mirror of https://github.com/vladmandic/human
7264 lines
1.3 MiB
7264 lines
1.3 MiB
/*
|
|
Human
|
|
homepage: <https://github.com/vladmandic/human>
|
|
author: <https://github.com/vladmandic>'
|
|
*/
|
|
|
|
var HT=Object.create,Ud=Object.defineProperty,qT=Object.getOwnPropertyDescriptor,Hw=Object.getOwnPropertyNames,jT=Object.getPrototypeOf,KT=Object.prototype.hasOwnProperty,XT=e=>Ud(e,"__esModule",{value:!0}),zt=(e,t)=>function(){return t||(0,e[Hw(e)[0]])((t={exports:{}}).exports,t),t.exports},Ae=(e,t)=>{for(var n in t)Ud(e,n,{get:t[n],enumerable:!0})},YT=(e,t,n,s)=>{if(t&&typeof t=="object"||typeof t=="function")for(let r of Hw(t))!KT.call(e,r)&&(n||r!=="default")&&Ud(e,r,{get:()=>t[r],enumerable:!(s=qT(t,r))||s.enumerable});return e},wa=(e,t)=>YT(XT(Ud(e!=null?HT(jT(e)):{},"default",!t&&e&&e.__esModule?{get:()=>e.default,enumerable:!0}:{value:e,enumerable:!0})),e),QT=zt({"src/node_modules/long/src/long.js"(e,t){t.exports=s;var n=null;try{n=new WebAssembly.Instance(new WebAssembly.Module(new Uint8Array([0,97,115,109,1,0,0,0,1,13,2,96,0,1,127,96,4,127,127,127,127,1,127,3,7,6,0,1,1,1,1,1,6,6,1,127,1,65,0,11,7,50,6,3,109,117,108,0,1,5,100,105,118,95,115,0,2,5,100,105,118,95,117,0,3,5,114,101,109,95,115,0,4,5,114,101,109,95,117,0,5,8,103,101,116,95,104,105,103,104,0,0,10,191,1,6,4,0,35,0,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,126,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,127,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,128,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,129,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,130,34,4,66,32,135,167,36,0,32,4,167,11])),{}).exports}catch(F){}function s(F,$,z){this.low=F|0,this.high=$|0,this.unsigned=!!z}s.prototype.__isLong__,Object.defineProperty(s.prototype,"__isLong__",{value:!0});function r(F){return(F&&F.__isLong__)===!0}s.isLong=r;var a={},i={};function o(F,$){var z,W,q;return $?(F>>>=0,(q=0<=F&&F<256)&&(W=i[F],W)?W:(z=l(F,(F|0)<0?-1:0,!0),q&&(i[F]=z),z)):(F|=0,(q=-128<=F&&F<128)&&(W=a[F],W)?W:(z=l(F,F<0?-1:0,!1),q&&(a[F]=z),z))}s.fromInt=o;function u(F,$){if(isNaN(F))return $?x:v;if($){if(F<0)return x;if(F>=g)return A}else{if(F<=-b)return P;if(F+1>=b)return E}return F<0?u(-F,$).neg():l(F%m|0,F/m|0,$)}s.fromNumber=u;function l(F,$,z){return new s(F,$,z)}s.fromBits=l;var c=Math.pow;function p(F,$,z){if(F.length===0)throw Error("empty string");if(F==="NaN"||F==="Infinity"||F==="+Infinity"||F==="-Infinity")return v;if(typeof $=="number"?(z=$,$=!1):$=!!$,z=z||10,z<2||36<z)throw RangeError("radix");var W;if((W=F.indexOf("-"))>0)throw Error("interior hyphen");if(W===0)return p(F.substring(1),$,z).neg();for(var q=u(c(z,8)),K=v,Y=0;Y<F.length;Y+=8){var Z=Math.min(8,F.length-Y),te=parseInt(F.substring(Y,Y+Z),z);if(Z<8){var ee=u(c(z,Z));K=K.mul(ee).add(u(te))}else K=K.mul(q),K=K.add(u(te))}return K.unsigned=$,K}s.fromString=p;function d(F,$){return typeof F=="number"?u(F,$):typeof F=="string"?p(F,$):l(F.low,F.high,typeof $=="boolean"?$:F.unsigned)}s.fromValue=d;var h=1<<16,f=1<<24,m=h*h,g=m*m,b=g/2,y=o(f),v=o(0);s.ZERO=v;var x=o(0,!0);s.UZERO=x;var k=o(1);s.ONE=k;var T=o(1,!0);s.UONE=T;var N=o(-1);s.NEG_ONE=N;var E=l(-1,2147483647,!1);s.MAX_VALUE=E;var A=l(-1,-1,!0);s.MAX_UNSIGNED_VALUE=A;var P=l(0,-2147483648,!1);s.MIN_VALUE=P;var R=s.prototype;R.toInt=function(){return this.unsigned?this.low>>>0:this.low},R.toNumber=function(){return this.unsigned?(this.high>>>0)*m+(this.low>>>0):this.high*m+(this.low>>>0)},R.toString=function($){if($=$||10,$<2||36<$)throw RangeError("radix");if(this.isZero())return"0";if(this.isNegative())if(this.eq(P)){var z=u($),W=this.div(z),q=W.mul(z).sub(this);return W.toString($)+q.toInt().toString($)}else return"-"+this.neg().toString($);for(var K=u(c($,6),this.unsigned),Y=this,Z="";;){var te=Y.div(K),ee=Y.sub(te.mul(K)).toInt()>>>0,se=ee.toString($);if(Y=te,Y.isZero())return se+Z;for(;se.length<6;)se="0"+se;Z=""+se+Z}},R.getHighBits=function(){return this.high},R.getHighBitsUnsigned=function(){return this.high>>>0},R.getLowBits=function(){return this.low},R.getLowBitsUnsigned=function(){return this.low>>>0},R.getNumBitsAbs=function(){if(this.isNegative())return this.eq(P)?64:this.neg().getNumBitsAbs();for(var $=this.high!=0?this.high:this.low,z=31;z>0&&($&1<<z)==0;z--);return this.high!=0?z+33:z+1},R.isZero=function(){return this.high===0&&this.low===0},R.eqz=R.isZero,R.isNegative=function(){return!this.unsigned&&this.high<0},R.isPositive=function(){return this.unsigned||this.high>=0},R.isOdd=function(){return(this.low&1)===1},R.isEven=function(){return(this.low&1)===0},R.equals=function($){return r($)||($=d($)),this.unsigned!==$.unsigned&&this.high>>>31===1&&$.high>>>31===1?!1:this.high===$.high&&this.low===$.low},R.eq=R.equals,R.notEquals=function($){return!this.eq($)},R.neq=R.notEquals,R.ne=R.notEquals,R.lessThan=function($){return this.comp($)<0},R.lt=R.lessThan,R.lessThanOrEqual=function($){return this.comp($)<=0},R.lte=R.lessThanOrEqual,R.le=R.lessThanOrEqual,R.greaterThan=function($){return this.comp($)>0},R.gt=R.greaterThan,R.greaterThanOrEqual=function($){return this.comp($)>=0},R.gte=R.greaterThanOrEqual,R.ge=R.greaterThanOrEqual,R.compare=function($){if(r($)||($=d($)),this.eq($))return 0;var z=this.isNegative(),W=$.isNegative();return z&&!W?-1:!z&&W?1:this.unsigned?$.high>>>0>this.high>>>0||$.high===this.high&&$.low>>>0>this.low>>>0?-1:1:this.sub($).isNegative()?-1:1},R.comp=R.compare,R.negate=function(){return!this.unsigned&&this.eq(P)?P:this.not().add(k)},R.neg=R.negate,R.add=function($){r($)||($=d($));var z=this.high>>>16,W=this.high&65535,q=this.low>>>16,K=this.low&65535,Y=$.high>>>16,Z=$.high&65535,te=$.low>>>16,ee=$.low&65535,se=0,ne=0,oe=0,re=0;return re+=K+ee,oe+=re>>>16,re&=65535,oe+=q+te,ne+=oe>>>16,oe&=65535,ne+=W+Z,se+=ne>>>16,ne&=65535,se+=z+Y,se&=65535,l(oe<<16|re,se<<16|ne,this.unsigned)},R.subtract=function($){return r($)||($=d($)),this.add($.neg())},R.sub=R.subtract,R.multiply=function($){if(this.isZero())return v;if(r($)||($=d($)),n){var z=n.mul(this.low,this.high,$.low,$.high);return l(z,n.get_high(),this.unsigned)}if($.isZero())return v;if(this.eq(P))return $.isOdd()?P:v;if($.eq(P))return this.isOdd()?P:v;if(this.isNegative())return $.isNegative()?this.neg().mul($.neg()):this.neg().mul($).neg();if($.isNegative())return this.mul($.neg()).neg();if(this.lt(y)&&$.lt(y))return u(this.toNumber()*$.toNumber(),this.unsigned);var W=this.high>>>16,q=this.high&65535,K=this.low>>>16,Y=this.low&65535,Z=$.high>>>16,te=$.high&65535,ee=$.low>>>16,se=$.low&65535,ne=0,oe=0,re=0,le=0;return le+=Y*se,re+=le>>>16,le&=65535,re+=K*se,oe+=re>>>16,re&=65535,re+=Y*ee,oe+=re>>>16,re&=65535,oe+=q*se,ne+=oe>>>16,oe&=65535,oe+=K*ee,ne+=oe>>>16,oe&=65535,oe+=Y*te,ne+=oe>>>16,oe&=65535,ne+=W*se+q*ee+K*te+Y*Z,ne&=65535,l(re<<16|le,ne<<16|oe,this.unsigned)},R.mul=R.multiply,R.divide=function($){if(r($)||($=d($)),$.isZero())throw Error("division by zero");if(n){if(!this.unsigned&&this.high===-2147483648&&$.low===-1&&$.high===-1)return this;var z=(this.unsigned?n.div_u:n.div_s)(this.low,this.high,$.low,$.high);return l(z,n.get_high(),this.unsigned)}if(this.isZero())return this.unsigned?x:v;var W,q,K;if(this.unsigned){if($.unsigned||($=$.toUnsigned()),$.gt(this))return x;if($.gt(this.shru(1)))return T;K=x}else{if(this.eq(P)){if($.eq(k)||$.eq(N))return P;if($.eq(P))return k;var Y=this.shr(1);return W=Y.div($).shl(1),W.eq(v)?$.isNegative()?k:N:(q=this.sub($.mul(W)),K=W.add(q.div($)),K)}else if($.eq(P))return this.unsigned?x:v;if(this.isNegative())return $.isNegative()?this.neg().div($.neg()):this.neg().div($).neg();if($.isNegative())return this.div($.neg()).neg();K=v}for(q=this;q.gte($);){W=Math.max(1,Math.floor(q.toNumber()/$.toNumber()));for(var Z=Math.ceil(Math.log(W)/Math.LN2),te=Z<=48?1:c(2,Z-48),ee=u(W),se=ee.mul($);se.isNegative()||se.gt(q);)W-=te,ee=u(W,this.unsigned),se=ee.mul($);ee.isZero()&&(ee=k),K=K.add(ee),q=q.sub(se)}return K},R.div=R.divide,R.modulo=function($){if(r($)||($=d($)),n){var z=(this.unsigned?n.rem_u:n.rem_s)(this.low,this.high,$.low,$.high);return l(z,n.get_high(),this.unsigned)}return this.sub(this.div($).mul($))},R.mod=R.modulo,R.rem=R.modulo,R.not=function(){return l(~this.low,~this.high,this.unsigned)},R.and=function($){return r($)||($=d($)),l(this.low&$.low,this.high&$.high,this.unsigned)},R.or=function($){return r($)||($=d($)),l(this.low|$.low,this.high|$.high,this.unsigned)},R.xor=function($){return r($)||($=d($)),l(this.low^$.low,this.high^$.high,this.unsigned)},R.shiftLeft=function($){return r($)&&($=$.toInt()),($&=63)===0?this:$<32?l(this.low<<$,this.high<<$|this.low>>>32-$,this.unsigned):l(0,this.low<<$-32,this.unsigned)},R.shl=R.shiftLeft,R.shiftRight=function($){return r($)&&($=$.toInt()),($&=63)===0?this:$<32?l(this.low>>>$|this.high<<32-$,this.high>>$,this.unsigned):l(this.high>>$-32,this.high>=0?0:-1,this.unsigned)},R.shr=R.shiftRight,R.shiftRightUnsigned=function($){if(r($)&&($=$.toInt()),$&=63,$===0)return this;var z=this.high;if($<32){var W=this.low;return l(W>>>$|z<<32-$,z>>>$,this.unsigned)}else return $===32?l(z,0,this.unsigned):l(z>>>$-32,0,this.unsigned)},R.shru=R.shiftRightUnsigned,R.shr_u=R.shiftRightUnsigned,R.toSigned=function(){return this.unsigned?l(this.low,this.high,!1):this},R.toUnsigned=function(){return this.unsigned?this:l(this.low,this.high,!0)},R.toBytes=function($){return $?this.toBytesLE():this.toBytesBE()},R.toBytesLE=function(){var $=this.high,z=this.low;return[z&255,z>>>8&255,z>>>16&255,z>>>24,$&255,$>>>8&255,$>>>16&255,$>>>24]},R.toBytesBE=function(){var $=this.high,z=this.low;return[$>>>24,$>>>16&255,$>>>8&255,$&255,z>>>24,z>>>16&255,z>>>8&255,z&255]},s.fromBytes=function($,z,W){return W?s.fromBytesLE($,z):s.fromBytesBE($,z)},s.fromBytesLE=function($,z){return new s($[0]|$[1]<<8|$[2]<<16|$[3]<<24,$[4]|$[5]<<8|$[6]<<16|$[7]<<24,z)},s.fromBytesBE=function($,z){return new s($[4]<<24|$[5]<<16|$[6]<<8|$[7],$[0]<<24|$[1]<<16|$[2]<<8|$[3],z)}}}),ZT=zt({"(disabled):src/node_modules/node-fetch/browser.js"(){}}),JT=zt({"(disabled):util"(){}}),e$=zt({"src/node_modules/seedrandom/lib/alea.js"(e,t){(function(n,s,r){function a(l){var c=this,p=u();c.next=function(){var d=2091639*c.s0+c.c*23283064365386963e-26;return c.s0=c.s1,c.s1=c.s2,c.s2=d-(c.c=d|0)},c.c=1,c.s0=p(" "),c.s1=p(" "),c.s2=p(" "),c.s0-=p(l),c.s0<0&&(c.s0+=1),c.s1-=p(l),c.s1<0&&(c.s1+=1),c.s2-=p(l),c.s2<0&&(c.s2+=1),p=null}function i(l,c){return c.c=l.c,c.s0=l.s0,c.s1=l.s1,c.s2=l.s2,c}function o(l,c){var p=new a(l),d=c&&c.state,h=p.next;return h.int32=function(){return p.next()*4294967296|0},h.double=function(){return h()+(h()*2097152|0)*11102230246251565e-32},h.quick=h,d&&(typeof d=="object"&&i(d,p),h.state=function(){return i(p,{})}),h}function u(){var l=4022871197,c=function(p){p=String(p);for(var d=0;d<p.length;d++){l+=p.charCodeAt(d);var h=.02519603282416938*l;l=h>>>0,h-=l,h*=l,l=h>>>0,h-=l,l+=h*4294967296}return(l>>>0)*23283064365386963e-26};return c}s&&s.exports?s.exports=o:r&&r.amd?r(function(){return o}):this.alea=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),t$=zt({"src/node_modules/seedrandom/lib/xor128.js"(e,t){(function(n,s,r){function a(u){var l=this,c="";l.x=0,l.y=0,l.z=0,l.w=0,l.next=function(){var d=l.x^l.x<<11;return l.x=l.y,l.y=l.z,l.z=l.w,l.w^=l.w>>>19^d^d>>>8},u===(u|0)?l.x=u:c+=u;for(var p=0;p<c.length+64;p++)l.x^=c.charCodeAt(p)|0,l.next()}function i(u,l){return l.x=u.x,l.y=u.y,l.z=u.z,l.w=u.w,l}function o(u,l){var c=new a(u),p=l&&l.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var h=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,p&&(typeof p=="object"&&i(p,c),d.state=function(){return i(c,{})}),d}s&&s.exports?s.exports=o:r&&r.amd?r(function(){return o}):this.xor128=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),n$=zt({"src/node_modules/seedrandom/lib/xorwow.js"(e,t){(function(n,s,r){function a(u){var l=this,c="";l.next=function(){var d=l.x^l.x>>>2;return l.x=l.y,l.y=l.z,l.z=l.w,l.w=l.v,(l.d=l.d+362437|0)+(l.v=l.v^l.v<<4^(d^d<<1))|0},l.x=0,l.y=0,l.z=0,l.w=0,l.v=0,u===(u|0)?l.x=u:c+=u;for(var p=0;p<c.length+64;p++)l.x^=c.charCodeAt(p)|0,p==c.length&&(l.d=l.x<<10^l.x>>>4),l.next()}function i(u,l){return l.x=u.x,l.y=u.y,l.z=u.z,l.w=u.w,l.v=u.v,l.d=u.d,l}function o(u,l){var c=new a(u),p=l&&l.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var h=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,p&&(typeof p=="object"&&i(p,c),d.state=function(){return i(c,{})}),d}s&&s.exports?s.exports=o:r&&r.amd?r(function(){return o}):this.xorwow=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),s$=zt({"src/node_modules/seedrandom/lib/xorshift7.js"(e,t){(function(n,s,r){function a(u){var l=this;l.next=function(){var p=l.x,d=l.i,h,f,m;return h=p[d],h^=h>>>7,f=h^h<<24,h=p[d+1&7],f^=h^h>>>10,h=p[d+3&7],f^=h^h>>>3,h=p[d+4&7],f^=h^h<<7,h=p[d+7&7],h=h^h<<13,f^=h^h<<9,p[d]=f,l.i=d+1&7,f};function c(p,d){var h,f,m=[];if(d===(d|0))f=m[0]=d;else for(d=""+d,h=0;h<d.length;++h)m[h&7]=m[h&7]<<15^d.charCodeAt(h)+m[h+1&7]<<13;for(;m.length<8;)m.push(0);for(h=0;h<8&&m[h]===0;++h);for(h==8?f=m[7]=-1:f=m[h],p.x=m,p.i=0,h=256;h>0;--h)p.next()}c(l,u)}function i(u,l){return l.x=u.x.slice(),l.i=u.i,l}function o(u,l){u==null&&(u=+new Date);var c=new a(u),p=l&&l.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var h=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,p&&(p.x&&i(p,c),d.state=function(){return i(c,{})}),d}s&&s.exports?s.exports=o:r&&r.amd?r(function(){return o}):this.xorshift7=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),r$=zt({"src/node_modules/seedrandom/lib/xor4096.js"(e,t){(function(n,s,r){function a(u){var l=this;l.next=function(){var p=l.w,d=l.X,h=l.i,f,m;return l.w=p=p+1640531527|0,m=d[h+34&127],f=d[h=h+1&127],m^=m<<13,f^=f<<17,m^=m>>>15,f^=f>>>12,m=d[h]=m^f,l.i=h,m+(p^p>>>16)|0};function c(p,d){var h,f,m,g,b,y=[],v=128;for(d===(d|0)?(f=d,d=null):(d=d+"\0",f=0,v=Math.max(v,d.length)),m=0,g=-32;g<v;++g)d&&(f^=d.charCodeAt((g+32)%d.length)),g===0&&(b=f),f^=f<<10,f^=f>>>15,f^=f<<4,f^=f>>>13,g>=0&&(b=b+1640531527|0,h=y[g&127]^=f+b,m=h==0?m+1:0);for(m>=128&&(y[(d&&d.length||0)&127]=-1),m=127,g=4*128;g>0;--g)f=y[m+34&127],h=y[m=m+1&127],f^=f<<13,h^=h<<17,f^=f>>>15,h^=h>>>12,y[m]=f^h;p.w=b,p.X=y,p.i=m}c(l,u)}function i(u,l){return l.i=u.i,l.w=u.w,l.X=u.X.slice(),l}function o(u,l){u==null&&(u=+new Date);var c=new a(u),p=l&&l.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var h=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,p&&(p.X&&i(p,c),d.state=function(){return i(c,{})}),d}s&&s.exports?s.exports=o:r&&r.amd?r(function(){return o}):this.xor4096=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),a$=zt({"src/node_modules/seedrandom/lib/tychei.js"(e,t){(function(n,s,r){function a(u){var l=this,c="";l.next=function(){var d=l.b,h=l.c,f=l.d,m=l.a;return d=d<<25^d>>>7^h,h=h-f|0,f=f<<24^f>>>8^m,m=m-d|0,l.b=d=d<<20^d>>>12^h,l.c=h=h-f|0,l.d=f<<16^h>>>16^m,l.a=m-d|0},l.a=0,l.b=0,l.c=-1640531527,l.d=1367130551,u===Math.floor(u)?(l.a=u/4294967296|0,l.b=u|0):c+=u;for(var p=0;p<c.length+20;p++)l.b^=c.charCodeAt(p)|0,l.next()}function i(u,l){return l.a=u.a,l.b=u.b,l.c=u.c,l.d=u.d,l}function o(u,l){var c=new a(u),p=l&&l.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var h=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,p&&(typeof p=="object"&&i(p,c),d.state=function(){return i(c,{})}),d}s&&s.exports?s.exports=o:r&&r.amd?r(function(){return o}):this.tychei=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),i$=zt({"(disabled):crypto"(){}}),o$=zt({"src/node_modules/seedrandom/seedrandom.js"(e,t){(function(n,s,r){var a=256,i=6,o=52,u="random",l=r.pow(a,i),c=r.pow(2,o),p=c*2,d=a-1,h;function f(k,T,N){var E=[];T=T==!0?{entropy:!0}:T||{};var A=y(b(T.entropy?[k,x(s)]:k==null?v():k,3),E),P=new m(E),R=function(){for(var F=P.g(i),$=l,z=0;F<c;)F=(F+z)*a,$*=a,z=P.g(1);for(;F>=p;)F/=2,$/=2,z>>>=1;return(F+z)/$};return R.int32=function(){return P.g(4)|0},R.quick=function(){return P.g(4)/4294967296},R.double=R,y(x(P.S),s),(T.pass||N||function(F,$,z,W){return W&&(W.S&&g(W,P),F.state=function(){return g(P,{})}),z?(r[u]=F,$):F})(R,A,"global"in T?T.global:this==r,T.state)}function m(k){var T,N=k.length,E=this,A=0,P=E.i=E.j=0,R=E.S=[];for(N||(k=[N++]);A<a;)R[A]=A++;for(A=0;A<a;A++)R[A]=R[P=d&P+k[A%N]+(T=R[A])],R[P]=T;(E.g=function(F){for(var $,z=0,W=E.i,q=E.j,K=E.S;F--;)$=K[W=d&W+1],z=z*a+K[d&(K[W]=K[q=d&q+$])+(K[q]=$)];return E.i=W,E.j=q,z})(a)}function g(k,T){return T.i=k.i,T.j=k.j,T.S=k.S.slice(),T}function b(k,T){var N=[],E=typeof k,A;if(T&&E=="object")for(A in k)try{N.push(b(k[A],T-1))}catch(P){}return N.length?N:E=="string"?k:k+"\0"}function y(k,T){for(var N=k+"",E,A=0;A<N.length;)T[d&A]=d&(E^=T[d&A]*19)+N.charCodeAt(A++);return x(T)}function v(){try{var k;return h&&(k=h.randomBytes)?k=k(a):(k=new Uint8Array(a),(n.crypto||n.msCrypto).getRandomValues(k)),x(k)}catch(E){var T=n.navigator,N=T&&T.plugins;return[+new Date,n,N,n.screen,x(s)]}}function x(k){return String.fromCharCode.apply(0,k)}if(y(r.random(),s),typeof t=="object"&&t.exports){t.exports=f;try{h=i$()}catch(k){}}else typeof define=="function"&&define.amd?define(function(){return f}):r["seed"+u]=f})(typeof self!="undefined"?self:e,[],Math)}}),Gd=zt({"src/node_modules/seedrandom/index.js"(e,t){var n=e$(),s=t$(),r=n$(),a=s$(),i=r$(),o=a$(),u=o$();u.alea=n,u.xor128=s,u.xorwow=r,u.xorshift7=a,u.xor4096=i,u.tychei=o,t.exports=u}}),qw=zt({"(disabled):src/node_modules/string_decoder/index.js"(){}}),sg=zt({"(disabled):fs"(){}}),dd=zt({"(disabled):path"(){}}),u$=zt({"(disabled):worker_threads"(){}}),l$=zt({"(disabled):perf_hooks"(){}}),c$=zt({"(disabled):os"(){}}),d$=zt({"src/tfjs-backend-wasm/wasm-out/tfjs-backend-wasm-threaded-simd.js"(e,t){var n=(()=>{var s=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(s=s||__filename),function(r){r=r||{};function a(){return Ce.buffer!=nn&&rs(Ce.buffer),ic}function i(){return Ce.buffer!=nn&&rs(Ce.buffer),oc}function o(){return Ce.buffer!=nn&&rs(Ce.buffer),fu}function u(){return Ce.buffer!=nn&&rs(Ce.buffer),uc}function l(){return Ce.buffer!=nn&&rs(Ce.buffer),lc}function c(){return Ce.buffer!=nn&&rs(Ce.buffer),cc}function p(){return Ce.buffer!=nn&&rs(Ce.buffer),dc}var d=typeof r!="undefined"?r:{},h,f;d.ready=new Promise(function(C,D){h=C,f=D});var m;typeof process!="undefined"&&process.listeners&&(m={uncaughtException:process.listeners("uncaughtException"),unhandledRejection:process.listeners("unhandledRejection")});var g=Object.assign({},d),b=[],y="./this.program",v=(C,D)=>{throw D},x=typeof window=="object",k=typeof importScripts=="function",T=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",N=d.ENVIRONMENT_IS_PTHREAD||!1,E="";function A(C){return d.locateFile?d.locateFile(C,E):E+C}var P,R,F,$;function z(C){if(C instanceof Iu)return;ee("exiting due to exception: "+C)}var W,q,K;if(T){k?E=dd().dirname(E)+"/":E=__dirname+"/",K=()=>{q||(W=sg(),q=dd())},P=function(B,Q){return K(),B=q.normalize(B),W.readFileSync(B,Q?void 0:"utf8")},F=D=>{var B=P(D,!0);return B.buffer||(B=new Uint8Array(B)),B},R=(D,B,Q)=>{K(),D=q.normalize(D),W.readFile(D,function(ue,pe){ue?Q(ue):B(pe.buffer)})},process.argv.length>1&&(y=process.argv[1].replace(/\\/g,"/")),b=process.argv.slice(2),process.on("uncaughtException",function(D){if(!(D instanceof Iu))throw D}),process.on("unhandledRejection",function(D){throw D}),v=(D,B)=>{if(zr())throw process.exitCode=D,B;z(B),process.exit(D)},d.inspect=function(){return"[Emscripten Module object]"};let C;try{C=u$()}catch(D){throw console.error('The "worker_threads" module is not supported in this node.js build - perhaps a newer version is needed?'),D}global.Worker=C.Worker}else(x||k)&&(k?E=self.location.href:typeof document!="undefined"&&document.currentScript&&(E=document.currentScript.src),typeof s!="undefined"&&s&&(E=s),E.indexOf("blob:")!==0?E=E.substr(0,E.replace(/[?#].*/,"").lastIndexOf("/")+1):E="",T||(P=C=>{var D=new XMLHttpRequest;return D.open("GET",C,!1),D.send(null),D.responseText},k&&(F=C=>{var D=new XMLHttpRequest;return D.open("GET",C,!1),D.responseType="arraybuffer",D.send(null),new Uint8Array(D.response)}),R=(C,D,B)=>{var Q=new XMLHttpRequest;Q.open("GET",C,!0),Q.responseType="arraybuffer",Q.onload=()=>{if(Q.status==200||Q.status==0&&Q.response){D(Q.response);return}B()},Q.onerror=B,Q.send(null)}),$=C=>document.title=C);T&&typeof performance=="undefined"&&(global.performance=l$().performance);var Y=console.log.bind(console),Z=console.warn.bind(console);T&&(K(),Y=C=>W.writeSync(1,C+`
|
|
`),Z=C=>W.writeSync(2,C+`
|
|
`));var te=d.print||Y,ee=d.printErr||Z;Object.assign(d,g),g=null,d.arguments&&(b=d.arguments),d.thisProgram&&(y=d.thisProgram),d.quit&&(v=d.quit);var se=4;function ne(C){ne.shown||(ne.shown={}),ne.shown[C]||(ne.shown[C]=1,ee(C))}function oe(C,D){if(typeof WebAssembly.Function=="function"){for(var B={i:"i32",j:"i64",f:"f32",d:"f64"},Q={parameters:[],results:D[0]=="v"?[]:[B[D[0]]]},ue=1;ue<D.length;++ue)Q.parameters.push(B[D[ue]]);return new WebAssembly.Function(Q,C)}var pe=[1,0,1,96],ye=D.slice(0,1),Te=D.slice(1),bt={i:127,j:126,f:125,d:124};pe.push(Te.length);for(var ue=0;ue<Te.length;++ue)pe.push(bt[Te[ue]]);ye=="v"?pe.push(0):pe=pe.concat([1,bt[ye]]),pe[1]=pe.length-2;var us=new Uint8Array([0,97,115,109,1,0,0,0].concat(pe,[2,7,1,1,101,1,102,0,0,7,5,1,1,102,0,0])),ls=new WebAssembly.Module(us),Bc=new WebAssembly.Instance(ls,{e:{f:C}}),Su=Bc.exports.f;return Su}var re=[],le;function me(){if(re.length)return re.pop();try{Fn.grow(1)}catch(C){throw C instanceof RangeError?"Unable to grow wasm table. Set ALLOW_TABLE_GROWTH.":C}return Fn.length-1}function ke(C,D){for(var B=C;B<C+D;B++){var Q=Ai(B);Q&&le.set(Q,B)}}var Se=0,Ee=C=>{Se=C},Pe=Atomics.load,Xe=Atomics.store,Je=Atomics.compareExchange,Ye;d.wasmBinary&&(Ye=d.wasmBinary);var tt=d.noExitRuntime||!0;typeof WebAssembly!="object"&&Ti("no native wasm support detected");var Ce,ut,at=!1,Jt;function Nt(C,D){C||Ti(D)}function Cn(C){var D=d["_"+C];return D}function Et(C,D,B,Q,ue){var pe={string:function($n){var zi=0;if($n!=null&&$n!==0){var nx=($n.length<<2)+1;zi=Pi(nx),Ls($n,zi,nx)}return zi},array:function($n){var zi=Pi($n.length);return Bs($n,zi),zi}};function ye($n){return D==="string"?tn($n):D==="boolean"?Boolean($n):$n}var Te=Cn(C),bt=[],us=0;if(Q)for(var ls=0;ls<Q.length;ls++){var Bc=pe[B[ls]];Bc?(us===0&&(us=Df()),bt[ls]=Bc(Q[ls])):bt[ls]=Q[ls]}var Su=Te.apply(null,bt);function GT($n){return us!==0&&Pc(us),ye($n)}return Su=GT(Su),Su}function en(C,D,B,Q){B=B||[];var ue=B.every(function(ye){return ye==="number"}),pe=D!=="string";return pe&&ue&&!Q?Cn(C):function(){return Et(C,D,B,arguments,Q)}}var Nn=1;function Tn(C){var D=new TextDecoder(C);this.decode=B=>(B.buffer instanceof SharedArrayBuffer&&(B=new Uint8Array(B)),D.decode.call(D,B))}var Yt=typeof TextDecoder!="undefined"?new Tn("utf8"):void 0;function Dn(C,D,B){for(var Q=D+B,ue=D;C[ue]&&!(ue>=Q);)++ue;if(ue-D>16&&C.subarray&&Yt)return Yt.decode(C.subarray(D,ue));for(var pe="";D<ue;){var ye=C[D++];if(!(ye&128)){pe+=String.fromCharCode(ye);continue}var Te=C[D++]&63;if((ye&224)==192){pe+=String.fromCharCode((ye&31)<<6|Te);continue}var bt=C[D++]&63;if((ye&240)==224?ye=(ye&15)<<12|Te<<6|bt:ye=(ye&7)<<18|Te<<12|bt<<6|C[D++]&63,ye<65536)pe+=String.fromCharCode(ye);else{var us=ye-65536;pe+=String.fromCharCode(55296|us>>10,56320|us&1023)}}return pe}function tn(C,D){return C?Dn(i(),C,D):""}function Ms(C,D,B,Q){if(!(Q>0))return 0;for(var ue=B,pe=B+Q-1,ye=0;ye<C.length;++ye){var Te=C.charCodeAt(ye);if(Te>=55296&&Te<=57343){var bt=C.charCodeAt(++ye);Te=65536+((Te&1023)<<10)|bt&1023}if(Te<=127){if(B>=pe)break;D[B++]=Te}else if(Te<=2047){if(B+1>=pe)break;D[B++]=192|Te>>6,D[B++]=128|Te&63}else if(Te<=65535){if(B+2>=pe)break;D[B++]=224|Te>>12,D[B++]=128|Te>>6&63,D[B++]=128|Te&63}else{if(B+3>=pe)break;D[B++]=240|Te>>18,D[B++]=128|Te>>12&63,D[B++]=128|Te>>6&63,D[B++]=128|Te&63}}return D[B]=0,B-ue}function Ls(C,D,B){return Ms(C,i(),D,B)}function Si(C){for(var D=0,B=0;B<C.length;++B){var Q=C.charCodeAt(B);Q>=55296&&Q<=57343&&(Q=65536+((Q&1023)<<10)|C.charCodeAt(++B)&1023),Q<=127?++D:Q<=2047?D+=2:Q<=65535?D+=3:D+=4}return D}var er=typeof TextDecoder!="undefined"?new Tn("utf-16le"):void 0;function Bs(C,D){a().set(C,D)}function hu(C,D,B){for(var Q=0;Q<C.length;++Q)a()[D++>>0]=C.charCodeAt(Q);B||(a()[D>>0]=0)}function Ci(C,D){return C%D>0&&(C+=D-C%D),C}var nn,ic,oc,fu,uc,lc,Pv,cc,dc;N&&(nn=d.buffer);function rs(C){nn=C,d.HEAP8=ic=new Int8Array(C),d.HEAP16=fu=new Int16Array(C),d.HEAP32=lc=new Int32Array(C),d.HEAPU8=oc=new Uint8Array(C),d.HEAPU16=uc=new Uint16Array(C),d.HEAPU32=Pv=new Uint32Array(C),d.HEAPF32=cc=new Float32Array(C),d.HEAPF64=dc=new Float64Array(C)}var pc=d.INITIAL_MEMORY||16777216;if(N)Ce=d.wasmMemory,nn=d.buffer;else if(d.wasmMemory)Ce=d.wasmMemory;else if(Ce=new WebAssembly.Memory({initial:pc/65536,maximum:32768,shared:!0}),!(Ce.buffer instanceof SharedArrayBuffer))throw ee("requested a shared WebAssembly.Memory but the returned buffer is not a SharedArrayBuffer, indicating that while the browser has SharedArrayBuffer it does not have WebAssembly threads support - you may need to set a flag"),T&&console.log("(on node you may need: --experimental-wasm-threads --experimental-wasm-bulk-memory and also use a recent version)"),Error("bad memory");Ce&&(nn=Ce.buffer),pc=nn.byteLength,rs(nn);var Fn,Ni=[],tr=[],sh=[],hc=[],Pr=!1,rh=!1,fc=0;function zr(){return tt||fc>0}function sn(){if(d.preRun)for(typeof d.preRun=="function"&&(d.preRun=[d.preRun]);d.preRun.length;)zv(d.preRun.shift());vc(Ni)}function mu(){Pr=!0,!N&&vc(tr)}function ah(){N||(_e.terminateAllThreads(),rh=!0)}function ih(){if(!N){if(d.postRun)for(typeof d.postRun=="function"&&(d.postRun=[d.postRun]);d.postRun.length;)gu(d.postRun.shift());vc(hc)}}function zv(C){Ni.unshift(C)}function Mv(C){tr.unshift(C)}function gu(C){hc.unshift(C)}var nr=0,mc=null,as=null;function bu(C){nr++,d.monitorRunDependencies&&d.monitorRunDependencies(nr)}function Lv(C){if(nr--,d.monitorRunDependencies&&d.monitorRunDependencies(nr),nr==0&&(mc!==null&&(clearInterval(mc),mc=null),as)){var D=as;as=null,D()}}d.preloadedImages={},d.preloadedAudios={};function Ti(C){N?postMessage({cmd:"onAbort",arg:C}):d.onAbort&&d.onAbort(C),C="Aborted("+C+")",ee(C),at=!0,Jt=1,C+=". Build with -s ASSERTIONS=1 for more info.";var D=new WebAssembly.RuntimeError(C);throw f(D),D}var oh="data:application/octet-stream;base64,";function gc(C){return C.startsWith(oh)}function bc(C){return C.startsWith("file://")}var rn;rn="tfjs-backend-wasm-threaded-simd.wasm",gc(rn)||(rn=A(rn));function yc(C){try{if(C==rn&&Ye)return new Uint8Array(Ye);if(F)return F(C);throw"both async and sync fetching of the wasm failed"}catch(D){Ti(D)}}function $i(){if(!Ye&&(x||k)){if(typeof fetch=="function"&&!bc(rn))return fetch(rn,{credentials:"same-origin"}).then(function(C){if(!C.ok)throw"failed to load wasm binary file at '"+rn+"'";return C.arrayBuffer()}).catch(function(){return yc(rn)});if(R)return new Promise(function(C,D){R(rn,function(B){C(new Uint8Array(B))},D)})}return Promise.resolve().then(function(){return yc(rn)})}function uh(){var C={env:Ec,wasi_snapshot_preview1:Ec};function D(ye,Te){var bt=ye.exports;if(d.asm=bt,mh(d.asm.emscripten_tls_init),Fn=d.asm.__indirect_function_table,Mv(d.asm.__wasm_call_ctors),ut=Te,!N){var us=_e.unusedWorkers.length;_e.unusedWorkers.forEach(function(ls){_e.loadWasmModuleToWorker(ls,function(){--us||Lv("wasm-instantiate")})})}}N||bu("wasm-instantiate");function B(ye){D(ye.instance,ye.module)}function Q(ye){return $i().then(function(Te){return WebAssembly.instantiate(Te,C)}).then(function(Te){return Te}).then(ye,function(Te){ee("failed to asynchronously prepare wasm: "+Te),Ti(Te)})}function ue(){return!Ye&&typeof WebAssembly.instantiateStreaming=="function"&&!gc(rn)&&!bc(rn)&&typeof fetch=="function"?fetch(rn,{credentials:"same-origin"}).then(function(ye){var Te=WebAssembly.instantiateStreaming(ye,C);return Te.then(B,function(bt){return ee("wasm streaming compile failed: "+bt),ee("falling back to ArrayBuffer instantiation"),Q(B)})}):Q(B)}if(d.instantiateWasm)try{var pe=d.instantiateWasm(C,D);return pe}catch(ye){return ee("Module.instantiateWasm callback failed with error: "+ye),!1}return ue().catch(f),{}}var Bv,Vv,lh={};function vc(C){for(;C.length>0;){var D=C.shift();if(typeof D=="function"){D(d);continue}var B=D.func;typeof B=="number"?D.arg===void 0?Ai(B)():Ai(B)(D.arg):B(D.arg===void 0?null:D.arg)}}function _i(C){var D=Df(),B=C();return Pc(D),B}function ZN(C){return C}function Wv(C){var D=/\b_Z[\w\d_]+/g;return C.replace(D,function(B){var Q=B;return B===Q?B:Q+" ["+B+"]"})}function ch(C){l()[C>>2]=0;var D=_e.pthreads[C];delete _e.pthreads[C],D.worker.terminate(),Rf(C),_e.runningWorkers.splice(_e.runningWorkers.indexOf(D.worker),1),D.worker.pthread=void 0}function dh(C){var D=_e.pthreads[C];D.worker.postMessage({cmd:"cancel"})}function xc(C){var D=_e.pthreads[C];if(D){l()[C>>2]=0;var B=D.worker;_e.returnWorkerToPool(B)}}function wc(C){VT(C)}function ph(C){if(C instanceof Iu||C=="unwind")return Jt;v(1,C)}var _e={unusedWorkers:[],runningWorkers:[],tlsInitFunctions:[],init:function(){N?_e.initWorker():_e.initMainThread()},initMainThread:function(){for(var C=8,D=0;D<C;++D)_e.allocateUnusedWorker()},initWorker:function(){tt=!1},pthreads:{},setExitStatus:function(C){Jt=C},terminateAllThreads:function(){for(var C in _e.pthreads){var D=_e.pthreads[C];D&&D.worker&&_e.returnWorkerToPool(D.worker)}for(var B=0;B<_e.unusedWorkers.length;++B){var Q=_e.unusedWorkers[B];Q.terminate()}_e.unusedWorkers=[]},returnWorkerToPool:function(C){_e.runWithoutMainThreadQueuedCalls(function(){delete _e.pthreads[C.pthread.threadInfoStruct],_e.unusedWorkers.push(C),_e.runningWorkers.splice(_e.runningWorkers.indexOf(C),1),Rf(C.pthread.threadInfoStruct),C.pthread=void 0})},runWithoutMainThreadQueuedCalls:function(C){l()[tx>>2]=0;try{C()}finally{l()[tx>>2]=1}},receiveObjectTransfer:function(C){},threadInit:function(){for(var C in _e.tlsInitFunctions)_e.tlsInitFunctions[C]()},loadWasmModuleToWorker:function(C,D){C.onmessage=B=>{var Q=B.data,ue=Q.cmd;if(C.pthread&&(_e.currentProxiedOperationCallerThread=C.pthread.threadInfoStruct),Q.targetThread&&Q.targetThread!=Oc()){var pe=_e.pthreads[Q.targetThread];pe?pe.worker.postMessage(Q,Q.transferList):ee('Internal error! Worker sent a message "'+ue+'" to target pthread '+Q.targetThread+", but that thread no longer exists!"),_e.currentProxiedOperationCallerThread=void 0;return}ue==="processQueuedMainThreadWork"?Yv():ue==="spawnThread"?Ic(Q):ue==="cleanupThread"?xc(Q.thread):ue==="killThread"?ch(Q.thread):ue==="cancelThread"?dh(Q.thread):ue==="loaded"?(C.loaded=!0,D&&D(C),C.runPthread&&(C.runPthread(),delete C.runPthread)):ue==="print"?te("Thread "+Q.threadId+": "+Q.text):ue==="printErr"?ee("Thread "+Q.threadId+": "+Q.text):ue==="alert"?alert("Thread "+Q.threadId+": "+Q.text):Q.target==="setimmediate"?C.postMessage(Q):ue==="onAbort"?d.onAbort&&d.onAbort(Q.arg):ee("worker sent an unknown command "+ue),_e.currentProxiedOperationCallerThread=void 0},C.onerror=B=>{var Q="worker sent an error!";throw ee(Q+" "+B.filename+":"+B.lineno+": "+B.message),B},T&&(C.on("message",function(B){C.onmessage({data:B})}),C.on("error",function(B){C.onerror(B)}),C.on("detachedExit",function(){})),C.postMessage({cmd:"load",urlOrBlob:d.mainScriptUrlOrBlob||s,wasmMemory:Ce,wasmModule:ut})},allocateUnusedWorker:function(){var C=A("tfjs-backend-wasm-threaded-simd.worker.js");_e.unusedWorkers.push(new Worker(C))},getNewWorker:function(){return _e.unusedWorkers.length==0&&(_e.allocateUnusedWorker(),_e.loadWasmModuleToWorker(_e.unusedWorkers[0])),_e.unusedWorkers.pop()}};function hh(){var C=Oc(),D=l()[C+44>>2],B=l()[C+48>>2],Q=D-B;ex(D,Q),Pc(D)}d.establishStackSpace=hh;function kc(C){if(N)return Br(1,0,C);try{wc(C)}catch(D){ph(D)}}var Mr=[];function Ai(C){var D=Mr[C];return D||(C>=Mr.length&&(Mr.length=C+1),Mr[C]=D=Fn.get(C)),D}function fh(C,D){return Ai(C)(D)}d.invokeEntryPoint=fh;function Uv(){var C=new Error;if(!C.stack){try{throw new Error}catch(D){C=D}if(!C.stack)return"(no stack trace available)"}return C.stack.toString()}function mh(C,D,B){_e.tlsInitFunctions.push(C)}function Gv(C,D){Fn.set(C,D),Mr[C]=D}var Lr;T?Lr=()=>{var C=process.hrtime();return C[0]*1e3+C[1]/1e6}:N?Lr=()=>performance.now()-d.__performance_now_clock_drift:Lr=()=>performance.now();var gh=!0;function bh(C){return l()[Xv()>>2]=C,C}function yh(C,D){var B;if(C===0)B=Date.now();else if((C===1||C===4)&&gh)B=Lr();else return bh(28),-1;return l()[D>>2]=B/1e3|0,l()[D+4>>2]=B%1e3*1e3*1e3|0,0}function vh(C,D){return yh(C,D)}function xh(C){Qv(C,!k,1,!x),_e.threadInit()}function wh(C){N?postMessage({cmd:"cleanupThread",thread:C}):xc(C)}function Ic(C){var D=_e.getNewWorker();if(!D)return 6;_e.runningWorkers.push(D);var B=_e.pthreads[C.pthread_ptr]={worker:D,threadInfoStruct:C.pthread_ptr};D.pthread=B;var Q={cmd:"run",start_routine:C.startRoutine,arg:C.arg,threadInfoStruct:C.pthread_ptr};return D.runPthread=()=>{Q.time=performance.now(),D.postMessage(Q,C.transferList)},D.loaded&&(D.runPthread(),delete D.runPthread),0}function kh(C,D,B,Q){if(typeof SharedArrayBuffer=="undefined")return ee("Current environment does not support SharedArrayBuffer, pthreads are not available!"),6;var ue=[],pe=0;if(N&&(ue.length===0||pe))return Zv(687865856,C,D,B,Q);if(pe)return pe;var ye={startRoutine:B,pthread_ptr:C,arg:Q,transferList:ue};return N?(ye.cmd="spawnThread",postMessage(ye,ue),0):Ic(ye)}function Ih(){return 2097152}function Sh(C,D){if(C==D)postMessage({cmd:"processQueuedMainThreadWork"});else if(N)postMessage({targetThread:C,cmd:"processThreadQueue"});else{var B=_e.pthreads[C],Q=B&&B.worker;if(!Q)return;Q.postMessage({cmd:"processThreadQueue"})}return 1}function Ch(){Ti("")}function Nh(){T||k||ne("Blocking on the main thread is very dangerous, see https://emscripten.org/docs/porting/pthreads.html#blocking-on-the-main-browser-thread")}function Sc(){return 2147483648}function Th(C,D,B){i().copyWithin(C,D,D+B)}function $h(){return T?c$().cpus().length:navigator.hardwareConcurrency}function Br(C,D){var B=arguments.length-2,Q=arguments;return _i(function(){for(var ue=B,pe=Pi(ue*8),ye=pe>>3,Te=0;Te<B;Te++){var bt=Q[2+Te];p()[ye+Te]=bt}return Jv(C,ue,pe,D)})}var yu=[];function _h(C,D,B){yu.length=D;for(var Q=B>>3,ue=0;ue<D;ue++)yu[ue]=p()[Q+ue];var pe=C<0,ye=pe?lh[-C-1]:Kh[C];return ye.apply(null,yu)}function Ah(C){try{return Ce.grow(C-nn.byteLength+65535>>>16),rs(Ce.buffer),1}catch(D){}}function Eh(C){var D=i().length;if(C=C>>>0,C<=D)return!1;var B=Sc();if(C>B)return!1;for(var Q=1;Q<=4;Q*=2){var ue=D*(1+.2/Q);ue=Math.min(ue,C+100663296);var pe=Math.min(B,Ci(Math.max(C,ue),65536)),ye=Ah(pe);if(ye)return!0}return!1}var Be={inEventHandler:0,removeAllEventListeners:function(){for(var C=Be.eventHandlers.length-1;C>=0;--C)Be._removeHandler(C);Be.eventHandlers=[],Be.deferredCalls=[]},registerRemoveEventListeners:function(){Be.removeEventListenersRegistered||(sh.push(Be.removeAllEventListeners),Be.removeEventListenersRegistered=!0)},deferredCalls:[],deferCall:function(C,D,B){function Q(ye,Te){if(ye.length!=Te.length)return!1;for(var bt in ye)if(ye[bt]!=Te[bt])return!1;return!0}for(var ue in Be.deferredCalls){var pe=Be.deferredCalls[ue];if(pe.targetFunction==C&&Q(pe.argsList,B))return}Be.deferredCalls.push({targetFunction:C,precedence:D,argsList:B}),Be.deferredCalls.sort(function(ye,Te){return ye.precedence<Te.precedence})},removeDeferredCalls:function(C){for(var D=0;D<Be.deferredCalls.length;++D)Be.deferredCalls[D].targetFunction==C&&(Be.deferredCalls.splice(D,1),--D)},canPerformEventHandlerRequests:function(){return Be.inEventHandler&&Be.currentEventHandler.allowsDeferredCalls},runDeferredCalls:function(){if(!!Be.canPerformEventHandlerRequests())for(var C=0;C<Be.deferredCalls.length;++C){var D=Be.deferredCalls[C];Be.deferredCalls.splice(C,1),--C,D.targetFunction.apply(null,D.argsList)}},eventHandlers:[],removeAllHandlersOnTarget:function(C,D){for(var B=0;B<Be.eventHandlers.length;++B)Be.eventHandlers[B].target==C&&(!D||D==Be.eventHandlers[B].eventTypeString)&&Be._removeHandler(B--)},_removeHandler:function(C){var D=Be.eventHandlers[C];D.target.removeEventListener(D.eventTypeString,D.eventListenerFunc,D.useCapture),Be.eventHandlers.splice(C,1)},registerOrRemoveHandler:function(C){var D=function(ue){++Be.inEventHandler,Be.currentEventHandler=C,Be.runDeferredCalls(),C.handlerFunc(ue),Be.runDeferredCalls(),--Be.inEventHandler};if(C.callbackfunc)C.eventListenerFunc=D,C.target.addEventListener(C.eventTypeString,D,C.useCapture),Be.eventHandlers.push(C),Be.registerRemoveEventListeners();else for(var B=0;B<Be.eventHandlers.length;++B)Be.eventHandlers[B].target==C.target&&Be.eventHandlers[B].eventTypeString==C.eventTypeString&&Be._removeHandler(B--)},queueEventHandlerOnThread_iiii:function(C,D,B,Q,ue){_i(function(){var pe=Pi(12);l()[pe>>2]=B,l()[pe+4>>2]=Q,l()[pe+8>>2]=ue,Ef(C,637534208,D,Q,pe)})},getTargetThreadForEventCallback:function(C){switch(C){case 1:return 0;case 2:return _e.currentProxiedOperationCallerThread;default:return C}},getNodeNameForTarget:function(C){return C?C==window?"#window":C==screen?"#screen":C&&C.nodeName?C.nodeName:"":""},fullscreenEnabled:function(){return document.fullscreenEnabled||document.webkitFullscreenEnabled}};function Rh(C){var D=Si(C)+1,B=Af(D);return Ls(C,B,D),B}function Dh(C,D,B,Q){_i(function(){var ue=Pi(12),pe=0;D&&(pe=Rh(D)),l()[ue>>2]=pe,l()[ue+4>>2]=B,l()[ue+8>>2]=Q,Ef(C,657457152,0,pe,ue)})}function Fh(C,D,B,Q){D=D?tn(D):"",Dh(C,D,B,Q)}function Oh(C){return C>2?tn(C):C}var Ph=[0,typeof document!="undefined"?document:0,typeof window!="undefined"?window:0];function zh(C){C=Oh(C);var D=Ph[C]||(typeof document!="undefined"?document.querySelector(C):void 0);return D}function vu(C){return zh(C)}function Cc(C,D,B){var Q=vu(C);if(!Q)return-4;if(Q.canvasSharedPtr&&(l()[Q.canvasSharedPtr>>2]=D,l()[Q.canvasSharedPtr+4>>2]=B),Q.offscreenCanvas||!Q.controlTransferredOffscreen){Q.offscreenCanvas&&(Q=Q.offscreenCanvas);var ue=!1;if(Q.GLctxObject&&Q.GLctxObject.GLctx){var pe=Q.GLctxObject.GLctx.getParameter(2978);ue=pe[0]===0&&pe[1]===0&&pe[2]===Q.width&&pe[3]===Q.height}Q.width=D,Q.height=B,ue&&Q.GLctxObject.GLctx.viewport(0,0,D,B)}else if(Q.canvasSharedPtr){var ye=l()[Q.canvasSharedPtr+8>>2];return Fh(ye,C,D,B),1}else return-4;return 0}function Nc(C,D,B){return N?Br(2,1,C,D,B):Cc(C,D,B)}function Mh(C,D,B){var Q=vu(C);return Q?Cc(C,D,B):Nc(C,D,B)}function Lh(){throw"unwind"}function Bh(C){var D=C.getExtension("ANGLE_instanced_arrays");if(D)return C.vertexAttribDivisor=function(B,Q){D.vertexAttribDivisorANGLE(B,Q)},C.drawArraysInstanced=function(B,Q,ue,pe){D.drawArraysInstancedANGLE(B,Q,ue,pe)},C.drawElementsInstanced=function(B,Q,ue,pe,ye){D.drawElementsInstancedANGLE(B,Q,ue,pe,ye)},1}function Vh(C){var D=C.getExtension("OES_vertex_array_object");if(D)return C.createVertexArray=function(){return D.createVertexArrayOES()},C.deleteVertexArray=function(B){D.deleteVertexArrayOES(B)},C.bindVertexArray=function(B){D.bindVertexArrayOES(B)},C.isVertexArray=function(B){return D.isVertexArrayOES(B)},1}function Wh(C){var D=C.getExtension("WEBGL_draw_buffers");if(D)return C.drawBuffers=function(B,Q){D.drawBuffersWEBGL(B,Q)},1}function Uh(C){return!!(C.multiDrawWebgl=C.getExtension("WEBGL_multi_draw"))}var gt={counter:1,buffers:[],programs:[],framebuffers:[],renderbuffers:[],textures:[],shaders:[],vaos:[],contexts:{},offscreenCanvases:{},queries:[],stringCache:{},unpackAlignment:4,recordError:function(D){gt.lastError||(gt.lastError=D)},getNewId:function(C){for(var D=gt.counter++,B=C.length;B<D;B++)C[B]=null;return D},getSource:function(C,D,B,Q){for(var ue="",pe=0;pe<D;++pe){var ye=Q?l()[Q+pe*4>>2]:-1;ue+=tn(l()[B+pe*4>>2],ye<0?void 0:ye)}return ue},createContext:function(C,D){C.getContextSafariWebGL2Fixed||(C.getContextSafariWebGL2Fixed=C.getContext,C.getContext=function(ue,pe){var ye=C.getContextSafariWebGL2Fixed(ue,pe);return ue=="webgl"==ye instanceof WebGLRenderingContext?ye:null});var B=C.getContext("webgl",D);if(!B)return 0;var Q=gt.registerContext(B,D);return Q},registerContext:function(C,D){var B=Af(8);l()[B+4>>2]=Oc();var Q={handle:B,attributes:D,version:D.majorVersion,GLctx:C};return C.canvas&&(C.canvas.GLctxObject=Q),gt.contexts[B]=Q,(typeof D.enableExtensionsByDefault=="undefined"||D.enableExtensionsByDefault)&>.initExtensions(Q),B},makeContextCurrent:function(C){return gt.currentContext=gt.contexts[C],d.ctx=Ac=gt.currentContext&>.currentContext.GLctx,!(C&&!Ac)},getContext:function(C){return gt.contexts[C]},deleteContext:function(C){gt.currentContext===gt.contexts[C]&&(gt.currentContext=null),typeof Be=="object"&&Be.removeAllHandlersOnTarget(gt.contexts[C].GLctx.canvas),gt.contexts[C]&>.contexts[C].GLctx.canvas&&(gt.contexts[C].GLctx.canvas.GLctxObject=void 0),Kv(gt.contexts[C].handle),gt.contexts[C]=null},initExtensions:function(C){if(C||(C=gt.currentContext),!C.initExtensionsDone){C.initExtensionsDone=!0;var D=C.GLctx;Bh(D),Vh(D),Wh(D),D.disjointTimerQueryExt=D.getExtension("EXT_disjoint_timer_query"),Uh(D);var B=D.getSupportedExtensions()||[];B.forEach(function(Q){!Q.includes("lose_context")&&!Q.includes("debug")&&D.getExtension(Q)})}}},Gh=["default","low-power","high-performance"];function Hh(C,D){var B=D>>2,Q=l()[B+6],ue={alpha:!!l()[B+0],depth:!!l()[B+1],stencil:!!l()[B+2],antialias:!!l()[B+3],premultipliedAlpha:!!l()[B+4],preserveDrawingBuffer:!!l()[B+5],powerPreference:Gh[Q],failIfMajorPerformanceCaveat:!!l()[B+7],majorVersion:l()[B+8],minorVersion:l()[B+9],enableExtensionsByDefault:l()[B+10],explicitSwapControl:l()[B+11],proxyContextToMainThread:l()[B+12],renderViaOffscreenBackBuffer:l()[B+13]},pe=vu(C);if(!pe||ue.explicitSwapControl)return 0;var ye=gt.createContext(pe,ue);return ye}function qh(C,D){return Hh(C,D)}var Ei={mappings:{},buffers:[null,[],[]],printChar:function(C,D){var B=Ei.buffers[C];D===0||D===10?((C===1?te:ee)(Dn(B,0)),B.length=0):B.push(D)},varargs:void 0,get:function(){Ei.varargs+=4;var C=l()[Ei.varargs-4>>2];return C},getStr:function(C){var D=tn(C);return D},get64:function(C,D){return C}};function Tc(C){return N?Br(3,1,C):0}function $c(C,D,B,Q,ue){if(N)return Br(4,1,C,D,B,Q,ue)}function _c(C,D,B,Q){if(N)return Br(5,1,C,D,B,Q);for(var ue=0,pe=0;pe<B;pe++){var ye=l()[D>>2],Te=l()[D+4>>2];D+=8;for(var bt=0;bt<Te;bt++)Ei.printChar(C,i()[ye+bt]);ue+=Te}return l()[Q>>2]=ue,0}function jh(C){Ee(C)}_e.init();var Ac,Kh=[null,kc,Nc,Tc,$c,_c],Hv=!1,Ec={__clock_gettime:vh,__emscripten_init_main_thread_js:xh,__emscripten_thread_cleanup:wh,__pthread_create_js:kh,_emscripten_default_pthread_stack_size:Ih,_emscripten_notify_thread_queue:Sh,abort:Ch,emscripten_check_blocking_allowed:Nh,emscripten_get_heap_max:Sc,emscripten_get_now:Lr,emscripten_memcpy_big:Th,emscripten_num_logical_cores:$h,emscripten_receive_on_main_thread_js:_h,emscripten_resize_heap:Eh,emscripten_set_canvas_element_size:Mh,emscripten_unwind_to_js_event_loop:Lh,emscripten_webgl_create_context:qh,exit:wc,fd_close:Tc,fd_seek:$c,fd_write:_c,memory:Ce||d.wasmMemory,setTempRet0:jh},qv=uh(),Xh=d.___wasm_call_ctors=function(){return(Xh=d.___wasm_call_ctors=d.asm.__wasm_call_ctors).apply(null,arguments)},Yh=d._init=function(){return(Yh=d._init=d.asm.init).apply(null,arguments)},Qh=d._init_with_threads_count=function(){return(Qh=d._init_with_threads_count=d.asm.init_with_threads_count).apply(null,arguments)},Zh=d._get_threads_count=function(){return(Zh=d._get_threads_count=d.asm.get_threads_count).apply(null,arguments)},Jh=d._register_tensor=function(){return(Jh=d._register_tensor=d.asm.register_tensor).apply(null,arguments)},ef=d._dispose_data=function(){return(ef=d._dispose_data=d.asm.dispose_data).apply(null,arguments)},tf=d._dispose=function(){return(tf=d._dispose=d.asm.dispose).apply(null,arguments)},nf=d._Abs=function(){return(nf=d._Abs=d.asm.Abs).apply(null,arguments)},sf=d._Add=function(){return(sf=d._Add=d.asm.Add).apply(null,arguments)},rf=d._AddN=function(){return(rf=d._AddN=d.asm.AddN).apply(null,arguments)},af=d._All=function(){return(af=d._All=d.asm.All).apply(null,arguments)},of=d._Any=function(){return(of=d._Any=d.asm.Any).apply(null,arguments)},uf=d._ArgMax=function(){return(uf=d._ArgMax=d.asm.ArgMax).apply(null,arguments)},lf=d._AvgPool=function(){return(lf=d._AvgPool=d.asm.AvgPool).apply(null,arguments)},cf=d._BatchMatMul=function(){return(cf=d._BatchMatMul=d.asm.BatchMatMul).apply(null,arguments)},df=d._Ceil=function(){return(df=d._Ceil=d.asm.Ceil).apply(null,arguments)},pf=d._ClipByValue=function(){return(pf=d._ClipByValue=d.asm.ClipByValue).apply(null,arguments)},hf=d._Conv2D=function(){return(hf=d._Conv2D=d.asm.Conv2D).apply(null,arguments)},ff=d._Conv2DBackpropInput=function(){return(ff=d._Conv2DBackpropInput=d.asm.Conv2DBackpropInput).apply(null,arguments)},mf=d._Cos=function(){return(mf=d._Cos=d.asm.Cos).apply(null,arguments)},gf=d._Cosh=function(){return(gf=d._Cosh=d.asm.Cosh).apply(null,arguments)},bf=d._CropAndResize=function(){return(bf=d._CropAndResize=d.asm.CropAndResize).apply(null,arguments)},yf=d._Cumprod=function(){return(yf=d._Cumprod=d.asm.Cumprod).apply(null,arguments)},vf=d._Cumsum=function(){return(vf=d._Cumsum=d.asm.Cumsum).apply(null,arguments)},xf=d._DepthToSpace=function(){return(xf=d._DepthToSpace=d.asm.DepthToSpace).apply(null,arguments)},wf=d._DepthwiseConv2dNative=function(){return(wf=d._DepthwiseConv2dNative=d.asm.DepthwiseConv2dNative).apply(null,arguments)},kf=d._Elu=function(){return(kf=d._Elu=d.asm.Elu).apply(null,arguments)},If=d._Equal=function(){return(If=d._Equal=d.asm.Equal).apply(null,arguments)},Sf=d._Exp=function(){return(Sf=d._Exp=d.asm.Exp).apply(null,arguments)},Cf=d._FlipLeftRight=function(){return(Cf=d._FlipLeftRight=d.asm.FlipLeftRight).apply(null,arguments)},Rc=d._Floor=function(){return(Rc=d._Floor=d.asm.Floor).apply(null,arguments)},Dc=d._FloorDiv=function(){return(Dc=d._FloorDiv=d.asm.FloorDiv).apply(null,arguments)},xu=d._FusedBatchNorm=function(){return(xu=d._FusedBatchNorm=d.asm.FusedBatchNorm).apply(null,arguments)},Nf=d._FusedConv2D=function(){return(Nf=d._FusedConv2D=d.asm.FusedConv2D).apply(null,arguments)},Tf=d._FusedDepthwiseConv2D=function(){return(Tf=d._FusedDepthwiseConv2D=d.asm.FusedDepthwiseConv2D).apply(null,arguments)},Ri=d._Gather=function(){return(Ri=d._Gather=d.asm.Gather).apply(null,arguments)},wu=d._GatherNd=function(){return(wu=d._GatherNd=d.asm.GatherNd).apply(null,arguments)},ku=d._Greater=function(){return(ku=d._Greater=d.asm.Greater).apply(null,arguments)},jv=d._GreaterEqual=function(){return(jv=d._GreaterEqual=d.asm.GreaterEqual).apply(null,arguments)},Di=d._LeakyRelu=function(){return(Di=d._LeakyRelu=d.asm.LeakyRelu).apply(null,arguments)},Fi=d._Less=function(){return(Fi=d._Less=d.asm.Less).apply(null,arguments)},$f=d._LessEqual=function(){return($f=d._LessEqual=d.asm.LessEqual).apply(null,arguments)},H=d._Log=function(){return(H=d._Log=d.asm.Log).apply(null,arguments)},J=d._LogicalAnd=function(){return(J=d._LogicalAnd=d.asm.LogicalAnd).apply(null,arguments)},de=d._Max=function(){return(de=d._Max=d.asm.Max).apply(null,arguments)},Ie=d._MaxPool=function(){return(Ie=d._MaxPool=d.asm.MaxPool).apply(null,arguments)},Qe=d._Maximum=function(){return(Qe=d._Maximum=d.asm.Maximum).apply(null,arguments)},Ze=d._Mean=function(){return(Ze=d._Mean=d.asm.Mean).apply(null,arguments)},Ve=d._Min=function(){return(Ve=d._Min=d.asm.Min).apply(null,arguments)},ze=d._Minimum=function(){return(ze=d._Minimum=d.asm.Minimum).apply(null,arguments)},Tt=d._MirrorPad=function(){return(Tt=d._MirrorPad=d.asm.MirrorPad).apply(null,arguments)},is=d._Multiply=function(){return(is=d._Multiply=d.asm.Multiply).apply(null,arguments)},os=d._Neg=function(){return(os=d._Neg=d.asm.Neg).apply(null,arguments)},Oi=d._NonMaxSuppressionV3=function(){return(Oi=d._NonMaxSuppressionV3=d.asm.NonMaxSuppressionV3).apply(null,arguments)},Vr=d._NonMaxSuppressionV4=function(){return(Vr=d._NonMaxSuppressionV4=d.asm.NonMaxSuppressionV4).apply(null,arguments)},_f=d._NonMaxSuppressionV5=function(){return(_f=d._NonMaxSuppressionV5=d.asm.NonMaxSuppressionV5).apply(null,arguments)},an=d._NotEqual=function(){return(an=d._NotEqual=d.asm.NotEqual).apply(null,arguments)},sr=d._OneHot=function(){return(sr=d._OneHot=d.asm.OneHot).apply(null,arguments)},Fc=d._PadV2=function(){return(Fc=d._PadV2=d.asm.PadV2).apply(null,arguments)},JN=d._Pow=function(){return(JN=d._Pow=d.asm.Pow).apply(null,arguments)},eT=d._Prelu=function(){return(eT=d._Prelu=d.asm.Prelu).apply(null,arguments)},tT=d._Prod=function(){return(tT=d._Prod=d.asm.Prod).apply(null,arguments)},nT=d._RealDiv=function(){return(nT=d._RealDiv=d.asm.RealDiv).apply(null,arguments)},sT=d._Relu=function(){return(sT=d._Relu=d.asm.Relu).apply(null,arguments)},rT=d._Relu6=function(){return(rT=d._Relu6=d.asm.Relu6).apply(null,arguments)},aT=d._ResizeBilinear=function(){return(aT=d._ResizeBilinear=d.asm.ResizeBilinear).apply(null,arguments)},iT=d._Reverse=function(){return(iT=d._Reverse=d.asm.Reverse).apply(null,arguments)},oT=d._RotateWithOffset=function(){return(oT=d._RotateWithOffset=d.asm.RotateWithOffset).apply(null,arguments)},uT=d._Round=function(){return(uT=d._Round=d.asm.Round).apply(null,arguments)},lT=d._Rsqrt=function(){return(lT=d._Rsqrt=d.asm.Rsqrt).apply(null,arguments)},cT=d._ScatterNd=function(){return(cT=d._ScatterNd=d.asm.ScatterNd).apply(null,arguments)},dT=d._SelectV2=function(){return(dT=d._SelectV2=d.asm.SelectV2).apply(null,arguments)},pT=d._Sigmoid=function(){return(pT=d._Sigmoid=d.asm.Sigmoid).apply(null,arguments)},hT=d._Sin=function(){return(hT=d._Sin=d.asm.Sin).apply(null,arguments)},fT=d._Softmax=function(){return(fT=d._Softmax=d.asm.Softmax).apply(null,arguments)},mT=d._SparseFillEmptyRows=function(){return(mT=d._SparseFillEmptyRows=d.asm.SparseFillEmptyRows).apply(null,arguments)},gT=d._SparseReshape=function(){return(gT=d._SparseReshape=d.asm.SparseReshape).apply(null,arguments)},bT=d._SparseSegmentReduction=function(){return(bT=d._SparseSegmentReduction=d.asm.SparseSegmentReduction).apply(null,arguments)},yT=d._Sqrt=function(){return(yT=d._Sqrt=d.asm.Sqrt).apply(null,arguments)},vT=d._Square=function(){return(vT=d._Square=d.asm.Square).apply(null,arguments)},xT=d._SquaredDifference=function(){return(xT=d._SquaredDifference=d.asm.SquaredDifference).apply(null,arguments)},wT=d._Step=function(){return(wT=d._Step=d.asm.Step).apply(null,arguments)},kT=d._StridedSlice=function(){return(kT=d._StridedSlice=d.asm.StridedSlice).apply(null,arguments)},IT=d._Sub=function(){return(IT=d._Sub=d.asm.Sub).apply(null,arguments)},ST=d._Sum=function(){return(ST=d._Sum=d.asm.Sum).apply(null,arguments)},CT=d._Tan=function(){return(CT=d._Tan=d.asm.Tan).apply(null,arguments)},NT=d._Tanh=function(){return(NT=d._Tanh=d.asm.Tanh).apply(null,arguments)},TT=d._Tile=function(){return(TT=d._Tile=d.asm.Tile).apply(null,arguments)},$T=d._TopK=function(){return($T=d._TopK=d.asm.TopK).apply(null,arguments)},_T=d._Transform=function(){return(_T=d._Transform=d.asm.Transform).apply(null,arguments)},AT=d._Transpose=function(){return(AT=d._Transpose=d.asm.Transpose).apply(null,arguments)},ET=d.__FusedMatMul=function(){return(ET=d.__FusedMatMul=d.asm._FusedMatMul).apply(null,arguments)},Af=d._malloc=function(){return(Af=d._malloc=d.asm.malloc).apply(null,arguments)},Kv=d._free=function(){return(Kv=d._free=d.asm.free).apply(null,arguments)},RT=d._emscripten_tls_init=function(){return(RT=d._emscripten_tls_init=d.asm.emscripten_tls_init).apply(null,arguments)},Xv=d.___errno_location=function(){return(Xv=d.___errno_location=d.asm.__errno_location).apply(null,arguments)},Oc=d._pthread_self=function(){return(Oc=d._pthread_self=d.asm.pthread_self).apply(null,arguments)},Yv=d._emscripten_main_thread_process_queued_calls=function(){return(Yv=d._emscripten_main_thread_process_queued_calls=d.asm.emscripten_main_thread_process_queued_calls).apply(null,arguments)},DT=d.__emscripten_thread_crashed=function(){return(DT=d.__emscripten_thread_crashed=d.asm._emscripten_thread_crashed).apply(null,arguments)},Qv=d.__emscripten_thread_init=function(){return(Qv=d.__emscripten_thread_init=d.asm._emscripten_thread_init).apply(null,arguments)},FT=d._emscripten_current_thread_process_queued_calls=function(){return(FT=d._emscripten_current_thread_process_queued_calls=d.asm.emscripten_current_thread_process_queued_calls).apply(null,arguments)},OT=d._emscripten_main_browser_thread_id=function(){return(OT=d._emscripten_main_browser_thread_id=d.asm.emscripten_main_browser_thread_id).apply(null,arguments)},PT=d._emscripten_sync_run_in_main_thread_2=function(){return(PT=d._emscripten_sync_run_in_main_thread_2=d.asm.emscripten_sync_run_in_main_thread_2).apply(null,arguments)},Zv=d._emscripten_sync_run_in_main_thread_4=function(){return(Zv=d._emscripten_sync_run_in_main_thread_4=d.asm.emscripten_sync_run_in_main_thread_4).apply(null,arguments)},Jv=d._emscripten_run_in_main_runtime_thread_js=function(){return(Jv=d._emscripten_run_in_main_runtime_thread_js=d.asm.emscripten_run_in_main_runtime_thread_js).apply(null,arguments)},Ef=d._emscripten_dispatch_to_thread_=function(){return(Ef=d._emscripten_dispatch_to_thread_=d.asm.emscripten_dispatch_to_thread_).apply(null,arguments)},Rf=d.__emscripten_thread_free_data=function(){return(Rf=d.__emscripten_thread_free_data=d.asm._emscripten_thread_free_data).apply(null,arguments)},zT=d.__emscripten_thread_exit=function(){return(zT=d.__emscripten_thread_exit=d.asm._emscripten_thread_exit).apply(null,arguments)},MT=d._memalign=function(){return(MT=d._memalign=d.asm.memalign).apply(null,arguments)},ex=d._emscripten_stack_set_limits=function(){return(ex=d._emscripten_stack_set_limits=d.asm.emscripten_stack_set_limits).apply(null,arguments)},Df=d.stackSave=function(){return(Df=d.stackSave=d.asm.stackSave).apply(null,arguments)},Pc=d.stackRestore=function(){return(Pc=d.stackRestore=d.asm.stackRestore).apply(null,arguments)},Pi=d.stackAlloc=function(){return(Pi=d.stackAlloc=d.asm.stackAlloc).apply(null,arguments)},LT=d.dynCall_iijjiiii=function(){return(LT=d.dynCall_iijjiiii=d.asm.dynCall_iijjiiii).apply(null,arguments)},BT=d.dynCall_jiji=function(){return(BT=d.dynCall_jiji=d.asm.dynCall_jiji).apply(null,arguments)},tx=d.__emscripten_allow_main_runtime_queued_calls=21456;d.cwrap=en,d.keepRuntimeAlive=zr,d.PThread=_e,d.PThread=_e,d.wasmMemory=Ce,d.ExitStatus=Iu;var zc;function Iu(C){this.name="ExitStatus",this.message="Program terminated with exit("+C+")",this.status=C}as=function C(){zc||Ff(),zc||(as=C)};function Ff(C){if(C=C||b,nr>0)return;if(N){h(d),mu(),postMessage({cmd:"loaded"});return}if(sn(),nr>0)return;function D(){zc||(zc=!0,d.calledRun=!0,!at&&(mu(),h(d),d.onRuntimeInitialized&&d.onRuntimeInitialized(),ih()))}d.setStatus?(d.setStatus("Running..."),setTimeout(function(){setTimeout(function(){d.setStatus("")},1),D()},1)):D()}d.run=Ff;function VT(C,D){if(Jt=C,!D&&N)throw kc(C),"unwind";zr()||ah(),WT(C)}function WT(C){Jt=C,zr()||(_e.terminateAllThreads(),d.onExit&&d.onExit(C),at=!0),v(C,new Iu(C))}if(d.preInit)for(typeof d.preInit=="function"&&(d.preInit=[d.preInit]);d.preInit.length>0;)d.preInit.pop()();Ff();var Mc;m&&(Mc={uncaughtException:process.listeners("uncaughtException").filter(function(C){return!m.uncaughtException.indexOf(C)>-1}),unhandledRejection:process.listeners("unhandledRejection").filter(function(C){return!m.unhandledRejection.indexOf(C)>-1})});var Lc;if(typeof WasmBackendModule!="undefined")Lc=WasmBackendModule;else if(typeof r!="undefined")Lc=r;else throw new Error("Could not find wasm module in post.js");if(Mc){var UT=Lc._dispose;Lc._dispose=function(){UT(),Mc.uncaughtException.forEach(function(C){process.removeListener("uncaughtException",C)}),Mc.unhandledRejection.forEach(function(C){process.removeListener("unhandledRejection",C)})}}return r.ready}})();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModuleThreadedSimd=n)}}),p$=zt({"src/tfjs-backend-wasm/wasm-out/tfjs-backend-wasm.js"(e,t){var n=(()=>{var s=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(s=s||__filename),function(r){r=r||{};var a=typeof r!="undefined"?r:{},i,o;a.ready=new Promise(function(H,J){i=H,o=J});var u;typeof process!="undefined"&&process.listeners&&(u={uncaughtException:process.listeners("uncaughtException"),unhandledRejection:process.listeners("unhandledRejection")});var l=Object.assign({},a),c=[],p="./this.program",d=(H,J)=>{throw J},h=typeof window=="object",f=typeof importScripts=="function",m=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",g="";function b(H){return a.locateFile?a.locateFile(H,g):g+H}var y,v,x,k;function T(H){if(H instanceof wu)return;R("exiting due to exception: "+H)}var N,E,A;m?(f?g=dd().dirname(g)+"/":g=__dirname+"/",A=()=>{E||(N=sg(),E=dd())},y=function(J,de){return A(),J=E.normalize(J),N.readFileSync(J,de?void 0:"utf8")},x=H=>{var J=y(H,!0);return J.buffer||(J=new Uint8Array(J)),J},v=(H,J,de)=>{A(),H=E.normalize(H),N.readFile(H,function(Ie,Qe){Ie?de(Ie):J(Qe.buffer)})},process.argv.length>1&&(p=process.argv[1].replace(/\\/g,"/")),c=process.argv.slice(2),process.on("uncaughtException",function(H){if(!(H instanceof wu))throw H}),process.on("unhandledRejection",function(H){throw H}),d=(H,J)=>{if(fu())throw process.exitCode=H,J;T(J),process.exit(H)},a.inspect=function(){return"[Emscripten Module object]"}):(h||f)&&(f?g=self.location.href:typeof document!="undefined"&&document.currentScript&&(g=document.currentScript.src),s&&(g=s),g.indexOf("blob:")!==0?g=g.substr(0,g.replace(/[?#].*/,"").lastIndexOf("/")+1):g="",y=H=>{var J=new XMLHttpRequest;return J.open("GET",H,!1),J.send(null),J.responseText},f&&(x=H=>{var J=new XMLHttpRequest;return J.open("GET",H,!1),J.responseType="arraybuffer",J.send(null),new Uint8Array(J.response)}),v=(H,J,de)=>{var Ie=new XMLHttpRequest;Ie.open("GET",H,!0),Ie.responseType="arraybuffer",Ie.onload=()=>{if(Ie.status==200||Ie.status==0&&Ie.response){J(Ie.response);return}de()},Ie.onerror=de,Ie.send(null)},k=H=>document.title=H);var P=a.print||console.log.bind(console),R=a.printErr||console.warn.bind(console);Object.assign(a,l),l=null,a.arguments&&(c=a.arguments),a.thisProgram&&(p=a.thisProgram),a.quit&&(d=a.quit);var F=4;function $(H){$.shown||($.shown={}),$.shown[H]||($.shown[H]=1,R(H))}function z(H,J){if(typeof WebAssembly.Function=="function"){for(var de={i:"i32",j:"i64",f:"f32",d:"f64"},Ie={parameters:[],results:J[0]=="v"?[]:[de[J[0]]]},Qe=1;Qe<J.length;++Qe)Ie.parameters.push(de[J[Qe]]);return new WebAssembly.Function(Ie,H)}var Ze=[1,0,1,96],Ve=J.slice(0,1),ze=J.slice(1),Tt={i:127,j:126,f:125,d:124};Ze.push(ze.length);for(var Qe=0;Qe<ze.length;++Qe)Ze.push(Tt[ze[Qe]]);Ve=="v"?Ze.push(0):Ze=Ze.concat([1,Tt[Ve]]),Ze[1]=Ze.length-2;var is=new Uint8Array([0,97,115,109,1,0,0,0].concat(Ze,[2,7,1,1,101,1,102,0,0,7,5,1,1,102,0,0])),os=new WebAssembly.Module(is),Oi=new WebAssembly.Instance(os,{e:{f:H}}),Vr=Oi.exports.f;return Vr}var W=[],q;function K(){if(W.length)return W.pop();try{er.grow(1)}catch(H){throw H instanceof RangeError?"Unable to grow wasm table. Set ALLOW_TABLE_GROWTH.":H}return er.length-1}function Y(H,J){for(var de=H;de<H+J;de++){var Ie=bu(de);Ie&&q.set(Ie,de)}}var Z=0,te=H=>{Z=H},ee;a.wasmBinary&&(ee=a.wasmBinary);var se=a.noExitRuntime||!0;typeof WebAssembly!="object"&&Pr("no native wasm support detected");var ne,oe=!1,re;function le(H,J){H||Pr(J)}function me(H){var J=a["_"+H];return J}function ke(H,J,de,Ie,Qe){var Ze={string:function(an){var sr=0;if(an!=null&&an!==0){var Fc=(an.length<<2)+1;sr=xu(Fc),tt(an,sr,Fc)}return sr},array:function(an){var sr=xu(an.length);return at(an,sr),sr}};function Ve(an){return J==="string"?Je(an):J==="boolean"?Boolean(an):an}var ze=me(H),Tt=[],is=0;if(Ie)for(var os=0;os<Ie.length;os++){var Oi=Ze[de[os]];Oi?(is===0&&(is=Rc()),Tt[os]=Oi(Ie[os])):Tt[os]=Ie[os]}var Vr=ze.apply(null,Tt);function _f(an){return is!==0&&Dc(is),Ve(an)}return Vr=_f(Vr),Vr}function Se(H,J,de,Ie){de=de||[];var Qe=de.every(function(Ve){return Ve==="number"}),Ze=J!=="string";return Ze&&Qe&&!Ie?me(H):function(){return ke(H,J,de,arguments,Ie)}}var Ee=1,Pe=typeof TextDecoder!="undefined"?new TextDecoder("utf8"):void 0;function Xe(H,J,de){for(var Ie=J+de,Qe=J;H[Qe]&&!(Qe>=Ie);)++Qe;if(Qe-J>16&&H.subarray&&Pe)return Pe.decode(H.subarray(J,Qe));for(var Ze="";J<Qe;){var Ve=H[J++];if(!(Ve&128)){Ze+=String.fromCharCode(Ve);continue}var ze=H[J++]&63;if((Ve&224)==192){Ze+=String.fromCharCode((Ve&31)<<6|ze);continue}var Tt=H[J++]&63;if((Ve&240)==224?Ve=(Ve&15)<<12|ze<<6|Tt:Ve=(Ve&7)<<18|ze<<12|Tt<<6|H[J++]&63,Ve<65536)Ze+=String.fromCharCode(Ve);else{var is=Ve-65536;Ze+=String.fromCharCode(55296|is>>10,56320|is&1023)}}return Ze}function Je(H,J){return H?Xe(en,H,J):""}function Ye(H,J,de,Ie){if(!(Ie>0))return 0;for(var Qe=de,Ze=de+Ie-1,Ve=0;Ve<H.length;++Ve){var ze=H.charCodeAt(Ve);if(ze>=55296&&ze<=57343){var Tt=H.charCodeAt(++Ve);ze=65536+((ze&1023)<<10)|Tt&1023}if(ze<=127){if(de>=Ze)break;J[de++]=ze}else if(ze<=2047){if(de+1>=Ze)break;J[de++]=192|ze>>6,J[de++]=128|ze&63}else if(ze<=65535){if(de+2>=Ze)break;J[de++]=224|ze>>12,J[de++]=128|ze>>6&63,J[de++]=128|ze&63}else{if(de+3>=Ze)break;J[de++]=240|ze>>18,J[de++]=128|ze>>12&63,J[de++]=128|ze>>6&63,J[de++]=128|ze&63}}return J[de]=0,de-Qe}function tt(H,J,de){return Ye(H,en,J,de)}function Ce(H){for(var J=0,de=0;de<H.length;++de){var Ie=H.charCodeAt(de);Ie>=55296&&Ie<=57343&&(Ie=65536+((Ie&1023)<<10)|H.charCodeAt(++de)&1023),Ie<=127?++J:Ie<=2047?J+=2:Ie<=65535?J+=3:J+=4}return J}var ut=typeof TextDecoder!="undefined"?new TextDecoder("utf-16le"):void 0;function at(H,J){Et.set(H,J)}function Jt(H,J,de){for(var Ie=0;Ie<H.length;++Ie)Et[J++>>0]=H.charCodeAt(Ie);de||(Et[J>>0]=0)}function Nt(H,J){return H%J>0&&(H+=J-H%J),H}var Cn,Et,en,Nn,Tn,Yt,Dn,tn,Ms;function Ls(H){Cn=H,a.HEAP8=Et=new Int8Array(H),a.HEAP16=Nn=new Int16Array(H),a.HEAP32=Yt=new Int32Array(H),a.HEAPU8=en=new Uint8Array(H),a.HEAPU16=Tn=new Uint16Array(H),a.HEAPU32=Dn=new Uint32Array(H),a.HEAPF32=tn=new Float32Array(H),a.HEAPF64=Ms=new Float64Array(H)}var Si=a.INITIAL_MEMORY||16777216,er,Bs=[],hu=[],Ci=[],nn=!1,ic=!1,oc=0;function fu(){return se||oc>0}function uc(){if(a.preRun)for(typeof a.preRun=="function"&&(a.preRun=[a.preRun]);a.preRun.length;)dc(a.preRun.shift());gu(Bs)}function lc(){nn=!0,gu(hu)}function Pv(){ic=!0}function cc(){if(a.postRun)for(typeof a.postRun=="function"&&(a.postRun=[a.postRun]);a.postRun.length;)pc(a.postRun.shift());gu(Ci)}function dc(H){Bs.unshift(H)}function rs(H){hu.unshift(H)}function pc(H){Ci.unshift(H)}var Fn=0,Ni=null,tr=null;function sh(H){Fn++,a.monitorRunDependencies&&a.monitorRunDependencies(Fn)}function hc(H){if(Fn--,a.monitorRunDependencies&&a.monitorRunDependencies(Fn),Fn==0&&(Ni!==null&&(clearInterval(Ni),Ni=null),tr)){var J=tr;tr=null,J()}}a.preloadedImages={},a.preloadedAudios={};function Pr(H){a.onAbort&&a.onAbort(H),H="Aborted("+H+")",R(H),oe=!0,re=1,H+=". Build with -s ASSERTIONS=1 for more info.";var J=new WebAssembly.RuntimeError(H);throw o(J),J}var rh="data:application/octet-stream;base64,";function fc(H){return H.startsWith(rh)}function zr(H){return H.startsWith("file://")}var sn;sn="tfjs-backend-wasm.wasm",fc(sn)||(sn=b(sn));function mu(H){try{if(H==sn&&ee)return new Uint8Array(ee);if(x)return x(H);throw"both async and sync fetching of the wasm failed"}catch(J){Pr(J)}}function ah(){if(!ee&&(h||f)){if(typeof fetch=="function"&&!zr(sn))return fetch(sn,{credentials:"same-origin"}).then(function(H){if(!H.ok)throw"failed to load wasm binary file at '"+sn+"'";return H.arrayBuffer()}).catch(function(){return mu(sn)});if(v)return new Promise(function(H,J){v(sn,function(de){H(new Uint8Array(de))},J)})}return Promise.resolve().then(function(){return mu(sn)})}function ih(){var H={env:_i,wasi_snapshot_preview1:_i};function J(Ve,ze){var Tt=Ve.exports;a.asm=Tt,ne=a.asm.memory,Ls(ne.buffer),er=a.asm.__indirect_function_table,rs(a.asm.__wasm_call_ctors),hc("wasm-instantiate")}sh("wasm-instantiate");function de(Ve){J(Ve.instance)}function Ie(Ve){return ah().then(function(ze){return WebAssembly.instantiate(ze,H)}).then(function(ze){return ze}).then(Ve,function(ze){R("failed to asynchronously prepare wasm: "+ze),Pr(ze)})}function Qe(){return!ee&&typeof WebAssembly.instantiateStreaming=="function"&&!fc(sn)&&!zr(sn)&&typeof fetch=="function"?fetch(sn,{credentials:"same-origin"}).then(function(Ve){var ze=WebAssembly.instantiateStreaming(Ve,H);return ze.then(de,function(Tt){return R("wasm streaming compile failed: "+Tt),R("falling back to ArrayBuffer instantiation"),Ie(de)})}):Ie(de)}if(a.instantiateWasm)try{var Ze=a.instantiateWasm(H,J);return Ze}catch(Ve){return R("Module.instantiateWasm callback failed with error: "+Ve),!1}return Qe().catch(o),{}}var zv,Mv;function gu(H){for(;H.length>0;){var J=H.shift();if(typeof J=="function"){J(a);continue}var de=J.func;typeof de=="number"?J.arg===void 0?bu(de)():bu(de)(J.arg):de(J.arg===void 0?null:J.arg)}}function nr(H){return H}function mc(H){var J=/\b_Z[\w\d_]+/g;return H.replace(J,function(de){var Ie=de;return de===Ie?de:Ie+" ["+de+"]"})}var as=[];function bu(H){var J=as[H];return J||(H>=as.length&&(as.length=H+1),as[H]=J=er.get(H)),J}function Lv(){var H=new Error;if(!H.stack){try{throw new Error}catch(J){H=J}if(!H.stack)return"(no stack trace available)"}return H.stack.toString()}function Ti(H,J){er.set(H,J),as[H]=J}function oh(){Pr("")}function gc(H,J,de){en.copyWithin(H,J,J+de)}function bc(){return 2147483648}function rn(H){try{return ne.grow(H-Cn.byteLength+65535>>>16),Ls(ne.buffer),1}catch(J){}}function yc(H){var J=en.length;H=H>>>0;var de=bc();if(H>de)return!1;for(var Ie=1;Ie<=4;Ie*=2){var Qe=J*(1+.2/Ie);Qe=Math.min(Qe,H+100663296);var Ze=Math.min(de,Nt(Math.max(H,Qe),65536)),Ve=rn(Ze);if(Ve)return!0}return!1}var $i={mappings:{},buffers:[null,[],[]],printChar:function(H,J){var de=$i.buffers[H];J===0||J===10?((H===1?P:R)(Xe(de,0)),de.length=0):de.push(J)},varargs:void 0,get:function(){$i.varargs+=4;var H=Yt[$i.varargs-4>>2];return H},getStr:function(H){var J=Je(H);return J},get64:function(H,J){return H}};function uh(H){return 0}function Bv(H,J,de,Ie,Qe){}function Vv(H,J,de,Ie){for(var Qe=0,Ze=0;Ze<de;Ze++){var Ve=Yt[J>>2],ze=Yt[J+4>>2];J+=8;for(var Tt=0;Tt<ze;Tt++)$i.printChar(H,en[Ve+Tt]);Qe+=ze}return Yt[Ie>>2]=Qe,0}function lh(H){te(H)}var vc=!1,_i={abort:oh,emscripten_memcpy_big:gc,emscripten_resize_heap:yc,fd_close:uh,fd_seek:Bv,fd_write:Vv,setTempRet0:lh},ZN=ih(),Wv=a.___wasm_call_ctors=function(){return(Wv=a.___wasm_call_ctors=a.asm.__wasm_call_ctors).apply(null,arguments)},ch=a._init=function(){return(ch=a._init=a.asm.init).apply(null,arguments)},dh=a._init_with_threads_count=function(){return(dh=a._init_with_threads_count=a.asm.init_with_threads_count).apply(null,arguments)},xc=a._get_threads_count=function(){return(xc=a._get_threads_count=a.asm.get_threads_count).apply(null,arguments)},wc=a._register_tensor=function(){return(wc=a._register_tensor=a.asm.register_tensor).apply(null,arguments)},ph=a._dispose_data=function(){return(ph=a._dispose_data=a.asm.dispose_data).apply(null,arguments)},_e=a._dispose=function(){return(_e=a._dispose=a.asm.dispose).apply(null,arguments)},hh=a._Abs=function(){return(hh=a._Abs=a.asm.Abs).apply(null,arguments)},kc=a._Add=function(){return(kc=a._Add=a.asm.Add).apply(null,arguments)},Mr=a._AddN=function(){return(Mr=a._AddN=a.asm.AddN).apply(null,arguments)},Ai=a._All=function(){return(Ai=a._All=a.asm.All).apply(null,arguments)},fh=a._Any=function(){return(fh=a._Any=a.asm.Any).apply(null,arguments)},Uv=a._ArgMax=function(){return(Uv=a._ArgMax=a.asm.ArgMax).apply(null,arguments)},mh=a._AvgPool=function(){return(mh=a._AvgPool=a.asm.AvgPool).apply(null,arguments)},Gv=a._BatchMatMul=function(){return(Gv=a._BatchMatMul=a.asm.BatchMatMul).apply(null,arguments)},Lr=a._Ceil=function(){return(Lr=a._Ceil=a.asm.Ceil).apply(null,arguments)},gh=a._ClipByValue=function(){return(gh=a._ClipByValue=a.asm.ClipByValue).apply(null,arguments)},bh=a._Conv2D=function(){return(bh=a._Conv2D=a.asm.Conv2D).apply(null,arguments)},yh=a._Conv2DBackpropInput=function(){return(yh=a._Conv2DBackpropInput=a.asm.Conv2DBackpropInput).apply(null,arguments)},vh=a._Cos=function(){return(vh=a._Cos=a.asm.Cos).apply(null,arguments)},xh=a._Cosh=function(){return(xh=a._Cosh=a.asm.Cosh).apply(null,arguments)},wh=a._CropAndResize=function(){return(wh=a._CropAndResize=a.asm.CropAndResize).apply(null,arguments)},Ic=a._Cumprod=function(){return(Ic=a._Cumprod=a.asm.Cumprod).apply(null,arguments)},kh=a._Cumsum=function(){return(kh=a._Cumsum=a.asm.Cumsum).apply(null,arguments)},Ih=a._DepthToSpace=function(){return(Ih=a._DepthToSpace=a.asm.DepthToSpace).apply(null,arguments)},Sh=a._DepthwiseConv2dNative=function(){return(Sh=a._DepthwiseConv2dNative=a.asm.DepthwiseConv2dNative).apply(null,arguments)},Ch=a._Elu=function(){return(Ch=a._Elu=a.asm.Elu).apply(null,arguments)},Nh=a._Equal=function(){return(Nh=a._Equal=a.asm.Equal).apply(null,arguments)},Sc=a._Exp=function(){return(Sc=a._Exp=a.asm.Exp).apply(null,arguments)},Th=a._FlipLeftRight=function(){return(Th=a._FlipLeftRight=a.asm.FlipLeftRight).apply(null,arguments)},$h=a._Floor=function(){return($h=a._Floor=a.asm.Floor).apply(null,arguments)},Br=a._FloorDiv=function(){return(Br=a._FloorDiv=a.asm.FloorDiv).apply(null,arguments)},yu=a._FusedBatchNorm=function(){return(yu=a._FusedBatchNorm=a.asm.FusedBatchNorm).apply(null,arguments)},_h=a._FusedConv2D=function(){return(_h=a._FusedConv2D=a.asm.FusedConv2D).apply(null,arguments)},Ah=a._FusedDepthwiseConv2D=function(){return(Ah=a._FusedDepthwiseConv2D=a.asm.FusedDepthwiseConv2D).apply(null,arguments)},Eh=a._Gather=function(){return(Eh=a._Gather=a.asm.Gather).apply(null,arguments)},Be=a._GatherNd=function(){return(Be=a._GatherNd=a.asm.GatherNd).apply(null,arguments)},Rh=a._Greater=function(){return(Rh=a._Greater=a.asm.Greater).apply(null,arguments)},Dh=a._GreaterEqual=function(){return(Dh=a._GreaterEqual=a.asm.GreaterEqual).apply(null,arguments)},Fh=a._LeakyRelu=function(){return(Fh=a._LeakyRelu=a.asm.LeakyRelu).apply(null,arguments)},Oh=a._Less=function(){return(Oh=a._Less=a.asm.Less).apply(null,arguments)},Ph=a._LessEqual=function(){return(Ph=a._LessEqual=a.asm.LessEqual).apply(null,arguments)},zh=a._Log=function(){return(zh=a._Log=a.asm.Log).apply(null,arguments)},vu=a._LogicalAnd=function(){return(vu=a._LogicalAnd=a.asm.LogicalAnd).apply(null,arguments)},Cc=a._Max=function(){return(Cc=a._Max=a.asm.Max).apply(null,arguments)},Nc=a._MaxPool=function(){return(Nc=a._MaxPool=a.asm.MaxPool).apply(null,arguments)},Mh=a._Maximum=function(){return(Mh=a._Maximum=a.asm.Maximum).apply(null,arguments)},Lh=a._Mean=function(){return(Lh=a._Mean=a.asm.Mean).apply(null,arguments)},Bh=a._Min=function(){return(Bh=a._Min=a.asm.Min).apply(null,arguments)},Vh=a._Minimum=function(){return(Vh=a._Minimum=a.asm.Minimum).apply(null,arguments)},Wh=a._MirrorPad=function(){return(Wh=a._MirrorPad=a.asm.MirrorPad).apply(null,arguments)},Uh=a._Multiply=function(){return(Uh=a._Multiply=a.asm.Multiply).apply(null,arguments)},gt=a._Neg=function(){return(gt=a._Neg=a.asm.Neg).apply(null,arguments)},Gh=a._NonMaxSuppressionV3=function(){return(Gh=a._NonMaxSuppressionV3=a.asm.NonMaxSuppressionV3).apply(null,arguments)},Hh=a._NonMaxSuppressionV4=function(){return(Hh=a._NonMaxSuppressionV4=a.asm.NonMaxSuppressionV4).apply(null,arguments)},qh=a._NonMaxSuppressionV5=function(){return(qh=a._NonMaxSuppressionV5=a.asm.NonMaxSuppressionV5).apply(null,arguments)},Ei=a._NotEqual=function(){return(Ei=a._NotEqual=a.asm.NotEqual).apply(null,arguments)},Tc=a._OneHot=function(){return(Tc=a._OneHot=a.asm.OneHot).apply(null,arguments)},$c=a._PadV2=function(){return($c=a._PadV2=a.asm.PadV2).apply(null,arguments)},_c=a._Pow=function(){return(_c=a._Pow=a.asm.Pow).apply(null,arguments)},jh=a._Prelu=function(){return(jh=a._Prelu=a.asm.Prelu).apply(null,arguments)},Ac=a._Prod=function(){return(Ac=a._Prod=a.asm.Prod).apply(null,arguments)},Kh=a._RealDiv=function(){return(Kh=a._RealDiv=a.asm.RealDiv).apply(null,arguments)},Hv=a._Relu=function(){return(Hv=a._Relu=a.asm.Relu).apply(null,arguments)},Ec=a._Relu6=function(){return(Ec=a._Relu6=a.asm.Relu6).apply(null,arguments)},qv=a._ResizeBilinear=function(){return(qv=a._ResizeBilinear=a.asm.ResizeBilinear).apply(null,arguments)},Xh=a._Reverse=function(){return(Xh=a._Reverse=a.asm.Reverse).apply(null,arguments)},Yh=a._RotateWithOffset=function(){return(Yh=a._RotateWithOffset=a.asm.RotateWithOffset).apply(null,arguments)},Qh=a._Round=function(){return(Qh=a._Round=a.asm.Round).apply(null,arguments)},Zh=a._Rsqrt=function(){return(Zh=a._Rsqrt=a.asm.Rsqrt).apply(null,arguments)},Jh=a._ScatterNd=function(){return(Jh=a._ScatterNd=a.asm.ScatterNd).apply(null,arguments)},ef=a._SelectV2=function(){return(ef=a._SelectV2=a.asm.SelectV2).apply(null,arguments)},tf=a._Sigmoid=function(){return(tf=a._Sigmoid=a.asm.Sigmoid).apply(null,arguments)},nf=a._Sin=function(){return(nf=a._Sin=a.asm.Sin).apply(null,arguments)},sf=a._Softmax=function(){return(sf=a._Softmax=a.asm.Softmax).apply(null,arguments)},rf=a._SparseFillEmptyRows=function(){return(rf=a._SparseFillEmptyRows=a.asm.SparseFillEmptyRows).apply(null,arguments)},af=a._SparseReshape=function(){return(af=a._SparseReshape=a.asm.SparseReshape).apply(null,arguments)},of=a._SparseSegmentReduction=function(){return(of=a._SparseSegmentReduction=a.asm.SparseSegmentReduction).apply(null,arguments)},uf=a._Sqrt=function(){return(uf=a._Sqrt=a.asm.Sqrt).apply(null,arguments)},lf=a._Square=function(){return(lf=a._Square=a.asm.Square).apply(null,arguments)},cf=a._SquaredDifference=function(){return(cf=a._SquaredDifference=a.asm.SquaredDifference).apply(null,arguments)},df=a._Step=function(){return(df=a._Step=a.asm.Step).apply(null,arguments)},pf=a._StridedSlice=function(){return(pf=a._StridedSlice=a.asm.StridedSlice).apply(null,arguments)},hf=a._Sub=function(){return(hf=a._Sub=a.asm.Sub).apply(null,arguments)},ff=a._Sum=function(){return(ff=a._Sum=a.asm.Sum).apply(null,arguments)},mf=a._Tan=function(){return(mf=a._Tan=a.asm.Tan).apply(null,arguments)},gf=a._Tanh=function(){return(gf=a._Tanh=a.asm.Tanh).apply(null,arguments)},bf=a._Tile=function(){return(bf=a._Tile=a.asm.Tile).apply(null,arguments)},yf=a._TopK=function(){return(yf=a._TopK=a.asm.TopK).apply(null,arguments)},vf=a._Transform=function(){return(vf=a._Transform=a.asm.Transform).apply(null,arguments)},xf=a._Transpose=function(){return(xf=a._Transpose=a.asm.Transpose).apply(null,arguments)},wf=a.__FusedMatMul=function(){return(wf=a.__FusedMatMul=a.asm._FusedMatMul).apply(null,arguments)},kf=a._malloc=function(){return(kf=a._malloc=a.asm.malloc).apply(null,arguments)},If=a._free=function(){return(If=a._free=a.asm.free).apply(null,arguments)},Sf=a.___errno_location=function(){return(Sf=a.___errno_location=a.asm.__errno_location).apply(null,arguments)},Cf=a._emscripten_main_thread_process_queued_calls=function(){return(Cf=a._emscripten_main_thread_process_queued_calls=a.asm.emscripten_main_thread_process_queued_calls).apply(null,arguments)},Rc=a.stackSave=function(){return(Rc=a.stackSave=a.asm.stackSave).apply(null,arguments)},Dc=a.stackRestore=function(){return(Dc=a.stackRestore=a.asm.stackRestore).apply(null,arguments)},xu=a.stackAlloc=function(){return(xu=a.stackAlloc=a.asm.stackAlloc).apply(null,arguments)},Nf=a.dynCall_iijjiiii=function(){return(Nf=a.dynCall_iijjiiii=a.asm.dynCall_iijjiiii).apply(null,arguments)},Tf=a.dynCall_jiji=function(){return(Tf=a.dynCall_jiji=a.asm.dynCall_jiji).apply(null,arguments)};a.cwrap=Se;var Ri;function wu(H){this.name="ExitStatus",this.message="Program terminated with exit("+H+")",this.status=H}tr=function H(){Ri||ku(),Ri||(tr=H)};function ku(H){if(H=H||c,Fn>0||(uc(),Fn>0))return;function J(){Ri||(Ri=!0,a.calledRun=!0,!oe&&(lc(),i(a),a.onRuntimeInitialized&&a.onRuntimeInitialized(),cc()))}a.setStatus?(a.setStatus("Running..."),setTimeout(function(){setTimeout(function(){a.setStatus("")},1),J()},1)):J()}a.run=ku;function jv(H){re=H,fu()||(a.onExit&&a.onExit(H),oe=!0),d(H,new wu(H))}if(a.preInit)for(typeof a.preInit=="function"&&(a.preInit=[a.preInit]);a.preInit.length>0;)a.preInit.pop()();ku();var Di;u&&(Di={uncaughtException:process.listeners("uncaughtException").filter(function(H){return!u.uncaughtException.indexOf(H)>-1}),unhandledRejection:process.listeners("unhandledRejection").filter(function(H){return!u.unhandledRejection.indexOf(H)>-1})});var Fi;if(typeof r!="undefined")Fi=r;else if(typeof WasmBackendModuleThreadedSimd!="undefined")Fi=WasmBackendModuleThreadedSimd;else throw new Error("Could not find wasm module in post.js");if(Di){var $f=Fi._dispose;Fi._dispose=function(){$f(),Di.uncaughtException.forEach(function(H){process.removeListener("uncaughtException",H)}),Di.unhandledRejection.forEach(function(H){process.removeListener("unhandledRejection",H)})}}return r.ready}})();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModule=n)}}),h$=1e-7,f$=1e-4,Hd=class{constructor(e,t){this.backend=e,this.dataMover=t,this.data=new WeakMap,this.dataIdsCount=0}get(e){return this.data.has(e)||this.dataMover.moveData(this.backend,e),this.data.get(e)}set(e,t){this.dataIdsCount++,this.data.set(e,t)}has(e){return this.data.has(e)}delete(e){return this.dataIdsCount--,this.data.delete(e)}numDataIds(){return this.dataIdsCount}},sl=class{refCount(e){return On("refCount")}incRef(e){return On("incRef")}timerAvailable(){return!0}time(e){return On("time")}read(e){return On("read")}readSync(e){return On("readSync")}readToGPU(e,t){return On("readToGPU")}numDataIds(){return On("numDataIds")}disposeData(e,t){return On("disposeData")}write(e,t,n){return On("write")}move(e,t,n,s,r){return On("move")}memory(){return On("memory")}floatPrecision(){return On("floatPrecision")}epsilon(){return this.floatPrecision()===32?h$:f$}dispose(){return On("dispose")}};function On(e){throw new Error(`'${e}' not yet implemented or not found in the registry. This kernel may not be supported by the tfjs backend you have chosen`)}function jw(e){let t=e.length,n=0;for(;t>0;)n=Math.random()*t|0,t--,pd(e,t,n)}function m$(e,t){if(e.length!==t.length)throw new Error(`Array sizes must match to be shuffled together First array length was ${e.length}Second array length was ${t.length}`);let n=e.length,s=0;for(;n>0;)s=Math.random()*n|0,n--,pd(e,n,s),pd(t,n,s)}function Wu(e,t,n){return Math.max(e,Math.min(t,n))}function g$(e){return e%2===0?e:e+1}function pd(e,t,n){let s=e[t];e[t]=e[n],e[n]=s}function b$(e){let t=0;for(let n=0;n<e.length;n++)t+=e[n];return t}function y$(e,t){let n=Math.random();return t*n+(1-n)*e}function v$(e,t){let n=0;for(let s=0;s<e.length;s++){let r=Number(e[s])-Number(t[s]);n+=r*r}return n}function O(e,t){if(!e)throw new Error(typeof t=="string"?t:t())}function pn(e,t,n=""){O(Ir(e,t),()=>n+` Shapes ${e} and ${t} must match`)}function ka(e){O(e!=null,()=>"The input to the tensor constructor must be a non-null value.")}function ra(e,t=[],n=!1){if(t==null&&(t=[]),Array.isArray(e)||Qt(e)&&!n)for(let s=0;s<e.length;++s)ra(e[s],t,n);else t.push(e);return t}function pt(e){if(e.length===0)return 1;let t=e[0];for(let n=1;n<e.length;n++)t*=e[n];return t}function x$(e){return e.length===0}function Ir(e,t){if(e===t)return!0;if(e==null||t==null||e.length!==t.length)return!1;for(let n=0;n<e.length;n++)if(e[n]!==t[n])return!1;return!0}function Zi(e){return e%1===0}function w$(e){if(Math.tanh!=null)return Math.tanh(e);if(e===1/0)return 1;if(e===-1/0)return-1;{let t=Math.exp(2*e);return(t-1)/(t+1)}}function k$(e){let t=Math.ceil(Math.sqrt(e));return[t,Math.ceil(e/t)]}function I$(e){let t=new Uint32Array(e);for(let n=0;n<e;++n)t[n]=n;return jw(t),t}function Mu(e,t){return t<=e.length?e:e+" ".repeat(t-e.length)}function S$(e,t=s=>0,n){return new Promise((s,r)=>{let a=0,i=()=>{if(e()){s();return}a++;let o=t(a);if(n!=null&&a>=n){r();return}setTimeout(i,o)};i()})}function C$(e,t){let n=1,s=-1;for(let a=0;a<e.length;++a)if(e[a]>=0)n*=e[a];else if(e[a]===-1){if(s!==-1)throw Error(`Shapes can only have 1 implicit size. Found -1 at dim ${s} and dim ${a}`);s=a}else if(e[a]<0)throw Error(`Shapes can not be < 0. Found ${e[a]} at dim ${a}`);if(s===-1){if(t>0&&t!==n)throw Error(`Size(${t}) must match the product of shape ${e}`);return e}if(n===0)throw Error(`Cannot infer the missing size in [${e}] when there are 0 elements`);if(t%n!==0)throw Error(`The implicit shape can't be a fractional number. Got ${t} / ${n}`);let r=e.slice();return r[s]=t/n,r}function ts(e,t){let n=t.length;return e=e==null?t.map((s,r)=>r):[].concat(e),O(e.every(s=>s>=-n&&s<n),()=>`All values in axis param must be in range [-${n}, ${n}) but got axis ${e}`),O(e.every(s=>Zi(s)),()=>`All values in axis param must be integers but got axis ${e}`),e.map(s=>s<0?n+s:s)}function Kw(e,t){let n=[],s=[],r=t!=null&&Array.isArray(t)&&t.length===0,a=t==null||r?null:ts(t,e).sort(),i=0;for(let o=0;o<e.length;++o){if(a!=null){if(a[i]===o&&e[o]!==1)throw new Error(`Can't squeeze axis ${o} since its dim '${e[o]}' is not 1`);(a[i]==null||a[i]>o)&&e[o]===1&&(n.push(e[o]),s.push(o)),a[i]<=o&&i++}e[o]!==1&&(n.push(e[o]),s.push(o))}return{newShape:n,keptDims:s}}function Xw(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else throw new Error(`Unknown data type ${e}`);return n}function Yw(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else if(e==="string")n=new Array(t);else throw new Error(`Unknown data type ${e}`);return n}function Qw(e,t){for(let n=0;n<e.length;n++){let s=e[n];if(isNaN(s)||!isFinite(s))throw Error(`A tensor of type ${t} being uploaded contains ${s}.`)}}function Zw(e){return e==="bool"||e==="complex64"||e==="float32"||e==="int32"||e==="string"}function N$(e,t){return!(t==="complex64"||t==="float32"&&e!=="complex64"||t==="int32"&&e!=="float32"&&e!=="complex64"||t==="bool"&&e==="bool")}function Qt(e){return e instanceof Float32Array||e instanceof Int32Array||e instanceof Uint8Array||e instanceof Uint8ClampedArray}function Yf(e){if(e==="float32"||e==="int32")return 4;if(e==="complex64")return 8;if(e==="bool")return 1;throw new Error(`Unknown dtype ${e}`)}function Jw(e){if(e==null)return 0;let t=0;return e.forEach(n=>t+=n.length),t}function or(e){return typeof e=="string"||e instanceof String}function ek(e){return typeof e=="boolean"}function tk(e){return typeof e=="number"}function qd(e){return Array.isArray(e)?qd(e[0]):e instanceof Float32Array?"float32":e instanceof Int32Array||e instanceof Uint8Array||e instanceof Uint8ClampedArray?"int32":tk(e)?"float32":or(e)?"string":ek(e)?"bool":"float32"}function fr(e){return!!(e&&e.constructor&&e.call&&e.apply)}function hd(e,t){for(let n=t;n<e;++n)if(e%n===0)return n;return e}function oo(e){let t=e.length;if(t<2)return[];let n=new Array(t-1);n[t-2]=e[t-1];for(let s=t-3;s>=0;--s)n[s]=n[s+1]*e[s+1];return n}function nk(e,t,n,s=!1){let r=new Array;if(t.length===1){let a=t[0]*(s?2:1);for(let i=0;i<a;i++)r[i]=n[e+i]}else{let a=t[0],i=t.slice(1),o=i.reduce((u,l)=>u*l)*(s?2:1);for(let u=0;u<a;u++)r[u]=nk(e+u*o,i,n,s)}return r}function ji(e,t,n=!1){if(e.length===0)return t[0];let s=e.reduce((r,a)=>r*a)*(n?2:1);if(s===0)return[];if(s!==t.length)throw new Error(`[${e}] does not match the input size ${t.length}${n?" for a complex tensor":""}.`);return nk(0,e,t,n)}function rg(e,t){let n=jd(e,t);for(let s=0;s<n.length;s++)n[s]=1;return n}function jd(e,t){if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool")return new Uint8Array(e);throw new Error(`Unknown data type ${t}`)}function T$(e,t){let n=e.reduce((s,r)=>s*r,1);if(t==null||t==="float32")return ji(e,new Float32Array(n));if(t==="int32")return ji(e,new Int32Array(n));if(t==="bool")return ji(e,new Uint8Array(n));throw new Error(`Unknown data type ${t}`)}function ag(e){e.forEach(t=>{O(Number.isInteger(t)&&t>=0,()=>`Tensor must have a shape comprised of positive integers but got shape [${e}].`)})}function $$(e,t,n){if(t===0)return 0;if(t===1)return e[0];let s=e[e.length-1];for(let r=0;r<e.length-1;++r)s+=n[r]*e[r];return s}function _$(e,t,n){if(t===0)return[];if(t===1)return[e];let s=new Array(t);for(let r=0;r<s.length-1;++r)s[r]=Math.floor(e/n[r]),e-=s[r]*n[r];return s[s.length-1]=e,s}function ig(e){return e&&e.then&&typeof e.then=="function"}var sx="tfjsflags",A$=class{constructor(e){this.global=e,this.flags={},this.flagRegistry={},this.urlFlags={},this.getQueryParams=E$,this.populateURLFlags()}setPlatform(e,t){this.platform!=null&&(X().getBool("IS_TEST")||X().getBool("PROD")||console.warn(`Platform ${this.platformName} has already been set. Overwriting the platform with ${e}.`)),this.platformName=e,this.platform=t}registerFlag(e,t,n){if(this.flagRegistry[e]={evaluationFn:t,setHook:n},this.urlFlags[e]!=null){let s=this.urlFlags[e];X().getBool("IS_TEST")||X().getBool("PROD")||console.warn(`Setting feature override from URL ${e}: ${s}.`),this.set(e,s)}}async getAsync(e){return e in this.flags?this.flags[e]:(this.flags[e]=await this.evaluateFlag(e),this.flags[e])}get(e){if(e in this.flags)return this.flags[e];let t=this.evaluateFlag(e);if(ig(t))throw new Error(`Flag ${e} cannot be synchronously evaluated. Please use getAsync() instead.`);return this.flags[e]=t,this.flags[e]}getNumber(e){return this.get(e)}getBool(e){return this.get(e)}getFlags(){return this.flags}get features(){return this.flags}set(e,t){if(this.flagRegistry[e]==null)throw new Error(`Cannot set flag ${e} as it has not been registered.`);this.flags[e]=t,this.flagRegistry[e].setHook!=null&&this.flagRegistry[e].setHook(t)}evaluateFlag(e){if(this.flagRegistry[e]==null)throw new Error(`Cannot evaluate flag '${e}': no evaluation function found.`);return this.flagRegistry[e].evaluationFn()}setFlags(e){this.flags=Object.assign({},e)}reset(){this.flags={},this.urlFlags={},this.populateURLFlags()}populateURLFlags(){if(typeof this.global=="undefined"||typeof this.global.location=="undefined"||typeof this.global.location.search=="undefined")return;let e=this.getQueryParams(this.global.location.search);sx in e&&e[sx].split(",").forEach(n=>{let[s,r]=n.split(":");this.urlFlags[s]=D$(s,r)})}};function E$(e){let t={};return e.replace(/[?&]([^=?&]+)(?:=([^&]*))?/g,(n,...s)=>(R$(t,s[0],s[1]),s.join("="))),t}function R$(e,t,n){e[decodeURIComponent(t)]=decodeURIComponent(n||"")}function D$(e,t){if(t=t.toLowerCase(),t==="true"||t==="false")return t==="true";if(`${+t}`===t)return+t;throw new Error(`Could not parse value flag value ${t} for flag ${e}.`)}function X(){return sk}var sk=null;function F$(e){sk=e}var Of;function rk(){if(Of==null){let e;if(typeof window!="undefined")e=window;else if(typeof global!="undefined")e=global;else if(typeof process!="undefined")e=process;else if(typeof self!="undefined")e=self;else throw new Error("Could not find a global object");Of=e}return Of}function O$(){let e=rk();return e._tfGlobals==null&&(e._tfGlobals=new Map),e._tfGlobals}function og(e,t){let n=O$();if(n.has(e))return n.get(e);{let s=t();return n.set(e,s),n.get(e)}}var uo="Abs",rl="Acos",al="Acosh",Sr="Add",Ia="AddN",il="All",ol="Any",Sa="ArgMax",ul="ArgMin",ll="Asin",cl="Asinh",dl="Atan",pl="Atanh",hl="Atan2",Ca="AvgPool",ug="AvgPoolGrad",Kd="AvgPool3D",lg="AvgPool3DGrad",Na="BatchMatMul",lo="BatchToSpaceND",cg="Bincount",P$="BroadcastTo",dg="BroadcastArgs",Ta="Cast",$a="Ceil",Cr="ClipByValue",Xd="Complex",Yd="ComplexAbs",co="Concat",_a="Conv2D",pg="Conv2DBackpropFilter",Aa="Conv2DBackpropInput",Qd="Conv3D",hg="Conv3DBackpropFilterV2",fg="Conv3DBackpropInputV2",Ea="Cos",Ra="Cosh",po="Cumprod",Da="Cumsum",ho="CropAndResize",mg="DenseBincount",fo="DepthToSpace",Fa="DepthwiseConv2dNative",gg="DepthwiseConv2dNativeBackpropFilter",bg="DepthwiseConv2dNativeBackpropInput",yg="Diag",Zd="Dilation2D",Qf="Dilation2DBackpropInput",Zf="Dilation2DBackpropFilter",Oa="RealDiv",Jd="Einsum",Pa="Elu",vg="EluGrad",fl="Erf",mo="Equal",za="Exp",go="ExpandDims",bo="Expm1",xg="FFT",ml="Fill",yo="FlipLeftRight",Ma="Floor",La="FloorDiv",Ba="FusedBatchNorm",vo="GatherV2",xo="GatherNd",wo="Greater",Va="GreaterEqual",Wa="Identity",wg="IFFT",ep="Imag",gl="IsFinite",bl="IsInf",yl="IsNan",Ua="LeakyRelu",ko="Less",Io="LessEqual",kg="LinSpace",Ga="Log",vl="Log1p",So="LogicalAnd",xl="LogicalNot",tp="LogicalOr",z$="LogSoftmax",np="LRN",Ig="LRNGrad",Ha="Max",qa="Maximum",ja="MaxPool",Sg="MaxPoolGrad",sp="MaxPool3D",Cg="MaxPool3DGrad",Ng="MaxPoolWithArgmax",Ka="Mean",Xa="Min",Ya="Minimum",Qa="MirrorPad",wl="Mod",Tg="Multinomial",Za="Multiply",Co="Neg",No="NotEqual",To="NonMaxSuppressionV3",kl="NonMaxSuppressionV4",$o="NonMaxSuppressionV5",_o="OnesLike",Ao="OneHot",Eo="Pack",Ja="PadV2",Wde="Pool",ei="Pow",ti="Prelu",ni="Prod",Il="Range",rp="Real",Sl="Reciprocal",si="Relu",Ro="Reshape",Cl="ResizeNearestNeighbor",$g="ResizeNearestNeighborGrad",ri="ResizeBilinear",_g="ResizeBilinearGrad",ai="Relu6",Do="Reverse",Fo="Round",ii="Rsqrt",Oo="ScatterNd",Po="Select",Nl="Selu",zo="Slice",oi="Sin",Mo="Sinh",Tl="Sign",ui="Sigmoid",$l="Softplus",li="Sqrt",ci="Sum",Lo="SpaceToBatchND",Bo="SplitV",di="Softmax",ap="SparseFillEmptyRows",_l="SparseReshape",ip="SparseSegmentMean",op="SparseSegmentSum",up="SparseToDense",pi="SquaredDifference",Al="Square",Vo="StridedSlice",lp="StringNGrams",Ag="StringSplit",Eg="StringToHashBucketFast",hi="Sub",Wo="Tan",fi="Tanh",Nr="Tile",Uo="TopK",Go="Transform",mi="Transpose",Rg="Unique",Ho="Unpack",cp="UnsortedSegmentSum",qo="ZerosLike",gi="Step",fd="FromPixels",jo="RotateWithOffset",aa="_FusedMatMul",ia="FusedConv2D",oa="FusedDepthwiseConv2D";function ir(...e){X().getBool("IS_TEST")||X().getBool("PROD")||console.warn(...e)}function M$(...e){X().getBool("IS_TEST")||X().getBool("PROD")||console.log(...e)}var Ji=og("kernelRegistry",()=>new Map),Uu=og("gradRegistry",()=>new Map);function Jf(e,t){let n=Dg(e,t);return Ji.get(n)}function rx(e){return Uu.get(e)}function em(e){let t=Ji.entries(),n=[];for(;;){let{done:s,value:r}=t.next();if(s)break;let[a,i]=r,[o]=a.split("_");o===e&&n.push(i)}return n}function El(e){let{kernelName:t,backendName:n}=e,s=Dg(t,n);Ji.has(s)&&ir(`The kernel '${t}' for backend '${n}' is already registered`),Ji.set(s,e)}function L$(e){let{kernelName:t}=e;Uu.has(t)&&X().getBool("DEBUG")&&ir(`Overriding the gradient for '${t}'`),Uu.set(t,e)}function Ude(e,t){let n=Dg(e,t);if(!Ji.has(n))throw new Error(`The kernel '${e}' for backend '${t}' is not registered`);Ji.delete(n)}function Gde(e){if(!Uu.has(e))throw new Error(`The gradient '${e}' for backend is not registered`);Uu.delete(e)}function Hde(e,t){em(e).forEach(s=>{let r=Object.assign({},s,{backendName:t});El(r)})}function Dg(e,t){return`${t}_${e}`}var w={};Ae(w,{arraysEqual:()=>Ir,assert:()=>O,assertNonNegativeIntegerDimensions:()=>ag,assertNonNull:()=>ka,assertShapesMatch:()=>pn,bytesFromStringArray:()=>Jw,bytesPerElement:()=>Yf,checkConversionForErrors:()=>Qw,clamp:()=>Wu,computeStrides:()=>oo,createScalarValue:()=>H$,createShuffledIndices:()=>I$,decodeString:()=>md,distSquared:()=>v$,encodeString:()=>Dl,fetch:()=>j$,fingerPrint64:()=>G$,flatten:()=>ra,getArrayFromDType:()=>Yw,getTypedArrayFromDType:()=>Xw,hasEncodingLoss:()=>N$,hexToLong:()=>Rl,indexToLoc:()=>_$,inferDtype:()=>qd,inferFromImplicitShape:()=>C$,isBoolean:()=>ek,isFunction:()=>fr,isInt:()=>Zi,isNumber:()=>tk,isPromise:()=>ig,isScalarShape:()=>x$,isString:()=>or,isTypedArray:()=>Qt,isValidDtype:()=>Zw,locToIndex:()=>$$,makeOnesTypedArray:()=>rg,makeZerosNestedTypedArray:()=>T$,makeZerosTypedArray:()=>jd,nearestDivisor:()=>hd,nearestLargerEven:()=>g$,now:()=>Gu,parseAxisParam:()=>ts,randUniform:()=>y$,repeatedTry:()=>S$,rightPad:()=>Mu,shuffle:()=>jw,shuffleCombo:()=>m$,sizeFromShape:()=>pt,sizeToSquarishShape:()=>k$,squeezeShape:()=>Kw,sum:()=>b$,swap:()=>pd,tanh:()=>w$,toNestedArray:()=>ji,toTypedArray:()=>dp});var ax=wa(QT()),jr=ax.default||ax;function Rl(e){return jr.fromString(e,!0,16)}var ak=Rl("c3a5c85c97cb3127"),Hr=Rl("b492b66fbe98f273"),on=Rl("9ae16a3b2f90404f");function tm(e){return e.xor(e.shru(47))}function ik(e,t,n){let s=e.slice(t,t+n);return jr.fromBytes(Array.from(s),!0,!0)}function lt(e,t){return ik(e,t,8)}function ix(e,t){return ik(e,t,4)}function Lt(e,t){return t===0?e:e.shru(t).or(e.shl(64-t))}function lr(e,t,n=Rl("9ddfea08eb382d69")){let s=e.xor(t).mul(n);s=s.xor(s.shru(47));let r=t.xor(s).mul(n);return r=r.xor(r.shru(47)),r=r.mul(n),r}function B$(e,t,n,s,r,a){r=r.add(e),a=Lt(a.add(r).add(s),21);let i=r;return r=r.add(t),r=r.add(n),a=a.add(Lt(r,44)),[r.add(s),a.add(i)]}function Vc(e,t,n,s){return B$(lt(e,t),lt(e,t+8),lt(e,t+16),lt(e,t+24),n,s)}function V$(e,t=e.length){if(t>=8){let n=on.add(t*2),s=lt(e,0).add(on),r=lt(e,t-8),a=Lt(r,37).mul(n).add(s),i=Lt(s,25).add(r).mul(n);return lr(a,i,n)}if(t>=4){let n=on.add(t*2),s=ix(e,0);return lr(s.shl(3).add(t),ix(e,t-4),n)}if(t>0){let n=e[0],s=e[t>>1],r=e[t-1],a=n+(s<<8),i=t+(r<<2);return tm(on.mul(a).xor(ak.mul(i))).mul(on)}return on}function W$(e,t=e.length){let n=on.add(t*2),s=lt(e,0).mul(Hr),r=lt(e,8),a=lt(e,t-8).mul(n),i=lt(e,t-16).mul(on);return lr(Lt(s.add(r),43).add(Lt(a,30)).add(i),s.add(Lt(r.add(on),18)).add(a),n)}function U$(e,t=e.length){let n=on.add(t*2),s=lt(e,0).mul(on),r=lt(e,8),a=lt(e,t-8).mul(n),i=lt(e,t-16).mul(on),o=Lt(s.add(r),43).add(Lt(a,30)).add(i),u=lr(o,s.add(Lt(r.add(on),18)).add(a),n),l=lt(e,16).mul(n),c=lt(e,24),p=o.add(lt(e,t-32)).mul(n),d=u.add(lt(e,t-24)).mul(n);return lr(Lt(l.add(c),43).add(Lt(p,30)).add(d),l.add(Lt(c.add(s),18)).add(p),n)}function G$(e,t=e.length){let n=jr.fromNumber(81,!0);if(t<=32)return t<=16?V$(e,t):W$(e,t);if(t<=64)return U$(e,t);let s=n,r=n.mul(Hr).add(113),a=tm(r.mul(on).add(113)).mul(on),i=[jr.UZERO,jr.UZERO],o=[jr.UZERO,jr.UZERO];s=s.mul(on).add(lt(e,0));let u=0,l=(t-1>>6)*64,c=l+(t-1&63)-63;do s=Lt(s.add(r).add(i[0]).add(lt(e,u+8)),37).mul(Hr),r=Lt(r.add(i[1]).add(lt(e,u+48)),42).mul(Hr),s=s.xor(o[1]),r=r.add(i[0]).add(lt(e,u+40)),a=Lt(a.add(o[0]),33).mul(Hr),i=Vc(e,u,i[1].mul(Hr),s.add(o[0])),o=Vc(e,u+32,a.add(o[1]),r.add(lt(e,u+16))),[a,s]=[s,a],u+=64;while(u!==l);let p=Hr.add(a.and(255).shl(1));return u=c,o[0]=o[0].add(t-1&63),i[0]=i[0].add(o[0]),o[0]=o[0].add(i[0]),s=Lt(s.add(r).add(i[0]).add(lt(e,u+8)),37).mul(p),r=Lt(r.add(i[1]).add(lt(e,u+48)),42).mul(p),s=s.xor(o[1].mul(9)),r=r.add(i[0].mul(9).add(lt(e,u+40))),a=Lt(a.add(o[0]),33).mul(p),i=Vc(e,u,i[1].mul(p),s.add(o[0])),o=Vc(e,u+32,a.add(o[1]),r.add(lt(e,u+16))),[a,s]=[s,a],lr(lr(i[0],o[0],p).add(tm(r).mul(ak)).add(a),lr(i[1],o[1],p).add(s),p)}function H$(e,t){return t==="string"?Dl(e):dp([e],t)}function q$(e,t){return e instanceof Float32Array&&t==="float32"||e instanceof Int32Array&&t==="int32"||e instanceof Uint8Array&&t==="bool"}function dp(e,t){if(t==="string")throw new Error("Cannot convert a string[] to a TypedArray");if(Array.isArray(e)&&(e=ra(e)),X().getBool("DEBUG")&&Qw(e,t),q$(e,t))return e;if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool"){let n=new Uint8Array(e.length);for(let s=0;s<n.length;++s)Math.round(e[s])!==0&&(n[s]=1);return n}else throw new Error(`Unknown data type ${t}`)}function Gu(){return X().platform.now()}function j$(e,t){return X().platform.fetch(e,t)}function Dl(e,t="utf-8"){return t=t||"utf-8",X().platform.encode(e,t)}function md(e,t="utf-8"){return t=t||"utf-8",X().platform.decode(e,t)}var K$=class{constructor(e,t){this.backendTimer=e,this.logger=t,t==null&&(this.logger=new Y$)}profileKernel(e,t,n){let s,r=()=>{s=n()},a,i=Gu();if(this.backendTimer.timerAvailable())a=this.backendTimer.time(r);else{r();for(let u of s)u.dataSync();a=Promise.resolve({kernelMs:Gu()-i})}if(X().getBool("CHECK_COMPUTATION_FOR_ERRORS"))for(let u=0;u<s.length;u++){let l=s[u];l.data().then(c=>{X$(c,l.dtype,e)})}return{kernelName:e,outputs:s,inputs:t,timeMs:a.then(u=>u.kernelMs),extraInfo:a.then(u=>u.getExtraProfileInfo!=null?u.getExtraProfileInfo():"")}}logKernelProfile(e){let{kernelName:t,outputs:n,timeMs:s,inputs:r,extraInfo:a}=e;n.forEach(i=>{Promise.all([i.data(),s,a]).then(o=>{this.logger.logKernelProfile(t,i,o[0],o[1],r,o[2])})})}};function X$(e,t,n){if(t!=="float32")return!1;for(let s=0;s<e.length;s++){let r=e[s];if(isNaN(r)||!isFinite(r))return console.warn(`Found ${r} in the result of '${n}'`),!0}return!1}var Y$=class{logKernelProfile(e,t,n,s,r,a){let i=typeof s=="number"?Mu(`${s}ms`,9):s.error,o=Mu(e,25),u=t.rank,l=t.size,c=Mu(t.shape.toString(),14),p="";for(let d in r){let h=r[d];if(h!=null){let f=h.shape||t.shape,m=f.length;p+=`${d}: ${m}D ${m>0?f:""} `}}console.log(`%c${o} %c${i} %c${u}D ${c} %c${l} %c${p} %c${a}`,"font-weight:bold","color:red","color:blue","color: orange","color: green","color: steelblue")}};function Q$(e,t,n){let s={},r={};for(let u=0;u<t.length;u++)s[t[u].id]=!0;for(let u=0;u<e.length;u++){let l=e[u],c=l.inputs;for(let p in c){let d=c[p],h=!1;for(let f=0;f<t.length;f++)if(s[d.id]){l.outputs.forEach(m=>s[m.id]=!0),h=!0,r[l.id]=!0;break}if(h)break}}let a={};a[n.id]=!0;let i={};for(let u=e.length-1;u>=0;u--){let l=e[u],c=l.inputs;for(let p=0;p<l.outputs.length;p++)if(a[l.outputs[p].id]){for(let d in c)a[c[d].id]=!0,i[l.id]=!0;break}}let o=[];for(let u=0;u<e.length;u++){let l=e[u];if(r[l.id]&&i[l.id]){let c={};for(let d in l.inputs){let h=l.inputs[d];s[h.id]&&(c[d]=h)}let p=Object.assign({},l);p.inputs=c,p.outputs=l.outputs,o.push(p)}}return o}function Z$(e,t,n,s){for(let r=t.length-1;r>=0;r--){let a=t[r],i=[];if(a.outputs.forEach(u=>{let l=e[u.id];l!=null?i.push(l):i.push(null)}),a.gradient==null)throw new Error(`Cannot compute gradient: gradient function not found for ${a.kernelName}.`);let o=a.gradient(i);for(let u in a.inputs){if(!(u in o))throw new Error(`Cannot backprop through input ${u}. Available gradients found: ${Object.keys(o)}.`);let l=n(()=>o[u]());if(l.dtype!=="float32")throw new Error(`Error in gradient for op ${a.kernelName}. The gradient of input ${u} must have 'float32' dtype, but has '${l.dtype}'`);let c=a.inputs[u];if(!Ir(l.shape,c.shape))throw new Error(`Error in gradient for op ${a.kernelName}. The gradient of input '${u}' has shape '${l.shape}', which does not match the shape of the input '${c.shape}'`);if(e[c.id]==null)e[c.id]=l;else{let p=e[c.id];e[c.id]=s(p,l),p.dispose()}}}}var ox=20,Cu=3,Pf=7;function J$(e,t,n,s){let r=oo(t),a=e_(e,t,n,r),i=t.length,o=ed(e,t,n,r,a),u=["Tensor"];return s&&(u.push(` dtype: ${n}`),u.push(` rank: ${i}`),u.push(` shape: [${t}]`),u.push(" values:")),u.push(o.map(l=>" "+l).join(`
|
|
`)),u.join(`
|
|
`)}function e_(e,t,n,s){let r=pt(t),a=s[s.length-1],i=new Array(a).fill(0),o=t.length,u=n==="complex64"?Au(e):e;if(o>1)for(let l=0;l<r/a;l++){let c=l*a;for(let p=0;p<a;p++)i[p]=Math.max(i[p],_u(u[c+p],0,n).length)}return i}function _u(e,t,n){let s;return Array.isArray(e)?s=`${parseFloat(e[0].toFixed(Pf))} + ${parseFloat(e[1].toFixed(Pf))}j`:or(e)?s=`'${e}'`:n==="bool"?s=ok(e):s=parseFloat(e.toFixed(Pf)).toString(),Mu(s,t)}function ok(e){return e===0?"false":"true"}function ed(e,t,n,s,r,a=!0){let i=n==="complex64"?2:1,o=t[0],u=t.length;if(u===0){if(n==="complex64"){let m=Au(e);return[_u(m[0],0,n)]}return n==="bool"?[ok(e[0])]:[e[0].toString()]}if(u===1){if(o>ox){let g=Cu*i,b=Array.from(e.slice(0,g)),y=Array.from(e.slice((o-Cu)*i,o*i));return n==="complex64"&&(b=Au(b),y=Au(y)),["["+b.map((v,x)=>_u(v,r[x],n)).join(", ")+", ..., "+y.map((v,x)=>_u(v,r[o-Cu+x],n)).join(", ")+"]"]}let m=n==="complex64"?Au(e):Array.from(e);return["["+m.map((g,b)=>_u(g,r[b],n)).join(", ")+"]"]}let l=t.slice(1),c=s.slice(1),p=s[0]*i,d=[];if(o>ox){for(let m=0;m<Cu;m++){let g=m*p,b=g+p;d.push(...ed(e.slice(g,b),l,n,c,r,!1))}d.push("...");for(let m=o-Cu;m<o;m++){let g=m*p,b=g+p;d.push(...ed(e.slice(g,b),l,n,c,r,m===o-1))}}else for(let m=0;m<o;m++){let g=m*p,b=g+p;d.push(...ed(e.slice(g,b),l,n,c,r,m===o-1))}let h=u===2?",":"";d[0]="["+d[0]+h;for(let m=1;m<d.length-1;m++)d[m]=" "+d[m]+h;let f=`,
|
|
`;for(let m=2;m<u;m++)f+=`
|
|
`;return d[d.length-1]=" "+d[d.length-1]+"]"+(a?"":f),d}function Au(e){let t=[];for(let n=0;n<e.length;n+=2)t.push([e[n],e[n+1]]);return t}var Vt=class{constructor(e,t,n){if(this.dtype=t,this.shape=e.slice(),this.size=pt(e),n!=null){let s=n.length;O(s===this.size,()=>`Length of values '${s}' does not match the size inferred by the shape '${this.size}'.`)}if(t==="complex64")throw new Error("complex64 dtype TensorBuffers are not supported. Please create a TensorBuffer for the real and imaginary parts separately and call tf.complex(real, imag).");this.values=n||Yw(t,this.size),this.strides=oo(e)}set(e,...t){t.length===0&&(t=[0]),O(t.length===this.rank,()=>`The number of provided coordinates (${t.length}) must match the rank (${this.rank})`);let n=this.locToIndex(t);this.values[n]=e}get(...e){e.length===0&&(e=[0]);let t=0;for(let s of e){if(s<0||s>=this.shape[t]){let r=`Requested out of range element at ${e}. Buffer shape=${this.shape}`;throw new Error(r)}t++}let n=e[e.length-1];for(let s=0;s<e.length-1;++s)n+=this.strides[s]*e[s];return this.values[n]}locToIndex(e){if(this.rank===0)return 0;if(this.rank===1)return e[0];let t=e[e.length-1];for(let n=0;n<e.length-1;++n)t+=this.strides[n]*e[n];return t}indexToLoc(e){if(this.rank===0)return[];if(this.rank===1)return[e];let t=new Array(this.shape.length);for(let n=0;n<t.length-1;++n)t[n]=Math.floor(e/this.strides[n]),e-=t[n]*this.strides[n];return t[t.length-1]=e,t}get rank(){return this.shape.length}toTensor(){return cs().makeTensor(this.values,this.shape,this.dtype)}},cs=null,Gi=null,t_=null;function n_(e){cs=e}function s_(e){Gi=e}function r_(e){t_=e}var et=class{constructor(e,t,n,s){this.kept=!1,this.isDisposedInternal=!1,this.shape=e.slice(),this.dtype=t||"float32",this.size=pt(e),this.strides=oo(e),this.dataId=n,this.id=s,this.rankType=this.rank<5?this.rank.toString():"higher"}get rank(){return this.shape.length}async buffer(){let e=await this.data();return Gi.buffer(this.shape,this.dtype,e)}bufferSync(){return Gi.buffer(this.shape,this.dtype,this.dataSync())}async array(){let e=await this.data();return ji(this.shape,e,this.dtype==="complex64")}arraySync(){return ji(this.shape,this.dataSync(),this.dtype==="complex64")}async data(){this.throwIfDisposed();let e=cs().read(this.dataId);if(this.dtype==="string"){let t=await e;try{return t.map(n=>md(n))}catch(n){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}}return e}dataToGPU(e){return this.throwIfDisposed(),cs().readToGPU(this.dataId,e)}dataSync(){this.throwIfDisposed();let e=cs().readSync(this.dataId);if(this.dtype==="string")try{return e.map(t=>md(t))}catch(t){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}return e}async bytes(){this.throwIfDisposed();let e=await cs().read(this.dataId);return this.dtype==="string"?e:new Uint8Array(e.buffer)}dispose(){this.isDisposed||(cs().disposeTensor(this),this.isDisposedInternal=!0)}get isDisposed(){return this.isDisposedInternal}throwIfDisposed(){if(this.isDisposed)throw new Error("Tensor is disposed.")}print(e=!1){return Gi.print(this,e)}clone(){return this.throwIfDisposed(),Gi.clone(this)}toString(e=!1){let t=this.dataSync();return J$(t,this.shape,this.dtype,e)}cast(e){return this.throwIfDisposed(),Gi.cast(this,e)}variable(e=!0,t,n){return this.throwIfDisposed(),cs().makeVariable(this,e,t,n)}};Object.defineProperty(et,Symbol.hasInstance,{value:e=>!!e&&e.data!=null&&e.dataSync!=null&&e.throwIfDisposed!=null});function a_(){return og("Tensor",()=>et)}a_();var gd=class extends et{constructor(e,t,n,s){super(e.shape,e.dtype,e.dataId,s),this.trainable=t,this.name=n}assign(e){if(e.dtype!==this.dtype)throw new Error(`dtype of the new value (${e.dtype}) and previous value (${this.dtype}) must match`);if(!Ir(e.shape,this.shape))throw new Error(`shape of the new value (${e.shape}) and previous value (${this.shape}) must match`);cs().disposeTensor(this),this.dataId=e.dataId,cs().incRef(this,null)}dispose(){cs().disposeVariable(this),this.isDisposedInternal=!0}};Object.defineProperty(gd,Symbol.hasInstance,{value:e=>e instanceof et&&e.assign!=null&&e.assign instanceof Function});var _s={};Ae(_s,{assertTypesMatch:()=>pk,getTensorsInContainer:()=>Fg,isTensorInList:()=>u_,makeTypesMatch:()=>vt});var i_=(e=>(e.R0="R0",e.R1="R1",e.R2="R2",e.R3="R3",e.R4="R4",e.R5="R5",e.R6="R6",e))(i_||{}),uk=(e=>(e.float32="float32",e.int32="int32",e.bool="int32",e.complex64="complex64",e))(uk||{}),lk=(e=>(e.float32="float32",e.int32="int32",e.bool="bool",e.complex64="complex64",e))(lk||{}),ck=(e=>(e.float32="float32",e.int32="float32",e.bool="float32",e.complex64="complex64",e))(ck||{}),dk=(e=>(e.float32="complex64",e.int32="complex64",e.bool="complex64",e.complex64="complex64",e))(dk||{}),o_={float32:ck,int32:uk,bool:lk,complex64:dk};function cn(e,t){if(e==="string"||t==="string"){if(e==="string"&&t==="string")return"string";throw new Error(`Can not upcast ${e} with ${t}`)}return o_[e][t]}function pp(e){return cn(e,"int32")}function vt(e,t){if(e.dtype===t.dtype)return[e,t];let n=cn(e.dtype,t.dtype);return[e.cast(n),t.cast(n)]}function pk(e,t){O(e.dtype===t.dtype,()=>`The dtypes of the first(${e.dtype}) and second(${t.dtype}) input must match`)}function u_(e,t){return t.some(n=>n.id===e.id)}function Fg(e){let t=[];return hk(e,t,new Set),t}function hk(e,t,n){if(e==null)return;if(e instanceof et){t.push(e);return}if(!l_(e))return;let s=e;for(let r in s){let a=s[r];n.has(a)||(n.add(a),hk(a,t,n))}}function l_(e){return Array.isArray(e)||typeof e=="object"}function zf(e){return e.kernelName!=null}var ux=class{constructor(){this.registeredVariables={},this.nextTapeNodeId=0,this.numBytes=0,this.numTensors=0,this.numStringTensors=0,this.numDataBuffers=0,this.gradientDepth=0,this.kernelDepth=0,this.scopeStack=[],this.numDataMovesStack=[],this.nextScopeId=0,this.tensorInfo=new WeakMap,this.profiling=!1,this.activeProfile={newBytes:0,newTensors:0,peakBytes:0,kernels:[],result:null,get kernelNames(){return Array.from(new Set(this.kernels.map(e=>e.name)))}}}dispose(){for(let e in this.registeredVariables)this.registeredVariables[e].dispose()}},nm=class{constructor(e){this.ENV=e,this.registry={},this.registryFactory={},this.pendingBackendInitId=0,this.state=new ux}async ready(){if(this.pendingBackendInit!=null)return this.pendingBackendInit.then(()=>{});if(this.backendInstance!=null)return;let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t];if(await this.initializeBackend(n).success){await this.setBackend(n);return}}throw new Error("Could not initialize any backends, all backend initializations failed.")}get backend(){if(this.pendingBackendInit!=null)throw new Error(`Backend '${this.backendName}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);if(this.backendInstance==null){let{name:e,asyncInit:t}=this.initializeBackendsAndReturnBest();if(t)throw new Error(`The highest priority backend '${e}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);this.setBackend(e)}return this.backendInstance}backendNames(){return Object.keys(this.registryFactory)}findBackend(e){if(!(e in this.registry))if(e in this.registryFactory){let{asyncInit:t}=this.initializeBackend(e);if(t)return null}else return null;return this.registry[e]}findBackendFactory(e){return e in this.registryFactory?this.registryFactory[e].factory:null}registerBackend(e,t,n=1){return e in this.registryFactory?(ir(`${e} backend was already registered. Reusing existing backend factory.`),!1):(this.registryFactory[e]={factory:t,priority:n},!0)}async setBackend(e){if(this.registryFactory[e]==null)throw new Error(`Backend name '${e}' not found in registry`);if(this.backendName=e,this.registry[e]==null){this.backendInstance=null;let{success:t,asyncInit:n}=this.initializeBackend(e);if(!(n?await t:t))return!1}return this.backendInstance=this.registry[e],this.setupRegisteredKernels(),this.profiler=new K$(this.backendInstance),!0}setupRegisteredKernels(){em(this.backendName).forEach(t=>{t.setupFunc!=null&&t.setupFunc(this.backendInstance)})}disposeRegisteredKernels(e){em(e).forEach(n=>{n.disposeFunc!=null&&n.disposeFunc(this.registry[e])})}initializeBackend(e){let t=this.registryFactory[e];if(t==null)throw new Error(`Cannot initialize backend ${e}, no registration found.`);try{let n=t.factory();if(n&&!(n instanceof sl)&&typeof n.then=="function"){let s=++this.pendingBackendInitId,r=n.then(a=>s<this.pendingBackendInitId?!1:(this.registry[e]=a,this.pendingBackendInit=null,!0)).catch(a=>(s<this.pendingBackendInitId||(this.pendingBackendInit=null,ir(`Initialization of backend ${e} failed`),ir(a.stack||a.message)),!1));return this.pendingBackendInit=r,{success:r,asyncInit:!0}}else return this.registry[e]=n,{success:!0,asyncInit:!1}}catch(n){return ir(`Initialization of backend ${e} failed`),ir(n.stack||n.message),{success:!1,asyncInit:!1}}}removeBackend(e){if(!(e in this.registryFactory))throw new Error(`${e} backend not found in registry`);this.backendName===e&&this.pendingBackendInit!=null&&this.pendingBackendInitId++,e in this.registry&&(this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e]),delete this.registryFactory[e],this.backendName===e&&(this.pendingBackendInit=null,this.backendName=null,this.backendInstance=null)}getSortedBackends(){if(Object.keys(this.registryFactory).length===0)throw new Error("No backend found in registry.");return Object.keys(this.registryFactory).sort((e,t)=>this.registryFactory[t].priority-this.registryFactory[e].priority)}initializeBackendsAndReturnBest(){let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t],{success:s,asyncInit:r}=this.initializeBackend(n);if(r||s)return{name:n,asyncInit:r}}throw new Error("Could not initialize any backends, all backend initializations failed.")}moveData(e,t){let n=this.state.tensorInfo.get(t),s=n.backend,r=this.readSync(t),a=s.refCount(t);s.disposeData(t,!0),n.backend=e,e.move(t,r,n.shape,n.dtype,a),this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack[this.state.numDataMovesStack.length-1]++}tidy(e,t){let n=null;if(t==null){if(typeof e!="function")throw new Error("Please provide a function to tidy()");t=e}else{if(typeof e!="string"&&!(e instanceof String))throw new Error("When calling with two arguments, the first argument to tidy() must be a string");if(typeof t!="function")throw new Error("When calling with two arguments, the 2nd argument to tidy() must be a function");n=e}let s;return this.scopedRun(()=>this.startScope(n),()=>this.endScope(s),()=>(s=t(),s instanceof Promise&&console.error("Cannot return a Promise inside of tidy."),s))}scopedRun(e,t,n){e();try{let s=n();return t(),s}catch(s){throw t(),s}}nextTensorId(){return nm.nextTensorId++}nextVariableId(){return nm.nextVariableId++}clone(e){let t=M.runKernel(Wa,{x:e}),n={x:e},s=a=>({x:()=>{let i="float32",o={x:a},u={dtype:i};return M.runKernel(Ta,o,u)}}),r=[];return this.addTapeNode(this.state.activeScope.name,n,[t],s,r,{}),t}runKernel(e,t,n){if(this.backendName==null&&this.backend,!(Jf(e,this.backendName)!=null))throw new Error(`Kernel '${e}' not registered for backend '${this.backendName}'`);return this.runKernelFunc({kernelName:e,inputs:t,attrs:n})}shouldCheckForMemLeaks(){return this.ENV.getBool("IS_TEST")}checkKernelForMemLeak(e,t,n){let s=this.backend.numDataIds(),r=0;n.forEach(o=>{r+=o.dtype==="complex64"?3:1});let a=this.state.numDataMovesStack[this.state.numDataMovesStack.length-1],i=s-t-r-a;if(i>0)throw new Error(`Backend '${this.backendName}' has an internal memory leak (${i} data ids) after running '${e}'`)}runKernelFunc(e){let t,n=[],s=this.isTapeOn(),r=this.state.numBytes,a=this.state.numTensors;this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack.push(0);let i;this.backendName==null&&this.backend;let o,u=zf(e)?e.kernelName:this.state.activeScope!=null?this.state.activeScope.name:"";if(zf(e)){let{kernelName:h,inputs:f,attrs:m}=e;this.backendName==null&&this.backend;let g=Jf(h,this.backendName);O(g!=null,()=>`Cannot find registered kernel '${h}' for backend '${this.backendName}'`),i=()=>{let b=this.backend.numDataIds();o=g.kernelFunc({inputs:f,attrs:m,backend:this.backend});let y=Array.isArray(o)?o:[o];this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(h,b,y);let v=y.map(x=>{if(x.rank!=null)return x;let{dataId:k,shape:T,dtype:N}=x;return this.makeTensorFromDataId(k,T,N)});if(s){let x=this.getTensorsForGradient(h,f,v);n=this.saveTensorsForBackwardMode(x)}return v}}else{let{forwardFunc:h}=e,f=m=>{!s||(n=m.map(g=>this.keep(this.clone(g))))};i=()=>{let m=this.backend.numDataIds();o=this.tidy(()=>h(this.backend,f));let g=Array.isArray(o)?o:[o];return this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(u,m,g),g}}let{inputs:l,attrs:c}=e,p=zf(e)?null:e.backwardsFunc,d;return this.scopedRun(()=>this.state.kernelDepth++,()=>this.state.kernelDepth--,()=>{!this.ENV.getBool("DEBUG")&&!this.state.profiling?t=i():(d=this.profiler.profileKernel(u,l,()=>i()),this.ENV.getBool("DEBUG")&&this.profiler.logKernelProfile(d),t=d.outputs)}),s&&this.addTapeNode(u,l,t,p,n,c),this.state.profiling&&this.state.activeProfile.kernels.push({name:u,bytesAdded:this.state.numBytes-r,totalBytesSnapshot:this.state.numBytes,tensorsAdded:this.state.numTensors-a,totalTensorsSnapshot:this.state.numTensors,inputShapes:Object.keys(l).map(h=>l[h]!=null?l[h].shape:null),outputShapes:t.map(h=>h.shape),kernelTimeMs:d.timeMs,extraInfo:d.extraInfo}),Array.isArray(o)?t:t[0]}saveTensorsForBackwardMode(e){return e.map(n=>this.keep(this.clone(n)))}getTensorsForGradient(e,t,n){let s=rx(e);if(s!=null){let r=s.inputsToSave||[],a=s.outputsToSave||[],i;s.saveAllInputs?(O(Array.isArray(t),()=>"saveAllInputs is true, expected inputs to be an array."),i=Object.keys(t).map(u=>t[u])):i=r.map(u=>t[u]);let o=n.filter((u,l)=>a[l]);return i.concat(o)}return[]}makeTensor(e,t,n,s){if(e==null)throw new Error("Values passed to engine.makeTensor() are null");n=n||"float32",s=s||this.backend;let r=e;n==="string"&&or(e[0])&&(r=e.map(o=>Dl(o)));let a=s.write(r,t,n),i=new et(t,n,a,this.nextTensorId());if(this.trackTensor(i,s),n==="string"){let o=this.state.tensorInfo.get(a),u=Jw(r);this.state.numBytes+=u-o.bytes,o.bytes=u}return i}makeTensorFromDataId(e,t,n,s){n=n||"float32";let r=new et(t,n,e,this.nextTensorId());return this.trackTensor(r,s),r}makeVariable(e,t=!0,n,s){n=n||this.nextVariableId().toString(),s!=null&&s!==e.dtype&&(e=e.cast(s));let r=new gd(e,t,n,this.nextTensorId());if(this.state.registeredVariables[r.name]!=null)throw new Error(`Variable with name ${r.name} was already registered`);return this.state.registeredVariables[r.name]=r,this.incRef(r,this.backend),r}trackTensor(e,t){this.state.numTensors++,e.dtype==="string"&&this.state.numStringTensors++;let n=0;e.dtype!=="complex64"&&e.dtype!=="string"&&(n=e.size*Yf(e.dtype)),this.state.numBytes+=n,this.state.tensorInfo.has(e.dataId)||(this.state.numDataBuffers++,this.state.tensorInfo.set(e.dataId,{backend:t||this.backend,dtype:e.dtype,shape:e.shape,bytes:n})),e instanceof gd||this.track(e)}incRef(e,t){this.trackTensor(e,t),this.backend.incRef(e.dataId)}removeDataId(e,t){this.state.tensorInfo.has(e)&&this.state.tensorInfo.get(e).backend===t&&(this.state.tensorInfo.delete(e),this.state.numDataBuffers--)}disposeTensor(e){if(!this.state.tensorInfo.has(e.dataId))return;let t=this.state.tensorInfo.get(e.dataId);if(this.state.numTensors--,e.dtype==="string"&&(this.state.numStringTensors--,this.state.numBytes-=t.bytes),e.dtype!=="complex64"&&e.dtype!=="string"){let n=e.size*Yf(e.dtype);this.state.numBytes-=n}t.backend.disposeData(e.dataId)&&this.removeDataId(e.dataId,t.backend)}disposeVariables(){for(let e in this.state.registeredVariables){let t=this.state.registeredVariables[e];this.disposeVariable(t)}}disposeVariable(e){this.disposeTensor(e),this.state.registeredVariables[e.name]!=null&&delete this.state.registeredVariables[e.name]}memory(){let e=this.backend.memory();return e.numTensors=this.state.numTensors,e.numDataBuffers=this.state.numDataBuffers,e.numBytes=this.state.numBytes,this.state.numStringTensors>0&&(e.unreliable=!0,e.reasons==null&&(e.reasons=[]),e.reasons.push("Memory usage by string tensors is approximate (2 bytes per character)")),e}async profile(e){this.state.profiling=!0;let t=this.state.numBytes,n=this.state.numTensors;this.state.activeProfile.kernels=[],this.state.activeProfile.result=await e(),this.state.profiling=!1,this.state.activeProfile.peakBytes=Math.max(...this.state.activeProfile.kernels.map(s=>s.totalBytesSnapshot)),this.state.activeProfile.newBytes=this.state.numBytes-t,this.state.activeProfile.newTensors=this.state.numTensors-n;for(let s of this.state.activeProfile.kernels)s.kernelTimeMs=await s.kernelTimeMs,s.extraInfo=await s.extraInfo;return this.state.activeProfile}isTapeOn(){return this.state.gradientDepth>0&&this.state.kernelDepth===0}addTapeNode(e,t,n,s,r,a){let i={id:this.state.nextTapeNodeId++,kernelName:e,inputs:t,outputs:n,saved:r},o=rx(e);o!=null&&(s=o.gradFunc),s!=null&&(i.gradient=u=>(u=u.map((l,c)=>{if(l==null){let p=n[c],d=jd(p.size,p.dtype);return this.makeTensor(d,p.shape,p.dtype)}return l}),s(u.length>1?u:u[0],r,a))),this.state.activeTape.push(i)}keep(e){return e.kept=!0,e}startTape(){this.state.gradientDepth===0&&(this.state.activeTape=[]),this.state.gradientDepth++}endTape(){this.state.gradientDepth--}startScope(e){let t={track:[],name:"unnamed scope",id:this.state.nextScopeId++};e&&(t.name=e),this.state.scopeStack.push(t),this.state.activeScope=t}endScope(e){let t=Fg(e),n=new Set(t.map(r=>r.id));for(let r=0;r<this.state.activeScope.track.length;r++){let a=this.state.activeScope.track[r];!a.kept&&!n.has(a.id)&&a.dispose()}let s=this.state.scopeStack.pop();this.state.activeScope=this.state.scopeStack.length===0?null:this.state.scopeStack[this.state.scopeStack.length-1],t.forEach(r=>{!r.kept&&r.scopeId===s.id&&this.track(r)})}gradients(e,t,n,s=!1){if(O(t.length>0,()=>"gradients() received an empty list of xs."),n!=null&&n.dtype!=="float32")throw new Error(`dy must have 'float32' dtype, but has '${n.dtype}'`);let r=this.scopedRun(()=>this.startTape(),()=>this.endTape(),()=>this.tidy("forward",e));O(r instanceof et,()=>"The result y returned by f() must be a tensor.");let a=Q$(this.state.activeTape,t,r);if(!s&&a.length===0&&t.length>0)throw new Error("Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.");return this.tidy("backward",()=>{let i={};i[r.id]=n==null?c_(r.shape):n,Z$(i,a,u=>this.tidy(u),d_);let o=t.map(u=>i[u.id]);return this.state.gradientDepth===0&&(this.state.activeTape.forEach(u=>{for(let l of u.saved)l.dispose()}),this.state.activeTape=null),{value:r,grads:o}})}customGrad(e){return O(fr(e),()=>"The f passed in customGrad(f) must be a function."),(...t)=>{O(t.every(i=>i instanceof et),()=>"The args passed in customGrad(f)(x1, x2,...) must all be tensors");let n,s={};t.forEach((i,o)=>{s[o]=i});let r=(i,o)=>(n=e(...t,o),O(n.value instanceof et,()=>"The function f passed in customGrad(f) must return an object where `obj.value` is a tensor"),O(fr(n.gradFunc),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function."),n.value),a=(i,o)=>{let u=n.gradFunc(i,o),l=Array.isArray(u)?u:[u];O(l.length===t.length,()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns the same number of tensors as inputs passed to f(...)."),O(l.every(p=>p instanceof et),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns a list of only tensors.");let c={};return l.forEach((p,d)=>{c[d]=()=>p}),c};return this.runKernelFunc({forwardFunc:r,backwardsFunc:a,inputs:s})}}readSync(e){return this.state.tensorInfo.get(e).backend.readSync(e)}read(e){return this.state.tensorInfo.get(e).backend.read(e)}readToGPU(e,t){return this.state.tensorInfo.get(e).backend.readToGPU(e,t)}async time(e){let t=Gu(),n=await this.backend.time(e);return n.wallMs=Gu()-t,n}track(e){return this.state.activeScope!=null&&(e.scopeId=this.state.activeScope.id,this.state.activeScope.track.push(e)),e}get registeredVariables(){return this.state.registeredVariables}reset(){this.pendingBackendInitId++,this.state.dispose(),this.ENV.reset(),this.state=new ux;for(let e in this.registry)this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e];this.backendName=null,this.backendInstance=null,this.pendingBackendInit=null}},Og=nm;Og.nextTensorId=0;Og.nextVariableId=0;function c_(e){let t=rg(pt(e),"float32");return M.makeTensor(t,e,"float32")}function fk(){let e=rk();if(e._tfengine==null){let t=new A$(e);e._tfengine=new Og(t)}return F$(e._tfengine.ENV),n_(()=>e._tfengine),e._tfengine}var M=fk();function d_(e,t){let n={a:e,b:t};return M.runKernel(Sr,n)}var hp={};Ae(hp,{isBrowser:()=>mk,isMobile:()=>f_,mockIsMobile:()=>h_});function p_(){return typeof navigator!="undefined"&&navigator!=null}var sm;function h_(e){sm=e}function f_(e){if(sm!==void 0)return sm;if(e||p_()){if(e||(e=navigator),e.product==="ReactNative")return!0;let t=e.userAgent||e.vendor||(typeof window!="undefined"?window.opera:"");if(!t){let n=e;return n.userAgentData&&n.userAgentData.mobile}return/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i.test(t)||/1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(t.substr(0,4))}return!1}function mk(){return typeof window!="undefined"&&window.document!=null||typeof WorkerGlobalScope!="undefined"}var Kn=X();Kn.registerFlag("DEBUG",()=>!1,e=>{e&&console.warn("Debugging mode is ON. The output of every math call will be downloaded to CPU and checked for NaNs. This significantly impacts performance.")});Kn.registerFlag("IS_BROWSER",()=>mk());Kn.registerFlag("IS_NODE",()=>typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined");Kn.registerFlag("IS_CHROME",()=>typeof navigator!="undefined"&&navigator!=null&&navigator.userAgent!=null&&/Chrome/.test(navigator.userAgent)&&/Google Inc/.test(navigator.vendor));Kn.registerFlag("PROD",()=>!1);Kn.registerFlag("TENSORLIKE_CHECK_SHAPE_CONSISTENCY",()=>Kn.getBool("DEBUG"));Kn.registerFlag("DEPRECATION_WARNINGS_ENABLED",()=>!0);Kn.registerFlag("IS_TEST",()=>!1);Kn.registerFlag("CHECK_COMPUTATION_FOR_ERRORS",()=>!0);Kn.registerFlag("WRAP_TO_IMAGEBITMAP",()=>!1);Kn.registerFlag("ENGINE_COMPILE_ONLY",()=>!1);function Rs(e,t){let n=e;if(Qt(e))return t==="string"?[]:[e.length];if(!Array.isArray(e))return[];let s=[];for(;Array.isArray(n)||Qt(n)&&t!=="string";)s.push(n.length),n=n[0];return Array.isArray(e)&&X().getBool("TENSORLIKE_CHECK_SHAPE_CONSISTENCY")&&gk(e,s,[]),s}function gk(e,t,n){if(n=n||[],!Array.isArray(e)&&!Qt(e)){O(t.length===0,()=>`Element arr[${n.join("][")}] is a primitive, but should be an array/TypedArray of ${t[0]} elements`);return}O(t.length>0,()=>`Element arr[${n.join("][")}] should be a primitive, but is an array of ${e.length} elements`),O(e.length===t[0],()=>`Element arr[${n.join("][")}] should have ${t[0]} elements, but has ${e.length} elements`);let s=t.slice(1);for(let r=0;r<e.length;++r)gk(e[r],s,n.concat(r))}function lx(e,t,n,s){if(e!=="string_or_numeric"){if(e==null)throw new Error("Expected dtype cannot be null.");if(e!=="numeric"&&e!==t||e==="numeric"&&t==="string")throw new Error(`Argument '${n}' passed to '${s}' must be ${e} tensor, but got ${t} tensor`)}}function _(e,t,n,s="numeric"){if(e instanceof et)return lx(s,e.dtype,t,n),e;let r=qd(e);if(r!=="string"&&["bool","int32","float32"].indexOf(s)>=0&&(r=s),lx(s,r,t,n),e==null||!Qt(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string"){let u=e==null?"null":e.constructor.name;throw new Error(`Argument '${t}' passed to '${n}' must be a Tensor or TensorLike, but got '${u}'`)}let a=Rs(e,r);!Qt(e)&&!Array.isArray(e)&&(e=[e]);let o=r!=="string"?dp(e,r):ra(e,[],!0);return M.makeTensor(o,a,r)}function Hu(e,t,n,s="numeric"){if(!Array.isArray(e))throw new Error(`Argument ${t} passed to ${n} must be a \`Tensor[]\` or \`TensorLike[]\``);return e.map((a,i)=>_(a,`${t}[${i}]`,n,s))}var m_="__op";function L(e){let t=Object.keys(e);if(t.length!==1)throw new Error(`Please provide an object with a single key (operation name) mapping to a function. Got an object with ${t.length} keys.`);let n=t[0],s=e[n];n.endsWith("_")&&(n=n.substring(0,n.length-1)),n=n+m_;let r=(...a)=>{M.startScope(n);try{let i=s(...a);return ig(i)&&console.error("Cannot return a Promise inside of tidy."),M.endScope(i),i}catch(i){throw M.endScope(null),i}};return Object.defineProperty(r,"name",{value:n,configurable:!0}),r}function g_(e,t){let n=_(e,"real","complex"),s=_(t,"imag","complex");pn(n.shape,s.shape,`real and imag shapes, ${n.shape} and ${s.shape}, must match in call to tf.complex().`);let r={real:n,imag:s};return M.runKernel(Xd,r)}var ua=L({complex_:g_});function Tr(e,t,n,s){if(s==null&&(s=qd(e)),s==="complex64")throw new Error("Cannot construct a complex64 tensor directly. Please use tf.complex(real, imag).");if(!Qt(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string")throw new Error("values passed to tensor(values) must be a number/boolean/string or an array of numbers/booleans/strings, or a TypedArray");if(t!=null){ag(t);let r=pt(t),a=pt(n);O(r===a,()=>`Based on the provided shape, [${t}], the tensor should have ${r} values but has ${a}`);for(let i=0;i<n.length;++i){let o=n[i],u=i===n.length-1?o!==pt(t.slice(i)):!0;O(n[i]===t[i]||!u,()=>`Error creating a new Tensor. Inferred shape (${n}) does not match the provided shape (${t}). `)}}return!Qt(e)&&!Array.isArray(e)&&(e=[e]),t=t||n,e=s!=="string"?dp(e,s):ra(e,[],!0),M.makeTensor(e,t,s)}function fs(e,t,n){let s=Rs(e,n);return Tr(e,t,s,n)}var rm={float32:4,float16:2,int32:4,uint16:2,uint8:1,bool:1,complex64:8},bd=4;async function b_(e,t){let n=[],s=[],r=Array.isArray(e)?e.map(i=>i.name):Object.keys(e);for(let i=0;i<r.length;++i){let o=r[i],u=Array.isArray(e)?e[i].tensor:e[o];if(u.dtype!=="float32"&&u.dtype!=="int32"&&u.dtype!=="bool"&&u.dtype!=="string"&&u.dtype!=="complex64")throw new Error(`Unsupported dtype in weight '${o}': ${u.dtype}`);let l={name:o,shape:u.shape,dtype:u.dtype};if(u.dtype==="string"){let c=new Promise(async p=>{let d=await u.bytes(),h=d.reduce((g,b)=>g+b.length,0)+bd*d.length,f=new Uint8Array(h),m=0;for(let g=0;g<d.length;g++){let b=d[g],y=new Uint8Array(new Uint32Array([b.length]).buffer);f.set(y,m),m+=bd,f.set(b,m),m+=b.length}p(f)});s.push(c)}else s.push(u.data());t!=null&&(l.group=t),n.push(l)}let a=await Promise.all(s);return{data:y_(a),specs:n}}function bk(e,t){let n={},s,r=0;for(let a of t){let i=a.name,o=a.dtype,u=a.shape,l=pt(u),c;if("quantization"in a){let p=a.quantization;if(p.dtype==="uint8"||p.dtype==="uint16"){if(!("min"in p&&"scale"in p))throw new Error(`Weight ${a.name} with quantization ${p.dtype} doesn't have corresponding metadata min and scale.`)}else if(p.dtype==="float16"){if(o!=="float32")throw new Error(`Weight ${a.name} is quantized with ${p.dtype} which only supports weights of type float32 not ${o}.`)}else throw new Error(`Weight ${a.name} has unknown quantization dtype ${p.dtype}. Supported quantization dtypes are: 'uint8', 'uint16', and 'float16'.`);let d=rm[p.dtype],h=e.slice(r,r+l*d),f=p.dtype==="uint8"?new Uint8Array(h):new Uint16Array(h);if(o==="float32")if(p.dtype==="uint8"||p.dtype==="uint16"){c=new Float32Array(f.length);for(let m=0;m<f.length;m++){let g=f[m];c[m]=g*p.scale+p.min}}else if(p.dtype==="float16")s===void 0&&(s=S_()),c=s(f);else throw new Error(`Unsupported quantization type ${p.dtype} for weight type float32.`);else if(o==="int32"){if(p.dtype!=="uint8"&&p.dtype!=="uint16")throw new Error(`Unsupported quantization type ${p.dtype} for weight type int32.`);c=new Int32Array(f.length);for(let m=0;m<f.length;m++){let g=f[m];c[m]=Math.round(g*p.scale+p.min)}}else throw new Error(`Unsupported dtype in weight '${i}': ${o}`);r+=l*d}else if(o==="string"){let p=pt(a.shape);c=[];for(let d=0;d<p;d++){let h=new Uint32Array(e.slice(r,r+bd))[0];r+=bd;let f=new Uint8Array(e.slice(r,r+h));c.push(f),r+=h}}else{let p=rm[o],d=e.slice(r,r+l*p);if(o==="float32")c=new Float32Array(d);else if(o==="int32")c=new Int32Array(d);else if(o==="bool")c=new Uint8Array(d);else if(o==="complex64"){c=new Float32Array(d);let h=new Float32Array(c.length/2),f=new Float32Array(c.length/2);for(let b=0;b<h.length;b++)h[b]=c[b*2],f[b]=c[b*2+1];let m=fs(h,u,"float32"),g=fs(f,u,"float32");n[i]=ua(m,g),m.dispose(),g.dispose()}else throw new Error(`Unsupported dtype in weight '${i}': ${o}`);r+=l*p}o!=="complex64"&&(n[i]=fs(c,u,o))}return n}function y_(e){if(e===null)throw new Error(`Invalid input value: ${JSON.stringify(e)}`);let t=0,n=[];e.forEach(a=>{if(t+=a.byteLength,n.push(a.byteLength===a.buffer.byteLength?a:new a.constructor(a)),!(a instanceof Float32Array||a instanceof Int32Array||a instanceof Uint8Array))throw new Error(`Unsupported TypedArray subtype: ${a.constructor.name}`)});let s=new Uint8Array(t),r=0;return n.forEach(a=>{s.set(new Uint8Array(a.buffer),r),r+=a.byteLength}),s.buffer}var Pg=typeof Buffer!="undefined"&&(typeof Blob=="undefined"||typeof atob=="undefined"||typeof btoa=="undefined");function cx(e){return Pg?Buffer.byteLength(e):new Blob([e]).size}function v_(e){if(Pg)return Buffer.from(e).toString("base64");let t=new Uint8Array(e),n="";for(let s=0,r=t.length;s<r;s++)n+=String.fromCharCode(t[s]);return btoa(n)}function x_(e){if(Pg){let s=Buffer.from(e,"base64");return s.buffer.slice(s.byteOffset,s.byteOffset+s.byteLength)}let t=atob(e),n=new Uint8Array(t.length);for(let s=0;s<t.length;++s)n.set([t.charCodeAt(s)],s);return n.buffer}function zg(e){if(e.length===1)return e[0];let t=0;e.forEach(r=>{t+=r.byteLength});let n=new Uint8Array(t),s=0;return e.forEach(r=>{n.set(new Uint8Array(r),s),s+=r.byteLength}),n.buffer}function dx(e){let t="/";for(e=e.trim();e.endsWith(t);)e=e.slice(0,e.length-1);let n=e.split(t);return n[n.length-1]}function yk(e,t){let n={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:t};return e.signature!=null&&(n.signature=e.signature),e.userDefinedMetadata!=null&&(n.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(n.modelInitializer=e.modelInitializer),e.trainingConfig!=null&&(n.trainingConfig=e.trainingConfig),n}async function Mg(e,t){let n={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy};if(e.trainingConfig!=null&&(n.trainingConfig=e.trainingConfig),e.weightsManifest!=null){let[s,r]=await t(e.weightsManifest);n.weightSpecs=s,n.weightData=r}return e.signature!=null&&(n.signature=e.signature),e.userDefinedMetadata!=null&&(n.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(n.modelInitializer=e.modelInitializer),n}function Fl(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("Expected JSON model topology, received ArrayBuffer.");return{dateSaved:new Date,modelTopologyType:"JSON",modelTopologyBytes:e.modelTopology==null?0:cx(JSON.stringify(e.modelTopology)),weightSpecsBytes:e.weightSpecs==null?0:cx(JSON.stringify(e.weightSpecs)),weightDataBytes:e.weightData==null?0:e.weightData.byteLength}}function w_(){let e=n=>{let s=n<<13,r=0;for(;(s&8388608)===0;)r-=8388608,s<<=1;return s&=-8388609,r+=947912704,s|r},t=new Uint32Array(2048);t[0]=0;for(let n=1;n<1024;n++)t[n]=e(n);for(let n=1024;n<2048;n++)t[n]=939524096+(n-1024<<13);return t}function k_(){let e=new Uint32Array(64);e[0]=0,e[31]=1199570944,e[32]=2147483648,e[63]=3347054592;for(let t=1;t<31;t++)e[t]=t<<23;for(let t=33;t<63;t++)e[t]=2147483648+(t-32<<23);return e}function I_(){let e=new Uint32Array(64);for(let t=0;t<64;t++)e[t]=1024;return e[0]=e[32]=0,e}function S_(){let e=w_(),t=k_(),n=I_();return s=>{let r=new ArrayBuffer(4*s.length),a=new Uint32Array(r);for(let i=0;i<s.length;i++){let o=s[i],u=e[n[o>>10]+(o&1023)]+t[o>>10];a[i]=u}return new Float32Array(r)}}var xt=class{constructor(){this.saveRouters=[],this.loadRouters=[]}static getInstance(){return xt.instance==null&&(xt.instance=new xt),xt.instance}static registerSaveRouter(e){xt.getInstance().saveRouters.push(e)}static registerLoadRouter(e){xt.getInstance().loadRouters.push(e)}static getSaveHandlers(e){return xt.getHandlers(e,"save")}static getLoadHandlers(e,t){return xt.getHandlers(e,"load",t)}static getHandlers(e,t,n){let s=[];return(t==="load"?xt.getInstance().loadRouters:xt.getInstance().saveRouters).forEach(a=>{let i=a(e,n);i!==null&&s.push(i)}),s}},C_=e=>xt.registerSaveRouter(e),N_=e=>xt.registerLoadRouter(e),T_=e=>xt.getSaveHandlers(e),$_=(e,t)=>xt.getLoadHandlers(e,t),am="tensorflowjs",im=1,Qr="models_store",ur="model_info_store";function vk(){if(!X().getBool("IS_BROWSER"))throw new Error("Failed to obtain IndexedDB factory because the current environmentis not a web browser.");let e=typeof window=="undefined"?self:window,t=e.indexedDB||e.mozIndexedDB||e.webkitIndexedDB||e.msIndexedDB||e.shimIndexedDB;if(t==null)throw new Error("The current browser does not appear to support IndexedDB.");return t}function om(e){let t=e.result;t.createObjectStore(Qr,{keyPath:"modelPath"}),t.createObjectStore(ur,{keyPath:"modelPath"})}var la=class{constructor(e){if(this.indexedDB=vk(),e==null||!e)throw new Error("For IndexedDB, modelPath must not be null, undefined or empty.");this.modelPath=e}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");return this.databaseAction(this.modelPath,e)}async load(){return this.databaseAction(this.modelPath)}databaseAction(e,t){return new Promise((n,s)=>{let r=this.indexedDB.open(am,im);r.onupgradeneeded=()=>om(r),r.onsuccess=()=>{let a=r.result;if(t==null){let i=a.transaction(Qr,"readonly"),u=i.objectStore(Qr).get(this.modelPath);u.onsuccess=()=>{if(u.result==null)return a.close(),s(new Error(`Cannot find model with path '${this.modelPath}' in IndexedDB.`));n(u.result.modelArtifacts)},u.onerror=l=>(a.close(),s(u.error)),i.oncomplete=()=>a.close()}else{let i=Fl(t),o=a.transaction(ur,"readwrite"),u=o.objectStore(ur),l=u.put({modelPath:this.modelPath,modelArtifactsInfo:i}),c;l.onsuccess=()=>{c=a.transaction(Qr,"readwrite");let d=c.objectStore(Qr).put({modelPath:this.modelPath,modelArtifacts:t,modelArtifactsInfo:i});d.onsuccess=()=>n({modelArtifactsInfo:i}),d.onerror=h=>{u=o.objectStore(ur);let f=u.delete(this.modelPath);f.onsuccess=()=>(a.close(),s(d.error)),f.onerror=m=>(a.close(),s(d.error))}},l.onerror=p=>(a.close(),s(l.error)),o.oncomplete=()=>{c==null?a.close():c.oncomplete=()=>a.close()}}},r.onerror=a=>s(r.error)})}};la.URL_SCHEME="indexeddb://";var xk=e=>X().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(la.URL_SCHEME)?__(e.slice(la.URL_SCHEME.length)):null;xt.registerSaveRouter(xk);xt.registerLoadRouter(xk);function __(e){return new la(e)}function A_(e){return e.startsWith(la.URL_SCHEME)?e.slice(la.URL_SCHEME.length):e}var E_=class{constructor(){this.indexedDB=vk()}async listModels(){return new Promise((e,t)=>{let n=this.indexedDB.open(am,im);n.onupgradeneeded=()=>om(n),n.onsuccess=()=>{let s=n.result,r=s.transaction(ur,"readonly"),i=r.objectStore(ur).getAll();i.onsuccess=()=>{let o={};for(let u of i.result)o[u.modelPath]=u.modelArtifactsInfo;e(o)},i.onerror=o=>(s.close(),t(i.error)),r.oncomplete=()=>s.close()},n.onerror=s=>t(n.error)})}async removeModel(e){return e=A_(e),new Promise((t,n)=>{let s=this.indexedDB.open(am,im);s.onupgradeneeded=()=>om(s),s.onsuccess=()=>{let r=s.result,a=r.transaction(ur,"readwrite"),i=a.objectStore(ur),o=i.get(e),u;o.onsuccess=()=>{if(o.result==null)return r.close(),n(new Error(`Cannot find model with path '${e}' in IndexedDB.`));{let l=i.delete(e),c=()=>{u=r.transaction(Qr,"readwrite");let d=u.objectStore(Qr).delete(e);d.onsuccess=()=>t(o.result.modelArtifactsInfo),d.onerror=h=>n(o.error)};l.onsuccess=c,l.onerror=p=>(c(),r.close(),n(o.error))}},o.onerror=l=>(r.close(),n(o.error)),a.oncomplete=()=>{u==null?r.close():u.oncomplete=()=>r.close()}},s.onerror=r=>n(s.error)})}},Gs="/",Hi="tensorflowjs_models",wk="info",R_="model_topology",D_="weight_specs",F_="weight_data",O_="model_metadata";function kk(e){return{info:[Hi,e,wk].join(Gs),topology:[Hi,e,R_].join(Gs),weightSpecs:[Hi,e,D_].join(Gs),weightData:[Hi,e,F_].join(Gs),modelMetadata:[Hi,e,O_].join(Gs)}}function Ik(e){for(let t of Object.values(e))window.localStorage.removeItem(t)}function P_(e){let t=e.split(Gs);if(t.length<3)throw new Error(`Invalid key format: ${e}`);return t.slice(1,t.length-1).join(Gs)}function z_(e){return e.startsWith(ca.URL_SCHEME)?e.slice(ca.URL_SCHEME.length):e}var ca=class{constructor(e){if(!X().getBool("IS_BROWSER")||typeof window=="undefined"||typeof window.localStorage=="undefined")throw new Error("The current environment does not support local storage.");if(this.LS=window.localStorage,e==null||!e)throw new Error("For local storage, modelPath must not be null, undefined or empty.");this.modelPath=e,this.keys=kk(this.modelPath)}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");{let t=JSON.stringify(e.modelTopology),n=JSON.stringify(e.weightSpecs),s=Fl(e);try{this.LS.setItem(this.keys.info,JSON.stringify(s)),this.LS.setItem(this.keys.topology,t),this.LS.setItem(this.keys.weightSpecs,n),this.LS.setItem(this.keys.weightData,v_(e.weightData));let r={format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,signature:e.signature!=null?e.signature:void 0,userDefinedMetadata:e.userDefinedMetadata!=null?e.userDefinedMetadata:void 0,modelInitializer:e.modelInitializer!=null?e.modelInitializer:void 0,trainingConfig:e.trainingConfig!=null?e.trainingConfig:void 0};return this.LS.setItem(this.keys.modelMetadata,JSON.stringify(r)),{modelArtifactsInfo:s}}catch(r){throw Ik(this.keys),new Error(`Failed to save model '${this.modelPath}' to local storage: size quota being exceeded is a possible cause of this failure: modelTopologyBytes=${s.modelTopologyBytes}, weightSpecsBytes=${s.weightSpecsBytes}, weightDataBytes=${s.weightDataBytes}.`)}}}async load(){let e=JSON.parse(this.LS.getItem(this.keys.info));if(e==null)throw new Error(`In local storage, there is no model with name '${this.modelPath}'`);if(e.modelTopologyType!=="JSON")throw new Error("BrowserLocalStorage does not support loading non-JSON model topology yet.");let t={},n=JSON.parse(this.LS.getItem(this.keys.topology));if(n==null)throw new Error(`In local storage, the topology of model '${this.modelPath}' is missing.`);t.modelTopology=n;let s=JSON.parse(this.LS.getItem(this.keys.weightSpecs));if(s==null)throw new Error(`In local storage, the weight specs of model '${this.modelPath}' are missing.`);t.weightSpecs=s;let r=this.LS.getItem(this.keys.modelMetadata);if(r!=null){let i=JSON.parse(r);t.format=i.format,t.generatedBy=i.generatedBy,t.convertedBy=i.convertedBy,i.signature!=null&&(t.signature=i.signature),i.userDefinedMetadata!=null&&(t.userDefinedMetadata=i.userDefinedMetadata),i.modelInitializer!=null&&(t.modelInitializer=i.modelInitializer),i.trainingConfig!=null&&(t.trainingConfig=i.trainingConfig)}let a=this.LS.getItem(this.keys.weightData);if(a==null)throw new Error(`In local storage, the binary weight values of model '${this.modelPath}' are missing.`);return t.weightData=x_(a),t}};ca.URL_SCHEME="localstorage://";var Sk=e=>X().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(ca.URL_SCHEME)?M_(e.slice(ca.URL_SCHEME.length)):null;xt.registerSaveRouter(Sk);xt.registerLoadRouter(Sk);function M_(e){return new ca(e)}var L_=class{constructor(){O(X().getBool("IS_BROWSER"),()=>"Current environment is not a web browser"),O(typeof window=="undefined"||typeof window.localStorage!="undefined",()=>"Current browser does not appear to support localStorage"),this.LS=window.localStorage}async listModels(){let e={},t=Hi+Gs,n=Gs+wk;for(let s=0;s<this.LS.length;++s){let r=this.LS.key(s);if(r.startsWith(t)&&r.endsWith(n)){let a=P_(r);e[a]=JSON.parse(this.LS.getItem(r))}}return e}async removeModel(e){e=z_(e);let t=kk(e);if(this.LS.getItem(t.info)==null)throw new Error(`Cannot find model at path '${e}'`);let n=JSON.parse(this.LS.getItem(t.info));return Ik(t),n}},Ki="://",zn=class{constructor(){this.managers={}}static getInstance(){return zn.instance==null&&(zn.instance=new zn),zn.instance}static registerManager(e,t){O(e!=null,()=>"scheme must not be undefined or null."),e.endsWith(Ki)&&(e=e.slice(0,e.indexOf(Ki))),O(e.length>0,()=>"scheme must not be an empty string.");let n=zn.getInstance();O(n.managers[e]==null,()=>`A model store manager is already registered for scheme '${e}'.`),n.managers[e]=t}static getManager(e){let t=this.getInstance().managers[e];if(t==null)throw new Error(`Cannot find model manager for scheme '${e}'`);return t}static getSchemes(){return Object.keys(this.getInstance().managers)}};function td(e){if(e.indexOf(Ki)===-1)throw new Error(`The url string provided does not contain a scheme. Supported schemes are: ${zn.getSchemes().join(",")}`);return{scheme:e.split(Ki)[0],path:e.split(Ki)[1]}}async function Ck(e,t,n=!1){O(e!==t,()=>`Old path and new path are the same: '${e}'`);let s=xt.getLoadHandlers(e);O(s.length>0,()=>`Copying failed because no load handler is found for source URL ${e}.`),O(s.length<2,()=>`Copying failed because more than one (${s.length}) load handlers for source URL ${e}.`);let r=s[0],a=xt.getSaveHandlers(t);O(a.length>0,()=>`Copying failed because no save handler is found for destination URL ${t}.`),O(a.length<2,()=>`Copying failed because more than one (${s.length}) save handlers for destination URL ${t}.`);let i=a[0],o=td(e).scheme,u=td(e).path,l=o===td(e).scheme,c=await r.load();n&&l&&await zn.getManager(o).removeModel(u);let p=await i.save(c);return n&&!l&&await zn.getManager(o).removeModel(u),p.modelArtifactsInfo}async function B_(){let e=zn.getSchemes(),t={};for(let n of e){let s=await zn.getManager(n).listModels();for(let r in s){let a=n+Ki+r;t[a]=s[r]}}return t}async function V_(e){let t=td(e);return zn.getManager(t.scheme).removeModel(t.path)}async function W_(e,t){return Ck(e,t,!1)}async function U_(e,t){return Ck(e,t,!0)}var G_=class{fetch(e,t){return fetch(e,t)}now(){return performance.now()}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Browser's encoder only supports utf-8, but got ${t}`);return this.textEncoder==null&&(this.textEncoder=new TextEncoder),this.textEncoder.encode(e)}decode(e,t){return new TextDecoder(t).decode(e)}};if(X().get("IS_BROWSER")){X().setPlatform("browser",new G_);try{zn.registerManager(ca.URL_SCHEME,new L_)}catch(e){}try{zn.registerManager(la.URL_SCHEME,new E_)}catch(e){}}var H_={importFetch:()=>ZT()},Mf,q_=class{constructor(){this.util=JT(),this.textEncoder=new this.util.TextEncoder}fetch(e,t){return X().global.fetch!=null?X().global.fetch(e,t):(Mf==null&&(Mf=H_.importFetch()),Mf(e,t))}now(){let e=process.hrtime();return e[0]*1e3+e[1]/1e6}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Node built-in encoder only supports utf-8, but got ${t}`);return this.textEncoder.encode(e)}decode(e,t){return e.length===0?"":new this.util.TextDecoder(t).decode(e)}};X().get("IS_NODE")&&!X().get("IS_BROWSER")&&X().setPlatform("node",new q_);function De(e,t="float32",n){return t=t||"float32",ag(e),new Vt(e,t,n)}function j_(e,t){let n=_(e,"x","cast");if(!Zw(t))throw new Error(`Failed to cast to unknown dtype ${t}`);if(t==="string"&&n.dtype!=="string"||t!=="string"&&n.dtype==="string")throw new Error("Only strings can be casted to strings");let s={x:n},r={dtype:t};return M.runKernel(Ta,s,r)}var ce=L({cast_:j_});function K_(e){let n={x:_(e,"x","clone","string_or_numeric")};return M.runKernel(Wa,n)}var cr=L({clone_:K_});function X_(e,t=!1){console.log(e.toString(t))}fk();var Y_={buffer:De,cast:ce,clone:cr,print:X_};s_(Y_);var En={};Ae(En,{browserFiles:()=>sA,browserHTTPRequest:()=>uA,concatenateArrayBuffers:()=>zg,copyModel:()=>W_,decodeWeights:()=>bk,encodeWeights:()=>b_,fromMemory:()=>cA,getLoadHandlers:()=>$_,getModelArtifactsForJSON:()=>Mg,getModelArtifactsInfoForJSON:()=>Fl,getSaveHandlers:()=>T_,http:()=>Bg,isHTTPScheme:()=>lm,listModels:()=>B_,loadWeights:()=>rA,moveModel:()=>U_,registerLoadRouter:()=>N_,registerSaveRouter:()=>C_,removeModel:()=>V_,weightsLoaderFactory:()=>Tk,withSaveHandler:()=>dA});var Q_="model",Z_=".json",J_=".weights.bin";function px(e){return new Promise(t=>setTimeout(t)).then(e)}var um=class{constructor(e){if(!X().getBool("IS_BROWSER"))throw new Error("browserDownloads() cannot proceed because the current environment is not a browser.");e.startsWith(um.URL_SCHEME)&&(e=e.slice(um.URL_SCHEME.length)),(e==null||e.length===0)&&(e=Q_),this.modelJsonFileName=e+Z_,this.weightDataFileName=e+J_}async save(e){if(typeof document=="undefined")throw new Error("Browser downloads are not supported in this environment since `document` is not present");let t=window.URL.createObjectURL(new Blob([e.weightData],{type:"application/octet-stream"}));if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserDownloads.save() does not support saving model topology in binary formats yet.");{let n=[{paths:["./"+this.weightDataFileName],weights:e.weightSpecs}],s=yk(e,n),r=window.URL.createObjectURL(new Blob([JSON.stringify(s)],{type:"application/json"})),a=this.modelJsonAnchor==null?document.createElement("a"):this.modelJsonAnchor;if(a.download=this.modelJsonFileName,a.href=r,await px(()=>a.dispatchEvent(new MouseEvent("click"))),e.weightData!=null){let i=this.weightDataAnchor==null?document.createElement("a"):this.weightDataAnchor;i.download=this.weightDataFileName,i.href=t,await px(()=>i.dispatchEvent(new MouseEvent("click")))}return{modelArtifactsInfo:Fl(e)}}}},yd=um;yd.URL_SCHEME="downloads://";var eA=class{constructor(e){if(e==null||e.length<1)throw new Error(`When calling browserFiles, at least 1 file is required, but received ${e}`);this.jsonFile=e[0],this.weightsFiles=e.slice(1)}async load(){return new Promise((e,t)=>{let n=new FileReader;n.onload=s=>{let r=JSON.parse(s.target.result),a=r.modelTopology;if(a==null){t(new Error(`modelTopology field is missing from file ${this.jsonFile.name}`));return}if(r.weightsManifest==null){t(new Error(`weightManifest field is missing from file ${this.jsonFile.name}`));return}if(this.weightsFiles.length===0){e({modelTopology:a});return}let o=Mg(r,u=>this.loadWeights(u));e(o)},n.onerror=s=>t(`Failed to read model topology and weights manifest JSON from file '${this.jsonFile.name}'. BrowserFiles supports loading Keras-style tf.Model artifacts only.`),n.readAsText(this.jsonFile)})}loadWeights(e){let t=[],n=[];for(let a of e)t.push(...a.weights),n.push(...a.paths);let s=this.checkManifestAndWeightFiles(e),r=n.map(a=>this.loadWeightsFile(a,s[a]));return Promise.all(r).then(a=>[t,zg(a)])}loadWeightsFile(e,t){return new Promise((n,s)=>{let r=new FileReader;r.onload=a=>{let i=a.target.result;n(i)},r.onerror=a=>s(`Failed to weights data from file of path '${e}'.`),r.readAsArrayBuffer(t)})}checkManifestAndWeightFiles(e){let t=[],n=this.weightsFiles.map(r=>dx(r.name)),s={};for(let r of e)r.paths.forEach(a=>{let i=dx(a);if(t.indexOf(i)!==-1)throw new Error(`Duplicate file basename found in weights manifest: '${i}'`);if(t.push(i),n.indexOf(i)===-1)throw new Error(`Weight file with basename '${i}' is not provided.`);s[a]=this.weightsFiles[n.indexOf(i)]});if(t.length!==this.weightsFiles.length)throw new Error(`Mismatch in the number of files in weights manifest (${t.length}) and the number of weight files provided (${this.weightsFiles.length}).`);return s}},tA=e=>X().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(yd.URL_SCHEME)?nA(e.slice(yd.URL_SCHEME.length)):null;xt.registerSaveRouter(tA);function nA(e="model"){return new yd(e)}function sA(e){return new eA(e)}function hx(e,t,n,s){i(e),n=n==null?0:n,s=s==null?1:s,o(n,s);let r=0,a=u=>(u.then(l=>{let c=n+ ++r/e.length*(s-n);return t(c),l}),u);function i(u){O(u!=null&&Array.isArray(u)&&u.length>0,()=>"promises must be a none empty array")}function o(u,l){O(u>=0&&u<=1,()=>`Progress fraction must be in range [0, 1], but got startFraction ${u}`),O(l>=0&&l<=1,()=>`Progress fraction must be in range [0, 1], but got endFraction ${l}`),O(l>=u,()=>`startFraction must be no more than endFraction, but got startFraction ${u} and endFraction ${l}`)}return Promise.all(e.map(a))}async function Nk(e,t){t==null&&(t={});let n=t.fetchFunc==null?X().platform.fetch:t.fetchFunc,s=e.map(p=>n(p,t.requestInit,{isBinary:!0})),r=0,a=.5,o=(t.onProgress==null?await Promise.all(s):await hx(s,t.onProgress,r,a)).map(p=>p.arrayBuffer()),u=.5,l=1;return t.onProgress==null?await Promise.all(o):await hx(o,t.onProgress,u,l)}async function rA(e,t="",n,s){return Tk(i=>Nk(i,{requestInit:s}))(e,t,n)}function Tk(e){return async(t,n="",s)=>{let r=t.map(()=>!1),a={},i=s!=null?s.map(()=>!1):[],o=[];if(t.forEach((h,f)=>{let m=0;h.weights.forEach(g=>{let b="quantization"in g?g.quantization.dtype:g.dtype,y=rm[b]*pt(g.shape),v=()=>{r[f]=!0,a[f]==null&&(a[f]=[]),a[f].push({manifestEntry:g,groupOffset:m,sizeBytes:y})};s!=null?s.forEach((x,k)=>{x===g.name&&(v(),i[k]=!0)}):v(),o.push(g.name),m+=y})}),!i.every(h=>h)){let h=s.filter((f,m)=>!i[m]);throw new Error(`Could not find weights in manifest with names: ${h.join(", ")}.
|
|
Manifest JSON has weights with names: ${o.join(", ")}.`)}let u=r.reduce((h,f,m)=>(f&&h.push(m),h),[]),l=[];u.forEach(h=>{t[h].paths.forEach(f=>{let m=n+(n.endsWith("/")?"":"/")+f;l.push(m)})});let c=await e(l),p={},d=0;return u.forEach(h=>{let f=t[h].paths.length,m=0;for(let x=0;x<f;x++)m+=c[d+x].byteLength;let g=new ArrayBuffer(m),b=new Uint8Array(g),y=0;for(let x=0;x<f;x++){let k=new Uint8Array(c[d+x]);b.set(k,y),y+=k.byteLength}a[h].forEach(x=>{let k=g.slice(x.groupOffset,x.groupOffset+x.sizeBytes),T=bk(k,[x.manifestEntry]);for(let N in T)p[N]=T[N]}),d+=f}),p}}var aA="application/octet-stream",iA="application/json",Lg=class{constructor(e,t){if(this.DEFAULT_METHOD="POST",t==null&&(t={}),this.weightPathPrefix=t.weightPathPrefix,this.onProgress=t.onProgress,this.weightUrlConverter=t.weightUrlConverter,t.fetchFunc!=null?(O(typeof t.fetchFunc=="function",()=>"Must pass a function that matches the signature of `fetch` (see https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)"),this.fetch=t.fetchFunc):this.fetch=X().platform.fetch,O(e!=null&&e.length>0,()=>"URL path for http must not be null, undefined or empty."),Array.isArray(e)&&O(e.length===2,()=>`URL paths for http must have a length of 2, (actual length is ${e.length}).`),this.path=e,t.requestInit!=null&&t.requestInit.body!=null)throw new Error("requestInit is expected to have no pre-existing body, but has one.");this.requestInit=t.requestInit||{}}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserHTTPRequest.save() does not support saving model topology in binary formats yet.");let t=Object.assign({method:this.DEFAULT_METHOD},this.requestInit);t.body=new FormData;let n=[{paths:["./model.weights.bin"],weights:e.weightSpecs}],s=yk(e,n);t.body.append("model.json",new Blob([JSON.stringify(s)],{type:iA}),"model.json"),e.weightData!=null&&t.body.append("model.weights.bin",new Blob([e.weightData],{type:aA}),"model.weights.bin");let r=await this.fetch(this.path,t);if(r.ok)return{modelArtifactsInfo:Fl(e),responses:[r]};throw new Error(`BrowserHTTPRequest.save() failed due to HTTP response status ${r.status}.`)}async load(){let e=await this.fetch(this.path,this.requestInit);if(!e.ok)throw new Error(`Request to ${this.path} failed with status code ${e.status}. Please verify this URL points to the model JSON of the model to load.`);let t;try{t=await e.json()}catch(r){let a=`Failed to parse model JSON of response from ${this.path}.`;throw this.path.endsWith(".pb")?a+=" Your path contains a .pb file extension. Support for .pb models have been removed in TensorFlow.js 1.0 in favor of .json models. You can re-convert your Python TensorFlow model using the TensorFlow.js 1.0 conversion scripts or you can convert your.pb models with the 'pb2json'NPM script in the tensorflow/tfjs-converter repository.":a+=" Please make sure the server is serving valid JSON for this request.",new Error(a)}let n=t.modelTopology,s=t.weightsManifest;if(n==null&&s==null)throw new Error(`The JSON from HTTP path ${this.path} contains neither model topology or manifest for weights.`);return Mg(t,r=>this.loadWeights(r))}async loadWeights(e){let t=Array.isArray(this.path)?this.path[1]:this.path,[n,s]=oA(t),r=this.weightPathPrefix||n,a=[];for(let l of e)a.push(...l.weights);let i=[],o=[];for(let l of e)for(let c of l.paths)this.weightUrlConverter!=null?o.push(this.weightUrlConverter(c)):i.push(r+c+s);this.weightUrlConverter&&i.push(...await Promise.all(o));let u=await Nk(i,{requestInit:this.requestInit,fetchFunc:this.fetch,onProgress:this.onProgress});return[a,zg(u)]}};Lg.URL_SCHEME_REGEX=/^https?:\/\//;function oA(e){let t=e.lastIndexOf("/"),n=e.lastIndexOf("?"),s=e.substring(0,t),r=n>t?e.substring(n):"";return[s+"/",r]}function lm(e){return e.match(Lg.URL_SCHEME_REGEX)!=null}var $k=(e,t)=>{if(typeof fetch=="undefined"&&(t==null||t.fetchFunc==null))return null;{let n=!0;if(Array.isArray(e)?n=e.every(s=>lm(s)):n=lm(e),n)return Bg(e,t)}return null};xt.registerSaveRouter($k);xt.registerLoadRouter($k);function Bg(e,t){return new Lg(e,t)}function uA(e,t){return Bg(e,t)}var Lf=class{constructor(e){this.modelArtifacts=e}async load(){return this.modelArtifacts}},lA=class{constructor(e){this.saveHandler=e}async save(e){return this.saveHandler(e)}};function cA(e,t,n,s){return arguments.length===1?e.modelTopology!=null||e.weightSpecs!=null?new Lf(e):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new Lf({modelTopology:e})):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new Lf({modelTopology:e,weightSpecs:t,weightData:n,trainingConfig:s}))}function dA(e){return new lA(e)}var pA={};Ae(pA,{confusionMatrix:()=>bA});function hA(e,t,n=!1,s=!1){let r=_(e,"a","matMul"),a=_(t,"b","matMul");[r,a]=vt(r,a);let i={a:r,b:a},o={transposeA:n,transposeB:s};return M.runKernel(Na,i,o)}var We=L({matMul_:hA});function fA(e,t,n=1,s=0){if(t<2)throw new Error(`Error in oneHot: depth must be >=2, but it is ${t}`);let a={indices:_(e,"indices","oneHot","int32")},i={depth:t,onValue:n,offValue:s};return M.runKernel(Ao,a,i)}var vd=L({oneHot_:fA});function mA(e,t){let n=_(e,"x","transpose");if(t==null&&(t=n.shape.map((a,i)=>i).reverse()),O(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of perm ${t}.`),t.forEach(a=>{O(a>=0&&a<n.rank,()=>`All entries in 'perm' must be between 0 and ${n.rank-1} but got ${t}`)}),n.rank<=1)return n.clone();let s={x:n},r={perm:t};return M.runKernel(mi,s,r)}var Ge=L({transpose_:mA});function gA(e,t,n){let s=_(e,"labels","confusionMatrix"),r=_(t,"predictions","confusionMatrix");O(n==null||n>0&&Number.isInteger(n),()=>`If provided, numClasses must be a positive integer, but got ${n}`),O(s.rank===1,()=>`Expected the rank of labels to be 1, but got ${s.rank}`),O(r.rank===1,()=>`Expected the rank of predictions to be 1, but got ${r.rank}`),O(s.shape[0]===r.shape[0],()=>`Mismatch in the number of examples: ${s.shape[0]} vs. ${r.shape[0]}. Labels and predictions should have the same number of elements.`),O(n>0&&Number.isInteger(n),()=>`numClasses is required to be a positive integer, but got ${n}`);let a=vd(ce(s,"int32"),n),i=vd(ce(r,"int32"),n),o=Ge(a),u=We(o,i);return ce(u,"int32")}var bA=L({confusionMatrix_:gA}),Ko={};Ae(Ko,{assertAndGetBroadcastShape:()=>ot,getBroadcastDims:()=>_k,getReductionAxes:()=>_t});function _k(e,t){let n=e.length,s=[];for(let r=0;r<n;r++){let a=n-1-r,i=e[a]||1;(t[t.length-1-r]||1)>1&&i===1&&s.unshift(a)}return s}function _t(e,t){let n=[];for(let s=0;s<t.length;s++){let r=e[e.length-s-1],a=t.length-s-1,i=t[a];(r==null||r===1&&i>1)&&n.unshift(a)}return n}function ot(e,t){let n=[],s=Math.max(e.length,t.length);for(let r=0;r<s;r++){let a=e[e.length-r-1];a==null&&(a=1);let i=t[t.length-r-1];if(i==null&&(i=1),a===1)n.unshift(i);else if(i===1)n.unshift(a);else if(a!==i){let o=`Operands could not be broadcast together with shapes ${e} and ${t}.`;throw Error(o)}else n.unshift(a)}return n}var Ak={};Ae(Ak,{fromPixels:()=>CA,fromPixelsAsync:()=>IA,toPixels:()=>SA});function yA(e,t,n){if(ka(e),t!=null&&t.length!==3)throw new Error("tensor3d() requires shape to have three numbers");let s=Rs(e,n);if(s.length!==3&&s.length!==1)throw new Error("tensor3d() requires values to be number[][][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor3d() requires shape to be provided when `values` are a flat array");return Tr(e,t,s,n)}var Wr;function Ek(e,t=3){if(t>4)throw new Error("Cannot construct Tensor with more than 4 channels from pixels.");if(e==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let n=!1,s=!1,r=!1,a=!1,i=!1,o=!1;if(e.data instanceof Uint8Array)n=!0;else if(typeof ImageData!="undefined"&&e instanceof ImageData)s=!0;else if(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)r=!0;else if(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)a=!0;else if(e.getContext!=null)i=!0;else if(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)o=!0;else throw new Error(`pixels passed to tf.browser.fromPixels() must be either an HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData in browser, or OffscreenCanvas, ImageData in webworker or {data: Uint32Array, width: number, height: number}, but was ${e.constructor.name}`);if(r&&r&&e.readyState<2)throw new Error("The video element has not loaded data yet. Please wait for `loadeddata` event on the <video> element.");if(Jf(fd,M.backendName)!=null){let f={pixels:e},m={numChannels:t};return M.runKernel(fd,f,m)}let[l,c]=r?[e.videoWidth,e.videoHeight]:[e.width,e.height],p;if(i)p=e.getContext("2d").getImageData(0,0,l,c).data;else if(s||n)p=e.data;else if(a||r||o){if(Wr==null)if(typeof document=="undefined")if(typeof OffscreenCanvas!="undefined"&&typeof OffscreenCanvasRenderingContext2D!="undefined")Wr=new OffscreenCanvas(1,1).getContext("2d");else throw new Error("Cannot parse input in current context. Reason: OffscreenCanvas Context2D rendering is not supported.");else Wr=document.createElement("canvas").getContext("2d");Wr.canvas.width=l,Wr.canvas.height=c,Wr.drawImage(e,0,0,l,c),p=Wr.getImageData(0,0,l,c).data}let d;if(t===4)d=new Int32Array(p);else{let f=l*c;d=new Int32Array(f*t);for(let m=0;m<f;m++)for(let g=0;g<t;++g)d[m*t+g]=p[m*4+g]}return yA(d,[c,l,t],"int32")}function vA(e){return e!=null&&e.data instanceof Uint8Array}function xA(){return typeof window!="undefined"&&typeof ImageBitmap!="undefined"&&window.hasOwnProperty("createImageBitmap")}function wA(e){return e!=null&&e.width!==0&&e.height!==0}function kA(e){return xA()&&!(e instanceof ImageBitmap)&&wA(e)&&!vA(e)}async function IA(e,t=3){let n=null;if(X().getBool("WRAP_TO_IMAGEBITMAP")&&kA(e)){let s;try{s=await createImageBitmap(e,{premultiplyAlpha:"none"})}catch(r){s=null}s!=null&&s.width===e.width&&s.height===e.height?n=s:n=e}else n=e;return Ek(n,t)}async function SA(e,t){let n=_(e,"img","toPixels");if(!(e instanceof et)){let l=n;n=ce(l,"int32"),l.dispose()}if(n.rank!==2&&n.rank!==3)throw new Error(`toPixels only supports rank 2 or 3 tensors, got rank ${n.rank}.`);let[s,r]=n.shape.slice(0,2),a=n.rank===2?1:n.shape[2];if(a>4||a===2)throw new Error(`toPixels only supports depth of size 1, 3 or 4 but got ${a}`);if(n.dtype!=="float32"&&n.dtype!=="int32")throw new Error(`Unsupported type for toPixels: ${n.dtype}. Please use float32 or int32 tensors.`);let i=await n.data(),o=n.dtype==="float32"?255:1,u=new Uint8ClampedArray(r*s*4);for(let l=0;l<s*r;++l){let c=[0,0,0,255];for(let d=0;d<a;d++){let h=i[l*a+d];if(n.dtype==="float32"){if(h<0||h>1)throw new Error(`Tensor values for a float32 Tensor must be in the range [0 - 1] but encountered ${h}.`)}else if(n.dtype==="int32"&&(h<0||h>255))throw new Error(`Tensor values for a int32 Tensor must be in the range [0 - 255] but encountered ${h}.`);a===1?(c[0]=h*o,c[1]=h*o,c[2]=h*o):c[d]=h*o}let p=l*4;u[p+0]=Math.round(c[0]),u[p+1]=Math.round(c[1]),u[p+2]=Math.round(c[2]),u[p+3]=Math.round(c[3])}if(t!=null){t.width=r,t.height=s;let l=t.getContext("2d"),c=new ImageData(u,r,s);l.putImageData(c,0,0)}return n!==e&&n.dispose(),u}var CA=L({fromPixels_:Ek}),Rk={};Ae(Rk,{prepareAndValidate:()=>Dk});function Dk(e,t){let n=e.shape.length,s=t.shape.length;if(n<1)throw new Error(`tf.gatherND() expects the input to be rank 1 or higher, but the rank was ${n}.`);if(s<1)throw new Error(`tf.gatherND() expects the indices to be rank 1 or higher, but the rank was ${s}.`);if(t.dtype!=="int32")throw new Error(`tf.gatherND() expects the indices to be int32 type, but the dtype was ${t.dtype}.`);if(t.shape[s-1]>n)throw new Error(`index innermost dimension length must be <= tensor rank; saw: ${t.shape[s-1]} vs. ${n}`);if(pt(e.shape)===0)throw new Error(`Requested more than 0 entries, but input is empty. Input shape: ${e.shape}.`);let r=t.shape,a=r[r.length-1],i=1;for(let p=0;p<r.length-1;++p)i*=r[p];let o=e.shape,u=r.slice();u.pop();let l=1;for(let p=a;p<n;++p)l*=o[p],u.push(o[p]);let c=[...oo(e.shape).map(p=>p/l),1].slice(0,a);return[u,i,l,c]}var Fk={};Ae(Fk,{calculateShapes:()=>Ok,validateInput:()=>Wg,validateUpdateShape:()=>Vg});function Vg(e,t,n){let s=t.rank>1?t.shape[t.rank-1]:1,r=t.rank>1?t.rank-1:1,a=`Must have updates.shape = indices.shape[:batchDim] + shape[sliceDim:], got updates.shape: ${n.shape}, indices.shape: ${t.shape}, shape: ${e}, sliceDim: ${s}, and batchDim: ${r}.`;if(n.rank<r)throw new Error(a+` update.rank < ${r}. `);if(e.length<s+(n.rank-r))throw new Error(a+` Output shape length < ${s+(n.rank-r)}`);if(n.rank!==r+e.length-s)throw new Error(a+` update.rank != ${r+e.length-s}`);for(let i=0;i<r;++i)if(n.shape[i]!==t.shape[i])throw new Error(a+` updates.shape[${i}] (${n.shape[i]}) != indices.shape[${i}] (${t.shape[i]}).`);for(let i=0;i<n.rank-r;++i)if(n.shape[i+r]!==e[i+s])throw new Error(a+` updates.shape[${i+r}] (${n.shape[i+r]}) != shape[${i+r}] (${e[i+r]})`)}function Wg(e,t,n){if(t.rank<1)throw new Error(`tf.scatterND() expects the indices to be rank 1 or higher, but the rank was ${t.rank}.`);if(e.rank<1)throw new Error(`tf.scatterND() expects the updates to be rank 1 or higher, but the rank was ${e.rank}.`);if(t.dtype!=="int32")throw new Error(`The dtype of 'indices' should be int32, but got dtype: ${t.dtype}`);if(n.length<1)throw new Error(`Output rank must be greater or equal to 1, but got shape: ${n}`);if(n.length===0){if(t.size===0)throw new Error(`Indices specified for empty output. indices shape: ${t.shape}`);if(e.size===0)throw new Error(`Updates specified for empty output. updates shape: ${e.shape}`)}Vg(n,t,e)}function Ok(e,t,n){let s=t.shape.length,r=s>1?t.shape[s-1]:1,a=n.length,i=1;for(let p=r;p<a;++p)i*=n[p];let o=r<1?1:r,u=pt(t.shape)/o,l=[...oo(n.slice(0,r)),1],c=pt(n);return{sliceRank:r,numUpdates:u,sliceSize:i,strides:l,outputSize:c}}var wt={};Ae(wt,{assertParamsValid:()=>TA,computeFlatOffset:()=>RA,computeOutShape:()=>_A,getNormalizedAxes:()=>AA,isSliceContinous:()=>EA,maskToAxes:()=>$A,parseSliceParams:()=>Gk,sliceInfo:()=>DA,startForAxis:()=>Wk,startIndicesWithElidedDims:()=>Lk,stopForAxis:()=>Uk,stopIndicesWithElidedDims:()=>Bk,stridesForAxis:()=>Vk,stridesWithElidedDims:()=>Pk});var cm=-2,NA=-1;function TA(e,t,n){let s=e.shape.length;O(s===t.length,()=>`Error in slice${s}D: Length of begin ${t} must match the rank of the array (${s}).`),O(s===n.length,()=>`Error in slice${s}D: Length of size ${n} must match the rank of the array (${s}).`);for(let r=0;r<s;++r)O(t[r]+n[r]<=e.shape[r],()=>`Error in slice${s}D: begin[${r}] + size[${r}] (${t[r]+n[r]}) would overflow input.shape[${r}] (${e.shape[r]})`)}function $A(e){let t=[],n=0;for(;e>0;)e&1&&t.push(n),e/=2,n++;return t}function _A(e,t,n){let s=[];for(let r=0;r<e.length;r++)s[r]=Math.ceil((t[r]-e[r])/n[r]);return s}function Pk(e,t,n,s){let r=[...e];for(let a=r.length;a<s.length;a++)r.push(1);for(let a=0;a<n;a++)a===0?r[t]=1:(r.splice(t,0,1),r.pop());return r}function zk(e,t,n){return n<=e?n:n-(t-1)}function Mk(e,t){let n=[];for(let s=0;s<e;s++)n.push(t+s);return n}function AA(e,t,n,s,r,a,i,o,u){let l=e.length,c=new Array(l),p=new Array(l),d=new Array(l);if(t.length&&n>0){let h=t[0],f=n+1;c=Lk(i,h,f,s,e),p=Bk(o,h,f,r,e),d=Pk(a,h,f,e)}else for(let h=0;h<l;h++)c[h]=Wk(i,s,a,e,h,u),p[h]=Uk(o,r,a,e,h,u),d[h]=Vk(a,h,u);return{begin:c,end:p,strides:d}}function Lk(e,t,n,s,r){let a=[...r],i=Mk(n,t);for(let o=0;o<a.length;o++)if(i.indexOf(o)>-1)a[o]=0;else{let u=zk(t,n,o),l=s[u];e&1<<u&&(l=0),a[o]=l}return a}function Bk(e,t,n,s,r){let a=[...r],i=Mk(n,t);for(let o=0;o<a.length;o++)if(i.indexOf(o)>-1)a[o]=Number.MAX_SAFE_INTEGER;else{let u=zk(t,n,o),l=s[u];e&1<<u&&(l=Number.MAX_SAFE_INTEGER),a[o]=l}for(let o=0;o<a.length;o++){let u=r[o];a[o]<0&&(a[o]+=u),a[o]=Wu(0,a[o],r[o])}return a}function Vk(e,t,n){let s=e[t];return(n&1<<t||s==null)&&(s=1),s}function Wk(e,t,n,s,r,a){let i=t[r],o=n[r]||1;(e&1<<r||a&1<<r||i==null)&&(o>0?i=Number.MIN_SAFE_INTEGER:i=Number.MAX_SAFE_INTEGER);let u=s[r];return i<0&&(i+=u),i=Wu(0,i,u-1),i}function Uk(e,t,n,s,r,a){let i=t[r],o=n[r]||1;(e&1<<r||a&1<<r||i==null)&&(o>0?i=Number.MAX_SAFE_INTEGER:i=Number.MIN_SAFE_INTEGER);let u=s[r];return i<0&&(i+=u),o>0?i=Wu(0,i,u):i=Wu(-1,i,u-1),i}function EA(e,t,n){let s=n.length;for(let r=0;r<n.length;r++)if(n[r]>1){s=r;break}for(let r=s+1;r<n.length;r++)if(t[r]>0||n[r]!==e[r])return!1;return!0}function RA(e,t){let n=e.length>0?e[e.length-1]:1;for(let s=0;s<e.length-1;s++)n+=e[s]*t[s];return n}function Gk(e,t,n){let s,r=e.shape.length;typeof t=="number"?s=[t,...new Array(r-1).fill(0)]:t.length<r?s=t.concat(new Array(r-t.length).fill(0)):s=t.slice(),s.forEach(i=>{O(i!==-1,()=>"slice() does not support negative begin indexing.")});let a;return n==null?a=new Array(r).fill(-1):typeof n=="number"?a=[n,...new Array(r-1).fill(-1)]:n.length<r?a=n.concat(new Array(r-n.length).fill(-1)):a=n,a=a.map((i,o)=>i>=0?i:(O(i===-1,()=>`Negative size values should be exactly -1 but got ${i} for the slice() size at index ${o}.`),e.shape[o]-s[o])),[s,a]}function DA(e,t,n,s,r,a,i,o,u){let l;if(s==null?(l=new Array(t.length),l.fill(1)):l=s,i!=null&&(i&i-1)!==0)throw new Error("Multiple ellipses in slice is not allowed.");let c=!1,p={dims:l.length,numAddAxisAfterEllipsis:0,begin:t.slice(),end:n.slice(),strides:l.slice(),beginMask:r,endMask:a,ellipsisMask:i,newAxisMask:o,shrinkAxisMask:u};for(let v=0;v<p.dims;v++)c&&(1<<v&o)!==0&&p.numAddAxisAfterEllipsis++,1<<v&i&&(c=!0);c||(p.ellipsisMask|=1<<p.dims,p.dims++);let d={dims:e.length,beginMask:0,endMask:0,beginValid:!1,endValid:!1};FA(p,d);let h=!0,f=!0,m=!0,g=[],b=[];for(let v=0;v<e.length;++v){if(d.strides[v]===0)throw Error(`strides[${v}] must be non-zero`);let x=!!(d.shrinkAxisMask&1<<v),k=e[v];if(k===-1){g.push(x?1:-1);continue}let T=[d.beginMask&1<<v,d.endMask&1<<v],N=[d.strides[v]>0?0:-1,d.strides[v]>0?k:k-1];if(x&&d.strides[v]<=0)throw Error("only stride 1 allowed on non-range indexing.");m=m&&d.strides[v]===1;let E=!!(d.beginMask&1<<v&&d.endMask&1<<v);if(d.beginValid&&d.endValid){if(x){let F=d.begin[v]<0?k+d.begin[v]:d.begin[v];if(d.begin[v]=F,d.end[v]=d.begin[v]+1,F<0||F>=k)throw Error(`slice index ${d.begin[v]} of dimension ${v} out of bounds.`)}else d.begin[v]=fx(d.begin[v],0,d.strides[v],k,T,N),d.end[v]=fx(d.end[v],1,d.strides[v],k,T,N);let R=d.strides[v]===1&&d.begin[v]===0&&d.end[v]===k;h=h&&R,f=f&&(v===0&&d.strides[v]===1||R)}else h=h&&d.strides[v]===1&&E,f=f&&(v===0&&d.strides[v]===1||E);let A,P=!1;if(d.beginValid&&d.endValid?(A=d.end[v]-d.begin[v],P=!0):x?(A=1,P=!0):E&&k>=0&&(d.strides[v]<0?A=-k:A=k,P=!0),P){let R;A===0||A<0!=d.strides[v]<0?R=0:R=Math.trunc(A/d.strides[v])+(A%d.strides[v]!==0?1:0),g.push(R)}else g.push(-1)}for(let v=0;v<d.finalShapeGatherIndices.length;++v){let x=d.finalShapeGatherIndices[v];x>=0?b.push(g[x]):x===cm&&b.push(1)}return{finalShapeSparse:b.filter((v,x)=>d.finalShapeGatherIndices[x]!==cm),finalShape:b,isIdentity:h,sliceDim0:f,isSimpleSlice:m,begin:d.begin,end:d.end,strides:d.strides}}function FA(e,t){t.beginMask=0,t.endMask=0,t.shrinkAxisMask=0;let n=0;t.beginValid=e.begin!=null,t.endValid=e.end!=null,t.begin=new Array(t.dims),t.end=new Array(t.dims),t.strides=new Array(t.dims),t.finalShapeGatherIndices=[],t.finalShapeGatherIndicesSparse=[],t.inputShapeGatherIndicesSparse=new Array(t.dims);for(let s=0;s<e.dims;s++)if(1<<s&e.ellipsisMask){let r=Math.min(t.dims-(e.dims-s)+1+e.numAddAxisAfterEllipsis,t.dims);for(;n<r;n++)t.begin[n]=0,t.end[n]=0,t.strides[n]=1,t.beginMask|=1<<n,t.endMask|=1<<n,t.finalShapeGatherIndices.push(n),t.finalShapeGatherIndicesSparse.push(-1),t.inputShapeGatherIndicesSparse[n]=s}else if(1<<s&e.newAxisMask)t.finalShapeGatherIndices.push(cm),t.finalShapeGatherIndicesSparse.push(-1);else{if(n===t.begin.length)throw Error(`Index out of range using input dim ${n}; input has only ${t.dims} dims, ${t.begin.length}.`);e.begin!=null&&(t.begin[n]=e.begin[s]),e.end!=null&&(t.end[n]=e.end[s]),t.strides[n]=e.strides[s],e.beginMask&1<<s&&(t.beginMask|=1<<n),e.endMask&1<<s&&(t.endMask|=1<<n),e.shrinkAxisMask&1<<s?(t.finalShapeGatherIndices.push(NA),t.finalShapeGatherIndicesSparse.push(-1),t.shrinkAxisMask|=1<<n):(t.finalShapeGatherIndices.push(n),t.finalShapeGatherIndicesSparse.push(s)),t.inputShapeGatherIndicesSparse[n]=s,n++}}function fx(e,t,n,s,r,a){if(r[t])return n>0?a[t]:a[t+1&1];{let i=e<0?s+e:e;return i<a[0]?a[0]:i>a[1]?a[1]:i}}var ae={};Ae(ae,{Serializable:()=>Hk,SerializationMap:()=>Kr,registerClass:()=>$r});var Hk=class{getClassName(){return this.constructor.className}static fromConfig(e,t){return new e(t)}},Kr=class{constructor(){this.classNameMap={}}static getMap(){return Kr.instance==null&&(Kr.instance=new Kr),Kr.instance}static register(e){Kr.getMap().classNameMap[e.className]=[e,e.fromConfig]}};function $r(e){O(e.className!=null,()=>"Class being registered does not have the static className property defined."),O(typeof e.className=="string",()=>"className is required to be a string, but got type "+typeof e.className),O(e.className.length>0,()=>"Class being registered has an empty-string as its className, which is disallowed."),Kr.register(e)}var OA={};Ae(OA,{TEST_EPSILON_FLOAT16:()=>qk,encodeStrings:()=>jk,expectArrayBuffersEqual:()=>WA,expectArraysClose:()=>zA,expectArraysEqual:()=>LA,expectNumbersClose:()=>BA,expectPromiseToFail:()=>MA,expectValuesInRange:()=>VA,testEpsilon:()=>Ug});var PA=.001,qk=.1;function zA(e,t,n){return n==null&&(n=Ug()),dm(e,t,(s,r)=>Gg(s,r,n))}function Ug(){return M.backend.floatPrecision()===32?PA:qk}function dm(e,t,n){let s=!0;if((Qt(e)||Qt(t))&&(s=!1),Qt(e)&&Qt(t)&&(s=!0),s){let i=e.constructor.name,o=t.constructor.name;if(i!==o)throw new Error(`Arrays are of different type. Actual: ${i}. Expected: ${o}`)}if(Array.isArray(e)&&Array.isArray(t)){let i=Rs(e),o=Rs(t);if(!Ir(i,o))throw new Error(`Arrays have different shapes. Actual: [${i}]. Expected: [${o}]`)}let r=Qt(e)?e:ra(e),a=Qt(t)?t:ra(t);if(r.length!==a.length)throw new Error(`Arrays have different lengths actual: ${r.length} vs expected: ${a.length}.
|
|
Actual: ${r}.
|
|
Expected: ${a}.`);for(let i=0;i<a.length;++i){let o=r[i],u=a[i];if(!n(o,u))throw new Error(`Arrays differ: actual[${i}] = ${o}, expected[${i}] = ${u}.
|
|
Actual: ${r}.
|
|
Expected: ${a}.`)}}function MA(e,t){e().then(()=>t.fail(),()=>t())}function LA(e,t){let n=typeof t=="string"||typeof t=="number"||typeof t=="boolean"?[t]:t;return or(e)||or(e[0])||or(t)||or(t[0])?dm(e,n,(s,r)=>s==r):dm(e,t,(s,r)=>Gg(s,r,0))}function BA(e,t,n){if(n==null&&(n=Ug()),!Gg(e,t,n))throw new Error(`Numbers differ: actual === ${e}, expected === ${t}`)}function Gg(e,t,n){return!isFinite(e)&&!isFinite(t)?!0:!(isNaN(e)||isNaN(t)||Math.abs(e-t)>n)}function VA(e,t,n){for(let s=0;s<e.length;s++)if(e[s]<t||e[s]>n)throw new Error(`Value out of range:${e[s]} low: ${t}, high: ${n}`)}function WA(e,t){let n=new Float32Array(e),s=new Float32Array(t);if(n.length!==s.length)throw new Error(`Expected ArrayBuffer to be of length ${s.length}, but it was ${n.length}`);for(let r=0;r<s.length;r++)if(n[r]!==s[r])throw new Error(`Expected ArrayBuffer value at ${r} to be ${s[r]} but got ${n[r]} instead`)}function jk(e){for(let t=0;t<e.length;t++){let n=e[t];Array.isArray(n)?jk(n):e[t]=Dl(n)}return e}var qde="0.0.0";function jde(){X().set("PROD",!0)}function Kde(){X().set("DEBUG",!0)}function Xde(){X().set("DEPRECATION_WARNINGS_ENABLED",!1),console.warn("TensorFlow.js deprecation warnings have been disabled.")}function Kk(e){X().getBool("DEPRECATION_WARNINGS_ENABLED")&&console.warn(e+" You can disable deprecation warnings with tf.disableDeprecationWarnings().")}r_(Kk);function Yde(){M.disposeVariables()}function Ss(){return M}function pm(){return M.memory()}function Qde(e){return M.profile(e)}function j(e,t){return M.tidy(e,t)}function Re(e){Fg(e).forEach(n=>n.dispose())}function Ht(e){return M.keep(e)}function Zde(e){return M.time(e)}function Jde(e){return M.setBackend(e)}function epe(){return M.ready()}function tpe(){return M.backendName}function npe(e){M.removeBackend(e)}function spe(e){return M.findBackend(e)}function rpe(e){return M.findBackendFactory(e)}function fp(e,t,n=1){return M.registerBackend(e,t,n)}function UA(){return M.backend}function ape(e,t){X().setPlatform(e,t)}function GA(e,t){let n=_(e,"a","add"),s=_(t,"b","add");[n,s]=vt(n,s);let r={a:n,b:s};return M.runKernel(Sr,r)}var ie=L({add_:GA});function HA(e,t){let n=_(e,"a","floorDiv"),s=_(t,"b","floorDiv");[n,s]=vt(n,s);let r={a:n,b:s};return M.runKernel(La,r)}var Xk=L({floorDiv_:HA});function qA(e,t){let n=_(e,"a","div"),s=_(t,"b","div");if([n,s]=vt(n,s),n.dtype==="int32"&&s.dtype==="int32")return Xk(n,s);let r={a:n,b:s},a={};return M.runKernel(Oa,r,a)}var xe=L({div_:qA});function jA(e,t){let n=_(e,"a","mul"),s=_(t,"b","mul");[n,s]=vt(n,s);let r={a:n,b:s};return M.runKernel(Za,r)}var V=L({mul_:jA});function KA(e){let t=_(e,"x","abs");if(t.dtype==="complex64"){let n={x:t};return M.runKernel(Yd,n)}else{let n={x:t};return M.runKernel(uo,n)}}var Mt=L({abs_:KA});function XA(e){let n={x:_(e,"x","acos")};return M.runKernel(rl,n)}var YA=L({acos_:XA});function QA(e){let n={x:_(e,"x","acosh")};return M.runKernel(al,n)}var ZA=L({acosh_:QA});function JA(e){O(Array.isArray(e),()=>"The argument passed to tf.addN() must be a list of tensors"),O(e.length>=1,()=>`Must pass at least one tensor to tf.addN(), but got ${e.length}`);let t=e.map((r,a)=>_(r,`tensors${a}`,"addN")),n=t[0];t.forEach(r=>{if(r.dtype!==n.dtype)throw new Error("All tensors passed to tf.addN() must have the same dtype")}),t.forEach(r=>{if(!Ir(r.shape,n.shape))throw new Error("All tensors passed to tf.addN() must have the same shape")});let s=t;return M.runKernel(Ia,s)}var eE=L({addN_:JA});function tE(e,t=null,n=!1){let r={x:_(e,"x","all","bool")},a={axis:t,keepDims:n};return M.runKernel(il,r,a)}var Yk=L({all_:tE});function nE(e,t=null,n=!1){let r={x:_(e,"x","any","bool")},a={axis:t,keepDims:n};return M.runKernel(ol,r,a)}var hm=L({any_:nE});function sE(e,t=0){let s={x:_(e,"x","argMax")},r={axis:t};return M.runKernel(Sa,s,r)}var qu=L({argMax_:sE});function rE(e,t=0){let s={x:_(e,"x","argMin")},r={axis:t};return M.runKernel(ul,s,r)}var aE=L({argMin_:rE});function iE(e){let n={x:_(e,"x","asin")};return M.runKernel(ll,n)}var oE=L({asin_:iE});function uE(e){let n={x:_(e,"x","asinh")};return M.runKernel(cl,n)}var lE=L({asinh_:uE});function cE(e){let n={x:_(e,"x","atan")};return M.runKernel(dl,n)}var dE=L({atan_:cE});function pE(e,t){let n=_(e,"a","atan2"),s=_(t,"b","atan2");[n,s]=vt(n,s);let r={a:n,b:s};return M.runKernel(hl,r)}var hE=L({atan2_:pE});function fE(e){let n={x:_(e,"x","atanh")};return M.runKernel(pl,n)}var mE=L({atanh_:fE});function gE(e,t,n,s,r="NHWC",a){let i=e[3],o=[...t,i],u=Jk(r);return Ol(e,o,n,a,s,null,null,u)}function Qk(e,t,n,s,r,a,i="channelsLast"){let[o,u]=xd(t),l;if(i==="channelsLast")l=[o,u,e[3],e[3]];else if(i==="channelsFirst")l=[o,u,e[1],e[1]];else throw new Error(`Unknown dataFormat ${i}`);return Ol(e,l,n,s,r,a,!1,i)}function bE(e,t,n,s,r,a,i="NDHWC"){let[o,u,l]=fm(t),c,p;if(i==="NDHWC")p="channelsLast",c=[o,u,l,e[4],e[4]];else if(i==="NCDHW")p="channelsFirst",c=[o,u,l,e[1],e[1]];else throw new Error(`Unknown dataFormat ${i}`);return Zk(e,c,n,s,r,!1,p,a)}function Ol(e,t,n,s,r,a,i=!1,o="channelsLast"){let[u,l,c,p]=[-1,-1,-1,-1];if(o==="channelsLast")[u,l,c,p]=e;else if(o==="channelsFirst")[u,p,l,c]=e;else throw new Error(`Unknown dataFormat ${o}`);let[d,h,,f]=t,[m,g]=xd(n),[b,y]=xd(s),v=Xi(d,b),x=Xi(h,y),{padInfo:k,outHeight:T,outWidth:N}=xE(r,l,c,m,g,v,x,a,o),E=i?f*p:f,A;return o==="channelsFirst"?A=[u,E,T,N]:o==="channelsLast"&&(A=[u,T,N,E]),{batchSize:u,dataFormat:o,inHeight:l,inWidth:c,inChannels:p,outHeight:T,outWidth:N,outChannels:E,padInfo:k,strideHeight:m,strideWidth:g,filterHeight:d,filterWidth:h,effectiveFilterHeight:v,effectiveFilterWidth:x,dilationHeight:b,dilationWidth:y,inShape:e,outShape:A,filterShape:t}}function Zk(e,t,n,s,r,a=!1,i="channelsLast",o){let[u,l,c,p,d]=[-1,-1,-1,-1,-1];if(i==="channelsLast")[u,l,c,p,d]=e;else if(i==="channelsFirst")[u,d,l,c,p]=e;else throw new Error(`Unknown dataFormat ${i}`);let[h,f,m,,g]=t,[b,y,v]=fm(n),[x,k,T]=fm(s),N=Xi(h,x),E=Xi(f,k),A=Xi(m,T),{padInfo:P,outDepth:R,outHeight:F,outWidth:$}=wE(r,l,c,p,b,y,v,N,E,A,o),z=a?g*d:g,W;return i==="channelsFirst"?W=[u,z,R,F,$]:i==="channelsLast"&&(W=[u,R,F,$,z]),{batchSize:u,dataFormat:i,inDepth:l,inHeight:c,inWidth:p,inChannels:d,outDepth:R,outHeight:F,outWidth:$,outChannels:z,padInfo:P,strideDepth:b,strideHeight:y,strideWidth:v,filterDepth:h,filterHeight:f,filterWidth:m,effectiveFilterDepth:N,effectiveFilterHeight:E,effectiveFilterWidth:A,dilationDepth:x,dilationHeight:k,dilationWidth:T,inShape:e,outShape:W,filterShape:t}}function yE(e,t,n,s,r){s==null&&(s=Hg(e,t,n));let a=e[0],i=e[1],o=ea((a-t+2*s)/n+1,r),u=ea((i-t+2*s)/n+1,r);return[o,u]}function vE(e,t,n,s,r,a){r==null&&(r=Hg(e,t,s));let i=e[0],o=e[1],u=e[2],l=ea((i-t+2*r)/s+1,a),c=ea((o-t+2*r)/s+1,a),p=ea((u-t+2*r)/s+1,a);return[l,c,p,n]}function Hg(e,t,n,s=1){let r=Xi(t,s);return Math.floor((e[0]*(n-1)-n+r)/2)}function xd(e){return typeof e=="number"?[e,e,e]:e.length===2?[e[0],e[1],1]:e}function fm(e){return typeof e=="number"?[e,e,e]:e}function Xi(e,t){return t<=1?e:e+(e-1)*(t-1)}function xE(e,t,n,s,r,a,i,o,u){let l,c,p;if(typeof e=="number"){l={top:e,bottom:e,left:e,right:e,type:e===0?"VALID":"NUMBER"};let h=yE([t,n],a,s,e,o);c=h[0],p=h[1]}else if(e==="same"){c=Math.ceil(t/s),p=Math.ceil(n/r);let d=Math.max(0,(c-1)*s+a-t),h=Math.max(0,(p-1)*r+i-n),f=Math.floor(d/2),m=d-f,g=Math.floor(h/2),b=h-g;l={top:f,bottom:m,left:g,right:b,type:"SAME"}}else if(e==="valid")l={top:0,bottom:0,left:0,right:0,type:"VALID"},c=Math.ceil((t-a+1)/s),p=Math.ceil((n-i+1)/r);else if(typeof e=="object"){let d=u==="channelsLast"?e[1][0]:e[2][0],h=u==="channelsLast"?e[1][1]:e[2][1],f=u==="channelsLast"?e[2][0]:e[3][0],m=u==="channelsLast"?e[2][1]:e[3][1];l={top:d,bottom:h,left:f,right:m,type:d===0&&h===0&&f===0&&m===0?"VALID":"EXPLICIT"},c=ea((t-a+d+h)/s+1,o),p=ea((n-i+f+m)/r+1,o)}else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:l,outHeight:c,outWidth:p}}function wE(e,t,n,s,r,a,i,o,u,l,c){let p,d,h,f;if(typeof e=="number"){p={top:e,bottom:e,left:e,right:e,front:e,back:e,type:e===0?"VALID":"NUMBER"};let g=vE([t,n,s,1],o,1,r,e,c);d=g[0],h=g[1],f=g[2]}else if(e==="same"){d=Math.ceil(t/r),h=Math.ceil(n/a),f=Math.ceil(s/i);let m=(d-1)*r+o-t,g=(h-1)*a+u-n,b=(f-1)*i+l-s,y=Math.floor(m/2),v=m-y,x=Math.floor(g/2),k=g-x,T=Math.floor(b/2),N=b-T;p={top:x,bottom:k,left:T,right:N,front:y,back:v,type:"SAME"}}else if(e==="valid")p={top:0,bottom:0,left:0,right:0,front:0,back:0,type:"VALID"},d=Math.ceil((t-o+1)/r),h=Math.ceil((n-u+1)/a),f=Math.ceil((s-l+1)/i);else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:p,outDepth:d,outHeight:h,outWidth:f}}function ea(e,t){if(!t)return Math.trunc(e);switch(t){case"round":return Math.round(e);case"ceil":return Math.ceil(e);case"floor":return Math.floor(e);default:throw new Error(`Unknown roundingMode ${t}`)}}function mr(e){let[t,n,s]=xd(e);return t===1&&n===1&&s===1}function Ps(e,t){return mr(e)||mr(t)}function Jk(e){if(e==="NHWC")return"channelsLast";if(e==="NCHW")return"channelsFirst";throw new Error(`Unknown dataFormat ${e}`)}function hn(e,t,n){if(n!=null){if(typeof t=="string")throw Error(`Error in ${e}: pad must be an integer when using dimRoundingMode ${n} but got pad ${t}.`);if(typeof t=="number")O(Zi(t),()=>`Error in ${e}: pad must be an integer when using dimRoundingMode ${n} but got pad ${t}.`);else if(typeof t=="object")t.forEach(s=>{s.forEach(r=>{O(Zi(r),()=>`Error in ${e}: pad must be an integer when using dimRoundingMode ${n} but got pad ${r}.`)})});else throw Error(`Error in ${e}: Unknown padding parameter: ${t}`)}}function kE(e,t){let s={x:_(e,"x","reshape","string_or_numeric")},r={shape:t};return M.runKernel(Ro,s,r)}var G=L({reshape_:kE});function IE(e,t,n,s,r){let a=_(e,"x","avgPool","float32"),i=1;O(Ps(n,i),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${i}'`);let o=a,u=!1;a.rank===3&&(u=!0,o=G(a,[1,a.shape[0],a.shape[1],a.shape[2]])),O(o.rank===4,()=>`Error in avgPool: x must be rank 4 but got rank ${o.rank}.`),hn("avgPool",s,r);let l={x:o},c={filterSize:t,strides:n,pad:s,dimRoundingMode:r},p=M.runKernel(Ca,l,c);return p=ce(p,a.dtype),u?G(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var qg=L({avgPool_:IE});function SE(e,t,n,s,r,a="NDHWC"){let i=_(e,"x","avgPool3d","float32"),o=i,u=!1;i.rank===4&&(u=!0,o=G(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),O(o.rank===5,()=>`Error in avgPool3d: x must be rank 5 but got rank ${o.rank}.`),O(a==="NDHWC",()=>`Error in avgPool3d: Only NDHWC is currently supported, but got dataFormat of ${a}`),hn("avgPool3d",s,r);let l={x:o},c={filterSize:t,strides:n,pad:s,dimRoundingMode:r,dataFormat:a},p=M.runKernel(Kd,l,c);return p=ce(p,o.dtype),u?G(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var eI=L({avgPool3d_:SE});function CE(e,t=0){O(e.length>=1,()=>"Pass at least one tensor to concat");let n=Hu(e,"tensors","concat","string_or_numeric");if(n[0].dtype==="complex64"&&n.forEach(a=>{if(a.dtype!=="complex64")throw new Error(`Cannot concatenate complex64 tensors with a tensor
|
|
with dtype ${a.dtype}. `)}),n.length===1)return cr(n[0]);let s=n,r={axis:t};return M.runKernel(co,s,r)}var Ft=L({concat_:CE});function NE(e){let n={x:_(e,"x","sigmoid","float32")};return M.runKernel(ui,n)}var qs=L({sigmoid_:NE});function TE(e,t,n){let s=_(e,"x","slice","string_or_numeric");if(s.rank===0)throw new Error("Slicing scalar is not possible");let r={x:s},a={begin:t,size:n};return M.runKernel(zo,r,a)}var qe=L({slice_:TE});function $E(e){let n={x:_(e,"x","tanh","float32")};return M.runKernel(fi,n)}var ju=L({tanh_:$E});function _E(e,t,n,s,r,a){let i=_(e,"forgetBias","basicLSTMCell"),o=_(t,"lstmKernel","basicLSTMCell"),u=_(n,"lstmBias","basicLSTMCell"),l=_(s,"data","basicLSTMCell"),c=_(r,"c","basicLSTMCell"),p=_(a,"h","basicLSTMCell"),d=Ft([l,p],1),h=We(d,o),f=ie(h,u),m=f.shape[0],g=f.shape[1]/4,b=[m,g],y=qe(f,[0,0],b),v=qe(f,[0,g],b),x=qe(f,[0,g*2],b),k=qe(f,[0,g*3],b),T=ie(V(qs(y),ju(v)),V(c,qs(ie(i,x)))),N=V(ju(T),qs(k));return[T,N]}var ipe=L({basicLSTMCell_:_E});function AE(e,t,n){let s=_(e,"x","batchToSpaceND"),r=t.reduce((o,u)=>o*u);O(s.rank>=1+t.length,()=>`input rank is ${s.rank} but should be > than blockShape.length ${t.length}`),O(n.length===t.length,()=>`crops.length is ${n.length} but should be equal to blockShape.length ${t.length}`),O(s.shape[0]%r===0,()=>`input tensor batch is ${s.shape[0]} but is not divisible by the product of the elements of blockShape ${t.join(" * ")} === ${r}`);let a={x:s},i={blockShape:t,crops:n};return M.runKernel(lo,a,i)}var jg=L({batchToSpaceND_:AE});function EE(e){let t;return e.rank===0||e.rank===1?t=G(e,[1,1,1,e.size]):e.rank===2?t=G(e,[1,1,e.shape[0],e.shape[1]]):e.rank===3?t=G(e,[1,e.shape[0],e.shape[1],e.shape[2]]):t=e,t}function RE(e,t,n,s,r,a){a==null&&(a=.001);let i=_(e,"x","batchNorm"),o=_(t,"mean","batchNorm"),u=_(n,"variance","batchNorm"),l;r!=null&&(l=_(r,"scale","batchNorm"));let c;s!=null&&(c=_(s,"offset","batchNorm")),O(o.rank===u.rank,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),O(c==null||o.rank===c.rank,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),O(l==null||o.rank===l.rank,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let d={x:EE(i),scale:l,offset:c,mean:o,variance:u},h={varianceEpsilon:a},f=M.runKernel(Ba,d,h);return G(f,i.shape)}var Ku=L({batchNorm_:RE});function DE(e,t,n,s,r,a){let i=_(e,"x","batchNorm"),o=_(t,"mean","batchNorm"),u=_(n,"variance","batchNorm"),l;r!=null&&(l=_(r,"scale","batchNorm"));let c;return s!=null&&(c=_(s,"offset","batchNorm")),O(i.rank===2,()=>`Error in batchNorm2D: x must be rank 2 but got rank ${i.rank}.`),O(o.rank===2||o.rank===1,()=>`Error in batchNorm2D: mean must be rank 2 or rank 1 but got rank ${o.rank}.`),O(u.rank===2||u.rank===1,()=>`Error in batchNorm2D: variance must be rank 2 or rank 1 but got rank ${u.rank}.`),l!=null&&O(l.rank===2||l.rank===1,()=>`Error in batchNorm2D: scale must be rank 2 or rank 1 but got rank ${l.rank}.`),c!=null&&O(c.rank===2||c.rank===1,()=>`Error in batchNorm2D: offset must be rank 2 or rank 1 but got rank ${c.rank}.`),Ku(i,o,u,c,l,a)}var FE=L({batchNorm2d_:DE});function OE(e,t,n,s,r,a){let i=_(e,"x","batchNorm"),o=_(t,"mean","batchNorm"),u=_(n,"variance","batchNorm"),l;r!=null&&(l=_(r,"scale","batchNorm"));let c;return s!=null&&(c=_(s,"offset","batchNorm")),O(i.rank===3,()=>`Error in batchNorm3D: x must be rank 3 but got rank ${i.rank}.`),O(o.rank===3||o.rank===1,()=>`Error in batchNorm3D: mean must be rank 3 or rank 1 but got rank ${o.rank}.`),O(u.rank===3||u.rank===1,()=>`Error in batchNorm3D: variance must be rank 3 or rank 1 but got rank ${u.rank}.`),l!=null&&O(l.rank===3||l.rank===1,()=>`Error in batchNorm3D: scale must be rank 3 or rank 1 but got rank ${l.rank}.`),c!=null&&O(c.rank===3||c.rank===1,()=>`Error in batchNorm3D: offset must be rank 3 or rank 1 but got rank ${c.rank}.`),Ku(i,o,u,c,l,a)}var PE=L({batchNorm3d_:OE});function zE(e,t,n,s,r,a){let i=_(e,"x","batchNorm"),o=_(t,"mean","batchNorm"),u=_(n,"variance","batchNorm"),l;r!=null&&(l=_(r,"scale","batchNorm"));let c;return s!=null&&(c=_(s,"offset","batchNorm")),O(i.rank===4,()=>`Error in batchNorm4D: x must be rank 4 but got rank ${i.rank}.`),O(o.rank===4||o.rank===1,()=>`Error in batchNorm4D: mean must be rank 4 or rank 1 but got rank ${o.rank}.`),O(u.rank===4||u.rank===1,()=>`Error in batchNorm4D: variance must be rank 4 or rank 1 but got rank ${u.rank}.`),l!=null&&O(l.rank===4||l.rank===1,()=>`Error in batchNorm4D: scale must be rank 4 or rank 1 but got rank ${l.rank}.`),c!=null&&O(c.rank===4||c.rank===1,()=>`Error in batchNorm4D: offset must be rank 4 or rank 1 but got rank ${c.rank}.`),Ku(i,o,u,c,l,a)}var ME=L({batchNorm4d_:zE});function LE(e,t,n){let s=_(e,"x","bincount"),r=_(t,"weights","bincount");O(s.dtype==="int32",()=>`Error in bincount: input dtype must be int32, but got ${s.dtype}`),O(n>=0,()=>`size must be non-negative, but got ${n}.`),O(r.size===s.size||r.size===0,()=>`Error in bincount: weights must have the same size as input or0-length, but got input shape: ${s.shape}, weights shape: ${r.shape}.`);let a={x:s,weights:r},i={size:n};return M.runKernel(cg,a,i)}var tI=L({bincount_:LE});function BE(e,t){let n=_(e,"s0","broadcastArgs","int32"),s=_(t,"s1","broadcastArgs","int32");if(n.rank!==1)throw new Error(`broadcastArgs(): first input must be a vector (rank=1). Has rank ${n.rank}`);if(s.rank!==1)throw new Error(`broadcastArgs(): second input must be a vector (rank=1). Has rank ${s.rank}`);let r={s0:n,s1:s};return M.runKernel(dg,r)}var VE=L({broadcastArgs_:BE});function WE(e,t){let n=_(e,"broadcastTo","x"),s=n.shape;if(t.some(l=>!(l>0)||l%1!==0))throw new Error(`broadcastTo(): Invalid broadcast shape [${t}].`);if(t.length<n.rank)throw new Error(`broadcastTo(): shape.length=${t.length} < input.rank=${n.rank}.`);if(t.length>n.rank){let l=n.shape.slice();for(;l.length<t.length;)l.unshift(1);n=G(n,l)}let r=n.shape,a=Array.from(t);for(let l=t.length-1;l>=0;l--)if(r[l]===t[l])a[l]=1;else if(n.shape[l]!==1)throw new Error(`broadcastTo(): [${s}] cannot be broadcast to [${t}].`);if(a.map((l,c)=>l>1?c:-1).filter(l=>l>=0).length===0)return cr(n);let o={x:n},u={reps:a};return M.runKernel(Nr,o,u)}var nd=L({broadcastTo_:WE});function UE(e){let n={x:_(e,"x","ceil","float32")};return M.runKernel($a,n)}var GE=L({ceil_:UE});function HE(e,t,n){let s=_(e,"x","clipByValue");O(t<=n,()=>`Error in clip: min (${t}) must be less than or equal to max (${n}).`);let r={x:s},a={clipValueMin:t,clipValueMax:n};return M.runKernel(Cr,r,a)}var Vn=L({clipByValue_:HE});function qE(e){return Ft(e,0)}var jE=L({concat1d_:qE});function KE(e,t){return Ft(e,t)}var XE=L({concat2d_:KE});function YE(e,t){return Ft(e,t)}var QE=L({concat3d_:YE});function ZE(e,t){return Ft(e,t)}var JE=L({concat4d_:ZE});function eR(e,t,n,s,r="NHWC",a=[1,1],i){let o=_(e,"x","conv2d","float32"),u=_(t,"filter","conv2d","float32"),l=o,c=!1;o.rank===3&&(c=!0,l=G(o,[1,o.shape[0],o.shape[1],o.shape[2]])),O(l.rank===4,()=>`Error in conv2d: input must be rank 4, but got rank ${l.rank}.`),O(u.rank===4,()=>`Error in conv2d: filter must be rank 4, but got rank ${u.rank}.`),hn("conv2d",s,i);let p=r==="NHWC"?l.shape[3]:l.shape[1];O(p===u.shape[2],()=>`Error in conv2d: depth of input (${p}) must match input depth for filter ${u.shape[2]}.`),O(Ps(n,a),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`);let d={x:l,filter:u},h={strides:n,pad:s,dataFormat:r,dilations:a,dimRoundingMode:i},f=M.runKernel(_a,d,h);return c?G(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var da=L({conv2d_:eR});function tR(e,t,n,s,r="NWC",a=1,i){let o=_(e,"x","conv1d"),u=_(t,"filter","conv1d"),l=o,c=!1;o.rank===2&&(c=!0,l=G(o,[1,o.shape[0],o.shape[1]])),O(l.rank===3,()=>`Error in conv1d: input must be rank 3, but got rank ${l.rank}.`),O(u.rank===3,()=>`Error in conv1d: filter must be rank 3, but got rank ${u.rank}.`),hn("conv1d",s,i),O(l.shape[2]===u.shape[1],()=>`Error in conv1d: depth of input (${l.shape[2]}) must match input depth for filter ${u.shape[1]}.`),O(Ps(n,a),()=>`Error in conv1D: Either stride or dilation must be 1. Got stride ${n} and dilation '${a}'`),O(r==="NWC",()=>`Error in conv1d: got dataFormat of ${r} but only NWC is currently supported.`);let p=G(u,[1,u.shape[0],u.shape[1],u.shape[2]]),d=G(l,[l.shape[0],1,l.shape[1],l.shape[2]]),g=da(d,p,[1,n],s,"NHWC",[1,a],i);return c?G(g,[g.shape[2],g.shape[3]]):G(g,[g.shape[0],g.shape[2],g.shape[3]])}var nI=L({conv1d_:tR});function nR(e,t,n,s,r,a="NHWC",i){O(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let o=e,u=t,l=!1;t.rank===3&&(l=!0,u=G(t,[1,t.shape[0],t.shape[1],t.shape[2]]),o=[1,e[0],e[1],e[2]]),O(o.length===4,()=>`Error in conv2dDerInput: inShape must be length 4, but got length ${o.length}.`),O(u.rank===4,()=>`Error in conv2dDerInput: dy must be rank 4, but got rank ${u.rank}`),O(n.rank===4,()=>`Error in conv2dDerInput: filter must be rank 4, but got rank ${n.rank}`);let c=a==="NHWC"?o[3]:o[1],p=a==="NHWC"?u.shape[3]:u.shape[1];O(c===n.shape[2],()=>`Error in conv2dDerInput: depth of input (${c}) must match input depth for filter ${n.shape[2]}.`),O(p===n.shape[3],()=>`Error in conv2dDerInput: depth of output (${p}) must match output depth for filter ${n.shape[3]}.`),hn("conv2dDerInput",r,i);let d={dy:u,filter:n},h={strides:s,pad:r,dataFormat:a,dimRoundingMode:i,inputShape:o},f=M.runKernel(Aa,d,h);return l?G(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var Kg=L({conv2DBackpropInput_:nR});function sR(e,t,n,s,r,a){let i=_(e,"x","conv2dTranspose"),o=_(t,"filter","conv2dTranspose");return Kg(n,i,o,s,r,"NHWC",a)}var sI=L({conv2dTranspose_:sR});function rR(e,t,n,s,r="NDHWC",a=[1,1,1]){let i=_(e,"x","conv3d"),o=_(t,"filter","conv3d"),u=i,l=!1;i.rank===4&&(l=!0,u=G(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),O(u.rank===5,()=>`Error in conv3d: input must be rank 5, but got rank ${u.rank}.`),O(o.rank===5,()=>`Error in conv3d: filter must be rank 5, but got rank ${o.rank}.`),O(u.shape[4]===o.shape[3],()=>`Error in conv3d: depth of input (${u.shape[4]}) must match input depth for filter ${o.shape[3]}.`),O(Ps(n,a),()=>`Error in conv3D: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`),O(r==="NDHWC",()=>`Error in conv3d: got dataFormat of ${r} but only NDHWC is currently supported.`);let c={x:u,filter:o},p={strides:n,pad:s,dataFormat:r,dilations:a},d=M.runKernel(Qd,c,p);return l?G(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var rI=L({conv3d_:rR});function aR(e,t,n,s,r){O(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let a=e,i=t,o=!1;t.rank===4&&(o=!0,i=G(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]]),a=[1,e[0],e[1],e[2],e[3]]);let u=a[4],l=i.shape[4];O(a.length===5,()=>`Error in conv3dDerInput: inShape must be length 5, but got length ${a.length}.`),O(i.rank===5,()=>`Error in conv3dDerInput: dy must be rank 5, but got rank ${i.rank}`),O(n.rank===5,()=>`Error in conv3dDerInput: filter must be rank 5, but got rank ${n.rank}`),O(u===n.shape[3],()=>`Error in conv3dDerInput: depth of input (${u}) must match input depth for filter ${n.shape[3]}.`),O(l===n.shape[4],()=>`Error in conv3dDerInput: depth of output (${l}) must match output depth for filter ${n.shape[4]}.`);let c={dy:i,filter:n},p={pad:r,strides:s,inputShape:a},d=M.runKernel(fg,c,p);return o?G(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var aI=L({conv3DBackpropInput_:aR});function iR(e,t,n,s,r){let a=_(e,"x","conv3dTranspose"),i=_(t,"filter","conv3dTranspose");return aI(n,a,i,s,r)}var oR=L({conv3dTranspose_:iR});function uR(e){let n={x:_(e,"x","cos","float32")};return M.runKernel(Ea,n)}var Xg=L({cos_:uR});function lR(e){let n={x:_(e,"x","cosh","float32")};return M.runKernel(Ra,n)}var iI=L({cosh_:lR});function cR(e,t=0,n=!1,s=!1){let a={x:_(e,"x","cumprod")},i={axis:t,exclusive:n,reverse:s};return M.runKernel(po,a,i)}var mm=L({cumprod_:cR});function dR(e,t=0,n=!1,s=!1){let a={x:_(e,"x","cumsum")},i={axis:t,exclusive:n,reverse:s};return M.runKernel(Da,a,i)}var oI=L({cumsum_:dR});function pR(e,t,n,s=!1){let r=_(e,"x","denseBincount"),a=_(t,"weights","denseBincount");O(r.dtype==="int32",()=>`Error in denseBincount: input dtype must be int32, but got ${r.dtype}`),O(r.rank<=2,()=>`Error in denseBincount: input must be at most rank 2, but got rank ${r.rank}.`),O(n>=0,()=>`size must be non-negative, but got ${n}.`),O(a.size===r.size||a.size===0,()=>`Error in denseBincount: weights must have the same shape as x or 0-length, but got x shape: ${r.shape}, weights shape: ${a.shape}.`);let i={x:r,weights:a},o={size:n,binaryOutput:s};return M.runKernel(mg,i,o)}var hR=L({denseBincount_:pR});function fR(e,t,n="NHWC"){let s=_(e,"x","depthToSpace","float32"),r=n==="NHWC"?s.shape[1]:s.shape[2],a=n==="NHWC"?s.shape[2]:s.shape[3],i=n==="NHWC"?s.shape[3]:s.shape[1];O(t>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${t}`),O(r*t>=0,()=>`Negative dimension size caused by overflow when multiplying
|
|
${r} and ${t} for depthToSpace with input shape
|
|
${s.shape}`),O(a*t>=0,()=>`Negative dimension size caused by overflow when multiplying
|
|
${a} and ${t} for depthToSpace with input shape
|
|
${s.shape}`),O(i%(t*t)===0,()=>`Dimension size must be evenly divisible by ${t*t} but is ${i} for depthToSpace with input shape ${s.shape}`);let o={x:s},u={blockSize:t,dataFormat:n};return M.runKernel(fo,o,u)}var mR=L({depthToSpace_:fR});function gR(e,t,n,s,r="NHWC",a=[1,1],i){let o=_(e,"x","depthwiseConv2d","float32"),u=_(t,"filter","depthwiseConv2d","float32"),l=o,c=!1;o.rank===3&&(c=!0,l=G(o,[1,o.shape[0],o.shape[1],o.shape[2]])),O(l.rank===4,()=>`Error in depthwiseConv2d: input must be rank 4, but got rank ${l.rank}.`),O(u.rank===4,()=>`Error in depthwiseConv2d: filter must be rank 4, but got rank ${u.rank}.`),O(l.shape[3]===u.shape[2],()=>`Error in depthwiseConv2d: number of input channels (${l.shape[3]}) must match the inChannels dimension in filter ${u.shape[2]}.`),hn("depthwiseConv2d",s,i);let p={x:l,filter:u},d={strides:n,pad:s,dataFormat:r,dilations:a,dimRoundingMode:i},h=M.runKernel(Fa,p,d);return c?G(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var mp=L({depthwiseConv2d_:gR});function bR(e){let n={x:_(e,"x","diag")};return M.runKernel(yg,n)}var ope=L({diag_:bR});function yR(e,t,n,s,r=[1,1],a="NHWC"){let i=_(e,"x","dilation2d"),o=_(t,"filter","dilation2d");O(i.rank===3||i.rank===4,()=>`Error in dilation2d: input must be rank 3 or 4, but got rank ${i.rank}.`),O(o.rank===3,()=>`Error in dilation2d: filter must be rank 3, but got rank ${o.rank}.`),O(a==="NHWC",()=>`Error in dilation2d: Only NHWC is currently supported, but got dataFormat of ${a}`);let u=i,l=!1;i.rank===3&&(u=G(i,[1,i.shape[0],i.shape[1],i.shape[2]]),l=!0);let c={x:u,filter:o},p={strides:n,pad:s,dilations:r},d=M.runKernel(Zd,c,p);return l?G(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var vR=L({dilation2d_:yR});function xR(e,t){let n=_(e,"a","equal","string_or_numeric"),s=_(t,"b","equal","string_or_numeric");[n,s]=vt(n,s),ot(n.shape,s.shape);let r={a:n,b:s};return M.runKernel(mo,r)}var Xn=L({equal_:xR});function wR(e,t,n){let s=_(t,"a","where"),r=_(n,"b","where"),a=_(e,"condition","where","bool"),i=ot(ot(a.shape,s.shape),r.shape),o=nd(a,i),u=nd(s,i),l=nd(r,i),c={condition:o,t:u,e:l};return M.runKernel(Po,c)}var vn=L({where_:wR});function kR(e){let n={x:_(e,"x","zerosLike")};return M.runKernel(qo,n)}var je=L({zerosLike_:kR});function IR(e,t){let n=_(e,"a","div"),s=_(t,"b","div");[n,s]=vt(n,s);let r=xe(n,s),a=je(r),i=Xn(s,a);return vn(i,a,r)}var SR=L({divNoNan_:IR});function CR(e,t){let n=_(e,"t1","dot"),s=_(t,"t2","dot");O((n.rank===1||n.rank===2)&&(s.rank===1||s.rank===2),()=>`Error in dot: inputs must all be rank 1 or 2, but got ranks ${n.rank} and ${s.rank}.`);let r=n.rank===1?n.size:n.shape[1],a=s.rank===1?s.size:s.shape[0];if(O(r===a,()=>`Error in dot: inner dimensions of inputs must match, but got ${r} and ${a}.`),n.rank===1&&s.rank===1){let i=G(n,[1,-1]),o=G(s,[-1,1]),u=We(i,o);return G(u,[])}else if(n.rank===1&&s.rank===2){let i=G(n,[1,-1]),o=G(s,[s.shape[0],s.shape[1]]),u=We(i,o);return G(u,[u.size])}else if(n.rank===2&&s.rank===1){let i=G(s,[-1,1]),o=We(n,i);return G(o,[o.size])}else{let i=G(s,[s.shape[0],s.shape[1]]);return We(n,i)}}var upe=L({dot_:CR});function NR(e,...t){let n=t.map((r,a)=>_(r,`tensors${a}`,"einsum")),s={equation:e};return M.runKernel(Jd,n,s)}var TR=L({einsum_:NR});function $R(e){let n={x:_(e,"x","elu","float32")};return M.runKernel(Pa,n)}var gp=L({elu_:$R});function _R(e){let t=_(e,"x","erf");O(t.dtype==="int32"||t.dtype==="float32",()=>"Input dtype must be `int32` or `float32`."),t.dtype==="int32"&&(t=ce(t,"float32"));let n={x:t};return M.runKernel(fl,n)}var AR=L({erf_:_R});function ER(e){let n={x:_(e,"x","exp")};return M.runKernel(za,n)}var Yn=L({exp_:ER});function RR(e,t=0){let n=_(e,"x","expandDims","string_or_numeric");O(t<=n.rank,()=>"Axis must be <= rank of the tensor");let s={input:n},r={dim:t};return M.runKernel(go,s,r)}var Pn=L({expandDims_:RR});function DR(e){let n={x:_(e,"x","expm1")};return M.runKernel(bo,n)}var FR=L({expm1_:DR});function OR(e,t){let n=_(e,"x","tile","string_or_numeric");O(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of reps ${t}.`);let s={x:n},r={reps:t};return M.runKernel(Nr,s,r)}var ps=L({tile_:OR});function PR(e,t,n,s="float32"){t==null&&(t=e);let r=De([e,t],s),a=e<=t?e:t;for(let o=0;o<a;++o)r.set(1,o,o);let i=G(r.toTensor(),[e,t]);if(n==null)return i;if(n.length===1)return ps(Pn(i,0),[n[0],1,1]);if(n.length===2)return ps(Pn(Pn(i,0),0),[n[0],n[1],1,1]);if(n.length===3)return ps(Pn(Pn(Pn(i,0),0),0),[n[0],n[1],n[2],1,1]);throw new Error(`eye() currently supports only 1D and 2D batchShapes, but received ${n.length}D.`)}var uI=L({eye_:PR});function Pl(e,t,n){let s={shape:e,value:t,dtype:n};return M.runKernel(ml,{},s)}function zR(e){let n={x:_(e,"x","floor","float32")};return M.runKernel(Ma,n)}var bp=L({floor_:zR});function MR(e,t,n=0,s=0){let r=_(e,"x","gather"),a=_(t,"indices","gather","int32"),i={x:r,indices:a},o={axis:n,batchDims:s};return M.runKernel(vo,i,o)}var Xu=L({gather_:MR});function LR(e,t){let n=_(e,"a","greater","string_or_numeric"),s=_(t,"b","greater","string_or_numeric");[n,s]=vt(n,s),ot(n.shape,s.shape);let r={a:n,b:s};return M.runKernel(wo,r)}var Un=L({greater_:LR});function BR(e,t){let n=_(e,"a","greaterEqual","string_or_numeric"),s=_(t,"b","greaterEqual","string_or_numeric");[n,s]=vt(n,s),ot(n.shape,s.shape);let r={a:n,b:s};return M.runKernel(Va,r)}var Xo=L({greaterEqual_:BR});function VR(e){let n={input:_(e,"input","imag")};return M.runKernel(ep,n)}var Yg=L({imag_:VR});function WR(e){let n={x:_(e,"x","isFinite")};return M.runKernel(gl,n)}var lpe=L({isFinite_:WR});function UR(e){let n={x:_(e,"x","isInf")};return M.runKernel(bl,n)}var cpe=L({isInf_:UR});function GR(e){let n={x:_(e,"x","isNaN")};return M.runKernel(yl,n)}var HR=L({isNaN_:GR});function qR(e,t=.2){let s={x:_(e,"x","leakyRelu")},r={alpha:t};return M.runKernel(Ua,s,r)}var Qg=L({leakyRelu_:qR});function jR(e,t){let n=_(e,"a","less","string_or_numeric"),s=_(t,"b","less","string_or_numeric");[n,s]=vt(n,s),ot(n.shape,s.shape);let r={a:n,b:s};return M.runKernel(ko,r)}var lI=L({less_:jR});function KR(e,t){let n=_(e,"a","lessEqual","string_or_numeric"),s=_(t,"b","lessEqual","string_or_numeric");[n,s]=vt(n,s),ot(n.shape,s.shape);let r={a:n,b:s};return M.runKernel(Io,r)}var Yo=L({lessEqual_:KR});function XR(e,t,n){if(n<=0)throw new Error("The number of values should be positive.");let s={start:e,stop:t,num:n};return M.runKernel(kg,{},s)}function YR(e,t=5,n=1,s=1,r=.5){let a=_(e,"x","localResponseNormalization");O(a.rank===4||a.rank===3,()=>`Error in localResponseNormalization: x must be rank 3 or 4 but got
|
|
rank ${a.rank}.`),O(Zi(t),()=>`Error in localResponseNormalization: depthRadius must be an integer but got depthRadius ${t}.`);let i=a,o=!1;a.rank===3&&(o=!0,i=G(a,[1,a.shape[0],a.shape[1],a.shape[2]]));let u={x:i},l={depthRadius:t,bias:n,alpha:s,beta:r},c=M.runKernel(np,u,l);return o?G(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var QR=L({localResponseNormalization_:YR});function ZR(e){let n={x:_(e,"x","log","float32")};return M.runKernel(Ga,n)}var Qn=L({log_:ZR});function JR(e){let n={x:_(e,"x","log1p")};return M.runKernel(vl,n)}var Zg=L({log1p_:JR});function dpe(e){return O(fr(e),()=>"The f passed in grad(f) must be a function"),(t,n)=>{let s=_(t,"x","tf.grad","string_or_numeric"),r=n!=null?_(n,"dy","tf.grad"):null;return M.tidy(()=>{let{value:a,grads:i}=M.gradients(()=>e(s),[s],r);return r!=null&&pn(a.shape,r.shape,"The shape of dy passed in grad(f)(x, dy) must match the shape returned by f(x)"),yp(i),i[0]})}}function ppe(e){return O(fr(e),()=>"The f passed in grads(f) must be a function"),(t,n)=>{O(Array.isArray(t),()=>"The args passed in grads(f)(args) must be an array of `Tensor`s or `TensorLike`s");let s=Hu(t,"args","tf.grads","string_or_numeric"),r=n!=null?_(n,"dy","tf.grads"):null;return M.tidy(()=>{let{value:a,grads:i}=M.gradients(()=>e(...s),s,r);return r!=null&&pn(a.shape,r.shape,"The shape of dy passed in grads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),yp(i),i})}}function hpe(e){return O(fr(e),()=>"The f passed in valueAndGrad(f) must be a function"),(t,n)=>{O(t instanceof et,()=>"The x passed in valueAndGrad(f)(x) must be a tensor"),O(n==null||n instanceof et,()=>"The dy passed in valueAndGrad(f)(x, dy) must be a tensor");let{grads:s,value:r}=M.gradients(()=>e(t),[t],n);return yp(s),{grad:s[0],value:r}}}function fpe(e){return O(fr(e),()=>"The f passed in valueAndGrads(f) must be a function"),(t,n)=>{O(Array.isArray(t)&&t.every(r=>r instanceof et),()=>"The args passed in valueAndGrads(f)(args) must be array of tensors"),O(n==null||n instanceof et,()=>"The dy passed in valueAndGrads(f)(args, dy) must be a tensor");let s=M.gradients(()=>e(...t),t,n);return n!=null&&pn(s.value.shape,n.shape,"The shape of dy passed in valueAndGrads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),yp(s.grads),s}}function eD(e,t){O(fr(e),()=>"The f passed in variableGrads(f) must be a function"),O(t==null||Array.isArray(t)&&t.every(l=>l instanceof gd),()=>"The varList passed in variableGrads(f, varList) must be an array of variables");let n=t!=null;if(!n){t=[];for(let l in M.registeredVariables)t.push(M.registeredVariables[l])}let s=n?t.filter(l=>!l.trainable):null,r=t.length;t=t.filter(l=>l.trainable),O(t.length>0,()=>`variableGrads() expects at least one of the input variables to be trainable, but none of the ${r} variables is trainable.`);let a=!0,{value:i,grads:o}=M.gradients(e,t,null,a);O(o.some(l=>l!=null),()=>"Cannot find a connection between any variable and the result of the loss function y=f(x). Please make sure the operations that use variables are inside the function f passed to minimize()."),O(i.rank===0,()=>`The f passed in variableGrads(f) must return a scalar, but it returned a rank-${i.rank} tensor`);let u={};return t.forEach((l,c)=>{o[c]!=null&&(u[l.name]=o[c])}),s!=null&&s.forEach(l=>u[l.name]=null),{value:i,grads:u}}function js(e){return M.customGrad(e)}function yp(e){if(e.filter(n=>n==null).length>0)throw new Error(`Cannot compute gradient of y=f(x) with respect to x. Make sure that
|
|
the f you passed encloses all operations that lead from x to y.`)}function tD(e){let n={x:_(e,"x","neg")};return M.runKernel(Co,n)}var kt=L({neg_:tD});function nD(e){let n={x:_(e,"x","softplus")};return M.runKernel($l,n)}var zl=L({softplus_:nD});function sD(e){let t=_(e,"x","logSigmoid");return js(s=>({value:kt(zl(kt(s))),gradFunc:i=>V(i,qs(kt(s)))}))(t)}var mpe=L({logSigmoid_:sD});function rD(e,t=null,n=!1){let r={x:_(e,"x","max")},a={reductionIndices:t,keepDims:n};return M.runKernel(Ha,r,a)}var As=L({max_:rD});function aD(e,t){let n=_(e,"a","sub"),s=_(t,"b","sub");[n,s]=vt(n,s);let r={a:n,b:s};return M.runKernel(hi,r)}var ge=L({sub_:aD});function iD(e,t=null,n=!1){let s=_(e,"x","sum");s.dtype==="bool"&&(s=ce(s,"int32"));let r={x:s},a={axis:t,keepDims:n};return M.runKernel(ci,r,a)}var ve=L({sum_:iD});function oD(e,t=-1){let n=_(e,"logits","logSoftmax");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Log Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and axis was ${t}`);return js((r,a)=>{let o=As(r,t,!0),u=ge(r,o),l=ge(ce(u,"float32"),Qn(ve(Yn(u),t,!0)));return a([l]),{value:l,gradFunc:(p,d)=>{let[h]=d,f=!0,m=Yn(h);return ge(p,V(ve(p,t,f),m))}}})(n)}var cI=L({logSoftmax_:oD});function Jg(e,t){for(let n=0;n<e.length;++n)if(e[e.length-n-1]!==t-1-n)return!1;return!0}function dI(e,t,n){let s=e.length+t.length,r=[],a=0,i=0;for(let o=0;o<s;o++)n.indexOf(o)===-1?r.push(e[a++]):r.push(t[i++]);return r}function pI(e,t){let n=[],s=e.length;for(let a=0;a<s;a++)t.indexOf(a)===-1&&n.push(e[a]);let r=t.map(a=>e[a]);return[n,r]}function pa(e,t){let n=t.map(s=>1);return dI(e,n,t)}function uD(e,t,n){O(Jg(t,n),()=>`${e} supports only inner-most axes for now. Got axes ${t} and rank-${n} input.`)}function hI(e,t){if(Jg(e,t))return null;let n=[];for(let s=0;s<t;++s)e.indexOf(s)===-1&&n.push(s);return e.forEach(s=>n.push(s)),n}function eb(e){return e.map((t,n)=>[n,t]).sort((t,n)=>t[1]-n[1]).map(t=>t[0])}function lD(e,t){let n=[];for(let s=t-e;s<t;++s)n.push(s);return n}function cD(e,t=null,n=!1){let s=_(e,"x","logSumExp"),r=ts(t,s.shape),a=As(s,r,!0),i=ge(s,a),o=Yn(i),u=ve(o,r),l=Qn(u),c=ie(G(a,l.shape),l);if(n){let p=pa(c.shape,r);return G(c,p)}return c}var dD=L({logSumExp_:cD});function pD(e,t){let n=_(e,"a","logicalAnd","bool"),s=_(t,"b","logicalAnd","bool");ot(n.shape,s.shape);let r={a:n,b:s};return M.runKernel(So,r)}var Ds=L({logicalAnd_:pD});function hD(e){let n={x:_(e,"x","logicalNot","bool")};return M.runKernel(xl,n)}var tb=L({logicalNot_:hD});function fD(e,t){let n=_(e,"a","logicalOr","bool"),s=_(t,"b","logicalOr","bool");ot(n.shape,s.shape);let r={a:n,b:s};return M.runKernel(tp,r)}var fI=L({logicalOr_:fD});function mD(e,t){let n=_(e,"a","logicalXor","bool"),s=_(t,"b","logicalXor","bool");return ot(n.shape,s.shape),Ds(fI(e,t),tb(Ds(e,t)))}var gpe=L({logicalXor_:mD});function gD(e,t,n,s,r){let a=_(e,"x","maxPool"),i=1,o=a,u=!1;a.rank===3&&(u=!0,o=G(a,[1,a.shape[0],a.shape[1],a.shape[2]])),O(o.rank===4,()=>`Error in maxPool: input must be rank 4 but got rank ${o.rank}.`),O(Ps(n,i),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${i}'`),hn("maxPool",s,r);let l={x:o},c={filterSize:t,strides:n,pad:s,dimRoundingMode:r},p=M.runKernel(ja,l,c);return u?G(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var nb=L({maxPool_:gD});function bD(e,t=[1,1,1],n,s,r,a="NDHWC"){let i=_(e,"x","maxPool3d"),o=i,u=!1;i.rank===4&&(u=!0,o=G(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),O(o.rank===5,()=>`Error in maxPool3d: x must be rank 5 but got rank ${o.rank}.`),O(a==="NDHWC",()=>`Error in maxPool3d: Only NDHWC is currently supported, but got dataFormat of ${a}`),hn("maxPool3d",s,r);let l={x:o},c={filterSize:t,strides:n,pad:s,dimRoundingMode:r,dataFormat:a},p=M.runKernel(sp,l,c);return u?G(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var mI=L({maxPool3d_:bD});function yD(e,t,n,s,r=!1){let i={x:_(e,"x","maxPoolWithArgmax")},o={filterSize:t,strides:n,pad:s,includeBatchInIndex:r},u=M.runKernel(Ng,i,o);return{result:u[0],indexes:u[1]}}var vD=L({maxPoolWithArgmax_:yD});function xD(e,t){let n=_(e,"a","maximum"),s=_(t,"b","maximum");[n,s]=vt(n,s),n.dtype==="bool"&&(n=ce(n,"int32"),s=ce(s,"int32")),ot(n.shape,s.shape);let r={a:n,b:s};return M.runKernel(qa,r)}var _r=L({maximum_:xD});function wD(e,t=null,n=!1){let r={x:_(e,"x","mean")},a={axis:t,keepDims:n};return M.runKernel(Ka,r,a)}var St=L({mean_:wD});function $t(e,t="float32"){if(t==="complex64"){let s=$t(e,"float32"),r=$t(e,"float32");return ua(s,r)}let n=jd(pt(e),t);return M.makeTensor(n,e,t)}function Mn(e,t="float32"){if(t==="complex64"){let s=Mn(e,"float32"),r=$t(e,"float32");return ua(s,r)}let n=rg(pt(e),t);return M.makeTensor(n,e,t)}function bpe(e,t,{indexing:n="xy"}={}){if(n!=="xy"&&n!=="ij")throw new TypeError(`${n} is not a valid third argument to meshgrid`);if(e===void 0)return[];let s=_(e,"x","meshgrid",e instanceof et?e.dtype:"float32");if(t===void 0)return[s];let r=_(t,"y","meshgrid",t instanceof et?t.dtype:"float32"),a=pt(s.shape),i=pt(r.shape);return n==="xy"?(s=G(s,[1,-1]),r=G(r,[-1,1]),[We(Mn([i,1],s.dtype),s),We(r,Mn([1,a],r.dtype))]):(s=G(s,[-1,1]),r=G(r,[1,-1]),[We(s,Mn([1,i],s.dtype)),We(Mn([a,1],r.dtype),r)])}function kD(e,t=null,n=!1){let r={x:_(e,"x","min")},a={axis:t,keepDims:n};return M.runKernel(Xa,r,a)}var gm=L({min_:kD});function ID(e,t){let n=_(e,"a","minimum"),s=_(t,"b","minimum");[n,s]=vt(n,s),n.dtype==="bool"&&(n=ce(n,"int32"),s=ce(s,"int32")),ot(n.shape,s.shape);let r={a:n,b:s};return M.runKernel(Ya,r)}var vp=L({minimum_:ID});function SD(e,t,n){O(n==="reflect"||n==="symmetric",()=>`Invalid mode. Mode must be either reflect or symmetric. Got ${n}.`);let s=_(e,"x","mirrorPad");if(s.rank===0)throw new Error("mirrorPad(scalar) is not defined. Pass non-scalar to mirrorPad");O(t.length===s.rank,()=>`Padding doesn't match input. Must be ${s.rank}. Got ${t.length}.`);let r=n==="reflect"?1:0;for(let o=0;o<s.rank;o++)O(t[o].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),O(t[o][0]>=0&&t[o][0]<=s.shape[o]-r&&t[o][1]>=0&&t[o][1]<=s.shape[o]-r,()=>`Padding in dimension ${o} cannot be greater than or equal to ${s.shape[o]-r} or less than 0 for input of shape ${s.shape}`);let a={paddings:t,mode:n},i={x:s};return M.runKernel(Qa,i,a)}var CD=L({mirrorPad_:SD});function ND(e,t){let n=_(e,"a","mod"),s=_(t,"b","mod");[n,s]=vt(n,s);let r={a:n,b:s};return M.runKernel(wl,r)}var TD=L({mod_:ND});function $D(e){let t=_(e,"x","square"),n={};return M.runKernel("Square",{x:t},n)}var ct=L({square_:$D});function _D(e,t=null,n=!1){e=_(e,"x","moments");let s=ts(t,e.shape),r=St(e,s,n),a=r.shape;n||(a=pa(r.shape,s));let i=ct(ge(ce(e,"float32"),G(r,a))),o=St(i,s,n);return{mean:r,variance:o}}var sb=L({moments_:_D});function AD(e,t,n,s){let r=_(t,"data","multiRNNCell"),a=Hu(n,"c","multiRNNCell"),i=Hu(s,"h","multiRNNCell"),o=r,u=[];for(let p=0;p<e.length;p++){let d=e[p](o,a[p],i[p]);u.push(d[0]),u.push(d[1]),o=d[1]}let l=[],c=[];for(let p=0;p<u.length;p+=2)l.push(u[p]),c.push(u[p+1]);return[l,c]}var ype=L({multiRNNCell_:AD});function ED(e,t,n,s=!1){let r=_(e,"logits","multinomial"),a=r.size,i=r.rank;if(a<2)throw new Error(`Error in multinomial: you need at least 2 outcomes, but got ${a}.`);if(i>2)throw new Error(`Rank of probabilities must be 1 or 2, but is ${i}`);n=n||Math.random();let u={logits:i===1?G(r,[1,-1]):r},l={numSamples:t,seed:n,normalized:s},c=M.runKernel(Tg,u,l);return i===1?G(c,[c.size]):c}var RD=L({multinomial_:ED});function DD(e,t){let n=_(e,"a","notEqual","string_or_numeric"),s=_(t,"b","notEqual","string_or_numeric");[n,s]=vt(n,s),ot(n.shape,s.shape);let r={a:n,b:s};return M.runKernel(No,r)}var Yu=L({notEqual_:DD});function FD(e){let n={x:_(e,"x","onesLike")};return M.runKernel(_o,n)}var Zn=L({onesLike_:FD});function OD(e,t){let n=_(e,"v1","outerProduct"),s=_(t,"v2","outerProduct");O(n.rank===1&&s.rank===1,()=>`Error in outerProduct: inputs must be rank 1, but got ranks ${n.rank} and ${s.rank}.`);let r=G(n,[-1,1]),a=G(s,[1,-1]);return We(r,a)}var vpe=L({outerProduct_:OD});function PD(e,t,n=0){let s=_(e,"x","pad");if(s.rank===0)throw new Error("pad(scalar) is not defined. Pass non-scalar to pad");let r={paddings:t,constantValue:n},a={x:s};return M.runKernel(Ja,a,r)}var bi=L({pad_:PD});function zD(e,t,n=0){return O(t.length===2,()=>"Invalid number of paddings. Must be length of 2."),bi(e,[t],n)}var xpe=L({pad1d_:zD});function MD(e,t,n=0){return O(t.length===2&&t[0].length===2&&t[1].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),bi(e,t,n)}var wpe=L({pad2d_:MD});function LD(e,t,n=0){return O(t.length===3&&t[0].length===2&&t[1].length===2&&t[2].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),bi(e,t,n)}var kpe=L({pad3d_:LD});function BD(e,t,n=0){return O(t.length===4&&t[0].length===2&&t[1].length===2&&t[2].length===2&&t[3].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),bi(e,t,n)}var Ipe=L({pad4d_:BD});function VD(e,t,n){let s=_(e,"x","spaceToBatchND");O(s.rank>=1+t.length,()=>`input rank ${s.rank} should be > than [blockShape] ${t.length}`),O(n.length===t.length,()=>`paddings.shape[0] ${n.length} must be equal to [blockShape] ${t.length}`),O(s.shape.reduce((i,o,u)=>u>0&&u<=t.length?i&&(o+n[u-1][0]+n[u-1][1])%t[u-1]===0:i,!0),()=>`input spatial dimensions ${s.shape.slice(1)} with paddings ${n.toString()} must be divisible by blockShapes ${t.toString()}`);let r={x:s},a={blockShape:t,paddings:n};return M.runKernel(Lo,r,a)}var rb=L({spaceToBatchND_:VD});function WD(e,t,n,s,r,a,i){r==null&&(r=[1,1]),a==null&&(a=1),s===0&&(s="valid");let o=_(e,"x","maxPool"),u=o,l=!1;o.rank===3&&(l=!0,u=G(o,[1,o.shape[0],o.shape[1],o.shape[2]])),O(Ps(a,r),()=>`Error in pool: Either strides or dilations must be 1. Got strides ${a} and dilations '${r}'`);let c=Qk(u.shape,t,a,r,s),p=[c.dilationHeight,c.dilationWidth],d;s==="same"?d=GD([c.filterHeight,c.filterWidth],p):d=[[0,0],[0,0]];let h=p[0]===1&&p[1]===1,[f,m]=UD([c.inHeight,c.inWidth],p,d),g=h?s:"valid",b=h?u:rb(u,p,f),v=(n==="avg"?()=>qg(b,t,a,g,i):()=>nb(b,t,a,g,i))(),x=h?v:jg(v,p,m);return l?G(x,[x.shape[1],x.shape[2],x.shape[3]]):x}function UD(e,t,n){let s=n.map(c=>c[0]),r=n.map(c=>c[1]),a=e.concat(s,r),i=t.map((c,p)=>(c-a[p]%c)%c),o=r.map((c,p)=>c+i[p]),u=t.map((c,p)=>[s[p],o[p]]),l=t.map((c,p)=>[0,i[p]]);return[u,l]}function GD(e,t){let s=e.map((i,o)=>i+(i-1)*(t[o]-1)).map(i=>i-1),r=s.map(i=>Math.floor(i/2)),a=s.map((i,o)=>i-r[o]);return s.map((i,o)=>[r[o],a[o]])}var Spe=L({pool_:WD});function HD(e,t){let n=_(e,"base","pow"),s=_(t,"exp","pow");[n,s]=vt(n,s);let r={a:n,b:s};return M.runKernel(ei,r)}var ha=L({pow_:HD});function qD(e,t){let n=_(e,"x","prelu"),s=_(t,"alpha","prelu"),r={x:n,alpha:s};return M.runKernel(ti,r)}var ab=L({prelu_:qD});function jD(e,t=null,n=!1){let s=_(e,"x","prod");s.dtype==="bool"&&(s=ce(s,"int32"));let r={x:s},a={axis:t,keepDims:n};return M.runKernel(ni,r,a)}var gI=L({prod_:jD});function KD(e,t,n){let s=pt(e),r=null;if(n==null||n==="float32")r=new Float32Array(s);else if(n==="int32")r=new Int32Array(s);else if(n==="bool")r=new Uint8Array(s);else throw new Error(`Unknown data type ${n}`);for(let a=0;a<s;a++)r[a]=t();return M.makeTensor(r,e,n)}var Cpe=L({rand_:KD}),ib=wa(Gd()),ob=class{constructor(e,t,n,s,r){this.mean=e,this.stdDev=t,this.dtype=n,this.nextVal=NaN,this.truncated=s,this.truncated&&(this.upper=this.mean+this.stdDev*2,this.lower=this.mean-this.stdDev*2);let a=r||Math.random();this.random=ib.alea(a.toString())}nextValue(){if(!isNaN(this.nextVal)){let s=this.nextVal;return this.nextVal=NaN,s}let e,t,n=!1;for(;!n;){let s,r,a;do s=2*this.random()-1,r=2*this.random()-1,a=s*s+r*r;while(a>=1||a===0);let i=Math.sqrt(-2*Math.log(a)/a);e=this.mean+this.stdDev*s*i,t=this.mean+this.stdDev*r*i,(!this.truncated||this.isValidTruncated(e))&&(n=!0)}return(!this.truncated||this.isValidTruncated(t))&&(this.nextVal=this.convertValue(t)),this.convertValue(e)}convertValue(e){return this.dtype==null||this.dtype==="float32"?e:Math.round(e)}isValidTruncated(e){return e<=this.upper&&e>=this.lower}},XD=class{constructor(e,t,n,s){this.alpha=e,this.beta=1/t,this.dtype=n;let r=s||Math.random();this.randu=ib.alea(r.toString()),this.randn=new ob(0,1,n,!1,this.randu()),e<1?this.d=e+2/3:this.d=e-1/3,this.c=1/Math.sqrt(9*this.d)}nextValue(){let e,t,n,s,r,a;for(;;){do s=this.randn.nextValue(),a=1+this.c*s;while(a<=0);if(a*=a*a,e=s*s,t=1-.331*e*e,n=.5*e+this.d*(1-a+Math.log(a)),r=this.randu(),r<t||Math.log(r)<n)break}return a=1/this.beta*this.d*a,this.alpha<1&&(a*=Math.pow(this.randu(),1/this.alpha)),this.convertValue(a)}convertValue(e){return this.dtype==="float32"?e:Math.round(e)}},YD=class{constructor(e=0,t=1,n,s){if(this.canReturnFloat=()=>this.dtype==null||this.dtype==="float32",this.min=e,this.range=t-e,this.dtype=n,s==null&&(s=Math.random()),typeof s=="number"&&(s=s.toString()),!this.canReturnFloat()&&this.range<=1)throw new Error(`The difference between ${e} - ${t} <= 1 and dtype is not float`);this.random=ib.alea(s)}convertValue(e){return this.canReturnFloat()?e:Math.round(e)}nextValue(){return this.convertValue(this.min+this.range*this.random())}};function QD(e,t,n=1,s="float32",r){if(n==null&&(n=1),s==null&&(s="float32"),s!=="float32"&&s!=="int32")throw new Error(`Unsupported data type ${s}`);let a=new XD(t,n,s,r),i=De(e,s);for(let o=0;o<i.values.length;o++)i.values[o]=a.nextValue();return i.toTensor()}var Npe=L({randomGamma_:QD});function ZD(e,t=0,n=1,s,r){if(s!=null&&s==="bool")throw new Error(`Unsupported data type ${s}`);let a=new ob(t,n,s,!1,r),i=De(e,s);for(let o=0;o<i.values.length;o++)i.values[o]=a.nextValue();return i.toTensor()}var JD=L({randomNormal_:ZD});function e3(e,t=0,n=1,s="float32",r){let a=De(e,s),i=new YD(t,n,null,r);for(let o=0;o<a.values.length;o++)a.values[o]=i.nextValue();return a.toTensor()}var Ml=L({randomUniform_:e3});function Qu(e,t,n=1,s="float32"){if(n===0)throw new Error("Cannot have a step of zero");let r={start:e,stop:t,step:n,dtype:s};return M.runKernel(Il,{},r)}function t3(e){let n={input:_(e,"input","real")};return M.runKernel(rp,n)}var wd=L({real_:t3});function n3(e){let n={x:_(e,"x","reciprocal")};return M.runKernel(Sl,n)}var s3=L({reciprocal_:n3});function r3(e){let n={x:_(e,"x","relu")};return M.runKernel(si,n)}var Ys=L({relu_:r3});function a3(e){let n={x:_(e,"x","relu6")};return M.runKernel(ai,n)}var bI=L({relu6_:a3});function i3(e,t){let s={x:_(e,"x","reverse")},r={dims:t};return M.runKernel(Do,s,r)}var Jn=L({reverse_:i3});function o3(e){let t=_(e,"x","reverse");return O(t.rank===1,()=>`Error in reverse1D: x must be rank 1 but got rank ${t.rank}.`),Jn(t,0)}var Tpe=L({reverse1d_:o3});function u3(e,t){let n=_(e,"x","reverse");return O(n.rank===2,()=>`Error in reverse2D: x must be rank 2 but got rank ${n.rank}.`),Jn(n,t)}var $pe=L({reverse2d_:u3});function l3(e,t){let n=_(e,"x","reverse");return O(n.rank===3,()=>`Error in reverse3D: x must be rank 3 but got rank ${n.rank}.`),Jn(n,t)}var _pe=L({reverse3d_:l3});function c3(e,t){let n=_(e,"x","reverse");return O(n.rank===4,()=>`Error in reverse4D: x must be rank 4 but got rank ${n.rank}.`),Jn(n,t)}var Ape=L({reverse4d_:c3});function d3(e){let n={x:_(e,"x","round")};return M.runKernel(Fo,n)}var yI=L({round_:d3});function p3(e){let n={x:_(e,"x","rsqrt","float32")};return M.runKernel(ii,n)}var vI=L({rsqrt_:p3});function we(e,t){if((Qt(e)&&t!=="string"||Array.isArray(e))&&t!=="complex64")throw new Error("Error creating a new Scalar: value must be a primitive (number|boolean|string)");if(t==="string"&&Qt(e)&&!(e instanceof Uint8Array))throw new Error("When making a scalar from encoded string, the value must be `Uint8Array`.");return Tr(e,[],[],t)}function h3(e){let n={x:_(e,"x","selu")};return M.runKernel(Nl,n)}var xI=L({selu_:h3});function f3(e,t,n,s,r,a=[1,1],i="NHWC"){let o=_(e,"x","separableConv2d"),u=_(t,"depthwiseFilter","separableConv2d"),l=_(n,"pointwiseFilter","separableConv2d"),c=o,p=!1;if(o.rank===3&&(p=!0,c=G(o,[1,o.shape[0],o.shape[1],o.shape[2]])),i==="NCHW")throw new Error("separableConv2d currently does not support dataFormat NCHW; only NHWC is supported");O(c.rank===4,()=>`Error in separableConv2d: input must be rank 4, but got rank ${c.rank}.`),O(u.rank===4,()=>`Error in separableConv2d: depthwise filter must be rank 4, but got rank ${u.rank}.`),O(l.rank===4,()=>`Error in separableConv2d: pointwise filter must be rank 4, but got rank ${u.rank}.`),O(l.shape[0]===1,()=>`Error in separableConv2d: the first dimension of pointwise filter must be 1, but got ${l.shape[0]}.`),O(l.shape[1]===1,()=>`Error in separableConv2d: the second dimension of pointwise filter must be 1, but got ${l.shape[1]}.`);let d=u.shape[2],h=u.shape[3];O(l.shape[2]===d*h,()=>`Error in separableConv2d: the third dimension of pointwise filter must be ${d*h}, but got ${l.shape[2]}.`);let f=mp(c,u,s,r,i,a),g=da(f,l,1,"valid",i);return p?G(g,[g.shape[1],g.shape[2],g.shape[3]]):g}var m3=L({separableConv2d_:f3});async function g3(e,t){let n=_(e,"x","setdiff1d"),s=_(t,"y","setdiff1d");O(n.dtype===s.dtype,()=>`x and y should have the same dtype, but got x (${n.dtype}) and y (${s.dtype}).`),O(n.rank===1,()=>`x should be 1D tensor, but got x (${n.shape}).`),O(s.rank===1,()=>`y should be 1D tensor, but got y (${s.shape}).`);let r=await n.data(),a=await s.data(),i=new Set(a),o=0;for(let c=0;c<r.length;c++)i.has(r[c])||o++;let u=new Vt([o],n.dtype),l=new Vt([o],"int32");for(let c=0,p=0;c<r.length;c++)i.has(r[c])||(u.values[p]=r[c],l.values[p]=c,p++);return[u.toTensor(),l.toTensor()]}var b3=g3;function y3(e){let n={x:_(e,"x","sign")};return M.runKernel(Tl,n)}var v3=L({sign_:y3});function x3(e){let n={x:_(e,"x","sin","float32")};return M.runKernel(oi,n)}var wI=L({sin_:x3});function w3(e){let n={x:_(e,"x","sinh")};return M.runKernel(Mo,n)}var kI=L({sinh_:w3});function k3(e,t,n){let s=_(e,"x","slice1d");return O(s.rank===1,()=>`slice1d expects a rank-1 tensor, but got a rank-${s.rank} tensor`),qe(s,[t],[n])}var ub=L({slice1d_:k3});function I3(e,t,n){let s=_(e,"x","slice2d");return O(s.rank===2,()=>`slice2d expects a rank-2 tensor, but got a rank-${s.rank} tensor`),qe(s,t,n)}var II=L({slice2d_:I3});function S3(e,t,n){let s=_(e,"x","slice3d");return O(s.rank===3,()=>`slice3d expects a rank-3 tensor, but got a rank-${s.rank} tensor`),qe(s,t,n)}var lb=L({slice3d_:S3});function C3(e,t,n){let s=_(e,"x","slice4d");return O(s.rank===4,()=>`slice4d expects a rank-4 tensor, but got a rank-${s.rank} tensor`),qe(s,t,n)}var kd=L({slice4d_:C3});function N3(e,t=-1){let n=_(e,"logits","softmax","float32");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and dim was ${t}`);let s={logits:n},r={dim:t};return M.runKernel(di,s,r)}var cb=L({softmax_:N3});function T3(e){O(e.dtype==="complex64",()=>`The dtype for tf.spectral.fft() must be complex64 but got ${e.dtype}.`);let t={input:e};return M.runKernel(xg,t)}var db=L({fft_:T3});function $3(e){O(e.dtype==="complex64",()=>`The dtype for tf.spectral.ifft() must be complex64 but got ${e.dtype}.`);let t={input:e};return M.runKernel(wg,t)}var Id=L({ifft_:$3});function _3(e){let t=e.shape[e.shape.length-1],n=e.size/t,s;if(t<=2){let r=G(e,[n,t]);s=Id(r)}else{let r=[n,2*(t-1)],a=G(wd(e),[n,t]),i=G(Yg(e),[n,t]),o=Jn(qe(a,[0,1],[n,t-2]),1),u=V(Jn(qe(i,[0,1],[n,t-2]),1),we(-1)),l=Ft([a,o],1),c=Ft([i,u],1),p=G(ua(l,c),[r[0],r[1]]);s=Id(p)}if(s=wd(s),e.rank===3&&e.shape[0]!==0){let r=s,a=e.shape[0];s=G(s,[a,s.shape[0]/a,s.shape[1]]),r.dispose()}return s}var SI=L({irfft_:_3});function A3(e,t,n=0){let r={x:_(e,"x","split")},a={numOrSizeSplits:t,axis:n};return M.runKernel(Bo,r,a)}var Bn=L({split_:A3});function E3(e,t){O(e.dtype==="float32",()=>`The dtype for rfft() must be real value but got ${e.dtype}`);let n=e.shape[e.shape.length-1],s=e.size/n,r;if(t!=null&&t<n){let f=e.shape.map(g=>0),m=e.shape.map(g=>g);m[e.shape.length-1]=t,r=qe(e,f,m),n=t}else if(t!=null&&t>n){let f=e.shape.map(m=>m);f[e.shape.length-1]=t-n,r=Ft([e,$t(f)],e.shape.length-1),n=t}else r=e;let a=je(r),i=G(ua(r,a),[s,n]),o=db(i),u=Math.floor(n/2)+1,l=wd(o),c=Yg(o),p=Bn(l,[u,n-u],l.shape.length-1),d=Bn(c,[u,n-u],c.shape.length-1),h=r.shape.slice();return h[r.shape.length-1]=u,G(ua(p[0],d[0]),h)}var pb=L({rfft_:E3});function R3(e){let n={x:_(e,"x","sqrt","float32")};return M.runKernel(li,n)}var dn=L({sqrt_:R3});function D3(e,t){let n=_(e,"a","squaredDifference"),s=_(t,"b","squaredDifference");[n,s]=vt(n,s),ot(n.shape,s.shape);let r={a:n,b:s},a={};return M.runKernel(pi,r,a)}var CI=L({squaredDifference_:D3});function F3(e,t){let n=_(e,"x","squeeze");return G(n,Kw(n.shape,t).newShape)}var gr=L({squeeze_:F3});function O3(e,t=0){let n=Hu(e,"tensors","stack","string_or_numeric");O(n.length>=1,()=>"Pass at least one tensor to tf.stack"),n.length>0&&O(t<=n[0].rank,()=>"Axis must be <= rank of the tensor");let s=n,r={axis:t};return M.runKernel(Eo,s,r)}var es=L({stack_:O3});function P3(e,t=0){let s={x:_(e,"x","step")},r={alpha:t};return M.runKernel(gi,s,r)}var xp=L({step_:P3});function z3(e,t,n,s,r=0,a=0,i=0,o=0,u=0){let c={x:_(e,"x","stridedSlice","string_or_numeric")},p={begin:t,end:n,strides:s,beginMask:r,endMask:a,ellipsisMask:i,newAxisMask:o,shrinkAxisMask:u};return M.runKernel(Vo,c,p)}var M3=L({stridedSlice_:z3});function L3(e){let n={x:_(e,"x","tan","float32")};return M.runKernel(Wo,n)}var B3=L({tan_:L3});function Zt(e,t){ka(e);let n=Rs(e,t);if(n.length!==1)throw new Error("tensor1d() requires values to be a flat/TypedArray");return Tr(e,null,n,t)}function Yi(e,t,n){if(ka(e),t!=null&&t.length!==2)throw new Error("tensor2d() requires shape to have two numbers");let s=Rs(e,n);if(s.length!==2&&s.length!==1)throw new Error("tensor2d() requires values to be number[][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor2d() requires shape to be provided when `values` are a flat/TypedArray");return Tr(e,t,s,n)}function Epe(e,t,n){if(ka(e),t!=null&&t.length!==4)throw new Error("tensor4d() requires shape to have four numbers");let s=Rs(e,n);if(s.length!==4&&s.length!==1)throw new Error("tensor4d() requires values to be number[][][][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor4d() requires shape to be provided when `values` are a flat array");return Tr(e,t,s,n)}function Rpe(e,t,n){if(ka(e),t!=null&&t.length!==5)throw new Error("tensor5d() requires shape to have five numbers");let s=Rs(e,n);if(s.length!==5&&s.length!==1)throw new Error("tensor5d() requires values to be number[][][][][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor5d() requires shape to be provided when `values` are a flat array");return Tr(e,t,s,n)}function Dpe(e,t,n){if(ka(e),t!=null&&t.length!==6)throw new Error("tensor6d() requires shape to have six numbers");let s=Rs(e,n);if(s.length!==6&&s.length!==1)throw new Error("tensor6d() requires values to be number[][][][][][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor6d() requires shape to be provided when `values` are a flat array");return t=t||s,Tr(e,t,s,n)}function V3(e,t=1,n=!0){let s=_(e,"x","topk");if(s.rank===0)throw new Error("topk() expects the input to be of rank 1 or higher");let r=s.shape[s.shape.length-1];if(t<0)throw new Error(`'k' passed to topk() must be >= 0 but got ${t}`);if(t>r)throw new Error(`'k' passed to topk() must be <= the last dimension (${r}) but got ${t}`);let a={x:s},i={k:t,sorted:n},[o,u]=M.runKernel(Uo,a,i);return{values:o,indices:u}}var W3=L({topk_:V3});function U3(e,t=0,n=1,s,r){if(s!=null&&s==="bool")throw new Error("Unsupported data type $ { dtype }");let a=new ob(t,n,s,!0,r),i=De(e,s);for(let o=0;o<i.values.length;o++)i.values[o]=a.nextValue();return i.toTensor()}var hb=L({truncatedNormal_:U3});function G3(e,t=0){let n=_(e,"x","unique","string_or_numeric");O(n.rank>0,()=>"The input tensor must be at least 1D");let s={x:n},r={axis:t},[a,i]=M.runKernel(Rg,s,r);return{values:a,indices:i}}var mx=L({unique_:G3});function H3(e,t,n){let s=_(e,"x","unsortedSegmentSum"),r=_(t,"segmentIds","unsortedSegmentSum","int32");O(Zi(n),()=>"numSegments must be of dtype int");let a={x:s,segmentIds:r},i={numSegments:n};return M.runKernel(cp,a,i)}var q3=L({unsortedSegmentSum_:H3});function j3(e,t=0){let n=_(e,"x","unstack","string_or_numeric");O(t>=-n.shape.length&&t<n.shape.length,()=>`Axis = ${t} is not in [-${n.shape.length}, ${n.shape.length})`);let s={value:n},r={axis:t};return M.runKernel(Ho,s,r)}var Fs=L({unstack_:j3});function K3(e,t=!0,n,s){return M.makeVariable(e,t,n,s)}function NI(e,t){let n=[];for(let a=0;a<t.length;a++)t[a]&&n.push(a);let s=De(e,"int32"),r=De([n.length,e.length],"int32");for(let a=0;a<n.length;a++){let i=s.indexToLoc(n[a]),o=a*e.length;r.values.set(i,o)}return r.toTensor()}async function X3(e){let t=_(e,"condition","whereAsync","bool"),n=await t.data(),s=NI(t.shape,n);return e!==t&&t.dispose(),s}var TI=X3;async function Y3(e,t,n){let s=_(e,"tensor","boolMask"),r=_(t,"mask","boolMask","bool"),a=n==null?0:n,i=r.rank,o=s.shape;O(i>0,()=>"mask cannot be scalar"),pn(o.slice(a,a+i),r.shape,"mask's shape must match the first K dimensions of tensor's shape,");let u=1;for(let m=a;m<a+i;m++)u*=o[m];let l=o.slice(0,a).concat([u],o.slice(a+i)),c=G(s,l),p=G(r,[-1]),d=await TI(p),h=gr(d,[1]),f=Xu(c,h,a);return e!==s&&s.dispose(),t!==r&&r.dispose(),h.dispose(),c.dispose(),p.dispose(),d.dispose(),f}var Fpe=Y3;function Q3(e,t="euclidean",n=null,s=!1){e=_(e,"x","norm");let r=$I(e,t,n),a=r.shape;if(s){let i=ts(n,e.shape);a=pa(r.shape,i)}return G(r,a)}function $I(e,t,n=null){if(e.rank===0)return Mt(e);if(e.rank!==1&&n===null)return $I(G(e,[-1]),t,n);if(e.rank===1||typeof n=="number"||Array.isArray(n)&&n.length===1){if(t===1)return ve(Mt(e),n);if(t===1/0)return As(Mt(e),n);if(t===-1/0)return gm(Mt(e),n);if(t==="euclidean"||t===2)return dn(ve(ha(Mt(e),we(2,"int32")),n));throw new Error(`Error in norm: invalid ord value: ${t}`)}if(Array.isArray(n)&&n.length===2){if(t===1)return As(ve(Mt(e),n[0]),n[1]-1);if(t===1/0)return As(ve(Mt(e),n[1]),n[0]);if(t===-1/0)return gm(ve(Mt(e),n[1]),n[0]);if(t==="fro"||t==="euclidean")return dn(ve(ct(e),n));throw new Error(`Error in norm: invalid ord value: ${t}`)}throw new Error(`Error in norm: invalid axis: ${n}`)}var _I=L({norm_:Q3});function Z3(e,t,n,s,r=!0){let a=_(e,"v","movingAverage"),i=_(t,"x","movingAverage"),o=_(n,"decay","movingAverage");pk(a,i),O(Ir(a.shape,i.shape),()=>"Shape mismatch in v and x");let u=we(1),l=ge(u,o),c=V(ge(i,a),l);if(r){O(s!=null,()=>"When using zeroDebias: true, step is required.");let p=_(s,"step","movingAverage");c=xe(c,ge(u,ha(o,p)))}return ie(a,c)}var Ope=L({movingAverage_:Z3});function J3(e,t,n){let s=_(e,"indices","scatterND","int32"),r=_(t,"updates","scatterND");Wg(r,s,n);let a={indices:s,updates:r},i={shape:n};return M.runKernel(Oo,a,i)}var eF=L({scatterND_:J3});function tF(e,t,n,s){if(e.dtype!=="int32")throw new Error(`tf.sparseToDense() expects the indices to be int32 type, but the dtype was ${e.dtype}.`);if(e.rank>2)throw new Error(`sparseIndices should be a scalar, vector, or matrix, but got shape ${e.shape}.`);let r=e.rank>0?e.shape[0]:1,a=e.rank>1?e.shape[1]:1;if(n.length!==a)throw new Error(`outputShape has incorrect number of elements:, ${n.length}, should be: ${a}.`);let i=t.size;if(!(t.rank===0||t.rank===1&&i===r))throw new Error(`sparseValues has incorrect shape ${t.shape}, should be [] or [${r}]`);if(t.dtype!==s.dtype)throw new Error("sparseValues.dtype must match defaultValues.dtype")}function nF(e,t,n,s=0){let r=_(e,"sparseIndices","sparseToDense","int32"),a=_(t,"sparseValues","sparseToDense"),i=_(s,"defaultValue","sparseToDense",a.dtype);tF(r,a,n,i);let o={sparseIndices:r,sparseValues:a,defaultValue:i},u={outputShape:n};return M.runKernel(up,o,u)}var AI=L({sparseToDense_:nF});function sF(e,t){let n=_(t,"indices","gatherND","int32"),r={params:_(e,"x","gatherND","string_or_numeric"),indices:n};return M.runKernel(xo,r)}var rF=L({gatherND_:sF});function aF(e,t){if(t==null)return e.shape.slice();if(Ir(e.shape,t))return t;if(e.shape.length===t.length){let n=[];for(let s=0;s<e.shape.length;s++)t[s]==null&&e.shape[s]!=null?n.push(e.shape[s]):n.push(t[s]);return n}return t}function iF(e,t,n,s){let r=_(e,"x","dropout");if(O(r.dtype==="float32",()=>`x has to be a floating point tensor since it's going to be scaled, but got a ${r.dtype} tensor instead.`),O(t>=0&&t<1,()=>`rate must be a float in the range [0, 1), but got ${t}.`),t===0)return e instanceof et?r.clone():r;let a=aF(r,n),i=1-t,o=xe(bp(ie(Ml(a,0,1,"float32",s),i)),i);return V(r,o)}var oF=L({dropout_:iF});function uF(e){return Math.floor(Math.pow(2,Math.ceil(Math.log(e)/Math.log(2))))}function EI(e,t,n){let s=1-e%2,r=new Float32Array(e);for(let a=0;a<e;++a){let i=2*Math.PI*a/(e+s-1);r[a]=t-n*Math.cos(i)}return Zt(r,"float32")}async function lF(e,t,n=1){let s=_(e,"predictions","inTopK"),r=_(t,"targets","inTopK");O(s.rank>1,()=>`inTopK() expects the predictions to be of rank 2 or higher, but got ${s.rank}`),O(s.rank-1===r.rank,()=>`predictions rank should be 1 larger than targets rank, but got predictions rank ${s.rank} and targets rank ${r.rank}`),pn(s.shape.slice(0,s.shape.length-1),r.shape,"predictions's shape should be align with the targets' shape, except the last dimension.");let a=s.shape[s.shape.length-1];O(n>0&&n<=a,()=>`'k' passed to inTopK() must be > 0 && <= the predictions last dimension (${a}), but got ${n}`);let i=await s.data(),o=await r.data(),[u,l]=[i.length/a,a],c=Xw("bool",u);for(let p=0;p<u;p++){let d=p*l,h=i.subarray(d,d+l),f=[];for(let m=0;m<h.length;m++)f.push({value:h[m],index:m});f.sort((m,g)=>g.value-m.value),c[p]=0;for(let m=0;m<n;m++)if(f[m].index===o[p]){c[p]=1;break}}return e!==s&&s.dispose(),t!==r&&r.dispose(),fs(c,r.shape,"bool")}var Ppe=lF,fa={};Ae(fa,{conv2d:()=>pF,depthwiseConv2d:()=>gF,matMul:()=>yF});function cF(e,t,n,s,r,a="NHWC",i){let o=e;e.rank===3&&(o=G(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let u=t;u.rank===3&&(u=G(t,[1,t.shape[0],t.shape[1],t.shape[2]])),O(o.rank===4,()=>`Error in conv2dDerFilter: input must be rank 4, but got shape ${o.shape}.`),O(u.rank===4,()=>`Error in conv2dDerFilter: dy must be rank 4, but got shape ${u.shape}.`),O(n.length===4,()=>`Error in conv2dDerFilter: filterShape must be length 4, but got ${n}.`);let l=a==="NHWC"?o.shape[3]:o.shape[1],c=a==="NHWC"?u.shape[3]:u.shape[1];O(l===n[2],()=>`Error in conv2dDerFilter: depth of input ${l}) must match input depth in filter (${n[2]}.`),O(c===n[3],()=>`Error in conv2dDerFilter: depth of dy (${c}) must match output depth for filter (${n[3]}).`),hn("conv2dDerFilter",r,i);let p={x:o,dy:u},d={strides:s,pad:r,dataFormat:a,dimRoundingMode:i,filterShape:n};return M.runKernel(pg,p,d)}var fb=L({conv2DBackpropFilter_:cF});function wp(e,t,n){if(n==null||n==="linear")return e;if(n==="relu")return V(e,xp(t));throw new Error(`Cannot compute gradient for fused activation ${n}.`)}function kp(e,t){let n=t,s=_t(e.shape,t.shape);return s.length>0&&(n=ve(n,s)),G(n,e.shape)}function Ip(e,t,n,s){if(t==="linear")return e;if(t==="relu")return Ys(e);if(t==="elu")return gp(e);if(t==="relu6")return bI(e);if(t==="prelu")return ab(e,n);if(t==="leakyrelu")return Qg(e,s);if(t==="sigmoid")return qs(e);throw new Error(`Unknown fused activation ${t}.`)}var Sp=(e,t)=>!(e>0)||t==="linear";function dF({x:e,filter:t,strides:n,pad:s,dataFormat:r="NHWC",dilations:a=[1,1],dimRoundingMode:i,bias:o,activation:u="linear",preluActivationWeights:l,leakyreluAlpha:c}){if(u=u||"linear",Sp(M.state.gradientDepth,u)===!1){let k=da(e,t,n,s,r,a,i);return o!=null&&(k=ie(k,o)),Ip(k,u,l,c)}let p=_(e,"x","conv2d","float32"),d=_(t,"filter","conv2d","float32"),h=p,f=!1;p.rank===3&&(f=!0,h=G(p,[1,p.shape[0],p.shape[1],p.shape[2]])),O(h.rank===4,()=>`Error in fused conv2d: input must be rank 4, but got rank ${h.rank}.`),O(d.rank===4,()=>`Error in fused conv2d: filter must be rank 4, but got rank ${d.rank}.`),hn("fused conv2d",s,i),O(h.shape[3]===d.shape[2],()=>`Error in conv2d: depth of input (${h.shape[3]}) must match input depth for filter ${d.shape[2]}.`),O(Ps(n,a),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`),O(r==="NHWC",()=>`Error in conv2d: got dataFormat of ${r} but only NHWC is currently supported.`);let m=Ol(h.shape,d.shape,n,a,s,i),g;o!=null&&(g=_(o,"bias","fused conv2d"),[g]=vt(g,p),ot(m.outShape,g.shape));let b;l!=null&&(b=_(l,"prelu weights","fused conv2d"));let y=(k,T)=>{let[N,E,A,P]=T,R=wp(k,A,u);O(mr(a),()=>`Error in gradient of fused conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${a}'`);let F=Kg(E.shape,R,N,n,s),$=fb(E,R,N.shape,n,s),z=[F,$];if(P!=null){let W=kp(P,R);z.push(W)}return z},v={x:h,filter:d,bias:g,preluActivationWeights:b},x={strides:n,pad:s,dataFormat:r,dilations:a,dimRoundingMode:i,activation:u,leakyreluAlpha:c};return o==null?js((T,N,E)=>{let A=M.runKernel(ia,v,x);return E([N,T,A]),f&&(A=G(A,[A.shape[1],A.shape[2],A.shape[3]])),{value:A,gradFunc:y}})(h,d):js((T,N,E,A)=>{let P=M.runKernel(ia,v,x);return A([N,T,P,E]),f&&(P=G(P,[P.shape[1],P.shape[2],P.shape[3]])),{value:P,gradFunc:y}})(h,d,g)}var pF=L({fusedConv2d_:dF});function hF(e,t,n,s,r,a=[1,1],i){let o=e;e.rank===3&&(o=G(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let u=t;u.rank===3&&(u=G(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let l={x:o,dy:u},c={strides:s,pad:r,dimRoundingMode:i,dilations:a,filterShape:n};return M.runKernel(gg,l,c)}var RI=L({depthwiseConv2dNativeBackpropFilter_:hF});function fF(e,t,n,s,r,a=[1,1],i){let o=t,u=!1;t.rank===3&&(u=!0,o=G(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let l={dy:o,filter:n},c={strides:s,pad:r,dimRoundingMode:i,dilations:a,inputShape:e},p=M.runKernel(bg,l,c);return u?G(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var DI=L({depthwiseConv2dNativeBackpropInput_:fF});function mF({x:e,filter:t,strides:n,pad:s,dataFormat:r="NHWC",dilations:a=[1,1],dimRoundingMode:i,bias:o,activation:u="linear",preluActivationWeights:l,leakyreluAlpha:c}){if(Sp(M.state.gradientDepth,u)===!1){let k=mp(e,t,n,s,r,a,i);return o!=null&&(k=ie(k,o)),Ip(k,u,l,c)}let p=_(e,"x","depthwiseConv2d","float32"),d=_(t,"filter","depthwiseConv2d","float32"),h=p,f=!1;p.rank===3&&(f=!0,h=G(p,[1,p.shape[0],p.shape[1],p.shape[2]])),O(h.rank===4,()=>`Error in fused depthwiseConv2d: input must be rank 4, but got rank ${h.rank}.`),O(d.rank===4,()=>`Error in fused depthwiseConv2d: filter must be rank 4, but got rank ${d.rank}.`),O(h.shape[3]===d.shape[2],()=>`Error in fused depthwiseConv2d: number of input channels (${h.shape[3]}) must match the inChannels dimension in filter ${d.shape[2]}.`),a==null&&(a=[1,1]),O(Ps(n,a),()=>`Error in fused depthwiseConv2d: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`),hn("fused depthwiseConv2d",s,i);let m=Ol(h.shape,d.shape,n,a,s,i,!0),g;o!=null&&(g=_(o,"bias","fused conv2d"),[g]=vt(g,p),ot(m.outShape,g.shape));let b;l!=null&&(b=_(l,"prelu weights","fused depthwiseConv2d"));let y=(k,T)=>{O(mr(a),()=>`Error in gradient of fused depthwiseConv2d: dilation rates greater than 1 are not yet supported. Got dilations '${a}'`);let[N,E,A,P]=T,R=wp(k,A,u),F=DI(E.shape,R,N,n,s,a,i),$=RI(E,R,N.shape,n,s,a,i);if(P!=null){let z=kp(g,R);return[F,$,z]}return[F,$]},v={x:h,filter:d,bias:g,preluActivationWeights:b},x={strides:n,pad:s,dataFormat:r,dilations:a,dimRoundingMode:i,activation:u,leakyreluAlpha:c};return o==null?js((T,N,E)=>{let A=M.runKernel(oa,v,x);return E([N,T,A]),f&&(A=G(A,[A.shape[1],A.shape[2],A.shape[3]])),{value:A,gradFunc:y}})(h,d):js((T,N,E,A)=>{let P=M.runKernel(oa,v,x);return A([N,T,P,E]),f&&(P=G(P,[P.shape[1],P.shape[2],P.shape[3]])),{value:P,gradFunc:y}})(h,d,g)}var gF=L({fusedDepthwiseConv2d_:mF});function bF({a:e,b:t,transposeA:n=!1,transposeB:s=!1,bias:r,activation:a="linear",preluActivationWeights:i,leakyreluAlpha:o}){if(Sp(M.state.gradientDepth,a)===!1){let R=We(e,t,n,s);return r!=null&&(R=ie(R,r)),Ip(R,a,i,o)}let u=_(e,"a","fused matMul"),l=_(t,"b","fused matMul");[u,l]=vt(u,l);let c=n?u.shape[u.rank-2]:u.shape[u.rank-1],p=s?l.shape[l.rank-1]:l.shape[l.rank-2],d=n?u.shape[u.rank-1]:u.shape[u.rank-2],h=s?l.shape[l.rank-2]:l.shape[l.rank-1],f=u.shape.slice(0,-2),m=l.shape.slice(0,-2),g=pt(f),b=pt(m);O(c===p,()=>`Error in fused matMul: inner shapes (${c}) and (${p}) of Tensors with shapes ${u.shape} and ${l.shape} and transposeA=${n} and transposeB=${s} must match.`);let v=ot(u.shape.slice(0,-2),l.shape.slice(0,-2)).concat([d,h]),x=n?G(u,[g,c,d]):G(u,[g,d,c]),k=s?G(l,[b,h,p]):G(l,[b,p,h]),T;r!=null&&(T=_(r,"bias","fused matMul"),[T]=vt(T,u),ot(v,T.shape));let N;i!=null&&(N=_(i,"prelu weights","fused matMul"));let E=(R,F)=>{let[$,z,W,q]=F,K=wp(G(R,W.shape),W,a),Y,Z;if(!n&&!s?(Y=We(K,z,!1,!0),Z=We($,K,!0,!1)):!n&&s?(Y=We(K,z,!1,!1),Z=We(K,$,!0,!1)):n&&!s?(Y=We(z,K,!1,!0),Z=We($,K,!1,!1)):(Y=We(z,K,!0,!0),Z=We(K,$,!0,!0)),r!=null){let te=kp(q,K);return[Y,Z,te]}else return[Y,Z]},A={a:x,b:k,bias:T,preluActivationWeights:N},P={transposeA:n,transposeB:s,activation:a,leakyreluAlpha:o};return r==null?js((F,$,z)=>{let W=M.runKernel(aa,A,P);return z([F,$,W]),{value:G(W,v),gradFunc:E}})(x,k):js((F,$,z,W)=>{let q=M.runKernel(aa,A,P);return W([F,$,q,z]),{value:G(q,v),gradFunc:E}})(x,k,T)}var yF=L({fusedMatMul_:bF});function vF(e){return EI(e,.54,.46)}var xF=L({hammingWindow_:vF});function wF(e){return EI(e,.5,.5)}var FI=L({hannWindow_:wF});function kF(e,t,n,s=!1,r=0){let a=0,i=[];for(;a+t<=e.size;)i.push(qe(e,a,t)),a+=n;if(s)for(;a<e.size;){let o=a+t-e.size,u=Ft([qe(e,a,t-o),Pl([o],r)]);i.push(u),a+=n}return i.length===0?Yi([],[0,t]):G(Ft(i),[i.length,t])}var OI=L({frame_:kF});function IF(e,t,n,s,r=FI){s==null&&(s=uF(t));let a=OI(e,t,n),i=V(a,r(t));return pb(i,s)}var SF=L({stft_:IF});function CF(e,t,n,s,r="bilinear",a=0){let i=_(e,"image","cropAndResize"),o=_(t,"boxes","cropAndResize","float32"),u=_(n,"boxInd","cropAndResize","int32"),l=o.shape[0];O(i.rank===4,()=>`Error in cropAndResize: image must be rank 4,but got rank ${i.rank}.`),O(o.rank===2&&o.shape[1]===4,()=>`Error in cropAndResize: boxes must be have size [${l},4] but had shape ${o.shape}.`),O(u.rank===1&&u.shape[0]===l,()=>`Error in cropAndResize: boxInd must be have size [${l}] but had shape ${o.shape}.`),O(s.length===2,()=>`Error in cropAndResize: cropSize must be of length 2, but got length ${s.length}.`),O(s[0]>=1&&s[1]>=1,()=>`cropSize must be atleast [1,1], but was ${s}`),O(r==="bilinear"||r==="nearest",()=>`method must be bilinear or nearest, but was ${r}`);let c={image:i,boxes:o,boxInd:u},p={method:r,extrapolationValue:a,cropSize:s};return M.runKernel(ho,c,p)}var NF=L({cropAndResize_:CF});function TF(e){let t=_(e,"image","flipLeftRight","float32");O(t.rank===4,()=>`Error in flipLeftRight: image must be rank 4,but got rank ${t.rank}.`);let n={image:t};return M.runKernel(yo,n,{})}var $F=L({flipLeftRight_:TF});function _F(e){let t=_(e,"image","grayscaleToRGB"),n=t.rank-1,s=t.shape[n];O(t.rank>=2,()=>`Error in grayscaleToRGB: images must be at least rank 2, but got rank ${t.rank}.`),O(s===1,()=>`Error in grayscaleToRGB: last dimension of a grayscale image should be size 1, but got size ${s}.`);let r=new Array(t.rank);return r.fill(1,0,n),r[n]=3,ps(t,r)}var AF=L({grayscaleToRGB_:_F});function EF(e,t,n=0,s=.5){let r=_(e,"image","rotateWithOffset","float32");O(r.rank===4,()=>`Error in rotateWithOffset: image must be rank 4,but got rank ${r.rank}.`);let a={image:r},i={radians:t,fillValue:n,center:s};return M.runKernel(jo,a,i)}var RF=L({rotateWithOffset_:EF});function Qo(e,t,n,s,r,a){s==null&&(s=.5),r==null&&(r=Number.NEGATIVE_INFINITY),a==null&&(a=0);let i=e.shape[0];return n=Math.min(n,i),O(0<=s&&s<=1,()=>`iouThreshold must be in [0, 1], but was '${s}'`),O(e.rank===2,()=>`boxes must be a 2D tensor, but was of rank '${e.rank}'`),O(e.shape[1]===4,()=>`boxes must have 4 columns, but 2nd dimension was ${e.shape[1]}`),O(t.rank===1,()=>"scores must be a 1D tensor"),O(t.shape[0]===i,()=>`scores has incompatible shape with boxes. Expected ${i}, but was ${t.shape[0]}`),O(0<=a&&a<=1,()=>`softNmsSigma must be in [0, 1], but was '${a}'`),{maxOutputSize:n,iouThreshold:s,scoreThreshold:r,softNmsSigma:a}}function DF(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY){let a=_(e,"boxes","nonMaxSuppression","float32"),i=_(t,"scores","nonMaxSuppression","float32"),o=Qo(a,i,n,s,r);n=o.maxOutputSize,s=o.iouThreshold,r=o.scoreThreshold;let u={maxOutputSize:n,iouThreshold:s,scoreThreshold:r};return M.runKernel(To,{boxes:a,scores:i},u)}var FF=L({nonMaxSuppression_:DF});function OF(e,t,n){let s=PF(e,t,n),r=s<0?-(s+1):s;e.splice(r,0,t)}function PF(e,t,n){return MF(e,t,n||zF)}function zF(e,t){return e>t?1:e<t?-1:0}function MF(e,t,n){let s=0,r=e.length,a=0,i=!1;for(;s<r;){a=s+(r-s>>>1);let o=n(t,e[a]);o>0?s=a+1:(r=a,i=!o)}return i?s:-s-1}function PI(e,t,n,s,r){return mb(e,t,n,s,r,0)}function zI(e,t,n,s,r,a){return mb(e,t,n,s,r,0,!1,a,!0)}function MI(e,t,n,s,r,a){return mb(e,t,n,s,r,a,!0)}function mb(e,t,n,s,r,a,i=!1,o=!1,u=!1){let l=[];for(let g=0;g<t.length;g++)t[g]>r&&l.push({score:t[g],boxIndex:g,suppressBeginIndex:0});l.sort(gx);let c=a>0?-.5/a:0,p=[],d=[];for(;p.length<n&&l.length>0;){let g=l.pop(),{score:b,boxIndex:y,suppressBeginIndex:v}=g;if(b<r)break;let x=!1;for(let k=p.length-1;k>=v;--k){let T=LF(e,y,p[k]);if(T>=s){x=!0;break}if(g.score=g.score*BF(s,c,T),g.score<=r)break}g.suppressBeginIndex=p.length,x||(g.score===b?(p.push(y),d.push(g.score)):g.score>r&&OF(l,g,gx))}let h=p.length,f=n-h;o&&f>0&&(p.push(...new Array(f).fill(0)),d.push(...new Array(f).fill(0)));let m={selectedIndices:p};return i&&(m.selectedScores=d),u&&(m.validOutputs=h),m}function LF(e,t,n){let s=e.subarray(t*4,t*4+4),r=e.subarray(n*4,n*4+4),a=Math.min(s[0],s[2]),i=Math.min(s[1],s[3]),o=Math.max(s[0],s[2]),u=Math.max(s[1],s[3]),l=Math.min(r[0],r[2]),c=Math.min(r[1],r[3]),p=Math.max(r[0],r[2]),d=Math.max(r[1],r[3]),h=(o-a)*(u-i),f=(p-l)*(d-c);if(h<=0||f<=0)return 0;let m=Math.max(a,l),g=Math.max(i,c),b=Math.min(o,p),y=Math.min(u,d),v=Math.max(b-m,0)*Math.max(y-g,0);return v/(h+f-v)}function BF(e,t,n){let s=Math.exp(t*n*n);return n<=e?s:0}function gx(e,t){return e.score-t.score||e.score===t.score&&t.boxIndex-e.boxIndex}async function VF(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY){let a=_(e,"boxes","nonMaxSuppressionAsync"),i=_(t,"scores","nonMaxSuppressionAsync"),o=Qo(a,i,n,s,r);n=o.maxOutputSize,s=o.iouThreshold,r=o.scoreThreshold;let u=await Promise.all([a.data(),i.data()]),l=u[0],c=u[1],{selectedIndices:p}=PI(l,c,n,s,r);return a!==e&&a.dispose(),i!==t&&i.dispose(),Zt(p,"int32")}var WF=VF;function UF(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY,a=0){let i=_(e,"boxes","nonMaxSuppression"),o=_(t,"scores","nonMaxSuppression"),u=Qo(i,o,n,s,r,a);n=u.maxOutputSize,s=u.iouThreshold,r=u.scoreThreshold,a=u.softNmsSigma;let l={boxes:i,scores:o},c={maxOutputSize:n,iouThreshold:s,scoreThreshold:r,softNmsSigma:a},p=M.runKernel($o,l,c);return{selectedIndices:p[0],selectedScores:p[1]}}var GF=L({nonMaxSuppressionWithScore_:UF});async function HF(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY,a=0){let i=_(e,"boxes","nonMaxSuppressionAsync"),o=_(t,"scores","nonMaxSuppressionAsync"),u=Qo(i,o,n,s,r,a);n=u.maxOutputSize,s=u.iouThreshold,r=u.scoreThreshold,a=u.softNmsSigma;let l=await Promise.all([i.data(),o.data()]),c=l[0],p=l[1],{selectedIndices:d,selectedScores:h}=MI(c,p,n,s,r,a);return i!==e&&i.dispose(),o!==t&&o.dispose(),{selectedIndices:Zt(d,"int32"),selectedScores:Zt(h)}}var qF=HF;function jF(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY,a=!1){let i=_(e,"boxes","nonMaxSuppression"),o=_(t,"scores","nonMaxSuppression"),u=Qo(i,o,n,s,r,null),l=u.maxOutputSize,c=u.iouThreshold,p=u.scoreThreshold,d={boxes:i,scores:o},h={maxOutputSize:l,iouThreshold:c,scoreThreshold:p,padToMaxOutputSize:a},f=M.runKernel(kl,d,h);return{selectedIndices:f[0],validOutputs:f[1]}}var KF=L({nonMaxSuppressionPadded_:jF});async function XF(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY,a=!1){let i=_(e,"boxes","nonMaxSuppressionAsync"),o=_(t,"scores","nonMaxSuppressionAsync"),u=Qo(i,o,n,s,r,null),l=u.maxOutputSize,c=u.iouThreshold,p=u.scoreThreshold,[d,h]=await Promise.all([i.data(),o.data()]),{selectedIndices:f,validOutputs:m}=zI(d,h,l,c,p,a);return i!==e&&i.dispose(),o!==t&&o.dispose(),{selectedIndices:Zt(f,"int32"),validOutputs:we(m,"int32")}}var YF=XF;function QF(e,t,n=!1,s=!1){let r=_(e,"images","resizeBilinear");O(r.rank===3||r.rank===4,()=>`Error in resizeBilinear: x must be rank 3 or 4, but got rank ${r.rank}.`),O(t.length===2,()=>`Error in resizeBilinear: new shape must 2D, but got shape ${t}.`),O(s===!1||n===!1,()=>"Error in resizeBilinear: If halfPixelCenters is true, alignCorners must be false.");let a=r,i=!1;r.rank===3&&(i=!0,a=G(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let[]=t,o={images:a},u={alignCorners:n,halfPixelCenters:s,size:t},l=M.runKernel(ri,o,u);return i?G(l,[l.shape[1],l.shape[2],l.shape[3]]):l}var ZF=L({resizeBilinear_:QF});function JF(e,t,n=!1,s=!1){let r=_(e,"images","resizeNearestNeighbor");O(r.rank===3||r.rank===4,()=>`Error in resizeNearestNeighbor: x must be rank 3 or 4, but got rank ${r.rank}.`),O(t.length===2,()=>`Error in resizeNearestNeighbor: new shape must 2D, but got shape ${t}.`),O(r.dtype==="float32"||r.dtype==="int32",()=>"`images` must have `int32` or `float32` as dtype"),O(s===!1||n===!1,()=>"Error in resizeNearestNeighbor: If halfPixelCenters is true, alignCorners must be false.");let a=r,i=!1;r.rank===3&&(i=!0,a=G(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let[]=t,o={images:a},u={alignCorners:n,halfPixelCenters:s,size:t},l=M.runKernel(Cl,o,u);return i?G(l,[l.shape[1],l.shape[2],l.shape[3]]):l}var eO=L({resizeNearestNeighbor_:JF});function tO(e,t="binary",n=!1,s=.5){let r=_(e,"image","threshold"),a=.2989,i=.587,o=.114,u=r.shape[0]*r.shape[1],l=V(Zt([s]),255),c,p,d,h;if(O(r.rank===3,()=>`Error in threshold: image must be rank 3,but got rank ${r.rank}.`),O(r.shape[2]===3||r.shape[2]===1,()=>`Error in threshold: image color channel must be equal to 3 or 1but got ${r.shape[2]}.`),O(r.dtype==="int32"||r.dtype==="float32",()=>`Error in dtype: image dtype must be int32 or float32,but got dtype ${r.dtype}.`),O(t==="otsu"||t==="binary",()=>`Method must be binary or otsu, but was ${t}`),r.shape[2]===3){[c,p,d]=Bn(r,[1,1,1],-1);let g=V(c,a),b=V(p,i),y=V(d,o);h=ie(ie(g,b),y)}else h=e;if(t==="otsu"){let g=tI(ce(yI(h),"int32"),fs([]),256);l=nO(g,u)}let f=n?Yo(h,l):Un(h,l);return ce(V(f,255),"int32")}function nO(e,t){let n=Zt([-1]),s=Zt([0]),r=Zt([0]),a,i,o,u,l,c;for(let p=0;p<e.size-1;p++){a=qe(e,0,p+1),i=qe(e,p+1),l=xe(ve(a),t),c=xe(ve(i),t);let d=ve(V(a,Qu(0,a.size)));o=xe(d,ve(a));let h=Pl(i.shape,a.size),f=ie(Qu(0,i.size),h),m=V(i,f);u=xe(ve(m),ve(i));let g=ge(o,u),b=ge(o,u),y=V(l,c);r=V(V(y,g),b);let v=Un(r,s);s=vn(v,r,s),n=vn(v,Zt([p]),n)}return n}var sO=L({threshold_:tO});function rO(e,t,n="nearest",s="constant",r=0,a){let i=_(e,"image","transform","float32"),o=_(t,"transforms","transform","float32");O(i.rank===4,()=>`Error in transform: image must be rank 4,but got rank ${i.rank}.`),O(o.rank===2&&(o.shape[0]===i.shape[0]||o.shape[0]===1)&&o.shape[1]===8,()=>"Error in transform: Input transform should be batch x 8 or 1 x 8"),O(a==null||a.length===2,()=>`Error in transform: outputShape must be [height, width] or null, but got ${a}.`);let u={image:i,transforms:o},l={interpolation:n,fillMode:s,fillValue:r,outputShape:a};return M.runKernel(Go,u,l)}var aO=L({transform_:rO});function iO(e,t,n){O(t%1===0,()=>`bandPart(): numLower must be an integer, got ${t}.`),O(n%1===0,()=>`bandPart(): numUpper must be an integer, got ${n}.`);let s=_(e,"a","bandPart");O(s.rank>=2,()=>`bandPart(): Rank must be at least 2, got ${s.rank}.`);let r=s.shape,[a,i]=s.shape.slice(-2);if(!(t<=a))throw new Error(`bandPart(): numLower (${t}) must not be greater than the number of rows (${a}).`);if(!(n<=i))throw new Error(`bandPart(): numUpper (${n}) must not be greater than the number of columns (${i}).`);t<0&&(t=a),n<0&&(n=i);let o=G(Qu(0,a,1,"int32"),[-1,1]),u=Qu(0,i,1,"int32"),l=ge(o,u),c=Ds(Yo(l,we(+t,"int32")),Xo(l,we(-n,"int32"))),p=$t([a,i],s.dtype);return G(es(Fs(G(s,[-1,a,i])).map(d=>vn(c,d,p))),r)}var oO=L({bandPart_:iO});function uO(e){let t;if(Array.isArray(e)){t=!1,O(e!=null&&e.length>0,()=>"Gram-Schmidt process: input must not be null, undefined, or empty");let r=e[0].shape[0];for(let a=1;a<e.length;++a)O(e[a].shape[0]===r,()=>`Gram-Schmidt: Non-unique lengths found in the input vectors: (${e[a].shape[0]} vs. ${r})`)}else t=!0,e=Bn(e,e.shape[0],0).map(r=>gr(r,[0]));O(e.length<=e[0].shape[0],()=>`Gram-Schmidt: Number of vectors (${e.length}) exceeds number of dimensions (${e[0].shape[0]}).`);let n=[],s=e;for(let r=0;r<e.length;++r)n.push(M.tidy(()=>{let a=s[r];if(r>0)for(let i=0;i<r;++i){let o=V(ve(V(n[i],a)),n[i]);a=ge(a,o)}return xe(a,_I(a,"euclidean"))}));return t?es(n,0):n}var lO=L({gramSchmidt_:uO});function cO(e,t=!1){if(O(e.rank>=2,()=>`qr() requires input tensor to have a rank >= 2, but got rank ${e.rank}`),e.rank===2)return bx(e,t);{let n=e.shape.slice(0,e.shape.length-2).reduce((u,l)=>u*l),s=Fs(G(e,[n,e.shape[e.shape.length-2],e.shape[e.shape.length-1]]),0),r=[],a=[];s.forEach(u=>{let[l,c]=bx(u,t);r.push(l),a.push(c)});let i=G(es(r,0),e.shape),o=G(es(a,0),e.shape);return[i,o]}}function bx(e,t=!1){return M.tidy(()=>{O(e.shape.length===2,()=>`qr2d() requires a 2D Tensor, but got a ${e.shape.length}D Tensor.`);let n=e.shape[0],s=e.shape[1],r=uI(n),a=cr(e),i=Yi([[1]],[1,1]),o=cr(i),u=n>=s?s:n;for(let l=0;l<u;++l){let c=a,p=o,d=r;[o,a,r]=M.tidy(()=>{let h=qe(a,[l,l],[n-l,1]),f=_I(h),m=qe(a,[l,l],[1,1]),g=vn(Un(m,0),Yi([[-1]]),Yi([[1]])),b=ge(m,V(g,f)),y=xe(h,b);y.shape[0]===1?o=cr(i):o=Ft([i,qe(y,[1,0],[y.shape[0]-1,y.shape[1]])],0);let v=kt(xe(We(g,b),f)),x=qe(a,[l,0],[n-l,s]),k=V(v,o),T=Ge(o);if(l===0)a=ge(x,We(k,We(T,x)));else{let A=ge(x,We(k,We(T,x)));a=Ft([qe(a,[0,0],[l,s]),A],0)}let N=Ge(k),E=qe(r,[0,l],[n,r.shape[1]-l]);if(l===0)r=ge(E,We(We(E,o),N));else{let A=ge(E,We(We(E,o),N));r=Ft([qe(r,[0,0],[n,l]),A],1)}return[o,a,r]}),Re([c,p,d])}return!t&&n>s&&(r=qe(r,[0,0],[n,s]),a=qe(a,[0,0],[s,s])),[r,a]})}var dO=L({qr_:cO}),pO=(e=>(e[e.NONE=0]="NONE",e[e.MEAN=1]="MEAN",e[e.SUM=2]="SUM",e[e.SUM_BY_NONZERO_WEIGHTS=3]="SUM_BY_NONZERO_WEIGHTS",e))(pO||{});function hO(e,t,n=3){let s=_(e,"losses","computeWeightedLoss"),r=null;t!=null&&(r=_(t,"weights","computeWeightedLoss"));let a=r==null?s:V(s,r);if(n===0)return a;if(n===2)return ve(a);if(n===1){if(r==null)return St(a);{let i=s.size/r.size,o=xe(ve(a),ve(r));return i>1?xe(o,we(i)):o}}if(n===3){if(r==null)return xe(ve(a),we(s.size));{let i=V(r,Mn(s.shape)),o=ce(ve(Yu(i,we(0))),"float32");return xe(ve(a),o)}}throw Error(`Unknown reduction: ${n}`)}var Qs=L({computeWeightedLoss_:hO});function fO(e,t,n,s=3){let r=_(e,"labels","absoluteDifference"),a=_(t,"predictions","absoluteDifference"),i=null;n!=null&&(i=_(n,"weights","absoluteDifference")),pn(r.shape,a.shape,"Error in absoluteDifference: ");let o=Mt(ge(r,a));return Qs(o,i,s)}var mO=L({absoluteDifference_:fO});function gO(e,t,n,s,r=3){let a=_(e,"labels","cosineDistance"),i=_(t,"predictions","cosineDistance"),o=null;s!=null&&(o=_(s,"weights","cosineDistance")),pn(a.shape,i.shape,"Error in cosineDistance: ");let u=we(1),l=ge(u,ve(V(a,i),n,!0));return Qs(l,o,r)}var bO=L({cosineDistance_:gO});function yO(e,t,n,s=3){let r=_(e,"labels","hingeLoss"),a=_(t,"predictions","hingeLoss"),i=null;n!=null&&(i=_(n,"weights","hingeLoss")),pn(r.shape,a.shape,"Error in hingeLoss: ");let o=we(1);r=ge(V(we(2),r),o);let u=Ys(ge(o,V(r,a)));return Qs(u,i,s)}var vO=L({hingeLoss_:yO});function xO(e,t,n,s=1,r=3){let a=_(e,"labels","huberLoss"),i=_(t,"predictions","huberLoss"),o=null;n!=null&&(o=_(n,"weights","huberLoss")),pn(a.shape,i.shape,"Error in huberLoss: ");let u=we(s),l=Mt(ge(i,a)),c=vp(l,u),p=ge(l,c),d=ie(V(we(.5),ct(c)),V(u,p));return Qs(d,o,r)}var wO=L({huberLoss_:xO});function kO(e,t,n,s=1e-7,r=3){let a=_(e,"labels","logLoss"),i=_(t,"predictions","logLoss"),o=null;n!=null&&(o=_(n,"weights","logLoss")),pn(a.shape,i.shape,"Error in logLoss: ");let u=we(1),l=we(s),c=kt(V(a,Qn(ie(i,l)))),p=V(ge(u,a),Qn(ie(ge(u,i),l))),d=ge(c,p);return Qs(d,o,r)}var IO=L({logLoss_:kO});function SO(e,t,n,s=3){let r=_(e,"labels","meanSquaredError"),a=_(t,"predictions","meanSquaredError"),i=null;n!=null&&(i=_(n,"weights","meanSquaredError")),pn(r.shape,a.shape,"Error in meanSquaredError: ");let o=CI(r,a);return Qs(o,i,s)}var CO=L({meanSquaredError_:SO});function NO(e,t){let n=_(e,"labels","sigmoidCrossEntropyWithLogits"),s=_(t,"logits","sigmoidCrossEntropyWithLogits");pn(n.shape,s.shape,"Error in sigmoidCrossEntropyWithLogits: ");let r=Ys(s),a=V(s,n),i=Zg(Yn(kt(Mt(s))));return ie(ge(r,a),i)}function TO(e,t,n,s=0,r=3){let a=_(e,"multiClassLabels","sigmoidCrossEntropy"),i=_(t,"logits","sigmoidCrossEntropy"),o=null;if(n!=null&&(o=_(n,"weights","sigmoidCrossEntropy")),pn(a.shape,i.shape,"Error in sigmoidCrossEntropy: "),s>0){let l=we(s),c=we(1),p=we(.5);a=ie(V(a,ge(c,l)),V(p,l))}let u=NO(a,i);return Qs(u,o,r)}var $O=L({sigmoidCrossEntropy_:TO});function _O(e,t,n=-1){if(n===-1&&(n=t.rank-1),n!==t.rank-1)throw Error(`Softmax cross entropy along a non-last dimension is not yet supported. Labels / logits was rank ${t.rank} and dim was ${n}`);return js((r,a,i)=>{let u=dD(a,[n],!0),l=ge(ce(a,"float32"),u);i([r,l]);let c=kt(V(l,r));return{value:ve(c,[n]),gradFunc:(h,f)=>{let[m,g]=f,b=pa(h.shape,[n]);return[V(G(h,b),ge(ce(m,"float32"),Yn(g))),V(G(h,b),ge(Yn(g),ce(m,"float32")))]}}})(e,t)}function AO(e,t,n,s=0,r=3){let a=_(e,"onehotLabels","softmaxCrossEntropy"),i=_(t,"logits","softmaxCrossEntropy"),o=null;if(n!=null&&(o=_(n,"weights","softmaxCrossEntropy")),pn(a.shape,i.shape,"Error in softmaxCrossEntropy: "),s>0){let l=we(s),c=we(1),p=we(a.shape[1]);a=ie(V(a,ge(c,l)),xe(l,p))}let u=_O(a,i);return Qs(u,o,r)}var EO=L({softmaxCrossEntropy_:AO});function RO(e,t,n,s){let r=_(e,"indices","sparseFillEmptyRows","int32"),a=_(t,"values","sparseFillEmptyRows"),i=_(n,"denseShape","sparseFillEmptyRows","int32"),o=_(s,"defaultValue","sparseFillEmptyRows",a.dtype);if(r.rank!==2)throw new Error(`Indices should be Tensor2D but received shape
|
|
${r.shape}`);if(a.rank!==1)throw new Error(`Values should be Tensor1D but received shape ${a.shape}`);if(i.rank!==1)throw new Error(`Dense shape should be Tensor1D but received shape ${i.shape}`);if(o.rank!==0)throw new Error(`Default value should be a scalar but received shape ${o.shape}`);let u={indices:r,values:a,denseShape:i,defaultValue:o},l=M.runKernel(ap,u);return{outputIndices:l[0],outputValues:l[1],emptyRowIndicator:l[2],reverseIndexMap:l[3]}}var DO=L({sparseFillEmptyRows_:RO});function FO(e,t,n){let s=_(e,"inputIndices","sparseReshape","int32"),r=_(t,"inputShape","sparseReshape","int32"),a=_(n,"newShape","sparseReshape","int32");if(s.rank!==2)throw new Error(`Input indices should be Tensor2D but received shape
|
|
${s.shape}`);if(r.rank!==1)throw new Error(`Input shape should be Tensor1D but received shape ${r.shape}`);if(a.rank!==1)throw new Error(`New shape should be Tensor1D but received shape ${a.shape}`);let i={inputIndices:s,inputShape:r,newShape:a},o=M.runKernel(_l,i);return{outputIndices:o[0],outputShape:o[1]}}var OO=L({sparseReshape_:FO});function PO(e,t,n){let s=_(e,"data","sparseSegmentMean"),r=_(t,"indices","sparseSegmentMean","int32"),a=_(n,"segmentIds","sparseSegmentMean","int32");if(s.rank<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.rank!==1)throw new Error(`Indices should be Tensor1D but received shape
|
|
${r.shape}`);if(a.rank!==1)throw new Error(`Segment ids should be Tensor1D but received shape
|
|
${a.shape}`);let i={data:s,indices:r,segmentIds:a};return M.runKernel(ip,i)}var zO=L({sparseSegmentMean_:PO});function MO(e,t,n){let s=_(e,"data","sparseSegmentSum"),r=_(t,"indices","sparseSegmentSum","int32"),a=_(n,"segmentIds","sparseSegmentSum","int32");if(s.rank<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.rank!==1)throw new Error(`Indices should be Tensor1D but received shape
|
|
${r.shape}`);if(a.rank!==1)throw new Error(`Segment ids should be Tensor1D but received shape
|
|
${a.shape}`);let i={data:s,indices:r,segmentIds:a};return M.runKernel(op,i)}var LO=L({sparseSegmentSum_:MO});function BO(e,t,n,s,r,a,i,o){let u=_(e,"data","stringNGrams","string");if(u.dtype!=="string")throw new Error("Data must be of datatype string");if(u.shape.length!==1)throw new Error(`Data must be a vector, saw: ${u.shape}`);let l=_(t,"dataSplits","stringNGrams");if(l.dtype!=="int32")throw new Error("Data splits must be of datatype int32");let c={separator:n,nGramWidths:s,leftPad:r,rightPad:a,padWidth:i,preserveShortSequences:o},p={data:u,dataSplits:l},d=M.runKernel(lp,p,c);return{nGrams:d[0],nGramsSplits:d[1]}}var VO=L({stringNGrams_:BO});function WO(e,t,n=!0){let s=_(e,"input","stringSplit","string"),r=_(t,"delimiter","stringSplit","string");if(s.rank!==1)throw new Error(`Input should be Tensor1D but received shape ${s.shape}`);if(r.rank!==0)throw new Error(`Delimiter should be a scalar but received shape ${r.shape}`);let a={skipEmpty:n},i={input:s,delimiter:r},o=M.runKernel(Ag,i,a);return{indices:o[0],values:o[1],shape:o[2]}}var UO=L({stringSplit_:WO});function GO(e,t){let n=_(e,"input","stringToHashBucketFast","string"),s={numBuckets:t};if(t<=0)throw new Error("Number of buckets must be at least 1");let r={input:n};return M.runKernel(Eg,r,s)}var HO=L({stringToHashBucketFast_:GO}),zpe={fft:db,ifft:Id,rfft:pb,irfft:SI},Mpe={hammingWindow:xF,hannWindow:FI,frame:OI,stft:SF},jn={flipLeftRight:$F,grayscaleToRGB:AF,resizeNearestNeighbor:eO,resizeBilinear:ZF,rotateWithOffset:RF,cropAndResize:NF,nonMaxSuppression:FF,nonMaxSuppressionAsync:WF,nonMaxSuppressionWithScore:GF,nonMaxSuppressionWithScoreAsync:qF,nonMaxSuppressionPadded:KF,nonMaxSuppressionPaddedAsync:YF,threshold:sO,transform:aO},qO={bandPart:oO,gramSchmidt:lO,qr:dO},Lpe={absoluteDifference:mO,computeWeightedLoss:Qs,cosineDistance:bO,hingeLoss:vO,huberLoss:wO,logLoss:IO,meanSquaredError:CO,sigmoidCrossEntropy:$O,softmaxCrossEntropy:EO},Wc={sparseFillEmptyRows:DO,sparseReshape:OO,sparseSegmentMean:zO,sparseSegmentSum:LO},Bf={stringNGrams:VO,stringSplit:UO,stringToHashBucketFast:HO},Ar=class extends Hk{minimize(e,t=!1,n){let{value:s,grads:r}=this.computeGradients(e,n);if(n!=null){let a=n.map(i=>({name:i.name,tensor:r[i.name]}));this.applyGradients(a)}else this.applyGradients(r);return Re(r),t?s:(s.dispose(),null)}get iterations(){return this.iterations_==null&&(this.iterations_=0),this.iterations_}incrementIterations(){this.iterations_=this.iterations+1}computeGradients(e,t){return eD(e,t)}dispose(){this.iterations_!=null&&Re(this.iterations_)}async saveIterations(){return this.iterations_==null&&(this.iterations_=0),{name:"iter",tensor:we(this.iterations_,"int32")}}async getWeights(){throw new Error("getWeights() is not implemented for this optimizer yet.")}async setWeights(e){throw new Error(`setWeights() is not implemented for this optimizer class ${this.getClassName()}`)}async extractIterations(e){return this.iterations_=(await e[0].tensor.data())[0],e.slice(1)}};Object.defineProperty(Ar,Symbol.hasInstance,{value:e=>e.minimize!=null&&e.computeGradients!=null&&e.applyGradients!=null});var gb=class extends Ar{constructor(e,t,n=null){super(),this.learningRate=e,this.rho=t,this.epsilon=n,this.accumulatedGrads=[],this.accumulatedUpdates=[],n==null&&(this.epsilon=M.backend.epsilon())}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=M.registeredVariables[n],a=!1;this.accumulatedGrads[s]==null&&(this.accumulatedGrads[s]={originalName:`${n}/accum_grad`,variable:j(()=>je(r).variable(a))}),this.accumulatedUpdates[s]==null&&(this.accumulatedUpdates[s]={originalName:`${n}/accum_var`,variable:j(()=>je(r).variable(a))});let i=Array.isArray(e)?e[s].tensor:e[n];if(i==null)return;let o=this.accumulatedGrads[s].variable,u=this.accumulatedUpdates[s].variable;j(()=>{let l=ie(V(o,this.rho),V(ct(i),1-this.rho)),c=V(xe(dn(ie(u,this.epsilon)),dn(ie(o,this.epsilon))),i),p=ie(V(u,this.rho),V(ct(c),1-this.rho));o.assign(l),u.assign(p);let d=ie(V(c,-this.learningRate),r);r.assign(d)})}),this.incrementIterations()}dispose(){this.accumulatedUpdates!=null&&(Re(this.accumulatedGrads.map(e=>e.variable)),Re(this.accumulatedUpdates.map(e=>e.variable)))}async getWeights(){let e=[...this.accumulatedGrads,...this.accumulatedUpdates];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=e.length/2,n=!1;this.accumulatedGrads=e.slice(0,t).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})),this.accumulatedUpdates=e.slice(t,t*2).map(s=>({originalName:s.name,variable:s.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,rho:this.rho,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.rho,t.epsilon)}};gb.className="Adadelta";$r(gb);var bb=class extends Ar{constructor(e,t=.1){super(),this.learningRate=e,this.initialAccumulatorValue=t,this.accumulatedGrads=[]}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=M.registeredVariables[n];this.accumulatedGrads[s]==null&&(this.accumulatedGrads[s]={originalName:`${n}/accumulator`,variable:j(()=>Pl(r.shape,this.initialAccumulatorValue).variable(!1))});let a=Array.isArray(e)?e[s].tensor:e[n];if(a==null)return;let i=this.accumulatedGrads[s].variable;j(()=>{let o=ie(i,ct(a));i.assign(o);let u=ie(V(xe(a,dn(ie(o,M.backend.epsilon()))),-this.learningRate),r);r.assign(u)})}),this.incrementIterations()}dispose(){this.accumulatedGrads!=null&&Re(this.accumulatedGrads.map(e=>e.variable))}async getWeights(){return[await this.saveIterations()].concat(this.accumulatedGrads.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulatedGrads=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,initialAccumulatorValue:this.initialAccumulatorValue}}static fromConfig(e,t){return new e(t.learningRate,t.initialAccumulatorValue)}};bb.className="Adagrad";$r(bb);var yb=class extends Ar{constructor(e,t,n,s=null){super(),this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=s,this.accumulatedFirstMoment=[],this.accumulatedSecondMoment=[],j(()=>{this.accBeta1=we(t).variable(),this.accBeta2=we(n).variable()}),s==null&&(this.epsilon=M.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);j(()=>{let n=ge(1,this.accBeta1),s=ge(1,this.accBeta2);t.forEach((r,a)=>{let i=M.registeredVariables[r],o=!1;this.accumulatedFirstMoment[a]==null&&(this.accumulatedFirstMoment[a]={originalName:`${r}/m`,variable:j(()=>je(i).variable(o))}),this.accumulatedSecondMoment[a]==null&&(this.accumulatedSecondMoment[a]={originalName:`${r}/v`,variable:j(()=>je(i).variable(o))});let u=Array.isArray(e)?e[a].tensor:e[r];if(u==null)return;let l=this.accumulatedFirstMoment[a].variable,c=this.accumulatedSecondMoment[a].variable,p=ie(V(l,this.beta1),V(u,1-this.beta1)),d=ie(V(c,this.beta2),V(ct(u),1-this.beta2)),h=xe(p,n),f=xe(d,s);l.assign(p),c.assign(d);let m=ie(V(xe(h,ie(dn(f),this.epsilon)),-this.learningRate),i);i.assign(m)}),this.accBeta1.assign(V(this.accBeta1,this.beta1)),this.accBeta2.assign(V(this.accBeta2,this.beta2))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.accBeta2.dispose(),this.accumulatedFirstMoment!=null&&Re(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedSecondMoment!=null&&Re(this.accumulatedSecondMoment.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedFirstMoment,...this.accumulatedSecondMoment];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e),j(()=>{this.accBeta1.assign(ha(this.beta1,this.iterations_+1)),this.accBeta2.assign(ha(this.beta2,this.iterations_+1))});let t=e.length/2,n=!1;this.accumulatedFirstMoment=e.slice(0,t).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})),this.accumulatedSecondMoment=e.slice(t,t*2).map(s=>({originalName:s.name,variable:s.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon)}};yb.className="Adam";$r(yb);var vb=class extends Ar{constructor(e,t,n,s=null,r=0){super(),this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=s,this.decay=r,this.accumulatedFirstMoment=[],this.accumulatedWeightedInfNorm=[],j(()=>{this.iteration=we(0).variable(),this.accBeta1=we(t).variable()}),s==null&&(this.epsilon=M.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);j(()=>{let n=ge(1,this.accBeta1),s=xe(-this.learningRate,ie(V(this.iteration,this.decay),1));t.forEach((r,a)=>{let i=M.registeredVariables[r],o=!1;this.accumulatedFirstMoment[a]==null&&(this.accumulatedFirstMoment[a]={originalName:`${r}/m`,variable:je(i).variable(o)}),this.accumulatedWeightedInfNorm[a]==null&&(this.accumulatedWeightedInfNorm[a]={originalName:`${r}/v`,variable:je(i).variable(o)});let u=Array.isArray(e)?e[a].tensor:e[r];if(u==null)return;let l=this.accumulatedFirstMoment[a].variable,c=this.accumulatedWeightedInfNorm[a].variable,p=ie(V(l,this.beta1),V(u,1-this.beta1)),d=V(c,this.beta2),h=Mt(u),f=_r(d,h);l.assign(p),c.assign(f);let m=ie(V(xe(s,n),xe(p,ie(f,this.epsilon))),i);i.assign(m)}),this.iteration.assign(ie(this.iteration,1)),this.accBeta1.assign(V(this.accBeta1,this.beta1))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.iteration.dispose(),this.accumulatedFirstMoment!=null&&Re(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedWeightedInfNorm!=null&&Re(this.accumulatedWeightedInfNorm.map(e=>e.variable))}async getWeights(){throw new Error("getWeights() is not implemented for Adamax yet.")}async setWeights(e){throw new Error("setWeights() is not implemented for Adamax yet.")}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon,decay:this.decay}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon,t.decay)}};vb.className="Adamax";$r(vb);var Cp=class extends Ar{constructor(e){super(),this.learningRate=e,this.setLearningRate(e)}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=Array.isArray(e)?e[s].tensor:e[n];if(r==null)return;let a=M.registeredVariables[n];j(()=>{let i=ie(V(this.c,r),a);a.assign(i)})}),this.incrementIterations()}setLearningRate(e){this.learningRate=e,this.c!=null&&this.c.dispose(),this.c=Ht(we(-e))}dispose(){this.c.dispose()}async getWeights(){return[await this.saveIterations()]}async setWeights(e){if(e=await this.extractIterations(e),e.length!==0)throw new Error("SGD optimizer does not have settable weights.")}getConfig(){return{learningRate:this.learningRate}}static fromConfig(e,t){return new e(t.learningRate)}};Cp.className="SGD";$r(Cp);var xb=class extends Cp{constructor(e,t,n=!1){super(e),this.learningRate=e,this.momentum=t,this.useNesterov=n,this.accumulations=[],this.m=we(this.momentum)}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=M.registeredVariables[n];this.accumulations[s]==null&&(this.accumulations[s]={originalName:`${n}/momentum`,variable:j(()=>je(r).variable(!1))});let a=this.accumulations[s].variable,i=Array.isArray(e)?e[s].tensor:e[n];i!=null&&j(()=>{let o,u=ie(V(this.m,a),i);this.useNesterov?o=ie(V(this.c,ie(i,V(u,this.m))),r):o=ie(V(this.c,u),r),a.assign(u),r.assign(o)})}),this.incrementIterations()}dispose(){this.m.dispose(),this.accumulations!=null&&Re(this.accumulations.map(e=>e.variable))}setMomentum(e){this.momentum=e}async getWeights(){return[await this.saveIterations()].concat(this.accumulations.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulations=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,momentum:this.momentum,useNesterov:this.useNesterov}}static fromConfig(e,t){return new e(t.learningRate,t.momentum,t.useNesterov)}};xb.className="Momentum";$r(xb);var wb=class extends Ar{constructor(e,t=.9,n=0,s=null,r=!1){if(super(),this.learningRate=e,this.decay=t,this.momentum=n,this.epsilon=s,this.accumulatedMeanSquares=[],this.accumulatedMoments=[],this.accumulatedMeanGrads=[],this.centered=r,s==null&&(this.epsilon=M.backend.epsilon()),e==null)throw new Error("learningRate for RMSPropOptimizer must be defined.")}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=M.registeredVariables[n],a=!1;this.accumulatedMeanSquares[s]==null&&(this.accumulatedMeanSquares[s]={originalName:`${n}/rms`,variable:j(()=>je(r).variable(a))}),this.accumulatedMoments[s]==null&&(this.accumulatedMoments[s]={originalName:`${n}/momentum`,variable:j(()=>je(r).variable(a))}),this.accumulatedMeanGrads[s]==null&&this.centered&&(this.accumulatedMeanGrads[s]={originalName:`${n}/mg`,variable:j(()=>je(r).variable(a))});let i=Array.isArray(e)?e[s].tensor:e[n];if(i==null)return;let o=this.accumulatedMeanSquares[s].variable,u=this.accumulatedMoments[s].variable;j(()=>{let l=ie(V(o,this.decay),V(ct(i),1-this.decay));if(this.centered){let c=this.accumulatedMeanGrads[s].variable,p=ie(V(c,this.decay),V(i,1-this.decay)),d=xe(V(i,this.learningRate),dn(ge(l,ie(ct(p),this.epsilon)))),h=ie(V(u,this.momentum),d);o.assign(l),c.assign(p),u.assign(h);let f=ge(r,h);r.assign(f)}else{let c=ie(V(o,this.decay),V(ct(i),1-this.decay)),p=ie(V(u,this.momentum),xe(V(i,this.learningRate),dn(ie(c,this.epsilon))));o.assign(c),u.assign(p);let d=ge(r,p);r.assign(d)}})}),this.incrementIterations()}dispose(){this.accumulatedMeanSquares!=null&&Re(this.accumulatedMeanSquares.map(e=>e.variable)),this.accumulatedMeanGrads!=null&&this.centered&&Re(this.accumulatedMeanGrads.map(e=>e.variable)),this.accumulatedMoments!=null&&Re(this.accumulatedMoments.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedMeanSquares,...this.accumulatedMoments];return this.centered&&e.push(...this.accumulatedMeanGrads),[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=this.centered?e.length/3:e.length/2,n=!1;this.accumulatedMeanSquares=e.slice(0,t).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})),this.accumulatedMoments=e.slice(t,t*2).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})),this.centered&&(this.accumulatedMeanGrads=e.slice(t*2,t*3).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})))}getConfig(){return{learningRate:this.learningRate,decay:this.decay,momentum:this.momentum,epsilon:this.epsilon,centered:this.centered}}static fromConfig(e,t){return new e(t.learningRate,t.decay,t.momentum,t.epsilon,t.centered)}};wb.className="RMSProp";$r(wb);var Ur=class{static sgd(e){return new Cp(e)}static momentum(e,t,n=!1){return new xb(e,t,n)}static rmsprop(e,t=.9,n=0,s=null,r=!1){return new wb(e,t,n,s,r)}static adam(e=.001,t=.9,n=.999,s=null){return new yb(e,t,n,s)}static adadelta(e=.001,t=.95,n=null){return new gb(e,t,n)}static adamax(e=.002,t=.9,n=.999,s=null,r=0){return new vb(e,t,n,s,r)}static adagrad(e,t=.1){return new bb(e,t)}},Mi={sgd:Ur.sgd,momentum:Ur.momentum,adadelta:Ur.adadelta,adagrad:Ur.adagrad,rmsprop:Ur.rmsprop,adamax:Ur.adamax,adam:Ur.adam},jO=(()=>typeof requestAnimationFrame!="undefined"?requestAnimationFrame:typeof setImmediate!="undefined"?setImmediate:e=>e())();function LI(){return new Promise(e=>jO(()=>e()))}var S={};Ae(S,{ERF_A1:()=>rP,ERF_A2:()=>aP,ERF_A3:()=>iP,ERF_A4:()=>oP,ERF_A5:()=>uP,ERF_P:()=>sP,PARALLELIZE_THRESHOLD:()=>kb,SELU_SCALE:()=>VI,SELU_SCALEALPHA:()=>BI,applyActivation:()=>Ip,assertAndGetBroadcastShape:()=>ot,assertAxesAreInnerMostDims:()=>uD,assertParamsConsistent:()=>KO,assignToTypedArray:()=>fP,axesAreInnerMostDims:()=>Jg,calculateShapes:()=>Ok,checkEinsumDimSizes:()=>xP,checkPadOnDimRoundingMode:()=>hn,combineLocations:()=>dI,complexWithEvenIndex:()=>dP,complexWithOddIndex:()=>pP,computeConv2DInfo:()=>Ol,computeConv3DInfo:()=>Zk,computeDefaultPad:()=>Hg,computeDilation2DInfo:()=>gE,computeOptimalWindowSize:()=>YO,computeOutAndReduceShapes:()=>pI,computeOutShape:()=>XO,computePool2DInfo:()=>Qk,computePool3DInfo:()=>bE,convertConv2DDataFormat:()=>Jk,decodeEinsumEquation:()=>yP,eitherStridesOrDilationsAreOne:()=>Ps,expandShapeToKeepDim:()=>pa,exponent:()=>gP,exponents:()=>mP,fromStringArrayToUint8:()=>VP,fromUint8ToStringArray:()=>BP,getAxesPermutation:()=>hI,getBroadcastDims:()=>_k,getComplexWithIndex:()=>hP,getEinsumComputePath:()=>wP,getEinsumPermutation:()=>vP,getFusedBiasGradient:()=>kp,getFusedDyActivation:()=>wp,getImageCenter:()=>QO,getInnerMostAxes:()=>lD,getPermuted:()=>JO,getReductionAxes:()=>_t,getReshaped:()=>ZO,getReshapedPermuted:()=>eP,getSliceBeginCoords:()=>tP,getSliceSize:()=>nP,getSparseFillEmptyRowsIndicesDenseShapeMismatch:()=>CP,getSparseFillEmptyRowsNegativeIndexErrorMessage:()=>NP,getSparseFillEmptyRowsOutOfRangeIndexErrorMessage:()=>TP,getSparseReshapeEmptyTensorZeroOutputDimErrorMessage:()=>AP,getSparseReshapeInputOutputMismatchErrorMessage:()=>RP,getSparseReshapeInputOutputMultipleErrorMessage:()=>EP,getSparseReshapeMultipleNegativeOneOutputDimErrorMessage:()=>$P,getSparseReshapeNegativeOutputDimErrorMessage:()=>_P,getSparseSegmentReductionIndicesOutOfRangeErrorMessage:()=>PP,getSparseSegmentReductionNegativeSegmentIdsErrorMessage:()=>DP,getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage:()=>FP,getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage:()=>OP,getUndoAxesPermutation:()=>eb,isIdentityPermutation:()=>kP,log:()=>M$,mergeRealAndImagArrays:()=>lP,prepareAndValidate:()=>Dk,prepareSplitSize:()=>SP,segment_util:()=>WI,shouldFuse:()=>Sp,slice_util:()=>wt,splitRealAndImagArrays:()=>cP,tupleValuesAreOne:()=>mr,upcastType:()=>cn,validateInput:()=>Wg,validateUpdateShape:()=>Vg,warn:()=>ir});function KO(e,t){let n=e[0].length;e.forEach((r,a)=>{O(r.length===n,()=>`Error in concat${n}D: rank of tensors[${a}] must be the same as the rank of the rest (${n})`)}),O(t>=0&&t<n,()=>`Error in concat${n}D: axis must be between 0 and ${n-1}.`);let s=e[0];e.forEach((r,a)=>{for(let i=0;i<n;i++)O(i===t||r[i]===s[i],()=>`Error in concat${n}D: Shape of tensors[${a}] (${r}) does not match the shape of the rest (${s}) along the non-concatenated axis ${a}.`)})}function XO(e,t){let n=e[0].slice();for(let s=1;s<e.length;s++)n[t]+=e[s][t];return n}var kb=30;function YO(e){return e<=kb?e:hd(e,Math.floor(Math.sqrt(e)))}function QO(e,t,n){let s=n*(typeof e=="number"?e:e[0]),r=t*(typeof e=="number"?e:e[1]);return[s,r]}function ZO(e,t,n,s=!0){let r=[];if(s)r=r.concat(t.slice(0)),r.push(e[0]/n),r=r.concat(e.slice(1));else{r=r.concat(e[0]);let a=t.length;for(let i=0;i<a;++i)r=r.concat([e[i+1]/t[i],t[i]]);r=r.concat(e.slice(a+1))}return r}function JO(e,t,n=!0){let s=[];if(n){s.push(t);for(let r=t+1;r<e;++r)r<=2*t?(s.push(r),s.push(r-(t+1))):s.push(r)}else{let r=[],a=[];for(let i=1;i<e;++i)i>=t*2+1||i%2===1?a.push(i):r.push(i);s.push(...r),s.push(0),s.push(...a)}return s}function eP(e,t,n,s=!0){let r=[];s?r.push(e[0]/n):r.push(e[0]*n);for(let a=1;a<e.length;++a)a<=t.length?s?r.push(t[a-1]*e[a]):r.push(e[a]/t[a-1]):r.push(e[a]);return r}function tP(e,t){let n=[0];for(let s=0;s<t;++s)n.push(e[s][0]);return n}function nP(e,t,n){let s=e.slice(0,1);for(let r=0;r<n;++r)s.push(e[r+1]-t[r][0]-t[r][1]);return s}var BI=1.7580993408473768,VI=1.0507009873554805,sP=.3275911,rP=.254829592,aP=-.284496736,iP=1.421413741,oP=-1.453152027,uP=1.061405429;function lP(e,t){if(e.length!==t.length)throw new Error(`Cannot merge real and imag arrays of different lengths. real:${e.length}, imag: ${t.length}.`);let n=new Float32Array(e.length*2);for(let s=0;s<n.length;s+=2)n[s]=e[s/2],n[s+1]=t[s/2];return n}function cP(e){let t=new Float32Array(e.length/2),n=new Float32Array(e.length/2);for(let s=0;s<e.length;s+=2)t[s/2]=e[s],n[s/2]=e[s+1];return{real:t,imag:n}}function dP(e){let t=Math.ceil(e.length/4),n=new Float32Array(t),s=new Float32Array(t);for(let r=0;r<e.length;r+=4)n[Math.floor(r/4)]=e[r],s[Math.floor(r/4)]=e[r+1];return{real:n,imag:s}}function pP(e){let t=Math.floor(e.length/4),n=new Float32Array(t),s=new Float32Array(t);for(let r=2;r<e.length;r+=4)n[Math.floor(r/4)]=e[r],s[Math.floor(r/4)]=e[r+1];return{real:n,imag:s}}function hP(e,t){let n=e[t*2],s=e[t*2+1];return{real:n,imag:s}}function fP(e,t,n,s){e[s*2]=t,e[s*2+1]=n}function mP(e,t){let n=new Float32Array(e/2),s=new Float32Array(e/2);for(let r=0;r<Math.ceil(e/2);r++){let a=(t?2:-2)*Math.PI*(r/e);n[r]=Math.cos(a),s[r]=Math.sin(a)}return{real:n,imag:s}}function gP(e,t,n){let s=(n?2:-2)*Math.PI*(e/t),r=Math.cos(s),a=Math.sin(s);return{real:r,imag:a}}var Vf="->",bP=/->/g,yx=",",vx="...";function yP(e,t){e=e.replace(/\s/g,"");let n=(e.length-e.replace(bP,"").length)/Vf.length;if(n<1)throw new Error("Equations without an arrow are not supported.");if(n>1)throw new Error(`Equation must contain exactly one arrow ("${Vf}").`);let[s,r]=e.split(Vf);O(s.indexOf(vx)===-1,()=>`The ellipsis notation ("${vx}") is not supported yet.`);let a=s.split(yx),i=a.length;if(t!==i)throw new Error(`Expected ${i} input tensors, received ${t}`);if(i>2)throw new Error("Support for more than 2 input tensors is not implemented yet.");let o=[];for(let d=0;d<r.length;++d){let h=r[d];if(!a.some(f=>f.indexOf(h)!==-1))throw new Error(`Output subscripts contain the label ${h} not present in the input subscripts.`);o.indexOf(h)===-1&&o.push(h)}for(let d=0;d<s.length;++d){let h=s[d];o.indexOf(h)===-1&&h!==yx&&o.push(h)}let u=new Array(a.length);for(let d=0;d<i;++d){if(new Set(a[d].split("")).size!==a[d].length)throw new Error(`Found duplicate axes in input component ${a[d]}. Support for duplicate axes in input is not implemented yet.`);u[d]=[];for(let h=0;h<a[d].length;++h)u[d].push(o.indexOf(a[d][h]))}let l=o.length,c=r.length,p=[];for(let d=c;d<l;++d)p.push(d);return{allDims:o,summedDims:p,idDims:u}}function vP(e,t){let n=new Array(e);n.fill(-1);for(let r=0;r<t.length;++r)n[t[r]]=r;let s=[];for(let r=0;r<e;++r)n[r]===-1&&s.push(r);return n=n.filter(r=>r!==-1),{permutationIndices:n,expandDims:s}}function xP(e,t,n){let s=new Array(e);for(let r=0;r<n.length;++r){let a=n[r].shape;for(let i=0;i<t[r].length;++i)s[t[r][i]]===void 0?s[t[r][i]]=a[i]:O(s[t[r][i]]===a[i],()=>`Expected dimension ${s[t[r][i]]} at axis ${i} of input shaped ${JSON.stringify(a)}, but got dimension ${a[i]}`)}}function wP(e,t){let n=e,s=[],r=0;e.length===0&&n.push(-1),r=e.length+1;for(let i=0;i<r;++i)s.push([]);let a=[];for(let i=0;i<n.length;++i){let o=n[i],u=IP(t,o);for(let l of u)a.indexOf(l)===-1&&(s[i].push(l),a.push(l))}return{path:n,steps:s}}function kP(e){return e.every((t,n)=>t===n)}function IP(e,t){let n=[];for(let s=0;s<e.length;++s)(e[s].length===0||e[s].indexOf(t)!==-1||t===-1)&&n.push(s);return n}function SP(e,t,n=0){let s=[];if(typeof t=="number")O(e.shape[n]%t===0,()=>"Number of splits must evenly divide the axis."),s=new Array(t).fill(e.shape[n]/t);else{let r=t.reduce((i,o)=>(o===-1&&(i+=1),i),0);O(r<=1,()=>"There should be only one negative value in split array.");let a=t.indexOf(-1);if(a!==-1){let i=t.reduce((o,u)=>u>0?o+u:o);t[a]=e.shape[n]-i}O(e.shape[n]===t.reduce((i,o)=>i+o),()=>"The sum of sizes must match the size of the axis dimension."),s=t}return s}function CP(e){return`Received SparseTensor with denseShape[0] = 0 but
|
|
indices.shape[0] = ${e}`}function NP(e,t){return`indices(${e}, 0) is invalid: ${t} < 0`}function TP(e,t,n){return`indices(${e}, 0) is invalid: ${t} >= ${n}`}function $P(e,t){return`only one output dimension may be -1, not both ${e} and ${t}`}function _P(e,t){return`size ${e} must be non-negative, not ${t}`}function AP(){return"reshape cannot infer the missing input size for an empty tensor unless all specified input sizes are non-zero"}function EP(e,t){let n=pt(e),s=pt(t);return`Input to reshape is a SparseTensor with ${n}
|
|
dense values, but the requested shape requires a multiple of ${s}. inputShape=${e} outputShape= ${t}`}function RP(e,t){let n=pt(e),s=pt(t);return`Input to reshape is a tensor with ${n} dense values, but the requested shape has ${s}. inputShape=${e} outputShape=${t}`}function DP(){return"segment ids must be >= 0"}function FP(){return"segment ids are not increasing"}function OP(e,t){return`Segment id ${e} out of range [0, ${t}), possibly because segmentIds input is not sorted.`}function PP(e,t,n){return`Bad: indices[${e}] == ${t} out of range [0, ${n})`}var WI={};Ae(WI,{collectGatherOpShapeInfo:()=>LP,computeOutShape:()=>MP,segOpComputeOptimalWindowSize:()=>zP});function zP(e,t){let n=!1,s;for(e<=kb?(s=e,n=!0):s=hd(e,Math.floor(Math.sqrt(e)));!n;)s>t||s===e?n=!0:s=hd(e,s+1);return s}function MP(e,t,n){let s=[],r=e.length;for(let a=0;a<r;a++)a!==t?s.push(e[a]):s.push(n);return s}function LP(e,t,n,s){let r=t.shape.length,a=e.shape.length;if(s!==0&&(s<-r||s>r))throw new Error(`Expect batchDims in the range of [-${r}, ${r}], but got ${s}`);if(s<0&&(s+=r),s>a)throw new Error(`batchDims (${s}) must be less than rank(x) (
|
|
${a}).`);if(n<s)throw new Error(`batchDims (${s}) must be less than or equal to axis (${n}).`);for(let p=0;p<s;++p)if(e.shape[p]!==t.shape[p])throw new Error(`x.shape[${p}]: ${e.shape[p]} should be equal to indices.shape[${p}]: ${t.shape[p]}.`);let i=e.shape[n],o=[],u=1,l=1,c=1;for(let p=0;p<s;++p)o.push(e.shape[p]),u*=e.shape[p];for(let p=s;p<n;p++)o.push(e.shape[p]),l*=e.shape[p];for(let p=s;p<r;p++)o.push(t.shape[p]);for(let p=n+1;p<a;p++)o.push(e.shape[p]),c*=e.shape[p];return{batchSize:u,sliceSize:c,outerSize:l,dimSize:i,outputShape:o}}function BP(e){try{return e.map(t=>md(t))}catch(t){throw new Error(`Failed to decode encoded string bytes into utf-8, error: ${t}`)}}function VP(e){return e.map(t=>Dl(t))}var xs={};Ae(xs,{nonMaxSuppressionV3Impl:()=>PI,nonMaxSuppressionV4Impl:()=>zI,nonMaxSuppressionV5Impl:()=>MI,whereImpl:()=>NI});var Vs=class extends Error{constructor(e){super(e),Object.setPrototypeOf(this,Vs.prototype)}},hs=class extends Error{constructor(e){super(e),Object.setPrototypeOf(this,hs.prototype)}},U=class extends Error{constructor(e){super(e),Object.setPrototypeOf(this,U.prototype)}},Fe=class extends Error{constructor(e){super(e),Object.setPrototypeOf(this,Fe.prototype)}},UI=class extends Error{constructor(e){super(e),Object.setPrototypeOf(this,UI.prototype)}},GI=class{constructor(e){this.maxEntries=e||100,this.cache=new Map}get(e){let t;return this.cache.has(e)&&(t=this.cache.get(e),this.cache.delete(e),this.cache.set(e,t)),t}put(e,t){if(this.cache.has(e))this.cache.delete(e);else if(this.cache.size>=this.maxEntries){let n=this.cache.keys().next().value;this.cache.delete(n)}this.cache.set(e,t)}getMaxEntries(){return this.maxEntries}setMaxEntries(e){if(e<0)throw new Error(`The maxEntries of LRU caches must be at least 0, but got ${e}.`);if(this.maxEntries>e)for(let t=0;t<this.maxEntries-e;t++){let n=this.cache.keys().next().value;this.cache.delete(n)}this.maxEntries=e}};function ma(e,t){if(Array.isArray(e)){let n=[];for(let s=0;s<t;s++)n=n.concat(e);return n}else{let n=new Array(t);return n.fill(e),n}}function Cs(e,t){if(!e)throw new UI(t)}function xx(e,t){let n=0;for(let s of e)s===t&&n++;return n}function bn(e){return e.length===1?e[0]:e}function dt(e){return Array.isArray(e)?e:[e]}function Ws(e){let n=e.replace(/(.)([A-Z][a-z0-9]+)/g,"$1_$2").replace(/([a-z])([A-Z])/g,"$1_$2").toLowerCase();return n[0]!=="_"?n:"private"+n}function Xr(e){return e.length<=1||e.indexOf("_")===-1?e:e.replace(/[_]+(\w|$)/g,(t,n)=>n.toUpperCase())}var Hn={};function Ib(e){if(e==null)return null;let t={};return t.className=e.getClassName(),t.config=e.getConfig(),t}function bm(e){if(!(e==null||typeof e!="object"))if(Array.isArray(e))e.forEach(t=>bm(t));else{let t=Object.keys(e);for(let n of t){let s=e[n];s!=null&&typeof s=="object"&&(!Array.isArray(s)&&s.type==="ndarray"&&typeof s.value=="number"?e[n]=s.value:bm(s))}}}function Ll(e,t={},n={},s="object",r=!1){if(typeof e=="string"){let a=e,i;if(a in n)i=n[a];else if(a in Hn)i=Hn[a];else if(i=t[a],i==null)throw new U(`Unknown ${s}: ${e}. This may be due to one of the following reasons:
|
|
1. The ${s} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
|
|
2. The custom ${s} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);return i}else{let a=e;if(a.className==null||a.config==null)throw new U(`${s}: Improper config format: ${JSON.stringify(a)}.
|
|
'className' and 'config' must set.`);let i=a.className,o,u;if(i in n?[o,u]=n[i]:i in Hn?[o,u]=Hn.className:i in t&&([o,u]=t[i]),o==null)throw new U(`Unknown ${s}: ${i}. This may be due to one of the following reasons:
|
|
1. The ${s} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
|
|
2. The custom ${s} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);if(u!=null){let l={};for(let h of Object.keys(Hn))l[h]=Hn[h];for(let h of Object.keys(n))l[h]=n[h];let c=a.config;c.customObjects=l;let p={...Hn};for(let h of Object.keys(n))Hn[h]=n[h];bm(a.config);let d=u(o,a.config,n,r);return Hn={...p},d}else{let l={...Hn};for(let p of Object.keys(n))Hn[p]=n[p];let c=new o(a.config);return Hn={...l},c}}}function WP(e,t){return e<t?-1:e>t?1:0}function Uc(e,t){return-1*WP(e,t)}function dr(e){if(e==null)return e;let t=[];for(let n of e)t.indexOf(n)===-1&&t.push(n);return t}function UP(e){if(e==null)throw new U(`Invalid value in obj: ${JSON.stringify(e)}`);for(let t in e)if(e.hasOwnProperty(t))return!1;return!0}function yi(e,t,n){if(n!=null&&e.indexOf(n)<0)throw new U(`${n} is not a valid ${t}. Valid values are ${e} or null/undefined.`)}function Sb(e,t,n=0,s=1/0){return Cs(n>=0),Cs(s>=n),Array.isArray(e)&&e.length>=n&&e.length<=s&&e.every(r=>typeof r===t)}function Bt(e,t){Array.isArray(e)?(w.assert(e.length>0,()=>`${t} is unexpectedly an empty array.`),e.forEach((n,s)=>Bt(n,`element ${s+1} of ${t}`))):w.assert(Number.isInteger(e)&&e>0,()=>`Expected ${t} to be a positive integer, but got ${HI(e)}.`)}function HI(e){return e===null?"null":Array.isArray(e)?"["+e.map(t=>HI(t)).join(",")+"]":typeof e=="string"?`"${e}"`:`${e}`}function GP(e,t,n){let s=n!=null?n():w.now(),r;return(...i)=>{let o=n!=null?n():w.now();return o-s<t||(s=o,r=e(...i)),r}}function qI(e){return e==="relu"?"relu":e==="linear"?"linear":e==="elu"?"elu":null}var HP=0;function jI(){return HP++}var Gc={};function Np(e=""){return e in Gc||(Gc[e]=0),Gc[e]+=1,e+Gc[e].toString()}var qP=["channelsFirst","channelsLast"],jP=["nearest","bilinear"],KP=["valid","same","causal"],XP=["max","avg"],YP=["sum","mul","concat","ave"],Li=new Map;function Ct(e){yi(qP,"DataFormat",e)}function QP(e){yi(jP,"InterpolationFormat",e)}function Gn(e){yi(KP,"PaddingMode",e)}function KI(e){yi(XP,"PoolMode",e)}var Lu=[],wx="/";function ta(e,t){Lu.push(e);try{let n=t();return Lu.pop(),n}catch(n){throw Lu.pop(),n}}function ZP(){return Lu.length===0?"":Lu.join(wx)+wx}function XI(e){if(!QI(e))throw new Error("Not a valid tensor name: '"+e+"'");return ZP()+e}function YI(e){if(!QI(e))throw new Error("Not a valid tensor name: '"+e+"'");Li.has(e)||Li.set(e,0);let t=Li.get(e);if(Li.set(e,Li.get(e)+1),t>0){let n=`${e}_${t}`;return Li.set(n,1),n}else return e}var JP=new RegExp(/^[A-Za-z0-9][-A-Za-z0-9\._\/]*$/);function QI(e){return!!e.match(JP)}function ez(e){return e===parseInt(e.toString(),10)}function pr(e,t,n){t==null&&(t=0),n==null&&(n=e.length);let s=1;for(let r=t;r<n;++r)s*=e[r];return s}function eo(e){if(e.length===0)return Number.NaN;let t=Number.POSITIVE_INFINITY;for(let n=0;n<e.length;n++){let s=e[n];s<t&&(t=s)}return t}function br(e){if(e.length===0)return Number.NaN;let t=Number.NEGATIVE_INFINITY;for(let n=0;n<e.length;n++){let s=e[n];s>t&&(t=s)}return t}function bs(e,t){if(t<e)throw new U(`end (${t}) < begin (${e}) is forbidden.`);let n=[];for(let s=e;s<t;++s)n.push(s);return n}var Wf;function Rt(){return Wf==null&&(Wf=UA().epsilon()),Wf}function ys(){return"channelsLast"}function Tp(e,t){return ce(e,t)}function Bl(e,t=-1){let n=e.shape.slice();return t<0&&(t=n.length+t+1),n.splice(t,0,1),G(e,n)}function tz(e,t){return j(()=>{if(e.shape.length!==2)throw new U(`repeat() expects a rank-2 tensor, but received a rank-${e.shape.length} tensor.`);let n=Bl(e,1);return ym(n,[1,t,1])})}function nz(e){let t=[pr(e.shape)];return G(e,t)}function sz(e){if(e.rank<=1)throw new U(`batchFlatten requires a minimum rank of 2. Got rank: ${e.rank}.`);let t=[e.shape[0],pr(e.shape,1)];return G(e,t)}function na(e,t,n){return j(()=>{switch(e.rank){case 1:return ub(e,t,n);case 2:return II(e,[t,0],[n,e.shape[1]]);case 3:return lb(e,[t,0,0],[n,e.shape[1],e.shape[2]]);case 4:return kd(e,[t,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3]]);case 5:return qe(e,[t,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4]]);case 6:return qe(e,[t,0,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4],e.shape[5]]);default:throw new U(`sliceAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}})}function Uf(e,t,n){return j(()=>{switch(e.rank){case 1:return ub(e,t,n);case 2:return II(e,[0,t],[e.shape[0],n]);case 3:return lb(e,[0,0,t],[e.shape[0],e.shape[1],n]);case 4:return kd(e,[0,0,0,t],[e.shape[0],e.shape[1],e.shape[2],n]);default:throw new U(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function Hc(e,t,n,s){return j(()=>{switch(e.rank){case 1:return ub(e,t,n);case 2:switch(s){case 1:return na(e,t,n);case 2:return Uf(e,t,n);default:throw new U(`The axis is not within the rank of the tensor ${s}`)}case 3:switch(s){case 1:return na(e,t,n);case 2:return lb(e,[0,t,0],[e.shape[0],n,e.shape[2]]);case 3:return Uf(e,t,n);default:throw new U(`The axis is not within the rank of the tensor ${s}`)}case 4:switch(s){case 1:return na(e,t,n);case 2:return kd(e,[0,t,0,0],[e.shape[0],n,e.shape[2],e.shape[3]]);case 3:return kd(e,[0,0,t,0],[e.shape[0],e.shape[1],n,e.shape[3]]);case 4:return Uf(e,t,n);default:throw new U(`The axis is not within the rank of the tensor ${s}`)}default:throw new U(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function Cb(e,t=-1){let n;return t<0&&(n=e[0].rank,n!==0?t=n:t=0),t===e[0].rank&&(t=-1),Ft(e,t)}function kx(e,t){switch(e.rank){case 1:return jE([e,t]);case 2:return XE([e,t],0);case 3:return QE([e,t],0);case 4:return JE([e,t],0);default:throw new U(`concatAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}}function ym(e,t){if(Array.isArray(t)||(t=[t]),e.rank!==t.length)throw new U(`The length of input n (${t.length}) does not match the number of dimensions in input x (${e.rank})`);return ps(e,t)}function $p(e,t=0,n=1,s,r){return JD(e,t,n,s,r)}function Es(e,t,n,s){if(e.rank<2||t.rank<2)throw new Fe(`dot requires both inputs to be rank >= 2 but got x shape = ${e.shape} and y shape = ${t.shape}`);if(t.rank>=3){let r=e.shape.slice(-1)[0],a=t.shape.slice(-2)[0];if(r!==a)throw new Fe(`If rank y >= 3, then the second last dim of y must equal the last dim of x but got x shape = ${e.shape} and y shape = ${t.shape}`)}if(e.rank===2&&t.rank===2)return fa.matMul({a:e,b:t,transposeA:!1,transposeB:!1,bias:s?vm(e.rank,s,ys()):null,activation:n});{let r=e.shape.slice(),a=r.pop();e=G(e,[-1,a]);let i=t.shape.slice(),o=i.pop(),u=i.pop(),l=[...i,o],c=Array.from({length:t.rank},(f,m)=>m===0?t.rank-2:m<=t.rank-2?m-1:m);t=G(Ge(t,c),[u,-1]);let p=[...r,...l],d=!1,h=!1;return G(fa.matMul({a:e,b:t,transposeA:d,transposeB:h,bias:s?vm(e.rank,s,ys()):null,activation:n}),p)}}function ZI(e,t,n){return j(()=>(Array.isArray(t)?t=Zt(t,"int32"):t=ce(t,"int32"),Xu(e,t,n)))}function Vl(e){return V(e,e)}function vm(e,t,n){let s=t.shape;if(t.rank!==1&&t.rank!==e)throw new U(`Unexpected bias dimensions: ${t.rank}; expected it to be 1 or ${e}`);if(e===5){if(n==="channelsFirst")return s.length===1?G(t,[1,s[0],1,1,1]):G(t,[1,s[3],s[0],s[1],s[2]]);if(n==="channelsLast")return s.length===1?G(t,[1,1,1,1,s[0]]):G(t,[1].concat(s))}else if(e===4){if(n==="channelsFirst")return s.length===1?G(t,[1,s[0],1,1]):G(t,[1,s[2],s[0],s[1]]);if(n==="channelsLast")return s.length===1?G(t,[1,1,1,s[0]]):G(t,[1].concat(s))}else if(e===3){if(n==="channelsFirst")return s.length===1?G(t,[1,s[0],1]):G(t,[1,s[1],s[0]]);if(n==="channelsLast")return s.length===1?G(t,[1,1,s[0]]):G(t,[1].concat(s))}else if(e<3)return t;throw new U(`Unsupported input rank by biasAdd: ${t.rank}`)}function ws(e,t,n){return j(()=>(n==null&&(n=ys()),Ct(n),ie(e,vm(e.rank,t,n))))}function rz(e,t=1){if(t!==1)throw new Fe(`Support for alpha values other than 1 (${t}) is not implemented yet.`);return gp(e)}function az(e){return j(()=>xe(e,ie(Mt(e),1)))}function JI(e,t,n,s){return j(()=>oF(e,t,n,s))}function iz(e){return j(()=>{let t=ie(.5,V(.2,e));return Vn(t,0,1)})}function Wl(e,t,n=!1){return n?e():t()}var oz=["fanIn","fanOut","fanAvg"],uz=["normal","uniform","truncatedNormal"];function lz(e){yi(oz,"FanMode",e)}function cz(e){yi(uz,"Distribution",e)}var ns=class extends ae.Serializable{fromConfigUsesCustomObjects(){return!1}getConfig(){return{}}},Nb=class extends ns{apply(e,t){return $t(e,t)}};Nb.className="Zeros";ae.registerClass(Nb);var _p=class extends ns{apply(e,t){return Mn(e,t)}};_p.className="Ones";ae.registerClass(_p);var Tb=class extends ns{constructor(e){if(super(),typeof e!="object")throw new U(`Expected argument of type ConstantConfig but got ${e}`);if(e.value===void 0)throw new U(`config must have value set but got ${e}`);this.value=e.value}apply(e,t){return j(()=>V(we(this.value),Mn(e,t)))}getConfig(){return{value:this.value}}};Tb.className="Constant";ae.registerClass(Tb);var $b=class extends ns{constructor(e){super(),this.DEFAULT_MINVAL=-.05,this.DEFAULT_MAXVAL=.05,this.minval=e.minval||this.DEFAULT_MINVAL,this.maxval=e.maxval||this.DEFAULT_MAXVAL,this.seed=e.seed}apply(e,t){return Ml(e,this.minval,this.maxval,t)}getConfig(){return{minval:this.minval,maxval:this.maxval,seed:this.seed}}};$b.className="RandomUniform";ae.registerClass($b);var _b=class extends ns{constructor(e){super(),this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Fe(`randomNormal does not support dType ${t}.`);return $p(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};_b.className="RandomNormal";ae.registerClass(_b);var Ab=class extends ns{constructor(e){super(),this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Fe(`truncatedNormal does not support dType ${t}.`);return hb(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};Ab.className="TruncatedNormal";ae.registerClass(Ab);var Eb=class extends ns{constructor(e){super(),this.gain=e.gain!=null?e.gain:1}apply(e,t){return j(()=>{if(e.length!==2||e[0]!==e[1])throw new U("Identity matrix initializer can only be used for 2D square matrices.");return V(this.gain,uI(e[0]))})}getConfig(){return{gain:this.gain}}};Eb.className="Identity";ae.registerClass(Eb);function dz(e,t="channelsLast"){let n,s;if(Ct(t),e.length===2)n=e[0],s=e[1];else if([3,4,5].indexOf(e.length)!==-1){if(t==="channelsFirst"){let r=pr(e,2);n=e[1]*r,s=e[0]*r}else if(t==="channelsLast"){let r=pr(e,0,e.length-2);n=e[e.length-2]*r,s=e[e.length-1]*r}}else{let r=pr(e);n=Math.sqrt(r),s=Math.sqrt(r)}return[n,s]}var xn=class extends ns{constructor(e){if(super(),e.scale<0)throw new U(`scale must be a positive float. Got: ${e.scale}`);this.scale=e.scale==null?1:e.scale,this.mode=e.mode==null?"fanIn":e.mode,lz(this.mode),this.distribution=e.distribution==null?"normal":e.distribution,cz(this.distribution),this.seed=e.seed}apply(e,t){let n=dz(e),s=n[0],r=n[1],a=this.scale;if(this.mode==="fanIn"?a/=Math.max(1,s):this.mode==="fanOut"?a/=Math.max(1,r):a/=Math.max(1,(s+r)/2),this.distribution==="normal"){let i=Math.sqrt(a);if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Fe(`${this.getClassName()} does not support dType ${t}.`);return hb(e,0,i,t,this.seed)}else{let i=Math.sqrt(3*a);return Ml(e,-i,i,t)}}getConfig(){return{scale:this.scale,mode:this.mode,distribution:this.distribution,seed:this.seed}}};xn.className="VarianceScaling";ae.registerClass(xn);var Ap=class extends xn{constructor(e){super({scale:1,mode:"fanAvg",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return xn.className}};Ap.className="GlorotUniform";ae.registerClass(Ap);var Ep=class extends xn{constructor(e){super({scale:1,mode:"fanAvg",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return xn.className}};Ep.className="GlorotNormal";ae.registerClass(Ep);var Rp=class extends xn{constructor(e){super({scale:2,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return xn.className}};Rp.className="HeNormal";ae.registerClass(Rp);var Dp=class extends xn{constructor(e){super({scale:2,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return xn.className}};Dp.className="HeUniform";ae.registerClass(Dp);var Fp=class extends xn{constructor(e){super({scale:1,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return xn.className}};Fp.className="LeCunNormal";ae.registerClass(Fp);var Op=class extends xn{constructor(e){super({scale:1,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return xn.className}};Op.className="LeCunNormal";ae.registerClass(Op);var Rb=class extends ns{constructor(e){if(super(),this.DEFAULT_GAIN=1,this.gain=e.gain==null?this.DEFAULT_GAIN:e.gain,this.seed=e.seed,this.seed!=null)throw new Fe("Random seed is not implemented for Orthogonal Initializer yet.")}apply(e,t){return j(()=>{if(e.length<2)throw new Fe("Shape must be at least 2D.");e[0]*e[1]>2e3&&console.warn(`Orthogonal initializer is being called on a matrix with more than 2000 (${e[0]*e[1]}) elements: Slowness may result.`);let n=e[0]>e[1]?[e[1],e[0]]:e,s=$p(n,0,1,"float32"),r=qO.gramSchmidt(s);return e[0]>e[1]&&(r=Ge(r)),V(this.gain,r)})}getConfig(){return{gain:this.gain,seed:this.seed}}};Rb.className="Orthogonal";ae.registerClass(Rb);var Ix={constant:"Constant",glorotNormal:"GlorotNormal",glorotUniform:"GlorotUniform",heNormal:"HeNormal",heUniform:"HeUniform",identity:"Identity",leCunNormal:"LeCunNormal",leCunUniform:"LeCunUniform",ones:"Ones",orthogonal:"Orthogonal",randomNormal:"RandomNormal",randomUniform:"RandomUniform",truncatedNormal:"TruncatedNormal",varianceScaling:"VarianceScaling",zeros:"Zeros"};function Sx(e,t={}){return Ll(e,ae.SerializationMap.getMap().classNameMap,t,"initializer")}function yt(e){return Ib(e)}function ht(e){if(typeof e=="string"){let t=e in Ix?Ix[e]:e;if(t==="GlorotNormal")return new Ep;if(t==="GlorotUniform")return new Ap;if(t==="HeNormal")return new Rp;if(t==="HeUniform")return new Dp;if(t==="LeCunNormal")return new Fp;if(t==="LeCunUniform")return new Op;{let n={};return n.className=t,n.config={},Sx(n)}}else return e instanceof ns?e:Sx(e)}function xm(e){return Array.isArray(e)&&Array.isArray(e[0])}function Sd(e){return e.length===0?[]:Array.isArray(e[0])?e:[e]}function Oe(e){let t;if(Array.isArray(e)){if(e.length!==1)throw new U(`Expected Tensor length to be 1; got ${e.length}`);t=e[0]}else t=e;return t}function nt(e){if(Array.isArray(e)&&Array.isArray(e[0])){if(e.length===1)return e=e,e[0];throw new U(`Expected exactly 1 Shape; got ${e.length}`)}else return e}function Cd(e){let t=0;for(let n of e)n.shape.length===0?t+=1:t+=n.shape.reduce((s,r)=>s*r);return t}var Cx="Variable",pz=class{constructor(e,t="float32",n=Cx,s=!0,r=null){this.dtype=t==null?"float32":t,this.shape=e.shape,this.id=jI(),n=n==null?Cx:n,this.originalName=XI(n),this.name=YI(this.originalName),this.trainable_=s,this.constraint=r,this.val=K3(e,this.trainable_,this.name,this.dtype)}read(){return this.assertNotDisposed(),this.val}write(e){return this.assertNotDisposed(),hz(this.val,e),this.val.id!==e.id&&(this.val.assign(e),this.constraint!=null&&this.val.assign(this.constraint.apply(this.val))),this}dispose(){this.assertNotDisposed(),this.val.dispose()}assertNotDisposed(){if(this.val.isDisposed)throw new Error(`LayersVariable ${this.name} is already disposed.`)}get trainable(){return this.trainable_}set trainable(e){this.trainable_=e,this.val.trainable=e}};function hz(e,t){if(e.shape.toString()!==t.shape.toString())throw new Error("Shape mismatch: "+JSON.stringify(e.shape)+" vs. "+JSON.stringify(t.shape))}function wm(e){return e.map(t=>t.read())}function Db(e){e.forEach(t=>{t[0].write(t[1])})}var Dt=class{constructor(e){this.dtype=e.dtype,this.shape=e.shape,e.shape!=null?this.ndim=e.shape.length:this.ndim=e.ndim,this.maxNDim=e.maxNDim,this.minNDim=e.minNDim,this.axes=e.axes||{}}},$s=class{constructor(e,t,n,s,r,a,i){this.dtype=e,this.shape=t,this.sourceLayer=n,this.inputs=s,this.callArgs=r,this.outputTensorIndex=i,this.id=jI(),a!=null&&(this.originalName=XI(a),this.name=YI(this.originalName)),this.rank=t.length}},fz=0,Pp=class{constructor(e,t){this.callArgs=t,this.id=fz++,this.outboundLayer=e.outboundLayer,this.inboundLayers=e.inboundLayers,this.nodeIndices=e.nodeIndices,this.tensorIndices=e.tensorIndices,this.inputTensors=e.inputTensors,this.outputTensors=e.outputTensors,this.inputMasks=e.inputMasks,this.outputMasks=e.outputMasks,this.inputShapes=e.inputShapes,this.outputShapes=e.outputShapes;for(let n of e.inboundLayers)n!=null&&n.outboundNodes.push(this);e.outboundLayer.inboundNodes.push(this)}getConfig(){let e=[];for(let t of this.inboundLayers)t!=null?e.push(t.name):e.push(null);return{outboundLayer:this.outboundLayer?this.outboundLayer.name:null,inboundLayers:e,nodeIndices:this.nodeIndices,tensorIndices:this.tensorIndices}}},mz=0,He=class extends ae.Serializable{constructor(e={}){super(),this._callHook=null,this._addedWeightNames=[],this._stateful=!1,this.id=mz++,this.activityRegularizer=null,this.inputSpec=null,this.supportsMasking=!1,this._trainableWeights=[],this._nonTrainableWeights=[],this._losses=[],this._updates=[],this._built=!1,this.inboundNodes=[],this.outboundNodes=[];let t=e.name;if(!t){let n=this.getClassName();t=Ws(n)+"_"+Np(n)}if(this.name=t,this.trainable_=e.trainable==null?!0:e.trainable,e.inputShape!=null||e.batchInputShape!=null){let n;if(e.batchInputShape!=null)n=e.batchInputShape;else if(e.inputShape!=null){let r=null;e.batchSize!=null&&(r=e.batchSize),n=[r].concat(e.inputShape)}this.batchInputShape=n;let s=e.dtype;s==null&&(s=e.inputDType),s==null&&(s="float32"),this.dtype=s}e.weights!=null?this.initialWeights=e.weights:this.initialWeights=null,this._refCount=null,this.fastWeightInitDuringBuild=!1}static nodeKey(e,t){return e.name+"_ib-"+t.toString()}getNodeAtIndex(e,t){if(this.inboundNodes.length===0)throw new hs(`The layer has never been called and thus has no defined ${t}.`);if(this.inboundNodes.length<=e)throw new U(`Asked to get ${t} at node ${e}, but the layer has only ${this.inboundNodes.length} inbound nodes.`);return this.inboundNodes[e]}getInputAt(e){return bn(this.getNodeAtIndex(e,"input").inputTensors)}getOutputAt(e){return bn(this.getNodeAtIndex(e,"output").outputTensors)}get input(){if(this.inboundNodes.length>1)throw new Vs(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer input" is ill-defined. Use \`getInputAt(nodeIndex)\` instead.`);if(this.inboundNodes.length===0)throw new Vs(`Layer ${this.name} is not connected, no input to return.`);return bn(this.getNodeAtIndex(0,"input").inputTensors)}get output(){if(this.inboundNodes.length===0)throw new Vs(`Layer ${this.name} has no inbound nodes.`);if(this.inboundNodes.length>1)throw new Vs(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer output" is ill-defined. Use \`getOutputAt(nodeIndex)\` instead.`);return bn(this.getNodeAtIndex(0,"output").outputTensors)}get losses(){return this._losses}calculateLosses(){return this.losses.map(e=>e())}get updates(){return this._updates}get built(){return this._built}set built(e){this._built=e}get trainable(){return this.trainable_}set trainable(e){this._trainableWeights.forEach(t=>t.trainable=e),this.trainable_=e}get trainableWeights(){return this.trainable_?this._trainableWeights.filter(e=>e.trainable):[]}set trainableWeights(e){this._trainableWeights=e}get nonTrainableWeights(){return this.trainable?this._trainableWeights.filter(e=>!e.trainable).concat(this._nonTrainableWeights):this._trainableWeights.concat(this._nonTrainableWeights)}set nonTrainableWeights(e){this._nonTrainableWeights=e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}get stateful(){return this._stateful}resetStates(){if(!this.stateful)throw new Error("Cannot call the resetStates() method of a non-stateful Layer object.")}assertInputCompatibility(e){if(e=dt(e),this.inputSpec==null||this.inputSpec.length===0)return;let t=dt(this.inputSpec);if(e.length!==t.length)throw new U(`Layer ${this.name} expects ${t.length} inputs, but it received ${e.length} input tensors. Input received: ${e}`);for(let n=0;n<e.length;n++){let s=e[n],r=t[n];if(r==null)continue;let a=s.rank;if(r.ndim!=null&&a!==r.ndim)throw new U(`Input ${n} is incompatible with layer ${this.name}: expected ndim=${r.ndim}, found ndim=${a}`);if(r.maxNDim!=null&&a>r.maxNDim)throw new U(`Input ${n} is incompatible with layer ${this.name}: expected max_ndim=${r.maxNDim}, found ndim=${a}`);if(r.minNDim!=null&&a<r.minNDim)throw new U(`Input ${n} is incompatible with layer ${this.name}: expected min_ndim=${r.minNDim}, found ndim=${a}.`);if(r.dtype!=null&&s.dtype!==r.dtype)throw new U(`Input ${n} is incompatible with layer ${this.name} : expected dtype=${r.dtype}, found dtype=${s.dtype}.`);if(r.axes){let i=s.shape;for(let o in r.axes){let u=Number(o),l=r.axes[o],c=u>=0?i[u]:i[i.length+u];if(l!=null&&[l,null].indexOf(c)===-1)throw new U(`Input ${n} is incompatible with layer ${this.name}: expected axis ${u} of input shape to have value ${l} but got shape ${i}.`)}}if(r.shape!=null)for(let i=0;i<r.shape.length;++i){let o=r.shape[i],u=s.shape[i];if(o!=null&&u!=null&&o!==u)throw new U(`Input ${n} is incompatible with layer ${this.name}: expected shape=${r.shape}, found shape=${s.shape}.`)}}}call(e,t){return e}invokeCallHook(e,t){this._callHook!=null&&this._callHook(e,t)}setCallHook(e){this._callHook=e}clearCallHook(){this._callHook=null}apply(e,t){t=t||{},this.assertNotDisposed();let n=dt(e),s=!0;for(let a of n)if(!(a instanceof $s)){s=!1;break}let r=!0;for(let a of n)if(a instanceof $s){r=!1;break}if(s===r)throw new U("Arguments to apply() must be all SymbolicTensors or all Tensors");return ta(this.name,()=>{if(!this.built){this.assertInputCompatibility(e);let a=[];for(let i of dt(e))a.push(i.shape);this.build(bn(a)),this.built=!0,this.initialWeights&&this.setWeights(this.initialWeights),this._refCount===null&&r&&(this._refCount=1)}if(this.assertInputCompatibility(e),r){let a=this.call(e,t),i=dt(a),o=[];for(let u of i)n.indexOf(u)!==-1&&(u=u.clone()),o.push(u);if(a=bn(o),this.activityRegularizer!=null)throw new Fe("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return a}else{let a=gz(e),i=this.computeOutputShape(a),o,u=bz(e);if(this.warnOnIncompatibleInputShape(Array.isArray(e)?a[0]:a),i!=null&&i.length>0&&Array.isArray(i[0])?o=i.map((l,c)=>new $s(u,l,this,dt(e),t,this.name,c)):o=new $s(u,i,this,dt(e),t,this.name),this.addInboundNode(e,o,null,null,a,i,t),this._refCount++,this.activityRegularizer!=null)throw new Fe("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return o}})}warnOnIncompatibleInputShape(e){if(this.batchInputShape!=null)if(e.length!==this.batchInputShape.length)console.warn(`The rank of the input tensor provided (shape: ${JSON.stringify(e)}) does not match that of the batchInputShape (${JSON.stringify(this.batchInputShape)}) of the layer ${this.name}`);else{let t=!1;this.batchInputShape.forEach((n,s)=>{n!=null&&e[s]!=null&&e[s]!==n&&(t=!0)}),t&&console.warn(`The shape of the input tensor (${JSON.stringify(e)}) does not match the expectation of layer ${this.name}: ${JSON.stringify(this.batchInputShape)}`)}}get outputShape(){if(this.inboundNodes==null||this.inboundNodes.length===0)throw new Vs(`The layer ${this.name} has never been called and thus has no defined output shape.`);let e=[];for(let t of this.inboundNodes){let n=JSON.stringify(t.outputShapes);e.indexOf(n)===-1&&e.push(n)}if(e.length===1){let t=this.inboundNodes[0].outputShapes;return Array.isArray(t)&&Array.isArray(t[0])&&t.length===1?t[0]:t}else throw new Vs(`The layer ${this.name} has multiple inbound nodes with different output shapes. Hence the notion of "output shape" is ill-defined for the layer.`)}countParams(){if(!this.built)throw new hs(`You tried to call countParams() on ${this.name}, but the layer is not built yet. Build it first by calling build(batchInputShape).`);return Cd(this.weights)}build(e){this.built=!0}getWeights(e=!1){return wm(e?this.trainableWeights:this.weights)}setWeights(e){j(()=>{let t=this.weights;if(t.length!==e.length)throw new U(`You called setWeights(weights) on layer "${this.name}" with a weight list of length ${e.length}, but the layer was expecting ${t.length} weights. Provided weights: ${e}...`);if(t.length===0)return;let n=[],s=wm(t);for(let r=0;r<s.length;++r){let a=s[r],i=t[r],o=e[r];if(!w.arraysEqual(a.shape,o.shape))throw new U(`Layer weight shape ${a.shape} not compatible with provided weight shape ${o.shape}`);n.push([i,o])}Db(n)})}addWeight(e,t,n,s,r,a,i,o){if(this._addedWeightNames.indexOf(e)!==-1)throw new U(`Duplicate weight name ${e} for layer ${this.name}`);this._addedWeightNames.push(e),n==null&&(n="float32"),this.fastWeightInitDuringBuild&&(s=o!=null?o():ht("zeros"));let u=s.apply(t,n),l=new pz(u,n,e,a,i);return u.dispose(),r!=null&&this.addLoss(()=>r.apply(l.read())),a==null&&(a=!0),a?this._trainableWeights.push(l):this._nonTrainableWeights.push(l),l}setFastWeightInitDuringBuild(e){this.fastWeightInitDuringBuild=e}addLoss(e){e==null||Array.isArray(e)&&e.length===0||(e=dt(e),this._losses!==void 0&&this._losses!==null&&this.losses.push(...e))}computeOutputShape(e){return e}computeMask(e,t){if(!this.supportsMasking){if(t!=null)if(Array.isArray(t))t.forEach(n=>{if(n!=null)throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`)});else throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`);return null}return t}addInboundNode(e,t,n,s,r,a,i=null){let o=dt(e);t=dt(t),n=dt(n),s=dt(s),r=Sd(r),a=Sd(a);let u=[],l=[],c=[];for(let p of o)u.push(p.sourceLayer),l.push(p.nodeIndex),c.push(p.tensorIndex);new Pp({outboundLayer:this,inboundLayers:u,nodeIndices:l,tensorIndices:c,inputTensors:o,outputTensors:t,inputMasks:n,outputMasks:s,inputShapes:r,outputShapes:a},i);for(let p=0;p<t.length;p++)t[p].sourceLayer=this,t[p].nodeIndex=this.inboundNodes.length-1,t[p].tensorIndex=p}getConfig(){let e={name:this.name,trainable:this.trainable};return this.batchInputShape!=null&&(e.batchInputShape=this.batchInputShape),this.dtype!=null&&(e.dtype=this.dtype),e}disposeWeights(){return this.weights.forEach(e=>e.dispose()),this.weights.length}assertNotDisposed(){if(this._refCount===0)throw new Error(`Layer '${this.name}' is already disposed.`)}dispose(){if(!this.built)throw new Error(`Cannot dispose Layer ${this.name} because it has not been built yet.`);if(this._refCount===null)throw new Error(`Cannot dispose Layer ${this.name} because it has not been used yet.`);this.assertNotDisposed();let e=0;return--this._refCount===0&&(e=this.disposeWeights()),{refCountAfterDispose:this._refCount,numDisposedVariables:e}}};function gz(e){e=dt(e);let t=[];for(let n of e)t.push(n.shape);return bn(t)}function bz(e){return"float32"}function eS(e,t,n){if((t==null||n!=null&&n>0)&&(t=e.sourceLayer,n=e.nodeIndex),t.inboundNodes.length===0)return[e];{let s=t.inboundNodes[n];if(s.inboundLayers.length===0)return s.inputTensors;{let r=[];for(let a=0;a<s.inboundLayers.length;a++){let i=s.inputTensors[a],o=s.inboundLayers[a],u=s.nodeIndices[a],l=eS(i,o,u);for(let c of l)r.indexOf(c)===-1&&r.push(c)}return r}}}var Zo=class extends He{constructor(e){if(super({dtype:e.dtype,name:e.name!=null?e.name:Np("input").toString()}),e.batchSize==null&&(e.batchSize=null),e.sparse==null&&(e.sparse=!1),this.trainable=!1,this.built=!0,this.sparse=e.sparse,e.inputShape!=null&&e.batchInputShape!=null)throw new U("Only provide the inputShape OR batchInputShape argument to inputLayer, not both at the same time.");let t=e.batchInputShape;if(t==null){if(e.inputShape==null)throw new U("An InputLayer should be passed either a `batchInputShape` or an `inputShape`.");t=[e.batchSize].concat(e.inputShape)}else if(e.batchSize!=null)throw new U("Cannot specify batchSize if batchInputShape is specified when creating an InputLayer.");let n=e.dtype||"float32";this.batchInputShape=t,this.dtype=n,this.inputSpec=[{shape:t}];let s=new $s(this.dtype,this.batchInputShape,this,[],{},this.name);s.nodeIndex=0,s.tensorIndex=0,new Pp({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:[s],outputTensors:[s],inputMasks:[null],outputMasks:[null],inputShapes:[t],outputShapes:[t]})}apply(e,t){throw new U(`Cannot pass any input to an InputLayer's apply() method. InputLayer name: ${this.name}`)}dispose(){return{refCountAfterDispose:this._refCount,numDisposedVariables:0}}getConfig(){return{batchInputShape:this.batchInputShape,dtype:this.dtype,sparse:this.sparse,name:this.name}}};Zo.className="InputLayer";ae.registerClass(Zo);function tS(e){if(e.batchShape==null&&e.shape==null)throw new Error("Please provide to Input either a `shape` or a `batchShape` argument. Note that `shape` does not include the batch dimension.");if(e.batchShape!=null&&e.shape!=null)throw new U("Please provide either a `shape` or `batchShape` argument to Input, but not both.");let t=e.batchShape;e.shape!=null&&t==null&&(t=[null].concat(e.shape));let n=e.dtype;return n==null&&(n="float32"),new Zo({batchInputShape:t,name:e.name,dtype:n,sparse:e.sparse}).inboundNodes[0].outputTensors[0]}function yz(e,t){if(e.dtype==null||e.dtype===t.dtype)return t;try{return ce(t,e.dtype)}catch(n){throw new U(`The dtype of the feed (${t.dtype}) can not be cast to the dtype of the key '${e.name}' (${e.dtype}).`)}}var Zr=class{constructor(e){if(this.id2Value={},this.id2Mask={},this.name2Id={},e instanceof Zr)for(let t in e.id2Value)this.id2Value[t]=e.id2Value[t],t in e.id2Mask&&(this.id2Mask[t]=e.id2Mask[t]);else{if(e==null)return;for(let t of e)this.add(t.key,t.value)}}add(e,t,n){if(this.id2Value[e.id]==null)this.id2Value[e.id]=yz(e,t),this.name2Id[e.name]=e.id,n!=null&&(this.id2Mask[e.id]=n);else throw new U(`Duplicate key: name=${e.name}, id=${e.id}`);return this}addFeed(e){this.add(e.key,e.value)}hasKey(e){return this.id2Value[e.id]!=null}names(){return Object.keys(this.name2Id)}getValue(e){if(e instanceof $s){if(this.id2Value[e.id]==null)throw new U(`Nonexistent key: ${e.name}`);return this.id2Value[e.id]}else{let t=this.name2Id[e];if(t==null)throw new U(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Value[t]}}getMask(e){if(e instanceof $s){if(this.id2Value[e.id]==null)throw new U(`Nonexistent key: ${e.name}`);return this.id2Mask[e.id]}else{let t=this.name2Id[e];if(t==null)throw new U(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Mask[t]}}disposeMasks(){this.id2Mask!=null&&Re(this.id2Mask)}},Nd=new GI,Td=new GI;function vz(e){Nd!=null&&Nd.setMaxEntries(e),Td!=null&&Td.setMaxEntries(e)}function Eu(e,t,n,s){let r=n==null?!1:n.training,a=Array.isArray(e),i=a?e:[e],o=i.map(f=>f.name),u=[],l=t.names();for(let f of o)l.indexOf(f)!==-1?u.push(t.getValue(f)):u.push(null);s!=null&&(s.maxNumTensors=-1/0,s.minNumTensors=1/0);let c=o.join(",")+"|"+t.names().join(","),p=Nd.get(c),d;if(p==null){let f=xz(i,t);p=f.sorted,d=f.recipientCounts,Nd.put(c,p),Td.put(c,d)}d={},r||Object.assign(d,Td.get(c));let h=new Zr(t);for(let f=0;f<p.length;++f){if(s!=null){let A=pm().numTensors;A>s.maxNumTensors&&(s.maxNumTensors=A),A<s.minNumTensors&&(s.minNumTensors=A)}let m=p[f],g=m.sourceLayer;if(g instanceof Zo)continue;let b=[],y=[],v=[],x=!1;for(let A of m.inputs){let P=h.getValue(A),R=h.getMask(A);b.push(P),y.push(R),R!=null&&(x=!0),r||(d[A.name]--,d[A.name]===0&&!t.hasKey(A)&&o.indexOf(A.name)===-1&&!P.isDisposed&&A.sourceLayer.stateful!==!0&&v.push(P))}x&&(n=n||{},n.mask=y[0]);let k=dt(g.apply(b,n)),T=null;g.supportsMasking&&(T=g.computeMask(b,y));let N=kz(m),E=Array.isArray(N)?N:[N];for(let A=0;A<E.length;++A){h.hasKey(E[A])||h.add(E[A],k[A],Array.isArray(T)?T[0]:T);let P=o.indexOf(E[A].name);P!==-1&&(u[P]=k[A])}r||Re(v)}return h.disposeMasks(),a?u:u[0]}function xz(e,t){w.assert(e!=null&&e.length>0,()=>"Expected at least one fetch, got none");let n=[],s={};if(e.length===1){let r=Nx(e[0],t);n=r.sorted,s=r.recipientMap}else{let r=new Set;for(let a of e){let{sorted:i,recipientMap:o}=Nx(a,t);for(let u of i)r.has(u.name)||(n.push(u),r.add(u.name));for(let u in o)s[u]==null&&(s[u]=new Set),o[u].forEach(l=>s[u].add(l))}}return{sorted:n,recipientCounts:wz(s)}}function wz(e){let t={};for(let n in e)t[n]=e[n].size;return t}function Nx(e,t){let n=new Set,s=[],r={};for(let o of t.names())n.add(o);let a=[],i=[];for(a.push(e);a.length>0;){let o=a[a.length-1];if(n.has(o.name)){a.pop();continue}let u=i[i.length-1]===a.length-1;if(o.inputs.length===0||u)a.pop(),s.push(o),n.add(o.name),u&&i.pop();else{i.push(a.length-1);for(let l of o.inputs)r[l.name]==null&&(r[l.name]=new Set),r[l.name].add(o.name),!n.has(l.name)&&a.push(l)}}return{sorted:s,recipientMap:r}}function kz(e){let t;if(e.sourceLayer.inboundNodes.length===1)t=e.sourceLayer.output;else{let n=null;for(let s=0;s<e.sourceLayer.inboundNodes.length;++s)for(let r of e.sourceLayer.inboundNodes[s].outputTensors)if(r.id===e.id){n=s;break}t=e.sourceLayer.getOutputAt(n)}return t}var Iz=X();Iz.registerFlag("TOPOLOGICAL_SORT_CACHE_MAX_ENTRIES",()=>100,vz);var nS={kernelName:uo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>V(e,xp(ce(n,"float32"),-1))}}},Sz={kernelName:rl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let s=ct(ce(n,"float32")),r=dn(ge(we(1),s));return kt(xe(e,r))}}}},Cz={kernelName:al,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let s=dn(ge(ct(ce(n,"float32")),1));return xe(e,s)}}}},Nz={kernelName:Sr,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=ot(n.shape,s.shape);return{a:()=>{let o=e,u=_t(n.shape,r);return u.length>0&&(o=ve(o,u)),G(o,n.shape)},b:()=>{let o=e,u=_t(s.shape,r);return u.length>0&&(o=ve(o,u)),G(o,s.shape)}}}},Tz={kernelName:Ia,saveAllInputs:!0,gradFunc:(e,t)=>{let n={};return t.forEach((s,r)=>{n[r]=()=>e.clone()}),n}},$z={kernelName:Sa,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>je(n)}}},_z={kernelName:ul,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>je(n)}}},Az={kernelName:ll,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>xe(e,dn(ge(we(1),ct(ce(n,"float32")))))}}},Ez={kernelName:cl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let s=dn(ie(we(1),ct(ce(n,"float32"))));return xe(e,s)}}}},Rz={kernelName:hl,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=ot(n.shape,s.shape);return{a:()=>{let o=ie(ct(n),ct(s)),u=V(e,xe(s,o)),l=_t(n.shape,r);return l.length>0&&(u=ve(u,l)),G(u,n.shape)},b:()=>{let o=ie(ct(n),ct(s)),u=kt(V(e,xe(n,o))),l=_t(s.shape,r);return l.length>0&&(u=ve(u,l)),G(u,s.shape)}}}},Dz={kernelName:dl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>xe(e,ie(ct(ce(n,"float32")),1))}}},Fz={kernelName:pl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>xe(e,ge(we(1),ct(ce(n,"float32"))))}}};function Oz(e,t,n,s,r,a){let i=_(e,"dy","avgPool3dGrad"),o=_(t,"input","avgPool3dGrad"),u=i,l=o,c=!1;o.rank===4&&(c=!0,u=G(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]]),l=G(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),O(u.rank===5,()=>`Error in avgPool3dGrad: dy must be rank 5 but got rank ${u.rank}.`),O(l.rank===5,()=>`Error in avgPool3dGrad: input must be rank 5 but got rank ${l.rank}.`),hn("avgPool3dGrad",r,a);let p={dy:u,input:l},d={filterSize:n,strides:s,pad:r,dimRoundingMode:a},h=M.runKernel(lg,p,d);return c?G(h,[h.shape[1],h.shape[2],h.shape[3],h.shape[4]]):h}var Pz=L({avgPool3dGrad_:Oz}),zz={kernelName:Kd,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{filterSize:r,strides:a,pad:i,dimRoundingMode:o}=n;return{x:()=>Pz(e,s,r,a,i,o)}}};function Mz(e,t,n,s,r){let a=_(e,"dy","avgPoolGrad"),i=_(t,"input","avgPoolGrad");O(i.rank===a.rank,()=>`Rank of input (${i.rank}) does not match rank of dy (${a.rank})`);let o=i,u=a,l=!1;i.rank===3&&(l=!0,o=G(i,[1,i.shape[0],i.shape[1],i.shape[2]]),u=G(a,[1,a.shape[0],a.shape[1],a.shape[2]])),O(u.rank===4,()=>`Error in avgPoolGrad: dy must be rank 4 but got rank ${u.rank}.`),O(o.rank===4,()=>`Error in avgPoolGrad: input must be rank 4 but got rank ${o.rank}.`);let c={dy:u,input:o},p={filterSize:n,strides:s,pad:r},d=M.runKernel(ug,c,p);return l?G(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var Lz=L({avgPoolGrad_:Mz}),Bz={kernelName:Ca,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{filterSize:r,strides:a,pad:i}=n;return{x:()=>Lz(e,s,r,a,i)}}},Vz={kernelName:Na,inputsToSave:["a","b"],gradFunc:(e,t,n)=>{let[s,r]=t,{transposeA:a,transposeB:i}=n;return!a&&!i?{a:()=>We(e,r,!1,!0),b:()=>We(s,e,!0,!1)}:!a&&i?{a:()=>We(e,r,!1,!1),b:()=>We(e,s,!0,!1)}:a&&!i?{a:()=>We(r,e,!1,!0),b:()=>We(s,e,!1,!1)}:{a:()=>We(r,e,!0,!0),b:()=>We(e,s,!0,!0)}}},Wz={kernelName:lo,gradFunc:(e,t,n)=>{let{blockShape:s,crops:r}=n;return{x:()=>rb(e,s,r)}}},Uz={kernelName:P$,gradFunc:(e,t,n)=>{let s=n,r=s.inputShape,a=s.shape,i=Array.from(a);for(let u=r.length-1;u>=0;u--)if(r[u]===a[u])i[u]=1;else if(r[u]!==1)throw new Error(`broadcastTo(): [${r}] cannot be broadcast to [${a}].`);let o=[];for(let u=0;u<i.length;u++)i[u]>1&&o.push(u);return{x:()=>ve(e,o,!0)}}},Gz={kernelName:Ta,gradFunc:e=>({x:()=>e.clone()})},Hz={kernelName:$a,gradFunc:e=>({x:()=>je(e)})},qz={kernelName:Cr,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{clipValueMin:r,clipValueMax:a}=n;return{x:()=>vn(Ds(Xo(s,r),Yo(s,a)),e,je(e))}}},jz={kernelName:Yd,inputsToSave:["x"],gradFunc:nS.gradFunc},Kz={kernelName:co,saveAllInputs:!0,gradFunc:(e,t,n)=>{let s=t.map(u=>u.shape),{axis:r}=n,a=ts(r,t[0].shape)[0],i=s.map(u=>u[a]);return Bn(e,i,a).map(u=>()=>u)}},Xz={kernelName:_a,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[s,r]=t,{dilations:a,strides:i,pad:o,dataFormat:u}=n;return O(mr(a),()=>`Error in gradient of conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${a}'`),{x:()=>Kg(s.shape,e,r,i,o,u),filter:()=>fb(s,e,r.shape,i,o,u)}}},Yz={kernelName:Aa,inputsToSave:["dy","filter"],gradFunc:(e,t,n)=>{let[s,r]=t,{strides:a,pad:i,dataFormat:o,dimRoundingMode:u}=n;return{dy:()=>da(e,r,a,i,o,1,u),filter:()=>fb(e,s,r.shape,a,i,o,u)}}};function Qz(e,t,n,s,r){let a=e;e.rank===4&&(a=G(e,[1,e.shape[0],e.shape[1],e.shape[2],e.shape[3]]));let i=t;i.rank===4&&(i=G(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]])),O(a.rank===5,()=>`Error in conv3dDerFilter: input must be rank 5, but got shape ${a.shape}.`),O(i.rank===5,()=>`Error in conv3dDerFilter: dy must be rank 5, but got shape ${i.shape}.`),O(n.length===5,()=>`Error in conv3dDerFilter: filterShape must be length 5, but got ${n}.`),O(a.shape[4]===n[3],()=>`Error in conv3dDerFilter: depth of input ${a.shape[4]}) must match input depth in filter (${n[3]}.`),O(i.shape[4]===n[4],()=>`Error in conv3dDerFilter: depth of dy (${i.shape[4]}) must match output depth for filter (${n[4]}).`);let o={x:a,dy:i},u={strides:s,pad:r,filterShape:n};return M.runKernel(hg,o,u)}var Zz=L({conv3DBackpropFilter_:Qz}),Jz={kernelName:Qd,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:s,strides:r,pad:a}=n;O(mr(s),()=>`Error in gradient of conv3D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`);let[i,o]=t;return{x:()=>aI(i.shape,e,o,r,a),filter:()=>Zz(i,e,o.shape,r,a)}}},eM={kernelName:Ea,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>V(kt(wI(ce(n,"float32"))),e)}}},tM={kernelName:Ra,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>V(kI(ce(n,"float32")),e)}}},nM={kernelName:Da,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{axis:r,exclusive:a,reverse:i}=n;return{x:()=>{let o=hI([r],s.rank),u=oI(e,r,a,!i);return o!=null&&(u=Ge(u,o)),u}}}},sM={kernelName:Fa,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:s,strides:r,pad:a,dimRoundingMode:i}=n,o=s==null?[1,1]:s;O(mr(o),()=>`Error in gradient of depthwiseConv2dNative: dilation rates greater than 1 are not yet supported. Got dilations '${o}'`);let[u,l]=t;return O(u.rank===4,()=>`Error in gradient of depthwiseConv2dNative: input must be rank 4, but got rank ${u.rank}.`),O(l.rank===4,()=>`Error in gradient of depthwiseConv2dNative: filter must be rank 4, but got rank ${l.rank}.`),O(u.shape[3]===l.shape[2],()=>`Error in gradient of depthwiseConv2d: number of input channels (${u.shape[3]}) must match the inChannels dimension in filter ${l.shape[2]}.`),O(Ps(r,o),()=>`Error in gradient of depthwiseConv2d: Either strides or dilations must be 1. Got strides ${r} and dilations '${o}'.`),hn("depthwiseConv2d",a,i),{x:()=>DI(u.shape,e,l,r,a,o,i),filter:()=>RI(u,e,l.shape,r,a,o,i)}}},rM={kernelName:Zd,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[s,r]=t,a={x:s,filter:r,dy:e},i={x:s,filter:r,dy:e};return{x:()=>M.runKernel(Qf,a,n),filter:()=>M.runKernel(Zf,i,n)}}},aM={kernelName:Pa,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t,s={dy:e,y:n};return{x:()=>M.runKernel(vg,s)}}},iM={kernelName:fl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,s=V(Yn(kt(ct(n))),2/Math.sqrt(Math.PI));return{x:()=>V(e,s)}}},oM={kernelName:za,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>V(e,n)}}},uM={kernelName:go,inputsToSave:["input"],gradFunc:(e,t)=>{let[n]=t;return{input:()=>G(e,n.shape)}}},lM={kernelName:bo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>V(e,Yn(n))}}},cM={kernelName:Ma,gradFunc:e=>({x:()=>je(e)})},dM={kernelName:La,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=ot(n.shape,s.shape);return{a:()=>{let o=xe(e,ce(s,"float32")),u=_t(n.shape,r);return u.length>0?G(ve(o,u),n.shape):o},b:()=>{let o=V(e,ce(n,"float32")),u=_t(s.shape,r);u.length>0&&(o=G(ve(o,u),s.shape));let l=ct(s);return kt(xe(o,ce(l,"float32")))}}}},pM={kernelName:Ba,inputsToSave:["x","mean","variance","scale"],gradFunc:(e,t,n)=>{let{varianceEpsilon:s}=n,[r,a,i,o]=t,u=o==null?we(1):o,l=_t(a.shape,r.shape),c=[];if(a.rank===1){for(let x=0;x<r.shape.length-1;++x)c.push(r.shape[x]);c.push(1)}let p=ge(r,a),d=V(e,u),h=vI(ie(i,we(s))),f=V(V(V(h,h),h),we(-.5));return{x:()=>a.rank===1?G(V(V(e,ps(G(h,[1,1,1,a.shape[0]]),c)),u),r.shape):G(V(V(e,h),u),r.shape),mean:()=>{let x=V(V(h,we(-1)),d);return a.rank===1&&(x=ve(x,l)),G(x,a.shape)},variance:()=>{let x=V(V(f,p),d);return a.rank===1&&(x=ve(x,l)),G(x,a.shape)},scale:()=>{let x=V(p,h),k=V(e,x);return a.rank===1&&(k=ve(k,l)),G(k,a.shape)},offset:()=>{let x=e;return a.rank===1&&(x=ve(x,l)),G(x,a.shape)}}}},hM={kernelName:vo,inputsToSave:["x","indices"],gradFunc:(e,t,n)=>{let[s,r]=t,{axis:a}=n,i=ts(a,s.shape)[0];return{x:()=>{let u=s.shape,l=r.size,c=u.slice(0,i),p=c.length,d=u.slice(a,u.length).slice(1),h=d.length,f=Tx(0,p),m=Tx(p+1,p+1+h),g=$x([c,[l],d]),b=G(e,g),y=G(r,[l]),v=$x([[p],f,m]),x=Ge(b,v),k=q3(x,y,s.shape[i]),T=eb(v);return k=Ge(k,T),k},indices:()=>r}}};function Tx(e,t){let n=[];for(let s=e;s<t;++s)n.push(s);return n}function $x(e){let t=[];for(let n=0;n<e.length;++n)for(let s=0;s<e[n].length;++s)t.push(e[n][s]);return t}var fM={kernelName:Va,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t;return{a:()=>je(n),b:()=>je(s)}}},mM={kernelName:Wa,gradFunc:e=>({x:()=>ce(e,"float32")})},gM={kernelName:gl,gradFunc:e=>({x:()=>je(e)})},bM={kernelName:bl,gradFunc:e=>({x:()=>je(e)})},yM={kernelName:yl,gradFunc:e=>({x:()=>je(e)})},vM={kernelName:Ua,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{alpha:r}=n,a=Un(s,0);return{x:()=>vn(a,e,V(e,r))}}},xM={kernelName:vl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>xe(e,ie(n,1))}}},wM={kernelName:Ga,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>xe(e,ce(n,"float32"))}}},kM={kernelName:z$,inputsToSave:[],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s]=t,{axis:r}=n;return{logits:()=>{let i=Yn(s);return ge(e,V(ve(e,r,!0),i))}}}};function IM(e,t,n,s=5,r=1,a=1,i=.5){let o={x:e,y:t,dy:n},u={depthRadius:s,bias:r,alpha:a,beta:i};return M.runKernel(Ig,o,u)}var SM=L({localResponseNormalizationBackprop_:IM}),CM={kernelName:np,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s,r]=t,{depthRadius:a,bias:i,alpha:o,beta:u}=n;return{x:()=>SM(s,r,e,a,i,o,u)}}};function sS(e,t,n,s){return t.rank<n.rank&&(t=G(t,pa(t.shape,s))),e.rank<n.rank&&(e=G(e,pa(e.shape,s))),{x:()=>V(e,ce(Xn(n,t),e.dtype))}}var _x={kernelName:Ha,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let s=n,{reductionIndices:r}=s,a=t[0],i=t[1],o=ts(r,a.shape),u=sS(e,i,a,o);return{x:()=>u.x()}}},NM={kernelName:qa,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t;return{a:()=>V(e,ce(Xo(n,s),"float32")),b:()=>V(e,ce(lI(n,s),"float32"))}}};function TM(e,t,n,s,r,a,i){let o=_(e,"dy","maxPool3dGrad"),u=_(t,"input","maxPool3dGrad"),l=_(n,"output","maxPool3dGrad"),c=o,p=u,d=l,h=!1;u.rank===4&&(h=!0,c=G(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]]),p=G(u,[1,u.shape[0],u.shape[1],u.shape[2],u.shape[3]]),d=G(l,[1,l.shape[0],l.shape[1],l.shape[2],l.shape[3]])),O(c.rank===5,()=>`Error in maxPool3dGrad: dy must be rank 5 but got rank ${c.rank}.`),O(p.rank===5,()=>`Error in maxPool3dGrad: input must be rank 5 but got rank ${p.rank}.`),O(d.rank===5,()=>`Error in maxPool3dGrad: output must be rank 5 but got rank ${d.rank}.`),hn("maxPool3dGrad",a,i);let f={dy:c,input:p,output:d},m={filterSize:s,strides:r,pad:a,dimRoundingMode:i},g=M.runKernel(Cg,f,m);return h?G(g,[g.shape[1],g.shape[2],g.shape[3],g.shape[4]]):g}var $M=L({maxPool3dGrad_:TM}),_M={kernelName:sp,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s,r]=t,{filterSize:a,strides:i,pad:o,dimRoundingMode:u}=n;return{x:()=>$M(e,s,r,a,i,o,u)}}};function AM(e,t,n,s,r,a,i){let o=_(e,"dy","maxPoolGrad"),u=_(t,"input","maxPoolGrad"),l=_(n,"output","maxPoolGrad");O(u.rank===o.rank,()=>`Rank of input (${u.rank}) does not match rank of dy (${o.rank})`),O(o.rank===4,()=>`Error in maxPoolGrad: dy must be rank 4 but got rank ${o.rank}.`),O(u.rank===4,()=>`Error in maxPoolGrad: input must be rank 4 but got rank ${u.rank}.`),hn("maxPoolGrad",a,i);let c={dy:o,input:u,output:l},p={filterSize:s,strides:r,pad:a,dimRoundingMode:i};return M.runKernel(Sg,c,p)}var EM=L({maxPoolGrad_:AM}),RM={kernelName:ja,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s,r]=t,{filterSize:a,strides:i,pad:o}=n;return{x:()=>EM(e,s,r,a,i,o)}}},DM={kernelName:Ka,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{axis:r}=n,a=ts(r,s.shape),o=pI(s.shape,a)[1],u=pt(o);return{x:()=>{let c=s.shape.slice();a.forEach(h=>{c[h]=1});let p=G(e,c);return xe(V(p,Mn(s.shape,"float32")),u)}}}},FM={kernelName:Xa,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let s=n,{axis:r}=s,[a,i]=t,o=ts(r,a.shape),u=sS(e,i,a,o);return{x:()=>u.x()}}},OM={kernelName:Ya,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t;return{a:()=>V(e,ce(Yo(n,s),"float32")),b:()=>V(e,ce(Un(n,s),"float32"))}}},PM={kernelName:Qa,inputsToSave:["x"],gradFunc:(e,t,n)=>{let s=t[0],{paddings:r}=n,a=r.map(i=>i[0]);return{x:()=>qe(e,a,s.shape)}}},zM={kernelName:wl,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=ot(n.shape,s.shape);return{a:()=>{let o=_t(n.shape,r);return o.length>0?G(ve(e,o),n.shape):e},b:()=>{let o=V(e,kt(bp(xe(n,s)))),u=_t(s.shape,r);return u.length>0?G(ve(o,u),s.shape):o}}}},MM={kernelName:Za,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=ot(n.shape,s.shape);return{a:()=>{let o=V(e,ce(s,"float32")),u=_t(n.shape,r);return u.length>0?G(ve(o,u),n.shape):o},b:()=>{let o=V(e,ce(n,"float32")),u=_t(s.shape,r);return u.length>0?G(ve(o,u),s.shape):o}}}},LM={kernelName:Co,gradFunc:e=>({x:()=>kt(e)})},BM={kernelName:Ao,inputsToSave:["indices"],gradFunc:(e,t)=>{let n=t[0];return{indices:()=>$t(n.shape,"float32")}}},VM={kernelName:_o,gradFunc:e=>({x:()=>je(e)})},WM={kernelName:Eo,saveAllInputs:!0,gradFunc:(e,t,n)=>{let{axis:s}=n;return Fs(e,s).map(a=>()=>a)}},Ax={kernelName:Ja,inputsToSave:["x"],gradFunc:(e,t,n)=>{let s=t[0],{paddings:r}=n,a=r.map(i=>i[0]);return{x:()=>qe(e,a,s.shape)}}},UM={kernelName:ei,inputsToSave:["a","b"],outputsToSave:[!0],gradFunc:(e,t)=>{let[n,s,r]=t,a=n,i=s,o=ot(a.shape,i.shape);return{a:()=>{let c=ce(i,"float32"),p=V(e,V(c,ha(a,ge(c,we(1))))),d=_t(a.shape,o);return d.length>0&&(p=ve(p,d)),G(p,a.shape)},b:()=>{let c=Un(a,0),p=vn(c,Qn(a),je(a)),d=V(e,V(r,p)),h=_t(i.shape,o);return h.length>0&&(d=ve(d,h)),G(d,i.shape)}}}},GM={kernelName:ti,inputsToSave:["x","alpha"],gradFunc:(e,t)=>{let[n,s]=t,r=Un(n,0);return{x:()=>vn(r,e,V(e,s)),alpha:()=>{let a=vn(r,je(e),V(e,n)),i=_t(s.shape,e.shape);return i.length>0&&(a=ve(a,i)),G(a,s.shape)}}}};function HM(e,t,n){let s=e.shape.slice();s[n]=1;let r=G(t,s),a=mm(e,n,!0,!1),i=mm(e,n,!0,!0),o=V(a,i);return V(r,o)}function qM(e,t,n){let s=e.shape.length,r=s-n.length,a=S.getAxesPermutation(n,s),i=e;a!=null&&(i=Ge(e,a));let o=i.shape.slice(),l=o.splice(s-n.length,n.length).reduce((d,h)=>d*h,1);o.push(l);let c=i.reshape(o),p=HM(c,t,r);if(p=p.reshape(i.shape),a!=null){let d=S.getUndoAxesPermutation(a);p=Ge(p,d)}return p}var jM={kernelName:ni,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{axis:r}=n,a=[];return r==null?a=s.shape.map((i,o)=>o):typeof r=="number"?a=[r]:a=r,{x:()=>qM(s,e,a)}}},KM={kernelName:Oa,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=ot(n.shape,s.shape);return{a:()=>{let o=xe(e,ce(s,"float32")),u=_t(n.shape,r);return u.length>0?G(ve(o,u),n.shape):o},b:()=>{let o=V(e,ce(n,"float32")),u=_t(s.shape,r);u.length>0&&(o=G(ve(o,u),s.shape));let l=ct(s);return kt(xe(o,ce(l,"float32")))}}}},XM={kernelName:Sl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>xe(e,kt(ct(n)))}}},YM={kernelName:ai,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,s=V(Yo(n,6),xp(n));return{x:()=>V(e,ce(s,"float32"))}}},QM={kernelName:si,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>V(e,ce(xp(n),"float32"))}}},ZM={kernelName:Ro,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>G(e,n.shape)}}},JM={kernelName:ri,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[s]=t,r={dy:e,images:s};return{images:()=>M.runKernel(_g,r,n)}}},eL={kernelName:Cl,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[s]=t,r={dy:e,images:s};return{images:()=>M.runKernel($g,r,n)}}},tL={kernelName:Do,gradFunc:(e,t,n)=>{let{dims:s}=n,r=ts(s,e.shape);return{x:()=>Jn(e,r)}}},nL={kernelName:Fo,gradFunc:e=>({x:()=>je(e)})},sL={kernelName:ii,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>kt(xe(e,V(ha(n,1.5),2)))}}},rL={kernelName:Po,inputsToSave:["condition"],gradFunc:(e,t)=>{let[n]=t;return{condition:()=>ce(je(n),"float32"),t:()=>V(e,ce(n,e.dtype)),e:()=>V(e,ce(tb(n),e.dtype))}}},aL={kernelName:Nl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let s=Un(n,we(0)),r=we(BI),a=we(VI),i=V(e,a),o=V(V(e,r),Yn(ce(n,"float32")));return vn(s,i,o)}}}},iL={kernelName:ui,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>V(e,V(n,ge(we(1),n)))}}},oL={kernelName:Tl,gradFunc:e=>({x:()=>je(e)})},uL={kernelName:oi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>V(Xg(ce(n,"float32")),e)}}},lL={kernelName:Mo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>V(iI(ce(n,"float32")),e)}}},cL={kernelName:zo,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{begin:r,size:a}=n,i=s.shape,[o,u]=Gk(s,r,a),l=[];for(let c=0;c<e.rank;c++)l.push([o[c],i[c]-o[c]-u[c]]);return{x:()=>bi(e,l)}}},dL={kernelName:di,outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s]=t,{dim:r}=n,a=!0,i=V(e,s);return{logits:()=>ge(i,V(ve(i,[r],a),s))}}},pL={kernelName:$l,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>V(e,qs(n))}}},Ex={kernelName:Lo,gradFunc:(e,t,n)=>{let{blockShape:s,paddings:r}=n;return{x:()=>jg(e,s,r)}}},Rx={kernelName:Bo,gradFunc:(e,t,n)=>{let{axis:s}=n;return{x:()=>Ft(e,s)}}},hL={kernelName:li,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>xe(e,V(dn(ce(n,"float32")),2))}}},fL={kernelName:Al,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>V(e,V(ce(n,"float32"),2))}}},mL={kernelName:pi,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=we(2);return{a:()=>V(e,V(r,ge(n,s))),b:()=>V(e,V(r,ge(s,n)))}}},gL={kernelName:gi,gradFunc:e=>({x:()=>je(e)})},bL={kernelName:hi,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=ot(n.shape,s.shape);return{a:()=>{let o=e,u=_t(n.shape,r);return u.length>0&&(o=ve(o,u)),G(o,n.shape)},b:()=>{let o=e,u=_t(s.shape,r);return u.length>0&&(o=ve(o,u)),G(kt(o),s.shape)}}}},yL={kernelName:ci,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,r=s.shape.slice(),{axis:a}=n;ts(a,s.shape).forEach(l=>{r[l]=1});let o=G(e,r),u=V(o,Mn(s.shape,"float32"));return{x:()=>u}}},vL={kernelName:Wo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>xe(e,ct(Xg(n)))}}},xL={kernelName:fi,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>V(ge(we(1),ct(n)),e)}}},wL={kernelName:Nr,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{reps:r}=n;return{x:()=>{let i=je(s);if(s.rank===1)for(let o=0;o<r[0];++o)i=ie(i,qe(e,[o*s.shape[0]],[s.shape[0]]));else if(s.rank===2)for(let o=0;o<r[0];++o)for(let u=0;u<r[1];++u)i=ie(i,qe(e,[o*s.shape[0],u*s.shape[1]],[s.shape[0],s.shape[1]]));else if(s.rank===3)for(let o=0;o<r[0];++o)for(let u=0;u<r[1];++u)for(let l=0;l<r[2];++l)i=ie(i,qe(e,[o*s.shape[0],u*s.shape[1],l*s.shape[2]],[s.shape[0],s.shape[1],s.shape[2]]));else if(s.rank===4)for(let o=0;o<r[0];++o)for(let u=0;u<r[1];++u)for(let l=0;l<r[2];++l)for(let c=0;c<r[3];++c)i=ie(i,qe(e,[o*s.shape[0],u*s.shape[1],l*s.shape[2],c*s.shape[3]],[s.shape[0],s.shape[1],s.shape[2],s.shape[3]]));else throw new Error(`Gradient for tile operation is not implemented for rank-${s.rank} tensors yet.`);return i}}}},kL={kernelName:mi,gradFunc:(e,t,n)=>{let s=n,{perm:r}=s,a=eb(r);return{x:()=>Ge(e,a)}}},IL={kernelName:Ho,gradFunc:(e,t,n)=>{let s=n,{axis:r}=s;return{value:()=>es(e,r)}}},SL={kernelName:cp,inputsToSave:["segmentIds"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>CL(e,n)}}};function CL(e,t){let n=_r(t,je(t)),s=Xu(e,n),r=Xo(t,we(0,"int32")),a=s.rank-r.rank;for(let o=0;o<a;++o)r=Pn(r,o+1);r=Ds(r,Mn(s.shape,"bool"));let i=je(s);return vn(r,s,i)}var NL={kernelName:qo,gradFunc:e=>({x:()=>je(e)})},TL=[nS,Sz,Cz,Nz,Tz,$z,_z,Az,Ez,Rz,Dz,Fz,zz,Bz,Vz,Wz,Uz,Gz,Hz,qz,jz,Kz,Yz,Xz,Jz,eM,tM,nM,sM,rM,KM,aM,iM,oM,uM,lM,dM,cM,pM,hM,fM,mM,gM,bM,yM,vM,xM,wM,kM,CM,_x,_x,NM,_M,RM,DM,FM,OM,PM,zM,MM,LM,BM,VM,WM,Ax,Ax,UM,GM,jM,XM,YM,QM,ZM,JM,eL,tL,nL,sL,rL,aL,iL,oL,uL,lL,cL,dL,pL,Ex,Ex,Rx,Rx,hL,mL,fL,gL,bL,yL,vL,xL,wL,kL,IL,SL,NL];for(let e of TL)L$(e);var $L={};Ae($L,{maxNorm:()=>_L,minMaxNorm:()=>RL,nonNeg:()=>EL,unitNorm:()=>AL});function Fb(e,t){return j(()=>dn(ve(V(e,e),t,!0)))}var Ul=class extends ae.Serializable{getConfig(){return{}}},Ob=class extends Ul{constructor(e){super(),this.defaultMaxValue=2,this.defaultAxis=0,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return j(()=>{let t=Fb(e,this.axis),n=Vn(t,0,this.maxValue);return V(e,xe(n,ie(Rt(),t)))})}getConfig(){return{maxValue:this.maxValue,axis:this.axis}}};Ob.className="MaxNorm";ae.registerClass(Ob);var Pb=class extends Ul{constructor(e){super(),this.defaultAxis=0,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return j(()=>xe(e,ie(Rt(),Fb(e,this.axis))))}getConfig(){return{axis:this.axis}}};Pb.className="UnitNorm";ae.registerClass(Pb);var zb=class extends Ul{apply(e){return Ys(e)}};zb.className="NonNeg";ae.registerClass(zb);var Mb=class extends Ul{constructor(e){super(),this.defaultMinValue=0,this.defaultMaxValue=1,this.defaultRate=1,this.defaultAxis=0,this.minValue=e.minValue!=null?e.minValue:this.defaultMinValue,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.rate=e.rate!=null?e.rate:this.defaultRate,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return j(()=>{let t=Fb(e,this.axis),n=ie(V(this.rate,Vn(t,this.minValue,this.maxValue)),V(1-this.rate,t));return V(e,xe(n,ie(Rt(),t)))})}getConfig(){return{minValue:this.minValue,maxValue:this.maxValue,rate:this.rate,axis:this.axis}}};Mb.className="MinMaxNorm";ae.registerClass(Mb);var Dx={maxNorm:"MaxNorm",minMaxNorm:"MinMaxNorm",nonNeg:"NonNeg",unitNorm:"UnitNorm"};function Ot(e){return Ib(e)}function Fx(e,t={}){return Ll(e,ae.SerializationMap.getMap().classNameMap,t,"constraint")}function Pt(e){if(e==null)return null;if(typeof e=="string"){let n={className:e in Dx?Dx[e]:e,config:{}};return Fx(n)}else return e instanceof Ul?e:Fx(e)}function _L(e){return new Ob(e)}function AL(e){return new Pb(e)}function EL(){return new zb}function RL(e){return new Mb(e)}var DL={};Ae(DL,{constant:()=>PL,glorotNormal:()=>UL,glorotUniform:()=>WL,heNormal:()=>GL,heUniform:()=>HL,identity:()=>BL,leCunNormal:()=>qL,leCunUniform:()=>jL,ones:()=>OL,orthogonal:()=>KL,randomNormal:()=>ML,randomUniform:()=>zL,truncatedNormal:()=>LL,varianceScaling:()=>VL,zeros:()=>FL});function FL(){return new Nb}function OL(){return new _p}function PL(e){return new Tb(e)}function zL(e){return new $b(e)}function ML(e){return new _b(e)}function LL(e){return new Ab(e)}function BL(e){return new Eb(e)}function VL(e){return new xn(e)}function WL(e){return new Ap(e)}function UL(e){return new Ep(e)}function GL(e){return new Rp(e)}function HL(e){return new Dp(e)}function qL(e){return new Fp(e)}function jL(e){return new Op(e)}function KL(e){return new Rb(e)}var XL={};Ae(XL,{Layer:()=>He,RNN:()=>Er,RNNCell:()=>ql,activation:()=>xV,add:()=>_V,alphaDropout:()=>pW,average:()=>AV,averagePooling1d:()=>jy,averagePooling2d:()=>Ky,averagePooling3d:()=>Xy,avgPool1d:()=>LV,avgPool2d:()=>VV,avgPool3d:()=>UV,avgPooling1d:()=>BV,avgPooling2d:()=>WV,avgPooling3d:()=>GV,batchNormalization:()=>PV,bidirectional:()=>rW,concatenate:()=>EV,conv1d:()=>dV,conv2d:()=>pV,conv2dTranspose:()=>hV,conv3d:()=>fV,conv3dTranspose:()=>mV,convLstm2d:()=>eW,convLstm2dCell:()=>tW,cropping2D:()=>bV,dense:()=>wV,depthwiseConv2d:()=>vV,dot:()=>OV,dropout:()=>kV,elu:()=>aV,embedding:()=>$V,flatten:()=>SV,gaussianDropout:()=>dW,gaussianNoise:()=>cW,globalAveragePooling1d:()=>HV,globalAveragePooling2d:()=>qV,globalMaxPool1d:()=>iW,globalMaxPool2d:()=>oW,globalMaxPooling1d:()=>XS,globalMaxPooling2d:()=>YS,gru:()=>KV,gruCell:()=>XV,input:()=>HB,inputLayer:()=>rV,layerNormalization:()=>zV,leakyReLU:()=>oV,lstm:()=>YV,lstmCell:()=>QV,masking:()=>hW,maxPool1d:()=>uW,maxPool2d:()=>lW,maxPooling1d:()=>QS,maxPooling2d:()=>ZS,maxPooling3d:()=>jV,maximum:()=>RV,minimum:()=>DV,multiply:()=>FV,permute:()=>TV,prelu:()=>uV,reLU:()=>iV,repeatVector:()=>CV,reshape:()=>NV,rnn:()=>nW,separableConv2d:()=>gV,simpleRNN:()=>ZV,simpleRNNCell:()=>JV,softmax:()=>lV,spatialDropout1d:()=>IV,stackedRNNCells:()=>sW,thresholdedReLU:()=>cV,timeDistributed:()=>aW,upSampling2d:()=>yV,zeroPadding2d:()=>MV});async function ar(e){if(e==null)return;let t=[],n=[],s=[];for(let r in e){let a=e[r];if(typeof a!="number"){let i=a;t.push(i.data()),n.push(r),s.push(i)}}if(t.length>0){let r=await Promise.all(t);for(let a=0;a<r.length;++a)e[n[a]]=r[a][0];Re(s)}}function rS(e){if(e!=null)for(let t in e){let n=e[t];typeof n!="number"&&n.dispose()}}var YL=125,to=class{constructor(){this.validationData=null}setParams(e){this.params=e}async onEpochBegin(e,t){}async onEpochEnd(e,t){}async onBatchBegin(e,t){}async onBatchEnd(e,t){}async onTrainBegin(e){}async onTrainEnd(e){}setModel(e){}},QL=class{constructor(e,t=10){e==null&&(e=[]),this.callbacks=e,this.queueLength=t}append(e){this.callbacks.push(e)}setParams(e){for(let t of this.callbacks)t.setParams(e)}setModel(e){for(let t of this.callbacks)t.setModel(e)}async onEpochBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochBegin(e,t)}async onEpochEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochEnd(e,t)}async onBatchBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchBegin(e,t)}async onBatchEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchEnd(e,t)}async onTrainBegin(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainBegin(e)}async onTrainEnd(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainEnd(e)}},ZL=class extends to{constructor(){super()}async onEpochBegin(e){this.seen=0,this.totals={}}async onBatchEnd(e,t){t==null&&(t={});let n=t.size==null?0:t.size;this.seen+=n;for(let s in t){let r=t[s];if(typeof r=="number")this.totals.hasOwnProperty(s)||(this.totals[s]=0),this.totals[s]=this.totals[s]+r*n;else{let a;s in this.totals?a=this.totals[s]:this.totals[s]=0;let i=j(()=>ie(this.totals[s],V(r,n)));this.totals[s]=i,a!=null&&a.dispose()}}}async onEpochEnd(e,t){if(t!=null)for(let n of this.params.metrics)this.totals[n]!=null&&(typeof this.totals[n]=="number"?t[n]=this.totals[n]/this.seen:j(()=>{let s=V(xe(1,this.seen),this.totals[n]);t[n]=s,this.totals[n].dispose(),Ht(t[n])}))}},JL=class extends to{async onTrainBegin(e){this.epoch=[],this.history={}}async onEpochEnd(e,t){t==null&&(t={}),this.epoch.push(e);for(let n in t)this.history[n]==null&&(this.history[n]=[]),this.history[n].push(t[n])}async syncData(){let e=[],t=[],n=[];for(let r in this.history){let a=this.history[r];for(let i=0;i<a.length;++i)if(typeof a[i]!="number"){let o=a[i];e.push(o.data()),t.push(r),n.push(i)}}let s=await Promise.all(e);for(let r=0;r<s.length;++r)this.history[t[r]][n[r]].dispose(),this.history[t[r]][n[r]]=s[r][0]}},eB=class extends to{constructor(e,t){if(super(),this.currentEpoch=0,this.nowFunc=e.nowFunc,this.nextFrameFunc=e.nextFrameFunc||LI,this.yieldEvery=t||"auto",this.yieldEvery==="auto"&&(this.yieldEvery=YL),this.yieldEvery==="never"&&e.onYield!=null)throw new Error("yieldEvery is `never` but you provided an `onYield` callback. Either change `yieldEvery` or remove the callback");w.isNumber(this.yieldEvery)&&(this.maybeWait=GP(this.maybeWait.bind(this),this.yieldEvery,this.nowFunc)),this.trainBegin=e.onTrainBegin,this.trainEnd=e.onTrainEnd,this.epochBegin=e.onEpochBegin,this.epochEnd=e.onEpochEnd,this.batchBegin=e.onBatchBegin,this.batchEnd=e.onBatchEnd,this.yield=e.onYield}async maybeWait(e,t,n){let s=[];this.yield!=null&&(await ar(n),s.push(this.yield(e,t,n))),s.push(this.nextFrameFunc()),await Promise.all(s)}async onEpochBegin(e,t){this.currentEpoch=e,this.epochBegin!=null&&(await ar(t),await this.epochBegin(e,t))}async onEpochEnd(e,t){let n=[];this.epochEnd!=null&&(await ar(t),n.push(this.epochEnd(e,t))),this.yieldEvery==="epoch"&&n.push(this.nextFrameFunc()),await Promise.all(n)}async onBatchBegin(e,t){this.batchBegin!=null&&(await ar(t),await this.batchBegin(e,t))}async onBatchEnd(e,t){let n=[];this.batchEnd!=null&&(await ar(t),n.push(this.batchEnd(e,t))),this.yieldEvery==="batch"?n.push(this.nextFrameFunc()):w.isNumber(this.yieldEvery)&&n.push(this.maybeWait(this.currentEpoch,e,t)),await Promise.all(n)}async onTrainBegin(e){this.trainBegin!=null&&(await ar(e),await this.trainBegin(e))}async onTrainEnd(e){this.trainEnd!=null&&(await ar(e),await this.trainEnd(e))}};function aS(e,t){return e==null&&(e={}),e instanceof to?[e]:Array.isArray(e)&&e[0]instanceof to?e:dt(e).map(s=>new eB(s,t))}var ks=class{constructor(){}static registerCallbackConstructor(e,t){w.assert(e>=0&&Number.isInteger(e),()=>`Verbosity level is expected to be an integer >= 0, but got ${e}`),ks.checkForDuplicate(t),ks.constructors[e]==null&&(ks.constructors[e]=[]),ks.constructors[e].push(t)}static checkForDuplicate(e){for(let t in ks.constructors)ks.constructors[+t].forEach(s=>{if(s===e)throw new U("Duplicate callback constructor.")})}static clear(){ks.constructors={}}static createCallbacks(e){let t=[];for(let n in ks.constructors){let s=+n;e>=s&&t.push(...ks.constructors[s])}return t.map(n=>new n)}},Lb=ks;Lb.constructors={};function iS(e,t,n,s,r,a,i,o,u){let l=new JL,c=[new ZL,...Lb.createCallbacks(t)];e!=null&&c.push(...e),c.push(l);let p=new QL(c);return p.setParams({epochs:n,initialEpoch:s,samples:r,steps:a,batchSize:i,verbose:t,doValidation:o,metrics:u}),{callbackList:p,history:l}}function ms(e,t={},n=!1){return Ll(e,ae.SerializationMap.getMap().classNameMap,t,"layer",n)}function $d(e,t){return j(()=>{e.dtype!=="float32"&&(e=ce(e,"float32"));let n=ve(Vl(e),t,!0),s=Pl(n.shape,Rt()),r=dn(_r(n,s));return xe(e,r)})}function vi(e,t){return j(()=>St(Vl(ge(t,e)),-1))}function zp(e,t){return j(()=>St(Mt(ge(t,e)),-1))}function Jo(e,t){return j(()=>{let n=ge(e,t),s=Vn(Mt(e),Rt(),Number.MAX_VALUE),r=Mt(xe(n,s));return V(100,St(r,-1))})}function tB(e,t){return j(()=>{let n=Vn(t,Rt(),Number.MAX_VALUE),s=Qn(ie(1,n)),r=Vn(e,Rt(),Number.MAX_VALUE),a=Qn(ie(1,r));return St(Vl(ge(s,a)),-1)})}function nB(e,t){return j(()=>{let n=_r(0,ge(1,V(e,t)));return St(Vl(n),-1)})}function sB(e,t){return j(()=>{let n=_r(0,ge(1,V(e,t)));return St(n,-1)})}function rB(e,t){return j(()=>{let n=ve(V(e,t),-1),s=As(V(ge(1,e),t),-1);return _r(0,ie(1,ge(s,n)))})}function aB(e,t){return j(()=>{let n=Math.log(2),s=ge(t,e),r=ge(ie(s,zl(V(-2,s))),n);return St(r,-1)})}function Zu(e,t,n=!1){return j(()=>{if(n)t=cb(t);else{let s=ve(t,t.shape.length-1,!0);t=xe(t,s)}return t=Vn(t,Rt(),1-Rt()),kt(ve(V(ce(e,"float32"),Qn(t)),t.shape.length-1))})}function _d(e,t,n=!1){return j(()=>{let s=ce(bp(nz(e)),"int32");t=Vn(t,Rt(),1-Rt());let r=t.shape,a=G(vd(s,r[r.length-1]),r);return Zu(a,t,n)})}function iB(e,t){if(!w.arraysEqual(e.shape,t.shape))throw new U(`logits and labels must have the same shape, but got shapes ${JSON.stringify(e.shape)} and ${JSON.stringify(t.shape)}`);return j(()=>{let n=Ys(t),s=kt(Mt(t));return ie(ge(n,V(t,e)),Zg(Yn(s)))})}function Mp(e,t){return j(()=>{let n;return n=Vn(t,Rt(),1-Rt()),n=Qn(xe(n,ge(1,n))),St(iB(e,n),-1)})}function oB(e,t){return j(()=>{let n=Vn(e,Rt(),1),s=Vn(t,Rt(),1);return ve(V(e,Qn(xe(n,s))),-1)})}function uB(e,t){return j(()=>{let n=Qn(ie(Rt(),t));return St(ge(t,V(e,n)),-1)})}function Bb(e,t){return j(()=>{let n=$d(e,-1),s=$d(t,-1),r=V(n,s);return kt(ve(r,-1))})}var Ad={meanSquaredError:vi,meanAbsoluteError:zp,meanAbsolutePercentageError:Jo,meanSquaredLogarithmicError:tB,squaredHinge:nB,hinge:sB,categoricalHinge:rB,logcosh:aB,categoricalCrossentropy:Zu,sparseCategoricalCrossentropy:_d,binaryCrossentropy:Mp,kullbackLeiblerDivergence:oB,poisson:uB,cosineProximity:Bb};function Gf(e){if(typeof e=="string"){if(e in Ad)return Ad[e];let t=`Unknown loss ${e}`;throw e.toLowerCase().includes("softmaxcrossentropy")&&(t=`Unknown loss ${e}. Use "categoricalCrossentropy" as the string name for tf.losses.softmaxCrossEntropy`),new U(t)}else return e}function Vb(e,t){return j(()=>{let n=V(.5,Zn(t)),s=Tp(Un(t,n),e.dtype);return St(Xn(e,s),-1)})}function Wb(e,t){return j(()=>Tp(Xn(qu(e,-1),qu(t,-1)),"float32"))}function oS(e,t){return j(()=>ce(ve(Ds(Xn(e,1),Xn(t,1))),"float32"))}function lB(e,t){return j(()=>ce(ve(Ds(Xn(e,1),Xn(t,0))),"float32"))}function cB(e,t){return j(()=>ce(ve(Ds(Xn(e,0),Xn(t,1))),"float32"))}function uS(e,t){return j(()=>{let n=oS(e,t),s=cB(e,t),r=ie(n,s);return ce(vn(Un(r,0),xe(n,r),0),"float32")})}function dB(e,t){return j(()=>{let n=oS(e,t),s=lB(e,t),r=ie(n,s);return ce(vn(Un(r,0),xe(n,r),0),"float32")})}function lS(e,t){return Mp(e,t)}function cS(e,t){return e.rank===t.rank&&(e=gr(e,[e.rank-1])),t=qu(t,-1),t.dtype!==e.dtype&&(t=ce(t,e.dtype)),ce(Xn(e,t),"float32")}var pB=vi,hB=vi,fB=zp,mB=zp,gB=Jo,bB=Jo,Ub=Zu,yB=Bb,dS=_d,Ed={binaryAccuracy:Vb,categoricalAccuracy:Wb,precision:uS,categoricalCrossentropy:Ub,sparseCategoricalCrossentropy:dS,mse:pB,MSE:hB,mae:fB,MAE:mB,mape:gB,MAPE:bB,cosine:yB};function vB(e){if(typeof e=="string"&&e in Ed)return Ed[e];if(typeof e!="string"&&e!=null)return e;throw new U(`Unknown metric ${e}`)}function qc(e){if(Cs(e!==null,`Unknown LossOrMetricFn ${e}`),typeof e=="string")return e;{let t;for(let n of Object.keys(Ad))if(Ad[n]===e){t=n;break}if(t!==void 0)return t;for(let n of Object.keys(Ed))if(Ed[n]===e){t=n;break}return t!==void 0?t:e.name}}function xB(e){let t={Adagrad:()=>Mi.adagrad(.01),Adadelta:()=>Mi.adadelta(1,.95,Rt()),Adam:()=>Mi.adam(.001,.9,.999,Rt()),Adamax:()=>Mi.adamax(.002,.9,.999,Rt(),0),RMSProp:()=>Mi.rmsprop(.001,.9,0,Rt()),SGD:()=>Mi.sgd(.01)};if(t.adagrad=t.Adagrad,t.adadelta=t.Adadelta,t.adam=t.Adam,t.adamax=t.Adamax,t.rmsprop=t.RMSProp,t.sgd=t.SGD,e in t)return t[e]();throw new U(`Unknown Optimizer ${e}`)}var Ox=1*1024*1024;function Px(e,t,n=!1){if(e==null||typeof e!="object"||Object.getPrototypeOf(e)!==Object.prototype||!km(e))throw new Error("User-defined metadata is expected to be a JSON object, but is not.");if(n){let s=JSON.stringify(e);s.length>Ox&&console.warn(`User-defined metadata of model "${t}" is too large in size (length=${s.length} when serialized). It is not recommended to store such large objects in user-defined metadata. Please make sure its serialized length is <= ${Ox}.`)}}function km(e){if(e===null)return!0;if(typeof e=="object")if(Object.getPrototypeOf(e)===Object.prototype){let t=Object.keys(e);for(let n of t)if(typeof n!="string"||!km(e[n]))return!1;return!0}else if(Array.isArray(e)){for(let t of e)if(!km(t))return!1;return!0}else return!1;else{let t=typeof e;return t==="string"||t==="number"||t==="boolean"}}function wB(e,t,n,s=console.log){let r=IB(e),a=["Layer (type)","Input Shape","Output shape","Param #"];r?(t=t||90,n=n||[.32,.61,.89,1]):(t=t||115,n=n||[.24,.48,.7,.8,1]),n[n.length-1]<=1&&(n=n.map(c=>Math.floor(t*c)));let i;if(!r){a.push("Receives inputs"),i=[];for(let c in e.nodesByDepth)i.push(...e.nodesByDepth[c])}s("_".repeat(t)),Rd(a,n,s),s("=".repeat(t));let o=e.layers;for(let c=0;c<o.length;++c)r?SB(o[c],n,s):CB(o[c],n,i,s),s((c===o.length-1?"=":"_").repeat(t));e.checkTrainableWeightsConsistency();let u=kB(e),l=Cd(e.nonTrainableWeights);s(`Total params: ${u+l}`),s(`Trainable params: ${u}`),s(`Non-trainable params: ${l}`),s("_".repeat(t))}function kB(e){let t;return e.collectedTrainableWeights!=null?t=Cd(e.collectedTrainableWeights):t=Cd(e.trainableWeights),t}function IB(e){let t=!0,n=[],s=[];for(let r in e.nodesByDepth)n.push(e.nodesByDepth[r]);for(let r of n){if(r.length>1||r.length===1&&r[0].inboundLayers.length>1){t=!1;break}s.push(...r)}if(t)for(let r of e.layers){let a=!1;for(let i of r.inboundNodes)if(s.indexOf(i)!==-1)if(a){t=!1;break}else a=!0;if(!t)break}return t}function Rd(e,t,n=console.log){let s="";for(let r=0;r<e.length;++r)r>0&&(s=s.slice(0,s.length-1)+" "),s+=e[r],s=s.slice(0,t[r]),s+=" ".repeat(t[r]-s.length);n(s)}function SB(e,t,n){let s,r;try{r=e.inboundNodes.map(u=>JSON.stringify(u.inputShapes)).join(",")}catch(u){r="multiple"}try{s=JSON.stringify(e.outputShape)}catch(u){s="multiple"}let a=e.name,i=e.getClassName(),o=[`${a} (${i})`,r,s,e.countParams().toString()];Rd(o,t,n)}function CB(e,t,n,s){let r,a;try{a=e.inboundNodes.map(p=>JSON.stringify(p.inputShapes)).join(",")}catch(p){a="multiple"}try{r=JSON.stringify(e.outputShape)}catch(p){r="multiple"}let i=[];for(let p of e.inboundNodes)if(!(n!=null&&n.length>0&&n.indexOf(p)===-1))for(let d=0;d<p.inboundLayers.length;++d){let h=p.inboundLayers[d].name,f=p.nodeIndices[d],m=p.tensorIndices[d];i.push(`${h}[${f}][${m}]`)}let o=e.name,u=e.getClassName(),l=i.length===0?"":i[0],c=[`${o} (${u})`,a,r,e.countParams().toString(),l];Rd(c,t,s);for(let p=1;p<i.length;++p)Rd(["","","","",i[p]],t,s)}function pS(e,t,n){return(e==="inboundNodes"||e==="outputLayers"||e==="inputLayers")&&t===0&&typeof n=="string"}function Ju(e,t){if(e===null)return null;if(typeof e=="string")return Xr(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let n=[],s=e.length;for(let r=0;r<s;++r){let a=e[r];pS(t,r,a)?n.push(a):n.push(Ju(a,t))}return n}else{let n={};for(let s of Object.keys(e)){let r=e[s];if(s==="name"&&typeof r=="string")n[s]=r;else{let a=Xr(s);n[a]=Ju(r,a)}}return n}}function Im(e,t){if(e==null)return null;if(typeof e=="string")return Ws(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let n=[],s=e.length;for(let r=0;r<s;++r){let a=e[r];pS(t,r,a)?n.push(a):n.push(Im(a,t))}return n}else{let n={};for(let s of Object.keys(e)){let r=e[s],a=Ws(s);(s==="name"||s==="className")&&typeof r=="string"?n[a]=r:n[a]=Im(r,s)}return n}}var hS="0.0.0",Is=class extends He{constructor(e){if(super({}),this.containerNodes=new Set,this.name=e.name,this.name==null){let b=this.getClassName().toLowerCase();this.name=Np(b)}if(this.supportsMasking=!1,this.trainable_=!0,Array.isArray(e.inputs)?this.inputs=e.inputs.slice():this.inputs=[e.inputs],Array.isArray(e.outputs)?this.outputs=e.outputs.slice():this.outputs=[e.outputs],dr(this.inputs).length!==this.inputs.length)throw new U(`The list of inputs passed to the model is redundant. All inputs should only appear once. Found: ${this.inputs.map(b=>b.name)}`);dr(this.outputs).length!==this.outputs.length&&console.warn(`The list of outputs passed to the model is redundant. All outputs should only appear once. Found: ${this.outputs.map(b=>b.name)}`),this.inputLayers=[],this.inputLayersNodeIndices=[],this.inputLayersTensorIndices=[],this.outputLayers=[],this.outputLayersNodeIndices=[],this.outputLayersTensorIndices=[],this.layers=[],this.internalContainerRefs=[];for(let b of this.outputs){let y=b.sourceLayer,v=b.nodeIndex,x=b.tensorIndex;this.outputLayers.push(y),this.outputLayersNodeIndices.push(v),this.outputLayersTensorIndices.push(x)}for(let b of this.inputs){let y=b.sourceLayer,v=b.nodeIndex,x=b.tensorIndex;Cs(v===0,"input layer has >1 nodes"),Cs(x===0,"input layer has >1 tensors"),this.inputLayers.push(y),this.inputLayersNodeIndices.push(v),this.inputLayersTensorIndices.push(x)}this.inputNames=[],this.outputNames=[],this.feedInputShapes=[],this.feedInputNames=[],this.feedOutputNames=[];for(let b=0;b<this.inputLayers.length;b++){let y=this.inputLayers[b];if(!(y instanceof Zo))throw new TypeError(`Input layers to a LayersModel must be InputLayer objects. Received inputs: ${e.inputs}. Input ${b} (0-based) originates from layer type ${y.getClassName()}.`);this.inputNames.push(y.name),this.feedInputShapes.push(y.batchInputShape),this.feedInputNames.push(y.name)}for(let b of this.outputLayers)this.outputNames.push(b.name);this.internalInputShapes=this.inputs.map(b=>b.shape),this.internalOutputShapes=this.outputs.map(b=>b.shape);let t={},n={},s={},r={},a={},i=[],o=(b,y,v,x,k,T)=>{(x==null||k==null||T==null)&&(x=b.sourceLayer,k=b.nodeIndex,T=b.tensorIndex);let N=x.inboundNodes[k];if(v.indexOf(N)!==-1)throw new hs(`The tensor ${b.name} at layer "${x.name}" is part of a cycle.`);if(y.indexOf(N)!==-1)return;this.containerNodes.add(Is.nodeKey(x,k)),x.id in a||(a[x.id]=Object.keys(a).length),v.indexOf(N)===-1&&v.push(N);let E=N.inboundLayers.length;for(let A=0;A<E;A++){let P=N.inputTensors[A],R=N.inboundLayers[A],F=N.nodeIndices[A],$=N.tensorIndices[A];o(P,y,v,R,F,$)}for(y.push(N);v.indexOf(N)>=0;)v.splice(v.indexOf(N),1);i.push(N)},u=[],l=[];for(let b of this.outputs)o(b,u,l);let c=i.slice().reverse();for(let b of c){n[b.id]=b,b.id in t||(t[b.id]=0);let y=t[b.id],v=s[b.outboundLayer.id]==null?0:s[b.outboundLayer.id];y=Math.max(y,v),s[b.outboundLayer.id]=y,r[b.outboundLayer.id]=b.outboundLayer,t[b.id]=y;for(let x=0;x<b.inboundLayers.length;x++){let k=b.inboundLayers[x],T=b.nodeIndices[x],N=k.inboundNodes[T],E=t[N.id]==null?0:t[N.id];t[N.id]=Math.max(y+1,E),n[N.id]=N}}let p={};for(let b in t){let y=t[b];y in p||(p[y]=[]),p[y].push(n[b])}let d={};for(let b in s){let y=s[b];y in d||(d[y]=[]),d[y].push(r[b])}let h=Object.keys(d).map(b=>parseInt(b,10)).sort(Uc);this.layers=[];for(let b of h){let y=d[b];y.sort((v,x)=>{let k=a[v.id],T=a[x.id];return k<T?-1:k>T?1:0});for(let v of y)v instanceof Is&&this.internalContainerRefs.push(v),this.layers.push(v)}this.layersByDepth=d,h=Object.keys(p).map(b=>parseInt(b,10)).sort(Uc);let f=this.inputs.slice(),m=[];for(let b of h)for(let y of p[b]){let v=y.outboundLayer;if(v!=null){for(let x of y.inputTensors)if(f.indexOf(x)===-1)throw new hs(`Graph disconnected: cannot obtain value for tensor ${x} at layer "${v.name}". The following previous layers were accessed without issue: ${m}`);for(let x of y.outputTensors)f.push(x);m.push(v.name)}}this.nodesByDepth=p;let g=this.layers.map(b=>b.name);for(let b of g){let y=g.filter(v=>v===b).length;if(y!==1)throw new hs(`The name "${b}" is used ${y} times in the model. All layer names should be unique. Layer names: `+JSON.stringify(g))}this.outboundNodes=[],this.inboundNodes=[],new Pp({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:this.inputs.map(b=>null),outputMasks:this.outputs.map(b=>null),inputShapes:this.inputs.map(b=>b.shape),outputShapes:this.outputs.map(b=>b.shape)}),this.built=!0,this._refCount=1}assertNotDisposed(){if(this._refCount===0)throw new Error(`Container '${this.name}' is already disposed.`)}dispose(){this.assertNotDisposed();let e={refCountAfterDispose:null,numDisposedVariables:0};if(--this._refCount===0){for(let t of this.layers)e.numDisposedVariables+=t.dispose().numDisposedVariables;for(let t of this.internalContainerRefs)e.numDisposedVariables+=t.dispose().numDisposedVariables}return e.refCountAfterDispose=this._refCount,e}get trainable(){return this.trainable_}set trainable(e){this.layers.forEach(t=>{t._trainableWeights.forEach(n=>n.trainable=e)}),this.trainable_=e}get trainableWeights(){if(this._trainableWeights.length>0)throw new U("Container instance unexpectedly contains _trainableWeights.The trainable weights of a Container are a union of the trainable weights of its consituent Layers. Its own _trainableWeights must remain an empty Array.");if(!this.trainable)return[];let e=[];for(let t of this.layers)e=e.concat(t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.layers)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.layers)t.push(...n.trainableWeights);return t.concat(e)}return e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}loadWeights(e,t=!0){let n={},s=0;for(let a of this.layers)for(let i of a.weights){if(n[i.originalName]!=null)throw new U(`Duplicate weight name: ${i.originalName}`);n[i.originalName]=i,s++}let r=[];for(let a in e){let i=a;if(n[a]==null){let o=a.split("/");i=o.slice(0,-2).concat([o[o.length-1]]).join("/")}if(n[i]!=null)r.push([n[i],e[a]]);else if(t)throw new U(`Provided weight data has no target variable: ${a}`);delete n[i]}if(t){let a=[];for(let i in n)a.push(i);if(a.length>0)throw new U(`${a.length} of ${s} weights are not set: ${a}`)}Db(r)}updatedConfig(){let e=this.getConfig(),t={};return t.className=this.getClassName(),t.config=e,t.kerasVersion=`tfjs-layers ${hS}`,t.backend="TensorFlow.js",t}toJSON(e,t=!0){let n=Im(this.updatedConfig());return t?JSON.stringify(n):n}call(e,t){return j(()=>{e=dt(e);let n=new Zr;for(let s=0;s<this.inputs.length;++s)n.add(this.inputs[s],e[s]);return Eu(this.outputs,n,t)})}computeMask(e,t){return j(()=>{e=dt(e);let n;return t==null?n=ma(null,e.length):n=dt(t),this.runInternalGraph(e,n)[1]})}computeOutputShape(e){let t=Sd(e);if(t.length!==this.inputLayers.length)throw new U(`Invalid inputShape argument ${e}: model has ${this.inputLayers.length} tensor inputs.`);let n={};for(let i=0;i<t.length;i++){let o=this.inputLayers[i],u=t[i],l=o.name+"_0_0";n[l]=u}let s=Object.keys(this.nodesByDepth).map(i=>parseInt(i,10)).sort(Uc);if(s.length>1)for(let i of s){let o=this.nodesByDepth[i];for(let u of o){let l=u.outboundLayer;if(this.inputLayers.map(f=>f.id).indexOf(l.id)!==-1)continue;let c=[];for(let f=0;f<u.inboundLayers.length;f++){let m=u.inboundLayers[f],g=u.nodeIndices[f],b=u.tensorIndices[f],y=`${m.name}_${g}_${b}`,v=n[y];c.push(v)}let p=l.computeOutputShape(bn(c)),d=Sd(p),h=l.inboundNodes.indexOf(u);for(let f=0;f<d.length;f++){let m=`${l.name}_${h}_${f}`;n[m]=d[f]}}}let r=[],a=[];for(let i=0;i<this.outputLayers.length;i++){let o=this.outputLayers[i],u=this.outputLayersNodeIndices[i],l=this.outputLayersTensorIndices[i],c=`${o.name}_${u}_${l}`;a.push(c)}for(let i=0;i<a.length;i++){let o=a[i];Cs(o in n),r.push(n[o])}return bn(r)}runInternalGraph(e,t){t==null&&(t=ma(null,e.length));let n={};for(let o=0;o<this.inputs.length;++o){let u=this.inputs[o],l=e[o],c=t[o];n[u.id]=[l,c]}let s=Object.keys(this.nodesByDepth).map(o=>parseInt(o,10)).sort(Uc);for(let o of s){let u=this.nodesByDepth[o];for(let l of u){let c=l.outboundLayer,p=l.inputTensors,d=l.outputTensors,h=new Array;for(let f of p)f.id in n&&h.push(n[f.id]);if(h.length===p.length){let f={},m,g,b,y;if(l.callArgs!=null&&(f=l.callArgs),h.length===1){let[v,x]=h[0];f.mask==null&&(f.mask=x),b=dt(c.call(v,f)),y=dt(c.computeMask(v,x)),m=[v],g=[x]}else m=h.map(v=>v[0]),g=h.map(v=>v[1]),f.mask==null&&(f.mask=g),b=dt(c.call(m,f)),y=dt(c.computeMask(m,g));if(c.activityRegularizer)throw new Fe("LayersModel invocation with concrete Tensor value(s) in the presence of activity regularizer(s) is not supported yet.");for(let v=0;v<d.length;++v){let x=d[v],k=b[v],T=y[v];n[x.id]=[k,T]}}}}let r=[],a=[],i=[];for(let o of this.outputs){Cs(o.id in n,`Could not compute output ${o.name} : ${o.id}`);let[u,l]=n[o.id];i.push(u.shape),r.push(u),a.push(l)}return[r,a,i]}buildNodeConversionMap(e){let t={},n;for(let s of this.layers){n=s instanceof Is?1:0;for(let r=0;r<s.inboundNodes.length;r++){let a=Is.nodeKey(s,r);this.containerNodes.has(a)&&(t[a]=n,n+=1)}}return t}getLayer(e,t){if(t!=null){if(this.layers.length<=t)throw new U(`Was asked to retrieve layer at index ${t}, but model only has ${this.layers.length} layer(s).`);return this.layers[t]}else if(e==null)throw new U("Provide either a layer name or layer index");for(let n of this.layers)if(n.name===e)return n;throw new U(`No such layer: ${e}`)}calculateLosses(){return j(()=>{let e=[];for(let t of this.layers)for(let n=0;n<t.inboundNodes.length;++n){let s=Is.nodeKey(t,n);this.containerNodes.has(s)&&e.push(...t.calculateLosses())}return e})}getConfig(){let e={name:this.name},t=this.buildNodeConversionMap(this.layers),n=[];for(let a of this.layers){let i=a.getClassName(),o=a.getConfig(),u=[];for(let c=0;c<a.inboundNodes.length;c++){let p=a.inboundNodes[c],d=Is.nodeKey(a,c),h={};if(this.containerNodes.has(d)){if(p.callArgs)try{JSON.stringify(p.callArgs),h=p.callArgs}catch(f){console.warn(`Layer ${a.name} was passed non-serializable keyword arguments: ${p.callArgs}. They will not be included in the serialized model (and thus will be missing at deserialization time).`),h={}}if(p.inboundLayers.length>0){let f=[];for(let m=0;m<p.inboundLayers.length;m++){let g=p.inboundLayers[m],b=p.nodeIndices[m],y=p.tensorIndices[m],v=Is.nodeKey(g,b),x=t[v];x==null&&(x=0),f.push([g.name,x,y,h])}u.push(f)}}}let l={};l.name=a.name,l.className=i,l.config=o,l.inboundNodes=u,n.push(l)}e.layers=n;let s=[];for(let a=0;a<this.inputLayers.length;a++){let i=this.inputLayers[a],o=this.inputLayersNodeIndices[a],u=Is.nodeKey(i,o);if(!this.containerNodes.has(u))continue;let l=t[u];l==null&&(l=0);let c=this.inputLayersTensorIndices[a];s.push([i.name,l,c])}e.inputLayers=s;let r=[];for(let a=0;a<this.outputLayers.length;a++){let i=this.outputLayers[a],o=this.outputLayersNodeIndices[a],u=Is.nodeKey(i,o);if(!this.containerNodes.has(u))continue;let l=t[u];l==null&&(l=0);let c=this.outputLayersTensorIndices[a];r.push([i.name,l,c])}return e.outputLayers=r,e}static fromConfig(e,t,n={},s=!1){let r={},a={};function i(m,g){m.name in a?a[m.name].push(g):a[m.name]=[g]}function o(m,g){let b=[],y;for(let v of g){let x=v[0],k=v[1],T=v[2];if(y=v[3]==null?{}:v[3],!(x in r)){i(m,g);return}let N=r[x];if(N.inboundNodes.length<=k){i(m,g);return}let E=N.inboundNodes[k];b.push(E.outputTensors[T])}b.length>0&&m.apply(bn(b),y)}function u(m){let g=m.name,b=ms(m,t.customObjects!=null?t.customObjects:{});b.setFastWeightInitDuringBuild(s),r[g]=b,m.inboundNodes.forEach(v=>{if(!(v instanceof Array))throw new U(`Corrupted configuration, expected array for nodeData: ${v}`);i(b,v)})}let l=t.name,c=t.layers;for(let m of c)u(m);for(;!UP(a);)for(let m of c){let g=r[m.name];if(g.name in a){let b=a[g.name];delete a[g.name];for(let y of b)o(g,y)}}let p=[],d=[],h=t.inputLayers;for(let m of h){let g=m[0],b=m[1],y=m[2];Cs(g in r);let x=r[g].inboundNodes[b].outputTensors;p.push(x[y])}let f=t.outputLayers;for(let m of f){let g=m[0],b=m[1],y=m[2];Cs(g in r);let x=r[g].inboundNodes[b].outputTensors;d.push(x[y])}return new e({inputs:p,outputs:d,name:l})}get stateful(){if(this._stateful)throw new U("Container instance unexpectedly has _stateful = true. The statefulness of a Container is determined by the Layers it contains. Its _stateful property must remain the default false.");for(let e of this.layers)if(e.stateful)return!0;return!1}resetStates(){j(()=>{this.layers.forEach(e=>{e.stateful&&e.resetStates()})})}};function NB(e,t,n){let s=t.length;if(e==null||Array.isArray(e)&&e.length===0)return t.map(r=>null);if(s===1)return Array.isArray(e)&&e.length===1?e:typeof e=="object"&&t[0]in e?[e[t[0]]]:[e];if(Array.isArray(e)){if(e.length!==s)throw new Error(`Provided ${n} is an array of ${e.length} element(s), but the model has ${s} outputs. Make sure a set of weights is provided for each model output.`);return e}else if(typeof e=="object"&&Object.keys(e).length>0&&typeof e[Object.keys(e)[0]]=="object"){let r=[];return t.forEach(a=>{a in e?r.push(e[a]):r.push(null)}),r}else throw new Error(`The model has multiple (${s}) outputs, so ${n} must be either an array with ${s} elements or an object with ${t} keys. Provided ${n} not understood: ${JSON.stringify(e)}`)}function fS(e,t){return NB(e,t,"classWeight")}async function mS(e,t,n,s){if(t!=null||s!=null)throw new Error("Support sampleWeight is not implemented yet");if(n!=null){let r=j(()=>{if(e.shape.length===1)return cr(e);if(e.shape.length===2){if(e.shape[1]>1)return qu(e,1);if(e.shape[1]===1)return G(e,[e.shape[0]]);throw new Error(`Encountered unexpected last-dimension size (${e.shape[1]}) during handling of class weights. The size is expected to be >= 1.`)}else throw new Error(`Unexpected rank of target (y) tensor (${e.rank}) during handling of class weights. The rank is expected to be 1 or 2.`)}),a=Array.from(await r.data());Re(r);let i=[];return a.forEach(o=>{if(n[o]==null)throw new Error(`classWeight must contain all classes in the training data. The class ${o} exists in the data but not in classWeight`);i.push(n[o])}),Zt(i,"float32")}else return null}function TB(e,t){return V(e,t)}var $B=32;function gS(e,t){let n,s,r=t;n=r.xs,s=r.ys,w.assert(n!=null&&s!=null,()=>`A Dataset iterator for fitDataset() is expected to generate objects of the form \`{xs: xVal, ys: yVal}\`, where the two values may be \`tf.Tensor\`, an array of Tensors, or a map of string to Tensor. The provided Dataset instead generates ${t}`);let a=zx("input",e.inputNames,n),i=zx("output",e.outputNames,s),o=a[0].shape[0];w.assert(a.length===e.inputs.length,()=>`LayersModel has ${e.inputs.length} inputs, but the dataset provides ${a.length} inputs. (Expected input keys: ${JSON.stringify(e.inputNames)})`),w.assert(i.length===e.outputs.length,()=>`LayersModel has ${e.outputs.length} outputs, but the dataset provides ${i.length} outputs. (Expected output keys: ${JSON.stringify(e.outputNames)})`);for(let u=0;u<a.length;u++)w.assert(a[u].shape[0]===o,()=>`Batch size mismatch: input ${e.inputNames[u]} has ${a[u].shape[0]}; expected ${o} based on input ${e.inputNames[0]}.`);for(let u=0;u<i.length;u++)w.assert(i[u].shape[0]===o,()=>`Batch size mismatch: output ${e.outputNames[u]} has ${i[u].shape[0]}; expected ${o} based on input ${e.inputNames[0]}.`);return{xs:a,ys:i}}function zx(e,t,n){if(n instanceof et)return[n];if(Array.isArray(n))return w.assert(n.length===t.length,()=>`Received an array of ${n.length} Tensors, but expected ${t.length} to match the ${e} keys ${t}.`),n;{let s=[];for(let r of t){if(n[r]==null)throw new U(`The feature data generated by the dataset lacks the required ${e} key '${r}'.`);s.push(n[r])}return s}}function _B(e){if(e.length===3)throw new Fe("Validation with sample weights is not implemented yet.");return{xs:e[0],ys:e[1]}}async function AB(e,t,n){let s=n.batchesPerEpoch!=null;if(w.assert(e.optimizer!=null,()=>"You must compile a model before training/testing. Use LayersModel.compile(modelCompileConfig)."),w.assert(n!=null,()=>"For fitDataset(), the 2nd argument (config) is required, but it is not provided in this call."),w.assert(n.epochs!=null&&n.epochs>0&&Number.isInteger(n.epochs),()=>`For fitDataset(), config.epochs is expected to be a positive integer, but got ${n.epochs}`),w.assert(!s||n.batchesPerEpoch>0&&Number.isInteger(n.batchesPerEpoch),()=>`For fitDataset(), config.batchesPerEpoch is expected to be a positive integer if specified, but got ${n.batchesPerEpoch}`),w.assert(n.validationSplit==null,()=>"`validationSplit` is not supported by `fitDataset()`. Use validationData instead."),e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;try{let r=n.validationData!=null,a,i;if(r)if(Mx(n.validationData))w.assert(n.validationBatches==null||n.validationBatches>0&&Number.isInteger(n.validationBatches),()=>`For fitDataset() with dataset-based validation, config.validationBatches is expected not to be provided, or to be a positive integer, but got ${n.validationBatches}`);else{let g=_B(n.validationData);a=g.xs,i=g.ys}let o=e.makeTrainFunction(),u=e.getDedupedMetricsNames(),l;r?l=u.slice().concat(u.map(g=>"val_"+g)):l=u.slice();let c=aS(n.callbacks,n.yieldEvery),p=n.verbose==null?1:n.verbose,{callbackList:d,history:h}=iS(c,p,n.epochs,null,null,EB(t,n),null,r,l);d.setModel(e),e.history=h,await d.onTrainBegin(),e.stopTraining_=!1;let f=n.initialEpoch==null?0:n.initialEpoch,m=await t.iterator();for(;f<n.epochs;){let g={};await d.onEpochBegin(f);let b=0,y=0;for(s||(m=await t.iterator());!s||b<n.batchesPerEpoch;){let v=await m.next();if(s&&v.done){console.warn(`You provided \`batchesPerEpoch\` as ${n.batchesPerEpoch}, but your dataset iterator ran out of data after ${b} batches; interrupting training. Make sure that your dataset can generate at least \`batchesPerEpoch * epochs\` batches (in this case, ${n.batchesPerEpoch*n.epochs} batches). You may need to use the repeat() function when building your dataset.`);break}if(v.value!=null){let{xs:x,ys:k}=gS(e,v.value),T={};T.batch=y,T.size=x[0].shape[0],await d.onBatchBegin(y,T);let N=[];if(n.classWeight!=null){let P=fS(n.classWeight,e.outputNames);for(let R=0;R<P.length;++R)N.push(await mS(k[R],null,P[R]))}let E=x.concat(k).concat(N),A=o(E);Re(E);for(let P=0;P<u.length;++P){let R=u[P],F=A[P];T[R]=F,Ht(F)}await d.onBatchEnd(y,T),rS(T),y++,b++}if(s?b>=n.batchesPerEpoch:v.done){if(r){let x;Mx(n.validationData)?x=dt(await e.evaluateDataset(n.validationData,{batches:n.validationBatches})):x=dt(e.evaluate(a,i,{batchSize:n.validationBatchSize==null?$B:n.validationBatchSize,verbose:0}));for(let k=0;k<e.metricsNames.length;++k)g[`val_${e.metricsNames[k]}`]=x[k]}break}if(e.stopTraining_)break}if(await d.onEpochEnd(f,g),f++,e.stopTraining_)break}return await d.onTrainEnd(),await e.history.syncData(),e.history}finally{e.isTraining=!1}}function EB(e,t){let n=null;return t.batchesPerEpoch!=null?n=t.batchesPerEpoch:Number.isFinite(e.size)&&(n=e.size),n}function Mx(e){return typeof e.iterator=="function"}function RB(e){return typeof e.next=="function"}async function DB(e,t,n){n=n||{};let s=n.batches!=null,r=e.testFunction,a=[];if(n.verbose>0)throw new Fe("Verbose mode is not implemented yet.");w.assert(!s||n.batches>0&&Number.isInteger(n.batches),()=>`Test loop expects \`batches\` to be a positive integer, but received ${JSON.stringify(n.batches)}`);let i=RB(t)?t:await t.iterator(),o=0,u=0;for(;!s||u<n.batches;){let l=await i.next();if(a=j(()=>{if(l.value){let{xs:c,ys:p}=gS(e,l.value),d=c.concat(p),h=j(()=>r(d));if(Re(d),u===0)for(let m=0;m<h.length;++m)a.push(we(0));let f=d[0].shape[0];for(let m=0;m<h.length;++m){let g=h[m],b=a[m];a[m]=j(()=>ie(a[m],V(f,g))),u>0&&Re(b)}Re(h),o+=f,++u}return a}),l.done){s&&console.warn(`Your dataset iterator ran out of data during evaluateDataset(). Interrupting evalution. Make sure that your dataset can generate at least \`batches\` batches (in this case, ${n.batches} batches). You may need to use the repeat() function when building your dataset.`);break}}for(let l=0;l<a.length;++l){let c=a[l];a[l]=xe(a[l],o),Re(c)}return bn(a)}function Sm(e){w.assert(e>0&&Number.isInteger(e),()=>`batchSize is required to be a positive integer, but got ${e}`)}function Ru(e,t,n){return e==null?[null]:Array.isArray(e)?e.map(s=>na(s,t,n-t)):na(e,t,n-t)}function Gb(e,t){return j(()=>e==null?null:Array.isArray(e)?e.map(n=>Gb(n,t)):ZI(e,t.dtype==="int32"?t:ce(t,"int32")))}function Cm(e,t){let n=[],s=0,r=null;for(;s<e;)r=s+t,r>=e&&(r=e),n.push([s,r]),s=r;return n}async function FB(e,t,n,s,r,a,i,o,u,l,c,p,d,h,f){r==null&&(r=32),a==null&&(a=1),c==null&&(c=!0),d==null&&(d=0);let m=!1;if(u!=null&&l!=null&&(m=!0),f!=null&&(m=!0,h==null))throw new U("Can only use `validationSteps` when doing step-wise training, i.e., `stepsPerEpoch` must be set.");let g=e.checkNumSamples(n,r,h,"steps_per_epoch"),b;g!=null&&(b=bs(0,g)),i==null&&(i=1);let{callbackList:y,history:v}=iS(o,i,a,d,g,h,r,m,p);y.setModel(e),e.history=v,await y.onTrainBegin(),e.stopTraining_=!1;for(let x=d;x<a;++x){await y.onEpochBegin(x);let k={};if(h!=null)throw new Fe("stepsPerEpoch mode is not implemented yet.");{if(c==="batch")throw new Fe("batch shuffling is not implemneted yet");c&&w.shuffle(b);let T=Zt(b),N=Cm(g,r);for(let E=0;E<N.length;++E){let A={};if(await y.onBatchBegin(E,A),j(()=>{let P=N[E][0],R=N[E][1],F=na(T,P,R-P);A.batch=E,A.size=R-P;let $=Gb(n,F),z=t($);for(let W=0;W<s.length;++W){let q=s[W],K=z[W];A[q]=K,Ht(K)}if(E===N.length-1&&m){let W=e.testLoop(u,l,r);for(let q=0;q<s.length;++q){let K=s[q],Y=W[q];Ht(Y),k["val_"+K]=Y}}}),await y.onBatchEnd(E,A),rS(A),e.stopTraining_)break}T.dispose()}if(await y.onEpochEnd(x,k),e.stopTraining_)break}return await y.onTrainEnd(),await e.history.syncData(),e.history}async function OB(e,t,n,s={}){if(e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;let r,a,i,o,u,l,c,p,d;try{let h=s.batchSize==null?32:s.batchSize;Sm(h);let f=!1,m=await e.standardizeUserData(t,n,s.sampleWeight,s.classWeight,f,h);r=m[0],a=m[1],d=m[2];let g=!1,b;if(s.validationData!=null&&s.validationData.length>0){if(g=!0,s.validationData.length===2)u=s.validationData[0],l=s.validationData[1];else throw s.validationData.length===3?new Fe("validationData including sample weights is not supported yet."):new U(`When passing validation data, it must contain 2 (valX, valY) or 3 (valX, valY, valSampleWeight) items; ${s.validationData} is invalid.`);let A=!0,P=await e.standardizeUserData(u,l,null,null,A,h);c=P[0],p=P[1],b=c.concat(p)}else if(s.validationSplit!=null&&s.validationSplit>0&&s.validationSplit<1){g=!0;let A=Math.floor(r[0].shape[0]*(1-s.validationSplit)),P=r[0].shape[0];c=Ru(r,A,P),i=r,r=Ru(r,0,A),p=Ru(a,A,P),o=a,a=Ru(a,0,A),b=c.concat(p)}else s.validationSteps!=null&&(g=!0);let y=r.concat(a).concat(d);e.checkTrainableWeightsConsistency();let v=e.makeTrainFunction(),x=e.getDedupedMetricsNames(),k,T;g?(e.makeTestFunction(),k=e.testFunction,T=x.slice().concat(x.map(A=>"val_"+A))):(k=null,b=[],T=x.slice());let N=aS(s.callbacks,s.yieldEvery);return await FB(e,v,y,x,h,s.epochs,s.verbose,N,k,b,s.shuffle,T,s.initialEpoch,null,null)}finally{e.isTraining=!1,ds(r,t),ds(a,n),ds(i,t),ds(o,n),ds(c,u),ds(p,l),d!=null&&Re(d)}}function bS(e){let t=[];e instanceof et&&(e=[e]);for(let n=0;n<e.length;++n){let s=e[n];if(s.rank===1)t.push(Bl(s,1));else{if(s.rank===0)throw new Error("Expected tensor to be at least 1D, but received a 0D tensor (scalar).");t.push(s)}}return t}function ds(e,t){if(e==null)return;let n=[];if(t instanceof et)n.push(t.id);else if(Array.isArray(t))t.forEach(r=>n.push(r.id));else if(t!=null)for(let r in t){let a=t[r];n.push(a.id)}let s=[];if(e instanceof et)n.indexOf(e.id)===-1&&s.push(e);else if(Array.isArray(e))e.forEach(r=>{n.indexOf(r.id)===-1&&s.push(r)});else if(e!=null)for(let r in e){let a=e[r];n.indexOf(a.id)===-1&&s.push(a)}s.forEach(r=>{r.isDisposed||r.dispose()})}function PB(e){return e instanceof et}function Nm(e){return Array.isArray(e)}function Lx(e){return!PB(e)&&!Nm(e)}function Bx(e,t,n,s=!0,r=""){if(t==null||t.length===0){if(e!=null){let i=!1;if(Nm(e)&&e.length>0)i=!0;else if(Lx(e)){for(let o in e)if(e.hasOwnProperty(o)){i=!0;break}}else i=!0;if(i)throw new U(`Error when checking model ${r} expected no data, but got ${e}`)}return[]}if(e==null)return t.map(i=>null);let a;if(Lx(e)){e=e,a=[];for(let i of t){if(e[i]==null)throw new U(`No data provided for "${i}". Need data for each key in: ${t}`);a.push(e[i])}}else if(Nm(e)){if(e=e,e.length!==t.length)throw new U(`Error when checking model ${r}: the Array of Tensors that you are passing to your model is not the size the model expected. Expected to see ${t.length} Tensor(s), but instead got the following list of Tensor(s): ${e}`);a=e}else{if(e=e,t.length>1)throw new U(`The model ${r} expects ${t.length} Tensor(s), but only received one Tensor. Found: Tensor with shape ${e.shape}`);a=[e]}if(a=bS(a),n!=null)for(let i=0;i<t.length;++i){if(n[i]==null)continue;let o=a[i];if(o.shape.length!==n[i].length)throw new U(`Error when checking ${r}: expected ${t[i]} to have ${n[i].length} dimension(s). but got array with shape ${o.shape}`);for(let u=0;u<n[i].length;++u){if(u===0&&!s)continue;let l=o.shape[u],c=n[i][u];if(c!=null&&c>=0&&l!==c)throw new U(`${r} expected a batch of elements where each example has shape [${n[i].slice(1,n[i].length)}] (i.e.,tensor shape [*,${n[i].slice(1,n[i].length)}]) but the ${r} received an input with ${o.shape[0]} examples, each with shape [${o.shape.slice(1,o.shape.length)}] (tensor shape [${o.shape}])`)}}return a}function zB(e,t,n){let s=dr(e.map(a=>a.shape[0]));s.sort();let r=dr(t.map(a=>a.shape[0]));if(r.sort(),s.length>1)throw new U(`All input Tensors (x) should have the same number of samples. Got array shapes: ${JSON.stringify(e.map(a=>a.shape))}`);if(r.length>1)throw new U(`All target Tensors (y) should have the same number of samples. Got array shapes: ${JSON.stringify(t.map(a=>a.shape))}`);if(s.length>0&&r.length>0&&!w.arraysEqual(s,r))throw new U(`Input Tensors should have the same number of samples as target Tensors. Found ${s[0]} input sample(s) and ${r[0]} target sample(s).`)}function MB(e,t,n){let s=[vi,Mp,Zu];for(let r=0;r<e.length;++r){let a=e[r],i=t[r],o=n[r];if(i!=null){if(i===Zu&&a.shape[a.shape.length-1]===1)throw new U(`You are passing a target array of shape ${a.shape} while using a loss 'categorical_crossentropy'. 'categorical_crossentropy'expects targets to be binary matrices (1s and 0s) of shape [samples, classes].`);if(s.indexOf(i)!==-1){let u=a.shape.slice(1),l=o.slice(1);for(let c=0;c<u.length;++c){let p=u[c],d=l[c];if(d!=null&&p!==d)throw new U(`A target Tensor with shape ${a.shape} was passed for an output of shape ${o}, while using a loss function that expects targets to have the same shape as the output.`)}}}}}function Vx(e,t,n,s=!0,r=""){let a;if(Array.isArray(e)){if(e.length!==t.length)throw new U(`Error when checking model ${r}: the Array of Tensors that you are passing to your model is not the size the the model expected. Expected to see ${t.length} Tensor(s), but instead got ${e.length} Tensors(s).`);a=e}else{if(t.length>1)throw new U(`The model expects ${t.length} ${r} Tensors, but only received one Tensor. Found: array with shape ${JSON.stringify(e.shape)}.`);a=[e]}if(n!=null)for(let i=0;i<t.length;++i){if(n[i]==null)continue;let o=a[i];if(o.shape.length!==n[i].length)throw new U(`Error when checking ${r}: expected ${t[i]} to have ${n[i].length} dimension(s), but got array with shape ${JSON.stringify(o.shape)}`);for(let u=0;u<n[i].length;++u){if(u===0&&!s)continue;let l=o.shape[u],c=n[i][u];if(c!=null&&c!==l)throw new U(`Error when checking ${r}: expected ${t[i]} to have shape ${JSON.stringify(n[i])} but got array with shape ${JSON.stringify(o.shape)}.`)}}}function LB(e,t){if(e==null||Array.isArray(e)&&e.length===0)return t.map(s=>[]);let n;if(typeof e=="string"||typeof e=="function")n=[e];else if(Array.isArray(e)||typeof e=="object")n=e;else throw new TypeError(`Type of metrics argument not understood. Expected an string,function, Array, or Object, found: ${e}`);if(Array.isArray(n))return t.map(s=>n);{let s=[];for(let r of t){let a=n.hasOwnProperty(r)?n[r]:[];Array.isArray(a)||(a=[a]),s.push(a)}return s}}var BB="layers-model",hr=class extends Is{constructor(e){super(e),this.isTraining=!1}summary(e,t,n=console.log){if(!this.built)throw new U("This model has never been called, thus its weights have not been created yet. So no summary can be displayed. Build the model first (e.g., by calling it on some test data).");wB(this,e,t,n)}compile(e){if(e.loss==null&&(e.loss=[]),this.loss=e.loss,typeof e.optimizer=="string")this.optimizer_=xB(e.optimizer),this.isOptimizerOwned=!0;else{if(!(e.optimizer instanceof Ar))throw new U("User-defined optimizer must be an instance of tf.Optimizer.");this.optimizer_=e.optimizer,this.isOptimizerOwned=!1}let t=[];if(!Array.isArray(e.loss)&&typeof e.loss!="string"&&typeof e.loss!="function"){e.loss=e.loss;for(let a in e.loss)if(this.outputNames.indexOf(a)===-1)throw new U(`Unknown entry in loss dictionary: "${a}". Only expected the following keys: ${this.outputNames}`);for(let a of this.outputNames)e.loss[a]==null&&console.warn(`Output "${a}" is missing from loss dictionary. We assume this was done on purpose, and we will not be expecting data to be passed to ${a} during training`),t.push(Gf(e.loss[a]))}else if(Array.isArray(e.loss)){if(e.loss.length!==this.outputs.length)throw new U(`When passing an Array as loss, it should have one entry per model output. The model has ${this.outputs.length} output(s), but you passed loss=${e.loss}.`);t=e.loss.map(i=>Gf(i))}else{let a=Gf(e.loss);this.outputs.forEach(i=>{t.push(a)})}this.lossFunctions=t,this.feedOutputNames=[],this.feedOutputShapes=[],this.feedLossFns=[];for(let a=0;a<this.outputs.length;++a){let i=this.internalOutputShapes[a],o=this.outputNames[a];this.feedOutputNames.push(o),this.feedOutputShapes.push(i),this.feedLossFns.push(this.lossFunctions[a])}let n=[];this.metrics=e.metrics,this.metricsNames=["loss"],this.metricsTensors=[],ta("loss",()=>{for(let a=0;a<this.outputs.length;++a){if(n.indexOf(a)!==-1)continue;let i=this.lossFunctions[a];this.outputs.length>1&&(this.metricsTensors.push([i,a]),this.metricsNames.push(this.outputNames[a]+"_loss"))}});let s=LB(e.metrics,this.outputNames),r=(a,i,o)=>{this.outputNames.length>1&&(i=this.outputNames[a]+"_"+i),this.metricsNames.push(i),this.metricsTensors.push([o,a])};ta("metric",()=>{for(let a=0;a<this.outputs.length;++a){if(n.indexOf(a)!==-1)continue;let i=s[a];(u=>{let l="",c,p,d;for(let h of u){if(typeof h=="string"&&["accuracy","acc","crossentropy","ce"].indexOf(h)!==-1){let m=this.internalOutputShapes[a];m[m.length-1]===1||this.lossFunctions[a]===Mp?["accuracy","acc"].indexOf(h)!==-1?p=Vb:["crossentropy","ce"].indexOf(h)!==-1&&(p=lS):this.lossFunctions[a]===_d?["accuracy","acc"].indexOf(h)!==-1?p=cS:["crossentropy","ce"].indexOf(h)!==-1&&(p=dS):["accuracy","acc"].indexOf(h)!==-1?p=Wb:["crossentropy","ce"].indexOf(h)!==-1&&(p=Ub);let g;["accuracy","acc"].indexOf(h)!==-1?g="acc":["crossentropy","ce"].indexOf(h)!==-1&&(g="ce"),d=p,c=l+g}else d=vB(h),c=l+qc(h);let f;ta(c,()=>{f=d}),r(a,c,f)}})(i)}}),this.collectedTrainableWeights=this.trainableWeights}checkTrainableWeightsConsistency(){this.collectedTrainableWeights!=null&&this.trainableWeights.length!==this.collectedTrainableWeights.length&&console.warn("Discrepancy between trainableweights and collected trainable weights. Did you set `model.trainable` without calling `model.compile()` afterwards?")}evaluate(e,t,n={}){let s=n.batchSize==null?32:n.batchSize;Sm(s);let r=!0,a=this.standardizeUserDataXY(e,t,r,s);try{let i=a[0].concat(a[1]);this.makeTestFunction();let o=this.testFunction,u=this.testLoop(o,i,s,n.verbose,n.steps);return bn(u)}finally{ds(a[0],e),ds(a[1],t)}}async evaluateDataset(e,t){return this.makeTestFunction(),DB(this,e,t)}checkNumSamples(e,t,n,s="steps"){let r;if(n!=null){if(r=null,t!=null)throw new U(`If ${s} is set, batchSize must be null or undefined.Got batchSize = ${t}`)}else if(e!=null)Array.isArray(e)?r=e[0].shape[0]:r=e.shape[0];else throw new U(`Either the input data should have a defined shape, or ${s} shoud be specified.`);return r}execute(e,t){if(Array.isArray(t)&&t.length===0)throw new U("`outputs` is an empty Array, which is not allowed.");let n=Array.isArray(t),s=n?t:[t],r=this.retrieveSymbolicTensors(s),a=new Zr;if(e instanceof et&&(e=[e]),Array.isArray(e)){if(e.length!==this.inputs.length)throw new U(`The number of inputs provided (${e.length}) does not match the number of inputs of this model (${this.inputs.length}).`);for(let o=0;o<this.inputs.length;++o)a.add(this.inputs[o],e[o])}else for(let o of this.inputs){let u=e[o.name];if(u==null)throw new U(`No value is provided for the model's input ${o.name}`);a.add(o,u)}let i=Eu(r,a);return n?i:i[0]}retrieveSymbolicTensors(e){let t=ma(null,e.length),n=e.length;for(let s of this.layers){let r=Array.isArray(s.output)?s.output:[s.output],a=r.map(i=>i.name);for(let i=0;i<e.length;++i){let o=a.indexOf(e[i]);if(o!==-1&&(t[i]=r[o],n--),n===0)break}if(n===0)break}if(n>0){let s=[];throw t.forEach((r,a)=>{r==null&&s.push(e[a])}),new U(`Cannot find SymbolicTensors for output name(s): ${JSON.stringify(s)}`)}return t}predictLoop(e,t=32,n=!1){return j(()=>{let s=this.checkNumSamples(e);if(n)throw new Fe("Verbose predictLoop() is not implemented yet.");let r=Cm(s,t),a=this.outputs.map(i=>[]);for(let i=0;i<r.length;++i)j(()=>{let u=r[i][0],l=r[i][1],c=Ru(e,u,l),p=[];if(Array.isArray(c))for(let h=0;h<c.length;++h)p.push({key:this.inputs[h],value:c[h]});else p.push({key:this.inputs[0],value:c});let d=new Zr(p);return Eu(this.outputs,d)}).forEach((u,l)=>a[l].push(u));return bn(a.map(i=>Ft(i,0)))})}predict(e,t={}){let n=bS(e);Vx(n,this.inputNames,this.feedInputShapes,!1);try{let s=t.batchSize==null?32:t.batchSize;return Sm(s),this.predictLoop(n,s)}finally{ds(n,e)}}predictOnBatch(e){Vx(e,this.inputNames,this.feedInputShapes,!0);let t=(Array.isArray(e)?e[0]:e).shape[0];return this.predictLoop(e,t)}standardizeUserDataXY(e,t,n=!0,s){if(this.optimizer_==null)throw new hs("You must compile a model before training/testing. Use LayersModel.compile(modelCompileArgs).");let r=[];for(let a=0;a<this.feedOutputShapes.length;++a){let i=this.feedOutputShapes[a];this.feedLossFns[a]===_d?r.push(i.slice(0,i.length-1).concat([1])):r.push(i)}if(e=Bx(e,this.feedInputNames,this.feedInputShapes,!1,"input"),t=Bx(t,this.feedOutputNames,r,!1,"target"),zB(e,t,null),MB(t,this.feedLossFns,this.feedOutputShapes),this.stateful&&s!=null&&s>0&&e[0].shape[0]%s!==0)throw new U(`In a stateful network, you should only pass inputs with a number of samples that is divisible by the batch size ${s}. Found: ${e[0].shape[0]} sample(s).`);return[e,t]}async standardizeUserData(e,t,n,s,r=!0,a){let[i,o]=this.standardizeUserDataXY(e,t,r,a);if(n!=null)throw new Error("sample weight is not supported yet.");let u=null;if(s!=null){let l=fS(s,this.outputNames);u=[];for(let c=0;c<l.length;++c)u.push(await mS(o[c],null,l[c]))}return[i,o,u]}testLoop(e,t,n,s=0,r){return j(()=>{let a=this.checkNumSamples(t,n,r,"steps"),i=[];if(s>0)throw new Fe("Verbose mode is not implemented yet.");if(r!=null)throw new Fe("steps mode in testLoop() is not implemented yet");{let o=Cm(a,n),u=Zt(bs(0,a));for(let l=0;l<o.length;++l){let c=o[l][0],p=o[l][1],d=na(u,c,p-c),h=Gb(t,d),f=e(h);if(l===0)for(let m=0;m<f.length;++m)i.push(we(0));for(let m=0;m<f.length;++m){let g=f[m];i[m]=ie(i[m],V(p-c,g))}}for(let l=0;l<i.length;++l)i[l]=xe(i[l],a)}return i})}getDedupedMetricsNames(){let e=this.metricsNames,t=[];for(let n=0;n<e.length;++n){let s=e[n],r=s;xx(e,s)>1&&(r+=`_${xx(e.slice(0,n),s)}`),t.push(r)}return t}makeTrainFunction(){return e=>{let t=[],n=e.slice(0,this.inputs.length),s=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),r=e.slice(this.inputs.length+this.outputs.length,this.inputs.length+this.outputs.length*2),a=[],i=()=>{let c=[];for(let f=0;f<this.inputs.length;++f)c.push({key:this.inputs[f],value:n[f]});let p=new Zr(c),d=Eu(this.outputs,p,{training:!0}),h;for(let f=0;f<this.lossFunctions.length;++f){let g=this.lossFunctions[f](s[f],d[f]);r[f]!=null&&(g=TB(g,r[f]));let b=St(g);t.push(b),f===0?h=g:h=ie(h,g)}for(let f=0;f<this.metricsTensors.length;++f){let m;if(this.outputs.length>1&&f<this.outputs.length)m=t[f];else{let g=this.metricsTensors[f][0],b=this.metricsTensors[f][1];m=St(g(s[b],d[b]))}Ht(m),a.push(m)}return h=St(h),this.calculateLosses().forEach(f=>{h=ie(h,f)}),h},o=this.collectedTrainableWeights.map(c=>c.read()),u=!0;return[this.optimizer_.minimize(i,u,o)].concat(a)}}makeTestFunction(){this.testFunction=e=>j(()=>{let t=[],n,s=e.slice(0,this.inputs.length),r=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),a=[];for(let u=0;u<this.inputs.length;++u)a.push({key:this.inputs[u],value:s[u]});let i=new Zr(a),o=Eu(this.outputs,i);for(let u=0;u<this.lossFunctions.length;++u){let l=this.lossFunctions[u],c=St(l(r[u],o[u]));u===0?n=c:n=ie(n,c),t.push(n)}for(let u=0;u<this.metricsTensors.length;++u){let l=this.metricsTensors[u][0],c=this.metricsTensors[u][1],p=St(l(r[c],o[c]));t.push(p)}return t})}async fit(e,t,n={}){return OB(this,e,t,n)}async fitDataset(e,t){return AB(this,e,t)}async trainOnBatch(e,t){let n=await this.standardizeUserData(e,t),s=n[0],r=n[1],i=this.makeTrainFunction()(s.concat(r)),o=[];for(let u of i){let l=await u.data();o.push(l[0])}return Re(i),ds(n[0],e),ds(n[1],t),bn(o)}getNamedWeights(e){let t=[],n=e!=null&&e.trainableOnly,s=n?this.trainableWeights:this.weights,r=this.getWeights(n);for(let a=0;a<s.length;++a)n&&!s[a].trainable||t.push({name:s[a].originalName,tensor:r[a]});return t}set stopTraining(e){this.stopTraining_=e}get stopTraining(){return this.stopTraining_}get optimizer(){return this.optimizer_}set optimizer(e){this.optimizer_!==e&&(this.optimizer_=e,this.isOptimizerOwned=!1)}dispose(){let e=super.dispose();if(e.refCountAfterDispose===0&&this.optimizer!=null&&this.isOptimizerOwned){let t=pm().numTensors;this.optimizer_.dispose(),e.numDisposedVariables+=t-pm().numTensors}return e}getLossIdentifiers(){let e;if(typeof this.loss=="string")e=Ws(this.loss);else if(Array.isArray(this.loss)){for(let t of this.loss)if(typeof t!="string")throw new Error("Serialization of non-string loss is not supported.");e=this.loss.map(t=>Ws(t))}else{let t=Object.keys(this.loss);e={};let n=this.loss;for(let s of t)if(typeof n[s]=="string")e[s]=Ws(n[s]);else throw new Error("Serialization of non-string loss is not supported.")}return e}getMetricIdentifiers(){if(typeof this.metrics=="string"||typeof this.metrics=="function")return[Ws(qc(this.metrics))];if(Array.isArray(this.metrics))return this.metrics.map(e=>Ws(qc(e)));{let e={};for(let t in this.metrics)e[t]=Ws(qc(this.metrics[t]));return e}}getTrainingConfig(){return{loss:this.getLossIdentifiers(),metrics:this.getMetricIdentifiers(),optimizer_config:{class_name:this.optimizer.getClassName(),config:this.optimizer.getConfig()}}}loadTrainingConfig(e){if(e.weighted_metrics!=null)throw new Error("Loading weight_metrics is not supported yet.");if(e.loss_weights!=null)throw new Error("Loading loss_weights is not supported yet.");if(e.sample_weight_mode!=null)throw new Error("Loading sample_weight_mode is not supported yet.");let t=Ju(e.optimizer_config),n=ms(t),s;if(typeof e.loss=="string")s=Xr(e.loss);else if(Array.isArray(e.loss))s=e.loss.map(a=>Xr(a));else if(e.loss!=null){s={};for(let a in e.loss)s[a]=Xr(e.loss[a])}let r;if(Array.isArray(e.metrics))r=e.metrics.map(a=>Xr(a));else if(e.metrics!=null){r={};for(let a in e.metrics)r[a]=Xr(e.metrics[a])}this.compile({loss:s,metrics:r,optimizer:n})}async save(e,t){if(typeof e=="string"){let u=En.getSaveHandlers(e);if(u.length===0)throw new U(`Cannot find any save handlers for URL '${e}'`);if(u.length>1)throw new U(`Found more than one (${u.length}) save handlers for URL '${e}'`);e=u[0]}if(e.save==null)throw new U("LayersModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");let n=await En.encodeWeights(this.getNamedWeights(t)),s=!1,r=null,i={modelTopology:this.toJSON(r,s),format:BB,generatedBy:`TensorFlow.js tfjs-layers v${hS}`,convertedBy:null};if((t==null?!1:t.includeOptimizer)&&this.optimizer!=null){i.trainingConfig=this.getTrainingConfig();let u="optimizer",{data:l,specs:c}=await En.encodeWeights(await this.optimizer.getWeights(),u);n.specs.push(...c),n.data=En.concatenateArrayBuffers([n.data,l])}return this.userDefinedMetadata!=null&&(Px(this.userDefinedMetadata,this.name,!0),i.userDefinedMetadata=this.userDefinedMetadata),i.weightData=n.data,i.weightSpecs=n.specs,e.save(i)}setUserDefinedMetadata(e){Px(e,this.name),this.userDefinedMetadata=e}getUserDefinedMetadata(){return this.userDefinedMetadata}};hr.className="Model";ae.registerClass(hr);var yS=class extends hr{};yS.className="Functional";ae.registerClass(yS);async function VB(e,t){"modelTopology"in e||(e={modelTopology:e}),e=e;let n=e.modelTopology;n.model_config!=null&&(n=n.model_config);let s=Ju(n),r=ms(s,t);if(e.weightsManifest!=null){let a=await En.loadWeights(e.weightsManifest,e.pathPrefix,r.weights.map(o=>o.originalName)),i={};for(let o of r.weights)i[o.originalName]=a[o.originalName];r.loadWeights(i),Re(a)}return r}async function WB(e,t){if(t==null&&(t={}),typeof e=="string"){let n=En.getLoadHandlers(e,t);if(n.length===0)n.push(En.browserHTTPRequest(e,t));else if(n.length>1)throw new U(`Found more than one (${n.length}) load handlers for URL '${e}'`);e=n[0]}return UB(e,void 0,t)}async function UB(e,t,n){if(n==null&&(n={}),e.load==null)throw new U("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let s=await e.load(),r=s.modelTopology;r.model_config!=null&&(r=r.model_config);let a=n.strict==null?!0:n.strict,i=s.weightData!=null&&s.weightSpecs!=null&&a,o=ms(Ju(r),t,i),u=s.trainingConfig;if(u!=null&&o.loadTrainingConfig(u),s.userDefinedMetadata!=null&&o.setUserDefinedMetadata(s.userDefinedMetadata),s.weightData!=null){if(s.weightSpecs==null)throw new U("LayersModel artifacts contains weight data, but not weight specs. Therefore loading of weights cannot proceed.");let{modelWeights:l,optimizerWeights:c}=GB(s.weightData,s.weightSpecs);o.loadWeights(l,a),o.optimizer!=null&&c.length>0&&await o.optimizer.setWeights(c),Re(l),Re(c.map(p=>p.tensor))}return o}function GB(e,t){let n=En.decodeWeights(e,t),s={},r=[];return t.forEach(a=>{a.group==="optimizer"?r.push({name:a.name,tensor:n[a.name]}):s[a.name]=n[a.name]}),{modelWeights:s,optimizerWeights:r}}var Tm=class extends hr{constructor(e){if(super({inputs:[],outputs:[]}),e=e||{},this.trainable=!0,this.built=!1,this.name=e.name!=null?e.name:Np("sequential_"),e.layers!=null)for(let t of e.layers)this.add(t)}checkShape(e){if(e.inboundNodes[0].outputTensors[0].shape.some(n=>n<0))throw new U(`Negative dimension size caused by adding layer ${e.name} with input shape [${e.inboundNodes[0].inputTensors[0].shape}]`)}add(e){let t=e instanceof Tm||e instanceof hr,n;if(t){if(n=e,n.outputs.length!==1)throw new U("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");if(n.inputs.length!==1)throw new U("All layers in a Sequential model should have a single input tensor. For multi-input layers, use the functional API.")}if(this.outputs.length===0){if(e.inboundNodes.length===0){if(e.batchInputShape==null)throw new U("The first layer in a Sequential model must get an `inputShape` or `batchInputShape` argument.");let s=tS({batchShape:e.batchInputShape,dtype:e.dtype,name:e.name+"_input"});e.apply(s)}if(t)this.outputs=n.outputs,this.inputs=n.inputs;else{if(e.inboundNodes.length!==1)throw new U(`A layer added to a Sequential model must not already be connected somewhere else. LayersModel received layer ${e.name} which has ${e.inboundNodes.length} pre-existing inbound connections.`);if(e.inboundNodes[0].outputTensors.length!==1)throw new U("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[e.inboundNodes[0].outputTensors[0]],this.inputs=eS(this.outputs[0])}this.inboundNodes=[],new Pp({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:ma(null,this.inputs.length),outputMasks:[null],inputShapes:this.inputs.map(s=>s.shape),outputShapes:this.outputs[0].shape})}else{let s=e.apply(this.outputs[0]);if(Array.isArray(s))throw new TypeError("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[s],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}this.layers.push(e),this.built=!1}pop(){if(this.layers.length===0)throw new TypeError("There are no layers in the model.");if(this.layers.pop(),this.layers.length===0)this.outputs=[],this.inboundNodes=[],this.outboundNodes=[];else{let e=this.layers.length-1;this.layers[e].outboundNodes=[],this.outputs=[this.layers[e].output],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}}call(e,t){return this.model==null&&this.build(),this.model.call(e,t)}build(e){if(nt(e),this.inputs.length===0||this.outputs.length===0)throw new TypeError("Sequential model cannot be built: model is empty. Add some layers first.");this.model=new hr({inputs:this.inputs,outputs:this.outputs[0],name:this.name+"_model"}),this.model.trainable=this.trainable,this.supportsMasking=this.model.supportsMasking,this.inputLayers=this.model.inputLayers,this.inputLayersNodeIndices=this.model.inputLayersNodeIndices,this.inputLayersTensorIndices=this.model.inputLayersTensorIndices,this.outputLayers=this.model.outputLayers,this.outputLayersNodeIndices=this.model.outputLayersNodeIndices,this.outputLayersTensorIndices=this.model.outputLayersTensorIndices,this.nodesByDepth=this.model.nodesByDepth,this.containerNodes=this.model.containerNodes,this.outputNames=this.model.outputNames,this.inputNames=this.model.inputNames,this.built=!0}countParams(){return this.built||this.build(),super.countParams()}summary(e,t,n=console.log){this.built||this.build(),super.summary(e,t,n)}setWeights(e){this.model==null&&this.build(),this.model.setWeights(e)}evaluate(e,t,n={}){if(!this.built)throw new hs("The model needs to be compiled before being used.");return this.model.evaluate(e,t,n)}async evaluateDataset(e,t){if(!this.built)throw new hs("The model needs to be compiled before being used.");return this.model.evaluateDataset(e,t)}predict(e,t={}){return this.model==null&&this.build(),this.model.predict(e,t)}predictOnBatch(e){return this.model==null&&this.build(),this.model.predictOnBatch(e)}compile(e){this.build(),this.model.compile(e),this.optimizer_=this.model.optimizer,this.isOptimizerOwned=this.model.isOptimizerOwned,this.loss=this.model.loss,this.metrics=this.model.metrics,this.metricsTensors=this.model.metricsTensors,this.metricsNames=this.model.metricsNames}get optimizer(){return this.model==null?void 0:this.model.optimizer}set optimizer(e){this.model.optimizer=e}async fit(e,t,n={}){if(!this.built)throw new hs("The model needs to be compiled before being used.");return this.model.fit(e,t,n)}async fitDataset(e,t){if(!this.built)throw new hs("The model needs to be compiled before being used.");return this.model.fitDataset(e,t)}async trainOnBatch(e,t){return this.model.trainOnBatch(e,t)}static fromConfig(e,t,n={},s=!1){let r,a={};if(t instanceof Array){if(t[0].className==null||t[0].className==="Merge")throw new U("Legacy serialization format not supported yet.");r=t}else w.assert(t.layers!=null,()=>"When the config data for a Sequential model is not an Array, it must be an Object that contains the 'layers' field."),r=t.layers,delete t.layers,a=t;let i=new e(a);if(!(i instanceof Tm))throw new Fe(`Sequential.fromConfig called on non-Sequential input: ${i}`);for(let o of r){let l=ms(o,void 0,s);s&&l.setFastWeightInitDuringBuild(!0),i.add(l)}return i}set stopTraining(e){if(this.model==null)throw new U("Cannot set the stopTraining property of a sequential model before it is compiled.");this.model.stopTraining=e}get stopTraining(){if(this.model==null)throw new U("Cannot get the stopTraining property of a sequential model before it is compiled.");return this.model.stopTraining}getConfig(){let e=[];for(let t of this.layers){let n={};n.className=t.getClassName(),n.config=t.getConfig(),e.push(n)}return{name:this.name,layers:e}}},Hb=Tm;Hb.className="Sequential";ae.registerClass(Hb);function Bpe(e){return new hr(e)}function Vpe(e){return new Hb(e)}function Wpe(e,t){return t==null&&(t={}),WB(e,t)}function HB(e){return tS(e)}function Upe(e,t){Lb.registerCallbackConstructor(e,t)}var In=class extends ae.Serializable{getConfig(){return{}}},vS=class extends In{apply(e,t=1){return rz(e,t)}};vS.className="elu";ae.registerClass(vS);var xS=class extends In{apply(e){return xI(e)}};xS.className="selu";ae.registerClass(xS);var wS=class extends In{apply(e){return Ys(e)}};wS.className="relu";ae.registerClass(wS);var kS=class extends In{apply(e){return j(()=>vp(6,Ys(e)))}};kS.className="relu6";ae.registerClass(kS);var IS=class extends In{apply(e){return e}};IS.className="linear";ae.registerClass(IS);var SS=class extends In{apply(e){return qs(e)}};SS.className="sigmoid";ae.registerClass(SS);var CS=class extends In{apply(e){return iz(e)}};CS.className="hardSigmoid";ae.registerClass(CS);var NS=class extends In{apply(e){return zl(e)}};NS.className="softplus";ae.registerClass(NS);var TS=class extends In{apply(e){return az(e)}};TS.className="softsign";ae.registerClass(TS);var $S=class extends In{apply(e){return ju(e)}};$S.className="tanh";ae.registerClass($S);var qb=class extends In{apply(e,t=-1){return cb(e,t)}};qb.className="softmax";ae.registerClass(qb);var _S=class extends In{apply(e,t=-1){return cI(e,t)}};_S.className="logSoftmax";ae.registerClass(_S);var AS=class extends In{apply(e,t=1){return j(()=>V(qs(V(e,t)),e))}};AS.className="swish";ae.registerClass(AS);var ES=class extends In{apply(e){return j(()=>V(e,ju(zl(e))))}};ES.className="mish";ae.registerClass(ES);function yr(e){return e.getClassName()}function Hf(e,t={}){return Ll(e,ae.SerializationMap.getMap().classNameMap,t,"activation")}function vr(e){if(e==null){let t={};return t.className="linear",t.config={},Hf(t)}if(typeof e=="string"){let t={};return t.className=e,t.config={},Hf(t)}else return e instanceof In?e:Hf(e)}function jb(e){if(e!=null&&typeof e!="object")throw new Error(`Argument to L1L2 regularizer's constructor is expected to be an object, but received: ${e}`)}var RS=class extends ae.Serializable{},Gl=class extends RS{constructor(e){super(),jb(e),this.l1=e==null||e.l1==null?.01:e.l1,this.l2=e==null||e.l2==null?.01:e.l2,this.hasL1=this.l1!==0,this.hasL2=this.l2!==0}apply(e){return j(()=>{let t=$t([1]);return this.hasL1&&(t=ie(t,ve(V(this.l1,Mt(e))))),this.hasL2&&(t=ie(t,ve(V(this.l2,Vl(e))))),G(t,[])})}getConfig(){return{l1:this.l1,l2:this.l2}}static fromConfig(e,t){return new e({l1:t.l1,l2:t.l2})}};Gl.className="L1L2";ae.registerClass(Gl);function qB(e){return jb(e),new Gl({l1:e!=null?e.l1:null,l2:0})}function jB(e){return jb(e),new Gl({l2:e!=null?e.l2:null,l1:0})}var Wx={l1l2:"L1L2"};function it(e){return Ib(e)}function Ux(e,t={}){return Ll(e,ae.SerializationMap.getMap().classNameMap,t,"regularizer")}function ft(e){if(e==null)return null;if(typeof e=="string"){let n={className:e in Wx?Wx[e]:e,config:{}};return Ux(n)}else return e instanceof RS?e:Ux(e)}var Kb=class extends He{constructor(e){super(e==null?{}:e),this.supportsMasking=!0,e!=null&&(this.maxValue=e.maxValue)}call(e,t){e=Oe(e);let n=Ys(e);return this.maxValue!=null&&(n=Vn(n,0,this.maxValue)),n}computeOutputShape(e){return e}getConfig(){let e={maxValue:this.maxValue},t=super.getConfig();return Object.assign(e,t),e}};Kb.className="ReLU";ae.registerClass(Kb);var Xb=class extends He{constructor(e){super(e==null?{}:e),this.DEFAULT_ALPHA=.3,e==null&&(e={}),this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=Oe(e);return Qg(n,this.alpha)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};Xb.className="LeakyReLU";ae.registerClass(Xb);var Yb=class extends He{constructor(e){if(super(e==null?{}:e),this.DEFAULT_ALPHA_INITIALIZER="zeros",e==null&&(e={}),this.supportsMasking=!0,this.alphaInitializer=ht(e.alphaInitializer||this.DEFAULT_ALPHA_INITIALIZER),this.alphaRegularizer=ft(e.alphaRegularizer),this.alphaConstraint=Pt(e.alphaConstraint),e.sharedAxes==null)this.sharedAxes=null;else if(Array.isArray(e.sharedAxes))this.sharedAxes=e.sharedAxes;else if(typeof e.sharedAxes=="number")this.sharedAxes=[e.sharedAxes];else throw new U(`Expected sharedAxes to be a number or an array of numbers, but got ${e.sharedAxes}`)}build(e){e=nt(e);let t=e.slice(1);if(this.sharedAxes!=null)for(let s of this.sharedAxes)t[s-1]=1;this.alpha=this.addWeight("alpha",t,"float32",this.alphaInitializer,this.alphaRegularizer,!0,this.alphaConstraint);let n={};if(this.sharedAxes!=null)for(let s=1;s<e.length;++s)n[s]=e[s];this.inputSpec=[new Dt({ndim:e.length,axes:n})],this.built=!0}call(e,t){return e=Oe(e),ab(e,this.alpha.read())}getConfig(){let e={alphaInitializer:yt(this.alphaInitializer),alphaRegularizer:it(this.alphaRegularizer),alphaConstraint:Ot(this.alphaConstraint),sharedAxes:this.sharedAxes},t=super.getConfig();return Object.assign(e,t),e}};Yb.className="PReLU";ae.registerClass(Yb);var Qb=class extends He{constructor(e){if(super(e==null?{}:e),this.DEFAULT_ALPHA=1,e==null&&(e={}),e.alpha!=null&&e.alpha!==this.DEFAULT_ALPHA)throw new Fe(`Non-default alpha value (${e.alpha}) is not supported by the ELU layer yet.`);this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=Oe(e);return gp(n)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};Qb.className="ELU";ae.registerClass(Qb);var Zb=class extends He{constructor(e){super(e==null?{}:e),this.DEFAULT_THETA=1,e==null&&(e={}),this.theta=e.theta==null?this.DEFAULT_THETA:e.theta}call(e,t){let n=Oe(e);return V(n,ce(Un(n,this.theta),"float32"))}computeOutputShape(e){return e}getConfig(){let e={theta:this.theta},t=super.getConfig();return Object.assign(e,t),e}};Zb.className="ThresholdedReLU";ae.registerClass(Zb);var Jb=class extends He{constructor(e){super(e==null?{}:e),this.DEFAULT_AXIS=1,e==null&&(e={}),this.softmax=new qb().apply,this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis}call(e,t){let n=Oe(e);return this.softmax(n,this.axis)}computeOutputShape(e){return e}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};Jb.className="Softmax";ae.registerClass(Jb);function Qi(e,t,n){if(typeof e=="number")return ma(e,t);if(e.length!==t)throw new U(`The ${n} argument must be an integer or tuple of ${t} integers. Received: ${e.length} elements.`);for(let s=0;s<t;++s){let r=e[s];if(!ez(r))throw new U(`The ${n} argument must be an integer or tuple of ${t} integers. Received: ${JSON.stringify(e)} including a non-integer number ${r}`)}return e}function gs(e,t,n,s,r=1){if(e==null)return e;let a=t+(t-1)*(r-1),i;return n==="same"?i=e:i=e-a+1,Math.floor((i+s-1)/s)}function Ns(e,t,n,s){if(e==null)return null;if(s==="valid")e=e*t+br([n-t,0]);else if(s==="same")e=e*t;else throw new U(`Unsupport padding mode: ${s}.`);return e}function ey(e,t){return j(()=>(Ct(t),t==="channelsFirst"?Ge(e,[0,2,3,1]):e))}function DS(e,t){return j(()=>(Ct(t),t==="channelsFirst"?Ge(e,[0,2,3,4,1]):e))}function KB(e,t,n,s=1,r="valid",a,i=1){return j(()=>{if(a==null&&(a=ys()),Ct(a),e.shape.length!==3)throw new U(`The input of a conv1dWithBias operation should be 3, but is ${e.shape.length} instead.`);if(t.shape.length!==3)throw new U(`The kernel for a conv1dWithBias operation should be 3, but is ${t.shape.length} instead`);if(n!=null&&n.shape.length!==1)throw new U(`The bias for a conv1dWithBias operation should be 1, but is ${t.shape.length} instead`);if(a==="channelsFirst"&&(e=Ge(e,[0,2,1])),r==="causal")throw new Fe("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");let o=nI(e,t,s,r==="same"?"same":"valid","NWC",i);return n!=null&&(o=ws(o,n)),o})}function Gx(e,t,n,s=[1,1],r="valid",a,i,o=null){return j(()=>{if(a==null&&(a=ys()),Ct(a),e.rank!==3&&e.rank!==4)throw new U(`conv2dWithBiasActivation expects input to be of rank 3 or 4, but received ${e.rank}.`);if(t.rank!==3&&t.rank!==4)throw new U(`conv2dWithBiasActivation expects kernel to be of rank 3 or 4, but received ${e.rank}.`);let u=ey(e,a);if(r==="causal")throw new Fe("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");return u=fa.conv2d({x:u,filter:t,strides:s,pad:r==="same"?"same":"valid",dilations:i,dataFormat:"NHWC",bias:n,activation:o}),a==="channelsFirst"&&(u=Ge(u,[0,3,1,2])),u})}function XB(e,t,n,s=[1,1,1],r="valid",a,i){return j(()=>{if(a==null&&(a=ys()),Ct(a),e.rank!==4&&e.rank!==5)throw new U(`conv3dWithBias expects input to be of rank 4 or 5, but received ${e.rank}.`);if(t.rank!==4&&t.rank!==5)throw new U(`conv3dWithBias expects kernel to be of rank 4 or 5, but received ${e.rank}.`);let o=DS(e,a);if(r==="causal")throw new Fe("The support for CAUSAL padding mode in conv3dWithBias is not implemented yet.");return o=rI(o,t,s,r==="same"?"same":"valid","NDHWC",i),n!=null&&(o=ws(o,n)),a==="channelsFirst"&&(o=Ge(o,[0,4,1,2,3])),o})}var ty=class extends He{constructor(e,t){if(super(t),this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",ty.verifyArgs(t),this.rank=e,Bt(this.rank,"rank"),this.rank!==1&&this.rank!==2&&this.rank!==3)throw new Fe(`Convolution layer for rank other than 1, 2, or 3 (${this.rank}) is not implemented yet.`);if(this.kernelSize=Qi(t.kernelSize,e,"kernelSize"),this.strides=Qi(t.strides==null?1:t.strides,e,"strides"),this.padding=t.padding==null?"valid":t.padding,Gn(this.padding),this.dataFormat=t.dataFormat==null?"channelsLast":t.dataFormat,Ct(this.dataFormat),this.activation=vr(t.activation),this.useBias=t.useBias==null?!0:t.useBias,this.biasInitializer=ht(t.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.biasConstraint=Pt(t.biasConstraint),this.biasRegularizer=ft(t.biasRegularizer),this.activityRegularizer=ft(t.activityRegularizer),this.dilationRate=Qi(t.dilationRate==null?1:t.dilationRate,e,"dilationRate"),this.rank===1&&Array.isArray(this.dilationRate)&&this.dilationRate.length!==1)throw new U(`dilationRate must be a number or an array of a single number for 1D convolution, but received ${JSON.stringify(this.dilationRate)}`);if(this.rank===2){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==2)throw new U(`dilationRate must be a number or array of two numbers for 2D convolution, but received ${JSON.stringify(this.dilationRate)}`)}else if(this.rank===3){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==3)throw new U(`dilationRate must be a number or array of three numbers for 3D convolution, but received ${JSON.stringify(this.dilationRate)}`)}}static verifyArgs(e){if(Cs("kernelSize"in e,"required key 'kernelSize' not in config"),typeof e.kernelSize!="number"&&!Sb(e.kernelSize,"number",1,3))throw new U(`BaseConv expects config.kernelSize to be number or number[] with length 1, 2, or 3, but received ${JSON.stringify(e.kernelSize)}.`)}getConfig(){let e={kernelSize:this.kernelSize,strides:this.strides,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,activation:yr(this.activation),useBias:this.useBias,biasInitializer:yt(this.biasInitializer),biasRegularizer:it(this.biasRegularizer),activityRegularizer:it(this.activityRegularizer),biasConstraint:Ot(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}},Hl=class extends ty{constructor(e,t){super(e,t),this.kernel=null,Hl.verifyArgs(t),this.filters=t.filters,Bt(this.filters,"filters"),this.kernelInitializer=ht(t.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.kernelConstraint=Pt(t.kernelConstraint),this.kernelRegularizer=ft(t.kernelRegularizer)}build(e){e=nt(e);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new U(`The channel dimension of the input should be defined. Found ${e[t]}`);let n=e[t],s=this.kernelSize.concat([n,this.filters]);this.kernel=this.addWeight("kernel",s,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[{ndim:this.rank+2,axes:{[t]:n}}],this.built=!0}call(e,t){return j(()=>{e=Oe(e);let n,s=this.bias==null?null:this.bias.read(),r=qI(this.activation.getClassName());if(r!=null&&this.rank===2)n=Gx(e,this.kernel.read(),s,this.strides,this.padding,this.dataFormat,this.dilationRate,r);else{if(this.rank===1)n=KB(e,this.kernel.read(),s,this.strides[0],this.padding,this.dataFormat,this.dilationRate[0]);else if(this.rank===2)n=Gx(e,this.kernel.read(),s,this.strides,this.padding,this.dataFormat,this.dilationRate);else if(this.rank===3)n=XB(e,this.kernel.read(),s,this.strides,this.padding,this.dataFormat,this.dilationRate);else throw new Fe("convolutions greater than 3D are not implemented yet.");this.activation!=null&&(n=this.activation.apply(n))}return n})}computeOutputShape(e){e=nt(e);let t=[],n=this.dataFormat==="channelsLast"?e.slice(1,e.length-1):e.slice(2);for(let r=0;r<n.length;++r){let a=gs(n[r],this.kernelSize[r],this.padding,this.strides[r],typeof this.dilationRate=="number"?this.dilationRate:this.dilationRate[r]);t.push(a)}let s=[e[0]];return this.dataFormat==="channelsLast"?(s=s.concat(t),s.push(this.filters)):(s.push(this.filters),s=s.concat(t)),s}getConfig(){let e={filters:this.filters,kernelInitializer:yt(this.kernelInitializer),kernelRegularizer:it(this.kernelRegularizer),kernelConstraint:Ot(this.kernelConstraint)},t=super.getConfig();return Object.assign(e,t),e}static verifyArgs(e){if(!("filters"in e)||typeof e.filters!="number"||e.filters<1)throw new U(`Convolution layer expected config.filters to be a 'number' > 0 but got ${JSON.stringify(e.filters)}`)}},FS=class extends Hl{constructor(e){super(2,e),FS.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!Sb(e.kernelSize,"number",1,2))throw new U(`Conv2D expects config.kernelSize to be number or number[] with length 1 or 2, but received ${JSON.stringify(e.kernelSize)}.`)}},Lp=FS;Lp.className="Conv2D";ae.registerClass(Lp);var OS=class extends Hl{constructor(e){super(3,e),OS.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!(Array.isArray(e.kernelSize)&&(e.kernelSize.length===1||e.kernelSize.length===3)))throw new U(`Conv3D expects config.kernelSize to be number or [number, number, number], but received ${JSON.stringify(e.kernelSize)}.`)}},Bp=OS;Bp.className="Conv3D";ae.registerClass(Bp);var ny=class extends Lp{constructor(e){if(super(e),this.inputSpec=[new Dt({ndim:4})],this.padding!=="same"&&this.padding!=="valid")throw new U(`Conv2DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=nt(e),e.length!==4)throw new U("Input should have rank 4; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new U("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],s=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",s,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new Dt({ndim:4,axes:{[t]:n}})],this.built=!0}call(e,t){return j(()=>{let n=Oe(e);if(n.shape.length!==4)throw new U(`Conv2DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let s=n.shape,r=s[0],a,i;this.dataFormat==="channelsFirst"?(a=2,i=3):(a=1,i=2);let o=s[a],u=s[i],l=this.kernelSize[0],c=this.kernelSize[1],p=this.strides[0],d=this.strides[1],h=Ns(o,p,l,this.padding),f=Ns(u,d,c,this.padding),m=[r,h,f,this.filters];this.dataFormat!=="channelsLast"&&(n=Ge(n,[0,2,3,1]));let g=sI(n,this.kernel.read(),m,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(g=Ge(g,[0,3,1,2])),this.bias!=null&&(g=ws(g,this.bias.read(),this.dataFormat)),this.activation!=null&&(g=this.activation.apply(g)),g})}computeOutputShape(e){e=nt(e);let t=e.slice(),n,s,r;this.dataFormat==="channelsFirst"?(n=1,s=2,r=3):(n=3,s=1,r=2);let a=this.kernelSize[0],i=this.kernelSize[1],o=this.strides[0],u=this.strides[1];return t[n]=this.filters,t[s]=Ns(t[s],o,a,this.padding),t[r]=Ns(t[r],u,i,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};ny.className="Conv2DTranspose";ae.registerClass(ny);var sy=class extends Bp{constructor(e){if(super(e),this.inputSpec=[new Dt({ndim:5})],this.padding!=="same"&&this.padding!=="valid")throw new U(`Conv3DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=nt(e),e.length!==5)throw new U("Input should have rank 5; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new U("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],s=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",s,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new Dt({ndim:5,axes:{[t]:n}})],this.built=!0}call(e,t){return j(()=>{let n=Oe(e);if(n.shape.length!==5)throw new U(`Conv3DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let s=n.shape,r=s[0],a,i,o;this.dataFormat==="channelsFirst"?(o=2,a=3,i=4):(o=1,a=2,i=3);let u=s[o],l=s[a],c=s[i],p=this.kernelSize[0],d=this.kernelSize[1],h=this.kernelSize[2],f=this.strides[0],m=this.strides[1],g=this.strides[2],b=Ns(u,f,p,this.padding),y=Ns(l,m,d,this.padding),v=Ns(c,g,h,this.padding),x=[r,b,y,v,this.filters];this.dataFormat!=="channelsLast"&&(n=Ge(n,[0,2,3,4,1]));let k=oR(n,this.kernel.read(),x,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(k=Ge(k,[0,4,1,2,3])),this.bias!==null&&(k=ws(k,this.bias.read(),this.dataFormat)),this.activation!==null&&(k=this.activation.apply(k)),k})}computeOutputShape(e){e=nt(e);let t=e.slice(),n,s,r,a;this.dataFormat==="channelsFirst"?(n=1,s=2,r=3,a=4):(n=4,s=1,r=2,a=3);let i=this.kernelSize[0],o=this.kernelSize[1],u=this.kernelSize[2],l=this.strides[0],c=this.strides[1],p=this.strides[2];return t[n]=this.filters,t[s]=Ns(t[s],l,i,this.padding),t[r]=Ns(t[r],c,o,this.padding),t[a]=Ns(t[a],p,u,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};sy.className="Conv3DTranspose";ae.registerClass(sy);var PS=class extends Hl{constructor(e,t){if(super(e,t),this.DEFAULT_DEPTHWISE_INITIALIZER="glorotUniform",this.DEFAULT_POINTWISE_INITIALIZER="glorotUniform",this.depthwiseKernel=null,this.pointwiseKernel=null,t.filters==null)throw new U("The `filters` configuration field is required by SeparableConv, but is unspecified.");if(t.kernelInitializer!=null||t.kernelRegularizer!=null||t.kernelConstraint!=null)throw new U("Fields kernelInitializer, kernelRegularizer and kernelConstraint are invalid for SeparableConv2D. Use depthwiseInitializer, depthwiseRegularizer, depthwiseConstraint, pointwiseInitializer, pointwiseRegularizer and pointwiseConstraint instead.");if(t.padding!=null&&t.padding!=="same"&&t.padding!=="valid")throw new U(`SeparableConv${this.rank}D supports only padding modes: 'same' and 'valid', but received ${JSON.stringify(t.padding)}`);this.depthMultiplier=t.depthMultiplier==null?1:t.depthMultiplier,this.depthwiseInitializer=ht(t.depthwiseInitializer||this.DEFAULT_DEPTHWISE_INITIALIZER),this.depthwiseRegularizer=ft(t.depthwiseRegularizer),this.depthwiseConstraint=Pt(t.depthwiseConstraint),this.pointwiseInitializer=ht(t.depthwiseInitializer||this.DEFAULT_POINTWISE_INITIALIZER),this.pointwiseRegularizer=ft(t.pointwiseRegularizer),this.pointwiseConstraint=Pt(t.pointwiseConstraint)}build(e){if(e=nt(e),e.length<this.rank+2)throw new U(`Inputs to SeparableConv${this.rank}D should have rank ${this.rank+2}, but received input shape: ${JSON.stringify(e)}`);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null||e[t]<0)throw new U(`The channel dimension of the inputs should be defined, but found ${JSON.stringify(e[t])}`);let n=e[t],s=this.kernelSize.concat([n,this.depthMultiplier]),r=[];for(let i=0;i<this.rank;++i)r.push(1);r.push(n*this.depthMultiplier,this.filters);let a=!0;this.depthwiseKernel=this.addWeight("depthwise_kernel",s,"float32",this.depthwiseInitializer,this.depthwiseRegularizer,a,this.depthwiseConstraint),this.pointwiseKernel=this.addWeight("pointwise_kernel",r,"float32",this.pointwiseInitializer,this.pointwiseRegularizer,a,this.pointwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,a,this.biasConstraint):this.bias=null,this.inputSpec=[new Dt({ndim:this.rank+2,axes:{[t]:n}})],this.built=!0}call(e,t){return j(()=>{e=Oe(e);let n;if(this.rank===1)throw new Fe("1D separable convolution is not implemented yet.");return this.rank===2&&(this.dataFormat==="channelsFirst"&&(e=Ge(e,[0,2,3,1])),n=m3(e,this.depthwiseKernel.read(),this.pointwiseKernel.read(),this.strides,this.padding,this.dilationRate,"NHWC")),this.useBias&&(n=ws(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),this.dataFormat==="channelsFirst"&&(n=Ge(n,[0,3,1,2])),n})}getConfig(){let e=super.getConfig();return delete e.rank,delete e.kernelInitializer,delete e.kernelRegularizer,delete e.kernelConstraint,e.depthwiseInitializer=yt(this.depthwiseInitializer),e.pointwiseInitializer=yt(this.pointwiseInitializer),e.depthwiseRegularizer=it(this.depthwiseRegularizer),e.pointwiseRegularizer=it(this.pointwiseRegularizer),e.depthwiseConstraint=Ot(this.depthwiseConstraint),e.pointwiseConstraint=Ot(this.pointwiseConstraint),e}};PS.className="SeparableConv";var ry=class extends PS{constructor(e){super(2,e)}};ry.className="SeparableConv2D";ae.registerClass(ry);var zS=class extends Hl{constructor(e){super(1,e),zS.verifyArgs(e),this.inputSpec=[{ndim:3}]}getConfig(){let e=super.getConfig();return delete e.rank,delete e.dataFormat,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!Sb(e.kernelSize,"number",1,1))throw new U(`Conv1D expects config.kernelSize to be number or number[] with length 1, but received ${JSON.stringify(e.kernelSize)}.`)}},ay=zS;ay.className="Conv1D";ae.registerClass(ay);var iy=class extends He{constructor(e){super(e),typeof e.cropping=="number"?this.cropping=[[e.cropping,e.cropping],[e.cropping,e.cropping]]:typeof e.cropping[0]=="number"?this.cropping=[[e.cropping[0],e.cropping[0]],[e.cropping[1],e.cropping[1]]]:this.cropping=e.cropping,this.dataFormat=e.dataFormat===void 0?"channelsLast":e.dataFormat,this.inputSpec=[{ndim:4}]}computeOutputShape(e){return this.dataFormat==="channelsFirst"?[e[0],e[1],e[2]-this.cropping[0][0]-this.cropping[0][1],e[3]-this.cropping[1][0]-this.cropping[1][1]]:[e[0],e[1]-this.cropping[0][0]-this.cropping[0][1],e[2]-this.cropping[1][0]-this.cropping[1][1],e[3]]}call(e,t){return j(()=>{if(e=Oe(e),this.dataFormat==="channelsLast"){let n=Hc(e,this.cropping[0][0],e.shape[1]-this.cropping[0][0]-this.cropping[0][1],2);return Hc(n,this.cropping[1][0],e.shape[2]-this.cropping[1][1]-this.cropping[1][0],3)}else{let n=Hc(e,this.cropping[0][0],e.shape[2]-this.cropping[0][0]-this.cropping[0][1],3);return Hc(n,this.cropping[1][0],e.shape[3]-this.cropping[1][1]-this.cropping[1][0],4)}})}getConfig(){let e={cropping:this.cropping,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};iy.className="Cropping2D";ae.registerClass(iy);var oy=class extends He{constructor(e){super(e),this.DEFAULT_SIZE=[2,2],this.inputSpec=[{ndim:4}],this.size=e.size==null?this.DEFAULT_SIZE:e.size,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Ct(this.dataFormat),this.interpolation=e.interpolation==null?"nearest":e.interpolation,QP(this.interpolation)}computeOutputShape(e){if(this.dataFormat==="channelsFirst"){let t=e[2]==null?null:this.size[0]*e[2],n=e[3]==null?null:this.size[1]*e[3];return[e[0],e[1],t,n]}else{let t=e[1]==null?null:this.size[0]*e[1],n=e[2]==null?null:this.size[1]*e[2];return[e[0],t,n,e[3]]}}call(e,t){return j(()=>{let n=Oe(e),s=n.shape;if(this.dataFormat==="channelsFirst"){n=Ge(n,[0,2,3,1]);let r=this.size[0]*s[2],a=this.size[1]*s[3],i=this.interpolation==="nearest"?jn.resizeNearestNeighbor(n,[r,a]):jn.resizeBilinear(n,[r,a]);return Ge(i,[0,3,1,2])}else{let r=this.size[0]*s[1],a=this.size[1]*s[2];return this.interpolation==="nearest"?jn.resizeNearestNeighbor(n,[r,a]):jn.resizeBilinear(n,[r,a])}})}getConfig(){let e={size:this.size,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};oy.className="UpSampling2D";ae.registerClass(oy);function YB(e,t,n=[1,1],s="valid",r,a){return j(()=>{r==null&&(r=ys()),Ct(r);let i=ey(e,r);if(e.rank!==4)throw new U(`Input for depthwiseConv2d is required to be 4-D, but is instead ${e.rank}-D`);if(t.rank!==4)throw new U(`depthwiseKernel is required to be 4-D, but is instead ${t.rank}-D`);return i=mp(i,t,n,s==="same"?"same":"valid","NHWC",a),r==="channelsFirst"&&(i=Ge(i,[0,3,1,2])),i})}var uy=class extends ty{constructor(e){super(2,e),this.depthwiseKernel=null,this.depthMultiplier=e.depthMultiplier==null?1:e.depthMultiplier,this.depthwiseInitializer=ht(e.depthwiseInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.depthwiseConstraint=Pt(e.depthwiseConstraint),this.depthwiseRegularizer=ft(e.depthwiseRegularizer)}build(e){if(e=nt(e),e.length<4)throw new U(`Inputs to DepthwiseConv2D should have rank 4. Received input shape: ${JSON.stringify(e)}.`);let t=this.dataFormat==="channelsFirst"?1:3;if(e[t]==null||e[t]<0)throw new U(`The channel dimension of the inputs to DepthwiseConv2D should be defined, but is not (${e[t]}).`);let n=e[t],s=[this.kernelSize[0],this.kernelSize[1],n,this.depthMultiplier];this.depthwiseKernel=this.addWeight("depthwise_kernel",s,null,this.depthwiseInitializer,this.depthwiseRegularizer,!0,this.depthwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[n*this.depthMultiplier],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return j(()=>{e=Oe(e);let n=YB(e,this.depthwiseKernel.read(),this.strides,this.padding,this.dataFormat,null);return this.useBias&&(n=ws(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),n})}computeOutputShape(e){e=nt(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],s=this.dataFormat==="channelsFirst"?e[1]*this.depthMultiplier:e[3]*this.depthMultiplier,r=gs(t,this.kernelSize[0],this.padding,this.strides[0]),a=gs(n,this.kernelSize[1],this.padding,this.strides[1]);return this.dataFormat==="channelsFirst"?[e[0],s,r,a]:[e[0],r,a,s]}getConfig(){let e=super.getConfig();return e.depthMultiplier=this.depthMultiplier,e.depthwiseInitializer=yt(this.depthwiseInitializer),e.depthwiseRegularizer=it(this.depthwiseRegularizer),e.depthwiseConstraint=Ot(this.depthwiseRegularizer),e}};uy.className="DepthwiseConv2D";ae.registerClass(uy);function MS(e,t,n,s){if(Array.isArray(e)){if(t!=null||n!=null)throw new U("When inputs is an array, neither initialState or constants should be provided");s!=null&&(n=e.slice(e.length-s,e.length),e=e.slice(0,e.length-s)),e.length>1&&(t=e.slice(1,e.length)),e=e[0]}function r(a){return a==null||Array.isArray(a)?a:[a]}return t=r(t),n=r(n),{inputs:e,initialState:t,constants:n}}function LS(e,t,n,s=!1,r,a,i=!1,o=!1){return j(()=>{let u=t.shape.length;if(u<3)throw new U(`Input should be at least 3D, but is ${u}D.`);let l=[1,0].concat(bs(2,u));if(t=Ge(t,l),a!=null)throw new Fe("The rnn() functoin of the deeplearn.js backend does not support constants yet.");i&&console.warn("Backend rnn(): the unroll = true option is not applicable to the imperative deeplearn.js backend."),r!=null&&(r=ce(ce(r,"bool"),"float32"),r.rank===u-1&&(r=Pn(r,-1)),r=Ge(r,l)),s&&(t=Jn(t,0),r!=null&&(r=Jn(r,0)));let c=[],p,d=n,h=t.shape[0],f=Fs(t),m;r!=null&&(m=Fs(r));for(let b=0;b<h;++b){let y=f[b],v=j(()=>e(y,d));if(r==null)p=v[0],d=v[1];else{let x=j(()=>{let k=m[b],T=ge(Zn(k),k),N=ie(V(v[0],k),V(d[0],T)),E=d.map((A,P)=>ie(V(v[1][P],k),V(A,T)));return{output:N,newStates:E}});p=x.output,d=x.newStates}o&&c.push(p)}let g;return o&&(g=es(c,1)),[p,g,d]})}var BS=class extends He{constructor(e){super(e);let t;if(e.cell==null)throw new U("cell property is missing for the constructor of RNN.");if(Array.isArray(e.cell)?t=new Up({cells:e.cell}):t=e.cell,t.stateSize==null)throw new U("The RNN cell should have an attribute `stateSize` (tuple of integers, one integer per RNN state).");this.cell=t,this.returnSequences=e.returnSequences==null?!1:e.returnSequences,this.returnState=e.returnState==null?!1:e.returnState,this.goBackwards=e.goBackwards==null?!1:e.goBackwards,this._stateful=e.stateful==null?!1:e.stateful,this.unroll=e.unroll==null?!1:e.unroll,this.supportsMasking=!0,this.inputSpec=[new Dt({ndim:3})],this.stateSpec=null,this.states_=null,this.numConstants=null,this.keptStates=[]}getStates(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;return bs(0,e).map(t=>null)}else return this.states_}setStates(e){this.states_=e}computeOutputShape(e){xm(e)&&(e=e[0]),e=e;let t=this.cell.stateSize;Array.isArray(t)||(t=[t]);let n=t[0],s;if(this.returnSequences?s=[e[0],e[1],n]:s=[e[0],n],this.returnState){let r=[];for(let a of t)r.push([e[0],a]);return[s].concat(r)}else return s}computeMask(e,t){return j(()=>{Array.isArray(t)&&(t=t[0]);let n=this.returnSequences?t:null;if(this.returnState){let s=this.states.map(r=>null);return[n].concat(s)}else return n})}get states(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1,t=[];for(let n=0;n<e;++n)t.push(null);return t}else return this.states_}set states(e){this.states_=e}build(e){if(this.numConstants!=null)throw new Fe("Constants support is not implemented in RNN yet.");xm(e)&&(e=e[0]),e=e;let n=this.stateful?e[0]:null,s=e.slice(2);this.inputSpec[0]=new Dt({shape:[n,null,...s]});let r=[e[0]].concat(e.slice(2));this.cell.build(r);let a;if(Array.isArray(this.cell.stateSize)?a=this.cell.stateSize:a=[this.cell.stateSize],this.stateSpec!=null){if(!w.arraysEqual(this.stateSpec.map(i=>i.shape[i.shape.length-1]),a))throw new U(`An initialState was passed that is not compatible with cell.stateSize. Received stateSpec=${this.stateSpec}; However cell.stateSize is ${this.cell.stateSize}`)}else this.stateSpec=a.map(i=>new Dt({shape:[null,i]}));this.stateful&&this.resetStates()}resetStates(e,t=!1){j(()=>{if(!this.stateful)throw new Vs("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape[0];if(n==null)throw new U("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.states_==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(s=>$t([n,s])):this.states_=[$t([n,this.cell.stateSize])];else if(e==null)Re(this.states_),this.keptStates!=null&&(Re(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(s=>$t([n,s])):this.states_[0]=$t([n,this.cell.stateSize]);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new U(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t===!0?this.keptStates.push(this.states_.slice()):Re(this.states_);for(let s=0;s<this.states_.length;++s){let r=e[s],a=Array.isArray(this.cell.stateSize)?this.cell.stateSize[s]:this.cell.stateSize,i=[n,a];if(!w.arraysEqual(r.shape,i))throw new U(`State ${s} is incompatible with layer ${this.name}: expected shape=${i}, received shape=${r.shape}`);this.states_[s]=r}}this.states_=this.states_.map(s=>Ht(s.clone()))})}apply(e,t){let n=t==null?null:t.initialState,s=t==null?null:t.constants;t==null&&(t={});let r=MS(e,n,s,this.numConstants);e=r.inputs,n=r.initialState,s=r.constants;let a=[],i=[];if(n!=null){t.initialState=n,a=a.concat(n),this.stateSpec=[];for(let u of n)this.stateSpec.push(new Dt({shape:u.shape}));i=i.concat(this.stateSpec)}if(s!=null&&(t.constants=s,a=a.concat(s),this.numConstants=s.length),a[0]instanceof $s){let u=[e].concat(a),l=this.inputSpec.concat(i),c=this.inputSpec;this.inputSpec=l;let p=super.apply(u,t);return this.inputSpec=c,p}else return super.apply(e,t)}call(e,t){return j(()=>{let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;e=Oe(e),r==null&&(this.stateful?r=this.states_:r=this.getInitialState(e));let a=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;if(r.length!==a)throw new U(`RNN Layer has ${a} state(s) but was passed ${r.length} initial state(s).`);this.unroll&&console.warn("Ignoring unroll = true for RNN layer, due to imperative backend.");let i={training:s},u=LS((h,f)=>{let m=this.cell.call([h].concat(f),i);return[m[0],m.slice(1)]},e,r,this.goBackwards,n,null,this.unroll,this.returnSequences),l=u[0],c=u[1],p=u[2];this.stateful&&this.resetStates(p,s);let d=this.returnSequences?c:l;return this.returnState?[d].concat(p):d})}getInitialState(e){return j(()=>{let t=$t(e.shape);return t=ve(t,[1,2]),t=Bl(t),Array.isArray(this.cell.stateSize)?this.cell.stateSize.map(n=>n>1?ym(t,[1,n]):t):this.cell.stateSize>1?[ym(t,[1,this.cell.stateSize])]:[t]})}get trainableWeights(){return this.trainable?this.cell.trainableWeights:[]}get nonTrainableWeights(){return this.trainable?this.cell.nonTrainableWeights:this.cell.weights}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.cell!=null&&this.cell.setFastWeightInitDuringBuild(e)}getConfig(){let e=super.getConfig(),t={returnSequences:this.returnSequences,returnState:this.returnState,goBackwards:this.goBackwards,stateful:this.stateful,unroll:this.unroll};this.numConstants!=null&&(t.numConstants=this.numConstants);let n=this.cell.getConfig();return this.getClassName()===BS.className&&(t.cell={className:this.cell.getClassName(),config:n}),{...n,...e,...t}}static fromConfig(e,t,n={}){let s=t.cell,r=ms(s,n);return new e(Object.assign(t,{cell:r}))}},Er=BS;Er.className="RNN";ae.registerClass(Er);var ql=class extends He{},Vp=class extends ql{constructor(e){super(e),this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,Bt(this.units,"units"),this.activation=vr(e.activation==null?this.DEFAULT_ACTIVATION:e.activation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=ht(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=ht(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=ht(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=ft(e.kernelRegularizer),this.recurrentRegularizer=ft(e.recurrentRegularizer),this.biasRegularizer=ft(e.biasRegularizer),this.kernelConstraint=Pt(e.kernelConstraint),this.recurrentConstraint=Pt(e.recurrentConstraint),this.biasConstraint=Pt(e.biasConstraint),this.dropout=eo([1,br([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=eo([1,br([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.dropoutFunc=e.dropoutFunc,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=nt(e),this.kernel=this.addWeight("kernel",[e[e.length-1],this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return j(()=>{if(e=e,e.length!==2)throw new U(`SimpleRNNCell expects 2 input Tensors, got ${e.length}.`);let n=e[1];e=e[0];let s=t.training==null?!1:t.training;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=xr({ones:()=>Zn(e),rate:this.dropout,training:s,dropoutFunc:this.dropoutFunc})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=xr({ones:()=>Zn(n),rate:this.recurrentDropout,training:s,dropoutFunc:this.dropoutFunc}));let r,a=this.dropoutMask,i=this.recurrentDropoutMask;a!=null?r=Es(V(e,a),this.kernel.read()):r=Es(e,this.kernel.read()),this.bias!=null&&(r=ws(r,this.bias.read())),i!=null&&(n=V(n,i));let o=ie(r,Es(n,this.recurrentKernel.read()));return this.activation!=null&&(o=this.activation.apply(o)),[o,o]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:yr(this.activation),useBias:this.useBias,kernelInitializer:yt(this.kernelInitializer),recurrentInitializer:yt(this.recurrentInitializer),biasInitializer:yt(this.biasInitializer),kernelRegularizer:it(this.kernelRegularizer),recurrentRegularizer:it(this.recurrentRegularizer),biasRegularizer:it(this.biasRegularizer),activityRegularizer:it(this.activityRegularizer),kernelConstraint:Ot(this.kernelConstraint),recurrentConstraint:Ot(this.recurrentConstraint),biasConstraint:Ot(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout};return{...e,...t}}};Vp.className="SimpleRNNCell";ae.registerClass(Vp);var ly=class extends Er{constructor(e){e.cell=new Vp(e),super(e)}call(e,t){return j(()=>{this.cell.dropoutMask!=null&&(Re(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Re(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:s,initialState:r})})}static fromConfig(e,t){return new e(t)}};ly.className="SimpleRNN";ae.registerClass(ly);var Wp=class extends ql{constructor(e){if(super(e),this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.resetAfter)throw new U("GRUCell does not support reset_after parameter set to true.");this.units=e.units,Bt(this.units,"units"),this.activation=vr(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=vr(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=ht(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=ht(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=ht(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=ft(e.kernelRegularizer),this.recurrentRegularizer=ft(e.recurrentRegularizer),this.biasRegularizer=ft(e.biasRegularizer),this.kernelConstraint=Pt(e.kernelConstraint),this.recurrentConstraint=Pt(e.recurrentConstraint),this.biasConstraint=Pt(e.biasConstraint),this.dropout=eo([1,br([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=eo([1,br([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.dropoutFunc=e.dropoutFunc,this.implementation=e.implementation,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=nt(e);let t=e[e.length-1];this.kernel=this.addWeight("kernel",[t,this.units*3],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*3],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units*3],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return j(()=>{if(e=e,e.length!==2)throw new U(`GRUCell expects 2 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training==null?!1:t.training,s=e[1];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=xr({ones:()=>Zn(e),rate:this.dropout,training:n,count:3,dropoutFunc:this.dropoutFunc})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=xr({ones:()=>Zn(s),rate:this.recurrentDropout,training:n,count:3,dropoutFunc:this.dropoutFunc}));let r=this.dropoutMask,a=this.recurrentDropoutMask,i,o,u;0<this.dropout&&this.dropout<1&&(e=V(e,r[0]));let l=Es(e,this.kernel.read());this.useBias&&(l=ws(l,this.bias.read())),0<this.recurrentDropout&&this.recurrentDropout<1&&(s=V(s,a[0]));let c=this.recurrentKernel.read(),[p,d]=Bn(c,[2*this.units,this.units],c.rank-1),h=Es(s,p),[f,m,g]=Bn(l,3,l.rank-1),[b,y]=Bn(h,2,h.rank-1);i=this.recurrentActivation.apply(ie(f,b)),o=this.recurrentActivation.apply(ie(m,y));let v=Es(V(o,s),d);u=this.activation.apply(ie(g,v));let x=ie(V(i,s),V(ie(1,kt(i)),u));return[x,x]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:yr(this.activation),recurrentActivation:yr(this.recurrentActivation),useBias:this.useBias,kernelInitializer:yt(this.kernelInitializer),recurrentInitializer:yt(this.recurrentInitializer),biasInitializer:yt(this.biasInitializer),kernelRegularizer:it(this.kernelRegularizer),recurrentRegularizer:it(this.recurrentRegularizer),biasRegularizer:it(this.biasRegularizer),activityRegularizer:it(this.activityRegularizer),kernelConstraint:Ot(this.kernelConstraint),recurrentConstraint:Ot(this.recurrentConstraint),biasConstraint:Ot(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation,resetAfter:!1};return{...e,...t}}};Wp.className="GRUCell";ae.registerClass(Wp);var cy=class extends Er{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new Wp(e),super(e)}call(e,t){return j(()=>{this.cell.dropoutMask!=null&&(Re(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Re(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:s,initialState:r})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};cy.className="GRU";ae.registerClass(cy);var jl=class extends ql{constructor(e){super(e),this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,Bt(this.units,"units"),this.activation=vr(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=vr(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=ht(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=ht(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=ht(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.unitForgetBias=e.unitForgetBias,this.kernelRegularizer=ft(e.kernelRegularizer),this.recurrentRegularizer=ft(e.recurrentRegularizer),this.biasRegularizer=ft(e.biasRegularizer),this.kernelConstraint=Pt(e.kernelConstraint),this.recurrentConstraint=Pt(e.recurrentConstraint),this.biasConstraint=Pt(e.biasConstraint),this.dropout=eo([1,br([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=eo([1,br([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.dropoutFunc=e.dropoutFunc,this.implementation=e.implementation,this.stateSize=[this.units,this.units],this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){var t;e=nt(e);let n=e[e.length-1];this.kernel=this.addWeight("kernel",[n,this.units*4],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*4],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint);let s;if(this.useBias){if(this.unitForgetBias){let r=this.biasInitializer,a=this.units;s=new(t=class extends ns{apply(i,o){let u=r.apply([a]),l=new _p().apply([a]),c=r.apply([a*2]);return kx(kx(u,l),c)}},t.className="CustomInit",t)}else s=this.biasInitializer;this.bias=this.addWeight("bias",[this.units*4],null,s,this.biasRegularizer,!0,this.biasConstraint)}else this.bias=null;this.built=!0}call(e,t){return j(()=>{let n=t.training==null?!1:t.training;if(e=e,e.length!==3)throw new U(`LSTMCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let s=e[1],r=e[2];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=xr({ones:()=>Zn(e),rate:this.dropout,training:n,count:4,dropoutFunc:this.dropoutFunc})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=xr({ones:()=>Zn(s),rate:this.recurrentDropout,training:n,count:4,dropoutFunc:this.dropoutFunc}));let a=this.dropoutMask,i=this.recurrentDropoutMask,o,u,l,c;0<this.dropout&&this.dropout<1&&(e=V(e,a[0]));let p=Es(e,this.kernel.read());0<this.recurrentDropout&&this.recurrentDropout<1&&(s=V(s,i[0])),p=ie(p,Es(s,this.recurrentKernel.read())),this.useBias&&(p=ws(p,this.bias.read()));let[d,h,f,m]=Bn(p,4,p.rank-1);o=this.recurrentActivation.apply(d),u=this.recurrentActivation.apply(h),l=ie(V(u,r),V(o,this.activation.apply(f))),c=this.recurrentActivation.apply(m);let g=V(c,this.activation.apply(l));return[g,g,l]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:yr(this.activation),recurrentActivation:yr(this.recurrentActivation),useBias:this.useBias,kernelInitializer:yt(this.kernelInitializer),recurrentInitializer:yt(this.recurrentInitializer),biasInitializer:yt(this.biasInitializer),unitForgetBias:this.unitForgetBias,kernelRegularizer:it(this.kernelRegularizer),recurrentRegularizer:it(this.recurrentRegularizer),biasRegularizer:it(this.biasRegularizer),activityRegularizer:it(this.activityRegularizer),kernelConstraint:Ot(this.kernelConstraint),recurrentConstraint:Ot(this.recurrentConstraint),biasConstraint:Ot(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation};return{...e,...t}}};jl.className="LSTMCell";ae.registerClass(jl);var dy=class extends Er{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new jl(e),super(e)}call(e,t){return j(()=>{this.cell.dropoutMask!=null&&(Re(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Re(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:s,initialState:r})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};dy.className="LSTM";ae.registerClass(dy);var Up=class extends ql{constructor(e){super(e),this.cells=e.cells}get stateSize(){let e=[];for(let t of this.cells.slice().reverse())Array.isArray(t.stateSize)?e.push(...t.stateSize):e.push(t.stateSize);return e}call(e,t){return j(()=>{e=e;let n=e.slice(1),s=[];for(let i of this.cells.slice().reverse())Array.isArray(i.stateSize)?s.push(n.splice(0,i.stateSize.length)):s.push(n.splice(0,1));s.reverse();let r=[],a;for(let i=0;i<this.cells.length;++i){let o=this.cells[i];n=s[i],i===0?a=[e[0]].concat(n):a=[a[0]].concat(n),a=o.call(a,t),r.push(a.slice(1))}n=[];for(let i of r.slice().reverse())n.push(...i);return[a[0]].concat(n)})}build(e){xm(e)&&(e=e[0]),e=e;let t;this.cells.forEach((n,s)=>{ta(`RNNCell_${s}`,()=>{n.build(e),Array.isArray(n.stateSize)?t=n.stateSize[0]:t=n.stateSize,e=[e[0],t]})}),this.built=!0}getConfig(){let e=super.getConfig(),t=r=>({className:r.getClassName(),config:r.getConfig()}),s={cells:this.cells.map(t)};return{...e,...s}}static fromConfig(e,t,n={}){let s=[];for(let r of t.cells)s.push(ms(r,n));return new e({cells:s})}get trainableWeights(){if(!this.trainable)return[];let e=[];for(let t of this.cells)e.push(...t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.cells)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.cells)t.push(...n.trainableWeights);return t.concat(e)}return e}getWeights(){let e=[];for(let t of this.cells)e.push(...t.weights);return wm(e)}setWeights(e){let t=[];for(let n of this.cells){let s=n.weights.length,r=e.splice(s);for(let a=0;a<n.weights.length;++a)t.push([n.weights[a],r[a]])}Db(t)}};Up.className="StackedRNNCells";ae.registerClass(Up);function xr(e){let{ones:t,rate:n,training:s=!1,count:r=1,dropoutFunc:a}=e,i=()=>a!=null?a(t(),n):JI(t(),n),o=()=>Wl(i,t,s);return!r||r<=1?Ht(o().clone()):Array(r).fill(void 0).map(o).map(l=>Ht(l.clone()))}var VS=class extends Er{constructor(e){if(e.unroll)throw new Fe("Unrolling is not possible with convolutional RNNs.");if(Array.isArray(e.cell))throw new Fe("It is not possible at the moment to stack convolutional cells.");super(e),this.inputSpec=[new Dt({ndim:5})]}call(e,t){return j(()=>{if(this.cell.dropoutMask!=null&&(Re(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Re(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null),t&&t.constants)throw new U("ConvRNN2D cell does not support constants");let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:s,initialState:r})})}computeOutputShape(e){let t=this.computeSingleOutputShape(e);return this.returnSequences||(t=[t[0],...t.slice(2)]),this.returnState&&(t=[t,...Array(2).fill([e[0],...t.slice(-3)])]),t}getInitialState(e){return j(()=>{let{stateSize:t}=this.cell,n=e.shape,s=this.computeSingleOutputShape(n),r=[s[0],...s.slice(2)],a=$t(r);return Array.isArray(t)?Array(t.length).fill(a):[a]})}resetStates(e,t=!1){j(()=>{if(!this.stateful)throw new Vs("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape,s=this.computeSingleOutputShape(n),r=[s[0],...s.slice(2)];if(n[0]==null)throw new U("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.getStates()==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>$t(r)):this.states_=[$t(r)];else if(e==null)Re(this.states_),this.keptStates!=null&&(Re(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>$t(r)):this.states_[0]=$t(r);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new U(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t?this.keptStates.push(this.states_.slice()):Re(this.states_);for(let i=0;i<this.states_.length;++i){let o=e[i],u=r;if(!w.arraysEqual(o.shape,u))throw new U(`State ${i} is incompatible with layer ${this.name}: expected shape=${u}, received shape=${o.shape}`);this.states_[i]=o}}this.states_=this.states_.map(i=>Ht(i.clone()))})}computeSingleOutputShape(e){let{dataFormat:t,filters:n,kernelSize:s,padding:r,strides:a,dilationRate:i}=this.cell,o=t==="channelsFirst",u=e[o?3:2],l=e[o?4:3],c=gs(u,s[0],r,a[0],i[0]),p=gs(l,s[1],r,a[1],i[1]);return[...e.slice(0,2),...o?[n,c,p]:[c,p,n]]}};VS.className="ConvRNN2D";var Gp=class extends jl{constructor(e){let{filters:t,kernelSize:n,strides:s,padding:r,dataFormat:a,dilationRate:i}=e;super({...e,units:t}),this.filters=t,Bt(this.filters,"filters"),this.kernelSize=Qi(n,2,"kernelSize"),this.kernelSize.forEach(o=>Bt(o,"kernelSize")),this.strides=Qi(s||1,2,"strides"),this.strides.forEach(o=>Bt(o,"strides")),this.padding=r||"valid",Gn(this.padding),this.dataFormat=a||"channelsLast",Ct(this.dataFormat),this.dilationRate=Qi(i||1,2,"dilationRate"),this.dilationRate.forEach(o=>Bt(o,"dilationRate"))}build(e){var t;e=nt(e);let n=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[n]==null)throw new U(`The channel dimension of the input should be defined. Found ${e[n]}`);let s=e[n],r=4,a=this.kernelSize.concat([s,this.filters*r]);this.kernel=this.addWeight("kernel",a,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint);let i=this.kernelSize.concat([this.filters,this.filters*r]);if(this.recurrentKernel=this.addWeight("recurrent_kernel",i,null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias){let o;if(this.unitForgetBias){let u=this.biasInitializer,l=this.filters;o=new(t=class extends ns{apply(c,p){let d=u.apply([l]),h=Mn([l]),f=u.apply([l*2]);return Cb([d,h,f])}},t.className="CustomInit",t)}else o=this.biasInitializer;this.bias=this.addWeight("bias",[this.filters*r],null,o,this.biasRegularizer,!0,this.biasConstraint)}this.built=!0}call(e,t){return j(()=>{if(e.length!==3)throw new U(`ConvLSTM2DCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training||!1,s=e[0],r=e[1],a=e[2],i=4;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=xr({ones:()=>Zn(s),rate:this.dropout,training:n,count:i,dropoutFunc:this.dropoutFunc}));let o=this.dropoutMask,u=(Z,te,ee)=>!te||!te[ee]?Z:V(te[ee],Z),l=u(s,o,0),c=u(s,o,1),p=u(s,o,2),d=u(s,o,3);0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=xr({ones:()=>Zn(r),rate:this.recurrentDropout,training:n,count:i,dropoutFunc:this.dropoutFunc}));let h=this.recurrentDropoutMask,f=u(r,h,0),m=u(r,h,1),g=u(r,h,2),b=u(r,h,3),y=3,[v,x,k,T]=Bn(this.kernel.read(),i,y),[N,E,A,P]=this.useBias?Bn(this.bias.read(),i):[null,null,null,null];l=this.inputConv(l,v,N,this.padding),c=this.inputConv(c,x,E,this.padding),p=this.inputConv(p,k,A,this.padding),d=this.inputConv(d,T,P,this.padding);let[R,F,$,z]=Bn(this.recurrentKernel.read(),i,y);f=this.recurrentConv(f,R),m=this.recurrentConv(m,F),g=this.recurrentConv(g,$),b=this.recurrentConv(b,z);let W=this.recurrentActivation.apply(ie(l,f)),q=this.recurrentActivation.apply(ie(c,m)),K=ie(V(q,a),V(W,this.activation.apply(ie(p,g)))),Y=V(this.recurrentActivation.apply(ie(d,b)),this.activation.apply(K));return[Y,Y,K]})}getConfig(){let{units:e,...t}=super.getConfig(),n={filters:this.filters,kernelSize:this.kernelSize,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,strides:this.strides};return{...t,...n}}inputConv(e,t,n,s){let r=da(e,t,this.strides,s||"valid",this.dataFormat==="channelsFirst"?"NCHW":"NHWC",this.dilationRate);return n?ws(r,n,this.dataFormat):r}recurrentConv(e,t){return da(e,t,1,"same",this.dataFormat==="channelsFirst"?"NCHW":"NHWC")}};Gp.className="ConvLSTM2DCell";ae.registerClass(Gp);var py=class extends VS{constructor(e){let t=new Gp(e);super({...e,cell:t})}static fromConfig(e,t){return new e(t)}};py.className="ConvLSTM2D";ae.registerClass(py);var Hp=class extends He{constructor(e){super(e),this.rate=Math.max(Math.min(e.rate,1),0),this.noiseShape=e.noiseShape,this.seed=e.seed,this.supportsMasking=!0}getNoiseShape(e){if(this.noiseShape==null)return this.noiseShape;let t=e.shape,n=[];for(let s=0;s<this.noiseShape.length;++s)n.push(this.noiseShape[s]==null?t[s]:this.noiseShape[s]);return n}call(e,t){return j(()=>{this.invokeCallHook(e,t);let n=Oe(e);if(0<this.rate&&this.rate<1){let s=t.training==null?!1:t.training,r=this.getNoiseShape(n);return Wl(()=>JI(n,this.rate,r,this.seed),()=>n,s)}return e})}getConfig(){let e={rate:this.rate,noiseShape:this.noiseShape,seed:this.seed},t=super.getConfig();return Object.assign(e,t),e}dispose(){return super.dispose()}};Hp.className="Dropout";ae.registerClass(Hp);var hy=class extends Hp{constructor(e){super(e),this.inputSpec=[{ndim:3}]}getNoiseShape(e){let t=e.shape;return[t[0],1,t[2]]}};hy.className="SpatialDropout1D";ae.registerClass(hy);var fy=class extends He{constructor(e){if(super(e),this.activation=null,this.useBias=!0,this.kernel=null,this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.batchInputShape==null&&e.inputShape==null&&e.inputDim!=null){let t=null;e.batchSize!=null&&(t=e.batchSize),this.batchInputShape=[t,e.inputDim]}this.units=e.units,Bt(this.units,"units"),this.activation=vr(e.activation),e.useBias!=null&&(this.useBias=e.useBias),this.kernelInitializer=ht(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.biasInitializer=ht(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelConstraint=Pt(e.kernelConstraint),this.biasConstraint=Pt(e.biasConstraint),this.kernelRegularizer=ft(e.kernelRegularizer),this.biasRegularizer=ft(e.biasRegularizer),this.activityRegularizer=ft(e.activityRegularizer),this.supportsMasking=!0,this.inputSpec=[{minNDim:2}]}build(e){e=nt(e);let t=e[e.length-1];this.kernel==null&&(this.kernel=this.addWeight("kernel",[t,this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint))),this.inputSpec=[{minNDim:2,axes:{[-1]:t}}],this.built=!0}computeOutputShape(e){e=nt(e);let t=e.slice();return t[t.length-1]=this.units,t}call(e,t){return j(()=>{this.invokeCallHook(e,t);let n=Oe(e),s=qI(this.activation.getClassName()),r;return s!=null?r=Es(n,this.kernel.read(),s,this.bias?this.bias.read():null):(r=Es(n,this.kernel.read()),this.bias!=null&&(r=ws(r,this.bias.read())),this.activation!=null&&(r=this.activation.apply(r))),r})}getConfig(){let e={units:this.units,activation:yr(this.activation),useBias:this.useBias,kernelInitializer:yt(this.kernelInitializer),biasInitializer:yt(this.biasInitializer),kernelRegularizer:it(this.kernelRegularizer),biasRegularizer:it(this.biasRegularizer),activityRegularizer:it(this.activityRegularizer),kernelConstraint:Ot(this.kernelConstraint),biasConstraint:Ot(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}};fy.className="Dense";ae.registerClass(fy);var my=class extends He{constructor(e){e=e||{},super(e),this.inputSpec=[{minNDim:3}],this.dataFormat=e.dataFormat}computeOutputShape(e){e=nt(e);for(let t of e.slice(1))if(t==null)throw new U(`The shape of the input to "Flatten" is not fully defined (got ${e.slice(1)}). Make sure to pass a complete "input_shape" or "batch_input_shape" argument to the first layer in your model.`);return[e[0],pr(e,1)]}call(e,t){return j(()=>{this.invokeCallHook(e,t);let n=Oe(e);if(this.dataFormat==="channelsFirst"&&n.rank>1){let s=[0];for(let r=2;r<n.rank;++r)s.push(r);s.push(1),n=Ge(n,s)}return sz(n)})}getConfig(){let e={};this.dataFormat!=null&&(e.dataFormat=this.dataFormat);let t=super.getConfig();return Object.assign(e,t),e}};my.className="Flatten";ae.registerClass(my);var gy=class extends He{constructor(e){super(e),this.supportsMasking=!0,this.activation=vr(e.activation)}call(e,t){return j(()=>{this.invokeCallHook(e,t);let n=Oe(e);return this.activation.apply(n)})}getConfig(){let e={activation:yr(this.activation)},t=super.getConfig();return Object.assign(e,t),e}};gy.className="Activation";ae.registerClass(gy);var by=class extends He{constructor(e){super(e),this.n=e.n,this.inputSpec=[{ndim:2}]}computeOutputShape(e){return[e[0],this.n,e[1]]}call(e,t){return j(()=>(e=Oe(e),tz(e,this.n)))}getConfig(){let e={n:this.n},t=super.getConfig();return Object.assign(e,t),e}};by.className="RepeatVector";ae.registerClass(by);var yy=class extends He{constructor(e){super(e),this.targetShape=e.targetShape;for(let t=0;t<this.targetShape.length;++t)this.isUnknown(this.targetShape[t])&&(this.targetShape[t]=null)}isUnknown(e){return e<0||e==null}fixUnknownDimension(e,t){let n="Total size of new array must be unchanged.",s=t.slice(),r=1,a=null;for(let o=0;o<s.length;++o){let u=s[o];if(this.isUnknown(u))if(a===null)a=o;else throw new U("Can only specifiy one unknown dimension.");else r*=u}let i=pr(e);if(a!==null){if(r===0||i%r!==0)throw new U(n);s[a]=i/r}else if(i!==r)throw new U(n);return s}computeOutputShape(e){let t=!1;for(let n=0;n<e.length;++n)if(this.isUnknown(e[n])){t=!0;break}return t?e.slice(0,1).concat(this.targetShape):e.slice(0,1).concat(this.fixUnknownDimension(e.slice(1),this.targetShape))}call(e,t){return j(()=>{this.invokeCallHook(e,t);let n=Oe(e),s=n.shape,r=s.slice(0,1).concat(this.fixUnknownDimension(s.slice(1),this.targetShape));return G(n,r)})}getConfig(){let e={targetShape:this.targetShape},t=super.getConfig();return Object.assign(e,t),e}};yy.className="Reshape";ae.registerClass(yy);var vy=class extends He{constructor(e){if(super(e),e.dims==null)throw new Error("Required configuration field `dims` is missing during Permute constructor call.");if(!Array.isArray(e.dims))throw new Error(`Permute constructor requires \`dims\` to be an Array, but received ${e.dims} instead.`);let t=bs(1,e.dims.length+1);if(!w.arraysEqual(e.dims.slice().sort(),t))throw new Error("Invalid permutation `dims`: "+JSON.stringify(e.dims)+" `dims` must contain consecutive integers starting from 1.");this.dims=e.dims,this.dimsIncludingBatch=[0].concat(this.dims),this.inputSpec=[new Dt({ndim:this.dims.length+1})]}computeOutputShape(e){e=nt(e);let t=e.slice();return this.dims.forEach((n,s)=>{t[s+1]=e[n]}),t}call(e,t){return Ge(Oe(e),this.dimsIncludingBatch)}getConfig(){let e={dims:this.dims},t=super.getConfig();return Object.assign(e,t),e}};vy.className="Permute";ae.registerClass(vy);var xy=class extends He{constructor(e){super(e==null?{}:e),this.supportsMasking=!0,e!=null?this.maskValue=e.maskValue==null?0:e.maskValue:this.maskValue=0}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={maskValue:this.maskValue};return Object.assign(t,e),t}computeMask(e,t){let n=Oe(e),s=-1;return hm(Yu(n,this.maskValue),s)}call(e,t){return j(()=>{this.invokeCallHook(e,t);let n=Oe(e),s=-1,r=!0,a=hm(Yu(n,this.maskValue),s,r);return V(n,ce(a,n.dtype))})}};xy.className="Masking";ae.registerClass(xy);var wy=class extends He{constructor(e){if(super(e),this.embeddings=null,this.DEFAULT_EMBEDDINGS_INITIALIZER="randomUniform",e.batchInputShape==null&&e.inputShape==null){let t=null;e.batchSize!=null&&(t=e.batchSize),e.inputLength==null?this.batchInputShape=[t,null]:this.batchInputShape=[t].concat(dt(e.inputLength))}this.inputDim=e.inputDim,Bt(this.inputDim,"inputDim"),this.outputDim=e.outputDim,Bt(this.outputDim,"outputDim"),this.embeddingsInitializer=ht(e.embeddingsInitializer||this.DEFAULT_EMBEDDINGS_INITIALIZER),this.embeddingsRegularizer=ft(e.embeddingsRegularizer),this.activityRegularizer=ft(e.activityRegularizer),this.embeddingsConstraint=Pt(e.embeddingsConstraint),this.maskZero=e.maskZero,this.supportsMasking=e.maskZero,this.inputLength=e.inputLength}build(e){this.embeddings=this.addWeight("embeddings",[this.inputDim,this.outputDim],this.dtype,this.embeddingsInitializer,this.embeddingsRegularizer,!0,this.embeddingsConstraint),this.built=!0}warnOnIncompatibleInputShape(e){}computeMask(e,t){return j(()=>this.maskZero?(e=Oe(e),Yu(e,je(e))):null)}computeOutputShape(e){if(e=nt(e),this.inputLength==null)return[...e,this.outputDim];let t=dt(this.inputLength);if(t.length!==e.length-1)throw new U(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);{let n=0;for(let s=0;s<t.length;++s){let r=t[s],a=e[s+1];if(r!=null&&a!=null&&r!==a)throw new U(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);r==null&&(t[n]=a),n++}}return[e[0],...t,this.outputDim]}call(e,t){return j(()=>{this.invokeCallHook(e,t);let n=Oe(e);n.dtype!=="int32"&&(n=Tp(n,"int32"));let s=ZI(this.embeddings.read(),G(n,[n.size]));return G(s,nt(this.computeOutputShape(n.shape)))})}getConfig(){let e={inputDim:this.inputDim,outputDim:this.outputDim,embeddingsInitializer:yt(this.embeddingsInitializer),embeddingsRegularizer:it(this.embeddingsRegularizer),activityRegularizer:it(this.activityRegularizer),embeddingsConstraint:Ot(this.embeddingsConstraint),maskZero:this.maskZero,inputLength:this.inputLength},t=super.getConfig();return Object.assign(e,t),e}};wy.className="Embedding";ae.registerClass(wy);var xi=class extends He{constructor(e){super(e||{}),this.supportsMasking=!0}mergeFunction(e){throw new Fe}computeElementwiseOpOutputShape(e,t){if(e==null||t==null)return null;if(e.length<t.length)return this.computeElementwiseOpOutputShape(t,e);if(t.length===0)return e;let n=e.slice(0,e.length-t.length);for(let s=0;s<t.length;++s){let r=e[e.length-t.length+s],a=t[s];if(r==null||a==null||r<0||a<0)n.push(null);else if(r===1)n.push(a);else if(a===1)n.push(r);else{if(r!==a)throw new U("Operands could not be broadcast together with shapes "+JSON.stringify(e)+" "+JSON.stringify(t));n.push(r)}}return n}build(e){if(Array.isArray(e)&&!Array.isArray(e[0])&&(e=[nt(e)]),e=e,e.length<2)throw new U(`A merge layer should be called on an Array of at least 2 inputs. Got ${e.length} input(s).`);let t=[];for(let r of e)r!=null&&r[0]!==null&&t.push(r[0]);if(t=dr(t),t.length>1)throw new U(`Can not merge tensors with different batch sizes. Got tensors with shapes: ${JSON.stringify(e)}.`);let n=e[0]==null?null:e[0].slice(1);for(let r=1;r<e.length;++r){let a=e[r]==null?null:e[r].slice(1);n=this.computeElementwiseOpOutputShape(n,a)}let s=e.map(r=>r.length);e.indexOf(null)===-1&&dr(s).length===1?this.reshapeRequired=!1:this.reshapeRequired=!0}call(e,t){return j(()=>{if(e=e,this.reshapeRequired){let n=[],s=e.map(r=>r.rank);if(s.indexOf(null)===-1){let r=br(s);for(let a of e){let i=a.rank;for(let o=0;o<r-i;++o)a=Bl(a,1);n.push(a)}return this.mergeFunction(n)}else{let r=!1;for(let o of e){let u=o.rank;if(u==null){let l=o.shape,c=l[0],p=l.slice(1).concat([c]),d=G(o,[c].concat(pr(l.slice(1))));d=Ge(d,[1,0]),d=G(d,p),n.push(d),r=!0}else if(u>1){let l=bs(1,u).concat([0]);n.push(Ge(o,l)),r=!0}else n.push(o)}let a=this.mergeFunction(n),i=a.rank;if(r){if(i==null){let o=a.shape,u=o.length,l=o[u-1],c=[l].concat(o.slice(0,o.length-1));a=G(Ge(G(a,[-1,l]),[1,0]),c)}else if(i>1){let o=[i-1].concat(bs(0,i-1));a=Ge(a,o)}}return a}}else return this.mergeFunction(e)})}computeOutputShape(e){e=e;let t;e[0]==null?t=null:t=e[0].slice(1);for(let s=1;s<e.length;++s){let r=e[s]==null?null:e[s].slice(1);t=this.computeElementwiseOpOutputShape(t,r)}let n=[];for(let s of e)s!=null&&s[0]!==null&&n.push(s[0]);return n=dr(n),n.length===1?t=n.concat(t):t=[null].concat(t),t}computeMask(e,t){return j(()=>{if(t==null)return null;if(!Array.isArray(t))throw new U("`mask` should be an Array");if(!Array.isArray(e))throw new U("`inputs` should be an Array");if(t.length!==e.length)throw new U(`The Array 'inputs' and 'mask' are expected to have the same length, but have different lengths (${e.length} vs ${t.length})`);if(t.every(s=>s==null))return null;t=t.map(s=>s==null?s:Pn(s,0));let n=t[0];for(let s=1;s<t.length-1;++s)n=Ds(n,t[s]);return n})}},ky=class extends xi{constructor(e){super(e)}mergeFunction(e){return j(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=ie(t,e[n]);return t})}};ky.className="Add";ae.registerClass(ky);var Iy=class extends xi{constructor(e){super(e)}mergeFunction(e){return j(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=V(t,e[n]);return t})}};Iy.className="Multiply";ae.registerClass(Iy);var Sy=class extends xi{constructor(e){super(e)}mergeFunction(e){return j(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=ie(t,e[n]);return V(1/e.length,t)})}};Sy.className="Average";ae.registerClass(Sy);var Cy=class extends xi{constructor(e){super(e)}mergeFunction(e){return j(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=_r(t,e[n]);return t})}};Cy.className="Maximum";ae.registerClass(Cy);var Ny=class extends xi{constructor(e){super(e)}mergeFunction(e){return j(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=vp(t,e[n]);return t})}};Ny.className="Minimum";ae.registerClass(Ny);var Ty=class extends xi{constructor(e){super(e),this.DEFAULT_AXIS=-1,e==null&&(e={}),this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){if(!(Array.isArray(e)&&Array.isArray(e[0]))||e.length===1)throw new U("A `Concatenate` layer should be called on a list of at least 2 inputs");e=e;let t=!0;for(let s of e)if(s!=null){t=!1;break}if(t)return;let n=[];for(let s=0;s<e.length;++s){let r=e[s].slice();r.splice(this.axis,1);let a=!1;for(let i of n)if(w.arraysEqual(i,r)){a=!0;break}a||n.push(r)}if(n.length>1)throw new U("A `Concatenate` layer requires inputs with matching shapes except for the concat axis. Got input shapes: "+JSON.stringify(e))}mergeFunction(e){return j(()=>Cb(e,this.axis))}computeOutputShape(e){if(!(Array.isArray(e)&&Array.isArray(e[0])))throw new U("A `Concatenate` layer should be called on a list of inputs.");let t=e,n=t[0].slice(),s=this.axis<0?n.length+this.axis:this.axis;for(let r of t.slice(1)){if(n[s]==null||r[s]==null){n[s]=null;break}n[s]+=r[s]}return n}computeMask(e,t){if(t==null)return null;if(!Array.isArray(t))throw new U("`mask` should be an array for Concatenate");if(!Array.isArray(e))throw new U("`inputs` should be an array for Concatenate");if(t.length!==e.length)throw new U(`Mismatch in the length of mask (${t.length}) and the legnth of inputs (${e.length})`);return j(()=>{let n=!0;if(t.forEach(a=>{if(a!=null){n=!1;return}}),n)return null;let s=[];for(let a=0;a<e.length;++a)t[a]==null?s.push(ce(Zn(e[a]),"bool")):t[a].rank<e[a].rank?s.push(Pn(t[a],-1)):s.push(t[a]);let r=Ft(s,this.axis);return Yk(r,-1,!1)})}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};Ty.className="Concatenate";ae.registerClass(Ty);function Nu(e,t){for(;e<0;)e+=t;return e}function QB(e,t,n){if(e.shape.length>3||t.shape.length>3)throw new Fe("batchDot is not implemented for tensors of 4D or higher rank yet");if(w.assert(e.shape.length>=2,()=>`batchDot requires the rank of x to be >= 2, but got ${e.shape.length}`),w.assert(e.shape.length>=2,()=>`batchDot requires the rank of y to be >= 2, but got ${t.shape.length}`),typeof n=="number"&&(n=[n,n]),e.dtype==="complex64"||t.dtype==="complex64")throw new Fe("batchDot is not implemented for complex64-type Tensors yet.");let s=e.shape.length,r=t.shape.length;n==null&&(n=[s-1,r-2]);let a=n;return j(()=>{let i;if(s>r){i=s-r;let u=[];for(let l=0;l<i;++l)u.push(1);t=G(t,t.shape.concat(u))}else if(r>s){i=r-s;let u=[];for(let l=0;l<i;++l)u.push(1);e=G(e,e.shape.concat(u))}else i=0;let o;if(e.shape.length===2&&t.shape.length===2)a[0]===a[1]?o=ve(V(e,t),a[0]):o=ve(V(Ge(e,[1,0]),t),a[1]);else{let u=a[0]!==e.shape.length-1,l=a[1]===t.shape.length-1;o=We(e,t,u,l)}if(i>0){let u;s>r?u=s+r-3:u=s-1;let l=[];for(let c=u;c<u+i;++c)l.push(c);o=gr(o,l)}return o.shape.length===1&&(o=Pn(o,1)),o})}var $y=class extends xi{constructor(e){super(e),this.axes=e.axes,this.normalize=e.normalize==null?!1:e.normalize,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){w.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0],n=e[1];if(t.length>3||n.length>3)throw new Fe("Dot layer does not support tensors of 4D or higher rank yet.");let s=this.interpretAxes(t,n);if(t[s[0]]!==n[s[1]])throw new U(`Dimension incompatibility: ${t[s[0]]} !== ${n[s[1]]}`)}mergeFunction(e){if(e.length!==2)throw new U(`A \`Dot\` layer must be called on exactly 2 inputs, but received ${e.length} input(s).`);let t=e[0],n=e[1],s;return Array.isArray(this.axes)?s=this.axes.map((r,a)=>Nu(r,e[a].shape.length)):s=[Nu(this.axes,t.shape.length),Nu(this.axes,n.shape.length)],this.normalize&&(t=$d(t,s[0]),n=$d(n,s[1])),QB(t,n,s)}interpretAxes(e,t){let n;return Array.isArray(this.axes)?n=this.axes:n=[Nu(this.axes,e.length),Nu(this.axes,t.length)],n}computeOutputShape(e){w.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0].slice(),n=e[1].slice();if(t.length>3||n.length>3)throw new Fe("Dot layer does not support tensors of 4D or higher rank yet.");let s=this.interpretAxes(t,n);t.splice(s[0],1),n.splice(s[1],1),n.splice(0,1);let r=t.concat(n);return r.length===1&&r.push(1),r}computeMask(e,t){return null}getConfig(){let e={axes:this.axes,normalize:this.normalize},t=super.getConfig();return Object.assign(e,t),e}};$y.className="Dot";ae.registerClass($y);var _y=class extends He{constructor(e){super(e),this.supportsMasking=!0,this.stddev=e.stddev}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={stddev:this.stddev};return Object.assign(t,e),t}call(e,t){return j(()=>{this.invokeCallHook(e,t);let n=Oe(e);return Wl(()=>ie($p(n.shape,0,this.stddev),n),()=>n,t.training||!1)})}};_y.className="GaussianNoise";ae.registerClass(_y);var Ay=class extends He{constructor(e){super(e),this.supportsMasking=!0,this.rate=e.rate}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return j(()=>{this.invokeCallHook(e,t);let n=Oe(e);return this.rate>0&&this.rate<1?Wl(()=>{let r=Math.sqrt(this.rate/(1-this.rate));return V(n,$p(n.shape,1,r))},()=>n,t.training||!1):n})}};Ay.className="GaussianDropout";ae.registerClass(Ay);var Ey=class extends He{constructor(e){super(e),this.supportsMasking=!0,this.rate=e.rate,this.noiseShape=e.noiseShape}_getNoiseShape(e){return this.noiseShape||Oe(e).shape}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return j(()=>{if(this.rate<1&&this.rate>0){let n=this._getNoiseShape(e);return Wl(()=>{let r=Oe(e),a=1.6732632423543772,i=1.0507009873554805,o=-a*i,u=Xo(Ml(n),this.rate);u=Tp(u,"float32");let l=((1-this.rate)*(1+this.rate*o**2))**-.5,c=-l*o*this.rate,p=ie(V(r,u),V(ie(u,-1),o));return ie(V(p,l),c)},()=>Oe(e),t.training||!1)}return e})}};Ey.className="AlphaDropout";ae.registerClass(Ey);function el(e,t,n,s,r,a=.001){let i;if(e.rank===2)i=FE(e,t,n,s,r,a);else if(e.rank===3)i=PE(e,t,n,s,r,a);else if(e.rank===4)i=ME(e,t,n,s,r,a);else throw new Fe(`batchNormalization is not implemented for array of rank ${e.rank} yet`);return i}function ZB(e,t,n,s,r=.001){return j(()=>{let a=sb(e,s),i=a.mean,o=a.variance;return[el(e,i,o,n,t,r),i,o]})}function JB(e,t,n,s,r=.001){return j(()=>{let a=sb(e,s),i=a.mean,o=a.variance,u=[];for(let f of bs(0,e.rank))s.indexOf(f)!==-1?u.push(1):u.push(e.shape[f]);let l=G(i,u),c=G(o,u),p=t==null?null:G(t,u),d=n==null?null:G(n,u);return[el(e,l,c,d,p,r),i,o]})}function eV(e,t,n,s,r=.001){return w.arraysEqual(s.slice().sort(),bs(0,e.rank-1))?ZB(e,t,n,s,r):JB(e,t,n,s,r)}var Ry=class extends He{constructor(e){e==null&&(e={}),super(e),this.supportsMasking=!0,this.axis=e.axis==null?-1:e.axis,this.momentum=e.momentum==null?.99:e.momentum,this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=ht(e.betaInitializer||"zeros"),this.gammaInitializer=ht(e.gammaInitializer||"ones"),this.movingMeanInitializer=ht(e.movingMeanInitializer||"zeros"),this.movingVarianceInitializer=ht(e.movingVarianceInitializer||"ones"),this.betaConstraint=Pt(e.betaConstraint),this.gammaConstraint=Pt(e.gammaConstraint),this.betaRegularizer=ft(e.betaRegularizer),this.gammaRegularizer=ft(e.gammaRegularizer)}build(e){e=nt(e);let t=this.axis>=0?this.axis:this.axis+e.length,n=e[t];if(n==null)throw new U(`Axis ${t} of input tensor should have a defined dimension but the layer received an input with shape ${JSON.stringify(e)}.`);this.inputSpec=[new Dt({ndim:e.length,axes:{[t]:n}})];let s=[n];this.scale&&(this.gamma=this.addWeight("gamma",s,null,this.gammaInitializer,this.gammaRegularizer,!0,this.gammaConstraint)),this.center&&(this.beta=this.addWeight("beta",s,null,this.betaInitializer,this.betaRegularizer,!0,this.betaConstraint)),this.movingMean=this.addWeight("moving_mean",s,null,this.movingMeanInitializer,null,!1),this.movingVariance=this.addWeight("moving_variance",s,null,this.movingVarianceInitializer,null,!1),this.built=!0}call(e,t){return j(()=>{let n=t.training==null?!1:t.training,s=Oe(e),r=s.shape,a=r.length,i=bs(0,a),o=this.axis>=0?this.axis:this.axis+a;i.splice(o,1);let u=ma(1,a);u[o]=r[o];let l=i.slice();l.sort();let c=!w.arraysEqual(l,bs(0,a).slice(0,a-1)),p=()=>{if(c){let b=G(this.movingMean.read(),u),y=G(this.movingVariance.read(),u),v=this.center?G(this.beta.read(),u):null,x=this.scale?G(this.gamma.read(),u):null;return el(s,b,y,v,x,this.epsilon)}else return el(s,this.movingMean.read(),this.movingVariance.read(),this.beta==null?null:this.beta.read(),this.gamma==null?null:this.gamma.read(),this.epsilon)};if(!n)return p();let[d,h,f]=eV(s,this.gamma.read(),this.beta.read(),i,this.epsilon),m=(b,y,v)=>{j(()=>{let x=1-v,k=b.read(),T=V(ge(k,y),x);b.write(ge(k,T))})};return(()=>{m(this.movingMean,h,this.momentum),m(this.movingVariance,f,this.momentum)})(),d})}getConfig(){let e={axis:this.axis,momentum:this.momentum,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:yt(this.betaInitializer),gammaInitializer:yt(this.gammaInitializer),movingMeanInitializer:yt(this.movingMeanInitializer),movingVarianceInitializer:yt(this.movingVarianceInitializer),betaRegularizer:it(this.betaRegularizer),gammaRegularizer:it(this.gammaRegularizer),betaConstraint:Ot(this.betaConstraint),gammaConstraint:Ot(this.gammaConstraint)},t=super.getConfig();return Object.assign(e,t),e}};Ry.className="BatchNormalization";ae.registerClass(Ry);var Dy=class extends He{constructor(e){if(e==null&&(e={}),super(e),this.axis=e.axis==null?-1:e.axis,typeof this.axis=="number"){if(!Number.isInteger(this.axis))throw new Error(`Expected axis to be an integer, but received ${this.axis}`)}else if(Array.isArray(this.axis)){for(let t of this.axis)if(!Number.isInteger(t))throw new Error(`Expected axis to be an array of integers, but received ${JSON.stringify(this.axis)}`)}else throw new Error(`Expected axis to be an integer or an array of integers, but received ${JSON.stringify(this.axis)}`);this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=ht(e.betaInitializer||"zeros"),this.gammaInitializer=ht(e.gammaInitializer||"ones"),this.betaRegularizer=ft(e.betaRegularizer),this.gammaRegularizer=ft(e.gammaRegularizer),this.supportsMasking=!0}build(e){e=nt(e);let t=e.length;typeof this.axis=="number"&&(this.axis=[this.axis]);for(let r=0;r<this.axis.length;++r)this.axis[r]<0&&(this.axis[r]+=t);for(let r of this.axis)if(r<0||r>=t)throw new Error(`Invalid axis: ${r}`);if(this.axis.length!==dr(this.axis).length)throw new Error(`Found duplicate axes in: ${this.axis}`);let n=this.axis.map(r=>e[r]),s=!0;this.scale?this.gamma=this.addWeight("gamma",n,"float32",this.gammaInitializer,this.gammaRegularizer,s):this.gamma=null,this.center?this.beta=this.addWeight("beta",n,"float32",this.betaInitializer,this.betaRegularizer,s):this.beta=null,this.built=!0}call(e,t){let n=Oe(e),s=n.shape,r=s.length;return j(()=>{let{mean:i,variance:o}=sb(n,this.axis,!0),u=ma(1,r);for(let f of this.axis)u[f]=s[f];let l=f=>f!=null&&f.shape.length!==r?G(f,u):f,c=l(this.gamma.read()),p=l(this.beta.read()),d=[],h=[];for(let f=0;f<r;++f)this.axis.indexOf(f)!==-1?(d.push(s[f]),h.push(1)):(d.push(1),h.push(s[f]));return i=ps(i,d),o=ps(o,d),c=ps(c,h),p=ps(p,h),el(n,i,o,p,c,this.epsilon)})}getConfig(){let e={axis:this.axis,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:yt(this.betaInitializer),gammaInitializer:yt(this.gammaInitializer),betaRegularizer:it(this.betaRegularizer),gammaRegularizer:it(this.gammaRegularizer)},t=super.getConfig();return Object.assign(e,t),e}};Dy.className="LayerNormalization";ae.registerClass(Dy);function tV(e,t,n){return j(()=>{if(e.rank!==4)throw new U(`temporalPadding expects input tensor to be 4-D, but received a ${e.rank}-D tensor.`);if(t==null&&(t=[[1,1],[1,1]]),t.length!==2||t[0].length!==2||t[1].length!==2)throw new U("spatial2dPadding expects `padding` to be an Array of two Arrays, each of which is an Array of two integers.");if(n==null&&(n=ys()),n!=="channelsLast"&&n!=="channelsFirst")throw new U(`Unknown data format: ${n}. Supported data formats are 'channelsLast' and 'channelsFirst.`);let s;return n==="channelsFirst"?s=[[0,0],[0,0],t[0],t[1]]:s=[[0,0],t[0],t[1],[0,0]],bi(e,s)})}var Fy=class extends He{constructor(e){if(e==null&&(e={}),super(e),this.dataFormat=e.dataFormat==null?ys():e.dataFormat,e.padding==null)this.padding=[[1,1],[1,1]];else if(typeof e.padding=="number")this.padding=[[e.padding,e.padding],[e.padding,e.padding]];else{if(e.padding=e.padding,e.padding.length!==2)throw new U(`ZeroPadding2D expects padding to be a length-2 array, but received a length-${e.padding.length} array.`);let t,n;if(typeof e.padding[0]=="number")t=[e.padding[0],e.padding[0]],n=[e.padding[1],e.padding[1]];else{if(e.padding=e.padding,e.padding[0].length!==2)throw new U(`ZeroPadding2D expects height padding to be a length-2 array, but received a length-${e.padding[0].length} array.`);if(t=e.padding[0],e.padding[1].length!==2)throw new U(`ZeroPadding2D expects width padding to be a length-2 array, but received a length-${e.padding[1].length} array.`);n=e.padding[1]}this.padding=[t,n]}this.inputSpec=[new Dt({ndim:4})]}computeOutputShape(e){e=nt(e);let t,n;return this.dataFormat==="channelsFirst"?(e[2]!=null&&e[2]>=0?t=e[2]+this.padding[0][0]+this.padding[0][1]:t=null,e[3]!=null&&e[3]>=0?n=e[3]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],e[1],t,n]):(e[1]!=null&&e[1]>=0?t=e[1]+this.padding[0][0]+this.padding[0][1]:t=null,e[2]!=null&&e[2]>=0?n=e[2]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],t,n,e[3]])}call(e,t){return j(()=>tV(Oe(e),this.padding,this.dataFormat))}getConfig(){let e={padding:this.padding,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};Fy.className="ZeroPadding2D";ae.registerClass(Fy);function qp(e,t,n,s,r,a){return j(()=>{Ct(r),KI(a),Gn(s),n==null&&(n=[1,1]),s==null&&(s="valid"),r==null&&(r=ys()),a==null&&(a="max"),e=ey(e,r);let i,o=s==="same"?"same":"valid";return a==="max"?i=nb(e,t,n,o):i=qg(e,t,n,o),r==="channelsFirst"&&(i=Ge(i,[0,3,1,2])),i})}function WS(e,t,n,s,r,a){return j(()=>{Ct(r),KI(a),Gn(s),n==null&&(n=[1,1,1]),s==null&&(s="valid"),r==null&&(r=ys()),a==null&&(a="max"),e=DS(e,r);let i,o=s==="same"?"same":"valid";return a==="max"?i=mI(e,t,n,o):i=eI(e,t,n,o),r==="channelsFirst"&&(i=Ge(i,[0,4,1,2,3])),i})}var US=class extends He{constructor(e){if(e.poolSize==null&&(e.poolSize=2),super(e),typeof e.poolSize=="number")this.poolSize=[e.poolSize];else if(Array.isArray(e.poolSize)&&e.poolSize.length===1&&typeof e.poolSize[0]=="number")this.poolSize=e.poolSize;else throw new U(`poolSize for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.poolSize)}`);if(Bt(this.poolSize,"poolSize"),e.strides==null)this.strides=this.poolSize;else if(typeof e.strides=="number")this.strides=[e.strides];else if(Array.isArray(e.strides)&&e.strides.length===1&&typeof e.strides[0]=="number")this.strides=e.strides;else throw new U(`strides for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.strides)}`);Bt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,Gn(this.padding),this.inputSpec=[new Dt({ndim:3})]}computeOutputShape(e){e=nt(e);let t=gs(e[1],this.poolSize[0],this.padding,this.strides[0]);return[e[0],t,e[2]]}call(e,t){return j(()=>{this.invokeCallHook(e,t),e=Bl(Oe(e),2);let n=this.poolingFunction(Oe(e),[this.poolSize[0],1],[this.strides[0],1],this.padding,"channelsLast");return gr(n,[2])})}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides},t=super.getConfig();return Object.assign(e,t),e}},Oy=class extends US{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Ct(r),Gn(s),qp(e,t,n,s,r,"max")}};Oy.className="MaxPooling1D";ae.registerClass(Oy);var Py=class extends US{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Ct(r),Gn(s),qp(e,t,n,s,r,"avg")}};Py.className="AveragePooling1D";ae.registerClass(Py);var GS=class extends He{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==2)throw new U(`If the strides property of a 2D pooling layer is an Array, it is expected to have a length of 2, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides];Bt(this.poolSize,"poolSize"),Bt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Ct(this.dataFormat),Gn(this.padding),this.inputSpec=[new Dt({ndim:4})]}computeOutputShape(e){e=nt(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2];return t=gs(t,this.poolSize[0],this.padding,this.strides[0]),n=gs(n,this.poolSize[1],this.padding,this.strides[1]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n]:[e[0],t,n,e[3]]}call(e,t){return j(()=>(this.invokeCallHook(e,t),this.poolingFunction(Oe(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},zy=class extends GS{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Ct(r),Gn(s),qp(e,t,n,s,r,"max")}};zy.className="MaxPooling2D";ae.registerClass(zy);var My=class extends GS{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Ct(r),Gn(s),qp(e,t,n,s,r,"avg")}};My.className="AveragePooling2D";ae.registerClass(My);var HS=class extends He{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==3)throw new U(`If the strides property of a 3D pooling layer is an Array, it is expected to have a length of 3, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides,e.strides];Bt(this.poolSize,"poolSize"),Bt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Ct(this.dataFormat),Gn(this.padding),this.inputSpec=[new Dt({ndim:5})]}computeOutputShape(e){e=nt(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],s=this.dataFormat==="channelsFirst"?e[4]:e[3];return t=gs(t,this.poolSize[0],this.padding,this.strides[0]),n=gs(n,this.poolSize[1],this.padding,this.strides[1]),s=gs(s,this.poolSize[2],this.padding,this.strides[2]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n,s]:[e[0],t,n,s,e[4]]}call(e,t){return j(()=>(this.invokeCallHook(e,t),this.poolingFunction(Oe(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},Ly=class extends HS{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Ct(r),Gn(s),WS(e,t,n,s,r,"max")}};Ly.className="MaxPooling3D";ae.registerClass(Ly);var By=class extends HS{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Ct(r),Gn(s),WS(e,t,n,s,r,"avg")}};By.className="AveragePooling3D";ae.registerClass(By);var qS=class extends He{constructor(e){super(e),this.inputSpec=[new Dt({ndim:3})]}computeOutputShape(e){return[e[0],e[2]]}call(e,t){throw new Fe}},Vy=class extends qS{constructor(e){super(e||{})}call(e,t){return j(()=>{let n=Oe(e);return St(n,1)})}};Vy.className="GlobalAveragePooling1D";ae.registerClass(Vy);var Wy=class extends qS{constructor(e){super(e||{})}call(e,t){return j(()=>{let n=Oe(e);return As(n,1)})}};Wy.className="GlobalMaxPooling1D";ae.registerClass(Wy);var jS=class extends He{constructor(e){super(e),this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Ct(this.dataFormat),this.inputSpec=[new Dt({ndim:4})]}computeOutputShape(e){return e=e,this.dataFormat==="channelsLast"?[e[0],e[3]]:[e[0],e[1]]}call(e,t){throw new Fe}getConfig(){let e={dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},Uy=class extends jS{call(e,t){return j(()=>{let n=Oe(e);return this.dataFormat==="channelsLast"?St(n,[1,2]):St(n,[2,3])})}};Uy.className="GlobalAveragePooling2D";ae.registerClass(Uy);var Gy=class extends jS{call(e,t){return j(()=>{let n=Oe(e);return this.dataFormat==="channelsLast"?As(n,[1,2]):As(n,[2,3])})}};Gy.className="GlobalMaxPooling2D";ae.registerClass(Gy);var KS=class extends He{constructor(e){super(e),this.layer=e.layer}build(e){this.built=!0}get trainable(){return this.layer!=null?this.layer.trainable:!1}set trainable(e){this.layer!=null&&(this.layer.trainable=e)}get trainableWeights(){return this.layer.trainableWeights}get nonTrainableWeights(){return this.layer.nonTrainableWeights}get updates(){return this.layer._updates}get losses(){return this.layer.losses}getWeights(){return this.layer.getWeights()}setWeights(e){this.layer.setWeights(e)}getConfig(){let e={layer:{className:this.layer.getClassName(),config:this.layer.getConfig()}},t=super.getConfig();return Object.assign(e,t),e}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.layer!=null&&this.layer.setFastWeightInitDuringBuild(e)}static fromConfig(e,t,n={}){let s=t.layer,r=ms(s,n);delete t.layer;let a={layer:r};return Object.assign(a,t),new e(a)}},Hy=class extends KS{constructor(e){super(e),this.supportsMasking=!0}build(e){if(e=nt(e),e.length<3)throw new U(`TimeDistributed layer expects an input shape >= 3D, but received input shape ${JSON.stringify(e)}`);this.inputSpec=[{shape:e}];let t=[e[0]].concat(e.slice(2));this.layer.built||(this.layer.build(t),this.layer.built=!0),super.build(e)}computeOutputShape(e){e=nt(e);let t=[e[0]].concat(e.slice(2)),n=this.layer.computeOutputShape(t),s=e[1];return[n[0],s].concat(n.slice(1))}call(e,t){return j(()=>(e=Oe(e),LS((a,i)=>[Oe(this.layer.call(a,t)),[]],e,[],!1,null,null,!1,!0)[1]))}};Hy.className="TimeDistributed";ae.registerClass(Hy);function nV(e){yi(YP,"BidirectionalMergeMode",e)}var sV="concat",qy=class extends KS{constructor(e){super(e);let t=e.layer.getConfig(),n={};n.className=e.layer.getClassName(),n.config=t,this.forwardLayer=ms(n),t.goBackwards=t.goBackwards!==!0;let s={};if(s.className=e.layer.getClassName(),s.config=t,this.backwardLayer=ms(s),this.forwardLayer.name="forward_"+this.forwardLayer.name,this.backwardLayer.name="backward_"+this.backwardLayer.name,this.mergeMode=e.mergeMode===void 0?sV:e.mergeMode,nV(this.mergeMode),e.weights)throw new Fe("weights support is not implemented for Bidirectional layer yet.");this._stateful=e.layer.stateful,this.returnSequences=e.layer.returnSequences,this.returnState=e.layer.returnState,this.supportsMasking=!0,this._trainable=!0,this.inputSpec=e.layer.inputSpec,this.numConstants=null}get trainable(){return this._trainable}set trainable(e){this._trainable=e,this.forwardLayer!=null&&(this.forwardLayer.trainable=e),this.backwardLayer!=null&&(this.backwardLayer.trainable=e)}getWeights(){return this.forwardLayer.getWeights().concat(this.backwardLayer.getWeights())}setWeights(e){let t=e.length,n=Math.floor(t/2);this.forwardLayer.setWeights(e.slice(0,n)),this.backwardLayer.setWeights(e.slice(n))}computeOutputShape(e){let t=this.forwardLayer.computeOutputShape(e);Array.isArray(t)&&Array.isArray(t[0])||(t=[t]),t=t;let n,s,r;return this.returnState&&(r=t.slice(1)),n=t[0],n=n,this.mergeMode==="concat"?(n[n.length-1]*=2,s=[n]):this.mergeMode==null?s=[n,n.slice()]:s=[n],this.returnState?this.mergeMode==null?s.concat(r).concat(r.slice()):[n].concat(r).concat(r.slice()):bn(s)}apply(e,t){let n=t==null?null:t.initialState,s=t==null?null:t.constants;t==null&&(t={});let r=MS(e,n,s,this.numConstants);if(e=r.inputs,n=r.initialState,s=r.constants,Array.isArray(e)&&(n=e.slice(1),e=e[0]),(n==null||n.length===0)&&s==null)return super.apply(e,t);let a=[],i=[];if(n!=null){let u=n.length;if(u%2>0)throw new U("When passing `initialState` to a Bidrectional RNN, the state should be an Array containing the states of the underlying RNNs.");t.initialState=n,a.push(...n);let l=n.map(c=>new Dt({shape:c.shape}));this.forwardLayer.stateSpec=l.slice(0,u/2),this.backwardLayer.stateSpec=l.slice(u/2),i.push(...l)}if(s!=null)throw new Fe("Support for constants in Bidirectional layers is not implemented yet.");let o=a[0]instanceof $s;for(let u of a)if(u instanceof $s!==o)throw new U("The initial state of a Bidirectional layer cannot be specified as a mix of symbolic and non-symbolic tensors");if(o){let u=[e].concat(a),l=this.inputSpec.concat(i),c=this.inputSpec;this.inputSpec=l;let p=super.apply(u,t);return this.inputSpec=c,p}else return super.apply(e,t)}call(e,t){return j(()=>{let n=t.initialState,s,r;if(n==null)s=this.forwardLayer.call(e,t),r=this.backwardLayer.call(e,t);else{let o=n.slice(0,n.length/2),u=n.slice(n.length/2);s=this.forwardLayer.call(e,Object.assign(t,{initialState:o})),r=this.backwardLayer.call(e,Object.assign(t,{initialState:u}))}let a;this.returnState&&(Array.isArray(s)&&(a=s.slice(1).concat(r.slice(1))),s=s[0],r=r[0]),this.returnSequences&&(r=Jn(r,1));let i;return this.mergeMode==="concat"?i=Cb([s,r]):this.mergeMode==="sum"?i=ie(s,r):this.mergeMode==="ave"?i=V(.5,ie(s,r)):this.mergeMode==="mul"?i=V(s,r):this.mergeMode==null&&(i=[s,r]),this.returnState?this.mergeMode==null?i.concat(a):[i].concat(a):i})}resetStates(e){this.forwardLayer.resetStates(),this.backwardLayer.resetStates()}build(e){ta(this.forwardLayer.name,()=>{this.forwardLayer.build(e)}),ta(this.backwardLayer.name,()=>{this.backwardLayer.build(e)}),this.built=!0}computeMask(e,t){Array.isArray(t)&&(t=t[0]);let n;if(this.returnSequences?this.mergeMode==null?n=[t,t]:n=t:this.mergeMode==null?n=[null,null]:n=null,this.returnState){let r=this.forwardLayer.states.map(a=>null);return Array.isArray(n)?n.concat(r).concat(r):[n].concat(r).concat(r)}else return n}get trainableWeights(){return this.forwardLayer.trainableWeights.concat(this.backwardLayer.trainableWeights)}get nonTrainableWeights(){return this.forwardLayer.nonTrainableWeights.concat(this.backwardLayer.nonTrainableWeights)}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.forwardLayer!=null&&this.forwardLayer.setFastWeightInitDuringBuild(e),this.backwardLayer!=null&&this.backwardLayer.setFastWeightInitDuringBuild(e)}getConfig(){let e={mergeMode:this.mergeMode},t=super.getConfig();return Object.assign(e,t),e}static fromConfig(e,t){let n=ms(t.layer);if(delete t.layer,t.numConstants!=null)throw new Fe("Deserialization of a Bidirectional layer with numConstants present is not supported yet.");let s=t;return s.layer=n,new e(s)}};qy.className="Bidirectional";ae.registerClass(qy);function rV(e){return new Zo(e)}function aV(e){return new Qb(e)}function iV(e){return new Kb(e)}function oV(e){return new Xb(e)}function uV(e){return new Yb(e)}function lV(e){return new Jb(e)}function cV(e){return new Zb(e)}function dV(e){return new ay(e)}function pV(e){return new Lp(e)}function hV(e){return new ny(e)}function fV(e){return new Bp(e)}function mV(e){return new sy(e)}function gV(e){return new ry(e)}function bV(e){return new iy(e)}function yV(e){return new oy(e)}function vV(e){return new uy(e)}function xV(e){return new gy(e)}function wV(e){return new fy(e)}function kV(e){return new Hp(e)}function IV(e){return new hy(e)}function SV(e){return new my(e)}function CV(e){return new by(e)}function NV(e){return new yy(e)}function TV(e){return new vy(e)}function $V(e){return new wy(e)}function _V(e){return new ky(e)}function AV(e){return new Sy(e)}function EV(e){return new Ty(e)}function RV(e){return new Cy(e)}function DV(e){return new Ny(e)}function FV(e){return new Iy(e)}function OV(e){return new $y(e)}function PV(e){return new Ry(e)}function zV(e){return new Dy(e)}function MV(e){return new Fy(e)}function jy(e){return new Py(e)}function LV(e){return jy(e)}function BV(e){return jy(e)}function Ky(e){return new My(e)}function VV(e){return Ky(e)}function WV(e){return Ky(e)}function Xy(e){return new By(e)}function UV(e){return Xy(e)}function GV(e){return Xy(e)}function HV(e){return new Vy(e)}function qV(e){return new Uy(e)}function XS(e){return new Wy(e)}function YS(e){return new Gy(e)}function QS(e){return new Oy(e)}function ZS(e){return new zy(e)}function jV(e){return new Ly(e)}function KV(e){return new cy(e)}function XV(e){return new Wp(e)}function YV(e){return new dy(e)}function QV(e){return new jl(e)}function ZV(e){return new ly(e)}function JV(e){return new Vp(e)}function eW(e){return new py(e)}function tW(e){return new Gp(e)}function nW(e){return new Er(e)}function sW(e){return new Up(e)}function rW(e){return new qy(e)}function aW(e){return new Hy(e)}var iW=XS,oW=YS,uW=QS,lW=ZS;function cW(e){return new _y(e)}function dW(e){return new Ay(e)}function pW(e){return new Ey(e)}function hW(e){return new xy(e)}var fW={};Ae(fW,{MAPE:()=>CW,MSE:()=>$W,binaryAccuracy:()=>mW,binaryCrossentropy:()=>gW,categoricalAccuracy:()=>yW,categoricalCrossentropy:()=>vW,cosineProximity:()=>kW,mape:()=>NW,meanAbsoluteError:()=>IW,meanAbsolutePercentageError:()=>SW,meanSquaredError:()=>TW,mse:()=>_W,precision:()=>xW,recall:()=>wW,sparseCategoricalAccuracy:()=>bW});function mW(e,t){return Vb(e,t)}function gW(e,t){return lS(e,t)}function bW(e,t){return cS(e,t)}function yW(e,t){return Wb(e,t)}function vW(e,t){return Ub(e,t)}function xW(e,t){return uS(e,t)}function wW(e,t){return dB(e,t)}function kW(e,t){return Bb(e,t)}function IW(e,t){return zp(e,t)}function SW(e,t){return Jo(e,t)}function CW(e,t){return Jo(e,t)}function NW(e,t){return Jo(e,t)}function TW(e,t){return vi(e,t)}function $W(e,t){return vi(e,t)}function _W(e,t){return vi(e,t)}var AW={};Ae(AW,{modelFromJSON:()=>VB});var EW={};Ae(EW,{l1:()=>DW,l1l2:()=>RW,l2:()=>FW});function RW(e){return new Gl(e)}function DW(e){return qB(e)}function FW(e){return jB(e)}var OW=class extends to{constructor(){super(...arguments),this.model=null}setModel(e){if(!(e instanceof hr))throw new Error("model must be a LayersModel, not some other Container");this.model=e}};function jc(e,t){return e<t}function Hx(e,t){return e>t}var PW=class extends OW{constructor(e){if(super(),e==null&&(e={}),e.restoreBestWeights)throw new Fe("restoreBestWeights = True is not implemented in EarlyStopping yet.");this.monitor=e.monitor||"val_loss",this.minDelta=Math.abs(e.minDelta||0),this.patience=e.patience||0,this.verbose=e.verbose||0,this.mode=e.mode||"auto",this.baseline=e.baseline,["auto","min","max"].indexOf(this.mode)===-1&&(console.warn(`EarlyStopping mode '${this.mode}' is invalid. Falling back to mode 'auto'.`),this.mode="auto"),this.mode==="min"?this.monitorFunc=jc:this.mode==="max"?this.monitorFunc=Hx:this.monitor.indexOf("acc")!==-1?this.monitorFunc=Hx:this.monitorFunc=jc,this.monitorFunc===jc&&(this.minDelta*=-1)}async onTrainBegin(e){this.wait=0,this.stoppedEpoch=0,this.baseline!=null?this.best=this.baseline:this.best=this.monitorFunc===jc?1/0:-1/0}async onEpochEnd(e,t){await ar(t);let n=this.getMonitorValue(t);n!=null&&(this.monitorFunc(n-this.minDelta,this.best)?(this.best=n,this.wait=0):(this.wait++,this.wait>=this.patience&&(this.stoppedEpoch=e,this.model.stopTraining=!0)))}async onTrainEnd(e){this.stoppedEpoch>0&&this.verbose&&console.log(`Epoch ${this.stoppedEpoch}: early stopping.`)}getMonitorValue(e){e==null&&(e={});let t=e[this.monitor];return t==null&&console.warn(`Metric for EarlyStopping ${this.monitor} is not available. Available metrics are: ${Object.keys(e)}`),t}};function zW(e){return new PW(e)}var Gpe={earlyStopping:zW},MW=X();MW.registerFlag("KEEP_INTERMEDIATE_TENSORS",()=>!1,e=>{e&&console.warn("Keep intermediate tensors is ON. This will print the values of all intermediate tensors during model inference. Not all models support this mode. For details, check e2e/benchmarks/ model_config.js. This significantly impacts performance.")});var JS=(e=>(e[e.DT_INVALID=0]="DT_INVALID",e[e.DT_FLOAT=1]="DT_FLOAT",e[e.DT_DOUBLE=2]="DT_DOUBLE",e[e.DT_INT32=3]="DT_INT32",e[e.DT_UINT8=4]="DT_UINT8",e[e.DT_INT16=5]="DT_INT16",e[e.DT_INT8=6]="DT_INT8",e[e.DT_STRING=7]="DT_STRING",e[e.DT_COMPLEX64=8]="DT_COMPLEX64",e[e.DT_INT64=9]="DT_INT64",e[e.DT_BOOL=10]="DT_BOOL",e[e.DT_QINT8=11]="DT_QINT8",e[e.DT_QUINT8=12]="DT_QUINT8",e[e.DT_QINT32=13]="DT_QINT32",e[e.DT_BFLOAT16=14]="DT_BFLOAT16",e[e.DT_QINT16=15]="DT_QINT16",e[e.DT_QUINT16=16]="DT_QUINT16",e[e.DT_UINT16=17]="DT_UINT16",e[e.DT_COMPLEX128=18]="DT_COMPLEX128",e[e.DT_HALF=19]="DT_HALF",e[e.DT_RESOURCE=20]="DT_RESOURCE",e[e.DT_VARIANT=21]="DT_VARIANT",e[e.DT_UINT32=22]="DT_UINT32",e[e.DT_UINT64=23]="DT_UINT64",e[e.DT_FLOAT_REF=101]="DT_FLOAT_REF",e[e.DT_DOUBLE_REF=102]="DT_DOUBLE_REF",e[e.DT_INT32_REF=103]="DT_INT32_REF",e[e.DT_UINT8_REF=104]="DT_UINT8_REF",e[e.DT_INT16_REF=105]="DT_INT16_REF",e[e.DT_INT8_REF=106]="DT_INT8_REF",e[e.DT_STRING_REF=107]="DT_STRING_REF",e[e.DT_COMPLEX64_REF=108]="DT_COMPLEX64_REF",e[e.DT_INT64_REF=109]="DT_INT64_REF",e[e.DT_BOOL_REF=110]="DT_BOOL_REF",e[e.DT_QINT8_REF=111]="DT_QINT8_REF",e[e.DT_QUINT8_REF=112]="DT_QUINT8_REF",e[e.DT_QINT32_REF=113]="DT_QINT32_REF",e[e.DT_BFLOAT16_REF=114]="DT_BFLOAT16_REF",e[e.DT_QINT16_REF=115]="DT_QINT16_REF",e[e.DT_QUINT16_REF=116]="DT_QUINT16_REF",e[e.DT_UINT16_REF=117]="DT_UINT16_REF",e[e.DT_COMPLEX128_REF=118]="DT_COMPLEX128_REF",e[e.DT_HALF_REF=119]="DT_HALF_REF",e[e.DT_RESOURCE_REF=120]="DT_RESOURCE_REF",e[e.DT_VARIANT_REF=121]="DT_VARIANT_REF",e[e.DT_UINT32_REF=122]="DT_UINT32_REF",e[e.DT_UINT64_REF=123]="DT_UINT64_REF",e))(JS||{}),qx;(e=>{let t;(n=>{n[n.LEGACY=0]="LEGACY",n[n.V1=1]="V1",n[n.V2=2]="V2"})(t=e.CheckpointFormatVersion||(e.CheckpointFormatVersion={}))})(qx||(qx={}));var Yy={};function Hpe(e,t){let n={tfOpName:e,category:"custom",inputs:[],attrs:[],customExecutor:t};Yy[e]=n}function e0(e){return Yy[e]}function qpe(e){delete Yy[e]}function I(e,t,n,s,r){let a=t.inputParams[e];if(a&&a.inputIndexStart!==void 0){let o=a.inputIndexStart,u=a.inputIndexEnd===0?void 0:a.inputIndexEnd===void 0?o+1:a.inputIndexEnd;if(a.type==="tensor")return un(t.inputNames[a.inputIndexStart],n,s,r);if(a.type==="tensors")return t.inputNames.slice(o,u).map(d=>un(d,n,s,r));let l=un(t.inputNames.slice(o)[0],n,s,r),c=l.dataSync();return a.type==="number"?c[0]:w.toNestedArray(l.shape,c)}let i=t.attrParams[e];return i&&i.value}function un(e,t,n,s){let[r,a]=An(e);if(s!=null){let o=s.getHashTableHandleByName(r);if(o!=null)return o}let i=n.currentContextIds.find(o=>!!t[Dd(r,o)]);return i!==void 0?t[Dd(r,i)][a]:void 0}function LW(e,t,n){return t[Dd(e,n.currentContextId)]}function Ts(e,t){let[n,s,r]=An(e);return[Dd(n,t&&t.currentContextId),s,r]}function Dd(e,t){return t?`${e}-${t}`:e}function An(e){let t=e.split(":");if(t.length===1)return[e,0,void 0];let n=t[0],s=t.length===3?t[1]:void 0,r=Number(t[t.length-1]);return[n,r,s]}function sd(e,t,n){let s=I("pad",e,t,n);if(s==="explicit"){s=I("explicitPaddings",e,t,n);let r=[[0,0],[0,0],[0,0],[0,0]];for(let a=0;a<4;a++)r[a][0]=s[a*2],r[a][1]=s[a*2+1];return r}return s}function Us(e){return e.kept?e:cr(e)}var t0={};Ae(t0,{json:()=>BW});var BW=[{tfOpName:"Add",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddV2",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddN",category:"arithmetic",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"BiasAdd",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"Sub",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"RealDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Div",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"DivNoNan",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mul",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Maximum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Minimum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Pow",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SquaredDifference",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorMod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],n0={};Ae(n0,{json:()=>VW});var VW=[{tfOpName:"Abs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan2",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ceil",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ClipByValue",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"clipValueMin",type:"number"},{start:2,name:"clipValueMax",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Complex",category:"basic_math",inputs:[{start:0,name:"real",type:"tensor"},{start:1,name:"imag",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ComplexAbs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Elu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Exp",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Floor",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Imag",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Neg",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Real",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Prelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"alpha",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu6",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Selu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sigmoid",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Rsqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Square",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sign",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Round",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Expm1",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log1p",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Reciprocal",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Softplus",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Erf",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Prod",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axes",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LeakyRelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"alpha",name:"alpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"IsNan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],s0={};Ae(s0,{json:()=>WW});var WW=[{tfOpName:"EmptyTensorList",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"maxNumElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"LoopCond",category:"control",inputs:[{start:0,name:"pred",type:"tensor"}]},{tfOpName:"Switch",category:"control",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"pred",type:"tensor"}]},{tfOpName:"Merge",category:"control",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"Enter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"frame_name",name:"frameName",type:"string"},{tfName:"is_constant",name:"isConstant",type:"bool"}]},{tfOpName:"Exit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NextIteration",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayV3",category:"control",inputs:[{start:0,name:"size",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"dynamic_size",name:"dynamicSize",type:"bool"},{tfName:"clear_after_read",name:"clearAfterRead",type:"bool"},{tfName:"identical_element_shapes",name:"identicalElementShapes",type:"bool"},{tfName:"tensor_array_name",name:"name",type:"string"}]},{tfOpName:"TensorArrayWriteV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayReadV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayGatherV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"}]},{tfOpName:"TensorArrayScatterV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArrayConcatV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape_except0",name:"elementShapeExcept0",type:"shape",notSupported:!0}]},{tfOpName:"TensorArraySplitV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"tensor",type:"tensor"},{start:2,name:"lengths",type:"number[]"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArraySizeV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}]},{tfOpName:"TensorArrayCloseV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"}]},{tfOpName:"StatelessIf",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"If",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"StatelessWhile",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"While",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"TensorListScatter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListScatterV2",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"},{start:3,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGather",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListSetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListReserve",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListFromTensor",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListStack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"},{tfName:"num_elements",name:"numElements",type:"dtype"}]},{tfOpName:"TensorListSplit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"},{start:2,name:"lengths",type:"number[]"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcat",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPopBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPushBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListLength",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}]},{tfOpName:"TensorListResize",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"size",type:"number"}]}],r0={};Ae(r0,{json:()=>UW});var UW=[{tfOpName:"AvgPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[],notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPoolWithArgmax",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"include_batch_in_index",name:"includeBatchInIndex",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AvgPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Conv1D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"stride",name:"stride",type:"number"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NWC"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"dilation",name:"dilation",type:"number",defaultValue:1}]},{tfOpName:"Conv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"useCudnnOnGpu",name:"useCudnnOnGpu",type:"bool"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"_FusedConv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"use_cudnn_on_gpu",name:"useCudnnOnGpu",type:"bool",defaultValue:!0},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"leakyrelu_alpha",name:"leakyreluAlpha",type:"number"}]},{tfOpName:"Conv2DBackpropInput",category:"convolution",inputs:[{start:2,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:0,name:"outputShape",type:"number[]"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]",notSupported:!0}]},{tfOpName:"DepthwiseConv2d",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"DepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"FusedDepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]}]},{tfOpName:"Conv3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"Dilation2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"rates",name:"dilations",type:"number[]"},{tfName:"padding",name:"pad",type:"string"}]}],a0={};Ae(a0,{json:()=>GW});var GW=[{tfOpName:"Fill",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"},{start:1,name:"value",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"LinSpace",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"num",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"OneHot",category:"creation",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"depth",type:"number"},{start:2,name:"onValue",type:"number",defaultValue:1},{start:3,name:"offValue",type:"number",defaultValue:0}],attrs:[{tfName:"axis",name:"axis",type:"number",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ones",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"OnesLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"RandomUniform",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"minval",name:"minval",type:"number",defaultValue:0},{tfName:"maxval",name:"maxval",type:"number",defaultValue:1},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Range",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"step",type:"number",defaultValue:0}],attrs:[{tfName:"Tidx",name:"dtype",type:"dtype"}]},{tfOpName:"TruncatedNormal",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"means",name:"mean",type:"number",defaultValue:0},{tfName:"stddev",name:"stdDev",type:"number",defaultValue:1},{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Zeros",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"ZerosLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"Multinomial",category:"creation",inputs:[{start:0,name:"logits",type:"tensor"},{start:1,name:"numSamples",type:"number"}],attrs:[{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number"},{tfName:"T",name:"dtype",type:"dtype"},{tfName:"output_dtype",name:"output_dtype",type:"dtype"}]}],i0={};Ae(i0,{json:()=>HW});var HW=[{tfOpName:"NonMaxSuppressionV2",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV3",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV4",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"T_threshold",name:"threshold",type:"dtype",notSupported:!0},{tfName:"pad_to_max_output_size",name:"padToMaxOutputSize",type:"bool"}]},{tfOpName:"NonMaxSuppressionV5",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"},{start:5,name:"softNmsSigma",type:"number"}]},{tfOpName:"Where",category:"dynamic",inputs:[{start:0,name:"condition",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ListDiff",category:"dynamic",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],o0={};Ae(o0,{json:()=>qW});var qW=[{tfOpName:"TopKV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"k",type:"number"}],attrs:[{tfName:"sorted",name:"sorted",type:"bool"}]},{tfOpName:"Unique",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"UniqueV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]}],u0={};Ae(u0,{json:()=>jW});var jW=[{tfOpName:"PlaceholderWithDefault",category:"graph",inputs:[{start:0,name:"default",type:"tensor"}],attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Placeholder",category:"graph",attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Const",category:"graph"},{tfOpName:"Identity",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IdentityN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Snapshot",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Rank",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Size",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Shape",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"ShapeN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Print",category:"graph",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"data",type:"tensors"}],attrs:[{tfName:"message",name:"message",type:"string"},{tfName:"first_n",name:"firstN",type:"number",notSupported:!0},{tfName:"summarize",name:"summarize",type:"number",defaultValue:3}]},{tfOpName:"NoOp",category:"graph",inputs:[]},{tfOpName:"StopGradient",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"FakeQuantWithMinMaxVars",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"min",name:"min",type:"number"},{tfName:"max",name:"max",type:"number"}]}],l0={};Ae(l0,{json:()=>KW});var KW=[{tfOpName:"HashTable",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"HashTableV2",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"LookupTableImport",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableImportV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFind",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFindV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableSize",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]},{tfOpName:"LookupTableSizeV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]}],c0={};Ae(c0,{json:()=>XW});var XW=[{tfOpName:"ResizeBilinear",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ResizeNearestNeighbor",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"CropAndResize",category:"image",inputs:[{start:0,name:"image",type:"tensor"},{start:1,name:"boxes",type:"tensor"},{start:2,name:"boxInd",type:"tensor"},{start:3,name:"cropSize",type:"number[]"}],attrs:[{tfName:"method",name:"method",type:"string"},{tfName:"extrapolation_value",name:"extrapolationValue",type:"number"}]},{tfOpName:"ImageProjectiveTransformV3",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"transforms",type:"tensor"},{start:2,name:"outputShape",type:"number[]"},{start:3,name:"fillValue",type:"number"}],attrs:[{tfName:"interpolation",name:"interpolation",type:"string"},{tfName:"fill_mode",name:"fillMode",type:"string"}]}],d0={};Ae(d0,{json:()=>YW});var YW=[{tfOpName:"Equal",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NotEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Greater",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"GreaterEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Less",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LessEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalAnd",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalNot",category:"logical",inputs:[{start:0,name:"a",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalOr",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Select",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SelectV2",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],p0={};Ae(p0,{json:()=>QW});var QW=[{tfOpName:"_FusedMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMulV2",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Transpose",category:"matrices",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"perm",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Einsum",category:"matrices",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"equation",name:"equation",type:"string"},{tfName:"N",name:"n",type:"number",defaultValue:2},{tfName:"T",name:"dtype",type:"dtype"}]}],h0={};Ae(h0,{json:()=>ZW});var ZW=[{tfOpName:"FusedBatchNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV2",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV3",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"LRN",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"depth_radius",name:"radius",type:"number",defaultValue:5},{tfName:"bias",name:"bias",type:"number",defaultValue:1},{tfName:"alpha",name:"alpha",type:"number",defaultValue:1},{tfName:"beta",name:"beta",type:"number",defaultValue:.5}]},{tfOpName:"Softmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"LogSoftmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"SparseToDense",category:"normalization",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!0,notSupported:!0}]}],f0={};Ae(f0,{json:()=>JW});var JW=[{tfOpName:"Bincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}]},{tfOpName:"DenseBincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}],attrs:[{tfName:"binary_output",name:"binaryOutput",type:"bool"}]},{tfOpName:"Max",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Mean",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Min",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Sum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"All",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Any",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"ArgMax",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"ArgMin",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"Prod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Cumprod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]},{tfOpName:"Cumsum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]}],m0={};Ae(m0,{json:()=>e4});var e4=[{tfOpName:"ConcatV2",category:"slice_join",inputs:[{start:0,end:-1,name:"tensors",type:"tensors"},{start:-1,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"Concat",category:"slice_join",inputs:[{start:1,end:0,name:"tensors",type:"tensors"},{start:0,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"GatherV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"axis",type:"number",defaultValue:0}],attrs:[{tfName:"batch_dims",name:"batchDims",type:"number",defaultValue:0}]},{tfOpName:"Gather",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",notSupported:!0}]},{tfOpName:"Reverse",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"dims",type:"bool[]"}]},{tfOpName:"ReverseV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}]},{tfOpName:"Slice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"size",type:"number[]"}]},{tfOpName:"StridedSlice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"end",type:"number[]"},{start:3,name:"strides",type:"number[]"}],attrs:[{tfName:"begin_mask",name:"beginMask",type:"number",defaultValue:0},{tfName:"end_mask",name:"endMask",type:"number",defaultValue:0},{tfName:"new_axis_mask",name:"newAxisMask",type:"number",defaultValue:0},{tfName:"ellipsis_mask",name:"ellipsisMask",type:"number",defaultValue:0},{tfName:"shrink_axis_mask",name:"shrinkAxisMask",type:"number",defaultValue:0}]},{tfOpName:"Pack",category:"slice_join",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0}]},{tfOpName:"Unpack",category:"slice_join",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0},{tfName:"num",name:"num",type:"number",defaultValue:0,notSupported:!0}]},{tfOpName:"Tile",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"reps",type:"number[]"}]},{tfOpName:"Split",category:"slice_join",inputs:[{start:0,name:"axis",type:"number",defaultValue:0},{start:1,name:"x",type:"tensor"}],attrs:[{tfName:"num_split",name:"numOrSizeSplits",type:"number",defaultValue:1}]},{tfOpName:"SplitV",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"numOrSizeSplits",type:"number[]"},{start:2,name:"axis",type:"number",defaultValue:0}]},{tfOpName:"ScatterNd",category:"slice_join",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"shape",type:"number[]"}]},{tfOpName:"GatherNd",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}]},{tfOpName:"SparseToDense",category:"slice_join",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!1,notSupported:!0}]}],g0={};Ae(g0,{json:()=>t4});var t4=[{tfOpName:"SparseFillEmptyRows",category:"sparse",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"denseShape",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}]},{tfOpName:"SparseReshape",category:"sparse",inputs:[{start:0,name:"inputIndices",type:"tensor"},{start:1,name:"inputShape",type:"tensor"},{start:2,name:"newShape",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SparseSegmentMean",category:"sparse",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"segmentIds",type:"tensor"}]},{tfOpName:"SparseSegmentSum",category:"sparse",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"segmentIds",type:"tensor"}]}],b0={};Ae(b0,{json:()=>n4});var n4=[{tfOpName:"FFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"RFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]},{tfOpName:"IRFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]}],y0={};Ae(y0,{json:()=>s4});var s4=[{tfOpName:"StringNGrams",category:"string",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"dataSplits",type:"tensor"}],attrs:[{tfName:"separator",name:"separator",type:"string"},{tfName:"ngram_widths",name:"nGramWidths",type:"number[]"},{tfName:"left_pad",name:"leftPad",type:"string"},{tfName:"right_pad",name:"rightPad",type:"string"},{tfName:"pad_width",name:"padWidth",type:"number"},{tfName:"preserve_short_sequences",name:"preserveShortSequences",type:"bool"}],outputs:["ngrams","ngrams_splits"]},{tfOpName:"StringSplit",category:"string",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"delimiter",type:"tensor"}],attrs:[{tfName:"skip_empty",name:"skipEmpty",type:"bool"}],outputs:["indices","values","shape"]},{tfOpName:"StringToHashBucketFast",category:"string",inputs:[{start:0,name:"input",type:"tensor"}],attrs:[{tfName:"num_buckets",name:"numBuckets",type:"number"}]}],v0={};Ae(v0,{json:()=>r4});var r4=[{tfOpName:"Cast",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"SrcT",name:"sdtype",type:"dtype",notSupported:!0},{tfName:"DstT",name:"dtype",type:"dtype"}]},{tfOpName:"ExpandDims",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"MirrorPad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"mode",name:"mode",type:"string"}]},{tfOpName:"Pad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"constant_value",name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"PadV2",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"},{start:2,name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"Reshape",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}]},{tfOpName:"Squeeze",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"axis",tfDeprecatedName:"squeeze_dims",name:"axis",type:"number[]"}]},{tfOpName:"SpaceToBatchND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"paddings",type:"number[]"}]},{tfOpName:"BatchToSpaceND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"crops",type:"number[]"}]},{tfOpName:"DepthToSpace",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"block_size",name:"blockSize",type:"number"},{tfName:"data_format",name:"dataFormat",type:"string"}]},{tfOpName:"BroadcastTo",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}],attrs:[]},{tfOpName:"BroadcastArgs",category:"transformation",inputs:[{start:0,name:"s0",type:"tensor"},{start:1,name:"s1",type:"tensor"}],attrs:[]}],jx=class{static get Instance(){return this._instance||(this._instance=new this)}constructor(){let e=[t0,n0,s0,r0,a0,i0,o0,u0,l0,c0,d0,p0,h0,f0,m0,g0,b0,y0,v0],t=[].concat(...e.map(n=>n.json));this.opMappers=t.reduce((n,s)=>(n[s.tfOpName]=s,n),{})}transformGraph(e,t={}){let n=e.node,s=[],r=[],a=[],i=n.reduce((f,m)=>(f[m.name]=this.mapNode(m),m.op.startsWith("Placeholder")?s.push(f[m.name]):m.op==="Const"?r.push(f[m.name]):(m.input==null||m.input.length===0)&&a.push(f[m.name]),f),{}),o=[],u=[],l={},c={};t!=null&&(l=this.mapSignatureEntries(t.inputs),c=this.mapSignatureEntries(t.outputs));let p=Object.keys(i);p.forEach(f=>{let m=i[f];m.inputNames.forEach((g,b)=>{let[y,,v]=Ts(g),x=i[y];if(x.outputs!=null){let k=x.outputs.indexOf(v);if(k!==-1){let T=`${y}:${k}`;m.inputNames[b]=T}}m.inputs.push(x),x.children.push(m)})}),Object.keys(c).length===0?p.forEach(f=>{let m=i[f];m.children.length===0&&u.push(m)}):Object.keys(c).forEach(f=>{let[m]=Ts(f),g=i[m];g!=null&&(g.signatureKey=c[f],u.push(g))}),Object.keys(l).length>0?Object.keys(l).forEach(f=>{let[m]=Ts(f),g=i[m];g&&(g.signatureKey=l[f],o.push(g))}):o=s;let d={};e.library!=null&&e.library.function!=null&&(d=e.library.function.reduce((f,m)=>(f[m.signature.name]=this.mapFunction(m),f),{}));let h={nodes:i,inputs:o,outputs:u,weights:r,placeholders:s,signature:t,functions:d};return a.length>0&&(h.initNodes=a),h}mapSignatureEntries(e){return Object.keys(e||{}).reduce((t,n)=>(t[e[n].name]=n,t),{})}mapNode(e){let t=e0(e.op)||this.opMappers[e.op]||{};e.attr==null&&(e.attr={});let n={name:e.name,op:e.op,category:t.category,inputNames:(e.input||[]).map(s=>s.startsWith("^")?s.slice(1):s),inputs:[],children:[],inputParams:{},attrParams:{},rawAttrs:e.attr,outputs:t.outputs};return t.inputs!=null&&(n.inputParams=t.inputs.reduce((s,r)=>(s[r.name]={type:r.type,inputIndexStart:r.start,inputIndexEnd:r.end},s),{})),t.attrs!=null&&(n.attrParams=t.attrs.reduce((s,r)=>{let a=r.type,i;switch(r.type){case"string":i=$m(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=$m(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"string[]":i=Om(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=Om(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"number":i=Am(e.attr,r.tfName,r.defaultValue||0),i===void 0&&!!r.tfDeprecatedName&&(i=Am(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"number[]":i=Fm(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=Fm(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"bool":i=_m(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=_m(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"bool[]":i=zm(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=zm(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"shape":i=Dm(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=Dm(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"shape[]":i=Pm(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=Pm(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"dtype":i=Em(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=Em(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"dtype[]":i=Rm(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=Rm(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"func":i=Kx(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=Kx(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"tensor":case"tensors":break;default:throw new Error(`Unsupported param type: ${r.type} for op: ${e.op}`)}return s[r.name]={value:i,type:a},s},{})),n}mapFunction(e){let t=e.nodeDef,n=[],s=[],r={};t!=null&&(r=t.reduce((c,p)=>(c[p.name]=this.mapNode(p),p.op==="Const"&&s.push(c[p.name]),c),{}));let a=[],i=[];e.signature.inputArg.forEach(c=>{let[p]=Ts(c.name),d={name:p,op:"Placeholder",inputs:[],inputNames:[],category:"graph",inputParams:{},attrParams:{dtype:{value:Qy(c.type),type:"dtype"}},children:[]};d.signatureKey=c.name,a.push(d),r[p]=d}),Object.keys(r).forEach(c=>{let p=r[c];p.inputNames.forEach((d,h)=>{let[f,,m]=Ts(d),g=r[f];if(g.outputs!=null){let b=g.outputs.indexOf(m);if(b!==-1){let y=`${f}:${b}`;p.inputNames[h]=y}}p.inputs.push(g),g.children.push(p)})});let u=e.ret;e.signature.outputArg.forEach(c=>{let[p,d]=Ts(u[c.name]),h=r[p];h!=null&&(h.defaultOutput=d,i.push(h))});let l=this.mapArgsToSignature(e);return{nodes:r,inputs:a,outputs:i,weights:s,placeholders:n,signature:l}}mapArgsToSignature(e){return{methodName:e.signature.name,inputs:e.signature.inputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n),t),{}),outputs:e.signature.outputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n,e.ret),t),{})}}mapArgToTensorInfo(e,t){let n=e.name;return t!=null&&(n=t[n]),{name:n,dtype:e.type}}};function a4(e){let t=X().global;if(typeof t.atob!="undefined")return t.atob(e);if(typeof Buffer!="undefined")return new Buffer(e,"base64").toString();throw new Error("Unable to decode base64 in this environment. Missing built-in atob() or Buffer()")}function x0(e,t){let n=Array.isArray(e)?String.fromCharCode.apply(null,e):a4(e);return t?n:n.toLowerCase()}function $m(e,t,n,s=!1){let r=e[t];return r!=null?x0(r.s,s):n}function _m(e,t,n){let s=e[t];return s?s.b:n}function Am(e,t,n){let s=e[t]||{},r=s.i!=null?s.i:s.f!=null?s.f:n;return typeof r=="number"?r:parseInt(r,10)}function Qy(e){switch(typeof e=="string"&&(e=JS[e]),e){case 1:case 19:return"float32";case 3:case 9:case 6:case 4:return"int32";case 10:return"bool";case 2:return"float32";case 7:return"string";default:return null}}function Kx(e,t,n){let s=e[t];return s&&s.func?s.func.name:n}function Em(e,t,n){let s=e[t];return s&&s.type?Qy(s.type):n}function Rm(e,t,n){let s=e[t];return s&&s.list&&s.list.type?s.list.type.map(r=>Qy(r)):n}function w0(e){if(!e.unknownRank)return e.dim!=null?e.dim.map(t=>typeof t.size=="number"?t.size:parseInt(t.size,10)):[]}function Dm(e,t,n){let s=e[t];return s&&s.shape?w0(s.shape):n}function Fm(e,t,n){let s=e[t];return s?((s.list.f&&s.list.f.length?s.list.f:s.list.i)||[]).map(r=>typeof r=="number"?r:parseInt(r,10)):n}function Om(e,t,n,s=!1){let r=e[t];return r&&r.list&&r.list.s?r.list.s.map(a=>x0(a,s)):n}function Pm(e,t,n){let s=e[t];return s&&s.list&&s.list.shape?s.list.shape.map(r=>w0(r)):n}function zm(e,t,n){let s=e[t];return s&&s.list&&s.list.b?s.list.b:n}var i4=class{constructor(e,t,n){this.node=e,this.tensorMap=t,this.context=n,this.inputs=[],this.attrs={},this.inputs=e.inputNames.map(s=>this.getInput(s)),e.rawAttrs!=null&&(this.attrs=Object.keys(e.rawAttrs).reduce((s,r)=>(s[r]=this.getAttr(r),s),{}))}getInput(e){return un(e,this.tensorMap,this.context)}getAttr(e,t){let n=this.node.rawAttrs[e];if(n.tensor!=null)return un(e,this.tensorMap,this.context);if(n.i!=null||n.f!=null)return Am(this.node.rawAttrs,e,t);if(n.s!=null)return $m(this.node.rawAttrs,e,t);if(n.b!=null)return _m(this.node.rawAttrs,e,t);if(n.shape!=null)return Dm(this.node.rawAttrs,e,t);if(n.type!=null)return Em(this.node.rawAttrs,e,t);if(n.list!=null){if(n.list.i!=null||n.list.f!=null)return Fm(this.node.rawAttrs,e,t);if(n.list.s!=null)return Om(this.node.rawAttrs,e,t);if(n.list.shape!=null)return Pm(this.node.rawAttrs,e,t);if(n.list.b!=null)return zm(this.node.rawAttrs,e,t);if(n.list.type!=null)return Rm(this.node.rawAttrs,e,t)}return t}},o4=(e,t,n)=>{switch(e.op){case"BiasAdd":case"AddV2":case"Add":return[ie(I("a",e,t,n),I("b",e,t,n))];case"AddN":return[eE(I("tensors",e,t,n))];case"FloorMod":case"Mod":return[TD(I("a",e,t,n),I("b",e,t,n))];case"Mul":return[V(I("a",e,t,n),I("b",e,t,n))];case"RealDiv":case"Div":return[xe(I("a",e,t,n),I("b",e,t,n))];case"DivNoNan":return[SR(I("a",e,t,n),I("b",e,t,n))];case"FloorDiv":return[Xk(I("a",e,t,n),I("b",e,t,n))];case"Sub":return[ge(I("a",e,t,n),I("b",e,t,n))];case"Minimum":return[vp(I("a",e,t,n),I("b",e,t,n))];case"Maximum":return[_r(I("a",e,t,n),I("b",e,t,n))];case"Pow":return[ha(I("a",e,t,n),I("b",e,t,n))];case"SquaredDifference":return[CI(I("a",e,t,n),I("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},u4=(e,t,n)=>{switch(e.op){case"Abs":case"ComplexAbs":return[Mt(I("x",e,t,n))];case"Acos":return[YA(I("x",e,t,n))];case"Acosh":return[ZA(I("x",e,t,n))];case"Asin":return[oE(I("x",e,t,n))];case"Asinh":return[lE(I("x",e,t,n))];case"Atan":return[dE(I("x",e,t,n))];case"Atan2":return[hE(I("x",e,t,n),I("y",e,t,n))];case"Atanh":return[mE(I("x",e,t,n))];case"Ceil":return[GE(I("x",e,t,n))];case"Complex":return[ua(I("real",e,t,n),I("imag",e,t,n))];case"Cos":return[Xg(I("x",e,t,n))];case"Cosh":return[iI(I("x",e,t,n))];case"Elu":return[gp(I("x",e,t,n))];case"Erf":return[AR(I("x",e,t,n))];case"Exp":return[Yn(I("x",e,t,n))];case"Expm1":return[FR(I("x",e,t,n))];case"Floor":return[bp(I("x",e,t,n))];case"Log":return[Qn(I("x",e,t,n))];case"Log1p":return[Zg(I("x",e,t,n))];case"Imag":return[Yg(I("x",e,t,n))];case"Neg":return[kt(I("x",e,t,n))];case"Reciprocal":return[s3(I("x",e,t,n))];case"Real":return[wd(I("x",e,t,n))];case"Relu":return[Ys(I("x",e,t,n))];case"Round":return[yI(I("x",e,t,n))];case"Selu":return[xI(I("x",e,t,n))];case"Sigmoid":return[qs(I("x",e,t,n))];case"Sin":return[wI(I("x",e,t,n))];case"Sign":return[v3(I("x",e,t,n))];case"Sinh":return[kI(I("x",e,t,n))];case"Softplus":return[zl(I("x",e,t,n))];case"Sqrt":return[dn(I("x",e,t,n))];case"Square":return[ct(I("x",e,t,n))];case"Tanh":return[ju(I("x",e,t,n))];case"Tan":return[B3(I("x",e,t,n))];case"ClipByValue":return[Vn(I("x",e,t,n),I("clipValueMin",e,t,n),I("clipValueMax",e,t,n))];case"Relu6":return[bI(I("x",e,t,n))];case"Rsqrt":return[vI(un(e.inputNames[0],t,n))];case"Prod":return[gI(I("x",e,t,n),I("axes",e,t,n))];case"LeakyRelu":return[Qg(I("x",e,t,n),I("alpha",e,t,n))];case"Prelu":return[ab(I("x",e,t,n),I("alpha",e,t,n))];case"IsNan":return[HR(un(e.inputNames[0],t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function qn(e,t,n=""){if(!(typeof e=="number"||typeof t=="number")){w.assert(e.length===t.length,()=>n+` Shapes ${e} and ${t} must match`);for(let s=0;s<e.length;s++){let r=e[s],a=t[s];w.assert(r<0||a<0||r===a,()=>n+` Shapes ${e} and ${t} must match`)}}}function Xx(e){return!(typeof e=="number"||e.some(t=>t<0))}function Tu(e,t,n){let s=Mm(e,n),r=!Xx(s);if(r&&t.length===0)throw new Error(`Tried to calculate elements of an empty list with non-fully-defined elementShape: ${s}`);if(r&&t.forEach(a=>{s=Mm(a.shape,s)}),!Xx(s))throw new Error(`Non-fully-defined elementShape: ${s}`);return s}function Mm(e,t){if(typeof e=="number")return t;if(typeof t=="number")return e;if(e.length!==t.length)throw new Error(`Incompatible ranks during merge: ${e} vs. ${t}`);let n=[];for(let s=0;s<e.length;++s){let r=e[s],a=t[s];if(r>=0&&a>=0&&r!==a)throw new Error(`Incompatible shape during merge: ${e} vs. ${t}`);n[s]=r>=0?r:a}return n}var l4=class{constructor(e,t,n,s,r,a,i){this.name=e,this.dtype=t,this.maxSize=n,this.elementShape=s,this.identicalElementShapes=r,this.dynamicSize=a,this.clearAfterRead=i,this.tensors=[],this.closed_=!1,this.idTensor=we(0),Ht(this.idTensor)}get id(){return this.idTensor.id}get closed(){return this.closed_}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.tensor.id))&&t.tensor.dispose()}),this.tensors=[],this.closed_=!0,this.idTensor.dispose()}size(){return this.tensors.length}read(e){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||e>=this.size())throw new Error(`Tried to read from index ${e}, but array size is: ${this.size()}`);let t=this.tensors[e];if(t.cleared)throw new Error(`TensorArray ${this.name}: Could not read index ${e} twice because it was cleared after a previous read (perhaps try setting clear_after_read = false?).`);return this.clearAfterRead&&(t.cleared=!0),t.read=!0,t.tensor}readMany(e){return e.map(t=>this.read(t))}write(e,t){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||!this.dynamicSize&&e>=this.maxSize)throw new Error(`Tried to write to index ${e}, but array is not resizeable and size is: ${this.maxSize}`);let n=this.tensors[e]||{};if(t.dtype!==this.dtype)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e},
|
|
because the value dtype is ${t.dtype}, but TensorArray dtype is ${this.dtype}.`);if(this.size()===0&&(this.elementShape==null||this.elementShape.length===0)&&(this.elementShape=t.shape),qn(this.elementShape,t.shape,`TensorArray ${this.name}: Could not write to TensorArray index ${e}.`),n.read)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been read.`);if(n.written)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been written.`);n.tensor=t,Ht(t),n.written=!0,this.tensors[e]=n}writeMany(e,t){if(e.length!==t.length)throw new Error(`TensorArray ${this.name}: could not write multiple tensors,because the index size: ${e.length} is not the same as tensors size: ${t.length}.`);e.forEach((n,s)=>this.write(n,t[s]))}gather(e,t){if(!!t&&t!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but gather requested dtype ${t}`);if(e)e=e.slice(0,this.size());else{e=[];for(let s=0;s<this.size();s++)e.push(s)}if(e.length===0)return fs([],[0].concat(this.elementShape));let n=this.readMany(e);return qn(this.elementShape,n[0].shape,"TensorArray shape mismatch: "),es(n,0)}concat(e){if(!!e&&e!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but concat requested dtype ${e}`);if(this.size()===0)return fs([],[0].concat(this.elementShape));let t=[];for(let s=0;s<this.size();s++)t.push(s);let n=this.readMany(t);return qn(this.elementShape,n[0].shape,`TensorArray shape mismatch: tensor array shape (${this.elementShape}) vs first tensor shape (${n[0].shape})`),Ft(n,0)}scatter(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);if(e.length!==t.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${e.length} vs. ${t.shape[0]}`);let n=Math.max(...e);if(!this.dynamicSize&&n>=this.maxSize)throw new Error(`Max index must be < array size (${n} vs. ${this.maxSize})`);this.writeMany(e,Fs(t,0))}split(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);let n=0,s=e.map(o=>(n+=o,n));if(n!==t.shape[0])throw new Error(`Expected sum of lengths to be equal to
|
|
tensor.shape[0], but sum of lengths is
|
|
${n}, and tensor's shape is: ${t.shape}`);if(!this.dynamicSize&&e.length!==this.maxSize)throw new Error(`TensorArray's size is not equal to the size of lengths (${this.maxSize} vs. ${e.length}), and the TensorArray is not marked as dynamically resizeable`);let r=n===0?0:t.size/n,a=[];j(()=>{t=G(t,[1,n,r]);for(let o=0;o<e.length;++o){let u=o===0?0:s[o-1],l=[0,u,0],c=[1,e[o],r];a[o]=G(qe(t,l,c),this.elementShape)}return a});let i=[];for(let o=0;o<e.length;o++)i[o]=o;this.writeMany(i,a)}},no=class{constructor(e,t,n,s=-1){this.tensors=e,this.elementShape=t,this.elementDtype=n,e!=null&&e.forEach(r=>{if(n!==r.dtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${r.dtype}`);qn(t,r.shape,"TensorList shape mismatch: "),Ht(r)}),this.idTensor=we(0),this.maxNumElements=s,Ht(this.idTensor)}get id(){return this.idTensor.id}copy(){return new no([...this.tensors],this.elementShape,this.elementDtype)}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.id))&&t.dispose()}),this.tensors.length=0,this.idTensor.dispose()}size(){return this.tensors.length}stack(e,t,n=-1){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(n!==-1&&this.tensors.length!==n)throw new Error(`Operation expected a list with ${n} elements but got a list with ${this.tensors.length} elements.`);qn(e,this.elementShape,"TensorList shape mismatch: ");let s=Tu(this.elementShape,this.tensors,e);return j(()=>{let r=this.tensors.map(a=>G(a,s));return es(r,0)})}popBack(e,t){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(this.size()===0)throw new Error("Trying to pop from an empty list.");let n=Tu(this.elementShape,this.tensors,e),s=this.tensors.pop();return qn(s.shape,e,"TensorList shape mismatch: "),G(s,n)}pushBack(e){if(e.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${this.elementDtype}`);if(qn(e.shape,this.elementShape,"TensorList shape mismatch: "),this.maxNumElements===this.size())throw new Error("Trying to push element into a full list.");Ht(e),this.tensors.push(e)}resize(e){if(e<0)throw new Error(`TensorListResize expects size to be non-negative. Got: ${e}`);if(this.maxNumElements!==-1&&e>this.maxNumElements)throw new Error(`TensorListResize input size ${e} is greater maxNumElement ${this.maxNumElements}.`);let t=new no([],this.elementShape,this.elementDtype,this.maxNumElements);t.tensors.length=e;for(let n=0;n<Math.min(this.tensors.length,e);++n)t.tensors[n]=this.tensors[n];return t}getItem(e,t,n){if(n!==this.elementDtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${this.elementDtype}`);if(e<0||e>this.tensors.length)throw new Error(`Trying to access element ${e} in a list with ${this.tensors.length} elements.`);if(this.tensors[e]==null)throw new Error(`element at index ${e} is null.`);qn(this.tensors[e].shape,t,"TensorList shape mismatch: ");let s=Tu(this.elementShape,this.tensors,t);return G(this.tensors[e],s)}setItem(e,t){if(t.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t.dtype}, but list elements ${this.elementDtype}`);if(e<0||this.maxNumElements!==-1&&e>=this.maxNumElements)throw new Error(`Trying to set element ${e} in a list with max ${this.maxNumElements} elements.`);qn(this.elementShape,t.shape,"TensorList shape mismatch: "),Ht(t),this.tensors[e]=t}gather(e,t,n){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);qn(this.elementShape,n,"TensorList shape mismatch: "),e=e.slice(0,this.size());let s=Tu(this.elementShape,this.tensors,n);return e.length===0?fs([],[0].concat(s)):j(()=>{let r=e.map(a=>G(this.tensors[a],s));return es(r,0)})}concat(e,t){if(!!e&&e!==this.elementDtype)throw new Error(`TensorList dtype is ${this.elementDtype} but concat requested dtype ${e}`);qn(this.elementShape,t,"TensorList shape mismatch: ");let n=Tu(this.elementShape,this.tensors,t);return this.size()===0?fs([],[0].concat(n)):j(()=>{let s=this.tensors.map(r=>G(r,n));return Ft(s,0)})}};function c4(e,t,n){let s=e.dtype;if(e.shape.length<1)throw new Error(`Tensor must be at least a vector, but saw shape: ${e.shape}`);if(e.dtype!==n)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${n}`);let r=e.shape.slice(1);qn(r,t,"TensorList shape mismatch: ");let a=Fs(e);return new no(a,t,s)}function d4(e,t,n){return new no([],e,t,n)}function p4(e,t,n,s){if(t.length!==e.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${t.length} vs. ${e.shape[0]}`);let r=Math.max(...t);if(s!=null&&s!==-1&&r>=s)throw new Error(`Max index must be < array size (${r} vs. ${s})`);let a=new no([],n,e.dtype,s),i=Fs(e,0);return t.forEach((o,u)=>{a.setItem(o,i[u])}),a}function h4(e,t,n){let s=0,r=t.map(c=>(s+=c,s));if(s!==e.shape[0])throw new Error(`Expected sum of lengths to be equal to
|
|
tensor.shape[0], but sum of lengths is
|
|
${s}, and tensor's shape is: ${e.shape}`);let a=e.shape.slice(1),i=Mm(a,n),o=s===0?0:e.size/s,u=j(()=>{let c=[];e=G(e,[1,s,o]);for(let p=0;p<t.length;++p){let d=p===0?0:r[p-1],h=[0,d,0],f=[1,t[p],o];c[p]=G(qe(e,h,f),i)}return e.dispose(),c}),l=new no([],n,e.dtype,t.length);for(let c=0;c<u.length;c++)l.setItem(c,u[c]);return l}var f4=async(e,t,n)=>{switch(e.op){case"If":case"StatelessIf":{let s=I("thenBranch",e,t,n),r=I("elseBranch",e,t,n),a=I("cond",e,t,n),i=I("args",e,t,n);return(await a.data())[0]?n.functionMap[s].executeFunctionAsync(i,n.tensorArrayMap,n.tensorListMap):n.functionMap[r].executeFunctionAsync(i,n.tensorArrayMap,n.tensorListMap)}case"While":case"StatelessWhile":{let s=I("body",e,t,n),r=I("cond",e,t,n),a=I("args",e,t,n),i=await n.functionMap[r].executeFunctionAsync(a,n.tensorArrayMap,n.tensorListMap),o=a.map(c=>c.id),u=await i[0].data();i.forEach(c=>{!c.kept&&o.indexOf(c.id)===-1&&c.dispose()});let l=a;for(;u[0];){let c=l;l=await n.functionMap[s].executeFunctionAsync(l,n.tensorArrayMap,n.tensorListMap);let p=l.map(h=>h.id);c.forEach(h=>{!h.kept&&o.indexOf(h.id)===-1&&p.indexOf(h.id)===-1&&h.dispose()});let d=await n.functionMap[r].executeFunctionAsync(l,n.tensorArrayMap,n.tensorListMap);u=await d[0].data(),d.forEach(h=>{!h.kept&&o.indexOf(h.id)===-1&&p.indexOf(h.id)===-1&&h.dispose()})}return l}case"LoopCond":{let s=I("pred",e,t,n);return[Us(s)]}case"Switch":{let s=I("pred",e,t,n),r=I("data",e,t,n);return r.kept||(r=Us(r)),(await s.data())[0]?[void 0,r]:[r,void 0]}case"Merge":{let s=e.inputNames.find(r=>un(r,t,n)!==void 0);if(s){let r=un(s,t,n);return[Us(r)]}return}case"Enter":{let s=I("frameName",e,t,n),r=I("tensor",e,t,n);return n.enterFrame(s),[Us(r)]}case"Exit":{let s=I("tensor",e,t,n);return n.exitFrame(),[Us(s)]}case"NextIteration":{let s=I("tensor",e,t,n);return n.nextIteration(),[Us(s)]}case"TensorArrayV3":{let s=I("size",e,t,n),r=I("dtype",e,t,n),a=I("elementShape",e,t,n),i=I("dynamicSize",e,t,n),o=I("clearAfterRead",e,t,n),u=I("identicalElementShapes",e,t,n),l=I("name",e,t,n),c=new l4(l,r,s,a,u,i,o);return n.addTensorArray(c),[c.idTensor,we(1)]}case"TensorArrayWriteV3":{let s=I("tensorArrayId",e,t,n),r=I("index",e,t,n),a=I("tensor",e,t,n),i=n.getTensorArray(s.id);return i.write(r,a),[i.idTensor]}case"TensorArrayReadV3":{let s=I("tensorArrayId",e,t,n),r=I("index",e,t,n);return[n.getTensorArray(s.id).read(r)]}case"TensorArrayGatherV3":{let s=I("tensorArrayId",e,t,n),r=I("indices",e,t,n),a=I("dtype",e,t,n);return[n.getTensorArray(s.id).gather(r,a)]}case"TensorArrayScatterV3":{let s=I("tensorArrayId",e,t,n),r=I("indices",e,t,n),a=I("tensor",e,t,n),i=n.getTensorArray(s.id);return i.scatter(r,a),[i.idTensor]}case"TensorArrayConcatV3":{let s=I("tensorArrayId",e,t,n),r=n.getTensorArray(s.id),a=I("dtype",e,t,n);return[r.concat(a)]}case"TensorArraySplitV3":{let s=I("tensorArrayId",e,t,n),r=I("tensor",e,t,n),a=I("lengths",e,t,n),i=n.getTensorArray(s.id);return i.split(a,r),[i.idTensor]}case"TensorArraySizeV3":{let s=I("tensorArrayId",e,t,n),r=n.getTensorArray(s.id);return[we(r.size(),"int32")]}case"TensorArrayCloseV3":{let s=I("tensorArrayId",e,t,n),r=n.getTensorArray(s.id);return r.clearAndClose(),[r.idTensor]}case"TensorListSetItem":{let s=I("tensorListId",e,t,n),r=I("index",e,t,n),a=I("tensor",e,t,n),i=n.getTensorList(s.id);return i.setItem(r,a),[i.idTensor]}case"TensorListGetItem":{let s=I("tensorListId",e,t,n),r=I("index",e,t,n),a=I("elementShape",e,t,n),i=I("elementDType",e,t,n);return[n.getTensorList(s.id).getItem(r,a,i)]}case"TensorListScatterV2":case"TensorListScatter":{let s=I("indices",e,t,n),r=I("tensor",e,t,n),a=I("elementShape",e,t,n),i=I("numElements",e,t,n),o=p4(r,s,a,i);return n.addTensorList(o),[o.idTensor]}case"TensorListReserve":case"EmptyTensorList":{let s=I("elementShape",e,t,n),r=I("elementDType",e,t,n),a;e.op==="TensorListReserve"?a="numElements":a="maxNumElements";let i=I(a,e,t,n),o=d4(s,r,i);return n.addTensorList(o),[o.idTensor]}case"TensorListGather":{let s=I("tensorListId",e,t,n),r=I("indices",e,t,n),a=I("elementShape",e,t,n),i=I("elementDType",e,t,n);return[n.getTensorList(s.id).gather(r,i,a)]}case"TensorListStack":{let s=I("tensorListId",e,t,n),r=I("elementShape",e,t,n),a=I("elementDType",e,t,n),i=I("numElements",e,t,n);return[n.getTensorList(s.id).stack(r,a,i)]}case"TensorListFromTensor":{let s=I("tensor",e,t,n),r=I("elementShape",e,t,n),a=I("elementDType",e,t,n),i=c4(s,r,a);return n.addTensorList(i),[i.idTensor]}case"TensorListConcat":{let s=I("tensorListId",e,t,n),r=n.getTensorList(s.id),a=I("dtype",e,t,n),i=I("elementShape",e,t,n);return[r.concat(a,i)]}case"TensorListPushBack":{let s=I("tensorListId",e,t,n),r=I("tensor",e,t,n),a=n.getTensorList(s.id);return a.pushBack(r),[a.idTensor]}case"TensorListPopBack":{let s=I("tensorListId",e,t,n),r=I("elementShape",e,t,n),a=I("elementDType",e,t,n);return[n.getTensorList(s.id).popBack(r,a)]}case"TensorListSplit":{let s=I("tensor",e,t,n),r=I("elementShape",e,t,n),a=I("lengths",e,t,n),i=h4(s,a,r);return n.addTensorList(i),[i.idTensor]}case"TensorListLength":{let s=I("tensorListId",e,t,n),r=n.getTensorList(s.id);return[we(r.size(),"int32")]}case"TensorListResize":{let s=I("tensorListId",e,t,n),r=I("size",e,t,n),i=n.getTensorList(s.id).resize(r);return n.addTensorList(i),[i.idTensor]}default:throw TypeError(`Node type ${e.op} is not implemented`)}};function Yx(e,t,n){let[s,r]=I("fusedOps",e,t,n),a=s==="biasadd",i=!a,o=r==="prelu",u=s==="fusedbatchnorm",l=I("numArgs",e,t,n);if(a){if(o&&l!==2)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!o&&a&&l!==1)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd must have one extra argument: bias.")}if(u)throw new Error("FusedConv2d and DepthwiseConv2d with FusedBatchNorm is not supported");let c=I("strides",e,t,n),p=sd(e,t,n),d=I("dataFormat",e,t,n).toUpperCase(),h=I("dilations",e,t,n),[f,m]=I("args",e,t,n);i&&(m=f,f=void 0);let g=I("leakyreluAlpha",e,t,n);return{stride:c,pad:p,dataFormat:d,dilations:h,biasArg:f,preluArg:m,activationFunc:r,leakyreluAlpha:g}}var m4=(e,t,n)=>{switch(e.op){case"Conv1D":{let s=I("stride",e,t,n),r=I("pad",e,t,n),a=I("dataFormat",e,t,n).toUpperCase(),i=I("dilation",e,t,n);return[nI(I("x",e,t,n),I("filter",e,t,n),s,r,a,i)]}case"Conv2D":{let s=I("strides",e,t,n),r=sd(e,t,n),a=I("dataFormat",e,t,n).toUpperCase(),i=I("dilations",e,t,n);return[da(I("x",e,t,n),I("filter",e,t,n),[s[1],s[2]],r,a,[i[1],i[2]])]}case"_FusedConv2D":{let{stride:s,pad:r,dataFormat:a,dilations:i,biasArg:o,preluArg:u,activationFunc:l,leakyreluAlpha:c}=Yx(e,t,n);return[fa.conv2d({x:I("x",e,t,n),filter:I("filter",e,t,n),strides:[s[1],s[2]],pad:r,dataFormat:a,dilations:[i[1],i[2]],bias:o,activation:l,preluActivationWeights:u,leakyreluAlpha:c})]}case"FusedDepthwiseConv2dNative":{let{stride:s,pad:r,dataFormat:a,dilations:i,biasArg:o,preluArg:u,activationFunc:l,leakyreluAlpha:c}=Yx(e,t,n);return[fa.depthwiseConv2d({x:I("x",e,t,n),filter:I("filter",e,t,n),strides:[s[1],s[2]],pad:r,dataFormat:a,dilations:[i[1],i[2]],bias:o,activation:l,preluActivationWeights:u,leakyreluAlpha:c})]}case"Conv2DBackpropInput":case"Conv2dTranspose":{let s=I("outputShape",e,t,n),r=I("strides",e,t,n),a=sd(e,t,n);return[sI(I("x",e,t,n),I("filter",e,t,n),s,[r[1],r[2]],a)]}case"DepthwiseConv2dNative":case"DepthwiseConv2d":{let s=I("strides",e,t,n),r=sd(e,t,n),a=I("dilations",e,t,n),i=I("dataFormat",e,t,n).toUpperCase();return[mp(I("input",e,t,n),I("filter",e,t,n),[s[1],s[2]],r,i,[a[1],a[2]])]}case"Conv3D":{let s=I("strides",e,t,n),r=I("pad",e,t,n),a=I("dataFormat",e,t,n).toUpperCase(),i=I("dilations",e,t,n);return[rI(I("x",e,t,n),I("filter",e,t,n),[s[1],s[2],s[3]],r,a,[i[1],i[2],i[3]])]}case"AvgPool":{let s=I("strides",e,t,n),r=I("pad",e,t,n),a=I("kernelSize",e,t,n);return[qg(I("x",e,t,n),[a[1],a[2]],[s[1],s[2]],r)]}case"MaxPool":{let s=I("strides",e,t,n),r=I("pad",e,t,n),a=I("kernelSize",e,t,n);return[nb(I("x",e,t,n),[a[1],a[2]],[s[1],s[2]],r)]}case"MaxPoolWithArgmax":{let s=I("strides",e,t,n),r=I("pad",e,t,n),a=I("kernelSize",e,t,n),i=I("includeBatchInIndex",e,t,n),{result:o,indexes:u}=vD(I("x",e,t,n),[a[1],a[2]],[s[1],s[2]],r,i);return[o,u]}case"AvgPool3D":{let s=I("strides",e,t,n),r=I("pad",e,t,n),a=I("kernelSize",e,t,n);return[eI(I("x",e,t,n),[a[1],a[2],a[3]],[s[1],s[2],s[3]],r)]}case"MaxPool3D":{let s=I("strides",e,t,n),r=I("pad",e,t,n),a=I("kernelSize",e,t,n);return[mI(I("x",e,t,n),[a[1],a[2],a[3]],[s[1],s[2],s[3]],r)]}case"Dilation2D":{let s=I("strides",e,t,n),r=I("pad",e,t,n),a=I("dilations",e,t,n),i=s[1],o=s[2],u=a[1],l=a[2];return[vR(I("x",e,t,n),I("filter",e,t,n),[i,o],r,[u,l],"NHWC")]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},g4=(e,t,n)=>{switch(e.op){case"Fill":{let s=I("shape",e,t,n),r=I("dtype",e,t,n),a=I("value",e,t,n);return[Pl(s,a,r)]}case"LinSpace":{let s=I("start",e,t,n),r=I("stop",e,t,n),a=I("num",e,t,n);return[XR(s,r,a)]}case"Multinomial":{let s=I("logits",e,t,n),r=I("numSamples",e,t,n),a=I("seed",e,t,n);return[RD(s,r,a)]}case"OneHot":{let s=I("indices",e,t,n),r=I("depth",e,t,n),a=I("onValue",e,t,n),i=I("offValue",e,t,n);return[vd(s,r,a,i)]}case"Ones":return[Mn(I("shape",e,t,n),I("dtype",e,t,n))];case"OnesLike":return[Zn(I("x",e,t,n))];case"RandomUniform":return[Ml(I("shape",e,t,n),I("minval",e,t,n),I("maxval",e,t,n),I("dtype",e,t,n))];case"Range":{let s=I("start",e,t,n),r=I("stop",e,t,n),a=I("step",e,t,n);return[Qu(s,r,a,I("dtype",e,t,n))]}case"TruncatedNormal":{let s=I("shape",e,t,n),r=I("mean",e,t,n),a=I("stdDev",e,t,n),i=I("seed",e,t,n);return[hb(s,r,a,I("dtype",e,t,n),i)]}case"Zeros":return[$t(I("shape",e,t,n),I("dtype",e,t,n))];case"ZerosLike":return[je(I("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function qf(e,t,n){let s=I("boxes",e,t,n),r=I("scores",e,t,n),a=I("maxOutputSize",e,t,n),i=I("iouThreshold",e,t,n),o=I("scoreThreshold",e,t,n),u=I("softNmsSigma",e,t,n);return{boxes:s,scores:r,maxOutputSize:a,iouThreshold:i,scoreThreshold:o,softNmsSigma:u}}var b4=async(e,t,n)=>{switch(e.op){case"NonMaxSuppressionV5":{let{boxes:s,scores:r,maxOutputSize:a,iouThreshold:i,scoreThreshold:o,softNmsSigma:u}=qf(e,t,n),l=await jn.nonMaxSuppressionWithScoreAsync(s,r,a,i,o,u);return[l.selectedIndices,l.selectedScores]}case"NonMaxSuppressionV4":{let{boxes:s,scores:r,maxOutputSize:a,iouThreshold:i,scoreThreshold:o}=qf(e,t,n),u=I("padToMaxOutputSize",e,t,n),l=await jn.nonMaxSuppressionPaddedAsync(s,r,a,i,o,u);return[l.selectedIndices,l.validOutputs]}case"NonMaxSuppressionV3":case"NonMaxSuppressionV2":{let{boxes:s,scores:r,maxOutputSize:a,iouThreshold:i,scoreThreshold:o}=qf(e,t,n);return[await jn.nonMaxSuppressionAsync(s,r,a,i,o)]}case"Where":{let s=ce(I("condition",e,t,n),"bool"),r=[await TI(s)];return s.dispose(),r}case"ListDiff":return b3(I("x",e,t,n),I("y",e,t,n));default:throw TypeError(`Node type ${e.op} is not implemented`)}},y4=(e,t,n)=>{switch(e.op){case"TopKV2":{let s=I("x",e,t,n),r=I("k",e,t,n),a=I("sorted",e,t,n),i=W3(s,r,a);return[i.values,i.indices]}case"Unique":{let s=I("x",e,t,n),r=mx(s);return[r.values,r.indices]}case"UniqueV2":{let s=I("x",e,t,n),r=I("axis",e,t,n),a=mx(s,r);return[a.values,a.indices]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},v4=(e,t,n)=>{switch(e.op){case"Const":return t[e.name];case"PlaceholderWithDefault":let s=I("default",e,t,n);return[un(e.name,t,n)||s];case"Placeholder":return[un(e.name,t,n)];case"Identity":case"StopGradient":case"FakeQuantWithMinMaxVars":{let l=I("x",e,t,n);return[Us(l)]}case"IdentityN":return I("x",e,t,n).map(l=>Us(l));case"Snapshot":let r=I("x",e,t,n);return[Us(r)];case"Shape":return[Zt(I("x",e,t,n).shape,"int32")];case"ShapeN":return I("x",e,t,n).map(l=>Zt(l.shape));case"Size":return[we(I("x",e,t,n).size,"int32")];case"Rank":return[we(I("x",e,t,n).rank,"int32")];case"NoOp":return[we(1)];case"Print":let a=I("x",e,t,n),i=I("data",e,t,n),o=I("message",e,t,n),u=I("summarize",e,t,n);console.warn("The graph has a tf.print() operation,usually used for debugging, which slows down performance."),console.log(o);for(let l=0;l<i.length;l++)console.log(Array.prototype.slice.call(i[l].dataSync()).slice(0,u));return[a];default:throw TypeError(`Node type ${e.op} is not implemented`)}},x4=class{constructor(e,t){this.keyDType=e,this.valueDType=t,this.handle=we(0),this.tensorMap=new Map,Ht(this.handle)}get id(){return this.handle.id}clearAndClose(){this.tensorMap.forEach(e=>e.dispose()),this.tensorMap.clear(),this.handle.dispose()}size(){return this.tensorMap.size}tensorSize(){return we(this.size(),"int32")}async import(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return this.tensorMap.forEach(s=>s.dispose()),this.tensorMap.clear(),j(()=>{let s=Fs(t),r=n.length,a=s.length;w.assert(r===a,()=>`The number of elements doesn't match, keys has ${r} elements, the values has ${a} elements.`);for(let i=0;i<r;i++){let o=n[i],u=s[i];Ht(u),this.tensorMap.set(o,u)}return this.handle})}async find(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return j(()=>{let s=[];for(let r=0;r<n.length;r++){let a=n[r],i=this.findWithDefault(a,t);s.push(i)}return es(s)})}findWithDefault(e,t){let n=this.tensorMap.get(e);return n!=null?n:t}checkKeyAndValueTensor(e,t){if(e.dtype!==this.keyDType)throw new Error(`Expect key dtype ${this.keyDType}, but got ${e.dtype}`);if(t.dtype!==this.valueDType)throw new Error(`Expect value dtype ${this.valueDType}, but got ${t.dtype}`)}},w4=async(e,t,n,s)=>{switch(e.op){case"HashTable":case"HashTableV2":{let r=I("keyDType",e,t,n),a=I("valueDType",e,t,n),i=new x4(r,a);return s.addHashTable(e.name,i),[i.handle]}case"LookupTableImport":case"LookupTableImportV2":{let r=I("tableHandle",e,t,n,s),a=I("keys",e,t,n),i=I("values",e,t,n);return[await s.getHashTableById(r.id).import(a,i)]}case"LookupTableFind":case"LookupTableFindV2":{let r=I("tableHandle",e,t,n,s),a=I("keys",e,t,n),i=I("defaultValue",e,t,n);return[await s.getHashTableById(r.id).find(a,i)]}case"LookupTableSize":case"LookupTableSizeV2":{let r=I("tableHandle",e,t,n,s);return[s.getHashTableById(r.id).tensorSize()]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},k4=(e,t,n)=>{switch(e.op){case"ResizeBilinear":{let s=I("images",e,t,n),r=I("size",e,t,n),a=I("alignCorners",e,t,n),i=I("halfPixelCenters",e,t,n);return[jn.resizeBilinear(s,[r[0],r[1]],a,i)]}case"ResizeNearestNeighbor":{let s=I("images",e,t,n),r=I("size",e,t,n),a=I("alignCorners",e,t,n),i=I("halfPixelCenters",e,t,n);return[jn.resizeNearestNeighbor(s,[r[0],r[1]],a,i)]}case"CropAndResize":{let s=I("image",e,t,n),r=I("boxes",e,t,n),a=I("boxInd",e,t,n),i=I("cropSize",e,t,n),o=I("method",e,t,n),u=I("extrapolationValue",e,t,n);return[jn.cropAndResize(s,r,a,i,o,u)]}case"ImageProjectiveTransformV3":{let s=I("images",e,t,n),r=I("transforms",e,t,n),a=I("outputShape",e,t,n),i=I("fillValue",e,t,n),o=I("interpolation",e,t,n),u=I("fillMode",e,t,n);return[jn.transform(s,r,o.toLowerCase(),u.toLowerCase(),i,a)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},I4=(e,t,n)=>{switch(e.op){case"Equal":return[Xn(I("a",e,t,n),I("b",e,t,n))];case"NotEqual":return[Yu(I("a",e,t,n),I("b",e,t,n))];case"Greater":return[Un(I("a",e,t,n),I("b",e,t,n))];case"GreaterEqual":return[Xo(I("a",e,t,n),I("b",e,t,n))];case"Less":return[lI(I("a",e,t,n),I("b",e,t,n))];case"LessEqual":return[Yo(I("a",e,t,n),I("b",e,t,n))];case"LogicalAnd":return[Ds(I("a",e,t,n),I("b",e,t,n))];case"LogicalNot":return[tb(I("a",e,t,n))];case"LogicalOr":return[fI(I("a",e,t,n),I("b",e,t,n))];case"Select":case"SelectV2":return[vn(I("condition",e,t,n),I("a",e,t,n),I("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},S4=(e,t,n)=>{switch(e.op){case"BatchMatMul":case"BatchMatMulV2":case"MatMul":return[We(I("a",e,t,n),I("b",e,t,n),I("transposeA",e,t,n),I("transposeB",e,t,n))];case"Einsum":return[TR(I("equation",e,t,n),...I("tensors",e,t,n))];case"Transpose":return[Ge(I("x",e,t,n),I("perm",e,t,n))];case"_FusedMatMul":let[s,r]=I("fusedOps",e,t,n),a=s==="biasadd",i=r==="prelu",o=I("numArgs",e,t,n),u=I("leakyreluAlpha",e,t,n);if(a){if(i&&o!==2)throw new Error("Fused MatMul with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!i&&o!==1)throw new Error("Fused MatMul with BiasAdd must have one extra argument: bias.")}let[l,c]=I("args",e,t,n);return[fa.matMul({a:I("a",e,t,n),b:I("b",e,t,n),transposeA:I("transposeA",e,t,n),transposeB:I("transposeB",e,t,n),bias:l,activation:r,preluActivationWeights:c,leakyreluAlpha:u})];default:throw TypeError(`Node type ${e.op} is not implemented`)}},C4=(e,t,n)=>{switch(e.op){case"FusedBatchNorm":case"FusedBatchNormV2":return[Ku(I("x",e,t,n),I("mean",e,t,n),I("variance",e,t,n),I("offset",e,t,n),I("scale",e,t,n),I("epsilon",e,t,n))];case"FusedBatchNormV3":return[Ku(I("x",e,t,n),I("mean",e,t,n),I("variance",e,t,n),I("offset",e,t,n),I("scale",e,t,n),I("epsilon",e,t,n))];case"LRN":return[QR(I("x",e,t,n),I("radius",e,t,n),I("bias",e,t,n),I("alpha",e,t,n),I("beta",e,t,n))];case"Softmax":return[cb(I("x",e,t,n))];case"LogSoftmax":return[cI(I("x",e,t,n))];case"SparseToDense":return[AI(I("sparseIndices",e,t,n),I("outputShape",e,t,n),I("sparseValues",e,t,n),I("defaultValue",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},N4=(e,t,n)=>{switch(e.op){case"Max":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[As(I("x",e,t,n),i,o)]}case"Mean":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[St(I("x",e,t,n),i,o)]}case"Min":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[gm(I("x",e,t,n),i,o)]}case"Sum":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[ve(I("x",e,t,n),i,o)]}case"All":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[Yk(I("x",e,t,n),i,o)]}case"Any":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[hm(I("x",e,t,n),i,o)]}case"ArgMax":{let i=I("axis",e,t,n);return[qu(I("x",e,t,n),i)]}case"ArgMin":{let i=I("axis",e,t,n);return[aE(I("x",e,t,n),i)]}case"Prod":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[gI(I("x",e,t,n),i,o)]}case"Cumprod":{let i=I("axis",e,t,n),o=I("exclusive",e,t,n),u=I("reverse",e,t,n);return[mm(I("x",e,t,n),i,o,u)]}case"Cumsum":{let i=I("axis",e,t,n),o=I("exclusive",e,t,n),u=I("reverse",e,t,n);return[oI(I("x",e,t,n),i,o,u)]}case"Bincount":let s=I("x",e,t,n),r=I("weights",e,t,n),a=I("size",e,t,n);return[tI(s,r,a)];case"DenseBincount":{let i=I("x",e,t,n),o=I("weights",e,t,n),u=I("size",e,t,n),l=I("binaryOutput",e,t,n);return[hR(i,o,u,l)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},T4=(e,t,n)=>{switch(e.op){case"ConcatV2":case"Concat":{let s=I("n",e,t,n),r=I("axis",e,t,n),a=I("tensors",e,t,n);return a=a.slice(0,s),[Ft(a,r)]}case"Gather":{let s=I("x",e,t,n),r=I("indices",e,t,n);return[Xu(s,ce(r,"int32"),0)]}case"GatherV2":{let s=I("axis",e,t,n),r=I("batchDims",e,t,n),a=I("x",e,t,n),i=I("indices",e,t,n);return[Xu(a,ce(i,"int32"),s,r)]}case"Reverse":{let s=I("dims",e,t,n),r=[];for(let i=0;i<s.length;i++)s[i]&&r.push(i);let a=I("x",e,t,n);return[Jn(a,r)]}case"ReverseV2":{let s=I("axis",e,t,n),r=I("x",e,t,n);return[Jn(r,s)]}case"Slice":{let s=I("begin",e,t,n),r=I("size",e,t,n);return[qe(I("x",e,t,n),s,r)]}case"StridedSlice":{let s=I("begin",e,t,n),r=I("end",e,t,n),a=I("strides",e,t,n),i=I("beginMask",e,t,n),o=I("endMask",e,t,n),u=I("ellipsisMask",e,t,n),l=I("newAxisMask",e,t,n),c=I("shrinkAxisMask",e,t,n),p=I("x",e,t,n);return[M3(p,s,r,a,i,o,u,l,c)]}case"Pack":return j(()=>{let s=I("axis",e,t,n),r=I("tensors",e,t,n),a=r[0].shape,i=gr(r[0]).shape,o=r.map(u=>{let l=w.arraysEqual(u.shape,a);if(!l&&!w.arraysEqual(gr(u).shape,i))throw new Error("the input tensors shape does not match");return l?u:G(u,a)});return[es(o,s)]});case"Unpack":{let s=I("axis",e,t,n),r=I("tensor",e,t,n);return Fs(r,s)}case"Tile":{let s=I("reps",e,t,n);return[ps(I("x",e,t,n),s)]}case"Split":case"SplitV":{let s=I("axis",e,t,n),r=I("numOrSizeSplits",e,t,n),a=I("x",e,t,n);return Bn(a,r,s)}case"ScatterNd":{let s=I("indices",e,t,n),r=I("values",e,t,n),a=I("shape",e,t,n);return[eF(s,r,a)]}case"GatherNd":{let s=I("x",e,t,n),r=I("indices",e,t,n);return[rF(s,r)]}case"SparseToDense":{let s=I("sparseIndices",e,t,n),r=I("outputShape",e,t,n),a=I("sparseValues",e,t,n),i=I("defaultValue",e,t,n);return[AI(s,a,r,a.dtype===i.dtype?i:ce(i,a.dtype))]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},$4=(e,t,n)=>{switch(e.op){case"SparseFillEmptyRows":{let{outputIndices:s,outputValues:r,emptyRowIndicator:a,reverseIndexMap:i}=Wc.sparseFillEmptyRows(I("indices",e,t,n),I("values",e,t,n),I("denseShape",e,t,n),I("defaultValue",e,t,n));return[s,r,a,i]}case"SparseReshape":{let{outputIndices:s,outputShape:r}=Wc.sparseReshape(I("inputIndices",e,t,n),I("inputShape",e,t,n),I("newShape",e,t,n));return[s,r]}case"SparseSegmentMean":return[Wc.sparseSegmentMean(I("data",e,t,n),I("indices",e,t,n),I("segmentIds",e,t,n))];case"SparseSegmentSum":return[Wc.sparseSegmentSum(I("data",e,t,n),I("indices",e,t,n),I("segmentIds",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},_4=(e,t,n)=>{switch(e.op){case"FFT":return[db(I("x",e,t,n))];case"IFFT":return[Id(I("x",e,t,n))];case"RFFT":return[pb(I("x",e,t,n))];case"IRFFT":return[SI(I("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},A4=(e,t,n)=>{switch(e.op){case"StringNGrams":{let{nGrams:s,nGramsSplits:r}=Bf.stringNGrams(I("data",e,t,n),I("dataSplits",e,t,n),I("separator",e,t,n),I("nGramWidths",e,t,n),I("leftPad",e,t,n),I("rightPad",e,t,n),I("padWidth",e,t,n),I("preserveShortSequences",e,t,n));return[s,r]}case"StringSplit":{let{indices:s,values:r,shape:a}=Bf.stringSplit(I("input",e,t,n),I("delimiter",e,t,n),I("skipEmpty",e,t,n));return[s,r,a]}case"StringToHashBucketFast":return[Bf.stringToHashBucketFast(I("input",e,t,n),I("numBuckets",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},E4=(e,t,n)=>{switch(e.op){case"Cast":return[ce(I("x",e,t,n),I("dtype",e,t,n))];case"ExpandDims":{let s=I("axis",e,t,n);return[Pn(I("x",e,t,n),s)]}case"Squeeze":{let s=I("axis",e,t,n);return[gr(I("x",e,t,n),s)]}case"Reshape":return[G(I("x",e,t,n),I("shape",e,t,n))];case"MirrorPad":return[CD(I("x",e,t,n),I("padding",e,t,n),I("mode",e,t,n))];case"PadV2":case"Pad":return[bi(I("x",e,t,n),I("padding",e,t,n),I("constantValue",e,t,n))];case"SpaceToBatchND":{let s=I("blockShape",e,t,n),r=I("paddings",e,t,n);return[rb(I("x",e,t,n),s,r)]}case"BatchToSpaceND":{let s=I("blockShape",e,t,n),r=I("crops",e,t,n);return[jg(I("x",e,t,n),s,r)]}case"DepthToSpace":{let s=I("blockSize",e,t,n),r=I("dataFormat",e,t,n).toUpperCase();return[mR(I("x",e,t,n),s,r)]}case"BroadcastTo":return[nd(I("x",e,t,n),I("shape",e,t,n))];case"BroadcastArgs":return[VE(I("s0",e,t,n),I("s1",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function Qx(e,t,n,s){let r=((a,i,o)=>{switch(a.category){case"arithmetic":return j(()=>o4(a,i,o));case"basic_math":return j(()=>u4(a,i,o));case"control":return f4(a,i,o);case"convolution":return j(()=>m4(a,i,o));case"creation":return j(()=>g4(a,i,o));case"dynamic":return b4(a,i,o);case"evaluation":return j(()=>y4(a,i,o));case"image":return j(()=>k4(a,i,o));case"graph":return j(()=>v4(a,i,o));case"logical":return j(()=>I4(a,i,o));case"matrices":return j(()=>S4(a,i,o));case"normalization":return j(()=>C4(a,i,o));case"reduction":return j(()=>N4(a,i,o));case"slice_join":return j(()=>T4(a,i,o));case"sparse":return j(()=>$4(a,i,o));case"spectral":return j(()=>_4(a,i,o));case"string":return j(()=>A4(a,i,o));case"transformation":return j(()=>E4(a,i,o));case"hash_table":return w4(a,i,o,s);case"custom":let u=e0(a.op);if(u&&u.customExecutor)return u.customExecutor(new i4(a,i,o));throw TypeError(`Custom op ${a.op} is not registered.`);default:throw TypeError(`Unknown op '${a.op}'. File an issue at https://github.com/tensorflow/tfjs/issues so we can add it, or register a custom execution with tf.registerOp()`)}})(e,t,n);return w.isPromise(r)?r.then(a=>[].concat(a)):[].concat(r)}var Zx=class{constructor(e={},t={},n={},s={}){this.weightMap=e,this.tensorArrayMap=t,this.tensorListMap=n,this.functionMap=s,this.rootContext={id:0,frameName:"",iterationId:0},this.contexts=[this.rootContext],this.lastId=0,this.generateCurrentContextIds()}newFrame(e,t){return{id:e,frameName:t,iterationId:0}}set currentContext(e){this.contexts!==e&&(this.contexts=e,this.generateCurrentContextIds())}get currentContext(){return this.contexts}get currentContextId(){return this._currentContextIds[0]}get currentContextIds(){return this._currentContextIds}generateCurrentContextIds(){let e=[];for(let t=0;t<this.contexts.length-1;t++){let n=this.contexts.slice(0,this.contexts.length-t);e.push(this.contextIdforContexts(n))}e.push(""),this._currentContextIds=e}contextIdforContexts(e){return e?e.map(t=>t.id===0&&t.iterationId===0?"":`${t.frameName}-${t.iterationId}`).join("/"):""}enterFrame(e){this.contexts&&(this.lastId++,this.contexts=this.contexts.slice(),this.contexts.push(this.newFrame(this.lastId,e)),this._currentContextIds.unshift(this.contextIdforContexts(this.contexts)))}exitFrame(){if(this.contexts&&this.contexts.length>1)this.contexts=this.contexts.slice(),this.contexts.splice(-1),this.currentContextIds.shift();else throw new Error("Cannot exit frame, the context is empty")}nextIteration(){if(this.contexts&&this.contexts.length>0){this.contexts=this.contexts.slice(),this.lastId++;let e=Object.assign({},this.contexts[this.contexts.length-1]);e.iterationId+=1,e.id=this.lastId,this.contexts.splice(-1,1,e),this._currentContextIds.splice(0,1,this.contextIdforContexts(this.contexts))}else throw new Error("Cannot increase frame iteration, the context is empty")}getWeight(e){return this.weightMap[e]}addTensorArray(e){this.tensorArrayMap[e.id]=e}getTensorArray(e){return this.tensorArrayMap[e]}addTensorList(e){this.tensorListMap[e.id]=e}getTensorList(e){return this.tensorListMap[e]}dispose(e){for(let t in this.tensorArrayMap)this.tensorArrayMap[t].clearAndClose(e);for(let t in this.tensorListMap)this.tensorListMap[t].clearAndClose(e)}};function Jx(e,t,n,s){let r=new Set,a=[],i=null,o=null,u=new Set,l=Object.keys(e).map(d=>An(d)[0]),c=[];s!=null&&(c=s.map(d=>An(d.name)[0]));let p=[...t];for(;p.length>0;){let d=p.pop();if((k0(d)||P4(d)||z4(d))&&i==null&&(i=d,o=i.children.map(h=>h.name).filter(h=>r.has(h))),r.add(d.name),n[d.name]==null&&l.indexOf(d.name)===-1&&c.indexOf(d.name)===-1){if(d.inputs.length===0){a.push(d.name);continue}d.inputs.forEach(h=>{u.has(h.name)||(u.add(h.name),p.push(h))})}}return{inputs:e,outputs:t,usedNodes:r,missingInputs:a,dynamicNode:i,syncInputs:o}}function R4(e,t,n){let{usedNodes:s,inputs:r}=n,a=[],i=Object.keys(r).map(c=>An(c)[0]).map(c=>e.nodes[c]),o=e.initNodes;i.forEach(c=>{s.has(c.name)&&a.push(c)}),e.weights.forEach(c=>{s.has(c.name)&&a.push(c)}),o!=null&&o.forEach(c=>{s.has(c.name)&&a.push(c)});let u=new Set,l=[];for(;a.length>0;){let c=a.pop();u.add(c.name),t[c.name]||l.push(c),c.children.forEach(p=>{!u.has(p.name)&&s.has(p.name)&&p.inputs.every(d=>u.has(d.name))&&a.push(p)})}return l}var D4=["Switch","Merge","Enter","Exit","NextIteration","StatelessIf","StatelessWhile","if","While"],F4=["NonMaxSuppressionV2","NonMaxSuppressionV3","NonMaxSuppressionV5","Where"],O4=["HashTable","HashTableV2","LookupTableImport","LookupTableImportV2","LookupTableFind","LookupTableFindV2","LookupTableSize","LookupTableSizeV2"];function k0(e){return D4.indexOf(e.op)>=0}function P4(e){return F4.indexOf(e.op)>=0}function z4(e){return O4.indexOf(e.op)>=0}var Lm=class{constructor(e,t){this.graph=e,this.parent=t,this.compiledMap=new Map,this._weightMap={},this.SEPERATOR=",",this._functions={},this._functionExecutorMap={},this.intermediateTensors={},this.keepTensorForDebug=!1,this._outputs=e.outputs,this._inputs=e.inputs,this._initNodes=e.initNodes,this._signature=e.signature,this._functions=e.functions,e.functions!=null&&Object.keys(e.functions).forEach(n=>{this._functionExecutorMap[n]=new Lm(e.functions[n],this)})}get weightIds(){return this.parent?this.parent.weightIds:this._weightIds}get functionExecutorMap(){return this.parent?this.parent.functionExecutorMap:this._functionExecutorMap}get weightMap(){return this.parent?this.parent.weightMap:this._weightMap}set weightMap(e){let t=Object.keys(e).map(n=>e[n].map(s=>s.id));this._weightIds=[].concat(...t),this._weightMap=e}set resourceManager(e){this._resourceManager=e}get inputs(){return this._inputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get outputs(){return this._outputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get inputNodes(){return this._inputs.map(e=>e.signatureKey||e.name)}get outputNodes(){return this._outputs.map(e=>{let t=e.signatureKey||e.name;return e.defaultOutput?`${t}:${e.defaultOutput}`:t})}get functions(){return Object.keys(this._functions).reduce((e,t)=>(e[t]=this._functions[t].signature,e),{})}getCompilationKey(e,t){let n=e.map(r=>r.name).sort(),s=t.map(r=>r.name).sort();return n.join(this.SEPERATOR)+"--"+s.join(this.SEPERATOR)}compile(e,t){let n=Jx(e,t,this.weightMap,this._initNodes),{missingInputs:s,dynamicNode:r,syncInputs:a}=n;if(r!=null)throw new Error(`This execution contains the node '${r.name}', which has the dynamic op '${r.op}'. Please use model.executeAsync() instead. Alternatively, to avoid the dynamic ops, specify the inputs [${a}]`);if(s.length>0){let i=t.map(u=>u.name),o=Object.keys(e);throw new Error(`Cannot compute the outputs [${i}] from the provided inputs [${o}]. Missing the following inputs: [${s}]`)}return R4(this.graph,this.weightMap,n)}execute(e,t){e=this.mapInputs(e);let n=Object.keys(e).sort();this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t);let s=n.map(c=>this.graph.nodes[An(c)[0]]),r=t.map(c=>An(c)[0]),a=r.map(c=>this.graph.nodes[c]);this.resetIntermediateTensors(),a.length===0&&(a=this._outputs);let i=this.getCompilationKey(s,a),o=this.compiledMap.get(i);o==null&&(o=this.compile(e,a),this.compiledMap.set(i,o));let u={},l={};return j(()=>{let c=new Zx(this.weightMap,u,l,this.functionExecutorMap),p={...this.weightMap};Object.keys(e).forEach(f=>{let[m,g]=An(f),b=[];b[g]=e[f],p[m]=b});let d=this.getFrozenTensorIds(p),h={};for(let f=0;f<o.length;f++){let m=o[f];if(!p[m.name]){let g=Qx(m,p,c,this._resourceManager);if(w.isPromise(g))throw new Error(`The execution of the op '${m.op}' returned a promise. Please use model.executeAsync() instead.`);p[m.name]=g,this.checkTensorForDisposal(m.name,m,p,c,d,r,h)}}return this.parent==null&&c.dispose(d),t.map(f=>un(f,p,c))})}getFrozenTensorIds(e){let t=[].concat.apply([],Object.keys(e).map(n=>e[n]).map(n=>n.map(s=>s.id)));return new Set(t)}checkTensorForDisposal(e,t,n,s,r,a,i){t.category==="control"||a.indexOf(e)!==-1||(n[e].forEach(o=>{o!=null&&(i[o.id]=(i[o.id]||0)+t.children.length)}),t.inputs.forEach(o=>{if(o.category!=="control"){let u=LW(o.name,n,s);u!=null&&u.forEach(l=>{if(l&&!l.kept&&!r.has(l.id)){let c=i[l.id];if(c===1){if(!this.keepTensorForDebug)l.dispose();else{let[p,d]=Ts(t.name,s);this.intermediateTensors[p]?this.intermediateTensors[p][d]=l:(this.intermediateTensors[p]=[],this.intermediateTensors[p][d]=l)}delete i[l.id]}else c!=null&&i[l.id]--}})}}))}async executeAsync(e,t){return this._executeAsync(e,t)}disposeIntermediateTensors(){!this.intermediateTensors||(Object.keys(this.intermediateTensors).forEach(e=>this.intermediateTensors[e].forEach(t=>t.dispose())),this.disposeTensorsMap())}disposeTensorsMap(){!this.tensorsMap||Object.keys(this.tensorsMap).forEach(e=>{this.tensorsMap[e].forEach(n=>{n&&!n.kept&&!n.isDisposed&&!this.keepIds.has(n.id)&&n.dispose()})})}getIntermediateTensors(){return this.tensorsMap}resetIntermediateTensors(){for(let e in this.intermediateTensors)this.intermediateTensors[e].forEach(t=>t.dispose()),delete this.intermediateTensors[e]}async _executeAsync(e,t,n=!1,s={},r={}){n||(e=this.mapInputs(e),this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t));try{this.keepTensorForDebug=X().getBool("KEEP_INTERMEDIATE_TENSORS")}catch(l){console.warn(l.message)}this.resetIntermediateTensors();let a=new Zx(this.weightMap,s,r,this.functionExecutorMap);this.tensorsMap=await this.executeWithControlFlow(e,a,t,n);let i=t.map(l=>un(l,this.tensorsMap,a)),o=i.map(l=>l.id),u=Object.keys(e).map(l=>e[l].id);return this.keepIds=new Set([...o,...u,...this.weightIds]),this.keepTensorForDebug||this.disposeTensorsMap(),this.parent==null&&a.dispose(this.keepIds),i}async executeFunctionAsync(e,t,n){let s=e.reduce((r,a,i)=>(r[this.inputs[i].name]=a,r),{});return this._executeAsync(s,this.outputNodes,!0,t,n)}async executeWithControlFlow(e,t,n,s){let r=Object.keys(e),a=r.map(y=>this.graph.nodes[An(y)[0]]),i=n.map(y=>An(y)[0]),o=i.map(y=>this.graph.nodes[y]);o.length===0&&(o=this._outputs);let{usedNodes:u,missingInputs:l,dynamicNode:c,syncInputs:p}=Jx(e,o,this.weightMap,this._initNodes),d=[...a,...this.graph.weights,...this._initNodes||[]].map(y=>({node:y,contexts:t.currentContext})),h={...this.weightMap};Object.keys(e).forEach(y=>{let[v,x]=An(y),k=[];k[x]=e[y],h[v]=k});let f={},m=this.getFrozenTensorIds(h),g={};for(;d.length>0;){let y=this.processStack(a,d,t,h,g,m,i,f,u);await Promise.all(y)}c==null&&!s&&console.warn("This model execution did not contain any nodes with control flow or dynamic output shapes. You can use model.execute() instead.");let b=o.filter(y=>!k0(y)&&!un(y.name,h,t)).map(y=>y.name);if(b.length>0){let y="";throw c!=null&&(y=`Alternatively, to avoid the dynamic ops, use model.execute() and specify the inputs [${p}]`),new Error(`Cannot compute the outputs [${b}] from the provided inputs [${r}]. Consider providing the following inputs: [${l}]. ${y}`)}return h}processStack(e,t,n,s,r,a,i,o,u){let l=[];for(;t.length>0;){let c=t.pop();n.currentContext=c.contexts;let p="";if(c.node.op==="Enter"&&I("isConstant",c.node,s,n)&&([p]=Ts(c.node.name,n)),s[c.node.name]==null){let d=Qx(c.node,s,n,this._resourceManager);p||([p]=Ts(c.node.name,n));let h=n.currentContext;w.isPromise(d)?l.push(d.then(f=>(s[p]=f,n.currentContext=h,this.checkTensorForDisposal(p,c.node,s,n,a,i,o),this.processChildNodes(c.node,t,n,s,r,u),f))):(s[p]=d,this.checkTensorForDisposal(p,c.node,s,n,a,i,o),this.processChildNodes(c.node,t,n,s,r,u))}else this.processChildNodes(c.node,t,n,s,r,u)}return l}processChildNodes(e,t,n,s,r,a){e.children.forEach(i=>{let[o]=Ts(i.name,n);r[o]||!a.has(i.name)||(i.op==="Merge"?i.inputNames.some(u=>!!un(u,s,n))&&(r[o]=!0,t.push({contexts:n.currentContext,node:i})):i.inputNames.every(u=>!!un(u,s,n))&&(r[o]=!0,t.push({contexts:n.currentContext,node:i})))})}dispose(){Object.keys(this.weightMap).forEach(e=>this.weightMap[e].forEach(t=>t.dispose()))}checkInputShapeAndType(e){Object.keys(e).forEach(t=>{let n=e[t],[s]=An(t),r=this.graph.nodes[s];if(r.attrParams.shape&&r.attrParams.shape.value){let a=r.attrParams.shape.value,i=a.length===n.shape.length&&n.shape.every((o,u)=>a[u]===-1||a[u]===o);w.assert(i,()=>`The shape of dict['${r.name}'] provided in model.execute(dict) must be [${a}], but was [${n.shape}]`)}r.attrParams.dtype&&r.attrParams.dtype.value&&w.assert(n.dtype===r.attrParams.dtype.value,()=>`The dtype of dict['${r.name}'] provided in model.execute(dict) must be ${r.attrParams.dtype.value}, but was ${n.dtype}`)})}mapInputs(e){let t={};for(let n in e)if(this._signature!=null&&this._signature.inputs!=null&&this._signature.inputs[n]!=null){let s=this._signature.inputs[n];t[s.name]=e[n]}else t[n]=e[n];return t}checkInputs(e){let t=Object.keys(e).filter(n=>{let[s]=An(n);return this.graph.nodes[s]==null});if(t.length>0)throw new Error(`The dict provided in model.execute(dict) has keys: [${t}] that are not part of graph`)}mapOutputs(e){return e.map(t=>this._signature!=null&&this._signature.outputs!=null&&this._signature.outputs[t]!=null?this._signature.outputs[t].name:t,{})}checkOutputs(e){e.forEach(t=>{let[n]=An(t);if(!this.graph.nodes[n])throw new Error(`The output '${t}' is not found in the graph`)})}},M4=class{constructor(e={},t={}){this.hashTableNameToHandle=e,this.hashTableMap=t}addHashTable(e,t){this.hashTableNameToHandle[e]=t.handle,this.hashTableMap[t.id]=t}getHashTableHandleByName(e){return this.hashTableNameToHandle[e]}getHashTableById(e){return this.hashTableMap[e]}dispose(){for(let e in this.hashTableMap)this.hashTableMap[e].clearAndClose(),delete this.hashTableMap[e];for(let e in this.hashTableNameToHandle)this.hashTableNameToHandle[e].dispose(),delete this.hashTableNameToHandle[e]}},L4="?tfjs-format=file",B4="model.json",V4=class{constructor(e,t={}){this.modelUrl=e,this.loadOptions=t,this.version="n/a",t==null&&(this.loadOptions={}),this.resourceManager=new M4}get modelVersion(){return this.version}get inputNodes(){return this.executor.inputNodes}get outputNodes(){return this.executor.outputNodes}get inputs(){return this.executor.inputs}get outputs(){return this.executor.outputs}get weights(){return this.executor.weightMap}get metadata(){return this.artifacts.userDefinedMetadata}get modelSignature(){return this.signature}findIOHandler(){let e=this.modelUrl;if(e.load!=null)this.handler=e;else if(this.loadOptions.requestInit!=null)this.handler=En.browserHTTPRequest(e,this.loadOptions);else{let t=En.getLoadHandlers(e,this.loadOptions);if(t.length===0)t.push(En.browserHTTPRequest(e,this.loadOptions));else if(t.length>1)throw new Error(`Found more than one (${t.length}) load handlers for URL '${[e]}'`);this.handler=t[0]}}async load(){if(this.findIOHandler(),this.handler.load==null)throw new Error("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let e=await this.handler.load();return this.loadSync(e)}loadSync(e){this.artifacts=e;let t=this.artifacts.modelTopology,n;this.artifacts.userDefinedMetadata!=null&&this.artifacts.userDefinedMetadata.signature!=null?n=this.artifacts.userDefinedMetadata.signature:n=this.artifacts.signature,this.signature=n,this.version=`${t.versions.producer}.${t.versions.minConsumer}`;let s=En.decodeWeights(this.artifacts.weightData,this.artifacts.weightSpecs);if(this.executor=new Lm(jx.Instance.transformGraph(t,this.signature)),this.executor.weightMap=this.convertTensorMapToTensorsMap(s),this.executor.resourceManager=this.resourceManager,e.modelInitializer!=null&&e.modelInitializer.node!=null){let r=jx.Instance.transformGraph(e.modelInitializer);this.initializer=new Lm(r),this.initializer.weightMap=this.executor.weightMap,this.initializer.resourceManager=this.resourceManager,this.initializer.executeAsync({},[])}return!0}async save(e,t){if(typeof e=="string"){let n=En.getSaveHandlers(e);if(n.length===0)throw new Error(`Cannot find any save handlers for URL '${e}'`);if(n.length>1)throw new Error(`Found more than one (${n.length}) save handlers for URL '${e}'`);e=n[0]}if(e.save==null)throw new Error("GraphModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");return e.save(this.artifacts)}predict(e,t){return this.execute(e,this.outputNodes)}normalizeInputs(e){if(!(e instanceof et)&&!Array.isArray(e))return e;if(e=Array.isArray(e)?e:[e],e.length!==this.inputNodes.length)throw new Error(`Input tensor count mismatch,the graph model has ${this.inputNodes.length} placeholders, while there are ${e.length} input tensors.`);return this.inputNodes.reduce((t,n,s)=>(t[n]=e[s],t),{})}normalizeOutputs(e){return e=e||this.outputNodes,Array.isArray(e)?e:[e]}execute(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=this.executor.execute(e,t);return n.length>1?n:n[0]}async executeAsync(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=await this.executor.executeAsync(e,t);return n.length>1?n:n[0]}getIntermediateTensors(){return this.executor.getIntermediateTensors()}disposeIntermediateTensors(){this.executor.disposeIntermediateTensors()}convertTensorMapToTensorsMap(e){return Object.keys(e).reduce((t,n)=>(t[n]=[e[n]],t),{})}dispose(){this.executor.dispose(),this.initializer&&this.initializer.dispose(),this.resourceManager.dispose()}};async function jpe(e,t={}){if(e==null)throw new Error("modelUrl in loadGraphModel() cannot be null. Please provide a url or an IOHandler that loads the model");t==null&&(t={}),t.fromTFHub&&e.load==null&&(e.endsWith("/")||(e=e+"/"),e=`${e}${B4}${L4}`);let n=new V4(e,t);return await n.load(),n}var Kpe="0.0.0",W4={};Ae(W4,{CSVDataset:()=>F0,Dataset:()=>eu,FileDataSource:()=>V0,TextLineDataset:()=>D0,URLDataSource:()=>W0,array:()=>dU,csv:()=>kU,func:()=>IU,generator:()=>SU,microphone:()=>NU,version_data:()=>TU,webcam:()=>CU,zip:()=>pU});var U4=wa(Gd()),G4=wa(Gd());function H4(e,t){return Fd(e,t)}function Fd(e,t,n=new Map,s=new Set){if(e==null)return null;if(typeof Blob=="function"&&e instanceof Blob)return e.slice();if(s.has(e))throw new Error("Circular references are not supported.");if(n.has(e))return n.get(e);let r=t(e);if(r.recurse&&r.value!==null)throw new Error("A deep map function may not return both a value and recurse=true.");if(r.recurse)if(so(e)){let a=Array.isArray(e)?[]:{};s.add(e);for(let i in e){let o=e[i],u=Fd(o,t,n,s);a[i]=u}return s.delete(e),e.__proto__&&(a.__proto__=e.__proto__),a}else throw new Error(`Can't recurse into non-iterable type: ${e}`);else return n.set(e,r.value),r.value}function q4(e,t=S0){return I0(e,t)}function I0(e,t,n=new Set){let s=e[0];if(n.has(s))throw new Error("Circular references are not supported.");let r=t(e);if(r.recurse&&r.value!==null)throw new Error("A deep zip function may not return both a value and recurse=true.");if(r.recurse)if(so(s)){let a=Array.isArray(s)?[]:{};n.add(s);for(let i in s){let o=e.map(l=>l[i]),u=I0(o,t,n);a[i]=u}return n.delete(s),a}else throw new Error(`Can't recurse into non-iterable type: ${s}`);else return r.value}function S0(e){return e===null?null:so(e[0])?{value:null,recurse:!0}:{value:e,recurse:!1}}async function C0(e,t){let n=new Map;Fd(e,t,n);for(let r of Array.from(n.keys())){let a=n.get(r);if(w.isPromise(a)){let i=await a;n.set(r,i)}}return Fd(e,t,n)}function so(e){let t=!1;if(X().get("IS_BROWSER"))t=e instanceof TextDecoder;else{let{StringDecoder:n}=qw();t=e instanceof n}return e!=null&&!ArrayBuffer.isView(e)&&(Array.isArray(e)||typeof e=="object"&&!(e instanceof et)&&!(e instanceof Promise)&&!t)}function j4(e){return e==null||K4(e)||Array.isArray(e)||typeof e=="object"&&e instanceof et||w.isTypedArray(e)}function K4(e){return e===null||typeof e!="object"&&typeof e!="function"}function X4(e){return H4(e,Y4)}function Y4(e){return e instanceof et?{value:e.clone(),recurse:!1}:so(e)?{value:null,recurse:!0}:{value:e,recurse:!1}}var N0=class{constructor(e){if(this.capacity=e,this.begin=0,this.end=0,e==null)throw new RangeError("Can't create a ring buffer of unknown capacity.");if(e<1)throw new RangeError("Can't create ring buffer of capacity < 1.");this.data=new Array(e),this.doubledCapacity=2*e}wrap(e){for(;e<0;)e+=this.doubledCapacity;return e%this.doubledCapacity}get(e){if(e<0)throw new RangeError("Can't get item at a negative index.");return this.data[e%this.capacity]}set(e,t){if(e<0)throw new RangeError("Can't set item at a negative index.");this.data[e%this.capacity]=t}length(){let e=this.end-this.begin;return e<0&&(e=this.doubledCapacity+e),e}isFull(){return this.length()===this.capacity}isEmpty(){return this.length()===0}push(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.set(this.end,e),this.end=this.wrap(this.end+1)}pushAll(e){for(let t of e)this.push(t)}pop(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");this.end=this.wrap(this.end-1);let e=this.get(this.end);return this.set(this.end,void 0),e}unshift(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.begin=this.wrap(this.begin-1),this.set(this.begin,e)}shift(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let e=this.get(this.begin);return this.set(this.begin,void 0),this.begin=this.wrap(this.begin+1),e}shuffleExcise(e){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let t=this.wrap(this.begin+e),n=this.get(t);return this.set(t,this.pop()),n}},T0=class extends N0{constructor(){super(T0.INITIAL_CAPACITY)}isFull(){return!1}push(e){super.isFull()&&this.expand(),super.push(e)}unshift(e){super.isFull()&&this.expand(),super.unshift(e)}expand(){let e=this.capacity*2,t=new Array(e),n=this.length();for(let s=0;s<n;s++)t[s]=this.get(this.wrap(this.begin+s));this.data=t,this.capacity=e,this.doubledCapacity=2*this.capacity,this.begin=0,this.end=n}},$0=T0;$0.INITIAL_CAPACITY=32;function _0(e){return new J4(e)}function Zy(e){return new eU(e)}function Q4(e,t){return new A0(e,t)}function Z4(e,t=E0.FAIL){return new lU(e,t)}var Ut=class{async toArray(){let e=[],t=await this.next();for(;!t.done;)e.push(t.value),t=await this.next();return e}async toArrayForTest(){let e=this.prefetch(100),t=[],n=await e.next();for(;!n.done;)t.push(n.value),n=await e.next();return t}async resolveFully(){let e=await this.next();for(;!e.done;)e=await this.next()}async resolveWhile(e){let t=await this.next(),n=e(t.value);for(;!t.done&&n;)t=await this.next(),n=e(t.value)}handleErrors(e){return new oU(this,e)}filter(e){return new aU(this,e)}map(e){return new iU(this,e)}mapAsync(e){return new ew(this,e)}serialMapAsync(e){return new ew(this,e).serial()}flatmap(e){return new uU(this,e)}async forEachAsync(e){return this.map(e).resolveFully()}async serialForEach(e){return this.serialMapAsync(e).resolveWhile(t=>t===!0)}rowMajorBatch(e,t=!0){return new rU(this,e,t)}columnMajorBatch(e,t=!0,n=S0){return this.rowMajorBatch(e,t).map(r=>q4(r,n))}concatenate(e,t){return new A0(_0([this,e]),t)}take(e){return e<0||e==null?this:new sU(this,e)}skip(e){return e<0||e==null?this:new nU(this,e)}prefetch(e){return new R0(this,e)}shuffle(e,t){return new cU(this,e,t)}serial(){return new tU(this)}},J4=class extends Ut{constructor(e){super(),this.items=e,this.trav=0}summary(){return`Array of ${this.items.length} items`}async next(){if(this.trav>=this.items.length)return{value:null,done:!0};let e=this.items[this.trav];return this.trav++,{value:X4(e),done:!1}}},eU=class extends Ut{constructor(e){super(),this.nextFn=e}summary(){return"Function call"}async next(){try{return this.nextFn()}catch(e){throw e.message=`Error thrown while iterating through a dataset: ${e.message}`,e}}},tU=class extends Ut{constructor(e){super(),this.upstream=e,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Serial`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){return this.upstream.next()}},nU=class extends Ut{constructor(e,t){super(),this.upstream=e,this.maxCount=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Skip`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.count++<this.maxCount;){let e=await this.upstream.next();if(e.done)return e;Re(e.value)}return this.upstream.next()}},sU=class extends Ut{constructor(e,t){super(),this.upstream=e,this.maxCount=t,this.count=0}summary(){return`${this.upstream.summary()} -> Take`}async next(){return this.count++>=this.maxCount?{value:null,done:!0}:this.upstream.next()}},rU=class extends Ut{constructor(e,t,n=!0){super(),this.upstream=e,this.batchSize=t,this.enableSmallLastBatch=n,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> RowMajorBatch`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){let e=[];for(;e.length<this.batchSize;){let t=await this.upstream.next();if(t.done)return this.enableSmallLastBatch&&e.length>0?{value:e,done:!1}:{value:null,done:!0};e.push(t.value)}return{value:e,done:!1}}},aU=class extends Ut{constructor(e,t){super(),this.upstream=e,this.predicate=t,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Filter`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;){let e=await this.upstream.next();if(e.done||this.predicate(e.value))return e;Re(e.value)}}},iU=class extends Ut{constructor(e,t){super(),this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Map`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=_s.getTensorsInContainer(e.value),n=this.transform(e.value),s=_s.getTensorsInContainer(n);for(let r of t)_s.isTensorInList(r,s)||r.dispose();return{value:n,done:!1}}},oU=class extends Ut{constructor(e,t){super(),this.upstream=e,this.handler=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> handleErrors`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;)try{return await this.upstream.next()}catch(e){if(!this.handler(e))return{value:null,done:!0}}}},ew=class extends Ut{constructor(e,t){super(),this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> AsyncMap`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=_s.getTensorsInContainer(e.value),n=await this.transform(e.value),s=_s.getTensorsInContainer(n);for(let r of t)_s.isTensorInList(r,s)||r.dispose();return{value:n,done:!1}}},Jy=class extends Ut{constructor(){super(),this.outputQueue=new $0,this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.outputQueue.length()===0;)if(!await this.pump())return{value:null,done:!0};return{value:this.outputQueue.shift(),done:!1}}},uU=class extends Jy{constructor(e,t){super(),this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Flatmap`}async pump(){let e=await this.upstream.next();if(e.done)return!1;let t=_s.getTensorsInContainer(e.value),n=this.transform(e.value),s=_s.getTensorsInContainer(n);this.outputQueue.pushAll(n);for(let r of t)_s.isTensorInList(r,s)||r.dispose();return!0}},A0=class extends Ut{constructor(e,t){super(),this.baseErrorHandler=t,this.lastRead=null,this.iterator=null,this.moreIterators=e}summary(){return"TODO: fill in upstream of chained summaries -> Chained"}async next(){return this.lastRead=this.readFromChain(this.lastRead),this.lastRead}async readFromChain(e){if(await e,this.iterator==null){let n=await this.moreIterators.next();if(n.done)return{value:null,done:!0};this.iterator=n.value,this.baseErrorHandler!=null&&(this.iterator=this.iterator.handleErrors(this.baseErrorHandler))}let t=await this.iterator.next();return t.done?(this.iterator=null,this.readFromChain(e)):t}},E0=(e=>(e[e.FAIL=0]="FAIL",e[e.SHORTEST=1]="SHORTEST",e[e.LONGEST=2]="LONGEST",e))(E0||{}),lU=class extends Ut{constructor(e,t=0){super(),this.iterators=e,this.mismatchMode=t,this.count=0,this.currentPromise=null}summary(){return"{TODO: fill in upstream of zip summaries} -> Zip"}async nextState(e){await e;let t=0,n=0;function s(a){return a instanceof Ut?{value:a.next().then(o=>(t++,o.done&&n++,o.value)),recurse:!1}:{value:null,recurse:!0}}let r=await C0(this.iterators,s);if(t===n)return{value:null,done:!0};if(n>0)switch(this.mismatchMode){case 0:throw new Error(`Zipped streams should have the same length. Mismatched at element ${this.count}.`);case 1:return{value:null,done:!0};case 2:default:}return this.count++,{value:r,done:!1}}async next(){return this.currentPromise=this.nextState(this.currentPromise),this.currentPromise}},R0=class extends Ut{constructor(e,t){super(),this.upstream=e,this.bufferSize=t,this.buffer=new N0(t)}summary(){return`${this.upstream.summary()} -> Prefetch`}refill(){for(;!this.buffer.isFull();){let e=this.upstream.next();this.buffer.push(e)}}next(){return this.refill(),this.buffer.shift()}},cU=class extends R0{constructor(e,t,n){super(e,t),this.upstream=e,this.windowSize=t,this.upstreamExhausted=!1,this.random=G4.alea(n||w.now().toString()),this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}randomInt(e){return Math.floor(this.random()*e)}chooseIndex(){return this.randomInt(this.buffer.length())}async serialNext(){for(this.upstreamExhausted||this.refill();!this.buffer.isEmpty();){let e=this.chooseIndex(),t=await this.buffer.shuffleExcise(e);if(t.done)this.upstreamExhausted=!0;else return this.refill(),t}return{value:null,done:!0}}},eu=class{constructor(){this.size=null}batch(e,t=!0){let n=this;w.assert(e>0,()=>`batchSize needs to be positive, but it is
|
|
${e}`);let s;return this.size===1/0||this.size==null?s=this.size:t?s=Math.ceil(this.size/e):s=Math.floor(this.size/e),_n(async()=>(await n.iterator()).columnMajorBatch(e,t,hU),s)}concatenate(e){let t=this,n;return this.size===1/0||e.size===1/0?n=1/0:this.size!=null&&e.size!=null?n=this.size+e.size:n=null,_n(async()=>(await t.iterator()).concatenate(await e.iterator()),n)}filter(e){let t=this,n;return this.size===1/0?n=1/0:n=null,_n(async()=>(await t.iterator()).filter(s=>j(()=>e(s))),n)}async forEachAsync(e){return(await this.iterator()).forEachAsync(e)}map(e){let t=this;return _n(async()=>(await t.iterator()).map(n=>j(()=>e(n))),this.size)}mapAsync(e){let t=this;return _n(async()=>(await t.iterator()).mapAsync(e),this.size)}prefetch(e){if(e==null)throw new RangeError("`Dataset.prefetch()` requires bufferSize to be specified.");let t=this;return _n(async()=>(await t.iterator()).prefetch(e),this.size)}repeat(e){let t=this,n;return this.size!=null&&e>0?n=this.size*e:e===0?n=0:this.size!=null&&(e===void 0||e<0)?n=1/0:n=null,_n(async()=>{let s=Zy(async()=>({value:await t.iterator(),done:!1}));return Q4(s.take(e))},n)}skip(e){let t=this,n;return this.size!=null&&e>=0&&this.size>=e?n=this.size-e:this.size!=null&&(this.size<e||e===void 0||e<0)?n=0:n=null,_n(async()=>(await t.iterator()).skip(e),n)}shuffle(e,t,n=!0){if(e==null||e<0)throw this.size==null?new RangeError("`Dataset.shuffle()` requires bufferSize to be specified."):new RangeError(`\`Dataset.shuffle()\` requires bufferSize to be specified. If your data fits in main memory (for regular JS objects), and/or GPU memory (for \`tf.Tensor\`s), consider setting bufferSize to the dataset size (${this.size} elements)`);let s=this,r=U4.alea(t||w.now().toString());return _n(async()=>{let a=r.int32();return n&&(a+=r.int32()),(await s.iterator()).shuffle(e,a.toString())},this.size)}take(e){let t=this,n;return this.size!=null&&this.size>e?n=e:this.size!=null&&this.size<=e?n=this.size:n=null,_n(async()=>(await t.iterator()).take(e),n)}async toArray(){if(this.size===1/0)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArray()}async toArrayForTest(){if(this.size===1/0)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArrayForTest()}};eu.MAX_BUFFER_SIZE=1e4;function _n(e,t=null){return new class extends eu{constructor(){super(...arguments),this.size=t}async iterator(){return e()}}}function dU(e){return _n(async()=>_0(e),e.length)}function pU(e){if(!so(e))throw new Error("The argument to zip() must be an object or array.");let t;if(Array.isArray(e))for(let n=0;n<e.length;n++)t=t==null?e[n].size:Math.min(t,e[n].size);else if(e instanceof Object)for(let n in e)t=t==null?e[n].size:Math.min(t,e[n].size);return _n(async()=>{let n=await C0(e,s=>{if(s instanceof eu)return{value:s.iterator(),recurse:!1};if(so(s))return{value:null,recurse:!0};throw new Error("Leaves of the structure passed to zip() must be Datasets, not primitives.")});return Z4(n,1)},t)}function hU(e){if(e===null)return null;let t=e[0];return j4(t)?{value:fU(e),recurse:!1}:{value:null,recurse:!0}}function fU(e){if(e.length===0)throw new Error("Can't make a batch of zero elements.");return e[0]instanceof et?es(e):fs(e)}var D0=class extends eu{constructor(e){super(),this.input=e}async iterator(){return(await this.input.iterator()).decodeUTF8().split(`
|
|
`).map(s=>(s.endsWith("\r")&&(s=s.slice(0,-1)),s))}},Kc='"',$u=Symbol("out"),tw=Symbol("field"),Xc=Symbol("quote"),jf=Symbol("quoteafterquote"),nw=Symbol("quoteinquote"),F0=class extends eu{constructor(e,t){super(),this.input=e,this.hasHeader=!0,this.fullColumnNames=null,this.columnNamesValidated=!1,this.columnConfigs=null,this.configuredColumnsOnly=!1,this.delimiter=",",this.delimWhitespace=!1,this.base=new D0(e),t||(t={}),this.hasHeader=t.hasHeader!==!1,this.fullColumnNames=t.columnNames,this.columnConfigs=t.columnConfigs,this.configuredColumnsOnly=t.configuredColumnsOnly,t.delimWhitespace?(w.assert(t.delimiter==null,()=>"Delimiter should not be provided when delimWhitespace is true."),this.delimWhitespace=!0,this.delimiter=" "):this.delimiter=t.delimiter?t.delimiter:","}async columnNames(){return this.columnNamesValidated||await this.setColumnNames(),this.configuredColumnsOnly?Object.keys(this.columnConfigs):this.fullColumnNames}async setColumnNames(){let e=await this.maybeReadHeaderLine();if(!this.fullColumnNames&&!e)throw new Error("Column names must be provided if there is no header line.");this.fullColumnNames&&e&&w.assert(e.length===this.fullColumnNames.length,()=>"The length of provided columnNames ("+this.fullColumnNames.length.toString()+") does not match the length of the header line read from file ("+e.length.toString()+")."),this.fullColumnNames||(this.fullColumnNames=e);let t=this.fullColumnNames.reduce((s,r)=>(s[r]=s[r]+1||1,s),{}),n=Object.keys(t).filter(s=>t[s]>1);if(w.assert(n.length===0,()=>"Duplicate column names found: "+n.toString()),this.columnConfigs){for(let s of Object.keys(this.columnConfigs))if(this.fullColumnNames.indexOf(s)===-1)throw new Error('The key "'+s+'" provided in columnConfigs does not match any of the column names ('+this.fullColumnNames.toString()+").")}this.columnNamesValidated=!0}async maybeReadHeaderLine(){if(this.hasHeader){let t=await(await this.base.iterator()).next();if(t.done)throw new Error("No data was found for CSV parsing.");let n=t.value;return this.parseRow(n,!1)}else return null}async iterator(){this.columnNamesValidated||await this.setColumnNames();let e=await this.base.iterator();return this.hasHeader&&(e=e.skip(1)),e.map(t=>this.makeDataElement(t))}makeDataElement(e){let t=this.parseRow(e),n={},s={};for(let r=0;r<this.fullColumnNames.length;r++){let a=this.fullColumnNames[r],i=this.columnConfigs?this.columnConfigs[a]:null;if(!(this.configuredColumnsOnly&&!i)){let o=t[r],u=null;if(o==="")if(i&&i.default!==void 0)u=i.default;else{if(i&&(i.required||i.isLabel))throw new Error(`Required column ${a} is empty in this line: ${e}`);u=void 0}else{let l=Number(o);if(isNaN(l))i&&i.dtype==="bool"?u=this.getBoolean(o):u=o;else if(!i||!i.dtype)u=l;else switch(i.dtype){case"float32":u=l;break;case"int32":u=Math.floor(l);break;case"bool":u=this.getBoolean(o);break;default:u=l}}i&&i.isLabel?s[a]=u:n[a]=u}}return Object.keys(s).length===0?n:{xs:n,ys:s}}getBoolean(e){return e==="1"||e.toLowerCase()==="true"?1:0}parseRow(e,t=!0){let n=[],s=0,r=e.length,a=$u;for(let i=0;i<r;i++)switch(a){case $u:switch(e.charAt(i)){case Kc:s=i+1,a=Xc;break;case this.delimiter:if(s=i+1,this.delimiter===" "&&this.delimWhitespace)break;n.push(""),a=$u;break;default:a=tw,s=i;break}break;case tw:switch(e.charAt(i)){case this.delimiter:n.push(e.substring(s,i)),a=$u,s=i+1;break;default:}break;case Xc:switch(e.charAt(i)){case Kc:a=jf;break;default:}break;case jf:switch(e.charAt(i)){case this.delimiter:n.push(e.substring(s,i-1)),a=$u,s=i+1;break;case Kc:a=Xc;break;default:a=nw;break}break;case nw:switch(e.charAt(i)){case Kc:a=Xc;break;default:}break;default:}if(a===jf?n.push(e.substring(s,r-1)):n.push(e.substring(s)),t&&n.length!==this.fullColumnNames.length)throw new Error(`Invalid row in csv file. Should have ${this.fullColumnNames.length} elements in a row, but got ${n}`);return n}},O0=class extends Ut{constructor(e){super(),this.microphoneConfig=e,this.isClosed=!1,this.fftSize=e.fftSize||1024;let t=Math.log2(this.fftSize);if(this.fftSize<0||t<4||t>14||!Number.isInteger(t))throw new Error(`Invalid fftSize: it must be a power of 2 between 2 to 4 and 2 to 14, but got ${this.fftSize}`);if(this.numFrames=e.numFramesPerSpectrogram||43,this.sampleRateHz=e.sampleRateHz,this.columnTruncateLength=e.columnTruncateLength||this.fftSize,this.audioTrackConstraints=e.audioTrackConstraints,this.smoothingTimeConstant=e.smoothingTimeConstant||0,this.includeSpectrogram=e.includeSpectrogram!==!1,this.includeWaveform=e.includeWaveform===!0,!this.includeSpectrogram&&!this.includeWaveform)throw new Error("Both includeSpectrogram and includeWaveform are false. At least one type of data should be returned.")}summary(){return"microphone"}static async create(e={}){if(!X().get("IS_BROWSER"))throw new Error("microphone API is only supported in browser environment.");let t=new O0(e);return await t.start(),t}async start(){try{this.stream=await navigator.mediaDevices.getUserMedia({audio:this.audioTrackConstraints==null?!0:this.audioTrackConstraints,video:!1})}catch(n){throw new Error(`Error thrown while initializing video stream: ${n.message}`)}if(!this.stream)throw new Error("Could not obtain audio from microphone.");let e=window.AudioContext||window.webkitAudioContext;if(this.audioContext=new e,!this.sampleRateHz)this.sampleRateHz=this.audioContext.sampleRate;else if(this.audioContext.sampleRate!==this.sampleRateHz)throw new Error(`Mismatch in sampling rate: Expected: ${this.sampleRateHz}; Actual: ${this.audioContext.sampleRate}`);let t=this.audioContext.createMediaStreamSource(this.stream);this.analyser=this.audioContext.createAnalyser(),this.analyser.fftSize=this.fftSize*2,this.analyser.smoothingTimeConstant=this.smoothingTimeConstant,t.connect(this.analyser),this.freqData=new Float32Array(this.fftSize),this.timeData=new Float32Array(this.fftSize)}async next(){if(this.isClosed)return{value:null,done:!0};let e,t,n=await this.getAudioData();if(this.includeSpectrogram){let s=this.flattenQueue(n.freqDataQueue);e=this.getTensorFromAudioDataArray(s,[this.numFrames,this.columnTruncateLength,1])}if(this.includeWaveform){let s=this.flattenQueue(n.timeDataQueue);t=this.getTensorFromAudioDataArray(s,[this.numFrames*this.fftSize,1])}return{value:{spectrogram:e,waveform:t},done:!1}}async capture(){return(await this.next()).value}async getAudioData(){let e=[],t=[],n=0;return new Promise(s=>{let r=setInterval(()=>{this.includeSpectrogram&&(this.analyser.getFloatFrequencyData(this.freqData),this.freqData[0]===-1/0&&s({freqDataQueue:e,timeDataQueue:t}),e.push(this.freqData.slice(0,this.columnTruncateLength))),this.includeWaveform&&(this.analyser.getFloatTimeDomainData(this.timeData),t.push(this.timeData.slice())),++n===this.numFrames&&(clearInterval(r),s({freqDataQueue:e,timeDataQueue:t}))},this.fftSize/this.sampleRateHz*1e3)})}stop(){this.isClosed||(this.isClosed=!0,this.analyser.disconnect(),this.audioContext.close(),this.stream!=null&&this.stream.getTracks().length>0&&this.stream.getTracks()[0].stop())}toArray(){throw new Error("Can not convert infinite audio stream to array.")}getSampleRate(){return this.sampleRateHz}flattenQueue(e){let t=e[0].length,n=new Float32Array(e.length*t);return e.forEach((s,r)=>n.set(s,r*t)),n}getTensorFromAudioDataArray(e,t){let n=new Float32Array(w.sizeFromShape(t));return n.set(e,n.length-e.length),fs(n,t)}},P0=class extends Ut{constructor(e,t){if(super(),this.webcamVideoElement=e,this.webcamConfig=t,this.isClosed=!0,this.resize=!1,this.needToResize())if(this.resize=!0,this.cropSize=[this.webcamConfig.resizeHeight,this.webcamConfig.resizeWidth],this.cropBoxInd=Zt([0],"int32"),this.webcamConfig.centerCrop){let n=this.webcamConfig.resizeWidth*1/this.webcamVideoElement.width,s=this.webcamConfig.resizeHeight*1/this.webcamVideoElement.height,r=(1-n)/2,a=(1-s)/2,i=r+n,o=s+a;this.cropBox=Yi([a,r,o,i],[1,4])}else this.cropBox=Yi([0,0,1,1],[1,4])}summary(){return"webcam"}static async create(e,t={}){if(!X().get("IS_BROWSER"))throw new Error("tf.data.webcam is only supported in browser environment.");if(!e){if(e=document.createElement("video"),!t.resizeWidth||!t.resizeHeight)throw new Error("Please provide webcam video element, or resizeWidth and resizeHeight to create a hidden video element.");e.width=t.resizeWidth,e.height=t.resizeHeight}let n=new P0(e,t);return await n.start(),n}async start(){this.webcamConfig.facingMode&&w.assert(this.webcamConfig.facingMode==="user"||this.webcamConfig.facingMode==="environment",()=>`Invalid webcam facing mode: ${this.webcamConfig.facingMode}. Please provide 'user' or 'environment'`);try{this.stream=await navigator.mediaDevices.getUserMedia({video:{deviceId:this.webcamConfig.deviceId,facingMode:this.webcamConfig.facingMode?this.webcamConfig.facingMode:"user",width:this.webcamVideoElement.width,height:this.webcamVideoElement.height}})}catch(e){throw e.message=`Error thrown while initializing video stream: ${e.message}`,e}if(!this.stream)throw new Error("Could not obtain video from webcam.");try{this.webcamVideoElement.srcObject=this.stream}catch(e){console.log(e),this.webcamVideoElement.src=window.URL.createObjectURL(this.stream)}return this.webcamVideoElement.play(),this.isClosed=!1,new Promise(e=>{this.webcamVideoElement.onloadedmetadata=()=>{e()}})}async next(){if(this.isClosed)return{value:null,done:!0};let e;try{e=Ak.fromPixels(this.webcamVideoElement)}catch(t){throw new Error(`Error thrown converting video to pixels: ${JSON.stringify(t)}`)}if(this.resize)try{return{value:this.cropAndResizeFrame(e),done:!1}}catch(t){throw new Error(`Error thrown cropping the video: ${t.message}`)}finally{e.dispose()}else return{value:e,done:!1}}needToResize(){return!!(this.webcamConfig.resizeWidth&&this.webcamConfig.resizeHeight&&(this.webcamVideoElement.width!==this.webcamConfig.resizeWidth||this.webcamVideoElement.height!==this.webcamConfig.resizeHeight))}cropAndResizeFrame(e){return j(()=>{let t=Pn(ce(e,"float32"),0),n;n=jn.cropAndResize(t,this.cropBox,this.cropBoxInd,this.cropSize,"bilinear");let s=n.shape;return G(n,s.slice(1))})}async capture(){return(await this.next()).value}stop(){this.stream.getTracks().forEach(t=>t.stop());try{this.webcamVideoElement.srcObject=null}catch(t){console.log(t),this.webcamVideoElement.src=null}this.isClosed=!0}toArray(){throw new Error("Can not convert infinite video stream to array.")}},z0=class{},M0=class extends Ut{split(e){return new mU(this,e)}},mU=class extends M0{constructor(e,t){super(),this.upstream=e,this.impl=new gU(e,t)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},gU=class extends Jy{constructor(e,t){super(),this.upstream=e,this.separator=t,this.carryover=""}summary(){return`${this.upstream.summary()} -> Split('${this.separator}')`}async pump(){let e=await this.upstream.next();if(e.done)return this.carryover===""?!1:(this.outputQueue.push(this.carryover),this.carryover="",!0);let t=e.value.split(this.separator);t[0]=this.carryover+t[0];for(let n of t.slice(0,-1))this.outputQueue.push(n);return this.carryover=t[t.length-1],!0}},bU=class extends Ut{decodeUTF8(){return new yU(this)}},yU=class extends M0{constructor(e){super(),this.upstream=e,this.impl=new vU(e)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},vU=class extends Jy{constructor(e){if(super(),this.upstream=e,X().get("IS_BROWSER"))this.decoder=new TextDecoder("utf-8");else{let{StringDecoder:t}=qw();this.decoder=new t("utf8")}}summary(){return`${this.upstream.summary()} -> Utf8`}async pump(){let e=await this.upstream.next(),t;if(e.done)return!1;t=e.value;let n;return X().get("IS_BROWSER")?n=this.decoder.decode(t,{stream:!0}):n=this.decoder.write(Buffer.from(t.buffer)),this.outputQueue.push(n),!0}},L0=class extends bU{constructor(e,t={}){super(),this.file=e,this.options=t,w.assert(e instanceof Uint8Array||(X().get("IS_BROWSER")?e instanceof File||e instanceof Blob:!1),()=>"FileChunkIterator only supports File, Blob and Uint8Array right now."),this.offset=t.offset||0,this.chunkSize=t.chunkSize||1024*1024}summary(){return`FileChunks ${this.file}`}async next(){return this.offset>=(this.file instanceof Uint8Array?this.file.byteLength:this.file.size)?{value:null,done:!0}:{value:await new Promise((t,n)=>{let s=this.offset+this.chunkSize;if(this.file instanceof Uint8Array)t(new Uint8Array(this.file.slice(this.offset,s)));else{let r=new FileReader;r.onload=i=>{let o=r.result;if(o instanceof ArrayBuffer&&(o=new Uint8Array(o)),!(o instanceof Uint8Array))return n(new TypeError("FileReader returned unknown type."));t(o)},r.onabort=i=>n(new Error("Aborted")),r.onerror=i=>n(new Error(i.type));let a=this.file.slice(this.offset,s);r.readAsArrayBuffer(a)}this.offset=s}),done:!1}}};async function xU(e,t={},n){let s,r;typeof e=="string"?s=e:(s=e.url,r=wU(e));let a=await(n||w.fetch)(s,r);if(a.ok){let i=new Uint8Array(await a.arrayBuffer());return new L0(i,t)}else throw new Error(a.statusText)}var wU=e=>({method:e.method,headers:e.headers,body:e.body,mode:e.mode,credentials:e.credentials,cache:e.cache,redirect:e.redirect,referrer:e.referrer,integrity:e.integrity});function B0(e){return typeof e=="string"&&e.slice(0,7)==="file://"}var V0=class extends z0{constructor(e,t={}){super(),this.input=e,this.options=t}async iterator(){if(B0(this.input)&&X().get("IS_NODE")){let e=sg();this.input=e.readFileSync(this.input.slice(7))}return new L0(this.input,this.options)}},W0=class extends z0{constructor(e,t={}){super(),this.url=e,this.fileOptions=t}async iterator(){return B0(this.url)?new V0(this.url,this.fileOptions).iterator():xU(this.url,this.fileOptions)}};function kU(e,t={}){return new F0(new W0(e),t)}function IU(e){let t=Zy(e);return _n(async()=>t)}function SU(e){return _n(async()=>{let t=await e();return Zy(()=>t.next())})}async function CU(e,t){return P0.create(e,t)}async function NU(e){return O0.create(e)}var TU="0.0.0";function be(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&w.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the CPU backend.`)})}var $U=xs.whereImpl,U0=class extends sl{constructor(){super(),this.blockSize=48,this.firstUse=!0,this.data=new Hd(this,Ss())}nextDataId(){return U0.nextDataId++}write(e,t,n){this.firstUse&&(this.firstUse=!1,X().get("IS_NODE")&&S.warn(`
|
|
============================
|
|
Hi there \u{1F44B}. Looks like you are running TensorFlow.js in Node.js. To speed things up dramatically, install our node backend, which binds to TensorFlow C++, by running npm i @tensorflow/tfjs-node, or npm i @tensorflow/tfjs-node-gpu if you have CUDA. Then call require('@tensorflow/tfjs-node'); (-gpu suffix for CUDA) at the start of your program. Visit https://github.com/tensorflow/tfjs-node for more details.
|
|
============================`));let s={id:this.nextDataId()};return this.data.set(s,{values:e,dtype:n,refCount:1}),s}makeTensorInfo(e,t,n){let s;if(t==="string"&&n!=null&&n.length>0&&w.isString(n[0])){let r=n.map(a=>w.encodeString(a));s=this.write(r,e,t)}else s=this.write(n,e,t);return{dataId:s,shape:e,dtype:t}}refCount(e){return this.data.has(e)?this.data.get(e).refCount:0}incRef(e){let t=this.data.get(e);t.refCount++}decRef(e){if(this.data.has(e)){let t=this.data.get(e);t.refCount--}}move(e,t,n,s,r){this.data.set(e,{values:t,dtype:s,refCount:r})}numDataIds(){return this.data.numDataIds()}async read(e){return this.readSync(e)}readSync(e){let{dtype:t,complexTensorInfos:n}=this.data.get(e);if(t==="complex64"){let s=this.readSync(n.real.dataId),r=this.readSync(n.imag.dataId);return S.mergeRealAndImagArrays(s,r)}return this.data.get(e).values}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(s=>w.decodeString(s))}catch(s){throw new Error("Failed to decode encoded string bytes into utf-8")}return De(e.shape,e.dtype,n)}makeOutput(e,t,n){let s=this.write(e,t,n);return Ss().makeTensorFromDataId(s,t,n,this)}disposeData(e,t=!1){if(this.data.has(e)){if(this.data.get(e).refCount--,!t&&this.data.get(e).refCount>0)return!1;let{complexTensorInfos:n}=this.data.get(e);n!=null&&(this.disposeData(n.real.dataId,!0),this.disposeData(n.imag.dataId,!0)),this.data.delete(e)}return!0}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}async time(e){let t=w.now();return e(),{kernelMs:w.now()-t}}memory(){return{unreliable:!0,reasons:["The reported memory is an upper bound. Due to automatic garbage collection, the true allocated memory may be less."]}}where(e){be([e],"where");let t=this.readSync(e.dataId);return $U(e.shape,t)}dispose(){}floatPrecision(){return 32}epsilon(){return super.epsilon()}},G0=U0;G0.nextDataId=0;var ev={};Ae(ev,{addImpl:()=>q0,bincountImpl:()=>nv,bincountReduceImpl:()=>j0,ceilImpl:()=>K0,concatImpl:()=>sv,equalImpl:()=>X0,expImpl:()=>Q0,expm1Impl:()=>J0,floorImpl:()=>eC,gatherNdImpl:()=>tC,gatherV2Impl:()=>nC,greaterEqualImpl:()=>rC,greaterImpl:()=>sC,lessEqualImpl:()=>iC,lessImpl:()=>aC,linSpaceImpl:()=>oC,logImpl:()=>uC,maxImpl:()=>lC,maximumImpl:()=>cC,minimumImpl:()=>dC,multiplyImpl:()=>rv,negImpl:()=>pC,notEqualImpl:()=>hC,prodImpl:()=>fC,rangeImpl:()=>iv,rsqrtImpl:()=>mC,sigmoidImpl:()=>gG,simpleAbsImpl:()=>H0,sliceImpl:()=>Pd,sparseFillEmptyRowsImpl:()=>bC,sparseReshapeImpl:()=>yC,sparseSegmentReductionImpl:()=>ov,sqrtImpl:()=>vG,squaredDifferenceImpl:()=>vC,stridedSliceImpl:()=>xC,stringNGramsImpl:()=>wC,stringSplitImpl:()=>kC,stringToHashBucketFastImpl:()=>IC,subImpl:()=>SC,tileImpl:()=>CC,topKImpl:()=>TC,transposeImpl:()=>av,uniqueImpl:()=>$C});function H0(e){let t=new Float32Array(e.length);for(let n=0;n<e.length;++n)t[n]=Math.abs(e[n]);return t}var _U=e=>{let{x:t}=e.inputs,n=e.backend;be(t,"abs");let s=new Float32Array(w.sizeFromShape(t.shape)),r=n.data.get(t.dataId).values;return s=H0(r),n.makeOutput(s,t.shape,t.dtype)},AU={kernelName:uo,backendName:"cpu",kernelFunc:_U};function At(e){return(t,n,s,r,a)=>{let i=S.assertAndGetBroadcastShape(t,n),o=i.length,u=w.computeStrides(i),l=w.sizeFromShape(i),c=w.getTypedArrayFromDType(a,l),p=t.length,d=n.length,h=w.computeStrides(t),f=w.computeStrides(n),m=S.getBroadcastDims(t,i),g=S.getBroadcastDims(n,i);if(m.length+g.length===0)for(let b=0;b<c.length;++b)c[b]=e(s[b%s.length],r[b%r.length]);else for(let b=0;b<c.length;++b){let y=w.indexToLoc(b,o,u),v=y.slice(-p);m.forEach(N=>v[N]=0);let x=w.locToIndex(v,p,h),k=y.slice(-d);g.forEach(N=>k[N]=0);let T=w.locToIndex(k,d,f);c[b]=e(s[x],r[T])}return[c,i]}}function Rn(e){let{inputs:t,backend:n}=e,{real:s,imag:r}=t,a=n.data.get(s.dataId).values,i=n.data.get(r.dataId).values,o=n.makeTensorInfo(s.shape,"complex64"),u=n.data.get(o.dataId);return u.complexTensorInfos={real:n.makeTensorInfo(s.shape,"float32",a),imag:n.makeTensorInfo(r.shape,"float32",i)},o}var EU={kernelName:Xd,backendName:"cpu",kernelFunc:Rn};function Od(e,t,n="float32"){if(n==="complex64"){let r=Od(e,t,"float32"),a=Od(e,t,"float32");return Rn({inputs:{real:r,imag:a},backend:e})}let s=w.makeZerosTypedArray(w.sizeFromShape(t),n);return e.makeTensorInfo(t,n,s)}function Os(e){let{inputs:t,backend:n}=e,{x:s}=t;return n.incRef(s.dataId),{dataId:s.dataId,shape:s.shape,dtype:s.dtype}}var RU={kernelName:Wa,backendName:"cpu",kernelFunc:Os};function ga(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.data.get(s.dataId).complexTensorInfos.real,a=n.data.get(r.dataId).values;return n.makeTensorInfo(r.shape,r.dtype,a)}var DU={kernelName:rp,backendName:"cpu",kernelFunc:ga};function wr(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dtype:a}=s;if(a==="complex64"){if(r.dtype==="complex64")return Os({inputs:{x:r},backend:n});let i=Od(n,r.shape,r.dtype),o=wr({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),u=Rn({inputs:{real:o,imag:i},backend:n});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),u}if(r.dtype==="complex64"){let i=ga({inputs:{input:r},backend:n}),o=wr({inputs:{x:i},backend:n,attrs:{dtype:a}});return n.disposeIntermediateTensorInfo(i),o}if(!w.hasEncodingLoss(r.dtype,a)){let i=Os({inputs:{x:r},backend:n});return{dataId:i.dataId,shape:i.shape,dtype:a}}if(a==="int32"){let i=n.data.get(r.dataId).values,o=Int32Array.from(i);return n.makeTensorInfo(r.shape,"int32",o)}if(a==="bool"){let i=n.data.get(r.dataId).values,o=w.toTypedArray([0],r.dtype),[u,l]=At((c,p)=>c!==p?1:0)(r.shape,[],i,o,"bool");return n.makeTensorInfo(l,"bool",u)}throw new Error(`Error in Cast: failed to cast ${r.dtype} to ${a}`)}var FU={kernelName:Ta,backendName:"cpu",kernelFunc:wr};function Gt(e,t,n,s){return n==null?({inputs:r,backend:a})=>{let{a:i,b:o}=r,u=a;be([i,o],e);let l=u.data.get(i.dataId).values,c=u.data.get(o.dataId).values,p=i.dtype==="string"?S.fromUint8ToStringArray(l):l,d=i.dtype==="string"?S.fromUint8ToStringArray(c):c,h=s||i.dtype,[f,m]=t(i.shape,o.shape,p,d,h);return u.makeTensorInfo(m,h,f)}:({inputs:r,backend:a})=>{let{a:i,b:o}=r,u=a;if(i.dtype==="complex64"||o.dtype==="complex64"){let l=wr({inputs:{x:i},backend:u,attrs:{dtype:"complex64"}}),c=u.data.get(l.dataId),p=c.complexTensorInfos.real,d=c.complexTensorInfos.imag,h=u.data.get(p.dataId).values,f=u.data.get(d.dataId).values,m=wr({inputs:{x:o},backend:u,attrs:{dtype:"complex64"}}),g=u.data.get(m.dataId),b=g.complexTensorInfos.real,y=g.complexTensorInfos.imag,v=u.data.get(b.dataId).values,x=u.data.get(y.dataId).values,[k,T,N]=n(i.shape,o.shape,h,f,v,x),E=u.makeTensorInfo(N,"float32",k),A=u.makeTensorInfo(N,"float32",T),P=Rn({inputs:{real:E,imag:A},backend:u});return u.disposeIntermediateTensorInfo(l),u.disposeIntermediateTensorInfo(m),u.disposeIntermediateTensorInfo(E),u.disposeIntermediateTensorInfo(A),P}else{let l=u.data.get(i.dataId).values,c=u.data.get(o.dataId).values,p=s||i.dtype,[d,h]=t(i.shape,o.shape,l,c,p);return u.makeTensorInfo(h,p,d)}}}function tv(e){return(t,n,s,r,a,i)=>{let o=S.assertAndGetBroadcastShape(t,n),u=w.sizeFromShape(o),l=o.length,c=w.computeStrides(o),p=w.getTypedArrayFromDType("float32",u),d=w.getTypedArrayFromDType("float32",u),h=S.getBroadcastDims(t,o),f=S.getBroadcastDims(n,o),m=S.mergeRealAndImagArrays(s,r),g=S.mergeRealAndImagArrays(a,i),b=t.length,y=w.computeStrides(t),v=n.length,x=w.computeStrides(n);if(h.length+f.length===0)for(let k=0;k<p.length;k++){let T=k%m.length,N=k%g.length,E=e(m[T*2],m[T*2+1],g[N*2],g[N*2+1]);p[k]=E.real,d[k]=E.imag}else for(let k=0;k<p.length;k++){let T=w.indexToLoc(k,l,c),N=T.slice(-b);h.forEach(F=>N[F]=0);let E=w.locToIndex(N,b,y),A=T.slice(-v);f.forEach(F=>A[F]=0);let P=w.locToIndex(A,v,x),R=e(m[E*2],m[E*2+1],g[P*2],g[P*2+1]);p[k]=R.real,d[k]=R.imag}return[p,d,o]}}var q0=At((e,t)=>e+t),OU=tv((e,t,n,s)=>({real:e+n,imag:t+s})),Kl=Gt(Sr,q0,OU),PU={kernelName:Sr,backendName:"cpu",kernelFunc:Kl};function nv(e,t,n,s,r){let a=w.sizeFromShape(s),i=w.makeZerosTypedArray(r,n);for(let o=0;o<e.length;o++){let u=e[o];if(u<0)throw new Error("Input x must be non-negative!");u>=r||(a>0?i[u]+=t[o]:i[u]+=1)}return i}function j0(e,t,n,s=!1){let r=e.shape[0],a=e.shape[1],i=De([r,n],t.dtype);for(let o=0;o<r;o++)for(let u=0;u<a;u++){let l=e.get(o,u);if(l<0)throw new Error("Input x must be non-negative!");l>=n||(s?i.set(1,o,l):t.size>0?i.set(i.get(o,l)+t.get(o,u),o,l):i.set(i.get(o,l)+1,o,l))}return i}function Rr(e){return(t,n,s)=>{let r=w.getTypedArrayFromDType(n,t.length);for(let a=0;a<t.length;++a)r[a]=e(t[a],s);return r}}function st(e,t,n){return({inputs:s,attrs:r,backend:a})=>{let{x:i}=s;if(be(i,e),i.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let o=a,u=o.data.get(i.dataId).values,l=w.sizeFromShape(i.shape),c=n||i.dtype,p=w.getArrayFromDType(c,l);for(let d=0;d<l;++d)p[d]=t(u[d],r);return o.makeTensorInfo(i.shape,c,p)}}function tu(e,t,n){return({inputs:s,attrs:r,backend:a})=>{let{x:i}=s;if(be(i,e),i.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let o=a,u=o.data.get(i.dataId).values,l=n||i.dtype,c=t(u,l,r);return o.makeTensorInfo(i.shape,l,c)}}var K0=Rr(e=>Math.ceil(e)),zU=tu($a,K0),MU={kernelName:$a,backendName:"cpu",kernelFunc:zU};function sv(e,t,n,s){let r=w.getArrayFromDType(n,w.sizeFromShape(t));if(s&&n!=="string"){let a=0;e.forEach(i=>{let o=w.sizeFromShape(i.shape);r.set(i.vals,a),a+=o})}else{let a=0;e.forEach(i=>{let o=n==="string"?S.fromUint8ToStringArray(i.vals):i.vals,u=0;for(let l=0;l<i.shape[0];++l){let c=l*t[1]+a;for(let p=0;p<i.shape[1];++p)r[c+p]=o[u++]}a+=i.shape[1]})}return r}var X0=At((e,t)=>e===t?1:0),Y0=Gt(mo,X0,null,"bool"),LU={kernelName:mo,backendName:"cpu",kernelFunc:Y0},Q0=Rr(e=>Math.exp(e)),Z0=tu(za,Q0,"float32"),BU={kernelName:za,backendName:"cpu",kernelFunc:Z0},J0=Rr(e=>Math.expm1(e)),VU=tu(bo,J0),WU={kernelName:bo,backendName:"cpu",kernelFunc:VU},eC=Rr(e=>Math.floor(e)),UU=tu(Ma,eC),GU={kernelName:Ma,backendName:"cpu",kernelFunc:UU};function tC(e,t,n,s,r,a,i,o,u){let l=De([s,a],n);for(let c=0;c<s;c++){let p=[],d=0;for(let h=0;h<r;h++){let f=e[c*r+h];d+=f*i[h],p.push(f)}if(d<0||d>=u/a)throw new Error(`Invalid indices: ${p} does not index into ${o}`);for(let h=0;h<a;h++)l.values[c*a+h]=t.get(...t.indexToLoc(d*a+h))}return l}function nC(e,t,n){let s=De(n,e.dtype);for(let r=0;r<s.size;++r){let i=s.indexToLoc(r).slice(),o=i[0],u=i[2],l=t.locToIndex([o,u]);i[2]=t.values[l];let c=e.locToIndex(i);0<=c&&c<e.values.length&&(s.values[r]=e.values[c])}return s}var sC=At((e,t)=>e>t?1:0),HU=Gt(wo,sC,null,"bool"),qU={kernelName:wo,backendName:"cpu",kernelFunc:HU},rC=At((e,t)=>e>=t?1:0),jU=Gt(Va,rC,null,"bool"),KU={kernelName:Va,backendName:"cpu",kernelFunc:jU},aC=At((e,t)=>e<t?1:0),XU=Gt(ko,aC,null,"bool"),YU={kernelName:ko,backendName:"cpu",kernelFunc:XU},iC=At((e,t)=>e<=t?1:0),QU=Gt(Io,iC,null,"bool"),ZU={kernelName:Io,backendName:"cpu",kernelFunc:QU};function oC(e,t,n){let s=(t-e)/(n-1),r=w.makeZerosTypedArray(n,"float32");r[0]=e;for(let a=1;a<r.length;a++)r[a]=r[a-1]+s;return r}var uC=Rr(e=>Math.log(e)),JU=tu(Ga,uC),eG={kernelName:Ga,backendName:"cpu",kernelFunc:JU};function lC(e,t,n,s){let r=w.getTypedArrayFromDType(s,w.sizeFromShape(n));for(let a=0;a<r.length;++a){let i=a*t,o=e[i];for(let u=0;u<t;++u){let l=e[i+u];(Number.isNaN(l)||l>o)&&(o=l)}r[a]=o}return r}var cC=At((e,t)=>Math.max(e,t)),tG=Gt(qa,cC),nG={kernelName:qa,backendName:"cpu",kernelFunc:tG},dC=At((e,t)=>Math.min(e,t)),sG=Gt(Ya,dC),rG={kernelName:Ya,backendName:"cpu",kernelFunc:sG},rv=At((e,t)=>e*t),aG=tv((e,t,n,s)=>({real:e*n-t*s,imag:e*s+t*n})),jp=Gt(Za,rv,aG),iG={kernelName:Za,backendName:"cpu",kernelFunc:jp};function pC(e,t,n){let s=w.createScalarValue(-1,n);return rv([],t,s,e,n)}function oG(e){let{inputs:t,backend:n}=e,{x:s}=t;be(s,"neg");let r=n.data.get(s.dataId).values,[a,i]=pC(r,s.shape,s.dtype);return n.makeTensorInfo(i,s.dtype,a)}var uG={kernelName:Co,backendName:"cpu",kernelFunc:oG},hC=At((e,t)=>e!==t?1:0),lG=Gt(No,hC,null,"bool"),cG={kernelName:No,backendName:"cpu",kernelFunc:lG};function av(e,t,n,s,r){let a=t.length,i=w.sizeFromShape(t),o=w.computeStrides(t),u=w.computeStrides(r),l=w.getTypedArrayFromDType(n,w.sizeFromShape(r));for(let c=0;c<i;++c){let p=w.indexToLoc(c,a,o),d=new Array(p.length);for(let f=0;f<d.length;f++)d[f]=p[s[f]];let h=w.locToIndex(d,a,u);l[h]=e[c]}return l}function wn(e){let{inputs:t,attrs:n,backend:s}=e,{x:r}=t,{perm:a}=n;be(r,"transpose");let i=r.shape.length,o=new Array(i);for(let p=0;p<o.length;p++)o[p]=r.shape[a[p]];let u=s.data.get(r.dataId).values,l=av(u,r.shape,r.dtype,a,o);return{dataId:s.write(l,o,r.dtype),shape:o,dtype:r.dtype}}var dG={kernelName:mi,backendName:"cpu",kernelFunc:wn};function fC(e,t,n,s){let[r,a]=S.computeOutAndReduceShapes(e,s),i=cn(t,"int32"),o=w.makeZerosTypedArray(w.sizeFromShape(r),i),u=w.sizeFromShape(a);for(let l=0;l<o.length;++l){let c=l*u,p=1;for(let d=0;d<u;++d)p*=n[c+d];o[l]=p}return{outVals:o,outShape:r,outDtype:i}}function pG(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:i}=s;be(r,"prod");let o=r.shape.length,u=w.parseAxisParam(a,r.shape),l=S.getAxesPermutation(u,o),c=u,p=r,d=[];l!=null&&(p=wn({inputs:{x:r},backend:n,attrs:{perm:l}}),d.push(p),c=S.getInnerMostAxes(c.length,o));let h=n.data.get(p.dataId).values,{outVals:f,outShape:m,outDtype:g}=fC(p.shape,p.dtype,h,c),b=m;return i&&(b=S.expandShapeToKeepDim(m,u)),d.forEach(y=>n.disposeIntermediateTensorInfo(y)),n.makeTensorInfo(b,g,f)}var hG={kernelName:ni,backendName:"cpu",kernelFunc:pG};function iv(e,t,n,s){let r=e===t,a=e<t&&n<0,i=t<e&&n>1;if(r||a||i)return w.makeZerosTypedArray(0,s);let o=Math.abs(Math.ceil((t-e)/n)),u=w.makeZerosTypedArray(o,s);t<e&&n===1&&(n=-1),u[0]=e;for(let l=1;l<u.length;l++)u[l]=u[l-1]+n;return u}var mC=Rr(e=>1/Math.sqrt(e)),fG=tu(ii,mC),mG={kernelName:ii,backendName:"cpu",kernelFunc:fG},gG=Rr(e=>1/(1+Math.exp(-e))),gC=st(ui,e=>1/(1+Math.exp(-e))),bG={kernelName:ui,backendName:"cpu",kernelFunc:gC};function Pd(e,t,n,s,r){let a=wt.isSliceContinous(s,t,n),i=w.sizeFromShape(n),o=w.computeStrides(s);if(a){let p=wt.computeFlatOffset(t,o);return r==="string"?e.slice(p,p+i):e.subarray(p,p+i)}let u=r==="string"?S.fromUint8ToStringArray(e):e,l=De(s,r,u),c=De(n,r);for(let p=0;p<c.size;++p){let d=c.indexToLoc(p),h=d.map((f,m)=>f+t[m]);c.set(l.get(...h),...d)}return r==="string"?S.fromStringArrayToUint8(c.values):c.values}function ba(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,size:i}=s;be(r,"slice");let[o,u]=wt.parseSliceParams(r,a,i);wt.assertParamsValid(r,o,u);let l=n.data.get(r.dataId).values,c=Pd(l,o,u,r.shape,r.dtype);return n.makeTensorInfo(u,r.dtype,c)}var yG={kernelName:zo,backendName:"cpu",kernelFunc:ba};function bC(e,t,n,s,r,a,i){let o=t[0],u=a[0],l=new Array(u),c=new Array(o),p=t[1];if(u===0){if(o!==0)throw new Error(S.getSparseFillEmptyRowsIndicesDenseShapeMismatch(o));let g=w.getArrayFromDType(n,0),b=w.getArrayFromDType(r,0);return[g,[0,p],b,l,c]}let d=!0,h=0,f=new Array(u).fill(0);for(let g=0;g<o;++g){let b=e[g*p];if(b<0)throw new Error(S.getSparseFillEmptyRowsNegativeIndexErrorMessage(g,b));if(b>=u)throw new Error(S.getSparseFillEmptyRowsOutOfRangeIndexErrorMessage(g,b,u));++f[b],d=d&&b>=h,h=b}let m=!0;for(let g=0;g<u;++g){let b=f[g]===0;l[g]=b,m=m&&!b,f[g]=Math.max(f[g],1),g>0&&(f[g]+=f[g-1])}if(m&&d){let g=e,b=s;for(let y=0;y<o;++y)c[y]=y;return[g,[o,p],b,l,c]}else{let g=f[u-1],b=w.getArrayFromDType(n,g*p),y=w.getArrayFromDType(r,g),v=new Array(u).fill(0);for(let x=0;x<o;++x){let k=e[x*p],T=v[k],N=(k===0?0:f[k-1])+T;v[k]++;for(let E=0;E<p;++E)b[N*p+E]=e[x*p+E];y[N]=s[x],c[x]=N}for(let x=0;x<u;++x)if(v[x]===0){let T=x===0?0:f[x-1];b[T*p+0]=x;for(let N=1;N<p;++N)b[T*p+N]=0;y[T]=i}return[b,[g,p],y,l,c]}}function yC(e,t,n,s,r){let a=w.sizeFromShape(s),i=t[0],o=r.length,u=[],l=1,c=-1;for(let g=0;g<o;++g){let b=r[g];if(b===-1){if(c!==-1)throw new Error(S.getSparseReshapeMultipleNegativeOneOutputDimErrorMessage(c,g));c=g,u.push(1)}else{if(b<0)throw new Error(S.getSparseReshapeNegativeOutputDimErrorMessage(g,b));l*=b,u.push(b)}}if(c!==-1){if(l<=0)throw new Error(S.getSparseReshapeEmptyTensorZeroOutputDimErrorMessage());let g=Math.trunc(a/l);if(l*g!==a)throw new Error(S.getSparseReshapeInputOutputMultipleErrorMessage(s,u));u[c]=g}if(w.sizeFromShape(u)!==a)throw new Error(S.getSparseReshapeInputOutputMismatchErrorMessage(s,u));let d=s.length,h=[];if(d>0){h[d-1]=1;for(let g=d-2;g>=0;--g)h[g]=h[g+1]*s[g+1]}let f=[];if(o>0){f[o-1]=1;for(let g=o-2;g>=0;--g)f[g]=f[g+1]*u[g+1]}let m=w.getArrayFromDType(n,i*o);for(let g=0;g<i;++g){let b=0;for(let y=0;y<d;++y)b+=e[g*d+y]*h[y];for(let y=0;y<o;++y)m[g*o+y]=Math.trunc(b/f[y]),b%=f[y]}return[m,[i,o],u]}function ov(e,t,n,s,r,a=!1,i=0){let o=s.length,u=[t[0],e.length/t[0]],l=u[1],p=o>0?r[o-1]+1:0;if(p<0)throw new Error(S.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());let d=t.slice();d[0]=p;let h=d.reduce((v,x)=>v*x,1),f=w.getArrayFromDType(n,h);if(o===0)return p>0&&f.fill(i),[f,d];if(p<=0)throw new Error(S.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());let m=0,g=1,b=0,y=r[m];for(;;){let v=0;if(g<o){if(v=r[g],y===v){++g;continue}if(y>=v)throw new Error(S.getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage())}if(y<0||y>=p)throw new Error(S.getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage(y,p));y>b&&f.fill(i,b*l,y*l);for(let x=m;x<g;++x){let k=s[x];if(k<0||k>=u[0])throw new Error(S.getSparseSegmentReductionIndicesOutOfRangeErrorMessage(x,s[x],u[0]));for(let T=0;T<l;T++)f[y*l+T]+=e[k*l+T]}if(a)for(let x=0;x<l;x++)f[y*l+x]/=g-m;if(m=g,++g,b=y+1,y=v,g>o)break}return b<p&&f.fill(i,b*l,p*l),[f,d]}var vG=Rr(e=>Math.sqrt(e)),xG=st(li,e=>Math.sqrt(e)),wG={kernelName:li,backendName:"cpu",kernelFunc:xG},vC=At((e,t)=>{let n=e-t;return n*n}),kG=Gt(pi,vC),IG={kernelName:pi,backendName:"cpu",kernelFunc:kG};function xC(e,t,n,s){let r=De(e,t.dtype);for(let a=0;a<r.size;a++){let i=r.indexToLoc(a),o=new Array(i.length);for(let u=0;u<o.length;u++)o[u]=i[u]*n[u]+s[u];r.set(t.get(...o),...i)}return r}var SG=class{constructor(e,t,n,s,r,a){this.separator=w.encodeString(e),this.nGramWidths=t,this.leftPad=w.encodeString(n),this.rightPad=w.encodeString(s),this.padWidth=r,this.preserveShort=a}getPadWidth(e){return Math.min(this.padWidth<0?e-1:this.padWidth,e-1)}getNumNGrams(e,t){let n=this.getPadWidth(t);return Math.max(0,e+2*n-t+1)}createNGrams(e,t,n,s,r,a){for(let i=0;i<r;++i){let o=this.getPadWidth(a),u=Math.max(0,o-i),l=Math.max(0,o-(r-(i+1))),c=a-(u+l),p=t+(u>0?0:i-o),d=0;d+=u*this.leftPad.length;for(let b=0;b<c;++b)d+=e[p+b].length;d+=l*this.rightPad.length,d+=(u+l+c-1)*this.separator.length,n[s+i]=new Uint8Array(d);let f=n[s+i],m=0,g=b=>b.forEach(y=>f[m++]=y);for(let b=0;b<u;++b)g(this.leftPad),g(this.separator);for(let b=0;b<c-1;++b)g(e[p+b]),g(this.separator);if(c>0){g(e[p+c-1]);for(let b=0;b<l;++b)g(this.separator),g(this.rightPad)}else{for(let b=0;b<l-1;++b)g(this.rightPad),g(this.separator);g(this.rightPad)}}}compute(e,t){let n=e.length,s=t.length;if(s>0){let o=t[0];if(o!==0)throw new Error(`First split value must be 0, got ${o}`);for(let u=1;u<s;++u){let l=t[u]>=o;if(l=l&&t[u]<=n,!l)throw new Error(`Invalid split value ${t[u]}, must be in [${o}, ${n}]`);o=t[u]}if(o!==n)throw new Error(`Last split value must be data size. Expected ${n}, got ${o}`)}let r=s-1,a=w.getArrayFromDType("int32",s);if(n===0||s===0){let o=new Array(n);for(let u=0;u<=r;++u)a[u]=0;return[o,a]}a[0]=0;for(let o=1;o<=r;++o){let u=t[o]-t[o-1],l=0;this.nGramWidths.forEach(c=>{l+=this.getNumNGrams(u,c)}),this.preserveShort&&u>0&&l===0&&(l=1),a[o]=a[o-1]+l}let i=new Array(a[r]);for(let o=0;o<r;++o){let u=t[o],l=a[o];if(this.nGramWidths.forEach(c=>{let p=t[o+1]-t[o],d=this.getNumNGrams(p,c);this.createNGrams(e,u,i,l,d,c),l+=d}),this.preserveShort&&l===a[o]){let c=t[o+1]-t[o];if(c===0)continue;let p=c+2*this.padWidth,d=1;this.createNGrams(e,u,i,l,d,p)}}return[i,a]}};function wC(e,t,n,s,r,a,i,o){return new SG(n,s,r,a,i,o).compute(e,t)}function CG(e,t,n,s){if(!e.length)return;if(t.length===0){for(let a=0;a<e.length;++a)s.push(e.subarray(a,a+1));return}if(t.length===1){let a=t[0],i=e.indexOf(a);for(;i!==-1;){let o=e.subarray(0,i);(!n||o.length!==0)&&s.push(o),e=e.subarray(i+1),i=e.indexOf(a)}(!n||e.length!==0)&&s.push(e);return}let r=0;for(let a=0;a<e.length+1;a++)if(a===e.length||t.indexOf(e[a])!==-1){let i=e.subarray(r,a);(!n||i.length!==0)&&s.push(i),r=a+1}}function kC(e,t,n){let s=e.length,r=[],a=0,i=0,o=new Array(s);for(let d=0;d<s;++d){let h=r.length;CG(e[d],t,n,r);let f=r.length-h;o[d]=f,a+=f,i=Math.max(i,f)}let u=w.getArrayFromDType("int32",a*2),l=new Array(a),c=[s,i],p=0;for(let d=0;d<s;++d)for(let h=0;h<o[d];++h)u[p*2]=d,u[p*2+1]=h,l[p]=r[p],++p;return[u,l,c]}function IC(e,t){let n=w.getArrayFromDType("int32",e.length);for(let s=0;s<e.length;++s)n[s]=w.fingerPrint64(e[s]).modulo(t).getLowBitsUnsigned();return n}var SC=At((e,t)=>e-t),NG=tv((e,t,n,s)=>({real:e-n,imag:t-s})),uv=Gt(hi,SC,NG),TG={kernelName:hi,backendName:"cpu",kernelFunc:uv};function CC(e,t){let n=new Array(e.rank);for(let r=0;r<n.length;r++)n[r]=e.shape[r]*t[r];let s=De(n,e.dtype);for(let r=0;r<s.values.length;++r){let a=s.indexToLoc(r),i=new Array(e.rank);for(let u=0;u<i.length;u++)i[u]=a[u]%e.shape[u];let o=e.locToIndex(i);s.values[r]=e.values[o]}return s}var Du=(e,t)=>{let n=t.value-e.value;return n===0?e.index-t.index:n};function NC(e,t,n=0,s=e.length-1){for(;s>n;){if(s-n>600){let o=s-n+1,u=t-n+1,l=Math.log(o),c=.5*Math.exp(2*l/3),p=.5*Math.sqrt(l*c*(o-c)/o)*Math.sign(u-o/2),d=Math.max(n,Math.floor(t-u*c/o+p)),h=Math.min(s,Math.floor(t+(o-u)*c/o+p));NC(e,t,d,h)}let r=e[t],a=n,i=s;for(w.swap(e,n,t),Du(e[s],r)>0&&w.swap(e,n,s);a<i;){for(w.swap(e,a,i),a++,i--;Du(e[a],r)<0;)a=a+1;for(;Du(e[i],r)>0;)i=i-1}Du(e[n],r)===0?w.swap(e,n,i):(i=i+1,w.swap(e,i,s)),i<=t&&(n=i+1),t<=i&&(s=i-1)}}function TC(e,t,n,s,r){let a=t[t.length-1],[i,o]=[e.length/a,a],u=w.getTypedArrayFromDType(n,i*s),l=w.getTypedArrayFromDType("int32",i*s);for(let p=0;p<i;p++){let d=p*o,h=e.subarray(d,d+o),f=new Array(h.length);h.forEach((y,v)=>f[v]={value:y,index:v}),s<f.length&&(NC(f,s),f=f.slice(0,s)),r&&f.sort(Du);let m=p*s,g=u.subarray(m,m+s),b=l.subarray(m,m+s);for(let y=0;y<s;y++)g[y]=f[y].value,b[y]=f[y].index}let c=t.slice();return c[c.length-1]=s,[De(c,n,u),De(c,"int32",l)]}function $C(e,t,n,s){let r=w.parseAxisParam(t,n)[0],a=[1,n[0],1];for(let f=0;f<r;f++)a[0]*=n[f];a[1]=n[r];for(let f=r+1;f<n.length;f++)a[2]*=n[f];let i={},o=new Int32Array(n[r]),u=new Vt(a,s,e),l=[],c=a[0]===1&&a[2]===1;for(let f=0;f<n[r];f++){let m;if(c)m=e[f].toString();else{let g=[];for(let b=0;b<a[0];b++)for(let y=0;y<a[2];y++)g.push(u.get(b,f,y));m=g.join(",")}if(i[m]!==void 0)o[f]=i[m];else{let g=Object.keys(i).length;i[m]=g,o[f]=g,l.push(f)}}let p=a.slice();p[1]=Object.keys(i).length;let d=new Vt(p,s);l.forEach((f,m)=>{for(let g=0;g<a[0];g++)for(let b=0;b<a[2];b++)d.set(u.get(g,f,b),g,m,b)});let h=n.slice();return h[r]=p[1],{outputValues:d.values,outputShape:h,indices:o}}var Xpe="0.0.0";fp("cpu",()=>new G0,1);var _C=st(Pa,e=>e>=0?e:Math.exp(e)-1),$G={kernelName:Pa,backendName:"cpu",kernelFunc:_C};function AC(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{alpha:a}=s;be([r],"leakyRelu");let i=w.sizeFromShape(r.shape),o=n.data.get(r.dataId).values,u=w.getTypedArrayFromDType("float32",i);for(let l=0;l<o.length;l++)u[l]=o[l]<0?a*o[l]:o[l];return n.makeTensorInfo(r.shape,"float32",u)}var _G={kernelName:Ua,backendName:"cpu",kernelFunc:AC},AG=At((e,t)=>e<0?t*e:e);function EC(e){let{inputs:t,backend:n}=e,{x:s,alpha:r}=t;be([s,r],"prelu");let a=n.data.get(s.dataId).values,i=n.data.get(r.dataId).values,[o,u]=AG(s.shape,r.shape,a,i,"float32");return n.makeTensorInfo(u,"float32",o)}var EG={kernelName:ti,backendName:"cpu",kernelFunc:EC},RC=st(si,e=>Math.max(0,e)),RG={kernelName:si,backendName:"cpu",kernelFunc:RC},DC=st(ai,e=>Math.min(Math.max(0,e),6)),DG={kernelName:ai,backendName:"cpu",kernelFunc:DC};function lv(e,t,n,s,r){if(n==="linear")return Os({inputs:{x:t},backend:e});if(n==="relu")return RC({inputs:{x:t},backend:e});if(n==="elu")return _C({inputs:{x:t},backend:e});if(n==="relu6")return DC({inputs:{x:t},backend:e});if(n==="prelu")return EC({inputs:{x:t,alpha:s},backend:e});if(n==="leakyrelu")return AC({inputs:{x:t},backend:e,attrs:{alpha:r}});if(n==="sigmoid")return gC({inputs:{x:t},backend:e});throw new Error(`Activation ${n} has not been implemented for the CPU backend.`)}function mt(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{shape:a}=s,i=w.sizeFromShape(r.shape),o=w.inferFromImplicitShape(a,i),u=w.sizeFromShape(o);w.assert(i===u,()=>`The new shape (${o}) has ${u} elements and the old shape (${r.shape}) has ${i} elements. The new shape and old shape must have the same number of elements.`),n.incRef(r.dataId);let l=n.data.get(r.dataId);if(l.complexTensorInfos!=null){let c=l.complexTensorInfos.real,p=l.complexTensorInfos.imag;c.shape=o,p.shape=o}return{dataId:r.dataId,shape:o,dtype:r.dtype}}var FG={kernelName:Ro,backendName:"cpu",kernelFunc:mt};function FC(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a}=t,{transposeA:i,transposeB:o}=s;be([r,a],"matMul");let u=r.shape.length,l=a.shape.length,c=i?r.shape[u-2]:r.shape[u-1],p=o?a.shape[l-1]:a.shape[l-2],d=i?r.shape[u-1]:r.shape[u-2],h=o?a.shape[l-2]:a.shape[l-1],f=r.shape.slice(0,-2),m=a.shape.slice(0,-2),g=w.sizeFromShape(f),b=w.sizeFromShape(m),v=Ko.assertAndGetBroadcastShape(r.shape.slice(0,-2),a.shape.slice(0,-2)).concat([d,h]);w.assert(c===p,()=>`Error in matMul: inner shapes (${c}) and (${p}) of Tensors with shapes ${r.shape} and ${a.shape} and transposeA=${i} and transposeB=${o} must match.`);let x=i?[g,c,d]:[g,d,c],k=o?[b,h,p]:[b,p,h],T=mt({inputs:{x:r},backend:n,attrs:{shape:x}}),N=mt({inputs:{x:a},backend:n,attrs:{shape:k}}),E=i?T.shape[1]:T.shape[2],A=i?T.shape[2]:T.shape[1],P=o?N.shape[1]:N.shape[2],R=Math.max(g,b),F=n.data.get(T.dataId).values,$=n.data.get(N.dataId).values,z=w.computeStrides(T.shape),W=w.computeStrides(N.shape),[q,K,Y]=i?[z[0],1,z[1]]:[z[0],z[1],1],[Z,te,ee]=o?[1,W[1],W[0]]:[W[1],1,W[0]],se=A*P,ne=De([R,A,P],T.dtype),oe=ne.values,re=n.blockSize;for(let le=0;le<R;le++)for(let me=0;me<A;me+=re)for(let ke=0;ke<P;ke+=re)for(let Se=0;Se<E;Se+=re){let Ee=Math.min(me+re,A),Pe=Math.min(ke+re,P),Xe=Math.min(Se+re,E);for(let Je=me;Je<Ee;Je++)for(let Ye=ke;Ye<Pe;Ye++){let tt=0;for(let Ce=Se;Ce<Xe;Ce++){let ut=Math.min(le,g-1)*q,at=Math.min(le,b-1)*ee,Jt=F[ut+Je*K+Ce*Y],Nt=$[Ce*Z+Ye*te+at];tt+=Jt*Nt}oe[le*se+(Je*P+Ye)]+=tt}}return n.disposeIntermediateTensorInfo(T),n.disposeIntermediateTensorInfo(N),n.makeTensorInfo(v,ne.dtype,ne.values)}var OG={kernelName:Na,backendName:"cpu",kernelFunc:FC};function PG(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a,bias:i,preluActivationWeights:o}=t,{transposeA:u,transposeB:l,activation:c,leakyreluAlpha:p}=s,d,h,f,m=[];d=FC({inputs:{a:r,b:a},attrs:{transposeA:u,transposeB:l},backend:n}),i&&(h=Kl({inputs:{a:d,b:i},backend:n}),m.push(d),d=h),c&&(f=lv(n,d,c,o,p),m.push(d),d=f);for(let b of m)n.disposeIntermediateTensorInfo(b);return d}var zG={kernelName:aa,backendName:"cpu",kernelFunc:PG},MG=st(rl,e=>Math.acos(e)),LG={kernelName:rl,backendName:"cpu",kernelFunc:MG},BG=st(al,e=>Math.acosh(e)),VG={kernelName:al,backendName:"cpu",kernelFunc:BG};function WG(e){let{inputs:t,backend:n}=e,s=t;be(t,"addN");let r=s.map(o=>n.data.get(o.dataId).values),a=De(s[0].shape,s[0].dtype),i=a.values;for(let o=0;o<s.length;o++){let u=r[o];for(let l=0;l<i.length;l++)i[l]+=u[l]}return n.makeTensorInfo(a.shape,a.dtype,a.values)}var UG={kernelName:Ia,backendName:"cpu",kernelFunc:WG};function GG(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:i}=s;be(r,"all");let o=w.parseAxisParam(a,r.shape),u=o,l=S.getAxesPermutation(u,r.shape.length),c=r;l!=null&&(c=wn({inputs:{x:r},backend:n,attrs:{perm:l}}),u=S.getInnerMostAxes(u.length,r.shape.length)),S.assertAxesAreInnerMostDims("all",u,c.shape.length);let[p,d]=S.computeOutAndReduceShapes(c.shape,u),h=w.sizeFromShape(d),f=w.makeZerosTypedArray(w.sizeFromShape(p),c.dtype),m=n.data.get(c.dataId).values;for(let b=0;b<f.length;++b){let y=b*h,v=m[y];for(let x=0;x<h;++x){let k=m[y+x];v=v&&k}f[b]=v}l!=null&&n.disposeIntermediateTensorInfo(c);let g=n.makeTensorInfo(p,c.dtype,f);if(i){let b=S.expandShapeToKeepDim(p,o),y=mt({inputs:{x:g},backend:n,attrs:{shape:b}});return n.disposeIntermediateTensorInfo(g),y}return g}var HG={kernelName:il,backendName:"cpu",kernelFunc:GG};function qG(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:i}=s;be(r,"any");let o=w.parseAxisParam(a,r.shape),u=o,l=S.getAxesPermutation(u,r.shape.length),c=r;l!=null&&(c=wn({inputs:{x:r},backend:n,attrs:{perm:l}}),u=S.getInnerMostAxes(u.length,r.shape.length)),S.assertAxesAreInnerMostDims("any",u,c.shape.length);let[p,d]=S.computeOutAndReduceShapes(c.shape,u),h=w.sizeFromShape(d),f=w.makeZerosTypedArray(w.sizeFromShape(p),c.dtype),m=n.data.get(c.dataId).values;for(let b=0;b<f.length;++b){let y=b*h,v=m[y];for(let x=0;x<h;++x){let k=m[y+x];v=v||k}f[b]=v}l!=null&&n.disposeIntermediateTensorInfo(c);let g=n.makeTensorInfo(p,c.dtype,f);if(i){let b=S.expandShapeToKeepDim(p,o),y=mt({inputs:{x:g},backend:n,attrs:{shape:b}});return n.disposeIntermediateTensorInfo(g),y}return g}var jG={kernelName:ol,backendName:"cpu",kernelFunc:qG};function KG(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s;be(r,"argMax");let i=w.parseAxisParam(a,r.shape),o=S.getAxesPermutation(i,r.shape.length),u=r,l=[];o!=null&&(u=wn({inputs:{x:r},backend:n,attrs:{perm:o}}),l.push(u),i=S.getInnerMostAxes(i.length,u.shape.length)),i=[i[0]],S.assertAxesAreInnerMostDims("argMax",i,u.shape.length);let[c,p]=S.computeOutAndReduceShapes(u.shape,i),d=w.sizeFromShape(c),h=w.makeZerosTypedArray(d,"int32"),f=w.sizeFromShape(p),m=n.data.get(u.dataId).values;for(let g=0;g<h.length;++g){let b=g*f,y=m[b],v=0;for(let x=0;x<f;++x){let k=m[b+x];k>y&&(y=k,v=x)}h[g]=v}return l.forEach(g=>n.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(c,"int32",h)}var XG={kernelName:Sa,backendName:"cpu",kernelFunc:KG};function YG(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s;be(r,"argMin");let i=w.parseAxisParam(a,r.shape),o=S.getAxesPermutation(i,r.shape.length),u=r,l=[];o!=null&&(u=wn({inputs:{x:r},backend:n,attrs:{perm:o}}),l.push(u),i=S.getInnerMostAxes(i.length,u.shape.length)),i=[i[0]],S.assertAxesAreInnerMostDims("argMin",i,u.shape.length);let[c,p]=S.computeOutAndReduceShapes(u.shape,i),d=w.sizeFromShape(c),h=w.makeZerosTypedArray(d,"int32"),f=w.sizeFromShape(p),m=n.data.get(u.dataId).values;for(let g=0;g<h.length;++g){let b=g*f,y=m[b],v=0;for(let x=0;x<f;++x){let k=m[b+x];k<y&&(y=k,v=x)}h[g]=v}return l.forEach(g=>n.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(c,"int32",h)}var QG={kernelName:ul,backendName:"cpu",kernelFunc:YG},ZG=st(ll,e=>Math.asin(e)),JG={kernelName:ll,backendName:"cpu",kernelFunc:ZG},eH=st(cl,e=>Math.asinh(e)),tH={kernelName:cl,backendName:"cpu",kernelFunc:eH},nH=st(dl,e=>Math.atan(e)),sH={kernelName:dl,backendName:"cpu",kernelFunc:nH},rH=At((e,t)=>Math.atan2(e,t)),aH=Gt(hl,rH),iH={kernelName:hl,backendName:"cpu",kernelFunc:aH},oH=st(pl,e=>Math.atanh(e)),uH={kernelName:pl,backendName:"cpu",kernelFunc:oH};function cv(e,t,n,s,r,a){let i=r.strideHeight,o=r.strideWidth,u=r.dilationHeight,l=r.dilationWidth,c=r.effectiveFilterHeight,p=r.effectiveFilterWidth,d=r.padInfo.top,h=r.padInfo.left,f=a==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,m=De(r.outShape,n),g=m.values,b=r.outShape[1]*r.outShape[2]*r.outShape[3],y=r.outShape[2]*r.outShape[3],v=r.outShape[3];for(let x=0;x<r.batchSize;++x){let k=x*b,T=x*s[0];for(let N=0;N<r.inChannels;++N)for(let E=0;E<r.outHeight;++E){let A=E*i-d,P=Math.max(0,A),R=Math.min(r.inHeight,c+A),F=k+E*y;for(let $=0;$<r.outWidth;++$){let z=$*o-h,W=Math.max(0,z),q=Math.min(r.inWidth,p+z),K=f,Y=0,Z=0;for(let ee=P;ee<R;ee+=u){let se=T+ee*s[1];for(let ne=W;ne<q;ne+=l){let oe=se+ne*s[2],re=e[oe+N];a==="max"&&re>K?K=re:a==="avg"&&(Y+=re,Z++)}if(isNaN(K))break}let te=F+$*v+N;g[te]=a==="avg"?Y/Z:K}}}return m}function OC(e,t,n,s,r=!1,a=!1){let i=De(s.outShape,"int32"),o=s.strideHeight,u=s.strideWidth,l=s.dilationHeight,c=s.dilationWidth,p=s.effectiveFilterHeight,d=s.effectiveFilterWidth,h=s.padInfo.top,f=s.padInfo.left,m=De(t,n,e);for(let g=0;g<s.batchSize;++g)for(let b=0;b<s.inChannels;++b)for(let y=0;y<s.outHeight;++y){let v=y*o-h,x=v;for(;x<0;)x+=l;let k=Math.min(s.inHeight,p+v);for(let T=0;T<s.outWidth;++T){let N=T*u-f,E=N;for(;E<0;)E+=c;let A=Math.min(s.inWidth,d+N),P=Number.NEGATIVE_INFINITY,R=-1;for(let F=x;F<k;F+=l){let $=F-v;for(let z=E;z<A;z+=c){let W=z-N,q=m.get(g,F,z,b);q>P&&(P=q,r?R=a?((g*s.inHeight+F)*s.inWidth+z)*s.inChannels+b:(F*s.inWidth+z)*s.inChannels+b:R=$*d+W)}}i.set(R,g,y,T,b)}}return i}function PC(e,t,n,s,r,a){let i=r.strideDepth,o=r.strideHeight,u=r.strideWidth,l=r.dilationDepth,c=r.dilationHeight,p=r.dilationWidth,d=r.effectiveFilterDepth,h=r.effectiveFilterHeight,f=r.effectiveFilterWidth,m=r.padInfo.front,g=r.padInfo.top,b=r.padInfo.left,y=a==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,v=De(r.outShape,n),x=v.values,k=r.outShape[1]*r.outShape[2]*r.outShape[3]*r.outShape[4],T=r.outShape[2]*r.outShape[3]*r.outShape[4],N=r.outShape[3]*r.outShape[4],E=r.outShape[4];for(let A=0;A<r.batchSize;++A){let P=A*k,R=A*s[0];for(let F=0;F<r.inChannels;++F)for(let $=0;$<r.outDepth;++$){let z=$*i-m,W=z;for(;W<0;)W+=l;let q=Math.min(r.inDepth,d+z),K=P+$*T;for(let Y=0;Y<r.outHeight;++Y){let Z=Y*o-g,te=Z;for(;te<0;)te+=c;let ee=Math.min(r.inHeight,h+Z),se=K+Y*N;for(let ne=0;ne<r.outWidth;++ne){let oe=ne*u-b,re=oe;for(;re<0;)re+=p;let le=Math.min(r.inWidth,f+oe),me=se+ne*E,ke=y,Se=0,Ee=0;for(let Xe=W;Xe<q;Xe+=l){let Je=R+Xe*s[1];for(let Ye=te;Ye<ee;Ye+=c){let tt=Je+Ye*s[2];for(let Ce=re;Ce<le;Ce+=p){let ut=tt+Ce*s[3],at=e[ut+F];if(a==="max"&&at>ke?ke=at:a==="avg"&&(Se+=at,Ee++),isNaN(ke))break}if(isNaN(ke))break}if(isNaN(ke))break}let Pe=me+F;x[Pe]=a==="avg"?Se/Ee:ke}}}}return v}function lH(e,t){let n=De(t.outShape,"int32"),s=t.strideDepth,r=t.strideHeight,a=t.strideWidth,i=t.dilationDepth,o=t.dilationHeight,u=t.dilationWidth,l=t.effectiveFilterDepth,c=t.effectiveFilterHeight,p=t.effectiveFilterWidth,d=t.padInfo.front,h=t.padInfo.top,f=t.padInfo.left;for(let m=0;m<t.batchSize;++m)for(let g=0;g<t.inChannels;++g)for(let b=0;b<t.outDepth;++b){let y=b*s-d,v=y;for(;v<0;)v+=i;let x=Math.min(t.inDepth,l+y);for(let k=0;k<t.outHeight;++k){let T=k*r-h,N=T;for(;N<0;)N+=o;let E=Math.min(t.inHeight,c+T);for(let A=0;A<t.outWidth;++A){let P=A*a-f,R=P;for(;R<0;)R+=u;let F=Math.min(t.inWidth,p+P),$=Number.NEGATIVE_INFINITY,z=-1;for(let W=v;W<x;W+=i){let q=W-y;for(let K=N;K<E;K+=o){let Y=K-T;for(let Z=R;Z<F;Z+=u){let te=Z-P,ee=e.get(m,W,K,Z,g);ee>=$&&($=ee,z=q*c*p+Y*c+te)}}}n.set(z,m,b,k,A,g)}}}return n}function cH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t;be(r,"avgPool");let{filterSize:a,strides:i,pad:o,dimRoundingMode:u}=s,l=1;w.assert(S.eitherStridesOrDilationsAreOne(i,l),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${l}'`);let c=S.computePool2DInfo(r.shape,a,i,l,o,u),p;if(c.filterWidth===1&&c.filterHeight===1&&w.arraysEqual(c.inShape,c.outShape))p=Os({inputs:{x:r},backend:n});else{let d=n.data.get(r.dataId).values,h=w.computeStrides(r.shape),f=cv(d,r.shape,r.dtype,h,c,"avg");p=n.makeTensorInfo(c.outShape,r.dtype,f.values)}return p}var dH={kernelName:Ca,backendName:"cpu",kernelFunc:cH};function pH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:i,pad:o,dimRoundingMode:u,dataFormat:l}=s;be(r,"avgPool3d");let c=S.computePool3DInfo(r.shape,a,i,1,o,u,l),p=n.data.get(r.dataId).values,d=PC(p,r.shape,r.dtype,w.computeStrides(r.shape),c,"avg");return n.makeTensorInfo(d.shape,"float32",d.values)}var hH={kernelName:Kd,backendName:"cpu",kernelFunc:pH};function fH(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,{filterSize:i,strides:o,pad:u,dimRoundingMode:l}=s;be([r,a],"avgPool3DGrad");let c=S.computePool3DInfo(a.shape,i,o,1,u,l),p=c.strideDepth,d=c.strideHeight,h=c.strideWidth,f=c.filterDepth,m=c.filterHeight,g=c.filterWidth,b=c.dilationDepth,y=c.dilationHeight,v=c.dilationWidth,x=c.effectiveFilterDepth,k=c.effectiveFilterHeight,T=c.effectiveFilterWidth,N=x-1-c.padInfo.front,E=T-1-c.padInfo.left,A=k-1-c.padInfo.top,P=De(a.shape,"float32"),R=1/(f*m*g),F=n.bufferSync(r);for(let $=0;$<c.batchSize;++$)for(let z=0;z<c.inChannels;++z)for(let W=0;W<c.inDepth;++W)for(let q=0;q<c.inHeight;++q)for(let K=0;K<c.inWidth;++K){let Y=W-N,Z=q-A,te=K-E,ee=0;for(let se=0;se<x;se+=b){let ne=(Y+se)/p;if(!(ne<0||ne>=c.outDepth||Math.floor(ne)!==ne))for(let oe=0;oe<k;oe+=y){let re=(Z+oe)/d;if(!(re<0||re>=c.outHeight||Math.floor(re)!==re))for(let le=0;le<T;le+=v){let me=(te+le)/h;if(me<0||me>=c.outWidth||Math.floor(me)!==me)continue;ee+=F.get($,ne,re,me,z)}}}P.set(ee*R,$,W,q,K,z)}return n.makeTensorInfo(P.shape,P.dtype,P.values)}var mH={kernelName:lg,backendName:"cpu",kernelFunc:fH};function gH(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,i=a;be([r,a],"avgPoolGrad");let{filterSize:o,strides:u,pad:l}=s,c=S.computePool2DInfo(i.shape,o,u,1,l),p=c.strideHeight,d=c.strideWidth,h=c.filterHeight,f=c.filterWidth,m=c.dilationHeight,g=c.dilationWidth,b=c.effectiveFilterHeight,y=c.effectiveFilterWidth,v=y-1-c.padInfo.left,x=b-1-c.padInfo.top,k=De(i.shape,"float32"),T=1/(h*f),N=n.data.get(r.dataId).values,E=De(r.shape,"float32",N);for(let A=0;A<c.batchSize;++A)for(let P=0;P<c.inChannels;++P)for(let R=0;R<c.inHeight;++R)for(let F=0;F<c.inWidth;++F){let $=R-x,z=F-v,W=0;for(let q=0;q<b;q+=m){let K=($+q)/p;if(!(K<0||K>=c.outHeight||Math.floor(K)!==K))for(let Y=0;Y<y;Y+=g){let Z=(z+Y)/d;if(Z<0||Z>=c.outWidth||Math.floor(Z)!==Z)continue;W+=E.get(A,K,Z,P)}}k.set(W*T,A,R,F,P)}return n.makeTensorInfo(k.shape,k.dtype,k.values)}var bH={kernelName:ug,backendName:"cpu",kernelFunc:gH};function yH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,scale:a,offset:i,mean:o,variance:u}=t;w.assert(o.shape.length===u.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),w.assert(i==null||o.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),w.assert(a==null||o.shape.length===a.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks."),be([r,o,u,a,i],"batchNorm");let{varianceEpsilon:l}=s;l==null&&(l=.001);let c=n.data.get(r.dataId).values,p=n.data.get(o.dataId).values,d=n.data.get(u.dataId).values,h=a?n.data.get(a.dataId).values:new Float32Array([1]),f=i?n.data.get(i.dataId).values:new Float32Array([0]),m=new Float32Array(c.length),g=f.length,b=h.length,y=d.length,v=p.length,x=0,k=0,T=0,N=0;for(let E=0;E<c.length;++E)m[E]=f[x++]+(c[E]-p[k++])*h[T++]/Math.sqrt(d[N++]+l),x>=g&&(x=0),k>=v&&(k=0),T>=b&&(T=0),N>=y&&(N=0);return n.makeTensorInfo(r.shape,r.dtype,m)}var vH={kernelName:Ba,backendName:"cpu",kernelFunc:yH};function xH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,crops:i}=s;be([r],"batchToSpaceND");let o=a.reduce((b,y)=>b*y),u=S.getReshaped(r.shape,a,o),l=S.getPermuted(u.length,a.length),c=S.getReshapedPermuted(r.shape,a,o),p=S.getSliceBeginCoords(i,a.length),d=S.getSliceSize(c,i,a.length),h=mt({inputs:{x:r},backend:n,attrs:{shape:u}}),f=wn({inputs:{x:h},backend:n,attrs:{perm:l}}),m=mt({inputs:{x:f},backend:n,attrs:{shape:c}}),g=ba({inputs:{x:m},backend:n,attrs:{begin:p,size:d}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(m),g}var wH={kernelName:lo,backendName:"cpu",kernelFunc:xH};function kH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,weights:a}=t,{size:i}=s,o=n.data.get(r.dataId).values,u=n.data.get(a.dataId).values,l=nv(o,u,a.dtype,a.shape,i);return n.makeTensorInfo([i],a.dtype,l)}var IH={kernelName:cg,backendName:"cpu",kernelFunc:kH};function SH(e){let{inputs:t,backend:n}=e,{s0:s,s1:r}=t,a=n.data.get(s.dataId).values,i=n.data.get(r.dataId).values,o=S.assertAndGetBroadcastShape(Array.from(a),Array.from(i));return n.makeTensorInfo([o.length],"int32",Int32Array.from(o))}var CH={kernelName:dg,backendName:"cpu",kernelFunc:SH},NH=st(Cr,(e,t)=>{let n=t;return e>n.clipValueMax?n.clipValueMax:e<n.clipValueMin?n.clipValueMin:e}),TH={kernelName:Cr,backendName:"cpu",kernelFunc:NH},$H=e=>{let{x:t}=e.inputs,n=e.backend,s=new Float32Array(w.sizeFromShape(t.shape)),r=n.data.get(t.dataId),a=r.complexTensorInfos.real,i=r.complexTensorInfos.imag,o=n.data.get(a.dataId).values,u=n.data.get(i.dataId).values;for(let l=0;l<o.length;l++){let c=o[l],p=u[l];s[l]=Math.hypot(c,p)}return n.makeOutput(s,t.shape,"float32")},_H={kernelName:Yd,backendName:"cpu",kernelFunc:$H};function ro(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.data.get(s.dataId).complexTensorInfos.imag,a=n.data.get(r.dataId).values;return n.makeTensorInfo(r.shape,r.dtype,a)}var AH={kernelName:ep,backendName:"cpu",kernelFunc:ro};function ao(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s,a=w.parseAxisParam(r,t[0].shape)[0],i=S.computeOutShape(t.map(m=>m.shape),a);if(w.sizeFromShape(i)===0)return n.makeTensorInfo(i,t[0].dtype,[]);let o=t.filter(m=>w.sizeFromShape(m.shape)>0);if(o.length===1)return Os({inputs:{x:o[0]},backend:n});let u=o.map(m=>m.shape);if(S.assertParamsConsistent(u,a),o[0].dtype==="complex64"){let m=o.map(x=>ga({inputs:{input:x},backend:n})),g=o.map(x=>ro({inputs:{input:x},backend:n})),b=ao({inputs:m,backend:n,attrs:{axis:a}}),y=ao({inputs:g,backend:n,attrs:{axis:a}}),v=Rn({inputs:{real:b,imag:y},backend:n});return m.forEach(x=>n.disposeIntermediateTensorInfo(x)),g.forEach(x=>n.disposeIntermediateTensorInfo(x)),n.disposeIntermediateTensorInfo(b),n.disposeIntermediateTensorInfo(y),v}let l=o.map(m=>{let g=w.sizeFromShape(m.shape.slice(a));return mt({inputs:{x:m},backend:n,attrs:{shape:[-1,g]}})}),c=l.map(m=>({vals:n.data.get(m.dataId).values,shape:m.shape}));i=S.computeOutShape(l.map(m=>m.shape),1);let p=l[0].shape[0]===1,d=sv(c,i,t[0].dtype,p),h=S.computeOutShape(o.map(m=>m.shape),a),f=n.makeTensorInfo(h,t[0].dtype,d);return l.forEach(m=>n.disposeIntermediateTensorInfo(m)),f}var EH={kernelName:co,backendName:"cpu",kernelFunc:ao};function zC(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:i,pad:o,dataFormat:u,dilations:l,dimRoundingMode:c}=s;be([r,a],"conv2d");let p=S.convertConv2DDataFormat(u),d=S.computeConv2DInfo(r.shape,a.shape,i,l,o,c,!1,p),h=d.filterHeight,f=d.filterWidth,m=d.dilationHeight,g=d.dilationWidth,b=d.padInfo.left,y=d.padInfo.top,v=d.dataFormat==="channelsLast",x=new Vt(d.outShape,r.dtype),k=w.computeStrides(r.shape),T=w.computeStrides(a.shape),N=k[0],E=v?k[1]:k[2],A=v?k[2]:1,P=v?1:k[1],R=x.strides[0],F=v?x.strides[1]:x.strides[2],$=v?x.strides[2]:1,z=v?1:x.strides[1],W=n.data.get(r.dataId).values,q=n.data.get(a.dataId).values,K=x.values;for(let Y=0;Y<d.batchSize;++Y){let Z=Y*N,te=Y*R;for(let ee=0;ee<d.outHeight;++ee){let se=te+ee*F,ne=ee*d.strideHeight-y;for(let oe=0;oe<h;++oe){let re=ne+oe*m;if(re<0||re>=d.inHeight)continue;let le=oe*T[0],me=Z+re*E;for(let ke=0;ke<d.outWidth;++ke){let Se=se+ke*$,Ee=ke*d.strideWidth-b;for(let Pe=0;Pe<f;++Pe){let Xe=Ee+Pe*g;if(Xe<0||Xe>=d.inWidth)continue;let Je=le+Pe*T[1],Ye=me+Xe*A,tt=Je;for(let Ce=0;Ce<d.inChannels;++Ce){let ut=W[Ye+Ce*P];for(let at=0;at<d.outChannels;++at)K[Se+at*z]+=ut*q[tt+at];tt+=d.outChannels}}}}}}return n.makeTensorInfo(x.shape,x.dtype,K)}var RH={kernelName:_a,backendName:"cpu",kernelFunc:zC};function DH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:i,pad:o,dataFormat:u,dimRoundingMode:l,filterShape:c}=s;be([r,a],"conv2dBackpropFilter");let p=S.convertConv2DDataFormat(u),d=S.computeConv2DInfo(r.shape,c,i,1,o,l,!1,p),{strideHeight:h,strideWidth:f,filterHeight:m,filterWidth:g}=d,b=d.dataFormat==="channelsLast",y=new Vt(d.filterShape,"float32"),v=d.padInfo.left,x=d.padInfo.top,k=n.data.get(r.dataId).values,T=n.data.get(a.dataId).values,N=new Vt(r.shape,r.dtype,k),E=new Vt(a.shape,a.dtype,T);for(let A=0;A<m;++A){let P=Math.max(0,Math.ceil((x-A)/h)),R=Math.min(d.outHeight,(d.inHeight+x-A)/h);for(let F=0;F<g;++F){let $=Math.max(0,Math.ceil((v-F)/f)),z=Math.min(d.outWidth,(d.inWidth+v-F)/f);for(let W=0;W<d.inChannels;++W)for(let q=0;q<d.outChannels;++q){let K=0;for(let Y=0;Y<d.batchSize;++Y)for(let Z=P;Z<R;++Z){let te=A+Z*h-x;for(let ee=$;ee<z;++ee){let se=F+ee*f-v;b?K+=N.get(Y,te,se,W)*E.get(Y,Z,ee,q):K+=N.get(Y,W,te,se)*E.get(Y,q,Z,ee)}}y.set(K,A,F,W,q)}}}return n.makeTensorInfo(y.shape,y.dtype,y.values)}var FH={kernelName:pg,backendName:"cpu",kernelFunc:DH};function OH(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{inputShape:i,strides:o,pad:u,dataFormat:l,dimRoundingMode:c}=s;be([r,a],"conv2dBackpropInput");let p=w.computeStrides(a.shape),d=w.computeStrides(r.shape),h=S.convertConv2DDataFormat(l),f=S.computeConv2DInfo(i,a.shape,o,1,u,c,!1,h),m=new Vt(f.inShape,"float32"),g=m.values,b=n.data.get(r.dataId).values,y=n.data.get(a.dataId).values,[v,x,k]=p,{batchSize:T,filterHeight:N,filterWidth:E,inChannels:A,inHeight:P,inWidth:R,outChannels:F,outHeight:$,outWidth:z,strideHeight:W,strideWidth:q}=f;h=f.dataFormat;let K=N-1-f.padInfo.top,Y=E-1-f.padInfo.left,Z=h==="channelsLast",te=m.strides[0],ee=Z?m.strides[1]:m.strides[2],se=Z?m.strides[2]:1,ne=Z?1:m.strides[1],oe=d[0],re=Z?d[1]:d[2],le=Z?d[2]:1,me=Z?1:d[1];for(let ke=0;ke<T;++ke)for(let Se=0;Se<A;++Se)for(let Ee=0;Ee<P;++Ee){let Pe=Ee-K,Xe=Math.max(0,Math.ceil(Pe/W)),Je=Math.min($,(N+Pe)/W);for(let Ye=0;Ye<R;++Ye){let tt=Ye-Y,Ce=Math.max(0,Math.ceil(tt/q)),ut=Math.min(z,(E+tt)/q),at=0;for(let Nt=Xe;Nt<Je;++Nt){let Cn=Nt*W-Pe;for(let Et=Ce;Et<ut;++Et){let en=Et*q-tt,Nn=oe*ke+re*Nt+le*Et,Tn=v*(N-1-Cn)+x*(E-1-en)+k*Se;for(let Yt=0;Yt<F;++Yt){let Dn=b[Nn+me*Yt],tn=y[Tn+Yt];at+=Dn*tn}}}let Jt=te*ke+ee*Ee+se*Ye+ne*Se;g[Jt]=at}}return n.makeTensorInfo(m.shape,m.dtype,m.values)}var PH={kernelName:Aa,backendName:"cpu",kernelFunc:OH};function zH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:i,pad:o,dilations:u}=s;be([r,a],"conv3d");let l=S.computeConv3DInfo(r.shape,a.shape,i,u,o),{filterDepth:c,filterHeight:p,filterWidth:d,dilationDepth:h,dilationHeight:f,dilationWidth:m,padInfo:g}=l,b=g.front,y=g.left,v=g.top,x=new Vt(l.outShape,r.dtype),k=n.data.get(r.dataId).values,T=n.data.get(a.dataId).values,N=x.values,E=w.computeStrides(r.shape),A=w.computeStrides(a.shape);for(let P=0;P<l.batchSize;++P){let R=P*E[0],F=P*x.strides[0];for(let $=0;$<l.outDepth;++$){let z=F+$*x.strides[1],W=$*l.strideDepth-b;for(let q=0;q<c;++q){let K=W+q*h;if(K<0||K>=l.inDepth)continue;let Y=q*A[0],Z=R+K*E[1];for(let te=0;te<l.outHeight;++te){let ee=z+te*x.strides[2],se=te*l.strideHeight-v;for(let ne=0;ne<p;++ne){let oe=se+ne*f;if(oe<0||oe>=l.inHeight)continue;let re=Y+ne*A[1],le=Z+oe*E[2];for(let me=0;me<l.outWidth;++me){let ke=ee+me*l.outChannels,Se=me*l.strideWidth-y;for(let Ee=0;Ee<d;++Ee){let Pe=Se+Ee*m;if(Pe<0||Pe>=l.inWidth)continue;let Xe=re+Ee*A[2],Je=le+Pe*l.inChannels,Ye=Xe;for(let tt=0;tt<l.inChannels;++tt){let Ce=k[Je+tt];for(let ut=0;ut<l.outChannels;++ut)N[ke+ut]+=Ce*T[Ye+ut];Ye+=l.outChannels}}}}}}}}return n.makeTensorInfo(x.shape,x.dtype,x.values)}var MH={kernelName:Qd,backendName:"cpu",kernelFunc:zH};function LH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:i,pad:o,filterShape:u}=s;be([r,a],"conv3dBackpropFilterV2");let l=w.computeStrides(r.shape),c=w.computeStrides(a.shape),p=S.computeConv3DInfo(r.shape,u,i,1,o),d=p.strideDepth,h=p.strideHeight,f=p.strideWidth,m=p.filterDepth,g=p.filterHeight,b=p.filterWidth,y=new Vt(p.filterShape,"float32"),v=y.values,[x,k,T,N]=y.strides,E=n.data.get(a.dataId).values,[A,P,R,F]=c,$=n.data.get(r.dataId).values,[z,W,q,K]=l,Y=p.padInfo.front,Z=p.padInfo.left,te=p.padInfo.top;for(let ee=0;ee<m;++ee){let se=Math.max(0,Math.ceil((Y-ee)/d)),ne=Math.min(p.outDepth,(p.inDepth+Y-ee)/d),oe=ee*x;for(let re=0;re<g;++re){let le=Math.max(0,Math.ceil((te-re)/h)),me=Math.min(p.outHeight,(p.inHeight+te-re)/h),ke=re*k+oe;for(let Se=0;Se<b;++Se){let Ee=Math.max(0,Math.ceil((Z-Se)/f)),Pe=Math.min(p.outWidth,(p.inWidth+Z-Se)/f),Xe=Se*T+ke;for(let Je=0;Je<p.inChannels;++Je){let Ye=Je*N+Xe;for(let tt=0;tt<p.outChannels;++tt){let Ce=0;for(let ut=0;ut<p.batchSize;++ut){let at=ut*z,Jt=ut*A;for(let Nt=se;Nt<ne;++Nt){let Et=(ee+Nt*d-Y)*W+at,en=Nt*P+Jt;for(let Nn=le;Nn<me;++Nn){let Yt=(re+Nn*h-te)*q+Et,Dn=Nn*R+en;for(let tn=Ee;tn<Pe;++tn){let Ls=(Se+tn*f-Z)*K+Yt,Si=tn*F+Dn;Ce+=$[Ls+Je]*E[Si+tt]}}}}v[Ye+tt]=Ce}}}}}return n.makeTensorInfo(y.shape,y.dtype,y.values)}var BH={kernelName:hg,backendName:"cpu",kernelFunc:LH};function VH(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{pad:i,strides:o,inputShape:u}=s;be([r],"conv3dBackpropInputV2");let l=w.computeStrides(r.shape),c=w.computeStrides(a.shape),p=S.computeConv3DInfo(u,a.shape,o,1,i),d=new Vt(p.inShape,"float32"),h=d.values,[f,m,g,b]=d.strides,y=n.data.get(r.dataId).values,[v,x,k,T]=l,N=n.data.get(a.dataId).values,[E,A,P,R]=c,{batchSize:F,filterDepth:$,filterHeight:z,filterWidth:W,inChannels:q,inDepth:K,inHeight:Y,inWidth:Z,outChannels:te,outDepth:ee,outHeight:se,outWidth:ne,strideDepth:oe,strideHeight:re,strideWidth:le}=p,me=$-1-p.padInfo.front,ke=z-1-p.padInfo.top,Se=W-1-p.padInfo.left;for(let Ee=0;Ee<F;++Ee)for(let Pe=0;Pe<q;++Pe)for(let Xe=0;Xe<K;++Xe){let Je=Xe-me,Ye=Math.max(0,Math.ceil(Je/oe)),tt=Math.min(ee,($+Je)/oe);for(let Ce=0;Ce<Y;++Ce){let ut=Ce-ke,at=Math.max(0,Math.ceil(ut/re)),Jt=Math.min(se,(z+ut)/re);for(let Nt=0;Nt<Z;++Nt){let Cn=Nt-Se,Et=Math.max(0,Math.ceil(Cn/le)),en=Math.min(ne,(W+Cn)/le),Nn=0;for(let Tn=Ye;Tn<tt;++Tn){let Yt=Tn*oe-Je;for(let Dn=at;Dn<Jt;++Dn){let tn=Dn*re-ut;for(let Ms=Et;Ms<en;++Ms){let Ls=Ms*le-Cn,Si=v*Ee+x*Tn+k*Dn+T*Ms,er=E*($-1-Yt)+A*(z-1-tn)+P*(W-1-Ls)+R*Pe;for(let Bs=0;Bs<te;++Bs){let hu=y[Si+Bs],Ci=N[er+Bs];Nn+=hu*Ci}}}}h[f*Ee+m*Xe+g*Ce+b*Nt+Pe]=Nn}}}return n.makeTensorInfo(d.shape,d.dtype,d.values)}var WH={kernelName:fg,backendName:"cpu",kernelFunc:VH},UH=st(Ea,e=>Math.cos(e)),GH={kernelName:Ea,backendName:"cpu",kernelFunc:UH},HH=st(Ra,e=>Math.cosh(e)),qH={kernelName:Ra,backendName:"cpu",kernelFunc:HH};function jH(e){let{inputs:t,backend:n,attrs:s}=e,{image:r,boxes:a,boxInd:i}=t,{cropSize:o,method:u,extrapolationValue:l}=s,[c,p,d,h]=r.shape,f=a.shape[0],[m,g]=o,b=De([f,m,g,h],"float32"),y=n.data.get(a.dataId).values,v=n.data.get(i.dataId).values,x=n.data.get(r.dataId).values,k=w.computeStrides(r.shape),T=w.computeStrides(b.shape);for(let N=0;N<f;N++){let E=N*4,A=y[E],P=y[E+1],R=y[E+2],F=y[E+3],$=v[N];if($>=c)continue;let z=m>1?(R-A)*(p-1)/(m-1):0,W=g>1?(F-P)*(d-1)/(g-1):0;for(let q=0;q<m;q++){let K=m>1?A*(p-1)+q*z:.5*(A+R)*(p-1);if(K<0||K>p-1){for(let Y=0;Y<g;Y++)for(let Z=0;Z<h;Z++){let te=Z+Y*T[2]+q*T[1]+N*T[0];b.values[te]=l}continue}if(u==="bilinear"){let Y=Math.floor(K),Z=Math.ceil(K),te=K-Y;for(let ee=0;ee<g;ee++){let se=g>1?P*(d-1)+ee*W:.5*(P+F)*(d-1);if(se<0||se>d-1){for(let le=0;le<h;le++){let me=le+ee*T[2]+q*T[1]+N*T[0];b.values[me]=l}continue}let ne=Math.floor(se),oe=Math.ceil(se),re=se-ne;for(let le=0;le<h;le++){let me=le+ne*k[2]+Y*k[1]+$*k[0],ke=x[me];me=le+oe*k[2]+Y*k[1]+$*k[0];let Se=x[me];me=le+ne*k[2]+Z*k[1]+$*k[0];let Ee=x[me];me=le+oe*k[2]+Z*k[1]+$*k[0];let Pe=x[me],Xe=ke+(Se-ke)*re,Je=Ee+(Pe-Ee)*re;me=le+ee*T[2]+q*T[1]+N*T[0],b.values[me]=Xe+(Je-Xe)*te}}}else for(let Y=0;Y<g;++Y){let Z=g>1?P*(d-1)+Y*W:.5*(P+F)*(d-1);if(Z<0||Z>d-1){for(let se=0;se<h;se++){let ne=se+Y*T[2]+q*T[1]+N*T[0];b.values[ne]=l}continue}let te=Math.round(Z),ee=Math.round(K);for(let se=0;se<h;se++){let ne=se+te*k[2]+ee*k[1]+$*k[0],oe=se+Y*T[2]+q*T[1]+N*T[0];b.values[oe]=x[ne]}}}}return n.makeTensorInfo(b.shape,b.dtype,b.values)}var KH={kernelName:ho,backendName:"cpu",kernelFunc:jH};function XH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,exclusive:i,reverse:o}=s;be(r,"cumprod");let u=S.getAxesPermutation([a],r.shape.length),l=r;u!=null&&(l=wn({inputs:{x:r},backend:n,attrs:{perm:u}}));let c=S.getInnerMostAxes(1,r.shape.length)[0];if(c!==l.shape.length-1)throw new Error(`backend.cumprod in CPU expects an inner-most axis=${l.shape.length-1} but got axis=${c}`);let p=cn(l.dtype,"int32"),d=w.makeOnesTypedArray(w.sizeFromShape(l.shape),p),h=n.data.get(l.dataId).values,f=l.shape[l.shape.length-1],m=o?(b,y)=>b+f-y-1:(b,y)=>b+y;for(let b=0;b<h.length;b+=f)for(let y=0;y<f;y++){let v=m(b,y);if(y===0)d[v]=i?1:h[v];else{let x=m(b,y-1);d[v]=i?h[x]*d[x]:h[v]*d[x]}}let g=n.makeTensorInfo(l.shape,p,d);if(u!=null){let b=S.getUndoAxesPermutation(u),y=wn({inputs:{x:g},backend:n,attrs:{perm:b}});return n.disposeIntermediateTensorInfo(g),n.disposeIntermediateTensorInfo(l),y}return g}var YH={kernelName:po,backendName:"cpu",kernelFunc:XH};function QH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,exclusive:i,reverse:o}=s;be(r,"cumsum");let u=S.getAxesPermutation([a],r.shape.length),l=r;u!=null&&(l=wn({inputs:{x:r},backend:n,attrs:{perm:u}}));let c=S.getInnerMostAxes(1,r.shape.length)[0];if(c!==l.shape.length-1)throw new Error(`backend.cumsum in CPU expects an inner-most axis=${l.shape.length-1} but got axis=${c}`);let p=cn(l.dtype,"int32"),d=w.makeZerosTypedArray(w.sizeFromShape(l.shape),p),h=n.data.get(l.dataId).values,f=l.shape[l.shape.length-1],m=o?(b,y)=>b+f-y-1:(b,y)=>b+y;for(let b=0;b<h.length;b+=f)for(let y=0;y<f;y++){let v=m(b,y);if(y===0)d[v]=i?0:h[v];else{let x=m(b,y-1);d[v]=i?h[x]+d[x]:h[v]+d[x]}}let g=n.makeTensorInfo(l.shape,p,d);if(u!=null){let b=S.getUndoAxesPermutation(u),y=wn({inputs:{x:g},backend:n,attrs:{perm:b}});return n.disposeIntermediateTensorInfo(g),n.disposeIntermediateTensorInfo(l),y}return g}var ZH={kernelName:Da,backendName:"cpu",kernelFunc:QH};function JH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,weights:a}=t,{size:i,binaryOutput:o}=s;if(r.shape.length===1){let u=n.data.get(r.dataId).values,l=n.data.get(a.dataId).values,c=nv(u,l,a.dtype,a.shape,i);return n.makeTensorInfo([i],a.dtype,c)}else if(r.shape.length===2){let u=n.bufferSync(r),l=n.bufferSync(a),c=j0(u,l,i,o);return n.makeTensorInfo(c.shape,a.dtype,c.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${r.shape.length}.`)}var e6={kernelName:mg,backendName:"cpu",kernelFunc:JH};function t6(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockSize:a,dataFormat:i}=s;w.assert(i==="NHWC",()=>`Only NHWC dataFormat supported on CPU for depthToSpace. Got ${i}`);let o=r.shape[0],u=r.shape[1],l=r.shape[2],c=r.shape[3],p=u*a,d=l*a,h=c/(a*a),f=n.data.get(r.dataId).values,m=new Float32Array(o*p*d*h),g=0;for(let b=0;b<o;++b)for(let y=0;y<p;++y){let v=Math.floor(y/a),x=y%a;for(let k=0;k<d;++k){let T=Math.floor(k/a),N=k%a,E=(x*a+N)*h;for(let A=0;A<h;++A){let R=A+E+c*(T+l*(v+u*b));m[g++]=f[R]}}}return n.makeTensorInfo([o,p,d,h],r.dtype,m)}var n6={kernelName:fo,backendName:"cpu",kernelFunc:t6};function MC(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:i,pad:o,dilations:u,dimRoundingMode:l}=s;be([r,a],"depthwiseConv2DNative");let c=w.computeStrides(r.shape),p=w.computeStrides(a.shape),d=u;d==null&&(d=[1,1]),w.assert(S.eitherStridesOrDilationsAreOne(i,d),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${d}'`);let h=S.computeConv2DInfo(r.shape,a.shape,i,d,o,l,!0),{filterHeight:f,filterWidth:m,dilationHeight:g,dilationWidth:b,padInfo:y}=h,v=y.left,x=y.top,k=h.outChannels/h.inChannels,T=new Vt(h.outShape,r.dtype),N=n.data.get(r.dataId).values,E=n.data.get(a.dataId).values,A=T.values;for(let P=0;P<h.batchSize;++P){let R=P*c[0],F=P*T.strides[0];for(let $=0;$<h.outHeight;++$){let z=F+$*T.strides[1],W=$*h.strideHeight-x;for(let q=0;q<f;++q){let K=W+q*g;if(K<0||K>=h.inHeight)continue;let Y=q*p[0],Z=R+K*c[1];for(let te=0;te<h.outWidth;++te){let ee=z+te*T.strides[2],se=te*h.strideWidth-v;for(let ne=0;ne<m;++ne){let oe=se+ne*b;if(oe<0||oe>=h.inWidth)continue;let re=Y+ne*p[1],le=Z+oe*h.inChannels,me=ee,ke=re;for(let Se=0;Se<h.inChannels;++Se){let Ee=N[le+Se];for(let Pe=0;Pe<k;++Pe)A[me+Pe]+=Ee*E[ke+Pe];me+=k,ke+=k}}}}}}return n.makeTensorInfo(T.shape,T.dtype,T.values)}var s6={kernelName:Fa,backendName:"cpu",kernelFunc:MC};function r6(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:i,dilations:o,pad:u,dimRoundingMode:l,filterShape:c}=s;be([r,a],"depthwiseConv2dNativeBackpropFilter");let p=S.computeConv2DInfo(r.shape,c,i,o,u,l,!0),{strideHeight:d,strideWidth:h,filterHeight:f,filterWidth:m}=p,g=new Vt(p.filterShape,"float32"),b=p.padInfo.left,y=p.padInfo.top,v=p.outChannels/p.inChannels,x=n.data.get(r.dataId).values,k=new Vt(r.shape,r.dtype,x),T=n.data.get(a.dataId).values,N=new Vt(a.shape,a.dtype,T);for(let E=0;E<f;++E){let A=Math.max(0,Math.ceil((y-E)/d)),P=Math.min(p.outHeight,(p.inHeight+y-E)/d);for(let R=0;R<m;++R){let F=Math.max(0,Math.ceil((b-R)/h)),$=Math.min(p.outWidth,(p.inWidth+b-R)/h);for(let z=0;z<p.outChannels;++z){let W=Math.trunc(z/v),q=z%v,K=0;for(let Y=0;Y<p.batchSize;++Y)for(let Z=A;Z<P;++Z){let te=E+Z*d-y;for(let ee=F;ee<$;++ee){let se=R+ee*h-b;K+=k.get(Y,te,se,W)*N.get(Y,Z,ee,z)}}g.set(K,E,R,W,q)}}}return n.makeTensorInfo(g.shape,g.dtype,g.values)}var a6={kernelName:gg,backendName:"cpu",kernelFunc:r6};function i6(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{strides:i,dilations:o,pad:u,dimRoundingMode:l,inputShape:c}=s;be([r,a],"depthwiseConv2DNativeBackpropInput");let p=w.computeStrides(r.shape),d=w.computeStrides(a.shape),h=S.computeConv2DInfo(c,a.shape,i,o,u,l,!0),f=new Vt(h.inShape,"float32"),m=f.values,[g,b,y]=f.strides,v=n.data.get(r.dataId).values,[x,k,T]=p,N=n.data.get(a.dataId).values,[E,A,P]=d,{batchSize:R,filterHeight:F,filterWidth:$,inChannels:z,inHeight:W,inWidth:q,outChannels:K,outHeight:Y,outWidth:Z,strideHeight:te,strideWidth:ee}=h,se=F-1-h.padInfo.top,ne=$-1-h.padInfo.left,oe=K/z;for(let re=0;re<R;++re)for(let le=0;le<z;++le)for(let me=0;me<W;++me){let ke=me-se,Se=Math.max(0,Math.ceil(ke/te)),Ee=Math.min(Y,(F+ke)/te);for(let Pe=0;Pe<q;++Pe){let Xe=Pe-ne,Je=Math.max(0,Math.ceil(Xe/ee)),Ye=Math.min(Z,($+Xe)/ee),tt=0;for(let Ce=Se;Ce<Ee;++Ce){let ut=Ce*te-ke;for(let at=Je;at<Ye;++at){let Jt=at*ee-Xe,Nt=x*re+k*Ce+T*at,Cn=E*(F-1-ut)+A*($-1-Jt)+P*le;for(let Et=0;Et<oe;++Et){let en=le*oe+Et,Nn=v[Nt+en],Tn=N[Cn+Et];tt+=Nn*Tn}}}m[g*re+b*me+y*Pe+le]=tt}}return n.makeTensorInfo(f.shape,f.dtype,f.values)}var o6={kernelName:bg,backendName:"cpu",kernelFunc:i6};function u6(e){let{inputs:t,backend:n}=e,{x:s}=t,r=w.sizeFromShape(s.shape),a=n.data.get(s.dataId).values,i=De([r,r],s.dtype),o=i.values;for(let l=0;l<a.length;l++)o[l*r+l]=a[l];let u=[...s.shape,...s.shape];return n.makeTensorInfo(u,i.dtype,i.values)}var l6={kernelName:yg,backendName:"cpu",kernelFunc:u6},c6={kernelName:Zd,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:s,filter:r}=e,{strides:a,pad:i,dilations:o}=n,u=t,l=u.data.get(s.dataId).values,c=s.shape.length,p=u.data.get(r.dataId).values,d=r.shape.length,{batchSize:h,inHeight:f,inWidth:m,inChannels:g,outHeight:b,outWidth:y,padInfo:v,strideHeight:x,strideWidth:k,filterHeight:T,filterWidth:N,dilationHeight:E,dilationWidth:A,outShape:P}=S.computeDilation2DInfo(s.shape,r.shape,a,i,"NHWC",o),R=w.sizeFromShape(P),F=P.length,$=w.getArrayFromDType(s.dtype,R);for(let W=0;W<h;++W)for(let q=0;q<b;++q){let K=q*x-v.top;for(let Y=0;Y<y;++Y){let Z=Y*k-v.left;for(let te=0;te<g;++te){let ee=Number.MIN_SAFE_INTEGER;for(let ne=0;ne<T;++ne){let oe=K+ne*E;if(oe>=0&&oe<f)for(let re=0;re<N;++re){let le=Z+re*A;if(le>=0&&le<m){let me=w.locToIndex([W,oe,le,te],c,w.computeStrides(s.shape)),ke=w.locToIndex([ne,re,te],d,w.computeStrides(r.shape)),Se=l[me]+p[ke];Se>ee&&(ee=Se)}}}let se=w.locToIndex([W,q,Y,te],F,w.computeStrides(P));$[se]=ee}}}return{dataId:u.write(w.toTypedArray($,s.dtype),P,s.dtype),shape:P,dtype:s.dtype}}},d6={kernelName:Zf,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:s,filter:r,dy:a}=e,{strides:i,pad:o,dilations:u}=n,l=t,c=w.toNestedArray(s.shape,l.data.get(s.dataId).values),p=w.toNestedArray(r.shape,l.data.get(r.dataId).values),{batchSize:d,inHeight:h,inWidth:f,inChannels:m,outHeight:g,outWidth:b,padInfo:y,strideHeight:v,strideWidth:x,filterHeight:k,filterWidth:T,dilationHeight:N,dilationWidth:E,outShape:A}=S.computeDilation2DInfo(s.shape,r.shape,i,o,"NHWC",u);w.assert(a.rank===A.length,()=>`Error in ${Zf}, dy must have the same rank as output ${A.length}, but got ${a.rank}`);let P=w.toNestedArray(A,l.data.get(a.dataId).values),R=w.makeZerosNestedTypedArray(r.shape,r.dtype);for(let $=0;$<d;++$)for(let z=0;z<g;++z){let W=z*v-y.top;for(let q=0;q<b;++q){let K=q*x-y.left;for(let Y=0;Y<m;++Y){let Z=Number.MIN_SAFE_INTEGER,te=0,ee=0;for(let se=0;se<k;++se){let ne=W+se*N;if(ne>=0&&ne<h)for(let oe=0;oe<T;++oe){let re=K+oe*E;if(re>=0&&re<f){let le=c[$][ne][re][Y]+p[se][oe][Y];le>Z&&(Z=le,te=se,ee=oe)}}}R[te][ee][Y]+=P[$][z][q][Y]}}}return{dataId:l.write(w.toTypedArray(R,s.dtype),r.shape,r.dtype),shape:r.shape,dtype:r.dtype}}},p6={kernelName:Qf,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:s,filter:r,dy:a}=e,{strides:i,pad:o,dilations:u}=n,l=t,c=w.toNestedArray(s.shape,l.data.get(s.dataId).values),p=w.toNestedArray(r.shape,l.data.get(r.dataId).values),{batchSize:d,inHeight:h,inWidth:f,inChannels:m,outHeight:g,outWidth:b,padInfo:y,strideHeight:v,strideWidth:x,filterHeight:k,filterWidth:T,dilationHeight:N,dilationWidth:E,outShape:A}=S.computeDilation2DInfo(s.shape,r.shape,i,o,"NHWC",u);w.assert(a.rank===A.length,()=>`Error in ${Qf}, dy must have the same rank as output ${A.length}, but got ${a.rank}`);let P=w.toNestedArray(A,l.data.get(a.dataId).values),R=w.makeZerosNestedTypedArray(s.shape,s.dtype);for(let $=0;$<d;++$)for(let z=0;z<g;++z){let W=z*v-y.top;for(let q=0;q<b;++q){let K=q*x-y.left;for(let Y=0;Y<m;++Y){let Z=Number.MIN_SAFE_INTEGER,te=W<0?0:W,ee=K<0?0:K;for(let se=0;se<k;++se){let ne=W+se*N;if(ne>=0&&ne<h)for(let oe=0;oe<T;++oe){let re=K+oe*E;if(re>=0&&re<f){let le=c[$][ne][re][Y]+p[se][oe][Y];le>Z&&(Z=le,te=ne,ee=re)}}}R[$][te][ee][Y]+=P[$][z][q][Y]}}}return{dataId:l.write(w.toTypedArray(R,s.dtype),s.shape,s.dtype),shape:s.shape,dtype:s.dtype}}};function Xl(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:i}=s;be(r,"sum");let o;r.dtype==="bool"?o=wr({inputs:{x:r},backend:n,attrs:{dtype:"int32"}}):o=Os({inputs:{x:r},backend:n});let u=o.shape.length,l=w.parseAxisParam(a,o.shape),c=S.getAxesPermutation(l,u),p=l,d=o;c!=null&&(d=wn({inputs:{x:o},backend:n,attrs:{perm:c}}),p=S.getInnerMostAxes(p.length,u)),S.assertAxesAreInnerMostDims("sum",p,d.shape.length);let[h,f]=S.computeOutAndReduceShapes(d.shape,p),m=S.upcastType(d.dtype,"int32"),g=Od(n,h,m),b=w.sizeFromShape(f),y=n.data.get(g.dataId).values,v=n.data.get(d.dataId).values;for(let x=0;x<y.length;++x){let k=x*b,T=0;for(let N=0;N<b;++N)T+=v[k+N];y[x]=T}if(i){let x=S.expandShapeToKeepDim(g.shape,l),k=g;g=mt({inputs:{x:g},backend:n,attrs:{shape:x}}),n.disposeIntermediateTensorInfo(k)}return n.disposeIntermediateTensorInfo(o),c!=null&&n.disposeIntermediateTensorInfo(d),g}var h6={kernelName:ci,backendName:"cpu",kernelFunc:Xl};function f6(e){let{inputs:t,backend:n,attrs:s}=e,{equation:r}=s,a=t,{allDims:i,summedDims:o,idDims:u}=S.decodeEinsumEquation(r,a.length);S.checkEinsumDimSizes(i.length,u,a);let{path:l,steps:c}=S.getEinsumComputePath(o,u),p=c.length,d=null,h=i.length,f=[];for(let m=0;m<p;++m){for(let g of c[m]){let{permutationIndices:b,expandDims:y}=S.getEinsumPermutation(h,u[g]),v;S.isIdentityPermutation(b)?v=a[g]:(v=wn({inputs:{x:a[g]},backend:n,attrs:{perm:b}}),f.push(v));let x=v.shape.slice();for(let k=0;k<y.length;++k)x.splice(y[k],0,1);w.arraysEqual(v.shape,x)||(v=mt({inputs:{x:v},backend:n,attrs:{shape:x}}),f.push(v)),d===null?d=v:(d=jp({inputs:{a:v,b:d},backend:n}),f.push(d))}m<p-1&&(l[m]>=0&&(d=Xl({inputs:{x:d},backend:n,attrs:{axis:l[m]-(i.length-h),keepDims:!1}}),f.push(d)),h--)}for(let m of f)m!==d&&n.disposeIntermediateTensorInfo(m);return d}var m6={kernelName:Jd,backendName:"cpu",kernelFunc:f6};function g6(e){let{inputs:t,backend:n}=e,{dy:s,y:r}=t;be([s,r],"eluGrad");let a=new Float32Array(w.sizeFromShape(r.shape)),i=n.data.get(r.dataId).values,o=n.data.get(s.dataId).values;for(let u=0;u<i.length;++u){let l=i[u];l>=1?a[u]=o[u]:a[u]=o[u]*(l+1)}return n.makeTensorInfo(r.shape,"float32",a)}var b6={kernelName:vg,backendName:"cpu",kernelFunc:g6},y6=S.ERF_P,v6=S.ERF_A1,x6=S.ERF_A2,w6=S.ERF_A3,k6=S.ERF_A4,I6=S.ERF_A5,S6=st(fl,e=>{let t=Math.sign(e),n=Math.abs(e),s=1/(1+y6*n);return t*(1-((((I6*s+k6)*s+w6)*s+x6)*s+v6)*s*Math.exp(-n*n))}),C6={kernelName:fl,backendName:"cpu",kernelFunc:S6};function zd(e){let{inputs:t,backend:n,attrs:s}=e,{input:r}=t,{dim:a}=s,i=r.shape.length,o=r.shape.slice(),u=a;return a<0&&(w.assert(-(i+1)<=a,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),u=i+a+1),o.splice(u,0,1),mt({inputs:{x:r},backend:n,attrs:{shape:o}})}var N6={kernelName:go,backendName:"cpu",kernelFunc:zd},T6=At((e,t)=>e/t),dv=Gt(Oa,T6),Bm={kernelName:Oa,backendName:"cpu",kernelFunc:dv};function LC(e,t,n){let s=e.shape,r=s[0],a=s[1],i=n.data.get(e.dataId),o=i.complexTensorInfos.real,u=i.complexTensorInfos.imag,l=[r,a],c=w.sizeFromShape(l),p=w.getTypedArrayFromDType("float32",c),d=w.getTypedArrayFromDType("float32",c);for(let g=0;g<r;g++){let b=ba({inputs:{x:o},backend:n,attrs:{begin:[g,0],size:[1,a]}}),y=ba({inputs:{x:u},backend:n,attrs:{begin:[g,0],size:[1,a]}}),v=Rn({inputs:{real:b,imag:y},backend:n}),{real:x,imag:k}=$6(v,t,n),T=S.mergeRealAndImagArrays(x,k);for(let N=0;N<a;N++){let E=S.getComplexWithIndex(T,N);p[g*a+N]=E.real,d[g*a+N]=E.imag}n.disposeIntermediateTensorInfo(b),n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(v)}let h=n.makeTensorInfo(l,"float32",p),f=n.makeTensorInfo(l,"float32",d),m=Rn({inputs:{real:h,imag:f},backend:n});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),m}function $6(e,t,n){let s=w.sizeFromShape(e.shape),r=n.data.get(e.dataId),a=n.data.get(r.complexTensorInfos.real.dataId).values,i=n.data.get(r.complexTensorInfos.imag.dataId).values;if(_6(s)){let o=Vm(a,i,s,t,n),u=[e.shape[0],e.shape[1]];if(t){let l=n.makeTensorInfo(u,"float32",o.real),c=n.makeTensorInfo(u,"float32",o.imag),p=n.makeTensorInfo([],"float32",w.createScalarValue(s,"float32")),d=Os({inputs:{x:p},backend:n}),h=Bm.kernelFunc({inputs:{a:l,b:p},backend:n}),f=Bm.kernelFunc({inputs:{a:c,b:d},backend:n}),m=n.data.get(h.dataId).values,g=n.data.get(f.dataId).values;return n.disposeIntermediateTensorInfo(l),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),{real:m,imag:g}}return o}else{let o=S.mergeRealAndImagArrays(a,i),u=A6(o,s,t);return S.splitRealAndImagArrays(u)}}function _6(e){return(e&e-1)===0}function Vm(e,t,n,s,r){if(n===1)return{real:e,imag:t};let a=S.mergeRealAndImagArrays(e,t),i=n/2,o=S.complexWithEvenIndex(a),u=o.real,l=o.imag,c=[u.length],p=r.makeTensorInfo(c,"float32",u),d=r.makeTensorInfo(c,"float32",l),h=Rn({inputs:{real:p,imag:d},backend:r}),f=S.complexWithOddIndex(a),m=f.real,g=f.imag,b=[m.length],y=r.makeTensorInfo(b,"float32",m),v=r.makeTensorInfo(b,"float32",g),x=Rn({inputs:{real:y,imag:v},backend:r}),k=Vm(u,l,i,s,r),T=k.real,N=k.imag,E=[T.length],A=r.makeTensorInfo(E,"float32",T),P=r.makeTensorInfo(E,"float32",N),R=Rn({inputs:{real:A,imag:P},backend:r}),F=Vm(m,g,i,s,r),$=F.real,z=F.imag,W=[$.length],q=r.makeTensorInfo(W,"float32",$),K=r.makeTensorInfo(W,"float32",z),Y=Rn({inputs:{real:q,imag:K},backend:r}),Z=S.exponents(n,s),te=[Z.real.length],ee=r.makeTensorInfo(te,"float32",Z.real),se=r.makeTensorInfo(te,"float32",Z.imag),ne=Rn({inputs:{real:ee,imag:se},backend:r}),oe=jp({inputs:{a:ne,b:Y},backend:r}),re=Kl({inputs:{a:R,b:oe},backend:r}),le=uv({inputs:{a:R,b:oe},backend:r}),me=ga({inputs:{input:re},backend:r}),ke=ga({inputs:{input:le},backend:r}),Se=ro({inputs:{input:re},backend:r}),Ee=ro({inputs:{input:le},backend:r}),Pe=ao({inputs:[me,ke],backend:r,attrs:{axis:0}}),Xe=ao({inputs:[Se,Ee],backend:r,attrs:{axis:0}}),Je=r.data.get(Pe.dataId).values,Ye=r.data.get(Xe.dataId).values;return r.disposeIntermediateTensorInfo(p),r.disposeIntermediateTensorInfo(d),r.disposeIntermediateTensorInfo(h),r.disposeIntermediateTensorInfo(y),r.disposeIntermediateTensorInfo(v),r.disposeIntermediateTensorInfo(x),r.disposeIntermediateTensorInfo(A),r.disposeIntermediateTensorInfo(P),r.disposeIntermediateTensorInfo(R),r.disposeIntermediateTensorInfo(q),r.disposeIntermediateTensorInfo(K),r.disposeIntermediateTensorInfo(Y),r.disposeIntermediateTensorInfo(ee),r.disposeIntermediateTensorInfo(se),r.disposeIntermediateTensorInfo(ne),r.disposeIntermediateTensorInfo(oe),r.disposeIntermediateTensorInfo(re),r.disposeIntermediateTensorInfo(le),r.disposeIntermediateTensorInfo(me),r.disposeIntermediateTensorInfo(Se),r.disposeIntermediateTensorInfo(ke),r.disposeIntermediateTensorInfo(Ee),r.disposeIntermediateTensorInfo(Pe),r.disposeIntermediateTensorInfo(Xe),{real:Je,imag:Ye}}function A6(e,t,n){let s=new Float32Array(t*2);for(let r=0;r<t;r++){let a=0,i=0;for(let o=0;o<t;o++){let u=S.exponent(r*o,t,n),l=S.getComplexWithIndex(e,o);a+=l.real*u.real-l.imag*u.imag,i+=l.real*u.imag+l.imag*u.real}n&&(a/=t,i/=t),S.assignToTypedArray(s,a,i,r)}return s}function E6(e){let{inputs:t,backend:n}=e,{input:s}=t,r=w.sizeFromShape(s.shape),a=s.shape[s.shape.length-1],i=r/a,o=mt({inputs:{x:s},backend:n,attrs:{shape:[i,a]}}),u=LC(o,!1,n),l=mt({inputs:{x:u},backend:n,attrs:{shape:s.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(u),l}var R6={kernelName:xg,backendName:"cpu",kernelFunc:E6};function pv(e){let{backend:t,attrs:n}=e,{shape:s,value:r,dtype:a}=n,i=a||w.inferDtype(r),o=w.getArrayFromDType(i,w.sizeFromShape(s));return F6(o,r,i),t.makeTensorInfo(s,i,o)}var D6={kernelName:ml,backendName:"cpu",kernelFunc:pv};function F6(e,t,n){e.fill(t)}var O6={kernelName:yo,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:s}=e,r=n,a=w.getTypedArrayFromDType(s.dtype,w.sizeFromShape(s.shape)),[i,o,u,l]=s.shape,c=r.data.get(s.dataId).values;for(let d=0;d<i;d++){let h=d*u*o*l;for(let f=0;f<o;f++){let m=f*(u*l);for(let g=0;g<u;g++){let b=g*l;for(let y=0;y<l;y++){let v=Math.round(u-g-1),x=h+m+b+y,k=c[x];if(v>=0&&v<u){let T=v*l,N=h+m+T+y;k=c[N]}a[x]=k}}}}return{dataId:r.write(a,s.shape,s.dtype),shape:s.shape,dtype:s.dtype}}},P6=At((e,t)=>Math.floor(e/t)),z6=Gt(La,P6,null,"int32"),M6={kernelName:La,backendName:"cpu",kernelFunc:z6};function L6(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:i,preluActivationWeights:o}=t,{strides:u,pad:l,dataFormat:c,dilations:p,dimRoundingMode:d,activation:h,leakyreluAlpha:f}=s,m=zC({inputs:{x:r,filter:a},backend:n,attrs:{strides:u,pad:l,dataFormat:c,dilations:p,dimRoundingMode:d}});if(i){let g=m;m=Kl({inputs:{a:m,b:i},backend:n}),n.disposeIntermediateTensorInfo(g)}if(h){let g=m;m=lv(n,m,h,o,f),n.disposeIntermediateTensorInfo(g)}return m}var B6={kernelName:ia,backendName:"cpu",kernelFunc:L6};function V6(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:i,preluActivationWeights:o}=t,{strides:u,pad:l,dataFormat:c,dilations:p,dimRoundingMode:d,activation:h,leakyreluAlpha:f}=s,m=MC({inputs:{x:r,filter:a},backend:n,attrs:{strides:u,pad:l,dataFormat:c,dilations:p,dimRoundingMode:d}});if(i){let g=m;m=Kl({inputs:{a:m,b:i},backend:n}),n.disposeIntermediateTensorInfo(g)}if(h){let g=m;m=lv(n,m,h,o,f),n.disposeIntermediateTensorInfo(g)}return m}var W6={kernelName:oa,backendName:"cpu",kernelFunc:V6};function U6(e){let{inputs:t,backend:n}=e,{params:s,indices:r}=t,a=w.sizeFromShape(s.shape),i=r.shape,o=i[i.length-1],[u,l,c,p]=S.prepareAndValidate(s,r);if(l===0)return n.makeTensorInfo(u,s.dtype,[]);let d=n.data.get(r.dataId).values,h=n.bufferSync(s),f=tC(d,h,s.dtype,l,o,c,p,s.shape,a);return n.makeTensorInfo(u,s.dtype,f.values)}var G6={kernelName:xo,backendName:"cpu",kernelFunc:U6};function H6(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,indices:a}=t,{axis:i,batchDims:o}=s;be([r,a],"gatherV2");let u=w.parseAxisParam(i,r.shape)[0],l=n.data.get(a.dataId).values,c=r.shape[u];for(let x=0;x<l.length;++x){let k=l[x];w.assert(k<=c-1&&k>=0,()=>`GatherV2: the index value ${k} is not in [0, ${c-1}]`)}let p=o;o==null&&(p=0);let d=w.sizeFromShape(a.shape),h=S.segment_util.collectGatherOpShapeInfo(r,a,u,p),f=mt({inputs:{x:r},backend:n,attrs:{shape:[h.batchSize,h.outerSize,h.dimSize,h.sliceSize]}}),m=mt({inputs:{x:a},backend:n,attrs:{shape:[h.batchSize,d/h.batchSize]}}),g=[h.batchSize,h.outerSize,d/h.batchSize,h.sliceSize],b=n.bufferSync(m),y=n.bufferSync(f),v=nC(y,b,g);return n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(m),n.makeTensorInfo(h.outputShape,v.dtype,v.values)}var q6={kernelName:vo,backendName:"cpu",kernelFunc:H6};function j6(e){let{inputs:t,backend:n}=e,{input:s}=t,r=w.sizeFromShape(s.shape),a=s.shape[s.shape.length-1],i=r/a,o=mt({inputs:{x:s},backend:n,attrs:{shape:[i,a]}}),u=LC(o,!0,n),l=mt({inputs:{x:u},backend:n,attrs:{shape:s.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(u),l}var K6={kernelName:wg,backendName:"cpu",kernelFunc:j6},X6=st(gl,e=>Number.isFinite(e)?1:0,"bool"),Y6={kernelName:gl,backendName:"cpu",kernelFunc:X6},Q6=st(bl,e=>Math.abs(e)===1/0?1:0,"bool"),Z6={kernelName:bl,backendName:"cpu",kernelFunc:Q6},J6=st(yl,e=>Number.isNaN(e)?1:0,"bool"),eq={kernelName:yl,backendName:"cpu",kernelFunc:J6};function tq(e){let{backend:t,attrs:n}=e,{start:s,stop:r,num:a}=n,i=oC(s,r,a);return t.makeTensorInfo([i.length],"float32",i)}var nq={kernelName:kg,backendName:"cpu",kernelFunc:tq},sq=st(vl,e=>Math.log1p(e)),rq={kernelName:vl,backendName:"cpu",kernelFunc:sq},aq=At((e,t)=>e&&t),iq=Gt(So,aq,null,"bool"),oq={kernelName:So,backendName:"cpu",kernelFunc:iq},uq=st(xl,e=>e?0:1,"bool"),lq={kernelName:xl,backendName:"cpu",kernelFunc:uq},cq=At((e,t)=>e||t),dq=Gt(tp,cq,null,"bool"),pq={kernelName:tp,backendName:"cpu",kernelFunc:dq};function hq(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{depthRadius:a,bias:i,alpha:o,beta:u}=s;be(r,"LRN");let l=r.shape[3],c=l-1,p=n.data.get(r.dataId).values,d=w.sizeFromShape(r.shape),h=new Float32Array(d);function f(m){let g=m%l,b=m-g+Math.max(0,g-a),y=m-g+Math.min(g+a,c),v=0;for(;b<=y;b++){let x=p[b];v+=x*x}return v}for(let m=0;m<d;m++){let g=f(m),b=p[m]*Math.pow(i+o*g,-u);h[m]=b}return n.makeTensorInfo(r.shape,r.dtype,h)}var fq={kernelName:np,backendName:"cpu",kernelFunc:hq};function mq(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,y:a,dy:i}=t,{depthRadius:o,bias:u,alpha:l,beta:c}=s;be(i,"LRNGrad");let p=w.sizeFromShape(i.shape),d=i.shape[3],h=n.data.get(i.dataId).values,f=n.data.get(r.dataId).values,m=n.data.get(a.dataId).values,g=new Float32Array(p),b=p;for(let y=0;y<b;y++){let v=y%d,x=y-v+Math.max(0,v-o),k=y-v+Math.min(d,v+o+1),T=0;for(let N=x;N<k;N++)T+=Math.pow(f[N],2);T=l*T+u;for(let N=x;N<k;N++){let E=-2*l*c*f[N]*m[y]/T;y===N&&(E+=Math.pow(T,-c)),E*=h[y],g[N]+=E}}return n.makeTensorInfo(i.shape,r.dtype,g)}var gq={kernelName:Ig,backendName:"cpu",kernelFunc:mq};function BC(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reductionIndices:a,keepDims:i}=s,o=n,u=r.shape,l=u.length,c=w.parseAxisParam(a,u),p=c,d=S.getAxesPermutation(p,l),h=o.data.get(r.dataId).values;if(d!=null){let x=new Array(l);for(let k=0;k<x.length;k++)x[k]=u[d[k]];h=av(h,u,r.dtype,d,x),p=S.getInnerMostAxes(p.length,l),u=x}be(r,"max"),S.assertAxesAreInnerMostDims("max",p,l);let[f,m]=S.computeOutAndReduceShapes(u,p),g=w.sizeFromShape(m),b=lC(h,g,f,r.dtype),y=o.write(b,f,r.dtype),v=f;return i&&(v=S.expandShapeToKeepDim(f,c)),{dataId:y,shape:v,dtype:r.dtype}}var bq={kernelName:Ha,backendName:"cpu",kernelFunc:BC};function yq(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t;be(r,"maxPool");let{filterSize:a,strides:i,pad:o,dimRoundingMode:u}=s,l=1;w.assert(S.eitherStridesOrDilationsAreOne(i,l),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${l}'`);let c=S.computePool2DInfo(r.shape,a,i,l,o,u),p;if(c.filterWidth===1&&c.filterHeight===1&&w.arraysEqual(c.inShape,c.outShape))p=Os({inputs:{x:r},backend:n});else{let d=n.data.get(r.dataId).values,h=w.computeStrides(r.shape),f=cv(d,r.shape,r.dtype,h,c,"max");p=n.makeTensorInfo(c.outShape,r.dtype,f.values)}return p}var vq={kernelName:ja,backendName:"cpu",kernelFunc:yq};function xq(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:i,pad:o,dimRoundingMode:u,dataFormat:l}=s;be(r,"maxPool3d");let c=S.computePool3DInfo(r.shape,a,i,1,o,u,l),p=n.data.get(r.dataId).values,d=PC(p,r.shape,r.dtype,w.computeStrides(r.shape),c,"max");return n.makeTensorInfo(d.shape,"float32",d.values)}var wq={kernelName:sp,backendName:"cpu",kernelFunc:xq};function kq(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,{filterSize:i,strides:o,pad:u,dimRoundingMode:l}=s;be([r,a],"maxPool3DGrad");let c=S.computePool3DInfo(a.shape,i,o,1,u,l),p=n.bufferSync(a),d=lH(p,c),h=c.strideDepth,f=c.strideHeight,m=c.strideWidth,g=c.dilationDepth,b=c.dilationHeight,y=c.dilationWidth,v=c.effectiveFilterDepth,x=c.effectiveFilterHeight,k=c.effectiveFilterWidth,T=v-1-c.padInfo.front,N=k-1-c.padInfo.left,E=x-1-c.padInfo.top,A=De(a.shape,"float32"),P=n.bufferSync(r);for(let R=0;R<c.batchSize;++R)for(let F=0;F<c.inChannels;++F)for(let $=0;$<c.inDepth;++$)for(let z=0;z<c.inHeight;++z)for(let W=0;W<c.inWidth;++W){let q=$-T,K=z-E,Y=W-N,Z=0;for(let te=0;te<v;te+=g){let ee=(q+te)/h;if(!(ee<0||ee>=c.outDepth||Math.floor(ee)!==ee))for(let se=0;se<x;se+=b){let ne=(K+se)/f;if(!(ne<0||ne>=c.outHeight||Math.floor(ne)!==ne))for(let oe=0;oe<k;oe+=y){let re=(Y+oe)/m;if(re<0||re>=c.outWidth||Math.floor(re)!==re)continue;let le=v*x*k-1-d.get(R,ee,ne,re,F),me=te*x*k+se*k+oe,ke=le===me?1:0;if(ke===0)continue;Z+=P.get(R,ee,ne,re,F)*ke}}}A.set(Z,R,$,z,W,F)}return n.makeTensorInfo(A.shape,A.dtype,A.values)}var Iq={kernelName:Cg,backendName:"cpu",kernelFunc:kq};function Sq(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a,output:i}=t,o=a;be([a,i],"maxPoolGrad");let{filterSize:u,strides:l,pad:c,dimRoundingMode:p}=s,d=S.computePool2DInfo(o.shape,u,l,1,c,p),h=n.data.get(o.dataId).values,f=De(d.outShape,o.dtype,OC(h,o.shape,o.dtype,d).values),m=d.strideHeight,g=d.strideWidth,b=d.dilationHeight,y=d.dilationWidth,v=d.effectiveFilterHeight,x=d.effectiveFilterWidth,k=x-1-d.padInfo.left,T=v-1-d.padInfo.top,N=De(o.shape,"float32"),E=n.data.get(r.dataId).values,A=De(r.shape,"float32",E);for(let P=0;P<d.batchSize;++P)for(let R=0;R<d.inChannels;++R)for(let F=0;F<d.inHeight;++F)for(let $=0;$<d.inWidth;++$){let z=F-T,W=$-k,q=0;for(let K=0;K<v;K+=b){let Y=(z+K)/m;if(!(Y<0||Y>=d.outHeight||Math.floor(Y)!==Y))for(let Z=0;Z<x;Z+=y){let te=(W+Z)/g;if(te<0||te>=d.outWidth||Math.floor(te)!==te)continue;let ee=v*x-1-f.get(P,Y,te,R),se=K*x+Z,ne=ee===se?1:0;if(ne===0)continue;q+=A.get(P,Y,te,R)*ne}}N.set(q,P,F,$,R)}return n.makeTensorInfo(N.shape,N.dtype,N.values)}var Cq={kernelName:Sg,backendName:"cpu",kernelFunc:Sq};function Nq(e,t,n,s,r){let a=w.computeStrides(t),i=cv(e,t,n,a,r,"max"),o=OC(e,t,n,r,!0,s);return[i.values,o.values]}var Tq={kernelName:Ng,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:s}=e,{filterSize:r,strides:a,pad:i,includeBatchInIndex:o}=t,u=n;be(s,"MaxPoolWithArgmax");let l=u.data.get(s.dataId).values,c=S.computePool2DInfo(s.shape,r,a,[1,1],i),[p,d]=Nq(l,s.shape,s.dtype,o,c),h=u.write(p,c.outShape,s.dtype),f=u.write(d,c.outShape,s.dtype);return[{dataId:h,shape:c.outShape,dtype:s.dtype},{dataId:f,shape:c.outShape,dtype:"int32"}]}};function $q(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:i}=s,o=w.parseAxisParam(a,r.shape),l=S.computeOutAndReduceShapes(r.shape,o)[1],c=w.sizeFromShape(l),p=[],d=n.makeTensorInfo([],"float32",new Float32Array([c]));p.push(d);let h=wr({inputs:{x:r},backend:n,attrs:{dtype:"float32"}});p.push(h);let f=dv({inputs:{a:h,b:d},backend:n});p.push(f);let m=Xl({inputs:{x:f},backend:n,attrs:{axis:a,keepDims:i}});return p.forEach(g=>n.disposeIntermediateTensorInfo(g)),m}var _q={kernelName:Ka,backendName:"cpu",kernelFunc:$q};function Aq(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:i}=s;be(r,"min");let o=w.parseAxisParam(a,r.shape),u=o,l=S.getAxesPermutation(u,r.shape.length),c=r;l!=null&&(c=wn({inputs:{x:r},backend:n,attrs:{perm:l}}),u=S.getInnerMostAxes(u.length,r.shape.length)),S.assertAxesAreInnerMostDims("min",u,c.shape.length);let[p,d]=S.computeOutAndReduceShapes(c.shape,u),h=w.sizeFromShape(d),f=w.makeZerosTypedArray(w.sizeFromShape(p),c.dtype),m=n.data.get(c.dataId).values;for(let b=0;b<f.length;++b){let y=b*h,v=m[y];for(let x=0;x<h;++x){let k=m[y+x];(Number.isNaN(k)||k<v)&&(v=k)}f[b]=v}l!=null&&n.disposeIntermediateTensorInfo(c);let g=n.makeTensorInfo(p,c.dtype,f);if(i){let b=S.expandShapeToKeepDim(p,o),y=mt({inputs:{x:g},backend:n,attrs:{shape:b}});return n.disposeIntermediateTensorInfo(g),y}return g}var Eq={kernelName:Xa,backendName:"cpu",kernelFunc:Aq};function Rq(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{paddings:a,mode:i}=s;be(r,"mirrorPad");let o=a.map((v,x)=>v[0]+r.shape[x]+v[1]),u=a.map(v=>v[0]),l=a.map((v,x)=>v[0]+r.shape[x]),c=i==="reflect"?0:1,p=n.data.get(r.dataId).values,d=r.shape.length,h=w.computeStrides(r.shape),f=w.sizeFromShape(o),m=o.length,g=w.computeStrides(o),b=w.getTypedArrayFromDType(r.dtype,f);for(let v=0;v<f;v++){let x=w.indexToLoc(v,m,g);for(let T=0;T<m;T++)x[T]<u[T]?x[T]=u[T]*2-x[T]-c:x[T]>=l[T]&&(x[T]=(l[T]-1)*2-x[T]+c);x=x.map((T,N)=>T-u[N]);let k=w.locToIndex(x,d,h);b[v]=p[k]}return{dataId:n.write(b,o,r.dtype),shape:o,dtype:r.dtype}}var Dq={kernelName:Qa,backendName:"cpu",kernelFunc:Rq},Fq=At((e,t)=>{let n=e%t;return e<0&&t<0||e>=0&&t>=0?n:(n+t)%t}),Oq=Gt(wl,Fq),Pq={kernelName:wl,backendName:"cpu",kernelFunc:Oq},zq=wa(Gd());function VC(e){let{inputs:t,backend:n,attrs:s}=e,{logits:r}=t,{dim:a}=s,i=r.shape.length,o=a;if(o===-1&&(o=i-1),o!==i-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${i} and dim was ${o}`);let u=w.parseAxisParam([o],r.shape),l=BC({inputs:{x:r},backend:n,attrs:{reductionIndices:u,keepDims:!1}}),c=S.expandShapeToKeepDim(l.shape,u),p=mt({inputs:{x:l},backend:n,attrs:{shape:c}}),d=uv({inputs:{a:r,b:p},backend:n}),h=Z0({inputs:{x:d},backend:n}),f=Xl({inputs:{x:h},backend:n,attrs:{axis:u,keepDims:!1}}),m=mt({inputs:{x:f},backend:n,attrs:{shape:c}}),g=dv({inputs:{a:h,b:m},backend:n});return n.disposeIntermediateTensorInfo(l),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(m),g}var Mq={kernelName:di,backendName:"cpu",kernelFunc:VC};function Lq(e){let{inputs:t,backend:n,attrs:s}=e,{logits:r}=t,{numSamples:a,seed:i,normalized:o}=s;be(r,"multinomial");let u=o?r:VC({inputs:{logits:r},backend:n,attrs:{dim:-1}}),l=u.shape[0],c=u.shape[1],p=n.data.get(u.dataId).values,d=[l,a],h=w.makeZerosTypedArray(w.sizeFromShape(d),"int32");for(let f=0;f<l;++f){let m=f*c,g=new Float32Array(c-1);g[0]=p[m];for(let v=1;v<g.length;++v)g[v]=g[v-1]+p[m+v];let b=zq.alea(i.toString()),y=f*a;for(let v=0;v<a;++v){let x=b();h[y+v]=g.length;for(let k=0;k<g.length;k++)if(x<g[k]){h[y+v]=k;break}}}return o||n.disposeIntermediateTensorInfo(u),n.makeTensorInfo(d,"int32",h)}var Bq={kernelName:Tg,backendName:"cpu",kernelFunc:Lq},Vq=xs.nonMaxSuppressionV3Impl;function Wq(e){let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:u}=s;be(r,"NonMaxSuppression");let l=n.data.get(r.dataId).values,c=n.data.get(a.dataId).values,{selectedIndices:p}=Vq(l,c,i,o,u);return n.makeTensorInfo([p.length],"int32",new Int32Array(p))}var Uq={kernelName:To,backendName:"cpu",kernelFunc:Wq},Gq=xs.nonMaxSuppressionV4Impl;function Hq(e){let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:u,padToMaxOutputSize:l}=s;be(r,"NonMaxSuppressionPadded");let c=n.data.get(r.dataId).values,p=n.data.get(a.dataId).values,{selectedIndices:d,validOutputs:h}=Gq(c,p,i,o,u,l);return[n.makeTensorInfo([d.length],"int32",new Int32Array(d)),n.makeTensorInfo([],"int32",new Int32Array([h]))]}var qq={kernelName:kl,backendName:"cpu",kernelFunc:Hq},jq=xs.nonMaxSuppressionV5Impl;function Kq(e){let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:u,softNmsSigma:l}=s;be(r,"NonMaxSuppressionWithScore");let c=n.data.get(r.dataId).values,p=n.data.get(a.dataId).values,d=i,h=o,f=u,m=l,{selectedIndices:g,selectedScores:b}=jq(c,p,d,h,f,m);return[n.makeTensorInfo([g.length],"int32",new Int32Array(g)),n.makeTensorInfo([b.length],"float32",new Float32Array(b))]}var Xq={kernelName:$o,backendName:"cpu",kernelFunc:Kq};function Yq(e){let{inputs:t,backend:n,attrs:s}=e,{indices:r}=t,{depth:a,onValue:i,offValue:o}=s;be(r,"oneHot");let u=w.sizeFromShape(r.shape),l=new Float32Array(u*a);l.fill(o);let c=n.data.get(r.dataId).values;for(let p=0;p<u;++p)c[p]>=0&&c[p]<a&&(l[p*a+c[p]]=i);return n.makeTensorInfo([...r.shape,a],"int32",l)}var Qq={kernelName:Ao,backendName:"cpu",kernelFunc:Yq};function Md(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="string")throw new Error("zerosLike is not supported for string tensors");if(s.dtype==="complex64"){let r=ga({inputs:{input:s},backend:n}),a=Md({inputs:{x:r},backend:n}),i=ro({inputs:{input:s},backend:n}),o=Md({inputs:{x:i},backend:n}),u=Rn({inputs:{real:a,imag:o},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),u}else return pv({backend:n,attrs:{shape:s.shape,value:0,dtype:s.dtype}})}var Zq={kernelName:qo,backendName:"cpu",kernelFunc:Md};function WC(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="string")throw new Error("onesLike is not supported for string tensors");if(s.dtype==="complex64"){let r=ga({inputs:{input:s},backend:n}),a=WC({inputs:{x:r},backend:n}),i=ro({inputs:{input:s},backend:n}),o=Md({inputs:{x:i},backend:n}),u=Rn({inputs:{real:a,imag:o},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),u}else return pv({backend:n,attrs:{shape:s.shape,value:1,dtype:s.dtype}})}var Jq={kernelName:_o,backendName:"cpu",kernelFunc:WC};function UC(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s;if(t.length===1)return zd({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let a=t[0].shape,i=t[0].dtype;t.forEach(c=>{w.assertShapesMatch(a,c.shape,"All tensors passed to stack must have matching shapes"),w.assert(i===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],u=t.map(c=>{let p=zd({inputs:{input:c},backend:n,attrs:{dim:r}});return o.push(p),p}),l=ao({inputs:u,backend:n,attrs:{axis:r}});return o.forEach(c=>n.disposeIntermediateTensorInfo(c)),l}var ej={kernelName:Eo,backendName:"cpu",kernelFunc:UC};function tj(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{paddings:a,constantValue:i}=s;be(r,"pad");let o=a.map((y,v)=>y[0]+r.shape[v]+y[1]),u=a.map(y=>y[0]),l=n.data.get(r.dataId).values,c=w.sizeFromShape(r.shape),p=r.shape.length,d=w.computeStrides(r.shape),h=w.sizeFromShape(o),f=o.length,m=w.computeStrides(o),g=w.getTypedArrayFromDType(r.dtype,h);i!==0&&g.fill(i);for(let y=0;y<c;y++){let x=w.indexToLoc(y,p,d).map((T,N)=>T+u[N]),k=w.locToIndex(x,f,m);g[k]=l[y]}return{dataId:n.write(g,o,r.dtype),shape:o,dtype:r.dtype}}var GC={kernelName:Ja,backendName:"cpu",kernelFunc:tj},nj=At((e,t)=>Math.pow(e,t)),sj=Gt(ei,nj),rj={kernelName:ei,backendName:"cpu",kernelFunc:sj};function aj(e){let{backend:t,attrs:n}=e,{start:s,stop:r,dtype:a,step:i}=n,o=iv(s,r,i,a);return t.makeTensorInfo([o.length],a,o)}var ij={kernelName:Il,backendName:"cpu",kernelFunc:aj},oj=st(Sl,e=>1/e),uj={kernelName:Sl,backendName:"cpu",kernelFunc:oj};function lj(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,halfPixelCenters:i,size:o}=s;be(r,"resizeBilinear");let u=w.computeStrides(r.shape),[l,c]=o,[p,d,h,f]=r.shape,m=n.data.get(r.dataId).values,g=new Float32Array(w.sizeFromShape([p,l,c,f])),b=[a&&l>1?d-1:d,a&&c>1?h-1:h],y=[a&&l>1?l-1:l,a&&c>1?c-1:c],v=0,x=b[0]/y[0],k=b[1]/y[1];for(let T=0;T<p;T++)for(let N=0;N<l;N++){let E;i?E=x*(N+.5)-.5:E=x*N;let A=Math.max(0,Math.floor(E)),P=E-A,R=Math.min(d-1,Math.ceil(E)),F=T*u[0]+A*u[1],$=T*u[0]+R*u[1];for(let z=0;z<c;z++){let W;i?W=k*(z+.5)-.5:W=k*z;let q=Math.max(0,Math.floor(W)),K=W-q,Y=Math.min(h-1,Math.ceil(W)),Z=F+q*u[2],te=$+q*u[2],ee=F+Y*u[2],se=$+Y*u[2];for(let ne=0;ne<f;ne++){let oe=m[Z+ne],re=m[te+ne],le=m[ee+ne],me=m[se+ne],ke=oe+(le-oe)*K,Se=re+(me-re)*K,Ee=ke+(Se-ke)*P;g[v++]=Ee}}}return n.makeTensorInfo([p,l,c,f],"float32",g)}var cj={kernelName:ri,backendName:"cpu",kernelFunc:lj};function dj(e){let{inputs:t,backend:n,attrs:s}=e,{images:r,dy:a}=t,{alignCorners:i}=s;be([a,r],"resizeBilinearGrad");let o=w.computeStrides(r.shape),[u,l,c,p]=r.shape,[,d,h]=a.shape,f=new Float32Array(u*l*c*p),m=[i&&d>1?l-1:l,i&&h>1?c-1:c],g=[i&&d>1?d-1:d,i&&h>1?h-1:h],b=m[0]/g[0],y=m[1]/g[1],v=n.data.get(a.dataId).values,x=0;for(let k=0;k<u;k++){let T=k*o[0];for(let N=0;N<d;N++){let E=N*b,A=Math.floor(E),P=Math.min(Math.ceil(E),l-1),R=T+A*o[1],F=T+P*o[1],$=E-A,z=1-$;for(let W=0;W<h;W++){let q=W*y,K=Math.floor(q),Y=Math.min(Math.ceil(q),c-1),Z=q-K,te=1-Z,ee=R+K*o[2],se=R+Y*o[2],ne=F+K*o[2],oe=F+Y*o[2],re=z*te,le=z*Z,me=$*te,ke=$*Z;for(let Se=0;Se<p;Se++){let Ee=v[x++];f[ee+Se]+=Ee*re,f[se+Se]+=Ee*le,f[ne+Se]+=Ee*me,f[oe+Se]+=Ee*ke}}}}return n.makeTensorInfo([u,c,l,p],"float32",f)}var pj={kernelName:_g,backendName:"cpu",kernelFunc:dj};function hj(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,halfPixelCenters:i,size:o}=s;be(r,"resizeNearestNeighbor");let u=w.computeStrides(r.shape),[l,c]=o,[p,d,h,f]=r.shape,m=n.data.get(r.dataId).values,g=new Float32Array(p*l*c*f),b=[a&&l>1?d-1:d,a&&c>1?h-1:h],y=[a&&l>1?l-1:l,a&&c>1?c-1:c],v=b[0]/y[0],x=b[1]/y[1],k=0;for(let T=0;T<p;T++){let N=T*u[0];for(let E=0;E<l;E++){let A=i?v*(E+.5):v*E,P=Math.min(d-1,a?Math.round(A):Math.floor(A));i&&(P=Math.max(0,P));let R=N+P*u[1];for(let F=0;F<c;F++){let $=i?x*(F+.5):x*F,z=Math.min(h-1,a?Math.round($):Math.floor($));i&&(z=Math.max(0,z));let W=R+z*u[2];for(let q=0;q<f;q++){let K=m[W+q];g[k++]=K}}}}return n.makeTensorInfo([p,l,c,f],r.dtype,g)}var fj={kernelName:Cl,backendName:"cpu",kernelFunc:hj};function mj(e){let{inputs:t,backend:n,attrs:s}=e,{images:r,dy:a}=t,{alignCorners:i}=s;be([a,r],"resizeNearestNeighborGrad");let o=w.computeStrides(r.shape),u=w.computeStrides(a.shape),[l,c,p,d]=r.shape,[,h,f]=a.shape,m=new Float32Array(l*c*p*d),g=n.data.get(a.dataId).values,b=[i&&h>1?c-1:c,i&&f>1?p-1:p],y=[i&&h>1?h-1:h,i&&f>1?f-1:f],v=b[0]/y[0],x=b[1]/y[1],k=1/v,T=1/x,N=Math.ceil(k)*2+2,E=Math.ceil(T)*2+2;for(let A=0;A<l;A++){let P=A*o[0];for(let R=0;R<c;R++){let F=P+R*o[1],$=Math.floor(R*k),z=Math.floor($-N/2);for(let W=0;W<p;W++){let q=F+W*o[2],K=Math.floor(W*T),Y=Math.floor(K-E/2);for(let Z=0;Z<d;Z++){let te=0;for(let ee=0;ee<N;ee++){let se=ee+z;if(se<0||se>=h)continue;let ne=P+se*u[1],oe=se*v,re=Math.min(c-1,i?Math.round(oe):Math.floor(oe));if(R===re)for(let le=0;le<E;le++){let me=le+Y;if(me<0||me>=f)continue;let ke=ne+me*u[2],Se=me*x,Ee=Math.min(p-1,i?Math.round(Se):Math.floor(Se));W===Ee&&(te+=g[ke+Z])}}m[q+Z]=te}}}}return n.makeTensorInfo(r.shape,r.dtype,m)}var gj={kernelName:$g,backendName:"cpu",kernelFunc:mj};function bj(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dims:a}=s;be(r,"reverse");let i=r.shape.length,o=w.parseAxisParam(a,r.shape);if(i===0)return Os({inputs:{x:r},backend:n});let u=new Vt(r.shape,r.dtype),l=n.bufferSync(r);for(let c=0;c<u.size;c++){let p=u.indexToLoc(c),d=p.slice();o.forEach(h=>d[h]=r.shape[h]-1-d[h]),u.set(l.get(...d),...p)}return n.makeTensorInfo(u.shape,u.dtype,u.values)}var yj={kernelName:Do,backendName:"cpu",kernelFunc:bj},vj={kernelName:jo,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:s}=e,{radians:r,fillValue:a,center:i}=t,o=n,u=w.getTypedArrayFromDType(s.dtype,w.sizeFromShape(s.shape)),[l,c,p,d]=s.shape,[h,f]=S.getImageCenter(i,c,p),m=255,g=Math.sin(r),b=Math.cos(r),y=o.data.get(s.dataId).values;for(let x=0;x<l;x++){let k=x*p*c*d;for(let T=0;T<c;T++){let N=T*(p*d);for(let E=0;E<p;E++){let A=E*d;for(let P=0;P<d;P++){let R=[l,T,E,P],F=R[2],$=R[1],z=(F-h)*b-($-f)*g,W=(F-h)*g+($-f)*b;z=Math.round(z+h),W=Math.round(W+f);let q=a;if(typeof a!="number"&&(P===3?q=m:q=a[P]),z>=0&&z<p&&W>=0&&W<c){let Y=W*(p*d),Z=z*d,te=k+Y+Z+P;q=y[te]}let K=k+N+A+P;u[K]=q}}}}return{dataId:o.write(u,s.shape,s.dtype),shape:s.shape,dtype:s.dtype}}},xj=st(Fo,e=>{let t=Math.floor(e);return e-t<.5?Math.floor(e):e-t>.5?Math.ceil(e):t%2===0?t:t+1}),wj={kernelName:Fo,backendName:"cpu",kernelFunc:xj};function HC(e,t,n,s,r,a,i,o,u,l){let c=[s/r,r],p=e.values,d=t.values;if(s===0)return De(n,t.dtype);let h=De(c,t.dtype);h.values.fill(u);for(let f=0;f<a;f++){let m=[],g=0;for(let b=0;b<i;b++){let y=p[f*i+b];m.push(y),g+=y*o[b]}if(g<0||g>=s/r)throw new Error(`Invalid indices: ${m} does not index into ${n}`);for(let b=0;b<r;b++)l?h.values[g*r+b]+=d[f*r+b]:h.values[g*r+b]=t.rank===0?d[0]:d[f*r+b]}return h}function kj(e){let{inputs:t,backend:n,attrs:s}=e,{indices:r,updates:a}=t,{shape:i}=s,{sliceRank:o,numUpdates:u,sliceSize:l,strides:c,outputSize:p}=S.calculateShapes(a,r,i),d=!0,h=n.bufferSync(r),f=n.bufferSync(a),m=HC(h,f,i,p,l,u,o,c,0,d);return n.makeTensorInfo(i,m.dtype,m.values)}var Ij={kernelName:Oo,backendName:"cpu",kernelFunc:kj};function Sj(e){let{inputs:t,backend:n}=e,{condition:s,t:r,e:a}=t;be([s,r,a],"select");let i=s.shape.length,o=n.data.get(s.dataId).values,u=n.data.get(r.dataId).values,l=n.data.get(a.dataId).values,c=cn(r.dtype,a.dtype),p=w.makeZerosTypedArray(w.sizeFromShape(r.shape),c),d=0,h=i===0||i>1||r.shape.length===1?1:w.sizeFromShape(r.shape.slice(1));for(let f=0;f<o.length;f++)for(let m=0;m<h;m++)o[f]===1?p[d++]=u[f]:p[d++]=l[f];return n.makeTensorInfo(r.shape,c,p)}var Cj={kernelName:Po,backendName:"cpu",kernelFunc:Sj},Nj=S.SELU_SCALEALPHA,Tj=S.SELU_SCALE,$j=st(Nl,e=>e>=0?Tj*e:Nj*(Math.exp(e)-1)),_j={kernelName:Nl,backendName:"cpu",kernelFunc:$j},Aj=st(Tl,e=>e<0?-1:e>0?1:0),Ej={kernelName:Tl,backendName:"cpu",kernelFunc:Aj},Rj=st(oi,e=>Math.sin(e)),Dj={kernelName:oi,backendName:"cpu",kernelFunc:Rj},Fj=st(Mo,e=>Math.sinh(e)),Oj={kernelName:Mo,backendName:"cpu",kernelFunc:Fj},Pj=11920928955078125e-23,sw=Math.log(Pj)+2,zj=st($l,e=>{let t=e>-sw,n=e<sw,s=Math.exp(e),r;return n?r=s:t?r=e:r=Math.log(1+s),r}),Mj={kernelName:$l,backendName:"cpu",kernelFunc:zj};function Lj(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,paddings:i}=s;be([r],"spaceToBatchND");let o=w.sizeFromShape(a),u=[[0,0]];u.push(...i);for(let T=1+a.length;T<r.shape.length;++T)u.push([0,0]);let l=GC.kernelFunc({inputs:{x:r},backend:n,attrs:{paddings:u,constantValue:0}}),c=S.getReshaped(l.shape,a,o,!1),p=S.getPermuted(c.length,a.length,!1),d=S.getReshapedPermuted(l.shape,a,o,!1),m=mt({inputs:{x:l},backend:n,attrs:{shape:c}}),y=wn({inputs:{x:m},backend:n,attrs:{perm:p}}),k=mt({inputs:{x:y},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(l),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(y),k}var Bj={kernelName:Lo,backendName:"cpu",kernelFunc:Lj};function Vj(e){let{inputs:t,backend:n}=e,{indices:s,values:r,denseShape:a,defaultValue:i}=t;if(a.shape.length!==1)throw new Error(`Dense shape must be a vector, saw:
|
|
${a.shape}`);if(s.shape.length!==2)throw new Error(`Indices must be a matrix, saw:
|
|
${s.shape}`);if(r.shape.length!==1)throw new Error(`Values must be a vector, saw:
|
|
${r.shape}`);if(i.shape.length!==0)throw new Error(`Default value must be a scalar, saw:
|
|
${i.shape}`);let o=n.data.get(s.dataId).values,u=n.data.get(r.dataId).values,l=n.data.get(a.dataId).values,c=n.data.get(i.dataId).values[0],[p,d,h,f,m]=bC(o,s.shape,s.dtype,u,r.dtype,l,c);return[n.makeTensorInfo(d,s.dtype,p),n.makeTensorInfo([d[0]],r.dtype,h),n.makeTensorInfo([f.length],"bool",new Uint8Array(f.map(g=>Number(g)))),n.makeTensorInfo([m.length],s.dtype,new Int32Array(m))]}var Wj={kernelName:ap,backendName:"cpu",kernelFunc:Vj};function Uj(e){let{inputs:t,backend:n}=e,{inputIndices:s,inputShape:r,newShape:a}=t;if(s.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape
|
|
${s.shape}`);if(r.shape.length!==1)throw new Error(`Input shape should be a vector but received shape
|
|
${r.shape}`);if(a.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${a.shape}`);let i=Array.from(n.data.get(r.dataId).values),o=n.data.get(s.dataId).values,u=Array.from(n.data.get(a.dataId).values),[l,c,p]=yC(o,s.shape,s.dtype,i,u);return[n.makeTensorInfo(c,s.dtype,l),n.makeTensorInfo([p.length],a.dtype,new Int32Array(p))]}var Gj={kernelName:_l,backendName:"cpu",kernelFunc:Uj};function Hj(e){let{inputs:t,backend:n}=e,{data:s,indices:r,segmentIds:a}=t;if(s.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
|
|
${r.shape}`);if(a.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
|
|
${a.shape}`);if(r.shape[0]!==a.shape[0])throw new Error("segmentIds and indices should have same size.");let i=n.data.get(s.dataId).values,o=n.data.get(r.dataId).values,u=n.data.get(a.dataId).values,[l,c]=ov(i,s.shape,s.dtype,o,u,!0);return n.makeTensorInfo(c,s.dtype,l)}var qj={kernelName:ip,backendName:"cpu",kernelFunc:Hj};function jj(e){let{inputs:t,backend:n}=e,{data:s,indices:r,segmentIds:a}=t;if(s.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
|
|
${r.shape}`);if(a.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
|
|
${a.shape}`);if(r.shape[0]!==a.shape[0])throw new Error("segmentIds and indices should have same size.");let i=n.data.get(s.dataId).values,o=n.data.get(r.dataId).values,u=n.data.get(a.dataId).values,[l,c]=ov(i,s.shape,s.dtype,o,u);return n.makeTensorInfo(c,s.dtype,l)}var Kj={kernelName:op,backendName:"cpu",kernelFunc:jj};function Xj(e){let{inputs:t,backend:n,attrs:s}=e,{sparseIndices:r,sparseValues:a,defaultValue:i}=t,{outputShape:o}=s,{sliceRank:u,numUpdates:l,sliceSize:c,strides:p,outputSize:d}=S.calculateShapes(a,r,o),h=!1,f=n.bufferSync(r),m=n.bufferSync(a),g=n.data.get(i.dataId).values[0],b=HC(f,m,o,d,c,l,u,p,g,h);return n.makeTensorInfo(o,b.dtype,b.values)}var Yj={kernelName:up,backendName:"cpu",kernelFunc:Xj};function Qj(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{numOrSizeSplits:a,axis:i}=s,o=w.parseAxisParam(i,r.shape)[0],u=S.prepareSplitSize(r,a,o),l=new Array(r.shape.length).fill(0),c=r.shape.slice();return u.map(p=>{let d=[...c];d[o]=p;let h=ba({inputs:{x:r},backend:n,attrs:{begin:l,size:d}});return l[o]+=p,h})}var Zj={kernelName:Bo,backendName:"cpu",kernelFunc:Qj},Jj={kernelName:Al,backendName:"cpu",kernelFunc:({inputs:e,backend:t})=>{let{x:n}=e,s=t;be(n,"square");let r=s.data.get(n.dataId).values,a=new Float32Array(r.length);for(let o=0;o<r.length;++o){let u=r[o];a[o]=u*u}return{dataId:s.write(a,n.shape,n.dtype),shape:n.shape,dtype:n.dtype}}},e5=st(gi,(e,t)=>{let n=t;return isNaN(e)?NaN:e>0?1:n.alpha}),t5={kernelName:gi,backendName:"cpu",kernelFunc:e5};function n5(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,end:i,strides:o,beginMask:u,endMask:l,ellipsisMask:c,newAxisMask:p,shrinkAxisMask:d}=s;be(r,"stridedSlice");let{finalShapeSparse:h,finalShape:f,isIdentity:m,sliceDim0:g,isSimpleSlice:b,begin:y,end:v,strides:x}=wt.sliceInfo(r.shape,a,i,o,u,l,c,p,d),k;if(m)k=mt({inputs:{x:r},backend:n,attrs:{shape:f}});else if(g||b){w.assert(r.shape.length>=1,()=>`Input must have rank at least 1, got: ${r.shape.length}`);let T=wt.computeOutShape(y,v,x),N=ba({inputs:{x:r},backend:n,attrs:{begin:y,size:T}});k=mt({inputs:{x:N},backend:n,attrs:{shape:f}}),n.disposeIntermediateTensorInfo(N)}else{let T=n.bufferSync(r),N=xC(h,T,x,y);k=n.makeTensorInfo(f,N.dtype,N.values)}return k}var s5={kernelName:Vo,backendName:"cpu",kernelFunc:n5};function r5(e){let{inputs:t,backend:n,attrs:s}=e,{separator:r,nGramWidths:a,leftPad:i,rightPad:o,padWidth:u,preserveShortSequences:l}=s,{data:c,dataSplits:p}=t,d=n.data.get(c.dataId).values,h=n.data.get(p.dataId).values,[f,m]=wC(d,h,r,a,i,o,u,l);return[n.makeTensorInfo([f.length],"string",f),n.makeTensorInfo(p.shape,"int32",m)]}var a5={kernelName:lp,backendName:"cpu",kernelFunc:r5};function i5(e){let{inputs:t,backend:n,attrs:s}=e,{skipEmpty:r}=s,{input:a,delimiter:i}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(a.shape.length!==1)throw new Error(`Input must be a vector, got shape: ${a.shape}`);if(i.shape.length!==0)throw new Error(`Delimiter must be a scalar, got shape: ${i.shape}`);let o=n.data.get(a.dataId).values,u=n.data.get(i.dataId).values[0],[l,c,p]=kC(o,u,r),d=c.length;return[n.makeTensorInfo([d,2],"int32",l),n.makeTensorInfo([d],"string",c),n.makeTensorInfo([2],"int32",new Int32Array(p))]}var o5={kernelName:Ag,backendName:"cpu",kernelFunc:i5};function u5(e){let{inputs:t,backend:n,attrs:s}=e,{numBuckets:r}=s,{input:a}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(r<=0)throw new Error("Number of buckets must be at least 1");let i=n.data.get(a.dataId).values,o=IC(i,r);return n.makeTensorInfo(a.shape,"int32",o)}var l5={kernelName:Eg,backendName:"cpu",kernelFunc:u5},c5=st(Wo,e=>Math.tan(e)),d5={kernelName:Wo,backendName:"cpu",kernelFunc:c5},p5=st(fi,e=>Math.tanh(e)),h5={kernelName:fi,backendName:"cpu",kernelFunc:p5};function f5(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reps:a}=s;be(r,"tile");let i=CC(n.bufferSync(r),a);return n.makeTensorInfo(i.shape,i.dtype,i.values)}var m5={kernelName:Nr,backendName:"cpu",kernelFunc:f5};function g5(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{k:a,sorted:i}=s;be(r,"topk");let o=n.data.get(r.dataId).values,[u,l]=TC(o,r.shape,r.dtype,a,i);return[n.makeTensorInfo(u.shape,u.dtype,u.values),n.makeTensorInfo(l.shape,l.dtype,l.values)]}var b5={kernelName:Uo,backendName:"cpu",kernelFunc:g5};function y5(e){let{inputs:t,attrs:n,backend:s}=e,{image:r,transforms:a}=t,{interpolation:i,fillMode:o,fillValue:u,outputShape:l}=n,[c,p,d,h]=r.shape,[f,m]=l!=null?l:[p,d],g=[c,f,m,h],b=w.computeStrides(r.shape),y=b[0],v=b[1],x=b[2],k=w.getTypedArrayFromDType(r.dtype,w.sizeFromShape(g));k.fill(u);let T=s.data.get(r.dataId).values,N=s.data.get(a.dataId).values;for(let A=0;A<c;++A){let P=a.shape[0]===1?N:N.subarray(A*8,A*8+8);for(let R=0;R<f;++R)for(let F=0;F<m;++F)for(let $=0;$<h;++$){let z,W=P[6]*F+P[7]*R+1;if(W===0)continue;let q=(P[0]*F+P[1]*R+P[2])/W,K=(P[3]*F+P[4]*R+P[5])/W,Y=rw(q,d,o),Z=rw(K,p,o);switch(i){case"nearest":z=S5(T,p,d,y,v,x,A,Z,Y,$,u);break;case"bilinear":z=C5(T,p,d,y,v,x,A,Z,Y,$,u);break;default:throw new Error(`Error in Transform: Expect 'nearest' or 'bilinear', but got ${i}`)}let te=A*y+R*v+F*x+$;k[te]=z}return s.makeTensorInfo(g,r.dtype,k)}return{dataId:s.write(k,g,r.dtype),shape:r.shape,dtype:r.dtype}}var v5={kernelName:Go,backendName:"cpu",kernelFunc:y5};function rw(e,t,n){switch(n){case"reflect":return x5(e,t);case"wrap":return w5(e,t);case"nearest":return I5(e,t);case"constant":default:return k5(e,t)}}function x5(e,t){let n=e;if(n<0)if(t<=1)n=0;else{let s=2*t;n<s&&(n=s*Math.trunc(-n/s)+n),n=n<-t?n+s:-n-1}else if(n>t-1)if(t<=1)n=0;else{let s=2*t;n-=s*Math.trunc(n/s),n>=t&&(n=s-n-1)}return w.clamp(0,n,t-1)}function w5(e,t){let n=e;if(n<0)if(t<=1)n=0;else{let s=t-1;n+=t*(Math.trunc(-n/s)+1)}else if(n>t-1)if(t<=1)n=0;else{let s=t-1;n-=t*Math.trunc(n/s)}return w.clamp(0,n,t-1)}function k5(e,t){return e}function I5(e,t){return w.clamp(0,e,t-1)}function Fu(e,t,n,s,r,a,i,o,u,l,c){let p=i*s+o*r+u*a+l;return 0<=o&&o<t&&0<=u&&u<n?e[p]:c}function S5(e,t,n,s,r,a,i,o,u,l,c){let p=Math.round(o),d=Math.round(u);return Fu(e,t,n,s,r,a,i,p,d,l,c)}function C5(e,t,n,s,r,a,i,o,u,l,c){let p=Math.floor(o),d=Math.floor(u),h=p+1,f=d+1,m=(f-u)*Fu(e,t,n,s,r,a,i,p,d,l,c)+(u-d)*Fu(e,t,n,s,r,a,i,p,f,l,c),g=(f-u)*Fu(e,t,n,s,r,a,i,h,d,l,c)+(u-d)*Fu(e,t,n,s,r,a,i,h,f,l,c);return(h-o)*m+(o-p)*g}function N5(e){let{inputs:t,attrs:n,backend:s}=e,{axis:r}=n,{x:a}=t;be(a,"unique");let i=s.data.get(a.dataId).values,{outputValues:o,outputShape:u,indices:l}=$C(i,r,a.shape,a.dtype);return[s.makeTensorInfo(u,a.dtype,o),s.makeTensorInfo([l.length],"int32",l)]}var T5={kernelName:Rg,backendName:"cpu",kernelFunc:N5};function $5(e){let{inputs:t,backend:n,attrs:s}=e,{value:r}=t,{axis:a}=s;a<0&&(a+=r.shape.length);let i=r.shape.length,o=r.shape[a],u=new Array(i-1),l=0;for(let h=0;h<i;h++)h!==a&&(u[l++]=r.shape[h]);let c=new Array(i).fill(0),p=r.shape.slice();p[a]=1;let d=new Array(o);for(let h=0;h<d.length;h++){c[a]=h;let f=ba({inputs:{x:r},backend:n,attrs:{begin:c,size:p}});d[h]=mt({inputs:{x:f},backend:n,attrs:{shape:u}}),n.disposeIntermediateTensorInfo(f)}return d}var _5={kernelName:Ho,backendName:"cpu",kernelFunc:$5};function A5(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,segmentIds:a}=t,{numSegments:i}=s;be(r,"unsortedSegmentSum");let o=r.shape.length,u=a.shape.length,l=[],c=[],p=o-u,d=a;for(let f=0;f<p;++f){let m=zd({inputs:{input:d},backend:n,attrs:{dim:f+1}});d=m,c.push(m)}for(let f=0;f<i;++f){let m=w.createScalarValue(f,"int32"),g=n.makeTensorInfo([],"int32",m),b=Y0({inputs:{a:g,b:d},backend:n}),y=wr({inputs:{x:b},backend:n,attrs:{dtype:"float32"}}),v=jp({inputs:{a:y,b:r},backend:n}),x=Xl({inputs:{x:v},backend:n,attrs:{axis:0,keepDims:!1}});l.push(x),c.push(g),c.push(b),c.push(y),c.push(v),c.push(x)}let h=UC({inputs:l,backend:n,attrs:{axis:0}});return c.forEach(f=>n.disposeIntermediateTensorInfo(f)),h}var E5={kernelName:cp,backendName:"cpu",kernelFunc:A5},R5=[zG,AU,LG,VG,PU,UG,HG,jG,XG,QG,JG,tH,sH,iH,uH,dH,hH,mH,bH,OG,vH,wH,IH,CH,FU,MU,TH,EU,_H,EH,RH,FH,PH,MH,BH,WH,GH,qH,KH,YH,ZH,e6,n6,s6,a6,o6,l6,c6,d6,p6,m6,$G,b6,LU,C6,BU,N6,WU,R6,D6,O6,GU,M6,B6,W6,G6,q6,qU,KU,RU,K6,AH,Y6,Z6,eq,_G,YU,ZU,nq,eG,rq,oq,lq,pq,fq,gq,bq,nG,vq,wq,Iq,Cq,Tq,_q,Eq,rG,Dq,Pq,Bq,iG,uG,Uq,qq,Xq,cG,Qq,Jq,ej,GC,rj,EG,hG,ij,DU,Bm,uj,RG,DG,FG,cj,pj,fj,gj,yj,vj,wj,mG,Ij,Cj,_j,bG,Ej,Dj,Oj,yG,Mq,Mj,Bj,Wj,Gj,qj,Kj,Yj,Zj,wG,Jj,IG,t5,s5,a5,o5,l5,TG,h6,d5,h5,m5,b5,v5,dG,T5,_5,E5,Zq];for(let e of R5)El(e);var D5={};Ae(D5,{assertNotComplex:()=>su,bindCanvasToFramebuffer:()=>H5,bindColorTextureToFramebuffer:()=>ad,bindTextureToProgramUniformSampler:()=>i1,bindTextureUnit:()=>s1,bindVertexBufferToProgramAttribute:()=>Wm,callAndCheck:()=>fe,canBeRepresented:()=>qC,createFragmentShader:()=>XC,createFramebuffer:()=>n1,createProgram:()=>YC,createStaticIndexBuffer:()=>JC,createStaticVertexBuffer:()=>ZC,createTexture:()=>e1,createVertexShader:()=>KC,getBatchDim:()=>ya,getExtensionOrThrow:()=>Ou,getFramebufferErrorMessage:()=>o1,getMaxTexturesInShader:()=>d1,getNumChannels:()=>U5,getProgramUniformLocation:()=>a1,getProgramUniformLocationOrThrow:()=>r1,getRowsCols:()=>va,getShapeAs3D:()=>id,getTextureShapeFromLogicalShape:()=>l1,getWebGLDisjointQueryTimerVersion:()=>p1,getWebGLErrorMessage:()=>jC,getWebGLMaxTextureSize:()=>c1,hasExtension:()=>Ln,isCapableOfRenderingToFloatTexture:()=>h1,isDownloadFloatTextureEnabled:()=>f1,isReshapeFree:()=>tl,isWebGLFenceEnabled:()=>m1,isWebGLVersionEnabled:()=>Gm,linkProgram:()=>QC,logShaderSourceAndInfoLog:()=>fv,resetMaxTextureSize:()=>q5,resetMaxTexturesInShader:()=>j5,unbindColorTextureFromFramebuffer:()=>Um,unbindTextureUnit:()=>G5,validateFramebuffer:()=>Pu,validateProgram:()=>rd,validateTextureSize:()=>t1});var Yr={},Kf={alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!0};function F5(e,t){Yr[e]=t}function vs(e,t){if(!(e in Yr)||t!=null){let s=P5(e,t);if(s!==null)Yr[e]=s;else return console.log("Could not get context for WebGL version",e),null}let n=Yr[e];return n==null||n.isContextLost()?(delete Yr[e],vs(e)):(n.disable(n.DEPTH_TEST),n.disable(n.STENCIL_TEST),n.disable(n.BLEND),n.disable(n.DITHER),n.disable(n.POLYGON_OFFSET_FILL),n.disable(n.SAMPLE_COVERAGE),n.enable(n.SCISSOR_TEST),n.enable(n.CULL_FACE),n.cullFace(n.BACK),Yr[e])}function O5(e){if(typeof OffscreenCanvas!="undefined"&&e===2)return new OffscreenCanvas(300,150);if(typeof document!="undefined")return document.createElement("canvas");throw new Error("Cannot create a canvas in this context")}function P5(e,t){if(e!==1&&e!==2)throw new Error("Cannot get WebGL rendering context, WebGL is disabled.");let n=t==null?O5(e):t;return n.addEventListener("webglcontextlost",s=>{s.preventDefault(),delete Yr[e]},!1),e===1?n.getContext("webgl",Kf)||n.getContext("experimental-webgl",Kf):n.getContext("webgl2",Kf)}function Yl(e,t){return[t,e]}function z5(e,t){return e*t}function Yc(e){let t=w.sizeFromShape(e),n=Math.ceil(t/4);return w.sizeToSquarishShape(n)}function nu(e,t){return[Math.max(1,Math.ceil(t/2)),Math.max(1,Math.ceil(e/2))]}function M5(e,t){let[n,s]=nu(e,t);return n*s*4}function hv(e,t){let n=e,s,r,a,i,o,u,l,c,p,d;return X().getNumber("WEBGL_VERSION")===2?(s=n.R32F,r=n.R16F,a=n.RGBA16F,i=n.RGBA32F,o=n.RED,l=4,c=1,p=n.HALF_FLOAT,d=n.FLOAT,u=n.RGBA8):(s=e.RGBA,r=e.RGBA,a=e.RGBA,i=n.RGBA,o=e.RGBA,l=4,c=4,p=t!=null?t.HALF_FLOAT_OES:null,d=e.FLOAT,u=e.RGBA),{internalFormatFloat:s,internalFormatHalfFloat:r,internalFormatPackedHalfFloat:a,internalFormatPackedFloat:i,textureFormatFloat:o,downloadTextureFormat:u,downloadUnpackNumChannels:l,defaultNumChannels:c,textureTypeHalfFloat:p,textureTypeFloat:d}}function fe(e,t){let n=t();return X().getBool("DEBUG")&&L5(e),n}function L5(e){let t=e.getError();if(t!==e.NO_ERROR)throw new Error("WebGL Error: "+jC(e,t))}var B5=596e-10,V5=65504;function qC(e){return!!(X().getBool("WEBGL_RENDER_FLOAT32_ENABLED")||e===0||B5<Math.abs(e)&&Math.abs(e)<V5)}function jC(e,t){switch(t){case e.NO_ERROR:return"NO_ERROR";case e.INVALID_ENUM:return"INVALID_ENUM";case e.INVALID_VALUE:return"INVALID_VALUE";case e.INVALID_OPERATION:return"INVALID_OPERATION";case e.INVALID_FRAMEBUFFER_OPERATION:return"INVALID_FRAMEBUFFER_OPERATION";case e.OUT_OF_MEMORY:return"OUT_OF_MEMORY";case e.CONTEXT_LOST_WEBGL:return"CONTEXT_LOST_WEBGL";default:return`Unknown error code ${t}`}}function Ou(e,t){return Zs(e,()=>e.getExtension(t),'Extension "'+t+'" not supported on this browser.')}function KC(e,t){let n=Zs(e,()=>e.createShader(e.VERTEX_SHADER),"Unable to create vertex WebGLShader.");if(fe(e,()=>e.shaderSource(n,t)),fe(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw console.log(e.getShaderInfoLog(n)),new Error("Failed to compile vertex shader.");return n}function XC(e,t){let n=Zs(e,()=>e.createShader(e.FRAGMENT_SHADER),"Unable to create fragment WebGLShader.");if(fe(e,()=>e.shaderSource(n,t)),fe(e,()=>e.compileShader(n)),X().get("ENGINE_COMPILE_ONLY"))return n;if(e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw fv(t,e.getShaderInfoLog(n)),new Error("Failed to compile fragment shader.");return n}var W5=/ERROR: [0-9]+:([0-9]+):/g;function fv(e,t){let n=W5.exec(t);if(n==null){console.log(`Couldn't parse line number in error: ${t}`),console.log(e);return}let s=+n[1],r=e.split(`
|
|
`),a=r.length.toString().length+2,i=r.map((p,d)=>w.rightPad((d+1).toString(),a)+p),o=0;for(let p=0;p<i.length;p++)o=Math.max(i[p].length,o);let u=i.slice(0,s-1),l=i.slice(s-1,s),c=i.slice(s);console.log(u.join(`
|
|
`)),console.log(t.split(`
|
|
`)[0]),console.log(`%c ${w.rightPad(l[0],o)}`,"border:1px solid red; background-color:#e3d2d2; color:#a61717"),console.log(c.join(`
|
|
`))}function YC(e){return Zs(e,()=>e.createProgram(),"Unable to create WebGLProgram.")}function QC(e,t){if(fe(e,()=>e.linkProgram(t)),!X().get("ENGINE_COMPILE_ONLY")&&e.getProgramParameter(t,e.LINK_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Failed to link vertex and fragment shaders.")}function rd(e,t){if(fe(e,()=>e.validateProgram(t)),e.getProgramParameter(t,e.VALIDATE_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Shader program validation failed.")}function ZC(e,t){let n=Zs(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return fe(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),fe(e,()=>e.bufferData(e.ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function JC(e,t){let n=Zs(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return fe(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,n)),fe(e,()=>e.bufferData(e.ELEMENT_ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function U5(){return X().getNumber("WEBGL_VERSION")===2?1:4}function e1(e){return Zs(e,()=>e.createTexture(),"Unable to create WebGLTexture.")}function t1(e,t){let n=X().getNumber("WEBGL_MAX_TEXTURE_SIZE");if(e<=0||t<=0){let s=`[${e}x${t}]`;throw new Error("Requested texture size "+s+" is invalid.")}if(e>n||t>n){let s=`[${e}x${t}]`,r=`[${n}x${n}]`;throw new Error("Requested texture size "+s+" greater than WebGL maximum on this browser / GPU "+r+".")}}function n1(e){return Zs(e,()=>e.createFramebuffer(),"Unable to create WebGLFramebuffer.")}function Wm(e,t,n,s,r,a,i){let o=e.getAttribLocation(t,n);return o===-1?!1:(fe(e,()=>e.bindBuffer(e.ARRAY_BUFFER,s)),fe(e,()=>e.vertexAttribPointer(o,r,e.FLOAT,!1,a,i)),fe(e,()=>e.enableVertexAttribArray(o)),!0)}function s1(e,t,n){u1(e,n),fe(e,()=>e.activeTexture(e.TEXTURE0+n)),fe(e,()=>e.bindTexture(e.TEXTURE_2D,t))}function G5(e,t){u1(e,t),fe(e,()=>e.activeTexture(e.TEXTURE0+t)),fe(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function r1(e,t,n){return Zs(e,()=>e.getUniformLocation(t,n),'uniform "'+n+'" not present in program.')}function a1(e,t,n){return e.getUniformLocation(t,n)}function i1(e,t,n,s){fe(e,()=>s1(e,t,s)),fe(e,()=>e.uniform1i(n,s))}function H5(e){fe(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),fe(e,()=>e.viewport(0,0,e.canvas.width,e.canvas.height)),fe(e,()=>e.scissor(0,0,e.canvas.width,e.canvas.height))}function ad(e,t,n){fe(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,n)),fe(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,t,0))}function Um(e,t){fe(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,t)),fe(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,null,0))}function Pu(e){let t=e.checkFramebufferStatus(e.FRAMEBUFFER);if(t!==e.FRAMEBUFFER_COMPLETE)throw new Error("Error binding framebuffer: "+o1(e,t))}function o1(e,t){switch(t){case e.FRAMEBUFFER_INCOMPLETE_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_DIMENSIONS:return"FRAMEBUFFER_INCOMPLETE_DIMENSIONS";case e.FRAMEBUFFER_UNSUPPORTED:return"FRAMEBUFFER_UNSUPPORTED";default:return`unknown error ${t}`}}function Zs(e,t,n){let s=fe(e,()=>t());if(s==null)throw new Error(n);return s}function u1(e,t){let n=e.MAX_COMBINED_TEXTURE_IMAGE_UNITS-1,s=t+e.TEXTURE0;if(s<e.TEXTURE0||s>n){let r=`[gl.TEXTURE0, gl.TEXTURE${n}]`;throw new Error(`textureUnit must be in ${r}.`)}}function ya(e,t=2){return w.sizeFromShape(e.slice(0,e.length-t))}function va(e){if(e.length===0)throw Error("Cannot get rows and columns of an empty shape array.");return[e.length>1?e[e.length-2]:1,e[e.length-1]]}function id(e){let t=[1,1,1];return e.length===0||e.length===1&&e[0]===1||(t=[ya(e),...va(e)]),t}function l1(e,t=!1){let n=X().getNumber("WEBGL_MAX_TEXTURE_SIZE");t&&(n=n*2,e=e.map((r,a)=>a>=e.length-2?w.nearestLargerEven(e[a]):e[a]),e.length===1&&(e=[2,e[0]])),e.length!==2&&(e=w.squeezeShape(e).newShape);let s=w.sizeFromShape(e);if(e.length<=1&&s<=n)return[1,s];if(e.length===2&&e[0]<=n&&e[1]<=n)return e;if(e.length===3&&e[0]*e[1]<=n&&e[2]<=n)return[e[0]*e[1],e[2]];if(e.length===3&&e[0]<=n&&e[1]*e[2]<=n)return[e[0],e[1]*e[2]];if(e.length===4&&e[0]*e[1]*e[2]<=n&&e[3]<=n)return[e[0]*e[1]*e[2],e[3]];if(e.length===4&&e[0]<=n&&e[1]*e[2]*e[3]<=n)return[e[0],e[1]*e[2]*e[3]];if(t){let r=ya(e),a=2,i=2;return e.length&&([a,i]=va(e)),s=r*(a/2)*(i/2),w.sizeToSquarishShape(s).map(o=>o*2)}return w.sizeToSquarishShape(s)}function Qc(e){return e%2===0}function tl(e,t){if(e=e.slice(-2),t=t.slice(-2),w.arraysEqual(e,t)||!e.length||!t.length||e[0]===0||e[1]===0||t[0]===0||t[1]===0)return!0;if(e.length!==t.length){let n=e.slice(-1)[0],s=t.slice(-1)[0];if(n===s||Qc(n)&&Qc(s)&&(e[0]===1||t[0]===1))return!0}return e[1]===t[1]&&Qc(e[0])&&Qc(t[0])}var od,ud;function c1(e){if(od==null){let t=vs(e);od=t.getParameter(t.MAX_TEXTURE_SIZE)}return od}function q5(){od=null}function j5(){ud=null}function d1(e){if(ud==null){let t=vs(e);ud=t.getParameter(t.MAX_TEXTURE_IMAGE_UNITS)}return Math.min(16,ud)}function p1(e){if(e===0)return 0;let t,n=vs(e);return Ln(n,"EXT_disjoint_timer_query_webgl2")&&e===2?t=2:Ln(n,"EXT_disjoint_timer_query")?t=1:t=0,t}function Ln(e,t){return e.getExtension(t)!=null}function Gm(e){try{if(vs(e)!=null)return!0}catch(t){return console.log("Error when getting WebGL context: ",t),!1}return!1}function h1(e){if(e===0)return!1;let t=vs(e);if(e===1){if(!Ln(t,"OES_texture_float"))return!1}else if(!Ln(t,"EXT_color_buffer_float"))return!1;return Hm(t)}function f1(e){if(e===0)return!1;let t=vs(e);if(e===1){if(!Ln(t,"OES_texture_float")||!Ln(t,"WEBGL_color_buffer_float"))return!1}else{if(Ln(t,"EXT_color_buffer_float"))return Hm(t);let s="EXT_color_buffer_half_float";if(Ln(t,s)){let r=t.getExtension(s);return K5(t,r)}return!1}return Hm(t)}function Hm(e){let t=hv(e),n=e.createTexture();e.bindTexture(e.TEXTURE_2D,n);let s=1,r=1;e.texImage2D(e.TEXTURE_2D,0,t.internalFormatFloat,s,r,0,t.textureFormatFloat,t.textureTypeFloat,null);let a=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,a),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,n,0);let i=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(n),e.deleteFramebuffer(a),i}function K5(e,t){let n=hv(e,t),s=e.createTexture();e.bindTexture(e.TEXTURE_2D,s);let r=1,a=1;e.texImage2D(e.TEXTURE_2D,0,n.internalFormatHalfFloat,r,a,0,n.textureFormatFloat,n.textureTypeHalfFloat,null);let i=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,i),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,s,0);let o=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(s),e.deleteFramebuffer(i),o}function m1(e){return e!==2?!1:vs(e).fenceSync!=null}function su(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&w.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the WebGL backend.`)})}var Ne=X();Ne.registerFlag("HAS_WEBGL",()=>Ne.getNumber("WEBGL_VERSION")>0);Ne.registerFlag("WEBGL_VERSION",()=>Gm(2)?2:Gm(1)?1:0);Ne.registerFlag("WEBGL_CHECK_NUMERICAL_PROBLEMS",()=>!1);Ne.registerFlag("WEBGL_BUFFER_SUPPORTED",()=>Ne.get("WEBGL_VERSION")===2);Ne.registerFlag("WEBGL_CPU_FORWARD",()=>!0);Ne.registerFlag("WEBGL_FORCE_F16_TEXTURES",()=>!1);Ne.registerFlag("WEBGL_PACK",()=>Ne.getBool("HAS_WEBGL"));Ne.registerFlag("WEBGL_PACK_NORMALIZATION",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_PACK_CLIP",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_PACK_DEPTHWISECONV",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_PACK_BINARY_OPERATIONS",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_PACK_UNARY_OPERATIONS",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_PACK_ARRAY_OPERATIONS",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_PACK_IMAGE_OPERATIONS",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_PACK_REDUCE",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_LAZILY_UNPACK",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_CONV_IM2COL",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_MAX_TEXTURE_SIZE",()=>c1(Ne.getNumber("WEBGL_VERSION")));Ne.registerFlag("WEBGL_MAX_TEXTURES_IN_SHADER",()=>d1(Ne.getNumber("WEBGL_VERSION")));Ne.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION",()=>{let e=Ne.getNumber("WEBGL_VERSION");return e===0?0:p1(e)});Ne.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE",()=>Ne.getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0&&!hp.isMobile());Ne.registerFlag("WEBGL_RENDER_FLOAT32_CAPABLE",()=>h1(Ne.getNumber("WEBGL_VERSION")));Ne.registerFlag("WEBGL_RENDER_FLOAT32_ENABLED",()=>Ne.getBool("WEBGL_FORCE_F16_TEXTURES")?!1:Ne.getBool("WEBGL_RENDER_FLOAT32_CAPABLE"));Ne.registerFlag("WEBGL_DOWNLOAD_FLOAT_ENABLED",()=>f1(Ne.getNumber("WEBGL_VERSION")));Ne.registerFlag("WEBGL_FENCE_API_ENABLED",()=>m1(Ne.getNumber("WEBGL_VERSION")));Ne.registerFlag("WEBGL_SIZE_UPLOAD_UNIFORM",()=>Ne.getBool("WEBGL_RENDER_FLOAT32_ENABLED")?4:0);Ne.registerFlag("WEBGL_DELETE_TEXTURE_THRESHOLD",()=>-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_DELETE_TEXTURE_THRESHOLD must be -1 (indicating never delete) or at least 0, but got ${e}.`)});Ne.registerFlag("WEBGL_FLUSH_THRESHOLD",()=>hp.isMobile()?1:-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_FLUSH_THRESHOLD must be -1 (indicating never manual flush) or at least 0, but got ${e}.`)});Ne.registerFlag("CPU_HANDOFF_SIZE_THRESHOLD",()=>128);Ne.registerFlag("WEBGL_USE_SHAPES_UNIFORMS",()=>!1);Ne.registerFlag("TOPK_LAST_DIM_CPU_HANDOFF_SIZE_THRESHOLD",()=>1e5);Ne.registerFlag("TOPK_K_CPU_HANDOFF_THRESHOLD",()=>128);function fn(){let e,t,n,s,r,a,i,o,u,l;return X().getNumber("WEBGL_VERSION")===2?(e="#version 300 es",t="in",n="out",s="in",r="texture",a="outputColor",i="out vec4 outputColor;",o=`
|
|
bool isnan_custom(float val) {
|
|
uint floatToUint = floatBitsToUint(val);
|
|
return (floatToUint & 0x7fffffffu) > 0x7f800000u;
|
|
}
|
|
|
|
bvec4 isnan_custom(vec4 val) {
|
|
return bvec4(isnan_custom(val.x),
|
|
isnan_custom(val.y), isnan_custom(val.z), isnan_custom(val.w));
|
|
}
|
|
|
|
#define isnan(value) isnan_custom(value)
|
|
`,u="",l=`
|
|
#define round(value) newRound(value)
|
|
int newRound(float value) {
|
|
return int(floor(value + 0.5));
|
|
}
|
|
|
|
ivec4 newRound(vec4 value) {
|
|
return ivec4(floor(value + vec4(0.5)));
|
|
}
|
|
`):(e="",t="attribute",n="varying",s="varying",r="texture2D",a="gl_FragColor",i="",o=`
|
|
#define isnan(value) isnan_custom(value)
|
|
bool isnan_custom(float val) {
|
|
return (val > 0. || val < 1. || val == 0.) ? false : true;
|
|
}
|
|
bvec4 isnan_custom(vec4 val) {
|
|
return bvec4(isnan(val.x), isnan(val.y), isnan(val.z), isnan(val.w));
|
|
}
|
|
`,u=`
|
|
uniform float INFINITY;
|
|
|
|
bool isinf(float val) {
|
|
return abs(val) == INFINITY;
|
|
}
|
|
bvec4 isinf(vec4 val) {
|
|
return equal(abs(val), vec4(INFINITY));
|
|
}
|
|
`,l=`
|
|
int round(float value) {
|
|
return int(floor(value + 0.5));
|
|
}
|
|
|
|
ivec4 round(vec4 value) {
|
|
return ivec4(floor(value + vec4(0.5)));
|
|
}
|
|
`),{version:e,attribute:t,varyingVs:n,varyingFs:s,texture2D:r,output:a,defineOutput:i,defineSpecialNaN:o,defineSpecialInf:u,defineRound:l}}function wi(e,t,n="index"){let s=w.computeStrides(t);return s.map((r,a)=>{let i=`int ${e[a]} = ${n} / ${r}`,o=a===s.length-1?`int ${e[a+1]} = ${n} - ${e[a]} * ${r}`:`index -= ${e[a]} * ${r}`;return`${i}; ${o};`}).join("")}function Kp(e,t,n="index"){let s=w.computeStrides(t);return s.map((r,a)=>{let i=`int ${e[a]} = ${n} / outShapeStrides[${a}]`,o=a===s.length-1?`int ${e[a+1]} = ${n} - ${e[a]} * outShapeStrides[${a}]`:`index -= ${e[a]} * outShapeStrides[${a}]`;return`${i}; ${o};`}).join("")}function X5(e,t){let n=e.length,s=e.map(a=>`${t}[${a}]`),r=new Array(n-1);r[n-2]=s[n-1];for(let a=n-3;a>=0;--a)r[a]=`(${r[a+1]} * ${s[a+1]})`;return r}function Y5(e,t,n="index"){let s=e.map((a,i)=>i),r=X5(s,t);return r.map((a,i)=>{let o=`int ${e[i]} = ${n} / ${r[i]}`,u=i===r.length-1?`int ${e[i+1]} = ${n} - ${e[i]} * ${r[i]}`:`index -= ${e[i]} * ${r[i]}`;return`${o}; ${u};`}).join("")}function mv(e){let t=w.computeStrides(e).map(n=>n.toString());return`
|
|
int getFlatIndex(ivec3 coords) {
|
|
return coords.x * ${t[0]} + coords.y * ${t[1]} + coords.z;
|
|
}
|
|
`}function gv(){return`
|
|
int getFlatIndex(ivec3 coords) {
|
|
return coords.x * outShapeStrides[0] + coords.y * outShapeStrides[1] + coords.z;
|
|
}
|
|
`}var g1=`
|
|
const float FLOAT_MAX = 1.70141184e38;
|
|
const float FLOAT_MIN = 1.17549435e-38;
|
|
|
|
lowp vec4 encode_float(highp float v) {
|
|
if (isnan(v)) {
|
|
return vec4(255, 255, 255, 255);
|
|
}
|
|
|
|
highp float av = abs(v);
|
|
|
|
if(av < FLOAT_MIN) {
|
|
return vec4(0.0, 0.0, 0.0, 0.0);
|
|
} else if(v > FLOAT_MAX) {
|
|
return vec4(0.0, 0.0, 128.0, 127.0) / 255.0;
|
|
} else if(v < -FLOAT_MAX) {
|
|
return vec4(0.0, 0.0, 128.0, 255.0) / 255.0;
|
|
}
|
|
|
|
highp vec4 c = vec4(0,0,0,0);
|
|
|
|
highp float e = floor(log2(av));
|
|
highp float m = exp2(fract(log2(av))) - 1.0;
|
|
|
|
c[2] = floor(128.0 * m);
|
|
m -= c[2] / 128.0;
|
|
c[1] = floor(32768.0 * m);
|
|
m -= c[1] / 32768.0;
|
|
c[0] = floor(8388608.0 * m);
|
|
|
|
highp float ebias = e + 127.0;
|
|
c[3] = floor(ebias / 2.0);
|
|
ebias -= c[3] * 2.0;
|
|
c[2] += floor(ebias) * 128.0;
|
|
|
|
c[3] += 128.0 * step(0.0, -v);
|
|
|
|
return c / 255.0;
|
|
}
|
|
`,{getBroadcastDims:b1}=S;function Q5(e,t,n){let s=[];if(e.forEach(h=>{let f=w.sizeFromShape(h.shapeInfo.logicalShape);if(h.shapeInfo.isUniform?s.push(`uniform float ${h.name}${f>1?`[${f}]`:""};`):(s.push(`uniform sampler2D ${h.name};`),s.push(`uniform int offset${h.name};`)),n.enableShapeUniforms){let{uniformShape:m}=bv(n.packedInputs,h.shapeInfo.logicalShape,h.shapeInfo.texShape);switch(m.length){case 1:s.push(`uniform int ${h.name}Shape;`);break;case 2:s.push(`uniform ivec2 ${h.name}Shape;`);break;case 3:s.push(`uniform ivec3 ${h.name}Shape;`);break;case 4:s.push(`uniform ivec4 ${h.name}Shape;`);break;default:break}s.push(`uniform ivec2 ${h.name}TexShape;`)}}),n.enableShapeUniforms){switch(t.logicalShape.length){case 1:s.push("uniform int outShape;");break;case 2:s.push("uniform ivec2 outShape;"),s.push("uniform int outShapeStrides;");break;case 3:s.push("uniform ivec3 outShape;"),s.push("uniform ivec2 outShapeStrides;");break;case 4:s.push("uniform ivec4 outShape;"),s.push("uniform ivec3 outShapeStrides;");break;default:break}s.push("uniform ivec2 outTexShape;")}n.customUniforms&&n.customUniforms.forEach(h=>{s.push(`uniform ${h.type} ${h.name}${h.arrayIndex?`[${h.arrayIndex}]`:""};`)});let r=s.join(`
|
|
`),a=e.map(h=>Z5(h,t,n.packedInputs,n.enableShapeUniforms)).join(`
|
|
`),i=t.texShape,o=fn(),u=tK(o),l,c,p=rK(o);return t.isPacked?(l=J5(t.logicalShape,i,n.enableShapeUniforms),c=sK(o)):(l=eK(t.logicalShape,i,n.enableShapeUniforms),c=nK(o)),n.packedInputs&&(p+=uK),[p,u,c,r,l,a,n.userCode].join(`
|
|
`)}function ru(e,t=!1){let n=e.shapeInfo.logicalShape;switch(n.length){case 0:return xK(e,t);case 1:return kK(e,t);case 2:return SK(e,t);case 3:return NK(e,t);case 4:return $K(e,t);case 5:return _K(e);case 6:return AK(e);default:throw new Error(`${n.length}-D input sampling is not yet supported`)}}function y1(e,t){switch(e.shapeInfo.logicalShape.length){case 0:return vK(e);case 1:return wK(e,t);case 2:return IK(e,t);case 3:return CK(e,t);default:return TK(e,t)}}function Z5(e,t,n=!1,s){let r="";n?r+=y1(e,s):r+=ru(e,s);let a=e.shapeInfo.logicalShape,i=t.logicalShape;return a.length<=i.length&&(n?r+=EK(e,t):r+=RK(e,t)),r}function J5(e,t,n){switch(e.length){case 0:return v1();case 1:return lK(e,t,n);case 2:return bK(e,t,n);case 3:return dK(e,t,n);default:return hK(e,t,n)}}function eK(e,t,n){switch(e.length){case 0:return v1();case 1:return cK(e,t,n);case 2:return yK(e,t,n);case 3:return pK(e,t,n);case 4:return fK(e,t,n);case 5:return mK(e,t);case 6:return gK(e,t);default:throw new Error(`${e.length}-D output sampling is not yet supported`)}}function tK(e){return`
|
|
float sampleTexture(sampler2D textureSampler, vec2 uv) {
|
|
return ${e.texture2D}(textureSampler, uv).r;
|
|
}
|
|
`}function nK(e){return`
|
|
void setOutput(float val) {
|
|
${e.output} = vec4(val, 0, 0, 0);
|
|
}
|
|
`}function sK(e){return`
|
|
void setOutput(vec4 val) {
|
|
${e.output} = val;
|
|
}
|
|
`}function rK(e){return`${e.version}
|
|
precision highp float;
|
|
precision highp int;
|
|
precision highp sampler2D;
|
|
${e.varyingFs} vec2 resultUV;
|
|
${e.defineOutput}
|
|
const vec2 halfCR = vec2(0.5, 0.5);
|
|
|
|
struct ivec5
|
|
{
|
|
int x;
|
|
int y;
|
|
int z;
|
|
int w;
|
|
int u;
|
|
};
|
|
|
|
struct ivec6
|
|
{
|
|
int x;
|
|
int y;
|
|
int z;
|
|
int w;
|
|
int u;
|
|
int v;
|
|
};
|
|
|
|
uniform float NAN;
|
|
${e.defineSpecialNaN}
|
|
${e.defineSpecialInf}
|
|
${e.defineRound}
|
|
|
|
int imod(int x, int y) {
|
|
return x - y * (x / y);
|
|
}
|
|
|
|
int idiv(int a, int b, float sign) {
|
|
int res = a / b;
|
|
int mod = imod(a, b);
|
|
if (sign < 0. && mod != 0) {
|
|
res -= 1;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
//Based on the work of Dave Hoskins
|
|
//https://www.shadertoy.com/view/4djSRW
|
|
#define HASHSCALE1 443.8975
|
|
float random(float seed){
|
|
vec2 p = resultUV * seed;
|
|
vec3 p3 = fract(vec3(p.xyx) * HASHSCALE1);
|
|
p3 += dot(p3, p3.yzx + 19.19);
|
|
return fract((p3.x + p3.y) * p3.z);
|
|
}
|
|
|
|
${aK}
|
|
${iK}
|
|
${oK}
|
|
`}var aK=`
|
|
vec2 uvFromFlat(int texNumR, int texNumC, int index) {
|
|
int texR = index / texNumC;
|
|
int texC = index - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
vec2 packedUVfrom1D(int texNumR, int texNumC, int index) {
|
|
int texelIndex = index / 2;
|
|
int texR = texelIndex / texNumC;
|
|
int texC = texelIndex - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,iK=`
|
|
vec2 packedUVfrom2D(int texelsInLogicalRow, int texNumR,
|
|
int texNumC, int row, int col) {
|
|
int texelIndex = (row / 2) * texelsInLogicalRow + (col / 2);
|
|
int texR = texelIndex / texNumC;
|
|
int texC = texelIndex - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,oK=`
|
|
vec2 packedUVfrom3D(int texNumR, int texNumC,
|
|
int texelsInBatch, int texelsInLogicalRow, int b,
|
|
int row, int col) {
|
|
int index = b * texelsInBatch + (row / 2) * texelsInLogicalRow + (col / 2);
|
|
int texR = index / texNumC;
|
|
int texC = index - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,uK=`
|
|
float getChannel(vec4 frag, vec2 innerDims) {
|
|
vec2 modCoord = mod(innerDims, 2.);
|
|
return modCoord.x == 0. ?
|
|
(modCoord.y == 0. ? frag.r : frag.g) :
|
|
(modCoord.y == 0. ? frag.b : frag.a);
|
|
}
|
|
float getChannel(vec4 frag, int dim) {
|
|
float modCoord = mod(float(dim), 2.);
|
|
return modCoord == 0. ? frag.r : frag.g;
|
|
}
|
|
`;function v1(){return`
|
|
int getOutputCoords() {
|
|
return 0;
|
|
}
|
|
`}function lK(e,t,n){let s=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];return s[0]===1?n?`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.x * ceil(float(outTexShape[1]) / 2.0));
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.x * ${s[1]}.0);
|
|
}
|
|
`:s[1]===1?n?`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.y * ceil(float(outTexShape[0]) / 2.0));
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.y * ${s[0]}.0);
|
|
}
|
|
`:n?`
|
|
int getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(packedTexShape[0], packedTexShape[1]));
|
|
return 2 * (resTexRC.x * packedTexShape[1] + resTexRC.y);
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${s[0]}, ${s[1]}));
|
|
return 2 * (resTexRC.x * ${s[1]} + resTexRC.y);
|
|
}
|
|
`}function cK(e,t,n){return t[0]===1?n?`
|
|
int getOutputCoords() {
|
|
return int(resultUV.x * float(outTexShape[1]));
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
return int(resultUV.x * ${t[1]}.0);
|
|
}
|
|
`:t[1]===1?n?`
|
|
int getOutputCoords() {
|
|
return int(resultUV.y * float(outTexShape[0]));
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
return int(resultUV.y * ${t[0]}.0);
|
|
}
|
|
`:n?`
|
|
int getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
return resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
return resTexRC.x * ${t[1]} + resTexRC.y;
|
|
}
|
|
`}function dK(e,t,n){if(n)return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
int texelsInLogicalRow = int(ceil(float(outShape[2]) / 2.0));
|
|
int texelsInBatch = texelsInLogicalRow * int(ceil(float(outShape[1]) / 2.0));
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(packedTexShape[0], packedTexShape[1]));
|
|
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
|
|
|
|
int b = index / texelsInBatch;
|
|
index -= b * texelsInBatch;
|
|
|
|
int r = 2 * (index / texelsInLogicalRow);
|
|
int c = imod(index, texelsInLogicalRow) * 2;
|
|
|
|
return ivec3(b, r, c);
|
|
}
|
|
`;let s=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],r=Math.ceil(e[2]/2),a=r*Math.ceil(e[1]/2);return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${s[0]}, ${s[1]}));
|
|
int index = resTexRC.x * ${s[1]} + resTexRC.y;
|
|
|
|
int b = index / ${a};
|
|
index -= b * ${a};
|
|
|
|
int r = 2 * (index / ${r});
|
|
int c = imod(index, ${r}) * 2;
|
|
|
|
return ivec3(b, r, c);
|
|
}
|
|
`}function pK(e,t,n){if(n)return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
${Kp(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
`;let s=wi(["r","c","d"],e);return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
${s}
|
|
return ivec3(r, c, d);
|
|
}
|
|
`}function hK(e,t,n){if(n)return`
|
|
ivec4 getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(packedTexShape[0], packedTexShape[1]));
|
|
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
|
|
|
|
int texelsInLogicalRow = int(ceil(float(outShape[3]) / 2.0));
|
|
int texelsInBatch = texelsInLogicalRow * int(ceil(float(outShape[2]) / 2.0));
|
|
int texelsInBatchN = texelsInBatch * outShape[1];
|
|
|
|
int b2 = index / texelsInBatchN;
|
|
index -= b2 * texelsInBatchN;
|
|
|
|
int b = index / texelsInBatch;
|
|
index -= b * texelsInBatch;
|
|
|
|
int r = 2 * (index / texelsInLogicalRow);
|
|
int c = imod(index, texelsInLogicalRow) * 2;
|
|
|
|
return ivec4(b2, b, r, c);
|
|
}
|
|
`;let s=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],r=Math.ceil(e[e.length-1]/2),a=r*Math.ceil(e[e.length-2]/2),i=a,o="",u="b, r, c";for(let l=2;l<e.length-1;l++)i*=e[e.length-l-1],o=`
|
|
int b${l} = index / ${i};
|
|
index -= b${l} * ${i};
|
|
`+o,u=`b${l}, `+u;return`
|
|
ivec${e.length} getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${s[0]}, ${s[1]}));
|
|
int index = resTexRC.x * ${s[1]} + resTexRC.y;
|
|
|
|
${o}
|
|
|
|
int b = index / ${a};
|
|
index -= b * ${a};
|
|
|
|
int r = 2 * (index / ${r});
|
|
int c = imod(index, ${r}) * 2;
|
|
|
|
return ivec${e.length}(${u});
|
|
}
|
|
`}function fK(e,t,n){if(n)return`
|
|
ivec4 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
${Kp(["r","c","d","d2"],e)}
|
|
return ivec4(r, c, d, d2);
|
|
}
|
|
`;let s=wi(["r","c","d","d2"],e);return`
|
|
ivec4 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
${s}
|
|
return ivec4(r, c, d, d2);
|
|
}
|
|
`}function mK(e,t){let n=wi(["r","c","d","d2","d3"],e);return`
|
|
ivec5 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx * vec2(${t[0]},
|
|
${t[1]}));
|
|
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
|
|
${n}
|
|
|
|
ivec5 outShape = ivec5(r, c, d, d2, d3);
|
|
return outShape;
|
|
}
|
|
`}function gK(e,t){let n=wi(["r","c","d","d2","d3","d4"],e);return`
|
|
ivec6 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
|
|
${n}
|
|
|
|
ivec6 result = ivec6(r, c, d, d2, d3, d4);
|
|
return result;
|
|
}
|
|
`}function bK(e,t,n){let s=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];if(w.arraysEqual(e,t))return n?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
return 2 * ivec2(resultUV.yx * vec2(packedTexShape[0], packedTexShape[1]));
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
return 2 * ivec2(resultUV.yx * vec2(${s[0]}, ${s[1]}));
|
|
}
|
|
`;let r=Math.ceil(e[1]/2);return n?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
int texelsInLogicalRow = int(ceil(float(outShape[1]) / 2.0));
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(packedTexShape[0], packedTexShape[1]));
|
|
|
|
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
|
|
int r = 2 * (index / texelsInLogicalRow);
|
|
int c = imod(index, texelsInLogicalRow) * 2;
|
|
|
|
return ivec2(r, c);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${s[0]}, ${s[1]}));
|
|
|
|
int index = resTexRC.x * ${s[1]} + resTexRC.y;
|
|
int r = 2 * (index / ${r});
|
|
int c = imod(index, ${r}) * 2;
|
|
|
|
return ivec2(r, c);
|
|
}
|
|
`}function yK(e,t,n){return w.arraysEqual(e,t)?n?`
|
|
ivec2 getOutputCoords() {
|
|
return ivec2(resultUV.yx * vec2(outTexShape[0], outTexShape[1]));
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
return ivec2(resultUV.yx * vec2(${t[0]}, ${t[1]}));
|
|
}
|
|
`:e[1]===1?n?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
return ivec2(index, 0);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
return ivec2(index, 0);
|
|
}
|
|
`:e[0]===1?n?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
return ivec2(0, index);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
return ivec2(0, index);
|
|
}
|
|
`:n?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
int r = index / outShape[1];
|
|
int c = index - r * outShape[1];
|
|
return ivec2(r, c);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
int r = index / ${e[1]};
|
|
int c = index - r * ${e[1]};
|
|
return ivec2(r, c);
|
|
}
|
|
`}function ki(e){return`offset${e}`}function vK(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1),s=fn();return`
|
|
vec4 ${n}() {
|
|
return ${s.texture2D}(${t}, halfCR);
|
|
}
|
|
`}function xK(e,t){let n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1);if(e.shapeInfo.isUniform)return`float ${s}() {return ${n};}`;let[r,a]=e.shapeInfo.texShape;if(r===1&&a===1)return`
|
|
float ${s}() {
|
|
return sampleTexture(${n}, halfCR);
|
|
}
|
|
`;let i=ki(n);if(t)return`
|
|
float ${s}() {
|
|
vec2 uv = uvFromFlat(${n}TexShape[0], ${n}TexShape[1], ${i});
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let[o,u]=e.shapeInfo.texShape;return`
|
|
float ${s}() {
|
|
vec2 uv = uvFromFlat(${o}, ${u}, ${i});
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function wK(e,t){let n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1),r=e.shapeInfo.texShape,a=fn();if(t)return`
|
|
vec4 ${s}(int index) {
|
|
ivec2 packedTexShape = ivec2(ceil(float(${n}TexShape[0]) / 2.0), ceil(float(${n}TexShape[1]) / 2.0));
|
|
vec2 uv = packedUVfrom1D(
|
|
packedTexShape[0], packedTexShape[1], index);
|
|
return ${a.texture2D}(${n}, uv);
|
|
}
|
|
`;let i=[Math.ceil(r[0]/2),Math.ceil(r[1]/2)];return`
|
|
vec4 ${s}(int index) {
|
|
vec2 uv = packedUVfrom1D(
|
|
${i[0]}, ${i[1]}, index);
|
|
return ${a.texture2D}(${n}, uv);
|
|
}
|
|
`}function kK(e,t){let n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1);if(e.shapeInfo.isUniform)return`
|
|
float ${s}(int index) {
|
|
${au(e)}
|
|
}
|
|
`;let r=e.shapeInfo.texShape,a=r[0],i=r[1];if(i===1&&a===1)return`
|
|
float ${s}(int index) {
|
|
return sampleTexture(${n}, halfCR);
|
|
}
|
|
`;let o=ki(n);return i===1?t?`
|
|
float ${s}(int index) {
|
|
vec2 uv = vec2(0.5, (float(index + ${o}) + 0.5) / float(${n}TexShape[0]));
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${s}(int index) {
|
|
vec2 uv = vec2(0.5, (float(index + ${o}) + 0.5) / ${a}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:a===1?t?`
|
|
float ${s}(int index) {
|
|
vec2 uv = vec2((float(index + ${o}) + 0.5) / float(${n}TexShape[1]), 0.5);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${s}(int index) {
|
|
vec2 uv = vec2((float(index + ${o}) + 0.5) / ${i}.0, 0.5);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:t?`
|
|
float ${s}(int index) {
|
|
vec2 uv = uvFromFlat(${n}TexShape[0], ${n}TexShape[1], index + ${o});
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${s}(int index) {
|
|
vec2 uv = uvFromFlat(${a}, ${i}, index + ${o});
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function IK(e,t){let n=e.shapeInfo.logicalShape,s=e.name,r="get"+s.charAt(0).toUpperCase()+s.slice(1),a=e.shapeInfo.texShape,i=a[0],o=a[1],u=fn();if(a!=null&&w.arraysEqual(n,a))return t?`
|
|
vec4 ${r}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${s}TexShape[1], ${s}TexShape[0]);
|
|
|
|
return ${u.texture2D}(${s}, uv);
|
|
}
|
|
`:`
|
|
vec4 ${r}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${o}.0, ${i}.0);
|
|
|
|
return ${u.texture2D}(${s}, uv);
|
|
}
|
|
`;if(t)return`
|
|
vec4 ${r}(int row, int col) {
|
|
ivec2 packedTexShape = ivec2(ceil(float(${s}TexShape[0]) / 2.0), ceil(float(${s}TexShape[1]) / 2.0));
|
|
int valuesPerRow = int(ceil(float(${s}Shape[1]) / 2.0));
|
|
vec2 uv = packedUVfrom2D(valuesPerRow, packedTexShape[0], packedTexShape[1], row, col);
|
|
return ${u.texture2D}(${s}, uv);
|
|
}
|
|
`;let l=[Math.ceil(a[0]/2),Math.ceil(a[1]/2)],c=Math.ceil(n[1]/2);return`
|
|
vec4 ${r}(int row, int col) {
|
|
vec2 uv = packedUVfrom2D(${c}, ${l[0]}, ${l[1]}, row, col);
|
|
return ${u.texture2D}(${s}, uv);
|
|
}
|
|
`}function SK(e,t){let n=e.shapeInfo.logicalShape,s=e.name,r="get"+s.charAt(0).toUpperCase()+s.slice(1),a=e.shapeInfo.texShape;if(a!=null&&w.arraysEqual(n,a)){if(t)return`
|
|
float ${r}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${s}TexShape[1], ${s}TexShape[0]);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`;let d=a[0],h=a[1];return`
|
|
float ${r}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${h}.0, ${d}.0);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`}let{newShape:i,keptDims:o}=w.squeezeShape(n),u=i;if(u.length<n.length){let d=iu(e,u),h=["row","col"];return`
|
|
${ru(d,t)}
|
|
float ${r}(int row, int col) {
|
|
return ${r}(${ou(h,o)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${r}(int row, int col) {
|
|
int index = round(dot(vec2(row, col), vec2(${n[1]}, 1)));
|
|
${au(e)}
|
|
}
|
|
`;let l=a[0],c=a[1],p=ki(s);return c===1?t?`
|
|
float ${r}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${p}), vec3(${s}Shape[1], 1, 1));
|
|
vec2 uv = vec2(0.5, (index + 0.5) / float(${s}TexShape[0]));
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${p}), vec3(${n[1]}, 1, 1));
|
|
vec2 uv = vec2(0.5, (index + 0.5) / ${l}.0);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:l===1?t?`
|
|
float ${r}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${p}), vec3(${s}Shape[1], 1, 1));
|
|
vec2 uv = vec2((index + 0.5) / float(${s}TexShape[1]), 0.5);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${p}), vec3(${n[1]}, 1, 1));
|
|
vec2 uv = vec2((index + 0.5) / ${c}.0, 0.5);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:t?`
|
|
float ${r}(int row, int col) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${s}Shape[1] + col + ${p};
|
|
vec2 uv = uvFromFlat(${s}TexShape[0], ${s}TexShape[1], index);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${n[1]} + col + ${p};
|
|
vec2 uv = uvFromFlat(${l}, ${c}, index);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`}function CK(e,t){let n=e.shapeInfo.logicalShape,s=e.name,r="get"+s.charAt(0).toUpperCase()+s.slice(1),a=e.shapeInfo.texShape,i=[Math.ceil(a[0]/2),Math.ceil(a[1]/2)];if(n[0]===1){let d=n.slice(1),h=[1,2],f=iu(e,d),m=["b","row","col"];return`
|
|
${y1(f,t)}
|
|
vec4 ${r}(int b, int row, int col) {
|
|
return ${r}(${ou(m,h)});
|
|
}
|
|
`}let o=fn();if(t)return`
|
|
vec4 ${r}(int b, int row, int col) {
|
|
ivec2 packedTexShape = ivec2(ceil(float(${s}TexShape[0]) / 2.0), ceil(float(${s}TexShape[1]) / 2.0));
|
|
int valuesPerRow = int(ceil(float(${s}Shape[2]) / 2.0));
|
|
int texelsInBatch = valuesPerRow * int(ceil(float(${s}Shape[1]) / 2.0));
|
|
vec2 uv = packedUVfrom3D(
|
|
packedTexShape[0], packedTexShape[1], texelsInBatch, valuesPerRow, b, row, col);
|
|
return ${o.texture2D}(${s}, uv);
|
|
}
|
|
`;let u=i[0],l=i[1],c=Math.ceil(n[2]/2),p=c*Math.ceil(n[1]/2);return`
|
|
vec4 ${r}(int b, int row, int col) {
|
|
vec2 uv = packedUVfrom3D(
|
|
${u}, ${l}, ${p}, ${c}, b, row, col);
|
|
return ${o.texture2D}(${s}, uv);
|
|
}
|
|
`}function NK(e,t){let n=e.shapeInfo.logicalShape,s=e.name,r="get"+s.charAt(0).toUpperCase()+s.slice(1),a=n[1]*n[2],i=n[2],{newShape:o,keptDims:u}=w.squeezeShape(n),l=o;if(l.length<n.length){let m=iu(e,l),g=["row","col","depth"];return`
|
|
${ru(m,t)}
|
|
float ${r}(int row, int col, int depth) {
|
|
return ${r}(${ou(g,u)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${r}(int row, int col, int depth) {
|
|
int index = round(dot(vec3(row, col, depth),
|
|
vec3(${a}, ${i}, 1)));
|
|
${au(e)}
|
|
}
|
|
`;let c=e.shapeInfo.texShape,p=c[0],d=c[1],h=e.shapeInfo.flatOffset;if(d===a&&h==null)return t?`
|
|
float ${r}(int row, int col, int depth) {
|
|
int stride1 = ${s}Shape[2];
|
|
float texR = float(row);
|
|
float texC = dot(vec2(col, depth), vec2(stride1, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${s}TexShape[1], ${s}TexShape[0]);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth) {
|
|
float texR = float(row);
|
|
float texC = dot(vec2(col, depth), vec2(${i}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${d}.0, ${p}.0);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`;if(d===i&&h==null)return t?`
|
|
float ${r}(int row, int col, int depth) {
|
|
float texR = dot(vec2(row, col), vec2(${s}Shape[1], 1));
|
|
float texC = float(depth);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${s}TexShape[1], ${s}TexShape[0]);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth) {
|
|
float texR = dot(vec2(row, col), vec2(${n[1]}, 1));
|
|
float texC = float(depth);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${d}.0, ${p}.0);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`;let f=ki(s);return t?`
|
|
float ${r}(int row, int col, int depth) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int stride0 = ${s}Shape[1] * ${s}Shape[2];
|
|
int stride1 = ${s}Shape[2];
|
|
int index = row * ${a} + col * ${i} + depth + ${f};
|
|
vec2 uv = uvFromFlat(${s}TexShape[0], ${s}TexShape[1], index);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${a} + col * ${i} + depth + ${f};
|
|
vec2 uv = uvFromFlat(${p}, ${d}, index);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`}function TK(e,t){let n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1),r=fn();if(t)return`
|
|
vec4 ${s}(int b2, int b, int row, int col) {
|
|
int valuesPerRow = int(ceil(float(${n}Shape[3]) / 2.0));
|
|
int texelsInBatch = valuesPerRow * int(ceil(float(${n}Shape[2]) / 2.0));
|
|
int index = b * texelsInBatch + (row / 2) * valuesPerRow + (col / 2);
|
|
texelsInBatch *= ${n}Shape[1];
|
|
index = b2 * texelsInBatch + index;
|
|
ivec2 packedTexShape = ivec2(ceil(float(${n}TexShape[0]) / 2.0), ceil(float(${n}TexShape[1]) / 2.0));
|
|
int texR = index / packedTexShape[1];
|
|
int texC = index - texR * packedTexShape[1];
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(packedTexShape[1], packedTexShape[0]); return ${r.texture2D}(${n}, uv);
|
|
}
|
|
`;let a=e.shapeInfo.logicalShape,i=a.length,o=e.shapeInfo.texShape,u=[Math.ceil(o[0]/2),Math.ceil(o[1]/2)],l=u[0],c=u[1],p=Math.ceil(a[i-1]/2),d=p*Math.ceil(a[i-2]/2),h="int b, int row, int col",f=`b * ${d} + (row / 2) * ${p} + (col / 2)`;for(let m=2;m<i-1;m++)h=`int b${m}, `+h,d*=a[i-m-1],f=`b${m} * ${d} + `+f;return`
|
|
vec4 ${s}(${h}) {
|
|
int index = ${f};
|
|
int texR = index / ${c};
|
|
int texC = index - texR * ${c};
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${c}, ${l});
|
|
return ${r.texture2D}(${n}, uv);
|
|
}
|
|
`}function $K(e,t){let n=e.shapeInfo.logicalShape,s=e.name,r="get"+s.charAt(0).toUpperCase()+s.slice(1),a=n[3],i=n[2]*a,o=n[1]*i,{newShape:u,keptDims:l}=w.squeezeShape(n);if(u.length<n.length){let y=iu(e,u),v=["row","col","depth","depth2"];return`
|
|
${ru(y,t)}
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
return ${r}(${ou(v,l)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
int index = round(dot(vec4(row, col, depth, depth2),
|
|
vec4(${o}, ${i}, ${a}, 1)));
|
|
${au(e)}
|
|
}
|
|
`;let c=e.shapeInfo.flatOffset,p=e.shapeInfo.texShape,d=p[0],h=p[1],f=`int stride2 = ${s}Shape[3];`,m=`int stride1 = ${s}Shape[2] * stride2;`,g=`int stride0 = ${s}Shape[1] * stride1;`;if(h===o&&c==null)return t?`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
${f}
|
|
${m}
|
|
float texR = float(row);
|
|
float texC =
|
|
dot(vec3(col, depth, depth2),
|
|
vec3(stride1, stride2, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${s}TexShape[1], ${s}TexShape[0]);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
float texR = float(row);
|
|
float texC =
|
|
dot(vec3(col, depth, depth2),
|
|
vec3(${i}, ${a}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${h}.0, ${d}.0);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`;if(h===a&&c==null)return t?`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
float texR = dot(vec3(row, col, depth),
|
|
vec3(${s}Shape[1] * ${s}Shape[2], ${s}Shape[2], 1));
|
|
float texC = float(depth2);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${s}TexShape[1], ${s}TexShape[0]);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
float texR = dot(vec3(row, col, depth),
|
|
vec3(${n[1]*n[2]}, ${n[2]}, 1));
|
|
float texC = float(depth2);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${h}.0, ${d}.0);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`;let b=ki(s);return t?`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
${f}
|
|
${m}
|
|
${g}
|
|
int index = row * stride0 + col * stride1 +
|
|
depth * stride2 + depth2;
|
|
vec2 uv = uvFromFlat(${s}TexShape[0], ${s}TexShape[1], index + ${b});
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${o} + col * ${i} +
|
|
depth * ${a} + depth2;
|
|
vec2 uv = uvFromFlat(${d}, ${h}, index + ${b});
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`}function _K(e){let t=e.shapeInfo.logicalShape,n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1),r=t[4],a=t[3]*r,i=t[2]*a,o=t[1]*i,{newShape:u,keptDims:l}=w.squeezeShape(t);if(u.length<t.length){let m=iu(e,u),g=["row","col","depth","depth2","depth3"];return`
|
|
${ru(m)}
|
|
float ${s}(int row, int col, int depth, int depth2, int depth3) {
|
|
return ${s}(${ou(g,l)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${s}(int row, int col, int depth, int depth2, int depth3) {
|
|
float index = dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${o}, ${i}, ${a}, ${r})) +
|
|
depth3;
|
|
${au(e)}
|
|
}
|
|
`;let c=e.shapeInfo.flatOffset,p=e.shapeInfo.texShape,d=p[0],h=p[1];if(h===o&&c==null)return`
|
|
float ${s}(int row, int col, int depth, int depth2, int depth3) {
|
|
int texR = row;
|
|
float texC = dot(vec4(col, depth, depth2, depth3),
|
|
vec4(${i}, ${a}, ${r}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${h}.0, ${d}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;if(h===r&&c==null)return`
|
|
float ${s}(int row, int col, int depth, int depth2, int depth3) {
|
|
float texR = dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${t[1]*t[2]*t[3]},
|
|
${t[2]*t[3]}, ${t[3]}, 1));
|
|
int texC = depth3;
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${h}.0, ${d}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let f=ki(n);return`
|
|
float ${s}(int row, int col, int depth, int depth2, int depth3) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${o} + col * ${i} + depth * ${a} +
|
|
depth2 * ${r} + depth3 + ${f};
|
|
vec2 uv = uvFromFlat(${d}, ${h}, index);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function AK(e){let t=e.shapeInfo.logicalShape,n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1),{newShape:r,keptDims:a}=w.squeezeShape(t);if(r.length<t.length){let g=iu(e,r),b=["row","col","depth","depth2","depth3","depth4"];return`
|
|
${ru(g)}
|
|
float ${s}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
return ${s}(${ou(b,a)});
|
|
}
|
|
`}let i=t[5],o=t[4]*i,u=t[3]*o,l=t[2]*u,c=t[1]*l;if(e.shapeInfo.isUniform)return`
|
|
float ${s}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
int index = round(dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${c}, ${l}, ${u}, ${o})) +
|
|
dot(
|
|
vec2(depth3, depth4),
|
|
vec2(${i}, 1)));
|
|
${au(e)}
|
|
}
|
|
`;let p=e.shapeInfo.flatOffset,d=e.shapeInfo.texShape,h=d[0],f=d[1];if(f===c&&p==null)return`
|
|
float ${s}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
int texR = row;
|
|
float texC = dot(vec4(col, depth, depth2, depth3),
|
|
vec4(${l}, ${u}, ${o}, ${i})) +
|
|
float(depth4);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${f}.0, ${h}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;if(f===i&&p==null)return`
|
|
float ${s}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
float texR = dot(vec4(row, col, depth, depth2),
|
|
vec4(${t[1]*t[2]*t[3]*t[4]},
|
|
${t[2]*t[3]*t[4]},
|
|
${t[3]*t[4]},
|
|
${t[4]})) + float(depth3);
|
|
int texC = depth4;
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${f}.0, ${h}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let m=ki(n);return`
|
|
float ${s}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${c} + col * ${l} + depth * ${u} +
|
|
depth2 * ${o} + depth3 * ${i} + depth4 + ${m};
|
|
vec2 uv = uvFromFlat(${h}, ${f}, index);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function au(e){let t=e.name,n=w.sizeFromShape(e.shapeInfo.logicalShape);return n<2?`return ${t};`:`
|
|
for (int i = 0; i < ${n}; i++) {
|
|
if (i == index) {
|
|
return ${t}[i];
|
|
}
|
|
}
|
|
`}function EK(e,t){let n=e.name,s=n.charAt(0).toUpperCase()+n.slice(1),r="get"+s+"AtOutCoords",a=e.shapeInfo.logicalShape.length,i=t.logicalShape.length,o=b1(e.shapeInfo.logicalShape,t.logicalShape),u=rt(i),l=i-a,c,p=["x","y","z","w","u","v"];a===0?c="":i<2&&o.length>=1?c="coords = 0;":c=o.map(y=>`coords.${p[y+l]} = 0;`).join(`
|
|
`);let d="";i<2&&a>0?d="coords":d=e.shapeInfo.logicalShape.map((y,v)=>`coords.${p[v+l]}`).join(", ");let h="return outputValue;",m=w.sizeFromShape(e.shapeInfo.logicalShape)===1,b=w.sizeFromShape(t.logicalShape)===1;if(a===1&&!m&&!b)h=`
|
|
return vec4(outputValue.xy, outputValue.xy);
|
|
`;else if(m&&!b)i===1?h=`
|
|
return vec4(outputValue.x, outputValue.x, 0., 0.);
|
|
`:h=`
|
|
return vec4(outputValue.x);
|
|
`;else if(o.length){let y=a-2,v=a-1;o.indexOf(y)>-1&&o.indexOf(v)>-1?h="return vec4(outputValue.x);":o.indexOf(y)>-1?h="return vec4(outputValue.x, outputValue.y, outputValue.x, outputValue.y);":o.indexOf(v)>-1&&(h="return vec4(outputValue.xx, outputValue.zz);")}return`
|
|
vec4 ${r}() {
|
|
${u} coords = getOutputCoords();
|
|
${c}
|
|
vec4 outputValue = get${s}(${d});
|
|
${h}
|
|
}
|
|
`}function RK(e,t){let n=e.name,s=n.charAt(0).toUpperCase()+n.slice(1),r="get"+s+"AtOutCoords",a=t.texShape,i=e.shapeInfo.texShape,o=e.shapeInfo.logicalShape.length,u=t.logicalShape.length;if(!e.shapeInfo.isUniform&&o===u&&e.shapeInfo.flatOffset==null&&w.arraysEqual(i,a))return`
|
|
float ${r}() {
|
|
return sampleTexture(${n}, resultUV);
|
|
}
|
|
`;let l=rt(u),c=b1(e.shapeInfo.logicalShape,t.logicalShape),p=u-o,d,h=["x","y","z","w","u","v"];o===0?d="":u<2&&c.length>=1?d="coords = 0;":d=c.map(m=>`coords.${h[m+p]} = 0;`).join(`
|
|
`);let f="";return u<2&&o>0?f="coords":f=e.shapeInfo.logicalShape.map((m,g)=>`coords.${h[g+p]}`).join(", "),`
|
|
float ${r}() {
|
|
${l} coords = getOutputCoords();
|
|
${d}
|
|
return get${s}(${f});
|
|
}
|
|
`}function rt(e){if(e<=1)return"int";if(e===2)return"ivec2";if(e===3)return"ivec3";if(e===4)return"ivec4";if(e===5)return"ivec5";if(e===6)return"ivec6";throw Error(`GPU for rank ${e} is not yet supported`)}function bv(e,t,n){let{newShape:s,keptDims:r}=w.squeezeShape(t),a=t.length,i=e&&a===3&&t[0]===1,o=i?t.slice(1):s,u=!e&&a>1&&!w.arraysEqual(t,n)&&s.length<a||i;return{useSqueezeShape:u,uniformShape:u?o:t,keptDims:r}}function iu(e,t){let n=JSON.parse(JSON.stringify(e));return n.shapeInfo.logicalShape=t,n}function ou(e,t){return t.map(n=>e[n]).join(", ")}function DK(e,t,n,s){let r=n.map((c,p)=>{let d={logicalShape:c.shape,texShape:c.isUniform?null:c.texData.texShape,isUniform:c.isUniform,isPacked:c.isUniform?!1:c.texData.isPacked,flatOffset:null};return c.texData!=null&&c.texData.slice!=null&&c.texData.slice.flatOffset>0&&(d.flatOffset=c.texData.slice.flatOffset),{name:t.variableNames[p],shapeInfo:d}}),a=r.map(c=>c.shapeInfo),i={logicalShape:s.shape,texShape:s.texData.texShape,isUniform:!1,isPacked:s.texData.isPacked,flatOffset:null},o=Q5(r,i,t),u=XC(e.gl,o),l=e.createProgram(u);return X().get("ENGINE_COMPILE_ONLY")?{program:t,fragmentShader:u,source:o,webGLProgram:l,inShapeInfos:a,outShapeInfo:i,uniformLocations:null,customUniformLocations:null,infLoc:null,nanLoc:null,inShapesLocations:null,inTexShapesLocations:null,outShapeLocation:null,outShapeStridesLocation:null,outTexShapeLocation:null}:{program:t,fragmentShader:u,source:o,webGLProgram:l,inShapeInfos:a,outShapeInfo:i,...x1(e,t,l)}}function x1(e,t,n){let s={},r={},a={},i=[],o,u,l,c=null,p=null;p=e.getUniformLocation(n,"NAN",!1),X().getNumber("WEBGL_VERSION")===1&&(c=e.getUniformLocation(n,"INFINITY",!1));let d=!1;for(let h=0;h<t.variableNames.length;h++){let f=t.variableNames[h];s[f]=e.getUniformLocation(n,f,d),s[`offset${f}`]=e.getUniformLocation(n,`offset${f}`,d),t.enableShapeUniforms&&(r[`${f}Shape`]=e.getUniformLocation(n,`${f}Shape`,d),a[`${f}TexShape`]=e.getUniformLocation(n,`${f}TexShape`,d))}return t.enableShapeUniforms&&(o=e.getUniformLocation(n,"outShape",d),l=e.getUniformLocation(n,"outShapeStrides",d),u=e.getUniformLocation(n,"outTexShape",d)),t.customUniforms&&t.customUniforms.forEach((h,f)=>{i[f]=e.getUniformLocation(n,h.name,d)}),{uniformLocations:s,customUniformLocations:i,infLoc:c,nanLoc:p,inShapesLocations:r,inTexShapesLocations:a,outShapeLocation:o,outShapeStridesLocation:l,outTexShapeLocation:u}}function aw(e,t){if(e.length!==t.length)throw Error(`Binary was compiled with ${e.length} inputs, but was executed with ${t.length} inputs`);e.forEach((n,s)=>{let r=n.logicalShape,a=t[s],i=a.shape;if(!w.arraysEqual(r,i))throw Error(`Binary was compiled with different shapes than the current args. Shapes ${r} and ${i} must match`);if(n.isUniform&&a.isUniform)return;let o=n.texShape,u=a.isUniform?null:a.texData.texShape;if(!w.arraysEqual(o,u))throw Error(`Binary was compiled with different texture shapes than the current args. Shape ${o} and ${u} must match`)})}function FK(e,t,n,s,r){t.program.enableShapeUniforms||(aw(t.inShapeInfos,n),aw([t.outShapeInfo],[s]));let a=s.texData.texture,i=s.texData.texShape;s.texData.isPacked?e.setOutputPackedMatrixTexture(a.texture,i[0],i[1]):e.setOutputMatrixTexture(a.texture,i[0],i[1]),e.setProgram(t.webGLProgram),X().getNumber("WEBGL_VERSION")===1&&t.infLoc!==null&&e.gl.uniform1f(t.infLoc,1/0),t.nanLoc!==null&&e.gl.uniform1f(t.nanLoc,NaN),n.forEach((u,l)=>{let c=t.program.variableNames[l],p=t.uniformLocations[c],d=t.uniformLocations[`offset${c}`],h=t.inShapesLocations[`${c}Shape`],f=t.inTexShapesLocations[`${c}TexShape`];if(h){let{uniformShape:m}=bv(t.program.packedInputs,u.shape,u.texData.texShape);switch(m.length){case 1:e.gl.uniform1iv(h,new Int32Array(m));break;case 2:e.gl.uniform2iv(h,new Int32Array(m));break;case 3:e.gl.uniform3iv(h,new Int32Array(m));break;case 4:e.gl.uniform4iv(h,new Int32Array(m));break;default:break}}if(f&&e.gl.uniform2i(f,u.texData.texShape[0],u.texData.texShape[1]),p!=null){if(u.isUniform){if(w.sizeFromShape(u.shape)<2)e.gl.uniform1f(p,u.uniformValues[0]);else{let m=u.uniformValues;m instanceof Float32Array||(m=new Float32Array(m)),e.gl.uniform1fv(p,m)}return}u.texData.slice!=null&&d!=null&&e.gl.uniform1i(d,u.texData.slice.flatOffset),e.setInputMatrixTexture(u.texData.texture.texture,p,l)}});let o=t.outShapeLocation;if(o)switch(s.shape.length){case 1:e.gl.uniform1iv(o,new Int32Array(s.shape));break;case 2:e.gl.uniform2iv(o,new Int32Array(s.shape));break;case 3:e.gl.uniform3iv(o,new Int32Array(s.shape));break;case 4:e.gl.uniform4iv(o,new Int32Array(s.shape));break;default:break}if(t.outShapeStridesLocation){let u=w.computeStrides(s.shape);switch(s.shape.length){case 2:e.gl.uniform1iv(t.outShapeStridesLocation,new Int32Array(u));break;case 3:e.gl.uniform2iv(t.outShapeStridesLocation,new Int32Array(u));break;case 4:e.gl.uniform3iv(t.outShapeStridesLocation,new Int32Array(u));break;default:break}}t.outTexShapeLocation&&e.gl.uniform2i(t.outTexShapeLocation,s.texData.texShape[0],s.texData.texShape[1]),t.program.customUniforms&&r&&t.program.customUniforms.forEach((u,l)=>{let c=t.customUniformLocations[l],p=r[l];if(u.type==="float")e.gl.uniform1fv(c,p);else if(u.type==="vec2")e.gl.uniform2fv(c,p);else if(u.type==="vec3")e.gl.uniform3fv(c,p);else if(u.type==="vec4")e.gl.uniform4fv(c,p);else if(u.type==="int")e.gl.uniform1iv(c,p);else if(u.type==="ivec2")e.gl.uniform2iv(c,p);else if(u.type==="ivec3")e.gl.uniform3iv(c,p);else if(u.type==="ivec4")e.gl.uniform4iv(c,p);else throw Error(`uniform type ${u.type} is not supported yet.`)}),e.executeProgram()}function OK(e,t,n){let s="";t.concat(n).forEach(i=>{let o=i.texData!=null&&i.texData.slice!=null&&i.texData.slice.flatOffset>0;if(e.enableShapeUniforms&&!i.isUniform){let u=i.texData.texShape,{useSqueezeShape:l,uniformShape:c,keptDims:p}=bv(e.packedInputs,i.shape,u),d="",h="",f="";if(c.length===1&&e.packedInputs){let k=[Math.ceil(u[0]/2),Math.ceil(u[1]/2)];d=`${k[0]>1}_${k[1]>1}`}else if(c.length===2&&!e.packedInputs)h=`${c[0]>1}_${c[1]>1}`;else if(c.length>2&&!e.packedInputs){let k=w.computeStrides(c);f=`${k[0]===u[1]}_${k[k.length-1]===u[1]}`}let m=i.shape.length,g=c.length===2&&w.arraysEqual(i.shape,u),b=w.sizeFromShape(i.shape)===1,y=S.getBroadcastDims(i.shape,n.shape),v=!e.packedInputs&&m===n.shape.length&&w.arraysEqual(u,n.texData.texShape),x=e.packedInputs||c.length>2?"":`${u[0]>1}_${u[1]>1}`;s+=`${m}_${v}_${l?p:""}_${c.length}_${b}_${y}_${g}_${d}_${h}_${f}_${x}_${o}`}else{let u=i.isUniform?"uniform":i.texData.texShape;s+=`${i.shape}_${u}_${o}`}});let r=e.userCode,a=e.constructor.name;return a+="_"+s+"_"+r+`${X().getNumber("WEBGL_VERSION")}`,a}function Sn(e){return X().getBool("WEBGL_USE_SHAPES_UNIFORMS")&&e<=4}var PK=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outPackingScheme=0,this.customUniforms=[{name:"texShape",type:"ivec2"}];let t=fn();this.outputShape=e,this.enableShapeUniforms=Sn(this.outputShape.length),this.userCode=`
|
|
ivec3 outCoordsFromFlatIndex(int index) {
|
|
${this.enableShapeUniforms?Kp(["r","c","d"],e):wi(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx * vec2(texShape[0], texShape[1]));
|
|
int index = 4 * (resTexRC.x * texShape[1] + resTexRC.y);
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for (int i=0; i<4; i++) {
|
|
int flatIndex = index + i;
|
|
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
|
|
result[i] = getA(rc.x, rc.y, rc.z);
|
|
}
|
|
|
|
${t.output} = result;
|
|
}
|
|
`}},zK=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outPackingScheme=0,this.customUniforms=[{name:"texShape",type:"ivec2"}];let t=fn();this.outputShape=e,this.enableShapeUniforms=Sn(this.outputShape.length),this.userCode=`
|
|
ivec3 outCoordsFromFlatIndex(int index) {
|
|
${this.enableShapeUniforms?Kp(["r","c","d"],e):wi(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx * vec2(texShape[0], texShape[1]));
|
|
int index = 4 * (resTexRC.x * texShape[1] + resTexRC.y);
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for (int i=0; i<4; i++) {
|
|
int flatIndex = index + i;
|
|
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
|
|
result[i] = getChannel(getA(rc.x, rc.y, rc.z), vec2(rc.y, rc.z));
|
|
}
|
|
|
|
${t.output} = result;
|
|
}
|
|
`}},MK=class{constructor(e){this.variableNames=["A"],this.outTexUsage=3;let t=fn();this.outputShape=e,this.userCode=`
|
|
${g1}
|
|
|
|
void main() {
|
|
float x = getAAtOutCoords();
|
|
${t.output} = encode_float(x);
|
|
}
|
|
`}},LK=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outTexUsage=3;let t=fn();this.outputShape=e,this.userCode=`
|
|
${g1}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
float x = getChannel(getAAtOutCoords(), vec2(coords.y, coords.z));
|
|
${t.output} = encode_float(x);
|
|
}
|
|
`}},BK=class{constructor(e,t=!1){this.variableNames=["A"],this.customUniforms=[{name:"texShape",type:"ivec2"}];let n=fn();this.outputShape=e,this.enableShapeUniforms=Sn(this.outputShape.length);let s="result";t&&(s="floor(result * 255. + 0.5)"),this.userCode=`
|
|
${this.enableShapeUniforms?gv():mv(e)}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
|
|
int flatIndex = getFlatIndex(coords);
|
|
int offset = imod(flatIndex, 4);
|
|
|
|
flatIndex = idiv(flatIndex, 4, 1.);
|
|
|
|
int r = flatIndex / texShape[1];
|
|
int c = imod(flatIndex, texShape[1]);
|
|
vec2 uv = (vec2(c, r) + halfCR) / vec2(texShape[1], texShape[0]);
|
|
vec4 values = ${n.texture2D}(A, uv);
|
|
|
|
float result;
|
|
|
|
if(offset == 0) {
|
|
result = values[0];
|
|
} else if(offset == 1) {
|
|
result = values[1];
|
|
} else if(offset == 2) {
|
|
result = values[2];
|
|
} else {
|
|
result = values[3];
|
|
}
|
|
|
|
${n.output} = vec4(${s}, 0., 0., 0.);
|
|
}
|
|
`}},VK=class{constructor(e,t=!1){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.customUniforms=[{name:"texShape",type:"ivec2"}];let n=fn();this.outputShape=e,this.enableShapeUniforms=Sn(this.outputShape.length);let s="",r="result";t&&(r="floor(result * 255. + 0.5)");for(let a=0;a<=1;a++)for(let i=0;i<=1;i++){let o=a*2+i;s+=`
|
|
localCoords = coords;
|
|
if(localCoords[2] + ${i} < ${this.enableShapeUniforms?"outShape[2]":`${e[2]}`}) {
|
|
localCoords[2] += ${i};
|
|
if (localCoords[1] + ${a} < ${this.enableShapeUniforms?"outShape[1]":`${e[1]}`}) {
|
|
localCoords[1] += ${a};
|
|
|
|
flatIndex = getFlatIndex(localCoords);
|
|
offset = imod(flatIndex, 4);
|
|
|
|
flatIndex = idiv(flatIndex, 4, 1.);
|
|
|
|
int r = flatIndex / texShape[1];
|
|
int c = imod(flatIndex, texShape[1]);
|
|
vec2 uv = (vec2(c, r) + halfCR) / vec2(texShape[1], texShape[0]);
|
|
values = ${n.texture2D}(A, uv);
|
|
|
|
if (offset == 0) {
|
|
result[${o}] = values[0];
|
|
} else if (offset == 1) {
|
|
result[${o}] = values[1];
|
|
} else if (offset == 2) {
|
|
result[${o}] = values[2];
|
|
} else {
|
|
result[${o}] = values[3];
|
|
}
|
|
}
|
|
}
|
|
`}this.userCode=`
|
|
${this.enableShapeUniforms?gv():mv(e)}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
|
|
vec4 result = vec4(0.);
|
|
int flatIndex, r, c, offset;
|
|
ivec3 localCoords;
|
|
vec2 uv;
|
|
vec4 values;
|
|
|
|
${s}
|
|
|
|
${n.output} = ${r};
|
|
}
|
|
`}},WK={};Ae(WK,{bindVertexProgramAttributeStreams:()=>_1,createBufferFromOutputTexture:()=>R1,createFloat16MatrixTexture:()=>C1,createFloat16PackedMatrixTexture:()=>$1,createFloat32MatrixTexture:()=>S1,createIndexBuffer:()=>I1,createPackedMatrixTexture:()=>T1,createUnsignedBytesMatrixTexture:()=>N1,createVertexBuffer:()=>k1,createVertexShader:()=>w1,downloadByteEncodedFloatMatrixFromOutputTexture:()=>F1,downloadFloat32MatrixFromBuffer:()=>D1,downloadMatrixFromPackedOutputTexture:()=>P1,downloadPackedMatrixFromBuffer:()=>O1,getInternalFormatForFloat16MatrixTexture:()=>vv,getInternalFormatForFloat16PackedMatrixTexture:()=>kv,getInternalFormatForFloat32MatrixTexture:()=>yv,getInternalFormatForPackedMatrixTexture:()=>wv,getInternalFormatForUnsignedBytesMatrixTexture:()=>xv,uploadDenseMatrixToTexture:()=>A1,uploadPixelDataToTexture:()=>E1});function w1(e){let t=fn(),n=`${t.version}
|
|
precision highp float;
|
|
${t.attribute} vec3 clipSpacePos;
|
|
${t.attribute} vec2 uv;
|
|
${t.varyingVs} vec2 resultUV;
|
|
|
|
void main() {
|
|
gl_Position = vec4(clipSpacePos, 1);
|
|
resultUV = uv;
|
|
}`;return KC(e,n)}function k1(e){let t=new Float32Array([-1,1,0,0,1,-1,-1,0,0,0,1,1,0,1,1,1,-1,0,1,0]);return ZC(e,t)}function I1(e){let t=new Uint16Array([0,1,2,2,1,3]);return JC(e,t)}function Ql(e,t,n,s,r,a){t1(t,n);let i=e1(e),o=e.TEXTURE_2D;return fe(e,()=>e.bindTexture(o,i)),fe(e,()=>e.texParameteri(o,e.TEXTURE_WRAP_S,e.CLAMP_TO_EDGE)),fe(e,()=>e.texParameteri(o,e.TEXTURE_WRAP_T,e.CLAMP_TO_EDGE)),fe(e,()=>e.texParameteri(o,e.TEXTURE_MIN_FILTER,e.NEAREST)),fe(e,()=>e.texParameteri(o,e.TEXTURE_MAG_FILTER,e.NEAREST)),X().getNumber("WEBGL_VERSION")===1?fe(e,()=>e.texImage2D(o,0,s,t,n,0,r,a,null)):fe(e,()=>e.texStorage2D(o,1,s,t,n)),fe(e,()=>e.bindTexture(e.TEXTURE_2D,null)),{texture:i,texShape:[n,t]}}function yv(e){return e.internalFormatFloat}function S1(e,t,n,s){let[r,a]=Yl(t,n);return Ql(e,r,a,yv(s),s.textureFormatFloat,e.FLOAT)}function vv(e){return e.internalFormatHalfFloat}function C1(e,t,n,s){let[r,a]=Yl(t,n);return Ql(e,r,a,vv(s),s.textureFormatFloat,s.textureTypeHalfFloat)}function xv(e){return e.downloadTextureFormat}function N1(e,t,n,s){let[r,a]=Yl(t,n);return Ql(e,r,a,xv(s),e.RGBA,e.UNSIGNED_BYTE)}function wv(e){return e.internalFormatPackedFloat}function T1(e,t,n,s){let[r,a]=nu(t,n);return Ql(e,r,a,wv(s),e.RGBA,e.FLOAT)}function kv(e){return e.internalFormatPackedHalfFloat}function $1(e,t,n,s){let[r,a]=nu(t,n);return Ql(e,r,a,kv(s),e.RGBA,s.textureTypeHalfFloat)}function _1(e,t,n){return fe(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),Wm(e,t,"clipSpacePos",n,3,20,0)&&Wm(e,t,"uv",n,2,20,12)}function A1(e,t,n,s,r,a){fe(e,()=>e.bindTexture(e.TEXTURE_2D,t));let i,o,u;r instanceof Uint8Array?(i=new Uint8Array(n*s*4),o=e.UNSIGNED_BYTE,u=e.RGBA):(i=new Float32Array(n*s*4),o=e.FLOAT,u=a.internalFormatPackedFloat),i.set(r),X().getNumber("WEBGL_VERSION")===2?fe(e,()=>e.texSubImage2D(e.TEXTURE_2D,0,0,0,n,s,e.RGBA,o,i)):fe(e,()=>e.texImage2D(e.TEXTURE_2D,0,u,n,s,0,e.RGBA,o,i)),fe(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function E1(e,t,n){fe(e,()=>e.bindTexture(e.TEXTURE_2D,t)),n.data instanceof Uint8Array?X().getNumber("WEBGL_VERSION")===2?fe(e,()=>e.texSubImage2D(e.TEXTURE_2D,0,0,0,n.width,n.height,e.RGBA,e.UNSIGNED_BYTE,n.data)):fe(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,n.width,n.height,0,e.RGBA,e.UNSIGNED_BYTE,n.data)):X().getNumber("WEBGL_VERSION")===2?fe(e,()=>e.texSubImage2D(e.TEXTURE_2D,0,0,0,e.RGBA,e.UNSIGNED_BYTE,n)):fe(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,e.RGBA,e.UNSIGNED_BYTE,n)),fe(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function R1(e,t,n,s){let r=e.createBuffer();fe(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,r));let o=4*4*t*n;return fe(e,()=>e.bufferData(e.PIXEL_PACK_BUFFER,o,e.STREAM_READ)),fe(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,0)),fe(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,null)),r}function D1(e,t,n){let s=e,r=new Float32Array(n);return s.bindBuffer(s.PIXEL_PACK_BUFFER,t),s.getBufferSubData(s.PIXEL_PACK_BUFFER,0,r),s.bindBuffer(s.PIXEL_PACK_BUFFER,null),r}function F1(e,t,n,s){let[r,a]=Yl(t,n),i=4,o=new Uint8Array(z5(t*n,i));return fe(e,()=>e.readPixels(0,0,r,a,s.downloadTextureFormat,e.UNSIGNED_BYTE,o)),new Float32Array(o.buffer)}function O1(e,t,n,s,r,a,i,o){let u=e,l=new Float32Array(M5(a,i));return u.bindBuffer(u.PIXEL_PACK_BUFFER,t),u.getBufferSubData(u.PIXEL_PACK_BUFFER,0,l),u.bindBuffer(u.PIXEL_PACK_BUFFER,null),l}function P1(e,t,n){let s=new Float32Array(t*n*4);return fe(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,s)),s}var Xf=class{constructor(e){this.outputTexture=null,this.program=null,this.disposed=!1,this.vertexAttrsAreBound=!1,this.itemsToPoll=[];let t=X().getNumber("WEBGL_VERSION");e!=null?(this.gl=e,F5(t,e)):this.gl=vs(t);let n="WEBGL_color_buffer_float",s="EXT_color_buffer_half_float";if(this.parallelCompilationExtension=this.gl.getExtension("KHR_parallel_shader_compile"),X().getNumber("WEBGL_VERSION")===1){let r="OES_texture_float",a="OES_texture_half_float";if(this.textureFloatExtension=Ou(this.gl,r),Ln(this.gl,a))this.textureHalfFloatExtension=Ou(this.gl,a);else if(X().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support half float textures, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.");if(this.colorBufferFloatExtension=this.gl.getExtension(n),Ln(this.gl,s))this.colorBufferHalfFloatExtension=Ou(this.gl,s);else if(X().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support color renderable half floats, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.")}else if(n="EXT_color_buffer_float",Ln(this.gl,n))this.colorBufferFloatExtension=this.gl.getExtension(n);else if(Ln(this.gl,s))this.colorBufferHalfFloatExtension=this.gl.getExtension(s);else throw new Error("GL context does not support color renderable floats");this.vertexBuffer=k1(this.gl),this.indexBuffer=I1(this.gl),this.framebuffer=n1(this.gl),this.textureConfig=hv(this.gl,this.textureHalfFloatExtension)}get debug(){return X().getBool("DEBUG")}dispose(){if(this.disposed)return;this.program!=null&&console.warn("Disposing a GPGPUContext that still has a bound WebGLProgram. This is probably a resource leak, delete the program with GPGPUContext.deleteProgram before disposing."),this.outputTexture!=null&&console.warn("Disposing a GPGPUContext that still has a bound output matrix texture. This is probably a resource leak, delete the output matrix texture with GPGPUContext.deleteMatrixTexture before disposing.");let e=this.gl;fe(e,()=>e.finish()),fe(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),fe(e,()=>e.deleteFramebuffer(this.framebuffer)),fe(e,()=>e.bindBuffer(e.ARRAY_BUFFER,null)),fe(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,null)),fe(e,()=>e.deleteBuffer(this.indexBuffer)),this.disposed=!0}createFloat32MatrixTexture(e,t){return this.throwIfDisposed(),S1(this.gl,e,t,this.textureConfig)}createFloat16MatrixTexture(e,t){return this.throwIfDisposed(),C1(this.gl,e,t,this.textureConfig)}createUnsignedBytesMatrixTexture(e,t){return this.throwIfDisposed(),N1(this.gl,e,t,this.textureConfig)}uploadPixelDataToTexture(e,t){this.throwIfDisposed(),E1(this.gl,e,t)}uploadDenseMatrixToTexture(e,t,n,s){this.throwIfDisposed(),A1(this.gl,e,t,n,s,this.textureConfig)}createFloat16PackedMatrixTexture(e,t){return this.throwIfDisposed(),$1(this.gl,e,t,this.textureConfig)}createPackedMatrixTexture(e,t){return this.throwIfDisposed(),T1(this.gl,e,t,this.textureConfig)}deleteMatrixTexture(e){this.throwIfDisposed(),this.outputTexture===e&&(Um(this.gl,this.framebuffer),this.outputTexture=null),fe(this.gl,()=>this.gl.deleteTexture(e))}downloadByteEncodedFloatMatrixFromOutputTexture(e,t,n){return this.downloadMatrixDriver(e,()=>F1(this.gl,t,n,this.textureConfig))}downloadPackedMatrixFromBuffer(e,t,n,s,r,a){return O1(this.gl,e,t,n,s,r,a,this.textureConfig)}downloadFloat32MatrixFromBuffer(e,t){return D1(this.gl,e,t)}createBufferFromTexture(e,t,n){this.bindTextureToFrameBuffer(e);let s=R1(this.gl,t,n,this.textureConfig);return this.unbindTextureToFrameBuffer(),s}createAndWaitForFence(){let e=this.createFence(this.gl);return this.pollFence(e)}createFence(e){let t,n;if(X().getBool("WEBGL_FENCE_API_ENABLED")){let s=e,r=s.fenceSync(s.SYNC_GPU_COMMANDS_COMPLETE,0);e.flush(),n=()=>{let a=s.clientWaitSync(r,0,0);return a===s.ALREADY_SIGNALED||a===s.CONDITION_SATISFIED},t=r}else X().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0?(t=this.beginQuery(),this.endQuery(),n=()=>this.isQueryAvailable(t,X().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))):n=()=>!0;return{query:t,isFencePassed:n}}downloadMatrixFromPackedTexture(e,t,n){return this.downloadMatrixDriver(e,()=>P1(this.gl,t,n))}createProgram(e){this.throwIfDisposed();let t=this.gl;this.vertexShader==null&&(this.vertexShader=w1(t));let n=YC(t);return fe(t,()=>t.attachShader(n,this.vertexShader)),fe(t,()=>t.attachShader(n,e)),QC(t,n),this.debug&&rd(t,n),this.vertexAttrsAreBound||(this.setProgram(n),this.vertexAttrsAreBound=_1(t,this.program,this.vertexBuffer)),n}deleteProgram(e){this.throwIfDisposed(),e===this.program&&(this.program=null),e!=null&&fe(this.gl,()=>this.gl.deleteProgram(e))}setProgram(e){this.throwIfDisposed(),this.program=e,this.program!=null&&this.debug&&rd(this.gl,this.program),fe(this.gl,()=>this.gl.useProgram(e))}getUniformLocation(e,t,n=!0){return this.throwIfDisposed(),n?r1(this.gl,e,t):a1(this.gl,e,t)}getAttributeLocation(e,t){return this.throwIfDisposed(),fe(this.gl,()=>this.gl.getAttribLocation(e,t))}getUniformLocationNoThrow(e,t){return this.throwIfDisposed(),this.gl.getUniformLocation(e,t)}setInputMatrixTexture(e,t,n){this.throwIfDisposed(),this.throwIfNoProgram(),i1(this.gl,e,t,n)}setOutputMatrixTexture(e,t,n){this.setOutputMatrixTextureDriver(e,n,t)}setOutputPackedMatrixTexture(e,t,n){this.throwIfDisposed();let[s,r]=nu(t,n);this.setOutputMatrixTextureDriver(e,s,r)}setOutputMatrixWriteRegion(e,t,n,s){this.setOutputMatrixWriteRegionDriver(n,e,s,t)}setOutputPackedMatrixWriteRegion(e,t,n,s){throw new Error("setOutputPackedMatrixWriteRegion not implemented.")}debugValidate(){this.program!=null&&rd(this.gl,this.program),Pu(this.gl)}executeProgram(){this.throwIfDisposed(),this.throwIfNoProgram();let e=this.gl;this.debug&&this.debugValidate(),fe(e,()=>e.drawElements(e.TRIANGLES,6,e.UNSIGNED_SHORT,0))}blockUntilAllProgramsCompleted(){this.throwIfDisposed(),fe(this.gl,()=>this.gl.finish())}getQueryTimerExtension(){return this.disjointQueryTimerExtension==null&&(this.disjointQueryTimerExtension=Ou(this.gl,X().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2?"EXT_disjoint_timer_query_webgl2":"EXT_disjoint_timer_query")),this.disjointQueryTimerExtension}getQueryTimerExtensionWebGL2(){return this.getQueryTimerExtension()}getQueryTimerExtensionWebGL1(){return this.getQueryTimerExtension()}beginQuery(){if(X().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let n=this.gl,s=this.getQueryTimerExtensionWebGL2(),r=n.createQuery();return n.beginQuery(s.TIME_ELAPSED_EXT,r),r}let e=this.getQueryTimerExtensionWebGL1(),t=e.createQueryEXT();return e.beginQueryEXT(e.TIME_ELAPSED_EXT,t),t}endQuery(){if(X().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let t=this.gl,n=this.getQueryTimerExtensionWebGL2();t.endQuery(n.TIME_ELAPSED_EXT);return}let e=this.getQueryTimerExtensionWebGL1();e.endQueryEXT(e.TIME_ELAPSED_EXT)}async waitForQueryAndGetTime(e){return await w.repeatedTry(()=>this.disposed||this.isQueryAvailable(e,X().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))),this.getQueryTime(e,X().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))}getQueryTime(e,t){if(t===0)return null;if(t===2){let n=this.gl;return n.getQueryParameter(e,n.QUERY_RESULT)/1e6}else{let n=this.getQueryTimerExtensionWebGL1();return n.getQueryObjectEXT(e,n.QUERY_RESULT_EXT)/1e6}}isQueryAvailable(e,t){if(t===0)return!0;if(t===2){let n=this.gl,s=this.getQueryTimerExtensionWebGL2(),r=n.getQueryParameter(e,n.QUERY_RESULT_AVAILABLE);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(s.GPU_DISJOINT_EXT)),r&&!this.disjoint}else{let n=this.getQueryTimerExtensionWebGL1(),s=n.getQueryObjectEXT(e,n.QUERY_RESULT_AVAILABLE_EXT);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(n.GPU_DISJOINT_EXT)),s&&!this.disjoint}}pollFence(e){return new Promise(t=>{this.addItemToPoll(()=>e.isFencePassed(),()=>t())})}pollItems(){let e=UK(this.itemsToPoll.map(t=>t.isDoneFn));for(let t=0;t<=e;++t){let{resolveFn:n}=this.itemsToPoll[t];n()}this.itemsToPoll=this.itemsToPoll.slice(e+1)}addItemToPoll(e,t){this.itemsToPoll.push({isDoneFn:e,resolveFn:t}),!(this.itemsToPoll.length>1)&&w.repeatedTry(()=>(this.pollItems(),this.itemsToPoll.length===0))}bindTextureToFrameBuffer(e){this.throwIfDisposed(),ad(this.gl,e,this.framebuffer),this.debug&&Pu(this.gl)}unbindTextureToFrameBuffer(){this.outputTexture!=null?(ad(this.gl,this.outputTexture,this.framebuffer),this.debug&&Pu(this.gl)):Um(this.gl,this.framebuffer)}downloadMatrixDriver(e,t){this.bindTextureToFrameBuffer(e);let n=t();return this.unbindTextureToFrameBuffer(),n}setOutputMatrixTextureDriver(e,t,n){this.throwIfDisposed();let s=this.gl;ad(s,e,this.framebuffer),this.debug&&Pu(s),this.outputTexture=e,fe(s,()=>s.viewport(0,0,t,n)),fe(s,()=>s.scissor(0,0,t,n))}setOutputMatrixWriteRegionDriver(e,t,n,s){this.throwIfDisposed(),fe(this.gl,()=>this.gl.scissor(e,t,n,s))}throwIfDisposed(){if(this.disposed)throw new Error("Attempted to use disposed GPGPUContext.")}throwIfNoProgram(){if(this.program==null)throw new Error("No GPU program is currently set.")}};function UK(e){let t=0;for(;t<e.length&&e[t]();++t);return t-1}var{addImpl:GK,bincountImpl:z1,bincountReduceImpl:HK,ceilImpl:qK,concatImpl:jK,equalImpl:KK,expImpl:XK,expm1Impl:YK,floorImpl:QK,gatherNdImpl:ZK,gatherV2Impl:JK,greaterImpl:eX,greaterEqualImpl:tX,lessImpl:nX,lessEqualImpl:sX,linSpaceImpl:rX,logImpl:aX,maxImpl:iX,maximumImpl:oX,minimumImpl:uX,multiplyImpl:lX,negImpl:cX,notEqualImpl:dX,prodImpl:pX,rangeImpl:hX,rsqrtImpl:fX,sigmoidImpl:mX,simpleAbsImpl:M1,sliceImpl:gX,sparseFillEmptyRowsImpl:bX,sparseReshapeImpl:yX,sparseSegmentReductionImpl:L1,sqrtImpl:vX,stridedSliceImpl:xX,stringNGramsImpl:wX,stringSplitImpl:kX,stringToHashBucketFastImpl:IX,subImpl:SX,tileImpl:CX,topKImpl:NX,transposeImpl:Iv,uniqueImpl:TX}=ev;function B1(e,t){return["x","y","z","w","u","v"].slice(0,t).map(n=>`${e}.${n}`)}function ln(e,t){return t===1?[e]:B1(e,t)}function $X(e,t){if(e===1)return"rc";let n="";for(let s=0;s<e;s++)n+=t[s],s<e-1&&(n+=",");return n}var _X=class{constructor(e){if(this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outputShape=e,this.rank=e.length,this.enableShapeUniforms=Sn(this.outputShape.length),this.rank===0)this.userCode=`
|
|
void main() {
|
|
setOutput(vec4(getA(), 0., 0., 0.));
|
|
}
|
|
`;else{let t=ln("rc",this.rank),n=rt(this.rank),s=this.getOutOfBoundsCondition(t),r=this.getSetup(t),a=this.getOutput(t);this.userCode=`
|
|
void main() {
|
|
${n} rc = getOutputCoords();
|
|
|
|
if(${s}) {
|
|
setOutput(vec4(0));
|
|
} else {
|
|
${r}
|
|
|
|
setOutput(vec4(${a}));
|
|
}
|
|
}
|
|
`}}getSourceCoordsArr(e){let t=[];for(let n=0;n<=1;n++)for(let s=0;s<=1;s++){let r=`${n===0?"r":"rp1"}, ${s===0?"c":"cp1"}`;for(let a=2;a<this.rank;a++)r=`${e[e.length-1-a]},`+r;t.push(r)}return t}getOutOfBoundsCondition(e){if(this.rank===1)return`rc > ${this.enableShapeUniforms?"outShape":this.outputShape[0]}`;let t="";for(let n=this.rank-2;n<this.rank;n++)t+=`${e[n]} >= ${this.enableShapeUniforms?`outShape[${n}]`:this.outputShape[n]}`,n<this.rank-1&&(t+="||");return t}getSetup(e){if(this.rank===1)return"";let t=e.slice(-2),n=this.enableShapeUniforms?`outShape[${this.rank} - 1]`:this.outputShape[this.rank-1],s=this.enableShapeUniforms?`outShape[${this.rank} - 2]`:this.outputShape[this.rank-2];return`
|
|
int r = ${t[0]};
|
|
int c = ${t[1]};
|
|
int rp1 = r + 1;
|
|
int cp1 = c + 1;
|
|
|
|
bool cEdge = cp1 >= ${n};
|
|
bool rEdge = rp1 >= ${s};
|
|
`}getOutput(e){let t=this.getSourceCoordsArr(e);return this.rank===1?`getA(rc), (rc + 1 >= ${this.enableShapeUniforms?"outShape":this.outputShape[0]} ? 0. : getA(rc + 1)), 0, 0`:`getA(${t[0]}),
|
|
cEdge ? 0. : getA(${t[1]}),
|
|
rEdge ? 0. : getA(${t[2]}),
|
|
rEdge || cEdge ? 0. : getA(${t[3]})`}},V1=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"inputShape",type:"ivec3"}],this.outputShape=e,this.enableShapeUniforms=Sn(this.outputShape.length);let n="";for(let s=0;s<4;s++){let r="thisRC = rc;";s%2===1&&(r+="thisRC.z += 1;"),s>1&&(r+="thisRC.y += 1;"),n+=`
|
|
${r}
|
|
${s>0?"if(thisRC.y < rows && thisRC.z < cols){":""}
|
|
int flatIndex = getFlatIndex(thisRC);
|
|
|
|
ivec3 inputRC = inputCoordsFromReshapedOutCoords(flatIndex);
|
|
vec2 inputRCInnerDims = vec2(float(inputRC.y),float(inputRC.z));
|
|
|
|
result[${s}] =
|
|
getChannel(getA(inputRC.x, inputRC.y, inputRC.z), inputRCInnerDims);
|
|
${s>0?"}":""}
|
|
`}this.userCode=`
|
|
${AX(t,this.enableShapeUniforms)}
|
|
${this.enableShapeUniforms?gv():mv(e)}
|
|
|
|
void main() {
|
|
ivec3 rc = getOutputCoords();
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
ivec3 thisRC;
|
|
int rows = ${this.enableShapeUniforms?"outShape[1]":e[1]};
|
|
int cols = ${this.enableShapeUniforms?"outShape[2]":e[2]};
|
|
|
|
${n}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}};function AX(e,t){return`
|
|
ivec3 inputCoordsFromReshapedOutCoords(int index) {
|
|
${t?Y5(["r","c","d"],"inputShape"):wi(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
`}var EX=class{constructor(e){this.gpgpu=e,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0,this.freeTextures={},this.logEnabled=!1,this.usedTextures={}}acquireTexture(e,t,n){let s=ow(t,n),r=uw(e,s,n);r in this.freeTextures||(this.freeTextures[r]=[]),r in this.usedTextures||(this.usedTextures[r]=[]);let a=iw(e,s,this.gpgpu.gl,this.gpgpu.textureConfig,n);if(this.freeTextures[r].length>0){this.numFreeTextures--,this.numUsedTextures++,this._numBytesFree-=a,this.log();let o=this.freeTextures[r].shift();return this.usedTextures[r].push(o),o}let i;return s===3?i=this.gpgpu.createPackedMatrixTexture(e[0],e[1]):s===4?i=this.gpgpu.createFloat16PackedMatrixTexture(e[0],e[1]):s===1?i=this.gpgpu.createFloat32MatrixTexture(e[0],e[1]):s===0?i=this.gpgpu.createFloat16MatrixTexture(e[0],e[1]):s===2&&(i=this.gpgpu.createUnsignedBytesMatrixTexture(e[0],e[1])),this.usedTextures[r].push(i),this.numUsedTextures++,this._numBytesAllocated+=a,this.log(),i}releaseTexture(e,t,n,s){if(this.freeTextures==null)return;let r=ow(n,s),a=uw(t,r,s);a in this.freeTextures||(this.freeTextures[a]=[]);let i=iw(t,r,this.gpgpu.gl,this.gpgpu.textureConfig,s),o=X().get("WEBGL_DELETE_TEXTURE_THRESHOLD");o!==-1&&this._numBytesAllocated>o?(this.gpgpu.deleteMatrixTexture(e.texture),this._numBytesAllocated-=i):(this.freeTextures[a].push(e),this.numFreeTextures++,this._numBytesFree+=i),this.numUsedTextures--;let u=this.usedTextures[a],l=u.indexOf(e);if(l<0)throw new Error("Cannot release a texture that was never provided by this texture manager");u.splice(l,1),this.log()}log(){if(!this.logEnabled)return;let e=this.numFreeTextures+this.numUsedTextures;console.log("Free/Used",`${this.numFreeTextures} / ${this.numUsedTextures}`,`(${e})`);let t=this._numBytesFree/this._numBytesAllocated;console.log(`Bytes allocated: ${this._numBytesAllocated}`),console.log(`Bytes unused: ${this._numBytesFree} (${Math.round(100*t)}%)`)}get numBytesAllocated(){return this._numBytesAllocated}get numBytesFree(){return this._numBytesFree}getNumUsedTextures(){return this.numUsedTextures}getNumFreeTextures(){return this.numFreeTextures}dispose(){if(this.freeTextures!=null){for(let e in this.freeTextures)this.freeTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t.texture)});for(let e in this.usedTextures)this.usedTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t.texture)});this.freeTextures=null,this.usedTextures=null,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0}}};function RX(e,t){let n=e;if(t===n.R32F)return 4;if(t===n.R16F)return 2;if(t===n.RGBA32F)return 16;if(t===e.RGBA)return 16;if(t===n.RGBA16F)return 8;if(t===n.RGBA8)return 4;throw new Error(`Unknown internal format ${t}`)}function iw(e,t,n,s,r){let a=DX(t,s),i;if(r){let[u,l]=nu(e[0],e[1]);i=u*l}else{let[u,l]=Yl(e[0],e[1]);i=u*l}let o=RX(n,a);return i*o}function DX(e,t){switch(e){case 3:return wv(t);case 4:return kv(t);case 1:return yv(t);case 0:return vv(t);case 2:return xv(t);default:throw new Error(`Unknown physical texture type ${e}`)}}function FX(e){return X().getBool("WEBGL_RENDER_FLOAT32_ENABLED")?e?3:1:e?4:0}function ow(e,t){if(e===1)return 3;if(e===0||e==null)return FX(t);if(e===3||e===2)return 2;throw new Error(`Unknown logical texture type ${e}`)}function uw(e,t,n){return`${e[0]}_${e[1]}_${t}_${n}`}var Hs=class{constructor(e,t){this.variableNames=["A"],this.outputShape=e,this.enableShapeUniforms=Sn(this.outputShape.length),this.userCode=`
|
|
float unaryOperation(float x) {
|
|
${t}
|
|
}
|
|
|
|
void main() {
|
|
float x = getAAtOutCoords();
|
|
float y = unaryOperation(x);
|
|
|
|
setOutput(y);
|
|
}
|
|
`}},ss="if (isnan(x)) return x;",OX="return x;",lw="return abs(x);",PX="return (x >= 0.0) ? x : (exp(x) - 1.0);",zX=ss+`
|
|
return (x < 0.0) ? 0.0 : x;
|
|
`,MX=ss+`
|
|
return (x < 0.0) ? 0.0 : min(6.0, x);
|
|
`,Bi="return x;",LX="return 1.0 / (1.0 + exp(-1.0 * x));",BX="return x;",VX=`
|
|
vec4 result;
|
|
|
|
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
|
|
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
|
|
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
|
|
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
|
|
|
|
return result;
|
|
`,WX=`
|
|
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,UX=`
|
|
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,GX="return 1.0 / (1.0 + exp(-1.0 * x));",Jr=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.enableShapeUniforms=Sn(this.outputShape.length),this.userCode=`
|
|
vec4 unaryOperation(vec4 x) {
|
|
${t}
|
|
}
|
|
|
|
void main() {
|
|
vec4 x = getAAtOutCoords();
|
|
vec4 y = unaryOperation(x);
|
|
|
|
setOutput(y);
|
|
}
|
|
`}},HX=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outputShape=e,this.enableShapeUniforms=Sn(this.outputShape.length);let t=e.length,n=ln("rc",t),s=rt(t),r=$X(t,n),a=n.slice(-2),i=t<=1?"rc":`vec2(${a.join(",")})`;this.userCode=`
|
|
void main() {
|
|
${s} rc = getOutputCoords();
|
|
vec4 packedInput = getA(${r});
|
|
|
|
setOutput(getChannel(packedInput, ${i}));
|
|
}
|
|
`}},qX=xs.whereImpl,jX=1e-7,KX=1e-4,Zc={};function XX(e){return e in Zc||(Zc[e]={}),Zc[e]}var YX=X().getNumber("CPU_HANDOFF_SIZE_THRESHOLD"),QX=600;function ZX(){return X().global.screen==null?1024:X().global.screen.height*X().global.screen.width*window.devicePixelRatio*QX/1024/1024}var W1=class extends sl{constructor(e){if(super(),this.pendingRead=new WeakMap,this.pendingDisposal=new WeakSet,this.dataRefCount=new WeakMap,this.numBytesInGPU=0,this.uploadWaitMs=0,this.downloadWaitMs=0,this.lastGlFlushTime=0,this.warnedAboutMemory=!1,this.pendingDeletes=0,this.disposed=!1,!X().getBool("HAS_WEBGL"))throw new Error("WebGL is not supported on this device");let t;if(e!=null){if(e instanceof Xf)t=e;else{let n=vs(X().getNumber("WEBGL_VERSION"),e);t=new Xf(n)}this.binaryCache={},this.gpgpuCreatedLocally=!1}else{let n=vs(X().getNumber("WEBGL_VERSION"));t=new Xf(n),this.binaryCache=XX(X().getNumber("WEBGL_VERSION")),this.gpgpuCreatedLocally=!0}this.gpgpu=t,this.canvas=this.gpgpu.gl.canvas,this.textureManager=new EX(this.gpgpu),this.numMBBeforeWarning=ZX(),this.texData=new Hd(this,Ss())}nextDataId(){return W1.nextDataId++}numDataIds(){return this.texData.numDataIds()-this.pendingDeletes}write(e,t,n){if((X().getBool("WEBGL_CHECK_NUMERICAL_PROBLEMS")||X().getBool("DEBUG"))&&this.checkNumericalProblems(e),n==="complex64"&&e!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let s={id:this.nextDataId()};return this.texData.set(s,{shape:t,dtype:n,values:e,usage:1,refCount:1}),s}refCount(e){return this.texData.has(e)?this.texData.get(e).refCount:0}incRef(e){let t=this.texData.get(e);t.refCount++}decRef(e){if(this.texData.has(e)){let t=this.texData.get(e);t.refCount--}}move(e,t,n,s,r){if(X().getBool("DEBUG")&&this.checkNumericalProblems(t),s==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");this.texData.set(e,{shape:n,dtype:s,values:t,usage:1,refCount:r})}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}readSync(e){let t=this.texData.get(e),{values:n,dtype:s,complexTensorInfos:r,slice:a,shape:i,isPacked:o}=t;if(a!=null){let p;o?p=new Jr(i,Bi):p=new Hs(i,Bi);let d=this.runWebGLProgram(p,[{dataId:e,shape:i,dtype:s}],s),h=this.readSync(d.dataId);return this.disposeIntermediateTensorInfo(d),h}if(n!=null)return this.convertAndCacheOnCPU(e);if(s==="string")return n;let u=this.activeTimers!=null,l;u&&(l=w.now());let c;if(s==="complex64"){let p=this.readSync(r.real.dataId),d=this.readSync(r.imag.dataId);c=S.mergeRealAndImagArrays(p,d)}else c=this.getValuesFromTexture(e);return u&&(this.downloadWaitMs+=w.now()-l),this.convertAndCacheOnCPU(e,c)}async read(e){if(this.pendingRead.has(e)){let h=this.pendingRead.get(e);return new Promise(f=>h.push(f))}let t=this.texData.get(e),{values:n,shape:s,slice:r,dtype:a,complexTensorInfos:i,isPacked:o}=t;if(r!=null){let h;o?h=new Jr(s,Bi):h=new Hs(s,Bi);let f=this.runWebGLProgram(h,[{dataId:e,shape:s,dtype:a}],a),m=this.read(f.dataId);return this.disposeIntermediateTensorInfo(f),m}if(n!=null)return this.convertAndCacheOnCPU(e);if(X().getBool("DEBUG")&&!X().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")&&X().getNumber("WEBGL_VERSION")===2)throw new Error("tensor.data() with WEBGL_DOWNLOAD_FLOAT_ENABLED=false and WEBGL_VERSION=2 not yet supported.");let u=null,l;if(a!=="complex64"&&X().get("WEBGL_BUFFER_SUPPORTED")){l=this.decode(e);let h=this.texData.get(l.dataId);u=this.gpgpu.createBufferFromTexture(h.texture.texture,...Yc(s))}this.pendingRead.set(e,[]),a!=="complex64"&&await this.gpgpu.createAndWaitForFence();let c;if(a==="complex64"){let h=await Promise.all([this.read(i.real.dataId),this.read(i.imag.dataId)]),f=h[0],m=h[1];c=S.mergeRealAndImagArrays(f,m)}else if(u==null)c=this.getValuesFromTexture(e);else{let h=w.sizeFromShape(s);c=this.gpgpu.downloadFloat32MatrixFromBuffer(u,h)}if(l!=null&&this.disposeIntermediateTensorInfo(l),u!=null){let h=this.gpgpu.gl;fe(h,()=>h.deleteBuffer(u))}let p=this.convertAndCacheOnCPU(e,c),d=this.pendingRead.get(e);return this.pendingRead.delete(e),d.forEach(h=>h(p)),this.pendingDisposal.has(e)&&(this.pendingDisposal.delete(e),this.disposeData(e)&&Ss().removeDataId(e,this),this.pendingDeletes--),p}readToGPU(e,t={}){let n=this.texData.get(e),{values:s,shape:r,slice:a,dtype:i,isPacked:o,texture:u}=n;if(i==="complex64")throw new Error("Does not support reading texture for complex64 dtype.");if(a!=null){let d;o?d=new Jr(r,Bi):d=new Hs(r,Bi);let h=this.runWebGLProgram(d,[{dataId:e,shape:r,dtype:i}],i),f=this.readToGPU(h,t);return this.disposeIntermediateTensorInfo(h),f}if(u==null)throw s!=null?new Error("Data is not on GPU but on CPU."):new Error("There is no data on GPU or CPU.");let l=this.decode(e,t.customTexShape),c=Ss().makeTensorFromDataId(l.dataId,l.shape,l.dtype),p=this.texData.get(l.dataId);return{tensorRef:c,...p.texture}}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(s=>w.decodeString(s))}catch(s){throw new Error("Failed to decode encoded string bytes into utf-8")}return De(e.shape,e.dtype,n)}checkNumericalProblems(e){if(e!=null)for(let t=0;t<e.length;t++){let n=e[t];if(!qC(n))throw X().getBool("WEBGL_RENDER_FLOAT32_CAPABLE")?Error(`The value ${n} cannot be represented with your current settings. Consider enabling float32 rendering: 'tf.env().set('WEBGL_RENDER_FLOAT32_ENABLED', true);'`):Error(`The value ${n} cannot be represented on this device.`)}}getValuesFromTexture(e){let{shape:t,dtype:n,isPacked:s}=this.texData.get(e),r=w.sizeFromShape(t);if(X().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")){let p=this.decode(e),d=this.texData.get(p.dataId),h=this.gpgpu.downloadMatrixFromPackedTexture(d.texture.texture,...Yc(t)).subarray(0,r);return this.disposeIntermediateTensorInfo(p),h}let a=X().getBool("WEBGL_PACK")&&s===!0,i=a?id(t):t,o=a?new LK(i):new MK(i),u=this.runWebGLProgram(o,[{shape:i,dtype:n,dataId:e}],"float32"),l=this.texData.get(u.dataId),c=this.gpgpu.downloadByteEncodedFloatMatrixFromOutputTexture(l.texture.texture,l.texShape[0],l.texShape[1]).subarray(0,r);return this.disposeIntermediateTensorInfo(u),c}timerAvailable(){return X().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0}time(e){let t=this.activeTimers,n=[],s=!1;this.programTimersStack==null?(this.programTimersStack=n,s=!0):this.activeTimers.push(n),this.activeTimers=n,e();let r=w.flatten(this.activeTimers.map(o=>o.query)).filter(o=>o!=null),a=w.flatten(this.activeTimers.map(o=>o.name)).filter(o=>o!=null);this.activeTimers=t,s&&(this.programTimersStack=null);let i={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null};return(async()=>{if(X().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0){let o=await Promise.all(r);i.kernelMs=w.sum(o),i.getExtraProfileInfo=()=>o.map((u,l)=>({name:a[l],ms:u})).map(u=>`${u.name}: ${u.ms}`).join(", ")}else i.kernelMs={error:"WebGL query timers are not supported in this environment."};return this.uploadWaitMs=0,this.downloadWaitMs=0,i})()}memory(){return{unreliable:!1,numBytesInGPU:this.numBytesInGPU,numBytesInGPUAllocated:this.textureManager.numBytesAllocated,numBytesInGPUFree:this.textureManager.numBytesFree}}startTimer(){return X().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?this.gpgpu.beginQuery():{startMs:w.now(),endMs:null}}endTimer(e){return X().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?(this.gpgpu.endQuery(),e):(e.endMs=w.now(),e)}async getQueryTime(e){if(X().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0)return this.gpgpu.waitForQueryAndGetTime(e);let t=e;return t.endMs-t.startMs}disposeData(e,t=!1){if(this.pendingDisposal.has(e))return!1;if(!this.texData.has(e))return!0;if(t?this.texData.get(e).refCount=0:this.texData.get(e).refCount--,!t&&this.texData.get(e).refCount>0)return!1;if(this.pendingRead.has(e))return this.pendingDisposal.add(e),this.pendingDeletes++,!1;this.releaseGPUData(e);let{complexTensorInfos:n}=this.texData.get(e);return n!=null&&(this.disposeData(n.real.dataId,t),this.disposeData(n.imag.dataId,t)),this.texData.delete(e),!0}releaseGPUData(e){let{texture:t,dtype:n,texShape:s,usage:r,isPacked:a,slice:i}=this.texData.get(e),o=i&&i.origDataId||e,u=this.dataRefCount.get(o);u>1?this.dataRefCount.set(o,u-1):(this.dataRefCount.delete(o),t!=null&&(this.numBytesInGPU-=this.computeBytes(s,n),this.textureManager.releaseTexture(t,s,r,a)));let l=this.texData.get(e);l.texture=null,l.texShape=null,l.isPacked=!1,l.slice=null}getTexture(e){return this.uploadToGPU(e),this.texData.get(e).texture.texture}getDataInfo(e){return this.texData.get(e)}shouldExecuteOnCPU(e,t=YX){return X().getBool("WEBGL_CPU_FORWARD")&&e.every(n=>this.texData.get(n.dataId).texture==null&&w.sizeFromShape(n.shape)<t)}getGPGPUContext(){return this.gpgpu}where(e){S.warn("tf.where() in webgl locks the UI thread. Call tf.whereAsync() instead");let t=e.dataSync();return qX(e.shape,t)}packedUnaryOp(e,t,n){let s=new Jr(e.shape,t),r=this.compileAndRun(s,[e],n);return Ss().makeTensorFromDataId(r.dataId,r.shape,r.dtype)}abs(e){if(this.shouldExecuteOnCPU([e])&&e.dtype!=="complex64"){let s=M1(this.texData.get(e.dataId).values);return this.makeOutput(e.shape,e.dtype,s)}if(X().getBool("WEBGL_PACK_UNARY_OPERATIONS"))return this.packedUnaryOp(e,lw,e.dtype);let t=new Hs(e.shape,lw),n=this.compileAndRun(t,[e]);return Ss().makeTensorFromDataId(n.dataId,n.shape,n.dtype)}makeTensorInfo(e,t,n){let s;if(t==="string"&&n!=null&&n.length>0&&w.isString(n[0])){let r=n.map(a=>w.encodeString(a));s=this.write(r,e,t)}else s=this.write(n,e,t);return this.texData.get(s).usage=null,{dataId:s,shape:e,dtype:t}}makeOutput(e,t,n){let{dataId:s}=this.makeTensorInfo(e,t,n);return Ss().makeTensorFromDataId(s,e,t,this)}unpackTensor(e){let t=new HX(e.shape);return this.runWebGLProgram(t,[e],e.dtype)}packTensor(e){let t=new _X(e.shape),n=!0;return this.runWebGLProgram(t,[e],e.dtype,null,n)}packedReshape(e,t){let n=[ya(e.shape),...va(e.shape)],s={dtype:e.dtype,shape:n,dataId:e.dataId},r=[ya(t),...va(t)],a=new V1(r,n),i=!0,o=[n],u=this.runWebGLProgram(a,[s],e.dtype,o,i);return{dataId:u.dataId,shape:t,dtype:u.dtype}}decode(e,t){let n=this.texData.get(e),{isPacked:s,shape:r,dtype:a}=n;if(t!=null){let p=w.sizeFromShape(r),d=t[0]*t[1]*4;w.assert(p<=d,()=>"customTexShape is too small. Row * Column * 4 should be equal or larger than the size of the tensor data.")}let i=id(r),o;s?o=new zK(i):o=new PK(i);let u=!0,l=[t!=null?t:Yc(i)],c=this.runWebGLProgram(o,[{shape:i,dtype:a,dataId:e}],a,l,u,t);return{dtype:a,shape:r,dataId:c.dataId}}runWebGLProgram(e,t,n,s,r=!1,a){let i=this.makeTensorInfo(e.outputShape,n),o=this.texData.get(i.dataId);if(e.packedOutput&&(o.isPacked=!0),e.outPackingScheme===0){let g=a!=null?a:Yc(e.outputShape);o.texShape=g.map(b=>b*2)}if(e.outTexUsage!=null&&(o.usage=e.outTexUsage),w.sizeFromShape(i.shape)===0)return o.values=w.getTypedArrayFromDType(i.dtype,0),i;let u=[],l=t.map(g=>{if(g.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");let b=this.texData.get(g.dataId);if(b.texture==null){if(!e.packedInputs&&w.sizeFromShape(g.shape)<=X().getNumber("WEBGL_SIZE_UPLOAD_UNIFORM"))return{shape:g.shape,texData:null,isUniform:!0,uniformValues:b.values};e.packedInputs&&(b.isPacked=!0,b.shape=g.shape)}if(this.uploadToGPU(g.dataId),!!b.isPacked!=!!e.packedInputs)g=b.isPacked?this.unpackTensor(g):this.packTensor(g),u.push(g),b=this.texData.get(g.dataId);else if(b.isPacked&&!tl(b.shape,g.shape)){let y=g,v=g.shape;g.shape=b.shape,g=this.packedReshape(g,v),u.push(g),b=this.texData.get(g.dataId),y.shape=v}return{shape:g.shape,texData:b,isUniform:!1}});this.uploadToGPU(i.dataId);let c={shape:i.shape,texData:o,isUniform:!1},p=OK(e,l,c),d=this.getAndSaveBinary(p,()=>DK(this.gpgpu,e,l,c)),h=this.activeTimers!=null,f;h&&(f=this.startTimer()),X().get("ENGINE_COMPILE_ONLY")||FK(this.gpgpu,d,l,c,s),u.forEach(g=>this.disposeIntermediateTensorInfo(g)),h&&(f=this.endTimer(f),this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(f)}));let m=X().get("WEBGL_FLUSH_THRESHOLD");if(m>0){let g=w.now();g-this.lastGlFlushTime>m&&(this.gpgpu.gl.flush(),this.lastGlFlushTime=g)}if(!X().getBool("WEBGL_LAZILY_UNPACK")&&o.isPacked&&r===!1){let g=this.unpackTensor(i);return this.disposeIntermediateTensorInfo(i),g}return i}compileAndRun(e,t,n,s,r=!1){return n=n||t[0].dtype,this.runWebGLProgram(e,t,n,s,r)}getAndSaveBinary(e,t){return e in this.binaryCache||(this.binaryCache[e]=t()),this.binaryCache[e]}getTextureManager(){return this.textureManager}dispose(){this.disposed||(X().getBool("IS_TEST")||Object.keys(this.binaryCache).forEach(t=>{this.gpgpu.deleteProgram(this.binaryCache[t].webGLProgram),delete this.binaryCache[t]}),this.textureManager.dispose(),this.canvas!=null&&typeof HTMLCanvasElement!="undefined"&&this.canvas instanceof HTMLCanvasElement?this.canvas.remove():this.canvas=null,this.gpgpuCreatedLocally&&(this.gpgpu.program=null,this.gpgpu.dispose()),this.disposed=!0)}floatPrecision(){return this.floatPrecisionValue==null&&(this.floatPrecisionValue=j(()=>{if(!X().get("WEBGL_RENDER_FLOAT32_ENABLED")){let e=X().getBool("DEBUG");X().set("DEBUG",!1);let t=this.abs(we(1e-8)).dataSync()[0];if(X().set("DEBUG",e),t>0)return 32}return 16})),this.floatPrecisionValue}epsilon(){return this.floatPrecision()===32?jX:KX}uploadToGPU(e){let t=this.texData.get(e),{shape:n,dtype:s,values:r,texture:a,usage:i,isPacked:o}=t;if(a!=null)return;let u=this.activeTimers!=null,l;u&&(l=w.now());let c=t.texShape;if(c==null&&(c=l1(n,o),t.texShape=c),r!=null){let p=id(n),d,h=c[1],f=c[0],m=r instanceof Uint8Array||r instanceof Uint8ClampedArray;(o||!m)&&([h,f]=nu(c[0],c[1])),o?d=new VK(p,m):d=new BK(p,m);let g=m?[f,h]:c,b=this.makeTensorInfo(g,s),y=this.texData.get(b.dataId);m?y.usage=2:y.usage=1,y.texShape=g,this.gpgpu.uploadDenseMatrixToTexture(this.getTexture(b.dataId),h,f,r);let v=[[f,h]],x=!0,k=this.runWebGLProgram(d,[b],s,v,x),T=this.texData.get(k.dataId);t.texShape=T.texShape,t.isPacked=T.isPacked,t.usage=T.usage,X().get("ENGINE_COMPILE_ONLY")?this.disposeData(k.dataId):(t.texture=T.texture,t.values=null,this.texData.delete(k.dataId)),this.disposeIntermediateTensorInfo(b),u&&(this.uploadWaitMs+=w.now()-l)}else{let p=this.acquireTexture(c,i,s,o);t.texture=p}}convertAndCacheOnCPU(e,t){let n=this.texData.get(e),{dtype:s}=n;return this.releaseGPUData(e),t!=null&&(n.values=JX(t,s)),n.values}acquireTexture(e,t,n,s){if(this.numBytesInGPU+=this.computeBytes(e,n),!this.warnedAboutMemory&&this.numBytesInGPU>this.numMBBeforeWarning*1024*1024){let r=(this.numBytesInGPU/1024/1024).toFixed(2);this.warnedAboutMemory=!0,console.warn(`High memory usage in GPU: ${r} MB, most likely due to a memory leak`)}return this.textureManager.acquireTexture(e,t,s)}computeBytes(e,t){return e[0]*e[1]*w.bytesPerElement(t)}checkCompileCompletion(){for(let[,e]of Object.entries(this.binaryCache))this.checkCompletion_(e)}async checkCompileCompletionAsync(){let e=[];if(this.gpgpu.parallelCompilationExtension){for(let[,t]of Object.entries(this.binaryCache))e.push(this.checkCompletionAsync_(t));return Promise.all(e)}else{for(let[,t]of Object.entries(this.binaryCache)){let n=new Promise(s=>{try{this.checkCompletion_(t),s(!0)}catch(r){throw r}});e.push(n)}return Promise.all(e)}}async checkCompletionAsync_(e){return this.gpgpu.gl.getProgramParameter(e.webGLProgram,this.gpgpu.parallelCompilationExtension.COMPLETION_STATUS_KHR)?this.checkCompletion_(e):(await LI(),this.checkCompletionAsync_(e))}checkCompletion_(e){if(this.gpgpu.gl.getProgramParameter(e.webGLProgram,this.gpgpu.gl.LINK_STATUS)===!1)throw console.log(this.gpgpu.gl.getProgramInfoLog(e.webGLProgram)),this.gpgpu.gl.getShaderParameter(e.fragmentShader,this.gpgpu.gl.COMPILE_STATUS)===!1?(fv(e.source,this.gpgpu.gl.getShaderInfoLog(e.fragmentShader)),new Error("Failed to compile fragment shader.")):new Error("Failed to link vertex and fragment shaders.");return!0}getUniformLocations(){for(let[,e]of Object.entries(this.binaryCache)){let{uniformLocations:t,customUniformLocations:n,infLoc:s,nanLoc:r,inShapesLocations:a,inTexShapesLocations:i,outShapeLocation:o,outShapeStridesLocation:u,outTexShapeLocation:l}=x1(this.gpgpu,e.program,e.webGLProgram);e.uniformLocations=t,e.customUniformLocations=n,e.infLoc=s,e.nanLoc=r,e.inShapesLocations=a,e.inTexShapesLocations=i,e.outShapeLocation=o,e.outShapeStridesLocation=u,e.outTexShapeLocation=l}}},U1=W1;U1.nextDataId=0;function JX(e,t){if(t==="float32"||t==="complex64")return e;if(t==="int32"||t==="bool"){let n=t==="int32"?new Int32Array(e.length):new Uint8Array(e.length);for(let s=0;s<n.length;++s)n[s]=Math.round(e[s]);return n}else throw new Error(`Unknown dtype ${t}`)}var Ype="0.0.0";function e8(){X().set("WEBGL_FORCE_F16_TEXTURES",!0)}hp.isBrowser()&&fp("webgl",()=>new U1,2);var Qpe={forceHalfFloat:e8},G1=`
|
|
if (isnan(a)) return a;
|
|
if (isnan(b)) return b;
|
|
`,io=class{constructor(e,t,n){this.variableNames=["A","B"],this.outputShape=S.assertAndGetBroadcastShape(t,n),this.enableShapeUniforms=Sn(this.outputShape.length),this.userCode=`
|
|
float binaryOperation(float a, float b) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
float a = getAAtOutCoords();
|
|
float b = getBAtOutCoords();
|
|
setOutput(binaryOperation(a, b));
|
|
}
|
|
`}},Xp=`
|
|
result.r = isNaN.r > 0. ? NAN : result.r;
|
|
result.g = isNaN.g > 0. ? NAN : result.g;
|
|
result.b = isNaN.b > 0. ? NAN : result.b;
|
|
result.a = isNaN.a > 0. ? NAN : result.a;
|
|
`,Zl=class{constructor(e,t,n,s=!1){this.variableNames=["A","B"],this.supportsBroadcasting=!0,this.packedInputs=!0,this.packedOutput=!0,this.outputShape=S.assertAndGetBroadcastShape(t,n);let r=this.outputShape.length;this.enableShapeUniforms=Sn(r);let a="";if(s)if(r===0||w.sizeFromShape(this.outputShape)===1)a=`
|
|
result.y = 0.;
|
|
result.z = 0.;
|
|
result.w = 0.;
|
|
`;else if(a=`
|
|
${rt(r)} coords = getOutputCoords();
|
|
`,r===1)this.enableShapeUniforms?a+=`
|
|
result.y = (coords + 1) >= outShape ? 0. : result.y;
|
|
result.z = 0.;
|
|
result.w = 0.;
|
|
`:a+=`
|
|
result.y = (coords + 1) >= ${this.outputShape[0]} ? 0. : result.y;
|
|
result.z = 0.;
|
|
result.w = 0.;
|
|
`;else{let o=ln("coords",r);this.enableShapeUniforms?a+=`
|
|
bool nextRowOutOfBounds =
|
|
(${o[r-2]} + 1) >= outShape[${r} - 2];
|
|
bool nextColOutOfBounds =
|
|
(${o[r-1]} + 1) >= outShape[${r} - 1];
|
|
result.y = nextColOutOfBounds ? 0. : result.y;
|
|
result.z = nextRowOutOfBounds ? 0. : result.z;
|
|
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
|
|
`:a+=`
|
|
bool nextRowOutOfBounds =
|
|
(${o[r-2]} + 1) >= ${this.outputShape[r-2]};
|
|
bool nextColOutOfBounds =
|
|
(${o[r-1]} + 1) >= ${this.outputShape[r-1]};
|
|
result.y = nextColOutOfBounds ? 0. : result.y;
|
|
result.z = nextRowOutOfBounds ? 0. : result.z;
|
|
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
|
|
`}this.userCode=`
|
|
vec4 binaryOperation(vec4 a, vec4 b) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
vec4 a = getAAtOutCoords();
|
|
vec4 b = getBAtOutCoords();
|
|
|
|
vec4 result = binaryOperation(a, b);
|
|
${a}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}};function kn(e){let{inputs:t,backend:n}=e,{x:s}=t;return n.incRef(s.dataId),{dataId:s.dataId,shape:s.shape,dtype:s.dtype}}var t8={kernelName:Wa,backendName:"webgl",kernelFunc:kn};function Dr(e){let{inputs:t,backend:n}=e,{real:s,imag:r}=t,a=n.makeTensorInfo(s.shape,"complex64"),i=n.texData.get(a.dataId),o=kn({inputs:{x:s},backend:n}),u=kn({inputs:{x:r},backend:n});return i.complexTensorInfos={real:o,imag:u},a}var n8={kernelName:Xd,backendName:"webgl",kernelFunc:Dr},H1="return (a < 0.) ? b * a : a;",q1=`
|
|
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
|
|
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
|
|
`;function s8(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{alpha:a}=s,i=n.makeTensorInfo([],"float32",w.createScalarValue(a,"float32")),o=X().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Zl(q1,r.shape,i.shape):new io(H1,r.shape,i.shape),u=n.runWebGLProgram(o,[r,i],"float32");return n.disposeIntermediateTensorInfo(i),u}var r8={kernelName:Ua,backendName:"webgl",kernelFunc:s8},j1="return (a < 0.) ? b * a : a;",K1=`
|
|
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
|
|
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
|
|
`;function a8(e){let{inputs:t,backend:n}=e,{x:s,alpha:r}=t,a=X().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Zl(K1,s.shape,r.shape):new io(j1,s.shape,r.shape);return n.runWebGLProgram(a,[s,r],"float32")}var i8={kernelName:ti,backendName:"webgl",kernelFunc:a8},uu="if (isnan(x)) return x;",o8=`
|
|
if (isnan(a)) return a;
|
|
if (isnan(b)) return b;
|
|
`,u8=`
|
|
result.r = isNaN.r > 0. ? NAN : result.r;
|
|
result.g = isNaN.g > 0. ? NAN : result.g;
|
|
result.b = isNaN.b > 0. ? NAN : result.b;
|
|
result.a = isNaN.a > 0. ? NAN : result.a;
|
|
`;function Ke({opSnippet:e,packedOpSnippet:t,cpuKernelImpl:n,dtype:s}){return({inputs:r,backend:a})=>{let{x:i}=r,o=a,u=s||i.dtype;if(o.shouldExecuteOnCPU([i])&&n!=null){let p=o.texData.get(i.dataId),d=n(p.values,u);return o.makeTensorInfo(i.shape,u,d)}let l=X().getBool("WEBGL_PACK_UNARY_OPERATIONS")&&t!=null,c;return l?c=new Jr(i.shape,t):c=new Hs(i.shape,e),o.runWebGLProgram(c,[i],u)}}function jt({opSnippet:e,packedOpSnippet:t,checkOutOfBounds:n=!1,supportsComplex:s=!1,cpuKernelImpl:r,dtype:a}){return({inputs:i,backend:o})=>{let{a:u,b:l}=i,c=o;if(s&&u.dtype==="complex64"){let f=c.texData.get(u.dataId),m=c.texData.get(l.dataId),[g,b]=[[f.complexTensorInfos.real,m.complexTensorInfos.real],[f.complexTensorInfos.imag,m.complexTensorInfos.imag]].map(v=>{let[x,k]=v,T={dataId:x.dataId,dtype:x.dtype,shape:u.shape},N={dataId:k.dataId,dtype:k.dtype,shape:l.shape},E=new io(e,u.shape,l.shape);return c.runWebGLProgram(E,[T,N],cn(x.dtype,k.dtype))}),y=Dr({inputs:{real:g,imag:b},backend:c});return c.disposeIntermediateTensorInfo(g),c.disposeIntermediateTensorInfo(b),y}let p=a||cn(u.dtype,l.dtype);if((u.dtype==="string"||l.dtype==="string"||c.shouldExecuteOnCPU([u,l]))&&r!=null){let f=c.texData.get(u.dataId).values,m=c.texData.get(l.dataId).values,g=u.dtype==="string"?S.fromUint8ToStringArray(f):f,b=u.dtype==="string"?S.fromUint8ToStringArray(m):m,[y,v]=r(u.shape,l.shape,g,b,p),x=c.makeTensorInfo(v,p),k=c.texData.get(x.dataId);return k.values=y,x}let d=X().getBool("WEBGL_PACK_BINARY_OPERATIONS")&&t!=null,h;return d?h=new Zl(t,u.shape,l.shape,n):h=new io(e,u.shape,l.shape),c.runWebGLProgram(h,[u,l],p)}}function Yp(e,t=!1){if(e==="linear")return t?BX:OX;if(e==="relu")return t?WX:zX;if(e==="elu")return t?VX:PX;if(e==="relu6")return t?UX:MX;if(e==="prelu")return t?K1:j1;if(e==="leakyrelu")return t?q1:H1;if(e==="sigmoid")return t?GX:LX;throw new Error(`Activation ${e} has not been implemented for the WebGL backend.`)}var X1=class{constructor(e,t,n,s=!1,r=!1,a=!1,i=null,o=!1,u=!1){this.variableNames=["matrixA","matrixB"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=n,this.enableShapeUniforms=Sn(this.outputShape.length);let l=s?e[1]:e[2],c=Math.ceil(l/2),p=s?"i * 2, rc.y":"rc.y, i * 2",d=r?"rc.z, i * 2":"i * 2, rc.z",h=s?["a.xxyy","a.zzww"]:["a.xxzz","a.yyww"],f=r?["b.xzxz","b.ywyw"]:["b.xyxy","b.zwzw"],m="",g="";i&&(o?m=`vec4 activation(vec4 a) {
|
|
vec4 b = getPreluActivationWeightsAtOutCoords();
|
|
${i}
|
|
}`:u?m=`vec4 activation(vec4 a) {
|
|
vec4 b = getLeakyreluAlphaAtOutCoords();
|
|
${i}
|
|
}`:m=`vec4 activation(vec4 x) {
|
|
${i}
|
|
}`,g="result = activation(result);");let b=a?"result += getBiasAtOutCoords();":"";a&&this.variableNames.push("bias"),o&&this.variableNames.push("preluActivationWeights"),u&&this.variableNames.push("leakyreluAlpha");let y="rc.x",v="rc.x";e[0]<t[0]?y=`int(min(float(rc.x), ${e[0]-1}.))`:t[0]<e[0]&&(v=`int(min(float(rc.x), ${t[0]-1}.))`),this.userCode=`
|
|
${m}
|
|
// Don't use uniform for sharedDimensionPacked for performance.
|
|
const float sharedDimension = ${c}.0;
|
|
|
|
vec4 dot2x2ARowBCol(ivec3 rc) {
|
|
vec4 result = vec4(0);
|
|
for (int i = 0; i < ${c}; i++) {
|
|
int batchA = ${y};
|
|
int batchB = ${v};
|
|
vec4 a = getMatrixA(batchA, ${p});
|
|
vec4 b = getMatrixB(batchB, ${d});
|
|
|
|
// These swizzled products need to be separately added.
|
|
// See: https://github.com/tensorflow/tfjs/issues/1735
|
|
result += (${h[0]} * ${f[0]});
|
|
result += (${h[1]} * ${f[1]});
|
|
}
|
|
return result;
|
|
}
|
|
|
|
void main() {
|
|
ivec3 rc = getOutputCoords();
|
|
vec4 result = dot2x2ARowBCol(rc);
|
|
|
|
${b}
|
|
|
|
${g}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}},cw={REAL:"return areal * breal - aimag * bimag;",IMAG:"return areal * bimag + aimag * breal;"},dw=class{constructor(e,t,n){this.variableNames=["AReal","AImag","BReal","BImag"],this.outputShape=S.assertAndGetBroadcastShape(t,n),this.userCode=`
|
|
float binaryOpComplex(
|
|
float areal, float aimag, float breal, float bimag) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
float areal = getARealAtOutCoords();
|
|
float aimag = getAImagAtOutCoords();
|
|
float breal = getBRealAtOutCoords();
|
|
float bimag = getBImagAtOutCoords();
|
|
setOutput(binaryOpComplex(areal, aimag, breal, bimag));
|
|
}
|
|
`}},pw="return a * b;";function Sv(e){let{inputs:t,backend:n}=e,{a:s,b:r}=t,a=S.upcastType(s.dtype,r.dtype);if(s.dtype==="complex64"){let o=n.texData.get(s.dataId),u=n.texData.get(r.dataId),l=new dw(cw.REAL,s.shape,r.shape),c=new dw(cw.IMAG,s.shape,r.shape),p=[{dataId:o.complexTensorInfos.real.dataId,dtype:o.complexTensorInfos.real.dtype,shape:s.shape},{dataId:o.complexTensorInfos.imag.dataId,dtype:o.complexTensorInfos.imag.dtype,shape:s.shape},{dataId:u.complexTensorInfos.real.dataId,dtype:u.complexTensorInfos.real.dtype,shape:r.shape},{dataId:u.complexTensorInfos.imag.dataId,dtype:u.complexTensorInfos.imag.dtype,shape:r.shape}],d=n.runWebGLProgram(l,p,"float32"),h=n.runWebGLProgram(c,p,"float32"),f=Dr({inputs:{real:d,imag:h},backend:n});return n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(h),f}if(n.shouldExecuteOnCPU([s,r])){let o=n.texData.get(s.dataId),u=n.texData.get(r.dataId),[l,c]=lX(s.shape,r.shape,o.values,u.values,a),p=n.makeTensorInfo(c,a),d=n.texData.get(p.dataId);return d.values=l,p}let i;return X().getBool("WEBGL_PACK_BINARY_OPERATIONS")?i=new Zl(pw,s.shape,r.shape):i=new io(pw,s.shape,r.shape),n.runWebGLProgram(i,[s,r],a)}var l8={kernelName:Za,backendName:"webgl",kernelFunc:Sv};function c8(e,t,n){let s=[ya(e.shape),...va(e.shape)],r={dtype:e.dtype,shape:s,dataId:e.dataId},a=[ya(t),...va(t)],i=new V1(a,s),o=!0,u=[s],l=n.runWebGLProgram(i,[r],e.dtype,u,o);return{dataId:l.dataId,shape:t,dtype:l.dtype}}function he(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{shape:a}=s,i=n,o=w.sizeFromShape(r.shape),u=w.inferFromImplicitShape(a,o),l=w.sizeFromShape(u);w.assert(o===l,()=>`The new shape (${u}) has ${l} elements and the old shape (${r.shape}) has ${o} elements. The new shape and old shape must have the same number of elements.`);let c=i.texData.get(r.dataId);return c.isPacked&&!tl(r.shape,u)&&!(c.texture!==null&&tl(c.shape,u))?c8(r,u,i):(i.incRef(r.dataId),{dataId:r.dataId,shape:u,dtype:r.dtype})}var d8={kernelName:Ro,backendName:"webgl",kernelFunc:he},hw=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:s,inSize:r,outSize:a}=e;this.outputShape=[s,a];let i=Math.floor(n/4)*4,o=n%4,u="sumValue += dot(values, ones);";if(t!=null){let c=1/t;u=`sumValue += dot(values * ${w.isInt(c)?c.toPrecision(2):c}, ones);`}let l="";r%n>0&&(l=`
|
|
if (inIdx < 0 || inIdx >= ${r}) {
|
|
return 0.0;
|
|
}
|
|
`),this.userCode=`
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${l}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${n};
|
|
|
|
float sumValue = 0.0;
|
|
|
|
for (int i = 0; i < ${i}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
${u}
|
|
}
|
|
|
|
int inIdx = inOffset + ${i};
|
|
if (${o===1}) {
|
|
vec4 values = vec4(getValue(batch, inIdx), 0.0, 0.0, 0.0);
|
|
|
|
${u}
|
|
} else if (${o===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1), 0.0, 0.0);
|
|
|
|
${u}
|
|
} else if (${o===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2), 0.0);
|
|
|
|
${u}
|
|
}
|
|
setOutput(sumValue);
|
|
}
|
|
`}},p8=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:s,inSize:r,outSize:a}=e;this.outputShape=[s,a];let i="0.0",o="";t==="prod"?i="1.0":t==="min"?(i="1.0 / 1e-20",o="min"):t==="max"&&(i="-1.0 / 1e-20",o="max");let u=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="sum"?u="sumValue":t==="prod"?u="prodValue":t==="all"?u="allValue":t==="any"&&(u="anyValue");let l=Math.floor(n/4)*4,c=n%4,p=`
|
|
if (${t==="sum"}) {
|
|
sumValue += dot(values, ones);
|
|
} else if (${t==="prod"}) {
|
|
vec2 tmp = vec2(values[0], values[1]) * vec2(values[2], values[3]);
|
|
prodValue *= tmp[0] * tmp[1];
|
|
} else {
|
|
minMaxValue = ${o}(values, minMaxValue);
|
|
if (${t==="min"} || ${t==="max"}) {
|
|
minMaxValue = ${o}(values, minMaxValue);
|
|
bvec4 isNaN = isnan(values);
|
|
if (isNaN.r || isNaN.g || isNaN.b || isNaN.a) {
|
|
minMaxValue = vec4(NAN);
|
|
}
|
|
}
|
|
}
|
|
`,d="vec4";t==="all"?(i="1.0",p=`
|
|
bool reducedAllValue = all(values);
|
|
float floatedReducedAllValue = float(reducedAllValue);
|
|
allValue = float(allValue >= 1.0 && floatedReducedAllValue >= 1.0);
|
|
`,d="bvec4"):t==="any"&&(i="0.0",p=`
|
|
bool reducedAnyValue = any(values);
|
|
float floatedReducedAnyValue = float(reducedAnyValue);
|
|
anyValue = float(anyValue >= 1.0 || floatedReducedAnyValue >= 1.0);
|
|
`,d="bvec4");let h="";r%n>0&&(h=`
|
|
if (inIdx < 0 || inIdx >= ${r}) {
|
|
return initializationValue;
|
|
}
|
|
`),this.userCode=`
|
|
const float initializationValue = ${i};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${h}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${n};
|
|
|
|
vec4 minMaxValue = vec4(${i});
|
|
float prodValue = 1.0;
|
|
float sumValue = 0.0;
|
|
float allValue = 1.0;
|
|
float anyValue = 0.0;
|
|
|
|
for (int i = 0; i < ${l}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
${d} values = ${d}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
${p}
|
|
}
|
|
|
|
int inIdx = inOffset + ${l};
|
|
if (${c===1}) {
|
|
${d} values = ${d}(
|
|
getValue(batch, inIdx),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${p}
|
|
} else if (${c===2}) {
|
|
${d} values = ${d}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${p}
|
|
} else if (${c===3}) {
|
|
${d} values = ${d}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
initializationValue
|
|
);
|
|
|
|
${p}
|
|
}
|
|
setOutput(${u});
|
|
}
|
|
`}};function h8(e){let t=[];for(;t.length===0||t[t.length-1].outSize!==1;){let n=t.length?t[t.length-1].outSize:e[1],s=S.computeOptimalWindowSize(n);t.push({inSize:n,windowSize:s,outSize:Math.ceil(n/s)})}return t}function Ii(e,t,n,s){let r=h8(e.shape),a=e;for(let i=0;i<r.length;i++){let{inSize:o,windowSize:u,outSize:l}=r[i],c,p;n==="mean"?c=i===0?new hw({windowSize:u,inSize:o,batchSize:e.shape[0],outSize:l},o):new hw({windowSize:u,inSize:o,batchSize:e.shape[0],outSize:l}):c=new p8({windowSize:u,inSize:o,batchSize:e.shape[0],outSize:l},n),p=a,a=s.runWebGLProgram(c,[a],t),p.dataId!==e.dataId&&s.disposeIntermediateTensorInfo(p)}return a}var f8=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let a=0;a<n.length;a++)n[a]=e[t[a]];this.outputShape=n,this.rank=n.length;let s=rt(this.rank),r=m8(t);this.userCode=`
|
|
void main() {
|
|
${s} resRC = getOutputCoords();
|
|
setOutput(getA(${r}));
|
|
}
|
|
`}};function m8(e){let t=e.length;if(t>6)throw Error(`Transpose for rank ${t} is not yet supported`);let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u","resRC.v"],s=new Array(t);for(let r=0;r<e.length;r++)s[e[r]]=n[r];return s.join()}var g8=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0;let n=new Array(e.length);for(let l=0;l<n.length;l++)n[l]=e[t[l]];if(this.outputShape=n,this.rank=n.length,this.rank>6)throw Error(`Packed transpose for rank ${this.rank} is not yet supported.`);let s=rt(this.rank),r=B1("rc",this.rank),a=new Array(this.rank);for(let l=0;l<t.length;l++)a[t[l]]=r[l];let i=`vec2(${a.slice(-2).join()})`,o=`++${r[this.rank-1]} < ${n[this.rank-1]}`,u=`getChannel(getA(${a.join()}), ${i})`;this.userCode=`
|
|
void main() {
|
|
${s} rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result[0] = ${u};
|
|
if(${o}) {
|
|
result[1] = ${u};
|
|
}
|
|
--${r[this.rank-1]};
|
|
if(++${r[this.rank-2]} < ${n[this.rank-2]}) {
|
|
result[2] = ${u};
|
|
if(${o}) {
|
|
result[3] = ${u};
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}};function Qp(e,t,n){let s=X().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new g8(e.shape,t):new f8(e.shape,t);return n.runWebGLProgram(s,[e],e.dtype)}function b8(e,t,n,s){let r=t,a=e.shape.length,i=w.parseAxisParam(r,e.shape),o=i,u=S.getAxesPermutation(o,a),l=u!=null,c=e;l&&(c=Qp(e,u,s),o=S.getInnerMostAxes(o.length,a)),S.assertAxesAreInnerMostDims("sum",o,a);let[p,d]=S.computeOutAndReduceShapes(c.shape,o),h=p;n&&(h=S.expandShapeToKeepDim(p,i));let f=w.sizeFromShape(d),g=w.sizeFromShape(e.shape)/f,b=he({inputs:{x:c},attrs:{shape:[g,f]},backend:s}),y=pp(e.dtype),v=Ii(b,y,"sum",s),x=he({inputs:{x:v},attrs:{shape:h},backend:s});return s.disposeIntermediateTensorInfo(b),s.disposeIntermediateTensorInfo(v),l&&s.disposeIntermediateTensorInfo(c),x}function Zp(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:i}=s;return b8(r,a,i,n)}var y8={kernelName:ci,backendName:"webgl",kernelFunc:Zp};function qt(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{perm:a}=s,i=n,o=r.shape.length,u=new Array(o);for(let c=0;c<u.length;c++)u[c]=r.shape[a[c]];let l;if(i.shouldExecuteOnCPU([r])){let p=i.texData.get(r.dataId).values,d=Iv(p,r.shape,r.dtype,a,u);l=i.makeTensorInfo(u,r.dtype);let h=i.texData.get(l.dataId);h.values=d}else l=Qp(r,a,i);return l}var v8={kernelName:mi,backendName:"webgl",kernelFunc:qt},Y1=1e3;function Ld({a:e,b:t,transposeA:n,transposeB:s,backend:r,bias:a=null,preluActivationWeights:i=null,leakyreluAlpha:o=0,activation:u=null}){let l=e.shape.length,c=t.shape.length,p=n?e.shape[l-2]:e.shape[l-1],d=s?t.shape[c-1]:t.shape[c-2],h=n?e.shape[l-1]:e.shape[l-2],f=s?t.shape[c-2]:t.shape[c-1],m=e.shape.slice(0,-2),g=t.shape.slice(0,-2),b=w.sizeFromShape(m),y=w.sizeFromShape(g),x=Ko.assertAndGetBroadcastShape(e.shape.slice(0,-2),t.shape.slice(0,-2)).concat([h,f]);w.assert(p===d,()=>`Error in matMul: inner shapes (${p}) and (${d}) of Tensors with shapes ${e.shape} and ${t.shape} and transposeA=${n} and transposeB=${s} must match.`);let k=n?[b,p,h]:[b,h,p],T=s?[y,f,d]:[y,d,f],N=he({inputs:{x:e},backend:r,attrs:{shape:k}}),E=he({inputs:{x:t},backend:r,attrs:{shape:T}}),A=[N,E],P=Math.max(b,y),R=n?N.shape[1]:N.shape[2],F=a!=null,$=i!=null,z=u==="leakyrelu",W=u!=null?Yp(u,!0):null,q=F||$||z||W!=null,K;if((h===1||f===1)&&R>Y1&&q===!1){let Z=N,te=E;n&&(Z=qt({inputs:{x:N},backend:r,attrs:{perm:[0,2,1]}}),A.push(Z)),s&&(te=qt({inputs:{x:E},backend:r,attrs:{perm:[0,2,1]}}),A.push(te));let ee=f!==1,se=f===1,ne=Z;ee&&(ne=he({inputs:{x:Z},backend:r,attrs:{shape:[P,R,1]}}),A.push(ne));let oe=f===1?2:1,re=te;se&&(re=he({inputs:{x:te},backend:r,attrs:{shape:[P,1,R]}}),A.push(re));let le=Sv({inputs:{a:ne,b:re},backend:r});K=Zp({inputs:{x:le},backend:r,attrs:{axis:oe,keepDims:!0}}),A.push(le)}else{let Z=cn(e.dtype,t.dtype),te=new X1(k,T,[P,h,f],n,s,F,W,$,z),ee=[N,E];if(a!=null&&ee.push(a),$&&ee.push(i),z){let se=r.makeTensorInfo([],"float32",w.createScalarValue(o,"float32"));ee.push(se),A.push(se)}K=r.runWebGLProgram(te,ee,Z)}let Y=he({inputs:{x:K},backend:r,attrs:{shape:x}});A.push(K);for(let Z of A)r.disposeIntermediateTensorInfo(Z);return Y}function x8(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a,bias:i,preluActivationWeights:o}=t,{transposeA:u,transposeB:l,activation:c,leakyreluAlpha:p}=s;return Ld({a:r,b:a,transposeA:u,transposeB:l,backend:n,bias:i,preluActivationWeights:o,leakyreluAlpha:p,activation:c})}var w8={kernelName:aa,backendName:"webgl",kernelFunc:x8},fw="return abs(x);";function k8(e){let{inputs:t,backend:n}=e,{x:s}=t;if(n.shouldExecuteOnCPU([s])&&s.dtype!=="complex64"){let a=n.texData.get(s.dataId),i=M1(a.values);return n.makeTensorInfo(s.shape,s.dtype,i)}let r;return X().getBool("WEBGL_PACK_UNARY_OPERATIONS")?r=new Jr(s.shape,fw):r=new Hs(s.shape,fw),n.runWebGLProgram(r,[s],s.dtype)}var I8={kernelName:uo,backendName:"webgl",kernelFunc:k8},S8=ss+`
|
|
if (abs(x) > 1.) {
|
|
return NAN;
|
|
}
|
|
return acos(x);
|
|
`,C8=Ke({opSnippet:S8}),N8={kernelName:rl,backendName:"webgl",kernelFunc:C8},T8=ss+`
|
|
if (x < 1.0) return NAN;
|
|
return log(x + sqrt(x * x - 1.0));`,$8=Ke({opSnippet:T8}),_8={kernelName:al,backendName:"webgl",kernelFunc:$8},mw="return a + b;",A8=jt({opSnippet:mw,packedOpSnippet:mw,supportsComplex:!0,cpuKernelImpl:GK}),E8={kernelName:Sr,backendName:"webgl",kernelFunc:A8},R8=class{constructor(e,t){this.outputShape=[],this.outputShape=e,this.variableNames=t.map((r,a)=>`T${a}`);let n=[];this.variableNames.forEach(r=>{n.push(`float v${r} = get${r}AtOutCoords();`)});let s=this.variableNames.map(r=>`v${r}`).join(" + ");this.userCode=`
|
|
void main() {
|
|
${n.join(`
|
|
`)}
|
|
|
|
float result = ${s};
|
|
setOutput(result);
|
|
}
|
|
`}},D8=class{constructor(e,t){this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.variableNames=t.map((r,a)=>`T${a}`);let n=[];this.variableNames.forEach(r=>{n.push(`vec4 v${r} = get${r}AtOutCoords();`)});let s=this.variableNames.map(r=>`v${r}`).join(" + ");this.userCode=`
|
|
void main() {
|
|
${n.join(`
|
|
`)}
|
|
|
|
vec4 result = ${s};
|
|
setOutput(result);
|
|
}
|
|
`}};function ld(e){let{inputs:t,backend:n}=e,s=t;if(s.length===1)return kn({inputs:{x:s[0]},backend:n});if(s.length>X().get("WEBGL_MAX_TEXTURES_IN_SHADER")){let u=Math.floor(s.length/2),l=ld({inputs:s.slice(0,u),backend:n}),c=ld({inputs:s.slice(u),backend:n});return ld({inputs:[l,c],backend:n})}let r=s.map(u=>u.dtype).reduce((u,l)=>cn(u,l)),a=s.map(u=>u.shape),o=X().getBool("WEBGL_PACK")?new D8(s[0].shape,a):new R8(s[0].shape,a);return n.runWebGLProgram(o,s,r)}var F8={kernelName:Ia,backendName:"webgl",kernelFunc:ld};function O8(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:i}=s,o=r.shape.length,u=w.parseAxisParam(a,r.shape),l=u,c=S.getAxesPermutation(l,o),p=r;c!=null&&(p=qt({inputs:{x:r},backend:n,attrs:{perm:c}}),l=S.getInnerMostAxes(l.length,o)),S.assertAxesAreInnerMostDims("all",l,o);let[d,h]=S.computeOutAndReduceShapes(p.shape,l),f=w.sizeFromShape(h),m=he({inputs:{x:p},backend:n,attrs:{shape:[-1,f]}}),g=Ii(m,m.dtype,"all",n),b;if(i){let y=S.expandShapeToKeepDim(d,u);b=he({inputs:{x:g},backend:n,attrs:{shape:y}})}else b=he({inputs:{x:g},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(g),c!=null&&n.disposeIntermediateTensorInfo(p),b}var P8={kernelName:il,backendName:"webgl",kernelFunc:O8};function z8(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:i}=s,o=r.shape.length,u=w.parseAxisParam(a,r.shape),l=u,c=S.getAxesPermutation(l,o),p=r;c!=null&&(p=qt({inputs:{x:r},backend:n,attrs:{perm:c}}),l=S.getInnerMostAxes(l.length,o)),S.assertAxesAreInnerMostDims("any",l,o);let[d,h]=S.computeOutAndReduceShapes(p.shape,l),f=w.sizeFromShape(h),m=he({inputs:{x:p},backend:n,attrs:{shape:[-1,f]}}),g=Ii(m,m.dtype,"any",n),b;if(i){let y=S.expandShapeToKeepDim(d,u);b=he({inputs:{x:g},backend:n,attrs:{shape:y}})}else b=he({inputs:{x:g},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(g),c!=null&&n.disposeIntermediateTensorInfo(p),b}var M8={kernelName:ol,backendName:"webgl",kernelFunc:z8},L8=class{constructor(e,t,n){this.variableNames=["A"];let{windowSize:s,batchSize:r,outSize:a}=e;n||this.variableNames.push("bestIndicesA"),this.outputShape=[r,a];let i=t==="max"?">":"<",o=n?"inOffset + i;":"round(getBestIndicesA(batch, inOffset + i));";this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${s};
|
|
|
|
int bestIndex = inOffset;
|
|
float bestValue = getA(batch, bestIndex);
|
|
|
|
for (int i = 0; i < ${s}; i++) {
|
|
int inIdx = ${o};
|
|
float candidate = getA(batch, inIdx);
|
|
if (candidate ${i} bestValue) {
|
|
bestValue = candidate;
|
|
bestIndex = inIdx;
|
|
}
|
|
}
|
|
setOutput(float(bestIndex));
|
|
}
|
|
`}},B8=class{constructor(e,t,n,s){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,w.assert(e.length>2,()=>`Packed arg${n.charAt(0).toUpperCase()+n.slice(1)} supports only inputs with rank above 2.`);let r=e[e.length-1],a=Math.ceil(r/t);this.outputShape=e.slice(0,-1),a>1&&this.outputShape.push(a),s||this.variableNames.push("bestIndicesA");let i=this.outputShape,o=i.length,u=rt(o),l=ln("coords",o),c,p;if(a===1){p=o+1;let N=rt(p);c=`
|
|
${N} sourceLocR = ${N}(${l.join()}, 0);
|
|
++${l[o-1]};
|
|
${N} sourceLocG = ${N}(${l.join()}, 0);
|
|
++${l[o-2]};
|
|
${N} sourceLocA = ${N}(${l.join()}, 0);
|
|
--${l[o-1]};
|
|
${N} sourceLocB = ${N}(${l.join()}, 0);
|
|
--${l[o-2]};`}else p=o,c=`
|
|
${u} sourceLocR = coords;
|
|
++${l[o-1]};
|
|
${u} sourceLocG = coords;
|
|
++${l[o-2]};
|
|
${u} sourceLocA = coords;
|
|
--${l[o-1]};
|
|
${u} sourceLocB = coords;
|
|
--${l[o-2]};`;let d=["x","y","z","w","u","v"].slice(0,p),h="."+d[p-1],f=d.map(N=>"int "+N),m=ln("sourceLocR",p-1).concat("inIdx.r"),g=ln("sourceLocG",p-1).concat("inIdx.g"),b=ln("sourceLocB",p-1).concat("inIdx.b"),y=ln("sourceLocA",p-1).concat("inIdx.a"),v=n==="max"?"greaterThan":"lessThan",x=s?"":`
|
|
inIdx = round(vec4(getBestIndicesAChannel(${m.join()}),
|
|
getBestIndicesAChannel(${g.join()}),
|
|
getBestIndicesAChannel(${b.join()}),
|
|
getBestIndicesAChannel(${y.join()})));`,k=`vec4(
|
|
getAChannel(${m.join()}),
|
|
hasNextCol ? getAChannel(${g.join()}) : 0.,
|
|
hasNextRow ? getAChannel(${b.join()}) : 0.,
|
|
hasNextRow && hasNextCol ? getAChannel(${y.join()}) : 0.)`,T=s?"":`
|
|
float getBestIndicesAChannel(${f.join()}) {
|
|
return getChannel(getBestIndicesA(${d.join()}),
|
|
vec2(${d.slice(-2).join()}));
|
|
}`;this.userCode=`
|
|
float getAChannel(${f.join()}) {
|
|
return getChannel(getA(${d.join()}),
|
|
vec2(${d.slice(-2).join()}));
|
|
}
|
|
${T}
|
|
void main() {
|
|
${u} coords = getOutputCoords();
|
|
bool hasNextCol = ${l[o-1]} < ${i[o-1]-1};
|
|
bool hasNextRow = ${l[o-2]} < ${i[o-2]-1};
|
|
${c}
|
|
ivec4 srcIdx = ivec4(sourceLocR${h}, sourceLocG${h},
|
|
sourceLocB${h}, sourceLocA${h}) * ${t};
|
|
ivec4 inIdx = srcIdx;
|
|
vec4 bestIndex = vec4(inIdx);
|
|
vec4 bestValue = ${k};
|
|
|
|
for (int i = 0; i < ${t}; i++) {
|
|
inIdx = srcIdx;
|
|
${x}
|
|
vec4 candidate = ${k};
|
|
bvec4 nan = isnan(candidate);
|
|
bvec4 replace = bvec4(
|
|
vec4(${v}(candidate, bestValue)) * (vec4(1.0) - vec4(nan)));
|
|
|
|
bestValue = vec4(replace.x ? candidate.x : bestValue.x,
|
|
replace.y ? candidate.y : bestValue.y,
|
|
replace.z ? candidate.z : bestValue.z,
|
|
replace.w ? candidate.w : bestValue.w);
|
|
bestIndex = mix(bestIndex, vec4(inIdx), vec4(replace));
|
|
srcIdx++;
|
|
}
|
|
setOutput(bestIndex);
|
|
}
|
|
`}};function Q1(e,t,n,s=null){let r=t.shape[0],a=t.shape[1];s!=null&&(r=s.shape[0],a=s.shape[1]);let i=S.computeOptimalWindowSize(a),o={windowSize:i,inSize:a,batchSize:r,outSize:Math.ceil(a/i)},u=new L8(o,n,s==null),l=[t];s!=null&&l.push(s);let c=e.runWebGLProgram(u,l,"int32");if(c.shape[1]===1)return c;let p=Q1(e,t,n,c);return e.disposeIntermediateTensorInfo(c),p}function Z1(e,t,n,s=null){let r=s!=null?s.shape:t.shape,a=r[r.length-1],i=S.computeOptimalWindowSize(a),o=new B8(r,i,n,s==null),u=s==null?[t]:[t,s],l=e.runWebGLProgram(o,u,"int32");if(l.shape.length===t.shape.length){let c=Z1(e,t,n,l);return e.disposeIntermediateTensorInfo(l),c}return l}function J1(e,t,n,s){let r=[n];if(S.assertAxesAreInnerMostDims("arg"+s.charAt(0).toUpperCase()+s.slice(1),r,t.shape.length),!X().getBool("WEBGL_PACK_REDUCE")||t.shape.length<=2){let a=[],i=e.texData.get(t.dataId),o=i!==null&&i.isPacked,u=t;o&&(u=e.unpackTensor(t),a.push(u));let[l,c]=S.computeOutAndReduceShapes(u.shape,r),p=w.sizeFromShape(c),d=he({inputs:{x:u},backend:e,attrs:{shape:[-1,p]}});a.push(d);let h=Q1(e,d,s);a.push(h);let f=he({inputs:{x:h},backend:e,attrs:{shape:l}});return a.forEach(m=>e.disposeIntermediateTensorInfo(m)),f}return Z1(e,t,s)}function V8(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s,i=w.parseAxisParam(a,r.shape),o=S.getAxesPermutation(i,r.shape.length),u=r,l=[];o!=null&&(u=qt({inputs:{x:r},backend:n,attrs:{perm:o}}),l.push(u),i=S.getInnerMostAxes(i.length,u.shape.length)),S.assertAxesAreInnerMostDims("argMax",[i[0]],u.shape.length);let c=J1(n,u,i[0],"max");return l.forEach(p=>n.disposeIntermediateTensorInfo(p)),c}var W8={kernelName:Sa,backendName:"webgl",kernelFunc:V8};function U8(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s,i=w.parseAxisParam(a,r.shape),o=S.getAxesPermutation(i,r.shape.length),u=r,l=[];o!=null&&(u=qt({inputs:{x:r},backend:n,attrs:{perm:o}}),l.push(u),i=S.getInnerMostAxes(i.length,u.shape.length)),S.assertAxesAreInnerMostDims("argMin",[i[0]],u.shape.length);let c=J1(n,u,i[0],"min");return l.forEach(p=>n.disposeIntermediateTensorInfo(p)),c}var G8={kernelName:ul,backendName:"webgl",kernelFunc:U8},H8=ss+`
|
|
if (abs(x) > 1.) {
|
|
return NAN;
|
|
}
|
|
return asin(x);
|
|
`,q8=Ke({opSnippet:H8}),j8={kernelName:ll,backendName:"webgl",kernelFunc:q8},K8=ss+"return log(x + sqrt(x * x + 1.0));",X8=Ke({opSnippet:K8}),Y8={kernelName:cl,backendName:"webgl",kernelFunc:X8},Q8=ss+`
|
|
return atan(x);
|
|
`,Z8=Ke({opSnippet:Q8}),J8={kernelName:dl,backendName:"webgl",kernelFunc:Z8},eY=o8+`
|
|
return atan(a, b);
|
|
`,tY=`
|
|
vec4 result = atan(a, b);
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+u8+`
|
|
return result;
|
|
`,nY=jt({opSnippet:eY,packedOpSnippet:tY}),sY={kernelName:hl,backendName:"webgl",kernelFunc:nY},rY=ss+`
|
|
if ((x < -1.0) || (x > 1.0)) return NAN;
|
|
return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,aY=Ke({opSnippet:rY}),iY={kernelName:pl,backendName:"webgl",kernelFunc:aY},nl=class{constructor(e,t,n,s=!1,r=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let a=e.filterWidth,i=e.strideHeight,o=e.strideWidth,u=e.dilationHeight,l=e.dilationWidth,c=e.effectiveFilterHeight,p=e.effectiveFilterWidth,d=e.padInfo.top,h=e.padInfo.left;this.outputShape=e.outShape;let f=t==="avg",m=`((batch * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + d`,g=`(xR * ${e.inWidth} + xC) * ${e.inChannels} + d`,b="0.0";if(f||(b="-1.0 / 1e-20"),n){let N=">=";this.userCode=`
|
|
const ivec2 strides = ivec2(${i}, ${o});
|
|
const ivec2 pads = ivec2(${d}, ${h});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// max/min x(?, ?, d) to get y(yR, yC, d).
|
|
// ? = to be determined
|
|
float minMaxValue = 0.0;
|
|
float minMaxValueFound = 0.0;
|
|
int minMaxPosition = 0;
|
|
float avgValue = 0.0;
|
|
|
|
for (int wR = 0; wR < ${c};
|
|
wR += ${u}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${p};
|
|
wC += ${l}) {
|
|
int xC = xCCorner + wC;
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float value = getX(batch, xR, xC, d);
|
|
|
|
// If a min / max value has already been found, use it. If not,
|
|
// use the current value.
|
|
float currMinMaxValue = mix(
|
|
value, minMaxValue, minMaxValueFound);
|
|
if (value ${N} currMinMaxValue) {
|
|
minMaxValue = value;
|
|
minMaxValueFound = 1.0;
|
|
minMaxPosition = ${s?r?m:g:`wR * ${p} + wC`};
|
|
}
|
|
}
|
|
}
|
|
setOutput(float(minMaxPosition));
|
|
}
|
|
`;return}let y="max",v=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(v="avgValue / count");let x=Math.floor(a/4)*4,k=a%4,T=`
|
|
if (${f}) {
|
|
avgValue += dot(values, ones);
|
|
} else {
|
|
minMaxValue = ${y}(values, minMaxValue);
|
|
}
|
|
`;this.userCode=`
|
|
const ivec2 strides = ivec2(${i}, ${o});
|
|
const ivec2 pads = ivec2(${d}, ${h});
|
|
const float initializationValue = ${b};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float count = 0.0;
|
|
|
|
float getValue(int batch, int xR, int xC, int d) {
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
return initializationValue;
|
|
}
|
|
count += 1.0;
|
|
return getX(batch, xR, xC, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// max/min x(?, ?, d) to get y(yR, yC, d).
|
|
// ? = to be determined
|
|
vec4 minMaxValue = vec4(${b});
|
|
float avgValue = 0.0;
|
|
count = 0.0;
|
|
|
|
for (int wR = 0; wR < ${c};
|
|
wR += ${u}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${x}; wC += 4) {
|
|
int xC = xCCorner + wC * ${l};
|
|
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${l}, d),
|
|
getValue(batch, xR, xC + 2 * ${l}, d),
|
|
getValue(batch, xR, xC + 3 * ${l}, d)
|
|
);
|
|
|
|
${T}
|
|
}
|
|
|
|
int xC = xCCorner + ${x};
|
|
if (${k===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${T}
|
|
} else if (${k===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${l}, d),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${T}
|
|
} else if (${k===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${l}, d),
|
|
getValue(batch, xR, xC + 2 * ${l}, d),
|
|
initializationValue
|
|
);
|
|
|
|
${T}
|
|
}
|
|
}
|
|
setOutput(${v});
|
|
}
|
|
`}},Cv=class{constructor(e,t,n,s=!1,r=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let a=e.filterWidth,i=e.strideDepth,o=e.strideHeight,u=e.strideWidth,l=e.dilationDepth,c=e.dilationHeight,p=e.dilationWidth,d=e.effectiveFilterDepth,h=e.effectiveFilterHeight,f=e.effectiveFilterWidth,m=e.padInfo.front,g=e.padInfo.top,b=e.padInfo.left;this.outputShape=e.outShape;let y=t==="avg",v="0.0";if(y||(v="-1.0 / 1e-20"),n){let A=">=";this.userCode=`
|
|
const ivec3 strides =
|
|
ivec3(${i}, ${o}, ${u});
|
|
const ivec3 pads = ivec3(${m}, ${g}, ${b});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xDCorner = xCorner.x;
|
|
int xRCorner = xCorner.y;
|
|
int xCCorner = xCorner.z;
|
|
|
|
// max/min x(?, ?, ?, ch) to get y(yD, yR, yC, ch).
|
|
// ? = to be determined
|
|
float minMaxValue = 0.0;
|
|
float minMaxValueFound = 0.0;
|
|
int minMaxPosition = 0;
|
|
|
|
for (int wD = 0; wD < ${d};
|
|
wD += ${l}) {
|
|
int xD = xDCorner + wD;
|
|
|
|
if (xD < 0 || xD >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${h};
|
|
wR += ${c}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${f};
|
|
wC += ${p}) {
|
|
int xC = xCCorner + wC;
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float value = getX(batch, xD, xR, xC, ch);
|
|
|
|
// If a min / max value has already been found, use it. If not,
|
|
// use the current value.
|
|
float currMinMaxValue = mix(
|
|
value, minMaxValue, minMaxValueFound);
|
|
if (value ${A} currMinMaxValue) {
|
|
minMaxValue = value;
|
|
minMaxValueFound = 1.0;
|
|
minMaxPosition = ${s?r?`(((batch * ${e.inDepth} + xD) * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`((xD * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`wD * ${h} * ${f} +
|
|
wR * ${f} + wC`};
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(float(minMaxPosition));
|
|
}
|
|
`;return}let x="max",k=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(k="avgValue / count");let T=Math.floor(a/4)*4,N=a%4,E=`
|
|
if (${y}) {
|
|
avgValue += dot(values, ones);
|
|
} else {
|
|
minMaxValue = ${x}(values, minMaxValue);
|
|
}
|
|
`;this.userCode=`
|
|
const ivec3 strides =
|
|
ivec3(${i}, ${o}, ${u});
|
|
const ivec3 pads = ivec3(${m}, ${g}, ${b});
|
|
const float initializationValue = ${v};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float count = 0.0;
|
|
|
|
float getValue(int batch, int xD, int xR, int xC, int ch) {
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
return initializationValue;
|
|
}
|
|
count += 1.0;
|
|
return getX(batch, xD, xR, xC, ch);
|
|
}
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xDCorner = xCorner.x;
|
|
int xRCorner = xCorner.y;
|
|
int xCCorner = xCorner.z;
|
|
|
|
// max/min x(?, ?, ?, d) to get y(yD, yR, yC, ch).
|
|
// ? = to be determined
|
|
vec4 minMaxValue = vec4(${v});
|
|
float avgValue = 0.0;
|
|
count = 0.0;
|
|
|
|
for (int wD = 0; wD < ${d};
|
|
wD += ${l}) {
|
|
int xD = xDCorner + wD;
|
|
|
|
if (xD < 0 || xD >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${h};
|
|
wR += ${c}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${T}; wC += 4) {
|
|
int xC = xCCorner + wC * ${p};
|
|
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${p}, ch),
|
|
getValue(batch, xD, xR, xC + 2 * ${p}, ch),
|
|
getValue(batch, xD, xR, xC + 3 * ${p}, ch)
|
|
);
|
|
|
|
${E}
|
|
}
|
|
|
|
int xC = xCCorner + ${T};
|
|
if (${N===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${E}
|
|
} else if (${N===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${p}, ch),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${E}
|
|
} else if (${N===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${p}, ch),
|
|
getValue(batch, xD, xR, xC + 2 * ${p}, ch),
|
|
initializationValue
|
|
);
|
|
|
|
${E}
|
|
}
|
|
}
|
|
setOutput(${k});
|
|
}
|
|
}
|
|
`}};function oY(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t;su(r,"avgPool");let{filterSize:a,strides:i,pad:o,dimRoundingMode:u}=s,l=1;w.assert(S.eitherStridesOrDilationsAreOne(i,l),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${l}'`);let c=S.computePool2DInfo(r.shape,a,i,l,o,u);if(c.filterWidth===1&&c.filterHeight===1&&w.arraysEqual(c.inShape,c.outShape))return kn({inputs:{x:r},backend:n});let p=new nl(c,"avg",!1);return n.runWebGLProgram(p,[r],"float32")}var uY={kernelName:Ca,backendName:"webgl",kernelFunc:oY};function lY(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:i,pad:o,dimRoundingMode:u,dataFormat:l}=s,c=[1,1,1],p=S.computePool3DInfo(r.shape,a,i,c,o,u,l),d=new Cv(p,"avg",!1);return n.runWebGLProgram(d,[r],"float32")}var cY={kernelName:Kd,backendName:"webgl",kernelFunc:lY},dY=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,s=e.strideHeight,r=e.strideWidth,a=e.dilationHeight,i=e.dilationWidth,o=e.effectiveFilterHeight,u=e.effectiveFilterWidth,l=o-1-e.padInfo.top,c=u-1-e.padInfo.left,p=1/(t*n);this.userCode=`
|
|
const ivec2 pads = ivec2(${l}, ${c});
|
|
const float avgMultiplier = float(${p});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 dyRCCorner = coords.yz - pads;
|
|
int dyRCorner = dyRCCorner.x;
|
|
int dyCCorner = dyRCCorner.y;
|
|
|
|
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${o};
|
|
wR += ${a}) {
|
|
float dyR = float(dyRCorner + wR) / ${s}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${u};
|
|
wC+= ${i}) {
|
|
float dyC = float(dyCCorner + wC) / ${r}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(b, idyR, idyC, d);
|
|
|
|
dotProd += dyValue * avgMultiplier;
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},pY=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,s=e.filterWidth,r=e.strideDepth,a=e.strideHeight,i=e.strideWidth,o=e.dilationDepth,u=e.dilationHeight,l=e.dilationWidth,c=e.effectiveFilterDepth,p=e.effectiveFilterHeight,d=e.effectiveFilterWidth,h=c-1-e.padInfo.front,f=p-1-e.padInfo.top,m=d-1-e.padInfo.left,g=1/(t*n*s);this.userCode=`
|
|
const ivec3 pads = ivec3(${h}, ${f}, ${m});
|
|
const float avgMultiplier = float(${g});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyDCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
// Convolve dy(?, ?, ?, d) with pos mask(:, :, :, ch) to get
|
|
// dx(xD, xR, xC, ch).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int wD = 0; wD < ${c};
|
|
wD += ${o}) {
|
|
float dyD = float(dyDCorner + wD) / ${r}.0;
|
|
|
|
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyD = int(dyD);
|
|
|
|
for (int wR = 0; wR < ${p};
|
|
wR += ${u}) {
|
|
float dyR = float(dyRCorner + wR) / ${a}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${d};
|
|
wC += ${l}) {
|
|
float dyC = float(dyCCorner + wC) / ${i}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
|
|
|
|
dotProd += dyValue * avgMultiplier;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function hY(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,i=a,{filterSize:o,strides:u,pad:l,dimRoundingMode:c}=s,p=[1,1,1],d=S.computePool3DInfo(i.shape,o,u,p,l,c),h=new pY(d);return n.runWebGLProgram(h,[r],i.dtype)}var fY={kernelName:lg,backendName:"webgl",kernelFunc:hY};function mY(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,i=a;su([r,a],"avgPoolGrad");let{filterSize:o,strides:u,pad:l}=s,c=S.computePool2DInfo(i.shape,o,u,1,l),p=new dY(c);return n.runWebGLProgram(p,[r],i.dtype)}var gY={kernelName:ug,backendName:"webgl",kernelFunc:mY};function bY(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a}=t,{transposeA:i,transposeB:o}=s;return Ld({a:r,b:a,transposeA:i,transposeB:o,backend:n})}var yY={kernelName:Na,backendName:"webgl",kernelFunc:bY},vY=class{constructor(e,t,n,s,r,a){this.outputShape=[],this.variableNames=["x","mean","variance"],S.assertAndGetBroadcastShape(e,t),S.assertAndGetBroadcastShape(e,n);let i="0.0";s!=null&&(S.assertAndGetBroadcastShape(e,s),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let o="1.0";r!=null&&(S.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale"),o="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
float x = getXAtOutCoords();
|
|
float mean = getMeanAtOutCoords();
|
|
float variance = getVarianceAtOutCoords();
|
|
float offset = ${i};
|
|
float scale = ${o};
|
|
float inv = scale * inversesqrt(variance + float(${a}));
|
|
setOutput(dot(vec3(x, -mean, offset), vec3(inv, inv, 1)));
|
|
}
|
|
`}},xY=class{constructor(e,t,n,s,r,a){this.packedInputs=!0,this.packedOutput=!0,this.variableNames=["x","mean","variance"],S.assertAndGetBroadcastShape(e,t),S.assertAndGetBroadcastShape(e,n);let i="vec4(0.0)";s!=null&&(S.assertAndGetBroadcastShape(e,s),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let o="vec4(1.0)";r!=null&&(S.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale"),o="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
vec4 offset = ${i};
|
|
vec4 scale = ${o};
|
|
|
|
vec4 x = getXAtOutCoords();
|
|
vec4 mean = getMeanAtOutCoords();
|
|
vec4 variance = getVarianceAtOutCoords();
|
|
|
|
vec4 inv = scale * inversesqrt(variance + vec4(${a}));
|
|
|
|
setOutput((x - mean) * inv + offset);
|
|
}
|
|
`}},wY=({inputs:e,backend:t,attrs:n})=>{let{x:s,mean:r,variance:a,offset:i,scale:o}=e;w.assert(r.shape.length===a.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),w.assert(i==null||r.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),w.assert(o==null||r.shape.length===o.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let{varianceEpsilon:u}=n;u==null&&(u=.001);let l=[s,r,a],c=null;i!=null&&(c=i.shape,l.push(i));let p=null;o!=null&&(p=o.shape,l.push(o));let d=X().getBool("WEBGL_PACK_NORMALIZATION")?new xY(s.shape,r.shape,a.shape,c,p,u):new vY(s.shape,r.shape,a.shape,c,p,u);return t.runWebGLProgram(d,l,l[0].dtype)},kY={kernelName:Ba,backendName:"webgl",kernelFunc:wY},IY=class{constructor(e){this.variableNames=["source"],this.outputShape=e,this.rank=e.length;let t=rt(this.rank);this.customUniforms=[{name:"start",arrayIndex:this.rank,type:"int"}];let n=SY(this.rank),s,r=e.map((a,i)=>`sourceLoc.${qm[i]} = start[${i}] + coords.${qm[i]};`);s=`
|
|
${t} sourceLoc;
|
|
${t} coords = getOutputCoords();
|
|
${r.join(`
|
|
`)}
|
|
`,this.userCode=`
|
|
void main() {
|
|
${s}
|
|
setOutput(getSource(${n}));
|
|
}
|
|
`}},qm=["x","y","z","w","u","v"];function SY(e){if(e===1)return"sourceLoc";if(e<=6)return qm.slice(0,e).map(t=>"sourceLoc."+t).join(",");throw Error(`Slicing for rank ${e} is not yet supported`)}var CY=class{constructor(e){this.variableNames=["source"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.rank=e.length,this.customUniforms=[{name:"start",arrayIndex:this.rank,type:"int"}];let t=rt(this.rank),n=ln("coords",this.rank),s=ln("sourceLoc",this.rank),r=this.rank===1?"sourceLoc":`vec2(${s.slice(-2).join()})`,a=`getChannel(getSource(${s.join()}), ${r})`,i=`
|
|
result.x = ${a};
|
|
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
|
|
++${s[this.rank-1]};
|
|
result.y = ${a};
|
|
--${s[this.rank-1]};
|
|
}
|
|
`,o=this.rank===1?"":`
|
|
--${n[this.rank-1]};
|
|
if (++${n[this.rank-2]} < ${e[this.rank-2]}) {
|
|
++${s[this.rank-2]};
|
|
result.z = ${a};
|
|
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
|
|
++${s[this.rank-1]};
|
|
result.w = ${a};
|
|
}
|
|
}
|
|
`,u=this.rank<=4?`sourceLoc = coords +
|
|
${t}(${e.map((l,c)=>`start[${c}]`).join()});`:e.map((l,c)=>`${s[c]} = ${n[c]} + start[${c}];`).join(`
|
|
`);this.userCode=`
|
|
void main() {
|
|
${t} coords = getOutputCoords();
|
|
${t} sourceLoc;
|
|
${u}
|
|
vec4 result = vec4(0.);
|
|
${i}
|
|
${o}
|
|
setOutput(result);
|
|
}
|
|
`}};function NY(e,t,n,s){let r=s.texData.get(e.dataId),a=s.makeTensorInfo(n,e.dtype),i=s.texData.get(a.dataId);Object.assign(i,r),i.refCount=1,i.shape=n,i.dtype=e.dtype;let o=wt.computeFlatOffset(t,w.computeStrides(e.shape));r.slice&&(o+=r.slice.flatOffset),i.slice={flatOffset:o,origDataId:r.slice&&r.slice.origDataId||e.dataId};let u=s.dataRefCount.get(i.slice.origDataId)||1;return s.dataRefCount.set(i.slice.origDataId,u+1),a}function lu(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,size:i}=s,[o,u]=wt.parseSliceParams(r,a,i);if(wt.assertParamsValid(r,o,u),w.sizeFromShape(u)===0)return n.makeTensorInfo(u,r.dtype,[]);if(n.shouldExecuteOnCPU([r])||r.dtype==="string"){let p=n.texData.get(r.dataId),d=gX(p.values,o,u,r.shape,r.dtype);return n.makeTensorInfo(u,r.dtype,d)}let{isPacked:l}=n.texData.get(r.dataId),c=wt.isSliceContinous(r.shape,o,u);if(l||!c){let p=X().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new CY(u):new IY(u),d=[o];return n.runWebGLProgram(p,[r],r.dtype,d)}return n.uploadToGPU(r.dataId),NY(r,o,u,n)}var TY={kernelName:zo,backendName:"webgl",kernelFunc:lu},$Y=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,crops:i}=s;w.assert(r.shape.length<=4,()=>"batchToSpaceND for rank > 4 with a WebGL backend not implemented yet");let o=a.reduce((y,v)=>y*v),u=S.getReshaped(r.shape,a,o),l=S.getPermuted(u.length,a.length),c=S.getReshapedPermuted(r.shape,a,o),p=S.getSliceBeginCoords(i,a.length),d=S.getSliceSize(c,i,a.length),h=[],f=he({inputs:{x:r},backend:n,attrs:{shape:u}}),m=qt({inputs:{x:f},backend:n,attrs:{perm:l}}),g=he({inputs:{x:m},backend:n,attrs:{shape:c}}),b=lu({inputs:{x:g},backend:n,attrs:{begin:p,size:d}});return h.push(f),h.push(m),h.push(g),h.forEach(y=>n.disposeIntermediateTensorInfo(y)),b},_Y={kernelName:lo,backendName:"webgl",kernelFunc:$Y};function AY(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,weights:a}=t,{size:i}=s,o=n.readSync(r.dataId),u=n.readSync(a.dataId),l=z1(o,u,a.dtype,a.shape,i);return n.makeTensorInfo([i],a.dtype,l)}var EY={kernelName:cg,backendName:"webgl",kernelFunc:AY};function RY(e){let{inputs:t,backend:n}=e,{s0:s,s1:r}=t,a=n.readSync(s.dataId),i=n.readSync(r.dataId),o=S.assertAndGetBroadcastShape(Array.from(a),Array.from(i));return n.makeTensorInfo([o.length],"int32",Int32Array.from(o))}var DY={kernelName:dg,backendName:"webgl",kernelFunc:RY},FY="return float(a != b);",e2=jt({opSnippet:FY,cpuKernelImpl:dX,dtype:"bool"}),OY={kernelName:No,backendName:"webgl",kernelFunc:e2};function Jl(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.texData.get(s.dataId);return kn({inputs:{x:r.complexTensorInfos.real},backend:n})}var PY={kernelName:rp,backendName:"webgl",kernelFunc:Jl},zY="return float(int(x));";function MY(e,t){let n=new Hs(e.shape,zY),s=t.runWebGLProgram(n,[e],"int32");return{dataId:s.dataId,shape:s.shape,dtype:s.dtype}}function jm(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dtype:a}=s;if(a==="complex64"){if(r.dtype==="complex64")return kn({inputs:{x:r},backend:n});let i=$t(r.shape),o=jm({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),u=Dr({inputs:{real:o,imag:i},backend:n});return i.dispose(),n.disposeIntermediateTensorInfo(o),u}if(r.dtype==="complex64"){let i=Jl({inputs:{input:r},backend:n}),o=jm({inputs:{x:i},backend:n,attrs:{dtype:a}});return n.disposeIntermediateTensorInfo(i),o}if(!w.hasEncodingLoss(r.dtype,a)){let i=kn({inputs:{x:r},backend:n});return{dataId:i.dataId,shape:i.shape,dtype:a}}if(a==="int32")return MY(r,n);if(a==="bool"){let i=n.makeTensorInfo([],"bool",w.getTypedArrayFromDType("bool",1)),u=e2({inputs:{a:r,b:i},backend:n});return n.disposeIntermediateTensorInfo(i),u}throw new Error(`Error in Cast: failed to cast ${r.dtype} to ${a}`)}var LY={kernelName:Ta,backendName:"webgl",kernelFunc:jm},gw="return ceil(x);",BY=Ke({opSnippet:gw,packedOpSnippet:gw,cpuKernelImpl:qK}),VY={kernelName:$a,backendName:"webgl",kernelFunc:BY},WY=class{constructor(e){this.variableNames=["A"],this.customUniforms=[{name:"minVal",type:"float"},{name:"maxVal",type:"float"}],this.outputShape=e,this.userCode=`
|
|
|
|
void main() {
|
|
float value = getAAtOutCoords();
|
|
if (isnan(value)) {
|
|
setOutput(value);
|
|
return;
|
|
}
|
|
|
|
setOutput(clamp(value, minVal, maxVal));
|
|
}
|
|
`}},UY=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"minVal",type:"float"},{name:"maxVal",type:"float"}],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
vec4 value = getAAtOutCoords();
|
|
|
|
if (any(isnan(value))) {
|
|
setOutput(value);
|
|
return;
|
|
}
|
|
|
|
setOutput(clamp(value, vec4(minVal), vec4(maxVal)));
|
|
}
|
|
`}};function GY(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{clipValueMin:a,clipValueMax:i}=s,o;X().getBool("WEBGL_PACK_CLIP")?o=new UY(r.shape):o=new WY(r.shape);let u=[[a],[i]];return n.runWebGLProgram(o,[r],r.dtype,u)}var HY={kernelName:Cr,backendName:"webgl",kernelFunc:GY},qY=class{constructor(e){this.variableNames=["real","imag"],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
float re = abs(getRealAtOutCoords());
|
|
float im = abs(getImagAtOutCoords());
|
|
float mx = max(re, im);
|
|
|
|
// sadly the length function in glsl is not underflow-safe
|
|
// (at least not on Intel GPUs). So the safe solution is
|
|
// to ensure underflow-safety in all cases.
|
|
setOutput(
|
|
mx == 0.0 ? 0.0 : mx * length(vec2(1, min(re, im)/mx))
|
|
);
|
|
}
|
|
`}};function bw(e,t){return{dataId:t.dataId,dtype:t.dtype,shape:e.shape}}function jY(e){let{inputs:t,backend:n}=e,{x:s}=t,r=n.texData.get(s.dataId),a=new qY(s.shape),i=[bw(s,r.complexTensorInfos.real),bw(s,r.complexTensorInfos.imag)];return n.runWebGLProgram(a,i,i[0].dtype)}var KY={kernelName:Yd,backendName:"webgl",kernelFunc:jY},XY=class{constructor(e){this.outputShape=[],this.outputShape=S.computeOutShape(e,1),this.variableNames=e.map((a,i)=>`T${i}`);let t=new Array(e.length-1);t[0]=e[0][1];for(let a=1;a<t.length;a++)t[a]=t[a-1]+e[a][1];let n=[`if (yC < ${t[0]}) setOutput(getT0(yR, yC));`];for(let a=1;a<t.length;a++){let i=t[a-1];n.push(`else if (yC < ${t[a]}) setOutput(getT${a}(yR, yC-${i}));`)}let s=t.length,r=t[t.length-1];n.push(`else setOutput(getT${s}(yR, yC-${r}));`),this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int yR = coords.x;
|
|
int yC = coords.y;
|
|
|
|
${n.join(`
|
|
`)}
|
|
}
|
|
`}},YY=class{constructor(e,t){this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[],this.outputShape=S.computeOutShape(e,t);let n=this.outputShape,s=n.length,r=rt(s),a=ln("coords",s),i=["x","y","z","w","u","v"].slice(0,s);this.variableNames=e.map((f,m)=>`T${m}`);let o=new Array(e.length-1);o[0]=e[0][t];for(let f=1;f<o.length;f++)o[f]=o[f-1]+e[f][t];let u=i[t],l=i.slice(-2),c=i.join(),p=`if (${u} < ${o[0]}) {
|
|
return getChannel(
|
|
getT0(${c}), vec2(${l.join()}));
|
|
}`;for(let f=1;f<o.length;f++){let m=o[f-1];p+=`
|
|
if (${u} < ${o[f]} && ${u} >= ${o[f-1]}) {
|
|
return getChannel(
|
|
getT${f}(${Jc(i,u,m)}),
|
|
vec2(${Jc(l,u,m)}));
|
|
}`}let d=o.length,h=o[o.length-1];p+=`
|
|
return getChannel(
|
|
getT${d}(${Jc(i,u,h)}),
|
|
vec2(${Jc(l,u,h)}));`,this.userCode=`
|
|
float getValue(${i.map(f=>"int "+f)}) {
|
|
${p}
|
|
}
|
|
|
|
void main() {
|
|
${r} coords = getOutputCoords();
|
|
vec4 result = vec4(getValue(${a}), 0., 0., 0.);
|
|
|
|
${a[s-1]} = ${a[s-1]} + 1;
|
|
if (${a[s-1]} < ${n[s-1]}) {
|
|
result.g = getValue(${a});
|
|
}
|
|
|
|
${a[s-2]} = ${a[s-2]} + 1;
|
|
if (${a[s-2]} < ${n[s-2]}) {
|
|
result.a = getValue(${a});
|
|
}
|
|
|
|
${a[s-1]} = ${a[s-1]} - 1;
|
|
if (${a[s-2]} < ${n[s-2]} &&
|
|
${a[s-1]} < ${n[s-1]}) {
|
|
result.b = getValue(${a});
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}};function Jc(e,t,n){let s=e.indexOf(t);return e.map((a,i)=>i===s?`${a} - ${n}`:a).join()}function Jp(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.texData.get(s.dataId);return kn({inputs:{x:r.complexTensorInfos.imag},backend:n})}var QY={kernelName:ep,backendName:"webgl",kernelFunc:Jp};function qi(e,t,n){let s=e[0].dtype;if(s==="complex64"){let c=e.map(m=>Jl({inputs:{input:m},backend:n})),p=e.map(m=>Jp({inputs:{input:m},backend:n})),d=qi(c,t,n),h=qi(p,t,n),f=Dr({inputs:{real:d,imag:h},backend:n});return c.forEach(m=>n.disposeIntermediateTensorInfo(m)),p.forEach(m=>n.disposeIntermediateTensorInfo(m)),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(h),f}let r=n.shouldExecuteOnCPU(e);if(s==="string"&&(r=!0),r){let c=e.map(b=>{let y=w.sizeFromShape(b.shape.slice(t));return he({inputs:{x:b},backend:n,attrs:{shape:[-1,y]}})}),p=c.map(b=>({vals:n.readSync(b.dataId),shape:b.shape})),d=S.computeOutShape(c.map(b=>b.shape),1),h=c[0].shape[0]===1,f=jK(p,d,s,h),m=S.computeOutShape(e.map(b=>b.shape),t),g=n.makeTensorInfo(m,s,f);return c.forEach(b=>n.disposeIntermediateTensorInfo(b)),g}if(e.length>X().getNumber("WEBGL_MAX_TEXTURES_IN_SHADER")){let c=Math.floor(e.length/2),p=qi(e.slice(0,c),t,n),d=qi(e.slice(c),t,n),h=qi([p,d],t,n);return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(d),h}if(X().getBool("WEBGL_PACK_ARRAY_OPERATIONS")&&e[0].shape.length>1){let c=new YY(e.map(p=>p.shape),t);return n.runWebGLProgram(c,e,s)}let{tensors2D:a,outShape:i}=ZY(e,t,n),o=new XY(a.map(c=>c.shape)),u=n.runWebGLProgram(o,a,s);a.forEach(c=>n.disposeIntermediateTensorInfo(c));let l=he({inputs:{x:u},attrs:{shape:i},backend:n});return n.disposeIntermediateTensorInfo(u),l}function ZY(e,t,n){let s=S.computeOutShape(e.map(a=>a.shape),t);return{tensors2D:e.map(a=>he({inputs:{x:a},attrs:{shape:[-1,w.sizeFromShape(a.shape.slice(t))]},backend:n})),outShape:s}}function t2(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s,a=w.parseAxisParam(r,t[0].shape)[0],i=S.computeOutShape(t.map(l=>l.shape),a);if(w.sizeFromShape(i)===0)return n.makeTensorInfo(i,t[0].dtype,[]);let o=t.filter(l=>w.sizeFromShape(l.shape)>0);if(o.length===1)return kn({inputs:{x:o[0]},backend:n});let u=o.map(l=>l.shape);return S.assertParamsConsistent(u,a),qi(o,a,n)}var JY={kernelName:co,backendName:"webgl",kernelFunc:t2},n2=class{constructor(e,t=!1,n=null,s=!1,r=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let a=e.padInfo.top,i=e.padInfo.left,o=e.strideHeight,u=e.strideWidth,l=e.dilationHeight,c=e.dilationWidth,p=e.filterHeight,d=e.filterWidth,h=Math.floor(e.inChannels/4)*4,f=e.inChannels%4,m=e.dataFormat==="channelsLast",g=m?1:2,b=m?2:3,y=m?3:1,v="",x="";n&&(s?v=`float activation(float a) {
|
|
float b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:r?v=`float activation(float a) {
|
|
float b = getLeakyreluAlphaAtOutCoords();
|
|
${n}
|
|
}`:v=`
|
|
float activation(float x) {
|
|
${n}
|
|
}
|
|
`,x="result = activation(result);");let k=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${v}
|
|
|
|
const ivec2 strides = ivec2(${o}, ${u});
|
|
const ivec2 pads = ivec2(${a}, ${i});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d2 = coords[${y}];
|
|
|
|
ivec2 xRCCorner =
|
|
ivec2(coords[${g}], coords[${b}]) * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// Convolve x(?, ?, d1) with w(:, :, d1, d2) to get y(yR, yC, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${p}; wR++) {
|
|
int xR = xRCorner + wR * ${l};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${d}; wC++) {
|
|
int xC = xCCorner + wC * ${c};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int d1 = 0; d1 < ${h}; d1 += 4) {
|
|
vec4 wValues = vec4(
|
|
getW(wR, wC, d1, d2),
|
|
getW(wR, wC, d1 + 1, d2),
|
|
getW(wR, wC, d1 + 2, d2),
|
|
getW(wR, wC, d1 + 3, d2)
|
|
);
|
|
|
|
if (${m}) {
|
|
vec4 xValues = vec4(
|
|
getX(batch, xR, xC, d1),
|
|
getX(batch, xR, xC, d1 + 1),
|
|
getX(batch, xR, xC, d1 + 2),
|
|
getX(batch, xR, xC, d1 + 3)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec4 xValues = vec4(
|
|
getX(batch, d1, xR, xC),
|
|
getX(batch, d1 + 1, xR, xC),
|
|
getX(batch, d1 + 2, xR, xC),
|
|
getX(batch, d1 + 3, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
}
|
|
|
|
if (${f===1}) {
|
|
|
|
if (${m}) {
|
|
dotProd +=
|
|
getX(batch, xR, xC, ${h}) *
|
|
getW(wR, wC, ${h}, d2);
|
|
} else {
|
|
dotProd +=
|
|
getX(batch, ${h}, xR, xC) *
|
|
getW(wR, wC, ${h}, d2);
|
|
}
|
|
|
|
} else if (${f===2}) {
|
|
vec2 wValues = vec2(
|
|
getW(wR, wC, ${h}, d2),
|
|
getW(wR, wC, ${h} + 1, d2)
|
|
);
|
|
|
|
if (${m}) {
|
|
vec2 xValues = vec2(
|
|
getX(batch, xR, xC, ${h}),
|
|
getX(batch, xR, xC, ${h} + 1)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec2 xValues = vec2(
|
|
getX(batch, ${h}, xR, xC),
|
|
getX(batch, ${h} + 1, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
} else if (${f===3}) {
|
|
vec3 wValues = vec3(
|
|
getW(wR, wC, ${h}, d2),
|
|
getW(wR, wC, ${h} + 1, d2),
|
|
getW(wR, wC, ${h} + 2, d2)
|
|
);
|
|
|
|
if (${m}) {
|
|
vec3 xValues = vec3(
|
|
getX(batch, xR, xC, ${h}),
|
|
getX(batch, xR, xC, ${h} + 1),
|
|
getX(batch, xR, xC, ${h} + 2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec3 xValues = vec3(
|
|
getX(batch, ${h}, xR, xC),
|
|
getX(batch, ${h} + 1, xR, xC),
|
|
getX(batch, ${h} + 2, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
|
|
float result = dotProd;
|
|
${k}
|
|
${x}
|
|
setOutput(result);
|
|
}
|
|
`}},e9=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let t=e.padInfo.front,n=e.padInfo.top,s=e.padInfo.left,r=e.strideDepth,a=e.strideHeight,i=e.strideWidth,o=e.dilationDepth,u=e.dilationHeight,l=e.dilationWidth,c=e.filterDepth,p=e.filterHeight,d=e.filterWidth,h=Math.floor(e.inChannels/4)*4,f=e.inChannels%4;this.userCode=`
|
|
const ivec3 strides = ivec3(${r}, ${a}, ${i});
|
|
const ivec3 pads = ivec3(${t}, ${n}, ${s});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d2 = coords.u;
|
|
|
|
ivec3 xFRCCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xFCorner = xFRCCorner.x;
|
|
int xRCorner = xFRCCorner.y;
|
|
int xCCorner = xFRCCorner.z;
|
|
|
|
// Convolve x(?, ?, ?, d1) with w(:, :, :, d1, d2) to get
|
|
// y(yF, yR, yC, d2). ? = to be determined. : = across all
|
|
// values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wF = 0; wF < ${c}; wF++) {
|
|
int xF = xFCorner + wF * ${o};
|
|
|
|
if (xF < 0 || xF >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${p}; wR++) {
|
|
int xR = xRCorner + wR * ${u};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${d}; wC++) {
|
|
int xC = xCCorner + wC * ${l};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int d1 = 0; d1 < ${h}; d1 += 4) {
|
|
vec4 xValues = vec4(
|
|
getX(batch, xF, xR, xC, d1),
|
|
getX(batch, xF, xR, xC, d1 + 1),
|
|
getX(batch, xF, xR, xC, d1 + 2),
|
|
getX(batch, xF, xR, xC, d1 + 3)
|
|
);
|
|
vec4 wValues = vec4(
|
|
getW(wF, wR, wC, d1, d2),
|
|
getW(wF, wR, wC, d1 + 1, d2),
|
|
getW(wF, wR, wC, d1 + 2, d2),
|
|
getW(wF, wR, wC, d1 + 3, d2)
|
|
);
|
|
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
if (${f===1}) {
|
|
dotProd +=
|
|
getX(batch, xF, xR, xC, ${h}) *
|
|
getW(wF, wR, wC, ${h}, d2);
|
|
} else if (${f===2}) {
|
|
vec2 xValues = vec2(
|
|
getX(batch, xF, xR, xC, ${h}),
|
|
getX(batch, xF, xR, xC, ${h} + 1)
|
|
);
|
|
vec2 wValues = vec2(
|
|
getW(wF, wR, wC, ${h}, d2),
|
|
getW(wF, wR, wC, ${h} + 1, d2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else if (${f===3}) {
|
|
vec3 xValues = vec3(
|
|
getX(batch, xF, xR, xC, ${h}),
|
|
getX(batch, xF, xR, xC, ${h} + 1),
|
|
getX(batch, xF, xR, xC, ${h} + 2)
|
|
);
|
|
vec3 wValues = vec3(
|
|
getW(wF, wR, wC, ${h}, d2),
|
|
getW(wF, wR, wC, ${h} + 1, d2),
|
|
getW(wF, wR, wC, ${h} + 2, d2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},t9=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"inputShape",type:"ivec3"},{name:"pad",type:"ivec2"},{name:"stride",type:"ivec2"},{name:"dilation",type:"ivec2"},{name:"inChannels",type:"int"},{name:"itemsPerBlockRow",type:"int"},{name:"outWidth",type:"int"}],this.outputShape=e,this.enableShapeUniforms=Sn(this.outputShape.length);let{dataFormat:n}=t,s=fn(),r=n==="channelsLast",a=r?0:1,i=r?1:2,o=this.enableShapeUniforms?"if(blockIndex < outShape[1] && pos < outShape[0]) {":`if(blockIndex < ${e[1]} && pos < ${e[0]}) {`,u="";for(let l=0;l<=1;l++)for(let c=0;c<=1;c++)u+=`
|
|
blockIndex = rc.y + ${c};
|
|
pos = rc.x + ${l};
|
|
|
|
${o}
|
|
offsetY = int(blockIndex / outWidth) * stride[0] - pad[0];
|
|
d0 = offsetY + dilation[0] * (pos / itemsPerBlockRow);
|
|
|
|
if(d0 < inputShape[${a}] && d0 >= 0) {
|
|
// Use custom imod instead mod. On Intel GPU, mod may generate
|
|
// unexpected value.
|
|
// https://github.com/tensorflow/tfjs/issues/5447
|
|
offsetX = imod(blockIndex, outWidth) * stride[1] - pad[1];
|
|
d1 = offsetX + dilation[1] * (imod(pos, itemsPerBlockRow) /
|
|
inChannels);
|
|
|
|
if(d1 < inputShape[${i}] && d1 >= 0) {
|
|
|
|
ch = imod(pos, inChannels);
|
|
|
|
if (${r}) {
|
|
innerDims = vec2(d1, ch);
|
|
result[${l*2+c}] = getChannel(
|
|
getA(d0, int(innerDims.x),
|
|
int(innerDims.y)), innerDims);
|
|
} else {
|
|
innerDims = vec2(d0, d1);
|
|
result[${l*2+c}] = getChannel(
|
|
getA(ch, int(innerDims.x),
|
|
int(innerDims.y)), innerDims);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
`;this.userCode=`
|
|
void main() {
|
|
ivec2 rc = getOutputCoords();
|
|
|
|
vec4 result = vec4(0);
|
|
|
|
int blockIndex, pos, offsetY, d0, offsetX, d1, ch;
|
|
vec2 innerDims;
|
|
|
|
${u}
|
|
|
|
${s.output} = result;
|
|
}
|
|
`}};function s2({x:e,filter:t,convInfo:n,backend:s,bias:r=null,preluActivationWeights:a=null,leakyreluAlpha:i=0,activation:o=null}){let u=e.shape,l=s.texData.get(e.dataId),c=n.inChannels,p=u[0]*u[1]*u[2],d=n.outChannels,h=n.dataFormat==="channelsLast",f=!1,m=!1,g,b=[];if(!((p===1||d===1)&&c>Y1)&&l.isPacked&&h&&l.texture!=null&&u[2]%2!==0&&w.arraysEqual(l.shape.slice(-3),u.slice(-3))){let x=u[0]*u[1]*(u[2]+1),k={dataId:e.dataId,shape:[1,x,n.inChannels],dtype:e.dtype},T=l.shape;l.shape=l.shape.slice(),l.shape[l.shape.length-2]++,w.assert(tl(l.shape,k.shape),()=>`packed reshape ${l.shape} to ${k.shape} isn't free`);let N=he({inputs:{x:t},backend:s,attrs:{shape:[1,n.inChannels,n.outChannels]}});b.push(N);let E=Ld({a:k,b:N,backend:s,transposeA:f,transposeB:m,bias:r,activation:o,preluActivationWeights:a,leakyreluAlpha:i}),A=s.texData.get(E.dataId);w.assert(A.isPacked,()=>"batchMatMul result is expected to be packed"),l.shape=T,A.shape=n.outShape,g=kn({inputs:{x:E},backend:s}),g.shape=n.outShape,b.push(E)}else{let x=h?u[0]*u[1]*u[2]:u[0]*u[2]*u[3],k=he({inputs:{x:e},backend:s,attrs:{shape:[1,x,n.inChannels]}}),T=he({inputs:{x:t},backend:s,attrs:{shape:[1,n.inChannels,n.outChannels]}}),N=Ld({a:k,b:T,transposeA:f,transposeB:m,backend:s,bias:r,activation:o,preluActivationWeights:a,leakyreluAlpha:i});g=he({inputs:{x:N},backend:s,attrs:{shape:n.outShape}}),b.push(k),b.push(T),b.push(N)}for(let x of b)s.disposeIntermediateTensorInfo(x);return g}function r2({x:e,filter:t,convInfo:n,backend:s,bias:r=null,preluActivationWeights:a=null,leakyreluAlpha:i=0,activation:o=null}){let{filterWidth:u,filterHeight:l,inChannels:c,outWidth:p,outHeight:d,dataFormat:h}=n,f=h==="channelsLast",m=u*l*c,g=d*p,b=[m,g],y=!0,v=!1,x=[],k=he({inputs:{x:e},backend:s,attrs:{shape:e.shape.slice(1)}}),T=he({inputs:{x:t},backend:s,attrs:{shape:[1,m,w.sizeFromShape(t.shape)/m]}});x.push(k),x.push(T);let N=new t9(b,n),E=[k.shape,[n.padInfo.top,n.padInfo.left],[n.strideHeight,n.strideWidth],[n.dilationHeight,n.dilationWidth],[n.inChannels],[n.filterWidth*n.inChannels],[n.outWidth]],A=s.runWebGLProgram(N,[k],"float32",E),P=he({inputs:{x:A},backend:s,attrs:{shape:[1,b[0],b[1]]}});x.push(A),x.push(P);let R=r!=null,F=a!=null,$=o==="leakyrelu",z=o?Yp(o,!0):null,W=new X1(P.shape,T.shape,[1,g,n.outChannels],y,v,R,z,F,$),q=[P,T];if(r&&q.push(r),F&&q.push(a),$){let te=s.makeTensorInfo([],"float32",w.createScalarValue(i,"float32"));q.push(te),x.push(te)}let K=s.runWebGLProgram(W,q,"float32"),Y=f?[1,d,p,n.outChannels]:[1,n.outChannels,d,p],Z=he({inputs:{x:K},backend:s,attrs:{shape:Y}});x.push(K);for(let te of x)s.disposeIntermediateTensorInfo(te);return Z}function n9(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:i,pad:o,dataFormat:u,dilations:l,dimRoundingMode:c}=s,p=S.convertConv2DDataFormat(u),d=S.computeConv2DInfo(r.shape,a.shape,i,l,o,c,!1,p),h;if(d.filterHeight===1&&d.filterWidth===1&&d.dilationHeight===1&&d.dilationWidth===1&&d.strideHeight===1&&d.strideWidth===1&&(d.padInfo.type==="SAME"||d.padInfo.type==="VALID"))h=s2({x:r,filter:a,convInfo:d,backend:n});else if(X().getBool("WEBGL_CONV_IM2COL")&&r.shape[0]===1)h=r2({x:r,filter:a,convInfo:d,backend:n});else{let m=new n2(d);h=n.runWebGLProgram(m,[r,a],"float32")}let f=he({inputs:{x:h},backend:n,attrs:{shape:d.outShape}});return n.disposeIntermediateTensorInfo(h),f}var s9={kernelName:_a,backendName:"webgl",kernelFunc:n9},r9=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,s=e.padInfo.top,r=e.padInfo.left,a=e.dataFormat==="channelsLast";this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int wR = coords.x;
|
|
int wC = coords.y;
|
|
int d1 = coords.z;
|
|
int d2 = coords.w;
|
|
|
|
// Convolve x(?, ?, d1) with dy(:, :, d2) to get dw(wR, wC, d1, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${t} - ${s};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${n} - ${r};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
if (${a}) {
|
|
float dyValue = getDy(b, yR, yC, d2);
|
|
float xValue = getX(b, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
} else {
|
|
float dyValue = getDy(b, d2, yR, yC);
|
|
float xValue = getX(b, d1, xR, xC);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},a9=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,s=e.strideHeight,r=e.strideWidth,a=e.dataFormat==="channelsLast",i=t-1-e.padInfo.top,o=n-1-e.padInfo.left,u=a?1:2,l=a?2:3,c=a?3:1;this.userCode=`
|
|
const ivec2 pads = ivec2(${i}, ${o});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d1 = coords[${c}];
|
|
|
|
ivec2 dyCorner = ivec2(coords[${u}], coords[${l}]) - pads;
|
|
int dyRCorner = dyCorner.x;
|
|
int dyCCorner = dyCorner.y;
|
|
|
|
// Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${t}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${s}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${t} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${n}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${r}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${n} - 1 - wC;
|
|
|
|
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
|
|
|
|
if (${a}) {
|
|
float xValue = getDy(batch, idyR, idyC, d2);
|
|
float wValue = getW(wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
} else {
|
|
float xValue = getDy(batch, d2, idyR, idyC);
|
|
float wValue = getW(wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},i9=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideDepth,n=e.strideHeight,s=e.strideWidth,r=e.padInfo.front,a=e.padInfo.top,i=e.padInfo.left;this.userCode=`
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int wF = coords.x;
|
|
int wR = coords.y;
|
|
int wC = coords.z;
|
|
int d1 = coords.w;
|
|
int d2 = coords.u;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yF = 0; yF < ${e.outDepth}; yF++) {
|
|
int xF = wF + yF * ${t} - ${r};
|
|
|
|
if (xF < 0 || xF >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${n} - ${a};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${s} - ${i};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float dyValue = getDy(b, yF, yR, yC, d2);
|
|
float xValue = getX(b, xF, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},o9=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,s=e.filterWidth,r=e.strideDepth,a=e.strideHeight,i=e.strideWidth,o=t-1-e.padInfo.front,u=n-1-e.padInfo.top,l=s-1-e.padInfo.left;this.userCode=`
|
|
const ivec3 pads = ivec3(${o}, ${u}, ${l});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d1 = coords.u;
|
|
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyFCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
float dotProd = 0.0;
|
|
for (int wF = 0; wF < ${t}; wF++) {
|
|
float dyF = float(dyFCorner + wF) / ${r}.0;
|
|
|
|
if (dyF < 0.0 || dyF >= ${e.outDepth}.0 || fract(dyF) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyF = int(dyF);
|
|
|
|
int wFPerm = ${t} - 1 - wF;
|
|
|
|
for (int wR = 0; wR < ${n}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${a}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${n} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${s}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${i}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${s} - 1 - wC;
|
|
|
|
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
|
|
float xValue = getDy(batch, idyF, idyR, idyC, d2);
|
|
float wValue = getW(wFPerm, wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function u9(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:i,pad:o,dataFormat:u,dimRoundingMode:l,filterShape:c}=s,p=S.convertConv2DDataFormat(u),d=S.computeConv2DInfo(r.shape,c,i,1,o,l,!1,p),h=new r9(d);return n.runWebGLProgram(h,[r,a],"float32")}var l9={kernelName:pg,backendName:"webgl",kernelFunc:u9};function c9(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{inputShape:i,strides:o,pad:u,dataFormat:l,dimRoundingMode:c}=s,p=S.convertConv2DDataFormat(l),d=S.computeConv2DInfo(i,a.shape,o,1,u,c,!1,p),h=new a9(d);return n.runWebGLProgram(h,[r,a],"float32")}var d9={kernelName:Aa,backendName:"webgl",kernelFunc:c9};function p9(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:i,pad:o,dilations:u}=s,l=S.computeConv3DInfo(r.shape,a.shape,i,u,o),c=new e9(l);return n.runWebGLProgram(c,[r,a],"float32")}var h9={kernelName:Qd,backendName:"webgl",kernelFunc:p9};function f9(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:i,pad:o,filterShape:u}=s,l=S.computeConv3DInfo(r.shape,u,i,1,o),c=new i9(l);return n.runWebGLProgram(c,[r,a],"float32")}var m9={kernelName:hg,backendName:"webgl",kernelFunc:f9};function g9(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{pad:i,strides:o,inputShape:u}=s,l=S.computeConv3DInfo(u,a.shape,o,1,i),c=new o9(l);return n.runWebGLProgram(c,[r,a],"float32")}var b9={kernelName:fg,backendName:"webgl",kernelFunc:g9},y9=uu+`
|
|
return cos(x);
|
|
`,v9=Ke({opSnippet:y9}),x9={kernelName:Ea,backendName:"webgl",kernelFunc:v9},w9=`
|
|
float e2x = exp(-x);
|
|
return (e2x + 1.0 / e2x) / 2.0;
|
|
`,k9=Ke({opSnippet:w9}),I9={kernelName:Ra,backendName:"webgl",kernelFunc:k9},S9=class{constructor(e,t,n,s,r){this.variableNames=["Image","Boxes","BoxInd"],this.outputShape=[];let[a,i,o,u]=e,[l]=t,[c,p]=n;this.outputShape=[l,c,p,u];let d=s==="bilinear"?1:0,[h,f]=[`${i-1}.0`,`${o-1}.0`],[m,g,b]=c>1?[`${(i-1)/(c-1)}`,"(y2-y1) * height_ratio",`y1*${h} + float(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${h}`],[y,v,x]=p>1?[`${(o-1)/(p-1)}`,"(x2-x1) * width_ratio",`x1*${f} + float(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${f}`];this.userCode=`
|
|
const float height_ratio = float(${m});
|
|
const float width_ratio = float(${y});
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int y = coords[1];
|
|
int x = coords[2];
|
|
int d = coords[3];
|
|
|
|
// get box vals
|
|
float y1 = getBoxes(b,0);
|
|
float x1 = getBoxes(b,1);
|
|
float y2 = getBoxes(b,2);
|
|
float x2 = getBoxes(b,3);
|
|
|
|
// get image in batch index
|
|
int bInd = round(getBoxInd(b));
|
|
if(bInd < 0 || bInd >= ${a}) {
|
|
return;
|
|
}
|
|
|
|
float height_scale = ${g};
|
|
float width_scale = ${v};
|
|
|
|
float in_y = ${b};
|
|
if( in_y < 0.0 || in_y > ${h} ) {
|
|
setOutput(float(${r}));
|
|
return;
|
|
}
|
|
float in_x = ${x};
|
|
if( in_x < 0.0 || in_x > ${f} ) {
|
|
setOutput(float(${r}));
|
|
return;
|
|
}
|
|
|
|
vec2 sourceFracIndexCR = vec2(in_x,in_y);
|
|
if(${d} == 1) {
|
|
// Compute the four integer indices.
|
|
ivec2 sourceFloorCR = ivec2(sourceFracIndexCR);
|
|
ivec2 sourceCeilCR = ivec2(ceil(sourceFracIndexCR));
|
|
|
|
float topLeft = getImage(b, sourceFloorCR.y, sourceFloorCR.x, d);
|
|
float bottomLeft = getImage(b, sourceCeilCR.y, sourceFloorCR.x, d);
|
|
float topRight = getImage(b, sourceFloorCR.y, sourceCeilCR.x, d);
|
|
float bottomRight = getImage(b, sourceCeilCR.y, sourceCeilCR.x, d);
|
|
|
|
vec2 fracCR = sourceFracIndexCR - vec2(sourceFloorCR);
|
|
|
|
float top = topLeft + (topRight - topLeft) * fracCR.x;
|
|
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracCR.x;
|
|
float newValue = top + (bottom - top) * fracCR.y;
|
|
setOutput(newValue);
|
|
} else {
|
|
// Compute the coordinators of nearest neighbor point.
|
|
ivec2 sourceNearestCR = ivec2(floor(
|
|
sourceFracIndexCR + vec2(0.5,0.5)));
|
|
float newValue = getImage(b, sourceNearestCR.y, sourceNearestCR.x, d);
|
|
setOutput(newValue);
|
|
}
|
|
}
|
|
`}},C9=e=>{let{inputs:t,backend:n,attrs:s}=e,{image:r,boxes:a,boxInd:i}=t,{cropSize:o,method:u,extrapolationValue:l}=s,c=new S9(r.shape,a.shape,o,u,l);return n.runWebGLProgram(c,[r,a,i],"float32")},N9={kernelName:ho,backendName:"webgl",kernelFunc:C9},yw=class{constructor(e,t,n){this.variableNames=["x"],this.customUniforms=[{name:"index",type:"float"}],this.outputShape=e;let s=e.length,r=t?"1.0":`getX(${vw(s,"coords")})`,a=e[e.length-1],i="",o="";t?(i=n?`end != ${a-1}`:"end != 0",o=n?"end + 1":"end - 1"):(i=n?`end + pow2 < ${a}`:"end >= pow2",o=n?"end + pow2":"end - pow2"),this.userCode=`
|
|
void main() {
|
|
${rt(s)} coords = getOutputCoords();
|
|
int end = ${xw(s,"coords")};
|
|
float val = ${r};
|
|
int pow2 = int(pow(2.0, index));
|
|
if (${i}) {
|
|
int idx = ${o};
|
|
${xw(s,"coords")} = idx;
|
|
val *= getX(${vw(s,"coords")});
|
|
}
|
|
setOutput(val);
|
|
}
|
|
`}};function vw(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.x, ${t}.y`;if(e===3)return`${t}.x, ${t}.y, ${t}.z`;if(e===4)return`${t}.x, ${t}.y, ${t}.z, ${t}.w`;throw Error(`Cumulative product for rank ${e} is not yet supported`)}function xw(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.y`;if(e===3)return`${t}.z`;if(e===4)return`${t}.w`;throw Error(`Cumulative product for rank ${e} is not yet supported`)}function T9(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,exclusive:i,reverse:o}=s,u=r.shape.length,l=S.getAxesPermutation([a],u),c=r;l!=null&&(c=qt({inputs:{x:r},backend:n,attrs:{perm:l}}));let p=S.getInnerMostAxes(1,u)[0];if(p!==u-1)throw new Error(`WebGL cumprod shader expects an inner-most axis=${r.shape.length-1} but got axis=${a}`);let d=c.shape[p],h=kn({inputs:{x:c},backend:n});for(let f=0;f<=Math.ceil(Math.log2(d))-1;f++){let m=new yw(c.shape,!1,o),g=[[f]],b=h;h=n.runWebGLProgram(m,[h],h.dtype,g),n.disposeIntermediateTensorInfo(b)}if(i){let f=new yw(c.shape,i,o),m=h;h=n.runWebGLProgram(f,[h],h.dtype),n.disposeIntermediateTensorInfo(m)}if(l!=null){let f=S.getUndoAxesPermutation(l),m=qt({inputs:{x:h},backend:n,attrs:{perm:f}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(c),m}return h}var $9={kernelName:po,backendName:"webgl",kernelFunc:T9},ww=class{constructor(e,t,n){this.variableNames=["x"],this.customUniforms=[{name:"index",type:"float"}],this.outputShape=e;let s=e.length,r=t?"0.0":`getX(${kw(s,"coords")})`,a=e[e.length-1],i="",o="";t?(i=n?`end != ${a-1}`:"end != 0",o=n?"end + 1":"end - 1"):(i=n?`end + pow2 < ${a}`:"end >= pow2",o=n?"end + pow2":"end - pow2"),this.userCode=`
|
|
void main() {
|
|
${rt(s)} coords = getOutputCoords();
|
|
int end = ${Iw(s,"coords")};
|
|
float val = ${r};
|
|
int pow2 = int(pow(2.0, index));
|
|
if (${i}) {
|
|
int idx = ${o};
|
|
${Iw(s,"coords")} = idx;
|
|
val += getX(${kw(s,"coords")});
|
|
}
|
|
setOutput(val);
|
|
}
|
|
`}};function kw(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.x, ${t}.y`;if(e===3)return`${t}.x, ${t}.y, ${t}.z`;if(e===4)return`${t}.x, ${t}.y, ${t}.z, ${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function Iw(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.y`;if(e===3)return`${t}.z`;if(e===4)return`${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function _9(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,exclusive:i,reverse:o}=s,u=r.shape.length,l=S.getAxesPermutation([a],u),c=r;l!=null&&(c=qt({inputs:{x:r},backend:n,attrs:{perm:l}}));let p=S.getInnerMostAxes(1,u)[0];if(p!==u-1)throw new Error(`WebGL cumsum shader expects an inner-most axis=${r.shape.length-1} but got axis=${a}`);let d=c.shape[p],h=kn({inputs:{x:c},backend:n});for(let f=0;f<=Math.ceil(Math.log2(d))-1;f++){let m=new ww(c.shape,!1,o),g=[[f]],b=h;h=n.runWebGLProgram(m,[h],h.dtype,g),n.disposeIntermediateTensorInfo(b)}if(i){let f=new ww(c.shape,i,o),m=h;h=n.runWebGLProgram(f,[h],h.dtype),n.disposeIntermediateTensorInfo(m)}if(l!=null){let f=S.getUndoAxesPermutation(l),m=qt({inputs:{x:h},backend:n,attrs:{perm:f}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(c),m}return h}var A9={kernelName:Da,backendName:"webgl",kernelFunc:_9};function E9(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,weights:a}=t,{size:i,binaryOutput:o}=s;if(r.shape.length===1){let u=n.readSync(r.dataId),l=n.readSync(a.dataId),c=z1(u,l,a.dtype,a.shape,i);return n.makeTensorInfo([i],a.dtype,c)}else if(r.shape.length===2){let u=n.bufferSync(r),l=n.bufferSync(a),c=HK(u,l,i,o);return n.makeTensorInfo(c.shape,a.dtype,c.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${r.shape.length}.`)}var R9={kernelName:mg,backendName:"webgl",kernelFunc:E9},D9=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=[],this.outputShape=e,this.blockSize=t,this.dataFormat=n,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int h = ${this.getHeightCoordString()};
|
|
int w = ${this.getWidthCoordString()};
|
|
int d = ${this.getDepthCoordString()};
|
|
|
|
int in_h = h / ${t};
|
|
int offset_h = imod(h, ${t});
|
|
int in_w = w / ${t};
|
|
int offset_w = imod(w, ${t});
|
|
int offset_d = (offset_h * ${t} + offset_w) *
|
|
${this.getOutputDepthSize()};
|
|
int in_d = d + offset_d;
|
|
|
|
float result = ${this.getInputSamplingString()};
|
|
setOutput(result);
|
|
}
|
|
`}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?this.outputShape[3]:this.outputShape[1]}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}};function F9(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockSize:a,dataFormat:i}=s,o=r.shape[0],u=i==="NHWC"?r.shape[1]:r.shape[2],l=i==="NHWC"?r.shape[2]:r.shape[3],c=i==="NHWC"?r.shape[3]:r.shape[1],p=u*a,d=l*a,h=c/(a*a),f=i==="NHWC"?[o,p,d,h]:[o,h,p,d],m=new D9(f,a,i);return n.runWebGLProgram(m,[r],r.dtype)}var O9={kernelName:fo,backendName:"webgl",kernelFunc:F9},a2=class{constructor(e,t=!1,n=null,s=!1,r=!1){this.variableNames=["x","W"],this.customUniforms=[{name:"pads",type:"ivec2"},{name:"strides",type:"ivec2"},{name:"dilations",type:"ivec2"},{name:"inDims",type:"ivec2"}],this.outputShape=e.outShape,this.enableShapeUniforms=Sn(this.outputShape.length);let a=e.filterHeight,i=e.filterWidth,o=e.outChannels/e.inChannels,u="",l="";n&&(s?u=`float activation(float a) {
|
|
float b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:r?u=`float activation(float a) {
|
|
float b = getLeakyreluAlphaAtOutCoords();
|
|
${n}
|
|
}`:u=`
|
|
float activation(float x) {
|
|
${n}
|
|
}
|
|
`,l="result = activation(result);");let c=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${u}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int d2 = coords.w;
|
|
int d1 = d2 / ${o};
|
|
int q = d2 - d1 * ${o};
|
|
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// Convolve x(?, ?, d1) with w(:, :, d1, q) to get y(yR, yC, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
// TO DO(dsmilkov): Flatten the two for loops and vec4 the operations.
|
|
for (int wR = 0; wR < ${a}; wR++) {
|
|
int xR = xRCorner + wR * dilations[0];
|
|
|
|
if (xR < 0 || xR >= inDims[0]) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${i}; wC++) {
|
|
int xC = xCCorner + wC * dilations[1];
|
|
|
|
if (xC < 0 || xC >= inDims[1]) {
|
|
continue;
|
|
}
|
|
|
|
float xVal = getX(batch, xR, xC, d1);
|
|
float wVal = getW(wR, wC, d1, q);
|
|
dotProd += xVal * wVal;
|
|
}
|
|
}
|
|
|
|
float result = dotProd;
|
|
${c}
|
|
${l}
|
|
setOutput(result);
|
|
}
|
|
`}},i2=class{constructor(e,t=!1,n=null,s=!1,r=!1){this.variableNames=["x","W"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"pads",type:"ivec2"},{name:"strides",type:"ivec2"},{name:"dilations",type:"ivec2"},{name:"inDims",type:"ivec2"}],this.outputShape=e.outShape,this.enableShapeUniforms=Sn(this.outputShape.length);let a=e.outChannels/e.inChannels,i=e.padInfo.left,o=e.strideWidth,u=e.dilationWidth,l=e.filterHeight,c=e.filterWidth,p=c,d=`
|
|
int xR; int xC; int xCOffset;
|
|
vec4 wTexel; vec4 previous; vec4 final;`;for(let g=0;g<c;g++)d+=`
|
|
vec4 xTexelC${g*2};
|
|
int xTexelC${g*2}Ready;
|
|
vec4 xTexelC${g*2+1};
|
|
int xTexelC${g*2+1}Ready;
|
|
vec4 xC${g};`;d+=`
|
|
for (int r = 0; r < ${l}; r++) {
|
|
`;for(let g=0;g<c;g++)d+=`
|
|
xTexelC${g*2} = vec4(0.0);
|
|
xTexelC${g*2}Ready = 0;
|
|
xTexelC${g*2+1} = vec4(0.0);
|
|
xTexelC${g*2+1}Ready = 0;
|
|
xC${g} = vec4(0.0);`;d+=`
|
|
xR = xRCorner + r * dilations[0];
|
|
if (xR >=0 && xR < inDims[0]) {
|
|
`;for(let g=0;g<(p+1)/2;g++){let b=g*2;if(d+=`
|
|
xC = xCCorner + ${b*u};
|
|
`,o===1){if(b<c&&(i%2===1?(d+=`
|
|
xCOffset = xC + 1;
|
|
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${b}Ready == 0) {
|
|
xTexelC${b} = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${b}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${b}Ready = 1;
|
|
}
|
|
`,u===1&&b>0?d+=`
|
|
xC${b} = vec4(xTexelC${b-2}.zw, xTexelC${b}.xy);
|
|
`:d+=`
|
|
xCOffset = xC + 1 - 2;
|
|
|
|
if (xCOffset >= 0 && xCOffset < inDims[1]) {
|
|
previous = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
previous.zw = vec2(0.0);
|
|
}
|
|
|
|
xC${b} = vec4(previous.zw, xTexelC${b}.xy);
|
|
} else {
|
|
xC${b} = vec4(0.0, 0.0, xTexelC${b}.xy);
|
|
}
|
|
`):d+=`
|
|
if (xC >= 0 && xC < inDims[1] && xTexelC${b}Ready == 0) {
|
|
xTexelC${b} = getX(batch, xR, xC, d1);
|
|
if (xC + 1 >= inDims[1]) {
|
|
xTexelC${b}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${b}Ready = 1;
|
|
}
|
|
|
|
xC${b} = xTexelC${b};
|
|
`,b+1<c)){let y=i%2===0?w.nearestLargerEven(u):u;u%2===0&&i%2===1||u%2!==0&&i%2!==1?(d+=`
|
|
xCOffset = xC + imod(pads[1], 2) + ${y};
|
|
|
|
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${b+1}Ready == 0) {
|
|
xTexelC${b+1} = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${b+1}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${b+1}Ready = 1;
|
|
}
|
|
`,u>1&&(d+=`
|
|
xCOffset -= 2;
|
|
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${b}Ready == 0) {
|
|
xTexelC${b} = getX(batch, xR, xCOffset, d1);
|
|
xTexelC${b}Ready = 1;
|
|
}
|
|
`),d+=`
|
|
xC${b+1} = vec4(xTexelC${b}.zw, xTexelC${b+1}.xy);
|
|
`):y===1?d+=`
|
|
xC${b+1} = xTexelC${b};
|
|
`:d+=`
|
|
xCOffset = xC + ${y};
|
|
|
|
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${b+1}Ready == 0) {
|
|
xTexelC${b+1} = getX(batch, xR, xCOffset, d1);
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${b+1}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${b+1}Ready = 1;
|
|
}
|
|
|
|
xC${b+1} = xTexelC${b+1};
|
|
`}}else b<c&&(i%2===1?(d+=`
|
|
xCOffset = xC + 1 - strides[1];
|
|
if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${b}Ready == 0) {
|
|
xTexelC${b} = getX(batch, xR, xCOffset, d1);
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${b}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${b}Ready = 1;
|
|
}
|
|
|
|
if(xC + 1 >= 0 && xC + 1 < inDims[1] && xTexelC${b+1}Ready == 0) {
|
|
xTexelC${b+1} = getX(batch, xR, xC + 1, d1);
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xC + 2 >= inDims[1]) {
|
|
xTexelC${b+1}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${b+1}Ready = 1;
|
|
}
|
|
|
|
xC${b} = vec4(xTexelC${b}.zw, xTexelC${b+1}.zw);
|
|
`,b+1<c&&(d+=`
|
|
final = vec4(0.0);
|
|
xCOffset = xC + 1 + strides[1];
|
|
if(xCOffset >= 0 && xCOffset < inDims[1]) {
|
|
final = getX(batch, xR, xCOffset, d1);
|
|
}
|
|
xC${b+1} = vec4(xTexelC${b+1}.xy, final.xy);
|
|
`)):(d+=`
|
|
if(xC >= 0 && xC < inDims[1] && xTexelC${b}Ready == 0) {
|
|
xTexelC${b} = getX(batch, xR, xC, d1);
|
|
if (xC + 1 >= inDims[1]) {
|
|
xTexelC${b}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${b}Ready = 1;
|
|
}
|
|
|
|
xCOffset = xC + strides[1];
|
|
if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${b+1}Ready == 0) {
|
|
xTexelC${b+1} = getX(batch, xR, xCOffset, d1);
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${b+1}.zw = vec2(0.);
|
|
}
|
|
xTexelC${b+1}Ready = 1;
|
|
}
|
|
|
|
xC${b} = vec4(
|
|
xTexelC${b}.xy, xTexelC${b+1}.xy);
|
|
`,b+1<c&&(d+=`
|
|
xC${b+1} = vec4(xTexelC${b}.zw, xTexelC${b+1}.zw);
|
|
`)));b<c&&(d+=`
|
|
wTexel = getW(r, ${b}, d1, q);
|
|
dotProd += xC${b} * vec4(wTexel.xz, wTexel.xz);
|
|
`,b+1<c&&(d+=`
|
|
wTexel = getW(r, ${b+1}, d1, q);
|
|
dotProd += xC${b+1} * vec4(wTexel.xz, wTexel.xz);
|
|
`))}d+=`
|
|
}
|
|
`,d+=`
|
|
}
|
|
`;let h="",f="";n&&(s?h=`vec4 activation(vec4 a) {
|
|
vec4 b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:r?h=`vec4 activation(vec4 a) {
|
|
vec4 b = getLeakyreluAlphaAtOutCoords();
|
|
${n}
|
|
}`:h=`vec4 activation(vec4 x) {
|
|
${n}
|
|
}`,f="result = activation(result);");let m=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${h}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int d2 = coords.w;
|
|
int d1 = d2 / ${a};
|
|
int q = d2 - d1 * ${a};
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
//intialize dotProd with a small epsilon seems to reduce GPU accuracy loss.
|
|
vec4 dotProd = vec4(0.000000000000001);
|
|
|
|
${d}
|
|
|
|
vec4 result = dotProd - vec4(0.000000000000001);
|
|
${m}
|
|
${f}
|
|
setOutput(result);
|
|
}
|
|
`}};function P9(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:i,pad:o,dilations:u,dimRoundingMode:l}=s,c=u;c==null&&(c=[1,1]),w.assert(S.eitherStridesOrDilationsAreOne(i,c),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${c}'`);let p=S.computeConv2DInfo(r.shape,a.shape,i,c,o,l,!0),d;X().getBool("WEBGL_PACK_DEPTHWISECONV")&&p.strideWidth<=2&&p.outChannels/p.inChannels===1?d=new i2(p):d=new a2(p);let h=[[p.padInfo.top,p.padInfo.left],[p.strideHeight,p.strideWidth],[p.dilationHeight,p.dilationWidth],[p.inHeight,p.inWidth]];return n.runWebGLProgram(d,[r,a],"float32",h)}var z9={kernelName:Fa,backendName:"webgl",kernelFunc:P9},M9=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,s=e.padInfo.top,r=e.padInfo.left,a=e.outChannels/e.inChannels;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int wR = coords.x;
|
|
int wC = coords.y;
|
|
int d1 = coords.z;
|
|
int dm = coords.w;
|
|
int d2 = d1 * ${a} + dm;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
// TO DO: Vec4 over the batch size
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${t} - ${s};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${n} - ${r};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float dyValue = getDy(b, yR, yC, d2);
|
|
float xValue = getX(b, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},L9=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,s=e.strideHeight,r=e.strideWidth,a=t-1-e.padInfo.top,i=n-1-e.padInfo.left,o=e.outChannels/e.inChannels;this.userCode=`
|
|
const ivec2 pads = ivec2(${a}, ${i});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d1 = coords[3];
|
|
ivec2 dyCorner = coords.yz - pads;
|
|
int dyRCorner = dyCorner.x;
|
|
int dyCCorner = dyCorner.y;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
for (int wR = 0; wR < ${t}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${s}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${t} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${n}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${r}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${n} - 1 - wC;
|
|
|
|
// TO DO: Vec4 over the channelMul
|
|
for (int dm = 0; dm < ${o}; dm++) {
|
|
int d2 = d1 * ${o} + dm;
|
|
float xValue = getDy(batch, idyR, idyC, d2);
|
|
float wValue = getW(wRPerm, wCPerm, d1, dm);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function B9(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:i,dilations:o,pad:u,dimRoundingMode:l,filterShape:c}=s,p=S.computeConv2DInfo(r.shape,c,i,o,u,l,!0),d=new M9(p);return n.runWebGLProgram(d,[r,a],"float32")}var V9={kernelName:gg,backendName:"webgl",kernelFunc:B9};function W9(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{strides:i,dilations:o,pad:u,dimRoundingMode:l,inputShape:c}=s,p=S.computeConv2DInfo(c,a.shape,i,o,u,l,!0),d=new L9(p);return n.runWebGLProgram(d,[r,a],"float32")}var U9={kernelName:bg,backendName:"webgl",kernelFunc:W9},G9=class{constructor(e){this.variableNames=["X"],this.outputShape=[e,e],this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
float val = coords[0] == coords[1] ? getX(coords[0]) : 0.0;
|
|
setOutput(val);
|
|
}
|
|
`}};function H9(e){let{inputs:t,backend:n}=e,{x:s}=t,r=[...s.shape,...s.shape],a=w.sizeFromShape(s.shape),i=he({inputs:{x:s},backend:n,attrs:{shape:[a]}}),o=new G9(a),u=n.runWebGLProgram(o,[i],i.dtype),l=he({inputs:{x:u},backend:n,attrs:{shape:r}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(u),l}var q9={kernelName:yg,backendName:"webgl",kernelFunc:H9},j9=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let{inHeight:t,inWidth:n,padInfo:s,strideHeight:r,strideWidth:a,filterHeight:i,filterWidth:o,dilationHeight:u,dilationWidth:l}=e,{top:c,left:p}=s;this.userCode=`
|
|
const ivec2 strides = ivec2(${r}, ${a});
|
|
const ivec2 pads = ivec2(${c}, ${p});
|
|
const float neg_infinity = -3.4e38;
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d1 = coords.w;
|
|
ivec2 outTopLeftCorner =
|
|
coords.yz * strides - pads;
|
|
int hBeg = outTopLeftCorner.x;
|
|
int wBeg = outTopLeftCorner.y;
|
|
|
|
float curVal = neg_infinity;
|
|
for (int h = 0; h < ${i}; h++) {
|
|
int hIn = hBeg + h * ${u};
|
|
|
|
if (hIn >= 0 && hIn < ${t}) {
|
|
for (int w = 0; w < ${o}; w++) {
|
|
int wIn = wBeg + w * ${l};
|
|
|
|
if (wIn >= 0 && wIn < ${n}) {
|
|
float xVal = getX(batch, hIn, wIn, d1);
|
|
float wVal = getW(h, w, d1);
|
|
|
|
float val = xVal + wVal;
|
|
if (val > curVal) {
|
|
curVal = val;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
float result = curVal;
|
|
setOutput(result);
|
|
}
|
|
`}};function K9(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:i,pad:o,dilations:u}=s,l=S.computeDilation2DInfo(r.shape,a.shape,i,o,"NHWC",u),c,p=new j9(l);c=n.runWebGLProgram(p,[r,a],"float32");let d=he({inputs:{x:c},backend:n,attrs:{shape:l.outShape}});return n.disposeIntermediateTensorInfo(c),d}var X9={kernelName:Zd,backendName:"webgl",kernelFunc:K9};function Y9(e){let{inputs:t,backend:n,attrs:s}=e,{equation:r}=s,a=t,{allDims:i,summedDims:o,idDims:u}=S.decodeEinsumEquation(r,a.length);S.checkEinsumDimSizes(i.length,u,a);let{path:l,steps:c}=S.getEinsumComputePath(o,u),p=c.length,d=null,h=i.length,f=[];for(let m=0;m<p;++m){for(let g of c[m]){let{permutationIndices:b,expandDims:y}=S.getEinsumPermutation(h,u[g]),v;S.isIdentityPermutation(b)?v=a[g]:(v=qt({inputs:{x:a[g]},backend:n,attrs:{perm:b}}),f.push(v));let x=v.shape.slice();for(let k=0;k<y.length;++k)x.splice(y[k],0,1);w.arraysEqual(v.shape,x)||(v=he({inputs:{x:v},backend:n,attrs:{shape:x}}),f.push(v)),d===null?d=v:(d=Sv({inputs:{a:v,b:d},backend:n}),f.push(d))}m<p-1&&(l[m]>=0&&(d=Zp({inputs:{x:d},backend:n,attrs:{axis:l[m]-(i.length-h),keepDims:!1}}),f.push(d)),h--)}for(let m of f)m!==d&&n.disposeIntermediateTensorInfo(m);return d}var Q9={kernelName:Jd,backendName:"webgl",kernelFunc:Y9},Z9="return (x >= 0.0) ? x : (exp(x) - 1.0);",J9=`
|
|
vec4 result;
|
|
|
|
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
|
|
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
|
|
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
|
|
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
|
|
|
|
return result;
|
|
`,eQ=Ke({opSnippet:Z9,packedOpSnippet:J9}),tQ={kernelName:Pa,backendName:"webgl",kernelFunc:eQ},nQ="return (b >= 1.0) ? a : a * (b + 1.0);",sQ=`
|
|
vec4 bGTEZero = vec4(greaterThanEqual(b, vec4(0.)));
|
|
return (bGTEZero * a) + ((vec4(1.0) - bGTEZero) * (a * (b + vec4(1.0))));
|
|
`,rQ=e=>{let{inputs:t,backend:n}=e,{dy:s,y:r}=t,a=X().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Zl(sQ,s.shape,r.shape):new io(nQ,s.shape,r.shape);return n.runWebGLProgram(a,[s,r],s.dtype)},aQ={kernelName:vg,backendName:"webgl",kernelFunc:rQ},iQ=`
|
|
return vec4(equal(a, b));
|
|
`,oQ="return float(a == b);",uQ=jt({opSnippet:oQ,packedOpSnippet:iQ,dtype:"bool",cpuKernelImpl:KK}),lQ={kernelName:mo,backendName:"webgl",kernelFunc:uQ},cQ=`
|
|
// Error function is calculated approximately with elementary function.
|
|
// See "Handbook of Mathematical Functions with Formulas,
|
|
// Graphs, and Mathematical Tables", Abramowitz and Stegun.
|
|
float p = ${S.ERF_P};
|
|
float a1 = ${S.ERF_A1};
|
|
float a2 = ${S.ERF_A2};
|
|
float a3 = ${S.ERF_A3};
|
|
float a4 = ${S.ERF_A4};
|
|
float a5 = ${S.ERF_A5};
|
|
|
|
float sign = sign(x);
|
|
x = abs(x);
|
|
float t = 1.0 / (1.0 + p * x);
|
|
return sign * (1.0 - (((((a5*t + a4)*t) + a3)*t + a2)*t + a1)*t*exp(-x*x));
|
|
`,dQ=Ke({opSnippet:cQ}),pQ={kernelName:fl,backendName:"webgl",kernelFunc:dQ},hQ=uu+`
|
|
return exp(x);
|
|
`,fQ=`
|
|
vec4 result = exp(x);
|
|
bvec4 isNaN = isnan(x);
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,o2=Ke({opSnippet:hQ,packedOpSnippet:fQ,cpuKernelImpl:XK,dtype:"float32"}),mQ={kernelName:za,backendName:"webgl",kernelFunc:o2};function Km(e){let{inputs:t,attrs:n,backend:s}=e,{dim:r}=n,{input:a}=t,i=a.shape.length,o=a.shape.slice(),u=r;return r<0&&(w.assert(-(i+1)<=r,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),u=i+r+1),o.splice(u,0,1),he({inputs:{x:a},backend:s,attrs:{shape:o}})}var gQ={kernelName:go,backendName:"webgl",kernelFunc:Km},Sw="return exp(x) - 1.0;",bQ=Ke({opSnippet:Sw,packedOpSnippet:Sw,cpuKernelImpl:YK}),yQ={kernelName:bo,backendName:"webgl",kernelFunc:bQ},Cw=class{constructor(e,t,n){this.variableNames=["real","imag"];let s=t[1];this.outputShape=t;let r=n?`2.0 * ${Math.PI}`:`-2.0 * ${Math.PI}`,a=n?`${s}.0`:"1.0",i;if(e==="real")i="return real * expR - imag * expI;";else if(e==="imag")i="return real * expI + imag * expR;";else throw new Error(`FFT component must be either "real" or "imag", got ${e}.`);this.userCode=`
|
|
const float exponentMultiplier = ${r};
|
|
|
|
float unaryOpComplex(float real, float expR, float imag, float expI) {
|
|
${i}
|
|
}
|
|
|
|
float mulMatDFT(int batch, int index) {
|
|
float indexRatio = float(index) / float(${s});
|
|
float exponentMultiplierTimesIndexRatio =
|
|
exponentMultiplier * indexRatio;
|
|
|
|
float result = 0.0;
|
|
|
|
for (int i = 0; i < ${s}; i++) {
|
|
// x = (-2|2 * PI / N) * index * i;
|
|
float x = exponentMultiplierTimesIndexRatio * float(i);
|
|
float expR = cos(x);
|
|
float expI = sin(x);
|
|
float real = getReal(batch, i);
|
|
float imag = getImag(batch, i);
|
|
|
|
result +=
|
|
unaryOpComplex(real, expR, imag, expI) / ${a};
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
setOutput(mulMatDFT(coords[0], coords[1]));
|
|
}
|
|
`}};function u2(e,t,n){let s=n.texData.get(e.dataId),r=w.sizeFromShape(e.shape),a=e.shape[e.shape.length-1],i=r/a,o=he({inputs:{x:e},backend:n,attrs:{shape:[i,a]}}),u=o.shape,l=new Cw("real",u,t),c=new Cw("imag",u,t),p=[{dataId:s.complexTensorInfos.real.dataId,dtype:s.complexTensorInfos.real.dtype,shape:u},{dataId:s.complexTensorInfos.imag.dataId,dtype:s.complexTensorInfos.imag.dtype,shape:u}],d=n.runWebGLProgram(l,p,"float32"),h=n.runWebGLProgram(c,p,"float32"),f=Dr({inputs:{real:d,imag:h},backend:n});n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(h);let m=he({inputs:{x:f},backend:n,attrs:{shape:e.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(f),m}function vQ(e){let{inputs:t,backend:n}=e,{input:s}=t;return u2(s,!1,n)}var xQ={kernelName:xg,backendName:"webgl",kernelFunc:vQ},wQ=class{constructor(e,t){this.outputShape=[],this.customUniforms=[{name:"value",type:"float"}],this.variableNames=["x"],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
// Input can be obtained from uniform value.
|
|
setOutput(value);
|
|
}
|
|
`}};function ec(e){let{backend:t,attrs:n}=e,{shape:s,value:r}=n,{dtype:a}=n;if(a=a||w.inferDtype(r),a==="string"){let i=w.getArrayFromDType(a,w.sizeFromShape(s));return i.fill(r),t.makeTensorInfo(s,a,i)}else{let i=new wQ(s,r),o=[[r]];return t.runWebGLProgram(i,[],a,o)}}var kQ={kernelName:ml,backendName:"webgl",kernelFunc:ec},IQ=class{constructor(e){this.variableNames=["Image"],this.outputShape=[];let t=e[2];this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int x = coords[2];
|
|
|
|
int coordX = ${t} - x - 1;
|
|
float outputValue;
|
|
if(coordX >= 0 && coordX < ${t}) {
|
|
outputValue = getImage(coords[0], coords[1], coordX, coords[3]);
|
|
} else {
|
|
outputValue = getImage(coords[0], coords[1], coords[2], coords[3]);
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}},SQ={kernelName:yo,backendName:"webgl",kernelFunc:({inputs:e,backend:t})=>{let{image:n}=e,s=t,r=new IQ(n.shape);return s.runWebGLProgram(r,[n],n.dtype)}},Nw="return floor(x);",CQ=Ke({opSnippet:Nw,packedOpSnippet:Nw,cpuKernelImpl:QK}),NQ={kernelName:Ma,backendName:"webgl",kernelFunc:CQ},TQ=`
|
|
float s = sign(a) * sign(b);
|
|
int ia = round(a);
|
|
int ib = round(b);
|
|
if (ib != 0) {
|
|
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
|
|
return float(idiv(ia, ib, s));
|
|
} else {
|
|
return NAN;
|
|
}
|
|
`,$Q=`
|
|
ivec4 ia = round(a);
|
|
ivec4 ib = round(b);
|
|
bvec4 cond = notEqual(ib, ivec4(0));
|
|
ivec4 result = ivec4(0);
|
|
vec4 s = sign(a) * sign(b);
|
|
|
|
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
|
|
if (cond[0]) {
|
|
result[0] = idiv(ia[0], ib[0], s[0]);
|
|
}
|
|
if (cond[1]) {
|
|
result[1] = idiv(ia[1], ib[1], s[1]);
|
|
}
|
|
if (cond[2]) {
|
|
result[2] = idiv(ia[2], ib[2], s[2]);
|
|
}
|
|
if (cond[3]) {
|
|
result[3] = idiv(ia[3], ib[3], s[3]);
|
|
}
|
|
return vec4(result);
|
|
`,_Q=jt({opSnippet:TQ,packedOpSnippet:$Q,dtype:"int32"}),AQ={kernelName:La,backendName:"webgl",kernelFunc:_Q},EQ=class{constructor(e){this.variableNames=["A"];let t=fn(),[n,s]=e;this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
int texR = coords[0];
|
|
int texC = coords[1];
|
|
int depth = coords[2];
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${s}.0, ${n}.0);
|
|
|
|
vec4 values = ${t.texture2D}(A, uv);
|
|
float value;
|
|
if (depth == 0) {
|
|
value = values.r;
|
|
} else if (depth == 1) {
|
|
value = values.g;
|
|
} else if (depth == 2) {
|
|
value = values.b;
|
|
} else if (depth == 3) {
|
|
value = values.a;
|
|
}
|
|
|
|
setOutput(floor(value * 255.0 + 0.5));
|
|
}
|
|
`}},RQ=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let t=fn(),[n,s]=e;this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
int texR = coords[0];
|
|
int texC = coords[1];
|
|
int depth = coords[2];
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for(int row=0; row<=1; row++) {
|
|
for(int col=0; col<=1; col++) {
|
|
texC = coords[1] + row;
|
|
depth = coords[2] + col;
|
|
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${s}.0, ${n}.0);
|
|
vec4 values = ${t.texture2D}(A, uv);
|
|
float value;
|
|
if (depth == 0) {
|
|
value = values.r;
|
|
} else if (depth == 1) {
|
|
value = values.g;
|
|
} else if (depth == 2) {
|
|
value = values.b;
|
|
} else if (depth == 3) {
|
|
value = values.a;
|
|
}
|
|
|
|
result[row * 2 + col] = floor(value * 255.0 + 0.5);
|
|
}
|
|
}
|
|
|
|
${t.output} = result;
|
|
}
|
|
`}},DQ={kernelName:fd,backendName:"webgl",kernelFunc:FQ},Vi;function FQ(e){let{inputs:t,backend:n,attrs:s}=e,{pixels:r}=t,{numChannels:a}=s,i=typeof HTMLVideoElement!="undefined"&&r instanceof HTMLVideoElement,o=typeof HTMLImageElement!="undefined"&&r instanceof HTMLImageElement,[u,l]=i?[r.videoWidth,r.videoHeight]:[r.width,r.height],c=[l,u],p=[l,u,a];(o||i)&&(Vi==null&&(Vi=document.createElement("canvas").getContext("2d")),Vi.canvas.width=u,Vi.canvas.height=l,Vi.drawImage(r,0,0,u,l),r=Vi.canvas);let d=n.makeTensorInfo(c,"int32");n.texData.get(d.dataId).usage=2,n.gpgpu.uploadPixelDataToTexture(n.getTexture(d.dataId),r);let h=X().getBool("WEBGL_PACK")?new RQ(p):new EQ(p),f=n.runWebGLProgram(h,[d],"int32");return n.disposeData(d.dataId),f}function OQ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:i,preluActivationWeights:o}=t,{strides:u,pad:l,dataFormat:c,dilations:p,dimRoundingMode:d,activation:h,leakyreluAlpha:f}=s,m=S.convertConv2DDataFormat(c),g=S.computeConv2DInfo(r.shape,a.shape,u,p,l,d,!1,m),b,y=[];if(g.filterHeight===1&&g.filterWidth===1&&g.dilationHeight===1&&g.dilationWidth===1&&g.strideHeight===1&&g.strideWidth===1&&(g.padInfo.type==="SAME"||g.padInfo.type==="VALID"))b=s2({x:r,filter:a,convInfo:g,backend:n,bias:i,activation:h,preluActivationWeights:o,leakyreluAlpha:f});else if(X().getBool("WEBGL_CONV_IM2COL")&&r.shape[0]===1)b=r2({x:r,filter:a,convInfo:g,backend:n,bias:i,activation:h,preluActivationWeights:o,leakyreluAlpha:f});else{let x=i!=null,k=o!=null,T=h==="leakyrelu",N=h?Yp(h,!1):null,E=new n2(g,x,N,k,T),A=[r,a];if(i&&A.push(i),o&&A.push(o),T){let P=n.makeTensorInfo([],"float32",w.createScalarValue(f,"float32"));A.push(P),y.push(P)}b=n.runWebGLProgram(E,A,"float32")}let v=he({inputs:{x:b},backend:n,attrs:{shape:g.outShape}});return y.push(b),y.forEach(x=>n.disposeIntermediateTensorInfo(x)),v}var PQ={kernelName:ia,backendName:"webgl",kernelFunc:OQ};function zQ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:i,preluActivationWeights:o}=t,{strides:u,pad:l,dilations:c,dimRoundingMode:p,activation:d,leakyreluAlpha:h}=s,f=[],m=c;m==null&&(m=[1,1]),w.assert(S.eitherStridesOrDilationsAreOne(u,m),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${u} and dilations '${m}'`);let g=S.computeConv2DInfo(r.shape,a.shape,u,m,l,p,!0),b=X().getBool("WEBGL_PACK_DEPTHWISECONV")&&g.strideWidth<=2&&g.outChannels/g.inChannels===1,y=d?Yp(d,b):null,v=[r,a],x=i!=null,k=o!=null,T=d==="leakyrelu";if(x&&v.push(i),k&&v.push(o),T){let P=n.makeTensorInfo([],"float32",w.createScalarValue(h,"float32"));v.push(P),f.push(P)}let N;b?N=new i2(g,x,y,k,T):N=new a2(g,x,y,k,T);let E=[[g.padInfo.top,g.padInfo.left],[g.strideHeight,g.strideWidth],[g.dilationHeight,g.dilationWidth],[g.inHeight,g.inWidth]],A=n.runWebGLProgram(N,v,"float32",E);return f.forEach(P=>n.disposeIntermediateTensorInfo(P)),A}var MQ={kernelName:oa,backendName:"webgl",kernelFunc:zQ},LQ=class{constructor(e,t,n){this.sliceDim=e,this.strides=t,this.variableNames=["x","indices"],this.outputShape=n;let s=rt(t.length),r=rt(n.length),a=this.sliceDim>1?"strides[j]":"strides";this.userCode=`
|
|
${s} strides = ${s}(${this.strides});
|
|
void main() {
|
|
${r} coords = getOutputCoords();
|
|
int flattenIndex = 0;
|
|
for (int j = 0; j < ${this.sliceDim}; j++) {
|
|
int index = round(getIndices(coords[0], j));
|
|
flattenIndex += index * ${a};
|
|
}
|
|
setOutput(getX(flattenIndex, coords[1]));
|
|
}
|
|
`}};function BQ(e){let{inputs:t,backend:n}=e,{params:s,indices:r}=t,a=r.shape,i=a[a.length-1],o=w.sizeFromShape(s.shape),[u,l,c,p]=S.prepareAndValidate(s,r),d=he({inputs:{x:r},backend:n,attrs:{shape:[l,i]}}),h=he({inputs:{x:s},backend:n,attrs:{shape:[w.sizeFromShape(s.shape)/c,c]}});if(n.shouldExecuteOnCPU([s,r])||s.dtype==="string"){let b=n.readSync(r.dataId),y=n.bufferSync(s),v=ZK(b,y,s.dtype,l,i,c,p,s.shape,o);return n.makeTensorInfo(u,s.dtype,v.values)}let f=new LQ(i,p,[l,c]),m=n.runWebGLProgram(f,[h,d],h.dtype),g=he({inputs:{x:m},backend:n,attrs:{shape:u}});return n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),g}var VQ={kernelName:xo,backendName:"webgl",kernelFunc:BQ},WQ=class{constructor(e,t){this.variableNames=["A","indices"],this.outputShape=t,this.rank=t.length;let n=rt(this.rank),s=UQ(e,2);this.userCode=`
|
|
void main() {
|
|
${n} resRC = getOutputCoords();
|
|
int index = int(getIndices(resRC.x, resRC.z));
|
|
float inBounds = (index >= 0) && (index < ${e[2]}) ? 1.0 : 0.0;
|
|
setOutput(inBounds * getA(${s}));
|
|
}
|
|
`}};function UQ(e,t){let n=["resRC.x","resRC.y","resRC.z","resRC.w"],s=[];for(let r=0;r<e.length;r++)r===2?s.push("index"):s.push(`${n[r]}`);return s.join()}function l2(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,indices:a}=t,{axis:i,batchDims:o}=s,u=w.parseAxisParam(i,r.shape)[0];if(X().get("DEBUG")){let y=n.readSync(a.dataId),v=r.shape[u];for(let x=0;x<y.length;++x){let k=y[x];w.assert(k<=v-1&&k>=0,()=>`GatherV2: the index value ${k} is not in [0, ${v-1}]`)}}let l=S.segment_util.collectGatherOpShapeInfo(r,a,u,o),c=w.sizeFromShape(a.shape),p=[],d=he({inputs:{x:r},backend:n,attrs:{shape:[l.batchSize,l.outerSize,l.dimSize,l.sliceSize]}}),h=he({inputs:{x:a},backend:n,attrs:{shape:[l.batchSize,c/l.batchSize]}});p.push(d),p.push(h);let f=[l.batchSize,l.outerSize,c/l.batchSize,l.sliceSize];if(n.shouldExecuteOnCPU([r,a])||r.dtype==="string"){let y=n.bufferSync(h),v=n.bufferSync(d),x=JK(v,y,f);return p.forEach(k=>n.disposeIntermediateTensorInfo(k)),n.makeTensorInfo(l.outputShape,x.dtype,x.values)}let m=new WQ(d.shape,f),g=n.runWebGLProgram(m,[d,h],d.dtype);p.push(g);let b=he({inputs:{x:g},backend:n,attrs:{shape:l.outputShape}});return p.forEach(y=>n.disposeIntermediateTensorInfo(y)),b}var GQ={kernelName:vo,backendName:"webgl",kernelFunc:l2},HQ="return float(a > b);",qQ=`
|
|
return vec4(greaterThan(a, b));
|
|
`,jQ=jt({opSnippet:HQ,packedOpSnippet:qQ,cpuKernelImpl:eX,dtype:"bool"}),KQ={kernelName:wo,backendName:"webgl",kernelFunc:jQ},XQ="return float(a >= b);",YQ=`
|
|
return vec4(greaterThanEqual(a, b));
|
|
`,QQ=jt({opSnippet:XQ,packedOpSnippet:YQ,dtype:"bool",cpuKernelImpl:tX}),ZQ={kernelName:Va,backendName:"webgl",kernelFunc:QQ};function JQ(e){let{inputs:t,backend:n}=e,{input:s}=t;return u2(s,!0,n)}var eZ={kernelName:wg,backendName:"webgl",kernelFunc:JQ},tZ="return float(!isnan(x) && !isinf(x));",nZ=Ke({opSnippet:tZ,dtype:"bool"}),sZ={kernelName:gl,backendName:"webgl",kernelFunc:nZ},rZ="return float(isinf(x));",aZ=Ke({opSnippet:rZ,dtype:"bool"}),iZ={kernelName:bl,backendName:"webgl",kernelFunc:aZ},oZ="return float(isnan(x));",uZ=Ke({opSnippet:oZ,dtype:"bool"}),lZ={kernelName:yl,backendName:"webgl",kernelFunc:uZ},cZ="return float(a < b);",dZ=`
|
|
return vec4(lessThan(a, b));
|
|
`,pZ=jt({opSnippet:cZ,packedOpSnippet:dZ,cpuKernelImpl:nX,dtype:"bool"}),hZ={kernelName:ko,backendName:"webgl",kernelFunc:pZ},fZ="return float(a <= b);",mZ=`
|
|
return vec4(lessThanEqual(a, b));
|
|
`,gZ=jt({opSnippet:fZ,packedOpSnippet:mZ,cpuKernelImpl:sX,dtype:"bool"}),bZ={kernelName:Io,backendName:"webgl",kernelFunc:gZ};function yZ(e){let{backend:t,attrs:n}=e,{start:s,stop:r,num:a}=n,i=rX(s,r,a);return t.makeTensorInfo([i.length],"float32",i)}var vZ={kernelName:kg,backendName:"webgl",kernelFunc:yZ},xZ=uu+`
|
|
return x < 0.0 ? 0./0. : log(x);
|
|
`,wZ=`
|
|
vec4 result = log(x);
|
|
bvec4 isNaN = isnan(x);
|
|
result.r = isNaN.r ? x.r : (x.r < 0.0 ? 0./0. : result.r);
|
|
result.g = isNaN.g ? x.g : (x.g < 0.0 ? 0./0. : result.g);
|
|
result.b = isNaN.b ? x.b : (x.b < 0.0 ? 0./0. : result.b);
|
|
result.a = isNaN.a ? x.a : (x.a < 0.0 ? 0./0. : result.a);
|
|
return result;
|
|
`,kZ=Ke({opSnippet:xZ,packedOpSnippet:wZ,cpuKernelImpl:aX}),IZ={kernelName:Ga,backendName:"webgl",kernelFunc:kZ},SZ=uu+`
|
|
return log(1.0 + x);
|
|
`,CZ=Ke({opSnippet:SZ}),NZ={kernelName:vl,backendName:"webgl",kernelFunc:CZ},TZ="return float(a >= 1.0 && b >= 1.0);",$Z=`
|
|
return vec4(
|
|
vec4(greaterThanEqual(a, vec4(1.0))) *
|
|
vec4(greaterThanEqual(b, vec4(1.0))));
|
|
`,_Z=jt({opSnippet:TZ,packedOpSnippet:$Z,dtype:"bool"}),AZ={kernelName:So,backendName:"webgl",kernelFunc:_Z},EZ="return float(!(x >= 1.0));",RZ=Ke({opSnippet:EZ}),DZ={kernelName:xl,backendName:"webgl",kernelFunc:RZ},FZ="return float(a >= 1.0 || b >= 1.0);",OZ=`
|
|
return min(
|
|
vec4(greaterThanEqual(a, vec4(1.0))) +
|
|
vec4(greaterThanEqual(b, vec4(1.0))),
|
|
vec4(1.0));
|
|
`,PZ=jt({opSnippet:FZ,packedOpSnippet:OZ,dtype:"bool"}),zZ={kernelName:tp,backendName:"webgl",kernelFunc:PZ},MZ=class{constructor(e,t,n,s,r){this.variableNames=["x"],this.outputShape=[];let a=t,i=e[3]-1;this.outputShape=e;let o,u=`float(${n}) + float(${s}) * sum`;r===.5?o=`inversesqrt(${u})`:r===1?o=`1.0/(${u})`:o=`exp(log(${u}) * float(-${r}));`,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
int d = coords[3];
|
|
float x = getX(b, r, c, d);
|
|
float sum = 0.0;
|
|
for (int j = -${a}; j <= ${a}; j++) {
|
|
int idx = d + j;
|
|
if (idx >= 0 && idx <= ${i}) {
|
|
float z = getX(b, r, c, idx);
|
|
sum += z * z;
|
|
}
|
|
}
|
|
float val = x * ${o};
|
|
setOutput(val);
|
|
}
|
|
`}},LZ=class{constructor(e,t,n,s,r){this.variableNames=["x"],this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0;let a=t,i=e[3]-1;this.outputShape=e;let o,u=`float(${n}) + float(${s}) * sum`;r===.5?o=`inversesqrt(${u})`:r===1?o=`1.0/(${u})`:o=`exp(log(${u}) * float(-${r}));`,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords.x;
|
|
int r = coords.y;
|
|
int c = coords.z;
|
|
int d = coords.w;
|
|
|
|
bool hasNextCol = d < ${this.outputShape[3]};
|
|
bool hasNextRow = c < ${this.outputShape[2]};
|
|
|
|
vec4 sum = vec4(0.);
|
|
vec4 xFragAtOutputCoords = getX(b, r, c, d);
|
|
|
|
vec4 xAtOutputCoords = vec4(
|
|
getChannel(xFragAtOutputCoords, vec2(c, d)),
|
|
hasNextCol ?
|
|
getChannel(xFragAtOutputCoords, vec2(c, d + 1)) : 0.0,
|
|
hasNextRow ?
|
|
getChannel(xFragAtOutputCoords , vec2(c + 1, d)) : 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getChannel(xFragAtOutputCoords, vec2(c + 1, d + 1)) : 0.0
|
|
);
|
|
|
|
int firstChannel = d - ${a};
|
|
vec2 cache = vec2(0.);
|
|
if(firstChannel >= 0){
|
|
vec4 firstChannelFrag = getX(b, r, c, firstChannel);
|
|
cache.x = getChannel(firstChannelFrag, vec2(c, firstChannel));
|
|
if(hasNextRow){
|
|
cache.y = getChannel(firstChannelFrag, vec2(c + 1, firstChannel));
|
|
}
|
|
}
|
|
|
|
ivec2 depth = ivec2(d, d + 1);
|
|
for (int j = - ${a}; j <= ${a}; j++) {
|
|
ivec2 idx = depth + j;
|
|
bvec2 aboveLowerBound = greaterThanEqual(idx, ivec2(0));
|
|
bvec2 belowUpperBound = lessThanEqual(idx, ivec2(${i}));
|
|
|
|
bool depthInRange = aboveLowerBound.x && belowUpperBound.x;
|
|
bool depthPlusOneInRange = aboveLowerBound.y && belowUpperBound.y;
|
|
|
|
if(depthInRange || depthPlusOneInRange){
|
|
vec4 z = vec4(0.);
|
|
vec4 xFragAtCurrentDepth;
|
|
z.xz = cache.xy;
|
|
if(depthPlusOneInRange && hasNextCol){
|
|
xFragAtCurrentDepth = idx.y != d ?
|
|
getX(b, r, c, idx.y) : xFragAtOutputCoords;
|
|
z.y = getChannel(xFragAtCurrentDepth, vec2(c, idx.y));
|
|
if(hasNextRow){
|
|
z.w = getChannel(xFragAtCurrentDepth, vec2(c + 1, idx.y));
|
|
}
|
|
}
|
|
cache.xy = z.yw;
|
|
sum += z * z;
|
|
}
|
|
}
|
|
vec4 result = xAtOutputCoords * ${o};
|
|
setOutput(result);
|
|
}
|
|
`}},BZ=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{depthRadius:a,bias:i,alpha:o,beta:u}=s,l=X().getBool("WEBGL_PACK_NORMALIZATION")?new LZ(r.shape,a,i,o,u):new MZ(r.shape,a,i,o,u);return n.runWebGLProgram(l,[r],r.dtype)},VZ={kernelName:np,backendName:"webgl",kernelFunc:BZ},WZ=class{constructor(e,t,n,s,r){this.variableNames=["inputImage","outputImage","dy"],this.outputShape=[],this.outputShape=e,this.depth=e[3],this.depthRadius=t,this.bias=n,this.alpha=s,this.beta=r,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float result = 0.0;
|
|
for (int d = 0; d < ${this.depth}; ++d) {
|
|
int depthBegin = int(max(0.0, float(d - ${t})));
|
|
int depthEnd = int(min(float(${this.depth}),
|
|
float(d + ${t} + 1)));
|
|
|
|
const int MIN_DEPTH_BEGIN = 0;
|
|
const int MAX_DEPTH_END = ${this.depth};
|
|
|
|
float norm = 0.0;
|
|
for (int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k) {
|
|
if (k < depthBegin){
|
|
continue;
|
|
}
|
|
else if (k >= depthBegin && k < depthEnd) {
|
|
norm += getInputImage(b, r, c, k) * getInputImage(b, r, c, k);
|
|
}
|
|
else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
norm = float(${s}) * norm + float(${n});
|
|
|
|
for(int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k){
|
|
if (k < depthBegin){
|
|
continue;
|
|
}
|
|
else if (k >= depthBegin && k < depthEnd){
|
|
float dyi = -2.0 * float(${s})
|
|
* float(${r})
|
|
* getInputImage(b ,r ,c, k) * getOutputImage(b, r, c, d)
|
|
/ norm;
|
|
if (k == d) {
|
|
dyi += pow(norm, -1.0 * ${r});
|
|
}
|
|
if (k == coords[3]) {
|
|
dyi *= getDy(b, r, c, d);
|
|
result += dyi;
|
|
}
|
|
}
|
|
else {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}},UZ=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r,y:a,dy:i}=t,{depthRadius:o,bias:u,alpha:l,beta:c}=s,p=new WZ(r.shape,o,u,l,c);return n.runWebGLProgram(p,[r,a,i],r.dtype)},GZ={kernelName:Ig,backendName:"webgl",kernelFunc:UZ};function HZ(e,t,n,s){let r=w.sizeFromShape(t),i=w.sizeFromShape(e.shape)/r,o=he({inputs:{x:e},attrs:{shape:[i,r]},backend:s}),u=Ii(o,e.dtype,"max",s),l=he({inputs:{x:u},attrs:{shape:n},backend:s});return s.disposeIntermediateTensorInfo(o),s.disposeIntermediateTensorInfo(u),l}function c2(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reductionIndices:a,keepDims:i}=s,o=r.shape.length,u=w.parseAxisParam(a,r.shape),l=u,c=S.getAxesPermutation(l,o),p=c!=null,d=n.shouldExecuteOnCPU([r]),h=r;if(p){if(d){let v=n.texData.get(h.dataId).values,x=new Array(o);for(let N=0;N<x.length;N++)x[N]=r.shape[c[N]];let k=Iv(v,r.shape,r.dtype,c,x);h=n.makeTensorInfo(x,r.dtype);let T=n.texData.get(h.dataId);T.values=k}else h=Qp(r,c,n);l=S.getInnerMostAxes(l.length,o)}S.assertAxesAreInnerMostDims("max",l,o);let[f,m]=S.computeOutAndReduceShapes(h.shape,l),g=f;i&&(g=S.expandShapeToKeepDim(f,u));let b;if(d){let v=n.texData.get(h.dataId).values,x=iX(v,w.sizeFromShape(m),g,r.dtype);b=n.makeTensorInfo(g,r.dtype);let k=n.texData.get(b.dataId);k.values=x}else b=HZ(h,m,g,n);return p&&n.disposeIntermediateTensorInfo(h),b}var qZ={kernelName:Ha,backendName:"webgl",kernelFunc:c2},jZ=G1+`
|
|
return max(a, b);
|
|
`,KZ=`
|
|
vec4 result = vec4(max(a, b));
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+Xp+`
|
|
return result;
|
|
`,XZ=jt({opSnippet:jZ,packedOpSnippet:KZ,cpuKernelImpl:oX}),YZ={kernelName:qa,backendName:"webgl",kernelFunc:XZ};function QZ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t;su(r,"maxPool");let{filterSize:a,strides:i,pad:o,dimRoundingMode:u}=s,l=1;w.assert(S.eitherStridesOrDilationsAreOne(i,l),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${l}'`);let c=S.computePool2DInfo(r.shape,a,i,l,o,u);if(c.filterWidth===1&&c.filterHeight===1&&w.arraysEqual(c.inShape,c.outShape))return kn({inputs:{x:r},backend:n});let p=new nl(c,"max",!1);return n.runWebGLProgram(p,[r],r.dtype)}var ZZ={kernelName:ja,backendName:"webgl",kernelFunc:QZ};function JZ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:i,pad:o,dataFormat:u,dimRoundingMode:l}=s,c=[1,1,1],p=S.computePool3DInfo(r.shape,a,i,c,o,l,u),d=new Cv(p,"max",!1);return n.runWebGLProgram(d,[r],r.dtype)}var e7={kernelName:sp,backendName:"webgl",kernelFunc:JZ},t7=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideHeight,n=e.strideWidth,s=e.dilationHeight,r=e.effectiveFilterHeight,a=e.effectiveFilterWidth,i=r-1-e.padInfo.top,o=a-1-e.padInfo.left,u=r*a-1;this.userCode=`
|
|
const ivec2 pads = ivec2(${i}, ${o});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 dyRCCorner = coords.yz - pads;
|
|
int dyRCorner = dyRCCorner.x;
|
|
int dyCCorner = dyRCCorner.y;
|
|
|
|
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${r};
|
|
wR += ${s}) {
|
|
float dyR = float(dyRCorner + wR) / ${t}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${a}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${n}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(b, idyR, idyC, d);
|
|
int maxPosValue = ${u} - int(getMaxPos(b, idyR, idyC, d));
|
|
|
|
// Get the current value, check it against the value from the
|
|
// position matrix.
|
|
int curPosValue = wR * ${a} + wC;
|
|
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
|
|
|
|
dotProd += dyValue * mask;
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},n7=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideDepth,n=e.strideHeight,s=e.strideWidth,r=e.dilationDepth,a=e.dilationHeight,i=e.dilationWidth,o=e.effectiveFilterDepth,u=e.effectiveFilterHeight,l=e.effectiveFilterWidth,c=o-1-e.padInfo.front,p=u-1-e.padInfo.top,d=l-1-e.padInfo.left,h=o*u*l-1;this.userCode=`
|
|
const ivec3 pads = ivec3(${c}, ${p}, ${d});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyDCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
// Convolve dy(?, ?, ?, ch) with pos mask(:, :, :, d) to get
|
|
// dx(xD, xR, xC, ch).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int wD = 0; wD < ${o};
|
|
wD += ${r}) {
|
|
float dyD = float(dyDCorner + wD) / ${t}.0;
|
|
|
|
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyD = int(dyD);
|
|
|
|
for (int wR = 0; wR < ${u};
|
|
wR += ${a}) {
|
|
float dyR = float(dyRCorner + wR) / ${n}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${l};
|
|
wC += ${i}) {
|
|
float dyC = float(dyCCorner + wC) / ${s}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
|
|
int maxPosValue = ${h} -
|
|
int(getMaxPos(batch, idyD, idyR, idyC, ch));
|
|
|
|
// Get the current value, check it against the value from the
|
|
// position matrix.
|
|
int curPosValue =
|
|
wD * ${u} * ${l} +
|
|
wR * ${l} + wC;
|
|
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
|
|
|
|
dotProd += dyValue * mask;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function s7(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,i=a,{filterSize:o,strides:u,pad:l,dimRoundingMode:c}=s,p=[1,1,1],d=S.computePool3DInfo(i.shape,o,u,p,l,c),h=new Cv(d,"max",!0),f=n.runWebGLProgram(h,[i],i.dtype),m=new n7(d),g=n.runWebGLProgram(m,[r,f],i.dtype);return n.disposeIntermediateTensorInfo(f),g}var r7={kernelName:Cg,backendName:"webgl",kernelFunc:s7};function a7(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a,output:i}=t,o=a;su([a,i],"maxPoolGrad");let{filterSize:u,strides:l,pad:c,dimRoundingMode:p}=s,d=S.computePool2DInfo(o.shape,u,l,1,c,p),h=!0,f=new nl(d,"max",h),m=n.runWebGLProgram(f,[o],o.dtype),g=new t7(d),b=n.runWebGLProgram(g,[r,m],o.dtype);return n.disposeIntermediateTensorInfo(m),b}var i7={kernelName:Sg,backendName:"webgl",kernelFunc:a7};function o7(e,t,n,s){let r=new nl(n,"max",!1),a=s.runWebGLProgram(r,[e],"float32");r=new nl(n,"max",!0,!0,t);let i=s.runWebGLProgram(r,[e],"float32");return[a,i]}var u7={kernelName:Ng,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:s}=e,{filterSize:r,strides:a,pad:i,includeBatchInIndex:o}=t,u=n;w.assert(s.shape.length===4,()=>`Error in maxPool: input must be rank 4 but got rank ${s.shape.length}.`);let l=[1,1];w.assert(S.eitherStridesOrDilationsAreOne(a,l),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${a} and dilations '${l}'`);let c=S.computePool2DInfo(s.shape,r,a,l,i),[p,d]=o7(s,o,c,u);return[p,d]}};function l7(e,t,n,s){let r=w.sizeFromShape(t),i=w.sizeFromShape(e.shape)/r,o=he({inputs:{x:e},attrs:{shape:[i,r]},backend:s}),u=Ii(o,"float32","mean",s),l=he({inputs:{x:u},attrs:{shape:n},backend:s});return s.disposeIntermediateTensorInfo(o),s.disposeIntermediateTensorInfo(u),l}var c7={kernelName:Ka,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:s}=e,{keepDims:r,axis:a}=t,i=n,o=s.shape.length,u=w.parseAxisParam(a,s.shape),l=u,c=S.getAxesPermutation(l,o),p=c!=null,d=i.shouldExecuteOnCPU([s]),h=[],f=s;if(p){if(d){let x=i.texData.get(f.dataId).values,k=new Array(o);for(let E=0;E<k.length;E++)k[E]=s.shape[c[E]];let T=Iv(x,s.shape,s.dtype,c,k);f=i.makeTensorInfo(k,s.dtype);let N=i.texData.get(f.dataId);N.values=T}else f=Qp(s,c,i);h.push(f),l=S.getInnerMostAxes(l.length,o)}S.assertAxesAreInnerMostDims("sum",l,o);let[m,g]=S.computeOutAndReduceShapes(f.shape,l),b=m;r&&(b=S.expandShapeToKeepDim(m,u));let y=l7(f,g,b,i);for(let v of h)i.disposeIntermediateTensorInfo(v);return y}};function d7(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:i}=s,o=r.shape.length,u=w.parseAxisParam(a,r.shape),l=u,c=S.getAxesPermutation(l,o),p=r;c!=null&&(p=qt({inputs:{x:r},backend:n,attrs:{perm:c}}),l=S.getInnerMostAxes(l.length,r.shape.length)),S.assertAxesAreInnerMostDims("min",l,o);let[d,h]=S.computeOutAndReduceShapes(p.shape,l),f=w.sizeFromShape(h),m=he({inputs:{x:p},backend:n,attrs:{shape:[-1,f]}}),g=Ii(m,m.dtype,"min",n),b;if(i){let y=S.expandShapeToKeepDim(d,u);b=he({inputs:{x:g},backend:n,attrs:{shape:y}})}else b=he({inputs:{x:g},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(g),c!=null&&n.disposeIntermediateTensorInfo(p),b}var p7={kernelName:Xa,backendName:"webgl",kernelFunc:d7},h7=G1+`
|
|
return min(a, b);
|
|
`,f7=`
|
|
vec4 result = vec4(min(a, b));
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+Xp+`
|
|
return result;
|
|
`,m7=jt({opSnippet:h7,packedOpSnippet:f7,cpuKernelImpl:uX}),g7={kernelName:Ya,backendName:"webgl",kernelFunc:m7},b7=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=t.map((l,c)=>l[0]+e[c]+l[1]);let s=e.length,r=rt(s),a=t.map(l=>l[0]).join(","),i=t.map((l,c)=>l[0]+e[c]).join(","),o=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,s),u=n==="reflect"?0:1;if(s===1){this.userCode=`
|
|
int start = ${a};
|
|
int end = ${i};
|
|
|
|
void main() {
|
|
int outC = getOutputCoords();
|
|
if (outC < start) {
|
|
outC = start * 2 - outC - ${u};
|
|
} else if(outC >= end) {
|
|
outC = (end - 1) * 2 - outC + ${u};
|
|
}
|
|
setOutput(getX(outC - start));
|
|
}
|
|
`;return}this.userCode=`
|
|
${r} start = ${r}(${a});
|
|
${r} end = ${r}(${i});
|
|
|
|
void main() {
|
|
${r} outC = getOutputCoords();
|
|
for (int i = 0; i < ${s}; i++) {
|
|
if (outC[i] < start[i]) {
|
|
outC[i] = start[i] * 2 - outC[i] - ${u};
|
|
} else if(outC[i] >= end[i]) {
|
|
outC[i] = (end[i] - 1) * 2 - outC[i] + ${u};
|
|
}
|
|
}
|
|
${r} coords = outC - start;
|
|
setOutput(getX(${o}));
|
|
}
|
|
`}},y7=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((h,f)=>h[0]+e[f]+h[1]);let s=e.length,r=rt(s),a=t.map(h=>h[0]).join(","),i=t.map((h,f)=>h[0]+e[f]).join(","),o=ln("rc",s),u=ln("source",s),l=`${o[s-1]} < ${this.outputShape[s-1]}`,c=s===1?"source":`vec2(${u.slice(-2).join()})`,p=n==="reflect"?0:1,d="";if(s===1){let h=`
|
|
${r} source = rc;
|
|
if (source < start) {
|
|
source = start * 2 - source - ${p};
|
|
} else if (source >= end) {
|
|
source = (end - 1) * 2 - source + ${p};
|
|
}
|
|
source -= start;
|
|
`;d=`
|
|
${r} rc = outputLoc;
|
|
${h}
|
|
result[0] = getChannel(getX(${u.join()}), ${c});
|
|
${o[s-1]} += 1;
|
|
if(${l}) {
|
|
${h}
|
|
result[1] = getChannel(getX(${u.join()}), ${c});
|
|
}
|
|
`}else{let h=`
|
|
${r} source = rc;
|
|
${r} lt = ${r}(lessThan(source, start));
|
|
${r} gte = ${r}(greaterThanEqual(source, end));
|
|
${r} orig = 1 - (lt + gte);
|
|
source = orig * source +
|
|
lt * (start * 2 - source - ${p}) +
|
|
gte * ((end - 1) * 2 - source + ${p});
|
|
source -= start;
|
|
`;d=`
|
|
${r} rc = outputLoc;
|
|
${h}
|
|
result[0] = getChannel(getX(${u.join()}), ${c});
|
|
${o[s-1]} += 1;
|
|
if(${l}) {
|
|
${h}
|
|
result[1] = getChannel(getX(${u.join()}), ${c});
|
|
}
|
|
rc = outputLoc;
|
|
${o[s-2]} += 1;
|
|
if(${o[s-2]} < ${this.outputShape[s-2]}) {
|
|
${h}
|
|
result[2] = getChannel(getX(${u.join()}), ${c});
|
|
${o[s-1]} += 1;
|
|
if(${l}) {
|
|
${h}
|
|
result[3] = getChannel(getX(${u.join()}), ${c});
|
|
}
|
|
}
|
|
`}this.userCode=`
|
|
const ${r} start = ${r}(${a});
|
|
const ${r} end = ${r}(${i});
|
|
|
|
void main() {
|
|
${r} outputLoc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
${d}
|
|
setOutput(result);
|
|
}
|
|
`}},v7=({inputs:e,backend:t,attrs:n})=>{let{x:s}=e,{paddings:r,mode:a}=n,i=X().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new y7(s.shape,r,a):new b7(s.shape,r,a);return t.runWebGLProgram(i,[s],s.dtype)},x7={kernelName:Qa,backendName:"webgl",kernelFunc:v7},w7=`if (b == 0.0) return NAN;
|
|
return mod(a, b);`,k7=`
|
|
vec4 result = mod(a, b);
|
|
vec4 isNaN = vec4(equal(b, vec4(0.0)));
|
|
`+Xp+`
|
|
return result;
|
|
`,I7=jt({opSnippet:w7,packedOpSnippet:k7}),S7={kernelName:wl,backendName:"webgl",kernelFunc:I7},C7=class{constructor(e,t,n){this.variableNames=["probs"],this.customUniforms=[{name:"seed",type:"float"}],this.outputShape=[e,n],this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
|
|
float r = random(seed);
|
|
float cdf = 0.0;
|
|
|
|
for (int i = 0; i < ${t-1}; i++) {
|
|
cdf += getProbs(batch, i);
|
|
|
|
if (r < cdf) {
|
|
setOutput(float(i));
|
|
return;
|
|
}
|
|
}
|
|
|
|
// If no other event happened, last event happened.
|
|
setOutput(float(${t-1}));
|
|
}
|
|
`}},N7=`
|
|
if (a == b) {
|
|
return 1.0;
|
|
};
|
|
return a / b;`,T7=`
|
|
// vec4 one = vec4(equal(a, b));
|
|
// return one + (vec4(1.0) - one) * a / b;
|
|
vec4 result = a / b;
|
|
if(a.x == b.x) {
|
|
result.x = 1.;
|
|
}
|
|
if(a.y == b.y) {
|
|
result.y = 1.;
|
|
}
|
|
if(a.z == b.z) {
|
|
result.z = 1.;
|
|
}
|
|
if(a.w == b.w) {
|
|
result.w = 1.;
|
|
}
|
|
|
|
return result;
|
|
`,d2=jt({opSnippet:N7,packedOpSnippet:T7,checkOutOfBounds:!0}),$7={kernelName:Oa,backendName:"webgl",kernelFunc:d2},Tw="return a - b;",p2=jt({opSnippet:Tw,packedOpSnippet:Tw,supportsComplex:!0,cpuKernelImpl:SX}),_7={kernelName:hi,backendName:"webgl",kernelFunc:p2};function h2(e){let{inputs:t,backend:n,attrs:s}=e,{logits:r}=t,{dim:a}=s,i=w.parseAxisParam([a],r.shape),o=c2({inputs:{x:r},backend:n,attrs:{reductionIndices:i,keepDims:!1}}),u=S.expandShapeToKeepDim(o.shape,i),l=he({inputs:{x:o},backend:n,attrs:{shape:u}}),c=p2({inputs:{a:r,b:l},backend:n}),p=o2({inputs:{x:c},backend:n}),d=Zp({inputs:{x:p},backend:n,attrs:{axis:i,keepDims:!1}}),h=he({inputs:{x:d},backend:n,attrs:{shape:u}}),f=d2({inputs:{a:p,b:h},backend:n});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(l),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(h),f}var A7={kernelName:di,backendName:"webgl",kernelFunc:h2};function E7(e){let{inputs:t,backend:n,attrs:s}=e,{logits:r}=t,{numSamples:a,seed:i,normalized:o}=s,u=o?r:h2({inputs:{logits:r},backend:n,attrs:{dim:r.shape.length-1}}),l=u.shape[0],c=u.shape[1],p=new C7(l,c,a),d=[[i]],h=n.runWebGLProgram(p,[u],"int32",d);return o||n.disposeIntermediateTensorInfo(u),h}var R7={kernelName:Tg,backendName:"webgl",kernelFunc:E7},D7=ss+`
|
|
return -x;
|
|
`,F7=`
|
|
vec4 result = -x;
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`;function O7(e){let{inputs:t,backend:n}=e,{x:s}=t;if(n.shouldExecuteOnCPU([s])){let a=n.texData.get(s.dataId),[i,o]=cX(a.values,s.shape,s.dtype);return n.makeTensorInfo(o,s.dtype,i)}let r;return X().getBool("WEBGL_PACK_UNARY_OPERATIONS")?r=new Jr(s.shape,F7):r=new Hs(s.shape,D7),n.runWebGLProgram(r,[s],s.dtype)}var P7={kernelName:Co,backendName:"webgl",kernelFunc:O7},z7=xs.nonMaxSuppressionV3Impl;function M7(e){S.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:u}=s,l=n.readSync(r.dataId),c=n.readSync(a.dataId),{selectedIndices:p}=z7(l,c,i,o,u);return n.makeTensorInfo([p.length],"int32",new Int32Array(p))}var L7={kernelName:To,backendName:"webgl",kernelFunc:M7},B7=xs.nonMaxSuppressionV4Impl;function V7(e){S.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:u,padToMaxOutputSize:l}=s,c=n.readSync(r.dataId),p=n.readSync(a.dataId),{selectedIndices:d,validOutputs:h}=B7(c,p,i,o,u,l);return[n.makeTensorInfo([d.length],"int32",new Int32Array(d)),n.makeTensorInfo([],"int32",new Int32Array([h]))]}var W7={kernelName:kl,backendName:"webgl",kernelFunc:V7},U7=xs.nonMaxSuppressionV5Impl;function G7(e){S.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:u,softNmsSigma:l}=s,c=n.readSync(r.dataId),p=n.readSync(a.dataId),d=i,h=o,f=u,m=l,{selectedIndices:g,selectedScores:b}=U7(c,p,d,h,f,m);return[n.makeTensorInfo([g.length],"int32",new Int32Array(g)),n.makeTensorInfo([b.length],"float32",new Float32Array(b))]}var H7={kernelName:$o,backendName:"webgl",kernelFunc:G7},q7=class{constructor(e,t,n,s){this.variableNames=["indices"],this.outputShape=[e,t],this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int index = round(getIndices(coords.x));
|
|
setOutput(mix(float(${s}), float(${n}),
|
|
float(index == coords.y)));
|
|
}
|
|
`}},j7=e=>{let{inputs:t,backend:n,attrs:s}=e,{indices:r}=t,{depth:a,onValue:i,offValue:o}=s,u=w.sizeFromShape(r.shape),l=new q7(u,a,i,o),c=he({inputs:{x:r},backend:n,attrs:{shape:[u]}}),p=n.runWebGLProgram(l,[c],r.dtype);n.disposeIntermediateTensorInfo(c);let d=[...r.shape,a],h=he({inputs:{x:p},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(p),h},K7={kernelName:Ao,backendName:"webgl",kernelFunc:j7};function Bd(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="complex64"){let r=Jl({inputs:{input:s},backend:n}),a=Bd({inputs:{x:r},backend:n}),i=Jp({inputs:{input:s},backend:n}),o=Bd({inputs:{x:i},backend:n}),u=Dr({inputs:{real:a,imag:o},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),u}else return ec({attrs:{shape:s.shape,dtype:s.dtype,value:s.dtype==="string"?"":0},backend:n})}var X7={kernelName:qo,backendName:"webgl",kernelFunc:Bd};function f2(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="string")throw new Error("onesLike is not supported under string dtype");if(s.dtype==="complex64"){let r=Jl({inputs:{input:s},backend:n}),a=f2({inputs:{x:r},backend:n}),i=Jp({inputs:{input:s},backend:n}),o=Bd({inputs:{x:i},backend:n}),u=Dr({inputs:{real:a,imag:o},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),u}else return ec({attrs:{shape:s.shape,dtype:s.dtype,value:1},backend:n})}var Y7={kernelName:_o,backendName:"webgl",kernelFunc:f2};function Q7(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s;if(t.length===1)return Km({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let a=t[0].shape,i=t[0].dtype;t.forEach(c=>{w.assertShapesMatch(a,c.shape,"All tensors passed to stack must have matching shapes"),w.assert(i===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],u=t.map(c=>{let p=Km({inputs:{input:c},backend:n,attrs:{dim:r}});return o.push(p),p}),l=t2({inputs:u,backend:n,attrs:{axis:r}});return o.forEach(c=>n.disposeIntermediateTensorInfo(c)),l}var Z7={kernelName:Eo,backendName:"webgl",kernelFunc:Q7},J7=class{constructor(e,t,n){this.variableNames=["x"],this.customUniforms=[{name:"value",type:"float"}],this.outputShape=t.map((u,l)=>u[0]+e[l]+u[1]);let s=e.length,r=rt(s),a=t.map(u=>u[0]).join(","),i=t.map((u,l)=>u[0]+e[l]).join(","),o=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,s);if(s===1){this.userCode=`
|
|
int start = ${a};
|
|
int end = ${i};
|
|
|
|
void main() {
|
|
int outC = getOutputCoords();
|
|
if (outC < start || outC >= end) {
|
|
setOutput(value);
|
|
} else {
|
|
setOutput(getX(outC - start));
|
|
}
|
|
}
|
|
`;return}this.userCode=`
|
|
${r} start = ${r}(${a});
|
|
${r} end = ${r}(${i});
|
|
|
|
void main() {
|
|
${r} outC = getOutputCoords();
|
|
if (any(lessThan(outC, start)) || any(greaterThanEqual(outC, end))) {
|
|
setOutput(value);
|
|
} else {
|
|
${r} coords = outC - start;
|
|
setOutput(getX(${o}));
|
|
}
|
|
}
|
|
`}},eJ=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"value",type:"float"}],this.outputShape=t.map((f,m)=>f[0]+e[m]+f[1]);let s=e.length,r=rt(s),a=t.map(f=>f[0]).join(","),i=t.map((f,m)=>f[0]+e[m]).join(","),o=ln("rc",s),u=ln("source",s),l=`${o[s-1]} < ${this.outputShape[s-1]}`,c=s===1?"source":`vec2(${u.slice(-2).join()})`,p=[`${r} rc = outputLoc;`,`${o[s-1]} += 1;
|
|
if(${l}) {
|
|
`,s===1?"":`}
|
|
rc = outputLoc;
|
|
${o[s-2]} += 1;
|
|
if(${o[s-2]} < ${this.outputShape[s-2]}) {`,s===1?"":` ${o[s-1]} += 1;
|
|
if(${l}) {`],d=s===1?"rc < start || rc >= end":"any(lessThan(rc, start)) || any(greaterThanEqual(rc, end))",h="";for(let f=0,m=s===1?2:4;f<m;f++)h+=`
|
|
${p[f]}
|
|
if (${d}) {
|
|
result[${f}] = float(value);
|
|
} else {
|
|
${r} source = rc - start;
|
|
result[${f}] = getChannel(getX(${u.join()}), ${c});
|
|
}
|
|
`;h+=s===1?"} ":"}}",this.userCode=`
|
|
const ${r} start = ${r}(${a});
|
|
const ${r} end = ${r}(${i});
|
|
|
|
void main() {
|
|
${r} outputLoc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
${h}
|
|
setOutput(result);
|
|
}
|
|
`}},m2=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{paddings:a,constantValue:i}=s;if(w.sizeFromShape(r.shape)===0){let l=a.map((c,p)=>c[0]+r.shape[p]+c[1]);return ec({backend:n,attrs:{shape:l,value:i,dtype:r.dtype}})}let o=X().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new eJ(r.shape,a,i):new J7(r.shape,a,i),u=[[i]];return n.runWebGLProgram(o,[r],r.dtype,u)},tJ={kernelName:Ja,backendName:"webgl",kernelFunc:m2},nJ=`
|
|
if(a < 0.0 && floor(b) < b){
|
|
return NAN;
|
|
}
|
|
if (b == 0.0) {
|
|
return 1.0;
|
|
}
|
|
return (round(mod(b, 2.0)) != 1) ?
|
|
pow(abs(a), b) : sign(a) * pow(abs(a), b);
|
|
`,sJ=`
|
|
// isModRound1 has 1 for components with round(mod(b, 2.0)) == 1, 0 otherwise.
|
|
vec4 isModRound1 = vec4(equal(round(mod(b, 2.0)), ivec4(1)));
|
|
vec4 multiplier = sign(a) * isModRound1 + (vec4(1.0) - isModRound1);
|
|
vec4 result = multiplier * pow(abs(a), b);
|
|
|
|
// Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS
|
|
bvec4 isExpZero = equal(b, vec4(0.0));
|
|
result.r = isExpZero.r ? 1.0 : result.r;
|
|
result.g = isExpZero.g ? 1.0 : result.g;
|
|
result.b = isExpZero.b ? 1.0 : result.b;
|
|
result.a = isExpZero.a ? 1.0 : result.a;
|
|
|
|
vec4 isNaN = vec4(lessThan(a, vec4(0.0))) * vec4(lessThan(floor(b), b));
|
|
`+Xp+`
|
|
return result;
|
|
`,rJ=jt({opSnippet:nJ,packedOpSnippet:sJ}),aJ={kernelName:ei,backendName:"webgl",kernelFunc:rJ};function iJ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:i}=s,o=r.shape.length,u=[],l=w.parseAxisParam(a,r.shape),c=l,p=S.getAxesPermutation(c,o),d=r;p!=null&&(d=qt({inputs:{x:r},backend:n,attrs:{perm:p}}),c=S.getInnerMostAxes(c.length,o),u.push(d)),S.assertAxesAreInnerMostDims("prod",c,o);let h;if(n.shouldExecuteOnCPU([d])){let f=n.texData.get(d.dataId).values,{outVals:m,outShape:g,outDtype:b}=pX(d.shape,d.dtype,f,c);h=n.makeTensorInfo(g,b,m)}else{let[f,m]=S.computeOutAndReduceShapes(d.shape,c),g=w.sizeFromShape(m),b=he({inputs:{x:d},backend:n,attrs:{shape:[-1,g]}}),y=pp(r.dtype),v=Ii(b,y,"prod",n);h=he({inputs:{x:v},backend:n,attrs:{shape:f}}),u.push(b),u.push(v)}if(i){u.push(h);let f=S.expandShapeToKeepDim(h.shape,l);h=he({inputs:{x:h},backend:n,attrs:{shape:f}})}return u.forEach(f=>n.disposeIntermediateTensorInfo(f)),h}var oJ={kernelName:ni,backendName:"webgl",kernelFunc:iJ},g2=e=>{let{backend:t,attrs:n}=e,{start:s,stop:r,step:a,dtype:i}=n,o=hX(s,r,a,i);return t.makeTensorInfo([o.length],i,o)},uJ={kernelName:Il,backendName:"webgl",kernelFunc:g2},lJ="return 1.0 / x;",cJ=Ke({opSnippet:lJ}),dJ={kernelName:Sl,backendName:"webgl",kernelFunc:cJ},pJ=ss+`
|
|
return (x < 0.0) ? 0.0 : x;
|
|
`,hJ=`
|
|
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,fJ=Ke({opSnippet:pJ,packedOpSnippet:hJ}),mJ={kernelName:si,backendName:"webgl",kernelFunc:fJ},gJ=ss+`
|
|
return (x < 0.0) ? 0.0 : min(6.0, x);
|
|
`,bJ=`
|
|
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,yJ=Ke({opSnippet:gJ,packedOpSnippet:bJ}),vJ={kernelName:ai,backendName:"webgl",kernelFunc:yJ},xJ=class{constructor(e,t,n,s,r){this.variableNames=["A"],this.outputShape=[];let[a,i,o,u]=e;this.outputShape=[a,t,n,u];let l=[s&&t>1?i-1:i,s&&n>1?o-1:o],c=[s&&t>1?t-1:t,s&&n>1?n-1:n],p;r?p="(vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC - vec2(0.5)":p="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec2 effectiveInputOverOutputRatioRC = vec2(
|
|
${l[0]/c[0]},
|
|
${l[1]/c[1]});
|
|
const vec2 inputShapeRC = vec2(${i}.0, ${o}.0);
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
ivec2 yRC = coords.yz;
|
|
|
|
// Fractional source index.
|
|
vec2 sourceFracIndexRC = ${p};
|
|
|
|
// Compute the four integer indices.
|
|
ivec2 sourceFloorRC = ivec2(max(sourceFracIndexRC, vec2(0.0)));
|
|
ivec2 sourceCeilRC = ivec2(
|
|
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
|
|
|
|
float topLeft = getA(b, sourceFloorRC.x, sourceFloorRC.y, d);
|
|
float bottomLeft = getA(b, sourceCeilRC.x, sourceFloorRC.y, d);
|
|
float topRight = getA(b, sourceFloorRC.x, sourceCeilRC.y, d);
|
|
float bottomRight = getA(b, sourceCeilRC.x, sourceCeilRC.y, d);
|
|
|
|
vec2 fracRC = sourceFracIndexRC - vec2(sourceFloorRC);
|
|
|
|
float top = topLeft + (topRight - topLeft) * fracRC.y;
|
|
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracRC.y;
|
|
float newValue = top + (bottom - top) * fracRC.x;
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}},wJ=class{constructor(e,t,n,s,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[a,i,o,u]=e;this.outputShape=[a,t,n,u];let l=[s&&t>1?i-1:i,s&&n>1?o-1:o],c=[s&&t>1?t-1:t,s&&n>1?n-1:n],p;r?p="(vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC - vec3(0.5)":p="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec3 effectiveInputOverOutputRatioRC = vec3(
|
|
${l[0]/c[0]},
|
|
${l[1]/c[1]},
|
|
${l[1]/c[1]});
|
|
const vec3 inputShapeRC = vec3(${i}.0, ${o}.0,
|
|
${o}.0);
|
|
|
|
float getAValue(int b, int r, int c, int d) {
|
|
return getChannel(getA(b, r, c, d), vec2(c, d));
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
// Calculate values for next column in yRC.z.
|
|
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
|
|
|
|
// Fractional source index.
|
|
vec3 sourceFracIndexRC = ${p};
|
|
|
|
// Compute the four integer indices.
|
|
ivec3 sourceFloorRC = ivec3(max(sourceFracIndexRC, vec3(0.0)));
|
|
ivec3 sourceCeilRC = ivec3(
|
|
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
|
|
|
|
// Should we calculate next column and row elements in 2x2 packed cell.
|
|
bool hasNextCol = d < ${u-1};
|
|
bool hasNextRow = coords.z < ${n-1};
|
|
|
|
// In parallel, construct four corners for all four components in
|
|
// packed 2x2 cell.
|
|
vec4 topLeft = vec4(
|
|
getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d + 1) : 0.0);
|
|
|
|
vec4 bottomLeft = vec4(
|
|
getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d + 1) : 0.0);
|
|
|
|
vec4 topRight = vec4(
|
|
getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d + 1) : 0.0);
|
|
|
|
vec4 bottomRight = vec4(
|
|
getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d + 1) : 0.0);
|
|
|
|
vec3 fracRC = sourceFracIndexRC - vec3(sourceFloorRC);
|
|
|
|
vec4 top = mix(topLeft, topRight, fracRC.yyzz);
|
|
vec4 bottom = mix(bottomLeft, bottomRight, fracRC.yyzz);
|
|
vec4 newValue = mix(top, bottom, fracRC.x);
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}};function kJ(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,halfPixelCenters:i,size:o}=s,[u,l]=o,c=X().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new wJ(r.shape,u,l,a,i):new xJ(r.shape,u,l,a,i);return n.runWebGLProgram(c,[r],"float32")}var IJ={kernelName:ri,backendName:"webgl",kernelFunc:kJ},SJ=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,s,r]=t,[,a,i]=e,o=[n&&a>1?s-1:s,n&&i>1?r-1:r],u=[n&&a>1?a-1:a,n&&i>1?i-1:i],l=o[0]/u[0],c=o[1]/u[1],p=1/l,d=1/c,h=Math.ceil(p)*2+2,f=Math.ceil(d)*2+2;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float accumulator = 0.0;
|
|
|
|
const float heightScale = float(${l});
|
|
const float widthScale = float(${c});
|
|
|
|
const float invHeightScale = float(${p});
|
|
const float invWidthScale = float(${d});
|
|
|
|
const int winHeight = int(${h});
|
|
const int winWidth = int(${f});
|
|
|
|
// Compute bounds for where in dy we will look
|
|
float startRLerp = floor(float(r) * invHeightScale);
|
|
int startDyR = int(startRLerp - float(winHeight / 2));
|
|
|
|
float startCLerp = floor(float(c) * invWidthScale);
|
|
int startDyC = int(startCLerp - float(winWidth / 2));
|
|
|
|
// Loop over dy
|
|
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
|
|
int dyR = dyROffset + startDyR;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyR < 0 || dyR >= ${a}) {
|
|
continue;
|
|
}
|
|
|
|
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
|
|
int dyC = dyCOffset + startDyC;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyC < 0 || dyC >= ${i}) {
|
|
continue;
|
|
}
|
|
|
|
float dxR = float(dyR) * heightScale;
|
|
int topDxRIndex = int(floor(dxR));
|
|
int bottomDxRIndex = int(min(ceil(dxR), ${s-1}.0));
|
|
float dxRLerp = dxR - float(topDxRIndex);
|
|
float inverseDxRLerp = 1.0 - dxRLerp;
|
|
|
|
float dxC = float(dyC) * widthScale;
|
|
int leftDxCIndex = int(floor(dxC));
|
|
int rightDxCIndex = int(min(ceil(dxC), ${r-1}.0));
|
|
float dxCLerp = dxC - float(leftDxCIndex);
|
|
float inverseDxCLerp = 1.0 - dxCLerp;
|
|
|
|
if (r == topDxRIndex && c == leftDxCIndex) {
|
|
// topLeft
|
|
accumulator +=
|
|
getDy(b, dyR, dyC, d) * inverseDxRLerp * inverseDxCLerp;
|
|
}
|
|
|
|
if (r == topDxRIndex && c == rightDxCIndex) {
|
|
// topRight
|
|
accumulator += getDy(b, dyR, dyC, d) * inverseDxRLerp * dxCLerp;
|
|
}
|
|
|
|
if (r == bottomDxRIndex && c == leftDxCIndex) {
|
|
// bottomLeft
|
|
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * inverseDxCLerp;
|
|
}
|
|
|
|
if (r == bottomDxRIndex && c == rightDxCIndex) {
|
|
// bottomRight
|
|
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * dxCLerp;
|
|
}
|
|
}
|
|
}
|
|
// End loop over dy
|
|
|
|
setOutput(accumulator);
|
|
}
|
|
`}};function CJ(e){let{inputs:t,backend:n,attrs:s}=e,{images:r,dy:a}=t,{alignCorners:i}=s,o=new SJ(a.shape,r.shape,i);return n.runWebGLProgram(o,[a],a.dtype)}var NJ={kernelName:_g,backendName:"webgl",kernelFunc:CJ},TJ=class{constructor(e,t,n,s,r){this.variableNames=["A"],this.outputShape=[];let[a,i,o,u]=e;this.outputShape=[a,t,n,u];let l=[s&&t>1?i-1:i,s&&n>1?o-1:o],c=[s&&t>1?t-1:t,s&&n>1?n-1:n],p=s?"0.5":"0.0",d;r?d="max((vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC, vec2(0.0))":d="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec2 effectiveInputOverOutputRatioRC = vec2(
|
|
${l[0]/c[0]},
|
|
${l[1]/c[1]});
|
|
const vec2 inputShapeRC = vec2(${i}.0, ${o}.0);
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
ivec2 yRC = coords.yz;
|
|
|
|
// Fractional source index.
|
|
vec2 sourceFracIndexRC = ${d};
|
|
|
|
// Compute the coordinators of nearest neighbor point.
|
|
ivec2 sourceNearestRC = ivec2(
|
|
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${p})));
|
|
float newValue = getA(b, sourceNearestRC.x, sourceNearestRC.y, d);
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}},$J=class{constructor(e,t,n,s,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[a,i,o,u]=e;this.outputShape=[a,t,n,u];let l=[s&&t>1?i-1:i,s&&n>1?o-1:o],c=[s&&t>1?t-1:t,s&&n>1?n-1:n],p=s?"0.5":"0.0",d;r?d="max((vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC, vec3(0.0))":d="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec3 effectiveInputOverOutputRatioRC = vec3(
|
|
${l[0]/c[0]},
|
|
${l[1]/c[1]},
|
|
${l[1]/c[1]});
|
|
const vec3 inputShapeRC = vec3(${i}.0, ${o}.0,
|
|
${o}.0);
|
|
|
|
float getAValue(int b, int r, int c, int d) {
|
|
return getChannel(getA(b, r, c, d), vec2(c, d));
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
// Calculate values for next column in yRC.z.
|
|
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
|
|
|
|
// Fractional source index.
|
|
vec3 sourceFracIndexRC = ${d};
|
|
|
|
// Compute the coordinators of nearest neighbor point.
|
|
ivec3 sourceNearestRC = ivec3(
|
|
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${p})));
|
|
|
|
// Should we calculate next column and row elements in 2x2 packed cell.
|
|
bool hasNextCol = d < ${u-1};
|
|
bool hasNextRow = coords.z < ${n-1};
|
|
|
|
vec4 newValue = vec4(
|
|
getAValue(b, sourceNearestRC.x, sourceNearestRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceNearestRC.x, sourceNearestRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceNearestRC.x, sourceNearestRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceNearestRC.x, sourceNearestRC.z, d + 1) : 0.0);
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}};function _J(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,halfPixelCenters:i,size:o}=s,[u,l]=o,c=X().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new $J(r.shape,u,l,a,i):new TJ(r.shape,u,l,a,i);return n.runWebGLProgram(c,[r],r.dtype)}var AJ={kernelName:Cl,backendName:"webgl",kernelFunc:_J},EJ=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,s,r]=t,[,a,i]=e,o=[n&&a>1?s-1:s,n&&i>1?r-1:r],u=[n&&a>1?a-1:a,n&&i>1?i-1:i],l=o[0]/u[0],c=o[1]/u[1],p=1/l,d=1/c,h=Math.ceil(p)*2+2,f=Math.ceil(d)*2+2;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float accumulator = 0.0;
|
|
|
|
const float heightScale = float(${l});
|
|
const float widthScale = float(${c});
|
|
|
|
const float invHeightScale = float(${p});
|
|
const float invWidthScale = float(${d});
|
|
|
|
const int winHeight = int(${h});
|
|
const int winWidth = int(${f});
|
|
|
|
// Compute bounds for where in dy we will look
|
|
float startRLerp = floor(float(r) * invHeightScale);
|
|
int startDyR = int(floor(startRLerp - float(winHeight / 2)));
|
|
|
|
float startCLerp = floor(float(c) * invWidthScale);
|
|
int startDyC = int(floor(startCLerp - float(winWidth / 2)));
|
|
|
|
// Loop over dy
|
|
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
|
|
int dyR = dyROffset + startDyR;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyR < 0 || dyR >= ${a}) {
|
|
continue;
|
|
}
|
|
|
|
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
|
|
int dyC = dyCOffset + startDyC;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyC < 0 || dyC >= ${i}) {
|
|
continue;
|
|
}
|
|
|
|
float sourceFracRow =
|
|
float(${o[0]}) *
|
|
(float(dyR) / float(${u[0]}));
|
|
|
|
float sourceFracCol =
|
|
float(${o[1]}) *
|
|
(float(dyC) / float(${u[1]}));
|
|
|
|
int sourceNearestRow = int(min(
|
|
float(int(${s}) - 1),
|
|
${n} ? float(round(sourceFracRow)) :
|
|
float(floor(sourceFracRow))));
|
|
|
|
int sourceNearestCol = int(min(
|
|
float(int(${r}) - 1),
|
|
${n} ? float(round(sourceFracCol)) :
|
|
float(floor(sourceFracCol))));
|
|
|
|
if (r == sourceNearestRow && c == sourceNearestCol) {
|
|
accumulator += getDy(b, dyR, dyC, d);
|
|
}
|
|
}
|
|
}
|
|
// End loop over dy
|
|
|
|
setOutput(accumulator);
|
|
}
|
|
`}};function RJ(e){let{inputs:t,backend:n,attrs:s}=e,{images:r,dy:a}=t,{alignCorners:i}=s,o=new EJ(a.shape,r.shape,i);return n.runWebGLProgram(o,[a],a.dtype)}var DJ={kernelName:$g,backendName:"webgl",kernelFunc:RJ},FJ=class{constructor(e,t){this.variableNames=["x"];let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);if(this.outputShape=e,n===1){this.userCode=`
|
|
void main() {
|
|
int coord = getOutputCoords();
|
|
setOutput(getX(${e[0]} - coord - 1));
|
|
}
|
|
`;return}let s=i=>t.indexOf(i)!==-1&&e[i]!==1?`${e[i]} - coords[${i}] - 1`:`coords[${i}]`,r=e.map((i,o)=>s(o)).join(","),a=rt(n);this.userCode=`
|
|
void main() {
|
|
${a} coords = getOutputCoords();
|
|
setOutput(getX(${r}));
|
|
}
|
|
`}},OJ=class{constructor(e,t){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0;let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);this.outputShape=e;let s=ln("rc",n),r=`${s[n-1]} + 1 < ${this.outputShape[n-1]}`,a=`${s[n-2]} + 1 < ${this.outputShape[n-2]}`,i=rt(n);n===1?this.userCode=`
|
|
void main(){
|
|
int rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result.r = getChannel(getX(${e[0]} - rc - 1),
|
|
${e[0]} - rc - 1);
|
|
if(${r}){
|
|
result.g = getChannel(getX(${e[0]} - (rc + 1) - 1),
|
|
${e[0]} - (rc + 1) - 1);
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`:this.userCode=`
|
|
void main() {
|
|
${i} rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result.r = ${o(s.slice())};
|
|
if(${r}){
|
|
result.g = ${u(s.slice())};
|
|
}
|
|
if(${a}) {
|
|
result.b = ${l(s.slice())};
|
|
if(${r}) {
|
|
result.a = ${c(s.slice())};
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`;function o(h){return p(h)}function u(h){return h[n-1]="("+h[n-1]+" + 1)",p(h)}function l(h){return h[n-2]="("+h[n-2]+" + 1)",p(h)}function c(h){return h[n-1]="("+h[n-1]+" + 1)",h[n-2]="("+h[n-2]+" + 1)",p(h)}function p(h){let f=e.map((b,y)=>d(y,h)),m=f.join(","),g=f.slice(-2).join(",");return`getChannel(getX(${m}), vec2(${g}))`}function d(h,f){return t.indexOf(h)!==-1&&e[h]!==1?`${e[h]} - ${f[h]} - 1`:`${f[h]}`}}};function PJ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dims:a}=s,i=r.shape.length,o=w.parseAxisParam(a,r.shape);if(i===0)return kn({inputs:{x:r},backend:n});let u=X().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new OJ(r.shape,o):new FJ(r.shape,o);return n.runWebGLProgram(u,[r],r.dtype)}var zJ={kernelName:Do,backendName:"webgl",kernelFunc:PJ},MJ=class{constructor(e,t){this.variableNames=["Image"],this.outputShape=[],this.customUniforms=[{name:"params",type:"vec4"}];let n=e[1],s=e[2];this.outputShape=e;let r="";typeof t=="number"?r=`float outputValue = ${t.toFixed(2)};`:r=`
|
|
vec3 fill = vec3(${t.join(",")});
|
|
float outputValue = fill[coords[3]];`,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int x = coords[2];
|
|
int y = coords[1];
|
|
float coordXFloat = (float(x) - params[0]) * params[3] -
|
|
(float(y) - params[1]) * params[2];
|
|
float coordYFloat = (float(x) - params[0]) * params[2] +
|
|
(float(y) - params[1]) * params[3];
|
|
int coordX = int(round(coordXFloat + params[0]));
|
|
int coordY = int(round(coordYFloat + params[1]));
|
|
${r}
|
|
if(coordX >= 0 && coordX < ${s} && coordY >= 0 && coordY < ${n}) {
|
|
outputValue = getImage(coords[0], coordY, coordX, coords[3]);
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}},LJ={kernelName:jo,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:s}=e,{radians:r,fillValue:a,center:i}=t,o=n,u=new MJ(s.shape,a),[l,c]=S.getImageCenter(i,s.shape[1],s.shape[2]),p=[[l,c,Math.sin(r),Math.cos(r)]];return o.runWebGLProgram(u,[s],s.dtype,p)}},BJ=`
|
|
// OpenGL ES does not support round function.
|
|
// The algorithm is based on banker's rounding.
|
|
float base = floor(x);
|
|
if ((x - base) < 0.5) {
|
|
return floor(x);
|
|
} else if ((x - base) > 0.5) {
|
|
return ceil(x);
|
|
} else {
|
|
if (mod(base, 2.0) == 0.0) {
|
|
return base;
|
|
} else {
|
|
return base + 1.0;
|
|
}
|
|
}
|
|
`,VJ=Ke({opSnippet:BJ}),WJ={kernelName:Fo,backendName:"webgl",kernelFunc:VJ},UJ="return inversesqrt(x);",GJ=Ke({opSnippet:UJ,cpuKernelImpl:fX}),HJ={kernelName:ii,backendName:"webgl",kernelFunc:GJ},b2=class{constructor(e,t,n,s,r,a,i=!0){this.variableNames=["updates","indices","defaultValue"],this.outputShape=a;let o=rt(r.length),u=rt(a.length),l="";n===1?l="i":n===2&&(l="i, j");let c=`getIndices(${l})`,p="";s===1?p="i":s===2&&(p="i, coords[1]");let d=`getUpdates(${p})`,h=t>1?"strides[j]":"strides";this.userCode=`
|
|
${o} strides = ${o}(${r});
|
|
|
|
void main() {
|
|
${u} coords = getOutputCoords();
|
|
float sum = 0.0;
|
|
bool found = false;
|
|
for (int i = 0; i < ${e}; i++) {
|
|
int flattenedIndex = 0;
|
|
for (int j = 0; j < ${t}; j++) {
|
|
int index = round(${c});
|
|
flattenedIndex += index * ${h};
|
|
}
|
|
if (flattenedIndex == coords[0]) {
|
|
sum += ${d};
|
|
found = true;
|
|
}
|
|
}
|
|
setOutput(mix(getDefaultValue(), sum, float(found)));
|
|
}
|
|
`}};function qJ(e){let{inputs:t,backend:n,attrs:s}=e,{indices:r,updates:a}=t,{shape:i}=s,{sliceRank:o,numUpdates:u,sliceSize:l,strides:c,outputSize:p}=S.calculateShapes(a,r,i),d=[p/l,l];if(p===0)return n.makeTensorInfo(i,r.dtype);let h=he({inputs:{x:r},backend:n,attrs:{shape:[u,o]}}),f=he({inputs:{x:a},backend:n,attrs:{shape:[u,l]}}),m=n.makeTensorInfo([],"float32",new Float32Array([0])),g=new b2(u,o,h.shape.length,f.shape.length,c,d),b=n.runWebGLProgram(g,[f,h,m],f.dtype),y=he({inputs:{x:b},backend:n,attrs:{shape:i}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(b),n.disposeIntermediateTensorInfo(m),y}var jJ={kernelName:Oo,backendName:"webgl",kernelFunc:qJ},KJ=class{constructor(e,t,n){this.variableNames=["c","a","b"],this.outputShape=t;let s,r;if(n>4)throw Error(`Where for rank ${n} is not yet supported`);if(n===1)r="resRC",s="resRC";else{let i=["resRC.x","resRC.y","resRC.z","resRC.w"],o=[],u=[];for(let l=0;l<t.length;l++)u.push(`${i[l]}`),l<e&&o.push(`${i[l]}`);s=o.join(),r=u.join()}let a=rt(n);this.userCode=`
|
|
void main() {
|
|
${a} resRC = getOutputCoords();
|
|
float cVal = getC(${s});
|
|
if (cVal >= 1.0) {
|
|
setOutput(getA(${r}));
|
|
} else {
|
|
setOutput(getB(${r}));
|
|
}
|
|
}
|
|
`}};function XJ(e){let{inputs:t,backend:n}=e,{condition:s,t:r,e:a}=t,i=new KJ(s.shape.length,r.shape,r.shape.length);return n.runWebGLProgram(i,[s,r,a],cn(r.dtype,a.dtype))}var YJ={kernelName:Po,backendName:"webgl",kernelFunc:XJ},QJ=`
|
|
// Stable and Attracting Fixed Point (0, 1) for Normalized Weights.
|
|
// see: https://arxiv.org/abs/1706.02515
|
|
float scaleAlpha = ${S.SELU_SCALEALPHA};
|
|
float scale = ${S.SELU_SCALE};
|
|
return (x >= 0.0) ? scale * x : scaleAlpha * (exp(x) - 1.0);
|
|
`,ZJ=Ke({opSnippet:QJ}),JJ={kernelName:Nl,backendName:"webgl",kernelFunc:ZJ},eee=uu+`
|
|
return 1.0 / (1.0 + exp(-1.0 * x));
|
|
`,tee=`
|
|
vec4 result = 1.0 / (1.0 + exp(-1.0 * x));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,nee=Ke({opSnippet:eee,packedOpSnippet:tee,cpuKernelImpl:mX}),see={kernelName:ui,backendName:"webgl",kernelFunc:nee},ree=`
|
|
if (isnan(x)) { return 0.0; }
|
|
return sign(x);
|
|
`,aee=Ke({opSnippet:ree}),iee={kernelName:Tl,backendName:"webgl",kernelFunc:aee},oee=uu+`
|
|
return sin(x);
|
|
`,uee=Ke({opSnippet:oee}),lee={kernelName:oi,backendName:"webgl",kernelFunc:uee},cee=`
|
|
float e2x = exp(x);
|
|
return (e2x - 1.0 / e2x) / 2.0;
|
|
`,dee=Ke({opSnippet:cee}),pee={kernelName:Mo,backendName:"webgl",kernelFunc:dee},hee=`
|
|
float epsilon = 1.1920928955078125e-7;
|
|
float threshold = log(epsilon) + 2.0;
|
|
|
|
bool too_large = x > -threshold;
|
|
bool too_small = x < threshold;
|
|
|
|
float result;
|
|
float exp_x = exp(x);
|
|
|
|
if (too_large){
|
|
result = x;
|
|
}
|
|
else if (too_small){
|
|
result = exp_x;
|
|
}
|
|
else{
|
|
result = log(exp_x + 1.0);
|
|
}
|
|
return result;
|
|
`,fee=Ke({opSnippet:hee}),mee={kernelName:$l,backendName:"webgl",kernelFunc:fee},gee=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,paddings:i}=s;w.assert(r.shape.length<=4,()=>"spaceToBatchND for rank > 4 with a WebGL backend not implemented yet");let o=a.reduce((b,y)=>b*y),u=[[0,0]];u.push(...i);for(let b=1+a.length;b<r.shape.length;++b)u.push([0,0]);let l=[],c=m2({inputs:{x:r},backend:n,attrs:{paddings:u,constantValue:0}}),p=S.getReshaped(c.shape,a,o,!1),d=S.getPermuted(p.length,a.length,!1),h=S.getReshapedPermuted(c.shape,a,o,!1),f=he({inputs:{x:c},backend:n,attrs:{shape:p}}),m=qt({inputs:{x:f},backend:n,attrs:{perm:d}}),g=he({inputs:{x:m},backend:n,attrs:{shape:h}});return l.push(c),l.push(f),l.push(m),l.forEach(b=>n.disposeIntermediateTensorInfo(b)),g},bee={kernelName:Lo,backendName:"webgl",kernelFunc:gee};function yee(e){let{inputs:t,backend:n}=e,{indices:s,values:r,denseShape:a,defaultValue:i}=t;if(a.shape.length!==1)throw new Error(`Dense shape must be a vector, saw:
|
|
${a.shape}`);if(s.shape.length!==2)throw new Error(`Indices must be a matrix, saw:
|
|
${s.shape}`);if(r.shape.length!==1)throw new Error(`Values must be a vector, saw:
|
|
${r.shape}`);if(i.shape.length!==0)throw new Error(`Default value must be a scalar, saw:
|
|
${i.shape}`);let o=n.readSync(s.dataId),u=n.readSync(r.dataId),l=n.readSync(a.dataId),c=n.readSync(i.dataId)[0],[p,d,h,f,m]=bX(o,s.shape,s.dtype,u,r.dtype,l,c);return[n.makeTensorInfo(d,s.dtype,p),n.makeTensorInfo([d[0]],r.dtype,h),n.makeTensorInfo([f.length],"bool",new Uint8Array(f.map(g=>Number(g)))),n.makeTensorInfo([m.length],s.dtype,new Int32Array(m))]}var vee={kernelName:ap,backendName:"webgl",kernelFunc:yee};function xee(e){let{inputs:t,backend:n}=e,{inputIndices:s,inputShape:r,newShape:a}=t;if(s.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape ${s.shape}`);if(r.shape.length!==1)throw new Error(`Input shape should be a vector but received shape ${r.shape}`);if(a.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${a.shape}`);let i=Array.from(n.readSync(r.dataId)),o=n.readSync(s.dataId),u=Array.from(n.readSync(a.dataId)),[l,c,p]=yX(o,s.shape,s.dtype,i,u);return[n.makeTensorInfo(c,s.dtype,l),n.makeTensorInfo([p.length],a.dtype,new Int32Array(p))]}var wee={kernelName:_l,backendName:"webgl",kernelFunc:xee};function kee(e){let{inputs:t,backend:n}=e,{data:s,indices:r,segmentIds:a}=t;if(s.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
|
|
${r.shape}`);if(a.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
|
|
${a.shape}`);let i=n.readSync(s.dataId),o=n.readSync(r.dataId),u=n.readSync(a.dataId),[l,c]=L1(i,s.shape,s.dtype,o,u,!0);return n.makeTensorInfo(c,s.dtype,l)}var Iee={kernelName:ip,backendName:"webgl",kernelFunc:kee};function See(e){let{inputs:t,backend:n}=e,{data:s,indices:r,segmentIds:a}=t;if(s.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
|
|
${r.shape}`);if(a.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
|
|
${a.shape}`);let i=n.readSync(s.dataId),o=n.readSync(r.dataId),u=n.readSync(a.dataId),[l,c]=L1(i,s.shape,s.dtype,o,u);return n.makeTensorInfo(c,s.dtype,l)}var Cee={kernelName:op,backendName:"webgl",kernelFunc:See};function Nee(e){let{inputs:t,backend:n,attrs:s}=e,{sparseIndices:r,sparseValues:a,defaultValue:i}=t,{outputShape:o}=s,{sliceRank:u,numUpdates:l,strides:c,outputSize:p}=S.calculateShapes(a,r,o),d=!1,h=new b2(l,u,r.shape.length,a.shape.length,c,[p,1],d),f=n.runWebGLProgram(h,[a,r,i],a.dtype),m=he({inputs:{x:f},backend:n,attrs:{shape:o}});return n.disposeIntermediateTensorInfo(f),m}var Tee={kernelName:up,backendName:"webgl",kernelFunc:Nee};function $ee(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{numOrSizeSplits:a,axis:i}=s,o=w.parseAxisParam(i,r.shape)[0],u=S.prepareSplitSize(r,a,o),l=r.shape.length,c=new Array(l).fill(0),p=r.shape.slice();return u.map(d=>{let h=[...p];h[o]=d;let f=lu({inputs:{x:r},backend:n,attrs:{begin:c,size:h}});return c[o]+=d,f})}var _ee={kernelName:Bo,backendName:"webgl",kernelFunc:$ee},$w="return sqrt(x);",Aee=Ke({opSnippet:$w,packedOpSnippet:$w,cpuKernelImpl:vX}),Eee={kernelName:li,backendName:"webgl",kernelFunc:Aee},Ree="return x * x;",Dee=Ke({opSnippet:Ree}),Fee={kernelName:Al,backendName:"webgl",kernelFunc:Dee},_w="return (a - b) * (a - b);",Oee=jt({opSnippet:_w,packedOpSnippet:_w}),Pee={kernelName:pi,backendName:"webgl",kernelFunc:Oee};function zee({inputs:e,attrs:t,backend:n}){let{x:s}=e,r=ss+`
|
|
return x > 0.0 ? 1.0 : float(${t.alpha});
|
|
`,a=new Hs(s.shape,r);return n.runWebGLProgram(a,[s],s.dtype)}var Mee={kernelName:gi,backendName:"webgl",kernelFunc:zee},Lee=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=n;let s=n.length,r=rt(n.length),a=rt(n.length),i="";if(s===1)i="coords * strides + begin";else{let o=0;i=n.map((u,l)=>(o++,n.length===1?`coords * strides[${l}] + begin[${l}]`:`coords[${o-1}] * strides[${l}] + begin[${l}]`)).join(",")}this.userCode=`
|
|
${r} begin = ${r}(${e});
|
|
${r} strides = ${r}(${t});
|
|
|
|
void main() {
|
|
${a} coords = getOutputCoords();
|
|
setOutput(getX(${i}));
|
|
}
|
|
`}};function Bee(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,end:i,strides:o,beginMask:u,endMask:l,ellipsisMask:c,newAxisMask:p,shrinkAxisMask:d}=s,{finalShapeSparse:h,finalShape:f,isIdentity:m,sliceDim0:g,isSimpleSlice:b,begin:y,end:v,strides:x}=wt.sliceInfo(r.shape,a,i,o,u,l,c,p,d),k;if(m)k=he({inputs:{x:r},backend:n,attrs:{shape:f}});else if(g||b){w.assert(r.shape.length>=1,()=>`Input must have rank at least 1, got: ${r.shape.length}`);let N=wt.computeOutShape(y,v,x),E=lu({inputs:{x:r},backend:n,attrs:{begin:y,size:N}});k=he({inputs:{x:E},backend:n,attrs:{shape:f}}),n.disposeIntermediateTensorInfo(E)}else if(n.shouldExecuteOnCPU([r])){let E=n.readSync(r.dataId),A=De(r.shape,r.dtype,E),P=xX(h,A,x,y);k=n.makeTensorInfo(f,r.dtype,P.values)}else{let E=new Lee(y,x,h);k=n.runWebGLProgram(E,[r],r.dtype)}let T=he({inputs:{x:k},backend:n,attrs:{shape:f}});return n.disposeIntermediateTensorInfo(k),T}var Vee={kernelName:Vo,backendName:"webgl",kernelFunc:Bee};function Wee(e){let{inputs:t,backend:n,attrs:s}=e,{separator:r,nGramWidths:a,leftPad:i,rightPad:o,padWidth:u,preserveShortSequences:l}=s,{data:c,dataSplits:p}=t,d=n.readSync(c.dataId),h=n.readSync(p.dataId),[f,m]=wX(d,h,r,a,i,o,u,l);return[n.makeTensorInfo([f.length],"string",f),n.makeTensorInfo(p.shape,"int32",m)]}var Uee={kernelName:lp,backendName:"webgl",kernelFunc:Wee};function Gee(e){let{inputs:t,backend:n,attrs:s}=e,{skipEmpty:r}=s,{input:a,delimiter:i}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(a.shape.length!==1)throw new Error(`Input must be a vector, got shape: ${a.shape}`);if(i.shape.length!==0)throw new Error(`Delimiter must be a scalar, got shape: ${i.shape}`);let o=n.readSync(a.dataId),u=n.readSync(i.dataId)[0],[l,c,p]=kX(o,u,r),d=c.length;return[n.makeTensorInfo([d,2],"int32",l),n.makeTensorInfo([d],"string",c),n.makeTensorInfo([2],"int32",new Int32Array(p))]}var Hee={kernelName:Ag,backendName:"webgl",kernelFunc:Gee};function qee(e){let{inputs:t,backend:n,attrs:s}=e,{numBuckets:r}=s,{input:a}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(r<=0)throw new Error("Number of buckets must be at least 1");let i=n.readSync(a.dataId),o=IX(i,r);return n.makeTensorInfo(a.shape,"int32",o)}var jee={kernelName:Eg,backendName:"webgl",kernelFunc:qee},Kee="return tan(x);",Xee=Ke({opSnippet:Kee}),Yee={kernelName:Wo,backendName:"webgl",kernelFunc:Xee},Qee=`
|
|
float e2x = exp(-2.0 * abs(x));
|
|
return sign(x) * (1.0 - e2x) / (1.0 + e2x);
|
|
`,Zee=Ke({opSnippet:Qee}),Jee={kernelName:fi,backendName:"webgl",kernelFunc:Zee},ete=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let a=0;a<n.length;a++)n[a]=e[a]*t[a];this.outputShape=n,this.rank=n.length;let s=rt(this.rank),r=tte(e);this.userCode=`
|
|
void main() {
|
|
${s} resRC = getOutputCoords();
|
|
setOutput(getA(${r}));
|
|
}
|
|
`}};function tte(e){let t=e.length;if(t>5)throw Error(`Tile for rank ${t} is not yet supported`);if(t===1)return`imod(resRC, ${e[0]})`;let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u"],s=[];for(let r=0;r<e.length;r++)s.push(`imod(${n[r]}, ${e[r]})`);return s.join()}function y2(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reps:a}=s;if(r.dtype==="string"||r.shape.length>5){let u=n.readSync(r.dataId),l=r.dtype==="string"?u.map(d=>w.decodeString(d)):u,c=De(r.shape,r.dtype,l),p=CX(c,a);return n.makeTensorInfo(p.shape,p.dtype,p.values)}let i=new ete(r.shape,a);return n.runWebGLProgram(i,[r],r.dtype)}var nte={kernelName:Nr,backendName:"webgl",kernelFunc:y2},ste=class{constructor(e){this.variableNames=["x","indices"],this.customUniforms=[{name:"n",type:"int"},{name:"firstPass",type:"int"},{name:"negativeInf",type:"float"},{name:"dir",type:"int"},{name:"inc",type:"int"}],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int elemIdx = coords[1];
|
|
|
|
// We compare elements pair-wise within a group of size 2 * inc.
|
|
// The comparing rule for each group alternates between ascending
|
|
// and descending. Within each group, we compare each pair at
|
|
// positions i and i+inc. To decide whether an element at position i
|
|
// is x0 or x1, we mod it by 2 * inc, if the result is smaller than
|
|
// inc, it is in the first half of the group, we denote it as x0,
|
|
// otherwise we denote it as x1.
|
|
// For example, as shown in the Bitonic top K paper referenced above,
|
|
// Figure5(a) shows that element[1] is in the
|
|
// second half of the group when group size is 2, but it is in the
|
|
// first half of the group when group size is 4.
|
|
|
|
bool isFirstInPair = imod(elemIdx, 2 * inc) < inc;
|
|
int i = isFirstInPair ? elemIdx : elemIdx - inc;
|
|
|
|
int i0 = firstPass == 1 ? i : int(getIndices(batch, i));
|
|
int i1 = firstPass == 1 ? i + inc : int(getIndices(batch, i + inc));
|
|
float x0 = i0 < n ? getX(batch, i0) : negativeInf;
|
|
float x1 = i1 < n ? getX(batch, i1) : negativeInf;
|
|
|
|
// Denotes which direction indices are in (ascending or descending).
|
|
bool reverse = imod(elemIdx, 2 * dir) >= dir;
|
|
bool isGreater = x0 > x1 || (x0 == x1 && i1 > i0);
|
|
if (reverse == isGreater) { // Elements in opposite order of direction
|
|
int iTemp = i0;
|
|
i0 = i1;
|
|
i1 = iTemp;
|
|
}
|
|
if (isFirstInPair) {
|
|
setOutput(float(i0));
|
|
} else {
|
|
setOutput(float(i1));
|
|
}
|
|
}
|
|
`}},rte=class{constructor(e){this.variableNames=["x","indices"],this.customUniforms=[{name:"n",type:"int"},{name:"firstPass",type:"int"},{name:"k",type:"int"}],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
// Takes max of indices (0, k), (1, k + 1), (2, k + 2) ...
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int elemIdx = coords[1];
|
|
|
|
// The output size is half of the previous size.
|
|
// If the previous sequence is | | | | _ _ _ _ | | | | _ _ _ _ (k=4),
|
|
// we only need to output the indices at positions |, the indices at
|
|
// positions _ can be thrown away, see Figure5(b) After Phase 2
|
|
// (Merge phase) in the Bitonic Top K paper referenced above.
|
|
// For example, the paper shows we only need to output the orange bars.
|
|
// The output sequence should look like this | | | | | | | |.
|
|
// Because the sequence is halved, to map the output index back
|
|
// to the previous sequence to find the corresponding value,
|
|
// we need to double the index. When we double the index,
|
|
// we basically interpolate a position, so 2i looks like
|
|
// | _ | _ | _ | _ | _ | _ | _. We move the | to the first k position
|
|
// of each 2k positions by - elemIdx % k. E.g. for output at
|
|
// index 4,5,6,7, we want to get the corresponding element at
|
|
// original index 8,9,10,11, for output at index 8,9,10,11,
|
|
// we want to get the corresponding element at original index
|
|
// 16,17,18,19, so on and so forth.
|
|
|
|
int i = elemIdx < k ? elemIdx : (elemIdx * 2 - imod(elemIdx, k));
|
|
int i0 = firstPass == 1 ? i : int(getIndices(batch, i));
|
|
int i1 = firstPass == 1 ? i + k : int(getIndices(batch, i + k));
|
|
|
|
float x0 = getX(batch, i0);
|
|
float x1 = i1 < n ? getX(batch, i1) : x0;
|
|
|
|
setOutput(x0 >= x1 ? float(i0) : float(i1));
|
|
}
|
|
`}};function Gr(e,t){t!==null&&e.disposeIntermediateTensorInfo(t)}function Aw(e){let t=1;for(;t<e;)t*=2;return t}function ate(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{k:a,sorted:i}=s,o=X().getNumber("TOPK_LAST_DIM_CPU_HANDOFF_SIZE_THRESHOLD"),u=X().getNumber("TOPK_K_CPU_HANDOFF_THRESHOLD"),l=r.shape,c=l[l.length-1];if(n.shouldExecuteOnCPU([r])||c<o||a>u){let P=n.readSync(r.dataId),[R,F]=NX(P,l,r.dtype,a,i);return[n.makeTensorInfo(R.shape,R.dtype,R.values),n.makeTensorInfo(F.shape,F.dtype,F.values)]}if(a===0)return l[l.length-1]=0,[n.makeTensorInfo(l,r.dtype,[]),n.makeTensorInfo(l,"int32",[])];if(c===1)return[r,ec({attrs:{shape:l,dtype:"int32",value:0},backend:n})];let p=n.texData.get(r.dataId),d=p!==null&&p.isPacked,h=d?n.unpackTensor(r):r,m=w.sizeFromShape(l)/c,g=he({inputs:{x:h},attrs:{shape:[m,c]},backend:n});d&&Gr(n,h);let b=Aw(a),y=Aw(c),v=null,x=()=>v===null?[g,g]:[g,v],k=(P,R,F)=>{let $=x(),z=new ste(F),q=[[c],[v===null?1:0],[Number.NEGATIVE_INFINITY],[P],[R]],K=v;v=n.runWebGLProgram(z,$,"int32",q),Gr(n,K)};for(let P=1;P<b;P*=2){let R=P*2;for(let F=P;F>=1;F/=2)k(R,F,[m,y])}for(let P=y;P>b;P/=2){let R=x(),F=new rte([m,P/2]),z=[[c],[v===null?1:0],[b]],W=v;v=n.runWebGLProgram(F,R,"int32",z),Gr(n,W);let q=b/2,K=q*2;for(let Y=q;Y>=1;Y/=2)k(K,Y,v.shape)}let T=v;v=lu({inputs:{x:v},backend:n,attrs:{begin:0,size:[m,a]}}),Gr(n,T);let N=l2({inputs:{x:g,indices:v},backend:n,attrs:{axis:1,batchDims:1}});Gr(n,g);let E=l.slice(0,-1);E.push(a),T=v,v=he({inputs:{x:v},attrs:{shape:E},backend:n}),Gr(n,T);let A=N;return N=he({inputs:{x:N},attrs:{shape:E},backend:n}),Gr(n,A),[N,v]}var ite={kernelName:Uo,backendName:"webgl",kernelFunc:ate},ote=class{constructor(e,t,n,s,r,a){this.variableNames=["Image","Transforms"],this.outputShape=a;let i=n==="nearest"?1:2,o;switch(s){case"constant":o=1;break;case"reflect":o=2;break;case"wrap":o=3;break;case"nearest":o=4;break;default:o=1;break}this.userCode=`
|
|
float mapCoord(float outCoord, float len) {
|
|
float inCoord = outCoord;
|
|
if(${o} == 2) {
|
|
if (inCoord < 0.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz2 = 2.0 * len;
|
|
if (inCoord < sz2) {
|
|
inCoord = sz2 * float(int(float(-inCoord / sz2))) +
|
|
inCoord;
|
|
}
|
|
inCoord = inCoord < -len ? inCoord + sz2 : -inCoord - 1.0;
|
|
}
|
|
} else if (inCoord > len - 1.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz2 = 2.0 * len;
|
|
inCoord -= sz2 * float(int(float(inCoord / sz2)));
|
|
if (inCoord >= len) {
|
|
inCoord = sz2 - inCoord - 1.0;
|
|
}
|
|
}
|
|
}
|
|
return clamp(inCoord, 0.0, len - 1.0);
|
|
} else if (${o} == 3) {
|
|
if (inCoord < 0.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz = len - 1.0;
|
|
inCoord += len * (float(int(float(-inCoord / sz))) + 1.0);
|
|
}
|
|
} else if (inCoord > len - 1.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz = len - 1.0;
|
|
inCoord -= len * float(int(float(inCoord / sz)));
|
|
}
|
|
}
|
|
return clamp(inCoord, 0.0, len - 1.0);
|
|
} else if (${o} == 4) {
|
|
return clamp(outCoord, 0.0, len - 1.0);
|
|
} else {
|
|
return outCoord;
|
|
}
|
|
}
|
|
|
|
float readWithFillValue(int batch, int coordY, int coordX,
|
|
int channel) {
|
|
float outputValue;
|
|
if (0 <= coordY && coordY < ${e} && 0 <= coordX && coordX < ${t}) {
|
|
outputValue = getImage(batch, coordY, coordX, channel);
|
|
} else {
|
|
outputValue = float(${r});
|
|
}
|
|
return outputValue;
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
float outputValue;
|
|
int batch = coords[0];
|
|
int x = coords[2];
|
|
int y = coords[1];
|
|
int channel = coords[3];
|
|
float xf = float(x);
|
|
float yf = float(y);
|
|
float a1 = getTransforms(batch, 0);
|
|
float a2 = getTransforms(batch, 1);
|
|
float a3 = getTransforms(batch, 2);
|
|
float b1 = getTransforms(batch, 3);
|
|
float b2 = getTransforms(batch, 4);
|
|
float b3 = getTransforms(batch, 5);
|
|
float c1 = getTransforms(batch, 6);
|
|
float c2 = getTransforms(batch, 7);
|
|
float projection = c1 * xf + c2 * yf + 1.0;
|
|
if (projection == 0.0) {
|
|
outputValue = float(${r});
|
|
} else {
|
|
float inX = (a1 * xf + a2 * yf + a3) / projection;
|
|
float inY = (b1 * xf + b2 * yf + b3) / projection;
|
|
float mapX = mapCoord(inX, float(${t}));
|
|
float mapY = mapCoord(inY, float(${e}));
|
|
|
|
if (${i} == 1) {
|
|
int coordY = int(round(mapY));
|
|
int coordX = int(round(mapX));
|
|
outputValue = readWithFillValue(batch, coordY, coordX,
|
|
channel);
|
|
} else {
|
|
float yFloor = floor(mapY);
|
|
float xFloor = floor(mapX);
|
|
float yCeil = yFloor + 1.0;
|
|
float xCeil = xFloor + 1.0;
|
|
float valueYFloor = (xCeil - mapX) *
|
|
readWithFillValue(batch, int(yFloor), int(xFloor), channel) +
|
|
(mapX - xFloor) *
|
|
readWithFillValue(batch, int(yFloor), int(xCeil), channel);
|
|
float valueYCeil = (xCeil - mapX) *
|
|
readWithFillValue(batch, int(yCeil), int(xFloor), channel) +
|
|
(mapX - xFloor) *
|
|
readWithFillValue(batch, int(yCeil), int(xCeil), channel);
|
|
outputValue = (yCeil - mapY) * valueYFloor +
|
|
(mapY - yFloor) * valueYCeil;
|
|
}
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}};function ute(e){let{inputs:t,backend:n,attrs:s}=e,{image:r,transforms:a}=t,{interpolation:i,fillMode:o,fillValue:u,outputShape:l}=s,[c,p,d,h]=r.shape,[f,m]=l!=null?l:[p,d],g=[c,f,m,h],b=new ote(p,d,i,o,u,g);return n.runWebGLProgram(b,[r,a],"float32")}var lte={kernelName:Go,backendName:"webgl",kernelFunc:ute};function cte(e){let{inputs:t,attrs:n,backend:s}=e,{axis:r}=n,{x:a}=t;su(a,"unique"),console.warn("WARNING: ","UI might be locked temporarily as data is being downloaded");let i=s.readSync(a.dataId),{outputValues:o,outputShape:u,indices:l}=TX(i,r,a.shape,a.dtype);return[s.makeTensorInfo(u,a.dtype,o),s.makeTensorInfo([l.length],"int32",l)]}var dte={kernelName:Rg,backendName:"webgl",kernelFunc:cte};function pte(e){let{inputs:t,backend:n,attrs:s}=e,{value:r}=t,{axis:a}=s;a<0&&(a+=r.shape.length);let i=r,o=i.shape.length,u=r.shape[a],l=new Array(o-1),c=0;for(let m=0;m<o;m++)m!==a&&(l[c++]=i.shape[m]);let p=[],d=new Array(o).fill(0),h=i.shape.slice();h[a]=1;let f=new Array(u);for(let m=0;m<f.length;m++){d[a]=m;let g=lu({inputs:{x:i},backend:n,attrs:{begin:d,size:h}}),b=he({inputs:{x:g},backend:n,attrs:{shape:l}});f[m]=b,p.push(g)}return p.forEach(m=>n.disposeIntermediateTensorInfo(m)),f}var hte={kernelName:Ho,backendName:"webgl",kernelFunc:pte},fte=class{constructor(e,t){this.variableNames=["x","segmentIds"];let n=e.windowSize,s=e.batchSize,r=e.inSize,a=e.numSegments,i=a*Math.ceil(r/n);this.outputShape=[s,i];let o="0.0",u="sumValue",l=Math.floor(n/4)*4,c=n%4,p=`
|
|
sumValue += dot(values, segFilter);
|
|
`,d="";r%n>0&&(d=`
|
|
if (inIdx < 0 || inIdx >= ${r}) {
|
|
return initializationValue;
|
|
}
|
|
`);let h="";r%n>0&&(h=`
|
|
if (inIdx < 0 || inIdx >= ${r}) {
|
|
return -1.0;
|
|
}
|
|
`),this.userCode=`
|
|
const float initializationValue = ${o};
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${d}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
float getSegmentIdAtIndex(int inIdx) {
|
|
${h}
|
|
return getSegmentIds(inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = int(floor(float(outIdx) / float(
|
|
${a})) * float(${n}));
|
|
int currentSeg = int(mod(float(outIdx), float(${a})));
|
|
|
|
float sumValue = 0.0;
|
|
|
|
for (int i = 0; i < ${l}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 3)) == currentSeg ? 1 : 0
|
|
);
|
|
|
|
${p}
|
|
}
|
|
|
|
int inIdx = inOffset + ${l};
|
|
if (${c===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
int inIdxSeg = int(getSegmentIdAtIndex(inIdx));
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
0,
|
|
0,
|
|
0
|
|
);
|
|
|
|
${p}
|
|
} else if (${c===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
0,
|
|
0
|
|
);
|
|
|
|
${p}
|
|
} else if (${c===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
initializationValue
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
|
|
0
|
|
);
|
|
|
|
${p}
|
|
}
|
|
setOutput(${u});
|
|
}
|
|
`}};function mte(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,segmentIds:a}=t,{numSegments:i}=s,o=r.shape.length,u=[],l=0,c=S.getAxesPermutation([l],o),p=r;c!=null&&(p=qt({inputs:{x:r},backend:n,attrs:{perm:c}}),u.push(p),l=S.getInnerMostAxes(1,o)[0]);let d=S.segment_util.computeOutShape(p.shape,l,i),h=w.sizeFromShape([p.shape[l]]),f=he({inputs:{x:p},backend:n,attrs:{shape:[-1,h]}});u.push(f);let m=pp(r.dtype),g=(x,k,T,N,E)=>{let A=x.shape[0],P=x.shape[1],R=S.segment_util.segOpComputeOptimalWindowSize(P,E),F={windowSize:R,inSize:P,batchSize:A,numSegments:E},$=new fte(F,k),z=n.compileAndRun($,[x,T],N);if(u.push(z),z.shape[1]===E)return z;let W=g2({backend:n,attrs:{start:0,stop:E,step:1,dtype:"float32"}}),q=y2({inputs:{x:W},backend:n,attrs:{reps:[P/R]}});return u.push(W),u.push(q),g(z,k,q,N,E)},b=g(f,"unsortedSegmentSum",a,m,i),y=he({inputs:{x:b},backend:n,attrs:{shape:d}}),v=y;if(c!=null){u.push(y);let x=S.getUndoAxesPermutation(c);v=qt({inputs:{x:v},backend:n,attrs:{perm:x}})}return u.forEach(x=>n.disposeIntermediateTensorInfo(x)),v}var gte={kernelName:cp,backendName:"webgl",kernelFunc:mte},bte=[w8,I8,N8,_8,E8,F8,P8,M8,W8,G8,j8,Y8,J8,sY,iY,uY,cY,fY,gY,yY,kY,_Y,EY,DY,LY,VY,HY,n8,KY,JY,s9,l9,d9,h9,m9,b9,x9,I9,N9,$9,A9,R9,O9,z9,V9,U9,q9,X9,Q9,tQ,aQ,lQ,pQ,mQ,gQ,yQ,xQ,kQ,SQ,NQ,AQ,DQ,PQ,MQ,VQ,GQ,KQ,ZQ,t8,eZ,QY,sZ,iZ,lZ,r8,hZ,bZ,vZ,IZ,NZ,AZ,DZ,zZ,VZ,GZ,qZ,YZ,ZZ,e7,r7,i7,u7,c7,p7,g7,x7,S7,R7,l8,P7,L7,W7,H7,OY,K7,Y7,Z7,tJ,aJ,i8,oJ,uJ,PY,$7,dJ,mJ,vJ,d8,IJ,NJ,AJ,DJ,zJ,LJ,WJ,HJ,jJ,YJ,JJ,see,iee,lee,pee,TY,A7,mee,bee,vee,wee,Iee,Cee,Tee,_ee,Eee,Fee,Pee,Mee,Vee,Uee,Hee,jee,_7,y8,Yee,Jee,nte,ite,lte,v8,dte,hte,gte,X7];for(let e of bte)El(e);var zs=X();zs.registerFlag("WEBGPU_DEFERRED_SUBMIT_BATCH_SIZE",()=>15);zs.registerFlag("WEBGPU_CPU_FORWARD",()=>!0);zs.registerFlag("WEBGPU_MATMUL_WORK_PER_THREAD",()=>4);zs.registerFlag("WEBGPU_USE_NAIVE_CONV2D",()=>!1);zs.registerFlag("WEBGPU_USE_NAIVE_CONV2D_TRANSPOSE",()=>!1);zs.registerFlag("WEBGPU_CONV_SEPARATE_IM2COL_SHADER",()=>!1);zs.registerFlag("WEBGPU_USE_LOW_POWER_GPU",()=>!1);zs.registerFlag("WEBGPU_CPU_HANDOFF_SIZE_THRESHOLD",()=>1e3);zs.registerFlag("WEBGPU_USE_PROFILE_TOOL",()=>!1);zs.registerFlag("WEBGPU_USE_IMPORT",()=>!1);var yte="return a + b;",vte="return areal * breal - aimag * bimag;",xte="return areal * bimag + aimag * breal;",wte="return a / b;",kte="return a * b;",Ite="return (a - b) * (a - b);",Ste="return a - b;",Cte="return f32(a == b);",Nte="return vec4<f32>(a == b);",Tte="return f32(a > b);",$te="return vec4<f32>(a > b);",_te="return f32(a >= b);",Ate="return vec4<f32>(a >= b);",Ete="return f32(a < b);",Rte="return vec4<f32>(a < b);",Dte="return f32(a <= b);",Fte="return vec4<f32>(a <= b);",Ote="return f32(f32(a) >= 1.0 && f32(b) >= 1.0);",Pte=`return (vec4<f32>(a >= vec4<f32>(1.0)) *
|
|
vec4<f32>(b >= vec4<f32>(1.0)));`,zte=`
|
|
if (isnan(a)) { return a; }
|
|
if (isnan(b)) { return b; }
|
|
`,v2=`
|
|
if (isNaN.r) {
|
|
resultTemp.r = uniforms.NAN;
|
|
}
|
|
if (isNaN.g) {
|
|
resultTemp.g = uniforms.NAN;
|
|
}
|
|
if (isNaN.b) {
|
|
resultTemp.b = uniforms.NAN;
|
|
}
|
|
if (isNaN.a) {
|
|
resultTemp.a = uniforms.NAN;
|
|
}
|
|
`,Mte=`
|
|
let s = sign(a) * sign(b);
|
|
let ia = i32(round(a));
|
|
let ib = i32(round(b));
|
|
return f32(idiv(ia, ib, s));
|
|
`,Lte=`
|
|
let ia = vec4<i32>(round(a));
|
|
let ib = vec4<i32>(round(b));
|
|
let cond = ib != vec4<i32>(0);
|
|
var resultTemp = vec4<i32>(0);
|
|
let s = sign(a) * sign(b);
|
|
|
|
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
|
|
if (cond[0]) {
|
|
resultTemp[0] = idiv(ia[0], ib[0], s[0]);
|
|
}
|
|
if (cond[1]) {
|
|
resultTemp[1] = idiv(ia[1], ib[1], s[1]);
|
|
}
|
|
if (cond[2]) {
|
|
resultTemp[2] = idiv(ia[2], ib[2], s[2]);
|
|
}
|
|
if (cond[3]) {
|
|
resultTemp[3] = idiv(ia[3], ib[3], s[3]);
|
|
}
|
|
return vec4<f32>(resultTemp);
|
|
`,Bte="return f32(a != b);",Vte="return vec4<f32>(a != b);",Wte=`
|
|
if(a < 0.0 && floor(b) < b) {
|
|
return uniforms.NAN;
|
|
}
|
|
if (b == 0.0) {
|
|
return 1.0;
|
|
}
|
|
if (round(abs(b) % 2.0) != 1.0) {
|
|
return pow(abs(a), b);
|
|
}
|
|
return sign(a) * pow(abs(a), b);
|
|
`,Ute=`
|
|
let isModRound1Bool = vec4<i32>(round(abs(b) % vec4<f32>(2.0))) == vec4<i32>(1);
|
|
let isModRound1 = vec4<f32>(isModRound1Bool);
|
|
let multiplier = sign(a) * isModRound1 + (vec4<f32>(1.0) - isModRound1);
|
|
var resultTemp = multiplier * pow(abs(a), b);
|
|
|
|
// Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS
|
|
let isExpZero = b == vec4<f32>(0.0);
|
|
if (isExpZero.r) {
|
|
resultTemp.r = 1.0;
|
|
}
|
|
if (isExpZero.g) {
|
|
resultTemp.g = 1.0;
|
|
}
|
|
if (isExpZero.b) {
|
|
resultTemp.b = 1.0;
|
|
}
|
|
if (isExpZero.a) {
|
|
resultTemp.a = 1.0;
|
|
}
|
|
let isNaN = a < vec4<f32>(0.0) & floor(b) < b;
|
|
${v2}
|
|
return resultTemp;
|
|
`,Gte="if (a < 0.0) { return b * a; } return a;",Hte=`
|
|
let aLessThanZero = vec4<f32>(a < vec4<f32>(0.0));
|
|
return (aLessThanZero * (b * a)) + ((vec4<f32>(1.0) - aLessThanZero) * a);
|
|
`;function Ew(e,t){let n=t?v2:zte;return t?`
|
|
var resultTemp = vec4<f32>(${e}(a, b));
|
|
let isNaN = isnanVec4(a) | isnanVec4(b);
|
|
`+n+`
|
|
return resultTemp;
|
|
`:n+`
|
|
return ${e}(a, b);
|
|
`}function tc(e,t){switch(e){case 0:return kte;case 1:return yte;case 2:return Ste;case 3:return wte;case 4:return t?Nte:Cte;case 5:return t?$te:Tte;case 6:return t?Ate:_te;case 7:return t?Rte:Ete;case 8:return t?Fte:Dte;case 9:return t?Pte:Ote;case 10:return t?Vte:Bte;case 11:return Ite;case 12:return t?Lte:Mte;case 14:return t?Hte:Gte;case 15:return Ew("max",t);case 16:return Ew("min",t);case 13:return t?Ute:Wte;case 17:return vte;case 18:return xte;default:throw new Error(`BinaryType ${e} is not implemented!`)}}var qte="return abs(a);",jte="return ceil(a);",Kte="return cos(a);",Xte=`
|
|
let e2x = exp(-a);
|
|
return (e2x + 1.0 / e2x) / 2.0;
|
|
`,Yte="return exp(a) - 1.0;",Qte="if (a >= 0.0) { return a; } return (exp(a) - 1.0);",Zte=`
|
|
var resFloat = exp(a) - vec4<f32>(1.0);
|
|
if (a.r >= 0.0) {
|
|
resFloat.r = a.r;
|
|
}
|
|
if (a.g >= 0.0) {
|
|
resFloat.g = a.g;
|
|
}
|
|
if (a.b >= 0.0) {
|
|
resFloat.b = a.b;
|
|
}
|
|
if (a.a >= 0.0) {
|
|
resFloat.a = a.a;
|
|
}
|
|
return resFloat;
|
|
`,Jte="return exp(a);",ene="return floor(a);",tne="return a;",nne=`if (a < 0.0) { return 1.0/0.0; }
|
|
return log(a);`,sne="return f32(!(a >= 1.0));",rne="return -a;",ane="if (a < 0.0) { return uniforms.alpha * a; } return a;",ine=`
|
|
let aLessThanZero = vec4<f32>(a < vec4<f32>(0.0));
|
|
return (aLessThanZero * (uniforms.alpha * a)) + ((vec4<f32>(1.0) - aLessThanZero) * a);
|
|
`,one="if(a < 0.0) { return 0.0; } return a;",une="return clamp(a, 0.0, 6.0);",lne="return clamp(a, vec4<f32>(0.0, 0.0, 0.0, 0.0), vec4<f32>(6.0, 6.0, 6.0, 6.0));",cne=`
|
|
var resFloat = a * vec4<f32>(a >= vec4<f32>(0.0));
|
|
let isNaN = isnanVec4(a);
|
|
|
|
if (isNaN.r) {
|
|
resFloat.r = a.r;
|
|
}
|
|
if (isNaN.g) {
|
|
resFloat.g = a.g;
|
|
}
|
|
if (isNaN.b) {
|
|
resFloat.b = a.b;
|
|
}
|
|
if (isNaN.a) {
|
|
resFloat.a = a.a;
|
|
}
|
|
return resFloat;
|
|
`,dne="return 1.0/sqrt(a);",pne="return 1.0 / (1.0 + exp(-1.0 * a));",hne="return sin(a);",fne=`
|
|
let e2x = exp(a);
|
|
return (e2x - 1.0 / e2x) / 2.0;
|
|
`,mne="return sqrt(a);",gne="return a * a;",bne=`
|
|
let e2x = exp(-2.0 * abs(a));
|
|
return sign(a) * (1.0 - e2x) / (1.0 + e2x);
|
|
`,yne="return f32(i32((a)));";function qr(e,t){switch(e){case 0:return qte;case 2:return Kte;case 3:return Xte;case 1:return jte;case 4:return t?Zte:Qte;case 5:return Jte;case 6:return Yte;case 7:return ene;case 8:return tne;case 9:return nne;case 10:return sne;case 11:return rne;case 14:return t?ine:ane;case 12:return t?cne:one;case 13:return t?lne:une;case 15:return dne;case 18:return pne;case 16:return hne;case 17:return fne;case 19:return mne;case 20:return gne;case 21:return bne;case 22:return yne;default:throw new Error(`BinaryType ${e} is not implemented!`)}}function Js(e,t=!1){if(e===null)return null;if(e==="linear")return qr(8);if(e==="relu")return qr(12,t);if(e==="elu")return qr(4,t);if(e==="relu6")return qr(13,t);if(e==="prelu")return tc(14,t);if(e==="sigmoid")return qr(18,t);if(e==="leakyrelu")return qr(14,t);throw new Error(`Activation ${e} has not been implemented for the WebGPU backend.`)}function vne(e,t){if(Math.max(...e)>3)throw new Error("Cannot symbolically compute strides for rank > 4 tensor.");let n=e.length,s=e.map(a=>`${t}[${a}]`),r=new Array(n-1);r[n-2]=s[n-1];for(let a=n-3;a>=0;--a)r[a]=`(${r[a+1]} * ${s[a+1]})`;return r}function Wt(e){if(e<=1)return"i32";if(e===2)return"vec2<i32>";if(e===3)return"vec3<i32>";if(e===4)return"vec4<i32>";throw Error(`GPU for rank ${e} is not yet supported`)}function cd(e,t){return e==="float32"?t?"vec4<f32>":"f32":e==="int32"||e==="bool"?t?"vec4<i32>":"i32":e}function Nv(){return`
|
|
@stage(compute) @workgroup_size(workGroupSizeX, workGroupSizeY, workGroupSizeZ)
|
|
`}function Fr(){return`
|
|
${Nv()}
|
|
fn main(@builtin(local_invocation_id) LocalId : vec3<u32>,
|
|
@builtin(global_invocation_id) GlobalId : vec3<u32>,
|
|
@builtin(num_workgroups) NumWorkgroups: vec3<u32>) {
|
|
localId = LocalId;
|
|
globalId = GlobalId;
|
|
numWorkgroups = NumWorkgroups;
|
|
`}function Ue(){return`
|
|
${Fr()}
|
|
let index = getGlobalIndex();
|
|
`}function xne(e,t,n,s=!1){let r=[];if(r.push(`
|
|
let workGroupSizeX = ${n.workGroupSize[0]}u;
|
|
let workGroupSizeY = ${n.workGroupSize[1]}u;
|
|
let workGroupSizeZ = ${n.workGroupSize[2]}u;
|
|
|
|
var<private> localId: vec3<u32>;
|
|
var<private> globalId: vec3<u32>;
|
|
var<private> numWorkgroups: vec3<u32>;
|
|
|
|
// Only used when the y/z dimension of workgroup size is 1.
|
|
fn getGlobalIndex() -> i32 {
|
|
if (numWorkgroups.y == 1u && numWorkgroups.z == 1u) {
|
|
return i32(globalId.x);
|
|
}
|
|
|
|
let localInvocationIndex = localId.z * workGroupSizeX * workGroupSizeY +
|
|
localId.y * workGroupSizeX + localId.x;
|
|
let workGroupID = (globalId - localId)/vec3<u32>(
|
|
workGroupSizeX, workGroupSizeY, workGroupSizeZ);
|
|
|
|
return i32((workGroupID.z * numWorkgroups.x * numWorkgroups.y +
|
|
workGroupID.y * numWorkgroups.x + workGroupID.x) *
|
|
(workGroupSizeX * workGroupSizeY * workGroupSizeZ) +
|
|
localInvocationIndex);
|
|
}
|
|
`),s===!0)return r.push(`
|
|
struct Uniform {
|
|
size : i32,
|
|
numChannels : i32,
|
|
outShapeStrides : vec2<i32>,
|
|
dispatchSize : vec3<u32>,
|
|
};
|
|
|
|
@group(0) @binding(0) var<storage, write> result: array<${cd(t.dtype,n.isVec4)}>;
|
|
@group(0) @binding(2) var<uniform> uniforms: Uniform;
|
|
`),[Rw,r.join(`
|
|
`),Dw(t.shape),n.getUserCode()].join(`
|
|
`);let a="struct Uniforms { NAN : f32, ";n.variableNames.forEach((p,d)=>{a+=`${p.charAt(0).toLowerCase()+p.slice(1)}Shape : ${Wt(e[d].shape.length)}, `}),a+=`outShape : ${Wt(t.shape.length)}, `;let i=t.shape.length-1;a+=`
|
|
outShapeStrides: ${Wt(i)}, `,n.size&&(a+="size : i32, "),n.uniforms&&(a+=n.uniforms),a+="};",r.push(a),n.atomic?r.push(`
|
|
@group(0) @binding(0) var<storage, read_write> result: array<atomic<i32>>;
|
|
`):r.push(`
|
|
@group(0) @binding(0) var<storage, write> result: array<${cd(t.dtype,n.isVec4)}>;
|
|
`),n.variableNames.forEach((p,d)=>{r.push(`
|
|
@group(0) @binding(${1+d}) var<storage, read> ${p}: array<${cd(e[d].dtype,n.isVec4)}>;
|
|
`)}),a!==""&&r.push(`
|
|
@group(0) @binding(${1+n.variableNames.length}) var<uniform> uniforms: Uniforms;
|
|
`);let[o,u]=Nne(t.shape,n.dispatchLayout),l=[Rw,r.join(`
|
|
`),Dw(t.shape),o,wne(t.shape.length)];if(n.atomic||l.push(kne(t.shape,t.dtype,n.isVec4)),u===t.shape.length){let p=e.map(d=>Ine(d,t.shape,n.isVec4,n.dispatchLayout.x.length===t.shape.length)).join(`
|
|
`);l.push(p)}return l.push(n.getUserCode()),l.join(`
|
|
`)}var Rw=`
|
|
// Checks whether coordinates lie within the bounds of the shape.
|
|
fn coordsInBounds2D(coord : vec2<i32>, shape : vec2<i32>) -> bool {
|
|
return all(coord >= vec2<i32>(0)) && all(coord < shape);
|
|
}
|
|
fn coordsInBounds3D(coord : vec3<i32>, shape : vec3<i32>) -> bool {
|
|
return all(coord >= vec3<i32>(0)) && all(coord < shape);
|
|
}
|
|
fn coordsInBounds4D(coord : vec4<i32>, shape : vec4<i32>) -> bool {
|
|
return all(coord >= vec4<i32>(0)) && all(coord < shape);
|
|
}
|
|
|
|
fn getIndexFromCoords1D(coord : i32, shape : i32) -> i32 {
|
|
return coord;
|
|
}
|
|
fn getIndexFromCoords2D(coords : vec2<i32>, shape : vec2<i32>) -> i32 {
|
|
return dot(coords, vec2<i32>(shape.y, 1));
|
|
}
|
|
fn getIndexFromCoords3D(coords : vec3<i32>, shape : vec3<i32>) -> i32 {
|
|
return dot(coords, vec3<i32>(shape.y * shape.z, shape.z, 1));
|
|
}
|
|
fn getIndexFromCoords4D(coords : vec4<i32>, shape : vec4<i32>) -> i32 {
|
|
return dot(coords, vec4<i32>(
|
|
shape.y * shape.z * shape.w, shape.z * shape.w, shape.w, 1));
|
|
}
|
|
|
|
fn idiv(a: i32, b: i32, sign: f32) -> i32 {
|
|
var res: i32 = a / b;
|
|
let mod: i32 = a % b;
|
|
if (sign < 0. && mod != 0) {
|
|
res = res - 1;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
// NaN defination in IEEE 754-1985 is :
|
|
// - sign = either 0 or 1.
|
|
// - biased exponent = all 1 bits.
|
|
// - fraction = anything except all 0 bits (since all 0 bits represents infinity).
|
|
// https://en.wikipedia.org/wiki/IEEE_754-1985#Representation_of_non-numbers
|
|
fn isnan(val: f32) -> bool {
|
|
let floatToUint: u32 = bitcast<u32>(val);
|
|
return (floatToUint & 0x7fffffffu) > 0x7f800000u;
|
|
}
|
|
fn isnanVec4(val : vec4<f32>) -> vec4<bool> {
|
|
return vec4<bool>(isnan(val[0]), isnan(val[1]), isnan(val[2]), isnan(val[3]));
|
|
}
|
|
`;function wne(e){let t="";switch(e){case 0:case 1:t+=`
|
|
fn getOutputIndexFromCoords(coords : i32) -> i32 {
|
|
return coords;
|
|
}
|
|
`;break;case 2:t+=`
|
|
fn getOutputIndexFromCoords(coords : vec2<i32>) -> i32 {
|
|
return dot(coords, vec2<i32>(uniforms.outShapeStrides, 1));
|
|
}
|
|
`;break;case 3:t+=`
|
|
fn getOutputIndexFromCoords(coords : vec3<i32>) -> i32 {
|
|
return dot(coords, vec3<i32>(uniforms.outShapeStrides.x, uniforms.outShapeStrides.y, 1));
|
|
}
|
|
`;break;case 4:t+=`
|
|
fn getOutputIndexFromCoords(coords : vec4<i32>) -> i32 {
|
|
return dot(coords, vec4<i32>(
|
|
uniforms.outShapeStrides.x, uniforms.outShapeStrides.y, uniforms.outShapeStrides.z, 1));
|
|
}
|
|
`;break;default:w.assert(!1,()=>`Unsupported ${e}D shape`);break}return t}function kne(e,t,n){let s=e.length,r=cd(t,n),a;if(n?a=`fn setOutputAtIndex(flatIndex : i32, value : vec4<f32>) {
|
|
result[flatIndex] = ${r}(value);
|
|
}
|
|
fn setOutputAtIndexI32(flatIndex : i32, value : vec4<i32>) {
|
|
result[flatIndex] = ${r}(value);
|
|
}`:a=`fn setOutputAtIndex(flatIndex : i32, value : f32) {
|
|
result[flatIndex] = ${r}(value);
|
|
}
|
|
fn setOutputAtIndexI32(flatIndex : i32, value : i32) {
|
|
result[flatIndex] = ${r}(value);
|
|
}`,s>=2){let i=["d0","d1","d2","d3"].slice(0,s),o=Wt(s);n?a+=`
|
|
fn setOutputAtCoords(${i.map(u=>`${u} : i32`).join(", ")}, value : vec4<f32>) {
|
|
let flatIndex = getOutputIndexFromCoords(${o}(${i.join(", ")}));
|
|
setOutputAtIndex(flatIndex / 4, value);
|
|
}
|
|
fn setOutputAtCoordsI32(${i.map(u=>`${u} : i32`).join(", ")}, value : vec4<i32>) {
|
|
let flatIndex = getOutputIndexFromCoords(${o}(${i.join(", ")}));
|
|
setOutputAtIndexI32(flatIndex / 4, value);
|
|
}
|
|
`:a+=`
|
|
fn setOutputAtCoords(${i.map(u=>`${u} : i32`).join(", ")}, value : f32) {
|
|
let flatIndex = getOutputIndexFromCoords(${o}(${i.join(", ")}));
|
|
setOutputAtIndex(flatIndex, value);
|
|
}
|
|
fn setOutputAtCoordsI32(${i.map(u=>`${u} : i32`).join(", ")}, value : i32) {
|
|
let flatIndex = getOutputIndexFromCoords(${o}(${i.join(", ")}));
|
|
setOutputAtIndexI32(flatIndex, value);
|
|
}
|
|
`}return a}function Ine(e,t,n,s){let r=Sne(e,n);return e.shape.length<=t.length&&(r+=Cne(e,t,n,s)),r}function Sne(e,t){let n=e.name,s=e.shape.length,r=Wt(s),a="get"+n.charAt(0).toUpperCase()+n.slice(1),i=["d0","d1","d2","d3"].slice(0,s),o=i.map(c=>`${c} : i32`).join(", ");if(s<1)return t?`
|
|
fn ${a}() -> vec4<f32> {
|
|
return vec4<f32>(${n}[0]);
|
|
}
|
|
`:`
|
|
fn ${a}() ->f32 {
|
|
return f32(${n}[0]);
|
|
}
|
|
`;let u=`uniforms.${n.charAt(0).toLowerCase()+n.slice(1)}Shape`,l=`${s}D`;return s===0&&(l="1D"),t?`
|
|
fn ${a}(${o}) -> vec4<f32> {
|
|
return vec4<f32>(${n}[getIndexFromCoords${l}(${r}(${i.join(",")}),
|
|
${u}) / 4]);
|
|
}
|
|
`:`
|
|
fn ${a}(${o}) -> f32 {
|
|
return f32(${n}[getIndexFromCoords${l}(${r}(${i.join(",")}),
|
|
${u})]);
|
|
}
|
|
`}function Cne(e,t,n,s){let r=e.name,a=r.charAt(0).toUpperCase()+r.slice(1),i="get"+a+"ByOutput",o=e.shape.length,u=t.length,l=Wt(u);if(w.arraysEqual(e.shape,t)&&s)return n?`
|
|
fn ${i}Index(globalIndex : i32) -> vec4<f32> {
|
|
return vec4<f32>(${r}[globalIndex]);
|
|
}
|
|
|
|
fn ${i}Coords(coords : ${l}) -> vec4<f32> {
|
|
return vec4<f32>(${r}[${u>1?"getOutputIndexFromCoords(coords)":"coords"} / 4]);
|
|
}
|
|
`:`
|
|
fn ${i}Index(globalIndex : i32) -> f32 {
|
|
return f32(${r}[globalIndex]);
|
|
}
|
|
|
|
fn ${i}Coords(coords : ${l}) -> f32 {
|
|
return f32(${r}[${u>1?"getOutputIndexFromCoords(coords)":"coords"}]);
|
|
}
|
|
`;let c=S.getBroadcastDims(e.shape,t),p=u-o,d="";if(o===0)return n?`
|
|
fn ${i}Index(globalIndex : i32) -> vec4<f32> {
|
|
return get${a}();
|
|
}
|
|
|
|
fn ${i}Coords(coords : ${l}) -> vec4<f32> {
|
|
return get${a}();
|
|
}
|
|
`:`
|
|
fn ${i}Index(globalIndex : i32) -> f32{
|
|
return get${a}();
|
|
}
|
|
|
|
fn ${i}Coords(coords : ${l}) -> f32{
|
|
return get${a}();
|
|
}
|
|
`;u<2&&c.length>=1?d="coords = 0;":d=c.map(g=>`coords[${g+p}] = 0;`).join(`
|
|
`);let h="";if(u<2&&o>0)h="coords";else if(u>1){let g=Wt(o),b=e.shape.map((y,v)=>`coords[${v+p}]`).join(", ");h=`${g}(${b})`}else h="coords";let f=`uniforms.${r.charAt(0).toLowerCase()+r.slice(1)}Shape`,m=`${o}D`;return n?`
|
|
fn ${i}Index(globalIndex : i32) -> vec4<f32> {
|
|
var coords = getCoordsFromIndex(globalIndex);
|
|
${d}
|
|
return ${r}[getIndexFromCoords${m}(${h}, ${f}) / 4];
|
|
}
|
|
|
|
fn ${i}Coords(coordsIn : ${l}) -> vec4<f32> {
|
|
var coords = coordsIn;
|
|
${d}
|
|
return ${r}[getIndexFromCoords${m}(${h}, ${f}) / 4];
|
|
}
|
|
`:`
|
|
fn ${i}Index(globalIndex : i32) -> f32 {
|
|
var coords = getCoordsFromIndex(globalIndex);
|
|
${d}
|
|
return f32(${r}[getIndexFromCoords${m}(${h}, ${f})]);
|
|
}
|
|
|
|
fn ${i}Coords(coordsIn : ${l}) -> f32 {
|
|
var coords = coordsIn;
|
|
${d}
|
|
return f32(${r}[getIndexFromCoords${m}(${h}, ${f})]);
|
|
}
|
|
`}function Nne(e,t){let{x:n,y:s=[],z:r=[]}=t,a=e.length;if(n.length===a)return[`fn getOutputCoords() -> ${Wt(a)}{
|
|
let globalIndex = getGlobalIndex();
|
|
return getCoordsFromIndex(globalIndex);
|
|
}
|
|
`,a];let i="",o=[n,s,r],u=0;for(let d=0;d<o.length;d++){let h=o[d];if(h.length!==0)if(u+=h.length,h.length===1)i+=`let d${h[0]} = i32(globalId[${d}]);`;else{let f=vne(h,"uniforms.outShape");i+=`var index${d} = i32(globalId[${d}]);`;for(let m=0;m<f.length;m++)i+=`let d${h[m]} = index${d} / ${f[m]};`,m===f.length-1?i+=`let d${h[m+1]} = index${d} - d${h[m]} * ${f[m]};`:i+=`index${d} = index${d} - d${h[m]} * ${f[m]};`}}let l=[];for(let d=0;d<u;d++)l.push(`d${d}`);let c=Wt(u),p=`fn getOutputCoords() -> ${c} {
|
|
${i}
|
|
`;return l.length===0?p+=`return ${c}(0); }`:p+=`return ${c}(${l.join(",")}); }`,[p,u]}function Dw(e){let t=e.length;if(t<=1)return"fn getCoordsFromIndex(index : i32) -> i32 { return index; }";let n=w.computeStrides(e),s=Wt(t),r=[];for(let i=0;i<t;i++)r.push(`d${i}`);if(n.length===1)return` fn getCoordsFromIndex(index : i32) -> vec2<i32> {
|
|
let d0 = index / uniforms.outShapeStrides; let d1 = index - d0 * uniforms.outShapeStrides;
|
|
return vec2<i32>(d0, d1);
|
|
}`;let a="var index2 = index;"+n.map((i,o)=>{let u=`let ${r[o]} = index2 / uniforms.outShapeStrides[${o}]`,l=o===n.length-1?`let ${r[o+1]} = index2 - ${r[o]} * uniforms.outShapeStrides[${o}]`:`index2 = index2 - ${r[o]} * uniforms.outShapeStrides[${o}]`;return`${u}; ${l};`}).join("");return`
|
|
fn getCoordsFromIndex(index : i32) -> ${s} {
|
|
${a}
|
|
return ${s}(${r.join(",")});
|
|
}
|
|
`}var x2={};Ae(x2,{ArrayBufferToTypedArray:()=>k2,GPUBytesPerElement:()=>Xm,computeDispatch:()=>$e,computeWorkGroupSizeForConv2d:()=>Tv,computeWorkGroupSizeForMatMul:()=>w2,computeWorkPerThreadForConv2d:()=>$v,flatDispatchLayout:()=>Le,isWebGPUSupported:()=>_v,tilesFitEvenlyIntoShape:()=>Ks});var sa=e=>{let t=1;for(let n=0;n<e.length;n++)t*=e[n];return t};function Ks(e,t){if(e.length!==t.length)throw new Error(`Cannot compute whether rank ${e.length} tiles fit evenly into rank ${t.length} shape - ranks must match.`);return t.every((n,s)=>n%e[s]===0)}function $e(e,t,n=[1,1,1],s=[1,1,1]){let[r,a,i]=[Math.ceil(sa(e.x.map(o=>t[o]))/(n[0]*s[0])),e.y?Math.ceil(sa(e.y.map(o=>t[o]))/(n[1]*s[1])):1,e.z?Math.ceil(sa(e.z.map(o=>t[o]))/(n[2]*s[2])):1];return[r,a,i]}function Tv(e,t){let n=sa(e.x.map(r=>t[r])),s=sa(e.y.map(r=>t[r]));return n<=4?[4,16,1]:s<=4?[16,4,1]:[16,16,1]}function w2(e,t,n){return e===1?[32,1,1]:n===1?[1,32,1]:[8,8,1]}function $v(e,t){let n=sa(e.x.map(r=>t[r])),s=sa(e.y.map(r=>t[r]));return n<=4?[1,2,1]:s<=4?[2,1,1]:[2,2,1]}function Le(e){return{x:e.map((t,n)=>n)}}function Xm(e){if(e==="float32"||e==="int32"||e==="bool"||e==="string")return 4;if(e==="complex64")return 8;throw new Error(`Unknown dtype ${e}`)}function k2(e,t){if(t==="float32")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool"||t==="string")return Uint8Array.from(new Int32Array(e));throw new Error(`Unknown dtype ${t}`)}function _v(){return(typeof window!="undefined"||typeof WorkerGlobalScope!="undefined")&&!!navigator.gpu}function I2(e,t,n,s){return w.assert(s%4===0&&e[0]===4,()=>"tileInner must be divisible by 4. And ColPerThread must be 4"),`
|
|
var<workgroup> mm_Asub : array<array<vec4<f32>, ${s/e[0]}>, ${t}>;
|
|
var<workgroup> mm_Bsub : array<array<vec4<f32>, ${n/e[0]}>, ${s}>;
|
|
|
|
let RowPerThread = ${e[1]};
|
|
let ColPerThread = ${e[0]};
|
|
let TileInner = ${s};
|
|
|
|
${Fr()}
|
|
|
|
let tileRow = ${t===1?"0":"i32(localId.y) * RowPerThread"};
|
|
let tileCol = i32(localId.x);
|
|
|
|
let globalRow = ${t===1?"0":"i32(globalId.y) * RowPerThread"};
|
|
let globalCol = i32(globalId.x);
|
|
let numTiles = (uniforms.dimInner - 1) / TileInner + 1;
|
|
|
|
var acc: array<vec4<f32>, RowPerThread>;
|
|
var ACached : vec4<f32>;
|
|
var BCached : array<vec4<f32>, 4>;
|
|
|
|
// Loop over shared dimension.
|
|
var globalColA = tileCol;
|
|
let RowPerThreadB = TileInner / i32(workGroupSizeY);
|
|
let tileRowB = i32(localId.y) * RowPerThreadB;
|
|
for (var t = 0; t < numTiles; t = t + 1) {
|
|
// Load one tile of A into local memory.
|
|
for (var innerRow = 0; innerRow < RowPerThread; innerRow = innerRow + 1) {
|
|
let inputRow = tileRow + innerRow;
|
|
let inputCol = tileCol;
|
|
mm_Asub[inputRow][inputCol] = mm_readA(globalRow + innerRow, globalColA, globalId);
|
|
}
|
|
globalColA = globalColA + TileInner / ColPerThread;
|
|
|
|
// Load one tile of B into local memory.
|
|
for (var innerRow = 0; innerRow < RowPerThreadB; innerRow = innerRow + 1) {
|
|
let inputRow = tileRowB + innerRow;
|
|
let inputCol = tileCol;
|
|
mm_Bsub[inputRow][inputCol] = mm_readB(t * TileInner + inputRow, globalCol, globalId);
|
|
}
|
|
|
|
workgroupBarrier();
|
|
|
|
// Compute acc values for a single thread.
|
|
for (var k = 0; k < TileInner / ColPerThread; k = k + 1) {
|
|
BCached[0] = mm_Bsub[k * ColPerThread][tileCol];
|
|
BCached[1] = mm_Bsub[k * ColPerThread + 1][tileCol];
|
|
BCached[2] = mm_Bsub[k * ColPerThread + 2][tileCol];
|
|
BCached[3] = mm_Bsub[k * ColPerThread + 3][tileCol];
|
|
|
|
for (var i = 0; i < RowPerThread; i = i + 1) {
|
|
ACached = mm_Asub[tileRow + i][k];
|
|
acc[i] = BCached[0] * ACached.x + acc[i];
|
|
acc[i] = BCached[1] * ACached.y + acc[i];
|
|
acc[i] = BCached[2] * ACached.z + acc[i];
|
|
acc[i] = BCached[3] * ACached.w + acc[i];
|
|
}
|
|
}
|
|
|
|
workgroupBarrier();
|
|
}
|
|
|
|
for (var innerRow = 0; innerRow < RowPerThread; innerRow = innerRow + 1) {
|
|
mm_write(globalRow + innerRow,
|
|
globalCol,
|
|
acc[innerRow], globalId);
|
|
}
|
|
}`}var Tne=class{constructor(e,t,n,s=null,r=null,a=null){this.variableNames=["A","B"],this.uniforms="dimAOuter : i32, dimBOuter : i32, dimInner : i32,",this.workGroupSize=[8,8,1],this.isVec4=!0,this.outputShape=t,this.dispatchLayout={x:[2],y:[1],z:[0]},t[1]===1?this.elementsPerThread=[4,1,1]:this.elementsPerThread=[4,4,1],this.dispatch=$e(this.dispatchLayout,this.outputShape,this.workGroupSize,this.elementsPerThread);let i=s!=null,o=a!=null;i&&this.variableNames.push("bias"),o&&this.variableNames.push("preluActivationWeights"),this.tileAOuter=t[1]===1?1:this.workGroupSize[1]*this.elementsPerThread[1],this.tileBOuter=this.workGroupSize[0]*this.elementsPerThread[0],this.tileInner=this.tileBOuter,this.aShape=e,this.addBias=i,this.activation=r,this.hasPreluActivationWeights=o,[this.fitA,this.fitB]=this.getShapeFit(),this.shaderKey=`matMulPackedVec4_${this.activation}_${this.fitA}_${this.fitB}_${this.elementsPerThread}`}getShapeFit(){let e=this.aShape[2],t=this.outputShape[2],n=[this.outputShape[0],e,t],s=[this.tileAOuter,this.tileInner],r=[this.tileInner,this.tileBOuter];return[Ks(s,this.aShape.slice(1)),Ks(r,n.slice(1))]}getUserCode(){let e=this.fitA?"return A[batch * batchASize + row * uniforms.dimInner / 4 + col]":`if (coordsInBounds2D(vec2<i32>(row, col * 4), vec2<i32>(uniforms.dimAOuter, uniforms.dimInner))) {
|
|
return A[batch * batchASize + row * uniforms.dimInner / 4 + col];
|
|
}
|
|
return vec4<f32>(0.0)`,t=this.fitB?"return B[batch * batchBSize + row * uniforms.dimBOuter / 4 + col]":`if(coordsInBounds2D(vec2<i32>(row, col * 4), vec2<i32>(uniforms.dimInner, uniforms.dimBOuter))) {
|
|
return B[batch * batchBSize + row * uniforms.dimBOuter / 4 + col];
|
|
}
|
|
return vec4<f32>(0.0)`,n="",s="";if(this.activation){let i=Js(this.activation,this.isVec4);this.hasPreluActivationWeights?n=`fn activation(a : vec4<f32>, outCoord : vec3<i32>) -> vec4<f32> {
|
|
let b = getPreluActivationWeightsByOutputCoords(outCoord);
|
|
${i}
|
|
}`:n=`
|
|
fn activation(a : vec4<f32>, outCoord : vec3<i32>) -> vec4<f32> {
|
|
${i}
|
|
}`,s="value = activation(value, outCoord);"}let r=this.addBias?"value = value + getBiasByOutputCoords(outCoord);":"";return`
|
|
${n}
|
|
fn mm_readA(row : i32, col : i32, globalId : vec3<u32>) -> vec4<f32> {
|
|
let batchASize = uniforms.aShape[1] * uniforms.aShape[2] / 4;
|
|
let batch = i32(globalId.z);
|
|
${e};
|
|
}
|
|
|
|
fn mm_readB(row : i32, col : i32, globalId : vec3<u32>) -> vec4<f32> {
|
|
let batchBSize = uniforms.bShape[1] * uniforms.bShape[2] / 4;
|
|
let batch = i32(globalId.z);
|
|
${t};
|
|
}
|
|
|
|
fn mm_write(row : i32, col : i32, valueIn : vec4<f32>, globalId : vec3<u32>) {
|
|
if (row < uniforms.aShape[1] && col * 4 < uniforms.bShape[2])
|
|
{
|
|
var value = valueIn;
|
|
let batch = i32(globalId.z);
|
|
let outCoord = vec3<i32>(batch, row, col * 4);
|
|
${r}
|
|
${s}
|
|
setOutputAtCoords(outCoord[0], outCoord[1], outCoord[2], value);
|
|
}
|
|
}
|
|
${I2(this.elementsPerThread,this.tileAOuter,this.tileBOuter,this.tileInner)}
|
|
`}};function Av(e,t){let n=t[1]*e[1],s=t[0]*e[0],r=n>s?n:s;return`
|
|
var<workgroup> mm_Asub : array<array<f32, ${r}>, ${n}>;
|
|
var<workgroup> mm_Bsub : array<array<f32, ${s}>, ${r}>;
|
|
${Fr()}
|
|
let tileRow = i32(localId.y) * ${e[1]};
|
|
let tileCol = i32(localId.x) * ${e[0]};
|
|
|
|
let globalRow = i32(globalId.y) * ${e[1]};
|
|
let globalCol = i32(globalId.x) * ${e[0]};
|
|
|
|
let numTiles = (uniforms.dimInner - 1) / ${r} + 1;
|
|
|
|
var acc : array<array<f32, ${e[0]}>, ${e[1]}>;
|
|
var ACached : f32;
|
|
var BCached : array<f32, ${e[0]}>;
|
|
|
|
// Without this initialization strange values show up in acc.
|
|
for (var innerRow = 0; innerRow < ${e[1]}; innerRow = innerRow + 1) {
|
|
for (var innerCol = 0; innerCol < ${e[0]}; innerCol = innerCol + 1) {
|
|
acc[innerRow][innerCol] = 0.0;
|
|
}
|
|
}
|
|
|
|
let ColPerThreadA = ${r} / ${t[0]};
|
|
let tileColA = i32(localId.x) * ColPerThreadA;
|
|
let RowPerThreadB = ${r} / ${t[1]};
|
|
let tileRowB = i32(localId.y) * RowPerThreadB;
|
|
|
|
// Loop over shared dimension.
|
|
for (var t = 0; t < numTiles; t = t + 1) {
|
|
// Load one tile of A into local memory.
|
|
for (var innerRow = 0; innerRow < ${e[1]}; innerRow = innerRow + 1) {
|
|
for (var innerCol = 0; innerCol < ColPerThreadA; innerCol = innerCol + 1) {
|
|
let inputRow = tileRow + innerRow;
|
|
let inputCol = tileColA + innerCol;
|
|
|
|
mm_Asub[inputRow][inputCol] = mm_readA(
|
|
globalRow + innerRow,
|
|
t * ${r} + inputCol, globalId);
|
|
}
|
|
}
|
|
// Load one tile of B into local memory.
|
|
for (var innerRow = 0; innerRow < RowPerThreadB; innerRow = innerRow + 1) {
|
|
for (var innerCol = 0; innerCol < ${e[0]}; innerCol = innerCol + 1) {
|
|
let inputRow = tileRowB + innerRow;
|
|
let inputCol = tileCol + innerCol;
|
|
|
|
mm_Bsub[inputRow][inputCol] = mm_readB(
|
|
t * ${r} + inputRow,
|
|
globalCol + innerCol, globalId);
|
|
}
|
|
}
|
|
|
|
workgroupBarrier();
|
|
|
|
// Compute acc values for a single thread.
|
|
for (var k = 0; k < ${r}; k = k + 1) {
|
|
for (var inner = 0; inner < ${e[0]}; inner = inner + 1) {
|
|
BCached[inner] = mm_Bsub[k][tileCol + inner];
|
|
}
|
|
|
|
for (var innerRow = 0; innerRow < ${e[1]}; innerRow = innerRow + 1) {
|
|
ACached = mm_Asub[tileRow + innerRow][k];
|
|
for (var innerCol = 0; innerCol < ${e[0]}; innerCol = innerCol + 1) {
|
|
acc[innerRow][innerCol] = acc[innerRow][innerCol] + ACached * BCached[innerCol];
|
|
}
|
|
}
|
|
}
|
|
|
|
workgroupBarrier();
|
|
}
|
|
|
|
for (var innerRow = 0; innerRow < ${e[1]}; innerRow = innerRow + 1) {
|
|
for (var innerCol = 0; innerCol < ${e[0]}; innerCol = innerCol + 1) {
|
|
|
|
if ((globalCol + innerCol) < uniforms.dimBOuter &&
|
|
(globalRow + innerRow) < uniforms.dimAOuter) {
|
|
mm_write(globalRow + innerRow,
|
|
globalCol + innerCol,
|
|
acc[innerRow][innerCol], globalId);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
`}function $ne(e){return`
|
|
let TileSize = ${e[0]*4};
|
|
var<workgroup> mm_Asub : array<vec4<f32>, ${e[0]}>;
|
|
|
|
${Fr()}
|
|
let tileCol = i32(localId.x);
|
|
let globalCol = i32(globalId.x);
|
|
let globalRow = i32(globalId.y);
|
|
|
|
let numTiles = (uniforms.dimInner - 1) / TileSize + 1;
|
|
|
|
// Without this initialization strange values show up in acc.
|
|
var acc = 0.0;
|
|
|
|
// Loop over shared dimension.
|
|
for (var t = 0; t < numTiles; t = t + 1) {
|
|
// Load one tile of A into local memory.
|
|
let colA = t * TileSize + tileCol * 4;
|
|
mm_Asub[tileCol] = vec4<f32>(mm_readA(globalRow, colA, globalId),
|
|
mm_readA(globalRow, colA + 1, globalId),
|
|
mm_readA(globalRow, colA + 2, globalId),
|
|
mm_readA(globalRow, colA + 3, globalId));
|
|
workgroupBarrier();
|
|
|
|
// Compute acc values for a single thread.
|
|
for (var k = 0; k < TileSize / 4; k = k + 1) {
|
|
let rowB = t * TileSize + k * 4;
|
|
let BCached = vec4<f32>(mm_readB(rowB, globalCol, globalId),
|
|
mm_readB(rowB + 1, globalCol, globalId),
|
|
mm_readB(rowB + 2, globalCol, globalId),
|
|
mm_readB(rowB + 3, globalCol, globalId));
|
|
|
|
let ACached = mm_Asub[k];
|
|
acc = acc + dot(ACached, BCached);
|
|
}
|
|
|
|
workgroupBarrier();
|
|
}
|
|
|
|
if (globalRow < uniforms.dimAOuter && globalCol < uniforms.dimBOuter) {
|
|
mm_write(globalRow, globalCol, acc, globalId);
|
|
}
|
|
}
|
|
`}var S2=class{constructor(e,t,n,s=!1,r=!1,a=null,i=null,o=null){this.variableNames=["A","B"],this.uniforms="dimAOuter : i32, dimBOuter : i32, dimInner : i32,",this.workGroupSize=[16,16,1],this.outputShape=t,this.dispatchLayout={x:[2],y:[1],z:[0]};let u=s?e[1]:e[2];this.workGroupSize=w2(t[1],u,t[2]),(t[1]===1||t[2]===1)&&(n=1),this.dispatch=$e(this.dispatchLayout,this.outputShape,this.workGroupSize,[n,n,1]),w.arraysEqual(this.dispatch,[1,1,1])&&(n=1,this.dispatch=$e(this.dispatchLayout,this.outputShape,this.workGroupSize,[n,n,1]));let l=a!=null,c=o!=null;l&&this.variableNames.push("bias"),c&&this.variableNames.push("preluActivationWeights"),this.workPerThread=n,this.aShape=e,this.transposeA=s,this.transposeB=r,this.addBias=l,this.activation=i,this.hasPreluActivationWeights=c;let p=this.outputShape[2],d=this.transposeB?[this.outputShape[0],p,u]:[this.outputShape[0],u,p];[this.fitA,this.fitB]=this.getShapeFit(d),this.shaderKey=`matMulPacked_${this.workPerThread}_${s}_${r}_${this.activation}_${this.fitA}_${this.fitB}_${this.outputShape[1]>1}`}getShapeFit(e){let t=this.workGroupSize[1]*this.workPerThread,n=this.workGroupSize[0]*this.workPerThread,s=t>n?t:n;this.outputShape[1]===1&&(s*=4),w.assert(s%this.workGroupSize[0]===0&&s%this.workGroupSize[1]===0,()=>"tileInner must be multiple of workgroupsize.x and workgroupsize.y");let r=[t,s],a=[s,n];return[Ks(r,this.aShape.slice(1)),Ks(a,e.slice(1))]}getUserCode(){let e;this.transposeA===!1?e=this.fitA?"return A[batch * batchASize + row * uniforms.dimInner + col];":`if(coordsInBounds2D(vec2<i32>(row, col), vec2<i32>(uniforms.dimAOuter, uniforms.dimInner))) {
|
|
return A[batch * batchASize + row * uniforms.dimInner + col];
|
|
}
|
|
return 0.0;`:e=this.fitA?"return A[batch * batchASize + col * uniforms.dimAOuter + row];":`if(coordsInBounds2D(vec2<i32>(row, col), vec2<i32>(uniforms.dimAOuter, uniforms.dimInner))) {
|
|
return A[batch* batchASize + col * uniforms.dimAOuter + row];
|
|
}
|
|
return 0.0;`;let t;this.transposeB===!1?t=this.fitB?"return B[batch * batchBSize + row * uniforms.dimBOuter + col];":`if(coordsInBounds2D(vec2<i32>(row, col), vec2<i32>(uniforms.dimInner, uniforms.dimBOuter))) {
|
|
return B[batch * batchBSize + row * uniforms.dimBOuter + col];
|
|
}
|
|
return 0.0;`:t=this.fitB?"return B[batch * batchBSize + col * uniforms.dimInner + row];":`if(coordsInBounds2D(vec2<i32>(row, col), vec2<i32>(uniforms.dimInner, uniforms.dimBOuter))) {
|
|
return B[batch * batchBSize + col * uniforms.dimInner + row];
|
|
}
|
|
return 0.0;`;let n="",s="";if(this.activation){let i=Js(this.activation,!1);this.hasPreluActivationWeights?n=`fn activation(a : f32, outCoord : vec3<i32>) -> f32 {
|
|
let b = getPreluActivationWeightsByOutputCoords(outCoord);
|
|
${i}
|
|
}`:n=`
|
|
fn activation(a : f32, outCoord : vec3<i32>) -> f32 {
|
|
${i}
|
|
}
|
|
`,s="value = activation(value, outCoord);"}let r=this.addBias?"value = value + getBiasByOutputCoords(outCoord);":"";return`
|
|
${n}
|
|
|
|
fn mm_readA(row : i32, col : i32, globalId : vec3<u32>) -> f32 {
|
|
let batchASize = uniforms.aShape[1] * uniforms.aShape[2];
|
|
let batch = i32(globalId.z);
|
|
${e}
|
|
}
|
|
|
|
fn mm_readB(row : i32, col : i32, globalId : vec3<u32>) -> f32 {
|
|
let batch = i32(globalId.z);
|
|
let batchBSize = uniforms.bShape[1] * uniforms.bShape[2];
|
|
${t}
|
|
}
|
|
|
|
fn mm_write(row : i32, col : i32, valueIn : f32, globalId : vec3<u32>) {
|
|
var value = valueIn;
|
|
let batch = i32(globalId.z);
|
|
let outCoord = vec3<i32>(batch, row, col);
|
|
${r}
|
|
${s}
|
|
setOutputAtCoords(batch, row, col, value);
|
|
}
|
|
${this.outputShape[1]>1?Av([this.workPerThread,this.workPerThread,1],this.workGroupSize):$ne(this.workGroupSize)}
|
|
`}};function _ne(){return`
|
|
var<workgroup> sumValues : array<f32, workGroupSizeX>;
|
|
${Fr()}
|
|
let coords = getOutputCoords();
|
|
let batch = coords[0];
|
|
let row = coords[1];
|
|
let col = coords[2];
|
|
var sum = 0.0;
|
|
let Length = uniforms.dimInner;
|
|
for (var k = i32(localId.x); k < Length; k = k + i32(workGroupSizeX)) {
|
|
let dataA = mm_readA(batch, row, k);
|
|
let dataB = mm_readB(batch, k, col);
|
|
sum = sum + dataA * dataB;
|
|
}
|
|
sumValues[localId.x] = sum;
|
|
workgroupBarrier();
|
|
|
|
for(var currentSize = workGroupSizeX / 2u; currentSize > 1u;
|
|
currentSize = currentSize / 2u) {
|
|
if (localId.x < currentSize)
|
|
{
|
|
sumValues[localId.x] = sumValues[localId.x] + sumValues[localId.x + currentSize];
|
|
}
|
|
workgroupBarrier();
|
|
}
|
|
|
|
if (localId.x == 0u) {
|
|
sum = sumValues[0] + sumValues[1];
|
|
mm_write(batch, row, col, sum);
|
|
}
|
|
}
|
|
`}var Ane=class{constructor(e,t=!1,n=!1,s=null,r=null,a=null){this.variableNames=["A","B"],this.uniforms="dimAOuter : i32, dimBOuter : i32, dimInner : i32,",this.workGroupSize=[256,1,1],this.outputShape=e,this.dispatchLayout={x:[],y:[1,2],z:[0]},this.dispatch=$e(this.dispatchLayout,this.outputShape,this.workGroupSize);let i=s!=null,o=a!=null;i&&this.variableNames.push("bias"),o&&this.variableNames.push("preluActivationWeights"),this.transposeA=t,this.transposeB=n,this.addBias=i,this.activation=r,this.hasPreluActivationWeights=o,this.shaderKey=`matMulReduce_${this.activation}_${t}_${n}`}getUserCode(){let e;this.transposeA===!1?e="return A[batch * batchASize + row * uniforms.dimInner + col];":e="return A[batch * batchASize + col * uniforms.dimAOuter + row];";let t;this.transposeB===!1?t="return B[batch * batchBSize + row * uniforms.dimBOuter + col];":t="return B[batch * batchBSize + col * uniforms.dimInner + row];";let n="",s="";if(this.activation){let i=Js(this.activation,!1);this.hasPreluActivationWeights?n=`fn activation(a : f32, outCoord : vec3<i32>) -> f32 {
|
|
let b = getPreluActivationWeightsByOutputCoords(outCoord);
|
|
${i}
|
|
}`:n=`
|
|
fn activation(a : f32, outCoord : vec3<i32>) -> f32 {
|
|
${i}
|
|
}
|
|
`,s="value = activation(value, outCoord);"}let r=this.addBias?"value = value + getBiasByOutputCoords(outCoord);":"";return`
|
|
${n}
|
|
|
|
fn mm_readA(batch: i32, row : i32, col : i32) -> f32 {
|
|
let batchASize = uniforms.aShape[1] * uniforms.aShape[2];
|
|
${e}
|
|
}
|
|
|
|
fn mm_readB(batch: i32, row : i32, col : i32) -> f32 {
|
|
let batchBSize = uniforms.bShape[1] * uniforms.bShape[2];
|
|
${t}
|
|
}
|
|
|
|
fn mm_write(batch: i32, row : i32, col : i32, valueIn : f32) {
|
|
var value = valueIn;
|
|
let outCoord = vec3<i32>(batch, row, col);
|
|
${r}
|
|
${s}
|
|
setOutputAtCoords(batch, row, col, value);
|
|
}
|
|
${_ne()}
|
|
`}};function Ene(e){let t=e[1]/2,n=e[0],s=t>n?t:n;return`
|
|
var<workgroup> mm_Asub1 : array<array<f32, ${s}>, ${t}>;
|
|
var<workgroup> mm_Bsub1 : array<array<f32, ${n}>, ${s}>;
|
|
var<workgroup> mm_Asub2 : array<array<f32, ${s}>, ${t}>;
|
|
var<workgroup> mm_Bsub2 : array<array<f32, ${n}>, ${s}>;
|
|
|
|
// If the output size is small for matrix multiplication, avoid to use vec4
|
|
// and handle some elements per thread to optimally utilize the ALU.
|
|
// Introduces two shared memory buffers, some logical threads could handle
|
|
// arithmetic operations and others handle IO operations between barrier api,
|
|
// makes ALUs and load/store units work simultaneously, could improves
|
|
// the performance.
|
|
${Fr()}
|
|
let tileRow = i32(localId.y);
|
|
let tileCol = i32(localId.x);
|
|
let globalRow = i32(globalId.y);
|
|
let globalCol = i32(globalId.x);
|
|
|
|
// uniforms.dimInner should be greater than 0.
|
|
let numTiles = (uniforms.dimInner - 1) / ${s} + 1;
|
|
var acc = 0.0;
|
|
|
|
var globalColA = tileCol;
|
|
var globalRowB = tileRow;
|
|
for (var t = 0; t < numTiles; t = t + 1) {
|
|
if (t == 0) {
|
|
if (tileRow < ${t}) {
|
|
// Load one tile of A and B into local memory.
|
|
// globalRow is always greater than or equal tileRow.
|
|
mm_Asub1[tileRow][tileCol] =
|
|
mm_readA((globalRow - tileRow) / 2 + tileRow, globalColA, globalId);
|
|
globalColA = globalColA + ${s};
|
|
mm_Bsub1[tileRow][tileCol] = mm_readB(globalRowB, globalCol, globalId);
|
|
globalRowB = globalRowB + ${s};
|
|
}
|
|
} else {
|
|
if (tileRow < ${t}) {
|
|
// Load one tile of A and B into local memory.
|
|
// globalRow is always greater than or equal tileRow.
|
|
mm_Asub1[tileRow][tileCol] =
|
|
mm_readA((globalRow - tileRow) / 2 + tileRow, globalColA, globalId);
|
|
globalColA = globalColA + ${s};
|
|
mm_Bsub1[tileRow][tileCol] = mm_readB(globalRowB, globalCol, globalId);
|
|
globalRowB = globalRowB + ${s};
|
|
} else {
|
|
// Compute acc values for a single thread.
|
|
for (var k = 0; k < ${s}; k = k + 1) {
|
|
let subRow = tileRow - ${t};
|
|
if (subRow < 0) {
|
|
continue;
|
|
}
|
|
acc = acc + mm_Asub2[subRow][k] * mm_Bsub2[k][tileCol];
|
|
}
|
|
}
|
|
}
|
|
workgroupBarrier();
|
|
if (t != 0) {
|
|
t = t + 1;
|
|
}
|
|
|
|
if (t < numTiles) {
|
|
if (tileRow < ${t}) {
|
|
// Load one tile of A and B into local memory.
|
|
// globalRow is always greater than or equal tileRow.
|
|
mm_Asub2[tileRow][tileCol] =
|
|
mm_readA((globalRow - tileRow) / 2 + tileRow, globalColA, globalId);
|
|
globalColA = globalColA + ${s};
|
|
mm_Bsub2[tileRow][tileCol] = mm_readB(globalRowB, globalCol, globalId);
|
|
globalRowB = globalRowB + ${s};
|
|
} else {
|
|
// Compute acc values for a single thread.
|
|
for (var k = 0; k < ${s}; k = k + 1) {
|
|
let subRow = tileRow - ${t};
|
|
if (subRow < 0) {
|
|
continue;
|
|
}
|
|
acc = acc + mm_Asub1[subRow][k] * mm_Bsub1[k][tileCol];
|
|
}
|
|
}
|
|
}
|
|
workgroupBarrier();
|
|
}
|
|
let writeCol = (globalRow - tileRow) / 2 + tileRow - ${t};
|
|
if (tileRow >= ${t} && writeCol >= 0) {
|
|
mm_write(writeCol, globalCol, acc, globalId);
|
|
}
|
|
}
|
|
`}var Rne=class{constructor(e,t,n,s=null,r=null,a=null){this.variableNames=["A","B"],this.uniforms="dimAOuter : i32, dimBOuter : i32, dimInner : i32,",this.workGroupSize=[8,16,1],w.assert(e[1]<=16||t[2]<=16,()=>"This program can be only used when A width or B Height are small"),this.outputShape=n,this.dispatchLayout={x:[2],y:[1],z:[0]},this.dispatch=[Math.ceil(n[2]/this.workGroupSize[0]),Math.ceil(n[1]*2/this.workGroupSize[1]),n[0]];let i=s!=null;i&&this.variableNames.push("bias");let o=a!=null;o&&this.variableNames.push("preluActivationWeights"),this.addBias=i,this.activation=r,this.hasPreluActivationWeights=o,this.shaderKey=`matMulSmallOutputSize_${this.activation}`}getUserCode(){let e=`if (coordsInBounds2D(vec2<i32>(row, col), vec2<i32>(uniforms.dimAOuter, uniforms.dimInner))) {
|
|
return A[batch * batchASize + row * uniforms.dimInner + col];
|
|
}
|
|
return 0.0;`,t=`if (coordsInBounds2D(vec2<i32>(row, col), vec2<i32>(uniforms.dimInner, uniforms.dimBOuter))) {
|
|
return B[batch * batchBSize + row * uniforms.dimBOuter + col];
|
|
}
|
|
return 0.0;`,n="",s="";if(this.activation){let i=Js(this.activation,!1);this.hasPreluActivationWeights?n=`fn activation(a : f32, outCoord : vec3<i32>) -> f32 {
|
|
let b = getPreluActivationWeightsByOutputCoords(outCoord);
|
|
${i}
|
|
}`:n=`fn activation(a : f32, outCoord : vec3<i32>) -> f32 {
|
|
${i}
|
|
}`,s="value = activation(value, outCoord);"}let r=this.addBias?"value = value + getBiasByOutputCoords(outCoord);":"";return`
|
|
${n}
|
|
|
|
fn mm_readA(row : i32, col : i32, globalId : vec3<u32>) -> f32 {
|
|
let batchASize = uniforms.aShape[1] * uniforms.aShape[2];
|
|
let batch = i32(globalId.z);
|
|
${e}
|
|
}
|
|
fn mm_readB(row : i32, col : i32, globalId : vec3<u32>) -> f32 {
|
|
let batch = i32(globalId.z);
|
|
let batchBSize = uniforms.bShape[1] * uniforms.bShape[2];
|
|
${t}
|
|
}
|
|
fn mm_write(row : i32, col : i32, valueIn : f32, globalId : vec3<u32>) {
|
|
if (coordsInBounds2D(vec2<i32>(row, col), vec2<i32>(uniforms.dimAOuter, uniforms.dimBOuter))) {
|
|
let batch = i32(globalId.z);
|
|
let outCoord = vec3<i32>(batch, row, col);
|
|
var value = valueIn;
|
|
${r}
|
|
${s}
|
|
setOutputAtCoords(batch, row, col, value);
|
|
}
|
|
}
|
|
${Ene(this.workGroupSize)}
|
|
`}};function Me(e){let{inputs:t,attrs:n}=e,{x:s}=t,{shape:r}=n,a=w.sizeFromShape(s.shape),i=w.inferFromImplicitShape(r,a),o=w.sizeFromShape(i);return w.assert(a===o,()=>`The new shape (${i}) has ${o} elements and the old shape (${s.shape}) has ${a} elements. The new shape and old shape must have the same number of elements.`),e.backend.incRef(s.dataId),{dataId:s.dataId,shape:i,dtype:s.dtype}}var Dne={kernelName:Ro,backendName:"webgpu",kernelFunc:Me};function Ev({a:e,b:t,transposeA:n,transposeB:s,backend:r,bias:a=null,preluActivationWeights:i=null,leakyreluAlpha:o=0,activation:u=null}){let l=e.shape.length,c=t.shape.length,p=n?e.shape[l-2]:e.shape[l-1],d=s?t.shape[c-1]:t.shape[c-2],h=n?e.shape[l-1]:e.shape[l-2],f=s?t.shape[c-2]:t.shape[c-1],m=e.shape.slice(0,-2),g=t.shape.slice(0,-2),b=w.sizeFromShape(m),y=w.sizeFromShape(g),x=Ko.assertAndGetBroadcastShape(e.shape.slice(0,-2),t.shape.slice(0,-2)).concat([h,f]);w.assert(p===d,()=>`Error in matMul: inner shapes (${p}) and (${d}) of Tensors with shapes ${e.shape} and ${t.shape} and transposeA=${n} and transposeB=${s} must match.`);let k=n?[b,p,h]:[b,h,p],T=s?[y,f,d]:[y,d,f],N=Me({inputs:{x:e},backend:r,attrs:{shape:k}}),E=Me({inputs:{x:t},backend:r,attrs:{shape:T}}),A=[N,E],P=Math.max(b,y),R=p%4===0&&f%4===0&&!n&&!s&&f>=32,F;h*f<=32?F=new Ane([P,h,f],n,s,a,u,i):!n&&!s&&(h<=16&&(f<=512||d>=2*f)||f<=16&&(h<=512||p>=2*h))?F=new Rne(k,T,[P,h,f],a,u,i):R?F=new Tne(k,[P,h,f],X().get("WEBGPU_MATMUL_WORK_PER_THREAD"),a,u,i):F=new S2(k,[P,h,f],X().get("WEBGPU_MATMUL_WORK_PER_THREAD"),n,s,a,u,i);let $=[N,E];a&&$.push(a),i&&$.push(i);let z=[{type:"int32",data:[h]},{type:"int32",data:[f]},{type:"int32",data:[p]}];u==="leakyrelu"&&(z.push({type:"float32",data:[o]}),F.uniforms+=" alpha : f32,");let W=r.runWebGPUProgram(F,$,e.dtype,z),q=Me({inputs:{x:W},backend:r,attrs:{shape:x}});A.push(W);for(let K of A)r.disposeData(K.dataId);return q}function Fne(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a,bias:i,preluActivationWeights:o}=t,{transposeA:u,transposeB:l,activation:c,leakyreluAlpha:p}=s;return Ev({a:r,b:a,transposeA:u,transposeB:l,backend:n,bias:i,preluActivationWeights:o,leakyreluAlpha:p,activation:c})}var One={kernelName:aa,backendName:"webgpu",kernelFunc:Fne},Fw=class{constructor(e,t,n){this.variableNames=["AReal","AImag","BReal","BImag"],this.workGroupSize=[128,1,1],this.size=!0,this.outputShape=S.assertAndGetBroadcastShape(t,n),this.dispatchLayout=Le(this.outputShape),this.dispatch=$e(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey=`binaryOpComplex_${e}`,this.op=e}getUserCode(){return`
|
|
fn binaryOpComplex(
|
|
areal : f32, aimag : f32, breal : f32, bimag : f32) -> f32 {
|
|
${tc(this.op,!1)}
|
|
}
|
|
|
|
${Ue()}
|
|
if(index < uniforms.size) {
|
|
let areal = getARealByOutputIndex(index);
|
|
let aimag = getAImagByOutputIndex(index);
|
|
let breal = getBRealByOutputIndex(index);
|
|
let bimag = getBImagByOutputIndex(index);
|
|
setOutputAtIndex(index, binaryOpComplex(areal, aimag, breal, bimag));
|
|
}
|
|
}
|
|
`}},Pne=class{constructor(e,t,n,s){this.variableNames=["A","B"],this.size=!0;let r=256;this.workGroupSize=[r,1,1],this.outputShape=S.assertAndGetBroadcastShape(t,n),this.dispatchLayout=Le(this.outputShape),this.lastDimensionSize=s?n[0]:t[0],this.lastDimensionSize<256?this.workPerThread=1:this.lastDimensionSize<512?this.workPerThread=2:this.workPerThread=4,this.dispatch=$e(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.useSharedMemoryWithB=s,this.op=e,this.shaderKey=`binaryShared_${e}_${this.lastDimensionSize}_${this.useSharedMemoryWithB}`}getUserCode(){let e=this.lastDimensionSize>1?`coords[${this.outputShape.length-1}]`:"0",t=this.useSharedMemoryWithB?`let a = getAByOutputCoords(coords);
|
|
let b = sharedBuf[${e}];`:`let a = sharedBuf[${e}];
|
|
let b = getBByOutputCoords(coords);`;return`
|
|
fn binaryOperation(a : f32, b : f32) -> f32 {
|
|
${tc(this.op,!1)}
|
|
}
|
|
var<workgroup> sharedBuf : array<f32, ${this.lastDimensionSize}>;
|
|
${Ue()}
|
|
|
|
// Fill in the shared memory buffer. Here we need a loop to make sure
|
|
// that all data in A|B are uploaded when |sharedMemorySize| is larger
|
|
// than work group size.
|
|
for(var localIndex = i32(localId.x); localIndex < ${this.lastDimensionSize}; localIndex = localIndex + ${this.workGroupSize[0]}) {
|
|
sharedBuf[localIndex] = f32(${this.useSharedMemoryWithB?"B":"A"}[localIndex]);
|
|
}
|
|
workgroupBarrier();
|
|
|
|
for(var i = 0; i < ${this.workPerThread}; i = i + 1) {
|
|
let flatIndex = index * ${this.workPerThread} + i;
|
|
if(flatIndex < uniforms.size) {
|
|
let coords = getCoordsFromIndex(flatIndex);
|
|
|
|
${t}
|
|
setOutputAtIndex(flatIndex, binaryOperation(a, b));
|
|
}
|
|
}
|
|
}
|
|
`}},zne=class{constructor(e,t,n){this.variableNames=["A","B"],this.workPerThread=4,this.isVec4=!0,this.size=!0;let s=128;this.workGroupSize=[s,1,1],this.outputShape=S.assertAndGetBroadcastShape(t,n),this.dispatchLayout=Le(this.outputShape),this.dispatch=$e(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.op=e,this.shaderKey=`binaryVec4_${e}`}getUserCode(){return`
|
|
fn binaryOperation(a : vec4<f32>, b : vec4<f32>) -> vec4<f32> {
|
|
${tc(this.op,this.isVec4)}
|
|
}
|
|
${Ue()}
|
|
if (index < uniforms.size) {
|
|
let a = getAByOutputIndex(index);
|
|
let b = getBByOutputIndex(index);
|
|
setOutputAtIndex(index, binaryOperation(a, b));
|
|
}
|
|
}
|
|
`}},C2=class{constructor(e,t,n){this.variableNames=["A","B"],this.size=!0;let s=128;this.workGroupSize=[s,1,1],this.outputShape=S.assertAndGetBroadcastShape(t,n),this.dispatchLayout=Le(this.outputShape),this.dispatch=$e(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey=`binary_${e}`,this.op=e}getUserCode(){return`
|
|
fn binaryOperation(a : f32, b : f32) -> f32 {
|
|
${tc(this.op,!1)}
|
|
}
|
|
${Ue()}
|
|
if (index < uniforms.size) {
|
|
let a = getAByOutputIndex(index);
|
|
let b = getBByOutputIndex(index);
|
|
setOutputAtIndex(index, binaryOperation(a, b));
|
|
}
|
|
}
|
|
`}};function Ow(e,t,n){if(w.arraysEqual(t,n)&&w.sizeFromShape(t)%4===0)return new zne(e,t,n);let r=t.length===1&&n.length>1&&t[0]<1024,a=n.length===1&&t.length>1&&n[0]<1024;return r||a?new Pne(e,t,n,a):new C2(e,t,n)}function Wn(e){let{inputs:t}=e,{x:n}=t;return e.backend.incRef(n.dataId),{dataId:n.dataId,shape:n.shape,dtype:n.dtype}}var Mne={kernelName:Wa,backendName:"webgpu",kernelFunc:Wn};function cu(e){let{inputs:t,backend:n}=e,{real:s,imag:r}=t,a=n.makeTensorInfo(s.shape,"complex64"),i=n.tensorMap.get(a.dataId),o=Wn({inputs:{x:s},backend:n}),u=Wn({inputs:{x:r},backend:n});return i.complexTensorInfos={real:o,imag:u},a}var Lne={kernelName:Xd,backendName:"webgpu",kernelFunc:cu},nc=class{constructor(e,t){this.variableNames=["A"],this.size=!0;let n=128;this.workGroupSize=[n,1,1],this.outputShape=e,this.dispatchLayout=Le(this.outputShape),this.dispatch=$e(this.dispatchLayout,this.outputShape,this.workGroupSize),this.op=t,this.shaderKey=`unary_${t}`}getUserCode(){return`
|
|
fn unaryOperation(a : f32) -> f32 {
|
|
${qr(this.op,!1)}
|
|
}
|
|
${Ue()}
|
|
if (index < uniforms.size) {
|
|
let a = getAByOutputIndex(index);
|
|
setOutputAtIndex(index, unaryOperation(a));
|
|
}
|
|
}
|
|
`}};function Kt({opType:e,cpuKernelImpl:t,dtype:n}){return({inputs:s,backend:r})=>{let{x:a}=s,i=r,o=n||a.dtype;if(i.shouldExecuteOnCPU([a])&&t!=null){let l=i.tensorMap.get(a.dataId),c=t(l.values,o);return i.makeTensorInfo(a.shape,o,c)}let u=new nc(a.shape,e);return i.runWebGPUProgram(u,[a],o)}}function mn({opSnippet:e,cpuKernelImpl:t,supportsComplex:n=!1,dtype:s}){return({inputs:r,backend:a})=>{let{a:i,b:o}=r,u=a;if(n&&i.dtype==="complex64"){let p=u.tensorMap.get(i.dataId),d=u.tensorMap.get(o.dataId),h,f;if(e!==0)[h,f]=[[p.complexTensorInfos.real,d.complexTensorInfos.real],[p.complexTensorInfos.imag,d.complexTensorInfos.imag]].map(g=>{let[b,y]=g,v={dataId:b.dataId,dtype:b.dtype,shape:i.shape},x={dataId:y.dataId,dtype:y.dtype,shape:o.shape},k=Ow(e,i.shape,o.shape);return u.runWebGPUProgram(k,[v,x],cn(b.dtype,y.dtype))});else{let g=new Fw(17,i.shape,o.shape),b=new Fw(18,i.shape,o.shape),y=[{dataId:p.complexTensorInfos.real.dataId,dtype:p.complexTensorInfos.real.dtype,shape:i.shape},{dataId:p.complexTensorInfos.imag.dataId,dtype:p.complexTensorInfos.imag.dtype,shape:i.shape},{dataId:d.complexTensorInfos.real.dataId,dtype:d.complexTensorInfos.real.dtype,shape:o.shape},{dataId:d.complexTensorInfos.imag.dataId,dtype:d.complexTensorInfos.imag.dtype,shape:o.shape}];h=u.runWebGPUProgram(g,y,"float32"),f=u.runWebGPUProgram(b,y,"float32")}let m=cu({inputs:{real:h,imag:f},backend:u});return u.disposeData(h.dataId),u.disposeData(f.dataId),m}let l=s||cn(i.dtype,o.dtype);if((i.dtype==="string"||o.dtype==="string"||u.shouldExecuteOnCPU([i,o]))&&t!=null){let p=u.tensorMap.get(i.dataId).values,d=u.tensorMap.get(o.dataId).values,h=i.dtype==="string"?S.fromUint8ToStringArray(p):p,f=i.dtype==="string"?S.fromUint8ToStringArray(d):d,[m,g]=t(i.shape,o.shape,h,f,l);return u.makeTensorInfo(g,l,m)}let c=Ow(e,i.shape,o.shape);return u.runWebGPUProgram(c,[i,o],l)}}var{addImpl:Bne,ceilImpl:Vne,concatImpl:Wne,equalImpl:Une,expImpl:Gne,expm1Impl:Hne,floorImpl:qne,gatherNdImpl:jne,gatherV2Impl:Kne,greaterEqualImpl:Xne,greaterImpl:Yne,lessEqualImpl:Qne,lessImpl:Zne,logImpl:Jne,maxImpl:ese,maximumImpl:tse,minimumImpl:nse,multiplyImpl:sse,negImpl:rse,notEqualImpl:ase,prodImpl:ise,rangeImpl:ose,rsqrtImpl:use,simpleAbsImpl:lse,sliceImpl:cse,stridedSliceImpl:dse,stringNGramsImpl:pse,subImpl:hse,tileImpl:fse,topKImpl:mse,transposeImpl:gse,uniqueImpl:Zpe}=ev,bse=Kt({opType:0,cpuKernelImpl:lse}),yse={kernelName:uo,backendName:"webgpu",kernelFunc:bse},vse=mn({opSnippet:1,cpuKernelImpl:Bne,supportsComplex:!0}),xse={kernelName:Sr,backendName:"webgpu",kernelFunc:vse},wse=class{constructor(e){this.workPerThread=4,this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e[0],this.variableNames=e.map((t,n)=>`T${n}`),this.dispatchLayout=Le(this.outputShape),this.dispatch=$e(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.shaderKey="addN"}getUserCode(){let e=[];this.variableNames.forEach(s=>{e.push(`let v${s} = get${s}ByOutputCoords(coords);`)});let t=this.variableNames.map(s=>`v${s}`).join(" + ");return`
|
|
${Ue()}
|
|
for (var i = 0; i < ${this.workPerThread}; i = i + 1) {
|
|
let flatIndex = index * ${this.workPerThread} + i;
|
|
if (flatIndex < uniforms.size) {
|
|
let coords = getCoordsFromIndex(flatIndex);
|
|
${e.join(`
|
|
`)}
|
|
setOutputAtIndex(flatIndex, ${t});
|
|
}
|
|
}
|
|
}
|
|
`}};function kse(e){let{inputs:t,backend:n}=e,s=t;if(s.length===1)return Wn({inputs:{x:s[0]},backend:n});let r=s.map(o=>o.dtype).reduce((o,u)=>cn(o,u)),a=s.map(o=>o.shape),i=new wse(a);return n.runWebGPUProgram(i,s,r)}var Ise={kernelName:Ia,backendName:"webgpu",kernelFunc:kse},N2=class{constructor(e,t,n){this.workGroupSize=[64,1,1],this.variableNames=["x"],this.uniforms="axis : i32, infinityValue : f32,",this.size=!0;let s=[t];S.assertAxesAreInnerMostDims("arg"+n.charAt(0).toUpperCase()+n.slice(1),s,e.length),this.op=n==="min"?"<":">";let[r]=S.computeOutAndReduceShapes(e,s);this.outputShape=r.length===0?[1]:r,this.dispatchLayout=Le(this.outputShape),this.dispatch=$e(this.dispatchLayout,this.outputShape,[1,1,1]),this.inputShape=e,this.shaderKey=`argMinMax${this.op}`}getUserCode(){let e=`
|
|
var<workgroup> xBestIndices : array<i32, ${this.workGroupSize[0]}>;
|
|
var<workgroup> xBestValues : array<f32, ${this.workGroupSize[0]}>;
|
|
`,t=(r,a)=>this.outputShape.length===1?r:`${r}[${a}]`,n=r=>this.inputShape.length===1?"uniforms.xShape":`uniforms.xShape[${r}]`;return`
|
|
fn DIV_CEIL(a : u32, b : u32) -> u32 {
|
|
return ((a - 1u) / b + 1u);
|
|
}
|
|
|
|
${e}
|
|
|
|
// In order to get a flattened index into the input tensor, we need to
|
|
// add back the index along the reduced dimension to |outputCoords|.
|
|
// This function outputs the offset to the first value along
|
|
// |axis| and the stride to get the next value of the input along |axis|.
|
|
fn getInputCoordInfo(outputIndex : i32) -> vec2<i32>{
|
|
let outputCoords = getCoordsFromIndex(outputIndex);
|
|
var i = ${this.outputShape.length-1};
|
|
|
|
var stride = 1;
|
|
var inputStride = 1;
|
|
var offset = 0;
|
|
|
|
for (var r = 1; r <= ${this.inputShape.length}; r = r + 1) {
|
|
let length = ${n(`${this.inputShape.length} - r`)};
|
|
if (${this.inputShape.length} - r == uniforms.axis) {
|
|
inputStride = stride;
|
|
} else {
|
|
offset = offset + ${t("outputCoords","i")} * stride;
|
|
i = i - 1;
|
|
}
|
|
stride = stride * length;
|
|
}
|
|
|
|
return vec2<i32>(offset, inputStride);
|
|
}
|
|
|
|
fn getInputIndex(coordInfo : vec2<i32>, index : i32) -> i32{
|
|
return coordInfo[0] + coordInfo[1] * index;
|
|
}
|
|
|
|
${Ue()}
|
|
let outputIndex = index / i32(workGroupSizeX);
|
|
let coordInfo = getInputCoordInfo(outputIndex);
|
|
let Length = ${n("uniforms.axis")};
|
|
|
|
var bestIndex = i32(localId.x);
|
|
var bestValue = uniforms.infinityValue;
|
|
|
|
for (var k = i32(localId.x); k < Length && outputIndex < uniforms.size;
|
|
k = k + i32(workGroupSizeX)) {
|
|
let candidate = f32(x[getInputIndex(coordInfo, k)]);
|
|
if (!isnan(candidate) && candidate ${this.op} bestValue) {
|
|
bestValue = candidate;
|
|
bestIndex = k;
|
|
}
|
|
}
|
|
xBestValues[localId.x] = bestValue;
|
|
xBestIndices[localId.x] = bestIndex;
|
|
workgroupBarrier();
|
|
|
|
var reduceSize = min(u32(Length), workGroupSizeX);
|
|
for (var currentSize = reduceSize / 2u; reduceSize > 1u;
|
|
currentSize = reduceSize / 2u) {
|
|
let interval = DIV_CEIL(reduceSize, 2u);
|
|
if (localId.x < currentSize) {
|
|
let candidate = xBestValues[localId.x + interval];
|
|
if (candidate ${this.op} bestValue) {
|
|
bestValue = candidate;
|
|
xBestValues[localId.x] = bestValue;
|
|
xBestIndices[localId.x] = xBestIndices[localId.x + interval];
|
|
}
|
|
}
|
|
reduceSize = interval;
|
|
workgroupBarrier();
|
|
}
|
|
|
|
if (localId.x == 0u && outputIndex < uniforms.size) {
|
|
setOutputAtIndexI32(outputIndex, xBestIndices[localId.x]);
|
|
}
|
|
}
|
|
`}},Sse=class{constructor(e,t){this.variableNames=["A"],this.workGroupSize=[16,16,1];let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[t[s]];this.outputShape=n,this.dispatchLayout={x:[0],y:[1]},this.dispatch=$e(this.dispatchLayout,this.outputShape,this.workGroupSize,[1,1,1]),this.shaderKey="transposeShared"}getUserCode(){return`
|
|
let TILE_DIM = ${this.workGroupSize[0]};
|
|
var<workgroup> tile : array<array<f32, ${this.workGroupSize[0]+1}>, ${this.workGroupSize[0]}>;
|
|
${Nv()}
|
|
fn main(@builtin(local_invocation_id) localId : vec3<u32>,
|
|
@builtin(workgroup_id) workgroupId : vec3<u32>) {
|
|
var x = i32(workgroupId.x) * TILE_DIM + i32(localId.x);
|
|
var y = i32(workgroupId.y) * TILE_DIM + i32(localId.y);
|
|
let width = uniforms.outShape[0];
|
|
let height = uniforms.outShape[1];
|
|
if (x < width && y < height) {
|
|
tile[localId.y][localId.x] = A[y * width + x];
|
|
}
|
|
workgroupBarrier();
|
|
|
|
x = i32(workgroupId.y) * TILE_DIM + i32(localId.x);
|
|
y = i32(workgroupId.x) * TILE_DIM + i32(localId.y);
|
|
if (x < height && y < width) {
|
|
setOutputAtIndex((y * height + x), tile[localId.x]
|
|
[localId.y]);
|
|
}
|
|
}
|
|
`}},Cse=class{constructor(e,t){this.variableNames=["A"],this.workPerThread=4,this.workGroupSize=[64,1,1],this.size=!0;let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[t[s]];this.outputShape=n,this.dispatchLayout=Le(this.outputShape),this.dispatch=$e(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.newDim=t,this.shaderKey=`transpose_${t}`}getUserCode(){let e=Wt(this.outputShape.length),t=Nse(this.newDim);return`
|
|
${Ue()}
|
|
|
|
for(var i = 0; i < ${this.workPerThread}; i = i + 1) {
|
|
let flatIndex = index * ${this.workPerThread} + i;
|
|
if(flatIndex < uniforms.size) {
|
|
let resRC = getCoordsFromIndex(flatIndex);
|
|
setOutputAtIndex(flatIndex, A[getIndexFromCoords${this.outputShape.length}D(
|
|
${e}(${t}), uniforms.aShape)]);
|
|
}
|
|
}
|
|
}
|
|
`}};function Nse(e){let t=e.length;if(t>4)throw Error(`Transpose for rank ${t} is not yet supported`);let n=new Array(t);for(let s=0;s<e.length;s++)n[e[s]]=`resRC[${s}]`;return n.join()}function Xs(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{perm:a}=s,i=n,o=r.shape.length,u=new Array(o);for(let c=0;c<u.length;c++)u[c]=r.shape[a[c]];if(n.shouldExecuteOnCPU([r])){let p=i.tensorMap.get(r.dataId).values,d=gse(p,r.shape,r.dtype,a,u);return n.makeTensorInfo(u,r.dtype,d)}if(r.shape.length===2&&w.arraysEqual(a,[1,0])){let c=new Sse(r.shape,a);return i.runWebGPUProgram(c,[r],r.dtype)}let l=new Cse(r.shape,a);return i.runWebGPUProgram(l,[r],r.dtype)}var Tse={kernelName:mi,backendName:"webgpu",kernelFunc:Xs};function $se(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s,i=w.parseAxisParam(a,r.shape),o=S.getAxesPermutation(i,r.shape.length),u=r,l=[];o!=null&&(u=Xs({inputs:{x:r},backend:n,attrs:{perm:o}}),l.push(u),i=S.getInnerMostAxes(i.length,u.shape.length)),S.assertAxesAreInnerMostDims("argMax",[i[0]],u.shape.length);let c=new N2(u.shape,i[0],"max"),p=[{type:"int32",data:[i[0]]},{type:"float32",data:[Number.NEGATIVE_INFINITY]}],d=n.runWebGPUProgram(c,[u],"int32",p);return l.forEach(h=>n.disposeData(h.dataId)),d}var _se={kernelName:Sa,backendName:"webgpu",kernelFunc:$se};function Ase(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s,i=w.parseAxisParam(a,r.shape),o=S.getAxesPermutation(i,r.shape.length),u=r,l=[];o!=null&&(u=Xs({inputs:{x:r},backend:n,attrs:{perm:o}}),l.push(u),i=S.getInnerMostAxes(i.length,u.shape.length)),S.assertAxesAreInnerMostDims("argMin",[i[0]],u.shape.length);let c=new N2(u.shape,i[0],"min"),p=[{type:"int32",data:[i[0]]},{type:"float32",data:[Number.POSITIVE_INFINITY]}],d=n.runWebGPUProgram(c,[u],"int32",p);return l.forEach(h=>n.disposeData(h.dataId)),d}var Ese={kernelName:ul,backendName:"webgpu",kernelFunc:Ase},T2=class{constructor(e,t){this.variableNames=["x"],this.uniforms="stride : vec2<i32>, pad : vec2<i32>, dilation : vec2<i32>, convDims : vec2<i32>, filterDims : vec2<i32>,",this.workGroupSize=[128,1,1],this.size=!0,this.outputShape=e.outShape,this.dispatchLayout=Le(this.outputShape),this.dispatch=$e(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey=`pool2D_${t}`,this.poolType=t}getUserCode(){let e="resultValue = max(value, resultValue);";this.poolType==="avg"&&(e="resultValue = resultValue + value; count = count + 1.0;");let t="resultValue";return this.poolType==="avg"&&(t="resultValue / count"),`
|
|
${Ue()}
|
|
if (index < uniforms.size) {
|
|
let coords = getCoordsFromIndex(index);
|
|
let batch = coords[0];
|
|
let xRCCorner = vec2<i32>(coords.yz) * uniforms.stride - uniforms.pad;
|
|
let xRCorner = xRCCorner.x;
|
|
let xCCorner = xRCCorner.y;
|
|
|
|
var resultValue = ${this.poolType==="avg"?"0.0":"-1.0 / pow(10.0, -20.0)"};
|
|
var count = 0.0;
|
|
|
|
for (var wR = 0; wR < uniforms.filterDims.x; wR = wR + uniforms.dilation.x) {
|
|
let xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= uniforms.convDims.x) {
|
|
continue;
|
|
}
|
|
|
|
for (var wC = 0; wC < uniforms.filterDims.y; wC = wC + uniforms.dilation.y) {
|
|
let xC = xCCorner + wC;
|
|
if (xC < 0 || xC >= uniforms.convDims.y) {
|
|
continue;
|
|
}
|
|
|
|
let value = getX(batch, xR, xC, coords[3]);
|
|
${e}
|
|
}
|
|
}
|
|
|
|
setOutputAtIndex(index, ${t});
|
|
}
|
|
}
|
|
`}},$2=class{constructor(e){this.variableNames=["x"],this.uniforms="stride : vec2<i32>,",this.workGroupSize=[256,1,1],this.size=!0,this.outputShape=e.outShape,this.dispatchLayout=Le(this.outputShape),this.dispatch=$e(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="poolWithFilterSizeEqualsOne"}getUserCode(){return`
|
|
${Ue()}
|
|
if (index < uniforms.size) {
|
|
let coords = getCoordsFromIndex(index);
|
|
let batch = coords[0];
|
|
let d = coords[3];
|
|
|
|
let xRCCorner = coords.yz * uniforms.stride;
|
|
let xRCorner = xRCCorner.x;
|
|
let xCCorner = xRCCorner.y;
|
|
|
|
let value = getX(batch, xRCorner, xCCorner, d);
|
|
setOutputAtIndex(index, value);
|
|
}
|
|
}
|
|
`}};function Rse(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:i,pad:o,dimRoundingMode:u}=s,l=1,c=S.computePool2DInfo(r.shape,a,i,l,o,u);if(c.filterWidth===1&&c.filterHeight===1&&w.arraysEqual(c.inShape,c.outShape))return Wn({inputs:{x:r},backend:n});let p,d=[{type:"int32",data:[c.strideHeight,c.strideWidth]}];return c.filterHeight===1&&c.filterWidth===1?p=new $2(c):(p=new T2(c,"avg"),d.push({type:"int32",data:[c.padInfo.top,c.padInfo.left]},{type:"int32",data:[c.dilationHeight,c.dilationWidth]},{type:"int32",data:[c.inHeight,c.inWidth]},{type:"int32",data:[c.effectiveFilterHeight,c.effectiveFilterWidth]})),n.runWebGPUProgram(p,[r],r.dtype,d)}var Dse={kernelName:Ca,backendName:"webgpu",kernelFunc:Rse};function Fse(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a}=t,{transposeA:i,transposeB:o}=s;return Ev({a:r,b:a,transposeA:i,transposeB:o,backend:n})}var Ose={kernelName:Na,backendName:"webgpu",kernelFunc:Fse},Pse=class{constructor(e,t){this.variableNames=["source"],this.workPerThread=1,this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=t,this.rank=t.length,this.dispatchLayout=Le(this.outputShape),this.dispatch=$e(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.start=e,this.uniforms=`start : ${Wt(e.length)}, `,this.shaderKey="slice"}getUserCode(){let e=Wt(this.rank),t=zse(this.rank),n;return this.start.length===1?n=this.outputShape.map((r,a)=>"sourceLoc = uniforms.start + coords;"):n=this.outputShape.map((r,a)=>`sourceLoc.${Ym[a]} = uniforms.start[${a}] + coords.${Ym[a]};`),`
|
|
${Ue()}
|
|
if (index < uniforms.size) {
|
|
var sourceLoc : ${e};
|
|
let coords = getCoordsFromIndex(index);
|
|
${n.join(`
|
|
`)}
|
|
setOutputAtIndex(index, getSource(${t}));
|
|
}
|
|
}
|
|
`}},Ym=["x","y","z","w","u","v"];function zse(e){if(e===1)return"sourceLoc";if(e<=6)return Ym.slice(0,e).map(t=>`sourceLoc.${t}`).join(",");throw Error(`Slicing for rank ${e} is not yet supported`)}function du(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,size:i}=s,[o,u]=wt.parseSliceParams(r,a,i);if(wt.assertParamsValid(r,o,u),n.shouldExecuteOnCPU([r])||r.dtype==="string"){let p=n.tensorMap.get(r.dataId),d=cse(p.values,o,u,r.shape,r.dtype);return n.makeTensorInfo(u,r.dtype,d)}if(w.sizeFromShape(u)===0)return n.makeTensorInfo(u,r.dtype,[]);let l=new Pse(o,u),c=[{type:"int32",data:o}];return n.runWebGPUProgram(l,[r],r.dtype,c)}var Mse={kernelName:zo,backendName:"webgpu",kernelFunc:du},Lse=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,crops:i}=s;w.assert(r.shape.length<=4,()=>"batchToSpaceND for rank > 4 with a WebGPU backend not implemented yet");let o=a.reduce((y,v)=>y*v),u=S.getReshaped(r.shape,a,o),l=S.getPermuted(u.length,a.length),c=S.getReshapedPermuted(r.shape,a,o),p=S.getSliceBeginCoords(i,a.length),d=S.getSliceSize(c,i,a.length),h=[],f=Me({inputs:{x:r},backend:n,attrs:{shape:u}}),m=Xs({inputs:{x:f},backend:n,attrs:{perm:l}}),g=Me({inputs:{x:m},backend:n,attrs:{shape:c}}),b=du({inputs:{x:g},backend:n,attrs:{begin:p,size:d}});return h.push(f),h.push(m),h.push(g),h.forEach(y=>n.disposeData(y.dataId)),b},Bse={kernelName:lo,backendName:"webgpu",kernelFunc:Lse},_2=mn({opSnippet:10,dtype:"bool",cpuKernelImpl:ase}),Vse={kernelName:No,backendName:"webgpu",kernelFunc:_2};function sc(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.tensorMap.get(s.dataId);return Wn({inputs:{x:r.complexTensorInfos.real},backend:n})}var Wse={kernelName:rp,backendName:"webgpu",kernelFunc:sc};function Use(e,t){let n=new nc(e.shape,22),s=t.runWebGPUProgram(n,[e],"int32");return{dataId:s.dataId,shape:s.shape,dtype:s.dtype}}function Qm(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dtype:a}=s;if(a==="complex64"){if(r.dtype==="complex64")return Wn({inputs:{x:r},backend:n});let i=$t(r.shape),o=Qm({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),u=cu({inputs:{real:o,imag:i},backend:n});return i.dispose(),n.disposeData(o.dataId),u}if(r.dtype==="complex64"){let i=sc({inputs:{input:r},backend:n}),o=Qm({inputs:{x:i},backend:n,attrs:{dtype:a}});return n.disposeData(i.dataId),o}if(!w.hasEncodingLoss(r.dtype,a)){let i=Wn({inputs:{x:r},backend:n});return{dataId:i.dataId,shape:i.shape,dtype:a}}if(a==="int32")return Use(r,n);if(a==="bool"){let i=n.makeTensorInfo([],"bool",w.getTypedArrayFromDType("bool",1)),u=_2({inputs:{a:r,b:i},backend:n});return n.disposeData(i.dataId),u}throw new Error(`Error in Cast: failed to cast ${r.dtype} to ${a}`)}var Gse={kernelName:Ta,backendName:"webgpu",kernelFunc:Qm},Hse=Kt({opType:1,cpuKernelImpl:Vne}),qse={kernelName:$a,backendName:"webgpu",kernelFunc:Hse},jse=class{constructor(e){this.variableNames=["A"],this.uniforms="minVal : f32, maxVal : f32,",this.workPerThread=4,this.workGroupSize=[64,1,1],this.isVec4=!0,this.size=!0,this.outputShape=e,this.dispatchLayout=Le(this.outputShape),this.dispatch=$e(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.shaderKey="clipVec4"}getUserCode(){return`
|
|
${Ue()}
|
|
if(index < uniforms.size) {
|
|
let value = getAByOutputIndex(index);
|
|
var clampedValue : vec4<f32>;
|
|
for (var i = 0; i < 4; i = i + 1) {
|
|
if (isnan(value[i])) {
|
|
clampedValue[i] = value[i];
|
|
} else {
|
|
clampedValue[i] = clamp(value[i], uniforms.minVal, uniforms.maxVal);
|
|
}
|
|
}
|
|
|
|
setOutputAtIndex(index, clampedValue);
|
|
}
|
|
}
|
|
`}},Kse=class{constructor(e){this.variableNames=["A"],this.uniforms="minVal : f32, maxVal : f32,",this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=Le(this.outputShape),this.dispatch=$e(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="clip"}getUserCode(){return`
|
|
${Ue()}
|
|
if(index < uniforms.size) {
|
|
let value = getAByOutputIndex(index);
|
|
if (isnan(value)) {
|
|
setOutputAtIndex(index, value);
|
|
return;
|
|
}
|
|
setOutputAtIndex(index, clamp(value, uniforms.minVal, uniforms.maxVal));
|
|
}
|
|
}
|
|
`}};function Xse(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{clipValueMin:a,clipValueMax:i}=s,o,u=[{type:"float32",data:[a]},{type:"float32",data:[i]}];return w.sizeFromShape(r.shape)%4===0?o=new jse(r.shape):o=new Kse(r.shape),n.runWebGPUProgram(o,[r],r.dtype,u)}var Yse={kernelName:Cr,backendName:"webgpu",kernelFunc:Xse},Qse=class{constructor(e){this.uniforms="",this.workPerThread=4,this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=S.computeOutShape(e,1),this.variableNames=e.map((t,n)=>`T${n}`),this.dispatchLayout=Le(this.outputShape),this.dispatch=$e(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.offsetLength=e.length-1;for(let t=0;t<this.offsetLength;t++)this.uniforms+=`offset${t} : i32,`;this.shaderKey="concat"}getUserCode(){let e=[];if(this.offsetLength>0){e.push("if (yC < uniforms.offset0){ setOutputAtCoords(coords.x, coords.y, getT0(yR, yC)); }");for(let r=1;r<this.offsetLength;r++)e.push(`else if (yC < uniforms.offset${[r]}){ setOutputAtCoords(coords.x, coords.y, getT${r}(yR, yC - uniforms.offset${r-1})); }`);let n=this.offsetLength,s=this.offsetLength-1;e.push(`else { setOutputAtCoords(coords.x, coords.y, getT${n}(yR, yC - uniforms.offset${s})); }`)}else e.push("setOutputAtCoords(coords.x, coords.y, getT0(yR, yC));");return`
|
|
${Ue()}
|
|
for(var i = 0; i < ${this.workPerThread}; i = i + 1) {
|
|
let flatIndex = index * ${this.workPerThread} + i;
|
|
if(flatIndex < uniforms.size) {
|
|
let coords = getCoordsFromIndex(flatIndex);
|
|
let yR = coords.x;
|
|
let yC = coords.y;
|
|
|
|
${e.join(`
|
|
`)}
|
|
}
|
|
}
|
|
}
|
|
`}};function eh(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.tensorMap.get(s.dataId);return Wn({inputs:{x:r.complexTensorInfos.imag},backend:n})}var Zse={kernelName:ep,backendName:"webgpu",kernelFunc:eh};function Zm(e,t,n){let s=e[0].dtype;if(s==="complex64"){let h=e.map(y=>sc({inputs:{input:y},backend:n})),f=e.map(y=>eh({inputs:{input:y},backend:n})),m=Zm(h,t,n),g=Zm(f,t,n),b=cu({inputs:{real:m,imag:g},backend:n});return h.forEach(y=>n.disposeData(y.dataId)),f.forEach(y=>n.disposeData(y.dataId)),n.disposeData(m.dataId),n.disposeData(g.dataId),b}let r=n.shouldExecuteOnCPU(e);if(s==="string"&&(r=!0),r){let h=e.map(x=>{let k=w.sizeFromShape(x.shape.slice(t));return Me({inputs:{x},backend:n,attrs:{shape:[-1,k]}})}),f=h.map(x=>({vals:n.readSync(x.dataId),shape:x.shape})),m=S.computeOutShape(h.map(x=>x.shape),1),g=h[0].shape[0]===1,b=Wne(f,m,s,g),y=S.computeOutShape(e.map(x=>x.shape),t),v=n.makeTensorInfo(y,s,b);return h.forEach(x=>n.disposeData(x.dataId)),v}let{tensors2D:a,outShape:i}=Jse(e,t,n),o=a.map(h=>h.shape),u=new Qse(o),l=[],c=new Array(o.length-1);if(c.length>0){c[0]=o[0][1],l.push({type:"int32",data:[c[0]]});for(let h=1;h<c.length;h++)c[h]=c[h-1]+o[h][1],l.push({type:"int32",data:[c[h]]})}let p=n.runWebGPUProgram(u,a,a[0].dtype,l);a.forEach(h=>n.disposeData(h.dataId));let d=Me({inputs:{x:p},backend:n,attrs:{shape:i}});return n.disposeData(p.dataId),d}function Jse(e,t,n){let s=S.computeOutShape(e.map(a=>a.shape),t);return{tensors2D:e.map(a=>Me({inputs:{x:a},backend:n,attrs:{shape:[w.sizeFromShape(a.shape.slice(0,t)),w.sizeFromShape(a.shape.slice(t))]}})),outShape:s}}function A2(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s,a=w.parseAxisParam(r,t[0].shape)[0],i=S.computeOutShape(t.map(l=>l.shape),a);if(w.sizeFromShape(i)===0)return n.makeTensorInfo(i,t[0].dtype,[]);let o=t.filter(l=>w.sizeFromShape(l.shape)>0);if(o.length===1)return Wn({inputs:{x:o[0]},backend:n});let u=o.map(l=>l.shape);return S.assertParamsConsistent(u,a),Zm(o,a,n)}var ere={kernelName:co,backendName:"webgpu",kernelFunc:A2},tre=class{constructor(e,t=!1,n=null,s=!1,r=!1){this.variableNames=["x","W"],this.uniforms=`filterDims : vec2<i32>, pad : vec2<i32>, stride : vec2<i32>, dilation : vec2<i32>,
|
|
dimAOuter : i32, dimBOuter : i32, dimInner : i32,`,this.workGroupSize=[8,8,1],this.isVec4=!0,this.outputShape=e.outShape,w.assert(e.dataFormat==="channelsLast",()=>"TODO: NCHW is unimplemented"),this.dispatchLayout={x:[3],y:[1,2],z:[0]},this.outputShape[1]===1?this.elementsPerThread=[4,1,1]:this.elementsPerThread=[4,4,1],this.dispatch=$e(this.dispatchLayout,this.outputShape,this.workGroupSize,this.elementsPerThread),this.convInfo=e,this.addBias=t,this.activation=n,this.hasPreluActivationWeights=s,this.hasLeakyreluAlpha=r,this.addBias&&this.variableNames.push("bias"),this.hasPreluActivationWeights&&this.variableNames.push("preluActivationWeights"),this.hasLeakyreluAlpha&&this.variableNames.push("leakyreluAlpha"),this.tileAOuter=this.outputShape[1]===1?1:this.workGroupSize[1]*this.elementsPerThread[1],this.tileBOuter=this.workGroupSize[0]*this.elementsPerThread[0],this.tileInner=this.tileBOuter,[this.fitA,this.fitB]=this.getShapeFit(),this.shaderKey=`conv2DMMVec4_${this.activation}_${this.fitA}_${this.fitB}_${this.elementsPerThread}`}getShapeFit(){let e=[this.tileAOuter,this.tileInner],t=[this.tileInner,this.tileBOuter],n=this.outputShape[1]*this.outputShape[2],s=this.outputShape[3],r=this.convInfo.filterHeight*this.convInfo.filterWidth*this.convInfo.inChannels;return[Ks(e,[n,r]),Ks(t,[r,s])]}getSampleAWithRemainder(e){return`let flatIndex${e} = getIndexFromCoords4D(coord, uniforms.xShape);
|
|
let divBy4Remainder${e} = flatIndex${e} % 4;
|
|
let divBy4Index${e} = flatIndex${e} / 4;
|
|
let curData${e} = x[divBy4Index${e}];
|
|
if (divBy4Remainder${e} == 0) {
|
|
temp = curData${e};
|
|
} else {
|
|
// TODO: This could end up being a redundant load with another one in
|
|
// the same shader invocation. Perhaps there's an opportunity for
|
|
// optimization
|
|
let nextData${e} = x[divBy4Index${e} + 1];
|
|
if (divBy4Remainder${e} == 1) {
|
|
temp = vec4<f32>(curData${e}.yzw, nextData${e}.x);
|
|
} else if (divBy4Remainder${e} == 2) {
|
|
temp = vec4<f32>(curData${e}.zw, nextData${e}.xy);
|
|
} else if (divBy4Remainder${e} == 3) {
|
|
temp = vec4<f32>(curData${e}.w, nextData${e}.xyz);
|
|
}
|
|
}
|
|
`}getUserCode(){let e=I2(this.elementsPerThread,this.tileAOuter,this.tileBOuter,this.tileInner),s=`let outRow = r / uniforms.outShape[2];
|
|
let outCol = r % uniforms.outShape[2];
|
|
let WRow = c / (uniforms.filterDims[1] * uniforms.xShape[3]);
|
|
let WCol = c / uniforms.xShape[3] % uniforms.filterDims[1];
|
|
let inChCoord = c % uniforms.xShape[3];
|
|
var coord = vec4<i32>(
|
|
batch,
|
|
outRow * uniforms.stride[0] + uniforms.dilation[0] * WRow - uniforms.pad[0],
|
|
outCol * uniforms.stride[1] + uniforms.dilation[1] * WCol - uniforms.pad[1],
|
|
inChCoord);
|
|
var resData = vec4<f32>(0.0);
|
|
${this.convInfo.inChannels%4===0?`// The bounds checking is always needed since we use it to pad zero for
|
|
// the 'same' padding type.
|
|
if (coordsInBounds4D(coord, uniforms.xShape)) {
|
|
resData = x[getIndexFromCoords4D(coord, uniforms.xShape) / 4];
|
|
} else {
|
|
resData = vec4<f32>(0.0); }`:`var temp = vec4<f32>(0.0);
|
|
${this.getSampleAWithRemainder(1)}
|
|
resData = temp;
|
|
if (WCol == (uniforms.filterDims[1] - 1)) {
|
|
coord = vec4<i32>(
|
|
coord.x, coord.y + 1, coord.z + 1 - uniforms.filterDims[1], 0);
|
|
${this.getSampleAWithRemainder(2)}
|
|
if (inChCoord == 0) {
|
|
resData = vec4<f32>(resData.xyz, temp.x);
|
|
} else if (inChCoord == 1) {
|
|
resData = vec4<f32>(resData.xy, temp.xy);
|
|
} else {
|
|
resData = vec4<f32>(resData.x, temp.xyz);
|
|
}
|
|
}
|
|
`}
|
|
return resData;`,r=this.fitA?`${s}`:`if (r < uniforms.dimAOuter && c < uniforms.dimInner) {
|
|
${s}
|
|
}
|
|
return vec4<f32>(0.0);
|
|
`,a=this.fitB?"return W[row * uniforms.dimBOuter / 4 + col];":`if(coordsInBounds2D(vec2<i32>(row, col * 4), vec2<i32>(uniforms.dimInner, uniforms.dimBOuter))) {
|
|
return W[row * uniforms.dimBOuter / 4 + col];
|
|
}
|
|
return vec4<f32>(0.0);
|
|
`,i="",o="";if(this.activation){let c=Js(this.activation,this.isVec4);if(this.hasPreluActivationWeights)i=`fn activation(a : vec4<f32>, outCoord : vec4<i32>) -> vec4<f32> {
|
|
let b = getPreluActivationWeightsByOutputCoords(outCoord);
|
|
${c}
|
|
}`;else{if(this.hasLeakyreluAlpha)throw i=`fn activation(outCoord: vec4<f32>) -> vec4<f32> {
|
|
let b = getLeakyreluAlphaByOutputCoords(outCoord);
|
|
${c}
|
|
}`,new Error("Leakyrelu is not supported.");i=`
|
|
fn activation(a : vec4<f32>, outCoord : vec4<i32>) -> vec4<f32> {
|
|
${c}
|
|
}`}o="value = activation(value, outCoord);"}let u=this.addBias?"value = value + getBiasByOutputCoords(outCoord);":"";return`
|
|
${i}
|
|
fn mm_readA(row : i32, col : i32, globalId : vec3<u32>) -> vec4<f32> {
|
|
let r = row;
|
|
let c = col * 4;
|
|
var batch = i32(globalId.z);
|
|
${r}
|
|
}
|
|
|
|
fn mm_readB(row : i32, col : i32, globalId : vec3<u32>) -> vec4<f32> {
|
|
${a}
|
|
}
|
|
|
|
fn mm_write(row : i32, col : i32, valueInput : vec4<f32>, globalId : vec3<u32>) {
|
|
var batch = i32(globalId.z);
|
|
var value = valueInput;
|
|
if (row < uniforms.dimAOuter && col * 4 < uniforms.dimBOuter)
|
|
{
|
|
let outCoord = vec4<i32>(
|
|
batch,
|
|
row / uniforms.outShape[2],
|
|
row % uniforms.outShape[2],
|
|
col * 4);
|
|
${u}
|
|
${o}
|
|
setOutputAtCoords(outCoord[0], outCoord[1], outCoord[2], outCoord[3],
|
|
value);
|
|
}
|
|
}
|
|
${e}
|
|
`}},nre=class{constructor(e,t=!1,n=null,s=!1){this.variableNames=["x","W"],this.uniforms="filterDims : vec2<i32>, pad : vec2<i32>, stride : vec2<i32>, dilation : vec2<i32>, dimAOuter : i32, dimBOuter : i32, dimInner : i32,",this.outputShape=e.outShape,w.assert(e.dataFormat==="channelsLast",()=>"TODO: NCHW is unimplemented"),this.dispatchLayout={x:[3],y:[1,2],z:[0]},this.workGroupSize=Tv(this.dispatchLayout,this.outputShape),this.elementsPerThread=$v(this.dispatchLayout,this.outputShape),this.dispatch=$e(this.dispatchLayout,this.outputShape,this.workGroupSize,this.elementsPerThread),t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),this.convInfo=e,this.addBias=t,this.activation=n,this.hasPreluActivationWeights=s,[this.fitA,this.fitB]=this.getShapeFit(),this.shaderKey=`conv2DMM_${this.elementsPerThread}_${this.activation}_${this.fitA}_${this.fitB}`}getShapeFit(){let e=this.workGroupSize[1]*this.elementsPerThread[1],t=this.workGroupSize[0]*this.elementsPerThread[0],n=e>t?e:t;w.assert(n%this.workGroupSize[0]===0&&n%this.workGroupSize[1]===0,()=>"tileInner must be multiple of workgroupsize.x and workgroupsize.y");let s=[e,n],r=[n,t],a=this.outputShape[1]*this.outputShape[2],i=this.outputShape[3],o=this.convInfo.filterHeight*this.convInfo.filterWidth*this.convInfo.inChannels;return[Ks(s,[a,o]),Ks(r,[o,i])]}getUserCode(){let e=Av(this.elementsPerThread,this.workGroupSize),t=`
|
|
let outRow = row / uniforms.outShape[2];
|
|
let outCol = row % uniforms.outShape[2];
|
|
|
|
let WRow = col / (uniforms.filterDims[1] * uniforms.xShape[3]);
|
|
let WCol = col / uniforms.xShape[3] % uniforms.filterDims[1];
|
|
let coord = vec4<i32>(
|
|
batch,
|
|
outRow * uniforms.stride[0] + uniforms.dilation[0] * WRow - uniforms.pad[0],
|
|
outCol * uniforms.stride[1] + uniforms.dilation[1] * WCol - uniforms.pad[1],
|
|
col % uniforms.xShape[3]);
|
|
// The bounds checking is always needed since we use it to pad zero for the
|
|
// 'same' padding type.
|
|
if(coordsInBounds4D(coord, uniforms.xShape)) {
|
|
return x[getIndexFromCoords4D(coord, uniforms.xShape)];
|
|
}
|
|
return 0.0;`,n=this.fitA?`${t}`:`if (row < uniforms.dimAOuter && col < uniforms.dimInner) {
|
|
${t}
|
|
}
|
|
return 0.0;
|
|
`,s=this.fitB?"return W[row * uniforms.dimBOuter + col];":`if(coordsInBounds2D(vec2<i32>(row, col), vec2<i32>(uniforms.dimInner, uniforms.dimBOuter))) {
|
|
return W[row * uniforms.dimBOuter + col];
|
|
}
|
|
return 0.0;
|
|
`,r="",a="";if(this.activation){let u=Js(this.activation,!1);this.hasPreluActivationWeights?r=`fn activation(a: f32, outCoord : vec4<i32>) -> f32 {
|
|
let b = getPreluActivationWeightsByOutputCoords(outCoord);
|
|
${u}
|
|
}`:r=`
|
|
fn activation(a : f32, outCoord : vec4<i32>) -> f32 {
|
|
${u}
|
|
}
|
|
`,a="value = activation(value, outCoord);"}let i=this.addBias?"value = value + getBiasByOutputCoords(outCoord);":"";return`
|
|
${r}
|
|
fn mm_readA(row : i32, col : i32, globalId : vec3<u32>) -> f32 {
|
|
var batch = i32(globalId.z);
|
|
${n}
|
|
}
|
|
|
|
fn mm_readB(row : i32, col : i32, globalId : vec3<u32>) -> f32 {
|
|
${s}
|
|
}
|
|
|
|
fn mm_write(row : i32, col : i32, valueInput : f32, globalId : vec3<u32>) {
|
|
var batch = i32(globalId.z);
|
|
var value = valueInput;
|
|
let outCoord = vec4<i32>(
|
|
batch,
|
|
row / uniforms.outShape[2],
|
|
row % uniforms.outShape[2],
|
|
col);
|
|
${i}
|
|
${a}
|
|
result[getIndexFromCoords4D(outCoord, uniforms.outShape)] = value;
|
|
}
|
|
${e}
|
|
`}},sre=class{constructor(e,t=!1,n=null,s=!1){this.variableNames=["x","W"],this.uniforms="filterDims : vec2<i32>, pad : vec2<i32>, stride : vec2<i32>, dilation : vec2<i32>,",this.workGroupSize=[128,1,1],this.outputShape=e.outShape,this.dispatchLayout=Le(this.outputShape),this.dispatch=$e(this.dispatchLayout,this.outputShape,this.workGroupSize),w.assert(e.dataFormat==="channelsLast",()=>"TODO: NCHW is unimplemented"),t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),this.convInfo=e,this.addBias=t,this.activation=n,this.hasPreluActivationWeights=s,this.shaderKey=`conv2DNaive_${this.activation}`}getUserCode(){let e="",t="";if(this.activation){let r=Js(this.activation);this.hasPreluActivationWeights?e=`fn activation(a : f32, outCoord : vec4<i32>) -> f32{
|
|
let b = getPreluActivationWeightsByOutputCoords(outCoord);
|
|
${r}
|
|
}`:e=`
|
|
fn activation(a : f32, outCoord : vec4<i32>) -> f32{
|
|
${r}
|
|
}
|
|
`,t="value = activation(value, outCoord);"}let n=this.addBias?"value = value + getBiasByOutputCoords(outCoord);":"";return`
|
|
${e}
|
|
fn readInp(batch : i32, row : i32, col : i32, chan : i32) -> f32 {
|
|
let coord = vec4<i32>(batch, row, col, chan);
|
|
if(coordsInBounds4D(coord, uniforms.xShape)) {
|
|
return getX(batch, row, col, chan);
|
|
}
|
|
return 0.0;
|
|
}
|
|
|
|
fn readFilt(row : i32, col : i32, xChannel : i32, outChannel : i32) -> f32{
|
|
let coord = vec4<i32>(row, col, xChannel, outChannel);
|
|
if(coordsInBounds4D(coord, uniforms.wShape)) {
|
|
return getW(row, col, xChannel, outChannel);
|
|
}
|
|
return 0.0;
|
|
}
|
|
|
|
fn writeResult(batch : i32, row : i32, col : i32, chan : i32, value : f32) {
|
|
let coord = vec4<i32>(batch, row, col, chan);
|
|
if (coordsInBounds4D(coord, uniforms.outShape)) {
|
|
${n}
|
|
${t}
|
|
setOutputAtCoords(batch, row, col, chan, value);
|
|
}
|
|
}
|
|
|
|
${Fr()}
|
|
let coords = getOutputCoords();
|
|
let batch = coords[0];
|
|
let outChannel = coords[3];
|
|
|
|
var acc = 0.0;
|
|
|
|
for (var row = 0; row < uniforms.filterDims[0]; row = row + 1) {
|
|
for (var col = 0; col < uniforms.filterDims[1]; col = col + 1) {
|
|
for (var xChannel = 0; xChannel < uniforms.xShape[3]; xChannel = xChannel + 1) {
|
|
let coordRow = coords[1] * uniforms.stride[0] + uniforms.dilation[0] * row - uniforms.pad[0];
|
|
let coordCol = coords[2] * uniforms.stride[1] + uniforms.dilation[1] * col - uniforms.pad[1];
|
|
let v = readInp(batch, coordRow, coordCol, xChannel);
|
|
let f = readFilt(row, col, xChannel, outChannel);
|
|
acc = acc + v * f;
|
|
}
|
|
}
|
|
}
|
|
|
|
writeResult(batch, coords[1], coords[2], outChannel, acc);
|
|
}
|
|
`}},rre=class{constructor(e,t){this.variableNames=["A"],this.uniforms=`pad : vec2<i32>, stride : vec2<i32>, dilation : vec2<i32>, outWidth : i32, itemsPerBlockRow : i32,
|
|
inChannels : i32,`,this.workPerThread=4,this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=Le(this.outputShape),this.dispatch=$e(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.isChannelsLast=t,this.shaderKey=`im2col_${this.isChannelsLast}`}getUserCode(){let e=this.isChannelsLast?0:1,t=this.isChannelsLast?1:2;return`
|
|
${Ue()}
|
|
|
|
for(var i = 0; i<${this.workPerThread}; i = i + 1) {
|
|
let flatIndex = index * ${this.workPerThread} + i;
|
|
|
|
let rc = getCoordsFromIndex(flatIndex);
|
|
|
|
if(flatIndex < uniforms.size) {
|
|
let blockIndex = rc[0];
|
|
let pos = rc[1];
|
|
|
|
let offsetY = blockIndex / uniforms.outWidth * uniforms.stride[1] - uniforms.pad[1];
|
|
let d0 = offsetY + uniforms.dilation[1] * pos / uniforms.itemsPerBlockRow;
|
|
var value = 0.0;
|
|
if(d0 < uniforms.aShape[${e}] && d0 >= 0) {
|
|
let offsetX = (blockIndex % uniforms.outWidth) * uniforms.stride[0] -
|
|
uniforms.pad[0];
|
|
let d1 = offsetX + uniforms.dilation[0] * ((pos %
|
|
uniforms.itemsPerBlockRow) / uniforms.inChannels);
|
|
let ch = pos % uniforms.inChannels;
|
|
if(d1 < uniforms.aShape[${t}] && d1 >= 0) {
|
|
value = getA(d0, d1, ch);
|
|
}
|
|
}
|
|
setOutputAtIndex(flatIndex, value);
|
|
}
|
|
}
|
|
}
|
|
`}};function are({x:e,filter:t,convInfo:n,backend:s,bias:r=null,preluActivationWeights:a=null,leakyreluAlpha:i=0,activation:o=null}){let u=e.shape,l=n.dataFormat==="channelsLast",c=!1,p=!1,d=n.filterHeight===n.inHeight&&n.filterWidth===n.inWidth&&n.padInfo.type==="VALID",h,f;if(d){let b=n.inHeight*n.inWidth*n.inChannels;h=Me({inputs:{x:e},backend:s,attrs:{shape:[1,n.batchSize,b]}}),f=Me({inputs:{x:t},backend:s,attrs:{shape:[1,b,n.outChannels]}})}else{let b=l?u[0]*u[1]*u[2]:u[0]*u[2]*u[3];h=Me({inputs:{x:e},backend:s,attrs:{shape:[1,b,n.inChannels]}}),f=Me({inputs:{x:t},backend:s,attrs:{shape:[1,n.inChannels,n.outChannels]}})}let m=Ev({a:h,b:f,transposeA:c,transposeB:p,backend:s,bias:r,activation:o,preluActivationWeights:a,leakyreluAlpha:i}),g=Me({inputs:{x:m},backend:s,attrs:{shape:n.outShape}});return s.disposeData(h.dataId),s.disposeData(f.dataId),s.disposeData(m.dataId),g}function ire({x:e,filter:t,convInfo:n,backend:s,bias:r=null,preluActivationWeights:a=null,leakyreluAlpha:i=0,activation:o=null}){let{filterWidth:u,filterHeight:l,inChannels:c,strideWidth:p,strideHeight:d,padInfo:h,outWidth:f,outHeight:m,dilationWidth:g,dilationHeight:b,dataFormat:y}=n,v=y==="channelsLast",x=u*l*c,k=m*f,T=[k,x],N=!1,E=!1,A=[],P=Me({inputs:{x:e},backend:s,attrs:{shape:e.shape.slice(1)}}),R=Me({inputs:{x:t},backend:s,attrs:{shape:[1,x,-1]}});A.push(P),A.push(R);let F=new rre(T,v),$=[{type:"int32",data:[h.left,h.top]},{type:"int32",data:[p,d]},{type:"int32",data:[g,b]},{type:"int32",data:[f]},{type:"int32",data:[c*u]},{type:"int32",data:[c]}],z=s.runWebGPUProgram(F,[P],P.dtype,$),W=Me({inputs:{x:z},backend:s,attrs:{shape:[1,T[0],T[1]]}});A.push(z),A.push(W);let q=[1,T[0],T[1]],K=new S2(q,[1,k,n.outChannels],X().get("WEBGPU_MATMUL_WORK_PER_THREAD"),N,E,r,o,a),Y=q[1],Z=q[2],te=n.outChannels,ee=[{type:"int32",data:[Y]},{type:"int32",data:[te]},{type:"int32",data:[Z]}],se=[W,R];r&&se.push(r),a&&se.push(a),o==="leakyrelu"&&($.push({type:"float32",data:[i]}),K.uniforms+=" alpha : f32,");let ne=s.runWebGPUProgram(K,se,W.dtype,ee),oe=v?[1,m,f,n.outChannels]:[1,n.outChannels,m,f],re=Me({inputs:{x:ne},backend:s,attrs:{shape:oe}});A.push(ne);for(let le of A)s.disposeData(le.dataId);return re}function E2({x:e,filter:t,convInfo:n,backend:s,bias:r=null,preluActivationWeights:a=null,leakyreluAlpha:i=0,activation:o=null}){let u=r!=null,l=a!=null,c;if(n.filterHeight===n.inHeight&&n.filterWidth===n.inWidth&&n.padInfo.type==="VALID"||n.filterHeight===1&&n.filterWidth===1&&n.dilationHeight===1&&n.dilationWidth===1&&n.strideHeight===1&&n.strideWidth===1&&(n.padInfo.type==="SAME"||n.padInfo.type==="VALID"))return are({x:e,filter:t,convInfo:n,backend:s,bias:r,activation:o,preluActivationWeights:a,leakyreluAlpha:i});if(X().getBool("WEBGPU_CONV_SEPARATE_IM2COL_SHADER")&&e.shape[0]===1)return ire({x:e,filter:t,convInfo:n,backend:s,bias:r,preluActivationWeights:a,leakyreluAlpha:i,activation:o});let d=X().getBool("WEBGPU_USE_NAIVE_CONV2D"),h=(n.inChannels%4===0||n.inChannels===3&&n.padInfo.type==="VALID")&&n.outChannels%4===0,f=[n.padInfo.top,n.padInfo.left],m=[{type:"int32",data:[n.filterHeight,n.filterWidth]},{type:"int32",data:[...f]},{type:"int32",data:[n.strideHeight,n.strideWidth]},{type:"int32",data:[n.dilationHeight,n.dilationWidth]}];if(d)c=new sre(n,u,o,l);else{h?c=new tre(n,u,o,l):c=new nre(n,u,o,l);let b=n.outShape[1]*n.outShape[2],y=n.outShape[3],v=n.filterHeight*n.filterWidth*n.inShape[3];m.push({type:"int32",data:[b]},{type:"int32",data:[y]},{type:"int32",data:[v]})}let g=[e,t];return u&&g.push(r),l&&g.push(a),o==="leakyrelu"&&(m.push({type:"float32",data:[i]}),c.uniforms+=" alpha : f32,"),s.runWebGPUProgram(c,g,e.dtype,m)}function ore(e){let{inputs:t,attrs:n,backend:s}=e,{x:r,filter:a}=t,{strides:i,pad:o,dataFormat:u,dilations:l,dimRoundingMode:c}=n,p=S.convertConv2DDataFormat(u),d=S.computeConv2DInfo(r.shape,a.shape,i,l,o,c,!1,p);return E2({x:r,filter:a,convInfo:d,backend:s})}var ure={kernelName:_a,backendName:"webgpu",kernelFunc:ore},lre=class{constructor(e){this.variableNames=["x","W"],this.uniforms="filterDims : vec2<i32>, pads : vec2<i32>, stride : vec2<i32>, outBackprop : vec4<i32>, dimAOuter : i32, dimBOuter : i32, dimInner : i32,",this.outputShape=e.inShape,w.assert(e.dataFormat==="channelsLast",()=>"TODO: NCHW is unimplemented"),this.dispatchLayout={x:[3],y:[1,2],z:[0]},this.workGroupSize=Tv(this.dispatchLayout,this.outputShape),this.elementsPerThread=$v(this.dispatchLayout,this.outputShape),this.dispatch=$e(this.dispatchLayout,this.outputShape,this.workGroupSize,this.elementsPerThread),this.shaderKey=`conv2DDerInputMM_${this.elementsPerThread}`}getUserCode(){return`
|
|
fn mm_readA(row : i32, col : i32, globalId : vec3<u32>) -> f32 {
|
|
var batch = i32(globalId.z);
|
|
if (row < uniforms.dimAOuter && col < uniforms.dimInner) {
|
|
|
|
let outRow = row / uniforms.outShape[2];
|
|
let outCol = row % uniforms.outShape[2];
|
|
|
|
let WRow = col / (uniforms.filterDims[1] * uniforms.outBackprop[3]);
|
|
let WCol = col / uniforms.outBackprop[3] % uniforms.filterDims[1];
|
|
let xR = f32(outRow - uniforms.pads[0] + WRow) / f32(uniforms.stride[0]);
|
|
let xC = f32(outCol - uniforms.pads[1] + WCol) / f32(uniforms.stride[1]);
|
|
if (xR < 0.0 || xR >= f32(uniforms.outBackprop[1]) || fract(xR) > 0.0) {
|
|
return 0.0;
|
|
}
|
|
if (xC < 0.0 || xC >= f32(uniforms.outBackprop[2]) || fract(xC) > 0.0) {
|
|
return 0.0;
|
|
}
|
|
let coord = vec4<i32>(
|
|
batch,
|
|
i32(xR),
|
|
i32(xC),
|
|
col % uniforms.outBackprop[3]);
|
|
return x[getIndexFromCoords4D(coord, uniforms.xShape)];
|
|
}
|
|
return 0.0;
|
|
}
|
|
|
|
fn mm_readB(row : i32, col : i32, globalId : vec3<u32>) -> f32 {
|
|
let coordX = uniforms.filterDims.x - 1 -
|
|
row / (uniforms.filterDims[1] * uniforms.outBackprop[3]);
|
|
let coordY = uniforms.filterDims.y - 1 -
|
|
(row / uniforms.outBackprop[3]) % uniforms.filterDims[1];
|
|
if (row < uniforms.dimInner && col < uniforms.dimBOuter &&
|
|
coordX >= 0 && coordY >= 0) {
|
|
let coord = vec4<i32>(coordX, coordY, col,
|
|
row % uniforms.outBackprop[3]);
|
|
return W[getIndexFromCoords4D(coord, uniforms.wShape)];
|
|
}
|
|
return 0.0;
|
|
}
|
|
|
|
fn mm_write(row : i32, col : i32, valueInput : f32, globalId : vec3<u32>) {
|
|
var batch = i32(globalId.z);
|
|
var value = valueInput;
|
|
let outCoord = vec4<i32>(
|
|
batch,
|
|
row / uniforms.outShape[2],
|
|
row % uniforms.outShape[2],
|
|
col);
|
|
result[getIndexFromCoords4D(outCoord, uniforms.outShape)] = value;
|
|
}
|
|
|
|
${Av(this.elementsPerThread,this.workGroupSize)}
|
|
`}},cre=class{constructor(e){this.variableNames=["dy","W"],this.uniforms="filterDims : vec2<i32>, pads : vec2<i32>, stride : vec2<i32>, outBackprop : vec4<i32>,",this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e.inShape,this.dispatchLayout=Le(this.outputShape),this.dispatch=$e(this.dispatchLayout,this.outputShape,this.workGroupSize),this.isChannelsLast=e.dataFormat==="channelsLast",this.shaderKey=`conv2DDerInput_${this.isChannelsLast}`}getUserCode(){let e=this.isChannelsLast?1:2,t=this.isChannelsLast?2:3,n=this.isChannelsLast?3:1;return`
|
|
${Ue()} {
|
|
if(index < uniforms.size) {
|
|
let coords = getCoordsFromIndex(index);
|
|
let batch = coords[0];
|
|
let d1 = coords[${n}];
|
|
|
|
let dyCorner = vec2<i32>(coords[${e}]), coords[${t}]) - uniforms.pads;
|
|
let dyRCorner = dyCorner.x;
|
|
let dyCCorner = dyCorner.y;
|
|
|
|
// Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
var dotProd = 0.0;
|
|
for (var wR = 0; wR < uniforms.filterDims.x; wR = wR + 1) {
|
|
let dyR = (f32(dyRCorner) + f32(wR)) / f32(uniforms.stride.x);
|
|
let wRPerm = uniforms.filterDims.x - 1 - wR;
|
|
if (dyR < 0.0 || dyR >= f32(uniforms.outBackprop[1]) || fract(dyR) > 0.0 ||
|
|
wRPerm < 0) {
|
|
continue;
|
|
}
|
|
let idyR = dyR;
|
|
|
|
for (var wC = 0; wC < uniforms.filterDims.y; wC = wC + 1) {
|
|
let dyC = (f32(dyCCorner) + f32(wC)) / f32(uniforms.stride.y);
|
|
let wCPerm = uniforms.filterDims.y - 1 - wC;
|
|
if (dyC < 0.0 || dyC >= f32(uniforms.outBackprop[2]) ||
|
|
fract(dyC) > 0.0 || wCPerm < 0) {
|
|
continue;
|
|
}
|
|
let idyC = dyC;
|
|
|
|
for (var d2 = 0; d2 < uniforms.outBackprop[3]; d2 = d2 + 1) {
|
|
if (${this.isChannelsLast}) {
|
|
let xValue = getDy(batch, idyR, idyC, d2);
|
|
let wValue = getW(wRPerm, wCPerm, d1, d2);
|
|
dotProd = dotProd + xValue * wValue;
|
|
} else {
|
|
let xValue = getDy(batch, d2, idyR, idyC);
|
|
let wValue = getW(wRPerm, wCPerm, d1, d2);
|
|
dotProd = dotProd + xValue * wValue;
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
setOutputAtIndex(index, dotProd);
|
|
}
|
|
}
|
|
`}};function dre(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{inputShape:i,strides:o,pad:u,dataFormat:l,dimRoundingMode:c}=s,p=S.convertConv2DDataFormat(l),d=S.computeConv2DInfo(i,a.shape,o,1,u,c,!1,p),h=[{type:"int32",data:[d.filterHeight,d.filterWidth]},{type:"int32",data:[d.filterHeight-1-d.padInfo.top,d.filterWidth-1-d.padInfo.left]},{type:"int32",data:[d.strideHeight,d.strideWidth]},{type:"int32",data:[d.batchSize,d.outHeight,d.outWidth,d.outChannels]}],f;if(X().getBool("WEBGPU_USE_NAIVE_CONV2D_TRANSPOSE"))f=new cre(d);else{f=new lre(d);let m=d.inShape[1]*d.inShape[2],g=d.inShape[3],b=d.filterHeight*d.filterWidth*d.outChannels;h.push({type:"uint32",data:[m]},{type:"uint32",data:[g]},{type:"uint32",data:[b]})}return n.runWebGPUProgram(f,[r,a],"float32",h)}var pre={kernelName:Aa,backendName:"webgpu",kernelFunc:dre},hre=Kt({opType:2}),fre={kernelName:Ea,backendName:"webgpu",kernelFunc:hre},mre=Kt({opType:3}),gre={kernelName:Ra,backendName:"webgpu",kernelFunc:mre},bre=class{constructor(e,t,n,s){this.variableNames=["Image","Boxes","BoxInd"],this.uniforms="extrapolationValue : f32,",this.workGroupSize=[64,1,1],this.size=!0;let[r]=t;this.outputShape=[r,n[0],n[1],e],this.dispatchLayout=Le(this.outputShape),this.dispatch=$e(this.dispatchLayout,this.outputShape,this.workGroupSize),this.methodId=s==="bilinear"?1:0,this.cropHeightBiggerThan1=this.outputShape[1]>1,this.cropWidthBiggerThan1=this.outputShape[2]>1,this.shaderKey=`cropAndResize_${this.methodId}_${this.cropHeightBiggerThan1}_${this.cropWidthBiggerThan1}`}getUserCode(){let[e,t]=["f32(uniforms.imageShape[1] - 1)","f32(uniforms.imageShape[2] - 1)"],[n,s,r]=this.cropHeightBiggerThan1?[`(${e} / f32(uniforms.outShape[1] - 1))`,"(y2-y1) * height_ratio",`y1*${e} + f32(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${e}`],[a,i,o]=this.cropWidthBiggerThan1?[`(${t} / f32(uniforms.outShape[2] - 1))`,"(x2-x1) * width_ratio",`x1*${t} + f32(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${t}`];return`
|
|
${Ue()}
|
|
if (index < uniforms.size) {
|
|
let coords = getCoordsFromIndex(index);
|
|
let height_ratio = f32(${n});
|
|
let width_ratio = f32(${a});
|
|
let b = coords[0];
|
|
let y = coords[1];
|
|
let x = coords[2];
|
|
let d = coords[3];
|
|
// get box vals
|
|
let y1 = getBoxes(b, 0);
|
|
let x1 = getBoxes(b, 1);
|
|
let y2 = getBoxes(b, 2);
|
|
let x2 = getBoxes(b, 3);
|
|
// get image in batch index
|
|
let bInd = i32(round(getBoxInd(b)));
|
|
if(bInd < 0 || bInd >= uniforms.outShape[0]) {
|
|
return;
|
|
}
|
|
let height_scale = ${s};
|
|
let width_scale = ${i};
|
|
let in_y = ${r};
|
|
if( in_y < 0.0 || in_y > ${e} ) {
|
|
setOutputAtIndex(index, uniforms.extrapolationValue);
|
|
return;
|
|
}
|
|
let in_x = ${o};
|
|
if( in_x < 0.0 || in_x > ${t} ) {
|
|
setOutputAtIndex(index, uniforms.extrapolationValue);
|
|
return;
|
|
}
|
|
let sourceFracIndexCR = vec2<f32>(in_x,in_y);
|
|
if(${this.methodId} == 1) {
|
|
// Compute the four integer indices.
|
|
let sourceFloorCR = vec2<i32>(sourceFracIndexCR);
|
|
let sourceCeilCR = vec2<i32>(ceil(sourceFracIndexCR));
|
|
let topLeft = getImage(bInd, sourceFloorCR.y, sourceFloorCR.x, d);
|
|
let bottomLeft = getImage(bInd, sourceCeilCR.y, sourceFloorCR.x, d);
|
|
let topRight = getImage(bInd, sourceFloorCR.y, sourceCeilCR.x, d);
|
|
let bottomRight = getImage(bInd, sourceCeilCR.y, sourceCeilCR.x, d);
|
|
let fracCR = sourceFracIndexCR - vec2<f32>(sourceFloorCR);
|
|
let top = topLeft + (topRight - topLeft) * fracCR.x;
|
|
let bottom = bottomLeft + (bottomRight - bottomLeft) * fracCR.x;
|
|
let newValue = top + (bottom - top) * fracCR.y;
|
|
setOutputAtIndex(index, newValue);
|
|
} else {
|
|
// Compute the coordinators of nearest neighbor point.
|
|
let sourceNearestCR = vec2<i32>(floor(
|
|
sourceFracIndexCR + vec2<f32>(0.5,0.5)));
|
|
let newValue = getImage(
|
|
bInd, sourceNearestCR.y, sourceNearestCR.x, d);
|
|
setOutputAtIndex(index, newValue);
|
|
}
|
|
}
|
|
}
|
|
`}},yre=e=>{let{inputs:t,backend:n,attrs:s}=e,{image:r,boxes:a,boxInd:i}=t,{cropSize:o,method:u,extrapolationValue:l}=s,c=new bre(r.shape[3],a.shape,o,u),p=[{type:"float32",data:[l]}];return n.runWebGPUProgram(c,[r,a,i],"float32",p)},vre={kernelName:ho,backendName:"webgpu",kernelFunc:yre},Pw=class{constructor(e,t,n,s){this.variableNames=["x"],this.uniforms="index : f32,",this.size=!0;let r=128;this.workGroupSize=[r,1,1],this.outputShape=t,this.dispatchLayout=Le(this.outputShape),this.dispatch=$e(this.dispatchLayout,this.outputShape,this.workGroupSize),this.exclusive=n,this.reverse=s,this.op=e,this.shaderKey=`cum_${this.op}_${this.exclusive}_${this.reverse}`}getUserCode(){let e=this.outputShape.length,t=this.op==="*"?"1.0":"0.0",n=this.exclusive?t:`getX(${zw(e,"coords",this.op)})`,s=this.outputShape[this.outputShape.length-1],r="",a="";return this.exclusive?(r=this.reverse?`end != ${s-1}`:"end != 0",a=this.reverse?"end + 1":"end - 1"):(r=this.reverse?`end + pow2 < ${s}`:"end >= pow2",a=this.reverse?"end + pow2":"end - pow2"),`
|
|
${Ue()}
|
|
if (index < uniforms.size) {
|
|
var coords = getCoordsFromIndex(index);
|
|
|
|
let end = ${Mw(e,"coords",this.op)};
|
|
var val = ${n};
|
|
let pow2 = i32(pow(2.0, uniforms.index));
|
|
if (${r}) {
|
|
let idx = ${a};
|
|
${Mw(e,"coords",this.op)} = idx;
|
|
val ${this.op}= getX(${zw(e,"coords",this.op)});
|
|
}
|
|
setOutputAtIndex(index, val);
|
|
}
|
|
}
|
|
`}};function zw(e,t,n){if(e===1)return`${t}`;if(e===2)return`${t}.x, ${t}.y`;if(e===3)return`${t}.x, ${t}.y, ${t}.z`;if(e===4)return`${t}.x, ${t}.y, ${t}.z, ${t}.w`;throw Error(`Cumulative ${n} for rank ${e} is not yet supported`)}function Mw(e,t,n){if(e===1)return`${t}`;if(e===2)return`${t}.y`;if(e===3)return`${t}.z`;if(e===4)return`${t}.w`;throw Error(`Cumulative ${n} for rank ${e} is not yet supported`)}function R2(e,t,n,s,r,a){let i=t.shape.length,o=S.getAxesPermutation([s],i),u=t;o!=null&&(u=Xs({inputs:{x:t},backend:n,attrs:{perm:o}}));let l=S.getInnerMostAxes(1,i)[0];if(l!==i-1)throw new Error(`WebGPU cumprod shader expects an inner-most axis=${t.shape.length-1} but got axis=${s}`);let c=u.shape[l],p=Wn({inputs:{x:u},backend:n});for(let d=0;d<=Math.ceil(Math.log2(c))-1;d++){let h=new Pw(e,u.shape,!1,a),f=p,m=[{type:"float32",data:[d]}];p=n.runWebGPUProgram(h,[p],p.dtype,m),n.disposeData(f.dataId)}if(r){let d=new Pw(e,u.shape,r,a),h=p,f=[{type:"float32",data:[0]}];p=n.runWebGPUProgram(d,[p],p.dtype,f),n.disposeData(h.dataId)}if(o!=null){let d=S.getUndoAxesPermutation(o),h=Xs({inputs:{x:p},backend:n,attrs:{perm:d}});return n.disposeData(p.dataId),n.disposeData(u.dataId),h}return p}function xre(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,exclusive:i,reverse:o}=s;return R2("*",r,n,a,i,o)}var wre={kernelName:po,backendName:"webgpu",kernelFunc:xre};function kre(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,exclusive:i,reverse:o}=s;return R2("+",r,n,a,i,o)}var Ire={kernelName:Da,backendName:"webgpu",kernelFunc:kre},Sre=class{constructor(e,t){this.variableNames=["x"],this.workGroupSize=[64,1,1],this.size=!0,this.uniforms="blockSize : i32,",this.outputShape=e,this.dispatchLayout=Le(this.outputShape),this.dispatch=$e(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey=`depthToSpace_${t}`,this.dataFormat=t}getUserCode(){return`
|
|
${Ue()}
|
|
if (index < uniforms.size) {
|
|
let coords = getCoordsFromIndex(index);
|
|
let b = coords[0];
|
|
let h = ${this.getHeightCoordString()};
|
|
let w = ${this.getWidthCoordString()};
|
|
let d = ${this.getDepthCoordString()};
|
|
|
|
let in_h = h / uniforms.blockSize;
|
|
let offset_h = h % uniforms.blockSize;
|
|
let in_w = w / uniforms.blockSize;
|
|
let offset_w = w % uniforms.blockSize;
|
|
let offset_d = (offset_h * uniforms.blockSize + offset_w) *
|
|
${this.getOutputDepthSize()};
|
|
let in_d = d + offset_d;
|
|
|
|
let rlt = ${this.getInputSamplingString()};
|
|
setOutputAtIndex(index, rlt);
|
|
}
|
|
}`}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?"uniforms.outShape[3]":"uniforms.outShape[1]"}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}};function Cre(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockSize:a,dataFormat:i}=s,o=r.shape[0],u=i==="NHWC"?r.shape[1]:r.shape[2],l=i==="NHWC"?r.shape[2]:r.shape[3],c=i==="NHWC"?r.shape[3]:r.shape[1],p=u*a,d=l*a,h=c/(a*a),f=i==="NHWC"?[o,p,d,h]:[o,h,p,d],m=[{type:"int32",data:[a]}],g=new Sre(f,i);return n.runWebGPUProgram(g,[r],r.dtype,m)}var Nre={kernelName:fo,backendName:"webgpu",kernelFunc:Cre},D2=class{constructor(e,t=!1,n=null,s=!1){this.variableNames=["x","W"],this.uniforms="pad : vec2<i32>, stride : vec2<i32>, dilation : vec2<i32>, inDims : vec2<i32>,",this.workGroupSize=[4,4,4],this.isVec4=!0,this.outputShape=e.outShape,this.dispatchLayout={x:[0,1],y:[2],z:[3]},this.dispatch=$e(this.dispatchLayout,this.outputShape,this.workGroupSize,[1,4,4]),w.assert(e.dataFormat==="channelsLast",()=>"TODO: NCHW is unimplemented"),t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),this.convInfo=e,this.addBias=t,this.activation=n,this.hasPreluActivation=s,this.shaderKey=`depthwise3x3_${n}`}getUserCode(){let e="",t="";if(this.activation){let r=Js(this.activation,this.isVec4);this.hasPreluActivation?e=`fn activation(a : vec4<f32>, outCoord : vec4<i32>) -> vec4<f32> {
|
|
let b = getPreluActivationWeightsByOutputCoords(outCoord);
|
|
${r}
|
|
}`:e=`
|
|
fn activation(a : vec4<f32>, outCoord : vec4<i32>) -> vec4<f32> {
|
|
${r}
|
|
}
|
|
`,t="dotProd[i] = activation(dotProd[i], coords);"}let n=this.addBias?"dotProd[i] = dotProd[i] + getBiasByOutputCoords(coords);":"";return`
|
|
${e}
|
|
|
|
${Nv()}
|
|
fn main(@builtin(global_invocation_id) globalId: vec3<u32>) {
|
|
let batch = 0;
|
|
let r = i32(globalId.x);
|
|
let c = i32(globalId.y) * 4;
|
|
let d2 = i32(globalId.z) * 4;
|
|
let xRCCorner = vec2<i32>(r, c) * uniforms.stride - uniforms.pad;
|
|
let d1 = d2;
|
|
let q = 0;
|
|
|
|
let xRCorner = xRCCorner.x;
|
|
let xCCorner = xRCCorner.y;
|
|
|
|
var wVals : array<vec4<f32>, 9>;
|
|
wVals[0] = getW(0, 0, d1, q);
|
|
wVals[1] = getW(0, 1, d1, q);
|
|
wVals[2] = getW(0, 2, d1, q);
|
|
wVals[3] = getW(1, 0, d1, q);
|
|
wVals[4] = getW(1, 1, d1, q);
|
|
wVals[5] = getW(1, 2, d1, q);
|
|
wVals[6] = getW(2, 0, d1, q);
|
|
wVals[7] = getW(2, 1, d1, q);
|
|
wVals[8] = getW(2, 2, d1, q);
|
|
|
|
var xVals : array<array<vec4<f32>, 6>, 3>;
|
|
for (var wR = 0; wR < 3; wR = wR + 1) {
|
|
let xR = xRCorner + wR * uniforms.dilation[0];
|
|
for (var wC = 0; wC < 6; wC = wC + 1) {
|
|
let xC = xCCorner + wC * uniforms.dilation[1];
|
|
if (xR < 0 || xR >= uniforms.inDims[0] || xC < 0 || xC >= uniforms.inDims[1]) {
|
|
xVals[wR][wC] = vec4<f32>(0.0);
|
|
} else {
|
|
xVals[wR][wC] = getX(batch, xR, xC, d1);
|
|
}
|
|
}
|
|
}
|
|
|
|
var dotProd : array<vec4<f32>, 4>;
|
|
dotProd[0] = vec4<f32>(0.0);
|
|
dotProd[1] = vec4<f32>(0.0);
|
|
dotProd[2] = vec4<f32>(0.0);
|
|
dotProd[3] = vec4<f32>(0.0);
|
|
|
|
for (var wR = 0; wR < 3; wR = wR + 1) {
|
|
for (var wC = 0; wC < 3; wC = wC + 1) {
|
|
let indexW = wR * 3 + wC;
|
|
dotProd[0] = dotProd[0] + xVals[wR][0 + wC] * wVals[indexW];
|
|
dotProd[1] = dotProd[1] + xVals[wR][1 + wC] * wVals[indexW];
|
|
dotProd[2] = dotProd[2] + xVals[wR][2 + wC] * wVals[indexW];
|
|
dotProd[3] = dotProd[3] + xVals[wR][3 + wC] * wVals[indexW];
|
|
}
|
|
}
|
|
|
|
for (var i = 0; i < 4; i = i + 1) {
|
|
let coords = vec4<i32>(batch, r, c + i, d2);
|
|
if (coordsInBounds4D(coords, uniforms.outShape)) {
|
|
${n}
|
|
${t}
|
|
setOutputAtCoords(coords[0], coords[1], coords[2], coords[3], dotProd[i]);
|
|
}
|
|
}
|
|
}
|
|
`}},F2=class{constructor(e,t=!1,n=null,s=!1){this.variableNames=["x","W"],this.uniforms=`pad : vec2<i32>, stride : vec2<i32>, dilation : vec2<i32>,
|
|
inDims : vec2<i32>, filterHeight : i32, filterWidth : i32,
|
|
channelMul : i32,`,this.workGroupSize=[256,1,1],this.outputShape=e.outShape,this.dispatchLayout=Le(this.outputShape),this.dispatch=$e(this.dispatchLayout,this.outputShape,this.workGroupSize),w.assert(e.dataFormat==="channelsLast",()=>"TODO: NCHW is unimplemented"),t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),this.convInfo=e,this.addBias=t,this.activation=n,this.hasPreluActivation=s,this.shaderKey=`depthwise_${this.activation}`}getUserCode(){let e="",t="";if(this.activation){let r=Js(this.activation,!1);this.hasPreluActivation?e=`fn activation(a : f32, outCoord : vec4<i32>) -> f32 {
|
|
let b = getPreluActivationWeightsByOutputCoords(outCoord);
|
|
${r}
|
|
}`:e=`
|
|
fn activation(a : f32, outCoord : vec4<i32>) -> f32 {
|
|
${r}
|
|
}
|
|
`,t="dotProd = activation(dotProd, coords);"}let n=this.addBias?"dotProd = dotProd + getBiasByOutputCoords(coords);":"";return`
|
|
${e}
|
|
|
|
fn writeResult(batch : i32, row : i32, col : i32, chan : i32,
|
|
value : f32) {
|
|
let coord = vec4<i32>(batch, row, col, chan);
|
|
if (coordsInBounds4D(coord, uniforms.outShape)) {
|
|
setOutputAtCoords(batch, row, col, chan, value);
|
|
}
|
|
}
|
|
|
|
${Fr()}
|
|
let coords = getOutputCoords();
|
|
let batch = coords[0];
|
|
let xRCCorner = vec2<i32>(coords.yz) * uniforms.stride - uniforms.pad;
|
|
let d2 = coords[3];
|
|
let d1 = d2 / uniforms.channelMul;
|
|
let q = d2 - d1 * uniforms.channelMul;
|
|
|
|
let inputRowStart = xRCCorner.x;
|
|
let inputColStart = xRCCorner.y;
|
|
let inputRowEnd = inputRowStart + uniforms.filterHeight *
|
|
uniforms.dilation[0];
|
|
let inputColEnd = inputColStart + uniforms.filterWidth *
|
|
uniforms.dilation[1];
|
|
|
|
// Convolve x(?, ?, d1) with w(:, :, d1, q) to get y(yR, yC, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
var dotProd = 0.0;
|
|
|
|
// Extract if checking out of for loop for performance.
|
|
if (inputRowStart >= 0 && inputColStart >= 0 &&
|
|
inputRowEnd < uniforms.inDims[0] &&
|
|
inputColEnd < uniforms.inDims[1]) {
|
|
// Here using a constant value |this.convInfo.filterHeight| instead
|
|
// of uniform value is in order to loop unrolling.
|
|
for (var wR = 0; wR < uniforms.filterHeight; wR = wR + 1) {
|
|
let xR = inputRowStart + wR * uniforms.dilation[0];
|
|
|
|
for (var wC = 0; wC < uniforms.filterWidth; wC = wC + 1) {
|
|
let xC = inputColStart + wC * uniforms.dilation[1];
|
|
|
|
let xVal = getX(batch, xR, xC, d1);
|
|
let wVal = getW(wR, wC, d1, q);
|
|
dotProd = dotProd + xVal * wVal;
|
|
}
|
|
}
|
|
} else {
|
|
for (var wR = 0; wR < uniforms.filterHeight; wR = wR + 1) {
|
|
let xR = inputRowStart + wR * uniforms.dilation[0];
|
|
|
|
if (xR < 0 || xR >= uniforms.inDims[0]) {
|
|
continue;
|
|
}
|
|
|
|
for (var wC = 0; wC < uniforms.filterWidth; wC = wC + 1) {
|
|
let xC = inputColStart + wC * uniforms.dilation[1];
|
|
|
|
if (xC < 0 || xC >= uniforms.inDims[1]) {
|
|
continue;
|
|
}
|
|
|
|
let xVal = getX(batch, xR, xC, d1);
|
|
let wVal = getW(wR, wC, d1, q);
|
|
dotProd = dotProd + xVal * wVal;
|
|
}
|
|
}
|
|
}
|
|
|
|
${n}
|
|
${t}
|
|
writeResult(batch, coords[1], coords[2], d2, dotProd);
|
|
}
|
|
`}};function Tre(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:i,pad:o,dilations:u,dimRoundingMode:l}=s,c=u;c==null&&(c=[1,1]);let p=S.computeConv2DInfo(r.shape,a.shape,i,c,o,l,!0),d=[{type:"int32",data:[p.padInfo.top,p.padInfo.left]},{type:"int32",data:[p.strideHeight,p.strideWidth]},{type:"int32",data:[p.dilationHeight,p.dilationWidth]},{type:"int32",data:[p.inHeight,p.inWidth]}],h;return p.batchSize===1&&p.inHeight===p.outHeight&&p.inWidth===p.outWidth&&p.strideHeight===1&&p.strideWidth===1&&p.filterHeight===p.filterWidth&&p.inChannels===p.outChannels&&p.dilationHeight===1&&p.dilationWidth===1&&p.filterHeight===3&&p.inChannels%4===0?h=new D2(p):(h=new F2(p),d.push({type:"int32",data:[p.filterHeight]},{type:"int32",data:[p.filterWidth]},{type:"int32",data:[p.outChannels/p.inChannels]})),n.runWebGPUProgram(h,[r,a],r.dtype,d)}var $re={kernelName:Fa,backendName:"webgpu",kernelFunc:Tre},O2=mn({opSnippet:0,cpuKernelImpl:sse,supportsComplex:!0}),_re={kernelName:Za,backendName:"webgpu",kernelFunc:O2},Are=class{constructor(e,t){this.workGroupSize=[64,1,1],this.variableNames=["x"],this.uniforms="reduceSize : i32,",this.size=!0,this.inputShape=[e.batchSize,e.inSize];let[n]=S.computeOutAndReduceShapes(this.inputShape,[1]);this.outputShape=n.length===0?[1]:n,this.dispatchLayout=Le(this.outputShape),this.dispatch=$e(this.dispatchLayout,this.outputShape,[1,1,1]),this.reduceType=t,this.shaderKey=`reduce_${t}`}getUserCode(){let e="",t="0.0";this.reduceType==="min"||this.reduceType==="max"?(e=`
|
|
if (isnan(candidate)) {
|
|
bestValue = uniforms.NAN;
|
|
} else if (!isnan(bestValue) && candidate ${this.reduceType==="min"?"<":">"} bestValue)
|
|
{ bestValue = candidate; }`,t="f32(x[offset])"):this.reduceType==="sum"||this.reduceType==="mean"?e=" bestValue = bestValue + candidate; ":this.reduceType==="prod"&&(e=" bestValue = bestValue * candidate; ",t="1.0");let n=this.reduceType==="mean"?"setOutputAtIndex(outputIndex, bestValue / f32(uniforms.reduceSize));":"setOutputAtIndex(outputIndex, bestValue);";return`
|
|
fn DIV_CEIL(a : u32, b : u32) -> u32 {
|
|
return ((a - 1u) / b + 1u);
|
|
}
|
|
|
|
${`
|
|
var<workgroup> xBestValues : array<f32, ${this.workGroupSize[0]}>;
|
|
`}
|
|
fn getOffset(outputIndex : i32) -> i32 {
|
|
let outputCoords = getCoordsFromIndex(outputIndex);
|
|
let offset = ${this.outputShape.length===1?"outputCoords":"outputCoords[0]"} * uniforms.reduceSize;
|
|
return offset;
|
|
}
|
|
${Ue()}
|
|
let outputIndex = index / i32(workGroupSizeX);
|
|
let offset = getOffset(outputIndex);
|
|
var bestValue = ${t};
|
|
let Length = uniforms.reduceSize;
|
|
let WorkPerThread = DIV_CEIL(u32(Length), workGroupSizeX);
|
|
for (var k = i32(localId.x); k < Length && outputIndex < uniforms.size;
|
|
k = k + i32(workGroupSizeX)) {
|
|
let candidate = f32(x[offset + k]);
|
|
${e}
|
|
}
|
|
xBestValues[localId.x] = bestValue;
|
|
workgroupBarrier();
|
|
|
|
var reduceSize = min(u32(Length), workGroupSizeX);
|
|
for (var currentSize = reduceSize / 2u; reduceSize > 1u;
|
|
currentSize = reduceSize / 2u) {
|
|
let interval = DIV_CEIL(reduceSize, 2u);
|
|
if (localId.x < currentSize) {
|
|
let candidate = xBestValues[localId.x + interval];
|
|
${e}
|
|
xBestValues[localId.x] = bestValue;
|
|
}
|
|
reduceSize = interval;
|
|
workgroupBarrier();
|
|
}
|
|
|
|
if (localId.x == 0u && outputIndex < uniforms.size) {
|
|
${n}
|
|
}
|
|
}
|
|
`}};function rc(e,t,n,s,r){let a=e.shape.length,i=[],o=w.parseAxisParam(t,e.shape),u=o,l=S.getAxesPermutation(u,a),c=e;l!=null&&(c=Xs({inputs:{x:e},attrs:{perm:l},backend:r}),u=S.getInnerMostAxes(u.length,a),i.push(c)),S.assertAxesAreInnerMostDims(s,u,a);let[p,d]=S.computeOutAndReduceShapes(c.shape,u),h=p;n&&(h=S.expandShapeToKeepDim(p,o));let f;if((s==="max"||s==="prod")&&r.shouldExecuteOnCPU([c])){let m=r.tensorMap.get(c.dataId).values;switch(s){case"max":let g=ese(m,w.sizeFromShape(d),h,e.dtype);f=r.makeTensorInfo(h,e.dtype,g);break;case"prod":let{outVals:b,outShape:y,outDtype:v}=ise(c.shape,c.dtype,m,u);f=r.makeTensorInfo(y,v,b);break;default:throw new Error(`${s} CPU implementation is not yet supported.`)}}else{let m=w.sizeFromShape(d),b=w.sizeFromShape(c.shape)/m,y={windowSize:m,inSize:m,batchSize:b,outSize:1},v=s==="mean"?"float32":pp(e.dtype),x=[{type:"int32",data:[m]}],k=new Are(y,s),T=r.runWebGPUProgram(k,[c],v,x);i.push(T),f=Me({inputs:{x:T},attrs:{shape:h},backend:r})}return i.forEach(m=>r.disposeData(m.dataId)),f}function Rv(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:i}=s;return rc(r,a,i,"sum",n)}var Ere={kernelName:ci,backendName:"webgpu",kernelFunc:Rv};function Rre(e){let{inputs:t,backend:n,attrs:s}=e,{equation:r}=s,a=t,{allDims:i,summedDims:o,idDims:u}=S.decodeEinsumEquation(r,a.length);S.checkEinsumDimSizes(i.length,u,a);let{path:l,steps:c}=S.getEinsumComputePath(o,u),p=c.length,d=null,h=i.length,f=[];for(let m=0;m<p;++m){for(let g of c[m]){let{permutationIndices:b,expandDims:y}=S.getEinsumPermutation(h,u[g]),v;S.isIdentityPermutation(b)?v=a[g]:(v=Xs({inputs:{x:a[g]},backend:n,attrs:{perm:b}}),f.push(v));let x=v.shape.slice();for(let k=0;k<y.length;++k)x.splice(y[k],0,1);w.arraysEqual(v.shape,x)||(v=Me({inputs:{x:v},backend:n,attrs:{shape:x}}),f.push(v)),d===null?d=v:(d=O2({inputs:{a:v,b:d},backend:n}),f.push(d))}m<p-1&&(l[m]>=0&&(d=Rv({inputs:{x:d},backend:n,attrs:{axis:l[m]-(i.length-h),keepDims:!1}}),f.push(d)),h--)}for(let m of f)m!==d&&n.disposeData(m.dataId);return d}var Dre={kernelName:Jd,backendName:"webgpu",kernelFunc:Rre},Fre=Kt({opType:4}),Ore={kernelName:Pa,backendName:"webgpu",kernelFunc:Fre},Pre=mn({opSnippet:4,dtype:"bool",cpuKernelImpl:Une}),zre={kernelName:mo,backendName:"webgpu",kernelFunc:Pre},P2=Kt({opType:5,cpuKernelImpl:Gne,dtype:"float32"}),Mre={kernelName:za,backendName:"webgpu",kernelFunc:P2};function Jm(e){let{inputs:t,attrs:n,backend:s}=e,{dim:r}=n,{input:a}=t,i=a.shape.length,o=a.shape.slice(),u=r;return r<0&&(w.assert(-(i+1)<=r,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),u=i+r+1),o.splice(u,0,1),Me({inputs:{x:a},backend:s,attrs:{shape:o}})}var Lre={kernelName:go,backendName:"webgpu",kernelFunc:Jm},Bre=Kt({opType:6,cpuKernelImpl:Hne}),Vre={kernelName:bo,backendName:"webgpu",kernelFunc:Bre},Wre=class{constructor(e){this.variableNames=[],this.outputShape=[],this.uniforms="value : f32,",this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=Le(this.outputShape),this.dispatch=$e(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="fill"}getUserCode(){return`
|
|
${Ue()}
|
|
if (index < uniforms.size) {
|
|
setOutputAtIndex(index, uniforms.value);
|
|
}
|
|
}
|
|
`}};function pu(e){let{backend:t,attrs:n}=e,{shape:s,value:r}=n,{dtype:a}=n;if(a=a||w.inferDtype(r),a==="string"){let i=w.getArrayFromDType(a,w.sizeFromShape(s));return i.fill(r),t.makeTensorInfo(s,a,i)}else{let i=new Wre(s),o=[{type:"float32",data:[r]}];return t.runWebGPUProgram(i,[],a,o)}}var Ure={kernelName:ml,backendName:"webgpu",kernelFunc:pu},Gre=class{constructor(e){this.outputShape=[],this.variableNames=["x"],this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=Le(this.outputShape),this.dispatch=$e(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="flipLeftRight"}getUserCode(){return`
|
|
${Ue()}
|
|
if (index < uniforms.size) {
|
|
let coords = getCoordsFromIndex(index);
|
|
let coordX = uniforms.xShape[2] - coords[2] - 1;
|
|
let outputValue = getX(coords[0], coords[1], coordX, coords[3]);
|
|
setOutputAtIndex(index, outputValue);
|
|
}
|
|
}
|
|
`}},Hre={kernelName:yo,backendName:"webgpu",kernelFunc:({inputs:e,backend:t})=>{let{image:n}=e,s=t,r=new Gre(n.shape);return s.runWebGPUProgram(r,[n],n.dtype)}},qre=Kt({opType:7,cpuKernelImpl:qne}),jre={kernelName:Ma,backendName:"webgpu",kernelFunc:qre},Kre=mn({opSnippet:12,dtype:"int32"}),Xre={kernelName:La,backendName:"webgpu",kernelFunc:Kre},Yre=(e,t,n,s,r)=>{let a=[s,...n];return r&&a.push(r),e.createBindGroup({layout:t,entries:a.map((i,o)=>({binding:o,resource:i}))})},z2=(e,t,n,s,r,a=!1)=>{let i={dtype:r.dtype,shape:r.shape},o=xne(s,i,t,a),u=e.createShaderModule({code:o,label:t.constructor.name});return e.createComputePipeline({layout:n,compute:{module:u,entryPoint:"main"},label:t.constructor.name})};function M2(e,t,n,s="",r=""){return e.shaderKey+"_"+(e.workGroupSize?e.workGroupSize.join(","):"")+t.map(i=>i.length).join(",")+n.join(",")+e.variableNames.join(",")+s+r}function Lw(e){let{externalImage:t,backend:n,attrs:s,outShape:r,useImport:a}=e,{numChannels:i}=s,o=w.sizeFromShape(r),u=w.computeStrides(r),l=n.makeTensorInfo(r,"int32"),c=n.getFromPixelsProgram(a?"import":"copyExternal");c.updateOutputShape(r);let p=[l.shape],d=[l.dtype,a?"import":"copyExternal"],h=M2(c,p,d),f=c.getLayout(n.device),m=n.getAndSavePipeline(h,()=>z2(n.device,c,f.pipelineLayout,[],l,!0));c.setPipeline(m),a||n.queue.copyExternalImageToTexture({source:t,origin:{x:0,y:0}},{texture:c.makeInputTexture(n.device,r[1],r[0])},[r[1],r[0]]);let g=n.tensorMap.get(l.dataId);g.bufferInfo.buffer=n.acquireBuffer(g.bufferInfo.byteSize);let b=[o,i,...u,...c.dispatch];c.setUniform(n.device,b);let y;if(a){let v={source:t};y=n.device.importExternalTexture(v)}else y=c.inputTexture.createView();return n.runFromPixelsProgram(c,g.bufferInfo.buffer,f,y,l.dataId),l}var Qre={kernelName:fd,backendName:"webgpu",kernelFunc:Zre},Wi;function Zre(e){let{inputs:t,backend:n,attrs:s}=e,{pixels:r}=t,{numChannels:a}=s;if(r==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let i=typeof HTMLVideoElement!="undefined"&&r instanceof HTMLVideoElement,o=typeof HTMLImageElement!="undefined"&&r instanceof HTMLImageElement,u=typeof HTMLCanvasElement!="undefined"&&r instanceof HTMLCanvasElement||typeof OffscreenCanvas!="undefined"&&r instanceof OffscreenCanvas,l=typeof ImageBitmap!="undefined"&&r instanceof ImageBitmap,[c,p]=i?[r.videoWidth,r.videoHeight]:[r.width,r.height],d=[p,c,a];if(X().getBool("WEBGPU_USE_IMPORT")&&i)return Lw({externalImage:r,backend:n,attrs:s,outShape:d,useImport:!0});if((i||o)&&(Wi==null&&(Wi=document.createElement("canvas").getContext("2d")),Wi.canvas.width=c,Wi.canvas.height=p,Wi.drawImage(r,0,0,c,p),r=Wi.canvas),l||u||i||o)return Lw({externalImage:r,backend:n,attrs:s,outShape:d,useImport:!1});let h=r.data,f=h;if(a!=null&&a!==4){f=new Uint8Array(r.width*r.height*a);let b=h.length,y=0;for(let v=0;v<b;v++)v%4<a&&(f[y++]=h[v])}let m=n.makeTensorInfo(d,"int32"),g=n.tensorMap.get(m.dataId);return g.values=new Int32Array(f),n.maybeReleaseBuffer(m.dataId),n.uploadToGPU(m.dataId),m}var Jre=class{constructor(e,t,n,s,r){this.uniforms="varianceEpsilon : f32,",this.workGroupSize=[128,1,1],this.size=!0,this.variableNames=["x","mean","variance"],S.assertAndGetBroadcastShape(e,t),S.assertAndGetBroadcastShape(e,n),this.outputShape=e,this.dispatchLayout=Le(this.outputShape),this.dispatch=$e(this.dispatchLayout,this.outputShape,this.workGroupSize),s!=null&&(S.assertAndGetBroadcastShape(e,s),this.variableNames.push("offset")),r!=null&&(S.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale")),this.offsetShape=s,this.scaleShape=r,this.shaderKey="batchNorm"}getUserCode(){let e="0.0";this.offsetShape!=null&&(e="getOffsetByOutputIndex(index)");let t="1.0";return this.scaleShape!=null&&(t="getScaleByOutputIndex(index)"),`
|
|
${Ue()}
|
|
if (index < uniforms.size)
|
|
{
|
|
let xValue = getXByOutputIndex(index);
|
|
let meanValue = getMeanByOutputIndex(index);
|
|
let varianValue = getVarianceByOutputIndex(index);
|
|
let offsetValue = ${e};
|
|
let scaleValue = ${t};
|
|
let inv = scaleValue * inverseSqrt(varianValue + f32(uniforms.varianceEpsilon));
|
|
setOutputAtIndex(index,dot(vec3<f32>(xValue, -meanValue, offsetValue), vec3<f32>(inv, inv, 1.0)));
|
|
}
|
|
}
|
|
`}},eae={kernelName:Ba,backendName:"webgpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:s,scale:r,offset:a,mean:i,variance:o}=e,{varianceEpsilon:u}=t,l=n,c=[s,i,o],p=null;a!=null&&(p=a.shape,c.push(a));let d=null;r!=null&&(d=r.shape,c.push(r));let h=new Jre(s.shape,i.shape,o.shape,p,d),f=[{type:"float32",data:[u]}];return l.runWebGPUProgram(h,c,s.dtype,f)}};function tae(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:i,preluActivationWeights:o}=t,{strides:u,pad:l,dataFormat:c,dilations:p,dimRoundingMode:d,activation:h,leakyreluAlpha:f}=s,m=S.convertConv2DDataFormat(c),g=S.computeConv2DInfo(r.shape,a.shape,u,p,l,d,!1,m);return E2({x:r,filter:a,convInfo:g,backend:n,bias:i,preluActivationWeights:o,leakyreluAlpha:f,activation:h})}var nae={kernelName:ia,backendName:"webgpu",kernelFunc:tae};function sae(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:i,preluActivationWeights:o}=t,{strides:u,pad:l,dilations:c,dimRoundingMode:p,activation:d,leakyreluAlpha:h}=s,f=c;f==null&&(f=[1,1]),w.assert(S.eitherStridesOrDilationsAreOne(u,f),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${u} and dilations '${f}'`);let m=S.computeConv2DInfo(r.shape,a.shape,u,f,l,p,!0),g=[r,a],b=i!=null,y=o!=null;b&&g.push(i),y&&g.push(o);let v=[{type:"int32",data:[m.padInfo.top,m.padInfo.left]},{type:"int32",data:[m.strideHeight,m.strideWidth]},{type:"int32",data:[m.dilationHeight,m.dilationWidth]},{type:"int32",data:[m.inHeight,m.inWidth]}],x;return m.batchSize===1&&m.inHeight===m.outHeight&&m.inWidth===m.outWidth&&m.strideHeight===1&&m.strideWidth===1&&m.filterHeight===m.filterWidth&&m.inChannels===m.outChannels&&m.dilationHeight===1&&m.dilationWidth===1&&m.filterHeight===3&&m.inChannels%4===0?x=new D2(m,b,d,y):(x=new F2(m,b,d,y),v.push({type:"int32",data:[m.filterHeight]},{type:"int32",data:[m.filterWidth]},{type:"int32",data:[m.outChannels/m.inChannels]})),d==="leakyrelu"&&(v.push({type:"float32",data:[h]}),x.uniforms+=" alpha : f32,"),n.runWebGPUProgram(x,g,"float32",v)}var rae={kernelName:oa,backendName:"webgpu",kernelFunc:sae},aae=class{constructor(e,t){this.variableNames=["A","indices"],this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=t,this.dispatchLayout=Le(this.outputShape),this.dispatch=$e(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey=`gathernd_${e}`,this.sliceDim=e,this.uniforms=`sliceDim : i32, strides : ${Wt(e)},`}getUserCode(){let e;return this.sliceDim>1?e="uniforms.strides[j]":e="uniforms.strides",`
|
|
${Ue()}
|
|
if (index < uniforms.size) {
|
|
let coords = getCoordsFromIndex(index);
|
|
var flattenIndex = 0;
|
|
for (var j = 0; j < uniforms.sliceDim; j = j + 1) {
|
|
let indexTemp = i32(round(getIndices(coords[0], j)));
|
|
let strideNum = ${e};
|
|
flattenIndex = flattenIndex + indexTemp * strideNum;
|
|
}
|
|
|
|
setOutputAtIndex(index, getA(flattenIndex, coords[1]));
|
|
}
|
|
}
|
|
`}};function iae(e){let{inputs:t,backend:n}=e,{params:s,indices:r}=t,a=r.shape,i=a[a.length-1],o=w.sizeFromShape(s.shape),[u,l,c,p]=S.prepareAndValidate(s,r),d=Me({inputs:{x:r},backend:n,attrs:{shape:[l,i]}}),h=Me({inputs:{x:s},backend:n,attrs:{shape:[w.sizeFromShape(s.shape)/c,c]}});if(n.shouldExecuteOnCPU([s,r])||s.dtype==="string"){let y=n.readSync(r.dataId),v=n.bufferSync(s),x=jne(y,v,s.dtype,l,i,c,p,s.shape,o);return n.makeTensorInfo(u,s.dtype,x.values)}let f=new aae(i,[l,c]),m=[{type:"int32",data:[i]},{type:"int32",data:p}],g=n.runWebGPUProgram(f,[h,d],h.dtype,m),b=Me({inputs:{x:g},backend:n,attrs:{shape:u}});return n.disposeData(d.dataId),n.disposeData(h.dataId),n.disposeData(g.dataId),b}var oae={kernelName:xo,backendName:"webgpu",kernelFunc:iae},uae=class{constructor(e,t){this.variableNames=["A","indices"],this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e.slice(),this.aShape=e,this.outputShape=t,this.dispatchLayout=Le(this.outputShape),this.dispatch=$e(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="gather"}getUserCode(){let e=lae(this.aShape);return`
|
|
${Ue()}
|
|
if (index < uniforms.size) {
|
|
let resRC = getCoordsFromIndex(index);
|
|
let indexZ = i32(getIndices(resRC.x, resRC.z));
|
|
let inBounds = select(0.0, 1.0, indexZ >= 0 && indexZ < uniforms.aShape[2]);
|
|
setOutputAtIndex(index, inBounds * getA(${e}));
|
|
}
|
|
}
|
|
`}};function lae(e){let t=["resRC.x","resRC.y","resRC.z","resRC.w"],n=[];for(let s=0;s<e.length;s++)s===2?n.push("indexZ"):n.push(`${t[s]}`);return n.join()}function L2(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,indices:a}=t,{axis:i,batchDims:o}=s,u=w.parseAxisParam(i,r.shape)[0],l=S.segment_util.collectGatherOpShapeInfo(r,a,u,o),c=w.sizeFromShape(a.shape),p=[],d=Me({inputs:{x:r},backend:n,attrs:{shape:[l.batchSize,l.outerSize,l.dimSize,l.sliceSize]}}),h=Me({inputs:{x:a},backend:n,attrs:{shape:[l.batchSize,c/l.batchSize]}});p.push(d),p.push(h);let f=[l.batchSize,l.outerSize,c/l.batchSize,l.sliceSize];if(n.shouldExecuteOnCPU([r,a])){let v=n.tensorMap.get(h.dataId).values,x=De(h.shape,h.dtype,v),T=n.tensorMap.get(d.dataId).values,N=De(d.shape,d.dtype,T),E=Kne(N,x,f);return p.forEach(A=>n.disposeData(A.dataId)),n.makeTensorInfo(l.outputShape,E.dtype,E.values)}let m=new uae(d.shape,f),g=n.runWebGPUProgram(m,[d,h],d.dtype);p.push(g);let b=Me({inputs:{x:g},backend:n,attrs:{shape:l.outputShape}});return p.forEach(y=>n.disposeData(y.dataId)),b}var cae={kernelName:vo,backendName:"webgpu",kernelFunc:L2},dae=mn({opSnippet:5,cpuKernelImpl:Yne,dtype:"bool"}),pae={kernelName:wo,backendName:"webgpu",kernelFunc:dae},hae=mn({opSnippet:6,dtype:"bool",cpuKernelImpl:Xne}),fae={kernelName:Va,backendName:"webgpu",kernelFunc:hae};function mae(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{alpha:a}=s,i=[{type:"float32",data:[a]}],o=new nc(r.shape,14);return o.uniforms="alpha : f32,",n.runWebGPUProgram(o,[r],"float32",i)}var gae={kernelName:Ua,backendName:"webgpu",kernelFunc:mae},bae=mn({opSnippet:7,dtype:"bool",cpuKernelImpl:Zne}),yae={kernelName:ko,backendName:"webgpu",kernelFunc:bae},vae=mn({opSnippet:8,dtype:"bool",cpuKernelImpl:Qne}),xae={kernelName:Io,backendName:"webgpu",kernelFunc:vae},wae=Kt({opType:9,cpuKernelImpl:Jne}),kae={kernelName:Ga,backendName:"webgpu",kernelFunc:wae},Iae=mn({opSnippet:9,dtype:"bool"}),Sae={kernelName:So,backendName:"webgpu",kernelFunc:Iae},Cae=Kt({opType:10}),Nae={kernelName:xl,backendName:"webgpu",kernelFunc:Cae};function B2(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reductionIndices:a,keepDims:i}=s;return rc(r,a,i,"max",n)}var Tae={kernelName:Ha,backendName:"webgpu",kernelFunc:B2},$ae=mn({opSnippet:15,cpuKernelImpl:tse}),_ae={kernelName:qa,backendName:"webgpu",kernelFunc:$ae};function Aae(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:i,pad:o,dimRoundingMode:u}=s,l=1,c=S.computePool2DInfo(r.shape,a,i,l,o,u),p,d=[];if(c.filterHeight===1&&c.filterWidth===1){if(w.arraysEqual(c.inShape,c.outShape))return Wn({inputs:{x:r},backend:n});p=new $2(c),d.push({type:"int32",data:[c.strideHeight,c.strideWidth]})}else p=new T2(c,"max"),d.push({type:"int32",data:[c.strideHeight,c.strideWidth]},{type:"int32",data:[c.padInfo.top,c.padInfo.left]},{type:"int32",data:[c.dilationHeight,c.dilationWidth]},{type:"int32",data:[c.inHeight,c.inWidth]},{type:"int32",data:[c.effectiveFilterHeight,c.effectiveFilterWidth]});return n.runWebGPUProgram(p,[r],r.dtype,d)}var Eae={kernelName:ja,backendName:"webgpu",kernelFunc:Aae};function Rae(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{keepDims:a,axis:i}=s;return rc(r,i,a,"mean",n)}var Dae={kernelName:Ka,backendName:"webgpu",kernelFunc:Rae};function Fae(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:i}=s;return rc(r,a,i,"min",n)}var Oae={kernelName:Xa,backendName:"webgpu",kernelFunc:Fae},Pae=mn({opSnippet:16,cpuKernelImpl:nse}),zae={kernelName:Ya,backendName:"webgpu",kernelFunc:Pae},Mae=class{constructor(e,t,n){this.uniforms="",this.variableNames=["x"],this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=t.map((s,r)=>s[0]+e[r]+s[1]),this.dispatchLayout=Le(this.outputShape),this.dispatch=$e(this.dispatchLayout,this.outputShape,this.workGroupSize),this.xShape=e,t.map((s,r)=>{this.uniforms+=` pad${r} : vec2<i32>,`}),this.offset=n==="reflect"?0:1,this.shaderKey=`mirrorPad_${n}`}getUserCode(){let e=this.xShape.length,t=this.xShape.map((u,l)=>`uniforms.pad${l}[0]`).join(","),n=this.xShape.map((u,l)=>`uniforms.pad${l}[0] + uniforms.xShape${e>1?`[${l}]`:""}`).join(","),s=e===1?"start":"start[i]",r=e===1?"end":"end[i]",a=e===1?"outC":"outC[i]",i=Wt(e),o=e>1?["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,e):"coords";return`
|
|
${Ue()}
|
|
if (index < uniforms.size) {
|
|
let start = ${i}(${t});
|
|
let end = ${i}(${n});
|
|
var outC = getCoordsFromIndex(index);
|
|
for (var i = 0; i < ${e}; i = i + 1) {
|
|
if (${a} < ${s}) {
|
|
${a} = ${s} * 2 - ${a} - ${this.offset};
|
|
} else if(${a} >= ${r}) {
|
|
${a} = (${r} - 1) * 2 - ${a} + ${this.offset};
|
|
}
|
|
}
|
|
let coords = outC - start;
|
|
setOutputAtIndex(index, getX(${o}));
|
|
}
|
|
}
|
|
`}},Lae={kernelName:Qa,backendName:"webgpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:s}=e,{paddings:r,mode:a}=t,i=n,o=r.map(c=>({type:"int32",data:[c[0],c[1]]})),u=new Mae(s.shape,r,a);return i.runWebGPUProgram(u,[s],s.dtype,o)}};function Bae(e){let{inputs:t,backend:n}=e,{x:s}=t;if(n.shouldExecuteOnCPU([s])){let a=n.tensorMap.get(s.dataId),[i,o]=rse(a.values,s.shape,s.dtype);return n.makeTensorInfo(o,s.dtype,i)}let r=new nc(s.shape,11);return n.runWebGPUProgram(r,[s],s.dtype)}var Vae={kernelName:Co,backendName:"webgpu",kernelFunc:Bae};function Wae(e){console.warn("tf.nonMaxSuppression() in webgpu locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:u}=s,l=n.readSync(r.dataId),c=n.readSync(a.dataId),{selectedIndices:p}=xs.nonMaxSuppressionV3Impl(l,c,i,o,u);return n.makeTensorInfo([p.length],"int32",new Int32Array(p))}var Uae={kernelName:To,backendName:"webgpu",kernelFunc:Wae};function Gae(e){console.warn("tf.nonMaxSuppression() in webgpu locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:u,softNmsSigma:l}=s,c=n.readSync(r.dataId),p=n.readSync(a.dataId),d=i,h=o,f=u,m=l,{selectedIndices:g,selectedScores:b}=xs.nonMaxSuppressionV5Impl(c,p,d,h,f,m);return[n.makeTensorInfo([g.length],"int32",new Int32Array(g)),n.makeTensorInfo([b.length],"float32",new Float32Array(b))]}var Hae={kernelName:$o,backendName:"webgpu",kernelFunc:Gae};function Vd(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="complex64"){let r=sc({inputs:{input:s},backend:n}),a=Vd({inputs:{x:r},backend:n}),i=eh({inputs:{input:s},backend:n}),o=Vd({inputs:{x:i},backend:n}),u=cu({inputs:{real:a,imag:o},backend:n});return n.disposeData(r.dataId),n.disposeData(a.dataId),n.disposeData(i.dataId),n.disposeData(o.dataId),u}else return pu({attrs:{shape:s.shape,dtype:s.dtype,value:s.dtype==="string"?"":0},backend:n})}var qae={kernelName:qo,backendName:"webgpu",kernelFunc:Vd};function V2(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="string")throw new Error("onesLike is not supported under string dtype");if(s.dtype==="complex64"){let r=sc({inputs:{input:s},backend:n}),a=V2({inputs:{x:r},backend:n}),i=eh({inputs:{input:s},backend:n}),o=Vd({inputs:{x:i},backend:n}),u=cu({inputs:{real:a,imag:o},backend:n});return n.disposeData(r.dataId),n.disposeData(a.dataId),n.disposeData(i.dataId),n.disposeData(o.dataId),u}else return pu({attrs:{shape:s.shape,dtype:s.dtype,value:1},backend:n})}var jae={kernelName:_o,backendName:"webgpu",kernelFunc:V2};function Kae(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s;if(t.length===1)return Jm({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let a=t[0].shape,i=t[0].dtype;t.forEach(c=>{w.assertShapesMatch(a,c.shape,"All tensors passed to stack must have matching shapes"),w.assert(i===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],u=t.map(c=>{let p=Jm({inputs:{input:c},backend:n,attrs:{dim:r}});return o.push(p),p}),l=A2({inputs:u,backend:n,attrs:{axis:r}});return o.forEach(c=>n.disposeData(c.dataId)),l}var Xae={kernelName:Eo,backendName:"webgpu",kernelFunc:Kae},Yae=class{constructor(e,t){this.variableNames=["x"],this.uniforms="constantValue : f32,",this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=t.map((n,s)=>n[0]+e[s]+n[1]),this.dispatchLayout=Le(this.outputShape),this.dispatch=$e(this.dispatchLayout,this.outputShape,this.workGroupSize),t.map((n,s)=>{this.uniforms+=` pad${s} : vec2<i32>,`}),this.xShape=e,this.shaderKey="pad"}getUserCode(){let e=this.xShape.length,t=Wt(e),n=this.xShape.map((c,p)=>`uniforms.pad${p}[0]`).join(","),s=this.xShape.map((c,p)=>`uniforms.pad${p}[0] + uniforms.xShape${e>1?`[${p}]`:""}`).join(","),r=e>1?`${t}(${n})`:`${n}`,a=e>1?`${t}(${s})`:`${s}`,i=e>1?"any(outC < start)":"outC < start",o=e>1?"any(outC >= end)":"outC >= end",u=e>1?["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,e):"coords";return`
|
|
${Ue()}
|
|
if (index < uniforms.size) {
|
|
let start = ${r};
|
|
let end = ${a};
|
|
let outC = getCoordsFromIndex(index);
|
|
|
|
if (${i} || ${o}) {
|
|
setOutputAtIndex(index, uniforms.constantValue);
|
|
} else {
|
|
let coords = outC - start;
|
|
setOutputAtIndex(index, getX(${u}));
|
|
}
|
|
}
|
|
}
|
|
`}},W2=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{paddings:a,constantValue:i}=s;if(a.every(l=>w.arraysEqual(l,[0,0])))return Wn({inputs:{x:r},backend:n});if(w.sizeFromShape(r.shape)===0){let l=a.map((c,p)=>c[0]+r.shape[p]+c[1]);return pu({backend:n,attrs:{shape:l,value:i,dtype:r.dtype}})}let o=[{type:"float32",data:[i]}];a.map(l=>o.push({type:"int32",data:[l[0],l[1]]}));let u=new Yae(r.shape,a);return n.runWebGPUProgram(u,[r],r.dtype,o)},Qae={kernelName:Ja,backendName:"webgpu",kernelFunc:W2},Zae=mn({opSnippet:13}),Jae={kernelName:ei,backendName:"webgpu",kernelFunc:Zae};function eie(e){let{inputs:t,backend:n}=e,{x:s,alpha:r}=t,a=new C2(14,s.shape,r.shape);return n.runWebGPUProgram(a,[s,r],"float32")}var tie={kernelName:ti,backendName:"webgpu",kernelFunc:eie};function nie(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:i}=s;return rc(r,a,i,"prod",n)}var sie={kernelName:ni,backendName:"webgpu",kernelFunc:nie},rie=e=>{let{backend:t,attrs:n}=e,{start:s,stop:r,step:a,dtype:i}=n,o=ose(s,r,a,i);return t.makeTensorInfo([o.length],i,o)},aie={kernelName:Il,backendName:"webgpu",kernelFunc:rie},U2=mn({opSnippet:3}),iie={kernelName:Oa,backendName:"webgpu",kernelFunc:U2},oie=Kt({opType:12}),uie={kernelName:si,backendName:"webgpu",kernelFunc:oie},lie=Kt({opType:13}),cie={kernelName:ai,backendName:"webgpu",kernelFunc:lie},die=class{constructor(e,t,n){this.variableNames=["x"],this.uniforms="adjustHeightWidth : vec2<f32>, halfPixelCenters : f32,",this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=[e[0],t,n,e[3]],this.dispatchLayout=Le(this.outputShape),this.dispatch=$e(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="resizeBilinear"}getUserCode(){return`
|
|
${Ue()}
|
|
if (index < uniforms.size) {
|
|
let coords = getCoordsFromIndex(index);
|
|
let b = coords[0];
|
|
let d = coords[3];
|
|
let rc = coords.yz;
|
|
|
|
let effectiveInSize = vec2<f32>(
|
|
f32(uniforms.xShape.y) - uniforms.adjustHeightWidth[0],
|
|
f32(uniforms.xShape.z) - uniforms.adjustHeightWidth[1]);
|
|
|
|
let effectiveOutSize = vec2<f32>(
|
|
f32(uniforms.outShape.y) - uniforms.adjustHeightWidth[0],
|
|
f32(uniforms.outShape.z) - uniforms.adjustHeightWidth[1]);
|
|
|
|
let effectiveInputOverOutputRatioRC =
|
|
effectiveInSize / effectiveOutSize;
|
|
|
|
// Fractional source index
|
|
let sourceFracIndexRC =
|
|
(vec2<f32>(rc) + vec2<f32>(uniforms.halfPixelCenters)) *
|
|
effectiveInputOverOutputRatioRC - vec2<f32>(uniforms.halfPixelCenters);
|
|
|
|
// Compute the four integer indices.
|
|
let sourceFloorRC = vec2<i32>(sourceFracIndexRC);
|
|
let sourceCeilRC = vec2<i32>(
|
|
min(vec2<f32>(uniforms.xShape.yz) - vec2<f32>(1.0), ceil(sourceFracIndexRC)));
|
|
|
|
let topLeft = getX(b, sourceFloorRC.x, sourceFloorRC.y, d);
|
|
let bottomLeft = getX(b, sourceCeilRC.x, sourceFloorRC.y, d);
|
|
let topRight = getX(b, sourceFloorRC.x, sourceCeilRC.y, d);
|
|
let bottomRight = getX(b, sourceCeilRC.x, sourceCeilRC.y, d);
|
|
|
|
let fracRC = sourceFracIndexRC - vec2<f32>(sourceFloorRC);
|
|
|
|
let top = topLeft + (topRight - topLeft) * fracRC.y;
|
|
let bottom = bottomLeft + (bottomRight - bottomLeft) * fracRC.y;
|
|
let newValue = top + (bottom - top) * fracRC.x;
|
|
|
|
setOutputAtIndex(index, newValue);
|
|
}
|
|
}
|
|
`}};function pie(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,size:i,halfPixelCenters:o}=s,[u,l]=i,c=a&&u>1?1:0,p=a&&l>1?1:0,h=[{type:"float32",data:[c,p]},{type:"float32",data:[o?.5:0]}],f=new die(r.shape,u,l);return n.runWebGPUProgram(f,[r],"float32",h)}var hie={kernelName:ri,backendName:"webgpu",kernelFunc:pie},fie=class{constructor(e,t,n,s){this.variableNames=["x"],this.uniforms="adjustHeightWidth : vec2<f32>, roundBase : f32,",this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=[e[0],t,n,e[3]],this.dispatchLayout=Le(this.outputShape),this.dispatch=$e(this.dispatchLayout,this.outputShape,this.workGroupSize),this.halfPixelCenters=s,this.shaderKey=`resizeNearest_${s}`}getUserCode(){let e;return this.halfPixelCenters?e="max((vec2<f32>(rc) + vec2<f32>(0.5)) * effectiveInputOverOutputRatioRC, vec2<f32>(0.0))":e="vec2<f32>(rc) * effectiveInputOverOutputRatioRC",`
|
|
${Ue()}
|
|
if (index < uniforms.size) {
|
|
let coords = getCoordsFromIndex(index);
|
|
let b = coords[0];
|
|
let d = coords[3];
|
|
let rc = coords.yz;
|
|
|
|
let effectiveInSize = vec2<f32>(
|
|
f32(uniforms.xShape.y) - uniforms.adjustHeightWidth[0],
|
|
f32(uniforms.xShape.z) - uniforms.adjustHeightWidth[1]);
|
|
|
|
let effectiveOutSize = vec2<f32>(
|
|
f32(uniforms.outShape.y) - uniforms.adjustHeightWidth[0],
|
|
f32(uniforms.outShape.z) - uniforms.adjustHeightWidth[1]);
|
|
|
|
let effectiveInputOverOutputRatioRC =
|
|
effectiveInSize / effectiveOutSize;
|
|
|
|
// Fractional source index
|
|
let sourceFracIndexRC = ${e};
|
|
|
|
// Compute the coordinators of nearest neighbor point.
|
|
let inputShapeRC = vec2<f32>(f32(uniforms.xShape.y), f32(uniforms.xShape.z));
|
|
let sourceNearestRC = vec2<i32>(
|
|
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + uniforms.roundBase)));
|
|
let newValue = getX(b, sourceNearestRC.x, sourceNearestRC.y, d);
|
|
|
|
setOutputAtIndex(index, newValue);
|
|
}
|
|
}
|
|
`}};function mie(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,halfPixelCenters:i,size:o}=s,[u,l]=o,c=a&&u>1?1:0,p=a&&l>1?1:0,h=[{type:"float32",data:[c,p]},{type:"float32",data:[a?.5:0]}],f=new fie(r.shape,u,l,i);return n.runWebGPUProgram(f,[r],r.dtype,h)}var gie={kernelName:Cl,backendName:"webgpu",kernelFunc:mie},bie=class{constructor(e,t){this.outputShape=[],this.variableNames=["x"],this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=Le(this.outputShape),this.dispatch=$e(this.dispatchLayout,this.outputShape,this.workGroupSize),this.uniforms=`centerX : f32, centerY : f32, sinRadians : f32,
|
|
cosRadians : f32,`,this.shaderKey="rotate",this.outputShape=e,typeof t=="number"?(this.uniforms+=" fillValue : f32,",this.fillSnippet="var outputValue = uniforms.fillValue;",this.shaderKey+="_float"):(this.uniforms+=" fillValue : vec3<f32>,",this.fillSnippet="var outputValue = uniforms.fillValue[coords[3]];",this.shaderKey+="_vec3")}getUserCode(){return`
|
|
${Ue()}
|
|
|
|
if (index < uniforms.size) {
|
|
let coords = getCoordsFromIndex(index);
|
|
let coordXFloat = (f32(coords[2]) - uniforms.centerX) *
|
|
uniforms.cosRadians - (f32(coords[1]) - uniforms.centerY) *
|
|
uniforms.sinRadians;
|
|
let coordYFloat = (f32(coords[2]) - uniforms.centerX) *
|
|
uniforms.sinRadians + (f32(coords[1]) - uniforms.centerY) *
|
|
uniforms.cosRadians;
|
|
let coordX = i32(round(coordXFloat + uniforms.centerX));
|
|
let coordY = i32(round(coordYFloat + uniforms.centerY));
|
|
${this.fillSnippet}
|
|
if(coordX >= 0 && coordX < uniforms.xShape[2] && coordY >= 0 &&
|
|
coordY < uniforms.xShape[1]) {
|
|
outputValue = getX(coords[0], coordY, coordX, coords[3]);
|
|
}
|
|
setOutputAtIndex(index, outputValue);
|
|
}
|
|
}
|
|
`}},yie={kernelName:jo,backendName:"webgpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:s}=e,{radians:r,fillValue:a,center:i}=t,o=n,u=new bie(s.shape,a),[l,c]=S.getImageCenter(i,s.shape[1],s.shape[2]),p=[{type:"float32",data:[l]},{type:"float32",data:[c]},{type:"float32",data:[Math.sin(r)]},{type:"float32",data:[Math.cos(r)]}];return typeof a=="number"?p.push({type:"float32",data:[Number.parseFloat(a.toFixed(2))]}):p.push({type:"float32",data:a}),o.runWebGPUProgram(u,[s],s.dtype,p)}},vie=Kt({opType:15,cpuKernelImpl:use}),xie={kernelName:ii,backendName:"webgpu",kernelFunc:vie},wie=class{constructor(e,t,n,s,r,a,i){this.variableNames=["updates","indices"],this.workGroupSize=[64,1,1],this.atomic=!0,this.outputShape=a,this.type=i,this.dispatchLayout=Le(e),this.dispatch=$e(this.dispatchLayout,e,this.workGroupSize),this.sliceDimGreaterThanOne=t>1,this.shaderKey=`scatter_${n}_${s}_${this.sliceDimGreaterThanOne}_${i}`;let o=Wt(r.length);this.uniforms=`sliceDim : i32, strides: ${o}, size: i32,`,this.updatesRank=s,this.indicesRank=n}getUserCode(){let e="";this.indicesRank===1?e="coords[0]":this.indicesRank===2&&(e="coords[0], j");let t=`getIndices(${e})`,n=this.sliceDimGreaterThanOne?"uniforms.strides[j]":"uniforms.strides",s="",r="",a="";this.updatesRank===1?(s="coords[0]",r="flattenedIndex",a=`
|
|
fn getUpdatesCoordsFromFlatIndex(index : i32) -> i32 {
|
|
return index;
|
|
}
|
|
`):this.updatesRank===2&&(s="coords[0], coords[1]",r="vec2<i32>(flattenedIndex, coords[1])",a=`
|
|
fn getUpdatesCoordsFromFlatIndex(index : i32) -> vec2<i32> {
|
|
let d0 = index / uniforms.updatesShape[1];
|
|
let d1 = index - d0 * uniforms.updatesShape[1];
|
|
return vec2<i32>(d0, d1);
|
|
}
|
|
`);let i=`getUpdates(${s})`,o=this.type==="int32"?"atomicAdd(&(result[flatIndex]), i32(updateValue));":`
|
|
var assumed = atomicLoad(&(result[flatIndex]));
|
|
var success = 0;
|
|
for (; success == 0;) {
|
|
let new = bitcast<f32>(assumed) + updateValue;
|
|
let newI32 = bitcast<i32>(new);
|
|
let resValue = atomicCompareExchangeWeak(&(result[flatIndex]), assumed, newI32);
|
|
assumed = resValue[0];
|
|
success = resValue[1];
|
|
}
|
|
`;return`
|
|
${a}
|
|
|
|
${Ue()}
|
|
|
|
if (index < uniforms.size) {
|
|
let coords = getUpdatesCoordsFromFlatIndex(index);
|
|
var flattenedIndex = 0;
|
|
for (var j = 0; j < uniforms.sliceDim; j = j + 1) {
|
|
let indexInside = i32(round(${t}));
|
|
flattenedIndex = flattenedIndex + indexInside * ${n};
|
|
}
|
|
let updateValue = ${i};
|
|
let flatIndex = getOutputIndexFromCoords(${r});
|
|
|
|
${o}
|
|
}
|
|
}`}};function kie(e){let{inputs:t,backend:n,attrs:s}=e,{indices:r,updates:a}=t,{shape:i}=s,{sliceRank:o,numUpdates:u,sliceSize:l,strides:c,outputSize:p}=S.calculateShapes(a,r,i),d=[p/l,l];if(p===0)return n.makeTensorInfo(i,r.dtype);let h=Me({inputs:{x:r},backend:n,attrs:{shape:[u,o]}}),f=Me({inputs:{x:a},backend:n,attrs:{shape:[u,l]}}),m=f.dtype,g=pu({backend:n,attrs:{shape:d,value:0,dtype:m}}),b=w.sizeFromShape(f.shape),y=[{type:"int32",data:[o]},{type:"int32",data:c},{type:"int32",data:[b]}],v=new wie(f.shape,o,h.shape.length,f.shape.length,c,d,m),x=n.runWebGPUProgram(v,[f,h],m,y,g),k=Me({inputs:{x},backend:n,attrs:{shape:i}});return n.disposeData(h.dataId),n.disposeData(f.dataId),n.disposeData(x.dataId),k}var Iie={kernelName:Oo,backendName:"webgpu",kernelFunc:kie},Sie=class{constructor(e,t,n){this.variableNames=["c","a","b"],this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=t,this.dispatchLayout=Le(this.outputShape),this.dispatch=$e(this.dispatchLayout,this.outputShape,this.workGroupSize),this.cRank=e,this.rank=n,this.shaderKey="select"}getUserCode(){let e,t;if(this.rank>4)throw Error(`Where for rank ${this.rank} is not yet supported`);if(this.rank===1)t="resRC",e="resRC";else{let s=["resRC.x","resRC.y","resRC.z","resRC.w"],r=[],a=[];for(let i=0;i<this.outputShape.length;i++)a.push(`${s[i]}`),i<this.cRank&&r.push(`${s[i]}`);e=r.join(),t=a.join()}return`
|
|
${Ue()}
|
|
if (index < uniforms.size) {
|
|
let resRC = getCoordsFromIndex(index);
|
|
let cVal = getC(${e});
|
|
if (cVal >= 1.0) {
|
|
setOutputAtIndex(index, getA(${t}));
|
|
} else {
|
|
setOutputAtIndex(index, getB(${t}));
|
|
}
|
|
}
|
|
}
|
|
`}};function Cie(e){let{inputs:t,backend:n}=e,{condition:s,t:r,e:a}=t,i=new Sie(s.shape.length,r.shape,r.shape.length);return n.runWebGPUProgram(i,[s,r,a],cn(r.dtype,a.dtype))}var Nie={kernelName:Po,backendName:"webgpu",kernelFunc:Cie},Tie=Kt({opType:18}),$ie={kernelName:ui,backendName:"webgpu",kernelFunc:Tie},_ie=Kt({opType:16}),Aie={kernelName:oi,backendName:"webgpu",kernelFunc:_ie},Eie=Kt({opType:17}),Rie={kernelName:Mo,backendName:"webgpu",kernelFunc:Eie},G2=mn({opSnippet:2,cpuKernelImpl:hse,supportsComplex:!0}),Die={kernelName:hi,backendName:"webgpu",kernelFunc:G2};function Fie(e){let{inputs:t,backend:n,attrs:s}=e,{logits:r}=t,{dim:a}=s,i=w.parseAxisParam([a],r.shape),o=B2({inputs:{x:r},backend:n,attrs:{reductionIndices:i,keepDims:!1}}),u=S.expandShapeToKeepDim(o.shape,i),l=Me({inputs:{x:o},backend:n,attrs:{shape:u}}),c=G2({inputs:{a:r,b:l},backend:n}),p=P2({inputs:{x:c},backend:n}),d=Rv({inputs:{x:p},backend:n,attrs:{axis:i,keepDims:!1}}),h=Me({inputs:{x:d},backend:n,attrs:{shape:u}}),f=U2({inputs:{a:p,b:h},backend:n});return n.disposeData(o.dataId),n.disposeData(l.dataId),n.disposeData(c.dataId),n.disposeData(p.dataId),n.disposeData(d.dataId),n.disposeData(h.dataId),f}var Oie={kernelName:di,backendName:"webgpu",kernelFunc:Fie},Pie=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,paddings:i}=s;w.assert(r.shape.length<=4,()=>"spaceToBatchND for rank > 4 with a WebGPU backend not implemented yet");let o=a.reduce((b,y)=>b*y),u=[[0,0]];u.push(...i);for(let b=1+a.length;b<r.shape.length;++b)u.push([0,0]);let l=[],c=W2({inputs:{x:r},backend:n,attrs:{paddings:u,constantValue:0}}),p=S.getReshaped(c.shape,a,o,!1),d=S.getPermuted(p.length,a.length,!1),h=S.getReshapedPermuted(c.shape,a,o,!1),f=Me({inputs:{x:c},backend:n,attrs:{shape:p}}),m=Xs({inputs:{x:f},backend:n,attrs:{perm:d}}),g=Me({inputs:{x:m},backend:n,attrs:{shape:h}});return l.push(c),l.push(f),l.push(m),l.forEach(b=>n.disposeData(b.dataId)),g},zie={kernelName:Lo,backendName:"webgpu",kernelFunc:Pie},Mie=class{constructor(e,t,n,s,r,a,i=!0){this.variableNames=["updates","indices","defaultValue"],this.workGroupSize=[64,1,1],this.workPerThread=4,this.size=!0,this.outputShape=a,this.dispatchLayout=Le(this.outputShape),this.dispatch=$e(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]);let o=t>1;this.shaderKey=`scatter_${n}_${s}_${o}`;let u=Wt(r.length);this.uniforms=`updateSize : i32, sliceDim : i32, strides: ${u},`;let l="";n===1?l="i":n===2&&(l="i, j"),this.indicesSnippet=`getIndices(${l})`;let c="";s===1?c="i":s===2&&(c="i, coords[1]"),this.updatesSnippet=`getUpdates(${c})`,this.strideString=o?"uniforms.strides[j]":"uniforms.strides"}getUserCode(){return`
|
|
${Ue()}
|
|
|
|
let globalIndex = index * ${this.workPerThread};
|
|
if (globalIndex < uniforms.size) {
|
|
var sum = vec4<f32>(0.0);
|
|
var found = vec4<bool>(false);
|
|
for (var i = 0; i < uniforms.updateSize; i = i + 1) {
|
|
var flattenedIndex = 0;
|
|
for (var j = 0; j < uniforms.sliceDim; j = j + 1) {
|
|
let indexInside = i32(round(${this.indicesSnippet}));
|
|
flattenedIndex = flattenedIndex + indexInside * ${this.strideString};
|
|
}
|
|
for (var innerIndex = 0; innerIndex < ${this.workPerThread}; innerIndex = innerIndex + 1) {
|
|
let curIndex = globalIndex + innerIndex;
|
|
let coords = getCoordsFromIndex(curIndex);
|
|
if (flattenedIndex == coords[0]) {
|
|
sum[innerIndex] = sum[innerIndex] + ${this.updatesSnippet};
|
|
found[innerIndex] = true;
|
|
}
|
|
}
|
|
}
|
|
for (var innerIndex = 0; innerIndex < ${this.workPerThread}; innerIndex = innerIndex + 1) {
|
|
let curIndex = globalIndex + innerIndex;
|
|
if (curIndex < uniforms.size)
|
|
{
|
|
setOutputAtIndex(curIndex, mix(getDefaultValue(), sum[innerIndex], f32(found[innerIndex])));
|
|
}
|
|
}
|
|
}
|
|
}`}};function Lie(e){let{inputs:t,backend:n,attrs:s}=e,{sparseIndices:r,sparseValues:a,defaultValue:i}=t,{outputShape:o}=s,{sliceRank:u,numUpdates:l,strides:c,outputSize:p}=S.calculateShapes(a,r,o),d=!1,h=[{type:"int32",data:[l]},{type:"int32",data:[u]},{type:"int32",data:c}],f=new Mie(l,u,r.shape.length,a.shape.length,c,[p,1],d),m=n.runWebGPUProgram(f,[a,r,i],a.dtype,h),g=Me({inputs:{x:m},backend:n,attrs:{shape:o}});return n.disposeData(m.dataId),g}var Bie={kernelName:up,backendName:"webgpu",kernelFunc:Lie};function Vie(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{numOrSizeSplits:a,axis:i}=s,o=w.parseAxisParam(i,r.shape)[0],u=S.prepareSplitSize(r,a,o),l=r.shape.length,c=new Array(l).fill(0),p=r.shape.slice();return u.map(d=>{let h=[...p];h[o]=d;let f=du({inputs:{x:r},backend:n,attrs:{begin:c,size:h}});return c[o]+=d,f})}var Wie={kernelName:Bo,backendName:"webgpu",kernelFunc:Vie},Uie=Kt({opType:19}),Gie={kernelName:li,backendName:"webgpu",kernelFunc:Uie},Hie={kernelName:Al,backendName:"webgpu",kernelFunc:({inputs:e,backend:t})=>{let{x:n}=e,s=t,r=new nc(n.shape,20);return s.runWebGPUProgram(r,[n],n.dtype)}},qie=mn({opSnippet:11}),jie={kernelName:pi,backendName:"webgpu",kernelFunc:qie},Kie=class{constructor(e){this.variableNames=["x"],this.workPerThread=1,this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=Le(this.outputShape),this.dispatch=$e(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]);let t=Wt(this.outputShape.length);this.uniforms=`begin : ${t}, strides : ${t}, `,this.shaderKey="stridedSlice"}getUserCode(){let e=this.outputShape.length,t="";if(e===1)t="coords * uniforms.strides + uniforms.begin";else{let s=0;t=this.outputShape.map((r,a)=>(s++,this.outputShape.length===1?`coords * uniforms.strides[${a}] + uniforms.begin[${a}]`:`coords[${s-1}] * uniforms.strides[${a}] + uniforms.begin[${a}]`)).join(",")}return`
|
|
${Ue()}
|
|
if (index < uniforms.size) {
|
|
let coords = getCoordsFromIndex(index);
|
|
setOutputAtIndex(index, getX(${t}));
|
|
}
|
|
}
|
|
`}};function Xie(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,end:i,strides:o,beginMask:u,endMask:l,ellipsisMask:c,newAxisMask:p,shrinkAxisMask:d}=s,{finalShapeSparse:h,finalShape:f,isIdentity:m,sliceDim0:g,isSimpleSlice:b,begin:y,end:v,strides:x}=wt.sliceInfo(r.shape,a,i,o,u,l,c,p,d),k;if(m)k=Me({inputs:{x:r},backend:n,attrs:{shape:f}});else if(g||b){w.assert(r.shape.length>=1,()=>`Input must have rank at least 1, got: ${r.shape.length}`);let T=wt.computeOutShape(y,v,x),N=du({inputs:{x:r},backend:n,attrs:{begin:y,size:T}});k=Me({inputs:{x:N},backend:n,attrs:{shape:f}}),n.disposeData(N.dataId)}else if(n.shouldExecuteOnCPU([r])){let N=n.readSync(r.dataId),E=De(r.shape,r.dtype,N),A=dse(h,E,x,y);k=n.makeTensorInfo(f,r.dtype,A.values)}else{let N=new Kie(h),E=[{type:"int32",data:y},{type:"int32",data:x}],A=n.runWebGPUProgram(N,[r],r.dtype,E);k=Me({inputs:{x:A},backend:n,attrs:{shape:f}}),n.disposeData(A.dataId)}return k}var Yie={kernelName:Vo,backendName:"webgpu",kernelFunc:Xie};function Qie(e){let{inputs:t,backend:n,attrs:s}=e,{separator:r,nGramWidths:a,leftPad:i,rightPad:o,padWidth:u,preserveShortSequences:l}=s,{data:c,dataSplits:p}=t,d=n.readSync(c.dataId),h=n.readSync(p.dataId),[f,m]=pse(d,h,r,a,i,o,u,l);return[n.makeTensorInfo([f.length],"string",f),n.makeTensorInfo(p.shape,"int32",m)]}var Zie={kernelName:lp,backendName:"webgpu",kernelFunc:Qie},Jie=Kt({opType:21}),eoe={kernelName:fi,backendName:"webgpu",kernelFunc:Jie},toe=class{constructor(e,t){this.variableNames=["A"],this.workGroupSize=[64,1,1],this.size=!0;let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[s]*t[s];this.outputShape=n,this.dispatchLayout=Le(this.outputShape),this.dispatch=$e(this.dispatchLayout,this.outputShape,this.workGroupSize),this.rank=this.outputShape.length,this.shaderKey="tile"}getUserCode(){let e=noe(this.rank,"uniforms.");return`
|
|
${Ue()}
|
|
if (index < uniforms.size) {
|
|
let resRC = getCoordsFromIndex(index);
|
|
setOutputAtIndex(index, getA(${e}));
|
|
}
|
|
}
|
|
`}};function noe(e,t=""){if(e>=5)throw Error(`Tile for rank ${e} is not yet supported`);if(e===1)return`(resRC % ${t}aShape)`;let n=["resRC.x","resRC.y","resRC.z","resRC.w"],s=[];for(let r=0;r<e;r++)s.push(`(${n[r]} % ${t}aShape[${r}])`);return s.join()}function soe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reps:a}=s;if(n.shouldExecuteOnCPU([r])||r.dtype==="string"||r.shape.length>=5){let u=n.readSync(r.dataId),l=r.dtype==="string"?u.map(d=>w.decodeString(d)):u,c=De(r.shape,r.dtype,l),p=fse(c,a);return n.makeTensorInfo(p.shape,p.dtype,p.values)}let i=new toe(r.shape,a);return n.runWebGPUProgram(i,[r],r.dtype)}var roe={kernelName:Nr,backendName:"webgpu",kernelFunc:soe},aoe=class{constructor(e){this.variableNames=["x","indices"],this.workGroupSize=[256,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=Le(this.outputShape),this.dispatch=$e(this.dispatchLayout,this.outputShape,this.workGroupSize),this.uniforms=`inputSize : i32, firstPass : i32, negativeInf : f32,
|
|
dir : i32, inc : i32,`,this.shaderKey="swap"}getUserCode(){return`
|
|
${Ue()}
|
|
if (index < uniforms.size) {
|
|
let outC = getCoordsFromIndex(index);
|
|
let batch = outC[0];
|
|
let elemIdx = outC[1];
|
|
// We compare elements pair-wise within a group of size 2 * inc.
|
|
// The comparing rule for each group alternates between ascending
|
|
// and descending. Within each group, we compare each pair at
|
|
// positions i and i+inc. To decide whether an element at position i
|
|
// is x0 or x1, we mod it by 2 * inc, if the result is smaller than
|
|
// inc, it is in the first half of the group, we denote it as x0,
|
|
// otherwise we denote it as x1.
|
|
// For example, as shown in the Bitonic top K paper referenced
|
|
// above, Figure5(a) shows that element[1] is in the second half of
|
|
// the group when group size is 2, but it is in the first half of
|
|
// the group when group size is 4.
|
|
let isFirstInPair = elemIdx % (2 * uniforms.inc) < uniforms.inc;
|
|
var i = 0;
|
|
if (isFirstInPair) {
|
|
i = elemIdx;
|
|
} else {
|
|
i = elemIdx - uniforms.inc;
|
|
}
|
|
|
|
var i0 = 0;
|
|
if (uniforms.firstPass == 1) {
|
|
i0 = i;
|
|
} else {
|
|
i0 = i32(getIndices(batch, i));
|
|
}
|
|
|
|
var i1 = 0;
|
|
if (uniforms.firstPass == 1) {
|
|
i1 = i + uniforms.inc;
|
|
} else {
|
|
i1 = i32(getIndices(batch, i + uniforms.inc));
|
|
}
|
|
|
|
var x0 = f32(0.0);
|
|
var x1 = f32(0.0);
|
|
if (i0 < uniforms.inputSize) {
|
|
x0 = getX(batch, i0);
|
|
} else {
|
|
x0 = uniforms.negativeInf;
|
|
}
|
|
if (i1 < uniforms.inputSize) {
|
|
x1 = getX(batch, i1);
|
|
} else {
|
|
x1 = uniforms.negativeInf;
|
|
}
|
|
|
|
let reverse = elemIdx % (2 * uniforms.dir) >= uniforms.dir;
|
|
let isGreater = x0 > x1 || (x0 == x1 && i1 > i0);
|
|
if (reverse == isGreater) {
|
|
// Elements in opposite order of direction
|
|
let iTemp = i0;
|
|
i0 = i1;
|
|
i1 = iTemp;
|
|
}
|
|
if (isFirstInPair) {
|
|
setOutputAtIndex(index, f32(i0));
|
|
} else {
|
|
setOutputAtIndex(index, f32(i1));
|
|
}
|
|
}
|
|
}
|
|
`}},ioe=class{constructor(e){this.variableNames=["x","indices"],this.workGroupSize=[256,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=Le(this.outputShape),this.dispatch=$e(this.dispatchLayout,this.outputShape,this.workGroupSize),this.uniforms="inputSize : i32, firstPass : i32, k : i32,",this.shaderKey="merge"}getUserCode(){return`
|
|
${Ue()}
|
|
if (index < uniforms.size) {
|
|
let outC = getCoordsFromIndex(index);
|
|
let batch = outC[0];
|
|
let elemIdx = outC[1];
|
|
// The output size is half of the previous size.
|
|
// If the previous sequence is | | | | _ _ _ _ | | | | _ _ _ _
|
|
// (k=4), we only need to output the indices at positions |, the
|
|
// indices at positions _ can be thrown away, see Figure5(b) After
|
|
// Phase 2 (Merge phase) in the Bitonic Top K paper referenced
|
|
// above.
|
|
// For example, the paper shows we only need to output the orange
|
|
// bars. The output sequence should look like this | | | | | | | |.
|
|
// Because the sequence is halved, to map the output index back to
|
|
// the previous sequence to find the corresponding value, we need
|
|
// to double the index. When we double the index, we basically
|
|
// interpolate a position, so 2i looks like
|
|
// | _ | _ | _ | _ | _ | _ | _. We move the | to the first k
|
|
// position of each 2k positions by - elemIdx % k. E.g. for output
|
|
// at index 4,5,6,7, we want to get the corresponding element at
|
|
// original index 8,9,10,11, for output at index 8,9,10,11,
|
|
// we want to get the corresponding element at original index
|
|
// 16,17,18,19, so on and so forth.
|
|
|
|
var i = 0;
|
|
if (elemIdx < uniforms.k) {
|
|
i = elemIdx;
|
|
} else {
|
|
i = elemIdx * 2 - elemIdx % uniforms.k;
|
|
}
|
|
var i0 = 0;
|
|
if (uniforms.firstPass == 1) {
|
|
i0 = i;
|
|
} else {
|
|
i0 = i32(getIndices(batch, i));
|
|
}
|
|
var i1 = 0;
|
|
if (uniforms.firstPass == 1) {
|
|
i1 = i + uniforms.k;
|
|
} else {
|
|
i1 = i32(getIndices(batch, i + uniforms.k));
|
|
}
|
|
|
|
let x0 = getX(batch, i0);
|
|
var x1 = f32(0.0);
|
|
if (i1 < uniforms.inputSize) {
|
|
x1 = getX(batch, i1);
|
|
} else {
|
|
x1 = x0;
|
|
}
|
|
|
|
if (x0 >= x1) {
|
|
setOutputAtIndex(index, f32(i0));
|
|
} else {
|
|
setOutputAtIndex(index, f32(i1));
|
|
}
|
|
}
|
|
}
|
|
`}};function Ui(e,t){t!==null&&e.disposeData(t.dataId)}function Bw(e){let t=1;for(;t<e;)t*=2;return t}function ooe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{k:a,sorted:i}=s,o=r.shape,u=o[o.length-1];if(n.shouldExecuteOnCPU([r])){let k=n.readSync(r.dataId),[T,N]=mse(k,o,r.dtype,a,i);return[n.makeTensorInfo(T.shape,T.dtype,T.values),n.makeTensorInfo(N.shape,N.dtype,N.values)]}if(a===0)return o[o.length-1]=0,[n.makeTensorInfo(o,r.dtype,[]),n.makeTensorInfo(o,"int32",[])];if(u===1)return[r,pu({attrs:{shape:o,dtype:"int32",value:0},backend:n})];let c=w.sizeFromShape(o)/u,p=Me({inputs:{x:r},attrs:{shape:[c,u]},backend:n}),d=Bw(a),h=Bw(u),f=null,m=()=>f===null?[p,p]:[p,f],g=(k,T,N)=>{let E=m(),A=new aoe(N),R=[{type:"int32",data:[u]},{type:"int32",data:[f===null?1:0]},{type:"float32",data:[Number.NEGATIVE_INFINITY]},{type:"int32",data:[k]},{type:"int32",data:[T]}],F=f;f=n.runWebGPUProgram(A,E,"int32",R),Ui(n,F)};for(let k=1;k<d;k*=2){let T=k*2;for(let N=k;N>=1;N/=2)g(T,N,[c,h])}for(let k=h;k>d;k/=2){let T=m(),N=new ioe([c,k/2]),A=[{type:"int32",data:[u]},{type:"int32",data:[f===null?1:0]},{type:"int32",data:[d]}],P=f;f=n.runWebGPUProgram(N,T,"int32",A),Ui(n,P);let R=d/2,F=R*2;for(let $=R;$>=1;$/=2)g(F,$,f.shape)}let b=f;f=du({inputs:{x:f},backend:n,attrs:{begin:0,size:[c,a]}}),Ui(n,b);let y=L2({inputs:{x:p,indices:f},backend:n,attrs:{axis:1,batchDims:1}});Ui(n,p);let v=o.slice(0,-1);v.push(a),b=f,f=Me({inputs:{x:f},attrs:{shape:v},backend:n}),Ui(n,b);let x=y;return y=Me({inputs:{x:y},attrs:{shape:v},backend:n}),Ui(n,x),[y,f]}var uoe={kernelName:Uo,backendName:"webgpu",kernelFunc:ooe},loe=class{constructor(e){this.variableNames=["Image","Transforms"],this.uniforms="interpolationModeId : i32, fillModeId : i32, fillValue : f32,",this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=Le(this.outputShape),this.dispatch=$e(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="transform"}getUserCode(){return`
|
|
fn mapCoord(outCoord : f32, len : f32) -> f32{
|
|
var inCoord = outCoord;
|
|
if(uniforms.fillModeId == 2) {
|
|
if (inCoord < 0.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
let sz2 = 2.0 * len;
|
|
if (inCoord < sz2) {
|
|
inCoord = sz2 * f32(i32(f32(-inCoord / sz2))) +
|
|
inCoord;
|
|
}
|
|
if (inCoord < -len) {
|
|
inCoord = inCoord + sz2;
|
|
} else {
|
|
inCoord = -inCoord - 1.0;
|
|
}
|
|
}
|
|
} else if (inCoord > len - 1.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
let sz2 = 2.0 * len;
|
|
inCoord = inCoord - sz2 * f32(i32(f32(inCoord / sz2)));
|
|
if (inCoord >= len) {
|
|
inCoord = sz2 - inCoord - 1.0;
|
|
}
|
|
}
|
|
}
|
|
return clamp(inCoord, 0.0, len - 1.0);
|
|
} else if (uniforms.fillModeId == 3) {
|
|
if (inCoord < 0.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
let sz = len - 1.0;
|
|
inCoord = inCoord + len * (f32(i32(f32(-inCoord / sz))) + 1.0);
|
|
}
|
|
} else if (inCoord > len - 1.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
let sz = len - 1.0;
|
|
inCoord = inCoord - len * f32(i32(f32(inCoord / sz)));
|
|
}
|
|
}
|
|
return clamp(inCoord, 0.0, len - 1.0);
|
|
} else if (uniforms.fillModeId == 4) {
|
|
return clamp(outCoord, 0.0, len - 1.0);
|
|
}
|
|
return outCoord;
|
|
}
|
|
fn readWithFillValue(batch : i32, coordY : i32, coordX : i32,
|
|
channel : i32) -> f32 {
|
|
var outputValue : f32;
|
|
if (0 <= coordY && coordY < uniforms.imageShape[1] && 0 <= coordX && coordX < uniforms.imageShape[2]) {
|
|
outputValue = getImage(batch, coordY, coordX, channel);
|
|
} else {
|
|
outputValue = uniforms.fillValue;
|
|
}
|
|
return outputValue;
|
|
}
|
|
|
|
${Ue()}
|
|
if (index < uniforms.size) {
|
|
let coords = getCoordsFromIndex(index);
|
|
var outputValue : f32;
|
|
let batch = coords[0];
|
|
let x = coords[2];
|
|
let y = coords[1];
|
|
let channel = coords[3];
|
|
let xf = f32(x);
|
|
let yf = f32(y);
|
|
let a1 = getTransforms(batch, 0);
|
|
let a2 = getTransforms(batch, 1);
|
|
let a3 = getTransforms(batch, 2);
|
|
let b1 = getTransforms(batch, 3);
|
|
let b2 = getTransforms(batch, 4);
|
|
let b3 = getTransforms(batch, 5);
|
|
let c1 = getTransforms(batch, 6);
|
|
let c2 = getTransforms(batch, 7);
|
|
let projection = c1 * xf + c2 * yf + 1.0;
|
|
if (projection == 0.0) {
|
|
outputValue = uniforms.fillValue;
|
|
} else {
|
|
let inX = (a1 * xf + a2 * yf + a3) / projection;
|
|
let inY = (b1 * xf + b2 * yf + b3) / projection;
|
|
let mapX = mapCoord(inX, f32(uniforms.imageShape[2]));
|
|
let mapY = mapCoord(inY, f32(uniforms.imageShape[1]));
|
|
|
|
if (uniforms.interpolationModeId == 1) {
|
|
let coordY = i32(round(mapY));
|
|
let coordX = i32(round(mapX));
|
|
outputValue = readWithFillValue(batch, coordY, coordX,
|
|
channel);
|
|
} else {
|
|
let yFloor = floor(mapY);
|
|
let xFloor = floor(mapX);
|
|
let yCeil = yFloor + 1.0;
|
|
let xCeil = xFloor + 1.0;
|
|
let valueYFloor = (xCeil - mapX) *
|
|
readWithFillValue(batch, i32(yFloor), i32(xFloor), channel) +
|
|
(mapX - xFloor) *
|
|
readWithFillValue(batch, i32(yFloor), i32(xCeil), channel);
|
|
let valueYCeil = (xCeil - mapX) *
|
|
readWithFillValue(batch, i32(yCeil), i32(xFloor), channel) +
|
|
(mapX - xFloor) *
|
|
readWithFillValue(batch, i32(yCeil), i32(xCeil), channel);
|
|
outputValue = (yCeil - mapY) * valueYFloor +
|
|
(mapY - yFloor) * valueYCeil;
|
|
}
|
|
}
|
|
setOutputAtIndex(index, outputValue);
|
|
}
|
|
}
|
|
`}};function coe(e){let{inputs:t,backend:n,attrs:s}=e,{image:r,transforms:a}=t,{interpolation:i,fillMode:o,fillValue:u,outputShape:l}=s,[c,p,d,h]=r.shape,[f,m]=l!=null?l:[p,d],g=[c,f,m,h],b=new loe(g),y=i==="nearest"?1:2,v;switch(o){case"constant":v=1;break;case"reflect":v=2;break;case"wrap":v=3;break;case"nearest":v=4;break;default:v=1;break}let x=[{type:"int32",data:[y]},{type:"int32",data:[v]},{type:"float32",data:[u]}];return n.runWebGPUProgram(b,[r,a],"float32",x)}var doe={kernelName:Go,backendName:"webgpu",kernelFunc:coe};function poe(e){let{inputs:t,backend:n,attrs:s}=e,{value:r}=t,{axis:a}=s;a<0&&(a+=r.shape.length);let i=r,o=i.shape.length,u=r.shape[a],l=new Array(o-1),c=0;for(let m=0;m<o;m++)m!==a&&(l[c++]=i.shape[m]);let p=[],d=new Array(o).fill(0),h=i.shape.slice();h[a]=1;let f=new Array(u);for(let m=0;m<f.length;m++){d[a]=m;let g=du({inputs:{x:i},backend:n,attrs:{begin:d,size:h}}),b=Me({inputs:{x:g},backend:n,attrs:{shape:l}});f[m]=b,p.push(g)}return p.forEach(m=>n.disposeData(m.dataId)),f}var hoe={kernelName:Ho,backendName:"webgpu",kernelFunc:poe},foe=[One,yse,xse,Ise,_se,Ese,Dse,Ose,Bse,Gse,qse,Yse,Lne,ere,ure,pre,fre,gre,vre,wre,Ire,Nre,$re,Dre,Ore,zre,Mre,Lre,Vre,Ure,Hre,Qre,jre,Xre,eae,nae,rae,oae,cae,pae,fae,Mne,Zse,gae,yae,xae,kae,Sae,Nae,Tae,_ae,Eae,Dae,Oae,zae,Lae,_re,Vae,Uae,Hae,Vse,jae,Xae,Qae,Jae,tie,sie,aie,Wse,iie,uie,cie,Dne,hie,gie,yie,xie,Iie,Nie,$ie,Aie,Rie,Mse,Yie,Zie,Oie,zie,Bie,Wie,Gie,Hie,jie,Die,Ere,eoe,roe,uoe,doe,Tse,hoe,qae];for(let e of foe)El(e);var moe=class{constructor(e){this.device=e,this.numUsedBuffers=0,this.numFreeBuffers=0,this.freeBuffers=new Map,this.usedBuffers=new Map,this.numBytesUsed=0,this.numBytesAllocated=0}acquireUploadBuffer(e,t){return this.acquireBuffer(e,t,!0)}acquireBuffer(e,t,n=!1){let s=Vw(e,t);if(this.freeBuffers.has(s)||this.freeBuffers.set(s,[]),this.usedBuffers.has(s)||this.usedBuffers.set(s,[]),this.numBytesUsed+=e,this.numUsedBuffers++,this.freeBuffers.get(s).length>0){this.numFreeBuffers--;let a=this.freeBuffers.get(s).shift();return this.usedBuffers.get(s).push(a),a}this.numBytesAllocated+=e;let r=this.device.createBuffer({mappedAtCreation:n,size:e,usage:t});return this.usedBuffers.get(s).push(r),r}releaseBuffer(e,t,n){if(this.freeBuffers.size===0)return;let s=Vw(t,n);this.freeBuffers.has(s)||this.freeBuffers.set(s,[]),this.freeBuffers.get(s).push(e),this.numFreeBuffers++,this.numUsedBuffers--;let r=this.usedBuffers.get(s),a=r.indexOf(e);if(a<0)throw new Error("Cannot release a buffer that was never provided by this buffer manager");r.splice(a,1),this.numBytesUsed-=t}releaseUploadBuffer(e,t,n){e.mapAsync(GPUMapMode.WRITE).then(()=>{this.releaseBuffer(e,t,n)},s=>{})}getNumUsedBuffers(){return this.numUsedBuffers}getNumFreeBuffers(){return this.numFreeBuffers}dispose(){this.freeBuffers.forEach((e,t)=>{e.forEach(n=>{n.destroy()})}),this.usedBuffers.forEach((e,t)=>{e.forEach(n=>{n.destroy()})}),this.freeBuffers=new Map,this.usedBuffers=new Map,this.numUsedBuffers=0,this.numFreeBuffers=0,this.numBytesUsed=0,this.numBytesAllocated=0}};function Vw(e,t){return`${e}_${t}`}var H2=class{constructor(){this.outputShape=[0],this.variableNames=[],this.workGroupSize=[256,1,1],this.lastUniformData=[],this.inputTexture=null,this.layout=null,this.lastPixelSize={width:0,height:0},this.disposed=!1,this.shaderKey="fromPixels",this.useImport=!1}updateOutputShape(e){w.arraysEqual(this.outputShape,e)||(this.outputShape=e,this.workPerThread=e[2],this.dispatchLayout=Le(this.outputShape),this.dispatch=$e(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]))}makeFromPixelsSource(){let e=this.useImport?"textureLoad(src, vec2<i32>(coords.yx));":"textureLoad(src, vec2<i32>(coords.yx), 0)";return`
|
|
@binding(1) @group(0) var src: ${this.useImport?"texture_external":"texture_2d<f32>"};
|
|
|
|
${Ue()}
|
|
let flatIndexBase = index * uniforms.numChannels;
|
|
for (var i = 0; i < uniforms.numChannels; i = i + 1) {
|
|
let flatIndex = flatIndexBase + i;
|
|
if (flatIndex < uniforms.size) {
|
|
let coords = getCoordsFromIndex(flatIndexBase);
|
|
let values = ${e};
|
|
result[flatIndex] = i32(floor(255.0 * values[i]));
|
|
}
|
|
}
|
|
}
|
|
`}getUserCode(){return this.makeFromPixelsSource()}setPipeline(e){this.pipeline=e}setUniform(e,t){if(!this.uniform){let n=e.createBuffer({size:t.length*4,usage:GPUBufferUsage.UNIFORM|GPUBufferUsage.COPY_DST});this.uniform=n}!t||t.length===this.lastUniformData.length&&t.every((n,s)=>n===this.lastUniformData[s])||(e.queue.writeBuffer(this.uniform,0,new Uint32Array(t)),this.lastUniformData=t)}makeInputTexture(e,t,n){return(!this.inputTexture||this.lastPixelSize.width!==t||this.lastPixelSize.height!==n)&&(this.inputTexture&&this.inputTexture.destroy(),this.inputTexture=e.createTexture({size:[t,n],format:"rgba8unorm",usage:GPUTextureUsage.COPY_DST|GPUTextureUsage.RENDER_ATTACHMENT|GPUTextureUsage.TEXTURE_BINDING}),this.lastPixelSize.width=t,this.lastPixelSize.height=n),this.inputTexture}dispose(){this.disposed||(this.uniform&&this.uniform.destroy(),this.inputTexture&&this.inputTexture.destroy(),this.disposed=!0)}getLayout(e){return this.layout===null&&(this.layout=this.createTextureLayout(e)),this.layout}createTextureLayout(e){let t=[];t.push({binding:0,visibility:GPUShaderStage.COMPUTE,buffer:{type:"storage"}}),t.push({binding:1,visibility:GPUShaderStage.COMPUTE,texture:{}}),t.push({binding:2,visibility:GPUShaderStage.COMPUTE,buffer:{}});let n=e.createBindGroupLayout({entries:t}),s=e.createPipelineLayout({bindGroupLayouts:[n]});return{bindGroupLayout:n,pipelineLayout:s}}},goe=class extends H2{constructor(){super(...arguments),this.layout=null,this.useImport=!0}getUserCode(){return this.makeFromPixelsSource()}getLayout(e){return this.layout===null&&(this.layout=this.createTextureImportLayout(e)),this.layout}createTextureImportLayout(e){let t=[];t.push({binding:0,visibility:GPUShaderStage.COMPUTE,buffer:{type:"storage"}}),t.push({binding:1,visibility:GPUShaderStage.COMPUTE,externalTexture:{}}),t.push({binding:2,visibility:GPUShaderStage.COMPUTE,buffer:{}});let n=e.createBindGroupLayout({entries:t}),s=e.createPipelineLayout({bindGroupLayouts:[n]});return{bindGroupLayout:n,pipelineLayout:s}}},boe=X().getNumber("WEBGPU_CPU_HANDOFF_SIZE_THRESHOLD"),Ww=(e,t)=>{let n=e.limits.maxComputeWorkgroupsPerDimension,s=t.dispatchLayout,r=t.dispatch;if(r.every(i=>i<=n))return r;w.assert(r[0]>n&&s.y===void 0&&s.z===void 0,()=>"Dispatch size exceeds WebGPU limits in Y or Z dimension.");let a=Math.ceil(Math.sqrt(r[0]));return a>n?(a=Math.ceil(Math.cbrt(r[0])),w.assert(a<=n,()=>"Total dispatch size exceeds WebGPU maximum."),[a,a,a]):[a,a,1]},q2=class extends sl{constructor(e,t=!1){if(super(),this.commandQueueOwnedIds=new WeakSet,this.tensorDisposalQueue=[],this.uniformDisposalQueue=[],this.stagingDisposalQueue=[],this.disposed=!1,this.uploadWaitMs=0,this.downloadWaitMs=0,this.dispatchNumberInEncoder=0,!_v())throw new Error("WebGPU is not supported on this device");this.layoutCache={},this.pipelineCache={},this.device=e,this.queue=e.queue,this.currentCommandEncoder=null,this.currentComputePass=null,this.supportTimeQuery=t,this.bufferManager=new moe(this.device),this.tensorMap=new Hd(this,Ss()),this.supportTimeQuery&&(this.querySet=this.device.createQuerySet({type:"timestamp",count:2})),X().getBool("WEBGPU_USE_PROFILE_TOOL")&&(this.dummyCanvas=document.createElement("canvas"),this.dummyCanvas.width=1,this.dummyCanvas.height=1,this.dummyContext=this.dummyCanvas.getContext("webgpu"),this.dummyContext.configure({device:e,format:"bgra8unorm"}),document.body.appendChild(this.dummyCanvas))}nextDataId(){return q2.nextDataId++}floatPrecision(){return 32}defaultGpuBufferUsage(){return GPUBufferUsage.STORAGE|GPUBufferUsage.COPY_SRC|GPUBufferUsage.COPY_DST}flushDisposalQueue(){this.tensorDisposalQueue.forEach(e=>{this.maybeReleaseBuffer(e),this.tensorMap.delete(e)}),this.uniformDisposalQueue.forEach(e=>this.bufferManager.releaseBuffer(e.buffer,e.byteSize,e.usage)),this.stagingDisposalQueue.forEach(e=>this.bufferManager.releaseUploadBuffer(e.buffer,e.byteSize,e.usage)),this.tensorDisposalQueue=[],this.uniformDisposalQueue=[],this.stagingDisposalQueue=[]}disposeData(e,t=!1){if(this.tensorMap.has(e)){let n=this.tensorMap.get(e);if(n.refCount--,!t&&n.refCount>0)return!1;if(this.commandQueueOwnedIds.has(e))return this.tensorDisposalQueue.push(e),!1;this.maybeReleaseBuffer(e);let{complexTensorInfos:s}=this.tensorMap.get(e);s!=null&&(this.disposeData(s.real.dataId,!0),this.disposeData(s.imag.dataId,!0)),this.tensorMap.delete(e)}return!0}memory(){return{numBytesInGPU:this.bufferManager.numBytesUsed,numBytesAllocatedInGPU:this.bufferManager.numBytesAllocated,unreliable:!1}}getBufferManager(){return this.bufferManager}acquireBuffer(e,t=this.defaultGpuBufferUsage()){return this.bufferManager.acquireBuffer(e,t)}maybeReleaseBuffer(e){let t=this.tensorMap.get(e);t!=null&&t.bufferInfo.buffer!=null&&(this.bufferManager.releaseBuffer(t.bufferInfo.buffer,t.bufferInfo.byteSize,t.bufferInfo.usage),t.bufferInfo.buffer=null)}refCount(e){return this.tensorMap.has(e)?this.tensorMap.get(e).refCount:0}incRef(e){let t=this.tensorMap.get(e);t.refCount++}decRef(e){if(this.tensorMap.has(e)){let t=this.tensorMap.get(e);t.refCount--}}write(e,t,n){if(n==="complex64"&&e!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let s={id:this.nextDataId()},r=w.sizeFromShape(t)*Xm(n);return this.tensorMap.set(s,{dtype:n,values:e,bufferInfo:{byteSize:r,usage:this.defaultGpuBufferUsage()},refCount:1}),s}move(e,t,n,s,r){if(s==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let a=w.sizeFromShape(n)*Xm(s);this.tensorMap.set(e,{dtype:s,values:t,bufferInfo:{byteSize:a,usage:this.defaultGpuBufferUsage()},refCount:r})}submitQueue(){this.ensureComputePassEnded(),this.queue.submit([this.currentCommandEncoder.finish()]),this.currentCommandEncoder=null,this.dispatchNumberInEncoder=0,this.commandQueueOwnedIds=new WeakSet,this.flushDisposalQueue()}getBuffer(e){return this.uploadToGPU(e),this.tensorMap.get(e).bufferInfo.buffer}getFromPixelsProgram(e){switch(e){case"copyExternal":return this.fromPixelProgram||(this.fromPixelProgram=new H2),this.fromPixelProgram;case"import":return this.fromPixelImportProgram||(this.fromPixelImportProgram=new goe),this.fromPixelImportProgram;default:w.assert(!1,()=>"Unsupported fromPixels shape");return}}ensureCommandEncoderReady(){this.currentCommandEncoder||(this.currentCommandEncoder=this.device.createCommandEncoder())}ensureComputePassEnded(){this.currentComputePass&&(this.currentComputePass.end(),this.currentComputePass=null)}getComputePass(){return this.currentComputePass||(this.currentComputePass=this.currentCommandEncoder.beginComputePass()),this.currentComputePass}async getBufferData(e){if(e.values!=null)return e.values;let t=this.acquireBuffer(e.bufferInfo.byteSize,GPUBufferUsage.COPY_DST|GPUBufferUsage.MAP_READ);this.ensureCommandEncoderReady(),this.ensureComputePassEnded(),this.currentCommandEncoder.copyBufferToBuffer(e.bufferInfo.buffer,0,t,0,e.bufferInfo.byteSize),this.submitQueue(),await t.mapAsync(GPUMapMode.READ);let n=t.getMappedRange().slice(0);return t.unmap(),t!=null&&this.bufferManager.releaseBuffer(t,e.bufferInfo.byteSize,GPUBufferUsage.COPY_DST|GPUBufferUsage.MAP_READ),X().getBool("WEBGPU_USE_PROFILE_TOOL")&&(w.assert(this.dummyContext!==void 0,()=>"Fail to get context for profiling tool"),this.dummyContext.getCurrentTexture()),n}convertAndCacheOnCPU(e,t){let n=this.tensorMap.get(e);return this.maybeReleaseBuffer(e),n.values=t,n.values}readSync(e){let t=this.tensorMap.get(e),{values:n}=t;if(n==null)throw new Error("WebGPU readSync is only available for CPU-resident tensors.");return n}async read(e){if(!this.tensorMap.has(e))throw new Error(`Tensor ${e} was not registered!`);let t=this.tensorMap.get(e),{values:n}=t;if(n!=null)return this.convertAndCacheOnCPU(e,n);let s;if(t.dtype==="complex64"){let r=await Promise.all([this.read(t.complexTensorInfos.real.dataId),this.read(t.complexTensorInfos.imag.dataId)]),a=r[0],i=r[1];s=S.mergeRealAndImagArrays(a,i)}else{let r=await this.getBufferData(t);s=k2(r,t.dtype)}return this.convertAndCacheOnCPU(e,s),s}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(s=>w.decodeString(s))}catch(s){throw new Error("Failed to decode encoded string bytes into utf-8")}return De(e.shape,e.dtype,n)}async time(e){let t=this.activeTimers,n=[],s=!1;this.programTimersStack==null?(this.programTimersStack=n,s=!0):this.activeTimers.push(n),this.activeTimers=n,e();let r=w.flatten(this.activeTimers.map(u=>u.query)).filter(u=>u!=null),a=w.flatten(this.activeTimers.map(u=>u.name)).filter(u=>u!=null);this.activeTimers=t,s&&(this.programTimersStack=null);let i={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null},o=await Promise.all(r);return i.kernelMs=w.sum(o),i.getExtraProfileInfo=()=>o.map((u,l)=>({name:a[l],ms:u})).map(u=>`${u.name}: ${u.ms}`).join(", "),this.uploadWaitMs=0,this.downloadWaitMs=0,i}getAndSavePipeline(e,t){return e in this.pipelineCache||(this.pipelineCache[e]=t()),this.pipelineCache[e]}makeTensorInfo(e,t,n){let s;if(t==="string"&&n!=null&&n.length>0&&w.isString(n[0])){let r=n.map(a=>w.encodeString(a));s=this.write(r,e,t)}else s=this.write(n,e,t);return{dataId:s,shape:e,dtype:t}}tensorToBinding(e){if(!e)return null;let t=this.tensorMap.get(e.dataId);return{offset:0,size:t.bufferInfo.byteSize,buffer:t.bufferInfo.buffer}}async getQueryTime(e){return this.supportTimeQuery?this.getTimeFromQuerySet(e):0}uploadToGPU(e){let t=this.tensorMap.get(e);if(t.bufferInfo.buffer==null&&(t.bufferInfo.buffer=this.acquireBuffer(t.bufferInfo.byteSize),t.values)){let n=this.bufferManager.acquireUploadBuffer(t.bufferInfo.byteSize,GPUBufferUsage.MAP_WRITE|GPUBufferUsage.COPY_SRC),s=n.getMappedRange();t.dtype==="int32"||t.dtype==="bool"?new Int32Array(s).set(t.values):new Float32Array(s).set(t.values),n.unmap(),this.ensureCommandEncoderReady(),this.ensureComputePassEnded(),this.currentCommandEncoder.copyBufferToBuffer(n,0,t.bufferInfo.buffer,0,t.bufferInfo.byteSize);let r={byteSize:t.bufferInfo.byteSize,usage:GPUBufferUsage.MAP_WRITE|GPUBufferUsage.COPY_SRC,buffer:n};this.stagingDisposalQueue.push(r)}}makeUniforms(e){let t=0,n=[];e.forEach(a=>{a.data.length===0&&(a.data=[1]);let i;switch(a.data.length){case 1:i=4;break;case 2:i=8;break;case 3:i=16;break;case 4:i=16;break;default:w.assert(!1,()=>`Unsupported ${a.data.length}D shape`)}t=Math.ceil(t/i)*i,n.push(t),t+=a.data.length*4});let s=new ArrayBuffer(t);e.forEach((a,i)=>{let o=n[i];a.type==="int32"?new Int32Array(s,o,a.data.length).set(a.data):a.type==="uint32"?new Uint32Array(s,o,a.data.length).set(a.data):new Float32Array(s,o,a.data.length).set(a.data)});let r=this.acquireBuffer(t,GPUBufferUsage.COPY_DST|GPUBufferUsage.UNIFORM);return this.queue.writeBuffer(r,0,s,0,t),{offset:0,size:t,buffer:r}}createLayout(e){let t=[];t.push({binding:0,visibility:GPUShaderStage.COMPUTE,buffer:{type:"storage"}});for(let r=0;r<e;r++)t.push({binding:r+1,visibility:GPUShaderStage.COMPUTE,buffer:{type:"read-only-storage"}});t.push({binding:e+1,visibility:GPUShaderStage.COMPUTE,buffer:{type:"uniform"}});let n=this.device.createBindGroupLayout({entries:t}),s=this.device.createPipelineLayout({bindGroupLayouts:[n]});return{bindGroupLayout:n,pipelineLayout:s}}getCachedOrCreateLayout(e){return e in this.layoutCache||(this.layoutCache[e]=this.createLayout(e)),this.layoutCache[e]}runWebGPUProgram(e,t,n,s,r){if(!r){if(r=this.makeTensorInfo(e.outputShape,n),w.sizeFromShape(r.shape)===0){let N=this.tensorMap.get(r.dataId);return N.values=w.getTypedArrayFromDType(r.dtype,0),r}this.uploadToGPU(r.dataId)}e.dispatch=Ww(this.device,e);let a=[{type:"float32",data:[NaN]}],i=t.concat(r).map(N=>N.shape),o="int32";i.map(N=>{a.push({type:o,data:N})});let u=w.computeStrides(r.shape);if(a.push({type:o,data:u}),e.size){let N=w.sizeFromShape(e.outputShape);a.push({type:o,data:[e.isVec4?N/4:N]})}s&&(a=[...a,...s]);let l=this.makeUniforms(a),c=t.map((N,E)=>{if(N.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");return this.uploadToGPU(N.dataId),{dtype:this.tensorMap.get(N.dataId).dtype,shape:N.shape,name:e.variableNames[E]}}),p=c.map(N=>N.dtype).concat(r.dtype),d=c.map(N=>S.getBroadcastDims(N.shape,r.shape)),h=c.map(N=>w.arraysEqual(N.shape,r.shape)).join("_"),f=d.map(N=>N.join("_")).join(";"),m=M2(e,i,p,f,h),{bindGroupLayout:g,pipelineLayout:b}=this.getCachedOrCreateLayout(e.variableNames.length),y=this.getAndSavePipeline(m,()=>z2(this.device,e,b,c,r)),v=this.activeTimers!=null,x=Yre(this.device,g,t.map(N=>this.tensorToBinding(N)),this.tensorToBinding(r),l);this.ensureCommandEncoderReady();let k=this.getComputePass();v&&this.supportTimeQuery&&k.writeTimestamp(this.querySet,0),k.setPipeline(y),k.setBindGroup(0,x),k.dispatch(e.dispatch[0],e.dispatch[1],e.dispatch[2]),v&&this.supportTimeQuery&&k.writeTimestamp(this.querySet,1),this.dispatchNumberInEncoder++,t.forEach(N=>{this.commandQueueOwnedIds.add(N.dataId)}),this.commandQueueOwnedIds.add(r.dataId);let T={byteSize:l.size,usage:GPUBufferUsage.COPY_DST|GPUBufferUsage.UNIFORM,buffer:l.buffer};return this.uniformDisposalQueue.push(T),X().get("WEBGPU_DEFERRED_SUBMIT_BATCH_SIZE")<=this.dispatchNumberInEncoder&&this.submitQueue(),v&&this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(this.querySet)}),r}runFromPixelsProgram(e,t,n,s,r){e.dispatch=Ww(this.device,e);let a=this.device.createBindGroup({layout:n.bindGroupLayout,entries:[{binding:0,resource:{buffer:t}},{binding:1,resource:s},{binding:2,resource:{buffer:e.uniform}}]});this.ensureCommandEncoderReady();let i=this.getComputePass(),o=this.activeTimers!=null;o&&this.supportTimeQuery&&i.writeTimestamp(this.querySet,0),i.setPipeline(e.pipeline),i.setBindGroup(0,a),i.dispatch(e.dispatch[0],e.dispatch[1],e.dispatch[2]),o&&this.supportTimeQuery&&i.writeTimestamp(this.querySet,1),this.commandQueueOwnedIds.add(r),this.submitQueue(),o&&this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(this.querySet)})}async getTimeFromQuerySet(e){let t=this.acquireBuffer(16,GPUBufferUsage.COPY_SRC|GPUBufferUsage.QUERY_RESOLVE),n=this.acquireBuffer(16,GPUBufferUsage.MAP_READ|GPUBufferUsage.COPY_DST);this.ensureCommandEncoderReady(),this.ensureComputePassEnded(),this.currentCommandEncoder.resolveQuerySet(e,0,2,t,0),this.currentCommandEncoder.copyBufferToBuffer(t,0,n,0,16),this.submitQueue(),await n.mapAsync(GPUMapMode.READ);let s=new BigUint64Array(n.getMappedRange()),r=Number(s[1]-s[0]);return n.unmap(),this.bufferManager.releaseBuffer(n,16,GPUBufferUsage.MAP_READ|GPUBufferUsage.COPY_DST),this.bufferManager.releaseBuffer(t,16,GPUBufferUsage.COPY_SRC|GPUBufferUsage.QUERY_RESOLVE),r/1e6}shouldExecuteOnCPU(e,t=boe){return X().getBool("WEBGPU_CPU_FORWARD")&&e.every(n=>this.tensorMap.get(n.dataId).bufferInfo.buffer==null&&w.sizeFromShape(n.shape)<t)}numDataIds(){return this.tensorMap.numDataIds()-this.tensorDisposalQueue.length}dispose(){this.disposed||(this.bufferManager.dispose(),this.fromPixelProgram&&this.fromPixelProgram.dispose(),this.fromPixelImportProgram&&this.fromPixelImportProgram.dispose(),this.disposed=!0)}},Dv=q2;Dv.nextDataId=0;var yoe={};Ae(yoe,{WebGPUBackend:()=>Dv,webgpu_util:()=>x2});_v()&&fp("webgpu",async()=>{X().set("CHECK_COMPUTATION_FOR_ERRORS",!1);let e={powerPreference:X().get("WEBGPU_USE_LOW_POWER_GPU")?"low-power":"high-performance"},t=await navigator.gpu.requestAdapter(e),n=t.limits,s={},r=t.features.has("timestamp-query");s.requiredLimits={maxComputeWorkgroupStorageSize:n.maxComputeWorkgroupStorageSize,maxComputeWorkgroupsPerDimension:n.maxComputeWorkgroupsPerDimension},r?s.requiredFeatures=["timestamp-query"]:console.warn("This device doesn't support timestamp-query extension. Start Chrome browser with flag --disable-dawn-features=disallow_unsafe_apis then try again. Or zero will shown for the kernel time when profiling mode isenabled. Using performance.now is not workable for webgpu sinceit doesn't support synchronously to read data from GPU.");let a=await t.requestDevice(s);return new Dv(a,r)},3);var It=(e=>(e[e.float32=0]="float32",e[e.int32=1]="int32",e[e.bool=2]="bool",e[e.string=3]="string",e[e.complex64=4]="complex64",e))(It||{}),th=(e=>(e[e.linear=0]="linear",e[e.relu=1]="relu",e[e.relu6=2]="relu6",e[e.prelu=3]="prelu",e[e.leakyrelu=4]="leakyrelu",e[e.sigmoid=5]="sigmoid",e[e.elu=6]="elu",e))(th||{}),j2;function voe(e){j2=e.wasm.cwrap(aa,null,["number","array","number","number","array","number","number","number","number","number","number","number","number"])}function xoe(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a,bias:i,preluActivationWeights:o}=t;if(r.dtype!=="float32"||a.dtype!=="float32")throw new Error("_FusedMatMul for non non-float32 tensors not yet supported.");let{transposeA:u,transposeB:l,activation:c,leakyreluAlpha:p}=s,d=n.dataIdMap.get(r.dataId).id,h=n.dataIdMap.get(a.dataId).id,f=0;if(i!=null){let E=n.dataIdMap.get(i.dataId);if(E.shape.length!==1)throw new Error(`_FusedMatMul only supports rank-1 bias but got rank ${E.shape.length}.`);f=E.id}let m=o==null?0:n.dataIdMap.get(o.dataId).id,g=th[c];if(g==null)throw new Error(`${c} activation not yet supported for FusedConv2D in the wasm backend.`);let b=u?r.shape[2]:r.shape[1],y=l?a.shape[1]:a.shape[2],v=Ko.assertAndGetBroadcastShape(r.shape.slice(0,-2),a.shape.slice(0,-2)),x=n.makeOutput([...v,b,y],r.dtype),k=n.dataIdMap.get(x.dataId).id,T=new Uint8Array(new Int32Array(r.shape).buffer),N=new Uint8Array(new Int32Array(a.shape).buffer);return j2(d,T,r.shape.length,h,N,a.shape.length,u,l,g,f,m,p||0,k),x}var woe={kernelName:aa,backendName:"wasm",setupFunc:voe,kernelFunc:xoe};function Xt(e,t){let n;function s(a){n=a.wasm.cwrap(e,null,["number","number","number"])}function r(a){let{backend:i,inputs:{x:o}}=a,u=i.dataIdMap.get(o.dataId).id,l=i.makeOutput(o.shape,t||o.dtype),c=i.dataIdMap.get(l.dataId).id;return w.sizeFromShape(l.shape)===0||n(u,It[o.dtype],c),l}return{kernelName:e,backendName:"wasm",setupFunc:s,kernelFunc:r}}var koe=Xt(uo);function gn(e,t,n){let s;function r(i){s=i.wasm.cwrap(e,null,["number","array","number","number","array","number","number","number"])}function a(i){let{backend:o,inputs:u}=i,{a:l,b:c}=u,p=o.dataIdMap.get(l.dataId).id,d=o.dataIdMap.get(c.dataId).id,h=n!=null?n:l.dtype,f=S.assertAndGetBroadcastShape(l.shape,c.shape),m=o.makeOutput(f,h);if(w.sizeFromShape(f)===0)return m;let g=new Uint8Array(new Int32Array(l.shape).buffer),b=new Uint8Array(new Int32Array(c.shape).buffer),y=o.dataIdMap.get(m.dataId).id;return(()=>s(p,g,l.shape.length,d,b,c.shape.length,It[l.dtype],y))(),m}return{kernelName:e,backendName:"wasm",setupFunc:r,kernelFunc:a}}var Ioe=!0,Soe=gn(Sr,Ioe),K2;function Coe(e){K2=e.wasm.cwrap(Ia,null,["array","number","number","number"])}function Noe(e){let{inputs:t,backend:n}=e,s=n.makeOutput(t[0].shape,t[0].dtype);if(w.sizeFromShape(s.shape)===0)return s;let r=t.map(o=>n.dataIdMap.get(o.dataId).id),a=new Uint8Array(new Int32Array(r).buffer),i=n.dataIdMap.get(s.dataId).id;return K2(a,r.length,It[s.dtype],i),s}var Toe={kernelName:Ia,backendName:"wasm",setupFunc:Coe,kernelFunc:Noe};function nh(e){let{inputs:{x:t},backend:n}=e,s=n.makeOutput(t.shape,t.dtype),r=n.typedArrayFromHeap(t);return n.typedArrayFromHeap(s).set(r),s}var $oe={kernelName:Wa,backendName:"wasm",kernelFunc:nh},X2;function _oe(e){X2=e.wasm.cwrap(mi,null,["number","array","number","number","number","array","number"])}function kr(e){let{inputs:t,backend:n,attrs:s}=e,[r,a]=Eoe(t.x.shape,s.perm),i=!0;for(let f=0;f<a.length;f++)a[f]!==f&&(i=!1);let o=Aoe(t.x.shape,s.perm),u={dataId:t.x.dataId,shape:r,dtype:t.x.dtype};if(i){let f=nh({inputs:t,backend:n});return f.shape=o,f}let l=n.makeOutput(o,u.dtype),c=n.dataIdMap.get(u.dataId).id,p=n.dataIdMap.get(l.dataId).id,d=new Uint8Array(new Int32Array(a).buffer),h=new Uint8Array(new Int32Array(u.shape).buffer);return X2(c,h,u.shape.length,It[u.dtype],p,d,a.length),l}function Aoe(e,t){let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[t[s]];return n}function Eoe(e,t){let n=[],s=[];for(let r=0;r<e.length;++r)e[r]!==1&&n.push(e[r]),e[t[r]]!==1&&s.push(t[r]);for(let r=0;r<s.length;++r){let a=-1;for(let i=0;i<s.length;++i)s[i]>=r&&(a===-1||s[a]>s[i])&&(a=i);s[a]=r}return[n,s]}var Roe={kernelName:mi,backendName:"wasm",kernelFunc:kr,setupFunc:_oe};function Or(e,t,n){let s=e.shape,r=e.shape.length,a=w.parseAxisParam(t,s),i=a,o=S.getAxesPermutation(i,r),u=null,l=!1;if(o!=null){let c=new Array(r);for(let h=0;h<c.length;h++)c[h]=s[o[h]];i=S.getInnerMostAxes(i.length,r),u=kr({inputs:{x:e},attrs:{perm:o},backend:n});let p=n.dataIdMap.get(e.dataId).id;n.dataIdMap.get(u.dataId).id!==p&&(l=!0)}return{transposed:u,originalAxes:a,axes:i,inputWasTransposed:l}}var Y2;function Doe(e){Y2=e.wasm.cwrap(il,null,["number, number, number"])}function Foe(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:i}=n,u=t.dataIdMap.get(i.dataId).id,l=i,{transposed:c,axes:p,originalAxes:d,inputWasTransposed:h}=Or(i,r,t);if(h){let v=t.dataIdMap.get(c.dataId).id;l=c,u=v}let f=l.shape.length;S.assertAxesAreInnerMostDims("all",p,f);let[m,g]=S.computeOutAndReduceShapes(l.shape,p),b=w.sizeFromShape(g),y=t.makeOutput(m,i.dtype);if(w.sizeFromShape(l.shape)!==0){let v=t.dataIdMap.get(y.dataId).id;Y2(u,b,v)}if(h&&t.disposeData(c.dataId),a){let v=S.expandShapeToKeepDim(y.shape,d);y.shape=v}return y}var Ooe={kernelName:il,backendName:"wasm",setupFunc:Doe,kernelFunc:Foe},Q2;function Poe(e){Q2=e.wasm.cwrap(ol,null,["number, number, number"])}function zoe(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:i}=n,u=t.dataIdMap.get(i.dataId).id,l=i,{transposed:c,axes:p,originalAxes:d,inputWasTransposed:h}=Or(i,r,t);if(h){let v=t.dataIdMap.get(c.dataId).id;l=c,u=v}let f=l.shape.length;S.assertAxesAreInnerMostDims("any",p,f);let[m,g]=S.computeOutAndReduceShapes(l.shape,p),b=w.sizeFromShape(g),y=t.makeOutput(m,i.dtype);if(w.sizeFromShape(l.shape)!==0){let v=t.dataIdMap.get(y.dataId).id;Q2(u,b,v)}if(h&&t.disposeData(c.dataId),a){let v=S.expandShapeToKeepDim(y.shape,d);y.shape=v}return y}var Moe={kernelName:ol,backendName:"wasm",setupFunc:Poe,kernelFunc:zoe},Z2;function Loe(e){Z2=e.wasm.cwrap(Sa,null,["number","number","number","number","number"])}function Boe(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r}=s,{x:a}=n,i=t.dataIdMap.get(a.dataId).id,o=i,u=a,{transposed:l,axes:c,inputWasTransposed:p}=Or(a,r,t);if(p){let b=t.dataIdMap.get(l.dataId).id;b!==i&&(u=l,o=b)}let d=u.shape.slice(0,-1),h=t.makeOutput(d,"int32"),f=t.dataIdMap.get(h.dataId).id,m=w.sizeFromShape(h.shape),g=u.shape[c[0]];return Z2(o,It[u.dtype],m,g,f),p&&t.disposeData(l.dataId),h}var Voe={kernelName:Sa,backendName:"wasm",kernelFunc:Boe,setupFunc:Loe},J2;function Woe(e){J2=e.wasm.cwrap(Ca,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Uoe(e){let{inputs:t,attrs:n,backend:s}=e,r=t.x,a=s.dataIdMap.get(r.dataId).id,{filterSize:i,strides:o,pad:u,dimRoundingMode:l}=n,c=S.computePool2DInfo(r.shape,i,o,1,u,l),p=c.filterHeight,d=c.filterWidth,h=c.padInfo.top,f=c.padInfo.right,m=c.padInfo.bottom,g=c.padInfo.left,b=c.strideHeight,y=c.strideWidth,v=c.inChannels;if(c.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${c.dataFormat}'. Please use 'channelsLast'.`);if(c.dilationWidth!==1||c.dilationHeight!==1)throw new Error(`was backend only supports average pooling with dilation = [1, 1], got [${c.dilationHeight}, ${c.dilationWidth}].`);let x=s.makeOutput(c.outShape,"float32"),k=s.dataIdMap.get(x.dataId).id;return J2(a,r.shape[0],r.shape[1],r.shape[2],p,d,h,f,m,g,b,y,v,k),x}var Goe={kernelName:Ca,backendName:"wasm",setupFunc:Woe,kernelFunc:Uoe};function yn(e){let{inputs:t,attrs:n}=e,{x:s}=t,{shape:r}=n,a=w.sizeFromShape(s.shape),i=w.inferFromImplicitShape(r,a);return w.assert(a===w.sizeFromShape(i),()=>`new shape: ${i}, old shape: ${s.shape}. New shape and old shape must have the same number of elements.`),e.backend.incRef(s.dataId),{dataId:s.dataId,shape:i,dtype:s.dtype}}var Hoe={kernelName:Ro,backendName:"wasm",kernelFunc:yn},eN;function qoe(e){eN=e.wasm.cwrap(Na,null,["number","array","number","number","array","number","number","number","number"])}function joe(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a}=t,{transposeA:i,transposeB:o}=s;if(r.dtype!=="float32"||a.dtype!=="float32")throw new Error("BatchMatMul for non non-float32 tensors not yet supported.");let u=r.shape.length,l=a.shape.length,c=i?r.shape[u-2]:r.shape[u-1],p=o?a.shape[l-1]:a.shape[l-2],d=i?r.shape[u-1]:r.shape[u-2],h=o?a.shape[l-2]:a.shape[l-1],f=r.shape.slice(0,-2),m=a.shape.slice(0,-2),g=w.sizeFromShape(f),b=w.sizeFromShape(m),v=Ko.assertAndGetBroadcastShape(r.shape.slice(0,-2),a.shape.slice(0,-2)).concat([d,h]);w.assert(c===p,()=>`Error in matMul: inner shapes (${c}) and (${p}) of Tensors with shapes ${r.shape} and ${a.shape} and transposeA=${i} and transposeB=${o} must match.`);let x=i?[g,c,d]:[g,d,c],k=o?[b,h,p]:[b,p,h],T=yn({inputs:{x:r},backend:n,attrs:{shape:x}}),N=yn({inputs:{x:a},backend:n,attrs:{shape:k}}),E=n.dataIdMap.get(T.dataId).id,A=n.dataIdMap.get(N.dataId).id,P=i?T.shape[2]:T.shape[1],R=o?N.shape[1]:N.shape[2],F=Math.max(g,b),$=n.makeOutput([F,P,R],T.dtype),z=n.dataIdMap.get($.dataId).id,W=new Uint8Array(new Int32Array(T.shape).buffer),q=new Uint8Array(new Int32Array(N.shape).buffer);return eN(E,W,T.shape.length,A,q,N.shape.length,i,o,z),n.disposeData(T.dataId),n.disposeData(N.dataId),$.shape=v,$}var Koe={kernelName:Na,backendName:"wasm",setupFunc:qoe,kernelFunc:joe};function xa(e){let{inputs:{x:t},attrs:{begin:n,size:s},backend:r}=e,[a,i]=wt.parseSliceParams(t,n,s),o=wt.isSliceContinous(t.shape,a,i),u=r.readSync(t.dataId),l=r.makeOutput(i,t.dtype),c=w.computeStrides(t.shape),p=r.dataIdMap.get(l.dataId);if(o){let f=wt.computeFlatOffset(a,c);return t.dtype==="string"?p.stringBytes=u.slice(f,f+w.sizeFromShape(i)):r.typedArrayFromHeap(l).set(u.subarray(f,f+w.sizeFromShape(i))),l}if(t.dtype==="string"){let f=Pd(u,a,i,t.shape,t.dtype);return p.stringBytes=f,l}let d=r.typedArrayFromHeap(l),h=t.shape.length;if(h===2)Xoe(u,c[0],d,a,i);else if(h===3)Yoe(u,c[0],c[1],d,a,i);else if(h===4)Qoe(u,c[0],c[1],c[2],d,a,i);else{let f=Pd(u,a,i,t.shape,t.dtype);d.set(f)}return l}function Xoe(e,t,n,s,r){let a=0,i=s[0],o=s[1],u=i+r[0];for(let l=i;l<u;l++){let c=l*t+o;n.set(e.subarray(c,c+r[1]),a),a+=r[1]}}function Yoe(e,t,n,s,r,a){let i=0,o=r[0],u=r[1],l=r[2],c=o+a[0],p=u+a[1];for(let d=o;d<c;d++)for(let h=u;h<p;h++){let f=d*t+h*n+l;s.set(e.subarray(f,f+a[2]),i),i+=a[2]}}function Qoe(e,t,n,s,r,a,i){let o=0,u=a[0],l=a[1],c=a[2],p=u+i[0],d=l+i[1],h=c+i[2],f=a[3];for(let m=u;m<p;m++)for(let g=l;g<d;g++)for(let b=c;b<h;b++){let y=m*t+g*n+b*s+f;r.set(e.subarray(y,y+i[3]),o),o+=i[3]}}var Zoe={kernelName:zo,backendName:"wasm",kernelFunc:xa};function Joe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,crops:i}=s,o=a.reduce((b,y)=>b*y),u=S.getReshaped(r.shape,a,o),l=S.getPermuted(u.length,a.length),c=S.getReshapedPermuted(r.shape,a,o),p=S.getSliceBeginCoords(i,a.length),d=S.getSliceSize(c,i,a.length),h=yn({inputs:{x:r},backend:n,attrs:{shape:u}}),f=kr({inputs:{x:h},backend:n,attrs:{perm:l}}),m=yn({inputs:{x:f},backend:n,attrs:{shape:c}}),g=xa({inputs:{x:m},backend:n,attrs:{begin:p,size:d}});return n.disposeData(h.dataId),n.disposeData(f.dataId),n.disposeData(h.dataId),g}var eue={kernelName:lo,backendName:"wasm",kernelFunc:Joe};function ac(e){let{inputs:{x:t},attrs:{dtype:n},backend:s}=e,r=s.makeOutput(t.shape,n),a=s.typedArrayFromHeap(t);return s.typedArrayFromHeap(r).set(a),r}var tue={kernelName:Ta,backendName:"wasm",kernelFunc:ac},nue=Xt($a),tN;function sue(e){tN=e.wasm.cwrap(Cr,null,["number","number","number","number"])}function rue(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{clipValueMin:a,clipValueMax:i}=s,o=n.dataIdMap.get(r.dataId).id,u=n.makeOutput(r.shape,r.dtype),l=n.dataIdMap.get(u.dataId).id;return tN(o,a,i,l),u}var aue={kernelName:Cr,backendName:"wasm",setupFunc:sue,kernelFunc:rue};function nN(e){let{inputs:t,backend:n}=e,s=w.parseAxisParam(e.attrs.axis,t[0].shape)[0],r=S.computeOutShape(t.map(h=>h.shape),s),a=t.filter(h=>w.sizeFromShape(h.shape)>0);if(a.length===1)return nh({inputs:{x:a[0]},backend:n});let i=n.makeOutput(r,t[0].dtype);if(w.sizeFromShape(r)===0)return i;let o=a.map(h=>h.shape);if(S.assertParamsConsistent(o,s),a[0].dtype==="string"){let h=a.map(v=>{let x=w.sizeFromShape(v.shape.slice(s));return yn({inputs:{x:v},backend:n,attrs:{shape:[-1,x]}})}),f=h.map(v=>({vals:n.readSync(v.dataId),shape:v.shape}));r=S.computeOutShape(h.map(v=>v.shape),1);let m=h[0].shape[0]===1,g=sv(f,r,t[0].dtype,m),b=S.computeOutShape(a.map(v=>v.shape),s);i.shape=b;let y=n.dataIdMap.get(i.dataId);return y.stringBytes=S.fromStringArrayToUint8(g),h.forEach(v=>n.disposeData(v.dataId)),i}let u=w.sizeFromShape(a[0].shape.slice(0,s)),l=0,c=a.map(h=>{let f=w.sizeFromShape(h.shape.slice(s));return l+=f,f}),p=a.map(h=>n.typedArrayFromHeap(h)),d=n.typedArrayFromHeap(i);for(let h=0;h<u;h++){let f=h*l;for(let m=0;m<p.length;m++){let g=c[m],b=h*g,y=p[m].subarray(b,b+g);d.set(y,f),f+=g}}return i}var iue={kernelName:co,backendName:"wasm",kernelFunc:nN},sN;function oue(e){sN=e.wasm.cwrap(_a,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function uue(e){let{inputs:t,attrs:n,backend:s}=e,{x:r,filter:a}=t,i=s.dataIdMap.get(r.dataId).id,o=s.dataIdMap.get(a.dataId).id,{strides:u,dilations:l,pad:c,dimRoundingMode:p,dataFormat:d}=n,h=S.convertConv2DDataFormat(d),f=S.computeConv2DInfo(r.shape,a.shape,u,l,c,p,!1,h),m=f.filterHeight,g=f.filterWidth,b=f.padInfo.top,y=f.padInfo.right,v=f.padInfo.bottom,x=f.padInfo.left,k=f.dilationHeight,T=f.dilationWidth,N=f.strideHeight,E=f.strideWidth,A=f.inChannels,P=f.outChannels,R=f.padInfo.type==="SAME"?1:0;if(f.dataFormat!=="channelsLast")throw new Error(`wasm backend Conv2D does not support dataFormat:'${f.dataFormat}'. Please use 'channelsLast'.`);let F=s.makeOutput(f.outShape,"float32"),$=s.dataIdMap.get(F.dataId).id;return sN(i,r.shape[0],r.shape[1],r.shape[2],o,m,g,b,y,v,x,R,k,T,N,E,A,P,$),F}var lue={kernelName:_a,backendName:"wasm",setupFunc:oue,kernelFunc:uue},rN;function cue(e){rN=e.wasm.cwrap(Aa,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function due(e){let{backend:t,inputs:n,attrs:s}=e,{dy:r,filter:a}=n,{strides:i,pad:o,dataFormat:u,dimRoundingMode:l,inputShape:c}=s,p=1,d=S.convertConv2DDataFormat(u),h=S.computeConv2DInfo(c,a.shape,i,p,o,l,!1,d),{batchSize:f,filterHeight:m,filterWidth:g,inChannels:b,inHeight:y,inWidth:v,outChannels:x,outHeight:k,outWidth:T,strideHeight:N,strideWidth:E}=h,A=m-1-h.padInfo.top,P=g-1-h.padInfo.left,R=h.dataFormat==="channelsLast",F=w.computeStrides(h.inShape),$=w.computeStrides(r.shape),[z,W,q]=w.computeStrides(a.shape),K=F[0],Y=R?F[1]:F[2],Z=R?F[2]:1,te=R?1:F[1],ee=$[0],se=R?$[1]:$[2],ne=R?$[2]:1,oe=R?1:$[1],re=t.makeOutput(h.inShape,"float32"),le=t.dataIdMap.get(re.dataId).id,me=t.dataIdMap.get(r.dataId).id,ke=t.dataIdMap.get(a.dataId).id;return rN(me,ke,f,m,g,y,v,b,k,T,x,N,E,A,P,z,W,q,K,Y,Z,te,ee,se,ne,oe,le),re}var pue={kernelName:Aa,backendName:"wasm",setupFunc:cue,kernelFunc:due},hue=Xt(Ea),fue=Xt(Ra),aN=(e=>(e[e.bilinear=0]="bilinear",e[e.nearest=1]="nearest",e))(aN||{}),iN;function mue(e){iN=e.wasm.cwrap(ho,null,["number","number","number","number","array","number","number","number","number","number"])}function gue(e){let{backend:t,inputs:n,attrs:s}=e,{method:r,extrapolationValue:a,cropSize:i}=s,{image:o,boxes:u,boxInd:l}=n,c=u.shape[0],[p,d]=i,h=[c,p,d,o.shape[3]],f=t.dataIdMap.get(o.dataId),m;o.dtype!=="float32"&&(m=ac({backend:t,inputs:{x:o},attrs:{dtype:"float32"}}),f=t.dataIdMap.get(m.dataId));let g=f.id,b=t.dataIdMap.get(u.dataId).id,y=t.dataIdMap.get(l.dataId).id,v=t.makeOutput(h,"float32"),x=t.dataIdMap.get(v.dataId).id,k=new Uint8Array(new Int32Array(o.shape).buffer);return iN(g,b,y,c,k,p,d,aN[r],a,x),m!=null&&t.disposeData(m.dataId),v}var bue={kernelName:ho,backendName:"wasm",setupFunc:mue,kernelFunc:gue},oN;function yue(e){oN=e.wasm.cwrap(po,null,["number","number","number","number","number","number"])}function vue(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,exclusive:i,reverse:o}=s,u=r.shape.length;w.assert(r.dtype==="float32"||r.dtype==="int32",()=>`cumprod does not support ${r.dtype} tensors in the WASM backend`);let l=S.getAxesPermutation([a],u),c=r;l!==null&&(c=kr({inputs:{x:r},attrs:{perm:l},backend:n}));let p=S.getInnerMostAxes(1,u)[0];S.assertAxesAreInnerMostDims("cumprod",[p],u);let d=n.makeOutput(c.shape,c.dtype),h=c.shape[p],f=n.dataIdMap.get(c.dataId).id,m=n.dataIdMap.get(d.dataId).id;oN(f,i?1:0,o?1:0,h,m,It[r.dtype]);let g=d;if(l!==null){let b=S.getUndoAxesPermutation(l);g=kr({inputs:{x:d},attrs:{perm:b},backend:n}),n.disposeData(c.dataId),n.disposeData(d.dataId)}return g}var xue={kernelName:po,backendName:"wasm",setupFunc:yue,kernelFunc:vue},uN;function wue(e){uN=e.wasm.cwrap(Da,null,["number","number","number","number","number","number"])}function kue(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,exclusive:i,reverse:o}=s,u=r.shape.length;w.assert(r.dtype==="float32"||r.dtype==="int32",()=>`cumsum does not support ${r.dtype} tensors in the WASM backend`);let l=S.getAxesPermutation([a],u),c=r;l!==null&&(c=kr({inputs:{x:r},attrs:{perm:l},backend:n}));let p=S.getInnerMostAxes(1,u)[0];S.assertAxesAreInnerMostDims("cumsum",[p],u);let d=n.makeOutput(c.shape,c.dtype),h=c.shape[p],f=n.dataIdMap.get(c.dataId).id,m=n.dataIdMap.get(d.dataId).id;uN(f,i?1:0,o?1:0,h,m,It[r.dtype]);let g=d;if(l!==null){let b=S.getUndoAxesPermutation(l);g=kr({inputs:{x:d},attrs:{perm:b},backend:n}),n.disposeData(c.dataId),n.disposeData(d.dataId)}return g}var Iue={kernelName:Da,backendName:"wasm",setupFunc:wue,kernelFunc:kue},lN;function Sue(e){lN=e.wasm.cwrap(fo,null,["number","number","number","array","number","array","array","number","number"])}function Cue(e){let{backend:t,inputs:n,attrs:s}=e,{x:r}=n,{blockSize:a,dataFormat:i}=s,o=r.shape[0],u=i==="NHWC"?r.shape[1]:r.shape[2],l=i==="NHWC"?r.shape[2]:r.shape[3],c=i==="NHWC"?r.shape[3]:r.shape[1],p=u*a,d=l*a,h=c/(a*a),f=i==="NHWC"?[o,p,d,h]:[o,h,p,d],m=t.makeOutput(f,"float32"),b=t.dataIdMap.get(r.dataId).id,y=new Uint8Array(new Int32Array(w.computeStrides(r.shape)).buffer),v=new Uint8Array(new Int32Array(f).buffer),x=new Uint8Array(new Int32Array(w.computeStrides(f)).buffer),k=t.dataIdMap.get(m.dataId).id;return lN(b,a,i==="NHWC"?1:0,y,r.shape.length-1,v,x,f.length,k),m}var Nue={kernelName:fo,backendName:"wasm",setupFunc:Sue,kernelFunc:Cue},cN;function Tue(e){cN=e.wasm.cwrap(Fa,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function $ue(e){let{inputs:t,attrs:n,backend:s}=e,{x:r,filter:a}=t,i=s.dataIdMap.get(r.dataId).id,o=s.dataIdMap.get(a.dataId).id,{strides:u,dilations:l,pad:c,dimRoundingMode:p}=n,d=l==null?[1,1]:l,h=S.computeConv2DInfo(r.shape,a.shape,u,d,c,p,!0),f=h.filterHeight,m=h.filterWidth,g=h.padInfo.top,b=h.padInfo.right,y=h.padInfo.bottom,v=h.padInfo.left,x=h.dilationHeight,k=h.dilationWidth,T=h.strideHeight,N=h.strideWidth,E=h.inChannels,A=h.outChannels,P=h.padInfo.type==="SAME"?1:0;if(h.dataFormat!=="channelsLast")throw new Error(`wasm backend DepthwiseConv2dNative does not support dataFormat:'${h.dataFormat}'. Please use 'channelsLast'.`);let R=s.makeOutput(h.outShape,"float32"),F=s.dataIdMap.get(R.dataId).id;return cN(i,r.shape[0],r.shape[1],r.shape[2],o,f,m,g,b,y,v,P,x,k,T,N,E,A,F),R}var _ue={kernelName:Fa,backendName:"wasm",setupFunc:Tue,kernelFunc:$ue},Aue=Xt(Pa),Eue=!1,Rue=gn(mo,Eue,"bool"),Due=Xt(za,"float32");function eg(e){let{inputs:t,attrs:n,backend:s}=e,{input:r}=t,{dim:a}=n,i=r.shape.length,o=r.shape.slice(),u=a;return a<0&&(w.assert(-(i+1)<=a,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),u=i+a+1),o.splice(u,0,1),yn({inputs:{x:r},backend:s,attrs:{shape:o}})}var Fue={kernelName:go,backendName:"wasm",kernelFunc:eg};function dN(e){let{attrs:{shape:t,value:n,dtype:s},backend:r}=e,a=r.makeOutput(t,s);return r.typedArrayFromHeap(a).fill(n),a}var Oue={kernelName:ml,backendName:"wasm",kernelFunc:dN},pN;function Pue(e){pN=e.wasm.cwrap(yo,null,["number","number","number","number","number","number"])}function zue(e){let{inputs:t,backend:n}=e,{image:s}=t,r=n.makeOutput(s.shape,s.dtype),a=n.dataIdMap.get(s.dataId).id,i=n.dataIdMap.get(r.dataId).id,[o,u,l,c]=s.shape;return pN(a,o,u,l,c,i),r}var Mue={kernelName:yo,backendName:"wasm",kernelFunc:zue,setupFunc:Pue},Lue=Xt(Ma),Bue=!1,Vue=gn(La,Bue),hN;function Wue(e){hN=e.wasm.cwrap(Ba,null,["number","number","number","number","number","number","number"])}function Uue(e){let{backend:t,inputs:n,attrs:s}=e,{varianceEpsilon:r}=s,{x:a,mean:i,variance:o,offset:u,scale:l}=n,c=t.dataIdMap.get(a.dataId).id,p=t.dataIdMap.get(i.dataId).id,d=t.dataIdMap.get(o.dataId).id,h=u!=null?t.dataIdMap.get(u.dataId).id:0,f=l!=null?t.dataIdMap.get(l.dataId).id:0,m=t.makeOutput(a.shape,a.dtype);if(w.sizeFromShape(a.shape)===0)return m;let g=t.dataIdMap.get(m.dataId).id;return hN(c,p,d,h,f,r,g),m}var Gue={kernelName:Ba,backendName:"wasm",setupFunc:Wue,kernelFunc:Uue},fN;function Hue(e){fN=e.wasm.cwrap(ia,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function que(e){let{inputs:t,attrs:n,backend:s}=e,{x:r,filter:a,bias:i,preluActivationWeights:o}=t,{strides:u,pad:l,dilations:c,dataFormat:p,dimRoundingMode:d,activation:h,leakyreluAlpha:f}=n,m=S.computeConv2DInfo(r.shape,a.shape,u,c,l,d),g=th[h];if(g==null)throw new Error(`${h} activation not yet supported for FusedConv2D in the wasm backend.`);let b=s.dataIdMap.get(r.dataId).id,y=s.dataIdMap.get(a.dataId).id,v=m.outChannels,x=0;if(i!=null){let ne=s.dataIdMap.get(i.dataId);if(ne.shape.length!==1)throw new Error(`FusedConv2D only supports rank-1 bias but got rank ${ne.shape.length}.`);if(ne.shape[0]!==v)throw new Error(`FusedConv2D bias shape (${ne.shape}) does not match the number of output channels (${v})`);x=ne.id}let k=m.filterHeight,T=m.filterWidth,N=m.padInfo.top,E=m.padInfo.right,A=m.padInfo.bottom,P=m.padInfo.left,R=m.dilationHeight,F=m.dilationWidth,$=m.strideHeight,z=m.strideWidth,W=m.inChannels,q=m.padInfo.type==="SAME"?1:0,K=m.batchSize,Y=m.inHeight,Z=m.inWidth;if(p!=="NHWC")throw new Error(`wasm backend FusedConv2D does not support dataFormat:'${p}'. Please use 'NHWC'.`);let te=s.makeOutput(m.outShape,"float32"),ee=s.dataIdMap.get(te.dataId).id,se=o==null?0:s.dataIdMap.get(o.dataId).id;return fN(b,K,Y,Z,y,k,T,x,N,E,A,P,q,R,F,$,z,W,v,g,se,f||0,ee),te}var jue={kernelName:ia,backendName:"wasm",setupFunc:Hue,kernelFunc:que},mN;function Kue(e){mN=e.wasm.cwrap(oa,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Xue(e){let{inputs:t,attrs:n,backend:s}=e,{x:r,filter:a,bias:i,preluActivationWeights:o}=t,{strides:u,pad:l,dilations:c,dataFormat:p,dimRoundingMode:d,activation:h,leakyreluAlpha:f}=n,m=S.computeConv2DInfo(r.shape,a.shape,u,c,l,d,!0),g=th[h];if(g==null)throw new Error(`${h} activation not yet supported for FusedDepthwiseConv2D in the wasm backend.`);let b=s.dataIdMap.get(r.dataId).id,y=s.dataIdMap.get(a.dataId).id,v=m.outChannels,x=0;if(i!=null){let ne=s.dataIdMap.get(i.dataId);if(ne.shape.length!==1)throw new Error(`FusedDepthwiseConv2D only supports rank-1 bias but got rank ${ne.shape.length}.`);if(ne.shape[0]!==v)throw new Error(`FusedDepthwiseConv2D bias shape (${ne.shape}) does not match the number of output channels (${v})`);x=ne.id}let k=m.filterHeight,T=m.filterWidth,N=m.padInfo.top,E=m.padInfo.right,A=m.padInfo.bottom,P=m.padInfo.left,R=m.dilationHeight,F=m.dilationWidth,$=m.strideHeight,z=m.strideWidth,W=m.inChannels,q=m.padInfo.type==="SAME"?1:0,K=m.batchSize,Y=m.inHeight,Z=m.inWidth;if(p!=="NHWC")throw new Error(`wasm backend FusedDepthwiseConv2D does not support dataFormat:'${p}'. Please use 'NHWC'.`);let te=s.makeOutput(m.outShape,"float32"),ee=s.dataIdMap.get(te.dataId).id,se=o==null?0:s.dataIdMap.get(o.dataId).id;return mN(b,K,Y,Z,y,k,T,x,N,E,A,P,q,R,F,$,z,W,v,g,se,f||0,ee),te}var Yue={kernelName:oa,backendName:"wasm",setupFunc:Kue,kernelFunc:Xue},gN;function Que(e){gN=e.wasm.cwrap(xo,null,["number","number","number","number","number","number","array","number"])}function Zue(e){let{backend:t,inputs:n}=e,{params:s,indices:r}=n,[a,i,o,u]=Rk.prepareAndValidate(s,r),l=t.makeOutput(a,s.dtype);if(i===0)return l;let c=r.shape,p=c[c.length-1],h=t.dataIdMap.get(s.dataId).id,m=t.dataIdMap.get(r.dataId).id,g=new Uint8Array(new Int32Array(u).buffer),b=t.dataIdMap.get(l.dataId).id;return gN(h,It[s.dtype],m,i,p,o,g,b),l}var Jue={kernelName:xo,backendName:"wasm",setupFunc:Que,kernelFunc:Zue},bN;function ele(e){bN=e.wasm.cwrap("Gather",null,["number","number","array","number","number","number","array","number"])}function tle(e){let{backend:t,inputs:n,attrs:s}=e,{x:r,indices:a}=n,{axis:i,batchDims:o}=s,u=w.parseAxisParam(i,r.shape)[0],l=t.readSync(a.dataId),c=r.shape[u];for(let A=0;A<l.length;++A){let P=l[A];w.assert(P<=c-1&&P>=0,()=>`GatherV2: the index value ${P} is not in [0, ${c-1}]`)}let p=S.segment_util.collectGatherOpShapeInfo(r,a,u,o),d=yn({inputs:{x:r},attrs:{shape:[p.batchSize,p.outerSize,p.dimSize,p.sliceSize]},backend:t}),h=w.sizeFromShape(a.shape),f=yn({inputs:{x:a},attrs:{shape:[p.batchSize,h/p.batchSize]},backend:t}),m=[p.batchSize,p.outerSize,h/p.batchSize,p.sliceSize],g=t.makeOutput(m,r.dtype);if(w.sizeFromShape(r.shape)===0)return g;let b=d.shape.length-1,v=t.dataIdMap.get(d.dataId).id,k=t.dataIdMap.get(f.dataId).id,T=t.dataIdMap.get(g.dataId).id,N=new Uint8Array(new Int32Array(w.computeStrides(d.shape)).buffer),E=new Uint8Array(new Int32Array(w.computeStrides(m)).buffer);return bN(v,It[r.dtype],N,b,k,p.batchSize,E,T),t.disposeData(d.dataId),t.disposeData(f.dataId),g.shape=p.outputShape,g}var nle={kernelName:vo,backendName:"wasm",setupFunc:ele,kernelFunc:tle},sle=!1,rle=gn(wo,sle,"bool"),ale=!1,ile=gn(Va,ale,"bool"),yN;function ole(e){yN=e.wasm.cwrap(Ua,null,["number","number","number","number"])}function ule(e){let{inputs:{x:t},attrs:{alpha:n},backend:s}=e,r=s.dataIdMap.get(t.dataId).id,a=s.makeOutput(t.shape,"float32");if(w.sizeFromShape(t.shape)!==0){let i=s.dataIdMap.get(a.dataId).id;yN(r,It[t.dtype],n,i)}return a}var lle={kernelName:Ua,backendName:"wasm",setupFunc:ole,kernelFunc:ule},cle=!1,dle=gn(ko,cle,"bool"),ple=!1,hle=gn(Io,ple,"bool"),fle=Xt(Ga),mle=!1,gle=gn(So,mle,"bool"),vN;function ble(e){vN=e.wasm.cwrap(Ha,null,["number","number","number","number"])}function yle(e){let{backend:t,inputs:n,attrs:s}=e,{reductionIndices:r,keepDims:a}=s,{x:i}=n,u=t.dataIdMap.get(i.dataId).id,l=i,{transposed:c,axes:p,originalAxes:d,inputWasTransposed:h}=Or(i,r,t);if(h){let v=t.dataIdMap.get(c.dataId).id;l=c,u=v}let f=l.shape.length;S.assertAxesAreInnerMostDims("max",p,f);let[m,g]=S.computeOutAndReduceShapes(l.shape,p),b=w.sizeFromShape(g),y=t.makeOutput(m,i.dtype);if(w.sizeFromShape(l.shape)!==0){let v=t.dataIdMap.get(y.dataId).id;vN(u,It[i.dtype],b,v)}if(h&&t.disposeData(c.dataId),a){let v=S.expandShapeToKeepDim(y.shape,d);y.shape=v}return y}var vle={kernelName:Ha,backendName:"wasm",setupFunc:ble,kernelFunc:yle},xle=!1,wle=gn(qa,xle),xN;function kle(e){xN=e.wasm.cwrap(ja,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Ile(e){let{inputs:t,attrs:n,backend:s}=e,r=t.x,a=s.dataIdMap.get(r.dataId).id;w.assert(r.dtype==="float32",()=>`Error in MaxPool: only float32 input is supported. Got ${r.dtype}.`);let{filterSize:i,strides:o,pad:u,dimRoundingMode:l}=n,c=S.computePool2DInfo(r.shape,i,o,1,u,l),p=c.filterHeight,d=c.filterWidth,h=c.padInfo.top,f=c.padInfo.right,m=c.padInfo.bottom,g=c.padInfo.left,b=c.dilationHeight,y=c.dilationWidth,v=c.strideHeight,x=c.strideWidth,k=c.inChannels,T=c.outChannels;if(c.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${c.dataFormat}'. Please use 'channelsLast'.`);let N=s.makeOutput(c.outShape,"float32"),E=s.dataIdMap.get(N.dataId).id;return xN(a,r.shape[0],r.shape[1],r.shape[2],p,d,h,f,m,g,b,y,v,x,k,T,E),N}var Sle={kernelName:ja,backendName:"wasm",setupFunc:kle,kernelFunc:Ile},wN;function Cle(e){wN=e.wasm.cwrap(Ka,null,["number, number, number"])}function Nle(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,u=o,l=i,{transposed:c,axes:p,originalAxes:d,inputWasTransposed:h}=Or(i,r,t),f=p;if(h){let x=t.dataIdMap.get(c.dataId).id;x!==o&&(l=c,u=x,f=S.getInnerMostAxes(f.length,l.shape.length))}S.assertAxesAreInnerMostDims("mean",f,l.shape.length);let[m,g]=S.computeOutAndReduceShapes(l.shape,f),b=w.sizeFromShape(g),y=l;l.dtype!=="float32"&&(y=ac({backend:t,inputs:{x:l},attrs:{dtype:"float32"}}),u=t.dataIdMap.get(y.dataId).id);let v=t.makeOutput(m,"float32");if(w.sizeFromShape(l.shape)!==0){let x=t.dataIdMap.get(v.dataId).id;wN(u,b,x)}if(h&&t.disposeData(c.dataId),a){let x=S.expandShapeToKeepDim(v.shape,d);v.shape=x}return l.dtype!=="float32"&&t.disposeData(y.dataId),v}var Tle={kernelName:Ka,backendName:"wasm",setupFunc:Cle,kernelFunc:Nle},kN;function $le(e){kN=e.wasm.cwrap(Xa,null,["number","number","number","number"])}function _le(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,u=o,l=i,{transposed:c,axes:p,originalAxes:d,inputWasTransposed:h}=Or(i,r,t);if(h){let v=t.dataIdMap.get(c.dataId).id;v!==o&&(l=c,u=v)}let f=l.shape.length;S.assertAxesAreInnerMostDims("min",p,f);let[m,g]=S.computeOutAndReduceShapes(l.shape,p),b=w.sizeFromShape(g),y=t.makeOutput(m,l.dtype);if(w.sizeFromShape(l.shape)!==0){let v=t.dataIdMap.get(y.dataId).id;kN(u,It[i.dtype],b,v)}if(h&&t.disposeData(c.dataId),a){let v=S.expandShapeToKeepDim(y.shape,d);y.shape=v}return y}var Ale={kernelName:Xa,backendName:"wasm",setupFunc:$le,kernelFunc:_le},Ele=!1,Rle=gn(Ya,Ele),IN=(e=>(e[e.reflect=0]="reflect",e[e.symmetric=1]="symmetric",e))(IN||{}),SN;function Dle(e){SN=e.wasm.cwrap(Qa,null,["number","array","number","number","array","array","number","number"])}function Fle(e){let{inputs:{x:t},backend:n,attrs:{paddings:s,mode:r}}=e,a=s.map((f,m)=>f[0]+t.shape[m]+f[1]),i=n.dataIdMap.get(t.dataId).id,o=n.makeOutput(a,t.dtype),u=n.dataIdMap.get(o.dataId).id,l=new Uint8Array(new Int32Array(t.shape).buffer),c=s.map(f=>f[0]),p=s.map(f=>f[1]),d=new Uint8Array(new Int32Array(c).buffer),h=new Uint8Array(new Int32Array(p).buffer);return SN(i,l,t.shape.length,It[t.dtype],d,h,IN[r],u),o}var Ole={kernelName:Qa,backendName:"wasm",kernelFunc:Fle,setupFunc:Dle},Ple=!0,zle=gn(Za,Ple),Mle=Xt(Co);function Fv(e,t){let n=new Int32Array(e.wasm.HEAPU8.buffer,t,4),s=n[0],r=n[1],a=n[2],i=n[3];return e.wasm._free(t),{pSelectedIndices:s,selectedSize:r,pSelectedScores:a,pValidOutputs:i}}var CN;function Lle(e){CN=e.wasm.cwrap(To,"number",["number","number","number","number","number"])}function Ble(e){let{backend:t,inputs:n,attrs:s}=e,{iouThreshold:r,maxOutputSize:a,scoreThreshold:i}=s,{boxes:o,scores:u}=n,l=t.dataIdMap.get(o.dataId).id,c=t.dataIdMap.get(u.dataId).id,p=CN(l,c,a,r,i),{pSelectedIndices:d,selectedSize:h,pSelectedScores:f,pValidOutputs:m}=Fv(t,p);return t.wasm._free(f),t.wasm._free(m),t.makeOutput([h],"int32",d)}var Vle={kernelName:To,backendName:"wasm",setupFunc:Lle,kernelFunc:Ble},NN;function Wle(e){NN=e.wasm.cwrap(kl,"number",["number","number","number","number","number","bool"])}function Ule(e){let{backend:t,inputs:n,attrs:s}=e,{iouThreshold:r,maxOutputSize:a,scoreThreshold:i,padToMaxOutputSize:o}=s,{boxes:u,scores:l}=n,c=t.dataIdMap.get(u.dataId).id,p=t.dataIdMap.get(l.dataId).id,d=NN(c,p,a,r,i,o),{pSelectedIndices:h,selectedSize:f,pSelectedScores:m,pValidOutputs:g}=Fv(t,d);t.wasm._free(m);let b=t.makeOutput([f],"int32",h),y=t.makeOutput([],"int32",g);return[b,y]}var Gle={kernelName:kl,backendName:"wasm",setupFunc:Wle,kernelFunc:Ule},TN;function Hle(e){TN=e.wasm.cwrap($o,"number",["number","number","number","number","number","number"])}function qle(e){let{backend:t,inputs:n,attrs:s}=e,{iouThreshold:r,maxOutputSize:a,scoreThreshold:i,softNmsSigma:o}=s,{boxes:u,scores:l}=n,c=t.dataIdMap.get(u.dataId).id,p=t.dataIdMap.get(l.dataId).id,d=TN(c,p,a,r,i,o),{pSelectedIndices:h,selectedSize:f,pSelectedScores:m,pValidOutputs:g}=Fv(t,d);t.wasm._free(g);let b=t.makeOutput([f],"int32",h),y=t.makeOutput([f],"float32",m);return[b,y]}var jle={kernelName:$o,backendName:"wasm",setupFunc:Hle,kernelFunc:qle},Kle=!1,Xle=gn(No,Kle,"bool"),$N;function Yle(e){$N=e.wasm.cwrap(Ao,null,["number","number","number","number","number"])}function Qle(e){let{inputs:t,backend:n,attrs:s}=e,{indices:r}=t,{depth:a,onValue:i,offValue:o}=s,u=n.makeOutput([...r.shape,a],"int32"),l=n.dataIdMap.get(u.dataId).id,p=n.dataIdMap.get(r.dataId).id;return $N(p,a,i,o,l),u}var Zle={kernelName:Ao,backendName:"wasm",setupFunc:Yle,kernelFunc:Qle};function Jle(e){let{inputs:{x:t},backend:n}=e,s=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(s).fill(1),s}var ece={kernelName:_o,backendName:"wasm",kernelFunc:Jle};function tce(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s;if(t.length===1)return eg({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let a=t[0].shape,i=t[0].dtype;t.forEach(c=>{w.assertShapesMatch(a,c.shape,"All tensors passed to stack must have matching shapes"),w.assert(i===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],u=t.map(c=>{let p=eg({inputs:{input:c},backend:n,attrs:{dim:r}});return o.push(p),p}),l=nN({inputs:u,backend:n,attrs:{axis:r}});return o.forEach(c=>n.disposeData(c.dataId)),l}var nce={kernelName:Eo,backendName:"wasm",kernelFunc:tce},_N;function sce(e){_N=e.wasm.cwrap(Ja,null,["number","array","number","number","array","array","number","number"])}function rce(e){let{inputs:{x:t},backend:n,attrs:{paddings:s,constantValue:r}}=e,a=s.map((m,g)=>m[0]+t.shape[g]+m[1]);if(w.sizeFromShape(t.shape)===0)return dN({backend:n,attrs:{shape:a,value:r,dtype:t.dtype}});let i=n.dataIdMap.get(t.dataId).id,o=n.makeOutput(a,t.dtype),l=n.dataIdMap.get(o.dataId).id,c=new Uint8Array(new Int32Array(t.shape).buffer),p=s.map(m=>m[0]),d=s.map(m=>m[1]),h=new Uint8Array(new Int32Array(p).buffer),f=new Uint8Array(new Int32Array(d).buffer);return _N(i,c,t.shape.length,It[t.dtype],h,f,r,l),o}var AN={kernelName:Ja,backendName:"wasm",kernelFunc:rce,setupFunc:sce},ace=!1,ice=gn(ei,ace),EN;function oce(e){EN=e.wasm.cwrap(ti,null,["number","number","number"])}function uce(e){let{inputs:t,backend:n}=e,{x:s,alpha:r}=t,a=n.dataIdMap.get(s.dataId).id,i=n.dataIdMap.get(r.dataId).id,o=a,u=s,l=u;u.dtype!=="float32"&&(l=ac({backend:n,inputs:{x:s},attrs:{dtype:"float32"}}),o=n.dataIdMap.get(l.dataId).id);let c=n.makeOutput(s.shape,"float32"),p=n.dataIdMap.get(c.dataId).id;return EN(o,i,p),u.dtype!=="float32"&&n.disposeData(l.dataId),c}var lce={kernelName:ti,backendName:"wasm",setupFunc:oce,kernelFunc:uce},RN;function cce(e){RN=e.wasm.cwrap(ni,null,["number","number","number","number"])}function dce(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,u=o,l=i,{transposed:c,axes:p,originalAxes:d,inputWasTransposed:h}=Or(i,r,t),f=p;if(h){let v=t.dataIdMap.get(c.dataId).id;v!==o&&(l=c,u=v,f=S.getInnerMostAxes(f.length,l.shape.length))}S.assertAxesAreInnerMostDims("prod",f,l.shape.length);let[m,g]=S.computeOutAndReduceShapes(l.shape,f),b=w.sizeFromShape(g),y=t.makeOutput(m,l.dtype);if(w.sizeFromShape(l.shape)!==0){let v=t.dataIdMap.get(y.dataId).id;RN(u,b,It[y.dtype],v)}if(h&&t.disposeData(c.dataId),a){let v=S.expandShapeToKeepDim(y.shape,d);y.shape=v}return y}var pce={kernelName:ni,backendName:"wasm",setupFunc:cce,kernelFunc:dce},hce=e=>{let{backend:t,attrs:n}=e,{start:s,stop:r,step:a,dtype:i}=n,o=iv(s,r,a,i),u=t.makeOutput([o.length],i);return t.typedArrayFromHeap(u).set(o),u},fce={kernelName:Il,backendName:"wasm",kernelFunc:hce},mce=!0,gce=gn(Oa,mce),bce=Xt(si),yce=Xt(ai),DN;function vce(e){DN=e.wasm.cwrap(ri,null,["number","number","number","number","number","number","number","number","number","number"])}function xce(e){let{backend:t,inputs:n,attrs:s}=e,{images:r}=n,{alignCorners:a,halfPixelCenters:i,size:o}=s,[u,l]=o,[c,p,d,h]=r.shape,f=[c,u,l,h],m=t.dataIdMap.get(r.dataId),g;m.dtype!=="float32"&&(g=ac({backend:t,inputs:{x:r},attrs:{dtype:"float32"}}),m=t.dataIdMap.get(g.dataId));let b=m.id,y=t.makeOutput(f,"float32");if(w.sizeFromShape(r.shape)===0)return y;let v=t.dataIdMap.get(y.dataId).id;return DN(b,c,p,d,h,u,l,a?1:0,i?1:0,v),g!=null&&t.disposeData(g.dataId),y}var wce={kernelName:ri,backendName:"wasm",setupFunc:vce,kernelFunc:xce},FN;function kce(e){FN=e.wasm.cwrap(Do,null,["number","array","number","array","number","number"])}function Ice(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dims:a}=s,i=w.parseAxisParam(a,r.shape);if(r.shape.length===0)return nh({inputs:{x:r},backend:n});let o=n.makeOutput(r.shape,r.dtype),u=n.dataIdMap.get(r.dataId).id,l=n.dataIdMap.get(o.dataId).id,c=new Uint8Array(new Int32Array(i).buffer),p=new Uint8Array(new Int32Array(r.shape).buffer);FN(u,c,i.length,p,r.shape.length,l);let d=yn({inputs:{x:o},attrs:{shape:r.shape},backend:n});return n.disposeData(o.dataId),d}var Sce={kernelName:Do,backendName:"wasm",kernelFunc:Ice,setupFunc:kce},ON;function Cce(e){ON=e.wasm.cwrap(jo,null,["number","number","number","number","number","number","number","number","array","number","number"])}function Nce(e){let{inputs:t,backend:n,attrs:s}=e,{image:r}=t,{radians:a,fillValue:i,center:o}=s,u=n.makeOutput(r.shape,r.dtype),l=n.dataIdMap.get(r.dataId).id,c=n.dataIdMap.get(u.dataId).id,[p,d,h,f]=r.shape,[m,g]=S.getImageCenter(o,d,h),b=i===0,y=255,v=typeof i=="number"?[i,i,i,b?0:y]:[...i,y],x=new Uint8Array(new Int32Array(v).buffer);return ON(l,p,d,h,f,a,m,g,x,v.length,c),u}var Tce={kernelName:jo,backendName:"wasm",kernelFunc:Nce,setupFunc:Cce},$ce=Xt(Fo),_ce=Xt(ii),PN;function Ace(e){PN=e.wasm.cwrap(Oo,null,["number","number","number","number","number","number","array","number","number"])}function Ece(e){let{backend:t,inputs:n,attrs:s}=e,{indices:r,updates:a}=n,{shape:i}=s,o=t.makeOutput(i,a.dtype);if(w.sizeFromShape(i)===0)return o;let{sliceRank:u,numUpdates:l,sliceSize:c,strides:p,outputSize:d}=Fk.calculateShapes(a,r,i),f=t.dataIdMap.get(r.dataId).id,g=t.dataIdMap.get(a.dataId).id,b=new Uint8Array(new Int32Array(p).buffer),y=t.dataIdMap.get(o.dataId).id;return PN(f,g,It[a.dtype],u,l,c,b,d,y),o}var Rce={kernelName:Oo,backendName:"wasm",setupFunc:Ace,kernelFunc:Ece},zN;function Dce(e){zN=e.wasm.cwrap("SelectV2",null,["number","number","number","number","number"])}function Fce(e){let{inputs:t,backend:n}=e,{condition:s,t:r,e:a}=t,i=n.dataIdMap.get(s.dataId).id,o=n.dataIdMap.get(r.dataId).id,u=n.dataIdMap.get(a.dataId).id,l=n.makeOutput(r.shape,r.dtype),c=n.dataIdMap.get(l.dataId).id,p=s.shape.length,d=r.shape.length,h=p===0||p>1||d===1?1:w.sizeFromShape(r.shape.slice(1));return zN(i,o,u,h,c),l}var Oce={kernelName:Po,backendName:"wasm",kernelFunc:Fce,setupFunc:Dce},MN;function Pce(e){MN=e.wasm.cwrap(ui,null,["number","number"])}function zce(e){let{backend:t,inputs:{x:n}}=e,s=t.dataIdMap.get(n.dataId).id,r=t.makeOutput(n.shape,n.dtype),a=t.dataIdMap.get(r.dataId).id;return w.sizeFromShape(r.shape)===0||MN(s,a),r}var Mce={kernelName:"Sigmoid",backendName:"wasm",setupFunc:Pce,kernelFunc:zce},Lce=Xt(oi),LN;function Bce(e){LN=e.wasm.cwrap(di,null,["number","number","number","number"])}function Vce(e){let{backend:t,inputs:{logits:n},attrs:{dim:s}}=e,r=t.dataIdMap.get(n.dataId).id,a=t.makeOutput(n.shape,n.dtype),i=t.dataIdMap.get(a.dataId).id,o=n.shape[s],u=w.sizeFromShape(n.shape)/o;return w.sizeFromShape(a.shape)===0||LN(r,i,o,u),a}var Wce={kernelName:di,backendName:"wasm",setupFunc:Bce,kernelFunc:Vce};function Uce(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,paddings:i}=s,o=w.sizeFromShape(a),u=[[0,0]];u.push(...i);for(let T=1+a.length;T<r.shape.length;++T)u.push([0,0]);let l=AN.kernelFunc({inputs:{x:r},backend:n,attrs:{paddings:u,constantValue:0}}),c=S.getReshaped(l.shape,a,o,!1),p=S.getPermuted(c.length,a.length,!1),d=S.getReshapedPermuted(l.shape,a,o,!1),m=yn({inputs:{x:l},backend:n,attrs:{shape:c}}),y=kr({inputs:{x:m},backend:n,attrs:{perm:p}}),k=yn({inputs:{x:y},backend:n,attrs:{shape:d}});return n.disposeData(l.dataId),n.disposeData(m.dataId),n.disposeData(y.dataId),k}var Gce={kernelName:Lo,backendName:"wasm",kernelFunc:Uce},BN;function Hce(e){BN=e.wasm.cwrap("SparseFillEmptyRows","number",["number","number","number","number","number","number","number","number","number","number","number","number"])}function qce(e){let{backend:t,inputs:n}=e,{indices:s,values:r,denseShape:a,defaultValue:i}=n,o=s.shape[0],u=s.shape[1],l=t.readSync(a.dataId)[0],c=[o+l,u],p=t.dataIdMap.get(s.dataId).id,d=t.dataIdMap.get(r.dataId).id,h=t.dataIdMap.get(i.dataId).id,f=t.makeOutput(c,s.dtype),m=t.dataIdMap.get(f.dataId).id,g=t.makeOutput(c.slice(0,1),r.dtype),b=t.dataIdMap.get(g.dataId).id,y=t.makeOutput([l],"bool"),v=t.dataIdMap.get(y.dataId).id,x=t.makeOutput([o],s.dtype),k=t.dataIdMap.get(x.dataId).id,T=t.makeOutput([4],"int32"),N=t.dataIdMap.get(T.dataId).id,E=BN(p,d,It[r.dtype],o,l,u,h,m,b,v,k,N),A=t.readSync(T.dataId),P;switch(A[0]){case 1:{P=S.getSparseFillEmptyRowsIndicesDenseShapeMismatch(A[1]);break}case 2:{P=S.getSparseFillEmptyRowsNegativeIndexErrorMessage(A[1],A[2]);break}case 3:P=S.getSparseFillEmptyRowsOutOfRangeIndexErrorMessage(A[1],A[2],A[3]);break;default:P=""}if(t.disposeData(T.dataId),P)throw t.disposeData(f.dataId),t.disposeData(g.dataId),t.disposeData(y.dataId),t.disposeData(x.dataId),new Error(P);let R=f,F=g;return E!==c[0]&&(R=xa({inputs:{x:f},attrs:{begin:0,size:[E,u]},backend:t}),F=xa({inputs:{x:g},attrs:{begin:0,size:E},backend:t}),t.disposeData(f.dataId),t.disposeData(g.dataId)),[R,F,y,x]}var jce={kernelName:ap,backendName:"wasm",setupFunc:Hce,kernelFunc:qce},VN;function Kce(e){VN=e.wasm.cwrap(_l,null,["number","number","number","number","number","number","number"])}function Xce(e){let{backend:t,inputs:n}=e,{inputIndices:s,inputShape:r,newShape:a}=n;if(s.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape
|
|
${s.shape}`);if(r.shape.length!==1)throw new Error(`Input shape should be a vector but received shape
|
|
${r.shape}`);if(a.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${a.shape}`);let i=t.dataIdMap.get(s.dataId).id,o=t.dataIdMap.get(r.dataId).id,u=t.dataIdMap.get(a.dataId).id,l=s.shape[0],c=w.sizeFromShape(a.shape),p=t.makeOutput([l,c],s.dtype),d=t.dataIdMap.get(p.dataId).id,h=t.makeOutput([c],a.dtype),f=t.dataIdMap.get(h.dataId).id,m=t.makeOutput([3],"int32"),g=t.dataIdMap.get(m.dataId).id;VN(i,o,u,l,d,f,g);let b=t.readSync(m.dataId),y;switch(b[0]){case 0:{y=S.getSparseReshapeMultipleNegativeOneOutputDimErrorMessage(b[1],b[2]);break}case 1:{y=S.getSparseReshapeNegativeOutputDimErrorMessage(b[1],b[2]);break}case 2:y=S.getSparseReshapeEmptyTensorZeroOutputDimErrorMessage();break;case 3:{let v=Array.from(t.readSync(r.dataId)),x=Array.from(t.readSync(h.dataId));y=S.getSparseReshapeInputOutputMultipleErrorMessage(v,x);break}case 4:{let v=Array.from(t.readSync(r.dataId)),x=Array.from(t.readSync(h.dataId));y=S.getSparseReshapeInputOutputMismatchErrorMessage(v,x);break}default:y=""}if(t.disposeData(m.dataId),y)throw t.disposeData(p.dataId),t.disposeData(h.dataId),new Error(y);return[p,h]}var Yce={kernelName:_l,backendName:"wasm",setupFunc:Kce,kernelFunc:Xce},WN;function UN(e){WN=e.wasm.cwrap("SparseSegmentReduction",null,["number","number","number","number","number","number","number","number","number"])}function GN(e,t){let{backend:n,inputs:s}=e,{data:r,indices:a,segmentIds:i}=s,o=a.shape[0],u=n.readSync(i.dataId,o-1,o)[0],c=o>0?u+1:0;if(c<0)throw new Error(S.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());let p=r.shape.slice();p[0]=c;let d=n.dataIdMap.get(r.dataId).id,h=n.dataIdMap.get(a.dataId).id,f=n.dataIdMap.get(i.dataId).id,m=n.makeOutput(p,r.dtype),g=n.dataIdMap.get(m.dataId).id,b=n.makeOutput([4],"int32"),y=n.dataIdMap.get(b.dataId).id;WN(d,It[r.dtype],r.shape[0],h,f,g,y,t,0);let v=n.readSync(b.dataId),x;switch(v[0]){case 0:{x=S.getSparseSegmentReductionNegativeSegmentIdsErrorMessage();break}case 1:{x=S.getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage();break}case 2:x=S.getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage(v[1],v[2]);break;case 3:x=S.getSparseSegmentReductionIndicesOutOfRangeErrorMessage(v[1],v[2],v[3]);break;default:x=""}if(n.disposeData(b.dataId),x)throw n.disposeData(m.dataId),new Error(x);return m}function Qce(e){return GN(e,!0)}var Zce={kernelName:ip,backendName:"wasm",setupFunc:UN,kernelFunc:Qce};function Jce(e){return GN(e,!1)}var ede={kernelName:op,backendName:"wasm",setupFunc:UN,kernelFunc:Jce};function tde(e){let{inputs:t,attrs:n,backend:s}=e,{x:r}=t,{numOrSizeSplits:a,axis:i}=n,o=w.parseAxisParam(i,r.shape)[0],u=S.prepareSplitSize(r,a,o),l=new Array(r.shape.length).fill(0),c=r.shape.slice();return u.map(p=>{let d=[...c];d[o]=p;let h=xa({inputs:{x:r},attrs:{begin:l,size:d},backend:s});return l[o]+=p,h})}var nde={kernelName:Bo,backendName:"wasm",kernelFunc:tde},sde=Xt(li),rde=Xt(Al),ade=!0,ide=gn(pi,ade),HN;function ode(e){HN=e.wasm.cwrap(gi,null,["number","number","number","number"])}function ude(e){let{backend:t,inputs:n,attrs:s}=e,{alpha:r}=s,{x:a}=n,i=t.dataIdMap.get(a.dataId).id,o=t.makeOutput(a.shape,a.dtype),u=t.dataIdMap.get(o.dataId).id;return HN(i,r,It[a.dtype],u),o}var lde={kernelName:gi,backendName:"wasm",setupFunc:ode,kernelFunc:ude},qN;function cde(e){qN=e.wasm.cwrap(Vo,null,["number","array","number","array","array","array","array","array","number","number"])}function dde(e){let{backend:t,inputs:n,attrs:s}=e,{x:r}=n,{begin:a,end:i,strides:o,beginMask:u,endMask:l,ellipsisMask:c,newAxisMask:p,shrinkAxisMask:d}=s,{finalShapeSparse:h,finalShape:f,isIdentity:m,sliceDim0:g,isSimpleSlice:b,begin:y,end:v,strides:x}=wt.sliceInfo(r.shape,a,i,o,u,l,c,p,d),k;if(m)k=yn({inputs:{x:r},backend:t,attrs:{shape:f}});else if(g||b){w.assert(r.shape.length>=1,()=>`Input must have rank at least 1, got: ${r.shape.length}`);let T=wt.computeOutShape(y,v,x),N=xa({inputs:{x:r},backend:t,attrs:{begin:y,size:T}});k=yn({inputs:{x:N},backend:t,attrs:{shape:f}}),t.disposeData(N.dataId)}else{let T=t.makeOutput(h,"float32"),N=t.dataIdMap.get(r.dataId).id,E=new Uint8Array(new Int32Array(w.computeStrides(r.shape)).buffer),A=new Uint8Array(new Int32Array(y).buffer),P=new Uint8Array(new Int32Array(v).buffer),R=new Uint8Array(new Int32Array(x).buffer),F=new Uint8Array(new Int32Array(h).buffer),$=new Uint8Array(new Int32Array(w.computeStrides(h)).buffer),z=t.dataIdMap.get(T.dataId).id;qN(N,E,r.shape.length,A,P,R,F,$,h.length,z),k=yn({inputs:{x:T},backend:t,attrs:{shape:f}}),t.disposeData(T.dataId)}return k}var pde={kernelName:Vo,backendName:"wasm",setupFunc:cde,kernelFunc:dde},hde=!0,fde=gn(hi,hde),jN;function mde(e){jN=e.wasm.cwrap(ci,null,["number","number","number","number"])}function gde(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,u=o,l=i,{transposed:c,axes:p,originalAxes:d,inputWasTransposed:h}=Or(i,r,t),f=p;if(h){let v=t.dataIdMap.get(c.dataId).id;v!==o&&(l=c,u=v,f=S.getInnerMostAxes(f.length,l.shape.length))}S.assertAxesAreInnerMostDims("sum",f,l.shape.length);let[m,g]=S.computeOutAndReduceShapes(l.shape,f),b=w.sizeFromShape(g),y=t.makeOutput(m,l.dtype);if(w.sizeFromShape(l.shape)!==0){let v=t.dataIdMap.get(y.dataId).id;jN(u,b,It[y.dtype],v)}if(h&&t.disposeData(c.dataId),a){let v=S.expandShapeToKeepDim(y.shape,d);y.shape=v}return y}var bde={kernelName:ci,backendName:"wasm",setupFunc:mde,kernelFunc:gde},yde=Xt(Wo),vde=Xt(fi),KN;function xde(e){KN=e.wasm.cwrap(Nr,null,["number","array","number","array","number","number"])}function wde(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,a=n.dataIdMap.get(r.dataId).id,{reps:i}=s,o=new Array(r.shape.length);for(let d=0;d<o.length;d++)o[d]=r.shape[d]*i[d];let u=new Uint8Array(new Int32Array(r.shape).buffer),l=new Uint8Array(new Int32Array(o).buffer),c=n.makeOutput(o,r.dtype),p=n.dataIdMap.get(c.dataId).id;return KN(a,u,r.shape.length,l,o.length,It[c.dtype],p),c}var kde={kernelName:Nr,backendName:"wasm",setupFunc:xde,kernelFunc:wde},XN;function Ide(e){XN=e.wasm.cwrap(Uo,null,["number","array","number","number","number","bool","number","number"])}var Sde=({inputs:e,backend:t,attrs:n})=>{let{x:s}=e,{k:r,sorted:a}=n,i=t.dataIdMap.get(s.dataId).id,o=new Uint8Array(new Int32Array(s.shape).buffer),u=s.shape.slice();u[u.length-1]=r;let l=t.makeOutput(u,s.dtype),c=t.dataIdMap.get(l.dataId).id,p=t.makeOutput(u,"int32"),d=t.dataIdMap.get(p.dataId).id;return XN(i,o,s.shape.length,It[s.dtype],r,a,c,d),[l,p]},Cde={kernelName:Uo,backendName:"wasm",setupFunc:Ide,kernelFunc:Sde},YN;function Nde(e){YN=e.wasm.cwrap(Go,null,["number","number","bool","number","number","number","number","number","number","array","number","number","number","number","number"])}function Tde(e){let{backend:t,inputs:n,attrs:s}=e,{image:r,transforms:a}=n,{interpolation:i,fillMode:o,fillValue:u,outputShape:l}=s,[c,p,d,h]=r.shape,[f,m]=l!=null?l:[p,d],g=[c,f,m,h],b=new Uint8Array(new Int32Array(w.computeStrides(r.shape)).buffer),y=t.makeOutput(g,r.dtype),v=t.dataIdMap.get(y.dataId).id,k=t.dataIdMap.get(r.dataId).id,N=t.dataIdMap.get(a.dataId).id,E=i==="nearest"?1:2,A;switch(o){case"constant":A=1;break;case"reflect":A=2;break;case"wrap":A=3;break;case"nearest":A=4;break;default:A=1;break}return YN(k,N,a.shape[0]>1,c,f,m,h,d,p,b,r.shape.length-1,E,A,u,v),y}var $de={kernelName:Go,backendName:"wasm",setupFunc:Nde,kernelFunc:Tde};function _de(e){let{inputs:t,backend:n,attrs:s}=e,{value:r}=t,{axis:a}=s;a<0&&(a+=r.shape.length);let i=r.shape[a],o=r.shape.length,u=new Array(o-1),l=0;for(let h=0;h<o;h++)h!==a&&(u[l++]=r.shape[h]);let c=new Array(i),p=new Array(o).fill(0),d=r.shape.slice();d[a]=1;for(let h=0;h<c.length;h++)p[a]=h,c[h]=xa({inputs:{x:r},attrs:{begin:p,size:d},backend:n});return c.map(({dataId:h,dtype:f})=>({dataId:h,dtype:f,shape:u}))}var Ade={kernelName:Ho,backendName:"wasm",kernelFunc:_de};function Ede(e){let{inputs:{x:t},backend:n}=e,s=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(s).fill(0),s}var Rde={kernelName:qo,backendName:"wasm",kernelFunc:Ede},Dde=[woe,koe,Soe,Toe,Ooe,Moe,Voe,Goe,Koe,eue,tue,nue,aue,iue,lue,pue,hue,fue,bue,xue,Iue,Nue,_ue,Aue,Rue,Due,Fue,Oue,Mue,Lue,Vue,Gue,jue,Yue,Jue,nle,rle,ile,$oe,lle,dle,hle,fle,gle,vle,wle,Sle,Tle,Ale,Rle,Ole,zle,Mle,Vle,Gle,jle,Xle,Zle,ece,nce,AN,ice,lce,pce,fce,gce,bce,yce,Hoe,wce,Sce,Tce,$ce,_ce,Rce,Oce,Mce,Lce,Zoe,Wce,Gce,jce,Yce,Zce,ede,nde,sde,rde,ide,lde,pde,fde,bde,yde,vde,kde,Cde,$de,Roe,Ade,Rde];for(let e of Dde)El(e);var tg=X();tg.registerFlag("WASM_HAS_SIMD_SUPPORT",async()=>WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,10,9,1,7,0,65,0,253,15,26,11])));tg.registerFlag("WASM_HAS_MULTITHREAD_SUPPORT",async()=>{if(tg.get("IS_NODE"))return!1;try{return new MessageChannel().port1.postMessage(new SharedArrayBuffer(1)),WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,5,4,1,3,1,1,10,11,1,9,0,65,0,254,16,2,0,26,11]))}catch(e){return!1}});var Uw=wa(d$()),Fde=`"use strict";var Module={};var ENVIRONMENT_IS_NODE=typeof process==="object"&&typeof process.versions==="object"&&typeof process.versions.node==="string";if(ENVIRONMENT_IS_NODE){var nodeWorkerThreads=require("worker_threads");var parentPort=nodeWorkerThreads.parentPort;parentPort.on("message",function(data){onmessage({data:data})});var fs=require("fs");Object.assign(global,{self:global,require:require,Module:Module,location:{href:__filename},Worker:nodeWorkerThreads.Worker,importScripts:function(f){(0,eval)(fs.readFileSync(f,"utf8"))},postMessage:function(msg){parentPort.postMessage(msg)},performance:global.performance||{now:function(){return Date.now()}}})}function threadPrintErr(){var text=Array.prototype.slice.call(arguments).join(" ");if(ENVIRONMENT_IS_NODE){fs.writeSync(2,text+"
|
|
");return}console.error(text)}function threadAlert(){var text=Array.prototype.slice.call(arguments).join(" ");postMessage({cmd:"alert",text:text,threadId:Module["_pthread_self"]()})}var err=threadPrintErr;self.alert=threadAlert;Module["instantiateWasm"]=((info,receiveInstance)=>{var instance=new WebAssembly.Instance(Module["wasmModule"],info);receiveInstance(instance);Module["wasmModule"]=null;return instance.exports});self.onmessage=(e=>{try{if(e.data.cmd==="load"){Module["wasmModule"]=e.data.wasmModule;Module["wasmMemory"]=e.data.wasmMemory;Module["buffer"]=Module["wasmMemory"].buffer;Module["ENVIRONMENT_IS_PTHREAD"]=true;if(typeof e.data.urlOrBlob==="string"){importScripts(e.data.urlOrBlob)}else{var objectUrl=URL.createObjectURL(e.data.urlOrBlob);importScripts(objectUrl);URL.revokeObjectURL(objectUrl)}WasmBackendModuleThreadedSimd(Module).then(function(instance){Module=instance})}else if(e.data.cmd==="run"){Module["__performance_now_clock_drift"]=performance.now()-e.data.time;Module["__emscripten_thread_init"](e.data.threadInfoStruct,0,0,1);Module["establishStackSpace"]();Module["PThread"].receiveObjectTransfer(e.data);Module["PThread"].threadInit();try{var result=Module["invokeEntryPoint"](e.data.start_routine,e.data.arg);if(Module["keepRuntimeAlive"]()){Module["PThread"].setExitStatus(result)}else{Module["__emscripten_thread_exit"](result)}}catch(ex){if(ex!="unwind"){if(ex instanceof Module["ExitStatus"]){if(Module["keepRuntimeAlive"]()){}else{Module["__emscripten_thread_exit"](ex.status)}}else{throw ex}}}}else if(e.data.cmd==="cancel"){if(Module["_pthread_self"]()){Module["__emscripten_thread_exit"](-1)}}else if(e.data.target==="setimmediate"){}else if(e.data.cmd==="processThreadQueue"){if(Module["_pthread_self"]()){Module["_emscripten_current_thread_process_queued_calls"]()}}else if(e.data.cmd==="processProxyingQueue"){if(Module["_pthread_self"]()){Module["_emscripten_proxy_execute_queue"](e.data.queue)}}else{err("worker.js received unknown command "+e.data.cmd);err(e.data)}}catch(ex){err("worker.js onmessage() captured an uncaught exception: "+ex);if(ex&&ex.stack)err(ex.stack);if(Module["__emscripten_thread_crashed"]){Module["__emscripten_thread_crashed"]()}throw ex}});`,Ode=wa(p$()),Pde=class extends sl{constructor(e){super(),this.wasm=e,this.dataIdNextNumber=1,this.wasm.tfjs.initWithThreadsCount(QN),ng=this.wasm.tfjs.getThreadsCount(),this.dataIdMap=new Hd(this,Ss())}write(e,t,n){let s={id:this.dataIdNextNumber++};return this.move(s,e,t,n,1),s}numDataIds(){return this.dataIdMap.numDataIds()}async time(e){let t=w.now();return e(),{kernelMs:w.now()-t}}move(e,t,n,s,r){let a=this.dataIdNextNumber++;if(s==="string"){let l=t;this.dataIdMap.set(e,{id:a,stringBytes:l,shape:n,dtype:s,memoryOffset:null,refCount:r});return}let i=w.sizeFromShape(n),o=i*w.bytesPerElement(s),u=this.wasm._malloc(o);this.dataIdMap.set(e,{id:a,memoryOffset:u,shape:n,dtype:s,refCount:r}),this.wasm.tfjs.registerTensor(a,i,u),t!=null&&this.wasm.HEAPU8.set(new Uint8Array(t.buffer,t.byteOffset,o),u)}async read(e){return this.readSync(e)}readSync(e,t,n){let{memoryOffset:s,dtype:r,shape:a,stringBytes:i}=this.dataIdMap.get(e);if(r==="string")return(t==null||t===0)&&(n==null||n>=i.length)?i:i.slice(t,n);t=t||0,n=n||w.sizeFromShape(a);let o=w.bytesPerElement(r),u=this.wasm.HEAPU8.slice(s+t*o,s+n*o);return Lde(u.buffer,r)}disposeData(e,t=!1){if(this.dataIdMap.has(e)){let n=this.dataIdMap.get(e);if(n.refCount--,!t&&n.refCount>0)return!1;this.wasm._free(n.memoryOffset),this.wasm.tfjs.disposeData(n.id),this.dataIdMap.delete(e)}return!0}refCount(e){return this.dataIdMap.has(e)?this.dataIdMap.get(e).refCount:0}incRef(e){let t=this.dataIdMap.get(e);t!=null&&t.refCount++}floatPrecision(){return 32}getMemoryOffset(e){return this.dataIdMap.get(e).memoryOffset}dispose(){this.wasm.tfjs.dispose(),"PThread"in this.wasm&&this.wasm.PThread.terminateAllThreads(),this.wasm=null}memory(){return{unreliable:!1}}makeOutput(e,t,n){let s;if(n==null)s=this.write(null,e,t);else{let r=this.dataIdNextNumber++;s={id:r},this.dataIdMap.set(s,{id:r,memoryOffset:n,shape:e,dtype:t,refCount:1});let a=w.sizeFromShape(e);this.wasm.tfjs.registerTensor(r,a,n)}return{dataId:s,shape:e,dtype:t}}typedArrayFromHeap({shape:e,dtype:t,dataId:n}){let s=this.wasm.HEAPU8.buffer,{memoryOffset:r}=this.dataIdMap.get(n),a=w.sizeFromShape(e);switch(t){case"float32":return new Float32Array(s,r,a);case"int32":return new Int32Array(s,r,a);case"bool":return new Uint8Array(s,r,a);default:throw new Error(`Unknown dtype ${t}`)}}};function zde(e){return(t,n)=>(w.fetch(e,{credentials:"same-origin"}).then(s=>{s.ok||t.env.a(`failed to load wasm binary file at '${e}'`),s.arrayBuffer().then(r=>{WebAssembly.instantiate(r,t).then(a=>{n(a.instance,a.module)})})}),{})}function Gw(e,t,n){if(Wd!=null)return Wd;let s="tfjs-backend-wasm.wasm";return e&&t?s="tfjs-backend-wasm-threaded-simd.wasm":e&&(s="tfjs-backend-wasm-simd.wasm"),Bu!=null&&Bu[s]!=null?Bu[s]:n+s}async function Mde(){let[e,t]=await Promise.all([X().getAsync("WASM_HAS_SIMD_SUPPORT"),X().getAsync("WASM_HAS_MULTITHREAD_SUPPORT")]);return new Promise((n,s)=>{let r={};r.locateFile=(o,u)=>{if(o.endsWith(".worker.js")){let l=Fde.replace(/\n/g,"\\n"),c=new Blob([l],{type:"application/javascript"});return URL.createObjectURL(c)}return o.endsWith(".wasm")?Gw(e,t,zu!=null?zu:u):u+o},Ov&&(r.instantiateWasm=zde(Gw(e,t,zu!=null?zu:"")));let a=!1;r.onAbort=()=>{if(a||Vu)return;Vu=!0,s({message:"Make sure the server can serve the `.wasm` file relative to the bundled js file. For more details see https://github.com/tensorflow/tfjs/blob/master/tfjs-backend-wasm/README.md#using-bundlers"})};let i;t&&e&&Wd==null?(r.mainScriptUrlOrBlob=new Blob(["var WasmBackendModuleThreadedSimd = "+Uw.default.toString()],{type:"text/javascript"}),i=(0,Uw.default)(r)):i=(0,Ode.default)(r),i.then(o=>{a=!0,Vu=!1;let u=null;o.tfjs={init:o.cwrap("init",null,[]),initWithThreadsCount:o.cwrap("init_with_threads_count",null,["number"]),getThreadsCount:o.cwrap("get_threads_count","number",[]),registerTensor:o.cwrap("register_tensor",null,["number","number","number"]),disposeData:o.cwrap("dispose_data",u,["number"]),dispose:o.cwrap("dispose",u,[])},n({wasm:o})})})}function Lde(e,t){switch(t){case"float32":return new Float32Array(e);case"int32":return new Int32Array(e);case"bool":return new Uint8Array(e);default:throw new Error(`Unknown dtype ${t}`)}}var Bde=["tfjs-backend-wasm.wasm","tfjs-backend-wasm-simd.wasm","tfjs-backend-wasm-threaded-simd.wasm"],Wd=null,zu=null,Bu={},Vu=!1,Ov=!1;function Jpe(e,t=!1){if(Kk("setWasmPath has been deprecated in favor of setWasmPaths and will be removed in a future release."),Vu)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPath()` before you call `tf.setBackend()` or `tf.ready()`");Wd=e,Ov=t}function ehe(e,t=!1){if(Vu)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPaths()` before you call `tf.setBackend()` or `tf.ready()`");if(typeof e=="string")zu=e;else{Bu=e;let n=Bde.filter(s=>Bu[s]==null);if(n.length>0)throw new Error(`There were no entries found for the following binaries: ${n.join(",")}. Please either call setWasmPaths with a map providing a path for each binary, or with a string indicating the directory where all the binaries can be found.`)}Ov=t}var QN=-1,ng=-1;function the(e){QN=e}function nhe(){if(ng===-1)throw new Error("WASM backend not initialized.");return ng}var she="0.0.0",Vde=2;fp("wasm",async()=>{let{wasm:e}=await Mde();return new Pde(e)},Vde);var rr="3.15.0-20220414",rhe={tfjs:rr,"tfjs-core":rr,"tfjs-data":rr,"tfjs-layers":rr,"tfjs-converter":rr,"tfjs-backend-cpu":rr,"tfjs-backend-webgl":rr,"tfjs-backend-wasm":rr};export{uo as Abs,rl as Acos,al as Acosh,gb as AdadeltaOptimizer,bb as AdagradOptimizer,yb as AdamOptimizer,vb as AdamaxOptimizer,Sr as Add,Ia as AddN,il as All,ol as Any,Sa as ArgMax,ul as ArgMin,ll as Asin,cl as Asinh,dl as Atan,hl as Atan2,pl as Atanh,Ca as AvgPool,Kd as AvgPool3D,lg as AvgPool3DGrad,ug as AvgPoolGrad,Pde as BackendWasm,Na as BatchMatMul,lo as BatchToSpaceND,cg as Bincount,dg as BroadcastArgs,P$ as BroadcastTo,OW as Callback,QL as CallbackList,Ta as Cast,$a as Ceil,Cr as ClipByValue,Xd as Complex,Yd as ComplexAbs,co as Concat,_a as Conv2D,pg as Conv2DBackpropFilter,Aa as Conv2DBackpropInput,Qd as Conv3D,hg as Conv3DBackpropFilterV2,fg as Conv3DBackpropInputV2,Ea as Cos,Ra as Cosh,ho as CropAndResize,po as Cumprod,Da as Cumsum,eB as CustomCallback,Hd as DataStorage,mg as DenseBincount,fo as DepthToSpace,Fa as DepthwiseConv2dNative,gg as DepthwiseConv2dNativeBackpropFilter,bg as DepthwiseConv2dNativeBackpropInput,yg as Diag,Zd as Dilation2D,Zf as Dilation2DBackpropFilter,Qf as Dilation2DBackpropInput,sk as ENV,PW as EarlyStopping,Jd as Einsum,Pa as Elu,vg as EluGrad,A$ as Environment,mo as Equal,fl as Erf,za as Exp,go as ExpandDims,bo as Expm1,xg as FFT,ml as Fill,yo as FlipLeftRight,Ma as Floor,La as FloorDiv,fd as FromPixels,Ba as FusedBatchNorm,ia as FusedConv2D,oa as FusedDepthwiseConv2D,Xf as GPGPUContext,xo as GatherNd,vo as GatherV2,V4 as GraphModel,wo as Greater,Va as GreaterEqual,JL as History,wg as IFFT,Wa as Identity,ep as Imag,Dt as InputSpec,gl as IsFinite,bl as IsInf,yl as IsNan,sl as KernelBackend,np as LRN,Ig as LRNGrad,pz as LayerVariable,hr as LayersModel,Ua as LeakyRelu,ko as Less,Io as LessEqual,kg as LinSpace,Ga as Log,vl as Log1p,z$ as LogSoftmax,So as LogicalAnd,xl as LogicalNot,tp as LogicalOr,G0 as MathBackendCPU,U1 as MathBackendWebGL,Ha as Max,ja as MaxPool,sp as MaxPool3D,Cg as MaxPool3DGrad,Sg as MaxPoolGrad,Ng as MaxPoolWithArgmax,qa as Maximum,Ka as Mean,Xa as Min,Ya as Minimum,Qa as MirrorPad,wl as Mod,xb as MomentumOptimizer,Tg as Multinomial,Za as Multiply,Co as Neg,To as NonMaxSuppressionV3,kl as NonMaxSuppressionV4,$o as NonMaxSuppressionV5,No as NotEqual,m_ as OP_SCOPE_SUFFIX,Ao as OneHot,_o as OnesLike,Ar as Optimizer,Ur as OptimizerConstructors,Eo as Pack,Ja as PadV2,Wde as Pool,ei as Pow,ti as Prelu,ni as Prod,wb as RMSPropOptimizer,Er as RNN,Il as Range,i_ as Rank,rp as Real,Oa as RealDiv,Sl as Reciprocal,pO as Reduction,si as Relu,ai as Relu6,Ro as Reshape,ri as ResizeBilinear,_g as ResizeBilinearGrad,Cl as ResizeNearestNeighbor,$g as ResizeNearestNeighborGrad,Do as Reverse,jo as RotateWithOffset,Fo as Round,ii as Rsqrt,Cp as SGDOptimizer,Oo as ScatterNd,Po as Select,Nl as Selu,Hb as Sequential,ui as Sigmoid,Tl as Sign,oi as Sin,Mo as Sinh,zo as Slice,di as Softmax,$l as Softplus,Lo as SpaceToBatchND,ap as SparseFillEmptyRows,_l as SparseReshape,ip as SparseSegmentMean,op as SparseSegmentSum,up as SparseToDense,Bo as SplitV,li as Sqrt,Al as Square,pi as SquaredDifference,gi as Step,Vo as StridedSlice,lp as StringNGrams,Ag as StringSplit,Eg as StringToHashBucketFast,hi as Sub,ci as Sum,$s as SymbolicTensor,Wo as Tan,fi as Tanh,et as Tensor,Vt as TensorBuffer,Nr as Tile,Uo as TopK,Go as Transform,mi as Transpose,Rg as Unique,Ho as Unpack,cp as UnsortedSegmentSum,gd as Variable,qo as ZerosLike,aa as _FusedMatMul,Mt as abs,YA as acos,ZA as acosh,ie as add,eE as addN,Yk as all,hm as any,qu as argMax,aE as argMin,oE as asin,lE as asinh,dE as atan,hE as atan2,mE as atanh,qg as avgPool,eI as avgPool3d,UA as backend,S as backend_util,ipe as basicLSTMCell,Ku as batchNorm,FE as batchNorm2d,PE as batchNorm3d,ME as batchNorm4d,jg as batchToSpaceND,tI as bincount,Fpe as booleanMaskAsync,VE as broadcastArgs,nd as broadcastTo,Ko as broadcast_util,Ak as browser,De as buffer,Gpe as callbacks,ce as cast,GE as ceil,Vn as clipByValue,cr as clone,ua as complex,Ft as concat,jE as concat1d,XE as concat2d,QE as concat3d,JE as concat4d,$L as constraints,nI as conv1d,da as conv2d,sI as conv2dTranspose,rI as conv3d,oR as conv3dTranspose,Hde as copyRegisteredKernels,Xg as cos,iI as cosh,EI as cosineWindow,mm as cumprod,oI as cumsum,js as customGrad,W4 as data,hR as denseBincount,Kk as deprecationWarn,mR as depthToSpace,mp as depthwiseConv2d,qpe as deregisterOp,hp as device_util,ope as diag,vR as dilation2d,Xde as disableDeprecationWarnings,Re as dispose,Yde as disposeVariables,xe as div,SR as divNoNan,upe as dot,oF as dropout,TR as einsum,gp as elu,Kde as enableDebugMode,jde as enableProdMode,uF as enclosingPowerOfTwo,Ss as engine,X as env,Xn as equal,AR as erf,Yn as exp,Pn as expandDims,FR as expm1,uI as eye,db as fft,Pl as fill,spe as findBackend,rpe as findBackendFactory,bp as floor,Xk as floorDiv,e8 as forceHalfFloat,fa as fused,Xu as gather,rF as gatherND,Rk as gather_util,tpe as getBackend,rx as getGradient,Jf as getKernel,em as getKernelsForBackend,nhe as getThreadsCount,WK as gpgpu_util,dpe as grad,ppe as grads,Un as greater,Xo as greaterEqual,Id as ifft,Yg as imag,jn as image,Ppe as inTopKAsync,DL as initializers,HB as input,En as io,SI as irfft,lpe as isFinite,cpe as isInf,HR as isNaN,Ht as keep,xs as kernel_impls,XL as layers,Qg as leakyRelu,lI as less,Yo as lessEqual,qO as linalg,XR as linspace,jpe as loadGraphModel,Wpe as loadLayersModel,QR as localResponseNormalization,Qn as log,Zg as log1p,mpe as logSigmoid,cI as logSoftmax,dD as logSumExp,Ds as logicalAnd,tb as logicalNot,fI as logicalOr,gpe as logicalXor,Lpe as losses,We as matMul,pA as math,As as max,nb as maxPool,mI as maxPool3d,vD as maxPoolWithArgmax,_r as maximum,St as mean,pm as memory,bpe as meshgrid,fW as metrics,gm as min,vp as minimum,CD as mirrorPad,TD as mod,Bpe as model,AW as models,sb as moments,Ope as movingAverage,V as mul,ype as multiRNNCell,RD as multinomial,kt as neg,LI as nextFrame,_I as norm,Yu as notEqual,vd as oneHot,Mn as ones,Zn as onesLike,L as op,vpe as outerProduct,bi as pad,xpe as pad1d,wpe as pad2d,kpe as pad3d,Ipe as pad4d,Spe as pool,ha as pow,ab as prelu,X_ as print,gI as prod,Qde as profile,Cpe as rand,Npe as randomGamma,JD as randomNormal,Ml as randomUniform,Qu as range,epe as ready,wd as real,s3 as reciprocal,fp as registerBackend,Upe as registerCallbackConstructor,L$ as registerGradient,El as registerKernel,Hpe as registerOp,EW as regularizers,Ys as relu,bI as relu6,npe as removeBackend,G as reshape,Jn as reverse,Tpe as reverse1d,$pe as reverse2d,_pe as reverse3d,Ape as reverse4d,pb as rfft,yI as round,vI as rsqrt,we as scalar,eF as scatterND,Fk as scatter_util,xI as selu,m3 as separableConv2d,Vpe as sequential,ae as serialization,Jde as setBackend,ape as setPlatform,the as setThreadsCount,Jpe as setWasmPath,ehe as setWasmPaths,F5 as setWebGLContext,b3 as setdiff1dAsync,ev as shared,qs as sigmoid,v3 as sign,Mpe as signal,wI as sin,kI as sinh,qe as slice,ub as slice1d,II as slice2d,lb as slice3d,kd as slice4d,wt as slice_util,cb as softmax,zl as softplus,rb as spaceToBatchND,Wc as sparse,AI as sparseToDense,zpe as spectral,Bn as split,dn as sqrt,ct as square,CI as squaredDifference,gr as squeeze,es as stack,xp as step,M3 as stridedSlice,Bf as string,ge as sub,ve as sum,pp as sumOutType,B3 as tan,ju as tanh,fs as tensor,Zt as tensor1d,Yi as tensor2d,yA as tensor3d,Epe as tensor4d,Rpe as tensor5d,Dpe as tensor6d,_s as tensor_util,OA as test_util,j as tidy,ps as tile,Zde as time,W3 as topk,Mi as train,Ge as transpose,hb as truncatedNormal,mx as unique,Gde as unregisterGradient,Ude as unregisterKernel,q3 as unsortedSegmentSum,Fs as unstack,cn as upcastType,w as util,hpe as valueAndGrad,fpe as valueAndGrads,K3 as variable,eD as variableGrads,rhe as version,Kpe as version_converter,qde as version_core,Xpe as version_cpu,hS as version_layers,she as version_wasm,Ype as version_webgl,Qpe as webgl,D5 as webgl_util,yoe as webgpu,vn as where,TI as whereAsync,$t as zeros,je as zerosLike};
|
|
/**
|
|
* @license
|
|
* Copyright 2017 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2019 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2019 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2019 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google Inc. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use backend file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the License);
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an AS IS BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2021 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2021 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* https://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2021 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the License);
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an AS IS BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2022 Google Inc. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2022 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2022 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2022 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the 'License');
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an 'AS IS' BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/** @license See the LICENSE file. */
|