The key "'+r+'" provided in columnConfigs does not match any of the column names ('+this.fullColumnNames.toString()+").")}this.columnNamesValidated=!0}async maybeReadHeaderLine(){if(this.hasHeader){let e=await(await this.base.iterator()).next();if(e.done)throw new Error("No data was found for CSV parsing.");let t=e.value;return this.parseRow(t,!1)}else return null}async iterator(){this.columnNamesValidated||await this.setColumnNames();let e=await this.base.iterator();return this.hasHeader&&(e=e.skip(1)),e.map(t=>this.makeDataElement(t))}makeDataElement(e){let t=this.parseRow(e),n={},r={};for(let a=0;a<this.fullColumnNames.length;a++){let s=this.fullColumnNames[a],i=this.columnConfigs?this.columnConfigs[s]:null;if(!(this.configuredColumnsOnly&&!i)){let o=t[a],l=null;if(o==="")if(i&&i.default!==void 0)l=i.default;else{if(i&&(i.required||i.isLabel))throw new Error(`Required column ${s} is empty in this line: ${e}`);l=void 0}else{let u=Number(o);if(isNaN(u))i&&i.dtype==="bool"?l=this.getBoolean(o):l=o;else if(!i||!i.dtype)l=u;else switch(i.dtype){case"float32":l=u;break;case"int32":l=Math.floor(u);break;case"bool":l=this.getBoolean(o);break;default:l=u}}i&&i.isLabel?r[s]=l:n[s]=l}}return Object.keys(r).length===0?n:{xs:n,ys:r}}getBoolean(e){return e==="1"||e.toLowerCase()==="true"?1:0}parseRow(e,t=!0){let n=[],r=0,a=e.length,s=qc;for(let i=0;i<a;i++)switch(s){case qc:switch(e.charAt(i)){case f0:r=i+1,s=m0;break;case this.delimiter:if(r=i+1,this.delimiter===" "&&this.delimWhitespace)break;n.push(""),s=qc;break;default:s=Bv,r=i;break}break;case Bv:switch(e.charAt(i)){case this.delimiter:n.push(e.substring(r,i)),s=qc,r=i+1;break;default:}break;case m0:switch(e.charAt(i)){case f0:s=e2;break;default:}break;case e2:switch(e.charAt(i)){case this.delimiter:n.push(e.substring(r,i-1)),s=qc,r=i+1;break;case f0:s=m0;break;default:s=Vv;break}break;case Vv:switch(e.charAt(i)){case f0:s=m0;break;default:}break;default:}if(s===e2?n.push(e.substring(r,a-1)):n.push(e.substring(r)),t&&n.length!==this.fullColumnNames.length)throw new Error(`Invalid row in csv file. Should have ${this.fullColumnNames.length} elements in a row, but got ${n}`);return n}},Uv=class extends Kt{constructor(e){super();this.microphoneConfig=e,this.isClosed=!1,this.fftSize=e.fftSize||1024;let t=Math.log2(this.fftSize);if(this.fftSize<0||t<4||t>14||!Number.isInteger(t))throw new Error(`Invalid fftSize: it must be a power of 2 between 2 to 4 and 2 to 14, but got ${this.fftSize}`);if(this.numFrames=e.numFramesPerSpectrogram||43,this.sampleRateHz=e.sampleRateHz,this.columnTruncateLength=e.columnTruncateLength||this.fftSize,this.audioTrackConstraints=e.audioTrackConstraints,this.smoothingTimeConstant=e.smoothingTimeConstant||0,this.includeSpectrogram=e.includeSpectrogram!==!1,this.includeWaveform=e.includeWaveform===!0,!this.includeSpectrogram&&!this.includeWaveform)throw new Error("Both includeSpectrogram and includeWaveform are false. At least one type of data should be returned.")}summary(){return"microphone"}static async create(e={}){if(Q().get("IS_NODE"))throw new Error("microphone API is only supported in browser environment.");let t=new Uv(e);return await t.start(),t}async start(){try{this.stream=await navigator.mediaDevices.getUserMedia({audio:this.audioTrackConstraints==null?!0:this.audioTrackConstraints,video:!1})}catch(n){throw new Error(`Error thrown while initializing video stream: ${n.message}`)}if(!this.stream)throw new Error("Could not obtain audio from microphone.");let e=window.AudioContext||window.webkitAudioContext;if(this.audioContext=new e,!this.sampleRateHz)this.sampleRateHz=this.audioContext.sampleRate;else if(this.audioContext.sampleRate!==this.sampleRateHz)throw new Error(`Mismatch in sampling rate: Expected: ${this.sampleRateHz}; Actual: ${this.audioContext.sampleRate}`);let t=this.audioContext.createMediaStreamSource(this.stream);this.analyser=this.audioContext.createAnalyser(),this.analyser.fftSize=this.fftSize*2,this.analyser.smoothingTimeConstant=this.smoothingTimeConstant,t.connect(this.analyser),this.freqData=new Float32Array(this.fftSize),this.timeData=new Float32Array(this.fftSize)}async next(){if(this.isClosed)return{value:null,done:!0};let e,t,n=await this.getAudioData();if(this.includeSpectrogram){let r=this.flattenQueue(n.freqDataQueue);e=this.getTensorFromAudioDataArray(r,[this.numFrames,this.columnTruncateLength,1])}if(this.includeWaveform){let r=this.flattenQueue(n.timeDataQueue);t=this.getTensorFromAudioDataArray(r,[this.numFrames*this.fftSize,1])}return{value:{spectrogram:e,waveform:t},done:!1}}async capture(){return(await this.next()).value}async getAudioData(){let e=[],t=[],n=0;return new Promise(r=>{let a=setInterval(()=>{this.includeSpectrogram&&(this.analyser.getFloatFrequencyData(this.freqData),this.freqData[0]===-Infinity&&r({freqDataQueue:e,timeDataQueue:t}),e.push(this.freqData.slice(0,this.columnTruncateLength))),this.includeWaveform&&(this.analyser.getFloatTimeDomainData(this.timeData),t.push(this.timeData.slice())),++n===this.numFrames&&(clearInterval(a),r({freqDataQueue:e,timeDataQueue:t}))},this.fftSize/this.sampleRateHz*1e3)})}stop(){this.isClosed||(this.isClosed=!0,this.analyser.disconnect(),this.audioContext.close(),this.stream!=null&&this.stream.getTracks().length>0&&this.stream.getTracks()[0].stop())}toArray(){throw new Error("Can not convert infinite audio stream to array.")}getSampleRate(){return this.sampleRateHz}flattenQueue(e){let t=e[0].length,n=new Float32Array(e.length*t);return e.forEach((r,a)=>n.set(r,a*t)),n}getTensorFromAudioDataArray(e,t){let n=new Float32Array(k.sizeFromShape(t));return n.set(e,n.length-e.length),mr(n,t)}},jv=class extends Kt{constructor(e,t){super();if(this.webcamVideoElement=e,this.webcamConfig=t,this.isClosed=!0,this.resize=!1,this.needToResize())if(this.resize=!0,this.cropSize=[this.webcamConfig.resizeHeight,this.webcamConfig.resizeWidth],this.cropBoxInd=jt([0],"int32"),this.webcamConfig.centerCrop){let n=this.webcamConfig.resizeWidth*1/this.webcamVideoElement.width,r=this.webcamConfig.resizeHeight*1/this.webcamVideoElement.height,a=(1-n)/2,s=(1-r)/2,i=a+n,o=r+s;this.cropBox=xn([s,a,o,i],[1,4])}else this.cropBox=xn([0,0,1,1],[1,4])}summary(){return"webcam"}static async create(e,t={}){if(Q().get("IS_NODE"))throw new Error("tf.data.webcam is only supported in browser environment.");if(!e){if(e=document.createElement("video"),!t.resizeWidth||!t.resizeHeight)throw new Error("Please provide webcam video element, or resizeWidth and resizeHeight to create a hidden video element.");e.width=t.resizeWidth,e.height=t.resizeHeight}let n=new jv(e,t);return await n.start(),n}async start(){this.webcamConfig.facingMode&&k.assert(this.webcamConfig.facingMode==="user"||this.webcamConfig.facingMode==="environment",()=>`Invalid webcam facing mode: ${this.webcamConfig.facingMode}. Please provide 'user' or 'environment'`);try{this.stream=await navigator.mediaDevices.getUserMedia({video:{deviceId:this.webcamConfig.deviceId,facingMode:this.webcamConfig.facingMode?this.webcamConfig.facingMode:"user",width:this.webcamVideoElement.width,height:this.webcamVideoElement.height}})}catch(e){throw e.message=`Error thrown while initializing video stream: ${e.message}`,e}if(!this.stream)throw new Error("Could not obtain video from webcam.");try{this.webcamVideoElement.srcObject=this.stream}catch(e){console.log(e),this.webcamVideoElement.src=window.URL.createObjectURL(this.stream)}return this.webcamVideoElement.play(),this.isClosed=!1,new Promise(e=>{this.webcamVideoElement.onloadedmetadata=()=>{e()}})}async next(){if(this.isClosed)return{value:null,done:!0};let e;try{e=ll.fromPixels(this.webcamVideoElement)}catch(t){throw new Error(`Error thrown converting video to pixels: ${JSON.stringify(t)}`)}if(this.resize)try{return{value:this.cropAndResizeFrame(e),done:!1}}catch(t){throw new Error(`Error thrown cropping the video: ${t.message}`)}finally{e.dispose()}else return{value:e,done:!1}}needToResize(){return!!(this.webcamConfig.resizeWidth&&this.webcamConfig.resizeHeight&&(this.webcamVideoElement.width!==this.webcamConfig.resizeWidth||this.webcamVideoElement.height!==this.webcamConfig.resizeHeight))}cropAndResizeFrame(e){return W(()=>{let t=e.toFloat().expandDims(0),n;n=at.cropAndResize(t,this.cropBox,this.cropBoxInd,this.cropSize,"bilinear");let r=n.shape;return n.reshape(r.slice(1))})}async capture(){return(await this.next()).value}stop(){this.stream.getTracks().forEach(e=>e.stop());try{this.webcamVideoElement.srcObject=null}catch(e){console.log(e),this.webcamVideoElement.src=null}this.isClosed=!0}toArray(){throw new Error("Can not convert infinite video stream to array.")}},Gv=class{},Hv=class extends Kt{split(e){return new Fae(this,e)}},Fae=class extends Hv{constructor(e,t){super();this.upstream=e,this.impl=new Mae(e,t)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},Mae=class extends Qy{constructor(e,t){super();this.upstream=e,this.separator=t,this.carryover=""}summary(){return`${this.upstream.summary()} -> Split('${this.separator}')`}async pump(){let e=await this.upstream.next();if(e.done)return this.carryover===""?!1:(this.outputQueue.push(this.carryover),this.carryover="",!0);let t=e.value.split(this.separator);t[0]=this.carryover+t[0];for(let n of t.slice(0,-1))this.outputQueue.push(n);return this.carryover=t[t.length-1],!0}},Dae=class extends Kt{decodeUTF8(){return new Oae(this)}},Oae=class extends Hv{constructor(e){super();this.upstream=e,this.impl=new $ae(e)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},$ae=class extends Qy{constructor(e){super();if(this.upstream=e,Q().get("IS_BROWSER"))this.decoder=new TextDecoder("utf-8");else{let{StringDecoder:t}=Rk();this.decoder=new t("utf8")}}summary(){return`${this.upstream.summary()} -> Utf8`}async pump(){let e=await this.upstream.next(),t;if(e.done)return!1;t=e.value;let n;return Q().get("IS_BROWSER")?n=this.decoder.decode(t,{stream:!0}):n=this.decoder.write(Buffer.from(t.buffer)),this.outputQueue.push(n),!0}},qv=class extends Dae{constructor(e,t={}){super();this.file=e,this.options=t,k.assert(e instanceof Uint8Array||(Q().get("IS_BROWSER")?e instanceof File||e instanceof Blob:!1),()=>"FileChunkIterator only supports File, Blob and Uint8Array right now."),this.offset=t.offset||0,this.chunkSize=t.chunkSize||1024*1024}summary(){return`FileChunks ${this.file}`}async next(){return this.offset>=(this.file instanceof Uint8Array?this.file.byteLength:this.file.size)?{value:null,done:!0}:{value:await new Promise((e,t)=>{let n=this.offset+this.chunkSize;if(this.file instanceof Uint8Array)e(new Uint8Array(this.file.slice(this.offset,n)));else{let r=new FileReader;r.onload=s=>{let i=r.result;if(i instanceof ArrayBuffer&&(i=new Uint8Array(i)),!(i instanceof Uint8Array))return t(new TypeError("FileReader returned unknown type."));e(i)},r.onabort=s=>t(new Error("Aborted")),r.onerror=s=>t(new Error(s.type));let a=this.file.slice(this.offset,n);r.readAsArrayBuffer(a)}this.offset=n}),done:!1}}};async function Pae(e,t={}){let n,r;typeof e=="string"?n=e:(n=e.url,r=zae(e));let a=await k.fetch(n,r);if(a.ok){let s=new Uint8Array(await a.arrayBuffer());return new qv(s,t)}else throw new Error(a.statusText)}var zae=e=>({method:e.method,headers:e.headers,body:e.body,mode:e.mode,credentials:e.credentials,cache:e.cache,redirect:e.redirect,referrer:e.referrer,integrity:e.integrity});function Xv(e){return typeof e=="string"&&e.substr(0,7)==="file://"}var Rv=class extends Gv{constructor(e,t={}){super();this.input=e,this.options=t}async iterator(){if(Xv(this.input)&&Q().get("IS_NODE")){let e=require("fs");this.input=e.readFileSync(this.input.substr(7))}return new qv(this.input,this.options)}},Fv=class extends Gv{constructor(e,t={}){super();this.url=e,this.fileOptions=t}async iterator(){return Xv(this.url)?new Rv(this.url,this.fileOptions).iterator():Pae(this.url,this.fileOptions)}};function nae(e,t={}){return new Cv(new Fv(e),t)}function rae(e){let t=Jy(e);return Pn(async()=>t)}function aae(e){return Pn(async()=>{let t=await e();return Jy(()=>t.next())})}async function sae(e,t){return jv.create(e,t)}async function iae(e){return Uv.create(e)}var oae="2.8.3",Lae={tfjs:Fk,"tfjs-core":Mk,"tfjs-data":Ok,"tfjs-layers":Dk,"tfjs-converter":$k,"tfjs-backend-cpu":aw,"tfjs-backend-webgl":N_,"tfjs-backend-wasm":m3};var pn={name:"humangl",priority:99,canvas:null,gl:null,width:1024,height:1024,webGLattr:{alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!1,desynchronized:!0}};function Kv(){if(!_f(pn.name)){Me("backend registration:",pn.name);try{pn.canvas=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(pn.width,pn.height):document.createElement("canvas")}catch(e){Me("error: cannot create canvas:",e);return}try{pn.gl=pn.canvas.getContext("webgl2",pn.webGLattr)}catch(e){Me("error: cannot get WebGL2 context:",e);return}try{dp(2,pn.gl)}catch(e){Me("error: cannot set WebGL2 context:",e);return}try{let e=new Ap(pn.gl);cl(pn.name,()=>new gp(e),pn.priority)}catch(e){Me("error: cannot register WebGL backend:",e);return}try{nl("webgl").forEach(t=>{let n={...t,backendName:pn.name};ni(n)})}catch(e){Me("error: cannot update WebGL backend registration:",e);return}try{on.set("WEBGL_VERSION",2),on.set("WEBGL_MAX_TEXTURE_SIZE",pn.gl.getParameter(pn.gl.MAX_TEXTURE_SIZE)),on.set("WEBGL_FORCE_F16_TEXTURES",!0),on.set("WEBGL_PACK_DEPTHWISECONV",!0)}catch(e){Me("error: cannot set WebGL backend flags:",e);return}Me("backend registered:",pn.name)}}var $2=Le(d6()),Jc=Le(m6()),Qc=Le(y6()),eh=Le(w6()),Ja=Le(b6()),z2=Le(Q6());function T0(e){return[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])]}function Zc(e){return[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2]}function e4(e,t,n){let r=t.shape[1],a=t.shape[2],s=[[e.startPoint[1]/r,e.startPoint[0]/a,e.endPoint[1]/r,e.endPoint[0]/a]];return at.cropAndResize(t,s,[0],n)}function t4(e,t){let n=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],r=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]],a=e.palmLandmarks.map(s=>[s[0]*t[0],s[1]*t[1]]);return{startPoint:n,endPoint:r,palmLandmarks:a,confidence:e.confidence}}function E0(e,t=1.5){let n=Zc(e),r=T0(e),a=[t*r[0]/2,t*r[1]/2],s=[n[0]-a[0],n[1]-a[1]],i=[n[0]+a[0],n[1]+a[1]];return{startPoint:s,endPoint:i,palmLandmarks:e.palmLandmarks}}function C0(e){let t=Zc(e),n=T0(e),a=Math.max(...n)/2,s=[t[0]-a,t[1]-a],i=[t[0]+a,t[1]+a];return{startPoint:s,endPoint:i,palmLandmarks:e.palmLandmarks}}function lie(e){return e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI))}function s4(e,t){let n=Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]);return lie(n)}var i4=(e,t)=>[[1,0,e],[0,1,t],[0,0,1]];function Ya(e,t){let n=0;for(let r=0;r<e.length;r++)n+=e[r]*t[r];return n}function uie(e,t){let n=[];for(let r=0;r<e.length;r++)n.push(e[r][t]);return n}function o4(e,t){let n=[],r=e.length;for(let a=0;a<r;a++){n.push([]);for(let s=0;s<r;s++)n[a].push(Ya(e[a],uie(t,s)))}return n}function E2(e,t){let n=Math.cos(e),r=Math.sin(e),a=[[n,-r,0],[r,n,0],[0,0,1]],s=i4(t[0],t[1]),i=o4(s,a),o=i4(-t[0],-t[1]);return o4(i,o)}function l4(e){let t=[[e[0][0],e[1][0]],[e[0][1],e[1][1]]],n=[e[0][2],e[1][2]],r=[-Ya(t[0],n),-Ya(t[1],n)];return[t[0].concat(r[0]),t[1].concat(r[1]),[0,0,1]]}function C2(e,t){return[Ya(e,t[0]),Ya(e,t[1])]}var P2=Le(x4()),Qa=Le(w4()),L2=Le(N4()),T4=Le(ql());var R0={};Y2(R0,{default:()=>I4});var I4={backend:"webgl",wasmPath:"../assets/",async:!0,profile:!1,deallocate:!1,scoped:!1,videoOptimized:!0,warmup:"face",filter:{enabled:!0,width:0,height:0,return:!0,brightness:0,contrast:0,sharpness:0,blur:0,saturation:0,hue:0,negative:!1,sepia:!1,vintage:!1,kodachrome:!1,technicolor:!1,polaroid:!1,pixelate:0},gesture:{enabled:!0},face:{enabled:!0,detector:{modelPath:"../models/blazeface-back.json",inputSize:256,rotation:!1,maxFaces:10,skipFrames:11,minConfidence:.5,iouThreshold:.2,scoreThreshold:.5},mesh:{enabled:!0,modelPath:"../models/facemesh.json",inputSize:192,returnRawData:!1},iris:{enabled:!0,modelPath:"../models/iris.json",inputSize:64},age:{enabled:!0,modelPath:"../models/age-ssrnet-imdb.json",inputSize:64,skipFrames:31},gender:{enabled:!0,minConfidence:.1,modelPath:"../models/gender-ssrnet-imdb.json",inputSize:64,skipFrames:41},emotion:{enabled:!0,inputSize:64,minConfidence:.2,skipFrames:21,modelPath:"../models/emotion-large.json"},embedding:{enabled:!1,inputSize:112,modelPath:"../models/mobilefacenet.json"}},body:{enabled:!0,modelPath:"../models/posenet.json",inputSize:257,maxDetections:10,scoreThreshold:.5,nmsRadius:20,outputStride:16,modelType:"MobileNet"},hand:{enabled:!0,rotation:!1,inputSize:256,skipFrames:12,minConfidence:.1,iouThreshold:.1,scoreThreshold:.5,maxHands:1,landmarks:!0,detector:{modelPath:"../models/handdetect.json"},skeleton:{modelPath:"../models/handskeleton.json"}}};var O2=`
|
|
/9j/4AAQSkZJRgABAQEAYABgAAD/4QBoRXhpZgAATU0AKgAAAAgABAEaAAUAAAABAAAAPgEbAAUA
|
|
AAABAAAARgEoAAMAAAABAAIAAAExAAIAAAARAAAATgAAAAAAAABgAAAAAQAAAGAAAAABcGFpbnQu
|
|
bmV0IDQuMi4xMwAA/9sAQwAGBAUGBQQGBgUGBwcGCAoQCgoJCQoUDg8MEBcUGBgXFBYWGh0lHxob
|
|
IxwWFiAsICMmJykqKRkfLTAtKDAlKCko/9sAQwEHBwcKCAoTCgoTKBoWGigoKCgoKCgoKCgoKCgo
|
|
KCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgo/8AAEQgBAAEAAwEhAAIRAQMRAf/E
|
|
AB8AAAEFAQEBAQEBAAAAAAAAAAABAgMEBQYHCAkKC//EALUQAAIBAwMCBAMFBQQEAAABfQECAwAE
|
|
EQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZH
|
|
SElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1
|
|
tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+v/EAB8BAAMBAQEBAQEB
|
|
AQEAAAAAAAABAgMEBQYHCAkKC//EALURAAIBAgQEAwQHBQQEAAECdwABAgMRBAUhMQYSQVEHYXET
|
|
IjKBCBRCkaGxwQkjM1LwFWJy0QoWJDThJfEXGBkaJicoKSo1Njc4OTpDREVGR0hJSlNUVVZXWFla
|
|
Y2RlZmdoaWpzdHV2d3h5eoKDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXG
|
|
x8jJytLT1NXW19jZ2uLj5OXm5+jp6vLz9PX29/j5+v/aAAwDAQACEQMRAD8A+qaKACigApGOKAML
|
|
Xp8xlF5A7V4X8RtYs7PzfNImnx8sa8Kp9z3q2tEgp6angWs62ZZ5CTGoJ6DArGNz5p+UrID6EUrF
|
|
PUlW1EuN0XNW7PQ2L5j3JnoKXN0KijqNP0eYoqXBdgPuuo+ZPeupisWn2Jd4+0r924XgsQOCff3/
|
|
AJ1FzRKxDqGii6m3siiQ8F1XGfXI6YNWLfRbiRQMkcZI9fpTDluT2/h6Qy8gDPbtmtG38JeY480Z
|
|
5zSLUTZg8M28YwYxjAArXtdPt402qgHbpSaLWhma3o0Uqk7Nx9DWLaaVblgPs6qRyds2M/gRSQp9
|
|
zZOni2iWS2hlQ+kjYz9OMGrdjq89vIPPVhj+8M/lQyDq9P1WOYBlMZz1AOD+VdDaTiReOKulK0jO
|
|
tHmi0WDTlr0TyxRVhT8tJjIX+9SUxHXUV553BRQAVBcPhSBTSuxPY86+IGti0s5I7dsORy9fM3i6
|
|
8e8mfDO5P90ZrWWiJicNPpZZtxV/xrW0jQt4DOv6Vk2dEEdTY6BHuB25rpbPSo0QARjP0qTRI17W
|
|
wA/hFaMWmoQMgflQXYsDS142rU9tpqqenfNA7GgtihxkdKuRW6qMY/GkDZY8sY4Ap4hXbyB+VArk
|
|
EtuH4wPyrk/EGkOm+a3jw3suRQLc5i38SX9hJ9nnY+XnBUdPyNdFY6pa3KkkAE9l6f8AfJ/pSJT6
|
|
GhDmI+Zb4ZRycdv6ium0nUhKFydrelTsNnS2829RnrVgV6NKXNG55lWPLIM81Op+WrZkRMfmNNzT
|
|
A7GivPO4KKAEY4XNYWt3vkwPg4OK0giJdjw/xrqhm87Zs8tc7pX5A+leSajf6aHYJ50kn4AZpTep
|
|
rBWRm2Vobm4BXfyehPFdnpmnBFUY5rI2SN63tlToK0YI+KZpFF+3QdavwoKTLtoW0Toaswpk5pCb
|
|
LCxipAhoIuP2dKevHXoaYDylRyxhlwRQI4nxVoCXWZI1GfpXGtbSWjYPGP73+NIGupt6TqMsLruZ
|
|
ih4xnP5V09mQ+JLd8gn0xSYJnVaVdkook69K34zuUGunDS3Rx4qOzHVIp4rrOMY3NJQI7GivPO8K
|
|
KAILt9kZrz3xlebYiu8KCCWb0XvW0NFch6ysfO3jLVjfXLIn+pQkKorl7WxNxIPl71g2dUUdpo+l
|
|
pBGvHPet23iC8ihFosrxirkHQUFo0IF4FXI1O726CpKLacCrMJoJLYHAPpTwucHpSRJJ5e4AZI9x
|
|
UqpxzVpCuOC8cUpQUMRnXttuB4rjNdsYyeVwfXpmpGmcvcQyafMCFJjPY10eg34BUg4DcZP8jUO4
|
|
HaRq3lLNF+IHet7R7jz7c56rwa2wz9+xhiVeFy/T1PFegeaNPWigDsc0ZrzzvDNIaAM7VpNqdegr
|
|
xL4l6kywyRhseZ19lrdfAZL4jxYg3Fw20d63tJsdrDI5rm3Z3R0R0Mce1eKnQYAplIkWrMJ45oZS
|
|
NO3PHbNXIyfpSGWowSOasxLUiZdjFSqtNEMkUemKlAGKsRJjAppFAiORMjmsTVrNZEO4cfSoZSOD
|
|
1eJ7WXBUzQZ+7nkfSo7e2Ei+ZaMzxntjBX2NSU1Y6/wxqojiEFzkA8KTXYaUoWRyv3W5rSjpNHPX
|
|
+BmpSg8V6J5gUUAdhRXnneFFAGHrTfu5PpXzj8S70/aZtxzztXFbv4DKHxHI+H4GZiz9zxXXW8G3
|
|
GBXMjvLRXAx0oPGPSmMVeOnWrMTYpFI0bcg1fh54xmgovRcD3qxETSIZcRvzp+/BpEkqsBUqsM9K
|
|
q4Em4Gkxk0yRGXrVW6i8yFhkg+tJjRxGsWrxllkUMh9eK5uMz6bcebbnfG33kPcVkay2OntPKuo0
|
|
nhXI67c8qa7Lw3c+adjcEDGK1paSRhVV4s6A0or0jyRRQ1AHX0V553hRQBz+vNtt5z3xXzX8Qbdm
|
|
uic5YnOMdK3l8JnTXvlbwpYl+WySOgrp5YfLOOB9O1c62O7qQkc+9RsKChFPWp4DluOlSykaNruH
|
|
ArUgHShFNF2NT1qxGO3NBmyxGcE1N2560CFzjrUysO9JAPDDjFOVuKoQuSRTWouBkazbCa3cd8cV
|
|
wF7IISQccHBzUSWpV9C3o1x5b5GAjdQD1rs9DjC3kckbEhqKfxIzn8LOupRXqnkPccBSkUAzraK8
|
|
87wooA5rxMSI3HqK8B8bQl9Q8sffY5b/AAraXwkUviNrw9pH2W1ViMMRTdRjw4HpWNtDti9TPc4P
|
|
FQs2M5qdyyMHLcfjV63HTAoBGtap0wK0YxigpsuRDtVhVYd6GQydVwwIqdRnqKCR23I5pCMUW6gD
|
|
YNKuetAEise9KTxQBWuFyhrznxNZkXjFeN3I+tTIZg2OqmzmxNF0PO3vXp/g2+hukVl4zyPanTXv
|
|
JmVR+60dpThXpnlPceopWFAbnV0V553hSGgRynjC5FujOey14Ssp1HxNmTnc+a3kvcIpv37HoEYQ
|
|
QmMdVHSsnVbYJF5jVk0dsNzlruVIsl2wKxbjWrVHILjg1CRbZJb+ILHPzyhfStODWLQgFJFYd+el
|
|
UJM27HUIXxhga1Y5lLVLKLkMnoauxnPPrSEx7ShF+Y/n2qrc6xBbhizDAqkK1zJuvG9nbg8ZA681
|
|
ly/Ei052RO3uKAsZlx8QGd8xxvt9Aa1NH8dK7AXMcip64zigdkdrZX8F7EJLdwwNXMkrz1qRMRly
|
|
CK4TxmpidWI49felPYSOMmi80NIoOV6qRzXYeA5SskYPfirpfEjGr8LPWVHyD6U4CvQPL3ZItOYc
|
|
UDOoNFeed4Uhpks4H4iE/Z5MeleMeGULeLgjds10S+BGdL+Jc9OSBU2Huc5Nc74yvUtrcDBrJnZF
|
|
63PJdXvLy/lKWw46bvQVz82jXhkLO5Y+9ZlsYthcRnbIjY9R3q3awTRkEM3WmJI6C0ea3dGRsr1x
|
|
XY6TqW9FLHnjrUs0izpLK5DDjofSta3ckH09KRUkZuuTvFGdvPauE1Y3U6Mqbssf/rUxHPTaJPK2
|
|
ZmJPbBqzY6DCZh5xJC9s9aBJHU6dpemJjfEmfetJtI0+VPkUr/unFOxdiextHs33W07YHQHk11mk
|
|
Xb3KbZ1xIvcd6LEyWho4Nct41sTPYb16ipexCPPZN+wYGCvH1rrPAEJmvkPoc1VL4kZVvgZ6yFwK
|
|
cBXoHkkqinFaVyzo80GuE7WJRQSziPiGdthK5HQV4x4J/wBI8WPIewNdEvgRNL42emO/yj1UHNef
|
|
eNpRczbC+I17DvWT2OqJxc0sMK4TCisy41q0hfEkqj8aixdwTXNOlwvmqD9anS9tXH7uVG+hosO4
|
|
/wC0oOhrR0+6G4YNIEzsNEuCxAPNdjZruA4xxUmjINSjURksOlcbqFykbnjFA1sYGoassaknCqO5
|
|
rl7rxhGm7yBnBxuJq0rkSlYpw+NLlsfd5P8AerVsvHEqSBHwPVgcgVpyMyVXU3rXxcHYETAk+hru
|
|
/DWti6ZSTyOKzZqndHaxvvUGq2rQ+dYyqR24qWI8dvbr7LqDxyDAzXpvw6FvIxePGSM06Xxoyr/A
|
|
zviKFHNegeX1J41zUhXioGbuaSuM6wpCaBHG/EcA6HN/exxXjXw2jL67cv8A3Qa6H8CFR+NnoWpO
|
|
I4XI44rxLxrqjQzSEsQM1gdSPM9U1uR1YbmWIdXHf2rmpIb67YS28UrRlsLI3c/jW0VZGUpO5pW1
|
|
jfLNOjahawzwReYI5cjzMkDavHJ5/SrVv9uhtPtVxCPLBwzxnlT9KGghLU3tKvvPjHzbl7EGuisJ
|
|
GRxWLOg7nRXJEbDjmvSNK+aFSfSoZr0KutRkphc4NcRrdkVjL9aVio7Hk3iqS8ubhrWzUlsZY9kG
|
|
cZNc5D4aee5MclzJIFTzHAO0MfatqSOWu7bFS1srDUZEis0vIZoUxPvfcC+4/dx2xjr712XiTwXb
|
|
WmlQ6hol3cRhoFd4rlg3zY5wR0GelavQwjq7GD4etdVvSnk2wAB+9v8A8mvcfA2kXiRo0/UdcDis
|
|
ZnTTulqeoWqbUAJqWUb42X1FZlnjfjSwlGrr5S/eNdD4RkvLAAQ4yRyaUZcruVKl7TQ9I0G+mnzH
|
|
ckFwM8VuIK7ac3KF2eXiKapz5UWYxipNtMyNejNch0jSar3cjR27uoyQCRVRWom9DxTx54gu5fMi
|
|
lbKdMVjfCZPNlv5v9rFbVHpYqjGzbOn8SzFI9o715L4u0r7arYzk+lYdTqSujy7U/C0u4vHk+WwO
|
|
xuh9q3J9dgvbdVukMV1EwbDDgn04rZMwlHoZ+orZ6hfQ3RWVnQYCgZAq+8U0ln5NtBsV2yxYcfgK
|
|
JtW0CnB31LlroVwJ1nQLGDjeP7w+lb0dsFxjrWB0tHS6NuWPJ6A16ToUm63T3Gallr4S7cxiTjrX
|
|
PaxaF7dlVeSMUhxZ5jd+H7qCa4eF3DSE5x3zXN3Wk6jbyeaiFWUY6ZyPStYS5SalPmVipFbX0E4c
|
|
W0alvmPHJrag0rVvEE6LdljGpG2NRtQD+tW5XMI0uU9M8NeFo9PiQhecDIIrtrOMIoG3H4VlJm9t
|
|
C6CB06VPGM1IHLeItGS6uw+ORT7e3jsbQvj7gzUNam0JaWE+HN7NqOqX80n3FO1RXo8YzXdS+BHk
|
|
4z+KyzGPapcU2YIv7qQtiuaxvcaWqG4O6FwfSrS1JbPnrxoxkv7qIfejcitj4V2f2exumI+8+aKn
|
|
xHTT+G5d8Txlm4rjLxMsQwzWT3OiK0Mm6sEkVsAcjFc1d+FEmlGwEDPQVopaEuOpr6f4ZWNAu3tW
|
|
vHpAj5ZQcUFIWaDjGMVUMQ3cVDBmvbhY7QAV2nh+T/R1yeKhlrY31+b61FcQK6nIoJMi401WblRi
|
|
qr6PCw5UYq9y+YgOgWzNkRrx3xWjp+nx2v3FQcelAbmko9anQ4GBUNisPHWr1qMrQhS2K11HvmYV
|
|
hamcxSRZ5xRIqluS/DKAQQXZxyXrvo2FdlL4EeZjH+/ZbjNSZpswLNBrE1Gt7VE4ODVIlnh/j61F
|
|
j4lmeTGyUbq6LwdEqWbeX0YbhSqfEddP4Bddj4JIrhL5d8h7VjI6oLQqKNzelWre3yc4/ClFjaL6
|
|
wqBxxUUxwCKu5BmXRA6c+9ZjP83FSBoQuPs4BrsNBlUW659KmRrDY6G1lyQtW3Hy0lqQ1qVJnAbm
|
|
oy3b9KYJCqRj3o4zRctIlhjLHmpSuOBRbQOpLGpPFaES7UqkZzKN1KsEc87/AHUUmvPLTVGv72aQ
|
|
k7WJwKmRrQ3ud74Ltilgz4++2a6iNDXdS0gjyMU71my7GpqTbxSbMki3SViajTTHqkSeR/GeyZmg
|
|
nQHkEE1S+F+oPPavBL96I4/Cia1udVF+4dVrkW+Fq8+v4tjMDWUkdVJ6WM0cNV+F+MVmjUcZgqnP
|
|
1qpNNnkcVRLiZtxIS1UzzIF7mghlxUZpVQdq6nTVdAoAOKzkbQWhvwM6gMM1twOJYx3NOJE11Kt1
|
|
H1/pVVlwBkk+9NocXoOQ45FPj+fkUJFF2NSB700v/hTEty5ZpkjvVyUgcCq6GM9zC14/8Se6GcZQ
|
|
1574Xs5WkI2HBPHFQ1dm1KSSZ7Rotn9l0+KPHIHNacae1dy0Vjxaj5ptlhVp+2s2CJ9ppCKzuWNx
|
|
zSFc1SYrHNeNdIGpaYw25ZeRXmvheyk0jVpEdcLJ0q3ZxNKTa0O3vQHg/DNcHrsJDmsmjspnNzNt
|
|
fFIJ24GazOhC+azDmgZIOOKBsp3J2qSaZodubq58yQ4QAnmhGT3NO18pb7BORmu205LfYpyKVkWp
|
|
Oxr5gKYWoIZWgfGfloFq1qTPLubnGO1RPtxg4P0oBAkY/hBz6VNDDkZ6AU0W2WSdqkdKr9ZOaGSj
|
|
VtcLHmnOcgmmYvcz7mBLy3MbdD1q9ouiRK6bUAVeelOC1InPlidSsWMDFOCEdq3uefykqrinYqGy
|
|
rFvApMVka2DAowKAsMkRXQqwyDXn/iWyitNQ3qPl6itIvRoF8RXinW4tQ6HI6GuW8SIVBPalc6qe
|
|
5x9x97r3qruwTjrWZ0ksZ9TUmcDNAmZ9/wAoao63rR0+w22MLPtAzt6mghmfofiB76LdJBJBIp5D
|
|
d/oa7bSdWLIPnpDi9TM8TeKdas51XTbIyxd3J/pXS+E/EFxqNoFu7do5OmD60maHWrnZyDRkn/69
|
|
MlEyOR0xntVoNx+FUgYjPxg4FLCuWDZyKQr2RoRnP0qO+nEFpJITgAUzLqZnhu6+0rknOTXpOmwJ
|
|
Fbrt5yMmnHYyr6Oxb2ijaKLnPYMClwKQWK3n0hn+lachHOJ9pNNN0apQFzsY10a4v4hXQh0xpieQ
|
|
MA1XLZNjhK80cT8OdV+3Wl3A7ZZJCw+hrR1qLcjZ/CsbnfHRnFXseHJArOYYbrUs1uPhYbuatqFP
|
|
ByfSkMq3UIINYkto+87Tx6GkSxfsDbflGD7CtTw/pk4nzITtPIFMFudsukh4Rxz71paTpKwP5jcn
|
|
0qTRy0NORMDgVCqewoJTJgAoxjntTiTu7fWmFxAcnn1q3EPl+X8KZMi4gKqB1Peob/Tv7Us5bfeU
|
|
yOoq4R5nYxqT5I8xieH9J1DTbvyJELRg8ODwa9Ms5mSFV9BWiptbnNVrKdmif7Q1KLg96XIZc5Is
|
|
pNL5pqeUrmMtZs0jzV08phchaY00zH1p2ZNxjS1g+LdJOt6U9ssmxjyGp2urDjLlaZzng/wUPDqz
|
|
TSTmWeTrjpVjVk3Rvjr2rnqQ5dDvo1XUd2cTqSNk9OKxXGCeKxZ1DAxHTr2q5C/y8GokUhsz54qu
|
|
uCxzSQjQ0+FZblR2ro4bZYiMVQ0dBb7Qi5x0qzuG5QOh71LYErDufpSeWrHnimIXbjkUjLkH1Hem
|
|
gGxryc+tXI19KYmWegq9YLiLJ7mtqS945cS7QsWehqxA9dEjz4krPSxyZqbFFhGxUm6smjRM55Lk
|
|
HvSvNxXTY57kLT+9MNwKdhXGm5FIbkU7Bca1wMEVhaiuQcVhXWiZ14R6tHGanGBI2OtYkqEHjgVy
|
|
s9ErEeo6UBsHipKEZs5qpPdRxcbhx70NCSuybTNWihc5brW9Fq6vjMnFSdEIdDRi8RRKygZbHFbu
|
|
m6nb3RA3gMegNJhOm0jbXGOoxTuCc1Rz3FyoGKawz9KaAVcZqeMgCmIkB4FaUTbYwB6V00Fuzixb
|
|
0SFMuDU8Mlbs4UPeXHeiOXkUrDuXYnyKk3cVk0ap6HMxxketSMhrcwRC0dMMZFMQ3yzSeVQAeUaz
|
|
9Vj8uPd271nVV4m+GdpnHX67pCeKyLtBtNcR6xlk9RVeWTb3qRnO6trgttyIfm71z7ai8j7/AJmN
|
|
DNqUVa5Yi1AnjynHuBV+11YJhWWXcP8AZNSzqgmaEerSsf3NtIQP4mGKtRavdRgMIpVI9KjU0a7n
|
|
R6T43uYQI7qN2Tpkqciu503VVuQGAYZHQjFVc4alPlZrpKGAznpTwxOc9+lWjIlUACnM4XApiLNk
|
|
nmvnsK0NvpXZRVonmYqV52GsmanhXitTmFkSiJTSAvwrxUxXIrJ7miOfjf1pzNWxkRlqYWpgJupu
|
|
6gQbuahvIxPA6eo4pNXVioS5WmefakGhndH4INZs5DJXA10PaTurmLO21uKpSZqGMoXGnRzBiyjd
|
|
9Kx5rcQS428fSkjanLoaOliHGZFB56VswW+mtPufcBsGOAfmxz+tFkd8HpoaUx09FAtFY8DO71qb
|
|
Sms/Nb7RbecG6AEjFLS5c78t+p0djpVs9wsyQiJAdyr1rW+zqjErzSe559Sbk9S3C+MA1bjbgE1S
|
|
MSXzMVG0vNUI2tPKrAuCMnrVzNd0PhR49W/O2xrHmp4TxVMzQshpIzzQBehqesnuaI5VGzT2bitz
|
|
FEbNTC1ADS1JupgG6l3UAc14s04yR/aYRll+8BXCtLncDXFWjys9TCz5oW7GddH5qqNzWDOgQnC8
|
|
VSuo1kHzAGkPYopEY2+RWxV23Vzj5G/Kg3jWaNazhZuqNXS6TaKhB2c0jR1nJWOlhOxRxU4YkCgx
|
|
Y0OQatQyDbyaaFYe8uF4NY3iC9ltbVGj43NTIL3h7WzMihjzXVQXYYDdW9Cf2WcOJpfaRZ3g9KsQ
|
|
mupnCLIabGeaAL0LcVY3cVmzRHIxtUhetzEjZqjLUAIWpN1ArhupwagAfDKQ3Q1594v0c2bm6tx+
|
|
5Y8j+6ayrR5onThp8s7dzkZjuqAAmuBnqC7c0iwgtzSA0rWzjfGRW3ZadDu4AoNYo2rfS4v7orSh
|
|
05UA2r0pDbsTm29KRottBNyJ0wpJ9KhD7f6U0ikNWffIFBz60zVUW52ow4UcUN6EPcx44WsbgOmd
|
|
ua7TT5Bd24KHnFKnLlZFSN4koluLdueRWvp14swweG9DXoxldHlTjYtzGoo25qzEvwtUxas2jRPQ
|
|
5CNqkLVsYoYzUzdQA3dSFqBBmnqaBhuqhriCXTpVIzxUz+Fl03aSPI9QTypW2/dz0qKNw3SvOPZR
|
|
Mqin8VLKRcs3O4Cuk0w/MDjt1NBtHY6O2IIHY1pxgFaETIRwMkjtVSUEk4570MlFW5bap6dKzWm8
|
|
1tqH8aY+hp2FvGoGayNevVt7/ap4xzUvYjqTLtvLPcvJxSaVcyWsxTnFZlnT2t15xHmCtOBYwQy4
|
|
B9q7cPO+jPPxFO2qLEj5HWo42+aus4HpoX4W4FTF+KlotbHII9SFuK0MUNZqiLUDE3UbqBBupwag
|
|
Bc1DefPbyD/ZND2KjujyPWlKzuPesRZjHJXms9lMuw3StjnmphKDSLTJ7OfE3JrpbO4GQc9qlnRA
|
|
3LO82k5NbFvdADkjBoCSHyXIIIzgVQvdRigT7wzjgUzO1jHknlvG7qnp61etYFQDIpCZoqVijzXn
|
|
3iC8EmsOuaCGb/heR/s0ijkVv6fbxy3QMg5xmsnuX0Ldzut3+UYTPWk+2GJSe+M1pFtamcldalmx
|
|
1eO4XaThhWnC+TXqR2PHqL3maUJ4qRjxSEjj42qXdxVmaGs1MJoATfSbqBAG5p6mgAzTJTmNvpQU
|
|
tzzHXY83D/U1zF5FhjgV5r3Pa6FMsV5HWnLe7RhqBRdmTwagN2d2K2rPU1C5LAnPrUs6Iysbdrq6
|
|
f3gK0BrUKj/WClY05iM6xLOcQAj3NT29uznfKSzHuadzNu7NSBFjHNSm5VO9IRnajqoWMhTzXFtA
|
|
bvUfMduSeg702Qz0rS7FbTToQFwzjJqaGTFyfK5PQViyzUuFmuIdgGABya5u/vTaN5cnUHFUmLoZ
|
|
zyskwlgJweSK6zQdUEwVJeGr0aUrxPLxEfe0OrhPAqVjxWhznGRtUwatDK4jNxURbmkAm6jNABup
|
|
6tQAFqhupNtu59qUnZFwV5JHnWsHdIx96w5lz15rzT2uhRmt85xWbcxMnUGmZlB0bdxmrNvFIcfM
|
|
350mWjbs7YkDJY/jW5ZWW4jikWkdNp9mqYJFaJdEHHakUULu/VB1rLn1Ld/FgetMGYd/qWSQmSa0
|
|
/AemS32pfa7piLeLkg9z6UmQtz0W7uQ2cZx0A9BVzR7cAea6j2rPqX0L99KRat5A6Dk1wOoKZ52a
|
|
YfMORTYRLujiGWEq6/NWza2yKQVHNdOHerRy4laJo6TTnbbtb8KuM3Fdh5z3OJjbmpt3FaMxAtUZ
|
|
agBN1GaQBzTwaAAms3VbjERUGsa07RsdeFpuUuY4jUjljWTKK4j02RE4IpJYFk6imQkVl0xWarsO
|
|
mAEcUi0bNnZBR0rWtoguMCkUi21wI161mXuocEKaYXMS4u+pY/hVCSWSY4HT0pEmlouiSahdpEBl
|
|
mOceleiwWcNjClvHgJH97Hc1EmVFFi3Czy7mwIl/WtJbjP7uLgd/apQ2VNVvtsBhiPzdK5S4nAuR
|
|
nqOCaTGi9pcytPlU+XpmumtWII44rah8ZjiNIXRuWeNvvViQ/LXpJWPJbu7nCRvVkNxVsxBmqJmo
|
|
EPiXca0YLMuOlJsuKuPlsSi5IrNuG8s4HWs5VEkbwoOTKsk+FJY4rC1K53k1xTk5O7PSpwVNWRzt
|
|
4cms+WpKICtSLTETQj5q0YeBSGiys23pUguGxQMq3E59ayrm4x3yaAKiRtO2WPHcmhruKFxFajzZ
|
|
ScA44qRHoXhuMaLpxaUg6hcDLMf4F9KlhuDeXGASIl+8azZslYma68y48m1+7nFW5rtbRNhb5z1p
|
|
iMKbUg0zuW4A4rPgb7VdKXOMmpA7HRbMS7nUYiUda0lkQOBngVrS+JGdbWLRt2bAx5BqeQ/LXpnj
|
|
PQ4GJ+ashuK0MhWaoWcA0AaOmASMK7jRNPWYBmHyiuepO2x10qfcv6vYxCzYqoGK4HVYVTJrmb5l
|
|
c6oaM5TUJ8EgGsG4kLNUHT0M64OaqMMikSRsuKbnFMRLG3zVehOaGNE445NNlnVFpDMu6uie9Vo1
|
|
8z5mOAOST2pDK91cNN+5tsrH3PrW54a06KxT7fdrlh/q1Pc+tJ6IUdZGvHPLezMcnBOWbsPap5r3
|
|
ylFtbdT1xUWNWzU0/Zbwlgfmx8zGsHWtRHmMqE59aAMyNifvHPc1f0gtPdqkY5JosJHeNci2tktY
|
|
euPnNY+oXWZEVJNrZ9aun8SIq/CzodHuriIokhDIR1ronbKZr0o6o8ipoz//2Q==`,D2=`
|
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAsICAoIBwsKCQoNDAsNERwSEQ8PESIZGhQcKSQrKigk
|
|
JyctMkA3LTA9MCcnOEw5PUNFSElIKzZPVU5GVEBHSEX/2wBDAQwNDREPESESEiFFLicuRUVFRUVF
|
|
RUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUX/wAARCASwBLADASIA
|
|
AhEBAxEB/8QAGwABAAIDAQEAAAAAAAAAAAAAAAEDAgQFBgf/xABDEAEAAgECBAMECQIDBgUFAQAA
|
|
AQIDBBEFEiExE0FRBiJhcRQjMkJSgZGhsWLBJDNyFSVTY3OSNEPR4fAHFjWCokT/xAAYAQEAAwEA
|
|
AAAAAAAAAAAAAAAAAQIDBP/EACARAQEBAQADAQEBAQEBAAAAAAABAhEDITFBEjJRIhP/2gAMAwEA
|
|
AhEDEQA/APqYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAKNTq8OkxzfNkisQC8eb1XtRNbzXT4q7eU2nu0MntRq/D8StMccvW29ZmdvgjsTyvZjxOLj
|
|
+s8WLxn8TFPXs6Oj9oct7c14rkxz22nrB2I49KOdTjelmszfmpMeUxv/AA28OqwZ4icWWtt/SUi4
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmdo3nsPNe0Pt
|
|
Fh09Z0+DNWL7+9O/7A3eJcZppsV5raI27esvH6jX5ddM25p79Ilo59VbUZOe2Tm/PeGvfPfT2iKR
|
|
PLv1+DO678XmW/a97U6TtOyzTbTF538/T9WjTNecm9a7126tqk3rSYxY5ta1plRZqZNXGjyZcPXl
|
|
mZmsx+qjBrsuO16xM7eXRt04JrdTltk5OWJnfaWf0a2lty5MdZnfzSn+WOHiOutFpjHa9e8bQ2fp
|
|
+alYy462pk7zXbuxjPesbRS0f6ZZV1ET1tErzXFLHo+A+1ddZf6NrI8PJHa1vN6iJi0bxMTHwfOa
|
|
zhzd61v1846utwniM6DUdb3nBaNrVmd9vjC/ZVePYirBqMWppz4rxaPgtEAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAItaK1m09ojcHnvarjM8P0vh49+a/eY8ng9D
|
|
h1fGM1rxjtGPfvbzdbjuTJxHX48cTPNltM/KsS9Dw7S49Jp6UpHaGe2vjz1y9J7LYK13vHWe7bj2
|
|
ex1tvM80ekuxW3RnW3Vm6P5jRx8H0+OYmMcb+bapo8GKPdpC6bQwtdHU8JpWkdJ/JweL6e23iU67
|
|
d4dubSqyVi9Zi0bwIs68XGp36TtEq7ZJmZmevzdbifCKWtbJinkt6eTgZPFw32t+sRurbWVzxs1y
|
|
Rv6T8V1NZNPtfq0seTm+Kevr+SZuxXjvaPiV8N4viycto9HseG6+uu08W6Rkj7UPmFck1tE1nlmP
|
|
Ld3eA8V8HVVi1pjq6Ma/pnqce/ERMTETHaUrKgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAADW19+TQ5p/p2bLS4v04Zmt5VjeQeJ4bjnLqsupv+Ka1+ERLv4reTmcNxcuC
|
|
vy3l0qdI2hlr66sT02ot0ZV7qqrInruzrVZLGSZ37JjqgYTG0K5lbaFVhDT1Ub456RPweY4hixWi
|
|
eSdpjvD1eWejz3FNHWYtkpvFo9EIseb3tS3SerOms22rfpPqZKzvvHSYUz70TExG6Gdbs2rljeJ/
|
|
Mx5L0vEzPaelnOi98c9J2bFNTFpit47+a+PVUvx9T9nOIfT+GV5p3yY/ds67wvsXqpxau+G09Lx+
|
|
r3TqrEAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADV4ljnLw3U0jvO
|
|
O0fs2lWqyUw6XLkyfYrWZkHldBEV09eveG3Fq1mI3jd4vPrOIaid8G9MP3Y38k6fNrt/rMk9Ou8s
|
|
tfXXn49rGWInuy8SO/k5Gl1E3rG/fzbOe94wTy99mbRvTrMOOvNfJWsesywniukrG/jU6fF43WYN
|
|
TmtEeJtEQ06aSmK2+bNtEd+qfSO17unF9Hmvy1y13XWyVmN4tExLxVK8PmNq5NrT58zawam+m/yc
|
|
0Xj8NpRYSvQZ7xEOdqI3rPozxayNRXe0ct/ON03jmrKB5nV4q1yTO20Obmv4c+cx8HoeI6WZpNoj
|
|
q83niYmYscU0r8aJ6T1n49zeJ+Meqm1drb9J+Kd5p136StGVem9l9TbHxLDFp7W7+sS+q1nesT6w
|
|
+PcAzVjiGHftzQ+v4f8AJpv6On8jH9ZgIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAABp8VrW/C9TW0ztOO3b5Nxp8VmI4bn37TWYB8f1HFtTfUfR9FWJmsdZ9I7MtJxDX5s
|
|
d8ta1y0xzteaR2277rcuhycP12SceLxMeWNpjttHwlu8I0mfQ1y+D7k5YmJmY36T36Ka43z/AF1t
|
|
cI1ds+qxVj7/AEej19PCw9HJ4NoK4OIU5Y35YmZdzVTGebVZabx5jJS+Tmns81rNLm1Wrzc9rVw4
|
|
Yibbem72mXTTS0w0M3BvEta1bWrM95ie5EanY87wXgNOL6XPfxraXLhra/W28bR/dzYzarBqJxRe
|
|
bzE7Rt5vWU9n8mPHOGmS0Ypnea1naJb+k9ncNLR7u2y/WcxXO4TOoyUrN6zD0FaW5Y3hu49FiwUi
|
|
KxCvLMR0hlW0jn6ukWw3iXjOJzbDlneOj3GaN6zDzfFOH+LE7SRGo83XNSZ2lbG2/WfdlvaT2cy6
|
|
rNFInlrv1mfJ37cK4PwTTxOoidRm2+/2/KFuyMp47XB4LivXiunrH2b2iH2qn2K/J8x4fGDNxTSZ
|
|
9Nh8OviRvTyfT6xtWI+DeXs9MNZubypASqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAOZx6/LoOWPvWiHTcf2hiZ0e8fc2mf1E5+vP/AEeuSd7RC2uKtI6QjHfeINTfwtPf
|
|
Jvty9WPfbt/lucP03gxfJf7d/wBoReYpm97zaNeLb4Ims9Nt94auDjem1Wo5PFi1onylS+1o7l8V
|
|
bxvtupjDMdNkYtXS1+Stt+m63xImEJ4xjHER2ZxMUjeUTO3VRmydBbjLJqPi08mbeVOXJPq1sl5Q
|
|
Vbkz9+rRy35rxHqzmZlVEe/Ez5LRlW5iyfR6zffaIjq1OSNZps2a21rZInafSPJhxGMl9LStLRWM
|
|
lorM/A4dkrWbYfLZC2W/7K6eubX6b4RzT+W76K8b7G6X62cu3Sten59nsm3j+OXz3/0ANGIAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0OIYfpOHPijvNNo+fdvtXJO18k/
|
|
/OwPFYbz2ls3jx8VqW6xMdWPEdP9D4lkx/dt79flLLHbkxTPwY6nt2512ORTRzE2x4/dpE7cvkme
|
|
E4IrW3hRMxO8THRtU1FKWtvtvK2upx22rzRCtXkqzh2jtF7ZbT122b01ndnpuWuP3Z3+Ky20qDVv
|
|
fauzVy3mejZzNK8dVjqi87KLRLYtXruqvXzkQp7Qoid88R6rcl+WGlW0/Sa22mfhCZOq2x082ix6
|
|
jkm822pO8VrPdr4dNObVeDo8XW3uzMbzK+mvxT7szE27cvnu9j7PcNjSaXx8mOIzZevbrEeic5tN
|
|
+SZnpt8J4fHD9HXHO3PPW0x/DeBtJxx29vaAJQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAKNRim9Z5e89Nl4DzXtVh5babURHrSf7f3ec1+qnDorWrvvt5Pccb0n0zhmWk
|
|
Rvevv1+cPE2rGTFNZU26PFfxwa5dVkjelI2772nZnX6bbrEUq3o0d678u8wmuDL2ittvVjXdneeK
|
|
cGv4jpJ6U56+kS7+j118+GLXpakzHaWlp9NNY3tv+bbiYiNoQy1y30uyZJlrWmZnuym6q1iIJnop
|
|
yW2Te8bdWnnypQqzZOadokiIpSZntWN5lrxki19vNRxrUeBwnNNd+fJEY6/OejXLn3Xe/wDp9wyn
|
|
E8uo4lqqxblv7lJ26T6vpD5X7G8QycKzeBMbzMRM1/FH/wA/h9QwZ6ajDXLitvWzRgsAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeL45w+dDrZvWv1OWd4+E+j2jX
|
|
12jx67TWw5Y6T2nzifU+rZ1y9eHwzDYxxEy18+DJodXfT5o96vafWPVbjyxDn1OOzHudbM0rt2UW
|
|
iI69mVtRXZq5tREb9VUoy2iIlRbJ0UX1VZ6btTLrI7V6yk62M2oisT1c7JmtkttVMUyZp6x0beDS
|
|
RWOvdKijDimvWd3G9pNRMfRcNfvZOb9Hpb0itJeP47k/3hgjaZnbaP1XxWW3T0movbNS0W645nbf
|
|
0nrMPpXs3xamoxdJiLbe/X1n8Uf3fKsOTw4jbaXo+EarJhtGTHMxeJ6xH7Sti9Zaj6x3HM4NxXFx
|
|
DS1mtoi8dJrv2l011QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AGjxLhODieOIye7kr9m8d4eM4to9RwjPXFa0ZIvG9bR0fQXmPbDFvTTZPOJmEWS/V8bs9R43NxLL
|
|
G8eFbePg1bajU5/s0l1ceKLx1hbjwRE9mOpx0y2uRTSZsm3PMw2aaKtIjo6kYo9EXpET0hVLXxYK
|
|
xC6MZvyx1lFs0RHfaPiCnU12pLyHGNDbUajBekWma2npWN3p8+opa20e9LSyZLxExTlpM+vdOdcZ
|
|
a9tPS8MyUvFrzWlI6727u1pYxYrbVmb7x+TQx6au3Nqcl7/0rcmW9axGnwZJj1novmxnZXV0fFp4
|
|
ZxLBPgTGK8xzXr5fOH0bFlpmxVyY7Rato3iYfNuG2x56Wrqa8s2jz+7Lu8O12bS6jkwzN6THNNI6
|
|
tvrN68Y4rxlx1vHa0bskAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAA4XtTTm0OKfTJ/aXdcL2pyRGjwU362yb7fkJz9eTxxyZJjyltRXzUZK7TFtl9Lbwy06YzrHwa+
|
|
fJFd/wCVt8m0bQ0eS2qzcm+1K/an+zNZFL5M1pjFXeI72ky48eGnPkvNp27+TPU6nHpMfLXaIjpE
|
|
erk5dRMxOfN1mPeisfshW1ne1a1577Y6x5R3U0zze31FOWI6ze0byU098kRlzbxM9qrMlPDpyRMR
|
|
Md5Vt/Ihp5898mWZm1pjftE91uCt7fCI7dWeHDEW3t723l6rslqxWZnasR+SYhFbzhnfxJ2jyeq9
|
|
lcGXWZcmW0zWKxHLaI7794eJx5fpfEKabT8t8l5isddo3l9S4VjrwrRUwzSJt3tav3pdOL6Y6dXD
|
|
j8HFWm+/KsU4NRXPvtWazHquWVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAa+fXYNP9u8b+kdZBsDkZOO135cWOZn4y5Wu4xqctbe9y19Kp4njt6vi+PDm8DFMWybbzPlV
|
|
5PiGtz67UxbNbeKTtWIjaIXYpnwuaftT5tXJT3vmi1pMsrU5qIrG1V1a+5DCa7b9GFbRr5J6Wnbt
|
|
Cu+Wmk0m8956z8ZWZNorbfzcbX5rZslazPux3hUt41NTntktObJ13+zX1bek01r4/HzVm0bxPXy/
|
|
+bNfDgjVa2uOY92kdfg6ufJOKvLXtttVVSqbcta2vM7zXtHpLQy5ZtMd+vWd+7Zy3mdJHXra3f0c
|
|
vUarw7zFY5rT2hH1Lavnrgx81p3U49Pk4nE5L35MO/StfNRXR5tXnrS8W67WvfyiPSPi7uLHFK1p
|
|
jrtSsbR5Lc4RzsXBaYreP4l45esRD2HD9fnw6evvWvO3Tfr0aGk0U55ra0TFInv6uzgrXFXlx0i0
|
|
77RPlC83Yj+JW7oddqr6vHzTTw9/f6dod+L1t9m0T8pcbFSmPHER3892W0zPuz+jSbVvidkcqmfP
|
|
Sel7bekrI4n4dZnPWIrHeYnZee2Wpy8dEaml4npNZblw5qzb8M9JbYgAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAABEzFYmZnaI7yCXL1XGa0jJXT0571nbee27DiXEprp8nhbxG20W8
|
|
5cbD0ikfnKO+urTPvjoZdXqctdsmTaPSvRpWmsdZ6yztfaGplvv3lWW1tyRlz1x0vkn7Vo5atTNe
|
|
Y0+1o79V2KsZsvX7Ne5mwxnyTNvsx2iGneM/rCdRSuOsTasTt5kRFtpjqmOH4t4nk7estiMNa97R
|
|
Hwhna0iuKTEdmGWa4672nZtRele1N59Zlq6vLOSsYorEc07qcW65euzRvtXvPZy52naZ7ujr6fXV
|
|
rWdukREK8+njHgmZmPc67bq6ivVWhxxgxZLztNrT1mZ/SP4VZs0zaOvfp84WUtNsXLvtv3699+rU
|
|
z7+Jtt5qURqMnPpctaR1rMSw4ZoK57eNk6xHaJRh97Ltt7lo5Z+L1HAPZvVauZ2nFTSzMTzeJEz8
|
|
to6xPfvsZntPZ9rXxabmxzefdrv0j1dXh/BcmstW1qxTHHasR3+b0GPhGl+kWmd64dNEVjf73T7X
|
|
y8vy+Ddx6O3iRakxTH5RXrMw1/lX+3Itw2MFIraN48qRHdZi0cUjmmPen9noox1iO0fNzdXEYrTt
|
|
stcmd9aX0bJ+HePmiKTitO8TMLZ1cVjrMfqpz6ys4pjfrPRWZ9rXXptUit6zO+23VyaRHEc05L1/
|
|
w9J9ys/en1ljqdVbwYw452tlnl3jyjzbmmiMeKtYjpEbLeTXPUU8ee/+qjJpsV5rbkrFqzE1tEbT
|
|
DpYNbW21Mnu29fKWna0KbqTdjXXjld0cvQ63ltGHNPSfs2n+HUbS9c2s2UASqAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAOVxPWe99HpP8ArmP4b+r1EabT3yT3iOkesvMVtN7za07zad5l
|
|
XV5GmM9vVfEstvDx0jtaVVMlq+UJ18b5cMRvPeSuK87bUt+i2Z3PtG7zXpjkzXt6R+TXyTMzvM7t
|
|
ydHqZ+zhv1+Cv/ZuqvPTHMfOYaTMil1a1K2vHSLTELq2v+KWzThGo84rH5rq8JzedqR+ZeI7WnOS
|
|
34pYTafWXR/2Pln/AMyrKOCWnvmiPyR6O1y9585lhWJvl557Q6eo4T4dYiMvW3b3UanhldHpJtGX
|
|
e09unmjsT7eb1l4trI2t0hsZfrdNO0bzy+nzU20/+NmkzO9esz+TZxWis9dttvPv+Tn21jjaW8zn
|
|
26bTG3mp1M/Wzv3t0jyWXiKZJmsTERaZhXXDbNl8WaztWenxZLstPp5pau8frDtVrNMM5cfTfpMf
|
|
3aunxxbes9d/R09Dp8ebJi09ptFr3jtt2WyrW9wy1Jx132mK+Xq9PotT0iIU19ntLtExa3T47T+q
|
|
6nBaYvsZstZ+cT/LeMnUi0TXffo1s2m8Ws2/OIMWk5Jib5L328rS2t94Sh5TV4ppklpW6PT6rh+P
|
|
NbebTHyas8E081mZy5P2W6OFhjxNTE/hr/LoRO0Kvo9dPqctKzMxEx1la5t3tdnjnMs4noievcrO
|
|
yZjeFF1OSnNV0OG62cn1GWffj7Mz5w05joovzY7xes7TE7w0xrjPeex6Ua+j1UarBFu1o6Wj0lsN
|
|
3JfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrU5o0+nvlt92P3BxuM6nxNRGCs+7Tv8
|
|
2hToxm1r3m9utrTvMsonqyt7XTmcja0u3O6FMfi5t/u0/lzdJM81p9O3zdvHTwsUR5+bfPqOfX1h
|
|
dqV+3O7bs1+T31oqmI3TEM4rvCdkDGIIhlFd2daboS0NXG2bD6bufxXU1vlmu/u4us/N0+L1tTSx
|
|
kr9qk7w89j1FNZMV3jxLzvaJ8mer+LSOZqK2xZotbvljfr/89U453rXt9lse081xZtNjx7TGKu0t
|
|
DHlrevSevaN5Y6+tJ8c7VRNMt63n3ub+6/R54rERMztDYy4a5omclYmfxKcenrjtHLvtPrCnVmdb
|
|
eFe3JXmjy6eS/DrMuLVYsta9Mdt++6qLxO+0dEc8UmInr18iUfReHcXrqccb9Z27Q61Lb13eJ9nc
|
|
1Z35rTvE9avY4bTkpG8xEfB05vYxqybc07R281naGMREdoT5JQqy9mply7Q3bV3iXG1eXw7TWSka
|
|
c258t7+tpT5/BjT7MfHqndz12Z+M4lMMKyziUJJiN1WSu9fku23RaOgKNJqbaTU1t9yelo+D0cTE
|
|
xEx1iXmM1Nt3W4PqvFweDaffx9vjDbGvxz+TP66QDRiAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAOJxzU73rp6z296zsZMkYsdr2naKxvLyObNOfNfJbvad1dXkaeOdpvsc2yuZVzfbfqybutwu
|
|
s5s8R92J3dvJb3tnO4HSMegtmt3nfZvYp8SZl0z45NfSK7onH1bNcfRFqnUKJr0Y7dVtq7prjEsK
|
|
0XVpEM6028mW20IHK41aPo3J6zs4ODhdcvPnvExFevNXpMOrxi/PlrTee7PLX6Pwa09uaNlKtHg9
|
|
dM3z5d7ReOu02nu0JzZMfblrv5R5uvrcdImZ26T1mYhxs1Os7RH93PZ7axuafNfLitvbaYU3yZYt
|
|
PXs9NwHhui1HBa5LVicsb81onrEuVqNNSuS8Y67dZ6xPZa59Il9uX41vEitImZme3q2Kxbxora0T
|
|
Md/ROSa4Ztkj7c9OafL5LuGYubmyX3iu/TfbdSfVnpvZLT/XZK233+Mbbva1xRXyiPk8pwbH4N6T
|
|
adq5a71n0tD1WDL4tPe6Xr0tDpz8YVnJHWEXYxbqlBedoef4tW0XraO09HdyztSZcbUz43C+ee9b
|
|
SVMaeOfqq7+jGckQ1Yz7+7v2RN/WXPXZPjci2+2yyJaVMuy+uSJlA2d+pNoVRbeDcSxyTE+TDDlt
|
|
pdRXLTynrHrDOyiyZeVFnY9TjvXJjres71tG8MnJ4Nqt4tp7T1jrV1nRL1x2cvABKAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAHJ49qfD09cNZ97JPX5PPw2uI6j6Vrsl/ux7tfk1mWr7dOM8iLdm
|
|
vfebREefRsWldw7SxqNbWbR7lPesrn3Vteo7dYjDpMGCvfbeXQ0uLlxRLRxROfUc34p6fCHYrXlr
|
|
EejqrjY8uzCYW7MZjdVKqK9VlaxCYrsnYExBMRMJRPZA8/xPHtmpP9W2xx76vhWOInvt/C7ike7N
|
|
vwzE9kcapGfhlevTaFbFo8RqJ5vy8/RoW09ek0msxHfp3dzNoLzp4zUmZpMbT8HJyYJi20X2n0lh
|
|
ZY1li/RaidBF4w2mK3jrHaFGp1lN+tptPp5IjBkid5mIp16TKu0abBPv33vPlM7z+iPdFNcWXU5I
|
|
tkrNce/b1W5db1nTaf3ax9q0fxDW1ebNk2phty1mOu09VOm8W19orEz23j1TwfSeERFuEYMddptW
|
|
d43dvBn21eKJ75KbW+cf/JcTgMxXTb3nbljz+TpcPmc2uyZO1KRtVtGVdi0bx07qJnllsRO6rNTe
|
|
N4XVamsy8mnvPwc3R2jPwe8TPbdlxXNOPSZfhWWpwO85OFzv57qrODkzeHntSe8Sn6Rv0a3EZ218
|
|
8nXekfr1a0ZLVnqx19dWb6demXybOO7lYMvNMdW9S/VVLo0us7tPHdtUtEwJiZU3jq2Jhham8CVG
|
|
PNODNTJXvWd3qcWSubFXJWd4tG8PK3pPd1OB6veLaa89Y61/u2xfxh5c/rsgNHOAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAANLimq+i6O0xPv392rdeZ4rq/pOqnlnelOkIt5F8Z7Wj27I2I6sb25YY
|
|
V1ImY3dbQ08LRc23vZp2j5OJG+XJWle9p2h6HHtbJXFT7OOIpX+7TxT31j5rycdTh+Dpz+XaG/sw
|
|
w18PHWseULN2trBE9UcrJKBhFU7JAQi0dEomegNDUYovM7x3jb5tO1ZvpbaTLtzRExWfWPJ08kbT
|
|
Ex5NXWYYyV5omYtHWJieyeDzuizfRs19Jn6TM7Ru1uMcJxZqTkw+5f4ebqa7SV1MR4tdrx2vEfy1
|
|
axqsNOTLjnLXytVXi3Xj8+nmsxTLM16d5npPyUzpekTtSK+U7vS6vQ/SYmK1vWPS1HOn2dvvvvE/
|
|
tDO5XlcO+LbfHSd/W3o6/BdDOXPTnj3Kz38rS6Wm4FNrRyRzTH3p6RH/AKvR8L4dXSzE3jmtHn5I
|
|
mbfqLV+m4dbLSsZInHjr3iI6zLpYaxS01rHuxHRHiT9mv6s67Vj1aqL6326MrWiYa+/Q54BxPaGe
|
|
XRZpj8MquB4+Xg8zPnB7SX30to379GxpK1xcHiKz5IS8xr8PLPixH2bftLTy05o6dHYyVjLhy0t1
|
|
izjZa3pMVv3iO/qz1G2L+NbSajbNyW7xLsY8kTDz+fJXFqKZN4iZnafi6WHL0iYlStI7OO+7axW2
|
|
crFl7dW9jvE9ULN+J3ZbdFGOy+AYWpEqN7afNXLj+1Wd23KrJVMvCzseh0+auow1yU7WhY4fCdV4
|
|
OadPefcvPuz6S7jol649Tl4AJVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAV581NPhtkvO0R+4NPi2
|
|
r8DB4dJ9+/7Q83Po2NTqLanNbLfvPaPSFDHV66sZ5ET0hRknyW2lTtMyouz0c8usx2n7s7vScKwx
|
|
zc1vu/y85p+maJh6Th+SOWeveXR4/wDLm8v+nX5mUWa9bbrInolmu5jdTNkxYFk2Isr3TuCzeGMz
|
|
+THdEyDDJO9Ja823rt2XWnya946pGvktDXta0ztWu/ybvLE9dkcoOf4GbJPWK1j49VmLh9JtE33v
|
|
Mevb9G7WsW8l1ccREISophiJ2jpDYpijbaOjOuOJ8ujOdqxsgVcsUjaETYvbaFFrgu5lVsm0yUtu
|
|
ryg43H5m+GIj1XcJzePoL4pnrWGtxmfchr8JvfHS1622if3QljzTTLes+qrNjrkiYtCzPMxnm095
|
|
YZJ6boS5teB49Tqscza97VtvWvlv8V/FOF34RrIxTM2xXjelp/eHoeA6XnzReY3ivX/0dfivDcfE
|
|
9HbDbaLx1pb0lOs+jO7K8Lis3cN+0NKcd9PmthzV5clJ2mF9J9GHHVL108dm1SznYr/Ft0tuhLb8
|
|
mNohFbMhLWy0mJ3rPXvDvcO1karBG8/WV6Wj+7kWrvDDBlvpdRGSnbzj1hpjX4z8mOx6UYYstc2O
|
|
uSk71tG7Ns5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZ2jeXneJ62dVl5KT9VTt8Z9W9xbWclPo+O
|
|
fft9qfSHEU1pv48ftYST23ZTDC/p0YtlVuvVjMbM5+LCZjYGWGdrTPxiHY4ffaf3cjTxz1v6xMS6
|
|
Olty2iXVj/Dk8n+ndrkhnGRo1v8AFdW3RCrZ5uiYsqrboncSu508yjmZRYQt50TfowYTbYGVrKrT
|
|
uTZjvukQnYhMIGVY2ZxPVWyrHVCWzXpVXkt3TE7Va+W4K7X3jv1auTNy3jdba0RZpamfroQN7Hk3
|
|
6wr1GTaN2OOJiu6Mu98NvgDi8Wy74d/yZ8PiPAiO2zU4nb6qIn1bugjfFE/ASp1ke9u15mbbRDZ1
|
|
Mb823kx0Ontn1OOkedoJCvT8I03gaKsz9q/WW+isRWsVjtHRKyrhe0XCfpWL6Vgr9fjjrEfeh5fF
|
|
feH0V5Dj3DPoOo+k4a/U5J6xH3ZZ7z3228evytOk7NvFbo0cdols47bSybt7HbddHVqUs2aW3Qnq
|
|
xVeu8LILR3SlZw3V/R8nhXn6u0/pLuPMXjeHT4Zruf6jLPvR9mZ8/g1xrvpz+TH7HUAaMAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAABRq9VXSYJyW79qx6yvmdo3l5viGs+maqYrO+OnSvx+KLeLZz2te1rZL2v
|
|
ed7WneZYWnZl5K72YV1xEyxmeqJljzIEWlVkszvbZp5soN3h2SJz3pP3odCnuWmPRxuERfJrZmtZ
|
|
mtY96fR28kbX3dXj/wAuTyf6bmK+9YX1s0cNtm3Sd4LFY2K23W1s16StiUJW7bp22RW3RluBuruz
|
|
mWEgrmCGWyNkoExKE1QlPmsqRDKeyBjaejWy2W3ttDUyz1QKslvehVqKTNosyyTvELabXptIJpaP
|
|
B39Ia2mz+JGpr51jdZefDx2hzuHZObNq58poJaGtjxJ2+LoaKP8ADRPo5+T3skx5OhpOmC0fBNQ0
|
|
5yTbn+bt8A0u9raiY6RHLVwY62mI6zMvaaHBGn0mPHt1iN5+aYVsACBXqMFNTgviyxvW0bSsAeE1
|
|
mkvw7V2w5Ote9besJx2er4rw2nEdNNekZa9aW9JeQjnxZLYskTW9Z2mJY7zz26fHrrdpbZsY7NGt
|
|
mxjvso1b9NmUwpx33XRO4K7VUTE1nmrvEx1bVo2VWiJE/XY4frY1WPlt0y17x6/FuPM0m+HJGTHO
|
|
1qu9pNVXVYt46Xj7VfRtnXXL5MfzexsALsgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHM4jxOMFJphmJv529Dq
|
|
ZLfjDjPEIx450+K3v2+1MeUOHSOWFc3nJkmZnf4yujpVlqunOeFpV2nctLCZUXRM7MJtsWlRkv3Q
|
|
ky5NmpWt9RnrixVm17TtEQnJabXisRMzPSIew9n+CRoccajURvqLx5/chfOest642OGcIpoOG2w7
|
|
ROW9d72+LQvXevyejcPUU5M+SvpLeOataraw2a0dLbLqTtK1G3Es4lVWWUSoldFtmcXUbpidgXzK
|
|
GEW3TuCUSncnsDFMMLSms9EC6J6FpVzbZE5ALy0809ZbFr9GtfrEoFMzuuwz0Ueey3HbaBLDXe7i
|
|
tMOfwWnP9I+NZbuttvhs1uBRtXPb4SDm3iIvf57N7Dbl0VrS5+XrltEd+Z1Jx7cNms9N4TURRw3T
|
|
+PrcO3WszEvZOD7P6aYiMlvu16S7y1QAIAABxOPcLnUY/pWCv1tI96I+9DtgmXl68Biy7/NtUu3+
|
|
O8HnFa2s0tfd75KR5fFyMWTdhrPHVnX9R0cd21S3Rzsdm1iuqs256wrmGcT0RYSx5d047X02SMmO
|
|
esd49YRE9WcdSXhZ2O1p89NRji9J+cei1xMc3wXi+KZj1j1dTTaqmor06WjvWW+ddcu8XK8BZmAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAMMmWmKu952UZ9XFZmuP3revlDTtzWnmvO8q3XGmfHb9ZanV3yxtWeWn7y4es
|
|
vPNtDqZJ6Ts5mppvdl/XXRMyfGvSNlu/RVvtOzLfoipLT1VTKbSpvfogRkvtDVyZOhkyvQcA4Dzz
|
|
XV6yvTvTHMfvK+c9U3rkW+zvA/D21urr789cdZ8vi9KDb45rejl8Rry6iJ/FV1HP4vXbBTJEfYt1
|
|
+UpiHM295bXsqrO9l8QkZ0lZEqqLeyBZHZLGvZkhIndADKJ3TMoqWQMZ6pjsxll2jsCLSrmU2lFY
|
|
36gieyu0LJk3jbsga0wdqzK20QpyztQGprL/AFMrOE05NLkt6qdVWZxNrSe5o9vWBLiUjnzXn0vL
|
|
q555dHt8HOwV928/1z/LpzXxbYccRvzTB+jucOwxh0dI22mY3ltIrHLWIjyjZKyoAAAAACJiJjaY
|
|
3iXleM8InR5J1GniZw2n3oj7s/8Ao9Wi9a3rNbRE1mNpifNFnVs65XhcWTdt47bnFuF24dm8TFEz
|
|
p7T0/pn0a+HJux1OOrOux08d1ndqY7tillVkzExLOk7yd4YxGwluViJhE45raL0na0dtlWO0+bZr
|
|
1TKi+2zptZGTamT3b/tLacvJjiY3XaTWdYxZZ6/dtPm1zrv1z78fPcbwC7EAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABhkyV
|
|
xUm152iAZWtFazNp2iGhm1Vss8uP3aevnKrNntqLdelI7VRHRnrX/HRjx/tZREVjZXeybW6KbWZt
|
|
pCZ6S08tN7Nmbb7zCrJtyoS5145bSx5mWafelr3tsKmS/o08uXyhlly7RPV2+AcBnPNdZrK+53pS
|
|
fP4ytnPVda4y4BwHxOXV6uvu96Unz+MvVxG0bQRG0bR2G0nHLb2gCUDX12LxtFmpHeazt82wT1gH
|
|
mMN4tWs+rcr2aEV8DU5sM/cvO3yb+O0csLUTSdrLphRE8tlkZI7Atr2ZMazDJVKTYSCawi7Ksq7z
|
|
1QERvLK3ZGPrKbyCrbdnMcsbeaa18/RhvvM7oGEwTG0JmYYTIML22a2e28xELM19oURPNO4lOem+
|
|
n3ZY5+prVnMc2GYU4/L4A0a15cNf6rz/AC6fC6+NxCPOuOu/5tHJTbHj+F5/l1+BYumXJMd9o3/d
|
|
MRXYASgAAAAAAABhlxUz4rY8lYtS0bTEvH8R4ffhmo6bzhtPu29Pg9mq1Gnx6rDbFmrzVsizq2df
|
|
zXkMWTeIbNL7tbXaHLwzUctvexWn3bmPL8WFnHVL326VZ91MfFVjvvVlz79kLrcf2m7j7bNHH3bl
|
|
J2SirLQoy4t1++7G0dBC/RanxI8PJPv18/WG241+alovSdrV6w6mDNGfFF4/OPSW2b1zeTPL1aAs
|
|
zAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAVZ9RXBTe3WZ7R6iZOpzZq4ac1p+UermZMl89+a/byj0Ra9815ted59PQ32hlrXXRjH
|
|
DpCLX6ML5NlNsm/ZRqstfdXzbsZt06sLZNvNB1Za8RDWyZdo7q8udq5Mu/mIMt4md2lmy7JzZuWJ
|
|
dHgfBL8RvGo1MTXTxPSPx/8AstJ1XWpIs4BwSdbeNVqq/URPu0n73/s9hEREbRG0QUpWlYrWIisR
|
|
tER5JbSccur2gCUAAAAPM8Sry8Uyz67fwuxbzVPGsE49XGbvF42V4M0TEL33ERnktsxpk3sumK2j
|
|
admFdPFZ33VS2Mdui2J3UU6LYlFSsN2O5NkCyJ6K7T1TEsbAsxdpReerKkTFGMxvYEz0rsqtbbpC
|
|
b2VT1QEzuwtbaGUxspuJU3neWdKoiu8rq12gCI92YatLcublnzbEz1aOptyZqTuDHLfxN6R0+t5X
|
|
qdJhjBp6UiPLeXl9NSMnEKxHa1+bb8nrlvxUAAAAAAAAAAABTqtNj1eC2LLXeto/R43VabJw/VTh
|
|
ydY+7b1h7ho8V4dXiGlmvbJXrS3xRZ1fGv5rzeHN02bEW3cys3xZJx5ImtqztMS3MeTeGFjqlb2O
|
|
8btql3NpbZtYsnSBLeiWfdTjtutid+ghherHS5p0+f3vsX6T8Fkw181d4lMvEWdnHaGnw/UeNh5L
|
|
T7+PpPxbjdyWcvAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAo1Oprgr63ntAmTqdRqK4K9etp7Q5d7Wy2m953lNrWyWm953mVd77R0
|
|
Za1104xxlN9lV8qnJl2a9s3xUXX2ybsJyRDWtl3YWydEC+2VRkzeW6q+T4tbJm+KRdfK1cmWZnlr
|
|
vNp7RC/R6HU8SycmCk7ed57Q9ZwvgOn4fEXtHi5/O9o7fJaZ6z1uRyOEezVstq6jiEbV71xevzer
|
|
rWtKxWsRFY6REeSRrJxz22gCUAAAAAANbX6aNVpL0npMRvWfSXlKamsRMVvXm+EvZXjmpaPWHzfL
|
|
oNRjzXicfWJ8phfPxFejx72x7xMzK+sXiNoiXlq+Pi6fWV/VfTNqfLJl/WTg9Pji8R70LqvMV1Gq
|
|
j/zcv6yz+lanzzZP1lWpelTET6S81Gp1P/Gyf90s412rjtnyfqql6asREdWM9+jz9eJ6yP8Az7uh
|
|
odZqMt458tpB1JvEViI3/RhzRt13/R1MNaziiZiJn5K9ZNceKZiIiQcu/WekT+iYrWI3lzdTrs+8
|
|
8uW0fJzcur1Np/zsn6g79phVaIeetqNR/wAXJ/3SwnUaj/i5P+6UD0ldonum161h5mNRqP8Ai5P1
|
|
lNtRqJjacuT9Qd22WN5aGeZyZd/KHJy59RHbLf8AVq31Gp/4uT9ZEvS8Lr/vSs2npzRtL1z53wK+
|
|
oza/HW2XJNd99pmX0Rb8VAAAAAAAAAAAAAAcHj/C5yV+l4I9+v24jzj1cLFk8nu5jeNpeW41wmdL
|
|
knU6ev1Vp96sfdn/ANFdTrXG+eq1q5F2LLtbZoY8m8d11bbSydErsYsm+zZrO/zcnBm226uhiyRK
|
|
EtrvCrJDOJTeu8A1MWX6Lqq5N/dnpb5O5ExMbx2cPNTeJb/DM/iYPDtPvY+nzhri/jDy5/W6AuwA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAa2p1UYo5adbz+xbxMlvqJ1OqjDHLXree0ejmzNrWm953tPmTPWbWneZ7yoy5YhjrXXTjH8s75N
|
|
mtkyxt0VZM2/m175N1V03yTKubMLXVXybeYLLX2VXy7eam+b0bOg4VquJW+rry4/O9uyZOq3UjVm
|
|
9r25axMzPaIdvhns1kzbZddM0p5Y47z8/R2+HcF03Doi1a8+Xzvbv+TotJnjDXkt+K8ODHp8cY8N
|
|
IpSO0RCwF2YAAAAAAAAACvUZYw6fJkntWN3k8dfHz2vLucdz8mkjFE9bz1+UOZosX1UzPm0nqI/W
|
|
MYo9FlcPNklfFGeH/NshLGun+Cz6PtHZtVZWlRLS+jxPkRpIn7rdoupHTdA5s6SI+7H6Mfo+32Y2
|
|
+To3neSIiZ7A0IjPXpXLePlMotGW3272t85datKzHZjbTVnsDj+FG/2Y/RlGP4R+jo20u7H6N1Ql
|
|
o+H8I/REY957R+jpfReiK6eOYHLtj2tttH6KrY/6Y/R2c+kjeJiFVtLG24hxpw7/AHY/RRkw9O37
|
|
O99Hrt1YX0tfOBLjcGp4XF8c+u8fs9c4dcVcGemSI61nd3IneN1orQAAAAAAAAAAAAABFqxes1tE
|
|
TE9JiUgPKcX4RbRXnNgiZwWnrH4XPi28PdXpW9JraImsxtMS8pxXhF9DecuGJtgmf+1TWW2N/la1
|
|
L7N7T5e3Vy6W3hsYcvLbqzbO9jvvCzvDR0+XeO7crO6FmGSvRThy/RtVXJ92elvk2rRvDUzU7pl4
|
|
izsd2J3jeBpcNz+Lg5LT7+Pp+Xk3W7js5eAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADs0NTrN96Yp6edkW8Wzm6+LNTq4pvTHO9vOfRoWtt
|
|
1mes95YWvs1s2fZldddOczLPLn2ju0MmebT3YZc2/mpm3qqllN1drsbZIhr3yzvtHf4AsvlYYseb
|
|
V5Yx4KTe0+UQ6nDvZ3UazbJqd8OKeu33peq0eh0+hxcmnxxWPOfOfm0mP+steT/ji8N9mKY9suum
|
|
L37+HHaPm9DSlaVitKxWsdohI0Y22gAgAAAAAAAAAABXnyRhw3yT92Nwef4xm8bVzET0rPJH5d12
|
|
CvLhho3rN9RWs9Z23n5y6O21YhrVYbdGOCfrrLPJRpv863zVS6FS09SvZj3lVZZRdPSqmnSWdrIE
|
|
ebOkK4ldTsgW1WKqd1oMZhEVZyRAImOjGI6rJ7IiATNd46qL02bHkiaxaoNGY2n4ImPgtyV2n0Vo
|
|
Gvlx7x2beiyTk08RPevSVUxux00+Fn2n7N+n5rRFb4AAAAAAAAAAAAAAACLVres1tETWekxKQHlu
|
|
L8InR2nPp43wz3j8P/s5dLveWrFqzW0bxPeJeV4xwmdFec+CJnDM9Y/CrY1xv8qvTZ+WYdbDk5oh
|
|
5zHk283U0eo3jaZZ2N5XYjrCnLSJhOK+8d1kxvCqzSwZvousrb7k9LfJ3nB1OLeJdLhufx9LEWn3
|
|
6e7LXN9Ofy5/W4AuxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAETaKxMzO0Qi9646Ta07RDmZ9VbPbaOlI7Qi3i+c3TPUaqcu9adKfy0722ZXvFa9
|
|
XO1OrjrESxt66ZJmcjPUanlidmhkzTZVfLN5VWvsC2b7R3U3yqrZZtO1esz2h2+F+zWTUcuXXTNM
|
|
feKR3n5+iZLVbqRzNJo9TxHLyaekz62ntD1fDOA6fQbZL7Zc/wCKY6R8odLBgxabFGPDSKUjyiFj
|
|
SZkYa3aALKAAAAAAAAAAAAAADQ4pl2pTFH3p3n5Q33E12Tn1eSfKscsLZ+orS00eJqbW+Lfnu1tF
|
|
XaJnZsz3WpCfsyp00fWSvmPdVYOmSUDd8kR3InoQosy7JmUX7MdwZ17ro7KKT1XRPRAsrO0rYndr
|
|
79V1ZBaQiJ6JgCSIJASwrO07MpV2nqBlrv1a1o2bf2qtfLXaQUTO0sb05o3jv3ZXhjS20xEphW5h
|
|
yeJjjf7UdJWNKLziyRePsz0lux1SgAQAAAAAAAAAAAAAADG9K5KTS8Rato2mJZAPIcU4ZbQZuekT
|
|
OC3afT4NXFkmlntc2GmoxWx5K71tG0vHa/RX0GpmlutJ61t6wrY2xr8dXS5uesN+tt4ef0eaa223
|
|
2dnHk3juyreM81OaFGiy/RtZET9jJ7s/2bdutd2jqKeic3iNTsd8a2h1H0jTVtP2o6W+bZbOO+gA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABje9cdJt
|
|
adohGTLXFTmvO0fy52bJfU23t0pHaqLeL5xdK9Rnvqb+cUjtCi94xxvK3JetKuHrdZvaa1ljb10y
|
|
cnIs1Wt3naJc++TmVWvMz1YWybfMGdsm3eWek0mo4jm8PT0mfW3lDf4V7P5tdMZdRviwfvZ6/TaX
|
|
DpMMYsFIpWPTzXmf+steT8jn8L4Dp+HxF77Zc/4pjpHydYGjC3oAAAAAAAAAAAAAAAAADG9opS1p
|
|
7RG7zszN6WtPe0zLua+3Joss/wBOzhzG2OsL5+IrY09dsSyYRijbHEMvOChb7KjF0yS2LQ169Mso
|
|
S24noyrPVXWejNVKbTuw3T3REdQWU6LYlVvsyiUDPfqupPRr79VuOQX1lZEqoZxIMksd0gT2VT0l
|
|
bPZVbuCaW8i8bwr32WxbcGnkjaZa9p2ndv5qbw5+aNugLItF6TEtvTX5sMb969HMpfazc0d9stqe
|
|
vVZDdAQAAAAAAAAAAAAAAAADV1+iprtPOO/2u9bektoB4TJTJpNRbHkja1Z6uto8viVht+0HDvpG
|
|
H6Tjj6zHHvbecONw7Ltfkmeqmo6Ma69DXbbZTkr1mGWO3RneOaGbZRoM30fVzSelMnT83aef1FZ7
|
|
x3h1tBqfpGnjmn369LNc3sc3kzy9bQCzIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAa+q1dNNXr7157VhGp1Xh70x+9f9ocy283m1p5rz3mVbrjXHjt91lz
|
|
5c9+fJ1nyjyhdM8lZlOOIiqrUXikd+kMreunnI5XEdX4dZiZcG+XmtNl/F83PeeWWHDOGanieSKY
|
|
q+5H2rz2hMzWd1Iqx1yajJXHhrNrW6REeb1nCPZumn2z62Ivl7xTyr/6uhwzhGn4Zj2xxzZJ+1kn
|
|
vLoNJnjHW7TbbsAszAAAAAAAAAAAAAAAAAAAAaPFrbaSK/itEOXt0rDf4xb/ACa/GZacRvaF58Q2
|
|
IjasQnzPIhCU92tMbZGzHmotG10C6nZkwpPRmipIllEbMIZIE7solgmJBnCyk9VMM6z1BtVllEqK
|
|
z0WRILYlluriWcSDJVbusV27gwInaSWM9ECyZ3hqamnSWxFmOSOaqRx725bNnSZNs9J+OynVY+WZ
|
|
YYr7TE+nVaIr0Ais81Yn1hKAAAAAAAAAAAAAAAAAABExvG09peU4nov9n66L0j6q/WPg9Y1OJaON
|
|
ZpL0+9HWs/EWzeVz9PbmrEtnyc3h9reHy26TWdnSr2YX6657ijLXpLX0+onSamL/AHJ6W+Tbv2aW
|
|
ekTv16JzeI1Ox6KJiYiY7Slz+E6jxdN4dp3vj6fl5Og2clnKACAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZ2jeQRMxEbzO0Q08uqtkma4ulfO3r8lefUePMxWf
|
|
cjy9WvlzVxV6T1Z61/x0Y8f7Wc7Ur1lqVy+LqOWJ2hp6rXddon5rOF1tfmz5OkT0qzb8dWbxjp1c
|
|
biuuilJ5Z6r+IcQrixzEy8zl1E6rNt1tMztFY81sztU1eRucN4ffi2p5esRM72n0h7rS6XFo8FcO
|
|
CkVpX082nwXh3+z9FWLxHi36328vg6TZyW9ABAAAAAAAAAAAAAAAAAAAAAADj8Unm1tK/hqppHvw
|
|
y1k8/EMk+m0GOPeafiFpCZYwolnXspvHvLa9mF46gmnZmwozRUiUCBKYYsoBLOFbKAX0llEqqyzi
|
|
QXRLOJVRLOOwLIljZMEgrlhKyYYTAK5nZPN0RZjugUanHzVlz6xtLq361c+9eXItPpXX0dubTU+E
|
|
bL2lw2++O1fSW6m/VYAISAAAAAAAAAAAAAAAAAp1GbwcfTreelYEydcuMcRrM/L9nnlsV6wqpi2r
|
|
tv133mfWVkRyRtEdGFva7MzkYZNoamWN4bV4mYa9qztKIujhVppxGI8r1mJegeZpknBqKZY+7L0t
|
|
LRekWrO8TG8Ns/HJ5ZypAWZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAADS12fp4VJ6z9qVuq1HgUiI+3bpDl589cOKZmevqprXPTbx477rDJlrhr1nq4+s182tMRP
|
|
RqaziXiZJrWekNG17ZbxWJ336M5LXRbI3dLTJrs07RMY6fan1dHLrowY+X7MVjt6N3R6Kul0EbWm
|
|
s7bz8Z+LnabQX43r7Y53php/mXj+Dnv0f1JO1x/8ZxbUzj02O15mfLtD13AvZqnDds+pmMmo26el
|
|
XX0Wh0/D8EYtNjilY7+s/NstpOOTW7QBKgAAAAAAAAAAAAAAAAAAAAAADG88tLW9I3BwJtz6nNf1
|
|
vK/DHVqYJ3pzT5y3MPZeojOWMQylEKpTVjZnDCwkqzYQyRRICATCITAJZQxhMAshnEq4ZQC2srKq
|
|
qrIBZCWNZZgwswmFloVyCu0dFcx1WyrtCBhv5NTPHXds2U5o3hIz4ffbPt+KHUcTSW5c9Jme0u2v
|
|
VYAKpAAAAAAAAAAAAAAAAYZctcVOa35R6tLrltN795/YvknNqrfhpPLH92V5isd9mWq6fHjk6rn0
|
|
ZxG8KK5Jm/wbVZiYZtqrmkqL023bkxvCiY3lJHNyRG81mHS4Rn5sNsNp64+3yaWaNrzOzHBl+i6q
|
|
mT7s9J+S+ay8mex6EIneN47SNXKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAImYiJme0JafEs3h6fkidrZOn5eaLeJk7eOdm1Hi2vmtPTry/CHmOJcUvmvOPF1n09Pm
|
|
6HF9ZGm01qxO3R5vSY7XwzmzTy47zzTEd7en5Mfvt2/PURWdo3tvPrPlKymbktFqTtMTvHzbOLDG
|
|
f63JXbFX7FdnoODcDprZpq9TjiMMTvSn4vj8l5fxnrk91saPSa7i2hpOfbTVt5x1m0fLydzR6PDo
|
|
dPGHBXasd585n1lsRERG0dIF5OOe6tAEqgAAAAAAAAAAAAAAAAAAAAAAADX11+TRZrf0y2Gjxe22
|
|
gtH4piP3TPpXKwxtjhuYo9xq442iIblI2pC1RET2ILd9kxCqRjZmwlCSEohIJAQAAJZISDKGUd2M
|
|
MoBnVbVVCyAWVWeSuqyOwIlXZZKue4MJV2WWYT2QKbKL9YlfdRdIo35b7/Hd3KTzUrPrDh27uxpb
|
|
c2mpPwX/ABX9XAKpAAAAAAAAAAAAAACekTIp1eTwtJmv+GkyJn1oafeazbfpMzLR4jq/o8b823zX
|
|
6XNF8ERCvTcNpxLV5LauvPhx9Irv3lhztdtv8TtaWLicXrt03jzjzb2k1nid56ty3s/w+a7Uwzjn
|
|
1raejlarhmbhl/FpbxMO/fzj5p/ixSeXOvTtRfeI280ZI26tfDm3pWe63LaZx7qtGvniJ6tPLvOK
|
|
fOa9WzbJvTbza02jl3n5SSljscK1MajSxWZ96nSW88xw/VfQ9XMT9nfa3yemid43jtLeXsce88qQ
|
|
EqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADia3UTm1l4j7OP3Y/u
|
|
7Vp2rM+kPJW1PhYcmS0+9MzKm/jbwz31weMzbV8UppazPL9q0/BF4rk1GLDSNqxPWPhCnHmnNrtT
|
|
qPKteWPm6U6OdHaZvO+SaRNvhv12Ub/q3FhtrNVj0uKOt56z6R5y9zix1w4qY6RtWsREOJ7L6OKa
|
|
S2rvX6zNM7T6Vh3mmZyOfya7eACzIAAAAAAAAAAAAAAAAAAAAAAAAAAczjVvqMVfW/8AZ03I41bf
|
|
Lp6/OVs/UVrY47NyOzUxd4bUJpEbb3Z7IiOrKIVSjZhMLJYyhKIgmGUQSDESIEbJEgQmCITEAmGU
|
|
IiGUAyhZVhDOoM4Wx2VQtqBKuyyWEgqlhKyyuyBVaGtkbNmvk7A15l1eH2300R6TMORPSXT4ZO+O
|
|
8fFefEX63gEAAAAAAAAAAAAAAAq1WPxdLlp+Kkx+y1Fvsz8gjhaDauGK8sx07y3OE3m1tT6RaP4c
|
|
vU6yMNKUx73zT0ilY3l2eF6a+m0kRl/zbzz3+Ez5M8z26fJruW6wzYq5sV8d43raNpZjRzPPaTmx
|
|
5b6bJ9rHO3zb2WJ8GWPEscY9bgzxH2t62n19GWW0eHOzHU5XbjXZ1x8WTnz2iZ7S2M1IjH2+LX0V
|
|
KTqs8zO9ot0j8nUthi1J3UaOFMTfLFo6xMbS9BwHWTqdHOO8+/hnln5eTjYMFo1WTH5VnePzXcIm
|
|
2k4zlpPSmXy/hfF5eMfJns69OA2cgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAADG/2LfJ874rW845mubliY7bPoto5qzHrDz0+yePNF41OotaJ7RWNtpV1OtfHqZ715fhu
|
|
j8adNpcVfeyzE2/vLuanhOu1nEctIxTTFa/+ZPbZ3eHcF0vDbTfFE2yzG03t32+DokynXl9+leDB
|
|
TTYKYccbUpWIhYCzEAAAAAAAAAAAAAAAAAAAAAAAAAAAAcXjE/4zDH9M/wAu04XF5/3jj/0f3Wz9
|
|
RUYmzDWxS2I7FSyjuzY1ZKpRKEygEwiWUIkGIk2QJNhKQhMIhkCYZQxhlAMoZwwZwgWQshVCyATL
|
|
CWc9ldpBhZXLOVdpQK7NfJPRdaWvknoDVvPvOnwuel4+TlXn3nS4VPvXj4QtEV0wAAAAAAAAAAAA
|
|
AAAAAVV02CmTxK4qRf8AFFeq0AAAanEsfPpZmO9Ji0NDLfkwdOsulrumiyzHlVzJrz4Ovoy26vB8
|
|
cTBa9NffLtMY77Rv8Yegx5ImkKdJoY1HC81Y+3OSbVn0mGGkmbY45u6tnrrTOu2xGO0RxCd+nNVj
|
|
qKxTV1vH2pjaGtnyzXXYdo96ZmGXEMk15b7/AGZiVerWPTYckZcNbx5wzc7hGbnxXxzPWk7x8pdF
|
|
0S9jh1OXgAlUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAcPjEf4/FP9H93ccXjMf4vDP9Mx+62fqKrx+S+GvibEFSsqyYwlVK
|
|
ZYsmIMoRKYJQIPIEiQ2ATCUQygCGUIhMAyhnDCGUIFkLIV1ZxIMpVWWSrsCuyqyyyq09ECq8tfJK
|
|
66jJ2Bp5J6upwn7dv9Lk5J951uE/av8AJaIrqAAAAAAAAAAAAAAAAAAAAAAq1Mc2myxPnWf4cmtu
|
|
XT9fR0tffk0WSe28bfq5Wbamm3326MtunwfK6PCv/AxPraZ/dz9PO97/AOqf5dHhdZrw7Dv3mOb9
|
|
XOxRFM+avpe38mvkPHf/AFWlrKba7Tzt99ZxKkfR7euyNXMTrtPHfa0z+zPiM/UR8Zj+Wbdu8HpN
|
|
M2bfzrV13M4dO2pyR61dNvj44/J/oAWZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADj8bj63BPzdhyeNx0wz8ZWz9RWri7Nmv
|
|
VrYu0NmqaRZHZlDGGSiwxZSgCEkCBCQSCQBMJRCYgEsoYx3Z17AlMIhlCBnDOGEM4AlhZZKq4KrK
|
|
7LLKrIFN2vdfZReAaObu6/CO9vk5OePR1uEd7fJeIrqAIAAAAAAAAAAAAAAAAAAAAGtxCk5NFliI
|
|
3mI32+XVyNTyZOHTee946PQKPoeDffw4777eW/yVs60xv+ZxOnr4Okx1t05KRv8Ao41Z5q3yed5m
|
|
XY1szXRZ5jvFJ/hxItP0aOSN9q7yrtr4f2tHFM5+KT16Yq/vK/iGSbXw4vO14UcPx5MGfNbPG18m
|
|
1oj4THRsTw7VanPXVYpi3gzMcnrvCnG11JOupwuN8+a3pEQ6jT4divjxWnJExa09pbjbM5HHu90A
|
|
JUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAHM41H1GOf6nTc/jEf4Ws+lls/UX45uGekNujTwdm5RNIthKIZKLDFlsiQIShIC
|
|
EgCUJ7AmGTGO7IDzZQhMSDJMMYZQgZwzhhDOATuqssmVdgVWVWWyqtCBTeVF19lF+wNLNG7q8I+9
|
|
8nLyupwnt+S8RXUAQAAAAAAAAAAAAAAAAAAAAAAItWL1mto3iY2lyrcLyUxzix2ia2nvPeK+jrCL
|
|
OrTVnxpanhuPPemSs8l6RtE7dJj0ldpNP9GwRSZ3neZmV4cR/Vs4AJQAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANHi1d9H
|
|
M+kt5ra+vPoskfDdOfqK4mn7Q3aNHBPZu0W0RdDOGFWcKLCJZeTGQQlCQSgASBsCYZQxhlAJTAmA
|
|
TsmAgGcM4YQyjsgRLC3VnaVcgwsrt3Z2V2QK7tbJ1bN5a9waeWO7p8Knt8nNyebpcK8vkvlFdQBA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAK9RXmwZI+ErEWjesx6wQeZwejeo0cccuW8
|
|
elpblJaaRGxVnCuss4ZrMvJEgCAASISCQIBlCYYpieoM0wx8k7gzIRueYM4Z79FcSy3QEsLJmWFp
|
|
BjaVVpZWlXMoGNmvkXXlr3kGtknu6XCf7OXkl1OEdl8orqgIAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAHmskcmtzV/rls0U62OXiWX4zErcc9GmkRfWVkSqqziWayxCPIANwBIhIJSxS
|
|
CRG6dwZwlhEs4BluMdzfqgZxLLdXuy3AmVdpZTKuZBjaVVpWWV2QlhZRdfZRcGpl7urwfrzfJy8r
|
|
rcH61vPyWitdMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHA4nHLxKZ9awnH2ZcY
|
|
jbW459aq8fZpfiI2IZwrqzhmsz3Ebm4JN0AMhCQSIASndiAziWUSriWcAyRujc80DM3RCfIETLCW
|
|
UsZEsJYSslXZAwlTddPZTkBp5e7r8Gj6rJPxhx8k9Xa4PG2C8/FaK10QAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAcfjcbZMFvnDWx9m5x2PqcNvS+zSxT7sNPxH62YZQwqzhRZO6UCB
|
|
KUAJTux3SDIRuAncQAmJZRLBMSgZ7iIAZRKd2DICUSlAljLCYWMLIFVukNfI2bNbIDTyT7zu8Ijb
|
|
Sz/qcG/2nf4T/wCE/wD2WnxWt4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHL9oL
|
|
+Hw2cm28VvEuPptfgyVj6yIn0no7/FtJfW8NzYMe3PaPd39d3iMug1WktNc2C9dvPbeP1aZ9xF+v
|
|
T471tHu2iflK2HkqWmvaZj5Surqc9Ps5bx+alTHqYHm68S1Vf/NmfnC2vGNTXvyT84Ql6A3cSvHM
|
|
sfaxVn5Ssrxyv3sM/lKB1xza8bwT3pePyWV4tpZ+/MfOEjfGrXiGlt2zV/PotrqcN/s5aT/+wLRj
|
|
FontMSlAlKEgndO6IAZQljDIEgeQljLCzOVdkCu/SGrkbF56NPNeKxMzMRHxENe0+89DwuNtHHzl
|
|
5PJr8NcnLW3Pbf7r1nCZm2gpae8zMrz4i/W6AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAETETG0xukB4HVaeMHEtRi26RedvkyjBSfX9W77QYvC4xz7dMlYlrU7M929dWJLFc6aPK0q
|
|
7YLxPS0S22FlP6q38Zac0yR92s/KVc3tHfFf8tpbcsLRvB/dR/8ALLVnU0r9uL1+dZI1mnmdvGpv
|
|
6TOy6ym+Oto2tWJ+cJ/tW+KLK5KW+zes/KU7tG+h01p64qx8Y6NXNo6Y+uPJlp8rLf0rfG7MXtHa
|
|
0x8pZxqs9e2a8f8A7Oj7HaTHn0+f6RWM23LETfr6vRW4PoL99NT8ui7F4+vEdXXtnt+fVbXjGsr/
|
|
AOZE/OsPS29nuH27YrV+VpeV9pdPXhOtw49NG9Mld55+vXcTPd42I47qo7xSfyWV9oM8d8VJ/VxM
|
|
d8l46xWF9cV7en6o/qLfxp2I9ob+eCv/AHMo9op89P8A/wBORGmyT5R+qfo2X8P7n9Q/jTsx7RR5
|
|
6ef+4/8AuHftg/8A6cWcOSO9J/WEbWr3pY7Efzp2Lcfv5YK/9zWy8d1E/ZpSv5Oba1/+Hb9lc+LP
|
|
bFt87I7E/wAabWbiurvEx4nL/pjZzc2bJkn372t85ZXx55/BX85lucC0vPxnTxlnnjm32mOiZqUu
|
|
LJ2p4TwnVavNWaYbRTfre0bQ99pcH0bT0xb78vmtiIiNojaErMwAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAHnfarF7umzRHaZrLjYrdIen9ocPi8JyTt1xzF4eUw23rCm3R4r6bMy
|
|
wt6kdTaWLdjswmNoZontsCm0K5XWjopnuDC0dGpqG5bs08/daKV672MjbSaif6oh6Z5f2LtvptRX
|
|
0tEvUN3Jfo8f7cYve0eX4zV7B5z20xc/C8eSPuZIRficfXlcPaG7ino08HWIbePpLF2NuiyOyrHK
|
|
3fZFSwuovHVfaVF4QK5YWTM9UT0EKry6Ps1Tn4zjn8NZn9nOtLseydObiWW34cf918fWfk+PYANn
|
|
KAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAq1WKM+ly4p+/WYeBxTNd6zG0xO0
|
|
vobw3FcP0bi2em20Tbmj5Srr418V9sa2Z7qKyzi07MXUylhaU7yjqhLCeiq3ddaFNxFYW7NLNG8t
|
|
zya+WO6Va9J7FW66mvwidnrXiPY3Ny8RyUn71Jj9Ht3RPjk19HK9pMHj8D1ER3rHN+jqqtTjjNps
|
|
uOe16zAifXzfTz7kNyndpYazS9qT0mszDdoxrsi6m8LazMq6zDOsq1ZEyrt1WWlXaUCqyq0rbKbi
|
|
Fdp6PReyFd8uqv8ACsfy83aXrPZHHto89/xX2/SP/dpj6y8vx6EBq5gAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAB5n2q03LfDqqx39y39npmlxbS/TOG5se29tuavzgWzeV4mtui2
|
|
O3RRSY2hdVhqO2MvI36iu9lUsrSrvDHn6spnmSiq5jooyV6tq1VV69RC32byTh43h8otMx+r6I+Z
|
|
aK/g8TwX7bXh9Mid4iW+fjl8n1ICWb57xLBOm4zqse20Tbmj8+qKdnS9q8PhcTw5tumSm0/OHMxz
|
|
0Za+uzx3sX1t0Zxurr1ZxvspWiZYWZbsbT0QK7KLrZVZJFaqt5vbezNOTg9J/FaZeJns93wCvLwb
|
|
T/GJn92uGHldIBowAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADuAPA67F9H4l
|
|
qMW20VvO3yRWW97T4fC4rXJHSMtI/WGhVlue3b473K2KzMML4+62tujG9pnozXaOSOVFMnVbmq1t
|
|
trJRW5E7wwvUxTvCyY6CHOt7moxz6Wh9PxTzYaT61h8x1MbZK/OH0zTf+Fxf6I/htj45vL9WgLMn
|
|
mvbPFvocGWO9L7fq85p5maw9d7VYvE4JkmPu2if3eW0+PasdFNOnxfF1Y2hlykRsmY+LJ0MZjZXa
|
|
eq2eyi8oQTO0KLdZWzPRjWu6VaqtHR73g0bcI0sf0Q8Nkq93wqNuFaWP+XDTDDytwBowAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAef9q8HNpcGaI60vtPyl56k9Iew49j8ThGe
|
|
PwxFv0l4zH2U26fDfTYiyJljvsjf4sm6vJ1hrXjq2MkqLdZEVbgbMx0auGdmzNt6iHN1Ub5af6of
|
|
TdPG2nxx6Vj+HzaaTm1+nx/iyVj930ysbViPRrj45vL9SAuyc7j1efguqj+jd4/T33rD3HEcPj8O
|
|
1GP8WOY/Z4TTT7sKadHhbcsZnaCJ3TPZk6VdrKbTutmP0U2nqgrGOsr8deiuI2X09EqKM1dt3uuG
|
|
f/jdN/06/wAPE546S9rwud+Gaaf+XH8NMMPK2wGjAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAABrcRp4nDtRWPPHP8PCYusPoWSvNjtX1iYfPuWaXtX8MzCuvjfw32siu8ptXoxi
|
|
0wy5t4YulReqmazu2skbquURWFInddM7VYRGyL291KFnCcfj8e0le/Lbmn8n0N4b2Ur4nHLWmPsY
|
|
5e5a5+OXyXugBZmiY3iY9Xz7NjnTa3Ph/BeYj5PoTxftFg8Hjk2iOmWkW/Psrr418V5WrWd2faFc
|
|
V2jdnEMXWxntupmN7NiYU27iWML6dVMVnddjgVqMsdHr+CW5uE6f4Rt+7yuSsTDv+zWXn0WTHP3L
|
|
/tK+GHl+O0A1c4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8Dn93W56/wDM
|
|
t/L3z59qp24jn+OS38lnpr4r7ZxHQ2TEstt3PXUrt27K57rr1VT0BjKnJPRbMqMs7QlV2fYvHvrd
|
|
VknyrEfu9m8f7FZI8fVU85iJewbT45NfQBKo817W4eulzxHaZrL0rje09ItwqbfhtBVs3leai8RD
|
|
KLw1sduesL606dWFdsZT1jdhNeq6K9DlhCVUU6s4jZnt1YzAhnM71dH2bycmszY/K1d/0c6OzY4R
|
|
fwuK4p8rTstn6z8k7HrwGzkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHz3
|
|
Vxvr80/8y38voTwGpj/F5/8AqT/JfjTx/WVeyY6FPspc9dZPVXaOq2WEwIUTVRmjo2rNfLHRI3vZ
|
|
DJycXtX8dZh7t879nsnhcbwz23tt+r6I2nxyb+gCVBzuPY/E4PqI9K7ui19fTxNBnp60n+Aj5/pJ
|
|
3jZu1aOnnltMNussdfXbm+l3ZM9URHREdZVXTuT1Nk7boQiOkJw28PU47/htEp5eivJPLMTCZ9Vv
|
|
x7mJ3iJ9UqNHk8XR4b+tIXuhxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD
|
|
weqjbWZ4/wCZP8vePCaz/wDIaiP+Zb+UX408f0r9lOxWOifJhXWjfyYWllPRXYQxnrCrJHRd3YZI
|
|
6A1NJecHEsN/S0T+76bE7xE+r5dk93LW3pL6ZpMni6PDf8VIn9m2fjm8s9rgFmQxvHNS0esbMiew
|
|
PnHLyai9fS0w2aNfUTtrs3+uf5bGPqy068fF227KtSsdFlKqNGMV6myyY6sbdIQI8tlOWOi6Jhhk
|
|
j3RD0vA8nicMx9etZmHRcT2Zyb6XNT8N9/2dt0T449T2AJVAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAHhdfG3E9TH9cvdPEcXjk4zqI/q3L8aeP6xr2TsxpLOekMK6mFo6qpXSrm
|
|
OqBixvHSVmzC4OfqK7S9/wAByeLwbTW9K7fo8Fqo6Paeyl+fglI/Da0NcMPK7QC7AAB8313TiOf/
|
|
AKk/y2MHWrX4jG3E9R/1Lfyv0/aFNOrHxuU7LI7MMayGTVlHWUXhNe6Z6wIUsb9d1m20q7dkDpez
|
|
N9tRqKT5xEvRvKez9+Xis1/FSYerb5+OTyf6AFlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAB43j9eXjN/jWJ/Z7J5L2mry8Upb8VIF8f6aGOey2eynHvOy7bowrrYSxZSwQJ2YXZ
|
|
92N4BoanrEvVexmTm4blr+HJ/aHltRHSXofYm/1Wrp5RaJaYY+X49WA0c4AD51xONuKan/qW/lbp
|
|
+0MOLRtxbU/9SU4J7KadWPjep2WQrr2WRPRk1TvsndXMpiRCb9FNu0rbTuqvKBscCjfi9PhWZeue
|
|
V9n434rafTHL1TfPxy+T/QAszAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHmv
|
|
avHtfTZfnV6VxPajHzcNrf8ABeJFs/XnMcr4no18c+6vr2YadkY2YM57sEDLyY37Mo7MMnYGlqO0
|
|
vQ+xNfqNVb1tEfs87qZ2rL0/sVX/AHdnt65P7Q0wx8vx6UBo5wAHz/jUbcX1PT78qtO2vaCnJxjP
|
|
8Zif2amnnspp04+OjWejKJ6MKdmcMmyJn4m5ZHzEVPMwtJv0VZLbQDqezcb8RzT6Y/7vUPM+ytZt
|
|
n1OTyiIh6Ztn45N/6AFlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABocbxeLw
|
|
nUR5xXm/Rvq8+OMuDJjntaswEeBxT0bNZ6NatZpNqz3rO0rqsdO3PxlaWEMpY+aqWXkryT0ZT2V3
|
|
7A0dVPuy9f7G124NM/iyT/Z4zWT7sw957MYfB4Fp4/FE2/WWmGHldcBowAAeM9qKcvFeb8VIly9P
|
|
0nq7ntbTbVYL+tJj93CwT76unR4/jo0nozhhTsy3Y1sWljM9Ce7HyQIm3RRlttVbaWrnt0Sh6n2U
|
|
x8vD8mSfv3/h3XN4Bi8Lg2nj8Uc36y6TeOPXugCUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAPD8RxeBxXUU26Tbmj8+quro+02Lw+I4ssdslNvzhzazvDPbq8d7GW7Dfqz2VzG
|
|
0s2qd+iu/Zn5Ksk9BVztX1mI8930zh2LwOHabH+HHWP2fNYp4+vwYvxXiP3fUqxtWIjyjZtj45/L
|
|
faQFmQADzftfj3w6fJ6WmHmsP23rvaqnNwqLfhvEvIYZ+sV038bo0noy36MK9oZQxrdMyrlnMbMZ
|
|
QKrS1M07zEestq/RRjr4utwY/wAV4j91p9V18fQdJj8LR4ccfdpEfsuREbREJbuMAAAAAAAAAAAA
|
|
BAJAAAAEAJEAJQAJQAJEAJQAJQAJEACUJAQlAJEAJQAJQJAAAEAJEAJBAAAJAABAJEJAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABwvanDzaPFmjvjv8A
|
|
tLztJ3h7HjGHx+FainnFeaPnHV4vFbeIU038VbHeGF+kso7Mb9mTdhKnLK3dRm7SIrHhGPxeP6Sv
|
|
9cT/AHfSnz72Zx+J7Q45/BWZ/Z9BbZ+OXyfQBZQABzeP4/E4NqI9Ii36S8Ng/wAx9C4jTxOH6ivr
|
|
jn+Hz3B/mQi/GvjdCnWNlsdI2V07LIlg6USrt2ZzZXMoFV+zPhGLxeOaavpbm/RVltEN72Yx+Jxm
|
|
b7dKUmf7L5+s9/HtRA2cqRACRACRACRACUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAACQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQCQQCRACRACRCQBCQBCQB
|
|
ACRACRACRACRACL1i9LVntMbPATTwdRkxT3pea/u+gPE8Xx+DxrPHlaYt+qNfGvjvtXXsi0dOrKk
|
|
dEXjZg6VMtbP2bMtXUdpEV0/Y2nNxbNf8OP+727xvsXH+N1U/wBEfy9k3nxyb+gCVQAGOWvNivX1
|
|
rMPnGGOXNNfOJ2fSZ6w+dZKeHxDPX8N7R+6L8a+L63KdoZ7q6zvEMpnowdKJ6ywmWUyqvIKM0vQ+
|
|
x+D6rU55+9aKx+TzWa36vbezmDwODYenW+95/Nphj5L6dQBo5wAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAEiAAAEoA
|
|
AAAAAAAAAAAAAEAkEAkRuAkQbgkQAkQAkQAkQAl5T2nx8nEMOT8dNv0l6pwfarHvpcGWPu32/WCr
|
|
YvK4mOem6b9mGKd4Z3idmFdka0y1c892zfpMtLPaNpEV6D2Kj/Eauf6YeweQ9ieuTVz8K/3evbT4
|
|
5NfQBKoAA8FxCvJxrUx/XMvevD8Zry8fz/Haf2RfjTx/6RSOnRMyypHu9kXjowrqVSrvPRnZVl6V
|
|
kK0775MsUjvadn0nT4ow6bFijtSsVfPuFYvpPGtNTy54mfy6vorXDm8l9pEC7JIgBIgBIgBIgBIg
|
|
BIgBIhIAgBIhIAgBIgBIIBIAAhIAhIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJAAAAAAAAAAAAAAA
|
|
AAAAAAAAABAJQkAEAAAAAAAAAAjc3BIjdG4Mkbo5kcwMjdhzHMDPc3V8xzAs3N1fMjmBZubq+Y5g
|
|
Wbm6vmOYFm5ur5jmBZubq+Y5gWbm6vmOYFm5ur5jmBZubq+Y5gWbm6vmTzAz3N2HMnmBlu5ftFTx
|
|
OEZJ/DMW/d0t2rxKni8N1FPWkiZ9eS08e7Cy8dGGn6UhZaJljXZGnmc3UT3dPP2cnUT78xCIV6j2
|
|
H/8A9c/6f7vXPI+w8bU1U+vL/d63du5NfUiDcVSIAS8b7RV5eOb/AIqRL2TyXtNX/e2KfXH/AHlF
|
|
+NPH/pr4+2xcxx0hFpY11K7R16KM32ZWz3UaidqSgrc9kcPicWyZJjfw6T+727y3sXh2xarN+K0V
|
|
h6lvPjj3e0ASqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJQAAAAAkQAkQAkAAAAAAAAAAAAAAA
|
|
EgAAAAAAAAAAAAAAAAAAAAAgAAABKDcAN0bgkY8xzAyRux5kcwM9zdXNkTcFm6OZXzMeYFvMibKu
|
|
ZHMC2bo51U2RuC2bom6rc3BZzom6sBZzI52ADPnOdggFnMc6skFnMc6rc3BbznOp3RzAv50c6nml
|
|
HMC/nOf4qOY5wX85zqOc5wbHOc7X5znBsc6edr85zg2ec52vzpi4NjmY5bROG+/bllVzsNTk5dLl
|
|
n0pP8BHmMHWNmzt0aum8obm08vVjfrtnxztR0mXHzTvaZdjVRMTLkZo6yiFen9iZ2pqY/wBP93rN
|
|
3kPY+/LfPX1rE/u9XzN3HfqzdO6vmTuIZ7m7Hc3Bnu8t7TR/vHBP9E/y9Pu837SV31umn+if5Rfi
|
|
/j/01MMb1hjkrtKzBG0bMsmOZY11tOYamr6Und0LUc7XT7u3rJPqL8er9lcPhcFpbzyWm39v7O00
|
|
+FYvA4Zpsc94xxu227jv1IAgAAAAAAAAABKAAAASgASgBIgBIgBIgBIhIAAAAAAAAAAAAAAAAAAC
|
|
UACUJAAAAAAAAAAAABIAAAAAAAAAAAAAAAAAAAAg3AEbomQZbo3YzLGbAz3RNlc3YzcFs2YzdVN2
|
|
M2Bdzom6nmNwW86JurTAMuY3REJ2BB1ZRVMVBhsbSsiqeUFXLucq3lTygp5TlXcpygp5TlXcpygp
|
|
5TlXcqOUFXKjlXcrGYBXysdlswiYBVMdUTCyY6sZBWxlnMMZgGLGZZSwkDdHMiWO4MuY5mEyjcFn
|
|
N1OdVzHMC3nTzqeY5gX85zqOZPMC+Lqdbk20eb/RKOZr8QybaK/XvtH7iZ9aGlp2luzT3fg19NHS
|
|
OjbmPcYX67XH1XSZ9XIzRvMuzrK7zLkZYmYnciunb9lZ5dTk+OP+71cXeP8AZnJ/ip2nf3J/l6iL
|
|
/Fu5L9bMWZczXi6YuIbEWTzKIuyiwLt3nuO25uI4a/hx7/rLuczg8TicvFLbfdpEK6+NPH/phhjo
|
|
stLGkctUWnoxrrU3j1cnWTzZq1jzl1clo5Zcu8c+txR63iP3Tn6pv4+g4o5cVI9IiGe7CJ2iE7t3
|
|
GyN2O6dwSINwSISAlAAlACRAAlAAlACRACRCQAAAAAAAAAASgASISAAAAAAAAAAAAACQAAAAAAAA
|
|
AAAAAASAAAAAAAAAAAAAAAAIAAAQCAJljuljsCJlhMs9mOwMJYys5TkBVsjZdyHICrZPKt5E8oK4
|
|
qmKrOVOwMIqyirPY2Bjyp2ZbAI2NmSARsbMgEbI2ZAMdjZICNkbMkSCNmOzJEgx2YyzljMAwlhKy
|
|
WEwCuWErJhhMArlhLOWEgxljMpljIImWMyTKJA3N0IBO5vux3NwZbnMx3NwZczT4jf3MdPW27a3a
|
|
fJOq1XNP2KdIRfi+J2trSYfcjeF+Wm1OicVeWIiN9kai8xjY12ORqultnI1Ecsujq79XP1FovWYI
|
|
rTgeq+j8QrWZ+3Mx+r2UXeC0WG2Ti2kiN5mL807eUREvbzbaejefHJv62Iv8WUXa0WTFhVtRdlF2
|
|
rz9WUXBtc7jR9dqc2T1ttHyhvZMvJitb0jdq6XHNcNenWVN3028U99WRj6Kb02be3Tq18/SN2Lpc
|
|
3UdN9nOmZrqKX/DaJ/d0svvTLRzV3jomK6+Pd1vvWJj0ZczT0mXxNJht60hfFnQ4qu3N1cWTEgs3
|
|
Tur5k7gz3N2O5uDM3Y7m4MtxBuCQASIASIASAAAAAAACRCQAAAAAAAAEoSAAAAAAAAAAAlAAlCQA
|
|
AAAAAAAAAAASAAAAAAAAAAAAIASgAAAEJAQJQCNkbMgGOyOVnsAw5TlZ7GwMOVPKy2NgY7GzIBGx
|
|
skA2AAAAAAAAAAQkBAEghEskAxYzDPZGwK5hjMLJhjMAqmGEwumrCagomFcw2JqqtUFEsLLrV82F
|
|
o7gqljKyYYTGwMZRKUSCAQAboJnaN5Bjkneu0d5W4ccViIiOzHFWbTzNumP1Zarr8eeRMbxDW1Mx
|
|
NO67NbkhzNVnmInqzaOZrL93JyZeV0M1++7S02jvxDWxhxx033tPpC8Z6rrezWjmZyazJG2/u03h
|
|
2vFibTHoqvamiwVwY+nLGzV0+SZ1Mx8G0/45tOhzJ5lXMc3UVXRdlF1HP+iYsDPLPPy49/tz1+Te
|
|
pSIr0ho6ak5Ms5J8o2q6NImOrHV7XX488ypzTtHXo0s9t6zG7c1G1qz6ubeZiZ3UatXJG3yauSO7
|
|
cvMTEx5tPLb3prPRMVr0HB8vicNxf0+7+kt+LOJwTJyY/Bnz3tH93X36N58cWvq6LSyiyndMSlC7
|
|
mZcymLJiwLosmJVRLKLAtiU7q4lMSCzc3YxJuDMRuAlKAEgAAAlAkAAAAAABKAEgAAAAAJAAAAAA
|
|
AAAAAAAEgAAAAAAAAAAAAAkAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAhIAAACAAAASgAAAAAAEAAAA
|
|
hGzJAImGMwzQDDZjNVuyNgUTVhNGxysZqDVmiu1G5NN2M4waM0+DCaN2cbGcQNGaMZq3JxMJxA1J
|
|
qx2bU4kU09slorWNwa20z02RXHbJbl26QvtFovbHWkxEdJt5y2MOHlr2U1W3jx+1hiw8vSO63lmI
|
|
XRTaEWmtY6snRHO1VpmJ+DjavpSZl2s8b7y4HFcnh0n0gha5ebJN55KRM2mdoiPN6fh+kpwXh0Wy
|
|
RHj5Otp/s5Ps1p62y31+em9aTMYt/OfVfxTiPjZ52naI7fBrI5t66xz5+a1rW7yx0eSL6iZjtEOX
|
|
qNbSletom3lENjh2fbHzbbWt3iVozruc+5ztWubf4M4ybpQ2Oboyrva0Vjza8WdDR4OkXt3n9ldX
|
|
kaePP9VtYqctYhdvt5oivTeCZ2YOxXk6ubqMfV0b9mrljfqlFcq88k7z2U5axeItDa1OPessuC8P
|
|
ya7XRWYnwqdbT/ZMilvIu4dpslNdixXja8Y5tt85djZdbDWnGOesRtXFtuw6T27No5Kx2OrKYQlC
|
|
ExKJgBnEpiyvdlEgsizKLKollFgWxLKJVRLKJBbEp3VxLKJBnuMWQJEbpBIAAAJAAAABIAAAAAAA
|
|
lAJAAAAAAAAAAAAAASAAAAAAAAAAAAAJAAAABAJABAlAAAAAAAAAAAAAAAAAAAAAAAAIAAAAAAAA
|
|
AAABAJQAAAAgAABAAI2EoBGyJhkgGPKxmqxAKpownHC+YRMdN5BrTj67R3bOn01o7p01Iv71u89o
|
|
b9a7LfBTfS1vWI2jf12VfQPSW8KX2mas+NC2iv6xMNfJpMnLtEbuuxtMRCtzF55NR5rPps1N/ctP
|
|
y6uHreE6nXZ4pak48X3rT06fB7fNeI33cbX6mI32R/MWu7XF116aDSRhxbRERs8f499bkyZeeKae
|
|
kzE2mdon81/tfxDLGOunwbzlzbx08oaHBvZHJlx48mrvaa94pu04y617576rNGLRRM0397JEd/lu
|
|
9Dw/S3x4qxffo6mm4NjwUiKY4iI9Ib1dHFY6QIaNabbrYrLfrpJtaK1rMzPZb/s+05IpP59OyLeJ
|
|
k7eNfRaOc1ue32I7fGXYpi5Y77M8OGMeOKxHSFsU3Y29deZMzirl6dlVvhLatCjJHeYQv1rXnps1
|
|
8k9/VsW6qLVmZIi1rzitlvFKRvaZ2h6TSaenC9FFY+3brM+sqeG8Prp4+kZ+lvuxPkr1mqm95nfp
|
|
DXM459676a2q1dsV7XietvNno78+CJn1cjX6mOeIm0bR33dfRU5NJjidt9t5afjG/V6JZ7I2QMNh
|
|
nyo2BhsMuVG3wAhMSbbQRAMolnE+iuGUSCyJZRKuGUSCyJZK4llEgyZMYTuCUsYSCQASISAAAlCQ
|
|
AAAAAAEoASCASAAAAAAAAAAAAlACRACQAAAAAAAAAEgCEoASCAAAAAAAAAAAAAAAAAAAAAAABAAA
|
|
AAAAAAAISAIAAAAAAQAAACASgAAAQJAQAAhIDHZhln3do7z0WS18mWsajHjmes7pg3dNi5aRMNqO
|
|
yvDHTpPRaigHZhN4hHRlaVN59JY3zRENLUavaO+yq0iNVlitJ6vNcR1MVi0zO0era1/Ea0rPvbz5
|
|
PM5MWp45qvo2GZrhmfrsnpHpHzTCseEcM/2vrr8Q1Eb4qzy44nziPN63HpYiIiI7LNHoqabBTFii
|
|
IpSNohuVxrKtWMEejPwY9G1FFmHB4mWJn7MdfnIM9JpIx15to5pbUaas/a6rqViI7MxPxqX0UT1r
|
|
O3wVzpbR2hviP5i03Y5s6a879FNtHljydhExCv8AMTPJXBnRZbz0iG5ptFjwe/l96zctMVamTJtE
|
|
yTMibu1VrdTzRMR0j0ed4lr64MVpm0RERvMz5NvX62uOJ69XhOKX1HH9bHDtFvNYnfJeOy0Z2ojX
|
|
6jjnEq6fRUmccTvN/J9H0eKcOnx45neaxEbubwHgOHg+milI3vP2resu3Wu0JQmITsmISDHZHKz2
|
|
JgFc1RMLJhGwK9iIZ7MZgEdgmAEwyiWCdwWRLKJVxKYsC2JTuriWUSDNlEsIlMAySx3SCRCQSIAS
|
|
AAACRACQAAAAAAASIASAAAAAAAAAAAAAAACRACRACQASIAAAAAAAAAAAAAAAAAAAAAAAAQCUAAAA
|
|
AAAAAAIAAAAAAAAQAAAAAACBICBICAAEJAQJQCJcLjuS2ny6fPG/LWdpd1o8T0X07SXx/e7wCdJx
|
|
Wa0jmneHQpxPDMdZmJfNtZm49weZrh0/j4o7VtSZ2+Uw0/8A7o49k92vBLc/ntFohFW9PqGXimOI
|
|
6Tu1L8T3eCx6r2t1O3JwvHjifO99v7t/Bwf2l1PXU6rS6eJ8qUm8x+so5TsekzcSjbvs4mt4rzW5
|
|
K2mbT0itesy2cHsvbvqtbmyz5xERWP2jd1tJwrTaONsOKtZ8585+cnDrzmn4Rq+IZObUROHD32n7
|
|
Vv8A0ej0uhxaXFGPFSK1j0bkY4jyZRVZVXFGUVWbGwKsk8mObekNrSW3pWf1a2aYjHbm7bNnQ1id
|
|
PW0TvuDdhJEbQABMsLW2R0ZTMQrvfbz2YWzVhpanUxEd0dWkW5c8R5uXxDX1w4pnfr5Q19XxKuOJ
|
|
2neXltVqtVxbV/RdJ715+1bypANfiOu1HENV9C0MTfNeesx2rD1PAeBYuE6aKx72W3W9/WVnBuB4
|
|
eF4dqRzZbdb5J72l160WVK02ZxCYhOwI23TsnY2BGxsnYBjsiYZsZBjMMZZSgGEolMsQDdG6NwZ7
|
|
piVe6YkFsSziVMWZRILolMSriWUSCyJTuwhMSDMRCQSI3SAlACRCQAAEoAEoASAAAAAAAAACUACR
|
|
ACQAAAAAAAAAAAAASAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAABAAAAAAAAAAAAACBKAAAAAAAQ
|
|
JQAAAhICEbJAYTWJ7wx8KvpC0BV4ceieWGewDHlNmWwCNjZICNhIDmcZredBecdpiY69FXCOLW+i
|
|
UiZidukulmxxlx2paN4mNng+K4+I8Hy2yaTfl37TXetoCPfRxfp1qi3F48ofKMvtvxak8s6LDv61
|
|
rZji9rPaLUf5PC+bfttS0q8q3p9W/wBrRMdpUZuKdN99nzvFqPbTVz7nD8OKs+do2/mW3h4D7Xaq
|
|
ZnPrtNpqz35aRaYOHY9Zk4pNt9rR+rl6zi+OnS+WN57Rv1lXp/YrNaYtruL6zNPnGO3hxP6O5w/2
|
|
f0HDuun09Yv55Le9afznqcOvO4tBreMTHu30unnva0bWt8on+70nDuE4OHYYx4Kbesz3tPrMuhGO
|
|
IjpDOKrK9YVpsyiGUQnYGOyUgI2SlAIEmwMWMs9kTAMJYzDOYRMArmGErZhhMArlHmzmGMwDE3Ts
|
|
bAbs4swj5pgFkSziVcM4BZEsolXDKAZwyhjCYBkACQhIAAAAAAAJAAAAAAAAAAAAAAAAAAAShIAA
|
|
AAAAAAJAAAAAAAAAAAAAABAJEAAAAAAAAAAAAAAAIEoBKAAAAAAAAAAAAAAABAlAAAAAAAIAAAAA
|
|
BAkBAkBAkBAlACEgMZjdjbFW8bWrEx8YWANb6Fp+bfwab+vLDKMFK9qxH5L0bAr8OPRPKz2AY7J2
|
|
SbAjYZAI2E7AIEgIEgIEgMdkSy2NgY7MdlmyNoBXsxmFuyNgVTVjNV3KjlBRNTlXTVHKCrlIqt5T
|
|
lBhEMohlFerLlBjEMohMVTEARDKCITsAk2AEgAAAkAAAAAAAAAAAAAAAAAAAAAAAASAAAAAAAAD/
|
|
2Q==`;var S4="0.9.24";var pt=()=>typeof performance!="undefined"?performance.now():parseInt(Number(process.hrtime.bigint())/1e3/1e3);function Ql(...e){let t=n=>n&&typeof n=="object";return e.reduce((n,r)=>(Object.keys(r||{}).forEach(a=>{let s=n[a],i=r[a];Array.isArray(s)&&Array.isArray(i)?n[a]=s.concat(...i):t(s)&&t(i)?n[a]=Ql(s,i):n[a]=i}),n),{})}var E4=class{constructor(t={}){this.tf=L1,this.version=S4,this.config=Ql(I4,t),this.fx=null,this.state="idle",this.numTensors=0,this.analyzeMemoryLeaks=!1,this.checkSanity=!1,this.firstRun=!0,this.perf={},this.models={facemesh:null,posenet:null,handpose:null,iris:null,age:null,gender:null,emotion:null},this.facemesh=$2,this.age=Jc,this.gender=Qc,this.emotion=eh,this.body=z2,this.hand=P2}profile(){return this.config.profile?T4.data:{}}analyze(...t){if(!this.analyzeMemoryLeaks)return;let n=jn().state.numTensors,r=this.numTensors;this.numTensors=n;let a=n-r;a!==0&&Me(...t,a)}sanity(t){if(!this.checkSanity)return null;if(!t)return"input is not defined";if(on.flags.IS_NODE&&!(t instanceof U))return"input must be a tensor";try{xd()}catch(n){return"backend not loaded"}return null}simmilarity(t,n){return this.config.face.embedding.enabled?Ja.simmilarity(t,n):0}async load(t){this.state="load";let n=pt();t&&(this.config=Ql(this.config,t)),this.firstRun&&(Me(`version: ${this.version} TensorFlow/JS version: ${l5}`),await this.checkBackend(!0),on.flags.IS_BROWSER&&(Me("configuration:",this.config),Me("tf flags:",on.flags))),this.config.async?[this.models.facemesh,this.models.age,this.models.gender,this.models.emotion,this.models.embedding,this.models.posenet,this.models.handpose]=await Promise.all([this.models.facemesh||(this.config.face.enabled?$2.load(this.config):null),this.models.age||(this.config.face.enabled&&this.config.face.age.enabled?Jc.load(this.config):null),this.models.gender||(this.config.face.enabled&&this.config.face.gender.enabled?Qc.load(this.config):null),this.models.emotion||(this.config.face.enabled&&this.config.face.emotion.enabled?eh.load(this.config):null),this.models.embedding||(this.config.face.enabled&&this.config.face.embedding.enabled?Ja.load(this.config):null),this.models.posenet||(this.config.body.enabled?z2.load(this.config):null),this.models.handpose||(this.config.hand.enabled?P2.load(this.config):null)]):(this.config.face.enabled&&!this.models.facemesh&&(this.models.facemesh=await $2.load(this.config)),this.config.face.enabled&&this.config.face.age.enabled&&!this.models.age&&(this.models.age=await Jc.load(this.config)),this.config.face.enabled&&this.config.face.gender.enabled&&!this.models.gender&&(this.models.gender=await Qc.load(this.config)),this.config.face.enabled&&this.config.face.emotion.enabled&&!this.models.emotion&&(this.models.emotion=await eh.load(this.config)),this.config.face.enabled&&this.config.face.embedding.enabled&&!this.models.embedding&&(this.models.embedding=await Ja.load(this.config)),this.config.body.enabled&&!this.models.posenet&&(this.models.posenet=await z2.load(this.config)),this.config.hand.enabled&&!this.models.handpose&&(this.models.handpose=await P2.load(this.config))),this.firstRun&&(Me("tf engine state:",jn().state.numBytes,"bytes",jn().state.numTensors,"tensors"),this.firstRun=!1);let r=Math.trunc(pt()-n);r>(this.perf.load||0)&&(this.perf.load=r)}async checkBackend(t){if(this.config.backend&&this.config.backend!==""&&t||xd()!==this.config.backend){let n=pt();this.state="backend",Me("setting backend:",this.config.backend),this.config.backend==="wasm"&&(Me("settings wasm path:",this.config.wasmPath),f3(this.config.wasmPath),await Q().getAsync("WASM_HAS_SIMD_SUPPORT")||Me("warning: wasm simd support is not enabled")),this.config.backend==="humangl"&&Kv();try{await c5(this.config.backend)}catch(r){Me("error: cannot set backend:",this.config.backend,r)}if(u5(),xd()==="webgl"){this.config.deallocate&&(Me("changing webgl: WEBGL_DELETE_TEXTURE_THRESHOLD:",this.config.deallocate),on.set("WEBGL_DELETE_TEXTURE_THRESHOLD",this.config.deallocate?0:-1)),on.set("WEBGL_FORCE_F16_TEXTURES",!0),on.set("WEBGL_PACK_DEPTHWISECONV",!0);let r=await bf().getGPGPUContext().gl;Me(`gl version:${r.getParameter(r.VERSION)} renderer:${r.getParameter(r.RENDERER)}`)}await h5(),this.perf.backend=Math.trunc(pt()-n)}}async detectFace(t){var u;let n,r,a,s,i,o=[];this.state="run:face",n=pt();let l=await((u=this.models.facemesh)==null?void 0:u.estimateFaces(t,this.config));this.perf.face=Math.trunc(pt()-n);for(let c of l){if(this.analyze("Get Face"),!c.image||c.image.isDisposedInternal){Me("Face object is disposed:",c.image);continue}this.analyze("Start Age:"),this.config.async?r=this.config.face.age.enabled?Jc.predict(c.image,this.config):{}:(this.state="run:age",n=pt(),r=this.config.face.age.enabled?await Jc.predict(c.image,this.config):{},this.perf.age=Math.trunc(pt()-n)),this.analyze("Start Gender:"),this.config.async?a=this.config.face.gender.enabled?Qc.predict(c.image,this.config):{}:(this.state="run:gender",n=pt(),a=this.config.face.gender.enabled?await Qc.predict(c.image,this.config):{},this.perf.gender=Math.trunc(pt()-n)),this.analyze("Start Emotion:"),this.config.async?s=this.config.face.emotion.enabled?eh.predict(c.image,this.config):{}:(this.state="run:emotion",n=pt(),s=this.config.face.emotion.enabled?await eh.predict(c.image,this.config):{},this.perf.emotion=Math.trunc(pt()-n)),this.analyze("End Emotion:"),this.analyze("Start Embedding:"),this.config.async?i=this.config.face.embedding.enabled?Ja.predict(c.image,this.config):{}:(this.state="run:embedding",n=pt(),i=this.config.face.embedding.enabled?await Ja.predict(c.image,this.config):{},this.perf.embedding=Math.trunc(pt()-n)),this.analyze("End Emotion:"),this.config.async&&([r,a,s,i]=await Promise.all([r,a,s,i])),this.analyze("Finish Face:"),c.image.dispose(),this.config.face.iris.enabled||(delete c.annotations.leftEyeIris,delete c.annotations.rightEyeIris);let h=c.annotations.leftEyeIris&&c.annotations.rightEyeIris?11.7*Math.max(Math.abs(c.annotations.leftEyeIris[3][0]-c.annotations.leftEyeIris[1][0]),Math.abs(c.annotations.rightEyeIris[4][1]-c.annotations.rightEyeIris[2][1])):0;o.push({confidence:c.confidence,box:c.box,mesh:c.mesh,boxRaw:c.boxRaw,meshRaw:c.meshRaw,annotations:c.annotations,age:r.age,gender:a.gender,genderConfidence:a.confidence,emotion:s,embedding:i,iris:h!==0?Math.trunc(h)/100:0}),this.analyze("End Face")}return this.analyze("End FaceMesh:"),this.config.async&&(this.perf.face&&delete this.perf.face,this.perf.age&&delete this.perf.age,this.perf.gender&&delete this.perf.gender,this.perf.emotion&&delete this.perf.emotion),o}async image(t,n={}){this.state="image",this.config=Ql(this.config,n);let r=L2.process(t,this.config);return r.tensor.dispose(),r.canvas}async detect(t,n={}){return new Promise(async r=>{var d,p,f,m;this.state="config";let a;this.config=Ql(this.config,n),this.state="check";let s=this.sanity(t);s&&(Me(s,t),r({error:s}));let i,o,l,u=pt();await this.checkBackend(),await this.load(),this.config.scoped&&jn().startScope(),this.analyze("Start Scope:"),a=pt();let c=L2.process(t,this.config);if(!c||!c.tensor){Me("could not convert input to tensor"),r({error:"could not convert input to tensor"});return}this.perf.image=Math.trunc(pt()-a),this.analyze("Get Image:"),this.config.async?(l=this.config.face.enabled?this.detectFace(c.tensor):[],this.perf.face&&delete this.perf.face):(this.state="run:face",a=pt(),l=this.config.face.enabled?await this.detectFace(c.tensor):[],this.perf.face=Math.trunc(pt()-a)),this.analyze("Start Body:"),this.config.async?(i=this.config.body.enabled?(d=this.models.posenet)==null?void 0:d.estimatePoses(c.tensor,this.config):[],this.perf.body&&delete this.perf.body):(this.state="run:body",a=pt(),i=this.config.body.enabled?await((p=this.models.posenet)==null?void 0:p.estimatePoses(c.tensor,this.config)):[],this.perf.body=Math.trunc(pt()-a)),this.analyze("End Body:"),this.analyze("Start Hand:"),this.config.async?(o=this.config.hand.enabled?(f=this.models.handpose)==null?void 0:f.estimateHands(c.tensor,this.config):[],this.perf.hand&&delete this.perf.hand):(this.state="run:hand",a=pt(),o=this.config.hand.enabled?await((m=this.models.handpose)==null?void 0:m.estimateHands(c.tensor,this.config)):[],this.perf.hand=Math.trunc(pt()-a)),this.analyze("End Hand:"),this.config.async&&([l,i,o]=await Promise.all([l,i,o])),c.tensor.dispose(),this.config.scoped&&jn().endScope(),this.analyze("End Scope:");let h=[];this.config.gesture.enabled&&(a=pt(),h=[...Qa.face(l),...Qa.body(i),...Qa.hand(o),...Qa.iris(l)],this.config.async?this.perf.gesture&&delete this.perf.gesture:this.perf.gesture=Math.trunc(pt()-a)),this.perf.total=Math.trunc(pt()-u),this.state="idle",r({face:l,body:i,hand:o,gesture:h,performance:this.perf,canvas:c.canvas})})}async warmupBitmap(){let t=(a,s="application/octet-stream")=>fetch(`data:${s};base64,${a}`).then(i=>i.blob()),n,r;switch(this.config.warmup){case"face":n=await t(O2);break;case"full":n=await t(D2);break;default:n=null}if(n){let a=await createImageBitmap(n);r=await this.detect(a,R0),a.close()}return r}async warmupCanvas(){return new Promise(t=>{let n,r=0;switch(this.config.warmup){case"face":r=256,n="data:image/jpeg;base64,"+O2;break;case"full":r=1200,n="data:image/jpeg;base64,"+D2;break;default:n=null}let a=new Image(r,r);a.onload=()=>{let s=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(r,r):document.createElement("canvas");s.width=r,s.height=r;let i=s.getContext("2d");i.drawImage(a,0,0);let o=i.getImageData(0,0,r,r);this.detect(o,R0).then(l=>t(l))},n?a.src=n:t(null)})}async warmup(t){let n=pt();t&&(this.config=Ql(this.config,t));let r=this.config.videoOptimized;this.config.videoOptimized=!1;let a;typeof createImageBitmap=="function"?a=await this.warmupBitmap():a=await this.warmupCanvas(),this.config.videoOptimized=r;let s=pt();return Me("Warmup",this.config.warmup,Math.round(s-n),"ms",a),a}};export{E4 as default};
|
|
/**
|
|
* @license
|
|
* Copyright 2017 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2019 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2019 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2019 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google Inc. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the License);
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an AS IS BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2021 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/** @license See the LICENSE file. */
|
|
//# sourceMappingURL=human.esm.js.map
|