human/test/test-main.js

366 lines
17 KiB
JavaScript

const fs = require('fs');
const process = require('process');
const canvasJS = require('canvas');
let fetch; // fetch is dynamically imported later
let config;
const log = (status, ...data) => {
if (typeof process.send !== 'undefined') process.send([status, data]); // send to parent process over ipc
// eslint-disable-next-line no-console
else console.log(status, ...data); // write to console if no parent process
};
async function testHTTP() {
if (config.modelBasePath.startsWith('file:')) return true;
return new Promise((resolve) => {
fetch(config.modelBasePath)
.then((res) => {
if (res && res.ok) log('state', 'passed: model server:', config.modelBasePath);
else log('error', 'failed: model server:', config.modelBasePath);
resolve(res && res.ok);
})
.catch((err) => {
log('error', 'failed: model server:', err.message);
resolve(false);
});
});
}
async function getImage(human, input) {
let img;
try {
img = await canvasJS.loadImage(input);
} catch (err) {
log('error', 'failed: load image', input, err.message);
return img;
}
const canvas = canvasJS.createCanvas(img.width, img.height);
const ctx = canvas.getContext('2d');
ctx.drawImage(img, 0, 0, img.width, img.height);
const imageData = ctx.getImageData(0, 0, canvas.width, canvas.height);
const res = human.tf.tidy(() => {
const tensor = human.tf.tensor(Array.from(imageData.data), [canvas.height, canvas.width, 4], 'float32'); // create rgba image tensor from flat array
const channels = human.tf.split(tensor, 4, 2); // split rgba to channels
const rgb = human.tf.stack([channels[0], channels[1], channels[2]], 2); // stack channels back to rgb
const reshape = human.tf.reshape(rgb, [1, canvas.height, canvas.width, 3]); // move extra dim from the end of tensor and use it as batch number instead
return reshape;
});
const sum = human.tf.sum(res);
if (res && res.shape[0] === 1 && res.shape[3] === 3) log('state', 'passed: load image:', input, res.shape, { checksum: sum.dataSync()[0] });
else log('error', 'failed: load image:', input, res);
human.tf.dispose(sum);
return res;
}
function printResults(detect) {
const person = (detect.face && detect.face[0]) ? { score: detect.face[0].score, age: detect.face[0].age, gender: detect.face[0].gender } : {};
const object = (detect.object && detect.object[0]) ? { score: detect.object[0].score, class: detect.object[0].label } : {};
const body = (detect.body && detect.body[0]) ? { score: detect.body[0].score, keypoints: detect.body[0].keypoints.length } : {};
const persons = detect.persons;
if (detect.face) log('data', ' result: face:', detect.face?.length, 'body:', detect.body?.length, 'hand:', detect.hand?.length, 'gesture:', detect.gesture?.length, 'object:', detect.object?.length, 'person:', persons.length, person, object, body);
if (detect.performance) log('data', ' result: performance:', 'load:', detect?.performance.load, 'total:', detect.performance?.total);
}
async function testInstance(human) {
if (human) log('state', 'passed: create human');
else log('error', 'failed: create human');
// if (!human.tf) human.tf = tf;
log('info', 'human version:', human.version);
log('info', 'platform:', human.env.platform, 'agent:', human.env.agent);
log('info', 'tfjs version:', human.tf.version.tfjs);
await human.load();
if (config.backend === human.tf.getBackend()) log('state', 'passed: set backend:', config.backend);
else log('error', 'failed: set backend:', config.backend);
log('state', 'tensors', human.tf.memory().numTensors);
if (human.models) {
log('state', 'passed: load models');
const keys = Object.keys(human.models);
const loaded = keys.filter((model) => human.models[model]);
log('state', ' result: defined models:', keys.length, 'loaded models:', loaded.length);
return true;
}
log('error', 'failed: load models');
return false;
}
async function testWarmup(human, title) {
let warmup;
try {
warmup = await human.warmup(config);
} catch (err) {
log('error', 'error warmup');
}
if (warmup) {
log('state', 'passed: warmup:', config.warmup, title);
// const count = human.tf.engine().state.numTensors;
// if (count - tensors > 0) log('warn', 'failed: memory', config.warmup, title, 'tensors:', count - tensors);
printResults(warmup);
} else {
log('error', 'failed: warmup:', config.warmup, title);
}
return warmup;
}
async function testDetect(human, input, title, checkLeak = true) {
await human.load(config);
const tensors = human.tf.engine().state.numTensors;
const image = input ? await getImage(human, input) : human.tf.randomNormal([1, 1024, 1024, 3]);
if (!image) {
log('error', 'failed: detect: input is null');
return false;
}
let detect;
try {
detect = await human.detect(image, config);
} catch (err) {
log('error', 'error: detect', err);
}
if (image instanceof human.tf.Tensor) human.tf.dispose(image);
if (detect) {
log('state', 'passed: detect:', input || 'random', title);
// const count = human.tf.engine().state.numTensors;
// if (count - tensors > 0) log('warn', 'failed: memory', config.warmup, title, 'tensors:', count - tensors);
printResults(detect);
} else {
log('error', 'failed: detect', input || 'random', title);
}
// check tensor leaks
if (checkLeak) {
const leak = human.tf.engine().state.numTensors - tensors;
if (leak !== 0) log('error', 'failed: memory leak', leak);
}
return detect;
}
const evt = { image: 0, detect: 0, warmup: 0 };
async function events(event) {
log('state', 'event:', event);
evt[event]++;
}
async function test(Human, inputConfig) {
config = inputConfig;
fetch = (await import('node-fetch')).default;
const ok = await testHTTP();
if (!ok) {
log('error', 'aborting test');
return;
}
const t0 = process.hrtime.bigint();
let res;
// test event emitter
const human = new Human(config);
human.events.addEventListener('warmup', () => events('warmup'));
human.events.addEventListener('image', () => events('image'));
human.events.addEventListener('detect', () => events('detect'));
// test configuration validation
let invalid = human.validate();
if (invalid.length === 0) log('state', 'passed: configuration default validation', invalid);
else log('error', 'failed: configuration default validation', invalid);
config.invalid = true;
invalid = human.validate(config);
if (invalid.length === 1) log('state', 'passed: configuration invalid validation', invalid);
else log('error', 'failed: configuration default validation', invalid);
delete config.invalid;
// test model loading
await human.load();
const models = Object.keys(human.models).map((model) => ({ name: model, loaded: (human.models[model] !== null) }));
const loaded = models.filter((model) => model.loaded);
if (models.length === 19 && loaded.length === 10) log('state', 'passed: models loaded', models);
else log('error', 'failed: models loaded', models);
// test warmup sequences
await testInstance(human);
config.warmup = 'none';
res = await testWarmup(human, 'default');
if (res.error !== 'null') log('error', 'failed: warmup none result mismatch');
else log('state', 'passed: warmup none result match');
config.warmup = 'face';
res = await testWarmup(human, 'default');
if (!res || res?.face?.length !== 1 || res?.body?.length !== 1 || res?.hand?.length !== 0 || res?.gesture?.length !== 3) log('error', 'failed: warmup face result mismatch', res?.face?.length, res?.body?.length, res?.hand?.length, res?.gesture?.length);
else log('state', 'passed: warmup face result match');
config.warmup = 'body';
res = await testWarmup(human, 'default');
if (!res || res?.face?.length !== 1 || res?.body?.length !== 1 || res?.hand?.length !== 0 || res?.gesture?.length !== 3) log('error', 'failed: warmup body result mismatch', res?.face?.length, res?.body?.length, res?.hand?.length, res?.gesture?.length);
else log('state', 'passed: warmup body result match');
// test default config async
log('info', 'test default');
human.reset();
config.async = true;
config.cacheSensitivity = 0;
res = await testDetect(human, 'samples/ai-body.jpg', 'default');
if (!res || res?.face?.length !== 1 || res?.face[0].gender !== 'female') log('error', 'failed: default result face mismatch', res?.face?.length, res?.body?.length, res?.hand?.length, res?.gesture?.length);
else log('state', 'passed: default result face match');
// test default config sync
log('info', 'test sync');
human.reset();
config.async = false;
config.cacheSensitivity = 0;
res = await testDetect(human, 'samples/ai-body.jpg', 'default');
if (!res || res?.face?.length !== 1 || res?.face[0].gender !== 'female') log('error', 'failed: default sync', res?.face?.length, res?.body?.length, res?.hand?.length, res?.gesture?.length);
else log('state', 'passed: default sync');
// test image processing
const img1 = await human.image(null);
const img2 = await human.image(await getImage(human, 'samples/ai-face.jpg'));
if (!img1 || !img2 || img1.tensor !== null || img2.tensor?.shape?.length !== 4) log('error', 'failed: image input', img1?.tensor?.shape, img2?.tensor?.shape);
else log('state', 'passed: image input', img1?.tensor?.shape, img2?.tensor?.shape);
// test null input
res = await human.detect(null);
if (!res || !res.error) log('error', 'failed: invalid input', res);
else log('state', 'passed: invalid input', res);
// test face similarity
log('info', 'test face similarity');
human.reset();
config.async = false;
config.cacheSensitivity = 0;
let res1 = await testDetect(human, 'samples/ai-face.jpg', 'default');
let res2 = await testDetect(human, 'samples/ai-body.jpg', 'default');
let res3 = await testDetect(human, 'samples/ai-upper.jpg', 'default');
const desc1 = res1 && res1.face && res1.face[0] && res1.face[0].embedding ? [...res1.face[0].embedding] : null;
const desc2 = res2 && res2.face && res2.face[0] && res2.face[0].embedding ? [...res2.face[0].embedding] : null;
const desc3 = res3 && res3.face && res3.face[0] && res3.face[0].embedding ? [...res3.face[0].embedding] : null;
if (!desc1 || !desc2 || !desc3 || desc1.length !== 1024 || desc2.length !== 1024 || desc3.length !== 1024) log('error', 'failed: face descriptor', desc1?.length, desc2?.length, desc3?.length);
else log('state', 'passed: face descriptor');
res1 = Math.round(100 * human.similarity(desc1, desc2));
res2 = Math.round(100 * human.similarity(desc1, desc3));
res3 = Math.round(100 * human.similarity(desc2, desc3));
if (res1 !== 51 || res2 !== 49 || res3 !== 53) log('error', 'failed: face similarity ', res1, res2, res3);
else log('state', 'passed: face similarity');
// test face matching
log('info', 'test face matching');
let db = [];
try {
db = JSON.parse(fs.readFileSync('demo/facematch/faces.json').toString());
} catch { /***/ }
if (db.length < 100) log('error', 'failed: face database ', db.length);
else log('state', 'passed: face database', db.length);
res1 = human.match(desc1, db);
res2 = human.match(desc2, db);
res3 = human.match(desc3, db);
if (!res1 || !res1['name'] || !res2 || !res2['name'] || !res3 || !res3['name']) log('error', 'failed: face match ', res1, res2, res3);
else log('state', 'passed: face match', { first: { name: res1.name, similarity: res1.similarity } }, { second: { name: res2.name, similarity: res2.similarity } }, { third: { name: res3.name, similarity: res3.similarity } });
// test object detection
log('info', 'test object');
human.reset();
config.object = { enabled: true };
res = await testDetect(human, 'samples/ai-body.jpg', 'default');
if (!res || res?.object?.length !== 1 || res?.object[0]?.label !== 'person') log('error', 'failed: object result mismatch', res?.object?.length);
else log('state', 'passed: object result match');
// test sensitive config
log('info', 'test sensitive');
human.reset();
config.cacheSensitivity = 0;
config.face = { detector: { minConfidence: 0.0001, maxDetected: 1 } };
config.body = { minConfidence: 0.0001, maxDetected: 1 };
config.hand = { minConfidence: 0.0001, maxDetected: 3 };
res = await testDetect(human, 'samples/ai-body.jpg', 'default');
if (!res || res?.face?.length !== 1 || res?.body?.length !== 1 || res?.hand?.length !== 3 || res?.gesture?.length !== 9) log('error', 'failed: sensitive result mismatch', res?.face?.length, res?.body?.length, res?.hand?.length, res?.gesture?.length);
else log('state', 'passed: sensitive result match');
// test sensitive details face
const face = res && res.face ? res.face[0] : null;
if (!face || face?.box?.length !== 4 || face?.mesh?.length !== 478 || face?.emotion?.length !== 4 || face?.embedding?.length !== 1024 || face?.rotation?.matrix?.length !== 9) {
log('error', 'failed: sensitive face result mismatch', res?.face?.length, face?.box?.length, face?.mesh?.length, face?.emotion?.length, face?.embedding?.length, face?.rotation?.matrix?.length);
} else log('state', 'passed: sensitive face result match');
// test sensitive details body
const body = res && res.body ? res.body[0] : null;
if (!body || body?.box?.length !== 4 || body?.keypoints?.length !== 17) log('error', 'failed: sensitive body result mismatch', body);
else log('state', 'passed: sensitive body result match');
// test sensitive details hand
const hand = res && res.hand ? res.hand[0] : null;
if (!hand || hand?.box?.length !== 4 || hand?.keypoints?.length !== 21) log('error', 'failed: sensitive hand result mismatch', hand?.keypoints?.length);
else log('state', 'passed: sensitive hand result match');
// test detectors only
log('info', 'test detectors');
human.reset();
config.face = { mesh: { enabled: false }, iris: { enabled: false }, description: { enabled: false }, emotion: { enabled: false } };
config.hand = { landmarks: false };
res = await testDetect(human, 'samples/ai-body.jpg', 'default');
if (!res || res?.face?.length !== 1 || res?.face[0]?.gender || res?.face[0]?.age || res?.face[0]?.embedding) log('error', 'failed: detectors result face mismatch', res?.face);
else log('state', 'passed: detector result face match');
if (!res || res?.hand?.length !== 1 || res?.hand[0]?.landmarks) log('error', 'failed: detectors result hand mismatch', res?.hand?.length);
else log('state', 'passed: detector result hand match');
// test posenet and movenet
log('info', 'test body variants');
config.body = { modelPath: 'posenet.json' };
await testDetect(human, 'samples/ai-body.jpg', 'posenet');
config.body = { modelPath: 'movenet-lightning.json' };
await testDetect(human, 'samples/ai-body.jpg', 'movenet');
// test multiple instances
const first = new Human(config);
const second = new Human(config);
await testDetect(human, null, 'default');
log('info', 'test: first instance');
await testDetect(first, 'samples/ai-upper.jpg', 'default');
log('info', 'test: second instance');
await testDetect(second, 'samples/ai-upper.jpg', 'default');
// test async multiple instances
log('info', 'test: concurrent');
await Promise.all([
testDetect(human, 'samples/ai-face.jpg', 'default', false),
testDetect(first, 'samples/ai-face.jpg', 'default', false),
testDetect(second, 'samples/ai-face.jpg', 'default', false),
testDetect(human, 'samples/ai-body.jpg', 'default', false),
testDetect(first, 'samples/ai-body.jpg', 'default', false),
testDetect(second, 'samples/ai-body.jpg', 'default', false),
testDetect(human, 'samples/ai-upper.jpg', 'default', false),
testDetect(first, 'samples/ai-upper.jpg', 'default', false),
testDetect(second, 'samples/ai-upper.jpg', 'default', false),
]);
// test monkey-patch
globalThis.Canvas = canvasJS.Canvas; // monkey-patch to use external canvas library
globalThis.ImageData = canvasJS.ImageData; // monkey-patch to use external canvas library
const inputImage = await canvasJS.loadImage('samples/ai-face.jpg'); // load image using canvas library
const inputCanvas = new canvasJS.Canvas(inputImage.width, inputImage.height); // create canvas
const ctx = inputCanvas.getContext('2d');
ctx.drawImage(inputImage, 0, 0); // draw input image onto canvas
res = await human.detect(inputCanvas);
if (!res || res?.face?.length !== 1) log('error', 'failed: monkey patch');
else log('state', 'passed: monkey patch');
// test segmentation
res = await human.segmentation(inputCanvas, inputCanvas);
if (!res || !res.data || !res.canvas) log('error', 'failed: segmentation');
else log('state', 'passed: segmentation', [res.data.length]);
human.env.Canvas = undefined;
// tests end
const t1 = process.hrtime.bigint();
// check if all instances reported same
const tensors1 = human.tf.engine().state.numTensors;
const tensors2 = first.tf.engine().state.numTensors;
const tensors3 = second.tf.engine().state.numTensors;
if (tensors1 === tensors2 && tensors1 === tensors3 && tensors2 === tensors3) log('state', 'passeed: equal usage');
else log('error', 'failed: equal usage', tensors1, tensors2, tensors3);
// report end
log('info', 'events:', evt);
log('info', 'tensors', human.tf.memory().numTensors);
log('info', 'test complete:', Math.trunc(Number(t1 - t0) / 1000 / 1000), 'ms');
}
exports.test = test;